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I. ABSTRACT
Ligand-activated nuclear receptors regulate many biological 
processes through complex interactions with biological 
macromolecules.  Certain xenobiotics alter nuclear receptor signaling 
through direct or indirect interactions.  Defining the mode of action 
(MOA) of such xenobiotics is difficult due to the many perturbations in 
cellular signaling networks resulting from exposure.  Microarray data, 
when collected in a dose-response setting, is a rich source of 
information for determining the MOA.  Analysis presents several 
challenges: namely, it is difficult to choose a single quantitative model 
that can be applied to each gene.  We have utilized a method for
analyzing microarray dose-response data that is flexible, while still 
capable of capturing the complexity of the responses.  Rat primary 
hepatocytes were incubated with solutions of 0, 10, 30, and 100 μM of 
4-nonylphenol, mono-(2-ethylhexyl) phthalate (MEHP), myclobutanil, 
propiconazole, or triadimefon or 1, 3, and 1 μM of DE-71, PCB-118, or 
PCB-153.  In all cases, the control consisted of the 1% DMSO dosing 
solution.  RNA was extracted 72 hrs after dosing and analyzed using 
Affymetrix Rat Genome 230 2.0 arrays.  Natural cubic splines were fit 
to the dose-response data for each gene.  Statistical significance of 
each fit was assessed using bootstrap analysis.  A set of curve shape 
and intensity features was extracted from the fit for each gene found 
to exhibit a significant dose-response.  Features included first-
derivatives, maximum/minimum expression, dose at 
maximum/minimum expression, and area under the curve.  Using 
subsets of curve features, genes were first partitioned into groups that 
responded with a similar shape then into groups with similar 
expression intensities.  Gene groups were subjected to functional and 
pathway analysis.

II. INTRODUCTION
Dose-response analysis is fundamental to the practice of toxicology. 
Measuring the response of an organism or bioassay to increasing 
doses of a xenobiotic is essential for determining a quantitative 
measure of toxicity.  Additionally, the shape of the dose-response 
curve may be informative of the underlying biology. 

In traditional toxicity experiments, the main challenge of designing a 
dose-response study is choosing doses such that the entirety of the 
dynamic range of the response is observed.  Once the set of doses 
has been established, a mathematical model (typically nonlinear) is fit 
to the data and parameters relevant for risk assessment are extracted 
from the fitted model.  

With microarray data it is difficult to find a suitable set of doses that 
span the dynamic range of each of the thousands of genes on the 
array.  Furthermore, the dose-response to the xenobiotic will differ for 
each gene, so it is impossible to decide upon a single, or even a small 
subset of nonlinear models for fitting to the data.  The large number of 
genes also precludes sorting genes on the basis of a similar dose-
response shape by visual means. It is necessary to use methods that 
can:

1. Fit a flexible model to all of the observed dose-response 
profiles, 

2. assess the significance of the fit, and 
3. group the genes according to similarities in the shape of their 

dose-response curves. 

III. METHODS
Our fitting method is adapted from Storey et al (2005), where natural 
cubic splines are used to fit the expression data and the significance 
of the fits is assessed using bootstrap analysis.  We have built upon 
this method by using partitioning around medoids (PAM) to group the 
genes into groups based on similarities in certain curve shape 
features extracted from the spline fits to the dose-response curve. 
Functional analysis was performed using the genes within each shape 
partition for each chemical.  All analyses were carried out using 
R/Bioconductor (Gentleman et al., 2004).

1. Within each chemical, fit a natural cubic spline to the dose-
response data for each gene.

2. Compute a “modified F-statistic” for the fit:

3. Compute the residuals for the fit. Bootstrap the residuals and 
add back into a null model.

4. Fit spline to the new data.

1

10

i

ii
i SS

SSSSF 


Bootstrap

Figure 1: Schematic of method for spline fitting and assessment of statistical significance.  
Histogram shows the values obtained for the modified F-statistic for 200 bootstrap iterations of the 

dose-response data for a single gene.

IV. RESULTS
The dose-response profiles were partitioned into 4 groups using PAM.  
Partitioning was based on the values of the derivatives and the doses 
at the maximum and minimum expressions.  A 1-correlation distance 
metric was used for the partitioning.  Figure 2 shows the average 
behavior of all (scaled) dose-response curves within each partition.  
Groups 1 and 2 are made up of genes with monotonically increasing 
and decreasing dose-response profiles respectively.  Groups 3 and 4 
are comprised of genes with non-monotonically increasing or 
decreasing dose-response profiles respectively. Approximately 36.8% 
of the significant genes were in Group 1, 41.7% in Group 2, 10.7% in 
Group 3, and 10.8% in Group 4.
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Figure 2: The curves represent the average dose-response behavior for the genes partitioned 
into that group.  The expressions and doses  were scaled to lie between 0 and 1. The grey 
shaded areas cover the mean ± standard deviation.
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Figure 3 presents the mean 
dynamic range (maximum fitted 
expression – minimum fitted 
expression) for each shape group.  
The error bars represent the 
standard errors of the mean 
dynamic range for each shape 
group.  

Figure 3: The points represent the mean value of the range (max-min) expression values for 
each gene in each partition as calculated from the fitted curve. The error bars represent ±
standard error.

For each chemical, the genes in each shape group were tested for GO 
term association.  Figure 4 shows a subset of the significant GO
biological processes (GOBP).  The shape group of the genes 
associated with each process is denoted by color.  The 
overrepresented processes are consistent with some of the known 
modes of action for several of the tested chemicals.  For example, 
many genes that exhibit a significant dose-response to MEHP fall into 
group 1 (monotonically increasing) and are associated with lipid and 
fatty acid metabolism.  As MEHP is known to act as a PPAR-α
agonist, these results are consistent with the established MOA for 
MEHP (Rusyn, et al., 2006).  The conazoles triadimefon, myclobutanil, 
and propiconazole have been shown to impact genes involved in 
sterol, cholesterol, and arachidonic acid metabolism (Goetz and Dix, 
2009).  Using our method, GO BP categories consistent with this 
observation were identified for these chemicals.

Figure 5 shows the shape groupings for the subset of genes exhibiting 
a significant dose-response that are common to all three conazoles.  
For the most part, genes that are common to all conazoles are 
partitioned into the same shape groups.  In most cases, the common 
genes were partitioned into groups 1 and 2.  However, some genes
were partitioned into group 3 and this partitioning was similar between 
chemicals.  This provides partial evidence that the non-monotonic 
dose-response profiles identified using our method represent real 
biological phenomena.

Figure 4: Selection of overrepresented GO biological processes categories by chemical.  Color indicates 
the shape group for genes in the category.  Light grey indicates that the GOBP category was not 
associated with a particular chemical.

Figure 5: Shape partitions for 114 genes that exhibited a significant dose-response in all three 
conazoles (propiconazole, myclobutanil, and triadimefon).  The shape group for each gene is 
indicated by color.  Dendrograms are based on the distances between genes or chemicals based 
on the quantitative values of the extracted curve shape features. 

5. Compute the modified F-statistic for the fit to the new data.
6. Repeat a specified number of times.
7. For each gene identified as significant, compute a collection 

of curve summary measures:
I. First derivatives at each dose
II. Dose at expression minimum and maximum
III. The fitted values at each dose
IV. The area under the curve (AUC)

8. Partition the genes in to shape groupings on the basis of the 
values of subsets of the curve summary measures.

9. For the genes in each partition, determine overrepresented 
GO biological process categories using the hypergeometric
test as implemented in the R package GOstats.

V. DISCUSSION
While this approach may be overly simplistic – in most cases genes 
with multiple dose-response profiles will contribute to a particular MOA 
– the method shows that genes can be grouped into biologically 
meaningful categories on the basis of similarities in the shapes of their 
dose-response curves.  Similarity in shape may be strongly related to
similarities in promoter architecture.  We are currently conducting an 
analysis of the promoters of the genes within the shape groups to look 
for overrepresented modules of transcription factor binding sites.

Given the huge number of genes on an array and the complexity of
gene regulation, it is not surprising that genes are found that have 
non-monotonic dose-response profiles.  However, this does not 
suggest that any toxic effects are similarly non-monotonic.  
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