lll. Appendices
B. Hazard/RPF
1. Technical Aspects of Dose-Response Analysis
a. Analysis of Individual Data Sets (July 2001)
i. Summary of July 2001 Analysis

The goal of the statistical methods was to estimate a quantity that
would be proportional to the potency of each chemical. along with
confidence intervals. The data for this study were in the form of dose-
response studies which measured the effect of different concentrations of
OP pesticides on cholinesterase activities in brain, red blood cells, and
plasma. The mean and standard deviation of cholinesterase activity, and
number of animals examined were available for several dosages in each
data set. Females and males were analyzed separately in each study.
Studies were nested: for each chemical there were several groups of
studies, each with a different MRID; within MRID, one or more studies
were conducted, each with measurements taken for several durations of
exposure. It is possible that potency increases to an asymptotic value as
exposure duration increases. Studies with the same MRID were
conducted in the same laboratory. Thus several steps were required to
analyze the collection of data sets for each compartment x sex
combination for each OP pesticide:

1) Adequately model the relationship between dose and cholinesterase
activity for each individual study, and estimate the absolute potency for
that study.

2) Determine which exposure durations are likely to be long enough that
potencies are close to the steady-state value

3) Combine potency estimates within MRID, resulting in a single estimate
for each MRID, with standard error.

4) Combine potency estimates across MRIDs, resulting in a single
potency estimate for the chemical x compartment x sex combination

5) Compute the relative potency by dividing all the potency measures
within sex and compartment by that of the index compound, and
estimate the standard error of the result.

6) Compute BMD and BMDLs for each data set for the index compound,
and combine the estimates using the same methods as for potency.
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The following sections describe each of these steps in greater detail.
ii. Dose-Response Modeling (July 2001)

The cumulative dose-response assessment for this analysis is based
on the Relative Potency Factor (RPF) methodology (U.S. EPA, 2001).
The RPF approach assumes that the dose-response for a combination of
exposures, at least for relatively low levels of exposure, are dose-additive.
That is, the response y for a combination of exposures D, would be :

y= fﬁz mDi;,Bﬁ Eqn I1.B.1-1

where m; is the absolute potency of the i"" exposure, and Sis a vector of
parameters of the dose-response function whose values are the same for
all chemicals. In practice, we select one index chemical, (call it ), and
express all potencies as ratios to that of the index chemical; R, =m/m,.
Then the expected response y for a combination of exposures D, would
be:

[ [
y = fErnl Z RD, ;ﬁH Eqn 1I.B.1-2

The response is the same as it would be if a dose of the index compound
equal to 2 R D, had been given. Furthermore, any combination of

|
dosages that give the same overall weighted sum should result in the

same response. For example, suppose the following potencies apply to
four chemicals:

Chemical Potency (mg/kg/day)™ (m)) Relative Potency (R))
A 0.346 0.309
B 0.0082 0.0073
C 1.21 1.08

D [index] 1.12 1.00
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Suppose two sets of doses:

Chemical Set 1 Set 2
A 0.0137 0.00324
B 1.17 0.00162
C 0.0391 0.0486
D 0.0391 0.0405
1.26 0.094
2 D
0.094 0.094
> RD

Even though the two sets of doses are very different, and result in
quite different total doses (1.26 mg/kg/day in set 1, 0.094 mg/kg/day in set
2), the expected responses are identical. If BMDL, is the lower confidence
limit for a specified response (the benchmark response, BMR, in this case,
a 10% reduction in cholinesterase activity) for the index chemical, then the
response to the combination of exposures represented by the D; is likely to

be smaller than the BMR if 3 R D, is smaller than BMDL,

In this analysis, the dose-response function had to accommodate two
important features of the data. First, since the results of multiple studies,
perhaps carried out in different laboratories and at different times, and
even sometimes reporting AChE activities in different units, it seemed
prudent to express activity at a given dosage as a fraction of control
activity. Implicit in this formulation is the idea that the among-data-set
component of variability follows a multiplicative error distribution. Second,
it was observed that, as doses increased, AChE activity in quite a few data
sets approached a lower non-zero asymptote. This asymptote varied
among data sets, chemicals, and compartments. These two properties of
the data were accommodated by fitting the model:

y=B+ (A-B)e™ Eqgn 1I.B.1-3

where A is the background level of cholinesterase activity, and B is the
limit of AChE activity for large doses. In practice, in some cases, it was
not possible to estimate all three parameters for a data set, or this model
failed to adequately fit the data. In these cases, B was often set to 0 and
higher doses were dropped from consideration, as will be described below
in more detail. To force all parameter estimates to be non-negative, what
was actually estimated in each case was the natural logarithm of the
parameter. So, for example, the parameters estimated were IA, 1B, and
Im, with A = ', for example. Standard errors of the log-parameters
reported by the statistical software were transformed using the delta
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method to be on the appropriate scale. Parameters for this model for
each data set were estimated using generalized nonlinear least squares
(GNLS). GNLS was selected because it does not require distributional
assumptions about the individual data (which could not be checked, since
only summary statistics were available), unlike maximum likelihood (ML)
estimation, and it is more robust than ML (Davidian and Giltinan, 1995, pp.
31, 39, 59). GNLS is an extension of weighted nonlinear least squares. In
weighted nonlinear least squares, the parameter estimates are the values
for the components of £ (that is, in this case, the vector [A, B, m]’) that
2
minimize the weighted sum of squares SS = z W, (yi - f (DOSQ ;,6’)) ,
where y; is the observed activity, f() is the function described above in eq.
I-3, and the weights w, are already known and are proportional to the
reciprocal of the variance. In GNLS, the weights are taken to be a known
function of the mean. In the OP data for this analysis, the variance among
observations within dose groups is approximately proportional to the
square of the mean of the group (see fig [1]), so regression weights based
on the square of the estimated mean were used to improve the efficiency
of the estimates over what would be obtained with unweighted regression.

Goodness of fit of each fitted model to the corresponding data was
guantified through a global test of goodness-of-fit, specifically the Pearson
chi-squared statistic, through visual inspection of graphs, and through
examining tables of standardized residuals. The Pearson chi-squared
statistic is X? = Z (yi - f(Dos;q:[?))2 /(é2 /ni), where i indexes dose groups.

If the model is true, then X? will be distributed (approximately) as Chi-
squared with degrees of freedom equal to the number of dose groups
minus the number of parameters estimated.

The process for getting the final parameter estimates for a data set
was as follows:

1) Estimate A, B, and m using GNLS for all dose groups in the dataset.

2) If the P-value for the X? statistic was greater than 0.05, then the result
is the estimate used. Otherwise (that is, if the P-value was less than
0.05, or no estimates resulted because the model did not converge),
set B to zero, and try again with all the data.

3) If the P-value is still less than 0.05, or there is no model fit at all, then
sequentially drop the remaining highest dose and refit the model with B
set to zero until either the P-value exceeds 0.05, or there are only
three doses remaining.
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iii. ldentifying Steady State

The sets of data for each chemical, sex, and compartment included a
range of exposure durations. To determine which data sets had a
sufficiently long exposure duration that potency was no longer changing
with time, we regressed the estimated potency against exposure duration,
weighting observations by the reciprocal of the squared estimated
standard errors. The data for the shortest remaining exposure duration in
the data set was repeatedly removed until a data set was derived in which
the slope of potency versus time was not significant (that is, the P-value
exceeded 0.05). In any case, the process was stopped when only three
distinct durations remained. After a first pass through the data, a single
duration was identified such that exposures exceeding that duration rarely
showed a significant increase with time; all exposures less than that
duration were removed from further consideration.

iv. Combining Potency Estimates and Computing Relative Potencies

Potency estimates were nested in two levels for each chemical x sex x
compartment: generally several data sets, representing a range of
exposure durations and some duplication within each MRID, and several
MRIDs. Since the data sets representing exposure durations at which
steady state had not been achieved were deleted from the study before
this stage, it was reasonable to model the individual potency estimates as
coming from a nested hierarchical sampling scheme:

1) First, assume there is an overall mean potency for a given chemical x
sex x compartment combination; the procedure described below is
designed to estimate this quantity, which will be used for computing the
relative potency.

2) Because of small differences in husbandry, analytic procedures, and
other laboratory procedures, the potency realized in MRIDs may vary
among MRIDs. Model this as sampling a MRID-specific potency from

a distribution centered about the overall mean potency, with variance

2
UMRID '

3) Again, because of differences among the studies that contributed the
data sets within a given MRID, potencies realized within a given data
set may vary among data sets within an MRID. Model this as sampling
a data-set- specific potency from a distribution centered about the

MRID-specific potency, with variance O [2,3.

4) Finally, because a study is based on only a finite sample of animals,
we can only estimate the data-set specific potency, with an error

variance of g 2.
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Our final goal is to estimate the overall mean potency for the chemical
X sex x compartment combination, along with a standard error that reflects
the uncertainty in the estimate due both to errors in estimation and the
variances among the MRID-specific and data-set-specific potencies.
Furthermore, once each such overall mean potency is computed and an
index chemical selected, we want to compute the potency for each
chemical relative to the index chemical in each sex x compartment
combination.

To facilitate this latter computation, all operations were conducted with
logarithms of the potencies. Thus, in the end, the relative potencies were
computed as €°9™"°9™ where “logm” is the logarithm of the potency for the
chemical for which the relative potency is being calculated, and “logml” is
the logarithm of the potency of the index chemical. The uncertainty of the
relative potency is then expressed as a confidence interval, obtained by
exponentiating the endpoints of the confidence interval for the difference

“logm - logmlI”, whose standard error is yan*Sgm , where seé is the

square of the standard error for parameter Q, here one of the log
potencies.

The estimates of logm were constructed in two stages: first, estimates
of data-set-specific logms were combined, using their estimated standard
errors, to yield MRID-specific estimates of logm and standard errors; then,
via the same process, the MRID-specific estimates of logm were
combined to yield overall mean estimates. The procedure used to
combine the estimates is known as the “global two-stage method”
(Davidian and Giltinan, 1995, pp 138ff). The logic of the global two-stage
method is simple, and is illustrated here for estimating a MRID-specific
estimate of logm. Since we have individual estimates of logm for each
data set, it is natural to estimate a MRID-specific estimate as the mean of
the individual data-set-specific estimates. However, if we estimate the
standard error in the usual way, based on the standard deviation of the
data-set-specific estimates, it turns out that the resulting estimates of the
standard error are biased upwards, because the procedure described here
ignores the uncertainty of the individual estimates. The global two-stage
method corrects this bias by explicitly taking into account that uncertainty.

v. Estimating BMDs and BMDLs

Benchmark doses were estimated for a 10% reduction in activity from
background. That is, the benchmark dose is the value D such that:

01= %\{A—[B+(A—B)e‘mD]} Eqn 111.B.1-4
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which is:

D= —iln O9A- B@ Eqn 1I.B.1-5
" "m0 A-B an ke

The BMDL was based on the lower 95% confidence limit on the estimate
of the BMD. The confidence limit was computed from the estimated
standard error of the reciprocal of the BMD estimate, because simulations
(described in the next subsection), indicated that such confidence limits
came closer in practice to the theoretical coverage than did limits based
on standard errors computed on the original scale or on the logarithm
scale. That is, the lower 95% confidence limit was computed as:

1

- , where BMDinv is the reciprocal of the BMD estimate:
BMDinv + 1645se,,,5:., P

BMDinv = M- 4(p),

|n§i§
09A-B

where [is the vector of parameters, [A, B, m]’, and seg,y;,, iS its
estimated standard error, computed as

Uyl Uag U
SeBMDinv = D@D ZDQD’
08B0 08B0

where 3 is the estimated covariance matrix for the parameters, and

%,é is the gradient of g() evaluated at the parameter estimates.

vi. Simulations to Support the BMDL Computations
1) Simulation Methods
The performance of the statistical methods used in OPCumRisk, as
well as the behavior of the estimation process, was checked by
simulation. The simulation process was as follows:
@ Generate simulated data sets
a. For a set of values of A, B, and m, different levels of
maximum inhibition observed (that is, given A, B, and m, pick

the dose that yields the specified maximum level of
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inhibition), and particular dose regimen, compute mean
cholinesterase activity levels (M) using:

h(dose) = B + (A - B) e™dose

. Compute the standard deviation of data from each dose (0)

by:
O(dose) = CV * |u(dose)/100.

For each of 500 replicate data sets, sample means from a
normal random number generator with mean given as in (a)
and standard deviation given as oA (Sample Size). Sample
standard deviations by generating Chi-squared random
numbers with degrees of freedom equal to (Sample Size - 1)
using a Chi-squared random number generator, then
multiplying by the square of the required standard deviation,
dividing by Sample Size, and taking the square root.

. The parameter values used for the simulation were based on

values observed in a pilot sample of studies, and are given
in the table below:

level of A:

2000

levels of B (B/A):

0, 500, 1000 (0, 0.25, 0.5)

levels of m:

0.03, 0.20, 1.0, 5.0

Highest dose selected to give ActMaxF=(0.5, 0.85, 0.95)
activity at highest dose = A - (1 -

ActMaxF)*(A - B)

Dose Regimens (fractions of highest | {0, 0.05, 0.20, 1.0}, and

dose):

{0, 0.01, 0.067, 0.3, 1.0}

CV:

20%, 40%

Sample Sizes:

6, 10

A total of 216 unique combinations of parameter values were
simulated, with each represented by 500 simulated data
sets, for a total of 108,000 different simulated data sets
available for parameter estimation.

@ Loop through the simulated data sets:

a. Attempt to fit a model, estimating B, to all data points.
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b. If the P-value for the Pearson goodness-of-fit chi-square
was less than 0.05, or the model did not converge, try to
fit a model with B set to 0.

c. Repeat step (b), dropping the high dose group with each
iteration, until the Pearson chi-square is greater than
0.05, or only three doses remain.

d. Record parameter estimates, the covariances of the
estimates, the estimated benchmark dose for a 10%
reduction of activity, and 95% lower confidence limits
based on standard errors for (i) BMD computed on the
original dose scale, (ii) the natural logarithm of BMD, and
(iii) 1/BMD.

® Summarize the simulation results. For each combination of
parameter values, collect:

a. The bias [mean(m) - true(m)] and relative bias [(mean(m)
- true(m))/true(m)] of the estimate of m.

b. The proportion of each of the approaches for computing
confidence limits in which the calculated limit is less than
the true BMD. The true BMD is computed from the
values of A, B and m from which the data were
generated.

c. Analyze the simulation results to examine relationships
between parameter values and levels of bias or BMD
coverage, and to determine which of the approaches to
computing the BMDL comes closest to providing the
nominal 95% coverage. The analysis is based largely on
the use of regression trees (Breiman et al., 1984) as
implemented in the Rpart package version 3.0.1 for R
version 1.3.0.

The simulations showed that the bias on the absolute potency
estimate in an individual data set depends upon the true value of B,
and on the degree of cholinesterase inhibition at the high dose. Three
different levels of B were considered in the simulations: 50% of
background, 25% of background, and 0. Note that here, B refers to the
value of the dose-response model used to generate the data, NOT the
value estimated by fitting the data. Figure 2 shows that, if B was 50%
of background, then m was underestimated by about 28%. None of
the other factors in the simulation was systematically associated with
variation around this level. If B was a smaller fraction of background,
either 0 or 25% of background, then the bias depended upon how

[1.B.1 Page 9



much of the dose-response curve was captured in the individual
dataset. If the cholinesterase activity at a high dose level was at least
85% of the estimated B, then on average absolute potency was over
estimated by about 3%. If the cholinesterase activity at the high dose
level was only 50% of the estimated B, then again, the degree of bias
depended upon the true value of B. For example, if the true value of B
was 25% of background, then the absolute potency was overestimated
by around 11%. When B was 0, potency was overestimated by over
50%.

If the true value of B was known for a given dataset, the degree to
which the estimate of absolute potency for that data set is likely to be
biased could be evaluated, since both conditions that influence bias in
this simulation depended upon the true value of B. However, B is
unknown for real data sets. To try to evaluate the magnitude of bias in
the estimates of absolute potency that might be expected, we have
estimated B/A for each chemical x sex x compartment combination by
combining estimates of B/A from data sets in those compartments
which were adequately fit by the full model (that is, while estimating B).
Also, the ratio of the model-predicted activity at the highest dose
actually used in the fitting to the predicted control activity was
computed for each data set (using predicted values smooths out some
of the statistical fluctuations). That ratio was used to estimate
ActMaxF for each data set. The degree to which potency estimates
might be biased by cross-tabulating the estimate of B/A and the
estimate of ActMaxF can be evaluated. Although the simulation was
run at discrete values of B/A and ActMaxF, of course the real data are
distributed continuously across the possible ranges of these two
variables. To do the cross-tabulation, both variables were broken at
the midpoints between discrete points used in the simulation: B/A at
0.125 and 0.375, and ActMaxF at 0.675. Altogether, B could be
estimated for 1135 data sets. The breakdown by B/A and ActMaxF
and the of the bias in the absolute potency estimate the simulations
predict would be operative if every dataset in the corresponding group
of the table had values of B/A and ActMaxF at the corresponding
simulation value is:
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ActMaxF
B/A <0.675 > 0.675
73 (6.4%) 117 (10.3%)
<0.125
bias: 50% bias: 3%
199 (17.5%) 382 (33.7%)
0.125 < B/A <0.375
bias: 11% bias: 3%
139 (12.2%) 225 (19.8%)
0.375<B/A <1
bias: -30% bias: -30%

About 61.5% of these data sets fall into the 3% or 11% bias
groupings, while about 32% of the data sets fall into groupings where
the simulations predict that absolute potency would be underestimated
by about 30%.

Two complications in the calculation of the relative potency factors
need to be considered for a total evaluation of bias. First, since the
RPFs are based on average absolute potencies, data sets with both
high and low values of ActMaxF would be combined to get an overall
average. This should mean that bias in the overall average potency
should fall somewhere between that of the individual data sets.
Secondly, the denominator of the RPF, the absolute potency of
methamidophos, itself must have some bias. This has the effect of
reducing the overall bias of the RPF of chemicals whose absolute
potencies were overestimated, and increasing the bias of the RPF of
chemicals whose absolute potencies were underestimated. In fact, it is
likely this is a small effect, since, in the RBC compartment in males,
the ratio B/A is about 0.14, so the bias in its absolute potency would
range between 3% and 11% based on the simulation.

It should be clear that the overall bias of the relative potency
estimates that is due to the estimation procedure is likely to be
relatively small. However, this whole analysis should be taken as
suggestive, rather than determinative, of the levels of bias likely to
exist in the estimates of absolute potency. The real data sets have a
range of dose-placements and sample sizes, while the simulations,
while based on the distribution seen in the data, used a much smaller
range. We have estimated B/A, but many data sets do not allow B to
be estimated. By dropping those data sets, we may have biased the
estimate of B. Finally, this is not a very quantitative analysis of any
bias that might result from combining data sets.
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2) Summary of Simulation Results

@ Bias of Potency Estimates (Figure 2). The primary determinants
of the relative bias in potency estimates is the value of B and
the activity at the highest dose (ActMax). In models with B =
1000 (that is, B is half of A), the potency is underestimated by
about 28%. In models with smaller B, if doses are large enough
that the activity at the highest dose is close to B, the bias is
about 3% of the true value. The largest bias, around 54%,
occurs in models with B=0, and where the activity at the highest
dose is half the background.

@ Coverage of Nominal 95% Confidence Interval (Figure 3). In
general, confidence limits for the BMD in individual data sets
have lower than their nominal coverage; that is, the BMDL is too
high. Only if B=0, where the average coverage is about 97% or,
for larger B, the activity at the highest dose is only half way to
the horizontal asymptote, where the average coverage is about
93%, are coverages close to nominal.

Vil. Software

To facilitate modeling the large number of datasets evaluated in this
study, special purpose software was written using version 1.2.1 of the
open source statistical programming language R, (lhaka and Gentleman,
1996; http://cran.r-project.org ). A graphical user interface using the tcltk
package for R was constructed to facilitate all phases of the analysis.
Model parameters and their standard errors were estimated using the
function gnls in the R package nime (version 3.1-10; see Pinheiro and
Bates, 2000).

viii.  Conclusion (July 2001)

The present approach to determining relative potency has several
advantages. As opposed to another method, such as maximum-
likelihood, the generalized least squares method used here for estimation
of the parameters of the individual dose-response curves is generally
more robust to misspecified data distributions which is important since
actual data distributions were not directly available for checking. A novel
aspect of this analysis was the use of a hierarchical statistical model to
combine estimates of potency for the oral studies (average absolute
potency values) and to combine estimates of benchmark dose for the oral,
dermal, and inhalation routes (average BMD, s for the index chemical).
Historically, OPP has selected single data sets or data points (such as
reference doses [RfD] or NOAELS) for use in single chemical risk
assessment. Aggregating over multiple data sets from studies with
relatively well-defined study design has the advantage of being able 1) to
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increase the precision of the estimates when there is little additional
variability among data sets and 2) to incorporate the variability among
data sets into the overall estimate of uncertainty (standard errors or
confidence limits). By combining potency estimates across data sets
within studies and across studies, maximizes the use of the available
information; almost all of the available dose-response data was used.
Finally, this approach allows for a test of the dose-additivity assumption
based on the similarly shaped dose-response curves because it generally
forces an examination of each dose-response curve.
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Figure lll.B.1-1: Log,, of the standard deviation of cholinesterase activities
plotted against the log,, of the corresponding means, for each compartment and
sex. Each pointis a single dose group. The plotted line is a regression line fitted
to the data in each panel. The regression suggests the indicated relationship
between estimated standard deviation and mean.
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Relative Bias of Potency

-0.009255
n=216

B=1000
B=0,500

-0.281500 0.126900
n=72 n=144

ActMaxF=0.85,0.95

ActMaxk=0.5

0.029860 0.320900
n=96 n=48

=5p0

0.105900 0.535800
n=24 n=24

Figure 111.B.1-2: Regression tree relating relative bias in potency estimates to
model parameter values. The overall average relative bias is -0.009255 over all
216 combinations of conditions. If B <1000 (that is B/A < 0.5), and the activity at
the highest dose is nearly B, then the relative bias is only 0.0299.
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Coverage of BMDL based on inverse

0.9678
n=72

ActMaxF=0.85,0.95
ActMaxk=0.5

0.9260
n=48

ActMaxF#=0.95

ActMaxF=0.85
ActMaxF=0.95

0.6790 | | 9.8290
n=12 n=12

Figure 111.B.1-3: Regression tree relating Coverage of the nominal 95%
confidence limit for the BMD to the simulation conditions. The top number in
each node is the average coverage at that node; n gives the number of
observations that contribute to the average.
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b. Follow-up Joint Analysis (December 2001)
i. Accounting for First-Pass Metabolism

When organophosphate pesticides (and many other chemicals) are
administered orally, much of the absorbed chemical is carried to the liver
by the portal circulation, where it may be metabolized. In the presence of
saturable metabolism the dose-response curve would be expected to have
a shallower slope at lower doses, and the slope would gradually increase
as metabolism became saturated and more of the active chemical enters
the general circulation. Although a detailed treatment of this process for
each chemical is beyond the scope of this project, this basic idea was
used to derive a two-parameter function of dose that relates administered
dose to internal dose. The resulting function was combined with the basic
exponential model giving a model that has a low dose shoulder while
retaining the dose-response shape of the basic model for larger doses.

Consider the two-compartment pharmacokinetic model illustrated in
Figure 111.B.1-4:

)

<« Body (C,) <&

Urine (k.)
Ingestion (Dose xBW/24)

«  Liver(C) <=

y

Metabolism (V...., K..)

Venous
ey

O

[V

Figure 111.B.1-4: Diagram for two-compartment PBPK model for the extension to
the basic model.
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In this simple model, all the ingested chemical is taken directly to the
liver, where it is metabolized. The residual unmetabolized chemical is
then distributed to the rest of the body through the circulation. Intake of
chemical is continuous. In this case, two differential equations and one
algebraic equation describe the concentration in the liver and the rest of

the body:
Vo 55 = @, x(C, ~Cy) kG
dC| Dosex BW VG
M= =9 *(Ca=G)+ 24 K, +C
c. = @G +QG
? Q +Q

Here, C, is the concentration in compartment x, where x is a for arterial
blood, b for the body other than liver, and | for liver. The volume of and
blood flow to compartment x are V, and Q,, where x is either b orI. V,,
and K, describe saturable metabolism of the chemical in the liver. The
constant k, is a first-order clearance term. Dose is expressed in
milligrams per kilogram per day (hence the constant “24” to convert to
hours), and body weight is expressed in kilograms. Thus, volumes in this
parametrization are expressed in liters and concentrations in milligrams
per liter.

At steady state, the derivatives are both O: clearance just balances the
dose rate. It can be shown (by solving the system of equations with
derivatives set to zero) that the concentration in the body (C,) at steady

state is:
_ A+« BW O 3 24Q QK ke _2&Nm O
O =08 S| P Bk S0 B "
JDDO%_ 2Q0Knke Mmoo 2QQKake B
1 BW(Qk+Qk +QQ) BW BW(Qk. +Quke *QQ)

Here, the odd constants 0.5 and 4 arise because the solution involves
finding the roots of a quadratic polynomial, and 24 arises because dose
rates are usually expressed in terms of “per day”, while other coefficients
in the model are “per hour”.
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Equation 111.B.1-6 suggests using the function:

idose = 0.5*{(Dose—S—D) +\/( Dose -S -D ) +4 xDose XS} Eqn IIl.B.1-7

to describe the relationship between administered dose (Dose) and a
scaled internal dose, where

oo 240QKnk,
BW (Qke + Quke +QQy).

and

28N ax

D BW
In this parameterization of the model, V.., K., and total blood flow (= Q, +
Q) should be proportional to body weight, so both S and D are
independent of body weight. This is a function of two parameters (S and
D), and approaches the function idose = Dose - D for larger doses; the
slope with respect to dose when Dose is close to 0is S/(S + D). D
guantifies the displacement of the relationship between Dose and idose
from the identity relationship, and S controls the shape of the relationship
at low doses. Inthe limitas D -~ 0 or S —», Equation IIl.B.1-7 converges
to idose = Dose.

In fact, it is reasonable to use Equation I11.B.1-7 to approximate the
relationship between internal dose and administered dose in the chronic
dosing setting, even in the absence of a detailed pharmacokinetic
justification. The general properties of the equation capture the expected
effects of first-pass metabolic clearance of an active compound: a shallow
shoulder of the curve at lower doses, with a slope that increases to a limit
as the dose increases. As long as S and D are non-negative, varying
these two parameters should result in a good approximation to virtually
any low-dose deviation due to metabolic clearance, at least at the
resolution available in bioassay dose-response data.

ii. The Nonlinear Mixed Effects Model

Mixed effects models in statistics are models for data in which some
parameters vary among subsets of the data. For example, in this
analysis, The background level (IA), scale factor (Im), and horizontal
asymptote (tB) for the basic and expanded nonlinear models were
presumed to vary among studies and among datasets nested within
studies, whenever there was more than one study or dataset. The
estimation problem for mixed effects models is to estimate both the fixed
effects (parameters that do not vary), and the distribution parameters (for
example, means and standard deviations) for the random parameters.
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Typically (is in nime), the random distribution is assumed to be normal,
though methods exist for more general specifications, and the means of
the random effects are estimated along with the fixed effects parameters.

The R package nlme estimates parameters for nonlinear mixed effects
models using the approach described in Lindstrom and Bates (1990).
Davidian and Giltinan (1995, pp 164 — 174) give a good description of this
model, where they refer to it as being based on “conditional first-order
linearization”. This approach involves approximating the nonlinear
function using a Taylor expansion before carrying out maximum likelihood
estimation. The implementation in nime allows the fixed and random
effects to be expressed as linear models of other independent variables.
In this analysis, for example, Im was allowed to differ between sexes by
modeling Im ~ sex - 1, where sex is a categorical variable in the data set
that takes the values “F” or “M”. The term “- 1 " indicates that an intercept
term should not be fit for this model, so there will be an estimate of Im for
each sex. See the code in appendix 4 for “BRAINfits2.R” to see how this
was used in more detail.
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