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Notice

The United States Environmental Protection Agency (EPA) through its Office of Research and
Development funded and managed the research describett hasebeen peer revieweg the EPA and
approved for publicatiarMention of trade names or commercial products does not constitute
endorsement or recommendation by the EPA for use.

ProUCL software was developed by Lockheed Martin under a contract with the EPA and is made
availabe through the EPA Technical Support Center in Las Vegas, Nevada.

Use of any portion of ProUCL that does not comply with the ProD&thnical Guidés not
recommended.

ProUCL contains embedded licensed softwArgy modification of the ProUCL source cod®y violate
the embedded licensed software agreements and is expressly forbidden

ProUCL software provided by the EPA was scanned with McAfee VirusScan v4.5.1 SP1 and is certified
free of viruses.

With respect to ProUCL distributed software and docuatém, neither the EPA nor any of their
employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclésethermore, software and documentation are
suppliedfasiso without guarantee or warranty, expressed or implied, including without limitation, any
warranty of merchantability or fithess for a specific purpose.

Changes from ProUCL 4.0 (Version 4.00.00) to ProUCL 4.00.02

Althoughextensive changes wenmgade in the codedm ProUCL 4.0(version 4.00.00) to produce

ProUCL 4.00.02those changeare transparent to the users. Most of those changes were made so that
ProUCL 4.@.02is compatible withour developing statistical softwar®¢out(e.g., both progms share

the same statistical librarieslProUCL will also reside as a separate module in Scout as a research tool.

Therewasa minor correction of a displayed value in one of the hypothestis, thdwo sample-test.
The pvalue associated withe t-test was computed in two different wagseway wascorrect andhe
other way, although it produced subtle differeneessincorrect. The incorrect method has been
removed from ProUCL 4.00.02

Severalwarning messagdsave been added to ProUCL 4.@®, mainly in regard to attempting tests when
a data set is smak(g.,n < 5, when the number of detected valuesrigll (e.g.zero,one or two), or

when all of the values are naletected value$-or an example, some screens depicting those warning
messages are included in the newly added Section 2.11 (page 40) of ProUCL 4.00.02 User Guide.

The onlysoftwarefiles that were changed from ProUCL version @®0.00)to version 4.0.2 were
updates inthe ProUCL.exdfile, andupdates tahe StatsLib.dl file to produce a more advanced
ScoutLib.dllfile. Someminor changesveremade to ProUCI4.00.02Technical Guide andser Guide
including: changedo avoid inappropriate user inputs (warninggjanges to the title pagde inclusion
of an acknowledenent page, and the inclusion of a nesntact information page



Changes from ProUCL 4.00.02 to ProUCL 4.00.04

ProUCL 4.00.@ is an upgrade of ProUCL Version 4.00.02 which represents an upgrade of P4dJCL
(EPA, 2004). ProUCL 4.004contains all stigstical methods as available in ProUCL 4.00.02 to address
various environmental issues for both full data sets without nondetects (NDs) and for data sets with NDs
(also known as leftensored data sets). In addition to having all methods available itCR!00.02

ProUCL 4.00.@ has extended version of Shapitlk (S-W) test that can perform normal and lognormal
goodnes®f-fit tests for data sets of sizes upto 2000. Moreover, ProUCL 4.6arOcompute upper

prediction and upper tolerance limits basgdn gamma distribution. Some modifications have also been
made in decision tables and recommendations made by ProUCL to estimate the EPC terms. Specifically,
based upon recent experience, developers of ProUCL-@ezating that the use of lognormal

distribution to estimate EPC terms should be avoided, as the use of lognormal distribution yields
unrealistic and highly unstable UCLs. In an effort to simplify the EPC estimation process, for highly
skewed lognormally distributed data sets, developers epenreending the use of appropriate
nonparametric Chebyshéwmean SpUCLs. These changes have been incorporated in various decision
tables included in ProUCL 4004 Technical Guide and ProUCL @4 User Guide. Recommendations
made by ProUCL 4.00.02 habbeen changed accordingly in ProUCL 4.@0.8ome minor bugs as

suggested by ProUCL 4ahd ProUCL 4.00.08sers have also been addressed in this upgraded version of
ProUCL software package.

Changes from ProUCL 4.00.04 to ProUCL 4.00.05

ProUCL version 40.05 is an upgrade of ProUCL Version 4.00.04 (EPA, 2008). ProUCL 4.00.05

consists of all of the statistical and graphical methods that are available in previous ProUCL 4.0 versions
to address various environmental issues for full data sets without nctn@dg observations and also

for data sets with NDs and below detection limit observations. Several additions (e.g., sample size
determination module), enhancements (File module), modifications (egues of WRS/WMW test

Gehan testhave been made ProUCL 4.00.05. Some bugs (e.g., correction in adjusted Gamma UCLS)

as suggested and found by users of previous ProUCL 4.0 versions have been addressed in this version of
ProUCL. With the inclusion of the sample size determination module, ProUCL 4Will.88rve as a
comprehensive statistical software package equipped with statistical methods and graphical tools needed
to address environmental sampling and statistical issues described in various CERCLA (EPA 2002a,
2002b, 2006) and RCRA (EPA 1989b, 1992002c, 2009) guidance documents. For data sets with and
without nondetect observations, ProUCL 4.00.05 also provides statistical methods to address reference
area and survey unit sampling issues described in MARSSIM (EPA 2000) document. In addition to
sample size determination methods, ProUCL 4.00.05 offers parametric and nonparametric statistical
methods (e.g., Sign test, Wilcoxon Rank Sum test) often used to address statistical issues described in
MARSSIM (EPA 2000) guidance document. The user friegdipple size determination module of

ProUCL 4.00.05 has a straight forward mechanism to enter the desirsgdoiied decision parameters
needed to compute appropriate sample size(s) for the selected statistical application. The Sample Size
module of POUCL 4.00.05 provides sample size determination methods for most of the parametric and
nonparametric onsided and twesided hypotheses testing approaches available in the Hypothesis Testing
module of ProUCL 4.0Theoretical details of the Sample Size nledare givenii Sup pl ement t o
ProUCL 4.0 Technical Guide: Determining Minimum Sample Sizes for User Specified Decision
Parameters Some specific chang@sade in ProUCL 4.00.05 are listed as follows.

9 File Option: This option has been upgraded to opels fibes by default. In the earlier versions
of ProUCL, this option was available only for *.wst, *.ost and *.gst files and Excel files had to be



imported. Now you can use the import option to read multiple worksheets from one Excel file.
ProUCL 4.00.05vill import worksheets until all worksheets are read or a blank or empty
worksheet is encountered.

Displaying All Menu Options: ProUCL 4.00.05 now displays all available menu options even
before opening a valid (e.g., nhon empty) data file. Howevenysbehas to open a valid data file
before activating a menu option and using a statistical or graphical method available in ProUCL
4.00.05. Obviously, no statistical method can be used on an empty (without any data)
spreadsheet.

Sample Size Module: Sevémarametric (assuming normal distribution) and nonparametric

sample size determination formulae as used and described in various EPA guidance documents

(e.g., EPA 1989a, 1989b, 1992, 2000, 2002a, 2002b, 2002c, 2006, and 2009) have been

incorporated in PIdCL 4.00.05. Inclusion of this module will help the users to develop/design

DQOs based sampling planswithygrgp e ci fi ed val ues of decision er
=Type 11) and width of the gray region, @ arou
concentration, proportion of sampled observations exceeding the action level). Basic sample size
determination formulae have been incorporated for sampling of continuous characteristics (lead,

Ra 226) as well as for attributes (e.qg., proportion exceedsmgcified threshold). Additionally,

sample size formulae for acceptance sampling of discrete objects (e.g., drums) have also been
incorporated in this module. The detailed description of the statistical methods and formulae used

in this module are desbed in the supplement document to ProUCL 4.0 Technical Guide.

Adjusted Gamma UCL: There was a minor bug in t
significance (called b |l evel) wused for calcul a
corrected.

Compuation of Nonparametric Percentiles: There are several ways to compute nonparametric
percentiles; and percentiles obtained using different methods can differ slightly. For graphical
displays, ProUCL 4.00.05 uses development software, ChartFX. Thus Isoyetarated by
ProUCL display percentiles (e.g., median and quartiles) as computed by ChartFX. In order to
avoid confusion, the percentile algorithm used in ProUCL has been modified so that it now
computes and displays comparable percentiles as computhibyX.

UCL based upon Winsorization Method: In the computation of Winsorized UCLs, the sample
standard deviation of the winsorized data was being used instead of the approximate unbiased
estimate of the population standard deviation from the winsodatdas detailed in ProUCL
4.00.04 Technical Guide. This has been corrected in ProUCL 4.00.05.

Displaying K values used in UTLs: The tolerance factor, K, based on the number of valid
observations, level of confidence coefficient, and coverage perceastadigplayed along with
UTL statistics and other relevant input parameters.

Fixes in the pvalues associated with WSR/WMW Tge8&ehan Testnd Equality of Variances
Test: More efficient algorithms have been incorporated in ProUCL 4.00.05 to cormyaiteg
associated with the test statistics associated with these two tests.



9 Additional Critical values associated with Land's H Statistic: In addition to 0.9 and 0.95
confidence coefficients; 0.975, 0.99 and 0.995 confidence levels have been incorporated in
ProUCL 4.00.05 to compute-HCLs based upon a lognormal distribution.

9 Adjustment in Precision Associated with Lognormal and Gamma ROS Methods: The lower
bound associated with Lognormal ROS and Gamma ROS extrapolated estimates have been
extended from 1& to 1e10. ProUCL 4.00.05 issues a warning message when extrapolated ROS
estimates lie below 1&0.

1 Some terminology changes have been made in single sample hypotheses approaches available in
the Hypothesis Testing modulamceSpheamiftiochlave tHle
by the phrase fAAction Level 0.

Changes and Upgrades from ProUCL 4.00.05 to ProUCL 4.1.00
http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm

ProUCL version 4.D0, a statistical software package for environmental applications for data sets with
and without nondetect (ND) observations is an upgrade of ProUCL version 4.00.05 (EPA 2010a).
ProUCL 4.1 consists of all of the statistical and graphical methods tretailable in all previous

versions of ProUCL software package to address various environmental issues for full uncensored data
sets (without ND observations), as well as for data sets with NDs or below detection limit
observationsProUCL version 4.1.00td earlier versions (ProUCL version 3.00.02, 4.00.02, 4.00.04, and
4.00.05), associated Facts Sheet, User Guides and Technical Guides (e.g., EPA 2010b, 2010c) can be
downloaded from the EPA websitgtp://www.epa.gov/osp/hstl/tsc/software.htm

New Modules in ProUCL 4.1 (ANOVA and Trend Tests)Two new modules, ANOVA and Trend

Tests have been incorporated in ProUCL 4.1. ANOVA module has both classical and nonparametric
KruskalWallis Oneway ANOVAtests as described in EPA guidance documents (e.g., EPA 2006, 2009).
Trend Tests module has linear ordinary least squares (OLS) regression metho#avidalhtrend test,
Theil-Sen trend test, and time series plots as described in the Unified RCRA @utzmonent (EPA

2009). Oneway ANOVA is used to compare means (or medians) of multiple groups such as comparing
mean concentrations of several areas of concern; and to perforiwatteomparisons. In groundwater
(GW) monitoring applications, OLS regremsj trend tests, and time series plots (EPA, 2009) are often
used to identify trends (e.g., upwards, downwards) in contaminant concentrations of GW monitoring
wells over a certain period of time.

The Number of Samples module of ProUCL 4.1 provides uisgrdly options to enter the desired/pre
specified decision parameters (e.g., Type | and Type Il error rates) and DQOs used to determine
minimum sample sizes for the selected statistical applications including: estimation of mean, single and
two sample hypthesis testing approaches, and acceptance sampling. Sample size determination methods
are available for the sampling of continuous characteristics (e.g., lead or Ra 226), as well as for attributes
(e.g., proportion of occurrences exceeding a specifiegtiotd).Both parametric (e.g., fortests) and
nonparametric (e.g., Sign test, test for proportions, WRS test) sample size determination methods as
described in EPA (2006, 2009) and MARSIMM (2000) guidance documents are available in ProUCL 4.1.
ProUCL 41 also has the sample size determination methods for acceptance sampling of lots of discrete
objects such aa lot ofdrums consisting of hazardous waste (e.g., RCRA applications, EPA 2002c).


http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm
http://www.epa.gov/osp/hstl/tsc/software.htm

ProUCL version 4.1 can process multiple contaminants (vasipbiultaneouslyProUCL version 4.1

also has the capability of processing data by groups (a valid group column should be included in the data
file). ProUCL version 4.1 has a couple of simple outlier test procedures, such as the Dixon test and the
Rosnettest. ProUCL version 4.1 offers useful graphical displays for data sets with or without NDs,
including: histograms, multiple quantitpantile (QQ) plots, and sidéy-side box plots.The use of

graphical displays provides additional insight about mimtion (such as hidden data structures)

contained in data sets that may not be revealed by the use of estimates (e.g., 95% upper limits) or test
statistics, such as the GOF test statistics or-tbsttstatistic.In addition to providing information abbu

the data distributions (e.g., normal or gamma}Q @lots are also useful in identifying potential outliers

or the presence of mixture samples (e.g., data from different populations) in a d&idesby-side box

plots and multiple €Q plots are usefuo visually compare two or more data sets (groups), such as: site
versusbackground contaminant concentrations, surfasussubsurface concentrations, and

contaminant concentrations of groundwater monitoring wells (MWSs).

As in earlier ProUCL version#) addition to goodnessf-fit (GOF) tests for normal, lognormal and

gamma distributions, ProUCL 4.1 has parametric and nonparametric methods including bootstrap

methods to compute various decision making statistics such as the upper confidence libgjsofUC

mean (EPA 2002a), percentiles, wupper prediction |
tolerance limits (UTLS) (e.g., EPA 1992, EPA 2009) based upon uncensored full data sets and left

censored data sets consisting of NDs with mldtdetection limits. In addition to simple substitution

methods (e.g., DL/2 DL), KaplaMeier (KM) method and Regression on Order Statistics (ROS) methods

are also available in ProUCL. ProUCL 4.1 can also compute parametric UCLS, percentiles, UPLs for
fuurek©1) observations, and UTLs based upon gamma di

ProUCL version 4.1 has parametric and nonparametric ssaghple and twsample hypotheses testing
approachesSingles ampl e hypot hes e stest, thessigrstes(, thdilapxon sigiket tanke nt 6 s
test, and the proportion test) can be used to compare site mean concentrations (or some site threshold
value such as an upper percentile) with some average cleanup stagdara, @tto-exceed compliance

limit, Ag) to verify the aainment of cleanup levels (EPA 1989, EPA 2006) after some remediation

activities have been performed at the impacted site aBmageral twesample hypotheses tests as

described in EPA and MARSSIM guidance documents (e.g., EPA 2000, 2002b, and 2@0%) are

available in ProuUCL 4. 1. Two sample hypotheses t
test, the WilcoxorMannWhitney (WMW) test (also known as Wilcoxon Rank Sum (WRS) test), the
guantile test, and Ge hraitevesusdackgrdund compagisors artde st s ar e

comparisons of contaminant concentrations of two or more monitoring wells (MMIg)hypothesis

testing approaches in ProUCL 4.1 can be used on both uncensored (without NDs}eerdstatd (with
NDs) data setsSingle sample tests (e.g., Sign test, proportion test) and upper limits such as UTLs and
UPLs are also used to perform intvall comparisons as described in RCRA document (EPA, 2009).

With the inclusion of Oneway ANOVA, Regression and Trend tests hendsesfriendly DQOs based
sample size determination modules, ProUCL version 4.1.00 represents a comprehensive statistical
software package equipped with statistical methods and graphical tools needed to address many
environmental sampling and statisticedues as described in various CERCLA (EPA 1989a, 2002a,
2002b, 2006), MARSSIM (EPA 2000), and RCRA (EPA 1989b, 1992b, 2002c, 2009) guidance
documents.

Finally, it should be noted that all known software bugs found by the various users and developers of
ProUCL 4.00.05 (and earlier versions) and most of the suggestions made by the users have been
addressed in ProUCL 4.1.00.

Vi



All previous and current versions of ProUCL software package can be downloaded from the following
EPA site: http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm

Contact Information for all Versions of ProUCL

The ProUCL software is developed under the direction of the Technical Support Center A&ESE).
November 2007 he direction of the TSC is transferred from Brian Schumacher to Felicia Barnett.
Therefore, any comments or questions concerning all versions of ProUCL should be addressed to:

Felicia Barnett, (HSTL)
US EPA, Region 4

61 Forsyth Street, S.W.
Atlanta, GA 303038960
barnett.felicia@epa.gov
(404) 5628659

Fax: (404) 5628439

Vil


http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm
mailto:barnett.felicia@epa.gov

Executive Summary

Statistical inference, including both estimation and hypotheses testing approaches, is routinely used to:

1. Determne data quality objectives (DQO$gsed number samples needed to address
statistical issueassociated witlrariousenvironmental projects

2. Estimate environmental parameters of interest, such as exposure point concentration
(EPC) terms, neto-exceed wlues, and background level threshold values (BTVs) for
contaminants of pential concern (COPC

3. Screen COPC, andentify areas of concern (AQ@t a contaminated site,

4. Compare contaminant concentratioofs two or more AOCs; groundwater monitoring
wells, background or reference area with those of site areas,

5. Performinterwell andintrawell comparisons

6. Compare site concentrations with a cleanup standard to verify the attainment of cleanup
standards.

Several exposure and risk management and cledgtigions in support of United States Environmental
Protection Agency (EPA) projects are often made based upon the mean concentrations of théA\COPCs
95% upper confidence limit (UCL95) of the unknown population (e.g., an AOC) arithmetic mean (AM),
€1, Can be used to:

Estimate the EPC term of the AOC under investigation,

Determine the attainment of cleanup standards,

Compare site mean concentrations with reference area mean concentrations, and
Estimate background level mean contaminant concentratibesbdckground mean
contaminant concentration level may be used to compare the mean of an area of concern.
It should be noted that it is not appropriate to compare individual-pgipbint site
observations with the background mean concentration level.

=A =4 =4 =4

It is important to compute a reliable and staliel 95 of the population mean using the available data
TheUCL95should approximately provide the 95% coverage for the unknown population gneBased
upon the available background data, it is equally it@mbito compute reliable and stable upper
percentiles, upper prediction limitdiPLs), or upper tolerance limitdJ{TLs). These upper limits based
upon background (or reference) data are used as estimates of BTVs, complianc€limis ijotto-
exceed vlues. These upper limits are often used in site (gmjroint) versus background comparison
evaluationsand also to perfrom intrawell comparisons.

Environmental scientists often encounter trace level concentrations of COPCs when evaluating sample
andytical results Those low level analytical resaltannot be measured accurateid thereforgare

typically reported as less than one or more detection Ibhij yalues (also called nondetects). However,
practitioners need to obtain reliable estimatiethe population meampy, and the population standard
deviation,l;, and upper limits including theCL of the population mass or mean, theL, and theUTL

viii



based upon data sets with nondetBif)(observations. Additionally, they may have to use hypotheses
testing approaches to verify the attainment of cleanup stes)dard compare site and background
concentrations of COPCs as mentioned above.

Background evaluation studies, BTVs, andtwe¢xceed values should be estimated based upon
defensible background data sets. The estimated BTVs -0o+eateed values aregh used to identify the
COPCs, to identify the site AOCs or hot spots, and to compare the contaminant concentrations at a site
with background concentrations. The use of appropriate statistical methods and limits for site versus
background comparisons iaged upon the following factors:

Objective of the study,

Environmental medium (e.qg., soil, groundwater, sediment, air) of concern,

Quantity and quality of the available data,

Estimation of a neto-exceed value or of a mean contaminant concentration,
Preestablished or unknown cleanup standards and BTVs, and

Sampling distributions (parametric or nonparametric) of the concentration data sets
collected from the site and background areas under investigation.

ourwWNE

In background versus site comparison evaluatitiessenvironmental population parameters of interest
may include:

Preliminary remediation goals (PRGS),

Soil screening levels (SSLs),

Risk BasedCleanup (RBC)tandards,

BTVs, notto-exceed values, and

Compliance limit, maximum concentration limit (M{Lor alternative concentration
limit (ACL), frequently used in groundwater applications.

=A =4 =8 =8 =9

When the environmental parameters listed above are not knownestptdished, appropriate upper
statistical limits are used to estimate those parameters. ThelJR|_and upper percentiles are used to
estimate the BTVs and ntt-exceed valuebased upon reference area data sdd@pending upon the

site data availability, poirby-point site observations are compared with the estimated (or pre
established) BTVand notto-exceed values. If enough site and background data are available, two
sample hypotheses testing approaches are used to compare site concentrations with background
concentrations levels. These statistical methods can also be used to companaaoentamcentrations

of two site AOCs, surface and subsurface contaminant concentrations, or upgradient versus monitoring
well contaminant concentrations.

ProUCL 4.00.6is an upgrade of ProUCL Version 4.00Which represents an upgrade of ProUCL
4.00.02 (EPA, 20®). ProUCL 4.00.6 contains all statistical metds as available in ProUCL
4.00.024.00.04to address various environmental issues for both full data sets without nondetects (NDs)
and for data sets with NDs (also known asd¢eftsored data stdt should be noted th#he present
Technical Guide for ProUCL 4.0 appliesite current (ProUCL 4.00.05) and &rlierversionsof

ProUCL 4.ProUCL 4.00.8 has the extended version of Shapivik (S-W) test that can perform normal
and lognormal godnes=of-fit tests for data sets of sizes upto 2000. ProUCL 450€a0 also compute
upper prediction and upper tolerance limits based upon gamma distribution. Some modifications have
been incorporated in decision tables and recommendations made by RmékTimate the EPC terms.
Specifically, based upon recent experience, developers of ProUCL-itemtimg that the use of

lognormal distribution to estimate EPC terms should be avoided, as the use of lognormal distribution



yields unrealistic and highlynstable UCLvalues In an effort to simplify the EPC estimation process and
recommending defensible estimates, for highly skewed lognormally distributed data sets, developers are
recommending the use of other nonparametric UCLs such as ChelgyseevSHUCLsavailable in

ProUCL 4.00.05 These changes have been incorporated in various decisiondbBled)JCL 4.®.05
software . Technical GuidandUser Guideeecommendations made by ProUCL have been changed
accordingly Severalminor requests (e.g., ingporation of maximum likelihood estimates based upon a
gamma model) and bugs as suggested by ProUCLOZBroUCL 4.00.04isers have also been

addressed in this upgraded version of ProUCL.

ProUCL 4.®@.05 contains statistical methods to address varioug@imental issues for both full data
sets without nondetects and for data sets with NDs (also known-astsfired data sets).

Speciftally, ProUCL 400.05 contairs:

1. Rigorous parametric and nonparametric (including bootstrap methods) statistivatiset
(instead of simple ad hoc or substitution methods) that can be used on full data sets
without nondetects and on data sets with below detection limit (BDL) or ND
observations

2. Stateof-the-art parametric and nonparametric UCL, UPL, and UTL compuatio
methods. These methods can be used omifdénsored data sets without nondetects and
also on data sets with BDL observations. Some of the methods (e.g., #giEm
method, ROS methods) are applicable ondefisored data sets having multiple
detecton limits. The UCL and other upper limit computation methods cover a wide range
of skewed data sets with and without the BDLs

3. Singesa mpl e ( e. gtest, sigB test,ipponion est, Witoxon Singed Rank
test) and twesamp e (St -tesd, WiltaxanslantrWhitney test, Gehan tespuantile
test) parametric and nonparametric hypotheses testing approaches for data sets with and
without ND observations. These hypothesis testing approaches can be used to: verify the
attainment of cleanup standargerform site versus background comparisons, and
compare two or more AOCs, monitoring wells (MWSs).

4. The single sample hypotheses testing approaches are used to compare site mean, site
median, site proportion, or a site percentile (e.d") &% a compnce limit (action level,
regularity limit). The hypotheses testing approaches can handle betiméeihsored data
sets without nondetects, and {eéinsored dateess with nondetects. Simple tvsample
hypotheses testing methods to compare two popaofatice availble in ProUCL 4.0,
such as twesample t#ests, WilcoxoAmMannWhitney (WMW) Rank Sum tesguantile
test, Gehano6s t .e&/ariations af hypothesis segtingrnethools(e.d., e s t
Levenebds met hod to comp a test) ae easily @vailableinns, ger
most commercial and freely available software packages (e.g., MINITAB, R).

5. ProUCL 4.0 also inades graphical methods (e.gaxplots, multiple QQ plots,
histogram) to compare two or more populatid®UCL 4.0 can alsbe used to display
a box plot of one population (e.g., site data) with compliance limits or upper limits (e.g.,
UPL) of other population (background area) superimposed on the same graph. This kind
of graph provides a useful visual comparison of site dataaxcompliance limit or
BTVs. Graphical displays of a data set (e.gQ@®Iot) should be used to gain insight



knowledge contained in a data set that may not otherwise be clear by looking at simple
test statistics such agdst, Dixon test statistic, @hapiraWilk (S-W) test statistic.

6. ProUCL 4.@.05can process multiple contaminants (variables) simultaneously and has
the capability of processing data by groups. A valid group column should be included in
the data file.

7. ProUCL 4.@.05provides GOF tador data sets with nondetects. The user can create
additional columns to store extrapolated (estimated) values for nondetects based upon
normal ROS, gamma ROS, and lognormal ROS (robust ROS) methods.

As mentioned befordlroUCL 4.®.05 retains all of tle capabities of ProUCL4.00.04, including
goodnesof-fit (GOF) tests for a normal, lognormal, and a gamma distribution and computation of UCLs
based upon full data sets without nondetects. It&mphasized that the computation of appropriate

UCLs, URs, and other limits is based upon the assumption that the data set under study represents a
single a single populatioithis means that the data set used to compute the limits should represent a
single statistical population. For example, a backgroural skitshould represent a defensible background
data set free of outlying observatioRsoUCL 4.@.05 includes simple and commonly used classical

outlier identification procedures, such as the Dixon test and the Rosner test. These procedures are
included & an aid to identify outliers. These simple classical outlier tests often suffer from masking
effects in the presence of multiple outliers. Description and use of robust and resistant outlier procedures
is beyond the scope of ProUCL 4.hterested usemre encouraged to try Scout 2008 software (EPA
2008) to use robust outlier identification methods.

It is suggested that the classical outlier procedures should always be accompanied by graphical displays
including box plots and € plots The use of a € plot is useful to identify multiple or mixture samples

that might be present in a data set. However, the decision regarding the proper disposition of outliers (e.qg.,
to include or not to include outliers in statistical analyses; or to collect additienftation samples)

should be made by members of the project team and experts familiar with site and background conditions.
Guidance on the disposition of outliers and their accommodation in a data set by using a transformation
(e.g., lognormal distributin) is discussed in Chapter 1 of thischnical Guide

ProUCL 4.®.05 has improved graphical methods, which may be used to compare the concentrations of
two or more populations such as:

Site versus background populations,

Surface versus subsurface centrations,

Concentrations of two or more AOCs, and

Identification of mixture samples and/or potential outliers

PN PE

These graphical methods include multigleantilequantile(Q-Q) plots, sideby-side box plots, and
histograms. Whenever possible, it is dasie to supplement statistical results with useful visual displays
of data sets. There is no substitute for graphical displays of a data set. For example, in addition to
providing information about the data distribution, a normd#) @lot can also help @htify outliers and

multiple populations that may be present in a data set. OQ®IQt, observations well separated from

the majority of the data may represent potential outliers, and jumps and breaks of significant magnitude
may suggest the presencebbkervations from multiple populations in the data set. It is suggested that
analytical outlier tests (e.g., Rosner test) and gooelnfefis(GOF) tests (e.g., SW test) should always be
supplemented with the graphical displays such-&% g)ot and box it.

Xi



The lastest addition in ProUCL 4.00.05, the Sample Size module can be used to compute sanwple sizes
address statistical issues of various environmental projgotsdetails of the Sample Size module are
givenini Suppl ement t o PGudé DdterminingMinineum Bample Sizes for User
Specified Decision Parametar®roUCL 4.00.05erves as a companisaftware package for the
Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites
(EPA, 2002a) Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA
Sites(EPA, 2002b) Multi-Agency Radiation Survey and Site Investigation Ma(iE@A, 200@), and

Data Quality Assessment: Statistical Methods for Practitio(flEPA, 2006) ProUC. 4.0 is also useful to
verify the attainment of cleanup standards (EPA, 1989). ProU@L0&06an also be used to perform
two-sample hypotheses tesitstrawell comparisongnd to compute various upper limits often needed in
groundwater monitoring apphtions (EPA1992 and EPA, 2).

ProUCL 4.1.00 has two new modules: ANOVA and Trend Tést©VA module has both classical and
nonparametric KruskalVallis Oneway ANOVA tests as described in EPA guidance documents (e.g.,
EPA 2006, 2009). Trend Tests méelhas linear ordinary least squares (OLS) regression method; Mann
Kendall trend test, Thelben trend test, and time series plots as described in the Unified RCRA Guidance
Document (EPA 2009). Oneway ANOVA is used to compare means (or medians) of ngudiigte such

as comparing mean concentrations of several areas of concern; and to perfewalirtemparisons. In
groundwater (GW) monitoring applications, OLS regression, trend tests, and time series plots (EPA,
2009) are often used to identify trer{édsy., upwards, downwards) in contaminant concentrations of
various GW monitoring wells over a certain period of time.

With the inclusion of Oneway ANOVA, Regression and Trend tests, andrigsetly DQOs based
sample size determination modules, ProU@Lsion 4.1.00 represents a comprehensive statistical
software package equipped with statistical methods and graphical tools needed to address many
environmental sampling and statistical issues as described in various CERCLA (EPA 1989a, 2002a,
2002b, 2006)MARSSIM (2000)and RCRA (EPA 1989b, 1992b, 2002c, 2009) guidance documents.
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ACL
A-D, AD
AM
AOC

BC
BCA
BD
BDL
BTV

CcC
CDF, cdf
CERCLA

CL
CLT
CMLE
COPC
Cs

Cv

DCGL

Df

DL, L

DL/2 (t)

DL/2 Estimates

DOE
DQO

Xiv

Acronyms and Abbreviations

alternative concentration limit
AndersonDarling test
arithmetic mean

aregs) of concern

Box-Cox transformation

biascorrected accelerated bootstrap method
binomial distribution

below detection limit

background threshold value

confidence coefficient
cumulative distribution function

Comprehensive Environmental Recove®pmpensation, and Liability Act

compliance limit
central limit theorem
Cohends maximum | i kelihood esti mat e
contaminans) of potential concern

cleanup standards

coefficient of variation

Design Concentration Guililee Level
degrees of freedom

detection limit

UCL based Stu

upon DL/ 2 -diseilhution citofiivaluen g

estimates based upon data set with nondetects replaced by half of the respective
detection limits

Department of Energy

data quality objectives



EA
EDF
EM
EU
EPA
EPC

GOF, G.O.F

H-UCL

IQR

KM (%)

KM (Chebyshev)

KM (t)
KM (2)

K-M, KM
K-S, KS

LBGR
LN

MAD
MCL
MDD
ML
MLE
MLE (t)

MLE (Tiku)
Multi Q-Q

exposure gea
empirical dstributionfunction
expectation raximization
exposure nit

Environmental Protection Agency

exposure pointancentration

goodnessf-fit

UCL based upon Lardd H-statistic

interquartile ange

UCL based upon Kaplakleier estimates using the percentile bootstrap method
UCL based upon Kaplakleier estimates using the Chebyshev inequality
UCL based upon Kaplakle i er est i mat e s-distrbutiongutoff hakie

UCL based upon Kaplakleier estimates using standard normal distribution cutoff
value

KaplanMeier

KolmogorowSmirnov

Lower Bound of the Gray Region

lognormal distribution

median absolute deviation

maximum concentration limit, maximum compliance limit
minimum detectable difference

maximum lkelihood

maximum likelihood estimate

UCLbass ed upon maxi mum | i kel i kdistobdtiorecatoffi n
value
UCL based upon maxi mum | i kelihood es

multiple quantilequantileplot
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MV
MVUE
MW

ND
NRC

OLS
ORD

PDF, pdf
PLE
PRG

Q-Q

RBC
RCRA
RL
RMLE
ROS
RSD
RU
RV

S

SD, Sd, sd
SE

SND

SSL

SW, SW

XVi

minimum variance
minimum variance unbiadesstimate

monitoring well

nondetect

Nuclear Regulatory Commission

ordinary leastguares

Office of Research and Development

probability density dinction
product limit estimate

preliminary renediation gals

quantilequantile

risk-based cleanup

Resource Conservation and Recovery Act
reporting limit

restricted maximum likelihood estimate
regression on order statistics

relative standard deviation

remediation unit

random variable

substantial difference
standard deviation
Standard error

standard normal distribution
soil screening levels
ShapireWilk



U.S. EPA, USEPA
UCL

UCL95

UMLE

UPL

UTL

WMW
WRS
WSR

United States EnvironmentBrotection Agency
upper confidence limit

a 95% upper confidence limit

unbiased maximum likelihood estimate method
upper prediction limit

upper tolerance limit

Wilcoxon-MannWhitney
Wilcoxon Rank Sum

Wilcoxon Signed Rank
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Glossary

Anderson-Darling (AD) test: The AndersofDarling test assesses whether known data come from a
specified distribution.

Background Measurements The measurements that are not related to the site. Background sources can
be naturalf occurring or anthropogenic (manade)

Bias: The systematic or persistent distortion of a measured value from its true value (this can occur
during sampling design, the sampling process, or laboratory analysis).

Bootstrap Method: The bootstrap method & computebased method for assigning measures of

accuracy to sample estimates. This technique allows estimation of the sample distribution of almost any
statistic using only very simple methods. Bootstrap methods are generally superior to ANOVA for smal
data sets or where sample distributions aremmmal.

Central Limit Theorem (CLT): The central | imit theorem states t he
and v a7 thessanmpling distribution of the mean approaches a normal distribution mithan ( € )
and a V@ Na thecsamplé size, increases.

Coefficient of Variation (CV): A dimensionless quantity used to measure the spread of data relative to
the size of the numbers. For a normal distribution, the caaifiof variation is givetry xBar. Also
known as the relative standard deviation (RSD).

Confidence Coefficient The confidence coefficient (a number in the closed intervdl])J&ssociated

with a confidence interval for a population parameter is the probability that therrangoval

constructed from a random sample (data set) contains the true value of the parameter. The confidence
coefficient is related to the significance level of an associated hypothesis test by the equality: level of
significance = 1 confidence coefiient.

Confidence Interval: Based upon the sampled data set, a confidence interval for a parameter is a random
interval within which the unknown population parameter, such as the mean, or a future observation, x0,
falls.

Confidence Limit: The lower or arupper boundary of a confidence intervedr example, the 95% upper
confidence limit (UCL) is given by the upper bound of the associated confidence interval.

Coverage, Coverage Probability The coverage probability (e.g., = 0.95) of an upper confidémie |
(UCL) of the population mean represents the confidence coefficient associated with the UCL.

Data Quality Objectives (DQOs) Qualitative and quantitativeasgements derived from the DQO

process that clarify study technical and quality objectivesndéfie appropriate type of data, and specify
tolerable levels of potential decision errors that will be used as the basis for establishing the quality and
guantity of data needed to support decisions.

Detection Limit: A measure of the capability of an &riecal method to distinguish samples that do not

contain a specific analyte from samples that contain low concentrations of the analyte. The lowest
concentration or amount of the target analyte that can be determined to be different from zero by a single
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measurement at a stated level of probability. Detection limits are aretgtanatrixspecific and may be
laboratorydependent.

Empirical Distribution Function (EDF) : In statistics, an empirical distribution function is a cumulative
probability distributon function that concentrates probability &t each of the@ numbers in a sample

Estimate: A numerical value computed using a random data set (sample), and is used to guess (estimate)
the population parameter of interest (e.g., mean). For exam@mmesmean represents an estimate of
the unknown population mean.

Expectation Maximization (EM): The EM algorithm is used to approximate a probability function (p.f.
or p.d.f.). EM is typically used to compute maximum likelihood estimates given incoraplatses.

Exposure Point Concentration (EPC) The contaminant concentration within an exposure unit to which
the receptors are exposed. Estimates of the EPC represent the concentration term used in exposure
assessment.

Extreme Values The minimum and themaximum values.

Goodnessof-Fit (GOF): In general, the level of agreement between an observed set of values and a set
wholly or partly derived from a model of the data.

Gray Region A range of values of the population parameter of interest (such ascor@aminant
concentration) within which the consequences of making a decision error are relatively minor. The gray
region is bounded on one side by the action level. The width of the gray region is denoted by the Greek
letter delta in this guidance.

H-Statistic: The unique symmetric unbiased estimator of the central moment of a distribution
H-UCL:UCL based -Statistt.andds H

Hypothesis Hypothesis is a statement about the population parameter(s) that may be supported or
rejected by examining theath set collected for this purpose. There are two hypotresed hypothesis,

(Ho), representing a testable presumption (often set up to be rejected based upon the sampled data), and an
alternative hypothesis (Hji, representing the logical opposite o tnhull hypothesis.

Jackknife Method: A statistical procedure in which, in its simplest form, estimates are formed of a
parameter based on a set of N observations by deleting each observation in turn to obtain, in addition to
the usual estimate base dmbservations, N estimates each based-dnoservations.
Kolmogorov-Smirnov (KS) test The KolmogorovSmirnov test is used to decide if a sample comes

from a population with a specific distribution. The Kolmoge&mwirnov test is based on the empirical
distribution function (EDF).

Level of Significance The error probability (also known as false positive error rate) tolerated of falsely
rejecting the null hypothesis and accepting the alternative hypothesis.

Lilliefors test: A test of normality for lege data sets when the mean and variance are unknown.
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Maximum Likelihood Estimates (MLE) : Maximum likelihood estimation (MLE) is a popular statistical
method used to make inferences about parameters of the underlying probability distribution of a given
daa set

Mean: The sum of all the values of a set of measurements divided by the number of values in the set; a
measure of central tendency.

Median: The middle value for an ordered set of n values. Represented by the central value when n is odd
or by theaverage of the two most central values when n is even. The median is the 50th percentile.

Minimum Detectable Difference (MDD): The minimum detectable difference (MDD) is the smallest
difference in means that the statistical test can resbhe&eMDD depeds on samphleo-sample
variability, the number of samples, and the power of the statistical test

Minimum Variance Unbiased Estimates (MVUE} A minimumvariance unbiased estimator (MVUE or
MVU estimator) is an unbiased estimator of parameters, whosae@igminimized for all values of the
parameters. If an estimator is unbiased, then its mean squared error is equal to its variance

Nondetect (ND) Censored data values

Nonparametric: A term describing statistical methods that do not assume a partmpulation
probability distribution, and are therefore valid for data from any population with any probability
distribution, which can remain unknown

Optimum: An interval is optimum if it possesses optimal properties as defined in the statistiaflilge

This may mean that it is the shortest interval providing the specified coverage (e.g., 0.95) to the
population mearFor example, for normally distributed data sets, the UCL of the population mean based
upon Studentés t distribution is opti mum.

Outlier : Measurements (usually larger or smaller than the majority of the data values in a sample) that
are not representative of the population from which they were drawn. The presence of outliers distorts
most statistics if used in any calculations.

p-value: In statistical hypothesis testing, thevg@lue of an observed valtigseneqs0f SOme random

variableT used as a test statistic is the probability that, given that the null hypothesis Toviille,

assume a value as or more unfavorable to the yptthesis as the observed valyge ved

Parameter. A parameter is an unknown constant associated with a population.

Parametric: A term describing statistical methods that assume a normal distribution.

Population: The total collection of N objects, mi@, or people to be studied and from which a sample is
to be drawn. The totality of items or units under consideration

Prediction Interval: The interval (based upon historical data, or a background well) within which a

newly and independently obtaineaftén labeled as a future observation) site observation (from a
compliance well) of the predicted variable (lead) falls with a given probability (or confidence coefficient).
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Probability of:Thyepe r2 bkarbridri t(ysb)referred to as b (
not be rejected when in fact it is false (false negative).

Probability of Type | Er rToeprobabilltyerefered toodd (Sd Igmh & )i ,c atnf
the null hypothesis will be rejected when in fact it is true (false positive).

p" Percentile: The specific valueX, of a distribution that partitions a data set of measurements in such a
way that the p percent (a number between 0 & df the measurements fall at or below this value, and
(100-p) percent of the measurements exceed this Value,

p" Quantile: The specific value of a distribution that divides the set of measurements in such a way that
the proportion, p, of the measments fakt below (or are equal to) this value, and the proportiep) (Gf
the measurements exceed this value.

Quiality Assurance An integrated system of management activities involving planning, implementation,
assessment, reporting, and quality iny@nment to ensure that a process, item, or service is of the type
and quality needed and expected by the client.

Quiality Assurance Project Plan A formal document describing, in comprehensive detail, the necessary
QA, QC, and other technical activities timaust be implemented to ensure that the results of the work
performed will satisfy the stated performance criteria.

Quantile Plot: A graph that displays the entire distribution of a data set, ranging from the lowest to the
highest value. The vertical axdepresents the measured concentrations, and the horizontal axis is used to
plot the percentiles of the distribution.

Range The numerical difference between the minimum and maximum of a set of values.
Regression on Order Statistics (ROS)A regressionline is fit to the normal scores of the order
statistics for the uncensored observations and then to fill in values extrapolated from the straight line for

the observations below the detection limit

Resampling The repeated process of obtaining repnese/e samples and/or measurements of a
population of interest

Reliable UCL: This is similar to a stable UCL.

Robustness Robustness is used to compare statistical tests. A robust test is the one with good
performance (that is not unduly affected bylieus) for a wide variety of data distributions.

Sample A sample here represents a random sample (data set) obtained from the population of interest
(e.g., a site area, a reference area, or a monitoring well). The sample is supposed to be a representati
sample of the population under study. The sample is used to draw inferences about the population
parameter(s).

Shapiro-Wilk (SW) test: In statistics, the Shapi@/ilk test tests the null hypothesis that a sample
X1, ..., Xn CAMe from a normally distviited population
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SkewnessA measure of asymmetry of the distribution of the characteristic under study (e.g., lead
concentrations). It can also be measured in terms of the standard deviatictranségrmed data. The
higher is the standard deviatighe higher is the skewness.

Stable UCL: The UCL of a population mean is a stable UCL if it represents a number of practical merit
which also has some physical meaning. That is, a stable UCL represents a realistic number (e.g.,
contaminant concentratipthat can occur in practicAlso, a stable UCL provides the specified (at least
approximately, as much as possible, as close as possible to the specified value) coverage (e.g., ~0.95) to
the population mean.

Standard Deviation (sd) A measure of variatin (or spread) from an average value of the sample data
values.

Standard Error (SE): A measure of an estimate's variability (or precision). The greater the standard

error in relation to the size of the estimate, the less reliable the estimate. Starwtararemeeded to

construct confidence intervals for the parameters of interests such as the population mean and population
percentiles.

Tolerance Limit: A confidence limit on a percentile of the population rather than a confidence limit on
the mean. Foexample, a 95 percent os&ed TL for 95 percent coverage represents the value below
which 95 percent of the population values are expected to fall with 95 percent confidenher words,

a 95% UTL with coverage coefficient 95% represents a 95% wpopéidence limit for the 95

percentile.

Unreliable UCL, Unstable UCL, Unrealistic UCL: The UCL of a population mean is unstable,

unrealistic, or unreliable if it is orders of magnitude higher than the other UCLs of populationtmean

represents an innactically large value that cannot be achieved in pradicer exampl e, t he us
H statistic often results in impractically large inflated UCL value. Some other 40tk as the bootstrap

t UCL and Hall és UCL, crmginarbimpractically laage &nd ungtable walud | i er s
All such impractically large UCL values are called unstable, unrealistic, unreliable, or inflated UCLs.

Upper Confidence Limit (UCL): The upper boundary (or limit) of a confidence interval of a parameter
of interest such as the population mean.

Upper Prediction Limit (UPL): The upper boundary of a prediction interval for an independently
obtained observation (or an independent future observation).

Upper Tolerance Limit (UTL): The upper boundary of a tolee interval.

Winsorization method: The Winsorization method is a procedure that replaces the n extreme values with
the preset cuoff value. This method is sensitive to the number of outliers, but not to their actual values.
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Introduction

The Need for ProUCL Software

Statistical inferences about the sampled populations and their parameters are made based upon defensible
and representative data sets of appropriate sizes collected from the populations under investigation.
Stdistical inference, including both estimation and hypotheses testing approaches, is routinely used to:

1. Estimate environmental parameters of interest such as exposure point concentration
(EPC) terms, neto-exceed values, and background level thresholdega(BTVs) for
contamirants of potential concern (CORC

2. Identify areas of concern (AQ@t a contaminated site,
3. Compare contaminant concentrations found at two or more AOCs of a contaminated site

4. Compare contaminant concentrations found at an AQ@ background or reference
area contaminant concentratipns

5. Compare site concentrations with a cleanup standard to verify the attainment of cleanup
standards.

Statistical inference about the sampled populations and their parameters are made batefdngible

and representative data sets of appropriate sizes collected from the populations under investigation
Environmental data sets originated from the Superfund and RCRA sites often consist of observations

below one or more detection limits (DL$) order to address the statistical issues arising in exposure and

risk assessment applications; background versus site comparison and evaluation studies; and various other
environmental applications, several graphical, parametric, and nonparametricakatisthods for data

sets with nondetects and without nondetects have been incorporated into ProUCL Version 4.0 (ProUCL
4.0).

Exposure and risk management and cleanup decisions in support of United States Environmental
Protection Agency (EPA) projects avfien made based upon the mean concentrations of the CAPCs
95% upper confidence limit (UCL95) of the unknown population (e.g., an AOC) arithmetic mean (AM),
€1, can be used to:

Estimate the EPC term of the AOC under investigation,

Determine the attainment of cleanup standards,

Compare site mean concentrations with reference area mean concentrations, and
Estimate background level mean contaminant concemisatiihe background mean
contaminant concentration level may be used to compare the mean of an AOC. It should
be noted that it is not appropriate to compare individual gmjifgoint site observations

with the background mean concentration level.

=A =4 =4 =4

It is important to compute a reliable and stab@L 95 of the population mean using the available data
TheUCL95should approximately provide the 95% coverage for the unknown population sneBased
upon the available background data, it is equally important to compute reliable and stable upper
percentiles, upper prediction limitsPLs), or upper tolerance limitsJTLs). These upper limits based
upon background (or reference) data are asegkstimates of BTVs, compliance limi@L], or notto-



exceed values. These upper limits are often used in site-fpeptint) versus background comparison
evaluations.

Environmental scientists often encounter trace level concentrations of COPCeswah&ting sample

analytical resultsThose low level analytical results cannot be measured accurately, and therefore are
typically reported as less than one or more detection Iibhij yalues (also called nondetects). However,
practitioners often need abtain reliable estimates of the population meanthe population standard
deviation,l;, and upper limits, including the upper confidence litdi€() of the population mass or

mean, thdJPL, and theJTL based upon data sets with nondetdifd)(observéions. Hypotheses testing
approaches are often used to verify the attainment of cleanup standards, and compare site and background
concentrations of COPCs.

Background evaluation studies, BTVs, andtwe¢xceed values should be estimated based upon
defersible background data sets. The estimated BTVs etoratceed values are then used to identify the
COPCs, to identify the site AOCs or hot spots, and to compare the contaminant concentrations at a site
with background concentrations. The use of apprapsggtistical methods and limits for site versus
background comparisons is based upon the following factors:

1. Objective of the study,

2. Environmental medium (e.g., soil, groundwater, sediment, air) of concern,
3. Quantity and quality of the available data,

4. Estimation of a neto-exceed value or of a mean contaminant concentration,
5. Preestablished or unknown cleanup standards and BTVs, and

6. Sampling distributions (parametric or nonparametric) of the concentration data sets
collected from the site and backgnd areas under investigation.

In background versus site comparison evaluations, the environmental population parameters of interest
may include:

Preliminary remediation goals (PRGS),

Soil screening levels (SSLs),

Risk-based cleanup (RBC) standards,

BTVs, notto-exceed values, and

Compliance limit, maximum concentration limit (MCL), or alternative concentration
limit (ACL), frequently used in groundwater applications.

=A =4 =8 -8 =9

When the environmental parameters listed above are not known or have not bestalpished,

appropriate upper statistical limits are used to estimate the parameters. The UPL, UTL, and upper
percentiles are used to estimate the BTVs andmekceed values. Depending upon the site data

availability, pointby-point site observationsercompared with the estimated (orjpstablished) BTVs

and notto-exceed values. If enough site andkzgound data are available, tvgample hypotheses

testing approaches are used to compare site concentrations with background concentrations levels. Thes
statistical methods can also be used to compare contaminant concentrations of two site AOCs, surface and
subsurface contaminant concentrations, or upgradient versus monitoring well contaminant concentrations.



ProUCL 4.00.05 Capabilities

ProUCL 4.00.05s an upgrade of ProUCL 4.00.02 which represents an upgrade of ProUCL 4.0 (EPA,
2007).ProUCL 4.00.0xontains all statistical methods as available in ProUCL 4.00.02 (described below)
to address various environmental issues for both full data sets withadgtects (NDs) and for data sets
with NDs (also known as leftensored data sets). It should be noted that Technical Guide developed for
ProUCL 4.0 also applies tts earlier upgrad®roUCL 4.00.02ProUCL 4.00.0%as the extended version

of ShapireWilk (S-W) test that can perform normal and lognormal goodoééis tests for data sets of

sizes upto 200ProUCL 4.00.0%an also compute upper prediction and upper tolerance limits based
upon gamma distribution. Some modifications have been incorporatistision tables and
recommendations made by ProUCL to estimate the EPC terms. Specifically, based upon recent
experience, developers of ProUCL aréteeating that the use of lognormal distribution to estimate EPC
terms should be avoided, as the uskghormal distribution yields unrealistic and highly unstable UCLs.
In an effort to simplify the EPC estimation process and recommending defensible estimates, for highly
skewed lognormally distributed data sets, developers are recommending the userafrgitaermetric

UCLs such as Chebyshéwean Sd UCLsavailable inProUCL 4.00.05 These changes have been
incorporated in various decision tables included in ProUCL 4.0 Technical Guide and ProUCL 4.0 User
Guide. Recommendations made by ProUCL 4.0 haga beanged accordingly ProUCL 4.00.05

Some minor requests (e.g., incorporation of maximum likelihood estimates based upon a gamma model)
and bugs as suggestedPpUCL 4.0ProUCL 4.@.02users have also been addressed in this upgraded
version of ProUC.

ProUCL 40/ProUCL 4.00.0Zontains:

1. Rigorous parametric and nonparametric (including bootstrap methods) statistical methods
(instead of simple ad hoc or substitution methods) that can be used on full data sets
without nondetects and on data sets Wwitlow detection limit (BDL) or nondetect (ND)
observations

2. Stateof-the-art parametric and nonparametric UCL, UPL, and UTL computation
methods. These methods can be used owifdénsored data sets without nondetects and
also on data sets with BDL olysations. Some of the methods (e.g., Kagléaier
method, ROS methods) are applicable ondefisored data sets having multiple
detection limits. The UCL and other upper limit computation methods cover a wide range
of skewed data sets with and without BIBLs.

3. Singl e sampl etest, @n tgstpropoRidn tedt,eNitdxdnsSinged Rank
test)andtwes a mp | e ( -&st, WilcexorMarsrWhitney test, Gehan tegpuantile
test) parametric and nonparametric hypotheses testing approacham feetd with and
without ND observations. These hypothesis testing approaches can be used to: verify the
attainment of cleanup standards, perform site versus background comparisons, and
compare two or more AOCs, monitoring wells (MWSs).

4. The single samplbaypotheses testing approaches are used to compare site mean, site
median, site proportion, or a site percentile (e.d") &a compliance limit (action level,
regularity limit). The hypotheses testing approaches can handle betin¢elhsored data
set without nondetects, and lefénsored dataess with nondetects. Simple tvgample
hypotheses testing methods to compare two populations araldeai ProUCL 4.0,
such as twesample tests, WilcoxoAMann-Whitney (WMW) Rank Sum tesguantile



test Ghands test, and di spersion test. Variati
Leveneds method to compare dispersions, gen
most commercial and freely available software packages (e.g., MINITAB, R).

5. ProUCL 4.0 hdudes graphical methods (e.goXyplots, multiple @Q plots, histogram)
to compare two or more populations. Additionally, ProUCL 4.0 can also be used to
display a box plot of one population (e.g., site data) with compliance limits or upper
limits (e.g.,UPL) of other population (background area) superimposed on the same
graph. This kind of graph provides a useful visual comparison of site data with a
compliance limit or BTVs. Graphical displays of a data set (e, fot) should be
used to gain insighknowledge contained in a data set that may not otherwise be clear by
looking at simple test statistics such #est, Dixon test statistic, or ShapWdilk (S-W)
test statistic.

6. ProUCL 4.0 can process multiple contaminants (variables) simultaneodshaarhe
capability of processing data by groups. A valid group column should be included in the
data file.

7. ProUCL 4.0 provides a GOF test for data sets with nondetects. The user can create
additional columns to store extrapolated (estimated) valuemfatetects based upon
normal ROS, gamma ROS, and lognormal ROS (robust ROS) methods.

ProUCL Applications

The methods incorporated RroUCL 4.00.0%and in earlier versiongan be used on data sets with and
without BDL and ND observations. Methods andoramendations as incorporated in ProUCL 4.0 are

based upon the results and findings of the extensive simulation studies as summarized in Singh and Singh
(2003), and Singh, Maichle, and Lee (ERA06) It is anticipated thaProUCL 4.00.05and its previous
versions)will serve as a companion software package for the following EPA documents:

9 Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous
Waste SiteEPA, 2002a)and

1 Guidance for Comparing Background and Chemical Comagohs in Soil for CERCLA
Sites(EPA, 2002b)

Methods included ifProUCL 4.00.0%an be used in various other environmental applications including
the verification of cleanup standards (EPA, 1989), and computation of upper limits needed in
groundwater moitoring applications (EPA, 1992 and EPA, 2004).

In 2002, EPA issued guidance for calculating the UCLs of the unknown population means for
contaminant concentrations at hazardous waste $htiesProUCL 3.0 software package (EPA, 2004) has
served as a copanion software package for the EPA (2002a) guidance document for calculating UCLs of
mean contaminant concentrations at hazardous waste sites. ProUCL 3.0 has several parametric and
nonparametric statistical methods that can be used to congurtgpaateUCLs based upon full

uncensored data sets without any ND observatfietJCL 4.6ProUCL 4.00.02etairs all capabiities

of ProUCL 3.0, including goodnessd-fit (GOF) and the UCL computation methods for data sets without
any BDL observations. However,dCL 4.0 has the additional capability to perform GOF tests and
computing UCLs and other upper limits based upon data sets with BDL observations.



ProUCL 4.0 defines lotransform(log) as the natural logarithiin) to the base.d’roUCL 4.0 also
computeghe maximum likelihood estimates (MLEs) and the minimum variance unbiased estimates
(MVUES) of unknown population parameters of normal, lognormal, and gamma distribUitnis)sof

course, depends upon the underlying data distribuBiaUCL 4.0 computethe (17 U )00%UCLs of

the unknown population meagy, using5 parametric and 0 nonparametric methods. It should be pointed
out that ProUCL 4.0 computes thienplesummary statistics for detected raw andt@pnsformed data

for full data sets without NDs, as Wvas for data sets with BDL observations. It is noted that estimates of
mean anddfor data sets with NDs based upon rigorous statistical methods (e.g., MLE, R®@S, K
methods) are note provided in the summary statistics. Those estimates and the csgapsatenits for

data sets with NDs are provided under the menu options: Background and UCL

It is emphasized that throughout this Technical Guide, and iArtéCL 4.00.05oftware, it is assumed
that one is dealing with a single populatirmultiple populations (e.g., background and site data mixed
together) are present, it is recommended to first separate them out (e.g., using appropriate statistical
population partitioning techniques), and then compute appropriate respective 95% UCLs sdparately
each of the identified populatiorQutliers, if any, should be identified and thoroughly investigated.
ProUCL 4.0 provides two commonly used simple classical outlier identification procedures: 1) Dixon
test, and 2) Rosner te€iutliers distort mostarametric statistics (e.g., mean, UCLs, upper prediction
limits (UPLS), test statistics) of interest. Moreover, it shoulddiedthat even though outliers might

have minimal influence on hypotheses testing statistics based upon ranks (e.g., WMWtliess)dou
distort those nonparametric statistics (including bootstrap methods), which are based upon higher order
statistics such as UPLs and UTD&cisions about the disposition (exclusion or inclusion) of outliers in a
data set used to estimate the BBi@ns or BTVs should be made by all parties involved (e.g., project
team, EPA, local agency, potentially responsible party, etc.) in the decision making process

The presence of outlying observations also distorts statistics based upon bootsrapge The use of

higher order valuegj(iantiles) of the distorted statistics for the computation of the UCLs or UPLs based
uponbootstrapand Hal |l 6s bootstrap methods may yield unst
especially true for the upper limitsqviding higher confidence coefficients such as 95%, 97.5%, or 99%.

Similar behavior of théootstrap UCL is observed for data sets having BDL observations. Therefore, the
bootstrapand Hal |l 6s bootstrap metlhisossdggeted thavthelusershoald us ed W
examine various other UCL results and determine if the UCLs based ugmotsrapta nd Hal | 6 s
bootstrap methods represent reasonable and reliable UCL values of practicadf theriesults based

upon these two bootstrap metis are much higher than the rest of methods, then this could be an

indication of erratic behavior of those bootstrap UCL values, perhaps distorted by outlying observations

In case these two bootstrap methods yield erratic and inflated UCLs, the U@ noéém should be

computed using the adjusted or the approximate gamma UCL computation method for highly skewed

gamma distributed data sets of small sizes. Alternatively, one may use a 97.5% or 99% Chebyshev UCL

to estimate the mean of a highly skewed papaih. It should be noted that typically, a Chebyshev UCL

may yield conservative and higher values of the UCLs than other methods available in ProUCL 4.0 This

is especially true when data are moderately skewed and sample size is large. In such cades, when

sample size is large, one may want to use a 95% Chebyshev UCL or a Chebyshev UCL with lower

confidence coefficient such as 92.5% or 90% as estimate of the population mean

ProUCL Methods

ProUCL 4.0(and all its upgradegyrovidesl5 UCL computation minods for full data sets without any
BDL observationsb are parametric and e nonparametric methodshe nonparametric methods do



not depend upon any assumptions about the data distributions. The five parametric UCL computation
methods are:

1. St u dseUCL,0

2. Approximate gamma UCL using ehguare approximation,
3. Adjusted gamma UCL (adjusted for level significance),
4, L and-8GL, add

5. Chebyshev inequalithased UCL (using MVUEs of parameters of a lognormal
distribution)

The 10 nonparametic methods are:
1. The central limit theorem (CLT)ased UCL,
2. Modified t-statistt (adjusted for skewnesbasedJCL,
3. AdjustedCLT (adjusted for SkewnesbpsedJCL,
4. Chebyshev inequadi basedJCL (using sample mean and sample standard deviation),
5. Jakknife methoebased UCL,
6. UCL based upon standard bootstrap,
7. UCL based upon percentile bootstrap,
8. UCL based upon biasorrected accelerated (BCA) bootstrap,
9. UCL based upon bootstrapand
100UCL based upon Hall és bootstrap.

Environmental scientis often encounter trace level concentrations of COPCs when evaluating sample
analytical resultsThose low level analytical results cannot be measured accurately, and therefore are
typically reported as less than one or more DL values. However, theipress need to obtain reliable
estimates of the population mean, and the population standard deviatidn,and upper limits including

the UCL of the population mass (measure of central tendency) or mean, UPL, anBidy@tal methods

are available and cited in the environmental literature (Helsel (2005), Singh and Nocerino (2002), Millard
and Neerchal (20Q)that can be used to estimate the population mean and variance. However, till to date,
no specific recommendations are available for the use of appropriate methods that can be used to compute
upper limits (e.g., UCLs, UPLs) based upon data sets with &@i3kervationsSingh, Maichle, and Lee

(EPA 2006) extensively studied the performance of several parametric and nonparametric UCL
computation methods for data sets with BDL observations. Based upon their results and findings, several



methods to compute upplémits (UCLs, UPLs, and UTLs) needed to estimate the EPC terms and BTVs
have been incorporated in ProUCL 4.0.

In 2002, EPA issued anoth@uidance for Comparing Background and Chemical Concentrations in Soll
for CERCLA Site§EPA, 2002b)This EPA (200B) background guidanceodument is currently being

revised to include statistical methods that can be used to estimate the BTVs-tarelxeceed values

based upon data sets with and without the BDL observations. In background evaluation studies, BTVs,
conpliance limits, or noto-exceed values often need to be estimated based upon defensible background
data sets. The estimated BTVs or-tiexceed values are then used for screening the COPCs, to identify
the site AOCs or hot spots, and also to deternfitieeisite concentrations (perhaps after a remediation
activity) are comparable to background concentrations, or are approaching the background level
concentrations. Individual poHiity-point site observations (composite samples preferred) are sometimes
compared with those ndb-exceed values or BTVs. It should be pointed out that in practice, it is

preferred to use hypotheses testing approaches to compare site versus background concentrations
provided enough (e.g., at leas18 detected observations fraach of the two populations) site and
background data are available. Chapter 1 provides practical guidance on the minimum sample size
requirements to estimate and use the BTVSs, singlévemdamplehypotheses testing approaches to

perform background euvahtions and background versus site comparisons. Chapter 1 also briefly
discusses the differences in the definitions and uses of the various upper limits as incorporated in ProUCL
4.0. Detailed discussion of the various methods to estimate the BTVs amdhotteexceed values for
full-uncensored data sets (Chapter 5) withoytreandetect values and for leftnsored data sets

(Chapter 6) with nondetect values are given in the revised background guidance document.

ProUCL 4.0 includes statistical methadscompute UCLs of the mean, upper limits to estimate the

BTVs, other noto-exceed values, and compliance limits based upon data sets with one or more detection
limits. The use of appropriate statistical methods and limits for exposure and risk assessdsite

versus background comparisons, is based upon several factors:

1. Objective of the study;

2. Environmental medium (e.g., soil, groundwater, sediment, air) of concern;
3. Quantity and qualityf the available data;

4. Estimation of a neto-exceed vale or of a mean contaminant concentration;
5. Preestablished or unknown cleanup standards and BTVs; and

6. Sampling distributions (parametric or nonparametric) of the concentration data sets
collected from the site and background areas under investigation.

In background versus site comparison studies, the population parameters of interest are typically
represented bypper thresholdiiits (e.g., upper percentiles, upper confidence limits of an upper
percentile, upper prediction limit) of the backgrounthddistribution. It should be noted that the upper
threshold values are estimated and represented by upper percentiles and other values from the upper tail
of the background data distribution. These background upper threshold values do not represesg measur
of central tendency such as the mean, the median, or their upper confidence limits. These environmental
parameters may include:



Preliminary remediation goals (PRGs), compliariogtk,

Soil screening levels (SSLs),

Risk-based cleanup (RBC) standards,

BTVs, compliance limits, or neb-exceed values, and

Maximum concentration limit (MCL) or alternative concentration limit (ACL) used in
Groundwater applications.

= =4 =8 =8 A

When the environmental parameters listed above are not knownestptgished, appropriatgper

statistical limits are used to estimate those parameters. The UPL, UTL, and upper percentiles are typically
used to estimate the BTVs, Aotexceed values, and other parameters listed above. Depending upon the
availability of site data, poidty-point site observations are compared with the estimated (or pre
established) BTVs and ntd-exceed values. If enough site and background data are avdilable,
samplehypotheses testing approaches (preferred method to compare two populations) are used to
compare site concentrations with background concentrations levels. The hypotheses testing methods can
also be used to compare contaminant concentrations of two site AOCs, surface and subsurface
contaminant concentrations, or upgradient versus monitoringamiaminant concentrations

Background versus Site Comparison Evaluations

The following statistical limits have been incorporated in ProUCL 4.0 to assist in background versus site
comparison evaluations:

Parametric Limits for Full-Uncensored Data Sets without Nondetect Observations

UPL for a single observation (Normal, Lognormal) not belonging to the original data set
UPL for next k (k is user specified) or k future observations (Normal, Lognormal)

UTL, an upper confidence limit of a percentile (Nornhagnormal)

Upper percentiles (Normal, Lognormal, and Gamma)

= =4 =4 =9

Nonparametric Limits for Full-Uncensored Data Sets without Nondetect Observations

Nonparametric limits are typically based upon order statistics of a data set such as a background or a
referencalata set. Depending upon the size of the data set, higher order statistics (maximum, second
largest, third largest, and so on) are used as these upper limits (e.g., UPLs, UTLS). The details of these
methods with sample size requirements can be foundapt€h5 of the revise@uidance for Comparing
Background and Chemical Concentrations in Soil for CERCLA &#fe4a, 2002b)It should be, noted

that the following statistics might get distorted by the presence of outliers (if any) in the data set under
study.

UPL for a single observation not belonging to the original data set
UTL, an upper confidence limit of a percentile

Upper percentiles

Upper limit based upon interquartilenge (IQR)

Upperlimits based upon bootstrap methods

=A =4 =8 -8 =9



For data sets with BDL alervations, the following parametric and nonparametric methods to compute
the upper limits were studied and evaluated by Singh, Maichle, and LeeZ&858) via Monte Carlo
Simulation Experiment®epending upon the performances of those methods, onlysfaime methods

have been incorporated in ProUCL 4.0. Methods (e.g., Delta method, DL method, uniform (0, DL)
generation method) not included in ProUCL 4.0 do not perform well in comparison with other methods.

Note: When the percentage of NDs in a datais high (e.g., #40%50%), especially when multiple

detection limits might be present, it is hard to reliably perform GOF tests (to determine data distribution)
on those data sets with many NDs. The uncertainty associated with those GOF tests ghll be hi

especially when the data sets are of small sizel¥20). It should also be noted that the parametric

MLE methods (e.g., for normal and lognormal distributions) often yield unstable estimates of mean and
sd. This is especially true when the numberarfdetects exceeds 4890% In such situations, it is

preferable to use nonparametric (e.g., KM method) methods to compute statistics of interest such as
UCLs, UPLs, and UTLs. Nonparametric methods do not require any distributional assumptions about the
data sets under investigation. Singh, Maichle, and Lee (EPA, 2006) also concluded that the performance
of the KM estimation method is better (in terms of coverage probabilities) than various other parametric
estimation (e.g., MLE, EM, ROS) methods.

Parametric Methods to Compute Upper Limits for Data Sets with Nondetect Observations

Simple sibstitution proxy) methods (0, DL/2, DL)
MLEmetod, often known a §singedetectiodifnit ML E met hod
Restricted MLE rethodi single detectionimit 7 not inProUCL 4.0
Expectation Maximization (EM) ethodi single etectionlimit T not in ProUCL 4.0
EPA Deltalog method single detectionimit i notin ProUCL 4.0
Regression mthod on detected data and using slope and intercept of the OLS regression
line as stimates of standard deviatisd,and mean (not a recommended method)
1 Robust ROS (regression on ordetistics) on logransformed data nondetects
extrapolated (estimated) using robust ROS; mednJCLsand other statistics
computed using the dmtted and extrapolated data in original stateultiple detection
limits
1 Normal ROS nondetects extrapolated (estimated) using normal distribution, sgkan,
UCLs,and other statistics computed using thiecied and extrapolated déatanultiple
detection limits.
1 Itis noted that the estimated NDs often become negative and even larger than the
detection limits (not a recommended method)
 Gamma ROS$S nondetects extrapolated (estimated) using gamma distribution, stkan,
UCLs,and other statistics computading the dicted and extrapolated déatanultiple
detectioniimits

=A =4 =8 -8 -8 =9

Nonparametric Methods to Compute Upper Limits for Data Sets with Nondetect Observations

1 Bootstrap Methods
0 Percentile Bootstrap on robust ROS
o0 Percentile Bootstrap
o BCA Bootstrap
o0 Bootstrapt



1 Jackknife Method
o Jackknife on robust ROS

1 KaplanMeier (KM) Method
0 Bootstrap (percentile, BCA) using KM estimates
o Jackknife using KM estimates
0 Chebyshev Method using KM estimates

I Winsorization Method

For uncensored full data sets without any NDs,gérformance (in terms of coverage for the mean) of

the various UCL computation methods was evaluated by Singh and Singh @@®gerformance of the
parametric and nonparametric UCL methods based upon data sets with nondetect observations was
studied ly Singh, Maichle, and Lee (EPA 2006). Several of the methods listed above have been
incorporated in ProUCL 4.0 to compute the estimates of EPC terms (95% UCL), and of BTVs (UPLs,
UTLs, upper percentiles). Methods that did not perform well (e.g., poorageer unrealistically large
values, infeasible and biased estimates) are not included in ProUCL 4.0. Methods not incorporated in
ProUCL 4.0 are: EPA Delta Log method, Restricted MLE method, and EM method, substitution method
(0, and DL), and Regression thed.

Note: It should be noted that for data sets with NDs, the DL/2 substitution method has been incorporated
in ProUCL 4.0 only for historical reasons and also for its current default use. It is well known that the
DL/2 method (with NDs replaced by R)/does not perform welé.g., Singh, Maichle, and LEEPA

20069) even when the percentage of NDs is onlyl®%. It is strongly suggested to avoid the use of

DL/2 method for estimation and hypothesis testing approaches used in various environmental
applications. Also, when the % of NDs becomes high (e 409%50%), it is suggested to avoid the use

of parametric MLE methods. For data sets with high percentage of NDs (&@%}; the distributional
assumptions needed to use parametric methods aretaetify; and those parametric MLE methods

may Yyield unstable results.

It should also be noted that even though the lognormal distribution and some statistics based upon
lognormal assumption (e.g., Robust ROS, DL/2 method) are available in ProUCL@UELIP4.0 does

not compute MLEs of mean and sd based upon a lognormal distribution. The main reason is that the
estimates need to be computed in the original scale viatbac&formation (Shaarawil989, Singh,

Maichle, and LeeEPA 2006). Those backransformed estimates often suffer from an unknown amount
of significant bias. Hence, it is also suggested to avoid the use of a lognormal distribution to compute
MLEs of mean and sd, and associated upper limits, especially UCLs based upon those MLEs obtained
using a lognormal distribution.

ProUCL 4.0 recommends the use of an appropriate UCL to estimate the EPC terms. It is desirable that the
user consults with the project team and experts familiar with the site before using those recommendations.
Furthermorethere does not seem to be a general agreement about the use of an upper limit (e.g., UPL,
percentile, or UTL) to estimate nti-exceed values or BTVs to be used for screening of the COPCs and

in site versus background comparison studies. ProUCL 4.0occapute both parametric and

nonparametric upper percentiles, UPLs, and UTLs for uncensored and censored data sets. However, no
specific recommendations have been made regarding the use of UPLs, UTLs, or upper percentiles to
estimate the BTVs, compliance iy and other related background or reference parameters. However,

the developers of ProUCA.0 prefer the use of UPLs or uppergentiles to estimate the background
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population parameters (e.g., BTVs, shoexceed values) that may be needed to perfaimt-y-point
site versus background comparisons.

The standard bootstrap and the percentile bootstrap UCL computation methods do not perform well (do
not provide adequate coverage to population mean) for skewed datosstewed distributions, the
boastraptand Hal | 6s boot s tskeaness)metbodsdod petfoom battdrj(interins of o r
coverage for the population mean) than the other bootstrap meittawdgver, it has been noted (e.g.,

Efron and Tibshirani (1993)ndSingh, Singh, and la¢2002b)) that these two bootstrap methods
sometimes yield erratic and inflatetCL values (orders of magnitude higher than the dth@ks). This

may occur when outliers are present in a data set. Similar behaviorbafatsérap UCL is observed

based pon data sets with ND3 herefore, whenever applicable, ProUCL 4.0 provides cautionary
statements regarding the use of bootstrap methods

ProUCL 4.0 provides several staibthe-art parametric and nonparametric UCL, UPL, and UTL
computation methods thaan be used on uncensored data sets (full data sets) and on data sets with BDL
observations. Some of the methods (e.g., Kaplaier method, ROS methods) incorporated in ProUCL

4.0 are applicable on lefensored data sets having multiple detection liffite UCLs and other upper

limits computation methods in ProUCL 4.0 cover a wide range of skewed data distributions with and
without the BDLs arising from the environmental applications.

ProUCL 4.0 also has parametric and nonparametric singlerarshnple hypotheses testing approaches
required to: compare site location (e.g., mean, median) to a specified cleanup standard; perform site
versus background comparisons; or compare of two or more AKDEse hypotheses testing methods
can handle both full (wensored data sets without NDs) and-teftsored (with nondetects) data sets
Specifically,two-sampletests such astest, WilcoxoaAMannWhitney (WMW) RankSum testguantile
test, and Gehan6s test are avai |lféwopopulaions. ProUCL 4.

Single sample parametric (Studed-test) and nonparametriddga test, Wilcoxon Signed Rank (WSR)

test, tests for proportions and percentiles) hypotheses testing approaches are also available in ProUCL 4.0.
The single sample hypothesstests are useful when the environmental pasamstich as the clean

standard, action level, oompliancdimits are known, and the objective is to compare site concentrations

with those known threshold valueSpecifically, a-test (or a signest) nay be used to verify the

attainment of cleanup levels at an AOC after a remediation activity; and a test for proportion may be used
to verify if the poportion of exceedances of an action level (or a compliami® by sample

concentrations collected frothe AOC (or a MW) exceeds a certain specified proportion (e.g., 1%, 5%,

10%). As mentioned before, ProUCL 4.0 can perform these hypotheses on data sets with and without
nondetect observations.

Note: It should be noted that as cited in the literatu@ne of the hypotheses testing approaches (e.g.,
nonparametridwo-sampléeNMW) deal with the single detection limit scenario. If multiple detection
limits are present, all NDs below the largest detection limit need to be considered as Niest (G987,
Helsel, 2005). This in turn may reduce the power and increase uncertainty associated with test. As
mentioned before, it is always desirable to supplement the test statistics and test conclusions with
graphical displays such as the multiple@plots and siddy-side box plots. ProUCL 4.0 can graph box
plots and QQ plots for data sets with nondetect observati@®han test as available in ProUCL 4.0
should be used in case multiple detection limits are present. ProUCL 4.0 can dgapldls and box
plots fordata sets with and without nondetect observations.
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It should be pointed out that when ustiagr-samplehypotheses approaches (WMW test, Gehan test, and
guantiletest) on data sets with NDs, both samples and variables (e.gAssiBackAs) should be

speified as having nondetects. This means, a ND columiN®=and 1= detect) should be provided for
each variable (here D_sitas, and D_BaclAs) to be used in this comparison. If a variable (e.g.;A#e
does not have any nondetects, still a column latibl D_siteAs should be included in the data set with
all entries =1 (detected values).

Moreover, in single sample hypotheses tests @gn,test, pportion test) used to compare site
mean/median concentration level with a cleanup standaydy €ompliance limit (e.g., proportion test),
all NDs (if any) should lie below the cleanup standarg, C

The differences between these tests should be noted and understood. Specifitzdlypiaat Wilcoxon
Signed Rank (WSR) test are used to comparengeesures of location and central tendencies (e.g., mean,
median) 6 a site area (e.g., AOC) to a cleantgnslardC; or action ével also representing a measure of
central tendency (e.g., mean, median); whereas, a proportion test compares if the profsitgo
obsenations from an AOC exceeding ampliance imit (CL) exceeds a specified proportion,(P.g.,

5%, 10%) The percentile test compares a specified percentile (e'd.pPfhe site data to a pspecified
upper threshold (e.g., reportirignit, action level). All of these tests have been incorporated in ProUCL
4.0. Most of the single sample aiwb-samplehypotheses tests also report associatealyes. For some

of the hypotheses tests (e.g., WMW test, WSR test, proportion test), langie sguproximate fvalues

are computed using continuity correction factors

Graphical Capabilities

ProUCL 4.0 has useful exploratory graphical methods that may be used to visually compare the
concentrations of:

1. A site area of concern (AOC) with an acti@vel. This can be done using a box plot of
site data with action level superimposed on that graph,

2. Two or more populations, including site versus background populations, surface versus
subsurface concentrations, and

3. Two or more AOCs

The graphical nthods include double and multipg@antilequantile(Q-Q) plots, sideby-side box plots,

and histograms. Whenever possible, it is desirable to supplement statistical test results and statistics with
visual graphical displays of data sets. There is no isutiestor graphical displays of a data set as the

visual displays often provide useful information about a data set, which cannot be revealed by simple test
statistics such astést, SW test, Rosner test, WMW test. For example, in addition to providing

information about the data distribution, a norma®Ilot can also help identify outliers and multiple
populations that might be present in a data set. This kind of information cannot be revealed by simple test
statistics such as a Shapiwilk (SW)testoRosner 6s outlier test statistic
lead to the conclusion that a mixture data set (representing two or more populations) can be modeled by a
normal (or lognormal) distribution, whereas the occurrence of obvious breaks andrjuhmassociated

Q-Q plot may suggest the presence of multiple populations in the mixture ddtésssiggested that the

user should use exploratory tools to gain necessary insight into a data set and the underlying assumptions
(e.g., distributionalsingle population) that may not be revealed by simple test statistics.
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Note: On a QQ plot, observations well separated from the majority of the data may represent potential
outliers, and obvious jumps and breaks of significant magnitude may suggesdtiece of observations
from multiple populations in the data set.

The analyses of data categorized lgy@up ID variable such as: 1uSace vs Subsurface;

2) AOC1 vs AOC2; 3) &te vs Backgroundand 4)Upgradient vsDowngradient monitoring wellsre

guite common in many environmental applications. ProUCL 4.0 offers this option for data sets with and
without nondetects. The Group Option provides a powerful tool to perform various statistical tests and
methods (including graphical displays) sepayafet each of the group (samples from different

populations) that may be present in a data set. For an example, the same data set may consist of samples
from the various grqus or populations representing sitackground, two or more AOCs, surface,

subsuface, monitoring wells. The graphical displays (e.g., box ploi®, ilots) and statistics

(computations of background statistics, UCLs, hypotheses testing approaches) of interest can be
computed separately for each group by using this option.
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Chapter 1

Guidance on the Use of Statistical Methods as Incorporated in
ProUCL 4.0 & Associated Minimum Sample Size Requirements

This chapter describes the differences between the various statistical limits (e.g., UCLs, UPLs, UTLS)
often used to estimate the emrimental parameters of interest including exposure point concentration
(EPC) terms and background threshold values (BTVs). Some suggestions about the minimum sample size
requirements needed to use statistical inferential methods to estimate the envimbparameters: EPC

terms, BTVs, and neb-exceed values, and to compare site data with background data or with seme pre
established reference limits (e.g., preliminary remediation goals (PRGs), action levels, compliance limits)
have also been provided.i$ noted that, several EPA guidance documents (e.g., BEI®X, 2002a, 2006)
discuss in details about data quality objectives (DQOs) and sample size determinations based upon those
DQOs needed for the various statistical methods used in environmeniehtamms. Also, appropriate

sample collection methods (e.g., instruments, sample weights, discrete or composite, analytical methods)
depend upon the medium (e.g., soil, sediment, water) under consideration. For an example, Gerlach and
Nocerino (EPA, 2003)lescribe optimal soil sample (based upon Gy theory) collection methods.

Therefore, the topics of sample size determination based upon DQOs, data validation, and appropriate
sample collection methods for the various environmental media are not consideretdCL 4.0 ad the
associatedechnical andechnical gides. It is assumed that data sets to be used in ProUCL are of good
quality, and whenever possible have been obtained using the guidance provided in various EPA (2003,
2006) doc umemdpansibility to assuse thatadequatédamount of good quality data have been
collected.

Note: Here, emphasis is given on the practical applicability and appropriate use of statistical methods
needed to address statistical issues arising in risk managdebaakground versus site evaluation

studies, and various other environmental applications. Specifically, guidance on minimum sample size
requirements as provided in this chapter is useful when data have already been collected, or it is not
possible (e.gdue to resource limitations) to collect the number of samples obtained using DQO
processes as described in EPA (2006)

Decisions based upon statistics obtained using data sets of small sizes (e.g., 4 to 6 detected observations)
cannot be considered ratile enough to make a remediation decision that affects human health and the
environment. For an example, a background data set of size 4 to 6 is not large enough to characterize
background population, to compute BTV values, or to perform background géesaemparisons. In

order to perform reliable and meaningful statistical inference (estimation and hypothesis testing), one
should determine the sample sizes that need to be collected from the populations under investigation
using appropriate DQO processand decision error rates (ERPQ06). However, in some cases, it may

not be possible (e.g., resource constraints) to collect the same number of samples recommended by the
DQO process. In order to address such cases, some minimum sample size reqdebeckground

and site data sets are described in this chapter.

The use of an appropriate statistical method depends upon the environmental parameter(s) being
estimated or compared. The measures of central tendency (e.g., means, medians, or toeinfiggrere

limits (UCLSs)) are often used to compare site mean concentrations (e.g., after remediation activity) with a
cleanup standard,sQepresenting some central tendency measure of a reference area or some other
known threshold representing a measafreentral tendency. The upper threshold values, such as the
compliance limits (e.g., alternative concentration limit (ACL), maximum concentration limit (MCL)), or
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notto-exceed values, are used when individual pbyapoint observations are comparedwihose not
to-exceed values or some other compliance lilnghould be noted that depending upon whether the
environmental parameters (e.g., BTVs,-tieexceed value, EPC term, or cleanup standards) are known
or unknown, different statistical methodghwifferent data requirements are needed to compare site
concentrations with prestablished (known) or estimated (unknown) standards and BTVSs.

ProUCL 4.0 has been developed to address issues arising in exposure assessiassegsskent, and
backgound versus site comparison applications. Several upper limits, and simgjlevesample

hypotheses &ing approaches, for both fulhcensored and lefensored data sets, are available in
ProUCL 4.0 The details of the statistical and graphical meghiodluded in ProUCL 4.0 can be found in

the ProUCL Technicajuidance In order to make sure that the methods in ProUCL 4.0 are properly used,
this chapter provides guidance on:

1. analysis of site and background areas and data sets,

2. collection of discree or composite samples,

3. appropriate use of the various upper limits,

4. guidance regarding minimum sample sizes,

5. point-by-point comparison of site observations with BTVSs,

6. use of hypotheses testing approaches,

7. using small data sample sets

8. use of maimum detected value, and

9. discussion of ProUCL usage for special cases.
1.1 Background Data Sets
The project team familiar with the site should identify and chose a background area. Depending upon the
site activities and the pollutants, the backgroumé @an be sitepecific or a general reference arda
appropriate random sample of independent observations should be collected from the background area. A
defensi ble background data set should regresent
pristine site conditions before any of the industrial site activities) free of contaminating observations such
as outliers. In a background data set, outliers may represent potentially contaminated observations from
impacted site areas under study osgibly from other polluted site(s). This scenario is common when
background samples are obtained from the various onsite areas (e.g., large federal facilities). Outlying
observations should not be included in the estimation (or hypotheses testing ps)oeitiine BTVS.
The presence of outliers in the background data set will yield distorted estimates of the BTVs and
hypothesis testing statistics. The proper disposition of outliers to include or not include them in the data
set should be decided by the jexd team
Decisions based upon distorted statistics can be incorrect, misleading, and exfiesigiutd be noted

that the objective is to compute background statistics based upon the majority of the data set representing
the dominant background poptibn, and not to accommodate a few low probability outliers that may
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also be present in the background data set. A couple of simple classical outlier tests (Dixon and Rosner
tests) are available in ProUCL 4.0. Since these classical tests suffer fromgref$icts (e.g., some

extreme outliers may mask the occurrence of other intermediate outliers), it is suggested that these
classical outlier tests should always be supplemented with graphical displays such as a box pl@t or a Q
plot. The use of robust drresistant outlier identification procedures (Singh and Nocerino, 1995,
Rousseeuw and Leroy, 1987) is recommended when multiple outliers may be present in a data set. Those
methods are beyond the scope of ProUCL 4.0. However, several robust outlificatamtiand

estimation are available in Scout (EPA, 2000), which is currently under revision and upgrade.

An appropriate background data set of a reasonable size (preferably computed using DQO processes) is
needed to characterize a background area imgumbmputation of upper limits (e.g., estimates of BTVs,
notto-exceed values) based upon background data sets and also to compare site and background data sets
using hypotheses testing approaches. As mentioned before, a small background data getawé s&ze

not large enough to compute BTVs or to perform background versus site compaigbasninimum, a
background sample should have at least 8 to 10 (more observations are preferable) detected observations
to estimate BTVs or to use hypothesesingsapproaches.

1.2 Site Data Sets

A defensible data set from a site population (e.g., AOC, EA, RU, group of monitoring wells) should be
representative of the site area under investigalepending upon the site areas under investigation,
different soildepths and soil types may be considered as representing different statistical@upuiat

such cases, backgroumdrsussite comparisons may have to be conducted separately for each of those
site subpopulations (e.g., surface and susface layersfaan AOC, clay and sandy site areas). These
issues, such as comparing depths and sail types, should also be considered in a planning and sampling
design before starting to collect samples from the various site areas under investigation. Specifically, the
availability of an adequate amount of representative site data is required from each of those site sub
populations defined by sample depths, soil types, and the various other characteristics. For detailed
guidance on soil sample collections, the readesfexired to Gerlach and Nocerino (EPA (2003)).

The site data collection requirements depend upon the objective of the stutdfic&e in background
versussite comparisons, site data are needed to perform:

1 Individual pointby-point site observatioocomparisons with prestablished or estimated
BTVs, PRGs, cleanup standards, andtoegxceedvalues. Typically, this approach is
used when only a small number (e.g., < 4 to 6) of detected site observations (preferably
based upon composite samples) ailakle which need to be compared with BTVs and
notto-exceed values. Some applications of the plyApoint site observation
comparisons are described later in this chapter.

1 Single sample hypotheses tests to compare site data wiisatgished cleamu
standards, (Je.g., representing a measure of central tendency); or with BTVs atwt not
exceed values (used for tests for proportions and percentiles). The hypotheses testing
approaches are used when enough site data are available. Specificallyt whsn&ato
10 detected (more are desirable) site observations are available, it is preferable to use
hypotheses testing approaches to compare site observations with specified threshold
values. The use of hypotheses testing approaches can control typdéw/¢Type 1 and
Type 2) of error rates more efficiently than the pdiyipoint individual observation
comparisons. This is especially true as the number of-pgipbint comparisons
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increases. This issue is illustrated by the following table summaitizenprobabilities of
exceedances (false positive error rate) of the background threshold value te.g., 95
percentile) by site observations, even when the site and background populations have
comparable distributions. The probabilities of these chaneeelances increase as the
sample size increases.

Sample Size Probability of Exceedance
1 0.05
2 0.10
5 0.23
8 0.34
10 0.40
12 0.46
64 0.96

Two-samplehypotheses testing to compaite data distribution with background data
distribution to determine if the site concentrations are comparable to background
concentrations. Adequate amount of data need to be made available from the site as well
as the background populations. It is prable to collect at least 8 to 10 detected
observations from each of the population under comparison.

1.3 Discrete Samples or Composite Samples?

In a data set (background or site), collected samples should be either all discrete or all cdmposite
geneal, both discrete and composite site samples may be used for individugbypioint site
comparisons with a threshold value, and for single anesamaple hypotheses testing applications.

T
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If possible, the use of compaosite site samples is preferred gdmparing individual
point-by-point site observations from an area (e.g., area of concern (AOC), remediation
unit (RU), exposure area (EA)) with some stablished or estimated BTV, compliance
limit (CL), or some other neb-exceed value. This compsaoin approach is useful when
few (< 4 to 6) detected site observations are compared withestailished or estimated
BTV or some other netib-exceed threshold.

When using a single sample hypothesis testing approach, site data can be obtained by
collecting all discrete or all composite sampl€ke hypothesis testing approach is used
when many (e.g., exceeding 8 to 10) detected site observations are aviadsdile of

the single sample hypothesis approaches are widely available in EPA documents (1989,
1997, and 2006). Some of those single sample hypotheses testing procedures are also
available in ProUCL 4.0.

If a two-samplehypotheses testingpproach is used to perform site verbaskground
comparisons, then samples from both of the populationsabeutither all discrete
samples, or all composite samples. The-sample hypothesis testing approach is used
when many (e.g., exceeding 8 to 10) site, as well as background, observations are
available For better and more accurate results with higheisstal power, the
availability of more observations (e.g., exceedinglipfrom each of the two
populations is desirable, perhaps based upon an appropri@eQess, as described in
an EPA giidancedocument (2006).



1.4  Upper Limits and Their Use

Theappropriate computation and use of statistical limits depend upon their applications and the
parameters (e.g., EPC term, #totexceed value) they are supposed to be estimating. Depending upon the
objective of the study, a pepecified cleanup standard, @ a riskbased cleanup (RBC) can be viewed

as to represent: 1) as average contaminant concentration; or 2pseroeed upper threshold value.

These two threshold values, an average valgjend a noto-exceed valued,, represent two

significanty different parameters, and different statistical methods and limits are used to compare the site
data with these two different parameters or threshold values. Statistical limits, such as an upper
confidence limit (UCL) of the population mean, an uppedjation limit (UPL) for an independently
obtained fisingledo observation, or independently o
observations, next k observations, or k different observations), upper percentiles, and upper tolerance
limits (UTLs), ae often used to estimate the environmental parameters, including the EPC terms,
compliance limits (e.g., ACL, MCL), BTVs, and other #totexceed values. Here, UTL9596%

represents a 95% confidence limit of thd' @&rcentile of the distribution of trentaminant under study.

It is important to understand and note the differences between the uses and numerical values of these
statistical limits so that they can be properly u§&mkcifically, the differences between UCLs and UPLs

(or upper percentilesand UCLs and UTLs should be clearly understood and acknowledidgé@L with

a 95% confidence limit (UCL95) of the mean represents an estimate of the population mean (measure of
the central tendency of a data distribution), whereas a UPL95, a UFR8%8nd an upper 95

percentile represent estimates of a threshold value in the upper tail of the data distribution. Therefore, a
UCL95 should represent a smaller number than an upper percentile or an upper prediction limit. Also,
since a UTL 95%95% represes a 95% UCL of the upper 9®ercentile, a UTL should Bethe

corresponding UPL95 and the"®3pper percentile. Typically, it is expected that the numerical values of
these limits should follow the order given as follows:

Sample Mean¢t UCL95 of Mean¢ Upper 95 Percentile¢ UPL95 of a Single Observatian
UTL95%-95%

It should also be pointed out that as the sample size increases, a UCL95 of the mean approaches
(converges to) the population mean, and a UPL95 approachesther8ntile Thedifferences among

the various upper limits are further illustrated in Examplelielow. It should be noted that, in some

cases, these limits might not follow the natural order described above. This is especially true when the

upper limits are computed Esupon a lognormal distribution (Singh, Singh, and Engelhardt, 1997). It is

well known that a lognormal distribution based HCL 95 (Landbés UCL95) often yi
impractically large UCL values.®MH-UCL95 often becomes larger than UPL95 and daeger than a

UTL 95%-95%. This is especially true when dealing with skewed data sets of smaller sizes. Moreover, it
should also be noted that in some cases|HCH95 becomes smaller than the sample mean, especially

when the data are mildly skewed to racately skewed, and the sample size is large (e.g., > 50, 100).

Some of these issues, related to a lognormal distributiondhdCHL. 95 based upon Landods
are discussed in Chapter 3 of the revised background document for CERCLA sites.

1.4.1 Example 1-1
Consider a simple sigpecific background data set associated with a Superfundisgelata set (given
in Appendix 5 of the revise@uidance for Comparing Background and Chemical Concentrations in Soil

for CERCLA Site§EPA, 2002b) has sevel inorganic contaminants of potential concern, including
aluminum, arsenic, chromium, iron, and lead. It is noted that iron concentrations follow a normal
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distribution. Some upper limits for the iron data set are summarized as follows. It is noted tzaicths
upper limits do follow the order as described above.

Table 1-1. Computation of Upper Limits for Iron (Normally Distributed)

Mean

Median

Min

Max

UCL95

UPL95 for a
Single
Observation

UPL95 for 4
Observations

UTL95/95

95% Upper
Percentile

9618

9615

3060

18700

11478

18145

21618

21149

17534

A 95% UCL (UCL95) of the mean is the most commonly used limit in environmental applications. For an

example, a 95% UCL of mean is used as an estimate of theAHPCL95 should not be used to estimate
a backgrand threshold value (a value in the upper tail of the background data distribution) to be
compared with individual site observations. There are many instances in background evaluations and
background versus site comparison studies, when it is not appedporizgse a 95% UCL. Specifically,

when pointby-point site observations are to be compared with a BTV, then that BTV should be estimated

(or represented) by a limit from the upper tail of the reference set (background) data distribution

A brief discus®n about the differences between the applications and uses of the various statistical limits

is provided below. This will assist a typical user in determining which upper limit (e.g., UCL95 or
UPL95) to use to estimate the parameter of interest (e.q.pEBTV).

20

1 A UCL represents an average value that should be compared with a threshold value also

representing an average value {pstablished or estimated), such as a mean cleanup
standard, CFor an example, a site 95% UCL exceeding a cleanup valueaylead to
the conclusion that the cleanup level, itas not been attained by the site area. It should
be noted that UCLs of means are typically computed based upon the site data set.

1 When site averages (and not individual site observations) are manpih a threshold
value (predetermined or estimated), such as a PRG or a RBC, or with some other

T A UCL

cleanup standard,sGhen that threshold should represent an average value, and not a not

to-exceed threshold value for individual observation comparisons

represents

a

fncol |

ectiveOd measure
compare individual site observations with a UCL. Depending upon data availability,
single ortwo-samplehypotheses testing approaches are used to compare ségesre

with a specified or prestablished cleanup standard (single sample hypothesis), or with
the background population averagegotsamplehypothesis).

1 A UPL, an upper percentile, or an UTL represents an upper limit to be used febyoint

point individual site observation comparisons. UPLs and UTLs are computed based upon
background data sets, and individual site observations are compared with those limits. A
site observation for a contaminant exceeding a background UTL or UPL may lead to the

concluson that the contaminant is a contaminant of potential concern (COPC) to be
included in further risk evaluation and risk management studies.

1 When individual poinby-point site observations are compared with a threshold value
(pre-determined or estimatedj a background population or some other threshold and
compliance limit value, such as a PRG, MCL, or ACL, then that threshold value should
represent a ndb-exceed value. Such BTVs or Aotexceed values are often estimated
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by a 95% UPL, UTL95%5%, orby an upper percentil®roUCL 4.0 can be used to
compute any of these upper limits based upon uncensored data sets as well as data sets
with nondetect values.

1 Asthe sample size increases, a UCL approaches the sample mean, and a UPL95
approaches the oesponding 98 upper percentile.

1 Itis pointed out that the developers of ProUCL 4.0 prefer the use of a 95% UPL (UPL95)
as an estimate of BTV or a Amtexceed value. As mentioned before, the option of
comparing individual site observations with a B{@pecified or estimated) should be
used when few (< 4 to 6) detected site observations (preferably composite values) are to
be compared with a BTV.

1 When enough (e.g., > 8 to 10) detected site observations are available, it is preferred to
use hypothesdssting approaches. Specifically, single sample hypotheses testing
(comparing site to a specified threshold) approaches should be used to perform site
versus a known threshold comparison; amolsamplehypotheses testing (provided
enough background dateeaalso available) approaches should be used to perform site
versus background comparis@everal parametric and nonparametric singletaoed
samplehypotheses testing approaches are available in ProUCL 4.0.

It is reemphasized that only averages shdaddcompared with the averages or UCLSs, and individual site
observations should be compared with UPLs, upper percentiles, or UTLs. For an example, the comparison
of a 95% UCL of one population (e.g., site) with a 90% or 95% upper percentile of anothatipopul

(e.g., background) cannot be considered fair and reasonable as these limits (e.g., UCL and UPL) estimate
and represent different parametétrss hard to justify comparing a UCL of one population with a UPL of

the other population. Conclusions (edite dirty or site clean) derived by comparing UCLs and UPLs, or
UCLs and upper percentiles as suggesh Wyoming DEQ, Fact Shee?24#(2005), cannot be considered

fair and reliable. Specifically, the decision error rates associated with such conpasdedre

significantly different from the specified (e.g., Type | error = 0.1, Type Il error = 0.1) decision errors.

1.5 Point-by-Point Comparison of Site Observations with BTVs, Compliance
Limits, and Other Threshold Values

Pointby-point observation coparison method is used when a small number (e.g., 4 to 6 locations) of
detected site observations are compared witleptablished or estimated BTVs, screening levels, or
preliminary remediation goals (PRGS). In this case, individual {iyitoint site dservations (preferably
based upon composite samples from various site locations) are compared with estimated or pre
established background (e.g., USGS values) values, PRGs, or some cthaxoeied value. Typically,

a single exceedance of the BTV, PRGa notto-exceed value by a site (or from a monitoring well)
observation may be considered as an indication of contamination at the site area under investigation. The
conclusion of an exceedance by a site val@isetimesonfirmed by resampling (talng a few more
collocated samples) that site location (or a monitoring well) exhibiting contaminant concentration in
excess of the BTV or PRG. If all collocated (or collected during the same time period) sample
observations collected from the same sitation (or well) exceed the PRG (or MCL) or atmexceed
value, then it may be concluded that the location (well) requires further investigation (e.g., continuing
treatment and monitoring) and cleanup.
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When BTV contaminant concentrations are not knowpreestablished, one has to collect, obtain, or
extract a data set of an appropriate size that can be considered as representative of the site related
background. Statistical upper limits are computed using the data set thus obtained, which are used as
estimates of BTVs and ntd-exceed values. It should be noted that in order to compute reasonably
reliable and accurate estimates of BTVs andtox@xceed values based upon a background (or reference)
data set, enough background observations (minimurnt@fL0) should be collected, perhaps using an
appropriate DQO process as described in EPA (2006). Typically, background samples are collected from
a comparable general reference area orsgigeific areas that are known to be free of contamination due

to any of the site related activities. Several statistical limits can be used to estimate the BTVs based upon
a defensible data set of an adequate size. A detailed description of the computation and estimation of
BTVs is given in Chapter 5 (for uncensoredadsets) and in Chapter 6 for data sets with nondetects of

the revisedsuidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites
(EPA, 2002b)Once again, the use of this peby-point comparison method is recommended when not
many (e.g., < 4 to 6) site observations are to be compared with estimated BTVs oARR&s=edance

of the estimated BTV by a site value may be considered as an indication of the existing or continuing
contamination at the site.

Note: When BTVs are n&nown, it is suggested that at least 8 to 10 (more are preferable) detected
representative background observations be made available to compute reasonably reliable estimates of
BTVs and other neb-exceed values.

The pointby-point comparison method also useful when quick turnaround comparisons are required.
Specifically, when the decisions have to be made in real time by a sampling or screening crew, or when
few detected site samples are available, then individual-pgipbint site concentratiorege compared

either with preestablished PRGs, cleanup goals and standards, or with estimated BTV s-taneceed
values. The crew can use these comparisons to make the following informative decisions:

1. screen and identify the COPCs,

o

identify the pdiuted site AOCs,
3. continue or stop remediation or excavation at a site AOC or a RU, or
4. move the cleanup apparatus and crew to the next AOC or RU.

During the screening phase, an exceedance of a compliance limit, action level, a BTV, or a PRG by site
values for a contaminant may declare that contaminant as a COPC. Those COPCs are then included in
future site remediation and risk management studies. During the remediation phase, an exceedance of the
threshold value such as a compliance limit (CL) or a BY\$ample values collected from a site area (or

a monitoring well (MW)) may declare that site area as a polluted AOC, or a hot spot requiring further
sampling and cleanup. This comparison method can also be used to verify if the site concentrations (e.qg.,
from the base or side walls of an excavated site area) are approaching or meeting PRG, BTV, or a cleanup
standard after some excavation has been conducted at that site area.

If a larger number of detected samples (e.g., greater than 8 t010) are affaifalites site locations
representing the site area under investigation (e.g., RU, AOC, EA), then the use of hypotheses testing
approaches (both single sample artdio-sampl@ is preferred. The use of a hypothesis testing approach
will control the error ates more tightly and efficiently than the individual pdigtpoint site observations
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versus BTV comparisons, especially when many site observations are compared with a BTWtor a not
exceed value.

Note: In background versus site comparison evaluatisngntists usually prefer the use of hypotheses
testing approaches over poiby-point site observation comparisons with BTVs orteetxceed values
Hypotheses testing approaches require the availability of larger data sets from the populations under
investigation Both single sample (used when BTVs;toatxceed values, compliance limits, or cleanup
standards are known and pestablished) and tweample (used when BT¥8d complianceimits are
unknown) hypotheses testing approaches are availableold®L 4.0.

1.6  Hypothesis Testing Approaches and Their Use

Both single sample artd/o-samplehypotheses testing approaches are used to make cleanup decisions at
polluted sites, and also to compare contaminant concentrations of two (e.g., site versusibdlkg

more (several monitoring wells (MWSs)) populations. The uses of hypotheses testing approaches in those
environmental applications are described as follows.

1.6.1 Single Sample Hypotheses i BTVs and Not-to-Exceed Values are Known (Pre-
established)

When preestablished BTVs and ntt-exceed values are used, such as the USGS background values
(Shacklette and Boerngen (1984)), thresholds obtained from similar sitestaindished threshold and
notto-exceed values, PRGs, or RBCs, there is no neextttact, establish, or collect a background or

reference data satvhen the BTVs and cleanup standards are knownsample hypotheses are used to
compare site data (provided enough site data are available) with known asdgiéshed threshold

values It is suggested that the project team determine (e.g., using DQO) or decide (depending upon
resources) about the number of site obser-vations
establishedodo standar ds b edstatus(clearnonpollutgd) af the shteacd nc | u s
(e.g., RU, AOC) under investigation. When the number of available detected site samples is less than 4 to
6, one might perform poiftiy-point site observation comparisons with a BTV; and when enough detected

site observations (> 8 to 10, more are preferable) are available, it is desirable to use single sample
hypothesis testing approaches

Depending upon the parameter (e.g., the average valu®, a notto-exceed valued,), represented by

the known thresHd value, one can use single sample hypothesis tests for population fesngign

test) or single sample tests for proportions and percentiles. The details of the single sample hypotheses
testing approaches can be found in EPA (2006) and the Tec@uiichd for ProUCL 4.0. Several single
sample tests listed as follows are available in ProUCL 4.0.

OneSample{Test:This test is used to compare the site meamwith some specified cleanup standard,

Cs, where the cleanup standard, i€presents an avage threshold valueg. T he S-test@eant 6s t
UCL of mean) is often used (assuming normality of site data or when site sample size is large such as
larger than 30, 50) to determine the attainment of cleanup levels at a polluted site after saliadioame
activities.

OneSample Sign Test or Wilcoxon Signed Rank (WSR)Tlre=ste tests are nonparametric tests and can
also handle nondetect observations provided all nondetects (e.g., associated detection limits) fall below
thespecified threshold vady C. These tests are used to compare the site location (e.g., median, mean)
with some specified cleanup standard r€presenting a similar location measure.
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OneSample Proportion Test or Percentile Taathen a specified cleanup standakgl such as

PRG or a BTV represents an upper threshold value of a contaminant concentration distribution
(e.g., notto-exceed value, compliance limit) rather than the mean threshold wglwé the contaminant
concentration distribution, then a test for proportor a test for percentile (or equivalently a UTL 95%
95%, UTL 95%90%) may be used to compare site proportion or site percentile with the specified
threshold or action levef\, This test can also handle ND observatiprsvided all NDs are below the
compliance imit.

In order to obtain reasonably reliable estimates and test statistics, an adequate amount of representative
site data (8 to 10 detected observations) is needed to perform the hypotheses tests. As mentioned before,
in case only a few (e.gs, 4 to 6) detected site observations are available, thenipgjpint site

concentrations may be compared with the specified action lyel,

1.6.2 Two-Sample Hypotheses i When BTVs and Not-to-Exceed Values are Unknown

When BTVs, noto-exceed valuesnd other cleanup standards are not available, then site data are
compared directly with the background data. In such cases;satwple hypothesis testing approaan

be used to perform site verdusckground comparisons. Note that this approach casdzbto compare
concentrations of any two populations including two different site areas or two different monitoring wells
(MWs). In order to use and perform a twample hypothesis testing approach, enough data should be
available (collected) from each tfe two populations under investigation. Site and background data
requirements (e.g., based upon DQOSs) to perfarorsamplehypothesis test approaches are described in
EPA (1989b, 2006), Breckenridge and Crockett (1995), and the VSP (2005) softwaigepatiie

collecting site and background data, for better representation of populations under investigation, one may
also want to account for the size of the background area (and site area for site samples) into sample size
determination. That is, a largeamber (>10 to 15) of representative background (or site) samples should
be collected from larger background (or site) areas. As mentioned before, every effort should be made to
collect as many samples as determined using DQO processes as describedaclERents (2006).

Thetwo-sample(or more) hypotheses approaches are used when the site parameters (e.g., mean, shape,
distribution) are being compared with the background parameters (e.g., mean, shape, distribution). The
two-samplehypotheses testing pach is also used when the cleanup standards or screening levels are
not knowna priori, and they need to be estimated based upon a data set from a background or reference
population. Specificallytwo-samplehypotheses testing approaches are used tpa@ml) the average
contaminant concentrations of two or more populations such as the background population and the
potentially contaminated site areas, or 2) the proportions of site and background observations exceeding a
pre-established compliance limi, In order to derive reliable conclusions with higher statistical power
based upon hypothesis testing approaches, enough data (e.g., minimum of 8 to 10 samples) should be
available from all of the populations under investigatibis also desirableotsupplement statistical

methods with graphical displays, such as the doub@ flots, or sidéy-side multiple box plots, as

available in ProUCL 4.0Two-samplehypotheses testing approaches as incorporated in ProUCL 4.0 are
listed as follows:

1. Student{est- with equal dispersions anthequal variancesParametricest
2. Wilcoxon-MannWhitney (WMW) testi Nonparametricest

3. Gehan test Nonparametricdst
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Some details of these approaches are described later in this Technical Guide. It shouldtbatrtbted

WMW, Gehan, andiuantilet est s are al so available for data sets
meant to be used on data sets with multiple detection limits. It is also suggested that for best and reliable
conclusions, botthe WMW andquartile tests should be used on the same data set. The details of these

two tests with examples are given in EPA (1994, 2006).

The samples collected from the two (or more) populations should all be of the same type obtained using
similar analytical methodsna apparatus. In other words, the collected site and background samples

should be all discrete or all composite (obtained using the same design and pattern), and be collected from
the same medium (soil) at similar depths (e.g., all surface samplesudrzliface samples) and time

(e.g., during the same quarter in groundwater applications) using comparable (preferably same) analytical
methods. Good sample collection methods and sampling strategies are given in EPA (1996, 2003)
guidance documents.

1.7  Minimum Sample Size Requirements

Due to resource limitations, it may not be possible (nor needed) to sample the entire population (e.g.,
background area, site area, areas of concern, exposure areas) und&tatigdygs is used to draw
inference(s) abouhe populations (clean, dirty) and their known or unknown parameters (e.g.,
comparability of population means, rtotexceed values, upper percentiles, and spreads) based upon
much smaller data sets (samples) collected from those populations under studgr bo determine and
establish BTVs, neto-exceed values, or siapecific screening levels, defensible data set(s) of
appropriate size(s) needs to be collectechfbackground areas (e.g., ssfgecific, general reference or
pristine area, or histordt data). The project team and site experts should decide what represents a site
population and what represents a background population. The project team should determine the
population size and boundaries based upon all current and future objectiVesdateat collection. The

size and area of the population (e.g., a remediation unit, area of concern, or an exposure unit) may be
determined based upon the potential land use, and other exposure and risk management objectives and
decisions. Moreover, appraate effort should be made to properly collect soil samples (e.g., methods
based upon Gy sampling theory), as described in Gerlach and Nocerino (2003).

Using the collected site and background data sets, statistical methods supplemented with graphical
disgays are used to perform site verdaskground comparisonghe test results and statistics obtained

by performing such site versbackground comparisons are used to determine if the site and background
level contaminant concentration are comparablé;tbe site concentrations exceed the background
threshold concentration level; or if an adequate amount of cleanup and remediation approaching the BTV
or some cleanup level have been performed at polluted areas (e.g., AOC, RU) of the site under study

In order to perform statistical inference (estimation and hypothesis testing), one needs to determine the
sample sizes that need to be collected from the populations (e.g., site and background) under investigation
using appropriate DQO processes (EPA 2086)vever, in some cases, it may not be possible to collect

the same number of samples as determined by using a DQO process. For example, the data might have
already been collected (often is the case in practice) without using a DQO process, or duece resou
constraints, it may not be possible to collect as many samples as determined by using a DQO based
sample size formula. It is observed that, in practice, the project team and the decision makers may not
collect enough background samples, perhaps duarimus resource constraints. However, every effort
should be made to collect at least 8 to 10 (more are desirable) background observations before using
methods as incorporated in ProUCL 4.0. The minimum sample size recommendations as described here
are ugeful when resources are limited (as often is the case), and it may not be possible to collect as many
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background and site (e.g., AOC, EU) samples as computed using DQOs and the sample size
determination formulae given in the EPA (2008)me minimum samplk&ze requirementare also given
in Fact Sheet24, prepared by Wyoming DepartmeftEnvironmental Quality (Junz005).

As mentioned before, the topics of DQO processes and the sample size determination are described in
detail in the EPA (2006) guidandecument. Therefore, the sample size determination formulae based

upon DQO processes are not included in ProUCL 4.0 and its Technical Baigever, some guidance

and suggestions on the minimum number of background and site samples needed to beeble to u
statistical methods for the computation of upper limits, and to perform single sample testsniple

tests such astest and WilcoxonMann-Whitney (WMW) test, and various other tests are provided here

The minimum sample size recommendations (requénts) as described here are made so that

reasonably reliable estimates of EPC terms and BTVs, and defensible values of test statistics for single or
two-samplehypotheses tests (e.giest, WMW test), can be computed

Finally, it is also importanitnote and understaniet difference between the following twaninimum
sample sizeoncepts

Minimum sample needed to compute a statistic based upon theoretical formulae; and
Minimum sample size needed to compute a reliable and usable decision statistics

Even though, most of the decision statistics such as upper confidence limits (UCLS), upper prediction
limits (UPLs), and upper tolerance limits (UTLs) can be computed based upon very small samples of
sizes 2, 3, and 4, those decision statistics areefiable and representative enough to make defensible
and correct cleanup and remediation decisions. Use of such statistics should be avoided.

Specific ecommendations regarding the minimum samplersigairemen{whendata set®f DQOs

based sample ®2 cannot be collected) needed to compute reliable and deaid®nstatistics have
alsobeen described itnis chapter It should be pointed out that those minimum sample size
recommendation (at leastl® observations) should be used only when sanagblsize determined by a
DQO process (EPA, 2006) cannot be collected (e.g., due to resource consia@isdention of the
developers of ProUCL 4.0 is to provide statistically rigorous and defensible matibdgcision

statistics Success of the appability of a statistical method depends upon the quality and quantity of
availabledata set It is always desirable to collect appropriate number of samples based upon data quality
objectives (DQOs) so thatliabledecisionstatisticg(e.g.,UPLs,UCLs, and hypotheses test statistics)
can becomputed to make appropriate decisions.

1.7.1 Minimum Sample Size Requirements to Compute Decision Statistics for Data without
NDs

It was noted by the developers of ProUCL software that some users ofveadiens of ProUCL (e.qg.,
ProUCL 3.0 and ProUCL 4.0) were computing decisions statistics (e.g., UCLs, UPLSs) based upon small
data sets of sizes 2, 3 etc. As a result, in later versions of ProUCL such as ProUCL 4.00.02, the
developers restricted the useRsbUCL for samples of size at least 5. ProUCL 4.00.02 and higher

versions will not compute decision statistics (e.g., UCLs, UPLs, UTLs) based upon samples of sizes less
than 5. Some users did complain about being not able to compute decision stassticsgon samples

of size 3 or 4; but that is fine as one should not be computing decision statistics based upon such small
samples. It is desirable that the ProUCL users follow the sample size requirements as deghbiibed in
chapter
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At present, ProUCK.00.02 and higher versions will not compute any decision statistics such as UCLs

and UPLs, UTLs for data sets of size less thanith¢ut ND9. It may compute other summary statistics

and graphs but will not compute decision making statistics. Forssoah data sets of size less than 5,

ProUCL 4.00.02 provides warning messages informing the user about the potential deficiencies present in
his data set submitted to ProUCL.

1.7.2 Minimum Sample Size Requirements for Data Sets with NDs

ProUCL 4.00.02 andigher versions will not compute any decision statistics based upon data sets of sizes
less than 5 consisting of NDs. Moreover, for data sets of size at least 5, no decision statistics will be
computed when not more than one detected observation isipiretiee data set. For such extreme data
situations, ProUCL 4.00.02 provides some warning messages regarding the lack of appropriate amount of
data. For data sets of size 5 or larger with only two detected values, ProUCL 4.00.02 will produce only
Kaplani Meier method based decision statistics (UCLs, UPLs, UTLs); and for data sets of size 5 or larger
with 3 detected values, most nonparametric and parametric (except for gamma distribution based )
decision statistics will be computed and printed. For datadf size 5 or higher with 4 or more detected
observations, ProUCL 4.00.02 will produce values for all parametric and nonparametric decision

statistics.

For all small data sets (e.g., size X®), ProUCL 4.00.02 informs the user by providing appropriate

warning messages about the potential deficiencies present in his data set submitted to ProUCL. Some
recommendations about how to determine a value of a decision statistic based upon data sets consisting of
all or only a few (1 or 2) detected values also provided inthis chapter It is suggested that the project

team and experts associated with the site should come to an agreement about an appropriate value that
may be used for the decision statistic under consideration.

1.7.3 Minimum Sample Size for Estimation and Point-by-Point Site Observation Comparisons

1 Pointby-point observation comparison method is used when a small number (e.g., 4to 6
locations) of detected site observations are compared withspablished or estimated
BTVs, screening leve| or PRGs. In this case, individual pelmytpoint site observations
(preferably based upon composite samples from various site locations) are compared with
estimated or prestablished background (e.g., USGS values) values, PRGs, or some
other notto-exceed value.

1 When BTV contaminant concentrations are not known ceptablished, one has to
collect, obtain, or extract a data set of an appropriate size that can be considered as
representative of the site related background. Statistical upper limit®ruputed using
the data set thus obtained; which are used as estimates of BTVs 4@ xated values.
It should be noted that in order to compute reasonably reliable and accurate estimates of
BTVs and notto-exceed values based upon a backgroundeference) data set, enough
background observations (minimum of 8 to 10) should be collected perhaps using an
appropriate DQO process as described in EPA (2006). Typically, background samples are
collected from a comparable general reference area orspsitéfic area.

1 When enough (e.g., > 8 to 10) detected site observations are available, it is preferred to
use hypotheses testing approaches. Specifically, single sample hypotheses testing
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(comparing site to a specified threshold) approaches should beoysediorm site

versus a known threshold comparison awmo-samplehypotheses testing (provided

enough background data are also available) approaches should be used to perform site
versus background comparison

1.7.4 Minimum Sample Sizes for Hypothesis Testing

Statistical methods (as in ProUCL 4.0) used to estimate EPC terms, BTVs, PRGs, or to compare the site
contaminant concentration data distribution with the background data distribution can be computed based
upon small site and background data sets,(ef sizes 3, 4, 5, or 6). However, those statistics cannot be
considered representative and reliable enough to make important cleanup and remediation decisions. It is
recommended not to use those statistics to draw cleanup and remediation decisraralpanpacting

the human health and the environment. It is suggested that the estimation and hypothesis testing methods
as incorporated in ProUCL 4.0 may not be used on background data sets with fewer than 8 to 10 detected
observations. Also, when ugimypotheses testing approaches, it is suggested that the site and

background data be obtained using an appropriate DQO process as described in EPA (2006). In case that
is not possible, it is suggested that the project team at least collect 8 to 10tasefk@m each of the
populations (e.g., site area, MWSs, background area) under investigation.

Site versudackground comparisons and computation of the BTVs depend upon many factors, some of
which cannot be controlled. These factors include the sitdittmms, lack of historical information, site

medium, lack of adequate resources, measurement and analytical errors, and accessibility of the site areas.
Therefore, whenever possible, it is desirable to use more than one statistivad to perform siteersus
background comparison. The use of statistical methods should always be supplemented with appropriate
graphical displays

1.7.5 Sample Sizes for Bootstrap Methods

Several parametric and nonparametric (including bootstrap methods) UCL, UPL, arlavither

computation methods for both fulhcensored data sets (without nondetects) anddefiored data sets

with nondetects are available in ProUCL.4t&hould be noted that bootstrap resampling methods are
useful when not too few (e.g., <-16) ard not too many (e.g., > 5a1000) detected observations are
available. For bootstrap methods (e.g., percentile method, BCA bootstrap nhetbisttap method), a

large number (e.g., 1000, 2000) of bootstrap resamples (with replacement) are drawn sametidata

set. Therefore, in order to obtain bootstrap resamples with at least some distinct values (so that statistics
can be computed from each resample), it is suggested that a bootstrap method should not be used when
dealing with small data sets okes less than 105. Also, it is not required to bootstrap a large data set of
size greater than 500 or 1000; that is when a data set of a large size (e.g., > 1000) is available, there is no
need to obtain bootstrap resamples to compute statistics @&sinferg., UCLs)One can simply use a
statistical method on the original large data set. Moreover, bootstrapping a large data set of size greater
than 500 or 1000 will be time consuming.

1.8  Statistical Analyses by a Group ID

The analyses of data categed by agroup ID variable such as: 1uSace vsSubsurface;

2) AOC1 vs. AOQ@; 3) Site vs.Background; and 4) phradient vsDowngradient monitoring wells are
quite common in many environmental applications. ProUCL 4.0 offers this option for daitstlsetsd
without nondetects. The Group Option provides a powerful tool to perform various statistical tests and
methods (including graphical displays) separately for each of the group (samples from different
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populations) that may be present in a dataFs®tan example, the same data set may consist of samples
from the various gnaps or populations representing sitackground, two or more AOCs, surface,
subsurface, monitoring wells. The graphical displays (e.g., box ple@spl@ts) and statistics

(baclkground statistics, UCLs, hypotheses testing approaches) of interest can be computed separately for
each group by using this option.

It should be pointed out that itiseu s er s 6 responsibility to provide ac
perform the goup operations. For an example, if the user desires to produce a grapQigabtQusing

only detected data) with regression lines displayed, then there should be at least two detected points (to
compute slope, interceptd) in the data set. Similariy the graphs are desired for each of the group

specified by the group ID vaidle, there should be at least tdatected observations in each group

specified by the group variable. ProUCL 4.0 generates a warning message (in orange color) in the lower

pane of the ProUCL 4.0 screen. Specifically, the user should make sure that a variable with nondetects

and categorized by a group variable should have enough detected data in each group to perform the

various methods (e.g., GOF testsQ(lots with regressivlines) as incorporated in ProUCL 4.0.

1.9 Use of Maximum Detected Value as Estimates of Upper Limits

Some practitioners tend to use the maximum detected value as an estimate of the EPC term. This is
especially true when the sample size is small sudtba®r when a UCL95 exceeds the maximum
detected values (EPA, 1992b). Also, many times in practice, the BTVs atmaxateed values are
estimated by the maximum detected value. This section discusses the appropriateness of using the
maximum detected vaduas estimates of the EPC term, BTVs, or otheitsvexceed values

1.9.1 Use of Maximum Detected Value to Estimate BTVs and Not-to-Exceed Values

It is noted that BTVs and nab-exceed values represent upper threshold values in the upper tail of a data
distribution; therefore, depending upon the data distribution and sample size, the BTVs and -¢ther not
exceed values may be estimated by the maximum detected Aaldescribed earlier, upper limits, such

as UPLs, UTLs, and upper percentiles, are usedtimate the BTVs and ntm-exceed values. It is noted

that a nonparametric UPL or UTL is often estimated by higher order statistics such as the maximum value
or the second largest value (EPA 1992a, RCRA Guidance Addendum). The use of higher artiles stati

to estimate the UTLs depends upon the sample size. For an example: 1) 59 to 92 samples, a
nonparametric UTL95985 is given by the maximum detected value; 2) 93 to 123 samples, a
nonparametric UTL95985 is given by the second largest maximum deteckd; and 3) 124 to 152

samples, a UTL95985 is given by the third largest detected value in the sample.

Note: Therefore, when a data set does not follow a discernable distribution, the maximum observed value
(or other high order statistics such as texond largest, third largest) may be used as an estimate of

BTV or a notto-exceed valuggrovided the maximum value does not represent an outlier or a

contaminating observation perhaps representing a hot locatibe.selection of a higher order statisti

(e.g., largest, second largest, third largest) to estimate BTV depends upon the sample size and confidence
coefficient.

1.9.2 Use of Maximum Detected Value to Estimate EPC Terms

This issue was also discussedhia ProUCL 3.0 Technical Guide (EPA, 2008pme practitioners tend
to use the maximum detected value as an estimate of the EPC term. This is especially true when the
sample size is small such@&$, or when a UCL95 exceeds the maximum detected values (EPA, 1992b).
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Specifically,a RAGS documenfEPA, 1992)suggests the use of the maximum detected value as a default
value to estimate the EPC term when a 9524 (e.g., theH-UCL) exceeded the maximum value

ProUCL 3.0 and ProUCL 4.0 can compute a 9924 of mean using several methods based upon

normal, Gamma, lognormal, and naliscernable distributions. In past (e.g., EPA, 1992b), only two

met hods were used to esti mat e-stdatidticandaP@mal er m based
di stri but i o n-statisia(t9752gnd alagmoanal snodehe use of Hstatistic often yields

unstable and impractically large UCL95 of the mean (Singh, Singh, and laci, 2002). For skewed data sets
of smaller sizes (e.g., < 30, < 50}UCL often exceeds the maximum detected value. This is especially
true when esme extreme high outliers may be present in the dat&isee the use of a lognormal

distribution has been quite common (e.g., suggested efaualtdnodel i RAGS bcumentEPA,

1992), the exceedance of the maximum detected value-bHI5 is frequat for many skewed data

sets of smaller sizes (e.g., < 30, <.30is also be noted that for highly skewed data sets, the sample

mean indeedan even exceed the upper 90%/®08tc, percentiles, and consequently, a 98%L of

mean can exceed the maximotyserved value of a data set.

All of these occurrences result in the possibility of using the maximum detected value as an estimate of
the EPC term. It should be pointed out that in some cases, the maximum observed value actually might
represent a highlpolluted outlying observation. Obviously, it is not desirable to use a highly polluted
value as an estimate of average exposure (EPC term) for an exposure area. This is especially true when
one is dealing with lognormally distributed data sets of srirksAs mentioned before, for such highly
skewed data sets that cannot be modeled by a gamma distribution l&#C258bthe mean should be
computed usg an appropriate distributiefinee nonparametric method

It should be pointed out that the EPC teapresents the average exposure contracted by an individual

over an exposure area (EA) during a long period of time; therefore, the EPC term should be estimated by
using an average value (such as an appropriatel 85of the mean) and not by the maximubserved
concentration. One needs to compute an average exposure and not the maximum exposure. It is unlikely
that an individual will visit the location (e.g., in an EA) of the maximum detected value all of the time.

One can argue that the use of this pcactesults in a conservative (higher) estimate of the EPC term. The
objective is to compute an accurate estimate of the EPC term. Today, several other methods (instead of H
UCL) as described in EPA (2002), and included in ProUCL 3.0 (EPA 2004) and PraOCEEPA

2007), are available which can be used to estimate the EPC terms. It is unlikely (but possible with
outliers) that the UCLs based upon those methods will exceed the maximum detected value, unless some
outliers are present in the data set. ProU@Ldisplays a warning message when the recommended 95%
UCL( e. g . , badtatdad tfCk witb autliers) of the mean exceeds the observed maximum
concentrationWhen a 95%JCL does exceed the maximum observed value, ProUCL4.0 recommends the
use of an a#irnativeUCL computation method based upon the Chebyshev inequality. One may use a
97.5% or 99% Chebyshev UCL to estimate the mean of a highly skewed population. It should be noted
that typically, a Chebyshev UCL yield conservative (but stable) and highers of the UCLs than other
methods available in ProUCL 4.0. This is especially true when data are moderately skewed and sample
size is large. In such cases, when the sample size is large (and other UCL methodbauisktras t

method yield unrealistally high values), one may want to use a 95% Chebyshev UCL or a Chebyshev
UCL with lower confidence coefficient such as 92.5% or 90% as estimate of the population mean,
especially when the sample size is large (e.g., >100, Th8)detailed recommendati® (as functions of
sample size and skewness) for the use of those UCLs are summarized in Prol&th8ifal Guide

(EPA, 2004)

Singh and Singh (2003) studied the performancaefiax ést (using the maximum observed value as
an estimate of the EP@rim) via Monte Carlo simulation experiments. They noted that for skewed data
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sets of srall sizes (e.g., < 2Q0), the maxdst does not provide the specified 95% coverage to the
population mean, and for larger data sets, it overestimates the EPC termmalgicequire unnecessary
further remediationThis can also be viewed in the graphs presented in ProUCLe8tthical GuideThe

use of the maximum value as an estimate of the EPC term also ignores most (except for maximum value)
of the information contaied in the data set

With the availability of so manyCL computation methods (15 of them), the developers of ProUCL 4.0

do not feel any need to use the maximum observed value as an estimate of the EPC term representing an
average exposure by an indival over an EAAIso, for the distributions considered, the maximum value

is not a sufficient statistic for the unknown population mean

Note: It is recommended that the maximum observed value NOT be used as an estimate of the EPC term
representing averge exposure contracted by an individual over an E# the sake of interested users,
ProUCL displays a warning message when t hetc)r ec omm
of the mean exceeds the observed maximum concentration. For suchascémaein a 95% UCL does

exceed the maximum observed value), an alternative 95% UCL computation method is recommended by
ProUCL 4.0.

1.10 Samples with Nondetect Observations

Nondetect observations (or less than obvious values) are inevitable in mostreewit@rdata sets.

Singh, Maichle, and Lee (ERR2006) studied the performances (in terms of coverages) of the various
UCL95 computation methods including the simple substitution methods (such as the DL/2 and DL
methods) for data sets with nondetect obderma. They concluded that the UCLs obtained using the
substitution methods, including the replacement of nondetects by respective DL/2, do not perform well
even when the percentage of nondetect observations is low, suchl@®&%hey recommended

avoiding the use of substitution methods to compute UCL95 based upon data sets with nondetect
observations.

1.10.1 Avoid the Use of DL/2 Method to Compute UCL95

Based upon the results of the report by Singh, Maichle, and Lee 2BB#), it is strongly recommendie

to avoid the use of the DL/2 method to perform GOF test, and to compute the summary statistics and
various other limits (e.g., UCL, UPL) often used to estimate the EPC terms and BTVs. Until recently, the
DL/2 method has been the most commonly used meathodmpute the various statistics of interest for

data sets with BDL observations. The main reason of its common use has been the lack of the availability
of other defensible methods and associated programs that can be used to estimate the various
envirommental parameters of interesbday, several other methods (e.g., KM method, bootstrap

methods) with better performances are available that can be used to compute the various upper limits of
interest. Some of those parametric and nonparametric methausvwae/ailable in ProUCL 4.@Even

though the DL/2 method (to compute UCLs, UPLs, and for goodrfidissest) has also been

incorporated in ProUCL 4.0, its use is not recommended due to its poor perforrmaedalL/2 method

is included in ProUCL 4.0 onlipr historical reasons as it had been the most commonly used and
recommended method until recently (EPA, 20@8me of the reviewers of ProUCL 4.0 suggested and
requested the inclusion of DL/2 method in ProUCL for comparison purposes.

Note: The DL/2 médtod has been incorporated in ProUCL 4.0 for historical reasons only. NEM,

Las Vegas strongly recommends avoiding the use of DL/2 method even when the percentage (%) of NDs
is as low as 5%40%. There are other methods available in ProUCL 4.0 that shoeillused to compute
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the various summary statistics and upper limits based upon data sets with single and multiple detection
limits.

1.11 Samples with Low Frequency of Detection

When all of the sampled data values are reported as nondetects, the EBltddnalso be reported as a
nondetect value, perhaps by the maximum reporting limit (RL) or maximum Btatstics (e.qg.,

UCL95) computed based upon only a few detected values (e.g., < 4 to 6) cannot be considered reliable
enough to estimate the EPCrntarhaving potential impact on the human heath and the enviranment

When the number of detected data is small, it is preferable to use simple ad hoc methods rather than using
statistical methods to compute the EPC terms and other upper $pdtsifically,it is suggested that in

cases when the detection frequency is low (e.g., $%8pand the number of detected observations is

low, the project team and the decision makers together should make a decisiospaciie basis on

how to estimate the avemgxposure (EPC term) for the contaminant and area under consideration. For
such data sets with low detection frequencies, other measures such as the median or mode represent better
estimates (with lesser uncertainty) of the population measure of cenilahty.

Additionally, it is also suggested that when most (e.g., > %95) of the observations for a contaminant lie
below the detection limit(s) or reporting limits (RLs), the sample median or the sample mode (rather than
the sample average which cannetdmmputed accurately) may be used as an estimate the EPC term. Note
that when the majority of the data are nondetects, the median and the mode will also be a nondetect. The
uncertainty associated with such estimates will be high. It is noted that tkicstigbroperties, such as

the bias, accuracy, and precision of such estimates, would remain unknown. In order to be able to
compute defensible estimates, it is always desirable to collect more samples.

Note: In case the number of available detectedamis small (< 5), it is suggested that the project

team decide about the estimation of the EPC term orséeific basisFor such small data sets with

very few detected values&) , t he final decision (fipol iermy deci si
should be determined by the project team and decision makers.

1.12 Some Other Applications of Methods in ProUCL 4.0

In additionto performing background versage comparisons for CERCLA and RCRA sites, and
estimating the EPC terms in exposure asl eivaluation studies, the statistical methods as incorporated
in ProUCL 4.0 can be used to address other issues dealing with environmental investigations that are
conducted at Superfund or RCRA sites.

1.12.1 ldentification of COPCs

Risk assessors and RBMften use screening levels or BTVs to identify the COPCs during the screening
phase of a cleanup project to be conducted at a contaminated site. The screening for the COPCs is
performed prior to any characterization and remediation activities that maydbe conducted at the

site under investigation. This comparison is performed to screen out those contaminants that may be
present in the site medium of interest at low levels (e.g., at or below the background levels or some pre
established screeningvigls) and may not pose any threat and concern to human health and the
environment. Those contaminants may be eliminated from all future site investigations, and risk
assessment and risk management studies.

32



In order to identify the COPCs, poiby-point ste observations (preferably composite samples) are
compared with some pwstablished screening levels, SSL, or estimated BTVs. This is especially true
when the comparisons of site concentrations with screening levels or BTVs are conducted in real time by
the sampling or cleanup crew right there in the site field. The project team should decide about the type of
site samples (discrete or composite) and the number of detected site observations (not more than 4 to 6)
that should be collected and compareculite screening levels or the BT\is case BTVs, screening

levels, or noto-exceed values are not known, the availability of a defensible background or reference
data set of reasonable size (e.g., > 8 to 10, more are preferable) is required to cdtberestimates of

BTVs and screening level/hen a reasonable number of detected site observations are available, it is
preferable to use hypotheses testing approaches. The contaminants with concentrations exceeding the
respective screening values or B¥way be considered as COPCs, whereas contaminants with
concentrations (in all collected samples) lower than the screening value, PRG, or an estimated BTV may
be omitted from all future evaluations including the risk assessment and risk managementtiorestig

1.12.2 Identification of Non-Compliance Monitoring Wells

In monitoring well (MW) compliance assessment applications, individual (often discrete) contaminant
concentrations from a MW are compared with someegtablished ACL, MCL, or an estimated

compliance limit (CL) based upon a group of upgradient wells representing the background population
An exceedance of the MCL or the BTV by a MW concentration may be considered as an indication of
contamination in that MW. In such individual concentrattomparisons, the presence of contamination
(determined by an exceedance) may have to be confirmeddaymeling from that MW. If

concentrations of contaminants in both the original sample and-#aamgle(s) exceed the MCL or BTV,
then that MW may requércloser scrutiny, perhaps triggering the remediation remedies as determined by
the project team. If the concentration data from a MW for about 4 to 5 continuous quarters (or some other
designated time period determined by the project team) are belowGhe®MBTV level, then that MW

may be considered as complying with (achieving) theegtablished or estimated standards. Statistical
methods as described in Chapters 5 and 6 of the re@isieldnce folComparing Background and

Chemical Concentrations iro@ for CERCLA Site$EPA, 2002bkan be used to estimate the-twt

exceed values or BTVs based upon background or upgradient wells in case the ACLs or MCLs are not
pre-determined.

1.12.3 Verification of the Attainment of Cleanup Standards, Cs

Hypothesigesting approaches may be used to verify the attainment of the cleanup stagasdrd, C

polluted site areas of concern after conducting remediation and cleanup at the site AOC (EPA, 2006). In
order to properly address this scenario, a site data set afatdesize (minimum of 8 to 10 detected site
observations) needs to be made available from the remediated or excavated areas of the site under
investigation The sample size should also account for the size of the remediated site area; meaning that
larger ¢te areas should be sampled more (with more observations) to obtain a representative sample of the
site under investigation.

Typically, the null hypothesis of interest ig:Fbite Meanm>=C, versus the alternative hypothesis; H

1Site Meanm < Cs where the cleanup standard, S knowna priori. The sample size needed to

perform such single sample hypotheses tests can be obtained using the DQGhasE®ssample size

formula as given in the EPA (2006) documents. In any case, in order tosussstha minimum of 8 to

10 detected site samples should be collected. The details of the statistical methods used to perform single
sample hypothesis as described above can be found in EPA (2006).
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1.12.4 Using BTVs (Upper Limits) to Identify Hot Spots

The use of upper limits (e.g., UTLs) to identify hot spot(s) has also been mentione&undhace for
Comparing Background and Chemical Concentrations in Soil for CERCLA(BRés 2002b) Pointby-

point site observations (preferably using composite fEsmppresenting a site location) are compared

with a preestablished or estimated BTV. Exceedances of the BTV by site observations may be
considered as representing locations with elevated concentrations (hot spots). Chapters 5 and 6 of the
revisedGuidarce for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites
(EPA, 2002bdescribe several methods to estimate the BTVs based upon data sets without nondetects
(NDs) and leficensored data sets with NDs.

The rest of the chapters of $hTechnical @ide briefly describe the various statistical methods as
incorporated in ProUCL 4.0. Those methods are useful to analyze environmental data sets with and
without the nondetect observations. It should be noted that ProUCL 4.0 is the firstreqfagkage

equipped with single sample atvdo-samplehypotheses testing approaches that can be used on data sets
with nondetect observations.

Note: It should be pointed out that while developing ProUCLahA its all subsequent versigns

emphasis isigen to the practical applicability of the estimation and hypotheses testing methods as
incorporated in ProUCL 4.0. Also, it should be noted that ProUCL 4.0 does provide many graphical and
statistical methods often used in the various statistical appicatiProUCL 4.0 does not provide

statistical methods that may be used to compute sample sizes based upon DQO processes (EPA, 2006).
Those sample size determination methods are available in other freeware packages such as VSP (2005)
and DataQUEST (EPA, 199 However, as mentioned before, some practical guidance on the minimum
sample size requirements to be able to use methods as available in ProUCL 4.0 has been provided in
Chapter 1. Similar statements and gagtions have been made throaghthis TechnidaGuide.

1.13 Some General Issues and Recommendations made by ProUCL

Some general issuesgarding the handling of multiple detection liraisd field duplicateby ProUCL
and recommendatiomsadeaboutvarioussubstitution and ROS methods for data getis NDs are
described in the following sections.

1.13.1 Multiple Detection Limits

ProUCL 4.0 and its later versions do not make distinctions between method detection limits (MDLS),

adjusted MDls, sample quantitation limgf{SQLs), or detection limits (Dk). Multipledetection limits in

ProUCL mean different values of the detection limit. All thesedetect (NDpbservations in ProUCL

are indentified by the value 606 of the indicator
detectedandnondetd ed observations. 't i snumesSicalvatuds r esponsi
(should be entered as the reported detection limit viduéyD observations the data setand to create

an indicator variable column associated with each variabletaraiynsisting of ND values. It should be

noted that some of the methods (e.g., Kapier - KM Method) included in ProUCL 4.0 can handle

data sets with detection limits greater than the detected values.
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1.13.2 Field Duplicates

Since,collection ofandytical data are not cheap, field duplicates collected from the same site area under
investigation may be used in the statistical analysis to compute various decision statistics of interest.
Duplicatesshould be considered jusite anyotherdiscretesampescollected from the site area under
study.Alternatively, the project team may come to an agreement regarding the use of duplicates in
statistical analyses (e.g., computing decision statistics) of data collected from the site.

1.13.3 ProUCL Recommendation about ROS Method and Substitution (DL/2) Method

In order toestimate EPQcomputing UCL95) for data sets with NO®,oUCL 4.0 and higher versions

have several methods including substitution methods (e.g., DL/2, DL), ROS methods (normal, lognormal,
andgamma), and KaplaMeier Method. Extensive simulation study conducted by Singh, Maichle and

Lee (2006) demonstrated that statistically rigorotig knethod yields more precise and accurate

estimates of EPC terms than those based upon substitution anddRi@sisn Even though several of the
substitution and ROS methods have been incorporated in ProUCL (for historical reasons and comparison
purposes), those methods are not recommended by ProUCL to estimate the EPC terms or to compute
other decision statistics
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Chapter 2

Methods for Computing (17 U )00% UCL of Mean for Data Sets
without Nondetect Observations as Incorporated in ProUCL 4.0
Software

2.1 Introduction

Exposure assessment and cleanup decisions in support of U.S. EPA projects are often chagetase

the mean concentrations of the contaminants of potential coic@6% upper confidence limit/CL)

of the unknown population arithmetic mea&M), |, is often used tcestimate the exposure point
concentration (EPC) term (ERPA992 EPA, 2002), egetermine the attainment of cleanup standards (EPA
1989 and EPA 1991), estimate background level contaminant concentrations, or compamsl th
concentrations with sitspecific soil screening levels (EP2996) It is, therefore, important to compute a
reliable, conservative, and stable 9886L of the population mean using the available dalee 95%

UCL should approximately provide the 95% coverage for the unknown populationpmeaRA

(20029) has developed a guidance document for calculating wopdidence limits based upon full data
sets without nondetect observatioktost of thosdJCL computation methods as described in the EPA
(20023) guidance document are available in ProUCL BroUCL 3.0 can also compute 95% UCLs of the
mean based upon tikamma distribution which is better suited to model positively skewed environmental
data sets. ProUCL 4.0 represents an upgrade of ProUCgi0ifically, ProUCL 4.0 provides several
parametric and nonparametric UCL computation methods for data setsowitbtect (NDpbservations.
Therefore, this Technicaluie is an upgrade of the technical guide associated with ProUCL 3.0. The
capabilities and methods as incorporated in ProUCL 3.0 are also available in ProUCL 4.0. Parametric and
nonparametric UCL coputation methods as incorporated in ProUCL 4.0 for data sets with nondetect
observations are described in Chapter 4 of this Technical Guide. The details of those UCL computation
methods can be found in Singh, Maichle, and Lee (EPA, 2006).

Chapter 2 desdres the UCL methods for full data sets without ND observations as incorporated in
ProUCL 3.0 Technical Guide. Computation dflad U?)00% UCLof the population mean depends upon

the data distribution. Typically, environmental data are positively skewed, and a default lognormal
distribution (EPA 1992) is often used to model such data distributibhe Hstatisticb a s ed Landés
(Land 1971, 1975H-UCL of the mean is used in these applicatitterdin and Gilbert (1993), Singh,

Singh, and Engelhardt (19910999), Schultz and Griffin (1999), and Singh, Singh, and laci (2002b)

pointed out several problems associated with the usedbtjnormal distribution and théUCL of the
populationAM. In practice, for lognormal data sets with high standard devigBdn(, of the natural

logt ransfor med dat a ( H-UGLcanbetome unaceeptably large, éxceéding thet h e
95% and 99% datguantiles, and even the maximum observed concentration, by orders of magnitude
(Singh, Singh, and Engelhard®97) This is especially true for skewed data sets of sizes smallenthan
50-70.

TheH-UCL is also very sensitive to a few low or high valuesr example, the addition of a sample with
below detection limit measurement can causdHt#CL to increase by a lge amount (Singh, Singh,
and lacj 2002b) Realizing that the use of-Btatistic can result in unreasonably lat$feL, it has been
recommended (EPA992) to use the maximum observed value as an estimateWCth@EPC term) in
cases where thd-UCL exceels the maximum observed value. The issue of the use of the maximum
detected value as an estimate of the EPC term has been discussed earlier in Chapter 11bhé@+ are
computation methods available in ProUGlare parametric antld are nonparametrid he
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nonparametric methods do not depend upon any of the data distributions. For full data sets without any
nondetect observations, ProUCL 4.0 (and also ProUCL 3.0) makes recommendations on how to compute
an appropriate UCL95. Those recommendations are el upon the findings of extensive simulation
study conducted by Singh and Singh (2003).

It is noted that both lognormal and gamma distributions can be used to model positively skewed data sets
It is also noted that it is hard to distinguish betwetygaormal and a gamma distribution, especially

when the sample size is smallich as < 50- 70. In practice, many skewed data sets follow a lognormal

as well as a gamma distributid®ingh, Singh, and laci (2002b) observed thalifé based upon a

gamna distribution results in reliable and stable values of practical.resittherefore, desirable to test

if an environmental data set follows a gamma distribuffom data sets (of all sizes) which follow a

gamma distributionthe EPC should be comped using an adjusted gamtd&L (when 0.10k < 0.5) of

the mean or an approximate gamd@L (whenkO 0. 5) q &s theskJELsappraximately

provide the specified 95% coverage to the population nggan, kgdmma distributiorFor values ok

< 0.1, a 95%JCL may be obtained using bootgp tmet hod or Hal |l 6s bootstrap nm
size,nis less than 15, and for larger sampledCi of the mean may be computed using the adjusted or
approximate gammidCL. Here k is the shape parameter of a gamma distribution as descrikadriml

this chapter.

It should bepointed out that both bootstrap and Hal | 6s bootstrap met hods s
inflated, and unstabldCL values especially in the presence of outliers (Efron and Tibshirani, 1993)

Therefore, these two rntfeds should be used with cautidime user should examine the varidiSL

results and determine if théCLsbased upon the bootstrap and Hal | 6s bootstrap me:
reasonable and reliabl#CL values of practical meritf the results based upahese two methods are

much higher than the rest of methods (except foliesbased upon lognormal distribution), then this

could be an indication of errati¢CL values. ProUCL prints out a warning message whenever the use of

these two bootstrap methodsecommendedn case these two bootstrap methods yield erratic, unstable,

and inflatedJCLs theUCL of the mean may be computed using the adjusted or the approximate gamma

UCL computation method, or based upon the Chebyshev inequality.

ProUCL 4.0 hagioodnesf-fit (GOF) methods to test for normality, lognormality, and a gamma
distribution of a data set with and without nondetect observations. Depending upon the data distribution,
ProUCL 4.0 can be used to compute a conservative and 8&l&/CLof the population mea;, and

various other upper limits (e.g., UPLs, UTLSs) for data sets with and without the nondetect observations
The critical values athe AndersonDarling test statistic anithe KolmogorowSmirnov test statistic to test

for gamma digibution were generated using Monte Carlo simulation experiméntse critical values

are tabulated in Appendix A for various levels of significai&egh, Sigh, and Engelhardt (1997,

1999); Singh, Singh, and laci (2002hhd Singh and Singh (2003ldied several parametric and
nonparametri¢JCL computation methods that have been included in ProUCIMA&S§t of the

mathematical algorithms and formulae used in ProUCL to compute the various statistics are summarized
in this chapterProUCL computes thearious summary statistics for raw, as well asttagsformed data

sets with and without nondetect observatidmghis Technical Guide and in ProUCL, kgnsform [og)

stands for the natural logarithim) to the base.d’roUCL also computes the menim likelihood
estimatesNILEs)and the minimum variance unbiased estima#®gE9 of various unknown

population parameters of normal, lognormal, and gamma distribuEon$ull data sets without

nondetect observations, ProUCL 4.0 (and also ProUCLc8putes thél i U)00% UCLsof the

unknown population meapy, using five (5) parametric and ten (10) nonparametric methods, which are
described in section 2.4 of this chapter
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For data sets without NDs, comparisons of the performances of the UCLtediop methods (in terms

of coverage probabilities) were performed by Singh and Singh (20@3%ingtet al.(2006) It is also

well known that the Jackknife method (with sample mean an est i mat-methpdyeldd St ude
identicalUCL values Moreover, it is noted that the standard bootstrap method and the percentile
bootstrap method do not perform well (do not provide adequate coverage) for skewed ddtansstar,

for the sake of completenesdl of the parametric as well as nonparametrichoe$ have been included

in ProUCL 4.0. Also, it was noted that the omission of a method such as the Jackknife method or the bias
corrected accelerated (BCA) bootstrap method triggers the curiosity of some of the users as they may
think that the omitted mbebd might perform better than the various other methods already incorporated in
ProUCL In order to satisfy all users, ProUCL 4.0 provides most of the bootd@amomputation

methods.

2.2 Goodness-of-Fit (GOF) Test Procedures to Test for a Data Distribution

Let Xy, X, ... ,X, be a random sample (e.qg., representing lead concentrations) from the underlying
population (e.g., remediateart of a site) with unknowmean,, and variancel; Let p and(l
represent the population mean and the populatiomatd deviation§d of the logtransformed (natural
log to the base e) datiet y ands, (= ) be the sample mean and sanfpderespectively, of the log

transformed data; = log x); i = 1, 2, ... h. Specfically, let

Sk

y=-ay (2-1)
i=1

P T I _
E—Sy—rlg()ﬁ y) (2-2)

Similarly, let X ands, be the sample mean a8dof the raw datax; , %, .. , %, obtained by replacing
by x in equations (2) and (22), respectivelyln this TechnicalGuide, irrespective of the underlying
distribution,;, andd,? represent the mean and variance of the random variable X (in original units),
whereast andf represent the mean and variance of its logarithm, given by Y.&log natural
logarithm.

Three data distributions have been considered in ProUCO HeBe inadide the normalpgnormal and

the gamma distributicn ShapireWilk (n O50) and Lilliefors (> 50) test statistics are used to test for
normality or lognormality of a data s#tshould be noted that even though Shafifitk (S-W) test has
beenextended up to samples of size 2000 (Royston, 1982), ProUCL 4.0 provwdeess only for

samples of sizes up to 50. Lilliefors test (along with graphie@ glot) seems to perform fairly well for
samples of size 50 and high&he empircal distribution function (EDF)based methods: the
KolmogorowvSmirnov (K-S) test and the Andersdarling (A-D) test are used to test for a gamma
distribution Extensive critical values for these two test statistics have been obtained via Monte Carlo
simulation experimes. For interested users, these critical values are givereiAppendixor various
levels of significanceln addition to these formal tests, the informal histogramcarahtilequantile(Q-

Q) plot are also available to visually test data distributi@Qa® plots also provide useful information
about the presence of potential outliers and multiple populations. A brief description of these GOF tests
follows.
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2.2.1 Test Normality and Lognormality of a Data Set

ProUCL tests for normality or lognormgliof a data set using three different methods described below
The program tests normality or lognormality at three different levels of significance, namely, 0.01, 0.05,
and 0.1 The details of those methods can be found in the cited refereslces

2.2.1.1 Normal Quantile-Quantile (Q-Q) Plot

Thisrepresenta simple informal graphical method to test for an approximate normality or lognormality
of a data distribution (Hagin, Mosteller, and Tukey 1988ingh 1993)A linear pattern displayed by the
bulk of the data suggests approximate normality or lognormality (performed draltgformed data) of

the data distributior-or example, a high value (e.g., 0.95 or greater) of the correlation coefficient of the
linear pattern may suggest approximate nditynéor lognormality) of the data set under stuthpwever,

it should be noted that on this graphical display, observations well separated (sticking out) from the linear
pattern displayed by the bulk data represent the outlying observatlsasapparenjumps and breaks in
the QQ plot suggest the presence of multiple populati®he correlation coefficient of such a@plot

can still be high, which does not necessarily imply that the data follow a normal (or lognormal)
distribution Therefore, the iformal graphical @ plot test should always be accompanied by other more
powerful tests, such as the Shapivilk test or the Lilliefors tesfThe goodnessf-fit (GOF) test of a

data set should always be judged based upon the formal as well as infiaphéta displays. The

normal QQ plot may be used as an aid to identify outliers or to identify multiple populafomdCL
performs the graphical-Q plot test on raw data as well as on standardized Allhtelevant statistics

such as the correlatiaoefficient are also displayed on the@plot.

2.2.1.2 Shapiro-Wilk W Test

This is a powerful test and is often used to test the normality or lognormadijadé set under study
(Gilbert 1987) ProUCL4.00.02performs this test for samples of siggto 50. However, in the revised
version,ProUCL 4.00.05an umgrade of ProUCL 4.00.002S'W test has been extended for samples of
size upto 200QRoyston 1982)Based upon the selected level of significance and the computed test
statistic, ProUCL also infms the user if the data are normally (or lognormally) distrib(tieis
information should be used to obtain an appropkikié of the meanThe program prints the relevant
statistics (such as the\8 test statistic, slop@ndcorrelation) on the € plot of the dataFor
convenience, normality, lognormality, or gamma distribution test reeul@s05 level of significance are
also displayed on thHexcektype output summary sheelisshould be noted that in the revised ProUCL
4.00.02, for samples ofsO 50, an avplperassoiciatedawitre®/ tpst is also displayed. For
samples of size >50, only approximatgglues are displayed.

2.2.1.3 Lilliefors Test

This test is useful for data sets of larger size (Dudewicz and Misra, 1988, ConoverP169@)L
performs this test for samples of sizes up to 18@8ed upon the selected level of significance and the
computed test statistic, ProUCL informs the user if the data are normally (or lognormally) distributed
The user should use this informati@nabtain an appropriatdCL of the meanThe program prints the
relevant statistics on the-Q plot of dataFor convenience, normality, lognormality, or gamma
distribution test results for 0.05 level of significance are also displayed &fCheutput suinmary
sheetslt should be pointed out that sometimes, in practice, these two goaxfHedgsts could lead to
different conclusions.
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2.2.2 Gamma Distribution

Singh, Singh, and laci (2002b) studied gamma distribstmmodel positively skewed envimmental

data sets and to comput&@L of the mean based upon a gamma distribution. They studied sg@ral
computation methods using Monte Carlo simulation experiments. A continuous random variable, X (e.g.,
concentration of a contaminant), is said thofe a gamma distribution, Gc(d) with parameterk > 0

(shape parameter) add> O (scale parameter), if its probability density function is given by the following
equation:

f(xk,d) = o (k) xkle ¥, x>0 23)

=0 otherwise

The parametek, is the shape parameter, ahid the scale parameter. Many positively skewed data sets

follow a lognormal as well as a gamma distributi@amma distributiosican be used to model positively

skewed environmental data sdt is observed that the use of a gamma distribution results in reliable and

stable 95%4JCL values It is therefore, desirable to test if an environmental data set follows a gamma

distribution If a skewed data set does follow a gamma model, then d 85%0f the population mean

should be computed using a gamma distributtam details of the two gamma goodnesdit tests,

maximum likelihood estimation of gamma parameters, and the computation of d@5% the mean

based upon a gamma distributiorf,er t o D6 Agostino and Stephens (198
(2002) These methods are briefly described as follows.

For data sets which follow a gamma distribution, the adjustedl®5%wof the mean based upon a

gamma distribution is optimal and apgimately provides the specified 95% coverage to population

meang; = KSthgh, Singh, and laci (2002)oreover, this adjusted gamriCL yields reasonable

numbers of practical merithe two test statistics used for testing for a gamma distribution are based upon
the empirical distribution function (EDF)he two EDRests included in ProUCL are the Kolmogorov
Smirnov (K-S) test and AnderseDarling (A-D) t est, which are described in
(1986) and Stephens (197The graphical @ plot for gamma distribution has also been included in
ProUCL Thecritical values for the two EDF tests are not easily available, especially when the shape
parameterk, is small k < 1). Therefore, the associated critical values have been obtained via extensive
Monte Carlo simulation experimenighese critical valueof the two test statistics are given in Appendix

A. The 1%, 5%, and 10% critical values of these two test statistics have been incorporated in ProUCL 4.0
It should be noted that the goodnessit tests for gamma distribution depend uponNHieEs of gamna
parametersk andd, which should be computed first before performing the gooeufefistests. It is

noted thathe information about estimation of gamma parameters, gamma GOF tests, and construction of
gamma QQ plots is not easily available in statistical textbooks r&loee, the detailedescription of

these methods for gamma distribution is provided as follows.

2.2.2.1 Quantile-Quantile (Q-Q) Plot for a Gamma Distribution

Let Xy, X, ... ,X, be a random sample from the gamma distributioR,gh(Let X1y ¢ X2 € ... ¢ Xp)

represent the ordered samplet Igand LF represent the maximum likelihood estimatei Es) of k and

g, respectivelyFor details of the computation tife MLEs of k and g, refer to Singh, Singh, andcia
(2002) Estimatiors of the gamma parameters aleo briefly described later in this Technical Guitlee
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Q-Q plot for gamma distribution is obtained by plotting the scatter plot of(p@iir,s<(i)) i=1,2,»,n.

Here thequantiles, xo;, are given by the equationy = incEIZ; i:=1, 2,» ,n, where thequantiles Z;
(already ordered) are obtained by using the inverseqtrare distribution and are given as follows.

Zoi

ff (cidcie=(-1/2)/n; i:=1,2» ,n (2-4)
0

In (2-4), C;E represents a cliguare random variable witiE degrees of freedondf). The program,

PPCHI2 (Algorithm AS91) asigen in Best and Roberts (1975), Applied Statistics (1975, Vol. 24, No. 3)
has been used to compute the inversesghare percentage points, as given by the above equation given
by (2-4). This represents an informal graphical method to test for a ganstndoaliion. All relevant

statistics including th#®ILE of k are also displayed on the gamm&X®lot.

This informal test should always be accompanied by the formal AndBating (A-D) test or
KolmogorowSmirnov (K-S) test and vice versA linear patten displayed by the scatter plot of bulk of

the data may suggeshapproximate gamma distributiofor example, a high value (e.g., 0.95 or greater)

of the correlation coefficient of the linear pattern may suggest approximate gamma distribution & the dat
set under studyHowever, on this € plot points well separated from the bulk of data may represent
outliers. Apparent breaks and jumps in the gamn@ ot suggest the presence of multiple populations.
Thus, QQ plots are also useful to identify oetls orthe presence of multiple populations. The

correlation coefficient of such a-Q plot (e.g., with outliers) can still be high which does not necessarily
imply that the data follow a gamma distribution. Therefore, graphi€lgot and other formal B~

tests, such as the Andersbarling (A-D) test or the Kolmogore®mirnov (K-S) test should be used on

the same data set. A formal statistical test such aSadst or AD test may lead to conclusion of a

gamma distribution even for a data set witheptial outliers and multiple populations. The final

conclusion about the data distribution should be based upon the formal geoffietests. This

statement is true for all GOF tests (e.g., normal, lognormal, and gamma distributions) as incorporated in
ProUCL 4.0.

2.2.2.2 Empirical Distribution Function (EDF)-Based Goodness-of-Fit Tests

Next, the two formaémpirical distribution function (EDF)ased test statistics to test for a gamma
distribution are briefly described here. IK) be the cumul@ve distribution function (CDF) of the
gamma random variabke Let Z =F(X), then Z represents a uniform U(0,1) random varidibe eachx;,
compute zby using the incomplete gamma function given by the equatf £x); i :=1, 2 » ,n.The
algorithm as given in Numerical Recipes book (Petsd, 1990) has been used to compute the
incomplete gammauhction Arrange the resulting in ascendingrder as g ¢ z) ¢ ... ¢ z,. Let

an o .
z=49 z, 8/n be the mean of thz. 1:=1, 2,» ,n.

Compute the following two test statistics

D* =max{l/n- z;,},andD” =max{z; - (i- )/n} (2-5)
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The KolmogorovSmirnov test statistic is given iy = max(D*,D").
TheAndersonrDarling test statisc is given by the following equation.

A =-n- (UM)A {(2i- Dllog 7, +log(L- 7))} (26

i=1

The critical values for these two statistiBsandA?, are not readily availabl&or the Andersotarling

test, onlytheasymptotic critical values are available in the statisticalt er at ur e ( DO6AgoOosti nc
(1986)) Some raw critical values forI& test are given in Schneider (1978), and Schneider and Clickner

(1976) For these two tests, ExpertFit (2001) software and Law and Kelton (2000) use generic critical
valuesforbl compl etely specified distributlti®ns as gi Ve
observed that the conclusions derived using these generic critical values for completely specified

distributions and th simulated critical values ftihe gamma distribtion with unknown parameters can be

different Therefore, to test for a gamma distribution, it is preferred and advised to use the critical values

of these test statistics specifically obtained for gamma distributions with unknown parameters.

In practice the distributions are not completely specified and exact critical values for these two test
statistics are needeld should be noted that the distributions of th&HKest statistid), andthe A-D test
statistic,A%, do not depend upon the scale parame, therefore, the scale parametrhas been set

equal to 1 in all of the simulation experimerfhe critical values for these two statistics have been
obtained via extensive Monte Carlo simulation experiments for several small and large values of the
shape parametek, and withd = 1. These critical are included in Appendix A order to generate the
critical values, random samples from gamma distributions were generated using the algorithm as given in
Whittaker (1974)It is observed that the criticaalues thus obtained are in close agreement with all
available published critical valueBhe generated critical values for the two test statistics have been
incorporated in ProUCL for three levels of significance, 0.1, 0.05, andfo®tach of the tatests, if

the test statistic exceeds the corresponding critical value, then the hypothesis that the data follow a
gamma distribution is rejecteBroUCL computes these test statistics and prints them on the garma Q
plot and also on thgCL summary outpt sheets generated by ProUCL

2.3 Estimation of Parameters of the Three Distributions as Incorporated
in ProUCL

Througlout thisTechnical Guidee; and(,” are the mean and variance of the random varixblende

andd® are the mean and vaniee of the random variahl¥ = log(X). Also, @ represents the standard
deviation of the logransformed datdt should be noted that for both lognormal and gamma distributions,
the associated random variable can take only positilees This is typical of environmental data sets to
consist of only positive values.

2.3.1 Normal Distribution

Let X be a continuous random variable (e.g., concentration of COPC), which follows a normal
distribution, N €1, ¢,?) with meang,, and variancel,’. The probability density function of a normal
distribution is given by the following equation:

exp[- (x- €)?/20%]; - @ <x<m (2-7)

1
NV

f(xe,0)=

43



For normally distributed data sets, it is well known (Begd Craigl1978) that the minimum variance
unbiased estimateM{/UES of themean g4, andthevariance (%, are respectively given by the sample
mean,X , and sample varianceZ2dt is also well knowrthat for normally distributed data setd)&L of

the unknown mearz;, b as e u p edistribStioruigoptiméal.dt $s oldserved via Monte Carlo
simulation experiments (Singh and Singh (2003) Draft EPA Report) that for normally distributed data
setsthe modifiedt-UCL andUCL based upomootstrap tmethod also provide the exact 95% coverage to
the population mearror normally distributed data sets, ti€Lsbased upon these three methods are
very similar.

Lognormal Distribution

If Y =log(X) is normally distributed with the meas, and variance, thenX is said to be lognormally
distributed with parameteesand( and is denoted by LN( ). It should be noted thatand( are not
the mean and variance of the lognormal random varibleyt they are the mean and variantthe
log-transformed random variahlé, whereag, and(,? represent the mean and variance oS¥me
parameters of interest of a tyarameter lognormal distribution, L({), are given as follows:

Mean =g, =exp(e +0.50°) (2-8)
Median =M =exp(g) (2-9)
Variance =0. = expRe + 0°)[exp@?) - 1] (2-10)
Coefficient of Variation =CV =0, /¢, = \/W"’)-l (2-11)
Coefficientof Skewness €+ 3CV (2-12)

2.3.2.1 MLEs of the Parameters of a Lognormal Distribution

For lognormal distributions, note thgtand s (= lf:) are the maximum likelihood estimatoMLES) of &

andd, respectivelyThe MLE of any function of the parametezsand is obtained by simply
substituting thes®ILEsin place of the parameters (Hogg and Craig 1978¢refore, replacing and(

by theirMLEsin equations (8) through (212) will result in theMLEs (but biased) of the respective
parameters of the lognormal distributidine program ProUCL computes all of théseEsfor
lognormally distributed data sefBheseMLEsare printed o the Exceltype output spreatheet generated
by ProUCL.

2.3.22Rel ati onship between Skewness and Standard

Note that for a lognormal distribution, t&®/ (given by equation (21) above) and theoefficientof
skewness (given by equation12)) depend only odi. Therefore, in thi§echnical Guidand alsdn
ProUCL, the standard deviatiain(Sdof log-transformed variabley), or itsMLE, S (= lE), has been used
as a measure tiie kewness of lognormal and also of other skewed data sets with positive Félees
larger is theSd thelarger are th€V and the skewnesBor example, for a lognormal distribution: wiih
= 0.5, the skewness = 1.75; with=1.0, the skewness = 6.185; witl¥1.5, the skewness = 33.468; and
with = 2.0, the skewness = 414.3tus, the skewness of a logmal distribution becomes
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unreasonably large @sstarts approaching and exceeding Rléte that for a gamma distributicihe
skewness is a function of the shape paramletés k decreaseghe skewness increases.

It is observed (Singh, Singh, Engeltig(1997) and Singh, Singh, and laci (2002b)) that for smaller

sample sizes (such as smaller than 50), and for valueapgfroaching 2.0 (and skewness approaching
414), the use of the dtatisticbasedJCL results in impractical and unacceptably larglues For

simplicity, the various levels of skewness of a positive data set as used in ProUCL and in this Technical
Guide are summarized as follows:

Table 2-1. Skewness as a Function df (or its MLE, s,= lE), sd of log(X)

Standard Deviation Skewness
<05 Symmetric to mild skewness
0. 50<Q.0 Mild skewness to moderate skewness
1. 08<Q5 Moderate skewness to high skewness
1. 58<Q0 High skewness

Very high skewness (moderate probability of outliers

2. 0u<a0 and/or multiple populations)

Extremely high skewness (high probability of outliers

U 03.0 and/or multiple populations)

These values af (or its estimateSdof log-transformed data) are used to defineskewness levels of
lognormal and skewed natiscenable data distributionas used in Tables2and 23.

2.3.2.3 MLEs of the Quantiles of a Lognormal Distribution

For highly skewed (e.gl,exceeding 1.5), lognormally distributed populations, the population ragan,
often exceeds the highguantiles (e.g., 80%, 90%, 95%) of the distributidrherefore, the computation
of thesequantiles is also of interesT his is especially true when one may want to uséthEs of the
higher ordequantiles (e.g., 95%, 97.5%tfc.) as an estimate of the EPC tefime formulae to compute
thesequantiles are briefly described here.

Thep™ quantile(or 100p™ percentile) x,, of the distribution of a random variabl,is defined by the
probability statemenB(X ¢) =p. If z is thep" quantileof the standard normal random variatde,
with P(Z %) = p, then the™ quantileof a lognormal distribution is given by, = expg + z,0). Thus
theMLE of thep™ quantileis given ly

X, = exp(E+ 2, (2-13)

For example, on the average, 95% of the observations from a lognornsall®Niistribution would lie

below expé + 1.65]). The 0.8 quantileof the standrd normal distribution i%s = 0, and the 0%

guantile(or median) of a lognormal distributionié = expg), which is obviously smaller than the mean,

€1, as given by equation-@). Also, note that the meae;, is greater thar,if and only ifi 2z, For
example, whemp = 0.80, gz = 0.845 ¢, exceed g, the 8¢ percentile ifand only it > , and,6 9
similarly, the meang,, will exceed the Q‘Spercentile if and only ifi > . BroUZB computes the

MLEsof the 50% (median), 90%, 95%, a®@@% percentiles of lognormally distributed data sets. For
lognormally distributed background data sets, a 95% or 99% percentile may be used as an etftienate of
background threshold valudnat isthe background level contaminant concentration.
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2.3.2.4 MVUESs of Parameters of a Lognormal Distribution

Even though the sampheM, X, is an unbiased estimator of the popula#d, €,, it does not have the
minimum varianceNIV). TheMV unbiased estimates (MVUEs)e, and(,” of a lognormal distribution
are given as follows:

£ =exp(¥)9,(s./2) (2-14)
£ =exp@y)[g,(2s2) - g,((n- s /(n- 1)] (2-15)

The series expansion of the functige) is given in Bradu and Mundlak (1970), and Aitchison and
Brown (1976) Tabulations of this function are also provided by Gilbert (19B@du and Mundlak

(1970) give thevIVUE of the variancef the estimateﬁ,

0 (£) = exp@Y)[(9,(2)))* - 9.((n- 2)s; [(n- 1)] (2-16)

The square root of the variance given by equatieb6(lis called the standard err@&g of the estimate,
&, given by equadn (2-14). Similarly, aMVUE of the median of a lognormal distribution is given by

-

NF = exp () g,[- s2 /(2(n- D)] (2-17)

Foralognormally distributed data set, ProUCL also computes tii&48Esgiven by equation2-14)
through (217).

2.3.2 Estimation of the Parameters of a Gamma Distribution

Next, we consider the estimation of parameters of a gamma distribbitime the estimation of gamma
parameters is typically not included in standard statistical textbtho&has been described in some
detail in thisTechnical GuideThe population mean and variance tfva-parametegamma distribution,
G(k, d), are functions of both parametekgndd. In order to estimate the mean, one has to obtain
estimates ok andd. The computation of the maximum likelihood estimédii E) of k is quite complex
and requires the computation of Digamma and Trigamma imecBeveral authors (Choi and Wette
1969, Bowman and Shenton 1988, Johnson, Kotz, and Balakrjst9tat) have studied the estimation of
theshape and scale parameters of a gamma distrib@trenmaximum likelihood estimation method to
estimatehe shag and scale parameters of a gamma distribution is described below.

Let Xy, X, ... ,X, b€ @ random sample (e.g., representing contaminant concentrations)ndfeinea

gamma distribution, & d), with unknown shape and scale parameteasndd, respectivelyThe log
likelihood function (obtained using equation3}p is given as follows:

LogL(X;, X, ,...,X,; k,d) = - nklog(d) - nlogi(k) + (k- ) log(x)- & X /d (2-18)

To find the MLEs ok andd, we differentiate the log likelihood function as given inX8) with respect
to k andd, and set the derivatives to zeftis results in the following two equations:
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Log(& + a log(x,) , and (2-19)

Ul(‘@ _
G
=-8x= X (2-20)

Solving equation (20) fordE, and substituting the result in-{®), we get following equation:

Ul(‘@

. Iog(l@——alog(x) Iogaeax (2-21)
a(f ¢n

Q
0
There does not exist a closed form solution of equatiei1f2This equation needs to be solved

numerically forlg, which requires the use of Digamma and Trigamma functions. Thisteseasy to do
using a personal computém estimate ok can be computed iteratively by using the NewRaphson
(Faires and Burden 1993) methéehding to the following iterative equation:

E_g _ logEy)- qeEy-m
1“E|-1' ql(lgll)

(2-22)

The iterative process stops whirstarts to convergén practice, convergence is typically achieved in
fewer than 10 iteration#n equation (22),

=log() - & log(x)/n, A(K) =~ _(ogi(K)). andClik) = =-(A(K)

Here (k) is the Digamma function an@]i(k) is the Trigamma function. In order to obtain MeEs

of kandd, one needs to compute the Digamma and Trigamma funcGaesiapproximate values for
these two functions (Choi and Wette 1969) can be obtained using the following approxinkaidéns O
8, these functions are approximated by

Q(k) © log(k) - fL+[1- (1/10- 1/(21k?))/K?]/(BK)}/(2K) , and (2-23)
Qik) © {L+fi+[1- @s- 17Kk3) 1K2 /(39 2K}k (2-24)
Fork < 8, one can use the following recurrence relation to compute these functions:
Qk) =q(k+1) - 1/k, and (2-25)
qi(k) = qi(k +1) +1/k? (2-26)

In ProUCL, equations ¢23) - (2-26) have been used to estimit&he iterative process requires an
initial estimate ok. A good starting value fdtin this iterative process is given ky= 1/ (2V1). Thom
(1968) suggested thellowing approximation as an estimatekof
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N

= 1 & 4 0
o _M?Jr 1+§M8 (2-27)

Bowman and Shenton (1988) suggested uifrngs given by (227), to be a starting value &ffor an

|th

iterative procedure, calculatiri& at thel " iteration from the following formula:

= & {log(E,)- qE

|E|: |-1{ g( |-1) Cl( |-1) (2-28)
M

Both equdbns (222) and (228) have been used to compute MieE of k. It is observed that the

estimate,lg, based upon NewteRaphson methqds given by equation {22), is in close agreement
with that obtained usg equation (2 8) wi t h Thomds approxi mation as ar

Wette (1969) further concluded that té&E of k, IE, is biased high. A biasorrected (Johnson, Kotz,
and Balakrishnan 1994) estimateka$ given by:

€ = (n- 3)En+2/(3n) (2-29)

In (2-29), IE is theMLE of k obtained using either {22) or (228). Substitution of equation-{29) in
equation (220) yields an estimate of the t&@arameter, given as follows:

F =x/E (2-30)

ProUCL computes simplelLEs of k andd, and also biasorrected estimates &fandd. The bias
corrected estimate of lsaiven by (229) has been used in the computation oliid s (as given by
equations (84) and (235)) of the mean of a gamma distribution.
2.4  Methods for Computing a UCL of the Unknown Population Mean
ProUCL computes @7 U)00% UCLof the populatin meany,, using the followings parametric and
10 nonparametric methodBive of thelQ nonparametric methods are based upon the bootstrap method
Modified t and adjusted central limit theorem adjust for skewness for skewed datdosedser, it is
noted that (Singh, Singh, and laci (2002b) and Singh and Singh (2003)) this adjustment is not adequate
enough for moderately skewed to highly skewed dataBetgletails, interested users are referred to
graphical displays of coverage probability comparistom normal, gamma, and lognormal distributions
given in Singh and Singh (2003).
Parametric Methods

1. St u d esmatistick asgumes normality or approximate normality

2. Approximate gmmaUCL T assumes gamma distribution of the data set

3. AdjustedgammaUCL i assumes gamma distribution of the data set
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4. L a n d-8tatistikli assumes lognormality

5. Chebyshev Theorem using tiMVUE of the parameters of a lognormal distribution
(denoted by ChebysheM{UE)) i assumes lognormality

Nonparametric Methods
1. Modified t-statistici modified for skewed distributions
2. Centrallimit theorem CLT) T to be used for large samples

3. Adjusted central limitheorem(adjustedCLT) i adjusted for skewed distributions and to
be used for large samples

4. Chebyshev Theorem using tsample arithmetic mean ari®tl (denoted by Chebyshev
(Mean,Sa)

5. Jackknife method yields t he s ame r edtatistictfor thet)/CLSOf thed ent 6 s

population mean

6. Standard bootstrap

~

Percentile bootstrap

8. Biascorrected accelerated (BCA) bootgtra
9. Bootstrapt

10. Hal | 6s bootstrap

Even though it is well known that some of the methods (ELJl, UCL based upon Jakkife method

( s ame as -USL),stdndandtb@otstrap and percentile bootstrap methods) do not perform well
enoughto provide theadequate coverage to the population mean of skewed distributions, these methods
have been included in ProUCL to satisfy the curiosity of all users.

ProUCL can compute 17 U)00%UCL (except for theH-UCL and adjusted gamma ULbf the mean

for any confidence coefficiefl i U Value lying in the interval [0.5, 1.0For the computation of the-

UCL, only two confidence levels, namely, 0.90 and 0.95 are supported by Pré0dCadjusted gamma

UCL, three confidence levels, namely: 0.90, 0.95, and 0.99 are supported by ProU@t. 4.0

approximate gammidCL can be computed for any level of significance in the interval [0.5,1). Whenever,
ProUCL 4.0 cannot compute a UCL for a gped confidence coefficient (e.g., 0.99 forW{LL),

ProUCL 4.0 prints out iNkekness, aBdaateddtributipg RroUClashdp | e
also makes recommendations on how to obtain an appro@s#ieJCLof the unknown population

meang;.

2.41 (17 U)00% UCL of the Mean Based Upon St u d e-Statiétis  t

The widely used welkk n o wn S t-statisécristgides byt
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X8

(2-31)

5

s,/

where X ands, are, respectively, the sample mean and sample standard deviation obtained using the raw
data If the data are a random sample from a normal population with mgamd standard deviatioth,

then the distribution of this statisticttef a mi | i ag tdiSributiah evith(n 1) degrees of freedom

(df). Lettgrab e t h e™quaptiee ¥ Uh e s tBistribatienrwith(n -1) df.

A (17 U)00% UCL of the population meais,, is given by,
UCL= X+ty, .S, /+/n (2-32)

For a normally (when the skewness is about ~0) distributed population, equad@npi@vides the best
(optimal) way of computing BICL of the meanEquation (232) may also be used to computd@L of

the mean based upon very mildly skewed (e.g., |skewness|<0.5) data setthegkengness is given by
equation (243). It should be pointed out that even for mildly to moderately skewed data sets (e.g., when
0 the Sd of logtransformed datastarts approaching and exceeding 0.5) & given by (232) might

not provide the desired coverage (e.d).85) to the population meahhis is especially true when the
sample size is smaller than-26 (Singh and Sigh (2003)) The situation gets worse (coverage much
smaller than 0.95) for higher values of B {, or itsMLE, s,.

2.4.2 ComputationoftheUCL of t he Mean o f DisribvBom mma , G ( k, d)

In thestatistical literature, even though methods exisbtmpute aJCL of the mean of a gamma
distribution (Grice and Bain 1980, Wong 1993), those methods have not become popular due to their
computational complexityr hose approximate andjadted methods depend upon thésquare

distribution and an estimatd the shape parametér,As seen above, computation of MhE of k is

quite involved, and this works as a deterrent to the use of a gamma distrtageEsCL of the mean
However, the computation of a gami&L currently should not be a problem duestsy availability of
personal computers.

Given a random samplgy, X, ... ,X,, of sizen from a gamma, &( d), distribution, it can be shown that
2nx/ d follows a ti-square distributionG>, ., with 2nk degrees ofreedom if). When the shape
parameterk, is known, a uniformly most powerful test of size of the null hypothesisH > C;,
against the alternative hypothesis; & < C, is to reject Hif X/C, < &2, (J)/2nk. The

correspondingl i U L00% uriformly most accurat&JCL for the meang,, is then given by the
probability statement.

P(2nk/ 62, (0 2 €,) =1- U (2-33)
Where ngdenotes the cumulatiyeercentge point of thelksi-s quar e di stri bution (e. g

left tail). That is, if Y follows 6. , thenP(Y ¢ &7 (U) = U. In practicek is not known and needs to be

estimated from data. A reasonable method igptacek by its biascorrected estimat@, , asgiven by
equation (229). This yields the following approximatgi U }00% UCLof the meang;.
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Approximatel UCL = 2nIE>_(/ 6. s (U (2-34)

It should be pointed out that thECL given by equation (34) is an approximatdCL and there is no
guarantee that the confidence leve(bf U Wwill be achieved by thi§/CL. However, it does provide a
way of computing & CL of the mean of a gammasttibution. Simulation studies conducted in Singh,
Singh, and laci (2002b) and in Singh and Singh (2003) suggest that an approximate falnrtimas
obtained provides the specified coverage (95%) as the shape par&nagteroaches 0.9 herefore,
whenkO 0.5, one can al walyienbyseguatiorh(®4) ta gstmate the ER@ t e
term This approximation is good even for smaller (eng=,5) sample sizes as shown in Singh, Singh,
laci (2002b), and in Singh and Singh (2003).

GriceandBaif 1980) computed an adjusted probability | ev
can be used in (24) to achieve the specified confidence levellafU)For U = 0. 05 (confi d
coefficient 0of 0.95), [1a. = 0.1, and o = 0.01, these probability levels are given below in Table2for

some values of the samplesike One can use interpolati onmott o obt ai

covered in the table. The adjus{@d U )00% UCLof the gamma measn; = k ds given by the
following equation.

Adjusted UCL = 2nEx/ 62 ; (b) (2-35)

where b is gli vieoor ilh =Ta0Ob.10e5,2 0. 1, an d,bécontedlargeNot e t h
the adjusted probabipediyf il edell ev éExcepffopthdoqrcihfeisc d mae
computation of thé/ILE of k, equations (834) and (235) provide simple lt-squaredistributionbased

UCLsof the mean of a gamma distributidhshould also be noted that tb€Lsas given by (2B4) and

(2-35) only depend upon the estimate of the shape pararkeiad are independent of the scale

parameterd, and its ML estimateConsequently, as expected, it is observed that coverage probabilities

for the mean associated with thé#€Lsdo not dependpon the values of the scale parametelt,

should also be noted that gambh@Lsdo not depend upon the standard deviation of data which gets

distorted by the presence of outliefdus, outliers will have reduced influence on the computation of the
gammadistribution basedponUCLsof the meang;.

Table22.Adj usted Level of Significance, b

U = 0.05 u = 0.1 Uu = 0.01
n probability I probability | eprobability
5 0.0086 0.0432 0.0000
10 0.0267 0.0724 0.0015
20 0.0380 0.0866 0.0046
40 0.0440 0.0934 0.0070
0.0500 0.1000 0.0100

2.43 (11 U)00% UCL of the Mean Based Upon H-Statistic (H-UCL)

The onesided(1 71 U’)lOO% UCLfor the meang,, of a lognormal distribution as derived by Land (1971,
1975) is given as follows:

ucL = exply +0.52 +s,H, o /V/n- 1) (2-36)
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Tables of Hstatistic critical values can be found in Land (1975) and also in Gilbert (IR8Qretically,
when the population is lognormal, Land (1971) showed thdt/@iegiven by equation (36) possesses
optimal properties and is the uniformly most accurate unbiased confidencéllmiver, it is noticed
that, in practice, the kstatisticbased results can be quite disappointing and misleaatipgcially when
the dataset consists of outliers, or is a mixture from two or more distributions (Singh, Singh, and
Engelhardt1997, 1999 and Singh, Singh, and J&€02b) Even a minor increase in tis& s,

drastically inflates thtMVVUE of €, and the associatédtUCL. The pesence of low as well as high data
values increases tf8d s,, which in turn inflates thel-UCL. Furthermore, it is observed (Singh, Singh,
Engelhardt, and Nocerino 2002a) that for samples of sizes smaller #2&n d5d for values af
approaching 1.0ral higher (for moderately skewed to highly skewed data sets), the usgtatistic
basedJCL results in impractical and unacceptably latfel values.

Note: ProUCL computes and outputsdthtistic based UCLs for historical reasonssthtistic often
results in unstable (both high and low) values of UCL95 as shown in exabguhels2 It is therefore
recommended to avoid the use obtdtistic based 95% UCLs. Use of nonparametric methods is
preferred to compute UCL95 for skewed data sets which dimltmiy a gamma distribution.

In practice, many data sets follow a lognormal as well as gamma .ritoedver, the population mean

based upon a lognormal model can be significantly greater (often unrealistically large) than the population
mean based upongamma modelin order to provide the specified 95% coverage for an inflated mean
based upon a lognormal model, the resultiz). based upon #étatistic also yield impracticalCL

values The wse of a gamma model results in practical estimates (#3d.) of the population mean

Therefore, for positively skewed data sets, it is recommended to test for a gamma moteldiest

follow a gamma distribution, then théCL of the mean should be computed using a gamma distribution

The gamma distribution is et suited to model positively skewed environmental data sets.

2.4.4 (17 U)00% UCL of the Mean Based Upon Modified t-Statistic for Asymmetrical
Populations

Chen (1995), Johnson (1978), Kleijnen, Kloppenburg, and Meeuwsen (1986), and Sutton (1993)
suggested the use of the modiftestatistic for testing the mean of a gogly skewed distribution
(including the lognormal distributionThe (117 U 100% UCL of the mean thus obtained is given by

UCL= X+ & /(62n) +1y,,.,5,/Vn (2-37)

Where ﬁ an unbiged moment estimate (Kleijnen, Kloppenburg, and Meeuwsen 1986) of the third
central moment, is given as follows,

£ =n3 (x - ©° /(n- D(n- 2) (2-38)

i=1

It should be pointed out that this modification foikkewed distribution does not perform well even for
mildly to moderately skewed data sets (e.g., wihstarts approaching and exceeding Q.8pgcifically,
it is observed that thdCL given by equation (37) may not provide the desired coverage of the
population mearg;, when( starts approaching and exceeding 0.75 (Singh, Singh, an@08&ib) This
is especially true when the sample size is smaller th&52Dhis small sample size requirement
increases ad increasesFor example, whed starts approaching and exceeding 1.56& given by
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equation (237) does not provide the specified coveréag., 95%), even for samples as large as 100
Since this method does not require any distributional assumptions, it is a nonparametric method.

2.45 (171 U)00% UCL of the Mean Based Upon the Central Limit Theorem

The central limitheorem(CLT) stateghat the asymptotic distribution, aspproaches infinity, of the
sample mearx,, , is normally distributed with mean;, and variancel,;’/n. More precisely, the sequence
of random variables given by

(2-39)

has a standard normal limiting distributidm practice, for large sample sizesthe sample mearx , has
an approximate normal distribution irrespective of the unawylglistribution functionSince theCLT
method requires no distributional assumptions, this is a nonparametric method.

As noted by Hogg and Craig (1978){lifis replaced by the sample standard deviasgrhe normal
approximation for large is still valid. This leads to the following approximate large sample
nonparametric(11 U })00% UCLof the mean,

UCL = X+ 2,5, /+/n (2-40)

An often cited and used rule of thumb for a sample size associated whTheethod isn 30,

However, this may not be adequate enough if the popuolatiskewed, specifically when Sdqof log-
transformedrariable) starts exceeding 0.5 (Singh, Singh,, B@02b) In practice, for skewed data sets,

even a sample as large as 100 is not large enough to provide adequate coverage to the mean of skewed
populations (even for mildly skewed populatiamsyefinemant of theCLT approach, which makes an
adjustment for skewness by Chen (1995), is given as follows.

2.46 (17 U)00% UCL of the Mean Based Upon the Adjusted Central Limit Theorem
(Adjusted-CLT)

T h edjustedC L TUCL is obtained if the standard norntalantile z, in the upper limit of equation {2
40) is replaced by (Cheh995)

-

Zo =7 +—3_
Uad vl
9 6v/n

Thus, the adjusted {10)100% UCL for the meang,, is given by

(1+22) (2-41)

UCL =X +|z, +E(1+223) /(6Vn)]s, /vn (2-42)
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Here IE the coefficient of shwness (raw datals given by
Skewness (raw datdf; = & /s’ (2-43)

where ﬁ an unbiased estimate of the third moment, is given by equat@B).(Bhis is another large

sample approximation for thdCL of the mean of skewed distributiorishis is a nonparametric method,
as it does not depend upon any of the distributional assumptions.

As with the modified4UCL, it is observed that this adjust&l. T UCLdoes not providedequate

coverage to the population mean when the population is skewed, specifically staeis approaching
and exceeding 0.75 (Singh, Singh, and, 2802k and Singh and SingR003) This is especially true
when the sample size is smaller thar2B0This small sample size requirement increasesiasreases

For example, whed starts approaching and exceeding 1.5 given by equation (22) does not
provide the specified coverage (e.g., 95%), even for samples as large hsslifted that JCL as given

by (2-42) does not provide adequate coverage to the mean of a gamma distribution, especidi@ when
1.0 andthesample size is small

Thus, theJCLsbased upon these skewness adjusted methads; h as t he Jtamnsonds
C h e ndiusted@LT, do not provide the specified coverage to the population mean for mildly to
moderately skewed (e.gljn (0.5, 1.0)) data sets, even for samples as large as 100 (Singh, Singh, and
laci, 2002b) The coverage of the population mean providedhegeUCLsbecomes worse (much

smaller than the specified coverage) for highly skewed data sets.

2.4.7 Chebyshev (17 U)100% UCL of the Mean Using Sample Mean and Sample sd

The Chebyshev inequality can be used to obtain a reasonably conservative betstabte of th&JCL
of the meang;. The twosided Chebyshev theorem (Hogg and Craig, 1978) states that given a random
variable,X, with finite mean and standard deviatiepandd;, we have

P(- ki, ¢ x- €, ¢ ki) 2 1- 1/K? (2-44)

This result can be applied on the sample méafwith meang; and varianceﬁf/n), to obtain a
conservativaJCL for the population meams;. For example, if the right side of equationr42) isequated
to 0.95, therk=4.47, andUCL = X + 4.47&1/\/ﬁ is a conservative 95% upper confidence limit for the

population mearg,. Of course, this would require the user to know the valug. dthe obvious
modification would be to repladg with the sample standard deviatisp,but since this is estimated
from data, the result is no longer guaranteed to be conservatyeneral, the following equation can be
used to obtain &L U)00% UCL of the population meas;:

ucL= x+./1/0s,/Vn (2-45)

A slight refinement of equation {&5) is given (suggested by S. Ferson) as follows,

54

mo



UcL= x+,(W/0)- Ds,/Jn (2-46)

ProUCL computes the Chebysh@v U) 1 OUCKR®f the population mean using equatiord@. This
UCL is labeled a€hebyshev (Mean, Sdh the output sheets generated by Prol&ihce this
Chebyshev method requires no distributional assumptions about the data set under study, this is a
nonparametric method his UCL may be used as an estimate of the upper confidence limit of the
population mearg, whenthedata are not normal, lognormal, or gamma distribugsgecially whersd

U (or its estimates,), starts approaching and exceegih5

2.4.8 Chebyshev (17 U) 1 0W0Ckof the Mean of a Lognormal Population Using the MVUE
of the Mean and its Standard Error

ProUCL uses equation#4) on theMVVUEsof the lognormal mean argtlto compute &JCL (denoted
by@di U) 1 OCIDIékf»ysheVMVUE)) of the population mean of a lognormal populatiorgeneral ifey

is an unknown meart, is an estimate, andE (£) is an estimate of the standard errordgf then the
following equation,

UCL= & +,(/ D) - Di5(&) (2-47)

yields an approximatél i U 300%UCL for £, which should tend to be conservative, but this is not
assuredrFor example, for a lognormally distributed data set, a 95% {wi OD5) €hebyshe{(MVUE)
UCL of the mean can be obtained using the following equation,

UCL=£& +4.359k (&) (2-48)

Here ﬁ and E(ﬁ) are given by guations (214) and (216), respectivelyThus, for lognormally

distributed data sets, ProUCL also uses equati@8)2o compute 11 U) 1 0Chelyshev (MVUE)
UCL of the meanit should be noted that for lognormally distributed data sets, some recoatinesdo
compute a 95%JCL of the population mean are summarized later in this chdpierecommended that
for skewed data sets, one should always perform gamma goadfa&OF) test. Many times, a
skewed data set can be modeled both by a loguatistribution as well as a gamma distribution
However, since, the use of a lognormal distribution often yields inflated and unstable upper limits
includingUCLs(Singh, Singh, and End®drdt, 1997) antPLs(Gibbons, 1994), it is suggested that if a
dat set follows a gamma distribution (even when data may also be lognormally distributed), then the
UCL of meang; (and other upper limits) should be computed using a gamma distribution. This is
especially true when the data are highly skewed sditf log-transformed data exceeding 1.5, 2.0, and
the sample size is small such as0s <70, <100.

On the other hand, it is also noticed that the use of a lognormal distribution baked (hased upon

L a n d-6tatisti¢j often yields a UCL that is lower thidwe sample mean. This is especially true for

mildly skewed to moderately skewed data sets of larger sizes (e.g., >5050008 examples illustrating

this issue are given in Chapter 3 of the revised background document for CERCLA sites (EPAAR002).
mentioned beforef is suggested to avoid the use of a lognormal distribution to model environmental data
sets

FromtheMonte-Carlo results discussed in Singh, Singh, and laci (20@2bl)in Singh and Singh
(2003), it is observed that for highly skewgaimma distributed data sets (whtk 0.5), the coverage
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provided by the Chebyshev 983%€L (given by (246)) is smaller than the specified coverage of 0.95.
This is especially true when the sample size is smaller th&9.14s expected, for larger samplsizes,

the coverage provided by the 95% Chebydb€\ is at least 95%For larger samples, the Chebyshev
95% UCL will result in a higher (but stabl&)JCL of the mean of positively skewed gamma distributions.

It is observed (Singh and Singh 2003) tlmatrhoderately skewed to highly skewed lognormally
distributed data sets (e.g., willexceeding 1), 95% ChebysheWUE UCLdoes not provide the
specified coverage to the population meHmis is true when the sample size is less thaBQ 0 he

details and graphical displays can be found in Singh and Singh (2003). For highly skewéd-(2)g.,
lognormal data sets of sizesless than 5070, theH-UCL results in unstable (impractical values which
are orders of magnitude higher than otd&Ls) unjustifiably largeUCL values (Singlet al. 2002a) For
such highly skewed lognormally diditited déa sets of sizes less thanB0, one may want to use 97.5%
or 99% ChebysheMVUE UCLof the mean as an estimate of the EPC term (Singh and Singh 2003)
should also be noted that for skewed data sets, the coverage provided by&95%sed upo
Chebyshev inequality is higher than those based upon the percentile bootstrap method or the BCA
bootstrap methad hus for skewed datgets, the Chebyshev inequaliigsed 95%JCL of the mean
(samples of all sizes from both lognormal and gamma distifsitiperforms better than the 9%%&L
based upon the BCA bootstrap methaldo, when data are lognormally distributed, the coverage
provided by ChebysheMVUEUCL( Si ngh and Singh 2003) is better t
bootstrap obootstrap tmethod This is especially true when the sample size starts exceedity 10

However, for highly skewed data sets of sizes less thdn4(Q it i s noted that Hal | ¢
provides slightly better coverage than the Chebysh¢WE UCLmethod Just afor the gamma
di stribution, it is observed that for | ognormally

bootstrap methods do not increase much with the sample size.

249 (11 U) 1 0WCKofthe Mean Using the Jackknife and Bootstrap Methods

Bootstrap and jackknife methods as discussed by Efron (1982) are nonparametric statistical resampling
techniques which can be used to reduce the bias of point estimates and construct approximate confidence
intervals for parameters, such as the pagon meanThese two methods require no assumptions

regarding the statistical distribution (e.g., normal, lognormal, or gamma) of the underlying population,

and can be applied to a variety of situations no matter how complidéieie exists in the litature of

statistics an extensive array of different bootstrap methods for constructing confidence intervals for the

population mearg;. In the ProUCL 4.0 software package, five bootstrap methods have been
incorporated:

1. The standard bootstrap method,

2. Bootstrap method (Efron1982 and Ha|l1988),

3. Hal Il 6s boot st{109 and ManlylBa)d ( Hal |
4. Simple bootstrap percentile method (Maril997), and

5. Biascorrected accelerated (BCA) percentile bootstrap method (Efron and Tibshirani
1993 andMany, 1997).

Letx, X, &, be arandom sample of siadrom a population with an unknown parametér,
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(e.g.,g= 1gand Ieth be an estimate af, which is a function of alh observationsFor example, the
parameterg, could be the population mean and a reasonable choice for the estﬁnat%ght be the

sample mean X . Another choice fom? is theMVUE of the mean of a lognormal population, especially
when dealing with lognormal data sets.

2.4.9.1(17 U) 1 00CKof the Mean Based Upon the Jackknife Method

In thejackknife approach estimates ofy are computed by deleting one observation at a time
(Dudewicz and Misra 1988). Specifically, for each indegenote by(%) , the estimate off (computed

similarly ascﬁ) whenthei™ observation is omitted from the original sample of sizend let the
arithmetic mean of these estimates be given by:

~ 10 &
9=-a &, (2-49)

A quantity known as th&" "pseudevalue” is defined by

3, =nd (n- D&, (2-50)
The jackknife estimator afis given by the following equation.
J(cﬁz%a J =nd~ (n- Dd (2-51)
i=1

If the original estimat@i,E is biased, then under certain conditions, part of the bias is removed by the
jackknife method, and an estimate of 8teof the jackknife estimate] (cﬁ, is given by

fo- gl A e

Next, consider thetlype statistic given by

(=3@-4q (2-53)

4
The ttype statistic given above hasa@pproximateéSt u d e distribusion withni 1 degrees of

freedom, which can be used to derive fbllowing approximate IU) 100 % gUCL f or

£

ucL= J(FH+t, £ 4

(2-54)

57



If the samplesizey, i s | ar ge , ™t-quanglein thetakmveteqwmignrcanlﬁe replaced with the

correspondingp p e"rstandard normal quantiley Dbserve, also, that wheﬁ is the sample mearx ,
then the jackknife estimate is also the sample mé&r) = X, and the estimate of the standard error

givenby equation (52) simplifies tas/n*? and thdJCL in equation (254) reduces to the familiar
statistic basetdCL given by equation (32). ProUCL uses the jackknife estimate as the sample mean,
that yieldsJ(X) = X, which in turn traslates equation {2 4 ) t o SuClugivenrby eljsation (2

32). This method has been included in ProUCL to satisfy the curiosity of those users who do not
recognize that this jackknife method (with sample mean as the estimator) yiskisad the pgulation
mean identical to theCL based upon th§ t u d e stdtislicsas given by equation-82).

Note: It is well known that the Jackknife method (with sample mean as an estimat@)tanodd e nt 6 s t
method yield identical UCL values. However, adgpuser may be unaware of this fact, and some

researchers may want to see these issues described and discussed at one place. Itis also noted that it has
been suggested that a 95% UCL based upon the Jackknife method on the full data set obtained using
robust ROS may provide adequate cover@gg., Shumway, Kayhanian, andafi (2002)) to the

population mean of skewed distributions, which of course is not true. It is well known (Singh, Singh, and
Nocerino, 20 0-3CL (anththereforg,tJackife BAL)Fasls td provide adequate coverage

to the population mean of moderate to highly skewed distributions

2.4.9.2(17 U) 1 00C%of the Mean Based Upon the Standard Bootstrap Method

In bootstrap resampling methods, repeated samples of aieedrawn with replacement from a given set
of observationsThe process is repeated a large number of times (e.g., 2000 amegach time an

estimate,(f—, of dis computedThe estimates thus obtained are used to compute an estimat&giathe

LF. A description of the bootstrap method, illustrated by application to the populateonaneand the
sample mean¥, is given as follows

Step 1. LetXa, %o, ... ,Xin) represent thg" sample of siza& with replacement from the original
data set, X, X, ...,X,). Then compute the sample mean and denote X b

Step 2. Repeat Step 1 independentlymes (e.g., 100R000), each time calculating a new
estimate Denote these estimates (KM means, RMLE means},by,, € , X . The bootstrap

estimate bthe population mean is the arithmetic me#p, of theN estimatesx,:i: = 1, 2, €,
N. The bootstrap estimate of the standard error of the estiats,given by:

- 1 N
=3 :\/N—-l-_ (% - X5)? (2-55)

If some parameted (say, the population median), other than the mean is of concern with an associated
estimate (e.g., the sample median), then the same steps described above could be appked with th

parameter and its estimates used in pla@g ahd X . Specifically, the estimafet-, would be computed,

instead ofX; , for each of thé\ bootstrap samples. The general bootstrap estimeteted byl?B , isthe
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arithmetic mean of thi estimatesThe diﬂ‘erence[}B - LF provides an estimate of the bias of the

estimate,cF, and an estimate of tI8Eof cF is given by

- 1N e o ]
@—JN—_lg (& - dy) (2:56)

A (17 U100% standard bootstrap UCL faris given by

UcL= dr+ 2, £ (2-57)

ProUCL computes the standard bootstig}l by using the populatioAM and samplé\M, respectively
given by e;and X . It is observed that thdCL obtained using the standard bootstrap method is quite
similar to theUCL obtained using th8 t u d estatisficas gitzen by equation {22), and, as such, does
not adequately adjust for skevaseFor skewed data sets, the coverage provided by standard bootstrap
UCL is much lower than the specified coverage.

2.4.9.3 (1i U) 1 00K of the Mean Based Upon the Simple Percentile Bootstrap Method

Bootstrap resampling of the original data set iglusegenerate the bootstrap distribution of the unknown

population mean (Manly 1997). In this method, the sample mears computed from the" resampling
(i=1,2,...N) of the original data. Thesg;, i:=1,2,..N are arranged in ascending order
asXy ¢ X ¢3 ¢ Xiny- The (1T U) 199UCL of the population meamy, is given by the valuthat

exceeds thél i U%100% of the generated mean valLiese 95%UCL of the mean is the ercentile
of the generated means and is given by:

95%Percentilei UCL=95"%X ;i:=1,2, ..., N (2-58)

For example, wheN = 1000, a simple bootstrap 95% percentlleL is given by the 950ordered mean
value given bw(gso) :

Singh and Singh (2003) observed that for skewed data sets, the coverage provided by this simple
percentile bootstrap method is much lower than the coverage providedidpotesgapta nd Hal | & s
bootstrap method# is observed that for skewed (lognormal and gamma) data sets, the BCA bootstrap
method performs slightly better (in terms of coverage probability) than the simple percentile method.

2.4.9.4(1i U) 1% WOCL of the Mean Based Upon the Bias-Corrected Accelerated (BCA)
Percentile Bootstrap Method

The BCA bootstrap method is also a percentile bootstrap method adjusts for bias in the estimate (Efron
and Tibshirani 1993 and Manly 199The performance of this method for skewed distributions (e.g.,
lognormal and gama) is not well studiedt was conjectured that the BCA method would perform better
than the various other metho@&ngh and Singh (2003) investigated and conp#seperformance (in

terms of coverage probabilities) with parametric methods and otbtsttapp methods$-or skewed data

sets, this method does represent a slight improvement (in terms of coverage probability) over the simple
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percentile methadHowever, this improvement is not adequate enough and yi€ltlswith acoverage
probability muchéwer than the specified coverage of 0Bbe BCA upper confidence limit of intended
(17 U100% coverage is given by the following equation:

BCAi UCL= X (2-59)
Here x(%) is the(,100" percentile of the distribution of th& ;i:= 1,  2Fpr exampleNwheN =
2000, X = (a,N)" ordered statistic oK;i:= 1,  jiven By XN

H e r .ds gilen by the following probability statement:

8. e +257 g
a,=Fegk+ % =— U (2-60)
e lL-aHg+z27")y
Here a(.) is the standard n o rhfdsthecod@ifpecentioa di st r
a standard normal distributioFior example, 2°= 1. 6 45, an d.Aso(inlthe @qu&ign 2= 0. 9 5
60), E, (bias correction) andE (acceleration factor) are given by
. o (X <X
% =0 lg#( i )g (2-61)
€ N 0
Her&(.u) is the inverse function of a sta@%prd nor:
= 1.645 & is the acceleration factor and is giMay the following equation.
u a. ()_(' )_(-i)3
H= (2-62)

A (x- %)

Here the summation in {&2) is being carried from= 1 toi = n, the sample sizeX is the sanple mean

based upon ahl observation an_; is the mean ofr-1) observations without tH& observationj: = 1,
2, né,

Singh and Singh (2003) observed that for skewed data sets (e.g., gamma and lognormal), the coverage
providedby this BCA percentile method is much lower than the coverage provided bygdtstrap aind

Hal | 6s b o otThisis esgeciaftyaruehvbenh the sample size is sifla BCA method does

provide an improvement over the simple percentile methodhenstandard bootstrap methbtbwever,
bootstrapand Hal |l 6s bootstrap methods perform better (
method For skewed data sets, the BCA method alstopas better than the modifiedXCL. For gamma

distribuions, the coverage provided by BCA 9&96L approaches 0.95 as the sample size increBees

lognormal distributions, the coverage provided by the BCA 988k is much lower than the specified

coverage of 0.95.
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2.4.95(1i U) 1% WOCL of the Mean Based Upon the Bootstrap t Method

Another variation of the bootspa met hod, caltl@®@dby hef Mdmo ot 38 &), i s
method that uses the bootstrap methodology to estopatetiles of the pivotal quantity, t statistic, given

by equation (21). Rather than using thguantiles o f t he f a fsthtistic, dall (1988)udent 6 s t
proposed to compute estimates of gn@ntiles of the statistic given by equatiorrd2) directly from the

data

Specifically, in Steps 1 and 2 described above ini@e2t4.9.2, ifX is the sample mean computed from
the original data, and; ands, are the sample mean and sample standard deviation computed fim the

resampling of the original data, thequantitiest, = \/ﬁ[(f(i - X)/s,;] are computed and sorted,

yielding ordered quantitieg(1) ¢t(2)¢é ¢t(y).The est i mat Bquanfieoftthe pivotalo wer U
quantity in equation (31) ista g = t(ay). For example, ilN = 1000 bootstrap samples are generated, then

the 50" ordered valuetsg), would be the bootstrap estimate of the loweb'Oduantileof the pivotal

quantity in equation (31). Then a (1U0)100% UCL of the mean based upon the bootstrapethod is

given as follows.

UCL = X (2-63)

SX
e

Not e T Dgige n éguation (63). ProUCL computes thieootstrap tUCL based upon thguantiles

obtained using the sample mean, It is observed that thd CL based upon thieootstrap method is

more conservative than the oth#€Lsobtainedusngth e St u d e n t - ajustedCLTnandlthef i e d
standard bootstrap methoddis is especially true for skewed data s€hss method seems to adjust for
skewness to some extent.

It is observed that for skewed data sets (e.g., gamma, lognormal), tHeé@5¥%ased upothebootstrap

t method performs better than the 98GLsbased upon the simple percentile and the BCA percentile

methods (Singh and Singh (2003pr highly skewedk< 0.1 orli > 2.53.0) data sets of small sizes

(e.g.,n < 10), thebootdrap tmethod performs better than other (adjusted gat@lg or Chebyshev
inequalityUCL) UCL computation methodét is noted that fothegamma distribution, the performances
(coverages provided by the respectiM€Ls) of thebootstrapta n d  H a Istiad sethdds aret very

similar. It is also noted that for larger samples, these two methodésfrapand Hal | 6 s boot str
approximately provide the specified 95% coverage to the rkedaf the gamma distributiofror

gamma distributed data sets, the coverage providedbgtatrap{ and Hal | BCL) 9%dJECLt st r ap
approaches 95% as sample size increases for all valuesosideredi = 0.055.0) in Singh and Singh

(2003) Howeer, it is noted that the coverage provided by these two bootstrap methods is slightly lower

than 0.95 for samples of smaller sizes.

For lognormally distributed data sets, the coverage providdaetootstrap 85%UCL is a little bit

lower than the covage provided by the 95CLb ased upon Hal |.BHmsveverotot strap r
should be noted that for lognormally distributed data sets, for samples of all sizes, the coverage provided

by these two methodbdotstrapa nd Hal | 6 s b o o ylewertlzapthe spesifiedd.9§ ni f i c ant
coverage. This is especially true for moderately skewed to highly skewedl ¢elg0) lognormally

distributed data set#f should be pointed out that theotstrapand Hal | 6s bootstrap me!
result in unstale, erratic, and unreasonably inflatd@L values especially in the presence of outliers

(Efron and Tibshirani, 1993). Therefore, these two metkbdsld be used with caution. If this is the
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caseandthese two methods result in erratic and infldtétl values, then an appropriate Chebyshev
inequality basetCL may be used to estimate the EPC term for nonparametric skewed data sets.

2.49.6(1i U) 1% WOCL ofthe MeanBasedUpon Hal | 6s Bootstrap Method

Hall (1992) proposed a bootstrap method that adjusts for bias as well as skewness. This method has been
included in UCL guidance document (EPA 280ZFor highly skewed data sets (e.g., LN §5,#

performs slightly better (higher coverage) thanlibetstrap tmethod In this method X, ands,; ,

andléi , the sample meathe sample standard deviation, atheésample skewnesgespectivelyare
computel from thei" resamplingi(= 1, 2,...,N) of the original dataLet X be the sample measybe the

sample standard deviation, al@ be the sample skewness (as given by equatid3)Rcomputed from

the origiral data The quantitiesW, andQ,, given as follows are computed for each of khigootstrap
samples

W = (% - %)/s,; . andQ W) =W, +EW?/3+ BWE 127+, /(6n)

The quantitiesQ. (W), given above are arranged in ascendirteo For a specifieql i U tonfidence
coefficient, compute thd )" ordered valuef]y, of thequantities Q (W) . Next, compute
W(q;) using the inverse function, which is given as follows:

Wiay) =+ B(a, - B o)) - 18/ (2-64)

In equation (264), IES is computed using equation-43). Finally, the(1i U )00% UCL of the population
mean based up omethBd(ManlpH97piogivensag follaws:

UCL= X- W(qy)s, (2-65)

For gamma distributia Singh and Singh (2003) observed that the coverage probabilities provided by

the 95%UCLs based upohootstrapand Hal | 6 s bootstrap nrertlalgerds ar e i
samplesthese two methods approximately provide the specified 95% coverage to the population mean,

kd, of a gamma distributiari-or smaller sample sizes (from gamma distribution), the coverage provided

by these two methods is slightly lower than the specified level of Bd&d%oth lognormal and gamma

distributions, these two methodmptstrapandHa | 6 s boot strap) perform bett
methods, namely, the standard bootstrap method, simple percentile, and bootstrap BCA percentile

methods

Just like the gamma distribution, for lognormally distributed data sets, it is noted tha@ H&il and

bootstrap tJCL provide similar coverageblowever, for highly skewed lognormal data sets, the
coverages based ubpastrap mhathot aressignifieantly lovder tlzan the specified

coverage, 0.95 (Singh and Sing@03) This istrue even in samples of larger sizes (eng:,100) For

 ognor mal data sets, the c oWweotsttag®methods dometindeast by Ha
much with the sample size, For highly skewed (e.g,2.0) data sets of small sizes(ergss, 15) , Hal | 0:
bootstrap method (and albootstrap tethod) performs better théme ChebysheWCL, and for larger
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samplestheChebyshelUCLp er f or ms bet t er t h aSmilaftathdbdbtstrappto ot st r ap
met hod, i t s h o u lbdotsttap methodtsercbtimedresults iHunstablé, sflated, and
erratic valuesespecially in the presence of outliers (Efron and Tibshil£83)

Therefore, these twiootstrapmethods should be used with cautibroutliers are present in a data set,
thena 95%UCL of the mean should be computed using altern&afi@e computation methods.

2.5 Recommendations and Summary

This section describes the recommendations and summary on the computation ai@L9868the

unknown population arithmetic meam, of a contaminant data distribution without censarirgese
recommendations are based upon the findings of Singh, Singh, and Engelhardt (1997, 1998);a8ingh
(2002a); Sinp, Singh, and laci (2002b%ingh and Singh (2003and Singtet al. (2006)

Recommendations have been summarizedljonormally distributed data sets, 2) gamma distributed

data sets, 3) lognormally distributed data sets, and 4) data sets which are nonparametric and do not follow
any of the three distributions included in PrdUC

For skewed parametric as well as honparametric data sets, there is ho simple solution to c@sdpute a

UCL of the population meas;. Singhet al (2002a), Singh, Singh, and laci (2002b), and Singh and

Singh (2003) noted that théClLsbased upon the skewness adjusted metiodsc h as t he Johnso
modifiedt and Ch e-@ld,slo ntpijovids theesgecified coverage (e.g., S&the population

mean even for mildly to moderately skewed (elgin theinterval [0.5, 1.0)) data sets for samples of

sizesas large as 100’ he coverage of the population mean by these skevaupsstel UCL gets poorer
(much smaller than the specified coverage of 0.95) for highly skewed data sets, where the skewness levels
have been defined earlier as a functioi of l(standard deviation of letyansformed data).

2.5.1 Recommendations to Compute a 95% UCL of the Unknown Population Mean, p;, Using
Symmetric and Positively Skewed Data Sets

Interested users may want to consult graphs as giv@im@ih and Singh (2003) for a better understanding
of the summary and recommendations made in this section.

2.5.1.1 Normally or Approximately Normally Distributed Data Sets

As expected, for a normal distribution, &,((,%),t h e St -statistio modfied t-statistic, and

bootstrap 85% UCL computation methods result WCLswhich provide coverage probabilities close to

the nominal level, 0.9%ontrary to the geeral conjecture, the bootstrBECA method does not perform

better than the other bootgr methods (e.g., bootstrgpActually, for normally distributed data sets, the

coverages for the population meag,provided by thaJCLs based upon the BCA meth
bootstrap method are lower than the specified 95% coverageis especially true when the sample size,

nis less than 30. For details refer to Singh and Singh (2003).

1 For normally distributd data sets, HCL based uponth8 t u d esmatisticas given by
equation (232), provides the optimdUCL of the population meafherefore, for
normally distributed data sets, one should always use d 85%based upon the
St u d esmatisics t

1 The95% UCLof the mean given by equation82) based upoS§t u d estatisticmay t
also be used when tig&, $of the logtransformed data is less than 0.5, or when the data
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set approximately follows a normal distributighidata set is approximately moal when
the normal QQ plot displays a linear pattern (without outlidsseaksand jumps) and the
resulting correlation coefficient is high (e.g., 0.95 or higher).

1 St ud eUCLday also be used when the data set is symmetric (but possibly not
normally distributed) A measure of symmetry (or skewness)%s which is given by

equation (243). A value oflg3 close to zero (e.g., if absolute value of skewness is

roughly less than 0.2 or 0.3) suggests approximateretry. The approximate symmetry
of a data distribution can also be judged by looking at histogram of data sets.

2.5.1.2 Gamma Distributed Skewed Data Sets

In practice, many skewed data sets can be modeled both by a lognormal distribution and a gamma
distribution especially when the sample size is smaller thabhGAs is well known, the 95%d1-UCL

of the mean based upon a lognormal model often results in unjustifiably large and impractitATB5%
values. In such cases, a gamma model k&, may be used to compute a reliable 99%.L of the
unknown population meaa;.

1 Many skewed data sets follow a lognormal as well as a gamma distribugbauld be
noted that the population means based upon the two models could differ significantly.
Lognormal model based upon a highly skewed @&, 2. 5) data set will
unjustifiably large and impractical population meafand its associatddCL. The
gamma distribution is better suited to model positively skewedanviental data sets.

One should always first check if a given skewed data set follows a gamma distribution. If
a data set does follow a gamma distribution or an approximate gamma distribution, one
should compute a 95% UCL based upon a gamma distribtgenof highly skewed
(e.g.,.&EO 23.0)Jognormal distributions should be avoidEdr such highly skewed
lognormally distributed data sets that cannot be modeled by a gamma or an approximate
gamma distribution, nonparametkkCL computation methods based upon the

Chebyshev inequalitmay be used.

1 The five bootstrap methods do not perform better than the two gal@inaomputation
methodslt is noted that the performances (in terms of coverage probabilities) of
bootstrapand Hal |l 6s boot st r a@utahtbetive bodtstrapar e very
methodspootstrapand Hal | 6s bootstrap methods perf o
probabilities for population mean closerthe nominal level of 0. 95T his is especially
true wherthe skewness is quite high (e.¢E.< 0.1) andhe sampe size is small (e.gn <
10-15). This can be seen fnographs presented in Appendiofthe Technical Guide
for ProUCL 3.0 (EPA, 2004).

1T The bootstrap BCA method does not perform b
bootstrap tethod The coverage fathe population mea;, provided by the BCA

64



method is much Iower}han the specified 95% coverage. This is especially true when the
skewness is high (e.gE< 1) and sample size is small (Singh and Si26l03).

1 From the results presented in Singh, Sjragid laci (2002b)and in Singh and Singh
(2003), it is concluded that for data sets which follow a gamma distribution, &&%%
of the mean should be computed using the adjusted gaifthavhen the shape
parameterk,i s : k& 0.3, an®for values O 0 . 5 ,UClacanthé éemputed
using an approximate gamrakCL of the meang;.

1 For highly skewed gamma distributed data sets ktt0.1,the bootstrap tJCL or
Hal | 6s boot st r,2003) ey benuged wheemtlte sédnpl@ gizb is smaller
than 15, and the adjusted gam@L should be used when sample size starts
approaching and exceeding. The small sample size requirement increases as skewness
increases (that is &decreases, the required sample sizcreases).

1 ThebootstrapandHa | | 6 s b oot s tdbaysed with cautmmdas somde u
these methods yield erratic, unreasonably inflated, and un&t@llealues especially in
the presence of outliers.thec as e Hal | 6 dootstmap thethbds wgld a n d
inflated and gratic UCL results, the 95%JCL of the mean should be computed based
upon the adjusted gamma 9%9¢L. ProUCL prints out a warning message associated
with the recommended use of tH€Lsbased upon thieootstrapmme t hod or Hal |
bootstrap method.

o
wn

These ecommendations for the use of gamma distribution are summarized in Table 2
Table 2-3. Summary Table for the Computation of a 95%4JCL of the Unknown Mean, ¢ 1, of a Gamma Distribution

|E Sample Size, n Recommendation
Es o s For all n Approximate gamma 95% UCL
o 1E®s For all n Adjusted gamma 95% UCL
- 95% UCL based upon bootstrap t
|E<0-1 n<15 or Hallés bo*otstrap method

IE no1B Adjusted gamma 95% UCL if available,
<01 otherwise use approximate gamma 95% UCL

*In casebootstrappbr Hal | 8s bootstrap met hoduCLwalues, thdJCler r at i ¢
of the mean should be computed using adjusted gddt®ha

Note Suggestions regardingné selection of a 95% UCL are provided to help the user to select the most
appropriate 95% UCL. These recommendations are based upon the results of the simulation studies
summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For addisayht, the

user may want to consult a statistician.
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2.5.1.3 Lognormally Distributed Skewed Data Sets

For lognormally, LN £, &%), distributed data sets, the-$tatisticbasedJCL does provide specified 0.95,
coverage for the population mean for alues ofil. However, the kstatistic often results in unjustifiably
largeUCL values that do not occur in practice. This is especially true when skewness is high>e.g.,
2.0). The use of a lognormal model unjustifiably accommodates large and impraaticed of the mean
concentration and itdCLs The problem associated with the use of a lognormal distribution is that the
population mearg,, of a lognormal model becomes impractically large for larger valuésydfich in

turn results in inflatedH-UCL of the population meas;. Since the population mean of a lognormal
model becomes too large, none of the other methods excepeferUCL provides the specified 95%
coverage for that inflated population mean, This is especially true when the sampize is small and
skewness is high. For extremely highly skewed data sets({with53.0) of smaller sizes (e.g., <-70
100), theuse of a lognormal distributieimasedH-UCL should be avoided (e.g., see Sireglal, 2002a

and Singh and SingR003) Therefore, alternativel CL computation methods such as the use of a
gamma distribution or use oftdCL based upon nonparametric bootstnagthods or Chebyshev
inequalitybased methods are desirable.

As expected for skewed (e.g., willfor lf:) O 0.5) lobpuoemaldlay adis-et s, t he
UCL, modifiedt-UCL, adjustedCLT UCL, the standard bootstrap methsall fail to provide the

specified 0.95 coverage for the unknown population mean for samples of allaistdi&ke he gamma

distribution, the performances (in terms of coverage probabilitid®abtrapand Hal | 6 s boot st
methods are very similar (Singh and Sing®03) However, it is noted that the coverage provided by

Hal | 6 s b oabsb sy baotatqap i nauohdower than the specified 95% coverage for the

population mearg, for samples of all sizes of varying skewnddereover, the coverages provided by

Hal | 6 s bloaodraptmetlhod domat increase much with the sample size.

Also the coverage provided by the BCA method is much lower than the coverage ptoyidedHa | | & s
method otthe bootstrap tnethod Thus the BCA bootstrap method cannot be recommended to compute a
95%UCL of the mean of a lognormal populatidtor highly skewed data sets of small sizes (e.g., < 15)
with 0 exceeding 2.8.0, even the Chebysh@equalitybasedJCLs fail to provide the specified 0.95
coverage for the populatioHowever, as the sample size increases, the coveragedeutdny the

Chebyshev inequalitpasedJCLs also increaséor such highly skewed data sels ¥ 2.5) of sizes less

than 161 5 , Hal | 6 dootstrap thesthods prqvidedarger coverage than the coverage provided by
the 99% ChebyshgVUE) UCL Therefore, for highly skewed lognormally distributed data sets of

small sizes, one may uselH& 6 s hststiaotdCL) to compute an estimate of the EPC tefime

small sample size requirement increases wiffhis means that as skewne8gificreases, the sample
size, n needed to provide speci fCLaldoincreagesandge (e. g
becomes much larger than-20.

It should be noted that even a small increase iBthé, increaseshe skewness considerablyor

example, for a lognormal distribution, whér 2.5, skewness 11825.1; and wheti = 3, skewnesé

729555 In practice, the occurrence of such highly skewed data sets€©g.,.3) i s not very co
Nevertheless, these highly skewed data sets can arise occasionally and, therefore, require separate

attention Singhet al. (2002a) observed that wheret®d U, starts approaching 2.5 (that is, for lognormal

data, wherCV> 22.74 and skewness > 11825.1), eve€8% Chebyshev (MVUR)CL fails to provide

the desired 95% coverage for the population meafhis is especially true when the sample sizés

smaller than 30For such extremely skewed data sets, the larger of thEl@is the 99% Chebyshev

(MVUE) UCL and the nonparametri®% Chebyshev (Mean, Sd) UGhay be used as an estimate of the
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EPC. Itis also noted that, as the sample size incretase$;UCL starts behaving in a stable manner
Therefore, depending upon tBed ,(actdally its MLEt), for lognormally distributed data sets, one can
use theH-UCL for samples of larger sizes such as greater thet©@0This large sample size requirement
increases as ti&d {t, increass, as can be seen in Tablé. ProUCL can compute ard-UCL for

samples of sizes up to 1Q@r lognormally distributed data sets of smaller sizes, some alternative
methods to compute a 99¥CL of the population meai;, are summarized in Tablef

Furthermore, it is noted that for moderately skewed (&.5.1- 1.25) data sets of larger sizes (engp,

100-150), theH-UCL becomes even smallerm t he s amp| e t-U@ éand various @hteru d e n't 0 ¢
UCLs). It should be pointed out that the largengde behavior oH-UCL has not been investigated

rigorously For confirmation purposes (thathsUCL does provide the 95% coverage for larger samples

also), it is desirable to conduct such a study for samples of larger sizes.

Since skewness (as defineatleer) is a function ofi (or IE), the recommendations for the computation of
the UCL of the population mean are also summarized in Taldléat various values of théLE & of G

and the sample size, Here dt is anMLE of G, and is given by th8dof log-transformed data given by
equation (22). Note that Table 2 is applicable to the computation of a 98%L of the population

mean based upon lognormally distributed data sets without nondetect observations

Changes in Recommendation Tables iRProUCL 4.00.05

Based upomur recent experience dealing with higly skewed lognormally distributed data sets, the
developers of ProUCL titerate that practical applicabililty of lognormal distribution is questionable as
its use often leads tanrealistic andinstable estimatd&/CLs) of EPC terms. Therefore, use of lognormal
distribution base€hebyshev (MVURBR)YCL should be avoided unless skewness is mittl sdof
logtranformed data <1.01.5. Use ofChebyshev (MVUBYCL has been replaced by respective
nonparametri€hebyshev (Mean, Sd) U@L all decision tables (e.g., Table42 summarized in ProUCL
Technical Guide and User Guide. Those revised recommendations have also been incorporated in
ProUCL 4.00.050fware A revisedprocedure to compute a 93%€L for lognormal distribution is
summarized in the following steps:

Skewed data sets should be first tested for a gamma distribietioltognormally distributed data sets
(which can not be modeled by a gamma distributitr® method as summarized in Tablé &ay be
used to compute a 954CL of the mean.

Due to unstable and erratic behavior ofWCL, the sers are discouraged to use lognormal distribution
to estimate the EPC termBroUCL computes and outputsdthatisic based UCLs for historical reasons
only. Hstatistic often results in unstable (both high and low) values of UCL95 as shown in examples 1
and 2 below. It is therefore recommended to avoid the usestidtidtic based 95% UCLs. Use of
nonparametric metbds is preferred to compute UCL95 for skewed data sets which do not follow a
gamma distribution.
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Table 2-4. Summary Table for the Computation of a 95%UCL of the Unknown Mean, ;, of a Lognormal Population

(E Sample Size, n Recommendation
lf: <0.5 For all n St u d et,mbdified t, or H-UCL
050 L‘E <1.0 For all n H-UCL
gz n<25 95% Chebyshev (Mean, Sd) UCL
100lE<15 -
nO 25 H-UCL
n<20 99% Chebyshev (Mean, Sd) UCL
o - 0,
150 LE <20 20 ?@50 95% Chebyshev (Mean, Sd) UCL
nO 50 H-UCL
n<20 99% Chebyshev (Mean, Sd) UCL
ez 20 n®50 97.5% Chebyshev (Mean, Sd) UCL
200l<25 .
50 n©70 95% Chebyshev (Mean, Sd) UCL
nd 70 H-UCL
n<30 99% Chebyshev (Mean, Sd)
= 30 n70 97.5% Chebyshev (Mean, Sd) UCL
250lE<30 .
7 0 n©100 95% Chebyshev (Mean, Sd) UCL
nd 100 H-UCL
n<15 Hal |l 6s boot*strap meth
15 n50 99% Chebyshev(Mean, Sd)
3. olE(‘o‘) §*_ 5 50 n©100 97.5% Chebyshev (Mean, Sd) UCL
10 0n <150 95% Chebyshev (Mean, Sd) UCL
nO 150 H-UCL
ﬂ; > 3,5H For all n Use nonparametric methods*
*InthecasehatHal | 6 s bootstrap method yields anherrat.i

mean may be computed based upon the Chebyshev inegGalitlgyshevilean, S UCL

** For highly skewed data sets with exceeding 3.0, 3.5, it is suggested top@cess the data. It is

very likely that the data consist of oat and/or come from multiple populations. The population
partitioning methods may be used to identify mixture populations present in the data set. For defensible
conclusions, the decision statistics suctJ&t 95should be computed separately for eacthef

identified subpopulation.

1 Specifically, for highly skewed (e.g., 1.5 2() data sets of small sizes (erg., 50
70), the EPC term may be estimated by using a 97.5% o3#kbyshev (Mean, Sd)
UCL of the population mean (or mass). For largangles (e.gn > 70), theH-UCL may
be used to estimate the EPC.

1 For extremely highly skewed (e.g.7 2.5) lognormally distributed data sets, the
population mean becomes unrealistically large. Therefore, the ts&J6L should be
avoided especially hen the sample size is less than100. For such highly skewed data
sets, HalUCamaybewset wher tizegample size is less thdb 18ingh
and Singh 2003). The small sample size requirement increasedt Whibr examplen =
10 is considered small whel = 3.0, anch = 15 is considered small whdln = 3.5.
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T Hall 6s boot s ttiU@lymethodsishobld ke used wittacpution as sometimes
it yields erratic, inflated, and unsteltJCL values, especially in the presence of outliers.
For these highly skewed data sets of sige,g., lessthan105) , i n the case t
bootstrap method yields an erratic and infldt&Zl value, the 99%hebyshev (Mean,
Sd) UCLmay be used testimate the EPC term. ProUCL displays a warning message
associated with the recommended use of Hal/l

Note Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most
appropriate 95% UCL. These mmmendations are based upon the results of the simulation studies
summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the
user may want to consult a statistician.

Based upon the results of the research conduotevaluate the appropriateness of applicability of
lognormal distribution based estimates of EPC term (Singh, et. al., 1997, 1999, 2002, 2003), the
developers of ProUCL 4 @nd its upgradestronglysuggest avoidg the use of lognormal distribution
to estimate the EPC tertBomputations of various lognormal distribution based statiatieavailablén
ProUCL 4.00.03or historical reasons and for the sake of comparison for interested practitioners. For
highly skewed (e.gwith Sdexceedingl.07 1.5) lognormally distributed data sethe developerse-
iterate to avoid the use of lognormal distribution &l¢l sbased upon lognormal distribution. Instead,
the use ohonparametric methods (Efron and Tibshirani, 1298)Chebyshev (Mean, Sd) UGL
recommendetb estimate EP@rms Based upon these observatiomg, developers have revised
recommendationsmcorporated irProUCL 4.00.05These changes have been also madedision tables
summarized irthis revisedProUCL Technical Guide armévisedUser GuideA real data set illustrating
these issues is discussed in the following

Examplel: The data set of size55, follows a lognormal distributionThe observationsire 0.083, 4.49,
0.005, 17.4, 0.588, 10.9, 0.004, 1.76, 2.13, 0.144, 0.112, @IXBB, 4.15, 0.0338, 3.56, 0.0153, 0.154,
0.004, 17.3, 0.0942, 76.9, 0.555, 34.1, 2.82, 4.63, 0.037, 73.9, 0.006, 0.004, 32.1, 16.3, 0.006, 79, 8.11,
24, 0.004, 0.0109, 0.916, 6.28, 0.005, 0.004, 8.95, 6.93, 1.55, 0.124, 26.2, 0.0282, 0.005, 1.04, 0.0076
0.182, 1.94, 0.151 and 5.1Batais highly skewed with Sd of loransformed data = 3.21. Use of

lognormal distribution results in unrealistically large estimates of EPC term as can be seen from the
ProUCL output given in the following. For example,®% Chebyshev (MVUE) UCL = 268.2, which is
unrealistically higher than the maximum detected observation, 79. The revised recommendation to
estimate the EPC term is given by the nonparametic 97.5% Chebyshev (Mean, Sd) UCL = 24.15.
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R aw Statistics

Log-transformed Statistics

Minimum 0,004 Minirum of Log Data -5.521
Maximum 79 t axirurm of Log Data 4369
tean B.642 tMean of log Data -0.766
Median 0.588 5D of log Data 3.206
S0 1Ea
Coefficient of W ariation 213
Skewness  2.969
Relevant UCL Statistics
Momal Distribution Test Lognormal Distribution Test
Lilliefors Test Statistic 0319 Lilliefors Test Statistic 010
Lilliefors Critical ¥ alue 0113 Lilliefors Critical v alue 0113
D ata not Hormal at 5% Significance Level D ata appear Lognormal at 5% Significance Level
A ing Mormal Di: A ingl 1Di
95% Student'st UCL 128 98% HUCL 676
95% UCLs [Adjusted for Skewness] 95% Chebyshewv [MYUE)UCL 2022
95% Adjusted-CLT UCL - 13.79 97.5% Chebyshev [MVUEJUCL  268.2
95% Modifiedt UCL 12,96 99% Chebyzhev [MVUEIUCL 3979
G amma Distribution Test D ata Distribution
k. star [bias corected) 0.243 Drata appear Lognormal at 5% Significance Level
Theta Star 3559
MLE of Mean 8.642
MLE of Standard Deviation  17.54
nustar 26.71
Approzimate Chi Square Value [(05) 1592 Monparametric Statistics
Adjusted Level of Significance  0.0456 95% CLT UCL 1273
Adjusted Chi SquareValue 157 95% Jackknife UCL 128
95% Standard Bootstrap UCL. 12,69
Anderzon-Darling Test Statistic 1.341 95% Bootshapt UCL 1491
Anderson-Darling 5% Critical Value 0889 95% Hall's Bootstrap UCL. 13,12
K.olmogorov-Smimovw Test Statistic 0145 95% Percentile Bootstrap UCL. 1271
Kolmogorow-Smirmaoy 5% Critical W alue 013z 95% BCA Bootstrap UCL 1385
D ata not Gamma Distributed at 5% Significance Lewel 95% Chebyshev(Mean, Sd)UCL 1948
97.5% Chebyshev(Mean, SdJUCL 2415
A ing Gamma Distrit 99% Chebyshev(Mean, S5d]UCL 3334
95% Approsimate Gamma UCL 14,49
95% Adjusted Gamma UCL 147
Potential UCL toUse Use 97.5% Chebyshewv [Mean, 5d) UCL 2415

Example 2: The data st of size= 33, does not follow a discernable distribution. The observations are
3.3,16,2.2,1.1, 220, 3.3, 2.2, 3.3, 4.6, 35, 12, 15, 8.4, 28, 5.3, 33, 7.7, 6.3, 4.2, 11, 3.3, 17, 7.6, 2.4, 3.3,
8.2,7,4.8, 3.3, 3.5,5.3, 4.5, and 4.1. The mean andastd deviation of the logtransformed data are

1.903 and 1.026 respectivelyhe figure below shows that the BICL is unstable with a low value of

17.18.
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MNumber of Yalid Observations 33 Won-Parameatric JCLs

Murnber of Distinet Observations 2R 95% Adjusted-CLT UCL [Adjusted for Skewness) 3234
Minirurn of log data 0.0953 95% Modifiedt UCL [Adjusted for Skewness) 2719
M awirnurn of log data 5,394 95% Hall's Baatstrap UCL £1.39
Mean of log data 1.903 95% Bootstrap t UCL E1.19
SO of log data 1.026 95% BCA Bootstrap UCL 3649
Variance of log data 1.064 95% Chebyshey [Mean, Sd) UCL 437
97 5% Chebyshev (Mean, 5d) UCL BE.1
Shapiro Wilk Tezt Statistic 091 99% Chebyshey [Mean, Sd) UCL a0.47
Shapiro 'Wilk. 5% Crtical W alue 04an

Data not Lognomal at 5% Significance Lewvel UCLs [Azsuming Lognormal Digtnbution)
95% H-UCL 17.78
98% UCL [Assuming Momal Distribution) 95% Chebypzhey [MYUE) UCL 2113
95% Student's-t LCL 2618 97.5% Chebyshev [MWUE) UCL 25.42

33% Chebyshey [MWUE) UCL 34.0M
ML Estimates dssuming Lognomal Distribution
Mean 11.36 D ata do not follow a Dizcernable Distribution [0L05)
5D 1552
Coefficient of W ariation 1.367
Skewness B.EG3
tedian B.708
80% Cluantile 1591
90% Cluantile 24.99
95% Cuantile 3629
99% Quantile 7304

WYL Estimate of Median E.EM

MU Estimate of Mean 1.1

Myl Estimate of 5D 12.93

My Estimate of Standard Error of Mean 2303

2.5.1.4 Nonparametric Distribution-Free Skewed Data Sets without a Discernable Distribution

1 Theuse of gamma and lognormal distributions as discussed here will cover a wide range
of skewed data distributions. For skewed data sets which are neither gamma nor
lognormal, one can use a nonparametric Chebysiiétvo r Hal | 6UdCL@oo ot st r ap
small sampls) of the mean to estimate the EPC term.

1 For skewed nonparametric data sets with negative and zero value®95%eChebyshev
(Mean, Sd) UClIfor the population mea;.

For all other nonparametric data sets with only positive values, the followingdane may be used to
estimate the EPC term.

1 For mildly skewed data sets withO 0. 5, oSteu dceatatisbessnebdifiedt-
statistic to compute a 95UCL of meang;.

1 For nonparametric moderately skewed data sets {eogifs estimatefk in the interval
(0.5, 1]), one may use¥®% Chebyshev (Mean, Sd) UGLthe population mea;.
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1 For nonparametric moderately to highly skewed data sets iEig.the interval (1.0,
2.0]), one may use 89% Chebyshev (Mean, SAdTL or %% Chebyshev (Mean, Sd)
UCL of the population meay, to obtain an estimate of the EPC term.

1 For highly skewed to extremely highly skewed data sets dith the interval (2.0, 3.0],
one may UGLerthE®% Chelsyshev (Mean, Sd) UBLthe97.5% Chebyshev
(Mean, Sd) UClor the95% Chebyshev (Mean, Sd) U@_.compute the EPC term
depending upon the size af n

1 UCLs computed usingkeremely skewed nonparametric data sets witxceeding 3.0
provide poor coverag®r thr population mearor such highly skewed data
distributions, none of the methods considered provide the specified 95% coverage for the
population mearg,. The coverages provided by the various methods decasése
increaseskor such data sets of sizes less than 30, al96%can be computed based

upon Hall 6s b datstap methpdHme tt Hed borot strap met h

highest coverage (but less than 0.95) when the sample size islsinalbtedthat the
coverage for the popul ati onboostrapmmetippd)ovi de d
does not increase much as the sample sjzecreasesHowever, as the sample size

increases, coverage providedthg 99% Chebyshev (Mean, Sd) U@lethod also

increases. Therefore, for larger samplédCa should be computed based upgba99%
Chebyshev (Mean, Sojethod Large sample size requirement increasel ascreases

Recommendations are summarized il€-5.
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Table 2-5. Summary Table for the Computation of a 95%dJCL of the Unknown Mean,1;, Based Upon a Skewed Data Set

(with all Positive Values) without a Discernable Distribution, WherelE is the sdof Log-transformed Data

ﬂE Sample Size, n Recommendation
[‘E<o,5 For all n Studentdés t HUGlbdi fied t
050 IE <1.0 For all n 95% Chebyshev (Mean, Sd) UCL
1.00 IE <15 Foralln 95% Chebyshev (Mean, Sd) UCL
ez n<20 99% Chebyshev (Mean, Sd) UCL
1508<20 -
20 n0O 95% Chebyshev (Mean, Sd) UCL
n<10 Hal |l 6s bootstrap meth
s0o0fE<25 100n<20 99% Chebyshev (Mean, Sd) UCL
20 nd50 97.5% Chebyshev (Mean, Sd) UCL
50 n0 95% Chebyshev (Mean, Sd) UCL
n<10 Hal | 6 $rapimetimd s
e 100n<30 99% Chebyshev (Mean, Sd)
2500c<30 S
30 n©70 97.5% Chebyshev (Mean, Sd) UCL
70n0 95% Chebyshev (Mean, Sd) UCL
n<15 Hal |l 86s bootstrap meth
= 15 né50 99% Chebyshev(Mean, Sd) UCL
3. 0kk® 3.5 :
50 n©100 97.5% Chebyshev (Mean, Sd) UCL
100n O 95% Chebyshev (Mean, Sd) UCL
LTE > 3_5** For all n 99% Chebyshev (Mean, Sd) UCL
*'f Hall 6s bootstrap method yiel ds anoutkersarat i ¢

present), &JCL of the population mean may be computed based upd@P#ieChebyshev (Mean, Sd)
method.

** For highly skewed data sets with exceeding 3.0, 3.5, it is suggested tom@cess the data. It is

very likelythat the data consist of outliers and/or come from multiple populations. The population
partitioning methods may be used to identify mixture populations present in the data set. For defensible
conclusions, the decision statistics suctJ&i 95should be omputed separately for each of the

identified sulbpopulation.

2.5.2 Summary of the Procedure to Compute a 95% UCL of the Unknown Population Mean,
K1, Based Upon Full Data Sets without Nondetect Observations

1. The first step in computing@b5% UCLof a popuation arithmetic mean,, is to perform
goodnesmf-fit tests to test for normality, lognormality, or gamma distribution of the data
set under studyProUCL has three methods to test for normality or lognormality: the
informal graphical test based upon &Xlot, the Lilliefos test, and the Shapiilk W
test ProUCL also has three methods to test for a gamma distribution: the informal
graphical QQ plot based upon gammaantiles, the KolmogorosEmirnov (K-S) EDF
test, and the Andersdbarling (A-D) EDF test.
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ProUCL generies aquantilequantile(Q-Q) plot to graphically test the normality,
lognormality, or gamma distribution of the datere is no substitute for graphical
displays of a data sédn this graph, a linear pattern (e.g., with high correlation such as
0.95 orhigher) displayed by bulk of data suggests approximate normality, lognormality,
or gamma distributiorOn this graph, points well separated from the majority of data
may be potential outliers requiring special attentidso, any visible jumps and breaks

of significant magnitudes on aQ plot suggest that more than one population may be
present. In that case, each of the populations should be considered sefdratédya
separate EPC term should be computed for each of the populations

It is, theefore, recommended to always use the graphie@l@ot as it provides useful
information about the presence of multiple populations (e.g., site angrbaokl data

mixed togetherpr outliers. Both graphical @ plot and formal goodnesd-fit tests

shout be used on the same data set before determining the distribution of the data set
under investigation. A single test statistic such as the Shdfilkatest (A-D test or some
other GOF test) may lead to the incorrect conclusion that the data are ngamally

gamma) distributed even when tharemore than one population present. Only a
graphical displaysuch as an appropriate@ can provide this kind of important

information. Obviously, when multiple populations are present, those should be separated
out and the EPC terms (thECL9) or other estimates (e.g., BTVs) should be computed
separately for each of those populations. Therefore, it is strongly recommended not to
skip the GOF tests option ProUCL 4.00.05Since the computation of an appropriate

UCL depends upon data distribution, it is advisable that the user should take his time
(instead of blindly using a numerical value of a test statistic in an effort to automate the
distribution selection process) to determine the data distrib@mth. grapical (e.g., Q

Q plots) and analytical procedures (Shapinilk test, KS test) should be used on the

same data set to determine the most appropriate distribution of the data set under study.

. After performing the goodness-fit test, ProUCL informs theser about the data

distribution: normal, lognormal, gamma distribution, or a-dmternable distribution.

For a normally distributed (or approximately normally distributed) data setsénrasu
advi sed t o -distsibetiortbasedd@ oftthersea b . S tt-distributiand s
(or modified tstatistic) may also be used to compute the EPC term when the data set is

symmetric (e.g. I% is smallerthan 0.20.3) or mildly skewedthat is when( or & is

less than 0.5.

For gamma distributed (or approximately gamma distributed) data sets, the user is
advised to: use the approximate gamus@l for EO 0.5 ; use thHJEL adjust e

for I5<(15;L©ethebootstrapmethod (or Ha | 1§ <04 anchthe hod) wh

sample sizen < 15; and use the adjusted gamd@L (if available) forlE < 0.1 and

sample sizen 18 If the adjusted gammdCL is not availablethen use the

approximate gammidCL as an estimate of the EPC tetmthe casethat thebootstrap t

met hod or Hall 6s b oo tsftateddPL (eme wheroodtliessiare | d s arn
present) result, thdCL should be computed using the adjusted gatd@h (if

available) or the approximate gami&L.



6. Forlognormal data sets, ProUCL recommends (as summarized in Tébtergethod to
estimate thé&PC term based upon the sample size and standard deviation ofthe log
transformed datalt. ProUCL can computerneH-UCL of the mean for samples of size
up to 1000Nonparametri¢JCL computatdbn methods such as the modifie@€LT
metod, adjustedCLT method, bootstrap and jackknifeethods are also included in
ProUCL However, it is noted that nonparametd€Lsbased upon most of these
methods do not provide adequate coverage to the population mean for moderately skewed
to highly skeved data sets (e.g., Singh and Sirgf03).

A ProUCL computes and outputs-gthtistic based UCLs for historical reasons
only. H-statistic often results in unstable (both high and low) values of UCL95
It is therefore recommended to avoid the use dftddstic based 95% UCLs.
Use of nonparametric methods is preferred to compute UCL95 for skewed data
sets which do not follow a gamma distribution.

7. For data sets, which are not normally, lognormally, or gamma distributed, a
nonparametritJCL of the mean baskeupon the Chebyshev inequality is preferred. The
Chebyshev (Mean, Sd) U@bes not depend upon any distributional assumptions and
can be used for moderately to highly skewed data sets which do not follow any of the
three data distributions incorporateddroUCL.

8. It should be noted that for extremely skewed data sets (e.g.tﬁ/\éﬂteeding R), even
a Chebyshev inequaliyased 99%JCL of the mean fails to provide the desired
coverage (e.g., 0.95) of the population me&amethodto compute the EPC term for
distributionfreedata sets is summarized in Tabig.2t should be pointed out that the
casethatHal | 6 s bootstrap method appears to yiel
happens when outliers are present), the @¥bysheWJCL may be used as an estimate
of the EPC term.

9. For highly skewed data sets with exceeding 3.0, 3.5, it is suggested to-jprecess the
data. It is very likely that the data consist of outliers and/or come from multiple
populations. The population partitioning methods may be used to identify mixture
populations present in the data set. For defensible conclusions, the decision statistics such
as EPC termshould be computed separately for each of the identifieghgpblaton.
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Chapter 3

Estimating Background Threshold Values or Establishing Site-
Specific Background Concentrations Using Full Data Sets
without Nondetect (ND) Observations

3.1 Introduction

Often in environmental applications, sgpecific background levelontaminant concentrations are

needed to compare site concentrations (e.g., both before and after some remediation activities) with
background level contaminant concentrations, also called as background statistics or background
threshold values (BTVs). Tee BTVs are computed based upon the sampled data collected from-the site
specific background as determined by all interested parrigading the potentially responsible parties,
local, and federal government agencies. Many times, intermediate orrerngdiation decisions at a
polluted site are made after performing such background versus site comparisons. A site observation
exceeding a BTV can be viewed as coming from a contaminated area of the site undérisfudy
therefore, important that thebackground statistics be computed using appropriate background data sets
and defensible statistical methods. Some minimum sample size requirements (e.g., sampie®ire >8
estimate the BTVs based upon background data sets have been discussed irl ©h#uteguidance
document. Chapter 1 also discusses situations when it may be appropriate to perfehy jpaoint site
observations (preferably composite samples) comparisons with BTVs or with scestgblished

threshold values. Specifically whewt more than 4 site observations need to be compared individually
with estimated or prestablished BTVs, one may compare pdaiyipoint site observations with BTVs

and other threshold values. If more thahB(preferably more) site observations arailable, then it is
preferable to use single sample hypothesis (in case BTVs aestalidished) otwo-samplehypothesis

(in case BTVs need to be estimated using background data) testing approaches to perform site versus
background comparisons. This ctepdescribes statistical limits that may be used to estimate the BTVs
and other neto-exceed values for full data sets without any nondetect (ND) observations. Statistical
limits based upon data sets with nondetect observations are discussed in Cl@@imaptdy 6 discusses

the various single sample atwilo-samplehypotheses testing approaches for data sets with and without
NDs as incorporated in ProUCL 4.0.

It should be pointed out that the availability of background statistics as discussed iapités &h

particularly useful when individual site observations from impacted areas of the site (perhaps after some
remediation activities) are compared with some BTVs to determine if enough remediation (at the
impacted areas of the site) has been perforyieding remediated site concentrations which are
comparable to background level concentrations. This method of site versus background comparisons is
also useful when not enough site data are available to pamarsamplecomparisons such as theest

or the nonparametric Wilcoxon Rank Sum (WRS) test. Moreover, in practice, during remediation
activities, it is desirable to compare each individual site observation (collected during remediation phase)
with some predetermined or estimated backgrodegel threshold value(sjsomeimes preestablished
screening levels are used as estimates of background threshold values. However, intheseiBd Vs

need to be estimated based upongiecific background (or reference) data sets collected using
approprate sampling methods and data quality objectives (DQID%3 chapter describes procedures,

which can be used to compute relevant background statistics based upon an appropriate background data
set without any nondetect observations. Methods to estima®TVs based upon data sets with NDs are
described in Chapter 5 of this Technical manual.
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When enough site and background data are available, it is recommendetino-ssmpletests (itest,

WRS testetc) to perform background versus site comparssBarametric and nonparametric procedures
(hypotheses testing) can be used to compare the measures of central tendencies of the two populations
(background versus site) when enough detected data are available from the two populations under
considerationHypothesis testing approaches to perform site versus background comparisons are
discussedn Chapter 6 of this Technicalilance document.

This chapter (and also Chapter 5) deals with the computation of background statistics (BTVs) when it is
known/assured that the underlying data set does represent a sample collected from sepecsie
background area(s). That is, it is assumed a priori that all of the observations (at least most of them) come
from a single background population. However, sinceearsthre inevitable in most environmental
applications, some outliers may also be present in a background data set. These outlying observations
need to be identified before computing the background statistics as outlierspresendistort all of

the gtatistics of interest (such as background statistics), which in turn may lead to incorrect remediation
decisions for the site under study. The inclusion (or exclusion) of outliers in a background data set needs
to be justified before performing other reden statistical analyses. All interested parties should be

involved in such decision making to determine the inclusion or exclusion of outliers in a background data
set. The proper identification of multiple outliers is a complex issue and is beyondpeeo$this

document. A brief description of outlier identification is given in Sectioh douple of outlier tests as
incorporated in ProUCL 4.8re given in Chapter 7 of thig€hnical document. Some discussions about

the disposition of outliers are ptided in Chapter 3 of the revis&@lidance for Comparing Background

and Chemical Concentrations in Soil for CERCLA SiE2A, 2002b).

A more complicated problem arises when the data set under study represents a mixture sample, which is
inevitable in manyenvironmental applicationfn these cases, the data set under study may consist of
samples from the background areas as well as from various areas of the site under study. In this situation,
first one has to separate the background observations fromsigtheelated observations. After the
background data set has been properly identified, one can proceed with the computation of background
statistics as presented later in this chapter. However, separation of background data from a mixture
sample is notrmeasy task. Using the population partitioning techniques, statisticians (e.g., see Singh,
Singh, and Flatman, 1994) have developed some background separation methods from mixture samples.
However, the topics of population partitioning and the identificedf a valid background data set from

the mixture sample are beyond the scope of ProUCL 4.0 and this guidance dotiumeunites

developing a separate chapter, which will deal with the population partitioning methods including the
identification of a alid background data siEbm a mixture sample. Througtt this chapter, it is

assumed that one is dealing with a sample from a single population representing a va&ligtside

background data set

Thefirst step in establishing sigpecific backgrouth level conaminant concentrations for sitelated

hazardous analytes is to perform background sampling to callegtpropriate number oamples from

the designated sigpecific background areas, perhaps using the input from experts and persoriial fami

with the site operations and history. An appropriate DQO process should be followed tcacollect

adequate number of background samples. Once the adequate amount of data has been collected, the next
step is to determine the data distribution. Thiypscally done using exploratory graphical tools as well

as formal goodnessi-fit tests These tests are described in several environmental documents (EPA 2006,
ProUCL 2004, and Navy documents 1999, 2002a, 2002bydition to graphical displays, Proud@L0

has goodnessf-fit (GOF) tests for normal, lognormal, and gamma distributions
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Once the data distribution of a background datshas been determined, one can use parametric or
nonparametric statistical methods to compute background statistresaSepper limits have been
incorporated in ProUCL 4.0 that may be used as estimated of BTVs and otteeeroeed values. A

review of the environmental literature reveals that one or more of the following statistical limits are used
to compute the bagkound statistics; that,ito determine background level contaminant concentrations,
BTVs. The BTVs are called upper background cutoff levels.

1. Upper mrcentiles

2. Upper predictionimits (UPLs)

3. Upper tlerance limits (UTLS)

4. 1QR Upper Limit (upper end dhe upper whisker i boxand whiskemplot)

Depending upon the background data distribution, the background upper limits listed above can be
computed by using parametric methods based upon probability distributions (e.g., hormal, lognormal, or
gamma) oby using nonparametridistributionfre€) methodsThe background limits listed above are

often used as background threshold values to compare individual site observations with background level
contamination. Typically, a site observation (possibly bageah composite samples) in exceedance of a
background threshold value can be considered as coming from a contaminated site area that may have
been impacted by the sitelated activities. In other words, such a site observation may be considered as
exhibiting some evidence of contamation at the site due to sitelated activities. In case of an

exceedance of the BTV by a site location, some practitioners like to verify the possibility of contaminated
site location by resampling that location, and comjyay the sample value with the BTV.

The background threshold values are used when not enough site data (©.ghsedvations) are

available to perform traditionalvo-samplecomparisons (e.gsttest , Wi Il coxon Rank Sum
test etc) as desgbed in Chapter 6 of this document. In the absence of adequate amount of site data,

individual pointby-point site observations have to be compared with some BTVs to determine the

presence or absence of contamination due to site related actiMitiesrethod of comparing site versus
background level contamination is particularly helpful to use after some sort of remediation activities

have taken place at the site; and the objective is to determine if the remediated site areas have been
remediated enougdio the background level contaminant concentrations. A brief discussion of

identification and disposition of outliers is considered first.

3.2 Treatment of Outliers

While computing reliable background statistics, it is essential that one is dealing imigihegp®pulation
representing site background without potentially impacted observations (oulllees}fore, a brief

discussion on this topic is presented in this section. As well known, outliees presentypically

represent observations from diat populations(sperhaps contaminated observations from the site

under study. Outliers distort alf thestatistics of interesincludingthe sample mearthe sample

standard deviation, apdonsequentlythe parametric percentiles, and various ugpmits such as UPLs,

UTLs, and UCLs. It is noted that nonparametric upper percentiles are often represented by higher ordered
statistics such as the largest value or the second largestinahecase of extreme high observations,

these higher orderatistics may be outlying observations representing contaminated observations from

the site (e.g., a large Federal Facility) under sthdyisions made based upon outlierslistorted
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statistics can be incorrect and misleading. Therefore, special attshtiald be given to such outlying
observations.

If justified, that is if some outliers do represent observations from the contaminated areas of the site, then
those observations should not be included in the computation of.Bhissdecision should ke team

effort to determine whether notan identified outlier does represent an observation from the

contaminated part of the site. Such an outlying observation should not be part of the background data set
Specifically, such an observation should & used in the computation of background statistics. All
interested parties should be involved in making such decisions. Several classic8@&®4and robust

(Singh and Nocerind 995) statistical procedures are available to identify multiple outRerisust and

resistant outlier identification procedures are beyond the scope of ProUCL 4.0. In environmental
applicatiors (EPA, 2006 and Navy2002a, 2002b), classical procedures are used to identify outliers. A
couple of those classical outlier tests available in ProUCL 4.0. As mentioned before, classical outlier
procedures suffer from masking effects as they get distorted by the same outlying observations that they
are supposed to find! It is suggested to use robust and resistant statistical psaceidiergify multiple

outliers. Several robust outlier identification procedures are available in Scout (EPA, 1999) software
package, which is currently under revision and upgrade. It is recommended to supplement the use of
classical and robust proceduseish graphical procedures such as box plgtantilequantile(Q-Q)

plots.

Note: It should be noted that the methods as incorporated in ProUCL 4.0 can be used on any data set
(with or without nondetects) with or without the potential outli§ecifially, it should not be

misunderstood that ProUCL 4.0 is restricted to be used only on data sets without outliers. It is not a
requirement to delete or omit the outliers before using estimation, UCL95, and various other limits
computation methods (e.g., KRACA) UCL, MLE) as incorporated in ProUCL 4.Dhe fact of the matter

is that the user should be aware of the fact that the inclusion of a few outliers in the computations of these
statistics may yield distorted estimates, UCL95, UPLs, UTLs, and varioeisstatisticsTherefore, for

more accurate and reliable statistics and results, the authors of this Technical Guide recommend that
whenever justified, the low probability outlying observations (often coming from different population(s))
should not be inoded in the computation of the statistics used in the various decision making processes.
The statistics (e.g., upper limits) of interest should be computed using the majority of the data set
representing the dominant population (e.g., an AOC, a backgrargaj. The outlying observations

should be separately investigated to determine the reasons for their occurrences (e.g., errors or
contaminated locationslt is always a good practice to compute the statistics with and without the
outliers, and comparéhe potential impact of outliers on the decision making processes.

Througtout this chaptery, X, ... ,X, represent the background concentrations for a contaminant of
potential concern (COPC) collected from some-sjitecific background or referenceear The objective

is to estimate a BTV based upon this data set. The sample values are arranged in ascending order. The
resulting ordered sample (called ordered statistics) is denoted ®x.) ¢ ... ¢ X. The ordered

statistics are often used asnparametric estimates of upper percentiles, upper prediction limits (UPLS),
and upper tolerance limits (UTLs). Also, let In (x); i =1, 2, ... n, then y and s represent the mean

and standard deviatiosd) of the logtransfomed data. Some parametric and nonparametric upper limits
often used to estimate BTVs are described throughout the rest of this chapter.
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3.3 Upper p*100% Percentiles as Estimates of Background Threshold
Values (BTVs)

Some Navy documents (1999, 2002802b) suggest the use of thé"@pper percentiles dhe

background distribution as estimateslwbackground level threshold values (e.g., pages 46, 137 Navy
2002b). However, explicit parametric formulae for the computation of the@sentiles @ missing

from the Navy (e.g., 2002a, 2002b) documemizking it difficult for a typical user to use the 95%
percentiles as estimates of BT\&nce these percentiles do represent a feasible method to compute
background threshold values, (one of the cibjes of the present document), for clarification,
computation of both parametric as well as nonparametric percentiles are briefly described as follows.

In most statistical textbooks (e.g., Hogg and Cra@9s), the B (e.g.,p = 0.95) sample percetat (of the
measured sample values) is defined as that vﬂus,uch thap100% of the background dadat lies at

or below it The carat sign oveq, indicates that it represents a statistic (an estimate @"thepulation
percetile) computed based upon the sampled data.

3.3.1 Nonparametric p*100% Percentile

It is quite simple to compute a nonparametric 95% percentile of a backgroursgdditahould be

pointed out that such nonparametric sample percentiles (far<€lxcamot exceed the maximum value

in a background data sd@these nonparametric 95% percentiles may be used when the background data
(raw or transformed) do not follow a normal or a gamma distribution at some specified £e0g05,

0.1) level of significane.

It is noted that, the practitioners compute these nonpararp8piercentiles quantiles) in more than one
way. Some users compute th8 using thepn™ order statistic, which may be a whole number between 1
andn or a fraction lying between 1 amd For example, ih = 20, andp = 0.95, then 20*0.95 = 19, thus
the 19" ordered statistic represents the 95% percentite=I1L7, andp = 0.95, then 17*0.95= 16.15, thus
the 16.1% ordered value may be used as an estimate of the BTV. Thé"tBd5al value lies between
the 16" and the 1% order statistics and can be computed by using simple linear interpolation given by

Xa6.15= Xae) T 0.15 Ku7) - Xas))- (3-1)

It is noted that some other users computeptheonparametric percentile lige order statistic given by
the pn+0.5)" order statistic, while others compute fiftnonparametric percentile by the order statistic
given by the g*(n+1)) ™ order statistic. In any case, if for a given valug,ahe resulting number,
(p*(n+1)) exceeds, then thap™ percentile is estimated by th& order statistic, that is by the maximum
value. In ProUCL 4.0, thg" nonparametric percentile is estimated by(fgn-1)) " order statisticAs
mentioned above, if the number computed in n@hale number, then the percentile is computed using
the linear interpolation illustrated in equatiol 3rhis formula is used on data sets with and without ND
observationsDifferent software packages (e.g., SAS, MINITABicrosoft Excel) use different fanulas

to compute nonparametric percentiles and as a result yield different values for percentiles.

Note: Earlier versions of ProUCL 4.0 (versions 4.00.01, 02, 03 and 04) p&@ui(L))" order statistic.
3.3.2 Normal p*100% Percentile

The computation ofiormal upper percentiles has been considered next.dérspute the sample mean,
X , and standard deviatiosd), s, using a defensible (e.g., outliers, multiple populations, mixture
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populationsarenot allowed) background data setiwout the outliers. For normally distributed data sets,
the p*100" sample percentile is given by the following statement.

£ =X+sZ, (3-2)

Here zis thep*100™ percentile of a standard normal, N (Qdistribution, which means that thaeea

(under the standard normal curve) to the left,aé p. If the distributions of the site data and the

background data are comparable and similar (meaning no contamination due to the site related activities),
then an observation coming from a popiolate.qg., site) similar (comparable) to that of the background

population should lie at or below tp&100% upper percentile}Ep , with probabilityp. Thus, the 95%

percentile given by the above equation @fer 0.95 or 0.99) may aldee used as an estimate of the
background threshold value when the background data are normally distributed.

3.3.3 Lognormal p*100% Percentile

To compute the™ upper percentilefp , of a lognormally distributed data set, the sammpéan, y , and

standard deviatiors()), s, of log-transformed data are computed first using a defensible background data
set without outliers. For lognormally distributed data setspth@0" percentile is given by the following
staement,

£, =expy+s,z,), (3-3)

where, as before, s the uppep*100" percentile of a standard normal, N(Qdistribution. A 9%'
percentile given by the above equation may be used as an estimate of the BTV for a COPC when the
background dat are lognormally distributed.

3.3.4 Gamma p*100% Percentile

Sincethe introduction of a gamma distribution, K §), is relatively new in environmental applications
(e.g., Singh, Singh, and laci 2002), a brief descriptich@§jamma distribution is gen first. The
equations giving the maximum likelihood estimates (MLEghefjamma parametgrk (= shape
parameter) ang (= scale parameteryan be found in Singh, Singh, and laci (2002) and alsiwein
ProUCL 3.0Technical GuidéEPA, 2004) A randomvariable (RV), X (e.g., Aroclor 1254
concentrations¥ollows a gamma distribution, &,g), with parameterk > 0 andg > 0, if its probability
density function is given by the following equation:

1 1ex
f(xk,d) = G0 xktg e x>0 3

=0 otherwise

The mean, variance, asilewness of a gamma distribution are givgnriean= p = kq, variance= s*=

kgf, andskewness =2/ JK . Note thatask increasesthe skewness decreases, aoohsequentlya
gamma distribution starts approaching a normal distributiotafger values ok (e.g.,k? 6 - 8).

Let IE and Lﬁ represent the maximum likelihood estimates (MLES) afid grespectivelyNote the
relationship between a ehguare and a gamma distribution. Specificaltgrelationship between a
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gamma I/, X = G (K, g), and a chsquare RVY, is given by X =Y *g/2, where Y follows a chsquare
distribution with X degrees of freedonThus, the percentiles of a ebduare distribution (as programmed

in ProUCL) can be «=l to determine the percentiles of a gamma distribution. In prakteesplaced by

its MLE. Thus, oncemU* 1 00 % p eqokarchidquare distrijpution withkdegrees of freedom

is obtained, the U*100% percentile for a gamma

Xa=VYa*ql2 (3-5)

3.3.5 Example 1

Consider a sitspecific backgroundata set associated with a Superfund $ite data set has several
inorganic contaminants of potential congentluding aluminum, arsenic, chromium, and |€Bide
computation of background statistics obtained using ProUCL 4.0 are summarized inripteeXde
complete data set is given in Appendix 5 of Gwidance for Comparing Background and Chemical
Concentrations in Soil for CERCLA Si{g&PA, 2002b).

3.3.5.1 Normal Percentile

Using the ShapirdVilk test as incorporated in ProUCL, it is determitteat aluminum follows a normal
distribution at 5% significance levé@lhis can also be seen from theQlot as given in Figure-38.

Since the data set follows a normal distribution, a normal 95% upper percentile may be used as an
estimate of the BTV. Tdnsample mean of aluminum data set is 7789.1667, the standard desjadion,
4263.8969, andyzs the upper 95% percentile of a standard normal distribLisadn6449 Thus normal
95% percentile for aluminum is:

£ . = X +57,.= 7789.1667 + 453.8969 * 1.6449 = 14808507

Normal Q-Q Plot for Aluminum Aluminum
17000.00 N=24

Mean = 7789.1667
Sd = 4263.8969

Slope = 4298.3334
Intercept = 7789.1667
Correlation, R = 0.9757
Shapiro Wilk Test

Test Value = 0.939
Critical Val(0.05) = 0.916
Data appear Normal
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Figure 3-1. Shapiro-Wilk Normal Distribution Test for Aluminum
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3.3.5.2 Lognormal Percentile

Using ProUCL 4.0, it is determined that chromium concentrations follow a lognormal distribution at 5%
level of significanceThis can also be seen from the chromiur@QQ@s given in Figure-3. The sample
mean and standard deviation of the-toansformed data arg = 2.3344, and,s= 0.5678. Thus the 95%

upper percentile for chromium is given by the followingi&iipn:

-

%05 = P +S,Z005) = EXPER.3344 + 0.5678 * 1.643¢ 2626868

Lognormal Q-Q Plot for Chromium Chromium
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Figure 3-2. Shapiro-Wilk Lognormal Distribution Test for Chromiu m

3.3.5.3 Nonparametric Percentile

Using ProUCL, it is determined that Lead (Pb) concentrations do not follpwfahe known
distributions as incorporated in ProUCL 4.0. Therefore, an upper nonparamBtpier88ntile may be
used as an estimate of the BTV for lead concentratto®5% nonparametric upper percentile is given
by the 0.951" order statistidor n=24,

95% Upper Percentile Xo.om) = Xp2.8) = X22) T 0.8K(23) - X(22))-

The value forx, is 53.3 and forx,s is 98.5.Thus, a 95% Upper Percentile = 53.3 + 0.8 * (9833.3)
= 89.46.

3.3.5.4 Gamma Percentile

Using ProUCL, it is determad that Arsenic (As) concentrations follow a gamma distribution. The
gamma QQ plot displaying Andersebarling test statistic is given in Figure33
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The biascorrected MLE fok is 3.6616 and the bisrrected MLE ofgis 0.5867 The 95% percentile

for a chisquare distribution with degrees of freedaf) QIE isy, = 14.5362Using these values, one can
derive the 95% gamma percentile as follows:

Xo=Yo* gl 2=(14.5362 * 0.5867) / 2 = 4.2643.
It is noted that arsenic conceations also follow a lognormal distributiofiherefore, for comparispn

several upper percentiles are tabulated as followsible 31. This also includes the normal percentile
even though arsenic does not follow a normal distribution.

Gamma Q-Q Plot for Arsenic Arsenic

570 Mean = 2.1483
kstar = 3.6616

Slope = 10368
Intercept = 0.0672
Correlati 0.9803

Test St L
Critical Value(0.05) = 0.748
Data appear Gamma Distributed

Ordered Observations

P S S R I R R ORI

Theoretical Quantiles of Gamma Distribution

-+ Arsenic

Figure 3-3. Anderson-Darling Gamma Distribution Test

Table 3-1. 95% Percentiles for Arsenic

Distribution 95% Percentile
Normal 4.0564
Gamma 4.2643

Lognormal 4.3877
Non-discernable 3.7000

The 1989 RCRA document is one of the early EPA guidance documents. Thed®CiRAent talks

about the use of both 95% UTLs and 95% UPLs to determine the presence or absence of contamination in
compliance wellsThe UPLs or UTLs are computed based upon the background data sets (e.guupstre
data, upgradient wells, sispecific lackground). Compliance well observations (or site data) are then
compared with the background well (or background data) UTL or UPL. An exceedance in compliance

well may suggest some evidence of contamination in that well. Similar arguments can be made when
comparing concentrations of soil samples from an impacted site area with sespesitie background
concentrations.
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In 1992, EPA upgraded the 1989 RCRA document and came up with its addendum. This 1992 addendum
also talks about the use of UTLs and WRis estimates of background level threshold values. The 1992
addendum modifies the formula for 95% UTL as givethsn1989 RCRA document (page 5hapter

4). The multipliersk (used to compute a 95% UT,3s given irthe 1989 documentare meant to prade

at leas95% coverage. The 1992 addendum states that, in practice, the use of thig,fastgiven in

Table 25 ofthe 1989 documeniprovides 98% (and not 95%) coveraghis is especially true when one

is dealing with samples of small sizes. $hthe use of factok (to compute a UTL)as described aboye

may result in more false negatives (larger background statistics), which is not protective of the
environment and human health. Therefore, a modified multiplier, which is the same as th®pradit
multiplier, has been suggested in the 1992 RCRA addendum. In the 1992 addendum, it is stated that this
modified multiplier will on theaverageprovide the specified coverage 5% here).

However, it desirable that these statements aboubtheer age 6s provi ded by t he 9F
UPLs be verified by Monte Carlo simulation experiments. As mentioned before, BTVs are often used to

make remediation decisions at polluted sites. Therefore, these BTVs should be computed using defensible
statisti@al procedures. This section describes the computation of UTLs as well as UPLs. Both parametric

as well as nonparametric UTL and UPL computation procedures have been summarized in the following
sections.

3.4 Upper Tolerance Limits

For many environmental plications such as the groundwater monitoring applications, an upper
tolerance limit (UTL) is often used to provide appropriate coverage for a prop@&ofe.g., 80%, 90%,
95%, coverageetc.) of future observations with confidence coeffici¢hi U )It should be noted that an
upper tolerance limit ith confidence coefficient, (L U )covering a proportion qi% (p is also called the
coverage coefficientpbservations simply representli U )00% upper confidence limit of thp&'
percentile othe population under study (here the background population).

3.4.1 Normal Upper Tolerance Limits

First, compute the sample meax, and standard deviatiors@), s, using a defensible (e.g., outliers,
multiple populations, mixture pofations not allowed) background data set without the outliers (e.g., see
Example2 below). For normally distributed data sets, an ugpérU ) 1 Oddefance limit with tolerance

or coverage coefficient g(that is providing coverage to at le@d00% proportion of observations) is

given by the following statement.

UTL= X+K*s (3-6)

Here K =K (n, U p) is the tolerace factor and depends upon the sample sjzmnfidence coefficient =

(17 U), and the coverage proportiorp=The UTL given by the above equation represerfisiad) 1 0 0 %
confidence interval for thg" percentile of the underlying normal distributioifhe values of the

tolerance factorK, have been tabulated extensively in the various statistical books (e.g., Hahn and
Meeker 1991)ThoseK values are based upon roantral tdistributiors. Also, some large sample
approximations (e.g., Natre)l2963 are available to compute tKevalues for onesided tolerance

intervals (same for both UTLs and lower tolerance limit). The approximate vakies @flso a function

of the sample siza, coverage coefficienp, andthe confidence coefficient, {10). In the ProUCL 4.0
software package, the valueskofor samples of size$ 30, as given in Hahn and Meekdave been

directly programmed. For sample sizes larger than 30, the large sample approxjraatgivisn in

Natrella (1963)have been used tmmpute th&K valuesT he Natr el | ads approxi mat.i
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well for samples of sizes larger than 30 (Hahn and Meeker 1991). The program, Pseg@k to work
well to compute thesk values for sample of sizes as large as 5@@0€ven larger).

3.4.2 Lognormal Upper Tolerance Limits

The procedure to compute UTLs for lognormally distributed data sets is similar to that for normally
distributed data sets. First, the sample mgamnd standard deviationd), s, of thelog-transbrmed

data are computed using a defensible unique background data set without outliers. Ahuppbgrl 0 0 %
tolerance limit with tolerance or coverage coefficiemt @&hat is providing coverage to at legst00%
proportion of observations) is given betfollowing statement.

UTL = exp(Y+K*s,) (3-7)

Note thatjust as for the normal distribution, the UTL given by the above equation represents a

(17 U) 1 oconfidence interval for thg™ percentile of the lognormal distribution. TKefactor used to
compute the lognormal UTL is the same as the one used to compute the normal UTL. It should be noted
that just as the upper confidence limits (UCLSs) for the mean of lognormally distributed populations, the
UTLs based upon lognormal distributioae typically higher (sometimes unrealistically higher as shown

in the following example) than other parametric and nonparametric UTLs. The use of a lognormal UTL to
estimate the BTV should be specifically avoided when skewness is higlsdabloggeddata > 1, 1.5)

and sample size is small (e.g., < 30, 50).

3.4.3 Gamma Distribution Upper Tolerance Limits

Positively skewed environmental data can often be modeled by a gamma distribution. ProUCL software
has two goodnessf-fit tests (AndersoiDarling test and Kolmogoradmirnov test) to test for gamma
distribution.UTL obtained using normal approximation to the gamma distribKoashnamoorthyet.

al., 2008)has been incorporated iRroUCL 4.00.05Those approximationarebased upoiVilson-

Hilferty - WH (1931) and Hawkin&Vixley - HW (1986) approximation A brief descriptiorof the

procedure to compute such UTissgiven as follows.

Let x5, X,, B, representa data set of size n from a gamma distribution with shape parameter, k and
scale parametef .

f  According to WH approximatiorihe transformationy = X follows an approximate normal
distribution.

f  According to HW approximatiorihe transformationly = X** follows an approximate normal
distribution.

y ands, are the mean and standard deviation of the observations in the transformed scale (Y)

Using the WH approximation, the gamma UBdsed upon a sample of size n (in original scaleisX),
given by:

UTL = max( 0(y+K *sy)g) (3-8)

Similarly, usng the HW approximation, the gamma UTL in original scale is given by:
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uTL= (y+K*s)’ (3-9)

Here K is defined earlier in (3.6) while computing UTL based upon normal distrib ution
3.4.4 Nonparametric Upper Tolerance Limits

The mmputation of nonparametric UElis somewhat messy as it is based upon binomial cumulative

probabilities and order statistics. Just like parametric UTLs, a nonparametric UTL providing coverage to

p100% observations wittpnfidence coefficientGC) (17 U )00%represents afli U) 1 Ouppkr

confidence limit for theo™ percentile of the population under stugyso, the nonparametric UTLs (given

by order statistics) cannot exactly achieve the sgetfonfidence coefficient, {10 ) . I n most case
only anapproximate confidence coefficient can be achieved by nonparametric UTLs. One has to be

satisfied with the adevable confidence coefficiemihich is as close as pokk to the specified CC of

(1-U) . Thus, an appropr i at @erdgdforthe"percertle aseloscashi ch pr o
possible to the specified confidence coeffici¢ht, U )Based upon binomial cumulative probabilities,

the algorithms to compute nonparametric UTLs have been also incorporated in ProUCL 4.0 software.

It is noted that for simplicity and based upon professional judgment, 982 RCRA addendum

recommends the use of either the largest value or the second largest value for both UPL and UTL.
However, the use of the largest value as UPL (or UTL) may result in arstinexe, especially when

there is a possibility of the presence of potential outliers in the background data set. Therefore, to be
protective of the human health and the environment, it is preferable to use the second largest (or even a
lower order statigt) data value as a nonparametric UTLWWPL. Whenever, these higher order statistics
represent potential outliers (e.g., well separated from the majority of the data on a n@rpédt]) one

should avoid their use as estimates of the BTVs. The seladtibese higher (e.g., largest, second

largest) order statistics (as estimates of BTVs) also depends upon the sample size of the background data
set. Specifically, for smaller data sets, it is likely that the higher order statistics (largest, or the secon
largest) can be chosen to estimate the BAYmentioned eatrlier, in practice, a few high observations
(outliers) may represent contaminated observations (e.g., well separated from the majority of the data on a
normal QQ plot) and their selection shoulé avoided as nonparametric estimates of the BTVs.

It is alsonoted that the largest value is also used as an estimate of the BTV when a 95% UTL (especially
for lognormal skewed data sets) exceeds the largest value in a dktarsewer, when a backgund

UTL does exceed the maximum value in the background data set, it is quite likely that the maximum
value may represent an extreme value (perhaps from some impacted site area). The use of maximum
value can be avoided by using appropriate upper pereetlg., 95%) described earlier as estimates of
background values.

A brief description of the computation of nonparametric UTLs (confidence intervals for percentiles) now
follows. For details, the intere=tl readers are referred to Dagitd Nagaraja (03), Conover (1980),

and Hahn and Meeker (1991). The binomial distribution is usedthdtumber of trials = the sample

size, n, andhe probability of success = p (the proportion of observations for which coverage is being
sought). Using the cumulativ@nomial probabilities, a numbar. 1 ¢ r ¢ n, is chosen such that the
cumulative binomial probability:

i=r An8

a &P
?8

i=0

(L- p)™" becomes as close as possibl¢lto U ) Then, the™ order statistic, is picked as
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the (11 U)100% UTL providing coverage tp100% of the observations in the sample under study
(background data set here). This algorithm has been incorporated in ProUCL for samples of sizes up to
2000. ProUCL 4.0 also prints out the orderistiat the estimate of the UTlnd the associated coverage
provided (achieved) by that order statiskor larger samples, one can use the following approximation,
which has also been incorporated in ProUEdrn > 2000, a large sample normal approximation to the
binomial distribution can be used to obtain an upper confidence limit fpf"thercentile. The number:

1 ¢ r ¢ n, used to compute th& order statistics (to estimate the BTV) is obtainedagishe following

equation:

r=np+z, ,npl- p) +0.5 (3-10

3.4.5 Example 2: Computation of Upper Tolerance Limits

Using the background data set used earlier associated with a Superfund site, the computation of the
various parametric and nonparametric empjplerance limits have been illustrated in this example. To
illustrate the differences in the values of the UTLs as a function of the coverage coeffi¢icdiTLs

have been computed for four (4) different coverage coefficipttiss 80%, 90%, 95%, ar@b%.

3.4.5.1 Normal Upper Tolerance Limits

As noted earlier (Figure-B), aluminum concentrations follow a normal distribution. Therefore, the
various normal UTLs with coverage coefficienfs80%, 90%, 95%, and 99% are listed as follows.

95% UTL (80% cuerage) =X + K 4005089 * S= 7789.1667 + 1.331 * 4263.8969 = 13387.663
95% UTL (90% coverage) X + K 4005000 * S= 7789.1667 + 1.853 * 4263.8969 = 15690.168
95% UTL (95% coverage) X + K 4005005 * S= 7789.1667 + 2,309 * 4263.8969 = 176305

95% UTL (99% coverage) X + K 4005009 * S= 7789.1667 + 3.181 * 4263.8969 = 21362.623

3.4.5.2 Lognormal Upper Tolerance Limits

As noted earlier, chromium background concentrations follow a lognormal distribution. The 95% UTLs
based upon a lognmal distribution are given as follows.

95% UTL (80% coverage)exp (Y + K 24095080 sy) = exp(2.3344 + 1.331 * 5678) = 21.7583
95% UTL (90% coverage) X (Y + K 54005000 * S,) = €xp(2.3344 + 1.853 * 5678) = 29.5659
95% UTL (95% coverage) @XP(Y + K ;4005005 * S,) = €XP(2.3344 + 2.309 * 5678) = 38.3039
95% UTL (99% coverage) X0 (Y + K ;4005009 * Sy) = €Xp(2.3344 + 3.181 * 5678) = 62.8464

3.4.5.3 Gamma Upper Tolerance Limits

As noted earlier, Arsenic background concentrations follow a gamma distribution. %he 5 based
upon agammadistribution(usingWH and HWapproximatios) are given as follows.
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3
WH - 95% UTL (90% coverage) éy + Ky 0as00” s/) = (1.2549 + 1.853%0.2158F 4.5267

3

WH - 95% UTL (95% coverage) = (T + Ky o05009* S, = (1.2519 +2.309%0.2158)= 5.3822
4

HW - 95% UTL (90% coverage) = (¥ + Ky, a009 ¥ §,) = (11826+ 185301518 = 4.5923

4
HW - 95% UTL (95% coverage) = ()7 + K 09509 " sy) = (1.1826+ 2.309*01518* = 5.5244

3.4.5.4 Nonparametric Upper Tolerance Limits

Earlier, it was determined that the background lead concentrations do not follow any of the known
distributions as incorporated in ProUCL 4F0r lead, 95% UTLs based upon binomial cumulative
probabilities and ordestatistics are given in Bée 32. It should be noted that the resulting UTL might
not achieve the exact specified CC of 0.95.

Following the procedure described earlier, a 95% UTL with coverage coefficient of 80% is represented by
the 229 order statistic. The resulting UTL (¥drder statistic) covers about 80% of the observations (that

is 80% observations aflex2)) with a probability (confidence coefficient) of 0.967 (instead of 0.95)

95% UTL withacoverage coefficient of 90% is represented by tHed@8er statisticThe resulting UTL

(239 order statistic) covers about 90% of the observations (that is 90% observatidonggjevith a

probability (confidence coefficient) of 0.922 (instead of 0.95). Using order statistics, the actual achieved
confidence, (& a) is often different from the user requested confidence coefficient of BBSWCL 4.0

selects the order statistic that achieves the confidence coefficient closest to the user specified confidence
coefficient.

Table 3-2. Nonparametric Upper Tolerance Limits for Lead

Coverage Order Statistic Achieved
Coefficient (p%) Order Value Confidence (17 U)
80% X@2) 53.3 96.7%

90% X(23) 98.5 92.2%

95% Xea) 109 100%

99% X2a) 109 100%

Caution: Since nonparametric UTLs are given by order statistiesy effort should be made to make
sure that the chosen order statistic to estimate the BTV does not represent an outlying observation coming
from a population other than the background population.
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3.5 Nonparametric Upper Limit Based Upon Interquartile Range (IQR) i IQR
Upper Limit

Somdimes, an upper limit based upon the IQR of the background data set is used as an estimate of the
BTV. In this chapterwe denote this limit byhelQR Upper Limit. It is very simple to compute and is
briefly described belowl'he simple formula to compute IQR Upper Limit is:

IQR Upper Limit = Q3+ 1.5* IQR. (311

Here IQR = Q3 Q1, the interquartile range, the difference between the third (upper) quartiend)3

the first (lower) quartile, Qlof the background data sé@he quartiles of a data set are defined in most
applied statistical books (e.g., Hoaglin, Mosteller and Tukey, 1983). The three quartiles, Q1, Q2, and Q3
of a data set divide the data set into four (4) equal parts. Note that the second quartile répeesents
median of the data set. Th26% ofthedata lie at or below Q1, 50 thedata lie at or below Q2

(median), and 75% dhedata lie at or below Q3herefore 25% of thedata lie above Q3. Just like all

other limits described in this chapter, indival site observations are compared Wl QR Upper

Limit. Any site concentration exceeding the background level IQR Upper Limit may be considered
justification to considecontamination at the site. The computation of IQR Upper Limit has also been
incorporated in ProUCL 4.0 software package.

Note: The behavior ohn IQR-based limit as an estimate of a BTV is not well studied. Therefore, this limit
should be used with caution to estimate the BTVs etorexceed values.

3.5.1 Example 3: IQR Upper Limit

Sometimesin practice, a nonparametric upper limit based upon the interquartile range (IQR) of the data
set under study is used as an estimate of the background threshold value. Since lead does not follow any
of the parametric distributions as incorgerhin ProUCL, an upper limit based upon the IQR can be used

as an estimate of the BTV. This will require the use of the first quartilear@@ithe third quartile, Q3.

Here Q1 =8.7, Q3 =19, and

IQR =Q3-Q1=10.3
An estimate of the BTV based upd@R is given as follows.
IQR Upper Limit= Q3 +1.5* IQR =19 + 1.5 * 10.3 = 34.45
3.6  Upper Prediction Limits

As mentioned before, bothe 1989 RCRA document and its 1992 addendum suggest the use of upper
prediction limits (UPLs) as estimates of baakgnd level threshold values. If the background and site
contaminant distributions are comparable, then a typical site observation should lie below a 95% UPL
based upon a background data set with probability 0.95. A site observation exceeding the background
95% UPL can be considered as providing some evidence of contamination due to site related industrial
activities. Since a UPL does represent a plausible way of expressing background level contaminant
concentration, a brief discussion of both parametrigedbas nonparametric UTLs is presented in this
section.
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3.6.1 Normal Upper Prediction Limit
The sample meark , andthestandard deviatiors()), s, are computed first based upon a defensible
unique (e.g., outliers, multiple populati® mixture populations not allowed) background data set without

the outliers For normally distributed data sets, an upfsr U ) 1 Opfediction limit is given by the
following well known equation:

UPL = X+t 4 .y ¥ S¥/(L+1/N) (3-12)
Heret(, ,ypy i S @ cri tical -distributionwith (i d)rdegeesofdreedomd st

3.6.2 Lognormal Upper Prediction Limit

An upper(1i U) 1 Odgrérmal UPL is similarly given by the following equation:

UPL =exp(Y +t . o)y * S, *(@+1/Nn)) (3-13)

Heret(, ,y;ny 1l S @ cri ti cal -distribution with (i d)rdeg®esofdreedomd st

3.6.3 Gamma Upper Prediction Limit

Given a samplexs, Xo, g, of size n from a gamma, G(k,) distribution, approximatev(based upon
WH and HW approximations described earlier in Gamma Tolerance Limit Section)) Y1* 1 0 0 % uppe:
prediction Imits for a future observation from the same gamma distribution are given by:

o 3
Wilson-Hilferty (WH) UPL = maxgé)(yﬂ((l_a)’(n RN %) (3-14)
¢
4
HawkinsWixley (HW) UPL = (y ey S %) (3-15)

Heret(, ,y;mny i S @ cri tical -distributioa with (i d)rdeg®es ofdreedomo Isshauld
be noted that UPLs for the next k > 1 (k future observation) can be obtained similarly and have been

incorporated ifProUCL 4.00.05

3.6.4 Nonparametric Upper Prediction Limit

As mentioned before, the background data set under consideration should represent a single population,
and should be free of outlying observations, which may represent data from impacted areas of the site. A
onesided nonparametric UPL igtple to compute and is given by the followin§ order statistic. One

can use linear interpdlan if the resulting number, ngiven below does not represent a whole number (a
positive integer).

UPL =X, wherem= (n+ 1) *(1i U) (3-16)
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For example, for a nonparametric data set of size 25, a 90% UPL is desirech ¥{26*0.90) =23.4.
Thus a 90% nonparametric UPL can be obtained by using tAe2@ the 2% ordered statistics and is
given by the following equation:

UPL =X@g) + 0.4 * X24) - X23))

Similarly, if a nonparametric 95% UPL is desired, then 95 * (25 + 1) = 24.7, and a 95% UPL can

be similarly obtained by using linear interpolation between tfead 2%' order statistics. Hoawer, if a

99% UR. needs to be computed, then m = 0.99 * 26 = 25hch exceeds 25, the sample size.

Therefore, for such cases, the highest order statistic (the largest value) has to be used as the 99% UPL of
the background data set under study. The largest value(dyidfoused with caution (as they may

represent outliers) to estimate the BTVs.

3.6.4 Example 4

The same background data set used earlier has been used in this éxdiapteate various UPL
computations available iRBroUCL 4.00.05

3.6.4.1 Normal Upper Prediction Limit

As noted earlierthealuminum concentratioria our examplealo follow a normal distributiomA 95%
UPL for aluminum is given as follows.

UPL =X +t(y 5 gy * S*/(L+1/N) = 7789.17 + 1.7139 * 4.263.90 * 1.02 = 15247.628

3.6.4.2 Lognormal Upper Prediction Limit

The diromium background concentrations of Example 1 follow a lognormal distribution. A 95% UPL for
chromium is given by the following equation.

UPL = &Xp(Y +tp aynny * S, * (L+1/N)) = exp(2.3344 + 1.7139 * 0.5678* 1.02) = 27.8738

3.6.4.3 Gamma Upper Prediction Limit

Backgroundarsenicconcentrations of Example 1 follow a gamma distributompuations foB5%
UPLsfor arsenidbased upon WH and HW are shown belewoUCL 4.00.05enerated output showing
the computation of gamma distributibased UPLs and UTLs is also giverFigure3-7 in the

following.

3
WH approximatdJPL = (7 +t((1—a),(n 1) *s* ,ﬁ %) = (1.2549 + 1.7139 * 0.2155*1.02F 4.3438

4
HW approximate UPL :(7 +t((1—a),(n 1) *s* ,ﬁ %) =(1.1826 + 1.7139 * 0.0.1518*1.02) 4.3958
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3.6.4.4 Nonparametric Upper Prediction Limit

A nonparametric UPL can be computed using the following equation:

UPL =X, wherem= (n+ 1) *(1i U)

For lead concentrations, with= 24 and (:U) =

0.

95, t he

X(23.75): X(zg) + 0.750((24) - X(zg)) =085+ 075(105) =106.375.

Note: As mentioned before, nonparametric UPLs (and also UTLS) are typically represented by higher
order statistics, or by some value in between (based upon linear interpolation) the higher order statistics.
If those higher order statistics represent contaminated outlying observations, then a value lying between

correspoedi ng
23.78%order statistic, which can be computed using simple linear interpolation as follows:

(3-17)

the two contaminated observations will also be an outlier. For example for lead, if the two high

observations: 98.5 and 109 are considered as outliers,ttie85% UPL = 106.375 as computed above

will also represent an outlier.

Therefore, nonparametric UTLs or UPLs should be used with caution to estimate theegdryeffort

should be made to identify and separate the outlying observations before cgnmauparametric limits

to estimate the BTVs.

For the comparison sake, the 95% UPLs for aluminum, arsenic, chromium, and lead as produced by

ProUCL (irrespective of the data distribution) have been summarized in F3ble 3

Table 3-3. 95% Upper Prediction Limits for Selected Contaminants

Inorganic Contaminants

Distribution Aluminum Arsenic Chromium Lead
Normal 15247.63 4.1764 24.022 69.418
Lognormal 19245.46 4.6277 27.874 59.784
non-discernable 16000.00 5.3500 31.625 106.375

WH 16987 4.345 25.33 61.21
Gamma
HW 17405 4.397 25.78 60.54
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Figure 3-5. Shapiro-Wilk Normal Distribution Test for Lead

Figure 3-6. Shapiro-Wilk Lognormal Distribution Test for Lead
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