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and Development (ORD), the Office of Solid 
Waste and Emergency Response (OSWER) 
and all ten Regional Offices. The objectives 
of the Technology Support Project and the 
TSC were to make available and provide 
ORD's state-of-the-science contaminant 
characterization technologies and expertise 
to Regional staff, facilitate the evaluation 
and application of site characterization 
technologies at Superfund and RCRA sites, 
and to improve communications between 
Regions and ORD Laboratories. The TSC 
identified a need to provide federal, state, 
and private environmental scientists working 
on hazardous waste sites with a technical 
issue paper that identifies data assessment 
applications that can be implemented to 
better define and identify the distribution of 
hazardous waste site contaminants.  The 
examples given in this Issue paper and the 
recommendations provided were the result of 
numerous data assessment approaches 
performed by the TSC at hazardous waste 
sites. Mr. John Nocerino provided guidance 
and suggestions that greatly enhanced the 
quality of this Issue Paper. 

This paper was prepared by A. K. Singh, 
A. Singh, and M. Engelhardt.  Support for 
this project was provided by the EPA 
National Exposure Research Laboratory's 
Environmental Sciences Division with the 
assistance of the Superfund Technical Sup­
port Projects Technology Support Center for 
Monitoring and Site Characterization, 
OSWER’s Technology Innovation Office, 
the U.S. DOE Idaho National Engineering 
and Environmental Laboratory, and the 
Associated Western Universities Faculty 
Fellowship Program. For further informa­
tion, contact Ken Brown, Technology 
Support Center Director, at (702) 798-2270, 
A. K. Singh at (702) 895-0364, A. Singh at 
(702) 897-3234, or M. Engelhardt at (208) 
526-2100. 

Purpose and Scope 

The purpose of this issue paper is to 
provide guidance to environmental scientists 
regarding the interpretation and statistical 
assessment of data collected from sites 
contaminated with inorganic and organic 
contaminants.  Contaminant concentration 
data from sites quite often appear to follow a 
skewed probability distribution.  The log­
normal distribution is frequently used to 
model positively skewed contaminant 
concentration distributions. The H-statistic 
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based Upper Confidence Limit (UCL) for the 
mean of a lognormal population is recommended 
by U.S. EPA guidance documents (see, for 
example, EPA (1992)) and is widely used to make 
remediation decisions at Superfund sites. 
However, recent work in environmental statistics 
has cast some doubts on the performance of the 
formula based on the H-statistic for computing an 
upper confidence limit of the mean of a lognormal 
population.  This issue paper is mainly concerned 
with the problem of computing an upper 
confidence limit when the contaminant 
concentration distribution appears to be highly 
skewed. 

Several approaches to computing upper 
confidence limits for the mean of a lognormal 
population are considered.  The approaches 
discussed include those based on the H-statistic, 
the jackknife method, the bootstrap method, and a 
method based on the Chebychev inequality. 
Simulated examples show that for values of the 
coefficient of variation larger than 1, the upper 
confidence limits for the mean contaminant 
concentration based on the H-statistic are much 
higher than the upper confidence limits obtained 
by the other estimation methods.  This may result 
in an unnecessary cleanup.  In other words, the use 
of the jackknife method, the bootstrap method, or 
the Chebychev inequality method provides better 
input to the risk assessors and may result in a 
significant reduction in remediation costs.  This is 
especially true when the number of samples is 
thirty or less.  When the value of the coefficient of 
variation exceeds 1, upper confidence limits based 
on any of the other estimation procedures appear 
to be more stable and reliable than those based on 
the H-statistic. Values of the coefficient of 
variation computed from observed contaminant 
concentrations are typically used by environ­
mental scientists to assess the normality of the 

This issue paper is divided into the following 
major sections: (1) Introduction, (2) the 
Lognormal Distribution, (3) Methods of 
Computing a UCL of the Mean, (4) Examples, 
and (5) Summary and Recommendations. 

1. Introduction 

Most of the procedures available in the literature 
of environmental statistics for computing UCL of 
the mean of a population assume that contaminant 
concentration data is approximately normally 
distributed. However, the distributions of 
contaminant concentration data from Superfund 
sites typically are positively skewed and are 
usually modeled by the lognormal distribution. 
This apparent skewness, however, may be due to 
biased sampling, multiple populations, or outliers, 
and not necessarily due to lognormally distributed 
data. 

Biased sampling is often used in sampling for 
site characterization (Power, 1992). Another 
common situation often present with 
environmental data is a mixed distribution of 
several subpopulations (see Figure 1). Also, the 
presence of one or more outliers, spurious 
observations, or anomalies can result in a data set 
which appears to come from a highly skewed 
distribution.  When dealing with a skewed 
distribution, statisticians sometimes recommend 

population distribution.  In this issue paper, the 
issue of using the coefficient of variation in 
environmental data  analysis  is addressed and the 
problem of estimating the coefficient of variation, 
when sampling from lognormal populations, is 
also discussed. Figure 1	 A site with several sources of 

contamination. 
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using the population median (instead of the 
population mean) as a measure of central ten­
dency.  However, remediation decisions at a 
polluted site typically are made on the basis of the 
population mean, and therefore UCL of the mean 
of the concentration distribution is needed.  For 
positively skewed distributions, the median is 
smaller than the mean: therefore a UCL for the 
median provides an inappropriate basis for a 
decision about the mean.  

U.S. EPA guidance documents recommend the 
use of H-statistics to compute the UCL of the 
mean of a lognormal distribution (EPA, 1992).  A 
detailed discussion of H-statistics is given in 
Gilbert (1987). For data sets with nondetects, 
estimation methods developed for censored data 
from a lognormal distribution are discussed by 
Lecher (1991). The use of the lognormal 
distribution has been controversial because it can 
lead to incorrect decisions. For example, recent 
work of Gilbert (1993) indicates that statistical 
tests of hypotheses based on H-statistics can yield 
unusually high false positives, which would result 
in an unnecessary cleanup.  The situation may be 
reversed when dealing with estimation of the mean 
background level. If the H-statistic based method 
is used to compute a UCL of the mean for the 
observed background concentrations, then the 
mean of the background level may be over­
estimated, which may result in not remediating a 
contaminated area of the site.  Stewart (1994) also 
showed that the incorrect usage of a lognormal 
distribution may lead to erroneous results. 

Most of the "classical" statistical methods based 
on the normal distribution were developed 
between 1920 and 1950 and have been well 
investigated in the statistical literature.  On the 
other hand, lognormal-based methods have not 
received the same level of scrutiny.  Furthermore, 
the classical methods became popular due to their 
computational convenience.  The 1980s have 
produced a new breed of statistical methods based 
on the power and availability of computers (see, 
for example, Efron and Gong, 1983).  Both the 
jackknife and bootstrap methods require a great 
deal of computer power, and, therefore, have not 
been widely adopted by environmental statis­
ticians. However, with the recent advances in 

com pu te r  equ ipm e  n  t  and  sof tware ,  
computationally intensive statistical procedures 
have become more practical and accessible. 

The authors of this article have critically 
reviewed several estimation procedures which can 
be used to compute UCL values via monte carlo 
simulation.  These include the simple arithmetic 
mean, the Minimum Variance Unbiased Estimate 
(MVUE), and nonparametric procedures such as 
the jackknife and the bootstrap procedures. 
Computer simulation experiments (not included in 
this paper) have been performed for various values 
of the population standard deviation, or 
equivalently the Coefficient of Variation (CV), 
and sample sizes ranging from 10 to 101.  It has 
been demonstrated that for samples of size 30 or 
less, the H-statistic based UCL results in 
unacceptably high estimates of the threshold levels 
such as the background level contamination.  This 
is especially true for data sets from populations 
with CV values exceeding 1.  For samples of 
larger sizes, the use of H-statistics can be replaced 
by UCLs based on nonparametric methods such as 
the jackknife or the bootstrap.  Other well-known 
results such as the central limit (CLT) and 
Chebychev theorems may also be used to obtain 
UCLs. To illustrate problems associated with 
methods based on lognormal theory, results for 
some simulated examples and some from 
Superfund work done by the authors have been 
included in this paper. 

2. The Lognormal Distribution

The authors briefly describe the lognormal 
distribution.  By definition, contaminant concen­
tration is lognormally distributed if the 
log-transformed concentrations are normally 
distributed. This can be mathematically described 
as follows: 

If Y = ln(X) is normally distributed with mean, 
:, and variance, F2, then X is said to be 
lognormally distributed with parameters : and F . 
It should be noted that : and F2 are not the mean 
and variance of the lognormal random variable, X, 
but they are the mean and variance of the log-
transformed random variable, Y.  However, it is 
common practice to use the same parameters to 
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specify either, and it is convenient to refer to the 
normal distribution with the abbreviated notation 
Y - N(:, F2) and the log-normal distribution with 

Figure 2	 Graphs of normal N(: = 0, F2 = 0.5) 
and lognormal LN(: = 0, F2 = 0.5) 
density functions. 

Figure 3, which shows plots of several 
lognormal distributions, each with : = 0, 

2illustrates how varying the parameter F  can 
change the amount of skewness. 

Figure 3	 Graphs of A: LN(: = 0, F2 = 0.25), B: 
2LN(: = 0, F2 = 1.0) and C: LN(: = 0, F

= 25.0) density functions. 

the abbreviation X - LN(:, F2). 

: = 0 and F2 = 0.5, illustrates the 
difference between and 
distributions. 

distribution, LN(:, F2), are given as follows: 

(1) 

(2) 

(3) 

(4) 

(5) 

Throughout this 
:1, and F1 

2 represent the 

original units), whereas : and F2 

p pth percentile), xp, of the 
X, is defined by 

P(X # xp ) = p. If zp is the 
p

Z, with P(Z # zp ) = p, 
then the p
given by xp = exp(: + z pF). 

a 
:, F2) 

exp(: + 1.65F). 
z0.5 = 0, the 0.5th 

exp(:
:1 In this paper, 

distribution. 

Figure 2, which 
shows plots of a normal and a lognormal density 
function with 

normal lognormal 

The parameters of interest of a lognormal 

paper, irrespective of the 
underlying distribution, 
mean and variance of the random variable X (in 

are the mean and 
variance of its logarithm given by Y=ln(X). The 

th quantile (or 100
distribution of a random variable, 
the probability statement 

th quantile of the distribution of the standard 
normal random variable, 

th quantile of a lognormal distribution is 
For example, on the 

average, 95% of the observations from
lognormal LN( distribution would lie below 

 Because the 0.5th quantile of the 
standard normal distribution is 
quantile (or median) of a lognormal distribution is 

), which is obviously smaller than the mean, 
, which is given by equation (1).  

several procedures to estimate the UCL of the 
mean have been considered.  Ordinarily, one 
would expect the spread of an estimate of the 
mean to be smaller than the spread of the popu­
lation itself (see Figure 4).  Thus, intuitively, the 
95% UCL of the mean should be smaller than the 
95th percentile of the corresponding lognormal 

In many instances with lognormal-
based methods, this statement is violated even on 
lognormal data, especially for smaller sample 
sizes. The quantiles discussed above are used later 
to shed some light on the behavior of the UCL of 
the mean which are based on the H-statistic. 
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Figure 4 Graphs showing the relative positions 
of the TRUE MEAN, the 95% UCL, 
and the 95th percentile. 

One of the inherent assumptions required to 
compute the UCL of the mean is that the data set 
under consideration comes from a single statistical 
population (e.g., background only). Violation 
ofthis assumption can lead to invalid applications 
of a statistical technique. The consequences of 
this assumption being violated are discussed as 
follows. A data set can be put into a statistical 
procedure (e.g., the Shapiro-Wilks test of 
normality) or a computer program whether or not 
the required assumptions are met.  It is the user's 
responsibility to ensure the underlying 
assumptions required to conduct the statistical 
procedure are met.  The decisions and conclusions 
derived from incorrectly used statistics can be 
expensive. For example, incorrect use of a 
statistic may lead to wrong conclusions such as: 
1) remediation of a clean part of the site, or 2) no 
remediation at a contaminated part of the site.  The 
first wrong conclusion will result in an 
unnecessary cleanup whereas the second incorrect 
conclusion may cause a threat to human health and 
the environment.  It is likely that the availability 
of new and improved statistical software has also 
increased the misuse of statistical techniques. 
This is illustrated in the following discussion of 
the application to some simulated and real data 
sets. It should be reiterated that it is the analyst's 
(user's) responsibility to verify that none of the 
required assumptions are violated before using a 
statistical test and deriving inferences based upon 
the resulting analysis.  In many cases, this may 
warrant expert advice from a statistician. 

Often, the central portion of a data set will 
behave as if it came from a normal distribution. 
However, in practice, a normally distributed data 
set with a few extreme (high) observations can be 
incorrectly modeled by the lognormal distribution 
with the lognormal assumption hiding the outliers. 
Also, the mixture of two or more normally 
distributed data sets with significantly different 
mean concentrations such as one coming from the 
clean background part and the other taken from a 
contaminated part of the site can also be modeled 
(incorrectly) by a lognormal distribution.  The 
following example illustrates this point. 

Example 2.1.	 Simulated data set from two pop­
ulations 

A simulated data set of size fifteen (15) has been 
obtained from a mixture of two normal populations. 
Ten observations (representing background) were 
generated from a normal distribution with mean, 
100, and standard deviation, 50, and five 
observations (representing contamination) were 
generated from a normal distribution with mean, 
1000, and standard deviation, 100. The mean of 
this mixture distribution is 400.  The generated 
data are as follows: 180.5071, 2.3345, 48.6651, 
187.0732, 120.2125, 87.9587, 136.7528, 24.4667, 
82.2324, 128.3839, 850.9105, 1041.7277, 
901.9182, 1027.1841, and 1229.9384. 

Discussion of Example 2.1 

The data set in Example 2.1 failed the normality 
test based on several goodness-of-fit tests such as 
the Shapiro-Wilks, W-test (W=0.7572), and 
Kolmogorov-Smirnov (K-S = 0.35) tests (see 
Figures 5 and 6). However, when these tests were 
carried out on the log-transformed data, the test 
statistics are insignificant at the " = 0.05 level of 
significance with W=0.8957, and K-S = 0.168, 
suggesting that a lognormal distribution (see 
Figures 7 and 8) provides a reasonable fit to the 
data. Based upon this test, one might incorrectly 
conclude that the observed concentrations come 
from a single background lognormal population. 
This incorrect conclusion is made quite frequently. 
This data set is used later to illustrate how 
modeling the mixture data set by a lognormal 
distribution will result in incorrect estimates of 
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mean contamination levels at various parts of the 
site. 

Figure 5	 Histogram of the 15 observations 
from the mixture population of 
Example 2.1. 

Figure 6 K-S test of normality for the data of 
Example 2.1. 

Figure 7	 Histogram of the log-transformed 
15 observations from the mixture 
population of Example 2.1. 

Figure 8	 K-S test of lognormality for the

data of Example 2.1.


3. Methods of Computing a UCL of the 
Mean 

The main objective of this study is to assess the 
performances of the various methods of estimating 
the UCL for the mean, :1, of positively skewed 
populations.  The assumption of a lognormal 
distribution to model such populations has become 
quite popular among environmental scientists (Ott, 
1990). As noted in Section 2, for positively 
skewed data sets, there are potential problems in 
using standard methods based on the lognormal 
theory. Therefore, we will compare the 
lognormal-based methods often used with cleanup 
standards with some other available methods. The 
alternate methods considered here have the 
advantage that they do not require assumptions 
about the specific form of the population 
distribution. In other words, they do not assume 
normality or lognormality of the data set under 
consideration. In Section 4, the UCL of the mean 
has been computed for several examples using the 
following methods: 

• The H-statistic 
• The Jackknife procedure 
• The Bootstrap procedure 
• The Central Limit Theorem 
• The Chebychev Theorem 

A brief description of the computation of the 
various estimates and the associated confidence 
limits obtained using the above-mentioned 
procedures follows: 
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(6) 

(7) 

(10) 

Parametric Lognormal Procedures 

Let x1, x2, ... , xn
:1, and variance, 

F1 
2 : and F

y 
_ 

, 
and sy

yi  = 
ln(xi); i = 1, 2, ... , n. . 

and 

:^ 
1, 

(MLE). 

:,
: ̂ = y 

_
F2 is 

F̂ 2 = [(n!1)/n]sy 
2 . The 

: and F2 is 

(: ̂  + 
0.5F̂ 2

exp(: ̂ + 1.65F̂ ). One disadvantage of the MLEs 

uses sy F̂  . Although the 

!"
:1

 be a random sample from a log­
normal distribution with mean, 

, and denote by  the population mean 
and population standard deviation (sd), and  

 the sample mean and sample sd, 
respectively, of the log-transformed data 

Specifically, 

Bradu and Mundlak (1970) give the MVUE of the 
variance of the estimate 

Another estimate which is also sometimes used 
is known as the Maximum Likelihood Estimate 

When the data set is a random sample 
from a lognormal distribution, the MLE of the 
parameter,  is simply the sample mean of the 
log-transformed data, , and the MLE of 
a multiple of the sample variance of the log-
transformed data, namely, 
MLE of any function of the parameters 
obtained by simply substituting these MLEs in 
place of the parameters.  For example, the MLE of 
the mean of a lognormal population is exp

), and the MLE of the 95th percentile is 

for the lognormal mean and percentiles is that they 
are biased estimates.  Another slight modification 

 in place of the MLE, 
result is not identical to the MLE, there is only a 
small difference numerically, and for convenience 
the use of the term MLE will also include this 
modified version. 

Finally, the one-sided (1 )100% UCL for the 
mean, , of the lognormal distribution derived by 

2.
2

2 

of 2. 
:1

In a more general setting, consider a population 
with an unknown parameter,   The minimum 
variance unbiased estimate (MVUE) of   is the 
one that is not only an unbiased estimate of 
(i.e., the expected value of the estimate is equal to 
the true value of the parameter), but it also has a 
smaller variance than any other unbiased estimate 

When the parameter of interest is the mean, 
, of a lognormally distributed population, Bradu 

and Mundlak (1970) derive its MVUE, which is 
given by 

where gn(u

Tabulations of 

A9). Note that Gilbert uses Rn in place of gn. This 

the variance, F1 
2

) is a function whose form is rather 
complicated, but an infinite series solution is given 
by Aitchison and Brown (1976).  
this function are provided by Gilbert (1987, Table 

function is also used in computing the MVUE of 
, of a lognormal population, as 

(8) 

Land (1971, 1975) is given as follows: 

(1975) and also in Gilbert (1987, Table A10). 

the is widely in 
gu idance  

Monte carlo investigations 

Tables of H-statistic values can be found in Land 

Use of the UCL for a population mean based on 
H-statistic  recommended 

en  v i ronm en ta l  docum en t s .  
Theoretically, the UCL based on the H-statistic 
has optimal properties when the population is truly 
lognormal.  However, in practice the results can be 
quite disappointing and misleading if the data set 
includes outliers, or is a mixture of data from two 
or more distributions. 

(11) 

(9) 

given by Finney (1941), 
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performed by the authors confirm that, for small 
sample sizes, the use of the H-statistic approach 
can result in unacceptably high values of UCL 
when the CV is larger than 1.0. Consequently, 
other methods for computing a UCL of the mean, 
:1, of a distribution of unspecified form will be 
considered and the results compared with UCLs 
obtained by the H-statistic approach. 

The methods considered in this paper can be 
viewed as variations of a basic approach to 
constructing confidence intervals known as the 
pivotal quantity method.  In general, a pivotal 
quantity is a function of both the parameter 2 and 

^ 

population mean.  However, as noted previously, 
the distribution of contaminant concentration data 
is typically positively skewed and frequently 
involves outliers. It is well known that the sample 
mean and sample standard deviation get severely 
distorted in the presence of outliers, (Singh and 
Nocerino 1995), and consequently any function, 
such as the Student's t, given by equation (12) 
above of these statistics also gets severely 
influenced by the presence of outliers.  Robust 
methods for estimating the population mean and 
sd are available in the software package, SCOUT, 
as identified in Singh and Nocerino (1995). In 
practice, statistical procedures based on the pivotal 

an estimate 2 such that probability distribution of quantity equation (12) are usually thought to be 
the pivotal quantity does not depend on 2. "robust" relative to violation of the normality 
Perhaps the best-known example of a pivotal assumption. As noted by Staudte and Sheather 
quantity is the well-known t statistic, (1990), tests based on the Student's t are nonrobust 

in the presence of outliers.  Consequently, other 
procedures which do not rely on a specific 

(12)	 parametric assumption for the population 
distribution are also considered in the following 
discussion. 

where and sx are, respectively, the sample mean 
and sample standard deviation.  If the data is a 
random sample from a normal population with 
mean, :1, and standard deviation, F1, then the 
distribution of this pivotal quantity is the familiar 
Student's t distribution with n!1 degrees of 
freedom.  Because the Student's t distribution does 
not depend on either unknown parameter, 
quantiles are available.  Denote by t", n!1 the upper 
"th quantile of the Student's t distribution with 
n!1 degrees of freedom. Based on equation (12), 
it is possible to derive a (1!2")100% confidence 
interval of the form 

The approach of constructing confidence 
intervals from pivotal quantities (or approximate 
pivotal quantities) permits a unified treatment of 
these alternate procedures.  In particular, each pro­
cedure involves an approximate pivotal quantity 
with the difference between the unknown 
population mean, :1, and a point estimate of the 
mean in the numerator, and an estimate of the 
standard error of the point estimate in the 
denominator.  Thus, each procedure involves two 
parts: 1) finding some reasonably robust estimate 
of the mean, (Singh and Nocerino 1995), and 2) 
providing a convenient way to obtain quantiles of 

(13)	 the pivotal quantity.  A general discussion of the 
pivotal quantity approach to constructing 
confidence intervals is given by Bain and 

The confidence interval is given in the familiar Engelhardt (1992).

form of a two-sided confidence interval for the

mean.  If the lower limit of this interval is As noted above, in order to apply the pivotal

disregarded, the upper limit provides a (1!")100% quantity method, it is necessary to have quantiles 
UCL for the mean, :1. of the distribution of the pivotal quantity.  For 

example, in order to compute equation (13), it is 
For a population which is normally distributed, necessary to have quantiles of the Student's t 

equation (13) provides the best way of distribution. These quantiles can be found in 
constructing confidence intervals for the tables or computed with the appropriate software. 

However, for nonnormal populations the required 

8 



quantiles are not, in general, readily available.  In 
some cases, even though the exact distribution of 
a pivotal quantity is not known, an approximate 
distribution can be used.  Thus, except for the H-
statistic approach, which is exact if the population 
is truly lognormal, all of the other methods 
discussed below give only approximate UCL 
values for the population mean.  The true 
confidence level of UCLs will vary from one 
method to the next, and without some additional 
study, it will not be clear whether the comparisons 

difficult to justify, especially in environmental 
applications. In these cases, nonparametric 
methods are valuable tools for obtaining reliable 
estimates of the parameters of interest. Although 
bootstrap and jackknife procedures are 
conceptually simple, they are based on resampling 
techniques requiring considerable computing 
power and time. 

Let x1, x2, ... , xn be a random sample of size n 
from a population with an unknown parameter 2 

^
smaller UCL at the expense of a true confidence 
level which is below the nominal level, and below 

, and let 2  be an estimate of 2 which 
is a function of all n observations. For example, 
the parameter 2 could be the mean, and a 

are fair. In other words, it is possible to have a 

^the true confidence level of another competing 
method. 

In environmental applications, the objectives 
typically are: 1) the identification of hot spots, 
which are typically represented by the high 
extreme concentrations, or 2) the separation of 
clean part(s) of a site from the dirty contaminated 
part(s) of the site. However, from the examples 
discussed in the following, it can be seen that the 
practical use of the lognormal distribution in those 
environmental applications is questionable as a 

reasonable choice for the estimate 2  might be the 
sample mean, 0. Another choice is the MVUE of 
a lognormal mean.  Of course, if the population is 
not lognormal then this estimate may not perform 
well: but, because it is frequently used with 
skewed data sets, it is of interest to see how it 
performs relative to the other methods. 

Jackknife Estimation 

In the jackknife approach, n estimates of 2 are 
computed by deleting one observation at a time. 

^lognormal distribution often accommodates Specifically, for each index, i, denote by 2 (i) the 
^extreme outlying observations and mixture 

populations as part of one lognormal distribution. 

Jackknife and Bootstrap Procedures 

estimate of 2 (computed similarly as 2  given 
above) when the ith observation is omitted from 
the original sample of size n, and denote the 
arithmetic mean of these estimates by 

General methods for deriving estimates, such as 
the method of maximum likelihood, often result in 
estimates which are biased.  Bootstrap and 
jackknife procedures as discussed by Efron (1982) 
and Miller (1974) are nonparametric statistical A quantity known as the ith "pseudo-value" is 
techniques which can be used to reduce the bias of defined by 
point estimates and construct approximate 
confidence intervals for parameters such as the 
population mean.  These two procedures require 
no assumptions regarding the statistical 
distribution (e.g., normal or lognormal) for the The jackknife estimator of 2 is given by 
underlying population, and can be applied to a 
variety of situations no matter how complicated. 
However, it should be pointed out that a use of a 
parametric statistical method (depending upon 
distributional assumptions), when appropriate, is 

^more efficient than its nonparametric counterpart. If the original estimate 2  is biased, then, under 
In practice, parametric assumptions are often certain conditions, part of the bias is removed by 

(14) 

(15) 

(16) 
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(17) 

(18) 

J(2̂ ), is 
given by 

Another application of the pseudo-values, 

the pseudo-values to obtain confidence intervals 
2, based on the following 

Hall (1988). A general description of bootstrap 

xi1, xi2, ... , xin) represent the ith

of size n with replacement
original data set (x1, x2, ..., Xn). Then 

by 0 I. 

N

x 
_ 

1, x 
_ 

2, x 
_ 

3, ... , x 
_ 

N. 

x 
_ 

B, of the N x 
_ 

I. The 

the jackknife procedure, and an estimate of the 
standard error of the jackknife estimate, 

suggested by J. Tukey (see Miller, 1974), is to use 

for the parameter, 
pivotal quantity: 

two of these methods are considered: 1) the 
standard bootstrap, and 2) the pivotal (or 
Studentized) bootstrap method as discussed by 

methods, illustrated by application to the sample 
mean, follows:  

Step 1. Let (  sample 
 from the 

compute the sample mean and denote it 

Step 2. Perform Step 1 independently  times 
(e.g., 500-1000), each time calculating a 
new estimate.  Denote those estimates by 

The bootstrap estimate 
of the population mean is the arithmetic 
mean,  estimates 
bootstrap estimate of the standard error is 

The statistic, t
t n!1 

the following 

, given by equation (18) has an 
approximate Student's  distribution with 
degrees of freedom, which can be used to derive 

approximately two-sided 

(20) 

given by 

2

place of :1 x 
_ 

. 2̂  
I, 

x 
_ 

I, for each of the 
N The general bootstrap 

2
 _

 B
the N 2

 _
 B ! 2̂ , provides 

2̂ , and the 
2̂  is 

If some parameter,  (say, a population median), 
other than the mean is of concern, with an 
associated estimate (e.g., the sample median), then 
the same steps previously described could be 
applied with the parameter and its estimate used in 

 and Specifically, the estimate, 
would be computed, instead of 

 bootstrap samples.  
estimate, denoted by , is the arithmetic mean of 

 estimates.  The difference, 
an estimate of the bias of the estimate, 
bootstrap estimate of the standard error of 

(1!2" 2 :)100% confidence interval for 

(19) 

(1!" 2. n, is 
"th t

with the corresponding upper "
quantile, z". Observe also that when 2̂

J(0) = 0
sx/n1/2, 

and the confidence interval in equation (19) 
t-statistic based confidence 

Bootstrap Estimation 

size n
set of observations. 

of 2

of 2̂  . 

In this article 

The upper limit of equation (19) is an approximate 
)100% UCL for If the sample size, 

large, then the upper -quantile can be replaced 
th standard normal 

 is the 
sample mean, then the jackknife estimate is the 
sample mean, that is ; the estimate of the 
standard error in equation (17) simplifies to 

reduces to the familiar 
interval given by equation (13). 

In the bootstrap procedure, repeated samples of 
 are drawn with replacement from the given 

The process is repeated a 
large number of times, and each time an estimate 

 is computed.  The estimates thus obtained are 
used to compute an estimate of the standard error 

There exists in the literature of statistics an 
extensive array of different bootstrap methods for 
constructing confidence intervals.  

(21) 

(22) 

given by 

The standard bootstrap confidence interval is 
derived from the following pivotal quantity: 
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Finally, the (1!2")100% standard bootstrap 
confidence interval for 2, which assumes that 
equation (22) is approximately normal, is 

In the examples to follow, the jackknife, the 
standard bootstrap method, and the pivotal 
bootstrap methods are applied using the sample _
mean, x , and also the estimate given by equation 

(23) (8), which is the MVUE of the mean when the 
population is lognormal. 

In this case, the bootstrap approach gives a 
convenient way to estimate the standard error of The Central Limit Theorem 
^ ^2 . Depending on the type of estimate 2 , the 
standard error may be quite difficult to derive, and Given a random sample, x1, x2, ... , xn, of size n 

2consequently difficult to estimate.  However, the from a population with a finite variance, F ,1 
bootstrap approach always yields an estimate of 
the standard error directly from the data, even 
when the mathematical form of the standard error 
is not known. 

where 2 = :1 is the unknown population mean, the 
Central Limit Theorem (CLT) states that the 
asymptotic distribution, as n approaches infinity, 
of the sample mean, is normally distributed 

2with mean, :1, and variance, F /n. More1 
Another variation of the bootstrap method, precisely, the sequence of random variables 

called the "bootstrap t" by Efron (1982), is a 
nonparametric procedure which uses the bootstrap 
methodology to estimate quantiles of the pivotal 
quantity in equation (12).  As previously noted, 
for nonnormal populations the required quantiles 
may not be easily obtained, or it may be has a standard normal limiting distribution.  In 
impossible to compute exactly.  However, with a practice, this means that for large sample sizes n, _
variation of the bootstrap procedure, as proposed 
by Hall (1988), the required quantiles can be 
estimated directly from the data.  Specifically, in 

the sample mean, x , has an approximate normal 
distribution irrespective of the underlying 
distribution function. Consequently, equation (24) _

Steps 1 and 2 described above, if x  is the sample is an approximate pivotal quantity for large n. _ 

t

s
mean computed from the original data, and x i and This powerful result can be used to obtain 

x, i are the sample mean and sample standard approximate (1!2")100%  confidence intervals for 
deviation computed from the ith resampling of the the mean for any distribution with a finite 
original data, the N quantities, ti = (0i!0)/sx, i, are variance, although, strictly speaking, it requires 
computed and sorted, yielding ordered quantities one to know the population standard deviation, F1. 
(1) # t(2) # @@@ # t(N).  The estimate of the upper "th However, as noted by Hogg and Craig (1978), if 

quantile of the pivotal quantity in equation (12) is F1 is replaced by the sample standard deviation, sx, 
t", B = t((1!")N). For example, if N = 1000 bootstrap the normal approximation for large n is still valid. 
samples are generated, then the 950th ordered This leads to the following confidence interval: 
value, t(950), would be the bootstrap estimate of 
the upper .05th quantile of the pivotal quantity in (25) 
equation (12). This estimated quantile can be used 
in place of the upper "th Student's t quantile in an 
interval of the form given in equation (13).  In the 
next section, this method of construction will be 
called the "pivotal bootstrap". This approach has 
the advantage that it does not rely on the 
assumption of a special parametric form for the 
distribution of the population, and it does not 
require an assumption of approximate normality 
for the pivotal quantity as does the standard 
bootstrap interval of equation (23). 

Note that the confidence interval in equation 
(25) has the same general form as equation (13), 
but with the t quantiles replaced with approximate 
standard normal quantiles.  As noted previously, 
if the lower limit is disregarded, the upper limit of 
the interval provides a one-sided UCL for the 
population mean. 

An often cited rule of thumb for a sample size 
with the CLT is n $ 30. However, this may not be 

(24) 
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adequate if the population is highly skewed.  A root of equation (10) as the estimate of the 
refinement of the CLT approach, which makes an standard error. This has been used in the 
adjustment for skewness, is discussed by Chen following examples. 
(1995). Specifically, the "adjusted CLT" UCL is 
obtained if the standard normal quantile, z", in the 4. Examples 
upper limit of equation (25) is replaced by 

Monte carlo simulation experiments were 
performed to compare various methods of 

(26)	 computing the UCL of the lognormal mean. 
Based on these experiments, the methods of 

^where 6 3 is the sample coefficient of skewness,	 jackknife, bootstrap, or even the conservative 
method based on the Chebychev inequality appear 
to be superior to the H-statistic-based UCL for 

(27) small sample sizes. When the number of samples 
is large (n $ 100), all of these methods give 
similar results.  In this section, a few simulated 

Notice that this adjustment results in a UCL which examples are provided to compare the various 
is larger than that of equation (25) when the methods of computing values of the UCL.  A few 
sample skewness is positive. examples from Superfund sites have also been 

included. 
The Chebychev Theorem 

Example 4.1. Simulated sample from a mixture 
This theorem is given here to obtain a	 of two normal populations, N(100, 

50) and N(1000, 100).reasonably conservative estimate of the UCL of 
the mean.  The two-sided Chebychev theorem 
states that given a random variable, X, with finite This example uses the sample of size n = 15 

which was discussed previously in Example 2.1. 
Recall, that this is a simulated sample from a 
mixture of two normal populations.  The mean of 
the mixed normal population is :  = 400. The1
values of the mean, standard deviation, and 
coefficient of variation computed for the log-
transformed data are: 
_
y = 5.090, sy = 1.705, and CV  = 0.34.y

The values of the mean, standard deviation, and 
CV computed for the raw data are: 
_
x = 403.35, sx = 453.94, and CVx = 1.125. 

If it is assumed (incorrectly) that the population is 
lognormal, point estimates based on MVUE theory 
of the mean, :1, standard deviation, F1, and 
standard error of the mean are 572.98, 1334.56 
and 290.14, respectively. Estimates of the 80th, 
90th, and 95th percentiles of a lognormal 
distribution are 686.33, 1453.48, and 2685.56, 
respectively. 

:1 and F1, one has 

(28) 

mean and standard deviation, 

x 
_

(28) is equated to 0.95, then k = 4.47, and UCL = 
x 
_

F1/n1/2

Of 
course, this would require the user to know the 
value of F1. 
replace F1 sx, 

general, if :1 : ̂ 1 is an 
F̂ (: ̂ 1

error of : ̂ 1, then the quantity UCL = : ̂ 1 + 4.47F̂ (: ̂ 1) 
will give 95% UCLs for :1, which should tend to 

This 

This result can be applied with the sample mean, 
, to obtain a conservative UCL for the population 

mean.  Specifically, if the right side of equation 

 + 4.47  is a conservative 95% upper 
confidence limit for the population mean.  

The obvious modification would be to 
 with the sample standard deviation, 

but, since this is estimated from the data, the result 
is no longer guaranteed to be conservative.  In 

 is an unknown mean, 
estimate and ) is an estimate of the standard 

be conservative, but this is not assured.  
could be used, for example, with the mean of a 
lognormal population, using equation (8), as the 
estimate of the population mean and the square 
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Discussion of Example 4.1 

The 95% UCL values obtained from the 
methods discussed above, without using 
lognormal theory, are: 

Jackknife 609.75 
Standard Bootstrap 584.32 
Pivotal Bootstrap 651.52 
CLT 596.16 
Adjusted CLT 618.51 
Chebychev 927.27 

The values of the 95% UCL obtained from the 
methods discussed above, calculated using the 
lognormal theory, are: 

Jackknife 1085.17 
Standard Bootstrap  994.40 
Chebychev 1869.90 
H-UCL 4150.96 

Notice that the 95% UCL computed from the H-
statistic (4150.96) exceeds the estimated 95th 
percentile (2685.56) of an assumed lognormal 
distribution.  The H-UCL is also an order of 
magnitude larger than the true mean, 400, of the 
mixture of two normal populations. 

It is also of interest to see how the methods 
compare when applied to simulated lognormal 
data with different sample sizes and various 
combinations of parameter values. 

Example 4.2. Simulated sample of size n = 15 
from a lognormal distribution, 
LN(5, 1). 

In this example, n = 15 data were generated from 
the lognormal distribution LN(5,1), with following 
(true) values of population parameters: :1  = 
244.69, F  = 320.75, and CV = 1.31. The 1
generated data are: 

139.2056, 259.9746, 138.7997, 48.8109, 
166.1733, 54.1241, 120.3665, 60.9887, 551.2073, 
66.3336, 16.0695, 364.5569, 153.2404, 271.5436, 
473.6461. 

The values of the sample mean, standard 
deviation, and CV of the log-transformed data are: 

_
y = 4.887, sy = 0.966, CVy = 0.20. 

The sample mean, standard deviation, and CV for

the raw data are:

_

x = 192.34, sx = 161.56, CVx = 0.84. 

For a lognormal distribution, the estimates of :1, 
F1, and the standard error of the mean, based on 
MVUE theory, are 202.58, 219.21, and 54.00, 
respectively.  The MLEs of :1, F1, and CV are 
211.33, 262.47, and 1.24, respectively.  Estimates 
of the 80th, 90th, and 95th percentiles of the 
lognormal distribution are 299.79, 458.58, and 
649.31, respectively. 

Discussion of Example 4.2 

The values of the 95% UCL obtained from the 
methods discussed above, without using 
lognormal theory, are: 

Jackknife 265.79 
Standard Bootstrap 258.21 
Pivotal Bootstrap 292.17 
CLT 260.96 
Adjusted CLT 271.57 
Chebychev 378.80 

The values of the 95% UCL obtained from the 
methods discussed above, calculated from 
lognormal theory, are: 

Jackknife 289.30 
Standard Bootstrap 281.22 
Chebychev 448.41 
H-UCL 427.62 

The differences in UCLs for the various 
methods are not as extreme as they were in the 
previous example, but a similar pattern with the 
Chebychev (as expected) and H-UCL limits being 
the largest is still present. However, unlike the 
previous example, the 95% UCL is below the 
estimated 95th percentile of a lognormal 
distribution, as one would intuitively expect.  It is 
also interesting to note that the CV estimated as 
the ratio of the sample standard deviation to the 
sample mean from raw data is less than 1 (0.84), 
while the CV computed from the MLEs is slightly 
greater than 1 (1.24). According to the CV test, 
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which says that if CV <1.0, then the population is 
normally distributed,  the former CV of 0.84 might 
lead one to incorrectly assume that the population 
is normally distributed. 

In the next example, the variance of the log-
transformed variable is increased slightly with a 
corresponding increase in CV and skewness. 

Example 4.3.	 Simulated sample of size n = 15 
from a lognormal distribution, 
LN(5, 1.5). 

In this example, n = 15 observations were

generated from the lognormal distribution,

LN(5,1.5), with the following true values of

population parameters: :1 = 457.14, F1 = 1331.83,

CV = 2.91. The generated data are:


440.8517, 1013.4986, 1857.7698, 500.9632,

397.9905, 110.7144, 196.2847, 128.2843,

1529.9753, 5.7978, 940.8903, 597.5925,

1519.5159, 181.6512, 52.8952.


The sample mean, standard deviation, and CV of

the log-transformed data are:

_

y = 5.761, sy = 1.536, and CVy = 0.27. 

The sample mean, standard deviation, and CV for

the raw data are:

_

x = 631.65, sx = 603.13, and CVx = 0.96. 

For a lognormal distribution, the estimates of :1, 
F1, and standard error of the mean, based on 
MVUE theory, are 894.76, 1784.95, and 405.79, 
respectively. The MLEs of :1, F1, and CV are 
1033.63, 3202.28 and 3.10, respectively. 
Estimates of the 80th, 90th, and 95th percentiles of 
the lognormal distribution are 1163.05, 2286.63, 
and 3975.71, respectively. 

Discussion of Example 4.3 

The values of the 95% UCL obtained from the 
methods discussed above, without using 
lognormal theory, are: 

Jackknife 905.88 
Standard Bootstrap 882.82 
Pivotal Bootstrap 977.18 
CLT  887.82 

Adjusted CLT 919.81 
Chebychev 1327.75 

The values of the 95% UCL obtained from the 
methods discussed above, calculated from 
lognormal theory, are: 

Jackknife 1534.94 
Standard Bootstrap 1363.26 
Chebychev 2708.63 
H-UCL 4570.27 

As in the case of Example 4.1, the 95% H-UCL 
(4570.27) again exceeds the estimated 95th 
percentile of the lognormal distribution.  The 
situation with the CV is similar to that of Example 
4.2.  That is, the CV computed from raw data 
(0.96) is less than 1, which by application of the 
CV-test could lead one to adopt (incorrectly) the 
normal distribution. Notice that the true CV and 
the estimate based on the MLEs are both close to 
three. The next example involves the same 
population but with a larger sample size. 

Example 4.4.	 Simulated sample of size n = 31 
from a lognormal distribution, 
LN(5, 1.5). 

In this simulated example, n = 31 observations 
were generated from a lognormal distribution, 
LN(5,1.5). This is the same distribution use in the 
previous example, and thus true mean, standard 
deviation, and CV are the same. The generated 
data are: 

49.0524, 806.8449, 122.2339, 697.7315, 
2888.1238, 37.7998, 7.2799, 292.5909, 433.4413, 
639.7468, 3876.8206, 1376.8859, 197.8634, 
93.0379, 180.9311, 1817.9912, 284.3526, 
344.6761, 44.8680, 297.3899, 11.9195, 100.5519, 
264.7574, 41.3961, 43.4202, 1053.3770, 
2067.0361, 132.2938, 75.9661, 53.2236, 83.5585. 

The sample mean, standard deviation, and CV of 
log-transformed data are: 
_
y = 5.326, sy =1.577, and CVv = 0.30 

The sample mean, standard deviation, and CV for 
raw data are: 
_
x = 594.10, sx = 919.05, and CVx = 1.55. 
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For a lognormal distribution, the estimates of :1, 
F1, and the standard error of the mean are 657.45, 
1632.25, and 238.86, respectively. The MLEs of 
:1, F1, and CV are 713.34, 2369.11, and 3.32. 
Estimates of the 80th, 90th, and 95th percentiles of 
a lognormal distribution are 779.73, 1560.71, and 
2753.62, respectively. 

Discussion of Example 4.4 

The values of the 95% UCL obtained from the 
methods discussed above, without using 
lognormal theory, are: 

Jackknife 874.22 
Standard Bootstrap 854.51 
Pivotal Bootstrap 1003.00 
CLT 865.64 
Adjusted CLT 932.36 
Chebychev 1331.95 

The values of the 95% UCL obtained from the 
methods discussed above, calculated from 
lognormal theory, are: 

Jackknife 1062.35 
Standard Bootstrap 1088.94 
Chebychev 1725.15 
H-UCL 1792.54 

As one might expect with a larger sample size (n 
= 31), the point estimates tend to be closer to the 
true parameter values they are intended to 
estimate.  Also, there is not as much variation 
among the UCLs computed from the different 
methods.  Furthermore, the H-UCL is below the 
estimated 95th percentile of the lognormal 
distribution. 

In the next example, a sample of size n = 15 is 
considered again, but with the variance of the log-
transformed variable slightly larger than that of 
Examples 4.2-4.4. 

Example 4.5. Simulated sample of size n = 15 
from a lognormal distribution, 
LN(5, 1.7). 

This last simulated data set of size n = 15 is 
obtained from LN(5, 1.7), with the following true 
values of population parameters: :1 = 629.55, F1 

= 2595.18, CV = 4.12. 

The generated data are: 

16.5197, 235.4977, 1860.4443, 74.5825, 3.9684,

325.2712, 167.7949, 189.0130, 1307.6180,

878.8519, 35.4675, 96.2498, 229.2540, 182.0494,

1498.6146.


The sample mean, standard deviation, and CV of

the log-transformed data are:

_

y = 5.178, sy = 1.710, CVy = 0.33. 

The sample mean, standard deviation, and CV for

raw data are:

_

x = 473.41, sx = 606.79, CVx = 1.28. 

For a lognormal distribution, the estimates of :1, 
F1, and the standard error of the mean, based on 
MVUE theory, are 629.82, 1473.12, and 319.0, 
respectively. The MLEs of :1, F1, and CV are 
765.52, 3213.52, and 4.20, respectively. 
Estimates of the 80th, 90th, and 95th percentiles 
for a lognormal distribution are 752.50, 1596.91, 
and 2955.58, respectively. 

Discussion of Example 4.5 

The values of the 95% UCL obtained from the 
four methods discussed above, without using 
lognormal theory, are: 

Jackknife 749.31 
Standard Bootstrap  721.07 
Pivotal Bootstrap  862.51 
CLT 731.14 
Chebychev 1173.74 

The values of the 95% UCL obtained from the 
four methods discussed above, calculated from 
lognormal theory, are: 

Jackknife 1176.39 
Standard Bootstrap 1141.95 
Chebychev 2059.47 
H-UCL 4613.32 
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Notice that in this example (as with Examples 
4.1 and 4.3), the 95% H-UCL (4613.32) exceeds
the estimated 95th percentile (2955.58) of the 
lognormal distribution. 

The sample size and the mean of the log-
transformed variable in examples 4.2, 4.3, and 4.5 
are held constant at 15 and 5, respectively, 
whereas the standard deviation (sd) of the log-
transformed variable are 1.0, 1.5, and 1.7, 
respectively. From these examples alone, it can be 
seen that as soon as the sd of the log-transformed 
variable becomes greater than 1.0, the H-statistic-
based UCL becomes orders of magnitude higher 
than the largest concentrations observed, even 
when the data were obtained from a lognormal 
population. Thus, even though the H-UCL is 
theoretically sound and possesses optimal 
properties for truly lognormal populations such as 
being MVUE, the practical merit of the use of H­
UCL in environmental applications is questionable 
when the sd of the log-transformed variable starts 
exceeding 1.0. This is especially true for small 
sample sizes (e.g., n <30). As seen in the 
examples discussed here, the use of the lognormal 
distribution and the H-UCL in some 
circumstances tends to hide contamination rather 
than find it, which is contrary to one of the main 
objectives in many environmental applications. 
Actually, under the assumption of lognormal 
distribution, one can get away with very little or 
no cleanup, (Bowers, Neil, and Murphy 1994), at 
a polluted site. 

Example 4.6. Data from the Naval Construction 
Batta l ion Center (NCBC) 
Superfund Site in Rhode Island. 

Inorganic analyses were performed on the 
groundwater samples from seventeen (17) wells 
from the NCBC Site. The main objective was to 
provide reliable estimates of the mean background 
threshold levels for the various inorganic 
contaminants at the site.  The UCLs have been 
computed using the procedures described above. 
The results for two of the contaminants, aluminum 
and manganese, are summarized below. 

Aluminum:  290, 113, 264, 2660, 586, 71, 527, 
163, 107, 71, 5920, 979, 2640, 164, 3560, 13200, 
125. 

The sample mean, standard deviation, and CV of

log-transformed data are:

_

y = 6.226, sy = 1.659, CVy = 0.27. 

The sample mean, standard deviation, and CV for

the raw data are:

_

x = 1849.41, sx = 3351.27, CVx = 1.81. 

With the lognormal assumption, the estimates of

:1, F1, and the standard error of the mean, based

on MVUE theory, for aluminum are 1704.84,

3959.87, and 807.64, respectively.  The MLEs of

:1, F1, and CV are 2002.71, 7676.37, and 3.83,

respectively. Estimates of the 80th, 90th and 95th

percentiles for a lognormal distribution are

2054.44, 4263.44, and 7747.81, respectively.


Manganese: 15.8, 28.2, 90.6, 1490, 85.6, 281,

4300, 199, 838, 777, 824, 1010, 1350, 390, 150,

3250, 259.


The sample mean, standard deviation, and CV of

log-transformed data are:

_

y = 5.91, sy = 1.568, CVy = 0.27. 

The sample mean, standard deviation, and CV for

the raw data are:

_

x = 902.25, sx = 1189.49, CVx = 1.32. 

With the lognormal assumption, the estimates of 
:1, F1, and the standard error of the mean, based 
on MVUE theory, for manganese are 1100.92, 
2340.72, and 490.16, respectively. The MLEs of 
:1, F1, and CV are 1262.59, 4125.5, and 3.27, 
respectively. Estimates of the 80th, 90th, and 95th 
percentiles for a lognormal distribution are 
1389.65, 2769.95, and 4870.45, respectively. 

The calculated Shapiro Wilks statistics for the raw 
data are 0.594 (aluminum) and 0.725 
(manganese), and for the log-transformed data, 
the corresponding values are 0.913 and 0.969. 
The tabulated critical value for 0.10 level of 
significance is 0.91.  Thus, for both aluminum and 
manganese, the data failed the normality test and 
passed the lognormality test at significance level 
0.10 (Note: Shapiro-Wilks is a lower tail test).
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Discussion of Example 4.6 

The values of the 95% UCL obtained from the 
methods discussed above, without using 
lognormal theory, are: 

Aluminum Manganese 
Jackknife 3268.22 1405.83 
Standard Bootstrap 3125.56 1354.15 
Pivotal Bootstrap 5286.63 1968.03 
CLT 3186.47 1376.82 
Adjusted CLT 3675.94 1503.84 
Chebychev 5482.64 2191.81 

Observe that for both of the contaminants, the 
95% UCLs calculated from the jackknife, both 
bootstrap methods, the CLT, the adjusted CLT, 
and the Chebychev limit are well below their 
respective estimates of the 95th percentile 
(Aluminum: 7747.81 and Manganese: 4870.45) of 
assumed (based on Shapiro-Wilks' test) lognormal 
distributions. 

The values of the 95% UCL obtained from the 
methods discussed above, calculated from 
lognormal theory, are: 

Aluminum Manganese 
Jackknife 3283.34 1889.52 
Standard Bootstrap 3663.20 1821.55 
Chebychev 5314.99 3291.95 
H-UCL 9102.73 5176.16 

Observe that the 95% UCLs calculated using 
lognormal theory from the jackknife, the 
bootstrap, and the Chebychev inequality are 
similar to the respective values obtained without 
using lognormal theory, and that these are well 
below their respective estimated 95th percentiles 
for a lognormal distribution.  The 95% UCLs 
calculated from the H-statistic, however, exceed 
their respective estimated 95th percentiles for a 
lognormal distribution. 

Example 4.7. Data from the Elrama School 
Superfund site in Washington 
County, PA. 

The data were compiled from two waste piles for 
risk evaluations of the contaminants found at the 

Elrama School Superfund Site, Washington 
County, PA. Twenty-six (26) contaminants (10 
inorganics, 12 semi-volatile compounds, and 4 
volatile compounds) were detected in both of the 
waste piles. Using the nonparametric 
Kolmogorov-Smirnov two-sample test on the two 
waste piles, it was concluded that there is no 
statistically significant difference between 
distributions of the contaminants from the two 
waste piles. Thus, the data from these two waste 
piles were combined to compute all of the relevant 
statistics such as the mean, the standard 
deviation, and the UCLs.  This resulted in data 
sets consisting of 23 observations (15 from Waste 
Pile 1 and 8 from Waste Pile 2). The results are 
provided for two of the contaminants of concern: 
aluminum and toluene. 

Aluminum: 31900.0, 8030.0, 12200.0, 11300.0, 
4770.0, 5730.0, 5410.0, 8420.0, 8200.0, 9010.0, 
8600.0, 9490.0, 9530.0, 7460.0, 7700.0, 13700.0, 
30100.0, 7030.0, 2730.0, 5820.0, 8780.0, 360.0, 
7050.0. 

The sample mean, standard deviation, and CV of

the log-transform data are:

_

y = 8.927, sy = 0.845, CVy = 0.095 

The sample mean, standard deviation, and CV for

the raw data are:

_

x = 9709.57, sx = 7310.02, CVx = 0.75. 

With the lognormal assumption, the estimates of 
:1, F1, and the standard error of the mean, based 
on MVUE theory, for aluminum are 10552.68, 
10031.60, and 2044.90, respectively. The MLEs 
of :1, F1, and CV are 10768.22, 10993.32, and 
1.02, respectively.  Estimates of the 80th, 90th, 
and 95th percentiles for a lognormal distribution 
are 15323.48, 22224.45, and 30381.95, 
respectively. 

Toluene: 7300.0, 6.0, 6.0, 5.5, 29000.0, 46000.0, 
12000.0, 2500.0, 1300.0, 3.0, 510.0, 230.0, 63.0, 
6.0, 5.5, 6.0, 6.0, 5.5, 280000.0, 8.0, 28.0, 6.0, 7.0. 

The sample mean, standard deviation and CV of

log-transform data are:

_

y = 4.652, sy = 3.660, CVy = 0.79 

The sample mean, standard deviation, and CV for 
the raw data are: 
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_
x = 16478.33, sx = 58510.78, CVx = 3.55. 

With the lognormal assumption, the estimates of 
:1, F1, and the standard error of the mean, based 
on MVUE theory, for toluene are 21328.39, 
362471.55, and 18788.05, respectively.  The 
MLEs of :1, F1, and CV are 84702.17, 
68530556.56, and 809.08, respectively.  Estimates 
of the 80th, 90th, and 95th percentiles for a 
lognormal distribution are 2264.17, 11329.16, and 
43876.88, respectively. 

The Shapiro-Wilks statistics for the raw data are 
0.707 (aluminum) and 0.313 (toluene), and for the 
log-transformed data, the corresponding values 
are 0.781 and 0.818. The tabulated critical value 
for a 0.10 level of significance with n = 23 is 0.928. 
Thus, neither a normal nor a lognormal distribution 
gives a good fit. 

Discussion of Example 4.7 

The values of the 95% UCL obtained from the 
methods discussed above, without using 
lognormal theory, are: 

Aluminum  Toluene 
Jackknife 12327.40 37431.95 
Standard Bootstrap 12246.67  33494.25 
Pivotal Bootstrap 15161.90 152221.00 
CLT 12216.95  36547.89 
Adjusted CLT 12895.10  47316.80 
Chebychev 16522.94 71013.85 

The values of the 95% UCL obtained from the 
four methods discussed above, calculated from 
lognormal theory, are: 

Jackknife 
Standard Bootstrap 
Chebychev 
H-UCL 

Aluminum  Toluene 
13542.11  62263.37 
13579.18  278888.51 
19693.40  105757.50 
16503.51  18444955.15 

Observe that the 95% UCL for toluene, 
calculated from the H-statistic, is orders of 
magnitude higher than those calculated from the 
other methods, and is also orders of magnitude 
higher than the maximum observed toluene 
concentration at the site. Also, with the toluene 
data, the pivotal bootstrap method results in a 

UCL which is two to five times larger than the 
others computed from the non-lognormal theory 
methods.  It is even larger than the Chebychev 
limit.  As noted earlier, this is possible when the 
standard error of the point estimate is also 
estimated from the data.  In most environmental 
applications, the true population standard 
deviation of the point estimate is unknown, and 
therefore, it needs to be estimated from the 
available data. Note, however, it is two orders of 
magnitude smaller than the H-UCL. 

Note, also, that the CV (0.75) computed from 
the raw data for aluminum is less than 1.  The use 
of the CV-test for normality could lead one to 
assume normality, even though the Shapiro-Wilks 
test strongly rejects the normal distribution (p­
value = 0.00002). 

5. Summary and Recommendations 

It is seen from the simulated examples that, even 
when the underlying distribution is lognormal, the 
performance (in terms of a lower UCL) of the 
jackknife, bootstrap, and CLT procedures is more 
accurate than that of the H-UCL.  In each of the 
four simulation experiments, the 95% UCLs 
computed from all of the above methods exceeds 
the true respective population means, but the 95% 
H-UCL is consistently larger, except in some 
cases where it is comparable to the conservative 
Chebychev result, than the 95% UCLs obtained 
from other methods.  It is also seen from the 
simulation examples that the estimate of the CV 
based on the MLEs is closer to the true CV than 
the usual (moment) estimate of CV.  Furthermore, 
the usual estimate of the CV appears to 
underestimate the true CV.  In some of the 
examples, the usual estimate of the CV is less than 
1, while the true population CV is somewhat 
greater than 1.  That is, the rule of thumb (CV­
test) which declares the distribution to be normal 
when the moment estimate of the CV is less than 
1, can frequently lead to an incorrect assumption 
about the underlying distribution of the data. 

Moreover, from the examples discussed in this 
paper, it is observed that the H-UCL becomes 
order of magnitudes higher even when the data 
were obtained from a lognormal population and 
can lead to incorrect conclusions.  This is 
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especially true for samples of smaller sizes (e.g., 
<30). It appears that the lognormal distribution 
and the H-UCL tend to hide contamination rather 
than revealing it. Under the assumption of the 
lognormal distribution, one can get away with 
very little or no cleanup at a polluted site.  Thus, 
although the H-UCL is theoretically sound and 
possesses optimal properties, the practical merit of 
the H-UCL in environmental applications is 
questionable, as it becomes an order of magnitude 
higher than the largest observed concentration 
when the sd of the log-transformed data starts 
exceeding 1.0. It is therefore, recommended that 
in environmental applications, the use of the H­
UCL to obtain an estimate of the upper confidence 
limit of the mean should be avoided. 

Based on the monte carlo simulation results, and 
the authors' experience with Superfund site work, 
the following steps for computing a UCL of the 
mean of the contaminant(s) of concern are 
recommended: 

1) Plot histograms of the observed contaminant 
concentrations and perform a statistical test of 
normal or lognormal distribution (e.g., the 
Shapiro-Wilks test). Do not use the rule of 
thumb that declares the data distribution to be 
normal if CV is less than 1. 

2)	 If a normal distribution provides an adequate 
fit to the data, then use the Student's t 
approach (equivalent to the jackknife) for 
calculating the UCL of the population mean. 

3) If a lognormal distribution provides an 
adequate fit to the data, then a) use the 
lognormal theory based formulas for 
computing the MVUE of the population mean 
and the standard deviation, b) either use these 
MVUEs with the jackknife or bootstrap 
methods to calculate a UCL of the mean, or 
use the Chebychev approach for calculating a 
UCL. Do not use the UCL based on the H-
statistic, especially if the number of samples is 
less than 30. 

4)	 If the data distribution turns out to be neither 
normal nor lognormal, then use the 
nonparametric versions of  the jackknife or 
bootstrap to calculate a UCL. Even if the 
lognormal distribution seems to provide a 
reasonable fit to the data, and if there is 
evidence of a mixture of two or more 
subpopulations, or if outliers are suspected, 
then using one of the nonparametric methods 
discussed above is recommended. 

Notice 

The U.S. Environmental Protection Agency 
(EPA), through its Office of Research and 
Development (ORD), funded and prepared this 
Issue Paper.  It has been peer reviewed by the 
EPA and approved for publication.  Mention of 
trade names or commercial products does not 
constitute endorsement or recommendation by 
EPA for use. 
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