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Technology Support Project and the TSC were 
to make available and provide ORD's state-of-
the-science contaminant characterization 
technologies and expertise to Regional staff, 
facilitate the evaluation and application of site 
characterization technologies at Superfund and 
RCRA sites, and to improve communications 
between Regions and ORD Laboratories. The 
TSC identified a need to provide federal, state, 
and private environmental scientists working on 
hazardous waste sites with a technical issue 
paper that identifies data assessment applications 
that can be implemented to better define and 
identify the distribution of hazardous waste site 
contaminants.  The examples given in this Issue 
paper and the recommendations provided were 
the result of numerous data assessment 
approaches performed by the TSC at hazardous 
waste sites. 
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Purpose and Scope 

Often in Superfund applications of the U.S. 
EPA, exposure assessment and cleanup deci­
sions are made based upon the mean concentra­
tions of the contaminants of potential concern 
(COPC) at a polluted site. The objective may be 
to 1) compare the soil concentrations with site 
specific or generic soil screening levels (SSLs), 
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2) compute the exposure point concentration 
(EPC) term used as one of several parameters to 
estimate the contaminant intake for an individual, 
or 3) verify the attainment of cleanup goals 
(CUGs) or cleanup standard as set forth in the 
Record of Decision (ROD) agreed upon by all 
concerned parties, such as the USEPA and the 
party responsible for introducing contamination at 
the site. The CUG of a COPC has been denoted 
by Cs throughout this article. Suppose that a 
COPC is believed to be present at a certain site 
and its concentration varies according to a 
probability distribution with an unknown mean, :. 
The mean, :, is one of the commonly used 
measures of the central tendency of a distribution 
and is often used to represent the EPC term or 
some cleanup standard at a site.  The mean, :, is 
typically estimated by the sample mean and some 
upper confidence limit (UCL) of the mean, which 
are obtained using the sampled data. 

The decisions about the population mean are 
made using testing of hypotheses about the 
population mean. In general, there are two 
hypotheses of interest, the null hypothesis, 
denoted by H0, and the alternative hypothesis, 
denoted by Ha. In Superfund applications, such as 
the determination of exposure assessment or the 
attainment of cleanup levels, it is of interest to test 
one-sided hypotheses about the population mean; 
therefore, all sample size and power computation 
discussions in this paper have been done for one-
sided hypotheses.  For example, suppose a 
regulator suspects that the mean concentration of 
the contaminant exceeds a specified level, say :0 
(the CUG, Cs), but the party responsible for 
introducing the contaminant claims that the mean 
concentration is below :0. A mathematical 
formulation of these hypotheses would be the null 
hypothesis, H0: : $Cs, which is the regulator’s 
claim, and the alternative hypothesis, Ha: : <Cs, 
which is the potentially responsible party’s 
(PRP’s) claim.  In these applications, for an 
alternative value, :1 of :, it is desirable to be able 
to detect an error margin, ) = Cs - :1, when the 
mean of the contaminant is at or below :1, with 
high power and confidence. In other words, the 
objective is to be able to detect when the 
population mean approaches :1 (< C s ) with pre-
specified Type I and Type II error rates.  The null 

hypothesis described here is protective of the 
environment as it assumes that the area of the site 
is dirty, and the burden of testing is to show 
otherwise. This null hypothesis has been used 
throughout this article. 

Some of these issues have been well studied 
for normally distributed data sets and are 
documented in USEPA documents (e.g., 1989a, 
1989b, 1992). However, data distributions of 
contaminants originating from environmental 
applications are often positively skewed, and are 
invariably modeled by a lognormal distribution. 
As noted by Singh, Singh, and Engelhardt (1997), 
the use of decision criteria based on the mean of a 
lognormal distribution can have undesirable 
consequences, especially for samples of small 
sizes. For example, when the UCL of the mean is 
obtained using a lognormal distribution, one may 
end up spending more time than is necessary on a 
Superfund cleanup project in one case and leaving 
the contamination behind in the other.  The later 
situation can arise when reference or background 
data based UCLs are obtained using a lognormal 
distribution. 

1.0 Introduction 

Hypotheses testing and computation of the 
UCL of the mean require the availability of an 
adequate number of data values so that the 
resulting statistical inference can be considered 
credible in achieving the pre-specified 
performance parameters, such as the error rates 
and power. These data are then used to provide 
statistical evidence about the truth or falsity of the 
hypotheses.  The problem of obtaining an 
adequate number of samples for computing the 
EPC term or the verification of the attainment of 
cleanup goals satisfying pre-specified 
performance parameters, such as the Type I (") 
and Type II ($) error rates, have been considered 
in this paper. In statistical terminology, Type I 
error is the probability of rejecting the null 
hypothesis when in fact it is true and Type II error 
represents the probability of not rejecting the null 
hypothesis when in fact it is false. Type I (level of 
significance, test size) and Type II error rates are 
also known as false positive and false negative 
error rates, respectively.  Depending upon how the 
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null hypothesis is designated, an environmental 
chemist may find this definition of the false 
positive error rate contradictory to his intuitive 
definition of a false positive. As adopted in EPA 
documents (1989b), the statistical convention has 
been followed in this paper as well. 

One of the inherent assumptions required to 
determine the sample size is that one is dealing 
only with a single statistical population (e.g., one 
remediated part of the site).  Violation of this 
assumption can lead to invalid applications of a 
statistical model (e.g., lognormal) and technique. 
For example, a normally distributed data set with 
a few outliers can be incorrectly modeled by the 
lognormal distribution with the lognormal 
assumption hiding the outliers.  Also, the mixture 
of two or more datasets with significantly 
different mean concentrations, such as one coming 
from a clean part and the other taken from a 
contaminated part of the site, can also be 
incorrectly modeled by a lognormal distribution. 
These are frequent occurrences in environmental 
applications as discussed by Singh, Singh, and 
Engelhardt (1997). It appears that the use of the 
lognormal distribution and the H-statistic based 
UCL tend to hide contamination rather than find 
it. Actually, under the assumption of lognormal 
distribution, one can get away with very little or 
no cleanup (Bowers, Neil, and Murphy, 1994) at a 
polluted site. Moreover, there are practical 
problems which can occur even when the 
lognormal assumption is correct; especially when 
the distribution is highly skewed and the number 
of samples taken (available data) is small. In such 
a case the H-UCL of the mean can be orders of 
magnitude greater than the true mean 
concentration, making the UCL of little practical 
use for the intended purpose. 

The main objective of this article is to discuss 
some problems regarding the lognormal 
assumption and how they relate to sample size 
determination needed to draw reliable inference 
about hypotheses testing for the population mean 
with prespecified performance parameters. 
Methods for computing the number of samples 
from a normally distributed population are 
available in the literature (Bain and Engelhardt, 
1992). The use of the standard sample-size 

formula when the population variance is unknown 
has been discussed by Kupper and Hafner (1989), 
who proposed a simple adjustment for sample size 
determination when the population variance is 
unknown. For a lognormal distribution, many 
times, the practitioners like to use the standard 
formula given by equation (5) below, as an 
approximation, but it has been recommended 
(Stewart, 1994) that caution should be exercised 
while using the standard formulas for computing 
the number of samples. 

In general, when a statistical procedure is 
based on correct assumptions, by taking a 
sufficiently large number of samples it is possible 
to make decisions about the parameters (e.g., the 
mean) with whatever level of confidence is 
prescribed. However, in real applications, taking a 
large number of samples may not be practical as it 
may be time consuming with an unacceptably 
high cost. When approximate formulas are used 
for determining the number of samples, or if the 
lognormal assumption is wrong, it is possible to 
end up with either too many or too few samples. 
In the former case, the cleanup expense will be 
too high, and in the latter case, the actual level of 
confidence may fall short of what was prescribed 
by the regulators.  It is very well possible that it 
may not be feasible to achieve the desired 
performance parameters without taking an 
enormous number of samples. This is especially 
true when a lognormal model is assumed. 
Therefore, it becomes necessary to find a balance 
between the choice of performance parameters 
(error rates, power) and the number of samples 
needed for hypothesis testing.  For example, when 
more (or less) samples are taken, then the gain (or 
loss) in levels of performance standards for the 
various approximate formulas need to be 
investigated. Keeping some of these practical 
considerations in mind, the regulators may have to 
settle for reduced values of performance 
standards. A multi-phase approach may have to 
be adopted. In this article, several UCL of the 
mean computation methods have been compared 
via Monte Carlo simulations. 

A convenient way to perform a test of 
hypotheses about an unknown parameter is to first 
compute a confidence interval for the parameter, 
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(1)

(2)

Figure 1. Normal density functions with
different means, : = 2, 5, 10.

and then reject H0 if the hypothesized value, in
this case the cleanup standard, Cs , lies outside of
the interval.  For the verification of the attainment
of a cleanup goal, the test based upon the one-
sided UCL of the mean is typically used.  A one-
sided UCL is a statistic such that the true
population mean is less than the UCL with a
prescribed level of confidence, say (1!")100%. 
The associated test rejects H0, suggesting that the
site is clean if UCL < Cs. The choice of an
appropriate statistical procedure depends on the
distributional assumptions and knowledge of the
variance, F 2.

2.0  Normal and Lognormal Distribution

Let x1, x2, ... , xn be a random sample from a
population with unknown mean, :, and variance,
F2.  Denote the sample mean and sample variance,
respectively, as

An important feature of the normal model is
that the mean and standard deviation (sd) are
location and scale parameters, respectively.  In
particular, if a normally distributed random
variable is transformed by adding a constant, the
effect on the density function is a simple linear
translation without changing the shape of the
density function.  For example, given two normal
densities with the same sd, if the means differ by 3
units, then the 90th percentiles also differ by 3
units, the 95th percentiles differ by 3 units, and so
forth. This makes it possible to derive a sample
size formula in terms of the difference, or the
error margin (limit), ) = Cs - :1.  Figure 1 exhibits
normally distributed  densities for three different
sites, each with the same sd, F = 0.5 ppm, but with
different means (designated by dashed vertical
lines), : = 2 ppm at site A, : = 5 at site B, and : =
10 at site C.

However, the mean of a lognormal
distribution is not a location parameter.  It is
possible for lognormal distributions which appear
to be located at roughly the same place to have
very different means and, conversely, there exist
lognormal distributions with the same mean, :1,
which appear to differ in location. This makes it
impossible to derive a sample size formula in
terms of the error margin, ).  Thus, for a
lognormal model, the problem reduces to
distinguishing between the two populations with
mean, : ($ Cs ), and :1 (<Cs) with pre-specified
error rates.  Figure 2 has density functions of
lognormal populations with different means, :1 =
2, 5, and 10, for the log-transformed variable with
F = 1, and varying mean, :.  This figure shows
that differences in means for lognormal
distributions are not as easily identified by the
inspection of graphical displays of the respective
density functions.

Another interesting comparison is obtained by
studying several lognormal distributions with
varying values of the parameters, : and F, while
holding the lognormal mean, :1, constant.  This
situation is illustrated in Figure 3.  For a
lognormal model, a small value of F corresponds
to a small skewness as can be seen by the nearly
symmetric density function of population A,
Figure 3. Furthermore, the other distributions in
Figure 3 clearly show greater amounts of
skewness, corresponding to larger values of F. 
Consequently, it is difficult, based on the usual
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Figure 2. Lognormal density functions with
means, :1 = 2, 5, 10.

Figure 3. Lognormal density functions, all with
:1 = 2.

graphical paradigm, to recognize that all five
distributions have the same mean.  It can be
shown mathematically that larger values of F
yield distributions not only with greater skewness,
but also with a thicker right tail. The distribution
mean tends toward the thicker tail of a skewed
distribution, but tail thickness is generally hard to
spot through visual inspection.

The mean is an intuitive and a commonly used
measure of central tendency of a distribution.  The
sample mean and the associated UCL are often
used to verify the attainment of cleanup goals and
SSLs, and to estimate the EPC terms in exposure
and risk assessment studies. USEPA guidance
documents recommend the use of H-statistics to

compute a UCL of the mean of a lognormal
distribution (EPA, 1989a, 1992, 1996).  A detailed
discussion of H-statistics is given in Gilbert
(1987).  Even though, for a lognormal
distribution, the test based on the H-statistic is
uniformly most powerful (UMP), it has little
practical merit for positively skewed data sets of
small sizes, such as 20-30 or less.  Also, recent
work by Gilbert (1993) and Singh, Singh, and
Engelhardt (1997) indicates that statistical tests of
hypotheses based on H-statistics can yield
unusually high false negatives (not rejecting H0 as
defined above, when in fact it is false), which
would result in unnecessary cleanup.  This is
especially true for samples of small sizes from
skewed populations with F exceeding 1 as can be
seen in Figures 3A-3C, 4A-4D, 11A-11C, and
12A-12D.   These comments suggest that for large
values of F, mean is not a good measure of central
tendency for a lognormal distribution.  Other
parameters which are sometimes used as measures
of central tendency are the median (50th
percentile) and the mode (maximum of the
density) of the distribution.  For a unimodal
symmetric distribution, such as the normal
distribution, the mean, median, and mode are the
same.  However, the mean, median, and mode can
be quite different for a highly skewed distribution. 
For example, the mean, median, and mode of
population E in Figure 3 are 2.0, 0.65, and 0.05,
respectively.

Singh, Singh, and Engelhardt (1997) note that
ordinarily one would expect the mean and the
associated 95% UCL of the mean to be smaller
than the 95th percentile of the sampled population.
While this is a likely occurrence when the
population is normal, the situation can be
somewhat different with lognormal populations. 
For example, it has been observed (see Example
1) that the mean and, consequently, the H-statistic
based UCL of the mean can exceed the 90% or
95% percentiles of the lognormal distribution by
orders of magnitude, especially for skewed
datasets of small sizes.  This fact can be easily
seen by comparing percentiles with the mean of a
lognormal distribution. The population mean, :1,
is greater than xp, the 100pth percentile of a
lognormal distribution if and only if F > 2zp ,
where zp is the 100 pth percentile of the standard



normal distribution. For example, when p = 0.80, 
zp = 0.842, then :1 exceeds x 0.80 , the 80th 

percentile, if and only if F > 1.68, and :1 will 
exceed the 95th percentile if and only if F > 3.29. 
This observation and the simulation results 
summarized in Section 4 suggest that for F 
exceeding 2 and samples of a size as large as 50, 
the sample mean and the associated H-statistic 
based UCL for the lognormal mean becomes 
unrealistically large and cannot be considered a 
reliable estimate of a cleanup standard or of an 
EPC term. Due to these reasons, the 1996 EPA 
Soil Screening Guidance Document abandoned 
the use of H-UCL to compare the soil 
concentrations with the SSLs. 

Using Monte Carlo simulation experiments, it 
has been observed that the H-statistic based UCL 
for the mean is greater than the true mean and the 
CUG by orders of magnitude even when the 
sample was drawn from a population with a mean 
smaller than the cleanup standard, as can be seen 
in Figures 7A, 7B, 8A-8D, and 15A, 15B, 16A­
16D. It is, therefore, desirable to have procedures 
which work better (achieving the pre-specified 
performance measures, approximately) than the 
H-statistic based UCL. 

Example 1.  Consider a simulated dataset of size 
n = 15 from a lognormal distribution, LN(5, 
(1.71)2 ). The generated data range from 16.52 to 
1498.61, and are given in Singh, Singh, and 
Engelhardt (1997). The mean and sd of the 
lognormal distribution are :1 = 629.55, and F  = 1
2595.18, and the 80th, 90th, and the 95th 
percentiles for this lognormal distribution are 
626.29, 1329.05, and 2472.41, respectively. Note 
that the sd, 1.71, exceeds the 2*z0.80 = 2* 0.842 = 
1.68; therefore, the mean, :1, already exceeds the 
80th percentile of the lognormal distribution. The 
95% UCL of the mean based on the t-distribution, 
central limit theorem (CLT), the Chebychev 

theorem (based on the minimum variance 
unbiased estimates of mean and sd of the 
lognormal distribution), and the H-statistic are: 
749.31, 731.14, 2059.47, and 4613.32, respective­
ly.  Notice that the 95% H-UCL is 4613.32 which 
exceeds the 95th percentile value of 2472.41 for 
the lognormal distribution.  Thus, even though the 
H-UCL is theoretically sound and possesses 
optimal properties, the practical merit of the use of 
H-UCL is questionable, as it becomes quite large 
when the sd of the log-transformed variable starts 
to exceed 1.0. This is especially true for samples 
of small sizes (viz., <30). 

In light of the above remarks, it is crucial that 
great care should be exercised in choosing an 
appropriate model and in understanding the 
potential problems associated with the chosen 
model when attempting to make decisions about a 
population mean. Other measure of central 
tendency, such as the median or some other 
quantile (e.g., 75%, 85%) and other distributions 
(e.g., Weibull, Gamma) need to be considered for 
highly skewed data sets, which will be discussed 
in a sequel article. In addition to describing the 
complexity of interpreting statistical evidence 
about the mean of a lognormal, this article also 
discusses the difficulties involved in selecting an 
adequate number of samples when drawing an 
inference about the mean of a lognormal 
distribution. In order to shed some light on these 
issues, the coverage probability, statistical power, 
and the UCLs for the various procedures have 
been compared via Monte Carlo simulation 
experiments. Section 2 has a brief description of 
normal and lognormal distributions, and Section 3 
discusses the methods for computing the UCL of 
the mean of a lognormal distribution.  In Section 
4, the power and the UCL of the mean obtained 
using these procedures have been compared via 
Monte Carlo simulation experiments, and 
conclusions have been summarized in Section 5. 
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(4)

Figure 4. Power function for test of hypothesis
H0: : > 10 ppm.

(5)

(6)

(3)

2.1  Normally Distributed Datasets

Variance, F 2, is known

If F2 is known, then a (1 !")100% one-sided UCL
for the mean is given by the equation:

where z1!" is the (1!")th quantile of the standard
normal distribution (SND) and H0 (defined earlier)
is rejected if UCL < Cs with a false positive rate of
".  In order to study the false negative rate, $, it is
necessary to consider the power function of the
test.  In general, the power function, denoted by
J(:) = P[H0 is rejected given : is true] = P[reject
H0 * :], is the probability of rejecting H0. Using
the properties of the SND, the power function is
given as follows:

where M is the standard normal cumulative
distribution function.  Thus, if it is critical to
detect when the difference between the true mean
and the hypothesized mean is at least ), then it
would be desirable to have a low false negative
rate, $ at :1, with J(:1) = 1 ! $ and :1 = Cs !
).  For example, suppose it is required to perform
a test of H0: : > 10 ppm, and the test is based on a
sample from a normal population with known F =
1, and it is required to have no more than 5% (" =
0.05) false positive decisions and no more than
10% ($ = 0.10) false negative decisions if the true
mean is : # 9 ppm, a scenario given in Figure 4.

For a given choice of the standardized

difference, d = (Cs ! :)/F , and error rate, ", there
is no guarantee that a prescribed false negative
rate, $ , will be achieved.  Note that for normal
distributions, the power function in equation (4) is
an increasing function of the sample size, n, and
difference, d.  Thus the power function can be
made arbitrarily close to 1 by choosing
sufficiently large n (this may not be practical).

Thus, equating the power in equation (4) to
1 ! $ and solving it for n results in the following
formula,

Note that in equation (5), one can also use the
critical values based upon the Chebychev bound,
which will only result in a higher sample size as
the critical values based on the Chebychev
inequality will be higher than those based upon
the normal distribution. For example, for " = 0.05
and $ = 0.10, z1 - " = 1.645, and z1 -$ = 1.282,
whereas the corresponding conservative cut offs
based upon the Chebychev inequality are 4.47 and
31.6, respectively.

Example 2.  Suppose it is required to have a test
in which the false positive rate is " = 0.05 and the
false negative rate is $ = 0.10 when the true mean,
:, is 0.5 sd below Cs with d = ( Cs ! :)/F = 0.5. 
The sample size required to achieve these
performance parameters is = [(1.645 +
1.282)/0.5]2 = 34.3, which when rounded up yield
a value of 35.  For a less stringent condition, with
" and $ as 0.05 and 0.10, respectively, and d =
1.0, the sample size is given by n = [(1.645 +
1.282)/1.0]2 = 8.6, which can be rounded up to 9. 

Variance, F 2, is unknown

If F2 is unknown, then a (1 !")100% one-
sided UCL for the mean is provided by

where t1!", n!1 is the (1 !")th quantile of the
Student's t distribution with n !1 degrees of
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Figure 5. Power functions for tests of mean
with n = 11 and " = 0.05.

freedom (df).  The test rejects H0 and declares the
site clean if UCL < Cs, with a false positive error
rate, ".  In this case, the power function can still
be expressed as the probability that the UCL
defined by equation (6) is less than Cs, but its
evaluation becomes complicated requiring the use
of the noncentral t distribution.  Tables of sample
size based on the noncentral t distribution are
given in Bain and Engelhardt (1992). 

Example 2 (continued).  Consider Example 1,
with d = 1.0, " = 0.05, $ = 0.10, and F is
unknown.  Using the non-central t distribution
based tables (Bain and Engelhardt), the required
sample size comes out to be n =11, which is only
two more than the sample size obtained using
equation (5).  For n =11, the power functions for
the two cases, F known and F unknown, have
been plotted in Figure 5. Kupper and Hafner
(1989) note that the actual power attained using
sample sizes computed using equation (5) is
generally quite close to the desired power, as can
also be seen in Figure 5. The sample size required
for the test when F is unknown will always be
larger than when it is known.  Specifically, when
F is unknown, Kupper and Hafner recommended
adjusting the sample size by adding 2 or 3 to the
result obtained by using equation (5).

2.2  Positively Skewed Datasets

For a lognormal population, the skewness is a
function of F, as can be seen in Figure 3. A
lognormal distribution is typically used for highly

positively skewed datasets.  If there is evidence
that the population distribution is positively
skewed, especially when F is larger than 1, then a
lognormal distribution is often assumed. Let x1, x2,
... , xn be a random sample from a lognormal
population, LN(:, F 2).  In other words, the natural
logarithm of data are normal with mean : and
variance F 2, N(:, F 2).  Let y

_
 and sy, denote the

sample mean and sample sd, respectively, of the
log-transformed data yi = ln(xi); i = 1, 2, ... , n. 
For a lognormal population, the mean is :1 =
exp(: + 0.5F 2 ) and the median is given by M =
exp(: ).  Note that :1 is the mean of the lognormal
distribution and : is the mean of the transformed
distribution, and for positive values of F, :1 is
always greater than M.

Variance, F 2, is known

When F 2 is known, the problem can be
converted to the sample size determination for a
normal population by means of a log-
transformation.  The null hypothesis, H0: :1 $ Cs,
is equivalent to the hypothesis, H0: : $ ln(Cs) !
0.5F 2, which can be tested by comparing the
normal distribution based UCL applied to the
transformed data with the hypothesized mean,
:0 = ln(Cs) ! 0.5F 2. 

Variance, F 2, is unknown

There is no easy solution to compute the
sample size, power, and the UCL of the lognormal
mean when F 2 is unknown.  Some of the available
procedures are discussed in the following.

Test based upon the median, M

A test for the median, M = exp(:), is
sometimes used to test for the mean of a
lognormal distribution.  The hypothesis for the
median is H0: M $ Cs , which is equivalent to H0:
: $ ln(Cs), and the results for the normal
population can be applied with :0 = ln(Cs).  If F 2

is known, then a test (or the UCL) based on the
transformed data for a normal distribution may be
used; on the other hand, if F 2 is unknown, then a
test based on the Student’s - t distribution can be
used.  It should be stressed that this only provides



a test for the median, M, and does not provide a use of the median-based test for the mean of a 
test of the lognormal mean, :1. If the amount of lognormal distribution does not seem to be a 
skewness is small, then the distribution is feasible or desirable option. For values of F 
approximately symmetrical, as can be seen in smaller than 0.5, a normal distribution is often 
Figure 3, M closely approximates the mean, :1 , used and one needs not consider a lognormal 
and a test of the median may reasonably be used distribution. Also, many exposure and risk 
as an approximate test of the mean. To study how assessment applications do not recommend the 
well this approximation works, a small numerical use of median based estimates of the exposure 
study was carried out to compare the nominal and point concentration term (EPA 1992, 1996). 
actual significance levels when the test of a Moreover, for skewed datasets with F exceeding 
median is used as a test of the mean when F is 0.5, the median is much smaller than the mean of 
unknown. The technical details are given in the the distribution. For example, when : = 3.594 
Appendix. The numerical results are given below and F = 1, the mean, :1, of the lognormal 
in Table 1 for a sample of size n = 10. distribution is 60, and median, M, is 36.4. Thus a 

test based on equation (6) for testing the median 
From Table 1, it is clear that if the value of F does not provide an adequate approximate test of 

is small, say less than 0.10, then the nominal and the lognormal mean when F is larger than 0.5. 
actual significance levels don’t appear to differ a Therefore, the power and the UCLs for the test 
great deal. However, for F in the neighborhood of based on median have not been plotted in the 
0.25, the actual level is about double the nominal figures given in Section 4. 
level, and if F is as large as 1.0, they differ by 
roughly an order of magnitude.  This means that 3.0 Computation of the UCL of the Mean 
even for small values of F, such as 0.2-0.25, a test 
based on the median will have a higher false Modified t - test for asymmetrical populations
positive rate than the pre-specified α for declaring 
a site to be clean when, in fact it is polluted. This If F 2 is unknown, then Johnson (1978) and
discrepancy increases dramatically with an Chen (1995) suggested the use of a modified t-
increase in F. Assuming the resulting statistic for testing the mean of a positively 
approximate test is deemed usable (at least for skewed distribution. Using Johnson’s modified t ­
small values of F ), the sample size formula as statistic, a (1 !")100% one-sided UCL for the 
given by equation (5) above (or using Kupper and mean is given by 
Hafner,1989 adjustment) could be applied to 
determine an appropriate sample size. 

As pointed out earlier, a lognormal 
distribution is often used for large values of F 
such as those exceeding 0.75-1.0; therefore, the 

(7) 

Table 1. Actual significance levels for median test of the mean for a given nominal significance 
level. 

True Value of σ 

nominal a 0.01 0.05 0.10 0.15 0.20 0.25 0.50 1.0 2.0 
0.05 0.051 0.058 0.067 0.077 0.088 0.100 0.181 0.427 0.897 
0.10 0.103 0.114 0.129 0.146 0.164 0.183 0.294 0.589 0.957 

where t 1!", n!1 is the (1 !")th quantile of the 
Student's t distribution with n !1 df and the 
moment estimator of the third central moment 
used in equation (7) is given by 

-9­



(8) 

0: :1 $ (Cs) 
if the UCL < Cs . 

discussed in Section 4. It has been observed that, 
for all practical purposes, the difference between 
the values of the UCL and the error rates (and, 

negligible. Therefore, in order to avoid the 
cluttering of graphs, the power and the UCL of the 

been plotted in the figures given in Section 4. 

H-statistics based UCL when the variance, F 2 , 
is unknown 

:1, 

H-statistic. 

The (1!")100% 
:1, based on the H-statistic is 

given as follows. 

The critical values, H1 - " , used in equation (8) 

n larger than 100. A subset of tables of critical 
values, H1 - "
found in Gilbert (1987). Although it is shown by 
Land (1971, 1975) that the test based on the H-

Engelhardt (1997) point out that this procedure 

This is particularly 

F. F in the interval 0.5-1.0, a 
F 

This 
F. This is 

certain that 

practical) choice for achieving a pre-specified 
false positive error rate, "

) = Cs - :2 , 
where :2 # Cs :1 is reserved as a 

Cs - :2. Thus, 

Cs - ) with 
prespecified error rates, " and $. Several 

F1. 
)) is incorrectly 

* = ln(Cs) !ln(:2). Another 

equation (5) with d = */F *, 

Stewart discussed a real application with ) = 100. 

Stewart noted, this is incorrect because a 
difference of ln()
translate to a difference of )

values of Cs ). 

Cs into account, 
and not just ). 

The test rejects the hypothesis, H
The UCL of the mean given by 

equation (7) has been used in the simulations 

consequently the sample size) based upon the 
Student’s t-statistic given by equation (6) and the 
modified t-statistic given by equation (7) is 

mean based upon the modified t-statistic have not 

Land (1971, 1975) derived the uniformly most 
powerful unbiased (UMPU) test for the mean, 
of a lognormal distribution, which is based on the 

As mentioned earlier, EPA guidance 
documents (1980a,1992) recommend the use of 
the H-statistic based UCL of the mean for 
positively skewed distributions.  
UCL for the mean, 

are not readily available and are not available for 

, as computed by Land (1975) can be 

statistic has optimal properties, Singh, Singh, and 

can sometimes lead to UCLs which are too large 
to be of any practical value.  
true for samples of small sizes and large values of 

For example, for 
sample of size 15 or less is considered small; for 
in the interval, 1-1.5, a sample of size 30 or less 
can be considered small, and so forth.  
sample size requirement increases with 
further discussed in the simulation Section 4.0. 

Power and sample size for H-statistic based test 

Despite the problems which accompany the 
lognormal distribution, if the user is 
the population is lognormally distributed, then 
theoretically, a UCL based on the H-statistic is the 
optimal (although, it may not be realistic or 

. For a lognormal 
distribution, no simple established sample size 
formula, such as given by equation (5), is 
available which can be used to determine the 
number of samples needed to test a lognormal 
mean with a pre-specified error limit, 

 (the symbol 
general term for a lognormal mean in this section). 
Since a lognormal mean is not a location 
parameter, the error limit can not be handled 
simply in terms of the difference, 
the problem is to determine an adequate number 
of samples to collect to be able to detect when the 
lognormal mean approaches 

approximations are used to determine the sample 
size. One approximation is simply to use equation 
(5) on the raw data with the lognormal 
Sometimes, the error limit of ln (
used on log-transformed data.  In the log-domain, 
the error limit is 
possibility would be to try, as an approximation, 

 , with the error limit, 
measured in the log-domain given as follows: 

In this discussion, a user wanted to incorrectly use 
ln(100) as the error limit in the log domain. As 

) in the log domain does not 
 in the real domain. 

Two examples were considered with different 
 but with the same error factor, 

The resulting sample sizes for these two examples 
differed substantially, and it was concluded that 
whatever method of conversion to the log domain 
is used, it must take the value of 

To check the practicality and accuracy of 
these approximations, the power function of the 

(9) 
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Figure 6. Comparison of power functions of H-
test for three sample sizes: n = 9, 23
and 37.

H-test is needed, the details for which are given in
the Appendix.  A search routine with this power
function can be used to derive the sample size
based on the H-statistic. Some examples
illustrating these points follow.

Example 3.  This example provides a comparison
of power functions for H-tests based on three
different sample sizes obtained using the
approximation formula discussed above.  The
example is based on the simple choices: Cs = 10, "
= 0.05, $ = 0.10, F = 1, and for * = ln(Cs) ! ln(Cs
!)) = 1, d = 1, the error limit in the real domain is
relatively large, ) = 6.32. The population sd of
the lognormal distribution in real space is F1 =
13.11.  Note that the problem is to obtain an
adequate number of samples to identify when the
mean of the lognormal distribution starts to
approach 3.68 given that the hypothesized mean is
10 ppm or more.  The power functions are
graphed in Figure 6.  Using the incorrect error
limit as ln()) = ln(6.32) = 1.84 in equation (5),
one gets the erroneous sample size given by n =
[(1.645 + 1.282)(1)/1.84]2 = 2.53, which is
rounded up to 3 (the power for this size is not
plotted in Figure 6).  Using the error limit of * = 1
in equation (5), the approximate sample size is n =
9, and the dashed curve in Figure 6 is the graph of
the power function for an H-test based on this
sample size.  A search routine for the power
function of the H-test as given in Appendix A was
also used to determine the sample size, n = 23. 
This is the smallest integer such that the power $
1 !$ = 0.90 when * = 1.  Another possible
approximation would be to apply equation (5)
directly mean and sd, :1 and F 1.  That is, even
though equation (5) is derived for use with a
normal population, we plug the error limit and sd
in the real domain, ) = 6.32 and F1 = 13.11 into
(5).  The result would be n = [(1.645 +
1.282)(13.11)/6.32]2 = 36.9, which is rounded up
to 37.  While the number of samples for the
approximation based on * was too small, this
approximation, as expected yields a value which

is too large.

From this discussion, one can conclude that
using * in equation (5) does not provide the best
approximation because the sample size it yields is
less than half of the one actually required and the
power resulting from this approximation is 0.46,
or roughly half of the nominal value of 0.90. 
However, it should be pointed out that the sample
size came out to be 23 because the alternative
mean selected is 3.68 ppm, which is much lower
than the hypothesized mean of 10 ppm.  In
practice, many times, the alternative mean is
closer to the hypothesized mean, in which case the
number of samples needed to achieve a pre-
specified power will increase dramatically.  For
example, if the alternative mean, :2 , is 7, then the
sample size based on the H-statistic will be 122;
whereas, if :2 = 8, then the sample size based on
the H-statistic will become 286 to achieve a power
of 0.9, which may not be practical!  Also using *
in equation (5) for :2 = 7, the approximate sample
size is 67, and for :2 = 8, the sample size is 172!

Example 4.  A more practical example with
overlapping densities and a higher value of F is
discussed.  Let Cs = 100, " = 0.05, $ = 0.10, F =
1.5, ) =100-80 = 20 resulting in * = ln(Cs) !
ln(Cs !)) = 0.2231, with d = * /F = 0.1488.  The
problem is to obtain an appropriate number of
samples to distinguish between two overlapping
log-normal distributions. As shown below, a large
number of samples will be needed to meet these
performance standards.  Using the incorrect error
limit as ln()) = ln(20) = 2.9957 in equation (5),
the sample size comes out to be 2 (rounded from



2.15). Using * = 0.2231 as the error limit in 
equation (5), the sample size comes out be 387, 
which is fairly large. Next, using the search 
routine with the H-statistic based power, the 
sample size comes out to be 877!  Taking about 
877 samples to achieve a power of 0.9 is probably 
not practical. Another example from a Superfund 
site is considered next. 

Example 5.  This problem was encountered when 
working on a dataset from a Superfund site with 
benzo(a)pyrene equivalents (BaPE) being the 
main COPC.  The data came from three areas of 
the site. Using the historical data, the sample 
mean and sd are 17.872 ppm and 40.41 ppm. The 
data do not follow a normal distribution but 
follow a lognormal distribution where the mean 
and sd of the log transformed data are 1.449 and 
1.708, respectively. The CUG for the site is 60 
ppm. The objective is to verify the attainment of 
the CUG by the three areas of the site.  Enough 
samples are needed to be collected to be able to 
detect when the mean becomes 50 ppm (so that 
the areas can be considered clean) with a 
confidence coefficient of 0.95 and a power of 0.9. 

Use of the incorrect error limit, ln()) = ln(60-
50) = ln(10) = 2.303 in equation (5) resulted in n 
= 4.71; and the consultants for the site suggested 
that 4.7 ~ 5 samples would be sufficient to verify 
the attainment of the cleanup standard with the 
pre-specified performance objectives, which is 
obviously incorrect.  Using * = ln(Cs) ! ln(Cs !)) 
= ln (60) - ln(50) = 0.182 as the error limit in 
equation (5) with F = 1.7, the sample size comes 
out to be 752. Next using the search routine with 
the H-statistic based power, the sample size comes 
out to be 1808! Apparently taking 752 or 1808 
samples to achieve a power of 0.9 is neither 
practical nor desirable. The influence of the 
sample size on the power needs to be determined. 
Is it really worth taking a large number of samples 
such as 1808 in an effort to achieve the high 
power of 0.9? From a practical point of view, one 
needs to know how to compute the UCL of the 
mean correctly with maximum practical power for 
a given sample size and level of significance. 

Obviously, there is no simple solution to the 
problem.  It is observed that serious 

underestimation of the sample size can occur 
when ln()) is substituted for the error margin in 
equation (5). However, the error limit, *, based 
sample size determination procedure can also lead 
to a substantial underestimation of the sample size 
for larger values of *, especially when Cs is much 
larger than Cs ! ), as is the case in Example 3. 
For large values of sd, the sample size obtained 
using the normal distribution based power or the 
H-statistic based power can be unreasonably large 
to be of practical merit. The question is, can we 
use approximate tests based upon the t-test, the 
CLT, or the Chebychev theorem to meet 
(approximately) the pre-specified performance 
standards?  Does there exist a UCL computation 
procedure (or model) which yields practical 
values for the sample size and the UCL? Does 
there exist a procedure which has higher power 
(that may not be equal to 0.9, or some other pre-
specified level) than the other procedures for a 
given value of n, the sample size?  In order to 
investigate the power behavior of the various 
procedures, a Monte Carlo simulation study has 
been performed which is discussed in Section 4. 

Chebychev Inequality based UCL of the mean 

The Chebychev theorem as discussed by 
Singh, Singh, and Engelhardt (1997) to obtain a 
conservative estimate of the UCL of the mean of a 
lognormal distribution has also been included in 
this study.  The two-sided Chebychev theorem 
states that, given a random variable, X, following 
any distribution, continuous or discrete, with a 
finite mean, :1, and a sd, F1, we have: 

(10) 

This result can be applied with the sample _
mean, x , to obtain a conservative UCL for the 
population mean.  Specifically, if the right side of 
equation (10) is equated to 0.95, then k = 4.47, _
and UCL = x + 4.47F /n1/2 is a conservative 95%1
upper confidence limit for the population mean. 
Of course, this would require the user to know the 
value of F1. The obvious modification would be 
to replace F1 with an estimate, such as the sample 
standard deviation, sx, or the Minimum Variance 
Unbiased Estimate (MVUE) based upon 
lognormal theory; but, since this is estimated from 
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data, the result is no longer guaranteed to be 
conservative. 

^In general, if :1 denotes an estimate of the 
^ ^ 

1) is an estimate of the 
^

unknown mean, :1, and F (:
1, then the quantity UCL = :

^ ^ 
standard error of : 1̂ + 

1) will give a 95% UCL for :1, which 
should tend to be conservative. The power of the 
test based on this Chebychev bound has been 
included in the simulation experiments as well. 
The Chebychev UCL can be computed using the 
estimates of mean and sd as given by equations 

4.47F (:

(1) and (2) above (denoted by Cheb_M) or can be 
obtained using the MVUE given by equations (8) 
and (10) of Singh, Singh and Engelhardt (1997) 
based on the lognormal distribution theory 

^(denoted by Cheb_MV) to obtain the estimates :1^ ^and F (:1). The power of the test based on the 
Chebychev UCL has been computed using both 
sets of estimates, Cheb_M and Cheb_MV. 

From the simulation experiments discussed in 
Section 4.0 below, it is observed that for all 
sample sizes, the Chebychev - UCL is more 
conservative (higher) than all other UCLs except 
for the UCL based on the H-statistic. The H-UCL 
tends to be much larger than the Chebychev-UCL 
for large values of sd ($1.5) and samples of small 
sizes (n#30), and as sd increases, this sample size 
requirement becomes larger than 30.  However, it 
is also observed that the H-UCL based upon 
samples of small sizes from populations with large 
values of F , tend to be unrealistically large 
(Singh, Singh, Engelhardt, 1997) to be of any 
practical use. Inference based upon such large H­
UCL values would result in a large number of 
false negatives as can be seen from Figures 3A­
3C, 4A-4D, 11A-11C, and 12A-12D. 

4.0 Monte Carlo Simulation Experiments 

From the discussion presented here, it is 
obvious that there does not exist a single sample 
size determination formula which can be preferred 
over the other formulas while sampling from a 
lognormal population.  Therefore, extensive 
Monte Carlo simulation experiments were carried 
out and several procedures to compute the 95% 
UCL of the mean with a test size of 0.05 have 

been compared in terms of their power.  In order 
to study the power of the various UCL 
computation methods, 10,000 samples of sizes 10, 
15, 20, 30, 50, and 100 were generated from a 
variety of lognormal populations for various 
values of the mean above and below the CUG 
value. The simulations have been performed for 
two CUG values:10 and 60. Several combinations 
of mean and sd have been considered.  For CUG = 
10, the samples were generated from lognormal 
populations with means of 15, 12, 10, 8.2, 6.7, 
and 3.7, and for CUG = 60 ppm, samples were 
generated from lognormal populations with means 
of 100, 70, 60, 50, 40, and 30. The sd values were 
0.5,1.0,1.5, and 2.0. Higher sample sizes 
including,150, 200, 300, 400, have been also tried 
for larger values of F such as 1.5, and 2.0. The H­
UCL and power could not be computed for the 
larger sample sizes as the critical values for the H-
statistic are not available for samples of sizes 
larger than 100. Therefore, graphs for values of n 
larger than 100 are not included here. 

Procedures considered in the simulation 
experiments include the Students’s t-test, 
modified t-test for asymmetric distributions, the 
CLT based normal test, a test based on the 
median, a test based on the H-statistic, and tests 
based on the Chebychev theorem.  A close look at 
the simulation results suggests that the differences 
in the values (power, UCL) obtained using the 
Student’s t-test and the modified t-test are not 
significant. The UCLs based on the modified t-
test are slightly higher than those based on 
Student’s t-test.  For example, for a sample of size 
10 and the population mean of 100, the 95% UCL 
of the mean using the Student’s t-test are 128.77 
(F = 0.5), 157.79 (F = 1.0), 190.01 (F = 1.5), 
223.27 (F = 2.0), and 242.70 (F = 2.5), whereas 
the corresponding 95% UCL using the modified t-
test are 129.39 (F = 0.5), 159.99 (F = 1.0), 194.45 
(F = 1.5), 230.24 (F = 2.0), and 251.61 (F = 2.5), 
respectively.  Also, for small samples, the t-test 
results are preferred over the CLT results, and the 
t-test results approach the CLT results as the 
sample size increases.  As observed above, the test 
for the mean based on the median does not work 
well for values of F larger than 0.5. Therefore, in 
order to avoid cluttering the graphs, the 
computations based upon the CLT, modified t-
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test, and the median based test are not included in 
the graphs presented in this paper. The power and 
the UCLs are plotted only for four methods, 
namely, the t-test (denoted by t), H-statistic 
(denoted by H), the Chebychev UCL using the 
simple sample arithmetic mean and sd (denoted by 
Cheb_M), and the Chebychev UCL based on the 
MVU estimates obtained using the lognormal 
theory (denoted by Cheb_MV). 

Graphs for the power and the UCL of the 
mean for the four procedures have been plotted. 
For CUG = 10, and F = 0.5, 1.0, 1.5, and 2.0, the 
power function is displayed in Figures 1A-1F, 
2A-2F, 3A-3F, and 4A-4F, respectively, and for 
CUG = 60 ppm, and F = 0.5, 1.0, 1.5, and 2.0, the 
power function is given in Figures 9A-9F, 10A­
10F, 11A-11F, and 12A-12F, respectively.  For 
each sample size, the plotted UCLs are the 
average values of the respective UCLs over 
10,000 iterations for each combination of mean 
and sd. For CUG = 10, and F = 0.5, 1.0, 1.5, and 
2.0, the UCLs are displayed in Figures 5A-5F, 
6A-6F, 7A-7F, and 8A-8F, respectively, and for 
CUG = 60 ppm, and F = 0.5, 1.0, 1.5, and 2.0, the 
UCLs are given in Figures 13A-13F, 14A-14F, 
15A-15F, and 16A-16F, respectively.  From these 
graphs, the following observations can be been 
made. 

1.	 From these graphs, it is clear that the H-
statistic based test does possess the pre-
specified size of 0.05 (significance level) for 
all values of n and F. 

2.	 The size of the t-test is larger than the other 
three procedures. As the sample size 
increases, the differences between the H-
statistic and the t-test based results decrease. 

3.	 From Figures 1A-1F, 2A-2F, 3A-3F, 9A-9F, 
10A-10F, and 11A-11F, it is observed that, 
for F #1.5, the test based on the Chebychev 
bound has the realized test size (level of 
significance) smaller than the pre-specified 
test size of 0.05 for samples of all sizes 
considered (except for n = 10 and F = 1.5), 
which is a desirable property for the 
Chebychev UCL to possess.  This is 
especially true for the Chebychev results 

based on the MVU estimates of the mean and 
sd of the lognormal distribution. 

4.	 For small values of F (#0.5), the power and 
the UCL values based upon the t-test and the 
H-statistic are quite close, even for samples of 
a size as small as 15 for both CUG values as 
can be seen in Figures 1A-1F, 5A-5F, 9A-9F, 
and 13A-13F. The discrepancy between the 
UCLs and power based on the t-test and the 
H-statistic decreases as the sample size 
increases. 

5.	 From Figures 2A-2C, 6B-6C, 10A-10C, and 
14B-14C, it is observed that for F •1 and 
samples of a size smaller than 20, there is not 
much difference in the power and the 95% 
UCL of the mean based on the H-test and the 
Cheb-UCL tests. Actually, the power of H-
test is smaller than the Cheb-UCL for samples 
of a size smaller than 10. 

6.	 For F exceeding 1.5, the size of the Cheb-MV 
test becomes larger than the pre-specified 
level of significance, 0.05 for samples of size 
30 or smaller, as can be seen in Figures 4A­
4C and 12A-12C. As the sample size 
increases, the size of the test based on the 
Cheb-MV comes close to the pre-specified 
size of 0.05 and then becomes smaller than 
prespecified size as can be seen in Figures 
4A- 4F and 12A-12F. A similar pattern will 
be observed for larger values of F and the 
sample size requirement for the size of the 
Cheb-MV test to reach 0.05 will also increase. 

7.	 From Figures 3A-3C, 4A-4D, 11A-11C, and 
12A-12D, it can be seen that for F $ 1.5, the 
test based on the H-statistic yields powers 
smaller than the Cheb-MV test for samples of 
sizes smaller than 30, which will result in a 
large number of false negatives. A similar 
pattern will be observed for larger values of F 
and the sample size requirement for the power 
of the H-test to reach the power of the Cheb-
MV test will also increase. 

8.	 As the sample size increases, the power based 
on the Chebychev UCL decreases. For small 
sample sizes, the power comes quite close to 
the power based on the H-statistics and then 
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as the sample size increases, the power 
becomes smaller than the power for the H-
test. However, these decrements are not so 
dramatic as can be seen in Figures 4A-4F and 
12A-12F. Also, as the sample size increases, 
the Cheb-MV UCL becomes larger than the 
H-UCL. However, those increases are 
consistent without any dramatic changes. A 
similar pattern will be observed for larger 
values of F and the sample size requirement 
for the power of the Cheb-MV test to reach 
the power of the H-test will also increase. 

9.	 For values of F larger than 1, the H-statistic 
based UCL becomes unrealistically large, at 
least for samples of sizes smaller than 30 for 
both values of the CUG, as can be seen in 
Figures 7A-7D, 8A-8D, 15A-15D, and 16A­
16D. Cleanup decisions based on such 
unreasonably large H-UCL values cannot be 
considered reliable. For example, when :  = 1
60 and F = 2.0, the 95% quantile of this 
lognormal distribution is about 218, whereas 
the 95% UCLs of the mean are about 1300010 
and 1488 for samples of sizes 10 and 20, 
respectively (Figures 16A and 16C).  A 
similar pattern will be observed for larger 
sample sizes as F increases. For example, for 
F = 2.0, the H-UCL is much higher than the 
rest of the UCLs even for samples of size 50, 
as can be seen in Figures 8A-8D and 16A­
16D. For :1 = 60 and F = 2.0, the 95% Cheb-
MV UCL of mean are 244, 228, and 222 for 
samples of size 10, 15, and 20, respectively. 

5.0 Summary and Recommendations 

The discussion presented here leads to the 
conclusion that there does not exist a single 
sample size determination formula which can be 
preferred over the other formulae while sampling 
from a lognormal population. From the simulation 
results, it appears that it is not feasible to achieve 
the desired error rates and critical difference 
without taking an enormous number of samples. 
This is especially true when a lognormal model is 
assumed. Keeping these practical considerations 
in mind, the regulators may have to settle for 
reduced values of performance standards. 

From equation (9), it is concluded that, even 

though the H-UCL based test is the test achieving 
the pre-specified Type I error rate, for samples of 
small size, the associated H-UCL is unreasonably 
large, even when samples are obtained from a 
lognormal distribution.  For example, for F = 2.0, 
n = 15, and mean = 60, the H-UCL of the mean is 
6493 (Fig.16B), which is an unlikely event to 
happen at a Superfund site. For highly skewed 
populations, a large number of samples is needed 
to obtain a UCL of practical value. 

It is concluded that for less skewed data with 
F #0.5, a test based on normal distribution (t-test) 
may be used to determine the sample size and 
power, and consequently one can use the t-test 
based UCL of the mean to verify the attainment of 
cleanup standards. For F in the interval (0.5-1.0), 
and for samples of a size smaller than 30, the 
Chebychev bound gives reasonable and reliable 
results in terms of power and the UCL of the 
mean; as the sample size becomes larger than 30, 
one can use the test based on the t-statistic. For 
samples of small sizes (less than 50) and F in the 
interval (1.0-1.5), the H-UCL of the mean 
becomes large, and the Cheb-MV UCL can be 
used to verify the cleanup standard; for samples of 
large sizes (greater than 50), the central limit 
theorem can be used to compute the UCL of the 
mean. For samples of small sizes (less than 100) 
and F in the interval (1.5-2.0), the H-UCL of the 
mean becomes too large, and the Cheb-MV UCL 
can be used to verify the cleanup standard (with 
higher Type I error rates); for samples of large 
sizes (greater than 100) due to the central limit 
theorem, one can compute the UCL of the mean 
based on the normal theory. Similar patterns will 
be observed as the sd increases. 

Based on the Monte Carlo simulation results 
and the authors' experience with Superfund site 
work, the following recommendations are made. 

1.	 A multi-phase approach may be used when 
the sample size formulas discussed here result 
in an unrealistically high number of samples 
(e.g., exceeding 100-200) needed to achieve 
the desired performance parameters. One can 
start with taking a reasonable and 
economically possible number of samples. 
The power and size of the tests can then be 
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computed. A procedure with maximum power people and it can very easily be used 
may be chosen to compute the UCL of the incorrectly, which may lead to incorrect 
mean. If deemed necessary for increased conclusions. 
power, more samples can be taken in the next 
phases and the UCL of the mean can be re­ 4. For highly skewed populations, the arithmetic 
computed using the procedure yielding the 
maximum power. 

mean becomes larger than higher quantiles of 
the distribution, such as 90% and 95% (e.g., F 
exceeds 3.26), etc. Other measures of central 

2. Low values of error rates, ", and $, and the 
error margin, ), result in large sample sizes 

tendency, such as the median, or some other 
quantile (e.g., 80%, 90%) need to be 

which, in reality, may not be achievable.  For considered for highly skewed datasets for the 
example, for a lognormal distribution, with 
" = 0.05, $ = 0.1, sd = 1.7, and ) = 10, the 

verification of the achievement cleanup goals. 

sample size needed is 1808, as seen in It is crucial that great care should be exercised 
Example 5 above, which in not feasible to in choosing an appropriate model and in 
collect. For a sample of size 100, and sd = 1.5 
and 2.0, and ) = 10, the size of the H-UCL 

understanding the potential problems associated 
with the chosen model when attempting to make 

test is about 0.05 but the powers are only decisions about a population mean. It is also 
about 0.20 and 0.17 (see Figures 11F, 12F), recommended that some additional Monte Carlo 
respectively.  If possible, one should consider simulations be done to assess the performance of 
reducing the performance objectives. the various methods for a variety of skewed 

population distributions, such as the Weibull and 
3. It is recommended to avoid the use of the the Gamma, and of the sort common with 

lognormal distribution. The appropriate use of contamination data (e.g., mixtures and with 
the lognormal distribution is not clear to most outliers). 
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Figures 1A - 1F 
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Figures 2A - 2F 
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Figures 3A - 3F 
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Figures 4A - 4F 
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Figures 5A - 5F 
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Figures 6A - 6F 
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Figures 7A - 7F 
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Figures 8A - 8F 
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Figures 9A - 9F 
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Figures 10A - 10F 
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Figures 11A - 11F 
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Figures 12A - 12F 
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Figures 13A - 13F 
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Figures 14A - 14F 
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Figures 15A - 15F 
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Figures 16A - 16F 
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Notice 

The U.S. Environmental Protection Agency (EPA), through its Office of Research and Development 
(ORD), funded and prepared this Issue Paper. It has been peer reviewed by the EPA and approved for 
publication. Mention of trade names or commercial products does not constitute endorsement or 
recommendation by EPA for use. 
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Appendix 

Approximate test of the mean of a lognormal distribution 

As discussed above, for a lognormal distribution that is not highly skewed, such as F < 0.5, it might 
be reasonable to use a test of the median as an approximate test of the mean.  Let the xi’s be a random 
sample from a lognormal population, with both : and F 2 unknown, and with yi = ln(xi). Denote the 
standardized difference by d = */F = [ln(Cs) ! ln(:1)]/F . The lognormal mean is :1 = exp(: + 0.5F 2 ), and 
the parameter : can be written in the equivalent form, : = ln(: ) ! 0.5F 2. The power function is given by1

(A1) 

and W = (n !1)sy 
2/F 2 Z

W is chi-square distributed with n ! Equation (A1) can be written as follows: 

(A2) 

 are independent random variables;  is standard normal and 
1 degrees of freedom.  

where 

where , and 

is the probability density function of a chi-square distribution with < = n !1 degrees of freedom.  Note 
that equation (A2) depends not only on d, but also separately on F because the function g1(w) depends on 
F. The power can be evaluated by numerical integration and it yields the significance level of the test of a 
lognormal mean if d = 0. This approach was used to compute the significance levels shown in Table 1. 
Results about the noncentral t distribution, with the appropriate choice of the noncentrality parameter, can 
also be used to evaluate this power function. 

The power function of the H-test 

An approach similar to the derivation which yielded equation (A2) can be used to derive the power 
function of the H-test as a function of F and the standardized difference, d = */F = [ln(Cs) ! ln(:1)]/F. 
Note, this can also be written as ln(Cs) = ln(:1) + Fd = : + F 2 /2 + Fd. Recall, that the H-factors depend 
on s  and n; that is, H1 ! " = H1 ! "(sy, n). It follows that the power function, as a function of both : and F,y
is given by 
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(A3) 

, 

Z and W The function g2(w
d F. 

d and F. The integral on the right of equation (A3) can be evaluated by 

 are the random variables defined in equation (A1).  ) depends not only on 
, but also separately on Thus, in order to perform numerical evaluation with equation (A3), it is 

necessary to specify both 
numerical integration in a manner similar to the evaluation of equation (A2). 
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