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How important is chemistry for chemical data assimilation ?
• Depends on the objective : a) prediction b) monitoring

OSSE: Vertically resolved nadir ozone measurements vs.
scanning total column ozone measurements 

BIAS correction
• Are tropospheric bias correction schemes appropriate for the 

stratosphere ?



Error statistics 
• Desrosiers et al. (2005) method 

Coupled chemistry-meteorology model
• comparison with a CTM

What to do with error covariances with unobserved species ?
• Rochon’s method

Dynamic-chemistry cross error covariance  
• Implementation in 3D Var-CHEM
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To obtain the error statistics
we use innovations 



Objective analysis

Observations

Analysis increment

Error statistics

Emissions

Met fields

Chemical model

Real-time Assimilation 
of Surface ozone 
observation



http://www.msc.ec.gc.ca/aq_smog/analysis_e.html

Objective analysis of surface ozone observations

• Assimilation and 
objective analysis 
using the  model
CHRONOS 

• Objective analysis
each hour, 24/7, 
year round

• Near-time since
June 2004

• Multiyear analyses
since the summer
2002



Verification

To verify against independent observations we use
• 1/3 of observations for the verification (red)
• 2/3 of observation used to produce the analysis (blue)
• rederive the error statistics (because the background error

may have changed)



With chemistry
How important is chemistry in assimilation and monitoringHow important is chemistry in assimilation and monitoring



No chemistry



• chemistry + free mode (no assimilation)
- std  20 ppb
- bias  2 ppb

• no chemistry + assimilation
- std  ~ 12  ppb
- bias a) ~ 1 ppb in analyses

b) large daytime (~10 ppb) in 1hr forecast

• chemistry + assimilation
- std  ~ 14  ppb
- bias  ~ 3 ppb (both analysis and forecast)

In summary

Conclusion

The reduction of error variance is largest when there is no
chemistry.  The bias is nearly zero in monitoring mode. 
The addition of chemistry reduces the effect of observations
i.e. more resilient in reducing the error variance and in

adapting the bias. 



Online chemistry with NWP model

Chemistry         Meteorology
• Radiation: GHG, Aerosols
• Better representation of boundary layer processes, convective effects

and wet removal  
• Trace gas prior for meteorological satellite assimilation 

(e.g. channels contaminated ozone, aerosols, … )
• Towards the integration of a one atmosphere model



Technically 

(+)
• Avoids large data transfer
• Streamline the development of models

(e.g. MPI development)
• Relatively small computational time and memory overhead ( + 20% ) 

over that of CTM at the same resolution

(-) 
• Development of chemical interface (modest development)
• Modification of the physics (routines and buses) to include

chemical variables (large undertaking)
• Two-way coupling needed for emission model (large undertaking)

( e.g. OASIS-3 coupler is used for Ocean coupling )



Global Environmental Multiscale model (GEM)

Global configuration Variable resolution configuration

Limited area configuration



OSSE: Vertically resolved nadir ozone measurements vs.
scanning total column ozone measurements 

§ Simulate an observation system (e.g. a new instrument) in a 
data assimilation environment to assess the impact of the
observation system

§ Simulated truth, i.e. nature run, is created by a different model:
SEF with CMAM chemistry

§ The “observations” are drawn from the nature run
§ 3D Var + GEM_Tracer is used as the assimilation system

§ORACLE space-based Differential Absorption Lidar (DIAL)

§ Ozone ; 1 km vertical resolution from 500 hPa to 1 hPa

§TOVS total column ozone 





Forecast error variance

ORACLE

TOVS

ORACLE + TOVS



3D field total column



Two main projects

v GEM – Air Quality
Focus on troposphere and emission model interface
Online integration of CHRONOS in GEM
Timelines:  09/05 start – 2007 End (Technical integration phase)
People:  ARQI (3)       Modelling and integration section

AQMAG (3)  CMC/Air Quality Modelling and Application Group 

v GEM – Stratosphere 
Focus on stratospheric chemistry and data assimilation issues
Timelines: 01/05 start – July 2007 end
People: ARQI (5)   Modelling and Integration section

ARQX (1)     Ozone 
ARMA (1)     Satellite observations and data assimilation
ARMN (1)     Meteorological modelling
CMC (3)       Operations
BIRA (1)       Belgium Institute for Space Aeronomy
MAQNet (1) York University



Main development tasks

Model
• chemical interface;

chemical bus, no change
to phys_exe 

• coupled chemistry-meteorology
validation

• GHG radiation interaction;
chemical variables passed to
phys_exe

Assimilation
• extension of 3D Var for 

chemical species

• BUFR (BURP) format for
chemical species.  Proposition
to WMO

• construction of error statistics;
extension of meteorological tools
for chemical species, cross error
chemistry-meteorology statistics

• changes in assimilation launching
scripts



n Observed radiances compared with 
model simulated radiances

n Scan angle bias correction
n Air-mass dependence (regression)
n In the troposphere the model is assumed to

be unbiased!  Is this a valid assumption for the
stratosphere

RTTOV Bias Correction

Stratospheric Meteorological Assimilation



Jacobians with respect to temperature for channels 10-14 of AMSU-A



No bias correction

With bias correctionbias correctionn



Mean temperature analysis increments at 10 hPa
(with bias correction applied to AMSU-A channels 11-14)



Mean temperature analysis increments at 10 hPa
(no bias correction applied to AMSU-A channels 11-14)



Zonal mean of Zonal mean of 
temperature temperature 
incrementsincrements

bias correction

no bias correction



Error StatisticsError Statistics

• Lagged forecast differences (i.e. NMC method) are used to construct
error correlations and spatial variation of background error statistics.

• Prior knowledge of observation error variance, and zonal monthly
averages of innovations are used to derive a scaling factor to 
the NMC derived error variances

A- Standard method

( ) pTT =+=χ − νννννννν
12 RHBH



B – Desrosiers et al. (2005) method
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Remark:  In the case the prescribed error statistics is incorrect, an
iterative method has been proposed



<OmA, OmP>n / <OmA, OmP>n-1

AMSUA, B

Northern Hemisphere

Rn / R0

AMSUA, B

Northern Hemisphere

Conclusion: the operational AMSU radiance 
observation error variance is underestimated





Coupled chemistry-meteorology validation

Stratospheric chemistry developed by BIRA (Belgium Institute for Space 
Aeronomy) 

n Solver generated by KPP and manually modified

n Numerical method: 3rd – order Rosenbrock

n 57 chemical species, all advected

n 142 gas-phase reactions

n 7 heterogeneous reactions

n 52 photodissociation (J ) reactions

n J values interpolated in tables

n Heterogeneous chemistry with simplified parameterizations for 
surface area densities



§Transport

Can save computation in semi-Lagrangian advection transport
• upstream point (D or M) is the same for all advected species

x x x

x x x

x x x

• interpolation weights Ci(x) are the same for all advected species

e.g.  cubic Lagrange interpolation

Computational Issues
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n Approximation of computing costs : 
¤ for 240*120 horiz points (1.5°×1.5°) and 80 levels
¤ on 16 CPUs of IBM p690s  64 bit Power 4

1 simulation day takes ~ 30 minutes wallclock time

→ GEM-strato + BIRA-chem is 4-5 times slower
than GEM-strato alone

n Rough estimate :GEM and transport → 1/4  CPU time
J interpolation → 1/4  CPU time
BIRA-chem solver → 1/2  CPU time



CTM (off-line)
Low resolution
3.75° x 2.75°

GEM-Strato-BIRA (online)
1.5° x 1.5°

OzoneOzone



CTM (off-line)
Low resolution
3.75° x 2.75°

GEM-Strato-BIRA (online)
1.5° x 1.5°

OzoneOzone



CTM (off-line)
Low resolution
3.75° x 2.75°

GEM-Strato-BIRA (online)
1.5° x 1.5°

MethaneMethane



Science question: How can we develop error covariances
for unobserved variables (such as in chemical data assimilation) ?

Solutions:

A- Produce no analysis increments on unobserved variables

In 3D Var it suffices to have Pux = 0 (zero cross error covariance)
which arises when either 

1- Cux = 0
2- var(u) = 0  Perfect modelling of unobserved variable 

B – Use difference of forecast method (Rochon’s method)

The relative error of observed variables will tend to be in general
smaller than the relative error of unobserved variables, thus condition A2
above is not realistic.

The error statistics of unobserved variables can be assumed to be
nearly independent of the analysis scheme – thus Rochon’s method
seems to be the right answer
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Vertical correlation matrices for ψ

NMC (CMAM)                                 6-hr diff (CMAM)

NMC (GEM-Strato)                     Ens. Perturb. (GEM)





Dynamic-chemistry cross error covariance

Using the method of difference’s of forecast (Rochon’s)



Implementation of cross error dynamical-chemical
covariance

• 3D Var-CHEM
Addition to an abritrary number of chemical tracer

in the operational 3D Var

Can accommodate cross-error covariance
either operator form or explicit form
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Not all chemical species are observed

Analysis splitting ? only observed variables in control vector

The problem of minimizing

with respect to x and u is mathematically equivalent to minimizing

followed by the update (Ménard et al. 2004)

• 4D Var extension
Uses same solver as in 3D Var
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