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Notice 
  
The United States Environmental Protection Agency (EPA) through its Office of Research and 

Development funded and managed the research described here. It has been peer reviewed by the EPA and 

approved for publication. Mention of trade names or commercial products does not constitute 

endorsement or recommendation by the EPA for use. 

 

ProUCL software was developed by Lockheed Martin under a contract with the EPA and is made 

available through the EPA Technical Support Center in Las Vegas, Nevada. 

 

Use of any portion of ProUCL that does not comply with the ProUCL Technical Guide is not 

recommended. 

 

ProUCL contains embedded licensed software. Any modification of the ProUCL source code may violate 

the embedded licensed software agreements and is expressly forbidden.  

 

ProUCL software provided by the EPA was scanned with McAfee VirusScan v4.5.1 SP1 and is certified 

free of viruses. 

 

With respect to ProUCL distributed software and documentation, neither the EPA nor any of their 

employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of 

any information, apparatus, product, or process disclosed. Furthermore, software and documentation are 

supplied ñas-isò without guarantee or warranty, expressed or implied, including without limitation, any 

warranty of merchantability or fitness for a specific purpose. 

 

 
Changes from ProUCL 4.0 (Version 4.00.00) to ProUCL 4.00.02 

 

Al though extensive changes were made in the code from ProUCL 4.0 (version 4.00.00) to produce 

ProUCL 4.00.02, those changes are transparent to the users.  Most of those changes were made so that 

ProUCL 4.00.02 is compatible with our developing statistical software, Scout (e.g., both programs share 

the same statistical libraries).  ProUCL will also reside as a separate module in Scout as a research tool. 

 

There was a minor correction of a displayed value in one of the hypothesis tests, the two sample t-test.  

The p-value associated with the t-test was computed in two different ways: one way was correct and the 

other way, although it produced subtle differences, was incorrect.  The incorrect method has been 

removed from ProUCL 4.00.02. 

 

Several warning messages have been added to ProUCL 4.00.02, mainly in regard to attempting tests when 

a data set is small (e.g., n < 5), when the number of detected values is small (e.g., zero, one, or two), or 

when all of the values are non-detected values. For an example, some screens depicting those warning 

messages are included in the newly added Section 2.11 (page 40) of ProUCL 4.00.02 User Guide. 

 

The only software files that were changed from ProUCL version 4.0 (4.00.00) to version 4.0.02 were 

updates in the ProUCL.exe file, and updates to the StatsLib.dll file to produce a more advanced 

ScoutLib.dll file.  Some minor changes were made to ProUCL 4.00.02 Technical Guide and User Guide, 

including: changes to avoid inappropriate user inputs (warnings), changes to the title page, the inclusion 

of an acknowledgement page, and the inclusion of  a new contact information page. 
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Changes from ProUCL 4.00.02 to ProUCL 4.00.04 
 

ProUCL 4.00.04 is an upgrade of ProUCL Version 4.00.02 which represents an upgrade of ProUCL 4.0 

(EPA, 2004). ProUCL 4.00.04 contains all statistical methods as available in ProUCL 4.00.02 to address 

various environmental issues for both full data sets without nondetects (NDs) and for data sets with NDs 

(also known as left-censored data sets). In addition to having all methods available in ProUCL 4.00.02, 

ProUCL 4.00.04 has extended version of Shapiro-Wilk (S-W) test that can perform normal and lognormal 

goodness-of-fit tests for data sets of sizes upto 2000. Moreover, ProUCL 4.00.04 can compute upper 

prediction and upper tolerance limits based upon gamma distribution. Some modifications have also been 

made in decision tables and recommendations made by ProUCL to estimate the EPC terms. Specifically, 

based upon recent experience, developers of ProUCL are re-iterating that the use of lognormal 

distribution to estimate EPC terms should be avoided, as the use of lognormal distribution yields 

unrealistic and highly unstable UCLs. In an effort to simplify the EPC estimation process, for highly 

skewed lognormally distributed data sets, developers are recommending the use of appropriate 

nonparametric Chebyshev (mean Sd) UCLs.  These changes have been incorporated in various decision 

tables included in ProUCL 4.00.04 Technical Guide and ProUCL 4.00.04 User Guide. Recommendations 

made by ProUCL 4.00.02 have been changed accordingly in ProUCL 4.00.04. Some minor bugs as 

suggested by ProUCL 4.0 and ProUCL 4.00.02 users have also been addressed in this upgraded version of 

ProUCL software package. 

 

Changes from ProUCL 4.00.04 to ProUCL 4.00.05 
 
ProUCL version 4.00.05 is an upgrade of ProUCL Version 4.00.04 (EPA, 2008). ProUCL 4.00.05 

consists of all of the statistical and graphical methods that are available in previous ProUCL 4.0 versions 

to address various environmental issues for full data sets without nondetect (ND) observations and also 

for data sets with NDs and below detection limit observations. Several additions (e.g., sample size 

determination module), enhancements (File module), modifications (e.g., p-values of WRS/WMW test, 

Gehan test) have been made in ProUCL 4.00.05. Some bugs (e.g., correction in adjusted Gamma UCLs) 

as suggested and found by users of previous ProUCL 4.0 versions have been addressed in this version of 

ProUCL. With the inclusion of the sample size determination module, ProUCL 4.00.05 will serve as a 

comprehensive statistical software package equipped with statistical methods and graphical tools needed 

to address environmental sampling and statistical issues described in various CERCLA (EPA 2002a, 

2002b, 2006) and RCRA (EPA 1989b, 1992b, 2002c, 2009) guidance documents. For data sets with and 

without nondetect observations, ProUCL 4.00.05 also provides statistical methods to address reference 

area and survey unit sampling issues described in MARSSIM (EPA 2000) document.  In addition to 

sample size determination methods, ProUCL 4.00.05 offers parametric and nonparametric statistical 

methods (e.g., Sign test, Wilcoxon Rank Sum test) often used to address statistical issues described in 

MARSSIM (EPA 2000) guidance document. The user friendly sample size determination module of 

ProUCL 4.00.05 has a straight forward mechanism to enter the desired/pre-specified decision parameters 

needed to compute appropriate sample size(s) for the selected statistical application.  The Sample Size 

module of ProUCL 4.00.05 provides sample size determination methods for most of the parametric and 

nonparametric one-sided and two-sided hypotheses testing approaches available in the Hypothesis Testing 

module of ProUCL 4.0. Theoretical details of the Sample Size module are given in ñSupplement to 

ProUCL 4.0 Technical Guide: Determining Minimum Sample Sizes for User Specified Decision 

Parameters.ò Some specific changes made in ProUCL 4.00.05 are listed as follows. 

 

¶ File Option: This option has been upgraded to open *.xls files by default. In the earlier versions 

of ProUCL, this option was available only for *.wst, *.ost and *.gst files and Excel files had to be 
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imported.  Now you can use the import option to read multiple worksheets from one Excel file.  

ProUCL 4.00.05 will import worksheets until all worksheets are read or a blank or empty 

worksheet is encountered.   

 

¶ Displaying All Menu Options: ProUCL 4.00.05 now displays all available menu options even 

before opening a valid (e.g., non empty) data file. However, the user has to open a valid data file 

before activating a menu option and using a statistical or graphical method available in ProUCL 

4.00.05. Obviously, no statistical method can be used on an empty (without any data) 

spreadsheet. 

 

¶ Sample Size Module: Several parametric (assuming normal distribution) and nonparametric 

sample size determination formulae as used and described in various EPA guidance documents 

(e.g., EPA 1989a, 1989b, 1992, 2000, 2002a, 2002b, 2002c, 2006, and 2009) have been 

incorporated in ProUCL 4.00.05. Inclusion of this module will help the users to develop/design 

DQOs based sampling plans with pre-specified values of decision error rates (Ŭ = Type I and ɓ 

=Type II) and width of the gray region, ȹ around the parameter of interest (e.g., mean 

concentration, proportion of sampled observations exceeding the action level). Basic sample size 

determination formulae have been incorporated for sampling of continuous characteristics (lead, 

Ra 226) as well as for attributes (e.g., proportion exceeding a specified threshold). Additionally, 

sample size formulae for acceptance sampling of discrete objects (e.g., drums) have also been 

incorporated in this module. The detailed description of the statistical methods and formulae used 

in this module are described in the supplement document to ProUCL 4.0 Technical Guide. 

 

¶ Adjusted Gamma UCL: There was a minor bug in the computation of adjusted Ŭ level of 
significance (called ɓ level) used for calculating Adjusted Gamma UCLs. This error has been 

corrected. 

 

¶ Computation of Nonparametric Percentiles: There are several ways to compute nonparametric 

percentiles; and percentiles obtained using different methods can differ slightly.  For graphical 

displays, ProUCL 4.00.05 uses development software, ChartFX. Thus boxplots generated by 

ProUCL display percentiles (e.g., median and quartiles) as computed by ChartFX. In order to 

avoid confusion, the percentile algorithm used in ProUCL has been modified so that it now 

computes and displays comparable percentiles as computed by ChartFX. 

 

¶ UCL based upon Winsorization Method: In the computation of Winsorized UCLs, the sample 

standard deviation of the winsorized data was being used instead of the approximate unbiased 

estimate of the population standard deviation from the winsorized data as detailed in ProUCL 

4.00.04 Technical Guide. This has been corrected in ProUCL 4.00.05. 

 

¶ Displaying K values used in UTLs: The tolerance factor, K, based on the number of valid 

observations, level of confidence coefficient, and coverage percentage is displayed along with 

UTL statistics and other relevant input parameters. 

 

¶ Fixes in the p- values associated with WSR/WMW Test, Gehan Test, and Equality of Variances 

Test: More efficient algorithms have been incorporated in ProUCL 4.00.05 to compute p-values 

associated with the test statistics associated with these two tests. 
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¶ Additional Critical values associated with Land's H Statistic: In addition to 0.9 and 0.95 

confidence coefficients; 0.975, 0.99 and 0.995 confidence levels have been incorporated in 

ProUCL 4.00.05 to compute H-UCLs based upon a lognormal distribution.  

 

¶ Adjustment in Precision Associated with Lognormal and Gamma ROS Methods: The lower 

bound associated with Lognormal ROS and Gamma ROS extrapolated estimates have been 

extended from 1e-7 to 1e-10.  ProUCL 4.00.05 issues a warning message when extrapolated ROS 

estimates lie below 1e-10.  

 

¶ Some terminology changes have been made in single sample hypotheses approaches available in 

the Hypothesis Testing module. Specifically the phrase ñCompliance Limitò have been replaced 

by the phrase ñAction Levelò. 

 
Changes and Upgrades from ProUCL 4.00.05 to ProUCL 4.1.00 

http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm 

 
ProUCL version 4.1.00, a statistical software package for environmental applications for data sets with 

and without nondetect (ND) observations is an upgrade of ProUCL version 4.00.05 (EPA 2010a).  

ProUCL 4.1 consists of all of the statistical and graphical methods that are available in all previous 

versions of ProUCL software package to address various environmental issues for full uncensored data 

sets (without ND observations), as well as for data sets with NDs or below detection limit 

observations. ProUCL version 4.1.00, its earlier versions (ProUCL version 3.00.02, 4.00.02, 4.00.04, and 

4.00.05), associated Facts Sheet, User Guides and Technical Guides (e.g., EPA 2010b, 2010c) can be 

downloaded from the EPA website: http://www.epa.gov/osp/hstl/tsc/software.htm 

 

New Modules in ProUCL 4.1 (ANOVA and Trend Tests): Two new modules, ANOVA and Trend 

Tests have been incorporated in ProUCL 4.1. ANOVA module has both classical and nonparametric 

Kruskal-Wallis Oneway ANOVA tests as described in EPA guidance documents (e.g., EPA 2006, 2009). 

Trend Tests module has linear ordinary least squares (OLS) regression method, Mann-Kendall trend test, 

Theil-Sen trend test, and time series plots as described in the Unified RCRA Guidance Document (EPA 

2009). Oneway ANOVA is used to compare means (or medians) of multiple groups such as comparing 

mean concentrations of several areas of concern; and to perform inter-well comparisons. In groundwater 

(GW) monitoring applications, OLS regression, trend tests, and time series plots (EPA, 2009) are often 

used to identify trends (e.g., upwards, downwards) in contaminant concentrations of GW monitoring 

wells over a certain period of time.  

 

The Number of Samples module of ProUCL 4.1 provides user friendly options to enter the desired/pre-

specified decision parameters (e.g., Type I and Type II error rates) and DQOs used to determine 

minimum sample sizes for the selected statistical applications including: estimation of mean, single and 

two sample hypothesis testing approaches, and acceptance sampling. Sample size determination methods 

are available for the sampling of continuous characteristics (e.g., lead or Ra 226), as well as for attributes 

(e.g., proportion of occurrences exceeding a specified threshold). Both parametric (e.g., for t-tests) and 

nonparametric (e.g., Sign test, test for proportions, WRS test) sample size determination methods as 

described in EPA (2006, 2009) and MARSIMM (2000) guidance documents are available in ProUCL 4.1. 

ProUCL 4.1 also has the sample size determination methods for acceptance sampling of lots of discrete 

objects such as a lot of drums consisting of hazardous waste (e.g., RCRA applications, EPA 2002c).  

 

http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm
http://www.epa.gov/osp/hstl/tsc/software.htm
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ProUCL version 4.1 can process multiple contaminants (variables) simultaneously. ProUCL version 4.1 

also has the capability of processing data by groups (a valid group column should be included in the data 

file).  ProUCL version 4.1 has a couple of simple outlier test procedures, such as the Dixon test and the 

Rosner test.  ProUCL version 4.1 offers useful graphical displays for data sets with or without NDs, 

including: histograms, multiple quantile-quantile (Q-Q) plots, and side-by-side box plots.  The use of 

graphical displays provides additional insight about information (such as hidden data structures) 

contained in data sets that may not be revealed by the use of estimates (e.g., 95% upper limits) or test 

statistics, such as the GOF test statistics or the t-test statistic.  In addition to providing information about 

the data distributions (e.g., normal or gamma), Q-Q plots are also useful in identifying potential outliers 

or the presence of mixture samples (e.g., data from different populations) in a data set.  Side-by-side box 

plots and multiple Q-Q plots are useful to visually compare two or more data sets (groups), such as: site-

versus-background contaminant concentrations, surface-versus-subsurface concentrations, and 

contaminant concentrations of groundwater monitoring wells (MWs). 

As in earlier ProUCL versions, in addition to goodness-of-fit (GOF) tests for normal, lognormal and 

gamma distributions, ProUCL 4.1 has parametric and nonparametric methods including bootstrap 

methods to compute various decision making statistics such as the upper confidence limits (UCLs) of 

mean (EPA 2002a), percentiles, upper prediction limits (UPLs) for future k (Ó1) observations, and upper 

tolerance limits (UTLs) (e.g., EPA 1992, EPA 2009)  based upon uncensored full data sets and left-

censored data sets consisting of NDs with multiple detection limits. In addition to simple substitution 

methods (e.g., DL/2 DL), Kaplan-Meier (KM) method and Regression on Order Statistics (ROS) methods 

are also available in ProUCL. ProUCL 4.1 can also compute parametric UCLs, percentiles, UPLs for 

future k (Ó1) observations, and UTLs based upon gamma distributed data sets.  

ProUCL version 4.1 has parametric and nonparametric single-sample and two-sample hypotheses testing 

approaches.  Single-sample hypotheses tests (e.g., Studentôs t-test, the sign test, the Wilcoxon signed rank 

test, and the proportion test) can be used to compare site mean concentrations (or some site threshold 

value such as an upper percentile) with some average cleanup standard, Cs (or a not-to-exceed compliance 

limit, A 0) to verify the attainment of cleanup levels (EPA 1989, EPA 2006) after some remediation 

activities have been performed at the impacted site areas.  Several two-sample hypotheses tests as 

described in EPA and MARSSIM guidance documents (e.g., EPA 2000, 2002b, and 2006) are also 

available in ProUCL 4.1.  Two sample hypotheses testing approaches in ProUCL 4.1 include: Studentôs t-

test, the Wilcoxon-Mann-Whitney (WMW) test (also known as Wilcoxon Rank Sum (WRS) test), the 

quantile test, and Gehanôs test. These tests are used for site-versus-background comparisons and 

comparisons of contaminant concentrations of two or more monitoring wells (MWs).  The hypothesis 

testing approaches in ProUCL 4.1 can be used on both uncensored (without NDs) and left-censored (with 

NDs) data sets.  Single sample tests (e.g., Sign test, proportion test) and upper limits such as UTLs and 

UPLs are also used to perform intra-well comparisons as described in RCRA document (EPA, 2009).  

With the inclusion of Oneway ANOVA, Regression and Trend tests, and the user-friendly DQOs based 

sample size determination modules, ProUCL version 4.1.00 represents a comprehensive statistical 

software package equipped with statistical methods and graphical tools needed to address many 

environmental sampling and statistical issues as described in various CERCLA (EPA 1989a, 2002a, 

2002b, 2006), MARSSIM (EPA 2000), and RCRA (EPA 1989b, 1992b, 2002c, 2009) guidance 

documents.  

Finally, it should be noted that all known software bugs found by the various users and developers of 

ProUCL 4.00.05 (and earlier versions) and most of the suggestions made by the users have been 

addressed in ProUCL 4.1.00. 
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All previous and current versions of ProUCL software package can be downloaded from the following 

EPA site:  http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm 

 

 

Contact Information for all Versions of ProUCL  
 

The ProUCL software is developed under the direction of the Technical Support Center (TSC).  As of 

November 2007, the direction of the TSC is transferred from Brian Schumacher to Felicia Barnett.  

Therefore, any comments or questions concerning all versions of ProUCL should be addressed to: 

Felicia Barnett, (HSTL)  

US EPA, Region 4 

61 Forsyth Street, S.W.  

Atlanta, GA  30303-8960 

barnett.felicia@epa.gov 

(404) 562-8659 

Fax: (404) 562-8439 
 

 

http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm
mailto:barnett.felicia@epa.gov
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Executive Summary 

 
Statistical inference, including both estimation and hypotheses testing approaches, is routinely used to:  

 
1. Determine data quality objectives (DQOs) based  number samples needed to address 

statistical issues associated with various environmental projects,  

 

2. Estimate environmental parameters of interest, such as exposure point concentration 

(EPC) terms, not-to-exceed values, and background level threshold values (BTVs) for 

contaminants of potential concern (COPC),  

 

3. Screen COPC, and identify areas of concern (AOC) at a contaminated site, 

 

4. Compare contaminant concentrations of: two or more AOCs; groundwater monitoring 

wells, background or reference area with those of site areas,  

 

5. Perform interwell and intrawell comparisons, 

 

6. Compare site concentrations with a cleanup standard to verify the attainment of cleanup 

standards. 

 
Several exposure and risk management and cleanup decisions in support of United States Environmental 

Protection Agency (EPA) projects are often made based upon the mean concentrations of the COPCs. A 

95% upper confidence limit (UCL95) of the unknown population (e.g., an AOC) arithmetic mean (AM), 

ɛ1, can be used to: 

 

¶ Estimate the EPC term of the AOC under investigation,  

¶ Determine the attainment of cleanup standards,  

¶ Compare site mean concentrations with reference area mean concentrations, and 

¶ Estimate background level mean contaminant concentrations. The background mean 

contaminant concentration level may be used to compare the mean of an area of concern. 

It should be noted that it is not appropriate to compare individual point-by-point site 

observations with the background mean concentration level. 

 
It is important to compute a reliable and stable UCL95 of the population mean using the available data. 

The UCL95 should approximately provide the 95% coverage for the unknown population mean, ɛ1. Based 

upon the available background data, it is equally important to compute reliable and stable upper 

percentiles, upper prediction limits (UPLs), or upper tolerance limits (UTLs). These upper limits based 

upon background (or reference) data are used as estimates of BTVs, compliance limits (CL), or not-to-

exceed values. These upper limits are often used in site (point-by-point) versus background comparison 

evaluations, and also to perfrom intrawell comparisons.   

 

Environmental scientists often encounter trace level concentrations of COPCs when evaluating sample 

analytical results. Those low level analytical results cannot be measured accurately and, therefore, are 

typically reported as less than one or more detection limit (DL) values (also called nondetects). However, 

practitioners need to obtain reliable estimates of the population mean, µ1, and the population standard 

deviation, ů1, and upper limits including the UCL of the population mass or mean, the UPL, and the UTL 
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based upon data sets with nondetect (ND) observations. Additionally, they may have to use hypotheses 

testing approaches to verify the attainment of cleanup standards, and compare site and background 

concentrations of COPCs as mentioned above.  

 

Background evaluation studies, BTVs, and not-to-exceed values should be estimated based upon 

defensible background data sets. The estimated BTVs or not-to-exceed values are then used to identify the 

COPCs, to identify the site AOCs or hot spots, and to compare the contaminant concentrations at a site 

with background concentrations. The use of appropriate statistical methods and limits for site versus 

background comparisons is based upon the following factors:  

 

1. Objective of the study, 

2. Environmental medium (e.g., soil, groundwater, sediment, air) of concern, 

3. Quantity and quality of the available data, 

4. Estimation of a not-to-exceed value or of a mean contaminant concentration, 

5. Pre-established or unknown cleanup standards and BTVs, and 

6. Sampling distributions (parametric or nonparametric) of the concentration data sets 

collected from the site and background areas under investigation.  

 
In background versus site comparison evaluations, the environmental population parameters of interest 

may include:  

 

¶ Preliminary remediation goals (PRGs), 

¶ Soil screening levels (SSLs), 

¶ Risk Based Cleanup (RBC) standards, 

¶ BTVs, not-to-exceed values, and  

¶ Compliance limit, maximum concentration limit (MCL), or alternative concentration 

limit (ACL), frequently used in groundwater applications. 

 
When the environmental parameters listed above are not known or pre-established, appropriate upper 

statistical limits are used to estimate those parameters. The UPL, UTL, and upper percentiles are used to 

estimate the BTVs and not-to-exceed values based upon reference area data set(s). Depending upon the 

site data availability, point-by-point site observations are compared with the estimated (or pre-

established) BTVs and not-to-exceed values. If enough site and background data are available, two-

sample hypotheses testing approaches are used to compare site concentrations with background 

concentrations levels. These statistical methods can also be used to compare contaminant concentrations 

of two site AOCs, surface and subsurface contaminant concentrations, or upgradient versus monitoring 

well contaminant concentrations.  

 

ProUCL 4.00.05 is an upgrade of ProUCL Version 4.00.04 which represents an upgrade of ProUCL 

4.00.02 (EPA, 2008). ProUCL 4.00.05 contains all statistical methods as available in ProUCL 

4.00.02/4.00.04 to address various environmental issues for both full data sets without nondetects (NDs) 

and for data sets with NDs (also known as left-censored data sets).  It should be noted that the present 

Technical Guide for ProUCL 4.0 applies to its current (ProUCL 4.00.05) and all earlier versions of 

ProUCL 4. ProUCL 4.00.05 has the extended version of Shapiro-Wilk (S-W) test that can perform normal 

and lognormal goodness-of-fit tests for data sets of sizes upto 2000. ProUCL 4.00.05 can also compute 

upper prediction and upper tolerance limits based upon gamma distribution. Some modifications have 

been incorporated in decision tables and recommendations made by ProUCL to estimate the EPC terms. 

Specifically, based upon recent experience, developers of ProUCL are re-iterating that the use of 

lognormal distribution to estimate EPC terms should be avoided, as the use of lognormal distribution 
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yields unrealistic and highly unstable UCL values. In an effort to simplify the EPC estimation process and 

recommending defensible estimates, for highly skewed lognormally distributed data sets, developers are 

recommending the use of other nonparametric UCLs such as Chebyshev (mean Sd) UCLs available in 

ProUCL 4.00.05.  These changes have been incorporated in various decision tables of ProUCL 4.00.05 

software. Technical Guide and User Guide recommendations made by ProUCL have been changed 

accordingly.  Several minor requests (e.g., incorporation of maximum likelihood estimates based upon a 

gamma model) and bugs as suggested by ProUCL 4.00.02/ProUCL 4.00.04 users have also been 

addressed in this upgraded version of ProUCL. 

 

ProUCL 4.00.05 contains statistical methods to address various environmental issues for both full data 

sets without nondetects and for data sets with NDs (also known as left-censored data sets).  

 

Specifically, ProUCL 4.00.05 contains: 

 
1. Rigorous parametric and nonparametric (including bootstrap methods) statistical methods 

(instead of simple ad hoc or substitution methods) that can be used on full data sets 

without nondetects and on data sets with below detection limit (BDL) or ND 

observations.  

 

2. State-of-the-art parametric and nonparametric UCL, UPL, and UTL computation 

methods. These methods can be used on full-uncensored data sets without nondetects and 

also on data sets with BDL observations. Some of the methods (e.g., Kaplan-Meier 

method, ROS methods) are applicable on left-censored data sets having multiple 

detection limits. The UCL and other upper limit computation methods cover a wide range 

of skewed data sets with and without the BDLs.  

 

3. Single sample (e.g., Studentôs t-test, sign test, proportion test, Wilcoxon Singed Rank 

test) and two-sample (Studentôs t-test, Wilcoxon-Mann-Whitney test, Gehan test, quantile 

test) parametric and nonparametric hypotheses testing approaches for data sets with and 

without ND observations. These hypothesis testing approaches can be used to: verify the 

attainment of cleanup standards, perform site versus background comparisons, and 

compare two or more AOCs, monitoring wells (MWs).  

 

4. The single sample hypotheses testing approaches are used to compare site mean, site 

median, site proportion, or a site percentile (e.g., 95
th
) to a compliance limit (action level, 

regularity limit). The hypotheses testing approaches can handle both full-uncensored data 

sets without nondetects, and left-censored data sets with nondetects. Simple two-sample 

hypotheses testing methods to compare two populations are available in ProUCL 4.0, 

such as two-sample t-tests, Wilcoxon-Mann-Whitney (WMW) Rank Sum test, quantile 

test, Gehanôs test, and dispersion test. Variations of hypothesis testing methods (e.g., 

Leveneôs method to compare dispersions, generalized WRS test) are easily available in 

most commercial and freely available software packages (e.g., MINITAB, R).  

 

5. ProUCL 4.0 also includes graphical methods (e.g., box plots, multiple Q-Q plots, 

histogram) to compare two or more populations. ProUCL 4.0 can also be used to display 

a box plot of one population (e.g., site data) with compliance limits or upper limits (e.g., 

UPL) of other population (background area) superimposed on the same graph. This kind 

of graph provides a useful visual comparison of site data with a compliance limit or 

BTVs. Graphical displays of a data set (e.g., Q-Q plot) should be used to gain insight 
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knowledge contained in a data set that may not otherwise be clear by looking at simple 

test statistics such as t-test, Dixon test statistic, or Shapiro-Wilk (S-W) test statistic. 

 

6. ProUCL 4.00.05 can process multiple contaminants (variables) simultaneously and has 

the capability of processing data by groups. A valid group column should be included in 

the data file. 

 

7. ProUCL 4.00.05 provides GOF test for data sets with nondetects. The user can create 

additional columns to store extrapolated (estimated) values for nondetects based upon 

normal ROS, gamma ROS, and lognormal ROS (robust ROS) methods. 

 

As mentioned before, ProUCL 4.00.05 retains all of the capabilities of ProUCL 4.00.04, including 

goodness-of-fit (GOF) tests for a normal, lognormal, and a gamma distribution and computation of UCLs 

based upon full data sets without nondetects. It is re-emphasized that the computation of appropriate 

UCLs, UPLs, and other limits is based upon the assumption that the data set under study represents a 

single a single population. This means that the data set used to compute the limits should represent a 

single statistical population. For example, a background data set should represent a defensible background 

data set free of outlying observations. ProUCL 4.00.05 includes simple and commonly used classical 

outlier identification procedures, such as the Dixon test and the Rosner test. These procedures are 

included as an aid to identify outliers. These simple classical outlier tests often suffer from masking 

effects in the presence of multiple outliers. Description and use of robust and resistant outlier procedures 

is beyond the scope of ProUCL 4.0.  Interested users are encouraged to try Scout 2008 software (EPA 

2008) to use robust outlier identification methods. 

 

It is suggested that the classical outlier procedures should always be accompanied by graphical displays 

including box plots and Q-Q plots. The use of a Q-Q plot is useful to identify multiple or mixture samples 

that might be present in a data set. However, the decision regarding the proper disposition of outliers (e.g., 

to include or not to include outliers in statistical analyses; or to collect additional verification samples) 

should be made by members of the project team and experts familiar with site and background conditions. 

Guidance on the disposition of outliers and their accommodation in a data set by using a transformation 

(e.g., lognormal distribution) is discussed in Chapter 1 of this Technical Guide.  

 

ProUCL 4.00.05 has improved graphical methods, which may be used to compare the concentrations of 

two or more populations such as:  

 

1. Site versus background populations,  

2. Surface versus subsurface concentrations,  

3. Concentrations of two or more AOCs, and 

4. Identification of mixture samples and/or potential outliers 

 
These graphical methods include multiple quantile-quantile (Q-Q) plots, side-by-side box plots, and 

histograms. Whenever possible, it is desirable to supplement statistical results with useful visual displays 

of data sets. There is no substitute for graphical displays of a data set. For example, in addition to 

providing information about the data distribution, a normal Q-Q plot can also help identify outliers and 

multiple populations that may be present in a data set. On a Q-Q plot, observations well separated from 

the majority of the data may represent potential outliers, and jumps and breaks of significant magnitude 

may suggest the presence of observations from multiple populations in the data set. It is suggested that 

analytical outlier tests (e.g., Rosner test) and goodness-of-fit (GOF) tests (e.g., SW test) should always be 

supplemented with the graphical displays such as Q-Q plot and box plot. 
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The lastest addition in ProUCL 4.00.05, the Sample Size module can be used to compute sample sizes to 

address statistical issues of various environmental projects. The details of the Sample Size module are 

given in ñSupplement to ProUCL 4.0 Technical Guide: Determining Minimum Sample Sizes for User 

Specified Decision Parameters.ò ProUCL 4.00.05 serves as a companion software package for the 

Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites 

(EPA, 2002a), Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA 

Sites (EPA, 2002b), Multi-Agency Radiation Survey and Site Investigation Manual (EPA, 2000c), and 

Data Quality Assessment: Statistical Methods for Practitioners (EPA, 2006). ProUCL 4.0 is also useful to 

verify the attainment of cleanup standards (EPA, 1989). ProUCL 4.00.05 can also be used to perform 

two-sample hypotheses tests, intrawell comparisons, and to compute various upper limits often needed in 

groundwater monitoring applications (EPA, 1992 and EPA, 2009). 

 

ProUCL 4.1.00 has two new modules: ANOVA and Trend Tests. ANOVA module has both classical and 

nonparametric Kruskal-Wallis Oneway ANOVA tests as described in EPA guidance documents (e.g., 

EPA 2006, 2009). Trend Tests module has linear ordinary least squares (OLS) regression method, Mann-

Kendall trend test, Theil-Sen trend test, and time series plots as described in the Unified RCRA Guidance 

Document (EPA 2009). Oneway ANOVA is used to compare means (or medians) of multiple groups such 

as comparing mean concentrations of several areas of concern; and to perform inter-well comparisons. In 

groundwater (GW) monitoring applications, OLS regression, trend tests, and time series plots (EPA, 

2009) are often used to identify trends (e.g., upwards, downwards) in contaminant concentrations of 

various GW monitoring wells over a certain period of time.  

 

With the inclusion of Oneway ANOVA, Regression and Trend tests, and user-friendly DQOs based 

sample size determination modules, ProUCL version 4.1.00 represents a comprehensive statistical 

software package equipped with statistical methods and graphical tools needed to address many 

environmental sampling and statistical issues as described in various CERCLA (EPA 1989a, 2002a, 

2002b, 2006), MARSSIM (2000) and RCRA (EPA 1989b, 1992b, 2002c, 2009) guidance documents.  
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Acronyms and Abbreviations 
 

ACL alternative concentration limit 

A-D, AD Anderson-Darling test 

AM arithmetic mean  

AOC area(s) of concern 

    

BC Box-Cox transformation 

BCA bias-corrected accelerated bootstrap method  

BD binomial distribution 

BDL below detection limit  

BTV background threshold value  

    

CC confidence coefficient  

CDF, cdf cumulative distribution function  

CERCLA Comprehensive Environmental Recovery, Compensation, and Liability Act 

CL compliance limit 

CLT central limit theorem  

CMLE Cohenôs maximum likelihood estimate 

COPC contaminant(s) of potential concern  

CS cleanup standards 

CV coefficient of variation 

    

DCGL Design Concentration Guideline Level 

Df degrees of freedom 

DL, L detection limit  

DL/2 (t) UCL based upon DL/2 method using Studentôs t-distribution cutoff value 

DL/2 Estimates estimates based upon data set with nondetects replaced by half of the respective 

detection limits 

DOE Department of Energy 

DQO data quality objectives  
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EA exposure area 

EDF empirical distribution function  

EM expectation maximization  

EU exposure unit 

EPA Environmental Protection Agency  

EPC exposure point concentration  

    

GOF, G.O.F. goodness-of-fit  

  

H-UCL UCL based upon Landôs H-statistic 

    

IQR interquartile range  

    

KM (%) UCL based upon Kaplan-Meier estimates using the percentile bootstrap method 

KM (Chebyshev) UCL based upon Kaplan-Meier estimates using the Chebyshev inequality 

KM (t) UCL based upon Kaplan-Meier estimates using the Studentôs t-distribution cutoff value 

KM (z) UCL based upon Kaplan-Meier estimates using standard normal distribution cutoff 

value 

K-M, KM Kaplan-Meier 

K-S, KS  Kolmogorov-Smirnov  

    

LBGR Lower Bound of the Gray Region 

LN lognormal distribution 

  

MAD  median absolute deviation 

MCL maximum concentration limit, maximum compliance limit 

MDD minimum detectable difference  

ML maximum likelihood  

MLE maximum likelihood estimate 

MLE (t) UCL based upon maximum likelihood estimates using Studentôs t-distribution cutoff 

value 

MLE (Tiku) UCL based upon maximum likelihood estimates using the Tikuôs method 

Multi Q-Q multiple quantile-quantile plot 



 xvi 

MV minimum variance 

MVUE minimum variance unbiased estimate  

MW monitoring well 

    

ND nondetect  

NRC Nuclear Regulatory Commission  

    

OLS ordinary least squares  

ORD Office of Research and Development 

    

PDF, pdf probability density function  

PLE product limit estimate  

PRG preliminary remediation goals 

    

Q-Q quantile-quantile  

  

RBC risk-based cleanup 

RCRA Resource Conservation and Recovery Act 

RL reporting limit 

RMLE restricted maximum likelihood estimate 

ROS regression on order statistics  

RSD relative standard deviation 

RU remediation unit 

RV random variable  

    

S substantial difference  

SD, Sd, sd standard deviation 

SE Standard error  

SND standard normal distribution  

SSL soil screening levels 

S-W, SW Shapiro-Wilk  
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U.S. EPA, USEPA  United States Environmental Protection Agency  

UCL upper confidence limit 

UCL95 a 95% upper confidence limit 

UMLE unbiased maximum likelihood estimate method  

UPL upper prediction limit 

UTL upper tolerance limit 

  

WMW Wilcoxon-Mann-Whitney 

WRS Wilcoxon Rank Sum  

WSR Wilcoxon Signed Rank 
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Glossary 
 

Anderson-Darling (AD) test: The Anderson-Darling test assesses whether known data come from a 

specified distribution. 

 

Background Measurements: The measurements that are not related to the site. Background sources can  

be naturally occurring or anthropogenic (man-made). 

 

Bias: The systematic or persistent distortion of a measured value from its true value (this can occur 

during sampling design, the sampling process, or laboratory analysis). 

 

Bootstrap Method: The bootstrap method is a computer-based method for assigning measures of 

accuracy to sample estimates. This technique allows estimation of the sample distribution of almost any 

statistic using only very simple methods. Bootstrap methods are generally superior to ANOVA for small 

data sets or where sample distributions are non-normal. 

 

Central Limit Theorem (CLT) : The central limit theorem states that given a distribution with a mean ɛ 

and variance ů
2
, the sampling distribution of the mean approaches a normal distribution with a mean (ɛ) 

and a variance ů
2
/N as N, the sample size, increases. 

 

Coefficient of Variation (CV): A dimensionless quantity used to measure the spread of data relative to 

the size of the numbers. For a normal distribution, the coefficient of variation is given by s/xBar. Also 

known as the relative standard deviation (RSD). 

 

Confidence Coefficient: The confidence coefficient (a number in the closed interval [0, 1]) associated 

with a confidence interval for a population parameter is the probability that the random interval 

constructed from a random sample (data set) contains the true value of the parameter. The confidence 

coefficient is related to the significance level of an associated hypothesis test by the equality: level of 

significance = 1 ï confidence coefficient. 

 

Confidence Interval: Based upon the sampled data set, a confidence interval for a parameter is a random 

interval within which the unknown population parameter, such as the mean, or a future observation, x0, 

falls. 

 

Confidence Limit: The lower or an upper boundary of a confidence interval. For example, the 95% upper 

confidence limit (UCL) is given by the upper bound of the associated confidence interval. 

 

Coverage, Coverage Probability: The coverage probability (e.g., = 0.95) of an upper confidence limit 

(UCL) of the population mean represents the confidence coefficient associated with the UCL. 

 

Data Quality Objectives (DQOs): Qualitative and quantitative statements derived from the DQO 

process that clarify study technical and quality objectives, define the appropriate type of data, and specify 

tolerable levels of potential decision errors that will be used as the basis for establishing the quality and 

quantity of data needed to support decisions. 

 

Detection Limit: A measure of the capability of an analytical method to distinguish samples that do not 

contain a specific analyte from samples that contain low concentrations of the analyte. The lowest 

concentration or amount of the target analyte that can be determined to be different from zero by a single 
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measurement at a stated level of probability. Detection limits are analyte- and matrix-specific and may be 

laboratory-dependent. 

 

Empirical Distribution Function (EDF) : In statistics, an empirical distribution function is a cumulative 

probability distribution function that concentrates probability 1/n at each of the n numbers in a sample. 

 

Estimate: A numerical value computed using a random data set (sample), and is used to guess (estimate) 

the population parameter of interest (e.g., mean). For example, a sample mean represents an estimate of 

the unknown population mean. 

 

Expectation Maximization (EM): The EM algorithm is used to approximate a probability function (p.f. 

or p.d.f.). EM is typically used to compute maximum likelihood estimates given incomplete samples. 

 

Exposure Point Concentration (EPC): The contaminant concentration within an exposure unit to which 

the receptors are exposed. Estimates of the EPC represent the concentration term used in exposure 

assessment. 

 

Extreme Values: The minimum and the maximum values. 

 

Goodness-of-Fit (GOF): In general, the level of agreement between an observed set of values and a set 

wholly or partly derived from a model of the data. 

 

Gray Region: A range of values of the population parameter of interest (such as mean contaminant 

concentration) within which the consequences of making a decision error are relatively minor. The gray 

region is bounded on one side by the action level. The width of the gray region is denoted by the Greek 

letter delta in this guidance. 

 

H-Statistic: The unique symmetric unbiased estimator of the central moment of a distribution. 

 

H-UCL: UCL based on Landôs H-Statistic. 

 

Hypothesis: Hypothesis is a statement about the population parameter(s) that may be supported or 

rejected by examining the data set collected for this purpose. There are two hypotheses: a null hypothesis, 

(H0), representing a testable presumption (often set up to be rejected based upon the sampled data), and an 

alternative hypothesis (HA), representing the logical opposite of the null hypothesis. 

 

Jackknife Method: A statistical procedure in which, in its simplest form, estimates are formed of a 

parameter based on a set of N observations by deleting each observation in turn to obtain, in addition to 

the usual estimate base d on N observations, N estimates each based on N-1 observations. 

 

Kolmogorov-Smirnov (KS) test: The Kolmogorov-Smirnov test is used to decide if a sample comes 

from a population with a specific distribution. The Kolmogorov-Smirnov test is based on the empirical 

distribution function (EDF).  

 

Level of Significance: The error probability (also known as false positive error rate) tolerated of falsely 

rejecting the null hypothesis and accepting the alternative hypothesis. 

 

Lilliefors test: A test of normality for large data sets when the mean and variance are unknown. 
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Maximum Likelihood Estimates (MLE) : Maximum likelihood estimation (MLE) is a popular statistical 

method used to make inferences about parameters of the underlying probability distribution of a given 

data set. 

 

Mean: The sum of all the values of a set of measurements divided by the number of values in the set; a 

measure of central tendency. 

 

Median: The middle value for an ordered set of n values. Represented by the central value when n is odd 

or by the average of the two most central values when n is even. The median is the 50th percentile. 

 

Minimum Detectable Difference (MDD): The minimum detectable difference (MDD) is the smallest 

difference in means that the statistical test can resolve. The MDD depends on sample-to-sample 

variability, the number of samples, and the power of the statistical test. 

 

Minimum Variance Unbiased Estimates (MVUE): A minimum variance unbiased estimator (MVUE or 

MVU estimator) is an unbiased estimator of parameters, whose variance is minimized for all values of the 

parameters. If an estimator is unbiased, then its mean squared error is equal to its variance. 

 

Nondetect (ND): Censored data values. 

 

Nonparametric: A term describing statistical methods that do not assume a particular population 

probability distribution, and are therefore valid for data from any population with any probability 

distribution, which can remain unknown. 

 

Optimum: An interval is optimum if it possesses optimal properties as defined in the statistical literature. 

This may mean that it is the shortest interval providing the specified coverage (e.g., 0.95) to the 

population mean. For example, for normally distributed data sets, the UCL of the population mean based 

upon Studentôs t distribution is optimum. 

 

Outlier : Measurements (usually larger or smaller than the majority of the data values in a sample) that 

are not representative of the population from which they were drawn. The presence of outliers distorts 

most statistics if used in any calculations. 

 

p-value: In statistical hypothesis testing, the p-value of an observed value tobserved of some random 

variable T used as a test statistic is the probability that, given that the null hypothesis is true, T will 

assume a value as or more unfavorable to the null hypothesis as the observed value tobserved. 

 

Parameter: A parameter is an unknown constant associated with a population. 

 

Parametric: A term describing statistical methods that assume a normal distribution. 

 

Population: The total collection of N objects, media, or people to be studied and from which a sample is 

to be drawn. The totality of items or units under consideration. 

 

Prediction Interval : The interval (based upon historical data, or a background well) within which a 

newly and independently obtained (often labeled as a future observation) site observation (from a 

compliance well) of the predicted variable (lead) falls with a given probability (or confidence coefficient). 
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Probability of Type 2 Error (=ɓ): The probability, referred to as ɓ (beta), that the null hypothesis will 

not be rejected when in fact it is false (false negative). 

 

Probability of Type I Error = Level of Significance (= Ŭ): The probability, referred to as Ŭ (alpha), that 

the null hypothesis will be rejected when in fact it is true (false positive).  

 

p
th
 Percentile: The specific value, Xp of a distribution that partitions a data set of measurements in such a 

way that the p percent (a number between 0 and 100) of the measurements fall at or below this value, and 

(100-p) percent of the measurements exceed this value, Xp.) 

 

p
th
 Quantile: The specific value of a distribution that divides the set of measurements in such a way that 

the proportion, p, of the measurements falls below (or are equal to) this value, and the proportion (1-p) of 

the measurements exceed this value. 

 

Quality Assurance: An integrated system of management activities involving planning, implementation, 

assessment, reporting, and quality improvement to ensure that a process, item, or service is of the type 

and quality needed and expected by the client. 

 

Quality Assurance Project Plan: A formal document describing, in comprehensive detail, the necessary 

QA, QC, and other technical activities that must be implemented to ensure that the results of the work 

performed will satisfy the stated performance criteria. 

 

Quantile Plot: A graph that displays the entire distribution of a data set, ranging from the lowest to the 

highest value. The vertical axis represents the measured concentrations, and the horizontal axis is used to 

plot the percentiles of the distribution.  

 

Range: The numerical difference between the minimum and maximum of a set of values. 

 

Regression on Order Statistics (ROS): A regression  line is fit to the normal scores of the order 

statistics for the uncensored observations and then to fill in values extrapolated from the straight line for 

the observations below the detection limit. 

 

Resampling: The repeated process of obtaining representative samples and/or measurements of a 

population of interest. 

 

Reliable UCL: This is similar to a stable UCL. 

 

Robustness: Robustness is used to compare statistical tests. A robust test is the one with good 

performance (that is not unduly affected by outliers) for a wide variety of data distributions. 

 

Sample: A sample here represents a random sample (data set) obtained from the population of interest 

(e.g., a site area, a reference area, or a monitoring well). The sample is supposed to be a representative 

sample of the population under study. The sample is used to draw inferences about the population 

parameter(s). 

 

Shapiro-Wilk (SW) test: In statistics, the Shapiro-Wilk test tests the null hypothesis that a sample  

x1, ..., xn came from a normally distributed population. 
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Skewness: A measure of asymmetry of the distribution of the characteristic under study (e.g., lead 

concentrations). It can also be measured in terms of the standard deviation of log-transformed data. The 

higher is the standard deviation, the higher is the skewness. 

 

Stable UCL: The UCL of a population mean is a stable UCL if it represents a number of practical merits, 

which also has some physical meaning. That is, a stable UCL represents a realistic number (e.g., 

contaminant concentration) that can occur in practice. Also, a stable UCL provides the specified (at least 

approximately, as much as possible, as close as possible to the specified value) coverage (e.g., ~0.95) to 

the population mean. 

 

Standard Deviation (sd): A measure of variation (or spread) from an average value of the sample data 

values. 

 

Standard Error (SE): A measure of an estimate's variability (or precision). The greater the standard 

error in relation to the size of the estimate, the less reliable the estimate. Standard errors are needed to 

construct confidence intervals for the parameters of interests such as the population mean and population 

percentiles. 

 

Tolerance Limit: A confidence limit on a percentile of the population rather than a confidence limit on 

the mean. For example, a 95 percent one-sided TL for 95 percent coverage represents the value below 

which 95 percent of the population values are expected to fall with 95 percent confidence. In other words, 

a 95% UTL with coverage coefficient 95% represents a 95% upper confidence limit for the 95
th
 

percentile. 

 

Unreliable UCL, Unstable UCL, Unrealistic UCL: The UCL of a population mean is unstable, 

unrealistic, or unreliable if it is orders of magnitude higher than the other UCLs of population mean. It 

represents an impractically large value that cannot be achieved in practice. For example, the use of Landôs 

H statistic often results in impractically large inflated UCL value. Some other UCLs, such as the bootstrap 

t UCL and Hallôs UCL, can be inflated by outliers resulting in an impractically large and unstable value. 

All such impractically large UCL values are called unstable, unrealistic, unreliable, or inflated UCLs. 

 

Upper Confidence Limit (UCL): The upper boundary (or limit) of a confidence interval of a parameter 

of interest such as the population mean. 

 

Upper Prediction Limit (UPL): The upper boundary of a prediction interval for an independently 

obtained observation (or an independent future observation). 

 

Upper Tolerance Limit (UTL): The upper boundary of a tolerance interval. 

 

Winsorization method: The Winsorization method is a procedure that replaces the n extreme values with 

the preset cut-off value. This method is sensitive to the number of outliers, but not to their actual values. 
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Introduction 

The Need for ProUCL Software 

Statistical inferences about the sampled populations and their parameters are made based upon defensible 

and representative data sets of appropriate sizes collected from the populations under investigation. 

Statistical inference, including both estimation and hypotheses testing approaches, is routinely used to:  

 
1. Estimate environmental parameters of interest such as exposure point concentration 

(EPC) terms, not-to-exceed values, and background level threshold values (BTVs) for 

contaminants of potential concern (COPC),  

 

2. Identify areas of concern (AOC) at a contaminated site, 

 

3. Compare contaminant concentrations found at two or more AOCs of a contaminated site,  

 

4. Compare contaminant concentrations found at an AOC with background or reference 

area contaminant concentrations,  

 

5. Compare site concentrations with a cleanup standard to verify the attainment of cleanup 

standards. 

 

Statistical inference about the sampled populations and their parameters are made based upon defensible 

and representative data sets of appropriate sizes collected from the populations under investigation. 

Environmental data sets originated from the Superfund and RCRA sites often consist of observations 

below one or more detection limits (DLs). In order to address the statistical issues arising in exposure and 

risk assessment applications; background versus site comparison and evaluation studies; and various other 

environmental applications, several graphical, parametric, and nonparametric statistical methods for data 

sets with nondetects and without nondetects have been incorporated into ProUCL Version 4.0 (ProUCL 

4.0). 

 

Exposure and risk management and cleanup decisions in support of United States Environmental 

Protection Agency (EPA) projects are often made based upon the mean concentrations of the COPCs. A 

95% upper confidence limit (UCL95) of the unknown population (e.g., an AOC) arithmetic mean (AM), 

ɛ1, can be used to: 

 

¶ Estimate the EPC term of the AOC under investigation,  

¶ Determine the attainment of cleanup standards,  

¶ Compare site mean concentrations with reference area mean concentrations, and 

¶ Estimate background level mean contaminant concentrations. The background mean 

contaminant concentration level may be used to compare the mean of an AOC. It should 

be noted that it is not appropriate to compare individual point-by-point site observations 

with the background mean concentration level. 

 

It is important to compute a reliable and stable UCL95 of the population mean using the available data. 

The UCL95 should approximately provide the 95% coverage for the unknown population mean, ɛ1. Based 

upon the available background data, it is equally important to compute reliable and stable upper 

percentiles, upper prediction limits (UPLs), or upper tolerance limits (UTLs). These upper limits based 

upon background (or reference) data are used as estimates of BTVs, compliance limits (CL), or not-to-
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exceed values. These upper limits are often used in site (point-by-point) versus background comparison 

evaluations.  

 

Environmental scientists often encounter trace level concentrations of COPCs when evaluating sample 

analytical results. Those low level analytical results cannot be measured accurately, and therefore are 

typically reported as less than one or more detection limit (DL) values (also called nondetects). However, 

practitioners often need to obtain reliable estimates of the population mean, µ1, the population standard 

deviation, ů1, and upper limits, including the upper confidence limit (UCL) of the population mass or 

mean, the UPL, and the UTL based upon data sets with nondetect (ND) observations. Hypotheses testing 

approaches are often used to verify the attainment of cleanup standards, and compare site and background 

concentrations of COPCs.  

 

Background evaluation studies, BTVs, and not-to-exceed values should be estimated based upon 

defensible background data sets. The estimated BTVs or not-to-exceed values are then used to identify the 

COPCs, to identify the site AOCs or hot spots, and to compare the contaminant concentrations at a site 

with background concentrations. The use of appropriate statistical methods and limits for site versus 

background comparisons is based upon the following factors:  

 
1. Objective of the study, 

 

2. Environmental medium (e.g., soil, groundwater, sediment, air) of concern, 

 

3. Quantity and quality of the available data, 

 

4. Estimation of a not-to-exceed value or of a mean contaminant concentration, 

 

5. Pre-established or unknown cleanup standards and BTVs, and 

 

6. Sampling distributions (parametric or nonparametric) of the concentration data sets 

collected from the site and background areas under investigation.  

 
In background versus site comparison evaluations, the environmental population parameters of interest 

may include:  

 

¶ Preliminary remediation goals (PRGs), 

¶ Soil screening levels (SSLs), 

¶ Risk-based cleanup (RBC) standards, 

¶ BTVs, not-to-exceed values, and  

¶ Compliance limit, maximum concentration limit (MCL), or alternative concentration 

limit (ACL), frequently used in groundwater applications. 

 
When the environmental parameters listed above are not known or have not been pre-established, 

appropriate upper statistical limits are used to estimate the parameters. The UPL, UTL, and upper 

percentiles are used to estimate the BTVs and not-to-exceed values. Depending upon the site data 

availability, point-by-point site observations are compared with the estimated (or pre-established) BTVs 

and not-to-exceed values. If enough site and background data are available, two-sample hypotheses 

testing approaches are used to compare site concentrations with background concentrations levels. These 

statistical methods can also be used to compare contaminant concentrations of two site AOCs, surface and 

subsurface contaminant concentrations, or upgradient versus monitoring well contaminant concentrations.  
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ProUCL 4.00.05 Capabilities 

ProUCL 4.00.05 is an upgrade of ProUCL 4.00.02 which represents an upgrade of ProUCL 4.0 (EPA, 

2007). ProUCL 4.00.05 contains all statistical methods as available in ProUCL 4.00.02 (described below) 

to address various environmental issues for both full data sets without nondetects (NDs) and for data sets 

with NDs (also known as left-censored data sets). It should be noted that Technical Guide developed for 

ProUCL 4.0 also applies to its earlier upgrade ProUCL 4.00.02. ProUCL 4.00.05 has the extended version 

of Shapiro-Wilk (S-W) test that can perform normal and lognormal goodness-of-fit tests for data sets of 

sizes upto 2000. ProUCL 4.00.05 can also compute upper prediction and upper tolerance limits based 

upon gamma distribution. Some modifications have been incorporated in decision tables and 

recommendations made by ProUCL to estimate the EPC terms. Specifically, based upon recent 

experience, developers of ProUCL are re-iterating that the use of lognormal distribution to estimate EPC 

terms should be avoided, as the use of lognormal distribution yields unrealistic and highly unstable UCLs. 

In an effort to simplify the EPC estimation process and recommending defensible estimates, for highly 

skewed lognormally distributed data sets, developers are recommending the use of other nonparametric 

UCLs such as Chebyshev (mean, Sd) UCLs available in ProUCL 4.00.05.  These changes have been 

incorporated in various decision tables included in ProUCL 4.0 Technical Guide and ProUCL 4.0 User 

Guide. Recommendations made by ProUCL 4.0 have been changed accordingly in ProUCL 4.00.05. 

Some minor requests (e.g., incorporation of maximum likelihood estimates based upon a gamma model) 

and bugs as suggested by ProUCL 4.0/ProUCL 4.00.02 users have also been addressed in this upgraded 

version of ProUCL. 

 

ProUCL 4.0/ProUCL 4.00.02 contains: 

 
1. Rigorous parametric and nonparametric (including bootstrap methods) statistical methods 

(instead of simple ad hoc or substitution methods) that can be used on full data sets 

without nondetects and on data sets with below detection limit (BDL) or nondetect (ND) 

observations.  

 

2. State-of-the-art parametric and nonparametric UCL, UPL, and UTL computation 

methods. These methods can be used on full-uncensored data sets without nondetects and 

also on data sets with BDL observations. Some of the methods (e.g., Kaplan-Meier 

method, ROS methods) are applicable on left-censored data sets having multiple 

detection limits. The UCL and other upper limit computation methods cover a wide range 

of skewed data sets with and without the BDLs.  

 

3. Single sample (e.g., Studentôs t-test, sign test, proportion test, Wilcoxon Singed Rank 

test) and two-sample (Studentôs t-test, Wilcoxon-Mann-Whitney test, Gehan test, quantile 

test) parametric and nonparametric hypotheses testing approaches for data sets with and 

without ND observations. These hypothesis testing approaches can be used to: verify the 

attainment of cleanup standards, perform site versus background comparisons, and 

compare two or more AOCs, monitoring wells (MWs).  

 

4. The single sample hypotheses testing approaches are used to compare site mean, site 

median, site proportion, or a site percentile (e.g., 95
th
) to a compliance limit (action level, 

regularity limit). The hypotheses testing approaches can handle both full-uncensored data 

sets without nondetects, and left-censored data sets with nondetects. Simple two-sample 

hypotheses testing methods to compare two populations are available in ProUCL 4.0, 

such as two-sample t-tests, Wilcoxon-Mann-Whitney (WMW) Rank Sum test, quantile 
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test, Gehanôs test, and dispersion test. Variations of hypothesis testing methods (e.g., 

Leveneôs method to compare dispersions, generalized WRS test) are easily available in 

most commercial and freely available software packages (e.g., MINITAB, R).  

 

5. ProUCL 4.0 includes graphical methods (e.g., box plots, multiple Q-Q plots, histogram) 

to compare two or more populations. Additionally, ProUCL 4.0 can also be used to 

display a box plot of one population (e.g., site data) with compliance limits or upper 

limits (e.g., UPL) of other population (background area) superimposed on the same 

graph. This kind of graph provides a useful visual comparison of site data with a 

compliance limit or BTVs. Graphical displays of a data set (e.g., Q-Q plot) should be 

used to gain insight knowledge contained in a data set that may not otherwise be clear by 

looking at simple test statistics such as t-test, Dixon test statistic, or Shapiro-Wilk (S-W) 

test statistic. 

 

6. ProUCL 4.0 can process multiple contaminants (variables) simultaneously and has the 

capability of processing data by groups. A valid group column should be included in the 

data file. 

 

7. ProUCL 4.0 provides a GOF test for data sets with nondetects. The user can create 

additional columns to store extrapolated (estimated) values for nondetects based upon 

normal ROS, gamma ROS, and lognormal ROS (robust ROS) methods. 

ProUCL Applications 

The methods incorporated in ProUCL 4.00.05 (and in earlier versions) can be used on data sets with and 

without BDL and ND observations. Methods and recommendations as incorporated in ProUCL 4.0 are 

based upon the results and findings of the extensive simulation studies as summarized in Singh and Singh 

(2003), and Singh, Maichle, and Lee (EPA, 2006). It is anticipated that ProUCL 4.00.05 (and its previous 

versions) will serve as a companion software package for the following EPA documents: 

 

¶ Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous 

Waste Sites (EPA, 2002a), and  

¶ Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA 

Sites (EPA, 2002b). 

 
Methods included in ProUCL 4.00.05 can be used in various other environmental applications including 

the verification of cleanup standards (EPA, 1989), and computation of upper limits needed in 

groundwater monitoring applications (EPA, 1992 and EPA, 2004). 

 

In 2002, EPA issued guidance for calculating the UCLs of the unknown population means for 

contaminant concentrations at hazardous waste sites. The ProUCL 3.0 software package (EPA, 2004) has 

served as a companion software package for the EPA (2002a) guidance document for calculating UCLs of 

mean contaminant concentrations at hazardous waste sites. ProUCL 3.0 has several parametric and 

nonparametric statistical methods that can be used to compute appropriate UCLs based upon full-

uncensored data sets without any ND observations. ProUCL 4.0/ProUCL 4.00.02 retains all capabilities 

of ProUCL 3.0, including goodness-of-fit (GOF) and the UCL computation methods for data sets without 

any BDL observations. However, ProUCL 4.0 has the additional capability to perform GOF tests and 

computing UCLs and other upper limits based upon data sets with BDL observations. 
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ProUCL 4.0 defines log-transform (log) as the natural logarithm (ln) to the base e. ProUCL 4.0 also 

computes the maximum likelihood estimates (MLEs) and the minimum variance unbiased estimates 

(MVUEs) of unknown population parameters of normal, lognormal, and gamma distributions. This, of 

course, depends upon the underlying data distribution. ProUCL 4.0 computes the (1 ï Ŭ)100% UCLs of 

the unknown population mean, ɛ1, using 5 parametric and 10 nonparametric methods. It should be pointed 

out that ProUCL 4.0 computes the simple summary statistics for detected raw and log-transformed data 

for full data sets without NDs, as well as for data sets with BDL observations. It is noted that estimates of 

mean and sd for data sets with NDs based upon rigorous statistical methods (e.g., MLE, ROS, K-M 

methods) are note provided in the summary statistics. Those estimates and the associated upper limits for 

data sets with NDs are provided under the menu options: Background and UCL.  

 

It is emphasized that throughout this Technical Guide, and in the ProUCL 4.00.05 software, it is assumed 

that one is dealing with a single population. If multiple populations (e.g., background and site data mixed 

together) are present, it is recommended to first separate them out (e.g., using appropriate statistical 

population partitioning techniques), and then compute appropriate respective 95% UCLs separately for 

each of the identified populations. Outliers, if any, should be identified and thoroughly investigated. 

ProUCL 4.0 provides two commonly used simple classical outlier identification procedures: 1) Dixon 

test, and 2) Rosner test. Outliers distort most parametric statistics (e.g., mean, UCLs, upper prediction 

limits (UPLs), test statistics) of interest. Moreover, it should be noted that even though outliers might 

have minimal influence on hypotheses testing statistics based upon ranks (e.g., WMW test), outliers do 

distort those nonparametric statistics (including bootstrap methods), which are based upon higher order 

statistics such as UPLs and UTLs. Decisions about the disposition (exclusion or inclusion) of outliers in a 

data set used to estimate the EPC terms or BTVs should be made by all parties involved (e.g., project 

team, EPA, local agency, potentially responsible party, etc.) in the decision making process.  

 

The presence of outlying observations also distorts statistics based upon bootstrap re-samples. The use of 

higher order values (quantiles) of the distorted statistics for the computation of the UCLs or UPLs based 

upon bootstrap t and Hallôs bootstrap methods may yield unstable and erratic UCL values. This is 

especially true for the upper limits providing higher confidence coefficients such as 95%, 97.5%, or 99%. 

Similar behavior of the bootstrap t UCL is observed for data sets having BDL observations. Therefore, the 

bootstrap t and Hallôs bootstrap methods should be used with caution. It is suggested that the user should 

examine various other UCL results and determine if the UCLs based upon the bootstrap t and Hallôs 

bootstrap methods represent reasonable and reliable UCL values of practical merit. If the results based 

upon these two bootstrap methods are much higher than the rest of methods, then this could be an 

indication of erratic behavior of those bootstrap UCL values, perhaps distorted by outlying observations. 

In case these two bootstrap methods yield erratic and inflated UCLs, the UCL of the mean should be 

computed using the adjusted or the approximate gamma UCL computation method for highly skewed 

gamma distributed data sets of small sizes. Alternatively, one may use a 97.5% or 99% Chebyshev UCL 

to estimate the mean of a highly skewed population. It should be noted that typically, a Chebyshev UCL 

may yield conservative and higher values of the UCLs than other methods available in ProUCL 4.0 This 

is especially true when data are moderately skewed and sample size is large. In such cases, when the 

sample size is large, one may want to use a 95% Chebyshev UCL or a Chebyshev UCL with lower 

confidence coefficient such as 92.5% or 90% as estimate of the population mean.  

ProUCL Methods 

ProUCL 4.0 (and all its upgrades) provides 15 UCL computation methods for full data sets without any 

BDL observations; 5 are parametric and 10 are nonparametric methods. The nonparametric methods do 
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not depend upon any assumptions about the data distributions. The five parametric UCL computation 

methods are:  

 
1. Studentôs t-UCL,  

 

2. Approximate gamma UCL using chi-square approximation, 

 

3. Adjusted gamma UCL (adjusted for level significance),  

 

4. Landôs H-UCL, and  

 

5. Chebyshev inequality-based UCL (using MVUEs of parameters of a lognormal       

distribution).  

 

 
The 10 nonparametric methods are: 

 

1. The central limit theorem (CLT)-based UCL,  

 

2. Modified t-statistic (adjusted for skewness)-based UCL,  

 

3. Adjusted-CLT (adjusted for Skewness)-based UCL,  

 

4. Chebyshev inequality based-UCL (using sample mean and sample standard deviation), 

 

5. Jackknife method-based UCL,  

 

6. UCL based upon standard bootstrap,  

 

7. UCL based upon percentile bootstrap,  

 

8. UCL based upon bias-corrected accelerated (BCA) bootstrap,  

 

9. UCL based upon bootstrap t, and  

 

10. UCL based upon Hallôs bootstrap.  

 
Environmental scientists often encounter trace level concentrations of COPCs when evaluating sample 

analytical results. Those low level analytical results cannot be measured accurately, and therefore are 

typically reported as less than one or more DL values. However, the practitioners need to obtain reliable 

estimates of the population mean, µ1, and the population standard deviation, ů1, and upper limits including 

the UCL of the population mass (measure of central tendency) or mean, UPL, and UTL. Several methods 

are available and cited in the environmental literature (Helsel (2005), Singh and Nocerino (2002), Millard 

and Neerchal (2001)) that can be used to estimate the population mean and variance. However, till to date, 

no specific recommendations are available for the use of appropriate methods that can be used to compute 

upper limits (e.g., UCLs, UPLs) based upon data sets with BDL observations. Singh, Maichle, and Lee 

(EPA 2006) extensively studied the performance of several parametric and nonparametric UCL 

computation methods for data sets with BDL observations. Based upon their results and findings, several 
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methods to compute upper limits (UCLs, UPLs, and UTLs) needed to estimate the EPC terms and BTVs 

have been incorporated in ProUCL 4.0. 

 

In 2002, EPA issued another Guidance for Comparing Background and Chemical Concentrations in Soil 

for CERCLA Sites (EPA, 2002b). This EPA (2002b) background guidance document is currently being 

revised to include statistical methods that can be used to estimate the BTVs and not-to-exceed values 

based upon data sets with and without the BDL observations. In background evaluation studies, BTVs, 

compliance limits, or not-to-exceed values often need to be estimated based upon defensible background 

data sets. The estimated BTVs or not-to-exceed values are then used for screening the COPCs, to identify 

the site AOCs or hot spots, and also to determine if the site concentrations (perhaps after a remediation 

activity) are comparable to background concentrations, or are approaching the background level 

concentrations. Individual point-by-point site observations (composite samples preferred) are sometimes 

compared with those not-to-exceed values or BTVs. It should be pointed out that in practice, it is 

preferred to use hypotheses testing approaches to compare site versus background concentrations 

provided enough (e.g., at least 8-10 detected observations from each of the two populations) site and 

background data are available. Chapter 1 provides practical guidance on the minimum sample size 

requirements to estimate and use the BTVs, single and two-sample hypotheses testing approaches to 

perform background evaluations and background versus site comparisons. Chapter 1 also briefly 

discusses the differences in the definitions and uses of the various upper limits as incorporated in ProUCL 

4.0. Detailed discussion of the various methods to estimate the BTVs and other not-to-exceed values for 

full -uncensored data sets (Chapter 5) without any nondetect values and for left-censored data sets 

(Chapter 6) with nondetect values are given in the revised background guidance document. 

 

ProUCL 4.0 includes statistical methods to compute UCLs of the mean, upper limits to estimate the 

BTVs, other not-to-exceed values, and compliance limits based upon data sets with one or more detection 

limits. The use of appropriate statistical methods and limits for exposure and risk assessment, and site 

versus background comparisons, is based upon several factors:  

 

1. Objective of the study;  

 

2. Environmental medium (e.g., soil, groundwater, sediment, air) of concern;  

 

3. Quantity and quality of the available data;  

 

4. Estimation of a not-to-exceed value or of a mean contaminant concentration;  

 

5. Pre-established or unknown cleanup standards and BTVs; and  

 

6. Sampling distributions (parametric or nonparametric) of the concentration data sets 

collected from the site and background areas under investigation.  

 
In background versus site comparison studies, the population parameters of interest are typically 

represented by upper threshold limits (e.g., upper percentiles, upper confidence limits of an upper 

percentile, upper prediction limit) of the background data distribution. It should be noted that the upper 

threshold values are estimated and represented by upper percentiles and other values from the upper tail 

of the background data distribution. These background upper threshold values do not represent measures 

of central tendency such as the mean, the median, or their upper confidence limits. These environmental 

parameters may include:  
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¶ Preliminary remediation goals (PRGs), compliance limits, 

¶ Soil screening levels (SSLs), 

¶ Risk-based cleanup (RBC) standards, 

¶ BTVs, compliance limits, or not-to-exceed values, and 

¶ Maximum concentration limit (MCL) or alternative concentration limit (ACL) used in 

Groundwater applications. 

 
When the environmental parameters listed above are not known or pre-established, appropriate upper 

statistical limits are used to estimate those parameters. The UPL, UTL, and upper percentiles are typically 

used to estimate the BTVs, not-to-exceed values, and other parameters listed above. Depending upon the 

availability of site data, point-by-point site observations are compared with the estimated (or pre-

established) BTVs and not-to-exceed values. If enough site and background data are available, two-

sample hypotheses testing approaches (preferred method to compare two populations) are used to 

compare site concentrations with background concentrations levels. The hypotheses testing methods can 

also be used to compare contaminant concentrations of two site AOCs, surface and subsurface 

contaminant concentrations, or upgradient versus monitoring well contaminant concentrations.  

Background versus Site Comparison Evaluations 

The following statistical limits have been incorporated in ProUCL 4.0 to assist in background versus site 

comparison evaluations: 

Parametric Limits for Full-Uncensored Data Sets without Nondetect Observations 

 

¶ UPL for a single observation (Normal, Lognormal) not belonging to the original data set 

¶ UPL for next k (k is user specified) or k future observations (Normal, Lognormal) 

¶ UTL, an upper confidence limit of a percentile (Normal, Lognormal) 

¶ Upper percentiles (Normal, Lognormal, and Gamma) 

 

Nonparametric Limits for Full-Uncensored Data Sets without Nondetect Observations 

Nonparametric limits are typically based upon order statistics of a data set such as a background or a 

reference data set. Depending upon the size of the data set, higher order statistics (maximum, second 

largest, third largest, and so on) are used as these upper limits (e.g., UPLs, UTLs). The details of these 

methods with sample size requirements can be found in Chapter 5 of the revised Guidance for Comparing 

Background and Chemical Concentrations in Soil for CERCLA Sites (EPA, 2002b). It should be, noted 

that the following statistics might get distorted by the presence of outliers (if any) in the data set under 

study. 

 

¶ UPL for a single observation not belonging to the original data set 

¶ UTL, an upper confidence limit of a percentile 

¶ Upper percentiles  

¶ Upper limit based upon interquartile range (IQR) 

¶ Upper limits based upon bootstrap methods 
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For data sets with BDL observations, the following parametric and nonparametric methods to compute 

the upper limits were studied and evaluated by Singh, Maichle, and Lee (EPA, 2006) via Monte Carlo 

Simulation Experiments. Depending upon the performances of those methods, only some of the methods 

have been incorporated in ProUCL 4.0. Methods (e.g., Delta method, DL method, uniform (0, DL) 

generation method) not included in ProUCL 4.0 do not perform well in comparison with other methods.  

 

Note: When the percentage of NDs in a data set is high (e.g., > 40%-50%), especially when multiple 

detection limits might be present, it is hard to reliably perform GOF tests (to determine data distribution) 

on those data sets with many NDs. The uncertainty associated with those GOF tests will be high, 

especially when the data sets are of small sizes (< 10-20). It should also be noted that the parametric 

MLE methods (e.g., for normal and lognormal distributions) often yield unstable estimates of mean and 

sd. This is especially true when the number of nondetects exceeds 40%-50%. In such situations, it is 

preferable to use nonparametric (e.g., KM method) methods to compute statistics of interest such as 

UCLs, UPLs, and UTLs. Nonparametric methods do not require any distributional assumptions about the 

data sets under investigation. Singh, Maichle, and Lee (EPA, 2006) also concluded that the performance 

of the KM estimation method is better (in terms of coverage probabilities) than various other parametric 

estimation (e.g., MLE, EM, ROS) methods.  

 

Parametric Methods to Compute Upper Limits for Data Sets with Nondetect Observations 

¶ Simple substitution (proxy) methods (0, DL/2, DL) 

¶ MLE method, often known as Cohenôs MLE method ï single detection limit 

¶ Restricted MLE method ï single detection limit ï not in ProUCL 4.0 

¶ Expectation Maximization (EM) method ï single detection limit ï not in ProUCL 4.0 

¶ EPA Delta log method ï single detection limit  ï not in ProUCL 4.0 

¶ Regression method on detected data and using slope and intercept of the OLS regression 

line as estimates of standard deviation, sd, and mean (not a recommended method)  

¶ Robust ROS (regression on order statistics) on log-transformed data ï nondetects 

extrapolated (estimated) using robust ROS; mean, sd, UCLs, and other statistics 

computed using the detected and extrapolated data in original scale ï multiple detection 

limits 

¶ Normal ROS ï nondetects extrapolated (estimated) using normal distribution, mean, sd, 

UCLs, and other statistics computed using the detected and extrapolated data ï multiple 

detection limits.  

¶ It is noted that the estimated NDs often become negative and even larger than the 

detection limits (not a recommended method) 

¶ Gamma ROS ï nondetects extrapolated (estimated) using gamma distribution, mean, sd, 

UCLs, and other statistics computed using the detected and extrapolated data ï multiple 

detection limits 

Nonparametric Methods to Compute Upper Limits for Data Sets with Nondetect Observations 

¶ Bootstrap Methods  

o Percentile Bootstrap on robust ROS 

o Percentile Bootstrap 

o BCA Bootstrap 

o Bootstrap t 
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¶ Jackknife Method  

o Jackknife on robust ROS 

 

¶ Kaplan-Meier (KM) Method 

o Bootstrap (percentile, BCA) using KM estimates 

o Jackknife using KM estimates 

o Chebyshev Method using KM estimates 

 

¶ Winsorization Method 

 
For uncensored full data sets without any NDs, the performance (in terms of coverage for the mean) of 

the various UCL computation methods was evaluated by Singh and Singh (2003). The performance of the 

parametric and nonparametric UCL methods based upon data sets with nondetect observations was 

studied by Singh, Maichle, and Lee (EPA 2006). Several of the methods listed above have been 

incorporated in ProUCL 4.0 to compute the estimates of EPC terms (95% UCL), and of BTVs (UPLs, 

UTLs, upper percentiles). Methods that did not perform well (e.g., poor coverage or unrealistically large 

values, infeasible and biased estimates) are not included in ProUCL 4.0. Methods not incorporated in 

ProUCL 4.0 are: EPA Delta Log method, Restricted MLE method, and EM method, substitution method 

(0, and DL), and Regression method.  

 

Note: It should be noted that for data sets with NDs, the DL/2 substitution method has been incorporated 

in ProUCL 4.0 only for historical reasons and also for its current default use. It is well known that the 

DL/2 method (with NDs replaced by DL/2) does not perform well (e.g., Singh, Maichle, and Lee (EPA 

2006)) even when the percentage of NDs is only 5%-10%. It is strongly suggested to avoid the use of 

DL/2 method for estimation and hypothesis testing approaches used in various environmental 

applications. Also, when the % of NDs becomes high (e.g., > 40%-50%), it is suggested to avoid the use 

of parametric MLE methods. For data sets with high percentage of NDs (e.g., > 40%), the distributional 

assumptions needed to use parametric methods are hard to verify; and those parametric MLE methods 

may yield unstable results. 

 

It should also be noted that even though the lognormal distribution and some statistics based upon 

lognormal assumption (e.g., Robust ROS, DL/2 method) are available in ProUCL 4.0, ProUCL 4.0 does 

not compute MLEs of mean and sd based upon a lognormal distribution. The main reason is that the 

estimates need to be computed in the original scale via back-transformation (Shaarawi, 1989, Singh, 

Maichle, and Lee (EPA 2006)). Those back-transformed estimates often suffer from an unknown amount 

of significant bias. Hence, it is also suggested to avoid the use of a lognormal distribution to compute 

MLEs of mean and sd, and associated upper limits, especially UCLs based upon those MLEs obtained 

using a lognormal distribution. 

 
ProUCL 4.0 recommends the use of an appropriate UCL to estimate the EPC terms. It is desirable that the 

user consults with the project team and experts familiar with the site before using those recommendations. 

Furthermore, there does not seem to be a general agreement about the use of an upper limit (e.g., UPL, 

percentile, or UTL) to estimate not-to-exceed values or BTVs to be used for screening of the COPCs and 

in site versus background comparison studies. ProUCL 4.0 can compute both parametric and 

nonparametric upper percentiles, UPLs, and UTLs for uncensored and censored data sets. However, no 

specific recommendations have been made regarding the use of UPLs, UTLs, or upper percentiles to 

estimate the BTVs, compliance limits, and other related background or reference parameters. However, 

the developers of ProUCL 4.0 prefer the use of UPLs or upper percentiles to estimate the background 
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population parameters (e.g., BTVs, not-to-exceed values) that may be needed to perform point-by-point 

site versus background comparisons. 

 

The standard bootstrap and the percentile bootstrap UCL computation methods do not perform well (do 

not provide adequate coverage to population mean) for skewed data sets. For skewed distributions, the 

bootstrap t and Hallôs bootstrap (meant to adjust for skewness) methods do perform better (in terms of 

coverage for the population mean) than the other bootstrap methods. However, it has been noted (e.g., 

Efron and Tibshirani (1993) and Singh, Singh, and Iaci (2002b)) that these two bootstrap methods 

sometimes yield erratic and inflated UCL values (orders of magnitude higher than the other UCLs). This 

may occur when outliers are present in a data set. Similar behavior of the bootstrap t UCL is observed 

based upon data sets with NDs. Therefore, whenever applicable, ProUCL 4.0 provides cautionary 

statements regarding the use of bootstrap methods.  

 

ProUCL 4.0 provides several state-of-the-art parametric and nonparametric UCL, UPL, and UTL 

computation methods that can be used on uncensored data sets (full data sets) and on data sets with BDL 

observations. Some of the methods (e.g., Kaplan-Meier method, ROS methods) incorporated in ProUCL 

4.0 are applicable on left-censored data sets having multiple detection limits. The UCLs and other upper 

limits computation methods in ProUCL 4.0 cover a wide range of skewed data distributions with and 

without the BDLs arising from the environmental applications.  

 

ProUCL 4.0 also has parametric and nonparametric single and two-sample hypotheses testing approaches 

required to: compare site location (e.g., mean, median) to a specified cleanup standard; perform site 

versus background comparisons; or compare of two or more AOCs. These hypotheses testing methods 

can handle both full (uncensored data sets without NDs) and left-censored (with nondetects) data sets. 

Specifically, two-sample tests such as t-test, Wilcoxon-Mann-Whitney (WMW) Rank Sum test, quantile 

test, and Gehanôs test are available in ProUCL 4.0 to compare concentrations of two populations. 

 

Single sample parametric (Studentôs t-test) and nonparametric (sign test, Wilcoxon Signed Rank (WSR) 

test, tests for proportions and percentiles) hypotheses testing approaches are also available in ProUCL 4.0. 

The single sample hypotheses tests are useful when the environmental parameters such as the clean 

standard, action level, or compliance limits are known, and the objective is to compare site concentrations 

with those known threshold values. Specifically, a t-test (or a sign test) may be used to verify the 

attainment of cleanup levels at an AOC after a remediation activity; and a test for proportion may be used 

to verify if the proportion of exceedances of an action level (or a compliance limit) by sample 

concentrations collected from the AOC (or a MW) exceeds a certain specified proportion (e.g., 1%, 5%, 

10%). As mentioned before, ProUCL 4.0 can perform these hypotheses on data sets with and without 

nondetect observations.  

 

Note: It should be noted that as cited in the literature, some of the hypotheses testing approaches (e.g., 

nonparametric two-sample WMW) deal with the single detection limit scenario. If multiple detection 

limits are present, all NDs below the largest detection limit need to be considered as NDs (Gilbert, 1987, 

Helsel, 2005). This in turn may reduce the power and increase uncertainty associated with test. As 

mentioned before, it is always desirable to supplement the test statistics and test conclusions with 

graphical displays such as the multiple Q-Q plots and side-by-side box plots. ProUCL 4.0 can graph box 

plots and Q-Q plots for data sets with nondetect observations. Gehan test as available in ProUCL 4.0 

should be used in case multiple detection limits are present. ProUCL 4.0 can draw Q-Q plots and box 

plots for data sets with and without nondetect observations. 
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It should be pointed out that when using two-sample hypotheses approaches (WMW test, Gehan test, and 

quantile test) on data sets with NDs, both samples and variables (e.g., site-As, Back-As) should be 

specified as having nondetects. This means, a ND column (0= ND, and 1 = detect) should be provided for 

each variable (here D_site-As, and D_Back-As) to be used in this comparison. If a variable (e.g., site-As) 

does not have any nondetects, still a column with label D_site-As should be included in the data set with 

all entries = 1 (detected values). 

 

Moreover, in single sample hypotheses tests (e.g., sign test, proportion test) used to compare site 

mean/median concentration level with a cleanup standard, Cs, or compliance limit (e.g., proportion test), 

all NDs (if any) should lie below the cleanup standard, Cs. 

 

The differences between these tests should be noted and understood. Specifically, a t-test or a Wilcoxon 

Signed Rank (WSR) test are used to compare the measures of location and central tendencies (e.g., mean, 

median) of a site area (e.g., AOC) to a cleanup standard, Cs or action level also representing a measure of 

central tendency (e.g., mean, median); whereas, a proportion test compares if the proportion of site 

observations from an AOC exceeding a compliance limit (CL) exceeds a specified proportion, P0 (e.g., 

5%, 10%). The percentile test compares a specified percentile (e.g., 95
th
) of the site data to a pre-specified 

upper threshold (e.g., reporting limit, action level). All of these tests have been incorporated in ProUCL 

4.0. Most of the single sample and two-sample hypotheses tests also report associated p-values. For some 

of the hypotheses tests (e.g., WMW test, WSR test, proportion test), large sample approximate p-values 

are computed using continuity correction factors.  

Graphical Capabilities 

ProUCL 4.0 has useful exploratory graphical methods that may be used to visually compare the 

concentrations of:  

 
1. A site area of concern (AOC) with an action level. This can be done using a box plot of 

site data with action level superimposed on that graph, 

 

2. Two or more populations, including site versus background populations, surface versus 

subsurface concentrations, and 

 

3. Two or more AOCs.  

 
The graphical methods include double and multiple quantile-quantile (Q-Q) plots, side-by-side box plots, 

and histograms. Whenever possible, it is desirable to supplement statistical test results and statistics with 

visual graphical displays of data sets. There is no substitute for graphical displays of a data set as the 

visual displays often provide useful information about a data set, which cannot be revealed by simple test 

statistics such as t-test, SW test, Rosner test, WMW test. For example, in addition to providing 

information about the data distribution, a normal Q-Q plot can also help identify outliers and multiple 

populations that might be present in a data set. This kind of information cannot be revealed by simple test 

statistics such as a Shapiro-Wilk (SW) test or Rosnerôs outlier test statistic. Specifically, the SW test may 

lead to the conclusion that a mixture data set (representing two or more populations) can be modeled by a 

normal (or lognormal) distribution, whereas the occurrence of obvious breaks and jumps in the associated 

Q-Q plot may suggest the presence of multiple populations in the mixture data set. It is suggested that the 

user should use exploratory tools to gain necessary insight into a data set and the underlying assumptions 

(e.g., distributional, single population) that may not be revealed by simple test statistics. 
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Note: On a Q-Q plot, observations well separated from the majority of the data may represent potential 

outliers, and obvious jumps and breaks of significant magnitude may suggest the presence of observations 

from multiple populations in the data set. 

 

The analyses of data categorized by a group ID variable such as: 1) Surface vs. Subsurface; 

2) AOC1 vs. AOC2; 3) Site vs. Background; and 4) Upgradient vs. Downgradient monitoring wells are 

quite common in many environmental applications. ProUCL 4.0 offers this option for data sets with and 

without nondetects. The Group Option provides a powerful tool to perform various statistical tests and 

methods (including graphical displays) separately for each of the group (samples from different 

populations) that may be present in a data set. For an example, the same data set may consist of samples 

from the various groups or populations representing site, background, two or more AOCs, surface, 

subsurface, monitoring wells. The graphical displays (e.g., box plots, Q-Q plots) and statistics 

(computations of background statistics, UCLs, hypotheses testing approaches) of interest can be 

computed separately for each group by using this option.  
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Chapter 1 
 

Guidance on the Use of Statistical Methods as Incorporated in 
ProUCL 4.0 & Associated Minimum Sample Size Requirements 

 
This chapter describes the differences between the various statistical limits (e.g., UCLs, UPLs, UTLs) 

often used to estimate the environmental parameters of interest including exposure point concentration 

(EPC) terms and background threshold values (BTVs). Some suggestions about the minimum sample size 

requirements needed to use statistical inferential methods to estimate the environmental parameters: EPC 

terms, BTVs, and not-to-exceed values, and to compare site data with background data or with some pre-

established reference limits (e.g., preliminary remediation goals (PRGs), action levels, compliance limits) 

have also been provided. It is noted that, several EPA guidance documents (e.g., EPA, 1997, 2002a, 2006) 

discuss in details about data quality objectives (DQOs) and sample size determinations based upon those 

DQOs needed for the various statistical methods used in environmental applications. Also, appropriate 

sample collection methods (e.g., instruments, sample weights, discrete or composite, analytical methods) 

depend upon the medium (e.g., soil, sediment, water) under consideration. For an example, Gerlach and 

Nocerino (EPA, 2003) describe optimal soil sample (based upon Gy theory) collection methods. 

Therefore, the topics of sample size determination based upon DQOs, data validation, and appropriate 

sample collection methods for the various environmental media are not considered in ProUCL 4.0 and the 

associated technical and technical guides. It is assumed that data sets to be used in ProUCL are of good 

quality, and whenever possible have been obtained using the guidance provided in various EPA (2003, 

2006) documents. It is usersô responsibility to assure that adequate amount of good quality data have been 

collected.  

 

Note: Here, emphasis is given on the practical applicability and appropriate use of statistical methods 

needed to address statistical issues arising in risk management, background versus site evaluation 

studies, and various other environmental applications. Specifically, guidance on minimum sample size 

requirements as provided in this chapter is useful when data have already been collected, or it is not 

possible (e.g., due to resource limitations) to collect the number of samples obtained using DQO 

processes as described in EPA (2006).  

 

Decisions based upon statistics obtained using data sets of small sizes (e.g., 4 to 6 detected observations) 

cannot be considered reliable enough to make a remediation decision that affects human health and the 

environment. For an example, a background data set of size 4 to 6 is not large enough to characterize 

background population, to compute BTV values, or to perform background versus site comparisons. In 

order to perform reliable and meaningful statistical inference (estimation and hypothesis testing), one 

should determine the sample sizes that need to be collected from the populations under investigation 

using appropriate DQO processes and decision error rates (EPA, 2006). However, in some cases, it may 

not be possible (e.g., resource constraints) to collect the same number of samples recommended by the 

DQO process. In order to address such cases, some minimum sample size requirements for background 

and site data sets are described in this chapter. 

 

The use of an appropriate statistical method depends upon the environmental parameter(s) being 

estimated or compared. The measures of central tendency (e.g., means, medians, or their upper confidence 

limits (UCLs)) are often used to compare site mean concentrations (e.g., after remediation activity) with a 

cleanup standard, Cs, representing some central tendency measure of a reference area or some other 

known threshold representing a measure of central tendency. The upper threshold values, such as the 

compliance limits (e.g., alternative concentration limit (ACL), maximum concentration limit (MCL)), or 
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not-to-exceed values, are used when individual point-by-point observations are compared with those not-

to-exceed values or some other compliance limit. It should be noted that depending upon whether the 

environmental parameters (e.g., BTVs, not-to-exceed value, EPC term, or cleanup standards) are known 

or unknown, different statistical methods with different data requirements are needed to compare site 

concentrations with pre-established (known) or estimated (unknown) standards and BTVs.  

 

ProUCL 4.0 has been developed to address issues arising in exposure assessment, risk- assessment, and 

background versus site comparison applications. Several upper limits, and single- and two-sample 

hypotheses testing approaches, for both full-uncensored and left-censored data sets, are available in 

ProUCL 4.0. The details of the statistical and graphical methods included in ProUCL 4.0 can be found in 

the ProUCL Technical guidance. In order to make sure that the methods in ProUCL 4.0 are properly used, 

this chapter provides guidance on:  

 
1. analysis of site and background areas and data sets,  

 

2. collection of discrete or composite samples,  

 

3. appropriate use of the various upper limits,  

 

4. guidance regarding minimum sample sizes, 

 

5. point-by-point comparison of site observations with BTVs, 

 

6. use of hypotheses testing approaches,  

 

7. using small data sample sets,  

 

8. use of maximum detected value, and 

 

9. discussion of ProUCL usage for special cases.  

1.1 Background Data Sets 

The project team familiar with the site should identify and chose a background area. Depending upon the 

site activities and the pollutants, the background area can be site-specific or a general reference area. An 

appropriate random sample of independent observations should be collected from the background area. A 

defensible background data set should represent a ñsingleò background population (e.g., representing 

pristine site conditions before any of the industrial site activities) free of contaminating observations such 

as outliers. In a background data set, outliers may represent potentially contaminated observations from 

impacted site areas under study or possibly from other polluted site(s). This scenario is common when 

background samples are obtained from the various onsite areas (e.g., large federal facilities). Outlying 

observations should not be included in the estimation (or hypotheses testing procedures) of the BTVs. 

The presence of outliers in the background data set will yield distorted estimates of the BTVs and 

hypothesis testing statistics. The proper disposition of outliers to include or not include them in the data 

set should be decided by the project team.  

 

Decisions based upon distorted statistics can be incorrect, misleading, and expensive. It should be noted 

that the objective is to compute background statistics based upon the majority of the data set representing 

the dominant background population, and not to accommodate a few low probability outliers that may 
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also be present in the background data set. A couple of simple classical outlier tests (Dixon and Rosner 

tests) are available in ProUCL 4.0. Since these classical tests suffer from masking effects (e.g., some 

extreme outliers may mask the occurrence of other intermediate outliers), it is suggested that these 

classical outlier tests should always be supplemented with graphical displays such as a box plot or a Q-Q 

plot. The use of robust and resistant outlier identification procedures (Singh and Nocerino, 1995, 

Rousseeuw and Leroy, 1987) is recommended when multiple outliers may be present in a data set. Those 

methods are beyond the scope of ProUCL 4.0. However, several robust outlier identification and 

estimation are available in Scout (EPA, 2000), which is currently under revision and upgrade. 

 

An appropriate background data set of a reasonable size (preferably computed using DQO processes) is 

needed to characterize a background area including computation of upper limits (e.g., estimates of BTVs, 

not-to-exceed values) based upon background data sets and also to compare site and background data sets 

using hypotheses testing approaches. As mentioned before, a small background data set of size 4 to 6 is 

not large enough to compute BTVs or to perform background versus site comparisons. At the minimum, a 

background sample should have at least 8 to 10 (more observations are preferable) detected observations 

to estimate BTVs or to use hypotheses testing approaches. 

1.2 Site Data Sets 

A defensible data set from a site population (e.g., AOC, EA, RU, group of monitoring wells) should be 

representative of the site area under investigation. Depending upon the site areas under investigation, 

different soil depths and soil types may be considered as representing different statistical populations. In 

such cases, background versus site comparisons may have to be conducted separately for each of those 

site sub-populations (e.g., surface and sub-surface layers of an AOC, clay and sandy site areas). These 

issues, such as comparing depths and soil types, should also be considered in a planning and sampling 

design before starting to collect samples from the various site areas under investigation. Specifically, the 

availability of an adequate amount of representative site data is required from each of those site sub-

populations defined by sample depths, soil types, and the various other characteristics. For detailed 

guidance on soil sample collections, the reader is referred to Gerlach and Nocerino (EPA (2003)).  

 

The site data collection requirements depend upon the objective of the study. Specifically, in background 

versus site comparisons, site data are needed to perform: 

 

¶ Individual point-by-point site observation comparisons with pre-established or estimated 

BTVs, PRGs, cleanup standards, and not-to-exceed-values. Typically, this approach is 

used when only a small number (e.g., < 4 to 6) of detected site observations (preferably 

based upon composite samples) are available which need to be compared with BTVs and 

not-to-exceed values. Some applications of the point-by-point site observation 

comparisons are described later in this chapter. 

 

¶ Single sample hypotheses tests to compare site data with pre-established cleanup 

standards, Cs (e.g., representing a measure of central tendency); or with BTVs and not-to-

exceed values (used for tests for proportions and percentiles). The hypotheses testing 

approaches are used when enough site data are available. Specifically, when at least 8 to 

10 detected (more are desirable) site observations are available, it is preferable to use 

hypotheses testing approaches to compare site observations with specified threshold 

values. The use of hypotheses testing approaches can control the two types (Type 1 and 

Type 2) of error rates more efficiently than the point-by-point individual observation 

comparisons. This is especially true as the number of point-by-point comparisons 
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increases. This issue is illustrated by the following table summarizing the probabilities of 

exceedances (false positive error rate) of the background threshold value (e.g., 95
th
 

percentile) by site observations, even when the site and background populations have 

comparable distributions. The probabilities of these chance exceedances increase as the 

sample size increases. 

 

                  Sample Size                              Probability of Exceedance 

1     0.05 

2     0.10 

5     0.23 

8     0.34 

10     0.40 

12     0.46 

64     0.96 

 

¶ Two-sample hypotheses testing to compare site data distribution with background data 

distribution to determine if the site concentrations are comparable to background 

concentrations. Adequate amount of data need to be made available from the site as well 

as the background populations. It is preferable to collect at least 8 to 10 detected 

observations from each of the population under comparison. 

1.3 Discrete Samples or Composite Samples? 

In a data set (background or site), collected samples should be either all discrete or all composite. In 

general, both discrete and composite site samples may be used for individual point-by-point site 

comparisons with a threshold value, and for single and two-sample hypotheses testing applications.  

 

¶ If possible, the use of composite site samples is preferred when comparing individual 

point-by-point site observations from an area (e.g., area of concern (AOC), remediation 

unit (RU), exposure area (EA)) with some pre-established or estimated BTV, compliance 

limit (CL), or some other not-to-exceed value. This comparison approach is useful when 

few (< 4 to 6) detected site observations are compared with a pre-established or estimated 

BTV or some other not-to-exceed threshold. 

 

¶ When using a single sample hypothesis testing approach, site data can be obtained by 

collecting all discrete or all composite samples. The hypothesis testing approach is used 

when many (e.g., exceeding 8 to 10) detected site observations are available. Details of 

the single sample hypothesis approaches are widely available in EPA documents (1989, 

1997, and 2006). Some of those single sample hypotheses testing procedures are also 

available in ProUCL 4.0. 

 

¶ If a two-sample hypotheses testing approach is used to perform site versus background 

comparisons, then samples from both of the populations should be either all discrete 

samples, or all composite samples. The two-sample hypothesis testing approach is used 

when many (e.g., exceeding 8 to 10) site, as well as background, observations are 

available. For better and more accurate results with higher statistical power, the 

availability of more observations (e.g., exceeding 10-15) from each of the two 

populations is desirable, perhaps based upon an appropriate DQO process, as described in 

an EPA guidance document (2006). 
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1.4 Upper Limits and Their Use 

The appropriate computation and use of statistical limits depend upon their applications and the 

parameters (e.g., EPC term, not-to-exceed value) they are supposed to be estimating. Depending upon the 

objective of the study, a pre-specified cleanup standard, Cs, or a risk-based cleanup (RBC) can be viewed 

as to represent: 1) as average contaminant concentration; or 2) a not-to-exceed upper threshold value. 

These two threshold values, an average value, m0, and a not-to-exceed value, A0, represent two 

significantly different parameters, and different statistical methods and limits are used to compare the site 

data with these two different parameters or threshold values. Statistical limits, such as an upper 

confidence limit (UCL) of the population mean, an upper prediction limit (UPL) for an independently 

obtained ñsingleò observation, or independently obtained k observations (also called future k 

observations, next k observations, or k different observations), upper percentiles, and upper tolerance 

limits (UTLs), are often used to estimate the environmental parameters, including the EPC terms, 

compliance limits (e.g., ACL, MCL), BTVs, and other not-to-exceed values. Here, UTL95%-95% 

represents a 95% confidence limit of the 95
th
 percentile of the distribution of the contaminant under study. 

 

It is important to understand and note the differences between the uses and numerical values of these 

statistical limits so that they can be properly used. Specifically, the differences between UCLs and UPLs 

(or upper percentiles), and UCLs and UTLs should be clearly understood and acknowledged. A UCL with 

a 95% confidence limit (UCL95) of the mean represents an estimate of the population mean (measure of 

the central tendency of a data distribution), whereas a UPL95, a UTL95%-95%, and an upper 95
th
 

percentile represent estimates of a threshold value in the upper tail of the data distribution. Therefore, a 

UCL95 should represent a smaller number than an upper percentile or an upper prediction limit. Also, 

since a UTL 95%-95% represents a 95% UCL of the upper 95
th
 percentile, a UTL should be ² the 

corresponding UPL95 and the 95
th
 upper percentile. Typically, it is expected that the numerical values of 

these limits should follow the order given as follows: 

 

Sample Mean  ¢ UCL95 of Mean  ¢  Upper 95
th
 Percentile  ¢  UPL95 of a Single Observation ¢ 

UTL95%-95%  

 

 It should also be pointed out that as the sample size increases, a UCL95 of the mean approaches 

(converges to) the population mean, and a UPL95 approaches the 95
th
 percentile. The differences among 

the various upper limits are further illustrated in Example 1-1 below. It should be noted that, in some 

cases, these limits might not follow the natural order described above. This is especially true when the 

upper limits are computed based upon a lognormal distribution (Singh, Singh, and Engelhardt, 1997). It is 

well known that a lognormal distribution based H-UCL95 (Landôs UCL95) often yields unstable and 

impractically large UCL values. An H-UCL95 often becomes larger than UPL95 and even larger than a 

UTL 95%-95%. This is especially true when dealing with skewed data sets of smaller sizes. Moreover, it 

should also be noted that in some cases, a H-UCL95 becomes smaller than the sample mean, especially 

when the data are mildly skewed to moderately skewed, and the sample size is large (e.g., > 50, 100). 

Some of these issues, related to a lognormal distribution and H-UCL95 based upon Landôs (1975) statistic 

are discussed in Chapter 3 of the revised background document for CERCLA sites. 

1.4.1 Example 1-1 

Consider a simple site-specific background data set associated with a Superfund site. The data set (given 

in Appendix 5 of the revised Guidance for Comparing Background and Chemical Concentrations in Soil 

for CERCLA Sites (EPA, 2002b)) has several inorganic contaminants of potential concern, including 

aluminum, arsenic, chromium, iron, and lead. It is noted that iron concentrations follow a normal 
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distribution. Some upper limits for the iron data set are summarized as follows. It is noted that the various 

upper limits do follow the order as described above. 

 
Table 1-1. Computation of Upper Limits for Iron (Normally Distributed)  

 

Mean Median Min Max UCL95 
UPL95 for a 

Single 
Observation 

UPL95 for 4 
Observations 

UTL95/95 
95% Upper 
Percentile 

9618 9615 3060 18700 11478 18145 21618 21149 17534 

 
A 95% UCL (UCL95) of the mean is the most commonly used limit in environmental applications. For an 

example, a 95% UCL of mean is used as an estimate of the EPC. A UCL95 should not be used to estimate 

a background threshold value (a value in the upper tail of the background data distribution) to be 

compared with individual site observations. There are many instances in background evaluations and 

background versus site comparison studies, when it is not appropriate to use a 95% UCL. Specifically, 

when point-by-point site observations are to be compared with a BTV, then that BTV should be estimated 

(or represented) by a limit from the upper tail of the reference set (background) data distribution.  

 

A brief discussion about the differences between the applications and uses of the various statistical limits 

is provided below. This will assist a typical user in determining which upper limit (e.g., UCL95 or 

UPL95) to use to estimate the parameter of interest (e.g., EPC or BTV). 

 

¶ A UCL represents an average value that should be compared with a threshold value also 

representing an average value (pre-established or estimated), such as a mean cleanup 

standard, Cs. For an example, a site 95% UCL exceeding a cleanup value, Cs, may lead to 

the conclusion that the cleanup level, Cs, has not been attained by the site area. It should 

be noted that UCLs of means are typically computed based upon the site data set. 

 

¶ When site averages (and not individual site observations) are compared with a threshold 

value (pre-determined or estimated), such as a PRG or a RBC, or with some other 

cleanup standard, Cs, then that threshold should represent an average value, and not a not-

to-exceed threshold value for individual observation comparisons.  

 

¶ A UCL represents a ñcollectiveò measure of central tendency, and it is not appropriate to 
compare individual site observations with a UCL. Depending upon data availability, 

single or two-sample hypotheses testing approaches are used to compare site averages: 

with a specified or pre-established cleanup standard (single sample hypothesis), or with 

the background population averages (two-sample hypothesis). 

 

¶ A UPL, an upper percentile, or an UTL represents an upper limit to be used for point-by-

point individual site observation comparisons. UPLs and UTLs are computed based upon 

background data sets, and individual site observations are compared with those limits. A 

site observation for a contaminant exceeding a background UTL or UPL may lead to the 

conclusion that the contaminant is a contaminant of potential concern (COPC) to be 

included in further risk evaluation and risk management studies.  

 

¶ When individual point-by-point site observations are compared with a threshold value 

(pre-determined or estimated) of a background population or some other threshold and 

compliance limit value, such as a PRG, MCL, or ACL, then that threshold value should 

represent a not-to-exceed value. Such BTVs or not-to-exceed values are often estimated 
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by a 95% UPL, UTL95%-95%, or by an upper percentile. ProUCL 4.0 can be used to 

compute any of these upper limits based upon uncensored data sets as well as data sets 

with nondetect values.  

 

¶ As the sample size increases, a UCL approaches the sample mean, and a UPL95 

approaches the corresponding 95
th
 upper percentile. 

 

¶ It is pointed out that the developers of ProUCL 4.0 prefer the use of a 95% UPL (UPL95) 

as an estimate of BTV or a not-to-exceed value. As mentioned before, the option of 

comparing individual site observations with a BTV (specified or estimated) should be 

used when few (< 4 to 6) detected site observations (preferably composite values) are to 

be compared with a BTV. 

 

¶ When enough (e.g., > 8 to 10) detected site observations are available, it is preferred to 

use hypotheses testing approaches. Specifically, single sample hypotheses testing 

(comparing site to a specified threshold) approaches should be used to perform site 

versus a known threshold comparison; and two-sample hypotheses testing (provided 

enough background data are also available) approaches should be used to perform site 

versus background comparison. Several parametric and nonparametric single and two-

sample hypotheses testing approaches are available in ProUCL 4.0. 

 
It is re-emphasized that only averages should be compared with the averages or UCLs, and individual site 

observations should be compared with UPLs, upper percentiles, or UTLs. For an example, the comparison 

of a 95% UCL of one population (e.g., site) with a 90% or 95% upper percentile of another population 

(e.g., background) cannot be considered fair and reasonable as these limits (e.g., UCL and UPL) estimate 

and represent different parameters. It is hard to justify comparing a UCL of one population with a UPL of 

the other population. Conclusions (e.g., site dirty or site clean) derived by comparing UCLs and UPLs, or 

UCLs and upper percentiles as suggested in Wyoming DEQ, Fact Sheet #24 (2005), cannot be considered 

fair and reliable. Specifically, the decision error rates associated with such comparisons can be 

significantly different from the specified (e.g., Type I error = 0.1, Type II error = 0.1) decision errors.  

1.5 Point-by-Point Comparison of Site Observations with BTVs, Compliance 
Limits, and Other Threshold Values 

Point-by-point observation comparison method is used when a small number (e.g., 4 to 6 locations) of 

detected site observations are compared with pre-established or estimated BTVs, screening levels, or 

preliminary remediation goals (PRGs). In this case, individual point-by-point site observations (preferably 

based upon composite samples from various site locations) are compared with estimated or pre-

established background (e.g., USGS values) values, PRGs, or some other not-to-exceed value. Typically, 

a single exceedance of the BTV, PRG, or a not-to-exceed value by a site (or from a monitoring well) 

observation may be considered as an indication of contamination at the site area under investigation. The 

conclusion of an exceedance by a site value is Sometimes confirmed by re-sampling (taking a few more 

collocated samples) that site location (or a monitoring well) exhibiting contaminant concentration in 

excess of the BTV or PRG. If all collocated (or collected during the same time period) sample 

observations collected from the same site location (or well) exceed the PRG (or MCL) or a not-to-exceed 

value, then it may be concluded that the location (well) requires further investigation (e.g., continuing 

treatment and monitoring) and cleanup.  
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When BTV contaminant concentrations are not known or pre-established, one has to collect, obtain, or 

extract a data set of an appropriate size that can be considered as representative of the site related 

background. Statistical upper limits are computed using the data set thus obtained, which are used as 

estimates of BTVs and not-to-exceed values. It should be noted that in order to compute reasonably 

reliable and accurate estimates of BTVs and not-to-exceed values based upon a background (or reference) 

data set, enough background observations (minimum of 8 to 10) should be collected, perhaps using an 

appropriate DQO process as described in EPA (2006). Typically, background samples are collected from 

a comparable general reference area or site-specific areas that are known to be free of contamination due 

to any of the site related activities. Several statistical limits can be used to estimate the BTVs based upon 

a defensible data set of an adequate size. A detailed description of the computation and estimation of 

BTVs is given in Chapter 5 (for uncensored data sets) and in Chapter 6 for data sets with nondetects of 

the revised Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites 

(EPA, 2002b). Once again, the use of this point-by-point comparison method is recommended when not 

many (e.g., < 4 to 6) site observations are to be compared with estimated BTVs or PRGs. An exceedance 

of the estimated BTV by a site value may be considered as an indication of the existing or continuing 

contamination at the site.  

 

Note: When BTVs are not known, it is suggested that at least 8 to 10 (more are preferable) detected 

representative background observations be made available to compute reasonably reliable estimates of 

BTVs and other not-to-exceed values.  

 

The point-by-point comparison method is also useful when quick turnaround comparisons are required. 

Specifically, when the decisions have to be made in real time by a sampling or screening crew, or when 

few detected site samples are available, then individual point-by-point site concentrations are compared 

either with pre-established PRGs, cleanup goals and standards, or with estimated BTVs and not-to-exceed 

values. The crew can use these comparisons to make the following informative decisions:  

 
1. screen and identify the COPCs, 

  

2. identify the polluted site AOCs,  

 

3. continue or stop remediation or excavation at a site AOC or a RU, or  

 

4. move the cleanup apparatus and crew to the next AOC or RU. 

 
During the screening phase, an exceedance of a compliance limit, action level, a BTV, or a PRG by site 

values for a contaminant may declare that contaminant as a COPC. Those COPCs are then included in 

future site remediation and risk management studies. During the remediation phase, an exceedance of the 

threshold value such as a compliance limit (CL) or a BTV by sample values collected from a site area (or 

a monitoring well (MW)) may declare that site area as a polluted AOC, or a hot spot requiring further 

sampling and cleanup. This comparison method can also be used to verify if the site concentrations (e.g., 

from the base or side walls of an excavated site area) are approaching or meeting PRG, BTV, or a cleanup 

standard after some excavation has been conducted at that site area. 

 

If a larger number of detected samples (e.g., greater than 8 to10) are available from the site locations 

representing the site area under investigation (e.g., RU, AOC, EA), then the use of hypotheses testing 

approaches (both single sample and a two-sample) is preferred. The use of a hypothesis testing approach 

will control the error rates more tightly and efficiently than the individual point-by-point site observations 
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versus BTV comparisons, especially when many site observations are compared with a BTV or a not-to-

exceed value. 

 

Note: In background versus site comparison evaluations, scientists usually prefer the use of hypotheses 

testing approaches over point-by-point site observation comparisons with BTVs or not-to-exceed values. 

Hypotheses testing approaches require the availability of larger data sets from the populations under 

investigation. Both single sample (used when BTVs, not-to-exceed values, compliance limits, or cleanup 

standards are known and pre-established) and two-sample (used when BTVs and compliance limits are 

unknown) hypotheses testing approaches are available in ProUCL 4.0.  

1.6 Hypothesis Testing Approaches and Their Use 

Both single sample and two-sample hypotheses testing approaches are used to make cleanup decisions at 

polluted sites, and also to compare contaminant concentrations of two (e.g., site versus background) or 

more (several monitoring wells (MWs)) populations. The uses of hypotheses testing approaches in those 

environmental applications are described as follows. 

1.6.1 Single Sample Hypotheses ï BTVs and Not-to-Exceed Values are Known (Pre-
established) 

When pre-established BTVs and not-to-exceed values are used, such as the USGS background values 

(Shacklette and Boerngen (1984)), thresholds obtained from similar sites, pre-established threshold and 

not-to-exceed values, PRGs, or RBCs, there is no need to extract, establish, or collect a background or 

reference data set. When the BTVs and cleanup standards are known, one-sample hypotheses are used to 

compare site data (provided enough site data are available) with known and pre-established threshold 

values. It is suggested that the project team determine (e.g., using DQO) or decide (depending upon 

resources) about the number of site observations that should be collected and compared with the ñpre-

establishedò standards before coming to a conclusion about the status (clean or polluted) of the site area 

(e.g., RU, AOC) under investigation. When the number of available detected site samples is less than 4 to 

6, one might perform point-by-point site observation comparisons with a BTV; and when enough detected 

site observations (> 8 to 10, more are preferable) are available, it is desirable to use single sample 

hypothesis testing approaches.  

 

Depending upon the parameter (e.g., the average value, m0, or a not-to-exceed value, A0), represented by 

the known threshold value, one can use single sample hypothesis tests for population mean (t-test, sign 

test) or single sample tests for proportions and percentiles. The details of the single sample hypotheses 

testing approaches can be found in EPA (2006) and the Technical Guide for ProUCL 4.0. Several single 

sample tests listed as follows are available in ProUCL 4.0.  

 

One-Sample t-Test: This test is used to compare the site mean, m, with some specified cleanup standard, 

Cs, where the cleanup standard, Cs, represents an average threshold value, m0. The Studentôs t-test (or a 

UCL of mean) is often used (assuming normality of site data or when site sample size is large such as 

larger than 30, 50) to determine the attainment of cleanup levels at a polluted site after some remediation 

activities. 

 

One-Sample Sign Test or Wilcoxon Signed Rank (WSR) Test: These tests are nonparametric tests and can 

also handle nondetect observations provided all nondetects (e.g., associated detection limits) fall below 

the specified threshold value, Cs. These tests are used to compare the site location (e.g., median, mean) 

with some specified cleanup standard, Cs, representing a similar location measure. 
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One-Sample Proportion Test or Percentile Test: When a specified cleanup standard, A0, such as a  

PRG or a BTV represents an upper threshold value of a contaminant concentration distribution  

(e.g., not-to-exceed value, compliance limit) rather than the mean threshold value, m0, of the contaminant 

concentration distribution, then a test for proportion or a test for percentile (or equivalently a UTL 95%-

95%, UTL 95%-90%) may be used to compare site proportion or site percentile with the specified 

threshold or action level, A0. This test can also handle ND observations provided all NDs are below the 

compliance limit.  

 

In order to obtain reasonably reliable estimates and test statistics, an adequate amount of representative 

site data (8 to 10 detected observations) is needed to perform the hypotheses tests. As mentioned before, 

in case only a few (e.g., < 4 to 6) detected site observations are available, then point-by-point site 

concentrations may be compared with the specified action level, A0. 

1.6.2 Two-Sample Hypotheses ï When BTVs and Not-to-Exceed Values are Unknown 

When BTVs, not-to-exceed values, and other cleanup standards are not available, then site data are 

compared directly with the background data. In such cases, a two-sample hypothesis testing approach can 

be used to perform site versus background comparisons. Note that this approach can be used to compare 

concentrations of any two populations including two different site areas or two different monitoring wells 

(MWs). In order to use and perform a two-sample hypothesis testing approach, enough data should be 

available (collected) from each of the two populations under investigation. Site and background data 

requirements (e.g., based upon DQOs) to perform two-sample hypothesis test approaches are described in 

EPA (1989b, 2006), Breckenridge and Crockett (1995), and the VSP (2005) software package. While 

collecting site and background data, for better representation of populations under investigation, one may 

also want to account for the size of the background area (and site area for site samples) into sample size 

determination. That is, a larger number (>10 to 15) of representative background (or site) samples should 

be collected from larger background (or site) areas. As mentioned before, every effort should be made to 

collect as many samples as determined using DQO processes as described in EPA documents (2006). 

 

The two-sample (or more) hypotheses approaches are used when the site parameters (e.g., mean, shape, 

distribution) are being compared with the background parameters (e.g., mean, shape, distribution). The 

two-sample hypotheses testing approach is also used when the cleanup standards or screening levels are 

not known a priori, and they need to be estimated based upon a data set from a background or reference 

population. Specifically, two-sample hypotheses testing approaches are used to compare: 1) the average 

contaminant concentrations of two or more populations such as the background population and the 

potentially contaminated site areas, or 2) the proportions of site and background observations exceeding a 

pre-established compliance limit, A0. In order to derive reliable conclusions with higher statistical power 

based upon hypothesis testing approaches, enough data (e.g., minimum of 8 to 10 samples) should be 

available from all of the populations under investigation. It is also desirable to supplement statistical 

methods with graphical displays, such as the double Q-Q plots, or side-by-side multiple box plots, as 

available in ProUCL 4.0. Two-sample hypotheses testing approaches as incorporated in ProUCL 4.0 are 

listed as follows: 

 
1. Student t-test - with equal dispersions and unequal variances ï Parametric test 

 

2. Wilcoxon-Mann-Whitney (WMW) test ï Nonparametric test 

 

3. Gehan test ï Nonparametric test 
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Some details of these approaches are described later in this Technical Guide. It should be noted that the 

WMW, Gehan, and quantile tests are also available for data sets with NDs. Gehanôs test is specifically 

meant to be used on data sets with multiple detection limits. It is also suggested that for best and reliable 

conclusions, both the WMW and quantile tests should be used on the same data set. The details of these 

two tests with examples are given in EPA (1994, 2006). 

 

The samples collected from the two (or more) populations should all be of the same type obtained using 

similar analytical methods and apparatus. In other words, the collected site and background samples 

should be all discrete or all composite (obtained using the same design and pattern), and be collected from 

the same medium (soil) at similar depths (e.g., all surface samples or all subsurface samples) and time 

(e.g., during the same quarter in groundwater applications) using comparable (preferably same) analytical 

methods. Good sample collection methods and sampling strategies are given in EPA (1996, 2003) 

guidance documents. 

1.7 Minimum Sample Size Requirements  

Due to resource limitations, it may not be possible (nor needed) to sample the entire population (e.g., 

background area, site area, areas of concern, exposure areas) under study. Statistics is used to draw 

inference(s) about the populations (clean, dirty) and their known or unknown parameters (e.g., 

comparability of population means, not-to-exceed values, upper percentiles, and spreads) based upon 

much smaller data sets (samples) collected from those populations under study. In order to determine and 

establish BTVs, not-to-exceed values, or site-specific screening levels, defensible data set(s) of 

appropriate size(s) needs to be collected from background areas (e.g., site-specific, general reference or 

pristine area, or historical data). The project team and site experts should decide what represents a site 

population and what represents a background population. The project team should determine the 

population size and boundaries based upon all current and future objectives for the data collection. The 

size and area of the population (e.g., a remediation unit, area of concern, or an exposure unit) may be 

determined based upon the potential land use, and other exposure and risk management objectives and 

decisions. Moreover, appropriate effort should be made to properly collect soil samples (e.g., methods 

based upon Gy sampling theory), as described in Gerlach and Nocerino (2003). 

 

Using the collected site and background data sets, statistical methods supplemented with graphical 

displays are used to perform site versus background comparisons. The test results and statistics obtained 

by performing such site versus background comparisons are used to determine if the site and background 

level contaminant concentration are comparable; or if the site concentrations exceed the background 

threshold concentration level; or if an adequate amount of cleanup and remediation approaching the BTV 

or some cleanup level have been performed at polluted areas (e.g., AOC, RU) of the site under study.  

 

In order to perform statistical inference (estimation and hypothesis testing), one needs to determine the 

sample sizes that need to be collected from the populations (e.g., site and background) under investigation 

using appropriate DQO processes (EPA 2006). However, in some cases, it may not be possible to collect 

the same number of samples as determined by using a DQO process. For example, the data might have 

already been collected (often is the case in practice) without using a DQO process, or due to resource 

constraints, it may not be possible to collect as many samples as determined by using a DQO based 

sample size formula. It is observed that, in practice, the project team and the decision makers may not 

collect enough background samples, perhaps due to various resource constraints. However, every effort 

should be made to collect at least 8 to 10 (more are desirable) background observations before using 

methods as incorporated in ProUCL 4.0. The minimum sample size recommendations as described here 

are useful when resources are limited (as often is the case), and it may not be possible to collect as many 
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background and site (e.g., AOC, EU) samples as computed using DQOs and the sample size 

determination formulae given in the EPA (2006). Some minimum sample size requirements are also given 

in Fact Sheet #24, prepared by Wyoming Department of Environmental Quality (June 2005). 

 

As mentioned before, the topics of DQO processes and the sample size determination are described in 

detail in the EPA (2006) guidance document. Therefore, the sample size determination formulae based 

upon DQO processes are not included in ProUCL 4.0 and its Technical Guide. However, some guidance 

and suggestions on the minimum number of background and site samples needed to be able to use 

statistical methods for the computation of upper limits, and to perform single sample tests, two-sample 

tests such as t-test and Wilcoxon- Mann-Whitney (WMW) test, and various other tests are provided here. 

The minimum sample size recommendations (requirements) as described here are made so that 

reasonably reliable estimates of EPC terms and BTVs, and defensible values of test statistics for single or 

two-sample hypotheses tests (e.g., t-test, WMW test), can be computed.  

 
Finally, it is also important to note and understand the differences between the following two minimum 

sample size concepts: 

 

Minimum sample needed to compute a statistic based upon theoretical formulae; and 

Minimum sample size needed to compute a reliable and usable decision statistics.   

 

Even though, most of the decision statistics such as upper confidence limits (UCLs), upper prediction 

limits (UPLs), and upper tolerance limits (UTLs) can be computed based upon very small samples of 

sizes 2, 3, and 4, those decision statistics are not reliable and representative enough to make defensible 

and correct cleanup and remediation decisions. Use of such statistics should be avoided. 

Specific recommendations regarding the minimum sample size requirement (when data sets of DQOs 

based sample sizes cannot be collected) needed to compute reliable and usable decision statistics have 

also been described in this chapter. It should be pointed out that those minimum sample size 

recommendation (at least 8-10 observations) should be used only when samples of size determined by a 

DQO process (EPA, 2006) cannot be collected (e.g., due to resource constraints). The intention of the 

developers of ProUCL 4.0 is to provide statistically rigorous and defensible methods and decision 

statistics. Success of the applicability of a statistical method depends upon the quality and quantity of the 

available data set.  It is always desirable to collect appropriate number of samples based upon data quality 

objectives (DQOs) so that reliable decision statistics (e.g., UPLs, UCLs, and hypotheses test statistics) 

can be computed to make appropriate decisions.  

 

1.7.1 Minimum Sample Size Requirements to Compute Decision Statistics for Data without 
NDs  

It was noted by the developers of ProUCL software that some users of earlier versions of ProUCL (e.g., 

ProUCL 3.0 and ProUCL 4.0) were computing decisions statistics (e.g., UCLs, UPLs) based upon small 

data sets of sizes 2, 3 etc.  As a result, in later versions of ProUCL such as ProUCL 4.00.02, the 

developers restricted the use of ProUCL for samples of size at least 5. ProUCL 4.00.02 and higher 

versions will not compute decision statistics (e.g., UCLs, UPLs, UTLs) based upon samples of sizes less 

than 5.  Some users did complain about being not able to compute decision statistics based upon samples 

of size 3 or 4; but that is fine as one should not be computing decision statistics based upon such small 

samples. It is desirable that the ProUCL users follow the sample size requirements as described in this 

chapter.  
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At present, ProUCL 4.00.02 and higher versions will not compute any decision statistics such as UCLs 

and UPLs, UTLs for data sets of size less than 5 (without NDs). It may compute other summary statistics 

and graphs but will not compute decision making statistics. For such small data sets of size less than 5, 

ProUCL 4.00.02 provides warning messages informing the user about the potential deficiencies present in 

his data set submitted to ProUCL. 

 

1.7.2 Minimum Sample Size Requirements for Data Sets with NDs 

ProUCL 4.00.02 and higher versions will not compute any decision statistics based upon data sets of sizes 

less than 5 consisting of NDs.  Moreover, for data sets of size at least 5, no decision statistics will be 

computed when not more than one detected observation is present in the data set. For such extreme data 

situations, ProUCL 4.00.02 provides some warning messages regarding the lack of appropriate amount of 

data.  For data sets of size 5 or larger with only two detected values, ProUCL 4.00.02 will produce only 

Kaplan ïMeier method based decision statistics (UCLs, UPLs, UTLs); and for data sets of size 5 or larger 

with 3 detected values, most nonparametric and parametric (except for gamma distribution based ) 

decision statistics  will be computed and printed. For data sets of size 5 or higher with 4 or more detected 

observations, ProUCL 4.00.02 will produce values for all parametric and nonparametric decision 

statistics. 

 

For all small data sets (e.g., size <8-10), ProUCL 4.00.02 informs the user by providing appropriate 

warning messages about the potential deficiencies present in his data set submitted to ProUCL. Some 

recommendations about how to determine a value of a decision statistic based upon data sets consisting of 

all or only a few (1 or 2) detected values are also provided in this chapter. It is suggested that the project 

team and experts associated with the site should come to an agreement about an appropriate value that 

may be used for the decision statistic under consideration.  

 

1.7.3 Minimum Sample Size for Estimation and Point-by-Point Site Observation Comparisons 

¶ Point-by-point observation comparison method is used when a small number  (e.g., 4 to 6 

locations) of detected site observations are compared with pre-established or estimated 

BTVs, screening levels, or PRGs. In this case, individual point-by-point site observations 

(preferably based upon composite samples from various site locations) are compared with 

estimated or pre-established background (e.g., USGS values) values, PRGs, or some 

other not-to-exceed value.  

 

¶ When BTV contaminant concentrations are not known or pre-established, one has to 

collect, obtain, or extract a data set of an appropriate size that can be considered as 

representative of the site related background. Statistical upper limits are computed using 

the data set thus obtained; which are used as estimates of BTVs and not-to-exceed values. 

It should be noted that in order to compute reasonably reliable and accurate estimates of 

BTVs and not-to-exceed values based upon a background (or reference) data set, enough 

background observations (minimum of 8 to 10) should be collected perhaps using an 

appropriate DQO process as described in EPA (2006). Typically, background samples are 

collected from a comparable general reference area or a site-specific area. 

 

¶ When enough (e.g., > 8 to 10) detected site observations are available, it is preferred to 

use hypotheses testing approaches. Specifically, single sample hypotheses testing 



 28 

(comparing site to a specified threshold) approaches should be used to perform site 

versus a known threshold comparison and two-sample hypotheses testing (provided 

enough background data are also available) approaches should be used to perform site 

versus background comparison.  

1.7.4 Minimum Sample Sizes for Hypothesis Testing 

Statistical methods (as in ProUCL 4.0) used to estimate EPC terms, BTVs, PRGs, or to compare the site 

contaminant concentration data distribution with the background data distribution can be computed based 

upon small site and background data sets (e.g., of sizes 3, 4, 5, or 6). However, those statistics cannot be 

considered representative and reliable enough to make important cleanup and remediation decisions. It is 

recommended not to use those statistics to draw cleanup and remediation decisions potentially impacting 

the human health and the environment. It is suggested that the estimation and hypothesis testing methods 

as incorporated in ProUCL 4.0 may not be used on background data sets with fewer than 8 to 10 detected 

observations. Also, when using hypotheses testing approaches, it is suggested that the site and 

background data be obtained using an appropriate DQO process as described in EPA (2006). In case that 

is not possible, it is suggested that the project team at least collect 8 to 10 observations from each of the 

populations (e.g., site area, MWs, background area) under investigation. 

 

Site versus background comparisons and computation of the BTVs depend upon many factors, some of 

which cannot be controlled. These factors include the site conditions, lack of historical information, site 

medium, lack of adequate resources, measurement and analytical errors, and accessibility of the site areas. 

Therefore, whenever possible, it is desirable to use more than one statistical method to perform site versus 

background comparison. The use of statistical methods should always be supplemented with appropriate 

graphical displays.  

1.7.5 Sample Sizes for Bootstrap Methods 

Several parametric and nonparametric (including bootstrap methods) UCL, UPL, and other limits 

computation methods for both full-uncensored data sets (without nondetects) and left-censored data sets 

with nondetects are available in ProUCL 4.0. It should be noted that bootstrap resampling methods are 

useful when not too few (e.g., < 10-15) and not too many (e.g., > 500-1000) detected observations are 

available. For bootstrap methods (e.g., percentile method, BCA bootstrap method, bootstrap t method), a 

large number (e.g., 1000, 2000) of bootstrap resamples (with replacement) are drawn from the same data 

set. Therefore, in order to obtain bootstrap resamples with at least some distinct values (so that statistics 

can be computed from each resample), it is suggested that a bootstrap method should not be used when 

dealing with small data sets of sizes less than 10-15. Also, it is not required to bootstrap a large data set of 

size greater than 500 or 1000; that is when a data set of a large size (e.g., > 1000) is available, there is no 

need to obtain bootstrap resamples to compute statistics of interest (e.g., UCLs). One can simply use a 

statistical method on the original large data set. Moreover, bootstrapping a large data set of size greater 

than 500 or 1000 will be time consuming. 

 

1.8 Statistical Analyses by a Group ID  

The analyses of data categorized by a group ID variable such as: 1) Surface vs. Subsurface; 

2) AOC1 vs. AOC2; 3) Site vs. Background; and 4) Upgradient vs. Downgradient monitoring wells are 

quite common in many environmental applications. ProUCL 4.0 offers this option for data sets with and 

without nondetects. The Group Option provides a powerful tool to perform various statistical tests and 

methods (including graphical displays) separately for each of the group (samples from different 
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populations) that may be present in a data set. For an example, the same data set may consist of samples 

from the various groups or populations representing site, background, two or more AOCs, surface, 

subsurface, monitoring wells. The graphical displays (e.g., box plots, Q-Q plots) and statistics 

(background statistics, UCLs, hypotheses testing approaches) of interest can be computed separately for 

each group by using this option.  

 

It should be pointed out that it is the usersô responsibility to provide adequate amount of detected data to 

perform the group operations. For an example, if the user desires to produce a graphical Q-Q plot (using 

only detected data) with regression lines displayed, then there should be at least two detected points (to 

compute slope, intercept, sd) in the data set. Similarly if the graphs are desired for each of the group 

specified by the group ID variable, there should be at least two detected observations in each group 

specified by the group variable. ProUCL 4.0 generates a warning message (in orange color) in the lower 

panel of the ProUCL 4.0 screen. Specifically, the user should make sure that a variable with nondetects 

and categorized by a group variable should have enough detected data in each group to perform the 

various methods (e.g., GOF tests, Q-Q plots with regression lines) as incorporated in ProUCL 4.0. 

1.9 Use of Maximum Detected Value as Estimates of Upper Limits 

Some practitioners tend to use the maximum detected value as an estimate of the EPC term. This is 

especially true when the sample size is small such as ¢ 5, or when a UCL95 exceeds the maximum 

detected values (EPA, 1992b). Also, many times in practice, the BTVs and not-to-exceed values are 

estimated by the maximum detected value. This section discusses the appropriateness of using the 

maximum detected value as estimates of the EPC term, BTVs, or other nor-to-exceed values.  

1.9.1 Use of Maximum Detected Value to Estimate BTVs and Not-to-Exceed Values 

It is noted that BTVs and not-to-exceed values represent upper threshold values in the upper tail of a data 

distribution; therefore, depending upon the data distribution and sample size, the BTVs and other not-to-

exceed values may be estimated by the maximum detected value. As described earlier, upper limits, such 

as UPLs, UTLs, and upper percentiles, are used to estimate the BTVs and not-to-exceed values. It is noted 

that a nonparametric UPL or UTL is often estimated by higher order statistics such as the maximum value 

or the second largest value (EPA 1992a, RCRA Guidance Addendum). The use of higher order statistics 

to estimate the UTLs depends upon the sample size. For an example: 1) 59 to 92 samples, a 

nonparametric UTL95%-95 is given by the maximum detected value; 2) 93 to 123 samples, a 

nonparametric UTL95%-95 is given by the second largest maximum detected value; and 3) 124 to 152 

samples, a UTL95%-95 is given by the third largest detected value in the sample.  

 

Note: Therefore, when a data set does not follow a discernable distribution, the maximum observed value 

(or other high order statistics such as the second largest, third largest) may be used as an estimate of 

BTV or a not-to-exceed value, provided the maximum value does not represent an outlier or a 

contaminating observation perhaps representing a hot location. The selection of a higher order statistic 

(e.g., largest, second largest, third largest) to estimate BTV depends upon the sample size and confidence 

coefficient.  

1.9.2 Use of Maximum Detected Value to Estimate EPC Terms 

This issue was also discussed in the ProUCL 3.0 Technical Guide (EPA, 2004). Some practitioners tend 

to use the maximum detected value as an estimate of the EPC term. This is especially true when the 

sample size is small such as ¢ 5, or when a UCL95 exceeds the maximum detected values (EPA, 1992b). 
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Specifically, a RAGS document (EPA, 1992) suggests the use of the maximum detected value as a default 

value to estimate the EPC term when a 95% UCL (e.g., the H-UCL) exceeded the maximum value. 

ProUCL 3.0 and ProUCL 4.0 can compute a 95% UCL of mean using several methods based upon 

normal, Gamma, lognormal, and non-discernable distributions. In past (e.g., EPA, 1992b), only two 

methods were used to estimate the EPC term based upon: 1) Studentôs t-statistic and a normal 

distribution, and 2) Landôs H-statistic (1975) and a lognormal model. The use of H-statistic often yields 

unstable and impractically large UCL95 of the mean (Singh, Singh, and Iaci, 2002). For skewed data sets 

of smaller sizes (e.g., < 30, < 50), H-UCL often exceeds the maximum detected value. This is especially 

true when some extreme high outliers may be present in the data set. Since the use of a lognormal 

distribution has been quite common (e.g., suggested as a default model in a RAGS document (EPA, 

1992)), the exceedance of the maximum detected value by H-UCL95 is frequent for many skewed data 

sets of smaller sizes (e.g., < 30, < 50). It is also be noted that for highly skewed data sets, the sample 

mean indeed can even exceed the upper 90%, 95%, etc., percentiles, and consequently, a 95% UCL of 

mean can exceed the maximum observed value of a data set.  

 

All of these occurrences result in the possibility of using the maximum detected value as an estimate of 

the EPC term. It should be pointed out that in some cases, the maximum observed value actually might 

represent a highly polluted outlying observation. Obviously, it is not desirable to use a highly polluted 

value as an estimate of average exposure (EPC term) for an exposure area. This is especially true when 

one is dealing with lognormally distributed data sets of small sizes. As mentioned before, for such highly 

skewed data sets that cannot be modeled by a gamma distribution, a 95% UCL of the mean should be 

computed using an appropriate distribution-free nonparametric method.  

  

It should be pointed out that the EPC term represents the average exposure contracted by an individual 

over an exposure area (EA) during a long period of time; therefore, the EPC term should be estimated by 

using an average value (such as an appropriate 95% UCL of the mean) and not by the maximum observed 

concentration. One needs to compute an average exposure and not the maximum exposure. It is unlikely 

that an individual will visit the location (e.g., in an EA) of the maximum detected value all of the time. 

One can argue that the use of this practice results in a conservative (higher) estimate of the EPC term. The 

objective is to compute an accurate estimate of the EPC term. Today, several other methods (instead of H-

UCL) as described in EPA (2002), and included in ProUCL 3.0 (EPA 2004) and ProUCL 4.0 (EPA 

2007), are available which can be used to estimate the EPC terms. It is unlikely (but possible with 

outliers) that the UCLs based upon those methods will exceed the maximum detected value, unless some 

outliers are present in the data set. ProUCL 4.0 displays a warning message when the recommended 95% 

UCL (e.g., Hallôs or bootstrap t UCL with outliers) of the mean exceeds the observed maximum 

concentration. When a 95% UCL does exceed the maximum observed value, ProUCL4.0 recommends the 

use of an alternative UCL computation method based upon the Chebyshev inequality. One may use a 

97.5% or 99% Chebyshev UCL to estimate the mean of a highly skewed population. It should be noted 

that typically, a Chebyshev UCL yield conservative (but stable) and higher values of the UCLs than other 

methods available in ProUCL 4.0. This is especially true when data are moderately skewed and sample 

size is large. In such cases, when the sample size is large (and other UCL methods such as bootstrap t 

method yield unrealistically high values), one may want to use a 95% Chebyshev UCL or a Chebyshev 

UCL with lower confidence coefficient such as 92.5% or 90% as estimate of the population mean, 

especially when the sample size is large (e.g., >100, 150). The detailed recommendations (as functions of 

sample size and skewness) for the use of those UCLs are summarized in ProUCL 3.0 Technical Guide 

(EPA, 2004).  

 

Singh and Singh (2003) studied the performance of the max test (using the maximum observed value as 

an estimate of the EPC term) via Monte Carlo simulation experiments. They noted that for skewed data 
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sets of small sizes (e.g., < 10-20), the max test does not provide the specified 95% coverage to the 

population mean, and for larger data sets, it overestimates the EPC term, which may require unnecessary 

further remediation. This can also be viewed in the graphs presented in ProUCL 3.0 Technical Guide. The 

use of the maximum value as an estimate of the EPC term also ignores most (except for maximum value) 

of the information contained in the data set.  

 

With the availability of so many UCL computation methods (15 of them), the developers of ProUCL  4.0 

do not feel any need to use the maximum observed value as an estimate of the EPC term representing an 

average exposure by an individual over an EA. Also, for the distributions considered, the maximum value 

is not a sufficient statistic for the unknown population mean.  

 

Note: It is recommended that the maximum observed value NOT be used as an estimate of the EPC term 

representing average exposure contracted by an individual over an EA. For the sake of interested users, 

ProUCL displays a warning message when the recommended 95% UCL (e.g., Hallôs bootstrap UCL, etc.) 

of the mean exceeds the observed maximum concentration. For such scenarios (when a 95% UCL does 

exceed the maximum observed value), an alternative 95% UCL computation method is recommended by 

ProUCL 4.0. 

1.10 Samples with Nondetect Observations 

Nondetect observations (or less than obvious values) are inevitable in most environmental data sets. 

Singh, Maichle, and Lee (EPA, 2006) studied the performances (in terms of coverages) of the various 

UCL95 computation methods including the simple substitution methods (such as the DL/2 and DL 

methods) for data sets with nondetect observations. They concluded that the UCLs obtained using the 

substitution methods, including the replacement of nondetects by respective DL/2, do not perform well 

even when the percentage of nondetect observations is low, such as 5%-10%. They recommended 

avoiding the use of substitution methods to compute UCL95 based upon data sets with nondetect 

observations. 

1.10.1 Avoid the Use of DL/2 Method to Compute UCL95 

Based upon the results of the report by Singh, Maichle, and Lee (EPA, 2006), it is strongly recommended 

to avoid the use of the DL/2 method to perform GOF test, and to compute the summary statistics and 

various other limits (e.g., UCL, UPL) often used to estimate the EPC terms and BTVs. Until recently, the 

DL/2 method has been the most commonly used method to compute the various statistics of interest for 

data sets with BDL observations. The main reason of its common use has been the lack of the availability 

of other defensible methods and associated programs that can be used to estimate the various 

environmental parameters of interest. Today, several other methods (e.g., KM method, bootstrap 

methods) with better performances are available that can be used to compute the various upper limits of 

interest. Some of those parametric and nonparametric methods are now available in ProUCL 4.0. Even 

though the DL/2 method (to compute UCLs, UPLs, and for goodness-of-fit test) has also been 

incorporated in ProUCL 4.0, its use is not recommended due to its poor performance. The DL/2 method 

is included in ProUCL 4.0 only for historical reasons as it had been the most commonly used and 

recommended method until recently (EPA, 2006). Some of the reviewers of ProUCL 4.0 suggested and 

requested the inclusion of DL/2 method in ProUCL for comparison purposes. 

 

Note: The DL/2 method has been incorporated in ProUCL 4.0 for historical reasons only. NERL-EPA, 

Las Vegas strongly recommends avoiding the use of DL/2 method even when the percentage (%) of NDs 

is as low as 5%-10%. There are other methods available in ProUCL 4.0 that should be used to compute 
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the various summary statistics and upper limits based upon data sets with single and multiple detection 

limits.  

1.11 Samples with Low Frequency of Detection 

When all of the sampled data values are reported as nondetects, the EPC term should also be reported as a 

nondetect value, perhaps by the maximum reporting limit (RL) or maximum RL/2. Statistics (e.g., 

UCL95) computed based upon only a few detected values (e.g., < 4 to 6) cannot be considered reliable 

enough to estimate the EPC terms having potential impact on the human heath and the environment. 

When the number of detected data is small, it is preferable to use simple ad hoc methods rather than using 

statistical methods to compute the EPC terms and other upper limits. Specifically, it is suggested that in 

cases when the detection frequency is low (e.g., < 4%-5%) and the number of detected observations is 

low, the project team and the decision makers together should make a decision on site-specific basis on 

how to estimate the average exposure (EPC term) for the contaminant and area under consideration. For 

such data sets with low detection frequencies, other measures such as the median or mode represent better 

estimates (with lesser uncertainty) of the population measure of central tendency.  

 

Additionally, it is also suggested that when most (e.g., > %95) of the observations for a contaminant lie 

below the detection limit(s) or reporting limits (RLs), the sample median or the sample mode (rather than 

the sample average which cannot be computed accurately) may be used as an estimate the EPC term. Note 

that when the majority of the data are nondetects, the median and the mode will also be a nondetect. The 

uncertainty associated with such estimates will be high. It is noted that the statistical properties, such as 

the bias, accuracy, and precision of such estimates, would remain unknown. In order to be able to 

compute defensible estimates, it is always desirable to collect more samples.  

 

Note: In case the number of available detected samples is small (< 5), it is suggested that the project 

team decide about the estimation of the EPC term on site-specific basis. For such small data sets with 

very few detected values (< 5), the final decision (ñpolicy decisionò) on how to estimate the EPC term 

should be determined by the project team and decision makers. 

1.12 Some Other Applications of Methods in ProUCL 4.0  

In addition to performing background versus site comparisons for CERCLA and RCRA sites, and 

estimating the EPC terms in exposure and risk evaluation studies, the statistical methods as incorporated 

in ProUCL 4.0 can be used to address other issues dealing with environmental investigations that are 

conducted at Superfund or RCRA sites.  

1.12.1 Identification of COPCs 

Risk assessors and RPMs often use screening levels or BTVs to identify the COPCs during the screening 

phase of a cleanup project to be conducted at a contaminated site. The screening for the COPCs is 

performed prior to any characterization and remediation activities that may have to be conducted at the 

site under investigation. This comparison is performed to screen out those contaminants that may be 

present in the site medium of interest at low levels (e.g., at or below the background levels or some pre-

established screening levels) and may not pose any threat and concern to human health and the 

environment. Those contaminants may be eliminated from all future site investigations, and risk 

assessment and risk management studies.  
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In order to identify the COPCs, point-by-point site observations (preferably composite samples) are 

compared with some pre-established screening levels, SSL, or estimated BTVs. This is especially true 

when the comparisons of site concentrations with screening levels or BTVs are conducted in real time by 

the sampling or cleanup crew right there in the site field. The project team should decide about the type of 

site samples (discrete or composite) and the number of detected site observations (not more than 4 to 6) 

that should be collected and compared with the screening levels or the BTVs. In case BTVs, screening 

levels, or not-to-exceed values are not known, the availability of a defensible background or reference 

data set of reasonable size (e.g., > 8 to 10, more are preferable) is required to obtain reliable estimates of 

BTVs and screening levels. When a reasonable number of detected site observations are available, it is 

preferable to use hypotheses testing approaches. The contaminants with concentrations exceeding the 

respective screening values or BTVs may be considered as COPCs, whereas contaminants with 

concentrations (in all collected samples) lower than the screening value, PRG, or an estimated BTV may 

be omitted from all future evaluations including the risk assessment and risk management investigations. 

1.12.2 Identification of Non-Compliance Monitoring Wells  

In monitoring well (MW) compliance assessment applications, individual (often discrete) contaminant 

concentrations from a MW are compared with some pre-established ACL, MCL, or an estimated 

compliance limit (CL) based upon a group of upgradient wells representing the background population. 

An exceedance of the MCL or the BTV by a MW concentration may be considered as an indication of 

contamination in that MW. In such individual concentration comparisons, the presence of contamination 

(determined by an exceedance) may have to be confirmed by re-sampling from that MW. If 

concentrations of contaminants in both the original sample and the re-sample(s) exceed the MCL or BTV, 

then that MW may require closer scrutiny, perhaps triggering the remediation remedies as determined by 

the project team. If the concentration data from a MW for about 4 to 5 continuous quarters (or some other 

designated time period determined by the project team) are below the MCL or BTV level, then that MW 

may be considered as complying with (achieving) the pre-established or estimated standards. Statistical 

methods as described in Chapters 5 and 6 of the revised Guidance for Comparing Background and 

Chemical Concentrations in Soil for CERCLA Sites (EPA, 2002b) can be used to estimate the not-to-

exceed values or BTVs based upon background or upgradient wells in case the ACLs or MCLs are not 

pre-determined. 

1.12.3 Verification of the Attainment of Cleanup Standards, Cs 

Hypothesis testing approaches may be used to verify the attainment of the cleanup standard, Cs, at 

polluted site areas of concern after conducting remediation and cleanup at the site AOC (EPA, 2006). In 

order to properly address this scenario, a site data set of adequate size (minimum of 8 to 10 detected site 

observations) needs to be made available from the remediated or excavated areas of the site under 

investigation. The sample size should also account for the size of the remediated site area; meaning that 

larger site areas should be sampled more (with more observations) to obtain a representative sample of the 

site under investigation.  

 

Typically, the null hypothesis of interest is H0: Site Mean, ms >= Cs versus the alternative hypothesis, H1: 

Site Mean, ms < Cs, where the cleanup standard, Cs, is known a priori. The sample size needed to 

perform such single sample hypotheses tests can be obtained using the DQO process-based sample size 

formula as given in the EPA (2006) documents. In any case, in order to use this test, a minimum of 8 to 

10 detected site samples should be collected. The details of the statistical methods used to perform single 

sample hypothesis as described above can be found in EPA (2006). 
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1.12.4 Using BTVs (Upper Limits) to Identify Hot Spots 

The use of upper limits (e.g., UTLs) to identify hot spot(s) has also been mentioned in the Guidance for 

Comparing Background and Chemical Concentrations in Soil for CERCLA Sites (EPA, 2002b). Point-by-

point site observations (preferably using composite samples representing a site location) are compared 

with a pre-established or estimated BTV. Exceedances of the BTV by site observations may be 

considered as representing locations with elevated concentrations (hot spots). Chapters 5 and 6 of the 

revised Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites 

(EPA, 2002b) describe several methods to estimate the BTVs based upon data sets without nondetects 

(NDs) and left-censored data sets with NDs. 

 

The rest of the chapters of this Technical Guide briefly describe the various statistical methods as 

incorporated in ProUCL 4.0. Those methods are useful to analyze environmental data sets with and 

without the nondetect observations. It should be noted that ProUCL 4.0 is the first software package 

equipped with single sample and two-sample hypotheses testing approaches that can be used on data sets 

with nondetect observations.  

 

Note: It should be pointed out that while developing ProUCL 4.0 and its all subsequent versions, 

emphasis is given to the practical applicability of the estimation and hypotheses testing methods as 

incorporated in ProUCL 4.0. Also, it should be noted that ProUCL 4.0 does provide many graphical and 

statistical methods often used in the various statistical applications. ProUCL 4.0 does not provide 

statistical methods that may be used to compute sample sizes based upon DQO processes (EPA, 2006). 

Those sample size determination methods are available in other freeware packages such as VSP (2005) 

and DataQUEST (EPA, 1997). However, as mentioned before, some practical guidance on the minimum 

sample size requirements to be able to use methods as available in ProUCL 4.0 has been provided in 

Chapter 1. Similar statements and suggestions have been made throughout this Technical Guide.  

 

1.13 Some General Issues and Recommendations made by ProUCL 

Some general issues regarding the handling of multiple detection limits and field duplicates by ProUCL 

and recommendations made about various substitution and ROS methods for data sets with NDs are 

described in the following sections. 

 

1.13.1 Multiple Detection Limits 

ProUCL 4.0 and its later versions do not make distinctions between method detection limits (MDLs), 

adjusted MDLs, sample quantitation limits (SQLs), or detection limits (DLs).  Multiple detection limits in 

ProUCL mean different values of the detection limit. All these nondetect (ND) observations in ProUCL 

are indentified by the value ó0ô of the indicator variable used in ProUCL 4.0 to distinguish between 

detected and nondetected observations.  It is usersô responsibility to supply correct numerical values 

(should be entered as the reported detection limit value) for ND observations in the data set, and to create 

an indicator variable column associated with each variable/analyte consisting of ND values. It should be 

noted that some of the methods (e.g., Kaplan-Meier - KM Method) included in ProUCL 4.0 can handle 

data sets with detection limits greater than the detected values.  
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1.13.2 Field Duplicates 

Since, collection of analytical data are not cheap, field duplicates collected from the same site area under 

investigation may be used in the statistical analysis to compute various decision statistics of interest. 

Duplicates should be considered just like any other discrete samples collected from the site area under 

study. Alternatively, the project team may come to an agreement regarding the use of duplicates in 

statistical analyses (e.g., computing decision statistics) of data collected from the site. 

 

1.13.3 ProUCL Recommendation about ROS Method and Substitution (DL/2) Method 

In order to estimate EPC (computing UCL95) for data sets with NDs, ProUCL 4.0 and higher versions 

have several methods including substitution methods (e.g., DL/2, DL), ROS methods (normal, lognormal, 

and gamma), and Kaplan-Meier Method.  Extensive simulation study conducted by Singh, Maichle and 

Lee (2006) demonstrated that statistically rigorous K-M method yields more precise and accurate 

estimates of EPC terms than those based upon substitution and ROS methods. Even though several of the 

substitution and ROS methods have been incorporated in ProUCL (for historical reasons and comparison 

purposes), those methods are not recommended by ProUCL to estimate the EPC terms or to compute 

other decision statistics.  
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Chapter 2 
 

Methods for Computing (1 ï Ŭ)100% UCL of Mean for Data Sets 
without Nondetect Observations as Incorporated in ProUCL 4.0 

Software 

2.1 Introduction 

Exposure assessment and cleanup decisions in support of U.S. EPA projects are often made based upon 

the mean concentrations of the contaminants of potential concern. A 95% upper confidence limit (UCL) 

of the unknown population arithmetic mean (AM), µ1, is often used to: estimate the exposure point 

concentration (EPC) term (EPA, 1992; EPA, 2002), determine the attainment of cleanup standards (EPA, 

1989, and EPA, 1991), estimate background level contaminant concentrations, or compare the soil 

concentrations with site-specific soil screening levels (EPA, 1996). It is, therefore, important to compute a 

reliable, conservative, and stable 95% UCL of the population mean using the available data. The 95% 

UCL should approximately provide the 95% coverage for the unknown population mean, µ1. EPA 

(2002a) has developed a guidance document for calculating upper confidence limits based upon full data 

sets without nondetect observations. Most of those UCL computation methods as described in the EPA 

(2002a) guidance document are available in ProUCL 3.0. ProUCL 3.0 can also compute 95% UCLs of the 

mean based upon the gamma distribution which is better suited to model positively skewed environmental 

data sets. ProUCL 4.0 represents an upgrade of ProUCL 3.0. Specifically, ProUCL 4.0 provides several 

parametric and nonparametric UCL computation methods for data sets with nondetect (ND) observations. 

Therefore, this Technical Guide is an upgrade of the technical guide associated with ProUCL 3.0. The 

capabilities and methods as incorporated in ProUCL 3.0 are also available in ProUCL 4.0. Parametric and 

nonparametric UCL computation methods as incorporated in ProUCL 4.0 for data sets with nondetect 

observations are described in Chapter 4 of this Technical Guide. The details of those UCL computation 

methods can be found in Singh, Maichle, and Lee (EPA, 2006). 

 

Chapter 2 describes the UCL methods for full data sets without ND observations as incorporated in 

ProUCL 3.0 Technical Guide. Computation of a (1 ï Ŭ)100% UCL of the population mean depends upon 

the data distribution. Typically, environmental data are positively skewed, and a default lognormal 

distribution (EPA, 1992) is often used to model such data distributions. The H-statistic-based Landôs 

(Land, 1971, 1975) H-UCL of the mean is used in these applications. Hardin and Gilbert (1993), Singh, 

Singh, and Engelhardt (1997, 1999), Schultz and Griffin (1999), and Singh, Singh, and Iaci (2002b) 

pointed out several problems associated with the use of the lognormal distribution and the H-UCL of the 

population AM. In practice, for lognormal data sets with high standard deviation (Sd), ů, of the natural 

log-transformed data (e.g., ů exceeding 2.0), the H-UCL can become unacceptably large, exceeding the 

95% and 99% data quantiles, and even the maximum observed concentration, by orders of magnitude 

(Singh, Singh, and Engelhardt, 1997). This is especially true for skewed data sets of sizes smaller than n < 

50-70.  

 

The H-UCL is also very sensitive to a few low or high values. For example, the addition of a sample with 

below detection limit measurement can cause the H-UCL to increase by a large amount (Singh, Singh, 

and Iaci, 2002b). Realizing that the use of H-statistic can result in unreasonably large UCL, it has been 

recommended (EPA, 1992) to use the maximum observed value as an estimate of the UCL (EPC term) in 

cases where the H-UCL exceeds the maximum observed value. The issue of the use of the maximum 

detected value as an estimate of the EPC term has been discussed earlier in Chapter 1. There are 15 UCL 

computation methods available in ProUCL; 5 are parametric and 10 are nonparametric. The 
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nonparametric methods do not depend upon any of the data distributions. For full data sets without any 

nondetect observations, ProUCL 4.0 (and also ProUCL 3.0) makes recommendations on how to compute 

an appropriate UCL95. Those recommendations are made based upon the findings of extensive simulation 

study conducted by Singh and Singh (2003). 

 

It is noted that both lognormal and gamma distributions can be used to model positively skewed data sets. 

It is also noted that it is hard to distinguish between a lognormal and a gamma distribution, especially 

when the sample size is small, such as n < 50 - 70. In practice, many skewed data sets follow a lognormal 

as well as a gamma distribution. Singh, Singh, and Iaci (2002b) observed that the UCL based upon a 

gamma distribution results in reliable and stable values of practical merit. It is, therefore, desirable to test 

if an environmental data set follows a gamma distribution. For data sets (of all sizes) which follow a 

gamma distribution, the EPC should be computed using an adjusted gamma UCL (when 0.1 Ò k < 0.5) of 

the mean or an approximate gamma UCL (when k Ó 0.5) of the mean, as these UCLs approximately 

provide the specified 95% coverage to the population mean, ɛ1 = kɗ, gamma distribution. For values of k 

< 0.1, a 95% UCL may be obtained using bootstrap t-method or Hallôs bootstrap method when the sample 

size, n is less than 15, and for larger samples, a UCL of the mean may be computed using the adjusted or 

approximate gamma UCL. Here, k is the shape parameter of a gamma distribution as described in later in 

this chapter.  

 

It should be pointed out that both bootstrap t and Hallôs bootstrap methods sometimes result in erratic, 

inflated, and unstable UCL values, especially in the presence of outliers (Efron and Tibshirani, 1993). 

Therefore, these two methods should be used with caution. The user should examine the various UCL 

results and determine if the UCLs based upon the bootstrap t and Hallôs bootstrap methods represent 

reasonable and reliable UCL values of practical merit. If the results based upon these two methods are 

much higher than the rest of methods (except for the UCLs based upon lognormal distribution), then this 

could be an indication of erratic UCL values. ProUCL prints out a warning message whenever the use of 

these two bootstrap methods is recommended. In case these two bootstrap methods yield erratic, unstable, 

and inflated UCLs, the UCL of the mean may be computed using the adjusted or the approximate gamma 

UCL computation method, or based upon the Chebyshev inequality. 

 

ProUCL 4.0 has goodness-of-fit (GOF) methods to test for normality, lognormality, and a gamma 

distribution of a data set with and without nondetect observations. Depending upon the data distribution, 

ProUCL 4.0 can be used to compute a conservative and stable 95% UCL of the population mean, ɛ1, and 

various other upper limits (e.g., UPLs, UTLs) for data sets with and without the nondetect observations. 

The critical values of the Anderson-Darling test statistic and the Kolmogorov-Smirnov test statistic to test 

for gamma distribution were generated using Monte Carlo simulation experiments. Those critical values 

are tabulated in Appendix A for various levels of significance. Singh, Singh, and Engelhardt (1997, 

1999); Singh, Singh, and Iaci (2002b); and Singh and Singh (2003) studied several parametric and 

nonparametric UCL computation methods that have been included in ProUCL 4.0. Most of the 

mathematical algorithms and formulae used in ProUCL to compute the various statistics are summarized 

in this chapter. ProUCL computes the various summary statistics for raw, as well as log-transformed data 

sets with and without nondetect observations. In this Technical Guide and in ProUCL, log-transform (log) 

stands for the natural logarithm (ln) to the base e. ProUCL also computes the maximum likelihood 

estimates (MLEs) and the minimum variance unbiased estimates (MVUEs) of various unknown 

population parameters of normal, lognormal, and gamma distributions. For full data sets without 

nondetect observations, ProUCL 4.0 (and also ProUCL 3.0) computes the (1 ï Ŭ)100% UCLs of the 

unknown population mean, µ1, using five (5) parametric and ten (10) nonparametric methods, which are 

described in section 2.4 of this chapter.  
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For data sets without NDs, comparisons of the performances of the UCL computation methods (in terms 

of coverage probabilities) were performed by Singh and Singh (2003) and Singh et al. (2006). It is also 

well known that the Jackknife method (with sample mean as an estimator) and Studentôs t-method yield 

identical UCL values. Moreover, it is noted that the standard bootstrap method and the percentile 

bootstrap method do not perform well (do not provide adequate coverage) for skewed data sets. However, 

for the sake of completeness, all of the parametric as well as nonparametric methods have been included 

in ProUCL 4.0. Also, it was noted that the omission of a method such as the Jackknife method or the bias-

corrected accelerated (BCA) bootstrap method triggers the curiosity of some of the users as they may 

think that the omitted method might perform better than the various other methods already incorporated in 

ProUCL. In order to satisfy all users, ProUCL 4.0 provides most of the bootstrap UCL computation 

methods. 

2.2 Goodness-of-Fit (GOF) Test Procedures to Test for a Data Distribution 

Let x1, x2, ... , xn be a random sample (e.g., representing lead concentrations) from the underlying 

population (e.g., remediated part of a site) with unknown mean, ɛ1, and variance, ů1
2
. Let µ and ů 

represent the population mean and the population standard deviation (Sd) of the log-transformed (natural 

log to the base e) data. Let y  and sy (=ůĔ) be the sample mean and sample Sd, respectively, of the log-

transformed data, yi = log (xi); i = 1, 2, ... , n. Specifically, let 
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Similarly, let x  and sx be the sample mean and Sd of the raw data, x1 , x2 , .. , xn, obtained by replacing y 

by x in equations (2-1) and (2-2), respectively. In this Technical Guide, irrespective of the underlying 

distribution, µ1, and ů1
2
 represent the mean and variance of the random variable X (in original units), 

whereas µ and ů
2
 represent the mean and variance of its logarithm, given by Y = loge(X) = natural 

logarithm.  

 

Three data distributions have been considered in ProUCL 4.0. These include the normal, lognormal, and 

the gamma distributions. Shapiro-Wilk (n Ò 50) and Lilliefors (n > 50) test statistics are used to test for 

normality or lognormality of a data set. It should be noted that even though Shapiro-Wilk (S-W) test has 

been extended up to samples of size 2000 (Royston, 1982), ProUCL 4.0 provides S-W test only for 

samples of sizes up to 50. Lilliefors test (along with graphical Q-Q plot) seems to perform fairly well for 

samples of size 50 and higher. The empirical distribution function (EDF)-based methods: the 

Kolmogorov-Smirnov (K-S) test and the Anderson-Darling (A-D) test are used to test for a gamma 

distribution. Extensive critical values for these two test statistics have been obtained via Monte Carlo 

simulation experiments. For interested users, these critical values are given in the Appendix for various 

levels of significance. In addition to these formal tests, the informal histogram and quantile-quantile (Q-

Q) plot are also available to visually test data distributions. Q-Q plots also provide useful information 

about the presence of potential outliers and multiple populations. A brief description of these GOF tests 

follows. 
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2.2.1 Test Normality and Lognormality of a Data Set   

ProUCL tests for normality or lognormality of a data set using three different methods described below. 

The program tests normality or lognormality at three different levels of significance, namely, 0.01, 0.05, 

and 0.1. The details of those methods can be found in the cited references below. 

2.2.1.1  Normal Quantile-Quantile (Q-Q) Plot  

This represents a simple informal graphical method to test for an approximate normality or lognormality 

of a data distribution (Hoaglin, Mosteller, and Tukey 1983; Singh 1993). A linear pattern displayed by the 

bulk of the data suggests approximate normality or lognormality (performed on log-transformed data) of 

the data distribution. For example, a high value (e.g., 0.95 or greater) of the correlation coefficient of the 

linear pattern may suggest approximate normality (or lognormality) of the data set under study. However, 

it should be noted that on this graphical display, observations well separated (sticking out) from the linear 

pattern displayed by the bulk data represent the outlying observations. Also, apparent jumps and breaks in 

the Q-Q plot suggest the presence of multiple populations. The correlation coefficient of such a Q-Q plot 

can still be high, which does not necessarily imply that the data follow a normal (or lognormal) 

distribution. Therefore, the informal graphical Q-Q plot test should always be accompanied by other more 

powerful tests, such as the Shapiro-Wilk test or the Lilliefors test. The goodness-of-fit (GOF) test of a 

data set should always be judged based upon the formal as well as informal graphical displays. The 

normal Q-Q plot may be used as an aid to identify outliers or to identify multiple populations. ProUCL 

performs the graphical Q-Q plot test on raw data as well as on standardized data. All relevant statistics, 

such as the correlation coefficient, are also displayed on the Q-Q plot. 

2.2.1.2  Shapiro-Wilk W Test 

This is a powerful test and is often used to test the normality or lognormality of a data set under study 

(Gilbert 1987). ProUCL 4.00.02 performs this test for samples of size upto 50. However, in the revised 

version, ProUCL 4.00.05 (an upgrade of ProUCL 4.00.002), S-W test has been extended for samples of 

size upto 2000 (Royston 1982). Based upon the selected level of significance and the computed test 

statistic, ProUCL also informs the user if the data are normally (or lognormally) distributed. This 

information should be used to obtain an appropriate UCL of the mean. The program prints the relevant 

statistics (such as the S-W test statistic, slope, and correlation) on the Q-Q plot of the data. For 

convenience, normality, lognormality, or gamma distribution test results for 0.05 level of significance are 

also displayed on the Excel-type output summary sheets. It should be noted that in the revised ProUCL 

4.00.02, for samples of sizes Ò 50, an approximate p-value assciciated with S-W test is also displayed. For 

samples of size >50, only approximate p-values are displayed. 

2.2.1.3  Lilliefors Test 

This test is useful for data sets of larger size (Dudewicz and Misra, 1988, Conover, 1999). ProUCL 

performs this test for samples of sizes up to 1000. Based upon the selected level of significance and the 

computed test statistic, ProUCL informs the user if the data are normally (or lognormally) distributed. 

The user should use this information to obtain an appropriate UCL of the mean. The program prints the 

relevant statistics on the Q-Q plot of data. For convenience, normality, lognormality, or gamma 

distribution test results for 0.05 level of significance are also displayed on the UCL output summary 

sheets. It should be pointed out that sometimes, in practice, these two goodness-of-fit tests could lead to 

different conclusions. 
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2.2.2 Gamma Distribution 

Singh, Singh, and Iaci (2002b) studied gamma distributions to model positively skewed environmental 

data sets and to compute a UCL of the mean based upon a gamma distribution. They studied several UCL 

computation methods using Monte Carlo simulation experiments. A continuous random variable, X (e.g., 

concentration of a contaminant), is said to follow a gamma distribution, G (k, ɗ) with parameters k > 0 

(shape parameter) and ɗ > 0 (scale parameter), if its probability density function is given by the following 

equation: 
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The parameter, k, is the shape parameter, and ɗ is the scale parameter. Many positively skewed data sets 

follow a lognormal as well as a gamma distribution. Gamma distributions can be used to model positively 

skewed environmental data sets. It is observed that the use of a gamma distribution results in reliable and 

stable 95% UCL values. It is therefore, desirable to test if an environmental data set follows a gamma 

distribution. If a skewed data set does follow a gamma model, then a 95% UCL of the population mean 

should be computed using a gamma distribution. For details of the two gamma goodness-of-fit tests, 

maximum likelihood estimation of gamma parameters, and the computation of a 95% UCL of the mean 

based upon a gamma distribution, refer to DôAgostino and Stephens (1986), and Singh, Singh, and Iaci 

(2002). These methods are briefly described as follows. 

 

For data sets which follow a gamma distribution, the adjusted 95% UCL of the mean based upon a 

gamma distribution is optimal and approximately provides the specified 95% coverage to population 

mean, ɛ1 = kɗ (Singh, Singh, and Iaci (2002)). Moreover, this adjusted gamma UCL yields reasonable 

numbers of practical merit. The two test statistics used for testing for a gamma distribution are based upon 

the empirical distribution function (EDF). The two EDF tests included in ProUCL are the Kolmogorov-

Smirnov (K-S) test and Anderson-Darling (A-D) test, which are described in DôAgostino and Stephens 

(1986) and Stephens (1970). The graphical Q-Q plot for gamma distribution has also been included in 

ProUCL. The critical values for the two EDF tests are not easily available, especially when the shape 

parameter, k, is small (k < 1). Therefore, the associated critical values have been obtained via extensive 

Monte Carlo simulation experiments. These critical values for the two test statistics are given in Appendix 

A. The 1%, 5%, and 10% critical values of these two test statistics have been incorporated in ProUCL 4.0. 

It should be noted that the goodness-of-fit tests for gamma distribution depend upon the MLEs of gamma 

parameters, k and ɗ, which should be computed first before performing the goodness-of-fit tests. It is 

noted that the information about estimation of gamma parameters, gamma GOF tests, and construction of 

gamma Q-Q plots is not easily available in statistical textbooks. Therefore, the detailed description of 

these methods for gamma distribution is provided as follows. 

2.2.2.1 Quantile-Quantile (Q-Q) Plot for a Gamma Distribution  

Let x1, x2, ... , xn be a random sample from the gamma distribution, G(k,q). Let x(1) ¢ x(2)  ¢ ... ¢ x(n) 

represent the ordered sample. Let kĔand qĔ represent the maximum likelihood estimates (MLEs) of k and 

q, respectively. For details of the computation of the MLEs of k and q, refer to Singh, Singh, and Iaci 

(2002). Estimations of the gamma parameters are also briefly described later in this Technical Guide. The 
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Q-Q plot for gamma distribution is obtained by plotting the scatter plot of pairs ),( )(0 ii xx =:i 1, 2, », n. 

Here the quantiles, x0i, are given by the equation, ;2/Ĕ00 ɗzx ii =  =:i 1, 2, », n, where the quantiles Z0i 

(already ordered) are obtained by using the inverse chi-square distribution and are given as follows. 

 

                ;/)2/1()( 2
Ĕ2

0

2
Ĕ2

0

nidf
k

z

k

i

-=ñ cc    =:i 1, 2, », n                               (2-4) 

 

In (2-4), 
2
Ĕ2k

c  represents a chi-square random variable with kĔ2  degrees of freedom (df). The program, 

PPCHI2 (Algorithm AS91) as given in Best and Roberts (1975), Applied Statistics (1975, Vol. 24, No. 3) 

has been used to compute the inverse chi-square percentage points, as given by the above equation given 

by (2-4). This represents an informal graphical method to test for a gamma distribution. All relevant 

statistics including the MLE of k are also displayed on the gamma Q-Q plot.  

 

This informal test should always be accompanied by the formal Anderson-Darling (A-D) test or 

Kolmogorov-Smirnov (K-S) test and vice versa. A linear pattern displayed by the scatter plot of bulk of 

the data may suggest an approximate gamma distribution. For example, a high value (e.g., 0.95 or greater) 

of the correlation coefficient of the linear pattern may suggest approximate gamma distribution of the data 

set under study. However, on this Q-Q plot points well separated from the bulk of data may represent 

outliers. Apparent breaks and jumps in the gamma Q-Q plot suggest the presence of multiple populations. 

Thus, Q-Q plots are also useful to identify outliers or the presence of multiple populations. The 

correlation coefficient of such a Q-Q plot (e.g., with outliers) can still be high which does not necessarily 

imply that the data follow a gamma distribution. Therefore, graphical Q-Q plot and other formal EDF 

tests, such as the Anderson-Darling (A-D) test or the Kolmogorov-Smirnov (K-S) test should be used on 

the same data set. A formal statistical test such as a K-S test or A-D test may lead to conclusion of a 

gamma distribution even for a data set with potential outliers and multiple populations. The final 

conclusion about the data distribution should be based upon the formal goodness-of-fit tests. This 

statement is true for all GOF tests (e.g., normal, lognormal, and gamma distributions) as incorporated in 

ProUCL 4.0.  

2.2.2.2 Empirical Distribution Function (EDF)-Based Goodness-of-Fit Tests     

Next, the two formal empirical distribution function (EDF)-based test statistics to test for a gamma 

distribution are briefly described here. Let F(x) be the cumulative distribution function (CDF) of the 

gamma random variable X. Let Z = F(X), then Z represents a uniform U(0,1) random variable. For each xi, 

compute zi by using the incomplete gamma function given by the equation zi = F (xi); =:i 1, 2, », n. The 

algorithm as given in Numerical Recipes book (Press et al., 1990) has been used to compute the 

incomplete gamma function. Arrange the resulting zi in ascending order as z(1) ¢  z(2)  ¢ ... ¢  z(n). Let  
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Compute the following two test statistics.  
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The Kolmogorov-Smirnov test statistic is given by ),max( -+= DDD . 

The Anderson-Darling test statistic is given by the following equation.  
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The critical values for these two statistics, D and A
2
, are not readily available. For the Anderson-Darling 

test, only the asymptotic critical values are available in the statistical literature (DôAgostino and Stephens 

(1986)). Some raw critical values for K-S test are given in Schneider (1978), and Schneider and Clickner 

(1976). For these two tests, ExpertFit (2001) software and Law and Kelton (2000) use generic critical 

values for all completely specified distributions as given in DôAgostino and Stephens (1986). It is 

observed that the conclusions derived using these generic critical values for completely specified 

distributions and the simulated critical values for the gamma distribution with unknown parameters can be 

different. Therefore, to test for a gamma distribution, it is preferred and advised to use the critical values 

of these test statistics specifically obtained for gamma distributions with unknown parameters. 

 

In practice, the distributions are not completely specified and exact critical values for these two test 

statistics are needed. It should be noted that the distributions of the K-S test statistic, D, and the A-D test 

statistic, A
2
, do not depend upon the scale parameter, ɗ; therefore, the scale parameter, ɗ, has been set 

equal to 1 in all of the simulation experiments. The critical values for these two statistics have been 

obtained via extensive Monte Carlo simulation experiments for several small and large values of the 

shape parameter, k, and with ɗ = 1. These critical are included in Appendix A. In order to generate the 

critical values, random samples from gamma distributions were generated using the algorithm as given in 

Whittaker (1974). It is observed that the critical values thus obtained are in close agreement with all 

available published critical values. The generated critical values for the two test statistics have been 

incorporated in ProUCL for three levels of significance, 0.1, 0.05, and 0.01. For each of the two tests, if 

the test statistic exceeds the corresponding critical value, then the hypothesis that the data follow a 

gamma distribution is rejected. ProUCL computes these test statistics and prints them on the gamma Q-Q 

plot and also on the UCL summary output sheets generated by ProUCL.  

2.3 Estimation of Parameters of the Three Distributions as Incorporated           
in ProUCL 

Throughout this Technical Guide, ɛ1 and ů1
2
 are the mean and variance of the random variable, X, and ɛ 

and ů
2
 are the mean and variance of the random variable, Y = log(X). Also, ůĔ represents the standard 

deviation of the log-transformed data. It should be noted that for both lognormal and gamma distributions, 

the associated random variable can take only positive values. This is typical of environmental data sets to 

consist of only positive values. 

2.3.1 Normal Distribution 

Let X be a continuous random variable (e.g., concentration of COPC), which follows a normal 

distribution, N (ɛ1, ů1
2
) with mean, ɛ1, and variance, ů1

2
. The probability density function of a normal 

distribution is given by the following equation: 
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For normally distributed data sets, it is well known (Hogg and Craig, 1978) that the minimum variance 

unbiased estimates (MVUEs) of the mean, ɛ1, and the variance, ů1
2
, are respectively given by the sample 

mean, x , and sample variance, sx
2
. It is also well known that for normally distributed data sets, a UCL of 

the unknown mean, ɛ1, base upon Studentôs t-distribution is optimal. It is observed via Monte Carlo 

simulation experiments (Singh and Singh (2003) Draft EPA Report) that for normally distributed data 

sets, the modified t-UCL and UCL based upon bootstrap t method also provide the exact 95% coverage to 

the population mean. For normally distributed data sets, the UCLs based upon these three methods are 

very similar. 

Lognormal Distribution  

If Y = log(X) is normally distributed with the mean, ɛ, and variance, ů
2
, then X is said to be lognormally 

distributed with parameters ɛ and ů
2
 and is denoted by LN(ɛ, ů

2
). It should be noted that ɛ and ů

2
 are not 

the mean and variance of the lognormal random variable, X, but they are the mean and variance of the 

log-transformed random variable, Y, whereas ɛ1, and ů1
2
 represent the mean and variance of X. Some 

parameters of interest of a two-parameter lognormal distribution, LN(µ, ů
2
), are given as follows: 
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                                 Coefficient of Variation = 1)exp( 2

11 -== ůɛůCV   (2-11) 

 

                                 Coefficient of Skewness = CV
3
+ 3CV (2-12)  

2.3.2.1 MLEs of the Parameters of a Lognormal Distribution 

For lognormal distributions, note that y and sy (=ůĔ) are the maximum likelihood estimators (MLEs) of ɛ 

and ů, respectively. The MLE of any function of the parameters ɛ and ů
2
 is obtained by simply 

substituting these MLEs in place of the parameters (Hogg and Craig 1978). Therefore, replacing ɛ and ů 

by their MLEs in equations (2-8) through (2-12) will result in the MLEs  (but biased) of the respective 

parameters of the lognormal distribution. The program ProUCL computes all of these MLEs for 

lognormally distributed data sets. These MLEs are printed on the Excel-type output spreadsheet generated 

by ProUCL. 

2.3.2.2 Relationship between Skewness and Standard Deviation, ů 

Note that for a lognormal distribution, the CV (given by equation (2-11) above) and the coefficient of 

skewness (given by equation (2-12)) depend only on ů. Therefore, in this Technical Guide and also in 

ProUCL, the standard deviation, ů (Sd of log-transformed variable, Y), or its MLE, sy (=ůĔ), has been used 

as a measure of the skewness of lognormal and also of other skewed data sets with positive values. The 

larger is the Sd, the larger are the CV and the skewness. For example, for a lognormal distribution: with ů 

= 0.5, the skewness = 1.75; with ů =1.0, the skewness = 6.185; with ů =1.5, the skewness = 33.468; and 

with ů = 2.0, the skewness = 414.36. Thus, the skewness of a lognormal distribution becomes 
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unreasonably large as ů starts approaching and exceeding 2.0. Note that for a gamma distribution, the 

skewness is a function of the shape parameter, k. As k decreases, the skewness increases. 

 

It is observed (Singh, Singh, Engelhardt (1997) and Singh, Singh, and Iaci (2002b)) that for smaller 

sample sizes (such as smaller than 50), and for values of ů approaching 2.0 (and skewness approaching 

414), the use of the H-statistic-based UCL results in impractical and unacceptably large values. For 

simplicity, the various levels of skewness of a positive data set as used in ProUCL and in this Technical 

Guide are summarized as follows: 

 

Table 2-1. Skewness as a Function of ů (or its MLE, sy =ůĔ), sd of log(X) 

 
Standard Deviation Skewness 

ů < 0.5 Symmetric to mild skewness 

0.5 Ò ů < 1.0 Mild skewness to moderate skewness 

1.0 Ò ů < 1.5 Moderate skewness to high skewness 

1.5 Ò ů < 2.0 High skewness  

2.0 Ò ů < 3.0 
Very high skewness (moderate probability of outliers 
and/or multiple populations) 

ů Ó 3.0 
Extremely high skewness (high probability of outliers 
and/or multiple populations) 

 
These values of ů (or its estimate, Sd of log-transformed data) are used to define the skewness levels of 

lognormal and skewed non-discernable data distributions, as used in Tables 2-2 and 2-3. 

2.3.2.3 MLEs of the Quantiles of a Lognormal Distribution 

For highly skewed (e.g., ů exceeding 1.5), lognormally distributed populations, the population mean, ɛ1, 

often exceeds the higher quantiles (e.g., 80%, 90%, 95%) of the distribution. Therefore, the computation 

of these quantiles is also of interest. This is especially true when one may want to use the MLEs of the 

higher order quantiles (e.g., 95%, 97.5%, etc.) as an estimate of the EPC term. The formulae to compute 

these quantiles are briefly described here.  

 

The p
th
 quantile (or 100 p

th
 percentile), xp, of the distribution of a random variable, X, is defined by the 

probability statement, P(X Ò xp) = p. If zp is the p
th
 quantile of the standard normal random variable, Z, 

with P(Z Ò  zp) = p, then the p
th
 quantile of a lognormal distribution is given by  xp = exp(ɛ + způ). Thus 

the MLE of the p
th
 quantile is given by 

 

                                                                 )ĔĔexp(Ĕ ůzɛx pp +=  (2-13) 

 

For example, on the average, 95% of the observations from a lognormal LN(ɛ, ů
2
) distribution would lie 

below exp(ɛ + 1.65ů). The 0.5
th
 quantile of the standard normal distribution is z0.5 = 0, and the 0.5

th
 

quantile (or median) of a lognormal distribution is M = exp(ɛ), which is obviously smaller than the mean, 

ɛ1, as given by equation (1-8). Also, note that the mean, ɛ1, is greater than xp if and only if ů > 2zp. For 

example, when p = 0.80, zp = 0.845, ɛ1 exceeds x0.80, the 80
th
 percentile if and only if ů > 1.69, and, 

similarly, the mean, ɛ1, will exceed the 95
th
 percentile if and only if ů > 3.29. ProUCL computes the 

MLEs of the 50% (median), 90%, 95%, and 99% percentiles of lognormally distributed data sets. For 

lognormally distributed background data sets, a 95% or 99% percentile may be used as an estimate of the 

background threshold value; that is the background level contaminant concentration. 
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2.3.2.4 MVUEs of Parameters of a Lognormal Distribution 

Even though the sample AM, x , is an unbiased estimator of the population AM, ɛ1, it does not have the 

minimum variance (MV). The MV unbiased estimates (MVUEs) of ɛ1 and ů1
2
 of a lognormal distribution 

are given as follows: 

 

                                  )2/()exp(Ĕ 2

1 yn sgyɛ=  (2-14) 

                                  ))]1/()2(()2()[2exp(Ĕ 222

1 ---= nsngsgyů ynyn  (2-15) 

 

The series expansion of the function gn(ɛ) is given in Bradu and Mundlak (1970), and Aitchison and 

Brown (1976). Tabulations of this function are also provided by Gilbert (1987). Bradu and Mundlak 

(1970) give the MVUE of the variance of the estimate, 1
Ĕɛ, 

 

                                  ))]1/()2(())2()[(2exp()Ĕ(Ĕ 222

1

2 ---= nsngsgyɛů ynyn  (2-16) 

 

The square root of the variance given by equation (1-16) is called the standard error (SE) of the estimate, 

1
Ĕɛ, given by equation (2-14). Similarly, a MVUE of the median of a lognormal distribution is given by 

 

                                                ))]1(2/([)exp(Ĕ 2 --= nsgyM yn  (2-17) 

 

For a lognormally distributed data set, ProUCL also computes these MVUEs given by equations (2-14) 

through (2-17). 

2.3.2 Estimation of the Parameters of a Gamma Distribution 

Next, we consider the estimation of parameters of a gamma distribution. Since the estimation of gamma 

parameters is typically not included in standard statistical textbooks, this has been described in some 

detail in this Technical Guide. The population mean and variance of a two-parameter gamma distribution, 

G(k, ɗ), are functions of both parameters, k and ɗ. In order to estimate the mean, one has to obtain 

estimates of k and ɗ. The computation of the maximum likelihood estimate (MLE) of k is quite complex 

and requires the computation of Digamma and Trigamma functions. Several authors (Choi and Wette, 

1969, Bowman and Shenton 1988, Johnson, Kotz, and Balakrishnan, 1994) have studied the estimation of 

the shape and scale parameters of a gamma distribution. The maximum likelihood estimation method to 

estimate the shape and scale parameters of a gamma distribution is described below. 

 

Let x1, x2, ... , xn be a random sample (e.g., representing contaminant concentrations) of size n from a 

gamma distribution, G(k, ɗ), with unknown shape and scale parameters, k and ɗ, respectively. The log 

likelihood function (obtained using equation (2-3)) is given as follows: 

 

        ä ä--+--= ɗxxkknɗnkɗkxxxLogL iin )log()1()(ũlog)log(),;,...,,( 21  (2-18) 

To find the MLEs of k and ɗ, we differentiate the log likelihood function as given in (1-18) with respect 

to k and ɗ, and set the derivatives to zero. This results in the following two equations: 

 



 47 

                                             ä=
¡

+ )log(
1

)Ĕ(ũ

)Ĕ(ũ
)Ĕ( ix

nk

k
ɗLog  , and (2-19) 

                                                                  xx
n

ɗk i == ä
1ĔĔ  (2-20) 

 

Solving equation (2-20) forɗĔ, and substituting the result in (2-19), we get following equation: 
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There does not exist a closed form solution of equation (2-21). This equation needs to be solved 

numerically forkĔ, which requires the use of Digamma and Trigamma functions. This is quite easy to do 

using a personal computer. An estimate of k can be computed iteratively by using the Newton-Raphson 

(Faires and Burden 1993) method, leading to the following iterative equation: 
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The iterative process stops when kĔ starts to converge. In practice, convergence is typically achieved in 

fewer than 10 iterations. In equation (2-22), 

 

nxxM iä-= )log()log( , ( ))(ũlog)(Ɋ k
dk

d
k = , and ( ))(Ɋ)(Ɋ k

dk

d
k =¡  

 

Here )(Ɋk  is the Digamma function and )(Ɋ k¡  is the Trigamma function. In order to obtain the MLEs 

of k and ɗ, one needs to compute the Digamma and Trigamma functions. Good approximate values for 

these two functions (Choi and Wette 1969) can be obtained using the following approximations. For k Ó 

8, these functions are approximated by 

 

                         [ ]{ } )2()6())21/(110/1(11)log()(Ɋ 22 kkkkkk --+-º , and (2-23) 

 

                          [ ]{ }{ }kkkkkk )2()3(/))7/(15/1(111)(Ɋ 22--++º¡  (2-24) 

 

For k < 8, one can use the following recurrence relation to compute these functions: 

 

                                                 kkk /1)1(Ɋ)(Ɋ -+= , and (2-25) 

 

                                                 
2/1)1(Ɋ)(Ɋ kkk ++¡=¡  (2-26) 

 

In ProUCL, equations (2-23) - (2-26) have been used to estimate k. The iterative process requires an 

initial estimate of k. A good starting value for k in this iterative process is given by k0 = 1 / (2M). Thom 

(1968) suggested the following approximation as an estimate of k: 
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Bowman and Shenton (1988) suggested using kĔ, as given by (2-27), to be a starting value of k for an 

iterative procedure, calculating lkĔ at the l
th
 iteration from the following formula: 
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Both equations (2-22) and (2-28) have been used to compute the MLE of k. It is observed that the 

estimate, kĔ, based upon Newton-Raphson method, as given by equation (2-22), is in close agreement 

with that obtained using equation (2-28) with Thomôs approximation as an initial estimate. Choi and 

Wette (1969) further concluded that the MLE of k, kĔ, is biased high. A bias-corrected (Johnson, Kotz, 

and Balakrishnan 1994) estimate of k is given by: 

 

                                                       )3/(2/Ĕ)3(Ĕ* nnknk +-=  (2-29) 

 

In (2-29), kĔ is the MLE of k obtained using either (2-22) or (2-28). Substitution of equation (2-29) in 

equation (2-20) yields an estimate of the scale parameter, ɗ, given as follows: 

 

                                                                    
** Ĕ/Ĕ kxɗ=  (2-30) 

 

ProUCL computes simple MLEs of k and ɗ, and also bias-corrected estimates of k and ɗ. The bias-

corrected estimate of k as given by (2-29) has been used in the computation of the UCLs (as given by 

equations (2-34) and (2-35)) of the mean of a gamma distribution. 

2.4 Methods for Computing a UCL of the Unknown Population Mean   

ProUCL computes a (1 ï Ŭ)100% UCL of the population mean, µ1, using the following 5 parametric and 

10 nonparametric methods. Five of the 10 nonparametric methods are based upon the bootstrap method. 

Modified t and adjusted central limit theorem adjust for skewness for skewed data sets. However, it is 

noted that (Singh, Singh, and Iaci (2002b) and Singh and Singh (2003)) this adjustment is not adequate 

enough for moderately skewed to highly skewed data sets. For details, interested users are referred to 

graphical displays of coverage probability comparisons for normal, gamma, and lognormal distributions 

given in Singh and Singh (2003).  

 

Parametric Methods 

 

1. Studentôs t-statistic ï assumes normality or approximate normality 

 

2. Approximate gamma UCL ï assumes gamma distribution of the data set 

 

3. Adjusted gamma UCL ï assumes gamma distribution of the data set 
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4. Landôs H-Statistic  ï assumes lognormality 

 

5. Chebyshev Theorem using the MVUE of the parameters of a lognormal distribution 

(denoted by Chebyshev (MVUE)) ï assumes lognormality 

 
Nonparametric Methods 

 

1. Modified t-statistic ï modified for skewed distributions  

 

2. Central limit theorem (CLT) ï to be used for large samples 

 

3. Adjusted central limit theorem (adjusted-CLT) ï adjusted for skewed distributions and to 

be used for large samples 

 

4. Chebyshev Theorem using the sample arithmetic mean and Sd (denoted by Chebyshev 

(Mean, Sd))  

 

5. Jackknife method ï yields the same result as Studentôs t-statistic for the UCL of the 

population mean 

 

6.  Standard bootstrap  

 

7.  Percentile bootstrap 

 

8.  Bias-corrected accelerated (BCA) bootstrap 

 

9.  Bootstrap t 

 

10.  Hallôs bootstrap 

 
Even though it is well known that some of the methods (e.g., CLT, UCL based upon Jackknife method 

(same as Studentôs t-UCL), standard bootstrap and percentile bootstrap methods) do not perform well 

enough to provide the adequate coverage to the population mean of skewed distributions, these methods 

have been included in ProUCL to satisfy the curiosity of all users. 

 

ProUCL can compute a  (1 ï Ŭ)100% UCL (except for the H-UCL and adjusted gamma UCL) of the mean 

for any confidence coefficient (1 ï Ŭ) value lying in the interval [0.5, 1.0). For the computation of the H-

UCL, only two confidence levels, namely, 0.90 and 0.95 are supported by ProUCL. For adjusted gamma 

UCL, three confidence levels, namely: 0.90, 0.95, and 0.99 are supported by ProUCL 4.0. An 

approximate gamma UCL can be computed for any level of significance in the interval [0.5,1). Whenever, 

ProUCL 4.0 cannot compute a UCL for a specified confidence coefficient (e.g., 0.99 for H-UCL), 

ProUCL 4.0 prints out ñN/A.ò Based upon sample size, n, skewness, and data distribution, ProUCL 4.0 

also makes recommendations on how to obtain an appropriate 95% UCL of the unknown population 

mean, ɛ1.  

2.4.1 (1 ï Ŭ)100% UCL of the Mean Based Upon Studentôs t-Statistic 

The widely used well-known Studentôs t-statistic is given by, 
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where x and sx are, respectively, the sample mean and sample standard deviation obtained using the raw 

data. If the data are a random sample from a normal population with mean, ɛ1, and standard deviation, ů1, 

then the distribution of this statistic is the familiar Studentôs t-distribution with (n -1) degrees of freedom 

(df). Let tŬ,n-1 be the upper Ŭ
th
 quantile of the Studentôs t-distribution with (n -1) df. 

 

A (1 ï Ŭ)100% UCL of the population mean, ɛ1, is given by, 

 

                                                           UCL = nstx xnŬ /1, -+  (2-32) 

 

For a normally (when the skewness is about ~0) distributed population, equation (2-32) provides the best 

(optimal) way of computing a UCL of the mean. Equation (2-32) may also be used to compute a UCL of 

the mean based upon very mildly skewed (e.g., |skewness|<0.5) data sets, where the skewness is given by 

equation (2-43). It should be pointed out that even for mildly to moderately skewed data sets (e.g., when 

ů, the Sd of log-transformed data, starts approaching and exceeding 0.5), the UCL given by (2-32) might 

not provide the desired coverage (e.g., = 0.95) to the population mean. This is especially true when the 

sample size is smaller than 20-25 (Singh and Singh (2003)). The situation gets worse (coverage much 

smaller than 0.95) for higher values of the Sd, ů, or its MLE, sy. 

2.4.2 Computation of the UCL of the Mean of a Gamma, G (k, ɗ), Distribution 

In the statistical literature, even though methods exist to compute a UCL of the mean of a gamma 

distribution (Grice and Bain 1980, Wong 1993), those methods have not become popular due to their 

computational complexity. Those approximate and adjusted methods depend upon the chi-square 

distribution and an estimate of the shape parameter, k. As seen above, computation of an MLE of k is 

quite involved, and this works as a deterrent to the use of a gamma distribution-based UCL of the mean. 

However, the computation of a gamma UCL currently should not be a problem due to easy availability of 

personal computers. 

 

Given a random sample, x1, x2, ... , xn , of size n from a gamma, G(k, ɗ), distribution, it can be shown that 

ɗxn /2 follows a chi-square distribution, 
2

2nkɢ , with 2nk degrees of freedom (df). When the shape 

parameter, k, is known, a uniformly most powerful test of size of the null hypothesis, H0: ɛ1 Cs, 

against the alternative hypothesis, H1: ɛ1 < Cs, is to reject H0 if nkŬɢCx nks 2)(/ 2

2< . The 

corresponding (1 ï Ŭ) 100% uniformly most accurate UCL for the mean, ɛ1, is then given by the 

probability statement. 

 

                                                     ŬɛŬɢxnkP nk -=² 1))(2( 1

2

2   (2-33)  

 

Where, 
2

ɡɢdenotes the cumulative percentage point of the chi-square distribution (e.g., Ŭ is the area in the 

left tail). That is, if Y follows
2

ɡɢ , then ŬŬɢYP ɡ =¢ ))(( 2
. In practice, k is not known and needs to be 

estimated from data. A reasonable method is to replace k by its bias-corrected estimate,
*Ĕk , as given by 

equation (2-29). This yields the following approximate (1 ï Ŭ)100% UCL of the mean, ɛ1. 
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It should be pointed out that the UCL given by equation (2-34) is an approximate UCL and there is no 

guarantee that the confidence level of (1 ï Ŭ) will be achieved by this UCL. However, it does provide a 

way of computing a UCL of the mean of a gamma distribution. Simulation studies conducted in Singh, 

Singh, and Iaci (2002b) and in Singh and Singh (2003) suggest that an approximate gamma UCL thus 

obtained provides the specified coverage (95%) as the shape parameter, k, approaches 0.5. Therefore, 

when k Ó 0.5, one can always use the approximate UCL given by equation (2-34) to estimate the EPC 

term. This approximation is good even for smaller (e.g., n = 5) sample sizes as shown in Singh, Singh, 

Iaci (2002b), and in Singh and Singh (2003).  

 

Grice and Bain (1980) computed an adjusted probability level, ɓ (adjusted level of significance), which 

can be used in (2-34) to achieve the specified confidence level of (1 ï Ŭ). For Ŭ = 0.05 (confidence 

vels are given below in Table 2-2 for 

some values of the sample size n. One can use interpolation to obtain an adjusted ɓ for values of n not 

covered in the table. The adjusted (1 ï Ŭ)100% UCL of the gamma mean, ɛ1 = kɗ, is given by the 

following equation.  

 

                                              Adjusted ï UCL = )(Ĕ2 2
Ĕ2

*
* ɓɢxkn

kn
 (2-35) 

 

where ɓ is given in Table 2-1 for Ŭ = 0.05, 0.1, and 0.01. Note that as the sample size, n, becomes large, 

the adjusted probability level, ɓ, approaches the specified level of significance, Ŭ. Except for the 

computation of the MLE of k, equations (2-34) and (2-35) provide simple chi-square-distribution-based 

UCLs of the mean of a gamma distribution. It should also be noted that the UCLs as given by (2-34) and 

(2-35) only depend upon the estimate of the shape parameter, k, and are independent of the scale 

parameter, ɗ, and its ML estimate. Consequently, as expected, it is observed that coverage probabilities 

for the mean associated with these UCLs do not depend upon the values of the scale parameter, ɗ. It 

should also be noted that gamma UCLs do not depend upon the standard deviation of data which gets 

distorted by the presence of outliers. Thus, outliers will have reduced influence on the computation of the 

gamma distribution based upon UCLs of the mean, ɛ1. 

 
Table 2-2. Adjusted Level of Significance, ɓ 

 
 

n 
Ŭ = 0.05 
probability level, ɓ 

Ŭ = 0.1 
probability level, ɓ 

Ŭ = 0.01 
probability level, ɓ 

5 0.0086 0.0432 0.0000 

10 0.0267 0.0724 0.0015 

20 0.0380 0.0866 0.0046 

40 0.0440 0.0934 0.0070 

-- 0.0500 0.1000 0.0100 

2.4.3 (1 ï Ŭ)100% UCL of the Mean Based Upon H-Statistic (H-UCL) 

The one-sided (1 ï Ŭ)*100% UCL for the mean, ɛ1, of a lognormal distribution as derived by Land (1971, 

1975) is given as follows: 

 

                                                UCL = ( )15.0exp 1

2 -++ - nHssy Ŭyy   (2-36) 
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Tables of H-statistic critical values can be found in Land (1975) and also in Gilbert (1987). Theoretically, 

when the population is lognormal, Land (1971) showed that the UCL given by equation (2-36) possesses 

optimal properties and is the uniformly most accurate unbiased confidence limit. However, it is noticed 

that, in practice, the H-statistic-based results can be quite disappointing and misleading, especially when 

the data set consists of outliers, or is a mixture from two or more distributions (Singh, Singh, and 

Engelhardt, 1997, 1999 and Singh, Singh, and Iaci, 2002b). Even a minor increase in the Sd, sy, 

drastically inflates the MVUE of ɛ1 and the associated H-UCL. The presence of low as well as high data 

values increases the Sd, sy, which in turn inflates the H-UCL. Furthermore, it is observed (Singh, Singh, 

Engelhardt, and Nocerino 2002a) that for samples of sizes smaller than 15-25, and for values of ů 

approaching 1.0 and higher (for moderately skewed to highly skewed data sets), the use of H-statistic- 

based UCL results in impractical and unacceptably large UCL values.  

 

Note: ProUCL computes and outputs H-statistic based UCLs for historical reasons. H-statistic often 

results in unstable (both high and low) values of UCL95 as shown in examples 1 and 2.  It is therefore 

recommended to avoid the use of H-statistic based 95% UCLs.  Use of nonparametric methods is 

preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution. 

 

In practice, many data sets follow a lognormal as well as gamma model. However, the population mean 

based upon a lognormal model can be significantly greater (often unrealistically large) than the population 

mean based upon a gamma model. In order to provide the specified 95% coverage for an inflated mean 

based upon a lognormal model, the resulting UCL based upon H-statistic also yield impractical UCL 

values. The use of a gamma model results in practical estimates (e.g., UCL) of the population mean. 

Therefore, for positively skewed data sets, it is recommended to test for a gamma model first. If data 

follow a gamma distribution, then the UCL of the mean should be computed using a gamma distribution. 

The gamma distribution is better suited to model positively skewed environmental data sets. 

2.4.4 (1 ï Ŭ)100% UCL of the Mean Based Upon Modified t-Statistic for Asymmetrical 
Populations 

Chen (1995), Johnson (1978), Kleijnen, Kloppenburg, and Meeuwsen (1986), and Sutton (1993) 

suggested the use of the modified t-statistic for testing the mean of a positively skewed distribution 

(including the lognormal distribution). The (1 ï Ŭ)100% UCL of the mean thus obtained is given by 

 

                                                    UCL = nstnsɛx xnŬx 1,

2

3 )6(Ĕ -++   (2-37) 

 

Where 3
Ĕɛ, an unbiased moment estimate (Kleijnen, Kloppenburg, and Meeuwsen 1986) of the third 

central moment, is given as follows,  
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It should be pointed out that this modification for a skewed distribution does not perform well even for 

mildly to moderately skewed data sets (e.g., when ů starts approaching and exceeding 0.75). Specifically, 

it is observed that the UCL given by equation (2-37) may not provide the desired coverage of the 

population mean, ɛ1, when ů starts approaching and exceeding 0.75 (Singh, Singh, and Iaci, 2002b). This 

is especially true when the sample size is smaller than 20-25. This small sample size requirement 

increases as ů increases. For example, when ů starts approaching and exceeding 1.5, the UCL given by 
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equation (2-37) does not provide the specified coverage (e.g., 95%), even for samples as large as 100. 

Since this method does not require any distributional assumptions, it is a nonparametric method. 

 

 

2.4.5 (1 ï Ŭ)100% UCL of the Mean Based Upon the Central Limit Theorem 

The central limit theorem (CLT) states that the asymptotic distribution, as n approaches infinity, of the 

sample mean,nx , is normally distributed with mean, ɛ1, and variance, ů1
2
/n. More precisely, the sequence 

of random variables given by 
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ɛx
z n

n
/

1-=  (2-39) 

 

has a standard normal limiting distribution. In practice, for large sample sizes, n, the sample mean, x , has 

an approximate normal distribution irrespective of the underlying distribution function. Since the CLT 

method requires no distributional assumptions, this is a nonparametric method. 

 

As noted by Hogg and Craig (1978), if ů1 is replaced by the sample standard deviation, sx, the normal 

approximation for large n is still valid. This leads to the following approximate large sample 

nonparametric  (1 ï Ŭ)100% UCL of the mean, 

 

                                                           UCL = nszx xŬ /+  (2-40) 

 

An often cited and used rule of thumb for a sample size associated with the CLT method is n Ó 30. 

However, this may not be adequate enough if the population is skewed, specifically when ů (Sd of log-

transformed variable) starts exceeding 0.5 (Singh, Singh, Iaci, 2002b). In practice, for skewed data sets, 

even a sample as large as 100 is not large enough to provide adequate coverage to the mean of skewed 

populations (even for mildly skewed populations). A refinement of the CLT approach, which makes an 

adjustment for skewness by Chen (1995), is given as follows.  

2.4.6 (1 ï Ŭ)100% UCL of the Mean Based Upon the Adjusted Central Limit Theorem   
(Adjusted-CLT) 

The ñadjusted-CLTò UCL is obtained if the standard normal quantile, zŬ, in the upper limit of equation (2-

40) is replaced by (Chen, 1995) 
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Thus, the adjusted (1 ï Ŭ)100% UCL for the mean, ɛ1, is given by 

 

                                         UCL = [ ] nsnzkzx xŬŬ )6()21(Ĕ 2
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Here 3
Ĕk , the coefficient of skewness (raw data), is given by 

 

                                               Skewness (raw data) 
3

33
ĔĔ

xsɛk =  (2-43) 

 

where 3
Ĕɛ, an unbiased estimate of the third moment, is given by equation (2-38). This is another large 

sample approximation for the UCL of the mean of skewed distributions. This is a nonparametric method, 

as it does not depend upon any of the distributional assumptions. 

 

As with the modified t-UCL, it is observed that this adjusted-CLT UCL does not provide adequate 

coverage to the population mean when the population is skewed, specifically when ů starts approaching 

and exceeding 0.75 (Singh, Singh, and Iaci, 2002b, and Singh and Singh, 2003). This is especially true 

when the sample size is smaller than 20-25. This small sample size requirement increases as ů increases. 

For example, when ů starts approaching and exceeding 1.5, the UCL given by equation (2-42) does not 

provide the specified coverage (e.g., 95%), even for samples as large as 100. It is noted that UCL as given 

by (2-42) does not provide adequate coverage to the mean of a gamma distribution, especially when k Ò 

1.0 and the sample size is small.  

 

Thus, the UCLs based upon these skewness adjusted methods, such as the Johnsonôs modified t and 

Chenôs adjusted-CLT, do not provide the specified coverage to the population mean for mildly to 

moderately skewed (e.g., ů in (0.5, 1.0)) data sets, even for samples as large as 100 (Singh, Singh, and 

Iaci, 2002b). The coverage of the population mean provided by these UCLs becomes worse (much 

smaller than the specified coverage) for highly skewed data sets. 

2.4.7 Chebyshev (1 ï Ŭ)100% UCL of the Mean Using Sample Mean and Sample sd 

The Chebyshev inequality can be used to obtain a reasonably conservative but stable estimate of the UCL 

of the mean, ɛ1. The two-sided Chebyshev theorem (Hogg and Craig, 1978) states that given a random 

variable, X, with finite mean and standard deviation, ɛ1 and ů1, we have 

 

                                                   
2

111 /11)( kůkɛxůkP -²¢-¢-  (2-44) 

 

This result can be applied on the sample mean, x (with mean, ɛ1 and variance, nů2

1 ), to obtain a 

conservative UCL for the population mean, ɛ1. For example, if the right side of equation (2-44) is equated 

to 0.95, then k = 4.47, and UCL = nůx /47.4 1+  is a conservative 95% upper confidence limit for the 

population mean, ɛ1. Of course, this would require the user to know the value of ů1. The obvious 

modification would be to replace ů1 with the sample standard deviation, sx, but since this is estimated 

from data, the result is no longer guaranteed to be conservative. In general, the following equation can be 

used to obtain a (1 ï Ŭ)100% UCL of the population mean, ɛ1: 

 

                                            UCL = nsŬx x)/1(+                (2-45) 

 

A slight refinement of equation (2-45) is given (suggested by S. Ferson) as follows, 
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                                            UCL = nsŬx x)1)/1(( -+     (2-46) 

 

ProUCL computes the Chebyshev (1 ï Ŭ)100% UCL of the population mean using equation (2-46). This 

UCL is labeled as Chebyshev (Mean, Sd) on the output sheets generated by ProUCL. Since this 

Chebyshev method requires no distributional assumptions about the data set under study, this is a 

nonparametric method. This UCL may be used as an estimate of the upper confidence limit of the 

population mean, ɛ1, when the data are not normal, lognormal, or gamma distributed, especially when Sd, 

ů (or its estimate, sy), starts approaching and exceeding 1.5.  

2.4.8 Chebyshev (1 ï Ŭ)100% UCL of the Mean of a Lognormal Population Using the MVUE 
of the Mean and its Standard Error  

ProUCL uses equation (2-44) on the MVUEs of the lognormal mean and Sd to compute a UCL (denoted 

by (1 ï Ŭ)100% Chebyshev (MVUE)) of the population mean of a lognormal population. In general, if ɛ1 

is an unknown mean, 1Ĕɛ is an estimate, and )Ĕ(Ĕ 11 ɛů  is an estimate of the standard error of 1
Ĕɛ, then the 

following equation,  

 

                                                 UCL = )Ĕ(Ĕ)1)/1((Ĕ
111 ɛůŬɛ -+  (2-47) 

 

yields an approximate (1 ï Ŭ)100% UCL for ɛ1, which should tend to be conservative, but this is not 

assured. For example, for a lognormally distributed data set, a 95% (with Ŭ = 0.05) Chebyshev (MVUE) 

UCL of the mean can be obtained using the following equation,  

 

                                                       UCL = )Ĕ(Ĕ359.4Ĕ
111 ɛůɛ+  (2-48) 

 

Here 1
Ĕɛ and )Ĕ(Ĕ 11 ɛů are given by equations (2-14) and (2-16), respectively. Thus, for lognormally 

distributed data sets, ProUCL also uses equation (2-48) to compute a (1 ï Ŭ)100% Chebyshev (MVUE) 

UCL of the mean. It should be noted that for lognormally distributed data sets, some recommendations to 

compute a 95% UCL of the population mean are summarized later in this chapter. It is recommended that 

for skewed data sets, one should always perform gamma goodness-of-fit (GOF) test. Many times, a 

skewed data set can be modeled both by a lognormal distribution as well as a gamma distribution. 

However, since, the use of a lognormal distribution often yields inflated and unstable upper limits 

including UCLs (Singh, Singh, and Engelhardt, 1997) and UPLs (Gibbons, 1994), it is suggested that if a 

data set follows a gamma distribution (even when data may also be lognormally distributed), then the 

UCL of mean, ɛ1 (and other upper limits) should be computed using a gamma distribution. This is 

especially true when the data are highly skewed with sd of log-transformed data exceeding 1.5, 2.0, and 

the sample size is small such as < 50, < 70, < 100.  

 

On the other hand, it is also noticed that the use of a lognormal distribution based H-UCL (based upon 

Landôs H-statistic) often yields a UCL that is lower than the sample mean. This is especially true for 

mildly skewed to moderately skewed data sets of larger sizes (e.g., >50, 100).  Some examples illustrating 

this issue are given in Chapter 3 of the revised background document for CERCLA sites (EPA, 2002). As 

mentioned before, it is suggested to avoid the use of a lognormal distribution to model environmental data 

sets.  

 

From the Monte-Carlo results discussed in Singh, Singh, and Iaci (2002b), and in Singh and Singh 

(2003), it is observed that for highly skewed gamma distributed data sets (with k < 0.5), the coverage 



 56 

provided by the Chebyshev 95% UCL (given by (2-46)) is smaller than the specified coverage of 0.95. 

This is especially true when the sample size is smaller than 10-20. As expected, for larger samples sizes, 

the coverage provided by the 95% Chebyshev UCL is at least 95%. For larger samples, the Chebyshev 

95% UCL will result in a higher (but stable) UCL of the mean of positively skewed gamma distributions.  

 

It is observed (Singh and Singh 2003) that for moderately skewed to highly skewed lognormally 

distributed data sets (e.g., with ů exceeding 1), 95% Chebyshev MVUE UCL does not provide the 

specified coverage to the population mean. This is true when the sample size is less than 10-50. The 

details and graphical displays can be found in Singh and Singh (2003). For highly skewed (e.g., ů > 2), 

lognormal data sets of sizes, n less than 50-70, the H-UCL results in unstable (impractical values which 

are orders of magnitude higher than other UCLs) unjustifiably large UCL values (Singh et al. 2002a). For 

such highly skewed lognormally distributed data sets of sizes less than 50-70, one may want to use 97.5% 

or 99% Chebyshev MVUE UCL of the mean as an estimate of the EPC term (Singh and Singh 2003). It 

should also be noted that for skewed data sets, the coverage provided by a 95% UCL based upon 

Chebyshev inequality is higher than those based upon the percentile bootstrap method or the BCA 

bootstrap method. Thus for skewed data sets, the Chebyshev inequality-based 95% UCL of the mean 

(samples of all sizes from both lognormal and gamma distributions) performs better than the 95% UCL 

based upon the BCA bootstrap method. Also, when data are lognormally distributed, the coverage 

provided by Chebyshev MVUE UCL (Singh and Singh 2003) is better than the one based upon Hallôs 

bootstrap or bootstrap t method. This is especially true when the sample size starts exceeding 10-15. 

However, for highly skewed data sets of sizes less than 10-15, it is noted that Hallôs bootstrap method 

provides slightly better coverage than the Chebyshev MVUE UCL method. Just as for the gamma 

distribution, it is observed that for lognormally distributed data sets, the coverage provided by Hallôs and 

bootstrap t methods do not increase much with the sample size.  

2.4.9 (1 ï Ŭ)100% UCL of the Mean Using the Jackknife and Bootstrap Methods  

Bootstrap and jackknife methods as discussed by Efron (1982) are nonparametric statistical resampling 

techniques which can be used to reduce the bias of point estimates and construct approximate confidence 

intervals for parameters, such as the population mean. These two methods require no assumptions 

regarding the statistical distribution (e.g., normal, lognormal, or gamma) of the underlying population, 

and can be applied to a variety of situations no matter how complicated. There exists in the literature of 

statistics an extensive array of different bootstrap methods for constructing confidence intervals for the 

population mean, ɛ1. In the ProUCL 4.0 software package, five bootstrap methods have been 

incorporated:  

 
1. The standard bootstrap method,  

 

2. Bootstrap t method (Efron, 1982 and Hall, 1988),  

 

3. Hallôs bootstrap method (Hall, 1992 and Manly, 1997),  

 

4. Simple bootstrap percentile method (Manly, 1997), and  

 

5. Bias-corrected accelerated (BCA) percentile bootstrap method (Efron and Tibshirani, 

1993 and Many, 1997).  

 
Let x1, x2, é , xn be a random sample of size n from a population with an unknown parameter, ɗ 
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(e.g., q = ɛ1), and let qĔ be an estimate of q, which is a function of all n observations. For example, the 

parameter, q, could be the population mean and a reasonable choice for the estimate, qĔ, might be the 

sample mean, x . Another choice for qĔ is the MVUE of the mean of a lognormal population, especially 

when dealing with lognormal data sets.  

2.4.9.1 (1 ï Ŭ)100% UCL of the Mean Based Upon the Jackknife Method 

In the jackknife approach, n estimates of q  are computed by deleting one observation at a time 

(Dudewicz and Misra 1988).  Specifically, for each index, i, denote by )(
Ĕ

iq , the estimate of q (computed 

similarly as qĔ) when the i
th
 observation is omitted from the original sample of size n, and let the 

arithmetic mean of these estimates be given by: 
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qq     (2-49) 

 

A quantity known as the i
th
 "pseudo-value" is defined by 

 

                                                          )(
Ĕ)1(Ĕ ii ɗnɗnJ --=     (2-50) 

 

The jackknife estimator of q is given by the following equation. 
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If the original estimate qĔ is biased, then under certain conditions, part of the bias is removed by the 

jackknife method, and an estimate of the SE of the jackknife estimate, )Ĕ(qJ , is given by 
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Next, consider the t-type statistic given by 
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The t-type statistic given above has an approximate Studentôs t- distribution with n ï 1 degrees of 

freedom, which can be used to derive the following approximate (1ïŬ) 100% UCL for q,   
 

                                        UCL = 
)Ĕ(1,

Ĕ)Ĕ(
qa sq

JntJ -+      (2-54) 
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If the sample size, n, is large, then the upper Ŭ
th
 t-quantile in the above equation can be replaced with the 

corresponding upper Ŭ
th
 standard normal quantile, zŬ. Observe, also, that when qĔ is the sample mean, x , 

then the jackknife estimate is also the sample mean, xxJ =)( , and the estimate of the standard error 

given by equation (2-52) simplifies to sx/n
1/2

, and the UCL in equation (2-54) reduces to the familiar t- 

statistic based UCL given by equation (2-32).  ProUCL uses the jackknife estimate as the sample mean, 

that yields xxJ =)( , which in turn translates equation (2-54) to Studentôs t- UCL given by equation (2-

32).  This method has been included in ProUCL to satisfy the curiosity of those users who do not 

recognize that this jackknife method (with sample mean as the estimator) yields a UCL of the population 

mean identical to the UCL based upon the Studentôs t- statistic as given by equation (2-32).  

 

Note: It is well known that the Jackknife method (with sample mean as an estimator) and Studentôs t- 

method yield identical UCL values.  However, a typical user may be unaware of this fact, and some 

researchers may want to see these issues described and discussed at one place.  It is also noted that it has 

been suggested that a 95% UCL based upon the Jackknife method on the full data set obtained using 

robust ROS may provide adequate coverage (e.g., Shumway, Kayhanian, and Azari (2002)) to the 

population mean of skewed distributions, which of course is not true.  It is well known (Singh, Singh, and 

Nocerino, 2003) that Studentôs t-UCL (and therefore, Jackknife UCL) fails to provide adequate coverage 

to the population mean of moderate to highly skewed distributions. 

2.4.9.2 (1 ï Ŭ)100% UCL of the Mean Based Upon the Standard Bootstrap Method 

In bootstrap resampling methods, repeated samples of size n are drawn with replacement from a given set 

of observations. The process is repeated a large number of times (e.g., 2000 times), and each time an 

estimate, iɗ
Ĕ, of ɗ is computed. The estimates thus obtained are used to compute an estimate of the SE of 

qĔ. A description of the bootstrap method, illustrated by application to the population mean, ɛ1, and the 

sample mean, x , is given as follows.  

 

Step 1. Let (xi1, xi2, ... , xin) represent the i
th
 sample of size n with replacement from the original   

data set, (x1, x2, ..., xn). Then compute the sample mean and denote it by ix .  

 

Step 2. Repeat Step 1 independently N times (e.g., 1000-2000), each time calculating a new  

estimate. Denote these estimates (KM means, RMLE means) by ,, 21 xx é, Nx . The bootstrap  

estimate of the population mean is the arithmetic mean, Bx , of the N estimates ix : i := 1, 2, é,  

N. The bootstrap estimate of the standard error of the estimate, x , is given by: 
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If some parameter, ɗ (say, the population median), other than the mean is of concern with an associated 

estimate (e.g., the sample median), then the same steps described above could be applied with the 

parameter and its estimates used in place of ɛ1 and x . Specifically, the estimate, iɗ
Ĕ, would be computed, 

instead of ix , for each of the N bootstrap samples. The general bootstrap estimate, denoted by Bq , is the 
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arithmetic mean of the N estimates. The difference, qq Ĕ-B , provides an estimate of the bias of the 

estimate, qĔ, and an estimate of the SE of qĔ is given by 
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A (1ïŬ)100% standard bootstrap UCL for q is given by 

 

                                                           UCL = Bz sq a
ĔĔ+  (2-57) 

 

ProUCL computes the standard bootstrap UCL by using the population AM and sample AM, respectively 

given by ɛ1 and x . It is observed that the UCL obtained using the standard bootstrap method is quite 

similar to the UCL obtained using the Studentôs t-statistic as given by equation (2-32), and, as such, does 

not adequately adjust for skewness. For skewed data sets, the coverage provided by standard bootstrap 

UCL is much lower than the specified coverage. 

2.4.9.3  (1 ï Ŭ)100% UCL of the Mean Based Upon the Simple Percentile Bootstrap Method 

Bootstrap resampling of the original data set is used to generate the bootstrap distribution of the unknown 

population mean (Manly 1997). In this method, ix , the sample mean, is computed from the i
th
 resampling 

(i =1,2,..., N) of the original data. Theseix ;, i:=1,2,...,N are arranged in ascending order 

as )()2()1( Nxxx ¢¢¢ 3 . The (1 ï Ŭ)100% UCL of the population mean, µ1, is given by the value that 

exceeds the (1 ï Ŭ)*100% of the generated mean values. The 95% UCL of the mean is the 95
th
 percentile 

of the generated means and is given by: 

 

                                         95% Percentile ï UCL = 95
th
% ix ; i: = 1, 2, ..., N (2-58) 

 

For example, when N = 1000, a simple bootstrap 95% percentile-UCL is given by the 950
th
 ordered mean 

value given byx( )950
. 

Singh and Singh (2003) observed that for skewed data sets, the coverage provided by this simple 

percentile bootstrap method is much lower than the coverage provided by the bootstrap t and Hallôs 

bootstrap methods. It is observed that for skewed (lognormal and gamma) data sets, the BCA bootstrap 

method performs slightly better (in terms of coverage probability) than the simple percentile method.  

2.4.9.4 (1 ï Ŭ)100% UCL of the Mean Based Upon the Bias-Corrected Accelerated (BCA) 
Percentile Bootstrap Method 

The BCA bootstrap method is also a percentile bootstrap method adjusts for bias in the estimate (Efron 

and Tibshirani 1993 and Manly 1997). The performance of this method for skewed distributions (e.g., 

lognormal and gamma) is not well studied. It was conjectured that the BCA method would perform better 

than the various other methods. Singh and Singh (2003) investigated and compared its performance (in 

terms of coverage probabilities) with parametric methods and other bootstrap methods. For skewed data 

sets, this method does represent a slight improvement (in terms of coverage probability) over the simple 
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percentile method. However, this improvement is not adequate enough and yields UCLs with a coverage 

probability much lower than the specified coverage of 0.95. The BCA upper confidence limit of intended 

(1 ï Ŭ)100% coverage is given by the following equation: 

 

                                                BCA ï UCL =  
)( 2Ŭx  (2-59) 

 

Here )( 2Ŭx  is the Ŭ2100
th 

percentile of the distribution of the ix ; i: = 1, 2, é, N. For example, when N = 

2000, 
)( 2Ŭx = (a2N)

th
 ordered statistic of ix ; i: = 1, 2, é, N given by )( 2NŬx .  

Here Ŭ2 is given by the following probability statement: 

 

                                        ù
ú

ø
é
ê

è

+-

+
+F=

-

-

)Ĕ(Ĕ1

Ĕ
Ĕ

)1(

0

)1(

0

02 a

a

a
a

zz

zz
z  (2-60) 

 

Here ū(.) is the standard normal cumulative distribution function and z
(1 ï Ŭ)

 is the 100(1ïŬ)
th 

percentile of 

a standard normal distribution. For example, z
(0.95)

 = 1.645, and ū(1.645) = 0.95. Also in the equation (2-

60), 0
Ĕz  (bias correction) and aĔ (acceleration factor) are given by 
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Here ū
-1
 (.) is the inverse function of a standard normal cumulative distribution function, e.g., ū

-1
 (0.95) 

= 1.645. aĔ is the acceleration factor and is given by the following equation. 
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Here the summation in (2-62) is being carried from i = 1 to i = n, the sample size. x is the sample mean 

based upon all n observation and ix-  is the mean of (n-1) observations without the i
th
 observation, i: = 1, 

2, é, n. 

 

Singh and Singh (2003) observed that for skewed data sets (e.g., gamma and lognormal), the coverage 

provided by this BCA percentile method is much lower than the coverage provided by the bootstrap t and 

Hallôs bootstrap methods. This is especially true when the sample size is small. The BCA method does 

provide an improvement over the simple percentile method and the standard bootstrap method. However, 

bootstrap t and Hallôs bootstrap methods perform better (in terms of coverage probabilities) than the BCA 

method. For skewed data sets, the BCA method also performs better than the modified t-UCL. For gamma 

distributions, the coverage provided by BCA 95% UCL approaches 0.95 as the sample size increases. For 

lognormal distributions, the coverage provided by the BCA 95% UCL is much lower than the specified 

coverage of 0.95. 
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2.4.9.5 (1 ï Ŭ)100% UCL of the Mean Based Upon the Bootstrap t Method 

Another variation of the bootstrap method, called the ñbootstrap tò by Efron (1982), is a nonparametric 

method that uses the bootstrap methodology to estimate quantiles of the pivotal quantity, t statistic, given 

by equation (2-31). Rather than using the quantiles of the familiar Studentôs t-statistic, Hall (1988) 

proposed to compute estimates of the quantiles of the statistic given by equation (2-31) directly from the 

data.  

 

Specifically, in Steps 1 and 2 described above in Section 2.4.9.2, if x is the sample mean computed from 

the original data, and ix  and sx,I are the sample mean and sample standard deviation computed from the i
th
 

resampling of the original data, the N quantities ]/)[( ,ixii sxxnt -=  are computed and sorted, 

yielding ordered quantities, t(1)  ¢ t(2) ¢ é ¢ t(N). The estimate of the lower Ŭ
th
 quantile of the pivotal 

quantity in equation (2-31) is ta,B = t(aN). For example, if N = 1000 bootstrap samples are generated, then 

the 50
th
 ordered value, t(50) , would be the bootstrap estimate of the lower 0.05

th
 quantile of the pivotal 

quantity in equation (2-31). Then a (1ïŬ)100% UCL of the mean based upon the bootstrap t-method is 

given as follows. 

                                                    UCL = 
n

s
tx x

N)(a-  (2-63) 

 

Note the ñ ï ò sign in equation (2-63). ProUCL computes the bootstrap t UCL based upon the quantiles 

obtained using the sample mean, x . It is observed that the UCL based upon the bootstrap t method is 

more conservative than the other UCLs obtained using the Studentôs t, modified-t, adjusted-CLT, and the 

standard bootstrap methods. This is especially true for skewed data sets. This method seems to adjust for 

skewness to some extent. 

 

It is observed that for skewed data sets (e.g., gamma, lognormal), the 95% UCL based upon the bootstrap 

t method performs better than the 95% UCLs based upon the simple percentile and the BCA percentile 

methods (Singh and Singh (2003)). For highly skewed (k < 0.1 or ů > 2.5-3.0) data sets of small sizes 

(e.g., n < 10), the bootstrap t method performs better than other (adjusted gamma UCL, or Chebyshev 

inequality UCL) UCL computation methods. It is noted that for the gamma distribution, the performances 

(coverages provided by the respective UCLs) of the bootstrap t and Hallôs bootstrap methods are very 

similar. It is also noted that for larger samples, these two methods (bootstrap t and Hallôs bootstrap) 

approximately provide the specified 95% coverage to the mean, kɗ, of the gamma distribution. For 

gamma distributed data sets, the coverage provided by a bootstrap t (and Hallôs bootstrap UCL) 95% UCL 

approaches 95% as sample size increases for all values of k considered (k = 0.05-5.0) in Singh and Singh 

(2003). However, it is noted that the coverage provided by these two bootstrap methods is slightly lower 

than 0.95 for samples of smaller sizes. 

 

For lognormally distributed data sets, the coverage provided by the bootstrap t 95% UCL is a little bit 

lower than the coverage provided by the 95% UCL based upon Hallôs bootstrap method. However, it 

should be noted that for lognormally distributed data sets, for samples of all sizes, the coverage provided 

by these two methods (bootstrap t and Hallôs bootstrap) is significantly lower than the specified 0.95 

coverage. This is especially true for moderately skewed to highly skewed (e.g., ů >1.0) lognormally 

distributed data sets. It should be pointed out that the bootstrap t and Hallôs bootstrap methods sometimes 

result in unstable, erratic, and unreasonably inflated UCL values especially in the presence of outliers 

(Efron and Tibshirani, 1993). Therefore, these two methods should be used with caution. If this is the 
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case, and these two methods result in erratic and inflated UCL values, then an appropriate Chebyshev 

inequality based UCL may be used to estimate the EPC term for nonparametric skewed data sets.  

2.4.9.6 (1 ï Ŭ)100% UCL of the Mean Based Upon Hallôs Bootstrap Method 

Hall (1992) proposed a bootstrap method that adjusts for bias as well as skewness. This method has been 

included in UCL guidance document (EPA 2002a). For highly skewed data sets (e.g., LN (5,4)), it 

performs slightly better (higher coverage) than the bootstrap t method. In this method, ix  and sx,i , 

and ik3
Ĕ, the sample mean, the sample standard deviation, and the sample skewness, respectively, are 

computed from the i
th
 resampling (i = 1, 2,..., N) of the original data. Let x  be the sample mean, sx be the 

sample standard deviation, and 3
Ĕk  be the sample skewness (as given by equation (2-43)) computed from 

the original data. The quantities, Wi and Qi, given as follows are computed for each of the N bootstrap 

samples: 

                    ixii sxxW ,)( -= , and )6/(Ĕ27/Ĕ3/Ĕ)( 3

32

3

2

3 nkWkWkWWQ iiiiiiii +++=  

 

The quantities, )( ii WQ , given above are arranged in ascending order. For a specified (1 ï Ŭ) confidence 

coefficient, compute the (ŬN)
th
 ordered value, Ŭq , of the quantities, )( ii WQ . Next, compute 

)( ŬqW using the inverse function, which is given as follows: 
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In equation (2-64), 3
Ĕk  is computed using equation (2-43). Finally, the (1 ï Ŭ)100% UCL of the population 

mean based upon Hallôs bootstrap method (Manly 1997) is given as follows: 

 

                                                     UCL = xŬ sqWx )(-  (2-65) 

 

For gamma distributions, Singh and Singh (2003) observed that the coverage probabilities provided by 

the 95% UCLs based upon bootstrap t and Hallôs bootstrap methods are in close agreement. For larger 

samples, these two methods approximately provide the specified 95% coverage to the population mean, 

kɗ, of a gamma distribution. For smaller sample sizes (from gamma distribution), the coverage provided 

by these two methods is slightly lower than the specified level of 0.95. For both lognormal and gamma 

distributions, these two methods (bootstrap t and Hallôs bootstrap) perform better than the other bootstrap 

methods, namely, the standard bootstrap method, simple percentile, and bootstrap BCA percentile 

methods.  

 

Just like the gamma distribution, for lognormally distributed data sets, it is noted that Hallôs UCL and 

bootstrap t UCL provide similar coverages. However, for highly skewed lognormal data sets, the 

coverages based upon Hallôs method and bootstrap t method are significantly lower than the specified 

coverage, 0.95 (Singh and Singh, 2003). This is true even in samples of larger sizes (e.g., n = 100). For 

lognormal data sets, the coverages provided by Hallôs bootstrap and bootstrap t methods do not increase 

much with the sample size, n. For highly skewed (e.g.,> 2.0) data sets of small sizes (e.g., n < 15), Hallôs 

bootstrap method (and also bootstrap t method) performs better than the Chebyshev UCL, and for larger 
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samples, the Chebyshev UCL performs better than Hallôs bootstrap method. Similar to the bootstrap t 

method, it should be noted that Hallôs bootstrap method sometimes results in unstable, inflated, and 

erratic values, especially in the presence of outliers (Efron and Tibshirani, 1993).  

 

Therefore, these two bootstrap methods should be used with caution. If outliers are present in a data set, 

then a 95% UCL of the mean should be computed using alternative UCL computation methods. 

2.5 Recommendations and Summary 

This section describes the recommendations and summary on the computation of a 95% UCL of the 

unknown population arithmetic mean, ɛ1, of a contaminant data distribution without censoring. These 

recommendations are based upon the findings of Singh, Singh, and Engelhardt (1997, 1999); Singh et al. 

(2002a); Singh, Singh, and Iaci (2002b); Singh and Singh (2003); and Singh et al. (2006).  

Recommendations have been summarized for: 1) normally distributed data sets, 2) gamma distributed 

data sets, 3) lognormally distributed data sets, and 4) data sets which are nonparametric and do not follow 

any of the three distributions included in ProUCL. 

 

For skewed parametric as well as nonparametric data sets, there is no simple solution to compute a 95% 

UCL of the population mean, ɛ1. Singh et al. (2002a), Singh, Singh, and Iaci (2002b), and Singh and 

Singh (2003) noted that the UCLs based upon the skewness adjusted methods, such as the Johnsonôs 

modified t and Chenôs adjusted-CLT, do not provide the specified coverage  (e.g., 95%) to the population 

mean even for mildly to moderately skewed (e.g., ůĔ in the interval [0.5, 1.0)) data sets for samples of 

sizes as large as 100. The coverage of the population mean by these skewness-adjusted UCL gets poorer 

(much smaller than the specified coverage of 0.95) for highly skewed data sets, where the skewness levels 

have been defined earlier as a function of ů or ůĔ(standard deviation of log-transformed data). 

2.5.1 Recommendations to Compute a 95% UCL of the Unknown Population Mean, µ1, Using 
Symmetric and Positively Skewed Data Sets 

Interested users may want to consult graphs as given in Singh and Singh (2003) for a better understanding 

of the summary and recommendations made in this section. 

2.5.1.1 Normally or Approximately Normally Distributed Data Sets 

As expected, for a normal distribution, N (ɛ1, ů1
2
), the Studentôs t-statistic, modified t-statistic, and 

bootstrap t 95% UCL computation methods result in UCLs which provide coverage probabilities close to 

the nominal level, 0.95. Contrary to the general conjecture, the bootstrap BCA method does not perform 

better than the other bootstrap methods (e.g., bootstrap t). Actually, for normally distributed data sets, the 

coverages for the population mean, ɛ1, provided by the UCLs based upon the BCA method and Hallôs 

bootstrap method are lower than the specified 95% coverage. This is especially true when the sample size, 

n is less than 30. For details refer to Singh and Singh (2003). 

 

¶ For normally distributed data sets, a UCL based upon the Studentôs t-statistic, as given by 

equation (2-32), provides the optimal UCL of the population mean. Therefore, for 

normally distributed data sets, one should always use a 95% UCL based upon the 

Studentôs t-statistic.  

 

¶ The 95% UCL of the mean given by equation (2-32) based upon Studentôs t-statistic may 

also be used when the Sd, sy of the log-transformed data is less than 0.5, or when the data 
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kĔ

set approximately follows a normal distribution. A data set is approximately normal when 

the normal Q-Q plot displays a linear pattern (without outliers, breaks and jumps) and the 

resulting correlation coefficient is high (e.g., 0.95 or higher). 

 

¶ Studentôs t-UCL may also be used when the data set is symmetric (but possibly not 

normally distributed). A measure of symmetry (or skewness) is 3
Ĕk , which is given by 

equation (2-43). A value of 3
Ĕk  close to zero (e.g., if absolute value of skewness is 

roughly less than 0.2 or 0.3) suggests approximate symmetry. The approximate symmetry 

of a data distribution can also be judged by looking at histogram of data sets. 

 

 

2.5.1.2 Gamma Distributed Skewed Data Sets 

In practice, many skewed data sets can be modeled both by a lognormal distribution and a gamma 

distribution, especially when the sample size is smaller than 70-100. As is well known, the 95% H-UCL 

of the mean based upon a lognormal model often results in unjustifiably large and impractical 95% UCL 

values. In such cases, a gamma model, G (k, ɗ), may be used to compute a reliable 95% UCL of the 

unknown population mean, ɛ1.  

 

¶ Many skewed data sets follow a lognormal as well as a gamma distribution. It should be 

noted that the population means based upon the two models could differ significantly. 

Lognormal model based upon a highly skewed (e.g.,ůĔ Ó 2.5) data set will have an 
unjustifiably large and impractical population mean, ɛ1, and its associated UCL. The 

gamma distribution is better suited to model positively skewed environmental data sets. 

 

One should always first check if a given skewed data set follows a gamma distribution. If 

a data set does follow a gamma distribution or an approximate gamma distribution, one 

should compute a 95% UCL based upon a gamma distribution. Use of highly skewed 

(e.g., ůĔ Ó 2.5-3.0) lognormal distributions should be avoided. For such highly skewed 

lognormally distributed data sets that cannot be modeled by a gamma or an approximate 

gamma distribution, nonparametric UCL computation methods based upon the 

Chebyshev inequality may be used.  

 

¶ The five bootstrap methods do not perform better than the two gamma UCL computation 

methods. It is noted that the performances (in terms of coverage probabilities) of 

bootstrap t and Hallôs bootstrap methods are very similar. Out of the five bootstrap 

methods, bootstrap t and Hallôs bootstrap methods perform the best (with coverage 

probabilities for population mean closer to the nominal level of 0. 95). This is especially 

true when the skewness is quite high (e.g.,     < 0.1) and the sample size is small (e.g., n < 

10-15). This can be seen from graphs presented in Appendix A of the Technical Guide 

for ProUCL 3.0 (EPA, 2004). 

 

¶ The bootstrap BCA method does not perform better than the Hallôs method or the 
bootstrap t method. The coverage for the population mean, ɛ1, provided by the BCA 
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method is much lower than the specified 95% coverage. This is especially true when the 

skewness is high (e.g., kĔ< 1) and sample size is small (Singh and Singh, 2003). 

 

¶ From the results presented in Singh, Singh, and Iaci (2002b), and in Singh and Singh 

(2003), it is concluded that for data sets which follow a gamma distribution, a 95% UCL 

of the mean should be computed using the adjusted gamma UCL when the shape 

parameter, k, is: 0.1 Ò k < 0.5, and for values of k Ó 0.5, a 95% UCL can be computed 

using an approximate gamma UCL of the mean, ɛ1.  

 

¶ For highly skewed gamma distributed data sets with k < 0.1, the bootstrap t UCL or 

Hallôs bootstrap (Singh and Singh, 2003) may be used when the sample size is smaller 

than 15, and the adjusted gamma UCL should be used when sample size starts 

approaching and exceeding 15. The small sample size requirement increases as skewness 

increases (that is as k decreases, the required sample size, n, increases). 

 

¶ The bootstrap t and Hallôs bootstrap methods should be used with caution as sometimes 

these methods yield erratic, unreasonably inflated, and unstable UCL values, especially in 

the presence of outliers. In the case Hallôs bootstrap and bootstrap t methods yield 

inflated and erratic UCL results, the 95% UCL of the mean should be computed based 

upon the adjusted gamma 95% UCL. ProUCL prints out a warning message associated 

with the recommended use of the UCLs based upon the bootstrap t method or Hallôs 

bootstrap method. 

 
These recommendations for the use of gamma distribution are summarized in Table 2-3. 

 
Table 2-3. Summary Table for the Computation of a 95% UCL of the Unknown Mean, ɛ1, of a Gamma Distribution 

  

kĔ Sample Size, n Recommendation 

kĔ Ó 0.5 For all n Approximate gamma 95% UCL 

0.1 Ò kĔ< 0.5 For all n Adjusted gamma 95% UCL 

kĔ < 0.1 n < 15 
95% UCL based upon bootstrap t 
or Hallôs bootstrap method* 

kĔ < 0.1 n Ó 15 
Adjusted gamma 95% UCL if available, 
otherwise use approximate gamma 95% UCL 

 
* In case bootstrap t or Hallôs bootstrap methods yield erratic, inflated, and unstable UCL values, the UCL 

of the mean should be computed using adjusted gamma UCL. 

 

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most 

appropriate 95% UCL. These recommendations are based upon the results of the simulation studies 

summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003).  For additional insight, the 

user may want to consult a statistician. 
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2.5.1.3 Lognormally Distributed Skewed Data Sets 

For lognormally, LN (ɛ, ů
2
), distributed data sets, the H-statistic-based UCL does provide specified 0.95, 

coverage for the population mean for all values of ů. However, the H-statistic often results in unjustifiably 

large UCL values that do not occur in practice. This is especially true when skewness is high (e.g., ů > 

2.0). The use of a lognormal model unjustifiably accommodates large and impractical values of the mean 

concentration and its UCLs. The problem associated with the use of a lognormal distribution is that the 

population mean, ɛ1, of a lognormal model becomes impractically large for larger values of ů, which in 

turn results in inflated H-UCL of the population mean, ɛ1. Since the population mean of a lognormal 

model becomes too large, none of the other methods except for the H-UCL provides the specified 95% 

coverage for that inflated population mean, ɛ1. This is especially true when the sample size is small and 

skewness is high. For extremely highly skewed data sets (with ů > 2.5-3.0) of smaller sizes (e.g., < 70-

100), the use of a lognormal distribution-based H-UCL should be avoided (e.g., see Singh et al., 2002a 

and Singh and Singh, 2003). Therefore, alternative UCL computation methods such as the use of a 

gamma distribution or use of a UCL based upon nonparametric bootstrap methods or Chebyshev 

inequality-based methods are desirable.  

 

As expected for skewed (e.g., with ů (or ůĔ) Ó 0.5) lognormally distributed data sets, the Studentôs t- 

UCL, modified t-UCL, adjusted-CLT UCL, the standard bootstrap methods all fail to provide the 

specified 0.95 coverage for the unknown population mean for samples of all sizes. Just like the gamma 

distribution, the performances (in terms of coverage probabilities) of bootstrap t and Hallôs bootstrap 

methods are very similar (Singh and Singh, 2003). However, it is noted that the coverage provided by 

Hallôs bootstrap (and also by bootstrap t) is much lower than the specified 95% coverage for the 

population mean, ɛ1, for samples of all sizes of varying skewness. Moreover, the coverages provided by 

Hallôs bootstrap or bootstrap t method do not increase much with the sample size.  

 

Also the coverage provided by the BCA method is much lower than the coverage provided by Hallôs 

method or the bootstrap t method. Thus, the BCA bootstrap method cannot be recommended to compute a 

95% UCL of the mean of a lognormal population. For highly skewed data sets of small sizes (e.g., < 15) 

with ů exceeding 2.5-3.0, even the Chebyshev inequality-based UCLs fail to provide the specified 0.95 

coverage for the population. However, as the sample size increases, the coverages provided by the 

Chebyshev inequality-based UCLs also increase. For such highly skewed data sets (ůĔ > 2.5) of sizes less 

than 10-15, Hallôs bootstrap or bootstrap t methods provide larger coverage than the coverage provided by 

the 99% Chebyshev (MVUE) UCL. Therefore, for highly skewed lognormally distributed data sets of 

small sizes, one may use Hallôs method (bootstrap t UCL) to compute an estimate of the EPC term. The 

small sample size requirement increases with ů. This means that as skewness (ů) increases, the sample 

size, n needed to provide specified coverage (e.g., ~0.95) by Hallôs bootstrap UCL also increases and 

becomes much larger than 20-30.  

 

It should be noted that even a small increase in the Sd, ů, increases the skewness considerably. For 

example, for a lognormal distribution, when ů = 2.5, skewness å 11825.1; and when ů = 3, skewness å 

729555. In practice, the occurrence of such highly skewed data sets (e.g., ů Ó 3) is not very common. 

Nevertheless, these highly skewed data sets can arise occasionally and, therefore, require separate 

attention. Singh et al. (2002a) observed that when the Sd, ů, starts approaching 2.5 (that is, for lognormal 

data, when CV > 22.74 and skewness > 11825.1), even a 99% Chebyshev (MVUE) UCL fails to provide 

the desired 95% coverage for the population mean, ɛ1. This is especially true when the sample size, n, is 

smaller than 30. For such extremely skewed data sets, the larger of the two UCLs: the 99% Chebyshev 

(MVUE) UCL and the nonparametric 99% Chebyshev (Mean, Sd) UCL, may be used as an estimate of the 
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EPC. It is also noted that, as the sample size increases, the H-UCL starts behaving in a stable manner. 

Therefore, depending upon the Sd, ů (actually its MLE ůĔ), for lognormally distributed data sets, one can 

use the H-UCL for samples of larger sizes such as greater than 70-100. This large sample size requirement 

increases as the Sd, ůĔ, increases, as can be seen in Table 2-4. ProUCL can compute an H-UCL for 

samples of sizes up to 1000. For lognormally distributed data sets of smaller sizes, some alternative 

methods to compute a 95% UCL of the population mean, ɛ1, are summarized in Table 2-4. 

 

Furthermore, it is noted that for moderately skewed (e.g., ů > 1- 1.25) data sets of larger sizes (e.g., n > 

100-150), the H-UCL becomes even smaller than the sample mean or Studentôs t-UCL (and various other 

UCLs). It should be pointed out that the large sample behavior of H-UCL has not been investigated 

rigorously. For confirmation purposes (that is H-UCL does provide the 95% coverage for larger samples 

also), it is desirable to conduct such a study for samples of larger sizes. 

 

Since skewness (as defined earlier) is a function of ů (or ůĔ), the recommendations for the computation of 

the UCL of the population mean are also summarized in Table 1-4 for various values of the MLE ůĔ of ů 

and the sample size, n. Here ůĔ is an MLE of ů, and is given by the Sd of log-transformed data given by 

equation (2-2). Note that Table 2-4 is applicable to the computation of a 95% UCL of the population 

mean based upon lognormally distributed data sets without nondetect observations.  

 

Changes in Recommendation Tables in ProUCL 4.00.05 

 
Based upon our recent experience dealing with higly skewed lognormally distributed data sets, the 

developers of ProUCL re-iterate that practical applicabililty of lognormal distribution is questionable as 

its use often leads to unrealistic and unstable estimates (UCLs) of EPC terms. Therefore, use of lognormal 

distribution based Chebyshev (MVUE) UCL should be avoided unless skewness is mild with sd of 

logtranformed data <1.0 - 1.5.  Use of Chebyshev (MVUE) UCL has been replaced by respective 

nonparametric Chebyshev (Mean, Sd) UCL in all decision tables (e.g., Table 2-4) summarized in ProUCL 

Technical Guide and User Guide. Those revised recommendations have also been incorporated in 

ProUCL 4.00.05 sofware.  A revised procedure to compute a 95% UCL for lognormal distribution is 

summarized in the following steps: 

 
Skewed data sets should be first tested for a gamma distribution. For lognormally distributed data sets 

(which can not be modeled by a gamma distribution), the method as summarized in Table 2-4 may be 

used to compute a 95% UCL of the mean.   

 

Due to unstable and erratic behavior of H-UCL, the users are discouraged to use lognormal distribution 

to estimate the EPC terms. ProUCL computes and outputs H-statistic based UCLs for historical reasons 

only. H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples 1 

and 2 below.  It is therefore recommended to avoid the use of H-statistic based 95% UCLs.  Use of 

nonparametric methods is preferred to compute UCL95 for skewed data sets which do not follow a 

gamma distribution. 
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Table 2-4. Summary Table for the Computation of a 95% UCL of the Unknown Mean, µ1, of a Lognormal Population 

 

ůĔ Sample Size, n Recommendation 

ůĔ < 0.5 For all n Studentôs t, modified t, or H-UCL 

0.5 Ò ůĔ < 1.0 For all n H-UCL 

1.0 Ò ůĔ < 1.5 
n < 25 95% Chebyshev (Mean, Sd) UCL 

n Ó 25 H-UCL 

 

1.5 Ò ůĔ < 2.0 

n < 20 99% Chebyshev (Mean, Sd) UCL 

20 Ò n < 50 95% Chebyshev (Mean, Sd) UCL 

n Ó 50 H-UCL 

 

2.0 Ò ůĔ < 2.5 

 

n < 20 99% Chebyshev (Mean, Sd) UCL 

20 Ò n < 50 97.5% Chebyshev (Mean, Sd) UCL 

50 Ò n < 70 95% Chebyshev (Mean, Sd) UCL 

n Ó 70 H-UCL 

2.5 Ò ůĔ < 3.0 

n < 30 99% Chebyshev (Mean, Sd) 

30 Ò n < 70 97.5% Chebyshev (Mean, Sd) UCL 

70 Ò n < 100 95% Chebyshev (Mean, Sd) UCL 

n Ó 100 H-UCL 

 

3.0 Ò ůĔÒ 3.5
** 

 

n < 15 Hallôs bootstrap method* 

15 Ò n < 50 99% Chebyshev(Mean, Sd) 

50 Ò n < 100 97.5% Chebyshev (Mean, Sd) UCL 

100 Ò n < 150 95% Chebyshev (Mean, Sd) UCL 

n Ó 150 H-UCL 

ůĔ > 3.5
** For all n Use nonparametric methods* 

 
* In the case that Hallôs bootstrap method yields an erratic unrealistically large UCL value, UCL of the 

mean may be computed based upon the Chebyshev inequality: Chebyshev (Mean, Sd) UCL 

 

**  For highly skewed data sets with ůĔ exceeding 3.0, 3.5, it is suggested to pre-process the data. It is 

very likely that the data consist of outliers and/or come from multiple populations. The population 

partitioning methods may be used to identify mixture populations present in the data set. For defensible 

conclusions, the decision statistics such as UCL95 should be computed separately for each of the 

identified sub-population.  

 

¶ Specifically, for highly skewed (e.g., 1.5 < ů Ò 2.5) data sets of small sizes (e.g., n Ò 50-

70), the EPC term may be estimated by using a 97.5% or 99% Chebyshev (Mean, Sd) 

UCL of the population mean (or mass). For larger samples (e.g., n > 70), the H-UCL may 

be used to estimate the EPC.  

 

¶ For extremely highly skewed (e.g., ů > 2.5) lognormally distributed data sets, the 

population mean becomes unrealistically large. Therefore, the use of H-UCL should be 

avoided especially when the sample size is less than100. For such highly skewed data 

sets, Hallôs bootstrap UCL may be used when the sample size is less than 10-15 (Singh 

and Singh 2003). The small sample size requirement increases with ůĔ. For example, n = 

10 is considered small when ůĔ = 3.0, and n = 15 is considered small when ůĔ = 3.5. 
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¶ Hallôs bootstrap and bootstrap- t UCL methods should be used with caution as sometimes 

it yields erratic, inflated, and unstable UCL values, especially in the presence of outliers. 

For these highly skewed data sets of size, n (e.g., less than 10-15), in the case that Hallôs 

bootstrap method yields an erratic and inflated UCL value, the 99% Chebyshev (Mean, 

Sd) UCL may be used to estimate the EPC term. ProUCL displays a warning message 

associated with the recommended use of Hallôs bootstrap method. 

 

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most 

appropriate 95% UCL. These recommendations are based upon the results of the simulation studies 

summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003).  For additional insight, the 

user may want to consult a statistician. 

 

Based upon the results of the research conducted to evaluate the appropriateness of applicability of 

lognormal distribution based estimates of EPC term (Singh, et. al., 1997, 1999, 2002, 2003), the 

developers of ProUCL 4.0 (and its upgrades) strongly suggest avoiding the use of lognormal distribution 

to estimate the EPC term. Computations of various lognormal distribution based statistics are available in 

ProUCL 4.00.05 for historical reasons and for the sake of comparison for interested practitioners. For 

highly skewed (e.g., with Sd exceeding, 1.0 ï 1.5) lognormally distributed data sets, the developers re-

iterate to avoid the use of lognormal distribution and UCLs based upon lognormal distribution. Instead, 

the use of nonparametric methods (Efron and Tibshirani, 1993) and Chebyshev (Mean, Sd) UCL is 

recommended to estimate EPC terms. Based upon these observations, the developers have revised 

recommendations incorporated in ProUCL 4.00.05. These changes have been also made in decision tables 

summarized in this revised ProUCL Technical Guide and revised User Guide. A real data set illustrating 

these issues is discussed in the following. 

 

Example1: The data set of size = 55, follows a lognormal distribution.  The observations are 0.083, 4.49, 

0.005, 17.4, 0.588, 10.9, 0.004, 1.76, 2.13, 0.144, 0.112, 0.191, 0.236, 4.15, 0.0338, 3.56, 0.0153, 0.154, 

0.004, 17.3, 0.0942, 76.9, 0.555, 34.1, 2.82, 4.63, 0.037, 73.9, 0.006, 0.004, 32.1, 16.3, 0.006, 79, 8.11, 

24, 0.004, 0.0109, 0.916, 6.28, 0.005, 0.004, 8.95, 6.93, 1.55, 0.124, 26.2, 0.0282, 0.005, 1.04, 0.0076, 

0.182, 1.94, 0.151 and 5.15.  Data is highly skewed with Sd of log-transformed data = 3.21. Use of 

lognormal distribution results in unrealistically large estimates of EPC term as can be seen from the 

ProUCL output given in the following. For example, 97.5% Chebyshev (MVUE) UCL = 268.2, which is 

unrealistically higher than the maximum detected observation, 79. The revised recommendation to 

estimate the EPC term is given by the nonparametic 97.5% Chebyshev (Mean, Sd) UCL = 24.15.  
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Example 2: The data set of size = 33, does not follow a discernable distribution. The observations are 

3.3, 16, 2.2, 1.1, 220, 3.3, 2.2, 3.3, 4.6, 35, 12, 15, 8.4, 28, 5.3, 33, 7.7, 6.3, 4.2, 11, 3.3, 17, 7.6, 2.4, 3.3, 

8.2, 7, 4.8, 3.3, 3.5, 5.3, 4.5, and 4.1. The mean and standard deviation of the logtransformed data are 

1.903 and 1.026 respectively. The figure below shows that the H-UCL is unstable with a low value of 

17.18. 
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2.5.1.4 Nonparametric Distribution-Free Skewed Data Sets without a Discernable Distribution  

¶ The use of gamma and lognormal distributions as discussed here will cover a wide range 

of skewed data distributions. For skewed data sets which are neither gamma nor 

lognormal, one can use a nonparametric Chebyshev UCL or Hallôs bootstrap UCL (for 

small samples) of the mean to estimate the EPC term.  

 

¶ For skewed nonparametric data sets with negative and zero values, use a 95% Chebyshev 

(Mean, Sd) UCL for the population mean, ɛ1. 

 
For all other nonparametric data sets with only positive values, the following procedure may be used to 

estimate the EPC term. 

 

¶ For mildly skewed data sets with ůĔÒ 0.5, one can use Studentôs t-statistic or modified t- 

statistic to compute a 95% UCL of mean, ɛ1. 

 

¶ For nonparametric moderately skewed data sets (e.g., ů or its estimate, ůĔ in the interval 

(0.5, 1]), one may use a 95% Chebyshev (Mean, Sd) UCL of the population mean, ɛ1. 
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¶ For nonparametric moderately to highly skewed data sets (e.g., ůĔ in the interval (1.0, 

2.0]), one may use a 99% Chebyshev (Mean, Sd) UCL or 95% Chebyshev (Mean, Sd) 

UCL of the population mean, µ1, to obtain an estimate of the EPC term. 

 

¶ For highly skewed to extremely highly skewed data sets with ůĔ in the interval (2.0, 3.0], 

one may use Hallôs UCL or the 99% Chebyshev (Mean, Sd) UCL or the 97.5% Chebyshev 

(Mean, Sd) UCL or the 95% Chebyshev (Mean, Sd) UCL to compute the EPC term 

depending upon the size of n.  

 

¶ UCLs computed using extremely skewed nonparametric data sets with ů exceeding 3.0 

provide poor coverage for thr population mean. For such highly skewed data 

distributions, none of the methods considered provide the specified 95% coverage for the 

population mean, ɛ1. The coverages provided by the various methods decrease as ů 

increases. For such data sets of sizes less than 30, a 95% UCL can be computed based 

upon Hallôs bootstrap method or bootstrap t method. Hallôs bootstrap method provides 

highest coverage (but less than 0.95) when the sample size is small. It is noted that the 

coverage for the population mean provided by Hallôs method (and bootstrap t method) 

does not increase much as the sample size, n, increases. However, as the sample size 

increases, coverage provided by the 99% Chebyshev (Mean, Sd) UCL method also 

increases. Therefore, for larger samples, a UCL should be computed based upon the 99% 

Chebyshev (Mean, Sd) method. Large sample size requirement increases as ůĔ increases. 

Recommendations are summarized in Table 2-5. 
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Table 2-5. Summary Table for the Computation of a 95% UCL of the Unknown Mean, µ1, Based Upon a Skewed Data Set 

(with all Positive Values) without a Discernable Distribution, Where ůĔ is the sd of Log-transformed Data 

 

ůĔ Sample Size, n Recommendation 

ůĔ < 0.5 For all n Studentôs t, modified t, or H-UCL 

0.5 Ò ůĔ < 1.0 For all n 95% Chebyshev (Mean, Sd) UCL 

1.0 Ò ůĔ < 1.5 For all n 95% Chebyshev (Mean, Sd) UCL 

1.5 Ò ůĔ < 2.0 
n < 20 99% Chebyshev (Mean, Sd) UCL 

20 Ò n  95% Chebyshev (Mean, Sd) UCL 

2.0 Ò ůĔ < 2.5 

 

n < 10 Hallôs bootstrap method 

10 Ò  n < 20 99% Chebyshev (Mean, Sd) UCL 

20 Ò n < 50 97.5% Chebyshev (Mean, Sd) UCL 

50 Ò n  95% Chebyshev (Mean, Sd) UCL 

2.5 Ò ůĔ < 3.0 

n < 10 Hallôs bootstrap method 

10 Ò n < 30 99% Chebyshev (Mean, Sd) 

30 Ò n < 70 97.5% Chebyshev (Mean, Sd) UCL 

70 Ò n  95% Chebyshev (Mean, Sd) UCL 

 

3.0 Ò ůĔÒ 3.5
**

 

 

n < 15 Hallôs bootstrap method* 

15 Ò n < 50 99% Chebyshev(Mean, Sd) UCL 

50 Ò n < 100 97.5% Chebyshev (Mean, Sd) UCL 

100 Ò n  95% Chebyshev (Mean, Sd) UCL 

ůĔ > 3.5
**

 For all n 99% Chebyshev (Mean, Sd) UCL 

 
*If Hallôs bootstrap method yields an erratic and unstable UCL value (e.g., happens when outliers are 

present), a UCL of the population mean may be computed based upon the 99% Chebyshev (Mean, Sd) 

method.  

 

**  For highly skewed data sets with ůĔ exceeding 3.0, 3.5, it is suggested to pre-process the data. It is 

very likely that the data consist of outliers and/or come from multiple populations. The population 

partitioning methods may be used to identify mixture populations present in the data set. For defensible 

conclusions, the decision statistics such as UCL95 should be computed separately for each of the 

identified sub-population.  

2.5.2 Summary of the Procedure to Compute a 95% UCL of the Unknown Population Mean, 
µ1, Based Upon Full Data Sets without Nondetect Observations 

1. The first step in computing a 95% UCL of a population arithmetic mean, ɛ1, is to perform 

goodness-of-fit tests to test for normality, lognormality, or gamma distribution of the data 

set under study. ProUCL has three methods to test for normality or lognormality: the 

informal graphical test based upon a Q-Q plot, the Lilliefors test, and the Shapiro-Wilk W 

test. ProUCL also has three methods to test for a gamma distribution: the informal 

graphical Q-Q plot based upon gamma quantiles, the Kolmogorov-Smirnov (K-S) EDF 

test, and the Anderson-Darling (A-D) EDF test. 
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ProUCL generates a quantile-quantile (Q-Q) plot to graphically test the normality, 

lognormality, or gamma distribution of the data. There is no substitute for graphical 

displays of a data set. On this graph, a linear pattern (e.g., with high correlation such as 

0.95 or higher) displayed by bulk of data suggests approximate normality, lognormality, 

or gamma distribution. On this graph, points well separated from the majority of data 

may be potential outliers requiring special attention. Also, any visible jumps and breaks 

of significant magnitudes on a Q-Q plot suggest that more than one population may be 

present. In that case, each of the populations should be considered separately. That is, a 

separate EPC term should be computed for each of the populations.  

 
2. It is, therefore, recommended to always use the graphical Q-Q plot as it provides useful 

information about the presence of multiple populations (e.g., site and background data 

mixed together) or outliers. Both graphical Q-Q plot and formal goodness-of-fit tests 

should be used on the same data set before determining the distribution of the data set 

under investigation. A single test statistic such as the Shapiro-Wilk test (A-D test or some 

other GOF test) may lead to the incorrect conclusion that the data are normally (or 

gamma) distributed even when there are more than one population present. Only a 

graphical display, such as an appropriate Q-Q, can provide this kind of important 

information. Obviously, when multiple populations are present, those should be separated 

out and the EPC terms (the UCLs) or other estimates (e.g., BTVs) should be computed 

separately for each of those populations. Therefore, it is strongly recommended not to 

skip the GOF tests option in ProUCL 4.00.05. Since the computation of an appropriate 

UCL depends upon data distribution, it is advisable that the user should take his time 

(instead of blindly using a numerical value of a test statistic in an effort to automate the 

distribution selection process) to determine the data distribution. Both graphical (e.g., Q-

Q plots) and analytical procedures (Shapiro-Wilk test, K-S test) should be used on the 

same data set to determine the most appropriate distribution of the data set under study. 

 

3. After performing the goodness-of-fit test, ProUCL informs the user about the data 

distribution: normal, lognormal, gamma distribution, or a non-discernable distribution. 

 

4. For a normally distributed (or approximately normally distributed) data set, the user is 

advised to use Studentôs t-distribution-based UCL of the mean. Studentôs t-distribution 

(or modified t-statistic) may also be used to compute the EPC term when the data set is 

symmetric (e.g., 3
Ĕk is smaller than 0.2-0.3) or mildly skewed; that is, when ů or ůĔ is 

less than 0.5. 

 

5. For gamma distributed (or approximately gamma distributed) data sets, the user is 

advised to: use the approximate gamma UCL for kĔ Ó 0.5; use the adjusted gamma UCL 

for 0.1 Ò kĔ < 0.5; use the bootstrap t method (or Hallôs method) when kĔ < 0.1 and the 

sample size, n < 15; and use the adjusted gamma UCL (if available) for kĔ < 0.1 and 

sample size, n Ó 15. If the adjusted gamma UCL is not available, then use the 

approximate gamma UCL as an estimate of the EPC term. In the case that the bootstrap t 

method or Hallôs bootstrap method yields an erratic inflated UCL (e.g., when outliers are 

present) result, the UCL should be computed using the adjusted gamma UCL (if 

available) or the approximate gamma UCL.  
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6. For lognormal data sets, ProUCL recommends (as summarized in Table 2-4) a method to 

estimate the EPC term based upon the sample size and standard deviation of the log-

transformed data, ůĔ. ProUCL can compute an H-UCL of the mean for samples of sizes 

up to 1000. Nonparametric UCL computation methods such as the modified t, CLT 

method, adjusted-CLT method, bootstrap and jackknife methods are also included in 

ProUCL. However, it is noted that nonparametric UCLs based upon most of these 

methods do not provide adequate coverage to the population mean for moderately skewed 

to highly skewed data sets (e.g., Singh and Singh, 2003). 

 

Á ProUCL computes and outputs H-statistic based UCLs for historical reasons 

only. H-statistic often results in unstable (both high and low) values of UCL95.  

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.  

Use of nonparametric methods is preferred to compute UCL95 for skewed data 

sets which do not follow a gamma distribution. 

 

7. For data sets, which are not normally, lognormally, or gamma distributed, a 

nonparametric UCL of the mean based upon the Chebyshev inequality is preferred. The 

Chebyshev (Mean, Sd) UCL does not depend upon any distributional assumptions and 

can be used for moderately to highly skewed data sets which do not follow any of the 

three data distributions incorporated in ProUCL.  

 

8. It should be noted that for extremely skewed data sets (e.g., with ůĔ exceeding 3.0), even 

a Chebyshev inequality-based 99% UCL of the mean fails to provide the desired 

coverage (e.g., 0.95) of the population mean. A method to compute the EPC term for 

distribution-free data sets is summarized in Table 2-5. It should be pointed out that in the 

case that Hallôs bootstrap method appears to yield erratic and inflated results (typically 

happens when outliers are present), the 99% Chebyshev UCL may be used as an estimate 

of the EPC term. 

 

9. For highly skewed data sets with ůĔ exceeding 3.0, 3.5, it is suggested to pre-process the 

data. It is very likely that the data consist of outliers and/or come from multiple 

populations. The population partitioning methods may be used to identify mixture 

populations present in the data set. For defensible conclusions, the decision statistics such 

as EPC terms should be computed separately for each of the identified sub-population.  
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Chapter 3 
 

Estimating Background Threshold Values or Establishing Site-
Specific Background Concentrations Using Full Data Sets 

without Nondetect (ND) Observations 

3.1 Introduction 

Often in environmental applications, site-specific background level contaminant concentrations are 

needed to compare site concentrations (e.g., both before and after some remediation activities) with 

background level contaminant concentrations, also called as background statistics or background 

threshold values (BTVs). These BTVs are computed based upon the sampled data collected from the site- 

specific background as determined by all interested parties, including the potentially responsible parties, 

local, and federal government agencies. Many times, intermediate or future remediation decisions at a 

polluted site are made after performing such background versus site comparisons. A site observation 

exceeding a BTV can be viewed as coming from a contaminated area of the site under study. It is, 

therefore, important that these background statistics be computed using appropriate background data sets 

and defensible statistical methods. Some minimum sample size requirements (e.g., sample size >8-10) to 

estimate the BTVs based upon background data sets have been discussed in Chapter 1 of this guidance 

document. Chapter 1 also discusses situations when it may be appropriate to perform point-by-point site 

observations (preferably composite samples) comparisons with BTVs or with some pre-established 

threshold values. Specifically when not more than 4-6 site observations need to be compared individually 

with estimated or pre-established BTVs, one may compare point-by-point site observations with BTVs 

and other threshold values. If more than 8-10 (preferably more) site observations are available, then it is 

preferable to use single sample hypothesis (in case BTVs are pre-established) or two-sample hypothesis 

(in case BTVs need to be estimated using background data) testing approaches to perform site versus 

background comparisons. This chapter describes statistical limits that may be used to estimate the BTVs 

and other not-to-exceed values for full data sets without any nondetect (ND) observations. Statistical 

limits based upon data sets with nondetect observations are discussed in Chapter 5. Chapter 6 discusses 

the various single sample and two-sample hypotheses testing approaches for data sets with and without 

NDs as incorporated in ProUCL 4.0.  

 

It should be pointed out that the availability of background statistics as discussed in this chapter is 

particularly useful when individual site observations from impacted areas of the site (perhaps after some 

remediation activities) are compared with some BTVs to determine if enough remediation (at the 

impacted areas of the site) has been performed yielding remediated site concentrations which are 

comparable to background level concentrations. This method of site versus background comparisons is 

also useful when not enough site data are available to perform two-sample comparisons such as the t-test 

or the nonparametric Wilcoxon Rank Sum (WRS) test. Moreover, in practice, during remediation 

activities, it is desirable to compare each individual site observation (collected during remediation phase) 

with some pre-determined or estimated background level threshold value(s). Sometimes pre-established 

screening levels are used as estimates of background threshold values. However, in practice, these BTVs 

need to be estimated based upon site-specific background (or reference) data sets collected using 

appropriate sampling methods and data quality objectives (DQOs). This chapter describes procedures, 

which can be used to compute relevant background statistics based upon an appropriate background data 

set without any nondetect observations. Methods to estimate the BTVs based upon data sets with NDs are 

described in Chapter 5 of this Technical manual.  
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When enough site and background data are available, it is recommended to use two-sample tests (t-test, 

WRS test, etc.) to perform background versus site comparisons. Parametric and nonparametric procedures 

(hypotheses testing) can be used to compare the measures of central tendencies of the two populations 

(background versus site) when enough detected data are available from the two populations under 

consideration. Hypothesis testing approaches to perform site versus background comparisons are 

discussed in Chapter 6 of this Technical guidance document. 

 

This chapter (and also Chapter 5) deals with the computation of background statistics (BTVs) when it is 

known/assumed that the underlying data set does represent a sample collected from some site-specific 

background area(s). That is, it is assumed a priori that all of the observations (at least most of them) come 

from a single background population. However, since outliers are inevitable in most environmental 

applications, some outliers may also be present in a background data set. These outlying observations 

need to be identified before computing the background statistics as outliers, when present, distort all of 

the statistics of interest (such as background statistics), which in turn may lead to incorrect remediation 

decisions for the site under study. The inclusion (or exclusion) of outliers in a background data set needs 

to be justified before performing other relevant statistical analyses. All interested parties should be 

involved in such decision making to determine the inclusion or exclusion of outliers in a background data 

set. The proper identification of multiple outliers is a complex issue and is beyond the scope of this 

document. A brief description of outlier identification is given in Section 1. A couple of outlier tests as 

incorporated in ProUCL 4.0 are given in Chapter 7 of this Technical document. Some discussions about 

the disposition of outliers are provided in Chapter 3 of the revised Guidance for Comparing Background 

and Chemical Concentrations in Soil for CERCLA Sites (EPA, 2002b). 

 

A more complicated problem arises when the data set under study represents a mixture sample, which is 

inevitable in many environmental applications. In these cases, the data set under study may consist of 

samples from the background areas as well as from various areas of the site under study. In this situation, 

first one has to separate the background observations from other site related observations. After the 

background data set has been properly identified, one can proceed with the computation of background 

statistics as presented later in this chapter. However, separation of background data from a mixture 

sample is not an easy task. Using the population partitioning techniques, statisticians (e.g., see Singh, 

Singh, and Flatman, 1994) have developed some background separation methods from mixture samples. 

However, the topics of population partitioning and the identification of a valid background data set from 

the mixture sample are beyond the scope of ProUCL 4.0 and this guidance document. It requires 

developing a separate chapter, which will deal with the population partitioning methods including the 

identification of a valid background data set from a mixture sample. Throughout this chapter, it is 

assumed that one is dealing with a sample from a single population representing a valid site-related 

background data set. 

 

The first step in establishing site-specific background level contaminant concentrations for site-related 

hazardous analytes is to perform background sampling to collect an appropriate number of samples from 

the designated site-specific background areas, perhaps using the input from experts and personnel familiar 

with the site operations and history. An appropriate DQO process should be followed to collect an 

adequate number of background samples. Once the adequate amount of data has been collected, the next 

step is to determine the data distribution. This is typically done using exploratory graphical tools as well 

as formal goodness-of-fit tests. These tests are described in several environmental documents (EPA 2006, 

ProUCL 2004, and Navy documents 1999, 2002a, 2002b). In addition to graphical displays, ProUCL 4.0 

has goodness-of-fit (GOF) tests for normal, lognormal, and gamma distributions.  
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Once the data distribution of a background data set has been determined, one can use parametric or 

nonparametric statistical methods to compute background statistics. Several upper limits have been 

incorporated in ProUCL 4.0 that may be used as estimated of BTVs and other not-to-exceed values. A 

review of the environmental literature reveals that one or more of the following statistical limits are used 

to compute the background statistics; that is, to determine background level contaminant concentrations, 

BTVs. The BTVs are called upper background cutoff levels. 

 

1. Upper percentiles 

 

2. Upper prediction limits (UPLs) 

 

3. Upper tolerance limits (UTLs) 

 

4. IQR Upper Limit (upper end of the upper whisker in a box and whisker plot) 

 
Depending upon the background data distribution, the background upper limits listed above can be 

computed by using parametric methods based upon probability distributions (e.g., normal, lognormal, or 

gamma) or by using nonparametric (distribution-free) methods. The background limits listed above are 

often used as background threshold values to compare individual site observations with background level 

contamination. Typically, a site observation (possibly based upon composite samples) in exceedance of a 

background threshold value can be considered as coming from a contaminated site area that may have 

been impacted by the site-related activities. In other words, such a site observation may be considered as 

exhibiting some evidence of contamination at the site due to site-related activities. In case of an 

exceedance of the BTV by a site location, some practitioners like to verify the possibility of contaminated 

site location by re-sampling that location, and comparing the sample value with the BTV. 

 

The background threshold values are used when not enough site data (e.g., < 4-6 observations) are 

available to perform traditional two-sample comparisons (e.g., t-test, Wilcoxon Rank Sum test, Gehanôs 

test, etc.) as described in Chapter 6 of this document. In the absence of adequate amount of site data, 

individual point-by-point site observations have to be compared with some BTVs to determine the 

presence or absence of contamination due to site related activities. This method of comparing site versus 

background level contamination is particularly helpful to use after some sort of remediation activities 

have taken place at the site; and the objective is to determine if the remediated site areas have been 

remediated enough to the background level contaminant concentrations. A brief discussion of 

identification and disposition of outliers is considered first. 

3.2 Treatment of Outliers 

While computing reliable background statistics, it is essential that one is dealing with a single population 

representing site background without potentially impacted observations (outliers). Therefore, a brief 

discussion on this topic is presented in this section. As well known, outliers, when present, typically 

represent observations from different populations(s), perhaps contaminated observations from the site 

under study. Outliers distort all of the statistics of interest, including the sample mean, the sample 

standard deviation, and, consequently, the parametric percentiles, and various upper limits such as UPLs, 

UTLs, and UCLs. It is noted that nonparametric upper percentiles are often represented by higher ordered 

statistics such as the largest value or the second largest value. In the case of extreme high observations, 

these higher order statistics may be outlying observations representing contaminated observations from 

the site (e.g., a large Federal Facility) under study. Decisions made based upon outliers or distorted 
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statistics can be incorrect and misleading. Therefore, special attention should be given to such outlying 

observations.  

 

If justified, that is, if some outliers do represent observations from the contaminated areas of the site, then 

those observations should not be included in the computation of BTVs. This decision should be a team 

effort to determine whether or not an identified outlier does represent an observation from the 

contaminated part of the site. Such an outlying observation should not be part of the background data set. 

Specifically, such an observation should not be used in the computation of background statistics. All 

interested parties should be involved in making such decisions. Several classical (EPA, 2006) and robust 

(Singh and Nocerino, 1995) statistical procedures are available to identify multiple outliers. Robust and 

resistant outlier identification procedures are beyond the scope of ProUCL 4.0. In environmental 

applications (EPA, 2006 and Navy, 2002a, 2002b), classical procedures are used to identify outliers. A 

couple of those classical outlier tests are available in ProUCL 4.0. As mentioned before, classical outlier 

procedures suffer from masking effects as they get distorted by the same outlying observations that they 

are supposed to find! It is suggested to use robust and resistant statistical procedures to identify multiple 

outliers. Several robust outlier identification procedures are available in Scout (EPA, 1999) software 

package, which is currently under revision and upgrade. It is recommended to supplement the use of 

classical and robust procedures with graphical procedures such as box plots, quantile-quantile (Q-Q) 

plots.  

 

Note: It should be noted that the methods as incorporated in ProUCL 4.0 can be used on any data set 

(with or without nondetects) with or without the potential outliers. Specifically, it should not be 

misunderstood that ProUCL 4.0 is restricted to be used only on data sets without outliers. It is not a 

requirement to delete or omit the outliers before using estimation, UCL95, and various other limits 

computation methods (e.g., KM (BCA) UCL, MLE) as incorporated in ProUCL 4.0. The fact of the matter 

is that the user should be aware of the fact that the inclusion of a few outliers in the computations of these 

statistics may yield distorted estimates, UCL95, UPLs, UTLs, and various other statistics. Therefore, for 

more accurate and reliable statistics and results, the authors of this Technical Guide recommend that 

whenever justified, the low probability outlying observations (often coming from different population(s)) 

should not be included in the computation of the statistics used in the various decision making processes. 

The statistics (e.g., upper limits) of interest should be computed using the majority of the data set 

representing the dominant population (e.g., an AOC, a background area). The outlying observations 

should be separately investigated to determine the reasons for their occurrences (e.g., errors or 

contaminated locations). It is always a good practice to compute the statistics with and without the 

outliers, and compare the potential impact of outliers on the decision making processes. 

 
Throughout this chapter, x1, x2, ... , xn  represent the background concentrations for a contaminant of 

potential concern (COPC) collected from some site-specific background or reference area. The objective 

is to estimate a BTV based upon this data set. The sample values are arranged in ascending order. The 

resulting ordered sample (called ordered statistics) is denoted by x(1) ¢ x(2)  ¢ ... ¢ x(n). The ordered 

statistics are often used as nonparametric estimates of upper percentiles, upper prediction limits (UPLs), 

and upper tolerance limits (UTLs). Also, let yi = ln (xi); i = 1, 2, ... , n, then y and sy represent the mean 

and standard deviation (sd) of the log-transformed data. Some parametric and nonparametric upper limits 

often used to estimate BTVs are described throughout the rest of this chapter. 
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3.3 Upper p*100% Percentiles as Estimates of Background Threshold      
Values (BTVs) 

Some Navy documents (1999, 2002a, 2002b) suggest the use of the 95
th
 upper percentiles of the 

background distribution as estimates of the background level threshold values (e.g., pages 46, 137 Navy 

2002b). However, explicit parametric formulae for the computation of the 95
th
 percentiles are missing 

from the Navy (e.g., 2002a, 2002b) documents, making it difficult for a typical user to use the 95% 

percentiles as estimates of BTVs. Since these percentiles do represent a feasible method to compute 

background threshold values, (one of the objectives of the present document), for clarification, 

computation of both parametric as well as nonparametric percentiles are briefly described as follows.  

  

In most statistical textbooks (e.g., Hogg and Craig, 1995), the p
th
 (e.g., p = 0.95) sample percentile (of the 

measured sample values) is defined as that value,pxĔ, such that p100% of the background data set lies at 

or below it. The carat sign over xp, indicates that it represents a statistic (an estimate of the p
th
 population 

percentile) computed based upon the sampled data.  

3.3.1 Nonparametric p*100% Percentile 

It is quite simple to compute a nonparametric 95% percentile of a background data set. It should be 

pointed out that such nonparametric sample percentiles (for 0 < p <1) cannot exceed the maximum value 

in a background data set. These nonparametric 95% percentiles may be used when the background data 

(raw or transformed) do not follow a normal or a gamma distribution at some specified (e.g., d = 0.05, 

0.1) level of significance. 

 

It is noted that, the practitioners compute these nonparametric p
th
 percentiles (quantiles) in more than one 

way. Some users compute the p
th
 using the pn

th
 order statistic, which may be a whole number between 1 

and n or a fraction lying between 1 and n. For example, if n = 20, and p = 0.95, then 20*0.95 = 19, thus 

the 19
th
 ordered statistic represents the 95% percentile. If n = 17, and p = 0.95, then 17*0.95= 16.15, thus 

the 16.15
th
 ordered value may be used as an estimate of the BTV. The 16.15

th
 ordered value lies between 

the 16
th
 and the 17

th
 order statistics and can be computed by using simple linear interpolation given by:  

 

 x(16.15) = x(16) + 0.15 (x(17) - x(16) ). (3-1) 

 

It is noted that some other users compute the p
th 

nonparametric percentile by the order statistic given by 

the (pn+0.5) 
th
 order statistic, while others compute the p

th 
nonparametric percentile by the order statistic 

given by the (p*(n+1)) 
th
 order statistic. In any case, if for a given value of p, the resulting number, 

(p*(n+1)) exceeds n, then that p
th
 percentile is estimated by the n

th 
order statistic, that is by the maximum 

value. In ProUCL 4.0, the p
th 

nonparametric percentile is estimated by the (p*(n-1)) 
th
 order statistic. As 

mentioned above, if the number computed in not a whole number, then the percentile is computed using 

the linear interpolation illustrated in equation 3-1. This formula is used on data sets with and without ND 

observations. Different software packages (e.g., SAS, MINITAB, Microsoft Excel) use different formulas 

to compute nonparametric percentiles and as a result yield different values for percentiles. 

 

Note: Earlier versions of ProUCL 4.0 (versions 4.00.01, 02, 03 and 04) used (p*(n+1))
th
 order statistic. 

3.3.2 Normal p*100% Percentile 

The computation of normal upper percentiles has been considered next. First, compute the sample mean, 

x , and standard deviation (sd), s, using a defensible (e.g., outliers, multiple populations, mixture 
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populations are not allowed) background data set without the outliers. For normally distributed data sets, 

the p*100
th
 sample percentile is given by the following statement. 

 pp szxx +=Ĕ  (3-2) 

 

Here zp is the p*100
th
 percentile of a standard normal, N (0,1), distribution, which means that the area 

(under the standard normal curve) to the left of zp is p. If the distributions of the site data and the 

background data are comparable and similar (meaning no contamination due to the site related activities), 

then an observation coming from a population (e.g., site) similar (comparable) to that of the background 

population should lie at or below the p*100% upper percentile, pxĔ, with probability p. Thus, the 95% 

percentile given by the above equation (for p = 0.95 or 0.99) may also be used as an estimate of the 

background threshold value when the background data are normally distributed.  

3.3.3 Lognormal p*100% Percentile 

To compute the p
th
 upper percentile, pxĔ, of a lognormally distributed data set, the sample mean, y , and 

standard deviation (sd), sy, of log-transformed data are computed first using a defensible background data 

set without outliers. For lognormally distributed data sets, the p*100
th
 percentile is given by the following 

statement, 

 

 )exp(Ĕ
pyp zsyx += , (3-3) 

 

where, as before, zp is the upper p*100
th
 percentile of a standard normal, N(0,1), distribution. A 95

th
 

percentile given by the above equation may be used as an estimate of the BTV for a COPC when the 

background data are lognormally distributed.  

3.3.4 Gamma p*100% Percentile 

Since the introduction of a gamma distribution, G (k, q), is relatively new in environmental applications 

(e.g., Singh, Singh, and Iaci 2002), a brief description of the gamma distribution is given first. The 

equations giving the maximum likelihood estimates (MLEs) of the gamma parameters, k (= shape 

parameter) and q (= scale parameter), can be found in Singh, Singh, and Iaci (2002) and also in the 

ProUCL 3.0 Technical Guide (EPA, 2004). A random variable (RV), X (e.g., Aroclor 1254 

concentrations), follows a gamma distribution, G (k,q), with parameters k > 0 and q > 0, if its probability 

density function is given by the following equation: 

 

 

otherwise
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 (3-4) 

 

The mean, variance, and skewness of a gamma distribution are given by: mean = µ = kq, variance = s2
 = 

kq2
, and skewness = k/2 . Note that as k increases, the skewness decreases, and, consequently, a 

gamma distribution starts approaching a normal distribution for larger values of k (e.g., k ² 6 - 8). 

 

Let kĔ and qĔ represent the maximum likelihood estimates (MLEs) of k and q respectively. Note the 

relationship between a chi-square and a gamma distribution. Specifically, the relationship between a 
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gamma RV, X = G (k, q), and a chi-square RV, Y, is given by X = Y * q /2, where Y follows a chi-square 

distribution with 2k degrees of freedom. Thus, the percentiles of a chi-square distribution (as programmed 

in ProUCL) can be used to determine the percentiles of a gamma distribution. In practice, k is replaced by 

its MLE. Thus, once an Ŭ*100% percentile, y(a , of a chi-square distribution with 2k degrees of freedom 

is obtained, the Ŭ*100% percentile for a gamma distribution can be obtained by using the equation: 

 

 xa = ya *q /2 (3-5) 

 

3.3.5 Example 1 

Consider a site-specific background data set associated with a Superfund site. The data set has several 

inorganic contaminants of potential concern, including aluminum, arsenic, chromium, and lead. The 

computation of background statistics obtained using ProUCL 4.0 are summarized in this example. The 

complete data set is given in Appendix 5 of the Guidance for Comparing Background and Chemical 

Concentrations in Soil for CERCLA Sites (EPA, 2002b). 

3.3.5.1 Normal Percentile 

Using the Shapiro-Wilk test as incorporated in ProUCL, it is determined that aluminum follows a normal 

distribution at 5% significance level. This can also be seen from the Q-Q plot as given in Figure 3-1. 

Since the data set follows a normal distribution, a normal 95% upper percentile may be used as an 

estimate of the BTV. The sample mean of aluminum data set is 7789.1667, the standard deviation, s, is 

4263.8969, and z0.95, the upper 95% percentile of a standard normal distribution, is 1.6449. Thus normal 

95% percentile for aluminum is: 

 

95.095.0
Ĕ szxx += = 7789.1667 + 4263.8969 * 1.6449 = 14802.8507 

 

 
 

Figure 3-1. Shapiro-Wilk Normal  Distribution Test for Aluminum  
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3.3.5.2 Lognormal Percentile 

Using ProUCL 4.0, it is determined that chromium concentrations follow a lognormal distribution at 5% 

level of significance. This can also be seen from the chromium Q-Q as given in Figure 3-2. The sample 

mean and standard deviation of the log-transformed data are y = 2.3344, and sy = 0.5678. Thus the 95% 

upper percentile for chromium is given by the following equation: 

 

)exp(Ĕ
95.095.0 zsyx y+= =  exp(2.3344 + 0.5678 * 1.6449) = 26.26868 

 

 
 

Figure 3-2. Shapiro-Wilk Lognormal Distribution Test for Chromiu m 

3.3.5.3 Nonparametric Percentile 

Using ProUCL, it is determined that Lead (Pb) concentrations do not follow any of the known 

distributions as incorporated in ProUCL 4.0. Therefore, an upper nonparametric 95
th
 percentile may be 

used as an estimate of the BTV for lead concentrations. A 95% nonparametric upper percentile is given 

by the 0.95*n
th
 order statistic for n=24,  

 

95% Upper Percentile = x(0.95n) = x(22.8) = x(22) + 0.8(x(23)  - x(22)). 

 

The value for x(22) is  53.3 and  for  x(23) is 98.5. Thus, a 95% Upper Percentile = 53.3 + 0.8 * (98.5 ï 53.3) 

= 89.46.  

3.3.5.4 Gamma Percentile 

Using ProUCL, it is determined that Arsenic (As) concentrations follow a gamma distribution. The 

gamma Q-Q plot displaying Anderson-Darling test statistic is given in Figure 3-3.  
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The bias-corrected MLE for k is 3.6616 and the bias-corrected MLE of q is 0.5867. The 95% percentile 

for a chi-square distribution with degrees of freedom (df) kĔ2  is ya = 14.5362. Using these values, one can 

derive the 95% gamma percentile as follows: 

 

xŬ = yŬ *  q / 2 = (14.5362 * 0.5867) / 2 = 4.2643. 

 

It is noted that arsenic concentrations also follow a lognormal distribution. Therefore, for comparison, 

several upper percentiles are tabulated as follows in Table 3-1. This also includes the normal percentile 

even though arsenic does not follow a normal distribution. 

 

 
 

Figure 3-3. Anderson-Darling Gamma Distribution Test 

 

Table 3-1. 95% Percentiles for Arsenic 

 
Distribution 95% Percentile 

Normal 4.0564 

Gamma 4.2643 

Lognormal 4.3877 

Non-discernable 3.7000 

 

 
The 1989 RCRA document is one of the early EPA guidance documents. The RCRA document talks 

about the use of both 95% UTLs and 95% UPLs to determine the presence or absence of contamination in 

compliance wells. The UPLs or UTLs are computed based upon the background data sets (e.g., upstream 

data, upgradient wells, site-specific background). Compliance well observations (or site data) are then 

compared with the background well (or background data) UTL or UPL. An exceedance in compliance 

well may suggest some evidence of contamination in that well. Similar arguments can be made when 

comparing concentrations of soil samples from an impacted site area with some site-specific background 

concentrations. 
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In 1992, EPA upgraded the 1989 RCRA document and came up with its addendum. This 1992 addendum 

also talks about the use of UTLs and UPLs as estimates of background level threshold values. The 1992 

addendum modifies the formula for 95% UTL as given in the 1989 RCRA document (page 51, Chapter 

4). The multipliers, k (used to compute a 95% UTL), as given in the 1989 document, are meant to provide 

at least 95% coverage. The 1992 addendum states that, in practice, the use of this factor, k, as given in 

Table 2-5 of the 1989 document, provides 98% (and not 95%) coverage. This is especially true when one 

is dealing with samples of small sizes. Thus, the use of factor k (to compute a UTL), as described above, 

may result in more false negatives (larger background statistics), which is not protective of the 

environment and human health. Therefore, a modified multiplier, which is the same as the prediction limit 

multiplier, has been suggested in the 1992 RCRA addendum. In the 1992 addendum, it is stated that this 

modified multiplier will on the average provide the specified coverage (= 95% here).  

 

However, it desirable that these statements about the coverageôs provided by the 95% UTLs and 95% 

UPLs be verified by Monte Carlo simulation experiments. As mentioned before, BTVs are often used to 

make remediation decisions at polluted sites. Therefore, these BTVs should be computed using defensible 

statistical procedures. This section describes the computation of UTLs as well as UPLs. Both parametric 

as well as nonparametric UTL and UPL computation procedures have been summarized in the following 

sections.  

3.4 Upper Tolerance Limits 

For many environmental applications, such as the groundwater monitoring applications, an upper 

tolerance limit (UTL) is often used to provide appropriate coverage for a proportion, p% (e.g., 80%, 90%, 

95%, coverage, etc.) of future observations with confidence coefficient, (1 ï Ŭ). It should be noted that an 

upper tolerance limit with confidence coefficient, (1 ï Ŭ), covering a proportion of p% (p is also called the 

coverage coefficient), observations simply represent a (1 ï Ŭ)100% upper confidence limit of the p
th
 

percentile of the population under study (here the background population). 

3.4.1 Normal Upper Tolerance Limits 

First, compute the sample mean, x , and standard deviation (sd), s, using a defensible (e.g., outliers, 

multiple populations, mixture populations not allowed) background data set without the outliers (e.g., see 

Example 2 below). For normally distributed data sets, an upper (1 ï Ŭ)100% tolerance limit with tolerance 

or coverage coefficient = p (that is providing coverage to at least p100% proportion of observations) is 

given by the following statement. 

 

 UTL = sKx *+  (3-6) 

 

Here, K = K (n, Ŭ, p) is the tolerance factor and depends upon the sample size, n, confidence coefficient = 

(1 ï Ŭ), and the coverage proportion = p. The UTL given by the above equation represents a (1 ï Ŭ)100% 

confidence interval for the p
th
 percentile of the underlying normal distributions. The values of the 

tolerance factor, K, have been tabulated extensively in the various statistical books (e.g., Hahn and 

Meeker 1991). Those K values are based upon non-central t-distributions. Also, some large sample 

approximations (e.g., Natrella, 1963) are available to compute the K values for one-sided tolerance 

intervals (same for both UTLs and lower tolerance limit). The approximate value of K is also a function 

of the sample size, n, coverage coefficient, p, and the confidence coefficient, (1 ï Ŭ). In the ProUCL 4.0 

software package, the values of K for samples of sizes ¢ 30, as given in Hahn and Meeker, have been 

directly programmed. For sample sizes larger than 30, the large sample approximations, as given in 

Natrella (1963), have been used to compute the K values. The Natrellaôs approximation seems to work 
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well for samples of sizes larger than 30 (Hahn and Meeker 1991). The program, ProUCL, seems to work 

well to compute these K values for sample of sizes as large as 5000 (and even larger). 

3.4.2 Lognormal Upper Tolerance Limits 

The procedure to compute UTLs for lognormally distributed data sets is similar to that for normally 

distributed data sets. First, the sample mean,y , and standard deviation (sd), sy, of the log-transformed 

data are computed using a defensible unique background data set without outliers. An upper (1 ï Ŭ)100% 

tolerance limit with tolerance or coverage coefficient = p (that is, providing coverage to at least p100% 

proportion of observations) is given by the following statement. 

 

 UTL = )*exp( ysKy+  (3-7) 

 

Note that, just as for the normal distribution, the UTL given by the above equation represents a  

(1 ï Ŭ)100% confidence interval for the p
th
 percentile of the lognormal distribution. The K factor used to 

compute the lognormal UTL is the same as the one used to compute the normal UTL. It should be noted 

that just as the upper confidence limits (UCLs) for the mean of lognormally distributed populations, the 

UTLs based upon lognormal distributions are typically higher (sometimes unrealistically higher as shown 

in the following example) than other parametric and nonparametric UTLs. The use of a lognormal UTL to 

estimate the BTV should be specifically avoided when skewness is high (e.g., sd of logged data > 1, 1.5) 

and sample size is small (e.g., < 30, 50). 

3.4.3 Gamma Distribution Upper Tolerance Limits 

Positively skewed environmental data can often be modeled by a gamma distribution.  ProUCL software 

has two goodness-of-fit tests (Anderson-Darling test and Kolmogorov-Smirnov test) to test for gamma 

distribution. UTL obtained using normal approximation to the gamma distribution (Krishnamoorthy et. 

al., 2008) has been incorporated in ProUCL 4.00.05. Those approximations are based upon Wilson-

Hilferty - WH (1931) and Hawkins-Wixley - HW (1986) approximations. A brief description of the 

procedure to compute such UTLs is given as follows. 

 

Let x1, x2, é, xn represent a data set of size n from a gamma distribution with shape parameter, k and 

scale parameter ɗ.  

 

¶ According to WH approximation, the transformation, Y = X
1/3   

follows an approximate normal 

distribution. 

¶ According to HW approximation, the transformation, Y = X
1/4 

  follows an approximate normal 

distribution. 

 

y  and sy are the mean and standard deviation of the observations in the transformed scale (Y) 

 

Using the WH approximation, the gamma UTL based upon a sample of size n (in original scale, X), is 

given by: 

 

    UTL = ( )( )3max 0, * yy K s+     (3-8) 

 

Similarly, using the HW approximation, the gamma UTL in original scale is given by: 
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    UTL = ( )
4

* yy K s+      (3-9) 

 

Here K is defined earlier in (3.6) while computing UTL based upon normal distrib ution. 

3.4.4 Nonparametric Upper Tolerance Limits 

The computation of nonparametric UTLs is somewhat messy as it is based upon binomial cumulative 

probabilities and order statistics. Just like parametric UTLs, a nonparametric UTL providing coverage to 

p100% observations with confidence coefficient (CC) (1 ï Ŭ)100% represents an (1 ï Ŭ)100% upper 

confidence limit for the p
th
 percentile of the population under study. Also, the nonparametric UTLs (given 

by order statistics) cannot exactly achieve the specified confidence coefficient, (1 ï Ŭ). In most cases, 

only an approximate confidence coefficient can be achieved by nonparametric UTLs. One has to be 

satisfied with the achievable confidence coefficient, which is as close as possible to the specified CC of  

(1- Ŭ). Thus, an appropriate UTL is chosen which provides coverage for the p
th 

percentile as close as 

possible to the specified confidence coefficient, (1 ï Ŭ). Based upon binomial cumulative probabilities, 

the algorithms to compute nonparametric UTLs have been also incorporated in ProUCL 4.0 software. 

 

It is noted that for simplicity and based upon professional judgment, the 1992 RCRA addendum 

recommends the use of either the largest value or the second largest value for both UPL and UTL. 

However, the use of the largest value as UPL (or UTL) may result in an overestimate, especially when 

there is a possibility of the presence of potential outliers in the background data set. Therefore, to be 

protective of the human health and the environment, it is preferable to use the second largest (or even a 

lower order statistic) data value as a nonparametric UTL or UPL. Whenever, these higher order statistics 

represent potential outliers (e.g., well separated from the majority of the data on a normal Q-Q plot), one 

should avoid their use as estimates of the BTVs. The selection of these higher (e.g., largest, second 

largest) order statistics (as estimates of BTVs) also depends upon the sample size of the background data 

set. Specifically, for smaller data sets, it is likely that the higher order statistics (largest, or the second 

largest) can be chosen to estimate the BTV. As mentioned earlier, in practice, a few high observations 

(outliers) may represent contaminated observations (e.g., well separated from the majority of the data on a 

normal Q-Q plot) and their selection should be avoided as nonparametric estimates of the BTVs.  

 

It is also noted that the largest value is also used as an estimate of the BTV when a 95% UTL (especially 

for lognormal skewed data sets) exceeds the largest value in a data set. Moreover, when a background 

UTL does exceed the maximum value in the background data set, it is quite likely that the maximum 

value may represent an extreme value (perhaps from some impacted site area). The use of maximum 

value can be avoided by using appropriate upper percentiles (e.g., 95%) described earlier as estimates of 

background values.  

 

A brief description of the computation of nonparametric UTLs (confidence intervals for percentiles) now 

follows. For details, the interested readers are referred to David and Nagaraja (2003), Conover (1980), 

and Hahn and Meeker (1991). The binomial distribution is used with the number of trials = the sample 

size, n, and the probability of success = p (the proportion of observations for which coverage is being 

sought). Using the cumulative binomial probabilities, a number, r: 1 ¢ r ¢ n, is chosen such that the 

cumulative binomial probability:  
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)()1( becomes as close as possible to (1 ï Ŭ). Then, the r
th
 order statistic, x(r) is picked as  
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the (1 ï Ŭ)100% UTL providing coverage to p100% of the observations in the sample under study 

(background data set here). This algorithm has been incorporated in ProUCL for samples of sizes up to 

2000. ProUCL 4.0 also prints out the order statistic, the estimate of the UTL, and the associated coverage 

provided (achieved) by that order statistic. For larger samples, one can use the following approximation, 

which has also been incorporated in ProUCL. For n > 2000, a large sample normal approximation to the 

binomial distribution can be used to obtain an upper confidence limit for the p
th
 percentile. The number, r: 

1 ¢ r ¢ n, used to compute the r
th
 order statistics (to estimate the BTV) is obtained using the following 

equation: 

 

 5.0)1()1( +-+= - pnpznpr a  (3-10) 

3.4.5 Example 2: Computation of Upper Tolerance Limits  

Using the background data set used earlier associated with a Superfund site, the computation of the 

various parametric and nonparametric upper tolerance limits have been illustrated in this example. To 

illustrate the differences in the values of the UTLs as a function of the coverage coefficient, p%, UTLs 

have been computed for four (4) different coverage coefficients, p% = 80%, 90%, 95%, and 99%.  

3.4.5.1 Normal Upper Tolerance Limits 

As noted earlier (Figure 3-1), aluminum concentrations follow a normal distribution. Therefore, the 

various normal UTLs with coverage coefficients of 80%, 90%, 95%, and 99% are listed as follows. 

 

95% UTL (80% coverage) = sKx *)80.0,95.0,24(+ = 7789.1667 + 1.331 * 4263.8969 = 13387.663 

95% UTL (90% coverage) = sKx *)90.0,95.0,24(+ = 7789.1667 + 1.853 * 4263.8969 = 15690.168 

95% UTL (95% coverage) = sKx *)95.0,95.0,24(+ = 7789.1667 + 2.309 * 4263.8969 = 17634.505 

95% UTL (99% coverage) = sKx *)99.0,95.0,24(+ = 7789.1667 + 3.181 * 4263.8969 = 21362.623 

3.4.5.2 Lognormal Upper Tolerance Limits 

As noted earlier, chromium background concentrations follow a lognormal distribution. The 95% UTLs 

based upon a lognormal distribution are given as follows. 

 

95% UTL (80% coverage) = )*exp( )80.0,95.0,24( ysKy+  = exp(2.3344 + 1.331 * 5678) = 21.7583 

95% UTL (90% coverage) = )*exp( )90.0,95.0,24( ysKy+ = exp(2.3344 + 1.853 * 5678) = 29.5659 

95% UTL (95% coverage) = )*exp( )95.0,95.0,24( ysKy+ = exp(2.3344 + 2.309 * 5678) = 38.3039 

95% UTL (99% coverage) = )*exp( )99.0,95.0,24( ysKy+ = exp(2.3344 + 3.181 * 5678) = 62.8464 

3.4.5.3 Gamma Upper Tolerance Limits 

As noted earlier, Arsenic background concentrations follow a gamma distribution. The 95% UTLs based 

upon a gamma distribution (using WH and HW approximations) are given as follows. 
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WH - 95% UTL (90% coverage) = 
( )( )

3

24,0.95,0.90
* yy K s+  = (1.2549 + 1.853*0.2155)

3
 = 4.5267 

WH - 95% UTL (95% coverage) = = 
( )( )

3

24,0.95,0.95
* yy K s+  = (1.2549 + 2.309*0.2155)

3
 = 5.3822 

 

HW - 95% UTL (90% coverage) = = 
( )( )

4

24,0.95,0.90
* yy K s+  = (1.1826 + 1.853*0.1518)

4
 = 4.5923 

 

HW - 95% UTL (95% coverage) = = 
( )( )

4

24,0.95,0.95
* yy K s+  = (1.1826 + 2.309*0.1518)

4
 = 5.5244 

 

3.4.5.4 Nonparametric Upper Tolerance Limits 

Earlier, it was determined that the background lead concentrations do not follow any of the known 

distributions as incorporated in ProUCL 4.0. For lead, 95% UTLs based upon binomial cumulative 

probabilities and order statistics are given in Table 3-2. It should be noted that the resulting UTL might 

not achieve the exact specified CC of 0.95.  

 

Following the procedure described earlier, a 95% UTL with coverage coefficient of 80% is represented by 

the 22
nd

 order statistic. The resulting UTL (22
nd

 order statistic) covers about 80% of the observations (that 

is 80% observations are ¢ x(22) ) with a probability (confidence coefficient) of 0.967 (instead of 0.95). A 

95% UTL with a coverage coefficient of 90% is represented by the 23
rd
 order statistic. The resulting UTL 

(23
rd
 order statistic) covers about 90% of the observations (that is 90% observations are ¢ x(23) ) with a 

probability (confidence coefficient) of 0.922 (instead of 0.95). Using order statistics, the actual achieved 

confidence, (1 - a) is often different from the user requested confidence coefficient of 95%. ProUCL 4.0 

selects the order statistic that achieves the confidence coefficient closest to the user specified confidence 

coefficient. 

 
            Table 3-2. Nonparametric Upper Tolerance Limits for Lead 

 

Coverage  Order Statistic Achieved 

Coefficient  (p%) Order Value Confidence (1 ï Ŭ) 

80% x(22) 53.3 96.7% 

90% x(23) 98.5 92.2% 

95% x(24) 109 100% 

99% x(24) 109 100% 

 
Caution: Since nonparametric UTLs are given by order statistics, every effort should be made to make 

sure that the chosen order statistic to estimate the BTV does not represent an outlying observation coming 

from a population other than the background population. 
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3.5 Nonparametric Upper Limit Based Upon Interquartile Range (IQR) ï IQR 
Upper Limit 

Sometimes, an upper limit based upon the IQR of the background data set is used as an estimate of the 

BTV. In this chapter, we denote this limit by the IQR Upper Limit. It is very simple to compute and is 

briefly described below. The simple formula to compute IQR Upper Limit is: 

 

 IQR Upper Limit = Q3+ 1.5* IQR. (3-11) 

 

Here IQR = Q3 ï Q1, the interquartile range, the difference between the third (upper) quartile, Q3, and 

the first (lower) quartile, Q1, of the background data set. The quartiles of a data set are defined in most 

applied statistical books (e.g., Hoaglin, Mosteller and Tukey, 1983). The three quartiles, Q1, Q2, and Q3 

of a data set divide the data set into four (4) equal parts. Note that the second quartile represents the 

median of the data set. Thus, 25% of the data lie at or below Q1, 50% of the data lie at or below Q2 

(median), and 75% of the data lie at or below Q3; therefore, 25% of the data lie above Q3. Just like all 

other limits described in this chapter, individual site observations are compared with the IQR Upper 

Limit. Any site concentration exceeding the background level IQR Upper Limit may be considered 

justification to consider contamination at the site. The computation of IQR Upper Limit has also been 

incorporated in ProUCL 4.0 software package.  

 

Note: The behavior of an IQR-based limit as an estimate of a BTV is not well studied. Therefore, this limit 

should be used with caution to estimate the BTVs or not-to-exceed values. 

3.5.1 Example 3: IQR Upper Limit 

Sometimes, in practice, a nonparametric upper limit based upon the interquartile range (IQR) of the data 

set under study is used as an estimate of the background threshold value. Since lead does not follow any 

of the parametric distributions as incorporated in ProUCL, an upper limit based upon the IQR can be used 

as an estimate of the BTV. This will require the use of the first quartile, Q1, and the third quartile, Q3. 

Here Q1 = 8.7, Q3 = 19, and  

 

IQR = Q3 - Q1 = 10.3 

 

An estimate of the BTV based upon IQR is given as follows. 

 

IQR Upper Limit = Q3 + 1.5 * IQR = 19 + 1.5 * 10.3 = 34.45  

3.6 Upper Prediction Limits 

As mentioned before, both the 1989 RCRA document and its 1992 addendum suggest the use of upper 

prediction limits (UPLs) as estimates of background level threshold values. If the background and site 

contaminant distributions are comparable, then a typical site observation should lie below a 95% UPL 

based upon a background data set with probability 0.95. A site observation exceeding the background 

95% UPL can be considered as providing some evidence of contamination due to site related industrial 

activities. Since a UPL does represent a plausible way of expressing background level contaminant 

concentration, a brief discussion of both parametric as well as nonparametric UTLs is presented in this 

section. 
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3.6.1 Normal Upper Prediction Limit 

The sample mean, x , and the standard deviation (sd), s, are computed first based upon a defensible 

unique (e.g., outliers, multiple populations, mixture populations not allowed) background data set without 

the outliers. For normally distributed data sets, an upper (1 ï Ŭ)100% prediction limit is given by the 

following well known equation: 

 

UPL = )/11(**))1(),1(( nstx n ++ --a  (3-12) 

 

Here ))1(),1(( -- nt a  is a critical value from Studentôs t-distribution with (nï1) degrees of freedom.  

3.6.2 Lognormal Upper Prediction Limit 

An upper (1 ï Ŭ)100% lognormal UPL is similarly given by the following equation: 

 

UPL = ))/11(**exp( ))1(),1(( nsty yn ++ --a  (3-13) 

 

Here ))1(),1(( -- nt a  is a critical value from Studentôs t-distribution with (nï1) degrees of freedom. 

 

3.6.3 Gamma Upper Prediction Limit 

Given a sample, x1, x2, é, xn of size n from a gamma, G(k, q) distribution, approximate (based upon 

WH and HW approximations described earlier in Gamma Tolerance Limit Section),  (1 ï Ŭ)*100%  upper 

prediction limits for a future observation from the same  gamma distribution are given by: 

             Wilson-Hilferty (WH) UPL = 
( )( )( )( )

3

1 , 1
1max 0, * * 1yn

y t s
na- -

å õ
+ +æ ö

ç ÷
 (3-14) 

             Hawkins-Wixley (HW) UPL =   
( )( )( )( )

4

1 , 1
1* * 1yn

y t s
na- -

+ +  (3-15) 

 

Here ))1(),1(( -- nt a  is a critical value from Studentôs t-distribution with (nï1) degrees of freedom.  It should 

be noted that UPLs for the next k > 1 (k future observation) can be obtained similarly and have been 

incorporated in ProUCL 4.00.05. 

3.6.4 Nonparametric Upper Prediction Limit 

As mentioned before, the background data set under consideration should represent a single population, 

and should be free of outlying observations, which may represent data from impacted areas of the site. A 

one-sided nonparametric UPL is simple to compute and is given by the following m
th
 order statistic. One 

can use linear interpolation if the resulting number, m, given below does not represent a whole number (a 

positive integer). 

 

UPL = X(m), where m = (n + 1) * (1 ï Ŭ). (3-16) 
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For example, for a nonparametric data set of size 25, a 90% UPL is desired. Then m = (26*0.90) = 23.4. 

Thus, a 90% nonparametric UPL can be obtained by using the 23
rd
 and the 24

th
 ordered statistics and is 

given by the following equation: 

 

UPL = X(23) + 0.4 * (X(24) - X(23) ) 

 

Similarly, if a nonparametric 95% UPL is desired, then m = 0.95 * (25 + 1) = 24.7, and a 95% UPL can 

be similarly obtained by using linear interpolation between the 24
th
 and 25

th
 order statistics. However, if a 

99% UPL needs to be computed, then m = 0.99 * 26 = 25.74, which exceeds 25, the sample size. 

Therefore, for such cases, the highest order statistic (the largest value) has to be used as the 99% UPL of 

the background data set under study. The largest value(s) should be used with caution (as they may 

represent outliers) to estimate the BTVs. 

3.6.4 Example 4  

The same background data set used earlier has been used in this example to illustrate various UPL 

computations available in ProUCL 4.00.05.  

3.6.4.1 Normal Upper Prediction Limit 

As noted earlier, the aluminum concentrations in our example do follow a normal distribution. A 95% 

UPL for aluminum is given as follows. 

  

UPL = )/11(**))1(),1(( nstx n ++ --a  = 7789.17 + 1.7139 * 4.263.90 * 1.02 = 15247.628 

 

3.6.4.2 Lognormal Upper Prediction Limit 

The chromium background concentrations of Example 1 follow a lognormal distribution. A 95% UPL for 

chromium is given by the following equation. 

  

UPL = ))/11(**exp( ))1(),1(( nsty yn ++ --a = exp(2.3344 + 1.7139 * 0.5678* 1.02) = 27.8738 

 

3.6.4.3 Gamma Upper Prediction Limit 

Background arsenic concentrations of Example 1 follow a gamma distribution. Compuations for 95% 

UPLs for arsenic based upon WH and HW are shown below. ProUCL 4.00.05 generated output showing 

the computation of gamma distribution based UPLs and UTLs is also given in Figure 3-7 in the 

following. 

  

WH approximate UPL = 
( )( )( )( )

3

1 , 1
1* * 1yn

y t s
na- -

+ + = (1.2549 + 1.7139 * 0.2155*1.02)
3
 = 4.3438 

HW approximate UPL = 
( )( )( )( )

4

1 , 1
1* * 1yn

y t s
na- -

+ + = (1.1826 + 1.7139 * 0.0.1518*1.02)
4
 = 4.3958 
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3.6.4.4 Nonparametric Upper Prediction Limit 

A nonparametric UPL can be computed using the following equation: 

 

UPL = X(m), where m = (n + 1) * (1 ï Ŭ). (3-17) 

 

For lead concentrations, with n = 24 and (1 -Ŭ) = 0.95, the corresponding 95% UPL is given by the m
th
 = 

23.75
th
order statistic, which can be computed using simple linear interpolation as follows: 

X(23.75) = X(23) + 0.75(X(24) - X(23) ) = 98.5 + 0.75(10.5) = 106.375. 

 

Note: As mentioned before, nonparametric UPLs (and also UTLs) are typically represented by higher 

order statistics, or by some value in between (based upon linear interpolation) the higher order statistics. 

If those higher order statistics represent contaminated outlying observations, then a value lying between 

the two contaminated observations will also be an outlier. For example for lead, if the two high 

observations: 98.5 and 109 are considered as outliers, then the 95% UPL = 106.375 as computed above 

will also represent an outlier.  

 

Therefore, nonparametric UTLs or UPLs should be used with caution to estimate the BTVs. Every effort 

should be made to identify and separate the outlying observations before computing nonparametric limits 

to estimate the BTVs. 

 

For the comparison sake, the 95% UPLs for aluminum, arsenic, chromium, and lead as produced by 

ProUCL (irrespective of the data distribution) have been summarized in Table 3-3. 
 

 

          Table 3-3. 95% Upper Prediction Limits for Selected Contaminants 

 

 Inorganic Contaminants 

Distribution Aluminum Arsenic Chromium Lead 

Normal 15247.63 4.1764 24.022 69.418 

Lognormal 19245.46 4.6277 27.874 59.784 

non-discernable  16000.00 5.3500 31.625 106.375 

Gamma 

WH 16987 4.345 25.33 61.21 

HW 17405 4.397 25.78 60.54 
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Figure 3-5. Shapiro-Wilk Normal Distribution Test for Lead  

 

 

 
 
Figure 3-6. Shapiro-Wilk Lognormal Distribution Test for Lead  

 

 

 
































































































































































































































