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1.0 INTRODUCTION: 
 
Drinking water systems are known to be vulnerable to contamination by toxic 
substances, whether the contaminants are introduced intentionally during a terrorist 
attack, or unintentionally through accidental cross-connections or backflow incidents. 
Understanding the vulnerability of drinking water distribution systems to contaminant 
intrusion is currently a major research focus within the federal government and across 
the water community.  The EPA’s National Homeland Security Research Center 
(NHSRC) developed the Threat Ensemble Vulnerability Assessment (TEVA) Research 
Program to analyze the vulnerability of drinking water distribution systems to 
contaminant threats and develop a methodology to design Contamination Warning 
Systems (CWS).  The TEVA Research Program, the NHSRC and its collaborators at 
the University of Cincinnati, Argonne National Laboratory, Sandia National Laboratories 
developed software that accomplishes this task.  The software tool uses quantitative 
health impacts data from probabilistic or exhaustive consequence assessments to 
optimally locate and evaluate CWS designs for a drinking water distribution system. 
 
Both the characterization of the potential impacts from contaminant attacks and the 
designing of CWS rely on calibrated hydraulic models developed by the water 
community for modeling and simulating contaminant transport.  Distribution system 
models, however, vary widely in detail and, therefore, their representation of the actual 
system also varies.  A complete representation of the distribution system model, 
especially given any large or even medium-sized city, can be enormously complex and 
very difficult to model.  As a result, “skeletonization” is the process most often used to 
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select the most significant attributes of the hydraulic network that accurately represent 
the behavior of the system.  The underlying assumption is that those portions of the 
network that are not modeled are accounted for within the parts of the system that are 
represented by the model.  The level of detail of a distribution system model can be 
described by the number of junctions and pipes in the model as compared to their 
numbers in the actual system that the model represents.   
 
The TEVA model for assessing the spatial and temporal distribution of health impacts in 
a distribution system has been previously described [Murray et al., 2006(a)].  
Furthermore, the strategic placement of sensors in a distribution system to monitor 
water quality as part of a CWS has been well studied [Berry et al., 2006] and described 
[Murray et al., 2006(b)].   
 
The purpose of this paper is to evaluate the effects that varying levels of model detail 
(degree of skeletonization) have on estimating potential health impacts from an 
intentional contamination event, on a water system community.  Additionally, the 
performance of sensor monitoring designs developed for six skeletonized models are 
compared to designs developed for an “all-pipes-model”.  Mean and maximum, or worst 
case, health impacts for each of the sensor designs from the skeletonized models are 
compared to the performance of the sensor designs developed for the “all-pipes-model”.  
Given that most distribution systems are represented by models that are skeletonized to 
some degree, this paper examines the effectiveness of sensor designs developed for 
skeletonized models to protect public health.     
 
 
2.0 METHODOLOGY 
 
In this section the methodology is described beginning with a description of the water 
system used, including its distribution system model and the skeletonization process 
used, followed by the consequence assessment and sensor placement design 
approaches. 
 
2.1 Water Distribution System 
 
The results presented here are for an “all-pipes-model” of a large city distribution 
system.  The distribution system model has approximately 12,000 nodes, an average 
daily demand of approximately 20 million gallons, and a census population of 
approximately 260,000 people.  The municipal water system has customer service 
accounts which total approximately 80,000.  Each node in the model represents a 
connection where pipes join together and where water leaves the network due to 
demand.  Given there are approximately 12,000 nodes and 80,000 service connections, 
results in about 7 service connections per node in the model.  
 
The system contains two reservoirs, no tanks, and approximately 1,100 miles of pipe.  
The mean node demand is approximately two gallons per minute (gpm) while the 
maximum node demand is 200 gpm.  The median node demand is one gpm.  
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Populations at each node were estimated using the Geographical Information System 
(GIS) thiessen polygon method to assign a population at each node of the “all-pipes” 
model and separately for each of the skeletonized models, ensuring that the total 
population for the system, across all the models, remained constant.  Hydraulic and 
water quality simulations were run for 192 hours.  Water age analysis using EPANET 
(Rossman, 2000) indicates the mean water age is 30 hours while the median water age 
is 23 hours.   
 
“Skeletonized” models from the “all-pipes-model” were created by trimming pipes and 
associated junctions at 2-inch pipe diameter intervals to a maximum of 12-inches using 
a commercially available software program (MWH Soft H20MAP, 2004).  Table 2-1 
provides the diameter specifications and resulting pipe totals, by diameter, for each 
skeletonized model.  By repeatedly defining a database of pipes by diameter, the 
Skeletonizer Tool in the H20MAP Suite was used to perform Reduce and Trim 
operations successively, starting with the “all-pipes-model” to produce the resulting 
“reduce and trim” skeletonized models.  Figures 2-1a and 2-1b provide pictures of a 
portion of the network for the “all-pipes-model” and the 12 inch skeletonized model, 
respectively, to illustrate the skeletonization process and the changes that occur with 
respect to the removal of pipes and nodes.  Table 2-2 provides model specifications 
(i.e., junctions, reservoirs, pipes, and total system demand in gpm) for the “all-pipes-
model” and the skeletonized models.  Table 2-3 provides a measure of the degree of 
skeletonization (as compared to the “all-pipes-model”) for each skeletonized model as 
well as the population density for each model. 
 
2.2 Chemical Contaminant Consequence Assessment 
 
Consequence assessments of contamination events were developed by applying the 
TEVA consequence assessment methodology to the “all-pipes-model” and the six 
skeletonized network models (Murray, et al., 2004).   The TEVA contaminant 
consequence analyses considered two approaches for modeling public health impacts.  
First, attacks were simulated at every node of the “all-pipes-model” and each of the 
skeletonized models.  Separately, attacks were simulated at a set of nodes that was 
common to all the models.  This common set of nodes corresponded to the all-nodes 
set of the 12 inch skeletonized model.  Table 2-4 provides the number of threat 
scenarios (attacks) that were simulated for each model for the two contaminant 
consequence assessment approaches. 
 
To simulate a contamination event, numerous parameters must be specified, including 
characteristics of the contaminant, the contaminant-introduction scenario, and the 
consumption patterns of the population.  In order to take into consideration the range of 
possible parameter values, the TEVA software uses simulation to vary parameters such 
as contaminant type, quantity, and concentration, as well as injection location, rate, or 
duration, to generate threat ensembles (collections of many threat scenarios) which 
collectively can be analyzed for health impact statistics. 
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For the analyses presented here, chemical contaminant releases lasted one hour.  The 
chemical contaminants were modeled as conservative tracers, i.e. free of the effects of 
hydrolysis or other reactions within the bulk water matrix or with pipe wall materials, 
which may increase or decrease the contaminant’s effectiveness in causing harm to 
public health.  Contaminants were modeled using a mass injection rate, zero volume 
added, which consequently does not influence the network hydraulic solution. 
 
Health impacts are affected by such factors as the contaminant-specific dose-response 
relationship, dose received, time before onset of symptoms, time for effective treatment, 
and the time delay between contamination event determination and implementation of 
mitigative measures to stop further exposures.  Considering these factors, modeling and 
simulation analyses are performed on a contaminant specific basis.  Not surprisingly, 
health impacts to a population increase with an increase in the time required to 
implement an effective response.  For these analyses, a zero response time delay was 
assumed.    
 
The public health consequence assessments were performed using a chemical 
contaminant.  The chemical contaminant chosen has a 50% lethality rate when an adult 
(70 kg) individual ingests approximately 3,000 mg of the chemical.  The time period for 
onset of injury for the chemical contaminant is estimated to be 1 hour.  A sigmoidal 
dose-response curve was assumed for each contaminant consistent with the above 
assumptions.  The chemical contaminant had an untreated fatality rate at 100%.  
Exposure is assumed to occur only through ingestion.  Each person is assumed to 
consume two liters of water per day. The probability that an individual at a node 
consumes water at a certain time is assumed to be proportional to the ratio of the 
demand at that time to the average demand over the simulation time. 
 
Each contaminant release was simulated to occur at time zero (12:00 am) and the start 
of the simulation.  Statistically analyzing the approximately 6,000 to 12,000 nodes as 
release points or threat scenarios, depending on the model, provide an estimate of the 
hypothetical health impacts in terms of both average health impacts (in this case 
fatalities) and maximum impacts.  Average impacts could be expected to result if the 
terrorist or saboteur had no knowledge of where best to attack and simply randomly 
chose a node location for contaminant injection.  Maximum health impacts correspond 
to a relatively small set of injection node locations (threat scenarios) that maximize 
health impacts to the associated receptors. 
 
2.3 Sensor Placement 
 
A number of researchers have developed approaches to place sensors and design 
CWS (Ostfeld, 2004; Watson, 2004; Uber 2004).  The Sensor Placement Optimization 
Tool (SPOT) (developed by Sandia National Laboratories) used in this analysis has 
been described in numerous publications (Berry, 2006).  SPOT can find sensor 
placement solutions for a variety of objectives, and prove that these solutions are 
optimal with respect to the modeling assumptions.  Recently, SPOT has been integrated 
with TEVA in a JAVA-based graphical user interface with the resulting, integrated, 
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software program called TEVA-SPOT.  The TEVA-SPOT program  is flexible enough to 
allow for exploring the trade-offs of selecting one objective as compared to another, 
minimizing worst cases measures, and allowing for multiple constraints.  Furthermore, 
the TEVA-SPOT software program has the capability to develop numerous sensor 
placement designs for a variety of threat ensembles and determine which sensor design 
performs best overall. 
 
For the analyses presented here, sensor designs were developed using TEVA-SPOT 
for the “all-pipes-model” and the six skeletonized models.  Sensor locations were 
selected to minimize mean public health impacts.  Sensor designs were developed for 5 
sensor set sizes, i.e., 5, 10, 15, 20, and 25 locations.  Further discussion of the sensor 
placement methodology is described by Murray in the paper titled, “Sensor Network 
Design for Contamination Warning Systems: Tools and Applications,” (Murray, et al., 
2006b). 
 
 
3.0 RESULTS 
 
In this section results are presented for the chemical contaminant consequence 
assessments and the sensor placement designs.  Mean and maximum health impacts 
(fatalities) are presented for the “all-pipes-model” and the skeletonized models for the 
baseline (no sensors case) and the CWS sensors case.  For the analysis of the sensor 
design’s ability to reduce public health impacts, each skeletonized sensor design, for a 
given sensor number, was evaluated in the “all-pipes-model” of attacks. 
 
3.1 Contaminant Consequence Assessment 
 
Table 3-1 provides the mean and maximum fatalities for the baseline case for the “all-
pipes-model,” and each of the skeletonized models.  Figures 3-1 and 3-2 provide plots 
of the average and maximum fatalities, respectively.  As the degree of skeletonization 
increases, mean fatalities increase.  However, the estimate for maximum health impacts 
remains relatively constant across the range of skeletonized models, except for the 12 
inch skeletonized model.  The increase in mean fatalities indicates an exaggeration of 
health impacts proportional to the level of skeletonization.  In reality, average fatalities 
increase because lower impact contaminant release nodes, e.g., dead-end nodes, are 
eliminated in the skeletonization process so that the average threat scenario’s impact is 
increased. 
 
Table 3-2 provides the mean and maximum fatalities for the “all-pipes-model” and the 
skeletonized models considering the threat ensemble is composed of only those nodes 
common to all the models, i.e., determined by the 12 inch skeletonized model 
containing 6,691 release nodes.  Figures 3-3 and 3-4 provide plots of the average and 
maximum fatalities, respectively, for this common node set.  As shown in Figure 3-3, 
mean fatalities do not increase until the level of skeletonization reaches the degree 
exhibited by the 8 inch, 10 inch, and 12 inch models, resulting in an exaggeration of 
fatalities from approximately 5 to 10 percent above the estimate provided by the ”all-
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pipes-model”.  This increase is likely due to the aggregation of larger numbers of people 
to nodes where they can be exposed.  Although there is a decrease in maximum 
fatalities for the 2 inch through 10 inch skeletonized models, the “all-pipes-model” and 
the 12 inch skeletonized model have comparable maximum fatalities.  It is not clear the 
reason for the decrease in maximum fatalities for the 2 inch through 10 inch 
skeletonized models. 
 
3.2 Sensor Placement Designs 
 
Tables 3-3 and 3-4 provide mean and maximum health impacts, respectively, by sensor 
set design.  These results were developed by determining the health impacts resulting 
from each skeletonized sensor design given the threat scenarios associated with the 
“all-pipes-model,” i.e., attacks from 12,624 nodes.  Comparing each skeletonized 
model’s health impacts with the blue shaded results from the “all-pipes-model” illustrate 
the effectiveness of a sensor design developed based on a skeletonized model to 
perform as well, in most cases, as the design developed for the “all-pipes-model”.  
Figure 3-5 illustrates for a portion of the network and a subset of sensor locations the 
nearly identical selection of sensor locations between the “all-pipes-model” (red circles) 
and the 12 inch skeletonized model (red squares).  Figure 3-6 provides a plot of percent 
increase in mean fatalities versus sensor set size between the 12 inch skeletonized 
model’s sensor design and the “all-pipes-model” sensor design.  These results illustrate 
that even for the most skeletonized model, the performance of the sensor designs is 
within approximately 5 to 15 percent of the performance of the sensor designs 
developed by the ”all-pipes-model”. 
 
 
4.0 CONCLUSIONS 
 
In summary, this paper presents results illustrating the effect that model detail has on 
estimating public health impacts given an intentional release of contamination and 
designing contamination warning systems.  Using the TEVA methodology for 
contaminant consequence assessment and sensor placement design, intentional 
releases of a chemical contaminant are simulated, modeled, and evaluated for a real 
drinking water distribution system.  The results indicate that mean and maximum health 
impacts can be predicted fairly well using skeletonized models and sensor designs 
developed for such models perform very well in comparison to their “all-pipes-model”.  
These results support the application of the TEVA methodology to water systems 
represented by less detailed models.  This work is based on only one distribution 
system network model, additional distribution systems will be evaluated in the future. 
 
With increasing levels of skeletonization the exaggeration of health impacts could 
become an issue.  Although, for this model after removing nearly half the nodes, the 
results still prove favorable.  There is more uncertainty surrounding the health impact 
results. 
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Figure 2-1a:  Portion of network model for the “all-pipes-model” 
 
 
 

 
 
Figure 2-1b:  Portion (same portion as Figure 2-1a) of network model for the 12 inch 
skeletonized model to illustrate the effect of skeletonization with respect to the removal 
of model junctions and pipes. 
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Model Pipe Diameters Specified for Skeletonization Process 
(d = diameter, inches) 

Total 
Number 

of 
Pipes 

  0<d<=2 2<d<=4 4<d<=66<d<=88<d<=1010<d<=1212<d  

All 
Pipes 898 2,343 5,657 3,461 368 1,343 869 14,939

2 inch 408 2,343 5,657 3,461 368 1,343 869 14,449

4 inch 396 1,589 5,657 3,461 368 1,343 869 13,683

6 inch 396 1,576 3,333 3,461 368 1,343 869 11,346

8 inch 396 1,575 3,237 2,045 368 1,343 869 9,833 

10 
inch 395 1,574 3,233 2,003 222 1,343 869 9,639 

12 
 395 1,574 3,233 2,001 220 714 869 9,006 inch

 
Table 2-1:  Pipe diameter specifications for developing the Reduce and Trim (RT) 
skeletonized models 

 
 

Reduce and Trim (RT) Files 

Number of All-Pipes 2 inch 4 inch 6 inch  8 inch 10 inch 12 inch 

Junctions      12,621 12,131 11,365 9,028 7,515 7,321 6,688 
Reservoirs 3 3 3 3 3 3 3 
Pipes 14,939 14,449 13,683 11,346 9,833 9,639 9,006 
System 
Demand 17220 17,220 17,220 17,220 17,219 17,219 17,216 

 
Table 2-2:  “All-pipes” and skeletonized models specifications 
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Model Fraction of All Pipe 

Junctions 
Population Density per 

Node 
All Pipes 1.00 20.9

2 inch 0.96 21.5
4 inch 0.90 22.9
6 inch 0.72 28.8
8 inch 0.60 34.7

10 inch 0.58 35.6
12 inch 0.53 38.9

 
 
 
 
 
 
 

 
Table 2-3:  Degree of skeletonization and population distribution for “all-pipes” and 

skeletonized models 
 

 
Model Number of Attacks Number of Attacks  

at All Nodes at Common Node Set 
All Pipes 12,624 6,691 

2 inch 12,134 6,691 
4 inch 11,368 6,691 
6 inch 9,031 6,691 
8 inch 7,518 6,691 
10 inch 7,324 6,691 
12 inch 6,691 6,691 

 
Table 2-4:  Number of threat scenarios (attacks) simulated for each model for the two 

contaminant consequence assessment approaches 
 
 

Model Average  
Impacts 

(fatalities) 

Maximum  
Impacts 

(fatalities) 

All Pipes 2,435 35,261 

2 inch 2,537 35,398 
4 inch 2,688 35,421 
6 inch 3,079 35,094 
8 inch 3,337 35,654 
10 inch 3,384 35,778 

12 inch 3,476 37,077 

 
Table 3-1:  Health impacts for baseline (no-sensors case) for the “all-pipes-model” and 
each skeletonized model considering contaminant releases at all-nodes in each model. 
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Figure 3-1:  Mean public health impacts for “All-Pipes-Model” and each skeletonized 
model considering contaminant releases at all-nodes in each model.  RT refers to the 
“Reduce and Trim” skeletonization method of the Skeletonizer Tool in the H20MAP 
Suite.  
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Figure 3-2:  Maximum (Worst Case) health impacts for “all-pipes-model” and each 
skeletonized model considering contaminant releases at all-nodes in each model.  RT 
refers to the “Reduce and Trim” skeletonization method of the Skeletonizer Tool in the 
H20MAP Suite.   
 
 

Model Average  
Impacts 

(fatalities) 

Maximum 
Impacts 

(fatalities) 
All Pipes 3,177 35,261

2 inch 3,204 32,554
4 inch 3,210 32,365
6 inch 3,204 32,719
8 inch 3,332 34,004
10 inch 3,363 34,669
12 inch 3,521 37,077

 

 
 
 
 
 
 

 
Table 3-2: Health impacts for the baseline (no-sensors case) for the “all-pipes-model” 
and each skeletonized model considering contaminant releases only at the common set 
of all-nodes (6,691 contaminant release scenarios). 
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Figure 3-3:  Mean public health impacts for “all-pipes-model” and each skeletonized 
model considering the common attack node set.   
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Figure 3-4:  Maximum public health impacts (fatalities) for “all-pipes-model” and each 
skeletonized model considering the common attack node set. 
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Model Mean Health Impacts (fatalities) by  
Sensor Set Size 

 5 10 15 20 25 
2 inch 587 383 303 259 230 
4 inch 587 385 305 259 231 
6 inch 589 386 306 260 232 
8 inch 589 388 306 260 233 
10 inch 589 388 263 263 237 
12 inch 644 440 357 306 241 

All 
Pipes 587 383 303 259 230 

 
Table 3-3:  Mean health impacts by model and sensor set size.  Results developed by 
determining the health impacts for each skeletonized sensor design given the threat 
scenarios associated with the “all-pipes-model”.  Each estimate of fatalities for a 
skeletonized model sensor set size should be compared to the estimate of fatalities for 
the “all-pipes-model” of the same sensor set size.  

 
 
 

Model Maximum Health Impact (fatalities) by  
Sensor Set Size 

  5 10 15 20 25 
2 inch 10,949 7,360 4,302 4,302 4,302 
4 inch 10,949 7,360 4,302 4,302 4,302 
6 inch 10,949 7,360 4,302 4,302 2,759 
8 inch 10,949 7,360 4,302 4,302 2,759 
10 inch 10,949 7,360 4,302 4,302 2,684 
12 inch 7,483 6,485 5,562 5,562 3,708 

All 
Pipes 10,949 7,360 4,302 4,302 2,978 

 
Table 3-4:  Maximum health impacts by model and sensor set size.  Results developed 
by determining the health impacts for each skeletonized sensor design given the threat 
scenarios associated with the “all-pipes-model”.  Each estimate of fatalities for a 
skeletonized model sensor set size should be compared to the estimate of fatalities for 
the “all-pipes-model” of the same sensor set size. 
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Figure 3-5:  Portion of “all-pipes-model” illustrating 4 of 5 sensor locations from 12 inch 
skeletonized model’s design (red squares) and the sensor locations from ”all-pipes” 
model’s design (red circles).  Note that for all but one location (see arrows) the selected 
sensor locations are nearly the same 
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Figure 3-6:  Percent increase in mean fatalities by sensor set size for the 12 inch 
skeletonized sensor design as compared to the “all-pipes-model” sensor designs for the 

same sensor set sizes. 
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Figure 3-7:  Percent increase in maximum fatalities by sensor set size for the 12 inch 
skeletonized sensor design as compared to the “all-pipes-model” sensor designs for the 
same sensor set sizes.   


