

Microbes are Different

Plenary Meeting March 27-28, 2003

Jeff Griffiths, Graciela Ramirez-Toro, and Colin Stine VFAR Activity Group

Habitats of Human and Animal Pathogens

- Human adapted pathogens
 - Obligate host specificity
- Animal pathogens infecting humans
 - Zoonotic pathogens, animal reservoir
- Opportunistic pathogens
 - Normal flora of humans
 - Environmental organisms
 - Natural inhabitants of the environment
 - > Animal or human environmental contaminants

Diagnosis of Infectious Diseases

- Clinical diagnosis
 - Physician knowledge and experience, empirical
- Laboratory diagnosis
 - ✓ Laboratory tests, objective
- Other diagnostic procedures
 - Medical instruments, e.g. CT scan, MRI, etc.

Epidemiological Surveillance

- Passive case reporting
- Active case acquisition
- > Surveys
- > Projects (research initiatives, etc.)

Outbreak Investigations

> Reactive

Represents failure of preventive measures

> Retrospective

Occur after the event, people already sick

Limitations of Our Knowledge About Pathogens

Historical

Based upon knowledge and experience, difficult to anticipate or recognize emerging pathogens

> Interactive

 Depends upon interactive cooperation between patient, physician, laboratorian, and epidemiologist

Methods dependent

Pathogen specific media and reagents required

Microbes in the Environment

- Ecological research
- Environmental monitoring
 - Discharges, e.g. sewage, industrial, agricultural
- > Animal impact on the environment
 - ✓ Feral animals
 - Agricultural discharges
 - > CAFOs
 - Land application of manure

Microbes in the Environment

- Quality of source and drinking water
 - Source water protection
 - Drinking water treatment efficacy
 - Fecal indicators as pathogen surrogates to measure disinfection efficacy and the integrity of distribution systems
 - Heterotrophic plate counts to measure disinfection efficacy and detect presence of biofilm
 - Pathogen monitoring
 - > Rarely performed, methods limitations, high cost

NRC Health Effects Attributes

- Severity is defined as the clinical magnitude of illness at the most sensitive health end point
 - Who is infected?
 - Populations at risk
 - ✓ What is the outcome?
 - > Health impact for the patient or populations
 - ✓ How is it measured?
 - Limitations of available data

NRC Health Effects Attributes

- Potency is the power or strength of a pathogen to produce disease.
 - ✓ Infective dose variable by route of exposure
 - ✓ Infective dose variable by strain of pathogen
 - Host response variable by health and immune status
 - Measurable for only a few pathogens for a few populations

NRC Environmental Occurrence Attributes

- Prevalence is the frequency and concentration (density) of pathogens in drinking water
 - Must be able to detect pathogen in distribution water using available methods
 - Must know temporal, spatial and longitudinal distribution of pathogen present as non-uniform aggregates in distribution water
 - Point source contamination
 - biofilms
 - Limited data available for few pathogens

NRC Environmental Occurrence Attributes

- Persistence is the likelihood that a pathogen will be found in the aquatic environment, based upon its biological properties
 - Presence in distribution system water
 - Total counts (viable and non-viable)
 - Total (viable) plate count variability
 - Survival in distribution water
 - > Culturable vs. viable but non-culturable organisms
 - Infectivity of pathogens under ambient conditions
 - Data available for few know pathogens

NRC Environmental Occurrence Attributes

- Mobility is the ability of pathogens to move or be transported through the environment and in distribution systems
 - Microbial particle dynamics vs. chemical solute properties
 - ✓ Aggregates (micro-colonies) vs. individual cells
 - Biofilm behaviors and mechanics
 - ✓ Biological factors, e.g. amoeba sequestering and transport
 - Data available for few known pathogens

NRC Health and Environmental Occurrence Attributes

- Magnitude is the amount of a pathogen in drinking water delivered to the tap relative to the infective dose
 - Microbial growth or decline in the environment (population dynamics of microorganisms)
 - Methodological limitations (sampling, culture, etc.)
 - Temporal spatial, and behavioral variability of pathogens
 - Host response variability
 - ✓ Data available for very few if any known pathogens

VFARs as Alternatives

- Sequencing of bacteria genomes is progressing rapidly
- Sequenced genomes show remarkable ability to add or loose genes
- Virulence is frequently mediated by nonchromosomal genetic material, e.g. plasmids or bacteriophage
- New pathogens may arise by addition of virulence genes or plasmids

Family Trees

- Based on similarity
- Organisms members of related groups
- Strains, species, genera
- Genes are related to each other, gene families

Family membership = information

- 24 million of 44 million and expanding rapidly
- > Family: toxin genes go on to PCCL
- > Family: recombination genes exclude

The State of Knowledge Paradox

The more we learn, we realize the less we know.

There are no easy answers.

Limitations of Indicator Monitoring

- Measures only pathogens shed in feces of humans and animals
- Correlates poorly with presence of parasites and viruses in water
- Limited to measuring the efficacy of water treatment and the integrity of the distribution system
- Does not detect presence of opportunistic pathogens

Limitations of Knowledge About Pathogens in the Environment

- Uncertainty is measured by orders of magnitude in microbiology
- Variability is manifested by wide differences in infectivity of pathogen strains and host susceptibilities
- Conventional method cannot predict emergence of new pathogens
- Methodology limitations impede progress