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. ABSTRACT

Ligand-activated nuclear receptors regulate many biological
processes through complex interactions with biological
macromolecules. Certain xenobiotics alter nuclear receptor signaling
through direct or indirect interactions. Defining the mode of action
(MOA) of such xenobiotics is difficult due to the many perturbations in
cellular signaling networks resulting from exposure. Microarray data,
when collected in a dose-response setting, is a rich source of
information for determining the MOA. Analysis presents several

lll. METHODS

Our fitting method is adapted from Storey et al (2005), where natural
cubic splines are used to fit the expression data and the significance
of the fits is assessed using bootstrap analysis. We have built upon
this method by using partitioning around medoids (PAM) to group the
genes into groups based on similarities in certain curve shape
features extracted from the spline fits to the dose-response curve.
Functional analysis was performed using the genes within each shape
pamuon for each chemical. All analyses were carried out using

challenges: namely, it is difficult to choose a single model
that can be applied to each gene. We have utilized a method for
analyzing microarray dose-response data that is flexible, while still
capable of capturing the complexity of the responses. Rat primary
hepatocytes were incubated with solutions of 0, 10, 30, and 100 uM of
4-nonylphenol, mono-(2-ethylhexyl) phthalate (MEHP), myclobutanil,
propiconazole, or triadimefon or 1, 3, and 1 uM of DE-71, PCB-118, or
PCB-153. In all cases, the control consisted of the 1% DMSO dosing
solution. RNA was extracted 72 hrs after dosing and analyzed using
Affymetrix Rat Genome 230 2.0 arrays. Natural cubic splines were fit
to the dose-response data for each gene. Statistical significance of
each fit was assessed using bootstrap analysis. A set of curve shape
and intensity features was extracted from the fit for each gene found
to exhlbll a swgmfncam dose -response. Fealures included first-

P , dose at
maximum/minimum expression, and area under the curve. Using
subsets of curve features, genes were first partitioned into groups that
responded with a similar shape then into groups with similar
expression intensities. Gene groups were subjected to functional and
pathway analysis.

II. INTRODUCTION

Dose-response analysis is fundamental to the practice of toxicology.
Measuring the response of an organism or bioassay to increasing
doses of a xenobiotic is essential for determining a quantitative
measure of toxicity. Additionally, the shape of the dose-response
curve may be informative of the underlying biology.

In it toxicity i the main of designing a
dose-response study is choosing doses such that the entirety of the
dynamic range of the response is observed. Once the set of doses
has been established, a mathematical model (typically nonlinear) is fit
to the data and parameters relevant for risk assessment are extracted
from the fitted model.

With microarray data it is difficult to find a suitable set of doses that
span the dynamic range of each of the thousands of genes on the
array. Furthermore, the dose-response to the xenobiotic will differ for
each gene, so it is impossible to decide upon a single, or even a small
subset of nonlinear models for fitting to the data. The large number of
genes also precludes sorting genes on the basis of a similar dose-
response shape by visual means. It is necessary to use methods that
can:

. Fit a flexible model to all of the observed dose-response
profiles,

. assess the significance of the fit, and

. group the genes according to similarities in the shape of their
dose-response curves.

w N

R/ (Gentleman et al., 2004).
1. Within each chemical, ft a natural cubic spline to the dose-
response data for each gene.
2. Compute a “modified F-statistic” for the fit:
£ Sso-ss!
! ss;
3. Compute the residuals for the fit. Bootstrap the residuals and
add back into a null model.
4. Fit spline to the new data.

Bootstrap

Figure 1: Schematic of pline fiting and
modified F-statistic iterations of the

dose-response data for a single gene.

Compute the modified F-statistic for the fit to the new data.
Repeat a specified number of times.
For each gene identified as significant, compute a collection
of curve summary measures:
First derivatives at each dose

Il.  Dose at expression minimum and maximum

Il The fitted values at each dose

IV. The area under the curve (AUC)
8. Partition the genes in to shape groupings on the basis of the
values of subsets of the curve summary measures.

Noo

IV. RESULTS

The dose-response profiles were partitioned into 4 groups using PAM.

Partitioning was based on the values of the derivatives and the doses
at the maximum and minimum expressions. A 1-correlation distance
metric was used for the partitioning. Figure 2 shows the average
behavior of all (scaled) dose-response curves within each partition.
Groups 1 and 2 are made up of genes with monotonically increasing

and i ponse profiles Groups 3 and 4
are comprised of genes with non-i monolomcally mcreasmg or
decreasing d Jel profiles resp 36.8%

of the significant genes were in Group 1, 41 7% in Group 2, 10.7% in
Group 3, and 10.8% in Group 4.
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Figure 2: The curves represent the
ot Grous. The evpresdons an doses were scaenis e boween 0 i1 The rey
shaded areas cover the mean  standard deviation.

Figure 3 presents the mean
* dynamic range (maximum fitted
expression — minimum fitted
expression) for each shape group.
The error bars represent the
standard errors of the mean
dynamic range for each shape
group.
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9. For the genes in each partition,
GO biological process categories using the hypergeometric
test as implemented in the R package GOstats.

Figure 3 Tra pots apresent e mean vaieof e cangs (i) expression vaiesor
each gene in each d fro The er
standard error
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For each chemical, the genes in each shape group were tested for GO
term association. Figure 4 shows a subset of the significant GO
biological processes (GOBP). The shape group of the genes
associated with each process is denoted by color. The
overrepresented processes are consistent with some of the known
modes of action for several of the tested chemicals. For example,
many genes that exhibit a significant dose-response to MEHP fall into
group 1 (monotonically increasing) and are associated with lipid and
fatty acid metabolism. As MEHP is known to act as a PPAR-a
agonist, these results are consistent with the established MOA for
MEHP (Rusyn, et al., 2006). The conazoles triadimefon, myclobutanil,
and propiconazole have been shown to impact genes involved in
sterol, cholesterol, and arachidonic acid metabolism (Goetz and Dix,
2009). Using our method, GO BP categories consistent with this
observation were identified for these chemicals.

Figure 5 shows the shape groupings for the subset of genes exhibiting
a significant dose-response that are common to all three conazoles.
For the most part, genes that are common to all conazoles are
partitioned into the same shape groups. In most cases, the common
genes were partitioned into groups 1 and 2. However, some genes
were partitioned into group 3 and this partitioning was similar between
chemicals. This provides partial evidence that the non-monotonic
dose-response profiles identified using our method represent real
biological phenomena.
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V. DISCUSSION
While this approach may be overly simplistic — in most cases genes
with multiple dose-response profiles will contribute to a particular MOA
—the method shows that genes can be grouped into biologically

ies on the basis of si ities in the shapes of their
dose-response curves. Similarity in shape may be strongly related to
similarities in promoter architecture. We are currently conducting an
analysis of the promoters of the genes within the shape groups to look
for ted modules of iption factor binding sites.

Given the huge number of genes on an array and the complexity of
gene regulation, it is not surprising that genes are found that have
non-monotonic dose-response profiles. However, this does not
suggest that any toxic effects are similarly non-monotonic.
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