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Biologically based dose-response 
modeling.  The potential for accurate 

description of the linkages in the applied 
dose-tissue dose-health effect continuum

Rory B. Conolly
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Disclaimer

Although this work was reviewed by EPA 
and approved for publication, it may not 
necessarily reflect official Agency 
policy.



Office of Research and Development
National Center for Computational Toxicology

3

Outline

1. Why getting the biology right 
matters

2. Hand-in-hand, wet and in silico 
experiments

3. What’s a mechanism?  PBPK, 
BBDR, virtual tissues

4. Relevance to risk assessment
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Scar tissue. A crisscross of roads and pits scars the surface of a former gold mine in Summitville, Colorado, while 
underground workings and tunnels allow acidic waste to drain into nearby watersheds. The Superfund site has cost more 
than $150 million in remediation efforts and remains incomplete. (Scott Fields, EHP 111, 154-161, 2003)
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Although there is no good estimate of the cost to 
clean up abandoned mines, experts agree that in 
the United States alone the price tag reads tens of 
billions of dollars. 
(Scott Fields, EHP 111, 154-161, 2003)
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Cost of cleanup is a 
function of the shape of 
the dose-response curve
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Available data don’t constrain 
the dose-response curve at 
relevant levels of exposure
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Default-based treatment
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Health-protective.
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Default-based treatment
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Unlikely to be accurate!
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Outline

1. Why getting the biology right matters
2. Hand-in-hand, wet and in silico 

experiments
3. What’s a mechanism?  PBPK, BBDR, virtual 

tissues
4. The difference between being right and 

being useful
5. Path forward.
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(Formal + intuitive modeling)

QUANTITATIVE
MODEL

SIMULATED
EXPERIMENT

EVALUATION OF
SIMULATED DATA

ISSUE

HYPOTHESIS

EXPERIMENT

DATA
EVALUATION

(Intuitive modeling)
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Experiments to understand
mechanisms of toxicity and
extrapolation issues

Computational
models

Computational modeling 
and lab experiments
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Experiments to understand
mechanisms of toxicity and
extrapolation issues

Computational
models

Risk
assessment

Bridging to risk assessment
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Learning from models

All models are wrong but 
some are useful.

George Box
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Learning from models

All models are wrong but 
some are useful.

Ask, not if the model is 
right, but can we learn 
something useful from it?

George Box
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Philosophy

Develop the model to help us better 
understand what the data can tell us.
Model is interpretive and predictive.
Using good practice, more likely to 

uncover uncertainty that introduce it.
Not required to be “right”.
Is required to be better than no model!
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Biological mechanisms 
determine dose-response
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Dioxin PBPK model 
Blood

Fat

Slow

Rich

Liver

QC, Ca

QF

QS

QR

QSp

MetabolismKf

PF=200

PS=30

PR=20

PL=5
Dose

Ka
Spleen

PSP=4

QL - QSp

(based on Andersen et al. ’93, Wang et al. ‘97)
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Liver

Fat

Spleen

Dioxin PBPK Model with Spleen -
Fitting time-course rat data

Oral dose: 10 μg/kg

(Wang et al. ‘97)
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Occam’s Razor

http://www.aaai.org/aitopics/retired/assets/Page%20Art/razor.gif
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Hepatic architecture at 
the cellular level

James Hetherington



Office of Research and Development
National Center for Computational Toxicology

28

Hepatic architecture at 
the cellular level

James Hetherington

The level of detail in the 
model should be 
appropriate to the data
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Liver

Fat

Spleen

Dioxin PBPK Model with Spleen -
Fitting time-course rat data

Oral dose: 10 μg/kg

(Wang et al. ‘97)



Office of Research and Development
National Center for Computational Toxicology

30

Exposure

Tissue dose

Mode(s) of action

Response

PBPK
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What is Mode of Action?

. . . a sequence of key events and 
processes, starting with interaction of an 
agent with a cell, proceeding through 
operational and anatomical changes, and 
resulting in cancer formation. . . Mode of 
action is contrasted with “mechanism of 
action,” which implies a more detailed 
understanding and description of events, 
often at the molecular level, than is meant 
by mode of action. 

EPA Cancer Guidelines, 2005
(Rita Schoeny)
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Goal is to understand mechanistic 
basis of dose-response and time-

course relationships

(dosimetry)

Regulatory 
endpoint

(MOAs)Dose-response
and time-course



Office of Research and Development
National Center for Computational Toxicology

35

Intracellular signaling 
cascades

www.weizmann.ac.il/Biology/open_day/book/rony_seger.pdf
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How do we model the 
signaling cascade?

www.genome.ad.jp/kegg/pathway/sce/sce04010.html
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How do we model the 
signaling cascade?

www.genome.ad.jp/kegg/pathway/sce/sce04010.html

The level of detail in the 
model should be 
appropriate to the data
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Specify the sequence(s) of key 
events

(dosimetry)

MOA 1
Key event 1

MOA 1
Key event 2 MOA 1

Key event 3

Regulatory 
endpoint
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(dosimetry) MOA 2
Key event 1 MOA 2

Key event 2
MOA 1
Key event 1

MOA 1
Key event 2 MOA 1

Key event 3

Regulatory 
endpoint

Specify the sequence(s) of key 
events
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(dosimetry) MOA 2
Key event 1 MOA 2

Key event 2
MOA 1
Key event 1

MOA 1
Key event 2 MOA 1

Key event 3

Regulatory 
endpoint

Then the dose-response and 
time course relationships
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Example

Formaldehyde BBDR model
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Normal respiratory epithelium 
in the rat nose
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Effect of formaldehyde on respiratory 
epithelium in the rat nose (10+ ppm)
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DPX

(FORMALDEHYDE
IN AIR)

MUCUS

RESPIRATORY
EPITHELIUM

CH2

CH2

CH2
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CFD simulation of nasal 
airflow

(Kimbell et. al)
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Main elements of the CIIT 
assessment

Cell proliferation

Mutagenicity
(DPX)

Clonal growth
model

Tumor response

Inhaled formaldehyde

Tissue dose

CFD modeling
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(dosimetry) MOA 2
Key event 1 MOA 2

Key event 2
MOA 1
Key event 1

MOA 1
Key event 2 MOA 1

Key event 3

Regulatory 
endpoint

Then the dose-response and 
time course relationships
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2-stage clonal growth (MVK) 
model

Normal
cells (N)

Division
N)

Death/
differentiation

(N)

Mutation(
N )

Initiated
cells (I)

(I)

(I)

Mutation(
 )

Cancer
cell

Tumor

(delay)
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appropriate to the data
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2-stage clonal growth (MVK) 
model

Normal
cells (N)

Division
N)

Death/
differentiation

(N)

Mutation(
N )

Initiated
cells (I)

(I)

(I)

Mutation(
 )

Cancer
cell

Tumor

(delay)

The level of detail in the 
model should be 
appropriate to the data
This doesn’t mean that 
every parameter value 
must be  measured in the 
laboratory!
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Parameter values for I cells

No data, but good data for normal cells 
and tumors.
Theory and experiment says that in 

general I cells have a growth advantage.
Code model according to this context 

and optimize.
Observe Occam’s Razor – keep the 

description as simple as possible
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Learning from models

All models are wrong but 
some are useful.

Ask, not if the model is 
right, but can we learn 
something useful from it? George Box
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Virtual tissues
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Liver
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UNC Virtual Lung
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PNNL Virtual Lung
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Edwards & Preston, Tox Sci, doi:10.1093/toxsci/kfn190 
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Characteristics of VTs

Spatial component
 Spatial data

Normal biology
 Toxicity arises from perturbations

Long-range goal:  Sufficiently detailed 
biology that, for a given toxicant, 
prediction of PK and effect is possible.
 In effect, the computer model replaces the 

animal model 
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How are VTs different?

++++Maturity

++++++Prediction
+++++Multi-scale
++++++Level of detail
++++++++Normal biology

+++++Spatial 
component

Virtual tissuesPBPK/BBDR
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Amount of biological detail

Virtual
tissue

Whole organism models

PBPK Virtual
organism

BBDR
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The risk prediction with the 
least uncertainty is preferable

Risk

Range of 
uncertainty

Upper bound

Lower bound

(a)
PBPK, BBDR, virtual tissues

Biological information relevant to dose-response

(Policy-based approach)

Risk

RfC Range of
uncertainty



Office of Research and Development
National Center for Computational Toxicology

66

1987 U.S. EPA

Tumor response

Inhaled ppm

Cancer model
(LMS)
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1991 U.S. EPA

Inhaled ppm

Tissue dose
(DPX)

Cancer model
(LMS)

Tumor response
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Main elements of the CIIT 
assessment

Cell proliferation

Mutagenicity
(DPX)

Clonal growth
model

Tumor response

Inhaled formaldehyde

Tissue dose

CFD modeling
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The risk prediction with the 
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Summary (1)

Remediation is expensive, so accurate prediction 
of dose-response is important to help control 
costs.

Dose-response is a function of biological 
mechanisms.

Computational models of these mechanisms 
improve the efficiency of research and provide 
the capability for prediction.

Modeling technology is evolving towards virtual 
tissues and organisms
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Summary (2)

General correspondence between level of 
detail in models and available data is 
important
 Some optimization is OK
 Observe Occam’s Razor!

Need transparent, usable means for 
evaluating relative uncertainty of models.
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