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Abstract

It has been reported that ambient ozone (O3), either alone or in concurrence with acid rain precursors, accounts for up to

90% of US crop losses resulting from exposure to all major air pollutants. Crop damage due to O3 exposure is of particular

concern as ambient O3 concentrations remain high in many major food-producing regions. Assessing O3 damage to crops

is challenging due to the difficulties in determining the reduction in crop yield that results from exposure to surface O3, for

which monitors are limited and mostly deployed in non-rural areas. This work explores the potential benefits of using

operational air quality forecast (AQF) data to estimate rural O3 exposure. Using the results from the first nationwide AQF

as a case study, we demonstrate how the O3 data provided by AQF can be combined with concurrent crop information to

assess O3 damages to soybeans in the United States. We estimate that exposure to ambient O3 reduces the US soybean

production by 10% in 2005.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The association between ambient ozone (O3)
exposure and its detrimental effects on agricultural
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crops is well established (Heck et al., 1982; Krupa
et al., 2006; EPA, 1996; Morgan et al., 2006; US
Environmental Protection Agency (EPA), 2006).
Other air pollutants that may adversely affect plants
include sulfur dioxide (SO2), nitrogen oxides (NOx),
peroxyacetyl nitrate (PAN), and many volatile
organic compounds (VOCs) (EPA, 1999). While
these other air pollutants may inflict incremental
stresses on crop plants, ambient O3, either alone or
together with acid rain precursors, accounts for up
to 90% of crop losses in the United States resulting
from exposure to all major air pollutants (Heck
.
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et al., 1982; Adams et al., 1986). O3 damages plants
primarily by entering plant leaves through the
opening of the stomata. Once inside the plant
tissue, O3 can react to produce byproducts that
cause crop losses via a reduction in either photo-
synthesis because of stomatal closure, or in carbo-
hydrate used to produce detoxification systems
(Andersen and Rygiewicz, 1991; EPA, 1996).

In an effort to address crop damages caused by
O3 exposures, the Clean Air Act (CAA) and its
amendments (CAAAs) included air pollution da-
mage to vegetation as one of the criteria by which
the secondary National Ambient Air Quality
Standards (NAAQS) are set and evaluated. In
1971 the EPA set the secondary NAAQS for O3 at
0.12 ppmv for 1-h daily maximum. In 1997, EPA
revised the secondary O3 NAAQS to 0.08 ppmv for
8-h average daily maximum. Regardless of these
regulatory measures, O3 levels remain high in many
areas of the United States (EPA, 2007). Further-
more, O3 damages to crops are expected even in
regions that comply with the O3 standards. The
current US secondary O3 standard is the same as the
health-based primary standard (EPA, 1999), which
is considerably higher than the critical levels above
which O3 is believed to have detrimental effects on
plants. As a result, there could be a substantial
effect of air pollution-induced crop losses on
societal welfare.

Over the past two decades, a number of economic
assessment studies have been conducted to estimate
O3-induced crop losses in the United States (e.g.,
Adams and Croker, 1989; Hertstein et al., 1995;
EPA, 1999; Murphy et al., 1999; Felzer et al., 2004).
Adams and Croker (1989) estimated that a 25%
decrease in surface O3 levels would provide benefits
to agriculture of 1–2 billion dollars per year.
Murphy et al. (1999) estimated that the benefits to
the agricultural sector from eliminating emissions
from mobile sources ranged between 3.5 and 6.1
billion dollars annually. The annual agricultural
benefits of the CAAA in 2010 are projected to range
between 7.5 millions and 1.1 billion dollars (EPA,
1999). The majority of these studies have adopted
monitor-based approaches that extrapolate monitor
data for O3 concentrations to rural areas where
measurements are unavailable. While this approach
has numerous strengths, some of its limitations
could be addressed through air quality modeling.

This paper presents the potential advantages and
limitations of utilizing the US EPA/National
Oceanic and Atmospheric Administration (NOAA)
air quality forecasting (AQF) system to estimate
crop exposure to surface O3 in rural areas. The AQF
system is based on the National Centers for
Environmental Protection (NCEP) Eta model and
the EPA’s Community Multiscale Air Quality
(CMAQ) model (Otte et al., 2005). It generates
hourly forecasts of O3 concentrations at a 12-km
horizontal resolution. The O3 data provided by the
continent-scale AQF system thus present a new
resource to assist in quantifying O3 damages to
agricultural crops at rural locations that often lack
monitoring programs. As a case study, this paper
uses results of the first experimental nationwide
AQF to estimate soybean exposures to O3 and
resulting yield losses in the United States for the
year of 2005. Section 2 reviews existing crop
exposure assessment approaches and discusses their
limitations. Section 3 describes the methodology
that is built around the AQF data to estimate crop
exposures to surface O3. Section 4 presents the
results of estimated O3 damages to soybeans in the
United States in 2005.

2. Review of approaches and their limitations of crop

exposure assessment

Estimating crop exposures to O3 is the first step in
the procedure to perform an economic assessment of
O3-induced crop loss. A number of approaches exist
to estimate crop exposure to ambient O3. These
approaches generally fall into two categories: (1) the
monitoring-based approach that determines O3 ex-
posure based on measurements at discrete locations
and spatial interpolations between locations; (2) the
modeling-based approach that uses global chemical
transport model (CTM) to calculate O3 exposure.

Majority of studies on air pollution-induced crop
loss have employed monitoring-based method to
estimate crop exposure to O3 (e.g., Adams and
Croker, 1989; Hertstein et al., 1995; EPA, 1999;
Felzer et al., 2004). Except EPA (1999), which
utilized a regional CTM to determine spatial and
temporal variations between monitors, most studies
using the monitor-based approach have relied on
spatial interpolation techniques to extrapolate
monitor data to locations without O3 measure-
ments. These spatial interpolation techniques, such
as kriging, are based on the assumption that the
spatial variation in O3 concentrations is statisti-
cally homogeneous throughout the surface. In
fact, O3 concentrations are very sensitive to changes
of environmental parameters, such as precursor
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emissions (particularly of NOx), humidity, and
topography. Therefore, the hypothesis of spatial
homogeneity, which is fundamental to the inter-
polation techniques, may not be valid for inter-
polating surface O3 distribution. It has been
demonstrated that ambient O3 mixing ratios have
a spatial scale of 15 km (Rao et al., 1997). This
raises questions about using sparse monitor data to
estimate O3 exposures on a large scale.

Another shortcoming of the monitor-based ap-
proach is the representativeness of existing monitor
sites for being used to estimate rural O3 exposure.
Air quality monitors for regulatory purposes are
primarily deployed in urban and suburban areas
with high air pollution and large population
densities. In urban areas, which have large O3

precursor sources, O3 levels have a large diurnal
variation, rising sharply to a short-lived afternoon
maximum and then dropping to near zero at night
(Chameides et al., 1998). In contrast, O3 levels are
less variable in rural areas, which are removed from
large NOx sources. There is a smaller maximum in
the afternoon but a higher minimum in the morning
and at night (Chameides et al., 1998). Thus,
observations obtained from urban and suburban
monitors are unlikely to be representative of rural
O3 concentrations, both in levels and duration
(EPA, 2006). Previous studies show that the
addition of urban sites actually decreases the
interpolated O3 concentrations in the affected
regions (Lefohn and Runeckles, 1987; Felzer et al.,
2004).

Recognizing the limitations imposed by the
monitor-based approaches and the particular dearth
of air quality data in developing countries, Cha-
meides et al. (1994) used a three-dimensional global
CTM to estimate O3 exposure on a continental scale
by simulating the physical and chemical processes
that regulate the fate of air pollution. Their model
predicted that about 10–35% of the world’s grain
production might occur in regions where crop yields
might be reduced by O3 exposures. A similar
approach was adopted by Aunan et al. (2000) to
estimate the regional scale O3 exposure in China.
More recently, Wang and Mauzerall (2004) used a
global CTM to characterize distributions of ambi-
ent O3 and its impact on grain production in eastern
Asia. The advantages of such an approach include
the ability to cover a large spatial area and time
period, and to take into account the actual processes
that determine the spatial and temporal variability
in O3 concentrations at locations without measure-
ments. However, the modeling approach is based on
O3 simulations at the global scale with coarse
horizontal resolutions (e.g., 2.81� 2.81 in Wang
and Mauzerall (2004) and 2.81� 2.81 in Aunan et al.
(2000)), which are inadequate for capturing local O3

peaks. Coarser model resolution generally leads to
higher average and lower peak concentrations, as
dilution across the grid cell increases O3 production
efficiency and hence higher average concentrations,
while local maxima cannot be adequately resolved
(Jang et al., 1995). Accurate capture of high O3

concentrations is important for crop exposure
assessment as many exposure indices emphasize
both exposure duration and peak O3 concentrations
(Mauzerall and Wang, 2001).

We explore in this study the possibility of using
regional AQF data to alleviate some of these
limitations. Regional air quality models have been
used before to estimate relative changes in crop
exposures to surface O3 (EPA, 1999; Murphy et al.,
1999). Such applications generally provide only a
short temporal coverage due to computational
expense and availability of model input data, such
as meteorology and source emissions. The contin-
uous operation of an AQF model, however, is able
to provide long-period coverage, including real-time
forecast of O3 distribution. In addition, the advan-
tages of using air quality forecasts to estimate O3

exposures include (1) the ability to cover a large
region including areas devoid of O3 monitors;
(2) high spatial and temporal resolutions making it
possible to better capture peak O3 and duration;
(3) the ability to reproduce spatial heterogeneity
based on detailed information of emission sources
and topography, and through full implementation
of chemical and physical processes. The air quality
modeling system is also run in conjunction with the
real-time weather forecast system, which could
additionally provide meteorological parameters
needed to calculate flux-oriented exposures to O3

(Grünhage et al., 2001; Ashmore, 2005). Efforts are
also underway to develop reanalyzed pollution
surfaces by combining modeled and measured data,
which could potentially help address the short-
comings of the individual approaches.

3. Methodology

In order to utilize air quality model estimates in
crop exposure assessment, we adopted an integrated
assessment approach built around the Eta-CMAQ
AQF model (Otte et al., 2005). This integrated
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approach follows the consequences of air pollution
emissions by predicting rural concentrations, crop
exposures, and resulting yield losses. The integrated
assessment approach includes the following steps:
(1) predict surface O3 concentrations; (2) couple O3

concentrations and crop distribution to calculate
exposure; (3) incorporate dose–response functions
to estimate yield loss (EPA, 1999; Wang and
Mauzerall, 2004).

3.1. Predicting surface O3 concentrations

We use the Eta-CMAQ modeling system (Otte
et al., 2005) to predict surface O3 concentrations on a
national scale. In the AQF system, meteorological
parameters to drive transport and chemistry were
based on the Eta model. The operational domain for
the model covers the continental United States with a
horizontal resolution of 12� 12km2. Hourly meteor-
ological data, including wind speed and direction,
temperature, humidity, pressure, solar radiation and
mixing height, from Eta are converted into CMAQ
compatible form using a preprocessor for CMAQ,
‘‘PREMAQ’’ (Otte et al., 2005). Anthropogenic
emissions of NOx, VOCs, SO2, CO and NH3 are
based on the EPA county level National Emissions
Inventory (NEI) with adjustments for the current
year based on projected energy consumption. The
1995 Canadian and 1999 Mexican Big Bend Regio-
nal Aerosol and Visibility Observational Study
(BRAVO) emissions inventories are combined with
the US NEI to form the continental dataset.

The CMAQ model uses the meteorology and
emission inputs to predict hourly concentrations of
air pollutants over space and time (Byun and Ching,
1999; Byun and Schere, 2006). The AQF system
began operation in September 2004 and provided
forecasts of O3 concentrations over the northeastern
United States initially (Eder et al., 2006). The
operational forecast domain was expanded to cover
the eastern United States in 2005. Experimental
forecast simulations over the entire continental US
were initiated in June 2005 and have been in
continuous operation for the rest of the year. This
study uses summertime O3 forecast data from the
model’s lowest layer of 22 terrain-following vertical
layers to estimate soybean exposure to O3.

3.2. Crop exposure

Most previous assessments of crop damage from
O3 exposure in the United States are based on
concentration–yield loss relationship, or dose–
response function, derived from the National Crop
Loss Assessment Network (NCLAN) research
(Adams and Croker, 1989; EPA, 1999; Murphy
et al., 1999). The NCLAN research is the sole
comprehensive, large scale field study conducted in
the United States (Heagle, 1989). The NCLAN
study provides dose–response functions for six
major crops (p. 94, EPA, 1999). Dose–response
functions also exist for many other US crops
from reanalysis of NCLAN results or other separate
efforts (Kats et al., 1985; Adams and Croker, 1989).
This case study focuses on O3 impacts on soybean
production. Soybean occupies more land than
any other dicotyledonous crop in the world
(FAO-UN, 2003). Among the major US crops,
soybean is one of the most susceptible to O3,
making it a model species for studying the res-
ponses of C3 annual plants in general to rising
ambient O3 level (Ashmore, 2002; Morgan et al.,
2003).

The spatial distribution of soybeans is obtained
from county estimate survey data collected by the
USDA National Agricultural Statistics Service
(http://www.nass.usda.gov/). The county-level data
are developed from crop yields reported by indivi-
dual farmers per county. Soybean exposure to O3 is
calculated using exposure indices consistent with
the concentration–response functions from which
yield losses are derived. Both seasonal mean and
cumulative exposure indices have been used at
different stages of US NCLAN studies, but the
use of cumulative O3 exposure indices has been
favored in most previous assessment studies (Le-
fohn and Foley, 1992; EPA, 1999; Wang and
Mauzerall, 2004). To be consistent with EPA’s O3

NAAQS benefits analysis and the cost benefit
analysis of the CAA, we use in this study the
exposure index SUM06, which is defined as (EPA,
1999)

SUM06ðppmv�hÞ ¼
Xn

i¼1

½CO3
�i for CO3

X0:06 ppmv;

(1)

where CO3
is the hourly O3 concentration (ppmv), i

is the hour index and n is the total number of
hours in 3 consecutive months of a growing season
for which the sum of hourly concentrations
greater than or equal to 0.06 ppmv is the highest.
For this study, we calculate SUM06 from July to

http://www.nass.usda.gov/
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September 2005. These months are typically char-
acterized by the highest surface O3 during the
growing season in the continental United States.
SUM06 emphasizes both exposure duration
and O3 concentrations over a critical level, but
weighs all high concentrations equally. There are
also other exposure indices that weigh O3 levels
differently (e.g., W126) or adopt a different critical
level (e.g., AOT40). The AQF system predicts
hourly O3 concentrations for each location, making
it feasible to calculate both mean and accumulative
exposure indices. As crop production data are
available at county level, the lowest level of
aggregation that could be used for calculating
O3 indices is also at the county level. We average
O3 concentrations of all related grid cells in one
county, weighed by area, to represent mean O3 level
in that county.

3.3. Crop yield loss

The relationship between crop yield and O3

exposure, or dose–response function, is usually
expressed based on a Weibull distribution (Wang
and Mauzerall, 2004)

Y ¼ Ane½�ðX=BÞC�, (2)

where Y is the estimated mean yield, X is the O3

exposure index (SUM06 in this case as defined in
Eq. (1)), A is the theoretical yield at reference O3

level, B is the scale parameter for O3 exposure and C

is the shape parameter affecting the change in the
predicted rate of loss.
Table 1

O3-induced soybean yield losses in the United States in 2005

Exposure-

response

functions

Scale factor

(B in Eq. (3))

Shape factor

(C in Eq. (3))

County

(number)

R

di

co

Minimum

responsea
299.7 1.547 3184 0–

Median

responseb
101.5 1.452 3184 0–

Maximum

responsea
131.4 1 3184 0–

For each county, a relative yield loss (RYL) value is calculated bas

functions. The exposure index used here is SUM06.
aAdopted from EPA (1999).
bAdopted from Wang and Mauzerall (2004).
cA RYL value of 0% means O3 concentrations are below 60ppbv a
Relative yield loss (RYL) due to O3 exposure
above the reference level can be derived from
Eq. (2)

RYL ¼ 1� eðX ref=BÞC�ðX=BÞC , (3)

where Xref is the estimated mean yield at the
reference exposure level. We rely on the original
sources of the exposure–response functions for the
reference level. The reference level (Xref) is 0 ppmv-h
for SUM06 (EPA, 1996). The values of scale and
shape parameters, B and C, are given by the chosen
dose–response functions derived from field research
(Table 1).
4. Results

4.1. Evaluation of model prediction of surface O3

using measurement data

Prior to using the predicted O3 data from the
AQF model, it is critical to evaluate the ability of
the AQF model to capture the spatial variability in
O3 concentrations. We compare model prediction of
O3 concentrations to observations from the AIR-
NOW monitoring network in the United States
(http://airnow.gov). The model was found to be able
to capture the 8-h daily maximum O3 with a mean
bias (MB) of 7.2 ppbv, a normalized mean bias
(NMB) of 14.7%, and a normalized mean error
(NME) of 23.3% when compared against 1150
surface O3 monitors. Although these monitors cover
rural areas, they are mostly urban and suburban
stations.
ange of RYL at

fferent US

untiesc (%)

National sum of

yield losses (million

bushels)

Percentage to total

soybean

production (%)

9 54 2

39 308 10

38 439 14

ed on the minimum, median, and maximum exposure–response

nytime over this county.

http://airnow.gov
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Table 2

Model evaluation statistics for hourly ozone (O3) concentrations at rural locations in summer 2005

O3 levels

(cut-off value)

Number of data

pairs

OBSmean

(ppbv)

MODmean

(ppbv)

RMSE (%) MB (ppbv) NMB (%)

(75–15)

NME (%)

(30–35)

R

All rural [O3] 811,156 34.7 44.1 17.8 9.3 26.9 40.9 0.67

[O3] 425 ppbv 608,563 44.9 50.0 14.2 5.1 11.5 24.7 0.57

[O3] 440 ppbv 302,756 55.4 58.6 12.9 3.1 5.7 17.7 0.47

[O3] 460 ppbv 61,341 71.4 72.9 11.9 1.6 2.2 12.2 0.33

Daily 1 h max [O3] 36,830 56.5 61.4 14.7 4.9 8.7 19.9 0.66

Data pairs of measurements and predictions are obtained from the AIRNOW network and from corresponding grid boxes in CMAQ.

Where [O3] is hourly ozone concentration, OBSmean is the mean of counted ozone observations, MODmean is the mean of predicted ozone

values, RMSE is the root mean-square error, MB is mean bias, NMB is normalized mean bias, NME is normalized mean error, and R is

correlation coefficient. The definition of these statistical matrices can be found at Eder et al. (2006).
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As the focus of this study is on O3 exposures in
agricultural areas, we further compare model
prediction against observations sorely from rural
sites to examine the capability of the AQF model to
reproduce rural O3 concentrations (Table 2). As
many crop exposure indices are based on a critical
level or threshold, we apply three cut-off values of
25, 40 and 60 ppbv for all data pairs (i.e., model-
observation data pairs containing measured con-
centrations below the cut-off value were not used in
the analysis). These cut-off values were chosen to
examine model performance at O3 levels corre-
sponding to background, AOT40 and SUM06
critical levels, respectively. We found that CMAQ
can reproduce O3 concentrations above the back-
ground level (25 ppbv) at rural sites with a NMB
value of 11.5% and a NME value of 24.7%. For O3

concentrations above the European critical level
(40 ppbv), the model can match measurements with
NMB of 5.7% and NME 17.7%. For O3 concen-
trations above the SUM06 critical level (60 ppbv),
the model can perform even better, with NMB of
2.2% and NME 12.2%.

4.2. Spatial variability in O3 concentrations and O3

exposures (SUM06)

Fig. 1 presents the seasonal mean of model-
predicted O3 concentrations between 0900 and
1600 h (local time) from 1 July to 30 September
2005. The 7-h averaging period is used here because
this time period was frequently chosen to derive
exposure–response functions in NCLAN studies
(EPA, 1996). High O3 concentrations are predicted
in both western and eastern United States. The
eastern high O3 region includes large areas in the
middle and upper eastern US, and the western high
O3 region extends from southern California to
Rocky Mountain region. Fig. 1 also shows that O3

concentrations in most urban centers across the
nation are relatively lower than surrounding areas.
The low O3 concentrations at urban areas result
from titration of surface O3 by freshly emitted NOx

(Ryerson et al., 2001; Tong et al., 2006). There also
exist large concentration gradients around the
titrated areas, from which ambient O3 concentra-
tions can vary considerably within a short distance.
The considerably lower O3 level in urban areas than
neighboring regions suggests that urban monitors
may be inadequate to represent O3 on a large scale,
especially in rural areas absent of urban emissions.
Thus, there is clearly a benefit to use the high-
resolution AQF data to calculate crop exposure to
O3 in rural areas.

Fig. 2a displays the spatial distribution of SUM06
calculated from hourly O3 concentrations in each grid
cell for the 3 consecutive months. While the spatial
pattern of SUM06 is similar to that of daytime O3

concentrations, there are significant differences. Unlike
the average O3 which takes into account contributions
from each hour equally, SUM06 emphasizes both
exposure duration and peak O3 concentrations
(Eq. (1)). Since the crop data are compiled at a county
level, we have converted the grid-based SUM06 into
county-average data using a geographical information
system software arcMap. The county-level O3 data
are computed from concentrations of individual grid
cell using an area-weighing method. The county-level
map (Fig. 2b) shows a similar spatial pattern to the
grid-level map, although the spatial variation in O3

exposures has been smoothed out due to averaging
over a larger area.
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Fig. 1. Seasonal mean of ambient O3 concentrations between 09:00 and 16:00 h (local time) over the continental United States from 1 July

to 31 September 2005.

D. Tong et al. / Atmospheric Environment 41 (2007) 8772–87848778
While we demonstrated here only the spatial
distribution of SUM06, similar maps can be
generated for other mean or accumulative exposure
indices, either by grid or by county, from hourly O3

data provided by the AQF system.
It should be noted that, in addition to horizontal

variability in O3 concentrations, consideration must
also be given to variations in the vertical profile of
O3 in the surface layer (EPA, 2006). The O3

concentrations in the lowest model grid cells
represent a volume average in the bottom layer,
which extends from surface to 38m above ground.
There can be substantial gradients in the surface
layer above the plant canopy (Joseph Pinto, US
EPA, personal communication, 2007), due to
deposition to the surface, uptake by crops, and
reactions with NO emitted from soil and hydro-
carbons from biogenic sources. Horvath et al.
(1995) reported that O3 concentrations decrease by
7% in going from a height of 4m down to 0.5m
above ground during unstable atmospheric condi-
tions. Using volume-average concentrations from
the CMAQ surface layer may lead to an over-
estimate of crop exposures to O3. The same over-
estimate is also applicable to monitor-based
approaches; inlets to ambient monitors are typically
at heights of 3–5m.
4.3. Relative yield loss (RYL) and yield losses

In this section we will use the calculated O3

exposures to estimate O3-induced yield losses in
soybean production. Table 1 shows the RYLs for
soybeans in 2005 calculated for all contiguous
counties using the calculated SUM06 values and
the three dose–response functions. RYL values vary
from 0% to 8.5% for the minimum response
function, which predicts the minimum damages in
response to a given level of O3 exposure, and from
0% to 38% for the maximum response function.
Larger RYL values are found at locations with
higher SUM06 values, as RYL almost monotoni-
cally increases with SUM06, although the relation-
ship is not linear in any of the dose–response
functions (Fig. 3). On a national average, O3

exposures cause a yield loss ranging from 2% to
14% for counties in which soybeans are planted.
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Fig. 2. Spatial distribution of SUM06 calculated from hourly O3 concentrations for the 3 consecutive months by grid (top) and county

(bottom).

D. Tong et al. / Atmospheric Environment 41 (2007) 8772–8784 8779
Table 1 also shows that, for the range of SUM06
values, a calculated RYL from the maximum
response function can be smaller than that from
the median response function. The median function
is taken from Wang and Mauzerall (2004) in
which a single exposure–response function was
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Fig. 3. Relationship between relative yield loss (in percentage) and O3 exposure levels (indicated by SUM06).

D. Tong et al. / Atmospheric Environment 41 (2007) 8772–87848780
constructed from the median Weibull parameters of
all studied cultivars. The derived median curve fits
between the minimum and maximum functions
provided by EPA (1999) (Fig. 3), but ascends atop
the maximum curve once the SUM06 exceeds a
certain level (58 ppmv-h). The SUM06 exposure
response functions for soybeans are developed by
reanalyzing the original experimental data from
NCLAN studies (EPA, 1999). While these functions
fit well under experimental conditions, they are not
necessarily representative of the full range of
variability in O3 exposures and crop response. By
extending the range of SUM06 to higher values,
Fig. 3 shows the derived maximum function does
not yield the highest response. For the maximum
SUM06 value calculated for a US county (62 ppmv-
h), the RYL calculated from the median response
actually is larger than that from the maximum
response, although the latter does give larger RYL
values for the national average and for counties
with a SUM06 value below 58 ppmv-h.

Next, we combine the calculated RYL and crop
production to derive the actual yield loss. The actual
yield loss is determined by the collocation of both
RYL and crop production. Fig. 4 depicts the spatial
distribution of soybean production in the United
States in 2005. Soybeans are planted primarily in the
Midwest and eastern United States; they are rarely
planted in the Western US counties. Therefore,
although high O3 exposure index was predicted in
the Rocky Mountain region, there is no actual
exposure to soybean in this region due to crop
absence. The collocation of high exposure level and
soybean production in the Midwest, however, leads
to large losses of crop yields in this region. As
shown in Fig. 5, the largest O3-induced yield losses
occur in the Midwest and the Mississippi Valley
regions. Although with high crop density, soybean
yield losses from O3 exposures in North and South
Dakota are small due to much lower ambient O3

levels.
Table 1 also presents aggregate O3-induced

soybean production losses in the United States
based on different response functions. By aggregat-
ing each county of the contiguous states, we
estimate a loss of 53.8 million to 438 million
bushels in soybean production, which account for
1.7–14.2% of total US soybean production in 2005.

5. Discussion and conclusions

Optimistic predictions of the impacts of a
changing environment on agriculture have been
made that rising carbon-dioxide levels are likely to
increase food production. Such conclusion was
drawn based on the impacts of global warming,
implying an increase in crop yields resulting from
longer growing seasons, higher temperatures, and
more active photosynthesis. Much of the work,
however, has ignored the potential damage of air
pollution to agricultural crops. This work explores
the potential benefits of using the long-term opera-
tional AQF data archives to estimate rural O3

exposure, which is critical to assessing the impacts
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Fig. 4. Total soybean production in the United States in 2005.
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air pollution has on crop production. We demon-
strate how the AQF data can be combined with
concurrent crop information to assess O3 damages
on soybeans in the United States. Exposure to
ambient O3 is estimated to have reduced US
soybean production by 10% on a national average
in 2005.

Similar assessment studies on O3-induced crop
damages have been conducted in the United States.
However, it is difficult to directly compare our
estimates to these studies because of considerable
variability in the sources and levels of O3 pollution,
the covered crops, adopted dose–response func-
tions, and the assumed economic environmental
conditions. The exposure–yield functions used in
this study are based the NCALN field experiments,
which employed an open-top chamber approach.
Concerns have been raised that alternations in
microclimate and rainfall within open top chambers
could modify plants responses to elevated O3

(Elagoz and Manning, 2005). A recent study using
the free-air gas concentration enrichment (FACE)
technology, which minimizes alternation of micro-
climate and the soil–plant–atmosphere continuum,
has validated previous chamber studies (Morgan
et al., 2006). In fact, their results suggest that when
treated under open-air conditions yield losses may
be even greater than the large losses already
reported in earlier chamber studies.

Using AQF data to estimate rural O3 exposure
can alleviate several important limitations faced by
existing approaches that rely primarily on data from
monitoring networks. These monitor-based ap-
proaches generally use spatial interpolation techni-
ques to estimate O3 concentrations at locations
without monitor data. Such estimates, however, are
highly uncertain for areas at large distances from
monitors, particularly for chemical species such as
surface O3 whose ambient concentrations can vary
considerably within a short distance (Rao et al.,
1997). In addition, most of the O3 monitors in the
US are deployed in urban/suburban areas or near
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Fig. 5. O3-induced soybean yield losses in the United States in 2005.
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major emission sources. As a result, observations
obtained from urban monitors may not be repre-
sentative of ambient O3 levels and duration in rural
areas (Chameides et al., 1998), making it question-
able to use urban-monitor dominated networks to
estimate rural O3 concentrations. Advantages of
using data from AQF include its ability to
reproduce spatial heterogeneity through full imple-
mentation of chemical and physical processes. The
high spatial and temporal resolutions of AQF
simulations also make it possible to capture peak
O3 and duration, which is important to assessing
crop exposure to O3.

The availability of real-time prediction of crop
exposure to O3 could be used to improve US crop
forecasts. Each month the USDA publishes crop
production forecasts in the United States (US
Department of Ariculture (USDA), 1999). As the
largest producer of many main crops, the United
States exports a large amount of agricultural
products into the world market (Adams and
Croker, 1989). Accurate and timely forecasts of
US crop production are important for both
domestic and international stakeholders to make
decision about marketing and investing. Currently,
the USDA crop forecast is based on planted acres
and yield forecast variables that include number of
fruit and weight per fruit. While information of
acreage and number of fruit is collected from farm
operations and field observations, the weight per
fruit for a crop is adopted from historic average
data. The forecast is adjusted by significant changes
in weather conditions, such as a killing freeze,
serious heat waves and beneficial rains (USDA,
1999), but does not take into consideration the
impact of air pollution on crop production pro-
spects. As shown in this study, exposures to air
pollutants can reduce soybean production by 10%
on a national average; high O3-induced yield losses
have also been reported for other crops at different
locations (e.g., EPA, 1996; Nali et al., 2002; Felzer
et al., 2004; Wang and Mauzerall, 2004; Wang et al.,
2005). As demonstrated in this work, the availability
of real-time O3 forecast data can be used to include
O3 impacts in the agricultural forecast system.
Incorporating O3 impact in crop production fore-
casts can potentially improve the results of agricul-
tural forecast by capturing the fluctuation in yield
losses due to air pollution.

Recently there has been extensive debate about
the possibility of replacing the current critical-level-
based exposure indices (level 1), such as SUM06 and
AOT40 (assuming damages only when O3 concen-
trations higher than 40 ppbv), by flux-orientated



ARTICLE IN PRESS
D. Tong et al. / Atmospheric Environment 41 (2007) 8772–8784 8783
limiting values (level 2) (Ashmore, 2005). There
exists strong evidence that incorporating the effects
of variable irradiance, temperature and vapor
pressure deficit on O3 uptake is necessary in order
to obtain a stronger relationship (Ashmore, 2005).
This argument is supported by the fact that O3 flux
to the leaf surface is significantly lower on days
with high O3 concentrations, due to lower atmo-
spheric conductivity, and lower stomatal conduc-
tance resulting from higher vapor pressure deficit
(Grünhage and Jäger, 1994). The level 2 approach
would include consideration of parameters such as
soil moisture conditions, vapor pressure deficit
(VPD), and temperature, which are critical in
converting O3 exposure to O3 dose (Wang and
Mauzerall, 2004). The air quality forecast model is
driven by meteorology data generated by a real-time
weather forecast system. The combination of weath-
er and air quality forecasts has the advantage of
providing information for not only level-1 values,
but also potential parameters required to estimate
level-2 values.
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