Jump to main content or area navigation.

Contact Us

Climate Change

Climate Change Indicators in the United States


Key Points
  • Since 1901, the average surface temperature across the contiguous 48 states has risen at an average rate of 0.14°F per decade (1.4°F per century) (see Figure 1). Average temperatures have risen more quickly since the late 1970s (0.36 to 0.55°F per decade). Seven of the top 10 warmest years on record for the contiguous 48 states have occurred since 1998, and 2012 was the warmest year on record.
  • Worldwide, 2001-2010 was the warmest decade on record since thermometer-based observations began. Global average surface temperature has risen at an average rate of 0.15°F per decade since 1901 (see Figure 2), similar to the rate of warming within the contiguous 48 states. Since the late 1970s, however, the United States has warmed faster than the global rate.
  • Some parts of the United States have experienced more warming than others (see Figure 3). The North, the West, and Alaska have seen temperatures increase the most, while some parts of the Southeast have experienced little change. However, not all of these regional trends are statistically significant.
Background

Temperature is a fundamental measurement for describing the climate, and the temperature in particular places can have wide-ranging effects on human life and ecosystems. For example, increases in air temperature can lead to more intense heat waves, which can cause illness and death, especially in vulnerable populations. Annual and seasonal temperature patterns also determine the types of animals and plants that can survive in particular locations. Changes in temperature can disrupt a wide range of natural processes, particularly if these changes occur more quickly than plant and animal species can adapt.

Concentrations of heat-trapping greenhouse gases are increasing in the Earth's atmosphere (see the Atmospheric Concentrations of Greenhouse Gases indicator). In response, average temperatures at the Earth's surface are rising and are expected to continue rising. However, because climate change can shift the wind patterns and ocean currents that drive the world's climate system, some areas experience more warming than others, and some might experience cooling.

About the Indicator

This indicator examines U.S. and global surface temperature patterns from 1901 to the present. U.S. surface measurements come from weather stations on land, while global surface measurements also incorporate observations from buoys and ships on the ocean, thereby providing data from sites spanning much of the surface of the Earth. For comparison, this indicator also displays satellite measurements that can be used to estimate the temperature of the Earth's lower atmosphere since 1979.

This indicator shows anomalies, which compare recorded annual temperature values against a long-term average. For example, an anomaly of +2.0 degrees means the average temperature was 2 degrees higher than the long-term average. This indicator uses the average temperature from 1901 to 2000 as a baseline for comparison. Annual anomalies are calculated for each weather station, starting from daily and monthly average temperatures. Anomalies for broader regions have been determined by dividing the country (or the world) into a grid, averaging the data for all weather stations within each cell of the grid, and then averaging the grid cells together (for Figures 1 and 2) or displaying them on a map (Figure 3). This method ensures that the results are not biased toward regions that happen to have many stations close together.

Indicator Notes

Data from the early 20th century are somewhat less precise than more recent data because there were fewer stations collecting measurements at the time, especially in the Southern Hemisphere. However, the overall trends are still reliable. Where possible, the data have been adjusted to account for any biases that might be introduced by station moves, development (e.g., urbanization) near the station, changes in instruments and times of measurement, and other changes.

Data Sources

The data for this indicator were provided by the National Oceanic and Atmospheric Administration's National Climatic Data Center, which maintains a large collection of climate data online at: www.ncdc.noaa.gov/oa/
ncdc.html
. Surface temperature anomalies were calculated based on monthly values from a network of long-term monitoring stations. Satellite data were analyzed by two independent groups—the Global Hydrology and Climate Center at the University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS)—resulting in slightly different trend lines.

Technical Documentation

Basic Information Greenhouse Gas Emissions Science What EPA is Doing What You Can Do
blank Overview of Gases Overview Evaluating Policy Options,
Costs, and Benefits
At Home
Newsroom Sources of Emissions Causes of Climate Change Regulatory Initiatives On the Road
blank Global Data Indicators of Climate Change Voluntary Programs In the Office
Related Links National Data Future Climate Change State, Local, and Tribal Partnerships At School
blank Facility Data blank blank blank
Glossary Individual Calculator blank blank Climate Connections
blank blank Climate Change Impacts and Adapting to Change Partnering Internationally Clean Energy
Students' Site blank blank blank Climate and Transportation
blank blank blank blank Climate and Water
blank blank blank blank Climate and Waste
blank blank blank blank EPA Climate Science Research

Jump to main content.