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Abstract

An operational model evaluation procedure is described to quantitatively assess the relative skill among several regional-
scale air quality models simulating various percentiles of the cumulative frequency distribution of observed daily maximum
8-h ozone concentrations. Bootstrap sampling is used to characterize the variability in the observed percentile values,
thereby providing a means for assessing whether the differences seen between model predictions are significant. The
procedure was designed to facilitate model inter-comparisons, since all that is needed to implement the procedure is for
each modeler to provide a listing of the daily maximum 8-h ozone concentration predictions for a summer season for grid
cells containing ozone monitors. Available ozone modeling results for the summer of 2002 from four regional-scale air
quality simulations are used here to illustrate the results that can be obtained. These simulations were conducted using the
Community Multi-Scale Air Quality (CMAQ) model with somewhat different setups. The modeling domains were
different, but there is a region in the central Eastern United States where ozone estimates from all four simulations are
available. Our objective is to describe the inter-comparison procedure, to illustrate the results obtained, and to stimulate
discussions on how similar procedures might be developed and improved in the future.
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1. Introduction processes results from the fact that deterministic
cause-and-effect is not sufficient to explain the
Envisioning atmospheric observations as result- observations (e.g., Lorenz, 1963, 1983; Julian and

ing from partly deterministic and partly stochastic Murphy, 1972; Fox, 1984; Yoden, 2007). Atmo-
spheric states exist for which very small changes in
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a summer season to represent an individual realiza-
tion from a population of possible outcomes. If we
could experience this exact same summer season
many times, the observed ozone values would
“scatter”” about an average value. Current models
attempt to simulate what is to be seen “on average”,
but uncertainties arise due to limitations in our
understanding of the relevant atmospheric processes
and imperfect input data (e.g., meteorology, emis-
sions, terrain, buildings, land-use). Thus, the devia-
tions between observations and model predictions
reflect naturally occurring variations (some of which
may be stochastic) that current deterministic models
do not explicitly simulate, as well as “uncertainties”
arising from limitations in our knowledge and
imperfect model input data.

Over the last several decades, there have been a
series of workshops and position statements dis-
cussing the evaluation of air quality models and the
importance of better characterization of their
uncertainties, e.g., Hanna and Gifford (1971), Fox
(1981, 1984), Demerjian (1985), Dabberdt et al.
(2004), but aside from Dabberdt et al. (2004), these
discussions have been more relevant to local-scale
than to regional-scale air quality modeling systems.
Suggestions for model evaluation methods have
been provided to account for the fact that models
do not predict stochastic variations seen in observa-
tions, but these also were developed primarily for
local-scale models, e.g., Venkatram (1979, 1983),
Weil et al. (1992), ASTM D 6589 (2000),> Dabberdt
et al. (2004).

While the ASTM Standard Guide for Statistical
Evaluation of Atmospheric Dispersion Model
Performance (D 6589) is focused on local-scale
models, the general principles discussed are relevant
for any operational model evaluation method,
namely: (1) model performance (or “skill”’) can be
assessed through model inter-comparisons; (2) air
quality models predict what is to be seen on average;
thus, comparisons should be conducted with a
spatial or temporal average of some feature in the
observed concentrations; and (3) operational model
evaluation procedures should provide a quantitative
test of whether differences seen between models are
significant.

Our purpose is to describe an operational model
evaluation procedure that meets the above objec-
tives and can be used to quantitatively assess the

2ASTM Standard Guide for Statistical Evaluation of Atmo-
spheric Dispersion Model Performance (D 6589).

relative skill of different regional-scale air quality
models in simulating the observed average daily
maximum 8-h ozone concentration. Hopefully, this
will stimulate discussions on how similar procedures
might be developed and improved. Operational
inter-comparisons provide increased communica-
tion among modeling groups, assist in timely
identification and correction of model errors,
encourage development of standardized benchmark
calculations and promote the development of
systematic records of progress in air quality model-
ing. Operational model evaluation methods involve
running the full modeling system and comparing
predicted and observed “features” in the meteor-
ological and concentration spatial and temporal
patterns. Such comparisons can reveal deficiencies,
but diagnostic evaluation methods are needed to
explore underlying causes for the differences seen
and to assess where improvements are warranted in
the modeling system.

In the following discussion, Section 2 outlines the
model comparison procedure and the rationale for
the manner in which comparisons are made of
modeling results with observations and between
modeling results. Section 3 discusses the data used
to illustrate the model comparison procedure.
Section 4 describes the analyses made to finalize
the model comparison procedure and illustrates the
comparison results that can be obtained. Section 5
provides a summary of the discussion.

2. Approach for operational modeling evaluation
2.1. What will we ask models to characterize?

Previous investigations (Hogrefe et al., 2001a, b,
2006; Biswas et al., 2001) have shown that current
regional-scale air quality models have skill in
replicating synoptic time-scale variations in the
observations, but lack skill in replicating short-term
variations (time scale of <11h) in the observations.
As discussed in Section 1, the lack of skill in
replicating exactly what is observed is due to
unresolved variations, which are envisioned to be
partly deterministic and partly stochastic. Another
reason for the differences seen between observations
at a particular site and simulation results is the fact
that the observations represent what is seen at a
particular point, whereas the models predict volume
average concentrations. Therefore, we expect mod-
els to properly characterize the large-scale varia-
tions, but we do not expect models to properly



J.S. Irwin et al. | Atmospheric Environment 42 (2008) 5403-5412 5405

characterize the fine-scale and short-lived features.
A goal of our model comparison procedure is to
incorporate into the assessment procedure our
“uncertainty’’ in characterizing from the available
observations that which the models are attempting
to simulate, namely what is to be seen “on average”.

The United States Environmental Protection
Agency (US EPA) design value® for 8-h average
ozone is equal to the average of the 4th highest
annual daily maximum 8-h average value for the
most recent consecutive 3 years. A monitoring
site must have a design value <85 parts per billion
(ppb) to be considered to be in compliance with
the ozone National Ambient Air Quality Standard.
This ozone standard places emphasis on assessing
regional-scale model’s capability in simulating
the extreme values in the daily 8-h ozone cumulative
frequency distribution. The 4th highest value
would be the 96th percentile value in the cumulative
frequency distribution for a 92-day summer
season.

To be in balance with the state-of-science in
regional-scale air quality modeling systems, we
examine the models’ ability to replicate average
percentile values (ranging from the 5th to the 95th
percentiles) in the cumulative frequency distribution
of daily maximum 8-h ozone values at each site for
the summer season. We limit our comparisons to
the 5th through the 95th percentiles, since we have
only one summer secason for analysis, which
provides few values for characterization of the
lowest and highest percentile values. For some
purposes, the focus will be on the 95th percentile,
but looking at other percentiles provides a more
complete view of model performance and may
reveal other strengths and weaknesses in a model
run’s performance. The 95th percentile is consistent
with EPA’s focus on the 96th percentile for NAAQS
compliance purposes, as explained above.

The comparison procedure is to be conducted at
each monitoring site within the domain that is
common to all the modeling results being compared.
This provides an assessment of relative modeling
skill at each monitor, which can then be summar-
ized over all monitors in the assessment.

In the United States, a design value is the mathematically
determined pollutant concentration at a particular site that must
be reduced to, or maintained at or below the National Ambient
Air Quality Standard to assume attainment. The design value
tells us how a particular site or area compares with the National
Ambient Air Quality Standards (NAAQS).

2.2. Motivation for bootstrap methods

A direct comparison of the selected percentile
values could be done, but a more informed
comparison would address our uncertainty in
characterizing the average cumulative frequency
percentile values from the available observations.
This allows us to assess whether the differences seen
between models are significant given the uncertainty
we have in estimating the observed average percen-
tile values. One means to estimate the uncertainty in
population characteristics derived from an available
set of observations is to employ bootstrap sampling.

Bootstrap sampling involves building pseudo-sets
of observations by randomly sampling the available
set of observations with replacement. An improve-
ment over sampling with replacement from the
entire set of 92 ozone 8-h average values observed
over a summer season at each site is to sample 30
values with replacement from each month. This
stratification captures month-to-month seasonal
variations. When we select an observed day’s 8-h
average ozone value to be included in a bootstrap
sample, we also select the corresponding modeling
results for the selected day; this is called concurrent
sampling in ASTM D 6589. Concurrent sampling
links the model’s simulation results to observations
selected for inclusion in a given bootstrap sample.
Concurrent sampling allows us to assess model skill
and bias which may vary (e.g., as function of
synoptic situation or average ozone concentration
over the domain).

By randomly sampling each month’s results with
replacement, we are simulating the effects of
experiencing a different collection of synoptic events
within each month, and thus developing an estimate
of the variability that might occur if we could
experience this exact same summer season many
times. The conclusions of the analysis are limited to
the length of the data record and coverage of the
ozone monitors used in the comparisons.

A question left for empirical resolution in Section 4
is how many bootstrap replications are needed in
order for the final comparison results to be relatively
insensitive to additional bootstrap replications being
added to the analysis.

2.3. Block sampling
Autocorrelations in a time series of values

adversely affects the estimates of means, cumulative
frequency percentile values, and other similar
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measures. In the context of a model evaluation
exercise, understanding the variability of these
estimates requires taking this correlation into
account in our bootstrapping methodology. For
instance, a larger variance associated with the
estimates of population characteristics would imply
that differences between modeled and observed
characteristics would need to be larger before such
differences would be deemed of consequence.

One means to capture the effects of day-to-day
(serial) correlation in the observations when sam-
pling a time-series of observations is to select short
blocks (e.g., 2 consecutive days (pairs), 3 consecu-
tive days (triplets) of values, see Wilks (1997) and
ASTM D 6589 (2000)), rather than selecting
independent samples with replacement. A question
left for empirical resolution in Section 4 is the length
of the block sample.

2.4. Comparing results from several model runs

On the basis of the following discussion, assume we
have created 500 “summer seasons” of maximum daily
8-h ozone values, with 90 “days” in each summer
season, having sampled 30 days with replacement from
each of the summer months of June, July and August.
Sorting each season’s values from lowest to highest, we
have 500 cumulative frequency distributions of 8-h
ozone values (observations and estimates from each
model run in the comparison).

Determining which of several model run predic-
tions is best at characterizing an observed feature,
and then whether results from other models
differ significantly, is not trivial, as each model
application has different confounding complica-
tions. Regional-scale photochemical models track
and predict a large number of chemical species and
a desirable definition of “best”” would likely be that
model run that routinely is closest to several
chemical species deemed of importance simulta-
neously in comparison to other model runs. For this
demonstration, we will make the simplest of
comparisons at each monitoring site, namely, using
only the percentile values of the cumulative
frequency of maximum daily 8-h average ozone
values. Admittedly, this offers the best chance of
good correspondence resulting from compensating
errors. However, our purpose is to illustrate an
operational model evaluation technique for regio-
nal-scale models that is more quantitative than thus
far has been discussed in the literature and that can
be further developed in the future.

In this initial stage of seeing which of the
modeling results is closest “on average” to what is
observed, we will compute from each of the boot-
strap “‘seasons’ the absolute value of the difference
between the modeled and observed percentile value,
call this abs(Diff-1). We will define the best
performing model run (“Base’) for a particular
percentile value, as the model run with the smallest
median value for the 500 values of abs(Diff-1),
where Diff-1 equals the observed percentile value
minus the modeled percentile value. We chose to use
the median as it is a robust estimate of the central
tendency of a distribution of values and is less
influenced than a mean value by outlying values in
the tails of the distribution.

It is possible that even though the Base model has
the smallest median for abs(Diff-1), it may not
compare well with the observed percentile value. To
investigate this, for each percentile of interest, we
inspect the distribution of Diff-1 differences for the
Base model. If the value of zero is encompassed
between the 5th and the 95th percentile of the
distribution of 500 Diff-1 differences, than we
conclude that for the Base model run the difference
in modeled and observed values for this percentile is
of no consequence.

We know from the analysis of the 500 Diff-1
values that the Base model run is closest to what is
observed ““on average”. What we wish to assess now
is whether the results from another model run are
essentially the same as those produced by the Base
model run. In essence, we are looking for a relative
measure of the differences, where sometimes the
Base model’s results will be closest to that observed
and at other times another model run’s results will
be closest to that observed.

For this comparison, we inspect the distri-
bution of 500 Diff-2 values for each of the other
model runs, where Diff-2 = abs(observed-Base)-
abs(observed-model). If the value of zero is en-
compassed between the 5th and the 95th percentile
of the distribution of 500 Diff-2 differences for a
model run, than we conclude that for this model run
differences with the Base modeling results for this
percentile are of no consequence.

2.5. Summarizing results from multiple monitors

The three comparisons outlined above are con-
ducted at each site for each percentile in the
cumulative frequency distribution of the maximum
daily 8-h ozone values, namely: (1) which model run
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is selected as Base; (2) whether the Base model’s
results compare favorably with that observed; and
(3) whether the other modeling results are compar-
able or differ with the Base model run. We suggest
as a summary statistic the number of times a model
run is selected as the Base or is deemed to be
performing as well as the Base model run for each
percentile. For ease in later discussions, this
summary statistic is referred to as the “Overall Skill
score’.

451 I
? 401 -
Q
()}
[0)
z
()
.E 35 3
T
—

30 1 3

M
254 . = . _
-90 -85 -80 -75 -70
Logitude (degrees)

Fig. 1. The 242 monitoring locations that have sufficient
observed hourly ozone values for analysis and also have modeling
results from all four model simulations.

Table 1
Summary of setup configurations for model simulations

3. Modeling runs

Available for illustration of the type of results
that can be obtained are ozone modeling results for
the summer of 2002 from four regional-scale air
quality simulations. These simulations were con-
ducted using Version 4.5 of the Community Multi-
Scale Air Quality Model (CMAQ) (Byun and
Schere, 2006) by different modeling groups for
various purposes. The modeling domains were
somewhat different but there is a region in the
central Eastern United States where we have ozone
estimates for 242 monitoring sites from all models
(see Fig. 1). There were differences in the setup of
these model runs (see Table 1). For instance, the
output grid size was 12-km for the first three model
runs and 36-km for the fourth model run listed.
Two of the simulations were conducted using
identical processing of the meteorology, consistent
processing of the emissions, and the same version of
CMAQ. The only difference was the use of the
CB-1V chemical mechanism (Gery et al., 1989) in
one model run and the use of the SAPRC-99
chemical mechanism (Carter, 2000a, b) in the other
model run. To develop a clearer assessment of
relative modeling skill, we might desire comparison
runs conducted with more similar treatments
of meteorology and emissions (where possible)
and with modeling results over a large extent of the
United States. However, our focus here is to describe
and illustrate a procedure for model inter-comparisons.

¢ Run 1 Run 2 Run 3 Run 4
Meteorology MMS5/FDDA MM5/FDDA MM5/FDDA MM5/FDDA
Grid size (km) 12 36 12 12
Emissions Ozone Transport National Emission National Emission National Emission
Commission 2002 BaseB1 Inventory 2001 (no major  Inventory 2001 Grown Inventory 2001 Grown
point source CEM* (SMOKE? for vehicle (SMOKE for vehicle
emissions) emissions and CEM for emissions and CEM for
major point sources) major point sources)
Boundary GEOS-CHEM® CMAQ Default CMAQ 36km CMAQ 36km
conditions 36 km
CMAQ version 4.5 4.5 4.5 4.5
Chemical CB-1V SAPRC-99 CB-1V SAPRC-99
mechanism
Reference Ozone Transport Nolte et al. (2008) Gilliland et al. (2008), Gilliland et al. (2008),

Commission (2007)

Godowitch et al. (2008)

Godowitch et al. (2008)

4CEM: continuous emission monitoring (http://www.epa.gov/ttnnaaqs/ozone/areas/etscem.htm).
®SMOKE: Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling System (http://www.smoke-model.org/index.cfm).
‘GEOS-CHEM: global model of atmospheric composition driven by assimilated meteorological observations from the Goddard Earth
Observing System (GEOS) (http://www-as.harvard.edu/chemistry/trop/geos/index.html).
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4. Results and discussion
4.1. Example of results from a single site

Fig. 2 depicts the variation in the daily maximum
8-h ozone value over the 2002 summer season as
observed at a monitoring site near Marion, KY (Site
ID 050350005, latitude 35.197°N and longitude
—90.191°E). The variations seen at this site are
typical of that seen at other sites, as (1) there is some
autocorrelation in the values from 1 day to the next
(at this site the correlation coefficient, r, for a lag of
1 day is 0.68), and (2) there are large swings in the
values resulting from synoptic-scale forcing, reflect-
ing changes in air mass.

Fig. 3 depicts the results obtained from con-
structing 500 bootstrap summer seasons for the
monitoring site near Marion, KY. For this analysis,
we sampled 15 pairs of values from each month to
create 90-day replicate seasons for analysis. From
the 500 bootstrap summer seasons, we can derive
500 modeled and observed values for each percentile
of interest. The bars in Fig. 3 illustrate the
variability in the observed percentile values as
estimated by the bootstrap sampling.

For the purposes of illustrating how the evalua-
tion procedure works, we will show how results
would be generated for comparisons of modeled
and observed average 90th percentile values. Table 2
lists the averages, medians and standard deviations
derived for the observed and modeled 90th percen-
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Fig. 2. Daily maximum 8-h ozone observed at a site near
Marion, KY for the summer of 2002.
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Fig. 3. Cumulative frequency plot of average daily maximum 8-h
ozone observed and predicted derived from 500 bootstrap
summer seasons at a site near Marion, KY for the summer of
2002. The error bars depict plus and minus two times the
standard deviation about the computed observed average
percentile values.

tile values. Also listed in Table 2 are the average and
median of the absolute value of the difference
between the modeled and observed percentile
values, abs(Diff-1). From the results presented in
Table 2 for this site near Marion, KY, the best
performing model (Base model) is determined to be
Run 4 for characterizing the 90th percentile of the
cumulative frequency of maximum daily 8-h ozone
values (smallest median value for abs(Diff-1)).

Fig. 4(A) illustrates the comparison for observed
and modeled 90th percentile values of the distri-
bution of the Base model’s results with the
observations (Diff-1 values). The value of zero is
encompassed between the 5th and 95th percentiles
of the distribution of Diff-1 values. It is concluded
that Base model run’s estimates of the average value
for the 90th percentile value are similar to that
observed.

Fig. 4(B) illustrates the comparison for observed
and modeled 90th percentile values of the distribu-
tion of Diff-2 values, where we are testing to see if
the results of the other model runs differ with the
Base model’s results. The value of zero is encom-
passed between the 5th and 95th percentiles of the
distribution of Diff-2 values for Run 1 results, but
such does not occur for the Run 2 or Run 3 results.
It is concluded that Run 1 is performing as well as
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Table 2

Summary of results for the 90th percentile in the cumulative frequency distribution for the site near Marion, KY

Observed Run 1 Run 2 Run 3 Run 4
Percentile from data 81.6 76.8 94.5 69.6 82.1
Average of boot replications 80.67 75.69 93.21 69.14 81.29
Standard deviation of boot replications 3.90 3.15 3.51 4.34 5.25
Median of boot replications 78.40 76.50 93.85 67.10 80.40
Average of abs(Diff-1) 5.05 12.55 11.53 2.69
Median of abs(Diff-1) 5.00 12.85 12.40 2.30

Listed are the 90th percentile values computed from the data and statistics of the 90th percentile derived from 500 bootstrap summers. All

values are ozone concentration values (ppb).
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Fig. 4. Comparison of modeling results with observations for the
90th percentile value in the cumulative frequency of daily maximum
8-h ozone for the site near Marion, KY derived from 500 boot
sample summer seasons. The line in each box is the median; the box
depicts the inter-quartile range, and the extended bars depict the
range of values from the 5th to the 95th percentile of the
distribution of differences: (A) distribution of (Obs-Base) values;
(B) distribution of Diff-2 = abs(observed-Base)—abs(observed-
model) values.

the Base model run, and Run 2 and Run 3 are not
performing as well as the Base model run in
predicting the average 90th percentile value.

4.2. Example of summarizing results across all
monitors

Fig. 5 provides a quantitative summary of the
“Overall Skill score’ results obtained over all 242
monitoring locations. These results suggest Run 1 is
performing as well or better than any other model
run from the 5th through the 70th percentile values.

When Model Is "Base"
Or AsGoodAs "Base" (%)

O TT T T T T[T [T T I T [T T T ToTT|

5 10 20 30 405060 70 80 90 95
Percentile In Distribution (%)

Fig. 5. Summary over 242 monitoring sites of which model is
selected as Base or is deemed to be performing as well as the Base
model run.

These results are intriguing given that Run 1 and Run
3 are employing CB-IV; Run 2 and Run 4 are
employing SAPRC-99, and the only difference
between Run 3 and Run 4 is the choice of chemical
mechanism. One obvious conclusion is that SAPRC-
99 is producing higher ozone values than CB-IV when
all other factors are equal, which confirms findings by
Gilliland et al. (2008) and Sarwar et al. (2008). Given
that different modeling groups constructed the emis-
sion inventories for Run 1 and Run 3, a diagnostic
assessment of emissions might reveal answers for the
differences seen, and whether certain emission char-
acterization practices used by one group might be
recommended more generally. However, it is beyond
the scope of our discussion to explore these questions,
as they represent major diagnostic research endeavors
in themselves.
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There are two questions yet to be resolved in
defining the bootstrap sampling procedure: (1) Are
the comparison results sensitive to autocorrelation
in the ozone time series, and if so, how long of a
block length is needed?; (2) How many bootstrap
replications should be used in comparison analyses?

4.3. Sensitivity of results to block length

To investigate day-to-day (serial) correlation
effects, an analysis of summer season 2002 ozone
values for the 242 monitors with coverage over the
Eastern United States was conducted. It was
determined that the autocorrelation coefficient (r)
of lag 1 (correlation between current day and
previous day values) of daily maximum 8-h average
daytime ozone values is on average over all sites
approximately 0.52 (standard deviation of 0.07)
from 1 day to the next and rapidly decreases as the
lag separation in days increases (Fig. 6). The values
of r ranged from a minimum of 0.23 to a maximum
of 0.73, and we detected a slight correlation with
latitude (correlation coefficient, >, of 0.2), being
largest for the southern states and decreasing as
latitude increases.

To maintain the approximate effects of day-to-
day correlation structure in the observations when
bootstrap sampling a month, we can select short
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Fig. 6. Correlation in daily maximum 8-h ozone values from 1
day to the next (lag of 1 day), and out to a lag of 3 days. Averages
are computed over 242 sites and error bars depict plus and minus
two times the standard deviation about the computed averages.

blocks (e.g., 2 consecutive days-pairs, 3 consecutive
days-triplets) of values rather than selecting inde-
pendent samples with replacement. A formal
analysis of the lagged correlations could be used
to select the length of the block (Wilks, 1997). We
decided to employ a more ad hoc approach, in which
we investigate the sensitivity of our final results to
various choices of block length. To investigate this,
three sensitivity runs were made, in which the
sample block length increased successively from
sampling independent days (block length of one), to
pairs of days, to triplets of days (block length of
three) from each month. These analyses were
conducted using 500 bootstrap replicates. For each
percentile from the 5th through to the 95th, we
tracked the change in the “Overall Skill score”,
namely the number of times a model run is selected
as the Base or is deemed to be performing as well as
the Base model run, as the sample block length
increased. If the comparison results are sensitive to
autocorrelation effects, the Overall Skill score for
each model should increase as sample block length
increases. This should occur because if the auto-
correlation in the time series is sufficient, the
variance of sample estimates of the percentile values
would increase as the sample block length increases,
and larger variances of the sample estimates of the
percentile values would make it more likely for a
model run to be deemed to be performing as well as
the Base model run (all other factors being equal).

Inspection of the results revealed that as the block
length increases there was a small incremental
increase in the Overall Skill score for all of the
models as the block length increased. The increase
in the Overall Skill score (averaged over all models
and percentiles) as the block length increased from a
sample block length of one to a sample block length
of two was 0.86%. The increase in the Overall Skill
score (averaged over all models and percentiles) was
1.10% in going from a sample block length of one
to a sample block length of three, which shows that
most of the autocorrelation effects are addressed
with a sample block length of two.

4.4. Sensitivity of results to number of bootstrap
replications

Fig. 7 summarizes a sensitivity test to assess the
variability of the summary results to the number of
bootstrap replications (summer seasons) generated
for analysis. For this analysis the evaluation
procedure was run 25 times (with different random
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four models runs as a function of sample boot size of summer
seasons generated for analysis. Results are shown for the 10th,
30th, 50th, 70th and 90th percentiles in the cumulative frequency
of daily maximum 8-h ozone values. The “Overall Skill score” is
the number of times a model run is selected as the Base or is
deemed to be performing as well as the Base model run over the
242 monitoring sites.

seed start values) for each percentile with a pre-
defined boot replication size. The standard devia-
tion in the Overall Skill score for each model was
computed from the 25 runs for each percentile.
These 25 runs and subsequent computations were
then conducted for increasingly larger boot replica-
tion sizes. As seen in Fig. 7, the variability in the
Overall Skill score counts for each percentile
decreases as the number of boot replications
increases. If would appear that having bootstrap
replications on the order of 500-750 reduces the
variability in the summary counts to on the order
+2 or less. Larger sample sizes can reduce the
variability somewhat, but such reductions are likely
of no practical consequence.

5. Summary

An operational model inter-comparison proce-
dure is described that quantitatively assesses the
relative skill among several regional-scale air quality
model simulations to predict various percentiles in
the cumulative frequency distribution of observed
daily maximum 8-h ozone concentration values. The
procedure determines at each monitoring site for each
percentile in the cumulative frequency distribution

which one of several model runs is performing best,
called the Base model run, and then determines
whether the Base model run’s prediction differ with
the observed value, and whether the results for the
other model runs differ with the Base model run. In
our discussion, we illustrated the inter-comparison
procedure using daily maximum 8-h ozone values. A
pragmatic feature of the inter-comparison procedure
is that it requires a minimum of data to be shared
between modeling groups, namely a listing of each
model run’s predictions of daily maximum 8-h
average ozone values for a summer season. The
procedure would work as well for daily maximum 1-h
ozone values. A future extension of this procedure
might include a definition of “‘best performing model”
as that model run that routinely is closest to several
chemical species deemed of importance simulta-
neously in comparison to other model runs. Another
future extension of this procedure might investigate
methods for assessing performance for the more
extreme percentile values (e.g., Rao et al., 1985).

The variability in the observed cumulative fre-
quency distribution of daily maximum 8-h ozone
values is estimated using bootstrap sampling. The
sampling is conducted in a manner to capture
autocorrelation inherent in the observations, and
effects of model-to-observations correlations and
model-to-model correlations. It was determined that
suitable comparison results can be obtained through
the use of bootstrap sampling of pairs of days and
with 500-750 bootstrap replications of pseudo
summer seasons.

The daily maximum 8-h average ozone values are
estimated by a complex modeling system that
attempts to characterize emissions, meteorology,
transport, chemical boundary conditions, and fate
of the emissions. Operational inter-comparisons as
described here cannot provide information regard-
ing whether “better correspondence with observa-
tions” is due to better science or due to offsetting
biases. Operational model evaluations are not a
substitute for diagnostic model evaluations, but
operational inter-comparison of several models can
provide information on whether model results are
comparable in an overall sense, and perhaps may
provide ideas where diagnostic evaluations might
prove insightful. It is our hope that this discussion
will encourage the development of standardized
benchmark calculations and promote systematic
records of progress of air quality modeling.

Disclaimer: The research presented here was per-
formed under the Memorandum of Understanding
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between the US Environmental Protection Agency
(EPA) and the US Department of Commerce’s
National Oceanic and Atmospheric Administration
(NOAA) and under agreement number DW
13921548. John S. Irwin collaborated in the research
described here under contract EPA Order No.
EP06D000631. This work constitutes a contribution
to the NOAA Air Quality Program. Although it has
been reviewed by EPA and NOAA and approved
for publication, it does not necessarily reflect their
policies or views.
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