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INTROBUECITGN

«EPA ToxCast™ Program aims to predict hazard,
characterize toxicity pathways, and prioritize the
toxicity testing of environmental chemicals.

*Phase | ToxCast™ has profiled 320 well-
characterized chemicals (primarily pesticides) in
524 endpoints, including biochemical assays of
protein  function, cell-based transcriptional
reporter assays, multi-cell interaction assays,
transcriptomics on primary cell cultures, and
developmental assays in zebra fish embryos. Most
of these compounds have been tested also in 76
developmental toxicity, multi-generation studies,
and sub-chronic and chronic rodent bioassays.

*As part of ToxCast™ , Toxicity Reference
Database (ToxRef DB) includes the following
historical toxicity data from 26 in vivo
chronic/cancer endpoints in rats and mice for 310
food-use pesticides.

«16 rat endpoints and 10 mouse endpoints.

«Each endpoint has both Lowest Effect Level (LEL)
(range of -3.99 ~ 1.07 for -loglO(LEL)) value and
classification index of non-toxic/toxic.

«On average, there are about 18% toxic compounds for
each endpoint.

*Cumulative toxicity indices were also created from

some ToxCast™ endpoints, such as "toxic in
rats/mouse”, "nonspecific tumorigenicity", and
"toxic in cell viability".
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Figure 1 Correlations of 26 endpoints in ToxRef database. Each blot
represents the correlation between the toxicity index for all ToxRef
compounds of two endpoints.
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Figure 2 Scheme of the
QSAR studies on ToxCast
in vitro and in vivo toxicity
data.
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Figure 3 Modeling workflow. Models were developed using kNN QSAR
approach, Dragon structural descriptors, and 5-fold external cross—
validation. Structural outliers were removed from training sets.
Abbreviations: QSAR - Quantitative Structure-Activity Relationships; kNN

- K-Nearest Neighbors; AD - Applicability Domain.

QSAR ON INDIVIDUAL ENDPOINTS

Table 1 QSAR model parameters for some of the 26 ToxRef endpoints.

Endpoint #of Dragon #of #ofData CCReest SE SP
Descriptors Models  Sets
Rat Liver
Hypertrophy 381 11 142 0.70 0.60 0.80
Rat Kidney
Nephropathy 381 54 78 0.79 1.00 057
Rat Cholinesterase
Inhibition 381 1228 94 0.80 0.80 0.80
Mouse Tumorigen 381 240 191 0.71 0.75 0.67
Mouse Multi-gender
Tumorigen 381 68 105 0.89 1.00 0.78
Mouse Multisite
Tumorigen 381 22 44 0.67 1.00 0.33
Multispecies
Tumorigen 381 27 87 081 1.00 0.63

[ QsAR ON TOXICITY INDEX ENDPOINTS |

Table 2 Results of QSAR models on toxicity index endpoints. 5-fold
external cross validation was used; mean CCR, SE and SP are
shown. Abbreviations: CCR: Correct Classification Rate; SE:
sensitivity; SP: specificity .

Non-  Toxic
Category Endpoints toxic  Comp Descrip Model Aver. Aver. Aver.
Name |Involved# Comp# # tor# # CCR SE sP
total 26 52 240 705 73 058 097 0.19
rat 16 86 206 705 80 051 084 0.18
mouse 9 143 149 705 408 0.6 059 0.61
tumor 7 132 160 705 97 051 056 045
rat liver 4 184 108 705 168 058 0.38 0.77
mouse
liver 4 170 122 705 116 063 052 0.73
Cell
viability 7 123 98 737 104 0.81 0.84 0.81

HARD-TO-PREDICT COMPOUND

Table 3 Example of a hard-to-predict compound and its three nearest
neighbors. The in vitro and in vivo toxicity profiles are compared.
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CORRELATION BETWEEN IN VIVO AND IN

VITRO ASSAYS IN TOXCAST

Figure 3 Matthews correlations of in vivo (y axis) vs. in vitro (x axis)
endpoints in ToxCast. In total there are 101 (75+26) in vivo and 409 in
vitro endpoints. The correlations were calculated using data on 320
ToxCast compounds.

DISCIUSSIONS

*QSAR models based on chemical structural
descriptors are predictive for certain toxicity
endpoints (e.g., mouse tumorigen).

*Removing structural outliers and using the
applicability domain threshold can effectively
increase the prediction power of QSAR models.

in vivo toxicity profiles for some compounds were

difficult to predict. A possible reason is that they
have fairly different in vitro toxicity profiles as
compared with their structural nearest neighbors. It
appears that chemical structural descriptors alone
may be insufficient to enable accurate prediction of
in vivo toxicity profiles. In order to obtain better
predictions for these compounds, their in vitro
toxicity profiles may need to be incorporated as
biological descriptors into modeling process.

* Future studies should concentrate on improving
the prediction power of models taking into account
the entire chemical structure — in vitro — in vivo
data continuum. We shall consider novel
methodologies combining chemical and biological
descriptors for building hybrid QSAR models as
well as approaches such as multi-task learning.

CONCIEUSIGNS

*We have developed predictive QSAR models based
on chemical structural descriptors for some of the
toxicity endpoints.

«In vitro data should be used to help improve the
prediction power of QSAR models on in vivo
toxicity endpoints.
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