U.S. EPA Solid Waste Greenhouse Gas Inventory: Background

December 8, 2016

Rachel Schmeltz

Agenda

- Purpose of the stakeholder engagement and planned events
- How does EPA account for GHG emissions from landfills
 - Greenhouse Gas Reporting Program
 - How EPA prepares the landfill methane emissions inventory (methodology and data sources)
 - Q&A
- Incorporating additional GHGRP data in the Inventory
- Specific areas for stakeholder input
- Q&A

Purpose of the Stakeholder Engagement

- To engage with stakeholders on the data submitted by facilities under the GHGRP Subpart HH for MSW Landfills and the application of this information as direct inputs to the MSW landfill methane emissions estimates in the 1990-2015 U.S. GHG Inventory.
- Three specific areas for facilities reporting to the GHGRP:

Reported annual waste disposal quantities

Methane generation estimates (Equation HH-1)

Methane oxidation values

 How to consider the same data elements for facilities that do not report to the GHGRP.
 ³

Schedule of Events

Input requested

In advance of our next webinar, we would appreciate your input on the following:

- 1. Use of the GHGRP annual waste disposal data in methane generation equation
- 2. Use of the methane generation equation with respect to the DOC value
- 3. Proper way to account for annual waste disposal data for facilities not reporting to the GHGRP

Input includes, but is not limited to, data on:

- Quantities of waste types disposed at individual or groups of landfills
- How the waste composition has changed over time
- Tipping receipts documenting the fraction of inerts
- Statistics on the changing waste composition

Accounting for Landfill Methane Emissions by the EPA

How does the US EPA Account for MSW Landfill Emissions?

 Solid Waste Inventory (solid waste portion of the Inventory of U.S. GHG Emissions and Sinks)

 Subparts HH (Municipal Solid Waste Landfills) of the Greenhouse Gas Reporting Program (GHGRP)

Overview of the EPA's GHG Inventory

- Conducted annually since 1990 to meet UNFCCC requirements
- Impartial and policy-neutral
- Follows IPCC 2006 Guidelines for compilation and calculation
- Uses a combination of secondary datasets
- Top-down national GHG emissions from all sectors
- Current and archived U.S. GHG inventories available at: http://www.epa.gov/climatechange/emissions/usinventoryreport.html

Overview of the EPA GHGRP

- Created by an EPA regulation issued in 2009
- The goal is to collect accurate and timely data on GHG emissions to inform future climate policy decisions
- Annual monitoring requirements for applicable MSW landfills began in 2010 with first reports due in 2011
- Overall, ~1,230 MSW landfills and ~115 industrial waste landfills reporting
- Monitoring and reporting only, no control or use requirements

Which MSW landfills must report under the GHGRP?

- Not all MSW landfills have to report
 - Definition in 40 CFR 98.6
 - Excludes RCRA Subtitle C or TSCA hazardous waste landfills, C&D waste landfills, and industrial waste landfills
 - Industrial landfills covered by separate subpart TT
- Accepted waste since January 1, 1980
 Covers both open and closed MSW landfills
 - Methome constinues of a constrict to a OC
- Methane generation $\geq 25,000$ metric tons CO_2e/yr
 - Applicability based on CH_4 generation, not CH_4 emissions

Comparison of the GHG Inventory to the GHGRP

Data Element	U.S. GHG Inventory	GHGRP for MSW landfills
Applicability	Entire U.S. economy (all GHG emissions)	Facilities meeting threshold (85– 95% of landfill GHG emissions)
Waste generation data	Aggregated national data, "top down"	Facility-specific data, "bottom up"
CH ₄ generation	IPCC waste model, default inputs, 3 climate types	IPCC waste model with facility- specific inputs, and CH ₄ recovery
CH_4 emissions, no gas collection	Generation _{CH4} - Oxidation	Generation _{CH4} - Oxidation
CH ₄ recovery	Estimated from 4 secondary databases = high uncertainty	Direct measurements of landfill gas flow rates and composition = low uncertainty
CH ₄ emissions, with gas collection	Based on modeled methane generation estimate	2 calculation approaches, one of which uses directly measured CH_4 recovery data

Preparation of the Solid Waste Inventory using the IPCC 2006 Guidelines

IPCC Good Practice Guidance Promotes Cross-Country Comparability

- Parties to the UNFCCC are required to submit inventories of all anthropogenic GHG emissions from sources and removals from sinks.
- Follow the good practice guidance outlined by the IPCC
 - Same sectors
 - Comparable methodologies
 - Promotes comparability between sectors and across countries

IPCC Tiered Approach

- Tier 1
 - Designed to use readily available national or international statistics and apply default emission factors and activity data
- Tier 2
 - Uses a combination of country specific factors and default factors
 - For example, historical waste disposal data and IPCCrecommended oxidation factor

• Tier 3

- Uses more detailed or country specific methodologies and data (e.g., models or measurement approach)
- For example, facility-specific data, including waste disposal data, and waste type-specific DOC and k values

First Order Decay Method

- The first order decay (FOD) method is the recommended approach for all 3 Tiers under the IPCC 2006 Guidelines
- IPCC developed a Waste Model that incorporates the FOD method
 - Available through the IPCC 2006 GL home Volume 5: Waste, ipcc-nggip.iges.or.jp/public/2006gl/vol5.html

Modeled Methane Generation Equation

$$G_{CH4} = \sum_{x=S}^{T-1} \left\{ W_x \times DOC \times DOC_f \times MCF \times F \times \frac{16}{12} \times \left(e^{-k(T-x-1)} - e^{-k(T-x)} \right) \right\}$$

where

k

- T = Year for which generation is calculated
- x = Year in which waste was disposed
- S = Start year of calculations or waste disposal
- W_x = Quantity of waste disposed in a given year
- DOC = Degradable organic content (specific to waste types)
- DOC_f = Fraction of DOC dissimilated
- MCF = Methane correction factor
- F = Fraction of methane, by volume, in generated landfill gas

 $16/12 = \text{conversion factor from CH}_4 \text{ to C}$

= Decay rate constant (yr⁻¹)

Key data needs

Details on the IPCC 2006 Waste Model

Key Inputs to the Solid Waste Inventory Model

- CH₄ generation
 - estimated from national waste disposal quantities (i.e., not landfill-specific)
- CH₄ recovery
 - from MSW landfills with gas collection and control systems (i.e., is landfillspecific)

$CH_4 \text{ Emissions} = \left[\sum_x G_{CH4x,T} - R_T\right] \bullet (1 - OX_T)$

[Equation 3.1 from IPCC 2006 GL Volume 5, Chapter 3: Solid Waste Disposal]

Emission Factor / Parameter Summary

Emission Factor / Parameter	Recommended IPCC Default Value	Value Used in the US Inventory
DOC (degradable organic carbon)	Varies by waste type	0.20285 (bulk MSW)
DOCf (fraction of DOC)	0.5	0.5
MCF (methane correction factor)	Varies by SWDS; 1.0 for managed landfills	1.0
F (fraction of methane in the landfill gas)	0.50	0.50
OX (oxidation fraction)	0.10	0.10
k (decay rate)	Varies by climate zone	3 k values; a k value is applied to the percentage of population assumed to reside in 1 of 3 precipitation zones
R (Recovered methane)	Country-specific	Landfill-specific
Time delay	6 months	6 months

Parameters Sheet (DOC, DOCf, MCF, F, k, OX)

lease enter parameters in the yellow cells. If	no national o	lata are availa	ble, copy the	PCC default value.		
lelp on parameter selection can be found in t	he 2006 IPCC	guidelines				
	IPCC defa	ault value	Cou	ntry-specific parameters		
` ** :		1050	Value	Heterence and remarks	_	01
starting year		1950	1940		\rightarrow	Start vear
OC (Degradable organic carbon)						- · · · · · · · · · · · · · · · · · · ·
(weight fraction wet basis)	Bange	Default				
(Weight Hacton, wet basis) ISW. dru	0.18-0.32	0.20280548	0.203			DOC (dogradable
1SW, normal	0.18-0.32	0.20280548	0.203		-	
/ISW, wet	0.18-0.32	0.20280548	0.203			
			0			ordanic carbon)
			0			organno oanson)
	0.00.0.45	0.15	0.150			Rulk worto
nuusinai waste, puip & paper odustrial waste, food	0.36-0.45	0.15	0.150			- Duik Wasle
Idustital waste, rood	0-0.34	0.20	0.200			
						- Waste by
OCf (fraction of DOC dissimilated)		0.5	0.5			Tradic by
,						composition
Aethane generation rate constant (k)						COMPOSITION
(vears ⁻¹)	Bange	Default				
1SW, dry		0.02	0.02			
4SW, normal		0.038	0.038			k (mothana gonarati
1SW, wet		0.057	0.057			k (memane generali
			0			
			0			rate constant)
odustrial waste, pulp & paper		0.06	0 20.0			
ndustrial waste, food		0.185	0.185			
						Deleything
)elay time (months)		6	6		\longrightarrow	Delay time
						,
raction of methane (F) in developed gas		0.5	0.5			
					4	
Conversion factor, C to CH4		1.33	1.33			
						OV (avidation fraction
Dxidation factor (OX)		0	0.1			UN (OXIDATION IFACTIO
					4	1
Parameters for carbon storage		004	001		•	
6 paper in industrial waste Cwaad in industrial waste		U%	U%		4	
o wuuu in industriai waste		U%	0%		4	
alculations for Bulk wasts onlice					1	
arcurations for burk waste option infu:						
nny.					1	
					1	

U.S. k Values

- Tailored k values to the % of the population living in dry, moderate, and wet precipitation zones
- k values were derived from the same landfill dataset used by EPA in AP-42 to develop default Lo value used in the Inventory

Precipit (incl	tation range nes/year)	k (yr-1)
Dry	<20	0.020
Moderate	20-40	0.038
Wet	>40	0.057

Precipitation Range	% of]	Populati	on Livin	ig in Eac	h Precip	pitation 1	Range
(inches/year)	1950	1960	1970	1980	1990	2000	2010
<20	10	13	14	16	19	19	18
20-40	40	39	37	36	34	33	44
>40	50	48	48	48	48	48	38

DOC (Degradable Organic Carbon)

 US Inventory calculates the DOC value from an EPAdeveloped Lo=100 m³/Mg of mass

$$G_{CH4} = \sum_{x=S}^{T-1} \left\{ W_x \times DOC \times DOC_f \times MCF \times F \times \frac{16}{12} \times \left(e^{-k(T-x-1)} - e^{-k(T-x)} \right) \right\}$$

Lo . . . conversion calculations . . .
DOC = 0.202805

- Based off landfill-specific data (n=52) from the 1980's and 1990's
- Lo has been observed to vary from 6 to 270 m^3/Mg , depending on the organic content of the waste material

"This Lo value was recommended because it <u>provided the best agreement</u> between emissions derived from empirical (measured) data to predicted emissions." Source: EPA AP-42 Background Document (https://www3.epa.gov/ttnchie1/ap42/cho2/draft/dbo2s04.pdf)

DOC (cont.)

Bulk MSW data:

- In all Inventory years, we use a DOC for bulk MSW
 = 0.202805
- We assume that the IPCC waste composition data generally represents US landfills:

Waste composition data:

- DOC values are used for each waste type included in the table below
- There is no bulk MSW DOC value under this option

Perce	Percent Waste Composition Data for North America (IPCC, 2006)										
Paper/ card board	Textiles	Food waste	Wood	Garden/ park	Nappies/ Diapers	Sewage sludge	Rubber / leather	All other, inerts			
23.2	3.9	33.9	6.2				1.4	31.4			

Defaults Sheet (IPCC 2006, DOC value and % by waste type)

IPCC REGIONAL DEFAULT VALUES FOR WASTE COMPOSITION, WASTE GENERATION, AND FRACTION DISPOSED

	Default DOC	0.4	0.24	0.15	0.43	0.2	0.24	0.05	0.39	0			
	Select3	16									Generation	Fraction	Regional
				Р	ercent Wa	ste Compos	sition Data				Rate	MSW	Average
		Paper/ card		Food		Garden /	Nappies /	Sewage	Rubber /	All other,	(tonnes/cap/	disposed	DOC (wt
		board	Textiles	waste	Wood	park	Diapers	sludge	leather	inerts	yr)	to SWDS	fraction)
1	Asia: Eastern	18.8	3.5	26.2	3.5				1.0	47.0	0.55	0.55	0.14
2	Asia: South-central	11.3	2.5	40.3	7.9				0.8	37.2	0.21	0.74	0.15
3	Asia- Southeast	12.9	2.7	43.5	9.9				0.9	30.1	0.27	0.59	0.17
4	Asia- Western & Middle East	18.0	2.9	41.1	9.8				0.6	27.6	0.42	0.68	0.19
5	Africa: Eastern	7.7	1.7	53.9	7.0				1.1	28.6	0.29	0.69	0.15
6	Africa: Middle	16.8	2.5	43.4	6.5					30.8	0.29	0.69	0.17
7	Africa: Northern	16.5	2.5	51.1	2.0					27.9	0.29	0.69	0.16
8	Africa: Southern	25.0		23.0	15.0					37.0	0.29	0.69	0.20
9	Africa: Western	9.8	1.0	40.4	4.4					44.4	0.29	0.69	0.12
10	Europe: Eastern	21.8	4.7	30.1	7.5				1.4	34.5	0.38	0.90	0.18
11	Europe: Northern	30.6	2.0	23.8	10.0					33.6	0.64	0.47	0.21
12	Europe: Southern	17.0		36.9	10.6					35.5	0.52	0.85	0.17
13	Europe: Western	27.5		24.2	11.0					37.3	0.56	0.47	0.19
14	Oceania: Austrailia & New Zealand	30.0		36.0	24.0					10.0	0.69	0.85	0.28
15	Oceania: Other Oceania	6.0		67.5	2.5					24.0	0.69	0.85	0.14
16	America: North	23.2	3.9	33.9	6.2				1.4	31.4	0.65	0.58	0.19
17	America: Central	13.7	2.6	43.8	13.5				1.8	24.6	0.21	0.50	0.19
18	America: South	17.1	2.6	44.9	4.7				0.7	30.0	0.26	0.54	0.16
19	Caribbean	17.0	5.1	46.9	2.4				1.9	26.7	0.49	0.83	0.17

HWP

Results

IPCC 2006 range is 0.12 to 0.28. US Inventory value of 0.2028 is near the midpoint of this range.

arameters MCF Activity

Stored_C Theory Defaults Food

Garden

Paper ... (+) : (

MCF (Methane Correction Factor)

- Accounts for the fact that unmanaged SWDS produce less CH4 from a given amount of waste than anaerobically managed landfills
- In 1940, we model 6% managed, 94% uncategorized
- Ratio changes over time until 100% is managed for years 1980 to date

Type of SWDS	IPCC MCF Default Value
Managed – anaerobic	1.0
Managed – semi-aerobic	0.5
Unmanaged – deep (> 5m) and/or a high water table	0.8
Unmanaged – shallow (< 5m)	0.4
Uncategorized SWDS	0.6

Annual Waste Disposal Quantities

- For years 1989 to date,
 - Use a combination of data from the State of Garbage (SOG) surveys and US Census data (population)
- Waste generation by state from SOG surveys (voluntary)
- Estimate waste generation for missing states in the SOG surveys using waste per capita
- Apply a disposal factor (~65%)

This method introduces a lot of uncertainty, but the SOG surveys have been the only publicly available nationwide data source.

Activity Sheet (where waste disposal data are entered)

MSW activity data

2 3 4

5

Enter population, waste per capita and MSW waste composition into the yellow cells. They grey cells are historical data for the US (from th Help and default regional values are given in the 2006 IPCC Guidelines.

6													
7		IPCC Regior	650	10	00 58%	34%	0%	23%	6%	4%	0%	33%	100%
8			650		100%	11%	40%	49%	0%	0%	0%	0%	100%
9				-		Com	position of	waste go	oing to so	lid waste	disposal	sites	
10	Year	Population	Waste per capita	Total MSW	% to SWDS	MSW, dry	MSW, moderate	MSW, wet	Wood	Textile	Nappies	Plastics, other inert	Total
11		millions	kg/cap/yr	kt	%	%	%	%	%	%	%	%	(=100%)
66	1994			256,60	01 100%	19%	34%	48%	0%	0%	0%	0%	100%
67	1995			256,54	100%	19%	34%	48%	0%	0%	0%	0%	100%
68	1996			263,42	24 100%	19%	34%	48%	0%	0%	0%	0%	100%
69	1997			273,75	57 100%	19%	34%	48%	0%	0%	0%	0%	100%
70	1998			285,25	59 100%	19%	34%	48%	0%	0%	0%	0%	100%
71	1999			297,07	78 100%	19%	34%	48%	0%	0%	0%	0%	100%
72	2000			298,76	6 100%	20%	33%	48%	0%	0%	0%	0%	100%
73	2001			304,16	67 100%	20%	33%	48%	0%	0%	0%	0%	100%
74	2002			301,97	74 100%	20%	33%	48%	0%	0%	0%	0%	100%
75	2003			308,78	34 100%	20%	33%	48%	0%	0%	0%	0%	100%
76	2004			321,06	6 100%	20%	33%	48%	0%	0%	0%	0%	100%
77	2005			327,97	73 100%	20%	33%	48%	0%	0%	0%	0%	100%
78	2006			332,64	100%	20%	33%	48%	0%	0%	0%	0%	100%
79	2007			326,63	38 100%	20%	33%	48%	0%	0%	0%	0%	100%
80	2008			315,57	79 100%	20%	33%	48%	0%	0%	0%	0%	100%
81	2009			293,27	72 100%	20%	33%	48%	0%	0%	0%	0%	100%
82	2010			304,39	95 100%	18%	44%	38%	0%	0%	0%	0%	100%
83	2011			302,17	71 100%	18%	44%	38%	0%	0%	0%	0%	100%
84	2012			300,26	⁶⁹ 100%	18%	44%	38%	0%	0%	0%	0%	100%
85	2013			306,84	100%	18%	44%	38%	0%	0%	0%	0%	100%
86	2014			265,89	96 100%	18%	44%	38%	0%	0%	0%	0%	100%
87	2015								0%	0%	0%	0%	0%
88	2016	Instructions	Dever	have MCE	A etiletter	Amont D	up o site d	Amont Da	0%	0%	0%	0%	0%
	•	Instructions	Parame	INCF	Activity	Amnt_De	eposited	Amnt_De	posited_1	ND Re	covery_O	Kesui	is Resul

MSW Sheet (where methane generation is calculated)

1	A B	C	D	E	F	G	Н			J
1	Mati	ane cale	sulation	from: Bu	ulk waete u	moderate	climate			
2	Meu		Julauoi		in waste, i	nouerate	cimate			
3										
4								N. C		I
-								Nationa	1	
5			000					values	170	
5			DOC				DOC	0.2028054	4/6	
1			DUCI				DOCT	0.500	-	
0			Methane	generation ra	ate constant		K In the CONTRACT OF CONTRACT.	10.038		
9			mair-life t	ime (t _{1/2} , yea	is).		n = ln(2)/k	10.2		
10			exp1	start in dans	sition year. M	lonth M	exp(-k)	12.00	-	
12			Process	start in depo	sitton year. iv		M	1.00	-	
13			Eraction	to CH4			EXP(-K ((13-m)/12	0.500		
14			riaction	10 0114			1	0.500		
						DDOCm				
				Decomposa	DDOCm not	decompos	DDOCm			
				ble DOC	reacted.	ed.	accumulated			
		Amount		(DDOCm)	Deposition	Deposition	in SWDS end	DDOCn		CH₄
15	Year	deposited	MCF	deposited	year	year	of year	decompo	ed	generated
40				D = W * DOC *		C = D * (1-	H = B + (H _{last year} *	$E = C + H_{las}$	year *	Q = E * 16/12
10		W	MCF	DOCT* MCF	B = D * exp2	exp2)	exp1)	(1 - exp)	*F Ca
10		Gy	naction	Gy	Gy	Gy	Gy	Gg		Gy
10	10/10	33 579	0.62	2 125	2 125	0	2 125		0	0
20	1940	33,976	0.02	2,120	2,120	0	4 205		79	53
21	1942	34 273	0.63	2,135	2,135	0	6 244		157	105
22	1943	34,732	0.64	2,240	2,240	0	8,251		233	155
23	1944	35,152	0.64	2,281	2,281	0	10,225		318	205
24	1945	35.550	0.65	2.336	2.336	0	12.180		381	254
	Defeute	/Faad	Carden	/ Danara	Maral / T		naine / Chudan	MON	1	

Methane Recovery (R)

- Recovery data comes from a combination of 4 databases
 - Directly reported
 - Indirectly reported
- Added the GHGRP HH data to the 1990-2013 Inventory
- Because of the variety of sources, there are uncertainties

OX (Oxidation Factor)

- Fraction of CH4 from the landfill that is oxidized by methanotrophic microorganisms as the CH4 in the landfill gas is emitted from the landfill
- Ranges from 0 to 100% depending on management practices
- IPCC recommends 10% for managed sites (used by the US)

6							
7			Amou Meth Recov	int of iane /ered SWDS	Fraction recovere methane	ı d	Methane oxidised (OX)
8							()
9		IPCC default	0)			0.1
10							0
11		Year	k	t			Fraction
66		1994	-	2136.2	0.2	21	0.10
67		1995		2362.9	0.2	23	0.10
68		1996		2585.5	0.2	24	0.10
69		1997		3100.8	0.2	28	0.10
70		1998		3660.8	0.3	32	0.10
71		1999		4108.4	0.3	35	0.10
72		2000		4320.1	0.3	36	0.10
73		2001		4725.4	0.38		0.10
74		2002		4950.9	0.39		0.10
75		2003		5093.9	0.39		0.10
76		2004		5305.7	0.3	39	0.10
77		2005		5495.1	0.4	40	0.10
78		2006		5754.5	0.4	41	0.10
79		2007		6004.5	0.4	41	0.10
80		2008		6266.5	0.4	42	0.10
81		2009		6602.7	0.4	44	0.10
82		2010		7463.1	0.4	49	0.10
83		2011		7624.5	0.4	49	0.10
84		2012		7947.1	0.5	51	0.10
85		2013		7973.1	0.5	50	0.10
86		2014		7924 8	0 !	50	0.10
	•	Parame	eters	MCF	Activity	1	Amnt_Depos

Results Sheet (net methane emissions)

	В	С	D	E	М	Ν	0	Р
10		Met	hane genera	ated				
		MSW,	MSW,	MSW,	Methane	M	ethane	
11	Year	dry	moderate	wet	recovery	er	nission	
12		А	в	с	L	M	= (K-L)*(1- OX)	
13		kt	kt	kt	kt		kt	
64	1989	758	2.904	4,556	0		7.396	
65	1990	792	3.002	4,714	797		6.940	
66	1991	835	3,089	4,874	1.008		7,011	
67	1992	877	3,172	5,023	1,286		7,007	
68	1993	919	3,258	5,177	1,625		6,957	
69	1994	964	3,352	5,344	2,136		6,771	
70	1995	1,009	3,445	5,508	2,363		6,839	
71	1996	1,053	3,534	5,663	2,585		6,899	
72	1997	1,098	3,626	5,822	3,101		0,731	
73	1998	1,144	3,724	5,991	3,661		6,478	
74	1999	1,192	3,827	6,171	4,108		6,374	\
75	2000	1,243	3,937	6,362	4,320		6,499	- N
76	2001	1,296	4,038	6,541	4,725		6,435	\
77	2002	1,350	4,141	6,720	4,951		6,534	
78	2003	1,402	4,238	6,885	5,094		6,687	
79	2004	1,455	4,337	7,052	5,306		6,784	
80	2005	1,510	4,442	7,233	5,495		6,921	
81	2006	1,566	4,549	7,416	5,755		6,998	
82	2007	1,621	4,656	7,597	6,004		7,083	
83	2008	1,675	4,754	7,757	6,266		7,127	
84	2009	1,724	4,840	7,889	6,603		7,064	
85	2010	1,766	4,903	7,973	7,463		6,461	
86	2011	1,804	5,058	7,966	7,624		6,483	
87	2012	1,841	5,204	7,956	7,947		6,348	
88	2013	1,876	5,343	7,943	7,973		6,471	
89	2014	1,913	5,484	7,941	7,925		6,672	
90	2015	1,939	5,575	7,881	0		13,855	
91	2016	1,900	5,367	7,444	0		13,240	
92	2017	1,863	5,167	7,032	0		12,655	
93	2018	1,826	4,974	6,642	0		12,098	
94	2019	1,789 Paramet	4,789 ers MCF	6,274 Activity	0 Amnt_[l Deposited	11,567 d Amn	t_Deposit
				,	_			

Q&A on the Preparation of the Solid Waste Inventory

Incorporating additional GHGRP data in the 1990-2014 Inventory

Additional and Relevant Subpart HH Data

- Additional facility level data reported under the GHGRP are available for use in the Inventory methodology, including
 - Annual waste disposal data
 - Methane generation estimates (Equation HH-1)
 - Methane oxidation values

Annual waste disposal data (GHGRP)

- Facilities reporting under the GHGRP must report annual waste disposal quantities (determined using an approved method) for 50 years prior to the current reporting year
- Three waste type options can be used to report
 - Bulk waste option
 - Modified bulk waste option
 - Waste composition option

Methane Generation and DOC

- Equation HH-1 is the same equation used by the Inventory to calculate methane generation
- The GHGRP DOC values are included in Table HH-1; all landfills must use these values depending upon whether and how they can break down their waste.

Waste Type		DOC in used Solid Waste Inventory	DOC used for GHGRP for MSW Landfills	
Bulk MSW		0.20285	0.20	
Modified Bulk MSW	Bulk MSW, excluding inerts & C&D waste	NA	0.31	
	Inerts	NA	0	
	C&D waste	NA	0.08	
Waste Composition	9 different waste types, no bulk MSW option	NA	Ranges from 0 for inerts to 0.43 for wood and straw	

For the Draft 1990-2014 Inventory

- Replaced the SOG waste generation data and waste disposal factor with facility-reported data and NSPS/EG dataset developed by OAQPS
 - For facilities reporting under the GHGRP, used direct values
 - For facilities not reporting under the GHGRP, NSPS/EG dataset used LMOP waste acceptance rates (WARs)
- Rationale:
 - SOG surveys no longer updated on a regular basis, resulting in great uncertainty
 - Align with the dataset used by OAQPS in their rulemaking
 - Strive to use higher tier activity data to improve Inventory estimates

Annual waste disposal data (metric tons) between the two sources

Application of the FOD model to the NSPS/EG waste disposal data

- We assumed the total quantity of waste from the NSPS/EG data set was bulk waste and used same average DOC value for total (i.e., 0.20285)
- This means we applied the DOC value to the fraction of inerts too (assumed 31% of total MSW disposed based on IPCC waste composition for North America)
- This is similar to what has been in the past with the SOG data

Draft 1990-2014 Results vs. Final 1990-2013 Results (MMT)

Draft 1990-2014 Inventory Results

- Significant differences in net methane emissions compared to the previous Inventory
- Mainly due to increase in methane generation from GHGRP waste disposal data (because we subtract recovery from generation)
 - Average increase in emissions of 14% across the time series
 - Significant increase for 2010-2013 ranging from 20% to 52% compared to the same years in the previous Inventory

Industry Comments on the Draft 1990-2014 Inventory

- Possible error in the numbers or calculations, but hard to tell because underlying data is not published on the EPA Web site
 - EPA applied the FOD model to the total quantity of waste disposed when we should have instead subtracted out the inert waste disposed since it does not contribute to methane generation
 - EPA may be undercounting methane recovery now
- EPA did not explicitly state they would use the GHGRP waste disposal data in the Planned Improvements section of the previous year's Inventory
- Previous Inventory results showed a larger impact on methane emissions reductions due to landfill gas collection and control
- Should have engaged in a stakeholder process similar to what was done for the oil & gas Inventory

GHGRP Waste Type Data

Waste Type Option	Assumed based on reported DOC values	Actual
Bulk Waste	85%	56%
Modified Bulk Waste	14%	14%
Waste Composition	1%	30%

How EPA finalized the 1990-2014 Inventory

- EPA decided to revert back to the old methodology and initiate a stakeholder engagement process to inform the best way to use GHGRP data in the Inventory
- Used extrapolated waste generation data from the SOG survey and a disposal factor of 65% (all based on 2011 SOG waste generation and disposal data)

Final 1990-2014 vs. 1990-2013 Results (MMT)

Areas for stakeholder input

Input requested

In advance of our next webinar, we would appreciate your input on the following:

- 1. Use of the GHGRP annual waste disposal data in methane generation equation
- 2. Use of the methane generation equation with respect to the DOC value
- 3. Proper way to account for annual waste disposal data for facilities not reporting to the GHGRP

Input includes, but is not limited to, data on :

- Quantities of waste types disposed at individual or groups of landfills
- How the waste composition has changed over time
- Tipping receipts documenting the fraction of inerts
- Statistics on the changing waste composition

Next Steps

- Provide input by December 23, 2016 to Rachel Schmeltz:
 - Use of the GHGRP annual waste disposal data
 - Use of the methane generation equation with respect to the DOC value
 - Proper way to account for annual waste disposal data for facilities not reporting to the GHGRP
- Will share aggregated feedback in the next webinar (expected Jan. 9)
- This is not a formal consensus-based process

More Information

Rachel Schmeltz Schmeltz.Rachel@epa.gov

Kate Bronstein

kbronstein@rti.org