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Executive Summary 
 
 

The United States EPA has established ambient air quality standards for criteria and other 

air pollutants to protect human health and the environment.  There is increasing recognition that 

climate and air quality are inter-related through atmospheric chemical, radiative, and dynamic 

processes.  There are, however, significant gaps in our understanding of many climate-chemistry 

linkages and the potential impacts from future human actions on these linkages.  The Climate 

Impact on Regional Air Quality (CIRAQ) project, a collaborative research effort involving 

multiple Federal Agencies and academic institutions, is designed to examine global climate 

change scenarios and their potential effects on ozone and particulate matter (PM) concentrations 

throughout North America.  Global climate simulations have been derived from the NASA 

Goddard Institute for Space Studies (GISS) version II’(two prime) and the IPCC Special Report 

on Emission Scenarios (SRES) A1B “business as usual” emission scenario.  Scientists with the 

Department of Energy (DOE) Pacific Northwest National Laboratory have used these scenarios 

to provide boundary and initial conditions to a regional climate model (RCM) based on the Fifth 

Generation Pennsylvania State/National Center for Atmospheric Research (NCAR) Mesoscale 

Model (MM5).   The MM5-RCM was then used to generate 10 years each of present (~2000) 

and future (~2050) hourly climate scenarios for the continental United States with horizontal 

grid cell size of 36 km.  This report summarizes the analysis of RCM-derived steering level 

winds and surface temperature, pressure, wind and precipitation on various time scales (e.g., 

seasonal, annual, inter-annual).  MM5-RCM simulations of base case (current) conditions have 

been compared with historical point and gridded reanalysis datasets.  Comparisons between base 
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case and future modeled conditions have also been completed.  These comparisons are used to 

identify model biases and uncertainties on temporal and spatial scales that are relevant to 

regional and national air quality assessment.  Results of the CIRAQ project contribute to the U.S. 

Climate Change Science Program (CCSP) assessments addressing the effects of global change 

on human health and welfare and human systems. 

The analyses presented in this report establish that the base case MM5-RCM scenarios 

reflect observed regional climate conditions of particular relevance for air quality for some, but 

not all seasons and geographic regions (e.g. New England, Central Great Plains) of the continen-

tal United States.  Air quality assessments driven by this set of RCM scenarios should focus on 

regional-scale events that occur on daily or longer time scales.  Comparisons of base case to 

future model scenarios suggest that changes in atmospheric conditions may occur over the next 

50 years (e.g., warmer surface temperatures and weaker surface and upper level atmospheric 

transport) that could impact the way we manage air quality for ozone and PM.  This issue will be 

addressed in detail in the next CIRAQ report in FY07.  Several of the analyses reported here 

mark the first time these climate variables have undergone rigorous study with an eye towards 

climate change assessment application.  We find these results to be interesting and strongly 

recommend that similar studies should be performed for alternative GCM and RCM model 

configurations and emissions scenarios so that a better description of current and future climate 

variability and change can be made available to the air quality research and regulatory commu-

nity.  This is being done to some extent under the US EPA Science to Achieve Results (STAR) 

grant program. We look forward to including those findings as they become available, but also 

see the need to continue to build strong collaborations with other Federal Agencies conducting 
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assessment research dealing with climate variability and change (e.g., NOAA, NASA and the 

DOE). 
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1.0  Background and Overview 

 

 Improving air quality is a primary mission of the U.S. Environmental Protection Agency 

(EPA) and there is increasing recognition that climate and air quality are closely coupled through 

atmospheric chemical, radiative, and dynamic processes [NRC, 2001].  Our understanding of 

such climate-chemistry linkages and the potential impacts of future human actions on these 

linkages is, however, limited.  The importance of this limitation is acknowledged in the U.S. 

Climate Change Science Program Research Strategy [Climate Change Science Program (CCSP), 

2003] through the following key research question: 

 
Question 3.4:   What are the effects of regional pollution on the global atmosphere and 
the effects of global climate and chemical change on regional air quality and atmos-
pheric chemical inputs to the ecosystems? 

 
 

The EPA’s Climate Impact on Regional Air Quality (CIRAQ) Project directly responds to this 

research challenge.  The CCSP question breaks logically into two parts: 1) “What are the effects 

of regional pollution on the global atmosphere?” and 2) “What are the effects of global climate 

and chemical change on regional air quality and atmospheric chemical inputs to the ecosys-

tems?”  CIRAQ addresses part two of this question. 

 The CIRAQ project formally began in December, 2001 with a workshop in Research 

Triangle Park, North Carolina to solicit input to a sound science research strategy that would 

meet EPA’s mandated responsibilities as well as contribute to answering CCSP question 3.4.  

The workshop included representatives from EPA, academia, other research organizations, and 

EPA.  Two major consensus items were identified: 1) The effect of climate change on air quality 
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must be considered separately from future emission scenarios so that the air quality impacts from 

climate change can be isolated from impacts of future air quality emission estimates; and 2) In 

comparing model results from current and future air quality simulations, multiple year simula-

tions are needed in order to separate differences due to interannual variability from climate trend 

impacts on air quality.   These recommendations are reflected in three CIRAQ activities:  1) the 

acquisition and quality control of 10 years each of base case and future (~2050) regional climate 

model (RCM) scenarios; 2) analysis of these scenarios to better understand biases in clima-

tological means, distributions and variability that could impact air quality model performance 

and the interpretation of air quality model results; and 3) the generation, analysis and interpreta-

tion of base case and future CMAQ simulation results.  This report summarizes progress related 

to activities 1 and 2 performed from FY03 through FY05. 

 A number of studies have explicitly investigated the effects of  climate change on air 

quality, raising concerns that it could adversely affect air quality e.g., [Hogrefe et al., 2004a; 

Hogrefe et al., 2004b; Mickley et al., 2004].  Global climate changes will likely result in changes 

in regional and local weather conditions and their variability.  Changes in meteorology will 

affect air pollution levels by altering: 1) Rates of atmospheric chemical reactions and transport 

processes; 2) Anthropogenic emissions, including adaptive responses involving increased fuel 

combustion from power generation; and 3) Biogenic emissions rates from natural sources.  The 

CIRAQ project examines potential climate change impacts on ozone (O3) and particulate matter 

(PM) using EPA’s regional scale Community Multiscale Air Quality (CMAQ) model linked to 

global scale climate and chemical transport models.   

 The scope of the present report is limited given the opportunities offered by the regional 
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climate model (RCM) scenarios described in Chapter 2.   Simply put, our goal is to analyze and 

evaluate elements of the RCM scenarios, selected on the basis of their potential importance to 

CMAQ’s performance for base case and future year air quality conditions with regard to: 1) 

Their appropriate temporal and spatial characterization relative to present-day observations; and 

2) Their description of RCM projected changes in these elements and characteristics 50 years 

into the future (~2050).  Our analysis must focus on atmospheric phenomena having spatial and 

temporal scales commensurate with those of the RCM.  A conservative estimate of appropriate 

spatial scale is four times the model grid cell dimension or, in our case ~ 150km.  This scale 

includes synoptic features such as cyclones (e.g., low pressure systems, hurricanes, tropical 

storms, etc.), anti-cyclones (e.g., high pressure systems, Bermuda Highs, etc.), and fronts that are 

largely responsible for day-to-day weather changes and persist on the order of days to weeks.  

Given these requirements as well as time and resource constraints, we have limited our initial 

analyses to temperature, pressure, dominant wind direction and annual precipitation at the 

surface and steering level winds at ~3000 meters (700 mb).  If the present scope were expanded 

to encompass a complete climatology for air quality applications, then any number of additional 

derived measures such as stagnation indices, ventilation indices, storm track analyses and 

precipitation measures such as frequency, duration and intensity could be added.  This report 

provides a detailed analysis for several previously unstudied or under-studied elements, e.g., 

dominant surface and steering level winds, and paves the way for the addition of more meteoro-

logical elements and derived variables in the future.  Through this approach, the present report 

also contributes to CCSP Question 4.2, “How can predictions of climate variability and projec-

tions of climate change be improved, and what are the limits of their predictability?” 
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 A brief summary of the regional climate scenarios provided to CIRAQ by the Pacific 

Northwest National Laboratory (PNNL) immediately follows the present background descrip-

tion.    RCM analysis methods and results are summarized in Chapters 3 and 4.  Methods 

employed include distributional and time series analyses at individual locations or grid positions 

and spatial analyses across the contiguous United States.  A synthesis of these findings is 

provided in Chapter 5.  A description and summary report of in-house quality assurance, quality 

control and processing to model-ready format of these scenarios is presented in Appendix B. 
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2.0   Regional Climate Model Scenario Overview  

 

 RCM scenarios have been developed by Dr. Lai-Yung Leung of the PNNL, in Richland, 

Washington, in cooperation with EPA/NCEA (Anne Grambsch, Project Officer).  In this work, a 

regional climate model based on the Penn State/NCAR Mesoscale Model MM5[Grell et al., 

1994], hereafter referred to as the MM5-RCM, was used to downscale global climate simulations 

of current and future (mid-century) climate conditions for the continental U.S., i.e., dynamical 

downscaling (IAG DW-89-93963401).  The global simulations, which are used to provide 

boundary and initial conditions for the regional model, were derived from the National Aeronau-

tic and Space Administration (NASA) GISS version II’ (two prime) Global Climate Model 

(GCM) [Rind et al., 1999].  They were produced and archived at 6-hourly intervals by Dr. 

Loretta Mickley and Dr. Daniel Jacob  at the Harvard University while performing climate 

simulations using the GISS model with embedded tropospheric chemistry (U.S. EPA Science to 

Achieve Results, STAR, grant R83095).  These global-scale climate change scenarios follow the 

Special Report on Emission Scenario (SRES) “business as usual” scenario (A1B) for greenhouse 

gases and aerosols.  All regional simulations were performed at 36 km spatial resolution and 23 

vertical levels with outputs archived at hourly intervals for the U.S.  Further details regarding the 

MM5-RCM and GISS models and downscaling may be found elsewhere [Leung and Gustafson, 

2005; Mickley et al., 2004]. Dynamical regional downscaling was selected for this application 

because air quality assessment requires a full suite of dynamically-consistent meteorological data 

(e.g., 3-D structures of temperature, humidity, and winds) that cannot be produced by statistical 

downscaling, and it is not yet feasible to perform long-term global climate simulations at the 
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smaller spatial scale required for regional air quality assessments.  These MM5-RCM outputs 

later undergo post-processing at the U.S. EPA National Exposure Research Laboratory (NERL) 

in Research Triangle Park, North Carolina, for input to the air quality assessment.  Post-

processing descriptions and quality assurance/quality control summaries are provided in Appen-

dix B. 

 A first task performed by Dr. Leung included sensitivity experiments to select an appro-

priate set of model configuration and physics parameterizations.  The importance of these 

selections to the RCM scenario result has been thoroughly explored for one GCM/RCM combi-

nation [Lynn et al., 2004; Lynn et al., submitted].  Major elements of the final configuration are 

summarized in Table 1.  Choices were made such that, to as great an extent as possible, the 

regional scenarios maintain the information provided by the GISS model.  That is, choices were 

made that produce regional scenarios that most closely reflect the large-scale GCM patterns as 

opposed to choices that would more closely reproduce present-day observation or reanalysis 

datasets.  The impact of these choices with regard to bias and uncertainty is highlighted through-

out the analyses that follow. 

 The lower and lateral MM5 boundary conditions were updated every 6 hours based on 

large-scale conditions of the global simulations.  Large-scale variables used in the boundary 

conditions include temperature, wind, water vapor mixing ratio, geopotential height, sea level 

pressure and sea surface temperature from the GISS simulations.   In addition to providing 

meteorological boundary conditions for the regional model, the GISS model also provides the 

climate fields for the global scale chemical transport model that will be used as chemical 

boundary conditions for the regional air quality assessment.  Regional simulations driven by the 
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GISS scenarios will, therefore, provide meteorological changes that are consistent with the 

chemical boundary conditions used in the air quality assessment.   

 The only other comprehensive air quality assessment that included a significant dynamic 

downscaling component was the New York Climate and Health Project (NYHCP) STAR grant 

study [Hogrefe et al., 2004a; Hogrefe et al., 2004b].  Table 1 facilitates comparison of critical 

model configuration attributes across both projects.  Attributes that differentiate the PNNL 

downscaling completed for CIRAQ and the NYHCP project include downscaling performed 

throughout the entire continental U.S. and the generation of continuous decades of hourly current 

and future meteorology.  In addition, the maintenance of the GCM scenario integrity in the 

downscaled results and the use of an alternative IPCC emissions scenario will result in RCM 

outcome differences, but may also present opportunities for future model intercomparisons.  
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Table 1.  Regional Climate Model (RCM) specifications for CIRAQ and New York Climate and 
Health Projects (NYCHP). 
 

Specification CIRAQ NYCHP 

Global Climate Model GISS II’ [Rind et al., 1999] GISS AOM [Russell et al., 
1995] 

Regional Climate Model (RCM) 
domain 

36 x 36km, 115 x 169 grid 
Continental U.S., southern 
Canada and northern Mexico 

108 x 108 km for U.S.; 

36 x 36 km for Eastern U.S. 

Dynamical Downscaling Model MM5 MM5 

Number of vertical layers 23 35 

lowest model layer 40 m above the surface 35 m above the surface 

boundary layer scheme Medium Range Forecast Model 
(MRF) 

Medium Range Forecast 
Model (MRF) 

Convection Scheme Grell [Grell, 1993; Grell et al., 
1994] 

Grell [Grell, 1993; Grell et 
al., 1994] 

Radiation Scheme Rapid Radiative Transfer Model 
(RRTM) for shortwave radiation 
[Mlawer et al., 1997]; Dudhia 
scheme for shortwave radiation 
[Dudhia, 1989] 

Rapid Radiative Transfer 
Model (RRTM) [Mlawer et 
al., 1997] 

Microphysics Mixed phase microphysics, 
Reisner1 [Reisner et al., 1998] 

Mixed phase microphysics, 
Reisner2 [Reisner et al., 
1998] 

Duration of simulation 10 years present, 10 years mid-
century (continuous, hourly) 

1993-1997, 2053-2057 

(May1 through September 1) 

Initial and boundary condition 
source 

GISS II’ GISS AOM 
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3.0   Spatial Analysis 

 

 The goal of the spatial analysis is to identify regional to large scale patterns in clima-

tological variables that are relevant to air quality status and prediction, and the comparison of 

those patterns across multiple present and future scenarios.   Climate variables of interest for air 

quality include those that have been shown to control or predict rates of atmospheric chemical 

reactions and transport processes; anthropogenic emissions, and biogenic emissions rates from 

natural sources.  A characteristic of these variables that is important to expanding our ability to 

predict air quality now and under future conditions is the identification of a dominant (in space 

or time) condition or state.  Analysis of climatological patterns and characteristics in present-day 

observations help us to understand current relationships between air quality (e.g., ozone and PM) 

and climate means, extremes and variability as well supporting quality assurance for methods 

development.  Comparisons of present-day observations to base case (current) RCM scenarios 

help us to better understand model-related biases in these scenarios that might impact CMAQ 

performance and predicted outcomes.  Finally, comparison of these characteristics across base 

case and future RCM scenarios allows us to make statements regarding changes (or lack thereof) 

in air-quality relevant climate variables.  

 Details regarding the climatological variables selected for study, data preparation and 

associated quality assurance information is provided in section 3.1.1, spatial analysis method 

selection and application development are described in section 3.1.2 and method quality assur-

ance is described in section 3.1.3.  These discussions are followed by a detailed seasonal analysis 

presented in section 3.2. 
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3.1  Methodology  

 

3.1.1  Climate variable selection, data preparation and quality assurance  

 The meteorological variables selected for analysis are the 1800 UTC 700 mb zonal (u) 

and meridional (v) component winds.  Atmospheric conditions at about 3000 meters (700 mb) 

have long been established as reflecting steering flow controlling the movement of synoptic 

scale features (cyclones and anti-cyclones) which, in turn,  control large-scale surface tempera-

ture and precipitation patterns, e.g. [Kasahara, 1959].  Previous studies linking meteorological 

condition and air quality have utilized conditions at lower altitudes e.g., [Eder et al., 1994], but 

generally focus on the Eastern U.S. which lacks significant regional-scale orographic influence.  

The CIRAQ project addresses the conterminous United States, including the mountainous West, 

and so we must look slightly higher in the atmosphere to avoid the influence of local surface 

features.  700 mb transport patterns are commonly included in air quality forecast guidance and 

evaluation and have been shown to be strongly associated with surface temperature, humidity 

and extinction coefficient, the latter which is used as a surrogate for visibility [Cohn et al., 

2001]. 

 MM5-RCM scenarios have been processed through the data management and quality 

control tool as described in Appendix B.  700 mb 1800 UTC u and v wind component data were 

extracted from the model-ready Meteorology-Chemistry Interface Processor (MCIP) files.  

MCIP files are used in this analysis since these are the data on which the air quality assessment 

will be based. 

 Ten years (1985 through 1994) of data from two widely used gridded reanalysis datasets 



 11

were acquired; National Center for Environmental Prediction (NCEP) [Kalnay and Coauthors, 

1996] hereafter referred to as NCEP-R1 or R1 and the NCEP-DOE AMIP-II 

[Kanamitsu et al., 2002] hereafter referred to as AMIP-R2 or R2.  Both datasets characterize 

observed conditions across the globe at a resolution of 2.5 degrees through a combination of 

assimilated observation and physically-based models.  R2 follows R1.  Its purpose is to correct 

known problems in R1 and to serve as a basic verification dataset for the Second Atmospheric 

Model Intercomparison Project (AMIP) [Kistler et al., 2001].  The R2 global analyses are made 

using an updated (relative to R1) forecast model, updated data assimilation system, improved 

diagnostic outputs, and corrections of known R1 processing problems.  Notable differences 

include improved shortwave fluxes by introduction of a new shortwave parameterization, 

improved precipitation estimates through changes in convective parameterization, boundary 

layer physics, and moisture diffusion and more realistic interannual variability and better fit to 

observation through use of observed pentad precipitation in the soil wetness assimilation.  

 The choices of data to be assimilated and specific model physics result in slightly 

different interpretations of the same atmospheric state in space and time.  Each dataset has its 

own strengths and weaknesses, but neither is considered by the atmospheric community to be 

more or less correct than the other.  This “difference of opinion” is used in the present context to 

provide a sense of current levels of uncertainty regarding the observed climate.  Variables 

included in the datasets are classified into three types [Kalnay and Coauthors, 1996].  Type A 

variables are generally strongly influenced by the available observations and are therefore the 

most reliable product of the reanalysis.  Type B variables are influenced by both the observations 

and by the model, and are therefore less reliable.  Type C variables are completely determined 
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by the model and should be used with caution and, wherever possible, compared with model-

independent estimates.  The zonally averaged u component of the wind is considered type a type 

A variable except in the Tropics, where the model influence is larger because of much sparser 

observational data making it a type B variable.  The zonally averaged meridional velocity, v, 

corresponds to divergent flow and is considered a B variable [Kistler et al., 2001].  Taken 

together, the u and v wind components allow us to express our results in the more familiar terms 

of wind speed and direction.  

 

3.1.2  Statistical Method Selection and Application Development  

 The CIRAQ assessment goals suggest that a general numerical technique is needed that 

1) identifies large-scale or persistent spatial patterns among multiple climate variables, and 2) 

provides a uniform or consistent measure that can be compared across datasets.  We would like 

to identify patterns of climatological condition that are known to be indicative of air quality 

conditions of interest.  These linkages can be complex, requiring consideration of several 

simultaneous atmospheric measures whose analysis requires the application of multivariate data 

analysis techniques.  The distinguishing attribute of these methods is that both the joint behavior 

of the multiple simultaneous observations and  the variations of the individual data elements are 

considered [Wilks, 1995]. 

 Cluster analysis is a common multivariate technique that separates data into groups 

whose identities are not known in advance.  The degree of similarity and difference between 

individual observations is used to define the groups, and to assign group membership.  Numeri-

cal rules are established that quantify data “similarity” and “difference.”  Examples of cluster 
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analysis applications in the climatological literature include grouping daily weather observations 

into synoptic types [Kalkstein et al., 1987], defining weather regimes from upper-air flow 

patterns [Mo and Ghil, 1988], definition of a synoptic climatology of air mass movement 

[Fernau and Samson, 1990], and identification of dominant synoptic patterns associated with 

meteorological conditions leading to poor air quality [Cohn et al., 2001]. 

 Ward’s Minimum Variance method [Ward, 1963], was selected to facilitate development 

of dominant patterns of 700 mb transport.  Ward’s method merges pairs of clusters that will 

minimize the within-cluster sum of squares summed over the variable, but tends to produce 

compact clusters which may have poor separation properties [Anderberg, 1973] and gives 

priority to merging clusters with fewer observations, encouraging similar-sized clusters.  

Another well known limitation of clustering techniques is that the assignment of specific 

observations to specific clusters and subsequent cluster frequencies can be unstable.  This 

behavior can confound our ability to explore changes in the frequency with which dominant 

transport patterns occur, and so synthetic cluster assignment distributions were developed.  

Synthetic distributions were generated by randomly removing 25% of observations within a 

season (e.g., spring) and repeating the cluster analysis for the reduced dataset.  This process of 

removal and re-clustering was repeated to generate a distribution of cluster assignment frequen-

cies made up of 75 samples.  Box plots were produced to summarize these data.  The ranges of 

the middle 95% of frequencies (95% data interval) as well as the ranges between maximum and 

minimum values were noted and hypothesis testing was explored to support method validation 

(i.e., reproducibility of result) and cross-dataset comparison. The synthetic distributions only 

rarely meet the assumptions for application of standard parametric statistics, and so non-
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parametric measures are employed.  Kruskal-Wallis rank and median-based scores are both 

considered when testing hypotheses regarding distribution location (i.e., central tendency).  A 

non-parametric two sample Kolmogorov-Smirnov (K-S) test is used to test hypotheses regarding 

the distribution shape.  At times the non-parametric test of location suggests the null hypothesis 

of equal location should not be accepted, even though there is clear overlap of the 95% data 

intervals (e.g. Cluster 4 in Figure 2 and Table 3).   This result, along with other apparent incon-

sistencies noted during the analysis point to the need for further consideration of issues such as 

the influence of serial correlation on test statistic performance before unambiguous statements of 

frequency similarity or difference can be made. 

 

 

3.1.3  Method quality assurance  

 The analysis to be performed follows closely that reported in [Cohn et al., 2001].  

Comparison to this source is the primary means of method quality assurance for the present 

application.  We began by extracting the reported time period and domain.  In addition to spatial 

sampling of the full reanalysis domain, temporal sampling was also performed.  In the interest of 

computational efficiency, consecutive 5-day periods from 1984 through 1992 were constructed 

and the first, third and fifth days of each 5-day period were declared to be a single observation.  

This results in a single observation (or 5-day event) consisting of 2016 elements (the 2 u and v 

components x 336 grid nodes x 3 days considered per observation).  Later analyses demonstrated 

that results were insensitive to the choice of consecutive versus overlapping periods and so 

running pentads (5-day periods) were used in the analysis reported in sections 3.2.2 through 
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3.2.5. 

 The original domain was selected to minimize the impact of off-shore patterns that are 

less relevant to CONUS air quality (Richard Cohn, personal communication).  It is also reported 

that retention of the most frequent 5 clusters per season resulted in an improved ability to explain 

variation in surface level visibility via extinction coefficient and surface temperature and surface 

humidity; together these are good indicators of photochemical pollution potential.   

 Average dominant pattern cluster maps matching those that were published were devel-

oped relatively quickly.  A pilot study making use of higher resolution meteorological model 

output, the Eta Data Assimilation System (EDAS [Rolph, 2002])  was explored to test the 

stability of these patterns as a function of model scale and essentially identical maps were 

produced.  This, in combination with discussions with Ruby Leung (DOE/PNNL) indicate that 

by working at 700 mb, a height at which surface or local-scale influences should be minimal, 

model scale should not unduly influence our results.  As with R1 and R2 reanalysis datasets, 

EDAS employs yet another set of physics and observation assimilation protocols that may result 

in dominant pattern differences.  Future studies could expand the present reanalysis uncertainty 

portion of this study to include these data, but resource limitations preclude their inclusion here.  

 In addition to average cluster patterns, [Cohn et al., 2001] present relative frequency 

rankings of clusters.  Reproduction of these results proved more elusive.  Even when the same 

re-analysis dataset (R1) and the same years were used, reported rankings could not be repro-

duced beyond the most frequent patterns (e.g., patterns ranked 1, 2 or 3).  Following discussions 

with Cohn and other applied statisticians, the instability described in Section 3.1.2, combined 

with post-clustering assignment of remaining observations by Cohn, appear to be the primary 
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source of disagreement.  When the Cohn results are compared to the synthetic distributions 

described previously, the Cohn relative frequencies for similarly ranked clusters fell within the 

inter-quartile range of the distributions. 

 

 

3.2  Seasonal Analysis  

 

 The sections that follow contain seasonal analyses for observed (reanalysis), MM5-RCM 

base case and MM5-RCM future scenarios of 700 mb u and v component winds. Summaries are 

presented in terms of 700 mb wind speed and wind direction.  Wind speed is computed from the 

u and v wind components as  )22 vuV +=   and wind direction is computed as arc tan(u/v).  

Ward’s method is used to assign each observation to one of five clusters (see Section 3.1.2).  For 

each cluster, a mean value is computed at each domain grid point.  In the case of reanalysis 

datasets R1 and R2 (see section 3.1.1), a one-to-one comparison for a 2.5º×2.5º degrees (~280 

km × 280 km) grid domain is performed.  The MM5-RCM data are produced at a higher grid 

resolution (36 km × 36 km) and so the MM5-RCM grid is sampled at an interval of once every 6 

grids to ensure a consistent spatial scale for comparison.  This sampling should not affect 

analysis results for large-scale, smoothly varying fields such as those expected at ~3000 meters 

(700 mb). 

 The primary analysis of interest is the identification of dominant (in space or time) 

patterns of atmospheric transport, and the description of similarities and differences between 

various datasets.  This is done through a consistent set of questions and formatted responses.  
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The first question is, “Do transport patterns look alike across datasets?”  To answer this 

question, maps of mean cluster wind speed and direction are examined and a set of difference 

maps is constructed.  “Best-fit” matches are identified through a visual survey assessing the 

range and texture of wind speed differences and the degree to which arrows indicating wind 

direction are superimposed.  Sometimes a best fit choice is not obvious (i.e., multiple pairings 

appear to be equally good or poor).  In these cases domain-wide wind speed bias, computed as 

the sum of the point difference of the mean cluster values, is also considered.   Such domain-

wide statistics should be considered only after preliminary visual examination strongly suggests 

a good match because large positive and negative deviations from a central value can produce 

the same bias value as a more uniform field of small deviations.  

 The output of this analysis is a discussion of visual similarities and differences and a 

table summarizing the results.  An example of a summary table of reanalysis datasets (an 

estimate of uncertainty) and downscaled base case and future MM5-RCM patterns is presented 

in Table 2.   Columns A, B and C summarize results for the reanalysis comparison.  Columns A 

and B provide the relative frequency rank for the reanalysis clusters showing the closest visual 

agreement and Column C contains the domain-wide wind speed bias for the comparison.   

Columns D, E and F summarize the comparison of base case MM5-RCM patterns to the two 

reanalysis datasets.  Column D contains the MM5-RCM cluster rank.  Column E contains the 

reanalysis dataset (R1 or R2) and cluster rank that provides the best visual agreement.  Column E 

contains the domain-wide wind speed bias for the comparison.  Columns G, H and I provide 

similar information for comparison between MM5-RCM base case and MM5-RCM future 

conditions.  In addition to the tabled information, examples illustrating the range of wind speed 
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and direction differences are provided for each seasonal analysis.    

The second analysis question is, “Do transport patterns occur with the same frequency 

across datasets?” This question assesses similarity with regard to the relative frequency of 

clusters across datasets using the synthetic distributions described in Section 3.2.3, non-

parametric tests of central tendency and distribution shape and comparison of  95% data intervals 

and data ranges.  First, the distributions are summarized in two box and whisker displays (e.g. 

Figure 1 and Figure 2).  Each distribution summary contains the median (red dot), the upper and 

lower quartiles (solid box), upper and lower inner fences (25th or 75th percentile ± 1.5 times the 

interquartile range), and outliers (black dots).   

Figure 1 contains R1 (R1), R2 (R2) and base case MM5-RCM (GM) synthetic distribu-

tions for each of five seasonal clusters.  Figure 2 contains similar information for MM5-RCM 

base case (B) and future (F) synthetic distributions. Table 3 provides a summary of non-

parametric statistical test results as well as comparisons of 95% intervals (is there overlap?) and 

ranges.  Agreement across relative frequency parent distributions but not location suggests there 

is a significant difference in the frequency of the cluster pattern across datasets.  A lack of 

agreement in parent distribution implies a fundamental difference in spatial (extent) and/or 

temporal (persistence) structure that is used to define a “dominant” transport pattern.  In this 

case, i.e., distributions are not similar; a lack of agreement regarding location (expected fre-

quency) is not particularly informative.  An overlap of 95% data intervals suggests that apparent 

differences in relative frequency central tendency may not be statistically significant.  Distribu-

tion ranges are compared by ratio.  Ratio values close to 1.0 suggested the distributions being 

compared have similar variability. 
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 Finally, information contained in the tables and figures is combined to describe the 

relationship among the various datasets being compared.  For example, Table 2 and Table 3 tell 

us that reanalysis (R1 and R2) clusters ranked 1 and 3 look similar and appear to be derived from 

similar relative frequency parent distributions with similar central tendency, but the relative 

frequency range for cluster 1 dataset R1 is only 60% of the R2 range.  For the base case MM5-

RCM and reanalysis comparison, Table 2 and Table 3 suggest that base case patterns appear 

similar to present day patterns, have similar internal structure and occur with similar relative 

frequencies.  For the base case to future MM5-RCM comparison, Table 2 indicates substantial 

visual similarity. There is substantial overlap of the base case and future 95% data intervals 

(Table 3), but data ranges and tests of location and distribution suggest the presence of substan-

tial differences that should be explored further.  
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Table 2.  Best pattern matches for example NCEP-R1, AMIP-R2, base case RCM and future 
RCM.  Total wind speed bias is computed as (R2-R1), (RCM - reanalysis) and RCM (future - 
base case). 

R1 
cluster 
Rank 

(A) 

R2 
cluster 
Rank 

(B) 

Total wind 
speed bias 

(m/s) 

(C) 

RCM Base 
case 

Cluster Rank 

(D) 

Reanalysis 
Cluster 
Rank 

(E) 

Total wind 
speed bias 

(m/s) 

(F) 

RCM Future 
Cluster   
Rank        

(G) 

RCM 
Base case 

Cluster Rank 

(H) 

Total wind 
speed Bias 

(m/s) 

(I) 

2 4 +0.10 3 R2-5 +0.86 1 3 -0.30 

3 3 +0.15 2 R2-2 +1.61 2 2 -1.04 

1 1 +0.77 1 R1-1 +1.21 3 1 +0.48 

5 2 -0.15 4 R1-3 -0.08 4 4 +0.43 

4 5 -1.45 5 R1-4 -1.18 5 5 -0.44 
 
 
 
Table 3.  Example statistical summaries for synthetic relative frequency distributions.  An “*” 
indicates that the null hypothesis of similar central tendency (Loc) or distribution shape (Dist) 
cannot be rejected.  “Y” indicates that the 95% data intervals overlap. 

Reanalysis RCM and Reanalysis RCM Base Case and Future Clus-
ter 

Rank 95% 
Interval 
Overlap 

Loc Range 
Ratio\1 

Dist 95% 
Interval 
Overlap 
(R1/R2) 

Loc Range 
Ratio \2 

(R1/R2) 

Dist 95% 
Interval 
Overlap 

Loc Range 
Ratio\3 

Dist 

1 Y * 0.59 * Y/Y * (R1,R2) 1.08/0.64 *(R1,R2) Y  1.18  

2 Y * 1.00 * Y/Y *(R1, R2) 1.21/1.21 * (R1, R2) Y * 0.84 * 

3 Y * 1.20 * Y/Y *(R1, R2) 1.11/1.33 * (R1, R2) Y * 0.56 * 

4 Y * 1.21 * Y/Y * (R1,R2) 0.79/0.96 * (R1,R2) Y  1.00  

5 Y * 1.19 * Y/Y * (R1,R2) 0.82/0.98 * (R1,R2) Y  1.11  
\1 reanalysis range ratio is computed as R1/R2 
\2  MM5-RCM (RCM) and reanalysis range ratio is computed as reanalysis/RCM. 
\3  MM5-RCM (RCM) base case and future range ratio is computed as base/future. 
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Figure 1.  Box plot of relative frequency distributions for NCEP-R1 (R1), base case 
RCM (GM), and AMIP-R2 (R2) grouped by relative frequency rank.  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Box plot of relative frequency distributions for base case (B) and future (F) 
RCM grouped by relative frequency rank. 

3.2.1  Spring  
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 This analysis summarizes comparisons of 10 years (1985-1994) of spring season (March, 

April, May) reanalysis results (NCEP-R1 and AMIP-R2), a climatological decade of MM5-RCM 

base case (~2000) and a decade of MM5-RCM future (~2050) 700 mb u and v wind component 

data.  All cluster ranks refer to relative frequency, where rank 1 is assigned to the most fre-

quently occurring pattern. 

 

"Do transport patterns look alike across datasets?” 

 
Table 4.  Best visual matches for spring season NCEP-R1, AMIP-R2, base case RCM and future 
RCM.  Total wind speed bias is computed as (R2-R1), (reanalysis - base case) or RCM (future - 
base case). 
 

 R1 
cluster 
Rank 

R2 
cluster 
Rank 

Total wind 
speed bias 

(m/s) 

RCM Base 
case 

Cluster Rank 

Reanalysis 
Cluster 
Rank 

Total wind 
speed bias (m/s) 

RCM Future 
Cluster Rank 

RCM 
Base case 

Cluster Rank 

Total wind 
speed Bias 

(m/s) 

(a) 2 4 +0.10 3 R2-5 +0.86 1 3 -0.30 

(b) 3 3 +0.15 2 R2-2 +1.61 2 2 -1.04 

(c) 1 1 +0.77 1 R1-1 +1.21 3 1 +0.48 

(d) 5 2 -0.15 4 R1-3 -0.08 4 4 +0.43 

(e) 4 5 -1.45 5 R1-4 -1.18 5 5 -0.44 
 
 
 There is generally good visual wind speed and wind direction agreement across R1 and 

R2 mean dominant cluster patterns, but cluster ranks suggest that in most cases these patterns 

occur with different relative frequency.  Figure 3  is representative of Table 4 comparisons a, c 

and d.  Figure 4 is representative of Table 4 comparisons b and e. 

 Base case MM5-RCM visual similarity to reanalysis data is good with regard to wind 
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direction, and there do not appear to be major differences with regard to transport feature 

identification or placement at 700 mb.  This differs from Chapter 4 findings for the southeastern 

U.S. and should be explored further at a later time.  Domain-wide wind speed bias tends to be 

quite large; especially for comparisons b and c.  In these cases the reanalysis scenario places 

weaker transport off the west coast and generally higher wind speeds elsewhere, especially along 

the northern and southern boundaries of the domain.  For cases d and e, weaker reanalysis 

transport spans the entire U.S. mid-section, producing negative as opposed to positive domain-

wide bias.  The range of base case MM5-RCM and reanalysis pattern agreement is illustrated by 

Figure 5 and Figure 6.  Figure 5 illustrates Table 4 comparison a.  All other comparison results 

(b through e) are similar to those shown in Figure 6.  

 Visual similarity between similarly ranked MM5-RCM base case and future scenarios is 

moderately good, with rank agreement in 3 of 5 cases.  While domain-wide wind speed bias 

remains larger than that of the reanalysis (R1 to R2) comparison, it is generally lower than that 

for base case to reanalysis comparisons.  The range of wind speed and direction future to base 

case pattern differences is illustrated in Figure 7 and Figure 8.  Figure 7 is representative of 

Table 4 comparisons b and c.  Figure 8 is representative of Table 4 comparisons a, d and e.  

There is some indication of significant changes in synoptic feature placement and behavior 

across these scenarios.  For instance, the primary feature of comparison a, is an area of closed 

anti-cyclonic circulation centered over the southeastern U.S.  This feature is present in both base 

case and future patterns, but Table 4 suggests that in the future, it may become the most domi-

nant seasonal feature.  The dominant feature of comparisons d and e is the position of the 

northern jet stream.  During the spring season the jet retreats northward.  Visual comparison 
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suggests that its future dominant position may be further north than current base case projec-

tions, but the frequency of these jet-focused patterns remains about the same.  

 

Do transport patterns occur with the same frequency across datasets? 

 

Figure 9 compares synthetic distributions of ranked relative frequency across reanalysis 

(R1 and R2) and MM5-RCM base case scenarios.  Figure 10  compares MM5-RCM base case 

and future scenarios.  Table 5 summarizes statistical tests of distribution and location and 95% 

data interval overlap for all distribution comparisons.  In this analysis, differences in parent 

distribution can, among other things, indicate internal correlation structure (spatial pattern extent 

or pattern persistence) differences.    

 
Table 5.  Statistical summaries of spring season synthetic distributions.  An “*” indicates that 
the null hypothesis of similar central tendency (Loc) or distribution shape (Dist) cannot be 
rejected.  “Y” indicates that the 95% data intervals overlap. 

Reanalysis RCM and Reanalysis RCM Base Case and Future Clus-
ter 

Rank 95% 
Interval 
Overlap 

Loc Range 
Ratio\1 

Dist 95% 
Interval 
Overlap 
(R1/R2) 

Loc Range 
Ratio \2 

(R1/R2) 

Dist 95% 
Interval 
Overlap 

Loc Range 
Ratio\3 

Dist 

1 Y * 0.59 * Y/Y * (R1,R2) 1.08/0.64 *(R1,R2) Y  1.18  

2 Y * 1.00 * Y/Y *(R1, R2) 1.21/1.21 * (R1, R2) Y * 0.84 * 

3 Y * 1.20 * Y/Y *(R1, R2) 1.11/1.33 * (R1, R2) Y * 0.56 * 

4 Y * 1.21 * Y/Y * (R1,R2) 0.79/0.96 * (R1,R2) Y  1.00  

5 Y * 1.19 * Y/Y * (R1,R2) 0.82/0.98 * (R1,R2) Y  1.11  
\1 reanalysis range ratio is computed as R1/R2 
\2  MM5-RCM (RCM) and reanalysis range ratio is computed as reanalysis/RCM. 
\3  MM5-RCM (RCM) base case and future range ratio is computed as base/future. 
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 All similarly ranked reanalysis clusters appear to have been drawn from similar parent 

populations (distribution shape) having similar central tendency and there is substantial overlap 

of all 95% data intervals.  Similarly, all MM5-RCM base case ranked clusters agree both in 

terms of parent distribution and central tendency and 95% data interval with the reanalysis 

datasets.  There is little agreement among similarly ranked base case and future MM5-RCM 

clusters suggesting potentially significant frequency and correlation structure differences 

between the two sets of scenarios.  This result is not surprising given the synoptic changes noted 

previously in the visual comparison. 

 

Conclusion 

 The reanalysis study indicates that there is good visual agreement and frequency of 

occurrence among present day dominant patterns of steering level atmospheric transport.  Visual 

comparison of MM5-RCM base case clusters to reanalysis yield differences regarding wind 

speed that exceed the range defined by the reanalysis study.  We conclude that the MM5-RCM 

base case represents present day 700 mb transport patterns reasonably well.  There is moderate 

visual similarity between base case and future MM5-RCM scenarios, but measures of within-

rank distribution suggest significant differences in relative frequency parent distribution and 

location in spite of substantial 95% data interval overlap.  Subtle visual changes in the dominant 

seasonal position of the northern jet and persistence of dominant southeastern circulation suggest 

the potential for significant regional changes in projected spring season air quality. 
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Figure 3.  700 mb NCEP-R1 and AMIP-R2 spring season transport pattern differences 
representative of Table 4 comparisons a, c and d.  Black arrows are NCEP-R1 directions.  
Red arrows are AMIP-R2 directions.  Velocity differences (m/s) are computed as (R2 - 
R1). 
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Figure 4.  700 mb NCEP-R1 and AMIP-R2 Spring season transport pattern differences 
representative of Table 4 comparisons b and e.  Black arrows are NCEP-R1 wind direc-
tions.  Red arrows are AMIP-R2 wind directions.  Velocity differences (m/s) are com-
puted as (R2 - R1).  
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Figure 5.   700 mb reanalysis and base case RCM spring season transport pattern differ-
ences representative of Table 4 comparison a.  Black arrows are base case RCM wind di-
rections.  Red arrows are reanalysis wind directions.  Velocity difference (m/s) is com-
puted as (reanalysis – base case).   
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Figure 6.  700 mb reanalysis and base case RCM spring season transport pattern differ-
ences representative of Table 4 comparisons b through e.  Black arrows are RCM wind 
directions.  Red arrows are reanalysis wind directions. Velocity differences are computed 
as (reanalysis – base case). 
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Figure 7.   700 mb base case and future RCM spring season transport pattern differences 
representative of Table 4 comparisons b and c.  Black arrows are base case wind direc-
tions.  Red arrows are future wind directions.  Velocity difference (m/s) is computed as 
(future - base case). 
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Figure 8.  700 mb base case and future RCM spring season transport pattern differences 
representative of Table 4 comparisons a, d and e.  Black arrows are base case wind direc-
tions.  Red arrows are future wind directions.  Velocity difference (m/s) is computed as 
(future - base case). 
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Figure 9.  Box plot of synthetic spring season relative frequency distributions for NCEP-R1 (R1), 
base case RCM (GM), and AMIP-R2 (R2) grouped by relative frequency rank. 

 
  
 
  
 
             
   
 
 
 
 
 
 
        
        
             
 
 
 
 
 

Figure 10.  Box plot of synthetic spring season relative frequency distributions for base case (B) 
and future (F) RCM scenarios grouped by relative frequency rank. 

 
 
3.2.2  Summer   
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 This analysis summarizes comparisons of 10 years (1985-1994) of summer season (June, 

July, August) reanalysis results (NCEP-R1 and AMIP-R2), a climatological decade of MM5-

RCM base case (~2000) and a decade of MM5-RCM future (~2050) 700mb u and v wind 

component data.  All cluster ranks refer to relative frequency, where rank 1 is assigned to the 

most frequently occurring pattern. 

 

"Do transport patterns look alike across datasets?” 

 
Table 6.  Best visual matches for summer season NCEP-R1, AMIP-R2, base case RCM and 
future RCM.  Total wind speed bias is computed as (R2-R1), (reanalysis - RCM) or RCM (future 
- base case). 

 R1 
cluster 
Rank 

R2 
cluster 
Rank 

Total wind 
speed bias 

(m/s) 

RCM Base 
case 

Cluster Rank 

Reanalysis 
Cluster 
Rank 

Total wind 
speed bias 

(m/s) 

RCM Future 
Cluster Rank 

RCM 
Base case 

Cluster Rank 

Total wind 
speed Bias 

(m/s) 

(a) 1 4 -0.27 1 R1-3 +0.30 1 1 -0.17 

(b) 3 2 +0.31 4 R1-3 +0.92 2 2 +0.01 

(c) 3 1 -0.32 2 R2-1 +0.62 3 3 -0.46 

(d) 5 3 -0.34 3 R2-3 +0.44 4 4 -0.06 

(e) 4 5 +0.20 5 R2-3 +0.15 5 5 -1.86 

 

 Visual comparison of NCEP-R1 and AMIP-R2 mean dominant cluster patterns shows 

excellent agreement in wind speed as well as direction in most cases, but agreement among 

patterns of similar rank is poor (Table 6).  That is, patterns across reanalysis datasets look 

similar, but the frequency with which they occur is quite different.  The range of R1 to R2 wind 

speed and direction differences is illustrated by Figure 11 and Figure 12.  Figure 11 is represen-

tative of comparisons a through d.  Figure 12 illustrates pattern differences for Table 6  compari-
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son e.   

 Figure 14 is representative of difference patterns for all reanalysis and MM5-RCM 

comparisons listed in Table 6.  Comparison of MM5-RCM base case to reanalysis patterns 

reveals relatively poor visual agreement with wind speed differences generally in excess of the 

reanalysis range.  Base case MM5-RCM scenarios place a persistent trough off the U.S. West 

Coast (Figure 13).  This feature is clearly present in every MM5-RCM base case pattern.  This 

steering level MM5-RCM feature does not appear to link directly to the surface analysis pre-

sented in Chapter 4, which indicates good agreement between model and observed sea surface 

pressure and temperature.  This apparent disagreement could reflect confounding surface local 

effects or model domain edge effects resulting in a region of greater scenario uncertainty 

requiring additional future study.  In addition to the western trough, most MM5-RCM base case 

patterns indicate a persistent, “cut-off” (in most cases) subtropical high pressure area, i.e., closed 

anti-cyclonic circulation in the southeastern quadrant of the U.S. and weaker zonal (east-west) 

transport across the northern U.S.  Reanalysis wind speeds throughout the South are weaker than 

the base case, except where the base case pattern is under the influence of the anticyclonic 

circulation mentioned previously.  Finally, the northeastern quadrant of Figure 14 shows 

dramatic disagreement between reanalysis and RCM base case flow patterns.  Chapter 4 discus-

sion highlights a tendency for this particular RCM configuration to place the Bermuda high well 

northeast of its climatological position.  The reflection of this RCM bias at 700 mb should be 

explored further in later analyses. 

In stark contrast to these poor reanalysis and base case results, there is remarkable visual 

agreement between base case and future MM5-RCM scenarios.  This is in general agreement 
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with the Chapter 4 surface analysis.  Figure 15 is representative of wind speed and direction 

differences for Table 6 comparisons a through d.  Figure 16 is illustrative of Table 6 comparison 

e.  Review of this latter case shows that, with the exception of the west coast,  weak transport 

dominates throughout  the U.S. and few, if any, well-organized synoptic features can be distin-

guished (Figure 17). 

 

Do transport patterns occur with the same frequency across datasets? 

  

Figure 18 shows synthetic distribution comparisons of ranked relative frequency across 

reanalysis (R1 and R2) and MM5-RCM base case scenarios.  Figure 19 compares MM5-RCM 

base case and future scenarios.  Table 7 summarizes statistical tests of distribution and location 

and 95% data interval overlap for all distribution comparisons.  Although there is substantial 

95% data interval overlap, all dataset comparisons show only moderate distribution and location 

agreement.  Table 7 indicates there is parent distribution as well as location agreement between 

base case and future clusters of frequency rank 2 and 3 and 5 suggesting most future change is 

predicted to occur for patterns ranked 1 and 4.  Future variability in rank 5 cluster frequency, 

however, may be reduced by one-half. 
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Table 7.  Statistical summaries of summer season synthetic distributions. An “*” indicates that 
the null hypothesis of similar central tendency (Loc) or distribution shape (Dist) cannot be 
rejected.  “Y” indicates that the 95% data intervals overlap. 

Reanalysis RCM and Reanalysis RCM Base Case and Future Clus-
ter 

Rank 95% 
Interval 
Overlap 

Loc Range 
Ratio\1 

Dist 95% 
Interval 
Overlap 
(R1/R2) 

Loc Range 
Ratio \2 

(R1/R2) 

Dist 95% 
Interval 
Overlap 

Loc Range 
Ratio\3 

Dist 

1 Y * 1.36 * Y/Y  0.70/0.95  Y  1.27 * 

2 Y * 1.25 * Y/Y *(R1) 0.67/0.84 * (R1) Y * 1.02 * 

3 Y  1.31  Y/Y *( R2) 0.66/0.86 * (R2) Y * 0.96 * 

4 Y * 1.01 * Y/Y  1.33/1.34  Y  0.83  

5 Y  1.03  Y/Y * (R1) 0.87/0.89 * (R1) Y * 1.91  
\1 reanalysis range ratio is computed as R1/R2 
\2  MM5-RCM (RCM) and reanalysis range ratio is computed as reanalysis/RCM. 
\3  MM5-RCM (RCM) base case and future range ratio is computed as base/future. 

 

 

Conclusion 

 The reanalysis study indicates that there is good visual agreement regarding present day 

dominant patterns of 700 mb atmospheric transport, but only moderate agreement regarding the 

frequency with which these patterns occur within the 10-year time period.  This is not particu-

larly surprising since persistence is generally the rule during the summer season and transport 

regime transitions tend to be weak and difficult to predict.   

 Of far greater interest is the poor visual as well as frequency distribution similarity 

between base case MM5-RCM transport patterns and either of the reanalysis datasets.  As noted 

previously, there are fundamental differences between reanalysis and base case transport 

scenarios that are quite likely to impact the CMAQ scenarios produced.  There are clear indica-

tions of weakened 700 mb transport patterns (Table 6 domain-wide bias) and possible increased 

persistence of dominant patterns (Figure 19). 
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 A comparison of MM5-RCM base case and future patterns suggests predominantly stable 

transport patterns through time.  In most cases there is very good visual agreement and there is 

agreement regarding parent distribution and location in three of five cases.  We conclude that the 

MM5-RCM model does not do a very good job reproducing present day 700 mb transport 

patterns.  There is little agreement regarding pattern frequency as well, but our understanding of 

present-day frequencies as represented by our two reanalysis datasets is uncertain as well.  Base 

case and future summer season MM5-RCM scenario patterns suggest little change over time.
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Figure 11.  700 mb NCEP-R1 and AMIP-R2 summer season transport pattern differ-
ences representative of Table 6 comparisons a through d.  Black arrows are NCEP-R1 
wind  directions.  Red arrows are AMIP-R2 wind directions.  Velocity differences (m/s) 
are computed as (R2-R1). 
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Figure 12.   700 mb NCEP-R1 and AMIP-R2 summer season transport pattern differ-
ences representative of Table 6 comparison e.  Black arrows are NCEP-R1 wind direc-
tions.  Red arrows are AMIP-R2 wind directions.  Velocity differences (m/s) are com-
puted as (R2-R1). 
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Figure 13.  RCM base case summer season 700 mb wind speed (m/s) and direction illus-
trating the persistent western trough feature present in all base case average dominant 
transport patterns.  
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Figure 14.  700 mb RCM base case and reanalysis summer season transport pattern dif-
ferences representative of all reanalysis and base case comparisons in Table 6.  Note the 
location of the reanalysis anti-cyclone centered over Arkansas.  Black arrows are RCM 
base case wind directions.  Red arrows are reanalysis wind directions.  Velocity differ-
ences (m/s) are computed as (reanalysis-base case). 
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Figure 15.  700 mb RCM base case and future summer season transport pattern differ-
ences representative of Table 6 comparisons a through d.  Black arrows are RCM base 
case wind directions.  Red arrows are RCM future wind directions.  Velocity differences 
(m/s) are computed as (future-base). 
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Figure 16.  700 mb RCM base case and future summer season pattern differences repre-
sentative of Table 6 comparison e.  Black arrows are RCM base case wind directions.  
Red arrows are RCM future wind directions.  Velocity differences (m/s) are computed as 
(future- base case). 
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Figure 17.  Map of RCM future summer season wind speed (m/s) and direction illustrat-
ing weak transport and lack of active synoptic features. 
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Figure 18.  Box plot of synthetic summer season relative frequency distributions for 
NCEP-R1 (R1), base case RCM (GM), and AMIP-R2 (R2) grouped by relative frequency 
rank. 

 
 
            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19.  Box plot of synthetic summer season relative frequency distributions for base 
case (B) and future (F) RCM grouped by relative frequency rank. 
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3.2.3 Autumn   
 

 This analysis summarizes comparisons of 10 years (1985-1994) of autumn season 

(September, October, November) reanalysis results (NCEP-R1 and AMIP-R2), a climatological 

decade of MM5-RCM base case (~2000) and a decade of MM5-RCM future (~2050) 700mb u 

and v wind component data.  All cluster ranks refer to relative frequency, where rank 1 is 

assigned to the most frequently occurring pattern. 

 

"Do transport patterns look alike across datasets?” 

 
Table 8.  Best visual matches for autumn season NCEP-R1, AMIP-R2, base case RCM and 
future RCM.  Total wind speed bias is computed as (R2-R1), (reanalysis - RCM) or RCM (future 
- base case). 

 R1 
cluster 
Rank 

R2 
cluster 
Rank 

Total wind 
speed bias 

(m/s) 

RCM Base 
case 

Cluster Rank 

Reanalysis 
Cluster 
Rank 

Total wind 
speed bias 

(m/s) 

RCM Future 
Cluster Rank 

RCM 
Base case 

Cluster Rank 

Total wind 
speed Bias 

(m/s) 

(a) 1 3 +1.26 1 R2-2 -0.30 1 1 +0.05 

(b) 4 1 -1.50 4 R2-5 +0.10 2 2 +0.29 

(c) 2 5 -0.10 2 R1-2 +1.62 3 3 -0.05 

(d) 5 2 -.019 3 R1-2 +0.39 4 1 +0.47 

(e) 3 4 +0.19 5 R1-3 +2.07 5 1 -0.15 

 
 
 There is good visual agreement between Table 8 reanalysis comparisons b, c and e whose 

difference patterns are represented in Figure 20.  Table 8 comparison a is also quite good, but R1 

has a larger area of cyclonic circulation in the Southwest resulting in more of the west coast 

experiencing light southerly winds than R2.  In the case of Table 8 comparison d (Figure 21), R1 

indicates an area of cyclonic circulation in the southwest located further inland than does R2.  

This results in northerly flow off the west coast that gains a strong southerly component (base of 
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trough) over the Baja peninsula and then flows strongly from the southwest across the central 

plains.  The range of reanalysis uncertainty is illustrated by Figure 20 and Figure 21. 

 The MM5-RCM and reanalysis comparison suggests that wind direction agreement 

across the western two-thirds of the model domain is reasonably good, but wind speed agreement 

is poor throughout.  Figure 22 illustrates the best agreement for this comparison, but is illustra-

tive of all the differences listed in Table 8.  In most cases, the reanalysis indicates lower wind 

speeds off the west coast and higher wind speeds in the northwestern portions of the domain than 

does the MM5-RCM base case (Table 8 positive bias).  There is generally good agreement 

regarding light winds in the southeast, but some disagreement regarding the location of the 

center of anti-cyclonic circulation. In most cases, wind speed and direction differences exceed 

those estimated across the two reanalysis datasets.  Comparison to reanalysis patterns for the 

summer season produce more similar results suggesting a seasonal shift that may warrant 

additional analysis. 

 The comparison of base case and future MM5-RCM poses some interesting similarities 

and differences.  There is excellent visual agreement in both wind speed and direction between 

the three most frequently identified patterns across datasets.  In addition, the 4th and 5th most 

frequent patterns also look remarkably like the top ranked future pattern.  This result suggests a 

“collapsing” of patterns in the future, indicating reduced variability and increasing persistence.   

Figure 23 is illustrative of all MM5-RCM base case to future comparisons described in Table 8. 

 

Do transport patterns occur with the same frequency across datasets? 

Figure 24 compares synthetic distributions of ranked relative frequency across reanalysis 
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(R1 and R2) and MM5-RCM base case scenarios.  Figure 25 compares MM5-RCM base case 

and future scenarios.  Table 9 summarizes statistical tests of distribution and location and 95% 

data interval overlap for all distribution comparisons. 

 

Table 9.  Statistical summaries of autumn season synthetic distributions.  An “*” indicates that 
the null hypothesis of similar central tendency (Loc) or distribution shape (Dist) cannot be 
rejected.  “Y” indicates that the 95% data intervals overlap. 

Reanalysis RCM and Reanalysis RCM Base Case and Future Clus-
ter 

Rank 95% 
Interval 
Overlap 

Loc Range 
Ratio\1 

Dist 95% 
Interval 
Overlap 
(R1/R2) 

Loc Range 
Ratio \2 

(R1/R2) 

Dist 95% 
Interval 
Overlap 

Loc Range 
Ratio\3 

Dist 

1 Y * 1.27 * Y/Y * (R2) 0.93/1.18 *(R2) Y  0.93  

2 Y * 1.47 * Y/Y *(R1, R2) 0.70/1.03 * (R1, R2) Y  0.81  

3 Y * 0.98 * Y/Y *(R1, R2) 0.90/0.88 * (R1, R2) Y  1.01  

4 Y * 1.22 * Y/Y  0.78/0.95  Y  1.13  

5 Y * 1.00 * Y/Y * (R1,R2) 0.89/0.89 * (R1,R2) Y  1.60  
\1 reanalysis range ratio is computed as R1/R2 
\2  MM5-RCM (RCM) and reanalysis range ratio is computed as reanalysis/RCM. 
\3  MM5-RCM (RCM) base case and future range ratio is computed as base/future. 

 

 Table 9 and Figure 24 indicate that reanalysis data sets occur in a similar fashion in terms 

of central tendency and distribution shape.  There is agreement between MM5-RCM base case 

and at least one similarly ranked reanalysis dataset in four of five clusters.  Although there is 

some degree of 95% data interval overlap for all five patterns, no similarly ranked base case and 

future comparisons appear to be statistically similar.  The lack of distribution agreement is 

immediately clear upon inspection of Figure 25.  The increased persistence of base case patterns 

ranked 1 in the future, primarily deriving from the lower ranked base cases, is confirmed here 

and suggests fundamental changes in the temporal characteristics of transport patterns in the 

future.  
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Conclusion 

 There is generally good visual and relative frequency reanalysis agreement, with the 

primary source of visual disagreement being in the location of the center of cyclonic circulation 

in the far west.  Wind speed and direction differences are generally large for base case to 

reanalysis comparisons, but they appear to be within the uncertainty range defined by the R1 and 

R2.  The comparison of base case to future MM5-RCM projections suggests little expected 

change in transport speed and direction, but a substantial change with respect to persistence of 

the most frequently expected base case transport patterns. 
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Figure 20.  700 mb NCEP-R1 and AMIP-R2 autumn season transport pattern differences 
representative of Table 8 comparisons b, c and e.  Black arrows are NCEP-R1 wind di-
rections.  Red arrows are AMIP-R2 wind directions.  Velocity differences (m/s) are com-
puted as (R2-R1). 
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Figure 21.  700 mb NCEP-R1 and AMIP-R2 autumn season transport pattern differences 
representative of Table 8 comparison d.  Black arrows are NCEP-R1 wind directions.  
Red arrows are AMIP-R2 wind directions.  Velocity differences (m/s) are computed as 
(R2-R1). 
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Figure 22.  700 mb RCM base case and reanalysis autumn season transport pattern dif-
ferences representative of all Table 8 comparisons.  Black arrows are RCM base case 
wind directions.  Red arrows are reanalysis wind directions.  Velocity differences (m/s) 
are computed as (reanalysis- base case).   
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Figure 23.  700 mb RCM base case and future autumn season transport pattern differ-
ences representative of all Table 8 comparisons.  Black arrows are RCM base case wind 
directions. Red arrows are RCM future wind directions.  Velocity differences (m/s) are 
computed as (future-base case). 
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Figure 24.  Box plot of synthetic autumn season relative frequency distributions for 
NCEP-R1(R1), base case RCM (GM), and AMIP-R2(R2) grouped by relative frequency 
rank. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25.  Box plot of synthetic autumn season relative frequency distributions for base 
case (B) and future (F) RCM scenarios grouped by relative frequency rank. 

 
3.2.4  Winter    
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 This analysis summarizes comparisons of 10 years (1985-1994) of winter season (De-

cember, January, February) reanalysis results (NCEP-R1 and AMIP-R2), a climatological 

decade of MM5-RCM base case (~2000) and a decade of MM5-RCM future (~2050) 700mb u 

and v wind component data.  All cluster ranks refer to relative frequency, where rank 1 is 

assigned to the most frequently occurring pattern. 

 

"Do transport patterns look alike across datasets?” 

 
Table 10.  Best visual matches for winter season NCEP-R1, AMIP-R2, base case RCM and 
future RCM.  Total wind speed bias is computed as (R2-R1), (reanalysis - RCM) or RCM (future 
- base case). 

 R1 
cluster 
Rank 

R2 
cluster 
Rank 

Total wind 
speed bias 

(m/s) 

RCM Base 
case 

Cluster Rank 

Reanalysis 
Cluster 
Rank 

Total wind 
speed bias 

(m/s) 

RCM Future 
Cluster Rank 

RCM 
Base case 

Cluster Rank 

Total wind 
speed Bias 

(m/s) 

(a) 3 3 -0.14 1 R1-4 +1.81 1 2 +0.05 

(b) 2 5 +0.37 2 R2-1 +1.29 2 5 -0.50 

(c) 4 2 +0.16 4 R1-4 +1.78 3 3 +0.45 

(d) 1 1 +.01 5 R1-1 +0.85 4 4 -0.17 

(e) 5 4 +0.41 3 R1-5 +1.50 5 1 -4.13 

 
 

 There is good visual wind speed and wind direction agreement between Table 10 

comparisons a through d whose difference patterns are represented in Figure 26.  Although the 

domain-wide wind speed bias shown in Table 10 is not large, visual agreement for comparison e 

is not very good (Figure 27).  This result, in combination with the lack of relative frequency rank 

agreement indicates substantial uncertainty in the frequency of winter season dominant transport 

patterns.  The principal source of uncertainty at the steering level appears to be the location and 
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spatial extent of an area of low pressure located in the southwestern portion of the domain.  

Table 10 suggests R2 domain-wide mean dominant patterns wind speeds are higher overall than 

R1.   

 There is little visual similarity in either wind speed or direction across base case MM5-

RCM and reanalysis datasets as illustrated by Figure 28.  The details of other comparisons vary, 

but the level of agreement does not improve.  The primary issues appear to be the treatment of 

cyclonic circulation at 700 mb and variability of on-shore Jet Stream flow along the West Coast.  

Only 2 of 5 MM5-RCM dominant patterns include an area of weak cyclonic circulation at 700 

mb which is present in nearly every dominant reanalysis pattern.  In the two MM5-RCM cases in 

which it is present, the center is placed farther inland than the reanalysis, near the Four-Corners 

area of the Southwest suggesting that the model mean Jet Stream path is located south of the 

reanalysis position.  In addition, MM5-RCM patterns suggest less variability in the direction of 

on-shore flow from the Pacific.  In most cases, the MM5-RCM base case patterns appear more 

similar to those in reanalysis R1, but contain lower domain-wide wind speeds (Table 10, large 

positive bias).  The discussion in Chapter 4 further confirms that these differences in the west 

result in simulation of the major winter storm track too far south and reduced variability leading 

to persistent Canadian high-pressure over the central U.S. 

Wind speed and direction pattern agreement is much better between base case and future 

than between base case and reanalysis with patterns ranked 3 and 4 suggesting relative stability 

through time.  Table 10 comparisons a through d are represented by Figure 29. The poorest 

agreement reported in Table 10 is comparison e.  Further consideration of these base case and 

future patterns suggest much weaker, less well organized future flow for these cases as compared 
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to base case patterns, in agreement with findings reported in Chapter 4. 

 

Do transport patterns occur with the same frequency across datasets? 

Figure 30 compares synthetic distributions of ranked relative frequency across reanalysis 

(R1 and R2) and MM5-RCM base case scenarios.  Figure 31 compares MM5-RCM base case 

and future scenarios.  Table 11 summarizes statistical tests of distribution, location and 95% data 

interval overlap for all distribution comparisons.  There is good agreement across winter season 

reanalysis relative frequency distributions.  There is moderate relative frequency agreement 

between the MM5-RCM base case and at least one reanalysis dataset, and poor agreement 

between base case and future MM5-RCM scenarios.  This latter finding is in agreement with the 

surface wind flow analysis presented in Chapter 4. 

 

Table 11.  Statistical summaries of winter season synthetic distributions.  An “*” indicates that 
the null hypothesis of similar central tendency (Loc) or distribution shape (Dist) cannot be 
rejected.  “Y” indicates that the 95% data intervals overlap. 

Reanalysis RCM and Reanalysis RCM Base Case and Future Clus-
ter 

Rank 95% 
Interval 
Overlap 

Loc Range 
Ratio\1 

Dist 95% 
Interval 
Overlap 
(R1/R2) 

Loc Range 
Ratio \2 

(R1/R2) 

Dist 95% 
Interval 
Overlap 

Loc Range 
Ratio\3 

Dist 

1 Y * 0.59 * Y/Y * (R1,R2) 1.05/1.35 *(R1,R2) Y  0.76  

2 Y * 1.00 * Y/Y *(R1) 0.81/0.77 * (R1) Y * 0.97  

3 Y * 1.20 * Y/Y *(R1, R2) 0.76/0.79 * (R1, R2) Y * 1.22 * 

4 Y * 1.21 * Y/Y * (R1) 1.09/0.96 * (R1) Y  1.01  

5 Y * 1.19 * Y/Y  1.45/1.28  Y  1.19  
\1 reanalysis range ratio is computed as R1/R2 
\2  MM5-RCM (RCM) and reanalysis range ratio is computed as reanalysis/RCM. 
\3  MM5-RCM (RCM) base case and future range ratio is computed as base/future. 
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Conclusion 

 Although the reanalysis comparison suggests that there is good visual agreement regard-

ing the appearance of dominant present day winter 700 mb transport patterns there is a lack of 

agreement regarding strength of on-shore transport in the West.  There is some disagreement 

regarding the frequency with which these patterns occur, i.e., the most visually similar are not of 

the same rank, but the rank location (central tendency) differences do not appear to be statistic-

cally significant and there is substantial overlap in the 95% data intervals.  

Comparison of MM5-RCM base case to reanalysis datasets suggests weak agreement 

both in terms of visual appearance, variability and relative frequency primarily in the western 

U.S. and is associated with the position of the major winter storm track (Jet Stream).  Base case 

and future MM5-RCM comparison suggest little future change with regard to patterns of 

transport is expected, particularly for Table 10 comparison c (rank 3).  A notable exception are 

patterns with future relative frequency rank 5, for which both visual and relative frequency 

analysis suggest a marked departure from MM5-RCM base case conditions. 
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Figure 26.  700 mb NCEP-R1 and AMIP-R2 winter season transport pattern differences 
representative of Table 10 comparisons a through d.  Black arrows are NCEP-R1 wind 
directions.  Red arrows are AMIP-R2 wind directions.  Velocity differences (m/s) are 
computed as (R2-R1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              GRADS:COLA/IGES 
 

Figure 27.  700 mb NCEP-R1 and AMIP-R2 winter season transport pattern differences 
for Table 10 comparison e.  Black arrows are NCEP-R1 wind directions.  Red arrows are 
AMIP-R2 wind directions.  Velocity differences (m/s) are computed as (R2-R1). 
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Figure 28.  700 mb RCM base case and reanalysis transport pattern differences represen-
tative of all Table 10 comparisons.  Black arrows are RCM base case wind directions.  
Red arrows are reanalysis wind directions.  Velocity differences (m/s) are computed as 
(reanalysis- base case).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              GRADS:COLA/IGES 
 

Figure 29.  700 mb RCM base case and future winter season transport pattern difference 
representative of Table 10 comparisons a through d.  Black arrows are RCM base case 
wind directions.  Red arrows are RCM future wind directions.  Velocity differences (m/s) 
are computed as (future-base case). 
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Figure 30.  Box plots of synthetic winter season relative frequency distributions for 
NCEP-R1 (R1), base case RCM (GM), and AMIP-R2 (R2) grouped by relative frequency 
rank. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31.  Box plots of synthetic winter season relative frequency distribution for 
base case (B) and future (F) RCM grouped relative frequency rank. 
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4.0   Distributional and Time Series Analysis 

 

4.1 Research Methods and Datasets 

4.1.1 Climate Observations 

Several observational and analysis data sets were used to evaluate the base case  

GISS/MM5 (i.e., RCM) simulation.  National Weather Service (NWS) Techniques Development 

Laboratory (TDL) observations, provided by the Data Support Section at the National Center for 

Atmospheric Research (NCAR-DSS) spanning 1992 through 2001 were used for the hourly 

surface meteorology.  All surface observations in this data set have undergone a quality control 

process (TDL website, http://www.nws.noaa.gov/tdl) to remove anomalous records. The specific 

variables that were used in the evaluation are 2-m temperature, sea-level pressure and wind. The 

observations from 194 National Weather Service (NWS) sites were extracted for the comparison 

with the regional climate simulation; the observation locations are shown in Figure 32.  Wea.  

Appendix A provides the city, state, latitude, and longitude for each of these NWS sites. 

Throughout the analyses, the sites may be referred to as climate reference sites, observation sites, 

or observation locations. 

A daily United States precipitation analysis available through NOAA’s Climate Predic-

tion Center (CPC, ftp://ftpprd.ncep.noaa.gov/pub/precip/wd52ws/us_daily) was also used in the 

climate evaluation. The daily gridded precipitation values are derived from radar and rain gauge 

data (resolved on a 0.25° by 0.25° grid). The daily precipitation files were collected from 1996 to 

2004. For each season, the daily precipitation was summed and then averaged (1996-2004) to 
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derive a seasonal mean precipitation. Additionally, seasonal variability (standard deviation) was 

calculated using the individual nine years of mean seasonal precipitation. 
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Figure 32.  Weather observation sited used in the climate analysis  
 

The two other data sets compared with the climate simulation are the NCEP-DOE AMIP-

II[Kanamitsu et al., 2002] reanalysis monthly-mean sea-level pressure and a 14 km satellite 

derived sea-surface temperature analysis. The sea-level temperature analysis is derived from the 

Polar Operational Environmental Satellites (POES) platform (8 km) and blended with in situ 

data (http://www.class.noaa.gov). The sea-level pressure from the reanalysis is compared with 

the mean RCM pressure patterns. Sea-surface temperature differences are used to explain 

discrepancies in the synoptic patterns.  
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4.1.2 Time series extraction, Distributions Generation, and Mean Patterns 

Time series are constructed from the 10-year base case RCM simulation to represent the 

meteorology (2-m temperature, hourly precipitation, first-level wind speed, and first i.e., lowest 

atmospheric level wind direction) at the 194 climate reference sites (Figure 32). This is done by 

choosing the model grid point closest to the observation site. The first-level wind speed and 

direction represent conditions approximately 35 meters above the surface. The observed variable 

time series are similarly constructed, and both RCM and observed time series are filtered into 

different temporal components (see Section 4.1.3).  

Several analyses are performed with the observed and simulated time series. The primary 

analysis compares the seasonal mean sea-level pressure, temperature, and precipitation patterns 

of the model and observations.  A second analysis examines the simulated and observed fre-

quency distributions. This approach is appropriate because the climate simulation is a representa-

tion of the meteorology driven by a global climate model, and not a direct space-time replication.   

The distributions are presented in several formats. The first format presents the 10 m 

wind distributions as a function of wind speed and direction. These distributions are used to 

compare observed and RCM wind roses in order to establish the way in which the climate 

simulation represents the surface wind-flow patterns over the United States.  The synoptic-scale 

component of the near-surface wind flow is examined by determining and then plotting the three 

most dominant (frequent) modeled and observed wind directions for wind speeds greater than 

2.5 m·s-1  (e.g.,Figure 34).  The observed wind direction modes (i.e., the three wind directions 

occurring most frequently in the observations) are indicated by the red vectors. Blue vectors 

indicate the simulated wind direction modes. Each set of vectors have different lengths, which 
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correspond to the frequency of occurrence (i.e., longest vector indicates most dominant mode). 

Green vectors are plotted for instances where the observed and simulated wind modes have a 

difference of less than 40°. 40° was used as a cut-off because it is a typical mean wind direction 

error of meteorological models, and it is twice the bin size of the wind direction distribution.  In 

these instances, the observed vector is plotted light green and the simulated vector dark green. A 

more in-depth discussion is provided for the winter and summer seasons since these are consid-

ered most important in terms of air quality. 

Two other distributional methods are applied for this report; both are used to examine the 

filtered time series. The first uses the 10-year seasonally filtered time series separated into 10 

annual time series. A mean and standard deviation for each hour of the year is calculated across 

the 10 annual time series. This is repeated for each variable, at each of the 194 weather observa-

tion sites, for the observations, the current, and the future climate simulations. In the base case 

climate simulation versus observation analysis, the 10-year mean hourly values from the simula-

tion and observations are plotted, and the standard deviation is used to define variability bounds 

about the mean value. The net result is a plot of the mean seasonal times series over the 10-year 

period with the seasonal variability. The simulated and observed plots are overlaid to identify 

clearly the difference in the characteristics of the seasonal distribution. This same method is 

applied to the diurnal filtered time series, but rather than generating the mean and standard 

deviation for each hour of the year, it is done for each hour of the day.  Diurnal distribution 

analyses are generated for the entire year, and for each season to provide insight on how well the 

climate simulation represents the amplitude and variability of the diurnal component of a 

particular variable (i.e., how well the temperature or wind speed range is simulated). 
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A second time series method is applied to examine the variability of the various filtered 

components of the time series. For the observed, base case simulation, and future simulation, the 

standard deviation is calculated for each temporal component. The difference of variability 

between the simulated and observed time series is calculated then normalized by the variability 

of the non-filtered time series to provide a percentage difference relative to the total variability. 

This information is plotted spatially for the different seasons (diurnal and synoptic components) 

and for the entire year (intraday, seasonal and interannual components). These variability plots 

are used to determine spatial patterns of the variability differences. 

The full (non-filtered) 10-year observed and simulated time series (base case and future) 

are used to generate the mean seasonal value of each variable at each meteorological observation 

site. Throughout this document, the seasons are defined as winter (December, January, Febru-

ary), spring (March, April, May), summer (June, July, August), and fall (September, October, 

November). The annual means are also calculated and used to determine the standard deviation, 

which is a measure of inter-annual variability. Differences between the observations and the base 

case climate simulation as well between the base case and future climate simulations are also 

plotted and discussed.  

 

4.1.3 Time Series Filter 

Filtering is a valuable diagnostic method when applied to a variable time series that is 

largely composed of naturally occurring cycles (such as those representing physical processes).  

A filter can separate small-scale, random variability (“noise”) from the larger-scale phenomena, 
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as well as separate the components on strategic time scales that relate to physical processes [Rao 

et al., 1997]. All observed and simulated climate time series were filtered using the Kolmogorov-

Zurbenko (KZ) filter [Hogrefe et al., 2000; Rao et al., 1997]    .  

The user must first determine the frequencies that are of most interest, based on an under-

standing of the physical processes. For instance, if annual cycles are of interest in a collection of 

daily meteorological observations, the user would seek to remove all cycles which occur at a 

frequency greater than 1/365 (1 cycle per 365 days). Based on the identified frequency, the user 

determines the window length and the number of applications for the filtering algorithm.  The 

KZ filter is then applied to separate the patterns that occur with a frequency greater than that of 

the cutoff level; the filtered result will then only contain components with cycles of period length 

365 or longer. Repeated applications of the method can be used to isolate the portion of the time 

series associated with each time scale.   

The major advantage of the KZ filter is its ease of use. The method does not require an 

advanced understanding of statistical methods, such as those used for parameter estimation in 

traditional time series analysis.  It also does not require the assumptions that underlie many 

commonly used statistical methods and may not be appropriate in many applications. Compared 

with more traditional spectral analysis techniques, the method handles missing observations 

well. 

The method is not based on a true stochastic model, and it does not have parameters to 

estimate, as do many traditional statistical methods. The user will not be able to make statistical 

inferences, i.e., form confidence intervals, or test hypotheses in the same way as for other time 

series procedures. The absence of stochastic assumptions makes it difficult to quantify the likely 
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amount or type of error associated with the component separation process.  Finally, since the 

method is based on a simple linear filter, it is possible that any jumps or discontinuities in the 

time series may be oversmoothed, and their presence or importance overlooked by the user 

[Eskridge et al., 1997].  In practice, the user should carefully examine and justify each filtered 

component based on the physical processes known to be at work.   

In the present analysis, a KZ filter is applied to decompose the time series into intraday 

(variations with period of 12 hours or less), diurnal (1 days), synoptic (2-21 days), seasonal (~ 90 

days) and interannual or baseline average (365 days) components. The various simulated and 

observed components of the time series are then compared to elucidate the strengths and weak-

ness of the climate simulation in representing the climate. 

 

4.1.4 Analysis Overview 

One of the most important phases in the application of a climate model, especially when 

dealing with policy-related issues, is to asses whether the model is capable of replicating the 

spatial and temporal variability of the current climate. This is done by comparing the observed 

climate, using various observational datasets, to the simulated base case climate scenario.  

The focus of this analysis is on climate and weather features that occur on scales of hun-

dreds of kilometers and persist on the order of days or weeks.  This criterion is clearly met by 

patterns of sea-level pressure.  It is also generally accepted that other aspects of weather (e.g., 

dominant near-surface wind flow, temperature and regional precipitation) directly reflect the 

influence of these large-scale patterns of high and low pressure.  Thus, this analysis begins with 

an examination of the simulated mean seasonal sea-level pressure patterns and the dominant 
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near-surface flow that is strongly influenced by these patterns.  

Next, differences in the mean seasonal 2-m temperature are examined to provide a sense 

of the overall representativeness of the climate model in terms of near-surface temperature. 

Then, the filtered components of temperature are examined to provide more insight into proc-

esses that may contribute to differences in the temperature. Among these temporal scales are the 

diurnal, synoptic and seasonal variations in 2-m temperature. These temperature analyses will be 

connected to major conclusions from the pressure and wind flow analysis. The evaluation 

concludes by comparing climate-scale precipitation patterns and variability, and relating the 

results to conclusion drawn by the other analyses. The GISS/MM5 assessment concludes with a 

comparison of base case to future RCM scenario results.   

 

 

4.2  Assessment of MM5 Regional Climate Model Base Case Climate  

 

4.2.1 Sea-Level Pressure and Surface Wind  Flow 

The sea-level pressure and dependent near-surface flow patterns are critical aspects of the  

 regional climate model simulation.  Many qualities of the regional climate simulation including 

synoptic flow patterns, regional variability of the wind, boundary layer evolution, and stagnation 

events can be assessed by an in-depth examination of the sea-level pressure patterns and depend-

ent near-surface wind flow.  The discussions that follow consider observed (as represented by 

reanalysis data set) and modeled mean sea-level pressure and related dominant wind flow. 
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4.2.1.1 Winter 

Sea-level pressure patterns are a standard meteorological proxy of synoptic-scale  

weather.  Many of the standard surface-related variables are linked to the sea-level pressure 

pattern including wind, precipitation, temperature and moisture. Figure 33 is a comparison of the 

10-year observed (reanalysis) and simulated mean wintertime (DJF) sea-level pressure pattern.  

The sea-level pressure over the higher elevation of the Rocky Mountains is not reliable, and so 

these areas are not considered in the sea-level pattern analysis.  Important similarities and 

differences exist in the pressure pattern. In general, both model and observations indicate mean 

high pressure over the central and eastern United States, mean low pressure off the northwest 

and northeast United States, mean high-pressure off the southern California coast, and mean 

lower pressure around Baja California. The major difference, which has a dramatic influence on 

many of the other meteorological fields, is the configuration of the mean continental high-

pressure area located in the central United States. The RCM simulation has a clearly defined 

zone of higher sea-level pressure from west-central Canada, down through the central United 

States. This is a typical track for wintertime Arctic high-pressure systems. Areas to the south and 

east of the zone of higher pressure will experience relatively cold temperatures. In contrast, the 

reanalysis field does not indicate a well-defined high-pressure zone in central Canada and the 

United States.  A general area of relatively high pressure is depicted in the mean reanalysis 

pattern, but it is diffused over a large part of the central and eastern United States. Several 

important details can be deduced from these pattern differences. First, the well-defined high-

pressure track in the model output indicates that a persistent Arctic high-pressure cell slides 
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down the eastern edge of the Rocky Mountains and takes residence in the central United States. 

Conversely, the climate 

Figure 33.  The 10-year mean sea-level pressure pattern in the wintertime (DJF). The top panels 
is from the regional climate model and the bottom panel is from the NCAR Reanalysis II dataset. 
Both datasets are plotted using the same color scale. Note that the sea-level pressure in the 
western U.S. is not reliable. 
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 analysis suggests that these high-pressure systems, in reality, are either less frequent, weaker, or 

there is more variability in the track as compared to the climate simulation. Another significant 

feature that is not well represented by the model scenario is the wintertime Canadian Clipper 

low-pressure system that swings on a southeastward arc from the Canadian Rockies to the 

northeast United States. This feature would tend to lower the mean sea-level pressure along its 

climatological path. This arc of lower pressure can be clearly seen in the reanalysis pressure 

field. However, the simulated pressure field does not indicate such a feature across the northern 

Plains and Midwest. These major synoptic pattern differences indicate that the RCM suppresses 

the wintertime storm track across the eastern United States. An analysis of 700 mb wind flow 

patterns in Section 3.2 also indicates major flow differences aloft during the winter seasons that 

are consistent with these differences in sea-level pressure. Specifically, the 700 mb flow supports 

the idea that the RCM simulates the major winter storm track (Jet Stream) too far south, and 

lacks variability in the synoptic weather pattern, which leads to the persistent Canadian high-

pressure over the central United States. 

Another significant difference in the sea-level pressure pattern is the location of the low-

pressure zone off the northeast United States coast. The RCM simulates the Atlantic low-

pressure east of Cape Cod and south of Nova Scotia while the reanalysis data indicate this low 

should be further north and east. Another difference is the low-pressure trough that extends to 

the south and west of the low-pressure minimum off the East Coast. The reanalysis data indicate 

the mean axis of this feature lies just off the East Coast while the RCM has this feature further 

offshore. The evolution of the western Atlantic coastal low along the East Coast is a critical 

component of the climate. These mean pressure pattern features are the climate footprint of the 
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cyclone’s evolution. Thus, the differences indicate the RCM is not properly representing the 

evolution of these coastal cyclones off the East Coast. With these exceptions, the wintertime 

RCM pattern is comparable to the climate analysis over much of the United States. 

Next, consider how these pressure pattern similarities and differences are reflected in the 

dominant near-surface wind flow.  The observed and simulated dominant near-surface wind 

directions for the winter season are plotted in Figure 34. In the northeastern United States, the 

principal simulated wind flow (blue and dark green where agreement exists) is northwesterly 

(arrows indicate the direction from which the wind is blowing). Although the observed wind has 

a major northwest wind component, the climate model does not simulate a frequent southerly 

wind component at many of the sites. Nonetheless, there is generally good agreement between 

the observed and simulated wind directions and, in some cases, regional variability. This is in 

agreement with the comparative sea-level pressure pattern over the Great Lakes and Northeast 

(Figure 33). The winter wind-flow comparison farther south and east of the Appalachian Moun-

tains, from the Mid-Atlantic to areas of the Southeastern United States, indicates the climate 

model does not replicate a frequent synoptic flow pattern. An observed southerly wind compo-

nent is consistent over the area; the climate model does not simulate this frequent flow direction 

properly. One plausible explanation is the winter climate of the Mid-Atlantic and the Southeast 

is largely influenced by the warm Gulf Stream off the East Coast. The regional climate model 

uses sea-surface temperature information from the courser coupled ocean-atmosphere global 

climate model. It is well known that the warm Gulf Stream influences many aspects of the 

evolution of wintertime low-pressure systems [Dirks et al., 1988; Hirsch et al., 2001], and if 

major errors exist 
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Figure 34. Observed (red) and simulated (blue) dominant 10-m wind directions at the climate 
reference sites for the wintertime (DJF). The length of the vectors represents the frequency of 
occurrence. Green colored vectors indicate the simulated (dark green) wind direction is within 
+/-40° of the observed (light green). 
 

in the model’s sea-surface temperature, the climate model would likely be affected [Hurrell and 

Trenberth, 1999]. To explore this further, the climate model’s sea-surface temperature was 

examined and compared to a typical pattern that is observed in the wintertime (Figure 35). As 

illustrated in the Figure, the main differences are that the Gulf Stream represented by the climate 

simulation is further offshore and suppressed to the south. Additionally, the water temperatures 

off the Northeast and Mid-Atlantic are warmer in the climate simulation than what observations 

indicate. The Gulf Stream displacement (south and east) in the simulation would tend to cause a 

south and eastward displacement of the simulated wintertime storm track along the Atlantic 

Coast. In addition, coastal storms prefer to develop, strengthen, and track along the stronger 
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observed sea surface temperature gradients. The strong observed sea temperature gradient noted 

in the observations is substantially smoother in the climate simulation. The net result, in theory, 

would be fewer southerly wind instances, as the wintertime storm track would remain south and 

east of the southeastern United States. This is supported by the comparison of the RCM and 

reanalysis mean sea-level pressure patterns (Figure 33).  The reanalysis indicates an area of 

mean lower sea-level pressure just off the southeast coast over the Gulf Stream that is not 

simulated by the climate model. The RCM also has the main northwest Atlantic low, which 

results from coastal lows deepening off the Eastern Seaboard, much further south (well east of 

Cape Cod) than the reanalysis (over Newfoundland). 

Although large observed and RCM differences in the southerly wind flow regimes exist 

across the Southeast, some of the wind flow modes are partially captured by the climate model. 

For instance, with the exception of Jacksonville (FL), Savannah (GA) and Miami (FL), the 

dominant north and northeasterly wind modes along coastal sections of the Carolinas and Florida 

are simulated well by the regional climate model. In the Miami case and the three sites along the 

south Texas coast, the observed southeasterly wind mode is a wintertime sea breeze signal the 

simulation will not capture because of the spatial resolution issues discussed previously. The 

suppressed storm track idea is further solidified by the wind flow regimes along and just inland 

of the Gulf coast and even coastal areas of Texas, where no southerly wind is simulated, but is  
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Figure 35. Sea surface temperature patterns during the winter. Upper panel is an example of the 
sea surface temperature from the regional climate simulation on a particular day in February. The 
lower panel is the observed 14 km scale sea surface temperature in February 2002. Both datasets 
are plotted using the same color scale. 
 
 

observed. This indicates the climate model does not allow winter low-pressure system to make 

the frequently observed inland track through the Deep South. 

Areas of northern and western Texas and southern portions of the Great Plains are much 

better simulated by the climate model in terms of dominant wind flow patterns. The climate 

model represents both the northerly and southerly wind flow that is observed in North Texas, 

Oklahoma and Nebraska; even though the northerly component is more northwest in many 

instances and the rank of the wind direction modes are not exactly the same. This bipolar wind 



 69

flow is caused by the passing of developing wintertime low-pressure systems that have strong 

southerly flow ahead of the low-pressure system and strong northerly wind behind. This implies 

that at least the developmental stages and frequency of the southern Rockies wintertime low-

pressure systems are reasonably simulated by the climate model, just not the subsequent track 

over the eastern United States. Also in agreement is the mean winter sea-level pressure pattern 

(Figure 33) where both the model and observed pressure patterns indicate a lower pressure zone 

on average over this area and higher pressures to the east. 

Wind flow patterns in the Ohio Valley, Great Lakes and the Midwest United States dur-

ing the wintertime are not well simulated by the climate model. Again, the observations indicate 

there is southerly wind component at many of the sites, while the climate model has almost a 

pure northwesterly wind mode. The predominant simulated northwest flow over the Ohio Valley 

and Midwest, coupled with the southerly component over the southern Great Plains and Texas, 

implies that the RCM frequently simulates the migration of Arctic high-pressure systems from 

central Canada to Arkansas, western Tennessee, and northern Mississippi. However, climatology 

has frequent clipper-type low-pressure systems that arc from northwest to southeast across the 

northern Plains and Midwest. Again, this idea is well supported by the mean sea-level pressure 

pattern (Figure 33), which shows a much stronger high-pressure signal from central Canada to 

the central United States in the RCM compared to the reanalysis. The mean sea-level pressure 

pattern of the reanalysis indicates that the high-pressure area over the central United States is 

cut-off from the central Canadian high because the frequently observed clipper-lows lessen the 

mean pressure over the northern Plains.  

The near-surface wind flow patterns over the western United States are more difficult to 
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evaluate because the RCM is optimized to simulate regional climate not local scale wind 

variations that are a result of small-scale topographical variability. However, the high plains 

areas of Montana, Wyoming, and Colorado, which are relatively flat in open, should be simu-

lated well if the climate model is representative. This is not necessarily the case though, and 

differences are related to the poor performance over the north-central United States that has 

already been discussed. The model, as in other parts of the United States, has a predominant 

northwesterly component while the observations indicate a high frequency of southwesterly 

wind. Again, this discrepancy is a reflection of the climate model simulating an over-active 

southerly storm track and few Canadian Clippers low-pressure systems. 

Along the West Coast of the United States, the climate model performance is mixed in 

terms of wind flow regimes. Areas in far Southern California, central and northern Arizona and 

New Mexico show fair agreement between the observed and simulated wind flow at some sites, 

and poor agreement at others. Additionally, the dominant wind directions over inland valley 

areas of central California are well represented at several sites. However, along a majority of 

coastal California, much of Oregon and Washington state the observed wind flow regimes are 

not well represented.   Much of this discrepancy in the western United States could be due to the 

influence that the coastal and interior mountain ranges have on the local wind flow[Leung et al., 

2003; Mass et al., 2003].  

 

4.2.1.2 Spring 

Springtime is a transition season; so, synoptic weather patterns will be a mixture of warm 

and cool season signatures. The March, April and May (MAM) 10-year mean sea-level pressures 
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are plotted in Figure 36. As with the winter comparison, there are several notable similarities and 

differences in the sea-level pressure patterns that relate to the placement and frequency of high 

and low pressure systems. The RCM well simulates the area of mean high pressure off the 

California coast, even the high-pressure tongue that exists inland across the Pacific Northwest. 

This agreement is reflected in the dominant wind-flow comparison shown in Figure 37.  RCM 

directions are shown in blue and observations are shown in red.   Areas where the arrows are 

green indicate reasonable agreement of the dominant wind flow. Along the Pacific Coast and 

inland valleys is agreement between of some of the dominant wind directions, which supports 

the agreement of the sea-level pressure pattern. A 700 mb wind flow analysis for spring, pre-

sented in Section 3.2, illustrates general agreement in the upper-level flow over this region. 

The mean sea-level pressure comparison in Figure 36 indicates good agreement in the 

pattern over the central part of the United States. In both pressure patterns an area of relatively 

high-pressure, over the eastern United States, results in southerly flow from Texas northward to 

the upper Great Plains. This agreement is clearly shown in the comparison of the dominant wind 

flow in Figure 37. On the other hand, over much of the eastern United States, the pressure and 

wind flow patterns do not agree. The mean sea-level pressure patterns hint at a fundamental 

difference in the simulated synoptic weather when compared to the observed climate. The 

observed mean pressure pattern indicates the existence of a warm, sub-tropical high (the Ber-

muda High) being established over the southeastern United States in the spring. The RCM does 

not simulate this feature as a dominant synoptic pattern. The RCM indicates the main synoptic 

pattern across the eastern United States is high-pressure of Canadian origin (cool season).  This 

suggests that the RCM is slow to transition from cold to warm season weather systems.  It should 
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Figure 36.  The 10-year mean sea-level pressure pattern in the springtime (MAM). The top 
panel is from the regional climate model and the bottom panel is from the NCAR Reanalysis II 
dataset. Both datasets are plotted using the same color scale. Note that the sea-level pressure in 
the western U.S. is not reliable. 
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Figure 37. Observed (red) and simulated (blue) dominant 10-m wind directions at the climate 
reference sites for the springtime (MAM). The length of the vectors represents the frequency of 
occurrence. Green colored vectors indicate the simulated (dark green) wind direction mode is 
within +/- 40° of the observed (light green).   
 
 

be mentioned that there is a climatological cold-season high-pressure mode (higher-pressure area 

to the north of the Great Lakes in lower panel of Figure 36), but it is not as persistent as the 

RCM suggests. The wind flow analysis in Figure 37, again, clearly illustrates these pattern 

differences. With the exception of New England, many sites in the eastern United States indicate 

poor wind flow agreement between the climate simulation and the observations. The areas of the 

Northeast and New England are in fair agreement because the simulated and observed mean sea-

level pressure pattern has a gradient of higher to lower pressure from west to east, which induces 

a general northerly wind. These pattern similarities and differences will directly affect the 

temperature and precipitation patterns, which will be discussed in more detail in Section 4.2.2. 
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4.2.1.3 Summer 

Summertime is traditionally a season where air quality concerns are the greatest, espe-

cially with species such as ozone and particulate matter. During the summer, it is generally 

known that wind flow and synoptic patterns have a strong correlation with the regional air 

quality [Hurrell and Trenberth, 1999]. It is therefore imperative that the climate model repre-

sents the range of weather patterns that exist across the United States.  

Figure 38 presents the 10-year mean summertime sea-level pressure pattern of the RCM 

and climate analysis. The most dramatic difference is in the eastern United States. It is well 

known that a persistent sub-tropical high-pressure (Bermuda high) area dominates the summer- 

time climate along the middle and southern Atlantic coast of the United States. The classic 

pattern (lower panel, Figure 38) is clearly seen in the climate reanalysis, but not at all present in 

the RCM mean sea-level pressure field (top panel,Figure 38). In fact, the climate simulation has 

a low-pressure belt that extends from the Gulf to Southeast coast, and northeastward into the 

Atlantic Ocean. One plausible explanation for this dramatic synoptic pattern difference in the 

eastern United States is the fact that the driving global climate model does not force this pattern 

properly on the southeast boundary of the nested model domain. If the sub-tropical Bermuda 

high is not correctly simulated by the global climate model, along the eastern boundary of the 

model domain, the regional climate model cannot replicate this feature because the domain does 

not extend far enough across the Atlantic Ocean to resolve explicitly the entire high-pressure 

system. The observed and simulated mean sea-level pressure patterns shown in Figure 38 

indicate this is the case.  A climate study [Hurrell and Trenberth, 1999] using the same GISS-

GCM found that  
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Figure 38. The 10-year mean sea-level pressure pattern in the summertime (JJA). The top panel 
is from the regional climate model and the bottom panel is from the NCAR Reanalysis II dataset. 
Both datasets are plotted using the same color scale, and simulated sea-level pressure over the 
western U.S. is not reliable.
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 the climate model displaced the Bermuda high well northeast of its climatological position and 

this difference influenced chemical transport simulations, which used the global climate model 

meteorology. The dominant wind flow analysis for summertime is provided in Figure 39. This 

analysis reveals stark differences between the observed and simulated wind field over the entire 

Eastern United States that directly corresponds to the mean sea-level pressure differences. At 

almost every site east of the Mississippi River, the top three dominant wind directions from the 

model simulation are approximately 180° from the observations. The 700 mb wind flow analysis 

in Section 3.2 supports the differences in the sub-tropical high-pressure placement over the 

eastern United States, as does a upcoming comparison of temperature and precipitation. 

  

Figure 39. Observed (red) and simulated (blue) dominant 10-m wind directions at the climate 
reference sites for the summertime (JJA). The length of the vectors represents the frequency of 
occurrence. Green colored vectors indicate the simulated (dark green) wind direction mode is 
within +/- 40 ° of the observed (light green).   
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 On the other hand, west of the Mississippi River and east of the Rocky Mountains, the 

climate simulation is in good agreement with the climate analysis in terms of mean sea-level 

pressure (Figure 38). Although the eastern sub-tropical high-pressure area is not simulated at the 

correct geographic location, the fact that is it over the eastern United States causes a general 

south to east wind over the center of the country. The near-surface dominant wind direction in 

Figure 39, in particular over the central Plains, supports the claim that the RCM is performing 

well in the area.  

Mean sea-level pressure patterns in  Figure 38 suggest that the model captures the domi-

nant synoptic weather patterns along the Pacific Coast of the United States. Both the RCM and 

climate analysis have a similar spatial configuration of high-pressure off the West Coast. In 

support of this, the climate model well represents the near-surface dominant wind direction 

modes over much of the central and southern portions of California and the Desert Southwest, as 

indicated by the numerous green wind vectors in Figure 39. The regional climate model also 

performs well in areas of Oregon, Idaho, Nevada and Utah. 

 

4.2.1.4 Autumn 

A comparison of the 10-year mean RCM and climate analysis sea-level pressure patterns 

is provided in Figure 40. The general sea-level pressure pattern off the west coast of the United 

States is simulated well by the RCM (i.e., relatively low pressure off the Pacific Northwest, 

high-pressure off the California coast and low-pressure over Baja California). The dominant 

wind flow analysis for the autumn (Figure 41) indicates some agreement between the RCM and 

climate, but the results are mixed. More agreement exists (green arrows) across inland portions 
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of California. There is little agreement in the top three dominant wind directions along the entire 

Pacific Coast. The autumn season was not simulated well in this region in terms of 700 mb wind 

(Section 3.2), as the RCM simulated a stronger northerly wind component. This is supported by 

the near-surface wind flow analysis, but it is still uncertain why the sea-level pressure pattern 

along and just off the coast is similar. The answer could lie in local scale effects that the RCM is 

not designed to simulate. 

The RCM 10-year mean sea-level pressure pattern is similar to the climate reanalysis 

over parts of the Southeast, Deep South, Texas and the southern Plains (Figure 40). The pressure 

pattern leads to easterly winds across the Deep South and southerly winds across the lower and 

central Plains states.  Figure 41 indicates that the dominant wind flow regimes from the RCM 

compare well with many of the climate reference sites, as indicated by the green vectors. 

However, a key feature in the climate analysis (Figure 40), the high-pressure area over the Mid-

Atlantic, and the extension of this higher-pressure zone across the Atlantic, is not simulated by 

the RCM as a primary synoptic pattern. Rather, the RCM simulates a high-pressure over the 

Great Lakes region. The wind flow analysis in Figure 41 agrees well with these important 

differences in the mean synoptic flow pattern. There are very few of the climate reference sites 

that are similar to the RCM dominant wind flow in the northeastern quadrant of the United 

States. In fact, many of the sites indicate the dominant wind direction of the RCM is opposite of 

the climate observations, indicated by the lack of green vectors over the Ohio Valley, Mid-

Atlantic, Northeast and Great Lakes. In the upcoming temperature and precipitation analyses, 

these key differences are linked to significant differences in the near-surface temperature and 

precipitation. Additionally, the 700 mb wind flow analysis shows major differences in the upper-



 79

level flow patterns over these regions during the autumn. 

 

 

Figure 40. The 10-year mean sea-level pressure pattern in the fall (SON). The top panel is from 
the regional climate model and the bottom panel is from the NCAR Reanalysis II dataset. Both 
datasets are plotted using the same color scale. Note that the sea-level pressure in the western 
U.S. is not reliable. 
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Figure 41. Observed (red) and simulated (blue) dominant 10-m wind directions at the climate 
reference sites for the fall (SON). The length of the vectors represents the frequency of occur-
rence. Green colored vectors indicate the simulated (dark green) wind direction mode is within 
+/- 40° of the observed (light green).   
 
 
4.2.2 Temperature Evaluation 

Many properties of the temperature time series were generated. However, to first general-

ize regional performance of the climate model, mean annual temperature was calculated for the 

observed and simulated time series at each climate station.  Figure 42 shows the difference or 

bias in the 10-year mean annual temperature (model-observation). Overall, the RCM is colder 

over most of the United States by 1 to 7 K. This is more evident in the western United States 

where typical cold biases are approximately 5 to 7 K. Over the eastern United States, the cold 

bias of the climate simulation is approximately 1 to 2 K. The central United States, including the 

Great Plains and Midwest areas are best simulated in terms of mean annual temperature with a 
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cold bias of 0 to 1.5 K. Alternatively, coastal areas of the United States, especially in the eastern 

United States and Great Lakes are biased warm (1 to 3 K). These annual temperature biases are 

important to the overall analysis, but the seasonal differences that were noted in the synoptic 

pattern analysis indicate that temperature biases likely have a seasonal variation.  

 
 
Figure 42.  Mean 2 m temperature (10-year) difference (K) between the climate model simula- 
tion and observations. 
 

 

Figure 43. The seasonal mean 2-m temperature (K) difference between the regional climate 
simulation and observations (model-observation). 
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4.2.2.1 Winter 

Seasonal biases in the mean 10-year temperatures were calculated to determine if there 

was a bias in simulated seasonal temperature across the United States. Winter biases shown in 

Figure 43 (top left panel), infer that the wintertime cold bias of the climate simulation is much 

more dramatic than the annual bias. Many of the cold bias values are on the order of 3 to 7 K. 

Inland areas of the middle-Atlantic, southeastern and southern United States are biased cold bias 

by 3 to 5 K, which is much greater than the annual mean cold bias of 1 to 2 K. This seasonal 

anomaly indicates the annual cold bias over much of the United States is a result of unrealisti-

cally cold winters simulated by the climate model. These colder simulated temperatures are 

consistent with the sea-level pressure and wind flow analyses that indicates the model frequently 

simulates Arctic high-pressure systems over the central United States.  

Alternatively, areas of the upper sections of the northeastern U.S. and Great Lakes have 

only a slight warm bias, which corresponds to the general better agreement of the wind flow 

patterns of the climate model in this region. Also noted, the wintertime sea-surface temperature 

in Figure 35 suggests that the climate model has much warmer Great Lakes temperatures than 

the observations (~ 5 K warmer). These warmer water temperatures in the climate simulation are 

directly responsible for the approximate 5 K warm bias at the sites directly on the shores of the 

Great Lakes. Areas in the central portion of the United States have a colder bias relative to the 

annual mean, indicating the winter is also the main contributor to the overall cold bias. The 2 K 

to 3 K cold bias exists in north Texas and the southern Great Plains even though the wind flow 

patterns were fairly well simulated. The cold bias over most of the inter-mountain West is 

similar to the annual mean. Coastal areas of the northwestern United States and California as 
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well as valley areas of California have a lower relative cold bias compared to other parts of the 

country, approximately 1 to 2 K. Many of these areas were also better simulated in terms of wind 

flow patterns than other parts of the United States.  Preliminary statistical analysis indicates that 

the reported biases are statistically significant. 

 

4.2.2.2 Summer 

Differences in the mean temperature during the summer portion of the 10-year time series 

are shown in Figure 43 (bottom-left panel). The overall temperatures are much better represented 

in the summer by the RCM, especially in the central, southeast, and Mid-Atlantic sections of the 

United States. Bias in the Southeast and mid-Atlantic regions improve from a 3 to 5 K cold bias 

in the winter to 0 to 1 K warm bias. Many sections of the upper Midwest and central United 

States have a 1 to 2 K warm temperature bias. The northeastern United States has a slight cold 

bias of 0 to 1 K. In the mountainous portions of the western United States, the temperature bias 

remains cold.  

The general temperature bias pattern over the eastern United States correlates well with 

differences in the summer synoptic pattern (Figure 38) that was discussed in the sea-level 

pressure and wind flow analyses. It was shown that the climate model simulates a persistent 

subtropical high-pressure ridge that extends from the Great Lakes to the Ohio River valley, 

which would lead to warmer temperatures than have been observed over the past 10-years. This 

warm bias area in Figure 43 (lower-left panel) that results from the sub-tropical ridge is evident. 

Also consistent with the sub-tropical ridge is cooler than observed temperatures along the 

northeast quadrant of this simulated feature (i.e., Northeast). The climate model, because of the 
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sub-tropical ridge, has persistent cool northerly flow over the Northeast rather than simulating 

frequent warm southwesterly and westerly flow. This is also true (cold bias) along the East Coast 

including Florida where the primary simulated wind directions in the summer are northerly. 

Along the west coast simulated temperature bias reverses from 2 K cold in the winter to 2 

to 3 K warm in the summer. At least a few of the sites have summer wind-flow patterns that 

explain that the warm bias of the climate simulation is a result of the model not simulating the 

sea breeze and its affects (coastal fog). For example, Figure 39 indicates at Los Angeles two of 

the dominant wind flow directions are directly onshore, while the climate simulation has an 

along shore dominant wind. Similar differences exist at the other sites in northern California that 

have a large warm bias. This supports the idea that the major differences are from local scale 

circulations that the climate model cannot replicate. Other interior sections of the intermountain 

West have a large cold bias in the summer (3 to 5 K). Differences in the model grid-point 

elevation and the actual observation site elevation (not shown) are likely the cause for this large 

cold bias. On average, the model grid-point elevations are 200-600 m higher than the observation 

sites, which translates to 2 to 6 K cooler temperatures.  Preliminary statistical analyses indicate 

that, with the exception of areas most likely to be impacts by local effects, e.g., long the east and 

west coasts and the mountainous west, most mean summer season model to observed tempera-

ture differences are not significant. 

 

4.2.2.3 Filtered Temperature Time Series and Variability 

Alternative methods were used to evaluate differences between the simulated and ob-

served temperatures of the past 10 years on different time scales. First, the seasonal component 
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of the temperature time series was partitioned by hour of the year and then the mean and stan-

dard deviation was calculated. The mean was plotted as a function of hour of the year, and the 

standard deviation was used to place bounds around the mean value. This display of the data 

succinctly identifies how well the regional climate model replicates seasonal aspects of the 

temperature distribution. Plots are presented for six of the climate reference sites across the 

country. The second analyses will examine the variability of temperature on the diurnal, synop-

tic, and seasonal time scale. This was achieved by examining the variability (i.e., standard 

deviation) of the temperature on these time scales for both the simulation and observed time 

series. 

Seasonal aspects of the 2-m temperature are illustrated in Figure 44 for six observation 

sites in different sections of the country. The first site (upper left panel) is Boston (MA). The 

mean temperature difference (Figure 43) indicates Boston’s modeled temperatures are biased 

cool when compared to observations. The climate model is about 1 K  cooler on average during 

all seasons except the autumn, where the cold bias is about 5 K. The observed seasonal signal in 

Figure 44 is compared to the climate simulation, and at first glance, the model seems to track the 

observations well, except during the later part of the year (Oct.-Dec.) where the model has a 

clear cold bias. For the first half of the year, the model’s seasonal signal is actually slightly 

warmer than the observations, which is opposite of what the mean temperature comparison 

indicates (Figure 43). This implies the overall cold bias may not be a seasonal effect, but a result 

of differences on another time scale.  The variability, which can be diagnosed by comparing the 

width of the shading about the mean value in Figure 44, is generally similar between the simula-

tion and model. The climate model is most accurate in reproducing the seasonal temperature in 
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July where the interannual mean and variability are about the same. This is true even though the 

flow patterns, examined in other sections of this study, were not simulated well by the climate 

model. The interannual variability from January to March is also well reproduced, which does 

agree with the wind flow analysis, which suggest the climate simulation agreed very well with 

the observations in the winter. In addition, the climate simulation reaches the coldest part of the 

winter earlier (mid-January) than observations suggests.  

The same information for the Raleigh (NC) site is presented in the top right panel of Figure 44. 

The mean temperature (from Figure 42 and Figure 43) is simulated 1.5 K cold overall and 5 K 

cold in the winter, 0.5 K in the spring, no bias in the summer, and -2.5 K in the fall. The sea-

sonal, interannual mean and variability is shown in Figure 44. It is clear from the data that the 

winter and fall cold bias is largely a result of the seasonal temperature component as the model is 

colder over these entire seasons. Temperatures transition colder, more quickly in the climate 

simulations starting in November, and do not recover until April. The variability in winter 

temperature from year to year is greater in the observed time series (red shading). This implies 

that the fewer large-scale pattern changes from winter to winter, which is supported by the wind 

flow and sea-level pressure analysis over the Southeast. During the summer, the climate model is 

actually warmer in the seasonal time series. This is opposite of the mean temperature bias, which 

is close to zero in the summer. This implies that one of the other temporal components is 

offsetting the warm bias in the summer on the seasonal time scale. The interannual variability in 

the spring and summer is very similar between model and observations. 
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Figure 44. Mean (10-year) seasonal temperature perturbation and interannual seasonal variabil-
ity of the regional climate simulation (blue) and observation (red). 
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The middle-left panel in Figure 44 is the same plot for Indianapolis (IN). The mean unfil-

tered temperature bias of the model was 1 K cold overall, 2 K cold in the winter, 0.5 K cold in 

the spring, 1 K warm in the summer and 1.5 K cold in the fall. This mean seasonal bias from the 

unfiltered time series is consistent with the model bias of the seasonal signal, i.e., the climate 

model cools more quickly in the fall and remains cooler through the winter. Again, this winter 

bias is consistent with the difference in winter synoptic patterns that indicates, of the top-three 

dominant wind direction modes in climate simulation (Figure 34), none were southwesterly 

(warmer return flow) and all were northwesterly (cold Canadian flow). Additionally, the warmer 

simulated summers as indicated by the seasonal time series, are in agreement with differences in 

the mean sea-level pressure pattern (Figure 38).  The model has a mean subtropical high-

pressure ridge over Indiana, while the observed sea-level pressure reveals a more active, cooler 

weather pattern.  Interannual variability is similar in the spring, summer and fall, but slightly 

greater in the winter.  

The fourth and fifth locations are Dallas (TX) and Des Moines (IA) (Figure 44, middle-

right panel). Similar to the previous sites and consistent with the mean unfiltered temperature 

bias of the regional climate model; the seasonal component of the full time series at these sites is 

largely responsible for the dramatic cold model bias in the fall and winter and for the warm 

model bias in the late spring and summer. In these cases, unlike many of the other sites, the 

model performed relatively well in terms of wind flow patterns.  This will be explored in a 

subsequent analysis that examines other temperature time scales. 

The final interannual distribution shown in Figure 44 is for Los Angeles (CA) (lower-

right panel). The seasonal temperature component is well simulated by the climate model, which 
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is similar to what the temperature bias of the unfiltered time series indicates (0 K to 0.5 K warm 

biases for all seasons). The interannual mean difference between the simulation and observations 

is consistent with the very good wind flow representation in the spring and summer, and less 

representative flow in the fall and winter. However, the observed interannual variability of the 

seasonal time series is double the climate simulation during the spring and summer, but similar 

in the fall and winter. Furthermore, the model tends to transition from summer to fall about a 

month later than the observations indicate. The results signify that more variations in the weather 

on time scales greater than a few weeks occur from year to year than what was simulated, even 

though the temperatures are generally well represented.  

Temperature variability can also be expressed as the total variability of the time series. If 

the climate model represents the real climate, the variability of the complete time series will be 

similar. To examine this variability in more detail, the variability of the filtered time series 

components, which represent different physical processes that occur in the atmosphere, are 

compared.  

Figure 45 provides the difference between the simulated and observed variability of tem-

perature of the diurnal and synoptic filtered time scales. For these two time scales, the annual 

differences in variability, as well as the variability difference separated by winter and summer 

season are presented. It should be noted that the difference is expressed as the percentage 

difference (model-observation) relative to the variability of the unfiltered time series, so the 

variability of each time scale is normalized by the variability of the unfiltered time series.  

Figure 45 (upper-left panel) indicates the annual variability of the diurnal temperature compo-

nent is over-simulated (approximately 5 to 15%) by the climate model in the Desert Southwest. 
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This would imply that the range of diurnal filtered temperature is greater than the observations 

(on average) in these drier climates. Two processes may be contributing to the difference in the 

diurnal temperature variability. The first is the influence from synoptic weather, which will 

cause increase and decrease the diurnal temperature fluctuation with passing weather systems. 

The other process is related to errors in the model representing the diurnal temperature range 

because land-surface physics (e.g., model cools surface too much at night). In the case of the 

Desert Southwest, the larger model temperature variability is most likely related to model 

physics as the RCM simulated drastically cooler temperature at night, while the daytime high 

temperature were well reproduced. The net result is a larger diurnal temperature range. Alterna-

tively, sites in the Midwest, upper Great Plains and Eastern United indicate the variability of the 

simulated diurnal temperature is 5 to 15% less than the observed. In this case, the major reason 

for the difference in variability is likely the lack of simulated synoptic variability, which will 

tend to lower variation in the diurnal temperature amplitude. This assumption is supported by the 

center-right panel in Figure 45, which indicated the simulated synoptic variability is lower over 

much of the eastern half of the United States. Other parts of the country are simulated fairly well 

in terms of diurnal temperature variability (annual).  
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Figure 45.  The percentage difference of the model and observed temperature 2 m temperature 
variability for different time scales (diurnal and synoptic) and the different seasons. The percent 
difference is scaled by the total variability of the non-filtered time series. 
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When the winter diurnal variability difference is isolated (Figure 45, upper-right panel), it 

is revealed that the simulated diurnal temperature variability is similar over much of the eastern 

United States. The climate model does not have as large a temperature fluctuation as the obser-

vations because of the lack of synoptic weather changes during the winter. At many sites in the 

center of the country, the diurnal variability is well simulated. However, the diurnal variability at 

sites near the west coast of the United States is significantly underestimated. When the synoptic 

variability is consider along with an examination of the time series, the lack of temperature 

variability on the diurnal scale is likely because of errors in local scale forcing, which is consis-

tent with the sea-level pressure and wind flow analysis. 

Differences in the variability of the diurnal time series for the summertime are presented 

in Figure 45 (middle-left panel). The most notable characteristic is the sharp spatial change from 

lower simulated variability in the Southeast (-5% to -20%), to greater simulated variability in 

central-eastern United States (10% to 20%), to lower simulated variability in the north-central 

United States (-10% to -20%). The time series were examine for a number of these sites and the 

extremely low variability of the diurnal temperature at many of the coastal sites is from the 

interpolation of the temperature that considers nearby gridpoints that are over water. The net 

result is a lower diurnal temperature range. Over the center of the country, the greater variability 

of the simulated diurnal temperature is a result of the inaccurate synoptic weather pattern as 

indicated by the sea-level pressure analysis. In this area, the climate model has a false preference 

to anchor a sub-tropical high pressure, which leads to much higher daytime high temperatures, 

thus a larger diurnal temperature range. These continental sub-tropical type high-pressure 

systems are associated with clear skies and drier air. This would tend to cause a large diurnal 
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temperature range in the climate model versus observations. A side effect of this false synoptic 

weather pattern is responsible for the lower diurnal variability in the Midwest and upper Plains. 

The model does not simulate frequent cool Canadian air masses in the summer. The time series 

indicates many periods of cool weather exist in the observations that are not simulated. In the 

western United States, the significant over-simulated diurnal temperature variability is from 

errors in the nighttime low temperatures that are much less than observations. 

The synoptic variability difference for the whole year is presented in the middle-right 

panel of Figure 45.  Differences indicate the simulated temperatures are generally less variable 

on the synoptic time scale (by approx. 5% to 15%), or in other words, the model has fewer 

changes in temperature because large-scale weather systems are more infrequent. Areas in the 

western United States are generally better simulated in terms of synoptic variability. The 

variability difference in the eastern United States is even more dramatic in the winter (Figure 45, 

lower-left panel). The large decrease in synoptic temperature variations over this region concur 

with previous analyses in this report, specifically the idea that the climate model simulates 

frequent, unrealistically cold air masses of the eastern United States. Furthermore, the climate 

simulates a winter storm track that is well south of where climatology suggests. The temperature 

variability on the synoptic time scale is 20% to 25% less over the north-central to northeastern 

United States, and 10% to 15% less over the central to southeastern United States. This directly 

implies that fewer oscillations in temperature, which result from the passage of synoptic systems, 

are simulated over these areas. On the other hand, the synoptic temperature variability is greater 

by 5% to 10% in the climate simulation over areas of the Southwest, south Texas, and Gulf of 

Mexico states, which further supports the idea that the wintertime storm track is simulated too 
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far south.  

During the summer season, the difference in temperature variability on the synoptic time 

scale (Figure 45, lower-right panel) also has a clear spatial pattern. The states surrounding 

Illinois are simulated with much more temperature variability than the observations (approx. 

15%), while areas to the south and east and areas to the north and west are simulated with 

similar, but less synoptic variability. This pattern is similar to the summertime diurnal variability 

(Figure 45, middle-left panel), in which it was suggested that the side effects from differences in 

the synoptic weather patterns was the root cause of the difference in variability. 

Figure 46 provides the similar variability difference, but for the other time scales (intraday, 

seasonal, and interannual) and from the annual time series. The intraday variability differences 

are +/- 5% of the total temperature variability. This component is not nearly as significant to 

climate as the others are since these features are typically more chaotic and not generally well 

simulated by 36 km scale models [Hogrefe et al., 2004a]. On the other hand, the seasonal 

differences in variability clearly show a major problem of the climate simulation. The entire 

southeast quadrant of the United States has a 10-15% greater variability in the seasonal time 

series. This is the main indicator of areas where the simulated winter climate is too cold and 

summer climate is too warm. Areas of the upper Great Plains, Northeast and western United 

States, as well as areas along all coasts have 5% less seasonal temperature variability than what 

observations suggests. The differences in interannual variability or the mean temperature 

changes from year to year are low compared to some of the other time scales, but a distinct 

pattern is noticed across the United States. The climate model has lower (5%) variability in 

interannual temperature north and west of a line from Texas to New York, and virtually no 
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difference in the year-to-year temperature variations to the south and east. This relatively well-

simulate aspect of the climate simulation may have implications on similar comparisons between 

the current climate simulation and future regional climate simulation. 

 

Figure 46. The percentage difference of the model and observed temperature 2-m temperature 
variability for the intraday, seasonal and interannual time scales. The percent difference is scaled 
by the total variability of the non-filtered time series.  
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4.2.3 Precipitation Evaluation 

Precipitation is one of the most examined variables in climate studies. In terms of impact on 

future air-quality simulations, the precipitation will effect the wet deposition and concentrations 

of all pollutants. Precipitation patterns also provide clues as to the ability of the model to 

simulate observed synoptic patterns, since the two are intimately related. The following precipi-

tation evaluation will be related to well-founded results from the examination of the wind flow 

and synoptic weather patterns of the climate model. Two sets of figures are presented; the first is 

the mean annual precipitation (separated by season) that was calculated from the simulated and 

observed 10-year datasets. The second is the interannual variability of the annual precipita-

tion(also, separated by season). The background shading shows the observed precipitation, while 

the simulated precipitation is represented by the overlaid colored circles. The color scales are 

equivalent, so instances where the circles fade into the background shading, the model is the 

same as the observations, and vice-versa.  

Figure 47 (upper left panel) indicates the winter precipitation is well simulated by the re-

gional climate model over the entire western United States. Regional variations are also very 

well simulated. These similar precipitation totals are consistent with the well- simulated sea-

level pressure and wind flow patterns, notwithstanding the poor agreement in certain situations 

that results from local scale effects. The spring, summer, and to a lesser degree, the autumn, are 

similarly well simulated in terms of mean precipitation (Figure 47). The model does produce less 

autumn precipitation than the observations suggest in the Pacific Northwest. In areas of central 

and northern California, the model produces more spring precipitation than the observations. 

This probably relates to differences in the large-scale weather transitions from winter to summer. 
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Figure 47.  Mean seasonal precipitation (cm) calculated from 10-years of data. The background 
shading represents the observed precipitation, and the foreground dots represent the simulated 
precipitation at the climate reference sites. 
 
 

 

Figure 48.  Seasonal precipitation variability (cm) calculated from 10-years of data. The 
background shading represents the observed precipitation variability, and the foreground dots 
represent the simulated precipitation variability at the climate reference sites. 
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Figure 48 presents the interannual variability of precipitation. Over the western United States, 

the model, as with the mean annual precipitation, seems to capture much of the year-to-year 

variability in total precipitation. During the autumn in the Pacific Northwest, the observations 

indicate more variability at a few sites than the observations suggest.  

The eastern United States is not as well simulated in terms of annual precipitation pat-

terns or annual variability. This has a clear connection to the poor wind flow, temperature and 

sea-level pressure evaluation results. During the winter (Figure 47, top-left panel) the climate 

model produces anywhere from 5 cm of precipitation in the central United States to a maximum 

of 20 cm over portions of the southern United States. However, observed precipitation totals 

infer the mean annual precipitation in these areas is 10-15 cm (central U.S.) to 35-45 cm 

(southern U.S.). This is interconnected to colder air masses (Arctic high-pressure system) that 

were simulated over much of the eastern United States, and the simulated southern storm track, 

which suppresses subtropical moisture stream. The model does simulate a similar (approximately 

20 cm) precipitation pattern over the Northeast and Great Lakes, which agrees with the better-

simulated wind flow over this region.  

During the spring (Figure 47, upper-right panel), similar to the winter, the climate model 

drastically under-simulates the amount of precipitation over much of the eastern United States. 

The widespread swath of 35-40 cm observed precipitation totals over a large portion of the 

central United States is about 2-3 times greater than the climate simulation (10-20 cm). Even the 

observed 30 cm area of precipitation along the East Coast is about twice the simulated amount. 

The climate simulation of fall precipitation over the Mississippi Valley (Figure 47, lower-right 

panel), as in the spring, is drastically under-done (by factor of three). 
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The climate model performs much better during the summer (Figure 47, bottom-left 

panel) along the immediate Gulf Coast, Florida, the Southeast and Northeast coasts, where the 

mean annual precipitation is almost identical to the observations. The climate model performs 

reasonably well in areas of the northern Great Plains. However, the summer annual precipitation 

is significantly under-simulated from Texas northeastward to areas of the Great Lakes as well as 

the Midwest. Observations indicate that many areas have summer average precipitation of about 

30 to 35 cm, while the model only simulates 5 to 10 cm. This lack of precipitation is almost 

certainly related to other analyses, like the diurnal temperature variability difference, which has 

the same spatial pattern. Less simulated precipitation in this area causes less cloudiness, which 

increases the daily temperature range relative to observations that indicate more precipitation. As 

mention in the previous section, the air mass type (i.e., subtropical high-pressure) is also related 

since it is characterized by lower moisture and clear skies (allows larger amplitude of daily 

temperatures). These ideas are also supported by the summer sea-level pressure and wind flow 

analysis that revealed much different weather patterns between the model and observations. 

Interannual variability of the observed seasonal mean precipitation in the eastern United 

States is much lower than the Pacific Northwest, generally less than 10 cm for all seasons 

(Figure 48, all panels). The winter simulation has little change in seasonal precipitation from 

year-to-year, which does agree with the observations. However, this agreement is likely, because 

the overall mean simulates winter precipitation is low. The spring comparison (Figure 48, upper-

right panel) may indicate some skill by the climate model in simulating interannual variability, 

especially along the east coast and Appalachian mountain range. Many of the other areas in the 

eastern United States have similar variability between the model and observations. During the 
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summer, the simulation indicates many areas, most along the Gulf of Mexico and East Coast, 

have much larger interannual variability. This may be attributed to tropical activity and generally 

lower pressure zone along the Gulf Coast in the summer when compared to observations. 

 

 

4.3  Point Comparison of Current and Future Regional Climate Simulations 

 

This section presents comparisons of the current and future regional climate simulation 

predictions at select NWS sites on a range of temporal scales.  To consider future predictions of 

climate change particularly relevant to air quality, the primary focus of the comparison is on 

surface temperature, precipitation patterns, and wind speeds.  Analyses presented will primarily 

consider the long-term mean changes in these meteorological parameters to focus on climate scale 

changes in these meteorological conditions.   The longer-term changes are assessed first by 

looking at the average differences between current and future simulations using all ten years of 

model predictions and by looking at these average differences separately for each season (e.g., a 

comparison of the average temperature for all future versus current predictions for the fall 

season).  These long-term averages include higher frequency variability, such as synoptic scale 

changes associated with weather patterns; therefore, we use the KZ filter (see Section 4.1.3 for 

description of method) to then separate the seasonal and base case components of the meteoro-

logical variables.  The base case component represents the long-term, multi-year average compo-

nent of the meteorological variable of interest, while removing higher frequency changes that do 

not affect the long-term average.  This base case component of the temperature is particularly 
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relevant to climate changes that occur over many decades.  If a climate change signal is seen in 

the base case component of temperature and precipitation, for example, this could also suggest 

that we may see changes in background concentrations of ozone or particulate matter in the future 

simulations as well.  However, it is also relevant to consider whether there are changes on higher 

frequencies (e.g., changes in synoptic weather patterns, extreme temperature events) that could 

affect the frequency of air pollution episodes.  Previous studies have found an increase in ozone 

episodes and duration of episodes when modeling current versus future (similar mid-21st century) 

summer conditions, where they also compared out to 2050 [Hogrefe et al., 2004b].  To consider 

the higher frequency changes, an analysis of the seasonal component of temperature and wind 

speed changes is included here.   

The evaluation of the base case regional climate simulation was presented in Section 4.2.  

When key differences between the current and future regional climate simulations are identified, 

it is important consider these changes in light of how well the current regional climate simulation 

compares to observations.  These modeled differences in current versus future climate could have 

an influence on the forthcoming air quality simulations, and the comparison to current meteoro-

logical observations is needed to establish confidence in the model simulations’ ability to capture 

the meteorological processes of note.   

 

4.3.1 Temperature 

When comparing the future 10-year regional climate simulations to the base case 10-year 

simulation, the simplest comparison of temperature differences is first shown in Figure 49 .  For 

the 10-year simulation, the annual mean of the hourly 2 m surface temperature is calculated for 

each NWS site based on all hourly temperature values predicted.  When comparing the future to 
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the base case mean temperatures, a regional structure in the difference is evident.  Temperature 

increases are simulated throughout the continental U.S. domain ranging between 1 and 2.5 K.  

Increases are smallest in the Eastern U.S., and some Midwestern states at about 1 K.  Increases in 

the Midwest and western coastal U.S. are predominantly around 1.5 K.  In the Southwest U.S., 

increases are the highest reaching about 2 K with a few extreme differences reaching 2.5 K. 

When considering how these temperatures change for each season (Figure 50), we see 

some differences from the annual comparison in Figure 49.  In the winter, there is very little 

temperature difference between current and future predictions on the west coast, while tempera-

tures are up to 2.5 K higher in the future at some Midwestern sites.  Opposing that pattern, 

summer shows very little increase in future temperatures at the Midwestern sites, while future 

temperatures reach up to 3 K higher at some west coast and Southwest sites.  Southeastern sites 

appear to show the most consistency across seasons with temperature increases ranging between 1 

and 2 K in the future at most sites.  The autumn comparison in future versus base case tempera-

tures shows the most striking increases, with future temperatures at many Southwestern sites that 

are up to 4 K higher and west coast sites between 2 and 3 K higher than current simulations.  

Preliminary t-tests were performed on these seasonal temperature differences and results suggest 

that the winter and autumn differences were significant across the domain while most of the 

spring and summer differences do not appear significant.  This will be explored further in future 

analyses.  While differences across the seasons are evident, it is notable that in some regions, 

fairly similar temperature changes are estimated for three out of four seasons, such as the upper-

most Northern Midwest sites and Southeastern sites.  This suggests the presence of long-term  
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Figure 49. The difference in annual mean of the hourly temperature (K) for the future versus 
current regional climate simulations.   
 
 

 
 
Figure 50.  Same as Figure 49, except that the mean temperature difference is calculated sepa-
rately for each season. 
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average temperature changes.  To assess this, the baseline temperature component, which repre-

sents the hourly temperature values after higher frequency variability has been removed using the 

KZ filtering technique (Section 4.1.3), is considered.  Since the baseline temperature component 

does not include seasonal, synoptic, or diurnal variability; differences in this average baseline 

component of the temperature are most relevant to the multi-decadal temporal scale of climate 

change. 

The baseline temperature component is shown in Figure 51 and Figure 52 for select NWS 

sites.  Note that as climatological simulations, the timing of the interannual variations should not 

be compared between the current and future simulations.  Rather, we want to determine whether 

the range of temperatures without higher frequency (e.g., synoptic or seasonal) variations is 

significantly different between the current and future years for each site.  Thus, a boxplot format 

was chosen to illustrate the difference in the range of base case temperature for the current and 

future simulations at these sites.  It should be noted, however, that these data are serially corre-

lated and this can reduce the range of the interquartile and outlying points.  Nevertheless, the 

comparison of the interquartiles suggests that the interannual range of base case temperatures is 

not as large as differences between the base case and future temperatures.  We see that at many 

sites, the interannual variability among the 10 years of base case or future simulation is smaller 

than the difference in the base case versus future temperature.  In many cases the overlap between 

base case and future baseline temperature predictions is only in the outer range of the predicted 

base case temperatures.  
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Figure 51. The hourly baseline average component of the 2m temperature (K) for select NWS 
sites from the Eastern and Midwestern U.S., including Atlanta, GA (KATL), Raleigh, NC (RDU), 
Roanoke, VA (KROA), Albany, NY (KALB), Springfield, MO (KSGF), and Greenbay, WI 
(KGRB).  Each plot includes the median (horizontal line), the upper 75th and lower 25th quartiles 
(box), outer fences (75th quartile plus 1.5 times the interquartile range; 25th quartile minus 1.5 
times the interquartile range), and outliers (solid dots outside of the fences).  The baseline 
component represents the long-term moving average mean over the ten year simulation with 
seasonal, synoptic, diurnal, and intra-day variability removed. 
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Figure 52.  The hourly baseline average component of the 2m temperature (K) for select NWS 
sites from the Southwestern and Western U.S., including Dallas-Ft. Worth, TX (KDFW), Al-
burquerque, NM (KABQ), Los Angeles, CA (KLAX), Ukiah, CA (KUKI), Portland, OR 
(KPDX), and Seattle, WA (KSEA).  Each plot includes the median (horizontal line), the upper 
75th and lower 25th quartiles (box), outer fences (75th quartile plus 1.5 times the interquartile 
range; 25th quartile minus 1.5 times the interquartile range), and outliers (solid dots outside of the 
fences).   The baseline component represents the long-term moving average mean over the ten 
year simulation with seasonal, synoptic, diurnal, and intra-day variability removed. 
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This is especially noticeable in the western sites in Figure 52, where the only overlap is often for 

the outlier values only.  Based on these results, it is reasonable to conclude that the temperature 

changes predicted in the regional climate simulations presented here (Figure 49 and Figure 50) 

represent long-term climate forcing changes and can be distinguished from the interannual 

variability in the predictions (Figure 51 and Figure 52).  

In Figure 50, where differences in mean seasonal temperatures are presented, we see some 

noticeable differences across seasons for some U.S. regions.  Most notable are the differences 

among the seasons for the Southwest and West Coast.  The changes are relatively consistent with 

the differences in average temperature that are shown in Figure 49, Figure 51 and Figure 52, but 

seasonal differences may be larger than what can be detected in the comparison of multi-year 

mean values (e.g., a cold winter bias may be compensated by a warm summer bias).  To consider 

additional differences on the seasonal scale, the seasonal components of the surface temperatures 

at the NWS sites were analyzed.  Differences in seasonal variability are important to consider for 

air quality.  Aerosols formed secondarily in the atmosphere, such as sulfate and nitrate aerosols, 

have a very pronounced seasonal variation with sulfate concentrations highest (lowest) in the 

summer (winter) and nitrate concentrations highest (lowest) in the winter (summer).  Also, more 

extreme temperatures in the summer could also affect ozone concentration levels that may be seen 

in the future CMAQ air quality simulations.  We are interested in seeing whether future predic-

tions suggest any substantial changes or shifts in the seasonal variability in temperature or 

whether we see any major differences in the interannual variability in the seasonal temperature 

structure. 

The seasonal component of the temperature values for many sites in the Eastern and Mid-

western U.S. show no notable differences in temperatures across the seasons (not shown).  An 
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increase in hourly temperatures exceeding 311 K (100ºF) is noted at some Eastern, Southwest-

ern, and west coast sites (Figure 53), suggesting that synoptic scale extreme temperature events 

do contribute to the mean average temperature increases seen in these areas during the summer.  

We anticipate that summer temperature differences could have the most impact on ozone. 

Previous research has shown strong correlations with daily maximum temperatures and wind 

speeds [Wise and Comrie, (in press)].  Comparing Figure 53 to the summer difference in mean 

summer season temperatures in Figure 50, some similarities are evident.  A decreased number of 

temperature exceedances are found in the upper Midwest in the future, where the average tem-

peratures show little or no change from the current simulation.  There is also a decrease in the 

mean length of extreme heat episodes in the same area (Figure 54).  An increased number of 

temperatures above 100ºF are found in the Southwest and west coast in the future simulation 

where Figure 53 also shows average temperature increases in the future up to 3 K.  The Southwest 

also shows an increase in the mean length of extreme heat episodes as well (Figure 54).  Areas in 

the Eastern U.S that show a more modest increase in future temperatures between 1 and 2 K show 

little or no increase in temperatures above 100ºF or in mean length of heat episodes. 

Where we see an increase in these short-term temperature extremes at many western sites 

along the California coast, Oregon, and Washington in Figure 53, we also see increased seasonal 

temperatures in the future.  Several examples are shown here.  In Ukiah, CA (Figure 55), the 

summer component of future temperature shows increases up to about 2.5 K in addition to 

differences in the base case temperature values in Figure 52.  Other sites along the west coast, 

such as Portland, OR (Figure 56), also show increases in the summer temperatures that are 

slightly larger than one standard deviation of the current seasonal temperature values during some 

periods.  
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Similar types of comparisons are evident at many other sites along the west coast such as Seattle, 

WA and Reno, NV (not shown).  For many of these sites, the observed seasonal temperatures 

show a similar range of difference to the current model simulations (see section 4.2.1) suggesting 

that the differences are within the range of uncertainty for the model predictions. 

In Figure 50, the temperature increases in the fall are very noticeable in the Southwest 

U.S.  The seasonal component of the temperature predictions does not show increased seasonal 

temperatures at some sites in the area, such as Reno, NV (not shown).  Higher-frequency synoptic 

changes in temperature may be contributing to these large temperature increases. 

 

 
Figure 53.  Difference in future versus current number of hourly-modeled temperature values 
above 100ºF (311 K). 
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Figure 54. The mean length (days) of heat episodes: Future – Current Scenarios.  The numbers on 
above (below) each marker represent the mean number of days in a heat wave episode in the 
future (current) scenario.  Heat episodes are defined as the number of consecutive days with at 
least one simulated hourly temperature greater than   90ºF (305 K). 

 

 

 
Figure 55. The seasonal component of the current and future modeled temperatures at the NWS 
site in Ukiah, CA.  (a) shows the seasonal temperature component for each year separately to 
assess interannual variability, and (b) shows the average seasonal temperature component for all 
ten years and the ±1 σ standard deviation around that mean for all ten years of current and future 
simulations. 
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Figure 56.  The seasonal component of the current and future modeled temperatures at the NWS 
site in Portland, OR.  (a) shows the seasonal temperature component for each year separately to 
assess interannual variability, and (b) shows the average seasonal temperature component for all 
ten years and the ±1 σ standard deviation around that mean for all ten years of current and future 
simulations. 
 

 

4.3.2.  Wind patterns 

A comparison of the current and future global climate simulations that are used as bound-

ary conditions to these RCM simulations is presented elsewhere [Mickley et al., 2004].  Their 

results suggested an increase in stagnation events in the Eastern U.S. in the future simulation 

based on global scale modeling.  Another preliminary comparison of the current and future RCM 

simulations [Leung and Gustafson, 2005] includes a comparison of stagnation days and unvented 

hours to consider stagnation event changes.  Their comparisons show a significant increase in 

stagnation days in the future simulation in the Southwestern U.S. during summer and autumn 

seasons.  A decrease in the number of stagnation days was evident in the Southeastern U.S. 

during summer.  Results do suggest that the forthcoming air quality simulations may see some 

impacts from the predicted changes in stagnation; however, until the air quality simulations are 

completed, the degree of impact from these changes is unknown. 
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To consider the impact of surface wind direction and flow patterns on the surface tempera-

ture changes shown in the previous section, dominant wind direction comparisons and sea-level 

pressure patterns are shown in Figure 57 and Figure 58 for the current and future simulations for 

winter and summer. 

In the winter, differences in the future and base case dominate wind direction patterns di-

rectly relate to differences in the dominant mean sea-level pressure patterns.  Figure 57 indicates 

that the main difference in the dominant wind flow patterns is over the central portion of the 

United States, specifically Nebraska, Oklahoma, north Texas and Arkansas.  The flow vectors are 

similar in direction (generally northerly and southerly winds), but the order of dominance of 

particular modes (vector length) is different at most of the sites.  This is a signal that the mean 

sea-level pressure patterns are generally similar, but the dominance of particular patterns that 

constitute the mean are reversed.  This finding agrees well with results presented in Chapter 3.  

Figure 58 provides the mean sea-level pressure of both the current and future simulations for the 

same period as the wind flow. The sea-level pressure patterns indicate that the current simulation 

has stronger high-pressure axis from the northern Plains into Arkansas.  A stronger high in the 

mean sea-level pressure pattern can indicate the winter high-pressure (Arctic High) is either 

stronger on average in the current simulation, or that the Arctic High is more persistent/frequent 

over the center of the country. The latter is likely the main reason, as a more persistent Arctic 

High will induce differences in the dominant wind directions near the surface.  Evidence of this is 

also present in the mean winter temperature difference between the base case and future scenar-

ios, which indicate that the future simulation has 1-2 K warmer temperatures during the  
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Figure 57.  Current and future RCM predicted dominant 10-m wind directions at the climate 
reference sites for the winter and summer. The length of the vectors represents the frequency of 
occurrence. Green colored vectors indicate the future (dark green) wind direction is within 40° of 
the current (light green).  If the wind directions are not within 40° of each other, the wind vectors 
follow a different color patter of blue (current) and future (red).  

Winter 

Summer 
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Figure 58.  Current (top) and future (bottom) MM5-RCM mean sea-level pressure patterns for 
the winter (left) and summer (right). 
 
 
 

winter over the center of the United States (Figure 50) consistent will a less frequent Arctic high.   

Weaker overall wind speeds in the future simulation over this region also point to few Arctic 

high-pressure systems propagating from Canada, which are typically accompanied by strong 

winds.  Few differences exist in the dominant wind modes during the winter over the western 

U.S.  The sea-level pressure patterns support this as they are about the same.  Temperature 

differences in the winter are consistently small over the western United States. 

In the summer, Figure 57 indicates few overall differences in the wind flow patterns rela-

tive to the wintertime.  As with the winter wind directions, more differences exist over the Great 

Lakes region.  Most other differences are a result of slight differences in the rank of the wind 

direction modes.  The mean sea level pressure patterns in Figure 58 for the summer indicate there 
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is very little difference in the overall summer patterns.  A slight difference in the high-pressure 

placement near the Great Lakes exists.  In the future simulation the high-pressure axis is over 

Wisconsin rather than Michigan, which is likely linked to the differences in the dominant summer 

wind modes over this area. Sites in Wisconsin and Michigan have more northerly (future, red) 

than westerly (current, blue) winds, which is consistent with more westward placement of the 

summer high-pressure.  Mean temperatures over the Great Lakes are similar between the two, so 

no clear reaction of temperature to small changes in this high-pressure placement is seen.  

Differences in the dominant wind direction mode exist over the Pacific Northwest, but the 

difference is in the rank of the modes. Sea-level pressure patterns are similar over the entire 

western United States, yet temperatures in the western United States are much warmer in the 

future simulation compared to the current.  Warmer sea temperature could influence the coastal 

region, but not inland.  Summer rainfall is about the same over most of this area where the 

temperatures are much warmer.  The temperature difference may be a long-term warming trend 

related to radiative changes that are not reflected in these other weather parameters. 

 

4.3.3  Precipitation 

In Figure 59, the average precipitation for the current and future 10 years of simulation is 

presented along with the difference between the base case and future predictions.  Differences 

show only small changes in average precipitation across most of the United States.  An average 

increase between 10 and 20 cm is evident in the model predictions for the Southeast. This is an 

increase of approximately 20-30%.  Some larger increases of about 50% are also seen at a few 

Southeastern coastal sites such as Wilmington, NC.  Differences seen on the western coast are 

less than a 10% since the precipitation totals are much higher in that region.  Differences in total 
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precipitation amounts are particularly relevant to atmospheric deposition issues such as nutrient 

deposition to coastal bay areas.  Increased (decreased) precipitation in the future predictions could 

also lead to decreases (increases) in summertime pollution events.  Figure 60 shows similar 

average precipitation plots and the different between the future and base case simulations for 

summer seasons only.  Many of the differences in Figure 59 range between ±10 cm.  These are 

relatively small changes in precipitation volume as compared to some seasons; however, the 

change represents an approximate 50% increase in precipitation amounts because total volumes 

are low.  This could suggest that there will be an increase in predicted removal and deposition of 

air pollutants, but the relative impact on air pollution events will depend on the frequency and 

duration of the precipitation events. 
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Figure 59.   Average rainfall (cm) for the future and current scenarios and the different between 
Future-Current Scenario. 
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Figure 60.  The summer average rainfall (cm) for the future and base case scenarios and the 
different between Future-Base Case scenario. 
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5.0 Summary 
 
 
 Two decades of hourly base case and future regional climate model scenarios have been 

analyzed with regard to 1) their temporal and spatial characterization of climate processes relative 

to present-day observations and 2) their description of projected climate changes in preparation 

for air quality simulations that are currently under development.  Detailed discussions of current 

base case and future surface pressure, wind, temperature and precipitation and steering level wind 

scenarios have been provided in Sections 3 and 4 of this report.  Key findings are summarized 

below.  Some of these findings suggest clear opportunities for meaningful air quality assessment 

applications.  Other findings suggest geographic regions or time periods for which interpretation 

of air quality model projections based on these scenarios should be approached with caution. 

  

 

5.1  Base Case Climate Simulation 

• The GISS/RCM performs well relative to observed climate for some seasons and geo-

graphic regions of the United States.  On the whole, spring season comparisons show the 

best surface and steering level climate agreement for the U.S.  Winter season dominant 

near-surface wind flow regimes, temperature and precipitation are also simulated well 

over the Southern Great Plains.  Areas in the northeastern United States and New England 

are also reasonably well represented by the climate model during the winter.  

 

 

• The general representation of the summer climate over the eastern one-half of the United 
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States is poor, including the Northeast, Mid-Atlantic, Southeast, Deep South, Ohio Valley, 

Mississippi Valley and much of the Midwest.  There are major differences in the mean 

sea-level pressure, surface and steering level wind flow patterns, weaker and more vari-

able steering level wind speeds, a noticeable warm (but rarely significant) bias in tempera-

ture, more variability/amplitude in the diurnal temperature signal, and significantly drier 

summer climate in terms of rainfall.  The source of these large-scale summer differences 

appears to be poor climate model simulation of the location of warm Gulf Stream water, 

resulting in poor characterization of anti-cyclonic circulation (Bermuda High) over the 

Southern U.S.  The significance of these differences for pollutant concentrations and 

transport are yet to be determined pending completion of the air quality model simula-

tions.   

 

• With the exception of the Northeast and New England, the simulated current climate over 

the Eastern United States during the wintertime is poor.  The evidence suggests that the 

simulated climate has a suppressed polar Jet Stream, which frequently allows unusually 

cold air masses to anchor over most of the Eastern United States. This also holds the ac-

tive storm track much further south and east of its climatological position, preventing win-

ter storms from reaching into the central United States and East Coast.  Sea-level pressure 

and wind flow patterns indicate that the GISS/RCM does not reproduce the observed 

southerly wind component frequency over the southeastern quadrant of the United States.   

The GISS/RCM temperatures exhibit a statistically significant 3-5 K cold bias in these ar-

eas and precipitation that is 50% or less than the observed climate.   
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• Comparisons for the western one-half of the United States show mixed results during all 

seasons. Mean sea-level pressure patterns in both winter and summer were similar along 

and off the West Coast, but significant steering level differences were noted.  In particular,     

winter season steering level features suggest differences that could influence the fre-

quency and direction of on-shore transport of globally transported pollutants into the con-

tinental U.S. as well as the geographic distribution of winter monsoon rainfall.    Winter 

season air quality scenario results for the West Coast of the U.S. should be interpreted 

with caution until these meteorological differences can be more thoroughly investigated. 

 

• There is substantial uncertainty in estimates of the frequency with which dominant steer-

ing level transport patterns occur during summer, autumn and winter seasons in both the 

reanalysis and base case GISS/RCM datasets.   Given the relatively high level of visual 

similarity noted previously, the most likely source of this uncertainty lies in the temporal 

correlation structure of the datasets, i.e., pattern persistence and transitions from one 

dominant pattern to another.  Caution should be exercised when considering statements 

regarding the significance of transport frequency differences until the underlying driver 

for these differences is better understood.  

 

5.2  Future Climate Conditions 

• Initial results show that indeed a temperature increase is evident during many seasons in 

the regional climate simulations.  Preliminary statistical analysis indicates significant 

summertime temperatures changes along the West Coast, the Gulf of Mexico, Southeast-

ern Atlantic Coast and Southern Texas only, with some increases in the frequency and 
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maximum temperatures of extreme temperature events.  Winter and autumn season tem-

perature changes appear to be significant throughout the continental domain.  Mean spring 

season base case temperatures are generally not statistically different than future scenario 

means.  

 

• Precipitation changes in the model predictions suggest that increased precipitation in the 

Eastern U.S. that may lead to an increase in atmospheric wet deposition of pollutants dur-

ing the summer season, but the overall impact on air quality episodes is to be determined 

based on the air quality model simulations. 

 

• Dominant steering level transport patterns suggest little visual change from base case to 

future time periods, but there may be noticeable changes in the frequency and/or persis-

tence of the base case patterns that could significantly impact future air quality conditions. 
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Appendix A.  List of National Weather Service (NWS) sites used in climate analysis 

 
Site ID Latitude Longitude City State 

CYTR 44.12 -77.53 Trenton, Ont. 
CYUL 45.47 -73.75 Montreal / Dorval International, Que 
KABI 32.42 -99.68 Abilene, Abilene Regional Airport TX 
KABQ 35.05 -106.62 Albuquerque, Albuquerque International Airport NM 
KABR 45.45 -98.43 Aberdeen, Aberdeen Regional Airport SD 
KACV 40.98 -124.1 Arcata / Eureka, Arcata Airport CA 
KAEX 31.33 -92.55 Alexandria, Alexandria International Airport LA 
KAKO 40.17 -103.22 Akron, Akron-Washington County Airport CO 
KALB 42.75 -73.8 Albany, Albany County Airport NY 
KALO 42.55 -92.4 Waterloo, Waterloo Municipal Airport IA 
KALS 37.45 -105.87 Alamosa, San Luis Valley Regional Airport CO 
KAMA 35.23 -101.7 Amarillo, Amarillo International Airport TX 
KAMG 31.53 -82.5 Alma, Bacon County Airport GA 
KAPN 45.07 -83.57 Alpena, Alpena County Regional Airport MI 
KAQR 34.4 -96.15 Atoka, Atoka Municipal Airport FL 
KARA 30.03 -91.88 New Iberia, Acadiana Regional Airport LA 

KARG 36.13 -90.92 
Walnut Ridge Automatic Weather Observing / 
Reporting System AR 

KASE 39.22 -106.87 Aspen, Aspen-Pitkin County Airport CO 
KAST 46.15 -123.88 Astoria, Astoria Regional Airport OR 
KATL 33.65 -84.42 Atlanta, Hartsfield Atlanta International Airport GA 
KAVL 35.43 -82.54 Asheville, Asheville Regional Airport NC 
KAXN 45.87 -95.4 Alexandria, Chandler Field MN 
KBFL 35.43 -119.05 Bakersfield, Meadows Field Airport CA 
KBGM 42.22 -75.98 Binghamton, Binghamton Regional Airport NY 
KBGR 44.8 -68.83 Bangor, Bangor International Airport ME 
KBIH 37.37 -118.37 Bishop, Bishop Airport CA 
KBIL 45.8 -108.53 Billings, Billings Logan International Airport MT 
KBJI 47.5 -94.93 Bemidji MN 
KBLH 33.62 -114.72 Blythe, Blythe Airport CA 
KBLI 48.8 -122.53 Bellingham, Bellingham International Airport WA 
KBNA 36.13 -86.68 Nashville, Nashville International Airport TN 
KBNO 43.58 -118.95 Burns, Burns Municipal Airport OR 
KBOI 43.57 -116.22 Boise, Boise Air Terminal ID 
KBOS 42.37 -71.02 Boston, Logan International Airport MA 
KBTM 45.95 -112.5 Butte, Bert Mooney Airport MT 
KBUF 42.93 -78.73 Buffalo, Greater Buffalo International Airport NY 
KCAE 33.95 -81.12 Columbia, Columbia Metropolitan Airport SC 
KCAO 36.45 -103.15 Clayton, Clayton Municipal Airpark NM 
KCAR 46.87 -68.02 Caribou, Caribou Municipal Airport ME 
KCDC 37.7 -113.1 Cedar City, Cedar City Municipal Airport UT 
KCDS 34.43 -100.28 Childress, Childress Municipal Airport TX 
KCHA 35.03 -85.2 Chattanooga, Lovell Field TN 
KCHS 32.9 -80.03 Charleston, Charleston Air Force Base SC 
KCLE 41.42 -81.85 Cleveland, Cleveland-Hopkins International Airport OH 
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Site ID Latitude Longitude City State 

KCMH 40 -82.88 Columbus, Port Columbus International Airport OH 
KCNU 37.67 -95.48 Chanute, Chanute Martin Johnson Airport KS 
KCOU 38.82 -92.22 Columbia, Columbia Regional Airport MO 
KCPR 42.9 -106.47 Casper, Natrona County International Airport WY 
KCRP 27.77 -97.5 Corpus Christi, Corpus Christi International Airport TX 

KCVG 39.05 -84.67 
Covington / Cincinnati, Cincinnati / Northern 
Kentucky International Airport KY 

KCWA 44.78 -89.67 Mosinee / Central Wisconsin WI 
KDAG 34.85 -116.78 Daggett, Barstow-Daggett Airport CA 
KDDC 37.77 -99.97 Dodge City, Dodge City Regional Airport KS 
KDEC 39.83 -88.87 Decatur, Decatur Airport IL 
KDEN 39.87 -104.67 Denver, Denver International Airport CO 

KDFW 32.9 -97.03 
Dallas / Fort Worth, Dallas / Fort Worth Interna-
tional Airport TX 

KDIK 46.8 -102.8 Dickinson, Dickinson Municipal Airport ND 
KDLH 46.85 -92.18 Duluth, Duluth International Airport MN 
KDRO 37.15 -107.75 Durango, Durango-La Plata County Airport CO 
KDRT 29.37 -100.92 Del Rio, Del Rio International Airport TX 
KDSM 41.53 -93.65 Des Moines, Des Moines International Airport IA 
KDTW 42.23 -83.33 Detroit, Detroit Metropolitan Wayne County Airport MI 

KDUG 31.47 -109.6 
Douglas Bisbee, Bisbee Douglas International 
Airport AZ 

KDVL 48.12 -98.92 
Devils Lake Automatic Weather Observing / 
Reporting System ND 

KDVN 41.62 -90.58 Davenport, Davenport Municipal Airport IA 
KEAU 44.87 -91.48 Eau Claire, Chippewa Valley Regional Airport WI 
KEED 34.77 -114.62 Needles, Needles Airport CA 
KEET 33.18 -86.78 Alabaster, Shelby County Airport AL 

KEKN 38.88 -79.85 
Elkins, Elkins-Randolph County-Jennings Randolph 
Field WV 

KELP 31.8 -106.4 El Paso, El Paso International Airport TX 
KENV 40.73 -114.03 Wendover / Air Force Auxillary Field UT 
KEPH 47.3 -119.52 Ephrata, Ephrata Municipal Airport WA 
KERI 42.08 -80.18 Erie, Erie International Airport PA 
KESC 45.75 -87.03 Escanaba MI 
KEUG 44.12 -123.22 Eugene, Mahlon Sweet Field OR 
KEVV 38.05 -87.53 Evansville, Evansville Regional Airport IN 
KFAR 46.9 -96.8 Fargo, Hector International Airport ND 
KFAT 36.77 -119.72 Fresno, Fresno Air Terminal CA 
KFLG 35.13 -111.67 Flagstaff, Flagstaff Pulliam Airport AZ 
KFLO 34.18 -79.72 Florence, Florence Regional Airport SC 

KFLP 36.3 -92.47 
Flippin Automatic Weather Observing / Reporting 
System AR 

KFSD 43.58 -96.75 Sioux Falls, Foss Field SD 
KFSM 35.33 -94.37 Fort Smith, Fort Smith Regional Airport AR 
KFST 30.91 -102.91 Fort Stockton, Fort Stockton-Pecos County Airport TX 
KFVX 37.35 -78.43 Farmville VA 
KFWA 41 -85.2 Fort Wayne, Fort Wayne International Airport IN 
KGAG 36.3 -99.77 Gage, Gage Airport OK 
KGDP 31.83 -104.8 Pine Springs, Guadalupe Mountains National Park TX 
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Site ID Latitude Longitude City State 

KGEG 47.63 -117.53 Spokane, Spokane International Airport WA 
KGGW 48.22 -106.62 Glasgow, Glasgow International Airport MT 
KGLD 39.37 -101.7 Goodland, Renner Field KS 
KGLH 33.48 -90.98 Greenville, Mid Delta Regional Airport MS 
KGRB 44.48 -88.13 Green Bay, Austin Straubel International Airport WI 
KGRI 40.97 -98.32 Grand Island, Central Nebraska Regional Airport NE 
KGRR 42.88 -85.52 Grand Rapids, Gerald R. Ford International Airport MI 
KGSP 34.88 -82.22 Greer, Greenville-Spartanburg Airport SC 
KGZH 31.42 -87.03 Evergreen, Middleton Field AL 
KHCO 48.76 -96.93 Hallock, Hallock Municipal Airport MN 
KHLC 39.38 -99.83 Hill City, Hill City Municipal Airport KS 
KHOB 32.68 -103.22 Hobbs / Lea County NM 
KHSV 34.65 -86.77 Huntsville, Huntsville International / Jones Field AL 
KHTS 38.37 -82.55 Huntington, Tri-State Airport WV 

KIAD 38.95 -77.45 
Washington DC, Washington-Dulles International 
Airport VA 

KIAH 29.97 -95.35 Houston, Houston Intercontinental Airport TX 
KICT 37.65 -97.43 Wichita, Wichita Mid-Continent Airport KS 
KIGM 35.27 -113.95 Kingman, Kingman Airport AZ 
KILM 34.27 -77.9 Wilmington, Wilmington International Airport NC 
KIND 39.73 -86.27 Indianapolis, Indianapolis International Airport IN 
KINL 48.57 -93.38 International Falls, Falls International Airport MN 
KIPL 32.83 -115.58 Imperial, Imperial County Airport CA 

KIWD 46.53 -90.13 
Ironwood Automatic Weather Observing / 
Reporting System MI 

KJAN 32.32 -90.08 Jackson, Jackson International Airport MS 
KJAX 30.5 -81.7 Jacksonville, Jacksonville International Airport FL 
KJFK 40.65 -73.78 New York, Kennedy International Airport NY 
KLAA 38.07 -102.68 Lamar, Lamar Municipal Airport CO 
KLAR 41.32 -105.67 Laramie, Laramie Regional Airport WY 
KLAS 36.08 -115.17 Las Vegas, McCarran International Airport NV 
KLAX 33.93 -118.4 Los Angeles, Los Angeles International Airport CA 
KLBF 41.13 -100.68 North Platte, North Platte Regional Airport NE 
KLEW 44.05 -70.28 Auburn-Lewiston ME 
KLFK 31.23 -94.75 Lufkin, Angelina County Airport TX 
KLIT 34.73 -92.23 Little Rock, Adams Field AR 

KLKV 42.17 -120.4 
Lakeview Automatic Weather Observing / 
Reporting System OR 

KLOZ 37.08 -84.08 London, London-Corbin Airport-Magee Field KY 
KLRD 27.55 -99.47 Laredo International Airport TX 
KLVS 35.65 -105.15 Las Vegas, Las Vegas Municipal Airport NM 
KMAF 31.95 -102.22 Midland, Midland International Airport TX 
KMCF 27.85 -82.52 Macdill Air Force Base, Fl. FL 
KMCI 39.32 -94.72 Kansas City, Kansas City International Airport MO 
KMCO 28.43 -81.32 Orlando, Orlando International Airport FL 
KMFR 42.37 -122.87 Medford, Rogue Valley International Airport OR 
KMHK 39.13 -96.67 Manhattan, Manhattan Municipal Airport KS 
KMIA 25.82 -80.28 Miami, Miami International Airport FL 
KMLP 47.45 -115.68 Mullan Pass, Mullan Pass Vor ID 
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Site ID Latitude Longitude City State 

KMOB 30.68 -88.25 Mobile, Mobile Regional Airport AL 
KMOD 37.63 -120.95 Modesto, Modesto City-County-Sham Field CA 
KMPV 44.2 -72.57 Barre / Montpelier, Knapp State Airport VT 
KMRF 30.37 -104.02 Marfa TX 
KMSN 43.13 -89.35 Madison, Dane County Regional-Truax Field WI 
KMSO 46.92 -114.08 Missoula, Missoula International Airport MT 

KMSP 44.88 -93.22 
Minneapolis, Minneapolis-St. Paul International 
Airport MN 

KMSY 29.98 -90.25 New Orleans, New Orleans International Airport LA 
KMYV 39.1 -121.57 Marysville, Yuba County Airport CA 
KOKC 35.4 -97.6 Oklahoma City, Will Rogers World Airport OK 
KOMA 41.3 -95.9 Omaha, Eppley Airfield NE 
KORF 36.9 -76.2 Norfolk, Norfolk International Airport VA 
KPAH 37.07 -88.77 Paducah, Barkley Regional Airport KY 

KPDT 45.68 -118.85 
Pendleton, Eastern Oregon Regional At Pendleton 
Airport OR 

KPDX 45.6 -122.6 Portland, Portland International Airport OR 
KPGA 36.93 -111.45 Page, Page Municipal Airport AZ 
KPHL 39.87 -75.25 Philadelphia, Philadelphia International Airport PA 
KPHX 33.43 -112.02 Phoenix, Phoenix Sky Harbor International Airport AZ 
KPIH 42.92 -112.57 Pocatello, Pocatello Regional Airport ID 
KPIT 40.5 -80.22 Pittsburgh, Pittsburgh International Airport PA 
KPOF 36.77 -90.32 Poplar Bluff, Poplar Bluff Municipal Airport MO 
KPRB 35.67 -120.63 Paso Robles, Paso Robles Municipal Airport CA 
KPSX 28.73 -96.25 Palacios, Palacios Municipal Airport TX 
KPUB 38.28 -104.52 Pueblo, Pueblo Memorial Airport CO 
KRDD 40.5 -122.3 Redding, Redding Municipal Airport CA 
KRDM 44.25 -121.15 Redmond, Roberts Field Airport OR 

KRDU 35.88 -78.79 
Raleigh / Durham, Raleigh-Durham International 
Airport NC 

KRNO 39.5 -119.78 Reno, Reno Tahoe International Airport NV 
KROA 37.32 -79.97 Roanoke, Roanoke Regional Airport VA 
KROW 33.3 -104.53 Roswell, Roswell Industrial Air Center Airport NM 

KSAN 32.73 -117.17 
San Diego, San Diego International-Lindbergh 
Field CA 

KSAT 29.53 -98.47 San Antonio, San Antonio International Airport TX 
KSAV 32.12 -81.2 Savannah, Savannah International Airport GA 
KSEA 47.45 -122.3 Seattle, Seattle-Tacoma International Airport WA 
KSEP 32.22 -98.18 Stephenville, Clark Field Municipal Airport TX 
KSFO 37.62 -122.38 San Francisco, San Francisco International Airport CA 
KSGF 37.23 -93.38 Springfield, Springfield Regional Airport MO 
KSHR 44.77 -106.97 Sheridan, Sheridan County Airport WY 
KSHV 32.47 -93.82 Shreveport, Shreveport Regional Airport LA 
KSJN 34.52 -109.38 St. Johns, St. Johns Industrial Airpark AZ 
KSLC 40.78 -111.97 Salt Lake City, Salt Lake City International Airport UT 
KSPS 33.98 -98.5 Wichita Falls, Sheppard Air Force Base TX 
KSPW 43.17 -95.19 Spencer, Spencer Municipal Airport IA 
KSTL 38.75 -90.37 St. Louis, Lambert-St. Louis International Airport MO 

KTCS 33.23 -107.27 
Truth Or Consequences, Truth Or Consequences 
Municipal Airport NM 
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Site ID Latitude Longitude City State 

KTLH 30.4 -84.35 Tallahassee, Tallahassee Regional Airport FL 
KTPH 38.05 -117.08 Tonopah, Tonopah Airport NV 
KTRM 33.63 -116.17 Thermal, Desert Resorts Thermal Regional Airport CA 
KTUL 36.2 -95.9 Tulsa, Tulsa International Airport OK 
KTUS 32.12 -110.93 Tucson, Tucson International Airport AZ 
KTVC 44.73 -85.58 Traverse City, Cherry Capital Airport MI 
KTYR 32.35 -95.4 Tyler, Tyler Pounds Field TX 
KTYS 35.82 -83.98 Knoxville, McGhee Tyson Airport TN 
KUIL 47.95 -124.55 Quillayute, Quillayute State Airport WA 
KUKI 39.13 -123.2 Ukiah, Ukiah Municipal Airport CA 
KUNV 40.85 -77.85 State College, University Park Airport PA 
KVEL 40.43 -109.52 Vernal, Vernal Airport UT 
KVTN 42.87 -100.55 Valentine, Miller Field NE 
KWMC 40.9 -117.8 Winnemucca, Winnemucca Municipal Airport NV 
KYUM 32.65 -114.6 Yuma / Yuma International AZ 
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APPENDIX B.  Data Management and Quality Assurance 
 
 

This Appendix documents the quality control measures that were implemented for CIRAQ 

Phase I, generation of "CMAQ ready” meteorological inputs. Additionally, quality assurance 

issues that arose during data processing are highlighted, as well as the specific steps of the data 

management process. This section begins by providing a brief overview of the meteorological 

data. Next, a complete description of the data processing process, from receiving the raw mete-

orological model output to the generation of air quality “model-ready” input, is provided,. This 

Appendix closes with a description of the quality control process and a graphical summary of the 

quality control log.   The CIRAQ Quality Assurance Project Plan (QAPP), approved 12/04 follow 

these discussions. 

 

 

B.1  Meteorological Data Processing 

 

The MM5 based RCM (MM5-RCM) downscaling process described in Chapter 2 pro-

duces hourly meteorological output.  This fact, when combined with the continental coverage at a 

grid spacing of 36 km (versus ~275 km in the GISS model), results in a relatively large volume of 

raw model output (~3 terabytes). A number of steps are required to procure the model output from 

the DOE Pacific Northwester National Laboratory (PNNL) and to generate Communitity Multis-

cale Air Quality (CMAQ) ready meteorological fields. This exposes the data to potential for file 

corruption that could result in inaccurate data inputs to subsequent models and analyzes.  Hence, 

it is necessary to document both the data processing/quality control procedure and to highlight 
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any significant issues that occurred.  This summary meets the data quality documentation and 

reporting requirements described in the Quality Assurance Project Plan for the Climate Impacts 

on Regional Air Quality (CIRAQ) Project approved 12/14/04. 

MM5-RCM model output is transferred from PNNL to the EPA facility at Research Tri-

angle Park (RTP), North Carolina by way of 300-gigabyte portable hard drives. This was the only 

practical method of data delivery because of the amount of data, computer security restraints, and 

bandwidth constraints. Each drive holds approximately 2 years of MM5-RCM output. Over the 

period from late 2003 to early 2005, all 20 years of model output was incrementally received by 

the U.S. EPA. As model output was received, it was loaded onto a temporary drive on the 

NOAA/EPA High Performance Computing Cluster (HPCC) network. After initial data process-

ing, the raw model output was transferred to the National Environmental Scientific Computing 

Center’s (NESC) tape archival system for long-term storage [National Envrionmental Scientific 

Computing Center, 2004]. 

The data processing step is controlled by a semi-automated data management script, 

which is a multi-stage and multi-function procedure that was performed on the model output in 

yearly batches. The main function of the data management process is to convert the raw MM5 

output to a form that the air quality model can utilize. The model that will be used in subsequent 

air quality assessments is the Community Multiscale Air Quality (CMAQ) Modeling System 

version [Byun and Ching, 1999] version 4.5. This is accomplished by running the Meteorology-

Chemistry Interface Processor (MCIP) to produce daily meteorological files.  A customized 

version of MCIP Version 2.0 is used here to eliminate several output variables that were not 

needed in any planned analysis. Additionally, slight modifications were made at PNNL to include 

additional output variables from the MM5-RCM simulations needed to calculate aerodynamic 
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resistance and stomatal resistance land-surface parameters required by the CMAQ deposition 

module [Byun and Ching, 1999]. 

 Once the MCIP output is generated for a particular day, a series of data quality checks 

was conducted.  After MCIP data files for a specified year are generated and quality checks 

performed, a meteorological variable extraction program extracts hourly meteorological fields 

that correspond to specific locations throughout the model domain where meteorological observa-

tions are routinely gathered and archived. These data are used in the analysis portion of the 

climate simulation presented in this report. In addition, daily 700 mb wind fields at 1800 UTC 

were extracted for the cluster analysis in a separate step (Chapter 3). Once these processing steps 

for a particular year were completed, the MCIP files are transferred to the NESC tape archive. 

These yearly datasets will be transferred back to the local computer cluster when the CMAQ 

simulations are ready to be executed. 

 

 

B.2  Specific Data Processing Issues  

 

B.2.1  MCIP Settings 

The MCIP is configured to transform raw MM5-RCM output into CMAQ-ready meteoro-

logical input. MCIP files were generated with 25-hourly grids starting at 00 UTC and ending 00 

UTC the following day. This required us to use share grids across original 24-hour MM5-RCM 

files. In addition, standard practice when modeling for climate applications ignores the designa-

tion of leap years. As a result, February 29th is missing from the data archive during 1996, 2000, 

2004, 2048, 2052. This omission produces CMAQ run-time errors and so a new data record is 
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created for February 29th and the meteorology for the 28th of February copied to the new record 

during these five data years.   

 

3.2.2  Data Extraction for Various Climate Analyses 

In order to compare the current climate simulation with the observed climate over the last 

10-years, data corresponding with observation sites was extracted from the first layer of the 

gridded MCIP files. For comparisons of model output to data from meteorological observation 

sites around the country, model output from the nearest grid cell to the observation site were used 

(no interpolation) to represent the climate of the site. 850mb pressure level wind and temperature 

data were extracted for each observation site. Again, data from the nearest grid point to the 

observation site was used for the 850 mb meteorological fields.  However, the vertical interpola-

tion to 850mb was performed by extracting the pressure profile from the nearest grid cell along 

with the temperature and wind profile. Then using linear interpolation the value was calculated. 

700 mb wind was also extracted for use in the cluster analysis described in Chapter 3. In this case, 

data were extracted once a day at 1800 UTC and then horizontally interpolated (bilinear) to an 

alternative latitude-longitude reanalysis grid. Once again, linear interpolation between the grid 

cell points bounding the 700 mb level was used for vertical interpolation. Interpolation errors will 

result, but are generally limited to areas where large gradients in topography or near land-water 

boundaries.  

 

  

B.3  Quality Assurance Procedures  

 



 138

B.3.1  File existence and integrity – Layer I Quality Control 

The most elementary of the quality control steps performed on the meteorological files 

was a file existence check for each day of the simulations. A second step was to ensure that the 

file size was consistent with the other files.  File size for the same model configuration covering 

the same period should be identical.  Thirdly, an integrity check, inherent to other processes was 

performed to ensure that the format of the model output was readable. This is a necessary check 

because data handling and archiving raises the potential that files could become corrupted. 

A program script was developed and run on files located in the NESC archive to confirm 

the existence of a file for each model day in each model year. Yearly log files were produced for 

both the MM5-RCM files and MCIP files. These yearly log files were then combined into one file 

that was scanned for missing file flags. The log files are available on the CIRAQ website 

(http://snow.rtpnc.epa.gov/asmd/gilliam/ciraq/qaqc.php). The initial scan identified several 

missing days of MM5 model (April 21-23, 2005, May 21-23, 2005, and Sep. 30, 2005). Subse-

quently, these files were retrieved from PNNL, and are now stored in the long-term archive. The 

scan of file sizes reveal that all files (3-day files are 1697072084 bytes, 2-day files are 

1131420596 bytes, and 1-day files are 565769108 bytes), were complete. Therefore, this quality 

control script confirmed that all MM5 files were present in the CIRAQ archive. 

The MCIP logfile (http://snow.rtpnc.epa.gov/asmd/gilliam/ciraq/qaqc.php) was scanned 

and it was confirmed that each of the MCIP output file types (GRIDCRO2D, GRIDCRO3D, 

GRIDDOT2D, METBDY3D, METCRO2D, METCRO3D and METDOT3D) are present in the 

long-term archive for each day of the simulation. In addition, the file sizes are consistently the 

same size for each type. It should be stated that the files for Feb 29 on leap years 1996, 2000, 

2004, 2048, 2052 are not present because of the standard practice not to consider leap years in 
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climate simulations. Additionally, since the daily MCIP files cover a period from 00 UTC one 

day to 00 UTC the following day (25 hours), the Feb 28 files of all leap years were missing the 

last hour, which represents Feb 29, 00 UTC.  Prior to CMAQ execution, Feb 28 files will need to 

be copied to represent the meteorology on Feb 29. In addition, the 00 UTC data for March 1 will 

need to be appended to the Feb 28 files as well as to the modified Feb 29 file. The headers for that 

time (March 1, 00 UTC) will need to be changed to represent February 29, 00 UTC. 

 

B.3.2  Data Scan – Spatial and Temporal Range Checks – Layer II Quality Control 

A scan of the hourly values from a set of variables (see Table B1) that are critical to the 

air-quality model results was performed on the MCIP output files. This quality control scan is 

necessary because any time a large volume of data is handled, corruption can occur.  We wanted 

to document that no data corruption was detected prior to the delivery of the raw data to the EPA 

or during internal transfers. Two distinct scans were performed on the hourly grids. The first scan 

was a range check, and the second scan was of hourly change in these pre-determined variables. 

The range check is an inspection of the grid-wide minimum and maximum value of each 

variable for each hour of the simulation. The acceptable range of each variable generally follows 

the quality assurance procedures for meteorological data that was developed for NOAA’s 

Forecast System Laboratory’s Meteorological Assimilation Data Ingest System (MADIS) 

(http://www-sdd.fsl.noaa.gov/MADIS/madis_sfc_qc.html) and National Weather Service Tech-

nique Specification Package 88-21-R2. A few variables were not presented in these quality 

assurance plans, so limits were subjectively determined using experience.  Table B1 provides the 

range of acceptable values that were specified in the QC range check. Variables assigned a 

subjective limit are marked by an asterisk (*).  
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Table B1.  Range and hourly change limits used in the quality control check of CIRAQ meteoro-
logical model output. 

Range Hourly 
Change Variable 

Min Max Max 
2-m Temperature (K) 224  328  20 
Boundary Layer Height (m) 0 5000 3000 
Surface Pressure (mb) 568 1100 15 
Surface Shortwave Rad. 
(w/m^2) * 0 1200 500 

Cloud Faction (%)* 0 100 100 
Convective Precip. (inches)  0 44  44 
Non-Convective Precip. (inches) 0 44  44 
850 mb Temperature (K) * 180 330 10 
850 mb U-Wind Comp. (m/s) * -100 100 50 
850 mb V-Wind Comp. (m/s) * -100 100 50 
 
 
 

Similarly, the temporal (hourly) change check determines the grid-wide minimum and 

maximum hourly change at each grid point for each variable. The acceptable range of the hourly-

change was also adopted from the NOAA FSL’s MADIS quality control plan (Table B1). For the 

variables not in the FSL list (indicated in Table B1 by asterisk), the acceptable range was subjec-

tively determined using experience of working with model output. For all of the maximum and 

minimum values the grid-point location (latitude and longitude) was calculated and all variables 

at this grid point were placed in a CIRAQ database. Also calculated and logged was the mean, 

median, and root-mean-square (RMSE) of the grid for each variable and each hour. This informa-

tion can collectively provide confidence that the meteorological data is reasonable and consistent 

in time. The following subsections highlight results from an analysis of the hourly quality control 

data. 
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Figure B1.  Hourly maximum grid-wide 2-m temperatures from the 10-year current scenario 
regional climate model simulation. 
 

 

Range Check 

Although many variables, important to air quality applications, were scanned during the 

quality control process (variables indicated in Table B1), and many types of checks were logged, 

results of the scan will be abbreviated. It should be stated upfront that no corrupted or unreason-

able values were found during the scan; however, a few values were flagged as questionable. 

Temperature near the surface was used as one of the main variables in the QA checks. Figure B1 
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indicates the location and value of the maximum 2-m temperature in the domain each hour of the 

10-year simulation. The minimum and maximum value of 2-m maximum temperature is indicated 

near the lower-left corner; the maximum simulated temperature over the 10-year simulation (325 

K, in the Desert Southwest) does not exceed the range (224-328 K) guideline in Table B1, and the 

values are reasonable in magnitude and spatial distribution. Note that when multiple maximum 

grid values occur for the same grid point, only the last plotted value is visible since the previous 

dot is over-written. Figure B2 is a slightly different view of the hourly minimum grid-wide 

temperature. The time series clearly shows reasonable values with the exception of the winter 

when a few instances exist where temperatures do fall slightly below the recommended minimum 

of 224 K (very end of time series in Figure B2). A spatial plot (not shown) of these sub-224 K 

temperature reveal the location is isolated to a few grid points that represent the climate of the 

Rocky Mountains in southwest Canada, so the values are very low, but are only a few degrees 

below the recommendation and only exist for a limited number of instances.  Table B2 gives the 

minimum and maximum values that were summarized from similar plots for the other variables. 

In all cases, the minimum and maximum hourly values are within range standards. Similar 

information for the other variables is documented in Table B2. All minimum and maximum 

values for the other variables are within the range specified by Table B2. 
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Figure B2.  A time series of hourly minimum grid-wide 2-m temperatures from the 10-year 
current scenario regional climate model simulation. 
 
 
 
Table B2.  Maximum and minimum values and hourly change results  for CIRAQ meteorologi-
cal model output variables on which quality control checks were performed. 

Value Hourly 
Change Variable 

Min Max Max 
TEMP1P5 (K) 222 325 26 
PBL (m) 33 4478 4437 
PRSFC (mb) 652 1050 15 
RGRND (w/m^2) 0 1191 1019 
CFRAC (%) 0 1 1 
RC (inches) 0 N/A N/A 
RN (inches) 0 N/A N/A 
TA (K) 239 314 26 
UWIND (m/s) -62 64 39 
VWIND (m/s) -62 72 35 

 
 
 

Temporal Check 

The same variables scanned in the range check were also scanned and plotted as the 
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hourly change or temporal consistency check. The minimum and maximum hourly change for 

each variable is provided in Table B2. For temperature, the maximum one-hour change at one 

grid-point over the 10 years was 26 K, which is greater than the NOAA FSL guideline of 20 K. 

All the variables are within the guidelines except for the PBL height and insolation.  Table B2 

indicates the PBL at a particular grid point changed ~4000 m in one hour. In retrospect, this QA 

range limit may be too rigid as the model is capable of simulating deep tropospheric boundary 

layers in excess of 5000 m in parts of the country within deep convective cells, then dropping to 

less than 1000 m as the storm cell advects to another grid cell. An hourly change in insolation of 

1100 W·m-2 occurred at some of the grid cells along the tropical southern boundary, which is 

likely a result of deep convection that is frequent along limited-area model boundaries. Other than 

these instances, the overall temporal consistency check verifies the range check results that no 

persistent inconsistencies exist in the CIRAQ meteorological data that will be used for the CMAQ 

simulations. 

 

B.3.3  Incidental Data Integrity Checks –Layer III Quality Control 

Many of the various analyses of the climate data as well as the MM5-RCM data process-

ing procedures implicitly scan the data for quality as well as integrity. This final section of the 

quality control highlights these various programs and how they further add to the quality control 

process. 
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B.4  MCIP Processing 

 

The first and most rigorous of these incidental or implicit data checks was the processing 

of the raw MM5-RCM data by the MCIP program. MCIP will not execute nor will daily files be 

generated if the dataset is corrupted. Although abnormally large values of a variable like PBL and 

temperature are not flagged during this process, complete execution of MCIP ensures that the 

input model data is in the proper format. The quality control log documents that each daily file 

was present in the base case and future scenarios and verifies that MCIP was properly executed 

for each day.  

 

B.4.1  Climate Data Extraction and Analysis 

The second program that was executed on the 20-year set of model output was the extrac-

tion of the climate data that could be associated with selected climate sites across the country. As 

with MCIP, the program inherently would not execute if any of the daily files were corrupt. 

Additionally, the data that was extracted has been analyzed, and if grossly unreasonable data were 

present, these abnormal data would have been found in the climate analysis presented in the 

report. A few examples of these analyzes are mean sea-level pressure and precipitation analyses. 

Unreasonable data was not found which further provides support that the meteorological data, 

both the MM5-RCM raw output and MCIP output are of high quality and ready for use by 

CMAQ. 

 

B.4.2  700 mb Wind Extraction for Cluster Analysis  

The final analysis that was performed on the dataset was the extraction of wind at 700 mb. 
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These data were extracted from the MCIP files for an independent analysis. This independent 

cluster analysis indicated no abnormal data was present. In addition, daily 700 mb wind vector 

plots were simultaneously generated. These plots have been visually scanned in yearly anima-

tions, and show reasonable flow patterns. 
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B.5  Quality Assurance Project Plan for the Climate Impact on Air Quality(CIRAQ) Project 
(Phase I, 2005-2007)  
 
 
 
1.0    Project  Management 
 
 1.1    Problem Definition  
 
 Past research suggests that future climate may differ substantially from current conditions 
because of greenhouse gas affects on the radiation budget.  As greenhouse gases increase, 
longwave radiation can be trapped and cause higher temperatures within the troposphere.  The 
Intergovernmental Panel on Climate Change (IPCC) has conducted a series of global climate 
model simulations testing this hypothesis using a range of future emission scenarios.  Climate 
model predictions varied, but all illustrated a positive trend in temperature with increasing 
greenhouse gases. 
 
 Future scenarios of changing climate suggest it is plausible that air quality may be 
affected.  The exploration of possible responses to future climate conditions is addressed by 
ORD/NERL through the Climate Impact on Air Quality (CIRAQ) project.  A principle goal of 
CIRAQ is to explore the uncertain nature of future air quality.  This is done by adopting a phased 
sensitivity analysis approach.  Phase 1 of CIRAQ develops a series of tests to consider the 
sensitivity of air quality to potential climate change conditions while holding most emissions at 
present day levels (Task 12913).  Phase 2 will expand that analysis to include future emissions 
scenarios.  A phased sensitivity modeling approach to uncertainty estimation is necessary 
because of the predictive nature of this study where future conditions cannot be observed.   Air 
quality simulations will be performed using the USEPA Community Multiscale Air Quality 
(CMAQ) model under current and future climate scenarios to test the sensitivity of ozone and 
particulate matter predictions to changing climate scenarios.  Findings from these studies will 
provide background information to U.S. EPA Global Change Research Program (GCRP) 
scientists housed within the National Center for Environmental Assessment (NCEA).  This 
Quality Assurance Project Plan (QAPP) deals with data, modeling and evaluation activities 
associated with Phase 1 of the CIRAQ project. 
 
 1.2    Project Organization  
 
 The CIRAQ project team consists of six principle members (see table below).  The 
project Team Lead, Ellen Cooter, is responsible for the project management.  CIRAQ is based in 
the USEPA Atmospheric Modeling Division (AMD), which is located within the Office of 
Research and Development's National Exposure Research Laboratory (NERL). Since the project 
is based solely within AMD, the Division has responsibility for developing the model simula-
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tions, analyses, and documentation required for the project.  All emissions processing to model-
ready format,  meteorology processing to model-ready format and air quality simulations will be 
performed on the NERL/AMD Linux cluster GLOBAL (see description in Section 2.3).  
 
 Contractor support for the CIRAQ project is provided through the FAIR II contract 68-
W-01-032, Task Order Number 2045 with Computational Sciences Corporation (CSC).  A FAIR 
II Task Order Number 2045 Quality Assurance Project Plan (QAPP) has been developed by CSC 

(approved 03/03/04) and describes the procedures that CSC follows for emissions processing and 
model simulations.  When providing technical support to the CIRAQ project in these areas, CSC 
will follow their approved QAPP.  
 
 
 1.3    Project/Task Description and Schedule  (FY05-FY07) 
 

CIRAQ Project Team 
 
Ellen Cooter , Air-Surface Processes Modeling Branch (APMB) 

Team Lead (project management, regional climate assessment, coordination of 
external research in vegetation change 

 
Alice Gilliland, Model Evaluation and Applications Research Branch 

(MEARB) Coordination with global models, air quality modeling 
 
Robert Gilliam, Atmospheric Model Development Branch (AMDB) 

Evaluation of regional climate simulations, coordination of simulations to pro-
duce model-ready meteorology for air quality model 

 
Jenise Swall, MEARB 

Statistical guidance in spatial and temporal analyses of regional climate and air 
quality simulations  

 
William Benjey, APMB 

Guidance on emission inventory development for control base simulations, par-
ticipates in cross-laboratory research on future air quality emission scenarios 

 
Gary Walter, MEARB 
 Computational and data management infrastructure design for CIRAQ 

CIRAQ Project Team 
 
Ellen Cooter , Air-Surface Processes Modeling Branch (APMB) 

Team Lead (project management, regional climate assessment, coordination of 
external research in vegetation change 

 
Alice Gilliland, Model Evaluation and Applications Research Branch 

(MEARB) Coordination with global models, air quality modeling 
 
Robert Gilliam, Atmospheric Model Development Branch (AMDB) 

Evaluation of regional climate simulations, coordination of simulations to pro-
duce model-ready meteorology for air quality model 

 
Jenise Swall, MEARB 

Statistical guidance in spatial and temporal analyses of regional climate and air 
quality simulations  

 
William Benjey, APMB 

Guidance on emission inventory development for control base simulations, par-
ticipates in cross-laboratory research on future air quality emission scenarios 

 
Gary Walter, MEARB 
 Computational and data management infrastructure design for CIRAQ 
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 The CIRAQ project is responsible for the following tasks (and schedule for each task): 
 
1. Production, evaluation and analysis of current and future model-ready regional climate scenarios.  
 a. Schedule: two year activity, FY04-FY05  

b. Product: Report on the performance of regional climate simulations and analysis of temporal or 
spatial trends in predictions (FY05 APM-551). 

 c. Persons Responsible: Robert Gilliam, Ellen Cooter, Alice Gilliland, Jenise Swall  
 
2. Development of model-ready emissions for CMAQ simulations 
 a. Schedule: two year activity, FY04-FY05 
 b. Product: Model-ready emission files (FY05 APM-551) 
 c. Persons Responsible: William Benjey, Alice Gilliland, Ellen Cooter  
 
3. Performance of CMAQ simulations under current and future conditions (1999 ± 5 years, 

and 2050 ± 5 years 
 a. Schedule: two year activity, FY05 - FY06 
 b. Product: CMAQ model output of concentrations for 5 current and 5 future years 
 c. Persons Responsible: Alice Gilliland, Ellen Cooter 
 
4. Evaluation and analysis of CMAQ simulations   

a. Schedule: two year activity, FY06 - FY07  
  Product: Report on the performance of CMAQ and analysis of temporal and spatial variations or 

trends in the predictions (FY07 APM-87). 
 c. Persons Responsible:  Ellen Cooter, Alice Gilliland 
 
 
 
 
 1.4    Input Data Quality Objectives  
 
 Model simulations will be performed to test the sensitivity of air quality to potential 
climate change scenarios.  To insure that model results represent a sensitivity response to mod-
eled climate change scenarios rather than model input errors, several steps will be taken to test 
and maintain input data quality.  The climate and emission input data are described in Section 2.1.  
 
 
  1.4.1    Regional Climate Data (RCM) Quality Control  
 
 Quality Control (QC) of the Regional Climate Model (RCM) data is performed when it is 
in model-ready Meteorology-Chemistry Interface Processor (MCIP) format.  Variables at all the 
model grid points and each hour are compared against set tolerance limits. Additionally, the 
hourly changes of each variable at each gridpoint are compared to a set temporal change limits. 
Tolerance and temporal change limits are outlined in a quality control procedure devised by 
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NOAA's Forecast System Lab (FSL) and found at “http://www.sdd.fsl.noaa.gov/MADIS/madis_sfc_qc.html”.  
Values that fail the quality control test and the locations where these values occur are stored in a 
database along with the hourly grid statistics.  Additionally, a back check of the meteorological 
data from MCIP is compared with the raw  RCM output for consistency.  Statistics are generated 
from this back check comparison and archived in the CIRAQ database. The CIRAQ quality 
control database can be found at EPA intranet address “http://snow.rtpnc.epa.gov/asmd/gilliam/ciraq_log.php”.  
Significant inconsistencies noted during this process are referred to the RCM database creator, 
Ruby Leung of the U.S. Department of Energy, Pacific Northwest National Laboratory 
(DOE/PNNL) for further investigation and rectification.  If , after further investigation, a system-
atic error is detected, data correction via regeneration will be negotiated jointly between the 
contractor (DOE/PNNL), the AMD scientists performing the QC checks (Gilliam) and the NCEA 
Project Officer (Anne Grambsch).  See Section 1.5 for specific reporting and documentation 
requirements. 
 
  1.4.2    Emission Data Quality Control  
 
 QC checks will be used to make sure that the processed emissions still maintain the same 
mass budget as in the official USEPA 2001 National Emission Inventory (referred to as 2001ad) 
prepared for the Office of Air Quality Planning and Standards.  CSC contractors will perform the 
emissions processing following QC procedures for emissions processing outlined on pages 7-10 
in their approved QAPP.  In addition, CIRAQ scientists will review the contractor QA reports and 
will conduct visual checks throughout processing using tools such as PAVE.  The 2001ad 
database is widely used in current applications and so it is not anticipated that significant QC 
issues will arise.  However, upon detection, the AMD scientist providing QC oversight (Benjey) 
will document and refer the issue to the CSC Work Assignment manager.  If there does indeed 
prove to be an unresolved QC issue, a plan for rectification will be negotiated between the EPA 
Project Officer (Benjey) and CSC management.  CIRAQ Phase 1 does not include the develop-
ment of future anthropogenic or technology-driven emission scenarios.  The 2001ad inventory 
will be used for both present and future time periods. 
 
 
 
 1.5    Documentation and Records  
 
 Documentation and records for the CIRAQ project include 1) documentation describing 
task activities and planning and 2) model evaluation and analyses records. 
 
 Documentation describing CIRAQ Phase 1 plans and activities is maintained in the 
USEPA NERL Task Information System (TIS) under Task 12913.  The task describes the goals 
of the CIRAQ project, the schedule and product milestones, the staff involved, and the extramural 
resources.  Tasks are updated every year and are submitted for management approval.  Through 
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TIS, the approval process is tracked, and the current approval status shown.  Backups of the TIS 
system are regularly maintained by NERL.  Laboratory notebooks will be used to document 
significant project activities. 
 
 Model (RCM and CMAQ) evaluation and analysis summaries will be maintained by the 
CIRAQ Team Lead on his/her local computer (with  backup).  Individual CIRAQ investigators  
will document sections for which they bear major responsibility more thoroughly in Laboratory 
notebooks, but the Team Lead will be responsible for maintaining an official summary.  A QC 
summary (e.g., no errors detected, error description, etc.) will be generated at the completion of 
the 10 year base case processing to model-ready format and the 10 year future model-ready 
processing.  Final summaries of the RCM and CMAQ model evaluations will be provided to the 
NERL Assistant Lab Director who is assigned to Global Climate research, currently Dr.Michele 
Aston, and the US EPA Global Change Research Program (GCRP) air focus group Lead, cur-
rently Dr. Anne Grambsch.  Research abstracts will be produced for APM outputs (see section 
1.3).  
 
 Other documentation records for model evaluation are the log files generated during 
processing of model results.  Log files will be archived along with the model output files.  In 
addition, if non-physical results are identified as part of the screening processes and are noted in 
the log file, additional notes will then be added to the record describing the steps that were taken 
to correct or replace the model output before proceeding.   
 
 All model output and log files will be located on the CIRAQ Linux GLOBAL cluster 
containing nodes named "global, global2, global3, global4, and global5."  Record of the machine 
and directory location of all model simulation results, log files, and analysis results will be 
maintained by the CIRAQ team.  All of these data files will be backed up along with the model 
output files as part of a regular tape backup and archival process. 
 
 
2.0    Data Acquisition 
 
 The CIRAQ project  requires no direct data measurement.  
 
 2.1    Climate and Emissions Data Acquisition   
 
 The CIRAQ project requires downscaled Regional Climate Model (RCM) scenarios and 
emissions input data.   RCM scenarios have been produced by Ruby Lueng (DOE/PNNL) under 
an EPA/DOE Inter-Agency Agreement (PI is Anne Grambsch, ORD/NCEA).  These model-
generated data are required for the development of present and future climatological conditions to 
drive emissions and atmospheric chemistry and transport models.  RCM acceptance is based on 
model-ready RCM (i.e., MCIP) quality acceptance criteria illustrated in Figure 1 and described in 
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QAPP section 1.4.1.    
 
 Emissions inventory data are the most recently available 2001 modeling inventory 
(referred to as 2001ad) prepared for the Office of Air Quality Planning and Standards (OAQPS).  
Model-ready emission data for CMAQ are prepared from the inventory using the Sparse Matrix 
Operator Kernel Emission (SMOKE) model.  Plume rise is computed for all possible point 
sources in SMOKE.  Major point sources, such as Electric Generating Unit (EGU) stacks, are not 
treated differently from other point sources.  Instead, annual EGU values from the inventory are 
disaggregated with temporal profiles.  Data acceptance criteria are described in section 1.4.2.  
Although OAQPS uses annual aggregated Continuous Emission Monitoring (CEM) data to 
estimate inventory EGU emissions, hourly CEM data are not appropriate for this application 
because of the climatological (long-term) nature of the analysis.  Biogenic emissions will be 
estimated using current landuse/landcover databases and the Biogenic Emission Inventory 
System, Version 3.12 (Pierce, et al., 1998; Pierce et al., 2002).  On-road mobile source emissions 
will be modeled by the U.S. EPA MOBILE6 mobile source emission model (Office of Transpor-
tation and Air Quality, 2002).  Both BEIS and MOBILE6 are standard components of the 
SMOKE processing system.   All emissions input data and SMOKE processing is performed by 
CSC under their approved FAIR II QAPP and SOPs. 
 
 2.2    Data Management  
 
 Downscaled RCM scenarios are transferred to the EPA from the PNNL on portable hard 
drives.  A log entry is made on receipt of the drive, its contents are loaded onto the GLOBAL 
LINUX cluster and the drive is returned to PNNL for re-use.  Subsequent management of these 
data through input to the Chemical Transport Module is illustrated in Figure 1 below. 
 
 A copy of the RCM data are stored locally on the GLOBAL cluster with a backup copy on 
the National Environmental Scientific Computing (NESC) Center archive.  NESC Center backup 
procedures are described in the NESC Center User Guide (2004).  Sparse Matrix Operator Kernal 
Emission (SMOKE) model  processed and merged emission files will be saved locally with a 
mirror backup on a separate cluster disk.  Surface CMAQ output conditions along with selected 
“re-start” files will be saved locally and maintained on the mirror backup disk. 
2.3    Hardware/Software Configuration 
 
 The current publically available version of the CMAQ modeling system (e.g., CMAQ 
version 4.4 or more recent)  will be used for this application.  This release was produced follow-
ing the criteria and procedures outlined under the Quality Assurance Project Plan for the Devel-
opment of the Community Multiscale Air Quality (CMAQ) Model (in review).  
 
Global Linux cluster hardware configuration   
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            - 5 nodes comprised of global, global2, global3, global4 and global5 
 - Each node has.... 
  Dell Poweredge 2650 
  2 x 2.4 Ghz, 
  412K Cache 
  533 Mhz 
  Front side bus 
  2G memory 
 
 
3.0    Monitoring Progress and Reports to Management 
 
 3.1    Project Assessment and Plans for Science and Product Peer Review  
 
 CIRAQ project progress is continuously monitored by the Team Lead and periodically 
reviewed by the Team Lead Branch Chief (Tom Pierce) and AMD Global Change Program 
coordinator (Alice Gilliland).  The Project task description and progress are reviewed and 
approved, if needed, on an annual basis by the AMD Division Director, the NERL Assistant Lab 
Director for Global Change and the Associate Lab Director.  Review of CIRAQ science and 
products will take place at the Agency level (standard EPA and NOAA review process) as well as 
at the Program Level (e.g., BOSC review, Fall 2004; PART review scheduled for summer, 2005). 
 
 Major AMD products expected under the CIRAQ project include CMAQ model-ready 
regional climate (i.e., MCIP) and emission (i.e., SMOKE) input datasets for current and future 
conditions, temporal and spatial evaluation of the MCIP database, and evaluation CMAQ esti-
mates of 5 years base case and 5 years future atmospheric concentrations of ozone and particu-
lates.  Products designated as APMs will undergo standard APM clearance and acceptance 
procedures.  New evaluation methodologies developed for CIRAQ and results will be presented at 
scientific workshops and meetings as well as appearing in peer reviewed Journal publications.  
Teleconference calls between the ALD, EPA GCRP Air Lead and CIRAQ team members to 
report progress and to discuss project plan adjustments are scheduled as needed, but will occur at 
least once per quarter. 
 
 
 3.2    Model Performance Evaluation  
 
  3.2.1 Climate Model Performance Evaluation  
 
 Evaluation tools will be used to measure the performance of the regional climate model 
against observational data.  Meteorological observations or gridded observation-driven reanalysis 
databases will be used.  Observational data resources include NCDC surface and upper-air 
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observations (see http://lwf.ncdc.noaa.gov/oa/ncdc.html), the NOAA  Forecast Systems Lab 
observational database (see http://www.fsl.noaa.gov/data),  Daily Weather Maps (see 
http://docs.lib.noaa.gov/resur/dwm/data_rescue_daily_weather_maps.html) and seasonal weather 
summaries reported in the open literature.  Reanalysis datasets that may be used for evaluation 
include the National Centers for Environmental Prediction-National Center for Atmospheric 
Research (NCEP-NCAR) reanalysis (Kalnay, et al., 1996), the NCEP-Department of Energy 
(DOE) Atmospheric Model Intercomparison Project (AMIP-II) reanalysis (Kanamitsu, et al., 
2002) and the European Center for Medium Weather Forecast (ECMWF) ERA-40 reanalysis data 
(KDllbert et al., 2004). 
 
 Since the RCM simulations are driven by Global Climate Model (GCM) information 
rather than assimilated observation or reanalysis, they do not necessarily reproduce day-to-day or 
exact year-to-year observed variations but rather, represent time periods under representative 
climatological conditions.  Keeping these special characteristics in mind, an evaluation of the 
simulated meteorology will be performed for the current RCM scenario (1995-2004).  Several 
methods will be used to examine how well the RCM depicts the present climate including 
comparison of  model and observed distributions of hourly meteorological variables (e.g., 
temperature, wind, moisture and solar radiation) by way of a cumulative distribution function 
(CDF), statistical cluster analysis comparing RCM seasonal patterns of mean and extreme 700mb 
wind, and time series analysis to characterize the diurnal, synoptic, seasonal and interannual 
components of selected variables such as surface temperature.  The 700mb wind analysis will 
compare RCM output to gridded reanalysis datasets covering the entire RCM domain.  The CDF 
and time series evaluations will be performed for selected grid-cells or relatively small geo-
graphic regions.  Cells or regions will be selected to represent known seasonal and annual 
geographic signatures in the meteorological data.  For instance, variations in climate over a region 
(e.g., mountains, Piedmont, coastal plain of North Carolina) are evident in the distribution of  
meteorological variables such as temperature.  Grid cells representing each of these climatologi-
cal regimes will be selected and paired with available observations.  If the regional climate model 
is indeed simulating the regional climate properly, the distributions should be similar.  Time 
series analysis will be performed on a sub-set of CDF locations.   Combined, these three analyses 
will provide an assessment of how well the RCM, driven by a global climate model, represents 
present climate.  Further discussion of these techniques, including references to peer reviewed 
method descriptions are provided in the TIS entry for Task 12913. 
 
  
  3.2.2   CMAQ Model Performance Evaluation  
 
 Plans for CMAQ model performance evaluations are discussed in the Task 12913 descrip-
tion on the TIS system.  As soon as the reference emission fields become available and are quality 
assured, the CMAQ simulations will begin.  Initial and boundary conditions will be estimated 
based on published values from global chemical model studies or from GCTM output.  Analysis 
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approaches will be developed to assess variability and trends in the ozone and particulate matter 
levels throughout the continental model domain.  Where possible, base case CMAQ results will 
be compared to distributions of ambient air quality data from the following networks: IMPROVE, 
STN, CASTNet, NADP, and AIRS.  In contrast to the meteorological reanalysis datasets listed in 
Section 3.2.1, the relatively sparse geographic coverage and short periods of complete record for 
observed ambient atmospheric concentration limits the number of such comparison that can be 
performed.  As CMAQ results become available, efforts will accelerate to establish more formal 
evaluation procedures.  The CIRAQ Team will coordinate development of appropriate air quality 
model evaluation techniques with procedures developed by others for other CMAQ applications, 
e.g., Task 18339-Air Quality Forecast Database and Analysis, Task 20463-Evaluation Techniques 
and Tool Development for FY08 CMAQ Release.  Air quality model evaluation is not expected to 
begin until FY06.  CMAQ evaluation techniques and results will be presented at scientific 
workshops and meetings as well as appearing in peer reviewed Journal publications. 
 
 
 3.3    CMAQ Model Sensitivity Analysis  
 
 Air Quality model output uncertainty regarding potential responses to future climate will 
be addressed through CMAQ model sensitivity analyses.  Principle sensitivity analyses to be 
performed under CMAQ focus on the isolation of potential climate and emission impacts on 
present and future air quality.  This is accomplished through a two-stage approach described in 
TIS tasks 12913 (Phase 1) and 20478 (Phase 2).  In Phase 1, with the exception of changes that 
are a response to climate factors, future emissions will remain constant at present levels. CIRAQ 
Phase 2 will revisit these air quality scenarios using an alternative emission inventory that 
includes some estimate of future economic, population and technological change in the continen-
tal U.S.  If time and resources permit, Phase 2 may also include an evaluation of the sensitivity of 
alternative air quality futures to future climate scenario (i.e., repeat the previous analysis for a 
suite of possible future climate conditions).  
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