EPA 430-P-20-001

DRAFT Inventory of U.S. Greenhouse Gas Emissions and Sinks

1990-2018

- 1 HOW TO OBTAIN COPIES
- 2 You can electronically download this document on the U.S. EPA's homepage at
- 3 https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks>.
- 4 All data tables of this document for the full time series 1990 through 2018, inclusive, will be made available for the
- 5 final report published by April 15, 2020 at the internet site mentioned above.
- 6
- 7 FOR FURTHER INFORMATION
- 8 Contact Ms. Mausami Desai, Environmental Protection Agency, (202) 343-9381, desai.mausami@epa.gov,
- 9 or Mr. Vincent Camobreco, Environmental Protection Agency, (202) 564–9043, camobreco.vincent@epa.gov.
- 10 For more information regarding climate change and greenhouse gas emissions, see the EPA web site at
- 11 <https://www.epa.gov/ghgemissions>.

12

Acknowledgments

- 2 The Environmental Protection Agency would like to acknowledge the many individual and organizational
- 3 contributors to this document, without whose efforts this report would not be complete. Although the complete
- 4 list of researchers, government employees, and consultants who have provided technical and editorial support is
- 5 too long to list here, EPA would like to thank some key contributors and reviewers whose work has significantly
- 6 improved this year's report.
- 7 Within EPA's Office of Atmospheric Programs, work on emissions from fuel combustion was led by Vincent
- 8 Camobreco. Sarah Roberts and Justine Geidosch directed the work on mobile combustion and transportation.
- 9 Work on fugitive methane emissions from the Energy sector was directed by Melissa Weitz and Chris Sherry.
- 10 Calculations for the Waste sector were led by Rachel Schmeltz. Tom Wirth directed work on the Agriculture and
- 11 the Land Use, Land-Use Change, and Forestry chapters, with support from John Steller. Work on Industrial
- 12 Processes and Product Use (IPPU) CO₂, CH₄, and N₂O emissions was directed by John Steller, Vincent Camobreco
- and Chris Sherry. Work on emissions of HFCs, PFCs, SF₆, and NF₃ from the IPPU sector was directed by Deborah
- 14 Ottinger, Dave Godwin, and Stephanie Bogle. Cross-cutting work was directed by Mausami Desai.
- 15 Other EPA offices also contributed data, analysis, and technical review for this report. The Office of Transportation
- 16 and Air Quality and the Office of Air Quality Planning and Standards provided analysis and review for several of the
- source categories addressed in this report. The Office of Land and Emergency Management and the Office of
- 18 Research and Development also contributed analysis and research.
- 19 The Energy Information Administration and the Department of Energy contributed invaluable data and analysis on
- 20 numerous energy-related topics. Other government agencies have contributed data as well, including the U.S.
- 21 Geological Survey, the Federal Highway Administration, the Department of Transportation, the Bureau of
- 22 Transportation Statistics, the Department of Commerce, the Mine Safety and Health Administration, and the
- 23 National Agricultural Statistics Service.
- We thank the Department of Defense (David Asiello, DoD and Matthew Cleaver of Leidos) for compiling the dataon military bunker fuel use.
- We thank the Federal Aviation Administration (Ralph Iovinelli and Maryalice Locke) for compiling the inventory of emissions from commercial aircraft jet fuel consumption.
- 28 We thank the U.S. Department of Agriculture's Forest Service (Grant Domke, Brian Walters, Jim Smith, Mike
- 29 Nichols, and John Coulston) for compiling the inventories for CO₂, CH₄, and N₂O fluxes associated with forest land.
- 30 We thank the Department of Agriculture's Agricultural Research Service (Stephen Del Grosso) and the Natural
- 31 Resource Ecology Laboratory at Colorado State University (Stephen Ogle, Keith Paustian, Bill Parton, F. Jay Breidt,
- 32 Shannon Spencer, Kendrick Killian, Ram Gurung, Ernie Marx, Stephen Williams, Cody Alsaker, Guhan
- 33 Dheenadayalan Sivakami, Amy Swan, and Chris Dorich) for compiling the inventories for CH₄ emissions, N₂O
- 34 emissions, and CO₂ fluxes associated with soils in croplands, grasslands, and settlements.
- 35 We thank Silvestrum Climate Associates (Stephen Crooks, Lisa Schile Beers, Christine May), National Oceanic and
- 36 Atmospheric Administration (Nate Herold, Ariana Sutton-Grier, Meredith Muth), the Smithsonian Environmental

- 1 Research Center (J. Patrick Megonigal, Blanca Bernal, James Holmquist, Meng Lu) and Florida International
- 2 University (Tiffany Troxler) and members of the U.S. Coastal Wetland Carbon Working Group for compiling
- 3 inventories of land use change, soil carbon stocks and stock change, CH₄ emissions, and N₂O emissions from
- 4 aquaculture in coastal wetlands.
- 5 We would also like to thank Marian Martin Van Pelt, Leslie Chinery, Alexander Lataille, Erin Asher and the full
- 6 Inventory team at ICF including Diana Pape, Robert Lanza, Mollie Averyt, Larry O'Rourke, Deborah Harris, Tommy
- 7 Hendrickson, Rebecca Ferenchiak, Kasey Knoell, Sabrina Andrews, Rani Murali, Cara Blumenthal, Louise Bruning,
- 8 Emily Peterson, Lou Browning, Helena Caswell, Katie O'Malley, Howard Marano, Neha Vaingankar, Megha Kedia,
- 9 Grace Tamble, Logan Pfeiffer, Mary Francis McDaniel, Mollie Carroll, Tyler Brewer, Maddy Pearce, and Carolyn
- 10 Pugh for synthesizing this report and preparing many of the individual analyses.
- 11 We thank Eastern Research Group for their significant analytical support. Deborah Bartram, Kara Edquist, Tara
- 12 Stout, and Amie Aguiar support the development of emissions estimates for wastewater. Cortney Itle, Amie Aguiar,
- 13 Kara Edquist, Amber Allen, and Spencer Sauter support the inventories for Manure Management, Enteric
- 14 Fermentation, Wetlands Remaining Wetlands, and Landfilled Yard Trimmings and Food Scraps (included in
- 15 Settlements Remaining Settlements). Casey Pickering, Brandon Long, Gopi Manne, Marty Wolf, Colin Peirce, Bryan
- 16 Lange, and Aylin Sertkaya develop estimates for Natural Gas and Petroleum Systems. Cortney Itle, Gopi Manne,
- 17 Tara Stout, and Stephen Treimel support the development of emission estimates for coal mine methane.
- 18 Finally, we thank the following teams for their significant analytical support: RTI International (Kate Bronstein,
- 19 Meaghan McGrath, Jeff Coburn, Keith Weitz, Michael Laney, Carson Moss, David Randall, Gabrielle Raymond,
- 20 Jason Goldsmith, Karen Schaffner, Melissa Icenhour); Raven Ridge Resources (James Marshall and Raymond
- 21 Pilcher).
- 22

¹ Preface

- 2 The United States Environmental Protection Agency (EPA) prepares the official U.S. Inventory of Greenhouse Gas
- 3 Emissions and Sinks to comply with existing commitments under the United Nations Framework Convention on
- 4 Climate Change (UNFCCC). Under decision 3/CP.5 of the UNFCCC Conference of the Parties, national inventories
- 5 for UNFCCC Annex I parties should be provided to the UNFCCC Secretariat each year by April 15.
- 6 In an effort to engage the public and researchers across the country, the EPA has instituted an annual public
- 7 review and comment process for this document. The availability of the draft document is announced via Federal
- 8 Register Notice and is posted on the EPA Greenhouse Gas Emissions web site. Copies are also emailed upon
- 9 request. The public comment period is generally limited to 30 days; however, comments received after the closure
- 10 of the public comment period are accepted and considered for the next edition of this annual report. The 30-day
- 11 public review of this report is starting on February 12, 2020, and comments received will be posted to the EPA web
- 12 site.

Table of Contents

2	TAB	LE OF CONTENTS	VI
3	LIST	OF TABLES, FIGURES, AND BOXES	IX
4	EXE	CUTIVE SUMMARY	ES-1
5	ES.1	Background Information	ES-2
6	ES.2	Recent Trends in U.S. Greenhouse Gas Emissions and Sinks	ES-4
7	ES.3	Overview of Sector Emissions and Trends	ES-20
8	ES.4	Other Information	ES-26
9	1.	INTRODUCTION	1-1
10	1.1	Background Information	1-3
11	1.2	National Inventory Arrangements	1-11
12	1.3	Inventory Process	1-13
13	1.4	Methodology and Data Sources	1-15
14	1.5	Key Categories	1-16
15	1.6	Quality Assurance and Quality Control (QA/QC)	1-21
16	1.7	Uncertainty Analysis of Emission Estimates – TO BE UPDATED FOR FINAL INVENTORY REPORT	1-23
17	1.8	Completeness	1-26
18	1.9	Organization of Report	1-26
19	2.	TRENDS IN GREENHOUSE GAS EMISSIONS	2-1
20	2.1	Recent Trends in U.S. Greenhouse Gas Emissions and Sinks	2-1
21	2.2	Emissions by Economic Sector	2-24
22	2.3	Precursor Greenhouse Gas Emissions (CO, NO _x , NMVOCs, and SO ₂)	2-36
23	3.	ENERGY	3-1
24	3.1	Fossil Fuel Combustion (CRF Source Category 1A)	3-6
25	3.2	Carbon Emitted from Non-Energy Uses of Fossil Fuels (CRF Source Category 1A5)	3-46
26	3.3	Incineration of Waste (CRF Source Category 1A5)	3-53
27	3.4	Coal Mining (CRF Source Category 1B1a)	3-58
28	3.5	Abandoned Underground Coal Mines (CRF Source Category 1B1a)	3-63

35	5.	AGRICULTURE	5-1
34	4.27	Industrial Processes and Product Use Sources of Precursor Gases	
33	4.26	Nitrous Oxide from Product Uses (CRF Source Category 2G3)	4-139
32	4.25	Electrical Transmission and Distribution (CRF Source Category 2G1)	4-131
31	4.24	Substitution of Ozone Depleting Substances (CRF Source Category 2F)	4-122
30	4.23	Electronics Industry (CRF Source Category 2E)	4-107
29	4.22	Zinc Production (CRF Source Category 2C6)	4-102
28	4.21	Lead Production (CRF Source Category 2C5)	4-98
27	4.20	Magnesium Production and Processing (CRF Source Category 2C4)	4-93
26	4.19	Aluminum Production (CRF Source Category 2C3)	4-87
25	4.18	Ferroalloy Production (CRF Source Category 2C2)	4-83
24	4.17	Iron and Steel Production (CRF Source Category 2C1) and Metallurgical Coke Production	4-73
23	4.16	Phosphoric Acid Production (CRF Source Category 2B10)	4-69
22	4.15	Carbon Dioxide Consumption (CRF Source Category 2B10)	4-65
21	4.14	HCFC-22 Production (CRF Source Category 2B9a)	4-62
20	4.13	Petrochemical Production (CRF Source Category 2B8)	4-54
19	4.12	Soda Ash Production (CRF Source Category 2B7)	
18	4.11	Titanium Dioxide Production (CRF Source Category 2B6)	
17	4.10	Carbide Production and Consumption (CRF Source Category 2B5)	
16	4.9	Caprolactam, Glyoxal and Glyoxylic Acid Production (CRF Source Category 2B4)	
15	4.8	Adipic Acid Production (CRF Source Category 2B3)	
14	4.7	Nitric Acid Production (CRF Source Category 2B2)	
13	4.6	Urea Consumption for Non-Agricultural Purposes	
12	4.5	Ammonia Production (CRF Source Category 2B1)	
11	4.4	Other Process Uses of Carbonates (CRF Source Category 2A4)	
10	4.3	Glass Production (CRF Source Category 2A3)	
9	4.1	Lime Production (CRF Source Category 2A2)	
7 8	4. 4.1	Cement Production (CRF Source Category 2A1)	
6 7	3.11 4.	Wood Biomass and Biofuels Consumption (CRF Source Category 1A) INDUSTRIAL PROCESSES AND PRODUCT USE	
5	3.10	International Bunker Fuels (CRF Source Category 1: Memo Items)	
4 5	3.9	Energy Sources of Precursor Greenhouse Gas Emissions	
3	3.8	Abandoned Oil and Gas Wells (CRF Source Categories 1B2a and 1B2b)	
2	3.7	Natural Gas Systems (CRF Source Category 1B2b)	
1	3.6	Petroleum Systems (CRF Source Category 1B2a)	

1	5.1	Enteric Fermentation (CRF Source Category 3A)	5-3
2	5.2	Manure Management (CRF Source Category 3B)	5-10
3	5.3	Rice Cultivation (CRF Source Category 3C)	5-18
4	5.4	Agricultural Soil Management (CRF Source Category 3D)	5-25
5	5.5	Liming (CRF Source Category 3G)	5-45
6	5.6	Urea Fertilization (CRF Source Category 3H)	5-47
7	5.7	Field Burning of Agricultural Residues (CRF Source Category 3F)	5-50
8	6.	LAND USE, LAND-USE CHANGE, AND FORESTRY	6-1
9	6.1	Representation of the U.S. Land Base	6-8
10	6.2	Forest Land Remaining Forest Land (CRF Category 4A1)	6-23
11	6.3	Land Converted to Forest Land (CRF Source Category 4A2)	6-45
12	6.4	Cropland Remaining Cropland (CRF Category 4B1)	6-53
13	6.5	Land Converted to Cropland (CRF Category 4B2)	6-64
14	6.6	Grassland Remaining Grassland (CRF Category 4C1)	6-71
15	6.7	Land Converted to Grassland (CRF Category 4C2)	6-82
16	6.8	Wetlands Remaining Wetlands (CRF Category 4D1)	6-89
17	6.9	Land Converted to Wetlands (CRF Source Category 4D2)	6-110
18	6.10	Settlements Remaining Settlements (CRF Category 4E1)	6-113
19	6.11	Land Converted to Settlements (CRF Category 4E2)	6-134
20 21	6.12 REPOF	Other Land Remaining Other Land (CRF Category 4F1) – TO BE UPDATED FOR FINAL INVENTORY	6-140
22 23	6.13 REPOF	Land Converted to Other Land (CRF Category 4F2) – TO BE UPDATED FOR FINAL INVENTORY	6-140
24	7.	WASTE	7-1
25	7.1	Landfills (CRF Source Category 5A1)	7-3
26	7.2	Wastewater Treatment (CRF Source Category 5D)	7-17
27	7.3	Composting (CRF Source Category 5B1)	7-34
28	7.4	Waste Incineration (CRF Source Category 5C1)	7-38
29	7.5	Waste Sources of Precursor Greenhouse Gases	7-38
30	8.	OTHER	8-1
31	9.	RECALCULATIONS AND IMPROVEMENTS	9-1
32	10.	REFERENCES	10-1
33			

¹ List of Tables, Figures, and Boxes

2 Tables

3	Table ES-1: Global Warming Potentials (100-Year Time Horizon) Used in this Report	ES-3
4	Table ES-2: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks (MMT CO ₂ Eq.)	ES-7
5	Table ES-3: CO ₂ Emissions from Fossil Fuel Combustion by End-Use Sector (MMT CO ₂ Eq.)	ES-13
6 7	Table ES-4: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks by Chapter/IPCC Sector (MMT CO_2 Equation 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
8 9	Table ES-5: U.S. Greenhouse Gas Emissions and Removals (Net Flux) from Land Use, Land-Use Change, and Forestry (MMT CO2 Eq.)	ES-24
10	Table ES-6: U.S. Greenhouse Gas Emissions Allocated to Economic Sectors (MMT CO2 Eq.)	ES-26
11 12	Table ES-7: U.S. Greenhouse Gas Emissions by Economic Sector with Electricity-Related Emissions Distribute (MMT CO ₂ Eq.)	
13	Table ES-8: Recent Trends in Various U.S. Data (Index 1990 = 100)	ES-28
14 15	Table 1-1: Global Atmospheric Concentration, Rate of Concentration Change, and Atmospheric Lifetime of Selected Greenhouse Gases	1-4
16	Table 1-2: Global Warming Potentials and Atmospheric Lifetimes (Years) Used in this Report	1-9
17	Table 1-3: Comparison of 100-Year GWP values	1-10
18	Table 1-4: Key Categories for the United States (1990 and 2018)	1-17
19	Table 1-5: Estimated Overall Inventory Quantitative Uncertainty for 1990 (MMT CO ₂ Eq. and Percent)	1-24
20	Table 1-6: Estimated Overall Inventory Quantitative Uncertainty (MMT CO ₂ Eq. and Percent)	1-25
21	Table 1-7: IPCC Sector Descriptions	1-27
22	Table 1-8: List of Annexes	1-27
23	Table 2-1: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks (MMT CO ₂ Eq.)	2-3
24	Table 2-2: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks (kt)	2-5
25	Table 2-3: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks by Chapter/IPCC Sector (MMT CO ₂ Eq.) 2-8
26	Table 2-4: Emissions from Energy (MMT CO2 Eq.)	2-11
27	Table 2-5: CO ₂ Emissions from Fossil Fuel Combustion by End-Use Sector (MMT CO ₂ Eq.)	2-13
28	Table 2-6: Emissions from Industrial Processes and Product Use (MMT CO_2 Eq.)	2-17
29	Table 2-7: Emissions from Agriculture (MMT CO ₂ Eq.)	2-19
30 31	Table 2-8: U.S. Greenhouse Gas Emissions and Removals (Net Flux) from Land Use, Land-Use Change, and Fo (MMT CO ₂ Eq.)	
32	Table 2-9: Emissions from Waste (MMT CO2 Eq.)	2-24
33 34	Table 2-10: U.S. Greenhouse Gas Emissions Allocated to Economic Sectors (MMT CO2 Eq. and Percent of Tot 2018)	
35	Table 2-11: Electric Power-Related Greenhouse Gas Emissions (MMT CO ₂ Eq.)	2-27

1 2	Table 2-12: U.S. Greenhouse Gas Emissions by Economic Sector and Gas with Electricity-Related Emissions Distributed (MMT CO ₂ Eq.) and Percent of Total in 2018
3	Table 2-13: Transportation-Related Greenhouse Gas Emissions (MMT CO ₂ Eq.)
4	Table 2-14: Recent Trends in Various U.S. Data (Index 1990 = 100)
5	Table 2-15: Emissions of NO _x , CO, NMVOCs, and SO ₂ (kt) 2-37
6	Table 3-1: CO ₂ , CH ₄ , and N ₂ O Emissions from Energy (MMT CO ₂ Eq.)
7	Table 3-2: CO ₂ , CH ₄ , and N ₂ O Emissions from Energy (kt)
8	Table 3-3: CO ₂ , CH ₄ , and N ₂ O Emissions from Fossil Fuel Combustion (MMT CO ₂ Eq.)
9	Table 3-4: CO ₂ , CH ₄ , and N ₂ O Emissions from Fossil Fuel Combustion (kt)
10	Table 3-5: CO ₂ Emissions from Fossil Fuel Combustion by Fuel Type and Sector (MMT CO ₂ Eq.)
11 12	Table 3-6: Annual Change in CO2 Emissions and Total 2018 CO2 Emissions from Fossil Fuel Combustion for SelectedFuels and Sectors (MMT CO2 Eq. and Percent)
13	Table 3-7: CO ₂ , CH ₄ , and N ₂ O Emissions from Fossil Fuel Combustion by Sector (MMT CO ₂ Eq.)
14	Table 3-8: CO ₂ , CH ₄ , and N ₂ O Emissions from Fossil Fuel Combustion by End-Use Sector (MMT CO ₂ Eq.)
15	Table 3-9: CO ₂ Emissions from Stationary Fossil Fuel Combustion (MMT CO ₂ Eq.)
16	Table 3-10: CH ₄ Emissions from Stationary Combustion (MMT CO ₂ Eq.)
17	Table 3-11: N ₂ O Emissions from Stationary Combustion (MMT CO ₂ Eq.)
18	Table 3-12: Electric Power Generation by Fuel Type (Percent) 3-16
19	Table 3-13: CO ₂ Emissions from Fossil Fuel Combustion in Transportation End-Use Sector (MMT CO ₂ Eq.) 3-25
20	Table 3-14: CH ₄ Emissions from Mobile Combustion (MMT CO ₂ Eq.)
21	Table 3-15: N ₂ O Emissions from Mobile Combustion (MMT CO ₂ Eq.)
22	Table 3-16: Carbon Intensity from Direct Fossil Fuel Combustion by Sector (MMT CO ₂ Eq./QBtu)
23 24	Table 3-17: Approach 2 Quantitative Uncertainty Estimates for CO2 Emissions from Energy-Related Fossil Fuel Combustion by Fuel Type and Sector (MMT CO2 Eq. and Percent) 3-36
25 26	Table 3-18: Approach 2 Quantitative Uncertainty Estimates for CH₄ and N₂O Emissions from Energy-Related Stationary Combustion, Including Biomass (MMT CO₂ Eq. and Percent)
27 28	Table 3-19: Approach 2 Quantitative Uncertainty Estimates for CH ₄ and N ₂ O Emissions from Mobile Sources (MMT CO ₂ Eq. and Percent)
29	Table 3-20: CO ₂ Emissions from Non-Energy Use Fossil Fuel Consumption (MMT CO ₂ Eq. and Percent)
30	Table 3-21: Adjusted Consumption of Fossil Fuels for Non-Energy Uses (TBtu)
31	Table 3-22: 2018 Adjusted Non-Energy Use Fossil Fuel Consumption, Storage, and Emissions
32 33	Table 3-23: Approach 2 Quantitative Uncertainty Estimates for CO ₂ Emissions from Non-Energy Uses of Fossil Fuels (MMT CO ₂ Eq. and Percent)
34 35	Table 3-24: Approach 2 Quantitative Uncertainty Estimates for Storage Factors of Non-Energy Uses of Fossil Fuels (Percent) 3-50
36	Table 3-25: CO ₂ , CH ₄ , and N ₂ O Emissions from the Incineration of Waste (MMT CO ₂ Eq.)
37	Table 3-26: CO ₂ , CH ₄ , and N ₂ O Emissions from the Incineration of Waste (kt)
38	Table 3-27: Municipal Solid Waste Generation (Metric Tons) and Percent Combusted (BioCycle dataset) 3-55

1 2	Table 3-28: Approach 2 Quantitative Uncertainty Estimates for CO ₂ and N ₂ O from the Incineration of Waste (ICO ₂ Eq. and Percent)	
3	Table 3-29: Coal Production (kt)	. 3-58
4	Table 3-30: CH ₄ Emissions from Coal Mining (MMT CO ₂ Eq.)	. 3-58
5	Table 3-31: CH ₄ Emissions from Coal Mining (kt)	. 3-59
6 7	Table 3-32: Approach 2 Quantitative Uncertainty Estimates for CH ₄ Emissions from Coal Mining (MMT CO ₂ Eq Percent)	
8	Table 3-33: CH ₄ Emissions from Abandoned Coal Mines (MMT CO ₂ Eq.)	. 3-63
9	Table 3-34: CH ₄ Emissions from Abandoned Coal Mines (kt)	. 3-64
10 11	Table 3-35: Number of Gassy Abandoned Mines Present in U.S. Basins in 2018, Grouped by Class According to Post-Abandonment State	
12 13	Table 3-36: Approach 2 Quantitative Uncertainty Estimates for CH ₄ Emissions from Abandoned Underground Mines (MMT CO ₂ Eq. and Percent)	
14	Table 3-37: CH ₄ Emissions from Petroleum Systems (MMT CO ₂ Eq.)	. 3-68
15	Table 3-38: CH ₄ Emissions from Petroleum Systems (kt CH ₄)	. 3-69
16	Table 3-39: CO ₂ Emissions from Petroleum Systems (MMT CO ₂)	. 3-69
17	Table 3-40: CO ₂ Emissions from Petroleum Systems (kt CO ₂)	. 3-69
18	Table 3-41: N ₂ O Emissions from Petroleum Systems (metric tons CO ₂ Eq.)	. 3-70
19	Table 3-42: N ₂ O Emissions from Petroleum Systems (metric tons N ₂ O)	. 3-70
20 21	Table 3-43: Approach 2 Quantitative Uncertainty Estimates for CH_4 and CO_2 Emissions from Petroleum System (MMT CO_2 Eq. and Percent)	
22	Table 3-44: Recalculations of CO ₂ in Petroleum Systems (MMT CO ₂)	. 3-75
23	Table 3-45: Recalculations of CH ₄ in Petroleum Systems (MMT CO ₂ Eq.)	. 3-75
24	Table 3-46: HF Oil Well Completions National CO ₂ Emissions (kt CO ₂)	. 3-76
25	Table 3-47: Offshore Oil Production National CH ₄ Emissions (metric tons CH ₄)	. 3-77
26	Table 3-48: Offshore Oil Production National CO ₂ Emissions (metric tons CO ₂)	. 3-77
27	Table 3-49: HF Oil Well Workovers National CO2 Emissions (kt CO2)	. 3-78
28	Table 3-50: Pneumatic Controller National CH ₄ Emissions (Metric Tons CH ₄)	. 3-78
29	Table 3-51: Associated Gas Flaring National CO ₂ Emissions (kt CO ₂)	. 3-79
30	Table 3-52: Miscellaneous Production Flaring National CO ₂ Emissions (kt CO ₂)	. 3-79
31	Table 3-53: Producing Oil Well Count Data	. 3-79
32	Table 3-54: Refineries National CH ₄ Emissions (metric tons CH ₄)	. 3-80
33	Table 3-55: Quantity of CO ₂ Captured and Extracted for EOR Operations (MMT CO ₂)	. 3-82
34	Table 3-56: Quantity of CO ₂ Captured and Extracted for EOR Operations (kt)	. 3-82
35	Table 3-57: CH₄ Emissions from Natural Gas Systems (MMT CO₂ Eq.) ^a	. 3-85
36	Table 3-58: CH ₄ Emissions from Natural Gas Systems (kt) ^a	. 3-85
37	Table 3-59: Non-combustion CO ₂ Emissions from Natural Gas Systems (MMT)	. 3-85

1	Table 3-60: Non-combustion CO2 Emissions from Natural Gas Systems (kt)	. 3-85
2	Table 3-61: N ₂ O Emissions from Natural Gas Systems (metric tons CO ₂ Eq.)	. 3-86
3	Table 3-62: N2O Emissions from Natural Gas Systems (metric tons N2O)	. 3-86
4 5	Table 3-63: Approach 2 Quantitative Uncertainty Estimates for CH ₄ and Non-combustion CO ₂ Emissions from Natural Gas Systems (MMT CO ₂ Eq. and Percent)	
6	Table 3-64: Recalculations of CO ₂ in Natural Gas Systems (MMT CO ₂)	. 3-90
7	Table 3-65: Recalculations of CH4 in Natural Gas Systems (MMT CO2 Eq.)	. 3-91
8	Table 3-66: Gathering Stations National CH ₄ Emissions (metric tons CH ₄)	. 3-92
9	Table 3-67: Gathering Stations National CO ₂ Emissions (metric tons CO ₂)	. 3-92
10	Table 3-68: Offshore Gas Production National Emissions (metric tons CH4)	. 3-94
11	Table 3-69: Offshore Gas Production National Emissions (metric tons CO ₂)	. 3-94
12	Table 3-70: Production Segment Pneumatic Controller National Emissions (metric tons CH ₄)	. 3-94
13	Table 3-71: Liquids Unloading National Emissions (metric tons CH ₄)	. 3-95
14	Table 3-72: Production Segment Storage Tanks National Emissions (metric tons CO ₂)	. 3-95
15	Table 3-73: HF Gas Well Workovers National Emissions (metric tons CH ₄)	. 3-95
16	Table 3-74: Non-HF Gas Well Workovers National Emissions (metric tons CH ₄)	. 3-96
17	Table 3-75: Producing Gas Well Count Data	. 3-96
18	Table 3-76: AGR National CO ₂ Emissions (kt CO ₂)	. 3-96
19	Table 3-77: Processing Segment Flares National Emissions (metric tons CH ₄)	. 3-97
20	Table 3-78: Processing Segment Reciprocating Compressors National Emissions (metric tons CH ₄)	. 3-97
21	Table 3-79: Processing Segment Blowdowns/Venting National Emissions (metric tons CH ₄)	. 3-97
22	Table 3-80: CH ₄ Emissions from Abandoned Oil and Gas Wells (MMT CO ₂ Eq.)	. 3-99
23	Table 3-81: CH ₄ Emissions from Abandoned Oil and Gas Wells (kt)	. 3-99
24	Table 3-82: CO ₂ Emissions from Abandoned Oil and Gas Wells (MMT CO ₂)	. 3-99
25	Table 3-83: CO ₂ Emissions from Abandoned Oil and Gas Wells (kt)	3-100
26	Table 3-84: Abandoned Oil Wells Activity Data, CH4 and CO2 Emissions (metric tons)	3-100
27	Table 3-85: Abandoned Gas Wells Activity Data, CH4 and CO2 Emissions (metric tons)	3-101
28 29	Table 3-86: Approach 2 Quantitative Uncertainty Estimates for CH ₄ and CO ₂ Emissions from Petroleum and Na Gas Systems (MMT CO ₂ Eq. and Percent)	
30	Table 3-87: NO _x , CO, and NMVOC Emissions from Energy-Related Activities (kt)	3-103
31	Table 3-88: CO ₂ , CH ₄ , and N ₂ O Emissions from International Bunker Fuels (MMT CO ₂ Eq.)	3-105
32	Table 3-89: CO ₂ , CH ₄ , and N ₂ O Emissions from International Bunker Fuels (kt)	3-106
33	Table 3-90: Aviation Jet Fuel Consumption for International Transport (Million Gallons)	3-107
34	Table 3-91: Marine Fuel Consumption for International Transport (Million Gallons)	3-107
35	Table 3-92: CO_2 Emissions from Wood Consumption by End-Use Sector (MMT CO_2 Eq.)	3-109
36	Table 3-93: CO ₂ Emissions from Wood Consumption by End-Use Sector (kt)	3-110

1	Table 3-94: CO ₂ Emissions from Ethanol Consumption (MMT CO ₂ Eq.)	3-110
2	Table 3-95: CO2 Emissions from Ethanol Consumption (kt)	3-110
3	Table 3-96: CO ₂ Emissions from Biodiesel Consumption (MMT CO ₂ Eq.)	3-111
4	Table 3-97: CO2 Emissions from Biodiesel Consumption (kt)	3-111
5	Table 3-98: Woody Biomass Consumption by Sector (Trillion Btu)	3-112
6	Table 3-99: Ethanol Consumption by Sector (Trillion Btu)	3-112
7	Table 3-100: Biodiesel Consumption by Sector (Trillion Btu)	3-112
8	Table 4-1: Emissions from Industrial Processes and Product Use (MMT CO_2 Eq.)	4-3
9	Table 4-2: Emissions from Industrial Processes and Product Use (kt)	4-4
10	Table 4-3: CO ₂ Emissions from Cement Production (MMT CO ₂ Eq. and kt)	4-9
11	Table 4-4: Clinker Production (kt)	4-11
12 13	Table 4-5: Approach 2 Quantitative Uncertainty Estimates for CO_2 Emissions from Cement Production (MN Eq. and Percent)	
14	Table 4-6: CO ₂ Emissions from Lime Production (MMT CO ₂ Eq. and kt)	4-13
15	Table 4-7: Potential, Recovered, and Net CO_2 Emissions from Lime Production (kt)	4-14
16 17	Table 4-8: High-Calcium- and Dolomitic-Quicklime, High-Calcium- and Dolomitic-Hydrated, and Dead-Burn Dolomite Lime Production (kt)	
18	Table 4-9: Adjusted Lime Production (kt)	4-15
19 20	Table 4-10: Approach 2 Quantitative Uncertainty Estimates for CO ₂ Emissions from Lime Production (MMT and Percent)	
21	Table 4-11: CO ₂ Emissions from Glass Production (MMT CO ₂ Eq. and kt)	4-19
22	Table 4-12: Limestone, Dolomite, and Soda Ash Consumption Used in Glass Production (kt)	4-20
23 24	Table 4-13: Approach 2 Quantitative Uncertainty Estimates for CO ₂ Emissions from Glass Production (MM [*] and Percent)	
25	Table 4-14: CO ₂ Emissions from Other Process Uses of Carbonates (MMT CO ₂ Eq.)	4-22
26	Table 4-15: CO ₂ Emissions from Other Process Uses of Carbonates (kt)	4-22
27	Table 4-16: Limestone and Dolomite Consumption (kt)	4-24
28	Table 4-17: Soda Ash Consumption Not Associated with Glass Manufacturing (kt)	4-24
29 30	Table 4-18: Approach 2 Quantitative Uncertainty Estimates for CO2 Emissions from Other Process Uses of Carbonates (MMT CO2 Eq. and Percent)	4-25
31	Table 4-19: CO_2 Emissions from Ammonia Production (MMT CO_2 Eq.)	4-27
32	Table 4-20: CO ₂ Emissions from Ammonia Production (kt)	4-27
33	Table 4-21: Ammonia Production, Recovered CO_2 Consumed for Urea Production, and Urea Production (kt	:) 4-28
34 35	Table 4-22: Approach 2 Quantitative Uncertainty Estimates for CO_2 Emissions from Ammonia Production (CO_2 Eq. and Percent)	
36	Table 4-23: CO ₂ Emissions from Urea Consumption for Non-Agricultural Purposes (MMT CO ₂ Eq.)	4-31
37	Table 4-24: CO ₂ Emissions from Urea Consumption for Non-Agricultural Purposes (kt)	4-31

1	Table 4-25: Urea Production, Urea Applied as Fertilizer, Urea Imports, and Urea Exports (kt)	4-32
2 3	Table 4-26: Approach 2 Quantitative Uncertainty Estimates for CO ₂ Emissions from Urea Consumption fo Agricultural Purposes (MMT CO ₂ Eq. and Percent)	
4	Table 4-27: N_2O Emissions from Nitric Acid Production (MMT CO ₂ Eq. and kt N_2O)	4-34
5	Table 4-28: Nitric Acid Production (kt)	4-36
6 7	Table 4-29: Approach 2 Quantitative Uncertainty Estimates for N_2O Emissions from Nitric Acid Production CO ₂ Eq. and Percent)	•
8	Table 4-30: N_2O Emissions from Adipic Acid Production (MMT CO_2 Eq. and kt N_2O)	4-38
9	Table 4-31: Adipic Acid Production (kt)	4-40
10 11	Table 4-32: Approach 2 Quantitative Uncertainty Estimates for N_2O Emissions from Adipic Acid Productic CO_2 Eq. and Percent)	
12	Table 4-33: N ₂ O Emissions from Caprolactam Production (MMT CO ₂ Eq. and kt N ₂ O)	4-42
13	Table 4-34: Caprolactam Production (kt)	4-43
14 15	Table 4-35: Approach 2 Quantitative Uncertainty Estimates for N ₂ O Emissions from Caprolactam, Glyoxal Glyoxylic Acid Production (MMT CO ₂ Eq. and Percent)	
16	Table 4-36: CO ₂ and CH ₄ Emissions from Silicon Carbide Production and Consumption (MMT CO ₂ Eq.)	4-45
17	Table 4-37: CO ₂ and CH ₄ Emissions from Silicon Carbide Production and Consumption (kt)	4-46
18	Table 4-38: Production and Consumption of Silicon Carbide (Metric Tons)	4-47
19 20	Table 4-39: Approach 2 Quantitative Uncertainty Estimates for CH ₄ and CO ₂ Emissions from Silicon Carbic Production and Consumption (MMT CO ₂ Eq. and Percent)	
21	Table 4-40: CO ₂ Emissions from Titanium Dioxide (MMT CO ₂ Eq. and kt)	4-49
22	Table 4-41: Titanium Dioxide Production (kt)	4-50
23 24	Table 4-42: Approach 2 Quantitative Uncertainty Estimates for CO ₂ Emissions from Titanium Dioxide Proc (MMT CO ₂ Eq. and Percent)	
25	Table 4-43: CO ₂ Emissions from Soda Ash Production (MMT CO ₂ Eq. and kt CO ₂)	4-52
26	Table 4-44: Soda Ash Production (kt)	4-53
27 28	Table 4-45: Approach 2 Quantitative Uncertainty Estimates for CO_2 Emissions from Soda Ash Production CO_2 Eq. and Percent)	-
29	Table 4-46: CO ₂ and CH ₄ Emissions from Petrochemical Production (MMT CO ₂ Eq.)	4-56
30	Table 4-47: CO ₂ and CH ₄ Emissions from Petrochemical Production (kt)	4-56
31	Table 4-48: Production of Selected Petrochemicals (kt)	4-58
32 33	Table 4-49: Approach 2 Quantitative Uncertainty Estimates for CH ₄ Emissions from Petrochemical Production CO ₂ Emissions from Petrochemical Production (MMT CO ₂ Eq. and Percent)	
34	Table 4-50: HFC-23 Emissions from HCFC-22 Production (MMT CO ₂ Eq. and kt HFC-23)	4-63
35	Table 4-51: HCFC-22 Production (kt)	4-64
36 37	Table 4-52: Approach 2 Quantitative Uncertainty Estimates for HFC-23 Emissions from HCFC-22 Production CO ₂ Eq. and Percent)	•
38	Table 4-53: CO ₂ Emissions from CO ₂ Consumption (MMT CO ₂ Eq. and kt)	4-66

1	Table 4-54: CO ₂ Production (kt CO ₂) and the Percent Used for Non-EOR Applications	4-67
2 3	Table 4-55: Approach 2 Quantitative Uncertainty Estimates for CO2 Emissions from CO2 Consumption (MMT C Eq. and Percent)	
4	Table 4-56: CO_2 Emissions from Phosphoric Acid Production (MMT CO_2 Eq. and kt)	4-70
5	Table 4-57: Phosphate Rock Domestic Consumption, Exports, and Imports (kt)	4-71
6	Table 4-58: Chemical Composition of Phosphate Rock (Percent by Weight)	4-71
7 8	Table 4-59: Approach 2 Quantitative Uncertainty Estimates for CO_2 Emissions from Phosphoric Acid Productio (MMT CO_2 Eq. and Percent)	
9	Table 4-60: CO ₂ Emissions from Metallurgical Coke Production (MMT CO ₂ Eq.)	4-74
10	Table 4-61: CO ₂ Emissions from Metallurgical Coke Production (kt)	4-74
11	Table 4-62: CO ₂ Emissions from Iron and Steel Production (MMT CO ₂ Eq.)	4-75
12	Table 4-63: CO ₂ Emissions from Iron and Steel Production (kt)	4-75
13	Table 4-64: CH ₄ Emissions from Iron and Steel Production (MMT CO ₂ Eq.)	4-75
14	Table 4-65: CH ₄ Emissions from Iron and Steel Production (kt)	4-75
15	Table 4-66: Material Carbon Contents for Metallurgical Coke Production	4-76
16 17	Table 4-67: Production and Consumption Data for the Calculation of CO ₂ Emissions from Metallurgical Coke Production (Thousand Metric Tons)	4-77
18 19	Table 4-68: Production and Consumption Data for the Calculation of CO ₂ Emissions from Metallurgical Coke Production (Million ft ³)	4-77
20	Table 4-69: Material Carbon Contents for Iron and Steel Production	4-78
21	Table 4-70: CH ₄ Emission Factors for Sinter and Pig Iron Production	4-79
22	Table 4-71: CO ₂ Emission Factors for Sinter Production, Direct Reduced Iron Production and Pellet Production	4-79
23 24	Table 4-72: Production and Consumption Data for the Calculation of CO ₂ and CH ₄ Emissions from Iron and Ste Production (Thousand Metric Tons)	
25 26	Table 4-73: Production and Consumption Data for the Calculation of CO ₂ Emissions from Iron and Steel Produ (Million ft ³ unless otherwise specified)	
27 28	Table 4-74: Approach 2 Quantitative Uncertainty Estimates for CO ₂ and CH ₄ Emissions from Iron and Steel Production and Metallurgical Coke Production (MMT CO ₂ Eq. and Percent)	4-82
29	Table 4-75: CO ₂ and CH ₄ Emissions from Ferroalloy Production (MMT CO ₂ Eq.)	4-84
30	Table 4-76: CO ₂ and CH ₄ Emissions from Ferroalloy Production (kt)	4-84
31	Table 4-77: Production of Ferroalloys (Metric Tons)	4-85
32 33	Table 4-78: Approach 2 Quantitative Uncertainty Estimates for CO_2 Emissions from Ferroalloy Production (MN CO_2 Eq. and Percent)	
34	Table 4-79: CO ₂ Emissions from Aluminum Production (MMT CO ₂ Eq. and kt)	4-87
35	Table 4-80: PFC Emissions from Aluminum Production (MMT CO ₂ Eq.)	4-88
36	Table 4-81: PFC Emissions from Aluminum Production (kt)	4-89
37	Table 4-82: Production of Primary Aluminum (kt)	4-92

1 2	Table 4-83: Approach 2 Quantitative Uncertainty Estimates for CO2 and PFC Emissions from Aluminum Production(MMT CO2 Eq. and Percent)
3 4	Table 4-84: SF ₆ , HFC-134a, FK 5-1-12 and CO ₂ Emissions from Magnesium Production and Processing (MMT CO ₂ Eq.)
5	Table 4-85: SF ₆ , HFC-134a, FK 5-1-12 and CO ₂ Emissions from Magnesium Production and Processing (kt) 4-93
6	Table 4-86: SF ₆ Emission Factors (kg SF ₆ per metric ton of magnesium)4-96
7 8	Table 4-87: Approach 2 Quantitative Uncertainty Estimates for SF ₆ , HFC-134a and CO ₂ Emissions from Magnesium Production and Processing (MMT CO ₂ Eq. and Percent)
9	Table 4-88: CO ₂ Emissions from Lead Production (MMT CO ₂ Eq. and kt)
10	Table 4-89: Lead Production (Metric Tons) 4-100
11 12	Table 4-90: Approach 2 Quantitative Uncertainty Estimates for CO2 Emissions from Lead Production (MMT CO2 Eq. and Percent)
13	Table 4-91: CO ₂ Emissions from Zinc Production (MMT CO ₂ Eq. and kt)
14	Table 4-92: Zinc Production (Metric Tons) 4-103
15 16	Table 4-93: Approach 2 Quantitative Uncertainty Estimates for CO2 Emissions from Zinc Production (MMT CO2 Eq. and Percent) 4-106
17	Table 4-94: PFC, HFC, SF ₆ , NF ₃ , and N ₂ O Emissions from Electronics Manufacture (MMT CO ₂ Eq.)
18	Table 4-95: PFC, HFC, SF ₆ , NF ₃ , and N ₂ O Emissions from Electronics Manufacture (metric tons)
19	Table 4-96: F-HTF Emissions from Electronics Manufacture by Compound Group (metric tons) 4-110
20	Table 4-97: F-GHG ^a Emissions from PV and MEMS manufacturing (MMT CO ₂ Eq.)
21 22	Table 4-98: Approach 2 Quantitative Uncertainty Estimates for HFC, PFC, SF ₆ , NF ₃ and N ₂ O Emissions from Semiconductor Manufacture (MMT CO ₂ Eq. and Percent) ^a
23	Table 4-99: Emissions of HFCs and PFCs from ODS Substitutes (MMT CO ₂ Eq.)
24	Table 4-100: Emissions of HFCs and PFCs from ODS Substitution (Metric Tons)
25	Table 4-101: Emissions of HFCs and PFCs from ODS Substitutes (MMT CO ₂ Eq.) by Sector
26 27	Table 4-102: Approach 2 Quantitative Uncertainty Estimates for HFC and PFC Emissions from ODS Substitutes(MMT CO2 Eq. and Percent)
28	Table 4-103: U.S. HFC Supply (MMT CO ₂ Eq.)
29	Table 4-104: Averaged U.S. HFC Demand (MMT CO ₂ Eq.)
30 31	Table 4-105: SF ₆ Emissions from Electric Power Systems and Electrical Equipment Manufacturers (MMT CO ₂ Eq.)
32	Table 4-106: SF ₆ Emissions from Electric Power Systems and Electrical Equipment Manufacturers (kt)
33	Table 4-107: Transmission Mile Coverage (Percent) and Regression Coefficients (kg per mile)
34 35	Table 4-108: Approach 2 Quantitative Uncertainty Estimates for SF ₆ Emissions from Electrical Transmission and Distribution (MMT CO ₂ Eq. and Percent)
36	Table 4-109: N ₂ O Production (kt)
37	Table 4-110: N ₂ O Emissions from N ₂ O Product Usage (MMT CO ₂ Eq. and kt)
38 39	Table 4-111: Approach 2 Quantitative Uncertainty Estimates for N2O Emissions from N2O Product Usage (MMT CO2 Eq. and Percent) 4-141

1	Table 4-112: NO _x , CO, and NMVOC Emissions from Industrial Processes and Product Use (kt)	4-142
2	Table 5-1: Emissions from Agriculture (MMT CO ₂ Eq.)	5-2
3	Table 5-2: Emissions from Agriculture (kt)	5-2
4	Table 5-3: CH ₄ Emissions from Enteric Fermentation (MMT CO ₂ Eq.)	5-3
5	Table 5-4: CH4 Emissions from Enteric Fermentation (kt)	5-4
6	Table 5-5: Cattle Sub-Population Categories for 2018 Population Estimates	5-6
7 8	Table 5-6: Approach 2 Quantitative Uncertainty Estimates for CH ₄ Emissions from Enteric Fermentation (Eq. and Percent)	
9	Table 5-7: CH_4 and N_2O Emissions from Manure Management (MMT CO_2 Eq.)	5-12
10	Table 5-8: CH4 and N2O Emissions from Manure Management (kt)	5-12
11 12	Table 5-9: Approach 2 Quantitative Uncertainty Estimates for CH4 and N2O (Direct and Indirect) Emissions Manure Management (MMT CO2 Eq. and Percent)	
13 14	Table 5-10: IPCC (2006) Implied Emission Factor Default Values Compared with Calculated Values for CH4 Manure Management (kg/head/year)	
15	Table 5-11: CH ₄ Emissions from Rice Cultivation (MMT CO_2 Eq.)	5-19
16	Table 5-12: CH ₄ Emissions from Rice Cultivation (kt)	5-20
17	Table 5-13: Rice Area Harvested (1,000 Hectares)	5-22
18	Table 5-14: Average Ratooned Area as Percent of Primary Growth Area (Percent)	5-23
19 20	Table 5-15: Approach 2 Quantitative Uncertainty Estimates for CH ₄ Emissions from Rice Cultivation (MMT and Percent)	CO2 Eq.
21	Table 5-16: N ₂ O Emissions from Agricultural Soils (MMT CO ₂ Eq.)	5-28
22	Table 5-17: N ₂ O Emissions from Agricultural Soils (kt)	5-28
23	Table 5-18: Direct N ₂ O Emissions from Agricultural Soils by Land Use Type and N Input Type (MMT CO_2 Eq	ı.) 5-28
24	Table 5-19: Indirect N ₂ O Emissions from Agricultural Soils (MMT CO ₂ Eq.)	5-29
25 26	Table 5-20: Quantitative Uncertainty Estimates of N ₂ O Emissions from Agricultural Soil Management in 20 (MMT CO ₂ Eq. and Percent)	
27	Table 5-21: Emissions from Liming (MMT CO ₂ Eq.)	5-45
28	Table 5-22: Emissions from Liming (MMT C)	5-45
29	Table 5-23: Applied Minerals (MMT)	5-46
30 31	Table 5-24: Approach 2 Quantitative Uncertainty Estimates for CO ₂ Emissions from Liming (MMT CO ₂ Eq. Percent)	
32	Table 5-25: CO ₂ Emissions from Urea Fertilization (MMT CO ₂ Eq.)	5-48
33	Table 5-26: CO ₂ Emissions from Urea Fertilization (MMT C)	5-48
34	Table 5-27: Applied Urea (MMT)	5-48
35 36	Table 5-28: Quantitative Uncertainty Estimates for CO_2 Emissions from Urea Fertilization (MMT CO_2 Eq. a Percent)	
37	Table 5-29: CH ₄ and N ₂ O Emissions from Field Burning of Agricultural Residues (MMT CO ₂ Eq.)	5-50
38	Table 5-30: CH ₄ , N ₂ O, CO, and NO _x Emissions from Field Burning of Agricultural Residues	5-51

1	Table 5-31: Agricultural Crop Production (kt of Product)	5-54
2	Table 5-32: U.S. Average Percent Crop Area Burned by Crop (Percent)	5-55
3	Table 5-33: Parameters for Estimating Emissions from Field Burning of Agricultural Residues	5-55
4	Table 5-34: Greenhouse Gas Emission Ratios and Conversion Factors	5-56
5 6	Table 5-35: Approach 2 Quantitative Uncertainty Estimates for CH4 and N2O Emissions from Field Burning of Agricultural Residues (MMT CO2 Eq. and Percent)	5-57
7	Table 6-1: Net CO ₂ Flux from Land Use, Land-Use Change, and Forestry (MMT CO ₂ Eq.)	6-2
8	Table 6-2: Emissions from Land Use, Land-Use Change, and Forestry by Gas (MMT CO_2 Eq.)	6-3
9	Table 6-3: Emissions and Removals (Net Flux) from Land Use, Land-Use Change, and Forestry (MMT CO_2 Eq.).	6-4
10	Table 6-4: Emissions and Removals from Land Use, Land-Use Change, and Forestry (MMT CO ₂ Eq.)	6-6
11	Table 6-5: Emissions and Removals from Land Use, Land-Use Change, and Forestry (kt)	6-7
12 13	Table 6-6: Managed and Unmanaged Land Area by Land-Use Categories for All 50 States (Thousands of Hecta	
14 15	Table 6-7: Land Use and Land-Use Change for the U.S. Managed Land Base for All 50 States (Thousands of Hectares)	6-10
16 17	Table 6-8: Data Sources Used to Determine Land Use and Land Area for the Conterminous United States, Haw and Alaska	
18	Table 6-9: Total Land Area (Hectares) by Land-Use Category for U.S. Territories	6-22
19 20	Table 6-10: Net CO ₂ Flux from Forest Ecosystem Pools in <i>Forest Land Remaining Forest Land</i> and Harvested W Pools (MMT CO ₂ Eq.)	
21 22	Table 6-11: Net C Flux from Forest Ecosystem Pools in Forest Land Remaining Forest Land and Harvested Woo Pools (MMT C)	
23 24	Table 6-12: Forest Area (1,000 ha) and C Stocks in Forest Land Remaining Forest Land and Harvested Wood Po (MMT C)	
25 26	Table 6-13: Estimates of CO ₂ (MMT per Year) Emissions from Forest Fires in the Conterminous 48 States and Alaska ^a	6-31
27 28	Table 6-14: Quantitative Uncertainty Estimates for Net CO ₂ Flux from <i>Forest Land Remaining Forest Land</i> : Chain Forest C Stocks (MMT CO ₂ Eq. and Percent)	-
29 30	Table 6-15: Recalculations of Forest Area (1,000 ha) and C Stocks in Forest Land Remaining Forest Land and Harvested Wood Pools (MMT C)	6-36
31 32	Table 6-16: Recalculations of Net C Flux from Forest Ecosystem Pools in Forest Land Remaining Forest Land an Harvested Wood Pools (MMT C)	
33	Table 6-17: Non-CO ₂ Emissions from Forest Fires (MMT CO ₂ Eq.) ^a	6-38
34	Table 6-18: Non-CO ₂ Emissions from Forest Fires (kt) ^a	6-38
35 36	Table 6-19: Quantitative Uncertainty Estimates of Non-CO $_2$ Emissions from Forest Fires (MMT CO $_2$ Eq. and Percent) ^a	6-39
37 38	Table 6-20: N_2O Fluxes from Soils in Forest Land Remaining Forest Land and Land Converted to Forest Land (N_2O_2 Eq. and kt N_2O)	
39 40	Table 6-21: Quantitative Uncertainty Estimates of N ₂ O Fluxes from Soils in <i>Forest Land Remaining Forest Land Land Converted to Forest Land</i> (MMT CO ₂ Eq. and Percent)	

1	Table 6-22: Non-CO ₂ Emissions from Drained Organic Forest Soils ^{a,b} (MMT CO ₂ Eq.)	. 6-43
2	Table 6-23: Non-CO ₂ Emissions from Drained Organic Forest Soils ^{a,b} (kt)	. 6-43
3 4	Table 6-24: States identified as having Drained Organic Soils, Area of Forest on Drained Organic Soils, and Sampling Error	. 6-44
5 6	Table 6-25: Quantitative Uncertainty Estimates for Non-CO2 Emissions on Drained Organic Forest Soils (MMT Eq. and Percent) ^a	
7 8	Table 6-26: Net CO ₂ Flux from Forest C Pools in <i>Land Converted to Forest Land</i> by Land Use Change Category (CO ₂ Eq.)	•
9 10	Table 6-27: Net C Flux from Forest C Pools in <i>Land Converted to Forest Land</i> by Land Use Change Category (M C)	
11 12	Table 6-28: Quantitative Uncertainty Estimates for Forest C Pool Stock Changes (MMT CO ₂ Eq. per Year) in 20 from <i>Land Converted to Forest Land</i> by Land Use Change	
13 14	Table 6-29: Recalculations of the Net C Flux from Forest C Pools in Land Converted to Forest Land by Land Use Change Category (MMT C)	
15	Table 6-30: Net CO ₂ Flux from Soil C Stock Changes in <i>Cropland Remaining Cropland</i> (MMT CO ₂ Eq.)	. 6-54
16	Table 6-31: Net CO ₂ Flux from Soil C Stock Changes in <i>Cropland Remaining Cropland</i> (MMT C)	. 6-54
17 18	Table 6-32: Approach 2 Quantitative Uncertainty Estimates for Soil C Stock Changes occurring within <i>Croplane Remaining Cropland</i> (MMT CO ₂ Eq. and Percent)	
19 20	Table 6-33: Area of Managed Land in Cropland Remaining Cropland that is not included in the current Invento (Thousand Hectares)	
21 22	Table 6-34: Net CO ₂ Flux from Soil, Dead Organic Matter and Biomass C Stock Changes in <i>Land Converted to Cropland</i> by Land Use Change Category (MMT CO ₂ Eq.)	. 6-65
23 24	Table 6-35: Net CO ₂ Flux from Soil, Dead Organic Matter and Biomass C Stock Changes in <i>Land Converted to Cropland</i> (MMT C)	. 6-65
25 26	Table 6-36: Approach 2 Quantitative Uncertainty Estimates for Soil, Dead Organic Matter and Biomass C Stoc Changes occurring within <i>Land Converted to Cropland</i> (MMT CO ₂ Eq. and Percent)	
27 28	Table 6-37: Area of Managed Land in Land Converted to Cropland that is not included in the current Inventory (Thousand Hectares)	
29 30	Table 6-38: Net CO ₂ Flux from Soil, Dead Organic Matter and Biomass C Stock Changes in <i>Grassland Remainin Grassland</i> (MMT CO ₂ Eq.)	-
31 32	Table 6-39: Net CO ₂ Flux from Soil, Dead Organic Matter and Biomass C Stock Changes in <i>Grassland Remainin</i> <i>Grassland</i> (MMT C)	-
33 34	Table 6-40: Approach 2 Quantitative Uncertainty Estimates for C Stock Changes Occurring Within <i>Grassland</i> <i>Remaining Grassland</i> (MMT CO ₂ Eq. and Percent)	. 6-77
35 36	Table 6-41: Area of Managed Land in <i>Grassland Remaining Grassland</i> in Alaska that is not included in the curr Inventory (Thousand Hectares)	
37	Table 6-42: CH4 and N2O Emissions from Biomass Burning in Grassland (MMT CO2 Eq.)	. 6-79
38	Table 6-43: CH ₄ , N ₂ O, CO, and NO _x Emissions from Biomass Burning in Grassland (kt)	. 6-80
39	Table 6-44: Thousands of Grassland Hectares Burned Annually	. 6-80
40 41	Table 6-45: Uncertainty Estimates for Non-CO ₂ Greenhouse Gas Emissions from Biomass Burning in Grassland (MMT CO ₂ Eq. and Percent)	

1 2	Table 6-46: Net CO2 Flux from Soil, Dead Organic Matter and Biomass C Stock Changes for Land Converted toGrassland (MMT CO2 Eq.)6-83
3 4	Table 6-47: Net CO2 Flux from Soil, Dead Organic Matter and Biomass C Stock Changes for Land Converted toGrassland (MMT C)6-83
5 6	Table 6-48: Approach 2 Quantitative Uncertainty Estimates for Soil, Dead Organic Matter and Biomass C Stock Changes occurring within <i>Land Converted to Grassland</i> (MMT CO ₂ Eq. and Percent)
7 8	Table 6-49: Area of Managed Land in Land Converted to Grassland in Alaska that is not included in the currentInventory (Thousand Hectares)6-89
9	Table 6-50: Emissions from Peatlands Remaining Peatlands (MMT CO2 Eq.)
10	Table 6-51: Emissions from Peatlands Remaining Peatlands (kt)
11	Table 6-52: Peat Production of Lower 48 States (kt) 6-93
12	Table 6-53: Peat Production of Alaska (Thousand Cubic Meters) 6-93
13	Table 6-54: Peat Production Area of Lower 48 States (hectares) 6-93
14	Table 6-55: Peat Production Area of Alaska (hectares) 6-94
15	Table 6-56: Peat Production (hectares) 6-94
16 17	Table 6-57: Approach 2 Quantitative Uncertainty Estimates for CO ₂ , CH ₄ , and N ₂ O Emissions from <i>Peatlands</i> <i>Remaining Peatlands</i> (MMT CO ₂ Eq. and Percent)
18 19	Table 6-58: CO2 Flux from C Stock Changes in Vegetated Coastal Wetlands Remaining Vegetated Coastal Wetlands (MMT CO2 Eq.) 6-98
20 21	Table 6-59: CO2 Flux from C Stock Changes in Vegetated Coastal Wetlands Remaining Vegetated Coastal Wetlands (MMT C) 6-98
22 23	Table 6-60: CH ₄ Emissions from Vegetated Coastal Wetlands Remaining Vegetated Coastal Wetlands (MMT CO ₂ Eq. and kt CH ₄)
24 25	Table 6-61: Approach 1 Quantitative Uncertainty Estimates for C Stock Changes and CH ₄ Emissions occurring within <i>Vegetated Coastal Wetlands Remaining Vegetated Coastal Wetlands</i> (MMT CO ₂ Eq. and Percent) 6-100
26 27	Table 6-62: CO2 Flux from C Stock Changes in Vegetated Coastal Wetlands Converted to Unvegetated Open WaterCoastal Wetlands (MMT CO2 Eq.)6-102
28 29	Table 6-63: CO2 Flux from C Stock Changes in Vegetated Coastal Wetlands Converted to Unvegetated Open Water Coastal Wetlands (MMT C)
30 31	Table 6-64: Approach 1 Quantitative Uncertainty Estimates for CO ₂ Flux Occurring within <i>Vegetated Coastal Wetlands Converted to Unvegetated Open Water Coastal Wetlands</i> (MMT CO ₂ Eq. and Percent)
32 33	Table 6-65: CO ₂ Flux from C Stock Changes from Unvegetated Open Water Coastal Wetlands Converted to Vegetated Coastal Wetlands (MMT CO ₂ Eq.)
34 35	Table 6-66: CO2 Flux from C Stock Changes from Unvegetated Open Water Coastal Wetlands Converted toVegetated Coastal Wetlands (MMT C)6-105
36 37	Table 6-67: Approach 1 Quantitative Uncertainty Estimates for C Stock Changes Occurring within Unvegetated Open Water Coastal Wetlands Converted to Vegetated Coastal Wetlands (MMT CO ₂ Eq. and Percent)
38	Table 6-68: N ₂ O Emissions from Aquaculture in Coastal Wetlands (MMT CO ₂ Eq. and kt N ₂ O)
39 40	Table 6-69: Approach 1 Quantitative Uncertainty Estimates for N ₂ O Emissions for Aquaculture Production in Coastal Wetlands (MMT CO ₂ Eq. and Percent)
41	Table 6-70: CO ₂ Flux from C Stock Changes in Land Converted to Vegetated Coastal Wetlands (MMT CO ₂ Eq.) 6-110

1	Table 6-71: CO ₂ Flux from C Stock Changes in Land Converted to Vegetated Coastal Wetlands (MMT C) 6-110
2	Table 6-72: CH ₄ Emissions from Land Converted to Vegetated Coastal Wetlands (MMT CO ₂ Eq. and kt CH ₄) 6-110
3 4	Table 6-73: Approach 1 Quantitative Uncertainty Estimates for C Stock Changes occurring within Land Converted to Vegetated Coastal Wetlands (MMT CO ₂ Eq. and Percent)
5	Table 6-74: Net CO ₂ Flux from Soil C Stock Changes in Settlements Remaining Settlements (MMT CO ₂ Eq.) 6-114
6	Table 6-75: Net CO ₂ Flux from Soil C Stock Changes in Settlements Remaining Settlements (MMT C)
7	Table 6-76: Thousands of Hectares of Drained Organic Soils in Settlements Remaining Settlements
8 9	Table 6-77: Uncertainty Estimates for CO2 Emissions from Drained Organic Soils in Settlements RemainingSettlements (MMT CO2 Eq. and Percent)
10 11	Table 6-78: Area of Managed Land in Settlements Remaining Settlements that is not included in the current Inventory (Thousand Hectares) 6-116
12 13	Table 6-79: Net Flux from Settlement Trees in <i>Settlements Remaining Settlements</i> (MMT CO ₂ Eq. and MMT C) ^a 6-117
14 15	Table 6-80: Carbon Storage (kg C/m ² tree cover), Gross and Net Sequestration (kg C/m ² tree cover/year) and Tree Cover (percent) among Sampled U.S. Cities (see Nowak et al. 2013)
16 17 18	Table 6-81: Estimated Annual C Sequestration (Metric Tons C/Year), Tree Cover (Percent), and Annual CSequestration per Area of Tree Cover (kg C/m²/ year) for settlement areas in United States by State and the Districtof Columbia (2018)6-122
19 20	Table 6-82: Approach 2 Quantitative Uncertainty Estimates for Net CO2 Flux from Changes in C Stocks inSettlement Trees (MMT CO2 Eq. and Percent)6-123
21	Table 6-83: N ₂ O Emissions from Soils in Settlements Remaining Settlements (MMT CO ₂ Eq. and kt N ₂ O)
22 23	Table 6-84: Quantitative Uncertainty Estimates of N2O Emissions from Soils in Settlements Remaining Settlements(MMT CO2 Eq. and Percent)
24	Table 6-85: Net Changes in Yard Trimmings and Food Scrap Carbon Stocks in Landfills (MMT CO ₂ Eq.)
25	Table 6-86: Net Changes in Yard Trimmings and Food Scrap Carbon Stocks in Landfills (MMT C)
26 27	Table 6-87: Moisture Contents, C Storage Factors (Proportions of Initial C Sequestered), Initial C Contents, andDecay Rates for Yard Trimmings and Food Scraps in Landfills6-132
28	Table 6-88: C Stocks in Yard Trimmings and Food Scraps in Landfills (MMT C) 6-132
29 30	Table 6-89: Approach 2 Quantitative Uncertainty Estimates for CO ₂ Flux from Yard Trimmings and Food Scraps in Landfills (MMT CO ₂ Eq. and Percent)
31 32	Table 6-90: Net CO2 Flux from Soil, Dead Organic Matter and Biomass C Stock Changes for Land Converted toSettlements (MMT CO2 Eq.)6-134
33 34	Table 6-91: Net CO2 Flux from Soil, Dead Organic Matter and Biomass C Stock Changes for Land Converted toSettlements (MMT C)6-135
35 36	Table 6-92: Approach 2 Quantitative Uncertainty Estimates for Soil, Dead Organic Matter and Biomass C Stock Changes occurring within <i>Land Converted to Settlements</i> (MMT CO ₂ Eq. and Percent)
37 38	Table 6-93: Area of Managed Land in Settlements Remaining Settlements that is not included in the current Inventory (Thousand Hectares) 6-139
39	Table 7-1: Emissions from Waste (MMT CO ₂ Eq.)
40	Table 7-2: Emissions from Waste (kt) 7-2

1	Table 7-3: CH ₄ Emissions from Landfills (MMT CO ₂ Eq.)	. 7-5
2	Table 7-4: CH ₄ Emissions from Landfills (kt)	. 7-6
3 4	Table 7-5: Approach 2 Quantitative Uncertainty Estimates for CH ₄ Emissions from Landfills (MMT CO ₂ Eq. and Percent)	7-11
5	Table 7-6: Materials Discarded ^a in the Municipal Waste Stream by Waste Type from 1990 to 2017 (Percent) ^b	7-16
6	Table 7-7: CH ₄ and N ₂ O Emissions from Domestic and Industrial Wastewater Treatment (MMT CO ₂ Eq.)	7-18
7	Table 7-8: CH ₄ and N ₂ O Emissions from Domestic and Industrial Wastewater Treatment (kt)	7-19
8	Table 7-9: U.S. Population (Millions) and Domestic Wastewater BOD₅ Produced (kt)	7-21
9 10	Table 7-10: Domestic Wastewater CH ₄ Emissions from Septic and Centralized Systems (2018, MMT CO ₂ Eq. and Percent)	
11	Table 7-11: Industrial Wastewater CH ₄ Emissions by Sector (2018, MMT CO ₂ Eq. and Percent)	7-23
12 13	Table 7-12: U.S. Pulp and Paper, Meat, Poultry, Vegetables, Fruits and Juices, Ethanol, Breweries, and Petroleu Refining Production (MMT)	
14	Table 7-13: Variables Used to Calculate Percent Wastewater Treated Anaerobically by Industry (Percent)	7-24
15 16	Table 7-14: Wastewater Flow (m ³ /ton) and BOD Production (g/L) for U.S. Vegetables, Fruits, and Juices Produc	
17	Table 7-15: Wastewater Treatment Distribution for Breweries	7-29
18 19 20	Table 7-16: U.S. Population (Millions), Population Served by Biological Denitrification (Millions), Fraction of Population Served by Wastewater Treatment (percent), Available Protein (kg/person-year), Protein Consumed (kg/person-year), and Nitrogen Removed with Sludge (kt-N/year)	7-32
21 22	Table 7-17: Approach 2 Quantitative Uncertainty Estimates for CH ₄ Emissions from Wastewater Treatment (M CO ₂ Eq. and Percent)	
23	Table 7-18: CH ₄ and N ₂ O Emissions from Composting (MMT CO ₂ Eq.)	7-36
24	Table 7-19: CH ₄ and N ₂ O Emissions from Composting (kt)	7-36
25	Table 7-20: U.S. Waste Composted (kt)	7-36
26 27	Table 7-21: Tier 1 Quantitative Uncertainty Estimates for Emissions from Composting (MMT CO ₂ Eq. and Perce	
28	Table 7-22: Emissions of NO _x , CO, and NMVOC from Waste (kt)	7-39
29	Table 9-1: Revisions to U.S. Greenhouse Gas Emissions (MMT CO ₂ Eq.)	. 9-4
30 31	Table 9-2: Revisions to U.S. Greenhouse Gas Emissions and Removals (Net Flux) from Land Use, Land-Use Char and Forestry (MMT CO_2 Eq.)	

32 Figures

33	Figure ES-1: Gross U.S. Greenhouse Gas Emissions by Gas (MMT CO ₂ Eq.)ES	-5
34	Figure ES-2: Annual Percent Change in Gross U.S. Greenhouse Gas Emissions Relative to the Previous YearES	- 5
35 36	Figure ES-3: Cumulative Change in Annual Gross U.S. Greenhouse Gas Emissions Relative to 1990 (1990=0, MMT CO ₂ Eq.)ES	
37	Figure ES-4: 2018 U.S. Greenhouse Gas Emissions by Gas (Percentages based on MMT CO2 Eq.)ES-	10
38	Figure ES-5: 2018 Sources of CO ₂ Emissions (MMT CO ₂ Eq.)ES-	11

1	Figure ES-6: 2018 CO ₂ Emissions from Fossil Fuel Combustion by Sector and Fuel Type (MMT CO ₂ Eq.)	ES-12
2	Figure ES-7: 2018 End-Use Sector Emissions of CO_2 from Fossil Fuel Combustion (MMT CO_2 Eq.)	ES-13
3	Figure ES-8: Electric Power Generation (Billion kWh) and Emissions (MMT CO ₂ Eq.)	ES-15
4	Figure ES-9: 2018 Sources of CH ₄ Emissions (MMT CO ₂ Eq.)	ES-17
5	Figure ES-10: 2018 Sources of N ₂ O Emissions (MMT CO ₂ Eq.)	ES-18
6	Figure ES-11: 2018 Sources of HFCs, PFCs, SF ₆ , and NF ₃ Emissions (MMT CO ₂ Eq.)	ES-19
7	Figure ES-12: U.S. Greenhouse Gas Emissions and Sinks by Chapter/IPCC Sector (MMT CO ₂ Eq.)	ES-20
8	Figure ES-13: 2018 U.S. Energy Consumption by Energy Source (Percent)	ES-22
9	Figure ES-14: U.S. Greenhouse Gas Emissions Allocated to Economic Sectors (MMT CO ₂ Eq.)	ES-26
10 11	Figure ES-15: U.S. Greenhouse Gas Emissions with Electricity-Related Emissions Distributed to Economic (MMT CO ₂ Eq.)	
12	Figure ES-16: U.S. Greenhouse Gas Emissions Per Capita and Per Dollar of Gross Domestic Product (GDP)	ES-29
13	Figure ES-17: 2018 Key Categories (MMT CO_2 Eq.) ^a	ES-30
14	Figure 1-1: National Inventory Arrangements Diagram Inventory Process Inventory Process	1-12
15	Figure 1-2: U.S. QA/QC Plan Summary	1-23
16	Figure 2-1: Gross U.S. Greenhouse Gas Emissions by Gas (MMT CO ₂ Eq.)	2-2
17	Figure 2-2: Annual Percent Change in Gross U.S. Greenhouse Gas Emissions Relative to the Previous Year	2-2
18 19	Figure 2-3: Cumulative Change in Annual Gross U.S. Greenhouse Gas Emissions Relative to 1990 (1990=0 CO ₂ Eq.)	-
20	Figure 2-4: U.S. Greenhouse Gas Emissions and Sinks by Chapter/IPCC Sector (MMT CO ₂ Eq.)	2-8
21	Figure 2-5: 2018 Energy Chapter Greenhouse Gas Sources (MMT CO ₂ Eq.)	2-10
22	Figure 2-6: 2018 U.S. Fossil Carbon Flows (MMT CO ₂ Eq.)	2-11
23	Figure 2-7: 2018 CO ₂ Emissions from Fossil Fuel Combustion by Sector and Fuel Type (MMT CO ₂ Eq.)	2-14
24	Figure 2-8: 2018 End-Use Sector Emissions of CO ₂ from Fossil Fuel Combustion (MMT CO ₂ Eq.)	2-14
25	Figure 2-9: Electric Power Generation (Billion kWh) and Emissions (MMT CO ₂ Eq.)	2-15
26	Figure 2-10: 2018 Industrial Processes and Product Use Chapter Greenhouse Gas Sources (MMT CO ₂ Eq.)	2-17
27	Figure 2-11: 2018 Agriculture Chapter Greenhouse Gas Sources (MMT CO ₂ Eq.)	2-19
28	Figure 2-12: 2018 LULUCF Chapter Greenhouse Gas Sources and Sinks (MMT CO ₂ Eq.)	2-21
29	Figure 2-13: 2018 Waste Chapter Greenhouse Gas Sources (MMT CO ₂ Eq.)	2-23
30	Figure 2-14: U.S. Greenhouse Gas Emissions Allocated to Economic Sectors (MMT CO ₂ Eq.)	2-25
31 32	Figure 2-15: U.S. Greenhouse Gas Emissions with Electricity-Related Emissions Distributed to Economic S (MMT CO ₂ Eq.)	
33	Figure 2-16: U.S. Greenhouse Gas Emissions Per Capita and Per Dollar of Gross Domestic Product	2-36
34	Figure 3-1: 2018 Energy Chapter Greenhouse Gas Sources (MMT CO ₂ Eq.)	3-2
35	Figure 3-2: 2018 U.S. Fossil Carbon Flows (MMT CO ₂ Eq.)	3-2
36	Figure 3-3: 2018 U.S. Energy Use by Energy Source (Percent)	3-9

1	Figure 3-4: U.S. Energy Use (Quadrillion Btu)
2	Figure 3-5: 2018 CO ₂ Emissions from Fossil Fuel Combustion by Sector and Fuel Type (MMT CO ₂ Eq.)
3 4	Figure 3-6: Annual Deviations from Normal Heating Degree Days for the United States (1950–2018, Index Normal = 100)
5 6	Figure 3-7: Annual Deviations from Normal Cooling Degree Days for the United States (1950–2018, Index Normal = 100)
7	Figure 3-8: Fuels Used in Electric Power Generation (TBtu) and Total Electric Power Sector CO ₂ Emissions 3-17
8	Figure 3-9: Electric Power Retail Sales by End-Use Sector (Billion kWh)
9	Figure 3-10: Industrial Production Indices (Index 2012=100)
10 11	Figure 3-11: Fuels Used in Residential and Commercial Sectors (TBtu), Heating and Cooling Degree Days, and Total Sector CO ₂ Emissions
12	Figure 3-12: Fuels Used in Transportation Sector (TBtu), Onroad VMT, and Total Sector CO2 Emissions
13 14	Figure 3-13: Sales-Weighted Fuel Economy of New Passenger Cars and Light-Duty Trucks, 1990–2018 (miles/gallon)
15	Figure 3-14: Sales of New Passenger Cars and Light-Duty Trucks, 1990–2018 (Percent)
16	Figure 3-15: Mobile Source CH ₄ and N ₂ O Emissions (MMT CO ₂ Eq.)
17	Figure 3-16: U.S. Energy Consumption and Energy-Related CO ₂ Emissions Per Capita and Per Dollar GDP
18	Figure 4-1: 2018 Industrial Processes and Product Use Chapter Greenhouse Gas Sources (MMT CO ₂ Eq.)
19	Figure 4-2: U.S. HFC Consumption (MMT CO ₂ Eq.)
20	Figure 5-1: 2018 Agriculture Chapter Greenhouse Gas Emission Sources (MMT CO ₂ Eq.)
21	Figure 5-2: Annual CH ₄ Emissions from Rice Cultivation, 2015 (MT CO ₂ Eq./Year)
22	Figure 5-3: Sources and Pathways of N that Result in N ₂ O Emissions from Agricultural Soil Management 5-27
23 24	Figure 5-4: Crops, 2015 Annual Direct N ₂ O Emissions Estimated Using the Tier 3 DayCent Model (MT CO ₂ Eq./ha/year)
25 26	Figure 5-5: Grasslands, 2015 Annual Direct N ₂ O Emissions Estimated Using the Tier 3 DayCent Model (MT CO ₂ Eq./ha/year)
27 28	Figure 5-6: Crops, 2015 Annual Indirect N2O Emissions from Volatilization Using the Tier 3 DayCent Model (MT CO2 Eq./ha/year)
29 30	Figure 5-7: Grasslands, 2015 Annual Indirect N2O Emissions from Volatilization Using the Tier 3 DayCent Model (MT CO2 Eq./ha/year)
31 32	Figure 5-8: Crops, 2015 Annual Indirect N2O Emissions from Leaching and Runoff Using the Tier 3 DayCent Model (MT CO2 Eq./ha/year)
33 34	Figure 5-9: Grasslands, 2015 Annual Indirect N ₂ O Emissions from Leaching and Runoff Using the Tier 3 DayCent Model (MT CO ₂ Eq./ha/year)
35	Figure 6-1: 2017 LULUCF Chapter Greenhouse Gas Sources and Sinks (MMT CO ₂ Eq.)
36	Figure 6-2: Percent of Total Land Area for Each State in the General Land-Use Categories for 2018
37 38	Figure 6-3: Changes in Forest Area by Region for <i>Forest Land Remaining Forest Land</i> in the conterminous United States and Alaska (1990-2018, Million Hectares)

1 2	Figure 6-4: Estimated Net Annual Changes in C Stocks for All C Pools in <i>Forest Land Remaining Forest Land</i> in the Conterminous U.S. and Alaska (1990-2018, MMT C per Year)
3 4	Figure 6-5: Total Net Annual Soil C Stock Changes for Mineral Soils under Agricultural Management within States, 2015, Cropland Remaining Cropland
5 6	Figure 6-6: Total Net Annual Soil C Stock Changes for Organic Soils under Agricultural Management within States, 2015, Cropland Remaining Cropland
7 8	Figure 6-7: Total Net Annual Soil C Stock Changes for Mineral Soils under Agricultural Management within States, 2015, Grassland Remaining Grassland
9 10	Figure 6-8: Total Net Annual Soil C Stock Changes for Organic Soils under Agricultural Management within States, 2015, Grassland Remaining Grassland
11	Figure 7-1: 2018 Waste Chapter Greenhouse Gas Sources (MMT CO ₂ Eq.)
12	Figure 7-2: Timeline of Methodologies Used to Compile the U.S. Inventory Emission Estimates for MSW Landfills 7-7
13	Figure 7-3: Management of Municipal Solid Waste in the United States, 2017
14	Figure 7-4: MSW Management Trends from 1990 to 20177-15
15	Figure 7-5: Percent of Degradable Materials Diverted from Landfills from 1990 to 2017 (Percent)

16 **Boxes**

17	Box ES- 1: Methodological Approach for Estimating and Reporting U.S. Emissions and Removals	ES-1
18	Box ES- 2: EPA's Greenhouse Gas Reporting Program	ES-2
19	Box ES-3: Improvements and Recalculations Relative to the Previous Inventory	ES-6
20	Box ES-4: Use of Ambient Measurements Systems for Validation of Emission Inventories	ES-15
21	Box ES-5: Recent Trends in Various U.S. Greenhouse Gas Emissions-Related Data	ES-28
22	Box 1-1: Methodological Approach for Estimating and Reporting U.S. Emissions and Removals	1-2
23	Box 1-2: The IPCC Fifth Assessment Report and Global Warming Potentials	. 1-10
24	Box 1-3: IPCC Reference Approach	. 1-16
25	Box 2-1: Methodology for Aggregating Emissions by Economic Sector	. 2-33
26	Box 2-2: Recent Trends in Various U.S. Greenhouse Gas Emissions-Related Data	. 2-35
27	Box 2-3: Sources and Effects of Sulfur Dioxide	. 2-38
28	Box 3-1: Methodological Approach for Estimating and Reporting U.S. Emissions and Removals	3-4
29	Box 3-2: Energy Data from EPA's Greenhouse Gas Reporting Program	3-5
30	Box 3-3: Weather and Non-Fossil Energy Effects on CO2 Emissions from Fossil Fuel Combustion Trends	. 3-10
31 32	Box 3-4: Uses of Greenhouse Gas Reporting Program Data and Improvements in Reporting Emissions from Industrial Sector Fossil Fuel Combustion	. 3-32
33	Box 3-5: Carbon Intensity of U.S. Energy Consumption	. 3-33
34	Box 3-6: Reporting of Lubricants, Waxes, and Asphalt and Road Oil Product Use in Energy Sector	. 3-52
35	Box 3-7: Carbon Dioxide Transport, Injection, and Geological Storage	. 3-81
36	Box 4-1: Methodological Approach for Estimating and Reporting U.S. Emissions and Removals	4-7
37	Box 4-2: Industrial Process and Product Use Data from EPA's Greenhouse Gas Reporting Program	4-7

1	Box 5-1:	Methodological Approach for Estimating and Reporting U.S. Emissions and Removals	5-2
2	Box 5-2:	Surrogate Data Method	5-23
3	Box 5-3:	Tier 1 vs. Tier 3 Approach for Estimating N ₂ O Emissions	5-35
4	Box 5-4:	Surrogate Data Method	5-36
5	Box 5-5:	Comparison of the Tier 2 U.S. Inventory Approach and IPCC (2006) Default Approach	5-46
6	Box 5-6:	Comparison of Tier 2 U.S. Inventory Approach and IPCC (2006) Default Approach	5-53
7	Box 6-1:	Methodological Approach for Estimating and Reporting U.S. Emissions and Removals	6-8
8	Box 6-2:	Preliminary Estimates of Land Use in U.S. Territories	6-22
9	Box 6-3:	CO2 Emissions from Forest Fires	6-30
10	Box 6-4:	Surrogate Data Method	6-57
11	Box 6-5:	Tier 3 Approach for Soil C Stocks Compared to Tier 1 or 2 Approaches	6-58
12	Box 7-1:	Methodological Approach for Estimating and Reporting U.S. Emissions and Removals	7-2
13	Box 7-2:	Waste Data from EPA's Greenhouse Gas Reporting Program	7-3
14	Box 7-3:	Nationwide Municipal Solid Waste Data Sources	7-14
15	Box 7-4:	Overview of U.S. Solid Waste Management Trends	7-14
16	Box 7-5:	Description of a Modern, Managed Landfill	7-17

17

2 Executive Summary

3 An emissions inventory that identifies and quantifies a country's anthropogenic¹ sources and sinks of greenhouse

4 gases is essential for addressing climate change. This inventory adheres to both (1) a comprehensive and detailed

5 set of methodologies for estimating sources and sinks of anthropogenic greenhouse gases, and (2) a common and

6 consistent format that enables Parties to the United Nations Framework Convention on Climate Change (UNFCCC)

7 to compare the relative contribution of different emission sources and greenhouse gases to climate change.

8 In 1992, the United States signed and ratified the UNFCCC. As stated in Article 2 of the UNFCCC, "The ultimate

9 objective of this Convention and any related legal instruments that the Conference of the Parties may adopt is to

achieve, in accordance with the relevant provisions of the Convention, stabilization of greenhouse gas

11 concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the

12 climate system. Such a level should be achieved within a time-frame sufficient to allow ecosystems to adapt

13 naturally to climate change, to ensure that food production is not threatened and to enable economic

14 development to proceed in a sustainable manner."²

15 Parties to the Convention, by ratifying, "shall develop, periodically update, publish and make available...national

16 inventories of anthropogenic emissions by sources and removals by sinks of all greenhouse gases not controlled by

17 the Montreal Protocol, using comparable methodologies..."³ The United States views this report as an opportunity

18 to fulfill these commitments.

19 This chapter summarizes the latest information on U.S. anthropogenic greenhouse gas emission trends from 1990

20 through 2018. To ensure that the U.S. emissions inventory is comparable to those of other UNFCCC Parties, the

21 estimates presented here were calculated using methodologies consistent with those recommended in the 2006

22 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC

23 2006). The structure of this report is consistent with the UNFCCC guidelines for inventory reporting, as discussed in

24 Box ES- 1.4

25 Box ES- 1: Methodological Approach for Estimating and Reporting U.S. Emissions and Removals

In following the UNFCCC requirement under Article 4.1 to develop and submit national greenhouse gas emission inventories, the emissions and removals presented in this report and this chapter, are organized by source and sink categories and calculated using internationally-accepted methods provided by the IPCC in the 2006 IPCC

¹ The term "anthropogenic," in this context, refers to greenhouse gas emissions and removals that are a direct result of human activities or are the result of natural processes that have been affected by human activities (IPCC 2006).

² Article 2 of the Framework Convention on Climate Change published by the UNEP/WMO Information Unit on Climate Change. See http://unfccc.int>.

³ Article 4(1)(a) of the United Nations Framework Convention on Climate Change (also identified in Article 12). Subsequent decisions by the Conference of the Parties elaborated the role of Annex I Parties in preparing national inventories. See .

⁴ See <http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>.

Guidelines for National Greenhouse Gas Inventories (2006 IPCC Guidelines). Additionally, the calculated emissions and removals in a given year for the United States are presented in a common manner in line with the UNFCCC reporting guidelines for the reporting of inventories under this international agreement. The use of consistent methods to calculate emissions and removals by all nations providing their inventories to the UNFCCC ensures that these reports are comparable. The presentation of emissions and removals provided in this Inventory does not preclude alternative examinations, but rather this Inventory presents emissions and removals in a common format consistent with how countries are to report Inventories under the UNFCCC. The report itself, and this chapter, follows this standardized format, and provides an explanation of the application of methods used to calculate emissions and removals.

1 2

Box ES- 2: EPA's Greenhouse Gas Reporting Program

On October 30, 2009, the U.S. Environmental Protection Agency (EPA) promulgated a rule requiring annual reporting of greenhouse gas data from large greenhouse gas emissions sources in the United States. Implementation of the rule, codified at 40 CFR Part 98, is referred to as EPA's Greenhouse Gas Reporting Program (GHGRP). The rule applies to direct greenhouse gas emitters, fossil fuel suppliers, industrial gas suppliers, and facilities that inject carbon dioxide (CO₂) underground for sequestration or other reasons.⁵ Annual reporting is at the facility level, except for certain suppliers of fossil fuels and industrial greenhouse gases. Facilities in most source categories subject to GHGRP began reporting for the 2010 reporting year while additional types of industrial operations began reporting for reporting year 2011.

EPA's GHGRP dataset and the data presented in this Inventory report are complementary. The Inventory was used to guide the development of the GHGRP, particularly in terms of scope and coverage of both sources and gases. The GHGRP dataset continues to be an important resource for the Inventory, providing not only annual emissions information, but also other annual information, such as activity data and emission factors that can improve and refine national emission estimates and trends over time. GHGRP data also allow EPA to disaggregate national inventory estimates in new ways that can highlight differences across regions and subcategories of emissions, along with enhancing application of QA/QC procedures and assessment of uncertainties.

EPA uses annual GHGRP data in a number of categories to improve the national estimates presented in this Inventory consistent with IPCC guidance. See Annex 9 for more information on uses of GHGRP data in the Inventory.

3

4 ES.1 Background Information

- 5 Greenhouse gases absorb infrared radiation, thereby trapping heat and making the planet warmer. The most
- 6 important greenhouse gases directly emitted by humans include carbon dioxide (CO₂), methane (CH₄), nitrous
- 7 oxide (N₂O), and several fluorine-containing halogenated substances. Although CO₂, CH₄, and N₂O occur naturally
- 8 in the atmosphere, human activities have changed their atmospheric concentrations. From the pre-industrial era
- 9 (i.e., ending about 1750) to 2018, concentrations of these greenhouse gases have increased globally by 46, 165,
- and 23 percent, respectively (IPCC 2013; NOAA/ESRL 2019a, 2019b, 2019c). This annual report estimates the total
- 11 national greenhouse gas emissions and removals associated with human activities across the United States.

⁵ See <http://www.epa.gov/ghgreporting> and <http://ghgdata.epa.gov/ghgp/main.do>.

1 Global Warming Potentials

- 2 Gases in the atmosphere can contribute to climate change both directly and indirectly. Direct effects occur when
- 3 the gas itself absorbs radiation. Indirect radiative forcing occurs when chemical transformations of the substance
- 4 produce other greenhouse gases, when a gas influences the atmospheric lifetimes of other gases, and/or when a
- 5 gas affects atmospheric processes that alter the radiative balance of the earth (e.g., affect cloud formation or
- 6 albedo).⁶ The IPCC developed the Global Warming Potential (GWP) concept to compare the ability of a greenhouse
- 7 gas to trap heat in the atmosphere relative to another gas.
- 8 The GWP of a greenhouse gas is defined as the ratio of the accumulated radiative forcing within a specific time
- 9 horizon caused by emitting 1 kilogram of the gas, relative to that of the reference gas CO₂ (IPCC 2014). Therefore
- 10 GWP-weighted emissions are provided in million metric tons of CO₂ equivalent (MMT CO₂ Eq.).^{7, 8} Estimates for all
- gases in this Executive Summary are presented in units of MMT CO₂ Eq. Emissions by gas in unweighted mass
- 12 kilotons are provided in the Trends chapter of this report and in the Common Reporting Format (CRF) tables that
- 13 are also part of the submission to the UNFCCC.
- 14 UNFCCC reporting guidelines for national inventories require the use of GWP values from the *IPCC Fourth*
- 15 Assessment Report (AR4) (IPCC 2007).⁹ All estimates are provided throughout the report in both CO₂ equivalents
- and unweighted units. A comparison of emission values using the AR4 GWP values versus the *IPCC Second*
- 17 Assessment Report (SAR) (IPCC 1996), and the IPCC Fifth Assessment Report (AR5) (IPCC 2013) GWP values can be
- 18 found in Chapter 1 and, in more detail, in Annex 6.1 of this report. The GWP values used in this report are listed
- 19 below in Table ES-1.

20 Table ES-1: Global Warming Potentials (100-Year Time Horizon) Used in this Report

Gas	GWP
CO ₂	1
CH ₄ ^a	25
N ₂ O	298
HFC-23	14,800
HFC-32	675
HFC-125	3,500
HFC-134a	1,430
HFC-143a	4,470
HFC-152a	124
HFC-227ea	3,220
HFC-236fa	9,810
HFC-4310mee	1,640
CF ₄	7,390
C_2F_6	12,200
C_3F_8	8,830
$C_4 F_6{}^b$	0.003
c-C ₅ F ₈ ^b	1.97
C ₄ F ₁₀	8,860
c-C ₄ F ₈	10,300
C ₅ F ₁₂	9,160

⁶ Albedo is a measure of the Earth's reflectivity and is defined as the fraction of the total solar radiation incident on a body that is reflected by it.

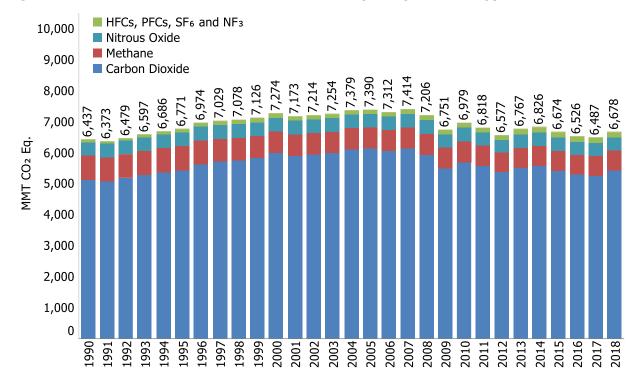
⁷ Carbon comprises 12/44 of carbon dioxide by weight.

⁸ One million metric ton is equal to 10¹² grams or one teragram.

⁹ See <http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>.

C_6F_{14}	9,300
CH₃F	150
CH ₂ FCF ₃	1,430
$C_2H_2F_4$	1,000
SF ₆	22,800
NF ₃	17,200

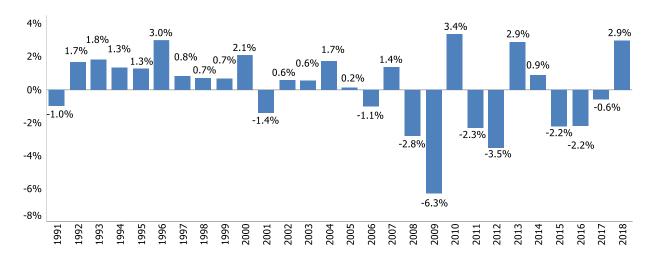
NA (Not Available)


^a The GWP of CH₄ includes the direct effects and those indirect effects due to the production of tropospheric ozone and stratospheric water vapor. The indirect effect due to production of CO₂ is not included. See Annex 6 for additional information.
 Source: IPCC (2007).
 ^b See Table A-1 of 40 CFR Part 98.

1

² ES.2 Recent Trends in U.S. Greenhouse Gas ³ Emissions and Sinks

4 In 2018, total gross U.S. greenhouse gas emissions were 6,677.8 million metric tons of carbon dioxide equivalent (MMT CO₂ Eq).¹⁰ Total U.S. emissions have increased by 3.7 percent from 1990 to 2018, down from a high of 15.2 5 6 percent above 1990 levels in 2007. Emissions increased from 2017 to 2018 by 2.9 percent (191.0 MMT CO₂ Eq.). 7 Overall, net emissions in 2018 increased 3.2 percent since 2017 and decreased 10.2 percent from 2005 levels as 8 shown in Table ES-2. The increase in total greenhouse gas emissions between 2017 and 2018 was driven largely driven by an increase in CO₂ emissions from fossil fuel combustion. The increase in CO₂ emissions from fossil fuel 9 combustion was a result of multiple factors, including increased energy consumption from greater heating and 10 cooling needs due to a colder winter and hotter summer in 2018 (in comparison to 2017). 11 12 Figure ES-1 through Figure ES-3 illustrate the overall trends in total U.S. emissions by gas, annual percent changes, and absolute change since 1990, and Table ES-2 provides a detailed summary of gross U.S. greenhouse gas 13 emissions and sinks for 1990 through 2018. Note, unless otherwise stated, all tables and figures provide total gross 14 emissions, and exclude the greenhouse gas fluxes from the Land Use, Land-Use Change, and Forestry (LULUCF) 15 sector. For more information about the LULUCF sector see Section ES.3 Overview of Sector Emissions and Trends. 16 17


¹⁰ The gross emissions total presented in this report for the United States excludes emissions and removals from Land Use, Land-Use Change, and Forestry (LULUCF). The net emissions total presented in this report for the United States includes emissions and removals from LULUCF.

1 Figure ES-1: Gross U.S. Greenhouse Gas Emissions by Gas (MMT CO₂ Eq.)

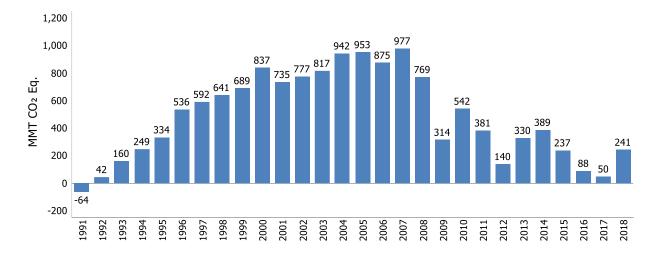

2

Figure ES-2: Annual Percent Change in Gross U.S. Greenhouse Gas Emissions Relative to the
 Previous Year

5

Figure ES-3: Cumulative Change in Annual Gross U.S. Greenhouse Gas Emissions Relative to 1990 (1990=0, MMT CO₂ Eq.)

3 4

Box ES-3: Improvements and Recalculations Relative to the Previous Inventory

Each year, some emission and sink estimates in the Inventory are recalculated and revised to incorporate improved methods and/or data. The most common reason for recalculating U.S. greenhouse gas emission estimates is to update recent historical data. Changes in historical data are generally the result of changes in data supplied by other U.S. government agencies or organizations. These improvements are implemented consistently across the previous Inventory's time series (i.e., 1990 to 2017) to ensure that the trend is accurate.

Below are categories with recalculations resulting in an average change over the time series of greater than 10 MMT CO_2 Eq.

- Agricultural Soil Management (N₂O)
- Forest Land Remaining Forest Land: Changes in Forest Carbon Stocks (CO₂)
- Land Converted to Grassland: Changes in all Ecosystem Carbon Stocks (CO2)
- Grassland Remaining Grassland: Changes in Mineral and Organic Carbon Stocks (CO₂)
- Natural Gas Systems (CH₄)
- Land Converted to Cropland: Changes in all Ecosystem Carbon Stocks (CO2)
- Settlements Remaining Settlements: Changes in Settlement Tree Carbon Stocks (CO₂)

For more detailed descriptions of each recalculation including references for data, please see the respective source or sink category description(s) within the relevant report chapter (i.e., Energy chapter (Chapter 3), the Agriculture chapter (Chapter 5), LULUCF chapter (Chapter 6)). In implementing improvements, the United States follows the 2006 IPCC Guidelines (IPCC 2006), which states, "Both methodological changes and refinements over time are an essential part of improving inventory quality. It is good practice to change or refine methods when: available data have changed; the previously used method is not consistent with the IPCC guidelines for that category; a category has become key; the previously used method is insufficient to reflect mitigation activities in a transparent manner; the capacity for inventory preparation has increased; new inventory methods become available; and for correction of errors." In each Inventory, the results of all methodological changes and historical data updates are summarized in the Recalculations and Improvements chapter (Chapter 9).

2 Table ES-2: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks (MMT CO₂ Eq.)

Gas/Source	1990	2005	2014	2015	2016	2017	2018
CO ₂	5,128.3	6,131.9	5,562.9	5,413.7	5,293.5	5,256.0	5,429.2
Fossil Fuel Combustion	4,740.0	5,740.7	5,185.9	5,033.0	4,942.9	4,893.9	5,033.3
Transportation	1,469.1	1,856.1	1,713.7	1,725.3	1,765.3	1,787.4	1,798.2
Electric Power Sector	1,820.0	2,400.0	2,037.1	1,900.6	1,808.9	1,732.0	1,752.8
Industrial	857.0	850.1	813.6	802.0	801.7	806.0	846.
Residential	338.2	357.9	347.1	318.1	293.2	294.2	335.9
Commercial	228.2	226.9	233.0	245.6	232.4	232.9	258.
U.S. Territories	27.6	49.7	41.4	41.4	41.4	41.4	41.
Non-Energy Use of Fuels Iron and Steel Production &	119.5	139.7	120.0	127.0	113.7	123.1	134.
Metallurgical Coke Production	104.7	70.1	58.2	47.9	43.6	40.8	42.
Cement Production	33.5	46.2	39.4	39.9	39.4	40.3	40.
Petroleum Systems	9.6	12.2	30.5	32.6	23.0	24.5	39.
Natural Gas Systems	32.2	25.3	29.6	29.3	29.9	30.4	34.
Petrochemical Production	21.6	27.4	26.3	28.1	28.3	28.9	29.
Lime Production	11.7	14.6	14.2	13.3	12.9	13.1	13.
Ammonia Production	13.0	9.2	9.4	10.6	10.8	13.2	13.
Incineration of Waste	8.0	12.5	10.4	10.8	10.9	11.1	11.
Other Process Uses of Carbonates	6.3	7.6	13.0	12.2	11.0	10.1	9.
Urea Fertilization	2.0	3.1	3.9	4.1	4.0	4.5	4
Carbon Dioxide Consumption Urea Consumption for Non-	1.5	1.4	4.5	4.5	4.5	4.5	4
Agricultural Purposes	3.8	3.7	1.8	4.6	5.1	3.8	3.
Liming	4.7	4.3	3.6	3.7	3.1	3.1	3.
Ferroalloy Production	2.2	1.4	1.9	2.0	1.8	2.0	2.
Soda Ash Production	1.4	1.7	1.7	1.7	1.7	1.8	1
Titanium Dioxide Production	1.2	1.8	1.7	1.6	1.7	1.7	1
Aluminum Production	6.8	4.1	2.8	2.8	1.3	1.2	1
Glass Production	1.5	1.9	1.3	1.3	1.2	1.3	1
Zinc Production	0.6	1.0	1.0	0.9	0.9	1.0	1.
Phosphoric Acid Production	1.5	1.3	1.0	1.0	1.0	1.0	0
Lead Production	0.5	0.6	0.5	0.5	0.4	0.5	0
Carbide Production and Consumption	0.4	0.2	0.2	0.2	0.2	0.2	0
Abandoned Oil and Gas Wells Magnesium Production and	+	+	+	+	+	+	
Processing Wood Biomass, Ethanol, and Biodiesel Consumption ^a	+ 219.4	+ 230.7	+ 323.2	+ 317.7	+ 317.2	+ 322.2	328
International Bunker Fuels ^b				317.7 110.9			
	103.5	113.1	103.4		116.6	120.1	122
CH₄ ^c	774.5	679.6	639.0	638.5	628.3	630.2	634
Enteric Fermentation	164.2	168.9	164.2	166.5	171.8	175.4	177
Natural Gas Systems	183.2	158.1	141.1	141.8	139.9	139.1	139
Landfills	179.6	131.3	112.6	111.3	108.0	107.7	110
Manure Management	37.1	51.6	54.3	57.9	59.6	59.9	61
Coal Mining	96.5	64.1	64.6	61.2	53.8	54.8	52
Petroleum Systems	46.2	38.8	43.5	40.6	38.9	38.8	36.
Wastewater Treatment	15.3	15.4	14.3	14.6	14.4	14.1	14.

Rice Cultivation 16.0 18.0 17.4 16.2 13.3 33.3 Stationary Combustion 8.6 7.9 7.8 8.7 7.0 7.1 7.1 7.2 7.1 7.0 Abandoned Underground Coal Mines 7.2 6.6 6.3 6.4 6.7 6.4 8.9 8.9 7.9 7.8 8.7 Mobile Combustion 12.9 9.6 4.1 3.6 3.4 3.3 3.31 Composting 0.4 1.9 2.1 2.1 2.3 2.4 2.5 Field Burning of Agricultrual Residues 0.3 0.4									
Abandoned Oil and Gas Wells 6.6 7.0 7.1 7.1 7.2 7.1 7.0 Abandoned Underground Coal Mines 7.2 6.6 6.3 6.4 6.7 6.4 6.2 Mobile Combustion 1.29 9.6 4.1 3.6 3.4 3.3 Composting 0.4 1.9 2.1 2.3 2.4 2.5 Field Burning of Agricultural Residues 0.3 0.4 0.4 0.4 0.4 0.4 0.4 Petrochemical Production +	Rice Cultivation	16.0			15.4	16.2	13.5	12.8	13.3
Abandoned Underground Coal Mines 7.2 6.6 6.3 6.4 6.7 6.4 6.2 Mobile Combustion 12.9 9.6 4.1 3.6 3.4 3.3 3.1 Compositing 0.4 1.9 2.1 2.1 2.3 2.4 2.5 Field Burning of Agricultural Residues 0.3 0.4									
Mobile Combustion 12.9 9.6 4.1 3.6 3.4 3.3 3.1 Composting Of Apricultural Residues 0.3 0.4 1.4									
Composting 0.4 1.9 2.1 2.1 2.1 2.3 2.4 2.5 Field Burning of Agricultural Residues 0.3 0.4 1.4	Ū								
Field Burning of Agricultural Residues 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Petrochemical Production 0.2 0.1 0.1 0.2 0.2 0.3 0.3 Ferroalloy Production and Consumption +									
Petrochemical Production 0.2 0.1 0.1 0.2 0.2 0.3 0.3 Ferroalloy Production and Cosumption - +									
Ferroalloy Production and Consumption +									
Carbide Production and Consumption A transmission and Steel Production 8. + <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Iron and Steel Production & + 4 10.1 0.1 0.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 <									
Metallurgical Coke Production + + + + + + + International Bunker Fuels ^b 0.2 0.1 0.1 0.1 0.1 0.1 0.1 NgC 434.6 432.6 449.3 44.0 42.64 421.3 438.5 Agricultural Soil Management 315.9 313.0 349.2 348.1 32.98 327.4 338.2 Stationary Combustion 25.1 34.3 30.0 30.0 28.6 28.4 Manure Management 14.0 16.4 17.3 17.5 18.1 18.7 19.4 Mobile Combustion 12.2 7.1 5.4 4.3 7.0 7.4 10.3 Nitric Acid Production 12.1 13.1 10.9 11.6 10.1 9.3 9.3 Vastewater Treatment 3.4 4.4 4.8 8.4 4.9 5.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <td< td=""><td></td><td>+</td><td></td><td>÷</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td></td<>		+		÷	+	+	+	+	+
Incineration of Waste + + + + + + + International Bunker Fuels ^b 0.2 0.1		1					-	±	
International Bunker Fuels ^b 0.2 0.1 0.1 0.1 0.1 0.1 0.1 N _C O 434.6 432.6 449.3 344.0 426.4 421.3 434.6 Agricultural Soli Management 315.9 313.0 349.2 348.1 327.4 338.2 Manure Management 14.0 16.4 17.3 17.5 18.1 18.7 19.4 Mobile Combustion 42.0 37.3 19.7 18.3 17.4 16.3 15.2 Adipic Acid Production 15.1 7.1 5.4 4.3 7.0 7.4 10.3 Wastewater Treatment 3.4 4.4 4.8 4.8 4.9 5.0 5.0 N _Q from Production 1.7 2.1 2.0	-								
N20 ^c 434.6432.6449.3444.0426.4421.3436.6Agricultural Soll Management315.9313.0349.2348.1329.8327.4338.2Stationary Combustion25.1343.330.030.028.628.4Mobile Combustion42.037.319.718.317.416.315.2Adipic Acid Production15.27.15.44.37.07.410.3Nitric Acid Production12.111.310.911.610.19.39.3Wastewater Treatment3.44.44.84.95.05.0N ₂ O from Product Uses4.24.24.24.24.24.24.2Corposting0.31.71.91.92.02.22.2Caprolactam, Glyoxyl, and Glyoxylic7.12.02.00.01.51.4Acid Productional Busing of Agricultural Residues0.20.20.20.20.20.20.2Petroleum Systems+++++++++++++1.0Natural Gas Systems++<									
Agricultural Soli Management 315.9 313.0 349.2 348.1 329.8 327.4 338.2 Stationary Combustion 25.1 34.3 33.0 30.5 30.0 28.6 28.4 Manure Management 14.0 16.4 17.3 17.5 18.1 18.7 19.4 Mobile Combustion 42.0 7.3 19.7 18.3 17.4 16.3 15.2 Adipic Acid Production 12.1 11.3 10.9 11.6 10.1 9.3 9.3 Wastewater Treatment 3.4 4.4 4.8 4.8 4.9 5.0 5.0 Nyo from Product Uses 4.2 4.0 1.									
Stationary Combustion 25.1 34.3 33.0 30.5 30.0 28.6 28.4 Manure Management 14.0 16.4 17.3 17.5 18.1 18.7 19.4 Mobile Combustion 42.0 37.3 19.7 18.3 17.4 16.3 15.2 Adipic Acid Production 15.2 7.1 5.4 4.3 7.0 7.4 10.3 Natric Acid Production 12.1 11.3 10.9 11.6 10.1 9.3 9.3 Wastewater Treatment 3.4 4.4 4.8 4.8 4.9 5.0 5.0 Ny0 from Product Uses 4.2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Manure Management 14.0 16.4 17.3 17.5 18.1 18.7 19.4 Mobile Combustion 42.0 37.3 19.7 18.3 17.4 16.3 15.2 Adipic Acid Production 15.2 7.1 5.4 4.3 7.0 7.4 10.3 Nitric Acid Production 12.1 11.3 10.9 11.6 10.1 9.3 Wastewater Treatment 3.4 4.4 4.8 8.49 5.0 5.0 NgO from Product Uses 4.2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Mobile Combustion 42.0 37.3 19.7 18.3 17.4 16.3 15.2 Adipic Acid Production 15.2 7.1 5.4 4.3 7.0 7.4 10.3 Nitric Acid Production 12.1 11.3 10.9 11.6 10.1 9.3 9.3 Wastewater Treatment 3.4 4.4 4.8 4.8 4.9 5.0 5.0 N ₂ O from Product Uses 4.2									
Adipic Acid Production 15.2 7.1 5.4 4.3 7.0 7.4 10.3 Nitric Acid Production 12.1 11.3 10.9 11.6 10.1 9.3 9.3 Wastewater Treatment 3.4 4.4 4.8 4.8 4.9 5.0 5.0 N20 from Product Uses 4.2 <	-								
Nitric Acid Production 12.1 11.3 10.9 11.6 10.1 9.3 9.3 Wastewater Treatment 3.4 4.4 4.8 4.8 4.9 5.0 5.0 N ₂ O from Product Uses 4.2									
Wastewater Treatment 3.4 4.4 4.8 4.8 4.9 5.0 5.0 N ₂ O from Product Uses 4.2									
N20 from Product Uses 4.2 4.									
Omposing Caprolactam, Glyoxal, and Glyoxylic Acid Production 0.3 1.7 1.9 1.9 2.0 2.2 2.2 Acid Production 1.7 2.1 2.0 2.0 2.0 2.0 1.5 1.4 Incineration of Waste 0.5 0.4 0.3 0.3 0.3 0.3 0.3 Electronics Industry + 0.1 0.2 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1									
Caprolactam, Glyoxal, and Glyoxylic 1.7 2.1 2.0 2.0 2.0 1.5 1.4 Incineration of Waste 0.5 0.4 0.3 0.3 0.3 0.3 0.3 Electronics Industry + 0.1 0.2 0.2 0.2 0.3 0.3 Field Burning of Agricultural Residues 0.2 1.0 1.1									
Acid Production 1.7 2.1 2.0 2.0 2.0 1.5 1.4 Incineration of Waste 0.5 0.4 0.3 0.3 0.3 0.3 0.3 Electronics Industry + 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Petroleum Systems + 1.1		0.3	1.	'	1.9	1.9	2.0	2.2	2.2
Incineration of Waste 0.5 0.4 0.3 0.3 0.3 0.3 0.3 Electronics Industry + 0.1 0.2 0.2 0.2 0.3 0.3 Field Burning of Agricultural Residues 0.2 106.4 161.7 161.7 161.7 163.1 163.1 164.4 HCC 46.5 126.7 161.7 161.7 163.1 163.1 164.4 HCC-22 Production 46.1 20.0 5.0 4.3 2.8 5.2 3.3 Electronics Industry 0.2 0.0 0.1 0.1 0.1 0.1 0.1		1.7	2.	1	2.0	2.0	2.0	1.5	1.4
Electronics Industry + 0.1 0.2 0.2 0.2 0.3 0.3 Field Burning of Agricultural Residues 0.2 0.9 1.0 1.0 1.1									
Field Burning of Agricultural Residues 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Petroleum Systems + + + + + + 0.1 Natural Gas Systems +									
Petroleum Systems +		0.2	0.	2	0.2	0.2	0.2	0.2	0.2
Natural Gas Systems + 101 101 101 101 104 105 105 105 105 105 105<				+	+	+			0.1
International Bunker Fuels ^b 0.9 1.0 0.9 1.0 1.0 1.1 1.1 HFCs 46.5 126.7 162.5 166.3 166.4 168.7 168.2 Substitution of Ozone Depleting Substances ^d 0.2 106.4 157.0 161.7 163.1 163.4 164.4 HCFC-22 Production 46.1 20.0 5.0 4.3 2.8 5.2 3.3 Electronics Industry 0.2 0.2 0.2 0.3 0.3 0.4 0.4 Processing 0.0 0.0 0.1 0.1 0.1 0.1 0.1 PFCs 24.3 6.7 5.6 5.1 4.3 4.0 4.6 Substitution of Ozone Depleting Substances 0.0 1.4 0.1 0.1 0.1 0.1 SF6 28.8 11.8 6.5 5.5 6.1 5.9 5.9 5.9 Electrical Transmission and Distribution 23.2 8.4 4.8 3.8 4.1 <t< td=""><td></td><td>+</td><td></td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td></t<>		+		+	+	+	+	+	+
HFCs 46.5 126.7 162.5 166.3 166.4 168.7 168.7 Substitution of Ozone Depleting Substances ^d 0.2 106.4 157.0 161.7 163.1 164.4 HCFC-22 Production 46.1 20.0 5.0 4.3 2.8 5.2 3.3 Electronics Industry 0.2 0.2 0.3 0.3 0.3 0.4 0.4 Magnesium Production and 0.0 0.0 0.1 0.1 0.1 0.1 0.1 Processing 0.0 0.0 0.1 0.1 0.1 0.1 0.1 Aluminum Production 21.5 3.4 3.0 2.9 2.9 3.0 Substances 0.0 - 5.6 5.1 4.3 4.0 4.6 Substitution of Ozone Depleting 2.8 3.2 3.1 3.0 2.9 3.0 Substances 0.0 + + + + 0.1 1.6 Substitution of Ozone Depleting 0.0 - + + + + 0.1		0.9	1.	2	0.9	1.0	1.0	1.1	1.1
Substances ^d 0.2 106.4 157.0 161.7 163.1 163.1 164.4 HCFC-22 Production 46.1 20.0 5.0 4.3 2.8 5.2 3.3 Electronics Industry 0.2 0.2 0.3 0.3 0.3 0.4 0.4 Magnesium Production and 0.0 0.0 0.1 0.1 0.1 0.1 0.1 Processing 0.0 0.0 0.1 0.1 0.1 0.1 0.1 PFCs 24.3 6.7 5.6 5.1 4.3 4.0 4.6 Electronics Industry 2.8 3.2 3.1 3.0 2.9 2.9 3.0 Aluminum Production 21.5 3.4 2.5 2.0 1.4 1.0 1.6 Substitution of Ozone Depleting 1.5 3.4 2.5 2.0 1.4 1.0 1.6 Substances 0.0 1.4 4.1 4.1 1.6 1.1 1.1 1.1 <td></td> <td>46.5</td> <td>126.</td> <td>7</td> <td>162.5</td> <td>166.3</td> <td>166.4</td> <td>168.7</td> <td>168.2</td>		46.5	126.	7	162.5	166.3	166.4	168.7	168.2
HCFC-22 Production 46.1 20.0 5.0 4.3 2.8 5.2 3.3 Electronics Industry 0.2 0.2 0.3 0.3 0.3 0.4 0.4 Magnesium Production and 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Processing 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 PFCs 24.3 6.7 5.6 5.1 4.3 4.0 4.6 Electronics Industry 2.8 3.2 3.1 3.0 2.9 2.9 3.0 Aluminum Production 21.5 3.4 2.5 2.0 1.4 1.0 1.6 Substitution of Ozone Depleting 21.5 3.4 2.5 2.0 1.4 1.0 1.6 SF6 28.8 11.8 6.5 5.5 6.1 5.9 </td <td>Substitution of Ozone Depleting</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Substitution of Ozone Depleting								
Electronics Industry Magnesium Production and 0.2 0.2 0.3 0.3 0.3 0.4 0.4 Processing 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 PFCs 24.3 67 5.6 5.1 4.3 4.0 4.6 Electronics Industry 2.8 3.2 3.1 3.0 2.9 2.9 3.0 Aluminum Production 21.5 3.4 2.5 2.0 1.4 1.0 1.6 Substitution of Ozone Depleting 0.0 + + + + 0.1 <td>Substances^d</td> <td>0.2</td> <td>106.</td> <td>1</td> <td>157.0</td> <td>161.7</td> <td>163.1</td> <td>163.1</td> <td>164.4</td>	Substances ^d	0.2	106.	1	157.0	161.7	163.1	163.1	164.4
Magnesium Production and Image: Construction and processing 0.0 0.0 0.1 <td>HCFC-22 Production</td> <td>46.1</td> <td>20.</td> <td>D</td> <td>5.0</td> <td>4.3</td> <td>2.8</td> <td>5.2</td> <td>3.3</td>	HCFC-22 Production	46.1	20.	D	5.0	4.3	2.8	5.2	3.3
Processing 0.0 0.0 0.1	•	0.2	0.	2	0.3	0.3	0.3	0.4	0.4
PFCs 24.3 6.7 5.6 5.1 4.3 4.0 4.6 Electronics Industry 2.8 3.2 3.1 3.0 2.9 2.9 3.0 Aluminum Production 21.5 3.4 2.5 2.0 1.4 1.0 1.6 Substitution of Ozone Depleting 0.0 + + + + 0.1 Substances 0.0 + + + + 0.1 0.1 SF6 28.8 11.8 6.5 5.5 6.1 5.9 5.9 Electrical Transmission and 23.2 8.4 4.8 3.8 4.1 4.1 4.1 Magnesium Production and 5.2 2.7 0.9 1.0 1.1 1.1 1.1 Electronics Industry 0.5 0.7 0.7 0.8 0.7 0.8	-								
Electronics Industry 2.8 3.2 3.1 3.0 2.9 2.9 3.0 Aluminum Production 21.5 3.4 2.5 2.0 1.4 1.0 1.6 Substitution of Ozone Depleting 0.0 + + + + 0.1 Substances 0.0 + + + + 0.1 SF ₆ 28.8 11.8 6.5 5.5 6.1 5.9 5.9 Electrical Transmission and 23.2 8.4 4.8 3.8 4.1 4.1 4.1 Magnesium Production and 5.2 2.7 0.9 1.0 1.1 1.1 Flectronics Industry 0.5 0.7 0.7 0.8 0.7 0.8	6								
Aluminum Production 21.5 3.4 2.5 2.0 1.4 1.0 1.6 Substitution of Ozone Depleting 0.0 + + + + + 0.0 Substances 0.0 + + + + 0.0 0.0 1.0 1.0 0.0 SF6 28.8 11.8 6.5 5.5 6.1 5.9 5.9 Electrical Transmission and 23.2 8.4 4.8 3.8 4.1 4.1 Magnesium Production and 5.2 2.7 0.9 1.0 1.1 1.1 Processing 5.2 2.7 0.7 0.7 0.8 0.7 0.8									
Substitution of Ozone Depleting Image: Substances 0.0 + + + + + 0.1 Substances 0.0 + + + + + + 0.1 Substances 0.0 + + + + + 0.1 Substances 28.8 11.8 6.5 5.5 6.1 5.9 5.9 5.9 Electrical Transmission and 23.2 8.4 4.8 3.8 4.1 4.1 4.1 Magnesium Production and 5.2 2.7 0.9 1.0 1.1 1.1 1.1 Electronics Industry 0.5 0.7 0.7 0.8 0.7 0.8									
Substances 0.0 + + + + + 0.1 SF6 28.8 11.8 6.5 5.5 6.1 5.9 5.9 Electrical Transmission and 23.2 8.4 4.8 3.8 4.1 4.1 4.1 Distribution 23.2 8.4 -		21.5	3.	1	2.5	2.0	1.4	1.0	1.6
SF ₆ 28.8 11.8 6.5 5.5 6.1 5.9 5.9 Electrical Transmission and 23.2 8.4 4.8 3.8 4.1 4.1 4.1 Distribution 23.2 8.4 -		0.0		+	+	+	+	+	0.1
Electrical Transmission and 23.2 8.4 4.8 3.8 4.1 4.1 4.1 Distribution 23.2 8.4 4.8 3.8 4.1 4.1 4.1 Magnesium Production and 5.2 2.7 0.9 1.0 1.1 1.1 1.1 Electronics Industry 0.5 0.7 0.7 0.8 0.7 0.8									
Distribution 23.2 8.4 4.8 3.8 4.1 4.1 4.1 Magnesium Production and Processing 5.2 2.7 0.9 1.0 1.1 1.1 1.1 Electronics Industry 0.5 0.7 0.7 0.7 0.8 0.7 0.8		20.0	11.		0.5	5.5	0.1	5.5	3.5
Processing 5.2 2.7 0.9 1.0 1.1 1.1 1.1 Electronics Industry 0.5 0.7 0.7 0.7 0.8 0.7 0.8		23.2	8.	1	4.8	3.8	4.1	4.1	4.1
Electronics Industry 0.5 0.7 0.7 0.8 0.7 0.8	-								
	-								
NF ₃ + 0.5 0.5 0.6 0.6 0.6 0.6	Electronics Industry	0.5							
	NF ₃	+	0.	5	0.5	0.6	0.6	0.6	0.6

Electronics Industry	+	0.5	0.5	0.6	0.6	0.6	0.6
Unspecified Mix of HFCs, NF ₃ , PFCs and	+	+	+	+	+	+	+
SF ₆							
Electronics Industry	+	+	+	+	+	+	+
Total Emissions	6,437.1	7,389.8	6,826.3	6,673.7	6,525.5	6,486.7	6,677.8
LULUCF Emissions ^c	7.4	16.3	16.6	27.4	12.8	26.1	26.1
LULUCF CH ₄ Emissions	4.4	8.8	9.5	16.1	7.3	15.2	15.2
LULUCF N ₂ O Emissions	3.0	7.5	7.0	11.2	5.5	10.8	10.9
LULUCF Carbon Stock Change ^e	(860.7)	(831.0)	(739.6)	(802.9)	(801.7)	(789.9)	(799.9)
LULUCF Sector Net Total ^f	(853.4)	(814.7)	(723.0)	(775.5)	(788.9)	(763.9)	(773.7)
Net Emissions (Sources and Sinks)	5,583.7	6,575.1	6,103.3	5,898.2	5,736.6	5,722.9	5,904.1

Notes: Total emissions presented without LULUCF. Net emissions presented with LULUCF. Totals may not sum due to independent rounding. Parentheses indicate negative values or sequestration.

+ Does not exceed 0.05 MMT CO₂ Eq.

^a Emissions from Wood Biomass, Ethanol, and Biodiesel Consumption are not included specifically in summing Energy sector totals. Net carbon fluxes from changes in biogenic carbon reservoirs are accounted for in the estimates for Land Use, Land-Use Change, and Forestry.

^b Emissions from International Bunker Fuels are not included in totals.

^c LULUCF emissions of CH₄ and N₂O are reported separately from gross emissions totals. LULUCF emissions include the CH₄, and N₂O emissions from *Peatlands Remaining Peatlands*; CH₄ and N₂O emissions reported for Non-CO₂ Emissions from Forest Fires, Non-CO₂ Emissions from Grassland Fires, and *Coastal Wetlands Remaining Coastal Wetlands*; CH₄ emissions from *Land Converted to Coastal Wetlands*; and N₂O emissions from Forest Soils and Settlement Soils.

^d Small amounts of PFC emissions also result from this source.

^e LULUCF Carbon Stock Change is the net C stock change from the following categories: *Forest Land Remaining Forest Land, Land Converted to Forest Land, Cropland Remaining Cropland, Land Converted to Cropland, Grassland Remaining Grassland, Land Converted to Grassland, Wetlands Remaining Wetlands, Land Converted to Wetlands, Settlements Remaining Settlements, and Land Converted to Settlements.*

^f The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net C stock changes.

1 Figure ES-4 illustrates the relative contribution of the direct greenhouse gases to total U.S. emissions in 2018,

2 weighted by global warming potential. The primary greenhouse gas emitted by human activities in the United

3 States was CO₂, representing approximately 81.3 percent of total greenhouse gas emissions. The largest source of

4 CO₂, and of overall greenhouse gas emissions, was fossil fuel combustion. Methane emissions (CH₄), which have

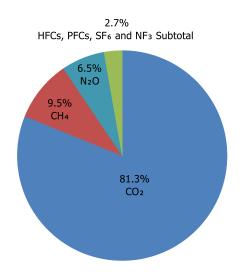
5 decreased by 18.1 percent since 1990, resulted primarily from enteric fermentation associated with domestic

6 livestock, natural gas systems, and decomposition of wastes in landfills. Agricultural soil management, stationary

7 fuel combustion, manure management, and mobile source fuel combustion were the major sources of N₂O

8 emissions. Ozone depleting substance substitute emissions and emissions of HFC-23 during the production of

9 HCFC-22 were the primary contributors to aggregate hydrofluorocarbon (HFC) emissions. Perfluorocarbon (PFC)


10 emissions were primarily attributable to electronics manufacturing and to primary aluminum production. Electrical

11 transmission and distribution systems accounted for most sulfur hexafluoride (SF₆) emissions. The electronics

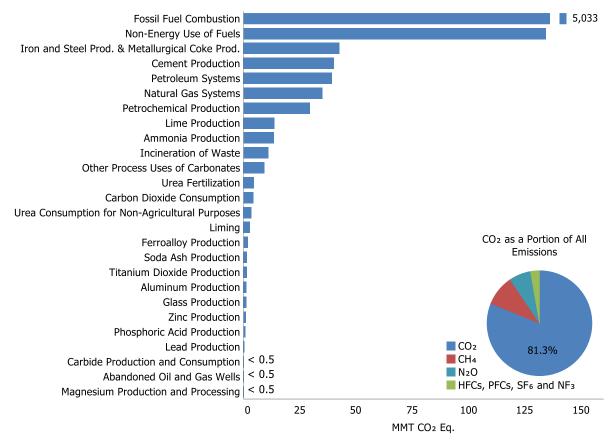
12 industry is the only source of nitrogen trifluoride (NF₃) emissions.

1 Figure ES-4: 2018 U.S. Greenhouse Gas Emissions by Gas (Percentages based on MMT CO₂

2 **Eq.)**

3

- 4 Overall, from 1990 to 2018, total emissions of CO₂ increased by 300.9 MMT CO₂ Eq. (5.9 percent), while total
- 5 emissions of CH₄ decreased by 139.9 MMT CO₂ Eq. (18.1 percent) and emissions of N₂O have remained constant
- 6 despite fluctuations throughout the time series. During the same period, aggregate weighted emissions of
- 7 hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF₆), and nitrogen trifluoride (NF₃) rose
- 8 by 79.7 MMT CO₂ Eq. (80.0 percent). From 1990 to 2018, HFCs increased by 121.7 MMT CO₂ Eq. (261.5 percent),
- 9 PFCs decreased by 19.6 MMT CO₂ Eq. (80.9 percent), SF₆ decreased by 22.9 MMT CO₂ Eq. (79.4 percent), and NF₃
- 10 increased by 0.6 MMT CO₂ Eq. (1,211.9 percent). Despite being emitted in smaller quantities relative to the other
- principal greenhouse gases, emissions of HFCs, PFCs, SF₆ and NF₃ are significant because many of these gases have
- extremely high global warming potentials and, in the cases of PFCs and SF₆, long atmospheric lifetimes. Conversely,
- 13 U.S. greenhouse gas emissions were partly offset by carbon (C) sequestration in forests, trees in urban areas,
- agricultural soils, landfilled yard trimmings and food scraps, and coastal wetlands, which, in aggregate, offset 12.0
- 15 percent of total emissions in 2018. The following sections describe each gas's contribution to total U.S. greenhouse
- 16 gas emissions in more detail.


17 Carbon Dioxide Emissions

- 18 The global carbon cycle is made up of large carbon flows and reservoirs. Billions of tons of carbon in the form of
- CO_2 are absorbed by oceans and living biomass (i.e., sinks) and are emitted to the atmosphere annually through
- natural processes (i.e., sources). When in equilibrium, global carbon fluxes among these various reservoirs are
- 21 roughly balanced.¹¹
- 22 Since the Industrial Revolution (i.e., about 1750), global atmospheric concentrations of CO₂ have risen
- 23 approximately 46 percent (IPCC 2013; NOAA/ESRL 2019a), principally due to the combustion of fossil fuels for

 $^{^{11}}$ The term "flux" is used to describe the net emissions of greenhouse gases accounting for both the emissions of CO₂ to and the removals of CO₂ from the atmosphere. Removal of CO₂ from the atmosphere is also referred to as "carbon sequestration."

- 1 energy. Globally, approximately 32,840 MMT of CO₂ were added to the atmosphere through the combustion of
- 2 fossil fuels in 2017, of which the United States accounted for approximately 15 percent.¹²
- 3 Within the United States, fossil fuel combustion accounted for 92.7 percent of CO₂ emissions in 2018. There are 25
- 4 additional sources of CO₂ emissions included in the Inventory (see Figure ES-5). Although not illustrated in the
- 5 Figure ES-5, changes in land use and forestry practices can also lead to net CO₂ emissions (e.g., through conversion
- 6 of forest land to agricultural or urban use) or to a net sink for CO₂ (e.g., through net additions to forest biomass).

7 Figure ES-5: 2018 Sources of CO₂ Emissions (MMT CO₂ Eq.)

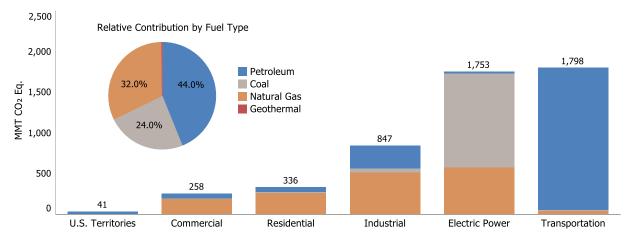
8

10 approximately 76 percent of GWP-weighted emissions since 1990. Important drivers influencing emissions levels

11 include: (1) changes in demand for energy; and (2) a general decline in the carbon intensity of fuels combusted for

- 12 energy in recent years by non-transport sectors of the economy.
- 13 Between 1990 and 2018, CO₂ emissions from fossil fuel combustion increased from 4,740.0 MMT CO₂ Eq. to

14 5,033.3 MMT CO₂ Eq., a 6.2 percent total increase over the twenty-nine-year period. Conversely, CO₂ emissions

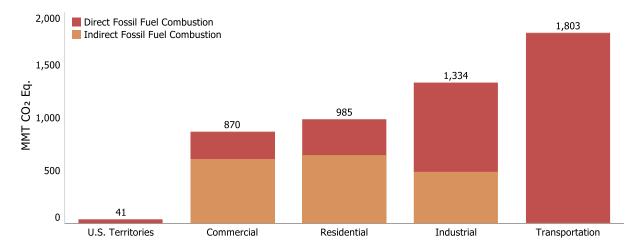

- 15 from fossil fuel combustion decreased by 707.3 MMT CO₂ Eq. from 2005 levels, a decrease of approximately 12.3
- 16 percent between 2005 and 2018. From 2017 to 2018, these emissions increased by 139.5 MMT CO₂ Eq. (2.9
- 17 percent).
- 18 Historically, changes in emissions from fossil fuel combustion have been the dominant factor affecting U.S.
- 19 emission trends. Changes in CO₂ emissions from fossil fuel combustion are influenced by many long-term and

⁹ As the largest source of U.S. greenhouse gas emissions, CO₂ from fossil fuel combustion has accounted for

 $^{^{12}}$ Global CO₂ emissions from fossil fuel combustion were taken from International Energy Agency CO₂ Emissions from Fossil Fuels Combustion Overview https://webstore.iea.org/co2-emissions-from-fuel-combustion-2019 (IEA 2019). The publication has not yet been updated to include 2018 data.

- 1 short-term factors. Long-term factors include population and economic trends, technological changes, shifting
- 2 energy fuel choices, and various policies at the national, state, and local level. In the short term, the overall
- 3 consumption and mix of fossil fuels in the United States fluctuates primarily in response to changes in general
- 4 economic conditions, overall energy prices, the relative price of different fuels, weather, and the availability of
- 5 non-fossil alternatives.
- 6 The five major fuel-consuming economic sectors contributing to CO₂ emissions from fossil fuel combustion are
- 7 transportation, electric power, industrial, residential, and commercial. Carbon dioxide emissions are produced by
- 8 the electric power sector as fossil fuel is consumed to provide electricity to one of the other four sectors, or "end-
- 9 use" sectors, see Figure ES-6. Note that emissions from U.S. Territories are reported as their own end-use sector
- due to a lack of specific consumption data for the individual end-use sectors within U.S. Territories. Figure ES-7,
 and Table ES-3 summarize CO₂ emissions from fossil fuel combustion by end-use sector including electric power
- and Table ES-3 summarize CO₂ emissions from fossil fuel combustion by end-use sector including electric power emissions. For Figure ES-7 below, electric power emissions have been distributed to each end-use sector on the
- 13 basis of each sector's share of aggregate electricity use. This method of distributing emissions assumes that each
- 14 end-use sector uses electricity that is generated from the national average mix of fuels according to their carbon
- 15 intensity. Emissions from electric power are also addressed separately after the end-use sectors are discussed.
- 16

Figure ES-6: 2018 CO₂ Emissions from Fossil Fuel Combustion by Sector and Fuel Type (MMT CO₂ Eq.)



19

- 20 Note on Figure ES-6: Fossil Fuel Combustion for electric power also includes emissions of less than 0.5 MMT CO₂ Eq. from
- 21 geothermal-based generation.
- 22

1 Figure ES-7: 2018 End-Use Sector Emissions of CO₂ from Fossil Fuel Combustion (MMT CO₂

2 **Eq.)**

3

4 Table ES-3: CO₂ Emissions from Fossil Fuel Combustion by End-Use Sector (MMT CO₂ Eq.)

End-Use Sector	1990	2005	2014	2015	2016	2017	2018
Transportation	1,472.1	1,860.8	1,718.2	1,729.5	1,769.5	1,791.7	1,803.0
Combustion	1,469.1	1,856.1	1,713.7	1,725.3	1,765.3	1,787.4	1,798.2
Electricity	3.0	4.7	4.4	4.3	4.2	4.3	4.7
Industrial	1,543.5	1,586.4	1,406.6	1,351.5	1,319.3	1,310.4	1,334.0
Combustion	857.0	850.1	813.6	802.0	801.7	806.0	846.7
Electricity	686.4	736.3	593.0	549.5	517.6	504.4	487.2
Residential	931.0	1,213.9	1,081.2	1,001.9	946.7	911.3	985.4
Combustion	338.2	357.9	347.1	318.1	293.2	294.2	335.9
Electricity	592.7	856.0	734.1	683.8	653.5	617.1	649.4
Commercial	765.9	1,029.9	938.7	908.7	866.0	839.1	869.7
Combustion	228.2	226.9	233.0	245.6	232.4	232.9	258.3
Electricity	537.7	803.0	705.6	663.0	633.6	606.2	611.5
U.S. Territories ^a	27.6	49.7	41.4	41.4	41.4	41.4	41.4
Total	4,740.0	5,740.7	5,185.9	5,033.0	4,942.9	4,893.9	5,033.3
Electric Power	1,820.0	2,400.0	2,037.1	1,900.6	1,808.9	1,732.0	1,752.8

Notes: Combustion-related emissions from electric power are allocated based on aggregate national electricity use by each end-use sector. Totals may not sum due to independent rounding. ^a Fuel consumption by U.S. Territories (i.e., American Samoa, Guam, Puerto Rico, U.S. Virgin Islands, Wake Island, and other U.S. Pacific Islands) is included in this report.

5 Transportation End-Use Sector. Transportation activities accounted for 35.8 percent of U.S. CO₂ emissions from

6 fossil fuel combustion in 2018. The largest sources of transportation CO₂ emissions in 2018 were passenger cars

7 (41.0 percent); freight trucks (23.2 percent); light-duty trucks, which include sport utility vehicles, pickup trucks,

8 and minivans (17.5 percent); commercial aircraft (7.0 percent); pipelines (2.6 percent); other aircraft (2.4 percent);

9 rail (2.3 percent); and ships and boats (2.2 percent). Annex 3.2 presents the total emissions from all transportation

10 and mobile sources, including CO₂, CH₄, N₂O, and HFCs.

11 In terms of the overall trend, from 1990 to 2018, total transportation CO₂ emissions increased due, in large part, to

12 increased demand for travel. The number of vehicle miles traveled (VMT) by light-duty motor vehicles (i.e.,

1 passenger cars and light-duty trucks) increased 46.1 percent from 1990 to 2018,¹³ as a result of a confluence of

2 factors including population growth, economic growth, urban sprawl, and low fuel prices during the beginning of

this period. Petroleum-based products supplied 95.0 percent of the energy consumed for transportation, with 56.9

percent being related to gasoline consumption in automobiles and other highway vehicles. Diesel fuel for freight
 trucks and jet fuel for aircraft, accounted for 24.0 and 13.1 percent, respectively. The remaining 5.9 percent of

- petroleum-based energy consumed for transportation was supplied by natural gas, residual fuel, aviation gasoline,
- 7 and liquefied petroleum gases.

8 Industrial End-Use Sector. Industrial CO₂ emissions, resulting both directly from the combustion of fossil fuels and

9 indirectly from the generation of electricity that is used by industry, accounted for 27 percent of CO₂ emissions

10 from fossil fuel combustion in 2018. Approximately 63 percent of these emissions resulted from direct fossil fuel

11 combustion to produce steam and/or heat for industrial processes. The remaining emissions resulted from the use

- 12 of electricity for motors, electric furnaces, ovens, lighting, and other applications. Total direct and indirect
- emissions from the industrial sector have declined by 13.6 percent since 1990. This decline is due to structural
 changes in the U.S. economy (i.e., shifts from a manufacturing-based to a service-based economy), fuel switching,
- 15 and efficiency improvements.
- 16 Residential and Commercial End-Use Sectors. The residential and commercial end-use sectors accounted for 20 and

17 17 percent, respectively, of CO₂ emissions from fossil fuel combustion in 2018. The residential and commercial

sectors relied heavily on electricity for meeting energy demands, with 66 and 70 percent, respectively, of their

emissions attributable to electricity use for lighting, heating, cooling, and operating appliances. The remaining

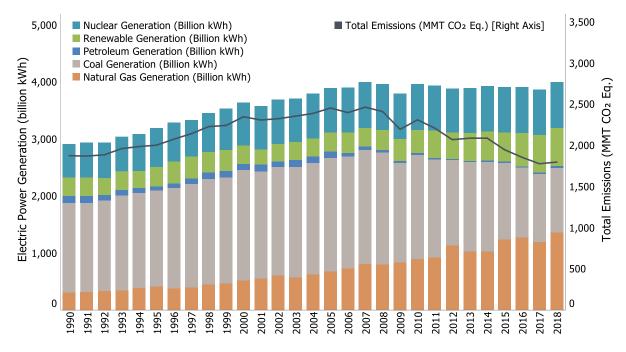
20 emissions were due to the consumption of natural gas and petroleum for heating and cooking. Total direct and

21 indirect emissions from the residential sector have increased by 6 percent since 1990. Total direct and indirect

22 emissions from the commercial sector have increased by 14 percent since 1990.

- 23 *Electric Power.* The United States relies on electricity to meet a significant portion of its energy demands.
- 24 Electricity generators used 32 percent of U.S. energy from fossil fuels and emitted 35 percent of the CO₂ from fossil
- fuel combustion in 2018. The type of energy source used to generate electricity is the main factor influencing
- 26 emissions.¹⁴ For example, some electricity is generated through non-fossil fuel options such as nuclear,
- 27 hydroelectric, wind, solar, or geothermal energy. The mix of fossil fuels used also impacts emissions. The electric
- 28 power sector is the largest consumer of coal in the United States. The coal used by electricity generators
- accounted for 93 percent of all coal consumed for energy in the United States in 2018.¹⁵ However, the amount of
- 30 coal and the percent of total electricity generation from coal has been decreasing over time. Coal-fired electric
- 31 generation (in kilowatt-hours [kWh]) decreased from 54 percent of generation in 1990 to 28 percent in 2018.¹⁶
- 32 This corresponded with an increase in natural gas generation and renewable energy generation, largely from wind
- and solar energy. Natural gas generation (in kWh) represented 11 percent of electric power generation in 1990 and
 increased over the twenty-nine-year period to represent 34 percent of electric power sector generation in 2018.
- 35 Across the time series, changes in electricity demand and the carbon intensity of fuels used for electric power also
- have a significant impact on CO_2 emissions. While emissions from the electric power sector have decreased by
- approximately 3.4 percent since 1990, the carbon intensity of the electric power sector, in terms of CO₂ Eq. per

¹³ VMT estimates are based on data from FHWA Highway Statistics Table VM-1 (FHWA 1996 through 2018). In 2007 and 2008 light-duty VMT decreased 3.0 percent and 2.3 percent, respectively. Note that the decline in light-duty VMT from 2006 to 2007 is due at least in part to a change in FHWA's methods for estimating VMT. In 2011, FHWA changed its methods for estimating VMT by vehicle class, which led to a shift in VMT and emissions among on-road vehicle classes in the 2007 to 2018 time period. In absence of these method changes, light-duty VMT growth between 2006 and 2007 would likely have been higher.


 $^{^{14}}$ In line with the reporting requirements for inventories submitted under the UNFCCC, CO₂ emissions from biomass combustion have been estimated separately from fossil fuel CO₂ emissions and are not included in the electricity sector totals and trends discussed in this section. Net carbon fluxes from changes in biogenic carbon reservoirs are accounted for in the estimates for Land Use, Land-Use Change, and Forestry.

¹⁵ See Table 6.2 Coal Consumption by Sector of EIA (2019a).

¹⁶ Values represent electricity *net* generation from the electric power sector. See Table 7.2b Electricity Net Generation: Electric Power Sector of EIA (2019a).

- 1 QBtu input, has significantly decreased-by 13 percent-during that same timeframe. This decoupling of the level of
- 2 electric power generation and the resulting CO₂ emissions is shown in Figure ES-8.

3 Figure ES-8: Electric Power Generation (Billion kWh) and Emissions (MMT CO₂ Eq.)

⁴

6

7

8 9

- Carbon dioxide emissions from non-energy use of fossil fuels increased by 14.9 MMT CO₂ Eq. (12.5 percent) from 1990 through 2018. Emissions from non-energy uses of fossil fuels were 134.5 MMT CO₂ Eq. in 2018, which constituted 2.5 percent of total national CO₂ emissions, approximately the same proportion as in 1990.
- Carbon dioxide emissions from iron and steel production and metallurgical coke production have
 decreased by 62.0 MMT CO₂ Eq. (59.2 percent) from 1990 through 2018, due to restructuring of the
 industry, technological improvements, and increased scrap steel utilization.
- Total C stock change (i.e., net CO₂ removals) in the LULUCF sector decreased by approximately 7.1 percent
 between 1990 and 2018. This decrease was primarily due to a decrease in the rate of net C accumulation
 in forest C stocks and *Cropland Remaining Cropland*, as well as an increase in emissions from *Land Converted to Settlements*.

17 Box ES-4: Use of Ambient Measurements Systems for Validation of Emission Inventories

In following the UNFCCC requirement under Article 4.1 to develop and submit national greenhouse gas emission inventories, the emissions and sinks presented in this report are organized by source and sink categories and calculated using internationally-accepted methods provided by the IPCC.¹⁷ Several recent studies have estimated emissions at the national or regional level with estimated results that sometimes differ from EPA's estimate of emissions. EPA has engaged with researchers on how remote sensing, ambient measurement, and inverse modeling techniques for estimating greenhouse gas emissions could assist in improving the understanding of inventory estimates. In working with the research community on ambient measurement and

⁵ Other significant CO₂ trends included the following:

¹⁷ See <http://www.ipcc-nggip.iges.or.jp/public/index.html>.

remote sensing techniques to improve national greenhouse gas inventories, EPA follows guidance from the IPCC on the use of measurements and modeling to validate emission inventories.¹⁸ An area of particular interest in EPA's outreach efforts is how ambient measurement data can be used in a manner consistent with this Inventory report's transparency of its calculation methodologies, and the ability of these techniques to attribute emissions and removals from remote sensing to anthropogenic sources, as defined by the IPCC for this report, versus natural sources and sinks.

In an effort to improve the ability to compare the national-level greenhouse gas inventory with measurement results that may be at other scales, a team at Harvard University along with EPA and other coauthors developed a gridded inventory of U.S. anthropogenic methane emissions with 0.1° x 0.1° spatial resolution, monthly temporal resolution, and detailed scale-dependent error characterization. The gridded inventory is designed to be consistent with the 1990 to 2014 U.S. EPA *Inventory of U.S. Greenhouse Gas Emissions and Sinks* estimates for the year 2012, which presents national totals for different source types.¹⁹ This gridded inventory is consistent with the recommendations contained in two National Academies of Science reports examining greenhouse gas emissions data (National Research Council 2010; National Academies of Sciences, Engineering, and Medicine 2018).

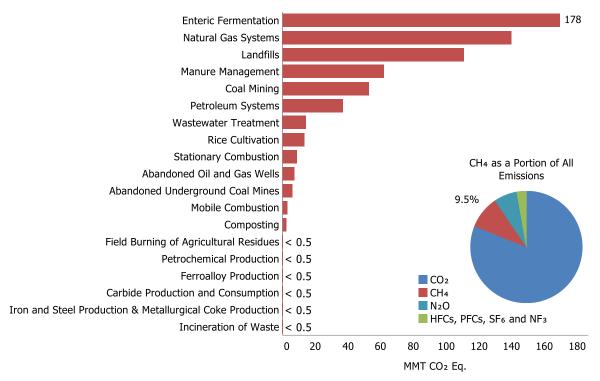
1

2 Methane Emissions

3 Methane (CH₄) is significantly more effective than CO₂ at trapping heat in the atmosphere–by a factor of 25 based

4 on the *IPCC Fourth Assessment Report* estimate (IPCC 2007). Over the last two hundred and fifty years, the

5 concentration of CH₄ in the atmosphere increased by 165 percent (IPCC 2013; NOAA/ESRL 2019b). The main


anthropogenic sources of CH₄ include enteric fermentation from domestic livestock, natural gas systems, landfills,

7 domestic livestock manure management, coal mining, and petroleum systems (see Figure ES-9).

¹⁸ See <http://www.ipcc-nggip.iges.or.jp/meeting/pdfiles/1003_Uncertainty%20meeting_report.pdf>.

¹⁹ See <https://www.epa.gov/ghgemissions/gridded-2012-methane-emissions>.

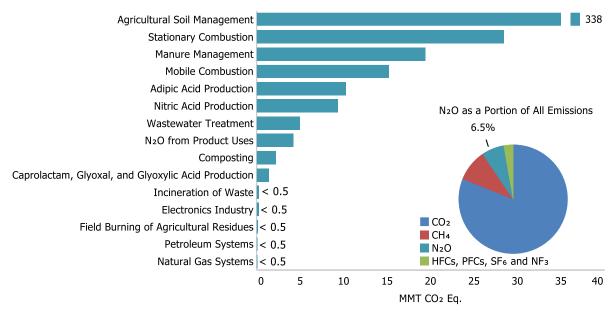
1 Figure ES-9: 2018 Sources of CH₄ Emissions (MMT CO₂ Eq.)

2

Note: LULUCF emissions are reported separately from gross emissions totals and are not included in Figure ES-9. Refer to Table
 ES-5 for a breakout of LULUCF emissions by gas.

5 Significant trends for the largest sources of U.S. CH₄ emissions include the following:

- Enteric fermentation is the largest anthropogenic source of CH₄ emissions in the United States. In 2018,
 enteric fermentation CH₄ emissions were 177.6 MMT CO₂ Eq. (28.0 percent of total CH₄ emissions), which
 represents an increase of 13.4 MMT CO₂ Eq. (8.2 percent) since 1990. This increase in emissions from
 1990 to 2018 generally follows the increasing trends in cattle populations.
- Natural gas systems were the second largest anthropogenic source category of CH₄ emissions in the United States in 2018 with 139.7 MMT CO₂ Eq. of CH₄ emitted into the atmosphere. Those emissions have decreased by 43.6 MMT CO₂ Eq. (23.8 percent) since 1990. The decrease in CH₄ emissions is largely due to decreases in emissions from distribution, transmission, and storage. The decrease in distribution emissions is due to decreased emissions from pipelines and distribution station leaks, and the decrease in transmission and storage emissions is largely due to reduced compressor station emissions (including emissions from compressors and equipment leaks).
- Landfills were the third largest anthropogenic source of CH₄ emissions in the United States (110.6 MMT CO₂ Eq.), accounting for 17.4 percent of total CH₄ emissions in 2018. From 1990 to 2018, CH₄ emissions from landfills decreased by 69.0 MMT CO₂ Eq. (38.4 percent), with small year-to-year increases. This downward trend in emissions coincided with increased landfill gas collection and control systems, and a reduction of decomposable materials (i.e., paper and paperboard, food scraps, and yard trimmings) discarded in MSW landfills over the time series.²⁰ While the amount of landfill gas collected and combusted continues to increase, the rate of increase in collection and combustion no longer exceeds the

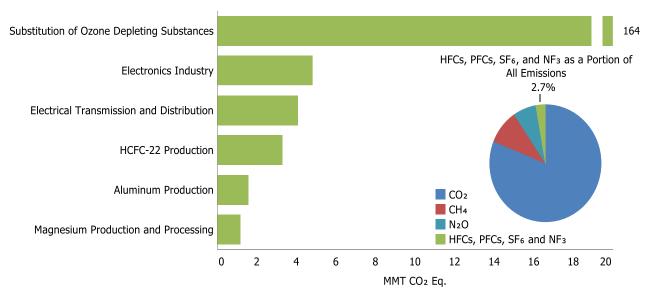

²⁰ Carbon dioxide emissions from landfills are not included specifically in summing waste sector totals. Net carbon fluxes from changes in biogenic carbon reservoirs and decay of disposed wood products are accounted for in the estimates for LULUCF.

rate of additional CH₄ generation from the amount of organic MSW landfilled as the U.S. population grows
 (EPA 2018b).

Nitrous Oxide Emissions

- 4 Nitrous oxide (N₂O) is produced by biological processes that occur in soil and water and by a variety of
- 5 anthropogenic activities in the agricultural, energy, industrial, and waste management fields. While total N₂O
- 6 emissions are much lower than CO₂ emissions, N₂O is nearly 300 times more powerful than CO₂ at trapping heat in
- 7 the atmosphere (IPCC 2007). Since 1750, the global atmospheric concentration of N₂O has risen by approximately
- 8 23 percent (IPCC 2013; NOAA/ESRL 2019c). The main anthropogenic activities producing N₂O in the United States
- 9 are agricultural soil management, stationary fuel combustion, manure management, fuel combustion in motor
- 10 vehicles, and adipic acid production (see Figure ES-10).

11 Figure ES-10: 2018 Sources of N₂O Emissions (MMT CO₂ Eq.)


12

- 13 Note: LULUCF emissions are reported separately from gross emissions totals and are not included in Figure ES-10. Refer to
- 14 Table ES-5 for a breakout of LULUCF emissions by gas.
- 15 Significant trends for the largest sources of U.S. emissions of N₂O include the following:
- Agricultural soils accounted for approximately 77.8 percent of N₂O emissions and 5.1 percent of total
 greenhouse gas emissions in the United States in 2018. Estimated emissions from this source in 2018
 were 338.2 MMT CO₂ Eq. Annual N₂O emissions from agricultural soils fluctuated between 1990 and 2018,
 although overall emissions were 7.0 percent higher in 2018 than in 1990. Year-to-year fluctuations are
 largely a reflection of annual variation in weather patterns, synthetic fertilizer use, and crop production.
- Nitrous oxide emissions from stationary combustion increased 3.4 MMT CO₂ Eq. (13.4 percent) from 1990
 to 2018. Nitrous oxide emissions from this source increased primarily as a result of an increase in the
 number of coal fluidized bed boilers in the electric power sector.
- Nitrous oxide emissions from mobile combustion decreased by 26.8 MMT CO₂ Eq. (63.7 percent) from 1990 to 2018, primarily as a result of N₂O national emission control standards and emission control technologies for on-road vehicles.

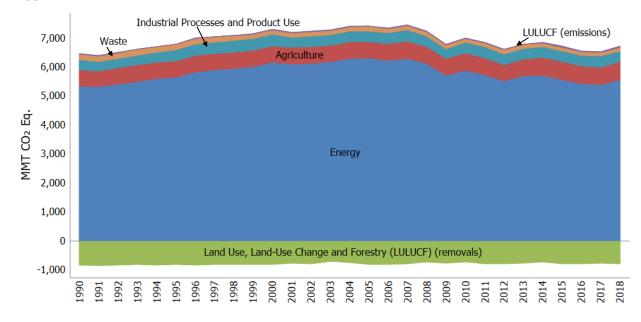
1 HFC, PFC, SF₆, and NF₃ Emissions

- 2 Hydrofluorocarbons (HFCs) are synthetic chemicals that are used as alternatives to ozone depleting substances
- 3 (ODS), which are being phased out under the Montreal Protocol and Clean Air Act Amendments of 1990.
- 4 Hydrofluorocarbons do not deplete the stratospheric ozone layer and therefore have been used as alternatives
- 5 under the Montreal Protocol on Substances that Deplete the Ozone Layer.
- 6 Perfluorocarbons (PFCs) are emitted from the production of electronics and aluminum and also (in smaller
- 7 quantities) from their use as alternatives to ozone depleting substances. Sulfur hexafluoride (SF₆) is emitted from
- 8 the production of electronics and magnesium and from the manufacturing and use of electrical transmission and
- 9 distribution equipment. NF₃ is also emitted from electronics production. One HFC, HFC-23, is emitted during
- 10 production of HCFC-22 and electronics (see Figure ES-11).
- 11 HFCs, PFCs, SF₆, and NF₃ are potent greenhouse gases. In addition to having very high global warming potentials,
- 12 SF₆ and PFCs have extremely long atmospheric lifetimes, resulting in their essentially irreversible accumulation in
- 13 the atmosphere once emitted. Sulfur hexafluoride is the most potent greenhouse gas the IPCC has evaluated (IPCC
- 14 2013).

15 Figure ES-11: 2018 Sources of HFCs, PFCs, SF₆, and NF₃ Emissions (MMT CO₂ Eq.)

16

17 Some significant trends for the largest sources of U.S. HFC, PFC, SF₆, and NF₃ emissions include the following:


- Hydrofluorocarbon and perfluorocarbon emissions resulting from the substitution of ODS (e.g., chlorofluorocarbons [CFCs]) have been consistently increasing, from small amounts in 1990 to 164.5 MMT
 CO₂ Eq. in 2018. This increase was in large part the result of efforts to phase out CFCs and other ODS in the United States. In the short term, this trend is expected to continue, and will likely continue over the next decade as hydrochlorofluorocarbons (HCFCs), which are in use as interim substitutes in many applications, are themselves phased out.
- Emissions from HCFC-22 production were 3.3 MMT CO₂ Eq. in 2018, a 93 percent decrease from 1990 emissions. The decrease from 1990 emissions was caused primarily by changes in the HFC-23 emission rate (kg HFC-23 emitted/kg HCFC-22 produced) as a result of HFC-23 recovery and optimization of the manufacturing process.
- GWP-weighted PFC, HFC, SF₆, and NF₃ emissions from the electronics industry have increased by 33.9
 percent from 1990 to 2018, reflecting the competing influences of industrial growth and the adoption of
 emission reduction technologies. Within that time span, emissions peaked at 9.0 MMT CO₂ Eq. in 1999,

- 1 the initial year of EPA's PFC Reduction/Climate Partnership for the Semiconductor Industry, but have since 2 declined to 4.8 MMT CO₂ Eq. in 2018 (a 47.2 percent decrease relative to 1999).
- 3 Sulfur hexafluoride emissions from electric power transmission and distribution systems decreased by 4 82.4 percent (19.1 MMT CO₂ Eq.) from 1990 to 2018. There are two factors contributing to this decrease: 5 (1) a sharp increase in the price of SF₆ during the 1990s and (2) a growing awareness of the environmental 6 impact of SF₆ emissions through programs such as EPA's SF₆ Emission Reduction Partnership for Electric 7 Power Systems.

ES.3 Overview of Sector Emissions and Trends 8

- 9 In accordance with the UNFCCC decision to set the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 10
- (IPCC 2006) as the standard for Annex I countries at the Nineteenth Conference of the Parties (UNFCCC 2014),
- Figure ES-12 and Table ES-4 aggregate emissions and sinks by the sectors defined by those guidelines. Over the 11 12
- twenty-nine-year period of 1990 to 2018, total emissions from the Energy, Agriculture, and Industrial Processes 13 and Product Use sectors grew by 213.1 MMT CO₂ Eq. (4.0 percent), 64.1 MMT CO₂ Eq. (11.6 percent), and 28.0
- 14 MMT CO₂ Eq. (8.1 percent), respectively. Emissions from the Waste sector decreased by 64.6 MMT CO₂ Eq. (32.4
- 15 percent). Over the same period, total C sequestration in the LULUCF sector decreased by 60.9 MMT CO₂ (7.1
- 16 percent decrease in total C sequestration), and CH₄ and N₂O emissions from the LULUCF sector increased by 18.7
- 17 MMT CO₂ Eq. (254.2 percent).

Figure ES-12: U.S. Greenhouse Gas Emissions and Sinks by Chapter/IPCC Sector (MMT CO₂ 18 19 Eq.)

20

21 Table ES-4: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks by Chapter/IPCC 22 Sector (MMT CO₂ Eq.)

Chapter/IPCC Sector	1990	2005	2014	2015	2016	2017	2018
Energy	5,338.2	6,294.4	5,705.2	5,551.3	5,426.1	5,385.4	5,551.3
Fossil Fuel Combustion	4,740.0	5,740.7	5,185.9	5 <i>,</i> 033.0	4,942.9	4,893.9	5,033.3
Natural Gas Systems	215.4	183.4	170.7	171.2	169.8	169.4	174.6
Non-Energy Use of Fuels	119.5	139.7	120.0	127.0	113.7	123.1	134.5
Petroleum Systems	55.9	51.0	74.1	73.3	61.9	63.3	76.0

		 _					
Coal Mining	96.5	64.1	64.6	61.2	53.8	54.8	52.7
Stationary Combustion	33.7	42.1	41.8	39.0	38.0	36.4	37.1
Mobile Combustion	55.0	46.9	23.9	22.0	20.8	19.6	18.4
Incineration of Waste	8.4	12.9	10.7	11.1	11.2	11.4	11.4
Abandoned Oil and Gas Wells	6.6	7.0	7.1	7.2	7.2	7.1	7.0
Abandoned Underground Coal Mines	7.2	6.6	6.3	6.4	6.7	6.4	6.2
Industrial Processes and Product Use	345.6	364.8	376.9	373.1	367.3	367.7	373.6
Substitution of Ozone Depleting							
Substances	0.2	106.5	157.1	161.7	163.2	163.1	164.5
Iron and Steel Production &							
Metallurgical Coke Production	104.8	70.1	58.2	48.0	43.6	40.8	42.7
Cement Production	33.5	46.2	39.4	39.9	39.4	40.3	40.3
Petrochemical Production	21.8	27.5	26.4	28.2	28.6	29.2	29.7
Lime Production	11.7	14.6	14.2	13.3	12.9	13.1	13.9
Ammonia Production	13.0	9.2	9.4	10.6	10.8	13.2	13.5
Adipic Acid Production	15.2	7.1	5.4	4.3	7.0	7.4	10.3
Other Process Uses of Carbonates	6.3	7.6	13.0	12.2	11.0	10.1	9.4
Nitric Acid Production	12.1	11.3	10.9	11.6	10.1	9.3	9.3
Electronics Industry	3.6	4.8 1.4	4.9	5.0	5.0	4.9	5.1
Carbon Dioxide Consumption	1.5 4.2	1.4 4.2	4.5 4.2	4.5 4.2	4.5 4.2	4.5 4.2	4.5 4.2
N ₂ O from Product Uses Electrical Transmission and	4.2	4.2	4.2	4.2	4.2	4.2	4.2
Distribution	23.2	8.4	4.8	3.8	4.1	4.1	4.1
Urea Consumption for Non-	25.2	0.4	4.0	5.0	4.1	4.1	4.1
Agricultural Purposes	3.8	3.7	1.8	4.6	5.1	3.8	3.6
HCFC-22 Production	46.1	20.0	5.0	4.0	2.8	5.8	3.3
Aluminum Production	28.3	7.6	5.4	4.3	2.8	2.3	3.0
Ferroalloy Production	28.3	7.0 1.4	1.9	4.8 2.0	1.8	2.3	2.1
Soda Ash Production	1.4	1.4	1.5	2.0 1.7	1.3	1.8	1.7
Titanium Dioxide Production	1.4	1.7	1.7	1.6	1.7	1.0	1.6
Caprolactam, Glyoxal, and Glyoxylic	1.2	1.0	1.7	1.0	1.7	1.7	1.0
Acid Production	1.7	2.1	2.0	2.0	2.0	1.5	1.4
Glass Production	1.5	1.9	1.3	1.3	1.2	1.3	1.3
Magnesium Production and	1.5	1.5	1.5	1.5	1.2	1.5	1.5
Processing	5.2	2.7	1.0	1.1	1.2	1.2	1.2
Zinc Production	0.6	1.0	1.0	0.9	0.9	1.0	1.0
Phosphoric Acid Production	1.5	1.3	1.0	1.0	1.0	1.0	0.9
Lead Production	0.5	0.6	0.5	0.5	0.4	0.5	0.6
Carbide Production and Consumption	0.4	0.2	0.2	0.2	0.2	0.2	0.2
Agriculture	554.4	575.9	608.6	614.6	600.5	602.3	618.5
Agricultural Soil Management	315.9	313.0	349.2	348.1	329.8	327.4	338.2
Enteric Fermentation	164.2	168.9	164.2	166.5	171.8	175.4	177.6
Manure Management	51.1	67.9	71.6	75.4	77.7	78.5	81.1
Rice Cultivation	16.0	18.0	15.4	16.2	13.5	12.8	13.3
Urea Fertilization	2.0	3.1	3.9	4.1	4.0	4.5	4.6
Liming	4.7	4.3	3.6	3.7	3.1	3.1	3.1
Field Burning of Agricultural Residues	0.5	0.6	0.6	0.6	0.6	0.6	0.6
Waste	199.0	154.7	135.6	134.7	131.6	131.4	134.4
Landfills	179.6	131.3	112.6	111.3	108.0	107.7	110.6
Wastewater Treatment	18.7	19.8	19.1	19.3	19.2	19.1	19.2
Composting	0.7	3.5	4.0	4.0	4.3	4.6	4.7
Total Emissions ^a	6,437.1	7,389.8	6,826.3	6,673.7	6,525.5	6,486.7	6,677.8
Land Use, Land-Use Change, and	1						
Forestry	(853.4)	(814.7)	(723.0)	(775.5)	(788.9)	(763.9)	(773.7)
Forest land	(841.7)	(780.0)	(719.5)	(765.9)	(762.3)	(739.0)	(754.5)
Cropland	30.9	24.8	44.4	44.4	32.7	33.3	38.7
Grassland	2.6	(28.9)	(4.3)	(8.9)	(14.6)	(13.4)	(12.8)
Wetlands	(0.5)	(2.0)	(0.6)	(0.7)	(0.7)	(0.7)	(0.7)

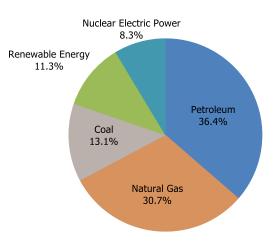
Settlements	(44.7)	(28.5)	(43.0)	(44.5)	(44.1)	(44.2)	(44.5)
Net Emission (Sources and Sinks) ^b	5,583.7	6,575.1	6,103.3	5 <i>,</i> 898.2	5,736.6	5,722.9	5,904.1

Notes: Total emissions presented without LULUCF. Net emissions presented with LULUCF. Totals may not sum due to independent rounding. Parentheses indicate negative values or sequestration.

^a Total emissions without LULUCF.

^b Net emissions with LULUCF.

Energy 1


- 2 The Energy chapter contains emissions of all greenhouse gases resulting from stationary and mobile energy
- activities including fuel combustion and fugitive fuel emissions, and the use of fossil fuels for non-energy purposes. 3

4 Energy-related activities, primarily fossil fuel combustion, accounted for the vast majority of U.S. CO₂ emissions for

- 5 the period of 1990 through 2018.
- 6 In 2018, approximately 80 percent of the energy used in the United States (on a Btu basis) was produced through
- 7 the combustion of fossil fuels. The remaining 20 percent came from other energy sources, such as hydropower,
- 8 biomass, nuclear, wind, and solar energy (see Figure ES-13).
- 9 Energy-related activities are also responsible for CH₄ and N₂O emissions (40 percent and 10 percent of total U.S.
- 10 emissions of each gas, respectively). Overall, emission sources in the Energy chapter account for a combined 83.1 11 percent of total U.S. greenhouse gas emissions in 2018.

12 Figure ES-13: 2018 U.S. Energy Consumption by Energy Source (Percent)

13

14

Industrial Processes and Product Use 15

The Industrial Processes and Product Use (IPPU) chapter contains information on greenhouse gas emissions 16

17 generated and emitted as the byproducts of many non-energy-related industrial processes, which involve the

18 chemical or physical transformation of raw materials and can release waste gases such as CO₂, CH₄, N₂O, and

19 fluorinated gases (e.g., HFC-23). These processes include iron and steel production and metallurgical coke

20 production, cement production, lime production, other process uses of carbonates (e.g., flux stone, flue gas

21 desulfurization, and glass manufacturing), ammonia production and urea consumption, petrochemical production,

22 aluminum production, HCFC-22 production, soda ash production and use, titanium dioxide production, ferroalloy

23 production, glass production, zinc production, phosphoric acid production, lead production, silicon carbide

24 production and consumption, nitric acid production, adipic acid production, and caprolactam production.

- 1 This chapter also contains information on the release of HFCs, PFCs, SF₆, and NF₃ and other fluorinated compounds
- 2 used in industrial manufacturing processes and by end-consumers. These industries include electronics industry,
- 3 electric power transmission and distribution, and magnesium metal production and processing. In addition, N₂O is
- 4 used in and emitted by electronics industry and anesthetic and aerosol applications, and CO₂ is consumed and
- 5 emitted through various end-use applications.
- 6 IPPU activities are also responsible for emissions of CO₂, CH₄, N₂O (3.1, 0.1, and 5.9 percent of total U.S. emissions
- 7 of each gas, respectively) as well as for all U.S. emissions of fluorinated gases such as HFCs, PFCs, SF₆ and NF₃.
- 8 Overall, emission sources in the Industrial Process and Product Use chapter account for 5.6 percent of U.S.
- 9 greenhouse gas emissions in 2018.

10 Agriculture

- 11 The Agriculture chapter contains information on anthropogenic emissions from agricultural activities (except fuel
- 12 combustion, which is addressed in the Energy chapter, and some agricultural CO₂, CH₄, and N₂O fluxes, which are
- 13 addressed in the Land Use, Land-Use Change, and Forestry chapter). Agricultural activities contribute directly to
- 14 emissions of greenhouse gases through a variety of processes, including the following source categories:
- agricultural soil management, enteric fermentation in domestic livestock, livestock manure management, rice
- 16 cultivation, urea fertilization, liming, and field burning of agricultural residues.
- 17 In 2018, agricultural activities were responsible for emissions of 618.5 MMT CO₂ Eq., or 9.3 percent of total U.S.
- 18 greenhouse gas emissions. Methane, N₂O, and CO₂ were the primary greenhouse gases emitted by agricultural
- 19 activities. Methane emissions from enteric fermentation and manure management represented approximately
- 20 28.0 percent and 9.7 percent of total CH₄ emissions from anthropogenic activities, respectively, in 2018.
- 21 Agricultural soil management activities, such as application of synthetic and organic fertilizers, deposition of
- 22 livestock manure, and growing N-fixing plants, were the largest contributers to U.S. N₂O emissions in 2018,
- 23 accounting for 77.8 percent of total N₂O emissions. Carbon dioxide emissions from the application of crushed
- 24 limestone and dolomite (i.e., soil liming) and urea fertilization represented 0.1 percent of total CO₂ emissions from
- 25 anthropogenic activities.

Land Use, Land-Use Change, and Forestry

- 27 The LULUCF chapter contains emissions of CH₄ and N₂O, and emissions and removals of CO₂ from managed lands in
- 28 the United States. Consistent with the 2006 IPCC Guidelines, emissions and removals from managed lands are
- 29 considered to be anthropogenic, while emissions and removals from unmanaged lands are considered to be
- 30 natural.²¹ More information on the definition of managed land used in the Inventory is provided in Chapter 6.
- 31 Overall, the Inventory results show that managed land is a net sink for CO₂ (C sequestration) in the United States.
- 32 The primary drivers of fluxes on managed lands include forest management practices, tree planting in urban areas,
- the management of agricultural soils, landfilling of yard trimmings and food scraps, and activities that cause
- 34 changes in C stocks in coastal wetlands. The main drivers for forest C sequestration include forest growth and
- 35 increasing forest area, as well as a net accumulation of C stocks in harvested wood pools. The net sequestration in
- 36 Settlements Remaining Settlements, which occurs predominantly from urban forests and landfilled yard trimmings
- and food scraps, is a result of net tree growth and increased urban forest size, as well as long-term accumulation of
- 38 yard trimmings and food scraps carbon in landfills.
- The LULUCF sector in 2018 resulted in a net increase in C stocks (i.e., net CO₂ removals) of 799.9 MMT CO₂ Eq.
- 40 (Table ES-5).²² This represents an offset of 12.0 percent of total (i.e., gross) greenhouse gas emissions in 2018.

²¹ See <http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_01_Ch1_Introduction.pdf>.

²² LULUCF Carbon Stock Change is the net C stock change from the following categories: *Forest Land Remaining Forest Land, Land Converted to Forest Land, Cropland Remaining Cropland, Land Converted to Cropland, Grassland Remaining Grassland,*

- 1 Emissions of CH₄ and N₂O from LULUCF activities in 2018 were 26.1 MMT CO₂ Eq. and represent 0.4 percent of
- 2 total greenhouse gas emissions.²³ Between 1990 and 2018, total C sequestration in the LULUCF sector decreased
- by 7.1 percent, primarily due to a decrease in the rate of net C accumulation in forests and *Cropland Remaining*
- 4 Cropland, as well as an increase in CO₂ emissions from Land Converted to Settlements.
- 5 Forest fires were the largest source of CH₄ emissions from LULUCF in 2018, totaling 11.3 MMT CO₂ Eq. (452 kt of
- 6 CH₄). Coastal Wetlands Remaining Coastal Wetlands resulted in CH₄ emissions of 3.6 MMT CO₂ Eq. (144 kt of CH₄).
- 7 Grassland fires resulted in CH₄ emissions of 0.3 MMT CO₂ Eq. (12 kt of CH₄). Peatlands Remaining Peatlands, Land
- 8 *Converted to Wetlands,* and *Drained Organic Soils* resulted in CH₄ emissions of less than 0.05 MMT CO₂ Eq. each.
- 9 Forest fires were also the largest source of N₂O emissions from LULUCF in 2018, totaling 7.5 MMT CO₂ Eq. (25 kt of
- 10 N₂O). Nitrous oxide emissions from fertilizer application to settlement soils in 2018 totaled to 2.4 MMT CO₂ Eq. (8
- 11 kt of N₂O). Additionally, the application of synthetic fertilizers to forest soils in 2018 resulted in N₂O emissions of
- 12 0.5 MMT CO₂ Eq. (2 kt of N₂O). Grassland fires resulted in N₂O emissions of 0.3 MMT CO₂ Eq. (1 kt of N₂O). *Coastal*
- 13 Wetlands Remaining Coastal Wetlands and Drained Organic Soils resulted in N₂O emissions of 0.1 MMT CO₂ Eq.
- each (less than 0.5 kt of N₂O). *Peatlands Remaining Peatlands* resulted in N₂O emissions of less than 0.05 MMT CO₂
- 15 Eq.

Carbon dioxide removals from C stock changes are presented in Table ES-5 along with CH₄ and N₂O emissions for
 LULUCF source categories.

Table ES-5: U.S. Greenhouse Gas Emissions and Removals (Net Flux) from Land Use, Land-Use Change, and Forestry (MMT CO₂ Eq.)

Gas/Land-Use Category	1990	2005	2014	2015	2016	2017	2018
Carbon Stock Change ^a	(860.7)	(831.0)	(739.6)	(802.9)	(801.7)	(789.9)	(799.9)
Forest Land Remaining Forest Land	(733.9)	(678.6)	(618.8)	(676.1)	(657.9)	(647.7)	(663.2)
Land Converted to Forest Land	(109.4)	(110.2)	(110.5)	(110.6)	(110.6)	(110.6)	(110.6)
Cropland Remaining Cropland	(23.2)	(29.0)	(12.2)	(12.8)	(22.7)	(22.3)	(16.6)
Land Converted to Cropland	54.1	53.8	56.7	57.2	55.5	55.6	55.3
Grassland Remaining Grassland	9.1	10.7	19.7	13.6	9.6	10.9	11.2
Land Converted to Grassland	(6.7)	(40.3)	(24.9)	(23.2)	(24.8)	(24.9)	(24.6)
Wetlands Remaining Wetlands	(4.0)	(5.7)	(4.3)	(4.4)	(4.4)	(4.4)	(4.4)
Land Converted to Wetlands	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Settlements Remaining Settlements	(109.6)	(116.6)	(126.6)	(126.8)	(125.7)	(125.9)	(126.2)
Land Converted to Settlements	62.9	85.0	81.4	80.1	79.4	79.3	79.3
CH ₄	4.4	8.8	9.5	16.1	7.3	15.2	15.2
Forest Land Remaining Forest Land:							
Forest Fires ^b	0.9	5.0	5.6	12.2	3.4	11.3	11.3
Wetlands Remaining Wetlands: Coastal							
Wetlands Remaining Coastal Wetlands	3.4	3.5	3.6	3.6	3.6	3.6	3.6
Grassland Remaining Grassland:							
Grassland Fires ^c	0.1	0.3	0.4	0.3	0.3	0.3	0.3
Land Converted to Wetlands: Land							
Converted to Coastal Wetlands	+	+	+	+	+	+	+
Forest Land Remaining Forest Land:							
Drained Organic Soils ^d	+	+	+	+	+	+	+
Wetlands Remaining Wetlands:							
Peatlands Remaining Peatlands	+	+	+	+	+	+	+
N ₂ O	3.0	7.5	7.0	11.2	5.5	10.8	10.9
- Forest Land Remaining Forest Land:	0.6	3.3	3.7	8.1	2.2	7.5	7.5

Land Converted to Grassland, Wetlands Remaining Wetlands, Land Converted to Wetlands, Settlements Remaining Settlements, and Land Converted to Settlements.

²³ LULUCF emissions include the CH₄ and N₂O emissions reported for *Peatlands Remaining Peatlands*, Forest Fires, Drained Organic Soils, Grassland Fires, and *Coastal Wetlands Remaining Coastal Wetlands*; CH₄ emissions from *Land Converted to Coastal Wetlands*; and N₂O emissions from Forest Soils and Settlement Soils.

Forest Fires ^b							
Settlements Remaining Settlements:							
Settlement Soils ^e	2.0	3.1	2.2	2.2	2.2	2.3	2.4
Forest Land Remaining Forest Land:							
Forest Soils ^f	0.1	0.5	0.5	0.5	0.5	0.5	0.5
Grassland Remaining Grassland:							
Grassland Fires ^c	0.1	0.3	0.4	0.3	0.3	0.3	0.3
Wetlands Remaining Wetlands: Coastal							
Wetlands Remaining Coastal Wetlands	0.1	0.2	0.1	0.1	0.1	0.1	0.1
Forest Land Remaining Forest Land:							
Drained Organic Soils ^d	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Wetlands Remaining Wetlands:							
Peatlands Remaining Peatlands	+	+	+	+	+	+	+
LULUCF Emissions ^g	7.4	16.3	16.6	27.4	12.8	26.1	26.1
LULUCF Carbon Stock Change ^a	(860.7)	(831.0)	(739.6)	(802.9)	(801.7)	(789.9)	(799.9)
LULUCF Sector Net Total ^h	(853.4)	(814.7)	(723.0)	(775.5)	(788.9)	(763.9)	(773.7)

Notes: Totals may not sum due to independent rounding. Parentheses indicate net sequestration.

+ Absolute value does not exceed 0.05 MMT CO₂ Eq.

^a LULUCF Carbon Stock Change is the net C stock change from the following categories: *Forest Land Remaining Forest Land, Land Converted to Forest Land, Cropland Remaining Cropland, Land Converted to Cropland, Grassland Remaining Grassland, Land Converted to Grassland, Wetlands Remaining Wetlands, Land Converted to Wetlands, Settlements Remaining Settlements, and Land Converted to Settlements.*

^b Estimates include emissions from fires on both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

^c Estimates include emissions from fires on both Grassland Remaining Grassland and Land Converted to Grassland.

^d Estimates include emissions from drained organic soils on both *Forest Land Remaining Forest Land* and *Land Converted* to *Forest Land*.

^e Estimates include emissions from N fertilizer additions on both *Settlements Remaining Settlements* and *Land Converted to Settlements*.

^f Estimates include emissions from N fertilizer additions on both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

^g LULUCF emissions include the CH₄ and N₂O emissions reported for *Peatlands Remaining Peatlands*, Forest Fires, Drained Organic Soils, Grassland Fires, and *Coastal Wetlands Remaining Coastal Wetlands*; CH₄ emissions from *Land Converted to Coastal Wetlands*; and N₂O emissions from Forest Soils and Settlement Soils.

^h The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.

1 Waste

2 The Waste chapter contains emissions from waste management activities (except incineration of waste, which is

addressed in the Energy chapter). Landfills were the largest source of anthropogenic greenhouse gas emissions

4 from waste management activities, generating 110.6 MMT CO₂ Eq. and accounting for 82.2 percent of total

5 greenhouse gas emissions from waste management activities, and 17.4 percent of total U.S. CH₄ emissions.²⁴

6 Additionally, wastewater treatment generates emissions of 19.2 MMT CO₂ Eq. and accounts for 14.3 percent of

7 total Waste sector greenhouse gas emissions, 2.2 percent of U.S. CH₄ emissions, and 1.2 percent of U.S. N₂O

8 emissions. Emissions of CH₄ and N₂O from composting are also accounted for in this chapter, generating emissions

9 of 2.5 MMT CO₂ Eq. and 2.2 MMT CO₂ Eq., respectively. Overall, emission sources accounted for in the Waste

10 chapter generated 134.4 MMT CO₂ Eq., or 2.0 percent of total U.S. greenhouse gas emissions in 2018.

²⁴ Landfills also store carbon, due to incomplete degradation of organic materials such as harvest wood products, yard trimmings, and food scraps, as described in the Land-Use, Land-Use Change, and Forestry chapter of the Inventory report.

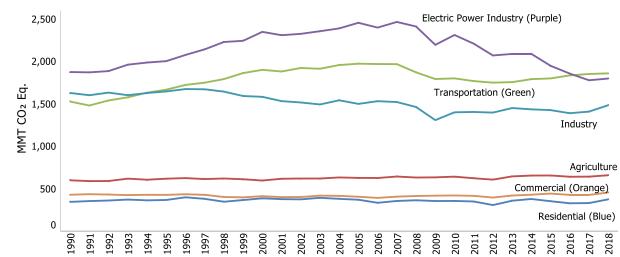
1 ES.4 Other Information

2 Emissions by Economic Sector

3 Throughout the Inventory of U.S. Greenhouse Gas Emissions and Sinks report, emission estimates are grouped into

4 five sectors (i.e., chapters) defined by the IPCC: Energy; IPPU; Agriculture; LULUCF; and Waste. While it is 5 important to use this characterization for consistency with UNFCCC reporting guidelines and to promote

important to use this characterization for consistency with UNFCCC reporting guidelines and to promote
 comparability across countries, it is also useful to characterize emissions according to commonly used economic


sector categories: residential, commercial, industry, transportation, electric power, and agriculture. Emissions from

8 U.S. Territories are reported as their own end-use sector due to a lack of specific consumption data for the

9 individual end-use sectors within U.S. Territories.

10 Figure ES-14 shows the trend in emissions by economic sector from 1990 to 2018, and Table ES-6 summarizes

11 emissions from each of these economic sectors.

12 Figure ES-14: U.S. Greenhouse Gas Emissions Allocated to Economic Sectors (MMT CO₂ Eq.)

13

14 Table ES-6: U.S. Greenhouse Gas Emissions Allocated to Economic Sectors (MMT CO₂ Eq.)

Economic Sectors	1990	2005	2014	2015	2016	2017	2018
Transportation	1,527.1	1,973.4	1,791.6	1,800.2	1,835.6	1,852.5	1,860.1
Electric Power Industry	1,875.6	2,455.9	2,089.1	1,949.2	1,857.0	1,778.5	1,798.7
Industry	1,628.7	1,499.7	1,435.6	1,426.5	1,389.8	1,409.3	1,484.0
Agriculture	599.0	627.5	654.9	656.0	641.0	642.4	658.6
Commercial	428.7	405.1	429.5	442.7	427.1	426.9	455.1
Residential	344.7	370.1	378.8	352.3	328.4	330.6	374.6
U.S. Territories	33.3	58.0	46.6	46.6	46.6	46.6	46.6
Total Emissions	6,437.1	7,389.8	6,826.3	6,673.7	6,525.5	6,486.7	6,677.8
LULUCF Sector Net Total ^a	(853.4)	(814.7)	(723.0)	(775.5)	(788.9)	(763.9)	(773.7)
Net Emissions (Sources and Sinks)	5,583.7	6,575.1	6,103.3	5,898.2	5,736.6	5,722.9	5,904.1

Notes: Total emissions presented without LULUCF. Total net emissions presented with LULUCF. Totals may not sum due to independent rounding. Parentheses indicate negative values or sequestration.

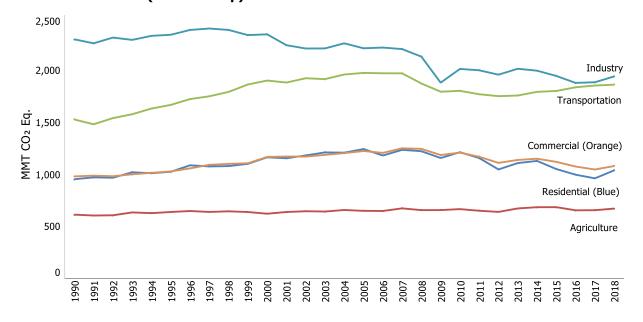
^a The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.

15 Using this categorization, emissions from transportation activities, in aggregate, accounted for the largest portion

16 (27.9 percent) of total U.S. greenhouse gas emissions in 2018. Electric power accounted for the second largest

- 1 portion (26.9 percent) of U.S. greenhouse gas emissions in 2018, while emissions from industry accounted for the
- 2 third largest portion (22.2 percent). Emissions from industry have in general declined over the past decade, due to
- a number of factors, including structural changes in the U.S. economy (i.e., shifts from a manufacturing-based to a 3
- 4 service-based economy), fuel switching, and energy efficiency improvements.
- 5 The remaining 23.0 percent of U.S. greenhouse gas emissions were contributed by, in order of magnitude, the
- 6 agriculture, commercial, and residential sectors, plus emissions from U.S. Territories. Activities related to
- 7 agriculture accounted for 9.9 percent of U.S. emissions; unlike other economic sectors, agricultural sector
- 8 emissions were dominated by N₂O emissions from agricultural soil management and CH₄ emissions from enteric
- 9 fermentation. An increasing amount of carbon is stored in agricultural soils each year, but this CO₂ sequestration is
- 10 assigned to the LULUCF sector rather than the agriculture economic sector. The commercial and residential sectors
- 11 accounted for 6.8 percent and 5.6 percent of emissions, respectively, and U.S. Territories accounted for 0.7
- 12 percent of emissions; emissions from these sectors primarily consisted of CO₂ emissions from fossil fuel
- 13 combustion. Carbon dioxide was also emitted and sequestered by a variety of activities related to forest management practices, tree planting in urban areas, the management of agricultural soils, landfilling of yard
- 14
- 15 trimmings, and changes in C stocks in coastal wetlands.
- 16 Electricity is ultimately used in the economic sectors described above. Table ES-7 presents greenhouse gas
- 17 emissions from economic sectors with emissions related to electric power distributed into end-use categories (i.e.,
- 18 emissions from electric power are allocated to the economic sectors in which the electricity is used). To distribute
- 19 electricity emissions among end-use sectors, emissions from the source categories assigned to electric power were
- 20 allocated to the residential, commercial, industry, transportation, and agriculture economic sectors according to
- retail sales of electricity for each end-use sector (EIA 2019 and Duffield 2006).²⁵ These source categories include 21 CO₂ from fossil fuel combustion and the use of limestone and dolomite for flue gas desulfurization, CO₂ and N₂O 22
- 23 from incineration of waste, CH₄ and N₂O from stationary sources, and SF₆ from electrical transmission and
- 24 distribution systems.
- 25 When emissions from electricity use are distributed among these end-use sectors, industrial activities and
- 26 transportation account for the largest shares of U.S. greenhouse gas emissions (29.1 percent and 27.9 percent,
- 27 respectively) in 2018. The commercial and residential sectors contributed the next largest shares of total U.S.
- 28 greenhouse gas emissions in 2018 (16.2 and 15.6 percent, respectively). Emissions from the commercial and
- 29 residential sectors increase substantially when emissions from electricity use are included, due to their relatively
- 30 large share of electricity use for energy (e.g., lighting, cooling, appliances). In all sectors except agriculture, CO₂
- 31 accounts for at least 80.8 percent of greenhouse gas emissions, primarily from the combustion of fossil fuels.
- Figure ES-15 shows the trend in these emissions by sector from 1990 to 2018. 32

Table ES-7: U.S. Greenhouse Gas Emissions by Economic Sector with Electricity-Related 33 **Emissions Distributed (MMT CO₂ Eq.)** 34


Economic Sectors	1990	2005	2014	2015	2016	2017	2018
Industry	2,301.1	2,214.9	1,999.4	1,948.9	1,882.1	1,888.5	1,944.2
Transportation	1,530.2	1,978.3	1,796.2	1,804.6	1,839.9	1,856.9	1,865.0
Commercial	982.8	1,226.8	1,153.2	1,122.7	1,077.6	1,049.4	1,082.6
Residential	955.6	1,246.0	1,131.7	1,053.6	999.2	964.2	1,041.0
Agriculture	634.0	665.8	699.2	697.2	680.1	681.1	698.4
U.S. Territories	33.3	58.0	46.6	46.6	46.6	46.6	46.6
Total Emissions	6,437.1	7,389.8	6,826.3	6,673.7	6,525.5	6,486.7	6,677.8
LULUCF Sector Net Total ^a	(853.4)	(814.7)	(723.0)	(775.5)	(788.9)	(763.9)	(773.7)
Net Emissions (Sources and Sinks)	5,583.7	6,575.1	6,103.3	5,898.2	5,736.6	5,722.9	5,904.1

Notes: Emissions from electric power are allocated based on aggregate electricity use in each end-use sector. Totals may not sum due to independent rounding. Parentheses indicate negative values or sequestration.

²⁵ U.S. Territories consumption data that are obtained from EIA are only available at the aggregate level and cannot be broken out by end-use sector. The distribution of emissions to each end-use sector for the 50 states does not apply to territories data.

^a The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.

Figure ES-15: U.S. Greenhouse Gas Emissions with Electricity-Related Emissions Distributed to Economic Sectors (MMT CO₂ Eq.)

Box ES-5: Recent Trends in Various U.S. Greenhouse Gas Emissions-Related Data

Total greenhouse gas emissions can be compared to other economic and social indices to highlight changes over time. These comparisons include: (1) emissions per unit of aggregate energy use, because energy-related activities are the largest sources of emissions; (2) emissions per unit of fossil fuel consumption, because almost all energy-related emissions involve the combustion of fossil fuels; (3) emissions per unit of electricity use, because the electric power industry—utilities and non-utilities combined—was the second largest source of emissions in 2018; (4) emissions per unit of total gross domestic product as a measure of national economic activity; and (5) emissions per capita.

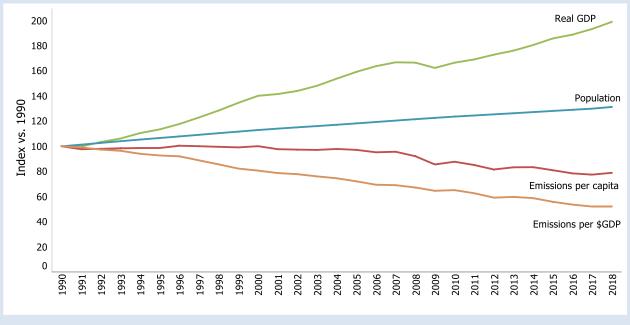
Table ES-8 provides data on various statistics related to U.S. greenhouse gas emissions normalized to 1990 as a baseline year. These values represent the relative change in each statistic since 1990. Greenhouse gas emissions in the United States have grown at an average annual rate of 0.2 percent since 1990, although changes from year to year have been significantly larger. This growth rate is slightly slower than that for total energy use and fossil fuel consumption, and much slower than that for electricity use, overall gross domestic product (GDP), and national population (see Figure ES-16). The direction of these trends started to change after 2005, when greenhouse gas emissions, total energy use and fossil fuel consumption began to peak. Greenhouse gas emissions in the United States have decreased at an average annual rate of 0.7 percent since 2005. Fossil fuel consumption has also decreased at a slower rate than emissions since 2005, while electricity use, total energy use, GDP, and national population continued to increase.

Table ES-8: Recent Trends in Various U.S. Data (Index 1990 = 100)

								Avg. Annual	Avg. Annual
								Growth Rate	Growth Rate
Variable	1990	2005	2014	2015	2016	2017	2018	Since 1990 ^a	Since 2005 ^a

Greenhouse Gas Emissions ^b	100	115	106	104	101	101	104	0.2%	-0.7%
Energy Use ^c	100	118	117	116	116	116	120	0.7%	0.1%
Fossil Fuel Consumption ^c	100	119	111	110	109	108	113	0.4%	-0.4%
Electricity Use ^c	100	134	138	137	138	136	139	1.2%	0.3%
GDP ^d	100	159	181	186	189	193	199	2.5%	1.7%
Population ^e	100	118	127	128	129	130	131	1.0%	0.8%

^a Average annual growth rate.


^b GWP-weighted values.

^c Energy content-weighted values (EIA 2019).

^d GDP in chained 2009 dollars (BEA 2019).

^e U.S. Census Bureau (2019).

Source: BEA (2019), U.S. Census Bureau (2019), and emission estimates in this report.

1

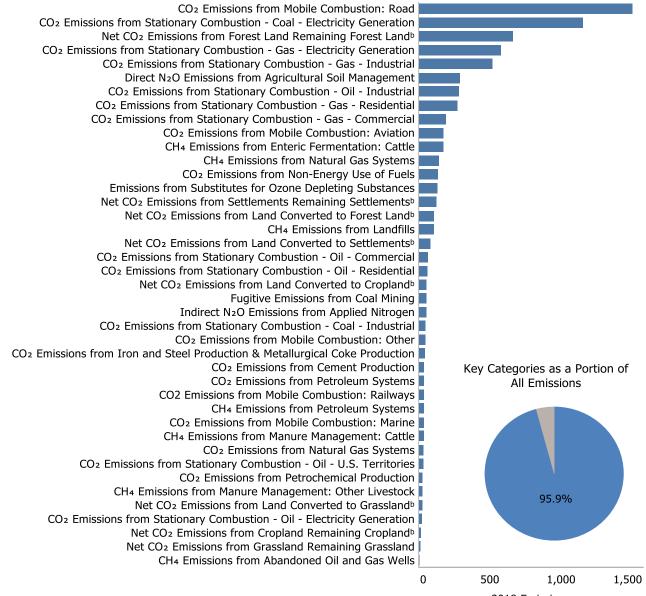
Key Categories 2

3 The 2006 IPCC Guidelines (IPCC 2006) defines a key category as a "[category] that is prioritized within the national 4

inventory system because its estimate has a significant influence on a country's total inventory of greenhouse

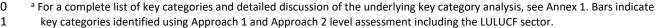
gases in terms of the absolute level, the trend, or the uncertainty in emissions and removals."²⁶ A key category 5 6 analysis identifies priority source or sink categories for focusing efforts to improve overall Inventory quality. In

7 addition, a qualitative review of key categories and non-key categories can also help identify additional source and


8 sink categories to consider for improvement efforts.

9 Figure ES-17 presents the key categories identified by Approach 1 and Approach 2 level assessments including the 10 LULUCF sector for 2018. A level assessment using Approach 1 identifies all sources and sink categories that

²⁶ See Chapter 4 "Methodological Choice and Identification of Key Categories" in IPCC (2006). See http://www.ipcc- nggip.iges.or.jp/public/2006gl/vol1.html>.


- 1 cumulatively account for 95 percent of total (gross) emissions in a given year when assessed in descending order of
- 2 absolute magnitude. An Approach 2 level assessment incorporates the results of the uncertainty analysis for each
- 3 category and identifies all sources and sink categories that cumulatively account for 90 percent of the sum of all
- 4 level assessments when sorted in decreasing order of magnitude.
- 5 For a complete list of key categories and more information regarding the overall key category analysis, including
- 6 approaches accounting for the influence of trends of individual source and sink categories, see the Introduction
- 7 chapter, Section 1.5 Key Categories and Annex 1.

8 Figure ES-17: 2018 Key Categories (MMT CO₂ Eq.)^a

2018 Emissions

9 10 11

- ^b The absolute values of net CO₂ emissions from LULUCF are presented in this figure but reported separately from gross
- emissions totals. Refer to Table ES-5 for a breakout of emissions and removals for LULUCF by gas and source/sink category.

1 Quality Assurance and Quality Control (QA/QC)

2 The United States seeks to continually improve the quality, transparency, and usability of the *Inventory of U.S.*

3 *Greenhouse Gas Emissions and Sinks*. To assist in these efforts, the United States implemented a systematic

4 approach to QA/QC. The procedures followed for the Inventory have been formalized in accordance with the U.S.

5 Inventory QA/QC plan for the Inventory, and the UNFCCC reporting guidelines and 2006 IPCC Guidelines. The QA

6 process includes expert and public reviews for both the Inventory estimates and the Inventory report.

7 Uncertainty Analysis of Emission Estimates

- 8 Uncertainty estimates are an essential element of a complete inventory of greenhouse gas emissions and
- 9 removals, because they help to prioritize future work and improve overall Inventory quality. Some of the current
- 10 estimates, such as those for CO₂ emissions from energy-related combustion activities, are considered to have low
- 11 uncertainties. This is because the amount of CO₂ emitted from energy-related combustion activities is directly
- 12 related to the amount of fuel consumed, the fraction of the fuel that is oxidized, and the carbon content of the
- fuel, and for the United States, the uncertainties associated with estimating those factors is believed to be
- relatively small. For some other categories of emissions, however, a lack of data increases the uncertainty or
- systematic error associated with the estimates presented. Recognizing the benefit of conducting an uncertainty
- analysis, the UNFCCC reporting guidelines follow the recommendations of the *2006 IPCC Guidelines* (IPCC 2006),
- 17 Volume 1, Chapter 3 and require that countries provide single estimates of uncertainty for source and sink
- 18 categories.
- 19 In addition to quantitative uncertainty assessments provided in accordance with UNFCCC reporting guidelines, a
- 20 qualitative discussion of uncertainty is presented for each source and sink category identifying specific factors
- 21 affecting the uncertainty surrounding the estimates.

1. Introduction

2 This report presents estimates by the United States government of U.S. anthropogenic greenhouse gas emissions

and sinks for the years 1990 through 2018. A summary of these estimates is provided in in Table 1-1 and Table 1-2

by gas and source category in the Trends in Greenhouse Gas Emissions chapter. The emission estimates in these

5 tables are presented on both a full molecular mass basis and on a Global Warming Potential (GWP) weighted

6 basis¹ in order to show the relative contribution of each gas to global average radiative forcing. This report also

7 discusses the methods and data used to calculate these emission estimates.

8 In 1992, the United States signed and ratified the United Nations Framework Convention on Climate Change

9 (UNFCCC). As stated in Article 2 of the UNFCCC, "The ultimate objective of this Convention and any related legal

10 instruments that the Conference of the Parties may adopt is to achieve, in accordance with the relevant provisions

of the Convention, stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent

dangerous anthropogenic interference with the climate system. Such a level should be achieved within a time-

13 frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not

14 threatened and to enable economic development to proceed in a sustainable manner."^{2,3}

15 Parties to the Convention, by ratifying, "shall develop, periodically update, publish and make available...national

16 inventories of anthropogenic emissions by sources and removals by sinks of all greenhouse gases not controlled by

17 the Montreal Protocol, using comparable methodologies..."⁴ The United States views this report as an opportunity

18 to fulfill these commitments under the UNFCCC.

19 In 1988, preceding the creation of the UNFCCC, the World Meteorological Organization (WMO) and the United

20 Nations Environment Programme (UNEP) jointly established the Intergovernmental Panel on Climate Change

21 (IPCC). The role of the IPCC is to assess on a comprehensive, objective, open and transparent basis the scientific,

22 technical and socio-economic information relevant to understanding the scientific basis of risk of human-induced

- climate change, its potential impacts and options for adaptation and mitigation (IPCC 2014). Under Working Group
- 1 of the IPCC, nearly 140 scientists and national experts from more than thirty countries collaborated in the
- 25 creation of the *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories* (IPCC/UNEP/OECD/IEA 1997)

to ensure that the emission inventories submitted to the UNFCCC are consistent and comparable between nations.

27 The IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories and the

28 IPCC Good Practice Guidance for Land Use, Land-Use Change, and Forestry further expanded upon the

¹ More information provided in the Global Warming Potentials section of this chapter on the use of *IPCC Fourth Assessment Report* (AR4) GWP values.

² The term "anthropogenic," in this context, refers to greenhouse gas emissions and removals that are a direct result of human activities or are the result of natural processes that have been affected by human activities (IPCC 2006).

³ Article 2 of the Framework Convention on Climate Change published by the UNEP/WMO Information Unit on Climate Change (UNEP/WMO 2000). See http://unfccc.int>.

⁴ Article 4(1)(a) of the United Nations Framework Convention on Climate Change (also identified in Article 12). Subsequent decisions by the Conference of the Parties elaborated the role of Annex I Parties in preparing national inventories. See .

- 1 methodologies in the Revised 1996 IPCC Guidelines. In 2006, the IPCC accepted the 2006 Guidelines for National
- 2 Greenhouse Gas Inventories at its Twenty-Fifth Session (Mauritius, April 2006). The 2006 IPCC Guidelines built upon
- 3 the previous bodies of work and include new sources and gases, "...as well as updates to the previously published
- 4 methods whenever scientific and technical knowledge have improved since the previous guidelines were issued."
- 5 The UNFCCC adopted the 2006 IPCC Guidelines as the standard methodological approach for Annex I countries at
- 6 the Nineteenth Conference of the Parties (Warsaw, November 11-23, 2013). This report presents information in 7 accordance with these guidelines.
- 8
- Overall, this Inventory of anthropogenic greenhouse gas emissions and sinks provides a common and consistent 9 mechanism through which Parties to the UNFCCC can estimate emissions and compare the relative contribution of
- 10 individual sources, gases, and nations to climate change. The Inventory provides a national estimate of sources and
- sinks for the United States, including all states and U.S. Territories.⁵ The structure of this report is consistent with 11
- the current UNFCCC Guidelines on Annual Inventories (UNFCCC 2014) for Parties included in Annex I of the 12
- 13 Convention.

14 Box 1-1: Methodological Approach for Estimating and Reporting U.S. Emissions and Removals

In following the UNFCCC requirement under Article 4.1 to develop and submit national greenhouse gas emissions inventories, the gross emissions total presented in this report for the United States excludes emissions and removals from Land Use, Land-Use Change, and Forestry (LULUCF). The net emissions total presented in this report for the United States includes emissions and removals from LULUCF. All emissions and removals are calculated using internationally-accepted methods consistent with the IPCC Guidelines.⁶ Additionally, the calculated emissions and removals in a given year for the United States are presented in a common manner in line with the UNFCCC reporting guidelines for the reporting of inventories under this international agreement.⁷ The use of consistent methods to calculate emissions and removals by all nations providing their inventories to the UNFCCC ensures that these reports are comparable. The report itself follows this standardized format and provides an explanation of the IPCC methods used to calculate emissions and removals.

On October 30, 2009, the U.S. Environmental Protection Agency (EPA) published a rule for the mandatory reporting of greenhouse gases from large greenhouse gas emissions sources in the United States. Implementation of 40 CFR Part 98 is referred to as the EPA's Greenhouse Gas Reporting Program (GHGRP). 40 CFR Part 98 applies to direct greenhouse gas emitters, fossil fuel suppliers, industrial gas suppliers, and facilities that inject CO₂ underground for sequestration or other reasons.⁸ Reporting is at the facility level, except for certain suppliers of fossil fuels and industrial greenhouse gases. Facilities in most source categories subject to the GHGRP began collecting data in 2010 while additional types of industrial operations began collecting data in 2011.

The GHGRP dataset and the data presented in this Inventory are complementary. EPA's GHGRP dataset continues to be an important resource for the Inventory, providing not only annual emissions information, but also other annual information, such as activity data and emission factors that can improve and refine national emission estimates and trends over time. GHGRP data also allow EPA to disaggregate national Inventory estimates in new ways that can highlight differences across regions and sub-categories of emissions. The GHGRP will continue to enhance QA/QC procedures and assessment of uncertainties. EPA continues to analyze the data on an annual basis to improve the national estimates presented in this Inventory and uses that data for a number of categories consistent with IPCC guidance.⁹ EPA has already integrated GHGRP information for several

⁵ U.S. Territories include American Samoa, Guam, Puerto Rico, U.S. Virgin Islands, Wake Island, and other U.S. Pacific Islands.

⁶ See <http://www.ipcc-nggip.iges.or.jp/public/index.html>.

⁷ See <http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>.

⁸ See <https://www.epa.gov/ghgreporting>.

⁹ See <http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

1

2 1.1 Background Information

3 Science

4 For over the past 200 years, the burning of fossil fuels such as coal and oil, deforestation, land-use changes, and

- 5 other activities have caused the concentrations of heat-trapping "greenhouse gases" to increase significantly in our
- atmosphere (NOAA 2017). These gases in the atmosphere absorb some of the energy being radiated from the
- 7 surface of the Earth that would otherwise be lost to space, essentially acting like a blanket that makes the Earth's
- 8 surface warmer than it would be otherwise.
- 9 Greenhouse gases are necessary to life as we know it. Without greenhouse gases to create the natural heat-
- 10 trapping properties of the atmosphere, the planet's surface would be about 60 degrees Fahrenheit cooler than
- 11 present (USGCRP 2017). Carbon dioxide is also necessary for plant growth. With emissions from biological and
- 12 geological sources, there is a natural level of greenhouse gases that is maintained in the atmosphere. Human
- 13 emissions of greenhouse gases and subsequent changes in atmospheric concentrations alter the balance of energy
- 14 transfers between space and the earth system (IPCC 2013). A gauge of these changes is called radiative forcing,
- which is a measure of a substance's total net effect on the global energy balance for which a positive number represents a warming effect and a negative number represents a cooling effect (IPCC 2013). IPCC concluded in its
- represents a warming effect and a negative number represents a cooling effect (IPCC 2013). IPCC concluded in its most recent scientific assessment report that it is extremely likely that human influences have been the dominant
- cause of warming since the mid-20th century (IPCC 2013).
- 19 As concentrations of greenhouse gases continue to increase in from man-made sources, the Earth's temperature is
- 20 climbing above past levels. The Earth's average land and ocean surface temperature has increased by about 1.8
- degrees Fahrenheit from 1901 to 2016 (USGCRP 2017). The last three decades have each been the warmest
 decade successively at the Earth's surface since 1850 (IPCC 2013). Other aspects of the climate are also changing,
- such as rainfall patterns, snow and ice cover, and sea level. If greenhouse gas concentrations continue to increase,
- climate models predict that the average temperature at the Earth's surface is likely to increase from 0.5 to 8.6
- degrees Fahrenheit above 1986 through 2005 levels by the end of this century, depending on future emissions and
- 26 the responsiveness of the climate system (IPCC 2013).
- 27 For further information on greenhouse gases, radiative forcing, and implications for climate change, see the recent
- 28 scientific assessment reports from the IPCC,¹⁰ the U.S. Global Change Research Program (USGCRP),¹¹ and the
- 29 National Academies of Sciences, Engineering, and Medicine (NAS).¹²

30 Greenhouse Gases

- 31 Although the Earth's atmosphere consists mainly of oxygen and nitrogen, neither plays a significant role in
- 32 enhancing the greenhouse effect because both are essentially transparent to terrestrial radiation. The greenhouse
- effect is primarily a function of the concentration of water vapor, carbon dioxide (CO₂), methane (CH₄), nitrous
- 34 oxide (N₂O), and other trace gases in the atmosphere that absorb the terrestrial radiation leaving the surface of
- the Earth (IPCC 2013).

¹⁰ See <http://www.ipcc.ch/report/ar5>.

¹¹ See <https://science2017.globalchange.gov/>.

¹² See <http://nas-sites.org/americasclimatechoices/>.

- 1 Naturally occurring greenhouse gases include water vapor, CO₂, CH₄, N₂O, and ozone (O₃). Several classes of
- 2 halogenated substances that contain fluorine, chlorine, or bromine are also greenhouse gases, but they are, for the
- 3 most part, solely a product of industrial activities. Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons
- 4 (HCFCs) are halocarbons that contain chlorine, while halocarbons that contain bromine are referred to as
- 5 bromofluorocarbons (i.e., halons). As stratospheric ozone depleting substances, CFCs, HCFCs, and halons are
- 6 covered under the Montreal Protocol on Substances that Deplete the Ozone Layer. The UNFCCC defers to this
- 7 earlier international treaty. Consequently, Parties to the UNFCCC are not required to include these gases in
- 8 national greenhouse gas inventories.¹³ Some other fluorine-containing halogenated substances—
- 9 hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF₆), and nitrogen trifluoride (NF₃)—do
- 10 not deplete stratospheric ozone but are potent greenhouse gases. These latter substances are addressed by the
- 11 UNFCCC and accounted for in national greenhouse gas inventories.
- 12 There are also several other substances that influence the global radiation budget but are short-lived and
- 13 therefore not well-mixed, leading to spatially variable radiative forcing effects. These substances include carbon
- 14 monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and tropospheric (ground level) ozone (O₃).
- 15 Tropospheric ozone is formed from chemical reactions in the atmosphere of precursor pollutants, which include
- volatile organic compounds (VOCs, including CH₄) and nitrogen oxides (NO_x), in the presence of ultraviolet light
- 17 (sunlight).
- 18 Aerosols are extremely small particles or liquid droplets suspended in the Earth's atmosphere that are often
- 19 composed of sulfur compounds, carbonaceous combustion products (e.g., black carbon), crustal materials (e.g.,
- dust) and other human-induced pollutants. They can affect the absorptive characteristics of the atmosphere (e.g.,
- scattering incoming sunlight away from the Earth's surface, or, in the case of black carbon, absorb sunlight) and
- 22 can play a role in affecting cloud formation and lifetime, as well as the radiative forcing of clouds and precipitation
- 23 patterns. Comparatively, however, while the understanding of aerosols has increased in recent years, they still
- account for the largest contribution to uncertainty estimates in global energy budgets (IPCC 2013).
- 25 Carbon dioxide, CH₄, and N₂O are continuously emitted to and removed from the atmosphere by natural processes
- 26 on Earth. Anthropogenic activities (such as fossil fuel combustion, cement production, land-use, land-use change,
- and forestry, agriculture, or waste management), however, can cause additional quantities of these and other
- 28 greenhouse gases to be emitted or sequestered, thereby changing their global average atmospheric
- 29 concentrations. Natural activities such as respiration by plants or animals and seasonal cycles of plant growth and
- 30 decay are examples of processes that only cycle carbon or nitrogen between the atmosphere and organic biomass.
- 31 Such processes, except when directly or indirectly perturbed out of equilibrium by anthropogenic activities,
- 32 generally do not alter average atmospheric greenhouse gas concentrations over decadal timeframes. Climatic
- 33 changes resulting from anthropogenic activities, however, could have positive or negative feedback effects on
- 34 these natural systems. Atmospheric concentrations of these gases, along with their rates of growth and
- 35 atmospheric lifetimes, are presented in Table 1-1.

Table 1-1: Global Atmospheric Concentration, Rate of Concentration Change, and Atmospheric Lifetime of Selected Greenhouse Gases

Atmospheric Variable	CO ₂	CH₄	N ₂ O	SF ₆	CF4
Pre-industrial atmospheric concentration	280 ppm	0.700 ppm	0.270 ppm	0 ppt	40 ppt
Atmospheric concentration	409 ppm ^a	1.857 ppm ^b	0.331 ppm ^c	9.6 ppt ^d	79 ppt ^e
Rate of concentration change	2.3 ppm/yr ^f	7 ppb/yr ^{f,g}	0.8 ppb/yr ^f	0.27 ppt/yr ^f	0.7 ppt/yr ^f
Atmospheric lifetime (years)	See footnote ^h	12.4 ⁱ	121 ⁱ	3,200	50,000

^a The atmospheric CO₂ concentration is the 2018 annual average at the Mauna Loa, HI station (NOAA/ESRL 2019a). The concentration in 2018 at Mauna Loa was 409 ppm. The global atmospheric CO₂ concentration, computed using an average of sampling sites across the world, was 407 ppm in 2018.

^b The values presented are global 2018 annual average mole fractions (NOAA/ESRL 2019b).

¹³ Emissions estimates of CFCs, HCFCs, halons and other ozone-depleting substances are included in this document for informational purposes.

^c The values presented are global 2018 annual average mole fractions (NOAA/ESRL 2019c).

^d The values presented are global 2018 annual average mole fractions (NOAA/ESRL 2019d).

^e The 2011 CF₄ global mean atmospheric concentration is from the Advanced Global Atmospheric Gases Experiment (IPCC 2013). ^f The rate of concentration change for CO₂ and CH₄ is the average rate of change between 2007 and 2018 (NOAA/ESRL 2019a).

The rate of concentration change for N₂O, SF₆, and CF₄ is the average rate of change between 2005 and 2011 (IPCC 2013).

- ^g The growth rate for atmospheric CH₄ decreased from over 10 ppb/year in the 1980s to nearly zero in the early 2000s; recently, the growth rate has been about 7 ppb/year.
- ^h For a given amount of CO₂ emitted, some fraction of the atmospheric increase in concentration is quickly absorbed by the oceans and terrestrial vegetation, some fraction of the atmospheric increase will only slowly decrease over a number of years, and a small portion of the increase will remain for many centuries or more.
- ⁱ This lifetime has been defined as an "adjustment time" that takes into account the indirect effect of the gas on its own residence time.
- Source: Pre-industrial atmospheric concentrations, atmospheric lifetime, and rate of concentration changes for CH₄, N₂O, SF₆, and CF₄ are from IPCC (2013). The rate of concentration change for CO₂ is an average of the rates from 2007 through 2018 and has fluctuated between 1.5 to 3.0 ppm per year over this period (NOAA/ESRL 2019a).

A brief description of each greenhouse gas, its sources, and its role in the atmosphere is given below. The following 1

2 section then explains the concept of GWPs, which are assigned to individual gases as a measure of their relative

3 average global radiative forcing effect.

4 Water Vapor (H_2O). Water vapor is the largest contributor to the natural greenhouse effect. Water vapor is

5 fundamentally different from other greenhouse gases in that it can condense and rain out when it reaches high

6 concentrations, and the total amount of water vapor in the atmosphere is in part a function of the Earth's

7 temperature. While some human activities such as evaporation from irrigated crops or power plant cooling release

8 water vapor into the air, these activities have been determined to have a negligible effect on global climate (IPCC

9 2013). The lifetime of water vapor in the troposphere is on the order of 10 days. Water vapor can also contribute

10 to cloud formation, and clouds can have both warming and cooling effects by either trapping or reflecting heat.

11 Because of the relationship between water vapor levels and temperature, water vapor and clouds serve as a

12 feedback to climate change, such that for any given increase in other greenhouse gases, the total warming is

13 greater than would happen in the absence of water vapor. Aircraft emissions of water vapor can create contrails,

14 which may also develop into contrail-induced cirrus clouds, with complex regional and temporal net radiative

15 forcing effects that currently have a low level of scientific certainty (IPCC 2013).

16 Carbon Dioxide (CO₂). In nature, carbon is cycled between various atmospheric, oceanic, land biotic, marine biotic,

17 and mineral reservoirs. The largest fluxes occur between the atmosphere and terrestrial biota, and between the

18 atmosphere and surface water of the oceans. In the atmosphere, carbon predominantly exists in its oxidized form

19 as CO₂. Atmospheric CO₂ is part of this global carbon cycle, and therefore its fate is a complex function of

20 geochemical and biological processes. Carbon dioxide concentrations in the atmosphere increased from

21 approximately 280 parts per million by volume (ppmv) in pre-industrial times to 409 ppmv in 2018, a 46 percent

increase (IPCC 2013; NOAA/ESRL 2019a).^{14,15} The IPCC definitively states that "the increase of CO_2 ... is caused by 22

anthropogenic emissions from the use of fossil fuel as a source of energy and from land use and land use changes, 23

24 in particular agriculture" (IPCC 2013). The predominant source of anthropogenic CO₂ emissions is the combustion 25

of fossil fuels. Forest clearing, other biomass burning, and some non-energy production processes (e.g., cement

26 production) also emit notable quantities of CO₂. In its *Fifth Assessment Report*, the IPCC stated "it is extremely

27 likely that more than half of the observed increase in global average surface temperature from 1951 to 2010 was

28 caused by the anthropogenic increase in greenhouse gas concentrations and other anthropogenic forcings

29 together," of which CO₂ is the most important (IPCC 2013).

¹⁴ The pre-industrial period is considered as the time preceding the year 1750 (IPCC 2013).

¹⁵ Carbon dioxide concentrations during the last 1,000 years of the pre-industrial period (i.e., 750 to 1750), a time of relative climate stability, fluctuated by about \pm 10 ppmv around 280 ppmv (IPCC 2013).

- 1 *Methane (CH₄).* Methane is primarily produced through anaerobic decomposition of organic matter in biological
- 2 systems. Agricultural processes such as wetland rice cultivation, enteric fermentation in animals, and the
- 3 decomposition of animal wastes emit CH₄, as does the decomposition of municipal solid wastes and treatment of
- 4 wastewater. Methane is also emitted during the production and distribution of natural gas and petroleum, and is
- 5 released as a byproduct of coal mining and incomplete fossil fuel combustion. Atmospheric concentrations of CH₄
- 6 have increased by about 165 percent since 1750, from a pre-industrial value of about 700 ppb to 1,857 ppb in
- 2018¹⁶ although the rate of increase decreased to near zero in the early 2000s, and has recently increased again to
 about 7 ppb/year. The IPCC has estimated that slightly more than half of the current CH₄ flux to the atmosphere is
- about 7 ppb/year. The PCC has estimated that signify more than han of the current Ch4 hux to the atmosphere is
 anthropogenic, from human activities such as agriculture, fossil fuel production and use, and waste disposal (IPCC
- 10 2007).
- 11 Methane is primarily removed from the atmosphere through a reaction with the hydroxyl radical (OH) and is
- 12 ultimately converted to CO₂. Minor removal processes also include reaction with chlorine in the marine boundary
- 13 layer, a soil sink, and stratospheric reactions. Increasing emissions of CH₄ reduce the concentration of OH, a
- 14 feedback that increases the atmospheric lifetime of CH₄ (IPCC 2013). Methane's reactions in the atmosphere also
- 15 lead to production of tropospheric ozone and stratospheric water vapor, both of which also contribute to climate
- 16 change.
- 17 *Nitrous Oxide (N₂O)*. Anthropogenic sources of N₂O emissions include agricultural soils, especially production of
- 18 nitrogen-fixing crops and forages, the use of synthetic and manure fertilizers, and manure deposition by livestock;
- 19 fossil fuel combustion, especially from mobile combustion; adipic (nylon) and nitric acid production; wastewater
- 20 treatment and waste incineration; and biomass burning. The atmospheric concentration of N₂O has increased by
- 21 23 percent since 1750, from a pre-industrial value of about 270 ppb to 331 ppb in 2018,¹⁷ a concentration that has
- not been exceeded during the last 800 thousand years. Nitrous oxide is primarily removed from the atmosphere by
- the photolytic action of sunlight in the stratosphere (IPCC 2013).
- 24 Ozone (O₃). Ozone is present in both the upper stratosphere,¹⁸ where it shields the Earth from harmful levels of
- 25 ultraviolet radiation, and at lower concentrations in the troposphere, ¹⁹ where it is the main component of
- 26 anthropogenic photochemical "smog." During the last two decades, emissions of anthropogenic chlorine and
- 27 bromine-containing halocarbons, such as CFCs, have depleted stratospheric ozone concentrations. This loss of
- 28 ozone in the stratosphere has resulted in negative radiative forcing, representing an indirect effect of
- anthropogenic emissions of chlorine and bromine compounds (IPCC 2013). The depletion of stratospheric ozone
- 30 and its radiative forcing remains relatively unchanged since 2000 and recovery is expected to start occurring in the
- 31 middle of the twenty-first century (WMO/UNEP 2014, WMO 2015).
- 32 The past increase in tropospheric ozone, which is also a greenhouse gas, is estimated to provide the fourth largest
- 33 increase in direct radiative forcing since the pre-industrial era, behind CO₂, black carbon, and CH₄. Tropospheric
- 34 ozone is produced from complex chemical reactions of volatile organic compounds (including CH₄) mixing with NO_x
- 35 in the presence of sunlight. The tropospheric concentrations of ozone and these other pollutants are short-lived
- 36 and, therefore, spatially variable (IPCC 2013).
- Halocarbons, Sulfur Hexafluoride, and Nitrogen Trifluoride. Halocarbons are, for the most part, man-made
 chemicals that have direct radiative forcing effects and could also have an indirect effect. Halocarbons that contain

¹⁶ This value is the global 2018 annual average mole fraction (NOAA/ESRL 2019b).

¹⁷ This value is the global 2018 annual average (NOAA/ESRL 2019c).

¹⁸ The stratosphere is the layer from the troposphere up to roughly 50 kilometers. In the lower regions the temperature is nearly constant but in the upper layer the temperature increases rapidly because of sunlight absorption by the ozone layer. The ozone-layer is the part of the stratosphere from 19 kilometers up to 48 kilometers where the concentration of ozone reaches up to 10 parts per million.

¹⁹ The troposphere is the layer from the ground up to 11 kilometers near the poles and up to 16 kilometers in equatorial regions (i.e., the lowest layer of the atmosphere where people live). It contains roughly 80 percent of the mass of all gases in the atmosphere and is the site for most weather processes, including most of the water vapor and clouds.

- 1 chlorine (CFCs, HCFCs, methyl chloroform, and carbon tetrachloride) and bromine (halons, methyl bromide, and
- 2 hydrobromofluorocarbons) result in stratospheric ozone depletion and are therefore controlled under the
- 3 Montreal Protocol on Substances that Deplete the Ozone Layer. Although most CFCs and HCFCs are potent global
- 4 warming gases, their net radiative forcing effect on the atmosphere is reduced because they cause stratospheric
- 5 ozone depletion, which itself is a greenhouse gas but which also shields the Earth from harmful levels of ultraviolet
- 6 radiation. Under the Montreal Protocol, the United States phased out the production and importation of halons by
- 7 1994 and of CFCs by 1996. Under the Copenhagen Amendments to the Protocol, a cap was placed on the
- 8 production and importation of HCFCs by non-Article 5 countries, including the United States,²⁰ beginning in 1996,
- 9 and then followed by intermediate requirements and a complete phase-out by the year 2030. While ozone
- depleting gases covered under the Montreal Protocol and its Amendments are not covered by the UNFCCC, they
- are reported in this Inventory under Annex 6.2 for informational purposes.
- 12 Hydrofluorocarbons, PFCs, SF₆, and NF₃ are not ozone depleting substances. The most common HFCs are, however,
- 13 powerful greenhouse gases. Hydrofluorocarbons are primarily used as replacements for ozone depleting
- substances but also emitted as a byproduct of the HCFC-22 (chlorodifluoromethane) manufacturing process.
- 15 Currently, they have a small aggregate radiative forcing impact, but it is anticipated that without further controls
- their contribution to overall radiative forcing will increase (IPCC 2013). An amendment to the Montreal Protocol
 was adopted in 2016 which includes obligations for Parties to phase down the production and consumption of
- 18 HFCs.
- 19 Perfluorocarbons, SF₆, and NF₃ are predominantly emitted from various industrial processes including aluminum
- 20 smelting, semiconductor manufacturing, electric power transmission and distribution, and magnesium casting.
- 21 Currently, the radiative forcing impact of PFCs, SF_6 , and NF_3 is also small, but they have a significant growth rate,
- extremely long atmospheric lifetimes, and are strong absorbers of infrared radiation, and therefore have the
- 23 potential to influence climate far into the future (IPCC 2013).
- 24 Carbon Monoxide (CO). Carbon monoxide has an indirect radiative forcing effect by elevating concentrations of CH₄
- and tropospheric ozone through chemical reactions with other atmospheric constituents (e.g., the hydroxyl radical,
- 26 OH) that would otherwise assist in destroying CH₄ and tropospheric ozone. Carbon monoxide is created when
- 27 carbon-containing fuels are burned incompletely. Through natural processes in the atmosphere, it is eventually
- 28 oxidized to CO₂. Carbon monoxide concentrations are both short-lived in the atmosphere and spatially variable.
- 29 *Nitrogen Oxides (NOx).* The primary climate change effects of nitrogen oxides (i.e., NO and NO₂) are indirect.
- 30 Warming effects can occur due to reactions leading to the formation of ozone in the troposphere, but cooling
- effects can occur due to the role of NO_x as a precursor to nitrate particles (i.e., aerosols) and due to destruction of
- 32 stratospheric ozone when emitted from very high-altitude aircraft.²¹ Additionally, NO_x emissions are also likely to
- decrease CH₄ concentrations, thus having a negative radiative forcing effect (IPCC 2013). Nitrogen oxides are
- created from lightning, soil microbial activity, biomass burning (both natural and anthropogenic fires) fuel
 combustion, and, in the stratosphere, from the photo-degradation of N₂O. Concentrations of NOx are both
- combustion, and, in the stratosphere, from the photo-degradation of N₂O. Co
 relatively short-lived in the atmosphere and spatially variable.
- so relatively short lived in the atmosphere and spatially variable.
- 37 Non-methane Volatile Organic Compounds (NMVOCs). Non-methane volatile organic compounds include
- 38 substances such as propane, butane, and ethane. These compounds participate, along with NO_x, in the formation
- 39 of tropospheric ozone and other photochemical oxidants. NMVOCs are emitted primarily from transportation and
- 40 industrial processes, as well as biomass burning and non-industrial consumption of organic solvents.
- 41 Concentrations of NMVOCs tend to be both short-lived in the atmosphere and spatially variable.

²⁰ Article 5 of the Montreal Protocol covers several groups of countries, especially developing countries, with low consumption rates of ozone depleting substances. Developing countries with per capita consumption of less than 0.3 kg of certain ozone depleting substances (weighted by their ozone depleting potential) receive financial assistance and a grace period of ten additional years in the phase-out of ozone depleting substances.

 $^{^{21}}$ NO_x emissions injected higher in the stratosphere, primarily from fuel combustion emissions from high altitude supersonic aircraft, can lead to stratospheric ozone depletion.

- 1 *Aerosols.* Aerosols are extremely small particles or liquid droplets found in the atmosphere that are either directly
- 2 emitted into or are created through chemical reactions in the Earth's atmosphere. Aerosols or their chemical
- 3 precursors can be emitted by natural events such as dust storms, biogenic or volcanic activity, or by anthropogenic
- 4 processes such as transportation, coal combustion, cement manufacturing, waste incineration, or biomass burning.
- 5 Various categories of aerosols exist from both natural and anthropogenic sources, such as soil dust, sea salt,
- 6 biogenic aerosols, sulfates, nitrates, volcanic aerosols, industrial dust, and carbonaceous²² aerosols (e.g., black
- 7 carbon, organic carbon). Aerosols can be removed from the atmosphere relatively rapidly by precipitation or
- 8 through more complex processes under dry conditions.
- 9 Aerosols affect radiative forcing differently than greenhouse gases. Their radiative effects occur through direct and
- 10 indirect mechanisms: directly by scattering and absorbing solar radiation (and to a lesser extent scattering,
- absorption, and emission of terrestrial radiation); and indirectly by increasing cloud droplets and ice crystals that
- modify the formation, precipitation efficiency, and radiative properties of clouds (IPCC 2013). Despite advances in
- 13 understanding of cloud-aerosol interactions, the contribution of aerosols to radiative forcing are difficult to
- 14 quantify because aerosols generally have short atmospheric lifetimes, and have number concentrations, size 15 distributions, and compositions that vary regionally, spatially, and temporally (IPCC 2013).
- distributions, and compositions that vary regionally, spatially, and temporally (IPCC 2013).
- 16 The net effect of aerosols on the Earth's radiative forcing is believed to be negative (i.e., net cooling effect on the
- 17 climate). In fact, "despite the large uncertainty ranges on aerosol forcing, there is high confidence that aerosols
- have offset a substantial portion of GHG forcing" (IPCC 2013).²³ Although because they remain in the atmosphere
- 19 for only days to weeks, their concentrations respond rapidly to changes in emissions.²⁴ Not all aerosols have a

20 cooling effect. Current research suggests that another constituent of aerosols, black carbon, has a positive

- radiative forcing by heating the Earth's atmosphere and causing surface warming when deposited on ice and snow
- 22 (IPCC 2013). Black carbon also influences cloud development, but the direction and magnitude of this forcing is an
- area of active research.

24 Global Warming Potentials

A global warming potential is a quantified measure of the globally averaged relative radiative forcing impacts of a particular greenhouse gas (see Table 1-2). It is defined as the accumulated radiative forcing within a specific time horizon caused by emitting 1 kilogram (kg) of the gas, relative to that of the reference gas CO₂ (IPCC 2014). Direct radiative effects occur when the gas itself absorbs radiation. Indirect radiative forcing occurs when chemical transformations involving the original gas produce a gas or gases that are greenhouse gases, or when a gas influences other radiatively important processes such as the atmospheric lifetimes of other gases. The reference gas used is CO₂, and therefore GWP-weighted emissions are measured in million metric tons of CO₂ equivalent

32 (MMT CO₂ Eq.).²⁵ The relationship between kilotons (kt) of a gas and MMT CO₂ Eq. can be expressed as follows:

33
$$MMT \ CO_2 \ Eq. = (kt \ of \ gas) \times (GWP) \times \left(\frac{MMT}{1,000 \ kt}\right)$$

34 where,

35	MMT CO_2 Eq. = Million metric tons of CO_2 equivalent
36	kt = kilotons (equivalent to a thousand metric tons)

37 GWP = Global warming potential

²³ The IPCC (2013) defines high confidence as an indication of strong scientific evidence and agreement in this statement.

²² Carbonaceous aerosols are aerosols that are comprised mainly of organic substances and forms of black carbon (or soot) (IPCC 2013).

²⁴ Volcanic activity can inject significant quantities of aerosol producing sulfur dioxide and other sulfur compounds into the stratosphere, which can result in a longer negative forcing effect (i.e., a few years) (IPCC 2013).

²⁵ Carbon comprises 12/44^{ths} of carbon dioxide by weight.

1 MMT = Million metric tons

2 GWP values allow for a comparison of the impacts of emissions and reductions of different gases. According to the

3 IPCC, GWPs typically have an uncertainty of ±35 percent. Parties to the UNFCCC have also agreed to use GWPs

4 based upon a 100-year time horizon, although other time horizon values are available.

5 ... the global warming potential values used by Parties included in Annex I to the Convention (Annex I

6 Parties) to calculate the carbon dioxide equivalence of anthropogenic emissions by sources and removals

7 by sinks of greenhouse gases shall be those listed in the column entitled "Global warming potential for

8 given time horizon" in table 2.14 of the errata to the contribution of Working Group I to the Fourth

9 Assessment Report of the Intergovernmental Panel on Climate Change, based on the effects of greenhouse

10 gases over a 100-year time horizon...²⁶

11 Greenhouse gases with relatively long atmospheric lifetimes (e.g., CO₂, CH₄, N₂O, HFCs, PFCs, SF₆, NF₃) tend to be

12 evenly distributed throughout the atmosphere, and consequently global average concentrations can be

13 determined. The short-lived gases such as water vapor, carbon monoxide, tropospheric ozone, ozone precursors

14 (e.g., NO_x, and NMVOCs), and tropospheric aerosols (e.g., SO₂ products and carbonaceous particles), however, vary

regionally, and consequently it is difficult to quantify their global radiative forcing impacts. Parties to the UNFCCC

16 have not agreed upon GWP values for these gases that are short-lived and spatially inhomogeneous in the

17 atmosphere.

18 Table 1-2: Global Warming Potentials and Atmospheric Lifetimes (Years) Used in this Report

Gas	Atmospheric Lifetime	GWP ^a	
CO ₂	See footnote ^b		
CH4 ^c	12	25	
N ₂ O	114	298	
HFC-23	270	14,800	
HFC-32	4.9	675	
HFC-125	29	3,500	
HFC-134a	14	1,430	
HFC-143a	52	4,470	
HFC-152a	1.4	124	
HFC-227ea	34.2	3,220	
HFC-236fa	240	9,810	
HFC-4310mee	15.9	1,640	
CF ₄	50,000	7,390	
C ₂ F ₆	10,000	12,200	
C ₃ F ₈	2,600	8,830	
$C_4 F_6^d$	NA	0.003	
c-C ₅ F ₈ ^d	NA	1.97	
C ₄ F ₁₀	2,600	8,860	
c-C ₄ F ₈	3,200	10,300	
C ₅ F ₁₂	7,500	9,160	
C_6F_{14}	3,200	9,300	
CH₃F	3.7	150	
CH ₂ FCF ₃	14	1,430	

²⁶ Framework Convention on Climate Change; Available online at:

<http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>; 31 January 2014; Report of the Conference of the Parties at its nineteenth session; held in Warsaw from 11 to 23 November 2013; Addendum; Part two: Action taken by the Conference of the Parties at its nineteenth session; Decision 24/CP.19; Revision of the UNFCCC reporting guidelines on annual inventories for Parties included in Annex I to the Convention; p. 2. (UNFCCC 2014).

$C_2H_2F_4$	10.6	1,000
SF ₆	3,200	22,800
NF ₃	740	17,200

(NA) Not Available ^a 100-year time horizon.

^b For a given amount of carbon dioxide emitted, some fraction of the atmospheric increase in concentration is quickly absorbed by the oceans and terrestrial vegetation, some fraction of the atmospheric increase will only slowly decrease over a number of years, and a small portion of the increase will remain for many centuries or more. ^c The GWP of CH₄ includes the direct effects and those indirect effects due to the production of tropospheric ozone and

stratospheric water vapor. The indirect effect due to the production

of CO₂ is not included.

Source: IPCC 2007.

^d See Table A-1 of 40 CFR Part 98.

1 2

Box 1-2: The IPCC Fifth Assessment Report and Global Warming Potentials

In 2014, the IPCC published its *Fifth Assessment Report* (AR5), which updated its comprehensive scientific assessment of climate change. Within the AR5 report, the GWP values of gases were revised relative to previous IPCC reports, namely the *IPCC Second Assessment Report* (SAR) (IPCC 1996), the *IPCC Third Assessment Report* (TAR) (IPCC 2001), and the *IPCC Fourth Assessment Report* (AR4) (IPCC 2007). Although the AR4 GWP values are used throughout this report, consistent with UNFCCC reporting requirements, it is straight-forward to review the changes to the GWP values and their impact on estimates of the total GWP-weighted emissions of the United States. In the AR5, the IPCC applied an improved calculation of CO₂ radiative forcing and an improved CO₂ response function in presenting updated GWP values. Additionally, the atmospheric lifetimes of some gases have been recalculated, and updated background concentrations were used. In addition, the values for radiative forcing and lifetimes have been recalculated for a variety of halocarbons, and the indirect effects of methane on ozone have been adjusted to match more recent science. Table 1-3 presents the new GWP values, relative to those presented in the AR4 and using the 100-year time horizon common to UNFCCC reporting.

For consistency with international reporting standards under the UNFCCC, official emission estimates are reported by the United States using AR4 GWP values, as required by the 2013 revision to the UNFCCC reporting guidelines for national inventories.²⁷ All estimates provided throughout this report are also presented in unweighted units. For informational purposes, emission estimates that use GWPs from other IPCC Assessment Reports are presented in detail in Annex 6.1 of this report.

100-Year GWP Values				Comparison to AR4			
				AR5 with			AR5 with
Gas	SAR	AR4	AR5 ^a	feedbacks ^b	SAR	AR5	feedbacks ^b
CO ₂	1	1	1	1	NC	NC	NC
CH4 ^c	21	25	28	34	(4)	3	9
N ₂ O	310	298	265	298	12	(33)	NC
HFC-23	11,700	14,800	12,400	13,856	(3,100)	(2,400)	(944)
HFC-32	650	675	677	817	(25)	2	142
HFC-125	2,800	3,500	3,170	3,691	(700)	(330)	191
HFC-134a	1,300	1,430	1,300	1,549	(130)	(130)	119

Table 1-3: Comparison of 100-Year GWP values

²⁷ See <http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>.

HFC-143a	3,800	4,470	4,800	5,508	(670)	330	1,038
HFC-152a	140	124	138	167	16	14	43
HFC-227ea	2,900	3,220	3,350	3,860	(320)	130	640
HFC-236fa	6,300	9,810	8,060	8,998	(3,510)	(1,750)	(812)
HFC-4310mee	1,300	1,640	1,650	1,952	(340)	10	312
CF ₄	6,500	7,390	6,630	7,349	(890)	(760)	(41)
C_2F_6	9,200	12,200	11,100	12,340	(3,000)	(1,100)	140
C_4F_{10}	7,000	8,860	9,200	10,213	(1,860)	340	1,353
C ₆ F ₁₄	7,400	9,300	7,910	8,780	(1,900)	(1,390)	(520)
SF ₆	23,900	22,800	23,500	26,087	1,100	700	3,287
NF ₃	NA	17,200	16,100	17,885	NA	(1,100)	685
NA (Not Applicable)							

NA (Not Applicable)

NC (No Change)

^a The GWPs presented here are the ones most consistent with the methodology used in the AR4 report.

^b The GWP values presented here from the AR5 report include climate-carbon feedbacks for the non-

 CO_2 gases in order to be consistent with the approach used in calculating the CO_2 lifetime.

^c The GWP of CH₄ includes the direct effects and those indirect effects due to the production of tropospheric ozone and stratospheric water vapor. Including the indirect effect due to the production of CO₂ resulting from methane oxidation would lead to an increase in AR5 methane GWP values by 2 for fossil methane.

Note: Parentheses indicate negative values.

Source: IPCC 2013, IPCC 2007, IPCC 2001, IPCC 1996.

2 **1.2 National Inventory Arrangements**

3 The U.S. Environmental Protection Agency (EPA), in cooperation with other U.S. government agencies, prepares

4 the *Inventory of U.S. Greenhouse Gas Emissions and Sinks*. A wide range of agencies and individuals are involved in 5 supplying data to, planning methodological approaches and improvements, reviewing, or preparing portions of the

6 U.S. Inventory—including federal and state government authorities, research and academic institutions, industry

associations, and private consultants.

8 Within EPA, the Office of Atmospheric Programs (OAP) is the lead office responsible for the emission calculations 9 provided in the Inventory, as well as the completion of the National Inventory Report and the Common Reporting

10 Format (CRF) tables. EPA's Office of Transportation and Air Quality (OTAQ) is also involved in calculating emissions

for the Inventory. The U.S. Department of State serves as the overall focal point to the UNFCCC, and EPA's OAP

12 serves as the National Inventory Focal Point for this report, including responding to technical questions and

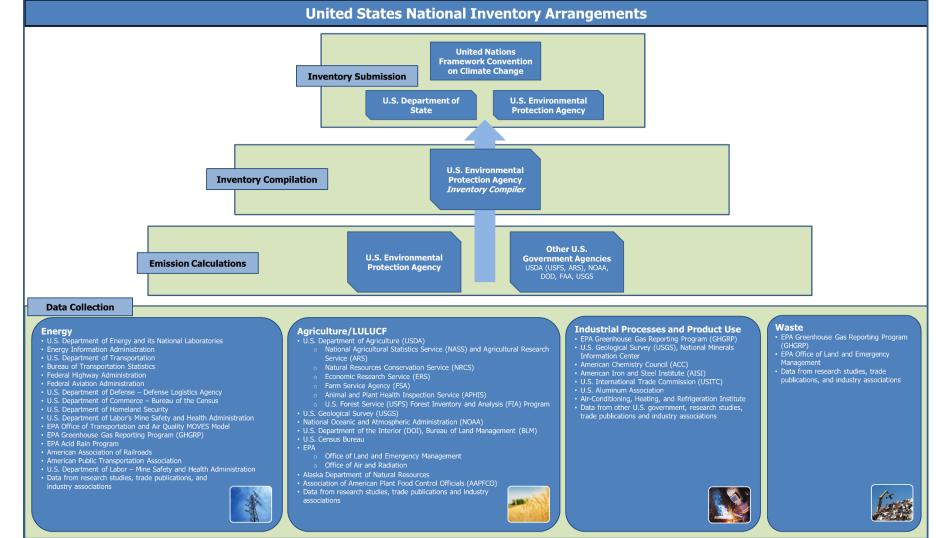
13 comments on the U.S. Inventory. EPA staff coordinate the annual methodological choice, activity data collection,

emission calculations, and QA/QC, and improvement planning at the individual source category level. EPA, the

15 inventory coordinator, compiles the entire Inventory into the proper reporting format for submission to the

16 UNFCCC, and is responsible for the synthesis of information and consistency of cross-cutting issues in the

17 Inventory.


18 Several other government agencies contribute to the collection and analysis of the underlying activity data used in

19 the Inventory calculations, in addition to the calculation of estimates integrated in the report (e.g., U.S.

- 20 Department of Agriculture's U.S. Forest Service and Agricultural Service, National Oceanic and Atmospheric
- 21 Administration, Federal Aviation Administration, and Department of Defense). Formal and informal relationships

22 exist between EPA and other U.S. agencies that provide official data for use in the Inventory. The U.S. Department

- 23 of Energy's Energy Information Administration provides national fuel consumption data and the U.S. Department
- of Defense provides military fuel consumption and bunker fuels. Informal relationships also exist with other U.S.

1 Figure 1-1: National Inventory Arrangements Diagram Inventory Process Inventory Process

1 1.3 Inventory Process

2 This section describes EPA's approach to preparing the annual U.S. Inventory, which consists of a National 3 Inventory Report (NIR) and Common Reporting Format (CRF) tables. The inventory coordinator at EPA, with 4 support from the cross-cutting compilation staff is responsible for aggregating all emission estimates and ensuring 5 consistency and quality throughout the NIR and CRF tables. Emission calculations for individual sources and/or sink 6 categories are the responsibility of individual source and sink category leads, who are most familiar with each 7 category, underlying data and the unique national circumstances relevant to its emissions or removals profile. 8 Using IPCC good practice guidance, the individual leads determine the most appropriate methodology and collect 9 the best activity data to use in the emission and removal calculations, based upon their expertise in the source or 10 sink category, as well as coordinating with researchers and contractors familiar with the sources. Each year, the 11 coordinator overseas a multi-stage process for collecting information from each individual source and sink 12 category lead to compile all information and data for the Inventory.

Methodology Development, Data Collection, and Emissions and Sink Estimation

15 Source and sink category leads at EPA collect input data and, as necessary, evaluate or develop the estimation

16 methodology for the individual source and/or sink categories. Because EPA has been preparing the Inventory for

17 many years, for most source and sink categories, the methodology for the previous year is applied to the new

- 18 "current" year of the Inventory, and inventory analysts collect any new data or update data that have changed
- 19 from the previous year. If estimates for a new source or sink category are being developed for the first time, or if

20 the methodology is changing for an existing category (e.g., the United States is implementing improvement efforts

- to apply a higher tiered approach for that category), then the source and/or sink category lead will develop a new
- 22 methodology, gather the most appropriate activity data and emission factors (or in some cases direct emission
- 23 measurements) for the entire time series, and conduct a special category-specific review process involving relevant
- experts from industry, government, and universities (see Box ES-3 on EPA's approach to recalculations).
- 25 Once the methodology is in place and the data are collected, the individual source and sink category leads
- 26 calculate emission and removal estimates. The individual leads then update or create the relevant text and
- accompanying annexes for the Inventory. Source and sink category leads are also responsible for completing the
- 28 relevant sectoral background tables of the CRF, conducting quality assurance and quality control (QA/QC) checks,
- 29 and category-level uncertainty analyses.
- 30 The treatment of confidential business information (CBI) in the Inventory is based on EPA internal guidelines, as
- 31 well as regulations⁵⁴ applicable to the data used. EPA has specific procedures in place to safeguard CBI during the
- 32 inventory compilation process. When information derived from CBI data is used for development of inventory
- 33 calculations, EPA procedures ensure that these confidential data are sufficiently aggregated to protect
- 34 confidentiality while still providing useful information for analysis. For example, within the Energy and Industrial
- 35 Processes and Product Use (IPPU) sectors, EPA has used aggregated facility-level data from the Greenhouse Gas
- 36 Reporting Program (GHGRP) to develop, inform, and/or quality-assure U.S. emission estimates. In 2014, EPA's
- 37 GHGRP, with industry engagement, compiled criteria that would be used for aggregating its confidential data to

⁵⁴ 40 CFR part 2, Subpart B titled "Confidentiality of Business Information" which is the regulation establishing rules governing handling of data entitled to confidentiality treatment. See ">https://www.ecfr.gov/cgi-bin/text-idx?SID=a764235c9eadf9afe05fe04c07a28939&mc=true&node=sp40.1.2.b&rgn=div6>.

- 1 shield the underlying CBI from public disclosure.⁵⁵ In the Inventory, EPA is publishing only data values that meet
- 2 the GHGRP aggregation criteria.⁵⁶ Specific uses of aggregated facility-level data are described in the respective
- 3 methodological sections within those chapters. In addition, EPA uses historical data reported voluntarily to EPA via
- 4 various voluntary initiatives with U.S. industry (e.g., EPA Voluntary Aluminum Industrial Partnership (VAIP)) and
- 5 follows guidelines established under the voluntary programs for managing CBI.

6 Summary Data Compilation and Storage

7 The inventory coordinator at EPA with support from the data/document manager collects the source and sink 8 categories' descriptive text and Annexes, and also aggregates the emission estimates into a summary data file that 9 links the individual source and sink category data files together. This summary data file contains all of the essential 10 data in one central location, in formats commonly used in the Inventory document. In addition to the data from 11 each source and sink category, national trend and related data are also gathered in the summary sheet for use in 12 the Executive Summary, Introduction, and Trends sections of the Inventory report. Electronic copies of each year's 13 summary data, which contains all the emission and sink estimates for the United States, are kept on a central 14 server at EPA under the jurisdiction of the inventory coordinator.

15 National Inventory Report Preparation

16 The NIR is compiled from the sections developed by each individual source or sink category lead. In addition, the 17 inventory coordinator prepares a brief overview of each chapter that summarizes the emissions from all sources 18 discussed in the chapters. The inventory coordinator then carries out a key category analysis for the Inventory, 19 consistent with the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, and in accordance with the 20 reporting requirements of the UNFCCC. Also at this time, the Introduction, Executive Summary, and Trends in 21 Greenhouse Gas Emissions chapters are drafted, to reflect the trends for the most recent year of the current 22 Inventory. The analysis of trends necessitates gathering supplemental data, including weather and temperature 23 conditions, economic activity and gross domestic product, population, atmospheric conditions, and the annual 24 consumption of electricity, energy, and fossil fuels. Changes in these data are used to explain the trends observed 25 in greenhouse gas emissions in the United States. Furthermore, specific factors that affect individual sectors are 26 researched and discussed. Many of the factors that affect emissions are included in the Inventory document as 27 separate analyses or side discussions in boxes within the text. Text boxes are also created to examine the data 28 aggregated in different ways than in the remainder of the document, such as a focus on transportation activities or 29 emissions from electricity generation. The document is prepared to match the specification of the UNFCCC 30 reporting guidelines for National Inventory Reports.

31 Common Reporting Format Table Compilation

- 32 The CRF tables are compiled from individual tables completed by each individual source or sink category lead,
- 33 which contain emissions and/or removals and activity data. The inventory coordinator integrates the category data
- into the UNFCCC's "CRF Reporter" for the United States, assuring consistency across all sectoral tables. The
- 35 summary reports for emissions, methods, and emission factors used, the overview tables for completeness and
- 36 quality of estimates, the recalculation tables, the notation key completion tables, and the emission trends tables
- are then completed by the inventory coordinator. Internal automated quality checks on the CRF Reporter, as well
- as reviews by the category leads, are completed for the entire time series of CRF tables before submission.

 ⁵⁵ Federal Register Notice on "Greenhouse Gas Reporting Program: Publication of Aggregated Greenhouse Gas Data." See pp.
 79 and 110 of notice at .<https://www.gpo.gov/fdsys/pkg/FR-2014-06-09/pdf/2014-13425.pdf>.

⁵⁶ U.S. EPA Greenhouse Gas Reporting Program. Developments on Publication of Aggregated Greenhouse Gas Data, November 25, 2014. See http://www.epa.gov/ghgreporting/confidential-business-information-ghg-reporting.

1 QA/QC and Uncertainty

- 2 QA/QC and uncertainty analyses are guided by the QA/QC and uncertainty coordinators, who help maintain the
- 3 QA/QC plan and the overall uncertainty analysis procedures in coordination with the Inventory coordinator (see
- 4 sections on QA/QC and Uncertainty, below). These coordinators work closely with the Inventory coordinator and
- 5 source and sink category leads to ensure that a consistent QA/QC plan and uncertainty analysis is implemented
- 6 across all inventory sources. The inventory QA/QC plan, outlined in Section 1.6 and Annex 8, is consistent with the
- 7 quality assurance procedures outlined by EPA and IPCC good practices. The QA/QC and uncertainty findings also
- 8 inform overall improvement planning, and specific improvements are noted in the Planned Improvements sections
- 9 of respective categories. QA processes are outlined below.

10 Expert, Public, and UNFCCC Reviews

- 11 During the 30-day Expert Review period, a first draft of sectoral chapters of the document are sent to a select list
- 12 of technical experts outside of EPA who are not directly involved in preparing estimates. The purpose of the Expert
- 13 Review is to provide an objective review, encourage feedback on the methodological and data sources used in the
- 14 current Inventory, especially for sources which have experienced any changes since the previous Inventory.
- 15 Once comments are received and addressed, a second draft of the document is released for public review by
- 16 publishing a notice in the U.S. Federal Register and posting the entire draft Inventory document on the EPA
- 17 website. The Public Review period allows for a 30-day comment period and is open to the entire U.S. public.
- 18 Comments may require further discussion with experts and/or additional research, and specific Inventory
- 19 improvements requiring further analysis as a result of comments are noted in the relevant category's Planned
- 20 Improvement section. EPA publishes responses to comments received during both reviews with the publication of
- 21 the final report on its website.
- 22 Following completion and submission of the report to the UNFCCC, the report also undergoes review by an
- 23 independent international team of experts for adherence to UNFCCC reporting guidelines and IPCC Guidance.⁵⁷
- 24 Feedback from all review processes contribute to improving inventory quality over time and are described further
- in Annex 8.

²⁶ Final Submittal to UNFCCC and Document Publication

- 27 After the final revisions to incorporate any comments from the Expert Review and Public Review periods, EPA
- 28 prepares the final National Inventory Report and the accompanying Common Reporting Format (CRF) tables for
- electronic reporting. EPA, as the National Inventory focal point and sends the official submission of the U.S.
- 30 Inventory to the UNFCCC using the CRF Reporter software, coordinating with the U.S. Department of State, the
- 31 overall UNFCCC focal point. Concurrently, for timely public access, the report is also published on EPA's web site.⁵⁸

1.4 Methodology and Data Sources

- 33 Emissions of greenhouse gases from various source and sink categories have been estimated using methodologies
- 34 that are consistent with the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC 2006). To a great
- extent, this report makes use of published official economic and physical statistics for activity data and emission
- 36 factors. Depending on the emission source category, activity data can include fuel consumption or deliveries,
- vehicle-miles traveled, raw material processed, etc. Emission factors are factors that relate quantities of emissions

⁵⁷ See <https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/review-process >.

⁵⁸ See < https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks >.

- to an activity. For more information on data sources see Section 1.2 above, Box 1-1 on use of GHGRP data, and
- 2 categories' methodology sections for more information on other data sources. In addition to official statistics, the
- 3 report utilizes findings from academic studies, trade association surveys and statistical reports, along with expert
- 4 judgment, consistent with the 2006 IPCC Guidelines.
- 5 The methodologies provided in the 2006 IPCC Guidelines represent foundational methodologies for a variety of
- 6 source categories, and many of these methodologies continue to be improved and refined as new research and
- 7 data become available. This report uses the IPCC methodologies when applicable, and supplements them with
- 8 other available country-specific methodologies and data where possible. Choices made regarding the
- 9 methodologies and data sources used are provided in conjunction with the discussion of each source category in
- 10 the main body of the report. Where additional detail is helpful and necessary to explain methodologies and data
- sources used to estimate emissions, complete documentation is provided in the annexes as indicated in the
- 12 methodology sections of those respective source categories (e.g., Agricultural Soil Management).

13 Box 1-3: IPCC Reference Approach

The UNFCCC reporting guidelines require countries to complete a "top-down" reference approach for estimating CO₂ emissions from fossil fuel combustion in addition to their "bottom-up" sectoral methodology. This estimation method uses alternative methodologies and different data sources than those contained in that section of the Energy chapter. The reference approach estimates fossil fuel consumption by adjusting national aggregate fuel production data for imports, exports, and stock changes rather than relying on end-user consumption surveys (see Annex 4 of this report). The reference approach assumes that once carbon-based fuels are brought into a national economy, they are either saved in some way (e.g., stored in products, kept in fuel stocks, or left unoxidized in ash) or combusted, and therefore the carbon in them is oxidized and released into the atmosphere. Accounting for actual consumption of fuels at the sectoral or sub-national level is not required.

14

15 Key Categories

- 16 The 2006 IPCC Guidelines (IPCC 2006) defines a key category as a "[category] that is prioritized within the national
- 17 inventory system because its estimate has a significant influence on a country's total inventory of greenhouse
- 18 gases in terms of the absolute level, the trend, or the uncertainty in emissions and removals."⁵⁹ This analysis can
- 19 identify source and sink categories that diverge from the overall trend in national emissions.
- The 2006 IPCC Guidelines (IPCC 2006) define quantitative methods to identify key categories both in terms of absolute level and trend, along with consideration of uncertainty. The first method, Approach 1, was implemented
- to identify the key categories for the United States without considering uncertainty in its calculations. This analysis
- 23 was performed twice; one analysis included sources and sinks from the Land Use, Land-Use Change, and Forestry
- 24 (LULUCF) sector, the other analysis did not include the LULUCF categories. The second method, Approach 2, was
- then implemented to identify any additional key categories not already identified in Approach 1 assessment. This
- analysis differs from Approach 1 by including each source category's uncertainty assessments (or proxies) in its
- 27 calculations and was also performed twice to include or exclude LULUCF categories.
- 28 In addition to conducting Approach 1 and 2 level and trend assessments, a qualitative assessment of the source
- 29 categories was conducted to capture any additional key categories that were not identified using the previously
- 30 described quantitative approaches. For this inventory, no additional categories were identified using qualitative

⁵⁹ See Chapter 4 Volume 1, "Methodological Choice and Identification of Key Categories" in IPCC (2006). See http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.

- 1 criteria recommend by IPCC, but EPA continues to update its qualitative assessment on an annual basis. Find more
- 2 information regarding the overall key category analysis in Annex 1 to this report.
- 3

4 Table 1-4: Key Categories for the United States (1990 and 2018)

		Approach 1			Appro	ach 2 (incl	udes uncer	tainty)		2018	
CRF Source Category	Gas	Level Without LULUCF	Trend	Level With LULUCF	Trend With LULUCF	Level Without LULUCF	Trend Without LULUCF	Level With LULUCF	Trend With LULUCF	Qualª	Emissions (MMT CO ₂ Eq.)
Energy										-	
1.A.3.b CO ₂ Emissions from Mobile Combustion: Road	CO ₂	•	•	•	•	•	•	•	•		1,499.8
1.A.1 CO ₂ Emissions from Stationary Combustion - Coal - Electricity Generation	CO ₂	•	•	•	•	•	•	•	•		1,152.9
1.A.1 CO ₂ Emissions from Stationary Combustion - Gas - Electricity Generation	CO ₂	•	•	•	•	•	•	•	•		577.4
1.A.2 CO ₂ Emissions from Stationary Combustion - Gas - Industrial	CO ₂	•	•	•	•	•	•	•	•		514.8
1.A.2 CO ₂ Emissions from Stationary Combustion - Oil - Industrial	CO ₂	•	•	•	•	•	•	•	•		282.1
1.A.4.b CO ₂ Emissions from Stationary Combustion - Gas - Residential	CO ₂	•	•	•	•	•	•	•			273.7
1.A.4.a CO ₂ Emissions from Stationary Combustion - Gas - Commercial	CO ₂	•	•	•	•	•	•	•	•		192.6
1.A.3.a CO ₂ Emissions from Mobile Combustion: Aviation	CO ₂	•	•	•	•	•		•			173.9
1.A.5 CO₂ Emissions from Non-Energy Use of Fuels	CO ₂	•	•	•	•	•	•	•	•		134.5
1.A.4.a CO ₂ Emissions from Stationary Combustion - Oil - Commercial	CO ₂	•	•	•	•						63.9
1.A.4.b CO ₂ Emissions from Stationary Combustion - Oil - Residential	CO ₂	•	•	•	•	•	•		•		62.2
1.A.2 CO ₂ Emissions from Stationary Combustion - Coal - Industrial	CO ₂	•	•	•	•	•	•	•	•		49.8

		Approach 1			Appro	ach 2 (incl	udes uncer	taintv)		2018	
		Level	Trend	Level	Trend	Level	Trend	Level	Trend	_	Emissions
		Without	Without	With	With	Without	Without	With	With		(MMT
CRF Source Category	Gas	LULUCF	LULUCF	LULUCF	LULUCF	LULUCF	LULUCF	LULUCF	LULUCF	Qual ^a	CO ₂ Eq.)
1.A.3.e CO ₂ Emissions											
from Mobile	CO ₂	•	•	•	•						49.2
Combustion: Other											
1.B.2 CO ₂ Emissions											
from Petroleum	CO ₂	•	•	•	•	•	•	•	•		39.4
Systems											
1.A.3.c CO ₂ Emissions from Mobile	CO ₂	•									38.9
Combustion: Railways		•		•							56.9
1.A.3.d CO ₂ Emissions											
from Mobile	CO ₂	•	•	•	•						36.5
Combustion: Marine	002										50.5
1.B.2 CO ₂ Emissions											
from Natural Gas	CO ₂	•		•		•					34.9
Systems											
1.A.5 CO ₂ Emissions											
from Stationary	CO ₂		•	•							34.3
Combustion - Oil - U.S.	CO_2	•	•	•	•						54.5
Territories											
1.A.1 CO ₂ Emissions											
from Stationary	CO ₂	•	•	•	•	•	•		•		22.2
Combustion - Oil -	002										
Electricity Generation											
1.A.5 CO ₂ Emissions											
from Stationary Combustion - Gas -	CO ₂						•				3.0
U.S. Territories											
1.A.4.a CO ₂ Emissions											
from Stationary											
Combustion - Coal -	CO ₂		•		•						1.8
Commercial											
1.A.4.b CO ₂ Emissions											
from Stationary	60										0.0
Combustion - Coal -	CO ₂						•		•		0.0
Residential											
1.B.2 CH ₄ Emissions											
from Natural Gas	CH ₄	•	•	•	•	•	•	•	•		139.7
Systems											
1.B.1 Fugitive											
Emissions from Coal	CH_4	•	•	•	•	•	•	•	•		52.7
Mining											
1.B.2 CH₄ Emissions from Petroleum	CU		_	_			_				26.6
Systems	CH ₄	•	•	•	•	•	•	•	•		36.6
1.B.2 CH ₄ Emissions											
from Abandoned Oil	CH4					•		•			7.0
and Gas Wells											
1.A.4.b CH ₄ Emissions											
from Stationary	CU										4 5
Combustion -	CH ₄					•	•	•	•		4.5
Residential											
1.A.3.e CH ₄ Emissions											
from Mobile	CH ₄						•		•		1.7
Combustion: Other	l					l					

		Approach 1			Appro	ach 2 (incl	udes uncer	taintv)		2018	
		Level	Trend	Level	Trend	Level	Trend	Level	Trend	1	Emissions
		Without	Without	With	With	Without	Without	With	With		(MMT
CRF Source Category	Gas	LULUCF	LULUCF	LULUCF	LULUCF	LULUCF	LULUCF	LULUCF	LULUCF	Qual ^a	CO ₂ Eq.)
1.A.1 N ₂ O Emissions											
from Stationary	N ₂ O					•					20.3
Combustion - Coal -	IN ₂ O					•					20.5
Electricity Generation											
1.A.3.b N ₂ O Emissions											
from Mobile	N ₂ O	•	•	•	•		•		•		10.4
Combustion: Road											
1.A.2 N ₂ O Emissions											
from Stationary	N ₂ O					•					2.7
Combustion -											
Industrial											
Industrial Processes and	Product U	se									
2.C.1 CO ₂ Emissions											
from Iron and Steel											
Production &	CO ₂	•	•	•	•	•	•	•	•		42.7
Metallurgical Coke											
Production											
2.A.1 CO ₂ Emissions											
from Cement	CO ₂	•		•							40.3
Production											
2.B.8 CO ₂ Emissions											
from Petrochemical	CO ₂	•	•	•	•						29.4
Production											
2.G SF ₆ Emissions											
from Electrical	SF ₆	•	•	•	•		•		•		4.1
Transmission and	516	-	-	-	-		-		-		7.1
Distribution											
2.B.9 HFC-23											
Emissions from HCFC-	HFCs	•	•	•	•		•		•		3.3
22 Production											
2.C.3 PFC Emissions											
from Aluminum	PFCs	•	•		•						1.6
Production											
2.F.1 Emissions from											
Substitutes for Ozone	HFCs										
Depleting Substances:	and	•	•	•	•	•	•	•	•		128.9
Refrigeration and Air	PFCs										
Conditioning											
2.F.4 Emissions from	HFCs										
Substitutes for Ozone			-		•		-		-		19.2
Depleting Substances:	and PFCs		-		•		-		•		13.2
Aerosols	FICS										
2.F.2 Emissions from	HFCs										
Substitutes for Ozone	and										11.8
Depleting Substances:	PFCs										11.0
Foam Blowing Agents	PPCS										
2.F.3 Emissions from											
Substitutes for Ozone	HFCs										2.6
Depleting Substances:	and						•				2.0
Fire Protection	PFCs										
	•	•								•	•

			Appro	ach 1		Appro	ach 2 (incl	udes uncer	tainty)		2018
	Gas	Level Without LULUCF	Trend Without LULUCF	Level With LULUCF	Trend With LULUCF	Level Without LULUCF	Trend Without LULUCF	Level With LULUCF	Trend With LULUCF	Quala	Emissions (MMT
2.F.5 Emissions from	Gas									Qual	CO₂ Eq.)
Substitutes for Ozone	HFCs										
Depleting Substances:	and						•				2.0
Solvents	PFCs										
Agriculture											
3.G CO ₂ Emissions											2.4
from Liming	CO ₂						•				3.1
3.A.1 CH ₄ Emissions											
from Enteric	CH ₄	•	•	•	•	•		•			171.7
Fermentation: Cattle											
3.B.1 CH ₄ Emissions											
from Manure	CH ₄	•	•	•	•	•	•		•		35.7
Management: Cattle											
3.D.1 Direct N ₂ O											
Emissions from	N ₂ O			•				•			285.7
Agricultural Soil	IN ₂ O	•		•		•		•			205.7
Management											
3.D.2 Indirect N ₂ O											
Emissions from	N ₂ O	•	•	•	•	•	•	•	•		52.5
Applied Nitrogen											
3.B.4 CH ₄ Emissions											
from Manure	CH₄	•		•							26.0
Management: Other	C114	-									20.0
Livestock											
3.C CH ₄ Emissions	CH₄					•	•				13.3
from Rice Cultivation											
Waste											
5.A CH ₄ Emissions	CH ₄	•	•	•	•	•	•	•	•		110.6
from Landfills Land Use, Land Use Cha	ngo and Fr										
Net CO ₂ Emissions	lige, and Fo	Jestry									
from Land Converted	CO ₂			•	•			•	•		79.3
to Settlements	002										
Net CO ₂ Emissions											
from Land Converted	CO ₂			•				•			55.3
to Cropland	2										
Net CO ₂ Emissions											
from Grassland	CO ₂							•	•		11.2
Remaining Grassland											
Net CO ₂ Emissions											
from Cropland	CO ₂			•	•			•	•		(16.6)
Remaining Cropland											
Net CO ₂ Emissions											
from Land Converted	CO ₂			•	•			•	•		(24.6)
to Grassland											
Net CO ₂ Emissions											
from Land Converted	CO ₂			•				•			(110.6)
to Forest Land											

		Approach 1				Appro	ach 2 (incl	udes uncer	tainty)		2018
CRF Source Category	Gas	Level Without LULUCF	Trend Without LULUCF	Level With LULUCF	Trend With LULUCF	Level Without LULUCF	Trend Without LULUCF	Level With LULUCF	Trend With LULUCF	Qualª	Emissions (MMT CO ₂ Eq.)
Net CO ₂ Emissions	003									Quai	CO2 Eq.)
from Settlements Remaining Settlements	CO ₂			•	•			•	•		(126.2)
Net CO ₂ Emissions from Forest Land Remaining Forest Land	CO ₂			•	•			•	•		(663.2)
CH₄ Emissions from Forest Fires	CH4				•						11.3
N ₂ O Emissions from Forest Fires	N ₂ O				•						7.5
Subtotal Without LULU	CF										6,497.7
Total Emissions Withou	t LULUCF										6,677.8
Percent of Total Without LULUCF										97%	
Subtotal With LULUCF										5,674.1	
Total Emissions With LULUCF										5,904.1	
Percent of Total With LU	JLUCF										96%

^a Qualitative criteria.

1.6 Quality Assurance and Quality Control 1 (QA/QC)

2

3 As part of efforts to achieve its stated goals for inventory quality, transparency, and credibility, the United States 4 has developed a guality assurance and guality control plan designed to check, document, and improve the guality 5 of its inventory over time. QA/QC activities on the Inventory are undertaken within the framework of the U.S. 6 Quality Assurance/Quality Control and Uncertainty Management Plan (QA/QC plan) for the U.S. Greenhouse Gas 7 Inventory: Procedures Manual for QA/QC and Uncertainty Analysis. 8 Key attributes of the QA/QC plan are summarized in Figure 1-2. These attributes include: 9 Procedures and Forms: detailed and specific systems that serve to standardize the process of •

- 10 documenting and archiving information, as well as to guide the implementation of QA/QC and the 11 analysis of uncertainty
- 12 Implementation of Procedures: application of QA/QC procedures throughout the whole inventory 13 development process from initial data collection, through preparation of the emission estimates, to 14 publication of the Inventory
- 15 Quality Assurance (QA): expert and public reviews for both the inventory estimates and the Inventory 16 report (which is the primary vehicle for disseminating the results of the inventory development process). 17 The expert technical review conducted by the UNFCCC supplements these QA processes, consistent with 18 the QA good practice and the 2006 IPCC Guidelines (IPCC 2006)
- 19 • Quality Control (QC): application of General (Tier 1) and Category-specific (Tier 2) quality controls and 20 checks, as recommended by 2006 IPCC Guidelines (IPCC 2006), along with consideration of secondary data and category-specific checks (additional Tier 2 QC) in parallel and coordination with the uncertainty 21 22 assessment; the development of protocols and templates, which provides for more structured

- 1 communication and integration with the suppliers of secondary information 2 General (Tier 1) and Category-specific (Tier 2) Checks: quality controls and checks, as recommended by 3 IPCC Good Practice Guidance and 2006 IPCC Guidelines (IPCC 2006) 4 *Record Keeping:* provisions to track which procedures have been followed, the results of the QA/QC, • 5 uncertainty analysis, and feedback mechanisms for corrective action based on the results of the 6 investigations which provide for continual data quality improvement and guided research efforts 7 Multi-Year Implementation: a schedule for coordinating the application of QA/QC procedures across 8 multiple years, especially for category-specific QC, prioritizing key categories 9 Interaction and Coordination: promoting communication within the EPA, across Federal agencies and • 10 departments, state government programs, and research institutions and consulting firms involved in 11 supplying data or preparing estimates for the Inventory. The QA/QC Management Plan itself is intended 12 to be revised and reflect new information that becomes available as the program develops, methods are
- 13 improved, or additional supporting documents become necessary
- 14 In addition, based on the national QA/QC plan for the Inventory, some sector, subsector and category-specific
- 15 QA/QC plans have been developed. These plans follow the procedures outlined in the national QA/QC plan,
- 16 tailoring the procedures to the specific documentation and data files associated with individual sources. For each
- 17 greenhouse gas emissions source or sink included in this Inventory, a minimum of general or Tier 1 QC analysis has
- 18 been undertaken. Where QC activities for a particular category go beyond the minimum Tier 1 level, and include
- 19 category-specific checks (Tier 2), further explanation is provided within the respective source or sink category text.
- 20 Similarly, responses or updates based on comments from the expert, public and the international technical expert
- 21 reviews (e.g., UNFCCC) are also addressed within the respective source or sink category sections in each sectoral
- 22 chapter.
- 23 The quality control activities described in the U.S. QA/QC plan occur throughout the inventory process; QA/QC is
- 24 not separate from, but is an integral part of, preparing the Inventory. Quality control—in the form of both good
- 25 practices (such as documentation procedures) and checks on whether good practices and procedures are being
- followed—is applied at every stage of inventory development and document preparation. In addition, quality
- assurance occurs during the Expert Review and the Public Review, in addition to the UNFCCC expert technical
- review. While all phases significantly contribute to improving inventory quality, the public review phase is also
- 29 essential for promoting the openness of the inventory development process and the transparency of the inventory
- 30 data and methods.
- 31 The QA/QC plan guides the process of ensuring inventory quality by describing data and methodology checks,
- 32 developing processes governing peer review and public comments, and developing guidance on conducting an
- analysis of the uncertainty surrounding the emission estimates. The QA/QC procedures also include feedback loops
- 34 and provide for corrective actions that are designed to improve the inventory estimates over time.

1 Figure 1-2: U.S. QA/QC Plan Summary

Inventory Analyst	 Obtain data in electronic format (if possible) Review spreadsheet construction Avoid hardwiring Use data validation Protect cells Develop automatic checkers for: Outliers, negative values, or missing data Variable types match values Time series consistency Maintain tracking tab for status of gathering efforts 	 Contact reports for non- electronic communications Provide cell references for primary data elements Obtain copies of all data sources List and location of any working/external spreadsheets Document assumptions 	 Clearly label parameters, units, and conversion factors Review spreadsheet integrity Equations Units Inputs and output Develop automated checkers for: Input ranges Calculations Emission aggregation 	Common starting versions for each inventory year Utilize unalterable summary tab for each
QA/QC Analyst	 Check input data for transcription errors Inspect automatic checkers Identify spreadsheet modifications that could provide additional QA/QC checks 	 Check citations in spreadsheet and text for accuracy and style Check reference docket for new citations Review documentation for any data / methodology changes 	 Reproduce calculations Review time series consistency Review changes in data/consistency with IPCC methodology 	source spreadsheet for linking to a master summary spreadsheet Follow strict version control procedures Document QA/QC procedures
	Data Gathering	Data Documentation	Calculating Emissions	Cross-Cutting Coordination

2

3

4

5

1.7 Uncertainty Analysis of Emission Estimates – TO BE UPDATED FOR FINAL INVENTORY REPORT

6 Emissions calculated for the U.S. Inventory reflect best estimates; in some cases, however, estimates are based on 7 approximate methodologies, assumptions, and best available data. As new information becomes available, the 8 United States continues to improve and revise its emission estimates. Uncertainty estimates are an essential 9 element of a complete and transparent emissions inventory. Uncertainty information is not intended to dispute 10 the validity of the Inventory estimates, but to help prioritize efforts to improve the accuracy of future Inventories 11 and guide future decisions on methodological choice. While the U.S. Inventory calculates its emission estimates 12 with the highest possible accuracy, uncertainties are associated to a varying degree with the development of 13 emission estimates for any inventory. For some of the current estimates, such as CO₂ emissions from energy-14 related combustion activities, the impact of uncertainties on overall emission estimates is believed to be relatively 15 small. For some other limited categories of emissions, uncertainties could have a larger impact on the estimates 16 presented (i.e., storage factors of non-energy uses of fossil fuels). The UNFCCC reporting guidelines follow the 17 recommendation in the 2006 IPCC Guidelines (IPCC 2006) and require that countries provide single point estimates

- 1 for each gas and emission or removal source category. Within the discussion of each emission source, specific
- 2 factors affecting the uncertainty associated with the estimates are discussed.
- 3 Additional research in the following areas could help reduce uncertainty in the U.S. Inventory:
- Incorporating excluded emission and sink categories. Quantitative estimates for some of the sources and sinks of greenhouse gas emissions are not available at this time. In particular, emissions from some land-use activities (e.g., emissions and removals from U.S. territories) and industrial processes are not included in the inventory either because data are incomplete or because methodologies do not exist for estimating emissions from these source categories. See Annex 5 of this report for a discussion of the sources of greenhouse gas emissions and sinks excluded from this report.
- Improving the accuracy of emission factors. Further research is needed in some cases to improve the accuracy of emission factors used to calculate emissions from a variety of sources. For example, the accuracy of current emission factors applied to CH₄ and N₂O emissions from stationary and mobile combustion is highly uncertain.
- Collecting detailed activity data. Although methodologies exist for estimating emissions for some sources,
 problems arise in obtaining activity data at a level of detail where more technology or process-specific
 emission factors can be applied.

The overall uncertainty estimate for total U.S. greenhouse gas emissions was developed using the IPCC Approach 2
 uncertainty estimation methodology. The IPCC provides good practice guidance on two approaches—Approach 1
 and Approach 2—to estimating uncertainty for individual source categories. Approach 2 uncertainty analysis,

20 employing the Monte Carlo Stochastic Simulation technique, was applied wherever data and resources permitted.

21 See Annex 7 of this report for further details on the U.S. process for estimating uncertainty associated with the

22 emission estimates Consistent with good practices in the 2006 IPCC Guidelines (IPCC 2006), over a multi-year

23 timeframe, the United States expects to continue to improve the uncertainty estimates presented in this report,

24 prioritizing key categories.

25 Estimates of quantitative uncertainty for the total U.S. greenhouse gas emissions in 1990 (base year) and 2018 are

26 shown below in Table 1-5 and Table 1-6, respectively. The overall uncertainty surrounding the Total Net GHG

- 27 Emissions is estimated to be -7 to +8 percent in 1990 and -6 to +7 percent in and 2018. When the LULUCF sector is
- excluded from the analysis the uncertainty is estimated to be -2 to +5 percent in 1990 and -2 to +4 percent in 2018.

Table 1-5: Estimated Overall Inventory Quantitative Uncertainty for 1990 (MMT CO₂ Eq. and Percent)

	1990 Emission						Standard	
	Estimate	Uncertainty	Jncertainty Range Relative to Emission Estimate ^a Me					
Gas	(MMT CO ₂ Eq.)	(MMT C	CO2 Eq.)	(9	%)	(MMT	CO₂ Eq.)	
		Lower Upper		Lower	Lower Upper			
		Bound	Bound ^c	Bound	Bound			
CO ₂	5,121.2	5,010.3	5,341.4	-2%	4%	5,175.2	84.5	
CH4 ^d	779.8	709.9	904.3	-9%	16%	803.5	49.5	
N ₂ O ^d	370.3	332.3	445.7	-10%	20%	381.8	28.8	
PFC, HFC, SF ₆ , and NF ₃ ^d	99.7	95.7	106.7	-4%	7%	103.1	3.8	
Total	6,371.0	6,295.4	6,694.9	-2%	5%	6,493.2	102.7	
LULUCF Emissions ^e	7.8	5.2	7.5	-33%	-3%	6.4	0.6	
LULUCF Total Net Flux ^f	(814.8)	(1,224.6)	(542.9)	50%	-33%	(884.2)	174.0	
LULUCF Sector Total ^g	(807.0)	(1,219.0)	(536.8)	51%	-33%	(877.9)	174.0	
Net Emissions (Sources and								
Sinks)	5,564.0	5,219.2	6,017.2	-7%	8%	5,615.4	202.5	
+ Does not exceed 0.5 percent	•							

^a The lower and upper bounds for emission estimates correspond to a 95 percent confidence interval, with the lower bound corresponding to 2.5th percentile and the upper bound corresponding to 97.5th percentile.

^b Mean value indicates the arithmetic average of the simulated emission estimates; standard deviation indicates the extent of deviation of the simulated values from the mean.

^c The lower and upper bound emission estimates for the sub-source categories do not sum to total emissions because the low and high estimates for total emissions were calculated separately through simulations.

^d The overall uncertainty estimates did not take into account the uncertainty in the GWP values for CH₄, N₂O and high GWP gases used in the Inventory emission calculations for 1990. The base year for uncertainty is 1995 for Substitution of Ozone Depleting Substances.

^e LULUCF emissions include the CH₄ and N₂O emissions reported for Non-CO₂ Emissions from Forest Fires, Emissions from Drained Organic Soils, N₂O Fluxes from Forest Soils, Non-CO₂ Emissions from Grassland Fires, N₂O Fluxes from Settlement Soils, *Coastal Wetlands Remaining Coastal Wetlands, Peatlands Remaining Peatlands*, and CH₄ Emissions from Land Converted to Coastal Wetlands.

^f Net CO₂ flux is the net C stock change from the following categories: *Forest Land Remaining Forest Land, Land Converted to Forest Land, Cropland Remaining Cropland, Land Converted to Cropland, Grassland Remaining Grassland, Land Converted to Grassland, Changes in Organic Soils Carbon Stocks, Changes in Urban Tree Carbon Stocks, Changes in Yard Trimmings and Food Scrap Carbon Stocks in Landfills, Land Converted to Settlements, Wetlands Remaining Wetlands, and Land Converted to Wetlands.*

^g The LULUCF Sector Total is the net sum of all emissions (i.e., sources) of greenhouse gases to the atmosphere plus removals of CO₂ (i.e., sinks or negative emissions) from the atmosphere.

Notes: Total emissions (excluding emissions for which uncertainty was not quantified) are presented without LULUCF. Net emissions are presented with LULUCF. Totals may not sum due to independent rounding. Parentheses indicate net sequestration.

	2017 Emission						Standard
	Estimate	Uncertainty	Range Relativ	e to Emissio	n Estimate ^a	Mean ^b	Deviation
Gas	(MMT CO ₂ Eq.)	(MMT C	CO₂ Eq.)	(9	%)	(MMT	CO2 Eq.)
		Lower	Upper	Lower	Upper		
		Bound ^c	Bound ^c	Bound	Bound		
CO ₂	5,270.7	5,154.8	5,499.8	-2%	4%	5,326.0	88.7
CH4d	656.3	596.0	747.6	-9%	14%	670.5	38.7
N ₂ O ^d	360.5	316.2	434.7	-12%	21%	368.7	30.4
PFC, HFC, SF ₆ , and NF ₃ ^d	169.1	168.9	188.2	-(+)%	11%	178.4	5.0
Total	6,456.7	6,350.6	6,742.9	-2%	4%	6,543.6	101.0
LULUCF Emissions ^e	15.5	12.9	18.6	-17%	20%	15.7	1.5
LULUCF Total Net Flux ^f	(729.6)	(1,094.4)	(488.5)	50%	-33%	(793.4)	154.0
LULUCF Sector Total ^g	(714.1)	(1,078.2)	(472.8)	51%	-34%	(777.7)	154.0
Net Emissions (Sources and							
Sinks)	5,742.6	5,408.2	6,130.0	-6%	7%	5,765.9	183.6

Table 1-6: Estimated Overall Inventory Quantitative Uncertainty (MMT CO2 Eq. and Percent)

+ Does not exceed 0.5 percent.

^a The lower and upper bounds for emission estimates correspond to a 95 percent confidence interval, with the lower bound corresponding to 2.5th percentile and the upper bound corresponding to 97.5th percentile.

^b Mean value indicates the arithmetic average of the simulated emission estimates; standard deviation indicates the extent of deviation of the simulated values from the mean.

^c The lower and upper bound emission estimates for the sub-source categories do not sum to total emissions because the low and high estimates for total emissions were calculated separately through simulations.

^d The overall uncertainty estimates did not take into account the uncertainty in the GWP values for CH₄, N₂O and high GWP gases used in the Inventory emission calculations for 2017.

^e LULUCF emissions include the CH₄ and N₂O emissions reported for Non-CO₂ Emissions from Forest Fires, Emissions from Drained Organic Soils, N₂O Fluxes from Forest Soils, Non-CO₂ Emissions from Grassland Fires, N₂O Fluxes from Settlement Soils, *Coastal Wetlands Remaining Coastal Wetlands, Peatlands Remaining Peatlands*, and CH₄ Emissions from Land Converted to Coastal Wetlands.

^f Net CO₂ flux is the net C stock change from the following categories: *Forest Land Remaining Forest Land, Land Converted to Forest Land, Cropland Remaining Cropland, Land Converted to Cropland, Grassland Remaining Grassland, Land Converted to Grassland, Changes in Organic Soils Carbon Stocks, Changes in Urban Tree Carbon Stocks, Changes in Yard Trimmings and Food Scrap Carbon Stocks in Landfills, Land Converted to Settlements, Wetlands Remaining Wetlands, and Land Converted to Wetlands.*

^g The LULUCF Sector Total is the net sum of all emissions (i.e., sources) of greenhouse gases to the atmosphere plus removals of CO₂ (i.e., sinks or negative emissions) from the atmosphere.

Notes: Total emissions (excluding emissions for which uncertainty was not quantified) are presented without LULUCF. Net emissions are presented with LULUCF. Totals may not sum due to independent rounding. Parentheses indicate net sequestration.

1 1.8 Completeness

- 2 This report, along with its accompanying CRF tables, serves as a thorough assessment of the anthropogenic
- 3 sources and sinks of greenhouse gas emissions for the United States for the time series 1990 through 2018. This
- 4 report is intended to be comprehensive and includes the vast majority of emissions and removals identified as
- 5 anthropogenic, consistent with IPCC and UNFCCC guidelines. In general, sources or sink categories not accounted
- 6 for in this Inventory are excluded because they are not occurring in the United States, or because data are
- 7 unavailable to develop an estimate and/or the categories were determined to be insignificant⁶⁰ in terms of overall
- 8 national emissions per UNFCCC reporting guidelines.
- 9 The United States is continually working to improve upon the understanding of such sources and sinks and seeking
- 10 to find the data required to estimate related emissions and removals. As such improvements are implemented,
- 11 new emission and removal estimates are quantified and included in the Inventory, focusing on categories that are
- 12 significant. For a list of sources and sink categories not included and more information on significance of these
- 13 categories, see Annex 5 and the respective category sections in each chapter of this report.

14 **1.9 Organization of Report**

- 15 In accordance with the revision of the UNFCCC reporting guidelines agreed to at the nineteenth Conference of the
- 16 Parties (UNFCCC 2014), this Inventory of U.S. Greenhouse Gas Emissions and Sinks is segregated into five sector-
- 17 specific chapters consistent with the UN Common Reporting Framework, listed below in Table 1-7. In addition,
- 18 chapters on Trends in Greenhouse Gas Emissions and Other information to be considered as part of the U.S.
- 19 Inventory submission are included.

 $^{^{60}}$ See paragraph 32 of Decision 24/CP.19, the UNFCCC reporting guidelines on annual inventories for Parties included in Annex 1 to the Convention. Paragraph notes that "...An emission should only be considered insignificant if the likely level of emissions is below 0.05 per cent of the national total GHG emissions, and does not exceed 500 kt CO₂ Eq. The total national aggregate of estimated emissions for all gases and categories considered insignificant shall remain below 0.1 percent of the national total GHG emissions."

1 Table 1-7: IPCC Sector Descriptions

Chapter/IPCC Sector	Activities Included
Energy	Emissions of all greenhouse gases resulting from stationary and mobile energy activities including fuel combustion and fugitive fuel emissions, and non- energy use of fossil fuels.
Industrial Processes and Product Use	Emissions resulting from industrial processes and product use of greenhouse gases.
Agriculture	Emissions from agricultural activities except fuel combustion, which is addressed under Energy.
Land Use, Land-Use Change, and Forestry	Emissions and removals of CO ₂ , and emissions of CH ₄ , and N ₂ O from land use, land-use change and forestry.
Waste	Emissions from waste management activities.

- 2 Within each chapter, emissions are identified by the anthropogenic activity that is the source or sink of the
- 3 greenhouse gas emissions being estimated (e.g., coal mining). Overall, the following organizational structure is
- 4 consistently applied throughout this report:
- 5 **Chapter/IPCC Sector**: Overview of emission trends for each IPCC defined sector.
- 6 CRF Source or Category: Description of category pathway and emission/removal trends based on IPCC
- 7 methodologies, consistent with UNFCCC reporting guidelines.
- 8 Methodology: Description of analytical methods (e.g., from 2006 IPCC Guidelines, or country-specific methods)
- 9 employed to produce emission estimates and identification of data references, primarily for activity data and10 emission factors.
- 11 Uncertainty and Time Series Consistency: A discussion and quantification of the uncertainty in emission estimates 12 and a discussion of time-series consistency.
- QA/QC and Verification: A discussion on steps taken to QA/QC and verify the emission estimates, consistent with
 the U.S. QA/QC plan, and any key findings.
- 15 **Recalculations Discussion**: A discussion of any data or methodological changes that necessitate a recalculation of 16 previous years' emission estimates, and the impact of the recalculation on the emission estimates, if applicable.
- 17 **Planned Improvements**: A discussion on any category-specific planned improvements, if applicable.
- 18 Special attention is given to CO₂ from fossil fuel combustion relative to other sources because of its share of
- 19 emissions and its dominant influence on emission trends. For example, each energy consuming end-use sector
- 20 (i.e., residential, commercial, industrial, and transportation), as well as the electricity generation sector, is
- described individually. Additional information for certain source categories and other topics is also provided in
- 22 several Annexes listed in Table 1-8.

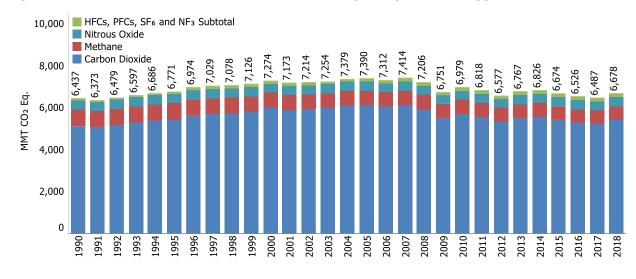
23 Table 1-8: List of Annexes

- ANNEX 1 Key Category Analysis
- ANNEX 2 Methodology and Data for Estimating CO2 Emissions from Fossil Fuel Combustion
- 2.1. Methodology for Estimating Emissions of CO₂ from Fossil Fuel Combustion
- 2.2. Methodology for Estimating the Carbon Content of Fossil Fuels
- 2.3. Methodology for Estimating Carbon Emitted from Non-Energy Uses of Fossil Fuels
- ANNEX 3 Methodological Descriptions for Additional Source or Sink Categories
- 3.1. Methodology for Estimating Emissions of CH₄, N₂O, and Indirect Greenhouse Gases from Stationary Combustion
- 3.2. Methodology for Estimating Emissions of CH₄, N₂O, and Indirect Greenhouse Gases from Mobile Combustion and Methodology for and Supplemental Information on Transportation-Related Greenhouse Gas Emissions
- 3.3. Methodology for Estimating Emissions from Commercial Aircraft Jet Fuel Consumption
- 3.4. Methodology for Estimating CH₄ Emissions from Coal Mining
- 3.5. Methodology for Estimating CH₄ and CO₂ Emissions from Petroleum Systems

- 3.6. Methodology for Estimating CH₄ Emissions from Natural Gas Systems
- 3.7. Methodology for Estimating CO₂ and N₂O Emissions from Incineration of Waste
- 3.8. Methodology for Estimating Emissions from International Bunker Fuels used by the U.S. Military
- 3.9. Methodology for Estimating HFC and PFC Emissions from Substitution of Ozone Depleting Substances
- 3.10. Methodology for Estimating CH₄ Emissions from Enteric Fermentation
- 3.11. Methodology for Estimating CH₄ and N₂O Emissions from Manure Management
- 3.12. Methodology for Estimating N₂O Emissions, CH₄ Emissions and Soil Organic C Stock Changes from Agricultural Lands (Cropland and Grassland)
- 3.13. Methodology for Estimating Net Carbon Stock Changes in *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*
- 3.14. Methodology for Estimating CH₄ Emissions from Landfills
- ANNEX 4 IPCC Reference Approach for Estimating CO2 Emissions from Fossil Fuel Combustion
- ANNEX 5 Assessment of the Sources and Sinks of Greenhouse Gas Emissions Not Included

ANNEX 6 Additional Information

- 6.1. Global Warming Potential Values
- 6.2. Ozone Depleting Substance Emissions
- 6.3. Sulfur Dioxide Emissions
- 6.4. Complete List of Source Categories
- 6.5. Constants, Units, and Conversions
- 6.6. Abbreviations
- 6.7. Chemical Formulas
- ANNEX 7 Uncertainty
- 7.1. Overview
- 7.2. Methodology and Results
- 7.3. Reducing Uncertainty
- 7.4. Planned Improvements
- 7.5. Additional Information on Uncertainty Analyses by Source
- ANNEX 8 QA/QC Procedures
- 8.1. Background
- 8.2. Purpose
- 8.3. Assessment Factors
- 8.4. Responses During the Review Process
- ANNEX 9 Greenhouse Gas Reporting Program (GHGRP)

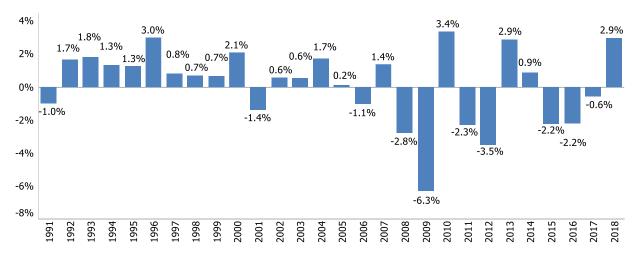

2. Trends in Greenhouse Gas Emissions

2 2.1 Recent Trends in U.S. Greenhouse Gas 3 Emissions and Sinks

4 In 2018, total gross U.S. greenhouse gas emissions were 6,677.8 MMT, or million metric tons, carbon dioxide equivalent (MMT CO₂ Eq).¹ Total U.S. emissions have increased by 3.7 percent from 1990 to 2018, down from a 5 6 high of 15.2 percent above 1990 levels in 2007. Emissions increased from 2017 to 2018 by 2.9 percent (191.0 MMT 7 CO₂ Eq.). Overall, net emissions in 2018 increased 3.2 percent since 2017 and decreased 10.2 percent from 2005 8 levels as shown in Table 2-1. The increase in total greenhouse gas emissions between 2017 and 2018 was driven 9 largely by an increase in CO₂ emissions from fossil fuel combustion. The increase in CO₂ emissions from fossil fuel 10 combustion was a result of multiple factors, including increased energy consumption from greater heating and 11 cooling needs due to a colder winter and hotter summer in 2018 (in comparison to 2017). 12 Since 1990, U.S. emissions have increased at an average annual rate of 0.2 percent. Figure 2-1 through Figure 2-3

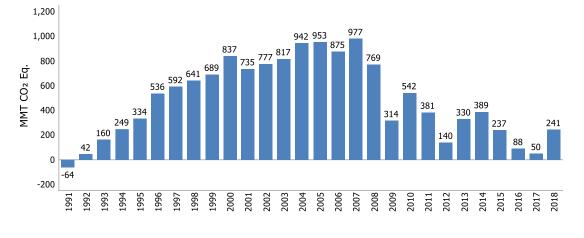
13 illustrate the overall trend in total U.S. emissions by gas, annual changes, and absolute changes since 1990.

¹ The gross emissions total presented in this report for the United States excludes emissions and removals from Land Use, Land-Use Change, and Forestry (LULUCF). The net emissions total presented in this report for the United States includes emissions and removals from LULUCF.



1 Figure 2-1: Gross U.S. Greenhouse Gas Emissions by Gas (MMT CO₂ Eq.)

2


Figure 2-2: Annual Percent Change in Gross U.S. Greenhouse Gas Emissions Relative to the

5

8

- 1 Overall, from 1990 to 2018, total emissions of CO₂ increased by 300.9 MMT CO₂ Eq. (5.9 percent), while total
- 2 emissions of methane (CH₄) decreased by 139.9 MMT CO₂ Eq. (18.1 percent), and total emissions of nitrous oxide
- 3 (N₂O) remained constant despite fluctuations throughout the time series. During the same period, aggregate
- 4 weighted emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF₆), and nitrogen
- 5 trifluoride (NF₃) rose by 79.7 MMT CO₂ Eq. (80.0 percent). Despite being emitted in smaller quantities relative to
- 6 the other principal greenhouse gases, emissions of HFCs, PFCs, SF₆, and NF₃ are significant because many of them
- have extremely high global warming potentials (GWPs), and, in the cases of PFCs, SF₆, and NF₃, long atmospheric
- 8 lifetimes. Conversely, U.S. greenhouse gas emissions were partly offset by carbon (C) sequestration in managed
 9 forests, trees in urban areas, agricultural soils, landfilled yard trimmings, and coastal wetlands. These were
- estimated to offset 12.0 percent (799.9 MMT CO_2 Eq) of total emissions in 2018.
- 11 Table 2-1 summarizes emissions and sinks from all U.S. anthropogenic sources in weighted units of MMT CO₂ Eq.,
- 12 while unweighted gas emissions and sinks in kilotons (kt) are provided in Table 2-2.

13 Table 2-1: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks (MMT CO₂ Eq.)

Gas/Source	1990	2005	2014	2015	2016	2017	2018
CO ₂	5,128.3	6,131.9	5,562.9	5,413.7	5,293.5	5,256.0	5,429.2
Fossil Fuel Combustion	4,740.0	5,740.7	5,185.9	5,033.0	4,942.9	4,893.9	5,033.3
Transportation	1,469.1	1,856.1	1,713.7	1,725.3	1,765.3	1,787.4	1,798.2
Electric Power Sector	1,820.0	2,400.0	2,037.1	1,900.6	1,808.9	1,732.0	1,752.8
Industrial	857.0	850.1	813.6	802.0	801.7	806.0	846.7
Residential	338.2	357.9	347.1	318.1	293.2	294.2	335.9
Commercial	228.2	226.9	233.0	245.6	232.4	232.9	258.3
U.S. Territories	27.6	49.7	41.4	41.4	41.4	41.4	41.4
Non-Energy Use of Fuels	119.5	139.7	120.0	127.0	113.7	123.1	134.5
Iron and Steel Production &	_						
Metallurgical Coke Production	104.7	70.1	58.2	47.9	43.6	40.8	42.7
Cement Production	33.5	46.2	39.4	39.9	39.4	40.3	40.3
Petroleum Systems	9.6	12.2	30.5	32.6	23.0	24.5	39.4
Natural Gas Systems	32.2	25.3	29.6	29.3	29.9	30.4	34.9
Petrochemical Production	21.6	27.4	26.3	28.1	28.3	28.9	29.4
Lime Production	11.7	14.6	14.2	13.3	12.9	13.1	13.9
Ammonia Production	13.0	9.2	9.4	10.6	10.8	13.2	13.5
Incineration of Waste	8.0	12.5	10.4	10.8	10.9	11.1	11.1
Other Process Uses of Carbonates	6.3	7.6	13.0	12.2	11.0	10.1	9.4
Urea Fertilization	2.0	3.1	3.9	4.1	4.0	4.5	4.6
Carbon Dioxide Consumption	1.5	1.4	4.5	4.5	4.5	4.5	4.5
Urea Consumption for Non-	_						
Agricultural Purposes	3.8	3.7	1.8	4.6	5.1	3.8	3.6
Liming	4.7	4.3	3.6	3.7	3.1	3.1	3.1
Ferroalloy Production	2.2	1.4	1.9	2.0	1.8	2.0	2.1
Soda Ash Production	1.4	1.7	1.7	1.7	1.7	1.8	1.7
Titanium Dioxide Production	1.2	1.8	1.7	1.6	1.7	1.7	1.6
Aluminum Production	6.8	4.1	2.8	2.8	1.3	1.2	1.5
Glass Production	1.5	1.9	1.3	1.3	1.2	1.3	1.3
Zinc Production	0.6	1.0	1.0	0.9	0.9	1.0	1.0
Phosphoric Acid Production	1.5	1.3	1.0	1.0	1.0	1.0	0.9
Lead Production	0.5	0.6	0.5	0.5	0.4	0.5	0.6
Carbide Production and	_						
Consumption	0.4	0.2	0.2	0.2	0.2	0.2	0.2
Abandoned Oil and Gas Wells	+	+	+	+	+	+	+
Magnesium Production and	_						
Processing	+	+	+	+	+	+	+
Wood Biomass, Ethanol, and							
Biodiesel Consumption ^a	219.4	230.7	323.2	317.7	317.2	322.2	328.9

International Bunker Fuels ^b	103.5	113.1	103.4	110.9	116.6	120.1	122.1
CH4 ^c	774.5	679.6	639.0	638.5	628.3	630.2	634.6
Enteric Fermentation	164.2	168.9	164.2	166.5	171.8	175.4	177.6
Natural Gas Systems	183.2	158.1	141.1	141.8	139.9	139.1	139.7
Landfills	179.6	131.3	112.6	111.3	108.0	107.7	110.6
Manure Management	37.1	51.6	54.3	57.9	59.6	59.9	61.7
Coal Mining	96.5	64.1	64.6	61.2	53.8	54.8	52.7
Petroleum Systems	46.2	38.8	43.5	40.6	38.9	38.8	36.6
Wastewater Treatment	15.3	15.4	14.3	40.0 14.6	14.4	14.1	14.2
Rice Cultivation	16.0	18.0	15.4	14.0	13.5	12.8	13.3
Stationary Combustion	8.6	7.8	8.9	8.5	7.9	7.8	8.7
Abandoned Oil and Gas Wells	6.6	7.0	7.1	7.1	7.2	7.1	7.0
Abandoned Underground Coal	0.0	7.0	/.1	7.1	7.2	7.1	7.0
Mines	7.2	6.6	6.3	6.4	6.7	6.4	6.2
Mobile Combustion	12.9	9.6	4.1	3.6	3.4	3.3	3.1
Composting	0.4	1.9	2.1	2.1	2.3	2.4	2.5
Field Burning of Agricultural		2.0			2.0		2.0
Residues	0.3	0.4	0.4	0.4	0.4	0.4	0.4
Petrochemical Production	0.2	0.1	0.1	0.2	0.2	0.3	0.3
Ferroalloy Production	+	+	+	+	+	+	+
Carbide Production and							
Consumption	+	+	+	+	+	+	+
Iron and Steel Production &							
Metallurgical Coke Production	+	+	+	+	+	+	+
Incineration of Waste	+	+	+	+	+	+	+
International Bunker Fuels ^b	0.2	0.1	0.1	0.1	0.1	0.1	0.1
N ₂ O ^c	434.6	432.6	449.3	444.0	426.4	421.3	434.6
Agricultural Soil Management	315.9	313.0	349.2	348.1	329.8	327.4	338.2
Stationary Combustion	25.1	34.3	33.0	30.5	30.0	28.6	28.4
Manure Management	14.0	16.4	17.3	17.5	18.1	18.7	19.4
Mobile Combustion	42.0	37.3	19.7	18.3	17.4	16.3	15.2
Adipic Acid Production	15.2	7.1	5.4	4.3	7.0	7.4	10.3
Nitric Acid Production	12.1	11.3	10.9	11.6	10.1	9.3	9.3
Wastewater Treatment	3.4	4.4	4.8	4.8	4.9	5.0	5.0
N ₂ O from Product Uses	4.2	4.2	4.2	4.2	4.2	4.2	4.2
Composting	0.3	1.7	1.9	1.9	2.0	2.2	2.2
Caprolactam, Glyoxal, and Glyoxylic							
Acid Production	1.7	2.1	2.0	2.0	2.0	1.5	1.4
Incineration of Waste	0.5	0.4	0.3	0.3	0.3	0.3	0.3
Electronics Industry	+	0.1	0.2	0.2	0.2	0.3	0.3
Field Burning of Agricultural							
Residues	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Petroleum Systems	+	+	+	+	+	+	0.1
Natural Gas Systems	+	+	+	+	+	+	+
International Bunker Fuels ^b	0.9	1.0	0.9	1.0	1.0	1.1	1.1
HFCs	46.5	126.7	162.5	166.3	166.4	168.7	168.2
Substitution of Ozone Depleting							
Substances ^d	0.2	106.4	157.0	161.7	163.1	163.1	164.4
HCFC-22 Production	46.1	20.0	5.0	4.3	2.8	5.2	3.3
Electronics Industry	0.2	0.2	0.3	0.3	0.3	0.4	0.4
Magnesium Production and							
Processing	0.0	0.0	0.1	0.1	0.1	0.1	0.1
PFCs	24.3	6.7	5.6	5.1	4.3	4.0	4.6
Electronics Industry	2.8	3.2	3.1	3.0	2.9	2.9	3.0
Aluminum Production	21.5	3.4	2.5	2.0	1.4	1.0	1.6

Substitution of Ozone Depleting							
Substances ^d	0.0	+	+	+	+	+	0.1
SF ₆	28.8	11.8	6.5	5.5	6.1	5.9	5.9
Electrical Transmission and							
Distribution	23.2	8.4	4.8	3.8	4.1	4.1	4.1
Magnesium Production and							
Processing	5.2	2.7	0.9	1.0	1.1	1.1	1.1
Electronics Industry	0.5	0.7	0.7	0.7	0.8	0.7	0.8
NF ₃	+	0.5	0.5	0.6	0.6	0.6	0.6
Electronics Industry	+	0.5	0.5	0.6	0.6	0.6	0.6
Unspecified Mix of HFCs, NF ₃ , PFCs							
and SF ₆	+	+	+	+	+	+	+
Electronics Industry	+	+	+	+	+	+	+
Total Emissions	6,437.1	7,389.8	6,826.3	6,673.7	6,525.5	6,486.7	6,677.8
LULUCF Emissions ^c	7.4	16.3	16.6	27.4	12.8	26.1	26.1
LULUCF CH ₄ Emissions	4.4	8.8	9.5	16.1	7.3	15.2	15.2
LULUCF N ₂ O Emissions	3.0	7.5	7.0	11.2	5.5	10.8	10.9
LULUCF Carbon Stock Change ^e	(860.7)	(831.0)	(739.6)	(802.9)	(801.7)	(789.9)	(799.9)
LULUCF Sector Net Total ^f	(853.4)	(814.7)	(723.0)	(775.5)	(788.9)	(763.9)	(773.7)
Net Emissions (Sources and Sinks)	5,583.7	6,575.1	6,103.3	5,898.2	5,736.6	5,722.9	5,904.1

Notes: Total emissions presented without LULUCF. Net emissions presented with LULUCF. Totals may not sum due to independent rounding. Parentheses indicate negative values or sequestration.

+ Does not exceed 0.05 MMT CO₂ Eq.

^a Emissions from Wood Biomass, Ethanol, and Biodiesel Consumption are not included specifically in summing Energy sector totals. Net carbon fluxes from changes in biogenic carbon reservoirs are accounted for in the estimates for LULUCF.

^b Emissions from International Bunker Fuels are not included in totals.

^c LULUCF emissions of CH₄ and N₂O are reported separately from gross emissions totals. LULUCF emissions include the CH₄ and N₂O emissions reported for *Peatlands Remaining Peatlands*, Forest Fires, Drained Organic Soils, Grassland Fires, and *Coastal Wetlands Remaining Coastal Wetlands*; CH₄ emissions from *Land Converted to Coastal Wetlands*; and N₂O emissions from Forest Soils and Settlement Soils. Refer to Table 2-8 for a breakout of emissions and removals for LULUCF by gas and source category.

^d Small amounts of PFC emissions also result from this source.

^e LULUCF Carbon Stock Change is the net C stock change from the following categories: *Forest Land Remaining Forest Land, Land Converted to Forest Land, Cropland Remaining Cropland, Land Converted to Cropland, Grassland Remaining Grassland, Land Converted to Grassland, Wetlands Remaining Wetlands, Land Converted to Wetlands, Settlements Remaining Settlements*, and *Land Converted to Settlements*. Refer to Table 2-8 for a breakout of emissions and removals for LULUCF by gas and source category.

^f The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.

1 Table 2-2: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks (kt)

Gas/Source	1990	2005	2014	2015	2016	2017	2018
CO ₂	5,128,320	6,131,902	5,562,878	5,413,686	5,293,510	5,255,960	5,429,210
Fossil Fuel Combustion	4,740,025	5,740,669	5,185,935	5,033,016	4,942,850	4,893,863	5,033,347
Transportation	1,469,092	1,856,113	1,713,722	1,725,274	1,765,307	1,787,424	1,798,218
Electric Power Sector	1,819,951	2,399,974	2,037,148	1,900,624	1,808,863	1,732,025	1,752,849
Industrial	857,028	850,082	813,609	801,982	801,696	805,973	846,735
Residential	338,209	357,934	347,080	318,119	293,236	294,161	335,937
Commercial	228,191	226,867	233,015	245,649	232,386	232,926	258,251
U.S. Territories	27,555	49,700	41,361	41,367	41,362	41,355	41,357
Non-Energy Use of Fuels	119,530	139,707	120,030	127,027	113,717	123,104	134,458
Iron and Steel Production &							
Metallurgical Coke							
Production	104,734	70,081	58,187	47,944	43,624	40,818	42,719

Cement Production Petroleum Systems Natural Gas Systems Petrochemical Production Lime Production Ammonia Production Incineration of Waste	33,484 9,630 32,173 21,611	46,194 12,163 25,291 27,383	39,439 30,536 29,620	39,907 32,644 29,334	39,439 22,980 29,890	40,324 24,473 30,364	40,324 39,373 34,897
Natural Gas Systems Petrochemical Production Lime Production Ammonia Production Incineration of Waste	32,173 21,611	25,291	29,620				
Petrochemical Production Lime Production Ammonia Production Incineration of Waste	21,611			29,334	29,890	30.364	24 007
Lime Production Ammonia Production Incineration of Waste		27 202					54,097
Ammonia Production Incineration of Waste	A A - A A -		26,254	28,062	28,310	28,910	29,424
Incineration of Waste	11,700	14,552	14,210	13,342	12,942	13,145	13,926
	13,047	9,196	9,377	10,634	10,838	13,216	13,532
Other Dresses Lisss of	7,951	12,469	10,435	10,756	10,919	11,111	11,113
Other Process Uses of							
Carbonates	6,297	7,644	12,954	12,182	10,969	10,139	9,424
Urea Fertilization	2,011	3,150	3,923	4,082	4,041	4,514	4,598
Carbon Dioxide Consumption	1,472	1,375	4,471	4,471	4,471	4,471	4,471
Urea Consumption for Non-							
Agricultural Purposes	3,784	3,653	1,807	4,578	5,132	3,769	3,628
Liming	4,667	4,349	3,609	3,737	3,081	3,080	3,147
Ferroalloy Production	2,152	1,392	1,914	1,960	1,796	1,975	2,063
Soda Ash Production	1,431	1,655	1,685	1,714	1,723	1,753	1,714
Titanium Dioxide Production	1,195	1,755	1,688	1,635	1,662	1,688	1,608
Aluminum Production	6,831	4,142	2,833	2,767	1,334	1,205	1,451
Glass Production	1,535	1,928	1,336	1,299	1,241	1,292	1,259
Zinc Production	632	1,030	956	933	925	1,009	1,009
Phosphoric Acid Production	1,529	1,342	1,037	999	998	1,031	941
Lead Production	516	553	459	473	444	509	585
Carbide Production and							
Consumption	375	219	173	180	174	186	189
Abandoned Oil and Gas Wells	6	7	7	7	7	7	7
Magnesium Production and							
Processing	1	3	2	3	3	3	1
Wood Biomass, Ethanol, and							
Biodiesel Consumption ^a 2	19,413	230,700	323,187	317,742	317,191	322,225	328,938
International Bunker Fuels ^b 1	.03,463	113,139	103,400	110,887	116,594	120,107	122,088
CH₄ ^c	30,979	27,184	25,561	25,540	25,131	25,209	25,384
Enteric Fermentation	6,566	6,755	6,567	6,660	6,874	7,016	7,103
Natural Gas Systems	7,330	6,325	5,643	5,674	5,596	5,562	5,586
Landfills	7,182	5,253	4,503	4,452	4,322	4,308	4,422
Manure Management	1,485	2,062	2,172	2,316	2,385	2,395	2,467
Coal Mining	3,860	2,565	2,583	2,449	2,154	2,191	2,109
Petroleum Systems	1,849	1,553	1,740	1,623	1,557	1,552	1,464
Wastewater Treatment	614	618	573	583	575	566	569
Rice Cultivation	640	720	616	648	539	510	533
Stationary Combustion	344	313	355	340	318	312	348
Abandoned Oil and Gas Wells	263	278	284	286	289	282	281
Abandoned Underground							
Coal Mines	288	264	253	256	268	257	247
Mobile Combustion	518	383	166	146	138	131	125
Composting	15	75	84	85	91	98	98
Field Burning of Agricultural							
Residues	14	16	16	16	16	16	16
Petrochemical Production	9	3	5	7	10	10	12
Ferroalloy Production	1	+	1	1	1	1	1
Carbide Production and							
Consumption	1	+	+	+	+	+	+
Iron and Steel Production &							
Metallurgical Coke							
	1	1	+	+	+	+	+
Production Incineration of Waste	-	-					

International Bunker Fuels ^b	7	5	3	4	4	4	4
N ₂ O ^c	1,458	1,452	1,508	1,490	1,431	1,414	1,458
Agricultural Soil Management	1,060	1,050	1,172	1,168	1,107	1,099	1,135
Stationary Combustion	84	115	111	102	101	96	95
Manure Management	47	55	58	59	61	63	65
Mobile Combustion	141	125	66	62	58	55	51
Adipic Acid Production	51	24	18	14	23	25	35
Nitric Acid Production	41	38	37	39	34	31	31
Wastewater Treatment	11	15	16	16	16	17	17
N₂O from Product Uses	14	14	14	14	14	14	14
Composting	1	6	6	6	7	7	7
Caprolactam, Glyoxal, and	_						
Glyoxylic Acid Production	6	7	7	7	7	5	5
Incineration of Waste	2	1	1	1	1	1	1
Electronics Industry	+	+	1	1	1	1	1
Field Burning of Agricultural	_						
Residues	1	1	1	1	1	1	1
Petroleum Systems	+	+	+	+	+	+	+
Natural Gas Systems	+	+	+	+	+	+	+
International Bunker Fuels ^b	3	3	3	3	3	4	4
HFCs	м	м	м	М	м	м	М
Substitution of Ozone	_						
Depleting Substances ^d	м	м	М	М	М	М	М
HCFC-22 Production	3	1	+	+	+	+	+
Electronics Industry	м	м	М	М	М	М	М
Magnesium Production and	_						
Processing	0	0	+	+	+	+	+
PFCs	м	м	м	М	м	м	М
Electronics Industry	м	м	М	М	М	М	М
Aluminum Production	м	м	М	М	М	М	М
Substitution of Ozone	_						
Depleting Substances ^d	0	+	+	+	+	+	+
SF ₆	1	1	+	+	+	+	+
Electrical Transmission and	_						
Distribution	1	+	+	+	+	+	+
Magnesium Production and	_						
Processing	+	+	+	+	+	+	+
Electronics Industry	+	+	+	+	+	+	+
NF ₃	+	+	+	+	+	+	+
Electronics Industry	+	+	+	+	+	+	+
Unspecified Mix of HFCs, NF ₃ ,							
PFCs and SF ₆	м	м	м	м	м	м	м
Electronics Industry	M	M	M	M	M	M	M

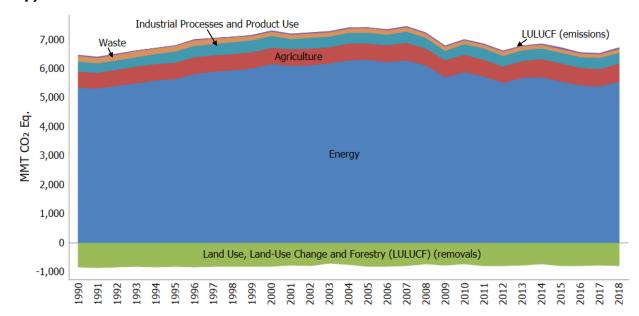
+ Does not exceed 0.5 kt.

M - Mixture of multiple gases

^a Emissions from Wood Biomass, Ethanol, and Biodiesel Consumption are not included specifically in summing Energy sector totals. Net carbon fluxes from changes in biogenic carbon reservoirs are accounted for in the estimates for LULUCF.
 ^b Emissions from International Bunker Fuels are not included in totals.

^c LULUCF emissions of CH₄ and N₂O are reported separately from gross emissions totals. Refer to Table 2-8 for a breakout of emissions and removals for LULUCF by gas and source category.

^d Small amounts of PFC emissions also result from this source.


Notes: Totals may not sum due to independent rounding. Parentheses indicate negative values or sequestration.

1 Emissions of all gases can be summed from each source category into a set of five sectors defined by the

2 Intergovernmental Panel on Climate Change (IPCC). Figure 2-4 and Table 2-3 illustrate that over the twenty-nine-

- 1 year period of 1990 to 2018, total emissions from the Energy, Industrial Processes and Product Use, and
- 2 Agriculture sectors grew by 213.1 MMT CO₂ Eq. (4.0 percent), 28.0 MMT CO₂ Eq. (8.1 percent), and 64.1 MMT CO₂
- 3 Eq. (11.6 percent), respectively. Emissions from the Waste sector decreased by 64.6 MMT CO₂ Eq. (32.4 percent).
- 4 Over the same period, total C sequestration in the Land Use, Land-Use Change, and Forestry (LULUCF) sector
- 5 decreased by 60.9 MMT CO₂ (7.1 percent decrease in total C sequestration), and emissions from the LULUCF sector
- 6 increased by 18.7 MMT CO₂ Eq. (254.2 percent).

Figure 2-4: U.S. Greenhouse Gas Emissions and Sinks by Chapter/IPCC Sector (MMT CO₂ Eq.)

9

10 Table 2-3: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks by Chapter/IPCC

11 Sector (MMT CO₂ Eq.)

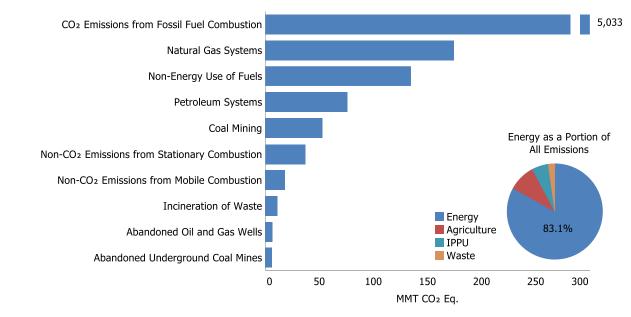
Chapter/IPCC Sector	1990	2005	2014	2015	2016	2017	2018
Energy	5,338.2	6,294.4	5,705.2	5,551.3	5,426.1	5,385.4	5,551.3
Fossil Fuel Combustion	4,740.0	5,740.7	5,185.9	5 <i>,</i> 033.0	4,942.9	4,893.9	5 <i>,</i> 033.3
Natural Gas Systems	215.4	183.4	170.7	171.2	169.8	169.4	174.6
Non-Energy Use of Fuels	119.5	139.7	120.0	127.0	113.7	123.1	134.5
Petroleum Systems	55.9	51.0	74.1	73.3	61.9	63.3	76.0
Coal Mining	96.5	64.1	64.6	61.2	53.8	54.8	52.7
Stationary Combustion	33.7	42.1	41.8	39.0	38.0	36.4	37.1
Mobile Combustion	55.0	46.9	23.9	22.0	20.8	19.6	18.4
Incineration of Waste	8.4	12.9	10.7	11.1	11.2	11.4	11.4
Abandoned Oil and Gas Wells	6.6	7.0	7.1	7.2	7.2	7.1	7.0
Abandoned Underground Coal Mines	7.2	6.6	6.3	6.4	6.7	6.4	6.2
Industrial Processes and Product Use	345.6	364.8	376.9	373.1	367.3	367.7	373.6
Substitution of Ozone Depleting							
Substances	0.2	106.5	157.1	161.7	163.2	163.1	164.5
Iron and Steel Production &							
Metallurgical Coke Production	104.8	70.1	58.2	48.0	43.6	40.8	42.7
Cement Production	33.5	46.2	39.4	39.9	39.4	40.3	40.3
Petrochemical Production	21.8	27.5	26.4	28.2	28.6	29.2	29.7
Lime Production	11.7	14.6	14.2	13.3	12.9	13.1	13.9
Ammonia Production	13.0	9.2	9.4	10.6	10.8	13.2	13.5
Adipic Acid Production	15.2	7.1	5.4	4.3	7.0	7.4	10.3

Other Process Uses of Carbonates	6.3	7.6	13.0	12.2	11.0	10.1	9.4
Nitric Acid Production	12.1	11.3	10.9	12.2	11.0	9.3	9.4 9.3
	3.6	4.8	4.9	5.0	5.0	9.5 4.9	9.5 5.1
Electronics Industry	5.0 1.5			3.0 4.5			
Carbon Dioxide Consumption	4.2	1.4	4.5 4.2	4.5 4.2	4.5 4.2	4.5 4.2	4.5 4.2
N ₂ O from Product Uses Electrical Transmission and	4.2	4.2	4.2	4.2	4.2	4.2	4.2
	22.2	0.4	4.0	2.0	4.4	4.1	4.4
Distribution	23.2	8.4	4.8	3.8	4.1	4.1	4.1
Urea Consumption for Non-	2.0	2.7	1.0	1.0	F 4	2.0	2.0
Agricultural Purposes	3.8	3.7	1.8	4.6	5.1	3.8	3.6
HCFC-22 Production	46.1	20.0	5.0	4.3	2.8	5.2	3.3
Aluminum Production	28.3	7.6	5.4	4.8	2.7	2.3	3.0
Ferroalloy Production	2.2	1.4	1.9	2.0	1.8	2.0	2.1
Soda Ash Production	1.4	1.7	1.7	1.7	1.7	1.8	1.7
Titanium Dioxide Production	1.2	1.8	1.7	1.6	1.7	1.7	1.6
Caprolactam, Glyoxal, and Glyoxylic							
Acid Production	1.7	2.1	2.0	2.0	2.0	1.5	1.4
Glass Production	1.5	1.9	1.3	1.3	1.2	1.3	1.3
Magnesium Production and							
Processing	5.2	2.7	1.0	1.1	1.2	1.2	1.2
Zinc Production	0.6	1.0	1.0	0.9	0.9	1.0	1.0
Phosphoric Acid Production	1.5	1.3	1.0	1.0	1.0	1.0	0.9
Lead Production	0.5	0.6	0.5	0.5	0.4	0.5	0.6
Carbide Production and Consumption	0.4	0.2	0.2	0.2	0.2	0.2	0.2
Agriculture	554.4	575.9	608.6	614.6	600.5	602.3	618.5
Agricultural Soil Management	315.9	313.0	349.2	348.1	329.8	327.4	338.2
Enteric Fermentation	164.2	168.9	164.2	166.5	171.8	175.4	177.6
Manure Management	51.1	67.9	71.6	75.4	77.7	78.5	81.1
Rice Cultivation	16.0	18.0	15.4	16.2	13.5	12.8	13.3
Urea Fertilization	2.0	3.1	3.9	4.1	4.0	4.5	4.6
Liming	4.7	4.3	3.6	3.7	3.1	3.1	3.1
Field Burning of Agricultural Residues	0.5	0.6	0.6	0.6	0.6	0.6	0.6
Waste	199.0	154.7	135.6	134.7	131.6	131.4	134.4
Landfills	179.6	131.3	112.6	111.3	108.0	107.7	110.6
Wastewater Treatment	18.7	19.8	19.1	19.3	19.2	19.1	19.2
Composting	0.7	3.5	4.0	4.0	4.3	4.6	4.7
Total Emissions ^a	6,437.1	7,389.8	6,826.3	6,673.7	6,525.5	6,486.7	6,677.8
Land Use, Land-Use Change, and							
Forestry	(853.4)	(814.7)	(723.0)	(775.5)	(788.9)	(763.9)	(773.7)
Forest land	(841.7)	(780.0)	(719.5)	(765.9)	(762.3)	(739.0)	(754.5)
Cropland	30.9	24.8	44.4	44.4	32.7	33.3	38.7
Grassland	2.6	(28.9)	(4.3)	(8.9)	(14.6)	(13.4)	(12.8)
Wetlands	(0.5)	(2.0)	(0.6)	(0.7)	(0.7)	(0.7)	(0.7)
Settlements	(44.7)	(28.5)	(43.0)	(44.5)	(44.1)	(44.2)	(44.5)
Net Emission (Sources and Sinks) ^b	5,583.7	6,575.1	6,103.3	5,898.2	5,736.6	5,722.9	5,904.1
	3,303.7	0,575.1	0,100.0	3,030.2	3,730.0	3,722.3	3,304.1

Notes: Total emissions presented without LULUCF. Net emissions presented with LULUCF. Totals may not sum due to independent rounding. Parentheses indicate negative values or sequestration.

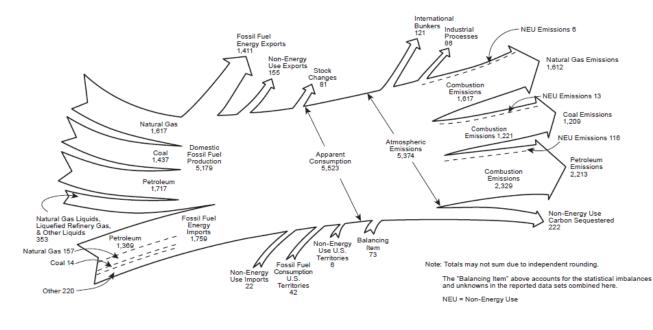
^a Total emissions without LULUCF.

^b Net emissions with LULUCF.


1 Energy

2 Energy-related activities, primarily fossil fuel combustion, accounted for the vast majority of U.S. CO₂ emissions for

3 the period of 1990 through 2018. Fossil fuel combustion is the largest source of energy-related emissions, with CO₂


- being the primary gas emitted (see Figure 2-5). Due to their relative importance, fossil fuel combustion-related CO₂
 emissions are considered in detail in the Energy chapter (see Figure 2-6).
- 3 In 2018, approximately 80 percent of the energy consumed in the United States (on a Btu basis) was produced
- 4 through the combustion of fossil fuels. The remaining 20 percent came from other energy sources such as
- 5 hydropower, biomass, nuclear, wind, and solar energy. A discussion of specific trends related to CO₂ as well as
- 6 other greenhouse gas emissions from energy use is presented in the Energy chapter. Energy-related activities are
- 7 also responsible for CH₄ and N₂O emissions (40 percent and 10 percent of total U.S. emissions of each gas,
- 8 respectively). Table 2-4 presents greenhouse gas emissions from the Energy chapter, by source and gas.
- 9

10 Figure 2-5: 2018 Energy Chapter Greenhouse Gas Sources (MMT CO₂ Eq.)

11 12

1 Figure 2-6: 2018 U.S. Fossil Carbon Flows (MMT CO₂ Eq.)

2

3

4 Table 2-4: Emissions from Energy (MMT CO₂ Eq.)

Gas/Source	1990	2005	2014	2015	2016	2017	2018
CO ₂	4,909.3	5,930.3	5,376.6	5,232.8	5,120.4	5,082.9	5,253.2
Fossil Fuel Combustion	4,740.0	5,740.7	5,185.9	5,033.0	4,942.9	4,893.9	5,033.3
Transportation	1,469.1	1,856.1	1,713.7	1,725.3	1,765.3	1,787.4	1,798.2
Electric Power Sector	1,820.0	2,400.0	2,037.1	1,900.6	1,808.9	1,732.0	1,752.8
Industrial	857.0	850.1	813.6	802.0	801.7	806.0	846.7
Residential	338.2	357.9	347.1	318.1	293.2	294.2	335.9
Commercial	228.2	226.9	233.0	245.6	232.4	232.9	258.3
U.S. Territories	27.6	49.7	41.4	41.4	41.4	41.4	41.4
Non-Energy Use of Fuels	119.5	139.7	120.0	127.0	113.7	123.1	134.5
Petroleum Systems	9.6	12.2	30.5	32.6	23.0	24.5	39.4
Natural Gas Systems	32.2	25.3	29.6	29.3	29.9	30.4	34.9
Incineration of Waste	8.0	12.5	10.4	10.8	10.9	11.1	11.1
Abandoned Oil and Gas Wells	+	+	+	+	+	+	+
Biomass-Wood ^a	215.2	206.9	233.8	224.7	216.3	221.4	229.1
International Bunker Fuels ^b	103.5	113.1	103.4	110.9	116.6	120.1	122.1
Biofuels-Ethanol ^a	4.2	22.9	76.1	78. <i>9</i>	81.2	82.1	81.9
Biofuels-Biodiesel ^a	0.0	0.9	13.3	14.1	19.6	18.7	17.9
CH4	361.3	292.0	275.6	269.3	258.0	257.2	254.0
Natural Gas Systems	183.2	158.1	141.1	141.8	139.9	139.1	139.7
Coal Mining	96.5	64.1	64.6	61.2	53.8	54.8	52.7
Petroleum Systems	46.2	38.8	43.5	40.6	38.9	38.8	36.6
Stationary Combustion	8.6	7.8	8.9	8.5	7.9	7.8	8.7
Abandoned Oil and Gas Wells	6.6	7.0	7.1	7.1	7.2	7.1	7.0
Abandoned Underground Coal							
Mines	7.2	6.6	6.3	6.4	6.7	6.4	6.2
Mobile Combustion	12.9	9.6	4.1	3.6	3.4	3.3	3.1
Incineration of Waste	+	+	+	+	+	+	+
International Bunker Fuels ^b	0.2	0.1	0.1	0.1	0.1	0.1	0.1

Trends 2-11

Total	5,338.2	6,294.4	5,705.2	5,551.3	5,426.1	5,385.4	5,551.3
International Bunker Fuels ^b	0.9	1.0	0.9	1.0	1.0	1.1	1.1
Natural Gas Systems	+	+	+	+	+	+	+
Petroleum Systems	+	+	+	+	+	+	0.1
Incineration of Waste	0.5	0.4	0.3	0.3	0.3	0.3	0.3
Mobile Combustion	42.0	37.3	19.7	18.3	17.4	16.3	15.2
Stationary Combustion	25.1	34.3	33.0	30.5	30.0	28.6	28.4
N ₂ O	67.6	72.1	53.1	49.2	47.8	45.2	44.1

+ Does not exceed 0.05 MMT CO₂ Eq.

^a Emissions from Wood Biomass and Biofuel Consumption are not included specifically in summing energy sector totals. Net carbon fluxes from changes in biogenic carbon reservoirs are accounted for in the estimates for LULUCF.

^b Emissions from International Bunker Fuels are not included in totals.

Note: Totals may not sum due to independent rounding.

1 CO₂ Emissions from Fossil Fuel Combustion

2 As the largest contributor to U.S. greenhouse gas emissions, CO₂ from fossil fuel combustion has accounted for

approximately 76 percent of GWP-weighted emissions for the entire time series since 1990. Emissions from this

4 source category grew by 6.2 percent (293.3 MMT CO₂ Eq.) from 1990 to 2018 and were responsible for most of the

5 increase in national emissions during this period. Conversely, CO₂ emissions from fossil fuel combustion decreased

6 from 2005 levels by 707.3 MMT CO₂ Eq., a decrease of approximately 12.3 percent between 2005 and 2018. From

7 2017 to 2018, these emissions increased by 2.9 percent (139.5 MMT CO₂ Eq.). Historically, changes in emissions

8 from fossil fuel combustion have been the dominant factor affecting U.S. emission trends.

9 Changes in CO_2 emissions from fossil fuel combustion are influenced by many long-term and short-term factors,

10 including population and economic growth, energy price fluctuations and market trends, technological changes,

11 energy fuel choices, and seasonal temperatures. On an annual basis, the overall consumption and mix of fossil

12 fuels in the United States fluctuates primarily in response to changes in general economic conditions, overall

energy prices, the relative price of different fuels, weather, and the availability of non-fossil alternatives. For

example, coal consumption for electric power is influenced by a number of factors including the relative price of

15 coal and alternative sources, the ability to switch fuels, and longer-term trends in coal markets. Likewise, warmer

16 winters lead to a decrease in heating degree days and result in a decreased demand for heating fuel and electricity

17 for heat in the residential and commercial sectors, which leads to a decrease in emissions from reduced fuel

18 consumption.

19 Energy-related CO₂ emissions also depend on the type of fuel consumed or energy used and its C intensity.

20 Producing a unit of heat or electricity using natural gas instead of coal, for example, reduces CO₂ emissions

21 because of the lower C content of natural gas (see Table A-41 in Annex 2.1 for more detail on the C Content

22 Coefficient of different fossil fuels).

Trends in CO₂ emissions from fossil fuel combustion over the past five years have been strongly influenced by the electric power sector, which historically has accounted for the largest share of emissions from this source (see

Figure 2-7). In recent years, the types of fuel consumed to produce electricity have changed. Total electric power

26 generation decreased by 1.5 percent from 2014 to 2017 but increased by 3.4 percent from 2017 to 2018.

27 Emissions increased from 2017 to 2018 due to increasing electric power generation from natural gas and

petroleum. Carbon dioxide emissions from coal consumption for electric power generation decreased by 26.5

29 percent since 2014, which can be largely attributed to a shift to the use of less-CO₂-intensive natural gas to

30 generate electricity and a rapid increase in the use of renewable energy in the electric power sector in recent

31 years. Electricity generation from renewable sources increased by 32.6 percent from 2014 to 2018 and natural gas

32 generation increased by 32.2 percent over the same time period (see Table 3-12 for more detail on electricity

33 generation by source). The decrease in coal-powered electricity generation and increase in natural gas and

renewable energy electricity generation have contributed to a 14.0 percent decrease in overall CO₂ emissions from

electric power generation from 2014 to 2018 (see Figure 2-9).

1 The trends in CO₂ emissions from fossil fuel combustion over the past five years also follow changes in heating

2 degree days. Emissions from natural gas consumption in the residential and commercial sectors increased by 13.4

3 percent and 11.2 percent from 2017 to 2018, respectively. This trend can be largely attributed to a 12 percent

4 increase in heating degree days, which led to an increased demand for heating fuel in these sectors. Combined

5 residential and commercial sector CO₂ emissions increased by 12.7 percent from 2017 to 2018.

6 Petroleum use is another major driver of CO₂ emissions from fossil fuel combustion, particularly in the

7 transportation sector, which represents the largest source of CO₂ emissions from fossil fuel combustion in 2018.

8 Emissions from petroleum consumption for transportation (including bunkers) have increased by 4.5 percent since

9 2014; this trend can be primarily attributed to a 7.1 percent increase in vehicle miles traveled (VMT) over the same

10 time period. Fuel economy of light-duty vehicles is another important factor. The decline in new light-duty vehicle

fuel economy between 1990 and 2004 reflected the increasing market share of light-duty trucks, which grew from about 30 percent of new vehicle sales in 1990 to 48 percent in 2004. Starting in 2005, average new vehicle fuel

economy began to increase while light-duty VMT grew only modestly for much of the period.

14 All sectors experienced increases in CO₂ emissions from fossil fuel combustion from 2017 to 2018, despite a 15 decreasing trend from 2014 through 2017. Overall this contributes to a 2.9 percent increase in total CO₂ emissions 16 from fossil fuel combustion from 2017 to 2018 and a 2.9 percent reduction since 2014. Carbon dioxide emissions 17 from fossil fuel combustion, separated by end-use sector, are presented in Table 2-5 and Figure 2-7 based on the 18 underlying U.S. energy consumer data collected by the U.S. Energy Information Administration (EIA). Figure 2-8 19 further describes direct and indirect CO_2 emissions from fossil fuel combustion, separated by end-use sector. 20 Estimates of CO₂ emissions from fossil fuel combustion are calculated from these EIA "end-use sectors" based on total fuel consumption and appropriate fuel properties described below. (Any additional analysis and refinement 21

22 of the EIA data is further explained in the Energy chapter of this report.)

- *Transportation.* EIA's fuel consumption data for the transportation sector consists of all vehicles whose
 primary purpose is transporting people and/or goods from one physical location to another.
- Industry. EIA statistics for the industrial sector include fossil fuel consumption that occurs in the fields of
 manufacturing, agriculture, mining, and construction. EIA's fuel consumption data for the industrial sector
 consist of all facilities and equipment used for producing, processing, or assembling goods. (EIA includes
 generators that produce electricity and/or useful thermal output primarily to support on-site industrial
 activities in this sector.)
- Electric Power. EIA's fuel consumption data for the electric power sector are comprised of electricity-only
 and combined-heat-and-power (CHP) plants within the North American Industry Classification System
 (NAICS) 22 category whose primary business is to sell electricity, or electricity and heat, to the public.
 (Non-utility power producers are included in this sector as long as they meet the electric power sector
 definition.)
- *Residential.* EIA's fuel consumption data for the residential sector consist of living quarters for private
 households.
- Commercial. EIA's fuel consumption data for the commercial sector consist of service-providing facilities
 and equipment from private and public organizations and businesses. (EIA includes generators that
 produce electricity and/or useful thermal output primarily to support the activities at commercial
 establishments in this sector.)

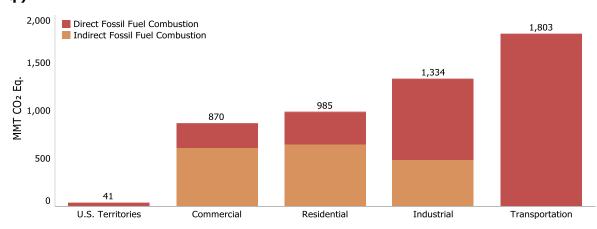
41 Table 2-5: CO₂ Emissions from Fossil Fuel Combustion by End-Use Sector (MMT CO₂ Eq.)

End-Use Sector	1990	2005	2014	2015	2016	2017	2018
Transportation	1,472.1	1,860.8	1,718.2	1,729.5	1,769.5	1,791.7	1,803.0
Combustion	1,469.1	1,856.1	1,713.7	1,725.3	1,765.3	1,787.4	1,798.2
Electricity	3.0	4.7	4.4	4.3	4.2	4.3	4.7
Industrial	1,543.5	1,586.4	1,406.6	1,351.5	1,319.3	1,310.4	1,334.0
Combustion	857.0	850.1	813.6	802.0	801.7	806.0	846.7
Electricity	686.4	736.3	593.0	549.5	517.6	504.4	487.2

					-		
Residential	931.0	1,213.9	1,081.2	1,001.9	946.7	911.3	985.4
Combustion	338.2	357.9	347.1	318.1	293.2	294.2	335.9
Electricity	592.7	856.0	734.1	683.8	653.5	617.1	649.4
Commercial	765.9	1,029.9	938.7	908.7	866.0	839.1	869.7
Combustion	228.2	226.9	233.0	245.6	232.4	232.9	258.3
Electricity	537.7	803.0	705.6	663.0	633.6	606.2	611.5
U.S. Territories ^a	27.6	49.7	41.4	41.4	41.4	41.4	41.4
Total	4,740.0	5,740.7	5,185.9	5,033.0	4,942.9	4,893.9	5,033.3
Electric Power	1,820.0	2,400.0	2,037.1	1,900.6	1,808.9	1,732.0	1,752.8

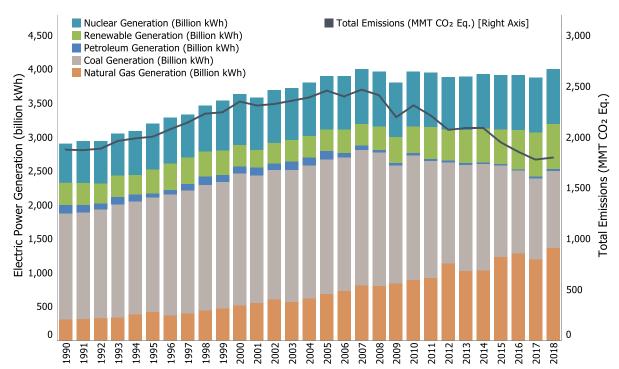
^a Fuel consumption by U.S. Territories (i.e., American Samoa, Guam, Puerto Rico, U.S. Virgin Islands, Wake Island, and other U.S. Pacific Islands) is included in this report.

Notes: Combustion-related emissions from electric power are allocated based on aggregate national electricity use by each end-use sector. Totals may not sum due to independent rounding.


Figure 2-7: 2018 CO₂ Emissions from Fossil Fuel Combustion by Sector and Fuel Type (MMT CO₂ Eq.)

3

- 4 Note on Figure 2-7: Fossil Fuel Combustion for electric power also includes emissions of less than 0.5 MMT CO₂ Eq. from
- 5 geothermal-based generation.


Figure 2-8: 2018 End-Use Sector Emissions of CO₂ from Fossil Fuel Combustion (MMT CO₂ Eq.)

8

- 9 Electric power was the second largest emitter of CO₂ in 2018 (surpassed by transportation); electric power
- 10 generators used 32 percent of U.S. energy from fossil fuels and emitted 35 percent of the CO₂ from fossil fuel

- 1 combustion in 2018. Changes in electricity demand and the carbon intensity of fuels used for electric power
- 2 generation have a significant impact on CO₂ emissions. Carbon dioxide emissions from the electric power sector
- have decreased by approximately 3.7 percent since 1990, and the carbon intensity of the electric power sector, in
- terms of CO₂ Eq. per QBtu input, has significantly decreased by 13 percent during that same timeframe. This
 decoupling of the level of electric power generation and the resulting CO₂ emissions is shown below in Figure 2-9.

6 Figure 2-9: Electric Power Generation (Billion kWh) and Emissions (MMT CO₂ Eq.)

7

8 Electric power CO₂ emissions can also be allocated to the end-use sectors that use electricity, as presented in Table
 9 2-5. With electricity CO₂ emissions allocated to end-use sectors, the transportation end-use sector accounted for
 1,803.0 MMT CO₂ Eq. in 2018 or approximately 36 percent of total CO₂ emissions from fossil fuel combustion. The
 11 industrial end-use sector accounted for 27 percent of CO₂ emissions from fossil fuel combustion when including
 12 allocated electricity emissions. The residential and commercial end-use sectors accounted for 20 and 17 percent,

respectively, of CO₂ emissions from fossil fuel combustion when including allocated electricity emissions. Both of

- 14 these end-use sectors were heavily reliant on electricity for meeting energy needs, with electricity use for lighting,
- 15 heating, air conditioning, and operating appliances contributing 66 and 70 percent of emissions from the

16 residential and commercial end-use sectors, respectively.

17 Other Significant Trends in Energy

Other significant trends in emissions from energy source categories over the twenty-nine-year period from 1990
 through 2018 included the following:

20 Methane emissions from natural gas systems and petroleum systems (combined here) decreased from 21 229.5 MMT CO₂ Eq. in 1990 to 176.3 MMT CO₂ Eq. in 2018 (53.2 MMT CO₂ Eq. or 23.2 percent decrease 22 from 1990 to 2018). Natural gas systems CH₄ emissions decreased by 43.6 MMT CO₂ Eq. (23.8 percent) 23 since 1990, largely due to a decrease in emissions from distribution, transmission and storage, processing, 24 and exploration. The decrease in distribution is largely due to decreased emissions from pipelines and 25 distribution station leaks, and the decrease in transmission and storage emissions is largely due to 26 reduced compressor station emissions (including emissions from compressors and leaks). Petroleum 27 systems CH₄ emissions decreased by 9.6 MMT CO₂ Eq. (or 20.8 percent) since 1990. This decrease is due

- primarily to decreases in emissions from offshore platforms, tanks, and pneumatic controllers. Carbon
 dioxide emissions from natural gas and petroleum systems increased by 78 percent from 1990 to 2018,
 due to increases in flaring emissions.
- Carbon dioxide emissions from non-energy uses of fossil fuels increased by 14.9 MMT CO₂ Eq. (12.5
 percent) from 1990 through 2018. Emissions from non-energy uses of fossil fuels were 134.5 MMT CO₂
 Eq. in 2018, which constituted 2.5 percent of total national CO₂ emissions, approximately the same
 proportion as in 1990.
- Methane emissions from coal mining decreased by 43.8 MMT CO₂ Eq. (45.4 percent) from 1990 through
 2018, primarily due to a decrease in the number of active mines and annual coal production over the time
 period.
- Nitrous oxide emissions from stationary combustion increased by 3.4 MMT CO₂ Eq. (13.4 percent) from
 1990 through 2018. Nitrous oxide emissions from this source increased primarily as a result of an increase
 in the number of coal fluidized bed boilers in the electric power sector.
- Nitrous oxide emissions from mobile combustion decreased by 26.8 MMT CO₂ Eq. (63.7 percent) from
 1990 through 2018, primarily as a result of N₂O national emission control standards and emission control
 technologies for on-road vehicles.
- Carbon dioxide emissions from incineration of waste (11.1 MMT CO₂ Eq. in 2018) increased by 3.2 MMT
 CO₂ Eq. (39.8 percent) from 1990 through 2018, as the volume of scrap tires and other fossil C-containing
 materials in waste increased.

20 Industrial Processes and Product Use

21 In many cases, greenhouse gas emissions are generated and emitted as the byproducts of many non-energy-

related industrial activities. For example, industrial processes can chemically or physically transform raw materials,

23 which often release waste gases such as CO₂, CH₄, N₂O, and fluorinated gases (e.g., HFC-23). Industrial

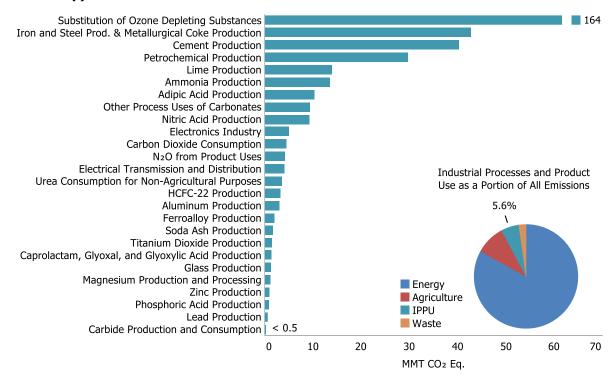
24 manufacturing processes and use by end-consumers also release HFCs, PFCs, SF₆, and NF₃ and other fluorinated

25 compounds. In addition to the use of HFCs and some PFCs as substitutes for ozone depleting substances (ODS),

26 fluorinated compounds such as HFCs, PFCs, SF₆, NF₃, and others are employed and emitted by a number of other

industrial sources in the United States. These industries include the electronics industry, electric power

transmission and distribution, and magnesium metal production and processing. In addition, N₂O is used in and


29 emitted by the electronics industry and anesthetic and aerosol applications. Figure 2-10 and Table 2-6 presents

greenhouse gas emissions from industrial processes and product use by source category. Overall, emission sources
 in the Industrial Processes and Product Use (IPPU) chapter account for 5.6 percent of U.S. greenhouse gas

32 emissions in 2018.

1 Figure 2-10: 2018 Industrial Processes and Product Use Chapter Greenhouse Gas Sources

2 (MMT CO₂ Eq.)

3

4 Table 2-6: Emissions from Industrial Processes and Product Use (MMT CO₂ Eq.)

Gas/Source	1990	2005	2014	2015	2016	2017	2018
CO ₂	212.3	194.1	178.8	173.1	166.0	165.4	168.3
Iron and Steel Production & Metallurgical Coke							
Production	104.7	70.1	58.2	47.9	43.6	40.8	42.7
Iron and Steel Production	99.1	66.2	54.5	43.5	41.0	38.8	41.4
Metallurgical Coke Production	5.6	3.9	3.7	4.4	2.6	2.0	1.3
Cement Production	33.5	46.2	39.4	39.9	39.4	40.3	40.3
Petrochemical Production	21.6	27.4	26.3	28.1	28.3	28.9	29.4
Lime Production	11.7	14.6	14.2	13.3	12.9	13.1	13.9
Ammonia Production	13.0	9.2	9.4	10.6	10.8	13.2	13.5
Other Process Uses of Carbonates	6.3	7.6	13.0	12.2	11.0	10.1	9.4
Carbon Dioxide Consumption	1.5	1.4	4.5	4.5	4.5	4.5	4.5
Urea Consumption for Non-Agricultural							
Purposes	3.8	3.7	1.8	4.6	5.1	3.8	3.6
Ferroalloy Production	2.2	1.4	1.9	2.0	1.8	2.0	2.1
Soda Ash Production	1.4	1.7	1.7	1.7	1.7	1.8	1.7
Titanium Dioxide Production	1.2	1.8	1.7	1.6	1.7	1.7	1.6
Aluminum Production	6.8	4.1	2.8	2.8	1.3	1.2	1.5
Glass Production	1.5	1.9	1.3	1.3	1.2	1.3	1.3
Zinc Production	0.6	1.0	1.0	0.9	0.9	1.0	1.0
Phosphoric Acid Production	1.5	1.3	1.0	1.0	1.0	1.0	0.9
Lead Production	0.5	0.6	0.5	0.5	0.4	0.5	0.6
Carbide Production and Consumption	0.4	0.2	0.2	0.2	0.2	0.2	0.2
Magnesium Production and Processing	+	+	+	+	+	+	+
CH₄	0.3	0.1	0.2	0.2	0.3	0.3	0.3
Petrochemical Production	0.2	0.1	0.1	0.2	0.2	0.3	0.3
Ferroalloy Production	+	+	+	+	+	+	+

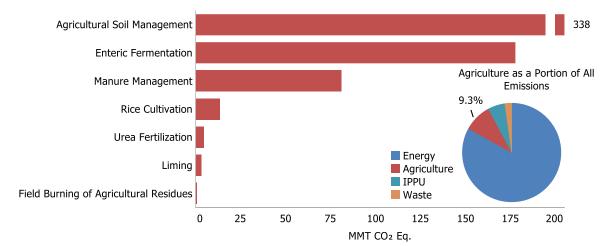
Carbide Production and Consumption	+	+	+	+	+	+	+
Iron and Steel Production & Metallurgical Coke							
Production	+	+	+	+	+	+	+
Iron and Steel Production	+	+	+	+	+	+	+
Metallurgical Coke Production	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N ₂ O	33.3	24.9	22.8	22.3	23.6	22.7	25.5
Adipic Acid Production	15.2	7.1	5.4	4.3	7.0	7.4	10.3
Nitric Acid Production	12.1	11.3	10.9	11.6	10.1	9.3	9.3
N₂O from Product Uses	4.2	4.2	4.2	4.2	4.2	4.2	4.2
Caprolactam, Glyoxal, and Glyoxylic Acid							
Production	1.7	2.1	2.0	2.0	2.0	1.5	1.4
Electronics Industry	+	0.1	0.2	0.2	0.2	0.3	0.3
HFCs	46.5	126.7	162.5	166.3	166.4	168.7	168.2
Substitution of Ozone Depleting Substances ^a	0.2	106.4	157.0	161.7	163.1	163.1	164.4
HCFC-22 Production	46.1	20.0	5.0	4.3	2.8	5.2	3.3
Electronics Industry	0.2	0.2	0.3	0.3	0.3	0.4	0.4
Magnesium Production and Processing	0.0	0.0	0.1	0.1	0.1	0.1	0.1
PFCs	24.3	6.7	5.6	5.1	4.3	4.0	4.6
Electronics Industry	2.8	3.2	3.1	3.0	2.9	2.9	3.0
Aluminum Production	21.5	3.4	2.5	2.0	1.4	1.0	1.6
Substitution of Ozone Depleting Substances	0.0	+	+	+	+	+	0.1
SF ₆	28.8	11.8	6.5	5.5	6.1	5.9	5.9
Electrical Transmission and Distribution	23.2	8.4	4.8	3.8	4.1	4.1	4.1
Magnesium Production and Processing	5.2	2.7	0.9	1.0	1.1	1.1	1.1
Electronics Industry	0.5	0.7	0.7	0.7	0.8	0.7	0.8
NF ₃	+	0.5	0.5	0.6	0.6	0.6	0.6
Electronics Industry	+	0.5	0.5	0.6	0.6	0.6	0.6
Unspecified Mix of HFCs, NF ₃ , PFCs and SF ₆	+	+	+	+	+	+	+
Electronics Industry	+	+	+	+	+	+	+
Total	345.6	364.8	376.9	373.1	367.3	367.7	373.6

+ Does not exceed 0.05 MMT CO₂ Eq.

^a Small amounts of PFC emissions also result from this source.

Note: Totals may not sum due to independent rounding.

Overall, emissions from the IPPU sector increased by 8.1 percent from 1990 to 2018. Significant trends in emissions
 from IPPU source categories over the twenty-nine-year period from 1990 through 2018 included the following:


- Hydrofluorocarbon and perfluorocarbon emissions resulting from the substitution of ODS (e.g.,
 chlorofluorocarbons [CFCs]) have been increasing from small amounts in 1990 to 164.5 MMT CO₂ Eq. in
 2018. This increase was in large part the result of efforts to phase out CFCs and other ODS in the United
 States. In the short term, this trend is expected to continue, and will likely continue over the next decade
 as hydrochlorofluorocarbons (HCFCs), which are in use as interim substitutes in many applications, are
 themselves phased-out.
- Combined CO₂ and CH₄ emissions from iron and steel production and metallurgical coke production
 increased by 4.7 percent to 42.7 MMT CO₂ Eq. from 2017 to 2018, but have declined overall by 62.0 MMT
 CO₂ Eq. (59.2 percent) from 1990 through 2018, due to restructuring of the industry, technological
 improvements, and increased scrap steel utilization.
- Carbon dioxide emissions from cement production increased by 20.4 percent (6.8 MMT CO₂ Eq.) from
 1990 through 2018. They rose from 1990 through 2006 and then fell until 2009 due to a decrease in
 demand for construction materials during the economic recession. Since 2010, CO₂ emissions from
 cement production have risen 28.2 percent (8.9 MMT CO₂ Eq.).
- Carbon dioxide emissions from ammonia production (13.5 MMT CO₂ Eq. in 2018) increased by 3.7 percent
 (0.5 MMT CO₂ Eq.) since 1990. Ammonia production relies on natural gas as both a feedstock and a fuel,
 and as such, market fluctuations and volatility in natural gas prices affect the production of ammonia.

- Nitrous oxide emissions from adipic acid production were 10.3 MMT CO₂ Eq. in 2018, and have decreased significantly (32.1 percent or 4.9 MMT CO₂ Eq.) since 1990 due to both the widespread installation of pollution control measures in the late 1990s and plant idling in the late 2000s.
- PFC emissions from aluminum production decreased by 92.6 percent (19.9 MMT CO₂ Eq.) from 1990 to
 2018, due to both industry emission reduction efforts and lower domestic aluminum production.

6 Agriculture

- 7 Agricultural activities contribute directly to emissions of greenhouse gases through a variety of processes,
- 8 including the following source categories: enteric fermentation in domestic livestock, livestock manure
- 9 management, rice cultivation, agricultural soil management, liming, urea fertilization, and field burning of
- agricultural residues. Methane, N₂O, and CO₂ were the primary greenhouse gases emitted by agricultural activities.
- 11 In 2018, agricultural activities were responsible for emissions of 618.5 MMT CO₂ Eq., or 9.3 percent of total U.S.
- 12 greenhouse gas emissions. Methane emissions from enteric fermentation and manure management represented
- approximately 28.0 percent and 9.7 percent of total CH₄ emissions from anthropogenic activities, respectively, in
- 14 2018. Agricultural soil management activities, such as application of synthetic and organic fertilizers, deposition of
- 15 livestock manure, and growing N-fixing plants, were the largest contributers to U.S. N₂O emissions in 2018,
- accounting for 77.8 percent. Carbon dioxide emissions from the application of crushed limestone and dolomite
- 17 (i.e., soil liming) and urea fertilization represented 0.1 percent of total CO₂ emissions from anthropogenic
- activities. Figure 2-11 and Table 2-7 illustrate agricultural greenhouse gas emissions by source.

19 Figure 2-11: 2018 Agriculture Chapter Greenhouse Gas Sources (MMT CO₂ Eq.)

20

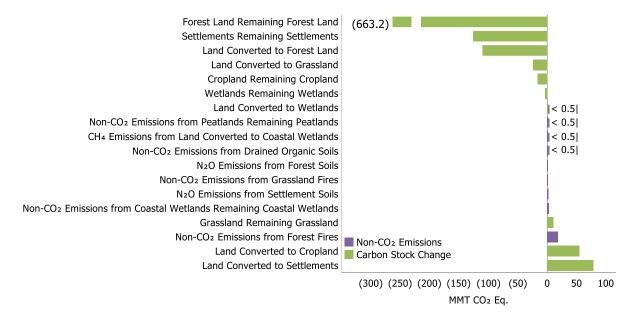
21 Table 2-7: Emissions from Agriculture (MMT CO₂ Eq.)

Gas/Source	1990	2005	2014	2015	2016	2017	2018
CO ₂	6.7	7.5	7.	5 7.8	7.1	7.6	7.7
Urea Fertilization	2.0	3.1	3.9	9 4.1	4.0	4.5	4.6
Liming	4.7	4.3	3.0	5 3.7	3.1	3.1	3.1
CH₄	217.6	238.8	234.3	3 241.0	245.3	248.4	253.0
Enteric Fermentation	164.2	168.9	164.2	2 166.5	171.8	175.4	177.6
Manure Management	37.1	51.6	54.3	3 57.9	59.6	59.9	61.7
Rice Cultivation	16.0	18.0	15.4	16.2	13.5	12.8	13.3
Field Burning of Agricultural							
Residues	0.3	0.4	0.4	1 0.4	0.4	0.4	0.4
N ₂ O	330.1	329.6	366.3	7 365.8	348.1	346.2	357.8
Agricultural Soil Management	315.9	313.0	349.2	2 348.1	329.8	327.4	338.2
Manure Management	14.0	16.4	17.3	3 17.5	18.1	18.7	19.4

Field Burning of Agricultural							
Residues	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Total	554.4	575.9	608.6	614.6	600.5	602.3	618.5

Note: Totals may not sum due to independent rounding.

1 Some significant trends in U.S. emissions from Agriculture source categories include the following:


- Agricultural soils are the largest anthropogenic source of N₂O emissions in the United States, accounting for approximately 77.8 percent of N₂O emissions in 2018 and 5.1 percent of total emissions in the United States in 2018. Estimated emissions from this source in 2018 were 338.2 MMT CO₂ Eq. Annual N₂O emissions from agricultural soils fluctuated between 1990 and 2018, although overall emissions were 7.0 percent higher in 2018 than in 1990. Year-to-year fluctuations are largely a reflection of annual variation in weather patterns, synthetic fertilizer use, and crop production.
- 8 Enteric fermentation is the largest anthropogenic source of CH₄ emissions in the United States. In 2018, • 9 enteric fermentation CH₄ emissions were 28.0 percent of total CH₄ emissions (177.6 MMT CO_2 Eq.), which 10 represents an increase of 13.4 MMT CO₂ Eq. (8.2 percent) since 1990. This increase in emissions from 11 1990 to 2018 in enteric fermentation generally follows the increasing trends in cattle populations. From 12 1990 to 1995, emissions increased and then generally decreased from 1996 to 2004, mainly due to 13 fluctuations in beef cattle populations and increased digestibility of feed for feedlot cattle. Emissions increased from 2005 to 2007, as both dairy and beef populations increased. Research indicates that the 14 15 feed digestibility of dairy cow diets decreased during this period. Emissions decreased again from 2008 to 2014 as beef cattle populations again decreased. Emissions increased from 2014 to 2018, consistent with 16 17 an increase in beef cattle population over those same years.
- Overall, emissions from manure management increased 58.7 percent between 1990 and 2018. This
 encompassed an increase of 66.1 percent for CH₄, from 37.1 MMT CO₂ Eq. in 1990 to 61.7 MMT CO₂ Eq. in
 2018; and an increase of 39.0 percent for N₂O, from 14.0 MMT CO₂ Eq. in 1990 to 19.4 MMT CO₂ Eq. in
 2018. The majority of the increase observed in CH₄ resulted from swine and dairy cattle manure, where
 emissions increased 43 and 119 percent, respectively, from 1990 to 2018. From 2017 to 2018, there was a
 3.0 percent increase in total CH₄ emissions from manure management, mainly due to minor shifts in the
 animal populations and the resultant effects on manure management system allocations.
- Liming and urea fertilization are the only sources of CO₂ emissions reported in the Agriculture sector.
 Estimated emissions from these sources were 3.1 and 4.6 MMT CO₂ Eq., respectively. Liming emissions
 increased by 2.2 percent relative to 2017 and decreased 32.6 percent relative to 1990, while urea
 fertilization emissions increased by 1.9 percent relative to 2017 and 128.7 percent relative to 1990.

29 Land Use, Land-Use Change, and Forestry

30 When humans alter the terrestrial biosphere through land use, changes in land use, and land management 31 practices, they also influence the carbon (C) stock fluxes on these lands and cause emissions of CH_4 and N_2O . 32 Overall, managed land is a net sink for CO₂ (C sequestration) in the United States. The primary drivers of fluxes on 33 managed lands include, for example, forest management practices, tree planting in urban areas, the management 34 of agricultural soils, the landfilling of yard trimmings and food scraps, and activities that cause changes in C stocks 35 in coastal wetlands. The main drivers for net forest sequestration include net forest growth, increasing forest area, 36 and a net accumulation of C stocks in harvested wood pools. The net sequestration in Settlements Remaining 37 Settlements, is driven primarily by C stock gains in urban forests through net tree growth and increased urban area, 38 as well as long-term accumulation of C in landfills from additions of yard trimmings and food scraps.

- 1 The LULUCF sector in 2018 resulted in a net increase in C stocks (i.e., net CO₂ removals) of 799.9 MMT CO₂ Eq.
- 2 (Table 2-8).² This represents an offset of approximately 12.0 percent of total (i.e., gross) greenhouse gas emissions
- 3 in 2018. Emissions of CH₄ and N₂O from LULUCF activities in 2018 were 26.1 MMT CO₂ Eq. and represent 0.4
- 4 percent of total greenhouse gas emissions.³ Between 1990 and 2018, total C sequestration in the LULUCF sector
- 5 decreased by 7.1 percent, primarily due to a decrease in the rate of net C accumulation in forests and *Cropland*
- 6 *Remaining Cropland*, as well as an increase in CO₂ emissions from *Land Converted to Settlements*.
- 7 Forest fires were the largest source of CH₄ emissions from LULUCF in 2018, totaling 11.3 MMT CO₂ Eq. (452 kt of
- 8 CH₄). Coastal Wetlands Remaining Coastal Wetlands resulted in CH₄ emissions of 3.6 MMT CO₂ Eq. (144 kt of CH₄).
- 9 Grassland fires resulted in CH₄ emissions of 0.3 MMT CO₂ Eq. (12 kt of CH₄). *Peatlands Remaining Peatlands, Land*
- 10 Converted to Wetlands, and Drained Organic Soils resulted in CH₄ emissions of less than 0.05 MMT CO₂ Eq. each.
- 11 Forest fires were also the largest source of N₂O emissions from LULUCF in 2018, totaling 7.5 MMT CO₂ Eq. (25 kt of
- 12 N₂O). Nitrous oxide emissions from fertilizer application to settlement soils in 2018 totaled to 2.4 MMT CO₂ Eq. (8
- 13 kt of N₂O). Additionally, the application of synthetic fertilizers to forest soils in 2018 resulted in N₂O emissions of
- 14 0.5 MMT CO₂ Eq. (2 kt of N₂O). Grassland fires resulted in N₂O emissions of 0.3 MMT CO₂ Eq. (1 kt of N₂O). *Coastal*
- 15 Wetlands Remaining Coastal Wetlands and Drained Organic Soils resulted in N₂O emissions of 0.1 MMT CO₂ Eq.
- 16 each (less than 0.5 kt of N₂O). *Peatlands Remaining Peatlands* resulted in N₂O emissions of less than 0.05 MMT CO₂
- 17 Eq.
- 18 Carbon dioxide removals from C stock changes are presented in Figure 2-12 and Table 2-8 along with CH₄ and N₂O
- 19 emissions for LULUCF source categories.

20 Figure 2-12: 2018 LULUCF Chapter Greenhouse Gas Sources and Sinks (MMT CO₂ Eq.)

21

² LULUCF Carbon Stock Change is the net C stock change from the following categories: Forest Land Remaining Forest Land, Land Converted to Forest Land, Cropland Remaining Cropland, Land Converted to Cropland, Grassland Remaining Grassland, Land Converted to Grassland, Wetlands Remaining Wetlands, Land Converted to Wetlands, Settlements Remaining Settlements, and Land Converted to Settlements.

³ LULUCF emissions include the CH₄ and N₂O emissions reported for *Peatlands Remaining Peatlands*, Forest Fires, Drained Organic Soils, Grassland Fires, and *Coastal Wetlands Remaining Coastal Wetlands*; CH₄ emissions from *Land Converted to Coastal Wetlands*; and N₂O emissions from Forest Soils and Settlement Soils.

1 Table 2-8: U.S. Greenhouse Gas Emissions and Removals (Net Flux) from Land Use, Land-

2 Use Change, and Forestry (MMT CO₂ Eq.)

Gas/Land-Use Category	1990	2005	2014	2015	2016	2017	2018
Carbon Stock Change ^a	(860.7)	(831.0)	(739.6)	(802.9)	(801.7)	(789.9)	(799.9)
Forest Land Remaining Forest Land	(733.9)	(678.6)	(618.8)	(676.1)	(657.9)	(647.7)	(663.2)
Land Converted to Forest Land	(109.4)	(110.2)	(110.5)	(110.6)	(110.6)	(110.6)	(110.6)
Cropland Remaining Cropland	(23.2)	(29.0)	(12.2)	(12.8)	(22.7)	(22.3)	(16.6)
Land Converted to Cropland	54.1	53.8	56.7	57.2	55.5	55.6	55.3
Grassland Remaining Grassland	9.1	10.7	19.7	13.6	9.6	10.9	11.2
Land Converted to Grassland	(6.7)	(40.3)	(24.9)	(23.2)	(24.8)	(24.9)	(24.6)
Wetlands Remaining Wetlands	(4.0)	(5.7)	(4.3)	(4.4)	(4.4)	(4.4)	(4.4)
Land Converted to Wetlands	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Settlements Remaining Settlements	(109.6)	(116.6)	(126.6)	(126.8)	(125.7)	(125.9)	(126.2)
Land Converted to Settlements	62.9	85.0	81.4	80.1	79.4	79.3	79.3
CH4	4.4	8.8	9.5	16.1	7.3	15.2	15.2
Forest Land Remaining Forest Land:							
Forest Fires ^b	0.9	5.0	5.6	12.2	3.4	11.3	11.3
Wetlands Remaining Wetlands: Coastal							
Wetlands Remaining Coastal Wetlands	3.4	3.5	3.6	3.6	3.6	3.6	3.6
Grassland Remaining Grassland:							
Grassland Fires ^c	0.1	0.3	0.4	0.3	0.3	0.3	0.3
Land Converted to Wetlands: Land							
Converted to Coastal Wetlands	+	+	+	+	+	+	+
Forest Land Remaining Forest Land:							
Drained Organic Soils ^d	+	+	+	+	+	+	+
Wetlands Remaining Wetlands:							
Peatlands Remaining Peatlands	+	+	+	+	+	+	+
N ₂ O	3.0	7.5	7.0	11.2	5.5	10.8	10.9
Forest Land Remaining Forest Land:							
Forest Fires ^b	0.6	3.3	3.7	8.1	2.2	7.5	7.5
Settlements Remaining Settlements:							
Settlement Soils ^e	2.0	3.1	2.2	2.2	2.2	2.3	2.4
Forest Land Remaining Forest Land:	-	-				-	
Forest Soils ^f	0.1	0.5	0.5	0.5	0.5	0.5	0.5
Grassland Remaining Grassland:	-						
Grassland Fires ^c	0.1	0.3	0.4	0.3	0.3	0.3	0.3
Wetlands Remaining Wetlands: Coastal							
Wetlands Remaining Coastal Wetlands	0.1	0.2	0.1	0.1	0.1	0.1	0.1
Forest Land Remaining Forest Land:				•	•	•	•
Drained Organic Soils ^d	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Wetlands Remaining Wetlands:	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Peatlands Remaining Peatlands	+	+	+	+	+	+	+
	7.4	16.3	16.6	27.4	12.8	26.1	26.1
LULUCF Carbon Stock Change ^a	(860.7)	 (831.0)	 (739.6)	(802.9)	(801.7)	(789.9)	(799.9)
LULUCF Sector Net Total ^h	(853.4)	(814.7)	(733.0)	(775.5)	(788.9)	(763.9)	(773.7)

+ Absolute value does not exceed 0.05 MMT CO₂ Eq.

^a LULUCF Carbon Stock Change is the net C stock change from the following categories: *Forest Land Remaining Forest Land, Land Converted to Forest Land, Cropland Remaining Cropland, Land Converted to Cropland, Grassland Remaining Grassland, Land Converted to Grassland, Wetlands Remaining Wetlands, Land Converted to Wetlands, Settlements Remaining Settlements, and Land Converted to Settlements.*

^b Estimates include emissions from fires on both Forest Land Remaining Forest Land and Land Converted to Forest Land.

^c Estimates include emissions from fires on both *Grassland Remaining Grassland* and *Land Converted to Grassland*.

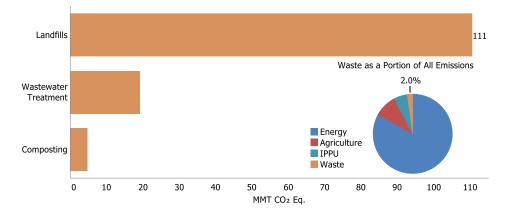
^d Estimates include emissions from drained organic soils on both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

^e Estimates include emissions from N fertilizer additions on both *Settlements Remaining Settlements* and *Land Converted* to *Settlements*.

^f Estimates include emissions from N fertilizer additions on both Forest Land Remaining Forest Land and Land Converted

to Forest Land.

- ^g LULUCF emissions include the CH₄ and N₂O emissions reported for *Peatlands Remaining Peatlands*, Forest Fires, Drained Organic Soils, Grassland Fires, and *Coastal Wetlands Remaining Coastal Wetlands*; CH₄ emissions from *Land Converted to Coastal Wetlands*; and N₂O emissions from Forest Soils and Settlement Soils.
- ^h The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.


Notes: Totals may not sum due to independent rounding. Parentheses indicate net sequestration.

- 1 Other significant trends from 1990 to 2018 in emissions from LULUCF categories include:
- Annual C sequestration by forest land (i.e., annual C stock accumulation in the five C pools and harvested wood products for *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*) has decreased by approximately 8.2 percent since 1990. This is primarily due to decreased C stock gains in *Land Converted to Forest Land* and the harvested wood products pools within *Forest Land Remaining Forest Land*.
- Annual C sequestration from Settlements Remaining Settlements (which includes organic soils, settlement trees, and landfilled yard trimmings and food scraps) has increased by 15.1 percent over the period from 1990 to 2018. This is primarily due to an increase in urbanized land area in the United States with trees growing on it.
- Annual emissions from Land Converted to Settlements increased by approximately 26.1 percent from
 1990 to 2018 due primarily to C stock losses from Forest Land Converted to Settlements and mineral soils
 C stocks from Grassland Converted to Settlements.

14 Waste

- 15 Waste management and treatment activities are sources of greenhouse gas emissions (see Figure 2-13). In 2018,
- 16 landfills were the third-largest source of U.S. anthropogenic CH₄ emissions, generating 110.6 MMT CO₂ Eq and
- accounting for 17.4 percent of total U.S. CH₄ emissions.⁴ Additionally, wastewater treatment generates emissions
- 18 of 19.2 MMT CO₂ Eq and accounts for 14.3 percent of waste emissions, 2.2 percent of U.S. CH₄ emissions, and 1.2
- 19 percent of U.S. N₂O emissions. Emissions of CH₄ and N₂O from composting are also accounted for in this chapter,
- 20 generating emissions of 2.5 MMT CO₂ Eq. and 2.2 MMT CO₂ Eq., respectively. Overall, emission sources accounted
- for in the Waste chapter generated 134.4 MMT CO₂ Eq., or 2.0 percent of total U.S. greenhouse gas emissions in
- 22 2018. A summary of greenhouse gas emissions from the Waste chapter is presented in Table 2-9.

23 Figure 2-13: 2018 Waste Chapter Greenhouse Gas Sources (MMT CO₂ Eq.)

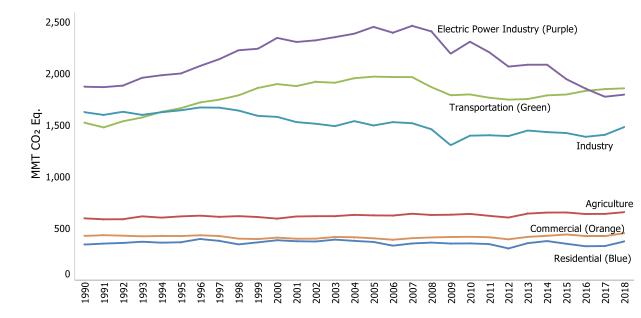
24

⁴ Landfills also store carbon, due to incomplete degradation of organic materials such as wood products and yard trimmings, as described in the Land Use, Land-Use Change, and Forestry chapter.

- 1 Overall, in 2018, waste activities generated emissions of 134.4 MMT CO₂ Eq., or 2.0 percent of total U.S.
- 2 greenhouse gas emissions.

Gas/Source	1990	2005	20	14	2015	2016	2017	2018
CH4	195.3	148.6	12	9.0	128.0	124.7	124.3	127.2
Landfills	179.6	131.3	11	2.6	111.3	108.0	107.7	110.6
Wastewater Treatment	15.3	15.4	1	4.3	14.6	14.4	14.1	14.2
Composting	0.4	1.9		2.1	2.1	2.3	2.4	2.5
N ₂ O	3.7	6.1		6.6	6.7	6.9	7.2	7.2
Wastewater Treatment	3.4	4.4		4.8	4.8	4.9	5.0	5.0
Composting	0.3	1.7		1.9	1.9	2.0	2.2	2.2
Total	199.0	154.7	13	5.6	134.7	131.6	131.4	134.4

3 Table 2-9: Emissions from Waste (MMT CO₂ Eq.)


Note: Totals may not sum due to independent rounding.

- 4 Some significant trends in U.S. emissions from waste source categories include the following:
- From 1990 to 2018, net CH₄ emissions from landfills decreased by 69.0 MMT CO₂ Eq. (38.4 percent), with
 small increases occurring in interim years. This downward trend in emissions coincided with increased
 landfill gas collection and control systems, and a reduction of decomposable materials (i.e., paper and
 paperboard, food scraps, and yard trimmings) discarded in municipal solid waste (MSW) landfills over the
 time series.
- Combined CH₄ and N₂O emissions from composting have generally increased since 1990, from 0.7 MMT
 CO₂ Eq. to 4.7 MMT CO₂ Eq. in 2018, which represents more than a five-fold increase over the time series.
 The growth in composting since the 1990s is attributable to primarily four factors: (1) the enactment of
 legislation by state and local governments that discouraged the disposal of yard trimmings and food
 waste in landfills; (2) yard trimming collection and yard trimming drop off sites provided by local solid
 waste management districts; (3) an increased awareness of the environmental benefits of composting;
 and (4) loans or grant programs to establish or expand composting infrastructure.
- From 1990 to 2018, CH₄ and N₂O emissions from wastewater treatment decreased by 1.1 MMT CO₂ Eq.
 (7.4 percent) and increased by 1.6 MMT CO₂ Eq. (48.0 percent), respectively. Methane emissions from
 domestic wastewater treatment have decreased since 1999 due to decreasing percentages of wastewater
 being treated in anaerobic systems, including reduced use of on-site septic systems and central anaerobic
 treatment systems. Nitrous oxide emissions from wastewater treatment processes gradually increased
 across the time series as a result of increasing U.S. population and protein consumption.

23 2.2 Emissions by Economic Sector

- 24 Throughout this report, emission estimates are grouped into five sectors (i.e., chapters) defined by the IPCC and
- detailed above: Energy, IPPU, Agriculture, LULUCF, and Waste. While it is important to use this characterization for
- 26 consistency with United Nations Framework Convention on Climate Change (UNFCCC) reporting guidelines and to
- 27 promote comparability across countries, it is also useful to characterize emissions according to commonly used
- economic sector categories: residential, commercial, industry, transportation, electric power, and agriculture.
- 29 Emissions from U.S. Territories are reported as their own end-use sector due to a lack of specific consumption data
- 30 for the individual end-use sectors within U.S. Territories.
- 31 Using this categorization, transportation activities, in aggregate, accounted for the largest portion (27.9 percent) of
- 32 total U.S. greenhouse gas emissions in 2018. Emissions from electric power accounted for the second largest
- portion (26.9 percent), while emissions from industry accounted for the third largest portion (22.2 percent) of total
- 34 U.S. greenhouse gas emissions in 2018. Emissions from industry have in general declined over the past decade due

- to a number of factors, including structural changes in the U.S. economy (i.e., shifts from a manufacturing-based to
- 2 a service-based economy), fuel switching, and efficiency improvements.
- 3 The remaining 23.0 percent of U.S. greenhouse gas emissions were contributed by, in order of magnitude, the
- 4 agriculture, commercial, and residential sectors, plus emissions from U.S. Territories. Activities related to
- 5 agriculture accounted for roughly 9.9 percent of emissions; unlike other economic sectors, agricultural sector
- 6 emissions were dominated by N₂O emissions from agricultural soil management and CH₄ emissions from enteric
- 7 fermentation, rather than CO₂ from fossil fuel combustion. An increasing amount of carbon is stored in agricultural
- 8 soils each year, but this CO₂ sequestration is assigned to the LULUCF sector rather than the agriculture economic
- 9 sector. The commercial and residential sectors accounted for roughly 6.8 percent and 5.6 percent of emissions,
- 10 respectively, and U.S. Territories accounted for 0.7 percent of emissions; emissions from these sectors primarily
- 11 consisted of CO₂ emissions from fossil fuel combustion. Carbon dioxide was also emitted and sequestered (in the 12 form of C) by a variety of activities related to forest management practices, tree planting in urban areas, the
- 13 management of agricultural soils, landfilling of yard trimmings, and changes in C stocks in coastal wetlands.
- 14 Table 2-10 presents a detailed breakdown of emissions from each of these economic sectors by source category,
- as they are defined in this report. Figure 2-14 shows the trend in emissions by sector from 1990 to 2018.

16 Figure 2-14: U.S. Greenhouse Gas Emissions Allocated to Economic Sectors (MMT CO₂ Eq.)

17

18

Table 2-10: U.S. Greenhouse Gas Emissions Allocated to Economic Sectors (MMT CO₂ Eq. and Percent of Total in 2018)

Sector/Source	1990	2005	2014	2015	2016	2017	2018	Percent ^a
Transportation	1,527.1	1,973.4	1,791.6	1,800.2	1,835.6	1,852.5	1,860.1	27.9%
CO ₂ from Fossil Fuel Combustion	1,469.1	1,856.1	1,713.7	1,725.3	1,765.3	1,787.4	1,798.2	26.9%
Substitution of Ozone Depleting								
Substances	+	69.3	48.8	46.3	43.3	40.1	38.5	0.6%
Mobile Combustion	46.1	37.9	19.1	17.7	16.6	15.3	14.2	0.2%
Non-Energy Use of Fuels	11.8	10.2	10.0	11.0	10.4	9.6	9.3	0.1%
Electric Power Industry	1,875.6	2,455.9	2,089.1	1,949.2	1,857.0	1,778.5	1,798.7	26.9%
CO ₂ from Fossil Fuel Combustion	1,820.0	2,400.0	2,037.1	1,900.6	1,808.9	1,732.0	1,752.8	26.2%
Stationary Combustion	20.9	30.9	29.9	27.7	27.4	25.9	25.6	0.4%
Incineration of Waste	8.4	12.9	10.7	11.1	11.2	11.4	11.4	0.2%

Other Process Uses of Carbonates	3.1	3.8	6.5	6.1	5.5	5.1	4.7	0.1%
Electrical Transmission and								
Distribution	23.2	8.4	4.8	3.8	4.1	4.1	4.1	0.1%
	1,628.7	1,499.7	1,435.6	1,426.5	1,389.8	1,409.3	1,484.0	22.2%
CO ₂ from Fossil Fuel Combustion	813.7	799.7	768.1	761.3	761.9	766.6	807.3	12.1%
Natural Gas Systems	215.4	183.4	170.7	171.2	169.8	169.4	174.6	2.6%
Non-Energy Use of Fuels	102.0	121.4	104.9	111.0	98.2	108.5	120.1	1.8%
Petroleum Systems	55.9	51.0	74.1	73.3	61.9	63.3	76.0	1.1%
Coal Mining	96.5	64.1	64.6	61.2	53.8	54.8	52.7	0.8%
Iron and Steel Production	104.8	70.1	58.2	48.0	43.6	40.8	42.7	0.6%
Cement Production	33.5	46.2	39.4	39.9	39.4	40.3	40.3	0.6%
Substitution of Ozone Depleting								
Substances	+	7.8	23.1	25.7	27.9	30.1	32.0	0.5%
Petrochemical Production	21.8	27.5	26.4	28.2	28.6	29.2	29.7	0.4%
Lime Production	11.7	14.6	14.2	13.3	12.9	13.1	13.9	0.2%
Ammonia Production	13.0	9.2	9.4	10.6	10.8	13.2	13.5	0.2%
Adipic Acid Production	15.2	7.1	5.4	4.3	7.0	7.4	10.3	0.2%
Nitric Acid Production	12.1	11.3	10.9	11.6	10.1	9.3	9.3	0.1%
Abandoned Oil and Gas Wells	6.6	7.0	7.1	7.2	7.2	7.1	7.0	0.1%
Abandoned Underground Coal								
Mines	7.2	6.6	6.3	6.4	6.7	6.4	6.2	0.1%
Electronics Industry	3.6	4.8	4.9	5.0	5.0	4.9	5.1	0.1%
Other Process Uses of Carbonates	3.1	3.8	6.5	6.1	5.5	5.1	4.7	0.1%
Carbon Dioxide Consumption	1.5	1.4	4.5	4.5	4.5	4.5	4.5	0.1%
Stationary Combustion	4.8	4.6	4.3	4.2	4.1	4.2	4.2	0.1%
N ₂ O from Product Uses	4.2	4.2	4.2	4.2	4.2	4.2	4.2	0.1%
Urea Consumption for Non-								
Agricultural Purposes	3.8	3.7	1.8	4.6	5.1	3.8	3.6	0.1%
Mobile Combustion	7.6	7.8	4.0	3.7	3.6	3.6	3.6	0.1%
HCFC-22 Production	46.1	20.0	5.0	4.3	2.8	5.2	3.3	+%
Aluminum Production	28.3	7.6	5.4	4.8	2.7	2.3	3.0	+%
Ferroalloy Production	2.2	1.4	1.9	2.0	1.8	2.0	2.1	+%
Soda Ash Production	1.4	1.7	1.7	1.7	1.7	1.8	1.7	+%
Titanium Dioxide Production	1.2	1.8	1.7	1.6	1.7	1.7	1.6	+%
Caprolactam, Glyoxal, and								
Glyoxylic Acid Production	1.7	2.1	2.0	2.0	2.0	1.5	1.4	+%
Glass Production	1.5	1.9	1.3	1.3	1.2	1.3	1.3	+%
Magnesium Production and								
Processing	5.2	2.7	1.0	1.1	1.2	1.2	1.2	+%
Zinc Production	0.6	1.0	1.0	0.9	0.9	1.0	1.0	+%
Phosphoric Acid Production	1.5	1.3	1.0	1.0	1.0	1.0	0.9	+%
Lead Production	0.5	0.6	0.5	0.5	0.4	0.5	0.6	+%
Carbide Production and								
Consumption	0.4	0.2	0.2	0.2	0.2	0.2	0.2	+%
Agriculture	599.0	627.5	654.9	656.0	641.0	642.4	658.6	9.9%
N ₂ O from Agricultural Soil								
Management	315.9	313.0	349.2	348.1	329.8	327.4	338.2	5.1%
Enteric Fermentation	164.2	168.9	164.2	166.5	171.8	175.4	177.6	2.7%
Manure Management	51.1	67.9	71.6	75.4	77.7	78.5	81.1	1.2%
CO ₂ from Fossil Fuel Combustion	43.4	50.4	45.5	40.7	39.7	39.4	39.5	0.6%
Rice Cultivation	16.0	18.0	15.4	16.2	13.5	12.8	13.3	0.2%
Urea Fertilization	2.0	3.1	3.9	4.1	4.0	4.5	4.6	0.1%
Liming	4.7	4.3	3.6	3.7	3.1	3.1	3.1	+%
Mobile Combustion	1.2	1.2	0.8	0.6	0.6	0.6	0.6	+%

Net Emissions (Sources and Sinks)	5,583.7	6,575.1	6,103.3	5,898.2	5,736.6	5,722.9	5,904.1	88.4%
LULUCF Sector Net Total ^b	(853.4)	(814.7)	(723.0)	(775.5)	(788.9)	(763.9)	(773.7)	(11.6%)
Total Emissions	6,437.1	7,389.8	6,826.3	6,673.7	6,525.5	6,486.7	6,677.8	100.0%
Stationary Combustion	0.1	0.2	0.2	0.2	0.2	0.2	0.2	+%
Non-Energy Use of Fuels	5.7	8.1	5.1	5.1	5.1	5.1	5.1	0.1%
CO ₂ from Fossil Fuel Combustion	27.6	49.7	41.4	41.4	41.4	41.4	41.4	0.6%
U.S. Territories	33.3	58.0	46.6	46.6	46.6	46.6	46.6	0.7%
Stationary Combustion	6.3	4.9	6.0	5.3	4.7	4.6	5.4	0.1%
Substances	0.2	7.2	25.8	28.9	30.4	31.8	33.2	0.5%
Substitution of Ozone Depleting								
CO ₂ from Fossil Fuel Combustion	338.2	357.9	347.1	318.1	293.2	294.2	335.9	5.0%
Residential	344.7	370.1	378.8	352.3	328.4	330.6	374.6	5.6%
Stationary Combustion	1.5	1.4	1.4	1.6	1.5	1.5	1.6	+%
Composting	0.7	3.5	4.0	4.0	4.3	4.6	4.7	0.1%
Human Sewage	3.4	4.4	4.8	4.8	4.9	5.0	5.0	0.1%
Wastewater Treatment	15.3	15.4	14.3	14.6	14.4	14.1	14.2	0.2%
Substances	+	22.1	59.5	60.8	61.5	61.0	60.8	0.9%
Substitution of Ozone Depleting								
Landfills	179.6	131.3	112.6	111.3	108.0	107.7	110.6	1.7%
CO ₂ from Fossil Fuel Combustion	228.2	226.9	233.0	245.6	232.4	232.9	258.3	3.9%
Commercial	428.7	405.1	429.5	442.7	427.1	426.9	455.1	6.8%
Stationary Combustion	0.1	+	0.1	0.1	0.1	0.1	0.1	+%
Residues	0.5	0.6	0.6	0.6	0.6	0.6	0.6	+%
Field Burning of Agricultural								

Notes: Total emissions presented without LULUCF. Total net emissions presented with LULUCF. Totals may not sum due to independent rounding. Parentheses indicate negative values or sequestration.

+ Does not exceed 0.05 MMT CO₂ Eq. or 0.05 percent.

^a Percent of total (gross) emissions excluding emissions from LULUCF for 2018.

^b The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.

1 Emissions with Electricity Distributed to Economic Sectors

2 It is also useful to view greenhouse gas emissions from economic sectors with emissions related to electric power

3 distributed into end-use categories (i.e., emissions from electric power are allocated to the economic sectors in

4 which the electricity is used). The generation, transmission, and distribution of electricity accounted for 27 percent

5 of total U.S. greenhouse gas emissions in 2018. Electric power-related emissions decreased by 4.1 percent since

6 1990 but increased by 1.1 percent from 2017 to 2018, primarily due to a significantly colder winter and a hotter

summer in 2018 compared to 2017, which increased the amount of energy required for heating and cooling.

8 Between 2017 to 2018, the consumption of natural gas and petroleum for electric power generation increased by

9 14.2 and 19.6 percent, respectively, while the consumption of coal decreased by 4.5 percent, reflecting a

10 continued shift from coal to natural gas for electricity generation.

11 From 2017 to 2018, electricity sales to the residential and commercial end-use sectors increased by 6.6 percent

12 and 2.1 percent, respectively. Electricity sales to the industrial sector increased by approximately 1.8 percent.

13 Overall, from 2017 to 2018, the amount of electricity retail sales (in kWh) increased by 3.7 percent. Table 2-11

14 provides a detailed summary of emissions from electric power-related activities.

15 Table 2-11: Electric Power-Related Greenhouse Gas Emissions (MMT CO₂ Eq.)

Gas/Fuel Type or Source	1990	2005	2014	2015	2016	2017	2018
CO ₂	1,831.0	2,416.3	2,054.1	1,917.5	1,825.3	1,748.2	1,768.7
Fossil Fuel Combustion	1,820.0	2,400.0	2,037.1	1,900.6	1,808.9	1,732.0	1,752.8
Coal	1,546.5	1,982.8	1,568.6	1,351.4	1,242.0	1,207.1	1,152.9
Natural Gas	175.4	318.9	442.9	525.2	545.0	505.6	577.4
Petroleum	97.5	97.9	25.3	23.7	21.4	18.9	22.2

21.0 20.5 0.5 23.2	30.4 30.1 0.4 8.4 8.4	29.2 28.9 0.3 4.8 4.8	26.8 26.5 0.3 3.8 3.8	26.5 26.2 0.3 4.1 4.1	25.1 24.8 0.3 4.1 4.1	24.7 24.4 0.3 4.1 4.1
20.5 0.5	30.1 0.4	29.2 28.9 0.3	26.5 0.3	26.2 0.3	25.1 24.8 0.3	24.7 24.4 0.3
20.5 0.5	30.1 0.4	29.2 28.9 0.3	26.5 0.3	26.2 0.3	25.1 24.8 0.3	24.7 24.4 0.3
20.5	30.1	29.2 28.9	26.5	26.2	25.1 24.8	24.7 24.4
		29.2			25.1	24.7
1.0	30.4		26.8	26.5		
+	+	+	+	+	+	+
0.4	0.9	1.1	1.2	1.2	1.1	1.2
0.4	0.9	1.1	1.2	1.2	1.1	1.2
3.1	3.8	6.5	6.1	5.5	5.1	4.7
8.0	12.5	10.4	10.8	10.9	11.1	11.1
0.5	0.5	0.4	0.4	0.4	0.4	0.4
	8.0 3.1 0.4	8.0 12.5 3.1 3.8 0.4 0.9	8.0 12.5 10.4 3.1 3.8 6.5 0.4 0.9 1.1	8.0 12.5 10.4 10.8 3.1 3.8 6.5 6.1 0.4 0.9 1.1 1.2	8.0 12.5 10.4 10.8 10.9 3.1 3.8 6.5 6.1 5.5 0.4 0.9 1.1 1.2 1.2	8.0 12.5 10.4 10.8 10.9 11.1 3.1 3.8 6.5 6.1 5.5 5.1 0.4 0.9 1.1 1.2 1.2 1.1

+ Does not exceed 0.05 MMT CO₂ Eq.

^a Includes only stationary combustion emissions related to the generation of electricity.

Note: Totals may not sum due to independent rounding.

1 To distribute electricity emissions among economic end-use sectors, emissions from the source categories

2 assigned to the electric power sector were allocated to the residential, commercial, industry, transportation, and

3 agriculture economic sectors according to each economic sector's share of retail sales of electricity (EIA 2019a;

4 Duffield 2006). These source categories include CO₂ from Fossil Fuel Combustion, CH₄ and N₂O from Stationary

5 Combustion, Incineration of Waste, Other Process Uses of Carbonates, and SF₆ from Electrical Transmission and

6 Distribution Systems. Note that only 50 percent of the Other Process Uses of Carbonates emissions were

7 associated with electric power and distributed as described; the remainder of Other Process Uses of Carbonates

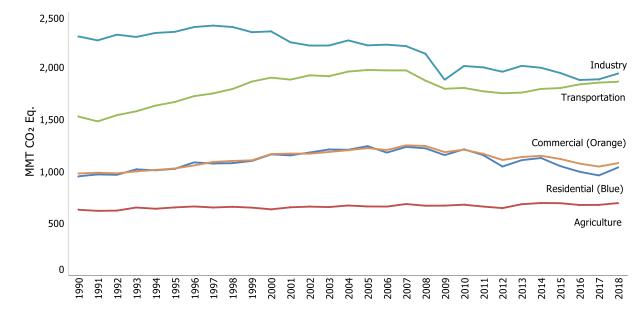
8 emissions were attributed to the industrial processes economic end-use sector.⁵

9 When emissions from electricity use are distributed among these economic end-use sectors, industrial activities

account for the largest share of total U.S. greenhouse gas emissions (29.1 percent), followed closely by emissions

11 from transportation (27.9 percent). Emissions from the commercial and residential sectors also increase

substantially when emissions from electricity are included (16.2 and 15.6 percent, respectively). In all economic


13 end-use sectors except agriculture, CO₂ accounts for more than 80.8 percent of greenhouse gas emissions,

14 primarily from the combustion of fossil fuels.

15 Table 2-12 presents a detailed breakdown of emissions from each of these economic sectors, with emissions from

16 electric power distributed to them. Figure 2-12 shows the trend in these emissions by sector from 1990 to 2018.

⁵ Emissions were not distributed to U.S. Territories, since the electric power sector only includes emissions related to the generation of electricity in the 50 states and the District of Columbia.

1 Figure 2-15: U.S. Greenhouse Gas Emissions with Electricity-Related Emissions Distributed

2 to Economic Sectors (MMT CO₂ Eq.)

4 Table 2-12: U.S. Greenhouse Gas Emissions by Economic Sector and Gas with Electricity-5 Related Emissions Distributed (MMT CO₂ Eq.) and Percent of Total in 2018

Sector/Gas	1990	2005	2014	2015	2016	2017	2018	Percenta
Industry	2,301.1	2,214.9	1,999.4	1,948.9	1,882.1	1,888.5	1,944.2	29.1%
Direct Emissions	1,628.7	1,499.7	1,435.6	1,426.5	1,389.8	1,409.3	1,484.0	22.2%
CO ₂	1,166.7	1,148.8	1,105.4	1,101.2	1,073.6	1,090.2	1,165.2	17.4%
CH ₄	348.2	282.4	266.5	260.9	250.2	249.7	245.8	3.7%
N ₂ O	37.6	29.7	27.3	26.7	28.0	27.2	30.2	0.5%
HFCs, PFCs, SF ₆ , and NF ₃	76.3	38.7	36.3	37.7	38.0	42.2	42.8	0.6%
Electricity-Related	672.3	715.2	563.8	522.4	492.2	479.2	460.2	6.9%
CO ₂	656.4	703.6	554.3	513.8	483.8	471.0	452.6	6.8%
CH ₄	0.2	0.3	0.3	0.3	0.3	0.3	0.3	+%
N ₂ O	7.5	8.9	7.9	7.2	7.0	6.8	6.3	0.1%
SF ₆	8.3	2.4	1.3	1.0	1.1	1.1	1.0	+%
Transportation	1,530.2	1,978.3	1,796.2	1,804.6	1,839.9	1,856.9	1,865.0	27.9%
Direct Emissions	1,527.1	1,973.4	1,791.6	1,800.2	1,835.6	1,852.5	1,860.1	27.9%
CO ₂	1,480.9	1,866.3	1,723.8	1,736.2	1,775.7	1,797.0	1,807.5	27.1%
CH ₄	5.9	3.0	1.7	1.6	1.5	1.5	1.4	+%
N ₂ O	40.2	34.8	17.4	16.0	15.1	13.9	12.7	0.2%
HFCs ^b	+	69.3	48.8	46.3	43.3	40.1	38.5	0.6%
Electricity-Related	3.1	4.8	4.6	4.4	4.3	4.4	4.9	0.1%
CO ₂	3.1	4.8	4.5	4.3	4.2	4.4	4.8	0.1%
CH ₄	+	+	+	+	+	+	+	+%
N ₂ O	+	0.1	0.1	0.1	0.1	0.1	0.1	+%
SF ₆	+	+	+	+	+	+	+	+%
Commercial	982.8	1,226.8	1,153.2	1,122.7	1,077.6	1,049.4	1,082.6	16.2%
Direct Emissions	428.7	405.1	429.5	442.7	427.1	426.9	455.1	6.8%
CO ₂	228.2	226.9	233.0	245.6	232.4	232.9	258.3	3.9%
CH ₄	196.4	149.7	130.1	129.2	125.9	125.5	128.5	1.9%
N ₂ O	4.1	6.4	7.0	7.0	7.3	7.5	7.6	0.1%
HFCs	+	22.1	59.5	60.8	61.5	61.0	60.8	0.9%
Electricity-Related	554.2	821.7	723.6	680.0	650.5	622.5	627.4	9.4%
CO ₂	541.0	808.4	711.5	668.9	639.4	611.9	617.0	9.2%

CH ₄	0.1	0.3	0.4	0.4	0.4	0.4	0.4	+%
N ₂ O	6.2	10.2	10.1	9.4	9.3	8.8	8.6	0.1%
SF ₆	6.8	2.8	1.7	1.3	1.4	1.4	1.4	+%
Residential	955.6	1,246.0	1,131.7	1,053.6	999.2	964.2	1,041.0	15.6%
Direct Emissions	344.7	370.1	378.8	352.3	328.4	330.6	374.6	5.6%
CO ₂	338.2	357.9	347.1	318.1	293.2	294.2	335.9	5.0%
CH ₄	5.2	4.1	5.0	4.5	3.9	3.8	4.5	0.1%
N ₂ O	1.0	0.9	1.0	0.9	0.8	0.8	0.9	+%
HFCs	0.2	7.2	25.8	28.9	30.4	31.8	33.2	0.5%
Electricity-Related	610.9	875.9	752.8	701.3	670.9	633.7	666.4	10.0%
CO ₂	596.4	861.8	740.2	689.9	659.4	622.9	655.3	9.8%
CH ₄	0.1	0.3	0.4	0.4	0.4	0.4	0.4	+%
N ₂ O	6.8	10.9	10.5	9.7	9.6	8.9	9.2	0.1%
SF ₆	7.5	3.0	1.7	1.4	1.5	1.5	1.5	+%
Agriculture	634.0	665.8	699.2	697.2	680.1	681.1	698.4	10.5%
Direct Emissions	599.0	627.5	654.9	656.0	641.0	642.4	658.6	9.9%
CO ₂	50.1	57.9	53.1	48.5	46.9	47.0	47.2	0.7%
CH ₄	218.3	239.4	234.5	241.1	245.5	248.6	253.1	3.8%
N ₂ O	330.6	330.2	367.4	366.4	348.7	346.8	358.4	5.4%
Electricity-Related	35.1	38.3	44.3	41.2	39.1	38.7	39.7	0.6%
CO ₂	34.2	37.7	43.6	40.6	38.4	38.1	39.1	0.6%
CH ₄	+	+	+	+	+	+	+	+%
N ₂ O	0.4	0.5	0.6	0.6	0.6	0.5	0.5	+%
SF ₆	0.4	0.1	0.1	0.1	0.1	0.1	0.1	+%
U.S. Territories	33.3	58.0	46.6	46.6	46.6	46.6	46.6	0.7%
Total Emissions	6,437.1	7,389.8	6,826.3	6,673.7	6,525.5	6,486.7	6,677.8	100.0%
LULUCF Sector Net Total ^c	(853.4)	(814.7)	(723.0)	(775.5)	(788.9)	(763.9)	(773.7)	(11.6%)
Net Emissions (Sources and								
Sinks)	5,583.7	6,575.1	6,103.3	5,898.2	5,736.6	5,722.9	5,904.1	88.4%

Notes: Total emissions presented without LULUCF. Net emissions presented with LULUCF. Emissions from electric power are allocated based on aggregate electricity use in each end-use sector. Totals may not sum due to independent rounding.

+ Does not exceed 0.05 MMT CO₂ Eq. or 0.05 percent.

^a Percent of total (gross) emissions excluding emissions from LULUCF for year 2018.

^b Includes primarily HFC-134a.

^c The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.

1 Industry

2 The industry end-use sector includes CO₂ emissions from fossil fuel combustion from all manufacturing facilities, in

3 aggregate, and with the distribution of electricity-related emissions, accounts for 29.1 percent of U.S. greenhouse

4 gas emissions in 2018. This end-use sector also includes emissions that are produced as a byproduct of the non-

5 energy-related industrial process activities. The variety of activities producing these non-energy-related emissions

6 includes CH₄ emissions from petroleum and natural gas systems, fugitive CH₄ emissions from coal mining,

7 byproduct CO₂ emissions from cement manufacture, and HFC, PFC, SF₆, and NF₃ byproduct emissions from the

8 electronics industry, to name a few.

9 Since 1990, industrial sector emissions have declined by 15.5 percent. The decline has occurred both in direct

10 emissions and indirect emissions associated with electricity use. Structural changes within the U.S. economy that

11 led to shifts in industrial output away from energy-intensive manufacturing products to less energy-intensive

12 products (e.g., from steel to computer equipment) have had a significant effect on industrial emissions.

13 Transportation

- 14 When electricity-related emissions are distributed to economic end-use sectors, transportation activities
- accounted for 27.9 percent of U.S. greenhouse gas emissions in 2018. The largest sources of transportation
- 16 greenhouse gas emissions in 2018 were passenger cars (41.0 percent); freight trucks (23.2 percent); light-duty

- 1 trucks, which include sport utility vehicles, pickup trucks, and minivans (17.5 percent); commercial aircraft (7.0
- 2 percent); pipelines (2.6 percent); other aircraft (2.4 percent); rail (2.3 percent); and ships and boats (2.2 percent).
- 3 These figures include direct CO₂, CH₄, and N₂O emissions from fossil fuel combustion used in transportation and
- 4 emissions from non-energy use (i.e., lubricants) used in transportation, as well as HFC emissions from mobile air
- 5 conditioners and refrigerated transport allocated to these vehicle types.
- 6 In terms of the overall trend, from 1990 to 2018, total transportation emissions increased due, in large part, to
- 7 increased demand for travel. The number of VMT by light-duty motor vehicles (passenger cars and light-duty
- 8 trucks) increased 46.1 percent from 1990 to 2018, as a result of a confluence of factors including population
- 9 growth, economic growth, urban sprawl, and periods of low fuel prices.
- 10 The decline in new light-duty vehicle fuel economy between 1990 and 2004 reflected the increasing market share
- of light-duty trucks, which grew from about 30 percent of new vehicle sales in 1990 to 48 percent in 2004. Starting
- 12 in 2005, average new vehicle fuel economy began to increase while light-duty VMT grew only modestly for much
- of the period. Light-duty VMT grew by less than one percent or declined each year between 2005 and 2013⁶ and
- has since grown at an average rate of 1.7 percent from 2014 to 2018. Average new vehicle fuel economy has
- 15 increased almost every year since 2005, while light-duty truck market share decreased to about 33 percent in 2009
- and has since varied from year to year between 36 and 47 percent. Light-duty truck market share was about 48
- 17 percent of new vehicles in model year 2018 (EPA 2019a).
- Table 2-13 provides a detailed summary of greenhouse gas emissions from transportation-related activities with
 electricity-related emissions included in the totals.
- 20 Almost all of the energy used for transportation was supplied by petroleum-based products, with more than half
- being related to gasoline consumption in automobiles and other highway vehicles. Other fuel uses, especially
- diesel fuel for freight trucks and jet fuel for aircraft, accounted for the remainder. The primary driver of
- transportation-related emissions was CO₂ from fossil fuel combustion, which increased by 22 percent from 1990 to
- 24 $2018.^7$ This rise in CO₂ emissions, combined with an increase in HFCs from close to zero emissions in 1990 to 38.5
- 25 MMT CO₂ Eq. in 2018, led to an increase in overall greenhouse gas emissions from transportation activities of 22
- 26 percent.⁸

27 Table 2-13: Transportation-Related Greenhouse Gas Emissions (MMT CO₂ Eq.)

Gas/Vehicle	1990	2005	2014	2015	2016	2017	2018
Passenger Cars	639.6	693.1	760.3	760.2	770.6	767.4	763.8
CO ₂	612.2	642.8	734.7	736.8	749.8	749.4	747.8
CH ₄	3.2	1.3	0.7	0.6	0.6	0.5	0.5
N ₂ O	24.1	17.3	9.1	8.1	7.1	6.1	5.1
HFCs	0.0	31.7	15.8	14.7	13.2	11.4	10.4
Light-Duty Trucks	326.7	538.5	334.7	323.7	332.8	326.9	326.6
CO ₂	312.2	490.7	305.9	297.2	308.7	305.0	306.3
CH ₄	1.7	0.8	0.3	0.3	0.2	0.2	0.2
N ₂ O	12.8	13.6	3.9	3.2	2.9	2.4	2.0
HFCs	0.0	33.3	24.7	23.0	21.1	19.2	18.1
Medium- and Heavy-Duty							
Trucks	230.3	400.1	402.5	410.0	414.2	427.7	431.8
CO ₂	229.3	395.4	394.8	402.0	405.9	419.1	422.9

⁶ VMT estimates are based on data from FHWA Highway Statistics Table VM-1 (FHWA 1996 through 2017). In 2007 and 2008 light-duty VMT decreased 3.0 percent and 2.3 percent, respectively. Note that the decline in light-duty VMT from 2006 to 2007 is due at least in part to a change in FHWA's methods for estimating VMT. In 2011, FHWA changed its methods for estimating VMT by vehicle class, which led to a shift in VMT and emissions among on-road vehicle classes in the 2007 to 2017 time period. In absence of these method changes, light-duty VMT growth between 2006 and 2007 would likely have been higher.

- ⁷ See previous footnote.
- ⁸ See previous footnote.

CH_4	0.3	0.1	0.1	0.1	0.1	0.1	0.1
N ₂ O	0.7	1.2	2.3	2.4	2.6	2.8	3.0
HFCs	0.0	3.4	5.3	5.5	5.5	5.7	5.9
Buses	8.5	12.2	19.0	19.5	19.0	20.3	21.2
CO ₂	8.4	11.6	18.3	18.8	18.3	19.6	20.5
CH ₄	+	0.2	0.2	0.2	0.2	0.2	0.2
N ₂ O	+	+	0.1	0.1	0.1	0.1	0.1
HFCs	0.0	0.3	0.4	0.4	0.4	0.4	0.4
Motorcycles	1.7	1.6	3.8	3.7	3.9	3.8	3.8
CO ₂	1.7	1.6	3.8	3.7	3.8	3.7	3.7
CH ₄	+	+	+	+	+	+	+
N ₂ O	+	+	+	+	+	+	+
Commercial Aircraft ^a	110.9	134.0	116.3	120.1	121.5	129.2	130.8
CO ₂	109.9	132.7	115.2	119.0	120.4	128.0	129.6
CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N ₂ O	1.0	1.2	1.1	1.1	1.1	1.2	1.2
Other Aircraft ^b	78.3	59.7	35.0	40.4	47.5	45.6	44.7
CO ₂	77.5	59.1	34.7	40.0	47.0	45.2	44.3
CH ₄	0.1	0.1	+	+	+	+	+
N ₂ O	0.7	0.5	0.3	0.4	0.4	0.4	0.4
Ships and Boats ^c	47.4	45.7	29.2	33.8	40.9	44.0	40.9
CO ₂	46.3	44.2	26.2	30.5	37.1	39.9	36.5
CH ₄	0.6	0.5	0.3	0.3	0.3	0.3	0.3
N ₂ O	0.6	0.6	0.3	0.4	0.5	0.5	0.5
HFCs	0.0	0.5	2.3	2.6	2.9	3.3	3.6
Rail	39.0	50.9	45.9	43.7	39.9	41.1	42.9
CO ₂	38.5	50.3	45.2	43.0	39.3	40.5	42.3
CH ₄	0.1	0.1	0.1	0.1	0.1	0.1	0.1
N ₂ O	0.3	0.4	0.4	0.4	0.3	0.4	0.4
HFCs	0.0	0.1	0.1	0.1	0.1	0.1	0.1
Other Emissions from							
Electric Power ^d	0.1	+	+	+	+	0.1	0.1
Pipelines ^e	36.0	32.4	39.4	38.5	39.2	41.3	49.2
CO ₂	36.0	32.4	39.4	38.5	39.2	41.3	49.2
Lubricants	11.8	10.2	10.0	11.0	10.4	9.6	9.3
CO ₂	11.8	10.2	10.0	11.0	10.4	9.6	9.3
Total Transportation	1,530.2	1,978.3	1,796.2	1,804.6	1,839.9	1,856.9	1,865.0
International Bunker Fuels ^f	54.8	44.7	28.7	31.6	35.0	34.6	32.5
Ethanol CO ₂ g	4.1	21.6	74.0	74.2	76.9	77.7	77.5
Biodiesel CO ₂ ^g	0.0	0.9	13.3	14.1	19.6	18.7	17.9
L Doos not exceed 0.05 MM							

+ Does not exceed 0.05 MMT CO_2 Eq.

^a Consists of emissions from jet fuel consumed by domestic operations of commercial aircraft (no bunkers).

^b Consists of emissions from jet fuel and aviation gasoline consumption by general aviation and military aircraft.

^c Fluctuations in emission estimates are associated with fluctuations in reported fuel consumption and may reflect issues with data sources.

^d Other emissions from electric power are a result of waste incineration (as the majority of municipal solid waste is combusted in "trash-to-steam" electric power plants), electrical transmission and distribution, and a portion of Other Process Uses of Carbonates (from pollution control equipment installed in electric power plants).

 $^{\rm e}$ CO₂ estimates reflect natural gas used to power pipelines, but not electricity. While the operation of pipelines produces CH₄ and N₂O, these emissions are not directly attributed to pipelines in the Inventory.

^f Emissions from International Bunker Fuels include emissions from both civilian and military activities; these emissions are not included in the transportation totals.

^g Ethanol and biodiesel CO₂ estimates are presented for informational purposes only. See Section 3.11 and the estimates in Land Use, Land-Use Change, and Forestry (see Chapter 6), in line with IPCC methodological guidance and UNFCCC reporting obligations, for more information on ethanol and biodiesel.

Notes: Passenger cars and light-duty trucks include vehicles typically used for personal travel and less than 8,500 lbs; medium- and heavy-duty trucks include vehicles larger than 8,500 lbs. HFC emissions primarily reflect HFC-134a. Totals may not sum due to independent rounding.

1 Commercial

- 2 The commercial end-use sector, with electricity-related emissions distributed, accounts for 16.2 percent of U.S.
- 3 greenhouse gas emissions in 2018 and is heavily reliant on electricity for meeting energy needs, with electricity use
- 4 for lighting, heating, air conditioning, and operating appliances. The remaining emissions were largely due to the
- 5 direct consumption of natural gas and petroleum products, primarily for heating and cooking needs. Energy-
- 6 related emissions from the commercial sector have generally been increasing since 1990, and annual variations are
- 7 often correlated with short-term fluctuations in energy use caused by weather conditions, rather than prevailing
- 8 economic conditions. Decreases in energy-related emissions in the commercial sector in recent years can be
- 9 largely attributed to an overall reduction in energy use driven by a reduction in heating degree days and increases
- 10 in energy efficiency.
- 11 Landfills and wastewater treatment are included in the commercial sector, with landfill emissions decreasing since
- 12 1990 and wastewater treatment emissions decreasing slightly.

13 Residential

- 14 The residential end-use sector, with electricity-related emissions distributed, accounts for 15.6 percent of U.S.
- 15 greenhouse gas emissions in 2018 and similarly, is heavily reliant on electricity for meeting energy needs, with
- 16 electricity use for lighting, heating, air conditioning, and operating appliances. The remaining emissions were
- 17 largely due to the direct consumption of natural gas and petroleum products, primarily for heating and cooking
- 18 needs. Emissions from the residential sector have generally been increasing since 1990, and annual variations are
- 19 often correlated with short-term fluctuations in energy use caused by weather conditions, rather than prevailing
- 20 economic conditions. In the long term, the residential sector is also affected by population growth, migration
- 21 trends toward warmer areas, and changes in housing and building attributes (e.g., larger sizes and improved
- insulation). A shift toward energy-efficient products and more stringent energy efficiency standards for household
- equipment has also contributed to recent trends in energy demand in households (EIA 2018).

24 Agriculture

- 25 The agriculture end-use sector accounts for 10.5 percent of U.S. greenhouse gas emissions in 2018 when
- 26 electricity-related emissions are distributed, and includes a variety of processes, including enteric fermentation in
- 27 domestic livestock, livestock manure management, and agricultural soil management. In 2018, agricultural soil
- 28 management was the largest source of N₂O emissions, and enteric fermentation was the largest source of CH₄
- 29 emissions in the United States. This sector also includes small amounts of CO₂ emissions from fossil fuel
- 30 combustion by motorized farm equipment such as tractors.

31 Box 2-1: Methodology for Aggregating Emissions by Economic Sector

In presenting the Economic Sectors in the annual *Inventory of U.S. Greenhouse Gas Emissions and Sinks*, the Inventory expands upon the standard IPCC sectors common for UNFCCC reporting. Discussing greenhouse gas emissions relevant to U.S.-specific economic sectors improves communication of the report's findings.

The *Electric Power* economic sector includes CO_2 emissions from the combustion of fossil fuels that are included in the EIA electric power sector. Stationary combustion emissions of CH₄ and N₂O are also based on the EIA electric power sector. Additional sources include CO_2 , CH₄, and N₂O from waste incineration, as the majority of municipal solid waste is combusted in plants that produce electricity. The Electric Power economic sector also includes SF₆ from Electrical Transmission and Distribution, and a portion of CO₂ from Other Process Uses of Carbonates (from pollution control equipment installed in electric power plants). The *Transportation* economic sector includes CO₂ emissions from the combustion of fossil fuels that are included in the EIA transportation fuel-consuming sector. (Additional analyses and refinement of the EIA data are further explained in the Energy chapter of this report.) Emissions of CH₄ and N₂O from mobile combustion are also apportioned to the Transportation economic sector based on the EIA transportation fuel-consuming sector. Substitution of Ozone Depleting Substances emissions are apportioned to the Transportation economic sector based on emissions from refrigerated transport and motor vehicle air-conditioning systems. Finally, CO₂ emissions from Non-Energy Uses of Fossil Fuels identified as lubricants for transportation vehicles are included in the Transportation economic sector.

The *Industry* economic sector includes CO₂ emissions from the combustion of fossil fuels that are included in the EIA industrial fuel-consuming sector, minus the agricultural use of fuel explained below. The CH₄ and N₂O emissions from stationary and mobile combustion are also apportioned to the Industry economic sector based on the EIA industrial fuel-consuming sector, minus emissions apportioned to the Agriculture economic sector. Substitution of Ozone Depleting Substances emissions are apportioned based on their specific end-uses within the source category, with most emissions falling within the Industry economic sector.

Additionally, all process-related emissions from sources with methods considered within the IPCC IPPU sector are apportioned to the Industry economic sector. This includes the process-related emissions (i.e., emissions from the actual process to make the material, not from fuels to power the plant) from activities such as Cement Production, Iron and Steel Production and Metallurgical Coke Production, and Ammonia Production. Additionally, fugitive emissions from energy production sources, such as Natural Gas Systems, Coal Mining, and Petroleum Systems are included in the Industry economic sector. A portion of CO₂ from Other Process Uses of Carbonates (from pollution control equipment installed in large industrial facilities) is also included in the Industry economic sector. Finally, all remaining CO₂ emissions from Non-Energy Uses of Fossil Fuels are assumed to be industrial in nature (besides the lubricants for transportation vehicles specified above) and are attributed to the Industry economic sector.

The Agriculture economic sector includes CO₂ emissions from the combustion of fossil fuels that are based on supplementary sources of agriculture fuel use data, because EIA does not include an agriculture fuel-consuming sector. Agriculture equipment is included in the EIA industrial fuel-consuming sector. Agriculture fuel use estimates are obtained from U.S. Department of Agriculture survey data, in combination with separate EIA fuel sales reports (USDA 2019; EIA 2019b). These supplementary data are subtracted from the industrial fuel use reported by EIA to obtain agriculture fuel use. CO₂ emissions from fossil fuel combustion, and CH₄ and N₂O emissions from stationary and mobile combustion, are then apportioned to the Agriculture economic sector based on agricultural fuel use.

The other IPCC Agriculture emission source categories apportioned to the Agriculture economic sector include N₂O emissions from Agricultural Soils, CH₄ from Enteric Fermentation, CH₄ and N₂O from Manure Management, CH₄ from Rice Cultivation, CO₂ emissions from Liming and Urea Application, and CH₄ and N₂O from Field Burning of Agricultural Residues.

The *Residential* economic sector includes CO₂ emissions from the combustion of fossil fuels that are included in the EIA residential fuel-consuming sector. Stationary combustion emissions of CH₄ and N₂O are also based on the EIA residential fuel-consuming sector. Substitution of Ozone Depleting Substances are apportioned to the Residential economic sector based on emissions from residential air-conditioning systems. Nitrous oxide emissions from the application of fertilizers to developed land (termed "settlements" by the IPCC) are also included in the Residential economic sector.

The *Commercial* economic sector includes CO₂ emissions from the combustion of fossil fuels that are included in the EIA commercial fuel-consuming sector. Emissions of CH₄ and N₂O from Mobile Combustion are also apportioned to the Commercial economic sector based on the EIA commercial fuel-consuming sector. Substitution of Ozone Depleting Substances emissions are apportioned to the Commercial economic sector based on emissions from commercial refrigeration/air-conditioning systems. Public works sources, including direct CH₄ from Landfills, CH₄ and N₂O from Wastewater Treatment, and Composting, are also included in the Commercial economic sector.

2 3

Box 2-2: Recent Trends in Various U.S. Greenhouse Gas Emissions-Related Data

Total greenhouse gas emissions can be compared to other economic and social indices to highlight changes over time. These comparisons include: (1) emissions per unit of aggregate energy use, because energy-related activities are the largest sources of emissions; (2) emissions per unit of fossil fuel consumption, because almost all energy-related emissions involve the combustion of fossil fuels; (3) emissions per unit of electricity use, because the electric power industry—utilities and non-utilities combined—was the second largest source of emissions in 2018; (4) emissions per unit of total gross domestic product as a measure of national economic activity; and (5) emissions per capita.

Table 2-14 provides data on various statistics related to U.S. greenhouse gas emissions normalized to 1990 as a baseline year. These values represent the relative change in each statistic since 1990. Greenhouse gas emissions in the United States have grown at an average annual rate of 0.2 percent since 1990, although changes from year to year have been significantly larger. This growth rate is slightly slower than that for total energy use and fossil fuel consumption, and much slower than that for electricity use, overall gross domestic product (GDP) and national population (see Table 2-14 and Figure 2-16). The direction of these trends started to change after 2005, when greenhouse gas emissions, total energy use and fossil fuel consumption began to peak. Greenhouse gas emissions in the United States have decreased at an average annual rate of 0.7 percent since 2005. Fossil fuel consumption has also decreased at a slower rate than emissions since 2005, while electricity use, total energy use, GDP, and national population continued to increase.

								Avg. Annual Change	Avg. Annual Change
Variable	1990	2005	2014	2015	2016	2017	2018	Since 1990 ^a	Since 2005 ^a
Greenhouse Gas Emissions ^b	100	115	106	104	101	101	104	0.2%	-0.7%
Energy Use ^c	100	118	117	116	116	116	120	0.7%	0.1%
Fossil Fuel Consumption ^c	100	119	111	110	109	108	113	0.4%	-0.4%
Electricity Use ^c	100	134	138	137	138	136	139	1.2%	0.3%
GDP ^d	100	159	181	186	189	193	199	2.5%	1.7%
Population ^e	100	118	127	128	129	130	131	1.0%	0.8%

Table 2-14: Recent Trends in Various U.S. Data (Index 1990 = 100)

^a Average annual growth rate.

^b GWP-weighted values.

^c Energy-content-weighted values (EIA 2019a).

^d GDP in chained 2009 dollars (BEA 2019).

^e U.S. Census Bureau (2019).

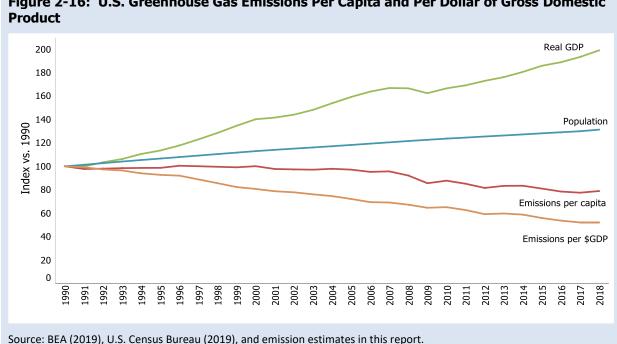


Figure 2-16: U.S. Greenhouse Gas Emissions Per Capita and Per Dollar of Gross Domestic

2.3 Precursor Greenhouse Gas Emissions (CO, 2 NO_x, NMVOCs, and SO₂) 3

The reporting requirements of the UNFCCC⁹ request that information be provided on indirect greenhouse gases, 4 5 which include CO, NO_x, NMVOCs, and SO₂. These gases are not direct greenhouse gases, but indirectly affect 6 terrestrial radiation absorption by influencing the formation and destruction of tropospheric and stratospheric 7 ozone, or, in the case of SO₂, by affecting the absorptive characteristics of the atmosphere. Additionally, some of 8 these gases may react with other chemical compounds in the atmosphere to form compounds that are greenhouse 9 gases. Carbon monoxide is produced when carbon-containing fuels are combusted incompletely. Nitrogen oxides 10 (i.e., NO and NO₂) are created by lightning, fires, fossil fuel combustion, and in the stratosphere from N₂O. Non-11 methane volatile organic compounds—which include hundreds of organic compounds that participate in 12 atmospheric chemical reactions (i.e., propane, butane, xylene, toluene, ethane, and many others)—are emitted 13 primarily from transportation, industrial processes, and non-industrial consumption of organic solvents. In the 14 United States, SO₂ is primarily emitted from coal combustion for electric power generation and the metals 15 industry. Sulfur-containing compounds emitted into the atmosphere tend to exert a negative radiative forcing (i.e., 16 cooling) and therefore are discussed separately. 17 One important indirect climate change effect of NMVOCs and NOx is their role as precursors for tropospheric 18 ozone formation. They can also alter the atmospheric lifetimes of other greenhouse gases. Another example of

19 indirect greenhouse gas formation into greenhouse gases is the interaction of CO with the hydroxyl radical—the

⁹ See <http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>.

1 major atmospheric sink for CH₄ emissions—to form CO₂. Therefore, increased atmospheric concentrations of CO

2 limit the number of hydroxyl molecules (OH) available to destroy CH₄.

3 Since 1970, the United States has published estimates of emissions of CO, NO_x, NMVOCs, and SO₂ (EPA 2019b),¹⁰

4 which are regulated under the Clean Air Act. Table 2-15 shows that fuel combustion accounts for the majority of

5 emissions of these indirect greenhouse gases. Industrial processes—such as the manufacture of chemical and

allied products, metals processing, and industrial uses of solvents—are also significant sources of CO, NO_x, and
 NMVOCs.

8 Table 2-15: Emissions of NO_x, CO, NMVOCs, and SO₂ (kt)

Gas/Activity	1990	2005	2014	2015	2016	2017	2018
NO _x	21,738	17,338	10,797	10,286	9,572	9,293	8,892
Mobile Fossil Fuel Combustion	10,862	10,295	6,138	5,740	5,413	5,051	4,689
Stationary Fossil Fuel Combustion	10,023	5,858	3,313	3,036	2,876	2,757	2,719
Oil and Gas Activities	139	321	650	650	650	650	650
Industrial Processes and Product	592	572	414	414	414	414	414
Forest Fires	22	127	142	312	87	289	289
Waste Combustion	82	128	97	97	97	97	97
Grassland Fires	5	21	27	21	19	21	20
Agricultural Burning	12	14	14	13	13	13	13
Waste	+	2	2	2	2	2	2
со	130,943	71,745	47,328	52,310	41,871	47,438	45,749
Mobile Fossil Fuel Combustion	119,360	58,615	34,135	33,159	30,786	29,112	27,438
Forest Fires	801	4,507	5,055	11,125	3,092	10,314	10,314
Stationary Fossil Fuel Combustion	5,000	4,648	3,686	3,686	3,686	3,686	3,686
Waste Combustion	978	1,403	1,776	1,776	1,776	1,776	1,776
Industrial Processes and Product	4,129	1,557	1,251	1,251	1,251	1,251	1,251
Oil and Gas Activities	302	318	637	637	637	637	637
Grassland Fires	84	358	442	356	324	345	331
Agricultural Burning	287	332	338	311	310	308	308
Waste	1	7	8	8	8	8	8
NMVOCs	20,930	13,154	11,130	10,965	10,718	10,513	10,307
Industrial Processes and Product	7,638	5,849	3,815	3,815	3,815	3,815	3,815
Mobile Fossil Fuel Combustion	10,932	5,724	3,754	3,589	3,342	3,137	2,931
Oil and Gas Activities	554	510	2,853	2,853	2,853	2,853	2,853
Stationary Fossil Fuel Combustion	912	716	497	497	497	497	497
Waste Combustion	222	241	143	143	143	143	143
Waste	673	114	68	68	68	68	68
Agricultural Burning	NA	NA	NA	NA	NA	NA	NA
SO ₂	20,935	13,196	4,240	3,342	2,685	2,548	2,481
Stationary Fossil Fuel Combustion	18,407	11,541	3,532	2,635	1,978	1,841	1,774
Industrial Processes and Product	1,307	831	497	497	497	497	497
Oil and Gas Activities	390	180	94	94	94	94	94
Mobile Fossil Fuel Combustion	793	619	88	87	87	87	87
Waste Combustion	38	25	27	27	27	27	27
Waste	+	1	1	1	1	1	1
Agricultural Burning	NA	NA	NA	NA	NA	NA	NA

+ Does not exceed 0.5 kt.

NA (Not Available)

Note: Totals may not sum due to independent rounding.

Source: (EPA 2019b) except for estimates from Forest Fires, Grassland Fires, and Field Burning of Agricultural Residues.

 $^{^{10}}$ NO_x and CO emission estimates from Field Burning of Agricultural Residues were estimated separately, and therefore not taken from EPA (2019).

1 Box 2-3: Sources and Effects of Sulfur Dioxide

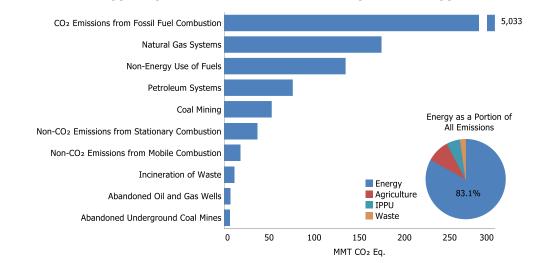
Sulfur dioxide (SO₂) emitted into the atmosphere through natural and anthropogenic processes affects the earth's radiative budget through its photochemical transformation into sulfate aerosols that can:

- (1) scatter radiation from the sun back to space, thereby reducing the radiation reaching the earth's surface;
- (2) affect cloud formation; and
- (3) affect atmospheric chemical composition (e.g., by providing surfaces for heterogeneous chemical reactions).

The indirect effect of sulfur-derived aerosols on radiative forcing can be considered in two parts. The first indirect effect is the aerosols' tendency to decrease water droplet size and increase water droplet concentration in the atmosphere. The second indirect effect is the tendency of the reduction in cloud droplet size to affect precipitation by increasing cloud lifetime and thickness. Although still highly uncertain, the radiative forcing estimates from both the first and the second indirect effect are believed to be negative, as is the combined radiative forcing of the two (IPCC 2013).

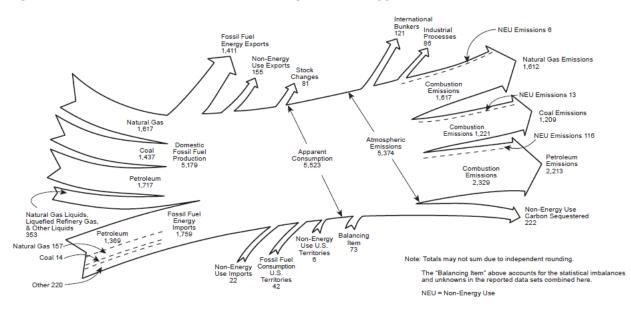
Sulfur dioxide is also a major contributor to the formation of regional haze, which can cause significant increases in acute and chronic respiratory diseases. Once SO_2 is emitted, it is chemically transformed in the atmosphere and returns to the earth as the primary source of acid rain. Because of these harmful effects, the United States has regulated SO_2 emissions in the Clean Air Act.

Electric power is the largest anthropogenic source of SO₂ emissions in the United States, accounting for 47.8 percent in 2018. Coal combustion contributes nearly all of those emissions (approximately 92 percent). Sulfur dioxide emissions have decreased in recent years, primarily as a result of electric power generators switching from high-sulfur to low-sulfur coal and installing flue gas desulfurization equipment.


¹ 3. Energy

- 2 Energy-related activities were the primary sources of U.S. anthropogenic greenhouse gas emissions, accounting for
- 3 83.1 percent of total greenhouse gas emissions on a carbon dioxide (CO₂) equivalent basis in 2018.¹ This included
- 4 97, 40, and 10 percent of the nation's CO₂, methane (CH₄), and nitrous oxide (N₂O) emissions, respectively. Energy-
- 5 related CO₂ emissions alone constituted 78.7 percent of national emissions from all sources on a CO₂ equivalent
- 6 basis, while the non-CO₂ emissions from energy-related activities represented a much smaller portion of total
- 7 national emissions (4.5 percent collectively).
- 8 Emissions from fossil fuel combustion comprise the vast majority of energy-related emissions, with CO₂ being the
- 9 primary gas emitted (see Figure 3-1). Globally, approximately 32,840 million metric tons (MMT) of CO₂ were added
- to the atmosphere through the combustion of fossil fuels in 2017, of which the United States accounted for
- approximately 16 percent.² Due to their relative importance, fossil fuel combustion-related CO₂ emissions are
- 12 considered separately and in more detail than other energy-related emissions (see Figure 3-2).
- 13 Fossil fuel combustion also emits CH₄ and N₂O. Stationary combustion of fossil fuels was the second largest source
- 14 of N₂O emissions in the United States and mobile fossil fuel combustion was the fourth largest source. Energy-
- related activities other than fuel combustion, such as the production, transmission, storage, and distribution of
- 16 fossil fuels, also emit greenhouse gases. These emissions consist primarily of fugitive CH₄ from natural gas systems,
- 17 coal mining, and petroleum systems.

¹ Estimates are presented in units of million metric tons of carbon dioxide equivalent (MMT CO_2 Eq.), which weight each gas by its global warming potential, or GWP, value. See section on global warming potentials in the Executive Summary.


² Global CO₂ emissions from fossil fuel combustion were taken from International Energy Agency *CO*₂ *Emissions from Fossil Fuels Combustion Overview* https://webstore.iea.org/co2-emissions-from-fuel-combustion-2019> IEA (2019).

1 Figure 3-1: 2018 Energy Chapter Greenhouse Gas Sources (MMT CO₂ Eq.)

2

3 Figure 3-2: 2018 U.S. Fossil Carbon Flows (MMT CO₂ Eq.)

4

- 5 Table 3-1 summarizes emissions from the Energy sector in units of MMT CO₂ Eq., while unweighted gas emissions
- 6 in kilotons (kt) are provided in Table 3-2. Overall, emissions due to energy-related activities were 5,551.3 MMT CO₂
- 7 Eq. in 2018,³ an increase of 4.0 percent since 1990 and an increase of 3.1 percent since 2017.

8 Table 3-1: CO₂, CH₄, and N₂O Emissions from Energy (MMT CO₂ Eq.)

Gas/Source	1990	2005	2014	2015	2016	2017	2018
CO ₂	4,909.3	5,930.3	5,376.6	5,232.8	5,120.4	5,082.9	5,253.2
Fossil Fuel Combustion	4,740.0	5,740.7	5,185.9	5 <i>,</i> 033.0	4,942.9	4,893.9	5,033.3
Transportation	1,469.1	1,856.1	1,713.7	1,725.3	1,765.3	1,787.4	1,798.2
Electric Power	1,820.0	2,400.0	2,037.1	1,900.6	1,808.9	1,732.0	1,752.8
Industrial	857.0	850.1	813.6	802.0	801.7	806.0	846.7

³ Following the current reporting requirements under the UNFCCC, this Inventory report presents CO₂ equivalent values based on the *IPCC Fourth Assessment Report* (AR4) GWP values. See the Introduction chapter for more information.

Residential	338.2	357.9	347.1	318.1	293.2	294.2	335.9
Commercial	228.2	226.9	233.0	245.6	232.4	232.9	258.3
U.S. Territories	27.6	49.7	41.4	41.4	41.4	41.4	41.4
Non-Energy Use of Fuels	119.5	139.7	120.0	127.0	113.7	123.1	134.5
Petroleum Systems	9.6	12.2	30.5	32.6	23.0	24.5	39.4
Natural Gas Systems	32.2	25.3	29.6	29.3	29.9	30.4	34.9
Incineration of Waste	8.0	12.5	10.4	10.8	10.9	11.1	11.1
Abandoned Oil and Gas							
Wells	+	+	+	+	+	+	+
Biomass-Wood ^a	215.2	206.9	233.8	224.7	216.3	221.4	229.1
International Bunker							
Fuels ^b	103.5	113.1	103.4	110.9	116.6	120.1	122.1
Biofuels-Ethanol ^a	4.2	22.9	76.1	78.9	81.2	82.1	81.9
Biofuels-Biodiesel ^a	0.0	0.9	13.3	14.1	19.6	18.7	17.9
CH₄	361.3	292.0	275.6	269.3	258.0	257.2	254.0
Natural Gas Systems	183.2	158.1	141.1	141.8	139.9	139.1	139.7
Coal Mining	96.5	64.1	64.6	61.2	53.8	54.8	52.7
Petroleum Systems	46.2	38.8	43.5	40.6	38.9	38.8	36.6
Stationary Combustion	8.6	7.8	8.9	8.5	7.9	7.8	8.7
Abandoned Oil and Gas							
Wells	6.6	7.0	7.1	7.1	7.2	7.1	7.0
Abandoned Underground							
Coal Mines	7.2	6.6	6.3	6.4	6.7	6.4	6.2
Mobile Combustion	12.9	9.6	4.1	3.6	3.4	3.3	3.1
Incineration of Waste	+	+	+	+	+	+	+
International Bunker							
Fuels ^b	0.2	0.1	0.1	0.1	0.1	0.1	0.1
N ₂ O	67.6	72.1	53.1	49.2	47.8	45.2	44.1
Stationary Combustion	25.1	34.3	33.0	30.5	30.0	28.6	28.4
Mobile Combustion	42.0	37.3	19.7	18.3	17.4	16.3	15.2
Incineration of Waste	0.5	0.4	0.3	0.3	0.3	0.3	0.3
Petroleum Systems	+	+	+	+	+	+	0.1
Natural Gas Systems	+	+	+	+	+	+	+
International Bunker							
Fuels ^b	0.9	1.0	0.9	1.0	1.0	1.1	1.1
Total	5,338.2	6,294.4	5,705.2	5,551.3	5,426.1	5,385.4	5,551.3

+ Does not exceed 0.05 MMT CO₂ Eq.

^a Emissions from Wood Biomass, Ethanol, and Biodiesel Consumption are not included specifically in summing Energy sector totals. Net carbon fluxes from changes in biogenic carbon reservoirs are accounted for in the estimates for LULUCF.

^b Emissions from International Bunker Fuels are not included in totals. These values are presented for informational purposes only, in line with the 2006 IPCC Guidelines and UNFCCC reporting obligations. Note: Totals may not sum due to independent rounding.

1 Table 3-2: CO₂, CH₄, and N₂O Emissions from Energy (kt)

Gas/Source	1990	2005	2014	2015	2016	2017	2018
CO ₂	4,909,315	5,930,305	5,376,563	5,232,784	5,120,363	5,082,922	5,253,194
Fossil Fuel Combustion	4,740,025	5,740,669	5,185,935	5,033,016	4,942,850	4,893,863	5,033,347
Non-Energy Use of							
Fuels	119,530	139,707	120,030	127,027	113,717	123,104	134,458
Petroleum Systems	9,630	12,163	30,536	32,644	22,980	24,473	39,373
Natural Gas Systems	32,173	25,291	29,620	29,334	29,890	30,364	34,897
Incineration of Waste	7,951	12,469	10,435	10,756	10,919	11,111	11,113
Abandoned Oil and Gas							
Wells	6	7	7	7	7	7	7
Biomass-Wood ^a	215,186	206,901	233,762	224,730	216,293	221,432	229,085

International Bunker							
Fuels ^b	103,463	113,139	103,400	110,887	116,594	120,107	122,088
Biofuels-Ethanol ^a	4,227	22,943	76,075	78,934	81,250	82,088	81,917
Biofuels-Biodiesel ^a	0	856	13,349	14,077	19,648	18,705	17,936
CH₄	14,451	11,681	11,024	10,773	10,319	10,289	10,162
Natural Gas Systems	7,330	6,325	5,643	5,674	5,596	5,562	5,586
Coal Mining	3,860	2,565	2,583	2,449	2,154	2,191	2,109
Petroleum Systems	1,849	1,553	1,740	1,623	1,557	1,552	1,464
Stationary Combustion	344	313	355	340	318	312	348
Abandoned Oil and Gas							
Wells	263	278	284	286	289	282	281
Abandoned							
Underground Coal							
Mines	288	264	253	256	268	257	247
Mobile Combustion	518	383	166	146	138	131	125
Incineration of Waste	+	+	+	+	+	+	+
International Bunker							
Fuels ^b	7	5	3	4	4	4	4
N ₂ O	227	242	178	165	160	152	148
Stationary Combustion	84	115	111	102	101	96	95
Mobile Combustion	141	125	66	62	58	55	51
Incineration of Waste	2	1	1	1	1	1	1
Petroleum Systems	+	+	+	+	+	+	+
Natural Gas Systems	+	+	+	+	+	+	+
International Bunker							
Fuels ^b	3	3	3	3	3	4	4

+ Does not exceed 0.5 kt.

^a Emissions from Wood Biomass, Ethanol, and Biodiesel Consumption are not included specifically in summing Energy sector totals. Net carbon fluxes from changes in biogenic carbon reservoirs are accounted for in the estimates for LULUCF.
 ^b Emissions from International Bunker Fuels are not included in totals. These values are presented for informational purposes only, in line with the 2006 IPCC Guidelines and UNFCCC reporting obligations.
 Note: Totals may not sum due to independent rounding.

1 Each year, some emission and sink estimates in the Inventory are recalculated and revised with improved methods

2 and/or data. In general, recalculations are made to the U.S. greenhouse gas emission estimates either to

3 incorporate new methodologies or, most commonly, to update recent historical data. These improvements are

4 implemented consistently across the previous Inventory's time series (i.e., 1990 to 2017) to ensure that the trend

5 is accurate. Updates to CO₂ emissions from Fossil Fuel Combustion in the Energy sector resulted in an average

6 change over the time series of about 6 MMT CO₂ Eq. For more information on specific methodological updates,

7 please see the Recalculations for each category, in this chapter.

8 Box 3-1: Methodological Approach for Estimating and Reporting U.S. Emissions and Removals

In following the United Nations Framework Convention on Climate Change (UNFCCC) requirement under Article 4.1 to develop and submit national greenhouse gas emission inventories, the emissions and removals presented in this report and this chapter, are organized by source and sink categories and calculated using internationally-accepted methods provided by the Intergovernmental Panel on Climate Change (IPCC) in the *2006 IPCC Guidelines for National Greenhouse Gas Inventories (2006 IPCC Guidelines)*. Additionally, the calculated emissions and removals in a given year for the United States are presented in a common manner in line with the UNFCCC reporting guidelines for the reporting of inventories under this international agreement. The use of consistent methods to calculate emissions and removals by all nations providing their inventories to the UNFCCC ensures that these reports are comparable. The presentation of emissions and removals provided in the Energy chapter do not preclude alternative examinations, but rather, this Inventory presents emissions and removals in a common format consistent with how countries are to report Inventories under the UNFCCC. The report itself, and this chapter, follows this standardized format, and provides an explanation of the application of methods used to calculate emissions and removals from energy-related activities.

2

Box 3-2: Energy Data from EPA's Greenhouse Gas Reporting Program

On October 30, 2009, the U.S. Environmental Protection Agency (EPA) published a rule requiring annual reporting of greenhouse gas data from large greenhouse gas emission sources in the United States. Implementation of the rule, codified at 40 CFR Part 98, is referred to as EPA's Greenhouse Gas Reporting Program (GHGRP). The rule applies to direct greenhouse gas emitters, fossil fuel suppliers, industrial gas suppliers, and facilities that inject CO₂ underground for sequestration or other reasons and requires reporting by sources or suppliers in 41 industrial categories. Annual reporting is at the facility level, except for certain suppliers of fossil fuels and industrial greenhouse gases. Data reporting by affected facilities includes the reporting of emissions from fuel combustion at that affected facility. In general, the threshold for reporting is 25,000 metric tons or more of CO₂ Eq. per year.

EPA's GHGRP dataset and the data presented in this Inventory are complementary. The GHGRP dataset continues to be an important resource for the Inventory, providing not only annual emissions information, but also other annual information, such as activity data and emission factors that can improve and refine national emission estimates and trends over time. GHGRP data also allow EPA to disaggregate national inventory estimates in new ways that can highlight differences across regions and sub-categories of emissions, along with enhancing application of QA/QC procedures and assessment of uncertainties.

EPA uses annual GHGRP data in a number of Energy Sector categories to improve the national estimates presented in this Inventory consistent with IPCC guidelines (see Box 3-4 of this Chapter, Section 3.4 Coal Mining, 3.6 Petroleum Systems, and 3.7 Natural Gas Systems).⁴ Methodologies used in EPA's GHGRP are consistent with IPCC, including higher tier methods. Under EPA's GHGRP, facilities collect detailed information specific to their operations according to detailed measurement standards. It should be noted that the definitions and provisions for reporting fuel types in EPA's GHGRP may differ from those used in the Inventory in meeting the UNFCCC reporting guidelines. In line with the UNFCCC reporting guidelines, the Inventory report is a comprehensive accounting of all emissions from fuel types identified in the IPCC guidelines and provides a separate reporting of emissions from biomass.

In addition to using GHGRP data to estimate emissions (Section 3.4 Coal Mining, 3.6 Petroleum Systems, and 3.7 Natural Gas Systems), EPA also uses the GHGRP fuel consumption activity data in the Energy sector to disaggregate industrial end-use sector emissions in the category of CO₂ Emissions from Fossil Fuel Combustion, for use in reporting emissions in Common Reporting Format (CRF) tables (See Box 3-4). The industrial end-use sector activity data collected for the Inventory (EIA 2019) represent aggregated data for the industrial end-use sector. EPA's GHGRP collects industrial fuel consumption activity data by individual categories within the industrial end-use sector. Therefore, the GHGRP data are used to provide a more detailed breakout of total emissions in the industrial end-use sector within that source category.

As indicated in the respective Planned Improvements sections for source categories in this chapter, EPA continues to examine the uses of facility-level GHGRP data to improve the national estimates presented in this Inventory. See Annex 9 for more information on use of EPA's GHGRP in the Inventory.

3

⁴ See <http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

3.1 Fossil Fuel Combustion (CRF Source Category 1A)

Emissions from the combustion of fossil fuels for energy include the gases CO₂, CH₄, and N₂O. Given that CO₂ is the 3 4 primary gas emitted from fossil fuel combustion and represents the largest share of U.S. total emissions, CO₂ 5 emissions from fossil fuel combustion are discussed at the beginning of this section. Following that is a discussion 6 of emissions of all three gases from fossil fuel combustion presented by sectoral breakdowns. Methodologies for 7 estimating CO₂ from fossil fuel combustion also differ from the estimation of CH₄ and N₂O emissions from 8 stationary combustion and mobile combustion. Thus, three separate descriptions of methodologies, uncertainties, 9 recalculations, and planned improvements are provided at the end of this section. Total CO₂, CH₄, and N₂O 10 emissions from fossil fuel combustion are presented in Table 3-3 and Table 3-4.

to emissions nom rossi ruei combustion are presented in rable 5-5 and rable 5-4.

Gas	1990	2005	2014	2015	2016	2017	2018
CO ₂	4,740.0	5,740.7	5,185.9	5,033.0	4,942.9	4,893.9	5,033.3
CH_4	21.5	17.4	13.0	12.1	11.4	11.1	11.8
N_2O	67.1	71.6	52.7	48.9	47.4	44.9	43.7
Total	4,828.7	5,829.7	5,251.7	5,094.0	5,001.7	4,949.8	5,088.8

Table 3-3: CO₂, CH₄, and N₂O Emissions from Fossil Fuel Combustion (MMT CO₂ Eq.)

Note: Totals may not sum due to independent rounding.

12 Table 3-4: CO₂, CH₄, and N₂O Emissions from Fossil Fuel Combustion (kt)

Gas	1990	2005	2014	2015	2016	2017	2018
CO ₂	4,740,025	5,740,669	5,185,935	5,033,016	4,942,850	4,893,863	5,033,347
CH_4	862	696	521	486	455	443	473
N_2O	225	240	177	164	159	151	147

13 CO₂ from Fossil Fuel Combustion

14 Carbon dioxide is the primary gas emitted from fossil fuel combustion and represents the largest share of U.S. total 15 greenhouse gas emissions. Carbon dioxide emissions from fossil fuel combustion are presented in Table 3-5. In 2018, CO₂ emissions from fossil fuel combustion increased by 2.9 percent relative to the previous year. The 16 17 increase in CO_2 emissions from fossil fuel consumption was a result of a 4.1 percent increase in total energy 18 consumption and reflects a continued shift from coal to natural gas. Carbon dioxide emissions from natural gas 19 consumption increased by 160.3 MMT CO₂ Eq. in 2018, an 11.0 percent increase from 2017, while CO₂ emissions 20 from coal consumption decreased by 4.7 percent. The increase in natural gas use and emissions in 2018 is 21 observed across all sectors and is primarily driven by increased energy consumption from greater heating and 22 cooling needs due to a colder winter and hotter summer in 2018 (in comparison to 2017). In 2018, CO₂ emissions from fossil fuel combustion were 5,033.3 MMT CO₂ Eq., or 6.2 percent above emissions in 1990 (see Table 3-5).⁵ 23 24 Table 3-5: CO₂ Emissions from Fossil Fuel Combustion by Fuel Type and Sector (MMT CO₂

25 **Eq.)**

11

Fuel/Sector	1990	2005	2014	2015	2016	2017	2018
Coal	1,717.3	2,111.2	1,652.4	1,424.7	1,307.5	1,267.5	1,208.5
Residential	3.0	0.8	NO	NO	NO	NO	NO
Commercial	12.0	9.3	3.8	3.0	2.3	2.0	1.8
Industrial	155.2	115.3	76.0	66.3	59.2	54.4	49.8

⁵ An additional discussion of fossil fuel emission trends is presented in the Trends in U.S. Greenhouse Gas Emissions chapter.

Transportation	NE						
Electric Power	1,546.5	1,982.8	1,568.6	1,351.4	1,242.0	1,207.1	1,152.9
U.S. Territories	0.6	3.0	4.0	4.0	4.0	4.0	4.0
Natural Gas	999.7	1,167.0	1,420.0	1,460.2	1,471.8	1,451.4	1,611.7
Residential	237.8	262.2	277.7	252.7	238.4	241.5	273.7
Commercial	142.0	162.9	189.2	175.4	170.5	173.2	192.6
Industrial	408.5	388.6	467.1	464.4	474.8	485.8	514.8
Transportation	36.0	33.1	40.2	39.4	40.1	42.3	50.2
Electric Power	175.4	318.9	442.9	525.2	545.0	505.6	577.4
U.S. Territories	NO	1.3	3.0	3.0	3.0	3.0	3.0
Petroleum	2,022.4	2,462.1	2,113.0	2,147.7	2,163.1	2,174.5	2,212.7
Residential	97.4	94.9	69.4	65.4	54.9	52.7	62.2
Commercial	74.2	54.7	40.0	67.3	59.6	57.8	63.9
Industrial	293.3	346.2	270.5	271.2	267.7	265.7	282.1
Transportation	1,433.1	1,823.0	1,673.5	1,685.9	1,725.2	1,745.2	1,748.1
Electric Power	97.5	97.9	25.3	23.7	21.4	18.9	22.2
U.S. Territories	26.9	45.4	34.3	34.3	34.3	34.3	34.3
Geothermal ^a	0.5	0.5	0.4	0.4	0.4	0.4	0.4
Total	4,740.0	5,740.7	5,185.9	5,033.0	4,942.9	4,893.9	5,033.3

NE (Not Estimated)

NO (Not Occurring)

^a Although not technically a fossil fuel, geothermal energy-related CO₂ emissions are included for reporting purposes. Note: Totals may not sum due to independent rounding.

1 Trends in CO₂ emissions from fossil fuel combustion are influenced by many long-term and short-term factors. On

2 a year-to-year basis, the overall demand for fossil fuels in the United States and other countries generally

3 fluctuates in response to changes in general economic conditions, energy prices, weather, and the availability of

4 non-fossil alternatives. For example, in a year with increased consumption of goods and services, low fuel prices,

5 severe summer and winter weather conditions, nuclear plant closures, and lower precipitation feeding

6 hydroelectric dams, there would likely be proportionally greater fossil fuel consumption than a year with poor

7 economic performance, high fuel prices, mild temperatures, and increased output from nuclear and hydroelectric

8 plants.

9 Longer-term changes in energy usage patterns, however, tend to be more a function of aggregate societal trends

10 that affect the scale of energy use (e.g., population, number of cars, size of houses, and number of houses), the

efficiency with which energy is used in equipment (e.g., cars, power plants, steel mills, and light bulbs), and social

12 planning and consumer behavior (e.g., walking, bicycling, or telecommuting to work instead of driving).

13 Carbon dioxide emissions also depend on the source of energy and its carbon (C) intensity. The amount of C in

14 fuels varies significantly by fuel type. For example, coal contains the highest amount of C per unit of useful energy.

15 Petroleum has roughly 75 percent of the C per unit of energy as coal, and natural gas has only about 55 percent.⁶

16 Table 3-6 shows annual changes in emissions during the last five years for coal, petroleum, and natural gas in

17 selected sectors.

⁶ Based on national aggregate carbon content of all coal, natural gas, and petroleum fuels combusted in the United States.

1 Table 3-6: Annual Change in CO₂ Emissions and Total 2018 CO₂ Emissions from Fossil Fuel 2 Combustion for Selected Fuels and Sectors (MMT CO₂ Eq. and Percent)

Sector	Fuel Type	2014	to 2015	2015	to 2016	2016 to 2017		2017	to 2018	Total 2018
Electric Power	Coal	-217.2	-13.8%	-109.4	-8.1%	-34.9	-2.8%	-54.2	-4.5%	1,152.9
Electric Power	Natural Gas	82.3	18.6%	19.8	3.8%	-39.4	-7.2%	71.7	14.2%	577.4
Electric Power	Petroleum	-1.6	-6.4%	-2.2	-9.3%	-2.5	-11.8%	3.3	17.4%	22.2
Transportation	Petroleum	12.4	0.7%	39.4	2.3%	19.9	1.2%	2.9	0.2%	1,748.1
Residential	Natural Gas	-24.9	-9.0%	-14.3	-5.7%	3.1	1.3%	32.3	13.4%	273.7
Commercial	Natural Gas	-13.8	-7.3%	-4.9	-2.8%	2.6	1.6%	19.4	11.2%	192.6
Industrial	Natural Gas	-2.6	-0.6%	10.4	2.2%	11.0	2.3%	29.0	6.0%	514.8
All Sectors ^a	All Fuels ^a	-152.9	-2.9%	-90.2	-1.8%	-49.0	-1.0%	139.5	2.9%	5,033.3

^a Includes sector and fuel combinations not shown in this table.

3 As shown in Table 3-6, recent trends in CO₂ emissions from fossil fuel combustion show a 2.9 percent decrease

- 4 from 2014 to 2015, then a 1.8 percent decrease from 2015 to 2016, a 1.0 percent decrease from 2016 to 2017, and
- 5 a 2.9 percent increase from 2017 to 2018. These changes contributed to an overall 2.9 percent decrease in CO₂

6 emissions from fossil fuel combustion from 2014 to 2018.

- 7 Trends in CO₂ emissions from fossil fuel combustion over the past five years have been largely driven by the
- 8 electric power sector, which historically has accounted for the largest portion of these emissions. The types of

9 fuels consumed to produce electricity have changed in recent years. Total electric power generation decreased by

10 1.5 percent from 2014 to 2017 but increased by 3.4 percent from 2017 to 2018. Emissions increased from 2017 to

11 2018 due to increasing electric power generation from natural gas and petroleum. Carbon dioxide emissions from

12 coal consumption for electric power generation decreased by 26.5 percent since 2014, which can be largely

13 attributed to a shift to the use of less-CO₂-intensive natural gas to generate electricity and a rapid increase in

14 renewable energy capacity additions in the electric power sector in recent years.

15 The trends in CO₂ emissions from fossil fuel combustion over the past five years also follow changes in heating

degree days. Emissions from natural gas consumption in the residential and commercial sectors increased by 13.4

17 percent and 11.2 percent from 2017 to 2018, respectively. This trend can be largely attributed to a 12 percent

18 increase in heating degree days, which led to an increased demand for heating fuel and electricity for heat in these

19 sectors. Industrial consumption of natural gas is dependent on market effects of supply and demand in addition to

20 weather-related heating needs. Electric power sector consumption of natural gas primarily increased due to

21 increased production capacity as natural gas-fired plants replaced coal-fired plants and increased electricity

22 demands related to heating and cooling needs (EIA 2018; EIA 2019d).

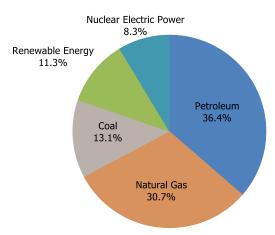
23 Petroleum use in the transportation sector is another major driver of emissions, representing the largest source of

24 CO₂ emissions from fossil fuel combustion in 2018. Emissions from petroleum consumption for transportation have

- increased by 4.5 percent since 2014 and are primarily attributed to a 7.1 percent increase in vehicle miles traveled
- 26 (VMT) over the same time period.
- 27 In the United States, 80 percent of the energy used in 2018 was produced through the combustion of fossil fuels

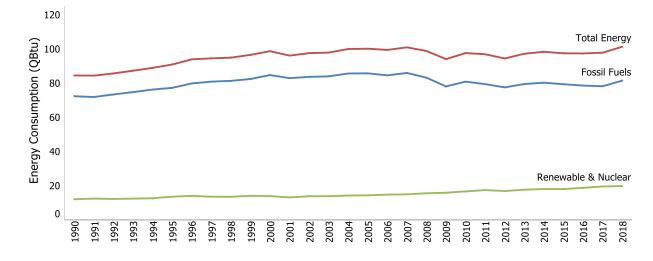
such as petroleum, natural gas, and coal (see Figure 3-3 and Figure 3-4). Specifically, petroleum supplied the

29 largest share of domestic energy demands, accounting for 36 percent of total U.S. energy used in 2018. Natural gas

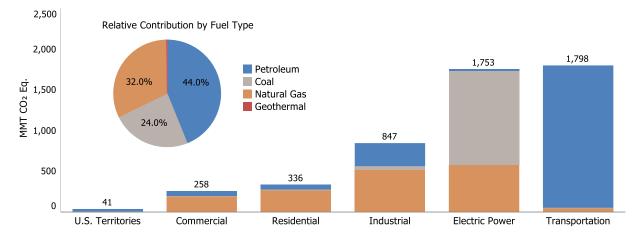

- 30 and coal followed in order of energy demand importance, accounting for approximately 31 percent and 13 percent
- of total U.S. energy used, respectively. Petroleum was consumed primarily in the transportation end-use sector
- 32 and the vast majority of coal was used in the electric power sector. Natural gas was broadly consumed in all end-
- use sectors except transportation (see Figure 3-5) (EIA 2019a). The remaining portion of energy used in 2018 was

34 supplied by nuclear electric power (8 percent) and by a variety of renewable energy sources (11 percent), primarily

35 hydroelectric power, wind energy, and biofuels (EIA 2019a).⁷


⁷ Renewable energy, as defined in EIA's energy statistics, includes the following energy sources: hydroelectric power, geothermal energy, biofuels, solar energy, and wind energy.

1 Figure 3-3: 2018 U.S. Energy Use by Energy Source (Percent)



3 Figure 3-4: U.S. Energy Use (Quadrillion Btu)

Figure 3-5: 2018 CO₂ Emissions from Fossil Fuel Combustion by Sector and Fuel Type (MMT CO₂ Eq.)

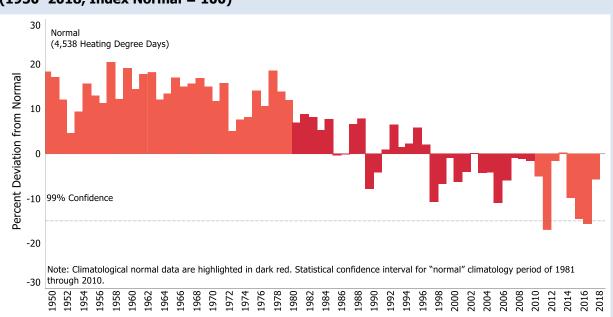
³

4 Fossil fuels are generally combusted for the purpose of producing energy for useful heat and work. During the

combustion process, the C stored in the fuels is oxidized and emitted as CO₂ and smaller amounts of other gases,
 including CH₄, carbon monoxide (CO), and non-methane volatile organic compounds (NMVOCs).⁸ These other C containing non-CO₂ gases are emitted as a byproduct of incomplete fuel combustion, but are, for the most part,
 eventually oxidized to CO₂ in the atmosphere. Therefore, it is assumed all of the C in fossil fuels used to produce

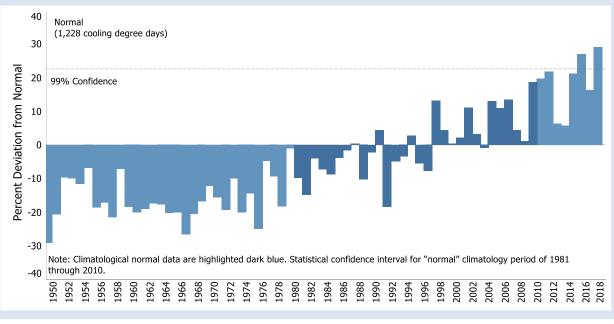
eventually oxidized to CO₂ in the atmosphere. Therefore, it is assumed all of the C in fossil fuels used to produce
 energy is eventually converted to atmospheric CO₂.

10


11

Box 3-3: Weather and Non-Fossil Energy Effects on CO₂ Emissions from Fossil Fuel Combustion Trends

The United States in 2018 experienced a significantly colder winter overall compared to 2017, as heating degree days increased 11.8 percent. Colder winter conditions compared to 2017 impacted the amount of energy required for heating. In 2018 heating degree days in the United States were 5.7 percent below normal (see Figure 3-6). Cooling degree days increased by 11.1 percent compared to 2017, which increased demand for air conditioning in the residential and commercial sector. Hotter summer conditions compared to 2017 impacted the amount of energy required for cooling, and 2018 cooling degree days in the United States were 29.2 percent above normal (see Figure 3-7) (EIA 2019a).⁹ The combination of colder winter and hotter summer conditions led to residential and commercial energy consumption increases of 14.2 and 10.9 percent, respectively.


⁸ See the sections entitled Stationary Combustion and Mobile Combustion in this chapter for information on non-CO₂ gas emissions from fossil fuel combustion.

⁹ Degree days are relative measurements of outdoor air temperature. Heating degree days are deviations of the mean daily temperature below 65 degrees Fahrenheit, while cooling degree days are deviations of the mean daily temperature above 65 degrees Fahrenheit. Heating degree days have a considerably greater effect on energy demand and related emissions than do cooling degree days. Excludes Alaska and Hawaii. Normals are based on data from 1981 through 2010. The variation in these normals during this time period was ±15 percent and ±23 percent for heating and cooling degree days, respectively (99 percent confidence interval).

Figure 3-6: Annual Deviations from Normal Heating Degree Days for the United States (1950–2018, Index Normal = 100)

Figure 3-7: Annual Deviations from Normal Cooling Degree Days for the United States (1950–2018, Index Normal = 100)

- 1 The carbon intensity of the electric power sector is impacted by the amount of non-fossil energy sources of
- 2 electricity. The utilization (i.e., capacity factors)¹⁰ of nuclear power plants in 2018 remained high at 93 percent. In
- 3 2018, nuclear power represented 20 percent of total electricity generation. Since 1990, the wind and solar power
- 4 sectors have shown strong growth (between an observed minimum of 89 percent annual electricity generation
- 5 growth to a maximum of 162 percent annual electricity generation growth), such that, they have become relatively
- 6 important electricity sources. Between 1990 and 2018, renewable energy generation (in kWh) from solar and wind
- 7 energy have increased from 0.1 percent in 1990 to 8 percent of total electricity generation in 2018, which helped
- 8 drive the decrease in the carbon intensity of the electricity supply in the United States.

9 Fossil Fuel Combustion Emissions by Sector

10 In addition to the CO₂ emitted from fossil fuel combustion, CH₄ and N₂O are emitted from stationary and mobile

combustion as well. Table 3-7 provides an overview of the CO₂, CH₄, and N₂O emissions from fossil fuel combustion
 by sector.

Table 3-7: CO₂, CH₄, and N₂O Emissions from Fossil Fuel Combustion by Sector (MMT CO₂ Eq.)

End-Use Sector	1990	2005	2014	2015	2016	2017	2018
Transportation	1,524.0	1,903.0	1,737.6	1,747.3	1,786.1	1,807.0	1,816.6
CO ₂	1,469.1	1,856.1	1,713.7	1,725.3	1,765.3	1,787.4	1,798.2
CH ₄	12.9	9.6	4.1	3.6	3.4	3.3	3.1
N ₂ O	42.0	37.3	19.7	18.3	17.4	16.3	15.2
Electric Power	1,840.9	2,430.9	2,067.1	1,928.3	1,836.2	1,757.9	1,778.5
CO ₂	1,820.0	2,400.0	2,037.1	1,900.6	1,808.9	1,732.0	1,752.8
CH ₄	0.4	0.9	1.1	1.2	1.2	1.1	1.2
N ₂ O	20.5	30.1	28.9	26.5	26.2	24.8	24.4
Industrial	861.9	854.7	817.9	806.2	805.9	810.2	851.0
CO ₂	857.0	850.1	813.6	802.0	801.7	806.0	846.7
CH ₄	1.8	1.7	1.6	1.6	1.6	1.6	1.6
N ₂ O	3.1	2.9	2.7	2.6	2.6	2.6	2.7
Residential	344.5	362.9	353.1	323.5	297.9	298.7	341.4
CO ₂	338.2	357.9	347.1	318.1	293.2	294.2	335.9
CH ₄	5.2	4.1	5.0	4.5	3.9	3.8	4.5
N ₂ O	1.0	0.9	1.0	0.9	0.8	0.8	0.9
Commercial	229.7	228.3	234.4	247.2	233.9	234.5	259.9
CO ₂	228.2	226.9	233.0	245.6	232.4	232.9	258.3
CH ₄	1.1	1.1	1.1	1.2	1.2	1.2	1.3
N ₂ O	0.4	0.3	0.3	0.4	0.3	0.3	0.4
U.S. Territories ^a	27.7	49.9	41.5	41.5	41.5	41.5	41.5
Total	4,828.7	5,829.7	5,251.7	5,094.0	5,001.7	4,949.8	5,088.8

^a U.S. Territories are not apportioned by sector, and emissions shown in the table are total greenhouse gas emissions from all fuel combustion sources.

Notes: Totals may not sum due to independent rounding.

15 Other than CO₂, gases emitted from stationary combustion include the greenhouse gases CH₄ and N₂O and

16 greenhouse gas precursors nitrogen oxides (NO_x), CO, and NMVOCs.¹¹ Methane and N₂O emissions from stationary

¹⁰ The capacity factor equals generation divided by net summer capacity. Summer capacity is defined as "The maximum output that generating equipment can supply to system load, as demonstrated by a multi-hour test, at the time of summer peak demand (period of June 1 through September 30)." Data for both the generation and net summer capacity are from EIA (2019e).

 $^{^{11}}$ Sulfur dioxide (SO₂) emissions from stationary combustion are addressed in Annex 6.3.

- 1 combustion sources depend upon fuel characteristics, size, and vintage, along with combustion technology,
- 2 pollution control equipment, ambient environmental conditions, and operation and maintenance practices.
- 3 Nitrous oxide emissions from stationary combustion are closely related to air-fuel mixes and combustion
- 4 temperatures, as well as the characteristics of any pollution control equipment that is employed. Methane
- 5 emissions from stationary combustion are primarily a function of the CH₄ content of the fuel and combustion
- 6 efficiency.
- 7 Mobile combustion also produces emissions of CH₄, N₂O, and greenhouse gas precursors including NO_x, CO, and
- 8 NMVOCs. As with stationary combustion, N₂O and NO_x emissions from mobile combustion are closely related to
- 9 fuel characteristics, air-fuel mixes, combustion temperatures, and the use of pollution control equipment. Nitrous
- 10 oxide from mobile sources, in particular, can be formed by the catalytic processes used to control NO_x, CO, and
- 11 hydrocarbon emissions. Carbon monoxide emissions from mobile combustion are significantly affected by
- 12 combustion efficiency and the presence of post-combustion emission controls. Carbon monoxide emissions are
- highest when air-fuel mixtures have less oxygen than required for complete combustion. These emissions occur
 especially in idle, low speed, and cold start conditions. Methane and NMVOC emissions from motor vehicles are a
- especially in idle, low speed, and cold start conditions. Methane and NMVOC emissions from motor vehicles are function of the CH₄ content of the motor fuel, the amount of hydrocarbons passing uncombusted through the
- 16 engine, and any post-combustion control of hydrocarbon emissions (such as catalytic converters).
- 17 An alternative method of presenting combustion emissions is to allocate emissions associated with electric power
- to the sectors in which it is used. Four end-use sectors were defined: transportation, industrial, residential, and
- 19 commercial. In the table below, electric power emissions have been distributed to each end-use sector based upon
- 20 the sector's share of national electricity use, with the exception of CH_4 and N_2O from transportation.¹² Emissions
- from U.S. Territories are also calculated separately due to a lack of end-use-specific consumption data.¹³ This
- 22 method assumes that emissions from combustion sources are distributed across the four end-use sectors based on
- the ratio of electricity use in that sector. The results of this alternative method are presented in Table 3-8.

Table 3-8: CO₂, CH₄, and N₂O Emissions from Fossil Fuel Combustion by End-Use Sector (MMT CO₂ Eq.)

End-Use Sector	1990	2005	2014	2015	2016	2017	2018
Transportation	1,527.1	1,907.7	1,742.0	1,751.5	1,790.3	1,811.3	1,821.3
CO ₂	1,472.1	1,860.8	1,718.2	1,729.5	1,769.5	1,791.7	1,803.0
CH ₄	12.9	9.6	4.1	3.6	3.4	3.3	3.1
N ₂ O	42.0	37.3	19.7	18.3	17.4	16.3	15.2
Industrial	1,556.3	1,600.5	1,419.6	1,363.8	1,331.3	1,322.2	1,345.4
CO ₂	1,543.5	1,586.4	1,406.6	1,351.5	1,319.3	1,310.4	1,334.0
CH ₄	2.0	2.0	1.9	1.9	1.9	1.9	2.0
N ₂ O	10.8	12.2	11.1	10.3	10.1	9.9	9.5
Residential	944.1	1,229.9	1,098.0	1,017.2	961.3	925.1	1,000.3
CO ₂	931.0	1,213.9	1,081.2	1,001.9	946.7	911.3	985.4
CH ₄	5.4	4.4	5.4	4.9	4.3	4.2	5.0
N ₂ O	7.7	11.6	11.4	10.5	10.3	9.6	10.0
Commercial	773.6	1,041.6	950.5	919.9	877.2	849.7	880.3
CO ₂	765.9	1,029.9	938.7	908.7	866.0	839.1	869.7
CH ₄	1.2	1.4	1.5	1.6	1.6	1.6	1.7
N ₂ O	6.5	10.4	10.3	9.6	9.5	9.0	8.9
U.S. Territories ^a	27.7	49.9	41.5	41.5	41.5	41.5	41.5
Total	4,828.7	5,829.7	5,251.7	5,094.0	5,001.7	4,949.8	5,088.8

 $^{^{12}}$ Separate calculations were performed for transportation-related CH_4 and $N_2O.$ The methodology used to calculate these emissions are discussed in the Mobile Combustion section.

¹³ U.S. Territories consumption data that are obtained from EIA are only available at the aggregate level and cannot be broken out by end-use sector. The distribution of emissions to each end-use sector for the 50 states does not apply to territories data.

^a U.S. Territories are not apportioned by sector, and emissions are total greenhouse gas emissions from all fuel combustion sources.

Notes: Totals may not sum due to independent rounding. Emissions from fossil fuel combustion by electric power are allocated based on aggregate national electricity use by each end-use sector.

1 Stationary Combustion

2 The direct combustion of fuels by stationary sources in the electric power, industrial, commercial, and residential

3 sectors represent the greatest share of U.S. greenhouse gas emissions. Table 3-9 presents CO₂ emissions from

4 fossil fuel combustion by stationary sources. The CO₂ emitted is closely linked to the type of fuel being combusted

5 in each sector (see Methodology section of CO₂ from Fossil Fuel Combustion). Other than CO₂, gases emitted from

 $6 \qquad stationary\ combustion\ include\ the\ greenhouse\ gases\ CH_4\ and\ N_2O.\ Table\ 3-10\ and\ Table\ 3-11\ present\ CH_4\ and\ N_2O.$

7 emissions from the combustion of fuels in stationary sources. The CH_4 and N_2O emission estimation methodology

8 utilizes facility-specific technology and fuel use data reported to EPA's Acid Rain Program (EPA 2019a) (see

9 Methodology section for CH₄ and N₂O from Stationary Combustion). Table 3-7 presents the corresponding direct
 10 CO₂, CH₄, and N₂O emissions from all sources of fuel combustion, without allocating emissions from electricity use

10 CO₂, CH₄, and N₂O emis11 to the end-use sectors.

12 Table 3-9: CO₂ Emissions from Stationary Fossil Fuel Combustion (MMT CO₂ Eq.)

Sector/Fuel Type	1990	2005	2014	2015	2016	2017	2018
Electric Power	1,820.0	2,400.0	2,037.1	1,900.6	1,808.9	1,732.0	1,752.8
Coal	1,546.5	1,982.8	1,568.6	1,351.4	1,242.0	1,207.1	1,152.9
Natural Gas	175.4	318.9	442.9	525.2	545.0	505.6	577.4
Fuel Oil	97.5	97.9	25.3	23.7	21.4	18.9	22.2
Geothermal	0.5	0.5	0.4	0.4	0.4	0.4	0.4
Industrial	857.0	850.1	813.6	802.0	801.7	806.0	846.7
Coal	155.2	115.3	76.0	66.3	59.2	54.4	49.8
Natural Gas	408.5	388.6	467.1	464.4	474.8	485.8	514.8
Fuel Oil	293.3	346.2	270.5	271.2	267.7	265.7	282.1
Commercial	228.2	226.9	233.0	245.6	232.4	232.9	258.3
Coal	12.0	9.3	3.8	3.0	2.3	2.0	1.8
Natural Gas	142.0	162.9	189.2	175.4	170.5	173.2	192.6
Fuel Oil	74.2	54.7	40.0	67.3	59.6	57.8	63.9
Residential	338.2	357.9	347.1	318.1	293.2	294.2	335.9
Coal	3.0	0.8	NO	NO	NO	NO	NO
Natural Gas	237.8	262.2	277.7	252.7	238.4	241.5	273.7
Fuel Oil	97.4	94.9	69.4	65.4	54.9	52.7	62.2
U.S. Territories	27.6	49.7	41.4	41.4	41.4	41.4	41.4
Coal	0.6	3.0	4.0	4.0	4.0	4.0	4.0
Natural Gas	NO	1.3	3.0	3.0	3.0	3.0	3.0
Fuel Oil	26.9	45.4	34.3	34.3	34.3	34.3	34.3
Total	3,270.9	3,884.6	3,472.2	3,307.7	3,177.5	3,106.4	3,235.1

NO (Not Occurring)

Note: Totals may not sum due to independent rounding.

13 Table 3-10: CH₄ Emissions from Stationary Combustion (MMT CO₂ Eq.)

Sector/Fuel Type	1990	2005	2014	2015	2016	2017	2018
Electric Power	0.4	0.9	1.1	1.2	1.2	1.1	1.2
Coal	0.3	0.4	0.3	0.3	0.2	0.2	0.2
Fuel Oil	+	+	+	+	+	+	+
Natural gas	0.1	0.5	0.8	0.9	0.9	0.9	1.0
Wood	+	+	+	+	+	+	+
Industrial	1.8	1.7	1.6	1.6	1.6	1.6	1.6

Total	8.6	7.8	8.9	8.5	7.9	7.8	8.7
Wood	NO						
Natural Gas	NO	+	+	+	+	+	+
Fuel Oil	+	0.1	0.1	0.1	0.1	0.1	0.1
Coal	+	+	+	+	+	+	+
U.S. Territories	+	0.1	0.1	0.1	0.1	0.1	0.1
Wood	4.1	3.1	4.1	3.7	3.2	3.1	3.7
Natural Gas	0.5	0.6	0.6	0.6	0.5	0.5	0.6
Fuel Oil	0.3	0.3	0.3	0.2	0.2	0.2	0.2
Coal	0.2	0.1	NO	NO	NO	NO	NO
Residential	5.2	4.1	5.0	4.5	3.9	3.8	4.5
Wood	0.5	0.5	0.5	0.6	0.6	0.6	0.6
Natural gas	0.3	0.4	0.4	0.4	0.4	0.4	0.4
Fuel Oil	0.3	0.2	0.1	0.2	0.2	0.2	0.2
Coal	+	+	+	+	+	+	+
Commercial	1.1	1.1	1.1	1.2	1.2	1.2	1.3
Wood	1.0	1.0	1.1	1.1	1.0	1.1	1.1
Natural gas	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Fuel Oil	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Coal	0.4	0.3	0.2	0.2	0.2	0.1	0.1

+ Does not exceed 0.05 MMT CO_2 Eq.

NO (Not Occurring)

Note: Totals may not sum due to independent rounding.

1 Table 3-11: N₂O Emissions from Stationary Combustion (MMT CO₂ Eq.)

Sector/Fuel Type	1990	2005	2014	2015	2016	2017	2018
Electric Power	20.5	30.1	28.9	26.5	26.2	24.8	24.4
Coal	20.1	28.0	25.7	22.8	22.4	21.2	20.3
Fuel Oil	0.1	0.1	+	+	+	+	+
Natural Gas	0.3	1.9	3.1	3.7	3.8	3.6	4.1
Wood	+	+	+	+	+	+	+
Industrial	3.1	2.9	2.7	2.6	2.6	2.6	2.7
Coal	0.7	0.5	0.4	0.3	0.3	0.3	0.2
Fuel Oil	0.5	0.5	0.4	0.4	0.4	0.4	0.4
Natural Gas	0.2	0.2	0.2	0.2	0.3	0.3	0.3
Wood	1.6	1.6	1.7	1.7	1.7	1.7	1.7
Commercial	0.4	0.3	0.3	0.4	0.3	0.3	0.4
Coal	0.1	+	+	+	+	+	+
Fuel Oil	0.2	0.1	0.1	0.2	0.2	0.1	0.2
Natural Gas	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Wood	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Residential	1.0	0.9	1.0	0.9	0.8	0.8	0.9
Coal	+	+	NO	NO	NO	NO	NO
Fuel Oil	0.2	0.2	0.2	0.2	0.1	0.1	0.2
Natural Gas	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Wood	0.7	0.5	0.7	0.6	0.5	0.5	0.6
U.S. Territories	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Coal	+	+	+	+	+	+	+
Fuel Oil	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Natural Gas	NO	+	+	+	+	+	+
Wood	NO						
Total	25.1	34.3	33.0	30.5	30.0	28.6	28.4

+ Does not exceed 0.05 MMT CO_2 Eq.

NO (Not Occurring) Note: Totals may not sum due to independent rounding.

1 Electric Power Sector

- 2 The process of generating electricity is the largest stationary source of CO₂ emissions in the United States,
- 3 representing 33 percent of total CO₂ emissions from all CO₂ emissions sources across the United States. Methane
- 4 and N₂O accounted for a small portion of total greenhouse gas emissions from electric power, representing 0.1
- 5 percent and 1.4 percent, respectively. Electric power also accounted for 34.8 percent of CO₂ emissions from fossil
- 6 fuel combustion in 2018. Methane and N₂O from electric power represented 10.3 and 55.9 percent of total CH₄
- $7 \qquad \text{and N_2O emissions from fossil fuel combustion in 2018, respectively.} \\$
- 8 For the underlying energy data used in this chapter, the Energy Information Administration (EIA) places electric
- 9 power generation into three functional categories: the electric power sector, the commercial sector, and the
- 10 industrial sector. The electric power sector consists of electric utilities and independent power producers whose
- 11 primary business is the production of electricity. This includes both regulated utilities and non-utilities (e.g.,
- 12 independent power producers, qualifying co-generators, and other small power producers). Electric generation is
- 13 reported as occurring in other sectors where the producer of the power indicates that its primary business is
- 14 something other than the production of electricity.¹⁴
- 15 Total emissions from the electric power sector have decreased by 3.4 percent since 1990. The carbon intensity of

16 the electric power sector, in terms of CO₂ Eq. per QBtu, has decreased by 13 percent during that same timeframe

17 with the majority of the emissions and carbon intensity decreases occurring in the past decade as shown below in

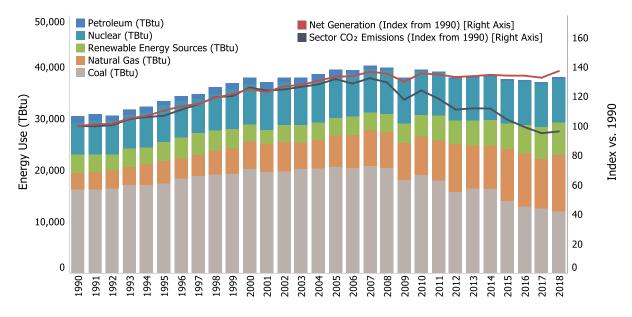
18 Figure 3-8. This recent decarbonization of the electric power sector is a result of several key drivers. Coal-fired

- electric generation (in kilowatt-hours [kWh]) decreased from 54 percent of generation in 1990 to 28 percent in
- 20 2018.¹⁵ This corresponded with an increase in natural gas generation and renewable energy generation, largely
- 21 from wind and solar energy. Natural gas generation (in kWh) represented 11 percent of electric power generation
- in 1990, and increased over the 29-year period to represent 34 percent of electric power sector generation in 2018
 (see Table 3-12).

24	Table 3-12: Electric Po	Electric Power G	eneration	by Fuel	Type (Perce	nt)
	Fuel Type		1000	2005	2014	2015

Fuel Type	1990	2005	2014	2015	2016	2017	2018
Coal	54.1%	51.1%	39.9%	34.2%	31.4%	30.9%	28.4%
Natural Gas	10.7%	17.5%	26.3%	31.6%	32.7%	30.9%	34.1%
Nuclear	19.9%	20.0%	20.3%	20.4%	20.6%	20.8%	20.1%
Renewables	11.3%	8.3%	12.8%	13.0%	14.7%	16.8%	16.7%
Petroleum	4.1%	3.0%	0.7%	0.7%	0.6%	0.5%	0.6%
Other Gases ^a	+%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
Net Electricity Generation							
(Billion kWh) ^b	2,905	3,902	3,936	3,917	3,917	3,877	4,009

+ Does not exceed 0.05 percent.

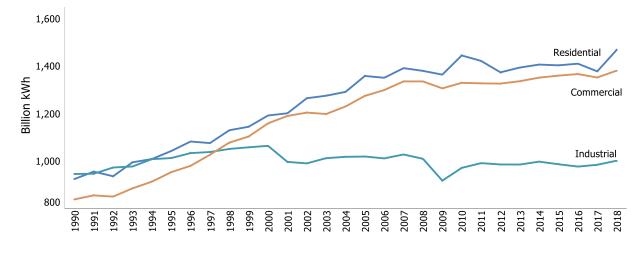

^a Other gases include blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels.

^b Represents net electricity generation from the electric power sector. Excludes net electricity generation from commercial and industrial combined-heat-and-power and electricity-only plants.

- 25 In 2018, CO₂ emissions from the electric power sector increased by 1.2 percent relative to 2017. This increase in
- 26 CO₂ emissions was a result of an increase in fossil fuels consumed to produce electricity in the electric power

¹⁴ Utilities primarily generate power for the U.S. electric grid for sale to retail customers. Non-utilities typically generate electricity for sale on the wholesale electricity market (e.g., to utilities for distribution and resale to retail customers). Where electricity generation occurs outside the EIA-defined electric power sector, it is typically for the entity's own use. ¹⁵ Values represent electricity *net* generation from the electric power sector (EIA 2019a).

- 1 sector. Consumption of coal for electric power decreased by 4.5 percent while consumption of natural gas
- 2 increased 14.2 percent from 2017 to 2018. There has also been a rapid increase in renewable energy electricity
- 3 generation in the electric power sector in recent years. Electricity generation from renewable sources increased by
- 4 3 percent from 2017 to 2018 (see Table 3-12). The decrease in coal-powered electricity generation and increase in
- 5 renewable energy electricity generation contributed to a decoupling of emissions trends from electric power
- 6 generation trends over the recent time series (see Figure 3-8).
- 7 Decreases in natural gas costs and the associated increase in natural gas generation, particularly between 2005
- 8 and 2018, was one of the main drivers of the recent fuel switching and decrease in electric power sector carbon
- 9 intensity. During this time period, the cost of natural gas (in \$/MMBtu) decreased by 47 percent while the cost of
- 10 coal (in \$/MMBtu) increased by 78 percent (EIA 2019a). Also, between 1990 and 2018, renewable energy
- 11 generation (in kWh) from wind and solar energy have increased from 0.1 percent of total generation in 1990 to 8
- percent in 2018, which also helped drive the decrease in electric power sector carbon intensity. This decrease in carbon intensity occurred even as total electricity retail sales increased 42 percent, from 2,713 billion kWh in 1990
- carbon intensity occurred eventto 3,860 billion kWh in 2018.
- Figure 3-8: Fuels Used in Electric Power Generation (TBtu) and Total Electric Power Sector
 CO₂ Emissions



Electricity was used primarily in the residential, commercial, and industrial end-use sectors for lighting, heating, electric motors, appliances, electronics, and air conditioning (see Figure 3-9). Note that transportation is an end-use sector as well but is not shown in Figure 3-9 due to the sector's relatively low percentage of electricity use.

Table 3-13 provides a break-out of CO₂ emissions from electricity consumption in the transportation end-use

22 sector.

3 In 2018, electricity sales to the residential and commercial end-use sectors, as presented in Figure 3-9, increased

4 by 6.6 percent and 2.1 percent relative to 2017, respectively. Electricity sales to the industrial sector in 2018

5 increased approximately 1.8 percent relative to 2017. Overall, in 2018, the amount of electricity retail sales (in

6 kWh) increased by 3.7 percent relative to 2017.

7 Industrial Sector

8 Industrial sector CO₂, CH₄, and N₂O, emissions accounted for 17, 14, and 6 percent of CO₂, CH₄, and N₂O, emissions

9 from fossil fuel combustion, respectively in 2018. Carbon dioxide, CH₄, and N₂O emissions resulted from the direct

10 consumption of fossil fuels for steam and process heat production.

11 The industrial end-use sector, per the underlying energy use data from EIA, includes activities such as

12 manufacturing, construction, mining, and agriculture. The largest of these activities in terms of energy use is

13 manufacturing, of which six industries—Petroleum Refineries, Chemicals, Paper, Primary Metals, Food, and

14 Nonmetallic Mineral Products—represent the vast majority of the energy use (EIA 2019a; EIA 2009b).

15 There are many dynamics that impact emissions from the industrial sector including economic activity, changes in

16 the make-up of the industrial sector, changes in the emissions intensity of industrial processes, and weather

17 impacts on heating of industrial buildings.¹⁶ Structural changes within the U.S. economy that lead to shifts in

18 industrial output away from energy-intensive manufacturing products to less energy-intensive products (e.g., from

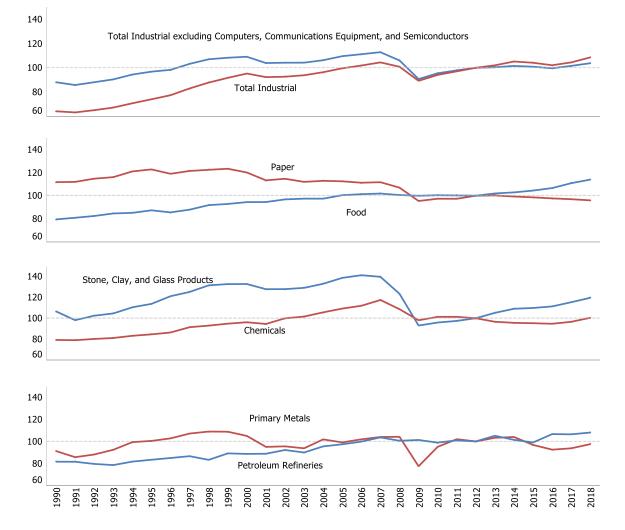
19 steel to computer equipment) have had a significant effect on industrial emissions.

20 From 2017 to 2018, total industrial production and manufacturing output increased by 3.9 percent (FRB 2019).

21 Over this period, output increased across production indices for Food, Petroleum Refineries, Chemicals, Primary

22 Metals, and Nonmetallic Mineral Products, and decreased slightly for Paper (see Figure 3-10). In 2018, CO₂, CH₄,

 $\label{eq:23} and \, N_2O \ emissions \ from \ fossil \ fuel \ combustion \ and \ electricity \ use \ within \ the \ industrial \ end-use \ sector \ totaled$


24 1,345.4 MMT CO₂ Eq., a 1.8 percent increase from 2017 emissions.

25 Through EPA's Greenhouse Gas Reporting Program (GHGRP), specific industrial sector trends can be discerned

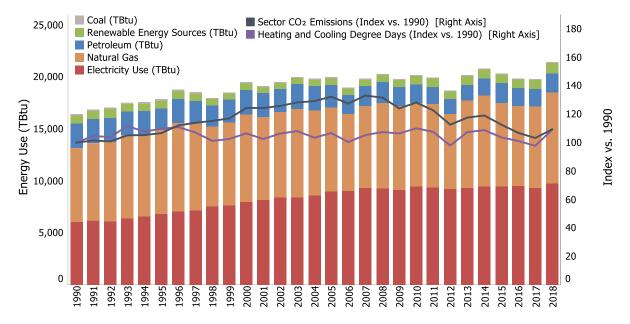
- from the overall total EIA industrial fuel consumption data used for these calculations. For example, from 2017 to
- 27 2018, the underlying EIA data showed decreased consumption of coal, and increase of natural gas in the industrial

¹⁶ Some commercial customers are large enough to obtain an industrial price for natural gas and/or electricity and are consequently grouped with the industrial end-use sector in U.S. energy statistics. These misclassifications of large commercial customers likely cause the industrial end-use sector to appear to be more sensitive to weather conditions.

- 1 sector. The GHGRP data highlights that several industries contributed to these trends, including chemical
- 2 manufacturing; pulp, paper and print; food processing, beverages and tobacco; minerals manufacturing; and
- 3 agriculture-forest-fisheries.¹⁷

4 Figure 3-10: Industrial Production Indices (Index 2012=100)

Despite the growth in industrial output (69 percent) and the overall U.S. economy (99 percent) from 1990 to 2018,
CO₂ emissions from fossil fuel combustion in the industrial sector decreased by 1.2 percent over the same time
series. A number of factors are assumed to result in decoupling of growth in industrial output from industrial
greenhouse gas emissions, for example: (1) more rapid growth in output from less energy-intensive industries
relative to traditional manufacturing industries, and (2) energy-intensive industries such as steel are employing
new methods, such as electric arc furnaces, that are less carbon intensive than the older methods.


12 Residential and Commercial Sectors

Emissions from the residential and commercial sectors have increased since 1990 and are often correlated with short-term fluctuations in energy use caused by weather conditions, rather than prevailing economic conditions.

¹⁷ Further details on industrial sector combustion emissions are provided by EPA's GHGRP. See http://ghgdata.epa.gov/ghgp/main.do.

- 1 More significant changes in emissions from the residential and commercial sectors in recent years can be largely
- 2 attributed to an overall reduction in energy use, changes in heating degree days, and increases in energy efficiency
- 3 (see Figure 3-11).

Figure 3-11: Fuels Used in Residential and Commercial Sectors (TBtu), Heating and Cooling Degree Days, and Total Sector CO₂ Emissions

6

In 2018 the residential and commercial sectors accounted for 7 and 5 percent of CO₂ emissions from fossil fuel
 combustion, respectively; 38 and 11 percent of CH₄ emissions from fossil fuel combustion, respectively; and 2 and
 percent of N₂O emissions from fossil fuel combustion, respectively. Emissions from these sectors were largely

10 due to the direct consumption of natural gas and petroleum products, primarily for heating and cooking needs.

- 11 Coal consumption was a minor component of energy use for the commercial sector and did not contribute to any
- 12 energy use in the residential sector. In 2018, total emissions (CO₂, CH₄, and N₂O) from fossil fuel combustion and
- electricity use within the residential and commercial end-use sectors were 1,000.3 MMT CO₂ Eq. and 880.3 MMT
- 14 CO_2 Eq., respectively. Total CO_2 , CH_4 , and N_2O emissions from combined fossil fuel combustion and electricity use
- within the residential and commercial end-use sectors increased by 8.1 and 3.6 percent from 2017 to 2018,
- 16 respectively, and heating degree days increased by 12 percent over the same time period. An increase in heating 17 degree days impacted demand for heating fuel and electricity for heat in the residential and commercial sectors. In
- 17 degree days impacted demand for heating fuel and electricity for heat in the residential and commercial sectors. In 18 the long term, the residential sector is also affected by population growth, migration trends toward warmer areas.

the long term, the residential sector is also affected by population growth, migration trends toward warmer areas,
 and changes in total housing units and building attributes (e.g., larger sizes and improved insulation).

20 In 2018, combustion emissions from natural gas consumption represented 81 and 75 percent of the direct fossil

fuel CO_2 emissions from the residential and commercial sectors, respectively. Natural gas combustion CO_2

- emissions from the residential and commercial sectors in 2018 increased by 13.4 percent and 11.2 percent from
- 23 2017 levels, respectively.

24 U.S. Territories

25 Emissions from U.S. Territories are based on the fuel consumption in American Samoa, Guam, Puerto Rico, U.S.

- 26 Virgin Islands, Wake Island, and other U.S. Pacific Islands. As described in the Methodology section of CO₂ from
- 27 Fossil Fuel Combustion, this data is collected separately from the sectoral-level data available for the general
- 28 calculations. As sectoral information is not available for U.S. Territories, CO₂, CH₄, and N₂O emissions are not
- 29 presented for U.S. Territories in the tables above by sector, though the emissions will include some transportation
- 30 and mobile combustion sources.

1 Transportation Sector and Mobile Combustion

- 2 This discussion of transportation emissions follows the alternative method of presenting combustion emissions by
- allocating emissions associated with electricity generation to the transportation end-use sector, as presented in
- 4 Table 3-8. Table 3-7 presents direct CO₂, CH₄, and N₂O emissions from all transportation sources (i.e., excluding
- 5 emissions allocated to electricity consumption in the transportation end-use sector).
- 6 The transportation end-use sector and other mobile combustion accounted for 1,821.4 MMT CO₂ Eq. in 2018,
- 7 which represented 34 percent of CO₂ emissions, 27 percent of CH₄ emissions, and 35 percent of N₂O emissions
- 8 from fossil fuel combustion, respectively.¹⁸ Fuel purchased in the United States for international aircraft and
- 9 marine travel accounted for an additional 123.3 MMT CO₂ Eq. in 2018; these emissions are recorded as
- 10 international bunkers and are not included in U.S. totals according to UNFCCC reporting protocols.

11 Transportation End-Use Sector

- 12 From 1990 to 2018, transportation emissions from fossil fuel combustion rose by 19 percent due, in large part, to
- 13 increased demand for travel (see Figure 3-12). The number of vehicle miles traveled (VMT) by light-duty motor
- vehicles (passenger cars and light-duty trucks) increased 46 percent from 1990 to 2018,¹⁹ as a result of a
- 15 confluence of factors including population growth, economic growth, urban sprawl, and periods of low fuel prices.
- 16 From 2017 to 2018, CO₂ emissions from the transportation end-use sector increased by 0.63 percent. The small
- increase in emissions is attributed to an increase in on-road and non-road fuel use, particularly by medium- and
- 18 heavy-duty trucks, as well as pipelines.
- 19 Commercial aircraft emissions increased between 2017 and 2018, but have decreased 7 percent since 2007 (FAA
- 20 2019).²⁰ Decreases in jet fuel emissions (excluding bunkers) since 2007 are due in part to improved operational
- 21 efficiency that results in more direct flight routing, improvements in aircraft and engine technologies to reduce
- 22 fuel burn and emissions, and the accelerated retirement of older, less fuel-efficient aircraft.
- Almost all of the energy consumed for transportation was supplied by petroleum-based products, with more than
- half being related to gasoline consumption in automobiles and other highway vehicles. Other fuel uses, especially
- diesel fuel for freight trucks and jet fuel for aircraft, accounted for the remainder. The primary driver of
- transportation-related emissions was CO₂ from fossil fuel combustion, which increased by 22 percent from 1990 to
- 27 2018. Annex 3.2 presents the total emissions from all transportation and mobile sources, including CO₂, N₂O, CH₄,
- 28 and HFCs.


 $^{^{18}}$ Note that these totals include CO₂, CH₄ and N₂O emissions from some sources in the U.S. Territories (ships and boats, recreational boats, non-transportation mobile sources) and CH₄ and N₂O emissions from transportation rail electricity.

¹⁹ VMT estimates are based on data from FHWA Highway Statistics Table VM-1 (FHWA 1996 through 2018). In 2011, FHWA changed its methods for estimating VMT by vehicle class, which led to a shift in VMT and emissions among on-road vehicle classes in the 2007 to 2018 time period. In absence of these method changes, light-duty VMT growth between 1990 and 2018 would likely have been even higher.

²⁰ Commercial aircraft, as modeled in FAA's AEDT (FAA 2019), consists of passenger aircraft, cargo, and other chartered flights.

1 Figure 3-12: Fuels Used in Transportation Sector (TBtu), Onroad VMT, and Total Sector CO₂

2 Emissions

³

4 Notes: Distillate fuel, residual fuel, and jet fuel include adjustments for international bunker fuels. Distillate fuel and motor
 5 gasoline include adjustments for the sectoral allocation of these fuels.

gasoline include adjustments for the sectoral allocation of these fuels.
 Source: Information on fuel consumption was obtained from EIA (2019a).

7 Transportation Fossil Fuel Combustion CO₂ Emissions

8 Domestic transportation CO₂ emissions increased by 22 percent (330.8 MMT CO₂) between 1990 and 2018, an

9 annualized increase of 0.8 percent. Among domestic transportation sources in 2018, light-duty vehicles (including

10 passenger cars and light-duty trucks) represented 58 percent of CO₂ emissions from fossil fuel combustion,

11 medium- and heavy-duty trucks and buses 25 percent, commercial aircraft 7 percent, and other sources 12

12 percent. See Table 3-13 for a detailed breakdown of transportation CO₂ emissions by mode and fuel type.

13 Almost all of the energy consumed by the transportation sector is petroleum-based, including motor gasoline,

14 diesel fuel, jet fuel, and residual oil. Carbon dioxide emissions from the combustion of ethanol and biodiesel for

15 transportation purposes, along with the emissions associated with the agricultural and industrial processes

16 involved in the production of biofuel, are captured in other Inventory sectors.²¹ Ethanol consumption by the

17 transportation sector has increased from 0.7 billion gallons in 1990 to 13.4 billion gallons in 2018, while biodiesel

consumption has increased from 0.01 billion gallons in 2001 to 2.0 billion gallons in 2018. For additional

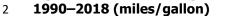
information, see Section 3.11 on biofuel consumption at the end of this chapter and Table A-98 in Annex 3.2.

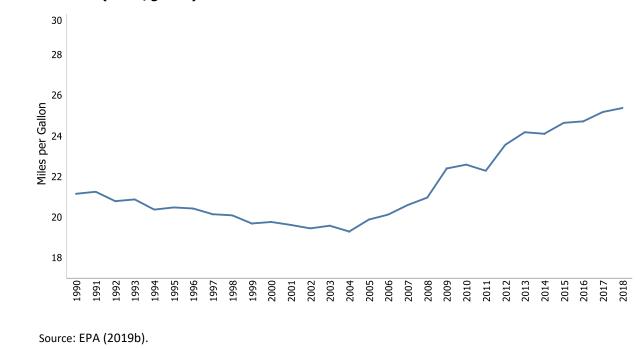
20 Carbon dioxide emissions from passenger cars and light-duty trucks totaled 1,054.1 MMT CO₂ in 2018. This is an

21 increase of 14 percent (129.6 MMT CO₂) from 1990 due, in large part, to increased demand for travel as fleet-wide

²¹ Biofuel estimates are presented in the Energy chapter for informational purposes only, in line with IPCC methodological guidance and UNFCCC reporting obligations. Net carbon fluxes from changes in biogenic carbon reservoirs in croplands are accounted for in the estimates for Land Use, Land-Use Change, and Forestry (see Chapter 6). More information and additional analyses on biofuels are available at EPA's Renewable Fuels Standards website. See <https://www.epa.gov/renewable-fuel-standard-program>.

- 1 light-duty vehicle fuel economy was relatively stable (average new vehicle fuel economy declined slowly from 1990
- 2 through 2004 and then increased more rapidly from 2005 through 2018). Carbon dioxide emissions from
- passenger cars and light-duty trucks peaked at 1,151.5 MMT CO₂ in 2004, and since then have declined about 8
- 4 percent. The decline in new light-duty vehicle fuel economy between 1990 and 2004 (Figure 3-13) reflected the
- 5 increasing market share of light-duty trucks, which grew from about 30 percent of new vehicle sales in 1990 to 48
- 6 percent in 2004. Starting in 2005, average new vehicle fuel economy began to increase while light-duty VMT grew
- 7 only modestly for much of the period. Light-duty VMT grew by less than one percent or declined each year
- 8 between 2005 and 2013,²² then grew at a faster rate until 2016 (2.6 percent from 2014 to 2015, and 1.0 percent
- from 2015 to 2016). Since 2016, the rate of light-duty VMT growth has slowed to less than one percent each year.
 Average new vehicle fuel economy has increased almost every year since 2005, while the light-duty truck share
- decreased to about 33 percent in 2009 and has since varied from year to year between 36 and 48 percent. Light-
- 12 duty truck share is about 48 percent of new vehicles in model year 2018 (EPA 2019b). See Annex 3.2 for data by
- 13 vehicle mode and information on VMT and the share of new vehicles (in VMT).
- 14 Medium- and heavy-duty truck CO₂ emissions increased by 84 percent from 1990 to 2018. This increase was largely
- due to a substantial growth in medium- and heavy-duty truck VMT, which increased by 113 percent between 1990
- and 2018.²³ Carbon dioxide from the domestic operation of commercial aircraft increased by 18 percent (19.7
- 17 MMT CO₂) from 1990 to 2018.²⁴ Across all categories of aviation, excluding international bunkers, CO₂ emissions
- decreased by 7 percent (13.5 MMT CO₂) between 1990 and 2018.²⁵ This includes a 66 percent (23.2 MMT CO₂)
- 19 decrease in CO₂ emissions from domestic military operations.
- 20 Transportation sources also produce CH₄ and N₂O; these emissions are included in Table 3-14 and Table 3-15 and
- 21 in the CH₄ and N₂O from Mobile Combustion section. Annex 3.2 presents total emissions from all transportation
- 22 and mobile sources, including CO₂, CH₄, N₂O, and HFCs.

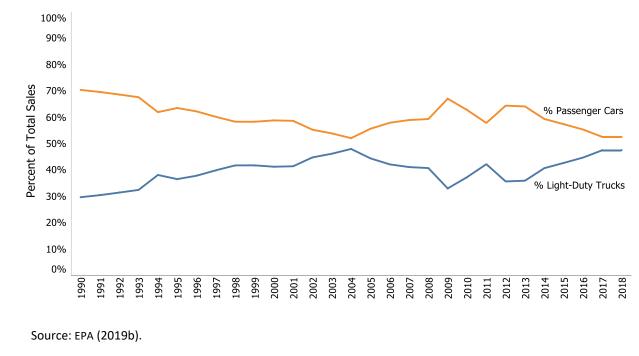

²² VMT estimates are based on data from FHWA Highway Statistics Table VM-1 (FHWA 1996 through 2018). In 2007 and 2008 light-duty VMT decreased 3.0 percent and 2.3 percent, respectively. Note that the decline in light-duty VMT from 2006 to 2007 is due at least in part to a change in FHWA's methods for estimating VMT. In 2011, FHWA changed its methods for estimating VMT by vehicle class, which led to a shift in VMT and emissions among on-road vehicle classes in the 2007 to 2018 time period. In absence of these method changes, light-duty VMT growth between 2006 and 2007 would likely have been higher.


²³ While FHWA data shows consistent growth in medium- and heavy-duty truck VMT over the 1990 to 2018 time period, part of the growth reflects a method change for estimating VMT starting in 2007. This change in methodology in FHWA's VM-1 table resulted in large changes in VMT by vehicle class, thus leading to a shift in VMT and emissions among on-road vehicle classes in the 2007 to 2018 time period. During the time period prior to the method change (1990 to 2006), VMT for medium- and heavy-duty trucks increased by 51 percent.

²⁴ Commercial aircraft, as modeled in FAA's AEDT, consists of passenger aircraft, cargo, and other chartered flights.

²⁵ Includes consumption of jet fuel and aviation gasoline. Does not include aircraft bunkers, which are not included in national emission totals, in line with IPCC methodological guidance and UNFCCC reporting obligations.

1 Figure 3-13: Sales-Weighted Fuel Economy of New Passenger Cars and Light-Duty Trucks,



3

6 Figure 3-14: Sales of New Passenger Cars and Light-Duty Trucks, 1990–2018 (Percent)

8 9

7

Table 3-13: CO_2 Emissions from Fossil Fuel Combustion in Transportation End-Use Sector (MMT CO_2 Eq.) 1

2

Fuel/Vehicle Type	1990	2005	2014 ^a	2015 ^a	2016 ^a	2017 ^a	2018 ª
Gasoline ^b	958.9	1,152.7	1,077.4	1,070.0	1,095.3	1,091.8	1,091.9
Passenger Cars	604.3	638.6	730.2	732.0	744.9	744.3	742.4
Light-Duty Trucks	300.6	464.6	292.2	283.5	294.6	290.9	292.1
Medium- and Heavy-Duty							
Trucks ^c	37.7	33.9	39.8	39.3	40.4	41.2	41.9
Buses	0.3	0.4	0.9	0.9	0.9	0.9	1.0
Motorcycles	1.7	1.6	3.8	3.7	3.8	3.7	3.7
Recreational Boats ^d	14.3	13.8	10.6	10.6	10.7	10.7	10.8
Distillate Fuel Oil (Diesel) ^b	262.9	457.5	439.9	452.2	449.2	463.2	467.9
Passenger Cars	7.9	4.2	4.1	4.2	4.2	4.3	4.2
Light-Duty Trucks	11.5	25.8	13.6	13.7	13.9	13.9	13.9
Medium- and Heavy-Duty							
Trucks ^c	190.5	360.2	354.7	362.4	365.2	377.6	380.6
Buses	8.0	10.6	16.6	16.9	16.5	17.6	18.5
Rail	35.5	45.5	41.2	39.3	35.9	37.1	38.9
Recreational Boats ^d	2.7	2.8	2.5	2.6	2.7	2.7	2.8
Ships and Non-Recreational							
Boats ^e	6.8	8.4	7.3	13.0	10.8	10.0	9.0
International Bunker Fuels ^f	11.7	9.4	6.1	8.4	8.7	9.0	9.9
Jet Fuel	184.2	189.3	148.4	157.6	166.0	171.8	172.3
Commercial Aircraft ^g	109.9	132.7	115.2	119.0	120.4	128.0	129.6
Military Aircraft	35.0	19.4	14.0	13.5	12.3	12.2	11.8
General Aviation Aircraft	39.4	37.3	19.2	25.1	33.4	31.5	30.9
International Bunker Fuels ^f	38.0	60.1	69.6	71.9	74.1	77.7	80.8
International Bunker Fuels from							
Commercial Aviation	30.0	55.6	66.3	68.6	70.8	74.5	77.7
Aviation Gasoline	3.1	2.4	1.5	1.5	1.4	1.4	1.5
General Aviation Aircraft	3.1	2.4	1.5	1.5	1.4	1.4	1.5
Residual Fuel Oil	22.6	19.3	5.8	4.2	12.9	16.5	13.9
Ships and Boats ^e	22.6	19.3	5.8	4.2	12.9	16.5	13.9
International Bunker Fuels ^f	53.7	43.6	27.7	30.6	33.8	33.4	31.4
Natural Gas ^j	36.0	33.1	40.2	39.4	40.1	42.3	50.2
Passenger Cars	+	+	+	+	+	+	+
Light-Duty Trucks	+	+	+	+	+	+	+
Medium- and Heavy-Duty							
Trucks	+	+	+	+	+	+	+
Buses	+	0.6	0.8	0.9	0.8	0.9	0.9
Pipeline ^h	36.0	32.4	39.4	38.5	39.2	41.3	49.2
LPG	1.4	1.7	0.4	0.4	0.4	0.4	0.5
Passenger Cars	+	+	+	+	+	+	+
Light-Duty Trucks	0.2	0.3	0.1	0.1	0.1	0.1	0.1
Medium- and Heavy-Duty							
Trucks ^c	1.1	1.3	0.3	0.3	0.3	0.3	0.3
Buses	0.1	0.1	0.1	+	0.1	0.1	0.1
Electricity	3.0	4.7	4.4	4.3	4.2	4.3	4.7
Passenger Cars	+	+	0.4	0.5	0.6	0.8	1.2
Light-Duty Trucks	+	+	+	+	0.1	0.1	0.2
Buses	+	+	+	+	+	+	+
Rail	3.0	4.7	4.0	3.7	3.5	3.4	3.4
Total ^k	1,472.1	1,860.8	1,718.2	1,729.5	1,769.5	1,791.7	1,803.0

Total (Including Bunkers) ^f	1,575.6	1,974.0	1,821.6	1,840.4	1,886.1	1,911.8	1,925.0
Biofuels-Ethanol ⁱ	4.1	21.6	74.0	74.2	76.9	77.7	77.5
Biofuels-Biodiesel ⁱ	+	0.9	13.3	14.1	19.6	18.7	17.9

+ Does not exceed 0.05 MMT CO₂ Eq.

1

5

6

2 ^a In 2011, FHWA changed its methods for estimating vehicle miles traveled (VMT) and related data. These methodological 3 changes included how vehicles are classified, moving from a system based on body-type to one that is based on wheelbase. 4 These changes were first incorporated for the 1990 through 2010 Inventory and apply to the 2007 through 2018 time

period. This resulted in large changes in VMT and fuel consumption data by vehicle class, thus leading to a shift in emissions among on-road vehicle classes.

7 ^b Gasoline and diesel highway vehicle fuel consumption estimates are based on data from FHWA Highway Statistics Table 8 MF-21, MF-27, and VM-1 (FHWA 1996 through 2018). Table VM-1 fuel consumption data for 2018 has not been published

- 9 yet, therefore 2018 fuel consumption data is estimated using the percent change in VMT from 2017 to 2018. Data from 10 Table VM-1 is used to estimate the share of consumption between each on-road vehicle class. These fuel consumption 11 estimates are combined with estimates of fuel shares by vehicle type from DOE's TEDB Annex Tables A.1 through A.6 (DOE
- 12 1993 through 2017). TEDB data for 2017 and 2018 has not been published yet, therefore 2016 data are used as a proxy. 13 ^c Includes medium- and heavy-duty trucks over 8,500 lbs.
- 14 ^d In 2014, EPA incorporated the NONROAD2008 model into MOVES2014. The current Inventory uses the Nonroad component 15 of MOVES2014b for years 1999 through 2018.
- 16 ^e Note that large year over year fluctuations in emission estimates partially reflect nature of data collection for these sources.

17 ^f Official estimates exclude emissions from the combustion of both aviation and marine international bunker fuels; however, 18 estimates including international bunker fuel-related emissions are presented for informational purposes.

- 19 ^g Commercial aircraft, as modeled in FAA's Aviation Environmental Design Tool (AEDT), consists of passenger aircraft, cargo, 20 and other chartered flights.
- 21 ^h Pipelines reflect CO₂ emissions from natural gas-powered pipelines transporting natural gas.

22 ¹ Ethanol and biodiesel estimates are presented for informational purposes only. See Section 3.11 of this chapter and the 23 estimates in Land Use, Land-Use Change, and Forestry (see Chapter 6), in line with IPCC methodological guidance and 24 UNFCCC reporting obligations, for more information on ethanol and biodiesel.

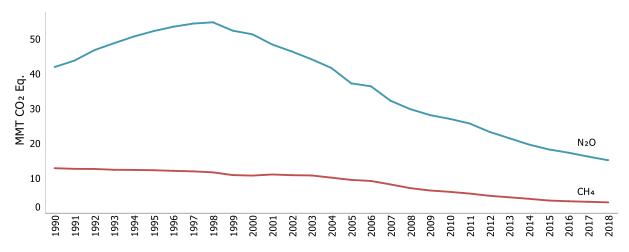
- 25 ¹ Transportation sector natural gas and LPG consumption are based on data from EIA (2019b). Prior to the 1990 to 2015 26 Inventory, data from DOE TEDB were used to estimate each vehicle class's share of the total natural gas and LPG 27 consumption. Since TEDB does not include estimates for natural gas use by medium and heavy-duty trucks or LPG use by 28 passenger cars, EIA Alternative Fuel Vehicle Data (Browning 2017) is now used to determine each vehicle class's share of the 29 total natural gas and LPG consumption. These changes were first incorporated in the 1990 to 2016 Inventory and apply to
- 30 the 1990 to 2018 time period.
- 31 ^k Includes emissions from rail electricity.
- 32 ¹ Electricity consumption by passenger cars, light-duty trucks (SUVs), and buses is based on plug-in electric vehicle sales and

33 engine efficiency data, as outlined in Browning (2018a). In prior Inventory years, CO₂ emissions from electric vehicle

- 34 charging were allocated to the residential and commercial sectors. They are now allocated to the transportation sector. 35 These changes apply to the 2010 through 2018 time period.
- 36
- Notes: This table does not include emissions from non-transportation mobile sources, such as agricultural equipment and 37 construction/mining equipment; it also does not include emissions associated with electricity consumption by pipelines or
- 38 lubricants used in transportation. In addition, this table does not include CO₂ emissions from U.S. Territories, since these are
- 39 covered in a separate chapter of the Inventory. Totals may not sum due to independent rounding.

40

Mobile Fossil Fuel Combustion CH₄ and N₂O Emissions 41


- 42 Mobile combustion includes emissions of CH₄ and N₂O from all transportation sources identified in the U.S.
- Inventory with the exception of pipelines and electric locomotives;²⁶ mobile sources also include non-43
- 44 transportation sources such as construction/mining equipment, agricultural equipment, vehicles used off-road,
- and other sources (e.g., snowmobiles, lawnmowers, etc.).²⁷ Annex 3.2 includes a summary of all emissions from 45

²⁶ Emissions of CH₄ from natural gas systems are reported separately. More information on the methodology used to calculate these emissions are included in this chapter and Annex 3.4.

²⁷ See the methodology sub-sections of the CO₂ from Fossil Fuel Combustion and CH₄ and N₂O from Mobile Combustion sections of this chapter. Note that N₂O and CH₄ emissions are reported using different categories than CO₂. CO₂ emissions are

- 1 both transportation and mobile sources. Table 3-14 and Table 3-15 provide mobile fossil fuel CH₄ and N₂O emission
- 2 estimates in MMT CO₂ Eq.²⁸
- 3 Mobile combustion was responsible for a small portion of national CH₄ emissions (0.5 percent) and was the fourth
- 4 largest source of national N₂O emissions (4.7 percent). From 1990 to 2018, mobile source CH₄ emissions declined
- 5 by 76 percent, to 3.1 MMT CO₂ Eq. (125 kt CH₄), due largely to control technologies employed in on-road vehicles
- 6 since the mid-1990s to reduce CO, NO_x, NMVOC, and CH₄ emissions. Mobile source emissions of N₂O decreased by
- 7 64 percent, to 15.2 MMT CO₂ Eq. (51 kt N₂O). Earlier generation control technologies initially resulted in higher
- 8 N₂O emissions, causing a 30 percent increase in N₂O emissions from mobile sources between 1990 and 1997.
- 9 Improvements in later-generation emission control technologies have reduced N₂O emissions, resulting in a 72
- percent decrease in mobile source N₂O emissions from 1997 to 2018 (Figure 3-15). Overall, CH₄ and N₂O emissions
- 11 were predominantly from gasoline-fueled passenger cars and light-duty trucks and non-highway sources. See
- 12 Annex 3.2 for data by vehicle mode and information on VMT and the share of new vehicles (in VMT).

13 Figure 3-15: Mobile Source CH₄ and N₂O Emissions (MMT CO₂ Eq.)

14 15

Table 3-14: CH₄ Emissions from Mobile Combustion (MMT CO₂ Eq.)

Fuel Type/Vehicle Type ^a	1990	2005	2014	2015	2016	2017	2018
Gasoline On-Road ^b	5.2	2.2	1.1	1.0	0.9	0.8	0.7
Passenger Cars	3.2	1.3	0.7	0.6	0.6	0.5	0.5
Light-Duty Trucks	1.7	0.8	0.3	0.2	0.2	0.2	0.2
Medium- and Heavy-Duty	_						
Trucks and Buses	0.3	0.1	0.1	0.1	0.0	0.0	0.0
Motorcycles	+	+	+	+	+	+	+
Diesel On-Road ^b	+	+	0.1	0.1	0.1	0.1	0.1
Passenger Cars	+	+	+	+	+	+	+
Light-Duty Trucks	+	+	+	+	+	+	+

reported by end-use sector (Transportation, Industrial, Commercial, Residential, U.S. Territories), and generally adhere to a topdown approach to estimating emissions. CO₂ emissions from non-transportation sources (e.g., lawn and garden equipment, farm equipment, construction equipment) are allocated to their respective end-use sector (i.e., construction equipment CO₂ emissions are included in the Industrial end-use sector instead of the Transportation end-use sector). CH₄ and N₂O emissions are reported using the "Mobile Combustion" category, which includes non-transportation mobile sources. CH₄ and N₂O emission estimates are bottom-up estimates, based on total activity (fuel use, VMT) and emissions factors by source and technology type. These reporting schemes are in accordance with IPCC guidance. For informational purposes only, CO₂ emissions from non-transportation mobile sources are presented separately from their overall end-use sector in Annex 3.2. ²⁸ See Annex 3.2 for a complete time series of emission estimates for 1990 through 2018.

Medium- and Heavy-Duty Trucks and Buses	+	+	+	+	0.1	0.1	0.1
Alternative Fuel On-Road	+	0.2	0.2	0.2	0.2	0.2	0.2
Non-Road ^c	7.7	7.2	2.8	2.4	2.3	2.2	2.1
Ships and Boats	0.6	0.5	0.3	0.3	0.3	0.3	0.3
Rail	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Aircraft	0.1	0.1	+	+	+	+	+
Agricultural Equipment ^d	0.6	0.6	0.2	0.1	0.1	0.1	0.1
Construction/Mining	0.9	1.0	0.6	0.5	0.4	0.4	0.4
Equipment ^e							
Other ^f	5.5	4.9	1.6	1.5	1.4	1.3	1.3
Total	12.9	9.6	4.1	3.7	3.4	3.3	3.1

+ Does not exceed 0.05 MMT CO₂ Eq.

^a See Annex 3.2 for definitions of on-road vehicle types.

^b Gasoline and diesel highway vehicle mileage estimates are based on data from FHWA Highway Statistics Table VM-1 (FHWA 1996 through 2018). Table VM-1 fuel consumption data for 2018 has not been published yet, therefore 2018 fuel consumption data is estimated using the percent change in VMT from 2017 to 2018. These mileage estimates are combined with estimates of fuel shares by vehicle type from DOE's TEDB Annex Tables A.1 through A.6 (DOE 1993 through 2017). TEDB data for 2017 and 2018 has not been published yet, therefore 2016 data are used as a proxy.

^c Rail emissions do not include emissions from electric powered locomotives. Class II and Class III diesel consumption data for 2014-2018 is estimated by applying the historical average fuel usage per carload factor to the annual number of carloads. Intercity rail diesel consumption data for 2017 and 2018 is not available yet, therefore 2016 data are used as a proxy. Commuter rail diesel consumption data for 2018 is not available yet, therefore 2017 data are used as a proxy.

^d Includes equipment, such as tractors and combines, as well as fuel consumption from trucks that are used offroad in agriculture.

^e Includes equipment, such as cranes, dumpers, and excavators, as well as fuel consumption from trucks that are used off-road in construction.

f "Other" includes snowmobiles and other recreational equipment, logging equipment, lawn and garden equipment, railroad equipment, airport equipment, commercial equipment, and industrial equipment, as well as fuel consumption from trucks that are used off-road for commercial/industrial purposes.

Notes: In 2011, FHWA changed its methods for estimating vehicle miles traveled (VMT) and related data. These methodological changes included how vehicles are classified, moving from a system based on body-type to one that is based on wheelbase. These changes were first incorporated for the 1990 through 2010 Inventory and apply to the 2007 through 2018 time period. This resulted in large changes in VMT and fuel consumption data by vehicle class, thus leading to a shift in emissions among on-road vehicle classes. Totals may not sum due to independent rounding.

1 Table 3-15: N₂O Emissions from Mobile Combustion (MMT CO₂ Eq.)

Fuel Type/Vehicle Type ^a	1990	2005	2014	2015	2016	2017	2018
Gasoline On-Road ^b	37.5	31.8	13.3	11.6	10.2	8.7	7.3
Passenger Cars	24.1	17.3	9.0	8.0	7.0	6.0	5.1
Light-Duty Trucks	12.8	13.6	3.8	3.1	2.7	2.3	1.9
Medium- and Heavy-Duty	_						
Trucks and Buses	0.5	0.9	0.5	0.4	0.4	0.3	0.3
Motorcycles	+	+	+	+	+	+	+
Diesel On-Road ^b	0.2	0.3	1.9	2.2	2.4	2.6	2.9
Passenger Cars	+	+	+	+	0.1	0.1	0.1
Light-Duty Trucks	+	+	0.1	0.1	0.1	0.1	0.1
Medium- and Heavy-Duty	_						
Trucks and Buses	0.2	0.3	1.8	2.0	2.2	2.4	2.7
Alternative Fuel On-Road	+	+	0.1	0.1	0.2	0.2	0.2
Non-Road	4.4	5.2	4.5	4.5	4.7	4.9	4.9
Ships and Boats	0.6	0.6	0.3	0.4	0.5	0.5	0.5

Total	42.1	37.4	19.8	18.4	17.5	16.3	15.3
Other ^f	0.6	0.9	1.0	1.0	1.0	1.0	1.0
Equipment ^e	0.6	1.0	0.8	0.8	0.8	0.9	0.9
Construction/Mining	_						
Agricultural Equipment ^d	0.5	0.6	0.6	0.6	0.6	0.5	0.5
Aircraft	1.7	1.8	1.4	1.5	1.5	1.6	1.6
Rail ^c	0.3	0.4	0.4	0.4	0.3	0.4	0.4

+ Does not exceed 0.05 MMT CO₂ Eq.

^a See Annex 3.2 for definitions of on-road vehicle types.

^b Gasoline and diesel highway vehicle mileage estimates are based on data from FHWA Highway Statistics Table VM-1 (FHWA 1996 through 2018). Table VM-1 fuel consumption data for 2018 has not been published yet, therefore 2018 fuel consumption data is estimated using the percent change in VMT from 2017 to 2018. These mileage estimates are combined with estimates of fuel shares by vehicle type from DOE's TEDB Annex Tables A.1 through A.6 (DOE 1993 through 2017). TEDB data for 2017 and 2018 has not been published yet, therefore 2016 data are used as a proxy.

^c Rail emissions do not include emissions from electric powered locomotives. Class II and Class III diesel consumption data for 2014-2017 is estimated by applying the historical average fuel usage per carload factor to the annual number of carloads. Intercity rail diesel consumption data for 2017 and 2018 is not available yet, therefore 2016 data are used as a proxy. Commuter rail diesel consumption data for 2018 is not available yet, therefore 2017 data are used as a proxy.

^d Includes equipment, such as tractors and combines, as well as fuel consumption from trucks that are used off-road in agriculture.

^e Includes equipment, such as cranes, dumpers, and excavators, as well as fuel consumption from trucks that are used off-road in construction.

^f "Other" includes snowmobiles and other recreational equipment, logging equipment, lawn and garden equipment, railroad equipment, airport equipment, commercial equipment, and industrial equipment, as well as fuel consumption from trucks that are used off-road for commercial/industrial purposes.

Note: In 2011, FHWA changed its methods for estimating vehicle miles traveled (VMT) and related data. These methodological changes included how vehicles are classified, moving from a system based on body type to one that is based on wheelbase. These changes were first incorporated for the 1990 through 2010 Inventory and apply to the 2007 through 2018 time period. This resulted in large changes in VMT and fuel consumption data by vehicle class, thus leading to a shift in emissions among on-road vehicle classes. Totals may not sum due to independent rounding.

1 CO₂ from Fossil Fuel Combustion

2 Methodology

3 CO₂ emissions from fossil fuel combustion are estimated in line with a Tier 2 method described by the IPCC in the

4 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC 2006) with some exceptions as discussed

below.²⁹ A detailed description of the U.S. methodology is presented in Annex 2.1, and is characterized by the
following steps:

Determine total fuel consumption by fuel type and sector. Total fossil fuel consumption for each year is
 estimated by aggregating consumption data by end-use sector (e.g., commercial, industrial), primary fuel
 type (e.g., coal, petroleum, gas), and secondary fuel category (e.g., motor gasoline, distillate fuel oil). Fuel
 consumption data for the United States were obtained directly from the EIA of the U.S. Department of
 Energy (DOE), primarily from the Monthly Energy Review (EIA 2019a). The EIA does not include territories
 in its national energy statistics, so fuel consumption data for territories were collected separately from
 EIA's International Energy Statistics (EIA 2017).³⁰

²⁹ The IPCC Tier 3B methodology is used for estimating emissions from commercial aircraft.

³⁰ Fuel consumption by U.S. Territories (i.e., American Samoa, Guam, Puerto Rico, U.S. Virgin Islands, Wake Island, and other U.S. Pacific Islands) is included in this report and contributed total emissions of 41.4 MMT CO₂ Eq. in 2018.

- 1 For consistency of reporting, the IPCC has recommended that countries report energy data using the 2 International Energy Agency (IEA) reporting convention and/or IEA data. Data in the IEA format are 3 presented "top down"—that is, energy consumption for fuel types and categories are estimated from 4 energy production data (accounting for imports, exports, stock changes, and losses). The resulting quantities are referred to as "apparent consumption." The data collected in the United States by EIA on 5 6 an annual basis and used in this Inventory are predominantly from mid-stream or conversion energy 7 consumers such as refiners and electric power generators. These annual surveys are supplemented with 8 end-use energy consumption surveys, such as the Manufacturing Energy Consumption Survey, that are 9 conducted on a periodic basis (every four years). These consumption data sets help inform the annual surveys to arrive at the national total and sectoral breakdowns for that total.³¹ 10
- 11Also, note that U.S. fossil fuel energy statistics are generally presented using gross calorific values (GCV)12(i.e., higher heating values). Fuel consumption activity data presented here have not been adjusted to13correspond to international standards, which are to report energy statistics in terms of net calorific values14(NCV) (i.e., lower heating values).³²
- 15 2. Subtract uses accounted for in the Industrial Processes and Product Use chapter. Portions of the fuel consumption data for seven fuel categories—coking coal, distillate fuel, industrial other coal, petroleum 16 17 coke, natural gas, residual fuel oil, and other oil—were reallocated to the Industrial Processes and Product Use chapter, as they were consumed during non-energy-related industrial activity. To make these 18 19 adjustments, additional data were collected from AISI (2004 through 2018), Coffeyville (2012), U.S. Census Bureau (2001 through 2011), EIA (2019a, 2019b, 2019f), USAA (2008 through 2018), USGS (1991 through 20 2015a), (USGS 2018b), USGS (2014 through 2019b), USGS (2014 through 2017), USGS (1995 through 21 2013), USGS (1995, 1998, 2000, 2001, 2002, 2007), USGS (2019a), USGS (1991 through 2015c), USGS 22 23 (1991 through 2017), USGS (2014 through 2019a), USGS (1996 through 2013), USGS (1991 through 2015b), USGS (2019b), USGS (1991 through 2015c).33 24
- 3. Adjust for biofuels, conversion of fossil fuels, and exports of CO₂. Fossil fuel consumption estimates are 25 26 adjusted downward to exclude (1) fuels with biogenic origins, (2) fuels created from other fossil fuels, and 27 (3) exports of CO₂. Carbon dioxide emissions from ethanol added to motor gasoline and biodiesel added 28 to diesel fuel are not included specifically in summing energy sector totals. Net carbon fluxes from changes in biogenic carbon reservoirs are accounted for in the estimates for LULUCF, therefore, fuel 29 consumption estimates are adjusted to remove ethanol and biodiesel.³⁴ Synthetic natural gas is created 30 from industrial coal and is currently included in EIA statistics for coal. Therefore, synthetic natural gas is 31 subtracted from coal consumption statistics.³⁵ Since October 2000, the Dakota Gasification Plant has been 32 exporting CO_2 to Canada by pipeline. Since this CO_2 is not emitted to the atmosphere in the United States, 33 34 the associated fossil fuel burned to create the exported CO₂ is subtracted from coal consumption 35 statistics. The associated fossil fuel is the total fossil fuel burned at the plant with the CO₂ capture system 36 multiplied by the fraction of the plant's total site-generated CO₂ that is recovered by the capture system. 37 To make these adjustments, additional data were collected from EIA (2019a), data for synthetic natural 38 gas were collected from EIA (2019f), and data for CO₂ exports were collected from the Eastman

 $^{^{31}}$ See IPCC Reference Approach for Estimating CO₂ Emissions from Fossil Fuel Combustion in Annex 4 for a comparison of U.S. estimates using top-down and bottom-up approaches.

³² A crude convention to convert between gross and net calorific values is to multiply the heat content of solid and liquid fossil fuels by 0.95 and gaseous fuels by 0.9 to account for the water content of the fuels. Biomass-based fuels in U.S. energy statistics, however, are generally presented using net calorific values.

³³ See sections on Iron and Steel Production and Metallurgical Coke Production, Ammonia Production and Urea Consumption, Petrochemical Production, Titanium Dioxide Production, Ferroalloy Production, Aluminum Production, and Silicon Carbide Production and Consumption in the Industrial Processes and Product Use chapter.

³⁴ Natural gas energy statistics from EIA (2019a) are already adjusted downward to account for biogas in natural gas.

³⁵ These adjustments are explained in greater detail in Annex 2.1.

1Gasification Services Company (2011), Dakota Gasification Company (2006), Fitzpatrick (2002), Erickson2(2003), EIA (2008), and DOE (2012).

- 3 4. Adjust Sectoral Allocation of Distillate Fuel Oil and Motor Gasoline. EPA had conducted a separate bottom-4 up analysis of transportation fuel consumption based on data from the Federal Highway Administration 5 that indicated that the amount of distillate and motor gasoline consumption allocated to the 6 transportation sector in the EIA statistics should be adjusted. Therefore, for these estimates, the 7 transportation sector's distillate fuel and motor gasoline consumption were adjusted to match the value 8 obtained from the bottom-up analysis. As the total distillate and motor gasoline consumption estimate 9 from EIA are considered to be accurate at the national level, the distillate and motor gasoline 10 consumption totals for the residential, commercial, and industrial sectors were adjusted proportionately. 11 The data sources used in the bottom-up analysis of transportation fuel consumption include AAR (2008 12 through 2018), Benson (2002 through 2004), DOE (1993 through 2017), EIA (2007), EIA (1991 through 13 2018), EPA (2018b), and FHWA (1996 through 2018).³⁶
- 14 5. Adjust for fuels consumed for non-energy uses. U.S. aggregate energy statistics include consumption of 15 fossil fuels for non-energy purposes. These are fossil fuels that are manufactured into plastics, asphalt, 16 lubricants, or other products. Depending on the end-use, this can result in storage of some or all of the C 17 contained in the fuel for a period of time. As the emission pathways of C used for non-energy purposes 18 are vastly different than fuel combustion (since the C in these fuels ends up in products instead of being 19 combusted), these emissions are estimated separately in Section 3.2 – Carbon Emitted and Stored in 20 Products from Non-Energy Uses of Fossil Fuels. Therefore, the amount of fuels used for non-energy 21 purposes was subtracted from total fuel consumption. Data on non-fuel consumption were provided by 22 EIA (2019a).
- 23 6. Subtract consumption of international bunker fuels. According to the UNFCCC reporting guidelines 24 emissions from international transport activities, or bunker fuels, should not be included in national 25 totals. U.S. energy consumption statistics include these bunker fuels (e.g., distillate fuel oil, residual fuel 26 oil, and jet fuel) as part of consumption by the transportation end-use sector, however, so emissions from 27 international transport activities were calculated separately following the same procedures used for 28 emissions from consumption of all fossil fuels (i.e., estimation of consumption, and determination of C content).³⁷ The Office of the Under Secretary of Defense (Installations and Environment) and the Defense 29 Logistics Agency Energy (DLA Energy) of the U.S. Department of Defense (DoD) (DLA Energy 2019) 30 31 supplied data on military jet fuel and marine fuel use. Commercial jet fuel use was obtained from FAA 32 (2019); residual and distillate fuel use for civilian marine bunkers was obtained from DOC (1991 through 2019) for 1990 through 2001 and 2007 through 2018, and DHS (2008) for 2003 through 2006.³⁸ 33 34 Consumption of these fuels was subtracted from the corresponding fuels in the transportation end-use 35 sector. Estimates of international bunker fuel emissions for the United States are discussed in detail in 36 Section 3.10 - International Bunker Fuels.
- Determine the total C content of fuels consumed. Total C was estimated by multiplying the amount of fuel
 consumed by the amount of C in each fuel. This total C estimate defines the maximum amount of C that
 could potentially be released to the atmosphere if all of the C in each fuel was converted to CO₂. The C
 content coefficients used by the United States were obtained from EIA's *Emissions of Greenhouse Gases in*the United States 2008 (EIA 2009a), and an EPA analysis of C content coefficients developed for the
 GHGRP (EPA 2010). A discussion of the methodology used to develop the C content coefficients are
 presented in Annexes 2.1 and 2.2.

³⁶ Bottom-up gasoline and diesel highway vehicle fuel consumption estimates are based on data from FHWA Highway Statistics Table MF-21, MF-27, and VM-1 (FHWA 1996 through 2018).

³⁷ See International Bunker Fuels section in this chapter for a more detailed discussion.

³⁸ Data for 2002 were interpolated due to inconsistencies in reported fuel consumption data.

1 8. Estimate CO₂ Emissions. Total CO₂ emissions are the product of the adjusted energy consumption (from 2 the previous methodology steps 1 through 6), the C content of the fuels consumed, and the fraction of C 3 that is oxidized. The fraction oxidized was assumed to be 100 percent for petroleum, coal, and natural gas 4 based on guidance in IPCC (2006) (see Annex 2.1). 5 9. Allocate transportation emissions by vehicle type. This report provides a more detailed accounting of 6 emissions from transportation because it is such a large consumer of fossil fuels in the United States. For 7 fuel types other than jet fuel, fuel consumption data by vehicle type and transportation mode were used 8 to allocate emissions by fuel type calculated for the transportation end-use sector. Heat contents and 9 densities were obtained from EIA (2019a) and USAF (1998).³⁹ 10 For on-road vehicles, annual estimates of combined motor gasoline and diesel fuel consumption by vehicle category were obtained from FHWA (1996 through 2018); for each vehicle category, the 11 percent gasoline, diesel, and other (e.g., CNG, LPG) fuel consumption are estimated using data from 12 13 DOE (1993 through 2017). 40,41 14 • For non-road vehicles, activity data were obtained from AAR (2008 through 2018), APTA (2007 through 2017), APTA (2006), BEA (2018), Benson (2002 through 2004), DLA Energy (2019), DOC 15 (1991 through 2019), DOE (1993 through 2017), DOT (1991 through 2018), EIA (2009a), EIA (2019a), 16 17 EIA (2019h), EIA (1991 through 2018), EPA (2018b),⁴² and Gaffney (2007). 18 For jet fuel used by aircraft, CO_2 emissions from commercial aircraft were developed by the U.S. 19 Federal Aviation Administration (FAA) using a Tier 3B methodology, consistent IPCC (2006) (see 20 Annex 3.3). Carbon dioxide emissions from other aircraft were calculated directly based on reported 21 consumption of fuel as reported by EIA. Allocation to domestic military uses was made using DoD 22 data (see Annex 3.8). General aviation jet fuel consumption is calculated as the remainder of total jet 23 fuel use (as determined by EIA) nets all other jet fuel use as determined by FAA and DoD. For more 24 information, see Annex 3.2.

Box 3-4: Uses of Greenhouse Gas Reporting Program Data and Improvements in Reporting Emissions from Industrial Sector Fossil Fuel Combustion

25

26

As described in the calculation methodology, total fossil fuel consumption for each year is based on aggregated end-use sector consumption published by the EIA. The availability of facility-level combustion emissions through EPA's GHGRP has provided an opportunity to better characterize the industrial sector's energy consumption and

 $^{^{39}}$ For a more detailed description of the data sources used for the analysis of the transportation end use sector see the Mobile Combustion (excluding CO₂) and International Bunker Fuels sections of the Energy chapter, Annex 3.2, and Annex 3.8, respectively.

⁴⁰ Data from FHWA's Table VM-1 is used to estimate the share of fuel consumption between each on-road vehicle class. These fuel consumption estimates are combined with estimates of fuel shares by vehicle type from DOE's TEDB Annex Tables A.1 through A.6 (DOE 1993 through 2017). In 2011, FHWA changed its methods for estimating data in the VM-1 table. These methodological changes included how vehicles are classified, moving from a system based on body-type to one that is based on wheelbase. These changes were first incorporated for the 1990 through 2010 Inventory and apply to the time period from 2007 through 2015. This resulted in large changes in VMT and fuel consumption data by vehicle class, thus leading to a shift in emissions among on-road vehicle classes.

⁴¹ Transportation sector natural gas and LPG consumption are based on data from EIA (2019a). In previous Inventory years, data from DOE (1993 through 2017) TEDB was used to estimate each vehicle class's share of the total natural gas and LPG consumption. Since TEDB does not include estimates for natural gas use by medium- and heavy-duty trucks or LPG use by passenger cars, EIA Alternative Fuel Vehicle Data (Browning 2017) is now used to determine each vehicle class's share of the total natural gas and LPG consumption. These changes were first incorporated in the previous Inventory and apply to the time period from 1990 to 2015.

⁴² In 2014, EPA incorporated the NONROAD2008 model into MOVES2014. The current Inventory uses the NONROAD component of MOVES2014b for years 1999 through 2018.

emissions in the United States, through a disaggregation of EIA's industrial sector fuel consumption data from select industries.

For GHGRP 2010 through 2018 reporting years, facility-level fossil fuel combustion emissions reported through EPA's GHGRP were categorized and distributed to specific industry types by utilizing facility-reported NAICS codes (as published by the U.S. Census Bureau). As noted previously in this report, the definitions and provisions for reporting fuel types in EPA's GHGRP include some differences from the Inventory's use of EIA national fuel statistics to meet the UNFCCC reporting guidelines. The IPCC has provided guidance on aligning facility-level reported fuels and fuel types published in national energy statistics, which guided this exercise.⁴³

As with previous Inventory reports, the current effort represents an attempt to align, reconcile, and coordinate the facility-level reporting of fossil fuel combustion emissions under EPA's GHGRP with the national-level approach presented in this report. Consistent with recommendations for reporting the Inventory to the UNFCCC, progress was made on certain fuel types for specific industries and has been included in the CRF tables that are submitted to the UNFCCC along with this report.⁴⁴ The efforts in reconciling fuels focus on standard, common fuel types (e.g., natural gas, distillate fuel oil, etc.) where the fuels in EIA's national statistics aligned well with facility-level GHGRP data. For these reasons, the current information presented in the CRF tables should be viewed as an initial attempt at this exercise. Additional efforts will be made for future Inventory reports to improve the mapping of fuel types, and examine ways to reconcile and coordinate any differences between facility-level data and national statistics. The current analysis includes the full time series presented in the CRF tables. Analyses were conducted linking GHGRP facility-level reporting with the information published by EIA in its MECS data in order to disaggregate the full 1990 through 2018 time period in the CRF tables. It is believed that the current analysis has led to improvements will be realized in subsequent Inventory, but further work will be conducted, and future improvements will be realized in subsequent Inventory reports. This includes incorporating the latest MECS data as it becomes available.

1 2

Box 3-5: Carbon Intensity of U.S. Energy Consumption

The amount of C emitted from the combustion of fossil fuels is dependent upon the C content of the fuel and the fraction of that C that is oxidized. Fossil fuels vary in their average C content, ranging from about 53 MMT CO₂ Eq./QBtu for natural gas to upwards of 95 MMT CO₂ Eq./QBtu for coal and petroleum coke. In general, the C content per unit of energy of fossil fuels is the highest for coal products, followed by petroleum, and then natural gas. The overall C intensity of the U.S. economy is thus dependent upon the quantity and combination of fuels and other energy sources employed to meet demand.

Table 3-16 provides a time series of the C intensity of direct emissions for each sector of the U.S. economy. The time series incorporates only the energy from the direct combustion of fossil fuels in each sector. For example, the C intensity for the residential sector does not include the energy from or emissions related to the use of electricity for lighting, as it is instead allocated to the electric power sector. For the purposes of maintaining the focus of this section, renewable energy and nuclear energy are not included in the energy totals used in Table 3-16 in order to focus attention on fossil fuel combustion as detailed in this chapter. Looking only at this direct consumption of fossil fuels, the residential sector exhibited the lowest C intensity, which is related to the large percentage of its energy derived from natural gas for heating. The C intensity of the commercial sector has predominantly declined since 1990 as commercial businesses shift away from petroleum to natural gas. The industrial sector was more dependent on petroleum and coal than either the residential or commercial sectors, and thus had higher C intensities over this period. The C intensity of the transportation sector was closely

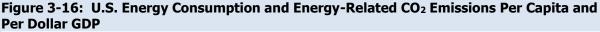
⁴³ See Section 4 "Use of Facility-Level Data in Good Practice National Greenhouse Gas Inventories" of the IPCC meeting report, and specifically the section on using facility-level data in conjunction with energy data, at http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

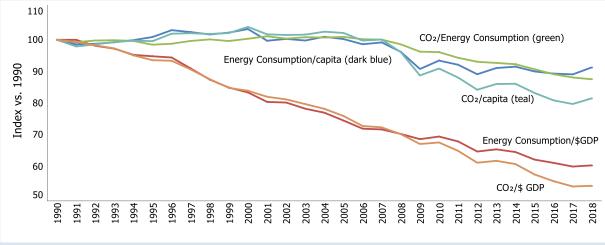
⁴⁴ See <https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks>.

related to the C content of petroleum products (e.g., motor gasoline and jet fuel, both around 70 MMT CO₂ Eq./EJ), which were the primary sources of energy.⁴⁵ Lastly, the electric power sector had the highest C intensity due to its heavy reliance on coal for generating electricity.

Table 3-16: Carbon Intensity from Direct Fossil Fuel Combustion by Sector (M	MT CO ₂
Eq./QBtu)	

Sector	1990	2005	2014	2015	2016	2017	2018
Residential ^a	57.4	56.6	55.4	55.5	55.1	55.0	55.1
Commercial ^a	59.6	57.7	55.7	57.2	56.8	56.6	56.6
Industrial ^a	64.5	64.5	61.5	61.2	60.8	60.5	60.4
Transportation ^a	71.1	71.4	71.5	71.5	71.5	71.5	71.4
Electric Power ^b	87.3	85.8	81.2	78.1	76.8	77.3	75.5
U.S. Territories ^c	73.0	73.5	72.3	72.2	72.2	72.2	72.2
All Sectors ^c	73.0	73.5	70.8	69.7	69.2	69.2	68.3


^a Does not include electricity or renewable energy consumption.


^b Does not include electricity produced using nuclear or renewable energy.

^c Does not include nuclear or renewable energy consumption.

Note: Excludes non-energy fuel use emissions and consumption.

For the time period of 1990 through about 2008, the C intensity of U.S. energy consumption was fairly constant, as the proportion of fossil fuels used by the individual sectors did not change significantly over that time. Starting in 2008 the C intensity has decreased, reflecting the shift from coal to natural gas in the electric power sector during that time period. Per capita energy consumption fluctuated little from 1990 to 2007, but then started decreasing after 2007 and, in 2018, was approximately 8.7 percent below levels in 1990 (see Figure 3-16). To differentiate these estimates from those of Table 3-16, the C intensity trend shown in Figure 3-16 and described below includes nuclear and renewable energy EIA data to provide a comprehensive economy-wide picture of energy consumption. Due to a general shift from a manufacturing-based economy to a service-based economy, as well as overall increases in efficiency, energy consumption and energy-related CO₂ emissions per dollar of gross domestic product (GDP) have both declined since 1990 (BEA 2018).

C intensity estimates were developed using nuclear and renewable energy data from EIA (2019a), EPA (2010), and fossil fuel consumption data as discussed above and presented in Annex 2.1.

⁴⁵ One exajoule (EJ) is equal to 10¹⁸ joules or 0.9478 QBtu.

1

2 Uncertainty and Time-Series Consistency

3 For estimates of CO₂ from fossil fuel combustion, the amount of CO₂ emitted is directly related to the amount of

4 fuel consumed, the fraction of the fuel that is oxidized, and the carbon content of the fuel. Therefore, a careful

- 5 accounting of fossil fuel consumption by fuel type, average carbon contents of fossil fuels consumed, and
- production of fossil fuel-based products with long-term carbon storage should yield an accurate estimate of CO₂
 emissions.
- 8 Nevertheless, there are uncertainties in the consumption data, carbon content of fuels and products, and carbon
- 9 oxidation efficiencies. For example, given the same primary fuel type (e.g., coal, petroleum, or natural gas), the
- amount of carbon contained in the fuel per unit of useful energy can vary. For the United States, however, the
- 11 impact of these uncertainties on overall CO₂ emission estimates is believed to be relatively small. See, for example,
- 12 Marland and Pippin (1990).
- 13 Although statistics of total fossil fuel and other energy consumption are relatively accurate, the allocation of this
- 14 consumption to individual end-use sectors (i.e., residential, commercial, industrial, and transportation) is less
- 15 certain. For example, for some fuels the sectoral allocations are based on price rates (i.e., tariffs), but a commercial
- 16 establishment may be able to negotiate an industrial rate or a small industrial establishment may end up paying an
- 17 industrial rate, leading to a misallocation of emissions. Also, the deregulation of the natural gas industry and the
- 18 more recent deregulation of the electric power industry have likely led to some minor problems in collecting
- 19 accurate energy statistics as firms in these industries have undergone significant restructuring.
- 20 To calculate the total CO₂ emission estimate from energy-related fossil fuel combustion, the amount of fuel used in
- 21 non-energy production processes were subtracted from the total fossil fuel consumption. The amount of CO₂
- 22 emissions resulting from non-energy related fossil fuel use has been calculated separately and reported in the
- 23 Carbon Emitted from Non-Energy Uses of Fossil Fuels section of this report (Section 3.2). These factors all
- 24 contribute to the uncertainty in the CO₂ estimates. Detailed discussions on the uncertainties associated with C
- 25 emitted from Non-Energy Uses of Fossil Fuels can be found within that section of this chapter.
- 26 Various sources of uncertainty surround the estimation of emissions from international bunker fuels, which are
- 27 subtracted from the U.S. totals (see the detailed discussions on these uncertainties provided in Section 3.10 –
- 28 International Bunker Fuels). Another source of uncertainty is fuel consumption by U.S. Territories. The United
- 29 States does not collect energy statistics for its territories at the same level of detail as for the fifty states and the
- District of Columbia. Therefore, estimating both emissions and bunker fuel consumption by these territories is
 difficult.
- 32 Uncertainties in the emission estimates presented above also result from the data used to allocate CO₂ emissions
- 33 from the transportation end-use sector to individual vehicle types and transport modes. In many cases, bottom-up
- 34 estimates of fuel consumption by vehicle type do not match aggregate fuel-type estimates from EIA. Further
- 35 research is planned to improve the allocation into detailed transportation end-use sector emissions.
- 36 The uncertainty analysis was performed by primary fuel type for each end-use sector, using the IPCC-
- 37 recommended Approach 2 uncertainty estimation methodology, Monte Carlo Stochastic Simulation technique,
- 38 with @RISK software. For this uncertainty estimation, the inventory estimation model for CO₂ from fossil fuel
- 39 combustion was integrated with the relevant variables from the inventory estimation model for International
- 40 Bunker Fuels, to realistically characterize the interaction (or endogenous correlation) between the variables of
- 41 these two models. About 170 input variables were modeled for CO₂ from energy-related Fossil Fuel Combustion
- 42 (including about 20 for non-energy fuel consumption and about 20 for International Bunker Fuels).

- 1 In developing the uncertainty estimation model, uniform distributions were assumed for all activity-related input
- 2 variables and emission factors, based on the SAIC/EIA (2001) report.⁴⁶ Triangular distributions were assigned for
- 3 the oxidization factors (or combustion efficiencies). The uncertainty ranges were assigned to the input variables
- 4 based on the data reported in SAIC/EIA (2001) and on conversations with various agency personnel.⁴⁷
- 5 The uncertainty ranges for the activity-related input variables were typically asymmetric around their inventory
- 6 estimates; the uncertainty ranges for the emissions factors were symmetric. Bias (or systematic uncertainties)
- 7 associated with these variables accounted for much of the uncertainties associated with these variables (SAIC/EIA
- 8 2001).⁴⁸ For purposes of this uncertainty analysis, each input variable was simulated 10,000 times through Monte
- 9 Carlo sampling.

10 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 3-17. Fossil fuel

- 11 combustion CO₂ emissions in 2018 were estimated to be between 4,927.8 and 5,255.9 MMT CO₂ Eq. at a 95
- 12 percent confidence level. This indicates a range of 2 percent below to 4 percent above the 2018 emission estimate
- 13 of 5,032.9 MMT CO₂ Eq.

Table 3-17: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from Energy-Related Fossil Fuel Combustion by Fuel Type and Sector (MMT CO₂ Eq. and Percent)

	2018 Emission Estimate	Uncertaint	ty Range Relati	ve to Emission	Estimate ^a		
Fuel/Sector	(MMT CO ₂ Eq.)	(MMT (CO₂ Eq.)	(%)			
		Lower Bound	Upper Bound	Lower Bound	Upper Bound		
Coal ^b	1,208.5	1,166.92	1,322.4	-3%	9%		
Residential	NE	NE	NE	NE	NE		
Commercial	1.8	1.7	2.1	-5%	15%		
Industrial	49.8	47.5	57.7	-5%	16%		
Transportation	NE	NE	NE	NE	NE		
Electric Power	1,152.9	1,109.0	1,263.6	-4%	10%		
U.S. Territories	4.0	3.5	4.8	-12%	19%		
Natural Gas ^b	1,611.7	1,593.5	1,685.2	-1%	5%		
Residential	273.7	266.0	293.1	-3%	7%		
Commercial	192.6	187.2	206.1	-3%	7%		
Industrial	514.8	499.4	551.6	-3%	7%		
Transportation	50.2	48.8	53.7	-3%	7%		
Electric Power	577.4	560.9	606.9	-3%	5%		
U.S. Territories	3.0	2.6	3.5	-13%	17%		
Petroleum ^b	2,212.7	2,077.2	2,340.4	-6%	6%		
Residential	62.2	58.7	65.4	-6%	5%		
Commercial	63.9	60.3	67.2	-6%	5%		
Industrial	282.1	223.4	335.6	-21%	19%		

⁴⁶ SAIC/EIA (2001) characterizes the underlying probability density function for the input variables as a combination of uniform and normal distributions (the former to represent the bias component and the latter to represent the random component). However, for purposes of the current uncertainty analysis, it was determined that uniform distribution was more appropriate to characterize the probability density function underlying each of these variables.

⁴⁷ In the SAIC/EIA (2001) report, the quantitative uncertainty estimates were developed for each of the three major fossil fuels used within each end-use sector; the variations within the sub-fuel types within each end-use sector were not modeled. However, for purposes of assigning uncertainty estimates to the sub-fuel type categories within each end-use sector in the current uncertainty analysis, SAIC/EIA (2001)-reported uncertainty estimates were extrapolated.

⁴⁸ Although, in general, random uncertainties are the main focus of statistical uncertainty analysis, when the uncertainty estimates are elicited from experts, their estimates include both random and systematic uncertainties. Hence, both these types of uncertainties are represented in this uncertainty analysis.

Transportation	1,748.1	1,635.1	1,859.7	-6%	6%
Electric Power	22.2	21.2	23.9	-5%	8%
U.S. Territories	34.3	31.7	38.1	-8%	11%
Total (excluding Geothermal) ^b	5,032.9	4,927.2	5,255.3	-2%	4%
Geothermal	0.4	NE	NE	NE	NE
Total (including Geothermal) ^{b,c}	5,033.3	4,927.8	5,255.9	-2%	4%

NE (Not Estimated)

Note: Totals may not sum due to independent rounding.

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

^b The low and high estimates for total emissions were calculated separately through simulations and, hence, the low and high emission estimates for the sub-source categories do not sum to total emissions.

 $^{\rm c}$ Geothermal emissions added for reporting purposes, but an uncertainty analysis was not performed for CO $_2$ emissions from geothermal production.

1 Methodological recalculations were applied to the entire time series to ensure time-series consistency from 1990

2 through 2018. Details on the emission trends through time are described in more detail in the Methodology

3 section, above. As discussed in Annex 5, data are unavailable to include estimates of CO₂ emissions from any liquid

4 fuel used in pipeline transport or non-hazardous industrial waste incineration, but those emissions are assumed to

5 be insignificant.

6 **QA/QC and Verification**

7 In order to ensure the quality of the CO₂ emission estimates from fossil fuel combustion, general (IPCC Tier 1) and

8 category-specific (Tier 2) Quality Assurance/Quality Control (QA/QC) procedures were implemented consistent

9 with the U.S. Inventory QA/QC plan outlined in Annex 8. The Tier 2 procedures that were implemented involved

10 checks specifically focusing on the activity data and methodology used for estimating CO₂ emissions from fossil fuel

11 combustion in the United States. Emission totals for the different sectors and fuels were compared and trends

12 were investigated to determine whether any corrective actions were needed. Minor corrective actions were taken.

13 **Recalculations Discussion**

14 The Energy Information Administration (EIA 2019a) updated energy consumption statistics across the time series

15 relative to the previous Inventory. As a result of updated LPG and fuel ethanol heat contents, EIA updated LPG

16 consumption in the residential, commercial, industrial, and transportation sectors across the time series. EIA also

17 revised sector allocations for propane and total LPGs for 2010 through 2017, and for distillate fuel oil in 2017,

18 which impacted petroleum consumption by sector. EIA revised assumptions for the percentage of fossil fuels

19 consumed for non-combustion use which impacted the nonfuel sequestration statistics, particularly for petroleum

20 coke and residual fuel across the time series relative to the previous Inventory.

21 EIA also revised 2017 natural gas consumption in all sectors, 2017 kerosene consumption in the residential and

commercial sectors, 2009 and 2017 motor gasoline consumption in the commercial, industrial, and transportation

sectors, 1995 and 1997 through 2000 asphalt and road oil consumption in the industrial sector, 2017 residual fuel

oil and lubricants in the industrial and transportation sectors, 2017 petroleum coke consumption in the industrial

25 sector, 2009 through 2017 distillate fuel oil consumption in the transportation sector, and pentanes plus

26 consumption in the industrial sector across the time series.

27 To align with EIA's methodology for calculating industrial and commercial motor gasoline consumption, fuel

ethanol adjustments to motor gasoline consumption for the period 1990 through 1992 were corrected. To align

29 with EIA's methodology for calculating the amount of biofuel added to diesel fuel, both biodiesel and other

30 renewable diesel fuel were considered; EIA (2019a) data were used for 2009 forward. To improve the time series

31 consistency of distillate fuel oil consumption, data from EIA's Fuel Oil and Kerosene Sales Report (EIA 1991 through

32 2018) were used across the time series. Previously, distillate fuel oil consumption for the period 1990 through

- 33 2002 were obtained from EIA's State Energy Data System (SEDS) (EIA 1990-2002) and 2003 data were provided by
- 34 EIA (2003).

- 1 Revisions to LPG, lubricants, kerosene, jet fuel, distillate fuel, asphalt and road oil, residual fuel oil, petroleum coke,
- 2 pentanes plus, and motor gasoline consumption resulted in an average annual decrease of 6.6 MMT CO₂ Eq. (0.3
- 3 percent) in CO₂ emissions from petroleum. Revisions to natural gas consumption resulted in an increase of 1.1
- 4 MMT CO₂ Eq. (0.1 percent) in CO₂ emissions from natural gas in 2017. Overall, these changes resulted in an
- 5 average annual decrease of 6.5 MMT CO₂ Eq. (0.1 percent) in CO₂ emissions from fossil fuel combustion for the
- 6 period 1990 through 2017, relative to the previous Inventory.

7 Planned Improvements

- 8 To reduce uncertainty of CO₂ from fossil fuel combustion estimates for U.S. Territories, efforts will be made to
- 9 improve the quality of the U.S. Territories data, including through work with EIA and other agencies. This
- 10 improvement is part of an ongoing analysis and efforts to continually improve the CO₂ from fossil fuel combustion
- 11 estimates. In addition, further expert elicitation may be conducted to better quantify the total uncertainty
- 12 associated with emissions from this source.
- 13 The availability of facility-level combustion emissions through EPA's GHGRP will continue to be examined to help
- better characterize the industrial sector's energy consumption in the United States, and further classify total
- 15 industrial sector fossil fuel combustion emissions by business establishments according to industrial economic
- activity type. Most methodologies used in EPA's GHGRP are consistent with IPCC, though for EPA's GHGRP,
- 17 facilities collect detailed information specific to their operations according to detailed measurement standards,
- 18 which may differ with the more aggregated data collected for the Inventory to estimate total, national U.S.
- emissions. In addition, and unlike the reporting requirements for this chapter under the UNFCCC reporting
- 20 guidelines, some facility-level fuel combustion emissions reported under the GHGRP may also include industrial
- process emissions.⁴⁹ In line with UNFCCC reporting guidelines, fuel combustion emissions are included in this
- chapter, while process emissions are included in the Industrial Processes and Product Use chapter of this report. In
 examining data from EPA's GHGRP that would be useful to improve the emission estimates for the CO₂ from fossil
- fuel combustion category, particular attention will also be made to ensure time-series consistency, as the facility-
- 25 level reporting data from EPA's GHGRP are not available for all inventory years as reported in this Inventory.
- Additional analyses will be conducted to align reported facility-level fuel types and IPCC fuel types per the national
- 27 energy statistics. For example, efforts will be taken to incorporate updated industrial fuel consumption data from
- 28 EIA's Manufacturing Energy Consumption Survey (MECS), with updated data for 2014. Additional work will look at
- 29 CO₂ emissions from biomass to ensure they are separated in the facility-level reported data and maintaining
- 30 consistency with national energy statistics provided by EIA. In implementing improvements and integration of data
- from EPA's GHGRP, the latest guidance from the IPCC on the use of facility-level data in national inventories will
- 32 continue to be relied upon.⁵⁰
- An ongoing planned improvement is to develop improved estimates of domestic waterborne fuel consumption.
- 34 The Inventory estimates for residual and distillate fuel used by ships and boats is based in part on data on bunker
- 35 fuel use from the U.S. Department of Commerce. Domestic fuel consumption is estimated by subtracting fuel sold
- 36 for international use from the total sold in the United States. It may be possible to more accurately estimate
- domestic fuel use and emissions by using detailed data on marine ship activity. The feasibility of using domestic
- 38 marine activity data to improve the estimates will continue to be investigated.
- 39 In 2016, FHWA changed its methods for estimating the share of gasoline used in on-road and non-road
- 40 applications, creating a time-series inconsistency in the current Inventory between 2015 and previous years.⁵¹ EPA
- 41 has implemented an approach to address this inconsistency. EPA also tested an alternative approach that uses

⁴⁹ See <https://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf#page=2>.

⁵⁰ See <http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

⁵¹ The previous and new FHWA methodologies for estimating non-road gasoline are described in *Off-Highway and Public-Use Gasoline Consumption Estimation Models Used in the Federal Highway Administration*, Publication Number FHWA-PL-17-012. https://www.fhwa.dot.gov/policyinformation/pubs/pl17012.pdf.

- 1 MOVES on-road fuel consumption output to define the percentage of the FHWA consumption totals (from MF-21)
- 2 that are attributable to on-highway transportation sources, and applying this percentage to the EIA total, thereby
- 3 defining gasoline consumption from on-highway transportation sources (such that the remainder would be defined
- 4 as consumption by the industrial and commercial sectors). Results from this testing revealed differences between
- 5 fuel consumption calculated by MOVES and fuel consumption data from FHWA. Given this inconsistency, no
- 6 changes have been made to the methodology for estimating motor gasoline consumption for non-road mobile7 sources.
- 8 EPA is also evaluating the methods used to adjust for conversion of fuels and exports of CO₂. EPA is exploring the
- 9 approach used to account for CO₂ transport, injection, and geologic storage, as part of this there may be changes
- 10 made to accounting for CO₂ exports. EPA is also exploring the data provided by EIA in terms of tracking
- supplemental natural gas which may impact the treatment of adjustments for synthetic fuels.

12 CH₄ and N₂O from Stationary Combustion

13 Methodology

- 14 Methane and N₂O emissions from stationary combustion were estimated by multiplying fossil fuel and wood
- 15 consumption data by emission factors (by sector and fuel type for industrial, residential, commercial, and U.S.

16 Territories; and by fuel and technology type for the electric power sector). The electric power sector utilizes a Tier

- 17 2 methodology, whereas all other sectors utilize a Tier 1 methodology. The activity data and emission factors used
- 18 are described in the following subsections.

19 Industrial, Residential, Commercial, and U.S. Territories

- 20 National coal, natural gas, fuel oil, and wood consumption data were grouped by sector: industrial, commercial,
- 21 residential, and U.S. Territories. For the CH₄ and N₂O emission estimates, consumption data for each fuel were
- 22 obtained from EIA's Monthly Energy Review (EIA 2019). Because the United States does not include territories in its
- 23 national energy statistics, fuel consumption data for territories were provided separately by EIA's International
- 24 Energy Statistics (EIA 2017).⁵² Fuel consumption for the industrial sector was adjusted to subtract out mobile
- source construction and agricultural use, which is reported under mobile sources. Construction and agricultural
- 26 mobile source fuel use was obtained from EPA (2018) and FHWA (1996 through 2018). Estimates for wood biomass
- 27 consumption for fuel combustion do not include municipal solid waste, tires, etc., that are reported as biomass by
- EIA. Non-CO₂ emissions from combustion of the biogenic portion of municipal solid waste and tires is included
 under waste incineration (Section 3.3). Estimates for natural gas combustion do not include biogas, and therefore
- 29 under waste incineration (Section 3.3). Estimates for natural gas combustion do not include biogas, and therefore 30 non-CO₂ emissions from biogas are not included (see the Planned Improvements section, below). Tier 1 default
- emission factors for the industrial, commercial, and residential end-use sectors were provided by the 2006 IPCC
- 32 *Guidelines for National Greenhouse Gas Inventories* (IPCC 2006). U.S. Territories' emission factors were estimated
- using the U.S. emission factors for the primary sector in which each fuel was combusted.

34 Electric Power Sector

- 35 The electric power sector uses a Tier 2 emission estimation methodology as fuel consumption for the electric
- 36 power sector by control-technology type was based on EPA's Acid Rain Program Dataset (EPA 2019). Total fuel
- 37 consumption in the electric power sector from EIA (2019) was apportioned to each combustion technology type
- and fuel combination using a ratio of fuel consumption by technology type derived from EPA (2019) data. The
- combustion technology and fuel use data by facility obtained from EPA (2019) were only available from 1996 to
- 40 2018, so the consumption estimates from 1990 to 1995 were estimated by applying the 1996 consumption ratio by

 $^{^{52}}$ U.S. Territories data also include combustion from mobile activities because data to allocate territories' energy use were unavailable. For this reason, CH₄ and N₂O emissions from combustion by U.S. Territories are only included in the stationary combustion totals.

- combustion technology type from EPA (2019) to the total EIA (2019) consumption for each year from 1990 to
 1995.
- 3 Emissions were estimated by multiplying fossil fuel and wood consumption by technology-, fuel-, and country-
- 4 specific Tier 2 emission factors. The Tier 2 emission factors used are based in part on emission factors published by
- 5 EPA, and EPA's Compilation of Air Pollutant Emission Factors, AP-42 (EPA 1997) for coal wall-fired boilers, residual
- 6 fuel oil, diesel oil and wood boilers, natural gas-fired turbines, and combined cycle natural gas units.⁵³

7	More detailed information on the methodology for calculating emissions from stationary combustion, including
8	emission factors and activity data, is provided in Annex 3.1.

9 Uncertainty and Time-Series Consistency

10 Methane emission estimates from stationary sources exhibit high uncertainty, primarily due to difficulties in

 $\label{eq:calculating emissions from wood combustion (i.e., fireplaces and wood stoves). The estimates of CH_4 and N_2O$

12 emissions presented are based on broad indicators of emissions (i.e., fuel use multiplied by an aggregate emission

- 13 factor for different sectors), rather than specific emission processes (i.e., by combustion technology and type of
- 14 emission control).
- 15 An uncertainty analysis was performed by primary fuel type for each end-use sector, using the IPCC-recommended

16 Approach 2 uncertainty estimation methodology, Monte Carlo Stochastic Simulation technique, with @RISK

- 17 software.
- 18 The uncertainty estimation model for this source category was developed by integrating the CH₄ and N₂O

19 stationary source inventory estimation models with the model for CO₂ from fossil fuel combustion to realistically

20 characterize the interaction (or endogenous correlation) between the variables of these three models. About 55

21 input variables were simulated for the uncertainty analysis of this source category (about 20 from the CO₂

22 emissions from fossil fuel combustion inventory estimation model and about 35 from the stationary source

- 23 inventory models).
- 24 In developing the uncertainty estimation model, uniform distribution was assumed for all activity-related input
- 25 variables and N₂O emission factors, based on the SAIC/EIA (2001) report.⁵⁴ For these variables, the uncertainty

ranges were assigned to the input variables based on the data reported in SAIC/EIA (2001).⁵⁵ However, the CH₄

27 emission factors differ from those used by EIA. These factors and uncertainty ranges are based on IPCC default

28 uncertainty estimates (IPCC 2006).

- 29 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 3-18. Stationary
- 30 combustion CH₄ emissions in 2018 (including biomass) were estimated to be between 5.7 and 19.9 MMT CO₂ Eq. at
- a 95 percent confidence level. This indicates a range of 35 percent below to 129 percent above the 2018 emission
- 32 estimate of 8.7 MMT CO₂ Eq.⁵⁶ Stationary combustion N₂O emissions in 2018 (including biomass) were estimated

⁵³ Several of the U.S. Tier 2 emission factors were used in IPCC (2006) as Tier 1 emission factors. See Table A-92 in Annex 3.1 for emission factors by technology type and fuel type for the electric power sector.

⁵⁴ SAIC/EIA (2001) characterizes the underlying probability density function for the input variables as a combination of uniform and normal distributions (the former distribution to represent the bias component and the latter to represent the random component). However, for purposes of the current uncertainty analysis, it was determined that uniform distribution was more appropriate to characterize the probability density function underlying each of these variables.

⁵⁵ In the SAIC/EIA (2001) report, the quantitative uncertainty estimates were developed for each of the three major fossil fuels used within each end-use sector; the variations within the sub-fuel types within each end-use sector were not modeled. However, for purposes of assigning uncertainty estimates to the sub-fuel type categories within each end-use sector in the current uncertainty analysis, SAIC/EIA (2001)-reported uncertainty estimates were extrapolated.

⁵⁶ The low emission estimates reported in this section have been rounded down to the nearest integer values and the high emission estimates have been rounded up to the nearest integer values.

- 1 to be between 20.1 and 43.0 MMT CO₂ Eq. at a 95 percent confidence level. This indicates a range of 27 percent
- 2 below to 51 percent above the 2018 emission estimate of 28.4 MMT CO₂ Eq.

Table 3-18: Approach 2 Quantitative Uncertainty Estimates for CH₄ and N₂O Emissions from Energy-Related Stationary Combustion, Including Biomass (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate	Uncertain	ty Range Relat	ive to Emissior	n Estimate ^a	
Jource	Gas	(MMT CO₂ Eq.)	(MMT	(MMT CO ₂ Eq.) (%)			
			Lower	Upper	Lower	Upper	
			Bound	Bound	Bound	Bound	
Stationary Combustion	CH_4	8.7	5.7	19.9	-35%	+129%	
Stationary Combustion	N_2O	28.4	20.1	43.0	-27%	+51%	

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

- 5 The uncertainties associated with the emission estimates of CH_4 and N_2O are greater than those associated with
- 6 estimates of CO₂ from fossil fuel combustion, which mainly rely on the carbon content of the fuel combusted.
- 7 Uncertainties in both CH₄ and N₂O estimates are due to the fact that emissions are estimated based on emission
- 8 factors representing only a limited subset of combustion conditions. For the indirect greenhouse gases,
- 9 uncertainties are partly due to assumptions concerning combustion technology types, age of equipment, emission
- 10 factors used, and activity data projections.
- 11 Methodological recalculations were applied to the entire time series to ensure time-series consistency from 1990
- 12 through 2018 as discussed below. Details on the emission trends through time are described in more detail in the
- 13 Methodology section, above. As discussed in Annex 5, data are unavailable to include estimates of CH₄ and N₂O
- 14 emissions from biomass use in territories, but those emissions are assumed to be insignificant.

15 **QA/QC and Verification**

- 16 In order to ensure the quality of the non-CO₂ emission estimates from stationary combustion, general (IPCC Tier 1)
- 17 and category-specific (Tier 2) Quality Assurance/Quality Control (QA/QC) procedures were implemented consistent
- 18 with the U.S. Inventory QA/QC plan outlined in Annex 8. The Tier 2 procedures that were implemented involved
- 19 checks specifically focusing on the activity data and emission factor sources and methodology used for estimating
- 20 CH₄, N₂O, and the greenhouse gas precursors from stationary combustion in the United States. Emission totals for
- 21 the different sectors and fuels were compared and trends were investigated.

22 Recalculations Discussion

23 Methane and N₂O emissions from stationary sources (excluding CO₂) across the entire time series were revised due

- to revised data from EIA (2019) and EPA (2019) relative to the previous Inventory. Most notably, EIA (2019)
- 25 updated fuel oil consumption statistics in the residential, commercial, and industrial sectors across the time series
- as a result of updated LPG and fuel ethanol heat contents; revised sectoral allocations for propane and total LPG
- from 2010 to 2017 and for distillate fuel oil in 2017; and revised 2017 natural gas consumption statistics in all
- 28 sectors. EPA (2019) revised coal, fuel oil, natural gas, and wood consumption statistics for 2017 in the electric 29 power sector. The historical data changes and methodology updates resulted in an average annual decrease of less
- 29 power sector. The historical data changes and methodology updates resulted in an average annual decrease of less 30 than 0.01 MMT CO₂ Eq. (0.06 percent) in CH₄ emissions, and an average annual decrease of less than 0.01 MMT
- CO_2 Eq. (0.04 percent) in N₂O emissions for the 1990 through 2017 period.

32 Planned Improvements

- 33 Several items are being evaluated to improve the CH₄ and N₂O emission estimates from stationary combustion and
- to reduce uncertainty for U.S. Territories. Efforts will be taken to work with EIA and other agencies to improve the
- quality of the U.S. Territories data. Because these data are not broken out by stationary and mobile uses, further
- research will be aimed at trying to allocate consumption appropriately. In addition, the uncertainty of biomass

- 1 emissions will be further investigated since it was expected that the exclusion of biomass from the estimates
- 2 would reduce the uncertainty; and in actuality the exclusion of biomass increases the uncertainty. These
- 3 improvements are not all-inclusive but are part of an ongoing analysis and efforts to continually improve these
- 4 stationary combustion estimates from U.S. Territories.
- 5 Other forms of biomass-based gas consumption include biogas. EPA will examine EIA and GHGRP data on biogas
- 6 collected and burned for energy use and determine if CH₄ and N₂O emissions from biogas can be included in future
- 7 inventories. EIA (2019) natural gas data already deducts biogas used in the natural gas supply, so no adjustments
- 8 are needed to the natural gas fuel consumption data to account for biogas.

9 CH₄ and N₂O from Mobile Combustion

10 Methodology

Estimates of CH₄ and N₂O emissions from mobile combustion were calculated by multiplying emission factors by measures of activity for each fuel and vehicle type (e.g., light-duty gasoline trucks). Activity data included vehicle miles traveled (VMT) for on-road vehicles and fuel consumption for non-road mobile sources. The activity data and emission factors used are described in the subsections that follow. A complete discussion of the methodology used to estimate CH₄ and N₂O emissions from mobile combustion and the emission factors used in the calculations is

16 provided in Annex 3.2.

17 On-Road Vehicles

18 Estimates of CH₄ and N₂O emissions from gasoline and diesel on-road vehicles are based on VMT and emission

19 factors by vehicle type, fuel type, model year, and emission control technology. Emission estimates for alternative

20 fuel vehicles (AFVs) are based on VMT and emission factors by vehicle and fuel type.⁵⁷

21 CH₄ and N₂O emissions factors for newer (starting with model year 2004) on-road gasoline vehicles were calculated 22 by Browning (2019) from annual vehicle certification data compiled by EPA. CH₄ and N₂O emissions factors for 23 older (model year 2003 and earlier) on-road gasoline vehicles were developed by ICF (2004). These factors were 24 derived from EPA, California Air Resources Board (CARB) and Environment Canada laboratory test results of 25 different vehicle and control technology types. The EPA, CARB and Environment Canada tests were designed 26 following the Federal Test Procedure (FTP), which covers three separate driving segments, since vehicles emit 27 varying amounts of greenhouse gases depending on the driving segment. These driving segments are: (1) a 28 transient driving cycle that includes cold start and running emissions, (2) a cycle that represents running emissions 29 only, and (3) a transient driving cycle that includes hot start and running emissions. For each test run, a bag was 30 affixed to the tailpipe of the vehicle and the exhaust was collected; the content of this bag was then analyzed to 31 determine quantities of gases present. The emissions characteristics of segment 2 were used to define running 32 emissions, and subtracted from the total FTP emissions to determine start emissions. These were then recombined 33 based upon the ratio of start to running emissions for each vehicle class from MOBILE6.2, an EPA emission factor 34 model that predicts gram per mile emissions of CO₂, CO, HC, NO_x, and PM from vehicles under various conditions, to approximate average driving characteristics.⁵⁸ Diesel on-road vehicle emission factors were developed by ICF 35 (2006a). CH₄ and N₂O emissions factors for newer (starting at model year 2007) on-road diesel vehicles (those 36 37 using aftertreatment) were calculated from annual vehicle certification data compiled by EPA.

- 38 CH₄ and N₂O emission factors for AFVs were developed based on the 2018 GREET model. For light-duty trucks, EPA
- 39 used a curve fit of 1999 through 2011 travel fractions for LDT1 and LDT2 (MOVES Source Type 31 for LDT1 and
- 40 MOVES Source Type 32 for LDT2). For medium-duty vehicles, EPA used emission factors for light heavy-duty

 ⁵⁷ Alternative fuel and advanced technology vehicles are those that can operate using a motor fuel other than gasoline or diesel. This includes electric or other bi-fuel or dual-fuel vehicles that may be partially powered by gasoline or diesel.
 ⁵⁸ Additional information regarding the MOBILE model can be found online at https://www.epa.gov/moves/description-and-history-mobile-highway-vehicle-emission-factor-model.

- 1 vocational trucks. For heavy-duty vehicles, EPA used emission factors for long-haul combination trucks. For buses,
- 2 EPA used emission factors for transit buses. These values represent vehicle operations only (tank-to-wheels); well-
- 3 to-tank emissions are calculated elsewhere in the Inventory. Biodiesel CH₄ emission factors were corrected from
- 4 GREET values to be the same as CH₄ emission factors for diesel vehicles. GREET overestimated CH₄ emission
- 5 factors based upon an incorrect CH₄-to-THC ratio for diesel vehicles with aftertreatment technology.
- 6 Annual VMT data for 1990 through 2018 were obtained from the Federal Highway Administration's (FHWA)
- 7 Highway Performance Monitoring System database as reported in Highway Statistics (FHWA 1996 through 2018).⁵⁹
- 8 VMT estimates were then allocated from FHWA's vehicle categories to fuel-specific vehicle categories using the
- 9 calculated shares of vehicle fuel use for each vehicle category by fuel type reported in DOE (1993 through 2017)
- and information on total motor vehicle fuel consumption by fuel type from FHWA (1996 through 2018). VMT for
- AFVs were estimated based on Browning (2017 and 2018a). The age distributions of the U.S. vehicle fleet were
- 12 obtained from EPA (2018a, 2000), and the average annual age-specific vehicle mileage accumulation of U.S.
- 13 vehicles were obtained from EPA (2018a).
- 14 Control technology and standards data for on-road vehicles were obtained from EPA's Office of Transportation and
- 15 Air Quality (EPA 2018a, 2019c, 2000, 1998, and 1997) and Browning (2005). These technologies and standards are
- 16 defined in Annex 3.2, and were compiled from EPA (1994a, 1994b, 1998, 1999a) and IPCC (2006) sources.

17 Non-Road Mobile Sources

18 To estimate CH₄ and N₂O emissions from non-road mobile sources, fuel consumption data were employed as a

19 measure of activity, and multiplied by fuel-specific emission factors (in grams of N₂O and CH₄ per kilogram of fuel

20 consumed).⁶⁰ Activity data were obtained from AAR (2008 through 2018), APTA (2007 through 2017), Raillnc (2014

21 through 2018), APTA (2006), BEA (1991 through 2015), Benson (2002 through 2004), , DLA Energy (2019), DOC

22 (1991 through 2019), DOE (1993 through 2017), DOT (1991 through 2018), EIA (2002, 2007, 2019a), EIA (2019f),

- 23 EIA (1991 through 2018), EPA (2018a), Esser (2003 through 2004), FAA (2019), FHWA (1996 through 2018),⁶¹
- 24 Gaffney (2007), and Whorton (2006 through 2014). Emission factors for non-road modes were taken from IPCC
- 25 (2006) and Browning (2018b).

26 Uncertainty and Time-Series Consistency

- 27 A quantitative uncertainty analysis was conducted for the mobile source sector using the IPCC-recommended
- 28 Approach 2 uncertainty estimation methodology, Monte Carlo Stochastic Simulation technique, using @RISK

⁵⁹ The source of VMT is FHWA Highway Statistics Table VM-1. In 2011, FHWA changed its methods for estimating data in the VM-1 table. These methodological changes included how vehicles are classified, moving from a system based on body-type to one that is based on wheelbase. These changes were first incorporated for the 1990 through 2010 Inventory and apply to the 2007 through 2018 time period. This resulted in large changes in VMT by vehicle class, thus leading to a shift in emissions among on-road vehicle classes. For example, the category "Passenger Cars" has been replaced by "Light-duty Vehicles-Short Wheelbase" and "Other 2 axle-4 Tire Vehicles" has been replaced by "Light-duty Vehicles, Long Wheelbase." This change in vehicle classification has moved some smaller trucks and sport utility vehicles from the light truck category to the passenger vehicle category in the current Inventory. These changes are reflected in a large drop in light-truck emissions between 2006 and 2007.

⁶⁰ The consumption of international bunker fuels is not included in these activity data, but is estimated separately under the International Bunker Fuels source category.

⁶¹ This Inventory uses FHWA's Agriculture, Construction, and Commercial/Industrial MF-24 fuel volumes along with the MOVES model gasoline volumes to estimate non-road mobile source CH_4 and N_2O emissions for these categories. For agriculture, the MF-24 gasoline volume is used directly because it includes both off-road trucks and equipment. For construction and commercial/industrial gasoline estimates, the 2014 and older MF-24 volumes represented off-road trucks only; therefore, the MOVES gasoline volumes for construction and commercial/industrial are added to the respective categories in the Inventory. Beginning in 2015, this addition is no longer necessary since the FHWA updated its methods for estimating on-road and non-road gasoline consumption. Among the method updates, FHWA now incorporates MOVES equipment gasoline volumes in the construction and commercial/industrial categories.

- 1 software. The uncertainty analysis was performed on 2018 estimates of CH₄ and N₂O emissions, incorporating
- 2 probability distribution functions associated with the major input variables. For the purposes of this analysis, the
- 3 uncertainty was modeled for the following four major sets of input variables: (1) VMT data, by on-road vehicle and
- 4 fuel type and (2) emission factor data, by on-road vehicle, fuel, and control technology type, (3) fuel consumption,
- 5 data, by non-road vehicle and equipment type, and (4) emission factor data, by non-road vehicle and equipment
- 6 type.
- 7 Uncertainty analyses were not conducted for NO_x, CO, or NMVOC emissions. Emission factors for these gases have
- 8 been extensively researched since emissions of these gases from motor vehicles are regulated in the United States,
- 9 and the uncertainty in these emission estimates is believed to be relatively low. For more information, see Section
- 10 3.9 Uncertainty Analysis of Emission Estimates. However, a much higher level of uncertainty is associated with
- 11 CH₄ and N₂O emission factors due to limited emission test data, and because, unlike CO₂ emissions, the emission
- $12 \qquad \text{pathways of CH}_4 \text{ and } N_2 O \text{ are highly complex.}$
- 13 Mobile combustion CH₄ emissions from all mobile sources in 2018 were estimated to be between 2.9 and 4.0 MMT
- 14 CO₂ Eq. at a 95 percent confidence level. This indicates a range of 8 percent below to 26 percent above the
- 15 corresponding 2018 emission estimate of 3.1 MMT CO₂ Eq. Also at a 95 percent confidence level, mobile
- 16 combustion N₂O emissions from mobile sources in 2018 were estimated to be between 14.1 and 17.4 MMT CO₂
- 17 Eq., indicating a range of 8 percent below to 14 percent above the corresponding 2018 emission estimate of 15.2
- 18 MMT CO₂ Eq.

Table 3-19: Approach 2 Quantitative Uncertainty Estimates for CH₄ and N₂O Emissions from Mobile Sources (MMT CO₂ Eq. and Percent)

Source Gas	Gas	2018 Emission Estimate ^a	Uncertainty Range Relative to Emission Estimate ^a						
	Gas	(MMT CO ₂ Eq.)	(MMT (CO₂ Eq.)	(%)				
		Lower	Upper	Lower	Upper				
			Bound	Bound	Bound	Bound			
Mobile Sources	CH4	3.1	2.9	4.0	-8%	+26%			
Mobile Sources	N ₂ O	15.2	14.1	17.4	-8%	+14%			

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

- 21 This uncertainty analysis is a continuation of a multi-year process for developing quantitative uncertainty estimates
- 22 for this source category using the IPCC Approach 2 uncertainty analysis. As a result, as new information becomes
- 23 available, uncertainty characterization of input variables may be improved and revised. For additional information
- 24 regarding uncertainty in emission estimates for CH₄ and N₂O please refer to the Uncertainty Annex. As discussed
- 25 in Annex 5, data are unavailable to include estimates of CH₄ and N₂O emissions from any liquid fuel used in
- 26 pipeline transport or some biomass used in transportation sources, but those emissions are assumed to
- 27 insignificant.

28 QA/QC and Verification

- In order to ensure the quality of the emission estimates from mobile combustion, general (IPCC Tier 1) and
 category-specific (Tier 2) Quality Assurance/Quality Control (QA/QC) procedures were implemented consistent
 with the U.S. Inventory QA/QC plan outlined in Annex 8. The specific plan used for mobile combustion was
 updated prior to collection and analysis of this current year of data. The Tier 2 procedures focused on the emission
 factor and activity data sources, as well as the methodology used for estimating emissions. These procedures
- included a qualitative assessment of the emission estimates to determine whether they appear consistent with the
- 35 most recent activity data and emission factors available. A comparison of historical emissions between the current
- 36 Inventory and the previous Inventory was also conducted to ensure that the changes in estimates were consistent
- 37 with the changes in activity data and emission factors.

1 Recalculations Discussion

2 Updates were made to CH₄ and N₂O emissions factors for on-road gasoline and diesel vehicles. Previously, these

3 factors were based on a regression analysis done by EPA for N₂O and the ratio of NMOG emission standards for

4 CH₄. In this year's Inventory, these emission factors for newer gasoline and diesel vehicles are based on annual

5 certification data compiled by EPA.

In prior Inventories, Class II and Class III rail fuel consumption data was provided by the American Short Line and
 Regional Railroad Association (ASLRRA). Since ASLRRA no longer tracks and reports fuel consumption data of these
 rail lines, it is now estimated for years 2014 onwards using car load data reported by Railinc (2014 through 2018).

9 The collective result of these changes was a net increase in CH₄ emissions and a decrease in N₂O emissions from
 10 mobile combustion relative to the previous Inventory. Methane emissions increased by 0.5 percent. Nitrous oxide

11 emissions decreased by 1.1 percent.

Methodological recalculations were applied to the entire time series to ensure time-series consistency from 1990 through 2018 with one recent notable exception. An update by FHWA to the method for estimating on-road VMT created an inconsistency in on-road CH₄ and N₂O for the time periods 1990 to 2006 and 2007 to 2018. Details on the emission trends and methodological inconsistencies through time are described in the Methodology section,

16 above.

17 Planned Improvements

While the data used for this report represent the most accurate information available, several areas have been
 identified that could potentially be improved in the near term given available resources.

- Determine new methane and nitrous oxide emission factors for non-road equipment using annual
 certification data compiled by EPA.
- 22 In previous Inventories, EPA identified the need to evaluate and potentially update EPA's method for 23 estimating motor gasoline consumption for non-road mobile sources, in order to improve accuracy and 24 create a more consistent time series. As discussed in the Methodology section above and in Annex 3.2, 25 CH₄ and N₂O estimates for gasoline-powered non-road sources in this Inventory are based on a variety of 26 inputs, including FHWA Highway Statistics Table MF-24. In 2016, FHWA changed its methods for 27 estimating the share of gasoline used in on-road and non-road applications.⁶² These method changes 28 created a time-series inconsistency in the current Inventory between 2015 and previous years in CH4 and 29 N₂O estimates for agricultural, construction, commercial, and industrial non-road mobile sources. EPA 30 has implemented an approach to address this inconsistency. EPA also tested an alternative approach that 31 uses MOVES on-road fuel consumption output to define the percentage of the FHWA consumption totals 32 (from MF-21) that are attributable to on-highway transportation sources, and applying this percentage to 33 the EIA total, thereby defining gasoline consumption from on-highway transportation sources (such that 34 the remainder would be defined as consumption by the industrial and commercial sectors). Results from 35 this testing revealed differences between fuel consumption calculated by MOVES and fuel consumption 36 data from FHWA. Given this inconsistency, no changes have been made to the methodology for 37 estimating motor gasoline consumption for non-road mobile sources.
- Update emissions factors for ships and boats using residual fuel and distillate fuel, emission factors for
 locomotives using ultra low sulfur diesel, and emission factors for aircraft using jet fuel. The Inventory is
 currently using IPCC default values for these emissions factors.

⁶² The previous and new FHWA methodologies for estimating non-road gasoline are described in *Off-Highway and Public-Use Gasoline Consumption Estimation Models Used in the Federal Highway Administration*, Publication Number FHWA-PL-17-012. https://www.fhwa.dot.gov/policyinformation/pubs/pl17012.pdf>.

1 Continue to explore potential improvements to estimates of domestic waterborne fuel consumption for 2 future Inventories. The Inventory estimates for residual and distillate fuel used by ships and boats is based 3 in part on data on bunker fuel use from the U.S. Department of Commerce. Domestic fuel consumption is 4 estimated by subtracting fuel sold for international use from the total sold in the United States. It may be 5 possible to more accurately estimate domestic fuel use and emissions by using detailed data on marine 6 ship activity. The feasibility of using domestic marine activity data to improve the estimates continues to 7 be investigated. Additionally, the feasibility of including data from a broader range of domestic and 8 international sources for domestic bunker fuels, including data from studies such as the Third IMO GHG 9 Study 2014, continues to be explored.

3.2 Carbon Emitted from Non-Energy Uses of Fossil Fuels (CRF Source Category 1A5)

12 In addition to being combusted for energy, fossil fuels are also consumed for non-energy uses in the United States. 13 The fuels used for these purposes are diverse, including natural gas, liquefied petroleum gases (LPG), asphalt (a viscous liquid mixture of heavy crude oil distillates), petroleum coke (manufactured from heavy oil), and coal 14 15 (metallurgical) coke (manufactured from coking coal). The non-energy applications of these fuels are equally 16 diverse, including feedstocks for the manufacture of plastics, rubber, synthetic fibers and other materials; reducing 17 agents for the production of various metals and inorganic products; and products such as lubricants, waxes, and 18 asphalt (IPCC 2006). Emissions from a portion of non-energy uses of fossil fuels are reported in the Energy sector, 19 as opposed to the Industrial Processes and Product Use (IPPU) sector, to reflect national circumstances in its choice 20 of methodology and to increase transparency of this source category's unique country-specific data sources and 21 methodology (see Box 3-6). 22 Carbon dioxide emissions arise from non-energy uses via several pathways. Emissions may occur during the manufacture of a product, as is the case in producing plastics or rubber from fuel-derived feedstocks. Additionally,

23 manufacture of a product, as is the case in producing plastics or rubber from fuel-derived feedstocks. Additionally, 24 emissions may occur during the product's lifetime, such as during solvent use. Overall, throughout the time series

and across all uses, about 62 percent of the total C consumed for non-energy purposes was stored in products, and
 not released to the atmosphere; the remaining 38 percent was emitted.

20 not released to the atmosphere, the remaining so percent was emitted.

27 There are several areas in which non-energy uses of fossil fuels are closely related to other parts of this Inventory.

For example, some of the non-energy use products release CO₂ at the end of their commercial life when they are combusted after disposal; these emissions are reported separately within the Energy chapter in the Incineration of

30 Waste source category. In addition, there is some overlap between fossil fuels consumed for non-energy uses and

the fossil-derived CO₂ emissions accounted for in the IPPU chapter, especially for fuels used as reducing agents. To

32 avoid double counting, the "raw" non-energy fuel consumption data reported by EIA are modified to account for

33 these overlaps. There are also net exports of petrochemicals that are not completely accounted for in the EIA data,

34 and the Inventory calculations adjust for the effect of net exports on the mass of C in non-energy applications.

As shown in Table 3-20, fossil fuel emissions in 2018 from the non-energy uses of fossil fuels were 134.5 MMT CO₂

36 Eq., which constituted approximately 2 percent of overall fossil fuel emissions. In 2018, the consumption of fuels

- for non-energy uses (after the adjustments described above) was 5,263.2 TBtu (see Table 3-21). A portion of the C
- in the 5,263.2 TBtu of fuels was stored (221.7 MMT CO₂ Eq.), while the remaining portion was emitted (134.5 MMT
- 39 CO₂ Eq.). Non-energy use emissions increased 9.2 percent from 2017 to 2018 mainly due to increases in coking coal
- 40 and petrochemical feedstock use, both of which are driven by changes in economic activity and changes in the

1 Table 3-20: CO₂ Emissions from Non-Energy Use Fossil Fuel Consumption (MMT CO₂ Eq. and 2 Percent)

Year	1990	2005	2014	2015	2016	2017	2018
Potential Emissions	312.1	377.5	325.1	340.5	329.9	341.1	356.2
C Stored	192.5	237.8	205.1	213.5	216.2	218.0	221.7
Emissions as a % of Potential	38%	37%	37%	37%	34%	36%	38%
Emissions	119.5	139.7	120.0	127.0	113.7	123.1	134.5

3 Methodology

4 The first step in estimating C stored in products was to determine the aggregate quantity of fossil fuels consumed 5 for non-energy uses. The C content of these feedstock fuels is equivalent to potential emissions, or the product of 6 consumption and the fuel-specific C content values. Both the non-energy fuel consumption and C content data 7 were supplied by the EIA (2019) (see Annex 2.1). Consumption values for industrial coking coal, petroleum coke, 8 other oils, and natural gas in Table 3-21 and Table 3-22 have been adjusted to subtract non-energy uses that are included in the source categories of the Industrial Processes and Product Use chapter. 63,64 Consumption of natural 9 10 gas, LPG, pentanes plus, naphthas, other oils, and special naphtha were adjusted to subtract out net exports of 11 these products that are not reflected in the raw data from EIA. Consumption values were also adjusted to subtract 12 net exports of intermediary chemicals.

For the remaining non-energy uses, the quantity of C stored was estimated by multiplying the potential emissionsby a storage factor.

- 15 For several fuel types—petrochemical feedstocks (including natural gas for non-fertilizer uses, LPG, 16 pentanes plus, naphthas, other oils, still gas, special naphtha, and industrial other coal), asphalt and road 17 oil, lubricants, and waxes—U.S. data on C stocks and flows were used to develop C storage factors, 18 calculated as the ratio of (a) the C stored by the fuel's non-energy products to (b) the total C content of 19 the fuel consumed. A lifecycle approach was used in the development of these factors in order to account 20 for losses in the production process and during use. Because losses associated with municipal solid waste 21 management are handled separately in the Energy sector under the Incineration of Waste source category, the storage factors do not account for losses at the disposal end of the life cycle. 22
- For industrial coking coal and distillate fuel oil, storage factors were taken from IPCC (2006), which in turn draws from Marland and Rotty (1984).
- For the remaining fuel types (petroleum coke, miscellaneous products, and other petroleum), IPCC (2006)
 does not provide guidance on storage factors, and assumptions were made based on the potential fate of
 C in the respective non-energy use products. Carbon dioxide emissions from carbide production are
 implicitly accounted for in the storage factor calculation for the non-energy use of petroleum coke.

⁶³ These source categories include Iron and Steel Production, Lead Production, Zinc Production, Ammonia Manufacture, Carbon Black Manufacture (included in Petrochemical Production), Titanium Dioxide Production, Ferroalloy Production, Silicon Carbide Production, and Aluminum Production.

⁶⁴ Some degree of double counting may occur between these estimates of non-energy use of fuels and process emissions from petrochemical production presented in the Industrial Processes and Produce Use sector. Data integration is not feasible at this time as feedstock data from EIA used to estimate non-energy uses of fuels are aggregated by fuel type, rather than disaggregated by both fuel type and particular industries (e.g., petrochemical production) as currently collected through EPA's GHGRP and used for the petrochemical production category.

1 Table 3-21: Adjusted Consumption of Fossil Fuels for Non-Energy Uses (TBtu)

Year	1990	2005	2014	2015	2016	2017	2018
Industry	4,215.8	5,110.7	4,602.9	4,764.6	4,634.8	4,798.9	5,048.2
Industrial Coking Coal	NO	80.4	48.8	121.8	89.3	111.9	123.9
Industrial Other Coal	8.2	11.9	10.3	10.3	10.3	10.3	10.3
Natural Gas to Chemical Plants	281.6	260.9	323.5	321.9	308.9	307.0	304.1
Asphalt & Road Oil	1,170.2	1,323.2	792.6	831.7	853.4	849.2	792.8
LPG	1,120.5	1,610.0	2,109.8	2,157.5	2,119.0	2,187.6	2,485.5
Lubricants	186.3	160.2	130.7	142.1	135.1	124.9	121.2
Pentanes Plus	117.6	95.5	43.5	78.4	53.1	81.5	104.8
Naphtha (<401 °F)	326.3	679.5	435.2	417.8	396.9	411.1	418.3
Other Oil (>401 °F)	662.1	499.5	236.2	216.8	204.0	241.8	217.7
Still Gas	36.7	67.7	164.5	162.2	166.1	163.8	166.9
Petroleum Coke	27.2	105.2	NO	NO	NO	NO	NO
Special Naphtha	100.9	60.9	104.5	97.0	88.7	94.9	86.5
Distillate Fuel Oil	7.0	11.7	5.8	5.8	5.8	5.8	5.8
Waxes	33.3	31.4	14.8	12.4	12.8	10.2	12.4
Miscellaneous Products	137.8	112.8	182.7	188.9	191.3	198.8	198.0
Transportation	176.0	151.3	149.4	162.8	154.4	142.0	137.8
Lubricants	176.0	151.3	149.4	162.8	154.4	142.0	137.8
U.S. Territories	85.6	123.2	77.3	77.3	77.3	77.3	77.3
Lubricants	0.7	4.6	1.0	1.0	1.0	1.0	1.0
Other Petroleum (Misc. Prod.)	84.9	118.6	76.2	76.2	76.2	76.2	76.2
Total	4,477.4	5,385.2	4,829.6	5,004.7	4,866.5	5,018.2	5,263.2

2 Table 3-22: 2018 Adjusted Non-Energy Use Fossil Fuel Consumption, Storage, and Emissions

	Adjusted	Carbon					
	Non-Energy	Content	Potential	Storage	Carbon	Carbon	Carbon
	Use ^a	Coefficient	Carbon	Factor	Stored	Emissions	Emissions
		(MMT					(MMT CO₂
Sector/Fuel Type	(TBtu)	C/QBtu)	(MMT C)		(MMT C)	(MMT C)	Eq.)
Industry	5,048.2	NA	92.8	NA	60.1	32.8	120.1
Industrial Coking Coal	123.9	31.00	3.8	0.10	0.4	3.5	12.7
Industrial Other Coal	10.3	26.08	0.3	0.65	0.2	0.1	0.3
Natural Gas to							
Chemical Plants	304.1	14.47	4.4	0.65	2.9	1.5	5.6
Asphalt & Road Oil	792.8	20.55	16.3	1.00	16.2	0.1	0.3
LPG	2,485.5	17.06	42.4	0.65	27.7	14.7	53.9
Lubricants	121.2	20.20	2.4	0.09	0.2	2.2	8.2
Pentanes Plus	104.8	19.10	2.0	0.65	1.3	0.7	2.5
Naphtha (<401° F)	418.3	18.55	7.8	0.65	5.1	2.7	9.9
Other Oil (>401° F)	217.7	20.17	4.4	0.65	2.9	1.5	5.6
Still Gas	166.9	17.51	2.9	0.65	1.9	1.0	3.7
Petroleum Coke	+	27.85	+	0.30	+	+	+
Special Naphtha	86.5	19.74	1.7	0.65	1.1	0.6	2.2
Distillate Fuel Oil	5.8	20.17	0.1	0.50	0.1	0.1	0.2
Waxes	12.4	19.80	0.2	0.58	0.1	0.1	0.4
Miscellaneous							
Products	198.0	20.31	4.0	0.00	+	4.0	14.7

Total	5,263.2		97.1		60.5	36.7	134.5
Prod.)	76.2	20.00	1.5	0.10	0.2	1.4	5.0
Other Petroleum (Misc.							
Lubricants	1.0	20.20	+	0.09	+	+	0.1
U.S. Territories	77.3	NA	1.5	NA	0.2	1.4	5.1
Lubricants	137.8	20.20	2.8	0.09	0.3	2.5	9.3
Transportation	137.8	NA	2.8	NA	0.3	2.5	9.3

+ Does not exceed 0.05 TBtu, MMT C, MMT CO $_2$ Eq.

NA (Not Applicable)

^a To avoid double counting, net exports have been deducted.

Note: Totals may not sum due to independent rounding.

- 1 Lastly, emissions were estimated by subtracting the C stored from the potential emissions (see Table 3-20). More
- 2 detail on the methodology for calculating storage and emissions from each of these sources is provided in Annex
- 3 2.3.
- 4 Where storage factors were calculated specifically for the United States, data were obtained on (1) products such
- 5 as asphalt, plastics, synthetic rubber, synthetic fibers, cleansers (soaps and detergents), pesticides, food additives,
- 6 antifreeze and deicers (glycols), and silicones; and (2) industrial releases including energy recovery, Toxics Release
- 7 Inventory (TRI) releases, hazardous waste incineration, and volatile organic compound, solvent, and non-
- 8 combustion CO emissions. Data were taken from a variety of industry sources, government reports, and expert
- 9 communications. Sources include EPA reports and databases such as compilations of air emission factors (EPA
- 10 2001), National Emissions Inventory (NEI) Air Pollutant Emissions Trends Data (EPA 2019a), Toxics Release
- 11 Inventory, 1998 (EPA 2000b), Biennial Reporting System (EPA 2000a, 2009), Resource Conservation and Recovery
- 12 Act Information System (EPA 2013b, 2015, 2016b, 2018b), pesticide sales and use estimates (EPA 1998, 1999, 2002,
- 13 2004, 2011, 2017), and the Chemical Data Access Tool (EPA 2014b); the EIA Manufacturer's Energy Consumption
- 14 Survey (MECS) (EIA 1994, 1997, 2001, 2005, 2010, 2013, 2017); the National Petrochemical & Refiners Association
- 15 (NPRA 2002); the U.S. Census Bureau (1999, 2004, 2009, 2014); Bank of Canada (2012, 2013, 2014, 2016, 2017,
- 16 2018, 2019); Financial Planning Association (2006); INEGI (2006); the United States International Trade Commission
- 17 (1990 through 2018); Gosselin, Smith, and Hodge (1984); EPA's Municipal Solid Waste (MSW) Facts and Figures
- 18 (EPA 2013, 2014a, 2016a, 2018a, 2019b); the Rubber Manufacturers' Association (RMA 2009, 2011, 2014, 2016,
- 19 2018); the International Institute of Synthetic Rubber Products (IISRP 2000, 2003); the Fiber Economics Bureau
- 20 (FEB 2001, 2003, 2005, 2007, 2009, 2010, 2011, 2012, 2013); the Independent Chemical Information Service (ICIS
- 2008, 2016); the EPA Chemical Data Access Tool (CDAT) (EPA 2014b); the American Chemistry Council (ACC 2003
 through 2011, 2013, 2014, 2015, 2016, 2017, 2018, 2019b); and the *Guide to the Business of Chemistry* (ACC
- 22 child and chil

24 Uncertainty and Time-Series Consistency

- 25 An uncertainty analysis was conducted to quantify the uncertainty surrounding the estimates of emissions and
- 26 storage factors from non-energy uses. This analysis, performed using @RISK software and the IPCC-recommended
- 27 Approach 2 methodology (Monte Carlo Stochastic Simulation technique), provides for the specification of
- 28 probability density functions for key variables within a computational structure that mirrors the calculation of the
- 29 inventory estimate. The results presented below provide the 95 percent confidence interval, the range of values
- 30 within which emissions are likely to fall, for this source category.
- 31 As noted above, the non-energy use analysis is based on U.S.-specific storage factors for (1) feedstock materials
- 32 (natural gas, LPG, pentanes plus, naphthas, other oils, still gas, special naphthas, and other industrial coal), (2)
- asphalt, (3) lubricants, and (4) waxes. For the remaining fuel types (the "other" category in Table 3-21 and Table
- 34 3-22), the storage factors were taken directly from IPCC (2006), where available, and otherwise assumptions were
- 35 made based on the potential fate of carbon in the respective NEU products. To characterize uncertainty, five
- 36 separate analyses were conducted, corresponding to each of the five categories. In all cases, statistical analyses or
- expert judgments of uncertainty were not available directly from the information sources for all the activity
- variables; thus, uncertainty estimates were determined using assumptions based on source category knowledge.

1 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 3-23 (emissions) and Table

2 3-24 (storage factors). Carbon emitted from non-energy uses of fossil fuels in 2018 was estimated to be between

3 96.2 and 185.4 MMT CO₂ Eq. at a 95 percent confidence level. This indicates a range of 28 percent below to 38

4 percent above the 2018 emission estimate of 134.5 MMT CO_2 Eq. The uncertainty in the emission estimates is a

5 function of uncertainty in both the quantity of fuel used for non-energy purposes and the storage factor.

Table 3-23: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from Non Energy Uses of Fossil Fuels (MMT CO₂ Eq. and Percent)

Source	6	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate ^a						
Source	Gas	(MMT CO ₂ Eq.)	(MMT	CO₂ Eq.)	(%)				
			Lower	Upper	Lower	Upper			
			Bound	Bound	Bound	Bound			
Feedstocks	CO ₂	83.7	53.2	139.4	-36%	+67%			
Asphalt	CO ₂	0.3	0.1	0.6	-58%	+123%			
Lubricants	CO ₂	17.5	14.4	20.3	-17%	+16%			
Waxes	CO ₂	0.4	0.3	0.7	-23%	+79%			
Other	CO ₂	32.7	18.8	35.6	-42%	+9%			
Total	CO2	134.5	96.2	185.4	-28%	38%			

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

Note: Totals may not sum due to independent rounding.

8 Table 3-24: Approach 2 Quantitative Uncertainty Estimates for Storage Factors of Non-9 Energy Uses of Fossil Fuels (Percent)

6	Source Cac	2018 Storage Factor	Uncertainty Range Relative to Emission Estimate ^a							
Source	Gas	(%)	(9	%)	(%, Relative)					
			Lower	Upper	Lower	Upper				
			Bound	Bound	Bound	Bound				
Feedstocks	CO ₂	65.3%	52.9%	72.4%	-19%	+11%				
Asphalt	CO ₂	99.6%	99.0%	99.8%	-0.5%	+0.3%				
Lubricants	CO ₂	9.2%	4.0%	17.6%	-57%	+92%				
Waxes	CO ₂	57.8%	47.6%	67.7%	-18%	+17%				
Other	CO ₂	6.3%	5.9%	43.1%	-6%	+587%				

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval, as a percentage of the inventory value (also expressed in percent terms).

10 As shown in Table 3-24, feedstocks and asphalt contribute least to overall storage factor uncertainty on a

11 percentage basis. Although the feedstocks category—the largest use category in terms of total carbon flows—

12 appears to have tight confidence limits, this is to some extent an artifact of the way the uncertainty analysis was

13 structured. As discussed in Annex 2.3, the storage factor for feedstocks is based on an analysis of six fates that

result in long-term storage (e.g., plastics production), and eleven that result in emissions (e.g., volatile organic

15 compound emissions). Rather than modeling the total uncertainty around all of these fate processes, the current

analysis addresses only the storage fates, and assumes that all C that is not stored is emitted. As the production

17 statistics that drive the storage values are relatively well-characterized, this approach yields a result that is

18 probably biased toward understating uncertainty.

19 As is the case with the other uncertainty analyses discussed throughout this document, the uncertainty results

above address only those factors that can be readily quantified. More details on the uncertainty analysis are

21 provided in Annex 2.3.

- 1 Methodological recalculations were applied to the entire time series to ensure time-series consistency from 1990
- 2 through 2018 as discussed below. Details on the emission trends through time are described in more detail in the
- 3 Methodology section, above.

4 QA/QC and Verification

In order to ensure the quality of the emission estimates from non-energy uses of fossil fuels, general (IPCC Tier 1)
 and category-specific (Tier 2) Quality Assurance/Quality Control (QA/QC) procedures were implemented consistent

7 with the U.S. Inventory QA/QC plan outlined in Annex 8. This effort included a general analysis, as well as portions

8 of a category specific analysis for non-energy uses involving petrochemical feedstocks and for imports and exports.

9 The Tier 2 procedures that were implemented involved checks specifically focusing on the activity data and

10 methodology for estimating the fate of C (in terms of storage and emissions) across the various end-uses of fossil

11 C. Emission and storage totals for the different subcategories were compared, and trends across the time series

12 were analyzed to determine whether any corrective actions were needed. Corrective actions were taken to rectify

13 minor errors and to improve the transparency of the calculations, facilitating future QA/QC.

- 14 For petrochemical import and export data, special attention was paid to NAICS numbers and titles to verify that
- 15 none had changed or been removed. Import and export totals were compared with 2017 totals as well as their
- 16 trends across the time series.
- 17 Petrochemical input data reported by EIA will continue to be investigated in an attempt to address an input/output

discrepancy in the NEU model. Prior to 2001, the C balance inputs exceeded outputs, then starting in 2001 through

19 2009, outputs exceeded inputs. Inputs exceeded outputs in 2010, 2011, and 2013 through 2018, but outputs

20 exceeded inputs in 2012. A portion of this discrepancy has been reduced and two strategies have been developed

21 to address the remaining portion (see the Planned Improvements section, below).

22 **Recalculations Discussion**

23 Previously proxied data for five chemicals and fibers (polyester fiber, polyolefin fiber, nylon fiber, acetic acid, and

24 maleic anhydride) were updated using the *Guide to the Business of Chemistry, 2019* for 1990 through 2017 values.

25 Overall, these changes resulted in an average annual decrease of less than 0.01 MMT CO₂ Eq. (less than 0.01

26 percent) in carbon emissions from non-energy uses of fossil fuels for the period 1990 through 2017, relative to the

27 previous Inventory.

28 Planned Improvements

29 There are several future improvements planned:

- Analyzing the fuel and feedstock data from EPA's GHGRP subpart X (Petrochemical Production) to better
 disaggregate CO₂ emissions in NEU model and CO₂ process emissions from petrochemical production.
- More accurate accounting of C in petrochemical feedstocks. EPA has worked with EIA to determine the cause of input/output discrepancies in the C mass balance contained within the NEU model. In the future, two strategies to reduce or eliminate this discrepancy will continue to be pursued. First, accounting of C in imports and exports will be improved. The import/export adjustment methodology will be examined to ensure that net exports of intermediaries such as ethylene and propylene are fully accounted for. Second, the use of top-down C input calculation in estimating emissions will be reconsidered. Alternative approaches that rely more substantially on the bottom-up C output calculation will be considered instead.
- Improving the uncertainty analysis. Most of the input parameter distributions are based on professional
 judgment rather than rigorous statistical characterizations of uncertainty.
- Better characterizing flows of fossil C. Additional fates may be researched, including the fossil C load in
 organic chemical wastewaters, plasticizers, adhesives, films, paints, and coatings. There is also a need to
 further clarify the treatment of fuel additives and backflows (especially methyl tert-butyl ether, MTBE).

- 1 Reviewing the trends in fossil fuel consumption for non-energy uses. Annual consumption for several fuel 2 types is highly variable across the time series, including industrial coking coal and other petroleum 3 (miscellaneous products). A better understanding of these trends will be pursued to identify any 4 mischaracterized or misreported fuel consumption for non-energy uses. For example, "miscellaneous 5 products" category includes miscellaneous products that are not reported elsewhere in the EIA data set. 6 The EIA does not have firm data concerning the amounts of various products that are being reported in 7 the "miscellaneous products" category; however, EIA has indicated that recovered sulfur from petroleum 8 and natural gas processing, and potentially also C black feedstock could be reported in this category. 9 Recovered sulfur would not be reported in the NEU calculation or elsewhere in the Inventory.
- Updating the average C content of solvents was researched, since the entire time series depends on one
 year's worth of solvent composition data. The data on C emissions from solvents that were readily
 available do not provide composition data for all categories of solvent emissions and also have conflicting
 definitions for volatile organic compounds, the source of emissive C in solvents. Additional sources of
 solvents data will be investigated in order to update the C content assumptions.
- Updating the average C content of cleansers (soaps and detergents) was researched; although production and consumption data for cleansers are published every 5 years by the Census Bureau, the composition (C content) of cleansers has not been recently updated. Recently available composition data sources may facilitate updating the average C content for this category.
- Revising the methodology for consumption, production, and C content of plastics was researched;
 because of recent changes to the type of data publicly available for plastics, the NEU model for plastics
 applies data obtained from personal communications. Potential revisions to the plastics methodology to
 account for the recent changes in published data will be investigated.
- Although U.S.-specific storage factors have been developed for feedstocks, asphalt, lubricants, and waxes,
 default values from IPCC are still used for two of the non-energy fuel types (industrial coking coal,
 distillate oil), and broad assumptions are being used for miscellaneous products and other petroleum.
 Over the long term, there are plans to improve these storage factors by analyzing C fate similar to those
 described in Annex 2.3 or deferring to more updated default storage factors from IPCC where available.
- Reviewing the storage of carbon black across various sectors in the Inventory; in particular, the carbon
 black abraded and stored in tires.
- 30
- 31

Box 3-6: Reporting of Lubricants, Waxes, and Asphalt and Road Oil Product Use in Energy Sector

IPCC (2006) provides methodological guidance to estimate emissions from the first use of fossil fuels as a product for primary purposes other than combustion for energy purposes (including lubricants, paraffin waxes, bitumen / asphalt, and solvents) under the IPPU sector.⁶⁵ In this Inventory, C storage and C emissions from product use of lubricants, waxes, and asphalt and road oil are reported under the Energy sector in the Carbon Emitted from Non-Energy Uses of Fossil Fuels source category (CRF Source Category 1A5).⁶⁶

The emissions are reported in the Energy sector, as opposed to the IPPU sector, to reflect national circumstances in its choice of methodology and to increase transparency of this source category's unique country-specific data sources and methodology. The country-specific methodology used for the Carbon Emitted from Non-Energy Uses of Fossil Fuels source category is based on a carbon balance (i.e., C inputs-outputs)

⁶⁵ See for example Volume 3: Industrial Processes and Product Use, and Chapter 5: Non-Energy Products from Fuels and Solvent Use of the *2006 IPCC Guidelines for National Greenhouse Gas Inventories* (IPCC 2006).

⁶⁶ Non-methane volatile organic compound (NMVOC) emissions from solvent use are reported separately in the IPPU sector, following Chapter 5 of the *2006 IPCC Guidelines*.

calculation of the aggregate amount of fossil fuels used for non-energy uses, including inputs of lubricants, waxes, asphalt and road oil (see Section 3.2, Table 3-22).

For those inputs, U.S. country-specific data on C stocks and flows are used to develop carbon storage factors, which are calculated as the ratio of the C stored by the fossil fuel non-energy products to the total C content of the fuel consumed, taking into account losses in the production process and during product use.⁶⁷ The country-specific methodology to reflect national circumstances starts with the aggregate amount of fossil fuels used for non-energy uses and applies a C balance calculation, breaking out the C emissions from non-energy use of lubricants, waxes, and asphalt and road oil. Due to U.S. national circumstances, reporting these C emissions separately under IPPU would involve making artificial adjustments to allocate both the C inputs and C outputs of the non-energy use C balance. These artificial adjustments would also result in the C emissions for lubricants, waxes, and asphalt and road oil being reported under IPPU, while the C storage for lubricants, waxes, and asphalt and road oil being reported under IPPU, while the C storage for lubricants, waxes, and asphalt and road oil being reported under Energy. To avoid presenting an incomplete C balance and a less transparent approach for the Carbon Emitted from Non-Energy Uses of Fossil Fuels source category calculation, the entire calculation of C storage and C emissions is therefore conducted in the Non-Energy Uses of Fossil Fuels category calculation methodology, and both the C storage and C emissions for lubricants, waxes, and asphalt and road oil are reported under the Energy sector.

However, portions of the fuel consumption data for seven fuel categories—coking coal, distillate fuel, industrial other coal, petroleum coke, natural gas, residual fuel oil, and other oil—were reallocated to the IPPU chapter, as they were consumed during non-energy related industrial activity. Emissions from uses of fossil fuels as feedstocks or reducing agents (e.g., petrochemical production, aluminum production, titanium dioxide and zinc production) are reported in the IPPU chapter, unless otherwise noted due to specific national circumstances.

3.3 Incineration of Waste (CRF Source Category 1A5)

- 4 Incineration is used to manage about 7 to 19 percent of the solid wastes generated in the United States,
- 5 depending on the source of the estimate and the scope of materials included in the definition of solid waste (EPA
- 6 2000; EPA 2018a; Goldstein and Madtes 2001; Kaufman et al. 2004; Simmons et al. 2006; van Haaren et al. 2010).
- 7 In the context of this section, waste includes all municipal solid waste (MSW) as well as scrap tires. In the United
- 8 States, incineration of MSW tends to occur at waste-to-energy facilities or industrial facilities where useful energy
- 9 is recovered, and thus emissions from waste incineration are accounted for in the Energy chapter. Similarly, scrap
- 10 tires are combusted for energy recovery in industrial and utility boilers, pulp and paper mills, and cement kilns.
- 11 Incineration of waste results in conversion of the organic inputs to CO₂. According to the 2006 IPCC Guidelines,
- when the CO₂ emitted is of fossil origin, it is counted as a net anthropogenic emission of CO₂ to the atmosphere.
- 13 Thus, the emissions from waste incineration are calculated by estimating the quantity of waste combusted and the
- 14 fraction of the waste that is C derived from fossil sources.
- 15 Most of the organic materials in MSW are of biogenic origin (e.g., paper, yard trimmings), and have their net C
- 16 flows accounted for under the Land Use, Land-Use Change, and Forestry chapter. However, some components—
- 17 plastics, synthetic rubber, synthetic fibers, and carbon black in scrap tires—are of fossil origin. Plastics in the U.S.
- 18 waste stream are primarily in the form of containers, packaging, and durable goods. Rubber is found in durable
- 19 goods, such as carpets, and in non-durable goods, such as clothing and footwear. Fibers in MSW are predominantly
- 20 from clothing and home furnishings. As noted above, scrap tires (which contain synthetic rubber and carbon black)

⁶⁷ Data and calculations for lubricants and waxes and asphalt and road oil are in Annex 2.3 – Methodology for Estimating Carbon Emitted from Non-Energy Uses of Fossil Fuels.

- 1 are also considered a "non-hazardous" waste and are included in the waste incineration estimate, though waste
- 2 disposal practices for tires differ from MSW. Estimates on emissions from hazardous waste incineration can be
- 3 found in Annex 2.3 and are accounted for as part of the C mass balance for non-energy uses of fossil fuels.
- 4 Approximately 20.8 million metric tons of MSW were incinerated in 2011 (van Haaren et al. 2010). Updated data
- 5 were not available for 2012 through 2018 from this source so the data were proxied to the 2011 estimate. Carbon
- 6 dioxide emissions from incineration of waste increased 40 percent since 1990, to an estimated 11.1 MMT CO₂
- 7 (11,113 kt) in 2018, as the volume of scrap tires and other fossil C-containing materials in waste increased (see
- 8 Table 3-25 and Table 3-26).
- 9 Waste incineration is also a source of CH₄ and N₂O emissions (De Soete 1993; IPCC 2006). Methane emissions from
- 10 the incineration of waste were estimated to be less than 0.05 MMT CO₂ Eq. (less than 0.5 kt CH₄) in 2018 and have
- decreased by 32 percent since 1990. Nitrous oxide emissions from the incineration of waste were estimated to be
- 12 0.3 MMT CO₂ Eq. (1 kt N₂O) in 2018 and have decreased by 32 percent since 1990.

13 Table 3-25: CO₂, CH₄, and N₂O Emissions from the Incineration of Waste (MMT CO₂ Eq.)

Gas/Waste Product	1990	2005	2014	2015	2016	2017	2018
CO ₂	8.0	12.5	10.4	10.8	10.9	11.1	11.1
Plastics	5.6	6.9	5.9	6.2	6.2	6.4	6.4
Synthetic Rubber in Tires	0.3	1.6	1.2	1.1	1.2	1.2	1.2
Carbon Black in Tires	0.4	2.0	1.4	1.4	1.4	1.4	1.4
Synthetic Rubber in MSW	0.9	0.8	0.7	0.7	0.7	0.7	0.7
Synthetic Fibers	0.8	1.2	1.3	1.3	1.4	1.4	1.4
CH ₄	+	+	+	+	+	+	+
N ₂ O	0.5	0.4	0.3	0.3	0.3	0.3	0.3
Total	8.4	12.9	10.7	11.1	11.2	11.4	11.4

+ Does not exceed 0.05 MMT CO₂ Eq.

14

15 Table 3-26: CO₂, CH₄, and N₂O Emissions from the Incineration of Waste (kt)

Gas/Waste Product	1990	2005	2014	2015	2016	2017	2018
CO ₂	7,951	12,469	10,435	10,756	10,919	11,111	11,113
Plastics	5,588	6,919	5,928	6,184	6,227	6,388	6,388
Synthetic Rubber in Tires	308	1,599	1,154	1,149	1,160	1,171	1,171
Carbon Black in Tires	385	1,958	1,406	1,401	1,415	1,430	1,430
Synthetic Rubber in MSW	854	766	692	703	717	731	731
Synthetic Fibers	816	1,227	1,255	1,319	1,399	1,392	1,394
CH ₄	+	+	+	+	+	+	+
N ₂ O	2	1	1	1	1	1	1

+ Does not exceed 0.5 kt.

17

18 Methodology

19 Emissions of CO₂ from the incineration of waste include CO₂ generated by the incineration of plastics, synthetic

fibers, and synthetic rubber in MSW, as well as the incineration of synthetic rubber and carbon black in scrap tires.

21 The emission estimates are calculated for all four sources on a mass-basis based on the data available. These

22 emissions were estimated by multiplying the mass of each material incinerated by the C content of the material

and the fraction oxidized (98 percent). Plastics incinerated in MSW were categorized into seven plastic resin types,

each material having a discrete C content. Similarly, synthetic rubber is categorized into three product types, and

25 synthetic fibers were categorized into four product types, each having a discrete C content. Scrap tires contain

26 several types of synthetic rubber, carbon black, and synthetic fibers. Each type of synthetic rubber has a discrete C

27 content, and carbon black is 100 percent C. Emissions of CO₂ were calculated based on the amount of scrap tires

1 used for fuel and the synthetic rubber and carbon black content of scrap tires. More detail on the methodology for

- 2 calculating emissions from each of these waste incineration sources is provided in Annex 3.7.
- 4 product combusted and the C content of the product are needed. For plastics, synthetic rubber, and synthetic
- 5 fibers in MSW, the amount of specific materials discarded as MSW (i.e., the quantity generated minus the quantity
- 6 recycled) was taken from Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and
- 7 Figures (EPA 2000 through 2003, 2005 through 2014), and Advancing Sustainable Materials Management: Facts
- 8 and Figures: Assessing Trends in Material Generation, Recycling and Disposal in the United States (EPA 2015; EPA
- 9 2016; EPA 2018a; EPA 2019) and detailed unpublished backup data for some years not shown in the reports
- 10 (Schneider 2007). For 2012 through 2018 data on total waste incinerated were assumed to equal to the 2011 value 11 from Shin (2014) for 2012 through 2018. For synthetic rubber and carbon black in scrap tires, information was
- from Shin (2014) for 2012 through 2018. For synthetic rubber and carbon black in scrap tires, information was obtained biannually from U.S. Scrap Tire Management Summary for 2005 through 2018 data (RMA 2018). Average
- 13 C contents for the "Other" plastics category and synthetic rubber in MSW were calculated from 1998 and 2002
- 14 production statistics; C content for 1990 through 1998 is based on the 1998 value; C content for 1999 through
- 15 2001 is the average of 1998 and 2002 values; and C content for 2002 to date is based on the 2002 value. Carbon
- 16 content for synthetic fibers was calculated from a weighted average of production statistics from 1990 to date.
- 17 Information about scrap tire composition was taken from the Rubber Manufacturers' Association internet site
- 18 (RMA 2012a). The mass of incinerated material is multiplied by its C content to calculate the total amount of
- 19 carbon stored.

20 The assumption that 98 percent of organic C is oxidized (which applies to all waste incineration categories for CO₂

21 emissions) was reported in EPA's life cycle analysis of greenhouse gas emissions and sinks from management of

solid waste (EPA 2006). This percentage is multiplied by the carbon stored to estimate the amount of carbon

- 23 emitted.
- 24 Incineration of waste, including MSW, also results in emissions of CH₄ and N₂O. These emissions were calculated as
- 25 a function of the total estimated mass of waste incinerated and emission factors. As noted above, CH₄ and N₂O
- 26 emissions are a function of total waste incinerated in each year; for 1990 through 2008, these data were derived
- from the information published in *BioCycle* (van Haaren et al. 2010). Data for 2009 and 2010 were interpolated
- between 2008 and 2011 values. Data for 2011 were derived from Shin (2014). Data on total waste incinerated was
- 29 not available in the *BioCycle* data set for 2012 through 2018, so these values were assumed to equal the 2011
- 30 *BioCycle* dataset value.

31 Table 3-27 provides data on MSW discarded and percentage combusted for the total waste stream. The emission

32 factors of N₂O and CH₄ emissions per quantity of MSW combusted are default emission factors for the default

33 continuously-fed stoker unit MSW incineration technology type and were taken from IPCC (2006).

Table 3-27: Municipal Solid Waste Generation (Metric Tons) and Percent Combusted (BioCycle dataset)

Year	Waste Discarded	Waste Incinerated	Incinerated (% of Discards)
1990	235,733,657	30,632,057	13.0%
2005	259,559,787	25,973,520	10.0%
2014	273,116,704ª	20,756,870	7.6%
2015	273,116,704ª	20,756,870	7.6%
2016	273,116,704ª	20,756,870	7.6%
2017	273,116,704ª	20,756,870	7.6%
2018	273,116,704ª	20,756,870	7.6%

^a Assumed equal to 2011 value.

Source: van Haaren et al. (2010).

1 Uncertainty and Time-Series Consistency

2 An Approach 2 Monte Carlo analysis was performed to determine the level of uncertainty surrounding the 3 estimates of CO₂ emissions and N₂O emissions from the incineration of waste (given the very low emissions for 4 CH₄, no uncertainty estimate was derived). IPCC Approach 2 analysis allows the specification of probability density 5 functions for key variables within a computational structure that mirrors the calculation of the Inventory estimate. 6 Uncertainty estimates and distributions for waste generation variables (i.e., plastics, synthetic rubber, and textiles 7 generation) were obtained through a conversation with one of the authors of the Municipal Solid Waste in the 8 United States reports. Statistical analyses or expert judgments of uncertainty were not available directly from the 9 information sources for the other variables; thus, uncertainty estimates for these variables were determined using 10 assumptions based on source category knowledge and the known uncertainty estimates for the waste generation 11 variables.

- 12 The uncertainties in the waste incineration emission estimates arise from both the assumptions applied to the data
- and from the quality of the data. Key factors include MSW incineration rate; fraction oxidized; missing data on
- 14 waste composition; average C content of waste components; assumptions on the synthetic/biogenic C ratio; and
- 15 combustion conditions affecting N₂O emissions. The highest levels of uncertainty surround the variables that are
- 16 based on assumptions (e.g., percent of clothing and footwear composed of synthetic rubber); the lowest levels of
- 17 uncertainty surround variables that were determined by quantitative measurements (e.g., combustion efficiency, C
- 18 content of C black).
- 19 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 3-28. Waste incineration

20 CO₂ emissions in 2018 were estimated to be between 8.2 and 14.3 MMT CO₂ Eq. at a 95 percent confidence level.

21 This indicates a range of 27 percent below to 28 percent above the 2018 emission estimate of 11.1 MMT CO₂ Eq.

Also at a 95 percent confidence level, waste incineration N₂O emissions in 2018 were estimated to be between 0.2

and 1.3 MMT CO₂ Eq. This indicates a range of 51 percent below to 334 percent above the 2018 emission estimate

- of 0.3 MMT CO₂ Eq. Differences observed in comparison to last year were due to a reevaluation and refinement of
- assumptions on scrap tire weights of light and heavy-duty tires.

26 Table 3-28: Approach 2 Quantitative Uncertainty Estimates for CO₂ and N₂O from the

27 Incineration of Waste (MMT CO₂ Eq. and Percent)

		2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate					
Source	Gas	(MMT CO₂ Eq.)	(MMT (CO₂ Eq.)	(%)			
			Lower	Upper	Lower	Upper		
			Bound	Bound	Bound	Bound		
Incineration of Waste	CO ₂	11.1	8.2	14.3	-27%	+28%		
Incineration of Waste	N_2O	0.3	0.2	1.3	-51%	+334%		

^a Range of emission estimates predicted by Monte Carlo Simulation for a 95 percent confidence interval.

28 QA/QC and Verification

29 In order to ensure the quality of the emission estimates from waste incineration, general (IPCC Tier 1) and

30 category-specific (Tier 2) Quality Assurance/Quality Control (QA/QC) procedures were implemented consistent

31 with the U.S. Inventory QA/QC plan outlined in Annex 8. The Tier 2 procedures that were implemented involved

32 checks specifically focusing on the activity data and specifically focused on the emission factor and activity data

33 sources and methodology used for estimating emissions from incineration of waste. Trends across the time series

- 34 were analyzed to determine whether any corrective actions were needed. Corrective actions were taken to rectify
- 35 minor errors in use of activity data.

1 Recalculations Discussion

- 2 EPA revised the percent of tires disposed for light duty tires and commercial tires in 2009 and 2013 to reflect
- 3 updated data. For 2009, EPA used data from the Rubber Manufacturers Association's (RMA) U.S. Scrap Tire
- 4 Management Summary 2005-2009 (RMA 2013), and RMA's 2013 U.S. Scrap Tire Management Summary (RMA
- 5 2014) for 2013. These updates impacted CO₂ emissions from synthetic rubber in tires and synthetic rubber in
- 6 MSW.
- 7 EPA also updated the total generation and recovery data for plastics, synthetic rubber, and synthetic fibers in MSW
- 8 for years 2016 and 2017. In the previous Inventory report, emissions were being proxied from 2015 values. EPA
- 9 used data from EPA's Advancing Sustainable Materials Management: Facts and Figures 2016 and 2017, Assessing
- 10 Trends in Material Generation, Recycling and Disposal in the United States (EPA 2019). The updates to MSW
- discarded impacted CO₂ emissions for those materials in 2016 and 2017.

12 Planned Improvements

- 13 The waste incineration estimates have recently relied on MSW mass flow (i.e., tonnage) data that has not been
- 14 updated since 2011. These values previously came from *BioCycle* (Shin 2014) and *EPA Facts and Figures* (EPA
- 15 2015). EPA performed an examination of facility-level MSW tonnage data availability, primarily focusing on EPA's
- 16 GHGRP data, Energy Information Administration (EIA) waste-to-energy data, and other sources. EPA concluded
- 17 that the GHGRP data were more complete (i.e., included more facilities), but did not contain data for all inventory
- 18 years (1990 through 2016). The EIA data can be used to supplement years not available in the GHGRP dataset. In
- addition, the GHGRP data do not include specific waste components outside of an assumed biogenic and fossil
- 20 component, which is necessary for CO₂ emission calculations. Data from EPA's GHGRP on fossil CO₂ emissions can
- 21 be used to benchmark results for other waste components in the Inventory.
- 22 Additional improvements will focus on investigating new methods and sources for CO₂ emission estimates and
- 23 investigating new data sources for MSW incinerated values (i.e., tonnage) for estimating CO₂ and non-CO₂ (CH₄,
- 24 N₂O) emissions.
- 25 Proposed improvements to the current CO₂ emissions estimation methodology include opportunities for either
- 26 incorporating total CO₂ emissions from existing waste incineration datasets (i.e., EIA and GHGRP data that provide
- 27 CO₂ emission estimates) or updating emission factors (i.e., MSW carbon content) and continuing to use the *Facts*
- 28 *and Figures* disposal data for fossil-based products. Further research is required to compare the emission factors
- 29 (i.e., MSW carbon content, heating values) used across waste incineration CO₂ emissions approaches, including the
- 30 current Inventory, EIA, and EPA's GHGRP. In addition, the currently used *BioCycle* percent combusted assumption
- 31 could be updated with *Facts and Figures* product tonnage combusted data.
- 32 Non-CO₂ improvements will focus on research of potential data sources for updating emission factors. EPA is also
- 33 researching potential data sources for incinerated MSW tonnage that can be used for future inventory years
- 34 instead of applying an incineration rate to generated MSW tonnage. EPA is analyzing the *Facts and Figures* non-tire
- 35 MSW combusted tonnage and previously compiled EIA and GHGRP tonnage data to compare organic and non-
- 36 organic components of these MSW tonnage data where available.
- 37 Additional improvements will be conducted to improve the transparency in the current reporting of waste
- 38 incineration. Currently, hazardous industrial waste incineration is included within the overall calculations for the
- 39 Carbon Emitted from Non-Energy Uses of Fossil Fuels source category. Waste incineration activities that do not
- 40 include energy recovery will be examined. Synthetic fibers within scrap tires are not included in this analysis and
- 41 will be explored for future Inventories. The C content of fibers within scrap tires will be used to calculate the
- 42 associated incineration emissions. Updated fiber content data from the Fiber Economics Bureau will also be
- 43 explored.

¹ 3.4 Coal Mining (CRF Source Category 1B1a)

2 Three types of coal mining-related activities release CH₄ to the atmosphere: underground mining, surface mining,

3 and post-mining (i.e., coal-handling) activities. While surface mines account for the majority of U.S. coal

4 production, underground coal mines contribute the largest share of CH₄ emissions (see Table 3-30 and Table 3-31)

5 due to the higher CH₄ content of coal in the deeper underground coal seams. In 2018, 236 underground coal mines

and 430 surface mines were operating in the United States (EIA 2019). In recent years the total number of active

7 coal mines in the United States has declined. In 2018, the United States was the third largest coal producer in the

8 world (686 MMT), after China (3,550 MMT) and India (771 MMT) (IEA 2019).

9 Table 3-29: Coal Production (kt)

Year	Undergro	und	Surface	2	Total	
	Number of Mines	Production	Number of Mines	Production	Number of Mines	Production
1990	1,683	384,244	1,656	546,808	3,339	931,052
2005	586	334,398	789	691,448	1,398	1,025,846
2014	345	321,783	613	583,974	958	905,757
2015	305	278,342	529	534,092	834	812,435
2016	251	228,707	439	431,285	690	659,991
2017	237	247,779	434	454,303	671	702,082
2018	236	249,802	430	435,521	666	685,324

10 Underground mines liberate CH₄ from ventilation systems and from degasification systems. Ventilation systems

11 pump air through the mine workings to dilute noxious gases and ensure worker safety; these systems can exhaust

12 significant amounts of CH₄ to the atmosphere in low concentrations. Degasification systems are wells drilled from

the surface or boreholes drilled inside the mine that remove large, often highly concentrated volumes of CH₄

before, during, or after mining. Some mines recover and use CH₄ generated from ventilation and degasification

15 systems, thereby reducing emissions to the atmosphere.

16 Surface coal mines liberate CH₄ as the overburden is removed and the coal is exposed to the atmosphere. Methane

emissions are normally a function of coal rank (a classification related to the percentage of carbon in the coal) and

depth. Surface coal mines typically produce lower-rank coals and remove less than 250 feet of overburden, so their

19 level of emissions is much lower than from underground mines.

20 In addition, CH₄ is released during post-mining activities, as the coal is processed, transported, and stored for use.

Total CH₄ emissions in 2018 were estimated to be 2,109.3 kt (52.7 MMT CO₂ Eq.), a decline of approximately 45

22 percent since 1990 (see Table 3-30 and Table 3-31). In 2018, underground mines accounted for approximately 74

23 percent of total emissions, surface mines accounted for 13 percent, and post-mining activities accounted for 13

percent. In 2018, total CH₄ emissions from coal mining decreased by approximately 4 percent relative to the

25 previous year. This decrease was due to a modest decrease in coal production and an increase in CH₄ recovered

and used. The amount of CH₄ recovered and used in 2018 increased by approximately eleven percent compared to

27 2017 levels. This increase is primarily attributed to an increase in reported CH₄ recovery and use at three mines.

28 Table 3-30: CH₄ Emissions from Coal Mining (MMT CO₂ Eq.)

Activity	1990	2005	2014	2015	2016	2017	2018
Underground (UG) Mining	74.2	42.0	46.1	44.9	40.7	40.7	38.9
Liberated	80.8	59.7	63.0	61.2	57.0	57.6	57.7
Recovered & Used	(6.6)	(17.7)	(17.0)	(16.4)	(16.4)	(17.0)	(18.8)
Surface Mining	10.8	11.9	9.6	8.7	6.8	7.2	7.0
Post-Mining (UG)	9.2	7.6	6.7	5.8	4.8	5.3	5.3
Post-Mining (Surface)	2.3	2.6	2.1	1.9	1.5	1.6	1.5
Total	96.5	64.1	64.6	61.2	53.8	54.8	52.7

1990 2005 2014 2016 2017 2018 Activity 2015 Underground (UG) Mining 2,968 1,682 1,844 1,796 1,629 1,626 1,556 Liberated 3,234 2,390 2,523 2,450 2,283 2,306 2,308 **Recovered & Used** (266) (708) (679) (654) (654) (679) (752) Surface Mining 430 475 386 347 273 290 280 Post-Mining (UG) 368 306 270 231 193 213 212 Post-Mining (Surface) 93 103 84 75 59 63 61 Total 3,860 2,565 2,583 2,449 2,154 2,191 2,109

1 Table 3-31: CH₄ Emissions from Coal Mining (kt)

2 Methodology

EPA uses an IPCC Tier 3 method for estimating CH₄ emissions from underground coal mining and an IPCC Tier 2
 method for estimating CH₄ emissions from surface mining and post-mining activities (for both coal production from underground mines and surface mines). The methodology for estimating CH₄ emissions from coal mining consists
 of two steps:

- Estimate emissions from underground mines. These emissions have two sources: ventilation systems and degasification systems. They are estimated using mine-specific data, then summed to determine total CH₄
 liberated. The CH₄ recovered and used is then subtracted from this total, resulting in an estimate of net emissions to the atmosphere.
- Estimate CH₄ emissions from surface mines and post-mining activities. Unlike the methodology for
 underground mines, which uses mine-specific data, the methodology for estimating emissions from
 surface mines and post-mining activities consists of multiplying basin-specific coal production by basin specific gas content and an emission factor.

15 Step 1: Estimate CH₄ Liberated and CH₄ Emitted from Underground Mines

16 Underground mines generate CH₄ from ventilation systems and degasification systems. Some mines recover and

17 use the liberated CH₄, thereby reducing emissions to the atmosphere. Total CH₄ emitted from underground mines

equals the CH₄ liberated from ventilation systems, plus the CH₄ liberated from degasification systems, minus the

- 19 CH₄ recovered and used.
- 20 Step 1.1: Estimate CH₄ Liberated from Ventilation Systems
- 21 To estimate CH₄ liberated from ventilation systems, EPA uses data collected through its Greenhouse Gas Reporting

22 Program (GHGRP)⁶⁸ (subpart FF, "Underground Coal Mines"), data provided by the U.S. Mine Safety and Health

Administration (MSHA) [MSHA 2019], and occasionally data collected from other sources on a site-specific level

24 (e.g., state gas production databases). Since 2011, the nation's "gassiest" underground coal mines—those that

- liberate more than 36,500,000 actual cubic feet of CH₄ per year (about 17,525 MT CO₂ Eq.)—have been required to
- 26 report to EPA's GHGRP (EPA 2019).⁶⁹ Mines that report to EPA's GHGRP must report quarterly measurements of
- 27 CH₄ emissions from ventilation systems; they have the option of recording and reporting their own measurements,

⁶⁸ In implementing improvements and integrating data from EPA's GHGRP, EPA followed the latest guidance from the IPCC on the use of facility-level data in national inventories (IPCC 2011).

⁶⁹ Underground coal mines report to EPA under subpart FF of the GHGRP (40 CFR part 98). In 2018, 76 underground coal mines reported to the program.

- 1 or using the measurements taken by MSHA as part of that agency's quarterly safety inspections of all mines in the
- 2 United States with detectable CH₄ concentrations.⁷⁰
- 3 Since 2013, ventilation CH₄ emission estimates have been calculated based on both GHGRP data submitted by
- 4 underground mines, and on quarterly measurement data obtained directly from MSHA for the remaining mines.
- 5 The quarterly measurements are used to determine the average daily emission rate for the reporting year quarter.
- 6 Because not all mines report under EPA's GHGRP, the emissions of the mines that do not report must be calculated
- 7 using MSHA data. The MSHA data also serves as a quality assurance tool for validating GHGRP data.

8 Step 1.2: Estimate CH₄ Liberated from Degasification Systems

- 9 Particularly gassy underground mines also use degasification systems (e.g., wells or boreholes) to remove CH₄
- before, during, or after mining. This CH₄ can then be collected for use or vented to the atmosphere. Eighteen
- 11 mines used degasification systems in 2018, and the CH₄ removed through these systems was reported to EPA's
- 12 GHGRP under subpart FF (EPA 2019). Based on the weekly measurements reported to EPA's GHGRP, degasification
- data summaries for each mine were added to estimate the CH₄ liberated from degasification systems. Eleven of
- 14 the 18 mines with degasification systems had operational CH₄ recovery and use projects (see step 1.3 below), and
- 15 EPA's GHGRP reports show the remaining seven mines vented CH₄ from degasification systems to the
- 16 atmosphere.⁷¹
- 17 Degasification data reported to EPA's GHGRP by underground coal mines is the primary source of data used to
- 18 develop estimates of CH₄ liberated from degasification systems. Data reported to EPA's GHGRP were used

exclusively to estimate CH₄ liberated from degasification systems at 14 of the 18 mines that used degasification

- 20 systems in 2018.
- 21 For pre-mining wells, cumulative degasification volumes that occur prior to the well being mined through are
- attributed to the mine in the inventory year in which the well is mined through.⁷² EPA's GHGRP does not require
- 23 gas production from virgin coal seams (coalbed methane) to be reported by coal mines under subpart FF.⁷³ Most
- 24 pre-mining wells drilled from the surface are considered coalbed methane wells prior to mine-through and
- associated CH₄ emissions are reported under another subpart of the GHGRP (subpart W, "Petroleum and Natural
- 26 Gas Systems"). As a result, GHGRP data must be supplemented to estimate cumulative degasification volumes that
- 27 occurred prior to well mine-through. There were four mines with degasification systems that include pre-mining
- wells that were mined through in 2018. For these mines, GHGRP data were supplemented with historical data from
- state gas well production databases (GSA 2019, DMME 2019, WVGES 2019), as well as with mine-specific
 information regarding the locations and dates on which the pre-mining wells were mined through (JWR 2010; El
- 31 Paso 2009, ERG 2019).

Step 1.3: Estimate CH₄ Recovered from Ventilation and Degasification Systems, and Utilized or Destroyed (Emissions Avoided)

- Thirteen mines had CH₄ recovery and use projects in place in 2018. Eleven of these projects involved degasification systems, one did not use any degasification system, and one involved a ventilation air methane abatement project
- 36 (VAM). Eleven of these mines sold the recovered CH₄ to a pipeline, including one that also used CH₄ to fuel a
- 37 thermal coal dryer. One mine used recovered CH₄ to heat mine ventilation air (data was unavailable for estimating

⁷⁰ MSHA records coal mine CH₄ readings with concentrations of greater than 50 ppm (parts per million) CH₄. Readings below this threshold are considered non-detectable.

⁷¹ Several of the mines venting CH₄ from degasification systems use a small portion of the gas to fuel gob well blowers in remote locations where electricity is not available. However, this CH₄ use is not considered to be a formal recovery and use project.

⁷² A well is "mined through" when coal mining development or the working face intersects the borehole or well.

⁷³ This applies for pre-drainage in years prior to the well being mined through. Beginning with the year the well is mined through, the annual volume of CH₄ liberated from a pre-drainage well is reported under subpart FF of EPA's GHGRP.

- 1 CH₄ recovery at this mine). One mine destroyed the recovered CH₄ (VAM) using Regenerative Thermal Oxidation
- 2 (RTO) without energy recovery.
- The CH₄ recovered and used (or destroyed) at the twelve mines described above for which data were available
 were estimated using the following methods:
- EPA's GHGRP data was exclusively used to estimate the CH₄ recovered and used from seven of the 11
 mines that deployed degasification systems in 2018. Based on weekly measurements, the GHGRP
 degasification destruction data summaries for each mine were added together to estimate the CH₄
 recovered and used from degasification systems.
- For the single mine that employed VAM for CH₄ recovery and use, the estimates of CH₄ recovered and used were obtained from the mine's offset verification statement (OVS) submitted to the California Air
 Resources Board (CARB) (McElroy OVS 2019).
- State sales data were used to estimate CH₄ recovered and used from the remaining four mines that deployed degasification systems in 2018 (DMME 2019, GSA 2019). These four mines intersected premining wells in 2018. Supplemental information was used for these mines because estimating CH₄
 recovery and use from pre-mining wells requires additional data not reported under subpart FF of EPA's GHGRP (see discussion in step 1.2 above) to account for the emissions avoided prior to the well being mined through. The supplemental data came from state gas production databases as well as mine-specific information on the timing of mined-through pre-mining wells.

19 Step 2: Estimate CH₄ Emitted from Surface Mines and Post-Mining Activities

Mine-specific data are not available for estimating CH₄ emissions from surface coal mines or for post-mining
 activities. For surface mines, basin-specific coal production obtained from the Energy Information Administration's
 Annual Coal Report (EIA 2019) was multiplied by basin-specific CH₄ contents (EPA 1996, 2005) and a 150 percent
 emission factor (to account for CH₄ from over- and under-burden) to estimate CH₄ emissions (King 1994, Saghafi
 2013). For post-mining activities, basin-specific coal production was multiplied by basin-specific gas contents and a
 mid-range 32.5 percent emission factor for CH₄ desorption during coal transportation and storage (Creedy 1993).
 Basin-specific in situ gas content data were compiled from AAPG (1984) and USBM (1986).

27 Uncertainty and Time-Series Consistency

- 28 A quantitative uncertainty analysis was conducted for the coal mining source category using the IPCC-
- 29 recommended Approach 2 uncertainty estimation methodology. Because emission estimates from underground
- 30 ventilation systems were based on actual measurement data from EPA's GHGRP or from MSHA, uncertainty is
- relatively low. A degree of imprecision was introduced because the ventilation air measurements used were not
- 32 continuous but rather quarterly instantaneous readings that were used to determine the average daily emission
- 33 rate for the quarter. Additionally, the measurement equipment used can be expected to have resulted in an
- 34 average of 10 percent overestimation of annual CH₄ emissions (Mutmansky & Wang 2000). Equipment
- 35 measurement uncertainty is applied to both GHGRP and MSHA data.
- 36 Estimates of CH₄ liberated and recovered by degasification systems are relatively certain for utilized CH₄ because of
- 37 the availability of EPA's GHGRP data and gas sales information. Many of the liberation and recovery estimates use
- data on wells within 100 feet of a mined area. However, uncertainty exists concerning the radius of influence of
- 39 each well. The number of wells counted, and thus the liberated CH₄ and avoided emissions may vary if the
- 40 drainage area is found to be larger or smaller than estimated.
- 41 EPA's GHGRP requires weekly CH₄ monitoring of mines that report degasification systems, and continuous CH₄
- 42 monitoring is required for CH₄ utilized on- or off-site. Since 2012, GHGRP data have been used to estimate CH₄
- 43 emissions from vented degasification wells, reducing the uncertainty associated with prior MSHA estimates used
- for this sub-source. Beginning in 2013, GHGRP data were also used for determining CH₄ recovery and use at mines
- 45 without publicly available gas usage or sales records, which has reduced the uncertainty from previous estimation
- 46 methods that were based on information from coal industry contacts.

- 1 Beginning in 2015, a small level of uncertainty was introduced by using estimated rather than measured values of
- 2 recovered CH₄ from two of the mines with degasification systems. An increased level of uncertainty was applied to
- 3 these two sub-sources, but the change had little impact on the overall uncertainty.
- 4 Surface mining and post-mining emissions are associated with considerably more uncertainty than underground
- 5 mines, because of the difficulty in developing accurate emission factors from field measurements. However, since
- 6 underground emissions constitute the majority of total coal mining emissions, the uncertainty associated with
- 7 underground emissions is the primary factor that determines overall uncertainty.
- 8 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 3-32. Coal mining CH₄
- 9 emissions in 2018 were estimated to be between 43.9 and 59.2 MMT CO₂ Eq. at a 95 percent confidence level. This
- 10 indicates a range of 16.7 percent below to 12.3 percent above the 2018 emission estimate of 52.7 MMT CO₂ Eq.

Table 3-32: Approach 2 Quantitative Uncertainty Estimates for CH₄ Emissions from Coal Mining (MMT CO₂ Eq. and Percent)

Cas	2018 Emission Estimate	Uncerta	inty Range Relative	to Emission Estin	nate ^a	
Gas	(MMT CO ₂ Eq.)	(MMT	CO₂ Eq.)	(%)		
		Lower	Upper	Lower	Upper	
		Bound	Bound	Bound	Bound	
CH_4	52.7	43.9	59.2	-16.7%	+12.3%	
	Gas CH4	Gas (MMT CO ₂ Eq.)	Gas (MMT CO2 Eq.) (MMT Lower Bound	Gas (MMT CO ₂ Eq.) (MMT CO ₂ Eq.) Lower Upper Bound Bound	Gas (MMT CO2 Eq.) (%) Lower Upper Lower Bound Bound Bound	

^a Range of emission estimates predicted by Monte Carlo stochastic simulation for a 95 percent confidence interval.

13 QA/QC and Verification

- 14 In order to ensure the quality of the emission estimates for coal mining, general (IPCC Tier 1) and category-specific
- 15 (Tier 2) Quality Assurance/Quality Control (QA/QC) procedures were implemented consistent with the U.S.
- 16 Inventory QA/QC plan outlined in Annex 8. The Tier 2 procedures that were implemented involved checks
- 17 specifically focusing on the activity data and reported emissions data used for estimating emissions from coal
- 18 mining. Trends across the time series were analyzed to determine whether any corrective actions were needed.
- 19 Emission estimates for coal mining rely in large part on data reported by coal mines to EPA's GHGRP. EPA verifies
- annual facility-level reports through a multi-step process to identify potential errors and ensure that data
- submitted to EPA are accurate, complete, and consistent. All reports submitted to EPA are evaluated by electronic
- validation and verification checks. If potential errors are identified, EPA will notify the reporter, who can resolve
- the issue either by providing an acceptable response describing why the flagged issue is not an error or by
- 24 correcting the flagged issue and resubmitting their annual greenhouse gas report. Additional QA/QC and
- 25 verification procedures occur for each GHGRP subpart.

26 **Recalculations Discussion**

27 Time-series recalculations were not required for the current Inventory.

28 Planned Improvements

- 29 EPA intends to add methods for estimating fugitive CO₂ emissions from underground and surface mining, based on
- 30 methods included in the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

3.5 Abandoned Underground Coal Mines (CRF Source Category 1B1a)

Underground coal mines contribute the largest share of coal mine methane (CMM) emissions, with active 3 4 underground mines the leading source of underground emissions. However, mines also continue to release CH₄ 5 after closure. As mines mature and coal seams are mined through, mines are closed and abandoned. Many are 6 sealed and some flood through intrusion of groundwater or surface water into the void. Shafts or portals are 7 generally filled with gravel and capped with a concrete seal, while vent pipes and boreholes are plugged in a 8 manner similar to oil and gas wells. Some abandoned mines are vented to the atmosphere to prevent the buildup 9 of CH₄ that may find its way to surface structures through overburden fractures. As work stops within the mines, 10 CH₄ liberation decreases but it does not stop completely. Following an initial decline, abandoned mines can 11 liberate CH₄ at a near-steady rate over an extended period of time, or, if flooded, produce gas for only a few years. 12 The gas can migrate to the surface through the conduits described above, particularly if they have not been sealed 13 adequately. In addition, diffuse emissions can occur when CH₄ migrates to the surface through cracks and fissures 14 in the strata overlying the coal mine. The following factors influence abandoned mine emissions:

- 15 Time since abandonment;
- Gas content and adsorption characteristics of coal;
- CH₄ flow capacity of the mine;
- 18 Mine flooding;
- 19 Presence of vent holes; and
- Mine seals.

21 Annual gross abandoned mine CH₄ emissions ranged from 7.2 to 10.8 MMT CO₂ Eq. from 1990 through 2018,

varying, in general, by less than 1 percent to approximately 19 percent from year to year. Fluctuations were due

23 mainly to the number of mines closed during a given year as well as the magnitude of the emissions from those

24 mines when active. Gross abandoned mine emissions peaked in 1996 (10.8 MMT CO₂ Eq.) due to the large number

of gassy mine⁷⁴ closures from 1994 to 1996 (72 gassy mines closed during the three-year period). In spite of this

rapid rise, abandoned mine emissions have been generally on the decline since 1996. Since 2002, there have been
 fewer than twelve gassy mine closures each year. In 2018 there was one gassy mine closure. Gross abandoned

27 newer than twelve gassy mine closures each year. In 2018 there was one gassy mine closure. Gloss abandoned
28 mine emissions decreased slightly from 9.2 to 8.9 MMT CO₂ Eq. (see Table 3-33 and Table 3-34). Gross emissions

are reduced by CH₄ recovered and used at 45 mines, resulting in net emissions in 2018 of 6.2 MMT CO₂ Eq.

30 Table 3-33: CH₄ Emissions from Abandoned Coal Mines (MMT CO₂ Eq.)

Activity	1990	2005	2014	2015	2016	2017	2018
Abandoned Underground Mines	7.2	8.4	8.7	9.0	9.5	9.2	8.9
Recovered & Used	+	(1.8)	(2.4)	(2.6)	(2.8)	(2.7)	(2.7)
Total	7.2	6.6	6.3	6.4	6.7	6.4	6.2

31 + Does not exceed 0.05 MMT CO₂ Eq.

³²

⁷⁴ A mine is considered a "gassy" mine if it emits more than 100 thousand cubic feet of CH₄ per day (100 mcfd).

1 Table 3-34: CH₄ Emissions from Abandoned Coal Mines (kt)

Activity	1990	2005	2014	2015	2016	2017	2018
Abandoned Underground Mines	288	334	350	359	380	367	355
Recovered & Used	+	(70)	(97)	(102)	(112)	(109)	(107)
Total	288	264	253	256	268	257	247

+ Does not exceed 0.5 kt.

2 Methodology

3 Estimating CH₄ emissions from an abandoned coal mine requires predicting the emissions of a mine from the time

of abandonment through the inventory year of interest. The flow of CH₄ from the coal to the mine void is primarily
 dependent on the mine's emissions when active and the extent to which the mine is flooded or sealed. The CH₄

6 emission rate before abandonment reflects the gas content of the coal, the rate of coal mining, and the flow

capacity of the mine in much the same way as the initial rate of a water-free conventional gas well reflects the gas

8 content of the producing formation and the flow capacity of the well. A well or a mine which produces gas from a

9 coal seam and the surrounding strata will produce less gas through time as the reservoir of gas is depleted.

10 Depletion of a reservoir will follow a predictable pattern depending on the interplay of a variety of natural physical

11 conditions imposed on the reservoir. The depletion of a reservoir is commonly modeled by mathematical

12 equations and mapped as a type curve. Type curves, which are referred to as decline curves, have been developed

13 for abandoned coal mines. Existing data on abandoned mine emissions through time, although sparse, appear to

14 fit the hyperbolic type of decline curve used in forecasting production from natural gas wells.

15 In order to estimate CH₄ emissions over time for a given abandoned mine, it is necessary to apply a decline

16 function, initiated upon abandonment, to that mine. In the analysis, mines were grouped by coal basin with the

assumption that they will generally have the same initial pressures, permeability and isotherm. As CH₄ leaves the

18 system, the reservoir pressure (Pr) declines as described by the isotherm's characteristics. The emission rate

19 declines because the mine pressure (Pw) is essentially constant at atmospheric pressure for a vented mine, and the

20 productivity index (PI), which is expressed as the flow rate per unit of pressure change, is essentially constant at

the pressures of interest (atmospheric to 30 psia). The CH₄ flow rate is determined by the laws of gas flow through

22 porous media, such as Darcy's Law. A rate-time equation can be generated that can be used to predict future

23 emissions. This decline through time is hyperbolic in nature and can be empirically expressed as:

24
$$q = q_i (1 + bD_i t)^{(-1/b)}$$

25 where,

26	q	=	Gas flow rate at time t in million cubic feet per day (mmcfd)
27	qi	=	Initial gas flow rate at time zero (t _o), mmcfd
28	b	=	The hyperbolic exponent, dimensionless
29	Di	=	Initial decline rate, 1/year
30	t	=	Elapsed time from t _o (years)

This equation is applied to mines of various initial emission rates that have similar initial pressures, permeability and adsorption isotherms (EPA 2004).

The decline curves created to model the gas emission rate of coal mines must account for factors that decrease the rate of emissions after mining activities cease, such as sealing and flooding. Based on field measurement data, it

35 was assumed that most U.S. mines prone to flooding will become completely flooded within eight years and

therefore will no longer have any measurable CH₄ emissions. Based on this assumption, an average decline rate for

37 flooded mines was established by fitting a decline curve to emissions from field measurements. An exponential

38 equation was developed from emissions data measured at eight abandoned mines known to be filling with water

39 located in two of the five basins. Using a least squares, curve-fitting algorithm, emissions data were matched to

40 the exponential equation shown below. There was not enough data to establish basin-specific equations as was

41 done with the vented, non-flooding mines (EPA 2004).

1			$q = q_i e^{(-Dt)}$
2	where,		
3	q	=	Gas flow rate at time t in mmcfd
4	qi	=	Initial gas flow rate at time zero (t₀), mmcfd
5	D	=	Decline rate, 1/year
6	t	=	Elapsed time from t_o (years)

Seals have an inhibiting effect on the rate of flow of CH₄ into the atmosphere compared to the flow rate that
would exist if the mine had an open vent. The total volume emitted will be the same, but emissions will occur over
a longer period of time. The methodology, therefore, treats the emissions prediction from a sealed mine similarly

10 to the emissions prediction from a vented mine, but uses a lower initial rate depending on the degree of sealing. A

computational fluid dynamics simulator was used with the conceptual abandoned mine model to predict the

12 decline curve for inhibited flow. The percent sealed is defined as 100 × (1 – [initial emissions from sealed mine /

13 emission rate at abandonment prior to sealing]). Significant differences are seen between 50 percent, 80 percent

14 and 95 percent closure. These decline curves were therefore used as the high, middle, and low values for

15 emissions from sealed mines (EPA 2004).

16 For active coal mines, those mines producing over 100 thousand cubic feet per day (mcfd) of CH₄ account for about

17 98 percent of all CH₄ emissions. This same relationship is assumed for abandoned mines. It was determined that

18 the 533 abandoned mines closed after 1972 produced CH_4 emissions greater than 100 mcfd when active. Further,

the status of 305 of the 533 mines (or 57 percent) is known to be either: 1) vented to the atmosphere; 2) sealed to some degree (either earthen or concrete seals); or, 3) flooded (enough to inhibit CH₄ flow to the atmosphere). The

remaining 43 percent of the mines whose status is unknown were placed in one of these three categories by

22 applying a probability distribution analysis based on the known status of other mines located in the same coal

23 basin (EPA 2004).

Table 3-35: Number of Gassy Abandoned Mines Present in U.S. Basins in 2018, Grouped by Class According to Post-Abandonment State

				Total		
Basin	Sealed	Vented	Flooded	Known	Unknown	Total Mines
Central Appl.	41	26	52	119	148	267
Illinois	34	3	14	51	31	82
Northern Appl.	47	22	16	85	39	124
Warrior Basin	0	0	16	16	0	16
Western Basins	28	4	2	34	10	44
Total	150	55	100	305	228	533

²⁶

Inputs to the decline equation require the average CH₄ emission rate prior to abandonment and the date of abandonment. Generally, these data are available for mines abandoned after 1971; however, such data are largely unknown for mines closed before 1972. Information that is readily available, such as coal production by state and county, is helpful but does not provide enough data to directly employ the methodology used to calculate emissions from mines abandoned before 1972. It is assumed that pre-1972 mines are governed by the same physical, geologic, and hydrologic constraints that apply to post-1971 mines; thus, their emissions may be characterized by the same decline curves.

34 During the 1970s, 78 percent of CH₄ emissions from coal mining came from seventeen counties in seven states.

35 Mine closure dates were obtained for two states, Colorado and Illinois, for the hundred-year period extending

36 from 1900 through 1999. The data were used to establish a frequency of mine closure histogram (by decade) and

37 applied to the other five states with gassy mine closures. As a result, basin-specific decline curve equations were

38 applied to the 145 gassy coal mines estimated to have closed between 1920 and 1971 in the United States,

representing 78 percent of the emissions. State-specific, initial emission rates were used based on average coal

40 mine CH_4 emissions rates during the 1970s (EPA 2004).

- 1 Abandoned mine emission estimates are based on all closed mines known to have active mine CH₄ ventilation
- 2 emission rates greater than 100 mcfd at the time of abandonment. For example, for 1990 the analysis included 145
- 3 mines closed before 1972 and 258 mines closed between 1972 and 1990. Initial emission rates based on MSHA
- 4 reports, time of abandonment, and basin-specific decline curves influenced by a number of factors were used to
- 5 calculate annual emissions for each mine in the database (MSHA 2019). Coal mine degasification data are not
- 6 available for years prior to 1990, thus the initial emission rates used reflect ventilation emissions only for pre-1990
- 7 closures. CH₄ degasification amounts were added to the quantity of CH₄ vented to determine the total CH₄
- 8 liberation rate for all mines that closed between 1992 and 2018. Since the sample of gassy mines described above
- 9 is assumed to account for 78 percent of the pre-1972 and 98 percent of the post-1971 abandoned mine emissions,
- 10 the modeled results were multiplied by 1.22 and 1.02 to account for all U.S. abandoned mine emissions.
- 11 From 1993 through 2018, emission totals were downwardly adjusted to reflect CH₄ emissions avoided from those
- abandoned mines with CH₄ recovery and use or destruction systems. The Inventory totals were not adjusted for
- abandoned mine CH₄ emission reductions from 1990 through 1992, because no data was reported for abandoned
- 14 coal mining CH₄ recovery and use or destruction projects during that time.

Uncertainty and Time-Series Consistency

16 A quantitative uncertainty analysis was conducted to estimate the uncertainty surrounding the estimates of

17 emissions from abandoned underground coal mines. The uncertainty analysis described below provides for the

specification of probability density functions for key variables within a computational structure that mirrors the

19 calculation of the inventory estimate. The results provide the range within which, with 95 percent certainty,

20 emissions from this source category are likely to fall.

21 As discussed above, the parameters for which values must be estimated for each mine in order to predict its

decline curve are: 1) the coal's adsorption isotherm; 2) CH₄ flow capacity as expressed by permeability; and 3)

- 23 pressure at abandonment. Because these parameters are not available for each mine, a methodological approach
- to estimating emissions was used that generates a probability distribution of potential outcomes based on the
- 25 most likely value and the probable range of values for each parameter. The range of values is not meant to capture
- 26 the extreme values, but rather values that represent the highest and lowest quartile of the cumulative probability
- 27 density function of each parameter. Once the low, mid, and high values are selected, they are applied to a
- 28 probability density function.

Abandoned Underground

Coal Mines

29 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 3-36. Annual abandoned

30 coal mine CH₄ emissions in 2018 were estimated to be between 5.0 and 7.1 MMT CO₂ Eq. at a 95 percent

31 confidence level. This indicates a range of 20 percent below to 15 percent above the 2018 emission estimate of 6.2

- 32 MMT CO₂ Eq. One of the reasons for the relatively narrow range is that mine-specific data is available for use in the
- 33 methodology for mines closed after 1972. Emissions from mines closed prior to 1972 have the largest degree of
- 34 uncertainty because no mine-specific CH₄ liberation rates exist.

 CH_4

Table 3-36: Approach 2 Quantitative Uncertainty Estimates for CH₄ Emissions from Abandoned Underground Coal Mines (MMT CO₂ Eq. and Percent)

Source Gas 2018 Emission Estimate (MMT CO2 Eq.) Uncertainty Range Relative to Emission Estimate^a (MMT CO2 Eq.) Lower Upper Lower Upper Bound Bound Bound Bound

5.0

7.1

-20%

+15%

^a Range of emission estimates predicted by Monte Carlo Simulation for a 95 percent confidence interval.

6.2

37

QA/QC and Verification 1

2 In order to ensure the quality of the emission estimates for abandoned coal mines, general (IPCC Tier 1) and

3 category-specific (Tier 2) Quality Assurance/Quality Control (QA/QC) procedures were implemented consistent

4 with the U.S. Inventory QA/QC plan outlined in Annex 8. The Tier 2 procedures that were implemented involved

5 checks specifically focusing on the activity data and reported emissions data used for estimating emissions from

6 abandoned coal mines. Trends across the time series were analyzed to determine whether any corrective actions

7 were needed.

Recalculations Discussion 8

9 Time-series recalculations were not required for the current Inventory.

3.6 Petroleum Systems (CRF Source Category 10 1**B**2a)

11

31

32

12 Methane emissions from petroleum systems are primarily associated with onshore and offshore crude oil 13 production, transportation, and refining operations. This IPCC category (1B2a) is for fugitive emissions, which per 14 IPCC include emissions from leaks, venting, and flaring. During these activities, CH₄ is released to the atmosphere 15 as emissions from leaks, venting (including emissions from operational upsets), and flaring. Carbon dioxide 16 emissions from petroleum systems are primarily associated with crude oil production and refining operations. 17 Note, CO₂ emissions exclude all combustion emissions (e.g., engine combustion) except for flaring CO₂ emissions. 18 All combustion CO₂ emissions (except for flaring) are accounted for in the fossil fuel combustion chapter (see 19 Section 3.1). Emissions of N₂O from petroleum systems are primarily associated with flaring. Total greenhouse gas 20 emissions (CH₄, CO₂, and N₂O) from petroleum systems in 2018 were 76.0 MMT CO₂ Eq., an increase of 36 percent 21 from 1990, primarily due to increases in CO₂ emissions. Total CH₄ emissions from petroleum systems in 2018 were 22 36.6 MMT CO₂ Eq. (1,464 kt CH₄), a decrease of 21 percent from 1990. Total CO₂ emissions from petroleum 23 systems in 2018 were 39.4 MMT CO₂ (39,373 kt CO₂), an increase of a factor of 4.1 from 1990. Total N₂O emissions 24 from petroleum systems in 2018 were 0.07 MMT CO₂ Eq. (0.23 kt N₂O), an increase of a factor of 5.1 from 1990. 25 Since 1990, U.S. oil production has increased by 49 percent, and from 2017 to 2018, production increased by 18 26 percent.

27 Each year, some estimates in the Inventory are recalculated with improved methods and/or data. These

28 improvements are implemented consistently across the previous Inventory's time series (i.e., 1990 to 2017) to 29 ensure that the trend is accurate. Recalculations in petroleum systems in this year's Inventory include:

- 30 Revised offshore oil production methodology •
 - Revised emissions for delayed cokers in refineries, due to a methodological change in GHGRP reporting for subpart Y
- 33 Recalculations due to GHGRP submission revisions
- 34 The Recalculations Discussion section below provides more details on the updated methods.

Exploration. Exploration includes well drilling, testing, and completions. Exploration accounts for approximately 1 35

36 percent of total CH₄ emissions from petroleum systems in 2018. The predominant sources of emissions from

37 exploration are hydraulically fractured oil well completions and well drilling. Other sources include well testing and

38 well completions without hydraulic fracturing. Since 1990, exploration CH4 emissions have decreased 88 percent,

39 and while the number of hydraulically fractured wells completed increased by a factor of 3.6, there were decreases

40 in the fraction of such completions without reduced emissions completions (RECs) or flaring (from 90 percent in

41 1990 to 1 percent in 2018). Emissions of CH₄ from exploration were highest in 2012, over 20 times higher than in 1 2018, and lowest in 2017. Emissions of CH₄ from exploration increased 11 percent from 2017 to 2018, due to an

2 increase in hydraulically fractured oil well completions with flaring. Exploration accounts for 7 percent of total CO₂

3 emissions from petroleum systems in 2018. Emissions of CO₂ from exploration in 2018 increased by a factor of 8.4

4 from 1990, and 76 percent from 2017, due to the abovementioned increase in hydraulically fractured oil well

5 completions with flaring. Emissions of CO₂ from exploration were highest in 2014, around 11 percent higher than 6 in 2018. Exploration accounts for 2 percent of total N₂O emissions from petroleum systems in 2018. Emissions of

in 2018. Exploration accounts for 2 percent of total N₂O emissions from petroleum systems in 2018. Emissions of
 N₂O from exploration in 2018 increased by a factor of 9.4 from 1990, and by a factor of 2.4 from 2017, due to the

abovementioned increase in hydraulically fractured oil well completions with flaring.

Production. Production accounts for approximately 96 percent of total CH₄ emissions from petroleum systems in
 2018. The predominant sources of emissions from production field operations are pneumatic controllers, offshore

- oil platforms, gas engines, chemical injection pumps, leaks from oil wellheads, and oil tanks. These six sources
- 12 together account for 90 percent of the CH₄ emissions from production. Since 1990, CH₄ emissions from production
- have decreased by 17 percent, due to decreases in emissions from offshore platforms, tanks, and pneumatic
- 14 controllers. Overall, production segment methane emissions decreased by 6 percent from 2017 levels, due
- 15 primarily to a decrease in the number of intermittent bleed controllers, as use of low bleed controllers grew in
- 16 2018. Production emissions account for 83 percent of the total CO₂ emissions from petroleum systems in 2018.
- 17 The principal sources of CO₂ emissions are associated gas flaring, oil tanks with flares, and miscellaneous
- 18 production flaring. These three sources together account for 98 percent of the CO₂ emissions from production.
- 19 Since 1990, CO₂ emissions from production have increased by a factor of 5.5, due to increases in flaring emissions
- 20 from associated gas flaring, tanks, and miscellaneous production flaring. Overall, production segment CO₂
- emissions increased by 71 percent from 2017 levels primarily due to an increase in associated gas flaring in the
- Permian and Williston basins. Production emissions account for 83 percent of the total N₂O emissions from
 petroleum systems in 2018. The principal sources of N₂O emissions are oil tanks with flares, miscellaneous
- petroleum systems in 2018. The principal sources of N₂O emissions are oil tanks with flares, miscellaneous
 production flaring, and associated gas flaring. Since 1990, N₂O emissions from production have increased by a
- factor of 13.1, and since 2017, N₂O emissions from production have increased by a factor of 4.5, due primarily to
- increases in N₂O from oil tanks with flares and miscellaneous production flaring.
- 27 *Crude Oil Transportation.* Emissions from crude oil transportation account for a very small percentage of the total
- emissions from petroleum systems and have little impact on the overall emissions. Crude oil transportation
- activities account for less than 1 percent of total CH₄ emissions from petroleum systems. Emissions from tanks,
- 30 marine loading, and truck loading operations account for 75 percent of CH₄ emissions from crude oil
- transportation. Since 1990, CH₄ emissions from transportation have increased by 29 percent. Methane emissions
- 32 from transportation in 2018 increased 10 percent from 2017 levels. Crude oil transportation activities account for
- 33 less than 0.01 percent of total CO₂ emissions from petroleum systems. Emissions from tanks, marine loading, and
- 34 truck loading operations account for 75 percent of CO₂ emissions from crude oil transportation.
- 35 Crude Oil Refining. Crude oil refining processes and systems account for 2 percent of total CH₄ emissions from
- 36 petroleum systems. This low share is because most of the CH₄ in crude oil is removed or escapes before the crude
- oil is delivered to the refineries. There is an insignificant amount of CH₄ in all refined products. Within refineries,
- flaring accounts for 38 percent of the CH₄ emissions, while delayed cokers, uncontrolled blowdowns, and process
- vents account for 18, 17, and 9 percent, respectively. Methane emissions from refining of crude oil have increased
- 40 by 14 percent since 1990, and decreased 7 percent from 2017; however, like the transportation subcategory, this
- 41 increase has had little effect on the overall emissions of CH₄ from petroleum systems. Crude oil refining processes
- 42 and systems account for 9 percent of total CO₂ emissions from petroleum systems. Almost all (about 98 percent) of
- 43 the CO₂ from refining is from flaring. Refinery CO₂ emissions increased by 14 percent from 1990 to 2018 and
- 44 increased by less than 1 percent from the 2017 levels. Flaring occurring at crude oil refining processes and systems
- 45 accounts for 15 percent of total N₂O emissions from petroleum systems. Refinery N₂O emissions increased by 16
- 46 percent from 1990 to 2018 and decreased by 2 percent from 2017 levels.

47 Table 3-37: CH₄ Emissions from Petroleum Systems (MMT CO₂ Eq.)

Activity	1990	2005	2014	2015	2016	2017	2018
Exploration ^a	3.0	4.5	5.1	2.1	0.5	0.3	0.4
Production (Total)	42.4	33.4	37.5	37.4	37.4	37.5	35.3

Pneumatic Controllers	19.3	17.6	19.6	19.7	20.6	21.3	18.4
Offshore Platforms	9.4	6.5	5.8	5.5	5.1	5.2	5.2
Equipment Leaks ^b	2.2	2.2	2.7	2.7	2.6	2.6	2.5
Gas Engines	2.1	1.7	2.3	2.3	2.2	2.2	2.3
Chemical Injection Pumps	1.2	1.7	2.2	2.2	2.1	2.1	2.0
Tanks	5.4	1.5	1.6	1.7	2.5	1.5	1.4
Other Sources	2.6	2.1	3.3	3.3	2.3	2.6	3.4
Crude Oil Transportation	0.2	0.1	0.2	0.2	0.2	0.2	0.2
Refining	0.7	0.8	0.8	0.8	0.8	0.8	0.8
Total	46.2	38.8	43.5	40.6	38.9	38.8	36.6

^a Exploration includes well drilling, testing, and completions.

^b Includes leak emissions from wellheads, separators, heaters/treaters, and headers.

Note: Totals may not sum due to independent rounding.

1 Table 3-38: CH₄ Emissions from Petroleum Systems (kt CH₄)

Activity	1990	2005	2014	2015	2016	2017	2018
Exploration ^a	121	181	202	84	19	13	15
Production (Total)	1,694	1,336	1,499	1,498	1,497	1,498	1,410
Pneumatic Controllers	772	704	783	789	823	851	735
Offshore Platforms	377	261	231	222	203	210	209
Equipment Leaks	88	87	109	108	104	102	101
Gas Engines	86	70	93	93	90	89	91
Chemical Injection Pumps	49	68	88	87	84	82	81
Tanks	217	60	63	68	101	61	57
Other Sources	105	86	131	131	92	103	135
Crude Oil Transportation	7	5	8	8	8	8	8
Refining	27	31	31	33	33	33	31
Total	1,849	1,553	1,740	1,623	1,557	1,552	1,464

^a Exploration includes well drilling, testing, and completions.

Note: Totals may not sum due to independent rounding.

2 Table 3-39: CO₂ Emissions from Petroleum Systems (MMT CO₂)

Activity	1990	2005	2014	2015	2016	2017	2018
Exploration	0.3	0.3	3.1	2.2	1.2	1.6	2.8
Production	6.0	8.1	24.1	26.4	17.8	19.2	32.9
Transportation	+	+	+	+	+	+	+
Crude Refining	3.3	3.7	3.4	4.1	4.0	3.7	3.7
Total	9.6	12.2	30.5	32.6	23.0	24.5	39.4

+ Does not exceed 0.05 MMT CO₂.

Note: Totals may not sum due to independent rounding.

3 Table 3-40: CO₂ Emissions from Petroleum Systems (kt CO₂)

Activity	1990	2005	2014	2015	2016	2017	2018
Exploration	330	348	3,060	2,221	1,233	1,566	2,761
Production	6,014	8,087	24,056	26,355	17,755	19,192	32,876
Transportation	0.9	0.7	1.2	1.2	1.1	1.1	1.2
Crude Refining	3,284	3,728	3,419	4,067	3,991	3,714	3,734
Total	9,630	12,163	30,536	32,644	22,980	24,473	39,373

Note: Totals may not sum due to independent rounding.

Activity	1990	2005	2014	2015	2016	2017	2018
Exploration	172	178	1,563	1,139	628	690	1,623
Production	4,416	5,474	15,892	17,496	12,783	12,879	57,799
Transportation	NE						
Crude Refining	9,138	10,372	9,659	11,656	11,575	10,796	10,557
Total	13,726	16,024	27,114	30,291	24,986	24,364	69,978

1 Table 3-41: N₂O Emissions from Petroleum Systems (metric tons CO₂ Eq.)

NE (Not Estimated)

Note: Totals may not sum due to independent rounding.

2 Table 3-42: N₂O Emissions from Petroleum Systems (metric tons N₂O)

Activity	1990	2005	2014	2015	2016	2017	2018
Exploration	0.6	0.6	5.2	3.8	2.1	2.3	5.4
Production	14.8	18.4	53.3	58.7	42.9	43.2	194.0
Transportation	NE	NE	NE	NE	NE	NE	NE
Crude Refining	30.7	34.8	32.4	39.1	38.8	36.2	35.4
Total	46.1	53.8	91.0	101.6	83.8	81.8	234.8

NE (Not Estimated)

Note: Totals may not sum due to independent rounding.

3 Methodology

See Annex 3.5 for the full time series of emissions data, activity data, and emission factors, and additional
 information on methods and data sources.

6 Petroleum systems includes emission estimates for activities occurring in petroleum systems from the oil wellhead

7 through crude oil refining, including activities for crude oil exploration, production field operations, crude oil

8 transportation activities, and refining operations. Generally, emissions are estimated for each activity by

9 multiplying emission factors (e.g., emission rate per equipment or per activity) by corresponding activity data (e.g.,

10 equipment count or frequency of activity).

11 EPA received stakeholder feedback on updates in the Inventory through EPA's stakeholder process on oil and gas

12 in the Inventory. Stakeholder feedback is noted below in Recalculations Discussion and Planned Improvements.

- 13 More information on the stakeholder process can be found here: https://www.epa.gov/ghgemissions/natural-gas-
- 14 and-petroleum-systems.
- 15 *Emission Factors*. References for emission factors include *Methane Emissions from the Natural Gas Industry by the*
- 16 Gas Research Institute and EPA (GRI/EPA 1996), Estimates of Methane Emissions from the U.S. Oil Industry (EPA
- 17 1999), Enverus DrillingInfo (2019), Compilation of Air Pollutant Emission Factors, AP-42 (EPA 1997), Global

18 Emissions of Methane from Petroleum Sources (API 1992), consensus of industry peer review panels, Bureau of

- 19 Ocean Energy Management (BOEM) reports, and analysis of GHGRP data (EPA 2019).
- 20 Emission factors for hydraulically fractured (HF) oil well completions and workovers (in four control categories)
- 21 were developed using GHGRP data; year-specific data were used to calculate emission factors from 2016-forward
- 22 and the year 2016 emission factors were applied to all prior years in the time series. The emission factors for all
- 23 years for pneumatic controllers and chemical injection pumps were developed using GHGRP data for reporting
- 24 year 2014. The emission factors for tanks, well testing, and associated gas venting and flaring were developed
- 25 using year-specific GHGRP data for years 2015 forward; earlier years in the time series use 2015 emission factors.
- 26 For miscellaneous production flaring, year-specific emission factors were developed for years 2015 forward from
- 27 GHGRP data, an emission factor of 0 (assumption of no flaring) was assumed for 1990 through 1992, and linear
- 28 interpolation was applied to develop emission factors for 1993 through 2014. For more information please see

1 memoranda available online.⁷⁵ For offshore oil production, emission factors were calculated using BOEM data for

2 offshore facilities in federal waters of the Gulf of Mexico (and these data were also applied to facilities located in

3 state waters of the Gulf of Mexico) and GHGRP data for offshore facilities off the coasts of California and Alaska.

4 For many other sources, emission factors were held constant for the period 1990 through 2018, and trends in

5 emissions reflect changes in activity levels. Emission factors from EPA 1999 are used for all other production and

6 transportation activities.

7 For associated gas venting and flaring and miscellaneous production flaring, emission factors were developed on a

8 production basis (i.e., emissions per unit oil produced). Additionally, for these two sources, basin-specific activity

9 and emission factors were developed for each basin that in any year from 2011 forward contributed at least 10

10 percent of total source emissions (on a CO₂ Eq. basis) in the GHGRP. For associated gas venting and flaring, basin-

specific factors were developed for four basins: Williston, Permian, Gulf Coast, and Anadarko; for miscellaneous

12 production flaring, basin-specific factors were developed for three basins: Williston, Permian, and Gulf Coast. Data

- from all other basins were combined, and activity and emission factors developed for the other basins as a single group for each emission source.
- 15 For the exploration and production segments, in general, CO₂ emissions for each source were estimated with
- 16 GHGRP data or by multiplying CO₂ content factors by the corresponding CH₄ data, as the CO₂ content of gas relates
- to the CH₄ content of gas. Sources with CO_2 emission estimates calculated using GHGRP data were HF completions
- and workovers, associated gas venting and flaring, tanks, well testing, pneumatic controllers, chemical injection
- 19 pumps, miscellaneous production flaring, and certain offshore production facilities (those located off the coasts of

20 California and Alaska). For these sources, CO₂ was calculated using the same methods as used for CH₄. Carbon

21 dioxide emission factors for offshore oil production in the Gulf of Mexico were derived using data from BOEM,

22 following the same methods as used for CH₄ estimates. For other sources, the production field operations emission

23 factors for CO₂ are generally estimated by multiplying the CH₄ emission factors by a conversion factor, which is the

- $\label{eq:content} 24 \qquad \mbox{ratio of } CO_2 \mbox{ content and } CH_4 \mbox{ content in produced associated gas}.$
- 25 For the exploration and production segments, N₂O emissions were estimated for flaring sources using GHGRP data.

26 Sources with N₂O emissions in the exploration segment were well testing and HF completions with flaring. Sources

27 with N₂O emissions in the production segment were associated gas flaring, tank flaring, miscellaneous production

- 28 flaring, and HF workovers with flaring.
- 29 For crude oil transportation, emission factors for CH₄ were largely developed using data from EPA (1997), API

30 (1992), and EPA (1999). Emission factors for CO₂ were estimated by multiplying the CH₄ emission factors by a

31 conversion factor, which is the ratio of CO₂ content and CH₄ content in whole crude post-separator.

- 32 For petroleum refining activities, year-specific emissions from 2010 forward were directly obtained from EPA's
- 33 GHGRP. All U.S. refineries have been required to report CH₄, CO₂, and N₂O emissions for all major activities starting
- 34 with emissions that occurred in 2010. The reported total of CH₄, CO₂, and N₂O emissions for each activity was used
- for the emissions in each year from 2010 forward. To estimate emissions for 1990 to 2009, the 2010 to 2013
- 36 emissions data from GHGRP along with the refinery feed data for 2010 to 2013 were used to derive CH_4 and CO_2
- emission factors (i.e., sum of activity emissions/sum of refinery feed) and 2010 to 2017 data were used to derive
 N₂O emission factors, which were then applied to the annual refinery feed in years 1990 to 2009. GHGRP delayed
- 38 N₂O emission factors, which were then applied to the annual refinery feed in years 1990 to 2009. GHGRP delayed 39 coker CH₄ emissions for 2010 through 2017 were increased using the ratio of certain reported emissions for 2018

40 to 2017, to account for a more accurate GHGRP calculation methodology that was implemented starting in

- 41 reporting year 2018
- 42 A complete list of references for emission factors and activity data by emission source is provided in Annex 3.5.
- 43 *Activity Data*. References for activity data include DrillingInfo data (Enverus DrillingInfo 2019), Energy Information
- 44 Administration (EIA) reports, Methane Emissions from the Natural Gas Industry by the Gas Research Institute and
- 45 EPA (EPA/GRI 1996), Estimates of Methane Emissions from the U.S. Oil Industry (EPA 1999), consensus of industry

⁷⁵ See <https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems>.

- 1 peer review panels, BOEM reports, the Oil & Gas Journal, the Interstate Oil and Gas Compact Commission, the
- 2 United States Army Corps of Engineers, and analysis of GHGRP data (EPA 2019).
- 3 For many sources, complete activity data were not available for all years of the time series. In such cases, one of
- 4 three approaches was employed to estimate values, consistent with IPCC good practice. Where appropriate, the
- 5 activity data were calculated from related statistics using ratios developed based on EPA/GRI 1996 and/or GHGRP
- 6 data. In some cases, activity data are developed by interpolating between recent data points (such as from GHGRP)
- 7 and earlier data points, such as from EPA/GRI 1996. Lastly, in limited instances the previous year's data were used
- 8 if current year were not yet available.
- 9 A complete list of references for emission factors and activity data by emission source is provided in Annex 3.5.

¹⁰ Uncertainty and Time-Series Consistency – TO BE UPDATED ¹¹ FOR FINAL INVENTORY REPORT

12 EPA has conducted a quantitative uncertainty analysis using the IPCC Approach 2 methodology (Monte Carlo

13 Simulation technique) to characterize uncertainty for petroleum systems. For more information, please see the

14 memorandum Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2016: Natural Gas and Petroleum

- 15 Systems Uncertainty Estimates (2018 Uncertainty Memo).⁷⁶
- 16 EPA used Microsoft Excel's @RISK add-in tool to estimate the 95 percent confidence bound around methane
- 17 emissions from petroleum systems for the current Inventory, then applied the calculated bounds to both CH₄ and
- 18 CO₂ emissions estimates. Uncertainty estimates for N₂O were not developed given the minor contribution of N₂O
- 19 to emission totals. For the analysis, EPA focused on the four highest methane-emitting sources for the year 2017,
- 20 which together emitted 79 percent of methane from petroleum systems in 2017, and extrapolated the estimated
- 21 uncertainty for the remaining sources. The @RISK add-in provides for the specification of probability density
- 22 functions (PDFs) for key variables within a computational structure that mirrors the calculation of the inventory
- 23 estimate. The IPCC guidance notes that in using this method, "some uncertainties that are not addressed by
- statistical means may exist, including those arising from omissions or double counting, or other conceptual errors, or from incomplete understanding of the processes that may lead to inaccuracies in estimates developed from
- 26 models." As a result, the understanding of the uncertainty of emission estimates for this category evolves and
- improves as the underlying methodologies and datasets improve. The uncertainty bounds reported below only
- reflect those uncertainties that EPA has been able to quantify and do not incorporate considerations such as
- 29 modeling uncertainty, data representativeness, measurement errors, misreporting or misclassification.
- 30 The results presented below provide the 95 percent confidence bound within which actual emissions from this
- source category are likely to fall for the year 2017, using the recommended IPCC methodology. The results of the
- Approach 2 uncertainty analysis are summarized in Table 3-43. Petroleum systems CH₄ emissions in 2017 were
- estimated to be between 25.0 and 51.9 MMT CO2 Eq., while CO₂ emissions were estimated to be between 15.5
- and 32.2 MMT CO₂ Eq. at a 95 percent confidence level. Uncertainty bounds for other years of the time series have
- 35 not been calculated, but uncertainty is expected to vary over the time series. For example, years where many
- 36 emission sources are calculated with interpolated data would likely have higher uncertainty than years with
- 37 predominantly year-specific data.

Table 3-43: Approach 2 Quantitative Uncertainty Estimates for CH₄ and CO₂ Emissions from Petroleum Systems (MMT CO₂ Eq. and Percent)

Source Gas 2017 Emission Estimate (MMT CO ₂ Eq.) ^b	Gas	2017 Emission Estimate	Uncertaint	ty Range Relativ	e to Emission	to Emission Estimate ^a		
	(MMT C	O₂ Eq.)	1	%)				
			Lower	Upper	Lower	Upper		
			Bound	Bound	Bound	Bound		

⁷⁶ See <https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems>.

3-72 DRAFT Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018

Petroleum Systems	CH_4	37.7	25.0	51.9	-34%	+38%	
Petroleum Systems ^c	CO ₂	23.3	15.5	32.2	-34%	+38%	

^a Range of emission estimates estimated by applying the 95 percent confidence intervals obtained from the Monte Carlo Simulation analysis conducted for the year 2017 CH₄ emissions.

^b All reported values are rounded after calculation. As a result, lower and upper bounds may not be duplicable from other rounded values as shown in table.

^c An uncertainty analysis for the petroleum systems CO₂ emissions was not performed. The relative uncertainty estimated (expressed as a percent) from the CH₄ uncertainty analysis was applied to the point estimate of petroleum systems CO₂ emissions.

1 GHGRP data, available starting in 2010 for refineries and in 2011 for other sources, have improved estimates of

2 emissions from petroleum systems. Many of the previously available datasets were collected in the 1990s. To

3 develop a consistent time series for sources with new data, EPA reviewed available information on factors that

4 may have resulted in changes over the time series (e.g., regulations, voluntary actions) and requested stakeholder

5 feedback on trends as well. For most sources, EPA developed annual data for 1993 through 2009 or 2014 by

6 interpolating activity data or emission factors or both between 1992 (when GRI/EPA data are available) and 2010

7 or 2015 data points. Information on time-series consistency for sources updated in this year's Inventory can be

8 found in the Recalculations Discussion below, with additional detail provided in supporting memos (relevant

9 memos are cited in the Recalculations Discussion). For information on other sources, please see the Methodology

10 Discussion above and Annex 3.5.

11 QA/QC and Verification Discussion

12 The petroleum systems emission estimates in the Inventory are continually being reviewed and assessed to

13 determine whether emission factors and activity factors accurately reflect current industry practices. A QA/QC

analysis was performed for data gathering and input, documentation, and calculation. QA/QC checks are

15 consistently conducted to minimize human error in the model calculations. EPA performs a thorough review of

16 information associated with new studies, GHGRP data, regulations, public webcasts, and the Natural Gas STAR

17 Program to assess whether the assumptions in the Inventory are consistent with current industry practices. EPA

18 has a multi-step data verification process for GHGRP data, including automatic checks during data-entry, statistical

analyses on completed reports, and staff review of the reported data. Based on the results of the verification

20 process, EPA follows up with facilities to resolve mistakes that may have occurred.⁷⁷

As in previous years, EPA conducted early engagement and communication with stakeholders on updates prior to

22 public review. EPA held a stakeholder webinar on greenhouse gas data for oil and gas in September of 2019, and a

23 workshop in November of 2019. EPA released memos detailing updates under consideration and requesting

24 stakeholder feedback. Stakeholder feedback received through these processes is discussed in the Recalculations

- 25 Discussion and Planned Improvements sections below.
- In recent years, several studies have measured emissions at the source level and at the national or regional level and calculated emission estimates that may differ from the Inventory. There are a variety of potential uses of data from new studies, including replacing a previous estimate or factor, verifying or QA of an existing estimate or factor, and identifying areas for updates. In general, there are two major types of studies related to oil and gas
- 30 greenhouse gas data: studies that focus on measurement or quantification of emissions from specific activities,
- 31 processes, and equipment, and studies that use tools such as inverse modeling to estimate the level of overall
- 32 emissions needed to account for measured atmospheric concentrations of greenhouse gases at various scales. The
- first type of study can lead to direct improvements to or verification of Inventory estimates. In the past few years,
- 34 EPA has reviewed and in many cases, incorporated data from these data sources. The second type of study can
- 35 provide general indications on potential over- and under-estimates. A key challenge in using these types of studies
- 36 to assess Inventory results is having a relevant basis for comparison (i.e., the independent study should assess data
- 37 from the Inventory and not another data set, such as the Emissions Database for Global Atmospheric Research, or

⁷⁷ See <https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.

- 1 "EDGAR"). In an effort to improve the ability to compare the national-level Inventory with measurement results
- 2 that may be at other scales, a team at Harvard University along with EPA and other coauthors developed a gridded
- 3 inventory of U.S. anthropogenic methane emissions with 0.1 degree x 0.1 degree spatial resolution, monthly
- 4 temporal resolution, and detailed scale-dependent error characterization.⁷⁸ The gridded methane inventory is
- 5 designed to be consistent with the U.S. EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2014
- 6 estimates for the year 2012, which presents national totals.⁷⁹
- 7 As discussed above, refinery emissions are quantified by using the total emissions reported to GHGRP for the
- 8 refinery emission categories included in Petroleum Systems. Subpart Y has provisions that refineries are not
- 9 required to report under subpart Y if their emissions fall below certain thresholds. Each year, a review is conducted
- 10 to determine whether an adjustment is needed to the Inventory emissions to include emissions from refineries
- 11 that stopped reporting to the GHGRP. The 2018 GHGRP data indicates that 2 refineries stopped reporting in 2018
- 12 (i.e., 2017 is the last reported year). One of them permanently shutdown towards the end of 2017 and the other
- 13 one did not report in 2018 due to a merger. Based on this assessment, cessation of reporting does not impact the 14 completeness of data for 2018 refinery emissions and therefore no adjustment has been made to these estimates
- 15 for the Inventory.

16 Recalculations Discussion

- 17 EPA received information and data related to the emission estimates through GHGRP reporting, the annual
- 18 Inventory formal public notice periods, stakeholder feedback on updates under consideration, and new studies. In
- 19 September 2019, EPA released a draft memorandum that discussed changes under consideration and requested
- stakeholder feedback on those changes.⁸⁰ The EPA memorandum *Inventory of U.S. Greenhouse Gas Emissions and*
- 21 Sinks 1990-2018: Updates Under Consideration for Offshore Production Emissions (Offshore Production memo) is
- 22 cited in the Recalculations Discussion below.
- 23 EPA thoroughly evaluated relevant information available and made updates to production and refinery segment
- 24 methodologies for the Inventory, specifically: using updated BOEM, GHGRP, and other data to calculate emissions
- and activity factors for offshore oil production, and revisiting emissions data for delayed coking in refineries to be
- 26 consistent with changes to subpart Y. In addition, certain sources did not undergo methodological updates, but
- 27 CH₄ and/or CO₂ emissions changed by greater than 0.05 MMT CO₂ Eq., comparing the previous estimate for 2017
- to the current (recalculated) estimate for 2017 (the emissions changes were mostly due to GHGRP data submission
- revisions); these sources are discussed below and include hydraulically fractured oil well completions and
- 30 workovers, associated gas flaring, miscellaneous production flaring, and pneumatic controllers.
- 31 The combined impact of revisions to 2017 petroleum systems CH₄ emission estimates, compared to the previous
- 32 Inventory, is an increase from 37.7 to 38.8 MMT CO₂ Eq. (1.2 MMT CO₂ Eq., or 3 percent). The recalculations
- resulted in an average increase in CH₄ emission estimates across the 1990 through 2017 time series, compared to
- the previous Inventory, of 3.5 MMT CO_2 Eq., or 9 percent, with the largest increases in the estimate for 1996 due to
- 35 the recalculations for offshore oil production.
- 36 The combined impact of revisions to 2017 petroleum systems CO₂ emission estimates, compared to the previous
- 37 Inventory, is an increase from 23.3 to 24.5 MMT CO₂ (1.1 MMT CO₂, or 5 percent). The recalculations resulted in an
- average increase in emission estimates across the 1990 through 2017 time series, compared to the previous
- 39 Inventory, of 0.8 MMT CO₂ Eq., or 6 percent with the largest changes being for 1996 and 2017, both due to the
- 40 recalculations for offshore oil production.

⁸⁰ Stakeholder materials including memoranda for the current (i.e., 1990 to 2018) Inventory are available at https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems>.

⁷⁸ See <https://www.epa.gov/ghgemissions/gridded-2012-methane-emissions>.

⁷⁹ See <https://www.epa.gov/ghgemissions/us-greenhouse-gas-inventory-report-1990-2014>.

1 The combined impact of revisions to 2017 petroleum systems N₂O emission estimates, compared to the previous

2 Inventory, is an increase of 0.00013 MMT CO₂, Eq. or 0.5 percent. The recalculations resulted in an average

3 increase in emission estimates across the 1990 through 2017 time series, compared to the previous Inventory, of

4 0.0001 MMT CO₂ Eq., or 0.6 percent.

5 In Table 3-44 and Table 3-45 below are categories in Petroleum Systems with updated methodologies or with

6 recalculations resulting in a change of greater than 0.05 MMT CO₂ Eq., comparing the previous estimate for 2017

7 to the current (recalculated) estimate for 2017. For more information, please see the Recalculations Discussion

8 below.

9 Table 3-44: Recalculations of CO₂ in Petroleum Systems (MMT CO₂)

	Previous Estimate Year 2017, 2019 Inventory	Current Estimate Year 2017, 2020 Inventory	Current Estimate Year 2018, 2020 Inventory
Exploration	1.7	1.6	2.8
HF Oil Well Completions	1.6	1.5	2.7
Production	18.0	19.2	32.9
Offshore Oil Production	+	0.5	0.5
Associated Gas Venting & Flaring	10.5	10.9	21.6
Miscellaneous Flaring	2.6	3.1	4.2
HF Oil Well Workovers	0.3	0.2	0.1
Transportation	+	+	+
Refining	3.7	3.7	3.7
Petroleum Systems Total	23.3	24.5	39.4

10 + Does not exceed 0.05 MMT CO₂.

12 Table 3-45: Recalculations of CH₄ in Petroleum Systems (MMT CO₂ Eq.)

	Previous Estimate Year 2017,	Current Estimate Year 2017,	Current Estimate Year 2018,
	2019 Inventory	2020 Inventory	2020 Inventory
Exploration	0.4	0.3	0.4
Production	36.4	37.5	35.3
Pneumatic Controllers	20.9	21.3	18.4
Offshore Oil Production	4.7	5.2	5.2
Transportation	0.2	0.2	0.2
Refining	0.7	0.8	0.8
Delayed Cokers	+	0.1	0.1
Petroleum Systems Total	37.7	38.8	36.6

 $13 \qquad + \text{ Does not exceed } 0.05 \text{ MMT } \text{CO}_2 \text{ Eq.}$

14 **Exploration**

15 *HF Oil Well Completions (Recalculation with Updated Data)*

16 HF oil well completion CO₂ emissions increased by an average of 9 percent across the time series and decreased by

17 6 percent in 2017, compared the to the previous Inventory. The CO₂ emissions changes are due to GHGRP data

18 submission revisions. The recalculation of the non-REC with flaring HF oil well completions EF had the largest

19 impact on times series emissions. Compared to the previous Inventory, the EF for non-REC with flaring increased

20 by 13 percent for all years of the time series except 2017; in 2017 it decreased by 6 percent.

¹¹

1 Table 3-46: HF Oil Well Completions National CO₂ Emissions (kt CO₂)

Source	1990	2005	2014	2015	2016	2017	2018
HF Completions: Non-REC with							
Venting	2.5	4.0	4.0	1.4	0.2	0.2	+
HF Completions: Non-REC with							
Flaring	89	139	690	446	252	360	552
HF Completions: REC with							
Venting	0.0	0.0	0.2	0.2	0.1	0.1	0.1
HF Completions: REC with							
Flaring	0.0	0.0	2,107	1,518	940	1,168	2,178
Total Emissions	92	143	2,801	1,966	1,192	1,529	2,730
Previous Estimate	81	127	2,719	1,913	1,162	1,619	NA

+ Does not exceed 0.05 kt CO₂.

NA (Not Applicable)

2 **Production**

3 Offshore Oil Production (Methodological Update)

4 EPA updated the offshore production methodology to estimate emissions for all offshore producing regions and to 5 use activity data sources that provide a full time series of data. The previous Inventory only estimated emissions 6 for offshore facilities in federal waters of the Gulf of Mexico (GOM); these facilities are under Bureau of Ocean 7 Energy Management (BOEM) jurisdiction and BOEM estimates their greenhouse gas emissions triennially via the 8 Gulfwide Emissions Inventory (GEI). The previous Inventory also relied on activity data sources that were no longer 9 updated, and surrogate activity data from 2008 and 2010 had been used to estimate emissions in more recent 10 years. The updated Inventory methodology now includes emissions estimates for offshore facilities in state waters 11 of the GOM and offshore facilities in the Pacific and off the coast of Alaska. 12 The updated Inventory methodology for each region is presented here. EPA calculated vent and leak EFs for 13 offshore facilities in GOM federal waters for major complexes and minor complexes using BOEM GEI emissions 14 data from the 2005, 2008, 2011, and 2014 GEIs. The vent and leak EFs were paired with active offshore complex 15 counts over the time series. EPA calculated GOM federal waters flaring emissions using flaring volumes reported in 16 Oil and Gas Operations Reports (OGOR), Part B (OGOR-B). OGOR-B flaring volumes are available over the time 17 series but assumptions were necessary to assign the volumes to offshore gas production versus offshore oil 18 production for 1990 to 2010. The previous Inventory allocated all GOM federal waters flaring emissions to offshore 19 gas production facilities. EPA calculated production based EFs for offshore facilities in GOM state waters using the 20 resulting GOM federal waters emissions and oil production in each year. EPA also calculated production based EFs 21 for offshore facilities in the Pacific and Alaska regions, though the EFs for these regions were derived from GHGRP 22 data. EPA multiplied the production based EFs by the region-specific offshore production (i.e., GOM state waters 23 production, Pacific production, and Alaska production) in a given year. The Offshore Production memo provides 24 details for the methodology update under consideration and that was implemented for public review. 25 Due to this recalculation, annual offshore oil production CH₄ emission estimates increased in the current Inventory 26 for 1990 to 2017 by an average of 69 percent, compared to the previous Inventory. The impacts varied across the 27 time series with estimates in 1990 through 2009 increasing by an average of 86 percent and estimates in 2010 28 through 2017 increasing by an average of 26 percent. The increase in offshore oil production CH₄ emission

estimates over the time series are due in part to the inclusion of emissions from facilities located in GOM state

waters and the Pacific and Alaska regions. The increase in offshore oil production CH₄ emission estimates for 1990

- to 2009 also resulted from an increase in calculated emissions for GOM federal waters due to differences in EFs
- 32 and activity data between the current and previous Inventory. The current Inventory applied EFs calculated from
- 33 2008 GEI data for this time period, whereas the previous Inventory applied EFs calculated from 2011 GEI data for
- this time period and the 2008 GEI CH₄ emissions are higher. There are more offshore oil facilities in the current
- 35 Inventory compared to the previous Inventory. The current and previous Inventories have a different activity basis

- 1 (i.e., offshore complexes versus offshore structures), but a much higher percentage of offshore facilities in the
- 2 current Inventory are classified as oil rather than gas (an average of 66 percent oil facilities for 1990 through 2009)
- 3 compared to the previous Inventory (an average of 41 percent oil facilities over the same time period).
- 4 For comparison, total offshore production (for oil and gas combined) CH₄ emissions for facilities in GOM federal
- 5 waters are provided here for years 2011 and 2014 from the GEI, previous Inventory, and current Inventory. For
- 6 offshore facilities in GOM federal waters in year 2011, GEI CH₄ emissions equaled 246 kt, previous Inventory CH₄
- 7 emissions equaled 338 kt, and current Inventory CH₄ emissions equal 276 kt. For offshore facilities in GOM federal
- 8 waters in year 2014, GEI CH₄ emissions equaled 205 kt, previous Inventory CH₄ emissions equaled 338 kt, and
- 9 current Inventory CH₄ emissions equal 226 kt. The 2017 GEI is not incorporated into the current Inventory
- 10 calculations in the public review draft, but will be included in the final Inventory (i.e., EFs calculated from the 2017
- 11 GEI will be applied to years 2016 through 2018, based on the methodology implemented for the public review
- draft). GEI total CH₄ emissions for 2017 equal 170 kt and as a result, final Inventory offshore production CH₄
- emissions will likely decrease for 2016 to 2018, as the draft values for these years currently range from 187 to 191
 kt.
- Annual offshore oil production CO₂ emission estimates increased in the current Inventory for 1990 to 2017 by an
- average of 72 percent, compared to the previous Inventory. This change is largely because all GOM federal waters
- 17 flaring emissions in the previous Inventory were allocated to offshore gas production, whereas the current
- 18 Inventory estimates GOM federal waters flaring emissions for both offshore gas and oil production, and a
- 19 significant portion of the CO₂ is from offshore oil production. In addition, the Alaska region (which was not
- 20 previously included) is a significant contributor to CO₂ emissions, due to flaring, and accounts for the highest
- 21 fraction of CO₂ emissions from 1990 through 2007 in the current Inventory.

22 EPA received feedback on this update through its September 2019 memo on updates under consideration for

- 23 offshore oil and gas production. A stakeholder supported the use of the updated BOEM data and supported
- 24 stratifying emission factors by complexity versus water depth. The stakeholder also supported considering a
- different approach which would use source-specific emission factors. The recalculation also results in a change in
- the trend, in methane in particular where the 1990 to 2017 trend in this Inventory is a decrease of 44 percent,
- 27 versus a decrease of 11 percent in the previous Inventory. The stakeholder provided several factors supporting this
- decreasing trend: more stringent limitations imposed by BSEE (Bureau of Safety and Environmental Enforcement)
- related to venting and flaring, increased utilization of VRU equipment, and replacement of older platforms with
- 30 newer ones that include state of the art technology.
- 31

32 Table 3-47: Offshore Oil Production National CH₄ Emissions (metric tons CH₄)

Source	1990	2005	2014	2015	2016	2017	2018
GOM Federal Waters	307,889	219,100	204,396	198,597	186,839	191,431	190,695
GOM State Waters	24,652	2,856	2,395	1,993	1,635	1,252	1,158
Pacific Waters	22,610	17,660	13,790	10,308	5,008	5,052	5,052
Alaska State Waters	21,552	21,192	10,516	10,703	9,680	12,164	12,164
Total Emissions	377,088	260,807	231,097	221,600	203,161	209,899	209,069
Previous Estimate	210,938	185,023	187,604	187,604	187,604	187,604	NA
NA (Not Applicable)							

33

34 Table 3-48: Offshore Oil Production National CO₂ Emissions (metric tons CO₂)

Source	1990	2005	2014	2015	2016	2017	2018
GOM Federal Waters	188,418	147,734	313,126	368,799	373,086	380,723	380,710
GOM State Waters	15,086	1,926	3,669	3,700	3,265	2,491	2,489
Pacific Waters	70,319	54,925	38,824	29,021	11,000	13,390	13,390
Alaska State Waters	357,965	345,809	171,607	174,652	122,554	119,963	119,963
Total Emissions	631,788	550,392	531,291	579,212	509,957	516,617	516,502
Previous Estimate ^a	9,604	8,283	8,340	8,340	8,340	8,340	NA

NA (Not Applicable) ^a includes only CO₂ from leaks and vents.

1 *HF Oil Well Workovers (Recalculation with Updated Data)*

- 2 HF oil well workover CO₂ emissions increased by an average of 8 percent across the time series, and decreased by
- 3 30 percent in 2017, compared the to the previous Inventory. The CO₂ emissions changes are due to GHGRP data
- 4 submission revisions, which resulted in a recalculation of emission factors and activity data. HF oil well workover
- 5 CO₂ time series emissions were most impacted by the recalculation of the EF for non-REC HF oil well workovers
- 6 with flaring, which increased by 13 percent for 1990 to 2016 (compared to the previous Inventory). The
- 7 recalculation of activity data for REC HF oil well workovers with flaring had the largest impact on year 2017
- 8 emissions, with a smaller fraction of the population using REC with flaring.

9 Table 3-49: HF Oil Well Workovers National CO₂ Emissions (kt CO₂)

Source	1990	2005	2014	2015	2016	2017	2018
HF Workovers: Non-REC with							
Venting	0.7	0.8	0.4	0.2	0.1	0.0	+
HF Workovers: REC with Venting	0.0	0.0	0.0	0.0	0.1	+	+
HF Workovers: Non-REC with							
Flaring	25.1	28.3	36.6	35.2	32.2	18.2	3.6
HF Workovers: REC with Flaring	0.0	0.0	133.1	157.8	175.6	160.8	89.3
Total Emissions	25.8	29.1	170.1	193.3	207.8	179.0	92.9
Previous Estimate ^a	22.9	25.8	168.3	192.1	207.4	257.5	NA

+ Does not exceed 0.05 kt CO_2 .

^a Estimate includes emissions for HF and non-HF workovers.

10 Pneumatic Controllers (Recalculation with Updated Data)

11 Pneumatic controller CH₄ emission estimates increased by an average of less than 1 percent across the 1990 to

12 2017 time series, compared to the previous Inventory, due to GHGRP submission revisions and a small increase in

13 well counts throughout the time series due to updated Drilling Info data.

14 Table 3-50: Pneumatic Controller National CH₄ Emissions (Metric Tons CH₄)

Source	1990	2005	2014	2015	2016	2017	2018
Pneumatic Controllers: High							
Bleed	722,968	420,444	88,574	78,213	82,555	52,608	39,088
Pneumatic Controllers: Low							
Bleed	49,343	44,058	28,772	25,461	17,517	19,651	30,628
Pneumatic Controllers: Int Bleed	0.0	239,899	665,830	685,810	722,917	778,365	665,108
Total Emissions	772,311	704,401	783,176	789,484	822,989	850,624	734,824
Previous Estimate	773,655	700,990	776,512	785,704	818,169	836,804	NA

NA (Not Applicable)

15 Associated Gas Flaring (Recalculation with Updated Data)

- 16 Associated gas flaring CO₂ emission estimates increased by an average of 1 percent across the time series in the
- 17 current Inventory, compared to the previous Inventory. This change was due to GHGRP submission revisions. The

NA (Not Applicable)

- 1 changes in CO₂ emissions for 2017 (the year with the largest change) were mainly driven by the Williston and
- 2 Permian Basin data.

Source	1990	2005	2014	2015	2016	2017	2018
220 - Gulf Coast Basin (LA, TX)	234	127	631	673	404	740	686
360 - Anadarko Basin	108	65	230	238	2	57	37
395 - Williston Basin	966	1,239	7,799	8,412	5,838	6,530	11,682
430 - Permian Basin	2,983	2,046	3,869	4,443	2,246	3,148	8,288
"Other" Basins	925	499	520	544	326	414	876
Total Emissions	5,217	3,977	13,050	14,311	8,815	10,889	21,570
220 - Gulf Coast Basin (LA, TX)	233	126	631	673	350	688	NA
360 - Anadarko Basin	106	65	222	239	2	55	NA
395 - Williston Basin	925	1,186	7,466	8,052	5,662	6,451	NA
430 - Permian Basin	2,982	2,048	3,869	4,447	2,247	2,897	NA
"Other" Basins	927	499	523	544	325	416	NA
Previous Estimate	5,172	3,925	12,711	13,955	8,587	10,506	NA

3 Table 3-51: Associated Gas Flaring National CO₂ Emissions (kt CO₂)

NA (Not Applicable)

4 Miscellaneous Production Flaring (Recalculation with Updated Data)

- 5 Miscellaneous production flaring CO₂ emission estimates increased by 17 percent in 2017 and increased by less
- 6 than 1 percent for other years of the time series, compared to the previous Inventory. The 2017 increase was
- 7 primarily due to recalculations of CO₂ from flaring in the Permian and Williston basins, where GHGRP resubmission
- 8 revisions showed higher CO₂ emissions from flaring, by 65 and 20 percent, respectively.

9 Table 3-52: Miscellaneous Production Flaring National CO₂ Emissions (kt CO₂)

Source	1990	2005	2014	2015	2016	2017	2018
220 - Gulf Coast Basin (LA TX)	0	106	893	997	497	526	687
395 - Williston Basin	0	73	782	882	315	531	1,653
430 - Permian Basin	0	215	687	825	794	1,424	1,183
Other Basins	0	407	796	870	592	585	703
Total Emissions	0	801	3,159	3,573	2,198	3,066	4,226
220 - Gulf Coast Basin (LA TX)	0	107	901	1,005	496	523	NA
395 - Williston Basin	0	73	776	875	309	321	NA
430 - Permian Basin	0	215	686	824	794	1,185	NA
Other Basins	0	406	794	867	601	601	NA
Previous Total Estimate	0	800	3,157	3,571	2,201	2,631	NA

NA (Not Applicable)

10 Well Counts (Recalculation with Updated Data)

- 11 For total national well counts, EPA has used a more recent version of the DrillingInfo dataset (Enverus DrillingInfo
- 12 2019) to update well counts data in the Inventory. While this is not a significant recalculation (the update results in
- 13 an average increase of less than 1 percent), the well count dataset is a key input to the Inventory, and results are
- 14 highlighted here.

15 **Table 3-53: Producing Oil Well Count Data**

Oil Well Count	1990	2005	2014	2015	2016	2017	2018
Number of Oil Wells	562,356	482,887	610,121	600,519	580,917	570,331	564,186
Previous Estimate	564,090	480,482	605,259	597,635	577,515	566,726	NA
NA (Not Applicable)							

NA (Not Applicable)

- 1 In December 2019, EIA released an updated time series of national oil and gas well counts (covering 2000 through
- 2 2018). EIA estimates 982,371 total producing wells for year 2018. EPA's total well count for this year is 969,212.
- 3 EPA's well counts in recent time series years are generally 1 percent lower than EIA's. EIA's well counts include side
- 4 tracks, completions, and recompletions, and therefore are expected to be higher than EPA's which include only
- 5 producing wells. EPA and EIA use a different threshold for distinguishing between oil versus gas (EIA uses 6
- 6 mcf/bbl, while EPA uses 100 mcf/bbl), which results in EIA having a lower fraction of oil wells and a higher fraction
- 7 of gas wells than EPA.

8 Refining

- 9 Refinery CH₄ emissions increased by an average of 12 percent across the time series, compared to the previous
- 10 Inventory, due to a recalculation of delayed coker emissions. The subpart Y calculation methodology for delayed
- 11 cokers was updated for reporting year 2018 to use more accurate methods to quantify emissions for delayed
- 12 cokers. The update to the calculation methodology resulted in higher reported emissions from delayed cokers in
- 13 2018 compared to previous years of reporting. The update did not impact all facilities in subpart Y as some
- 14 facilities had already been reporting using the more accurate methods. For time-series consistency across 1990 to
- 15 2018 in the Inventory, emission estimates were updated for 1990 through 2017 using a ratio of reported emissions
- 16 for 2018 to 2017, comparing facilities that used different methods for those years.

17 Table 3-54: Refineries National CH₄ Emissions (metric tons CH₄)

Source	1990		2005	2014	2015	2016	2017	2018
Delayed Cokers	3,873	4	4,395	5,506	5,447	5,787	5,142	5,435
Other Refining Sources	23,299	26	6,445	25,089	27,294	27,245	27,992	25,503
Total Refinery Emissions	27,172	30	0,841	30,595	32,742	33,032	33,134	30,938
Previous Delayed Cokers	1,146		1,301	1,057	931	960	1,029	NA
Previous Other Refining Sources	23,294	20	6,440	24,979	27,271	27,171	27,305	NA
Previous Total Refinery Estimate	24,440	20	6,440	26,036	28,202	28,131	28,333	NA

NA (Not Applicable)

18 Planned Improvements

Offshore Production

20 EPA updated the offshore production methodology for the public review draft Inventory, incorporating data from

21 BOEM and GHGRP. Detailed information and considerations for various approaches considered for the

- 22 methodology update were presented at a workshop and webinar. EPA may refine the update for the final
- 23 Inventory based on stakeholder feedback. See the *Offshore Production* memo for details on the updates under
- 24 consideration and specific requests for stakeholder feedback. Slides from the November workshop present
- 25 additional considerations regarding major and major complexes and calculating emissions by source.⁸¹

²⁶ Upcoming Data, and Additional Data that Could Inform the Inventory

- EPA will assess new data received by the Methane Challenge Program on an ongoing basis, which may be used toconfirm or improve existing estimates and assumptions.
- 29 EPA continues to track studies that contain data that may be used to update the Inventory. EPA will also continue
- 30 to assess studies that include and compare both top-down and bottom-up estimates, and which could lead to

⁸¹ See the presentation Updates Under Consideration for Offshore Production Emissions in 2020 GHGI at https://www.epa.gov/ghgemissions/stakeholder-process-natural-gas-and-petroleum-systems-1990-2018-inventory-.

- 1 improved understanding of unassigned high emitters (e.g., identification of emission sources and information on
- 2 frequency of high emitters) as recommended in stakeholder comments.
- 3 EPA also continues to seek new data that could be used to assess or update the estimates in the Inventory. For
- example, in recent years, stakeholder comments have highlighted areas where additional data that could inform
 the Inventory are currently limited or unavailable:
 - Tank malfunction and control efficiency data.
 - Activity data and emissions data for production facilities that do not report to GHGRP.
 - Associated gas venting and flaring data on practices from 1990 through 2010.
- 9 Refineries emissions data.
- 10 Anomalous leak events.

6

7

8

11 EPA will continue to seek available data on these and other sources as part of the process to update the Inventory.

12 Box 3-7: Carbon Dioxide Transport, Injection, and Geological Storage

Carbon dioxide is produced, captured, transported, and used for Enhanced Oil Recovery (EOR) as well as commercial and non-EOR industrial applications. This CO₂ is produced from both naturally-occurring CO₂ reservoirs and from industrial sources such as natural gas processing plants and ammonia plants. In the Inventory, emissions from naturally-produced CO₂ are estimated based on the specific application.

In the Inventory, CO_2 that is used in non-EOR industrial and commercial applications (e.g., food processing, chemical production) is assumed to be emitted to the atmosphere during its industrial use. These emissions are discussed in the Carbon Dioxide Consumption section.

For EOR CO₂, as noted in the 2006 IPCC Guidelines, "At the Tier 1 or 2 methodology levels [EOR CO₂ is] indistinguishable from fugitive greenhouse gas emissions by the associated oil and gas activities." In the U.S. estimates for oil and gas fugitive emissions, the Tier 2 emission factors for CO₂ include CO₂ that was originally injected and is emitted along with other gas from leak, venting, and flaring pathways, as measurement data used to develop those factors would not be able to distinguish between CO₂ from EOR and CO₂ occurring in the produced natural gas. Therefore, EOR CO₂ emitted through those pathways is included in CO₂ estimates in 1B2.

IPCC includes methodological guidance to estimate emissions from the capture, transport, injection, and geological storage of CO₂. The methodology is based on the principle that the carbon capture and storage system should be handled in a complete and consistent manner across the entire Energy sector. The approach accounts for CO₂ captured at natural and industrial sites as well as emissions from capture, transport, and use. For storage specifically, a Tier 3 methodology is outlined for estimating and reporting emissions based on site-specific evaluations. However, IPCC (IPCC 2006) notes that if a national regulatory process exists, emissions information available through that process may support development of CO₂ emission estimates for geologic storage.

In the United States, facilities that produce CO_2 for various end-use applications (including capture facilities such as acid gas removal plants and ammonia plants), importers of CO_2 , exporters of CO_2 , facilities that conduct geologic sequestration of CO_2 , and facilities that inject CO_2 underground, are required to report greenhouse gas data annually to EPA through its GHGRP. Facilities conducting geologic sequestration of CO_2 are required to develop and implement an EPA-approved site-specific monitoring, reporting and verification plan, and to report the amount of CO_2 sequestered using a mass balance approach.

GHGRP data relevant for this inventory estimate consists of national-level annual quantities of CO₂ captured and extracted for EOR applications for 2010 to 2018. However, for 2015 through 2018, data from EPA's GHGRP (Subpart PP) were held constant from 2014 levels, for data confidentiality reasons. EPA will continue to evaluate the availability of additional GHGRP data and other opportunities for improving the estimates. Several facilities are reporting under subpart RR (Geologic Sequestration of Carbon Dioxide). In 2016, one facility reported 3.1 MMT of CO₂ sequestered in subsurface geological formations and 9,818 metric tons of CO₂ emitted from equipment leaks. In 2017, three facilities reported 9.1 MMT of CO₂ sequestered in subsurface geological formations, and 9,577 metric tons of CO₂ emitted from equipment leaks. In 2018, five facilities reported 16.7

MMT of CO₂ sequestered in subsurface geological formations and 11,023 metric tons of CO₂ emitted from equipment leaks.

The amount of CO₂ captured and extracted from natural and industrial sites for EOR applications in 2018 is 59.3 MMT CO₂ Eq. (59,318 kt) (see Table 3-55 and Table 3-56). The quantity of CO₂ captured and extracted is noted here for information purposes only; CO₂ captured and extracted from industrial and commercial processes is assumed to be emitted and included in emissions totals from those processes.

Table 3-55: Quantity of CO₂ Captured and Extracted for EOR Operations (MMT CO₂)

		2014	2015	2016	2017	2018
4.8	6.5	13.1	13.1	13.1	13.1	13.1
20.8	28.3	46.2	46.2	46.2	46.2	46.2
25.6	34.7	59.3	59.3	59.3	59.3	59.3
	20.8 25.6	20.8 28.3	20.8 28.3 46.2 25.6 34.7 59.3	20.8 28.3 46.2 46.2 25.6 34.7 59.3 59.3	20.8 28.3 46.2 46.2 46.2 25.6 34.7 59.3 59.3 59.3	20.8 28.3 46.2 46.2 46.2 46.2 25.6 34.7 59.3 59.3 59.3 59.3

Note: Totals may not sum due to independent rounding.

Table 3-56: Quantity of CO₂ Captured and Extracted for EOR Operations (kt)

Stage	1990	2005	2014	2015	2016	2017	2018				
Capture Facilities	4,832	6,475	13,093	13,093	13,093	13,093	13,093				
Extraction Facilities	20,811	28,267	46,225	46,225	46,225	46,225	46,225				
Total	25,643	34,742	59,318	59,318	59,318	59,318	59,318				
Note: Totals may not sum du	Note: Totals may not sum due to independent rounding.										

1

3.7 Natural Gas Systems (CRF Source Category 1B2b)

- The U.S. natural gas system encompasses hundreds of thousands of wells, hundreds of processing facilities, and
 over a million miles of transmission and distribution pipelines. This IPCC category (1B2b) is for fugitive emissions,
 which per IPCC include emissions from leaks, venting, and flaring. Total greenhouse gas emissions (CH₄, CO₂, and
 N₂O) from natural gas systems in 2018 were 174.6 MMT CO₂ Eq., a decrease of 19 percent from 1990, primarily
 due to decreases in CH₄ emissions. National total dry gas production in the United States increased by 71 percent
- from 1990 to 2018, and by 12 percent from 2017 to 2018. Of the overall greenhouse gas emissions (174.6 MMT
- CO_2 Eq.), 80 percent are CH₄ emissions (139.7 MMT CO₂ Eq.), 20 percent are CO₂ emissions (34.9 MMT), and less
- 11 than 0.01 percent are N₂O emissions (0.01 MMT CO₂ Eq.).
- 12 Overall, natural gas systems emitted 139.7 MMT CO₂ Eq. (5,586 kt CH₄) of CH₄ in 2018, a 24 percent decrease
- 13 compared to 1990 emissions, and less than 1 percent increase compared to 2017 emissions (see Table 3-57 and
- 14 Table 3-58). There was a total of 34.9 MMT CO₂ Eq. (34,897 kt) of non-combustion CO₂ in 2018, an 8 percent
- 15 increase compared to 1990 emissions, and a 15 percent increase compared to 2017 levels. The 2018 N₂O emissions
- 16 were estimated to be 0.01 MMT CO₂ Eq. (0.03 kt N₂O), a 128 percent increase compared to 1990 emissions.
- 17 The 1990 to 2018 trend is not consistent across segments or gases. Overall, the 1990 to 2018 decrease in CH₄
- 18 emissions is due primarily to the decrease in emissions from the following segments: distribution (73 percent
- decrease), transmission and storage (41 percent decrease), processing (43 percent decrease), and exploration (72
- 20 percent decrease). Over the same time period, the production segment saw increased CH₄ emissions of 41 percent
- 21 (with onshore production emissions increasing 30 percent, offshore production emissions decreasing 85 percent,
- and gathering and boosting [G&B] emissions increasing 91 percent). The 1990 to 2018 increase in CO₂ emissions is
- 23 primarily due to increase in CO₂ emissions in the production segment, where emissions from flaring have increased
- 24 over time.

- 1 Methane and CO₂ emissions from natural gas systems include those resulting from normal operations, routine
- 2 maintenance, and system upsets. Emissions from normal operations include: natural gas engine and turbine
- 3 uncombusted exhaust, flaring, and leak emissions from system components. Routine maintenance emissions
- 4 originate from pipelines, equipment, and wells during repair and maintenance activities. Pressure surge relief
- 5 systems and accidents can lead to system upset emissions. Emissions of N₂O from flaring activities are included in
- 6 the Inventory, with most of the emissions occurring in the processing and production segments. Note, CO₂
- 7 emissions exclude all combustion emissions (e.g., engine combustion) except for flaring CO₂ emissions. All
- combustion CO₂ emissions (except for flaring) are accounted for in the fossil fuel combustion chapter (see chapter
 3.1).
- 10 Each year, some estimates in the Inventory are recalculated with improved methods and/or data. These
- improvements are implemented consistently across the previous Inventory's time series (i.e., 1990 to 2017) to ensure that the trend is accurate. Recalculations in natural gas systems in this year's Inventory include:
 - Updated methodology for G&B stations to use data from GHGRP, Zimmerle et al. 2019, and other sources.
 - Updated methodology for offshore gas production to use data from BOEM, GHGRP, and other sources.
 - Recalculations due to GHGRP submission revisions.

13

14

15

- 16 The Recalculations Discussion section below provides more details on the updated methods.
- Below is a characterization of the five major segments of the natural gas system: exploration, production (including
 gathering and boosting), processing, transmission and storage, and distribution. Each of the segments is described
 and the different factors affecting CH₄, CO₂, and N₂O emissions are discussed.
- *Exploration.* Exploration includes well drilling, testing, and completions. Emissions from exploration account for 1
 percent of CH₄ emissions and 1 percent of CO₂ emissions from natural gas systems in 2018. Well completions
- 22 account for approximately 97 percent of CH₄ emissions from the exploration segment in 2018, with the rest
- resulting from well testing and drilling. Flaring emissions account for most of the CO₂ emissions. Methane
- emissions from exploration decreased by 72 percent from 1990 to 2018, with the largest decreases coming from
- 25 hydraulically fractured gas well completions without reduced emissions completions (RECs). Methane emissions
- decreased 10 percent from 2017 to 2018 due to decreases in emissions from hydraulically fractured well
- 27 completions. Methane emissions were highest from 2006 to 2008. Carbon dioxide emissions from exploration
- increased by 1 percent from 1990 to 2018, and decreased 10 percent from 2017 to 2018 due to decreases in
- flaring. Carbon dioxide emissions were highest from 2007 to 2008. Nitrous oxide emissions increased 80 percent
- from 1990 to 2018, and increased 53 percent from 2017 to 2018.
- Production (including gathering and boosting). In the production stage, wells are used to withdraw raw gas from 31 32 underground formations. Emissions arise from the wells themselves, and well-site gas treatment equipment such 33 as dehydrators and separators. Gathering and boosting emission sources are included within the production 34 sector. The gathering and boosting sources include gathering and boosting stations (with multiple emission sources 35 on site) and gathering pipelines. The gathering and boosting stations receive natural gas from production sites and 36 transfer it, via gathering pipelines, to transmission pipelines or processing facilities (custody transfer points are 37 typically used to segregate sources between each segment). Boosting processes include compression, dehydration, 38 and transport of gas to a processing facility or pipeline. Emissions from production (including gathering and 39 boosting) account for 58 percent of CH₄ emissions and 27 percent of CO₂ emissions from natural gas systems in 40 2018. Emissions from gathering and boosting and pneumatic controllers in onshore production, account for most 41 of the production segment CH₄ emissions in 2018. Within gathering and boosting, the largest sources are 42 compressor exhaust slip, compressor venting and flaring, and pneumatic controllers. Flaring emissions account for 43 most of the CO₂ emissions from production, with the highest emissions coming from flare stacks at gathering 44 stations, miscellaneous onshore production flaring, and tank flaring. Methane emissions from production 45 increased by 41 percent from 1990 to 2018, due primarily to increases in emissions from pneumatic controllers 46 (due to an increase in the number of controllers, particularly in the number of intermittent bleed controllers) and 47 increases in emissions from compressor exhaust slip in gathering and boosting. Methane emissions decreased 2 48 percent from 2017 to 2018 due to decreases in the number of high bleed and intermittent bleed controllers. 49 Methane emissions were highest in 2008-2013. Carbon dioxide emissions from production increased
- 50 approximately by a factor of 3 from 1990 to 2018 due to increases in emissions at flare stacks in gathering and

1 boosting and miscellaneous onshore production flaring, and increased 46 percent from 2017 to 2018 due primarily

2 to increases in emissions from flare stacks in gathering and boosting and flaring at tanks. Nitrous oxide emissions

3 increased 41 percent from 1990 to 2018 and increased 36 percent from 2017 to 2018. The increase in N_2O

4 emissions from 1990 to 2018 and from 2017 to 2018 is primarily due to increase in emissions from flare stacks at

5 gathering and boosting.

Processing. In the processing segment, natural gas liquids and various other constituents from the raw gas are
 removed, resulting in "pipeline quality" gas, which is injected into the transmission system. Methane emissions
 from compressors, including compressor seals, are the primary emission source from this stage. Most of the CO₂
 emissions come from acid gas removal (AGR) units, which are designed to remove CO₂ from natural gas. Processing

10 plants account for 9 percent of CH₄ emissions and 70 percent of CO₂ emissions from natural gas systems. Methane

emissions from processing decreased by 43 percent from 1990 to 2018 as emissions from compressors (leaks and

venting) and equipment leaks decreased; and increased 6 percent from 2017 to 2018 due to increased emissions

from gas engines and blowdowns/venting. Carbon dioxide emissions from processing decreased by 14 percent from 1990 to 2018, due to a decrease in acid gas removal emissions, and increased 7 percent from 2017 to 2018

15 due to increased emissions from flaring. Nitrous oxide emissions increased 29 percent from 2017 to 2018.

16 Transmission and Storage. Natural gas transmission involves high pressure, large diameter pipelines that transport 17 gas long distances from field production and processing areas to distribution systems or large volume customers 18 such as power plants or chemical plants. Compressor station facilities are used to move the gas throughout the 19 U.S. transmission system. Leak CH₄ emissions from these compressor stations and venting from pneumatic 20 controllers account for most of the emissions from this stage. Uncombusted compressor engine exhaust and 21 pipeline venting are also sources of CH₄ emissions from transmission. Natural gas is also injected and stored in 22 underground formations, or liquefied and stored in above ground tanks, during periods of low demand (e.g., 23 summer), and withdrawn, processed, and distributed during periods of high demand (e.g., winter). Leak and 24 venting emissions from compressors are the primary contributors to CH₄ emissions from storage. Emissions from 25 liquified natural gas (LNG) stations and terminals are also calculated under the transmission and storage segment. 26 Methane emissions from the transmission and storage segment account for approximately 24 percent of emissions 27 from natural gas systems, while CO₂ emissions from transmission and storage account for 1 percent of the CO₂ 28 emissions from natural gas systems. CH₄ emissions from this source decreased by 41 percent from 1990 to 2018 29 due to reduced compressor station emissions (including emissions from compressors and leaks), and increased 5 30 percent from 2017 to 2018 due to increased emissions from transmission compressor exhaust and increased 31 emissions from reciprocating transmission compressors. CO2 emissions from transmission and storage have 32 increased by a factor of 2.7 from 1990 to 2018, due to increased emissions from LNG export terminals, and 33 decreased by less than 1 percent from 2017 to 2018. The quantity of LNG exported from the U.S. increased by a 34 factor of 21 from 1990 to 2018, and by 53 percent from 2017 to 2018. LNG emissions are about 1 percent of CH₄ 35 and 61 percent of CO₂ emissions from transmission and storage in year 2018. Nitrous oxide emissions from transmission and storage decreased by 24 percent from 1990 to 2018 and decreased 58 percent from 2017 to

36 transn37 2018.

38 Distribution. Distribution pipelines take the high-pressure gas from the transmission system at "city gate" stations, 39 reduce the pressure and distribute the gas through primarily underground mains and service lines to individual end 40 users. There were 1,305,781 miles of distribution mains in 2018, an increase of nearly 361,624 miles since 1990 41 (PHMSA 2019). Distribution system emissions, which account for 8 percent of CH₄ emissions from natural gas 42 systems and less than 1 percent of CO₂ emissions, resulting mainly from leak emissions from pipelines and stations. 43 An increased use of plastic piping, which has lower emissions than other pipe materials, has reduced both CH₄ and 44 CO₂ emissions from this stage, as have station upgrades at metering and regulating (M&R) stations. Distribution 45 system CH₄ emissions in 2018 were 73 percent lower than 1990 levels and less than 1 percent lower than 2017 46 emissions. Distribution system CO₂ emissions in 2018 were 73 percent lower than 1990 levels and less than 1 47 percent lower than 2017 emissions. Annual CO₂ emission from this segment are less than 0.1 MMT CO₂ Eq. across 48 the time series.

49 Total CH₄ emissions for the five major stages of natural gas systems are shown in MMT CO₂ Eq. (Table 3-57) and kt

50 (Table 3-58). Most emission estimates are calculated using a net emission approach. However, a few sources are

51 still calculated with a potential emission approach. Reductions data are applied to those sources that use a

- 1 potential emissions approach; in recent years 6.8 MMT CO₂ Eq CH₄ are subtracted from production segment
- 2 emissions and 6.7 MMT CO₂ Eq CH₄ are subtracted from the transmission and storage segment to calculate net
- 3 emissions. More disaggregated information on potential emissions, net emissions, and reductions data are
- 4 available in Annex 3.6. See Methodology for Estimating CH₄ and CO₂ Emissions from Natural Gas Systems.

Stage	1990	2005	2014	2015	2016	2017	2018
Exploration ^b	4.0	10.3	1.0	1.0	0.7	1.2	1.1
Production	57.2	76.9	84.6	83.7	81.6	82.1	80.7
Onshore Production	34.9	51.4	49.2	46.9	45.1	45.5	45.3
Offshore Production	4.1	1.9	0.8	0.6	0.6	0.5	0.6
Gathering and Boosting ^c	18.2	23.7	34.6	36.1	35.9	36.1	34.8
Processing	21.3	11.6	11.0	11.0	11.2	11.5	12.2
Transmission and Storage	57.2	36.1	32.3	34.1	34.5	32.3	33.9
Distribution	43.5	23.3	12.2	12.0	12.0	11.9	11.8
Total	183.2	158.1	141.1	141.8	139.9	139.1	139.7

5 Table 3-57: CH₄ Emissions from Natural Gas Systems (MMT CO₂ Eq.)^a

^a These values represent CH₄ emitted to the atmosphere. CH₄ that is captured, flared, or otherwise controlled

(and not emitted to the atmosphere) has been calculated and removed from emission totals.

^b Exploration includes well drilling, testing, and completions.

^c Gathering and boosting includes gathering and boosting station routine vented and leak sources, gathering pipeline leaks and blowdowns, and gathering and boosting station episodic events. Note: Totals may not sum due to independent rounding.

6 Table 3-58: CH₄ Emissions from Natural Gas Systems (kt)^a

Stage	1990	2005	2014	2015	2016	2017	2018
Exploration ^b	162	411	39	41	27	49	44
Production	2,287	3,077	3,385	3,347	3,263	3,282	3,226
Onshore Production	1,396	2,057	1,968	1,877	1,805	1,819	1,812
Offshore Production	162	75	31	24	22	20	24
Gathering and Boosting ^c	729	946	1,386	1,445	1,435	1,443	1,391
Processing	853	463	440	440	448	461	488
Transmission and Storage	2,228	1,442	1,292	1,365	1,378	1,294	1,355
Distribution	1,741	932	487	481	480	476	473
Total	7,330	6,325	5,643	5,674	5,596	5,562	5,586

^a These values represent CH₄ emitted to the atmosphere. CH₄ that is captured, flared, or otherwise controlled (and not emitted to the atmosphere) has been calculated and removed from emission totals.

^b Exploration includes well drilling, testing, and completions.

^c Gathering and boosting includes gathering and boosting station routine vented and leak sources, gathering pipeline leaks and blowdowns, and gathering and boosting station episodic events. Note: Totals may not sum due to independent rounding.

7 Table 3-59: Non-combustion CO₂ Emissions from Natural Gas Systems (MMT)

Stage	1990	2005	2014	2015	2016	2017	2018
Exploration	0.4	1.6	0.8	0.3	0.2	0.5	0.4
Production	3.2	4.5	7.5	7.7	7.4	6.5	9.5
Processing	28.3	18.9	21.1	21.1	21.9	22.9	24.5
Transmission and Storage	0.2	0.2	0.2	0.2	0.3	0.5	0.5
Distribution	0.1	+	+	+	+	+	+
Total	32.2	25.3	29.6	29.3	29.9	30.4	34.9

+ Does not exceed 0.1 MMT CO₂ Eq.

Note: Totals may not sum due to independent rounding.

8 Table 3-60: Non-combustion CO₂ Emissions from Natural Gas Systems (kt)

Stage	1990	2005	2014	2015	2016	2017	2018
Exploration	408	1,648	843	282	190	456	410

Noto: Totals may not sum due							
Total	32,173	25,291	29,620	29,334	29,890	30,364	34,897
Distribution	51	27	14	14	14	14	14
Transmission and Storage	180	174	223	223	329	493	491
Processing	28,338	18,893	21,075	21,075	21,908	22,896	24,465
Production	3,197	4,548	7,464	7,740	7,449	6,505	9,517

Note: Totals may not sum due to independent rounding.

1 Table 3-61: N₂O Emissions from Natural Gas Systems (metric tons CO₂ Eq.)

Stage	1990	2005	201	4 2015	2016	2017	2018
Exploration	241	442	51	4 3,204	111	285	436
Production	3,953	5,407	8,61	0 9,555	8,661	4,096	5,585
Processing	NO	3,347	5,76	4 5,764	3,794	3,042	3,922
Transmission and Storage	256	307	34	1 343	375	459	195
Distribution	NO	NO	N	D NO	NO	NO	NO
Total	4,451	9,502	15,22	8 18,867	12,942	7,882	10,137

NO (Not Occurring)

Note: Totals may not sum due to independent rounding.

2 Table 3-62: N₂O Emissions from Natural Gas Systems (metric tons N₂O)

Ch	4000	2005	204.4	2015	2010	2017	2010
Stage	1990	2005	2014	2015	2016	2017	2018
Exploration	0.8	1.5	1.7	10.8	0.4	1.0	1.5
Production	13.3	18.1	28.9	32.1	29.1	13.7	18.7
Processing	NO	11.2	19.3	19.3	12.7	10.2	13.2
Transmission and Storage	0.9	1.0	1.1	1.2	1.3	1.5	0.7
Distribution	NO	NO	NO	NO	NO	NO	NO
Total	14.9	31.9	51.1	63.3	43.4	26.5	34.0

NO (Not Occurring)

Note: Totals may not sum due to independent rounding.

3 Methodology

- 4 See Annex 3.6 for the full time series of emissions data, activity data, and emission factors, and additional
- 5 information on methods and data sources—for example, the specific years of reporting data from EPA's
- 6 Greenhouse Gas Reporting Program (GHGRP) that are used to develop certain factors.
- 7 This section provides a general overview of the methodology for natural gas system emission estimates in the
- 8 Inventory, which involves the calculation of CH₄, CO₂, and N₂O emissions for over 100 emissions sources (i.e.,
- 9 equipment types or processes), and then the summation of emissions for each natural gas segment.
- 10 The approach for calculating emissions for natural gas systems generally involves the application of emission
- factors to activity data. For most sources, the approach uses technology-specific emission factors or emission
- 12 factors that vary over time and take into account changes to technologies and practices, which are used to
- 13 calculate net emissions directly. For others, the approach uses what are considered "potential methane factors"
- 14 and emission reduction data to calculate net emissions.
- 15 *Emission Factors.* Key references for emission factors for CH₄ and CO₂ emissions from the U.S. natural gas industry
- include a 1996 study published by the Gas Research Institute (GRI) and EPA (GRI/EPA 1996), the EPA's GHGRP (EPA
- 17 2019), and others.
- 18 The GRI/EPA study developed over 80 CH₄ emission factors to characterize emissions from the various components
- 19 within the operating stages of the U.S. natural gas system. The GRI/EPA study was based on a combination of
- 20 process engineering studies, collection of activity data, and measurements at representative natural gas facilities
- 21 conducted in the early 1990s. Year-specific natural gas CH₄ compositions are calculated using U.S. Department of

- 1 Energy's Energy Information Administration (EIA) annual gross production data for National Energy Modeling
- 2 System (NEMS) oil and gas supply module regions in conjunction with data from the Gas Technology Institute (GTI,
- 3 formerly GRI) Unconventional Natural Gas and Gas Composition Databases (GTI 2001). These year-specific CH₄
- 4 compositions are applied to emission factors, which therefore may vary from year to year due to slight changes in
- 5 the CH₄ composition of natural gas for each NEMS region.
- 6 GHGRP Subpart W data were used to develop CH₄, CO₂, and N₂O emission factors for many sources in the
- 7 Inventory. In the exploration and production segments, GHGRP data were used to develop emission factors used
- 8 for all years of the time series for well testing, gas well completions and workovers with and without hydraulic
- 9 fracturing, pneumatic controllers and chemical injection pumps, condensate tanks, liquids unloading,
- 10 miscellaneous flaring, gathering and boosting pipelines, and certain sources at gathering and boosting stations. In
- 11 the processing segment, for recent years of the times series, GHGRP data were used to develop emission factors
- 12 for leaks, compressors, flares, dehydrators, and blowdowns/venting. In the transmission and storage segment,
- 13 GHGRP data were used to develop factors for all years of the time series for LNG stations and terminals and
- 14 transmission pipeline blowdowns, and for pneumatic controllers for recent years of the times series.
- 15 Other data sources used for CH₄ emission factors include Zimmerle et al. (2015) for transmission and storage
- 16 station leaks and compressors, Lamb et al. (2015) for recent years for distribution pipelines and meter/regulator
- 17 stations, Zimmerle et al. (2019) for gathering and boosting stations, and Bureau of Ocean Energy Management
- 18 (BOEM) reports.
- 19 For CO₂ emissions from sources in the exploration, production and processing segments that use emission factors
- 20 not directly calculated from GHGRP data, data from the 1996 GRI/EPA study and a 2001 GTI publication were used
- 21 to adapt the CH₄ emission factors into related CO₂ emission factors. For sources in the transmission and storage
- 22 segment that use emission factors not directly calculated from GHGRP data, and for sources in the distribution
- 23 segment, data from the 1996 GRI/EPA study and a 1993 GTI publication were used to adapt the CH₄ emission
- 24 factors into non-combustion related CO₂ emission factors.
- 25 Flaring N₂O emissions were estimated for flaring sources using GHGRP data.
- 26 See Annex 3.6 for more detailed information on the methodology and data used to calculate CH₄, CO₂, and N₂O
- 27 emissions from natural gas systems.
- 28 Activity Data. Activity data were taken from various published data sets, as detailed in Annex 3.6. Key activity data
- 29 sources include data sets developed and maintained by EPA's GHGRP; Enverus DrillingInfo, Inc. (Enverus
- 30 DrillingInfo 2019); BOEM; Federal Energy Regulatory Commission (FERC); EIA; the Natural Gas STAR Program
- annual data; Oil and Gas Journal; PHMSA; the Wyoming Conservation Commission; and the Alabama State Oil and
 Gas Board.
- For a few sources, recent direct activity data are not available. For these sources, either 2017 data were used as a
- 34 proxy for 2018 data, or a set of industry activity data drivers was developed and used to calculate activity data over
- 35 the time series. Drivers include statistics on gas production, number of wells, system throughput, miles of various
- 36 kinds of pipe, and other statistics that characterize the changes in the U.S. natural gas system infrastructure and
- 37 operations. More information on activity data and drivers is available in Annex 3.6.
- 38 A complete list of references for emission factors and activity data by emission source is provided in Annex 3.6.
- 39 *Calculating Net Emissions.* For most sources, net emissions are calculated directly by applying emission factors to
- 40 activity data. Emission factors used in net emission approaches reflect technology-specific information, and take
- 41 into account regulatory and voluntary reductions. However, for production and transmission and storage, some
- 42 sources are calculated using potential emission factors, and the step of deducting CH₄ that is not emitted from the
- 43 total CH₄ potential estimates to develop net CH₄ emissions is applied. To take into account use of such
- 44 technologies and practices that result in lower emissions but are not reflected in "potential" emission factors, data
- 45 are collected on both regulatory and voluntary reductions. Regulatory actions addressed using this method include
- 46 EPA National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations for dehydrator vents.
- 47 Voluntary reductions included in the Inventory are those reported to Natural Gas STAR for certain sources.

- 1 Through EPA's stakeholder process on oil and gas in the Inventory, EPA received initial stakeholder feedback on
- 2 updates under consideration for the Inventory. Stakeholder feedback is noted below in Uncertainty and Time-
- 3 Series Consistency, Recalculations Discussion, and Planned Improvements.

⁴ Uncertainty and Time-Series Consistency– TO BE UPDATED ⁵ FOR FINAL INVENTORY REPORT

6 EPA has conducted a quantitative uncertainty analysis using the IPCC Approach 2 methodology (Monte Carlo

7 Simulation technique) to characterize the uncertainty for natural gas systems. For more information, please see

8 the memorandum Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2016: Natural Gas and Petroleum

9 Systems Uncertainty Estimates (2018 Uncertainty Memo).⁸² EPA used Microsoft Excel's @RISK add-in tool to

- estimate the 95 percent confidence bound around CH₄ emissions from natural gas systems for the current
 Inventory, then applied the calculated bounds to both CH₄ and CO₂ emissions estimates. For the analysis, EPA
- focused on the 14 highest-emitting sources for the year 2016, which together emitted 76 percent of methane from
- 13 natural gas systems in 2017, and extrapolated the estimated uncertainty for the remaining sources. The @RISK
- add-in provides for the specification of probability density functions (PDFs) for key variables within a
- 15 computational structure that mirrors the calculation of the inventory estimate. The IPCC guidance notes that in
- 16 using this method, "some uncertainties that are not addressed by statistical means may exist, including those
- arising from omissions or double counting, or other conceptual errors, or from incomplete understanding of the
- 18 processes that may lead to inaccuracies in estimates developed from models." The uncertainty bounds reported

19 below only reflect those uncertainties that EPA has been able to quantify and do not incorporate considerations

20 such as modeling uncertainty, data representativeness, measurement errors, misreporting or misclassification. The

21 understanding of the uncertainty of emission estimates for this category evolves and improves as the underlying

- 22 methodologies and datasets improve.
- 23 The results presented below provide the 95 percent confidence bound within which actual emissions from this
- source category are likely to fall for the year 2017, using the IPCC methodology. The results of the Approach 2
- 25 uncertainty analysis are summarized in Table 3-63. Natural gas systems CH₄ emissions in 2017 were estimated to
- 26 be between 141.8 and 193.3 MMT CO₂ Eq. at a 95 percent confidence level. Natural gas systems CO₂ emissions in
- 27 2017 were estimated to be between 22.5 and 30.7 MMT CO₂ Eq. at a 95 percent confidence level. Uncertainty
- 28 bounds for other years of the time series have not been calculated, but uncertainty is expected to vary over the

29 time series. For example, years where many emission sources are calculated with interpolated data would likely

- 30 have higher uncertainty than years with predominantly year-specific data.
- 31

Table 3-63: Approach 2 Quantitative Uncertainty Estimates for CH₄ and Non-combustion CO₂ Emissions from Natural Gas Systems (MMT CO₂ Eq. and Percent)

Gas 2017 Emission Estimate (MMT CO ₂ Eq.) ^b		Uncertaint	ty Range Relativ	e to Emission Estimate ^a		
		(MMT C	O₂ Eq.)	(%)		
		Lower	Upper	Lower	Upper	
		Bound ^b	Bound ^b	Bound ^b	Bound ^b	
CH ₄	165.6	141.8	193.3	-14%	+17%	
CO ₂	26.3	22.5	30.7	-14%	+17%	
	CH ₄	Gas (MMT CO2 Eq.) ^b CH4 165.6	Gas (MMT CO2 Eq.) ^b (MMT CO2 Eq.) ^b Lower Bound ^b CH4 165.6 141.8	Gas (MMT CO2 Eq.) ^b (MMT CO2 Eq.) Lower Upper Bound ^b Bound ^b CH4 165.6 141.8 193.3	Gas (MMT CO2 Eq.) ^b (MMT CO2 Eq.) (Lower Upper Lower Bound ^b Bound ^b Bound ^b CH4 165.6 141.8 193.3 -14%	

^a Range of emission estimates estimated by applying the 95 percent confidence intervals obtained from the Monte Carlo Simulation analysis conducted for the year 2017 CH₄ emissions.

^b All reported values are rounded after calculation. As a result, lower and upper bounds may not be duplicable from other rounded values as shown in Table 3-57 and Table 3-58.

^c An uncertainty analysis for the CO₂ emissions was not performed. The relative uncertainty estimated (expressed as a percent) from the CH₄ uncertainty analysis was applied to the point estimate of CO₂ emissions.

⁸² See < https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems>.

- 1 GHGRP data available (starting in 2011) and other recent data sources have improved estimates of emissions from
- 2 natural gas systems. To develop a consistent time series, for sources with new data, EPA reviewed available
- 3 information on factors that may have resulted in changes over the time series (e.g., regulations, voluntary actions)
- 4 and requested stakeholder feedback on trends as well. For most sources, EPA developed annual data for 1993
- 5 through 2010 by interpolating activity data or emission factors or both between 1992 and 2011 data points.
- 6 Information on time-series consistency for sources updated in this year's Inventory can be found in the
- 7 Recalculations Discussion below, with additional detail provided in supporting memos (relevant memos are cited in
- 8 the Recalculations Discussion). For detailed documentation of methodologies, please see Annex 3.5.

9 QA/QC and Verification Discussion

- 10 The natural gas systems emission estimates in the Inventory are continually being reviewed and assessed to
- 11 determine whether emission factors and activity factors accurately reflect current industry practices. A QA/QC
- 12 analysis was performed for data gathering and input, documentation, and calculation. QA/QC checks are
- 13 consistently conducted to minimize human error in the model calculations. EPA performs a thorough review of
- 14 information associated with new studies, GHGRP data, regulations, public webcasts, and the Natural Gas STAR
- 15 Program to assess whether the assumptions in the Inventory are consistent with current industry practices. The
- 16 EPA has a multi-step data verification process for GHGRP data, including automatic checks during data-entry,
- 17 statistical analyses on completed reports, and staff review of the reported data. Based on the results of the
- 18 verification process, the EPA follows up with facilities to resolve mistakes that may have occurred.⁸³
- 19 As in previous years, EPA conducted early engagement and communication with stakeholders on updates prior to
- 20 public review. EPA held a stakeholder webinar in September of 2019 and a stakeholder workshop on greenhouse
- 21 gas data for oil and gas in November of 2019. EPA released memos detailing updates under consideration and
- 22 requesting stakeholder feedback.
- 23 In recent years, several studies have measured emissions at the source level and at the national or regional level and calculated emission estimates that may differ from the Inventory. There are a variety of potential uses of data 24 25 from new studies, including replacing a previous estimate or factor, verifying or QA of an existing estimate or 26 factor, and identifying areas for updates. In general, there are two major types of studies related to oil and gas 27 greenhouse gas data: studies that focus on measurement or quantification of emissions from specific activities, 28 processes and equipment, and studies that use tools such as inverse modeling to estimate the level of overall 29 emissions needed to account for measured atmospheric concentrations of greenhouse gases at various scales. The 30 first type of study can lead to direct improvements to or verification of Inventory estimates. In the past few years, 31 EPA has reviewed and in many cases, incorporated data from these data sources. The second type of study can 32 provide general indications of potential over- and under-estimates. A key challenge in using these types of studies 33 to assess Inventory results is having a relevant basis for comparison (i.e., the independent study should assess data 34 from the Inventory and not another data set, such as the Emissions Database for Global Atmospheric Research, or 35 "EDGAR"). In an effort to improve the ability to compare the national-level inventory with measurement results 36 that may be at other scales, a team at Harvard University along with EPA and other coauthors developed a gridded 37 inventory of U.S. anthropogenic methane emissions with 0.1° x 0.1° spatial resolution, monthly temporal resolution, and detailed scale-dependent error characterization.⁸⁴ The gridded methane inventory is designed to 38 39 be consistent with the 2016 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2014 estimates for the year 2012, which presents national totals.85 40
- , , , ,

41 Recalculations Discussion

⁸³ See <https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.

⁸⁴ See <https://www.epa.gov/ghgemissions/gridded-2012-methane-emissions>.

⁸⁵ See <https://www.epa.gov/ghgemissions/us-greenhouse-gas-inventory-report-1990-2014>.

- 1 EPA received information and data related to the emission estimates through GHGRP reporting, the annual
- 2 Inventory formal public notice periods, stakeholder feedback on updates under consideration, and new studies. In
- 3 September and November 2019, EPA released draft memoranda that discussed changes under consideration, and
- 4 requested stakeholder feedback on those changes.⁸⁶ Memoranda cited in the Recalculations Discussion below are:
- 5 Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2018: Updates Under Consideration for Natural Gas
- 6 Gathering & Boosting Station Emissions (G&B Station memo) and Inventory of U.S. Greenhouse Gas Emissions and
- 7 Sinks 1990-2018: Updates Under Consideration for Offshore Production Emissions (Offshore Production memo).
- 8 EPA thoroughly evaluated relevant information available and made several updates to the Inventory, including:
- 9 using GHGRP, BOEM, and other data to calculate emissions from offshore production; and using GHGRP and
- 20 Zimmerle et al. 2019 study data to calculate gathering and boosting station emissions. In addition, certain sources
- did not undergo methodological updates, but CH₄ and/or CO₂ emissions changed by greater than 0.05 MMT CO₂
- 12 Eq., comparing the previous estimate for 2017 to the current (recalculated) estimate for 2017 (the emissions
- 13 changes were mostly due to GHGRP data submission revisions). These sources are discussed below and include:
- 14 hydraulically fractured (HF) gas well completions; production segment pneumatic controllers; liquids unloading;
- 15 production segment storage tanks; HF and non-HF gas well workovers; and acid gas removal (AGR) vents, flares,
- 16 reciprocating compressors, and blowdowns at gas processing plants
- 17 The combined impact of revisions to 2017 natural gas sector CH₄ emissions, compared to the previous Inventory, is
- a decrease from 165.5 to 139.1 MMT CO₂ Eq. (26.5 MMT CO₂ Eq., or 16 percent). The recalculations resulted in an
- average decrease in CH₄ emission estimates across the 1990 through 2017 time series, compared to the previous
- 20 Inventory, of 14.1 MMT CO₂ Eq., or 8 percent.
- 21 The combined impact of revisions to 2017 natural gas sector CO₂ emissions, compared to the previous Inventory, is
- 22 an increase from 26.3 MMT to 30.4 MMT, or 15 percent. The recalculations resulted in an average increase in
- emission estimates across the 1990 through 2017 time series, compared to the previous Inventory, of 2.9 MMT
- 24 CO₂ Eq., or 12 percent.
- 25 The combined impact of revisions to 2017 natural gas sector N₂O emissions, compared to the previous Inventory, is
- an increase from 0.02 kt CO2e to 0.3 kt CO₂, or 66 percent. The recalculations resulted in an average increase in
- emission estimates across the 1990 through 2017 time series, compared to the previous Inventory, of 136 percent.
- 28 In Table 3-64 and Table 3-65 below are categories in Natural Gas Systems with recalculations resulting in a change
- of greater than 0.05 MMT CO₂ Eq., comparing the previous estimate for 2017 to the current (recalculated)
- 30 estimate for 2017. For more information, please see the Recalculations Discussion below.

31 Table 3-64: Recalculations of CO₂ in Natural Gas Systems (MMT CO₂)

Stage and Emission Source	Previous Estimate Year 2017, 2019 Inventory	Current Estimate Year 2017, 2020 Inventory	Current Estimate Year 2018, 2020 Inventory
Exploration	0.5	0.5	0.4
Production	2.8	6.5	9.5
Gathering Stations	0.2	4.3	7.0
Offshore Gas Production	0.4	+	+
Tanks	0.6	0.5	0.8
Processing	22.5	22.9	24.5
AGR Vents	16.7	17.2	17.5
Transmission and Storage	0.5	0.5	0.5
Distribution	+	+	+
Total	26.3	30.4	34.9

+ Does not exceed 0.05 MMT CO₂.

⁸⁶ Stakeholder materials including memoranda for the current (i.e., 1990 to 2018) Inventory are available at https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems>.

1	Table 3-65:	Recalculations of CH ₄	in Natural Gas	Systems (MMT CO ₂ Eq.)
---	-------------	--	----------------	-----------------------------------

	Previous Estimate	Current Estimate Year	Current Estimate		
	Year 2017,	2017,	Year 2018,		
Stage and Emission Source	2019 Inventory	2020 Inventory	2020 Inventory		
Exploration	1.2	1.2	1.1		
Production	108.4	82.1	80.7		
G&B Stations	55.5	32.0	31.4		
Offshore Gas Production	3.8	0.5	0.6		
Non-HF Workovers	0.0	0.1	0.0		
Pneumatic Controllers	26.4	26.6	25.4		
Liquids Unloading	2.9	3.2	4.4		
HF Workovers	0.8	0.8	0.6		
Processing	11.7	11.5	12.2		
Reciprocating Compressors	1.7	1.6	1.6		
Flares	0.5	0.6	0.7		
Blowdowns/Venting	0.9	0.7	1.1		
Transmission and Storage	32.4	32.3	33.9		
Distribution	11.9	11.9	11.8		
Total	165.6	139.1	139.7		

2 **Exploration**

- 3 There were no methodological updates to the exploration segment, but there were recalculations due to updated
- 4 data (e.g., GHGRP data for REC HF Completions with venting) that resulted in an average decrease in calculated
- 5 emissions over the time series from this segment of 0.3 MMT CO₂ Eq. CH₄ (or 4 percent) and less than 0.05 MMT
- 6 CO₂ (or 5 percent).

7 Production

8 Gathering and Boosting (G&B) Stations (Methodological Update)

- 9 EPA updated the G&B station methodology to use data from a Zimmerle et al. 2019 study. Zimmerle et al.
- 10 conducted CH₄ measurements at G&B stations, calculated CH₄ EFs for certain major equipment (compressors,
- 11 tanks, dehydrators, acid gas removal units, separators, and yard piping), and developed an approach to estimate
- 12 national activity for G&B stations. EPA applied data from Zimmerle et al. and incorporated subpart W data across
- 13 the time series for the public review draft of the Inventory. EPA did not retain data from the previous
- 14 methodology. EPA applied the national average ratio of compressors per station and the national-level scaling
- 15 factor, both based on year 2017 data, from the Zimmerle et al. study and did not re-evaluate the ratio or scaling
- 16 factor for other years in the public review draft of the Inventory. The *G&B Station* Memo provides details on the
- 17 methodology update under consideration and that was implemented for public review.
- 18 Annual G&B station CH₄ emission estimates decreased by an average of 36 percent in the current Inventory for the
- 19 1990 to 2017 time series, compared to the previous Inventory. The decrease in the CH₄ emission estimate is due to
- 20 differences in the underlying data between the current Inventory and prior Inventory. The prior Inventory used
- data from a Marchese et al. 2015 study,⁸⁷ and Zimmerle et al. noted differences between these studies. These
- differences noted in Zimmerle et al. are: (1) the Zimmerle et al. study uses an updated and possibly more
- representative mix of stations in terms of throughput and complexity, (2) the Zimmerle et al. study accessed
- 24 activity data from the GHGRP, which were not available to the Marchese et al. study, and which represented data
- 25 from a large set of operators for the entire U.S., (3) the two studies utilized different measurement methods, and

⁸⁷ Marchese, A. J. et al., Methane Emissions from United States Natural Gas Gathering and Processing. Environmental Science & Technology, 49, 10718-10727. 2015.

- 1 (4) there may have been operational improvements to G&B stations and/or construction of new lower-emitting
- 2 stations during the intervening years between studies due to increased attention to CH₄ emissions across the
- a natural gas value chain. G&B station CO₂ emission estimates increased by a factor of 22 (from an average of 0.2
- 4 MMT CO₂ to an average of 3.5 MMT CO₂) in the current Inventory for the 1990 to 2017 time series, compared to
- the previous Inventory. The CO₂ increase is due to the use of subpart W data to estimate emissions for flaring and
 acid gas removal units. The previous Inventory did not account for these sources of CO₂ emissions.

Source	1990	2005	201	4	2015	2016	2017	2018
Compressors	126,757	161,098	243,53	2	255,491	253,209	271,238	278,874
Tanks	135,802	172,593	260,91	0	273,723	271,278	205,261	180,945
Station Blowdowns	20,560	26,130	39,50	1	41,441	41,071	63,823	62,020
Dehydrator Vents -								
Large units	29,975	38,096	57,59	0	60,419	59,879	51,668	48,401
Dehydrator Vents -								
Small units	306	389	58	8	617	612	708	575
High-bleed Pneumatic								
Devices	16,698	21,222	32,08	1	33,656	33,356	32,654	23,666
Intermittent Bleed								
Pneumatic Devices	79,110	100,543	151,99	1	159,455	158,031	173,628	156,662
Low-Bleed Pneumatic								
Devices	2,835	3,603	5,44	6	5,714	5,663	6,344	5,722
Flare Stacks	5,300	6,736	10,18	3	10,683	10,588	9,394	13,935
AGRU	47	60	9	0	94	94	91	88
Pneumatic Pumps	15,844	20,137	30,44	1	31,936	31,651	23,391	24,878
Gas Engines	169,766	215,760	326,16	4	342,182	339,126	363,534	373,753
Dehydrator Leaks	851	1,081	1,63	4	1,715	1,699	1,852	1,882
Yard Piping	37,206	47,286	71,48	2	74,992	74,323	76,709	85,115
Separators	559	710	1,07	3	1,126	1,116	1,152	1,278
Total Emissions	641,616	815,443	1,232,70	8	1,293,245	1,281,694	1,281,446	1,257,795
Previous Estimate	1,051,775	1,217,024	2,063,77	5	2,163,417	2,143,324	2,218,773	NA

7 Table 3-66: Gathering Stations National CH₄ Emissions (metric tons CH₄)

NA (Not Applicable)

8 Table 3-67: Gathering Stations National CO₂ Emissions (metric tons CO₂)

Source	1990	2005	2014	2015	2016	2017	2018
Compressors	15,277	19,416	29,351	30,793	30,517	32,690	33,611
Tanks	420,699	534,676	808,271	847,965	840,391	633,931	1,294,821
Station Blowdowns	1,587	2,017	3,049	3,199	3,170	4,923	9,572
Dehydrator Vents -							
Large units	369,890	470,102	710,654	745,554	738,894	763,329	796,516
Dehydrator Vents -							
Small units	332	422	638	669	663	1,266	4,860
High-bleed Pneumatic							
Devices	1,143	1,452	2,195	2,303	2,282	2,120	1,714
Intermittent Bleed							
Pneumatic Devices	5,240	6,659	10,067	10,561	10,467	13,172	13,066
Low-Bleed Pneumatic							
Devices	213	271	409	429	425	399	410
Flare Stacks	1,354,751	1,721,783	2,602,824	2,730,646	2,706,255	2,300,171	4,205,760
AGRU	246,880	313,765	474,319	497,612	493,167	527,835	643,969
Pneumatic Pumps	963	1,224	1,850	1,941	1,924	1,683	1,679
Dehydrator Leaks	103	130	197	207	205	223	227
Yard Piping	4,484	5,699	8,615	9,038	8,958	9,245	10,258
Separators	67	86	129	136	135	139	154
Total Emissions	2,421,629	3,077,701	4,652,569	4,881,053	4,837,454	4,291,126	7,016,615
Previous Estimate	93,791	143,218	221,279	233,320	232,491	239,459	NA

NA (Not Applicable)

1 Offshore Gas Production (Methodological Update)

2 EPA updated the offshore production methodology to estimate emissions for all offshore producing regions and to 3 use activity data sources that provide a full time series of data. The previous Inventory only estimated emissions 4 for offshore facilities in federal waters of the Gulf of Mexico (GOM); these facilities are under Bureau of Ocean 5 Energy Management (BOEM) jurisdiction and BOEM estimates their greenhouse gas emissions triennially via the 6 Gulfwide Emissions Inventory (GEI). The previous Inventory also relied on activity data sources that were no longer 7 updated, and surrogate activity data from 2008 and 2010 had been used to estimate emissions in more recent 8 years. The updated Inventory methodology now includes emissions estimates for offshore facilities in state waters 9 of the GOM and offshore facilities off the coast of Alaska. 10 The updated Inventory methodology for each region is presented here. EPA calculated vent and leak EFs for

offshore facilities in GOM federal waters for major complexes and minor complexes using BOEM GEI emissions data from the 2005, 2008, 2011, and 2014 GEIs. The vent and leak EFs were paired with active offshore complex counts over the time series. EPA calculated GOM federal waters flaring emissions using flaring volumes reported in Oil and Gas Operations Reports (OGOR), Part B (OGOR-B). OGOR-B flaring volumes are available over the time series but assumptions were necessary to assign the volumes to offshore gas production versus offshore oil production for 1990 to 2010. The previous Inventory allocated all GOM federal waters flaring emissions to offshore

17 gas production facilities. EPA calculated production based EFs for offshore facilities in GOM state waters using the 18 resulting GOM federal waters emissions and gas production in each year. EPA also calculated production based EFs

19 for offshore facilities in the Alaska region, and the EFs for these regions were derived from GHGRP data. EPA

20 multiplied the production based EFs by the region-specific offshore production (i.e., GOM state waters production,

and Alaska production) in a given year. The *Offshore Production* memo provides details for the methodology

22 update under consideration and that was implemented for public review.

23 Due to this recalculation, annual offshore gas production CH₄ emission estimates decreased in the current

24 Inventory for 1990 to 2017 by an average of 16 percent, compared to the previous Inventory. The impacts varied

across the time series with estimates in earlier years of the time series increasing (e.g., by an average of 17 percent

from 1990 to 2002) and estimates in more recent years of the time series decreasing (e.g., by an average of 74

27 percent from 2010 to 2017). The increase in offshore gas production CH₄ emission estimates from 1990 to 2002 is

due to the inclusion of emissions from facilities located in GOM state waters and the Alaska region. Examining the

same 1990 through 2002 period, there is not a significant difference between offshore gas production CH₄

emission estimates in GOM federal waters between the current Inventory and previous Inventory, with an average
 increase of only 2 percent.

32 The noticeable decrease in offshore gas production CH₄ emission estimates over the 2010 to 2017 time period is

33 due to a decrease in GOM federal waters emission estimates. There are two main factors that lead to a decrease in

34 the estimate of offshore gas production CH₄ emissions for GOM federal waters facilities: updated activity data and

35 inclusion of emissions from the 2014 GEI. Activity data in the previous Inventory were last available for 2010, and

36 the 2010 counts are applied as surrogate to all following years. The updated methodology for the current

37 Inventory uses a continuously updated BOEM data source, and it shows a noticeable decrease in offshore facilities

38 starting in 2008 that is not captured in the previous Inventory's data. The previous and current Inventory both rely

39 on EFs calculated from 2011 GEI data for certain years, but the current Inventory also incorporates emissions data

from the 2014 GEI for years 2013 forward. The 2014 GEI CH₄ emissions are lower than the 2011 GEI CH₄ emissions

and thus CH₄ emissions for years 2013 forward in the current Inventory are calculated using lower EFs.

42 For comparison, total offshore production (for oil and gas combined) CH₄ emissions for facilities in GOM federal

43 waters are provided here for years 2011 and 2014 from the GEI, previous Inventory, and current Inventory. For

offshore facilities in GOM federal waters in year 2011, GEI CH₄ emissions equaled 246 kt, previous Inventory CH₄

emissions equaled 338 kt, and current Inventory CH₄ emissions equal 276 kt. For offshore facilities in GOM federal

46 waters in year 2014, GEI CH₄ emissions equaled 205 kt, previous Inventory CH₄ emissions equaled 338 kt, and

47 current Inventory CH4 emissions equal 226 kt. The 2017 GEI is not incorporated into the current Inventory

- 1 calculations in the public review draft, but will be included in the final Inventory (i.e., EFs calculated from the 2017
- 2 GEI will be applied to years 2016 through 2018, based on the methodology implemented for the public review
- 3 draft). GEI total CH₄ emissions for 2017 equal 170 kt and as a result, final Inventory offshore production CH₄
- 4 emissions will likely decrease for 2016 to 2018, as the draft values for these years currently range from 187 to 191 kt.
- 5
- 6 Annual offshore gas production CO₂ emission estimates decreased in the current Inventory for 1990 to 2017 by an
- 7 average of 71 percent, compared to the previous Inventory. This change is largely because all GOM federal waters
- 8 flaring emissions in the previous Inventory were allocated to offshore gas production, whereas the current
- 9 Inventory estimates GOM federal waters flaring emissions for both offshore gas and oil production, and a
- 10 significant portion of the CO₂ is from offshore oil production.
- 11 EPA received feedback on this update through its September 2019 memo on updates under consideration for
- 12 offshore oil and gas production. A stakeholder supported the use of the updated BOEM data and supported
- 13 stratifying emission factors by complexity versus water depth. The stakeholder also supported considering a
- 14 different approach which would use source-specific emission factors.
- 15 The recalculation results in a change in the trend, in methane in particular where the 1990 to 2017 trend in this
- 16 Inventory is a decrease of 88 percent, versus an increase of 7 percent in the previous Inventory. The stakeholder
- 17 provided several factors supporting this decreasing trend: more stringent limitations imposed by BSEE (Bureau of
- 18 Safety and Environmental Enforcement) related to venting and flaring, increased utilization of VRU equipment, and
- 19 replacement of older platforms with newer ones that include state of the art technology.

Table 3-68: Offshore Gas Production National Emissions (metric tons CH₄) 20

Source	1990	2005	2014	2015	2016	2017	2018
GOM Federal Waters	151,078	62,006	21,525	17,642	16,203	13,845	14,265
GOM State Waters	9,152	10,999	8,976	5,755	5,622	5,658	8,754
Alaska State Waters	1,892	1,498	453	329	591	501	501
Total Emissions	162,122	74,504	30,954	23,726	22,415	20,005	23,521
Previous Estimate	140,949	173,459	150,565	150,565	150,565	150,565	NA

NA (Not Applicable)

21 Table 3-69: Offshore Gas Production National Emissions (metric tons CO₂)

4,745	3.448	2 5 6 2		
	5,770	2,563	3,483	3,483
127,067	87,351	71,833	61,529	61,578
21,031	11,720	10,195	9,803	9,803
152,844	102,519	84,591	74,814	74,863
367,861	370,479	371,788	372,116	NA
	- /-	- ,	- / / /	

NA (Not Applicable)

Pneumatic Controllers (Recalculation with Updated Data) 22

- 23 Pneumatic controller CH₄ emission estimates increased in the current Inventory by an average of 0.3 percent
- 24 across the time series, compared to the previous Inventory due to GHGRP submission revisions and DrillingInfo
- 25 data revisions.

Table 3-70: Production Segment Pneumatic Controller National Emissions (metric tons CH₄) 26

Source	1990	2005	2014	2015	2016	2017	2018
Low Bleed	NO	23,168	32,486	31,784	31,790	34,639	33,867
High Bleed	296,948	463,604	130,339	101,509	104,353	108,294	87,372
Intermittent Bleed	193,647	536,998	931,781	939 <i>,</i> 438	900,993	919,154	895,118
Total Emissions	490,594	1,023,770	1,094,606	1,072,732	1,037,136	1,062,086	1,016,357
Previous Estimate	492,254	1,016,763	1,089,339	1,075,601	1,064,069	1,057,303	NA

NO (Not Occurring) NA (Not Applicable)

1 Liquids Unloading (Recalculation with Updated Data)

- 2 Liquids unloading CH₄ emission estimates increased for 2017 by 11 percent in the current Inventory, compared to
- 3 the previous Inventory. Compared to the previous Inventory, on average across the time series, liquids unloading

4 CH₄ emission estimates increased by less than 0.1 percent. These changes were due to GHGRP submission

5 revisions.

6 Table 3-71: Liquids Unloading National Emissions (metric tons CH₄)

Source	1990	2005	2014	2015	2016	2017	2018
Unloading with Plunger Lifts	NO	125,582	80,402	62,836	59,787	58,617	78,069
Unloading without Plunger Lifts	371,391	247,032	129,520	97,225	67,876	71,173	99,229
Total Emissions	371,391	372,614	209,921	160,061	127,663	129,790	177,298
Previous Estimated Emissions	372,325	373,442	210,784	160,706	130,778	117,379	NA
NO (Not Occurring)							

NA (Not Applicable)

7 Tanks (Recalculation with Updated Data)

- 8 Production tank CO₂ emission estimates decreased for 2017 by 10 percent in the current Inventory, compared to
- 9 the previous Inventory. Compared to the previous Inventory, on average across the time series, liquids unloading
- 10 CH₄ emission estimates increased by 1 percent. These changes were due to GHGRP submission revisions.

11 Table 3-72: Production Segment Storage Tanks National Emissions (metric tons CO₂)

Source	1990	2005	2014	2015	2016	2017	2018
Large Tanks w/Flares	287,644	363,030	1,028,597	1,039,129	1,080,439	500,450	717,643
Large Tanks w/VRU	NO	760	2,782	2,811	2,434	44	53
Large Tanks w/o Control	164,501	88,897	153,447	155,018	902	219	6,623
Small Tanks w/Flares	NO	7,839	28,710	29,004	28,894	20,816	40,765
Small Tanks w/o Flares	5,638	4,300	9,850	9,950	12,388	4,090	8,187
Malfunctioning Separator							
Dump Valves	6	6	15	15	11	468	205
Total Emissions	457,788	464,831	1,223,400	1,235,927	1,125,067	526,086	773,477
Previous Estimate	459,592	466,429	1,227,366	1,239,933	1,128,990	585,339	NA

NO (Not Occurring)

12 HF Gas Well Workovers (Recalculation with Updated Data)

13 Recalculations of HF gas well workover CH₄ emissions resulted in an average decrease of 4 percent across the 1990

to 2017 time series when comparing the current Inventory to the previous Inventory. These changes were due to

15 GHGRP submission revisions.

16 Table 3-73: HF Gas Well Workovers National Emissions (metric tons CH₄)

Source	1990	2005	2014	2015	2016	2017	2018
HF Workovers - Non-REC with							
Venting	25,774	60,903	24,642	1,752	7,530	10,263	2,393
HF Workovers - Non-REC with							
Flaring	365	953	460	80	72	509	799
HF Workovers - REC with Venting	NO	576	569	8,685	6,312	17,005	21,181
HF Workovers - REC with Flaring	NO	4	25	1,658	1,240	3,708	50

NA (Not Applicable)

Total Emissions	26,139	62,437	25,695	12,175	15,155	31,485	24,422
Previous Estimate	26,188	67,717	26,608	13,161	15,551	33,711	NA
NO (Not Occurring)							

NA (Not Applicable)

1 Non-HF Gas Well Workovers (Recalculation with Updated Data)

2 Recalculations of non-HF gas well workover emissions resulted in a 484 percent increase in 2017 CH₄ estimates and

an average increase of 4 percent across the 1990 to 2016 time series when comparing the current Inventory to the

4 previous Inventory. The large increase for HF gas well workover emissions in 2017 results from GHGRP submission

5 revisions.

6 Table 3-74: Non-HF Gas Well Workovers National Emissions (metric tons CH₄)

Source	1990	2005	2014	2015	2016	2017	2018
Non-HF Workovers - vented	484	667	443	532	539	3,484	342
Non-HF Workovers - flared	0	21	2	25	1	0	0
Total Emissions	484	688	444	557	540	3,484	343
Previous Estimate	486	634	427	537	523	597	NA

NA (Not Applicable)

7 Well Counts (Recalculation with Updated Data)

8 For total national well counts, EPA has used a more recent version of the Enverus DrillingInfo data set (Enverus

9 DrillingInfo 2019) to update well counts data in the Inventory. While this is not a significant recalculation (increases

are less than 1 percent across the time series), is the well count dataset is a key input to the Inventory, and results

11 are highlighted here.

12 **Table 3-75: Producing Gas Well Count Data**

Activity	1990	2005	2014	2015	2016	2017	2018
Number of Gas Wells	193,232	346,484	422,701	419,692	419,346	412,601	405,026
Previous Estimate	193,718	346,862	424,308	420,418	419,005	411,450	NA

NA (Not Applicable)

13 In December 2019, EIA released an updated time series of national oil and gas well counts (covering 2000 through

14 2018). EIA estimates 982,371 total producing wells for year 2018. EPA's total well count for this year is 969,212.

15 EPA's well counts in recent time series years are generally 1 percent lower than EIA's. EIA's well counts include side

16 tracks, completions, and recompletions, and therefore are expected to be higher than EPA's which include only

17 producing wells. EPA and EIA use a different threshold for distinguishing between oil versus gas (EIA uses 6

18 mcf/bbl, while EPA uses 100 mcf/bbl), which results in EIA having a lower fraction of oil wells and a higher fraction

19 of gas wells than EPA.

20 Processing

21 Acid Gas Removal (Recalculation with Updated Data)

Acid gas removal unit (AGR) CO₂ emission estimates for 2016 and 2017 increased on average by 2 percent,

23 comparing the current Inventory to the previous Inventory, due to GHGRP submission revisions, where a higher

emission factor was calculated from the GHGRP data. The emission estimates were essentially unchanged across

the 1990 to 2015 time series, comparing the current Inventory to the previous Inventory, with an average increase of 0.1 percent.

27 Table 3-76: AGR National CO₂ Emissions (kt CO₂)

Source	1990	2005	2014	2015	2016	2017	2018

Previous Estimate 28,282 15,320 14,946 14,946 16,481 16,728 NA	Acid Gas Removal	28,282	15,339	14,979	14,979	16,679	17,182	17,451
	Previous Estimate	28,282	15,320	14,946	14,946	16,481	16,728	NA

NA (Not Applicable)

Flares (Recalculation with Updated Data) 1

- 2 Processing segment flare CH₄ emission estimates decreased by 4 percent across the 2011 to 2017 time series in the
- 3 current Inventory. Prior to 2011, flare-specific CH₄ emissions were not estimated. Instead, plant-wide emissions
- 4 were calculated for years prior to 2011. Processing segment flare CH₄ emission estimates increased by
- 5 approximately 15 percent for 2017 in the current Inventory, compared to the previous Inventory. This increase in
- 6 CH₄ emission estimates for 2017 is due to GHGRP submission revisions, where a higher emission factor was
- 7 calculated from the GHGRP data.

Table 3-77: Processing Segment Flares National Emissions (metric tons CH₄) 8

Source	1990	2005	2014	2015	2016	2017	2018
Flares	NO	NE	19,509	19,509	19,988	24,277	26,146
Previous Estimate	NO	NE	21,171	21,171	21,049	21,049	NA
NO (Not Occurring)							
NA (Not Applicable)							
NE (Not estimated)							

Reciprocating Compressors (Recalculation with Updated Data) 9

10 Reciprocating compressor CH₄ emission estimates decreased by 1 percent on average for 2011 to 2017 in the

11 current Inventory and decreased by 5 percent for 2017 in the current Inventory, compared to the previous

12 Inventory. This decrease in the CH₄ emission estimate for 2017 is due to GHGRP submission revisions, where a

13 lower EF (mt CH₄/reciprocating compressor) was calculated from the GHGRP data.

Table 3-78: Processing Segment Reciprocating Compressors National Emissions (metric tons 14

15 CH₄)

Source	1990	2005	2014	2015	2016	2017	2018
Reciprocating Compressors	324,939	NA	67,982	67,982	63,682	64,955	62,574
Previous Estimate	324,939	NA	68,408	68,408	63,351	68,178	NA
NA (Not Applicable)							

NA (Not Applicable)

Blowdowns/Venting (Recalculation with Updated Data) 16

17 Blowdowns and venting CH₄ emission estimates decreased by 2 percent across the 1990 to 2017 time series in the

18 current Inventory and decreased by 20 percent for 2016 and 2017 in the current Inventory, compared to the

19 previous Inventory. This decrease in CH₄ emissions for 2016 and 2017 is due to GHGRP submission revisions, where

20 a lower emission factor (CH₄ from blowdowns/venting per plant) was calculated from the GHGRP data.

21 Table 3-79: Processing Segment Blowdowns/Venting National Emissions (metric tons CH₄)

Source	1990	2005	2014	2015	2016	2017	2018
Blowdowns/Venting	59,507	34,234	34,890	34,890	28,447	29,061	45,499
Previous Estimate	59,507	34,264	34,943	34,943	36,428	36,266	NA

NA (Not Applicable)

1 Transmission and Storage

- 2 There were no methodological updates to the transmission and storage segment, but there were recalculations
- 3 due to updated data that resulted in an average increase in calculated emissions over the time series from this
- 4 segment of 0.04 MMT CO₂ Eq. CH₄ (or 0.7 percent) and less than 0.04 MMT CO₂ (or 18 percent).

5 **Distribution**

- 6 There were no methodological updates to the distribution segment, and recalculations due to updated data
- 7 resulted in average increases in calculated CH₄ and CO₂ emissions over the time series of 0.01 percent.

8 Planned Improvements

9 EPA seeks stakeholder feedback on the improvements noted below for future Inventories.

10 Gathering and Boosting Stations

- 11 EPA updated the G&B station methodology for the public review draft Inventory, incorporating the Zimmerle et al.
- 12 2019 study and subpart W data. Considerations for the methodology were presented at a workshop, and EPA is
- 13 still seeking stakeholder feedback and may refine the update for the final Inventory. See the *G&B Station* memo
- 14 for details on the updates under consideration and specific requests for stakeholder feedback.

15 Offshore Production

- 16 EPA updated the offshore production methodology for the public review draft Inventory, incorporating data from
- 17 BOEM and GHGRP. Detailed information and considerations for various approaches considered for the
- 18 methodology update were presented at a workshop and webinar. EPA may refine the update for the final
- 19 Inventory based on stakeholder feedback. See the *Offshore Production* memo for details on the updates under
- 20 consideration and specific requests for stakeholder feedback. Slides from the November workshop present
- 21 additional considerations regarding major and major complexes and calculating emissions by source.⁸⁸

22 Upcoming Data, and Additional Data that Could Inform the Inventory

- EPA will assess new data received by the EPA Methane Challenge Program on an ongoing basis, which may be used
 to validate or improve existing estimates and assumptions.
- 25 EPA continues to track studies that contain data that may be used to update the Inventory. EPA will also continue
- to assess studies that include and compare both top-down and bottom-up emission estimates, which could lead to
- improved understanding of unassigned high emitters (e.g., identification of emission sources and information on
 frequency of high emitters) as recommended in stakeholder comments.
- 28 frequency of high emitters) as recommended in stakeholder comments.
- EPA also continues to seek new data that could be used to assess or update the estimates in the Inventory. For
 example, stakeholder comments have highlighted areas where additional data that could inform the Inventory are
- 31 currently limited or unavailable:
- Tank malfunction and control efficiency data.
- Activity data and emissions data for production facilities that do not report to GHGRP.
- Natural gas leaks at point of use estimates.
- Anomalous leak events, such as a 2018 well blowout in Ohio.

⁸⁸ See the presentation Updates Under Consideration for Offshore Production Emissions in 2020 GHGI at https://www.epa.gov/ghgemissions/stakeholder-process-natural-gas-and-petroleum-systems-1990-2018-inventory-.

1 EPA will continue to seek available data on these and other sources as part of the process to update the Inventory.

3.8 Abandoned Oil and Gas Wells (CRF Source 2 Categories 1B2a and 1B2b)

3

4 5

6

7

8

9

The term "abandoned wells" encompasses various types of wells:

- Wells with no recent production, and not plugged. Common terms (such as those used in state databases) • might include: inactive, temporarily abandoned, shut-in, dormant, and idle.
- Wells with no recent production and no responsible operator. Common terms might include: orphaned, • deserted, long-term idle, and abandoned.
 - Wells that have been plugged to prevent migration of gas or fluids.

10 The U.S. population of abandoned wells is around 3.2 million (with around 2.6 million abandoned oil wells and 0.6 11 million abandoned gas wells). Abandoned wells emit both CH4 and CO2. Wells that are plugged have much lower 12 average emissions than wells that are unplugged (less than 1 kg CH₄ per well per year, versus over 100 kg CH₄ per

13 well per year). Around a third of the abandoned well population in the United States is plugged. This fraction has

increased over the time series (from around 19 percent in 1990) as more wells fall under regulations and programs 14

15 requiring or promoting plugging of abandoned wells.

Abandoned oil wells. Abandoned oil wells emitted 227 kt CH4 and 5 kt CO2 in 2018. Emissions of both gases 16

17 decreased by 1 percent from 1990, while the total population of abandoned oil wells increased 27 percent.

18 Emissions of both gases decreased by less than 1 percent between 2017 and 2018 as a result of well plugging 19 activities.

20 Abandoned gas wells. Abandoned gas wells emitted 54 kt CH₄ and 2 kt CO₂ in 2018. Emissions of both gases

21 increased by 50 percent from 1990, as the total population of abandoned gas wells increased 79 percent.

22 Emissions of both gases decreased by less than 1 percent between 2017 and 2018 as a result of well plugging

23 activities.

24 Table 3-80: CH₄ Emissions from Abandoned Oil and Gas Wells (MMT CO₂ Eq.)

Activity	1990	2005	2014	2015	2016	2017	2018
Abandoned Oil Wells	5.7	5.9	5.8	5.8	5.8	5.7	5.7
Abandoned Gas Wells	0.9	1.1	1.3	1.3	1.4	1.4	1.4
Total	6.6	6.9	7.1	7.1	7.2	7.1	7.0

Note: Totals may not sum due to independent rounding.

25 Table 3-81: CH₄ Emissions from Abandoned Oil and Gas Wells (kt)

Activity	1990	2005	2014	2015	2016	2017	2018
Abandoned Oil Wells	227	236	232	233	234	227	227
Abandoned Gas Wells	36	43	52	53	55	55	54
Total	263	278	284	286	289	282	281

Note: Totals may not sum due to independent rounding.

Table 3-82: CO₂ Emissions from Abandoned Oil and Gas Wells (MMT CO₂) 26

Activity	1990	2005	2014	2015	2016	2017	2018
Abandoned Oil Wells	+	+	+	+	+	+	+
Abandoned Gas Wells	+	+	+	+	+	+	+
Total	+	+	+	+	+	+	+

+ Does not exceed 0.05 MMT CO_{2.}

1 2

Table 3-83: CO₂ Emissions from Abandoned Oil and Gas Wells (kt)

Activity	1990	2005	2014	2015	2016	2017	2018
Abandoned Oil Wells	5	5	5	5	5	5	5
Abandoned Gas Wells	2	2	2	2	2	2	2
Total	6	7	7	7	7	7	7

Note: Totals may not sum due to independent rounding.

3 Methodology

4 EPA developed abandoned well CH₄ emission factors using data from Kang et al. (2016) and Townsend-Small et al.

5 (2016). Plugged and unplugged abandoned well CH₄ emission factors were developed at the national-level

6 (emission data from Townsend-Small et al.) and for the Appalachia region (using emission data from

7 measurements in Pennsylvania and Ohio conducted by Kang et al. and Townsend-Small et al., respectively). The

8 Appalachia region emissions factors were applied to abandoned wells in states in the Appalachian basin region,

9 and the national-level emission factors were applied to all other abandoned wells.

10 EPA developed abandoned well CO₂ emission factors using the CH₄ emission factors and an assumed ratio of CO₂-

11 to-CH₄ gas content, similar to the approach used to calculate CO₂ emissions for many sources in Petroleum

12 Systems and Natural Gas Systems. For abandoned oil wells, EPA used the Petroleum Systems default production

13 segment associated gas ratio of 0.020 MT CO₂/MT CH₄, which was derived through API TankCalc modeling runs. For

abandoned gas wells, EPA used the Natural Gas Systems default production segment CH₄ and CO₂ gas content

15 values (GRI/EPA 1996, GTI 2001) to develop a ratio of 0.044 MT CO₂/MT CH₄.

16 The total population of abandoned wells over the time series was estimated using historical data and DrillingInfo

data. For the most recent year of the Inventory time series (year 2018), the prior year total counts are used as

18 surrogate data, as the DrillingInfo query approach for the most recent year would likely overestimate abandoned

19 well counts, because many wells might be spud and not reporting production—not because they are

20 dry/abandoned, but due to the time required for completion. The abandoned well population was then split into

21 plugged and unplugged wells by assuming that all abandoned wells were unplugged in 1950, using year-specific

22 Drilling info data to calculate the fraction of abandoned wells plugged in 2016 (31 percent) and 2017 and 2018 (34

percent in both years), and applying linear interpolation between the 1950 value and 2016 value to calculate the

24 plugged fraction for intermediate years. See the memorandum *Inventory of U.S. Greenhouse Gas Emissions and*

25 Sinks 1990-2016: Abandoned Wells in Natural Gas and Petroleum Systems (2018 Abandoned Wells Memo) for

26 details.⁸⁹

27 Abandoned Oil Wells

Table 3-84: Abandoned Oil Wells Activity Data, CH₄ and CO₂ Emissions (metric tons)

Source	1990	2005	2014	2015	2016	2017	2018
Plugged abandoned oil wells	387,506	617,887	759,781	780,434	801,199	882,850	889,068
Unplugged abandoned oil wells	1,688,445	1,789,493	1,784,161	1,792,458	1,800,130	1,750,802	1,744,585
Total Abandoned Oil Wells	2,075,950	2,407,380	2,543,943	2,572,893	2,601,329	2,633,652	2,633,652
Abandoned oil wells in Appalachia	26%	24%	23%	23%	23%	23%	23%

⁸⁹ See <https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems>.

Abandoned oil wells outside of Appalachia	74%	76%	77%	77%	77%	77%	77%
CH₄ from plugged abandoned oil wells (MT)	318	477	564	577	592	652	657
CH₄ from unplugged abandoned oil wells (MT)	226,740	235,212	231,461	232,197	233,191	226,801	225,995
Total CH₄ from Abandoned oil wells (MT)	227,058	235,688	232,025	232,773	233,782	227,453	226,652
Total CO ₂ from Abandoned oil wells (MT)	4,607	4,782	4,708	4,723	4,744	4,615	4,599

1 Abandoned Gas Wells

2 Table 3-85: Abandoned Gas Wells Activity Data, CH₄ and CO₂ Emissions (metric tons)

Source	1990	2005	2014	2015	2016	2017	2018
Plugged abandoned gas wells	60,126	104,652	154,844	162,215	171,979	193,375	194,736
Unplugged abandoned gas wells	261,982	303,089	363,614	372,566	386,402	383,486	382,124
Total Abandoned Gas Wells	322,108	407,741	518,458	534,781	558,381	576,861	576,861
Abandoned gas wells in Appalachia	28%	29%	30%	30%	30%	30%	30%
Abandoned gas wells outside of Appalachia	72%	71%	70%	70%	70%	70%	70%
CH₄ from plugged abandoned gas wells (MT)	53	97	147	155	164	185	186
CH₄ from unplugged abandoned gas wells (MT)	36,199	42,582	51,591	52,919	54,884	54,470	54,276
Total CH₄ from abandoned gas wells (MT)	36,253	42,679	51,738	53,074	55,048	54,654	54,462
Total CO ₂ from abandoned gas wells (MT)	1,589	1,870	2,268	2,326	2,413	2,395	2,387

³ Uncertainty and Time-Series Consistency- TO BE UPDATED ⁴ FOR FINAL INVENTORY REPORT

To characterize uncertainty surrounding estimates of abandoned well emissions, EPA conducted a quantitative
 uncertainty analysis using the IPCC Approach 2 methodology (Monte Carlo simulation technique). See the 2018
 Abandoned Wells Memo for details of the uncertainty analysis methods. EPA used Microsoft Excel's @RISK add-in
 tool to estimate the 95 percent confidence bound around total methane emissions from abandoned oil and gas

wells in year 2017, then applied the calculated bounds to both CH_4 and CO_2 emissions estimates for each

population. The @RISK add-in provides for the specification of probability density functions (PDFs) for key variables

within a computational structure that mirrors the calculation of the inventory estimate. EPA used measurement

data from the Kang et al. (2016) and Townsend-Small et al. (2016) studies to characterize the CH₄ emission factor

PDFs. For activity data inputs (e.g., total count of abandoned wells, split between plugged and unplugged), EPA

assigned default uncertainty bounds of +/- 10 percent based on expert judgment.

- 15 The IPCC guidance notes that in using this method, "some uncertainties that are not addressed by statistical means
- 16 may exist, including those arising from omissions or double counting, or other conceptual errors, or from
- 17 incomplete understanding of the processes that may lead to inaccuracies in estimates developed from models." As
- 18 a result, the understanding of the uncertainty of emission estimates for this category evolves and improves as the
- 19 underlying methodologies and datasets improve. The uncertainty bounds reported below only reflect those
- 20 uncertainties that EPA has been able to quantify and do not incorporate considerations such as modeling

- 1 uncertainty, data representativeness, measurement errors, misreporting or misclassification.
- 2 The results presented below in Table 3-86 provide the 95 percent confidence bound within which actual emissions
- 3 from abandoned oil and gas wells are likely to fall for the year 2017, using the recommended IPCC methodology.
- 4 Abandoned oil well CH₄ emissions in 2017 were estimated to be between 1.0 and 17.9 MMT CO₂ Eq., while
- 5 abandoned gas well CH₄ emissions were estimated to be between 0.2 and 4.2 MMT CO₂ Eq. at a 95 percent
- 6 confidence level. Uncertainty bounds for other years of the time series have not been calculated, but uncertainty is
- 7 expected to vary over the time series.

Table 3-86: Approach 2 Quantitative Uncertainty Estimates for CH₄ and CO₂ Emissions from Petroleum and Natural Gas Systems (MMT CO₂ Eq. and Percent)

Source	Gas	2017 Emission Estimate	Uncertaint	ty Range Relativ	ve to Emission	Estimate ^a			
Jource	Gas	(MMT CO₂ Eq.) ^b	(MMT C						
			Lower	Upper	Lower	Upper			
			Bound	Bound	Bound	Bound			
Abandoned Oil Wells	CH_4	5.6	1.0	17.9	-83%	+219%			
Abandoned Gas Wells	CH_4	1.3	0.2	4.2	-83%	+219%			
Abandoned Oil Wells	CO ₂	0.005	0.001	0.015	-83%	+219%			
Abandoned Gas Wells	CO ₂	0.002	0.0004	0.007	-83%	+219%			

^a Range of emission estimates estimated by applying the 95 percent confidence intervals obtained from the Monte Carlo Simulation analysis conducted for total abandoned oil and gas well CH₄ emissions in year 2017.
 ^b All reported values are rounded after calculation. As a result, lower and upper bounds may not be duplicable from other rounded values as shown in table.

- 10 To calculate a time series of emissions for abandoned wells, EPA developed annual activity data for 1990 through
- 11 2017 by summing an estimate of total abandoned wells not included in recent databases, to an annual estimate of
- 12 abandoned wells in the DrillingInfo data set (with year 2016 estimates used as surrogates for year 2017 data). As
- 13 discussed above, the abandoned well population was split into plugged and unplugged wells by assuming that all
- 14 abandoned wells were unplugged in 1950, using year-specific Drilling info data to calculate the fraction of
- abandoned wells plugged in 2016 and 2017 (31 percent and 34 percent, respectively), and applying linear
- 16 interpolation between the 1950 value and 2016 value to calculate plugged fraction for intermediate years. The
- 17 same emission factors were applied to the corresponding categories for each year of the time series.

18 QA/QC and Verification Discussion

19 The emission estimates in the Inventory are continually being reviewed and assessed to determine whether

20 emission factors and activity factors accurately reflect current industry practices. A QA/QC analysis was performed

for data gathering and input, documentation, and calculation. QA/QC checks are consistently conducted to

22 minimize human error in the model calculations. EPA performs a thorough review of information associated with

23 new studies to assess whether the assumptions in the Inventory are consistent with industry practices and

24 whether new data is available that could be considered for updates to the estimates. As in previous years, EPA

- 25 conducted early engagement and communication with stakeholders on updates prior to public review. EPA held a
- 26 stakeholder webinar on greenhouse gas data for oil and gas in September of 2019, and a workshop in November of
- 27 2019.

28 Recalculations

29 The counts of national abandoned wells were recalculated across the time series to use the latest DrillingInfo data,

- 30 which resulted in minor changes to the total abandoned well population and the allocation between petroleum
- and natural gas systems. The minor changes resulted from changes to the year-specific data for 1990 to 2017 as
- 32 processed from DrillingInfo, which led EPA to recalculate the estimate of historical wells not included in the
- 33 DrillingInfo data set (which decreased from 1,108,648 to 1,075,849 historical wells not included in DrillingInfo).
- Compared with the previous Inventory, counts of abandoned oil and gas wells are on average 0.3 percent and 0.8

- 1 percent, respectively, higher over 1990 to 2017. The impact was largest in recent years, with abandoned oil and
- 2 gas well counts recalculated to be 1.4 percent and 3.1 percent, respectively, higher for 2017 comparing the
- 3 previous Inventory values to the current Inventory values; this change is primarily due to the use of year-specific
- data for year 2017 (as the previous Inventory used year 2016 estimates as surrogate for year 2017 per the
- 5 established methodology described above).

6 Planned Improvements

- 7 The abandoned wells source was added to the Inventory in 2018. EPA will continue to assess new data and
- 8 stakeholder feedback on considerations (such as disaggregation of the well population into regions other than

9 Appalachia and non-Appalachia, and emission factor data from regions not included in the measurement studies

- 10 on which current emission factors are based) to improve the abandoned well count estimates and emission
- 11 factors.

3.9 Energy Sources of Precursor Greenhouse Gas Emissions

14 In addition to the main greenhouse gases addressed above, energy-related activities are also sources of precursor

15 gases. The reporting requirements of the UNFCCC⁹⁰ request that information be provided on precursor

16 greenhouse gases, which include carbon monoxide (CO), nitrogen oxides (NO_x), non-CH₄ volatile organic

17 compounds (NMVOCs), and sulfur dioxide (SO₂). These gases are not direct greenhouse gases, but indirectly affect

18 terrestrial radiation absorption by influencing the formation and destruction of tropospheric and stratospheric 19 ozone, or, in the case of SO₂, by affecting the absorptive characteristics of the atmosphere. Additionally, some of

19 ozone, or, in the case of SO₂, by affecting the absorptive characteristics of the atmosphere. Additionally, some of 20 these gases may react with other chemical compounds in the atmosphere to form compounds that are greenhouse

gases. Total emissions of NO_x, CO, and NMVOCs from energy-related activities from 1990 to 2018 are reported in

Table 3-87. Sulfur dioxide emissions are presented in Section 2.30f the Trends chapter and Annex 6.3.

23 Table 3-87: NO_x, CO, and NMVOC Emissions from Energy-Related Activities (kt)

Gas/Activity	1990	2005	2014	2015	2016	2017	2018
NO _x	21,106	16,602	10,198	9,523	9,037	8 <i>,</i> 555	8,154
Mobile Fossil Fuel Combustion	10,862	10,295	6,138	5,740	5,413	5,051	4,689
Stationary Fossil Fuel Combustion	10,023	5,858	3,313	3,036	2,876	2,757	2,719
Oil and Gas Activities	139	321	650	650	650	650	650
Waste Combustion	82	128	97	97	97	97	97
International Bunker Fuels ^a	1,956	1,704	1,211	1,363	1,470	1,481	1,462
со	125,640	64,985	40,234	39,258	36,885	35,211	33,537
Mobile Fossil Fuel Combustion	119,360	58,615	34,135	33 <i>,</i> 159	30,786	29,112	27,438
Stationary Fossil Fuel Combustion	5,000	4,648	3,686	3,686	3,686	3,686	3,686
Waste Combustion	978	1,403	1,776	1,776	1,776	1,776	1,776
Oil and Gas Activities	302	318	637	637	637	637	637
International Bunker Fuels ^a	103	133	137	144	150	156	160
NMVOCs	12,620	7,191	7,247	7,082	6,835	6,629	6,423
Mobile Fossil Fuel Combustion	10,932	5,724	3,754	3 <i>,</i> 589	3,342	3,137	2,931
Oil and Gas Activities	554	510	2,853	2,853	2,853	2,853	2,853
Stationary Fossil Fuel Combustion	912	716	497	497	497	497	497
Waste Combustion	222	241	143	143	143	143	143
International Bunker Fuels ^a	57	54	42	47	50	51	51

⁹⁰ See <http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>.

^a These values are presented for informational purposes only and are not included in totals. Note: Totals may not sum due to independent rounding.

1 Methodology

- 2 Emission estimates for 1990 through 2018 were obtained from data published on the National Emission Inventory
- 3 (NEI) Air Pollutant Emission Trends web site (EPA 2019), and disaggregated based on EPA (2003). Emissions were
- 4 calculated either for individual categories or for many categories combined, using basic activity data (e.g., the
- 5 amount of raw material processed) as an indicator of emissions. National activity data were collected for individual
- 6 applications from various agencies.
- 7 Activity data were used in conjunction with emission factors, which together relate the quantity of emissions to
- 8 the activity. Emission factors are generally available from the EPA's Compilation of Air Pollutant Emission Factors,
- 9 AP-42 (EPA 1997). The EPA currently derives the overall emission control efficiency of a source category from a
- 10 variety of information sources, including published reports, the 1985 National Acid Precipitation and Assessment
- 11 Program emissions inventory, and other EPA databases.

12 Uncertainty and Time-Series Consistency

- Uncertainties in these estimates are partly due to the accuracy of the emission factors used and accurate estimates
 of activity data. A quantitative uncertainty analysis was not performed.
- 15 Methodological recalculations were applied to the entire time series to ensure time-series consistency from 1990
- 16 through 2018. Details on the emission trends through time are described in more detail in the Methodology
- 17 section, above.

3.10 International Bunker Fuels (CRF Source Category 1: Memo Items)

20 Emissions resulting from the combustion of fuels used for international transport activities, termed international

21 bunker fuels under the UNFCCC, are not included in national emission totals, but are reported separately based

22 upon location of fuel sales. The decision to report emissions from international bunker fuels separately, instead of

allocating them to a particular country, was made by the Intergovernmental Negotiating Committee in establishing

- the Framework Convention on Climate Change.⁹¹ These decisions are reflected in the IPCC methodological
- 25 guidance, including IPCC (2006), in which countries are requested to report emissions from ships or aircraft that
- 26 depart from their ports with fuel purchased within national boundaries and are engaged in international transport
- 27 separately from national totals (IPCC 2006).⁹²
- 28 Two transport modes are addressed under the IPCC definition of international bunker fuels: aviation and marine.⁹³
- 29 Greenhouse gases emitted from the combustion of international bunker fuels, like other fossil fuels, include CO₂,
- 30 CH₄ and N₂O for marine transport modes, and CO₂ and N₂O for aviation transport modes. Emissions from ground

⁹¹ See report of the Intergovernmental Negotiating Committee for a Framework Convention on Climate Change on the work of its ninth session, held at Geneva from 7 to 18 February 1994 (A/AC.237/55, annex I, para. 1c).

⁹² Note that the definition of international bunker fuels used by the UNFCCC differs from that used by the International Civil Aviation Organization.

⁹³ Most emission related international aviation and marine regulations are under the rubric of the International Civil Aviation Organization (ICAO) or the International Maritime Organization (IMO), which develop international codes, recommendations, and conventions, such as the International Convention of the Prevention of Pollution from Ships (MARPOL).

- 1 transport activities—by road vehicles and trains—even when crossing international borders are allocated to the
- 2 country where the fuel was loaded into the vehicle and, therefore, are not counted as bunker fuel emissions.
- 3 The 2006 IPCC Guidelines distinguish between three different modes of air traffic: civil aviation, military aviation,
- 4 and general aviation. Civil aviation comprises aircraft used for the commercial transport of passengers and freight,
- 5 military aviation comprises aircraft under the control of national armed forces, and general aviation applies to
- 6 recreational and small corporate aircraft. The 2006 IPCC Guidelines further define international bunker fuel use
- 7 from civil aviation as the fuel combusted for civil (e.g., commercial) aviation purposes by aircraft arriving or
- 8 departing on international flight segments. However, as mentioned above, and in keeping with the 2006 IPCC
- 9 *Guidelines,* only the fuel purchased in the United States and used by aircraft taking-off (i.e., departing) from the
- 10 United States are reported here. The standard fuel used for civil and military aviation is kerosene-type jet fuel,
- 11 while the typical fuel used for general aviation is aviation gasoline.⁹⁴
- 12 Emissions of CO₂ from aircraft are essentially a function of fuel consumption. Nitrous oxide emissions also depend
- 13 upon engine characteristics, flight conditions, and flight phase (i.e., take-off, climb, cruise, decent, and landing).
- 14 Recent data suggest that little or no CH₄ is emitted by modern engines (Anderson et al. 2011), and as a result, CH₄
- 15 emissions from this category are reported as zero. In jet engines, N₂O is primarily produced by the oxidation of
- 16 atmospheric nitrogen, and the majority of emissions occur during the cruise phase.
- 17 International marine bunkers comprise emissions from fuels burned by ocean-going ships of all flags that are
- 18 engaged in international transport. Ocean-going ships are generally classified as cargo and passenger carrying,
- 19 military (i.e., U.S. Navy), fishing, and miscellaneous support ships (e.g., tugboats). For the purpose of estimating
- 20 greenhouse gas emissions, international bunker fuels are solely related to cargo and passenger carrying vessels,
- 21 which is the largest of the four categories, and military vessels. Two main types of fuels are used on sea-going
- vessels: distillate diesel fuel and residual fuel oil. Carbon dioxide is the primary greenhouse gas emitted from
- 23 marine shipping.
- 24 Overall, aggregate greenhouse gas emissions in 2018 from the combustion of international bunker fuels from both
- 25 aviation and marine activities were 123.3 MMT CO₂ Eq., or 18 percent above emissions in 1990 (see Table 3-88 and
- Table 3-89). Emissions from international flights and international shipping voyages departing from the United
- 27 States have increased by 112.4 percent and decreased by 36.9 percent, respectively, since 1990. The majority of
- 28 these emissions were in the form of CO₂; however, small amounts of CH₄ (from marine transport modes) and N₂O
- 29 were also emitted.

30 Table 3-88: CO₂, CH₄, and N₂O Emissions from International Bunker Fuels (MMT CO₂ Eq.)

Gas/Mode	1990	2005	2014	2015	2016	2017	2018
CO ₂	103.5	113.1	103.4	110.9	116.6	120.1	122.1
Aviation	38.0	60.1	69.6	71.9	74.1	77.7	80.8
Commercial	30.0	55.6	66.3	68.6	70.8	74.5	77.7
Military	8.1	4.5	3.3	3.3	3.3	3.2	3.1
Marine	65.4	53.0	33.8	38.9	42.5	42.4	41.3
CH₄	0.2	0.1	0.1	0.1	0.1	0.1	0.1
Aviation ^a	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Marine	0.2	0.1	0.1	0.1	0.1	0.1	0.1
N ₂ O	0.9	1.0	0.9	1.0	1.0	1.1	1.1
Aviation	0.4	0.6	0.7	0.7	0.7	0.7	0.8
Marine	0.5	0.4	0.3	0.3	0.3	0.3	0.3
Total	104.5	114.2	104.4	112.0	117.7	121.3	123.3

 $^{\rm a}\,CH_4$ emissions from aviation are estimated to be zero.

Notes: Totals may not sum due to independent rounding. Includes aircraft cruise altitude emissions.

⁹⁴ Naphtha-type jet fuel was used in the past by the military in turbojet and turboprop aircraft engines.

Gas/Mode	1990	2005	2014	2015	2016	2017	2018
CO2	103,463	113,139	103,400	110,887	116,594	120,107	122,088
Aviation	38,034	60,125	69,609	71,942	74,059	77,696	80,788
Marine	65,429	53,014	33,791	38,946	42,535	42,412	41,300
CH₄	7	5	3	4	4	4	4
Aviation ^a	0	0	0	0	0	0	0
Marine	7	5	3	4	4	4	4
N ₂ O	3	3	3	3	3	4	4
Aviation	1	2	2	2	2	3	3
Marine	2	1	1	1	1	1	1

1 Table 3-89: CO₂, CH₄, and N₂O Emissions from International Bunker Fuels (kt)

^a CH₄ emissions from aviation are estimated to be zero.

Notes: Totals may not sum due to independent rounding. Includes aircraft cruise altitude emissions.

2 Methodology

3 Emissions of CO₂ were estimated by applying C content and fraction oxidized factors to fuel consumption activity

4 data. This approach is analogous to that described under Section 3.1 – CO₂ from Fossil Fuel Combustion. Carbon

5 content and fraction oxidized factors for jet fuel, distillate fuel oil, and residual fuel oil were taken directly from EIA

6 and are presented in Annex 2.1, Annex 2.2, and Annex 3.8 of this Inventory. Density conversions were taken from

7 Chevron (2000), ASTM (1989), and USAF (1998). Heat content for distillate fuel oil and residual fuel oil were taken

8 from EIA (2019) and USAF (1998), and heat content for jet fuel was taken from EIA (2019).

9 A complete description of the methodology and a listing of the various factors employed can be found in Annex

- 2.1. See Annex 3.8 for a specific discussion on the methodology used for estimating emissions from internationalbunker fuel use by the U.S. military.
- 12 Emission estimates for CH₄ and N₂O were calculated by multiplying emission factors by measures of fuel
- consumption by fuel type and mode. Emission factors used in the calculations of CH₄ and N₂O emission were
- obtained from the 2006 IPCC Guidelines (IPCC 2006). For aircraft emissions, the following value, in units of grams of
- 15 pollutant per kilogram of fuel consumed (g/kg), was employed: 0.1 for N₂O (IPCC 2006). For marine vessels
- 16 consuming either distillate diesel or residual fuel oil the following values (g/MJ), were employed: 0.32 for CH₄ and
- 17 0.08 for N₂O. Activity data for aviation included solely jet fuel consumption statistics, while the marine mode
- 18 included both distillate diesel and residual fuel oil.
- 19 Activity data on domestic and international aircraft fuel consumption were developed by the U.S. Federal Aviation
- 20 Administration (FAA) using radar-informed data from the FAA Enhanced Traffic Management System (ETMS) for
- 21 1990 and 2000 through 2018 as modeled with the Aviation Environmental Design Tool (AEDT). This bottom-up
- 22 approach is built from modeling dynamic aircraft performance for each flight occurring within an individual
- calendar year. The analysis incorporates data on the aircraft type, date, flight identifier, departure time, arrival
- time, departure airport, arrival airport, ground delay at each airport, and real-world flight trajectories. To generate
- results for a given flight within AEDT, the radar-informed aircraft data is correlated with engine and aircraft
- 26 performance data to calculate fuel burn and exhaust emissions. Information on exhaust emissions for in-
- production aircraft engines comes from the International Civil Aviation Organization (ICAO) Aircraft Engine
 Emissions Databank (EDB). This bottom-up approach is in accordance with the Tier 3B method from the 2006 IPCC
- 28 Emissions Databank (EDB). This bottom-up approach is
 29 *Guidelines* (IPCC 2006).
- 30 International aviation CO₂ estimates for 1990 and 2000 through 2018 were obtained directly from FAA's AEDT
- 31 model (FAA 2019). The radar-informed method that was used to estimate CO₂ emissions for commercial aircraft
- for 1990 and 2000 through 2018 was not possible for 1991 through 1999 because the radar dataset was not
- available for years prior to 2000. FAA developed Official Airline Guide (OAG) schedule-informed inventories
- 34 modeled with AEDT and great circle trajectories for 1990, 2000, and 2010. Because fuel consumption and CO₂

- 1 emission estimates for years 1991 through 1999 are unavailable, consumption estimates for these years were
- 2 calculated using fuel consumption estimates from the Bureau of Transportation Statistics (DOT 1991 through
- 3 2013), adjusted based on 2000 through 2005 data. See Annex 3.3 for more information on the methodology for
- 4 estimating emissions from commercial aircraft jet fuel consumption.
- 5 Data on U.S. Department of Defense (DoD) aviation bunker fuels and total jet fuel consumed by the U.S. military
- was supplied by the Office of the Under Secretary of Defense (Installations and Environment), DoD. Estimates of
 the percentage of each Service's total operations that were international operations were developed by DoD.
- the percentage of each Service's total operations that were international operations were developed by DoD.
 Military aviation bunkers included international operations, operations conducted from naval vessels at sea, and
- operations conducted from U.S. installations principally over international water in direct support of military
- 10 operations at sea. Military aviation bunker fuel emissions were estimated using military fuel and operations data
- synthesized from unpublished data from DoD's Defense Logistics Agency Energy (DLA Energy 2019). Together, the
- 12 data allow the quantity of fuel used in military international operations to be estimated. Densities for each jet fuel
- type were obtained from a report from the U.S. Air Force (USAF 1998). Final jet fuel consumption estimates are
- 14 presented in Table 3-90 See Annex 3.8 for additional discussion of military data.

15 Table 3-90: Aviation Jet Fuel Consumption for International Transport (Million Gallons)

Nationality	1990	2005	2014	2015	2016	2017	2018
U.S. and Foreign Carriers	3,222	5,983	7,126	7,383	7,610	8,011	8,352
U.S. Military	862	462	339	341	333	326	315
Total	4,084	6,445	7,465	7,725	7,943	8,338	8,667

Note: Totals may not sum due to independent rounding.

16 In order to quantify the civilian international component of marine bunker fuels, activity data on distillate diesel

and residual fuel oil consumption by cargo or passenger carrying marine vessels departing from U.S. ports were

collected for individual shipping agents on a monthly basis by the U.S. Customs and Border Protection. This

19 information was then reported in unpublished data collected by the Foreign Trade Division of the U.S. Department

of Commerce's Bureau of the Census (DOC 1991 through 2019) for 1990 through 2001, 2007 through 2018, and

21 the Department of Homeland Security's *Bunker Report* for 2003 through 2006 (DHS 2008). Fuel consumption data

for 2002 was interpolated due to inconsistencies in reported fuel consumption data. Activity data on distillate

diesel consumption by military vessels departing from U.S. ports were provided by DLA Energy (2019). The total

24 amount of fuel provided to naval vessels was reduced by 21 percent to account for fuel used while the vessels

25 were not-underway (i.e., in port). Data on the percentage of steaming hours underway versus not-underway were

26 provided by the U.S. Navy. These fuel consumption estimates are presented in Table 3-91.

27 Table 3-91: Marine Fuel Consumption for International Transport (Million Gallons)

Fuel Type	1990	2005	2014	2015	2016	2017	2018
Residual Fuel Oil	4,781	3,881	2,466	2,718	3,011	2,975	2,790
Distillate Diesel Fuel & Other	617	444	261	492	534	568	684
U.S. Military Naval Fuels	522	471	331	326	314	307	285
Total	5,920	4,796	3 <i>,</i> 058	3,536	3,858	3,850	3,759

Note: Totals may not sum due to independent rounding.

28 Uncertainty and Time-Series Consistency

29 Emission estimates related to the consumption of international bunker fuels are subject to the same uncertainties

30 as those from domestic aviation and marine mobile combustion emissions; however, additional uncertainties

result from the difficulty in collecting accurate fuel consumption activity data for international transport activities

1 separate from domestic transport activities.⁹⁵ For example, smaller aircraft on shorter routes often carry sufficient

2 fuel to complete several flight segments without refueling in order to minimize time spent at the airport gate or

3 take advantage of lower fuel prices at particular airports. This practice, called tankering, when done on

4 international flights, complicates the use of fuel sales data for estimating bunker fuel emissions. Tankering is less

common with the type of large, long-range aircraft that make many international flights from the United States,
however. Similar practices occur in the marine shipping industry where fuel costs represent a significant portion of

overall operating costs and fuel prices vary from port to port, leading to some tankering from ports with low fuel

8 costs.

9 Uncertainties exist with regard to the total fuel used by military aircraft and ships, and in the activity data on 10 military operations and training that were used to estimate percentages of total fuel use reported as bunker fuel 11 emissions. Total aircraft and ship fuel use estimates were developed from DoD records, which document fuel sold 12 to the Navy and Air Force from the Defense Logistics Agency. These data may slightly over or under estimate actual 13 total fuel use in aircraft and ships because each Service may have procured fuel from, and/or may have sold to, traded with, and/or given fuel to other ships, aircraft, governments, or other entities. There are uncertainties in 14 15 aircraft operations and training activity data. Estimates for the quantity of fuel actually used in Navy and Air Force 16 flying activities reported as bunker fuel emissions had to be estimated based on a combination of available data 17 and expert judgment. Estimates of marine bunker fuel emissions were based on Navy vessel steaming hour data, 18 which reports fuel used while underway and fuel used while not underway. This approach does not capture some 19 voyages that would be classified as domestic for a commercial vessel. Conversely, emissions from fuel used while 20 not underway preceding an international voyage are reported as domestic rather than international as would be 21 done for a commercial vessel. There is uncertainty associated with ground fuel estimates for 1997 through 2001. 22 Small fuel quantities may have been used in vehicles or equipment other than that which was assumed for each 23 fuel type.

24 There are also uncertainties in fuel end-uses by fuel type, emissions factors, fuel densities, diesel fuel sulfur

content, aircraft and vessel engine characteristics and fuel efficiencies, and the methodology used to back-

calculate the data set to 1990 using the original set from 1995. The data were adjusted for trends in fuel use based

on a closely correlating, but not matching, data set. All assumptions used to develop the estimate were based on

28 process knowledge, department and military service data, and expert judgments. The magnitude of the potential

errors related to the various uncertainties has not been calculated, but is believed to be small. The uncertainties associated with future military bunker fuel emission estimates could be reduced through additional data

31 collection.

32 Although aggregate fuel consumption data have been used to estimate emissions from aviation, the recommended

method for estimating emissions of gases other than CO_2 in the 2006 IPCC Guidelines (IPCC 2006) is to use data by

34 specific aircraft type, number of individual flights and, ideally, movement data to better differentiate between 35 domestic and international aviation and to facilitate estimating the effects of changes in technologies. The IPCC

domestic and international aviation and to facilitate estimating the effects of changes in technologies. The IPCC
 also recommends that cruise altitude emissions be estimated separately using fuel consumption data, while

landing and take-off (LTO) cycle data be used to estimate near-ground level emissions of gases other than CO_2 .⁹⁶

38 There is also concern regarding the reliability of the existing DOC (1991 through 2019) data on marine vessel fuel

39 consumption reported at U.S. customs stations due to the significant degree of inter-annual variation.

⁹⁵ See uncertainty discussions under section 3.1 Carbon Dioxide Emissions from Fossil Fuel Combustion.

⁹⁶ U.S. aviation emission estimates for CO, NO_x, and NMVOCs are reported by EPA's National Emission Inventory (NEI) Air Pollutant Emission Trends website, and reported under the Mobile Combustion section. It should be noted that these estimates are based solely upon LTO cycles and consequently only capture near ground-level emissions, which are more relevant for air quality evaluations. These estimates also include both domestic and international flights. Therefore, estimates reported under the Mobile Combustion section overestimate IPCC-defined domestic CO, NO_x, and NMVOC emissions by including landing and take-off (LTO) cycles by aircraft on international flights, but underestimate because they do not include emissions from aircraft on domestic flight segments at cruising altitudes.

- 1 Methodological recalculations were applied to the entire time series to ensure time-series consistency from 1990
- 2 through 2018. Details on the emission trends through time are described in more detail in the Methodology
- 3 section, above.

4 **QA/QC and Verification**

- 5 In order to ensure the quality of the emission estimates from international bunker fuels, General (IPCC Tier 1) and
- 6 category-specific (Tier 2) Quality Assurance/Quality Control (QA/QC) procedures were implemented consistent
- 7 with the U.S. Inventory QA/QC plan outlined in Annex 8. The Tier 2 procedures that were implemented involved
- 8 checks specifically focusing on the activity data and emission factor sources and methodology used for estimating
- 9 CO₂, CH₄, and N₂O emissions from international bunker fuels in the United States. Emission totals for the different
- 10 sectors and fuels were compared and trends were investigated. No corrective actions were necessary.

11 Planned Improvements

- 12 A longer term effort is underway to consider the feasibility of including data from a broader range of domestic and
- 13 international sources for bunker fuels. Potential sources include the International Maritime Organization (IMO)
- 14 and their ongoing greenhouse gas analysis work, data from the U.S. Coast Guard on vehicle operation currently
- 15 used in criteria pollutant modeling and data from the International Energy Agency.

3.11 Wood Biomass and Biofuels Consumption (CRF Source Category 1A)

The combustion of biomass fuels such as wood, charcoal, and wood waste and biomass-based fuels such as 18 19 ethanol, biogas, and biodiesel generates CO₂ in addition to CH₄ and N₂O already covered in this chapter. In line 20 with the reporting requirements for inventories submitted under the UNFCCC, CO₂ emissions from biomass 21 combustion have been estimated separately from fossil fuel CO₂ emissions and are not directly included in the 22 energy sector contributions to U.S. totals. In accordance with IPCC methodological guidelines, any such emissions 23 are calculated by accounting for net carbon (C) fluxes from changes in biogenic C reservoirs in wooded or crop 24 lands. For a more complete description of this methodological approach, see the Land Use, Land-Use Change, and 25 Forestry chapter (Chapter 6), which accounts for the contribution of any resulting CO₂ emissions to U.S. totals 26 within the Land Use, Land-Use Change, and Forestry sector's approach.

- 27 Therefore, CO₂ emissions from wood biomass and biofuel consumption are not included specifically in summing
- 28 energy sector totals. However, they are presented here for informational purposes and to provide detail on wood
- 29 biomass and biofuels consumption.
- 30 In 2018, total CO₂ emissions from the burning of woody biomass in the industrial, residential, commercial, and
- electric power sectors were approximately 229.1 MMT CO₂ Eq. (229,085 kt) (see Table 3-92 and Table 3-93). As the
- 32 largest consumer of woody biomass, the industrial sector was responsible for 63.0 percent of the CO₂ emissions
- from this source. The residential sector was the second largest emitter, constituting 23.3 percent of the total, while
- 34 the commercial and electric power sectors accounted for the remainder.

35 Table 3-92: CO₂ Emissions from Wood Consumption by End-Use Sector (MMT CO₂ Eq.)

End-Use Sector	1990	2005	2014	2015	2016	2017	2018
Industrial	135.3	136.3	140.3	138.5	138.3	144.5	144.3
Residential	59.8	44.3	59.7	52.9	46.2	44.6	53.3
Commercial	6.8	7.2	7.9	8.2	8.6	8.6	8.7
Electric Power	13.3	19.1	25.9	25.1	23.1	23.6	22.8
Total	215.2	206.9	233.8	224.7	216.3	221.4	229.1

Note: Totals may not sum due to independent rounding.

End-Use Sector	1990	2005	2014	2015	2016	2017	2018
Industrial	135,348	136,269	140,331	138,537	138,339	144,502	144,285
Residential	59,808	44,340	59,657	52,872	46,180	44,649	53,336
Commercial	6,779	7,218	7,867	8,176	8,635	8,634	8,669
Electric Power	13,252	19,074	25,908	25,146	23,140	23,647	22,795
Total	215,186	206,901	233,762	224,730	216,293	221,432	229,085

1 Table 3-93: CO₂ Emissions from Wood Consumption by End-Use Sector (kt)

Note: Totals may not sum due to independent rounding.

2 The transportation sector is responsible for most of the fuel ethanol consumption in the United States. Ethanol

3 used for fuel is currently produced primarily from corn grown in the Midwest, but it can be produced from a

4 variety of biomass feedstocks. Most ethanol for transportation use is blended with gasoline to create a 90 percent

5 gasoline, 10 percent by volume ethanol blend known as E-10 or gasohol.

6 In 2018, the United States transportation sector consumed an estimated 1,131.6 trillion Btu of ethanol (95 percent

7 of total), and as a result, produced approximately 77.5 MMT CO₂ Eq. (77,468 kt) (see Table 3-94 and Table 3-95) of

8 CO₂ emissions. Smaller quantities of ethanol were also used in the industrial and commercial sectors. Ethanol fuel

9 production and consumption has grown significantly since 1990 due to the favorable economics of blending

10 ethanol into gasoline and federal policies that have encouraged use of renewable fuels.

11

12 Table 3-94: CO₂ Emissions from Ethanol Consumption (MMT CO₂ Eq.)

End-Use Sector	1990	2005	2014	2015	2016	2017	2018
Transportation ^a	4.1	21.6	74.0	74.2	76.9	77.7	77.5
Industrial	0.1	1.2	1.6	1.9	1.8	1.9	1.9
Commercial	0.1	0.2	0.4	2.8	2.6	2.5	2.6
Total	4.2	22.9	76.1	78.9	81.2	82.1	81.9

^a See Annex 3.2, Table A-98 for additional information on transportation consumption of these fuels. Note: Totals may not sum due to independent rounding.

13 Table 3-95: CO₂ Emissions from Ethanol Consumption (kt)

End-Use Sector	1990	2005	2014	2015	2016	2017	2018
Transportation ^a	4,059	21,616	74,006	74,187	76,903	77,681	77,468
Industrial	105	1,176	1,647	1,931	1,789	1,863	1,881
Commercial	63	151	422	2,816	2,558	2,543	2,568
Total	4,227	22,943	76,075	78,934	81,250	82,088	81,917

^a See Annex 3.2, Table A-98 for additional information on transportation consumption of these fuels. Note: Totals may not sum due to independent rounding.

14 The transportation sector is assumed to be responsible for all of the biodiesel consumption in the United States

15 (EIA 2019a). Biodiesel is currently produced primarily from soybean oil, but it can be produced from a variety of

16 biomass feedstocks including waste oils, fats and greases. Biodiesel for transportation use appears in low-level

blends (less than 5 percent) with diesel fuel, high-level blends (between 6 and 20 percent) with diesel fuel, and 100

18 percent biodiesel (EIA 2019b).

19 In 2018, the United States consumed an estimated 242.9 trillion Btu of biodiesel, and as a result, produced

20 approximately 17.9 MMT CO₂ Eq. (17,936 kt) (see Table 3-96 and Table 3-97) of CO₂ emissions. Biodiesel

21 production and consumption has grown significantly since 2001 due to the favorable economics of blending

biodiesel into diesel and federal policies that have encouraged use of renewable fuels (EIA 2019b). There was no

23 measured biodiesel consumption prior to 2001 EIA (2019a).

1 Table 3-96: CO₂ Emissions from Biodiesel Consumption (MMT CO₂ Eq.)

End-Use Sector	1990	2005	2014	2015	2016	2017	2018
Transportation ^a	NO	0.9	13.3	14.1	19.6	18.7	17.9
Total	NO	0.9	13.3	14.1	19.6	18.7	17.9

NO (Not Occurring)

^a See Annex 3.2, Table A-98 for additional information on transportation consumption of these fuels. Note: Totals may not sum due to independent rounding.

2 Table 3-97: CO₂ Emissions from Biodiesel Consumption (kt)

End-Use Sector	1990	2005	2014	2015	2016	2017	2018
Transportation ^a	NO	856	13,349	14,077	19,648	18,705	17,936
Total	NO	856	13,349	14,077	19,648	18,705	17,936

NO (Not Occurring)

^a See Annex 3.2, Table A-98 for additional information on transportation consumption of these fuels. Note: Totals may not sum due to independent rounding.

3 Methodology

4 Woody biomass emissions were estimated by applying two gross heat contents from EIA (Lindstrom 2006) to U.S.

5 consumption data (EIA 2019a) (see Table 3-98), provided in energy units for the industrial, residential, commercial,

6 and electric power sectors. One heat content (16.95 MMBtu/MT wood and wood waste) was applied to the

7 industrial sector's consumption, while the other heat content (15.43 MMBtu/MT wood and wood waste) was

8 applied to the consumption data for the other sectors. An EIA emission factor of 0.434 MT C/MT wood (Lindstrom

9 2006) was then applied to the resulting quantities of woody biomass to obtain CO₂ emission estimates. The woody

10 biomass is assumed to contain black liquor and other wood wastes, have a moisture content of 12 percent, and

11 undergo complete combustion to be converted into CO₂.

12 The amount of ethanol allocated across the transportation, industrial, and commercial sectors was based on the

13 sector allocations of ethanol-blended motor gasoline. The sector allocations of ethanol-blended motor gasoline

were determined using a bottom-up analysis conducted by EPA, as described in the Methodology section of 3.1
 Fossil Fuel Combustion. Total U.S. ethanol consumption from EIA (2019a) was allocated to individual sectors using

15 Fossil Fuel Combustion. Total U.S. ethanol consumption from EIA (2019a) was allocated to individual sectors using 16 the same sector allocations as ethanol-blended motor gasoline. The emissions from ethanol consumption were

calculated by applying an emission factor of 18.67 MMT C/QBtu (EPA 2010) to adjusted ethanol consumption

estimates (see Table 3-99). The emissions from biodiesel consumption were calculated by applying an emission

19 factor of 20.1 MMT C/QBtu (EPA 2010) to U.S. biodiesel consumption estimates that were provided in energy units

20 (EIA 2019a) (see Table 3-100).⁹⁷

⁹⁷ CO₂ emissions from biodiesel do not include emissions associated with the C in the fuel that is from the methanol used in the process. Emissions from methanol use and combustion are assumed to be accounted for under Non-Energy Use of Fuels. See Annex 2.3 – Methodology for Estimating Carbon Emitted from Non-Energy Uses of Fossil Fuels.

1 Table 3-98: Woody Biomass Consumption by Sector (Trillion Btu)

End-Use Sector	1990	2005	2014	2015	2016	2017	2018
Industrial	1,441.9	1,451.7	1,495.0	1,475.9	1,473.8	1,539.4	1,537.1
Residential	580.0	430.0	578.5	512.7	447.8	433.0	517.2
Commercial	65.7	70.0	76.3	79.3	83.7	83.7	84.1
Electric Power	128.5	185.0	251.3	243.9	224.4	229.3	221.1
Total	2,216.2	2,136.7	2,401.1	2,311.8	2,229.8	2,285.5	2,359.5

Note: Totals may not sum due to independent rounding.

2 Table 3-99: Ethanol Consumption by Sector (Trillion Btu)

				2016	2017	2018
59.3	315.8	1,081.1	1,083.7	1,123.4	1,134.8	1,131.6
1.5	17.2	24.1	28.2	26.1	27.2	27.5
0.9	2.2	6.2	41.1	37.4	37.2	37.5
61.7	335.1	1,111.3	1,153.1	1,186.9	1,199.1	1,196.6
	1.5 0.9 61.7	1.5 17.2 0.9 2.2 61.7 335.1	1.5 17.2 24.1 0.9 2.2 6.2	1.5 17.2 24.1 28.2 0.9 2.2 6.2 41.1 61.7 335.1 1,111.3 1,153.1	1.5 17.2 24.1 28.2 26.1 0.9 2.2 6.2 41.1 37.4 61.7 335.1 1,111.3 1,153.1 1,186.9	1.5 17.2 24.1 28.2 26.1 27.2 0.9 2.2 6.2 41.1 37.4 37.2 61.7 335.1 1,111.3 1,153.1 1,186.9 1,199.1

Note: Totals may not sum due to independent rounding.

3 Table 3-100: Biodiesel Consumption by Sector (Trillion Btu)

End-Use Sector	1990	2005	2014	2015	2016	2017	2018
Transportation	NO	11.6	180.8	190.6	266.1	253.3	242.9
Total	NO	11.6	180.8	190.6	266.1	253.3	242.9

NO (Not Occurring)

Note: Totals may not sum due to independent rounding.

4 Uncertainty and Time-Series Consistency

5 It is assumed that the combustion efficiency for woody biomass is 100 percent, which is believed to be an

6 overestimate of the efficiency of wood combustion processes in the United States. Decreasing the combustion

7 efficiency would decrease emission estimates for CO₂. Additionally, the heat content applied to the consumption

8 of woody biomass in the residential, commercial, and electric power sectors is unlikely to be a completely accurate

9 representation of the heat content for all the different types of woody biomass consumed within these sectors.

10 Emission estimates from ethanol and biodiesel production are more certain than estimates from woody biomass

11 consumption due to better activity data collection methods and uniform combustion techniques.

12 Methodological recalculations were applied to the entire time series to ensure time-series consistency from 1990

13 through 2018. Details on the emission trends through time are described in more detail in the Methodology

14 section, above.

15 Recalculations Discussion

16 EIA (2019a) updated heat contents for fuel ethanol, which resulted in updated ethanol consumption statistics and

- 17 CO₂ emissions from ethanol consumption increased by less than 0.01 percent in 2017 relative to the previous
- 18 report. EIA (2019a) also updated biodiesel consumption statistics for 2016 and CO₂ emissions from biodiesel
- 19 consumption increased by less than 0.01 percent relative to the previous report.

20 Planned Improvements

- 21 Future research will look into the availability of data on woody biomass heat contents and carbon emission factors
- 22 the see if there are newer, improved data sources available for these factors.

- 1 The availability of facility-level combustion emissions through EPA's GHGRP will be examined to help better
- 2 characterize the industrial sector's energy consumption in the United States, and further classify woody biomass
- 3 consumption by business establishments according to industrial economic activity type. Most methodologies used
- 4 in EPA's GHGRP are consistent with IPCC, though for EPA's GHGRP, facilities collect detailed information specific to
- their operations according to detailed measurement standards, which may differ with the more aggregated data
- collected for the Inventory to estimate total, national U.S. emissions. In addition, and unlike the reporting
 requirements for this chapter under the UNFCCC reporting guidelines, some facility-level fuel combustion
- requirements for this chapter under the UNFCCC reporting guidelines, some facility-level fuel combustion
 emissions reported under EPA's GHGRP may also include industrial process emissions.⁹⁸ In line with UNFCCC
- 9 reporting guidelines, fuel combustion emissions are included in this chapter, while process emissions are included
- in the Industrial Processes and Product Use chapter of this report. In examining data from EPA's GHGRP that would
- be useful to improve the emission estimates for the CO₂ from biomass combustion category, particular attention
- 12 will also be made to ensure time series consistency, as the facility-level reporting data from EPA's GHGRP are not
- 13 available for all inventory years as reported in this Inventory. Additionally, analyses will focus on aligning reported
- 14 facility-level fuel types and IPCC fuel types per the national energy statistics, ensuring CO₂ emissions from biomass
- are separated in the facility-level reported data, and maintaining consistency with national energy statistics
- 16 provided by EIA. In implementing improvements and integration of data from EPA's GHGRP, the latest guidance
- 17 from the IPCC on the use of facility-level data in national inventories will be relied upon.⁹⁹
- 18 Currently emission estimates from biomass and biomass-based fuels included in this Inventory are limited to
- 19 woody biomass, ethanol, and biodiesel. Additional forms of biomass-based fuel consumption include biogas and
- 20 the biogenic components of MSW. EPA will examine EIA data on biogas to see if it can be included in future
- 21 inventories. EIA (2019a) natural gas data already deducts biogas used in the natural gas supply, so no adjustments
- are needed to the natural gas fuel consumption data to account for biogas. Sources of estimates for the biogenic
- 23 fraction of MSW will be examined, including the GHGRP, EIA data, and EPA MSW characterization data.
- 24 Carbon dioxide emissions from biomass used in the electric power sector are calculated using woody biomass
- 25 consumption data from EIA's *Monthly Energy Review* (EIA 2019a), whereas non-CO₂ biomass emissions from the
- 26 electric power sector are estimated by applying technology and fuel use data from EPA's Clean Air Market Acid
- 27 Rain Program dataset (EPA 2019) to fuel consumption data from EIA (2019a). There were significant discrepancies
- identified between the EIA woody biomass consumption data and the consumption data estimated using EPA's
- 29 Acid Rain Program dataset (see the Methodology section for CH₄ and N₂O from Stationary Combustion). EPA will
- 30 continue to investigate this discrepancy in order to apply a consistent approach to both CO₂ and non-CO₂ emission
- 31 calculations for woody biomass consumption in the electric power sector.

⁹⁸ See <https://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf#page=2>.

⁹⁹ See <http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

4. Industrial Processes and Product Use

2 The Industrial Processes and Product Use (IPPU) chapter includes greenhouse gas emissions occurring from

3 industrial processes and from the use of greenhouse gases in products. The industrial processes and product use

4 categories included in this chapter are presented in Figure 4-1. Greenhouse gas emissions from industrial

5 processes can occur in two different ways. First, they may be generated and emitted as the byproducts of various

non-energy-related industrial activities. Second, they may be emitted due to their use in manufacturing processes
 or by end-consumers.

8 In the case of byproduct emissions, the emissions are generated by an industrial process itself, and are not directly

9 a result of energy consumed during the process. For example, raw materials can be chemically or physically

10 transformed from one state to another. This transformation can result in the release of greenhouse gases such as

11 carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), and fluorinated greenhouse gases (e.g., HFC-23). The

12 greenhouse gas byproduct generating processes included in this chapter include iron and steel production and

13 metallurgical coke production, cement production, lime production, other process uses of carbonates (e.g., flux

stone, flue gas desulfurization, and glass manufacturing), ammonia production and urea consumption,

15 petrochemical production, aluminum production, HCFC-22 production, soda ash production and use, titanium

16 dioxide production, ferroalloy production, glass production, zinc production, phosphoric acid production, lead

17 production, silicon carbide production and consumption, nitric acid production, adipic acid production, and

18 caprolactam production.

19 Greenhouse gases that are used in manufacturing processes or by end-consumers include man-made compounds

such as hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF₆), and nitrogen trifluoride

21 (NF₃). The present contribution of HFCs, PFCs, SF₆, and NF₃ gases to the radiative forcing effect of all anthropogenic

22 greenhouse gases is small; however, because of their extremely long lifetimes, many of them will continue to

accumulate in the atmosphere as long as emissions continue. In addition, many of these gases have high global

warming potentials; SF_6 is the most potent greenhouse gas the Intergovernmental Panel on Climate Change (IPCC)

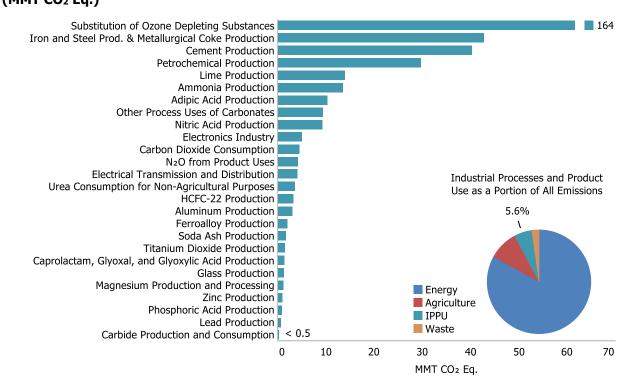
has evaluated. Use of HFCs is growing rapidly since they are the primary substitutes for ozone depleting substances

26 (ODS), which are being phased-out under the Montreal Protocol on Substances that Deplete the Ozone Layer.

27 Hydrofluorocarbons, PFCs, SF₆, and NF₃ are employed and emitted by a number of other industrial sources in the

28 United States, such as semiconductor manufacture, electric power transmission and distribution, and magnesium

29 metal production and processing. Carbon dioxide is also consumed and emitted through various end-use


applications. In addition, nitrous oxide is used in and emitted by semiconductor manufacturing and anesthetic and
 aerosol applications.

- 32 In 2018, IPPU generated emissions of 373.6 million metric tons of CO₂ equivalent (MMT CO₂ Eq.), or 5.6 percent of
- total U.S. greenhouse gas emissions.¹ Carbon dioxide emissions from all industrial processes were 168.3 MMT CO₂
- Eq. (168,270 kt CO₂) in 2018, or 3.1 percent of total U.S. CO₂ emissions. Methane emissions from industrial

¹ Emissions reported in the IPPU Chapter include those from all 50 states, including Hawaii and Alaska, as well as from U.S. Territories to the extent of which industries are occurring.

- 1 processes resulted in emissions of approximately 0.3 MMT CO₂ Eq. (13 kt CH₄) in 2018, which was less than 1
- 2 percent of U.S. CH₄ emissions. Nitrous oxide emissions from IPPU were 25.5 MMT CO₂ Eq. (86 kt N₂O) in 2018, or
- 3 5.9 percent of total U.S. N₂O emissions. In 2018 combined emissions of HFCs, PFCs, SF₆, and NF₃ totaled 179.4
- 4 MMT CO₂ Eq. Total emissions from IPPU in 2018 were 8.1 percent more than 1990 emissions. Indirect greenhouse
- 5 gas emissions also result from IPPU and are presented in Table 4-112 in kilotons (kt).

Figure 4-1: 2018 Industrial Processes and Product Use Chapter Greenhouse Gas Sources (MMT CO₂ Eq.)

8

9 The increase in overall IPPU emissions since 1990 reflects a range of emission trends among the emission sources. 10 Emissions resulting from most types of metal production have declined significantly since 1990, largely due to 11 production shifting to other countries, but also due to transitions to less-emissive methods of production (in the 12 case of iron and steel) and to improved practices (in the case of PFC emissions from aluminum production). 13 Similarly, CO₂ and CH₄ emissions from many chemical production sources have either decreased or not changed 14 significantly since 1990, with the exception of petrochemical production which has steadily increased. Emissions 15 from mineral sources have either increased (e.g., cement manufacturing) or not changed significantly (e.g., glass 16 and lime manufacturing) since 1990 but largely follow economic cycles. Hydrofluorocarbon emissions from the 17 substitution of ODS have increased drastically since 1990, while the emissions of HFCs, PFCs, SF₆, and NF₃ from 18 other sources have generally declined. Nitrous oxide emissions from the production of adipic and nitric acid have 19 decreased, while N₂O emissions from product uses have remained nearly constant over time. Some emission 20 sources exhibit varied interannual trends. Trends are explained further within each emission source category 21 throughout the chapter. Table 4-1 summarizes emissions for the IPPU chapter in MMT CO₂ Eq. using IPCC Fourth 22 Assessment Report (AR4) GWP values, following the requirements of the current United Nations Framework 23 Convention on Climate Change (UNFCCC) reporting guidelines for national inventories (IPCC 2007).² Unweighted 24 native gas emissions in kt are also provided in Table 4-2. The source descriptions that follow in the chapter are 25 presented in the order as reported to the UNFCCC in the Common Reporting Format (CRF) tables, corresponding

² See <http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>.

1 generally to: mineral products, chemical production, metal production, and emissions from the uses of HFCs, PFCs,

2 SF₆, and NF₃.

3	Table 4-1:	Emissions from	Industrial Pro	ocesses and F	Product Use	(MMT CO ₂ Eq.)
---	------------	-----------------------	-----------------------	---------------	-------------	---------------------------

Gas/Source	1990	200	5	2014	2015	2016	2017	2018
CO ₂	212.3	194.	L	178.8	173.1	166.0	165.4	168.3
Iron and Steel Production &								
Metallurgical Coke Production	104.7	70.	L	58.2	47.9	43.6	40.8	42.7
Iron and Steel Production	99.1	66	2	54.5	43.5	41.0	38.8	41.4
Metallurgical Coke Production	5.6	3.	9	3.7	4.4	2.6	2.0	1.3
Cement Production	33.5	46.3	2	39.4	39.9	39.4	40.3	40.3
Petrochemical Production	21.6	27.4	1	26.3	28.1	28.3	28.9	29.4
Lime Production	11.7	14.	5	14.2	13.3	12.9	13.1	13.9
Ammonia Production	13.0	9.1	2	9.4	10.6	10.8	13.2	13.5
Other Process Uses of Carbonates	6.3	7.	5	13.0	12.2	11.0	10.1	9.4
Carbon Dioxide Consumption	1.5	1.4	1	4.5	4.5	4.5	4.5	4.5
Urea Consumption for Non-								
Agricultural Purposes	3.8	3.	7	1.8	4.6	5.1	3.8	3.6
Ferroalloy Production	2.2	1.4	1	1.9	2.0	1.8	2.0	2.1
Soda Ash Production	1.4	1.	7	1.7	1.7	1.7	1.8	1.7
Titanium Dioxide Production	1.2	1.8	3	1.7	1.6	1.7	1.7	1.6
Aluminum Production	6.8	4.:	L	2.8	2.8	1.3	1.2	1.5
Glass Production	1.5	1.9)	1.3	1.3	1.2	1.3	1.3
Zinc Production	0.6	1.0)	1.0	0.9	0.9	1.0	1.0
Phosphoric Acid Production	1.5	1.3	3	1.0	1.0	1.0	1.0	0.9
Lead Production	0.5	0.0	5	0.5	0.5	0.4	0.5	0.6
Carbide Production and								
Consumption	0.4	0.3	2	0.2	0.2	0.2	0.2	0.2
Magnesium Production and								
Processing	+		F	+	+	+	+	+
CH ₄	0.3	0.:	L	0.2	0.2	0.3	0.3	0.3
Petrochemical Production	0.2	0.:	L	0.1	0.2	0.2	0.3	0.3
Ferroalloy Production	+		F	+	+	+	+	+
Carbide Production and								
Consumption	+		F	+	+	+	+	+
Iron and Steel Production &								
Metallurgical Coke Production	+		F	+	+	+	+	+
Iron and Steel Production	+		۴	+	+	+	+	+
Metallurgical Coke Production	0.0	0.0)	0.0	0.0	0.0	0.0	0.0
N ₂ O	33.3	24.	•	22.8	22.3	23.6	22.7	25.5
Adipic Acid Production	15.2	7.:	L	5.4	4.3	7.0	7.4	10.3
Nitric Acid Production	12.1	11.3	3	10.9	11.6	10.1	9.3	9.3
N,O from Product Uses	4.2	4.1	2	4.2	4.2	4.2	4.2	4.2
Caprolactam, Glyoxal, and Glyoxylic								
Acid Production	1.7	2.3	L	2.0	2.0	2.0	1.5	1.4
Electronics Industry	+	0.:		0.2	0.2	0.2	0.3	0.3
HFCs	46.5	126.	7	162.5	166.3	166.4	168.7	168.2
Substitution of Ozone Depleting								
Substances ^a	0.2	106.4	1	157.0	161.7	163.1	163.1	164.4
HCFC-22 Production	46.1	20.0		5.0	4.3	2.8	5.2	3.3
Electronics Industry	0.2	0.3		0.3	0.3	0.3	0.4	0.4
Magnesium Production and								271
Processing	0.0	0.0)	0.1	0.1	0.1	0.1	0.1
PFCs	24.3	6.		5.6	5.1	4.3	4.0	4.6
Electronics Industry	2.8	3.1		3.1	3.0	2.9	2.9	3.0
Aluminum Production	21.5	3.4		2.5	2.0	1.4	1.0	1.6

Substitution of Ozone Depleting							
Substances	0.0	+	+	+	+	+	0.1
SF ₆	28.8	11.8	6.5	5.5	6.1	5.9	5.9
Electrical Transmission and							
Distribution	23.2	8.4	4.8	3.8	4.1	4.1	4.1
Magnesium Production and							
Processing	5.2	2.7	0.9	1.0	1.1	1.1	1.1
Electronics Industry	0.5	0.7	0.7	0.7	0.8	0.7	0.8
NF ₃	+	0.5	0.5	0.6	0.6	0.6	0.6
Electronics Industry	+	0.5	0.5	0.6	0.6	0.6	0.6
Unspecified Mix of HFCs, NF ₃ , PFCs							
and SF ₆	+	+	+	+	+	+	+
Electronics Industry	+	+	+	+	+	+	+
Total	345.6	364.8	376.9	373.1	367.3	367.7	373.6

+ Does not exceed 0.05 MMT CO₂ Eq.

^a Small amounts of PFC emissions also result from this source.

Note: Totals may not sum due to independent rounding.

1 Table 4-2: Emissions from Industrial Processes and Product Use (kt)

Gas/Source	1990	2005	2014	2015	2016	2017	2018
CO ₂	212,326	194,098	178,783	173,083	166,024	165,443	168,270
Iron and Steel Production &							
Metallurgical Coke Production	104,734	70,081	58,187	47,944	43,624	40,818	42,719
Iron and Steel Production	99,126	66,160	54,467	43,528	40,981	38,840	41,438
Metallurgical Coke Production	5,608	3,921	3,721	4,417	2,643	1,978	1,281
Cement Production	33,484	46,194	39,439	39,907	39,439	40,324	40,324
Petrochemical Production	21,611	27,383	26,254	28,062	28,310	28,910	29,424
Lime Production	11,700	14,552	14,210	13,342	12,942	13,145	13,926
Ammonia Production	13,047	9,196	9,377	10,634	10,838	13,216	13,532
Other Process Uses of Carbonates	6,297	7,644	12,954	12,182	10,969	10,139	9,424
Carbon Dioxide Consumption	1,472	1,375	4,471	4,471	4,471	4,471	4,471
Urea Consumption for Non-							
Agricultural Purposes	3,784	3,653	1,807	4,578	5,132	3,769	3,628
Ferroalloy Production	2,152	1,392	1,914	1,960	1,796	1,975	2,063
Soda Ash Production	1,431	1,655	1,685	1,714	1,723	1,753	1,714
Titanium Dioxide Production	1,195	1,755	1,688	1,635	1,662	1,688	1,608
Aluminum Production	6,831	4,142	2,833	2,767	1,334	1,205	1,451
Glass Production	1,535	1,928	1,336	1,299	1,241	1,292	1,259
Zinc Production	632	1,030	956	933	925	1,009	1,009
Phosphoric Acid Production	1,529	1,342	1,037	999	998	1,031	941
Lead Production	516	553	459	473	444	509	585
Carbide Production and							
Consumption	375	219	173	180	174	186	189
Magnesium Production and							
Processing	1	3	2	3	3	3	-
CH4	12	4	6	9	11	11	13
Petrochemical Production	9	3	5	7	10	10	12
Ferroalloy Production	1	+	1	1	1	1	1
Carbide Production and							
Consumption	1	+	+	+	+	+	-
Iron and Steel Production &							
Metallurgical Coke Production	1	1	+	+	+	+	+
Iron and Steel Production	1	1	+	+	+	+	+
Metallurgical Coke Production	0	0	0	0	0	0	(
N ₂ O	112	84	77	75	79	76	86
Adipic Acid Production	51	24	18	14	23	25	35

Nitric Acid Production	41	38	37	39	34	31	31
N,O from Product Uses	14	14	14	14	14	14	14
Caprolactam, Glyoxal, and							
Glyoxylic Acid Production	6	7	7	7	7	5	5
Electronics Industry	+	+	1	1	1	1	1
HFCs	м	м	м	М	М	М	М
Substitution of Ozone Depleting							
Substances ^a	М	М	М	М	М	М	М
HCFC-22 Production	3	1	+	+	+	+	+
Electronics Industry	М	М	М	М	М	М	М
Magnesium Production and							
Processing	0	0	+	+	+	+	+
PFCs	м	м	м	М	М	М	М
Electronics Industry	М	M	M	М	М	М	М
Aluminum Production	М	M	M	М	М	М	Μ
Substitution of Ozone Depleting							
Substances	0	+	+	+	+	+	+
SF ₆	1	1	+	+	+	+	+
Electrical Transmission and							
Distribution	1	+	+	+	+	+	+
Magnesium Production and							
Processing	+	+	+	+	+	+	+
Electronics Industry	+	+	+	+	+	+	+
NF₃	+	+	+	+	+	+	+
Electronics Industry	+	+	+	+	+	+	+
Unspecified Mix of HFCs, NF ₃ , PFCs							
and SF ₆	м	M	M	М	М	М	М
Electronics Industry	М	M	M	М	М	М	М

+ Does not exceed 0.5 kt.

M (Mixture of gases)

^a Small amounts of PFC emissions also result from this source.

Note: Totals may not sum due to independent rounding.

1 This chapter presents emission estimates calculated in accordance with the 2006 IPCC Guidelines for National

2 Greenhouse Gas Inventories (2006 IPCC Guidelines). For additional detail on IPPU sources that are not included in

3 this Inventory report, please review Annex 5, Assessment of the Sources and Sinks of Greenhouse Gas Emissions

4 Not Included. These sources are not included due to various national circumstances, such as that emissions from a

5 source may not currently occur in the United States, data are not currently available for those emission sources

 $6\qquad (e.g.,\,ceramics,\,non-metallurgical\,magnesium\,production,\,glyoxal\,and\,glyoxylic\,acid\,production,\,CH_4\,from\,direct$

7 reduced iron production), emissions are included elsewhere within the Inventory report, or data suggest that

8 emissions are not significant (e.g., various fluorinated gas emissions from the electronics industry and other

9 produce uses). Information on planned improvements for specific IPPU source categories can be found in the

10 Planned Improvements section of the individual source category.

11 In addition, as mentioned in the Energy chapter of this report (Box 3-6), fossil fuels consumed for non-energy uses

12 for primary purposes other than combustion for energy (including lubricants, paraffin waxes, bitumen asphalt, and

solvents) are reported in the Energy chapter. According to the 2006 IPCC Guidelines, these non-energy uses of

fossil fuels are to be reported under IPPU, rather than Energy; however, due to national circumstances regarding

15 the allocation of energy statistics and carbon (C) balance data, the United States reports non-energy uses in the

16 Energy chapter of this Inventory. Reporting these non-energy use emissions under IPPU would involve making

- artificial adjustments to the non-energy use C balance. These artificial adjustments would also result in the C
- 18 emissions for lubricants, waxes, and asphalt and road oil being reported under IPPU, while the C storage for
- lubricants, waxes, and asphalt and road oil would be reported under Energy. To avoid presenting an incomplete C
 balance, double-counting, and adopting a less transparent approach, the entire calculation of C storage and C
- emissions is therefore conducted in the Non-Energy Uses of Fossil Fuels category calculation methodology and

- 1 reported under the Energy sector. For more information, see the Methodology section for CO₂ from Fossil Fuel
- 2 Combustion and Section 3.2, Carbon Emitted from Non-Energy Uses of Fossil Fuels.
- 3 Finally, as stated in the Energy chapter, portions of the fuel consumption data for seven fuel categories—coking
- 4 coal, distillate fuel, industrial other coal, petroleum coke, natural gas, residual fuel oil, and other oil—are
- 5 reallocated to the IPPU chapter, as they are consumed during non-energy related industrial process activity.
- 6 Emissions from uses of fossil fuels as feedstocks or reducing agents (e.g., petrochemical production, aluminum
- 7 production, titanium dioxide and zinc production) are reported in the IPPU chapter, unless otherwise noted due to
- 8 specific national circumstances. More information on the methodology to adjust for these emissions within the
- 9 Energy chapter is described in the Methodology section of CO₂ from Fossil Fuel Combustion (3.1 Fossil Fuel
- 10 Combustion (CRF Source Category 1A)) and Annex 2.1, Methodology for Estimating Emissions of CO₂ from Fossil
- 11 Fuel Combustion. Additional information is listed within each IPPU emission source in which this approach applies.

12 QA/QC and Verification Procedures

- 13 For IPPU sources, a detailed QA/QC plan was developed and implemented for specific categories. This plan is
- 14 consistent with the U.S. Inventory QA/QC plan outlined in Annex 8, but was tailored to include specific procedures
- 15 recommended for these sources. The IPPU QA/QC Plan does not replace the Inventory QA/QC Plan, but rather
- 16 provides more context for the IPPU sector. The IPPU QA/QC Plan provides the completed QA/QC forms for each
- inventory reports, as well as, for certain source categories (e.g., key categories), more detailed documentation of
- 18 quality control checks and recalculations due to methodological changes.
- 19 Two types of checks were performed using this plan: (1) general (Tier 1) procedures consistent with Volume 1,
- 20 Chapter 6 of the 2006 IPCC Guidelines that focus on annual procedures and checks to be used when gathering,
- 21 maintaining, handling, documenting, checking, and archiving the data, supporting documents, and files; and (2)
- source category specific (Tier 2) procedures that focus on checks and comparisons of the emission factors, activity
- data, and methodologies used for estimating emissions from the relevant industrial process and product use
- sources. Examples of these procedures include: checks to ensure that activity data and emission estimates are
- consistent with historical trends to identify significant changes; that, where possible, consistent and reputable data
 sources are used and specified across sources; that interpolation or extrapolation techniques are consistent across
- sources are used and specified across sources; that interpolation or extrapolation techniques are consistent across
 sources; and that common datasets, units, and conversion factors are used where applicable. The IPPU QA/QC
- 28 plan also checked for transcription errors in data inputs required for emission calculations, including activity data
- and emission factors; and confirmed that estimates were calculated and reported for all applicable and able
- 30 portions of the source categories for all years.
- 31 For sources that use data from EPA's Greenhouse Gas Reporting Program (GHGRP), EPA verifies annual facility-
- 32 level reports through a multi-step process (e.g., including a combination of pre-and post-submittal electronic
- 33 checks and manual reviews by staff) to identify potential errors and ensure that data submitted to EPA are
- 34 accurate, complete, and consistent.³ Based on the results of the verification process, EPA follows up with facilities
- to resolve mistakes that may have occurred. The post-submittals checks are consistent with a number of general
- 36 and category-specific QC procedures, including: range checks, statistical checks, algorithm checks, and year-to-year
- 37 checks of reported data and emissions. See Box 4-2 below for more information on use of GHGRP data in this
- 38 Chapter.
- 39 General, or Tier 1, QA/QC procedures and calculation-related QC (category-specific, Tier 2) have been performed
- 40 for all IPPU sources. Consistent with the 2006 IPCC Guidelines, additional category-specific QC procedures were
- 41 performed for more significant emission categories (such as the comparison of reported consumption with
- 42 modeled consumption using EPA's Greenhouse Gas Reporting Program (GHGRP) data within Substitution of Ozone
- 43 Depleting Substances) or sources where significant methodological and data updates have taken place. The QA/QC
- 44 implementation did not reveal any significant inaccuracies, and all errors identified were documented and
- 45 corrected. Application of these procedures, specifically category-specific QC procedures and

³ https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf

- 1 updates/improvements as a result of QA processes (expert, public, and UNFCCC technical expert reviews), are
- 2 described further within respective source categories, in the Recalculations and Planned Improvement sections.
- 3 For most IPPU categories, activity data are obtained via aggregation of facility-level data from EPA's GHGRP,
- 4 national commodity surveys conducted by U.S. Geologic Survey National Minerals Information Center, U.S.
- 5 Department of Energy (DOE), U.S. Census Bureau, industry associations such as Air-Conditioning, Heating, and
- 6 Refrigeration Institute (AHRI), American Chemistry Council (ACC), and American Iron and Steel Institute (AISI)
- 7 (specified within each source category). The emission factors used include those derived from the EPA's GHGRP
- 8 and application of IPCC default factors. Descriptions of uncertainties and assumptions for activity data and
- 9 emission factors are included within the uncertainty discussion sections for each IPPU source category.
- 10 The uncertainty analysis performed to quantify uncertainties associated with the 2018 emission estimates from
- 11 IPPU continues a multi-year process for developing credible quantitative uncertainty estimates for these source
- 12 categories using the IPCC Tier 2 approach. As the process continues, the type and the characteristics of the actual
- 13 probability density functions underlying the input variables are identified and better characterized (resulting in
- 14 development of more reliable inputs for the model, including accurate characterization of correlation between
- variables), based primarily on expert judgment. Accordingly, the quantitative uncertainty estimates reported in
- this section should be considered illustrative and as iterations of ongoing efforts to produce accurate uncertainty estimates. The correlation among data used for estimating emissions for different sources can influence the
- 18 uncertainty analysis of each individual source. While the uncertainty analysis recognizes very significant
- 19 connections among sources, a more comprehensive approach that accounts for all linkages will be identified as the
- 20 uncertainty analysis moves forward.

21 Box 4-1: Methodological Approach for Estimating and Reporting U.S. Emissions and Removals

In following the United Nations Framework Convention on Climate Change (UNFCCC) requirement under Article 4.1 to develop and submit national greenhouse gas emission inventories, the emissions and removals presented in this report and this chapter, are organized by source and sink categories and calculated using internationally accepted methods provided by the Intergovernmental Panel on Climate Change (IPCC) in the *2006 IPCC Guidelines for National Greenhouse Gas Inventories (2006 IPCC Guidelines)*. Additionally, the calculated emissions and removals in a given year for the United States are presented in a common manner in line with the UNFCCC reporting guidelines for the reporting of inventories under this international agreement. The use of consistent methods to calculate emissions and removals by all nations providing their inventories to the UNFCCC ensures that these reports are comparable. The presentation of emissions and removals provided in this Inventory do not preclude alternative examinations, but rather, this Inventory presents emissions and removals in a common format consistent with how countries are to report Inventories under the UNFCCC. The report itself, and this chapter, follows this standardized format, and provides an explanation of the application of methods used to calculate emissions and removals from industrial processes and from the use of greenhouse gases in products.

22

23

Box 4-2: Industrial Process and Product Use Data from EPA's Greenhouse Gas Reporting Program

On October 30, 2009, the U.S. EPA published a rule requiring annual reporting of greenhouse gas data from large greenhouse gas emission sources in the United States. Implementation of the rule, codified at 40 CFR Part 98, is referred to as EPA's GHGRP. The rule applies to direct greenhouse gas emitters, fossil fuel suppliers, industrial gas suppliers, and facilities that inject CO₂ underground for sequestration or other reasons and requires reporting by sources or suppliers in 41 industrial categories ("Subparts"). Annual reporting is at the facility level, except for certain suppliers of fossil fuels and industrial greenhouse gases. In general, the threshold for reporting is 25,000 metric tons or more of CO₂ Eq. per year, but reporting is required for all facilities in some industries. Calendar year 2010 was the first year for which data were collected for facilities subject to 40 CFR Part 98, though some source categories first collected data for calendar year 2011.

EPA's GHGRP dataset and the data presented in this Inventory are complementary. The GHGRP dataset

continues to be an important resource for the Inventory, providing not only annual emissions information, but also other annual information such as activity data and emission factors that can improve and refine national emission estimates and trends over time. GHGRP data also allow EPA to disaggregate national inventory estimates in new ways that can highlight differences across regions and sub-categories of emissions, along with enhancing application of QA/QC procedures and assessment of uncertainties. EPA uses annual GHGRP data in a number of categories to improve the national estimates presented in this Inventory consistent with IPCC guidelines. Methodologies used in EPA's GHGRP are consistent with IPCC. However, it should be noted that the definitions for source categories in EPA's GHGRP may differ from those used in this Inventory in meeting the UNFCCC reporting guidelines (IPCC 2011). In line with the UNFCCC reporting guidelines, the Inventory is a comprehensive accounting of all emissions from source categories identified in the *2006 IPCC Guidelines*. EPA has paid particular attention to ensuring both completeness and time-series consistency for major recalculations that have occurred from the incorporation of GHGRP data into these categories, consistent with *2006 IPCC Guidelines* and *IPCC Technical Bulletin on Use of Facility-Specific Data in National GHG Inventories*.⁴

For certain source categories in this Inventory (e.g., nitric acid production, lime production, cement production, petrochemical production, carbon dioxide consumption, ammonia production, and urea consumption for non-agricultural purposes), EPA has integrated data values that have been calculated by aggregating GHGRP data that are considered confidential business information (CBI) at the facility level. EPA, with industry engagement, has put forth criteria to confirm that a given data aggregation shields underlying CBI from public disclosure. EPA is only publishing data values that meet these aggregation criteria.⁵ Specific uses of aggregated facility-level data are described in the respective methodological sections. For other source categories in this chapter, as indicated in the respective planned improvements sections, EPA is continuing to analyze how facility-level GHGRP data may be used to improve the national estimates presented in this Inventory, giving particular consideration to ensuring time-series consistency and completeness.

As stated in the Introduction chapter, this year EPA has integrated GHGRP information for various Industrial Processes and Product Use categories and also identified places where EPA plans to integrate additional GHGRP data in additional categories⁶ (see those categories' Planned Improvements sections for details). Additionally, EPA's GHGRP has and will continue to enhance QA/QC procedures and assessment of uncertainties within the IPPU categories (see those categories for specific QA/QC details regarding the use of GHGRP data). See Annex 9 for more information on use of GHGRP data in the Inventory.

1

2

3

4.1 Cement Production (CRF Source Category 2A1)

Cement production is an energy- and raw material-intensive process that results in the generation of carbon
 dioxide (CO₂) both from the energy consumed in making the clinker precursor to cement and from the chemical
 process to make the clinker. Emissions from fuels consumed for energy purposes during the production of cement

- 7 are accounted for in the Energy chapter.
- Buring the clinker production process, the key reaction occurs when calcium carbonate (CaCO₃), in the form of
 limestone or similar rocks, is heated in a cement kiln at a temperature range of about 700 to 1,000 degrees Celsius

⁴ See <http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

 ⁵ U.S. EPA Greenhouse Gas Reporting Program. Developments on Publication of Aggregated Greenhouse Gas Data, November
 25, 2014. See http://www.epa.gov/ghgreporting/confidential-business-information-ghg-reporting.

⁶ Ammonia Production, Glass Production, Lead Production, and Other Fluorinated Gas Production.

- 1 (1,300 to 1,800 degrees Fahrenheit) to form lime (i.e., calcium oxide or CaO) and CO₂ in a process known as
- calcination or calcining. The quantity of CO₂ emitted during clinker production is directly proportional to the lime
 content of the clinker. During calcination, each mole of CaCO₃ heated in the clinker kiln forms one mole of CaO and
- one mole of CO₂. The CO₂ is vented to the atmosphere as part of the kiln lime exhaust:
- 5 $CaCO_3 + heat \rightarrow CaO + CO_2$
- 6 Next, over a temperature range of 1000 to 1450 degrees Celsius, the CaO combines with alumina, iron oxide and
- 7 silica that are also present in the clinker raw material mix to form hydraulically reactive compounds within white-
- 8 hot semifused (sintered) nodules of clinker. Because these "sintering" reactions are highly exothermic there are
- 9 few process emissions of CO₂ as a result of the reactions. The clinker is then rapidly cooled to maintain quality,
- then very finely ground with a small amount of gypsum and potentially other materials (e.g., ground granulated
- 11 blast furnace slag, etc.), and used to make Portland and similar cements.⁷
- 12 Carbon dioxide emitted from the chemical process of cement production is the second largest source of industrial
- 13 CO₂ emissions in the United States. Cement is produced in 34 states and Puerto Rico. Texas, California, Missouri,
- 14 Florida, and Alabama were the leading cement-producing states in 2018 and accounted for almost 50 percent of
- total U.S. production (USGS 2019). Based on both GHGRP data (EPA 2018) and USGS reported data, clinker
- 16 production in 2018 remained at relatively flat levels compared to 2017. Cement sales remained relatively stagnant
- in between 2017 to 2018 and imports of clinker for consumption decreased by approximately 25 percent over this
- same period (USGS 2019). In 2018, U.S. clinker production totaled 77,500 kilotons (EPA 2018). The resulting CO₂
- emissions were estimated to be 40.3 MMT CO₂ Eq. (40,324 kt) (see Table 4-3).

20 Table 4-3: CO₂ Emissions from Cement Production (MMT CO₂ Eq. and kt)

Year	MMT CO₂ Eq.	kt
1990	33.5	33,484
2005	46.2	46,194
2014	39.4	39,439
2015	39.9	39,907
2016	39.4	39,439
2017	40.3	40,324
2018	40.3	40,324

- 21 Greenhouse gas emissions from cement production, which are primarily driven by production levels, increased
- every year from 1991 through 2006 (with the exception of a slight decrease in 1997) but decreased in the following
- 23 years until 2009. Since 1990, emissions have increased by 20 percent. Emissions from cement production were at
- their lowest levels in 2009 (2009 emissions are approximately 28 percent lower than 2008 emissions and 12
- 25 percent lower than 1990), due to the economic recession and associated decrease in demand for construction
- 26 materials. Since 2010, emissions have increased by roughly 28 percent due to increasing cement consumption.
- 27 Cement continues to be a critical component of the construction industry; therefore, the availability of public and
- 28 private construction funding, as well as overall economic conditions, have considerable impact on the level of
- 29 cement production.

⁷ Approximately three percent of total clinker production is used to produce masonry cement, which is produced using plasticizers (e.g., ground limestone, lime, etc.) and Portland cement (USGS 2011). Carbon dioxide emissions that result from the production of lime used to create masonry cement are included in the Lime Manufacture source category.

1 Methodology

2 Carbon dioxide emissions from cement production were estimated using the Tier 2 methodology from the 2006

3 *IPCC Guidelines* as this is a key category. The Tier 2 methodology was used because detailed and complete data

4 (including weights and composition) for carbonate(s) consumed in clinker production are not available,⁸ and thus a

5 rigorous Tier 3 approach is impractical. Tier 2 specifies the use of aggregated plant or national clinker production

6 data and an emission factor, which is the product of the average lime fraction for clinker of 65 percent and a

7 constant reflecting the mass of CO₂ released per unit of lime. The U.S. Geological Survey (USGS) mineral

commodity expert for cement has confirmed that this is a reasonable assumption for the United States (Van Oss
 2013a). This calculation yields an emission factor of 0.510 tons of CO₂ per ton of clinker produced, which was

- 2013a). This calculation yields an emission factor of 0.510 tons of CO₂ per t
 determined as follows:
- 10 determined as follows:

11 $EF_{clinker} = 0.650 \text{ CaO} \times [(44.01 \text{ g/mole CO}_2) \div (56.08 \text{ g/mole CaO})] = 0.510 \text{ tons CO}_2/\text{ton clinker}$

12 During clinker production, some of the raw materials, partially reacted raw materials and clinker enters the kiln

13 line's exhaust system as non-calcinated, partially calcinated, or fully calcinated cement kiln dust (CKD). To the

degree that the CKD contains carbonate raw materials which are then calcined, there are associated CO₂ emissions.

- 15 At some plants, essentially all CKD is directly returned to the kiln, becoming part of the raw material feed, or is
- 16 likewise returned to the kiln after first being removed from the exhaust. In either case, the returned CKD becomes
- a raw material, thus forming clinker, and the associated CO_2 emissions are a component of those calculated for the
- clinker overall. At some plants, however, the CKD cannot be returned to the kiln because it is chemically unsuitable
 as a raw material, or chemical issues limit the amount of CKD that can be so reused. Any clinker that cannot be
- returned to the kiln is either used for other (non-clinker) purposes or is landfilled. The CO₂ emissions attributable
- to the non-returned calcinated portion of the CKD are not accounted for by the clinker emission factor and thus a
- 22 CKD correction factor should be applied to account for those emissions. Because data are not available to derive a
- country-specific CKD correction factor, a default correction factor of 1.02 (two percent) was used to account for
- 24 CKD CO₂ emissions, as recommended by the IPCC (IPCC 2006).⁹ Total cement production emissions were calculated
- 25 by adding the emissions from clinker production to the emissions assigned to CKD.
- 26 Small amounts of impurities (i.e., not calcium carbonate) may exist in the raw limestone used to produce clinker.
- 27 The proportion of these impurities is generally minimal, although a small amount (1 to 2 percent) of magnesium

28 oxide (MgO) may be desirable as a flux. Per the IPCC Tier 2 methodology, a correction for MgO is not used, since

29 the amount of MgO from carbonate is likely very small and the assumption of a 100 percent carbonate source of

30 CaO already yields an overestimation of emissions (IPCC 2006).

- 31 The 1990 through 2012 activity data for clinker production (see Table 4-4) were obtained from USGS (Van Oss
- 32 2013a, Van Oss 2013b). Clinker production data for 2013 were also obtained from USGS (USGS 2014). The data
- 33 were compiled by USGS (to the nearest ton) through questionnaires sent to domestic clinker and cement
- 34 manufacturing plants, including the facilities in Puerto Rico. Clinker production values in the current Inventory
- report utilize GHGRP data for the years 2014 through 2017 (EPA 2018). 2017 GHGRP data are used as a proxy for

⁸ As discussed further under "Planned Improvements," most cement-producing facilities that report their emissions to the GHGRP use CEMS to monitor combined process and fuel combustion emissions for kilns, making it difficult to quantify the process emissions on a facility-specific basis.

⁹ As stated on p. 2.12 of IPCC 2006 GL, Vol. 3, Chapter 2: "...As data on the amount of CKD produced may be scarce (except possibly for plant-level reporting), estimating emissions from lost CKD based on a default value can be considered good practice. The amount of CO2 from lost CKD can vary, but ranges typically from about 1.5 percent (additional CO₂ relative to that calculated for clinker) for a modern plant to about 20 percent for a plant losing a lot of highly calcinated CKD (van Oss, 2005). In the absence of data, the default CKD correction factor (CF_{ckd}) is 1.02 (i.e., add 2 percent to the CO₂ calculated for clinker). If no calcined CKD is believed to be lost to the system, the CKD correction factor will be 1.00 (van Oss, 2005)..."

- 1 2018 as GHGRP data are not available at the time of this current draft. Details on how this GHGRP data compares
- 2 to USGS reported data can be found in the section on QA/QC and Verification.

3 Table 4-4: Clinker Production (kt)

Year	Clinker
1990	64,355
2005	88,783
2014	75,800
2015	76,700
2016	75,800
2017	77,500
2018	77,500

Notes: Clinker production from 1990 through 2018 includes Puerto Rico (relevant U.S. Territories).

Uncertainty and Time-Series Consistency – TO BE UPDATED 4 FOR FINAL INVENTORY REPORT 5

6 The uncertainties contained in these estimates are primarily due to uncertainties in the lime content of clinker and 7 in the percentage of CKD recycled inside the cement kiln. Uncertainty is also associated with the assumption that 8 all calcium-containing raw materials are CaCO₃, when a small percentage likely consists of other carbonate and 9 non-carbonate raw materials. The lime content of clinker varies from 60 to 67 percent; 65 percent is used as a 10 representative value (Van Oss 2013a). The amount of CO₂ from CKD loss can range from 1.5 to 8 percent 11 depending upon plant specifications. Additionally, some amount of CO₂ is reabsorbed when the cement is used for 12 construction. As cement reacts with water, alkaline substances such as calcium hydroxide are formed. During this 13 curing process, these compounds may react with CO₂ in the atmosphere to create calcium carbonate. This reaction only occurs in roughly the outer 0.2 inches of the total thickness. Because the amount of CO₂ reabsorbed is 14 15 thought to be minimal, it was not estimated. 16 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-5. Based on the 17 uncertainties associated with total U.S. clinker production, the CO₂ emission factor for clinker production, and the

18 emission factor for additional CO₂ emissions from CKD, 2018 CO₂ emissions from cement production were

19 estimated to be between 38.0 and 42.7 MMT CO₂ Eq. at the 95 percent confidence level. This confidence level

20 indicates a range of approximately 6 percent below and 6 percent above the emission estimate of 40.3 MMT CO₂

21 Eq.

22 Table 4-5: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from Cement 23 **Production (MMT CO₂ Eq. and Percent)**

Gas	2018 Emission Estimate	Uncertaint	y Range Relativ	e to Emission	Estimate ^a
Gas	(MMT CO ₂ Eq.)	(MMT CO ₂ Eq.) (MMT CO ₂ Eq.)		(%)	
		Lower	Upper	Lower	Upper
		Bound	Bound	Bound	Bound
CO ₂	40.3	38.0	42.7	-6%	+6%
	Gas CO ₂	Gas (MMT CO ₂ Eq.)	Gas (MMT CO₂ Eq.) (MMT C Lower Bound	Gas (MMT CO ₂ Eq.) (MMT CO ₂ Eq.) Lower Upper Bound Bound	Gas (MMT CO2 Eq.) (MMT CO2 Eq.) (Lower Upper Lower Bound Bound Bound

kange of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval

24 Methodological approaches were applied to the entire time series to ensure time-series consistency from 1990

25 through 2018. Details on the emission trends through time are described in more detail in the Methodology

26 section, above.

QA/QC and Verification 1

2 General guality assurance/guality control (QA/QC) procedures were applied consistent with the U.S. Inventory 3 QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of 2006 IPCC Guidelines as described in the introduction

4 of the IPPU chapter (see Annex 8 for more details).

5 EPA relied upon the latest guidance from the IPCC on the use of facility-level data in national inventories and 6 applied a category-specific QC process to compare activity data from EPA's GHGRP with existing data from USGS 7 surveys. This was to ensure time-series consistency of the emission estimates presented in the Inventory. Total 8 U.S. clinker production is assumed to have low uncertainty because facilities routinely measure this for economic 9 reasons and because both USGS and the GHGRP take multiple steps to ensure that reported totals are accurate. 10 EPA verifies annual facility-level GHGRP reports through a multi-step process that is tailored to the reporting 11 industry (e.g., combination of electronic checks including range checks, statistical checks, algorithm checks, yearto-year comparison checks, along with manual reviews involving outside data checks) to identify potential errors 12 13 and ensure that data submitted to EPA are accurate, complete, and consistent (EPA 2015). Based on the results of 14 the verification process, EPA follows up with facilities to resolve mistakes that may have occurred.¹⁰ Facilities are 15 also required to monitor and maintain records of monthly clinker production per section 98.84 of the GHGRP

- 16 regulation (40 CFR 98.84).
- 17 As mentioned above, EPA compares GHGRP clinker production data to the USGS clinker production data. For the

18 year 2014, USGS and GHGRP clinker production data showed a difference of approximately 2 percent, while in

19 2015, 2016, and in 2017 that difference decreased to less than 1 percent between the two sets of activity data.

20 This difference resulted in an increase of emissions compared to USGS data by less than 0.1 MMT CO₂ Eq. in 2015,

2016, and in 2017. The information collected by the USGS National Minerals Information Center surveys continue 21

22 to be an important data source.

Planned Improvements 23

24 In response to prior comments from the Portland Cement Association (PCA) and UNFCCC expert technical reviews, 25 EPA is continuing to evaluate and analyze data reported under EPA's GHGRP that would be useful to improve the 26 emission estimates for the Cement Production source category. EPA held a technical meeting with PCA in August 27 2016 to review Inventory methods and available data from the GHGRP data set. Most cement production facilities 28 reporting under EPA's GHGRP use Continuous Emission Monitoring Systems (CEMS) to monitor and report CO₂ 29 emissions, thus reporting combined process and combustion emissions from kilns. In implementing further 30 improvements and integration of data from EPA's GHGRP, the latest guidance from the IPCC on the use of facility-31 level data in national inventories will be relied upon, in addition to category-specific QC methods recommended by the 2006 IPCC Guidelines.¹¹ EPA's long-term improvement plan includes continued assessment of the feasibility of 32 33 using additional GHGRP information beyond aggregation of reported facility-level clinker data, in particular 34 disaggregating the combined process and combustion emissions reported using CEMS, to separately present 35 national process and combustion emissions streams consistent with IPCC and UNFCCC guidelines. This long-term 36 planned analysis is still in development and has not been applied for this current Inventory.

- 37 Finally, in response to feedback from PCA during the Public Review comment period of a previous Inventory in
- 38 2017, EPA plans to work with PCA to discuss additional long-term improvements to review methods and data used
- 39 to estimate CO₂ emissions from cement production to account for both organic material and magnesium
- 40 carbonate in the raw material, and to discuss the carbonation that occurs across the duration of the cement
- 41 product. Priority will be to identify data and studies on the average MgO content of clinker produced in the United

¹⁰ See GHGRP Verification Fact Sheet <https://www.epa.gov/sites/production/files/2015-

^{07/}documents/ghgrp_verification_factsheet.pdf>.

¹¹ See IPCC Technical Bulletin on Use of Facility-Specific Data in National Greenhouse Gas Inventories http://www.ipcc-velocity.com nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

1 States, the average carbon content for organic materials in kiln feed in the United States, and CO₂ reabsorption

- 2 rates via carbonation for various cement products. This information is not reported by facilities subject to report to
- 3 GHGRP.

11

4.2 Lime Production (CRF Source Category 2A2)

- Lime is an important manufactured product with many industrial, chemical, and environmental applications. Lime
 production involves three main processes: stone preparation, calcination, and hydration. Carbon dioxide (CO₂) is
- 8 generated during the calcination stage, when limestone—mostly calcium carbonate (CaCO₃)—is roasted at high
- 9 temperatures in a kiln to produce calcium oxide (CaO) and CO₂. The CO₂ is given off as a gas and is normally
- 10 emitted to the atmosphere.
 - $CaCO_3 \rightarrow CaO + CO_2$
- 12 Some of the CO₂ generated during the production process, however, is recovered at some facilities for use in sugar
- refining and precipitated calcium carbonate (PCC) production.¹² Emissions from fuels consumed for energy
- 14 purposes during the production of lime are included for in the Energy chapter.
- 15 For U.S. operations, the term "lime" actually refers to a variety of chemical compounds. These include CaO, or
- high-calcium quicklime; calcium hydroxide (Ca(OH)₂), or hydrated lime; dolomitic quicklime ([CaO•MgO]); and dolomitic hydrate ([Ca(OH)₂)MgO] or [Ca(OH)₂)MgO] is MgO(H)
- 17 dolomitic hydrate ([Ca(OH)₂•MgO] or [Ca(OH)₂•Mg(OH)₂]).
- 18 The current lime market is approximately distributed across five end-use categories, as follows: metallurgical uses,
- 19 37 percent; environmental uses, 31 percent; chemical and industrial uses, 22 percent; construction uses, 9
- 20 percent; and refractory dolomite, 1 percent (USGS 2018). The major uses are in steel making, flue gas
- desulfurization systems at coal-fired electric power plants, construction, and water treatment, as well as uses in
- 22 mining, pulp and paper and precipitated calcium carbonate manufacturing. Lime is also used as a CO₂ scrubber,
- and there has been experimentation on the use of lime to capture CO_2 from electric power plants.
- Lime production in the United States—including Puerto Rico—was reported to be 19,000 kilotons in 2018 (USGS
- 25 2019). Lime production in 2018 increased by about 7 percent compared to 2017 levels, due primarily to an
- increase in hydrated lime output (USGS 2019). At year-end 2018, there were 74 operating primary lime plants in
- the United States, including Puerto Rico.¹³ Principal lime producing states are Missouri, Alabama, Ohio, Texas, and
- 28 Kentucky (USGS 2019).
- 29 U.S. lime production resulted in estimated net CO₂ emissions of 13.9 MMT CO₂ Eq. (13,926 kt) (see Table 4-6 and
- Table 4-7). The trends in CO₂ emissions from lime production are directly proportional to trends in production,
- 31 which are described below.
- 32 Table 4-6: CO₂ Emissions from Lime Production (MMT CO₂ Eq. and kt)

Year	MMT CO ₂ Eq.	kt
1990	11.7	11,700
2005	14.6	14,552
2014	14.2	14,210

 $^{^{12}}$ PCC is obtained from the reaction of CO₂ with calcium hydroxide. It is used as a filler and/or coating in the paper, food, and plastic industries.

¹³ In 2018, 74 operating primary lime facilities in the United States reported to the EPA Greenhouse Gas Reporting Program.

2015	13.3	13,342
2016	12.9	12,942
2017	13.1	13,145
2018	13.9	13,926

1 Table 4-7: Potential, Recovered, and Net CO ₂ Emissions from Line Production (R	1	able 4-7: Potential, Recovered, and Net CO ₂ Emissions from Lime Produ	ction (kt)
--	---	---	------------

Year	Potential	Recovered ^a	Net Emissions
1990	11,959	259	11,700
2005	15,074	522	14,552
2014	14,715	505	14,210
2015	13,764	422	13,342
2016	13,312	370	12,942
2017	13,546	401	13,145
2018	14,327	401	13,926

^a For sugar refining and PCC production.

Note: Totals may not sum due to independent rounding.

2 Methodology

3 To calculate emissions, the amounts of high-calcium and dolomitic lime produced were multiplied by their

4 respective emission factors using the Tier 2 approach from the 2006 IPCC Guidelines. The emission factor is the

5 product of the stoichiometric ratio between CO₂ and CaO, and the average CaO and MgO content for lime. The

6 CaO and MgO content for lime is assumed to be 95 percent for both high-calcium and dolomitic lime (IPCC 2006).

7 The emission factors were calculated as follows:

8 For high-calcium lime:

9 $[(44.01 \text{ g/mole } \text{CO}_2) \div (56.08 \text{ g/mole } \text{CaO})] \times (0.9500 \text{ CaO/lime}) = 0.7455 \text{ g } \text{CO}_2/\text{g lime}$

10 For dolomitic lime:

11

 $[(88.02 \text{ g/mole CO}_2) \div (96.39 \text{ g/mole CaO})] \times (0.9500 \text{ CaO/lime}) = 0.8675 \text{ g CO}_2/\text{g lime}$

12 Production was adjusted to remove the mass of chemically combined water found in hydrated lime, determined

according to the molecular weight ratios of H₂O to (Ca(OH)₂ and [Ca(OH)₂•Mg(OH)₂]) (IPCC 2006). These factors set

the chemically combined water content to 24.3 percent for high-calcium hydrated lime, and 27.2 percent for

15 dolomitic hydrated lime.

16 The 2006 IPCC Guidelines (Tier 2 method) also recommends accounting for emissions from lime kiln dust (LKD) 17 through application of a correction factor. LKD is a byproduct of the lime manufacturing process typically not 18 recycled back to kilns. LKD is a very fine-grained material and is especially useful for applications requiring very 19 small particle size. Most common LKD applications include soil reclamation and agriculture. Currently, data on 20 annual LKD production is not readily available to develop a country-specific correction factor. Lime emission 21 estimates were multiplied by a factor of 1.02 to account for emissions from LKD (IPCC 2006). See the Planned 22 Improvements section associated with efforts to improve uncertainty analysis and emission estimates associated 23 with LKD. 24 Lime emission estimates were further adjusted to account for the amount of CO₂ captured for use in on-site

25 processes. All the domestic lime facilities are required to report these data to EPA under its GHGRP. The total

26 national-level annual amount of CO₂ captured for on-site process use was obtained from EPA's GHGRP (EPA 2018)

based on reported facility-level data for years 2010 through 2017. 2018 CO₂ captured for on-site process use is

- proxied with the 2017 value due to GHGRP data availability at the time of this draft Inventory report. The amount
- of CO₂ captured/recovered for on-site process use is deducted from the total potential emissions (i.e., from lime

- 1 production and LKD). The net lime emissions are presented in Table 4-6 and Table 4-7. GHGRP data on CO₂
- 2 removals (i.e., CO₂ captured/recovered) was available only for 2010 through 2017. Since GHGRP data are not
- 3 available for 1990 through 2009, IPCC "splicing" techniques were used as per the 2006 IPCC Guidelines on time-
- 4 series consistency (IPCC 2006, Volume 1, Chapter 5).
- 5 Lime production data (by type, high-calcium- and dolomitic-quicklime, high-calcium- and dolomitic-hydrated, and
- 6 dead-burned dolomite) for 1990 through 2018 (see Table 4-8) were obtained from U.S. Geological Survey (USGS)
- 7 (USGS 2019) annual reports and are compiled by USGS to the nearest ton. The high-calcium quicklime and
- 8 dolomitic quicklime values were estimated using the ratio of the 2015 quicklime values to the 2018 total values.
- 9 The 2015 values for high-calcium hydrated, dolomitic hydrated, and dead-burned dolomite were used since there 10 is less fluctuation in their production from year to year. Natural hydraulic lime, which is produced from CaO and
- 11 hydraulic calcium silicates, is not manufactured in the United States (USGS 2018). Total lime production was
- 12 adjusted to account for the water content of hydrated lime by converting hydrate to oxide equivalent based on
- recommendations from the IPCC, and is presented in Table 4-9 (IPCC 2006). The CaO and CaO•MgO contents of
- 14 lime were obtained from the IPCC (IPCC 2006). Since data for the individual lime types (high calcium and dolomitic)
- 15 were not provided prior to 1997, total lime production for 1990 through 1996 was calculated according to the
- 16 three-year distribution from 1997 to 1999.

Table 4-8: High-Calcium- and Dolomitic-Quicklime, High-Calcium- and Dolomitic-Hydrated, and Dead-Burned-Dolomite Lime Production (kt)

Year	High-Calcium Quicklime	Dolomitic Quicklime	High-Calcium Hydrated	Dolomitic Hydrated	Dead-Burned Dolomite
1990	11,166	2,234	1,781	319	342
2005	14,100	2,990	2,220	474	200
2014	14,100	2,740	2,190	279	200
2015	13,100	2,550	2,150	279	200
2016	12,615	2,456	2,150	279	200
2017	12,866	2,505	2,150	279	200
2018	13,704	2,667	2,150	279	200

19 Table 4-9: Adjusted Lime Production (kt)

Year	High-Calcium	Dolomitic
1990	12,466	2,800
2005	15,721	3,522
2014	15,699	3,135
2015	14,670	2,945
2016	14,185	2,851
2017	14,436	2,900
2018	15,273	3,063
		<u> </u>

Note: Minus water content of hydrated lime.

²⁰ Uncertainty and Time-Series Consistency – TO BE UPDATED ²¹ FOR FINAL INVENTORY REPORT

- 22 The uncertainties contained in these estimates can be attributed to slight differences in the chemical composition
- 23 of lime products and CO₂ recovery rates for on-site process use over the time series. Although the methodology

24 accounts for various formulations of lime, it does not account for the trace impurities found in lime, such as iron

oxide, alumina, and silica. Due to differences in the limestone used as a raw material, a rigid specification of lime
 material is impossible. As a result, few plants produce lime with exactly the same properties.

3 In addition, a portion of the CO₂ emitted during lime production will actually be reabsorbed when the lime is

4 consumed, especially at captive lime production facilities. As noted above, lime has many different chemical,

- 5 industrial, environmental, and construction applications. In many processes, CO₂ reacts with the lime to create
- 6 calcium carbonate (e.g., water softening). Carbon dioxide reabsorption rates vary, however, depending on the
- 7 application. For example, 100 percent of the lime used to produce precipitated calcium carbonate reacts with CO₂;
- 8 whereas most of the lime used in steel making reacts with impurities such as silica, sulfur, and aluminum
- 9 compounds. Quantifying the amount of CO₂ that is reabsorbed would require a detailed accounting of lime use in
- 10 the United States and additional information about the associated processes where both the lime and byproduct
- 11 CO₂ are "reused" are required to quantify the amount of CO₂ that is reabsorbed. Research conducted thus far has 12 not yielded the necessary information to quantify CO₂ reabsorption rates.¹⁴ However, some additional information
- not yielded the necessary information to quantify CO₂ reabsorption rates.¹⁴ However, some additiona
 on the amount of CO₂ consumed on site at lime facilities has been obtained from EPA's GHGRP.
- 14 In some cases, lime is generated from calcium carbonate byproducts at pulp mills and water treatment plants.¹⁵
- 15 The lime generated by these processes is included in the USGS data for commercial lime consumption. In the
- 16 pulping industry, mostly using the Kraft (sulfate) pulping process, lime is consumed in order to causticize a process
- 17 liquor (green liquor) composed of sodium carbonate and sodium sulfide. The green liquor results from the dilution
- 18 of the smelt created by combustion of the black liquor where biogenic carbon (C) is present from the wood. Kraft
- 19 mills recover the calcium carbonate "mud" after the causticizing operation and calcine it back into lime—thereby
- 20 generating CO_2 —for reuse in the pulping process. Although this re-generation of lime could be considered a lime
- 21 manufacturing process, the CO₂ emitted during this process is mostly biogenic in origin, and therefore is not 22 included in the industrial processes totals (Miner and Upton 2002). In accordance with IPCC methodological
- included in the industrial processes totals (Miner and Upton 2002). In accordance with IPCC methodological
 guidelines, any such emissions are calculated by accounting for net C fluxes from changes in biogenic C reservoirs
- in wooded or crop lands (see the Land Use, Land-Use Change, and Forestry chapter).
- 25 In the case of water treatment plants, lime is used in the softening process. Some large water treatment plants
- may recover their waste calcium carbonate and calcine it into quicklime for reuse in the softening process. Further
 research is necessary to determine the degree to which lime recycling is practiced by water treatment plants in the
 United States.
- 29 Another uncertainty is the assumption that calcination emissions for LKD are around 2 percent. The National Lime
- 30 Association (NLA) has commented that the estimates of emissions from LKD in the United States could be closer to
- 31 6 percent. They also note that additional emissions (approximately 2 percent) may also be generated through
- 32 production of other byproducts/wastes (off-spec lime that is not recycled, scrubber sludge) at lime plants (Seeger
- 2013). Publicly available data on LKD generation rates, total quantities not used in cement production, and types of
- 34 other byproducts/wastes produced at lime facilities are limited. EPA initiated a dialogue with NLA to discuss data
- 35 needs to generate a country-specific LKD factor and is reviewing the information provided by NLA. NLA compiled
- 36 and shared historical emissions information and quantities for some waste products reported by member facilities
- 37 associated with generation of total calcined byproducts and LKD, as well as methodology and calculation
- 38 worksheets that member facilities complete when reporting. There is uncertainty regarding the availability of data
- across the time series needed to generate a representative country-specific LKD factor. Uncertainty of the activity
- 40 data is also a function of the reliability and completeness of voluntarily reported plant-level production data.
- 41 Further research and data is needed to improve understanding of additional calcination emissions to consider

 $^{^{14}}$ Representatives of the National Lime Association estimate that CO₂ reabsorption that occurs from the use of lime may offset as much as a quarter of the CO₂ emissions from calcination (Males 2003).

¹⁵ Some carbide producers may also regenerate lime from their calcium hydroxide byproducts, which does not result in emissions of CO₂. In making calcium carbide, quicklime is mixed with coke and heated in electric furnaces. The regeneration of lime in this process is done using a waste calcium hydroxide (hydrated lime) $[CaC_2 + 2H_2O \rightarrow C_2H_2 + Ca(OH)_2]$, not calcium carbonate $[CaCO_3]$. Thus, the calcium hydroxide is heated in the kiln to simply expel the water $[Ca(OH)_2 + heat \rightarrow CaO + H_2O]$ and no CO₂ is released.

- 1 revising the current assumptions that are based on IPCC guidelines. More information can be found in the Planned
- 2 Improvements section below.
- 3 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-10. Lime CO₂ emissions
- 4 for 2017 were estimated to be between 13.6 and 14.2 MMT CO₂ Eq. at the 95 percent confidence level. This

5 confidence level indicates a range of approximately 2 percent below and 2 percent above the emission estimate of

6 13.9 MMT CO₂ Eq.

Table 4-10: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from Lime Production (MMT CO₂ Eq. and Percent)

Source	Cas	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate ^a				
Source	Gas	(MMT CO₂ Eq.)	(MMT CO ₂ Eq.)		(%)		
			Lower	Upper	Lower	Upper	
			Bound	Bound	Bound	Bound	
Lime Production	CO ₂	13.9	13.6	14.2	-2%	+2%	
^a Range of emission	estimates	predicted by Monte Carlo St	ochastic Simula	tion for a 95 per	cent confidence	e interval.	

9 Methodological approaches were applied to the entire time series to ensure consistency in emissions from 1990

- 10 through 2018. Details on the emission trends through time are described in more detail in the Methodology
- 11 section, above.

12 QA/QC and Verification

13 General quality assurance/quality control (QA/QC) procedures were applied consistent with the U.S. *Inventory*

- 14 QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of *2006 IPCC Guidelines* as noted in the introduction of 15 the IPPU chapter (see Annex 8 for more details).
- 16 More details on the greenhouse gas calculation, monitoring and QA/QC methods associated with reporting on CO₂

17 captured for onsite use applicable to lime manufacturing facilities can be found under Subpart S (Lime

- 18 Manufacturing) of the GHGRP regulation (40 CFR Part 98).¹⁶ EPA verifies annual facility-level GHGRP reports
- 19 through a multi-step process (e.g., combination of electronic checks and manual reviews) to identify potential
- 20 errors and ensure that data submitted to EPA are accurate, complete, and consistent (EPA 2015).¹⁷ Based on the
- results of the verification process, EPA follows up with facilities to resolve mistakes that may have occurred. The
- post-submittals checks are consistent with a number of general and category-specific QC procedures, including:
 range checks, statistical checks, algorithm checks, and year-to-year checks of reported data and emissions.

24 Planned Improvements

25 EPA plans to review GHGRP emissions and activity data reported to EPA under Subpart S of the GHGRP regulation

- 26 (40 CFR Part 98), and in particular, aggregated activity data on lime production by type. Particular attention will be
- 27 made to also ensuring time-series consistency of the emissions estimates presented in future Inventory reports,
- consistent with IPCC and UNFCCC guidelines. This is required as the facility-level reporting data from EPA's GHGRP,
- 29 with the program's initial requirements for reporting of emissions in calendar year 2010, are not available for all
- 30 inventory years (i.e., 1990 through 2009) as required for this Inventory. In implementing improvements and integration of data from EDV/a CUCOD the latest quideness from the UCC on the use of facility level data in patients.
- integration of data from EPA's GHGRP, the latest guidance from the IPCC on the use of facility-level data in national
 inventories will be relied upon.¹⁸

¹⁶ See <http://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title40/40cfr98_main_02.tpl>.

¹⁷ See <https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.

¹⁸ See <http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

- 1 Future improvements involve finishing a review of data to improve current assumptions associated with emissions 2 from production of LKD and other byproducts/wastes as discussed in the Uncertainty and Time-Series Consistency 3 section, per comments from the NLA provided during a prior Public Review comment period for the inventory 4 being compiled in 2015. In response to comments, EPA met with NLA in spring of that year to outline specific 5 information required to apply IPCC methods to develop a country-specific correction factor to more accurately 6 estimate emissions from production of LKD. In response to this technical meeting, in January and February 2016, 7 NLA compiled and shared historical emissions information reported by member facilities on an annual basis under 8 voluntary reporting initiatives from 2002 through 2011 associated with generation of total calcined byproducts and 9 LKD (LKD reporting only differentiated starting in 2010). This emissions information was reported on a voluntary 10 basis consistent with NLA's facility-level reporting protocol, which was also provided to EPA. Due to limited 11 resources and need for additional QA of information, this planned improvement is still in process and has not been 12 incorporated into this current Inventory report. This is a long-term improvement pending additional resources for 13 QA. As an interim step, EPA has updated the qualitative description of uncertainty to reflect the information
- 14 provided by NLA.

4.3 Glass Production (CRF Source Category 2A3)

- 17 Glass production is an energy and raw-material intensive process that results in the generation of carbon dioxide
- 18 (CO₂) from both the energy consumed in making glass and the glass production process itself. Emissions from fuels
- 19 consumed for energy purposes during the production of glass are included in the Energy sector.
- 20 Glass production employs a variety of raw materials in a glass-batch. These include formers, fluxes, stabilizers, and
- sometimes colorants. The major raw materials (i.e., fluxes and stabilizers) that emit process-related CO₂ emissions
- 22 during the glass melting process are limestone, dolomite, and soda ash. The main former in all types of glass is
- silica (SiO₂). Other major formers in glass include feldspar and boric acid (i.e., borax). Fluxes are added to lower the
 temperature at which the batch melts. Most commonly used flux materials are soda ash (sodium carbonate,
- temperature at which the batch melts. Most commonly used flux materials are soda ash (sodium carbonate,
 Na₂CO₃) and potash (potassium carbonate, K₂O). Stabilizers are used to make glass more chemically stable and to
- keep the finished glass from dissolving and/or falling apart. Commonly used stabilizing agents in glass production
- are limestone (CaCO₃), dolomite (CaCO₃MgCO₃), alumina (Al₂O₃), magnesia (MgO), barium carbonate (BaCO₃),
- strontium carbonate (SrCO₃), lithium carbonate (Li₂CO₃), and zirconia (ZrO₂) (OIT 2002). Glass makers also use a
- 29 certain amount of recycled scrap glass (cullet), which comes from in-house return of glassware broken in the
- 30 process or other glass spillage or retention such as recycling or cullet broker services.
- 31 The raw materials (primarily limestone, dolomite and soda ash) release CO₂ emissions in a complex high-
- 32 temperature chemical reaction during the glass melting process. This process is not directly comparable to the
- 33 calcination process used in lime manufacturing, cement manufacturing, and process uses of carbonates (i.e.,
- 34 limestone/dolomite use), but has the same net effect in terms of CO₂ emissions (IPCC 2006).
- 35 The U.S. glass industry can be divided into four main categories: containers, flat (window) glass, fiber glass, and
- 36 specialty glass. The majority of commercial glass produced is container and flat glass (EPA 2009). The United States
- is one of the major global exporters of glass. Domestically, demand comes mainly from the construction, auto,
- bottling, and container industries. There are more than 1,500 companies that manufacture glass in the United
- 39 States, with the largest being Corning, Guardian Industries, Owens-Illinois, and PPG Industries.¹⁹
- 40 In 2018, 713 kilotons of limestone and 2,280 kilotons of soda ash were consumed for glass production (USGS 2019;
- 41 USGS 2019a). Dolomite consumption data for glass manufacturing was reported to be zero for 2018. Use of

¹⁹ Excerpt from Glass & Glass Product Manufacturing Industry Profile, First Research. Available online at: http://www.firstresearch.com/Industry-Research/Glass-and-Glass-Product-Manufacturing.html.

- 1 limestone and soda ash in glass production resulted in aggregate CO₂ emissions of 1.3 MMT CO₂ Eq. (1,259 kt) (see
- 2 Table 4-11). Overall, emissions have decreased 18 percent from 1990 through 2018.
- 3 Emissions in 2018 decreased approximately 3 percent from 2017 levels while, in general, emissions from glass
- 4 production have remained relatively constant over the time series with some fluctuations since 1990. In general,
- 5 these fluctuations were related to the behavior of the export market and the U.S. economy. Specifically, the
- 6 extended downturn in residential and commercial construction and automotive industries between 2008 and 2010
- 7 resulted in reduced consumption of glass products, causing a drop in global demand for limestone/dolomite and
- 8 soda ash, and a corresponding decrease in emissions. Furthermore, the glass container sector is one of the leading
- 9 soda ash consuming sectors in the United States. Some commercial food and beverage package manufacturers are
- shifting from glass containers towards lighter and more cost-effective polyethylene terephthalate (PET) based
- containers, putting downward pressure on domestic consumption of soda ash (USGS 1995 through 2015b).

12 Table 4-11: CO₂ Emissions from Glass Production (MMT CO₂ Eq. and kt)

Year	MMT CO₂ Eq.	kt
1990	1.5	1,535
2005	1.9	1,928
2014	1.3	1,336
2015	1.3	1,299
2016	1.2	1,241
2017	1.3	1,292
2018	1.3	1,259

Note: Totals may not sum due to independent rounding.

13 Methodology

14 Carbon dioxide emissions were calculated based on the 2006 IPCC Guidelines Tier 3 method by multiplying the

15 quantity of input carbonates (limestone, dolomite, and soda ash) by the carbonate-based emission factor (in

16 metric tons CO₂/metric ton carbonate): limestone, 0.43971; dolomite, 0.47732; and soda ash, 0.41492.

17 Consumption data for 1990 through 2018 of limestone, dolomite, and soda ash used for glass manufacturing were

18 obtained from the U.S. Geological Survey (USGS) *Minerals Yearbook: Crushed Stone Annual Report* (1995 through

2016a), 2017 and 2018 preliminary data from the USGS Crushed Stone Commodity Expert (Willett 2019a), the

20 USGS Minerals Yearbook: Soda Ash Annual Report (1995 through 2015) (USGS 1995 through 2015b), USGS Mineral

- 21 Industry Surveys for Soda Ash in December 2018 (USGS 2019) and the U.S. Bureau of Mines (1991 and 1993a),
- which are reported to the nearest ton. During 1990 and 1992, the USGS did not conduct a detailed survey of
- limestone and dolomite consumption by end-use. Therefore, data on consumption by end use for 1990 was
- estimated by applying the 1991 ratios of total limestone and dolomite consumption by end use to total 1990
 limestone and dolomite consumption values. Similarly, the 1992 consumption figures were approximated by
- applying an average of the 1991 and 1993 ratios of total limestone and dolomite use by end uses to the 1992 total
- 27 values.
- Additionally, each year the USGS withholds data on certain limestone and dolomite end-uses due to confidentiality
- agreements regarding company proprietary data. For the purposes of this analysis, emissive end-uses that
- 30 contained withheld data were estimated using one of the following techniques: (1) the value for all the withheld
- 31 data points for limestone or dolomite use was distributed evenly to all withheld end-uses; or (2) the average
- 32 percent of total limestone or dolomite for the withheld end-use in the preceding and succeeding years.
- 33 A large quantity of limestone and dolomite reported to the USGS under the categories "unspecified-reported" and
- 34 "unspecified–estimated." A portion of this consumption is believed to be limestone or dolomite used for glass
- 35 manufacturing. The quantities listed under the "unspecified" categories were, therefore, allocated to glass
- 36 manufacturing according to the percent limestone or dolomite consumption for glass manufacturing end use for

- 1 that year.²⁰ For 2018, the unspecified uses of both limestone and dolomite consumption were not available at the
- 2 time of publication, so 2017 values were used as a proxy for these values.
- 3 Based on the 2018 reported data, the estimated distribution of soda ash consumption for glass production
- 4 compared to total domestic soda ash consumption is 47 percent (USGS 1995 through 2015b, 2018, 2019).

5 Table 4-12: Limestone, Dolomite, and Soda Ash Consumption Used in Glass Production (kt)

Activity	1990	2005	2014	2015	2016	2017	2018
Limestone	430	920	765	699	455	712	713
Dolomite	59	541	0	0	0	0	0
Soda Ash	3,177	3,050	2,410	2,390	2,510	2,360	2,280
Total	3,666	4,511	3,175	3,089	2,965	3,072	2,993

⁶ Uncertainty and Time-Series Consistency – TO BE UPDATED ⁷ FOR FINAL INVENTORY REPORT

8 The uncertainty levels presented in this section arise in part due to variations in the chemical composition of
9 limestone used in glass production. In addition to calcium carbonate, limestone may contain smaller amounts of

10 magnesia, silica, and sulfur, among other minerals (potassium carbonate, strontium carbonate and barium

11 carbonate, and dead burned dolomite). Similarly, the quality of the limestone (and mix of carbonates) used for

12 glass manufacturing will depend on the type of glass being manufactured.

13 The estimates below also account for uncertainty associated with activity data. Large fluctuations in reported

14 consumption exist, reflecting year-to-year changes in the number of survey responders. The uncertainty resulting

15 from a shifting survey population is exacerbated by the gaps in the time series of reports. The accuracy of

16 distribution by end use is also uncertain because this value is reported by the manufacturer of the input

- 17 carbonates (limestone, dolomite and soda ash) and not the end user. For 2018, there has been no reported
- 18 consumption of dolomite for glass manufacturing. These data have been reported to USGS by dolomite 19 manufacturers and not end-users (i.e., glass manufacturers). There is a high uncertainty associated with t
- 19 manufacturers and not end-users (i.e., glass manufacturers). There is a high uncertainty associated with this 20 estimate, as dolomite is a major raw material consumed in glass production. Additionally, there is significant

inherent uncertainty associated with estimating withheld data points for specific end uses of limestone and

dolomite. The uncertainty of the estimates for limestone and dolomite used in glass making is especially high.

Lastly, much of the limestone consumed in the United States is reported as "other unspecified uses;" therefore, it

is difficult to accurately allocate this unspecified quantity to the correct end-uses. Further research is needed into

alternate and more complete sources of data on carbonate-based raw material consumption by the glass industry.

26 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-13. In 2018, glass

27 production CO₂ emissions were estimated to be between 1.3 and 1.4 MMT CO₂ Eq. at the 95 percent confidence

28 level. This indicates a range of approximately 4 percent below and 5 percent above the emission estimate of 1.3

29 MMT CO₂ Eq.

Table 4-13: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from Glass Production (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate (MMT CO ₂ Eq.)	Uncertainty Range Relat (MMT CO ₂ Eq.)		ve to Emissior (%	
			Lower	Upper	Lower	Upper
			Bound	Bound	Bound	Bound
Glass Production	CO ₂	1.3	1.3	1.4	-4%	+5%
^a Range of emission	estimates	predicted by Monte Carlo Sto	chastic Simula	tion for a 95 p	ercent confide	ence
interval.						

²⁰ This approach was recommended by USGS.

- 1 Methodological approaches were applied to the entire time series to ensure consistency in emissions from 1990
- 2 through 2018. Details on the emission trends through time are described in more detail in the Methodology
- 3 section, above.

4 **QA/QC** and Verification

- 5 General quality assurance/quality control (QA/QC) procedures were applied consistent with the U.S. *Inventory*
- 6 QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of 2006 IPCC Guidelines as described in the introduction
- 7 of the IPPU chapter (see Annex 8 for more details).

8 Planned Improvements

- 9 As noted in the prior annual publications of this report, current publicly available activity data shows consumption
- 10 of only limestone and soda ash for glass manufacturing. While limestone and soda ash are the predominant
- 11 carbonates used in glass manufacturing, there are other carbonates that are also consumed for glass
- 12 manufacturing, although in smaller quantities. EPA has initiated review of available activity data on carbonate
- 13 consumption by type in the glass industry from EPA's Greenhouse Gas Reporting Program (GHGRP) reported
- 14 annually since 2010, as well as USGS publications. This is a long-term planned improvement.
- 15 EPA has initiated review of EPA's GHGRP data to help understand the completeness of emission estimates and
- 16 facilitate category-specific QC per Volume 1 of the 2006 IPCC Guidelines for the Glass Production source category.
- 17 EPA's GHGRP has an emission threshold for reporting from this industry, so the assessment will also consider the
- 18 completeness of carbonate consumption data for glass production in the United States. Particular attention will
- also be made to also ensuring time-series consistency of the emissions estimates presented in future Inventory
- 20 reports, consistent with IPCC and UNFCCC guidelines. This is required as the facility-level reporting data from EPA's
- 21 GHGRP, with the program's initial requirements for reporting of emissions in calendar year 2010, are not available
- for all inventory years (i.e., 1990 through 2009) as required for this Inventory. In implementing improvements and
- 23 integration of data from EPA's GHGRP, the latest guidance from the IPCC on the use of facility-level data in national
- inventories will be relied upon.²¹ These planned improvements are ongoing and EPA may also initiate research into
- 25 other sources of activity data for carbonate consumption by the glass industry.

4.4 Other Process Uses of Carbonates (CRF Source Category 2A4)

- Limestone (CaCO₃), dolomite (CaCO₃MgCO₃),²² and other carbonates such as soda ash, magnesite, and siderite are basic materials used by a wide variety of industries, including construction, agriculture, chemical, metallurgy, glass production, and environmental pollution control. This section addresses only limestone, dolomite, and soda ash use. For industrial applications, carbonates such as limestone and dolomite are heated sufficiently enough to calcine the material and generate CO₂ as a byproduct.
- 33 34

 $CaCO_3 \rightarrow CaO + CO_2$ $MgCO_3 \rightarrow MgO + CO_2$

²¹ See <http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

²² Limestone and dolomite are collectively referred to as limestone by the industry, and intermediate varieties are seldom distinguished.

- 1 Examples of such applications include limestone used as a flux or purifier in metallurgical furnaces, as a sorbent in
- 2 flue gas desulfurization (FGD) systems for utility and industrial plants, and as a raw material for the production of
- 3 glass, lime, and cement. Emissions from limestone and dolomite used in other process sectors, such as cement, lime,
- 4 glass production, and iron and steel, are excluded from this section and reported under their respective source
- 5 categories (e.g., Section 4.3, Glass Production). Emissions from soda ash consumption associated with glass
- 6 manufacturing are reported under Section 4.3 Glass Production (CRF Source Category 2A3). Emissions from fuels
- 7 consumed for energy purposes during these processes are accounted for in the Energy chapter.
- 8 Limestone is widely distributed throughout the world in deposits of varying sizes and degrees of purity. Large
- 9 deposits of limestone occur in nearly every state in the United States, and significant quantities are extracted for
- 10 industrial applications. In 2016, the leading limestone producing states were Texas, Florida, Missouri, Ohio, and
- 11 Illinois, which contributed 50 percent of the total U.S. output (USGS 2018). Similarly, dolomite deposits are also
- 12 widespread throughout the world. Dolomite deposits are found in the United States, Canada, Mexico, Europe,
- 13 Africa, and Brazil. In the United States, the leading dolomite producing states are Illinois, Pennsylvania, and New
- 14 York, which currently contribute more than half of the total U.S. output (USGS 1995a through 2017).
- 15 In 2018, 18,535 kt of limestone, 1,782 kt of dolomite, and 2,576 kt of soda ash were consumed for these emissive
- 16 applications, excluding glass manufacturing (Willett 2019, USGS 2019). Usage of limestone, dolomite and soda ash
- 17 resulted in aggregate CO₂ emissions of 9.4 MMT CO₂ Eq. (9,424 kt) (see Table 4-14 and Table 4-15). While 2018
- 18 emissions have decreased 7 percent compared to 2017, overall emissions have increased 50 percent from 1990
- 19 through 2018.

20 Table 4-14: CO₂ Emissions from Other Process Uses of Carbonates (MMT CO₂ Eq.)

					Other	
	Flux		Magnesium	Soda Ash	Miscellaneous	
Year	Stone	FGD	Production	Consumption ^a	Uses ^b	Total
1990	2.6	1.4	0.1	1.4	0.8	6.3
2005	2.6	3.0	0.0	1.3	0.7	7.6
2014	2.9	7.1	0.0	1.1	1.8	13.0
2015	2.9	7.3	0.0	1.1	0.9	12.2
2016	2.6	6.2	0.0	1.1	1.1	11.0
2017	2.6	5.9	0.0	1.1	0.5	10.1
2018	2.3	5.5	0.0	1.1	0.5	9.4

^a Soda ash consumption not associated with glass manufacturing.

^b "Other miscellaneous uses" include chemical stone, mine dusting or acid water treatment, acid neutralization, and sugar refining.

Note: Totals may not sum due to independent rounding.

21 Table 4-15: CO₂ Emissions from Other Process Uses of Carbonates (kt)

			Magnesium	Soda Ash	Other Miscellaneous	
Year	Flux Stone	FGD	Production	Consumption ^a	Uses ^b	Total
1990	2,592	1,432	64	1,390	819	6,297
2005	2,649	2,973	0	1,305	718	7,644
2014	2,911	7,111	0	1,143	1,790	12,954
2015	2,901	7,335	0	1,075	871	12,182
2016	2,585	6,164	0	1,082	1,137	10,969
2017	2,645	5,904	0	1,058	532	10,139
2018	2,346	5,513	0	1,069	497	9,424

^a Soda ash consumption not associated with glass manufacturing.

 "Other miscellaneous uses" include chemical stone, mine dusting or acid water treatment, acid neutralization, and sugar refining.
 Note: Totals may not sum due to independent rounding.

1 Methodology

2 Carbon dioxide emissions were calculated based on the 2006 IPCC Guidelines Tier 2 method by multiplying the

3 quantity of limestone or dolomite consumed by the emission factor for limestone or dolomite calcination,

4 respectively – limestone: 0.43971 metric ton CO₂/metric ton carbonate, and dolomite: 0.47732 metric ton

5 CO₂/metric ton carbonate.²³ This methodology was used for flux stone, flue gas desulfurization systems, chemical

6 stone, mine dusting or acid water treatment, acid neutralization, and sugar refining. Flux stone used during the

7 production of iron and steel was deducted from the Other Process Uses of Carbonates source category estimate

and attributed to the Iron and Steel Production source category estimate. Similarly, limestone and dolomite
 consumption for glass manufacturing, cement, and lime manufacturing are excluded from this category and

10 attributed to their respective categories.

11 Historically, the production of magnesium metal was the only other significant use of limestone and dolomite that

12 produced CO₂ emissions. At the end of 2001, the sole magnesium production plant operating in the United States

13 that produced magnesium metal using a dolomitic process that resulted in the release of CO₂ emissions ceased its

14 operations (USGS 1995b through 2012; USGS 2013).

15 Consumption data for 1990 through 2018 of limestone and dolomite used for flux stone, flue gas desulfurization

16 systems, chemical stone, mine dusting or acid water treatment, acid neutralization, and sugar refining (see Table

4-16) were obtained from the U.S. Geological Survey (USGS) *Minerals Yearbook: Crushed Stone Annual Report*

18 (1995a through 2017), preliminary data for 2017 and 2018 from USGS Crushed Stone Commodity Expert (Willett

19 2018a, 2018b, 2019), American Iron and Steel Institute limestone and dolomite consumption data (AISI 2018,

20 2019), and the U.S. Bureau of Mines (1991 and 1993a), which are reported to the nearest ton.. For 2018, estimates

of the unspecified uses of both limestone and dolomite consumption were available at the time of publication,

however the specified uses were not available, so 2017 values were used as a proxy for these values. The
 production capacity data for 1990 through 2018 of dolomitic magnesium metal also came from the USGS (199).

production capacity data for 1990 through 2018 of dolomitic magnesium metal also came from the USGS (1995b through 2012; USGS 2013) and the U.S. Bureau of Mines (1990 through 1993b). During 1990 and 1992, the USGS

did not conduct a detailed survey of limestone and dolomite consumption by end-use. Therefore, data on

consumption by end use for 1990 was estimated by applying the 1991 ratios of total limestone and dolomite

consumption by end use for 1990 was estimated by applying the 1991 ratios of total intestone and dolonite
 consumption by end use to total 1990 limestone and dolonite consumption values. Similarly, the 1992

consumption figures were approximated by applying an average of the 1991 and 1993 ratios of total limestone and

dolomite use by end uses to the 1992 total values.

30 Additionally, each year the USGS withholds data on certain limestone and dolomite end-uses due to confidentiality

31 agreements regarding company proprietary data. For the purposes of this analysis, emissive end-uses that

32 contained withheld data were estimated using one of the following techniques: (1) the value for all the withheld

data points for limestone or dolomite use was distributed evenly to all withheld end-uses; (2) the average percent

of total limestone or dolomite for the withheld end-use in the preceding and succeeding years; or (3) the average

35 fraction of total limestone or dolomite for the end-use over the entire time period.

36 There is a large quantity of crushed stone reported to the USGS under the category "unspecified uses." A portion

of this consumption is believed to be limestone or dolomite used for emissive end uses. The quantity listed for

38 "unspecified uses" was, therefore, allocated to all other reported end-uses according to each end-use's fraction of

39 total consumption in that year.²⁴

²³ 2006 IPCC Guidelines, Volume 3: Chapter 2, Table 2.1.

²⁴ This approach was recommended by USGS, the data collection agency.

1 Table 4-16: Limestone and Dolomite Consumption (kt)

Activity	1990	2005	2014	2015	2016	2017	2018
Flux Stone	6,737	7,022	7,599	7,834	7,092	7,302	6,650
Limestone	5,804	3,165	4,243	4,590	4,118	5,214	4,868
Dolomite	933	3,857	3,356	3,244	2,973	2,088	1,782
FGD	3,258	6,761	16,171	16,680	14,019	13,427	12,537
Other Miscellaneous Uses	1,835	1,632	4,069	1,982	2,587	1,210	1,129
Total	11,830	15,415	27,839	26,496	23,698	21,939	20,316

2 Once produced, most soda ash is consumed in chemical production, with minor amounts used in soap production,

3 pulp and paper, flue gas desulfurization, and water treatment (excluding soda ash consumption for glass

4 manufacturing). As soda ash is consumed for these purposes, additional CO₂ is usually emitted. In these

5 applications, it is assumed that one mole of carbon is released for every mole of soda ash used. Thus,

6 approximately 0.113 metric tons of carbon (or 0.415 metric tons of CO₂) are released for every metric ton of soda

7 ash consumed. The activity data for soda ash consumption for 1990 to 2018 (see Table 4-17) were obtained from

8 the U.S. Geological Survey (USGS) Minerals Yearbook for Soda Ash (1994 through 2015b) and USGS Mineral

9 Industry Surveys for Soda Ash (USGS 2017a, 2018, 2019). Soda ash consumption data²⁵ were collected by the USGS

10 from voluntary surveys of the U.S. soda ash industry.

11 Table 4-17: Soda Ash Consumption Not Associated with Glass Manufacturing (kt)

Activity	1990	2005	2014	2015	2016	2017	2018
Soda Ash ^a	3,351	3,144	2,754	2,592	2,608	2,550	2,576
Total	3,351	3,144	2,754	2,592	2,608	2,550	2,576

^a Soda ash consumption is sales reported by producers which exclude imports. Historically, imported soda ash is less than 1 percent of the total U.S. consumption (Kostick 2012).

¹² Uncertainty and Time-Series Consistency – TO BE UPDATED ¹³ FOR FINAL INVENTORY REPORT

14 The uncertainty levels presented in this section account for uncertainty associated with activity data. Data on 15 limestone and dolomite consumption are collected by USGS through voluntary national surveys. USGS contacts the 16 mines (i.e., producers of various types of crushed stone) for annual sales data. Data on other carbonate 17 consumption are not readily available. The producers report the annual quantity sold to various end-users and 18 industry types. USGS estimates the historical response rate for the crushed stone survey to be approximately 70 19 percent, and the rest is estimated by USGS. Large fluctuations in reported consumption exist, reflecting year-to-20 year changes in the number of survey responders. The uncertainty resulting from a shifting survey population is 21 exacerbated by the gaps in the time series of reports. The accuracy of distribution by end use is also uncertain 22 because this value is reported by the producer/mines and not the end user. Additionally, there is significant 23 inherent uncertainty associated with estimating withheld data points for specific end uses of limestone and 24 dolomite. Lastly, much of the limestone consumed in the United States is reported as "other unspecified uses;" 25 therefore, it is difficult to accurately allocate this unspecified quantity to the correct end-uses. This year, EPA 26 reinitiated dialogue with the USGS National Minerals Information Center Crushed Stone commodity expert to 27 assess the current uncertainty ranges associated with the limestone and dolomite consumption data compiled and

²⁵ EPA has assessed feasibility of using emissions information (including activity data) from EPA's GHGRP; however, at this time, the aggregated information associated with production of soda ash did not meet criteria to shield underlying confidential business information (CBI) from public disclosure.

- 1 published by USGS. During this discussion, the expert confirmed that EPA's range of uncertainty was still
- 2 reasonable (Willett 2017a).
- 3 Uncertainty in the estimates also arises in part due to variations in the chemical composition of limestone. In
- 4 addition to calcium carbonate, limestone may contain smaller amounts of magnesia, silica, and sulfur, among
- 5 other minerals. The exact specifications for limestone or dolomite used as flux stone vary with the
- 6 pyrometallurgical process and the kind of ore processed.
- 7 For emissions from soda ash consumption, the primary source of uncertainty results from the fact that these
- 8 emissions are dependent upon the type of processing employed by each end-use. Specific emission factors for
- 9 each end-use are not available, so a Tier 1 default emission factor is used for all end uses. Therefore, there is
- 10 uncertainty surrounding the emission factors from the consumption of soda ash. Additional uncertainty comes
- 11 from the reported consumption and allocation of consumption within sectors that is collected on a quarterly basis
- 12 by the USGS. Efforts have been made to categorize company sales within the correct end-use sector.
- 13 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-18. Carbon dioxide
- emissions from other process uses of carbonates in 2018 were estimated to be between 8.3 and 10.8 MMT CO₂ Eq.
- at the 95 percent confidence level. This indicates a range of approximately 12 percent below and 15 percent above
- 16 the emission estimate of 9.4 MMT CO₂ Eq.

17 Table 4-18: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from Other 18 Process Uses of Carbonates (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate	Uncertaint	y Range Relativ	e to Emission	Estimateª
		(MMT CO ₂ Eq.)	(MMT	CO₂ Eq.)	(%	5)
			Lower	Upper	Lower	Upper
			Bound	Bound	Bound	Bound
Other Process Uses of Carbonates	CO ₂	9.4	8.3	10.8	-12%	+15%

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

- 19 Methodological approaches were applied to the entire time series to ensure consistency in emissions from 1990
- 20 through 2018. Details on the emission trends through time are described in more detail in the Methodology
- 21 section, above.

22 QA/QC and Verification

- 23 General quality assurance/quality control (QA/QC) procedures were applied consistent with the U.S. *Inventory*
- 24 QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of 2006 IPCC Guidelines as described in the introduction 25 of the IBPL chapter (see Append Append
- 25 of the IPPU chapter (see Annex 8 for more details).

26 Planned Improvements

- 27 EPA plans to continue the dialogue with USGS to assess uncertainty ranges for activity data used to estimate
- 28 emissions from other process use of carbonates. This planned improvement is currently planned as a medium-
- 29 term improvement.

4.5 Ammonia Production (CRF Source Category 2 2B1)

Emissions of carbon dioxide (CO_2) occur during the production of synthetic ammonia (NH_3), primarily through the 3 4 use of natural gas, petroleum coke, or naphtha as a feedstock. The natural gas-, naphtha-, and petroleum coke-5 based processes produce CO₂ and hydrogen (H₂), the latter of which is used in the production of ammonia. The 6 brine electrolysis process for production of ammonia does not lead to process-based CO₂ emissions. Due to 7 national circumstances, emissions from fuels consumed for energy purposes during the production of ammonia 8 are accounted for in the Energy chapter. More information on this approach can be found in the Methodology 9 section, below. 10 In the United States, the majority of ammonia is produced using a natural gas feedstock; however, one synthetic

- ammonia production plant located in Kansas is producing ammonia from petroleum coke feedstock. In some U.S.
- plants, some of the CO_2 produced by the process is captured and used to produce urea rather than being emitted
- to the atmosphere. In 2018, there were 15 companies operating 34 ammonia producing facilities in 16 states.
- 14 Approximately 50 percent of domestic ammonia production capacity is concentrated in the states of Louisiana,
- 15 Oklahoma, and Texas (USGS 2019).
- 16 There are five principal process steps in synthetic ammonia production from natural gas feedstock. The primary
- 17 reforming step converts methane (CH₄) to CO₂, carbon monoxide (CO), and hydrogen (H₂) in the presence of a
- 18 catalyst. Only 30 to 40 percent of the CH₄ feedstock to the primary reformer is converted to CO and CO₂ in this
- 19 step of the process. The secondary reforming step converts the remaining CH₄ feedstock to CO and CO₂. The CO in
- 20 the process gas from the secondary reforming step (representing approximately 15 percent of the process gas) is
- 21 converted to CO_2 in the presence of a catalyst, water, and air in the shift conversion step. Carbon dioxide is
- 22 removed from the process gas by the shift conversion process, and the H_2 is combined with the nitrogen (N_2) gas in
- the process gas during the ammonia synthesis step to produce ammonia. The CO₂ is included in a waste gas stream with other process impurities and is absorbed by a scrubber solution. In regenerating the scrubber solution, CO₂ is
- 25 released from the solution.
- The conversion process for conventional steam reforming of CH₄, including the primary and secondary reforming and the shift conversion processes, is approximately as follows:

28
$$0.88CH_4 + 1.26Air + 1.24H_2O \rightarrow 0.88CO_2 + N_2 + 3H_2$$

$$N_2 + 3H_2 \rightarrow 2NH_3$$

To produce synthetic ammonia from petroleum coke, the petroleum coke is gasified and converted to CO₂ and H₂.
 These gases are separated, and the H₂ is used as a feedstock to the ammonia production process, where it is

 $32 \qquad \mbox{reacted with N_2 to form ammonia.}$

37

Not all of the CO₂ produced during the production of ammonia is emitted directly to the atmosphere. Some of the ammonia and some of the CO₂ produced by the synthetic ammonia process are used as raw materials in the

35 production of urea [CO(NH₂)₂], which has a variety of agricultural and industrial applications.

36 The chemical reaction that produces urea is:

$$2NH_3 + CO_2 \rightarrow NH_2COONH_4 \rightarrow CO(NH_2)_2 + H_2O$$

Only the CO₂ emitted directly to the atmosphere from the synthetic ammonia production process is accounted for in determining emissions from ammonia production. The CO₂ that is captured during the ammonia production process and used to produce urea does not contribute to the CO₂ emission estimates for ammonia production presented in this section. Instead, CO₂ emissions resulting from the consumption of urea are attributed to the urea consumption or urea application source category (under the assumption that the carbon stored in the urea during its manufacture is released into the environment during its consumption or application). Emissions of CO₂ resulting from agricultural applications of urea are accounted for in the Agriculture chapter. Previously, these emission

- 1 estimates from the agricultural application of urea were accounted for in the *Cropland Remaining Cropland* section
- 2 of the Land Use, Land Use Change, and Forestry chapter. Emissions of CO₂ resulting from non-agricultural
- 3 applications of urea (e.g., use as a feedstock in chemical production processes) are accounted for in Section 4.6
- 4 Urea Consumption for Non-Agricultural Purposes of this chapter.
- 5 Total emissions of CO₂ from ammonia production in 2018 were 13.5 MMT CO₂ Eq. (13,532 kt), and are summarized
- 6 in Table 4-19 and Table 4-20. Ammonia production relies on natural gas as both a feedstock and a fuel, and as
- 7 such, market fluctuations and volatility in natural gas prices affect the production of ammonia. Since 1990,
- 8 emissions from ammonia production have increased by about 4 percent. Emissions in 2018 have increased by
- 9 approximately 2 percent from the 2017 levels. Agricultural demands continue to drive demand for nitrogen
- 10 fertilizers (USGS 2019).

11 Table 4-19: CO₂ Emissions from Ammonia Production (MMT CO₂ Eq.)

Source	1990	2005	2014	2015	2016	2017	2018
Ammonia Production	13.0	9.2	9.4	10.6	10.8	13.2	13.5
Total	13.0	9.2	9.4	10.6	10.8	13.2	13.5

12 Table 4-20: CO₂ Emissions from Ammonia Production (kt)

Source	1990	2005	2014	2015	2016	2017	2018
Ammonia Production	13,047	9,196	9,377	10,634	10,838	13,216	13,532
Total	13,047	9,196	9,377	10,634	10,838	13,216	13,532

13 Methodology

14 For the U.S. Inventory, CO₂ emissions from the production of synthetic ammonia from natural gas feedstock are

estimated using a country-specific approach modified from the 2006 IPCC Guidelines (IPCC 2006) Tier 1 and 2

16 methods. In the country-specific approach, emissions are not based on total fuel requirement per the 2006 IPCC

17 *Guidelines* due to data disaggregation limitations of energy statistics provided by the Energy Information

18 Administration (EIA). A country-specific emission factor is developed and applied to national ammonia production

19 to estimate emissions. The method uses a CO₂ emission factor published by the European Fertilizer Manufacturers

20 Association (EFMA) that is based on natural gas-based ammonia production technologies that are similar to those

employed in the United States. This CO₂ emission factor of 1.2 metric tons CO₂/metric ton NH₃ (EFMA 2000a) is

22 applied to the percent of total annual domestic ammonia production from natural gas feedstock.

23 Emissions of CO₂ from ammonia production are then adjusted to account for the use of some of the CO₂ produced

from ammonia production as a raw material in the production of urea. The CO₂ emissions reported for ammonia

25 production are reduced by a factor of 0.733 multiplied by total annual domestic urea production. This corresponds

to a stoichiometric CO₂/urea factor of 44/60, assuming complete conversion of ammonia (NH₃) and CO₂ to urea

- 27 (IPCC 2006; EFMA 2000b).
- 28 All synthetic ammonia production and subsequent urea production are assumed to be from the same process—

29 conventional catalytic reforming of natural gas feedstock, with the exception of ammonia production from

30 petroleum coke feedstock at one plant located in Kansas. Annual ammonia and urea production are shown in

Table 4-21. The CO₂ emission factor for production of ammonia from petroleum coke is based on plant-specific

32 data, wherein all carbon contained in the petroleum coke feedstock that is not used for urea production is

assumed to be emitted to the atmosphere as CO₂ (Bark 2004). Ammonia and urea are assumed to be

- 34 manufactured in the same manufacturing complex, as both the raw materials needed for urea production are
- 35 produced by the ammonia production process. The CO₂ emission factor of 3.57 metric tons CO₂/metric ton NH₃ for
- 36 the petroleum coke feedstock process (Bark 2004) is applied to the percent of total annual domestic ammonia
- 37 production from petroleum coke feedstock.

- 1 The emission factor of 1.2 metric ton CO₂/metric ton NH₃ for production of ammonia from natural gas feedstock
- 2 was taken from the EFMA Best Available Techniques publication, Production of Ammonia (EFMA 2000a). The EFMA
- 3 reported an emission factor range of 1.15 to 1.30 metric ton CO₂/metric ton NH₃, with 1.2 metric ton CO₂/metric
- 4 ton NH₃ as a typical value (EFMA 2000a). Technologies (e.g., catalytic reforming process, etc.) associated with this
- 5 factor are found to closely resemble those employed in the United States for use of natural gas as a feedstock. The
- 6 EFMA reference also indicates that more than 99 percent of the CH₄ feedstock to the catalytic reforming process is
- 7 ultimately converted to CO₂.
- 8 The consumption of natural gas and petroleum coke as fossil fuel feedstocks for NH₃ production are adjusted for
- 9 within the Energy chapter as these fuels were consumed during non-energy related activities. More information on
- 10 this methodology is described in Annex 2.1, Methodology for Estimating Emissions of CO₂ from Fossil Fuel
- 11 Combustion. See the Planned Improvements section on improvements of reporting fuel and feedstock CO₂
- 12 emissions utilizing EPA's GHGRP data to improve consistency with 2006 IPCC Guidelines.
- 13 The total ammonia production data for 2011 through 2018 were obtained from American Chemistry Council (ACC
- 14 2019). For years before 2011, ammonia production data (see Table 4-21) were obtained from Coffeyville Resources
- 15 (Coffeyville 2005, 2006, 2007a, 2007b, 2009, 2010, 2011, and 2012) and the Census Bureau of the U.S. Department
- of Commerce (U.S. Census Bureau 1991 through 1994, 1998 through 2011) as reported in Current Industrial
- 17 Reports Fertilizer Materials and Related Products annual and quarterly reports. Urea-ammonia nitrate production
- 18 from petroleum coke for years through 2011 was obtained from Coffeyville Resources (Coffeyville 2005, 2006,
- 19 2007a, 2007b, 2009, 2010, 2011, and 2012), and from CVR Energy, Inc. Annual Report (CVR 2012 through 2018) for
- 20 2012 through 2018. Urea production data for 1990 through 2008 were obtained from the *Minerals Yearbook:*
- 21 *Nitrogen* (USGS 1994 through 2009). Urea production data for 2009 through 2010 were obtained from the U.S.
- Census Bureau (U.S. Census Bureau 2010 and 2011). The U.S. Census Bureau ceased collection of urea production
 statistics in 2011.
- 24 Urea production values in the current Inventory report utilize GHGRP data for the years 2011 through 2017 (EPA
- 25 2018). GHGRP urea production data for 2018 were not yet published and so 2017 data were used as a proxy.

Table 4-21: Ammonia Production, Recovered CO₂ Consumed for Urea Production, and Urea Production (kt)

		Total CO ₂ Consumption	
Year	Ammonia Production	for Urea Production	Urea Production
1990	15,425	5,463	7,450
2005	10,143	3,865	5,270
2014	10,515	4,078	5,561
2015	11,765	4,312	5,880
2016	12,305	5,419	7,390
2017	14,070	5,419	7,390
2018	14,370	5,419	7,390

²⁸ Uncertainty and Time-Series Consistency – TO BE UPDATED ²⁹ FOR FINAL INVENTORY REPORT

The uncertainties presented in this section are primarily due to how accurately the emission factor used represents an average across all ammonia plants using natural gas feedstock. Uncertainties are also associated with ammonia production estimates and the assumption that all ammonia production and subsequent urea production was from the same process—conventional catalytic reforming of natural gas feedstock, with the exception of one ammonia production plant located in Kansas that is manufacturing ammonia from petroleum coke feedstock. Uncertainty is

also associated with the representativeness of the emission factor used for the petroleum coke-based ammonia

- 1 process. It is also assumed that ammonia and urea are produced at collocated plants from the same natural gas
- 2 raw material. The uncertainty of the total urea production activity data, based on USGS *Minerals Yearbook:*
- 3 *Nitrogen* data, is a function of the reliability of reported production data and is influenced by the completeness of
- 4 the survey responses.
- 5 Recovery of CO₂ from ammonia production plants for purposes other than urea production (e.g., commercial sale,
- 6 etc.) has not been considered in estimating the CO₂ emissions from ammonia production, as data concerning the
- 7 disposition of recovered CO₂ are not available. Such recovery may or may not affect the overall estimate of CO₂
- 8 emissions depending upon the end use to which the recovered CO₂ is applied. Further research is required to
- 9 determine whether byproduct CO₂ is being recovered from other ammonia production plants for application to
- 10 end uses that are not accounted for elsewhere. However, for reporting purposes, CO₂ consumption for urea
- 11 production is provided in this chapter.
- 12 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-22. Carbon dioxide
- emissions from ammonia production in 2018 were estimated to be between 12.6 and 13.8 MMT CO₂ Eq. at the 95
- 14 percent confidence level. This indicates a range of approximately 5 percent below and 5 percent above the
- 15 emission estimate of 13.5 MMT CO₂ Eq.

Table 4-22: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from Ammonia Production (MMT CO₂ Eq. and Percent)

Source	Gar	2018 Emission Estimate	Uncertain	ertainty Range Relative to Emission Estimate ^a			
Source	Gas	(MMT CO ₂ Eq.) (MMT CO ₂ Eq.)		(%)			
			Lower	Upper	Lower	Upper	
			Bound	Bound	Bound	Bound	
Ammonia Production	CO ₂	13.5	12.8	14.2	-5%	+5%	

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

18 Methodological approaches were applied to the entire time series to ensure consistency in emissions from 1990

19 through 2018. Details on the emission trends through time are described in more detail in the Methodology

20 section, above.

21 QA/QC and Verification

22 General quality assurance/quality control (QA/QC) procedures were applied to ammonia production emission

estimates consistent with the U.S. *Inventory* QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of *2006*

24 *IPCC Guidelines* as described in the introduction of the IPPU chapter (see Annex 8 for more details).

25 More details on the greenhouse gas calculation, monitoring and QA/QC methods applicable to reporting of urea

produced at ammonia production facilities can be found under Section 4.6 Urea Consumption for Non-Agricultural
 Purposes.

28 Planned Improvements

- 29 Future improvements involve continuing to evaluate and analyze data reported under EPA's GHGRP to improve the
- 30 emission estimates for the Ammonia Production source category, in particular new data from updated reporting
- requirements finalized in October of 2014 (79 FR 63750) and December 2016 (81 FR 89188),²⁶ that include facility-
- 32 level ammonia production data and feedstock consumption. This data will first be reported by facilities in 2018 and
- available post-verification to assess in early 2019 for use in future Inventories (e.g., 2021 Inventory report) if the
- data meets GHGRP CBI aggregation criteria. Particular attention will be made to ensure time-series consistency of
- 35 the emission estimates presented in future Inventory reports, along with application of appropriate category-

²⁶ See <https://www.epa.gov/ghgreporting/historical-rulemakings>.

- 1 specific QC procedures consistent with IPCC and UNFCCC guidelines. For example, data reported in 2018 will
- 2 reflect activity in 2017 and may not be representative of activity in prior years of the time series. This assessment is
- 3 required as the new facility-level reporting data from EPA's GHGRP associated with new requirements are only
- 4 applicable starting with reporting of emissions in calendar year 2017, and thus are not available for all inventory
- 5 years (i.e., 1990 through 2016) as required for this Inventory.
- 6 In implementing improvements and integration of data from EPA's GHGRP, the latest guidance from the IPCC on
- 7 the use of facility-level data in national inventories will be relied upon.²⁷ Specifically, the planned improvements
- 8 include assessing the anticipated new data to update the emission factors to include both fuel and feedstock CO₂
- 9 emissions to improve consistency with 2006 IPCC Guidelines, in addition to reflecting CO₂ capture and storage
- 10 practices (beyond use of CO₂ for urea production). Methodologies will also be updated if additional ammonia
- production plants are found to use hydrocarbons other than natural gas for ammonia production. Due to limited resources and ongoing data collection efforts, this planned improvement is still in development and so is not
- incorporated into this Inventory. This is a long-term planned improvement.

4.6 Urea Consumption for Non-Agricultural Purposes

16 Urea is produced using ammonia and carbon dioxide (CO₂) as raw materials. All urea produced in the United States

- 17 is assumed to be produced at ammonia production facilities where both ammonia and CO₂ are generated. There
- were 34 plants producing ammonia in the United States during 2018, with two additional plants sitting idle for the entire year (USGS 2019b).
- 20 The chemical reaction that produces urea is:
- 21

 $2NH_3 + CO_2 \rightarrow NH_2COONH_4 \rightarrow CO(NH_2)_2 + H_2O$

 $\label{eq:22} This section accounts for CO_2 emissions associated with urea consumed exclusively for non-agricultural purposes.$

Carbon dioxide emissions associated with urea consumed for fertilizer are accounted for in the Agriculturechapter.

Urea is used as a nitrogenous fertilizer for agricultural applications and also in a variety of industrial applications. The industrial applications of urea include its use in adhesives, binders, sealants, resins, fillers, analytical reagents, catalysts, intermediates, solvents, dyestuffs, fragrances, deodorizers, flavoring agents, humectants and dehydrating agents, formulation components, monomers, paint and coating additives, photosensitive agents, and surface treatments agents. In addition, urea is used for abating nitrogen oxide (NO_x) emissions from coal-fired

- 30 power plants and diesel transportation motors.
- Emissions of CO₂ from urea consumed for non-agricultural purposes in 2018 were estimated to be 3.6 MMT CO₂ Eq. (3,628 kt), and are summarized in Table 4-23 and Table 4-24. Net CO₂ emissions from urea consumption for non-agricultural purposes in 2018 have decreased by approximately 5 percent from 1990. The significant decrease in emissions during 2014 can be attributed to a decrease in the amount of urea imported by the United States during that year. Similarly, 2017 also saw a decrease in the amount of urea imported to the United States as well
- 36 as a significant increase in urea exports.

²⁷ See <http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

1 Table 4-23: CO₂ Emissions from Urea Consumption for Non-Agricultural Purposes (MMT CO₂ 2 Eq.)

Source	1990	2005	2014	2015	2016	2017	2018
Urea Consumption	3.8	3.7	1.8	4.6	5.1	3.8	3.6
Total	3.8	3.7	1.8	4.6	5.1	3.8	3.6

3 Table 4-24: CO₂ Emissions from Urea Consumption for Non-Agricultural Purposes (kt)

Source	1990	2005	2014	2015	2016	2017	2018
Urea Consumption	3,784	3,653	1,807	4,578	5,132	3,769	3,628
Total	3,784	3,653	1,807	4,578	5,132	3,769	3,628

4 Methodology

5 Emissions of CO₂ resulting from urea consumption for non-agricultural purposes are estimated by multiplying the

6 amount of urea consumed in the United States for non-agricultural purposes by a factor representing the amount

of CO_2 used as a raw material to produce the urea. This method is based on the assumption that all of the carbon

8 in urea is released into the environment as CO₂ during use, and consistent with the 2006 IPCC Guidelines.

9 The amount of urea consumed for non-agricultural purposes in the United States is estimated by deducting the

10 quantity of urea fertilizer applied to agricultural lands, which is obtained directly from the Agriculture chapter (see

11 Table 5-25) and is reported in Table 4-25, from the total domestic supply of urea. In previous Inventory reports, the

12 quantity of urea fertilizer applied to agricultural lands was obtained directly from the *Cropland Remaining*

13 Cropland section of the Land Use, Land Use Change, and Forestry chapter. The domestic supply of urea is

estimated based on the amount of urea produced plus the sum of net urea imports and exports. A factor of 0.733
 tons of CO₂ per ton of urea consumed is then applied to the resulting supply of urea for non-agricultural purposes

to estimate CO_2 per torror trea consumed is then applied to the resulting supply of the or non-agricultural purposes. The 0.733 tons of CO_2

per ton of urea emission factor is based on the stoichiometry of producing urea from ammonia and CO₂. This

corresponds to a stoichiometric CO₂/urea factor of 44/60, assuming complete conversion of NH₃ and CO₂ to urea

19 (IPCC 2006; EFMA 2000).

20 Urea production data for 1990 through 2008 were obtained from the *Minerals Yearbook: Nitrogen* (USGS 1994

21 through 2009a). Urea production data for 2009 through 2010 were obtained from the U.S. Census Bureau (2011).

22 The U.S. Census Bureau ceased collection of urea production statistics in 2011. Starting with the previous Inventory

23 (i.e., 1990 through 2017), EPA began utilizing urea production data from EPA's GHGRP to estimate emissions. Urea

production values in the current Inventory report utilize GHGRP data for the years 2011 through 2017 (EPA 2018).

25 For this public review draft of the current Inventory (i.e., 1990 through 2018), GHGRP data is not available and

26 urea production values for 2018 are proxied using 2017 values.

27 Urea import data for 2018 are not yet publicly available and so 2017 data have been used as proxy. Urea import

data for 2013 to 2017 were obtained from the *Minerals Yearbook: Nitrogen* (USGS 2019a). Urea import data for

29 2011 and 2012 were taken from U.S. Fertilizer Import/Exports from the United States Department of Agriculture

30 (USDA) Economic Research Service Data Sets (U.S. Department of Agriculture 2012). USDA suspended updates to

this data after 2012. Urea import data for the previous years were obtained from the U.S. Census Bureau *Current*

32 Industrial Reports Fertilizer Materials and Related Products annual and quarterly reports for 1997 through 2010

33 (U.S. Census Bureau 2001 through 2011), The Fertilizer Institute (TFI 2002) for 1993 through 1996, and the United

States International Trade Commission Interactive Tariff and Trade DataWeb (U.S. ITC 2002) for 1990 through 1992
 (see Table 4-25).

36 Urea export data for 2018 are not yet publicly available and so 2017 data have been used as proxy. Urea export

data for 2013 to 2017 were obtained from the *Minerals Yearbook: Nitrogen* (USGS 2019a). Urea export data for

- 1 1990 through 2012 were taken from U.S. Fertilizer Import/Exports from USDA Economic Research Service Data
- 2 Sets (U.S. Department of Agriculture 2012). USDA suspended updates to this data after 2012.

	Urea	Urea Applied	Urea	Urea
Year	Production	as Fertilizer	Imports	Exports
1990	7,450	3,296	1,860	854
2005	5,270	4,779	5,026	536
2014	5,561	6,156	3,510	451
2015	5,880	6,447	7,190	380
2016	7,390	6,651	6,580	321
2017	7,390	6,888	5,510	872
2018	7,390	7,080	5,510	872

3 Table 4-25: Urea Production, Urea Applied as Fertilizer, Urea Imports, and Urea Exports (kt)

⁴ Uncertainty and Time-Series Consistency – TO BE UPDATED ⁵ FOR FINAL INVENTORY REPORT

6 There is limited publicly-available data on the quantities of urea produced and consumed for non-agricultural 7 purposes. Therefore, the amount of urea used for non-agricultural purposes is estimated based on a balance that 8 relies on estimates of urea production, urea imports, urea exports, and the amount of urea used as fertilizer. The 9 primary uncertainties associated with this source category are associated with the accuracy of these estimates as 10 well as the fact that each estimate is obtained from a different data source. Because urea production estimates are 11 no longer available from the USGS, there is additional uncertainty associated with urea produced beginning in 12 2011. There is also uncertainty associated with the assumption that all of the carbon in urea is released into the 13 environment as CO₂ during use. 14 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-26. Carbon dioxide

emissions associated with urea consumption for non-agricultural purposes during 2018 were estimated to be

16 between 3.2 and 4.0 MMT CO_2 Eq. at the 95 percent confidence level. This indicates a range of approximately 12 percent below and 12 percent above the emission estimate of 3.6 MMT CO_2 Eq.

17 percent below and 12 percent above the emission estimate of 3.6 MMT CO₂ Eq.

Table 4-26: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from Urea Consumption for Non-Agricultural Purposes (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate ^a			
Source		(MMT CO ₂ Eq.)	(MMT CO ₂ Eq.)		(%)	
			Lower	Upper	Lower	Upper
			Bound	Bound	Bound	Bound
Urea Consumption						
for Non-Agricultural	CO ₂	3.6	3.2	4.0	-12%	+12%
Purposes						

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

20 Methodological approaches were applied to the entire time series to ensure consistency in emissions from 1990

21 through 2018. Details on the emission trends through time are described in more detail in the Methodology

22 section, above.

1 QA/QC and Verification

- 2 General quality assurance/quality control (QA/QC) procedures were applied consistent with the U.S. *Inventory*
- 3 QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of 2006 IPCC Guidelines as described in the introduction
- 4 of the IPPU chapter (see Annex 8 for more details).
- 5 More details on the greenhouse gas calculation, monitoring and QA/QC methods applicable to reporting of urea
- 6 production occurring at ammonia facilities can be found under Subpart G (Ammonia Manufacturing) of the
- 7 regulation (40 CFR Part 98).²⁸ EPA verifies annual facility-level GHGRP reports through a multi-step process (e.g.,
- combination of electronic checks and manual reviews) to identify potential errors and ensure that data submitted
 to EPA are accurate, complete, and consistent.²⁹ Based on the results of the verification process, EPA follows up
- with facilities to resolve mistakes that may have occurred. The post-submittals checks are consistent with a
- 11 number of general and category-specific QC procedures, including: range checks, statistical checks, algorithm
- 12 checks, and year-to-year checks of reported data and emissions. EPA also conducts QA checks of GHGRP reported
- 13 urea production data against external datasets including the USGS *Minerals Yearbook* data. The comparison shows
- 14 consistent trends in urea production over time.

15 Recalculations Discussion

16 This current Inventory (i.e., 1990 through 2018) has been updated to include more recent 2017 United States urea

17 imports and exports data. Utilizing updated values resulted in an approximately 24 percent decrease in 2017

emissions reported in the current Inventory (i.e., 1990 through 2018) compared to the year 2017 emissions from

19 the previous Inventory (i.e., 1990 through 2017). The previous Inventory relied on proxy data for imports and

20 exports for 2017, the updated data used in this Inventory resulted in lower imports and increased exports in 2017

21 which reduced consumption and emissions.

4.7 Nitric Acid Production (CRF Source Category 2B2)

- 24 Nitrous oxide (N₂O) is emitted during the production of nitric acid (HNO₃), an inorganic compound used primarily
- to make synthetic commercial fertilizers. It is also a major component in the production of adipic acid—a feedstock
- for nylon—and explosives. Virtually all of the nitric acid produced in the United States is manufactured by the high-
- 27 temperature catalytic oxidation of ammonia (EPA 1998). There are two different nitric acid production methods:
- 28 weak nitric acid and high-strength nitric acid. The first method utilizes oxidation, condensation, and absorption to
- 29 produce nitric acid at concentrations between 30 and 70 percent nitric acid. High-strength acid (90 percent or 20 grapter pitric acid) can be produced from debugrating, blocching, condensing, and absorption of the weak pitric
- greater nitric acid) can be produced from dehydrating, bleaching, condensing, and absorption of the weak nitric
 acid. The basic process technology for producing nitric acid has not changed significantly over time. Most U.S.
- acid. The basic process technology for producing mitric acid has not changed significantly over time. Most 0.5.
 plants were built between 1960 and 2000. As of 2018, there were 31 active nitric acid production plants, including
- one high-strength nitric acid production plant in the United States (EPA 2010; EPA 2018).
- 24 During this reaction N-Q is formed as a hyperoduct and is released from reactor years into the atmosphe
- 34 During this reaction, N₂O is formed as a byproduct and is released from reactor vents into the atmosphere.
- Emissions from fuels consumed for energy purposes during the production of nitric acid are accounted for in theEnergy chapter.
- 37 Nitric acid is made from the reaction of ammonia (NH₃) with oxygen (O₂) in two stages. The overall reaction is:

²⁸ See <http://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title40/40cfr98_main_02.tpl>.

²⁹ See <https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.

1

$$4NH_3 + 8O_2 \rightarrow 4HNO_3 + 4H_2$$

2 Currently, the nitric acid industry controls emissions of NO and NO₂ (i.e., NO_x). As such, the industry in the United

3 States uses a combination of non-selective catalytic reduction (NSCR) and selective catalytic reduction (SCR)

4 technologies. In the process of destroying NO_x, NSCR systems are also very effective at destroying N₂O. However,

5 NSCR units are generally not preferred in modern plants because of high energy costs and associated high gas

6 temperatures. NSCR systems were installed in nitric plants built between 1971 and 1977 with NSCRs installed at

7 approximately one-third of the weak acid production plants. U.S. facilities are using both tertiary (i.e., NSCR) and

8 secondary controls (i.e., alternate catalysts).

9 Nitrous oxide emissions from this source were estimated to be 9.3 MMT CO₂ Eq. (31 kt of N₂O) in 2018 (see Table

10 4-27). Emissions from nitric acid production have decreased by 23 percent since 1990, while production has

11 increased by 8 percent over the same time period. Emissions have decreased by 35 percent since 1997, the highest

12 year of production in the time series.

13 Table 4-27: N₂O Emissions from Nitric Acid Production (MMT CO₂ Eq. and kt N₂O)

Year	MMT CO ₂ Eq.	kt N₂O
1990	12.1	41
2005	11.3	38
2014	10.9	37
2015	11.6	39
2016	10.1	34
2017	9.3	31
2018	9.3	31

14 Methodology

15 Emissions of N₂O were calculated using the estimation methods provided by the 2006 IPCC Guidelines and a

16 country-specific method utilizing EPA's GHGRP. The 2006 IPCC Guidelines Tier 2 method was used to estimate

emissions from nitric acid production for 1990 through 2009, and a country-specific approach similar to the IPCC

18 Tier 3 method was used to estimate N₂O emissions for 2010 through 2018.

19 **2010 through 2018**

20 Process N₂O emissions and nitric acid production data were obtained directly from EPA's GHGRP for 2010 through

2018 by aggregating reported facility-level data (EPA 2018). 2017 values were used as proxy for 2018, as GHGRP

data for 2018 was not available at the time of this current draft. As of 2018, in the United States, all nitric acid

facilities in the United States are required to report annual greenhouse gas emissions data to EPA as per the

requirements of its GHGRP. Process emissions and production reported to the GHGRP provide complete national

estimates. As of 2018, there were 31 facilities that reported to EPA, including the known single high-strength nitric

acid production facility in the United States (EPA 2018). All nitric acid (weak acid) facilities are required to calculate

27 process emissions using a site-specific emission factor developed through annual performance testing under

- typical operating conditions or by directly measuring N₂O emissions using monitoring equipment.³⁰ The high-
- 29 strength nitric acid facility also reports N₂O emissions associated with weak acid production and this may capture
- 30 all relevant emissions, pending additional further EPA research.
- To calculate emissions from 2010 through 2018, the GHGRP nitric acid production data are utilized to develop
- 32 weighted country-specific emission factors used to calculate emissions estimates. Based on aggregated nitric acid

³⁰ Facilities must use standard methods, either EPA Method 320 or ASTM D6348-03 and must follow associated QA/QC procedures consistent during these performance test consistent with category-specific QC of direct emission measurements.

1 production data by abatement type (i.e., with, without) provided by EPA's GHGRP, the percent of production

2 values and associated emissions of nitric acid with and without abatement technologies are calculated. These

percentages are the basis for developing the country-specific weighted emission factors which vary from year to

4 year based on the amount of nitric acid production with and without abatement technologies. To maintain

5 consistency across the time series and with the rounding approaches taken by other data sets, GHGRP nitric acid

6 data is also rounded for consistency

7 **1990 through 2009**

8 Using GHGRP data for 2010,³¹ country-specific N₂O emission factors were calculated for nitric acid production with

9 abatement and without abatement (i.e., controlled and uncontrolled emission factors), as previously stated. The

following 2010 emission factors were derived for production with abatement and without abatement: 3.3 kg
 N₂O/metric ton HNO₃ produced at plants using abatement technologies (e.g., tertiary systems such as NSCR

12 systems) and 5.99 kg N₂O/metric ton HNO₃ produced at plants using abatement technologies (e.g., tertiary systems such as NSCK 12 systems) and 5.99 kg N₂O/metric ton HNO₃ produced at plants not equipped with abatement technology. Country-

13 specific weighted emission factors were derived by weighting these emission factors by percent production with

abatement and without abatement over time periods 1990 through 2008 and 2009. These weighted emission

15 factors were used to estimate N₂O emissions from nitric acid production for years prior to the availability of

16 GHGRP data (i.e., 1990 through 2008 and 2009). A separate weighted emission factor is included for 2009 due to

data availability for that year. At that time, EPA had initiated compilation of a nitric acid database to improve

estimation of emissions from this industry and obtained updated information on application of controls via review

19 of permits and outreach with facilities and trade associations. The research indicated recent installation of

20 abatement technologies at additional facilities.

Based on the available data, it was assumed that emission factors for 2010 would be more representative of

22 operating conditions in 1990 through 2009 than more recent years. Initial review of historical data indicates that

23 percent production with and without abatement can change over time and also year over year due to changes in

application of facility-level abatement technologies, maintenance of abatement technologies, and also due to plant

closures and start-ups (EPA 2012, 2013; Desai 2012; CAR 2013). The installation dates of N₂O abatement

technologies are not known at most facilities, but it is assumed that facilities reporting abatement technology use have had this technology installed and operational for the duration of the time series considered in this report

28 (especially NSCRs).

The country-specific weighted N₂O emission factors were used in conjunction with annual production to estimate
 N₂O emissions for 1990 through 2009, using the following equations:

31

$$E_{i} = P_{i} \times EF_{weighted,i}$$
32

$$EF_{weighted,i} = |(\%P_{C,i} \times EF_{c}) + (\%P_{unc,i} \times EF_{unc})|$$

33 where,

34 35	Ei Pi	= Annual N2O Emissions for year i (kg/yr) = Annual nitric acid production for year i (metric tons HNO3)
36	EFweighted,i	= Weighted N ₂ O emission factor for year I (kg N ₂ O/metric ton HNO ₃)
37	%Р с,і	= Percent national production of HNO_3 with N_2O abatement technology (%)
38	EFc	= N ₂ O emission factor, with abatement technology (kg N ₂ O/metric ton HNO ₃)
39	%Punc,i	= Percent national production of HNO ₃ without N ₂ O abatement technology (%)
40	EFunc	= N ₂ O emission factor, without abatement technology (kg N ₂ O/metric ton HNO ₃)
41	i	= year from 1990 through 2009
42		

 $^{^{31}}$ National N₂O process emissions, national production, and national share of nitric acid production with abatement and without abatement technology was aggregated from the GHGRP facility-level data for 2010 to 2017 (i.e., percent production with and without abatement).

- For 2009: Weighted N₂O emission factor = 5.46 kg N₂O/metric ton HNO₃.
- For 1990 through 2008: Weighted N₂O emission factor = 5.66 kg N₂O/metric ton HNO₃.
- 3 Nitric acid production data for the United States for 1990 through 2009 were obtained from the U.S. Census
- 4 Bureau (U.S. Census Bureau 2008, 2009, 2010a, 2010b) (see Table 4-28). Publicly-available information on plant-
- 5 level abatement technologies was used to estimate the shares of nitric acid production with and without
- abatement for 2008 and 2009 (EPA 2012, 2013; Desai 2012; CAR 2013). EPA has previously conducted a review of
- 7 operating permits to obtain more current information due to the lack of publicly-available data on use of
- 8 abatement technologies for 1990 through 2007, as stated previously; therefore, the share of national production
- 9 with and without abatement for 2008 was assumed to be constant for 1990 through 2007.

10 Table 4-28: Nitric Acid Production (kt)

Year	kt
1990	7,200
2005	6,710
2014	7,660
2015	7,210
2016	7,810
2017	7,780
2018	7,780

¹¹ Uncertainty and Time-Series Consistency – TO BE UPDATED ¹² FOR FINAL INVENTORY REPORT

Uncertainty associated with the parameters used to estimate N₂O emissions includes the share of U.S. nitric acid 13 14 production attributable to each emission abatement technology over the time series (especially prior to 2010), and 15 the associated emission factors applied to each abatement technology type. While some information has been 16 obtained through outreach with industry associations, limited information is available over the time series 17 (especially prior to 2010) for a variety of facility level variables, including plant-specific production levels, plant 18 production technology (e.g., low, high pressure, etc.), and abatement technology type, installation date of 19 abatement technology, and accurate destruction and removal efficiency rates. Production data prior to 2010 were 20 obtained from National Census Bureau, which does not provide uncertainty estimates with their data. Facilities 21 reporting to EPA's GHGRP must measure production using equipment and practices used for accounting purposes. 22 At this time EPA does not estimate uncertainty of the aggregated facility-level information. As noted in the QA/QC 23 and verification section below, EPA verifies annual facility-level reports through a multi-step process (e.g., 24 combination of electronic checks and manual reviews by staff) to identify potential errors and ensure that data 25 submitted to EPA are accurate, complete, and consistent. The annual production reported by each nitric acid 26 facility under EPA's GHGRP and then aggregated to estimate national N2O emissions is assumed to have low 27 uncertainty. 28 The results of this Approach 2 quantitative uncertainty analysis are summarized in Table 4-29. Nitrous oxide

- emissions from nitric acid production were estimated to be between 8.9 and 9.8 MMT CO₂ Eq. at the 95 percent
- 30 confidence level. This indicates a range of approximately 5 percent below to 5 percent above the 2017 emissions
- 31 estimate of 9.3 MMT CO₂ Eq.

1 Table 4-29: Approach 2 Quantitative Uncertainty Estimates for N₂O Emissions from Nitric 2 Acid Production (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate ^a				
Jource	Uas	(MMT CO₂ Eq.)	(MMT CO₂ Eq.)		(%)		
			Lower	Upper	Lower	Upper	
			Bound	Bound	Bound	Bound	
Nitric Acid Production	N_2O	9.3	8.9	9.8	-5%	+5%	
^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval							

Methodological approaches were applied to the entire time series to ensure consistency in emissions from 1990
 through 2017.

5 QA/QC and Verification

6 General quality assurance/quality control (QA/QC) procedures were applied consistent with the U.S. *Inventory*

7 QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of the 2006 IPCC Guidelines as described in the

8 introduction of the IPPU chapter (see Annex 8 for more details). More details on the greenhouse gas calculation,

9 monitoring and QA/QC methods applicable to nitric acid facilities can be found under Subpart V: Nitric Acid

10 Production of the GHGRP regulation (40 CFR Part 98).³² EPA verifies annual facility-level GHGRP reports through a

11 multi-step process that is tailored to the Subpart (e.g., combination of electronic checks including range checks,

12 statistical checks, algorithm checks, year-to-year comparison checks, along with and manual reviews involving

13 outside data checks) to identify potential errors and ensure that data submitted to EPA are accurate, complete,

and consistent. Based on the results of the verification process, EPA follows up with facilities to resolve mistakes

15 that may have occurred (EPA 2015).³³

16 Planned Improvements

17 Pending resources, EPA is considering both near-term and long-term improvement to estimates and associated

18 characterization of uncertainty. In the short-term, with 8 years of EPA's GHGRP data, EPA anticipates completing

19 updates of category-specific QC procedures to potentially also improve both qualitative and quantitative

20 uncertainty estimates. Longer-term, in 2020, EPA anticipates having information from GHGRP facilities on the

21 installation date of any N₂O abatement equipment, per revisions finalized in December 2016 to EPA's GHGRP. This

information will enable more accurate estimation of N₂O emissions from nitric acid production over the time
 series.

4.8 Adipic Acid Production (CRF Source Category 2B3)

- 26 Adipic acid is produced through a two-stage process during which nitrous oxide (N₂O) is generated in the second
- 27 stage. Emissions from fuels consumed for energy purposes during the production of adipic acid are accounted for
- 28 in the Energy chapter. The first stage of manufacturing usually involves the oxidation of cyclohexane to form a
- 29 cyclohexanone/cyclohexanol mixture. The second stage involves oxidizing this mixture with nitric acid to produce

³² See Subpart V monitoring and reporting regulation <http://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title40/40cfr98_main_02.tpl>.

³³ See GHGRP Verification Factsheet https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf.

adipic acid. Nitrous oxide is generated as a byproduct of the nitric acid oxidation stage and is emitted in the waste
 gas stream (Thiemens and Trogler 1991). The second stage is represented by the following chemical reaction:

3 $(CH_2)_5CO(cyclohexanone) + (CH_2)_5CHOH(cyclohexanol) + wHNO_3$ 4 $\rightarrow HOOC(CH_2)_4COOH(adipic acid) + xN_2O + yH_2O$

5 Process emissions from the production of adipic acid vary with the types of technologies and level of emission

6 controls employed by a facility. In 1990, two major adipic acid-producing plants had N₂O abatement technologies

- in place and, as of 1998, three major adipic acid production facilities had control systems in place (Reimer et al.
 1999). In 2018, catalytic reduction, non-selective catalytic reduction (NSCR) and thermal reduction abatement
- 9 technologies were applied as N₂O abatement measures at adipic acid facilities (EPA 2019).
- 10 Worldwide, only a few adipic acid plants exist. The United States, Europe, and China are the major producers, with
- 11 the United States accounting for the largest share of global adipic acid production capacity in recent years. In 2018,
- 12 the United States had two companies with a total of two adipic acid production facilities (one in Texas and one in
- 13 Florida) following the ceased operations of a third major production facility at the end of 2015 (EPA 2019).
- 14 Adipic acid is a white crystalline solid used in the manufacture of synthetic fibers, plastics, coatings, urethane
- 15 foams, elastomers, and synthetic lubricants. Commercially, it is the most important of the aliphatic dicarboxylic

acids, which are used to manufacture polyesters. Eighty-four percent of all adipic acid produced in the United

- 17 States is used in the production of nylon 6,6; 9 percent is used in the production of polyester polyols; 4 percent is
- used in the production of plasticizers; and the remaining 4 percent is accounted for by other uses, including
- 19 unsaturated polyester resins and food applications (ICIS 2007). Food grade adipic acid is used to provide some
- 20 foods with a "tangy" flavor (Thiemens and Trogler 1991).
- 21 National adipic acid production has increased by approximately 9 percent over the period of 1990 through 2018, to
- 22 approximately 825,000 metric tons (ACC 2019). Nitrous oxide emissions from adipic acid production were
- estimated to be 10.3 MMT CO₂ Eq. (35 kt N₂O) in 2018 (see Table 4-30). Over the period 1990 through 2018,
- 24 emissions have been reduced by 32 percent due to both the widespread installation of pollution control measures
- in the late 1990s and plant idling in the late 2000s. Very little information on annual trends in the activity data exist
- 26 for adipic acid.

27 Table 4-30: N₂O Emissions from Adipic Acid Production (MMT CO₂ Eq. and kt N₂O)

Year	MMT CO ₂ Eq.	kt N₂O
1990	15.2	51
2005	7.1	24
2014	5.4	18
2015	4.3	14
2016	7.0	23
2017	7.4	25
2018	10.3	35

28 Methodology

- 29 Emissions are estimated using both Tier 2 and Tier 3 methods consistent with the 2006 IPCC Guidelines. Due to
- 30 confidential business information (CBI), plant names are not provided in this section. Therefore, the four adipic
- 31 acid-producing facilities that have operated over the time series will be referred to as Plants 1 through 4. Overall,
- 32 as noted above, the two currently operating facilities use catalytic reduction, NSCR and thermal reduction
- 33 abatement technologies.

1 **2010 through 2018**

2 All emission estimates for 2010 through 2018 were obtained through analysis of GHGRP data (EPA 2010 through

3 2013; EPA 2014 through 2018; EPA 2019), which is consistent with the 2006 IPCC Guidelines Tier 3 method. Facility-

4 level greenhouse gas emissions data were obtained from EPA's GHGRP for the years 2010 through 2018 (EPA 2010

5 through 2013; EPA 2014 through 2018; EPA 2019) and aggregated to national N₂O emissions. Consistent with IPCC

6 Tier 3 methods, all adipic acid production facilities are required to calculate emissions using a facility-specific

- 7 emission factor developed through annual performance testing under typical operating conditions or by directly
- $8 \qquad measuring \, N_2O \ emissions \ using \ monitoring \ equipment.^{34}$

9 **1990 through 2009**

10 For years 1990 through 2009, which were prior to EPA's GHGRP reporting, for both Plants 1 and 2, emission

estimates were obtained directly from the plant engineers and account for reductions due to control systems in

12 place at these plants during the time series. These prior estimates are considered CBI and hence are not published

(Desai 2010, 2011). These estimates were based on continuous process monitoring equipment installed at the two
 facilities.

- For Plant 4, 1990 through 2009 N₂O emissions were estimated using the following Tier 2 equation from the 2006
 IPCC Guidelines:
- 17

$$E_{aa} = Q_{aa} \times EF_{aa} \times (1 - [DF \times UF])$$

18 where,

19	Eaa	=	N ₂ O emissions from adipic acid production, metric tons
20	Qaa	=	Quantity of adipic acid produced, metric tons
21	EF_{aa}	=	Emission factor, metric ton N ₂ O/metric ton adipic acid produced
22	DF	=	N ₂ O destruction factor
23	UF	=	Abatement system utility factor

The adipic acid production is multiplied by an emission factor (i.e., N₂O emitted per unit of adipic acid produced), which has been estimated to be approximately 0.3 metric tons of N₂O per metric ton of product (IPCC 2006). The "N₂O destruction factor" in the equation represents the percentage of N₂O emissions that are destroyed by the

installed abatement technology. The "abatement system utility factor" represents the percentage of time that the

abatement equipment operates during the annual production period. Plant-specific production data for Plant 4

29 were obtained across the time series through personal communications (Desai 2010, 2011). The plant-specific

30 production data were then used for calculating emissions as described above.

31 For Plant 3, 2005 through 2009 emissions were obtained directly from the plant (Desai 2010, 2011). For 1990

through 2004, emissions were estimated using plant-specific production data and the IPCC factors as described

above for Plant 4. Plant-level adipic acid production for 1990 through 2003 was estimated by allocating national

adipic acid production data to the plant level using the ratio of known plant capacity to total national capacity for

all U.S. plants (ACC 2019; CMR 2001, 1998; CW 1999; C&EN 1992 through 1995). For 2004, actual plant production

- 36 data were obtained and used for emission calculations (CW 2005).
- 37 Plant capacities for 1990 through 1994 were obtained from *Chemical & Engineering News*, "Facts and Figures" and

38 "Production of Top 50 Chemicals" (C&EN 1992 through 1995). Plant capacities for 1995 and 1996 were kept the

- 39 same as 1994 data. The 1997 plant capacities were taken from *Chemical Market Reporter*, "Chemical Profile: Adipic
- 40 Acid" (CMR 1998). The 1998 plant capacities for all four plants and 1999 plant capacities for three of the plants
- 41 were obtained from *Chemical Week*, Product Focus: Adipic Acid/Adiponitrile (CW 1999). Plant capacities for the
- 42 year 2000 for three of the plants were updated using *Chemical Market Reporter*, "Chemical Profile: Adipic Acid"

³⁴ Facilities must use standard methods, either EPA Method 320 or ASTM D6348-03, and must follow associated QA/QC procedures during these performance tests consistent with category-specific QC of direct emission measurements.

- 1 (CMR 2001). For 2001 through 2003, the plant capacities for three plants were held constant at year 2000
- 2 capacities. Plant capacity for 1999 to 2003 for the one remaining plant was kept the same as 1998.
- 3 National adipic acid production data (see Table 4-31) from 1990 through 2018 were obtained from the American
- 4 Chemistry Council (ACC 2019).

5 Table 4-31: Adipic Acid Production (kt)

Year	kt
1990	755
2005	865
2014	1,025
2015	1,055
2016	860
2017	830
2018	825

6 Data presented in Table 4-31 are for informational purposes only. As previously reported in the Methodology

7 section, adipic acid production data was obtained from EPA's GHGRP and used to estimate emissions between

8 2010 and 2018. The GHGRP Subpart E adipic acid production data are CBI and therefore not presented in this

9 Inventory report. As a result, those using Table 4-31 values to calculate implied emission factors may incur variable

10 IEFs across the time-series.

Uncertainty and Time-Series Consistency – TO BE UPDATED 11 FOR FINAL INVENTORY REPORT 12

13 Uncertainty associated with N₂O emission estimates includes the methods used by companies to monitor and

14 estimate emissions. While some information has been obtained through outreach with facilities, limited

15 information is available over the time series on these methods, abatement technology destruction and removal

16 efficiency rates and plant-specific production levels.

17 The results of this Approach 2 quantitative uncertainty analysis are summarized in Table 4-32. Nitrous oxide

18 emissions from adipic acid production for 2018 were estimated to be between 9.8 and 10.8 MMT CO₂ Eq. at the 95

19 percent confidence level. These values indicate a range of approximately 5 percent below to 5 percent above the

20 2018 emission estimate of 10.3 MMT CO₂ Eq.

Table 4-32: Approach 2 Quantitative Uncertainty Estimates for N₂O Emissions from Adipic 21 Acid Production (MMT CO₂ Eq. and Percent) 22

Gar	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimat			
Gas	(MMT CO ₂ Eq.)	(MMT CO ₂ Eq.)		(%)	
		Lower	Upper	Lower	Upper
		Bound Bound		Bound	Bound
N ₂ O	10.3	9.8	10.8	-5%	+5%
	Gas N ₂ O	Gas (MMT CO₂ Eq.)	Gas (MMT CO₂ Eq.) (MMT C Lower Bound	Gas (MMT CO ₂ Eq.) (MMT CO ₂ Eq.) Lower Upper Bound Bound	Gas (MMT CO2 Eq.) (MMT CO2 Eq.) (Lower Upper Lower Bound Bound Bound

s predicted by Monte Carlo Stochastic Simulation for a

23 Methodological approaches were applied to the entire time series to ensure consistency in emissions from 1990

24 through 2018.

1 QA/QC and Verification

2 General quality assurance/quality control (QA/QC) procedures were applied consistent with the U.S. Inventory

3 QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of the *2006 IPCC Guidelines* as described in the 4 introduction of the IPPU chapter (see Annex 8 for more details).

More details on the greenhouse gas calculation, monitoring and QA/QC methods applicable to adipic acid facilities can be found under Subpart E (Adipic Acid Production) of the GHGRP regulation (40 CFR Part 98).³⁵ EPA verifies annual facility-level GHGRP reports through a multi-step process (e.g., combination of electronic checks and manual reviews) to identify potential errors and ensure that data submitted to EPA are accurate, complete, and consistent (EPA 2015).³⁶ Based on the results of the verification process, EPA follows up with facilities to resolve mistakes that may have occurred. The post-submittals checks are consistent with a number of general and category-specific QC procedures, including: range checks, statistical checks, algorithm checks, and year-to-year

12 checks of reported data and emissions.

4.9 Caprolactam, Glyoxal and Glyoxylic Acid Production (CRF Source Category 2B4)

15 Caprolactam

- 16 Caprolactam (C₆H₁₁NO) is a colorless monomer produced for nylon-6 fibers and plastics, with a substantial
- 17 proportion of the fiber used in carpet manufacturing. Commercial processes for the manufacture of caprolactam
- are based on either toluene or benzene. The production of caprolactam can give rise to significant emissions of
 nitrous oxide (N₂O).
- 20 During the production of caprolactam, emissions of N₂O can occur from the ammonia oxidation step, emissions of
- carbon dioxide (CO₂) from the ammonium carbonate step, emissions of sulfur dioxide (SO₂) from the ammonium
- bisulfite step, and emissions of non-methane volatile organic compounds (NMVOCs). Emissions of CO₂, SO₂ and
- 23 NMVOCs from the conventional process are unlikely to be significant in well-managed plants. Modified
- caprolactam production processes are primarily concerned with elimination of the high volumes of ammonium
- sulfate that are produced as a byproduct of the conventional process (IPCC 2006).
- 26 Where caprolactam is produced from benzene, the main process, the benzene is hydrogenated to cyclohexane
- 27 which is then oxidized to produce cyclohexanone (C₆H₁₀O). The classical route (Raschig process) and basic reaction
- 28 equations for production of caprolactam from cyclohexanone are (IPCC 2006):
- 29

³⁵ See <http://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title40/40cfr98_main_02.tpl>.

³⁶ See <https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.

1 2	Oxidation of NH_3 to NO/NO_2
3	NH_3 reacted with CO_2/H_2O to yield ammonium carbonate $(NH_4)_2CO_3$
4	\downarrow
5	$(NH_4)_2CO_3$ reacted with NO/NO ₂ (from NH ₃ oxidation) to yield ammonium nitrite (NH ₄ NO ₂)
6	\downarrow
7	NH_3 reacted with SO_2/H_2O to yield ammonium bisulphite (NH_4HSO_3)
8	\downarrow
9	NH_4NO_2 and (NH_4HSO_3) reacted to yield hydroxylamine disulphonate $(NOH(SO_3NH_4)_2)$
10	\downarrow
11	$(NOH(SO_3NH_4)_2)$ hydrolised to yield hydroxylamine sulphate $((NH_2OH)_2, H_2SO_4)$ and
12	ammonium sulphate $((NH_4)_2SO_4)$
13	\downarrow
14	Cylohexanone reaction:
15	$C_6H_{10}O + \frac{1}{2}(NH_2OH)_2 H_2SO_4(+NH_3 \text{ and } H_2SO_4) \rightarrow C_6H_{10}NOH + (NH_4)_2SO_4 + H_2O_4)$
16	∠ ↓
17	Beckmann rearrangement:
18	$C_6H_{10}NOH \ (+H_2SO_4 \ and \ SO_2) \rightarrow C_6H_{11}NO. H_2SO_4 \ (+4NH_3 \ and \ H_2O) \rightarrow C_6H_{11}NO \ + 2(NH4)_2SO_4$
19	
20 21 22	In 1999, there were four caprolactam production facilities in the United States. As of 2018, the United States had three companies that produce caprolactam with a total of three caprolactam production facilities: AdvanSix in Virginia (AdvanSix 2018), BASF in Texas (BASF 2018), and Fibrant LLC in Georgia (Fibrant 2018; TechSci n.d. 2017).
23	Nitrous oxide emissions from caprolactam production in the United States were estimated to be 1.4 MMT CO_2 Eq. (5 kt N O_2 in 2018 (see Table 4.32). National emissions from caprolactam production decreased by approximately.

(5 kt N₂O) in 2018 (see Table 4-33). National emissions from caprolactam production decreased by approximately
 15 percent over the period of 1990 through 2018. Emissions in 2018 decreased by approximately 3 percent from
 the 2017 level

26 the 2017 levels.

27 Table 4-33: N₂O Emissions from Caprolactam Production (MMT CO₂ Eq. and kt N₂O)

Year	MMT CO ₂ Eq.	kt N₂O
1990	1.7	6
2005	2.1	7
2014	2.0	7
2015	2.0	7
2016	2.0	7
2017	1.5	5
2018	1.4	5

28 Glyoxal

29 Glyoxal is mainly used as a crosslinking agent for vinyl acetate/acrylic resins, disinfectant, gelatin hardening agent,

30 textile finishing agent (permanent-press cotton, rayon fabrics), and wet-resistance additive (paper coatings) (IPCC

2006). It is also used for enhanced oil-recovery. It is produced from oxidation of acetaldehyde with concentrated

- 1 nitric acid, or from the catalytic oxidation of ethylene glycol, and N₂O is emitted in the process of oxidation of
- 2 acetaldehyde.
- 3 Glyoxal (ethanedial) (C₂H₂O₂) is produced from oxidation of acetaldehyde (ethanal) (C₂H₄O) with concentrated
- 4 nitric acid (HNO₃). Glyoxal can also be produced from catalytic oxidation of ethylene glycol (ethanediol)
- 5 (CH₂OHCH₂OH).
- 6 Glyoxylic Acid
- Glyoxylic acid is produced by nitric acid oxidation of glyoxal. Glyoxylic acid is used for the production of synthetic
 aromas, agrochemicals, and pharmaceutical intermediates (IPCC 2006).
- 9 EPA does not currently estimate the emissions associated with the production of Glyoxal and Glyoxylic Acid due to
- data availability and a lack of publicly available information on the industry in the United States. See Annex 5 for
- 11 additional information.

12 Methodology

- 13 Emissions of N₂O from the production of caprolactam were calculated using the estimation methods provided by
- 14 the 2006 IPCC Guidelines. The 2006 IPCC Guidelines Tier 1 method was used to estimate emissions from
- 15 caprolactam production for 1990 through 2018, as shown in this formula:
- 16

$$E_{N_2O} = EF \ x \ CP$$

17 where,

18	E _{N2O}	= Annual N ₂ O Emissions (kg)
19	EF	= N ₂ O emission factor (default) (kg N ₂ O/metric ton caprolactam produced)
20	СР	 Caprolactam production (metric tons)

- $21 \qquad \text{During the caprolactam production process, N_2O is generated as a byproduct of the high temperature catalytic}$
- 22 oxidation of ammonia (NH₃), which is the first reaction in the series of reactions to produce caprolactam. The
- amount of N₂O emissions can be estimated based on the chemical reaction shown above. Based on this formula,
- 24 which is consistent with an IPCC Tier 1 approach, approximately 111.1 metric tons of caprolactam are required to
- 25 generate one metric ton of N_2O , resulting in an emission factor of 9.0 kg N_2O per metric ton of caprolactam (IPCC
- 26 2006). When applying the Tier 1 method, the 2006 IPCC Guidelines state that it is good practice to assume that
- there is no abatement of N₂O emissions and to use the highest default emission factor available in the guidelines.
 In addition, EPA did not find support for the use of secondary catalysts to reduce N₂O emissions, such as those
- In addition, EPA did not find support for the use of secondary catalysts to reduce N₂O emissions, such as those
 employed at nitric acid plants. Thus, the 530 thousand metric tons (kt) of caprolactam produced in 2018 (ACC
- 2019) resulted in N₂O emissions of approximately 1.4 MMT CO₂ Eq. (5 kt).
- 31 The activity data for caprolactam production (see Table 4-34) from 1990 to 2018 were obtained from the American
- 32 Chemistry Council's *Guide to the Business of Chemistry* report (ACC 2019). EPA will continue to analyze and assess
- 33 alternative sources of production data as a quality control measure.

34 Table 4-34: Caprolactam Production (kt)

Year	kt
1990	626
2005	795
2014	755
2015	760
2016	755
2017	545

1

Carbon dioxide and methane (CH₄) emissions may also occur from the production of caprolactam, but currently the
 IPCC does not have methodologies for calculating these emissions associated with caprolactam production.

⁴ Uncertainty and Time-Series Consistency – TO BE UPDATED ⁵ FOR FINAL INVENTORY REPORT

6 Estimation of emissions of N₂O from caprolactam production can be treated as analogous to estimation of

7 emissions of N₂O from nitric acid production. Both production processes involve an initial step of NH₃ oxidation,

8 which is the source of N₂O formation and emissions (IPCC 2006). Therefore, uncertainties for the default emission

9 factor values in the 2006 IPCC Guidelines are an estimate based on default values for nitric acid plants. In general,

10 default emission factors for gaseous substances have higher uncertainties because mass values for gaseous

- substances are influenced by temperature and pressure variations and gases are more easily lost through process
- 12 leaks. The default values for caprolactam production have a relatively high level of uncertainty due to the limited
- 13 information available (IPCC 2006).

14 The results of this Approach 2 quantitative uncertainty analysis are summarized in Table 4-35. Nitrous oxide

emissions from Caprolactam, Glyoxal and Glyoxylic Acid Production for 2017 were estimated to be between 1.0

and 1.8 MMT CO₂ Eq. at the 95 percent confidence level. These values indicate a range of approximately 31

17 percent below to 32 percent above the 2017 emission estimate of 1.4 MMT CO₂ Eq.

18 Table 4-35: Approach 2 Quantitative Uncertainty Estimates for N₂O Emissions from

19 Caprolactam, Glyoxal and Glyoxylic Acid Production (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate	tive to Emissi	on Estimate ^a		
Jource		(MMT CO₂ Eq.)	(MMT CO₂ Eq.)		(%)	
			Lower	Upper	Lower	Upper
			Bound Bound		Bound	Bound
Caprolactam Production	N ₂ O	1.4	1.0	1.8	-31%	+32%
^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.						

20 Methodological approaches were applied to the entire time series to ensure consistency in emissions from 1990

21 through 2018. Details on the emission trends through time are described in more detail in the Methodology

22 section, above.

23 QA/QC and Verification

24 General quality assurance/quality control (QA/QC) procedures were applied consistent with the U.S. *Inventory*

25 QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of the 2006 IPCC Guidelines as described in the

26 introduction of the IPPU chapter (see Annex 8 for more details).

27 Planned Improvements

28 Pending resources, EPA will research other available datasets for caprolactam production and industry trends,

29 including facility-level data. EPA will also research the production process and emissions associated with the

30 production of glyoxal and glyoxylic acid. During the Expert Review comment period for the current Inventory

31 report, EPA continued to seek expert solicitation on data available for these emission source categories. This

32 planned improvement is subject to data availability and will be implemented in the medium- to long-term.

4.10 Carbide Production and Consumption (CRF Source Category 2B5)

Carbon dioxide (CO₂) and methane (CH₄) are emitted from the production of silicon carbide (SiC), a material
 produced for industrial abrasive, metallurgical and other non-abrasive applications in the United States. Emissions
 from fuels consumed for energy purposes during the production of silicon carbide are accounted for in the Energy
 chapter.

To produce SiC, silica sand or quartz (SiO₂) is reacted with carbon (C) in the form of petroleum coke. A portion
(about 35 percent) of the carbon contained in the petroleum coke is retained in the SiC. The remaining C is emitted
as CO₂, CH₄, or carbon monoxide (CO). The overall reaction is shown below (but in practice it does not proceed
according to stoichiometry):

11

 $SiO_2 + 3C \rightarrow SiC + 2CO (+O_2 \rightarrow 2CO_2)$

12 Carbon dioxide is also emitted from the consumption of SiC for metallurgical and other non-abrasive applications.

13 Carbon dioxide and CH₄ are also emitted during the production of calcium carbide, a chemical used to produce

acetylene. Carbon dioxide is implicitly accounted for in the storage factor calculation for the non-energy use of

15 petroleum coke in the Energy chapter. However, as noted in Annex 5 to this report, CH₄ emissions from calcium

16 carbide production are not estimated as data are not available. EPA is continuing to investigate the inclusion of

these emissions in future Inventory reports.

18 Markets for manufactured abrasives, including SiC, are heavily influenced by activity in the U.S. manufacturing

19 sector, especially in the aerospace, automotive, furniture, housing, and steel manufacturing sectors. The U.S.

20 Geological Survey (USGS) reports that a portion (approximately 50 percent) of SiC is used in metallurgical and

other non-abrasive applications, primarily in iron and steel production (USGS 1991a through 2015). As a result of

the economic downturn in 2008 and 2009, demand for SiC decreased in those years. Low-cost imports, particularly

23 from China, combined with high relative operating costs for domestic producers, continue to put downward

24 pressure on the production of SiC in the United States. However, demand for SiC consumption in the United States

25 has recovered somewhat from its low in 2009 (USGS 1991a through 2015). Abrasive-grade silicon carbide was

26 manufactured at one facility in 2016 in the United States (USGS 2018a).

27 Carbon dioxide emissions from SiC production and consumption in 2018 were 0.2 MMT CO₂ Eq. (189 kt CO₂) (see

Table 4-36 and Table 4-37). Approximately 49 percent of these emissions resulted from SiC production while the

remainder resulted from SiC consumption. Methane emissions from SiC production in 2018 were 0.01 MMT CO₂

30 Eq. (0.4 kt CH₄) (see Table 4-36 and Table 4-37). Emissions have not fluctuated greatly in recent years, but 2018

emissions are about 50 percent lower than emissions in 1990.

Table 4-36: CO₂ and CH₄ Emissions from Silicon Carbide Production and Consumption (MMT CO₂ Eq.)

Year	1990	2005	2014	2015	2016	2017	2018
CO ₂	0.4	0.2	0.2	0.2	0.2	0.2	0.2
CH ₄	+	+	+	+	+	+	+
Total	0.4	0.2	0.2	0.2	0.2	0.2	0.2

+ Does not exceed 0.05 MMT CO_2 Eq.

1 Table 4-37: CO₂ and CH₄ Emissions from Silicon Carbide Production and Consumption (kt)

Year	1990	2005	2014	2015	2016	2017	2018
CO ₂	375	219	173	180	174	186	189
CH_4	1	+	+	+	+	+	+

+ Does not exceed 0.5 kt

2 Methodology

Emissions of CO₂ and CH₄ from the production of SiC were calculated³⁷ using the Tier 1 method provided by the
 2006 IPCC Guidelines. Annual estimates of SiC production were multiplied by the appropriate emission factor, as
 shown below:

$$E_{sc,CO2} = EF_{sc,CO2} \times Q_{sc}$$

7

F _	$EF_{sc,CH4} \times Q_{sc}$	~(1 metric ton
$L_{SC,CH4}$ —	$E\Gamma_{sc,CH4} \times Q_{sc}$; ^ (1000 kg)

8 where,

9	Esc,CO2	=	CO ₂ emissions from production of SiC, metric tons
10	EF _{sc,CO2}	=	Emission factor for production of SiC, metric ton CO ₂ /metric ton SiC
11	Qsc	=	Quantity of SiC produced, metric tons
12	E _{sc,CH4}	=	CH ₄ emissions from production of SiC, metric tons
13	EF _{sc,CH4}	=	Emission factor for production of SiC, kilogram CH ₄ /metric ton SiC

14

15 Emission factors were taken from the 2006 IPCC Guidelines:

16 • 2.62 metric tons CO₂/metric ton SiC

17 • 11.6 kg CH₄/metric ton SiC

18 Production data for metallurgical and other non-abrasive applications of silicon carbide is not available; therefore,

19 both CO₂ and CH₄ estimates for silicon carbide are based solely upon production data for silicon carbide for

20 industrial abrasive applications.

21 SiC industrial abrasives production data for 1990 through 2013 were obtained from the *Minerals Yearbook:*

22 Manufactured Abrasives (USGS 1991a through 2015). Production data for 2014 through 2017 were obtained from

the *Mineral Commodity Summaries: Abrasives (Manufactured)* (USGS 2019). Production data for 2018 were

obtained from the Mineral Industry Surveys, Manufactured Abrasives in the First Quarter 2019, Table 1, July 2019

25 (USGS 2019a). Silicon carbide production data obtained through the USGS National Minerals Information Center

has been rounded to the nearest 5,000 metric tons to avoid disclosing company proprietary data. SiC consumption

for the entire time series is estimated using USGS consumption data (USGS 1991b through 2015, USGS 2017c) and

data from the U.S. International Trade Commission (USITC) database on net imports and exports of silicon carbide

29 provided by the U.S. Census Bureau (2005 through 2019) (see Table 4-38). Total annual SiC consumption

30 (utilization) was estimated by subtracting annual exports of SiC by the annual total of national SiC production and

31 net imports.

³⁷ EPA has not integrated aggregated facility-level GHGRP information to inform these estimates. The aggregated information (e.g., activity data and emissions) associated with silicon carbide did not meet criteria to shield underlying confidential business information (CBI) from public disclosure.

- 1 Emissions of CO₂ from silicon carbide consumption for metallurgical uses were calculated by multiplying the annual
- 2 utilization of SiC for metallurgical uses (reported annually in the USGS *Minerals Yearbook: Silicon*) by the carbon
- 3 content of SiC (31.5 percent), which was determined according to the molecular weight ratio of SiC.
- 4 Emissions of CO₂ from silicon carbide consumption for other non-abrasive uses were calculated by multiplying the
- 5 annual SiC consumption for non-abrasive uses by the carbon content of SiC (31.5 percent). The annual SiC
- 6 consumption for non-abrasive uses was calculated by multiplying the annual SiC consumption (production plus net
- 7 imports) by the percent used in metallurgical and other non-abrasive uses (50 percent) (USGS 1991a through 2015)
- 8 and then subtracting the SiC consumption for metallurgical use.
- 9 The petroleum coke portion of the total CO₂ process emissions from silicon carbide production is adjusted for
- 10 within the Energy chapter, as these fuels were consumed during non-energy related activities. Additional
- 11 information on the adjustments made within the Energy sector for Non-Energy Use of Fuels is described in both
- 12 the Methodology section of CO₂ from Fossil Fuel Combustion (Section 3.1 Fossil Fuel Combustion (CRF Source
- 13 Category 1A)) and Annex 2.1, Methodology for Estimating Emissions of CO₂ from Fossil Fuel Combustion.

14 Table 4-38: Production and Consumption of Silicon Carbide (Metric Tons)

Year	Production	Consumption
1990	105,000	172,465
2005	35,000	220,149
2014	35,000	140,733
2015	35,000	153,475
2016	35,000	142,104
2017	35,000	163,492
2018	35,000	168,531

¹⁵ Uncertainty and Time-Series Consistency – TO BE UPDATED ¹⁶ FOR FINAL INVENTORY REPORT

- 17 There is uncertainty associated with the emission factors used because they are based on stoichiometry as
- 18 opposed to monitoring of actual SiC production plants. An alternative is to calculate emissions based on the
- 19 quantity of petroleum coke used during the production process rather than on the amount of silicon carbide
- 20 produced. However, these data were not available. For CH₄, there is also uncertainty associated with the
- 21 hydrogen-containing volatile compounds in the petroleum coke (IPCC 2006). There is also uncertainty associated
- 22 with the use or destruction of CH₄ generated from the process, in addition to uncertainty associated with levels of
- 23 production, net imports, consumption levels, and the percent of total consumption that is attributed to
- 24 metallurgical and other non-abrasive uses.
- 25 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-39. Silicon carbide
- 26 production and consumption CO₂ emissions from 2017 were estimated to be between 9 percent below and 9
- 27 percent above the emission estimate of 0.19 MMT CO₂ Eq. at the 95 percent confidence level. Silicon carbide
- 28 production CH₄ emissions were estimated to be between 9 percent below and 9 percent above the emission
- 29 estimate of 0.01 MMT CO₂ Eq. at the 95 percent confidence level.

Table 4-39: Approach 2 Quantitative Uncertainty Estimates for CH₄ and CO₂ Emissions from 1

2 Silicon Carbide Production and Consumption (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate (MMT CO ₂ Eq.)	Uncertainty Range Relat (MMT CO ₂ Eq.)		tive to Emission Estimate ^a (%)		
			Lower	Upper	Lower	Upper	
			Bound	Bound	Bound	Bound	
Silicon Carbide Production and Consumption	CO ₂	0.19	0.17	0.20	-9%	+9%	
Silicon Carbide Production	CH_4	+	+	+	-9%	+9%	

+ Does not exceed 0.05 MMT CO₂ Eq.

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

3 Methodological approaches were applied to the entire time series to ensure consistency in emissions from 1990

- 4 through 2018. Details on the emission trends through time are described in more detail in the Methodology
- 5 section above.

QA/QC and Verification 6

7 For more information on the general QA/QC process applied to this source category, consistent with the U.S.

8 Inventory QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of 2006 IPCC Guidelines as described in the

9 introduction of the IPPU chapter (see Annex 8 for more details).

4.11 Titanium Dioxide Production (CRF Source 10 Category 2B6)

11

12 Titanium dioxide (TiO₂) is manufactured using one of two processes: the chloride process and the sulfate process.

13 The chloride process uses petroleum coke and chlorine as raw materials and emits process-related carbon dioxide

14 (CO₂). Emissions from fuels consumed for energy purposes during the production of titanium dioxide are

15 accounted for in the Energy chapter. The chloride process is based on the following chemical reactions:

- $2FeTiO_3 + 7Cl_2 + 3C \rightarrow 2TiCl_4 + 2FeCl_3 + 3CO_2$ 16
- $2TiCl_4 + 2O_2 \rightarrow 2TiO_2 + 4Cl_2$ 17

18 The sulfate process does not use petroleum coke or other forms of carbon as a raw material and does not emit 19 CO₂.

20 The C in the first chemical reaction is provided by petroleum coke, which is oxidized in the presence of the chlorine and FeTiO₃ (rutile ore) to form CO₂. Since 2004, all TiO₂ produced in the United States has been produced using the 21

22 chloride process, and a special grade of "calcined" petroleum coke is manufactured specifically for this purpose.

23 The principal use of TiO₂ is as a pigment in white paint, lacquers, and varnishes; it is also used as a pigment in the 24 manufacture of plastics, paper, and other products. In 2018, U.S. TiO₂ production totaled 1,200,000 metric tons 25 (USGS 2019). There were a total five plants producing TiO_2 in the United States in 2018.

26 Emissions of CO_2 from titanium dioxide production in 2018 were estimated to be 1.6 MMT CO_2 Eq. (1,608 kt CO_2),

- 27 which represents an increase of 35 percent since 1990 (see Table 4-40). Compared to 2017, emissions from
- 28 titanium dioxide production decreased by 5 percent in 2018 due to a 5 percent decrease in production.

Year	MMT CO₂ Eq.	kt
1990	1.2	1,195
2005	1.8	1,755
2014	1.7	1,688
2015	1.6	1,635
2016	1.7	1,662
2017	1.7	1,688
2018	1.6	1,608

1 Table 4-40: CO₂ Emissions from Titanium Dioxide (MMT CO₂ Eq. and kt)

2 Methodology

Emissions of CO₂ from TiO₂ production were calculated by multiplying annual national TiO₂ production by chloride process-specific emission factors using a Tier 1 approach provided in *2006 IPCC Guidelines*. The Tier 1 equation is

5 as follows:

$$E_{td} = EF_{td} \times Q_{td}$$

7 where,

8	Etd	=	CO ₂ emissions from TiO ₂ production, metric tons
9	EF_{td}	=	Emission factor (chloride process), metric ton CO ₂ /metric ton TiO ₂
10	Qtd	=	Quantity of TiO ₂ produced

11 The petroleum coke portion of the total CO₂ process emissions from TiO₂ production is adjusted for within the

12 Energy chapter as these fuels were consumed during non-energy related activities. Additional information on the 13 adjustments made within the Energy sector for Non-Energy Use of Fuels is described in both the Methodology

section of CO₂ from Fossil Fuel Combustion (Section 3.1 Fossil Fuel Combustion) and Annex 2.1, Methodology for

15 Estimating Emissions of CO₂ from Fossil Fuel Combustion.

16 Data were obtained for the total amount of TiO₂ produced each year. For years prior to 2004, it was assumed that

17 TiO_2 was produced using the chloride process and the sulfate process in the same ratio as the ratio of the total U.S.

18 production capacity for each process. As of 2004, the last remaining sulfate process plant in the United States
10 placed therefore, 100 percent of part 2004 production was the placed to process (USCC 2005). The percentage of the state of

19 closed; therefore, 100 percent of post-2004 production uses the chloride process (USGS 2005). The percentage of

20 production from the chloride process is estimated at 100 percent since 2004. An emission factor of 1.34 metric 21 tons CO₂/metric ton TiO₂ was applied to the estimated chloride-process production (IPCC 2006). It was assumed

tons CO_2 /metric ton HO_2 was applied to the estimated children process production (FCC 2000). It was assumed that all TiO₂ produced using the chloride process was produced using petroleum coke, although some TiO₂ may

23 have been produced with graphite or other carbon inputs.

24 The emission factor for the TiO₂ chloride process was taken from the 2006 IPCC Guidelines. Titanium dioxide

25 production data and the percentage of total TiO₂ production capacity that is chloride process for 1990 through

26 2013 (see Table 4-41) were obtained through the U.S. Geological Survey (USGS) *Minerals Yearbook: Titanium*

27 Annual Report (USGS 1991 through 2015). Production data for 2014 through 2018 were obtained from the

28 Minerals Commodity Summary: Titanium and Titanium Dioxide (USGS 2019).³⁸ Data on the percentage of total TiO₂

29 production capacity that is chloride process were not available for 1990 through 1993, so data from the 1994 USGS

30 Minerals Yearbook were used for these years. Because a sulfate process plant closed in September 2001, the

³⁸ EPA has not integrated aggregated facility-level GHGRP information for Titanium Dioxide production facilities (40 CFR Part 98 Subpart EE). The relevant aggregated information (activity data, emission factor) from these facilities did not meet criteria to shield underlying CBI from public disclosure.

- 1 chloride process percentage for 2001 was estimated based on a discussion with Joseph Gambogi (2002). By 2002,
- 2 only one sulfate process plant remained online in the United States and this plant closed in 2004 (USGS 2005).

3 Table 4-41: Titanium Dioxide Production (kt)

Year	kt		
1990	979		
2005	1,310		
2014	1,260		
2015	1,220		
2016	1,240		
2017	1,260		
2018	1,200		

⁴ Uncertainty and Time-Series Consistency – TO BE UPDATED ⁵ FOR FINAL INVENTORY REPORT

6 Each year, the USGS collects titanium industry data for titanium mineral and pigment production operations. If

7 TiO₂ pigment plants do not respond, production from the operations is estimated based on prior year production

8 levels and industry trends. Variability in response rates varies from 67 to 100 percent of TiO₂ pigment plants over

9 the time series.

10 Although some TiO₂ may be produced using graphite or other carbon inputs, information and data regarding these

11 practices were not available. Titanium dioxide produced using graphite inputs, for example, may generate differing

12 amounts of CO₂ per unit of TiO₂ produced as compared to that generated using petroleum coke in production.

13 While the most accurate method to estimate emissions would be to base calculations on the amount of reducing

agent used in each process rather than on the amount of TiO₂ produced, sufficient data were not available to doso.

16 As of 2004, the last remaining sulfate-process plant in the United States closed. Since annual TiO₂ production was

17 not reported by USGS by the type of production process used (chloride or sulfate) prior to 2004 and only the

18 percentage of total production capacity by process was reported, the percent of total TiO₂ production capacity that

- 19 was attributed to the chloride process was multiplied by total TiO₂ production to estimate the amount of TiO₂
- 20 produced using the chloride process. Finally, the emission factor was applied uniformly to all chloride-process
- 21 production, and no data were available to account for differences in production efficiency among chloride-process
- 22 plants. In calculating the amount of petroleum coke consumed in chloride-process TiO₂ production, literature data
- 23 were used for petroleum coke composition. Certain grades of petroleum coke are manufactured specifically for
- use in the TiO_2 chloride process; however, this composition information was not available.

25 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-42. Titanium dioxide

26 consumption CO₂ emissions from 2018 were estimated to be between 1.4 and 1.8 MMT CO₂ Eq. at the 95 percent

27 confidence level. This indicates a range of approximately 13 percent below and 13 percent above the emission

28 estimate of 1.6 MMT CO₂ Eq.

Table 4-42: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from Titanium Dioxide Production (MMT CO₂ Eq. and Percent)

Sauraa	Cas	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate			Estimate ^a
Source	Gas	(MMT CO ₂ Eq.)	(MMT CO₂ Eq.) (%		%)	
			Lower	Upper	Lower	Upper
			Bound	Bound	Bound	Bound
Titanium Dioxide Production	CO ₂	1.6	1.4	1.8	-13%	+13%

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

- 1 Methodological approaches were applied to the entire time series to ensure consistency in emissions from 1990
- 2 through 2018. Details on the emission trends through time are described in more detail in the Methodology
- 3 section, above.

4 QA/QC and Verification

5 For more information on the general QA/QC process applied to this source category, consistent with the U.S.

6 Inventory QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of 2006 IPCC Guidelines as described in the

7 introduction of the IPPU chapter (see Annex 8 for more details).

4.12 Soda Ash Production (CRF Source Category 2B7)

10 Carbon dioxide (CO₂) is generated as a byproduct of calcining trona ore to produce soda ash, and is eventually

emitted into the atmosphere. In addition, CO₂ may also be released when soda ash is consumed. Emissions from

soda ash consumption in chemical production processes are reported under Section 4.4 Other Process Uses of

13 Carbonates (CRF Category 2A4) and emissions from fuels consumed for energy purposes during the production and

14 consumption of soda ash are accounted for in the Energy chapter.

15 Calcining involves placing crushed trona ore into a kiln to convert sodium bicarbonate into crude sodium carbonate

16 that will later be filtered into pure soda ash. The emission of CO₂ during trona-based production is based on the 17 following reaction:

18

$$2Na_2CO_3 \cdot NaHCO_3 \cdot 2H_2O(Trona) \rightarrow 3Na_2CO_3(Soda Ash) + 5H_2O + CO_2$$

19 Soda ash (sodium carbonate, Na₂CO₃) is a white crystalline solid that is readily soluble in water and strongly 20 alkaline. Commercial soda ash is used as a raw material in a variety of industrial processes and in many familiar 21 consumer products, such as glass, soap and detergents, paper, textiles, and food. The largest use of soda ash is for 22 glass manufacturing. Emissions from soda ash used in glass production are reported under Section 4.3, Glass 23 Production (CRF Source Category 2A3). In addition, soda ash is used primarily to manufacture many sodium-based 24 inorganic chemicals, including sodium bicarbonate, sodium chromates, sodium phosphates, and sodium silicates 25 (USGS 2015b). Internationally, two types of soda ash are produced, natural and synthetic. The United States 26 produces only natural soda ash and is second only to China in total soda ash production. Trona is the principal ore 27 from which natural soda ash is made.

28 The United States represents about one-fifth of total world soda ash output (USGS 2019a). Only two states

29 produce natural soda ash: Wyoming and California. Of these two states, net emissions of CO₂ from soda ash

30 production were only calculated for Wyoming, due to specifics regarding the production processes employed in

31 the state.³⁹ Based on 2018 reported data, the estimated distribution of soda ash by end-use in 2018 (excluding

 $^{^{39}}$ In California, soda ash is manufactured using sodium carbonate-bearing brines instead of trona ore. To extract the sodium carbonate, the complex brines are first treated with CO₂ in carbonation towers to convert the sodium carbonate into sodium bicarbonate, which then precipitates from the brine solution. The precipitated sodium bicarbonate is then calcined back into sodium carbonate. Although CO₂ is generated as a byproduct, the CO₂ is recovered and recycled for use in the carbonation stage and is not emitted. A third state, Colorado, produced soda ash until the plant was idled in 2004. The lone producer of sodium bicarbonate no longer mines trona ore in the state. For a brief time, sodium bicarbonate was produced using soda ash feedstocks mined in Wyoming and shipped to Colorado. Prior to 2004, because the trona ore was mined in Wyoming, the

- 1 glass production) was chemical production, 56 percent; wholesale distributors (e.g., for use in agriculture, water
- 2 treatment, and grocery wholesale), 12 percent; soap and detergent manufacturing, 11 percent; other uses, 10
- 3 percent; flue gas desulfurization, 7 percent; pulp and paper production, 2 percent, and water treatment, 2 percent
- 4 (USGS 2019).⁴⁰
- 5 U.S. natural soda ash is competitive in world markets because it is generally considered a better-quality raw
- 6 material than synthetically produced soda ash, and the majority of the world output of soda ash is made
- 7 synthetically. Although the United States continues to be a major supplier of soda ash, China, which surpassed the
- 8 United States in soda ash production in 2003, is the world's leading producer.
- 9 In 2018, CO₂ emissions from the production of soda ash from trona ore were 1.7 MMT CO₂ Eq. (1,714 kt CO₂) (see
- 10 Table 4-43). Total emissions from soda ash production in 2018 decreased by approximately 2 percent from
- emissions in 2017, and have increased by approximately 20 percent from 1990 levels.
- 12 Emissions have remained relatively constant over the time series with some fluctuations since 1990. In general,
- 13 these fluctuations were related to the behavior of the export market and the U.S. economy. The U.S. soda ash
- 14 industry continued a trend of increased production and value in 2018 since experiencing a decline in domestic and
- export sales caused by adverse global economic conditions in 2009, although production dropped slightly in 2018
- 16 relative to the prior year.

17 Table 4-43: CO₂ Emissions from Soda Ash Production (MMT CO₂ Eq. and kt CO₂)

Year	MMT CO ₂ Eq.	kt CO ₂
1990	1.4	1,431
2005	1.7	1,655
2014	1.7	1,685
2015	1.7	1,714
2016	1.7	1,723
2017	1.8	1,753
2018	1.7	1,714

18 Methodology

- 19 During the soda ash production process, trona ore is calcined in a rotary kiln and chemically transformed into a
- 20 crude soda ash that requires further processing. Carbon dioxide and water are generated as byproducts of the
- calcination process. Carbon dioxide emissions from the calcination of trona ore can be estimated based on the
- 22 chemical reaction shown above. Based on this formula, which is consistent with an IPCC Tier 1 approach,
- approximately 10.27 metric tons of trona ore are required to generate one metric ton of CO₂, or an emission factor
- of 0.0974 metric tons CO₂ per metric ton of trona ore (IPCC 2006). Thus, the 17.6 million metric tons of trona ore
- mined in 2018 for soda ash production (USGS 2019) resulted in CO₂ emissions of approximately 1.7 MMT CO₂ Eq.
 (1,714 kt).
- 27 Once produced, most soda ash is consumed in chemical production, with minor amounts used in soap production,
- 28 pulp and paper, flue gas desulfurization, and water treatment (excluding soda ash consumption for glass
- 29 manufacturing). As soda ash is consumed for these purposes, additional CO₂ is usually emitted. Consistent with the

production numbers given by the USGS included the feedstocks mined in Wyoming and shipped to Colorado. In this way, the sodium bicarbonate production that took place in Colorado was accounted for in the Wyoming numbers.

 $^{^{\}rm 40}$ Percentages may not add up to 100 percent due to independent rounding.

- 1 2006 IPCC Guidelines for National Greenhouse Gas Inventories, emissions from soda ash consumption in chemical
- 2 production processes are reported under Section 4.4 Other Process Uses of Carbonates (CRF Category 2A4).
- 3 The activity data for trona ore production (see Table 4-44) for 1990 through 2018 were obtained from the U.S.
- 4 Geological Survey (USGS) *Minerals Yearbook for Soda Ash* (1994 through 2015b) and USGS *Mineral Industry*
- 5 *Surveys for Soda Ash* (USGS 2016 through 2017, 2018b, 2019). Soda ash production⁴¹ data were collected by the
- 6 USGS from voluntary surveys of the U.S. soda ash industry. EPA will continue to analyze and assess opportunities
- 7 to use facility-level data from EPA's GHGRP to improve the emission estimates for the Soda Ash Production source
- 8 category consistent with IPCC⁴² and UNFCCC guidelines.

9 Table 4-44: Soda Ash Production (kt)

Year	Production ^a
1990	14,700
2005	17,000
2014	17,300
2015	17,600
2016	17,700
2017	18,000
2018	17,600

^a Soda ash produced from trona ore only.

¹⁰ Uncertainty and Time-Series Consistency – TO BE UPDATED ¹¹ FOR FINAL INVENTORY REPORT

12 Emission estimates from soda ash production have relatively low associated uncertainty levels because reliable

13 and accurate data sources are available for the emission factor and activity data for trona-based soda ash

14 production. One source of uncertainty is the purity of the trona ore used for manufacturing soda ash. The emission

- 15 factor used for this estimate assumes the ore is 100 percent pure, and likely overestimates the emissions from
- 16 soda ash manufacture. The average water-soluble sodium carbonate-bicarbonate content for ore mined in
- 17 Wyoming ranges from 85.5 to 93.8 percent (USGS 1995c).
- 18 EPA is aware of one facility producing soda ash from a liquid alkaline feedstock process based on EPA's GHGRP.
- 19 Soda ash production data was collected by the USGS from voluntary surveys. A survey request was sent to each of
- the five soda ash producers, all of which responded, representing 100 percent of the total production data (USGS2018b).
- 22 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-45. Soda Ash Production
- 23 CO₂ emissions for 2018 were estimated to be between 1.5 and 1.8 MMT CO₂ Eq. at the 95 percent confidence
- 24 level. This indicates a range of approximately 9 percent below and 8 percent above the emission estimate of 1.7
- 25 MMT CO₂ Eq.

⁴¹ EPA has assessed the feasibility of using emissions information (including activity data) from EPA's GHGRP program. However, at this time, the aggregated information associated with production of soda ash did not meet criteria to shield underlying confidential business information (CBI) from public disclosure.

⁴² See <http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

1 Table 4-45: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from Soda Ash 2 Production (MMT CO₂ Eq. and Percent)

Course	2018 Emission Estimate		Uncertainty Range Relative to Emission Estimate ^a					
Source	Gas	(MMT CO₂ Eq.)	(MMT CO ₂ Eq.)		(%)			
			Lower	Upper	Lower	Upper		
			Bound	Bound	Bound	Bound		
Soda Ash Production	CO ₂	1.7	1.5	1.8	-9%	+8%		

Methodological approaches were applied to the entire time series to ensure consistency in emissions estimates
 from 1990 through 2018.

5 QA/QC and Verification

6 General quality assurance/quality control (QA/QC) procedures were applied consistent with the U.S. Inventory

7 QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of 2006 IPCC Guidelines as described in the introduction 8 of the IPPU chapter (see Annex 8 for more details).

9 Planned Improvements

10 EPA plans to use GHGRP data for conducting category-specific QC of emission estimates consistent with both

11 Volume 1, Chapter 6 of the 2006 IPCC Guidelines and the latest IPCC guidance on the use of facility-level data in

12 national inventories.⁴³ This planned improvement is ongoing and has not been incorporated into this Inventory

13 report. This is a medium-term planned improvement and expected to be completed by the 2021 Inventory

14 submission.

4.13 Petrochemical Production (CRF Source Category 2B8)

The production of some petrochemicals results in the release of small amounts of carbon dioxide (CO_2) and 17 18 methane (CH₄) emissions. Petrochemicals are chemicals isolated or derived from petroleum or natural gas. Carbon 19 dioxide emissions from the production of acrylonitrile, carbon black, ethylene, ethylene dichloride, ethylene oxide, 20 and methanol, and CH₄ emissions from the production of methanol and acrylonitrile are presented here and 21 reported under IPCC Source Category 2B8. The petrochemical industry uses primary fossil fuels (i.e., natural gas, 22 coal, petroleum, etc.) for non-fuel purposes in the production of carbon black and other petrochemicals. Emissions 23 from fuels and feedstocks transferred out of the system for use in energy purposes (e.g., indirect or direct process 24 heat or steam production) are currently accounted for in the Energy sector. The allocation and reporting of 25 emissions from feedstocks transferred out of the system for use in energy purposes to the Energy Chapter is 26 consistent with 2006 IPCC Guidelines. 27 Worldwide more than 90 percent of acrylonitrile (vinyl cyanide, C₃H₃N) is made by way of direct ammoxidation of

28 propylene with ammonia (NH₃) and oxygen over a catalyst. This process is referred to as the SOHIO process after

the Standard Oil Company of Ohio (SOHIO) (IPCC 2006). The primary use of acrylonitrile is as the raw material for

30 the manufacture of acrylic and modacrylic fibers. Other major uses include the production of plastics (acrylonitrile-

butadiene-styrene [ABS] and styrene-acrylonitrile [SAN]), nitrile rubbers, nitrile barrier resins, adiponitrile, and

4-54 DRAFT Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018

⁴³ See <http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

1 acrylamide. All U.S. acrylonitrile facilities use the SOHIO process (AN 2014). The SOHIO process involves a fluidized

2 bed reaction of chemical-grade propylene, ammonia, and oxygen over a catalyst. The process produces

3 acrylonitrile as its primary product and the process yield depends on the type of catalyst used and the process

4 configuration. The ammoxidation process also produces byproduct CO₂, carbon monoxide (CO), and water from

5 the direct oxidation of the propylene feedstock, and produces other hydrocarbons from side reactions in the

6 ammoxidation process.

7 Carbon black is a black powder generated by the incomplete combustion of an aromatic petroleum- or coal-based

8 feedstock at a high temperature. Most carbon black produced in the United States is added to rubber to impart

9 strength and abrasion resistance, and the tire industry is by far the largest consumer. The other major use of

10 carbon black is as a pigment. The predominant process used in the United States is the furnace black (or oil

11 furnace) process. In the furnace black process, carbon black oil (a heavy aromatic liquid) is continuously injected

12 into the combustion zone of a natural gas-fired furnace. Furnace heat is provided by the natural gas and a portion 13 of the carbon black feedstock; the remaining portion of the carbon black feedstock is pyrolyzed to carbon black.

14 The resultant CO₂ and uncombusted CH₄ emissions are released from thermal incinerators used as control devices,

15 process dryers, and equipment leaks. Carbon black is also produced in the United States by the thermal cracking of

16 acetylene-containing feedstocks (i.e., acetylene black process), by the thermal cracking of other hydrocarbons (i.e.,

17 thermal black process), and by the open burning of carbon black feedstock (i.e., lamp black process); each of these

18 processes is used at only one U.S. plant (EPA 2000).

19 Ethylene (C_2H_4) is consumed in the production processes of the plastics industry including polymers such as high,

20 low, and linear low density polyethylene (HDPE, LDPE, LLDPE); polyvinyl chloride (PVC); ethylene dichloride;

21 ethylene oxide; and ethylbenzene. Virtually all ethylene is produced from steam cracking of ethane, propane,

22 butane, naphtha, gas oil, and other feedstocks. The representative chemical equation for steam cracking of ethane to ethylene is shown below:

23

24

 $C_2H_6 \rightarrow C_2H_4 + H_2$

25 Small amounts of CH₄ are also generated from the steam cracking process. In addition, CO₂ and CH₄ emissions are 26 also generated from combustion units.

27 Ethylene dichloride ($C_2H_4Cl_2$) is used to produce vinyl chloride monomer, which is the precursor to polyvinyl

28 chloride (PVC). Ethylene dichloride was used as a fuel additive until 1996 when leaded gasoline was phased out.

29 Ethylene dichloride is produced from ethylene by either direct chlorination, oxychlorination, or a combination of

30 the two processes (i.e., the "balanced process"); most U.S. facilities use the balanced process. The direct 31 chlorination and oxychlorination reactions are shown below:

 $C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$ (direct chlorination) 32

33
$$C_2H_4 + \frac{1}{2}O_2 + 2HCl \rightarrow C_2H_4Cl_2 + 2H_2O$$
 (oxychlorination)

 $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$ (direct oxidation of ethylene during oxychlorination) 34

In addition to the byproduct CO_2 produced from the direction oxidation of the ethylene feedstock, CO_2 and CH_4 35 36 emissions are also generated from combustion units.

37 Ethylene oxide (C₂H₄O) is used in the manufacture of glycols, glycol ethers, alcohols, and amines. Approximately 70

38 percent of ethylene oxide produced worldwide is used in the manufacture of glycols, including monoethylene

39 glycol. Ethylene oxide is produced by reacting ethylene with oxygen over a catalyst. The oxygen may be supplied to

40 the process through either an air (air process) or a pure oxygen stream (oxygen process). The byproduct CO₂ from

41 the direct oxidation of the ethylene feedstock is removed from the process vent stream using a recycled carbonate 42

solution, and the recovered CO₂ may be vented to the atmosphere or recovered for further utilization in other 43 sectors, such as food production (IPCC 2006). The combined ethylene oxide reaction and byproduct CO₂ reaction is

44 exothermic and generates heat, which is recovered to produce steam for the process. The ethylene oxide process

45 also produces other liquid and off-gas byproducts (e.g., ethane, etc.) that may be burned for energy recovery

46 within the process. Almost all facilities, except one in Texas, use the oxygen process to manufacture ethylene oxide

47 (EPA 2008).

- 1 Methanol (CH₃OH) is a chemical feedstock most often converted into formaldehyde, acetic acid and olefins. It is
- 2 also an alternative transportation fuel, as well as an additive used by municipal wastewater treatment facilities in
- 3 the denitrification of wastewater. Methanol is most commonly synthesized from a synthesis gas (i.e., "syngas" a
- 4 mixture containing H₂, CO, and CO₂) using a heterogeneous catalyst. There are a number of process techniques
- that can be used to produce syngas. Worldwide, steam reforming of natural gas is the most common method;
- 6 most methanol producers in the United States also use steam reforming of natural gas to produce syngas. Other
- 7 syngas production processes in the United States include partial oxidation of natural gas and coal gasification.
- 8 Emissions of CO₂ and CH₄ from petrochemical production in 2018 were 29.4 MMT CO₂ Eq. (29,424 kt CO₂) and 0.3
- 9 MMT CO₂ Eq. (12 kt CH₄), respectively (see Table 4-46 and Table 4-47). Since 1990, total CO₂ emissions from
- 10 petrochemical production increased by 36 percent. Methane emissions from petrochemical (methanol and
- acrylonitrile) production reached a low of 1.8 kt CH₄ in 2011, given declining methanol production; however, CH₄
- 12 emissions have been increasing every year since 2011 and are now 38 percent greater than in 1990 (though still
- 13 less than the peak in 1997) due to a rebound in methanol production.

14 Table 4-46: CO₂ and CH₄ Emissions from Petrochemical Production (MMT CO₂ Eq.)

Year	1990	2005	2014	2015	2016	2017	2018
CO ₂	21.6	27.4	26.3	28.1	28.3	28.9	29.4
CH ₄	0.2	0.1	0.1	0.2	0.2	0.3	0.3
Total	21.8	27.5	26.4	28.2	28.6	29.2	29.7

Note: Totals may not sum due to independent rounding.

15 Table 4-47: CO₂ and CH₄ Emissions from Petrochemical Production (kt)

Year	1990	2005	2014	2015	2016	2017	2018
CO ₂	21,611	27,383	26,254	28,062	28,310	28,910	29,424
CH_4	9	3	5	7	10	10	12

16 Methodology

- 17 Emissions of CO₂ and CH₄ were calculated using the estimation methods provided by the 2006 IPCC Guidelines and
- 18 country-specific methods from EPA's GHGRP. The 2006 IPCC Guidelines Tier 1 method was used to estimate CO₂
- and CH₄ emissions from production of acrylonitrile and methanol,⁴⁴ and a country-specific approach similar to the
- 20 IPCC Tier 2 method was used to estimate CO₂ emissions from production of carbon black, ethylene oxide, ethylene,
- and ethylene dichloride. The Tier 2 method for petrochemicals is a total feedstock C mass balance method used to
- $\label{eq:constraint} 22 \qquad \text{estimate total CO}_2 \text{ emissions, but is not applicable for estimating CH}_4 \text{ emissions.}$
- 23 As noted in the 2006 IPCC Guidelines, the total feedstock C mass balance method (Tier 2) is based on the
- assumption that all of the C input to the process is converted either into primary and secondary products or into
- 25 CO₂. Further, the guideline states that while the total C mass balance method estimates total C emissions from the
- 26 process but does not directly provide an estimate of the amount of the total C emissions emitted as CO₂, CH₄, or
- 27 non-CH₄ volatile organic compounds (NMVOCs). This method accounts for all the C as CO₂, including CH₄.
- 28 Note, a small subset of facilities reporting under EPA's GHGRP use Continuous Emission Monitoring Systems
- 29 (CEMS) to monitor CO₂ emissions, and these facilities are required to also report CH₄ and N₂O emissions from
- 30 combustion of process off-gas in flares. Preliminary analysis of aggregated annual reports shows that these flared
- 31 CH₄ and N₂O emissions are less than 500 kt CO₂ Eq./year. EPA's GHGRP is still reviewing this data across reported

⁴⁴ EPA has not integrated aggregated facility-level GHGRP information for acrylonitrile and methanol production. The aggregated information associated with production of these petrochemicals did not meet criteria to shield underlying CBI from public disclosure.

years to facilitate update of category-specific QC documentation and EPA plans to address this more completely in
 future reports.

3 Carbon Black, Ethylene, Ethylene Dichloride, and Ethylene Oxide

4 2010 through 2018

5 Carbon dioxide emissions and national production were aggregated directly from EPA's GHGRP dataset for 2010

through 2018 (EPA 2019). In 2018, data reported to the GHGRP included CO₂ emissions of 3,400,000 metric tons
 from carbon black production; 19,500,000 metric tons of CO₂ from ethylene production; 480,000 metric tons of

from carbon black production; 19,500,000 metric tons of CO₂ from ethylene production; 480,000 metric tons of
 CO₂ from ethylene dichloride production; and 1,310,000 metric tons of CO₂ from ethylene oxide production. These

9 emissions reflect application of a country-specific approach similar to the IPCC Tier 2 method and were used to

estimate CO_2 emissions from the production of carbon black, ethylene, ethylene dichloride, and ethylene oxide.

- Since 2010, EPA's GHGRP, under Subpart X, requires all domestic producers of petrochemicals to report annual
- 12 emissions and supplemental emissions information (e.g., production data, etc.) to facilitate verification of reported
- 13 emissions. Under EPA's GHGRP, most petrochemical production facilities are required to use either a mass balance
- 14 approach or CEMS to measure and report emissions for each petrochemical process unit to estimate facility-level
- 15 process CO₂ emissions; ethylene production facilities also have a third option. The mass balance method is used by
- 16 most facilities⁴⁵ and assumes that all the carbon input is converted into primary and secondary products,
- byproducts, or is emitted to the atmosphere as CO₂. To apply the mass balance, facilities must measure the volume
- 18 or mass of each gaseous and liquid feedstock and product, mass rate of each solid feedstock and product, and
- 19 carbon content of each feedstock and product for each process unit and sum for their facility. To apply the
- 20 optional combustion methodology, ethylene production facilities must measure the quantity, carbon content, and
- 21 molecular weight of the fuel to a stationary combustion unit when that fuel includes any ethylene process off-gas. 22 These data are used to calculate the total CO_2 emissions from the combustion unit. The facility must also estimate
- These data are used to calculate the total CO₂ emissions from the combustion unit. The facility must also estimate the fraction of the emissions that is attributable to burning the ethylene process off-gas portion of the fuel. This
- fraction is multiplied by the total emissions to estimate the emissions from ethylene production.
- All non-energy uses of residual fuel and some non-energy uses of "other oil" are assumed to be used in the
- 26 production of carbon black; therefore, consumption of these fuels is adjusted for within the Energy chapter to
- avoid double-counting of emissions from fuel used in the carbon black production presented here within IPPU
- 28 sector. Additional information on the adjustments made within the Energy sector for Non-Energy Use of Fuels is
- described in both the Methodology section of CO₂ from Fossil Fuel Combustion (3.1 Fossil Fuel Combustion (IPCC
- 30 Source Category 1A)) and Annex 2.1, Methodology for Estimating Emissions of CO₂ from Fossil Fuel Combustion.

31 **1990 through 2009**

Prior to 2010, for each of these 4 types of petrochemical processes, an average national CO₂ emission factor was

- calculated based on the GHGRP data and applied to production for earlier years in the time series (i.e., 1990
- through 2009) to estimate CO₂ emissions from carbon black, ethylene, ethylene dichloride, and ethylene oxide

 $^{^{45}}$ A few facilities producing ethylene dichloride used CO₂ CEMS, those CO₂ emissions have been included in the aggregated GHGRP emissions presented here. For ethylene production processes, nearly all process emissions are from the combustion of process off-gas. Under EPA's GHGRP, Subpart X, ethylene facilities can report CO₂ emissions from burning of process gases using the optional combustion methodology for ethylene production processes, which requires estimating emissions based on fuel quantity and carbon contents of the fuel. This is consistent with the *2006 IPCC Guidelines* (p. 3.57) which recommends including combustion emissions from fuels obtained from feedstocks (e.g., off-gases) in petrochemical production under in the IPPU sector. In 2014, for example, this methodology was used by more than 20 of the 65 reporting facilities. In addition to CO₂, these facilities are required to report emissions of CH₄ and N₂O from combustion of ethylene process off-gas in both stationary combustion units and flares. Facilities using CEMS (consistent with a Tier 3 approach) are also required to report emissions of CH₄ and N₂O emissions from facilities using the optional combustion methodology suggests that these annual emissions are less than 500 kt/yr so not significant enough to prioritize for inclusion in the report at this time. Pending resources and significance, EPA may include these emissions in future reports to enhance completeness.

- 1 production. For carbon black, ethylene, ethylene dichloride, and ethylene oxide carbon dioxide emission factors
- 2 were derived from EPA's GHGRP data by dividing annual CO₂ emissions for petrochemical type "i" with annual
- 3 production for petrochemical type "i" and then averaging the derived emission factors obtained for each calendar
- year 2010 through 2013. The years 2010 through 2013 were used in the development of carbon dioxide emission
 factors as these years are more representative of operations in 1990 through 2009 for these facilities. The average
- 5 factors as these years are more representative of operations in 1990 through 2009 for these facilities. The average 6 emission factors for each petrochemical type were applied across all prior years because petrochemical production
- processes in the United States have not changed significantly since 1990, though some operational efficiencies
- 8 have been implemented at facilities over the time series.
- 9 The average country-specific CO₂ emission factors that were calculated from the GHGRP data are as follows:
- 10 2.59 metric tons CO₂/metric ton carbon black produced
- 11 0.79 metric tons CO₂/metric ton ethylene produced
 - 0.040 metric tons CO₂/metric ton ethylene dichloride produced
 - 0.46 metric tons CO₂/metric ton ethylene oxide produced
- 13 14

12

- 15 Annual production data for carbon black for 1990 through 2009 were obtained from the International Carbon
- 16 Black Association (Johnson 2003 and 2005 through 2010). Annual production data for ethylene and ethylene
- dichloride for 1990 through 2009 were obtained from the American Chemistry Council's (ACC's) *Guide to the*
- 18 *Business of Chemistry* (ACC 2002, 2003, 2005 through 2011). Annual production data for ethylene oxide were
- obtained from ACC's U.S. Chemical Industry Statistical Handbook for 2003 through 2009 (ACC 2014a) and from
- 20 ACC's Business of Chemistry for 1990 through 2002 (ACC 2014b).

21 Acrylonitrile

- 22 Carbon dioxide and methane emissions from acrylonitrile production were estimated using the Tier 1 method in
- the 2006 IPCC Guidelines. Annual acrylonitrile production data were used with IPCC default Tier 1 CO₂ and CH₄
- 24 emission factors to estimate emissions for 1990 through 2018. Emission factors used to estimate acrylonitrile
- 25 production emissions are as follows:
 - 0.18 kg CH₄/metric ton acrylonitrile produced
 - 1.00 metric tons CO₂/metric ton acrylonitrile produced
- 27 28

26

Annual acrylonitrile production data for 1990 through 2018 were obtained from ACC's *Business of Chemistry* (ACC 2019).

31 Methanol

- 32 Carbon dioxide and methane emissions from methanol production were estimated using the Tier 1 method in the
- 33 2006 IPCC Guidelines. Annual methanol production data were used with IPCC default Tier 1 CO₂ and CH₄ emission
- factors to estimate emissions for 1990 through 2018. Emission factors used to estimate methanol production
- 35 emissions are as follows:
- 36 2.3 kg CH₄/metric ton methanol produced
- 0.67 metric tons CO₂/metric ton methanol produced
- 38
- Annual methanol production data for 1990 through 2018 were obtained from the ACC's *Business of Chemistry* (ACC
 2019).

41 Table 4-48: Production of Selected Petrochemicals (kt)

Chemical	1990	2005	2014	2015	2016	2017	2018
Carbon Black	1,307	1,651	1,210	1,220	1,190	1,240	1,280
Ethylene	16,542	23,975	25,500	26,900	26,600	27,800	30,500
Ethylene Dichloride	6,283	11,260	11,300	11,300	11,700	12,400	12,500
Ethylene Oxide	2,429	3,220	3,160	3,240	3,270	3,350	3,280

Acrylonitrile	1,214	1,325	1,095	1,050	955	1,040	1,250
Methanol	3,750	1,225	2,105	3,065	4,250	4,295	5,200

- 1 As noted earlier in the introduction section of the Petrochemical Production chapter, the allocation and reporting
- 2 of emissions from both fuels and feedstocks transferred out of the system for use in energy purposes to the Energy
- 3 Chapter differs slightly from the 2006 IPCC Guidelines. According to the 2006 IPCC Guidelines, emissions from fuel
- 4 combustion from petrochemical production should be allocated to this source category within the IPPU Chapter.
- 5 Due to national circumstances, EIA data on primary fuel for feedstock use within the energy balance are presented
- 6 by commodity only, with no resolution on data by industry sector (i.e., petrochemical production). In addition,
- 7 under EPA's GHGRP, reporting facilities began reporting in 2014 on annual feedstock quantities for mass balance
- and CEMS methodologies (79 FR 63794), as well as the annual average carbon content of each feedstock (and
- 9 molecular weight for gaseous feedstocks) for the mass balance methodology beginning in reporting year 2017 (81
- FR 89260).⁴⁶ The United States is currently unable to report non-energy fuel use from petrochemical production
 under the IPPU chapter due to CBI issues. Therefore, consistent with 2006 IPCC Guidelines, fuel consumption data
- reported by EIA are modified to account for these overlaps to avoid double-counting. More information on the
- 13 non-energy use of fossil fuel feedstocks for petrochemical production can be found in Annex 2.3.

¹⁴ Uncertainty and Time-Series Consistency – TO BE UPDATED ¹⁵ FOR FINAL INVENTORY REPORT

- 16 The CH₄ and CO₂ emission factors used for acrylonitrile and methanol production are based on a limited number of
- 17 studies. Using plant-specific factors instead of default or average factors could increase the accuracy of the
- 18 emission estimates; however, such data were not available for the current Inventory report.
- 19 The results of the quantitative uncertainty analysis for the CO₂ emissions from carbon black production, ethylene,
- 20 ethylene dichloride, and ethylene oxide are based on reported GHGRP data. Refer to the Methodology section for
- 21 more details on how these emissions were calculated and reported to EPA's GHGRP. There is some uncertainty in
- 22 the applicability of the average emission factors for each petrochemical type across all prior years. While
- 23 petrochemical production processes in the United States have not changed significantly since 1990, some
- 24 operational efficiencies have been implemented at facilities over the time series.
- 25 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-49. Petrochemical
- 26 production CO₂ emissions from 2018 were estimated to be between 26.7 and 29.7 MMT CO₂ Eq. at the 95 percent
- 27 confidence level. This indicates a range of approximately 5 percent below to 5 percent above the emission
- estimate of 29.4 MMT CO₂ Eq. Petrochemical production CH₄ emissions from 2018 were estimated to be between
- 29 0.09 and 0.31 MMT CO₂ Eq. at the 95 percent confidence level. This indicates a range of approximately 57 percent
- 30 below to 45 percent above the emission estimate of 0.3 MMT CO_2 Eq.
- 31 Table 4-49: Approach 2 Quantitative Uncertainty Estimates for CH₄ Emissions from
- Petrochemical Production and CO₂ Emissions from Petrochemical Production (MMT CO₂ Eq.
 and Percent)
- 33 and Percent)

Source	Gas	2018 Emission Estimate		, ,		elative to Emission Estimate ^a		
		(MMT CO ₂ Eq.)	(MMT	CO₂ Eq.)	(%)			
			Lower	Upper	Lower	Upper		
			Bound	Bound	Bound	Bound		
Petrochemical	60	20.4	27.0	20.0	F.0/	+5%		
Production	CO ₂	29.4	27.9	30.8	3 -5%			
Petrochemical	CU	0.20	0.40		530/	. 450/		
Production	CH ₄	0.30	0.12	0.44	-57%	+45%		

⁴⁶ See <https://www.epa.gov/ghgreporting/historical-rulemakings>.

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

Methodological approaches were applied to the entire time series to ensure consistency in emissions from 1990
 through 2018.

QA/QC and Verification

4 For Petrochemical Production, QA/QC activities were conducted consistent with the U.S. Inventory QA/QC plan, as 5 described in the QA/QC and Verification Procedures section of the IPPU Chapter and Annex 8. Source-specific 6 quality control measures for this category included the QA/QC requirements and verification procedures of EPA's 7 GHGRP. More details on the greenhouse gas calculation, monitoring and QA/QC methods applicable to 8 petrochemical facilities can be found under Subpart X (Petrochemical Production) of the regulation (40 CFR Part 98).⁴⁷ EPA verifies annual facility-level GHGRP reports through a multi-step process (e.g., combination of electronic 9 checks and manual reviews) to identify potential errors and ensure that data submitted to EPA are accurate, 10 complete, and consistent (EPA 2015).⁴⁸ Based on the results of the verification process, EPA follows up with 11 facilities to resolve mistakes that may have occurred. The post-submittals checks are consistent with a number of 12 13 general and category-specific QC procedures, including: range checks, statistical checks, algorithm checks, and 14 year-to-year checks of reported data and emissions. EPA also conducts QA checks of GHGRP reported production 15 data by petrochemical type against external datasets. 16 For ethylene, ethylene dichloride, and ethylene oxide it is possible to compare CO₂ emissions calculated using the 17 GHGRP data to the CO₂ emissions that would have been calculated using the Tier 1 approach if GHGRP data were 18 not available. For ethylene, the GHGRP emissions typically are within 5 percent of the emissions calculated using 19 the Tier 1 approach (except for 2010 when the difference was 8 percent). For ethylene dichloride, the GHGRP 20 emissions are typically within 25 percent of the Tier 1 emissions. For ethylene oxide, GHGRP emissions vary from 21 17 percent less than the Tier 1 emissions to 20 percent more than the Tier 1 emissions, depending on the year. 22 As part of a planned improvement effort, EPA has assessed the potential of using GHGRP data to estimate CH4 23 emissions from ethylene production. As discussed in the Methodology section above, CO₂ emissions from ethylene 24 production in this chapter are based on data reported under the GHGRP, and these emissions are calculated using 25 a Tier 2 approach that assumes all of the carbon in the fuel (i.e., ethylene process off-gas) is converted to CO₂. 26 Ethylene production facilities also calculate and report CH4 emissions under the GHGRP when they use the optional 27 combustion methodology. The facilities calculate CH₄ emissions from each combustion unit that burns off-gas from 28 an ethylene production process unit using a Tier 1 approach based on the total quantity of fuel burned, a default 29 higher heating value, and a default emission factor. Because multiple other types of fuel in addition to the ethylene 30 process unit off-gas may be burned in these combustion units, the facilities also report an estimate of the fraction 31 of emissions that is due to burning the ethylene process off-gas component of the total fuel. Multiplying the total

- emissions by the estimated fraction provides an estimate of the CH₄ emissions from the ethylene production
 process unit. These ethylene production facilities also calculate CH₄ emissions from flares that burn process vent
- emissions from ethylene processes. The emissions are calculated using either a Tier 2 approach based on
- 35 measured gas volumes and measured carbon content or higher heating value, or a Tier 1 approach based on the
- 36 measured gas flow and a default emission factor. Nearly all ethylene production facilities use the optional
- 37 combustion methodology under the GHGRP, and the sum of reported emissions from combustion in stationary
- combustion units and flares at all of these facilities is on the same order of magnitude as the combined CH₄
- emissions presented in this chapter from methanol and acrylonitrile production. The CH₄ emissions from ethylene
- 40 production under the GHGRP have not been included in this chapter because this approach double counts carbon
- 41 (i.e., all of the carbon in the CH₄ emissions is also included in the CO₂ emissions from the ethylene process units).

⁴⁷ See <http://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title40/40cfr98_main_02.tpl>.

⁴⁸ See <https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.

- 1 EPA continues to assess the GHGRP data for ways to better disaggregate the data and incorporate it into the
- 2 inventory.
- 3 Future QC efforts to validate the use of Tier 1 default EFs and report on the comparison of Tier 1 emissions
- 4 estimates and GHGRP data are described below in the Planned Improvements section.

5 Recalculations Discussion

6 As previously noted above, GHGRP data are used to develop CO₂ emission factors for carbon black, ethylene,

7 ethylene dichloride, and ethylene oxide production. These factors are used with production data to estimate CO₂

8 emissions from production of these petrochemicals in 1990 through 2009. In previous versions of the Inventory,

9 average emission factors were developed from all years of available GHGRP data. Based on a review of the

10 representativeness of GHGRP data for more recent years, the emission factor for the above mentioned

11 petrochemical types in the current Inventory has been updated to reflect GHGRP data only from 2010 through

12 2013 as these years are more representative of operations from 1990 through 2009. This resulted in an average

- annual increase in total petrochemical emissions of about 1 percent compared to the previous (i.e., 1990 to 2017)
 Inventory.
- 15 The previous 1990 to 2017 Inventory used proxy data for 2017 production and emissions values for carbon black,

16 ethylene, ethylene dichloride and ethylene oxide as GHGRP data for 2017 was not available for the Final Report.

17 The 2017 data for production and emissions from those sources has been updated with the GHGRP data for 2017

- 18 for this report. It resulted in a 2 percent increase in total petrochemical emissions for 2017 compared to last year's
- 19 report.

20 Planned Improvements

21 Improvements include completing category-specific QC of activity data and emission factors, along with further

22 assessment of CH₄ and N₂O emissions to enhance completeness in reporting of emissions from U.S. petrochemical

- 23 production, pending resources, significance and time-series consistency considerations. For example, EPA is
- 24 planning additional assessment of ways to use CH₄ data from the GHGRP in the inventory. One possible approach
- 25 EPA is assessing would be to adjust the CO₂ emissions from the GHGRP downward by subtracting the carbon that is
- also included in the reported CH₄ emissions, per the discussion in the Petrochemical Production QA/QC and

Verification section, above. As of this current report, timing and resources have not allowed EPA to complete this
 analysis of activity data, emissions, and emission factors and remains a priority improvement within the IPPU

- 29 chapter.
- 30 Pending resources, a secondary potential improvement for this source category would focus on continuing to

analyze the fuel and feedstock data from EPA's GHGRP to better disaggregate energy-related emissions and

32 allocate them more accurately between the Energy and IPPU sectors of the Inventory. Some degree of double

- counting may occur between CO_2 estimates of non-energy use of fuels in the energy sector and CO_2 process
- 34 emissions from petrochemical production in this sector. As noted previously in the methodology section, data
- 35 integration is not feasible at this time as feedstock data from the EIA used to estimate non-energy uses of fuels are
- aggregated by fuel type, rather than disaggregated by both fuel type and particular industries. As described in the
- 37 methodology section of this source category, EPA is currently unable to use GHGRP reported data on quantities of
- fuel consumed as feedstocks by petrochemical producers, only feedstock type, due to the data failing GHGRP CBI
- 39 aggregation criteria. Incorporating this data into future inventories will allow for easier data integration between
- the non-energy uses of fuels category and the petrochemicals category presented in this chapter. This planned
 improvement is still under development and has not been completed to report on progress in this current
- 42 Inventory.

4.14 HCFC-22 Production (CRF Source Category 1 2B9a) 2

Trifluoromethane (HFC-23 or CHF₃) is generated as a byproduct during the manufacture of chlorodifluoromethane 3 4 (HCFC-22), which is primarily employed in refrigeration and air conditioning systems and as a chemical feedstock 5 for manufacturing synthetic polymers. Between 1990 and 2000, U.S. production of HCFC-22 increased significantly 6 as HCFC-22 replaced chlorofluorocarbons (CFCs) in many applications. Between 2000 and 2007, U.S. production 7 fluctuated but generally remained above 1990 levels. In 2008 and 2009, U.S. production declined markedly and has 8 remained near 2009 levels since. Because HCFC-22 depletes stratospheric ozone, its production for non-feedstock 9 uses is scheduled to be phased out by 2020 under the U.S. Clean Air Act.⁴⁹ Feedstock production, however, is 10 permitted to continue indefinitely. HCFC-22 is produced by the reaction of chloroform (CHCl₃) and hydrogen fluoride (HF) in the presence of a catalyst,

- 11
- 12 SbCl₅. The reaction of the catalyst and HF produces SbCl_x F_y , (where x + y = 5), which reacts with chlorinated
- 13 hydrocarbons to replace chlorine atoms with fluorine. The HF and chloroform are introduced by submerged piping
- 14 into a continuous-flow reactor that contains the catalyst in a hydrocarbon mixture of chloroform and partially
- 15 fluorinated intermediates. The vapors leaving the reactor contain HCFC-21 (CHCl₂F), HCFC-22 (CHClF₂), HFC-23
- 16 (CHF₃), HCl, chloroform, and HF. The under-fluorinated intermediates (HCFC-21) and chloroform are then
- 17 condensed and returned to the reactor, along with residual catalyst, to undergo further fluorination. The final
- 18 vapors leaving the condenser are primarily HCFC-22, HFC-23, HCl and residual HF. The HCl is recovered as a useful
- 19 byproduct, and the HF is removed. Once separated from HCFC-22, the HFC-23 may be released to the atmosphere,
- 20 recaptured for use in a limited number of applications, or destroyed.
- 21 Two facilities produced HCFC-22 in the United States in 2018. Emissions of HFC-23 from this activity in 2018 were
- 22 estimated to be 3.3 MMT CO₂ Eq. (0.2 kt) (see Table 4-50). This quantity represents a 36 percent decrease from
- 23 2017 emissions and a 93 percent decrease from 1990 emissions. The decrease from 1990 emissions was caused
- 24 primarily by changes in the HFC-23 emission rate (kg HFC-23 emitted/kg HCFC-22 produced). The decrease from
- 25 2017 emissions was caused both by a decrease in the HFC-23 emission rate and by a decrease in HCFC-22
- 26 production. The long-term decrease in the emission rate is primarily attributable to six factors: (a) five plants that
- 27 did not capture and destroy the HFC-23 generated have ceased production of HCFC-22 since 1990; (b) one plant
- 28 that captures and destroys the HFC-23 generated began to produce HCFC-22; (c) one plant implemented and 29 documented a process change that reduced the amount of HFC-23 generated; (d) the same plant began recovering
- 30 HFC-23, primarily for destruction and secondarily for sale; (e) another plant began destroying HFC-23; and (f) the
- 31 same plant, whose emission rate was higher than that of the other two plants, ceased production of HCFC-22 in
- 32 2013.

⁴⁹ As construed, interpreted, and applied in the terms and conditions of the Montreal Protocol on Substances that Deplete the Ozone Layer [42 U.S.C. §7671m(b), CAA §614].

Year	MMT CO ₂ Eq.	kt HFC-23
1990	46.1	3
2005	20.0	1
2014	5.0	0.3
2015	4.3	0.3
2016	2.8	0.2
2017	5.2	0.3
2018	3.3	0.2

1 Table 4-50: HFC-23 Emissions from HCFC-22 Production (MMT CO₂ Eq. and kt HFC-23)

2 Methodology

- 3 To estimate HFC-23 emissions for five of the eight HCFC-22 plants that have operated in the United States since
- 4 1990, methods comparable to the Tier 3 methods in the 2006 IPCC Guidelines (IPCC 2006) were used. Emissions for
- 5 2010 through 2018 were obtained through reports submitted by U.S. HCFC-22 production facilities to EPA's
- 6 Greenhouse Gas Reporting Program (GHGRP). EPA's GHGRP mandates that all HCFC-22 production facilities report
- 7 their annual emissions of HFC-23 from HCFC-22 production processes and HFC-23 destruction processes.
- 8 Previously, data were obtained by EPA through collaboration with an industry association that received voluntarily
- 9 reported HCFC-22 production and HFC-23 emissions annually from all U.S. HCFC-22 producers from 1990 through
- 10 2009. These emissions were aggregated and reported to EPA on an annual basis.
- 11 For the other three plants, the last of which closed in 1993, methods comparable to the Tier 1 method in the 2006
- 12 *IPCC Guidelines* were used. Emissions from these three plants have been calculated using the recommended
- 13 emission factor for unoptimized plants operating before 1995 (0.04 kg HCFC-23/kg HCFC-22 produced).
- 14 The five plants that have operated since 1994 measure (or, for the plants that have since closed, measured)
- 15 concentrations of HFC-23 as well as mass flow rates of process streams to estimate their generation of HFC-23.
- 16 Plants using thermal oxidation to abate their HFC-23 emissions monitor the performance of their oxidizers to verify
- 17 that the HFC-23 is almost completely destroyed. One plant that releases a small fraction of its byproduct HFC-23
- 18 periodically measures HFC-23 concentrations at process vents using gas chromatography. This information is
- 19 combined with information on quantities of products (e.g., HCFC-22) to estimate HFC-23 emissions.
- 20 To estimate 1990 through 2009 emissions, reports from an industry association were used that aggregated HCFC-
- 21 22 production and HFC-23 emissions from all U.S. HCFC-22 producers and reported them to EPA (ARAP 1997, 1999,
- 22 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, and 2010). To estimate 2010 through 2018
- 23 emissions, facility-level data (including both HCFC-22 production and HFC-23 emissions) reported through EPA's
- 24 GHGRP were analyzed. In 1997 and 2008, comprehensive reviews of plant-level estimates of HFC-23 emissions and
- 25 HCFC-22 production were performed (RTI 1997; RTI 2008). The 1997 and 2008 reviews enabled U.S. totals to be
- 26 reviewed, updated, and where necessary, corrected, and also for plant-level uncertainty analyses (Monte-Carlo
- simulations) to be performed for 1990, 1995, 2000, 2005, and 2006. Estimates of annual U.S. HCFC-22 production
- are presented in Table 4-51.

1 Table 4-51: HCFC-22 Production (kt)

Year	kt
1990	139
2005	156
2012	96
2013-2018	С

C (CBI)

Note: HCFC-22 production in 2013 through 2018 is considered Confidential Business Information (CBI) as there were only two producers of HCFC-22 in those years.

2 Uncertainty and Time-Series Consistency

3 The uncertainty analysis presented in this section was based on a plant-level Monte Carlo Stochastic Simulation for

4 2006. The Monte Carlo analysis used estimates of the uncertainties in the individual variables in each plant's

5 estimating procedure. This analysis was based on the generation of 10,000 random samples of model inputs from

6 the probability density functions for each input. A normal probability density function was assumed for all

7 measurements and biases except the equipment leak estimates for one plant; a log-normal probability density

8 function was used for this plant's equipment leak estimates. The simulation for 2006 yielded a 95-percent

9 confidence interval for U.S. emissions of 6.8 percent below to 9.6 percent above the reported total.

10 The relative errors yielded by the Monte Carlo Stochastic Simulation for 2006 were applied to the U.S. emission

11 estimate for 2018. The resulting estimates of absolute uncertainty are likely to be reasonably accurate because (1)

12 the methods used by the two remaining plants to estimate their emissions are not believed to have changed

13 significantly since 2006, and (2) although the distribution of emissions among the plants has changed between

14 2006 and 2018 (because one plant has closed), the plant that currently accounts for most emissions had a relative

uncertainty in its 2006 (as well as 2005) emissions estimate that was similar to the relative uncertainty for total

16 U.S. emissions. Thus, the closure of one plant is not likely to have a large impact on the uncertainty of the national

17 emission estimate.

18 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-52. HFC-23 emissions

19 from HCFC-22 production were estimated to be between 3.1 and 3.6 MMT CO₂ Eq. at the 95 percent confidence

20 level. This indicates a range of approximately 7 percent below and 10 percent above the emission estimate of 3.3

21 MMT CO₂ Eq.

22 Table 4-52: Approach 2 Quantitative Uncertainty Estimates for HFC-23 Emissions from

23 HCFC-22 Production (MMT CO₂ Eq. and Percent)

Source	2018 Emission Estimate		Uncertainty Range Relative to Emission Estimate ^a				
Source	Gas	(MMT CO ₂ Eq.)	(MMT CO ₂ Eq.)		(%)		
			Lower	Upper	Lower	Upper	
			Bound	Bound	Bound	Bound	
HCFC-22 Production	HFC-23	3.3	3.1	3.6	-7%	+10%	

^a Range of emissions reflects a 95 percent confidence interval.

24 QA/QC and Verification

25 General quality assurance/quality control (QA/QC) procedures were applied consistent with the U.S. *Inventory*

26 QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of 2006 IPCC Guidelines as described in the introduction

27 of the IPPU chapter (see Annex 8 for more details). Under the GHGRP, EPA verifies annual facility-level reports

- 1 through a multi-step process (e.g., including a combination of pre-and post-submittal electronic checks and manual
- 2 reviews by staff) to identify potential errors and ensure that data submitted to EPA are accurate, complete, and
- 3 consistent (EPA 2015).⁵⁰ Based on the results of the verification process, EPA follows up with facilities to resolve
- 4 mistakes that may have occurred. The post-submittals checks are consistent with a number of general and
- category-specific QC procedures, including: range checks, statistical checks, algorithm checks, and year-to-year
 checks of reported data and emissions.
- 7
- 8 The GHGRP also requires source-specific quality control measures for the HCFC-22 Production category. Under
- 9 EPA's GHGRP, HCFC-22 producers are required to (1) measure concentrations of HFC-23 and HCFC-22 in the
- 10 product stream at least weekly using equipment and methods (e.g., gas chromatography) with an accuracy and
- precision of 5 percent or better at the concentrations of the process samples, (2) measure mass flows of HFC-23
- 12 and HCFC-22 at least weekly using measurement devices (e.g., flowmeters) with an accuracy and precision of 1
- 13 percent of full scale or better, (3) calibrate mass measurement devices at the frequency recommended by the 14 manufacturer using traceable standards and suitable methods published by a consensus standards organization,
- (4) calibrate gas chromatographs at least monthly through analysis of certified standards, and (5) document these
- 16 calibrations.

4.15 Carbon Dioxide Consumption (CRF Source Category 2B10)

- 19 Carbon dioxide (CO₂) is used for a variety of commercial applications, including food processing, chemical
- 20 production, carbonated beverage production, and refrigeration, and is also used in petroleum production for
- 21 enhanced oil recovery (EOR). CO₂ used for EOR is injected underground to enable additional petroleum to be
- 22 produced. For the purposes of this analysis, CO₂ used in commercial applications other than EOR is assumed to be
- 23 emitted to the atmosphere. Carbon dioxide used in EOR applications is discussed in the Energy chapter under
- 24 "Carbon Capture and Storage, including Enhanced Oil Recovery" and is not discussed in this section.
- 25 Carbon dioxide is produced from naturally-occurring CO₂ reservoirs, as a byproduct from the energy and industrial
- 26 production processes (e.g., ammonia production, fossil fuel combustion, ethanol production), and as a byproduct
- from the production of crude oil and natural gas, which contain naturally occurring CO₂ as a component. Only CO₂
- 28 produced from naturally occurring CO₂ reservoirs, and as a byproduct from energy and industrial processes, and
- used in industrial applications other than EOR is included in this analysis. Carbon dioxide captured from biogenic
- 30 sources (e.g., ethanol production plants) is not included in the Inventory. Carbon dioxide captured from crude oil
- 31 and gas production is used in EOR applications and is therefore reported in the Energy chapter.
- 32 Carbon dioxide is produced as a byproduct of crude oil and natural gas production. This CO₂ is separated from the
- crude oil and natural gas using gas processing equipment, and may be emitted directly to the atmosphere, or
- 34 captured and reinjected into underground formations, used for EOR, or sold for other commercial uses. A further
- discussion of CO₂ used in EOR is described in the Energy chapter in Box 3-7 titled "Carbon Dioxide Transport,
- 36 Injection, and Geological Storage."
- 37 In 2018, the amount of CO₂ produced and captured for commercial applications and subsequently emitted to the
- atmosphere was 4.5 MMT CO₂ Eq. (4,471 kt) (see Table 4-53). This is consistent with 2014 through 2018 levels and
- is an increase of approximately 204 percent since 1990.

⁵⁰ EPA (2015). Greenhouse Gas Reporting Program Report Verification. Available online at https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.

Year	MMT CO₂ Eq.	kt
1990	1.5	1,472
2005	1.4	1,375
2014	4.5	4,471
2015	4.5	4,471
2016	4.5	4,471
2017	4.5	4,471
2018	4.5	4,471

1	Table 4-53:	CO₂ Emissions from	CO ₂ Consumption	(MMT CO ₂ Eq. and kt)
_				

2 Methodology

3 Carbon dioxide emission estimates for 1990 through 2018 were based on the quantity of CO₂ extracted and

4 transferred for industrial applications (i.e., non-EOR end-uses). Some of the CO₂ produced by these facilities is used

5 for EOR and some is used in other commercial applications (e.g., chemical manufacturing, food production). It is

6 assumed that 100 percent of the CO₂ production used in commercial applications other than EOR is eventually

7 released into the atmosphere.

8 **2010 through 2018**

9 For 2010 through 2018, data from EPA's GHGRP (Subpart PP) were aggregated from facility-level reports to

develop a national-level estimate for use in the Inventory (EPA 2019). However, for the years 2015 through 2018,

11 GHGRP Subpart PP values did not pass GHGRP confidential business information (CBI) criteria for data aggregation.

12 Facilities report CO₂ extracted or produced from natural reservoirs and industrial sites, and CO₂ captured from

energy and industrial processes and transferred to various end-use applications to EPA's GHGRP. This analysis

14 includes only reported CO₂ transferred to food and beverage end-uses. EPA is continuing to analyze and assess

15 integration of CO₂ transferred to other end-uses to enhance the completeness of estimates under this source

16 category. Other end-uses include industrial applications, such as metal fabrication. EPA is analyzing the

17 information reported to ensure that other end-use data excludes non-emissive applications and publication will

18 not reveal CBI. Reporters subject to EPA's GHGRP Subpart PP are also required to report the quantity of CO₂ that is

19 imported and/or exported. Currently, these data are not publicly available through the GHGRP due to data

20 confidentiality reasons and hence are excluded from this analysis.

21 Facilities subject to Subpart PP of EPA's GHGRP are required to measure CO₂ extracted or produced. More details

22 on the calculation and monitoring methods applicable to extraction and production facilities can be found under

- 23 Subpart PP: Suppliers of Carbon Dioxide of the regulation, Part 98.⁵¹ The number of facilities that reported data to
- 24 EPA's GHGRP Subpart PP (Suppliers of Carbon Dioxide) for 2010 through 2018 is much higher (ranging from 44 to

48) than the number of facilities included in the Inventory for the 1990 to 2009 time period prior to the availability

of GHGRP data (4 facilities). The difference is largely due to the fact the 1990 to 2009 data includes only CO₂

27 transferred to end-use applications from naturally occurring CO₂ reservoirs and excludes industrial sites.

As previously mentioned, data from EPA's GHGRP (Subpart PP) was unavailable for use for the years 2015 through

29 2018 due to data confidentiality reasons. As a result, the emissions estimates for 2015 through 2018 have been

- 30 held constant from 2014 levels to avoid disclosure of proprietary information. EPA continues to evaluate options
- for utilizing GHGRP data to update these values for future Inventories. Additional information on evaluating
- 32 GHGRP Subpart PP data is included in the Planned Improvements section.

⁵¹ See <http://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title40/40cfr98_main_02.tpl>.

1 **1990 through 2009**

2 For 1990 through 2009, data from EPA's GHGRP are not available. For this time period, CO₂ production data from

3 four naturally-occurring CO₂ reservoirs were used to estimate annual CO₂ emissions. These facilities were Jackson

4 Dome in Mississippi, Brave and West Bravo Domes in New Mexico, and McCallum Dome in Colorado. The facilities

5 in Mississippi and New Mexico produced CO₂ for use in both EOR and in other commercial applications (e.g.,

6 chemical manufacturing, food production). The fourth facility in Colorado (McCallum Dome) produced CO₂ for

7 commercial applications only (New Mexico Bureau of Geology and Mineral Resources 2006).

8 Carbon dioxide production data and the percentage of production that was used for non-EOR applications for the

- 9 Jackson Dome, Mississippi facility were obtained from Advanced Resources International (ARI 2006, 2007) for 1990
- to 2000, and from the Annual Reports of Denbury Resources (Denbury Resources 2002 through 2010) for 2001 to
- 11 2009 (see Table 4-54). Denbury Resources reported the average CO₂ production in units of MMCF CO₂ per day for
- 12 2001 through 2009 and reported the percentage of the total average annual production that was used for EOR.
- Production from 1990 to 1999 was set equal to 2000 production, due to lack of publicly available production data for 1990 through 1999. Carbon dioxide production data for the Bravo Dome and West Bravo Dome were obtained
- 15 from ARI for 1990 through 2009 (ARI 1990 to 2010). Data for the West Bravo Dome facility were only available for
- 16 2009. The percentage of total production that was used for non-EOR applications for the Bravo Dome and West
- 17 Bravo Dome facilities for 1990 through 2009 were obtained from New Mexico Bureau of Geology and Mineral
- 18 Resources (Broadhead 2003; New Mexico Bureau of Geology and Mineral Resources 2006). Production data for the
- 19 McCallum Dome (Jackson County), Colorado facility were obtained from the Colorado Oil and Gas Conservation
- 20 Commission (COGCC) for 1999 through 2009 (COGCC 2014). Production data for 1990 to 1998 and percentage of
- 21 production used for EOR were assumed to be the same as for 1999, due to lack of publicly-available data.

22 Table 4-54: CO₂ Production (kt CO₂) and the Percent Used for Non-EOR Applications

Year	Jackson Dome, MS CO ₂ Production (kt) (% Non-EOR)	Bravo Dome, NM CO2 Production (kt) (% Non-EOR)	West Bravo Dome, NM CO2 Production (kt) (% Non-EOR)	McCallum Dome, CO CO₂ Production (kt) (% Non- EOR)	Total CO₂ Production from Extraction and Capture Facilities (kt)	% Non- EOR ^a
1990	1,344 (100%)	63 (1%)	+	65 (100%)	NA	NA
2005	1,254 (27%)	58 (1%)	+	63 (100%)	NA	NA
2014	NA	NA	NA	NA	72,000 ^b	6%
2015	NA	NA	NA	NA	72,000 ^b	6%
2016	NA	NA	NA	NA	72,000 ^b	6%
2017	NA	NA	NA	NA	72,000 ^b	6%
2018	NA	NA	NA	NA	72,000 ^b	6%

+ Does not exceed 0.5 percent.

NA (Not Available)

^a Includes only food & beverage applications.

^b For 2010 through 2018, the publicly available GHGRP data were aggregated at the national level. From 2010 through 2014, those aggregated values based GHGRP CBI criteria. For 2015 through 2018, values were held constant with those from 2014. Facility-level data are not publicly available from EPA's GHGRP.

Uncertainty and Time-Series Consistency – TO BE UPDATED FOR FINAL INVENTORY REPORT

3 There is uncertainty associated with the data reported through EPA's GHGRP. Specifically, there is uncertainty 4 associated with the amount of CO₂ consumed for food and beverage applications given a threshold for reporting 5 under GHGRP applicable to those reporting under Subpart PP, in addition to the exclusion of the amount of CO₂ 6 transferred to all other end-use categories. This latter category might include CO₂ quantities that are being used 7 for non-EOR industrial applications such as firefighting. Second, uncertainty is associated with the exclusion of 8 imports/exports data for CO₂ suppliers. Currently these data are not publicly available through EPA's GHGRP and 9 hence are excluded from this analysis. EPA verifies annual facility-level reports through a multi-step process (e.g., 10 combination of electronic checks and manual reviews by staff) to identify potential errors and ensure that data 11 submitted to EPA are accurate, complete, and consistent. Based on the results of the verification process, EPA 12 follows up with facilities to resolve mistakes that may have occurred.⁵² 13 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-55. Carbon dioxide

- 13 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-55. Carbon dioxide
- 14 consumption CO₂ emissions for 2018 were estimated to be between 4.2 and 4.7 MMT CO₂ Eq. at the 95 percent
- 15 confidence level. This indicates a range of approximately 5 percent below to 5 percent above the emission 16 estimate of 4.5 MMT CO₂ Eq.
- 16 estimate of 4.5 MMT CO₂ Eq.

Table 4-55: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from CO₂ Consumption (MMT CO₂ Eq. and Percent)

Source	Cas	2018 Emission Estimate	Uncertainty F	Range Relative	to Emission	Estimate ^a
Source	Gas	(MMT CO ₂ Eq.)	(MMT C	O₂ Eq.)	(9	%)
			Lower	Upper	Lower	Upper
			Bound	Bound	Bound	Bound
CO ₂ Consumption	CO ₂	4.5	4.2	4.7	-5%	+5%

- 19 Methodological approaches were applied to the entire time series to ensure consistency in emissions from 1990
- 20 through 2018.

21 QA/QC and Verification

General quality assurance/quality control (QA/QC) procedures were applied consistent with the U.S. *Inventory* QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of *2006 IPCC Guidelines* as described in the introduction

- of the IPPU chapter (see Annex 8 for more details). More details on the greenhouse gas calculation, monitoring
- and QA/QC methods applicable to CO₂ Consumption can be found under Subpart PP (Suppliers of Carbon Dioxide)
- of the regulation (40 CFR Part 98).⁵³ EPA verifies annual facility-level GHGRP reports through a multi-step process
- (e.g., combination of electronic checks and manual reviews) to identify potential errors and ensure that data
- submitted to EPA are accurate, complete, and consistent (EPA 2015).⁵⁴ Based on the results of the verification
- 29 process, EPA follows up with facilities to resolve mistakes that may have occurred. The post-submittals checks are
- 30 consistent with a number of general and category-specific QC procedures, including: range checks, statistical
- 31 checks, algorithm checks, and year-to-year checks of reported data and emissions.

⁵² See <https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf >.

⁵³ See <http://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title40/40cfr98_main_02.tpl>.

⁵⁴ See <https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.

Planned Improvements 1

- 2 EPA will continue to evaluate the potential to include additional GHGRP data on other emissive end-uses to
- 3 improve the accuracy and completeness of estimates for this source category. Particular attention will be made to
- 4 ensuring time-series consistency of the emissions estimates presented in future Inventory reports, consistent with
- 5 IPCC and UNFCCC guidelines. This is required as the facility-level reporting data from EPA's GHGRP, with the
- 6 program's initial requirements for reporting of emissions in calendar year 2010, are not available for all inventory
- 7 years (i.e., 1990 through 2009) as required for this Inventory. In implementing improvements and integration of
- 8 data from EPA's GHGRP, the latest guidance from the IPCC on the use of facility-level data in national inventories
- will be relied upon.⁵⁵ In addition, EPA is also investigating the possibility of utilizing only extraction facility Subpart 9
- PP data, while also updating the values for 2015 through 2018. 10
- 11 These improvements, in addition to updating the time series when new data is available, are still in process and
- 12 will be incorporated into future Inventory reports. These are near- to medium-term improvements.

4.16 Phosphoric Acid Production (CRF Source 13 Category 2B10)

14

28

Phosphoric acid (H₃PO₄) is a basic raw material used in the production of phosphate-based fertilizers. Phosphoric 15 16 acid production from natural phosphate rock is a source of carbon dioxide (CO₂) emissions, due to the chemical

17 reaction of the inorganic carbon (calcium carbonate) component of the phosphate rock.

18 Phosphate rock is mined in Florida and North Carolina, which account for more than 75 percent of total domestic

19 output, as well as in Idaho and Utah, and is used primarily as a raw material for wet-process phosphoric acid

20 production (USGS 2018). The composition of natural phosphate rock varies depending upon the location where it

21 is mined. Natural phosphate rock mined in the United States generally contains inorganic carbon in the form of

22 calcium carbonate (limestone) and also may contain organic carbon. The calcium carbonate component of the 23 phosphate rock is integral to the phosphate rock chemistry. Phosphate rock can also contain organic carbon that is

- 24 physically incorporated into the mined rock but is not an integral component of the phosphate rock chemistry.
- 25 The phosphoric acid production process involves chemical reaction of the calcium phosphate $(Ca_3(PO_4)_2)$
- 26 component of the phosphate rock with sulfuric acid (H₂SO₄) and recirculated phosphoric acid (H₃PO₄) (EFMA 2000).
- 27 However, the generation of CO₂ is due to the associated limestone-sulfuric acid reaction, as shown below:
 - $CaCO_3 + H_2SO_4 + H_2O \rightarrow CaSO_4 \cdot 2H_2O + CO_2$
- 29 Total U.S. phosphate rock production used in 2018 was an estimated 23.0 million metric tons (USGS 2019). Total 30 imports of phosphate rock to the United States in 2018 were estimated to be approximately 3.0 million metric tons 31 (USGS 2019). Between 2014 and 2017, most of the imported phosphate rock (68 percent) came from Peru, with 31 32 percent from Morocco and 1 percent from other sources (USGS 2019). All phosphate rock mining companies in the 33 U.S. are vertically integrated with fertilizer plants that produce phosphoric acid located near the mines. Some 34 additional phosphoric acid production facilities that used imported phosphate rock are located in Louisiana.
- 35 Over the 1990 to 2018 period, domestic phosphoric acid production has decreased by nearly 54 percent. Total CO₂
- 36 emissions from phosphoric acid production were 0.9 MMT CO₂ Eq. (941 kt CO₂) in 2018 (see Table 4-56). Domestic
- 37 consumption of phosphate rock in 2018 was estimated to have decreased 10 percent relative to 2017 levels (USGS
- 38 2019).

⁵⁵ See <http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

Year	MMT CO₂ Eq.	kt
1990	1.5	1,529
2005	1.3	1,342
2014	1.0	1,037
2015	1.0	999
2016	1.0	998
2017	1.0	1,031
2018	0.9	941

1 Table 4-56: CO₂ Emissions from Phosphoric Acid Production (MMT CO₂ Eq. and kt)

2 Methodology

3 Carbon dioxide emissions from production of phosphoric acid from phosphate rock are estimated by multiplying

4 the average amount of inorganic carbon (expressed as CO₂) contained in the natural phosphate rock as calcium

5 carbonate by the amount of phosphate rock that is used annually to produce phosphoric acid, accounting for

6 domestic production and net imports for consumption. The estimation methodology is as follows:

$$E_{pa} = C_{pr} \times Q_{pr}$$

8 where,

Epa	=	CO ₂ emissions from phosphoric acid production, metric tons
Cpr	=	Average amount of carbon (expressed as CO ₂) in natural phosphate rock, metric ton
		CO ₂ / metric ton phosphate rock
Qpr	=	Quantity of phosphate rock used to produce phosphoric acid

9

10 The CO₂ emissions calculation methodology assumes that all of the inorganic C (calcium carbonate) content of the 11 phosphate rock reacts to produce CO₂ in the phosphoric acid production process and is emitted with the stack gas. 12 The methodology also assumes that none of the organic C content of the phosphate rock is converted to CO₂ and 13 that all of the organic C content remains in the phosphoric acid product. The United States uses a country-specific

14 methodology to calculate emissions from production of phosphoric acid from phosphate rock.⁵⁶

15 From 1993 to 2004, the U.S. Geological Survey (USGS) *Mineral Yearbook: Phosphate Rock* disaggregated phosphate

rock mined annually in Florida and North Carolina from phosphate rock mined annually in Idaho and Utah, and
 reported the annual amounts of phosphate rock exported and imported for consumption (see Table 4-57). For the

17 reported the annual anounts of phosphate fock exported and imported for consumption (see Fable 4-57). For the 18 years 1990 through 1992, and 2005 through 2018, only nationally aggregated mining data was reported by USGS.

For the years 1990, 1991, and 1992, the breakdown of phosphate rock mined in Florida and North Carolina, and

20 the amount mined in Idaho and Utah, are approximated using data reported by USGS for the average share of U.S.

production in those states from 1993 to 2004. For the years 2005 through 2018, the same approximation method

is used, but data for the share of U.S. production in those states were obtained from the USGS commodity

23 specialist for phosphate rock (USGS 2012). Data for domestic sales or consumption of phosphate rock, exports of

24 phosphate rock (primarily from Florida and North Carolina), and imports of phosphate rock for consumption for

25 1990 through 2018 were obtained from USGS *Minerals Yearbook: Phosphate Rock* (USGS 1994 through 2015b),

and from USGS *Minerals Commodity Summaries: Phosphate Rock* (USGS 2016, 2017, 2018, 2019). From 2004

through 2018, the USGS reported no exports of phosphate rock from U.S. producers (USGS 2005 through 2015b).

28 The carbonate content of phosphate rock varies depending upon where the material is mined. Composition data

29 for domestically mined and imported phosphate rock were provided by the Florida Institute of Phosphate Research

30 (FIPR 2003a). Phosphate rock mined in Florida contains approximately 1 percent inorganic C, and phosphate rock

⁵⁶ The 2006 IPCC Guidelines do not provide a method for estimating process emissions (CO₂) from Phosphoric Acid Production.

- 1 imported from Morocco contains approximately 1.46 percent inorganic C. Calcined phosphate rock mined in North
- 2 Carolina and Idaho contains approximately 0.41 percent and 0.27 percent inorganic C, respectively (see Table
- 3 4-58).
- 4 Carbonate content data for phosphate rock mined in Florida are used to calculate the CO₂ emissions from
- 5 consumption of phosphate rock mined in Florida and North Carolina (more than 75 percent of domestic
- 6 production) and carbonate content data for phosphate rock mined in Morocco are used to calculate CO₂ emissions
- 7 from consumption of imported phosphate rock. The CO₂ emissions calculation assumes that all of the domestic
- 8 production of phosphate rock is used in uncalcined form. As of 2006, the USGS noted that one phosphate rock
- 9 producer in Idaho produces calcined phosphate rock; however, no production data were available for this single
- 10 producer (USGS 2006). The USGS confirmed that no significant quantity of domestic production of phosphate rock
- 11 is in the calcined form (USGS 2012).

12 Table 4-57: Phosphate Rock Domestic Consumption, Exports, and Imports (kt)

Location/Year	1990	2005	2014	2015	2016	2017	2018
U.S. Domestic Consumption	49,800	35,200	26,700	26,200	26,700	26,300	23,000
FL and NC	42,494	28,160	21,360	20,960	21,360	21,040	18,400
ID and UT	7,306	7,040	5,340	5,240	5 <i>,</i> 340	5,260	4,600
Exports—FL and NC	6,240	0	0	0	0	0	0
Imports	451	2,630	2,380	1,960	1,590	2,520	3,000
Total U.S. Consumption	44,011	37,830	29,080	28,160	28,290	28,820	26,000

13 Table 4-58: Chemical Composition of Phosphate Rock (Percent by Weight)

	Central	North	North Carolina	Idaho	
Composition	Florida	Florida	(calcined)	(calcined)	Morocco
Total Carbon (as C)	1.60	1.76	0.76	0.60	1.56
Inorganic Carbon (as C)	1.00	0.93	0.41	0.27	1.46
Organic Carbon (as C)	0.60	0.83	0.35	0.00	0.10
Inorganic Carbon (as CO ₂)	3.67	3.43	1.50	1.00	5.00

Source: FIPR (2003a).

¹⁴ Uncertainty and Time-Series Consistency – TO BE UPDATED ¹⁵ FOR FINAL INVENTORY REPORT

Phosphate rock production data used in the emission calculations were developed by the USGS through monthly and semiannual voluntary surveys of the active phosphate rock mines during 2018. Prior to 2006, USGS provided

the data disaggregated regionally; however, beginning in 2006, only total U.S. phosphate rock production was

reported. Regional production for 2018 was estimated based on regional production data from 2005 to 2011 and

20 multiplied by regionally-specific emission factors. There is uncertainty associated with the degree to which the

estimated 2018 regional production data represents actual production in those regions. Total U.S. phosphate rock

- 22 production data are not considered to be a significant source of uncertainty because all the domestic phosphate
- rock producers report their annual production to the USGS. Data for exports of phosphate rock used in the
- emission calculations are reported to the USGS by phosphate rock producers and are not considered to be a
- significant source of uncertainty. Data for imports for consumption are based on international trade data collected
- 26 by the U.S. Census Bureau. These U.S. government economic data are not considered to be a significant source of
- 27 uncertainty.
- 28 An additional source of uncertainty in the calculation of CO₂ emissions from phosphoric acid production is the
- 29 carbonate composition of phosphate rock, as the composition of phosphate rock varies depending upon where the
- 30 material is mined and may also vary over time. The Inventory relies on one study (FIPR 2003a) of chemical
- 31 composition of the phosphate rock; limited data are available beyond this study. Another source of uncertainty is

- 1 the disposition of the organic carbon content of the phosphate rock. A representative of FIPR indicated that in the
- 2 phosphoric acid production process the organic C content of the mined phosphate rock generally remains in the
- phosphoric acid product, which is what produces the color of the phosphoric acid product (FIPR 2003b). Organic
- 4 carbon is therefore not included in the calculation of CO₂ emissions from phosphoric acid production.
- 5 A third source of uncertainty is the assumption that all domestically-produced phosphate rock is used in
- 6 phosphoric acid production and used without first being calcined. Calcination of the phosphate rock would result
- 7 in conversion of some of the organic C in the phosphate rock into CO₂. However, according to air permit
- 8 information available to the public, at least one facility has calcining units permitted for operation (NCDENR 2013).

9 Finally, USGS indicated that in 2017 less than 5 percent of domestically-produced phosphate rock was used to

- 10 manufacture elemental phosphorus and other phosphorus-based chemicals, rather than phosphoric acid (USGS
- 11 2019b). According to USGS, there is only one domestic producer of elemental phosphorus, in Idaho, and no data
- 12 were available concerning the annual production of this single producer. Elemental phosphorus is produced by
- 13 reducing phosphate rock with coal coke, and it is therefore assumed that 100 percent of the carbonate content of
- the phosphate rock will be converted to CO_2 in the elemental phosphorus production process. The calculation for CO_2 emissions assumes that phosphate rock consumption, for purposes other than phosphoric acid production,
- CO₂ emissions assumes that phosphate rock consumption, for purposes other than phosphoric acid production,
 results in CO₂ emissions from 100 percent of the inorganic carbon content in phosphate rock, but none from the
- 17 organic carbon content.
- 18 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-59. 2017 phosphoric acid
- 19 production CO₂ emissions were estimated to be between 0.7 and 1.1 MMT CO₂ Eq. at the 95 percent confidence
- 20 level. This indicates a range of approximately 19 percent below and 21 percent above the emission estimate of 0.9
- 21 MMT CO₂ Eq.

Table 4-59: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from Phosphoric Acid Production (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate (MMT CO ₂ Eq.)	Uncertainty Range Relat (MMT CO2 Eq.)			ive to Emission Estimate ^a (%)	
			Lower	Upper	Lower	Upper	
			Bound	Bound	Bound	Bound	
Phosphoric Acid Production	CO ₂	0.9	0.7	1.1	-19%	+21%	

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

24 Methodological approaches were applied to the entire time series to ensure consistency in emissions estimates

25 from 1990 through 2017. Details on the emission trends through time are described in more detail in the

26 Methodology section, above.

27 QA/QC and Verification

28 For more information on the general QA/QC process applied to this source category, consistent with the U.S.

- 29 Inventory QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of 2006 IPCC Guidelines as described in the
- 30 introduction of the IPPU chapter (see Annex 8 for more details).

31 Planned Improvements

32 EPA continues to evaluate potential improvements to the Inventory estimates for this source category, which

33 include direct integration of EPA's GHGRP data for 2010 through 2018 along with assessing applicability of

- 34 reported GHGRP data to update the inorganic C content of phosphate rock for prior years to ensure time series
- consistency. Specifically, EPA would need to assess that averaged inorganic C content data (by region or other
- approaches) meets GHGRP confidential business information (CBI) screening criteria. EPA would then need to
- 37 assess the applicability of GHGRP data for the averaged inorganic C content (by region or other approaches) from
- 2010 through 2018, along with other information to inform estimates in prior years in the required time series

- 1 (1990 through 2009) based on the sources of phosphate rock used in production of phosphoric acid over time. In
- 2 implementing improvements and integration of data from EPA's GHGRP, the latest guidance from the IPCC on the
- 3 use of facility-level data in national inventories will be relied upon.⁵⁷ These long-term planned improvements are
- 4 still in development by EPA and have not been implemented into the current Inventory report.

4.17 Iron and Steel Production (CRF Source Category 2C1) and Metallurgical Coke Production

8 Iron and steel production is a multi-step process that generates process-related emissions of carbon dioxide (CO₂)

9 and methane (CH₄) as raw materials are refined into iron and then transformed into crude steel. Emissions from

- 10 conventional fuels (e.g., natural gas, fuel oil) consumed for energy purposes during the production of iron and steel
- 11 are accounted for in the Energy chapter.

12 Iron and steel production includes six distinct production processes: coke production, sinter production, direct

reduced iron (DRI) production, pig iron⁵⁸ production, electric arc furnace (EAF) steel production, and basic oxygen

14 furnace (BOF) steel production. The number of production processes at a particular plant is dependent upon the

15 specific plant configuration. Most process CO₂ generated from the iron and steel industry is a result of the

- 16 production of crude iron.
- 17 In addition to the production processes mentioned above, CO₂ is also generated at iron and steel mills through the
- 18 consumption of process byproducts (e.g., blast furnace gas, coke oven gas) used for various purposes including
- 19 heating, annealing, and electricity generation. Process byproducts sold for use as synthetic natural gas are
- 20 deducted and reported in the Energy chapter. In general, CO₂ emissions are generated in these production
- 21 processes through the reduction and consumption of various carbon-containing inputs (e.g., ore, scrap, flux, coke
- byproducts). In addition, fugitive CH₄ emissions can also be generated from these processes, as well as from sinter,
- 23 direct iron and pellet production.
- 24 Currently, there are approximately nine integrated iron and steel steelmaking facilities that utilize BOFs to refine
- and produce steel from iron. These facilities have 21 active blast furnaces between them as of 2015. Almost 100
- steelmaking facilities utilize EAFs to produce steel primarily from recycled ferrous scrap (USGS 2019). The trend in
- the United States for integrated facilities has been a shift towards fewer BOFs and more EAFs. EAFs use scrap steel
- as their main input and use significantly less energy than BOFs. In addition, there are 16 cokemaking facilities, of
- which 3 facilities are co-located with integrated iron and steel facilities (ACCCI 2016). In the United States, four states – Indiana, Ohio, Michigan, and Pennsylvania – count for roughly 51 percent of total raw steel production
- 30 states Indiana, Onio, Michigan, and Pennsylvania count for roughly 51 percent of total ra 31 (USGS 2019).
- 32 Total annual production of crude steel in the United States was fairly constant between 2000 and 2008 ranged
- from a low of 99,320,000 tons to a high of 109,880,000 tons (2001 and 2004, respectively). Due to the decrease in
- 34 demand caused by the global economic downturn (particularly from the automotive industry), crude steel
- 35 production in the United States sharply decreased to 65,459,000 tons in 2009. Crude steel production was fairly
- 36 constant from 2011 through 2014, and after a dip in production from 2014 to 2015, crude steel production has
- 37 slowly and steadily increased for the past few years. The United States was the fourth largest producer of raw steel

⁵⁷ See <http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

⁵⁸ Pig iron is the common industry term to describe what should technically be called crude iron. Pig iron is a subset of crude iron that has lost popularity over time as industry trends have shifted. Throughout this report pig iron will be used interchangeably with crude iron, but it should be noted that in other data sets or reports pig iron and crude iron may not be used interchangeably and may provide different values.

1 in the world, behind China, India and Japan, accounting for approximately 4.8 percent of world production in 2018

- 2 (AISI 2004 through 2018).
- 3 The majority of CO₂ emissions from the iron and steel production process come from the use of coke in the
- production of pig iron and from the consumption of other process byproducts, with lesser amounts emitted from
 the use of flux and from the removal of carbon from pig iron used to produce steel.
- 6 According to the 2006 IPCC Guidelines, the production of metallurgical coke from coking coal is considered to be an
- 7 energy use of fossil fuel and the use of coke in iron and steel production is considered to be an industrial process
- 8 source. Therefore, the 2006 IPCC Guidelines suggest that emissions from the production of metallurgical coke
- 9 should be reported separately in the Energy sector, while emissions from coke consumption in iron and steel
- 10 production should be reported in the Industrial Processes and Product Use sector. However, the approaches and
- emission estimates for both metallurgical coke production and iron and steel production are presented here
- because much of the relevant activity data is used to estimate emissions from both metallurgical coke production and iron and steel production. For example, some byproducts (e.g., coke oven gas) of the metallurgical coke
- and iron and steel production. For example, some byproducts (e.g., coke oven gas) of the metallurgical coke
 production process are consumed during iron and steel production, and some byproducts of the iron and steel
- 15 production process are consumed during non-and steer production, and some byproducts of the non-and steer 15 production process (e.g., blast furnace gas) are consumed during metallurgical coke production. Emissions
- associated with the consumption of these byproducts are attributed at the point of consumption. Emissions
- associated with the use of conventional fuels (e.g., natural gas, fuel oil) for electricity generation, heating and
- annealing, or other miscellaneous purposes downstream of the iron and steelmaking furnaces are reported in the
- 19 Energy chapter.

20 Metallurgical Coke Production

21 Emissions of CO₂ from metallurgical coke production in 2018 were 1.3 MMT CO₂ Eq. (1,281 kt CO₂) (see Table 4-60

and Table 4-61). Emissions decreased significantly in 2018 by 52 percent from 2017 levels and have decreased by

23 77 percent (4.3 MMT CO₂ Eq.) since 1990. Coke production in 2018 was 34 percent lower than in 2000 and 50

24 percent below 1990.

25 Table 4-60: CO₂ Emissions from Metallurgical Coke Production (MMT CO₂ Eq.)

Gas	1990	2005	2014	2015	2016	2017	2018
CO ₂	5.6	3.9	3.7	4.4	2.6	2.0	1.3
Total	5.6	3.9	3.7	4.4	2.6	2.0	1.3

26 Table 4-61: CO₂ Emissions from Metallurgical Coke Production (kt)

Gas	1990	2005	2014	2015	2016	2017	2018
CO ₂	5,608	3,921	3,721	4,417	2,643	1,978	1,281
Total	5,608	3,921	3,721	4,417	2,643	1,978	1,281

28

29 Iron and Steel Production

30 Emissions of CO₂ and CH₄ from iron and steel production in 2018 were 41.4 MMT CO₂ Eq. (41,432 kt) and 0.0079

31 MMT CO₂ Eq. (0.3 kt CH₄), respectively (see Table 4-62 through Table 4-65), totaling approximately 41.4 MMT CO₂

32 Eq. Emissions slightly increased in 2018 from 2017 but have decreased overall since 1990 due to restructuring of

the industry, technological improvements, and increased scrap steel utilization. Carbon dioxide emission estimates

34 include emissions from the consumption of carbonaceous materials in the blast furnace, EAF, and BOF, as well as

35 blast furnace gas and coke oven gas consumption for other activities at the steel mill.

36 In 2018, domestic production of pig iron increased by 7 percent from 2017 levels. Overall, domestic pig iron

production has declined since the 1990s. Pig iron production in 2018 was 50 percent lower than in 2000 and 52

38 percent below 1990. Carbon dioxide emissions from iron production have decreased by 79 percent since 1990.

39 Carbon dioxide emissions from steel production have decreased by 25 percent (2.0 MMT CO₂ Eq.) since 1990,

- 1 while overall CO₂ emissions from iron and steel production have declined by 58 percent (57.7 MMT CO₂ Eq.) from
- 2 1990 to 2018.

Source/Activity							
Data	1990	2005	2014	2015	2016	2017	2018
Sinter Production	2.4	1.7	1.1	1.0	0.9	0.9	0.9
Iron Production	45.7	17.7	16.8	10.3	9.9	8.2	9.6
Pellet Production	1.8	1.5	1.1	1.0	0.9	0.9	0.9
Steel Production	8.0	9.4	7.5	6.9	6.9	6.5	6.0
Other Activities ^a	41.2	35.9	27.9	24.3	22.5	22.4	24.1
Total	99.1	66.2	54.5	43.5	41.0	38.8	41.4

3 Table 4-62: CO₂ Emissions from Iron and Steel Production (MMT CO₂ Eq.)

^a Includes emissions from blast furnace gas and coke oven gas combustion for activities at the steel mill other than consumption in blast furnace, EAFs, or BOFs.

Note: Totals may not sum due to independent rounding.

4 Table 4-63: CO₂ Emissions from Iron and Steel Production (kt)

Source/Activity Data	1990	2005	2014	2015	2016	2017	2018
Sinter Production	2,448	1,663	1,104	1,016	877	869	937
Iron Production	45,704	17,664	16,848	10,333	9,930	8,239	9,583
Pellet Production	1,817	1,503	1,126	964	869	867	867
Steel Production	7,965	9,396	7,477	6 <i>,</i> 935	6,854	6,468	5,985
Other Activities ^a	41,193	35 <i>,</i> 934	27,911	24,280	22,451	22,396	24,065
Total	99,126	66,160	54,467	43,528	40,981	38,840	41,438

^a Includes emissions from blast furnace gas and coke oven gas combustion for activities at the steel mill other than consumption in blast furnace, EAFs, or BOFs. Note: Totals may not sum due to independent rounding.

5 Table 4-64: CH₄ Emissions from Iron and Steel Production (MMT CO₂ Eq.)

Source/Activity Data	1990	2005	2014	2015	2016	2017	2018
Sinter Production	+	+	+	+	+	+	+
Total	+	+	+	+	+	+	+

+ Does not exceed 0.05 MMT CO2 Eq.

6 Table 4-65: CH₄ Emissions from Iron and Steel Production (kt)

Source/Activity Data	1990	2005	2014	2015	2016	2017	2018
Sinter Production	0.9	0.6	0.4	0.3	0.3	0.3	0.3
Total	0.9	0.6	0.4	0.3	0.3	0.3	0.3

7 Methodology

8 Emission estimates presented in this chapter utilize a country-specific approach based on Tier 2 methodologies

9 provided by the 2006 IPCC Guidelines. These Tier 2 methodologies call for a mass balance accounting of the

10 carbonaceous inputs and outputs during the iron and steel production process and the metallurgical coke

11 production process. Tier 1 methods are used for certain iron and steel production processes (i.e., sinter

12 production, pellet production and DRI production) for which available data are insufficient to apply a Tier 2

13 method.

14 The Tier 2 methodology equation is as follows:

$$E_{CO_2} = \left[\sum_{a} (Q_a \times C_a) - \sum_{b} (Q_b \times C_b)\right] \times \frac{44}{12}$$

2	where,			
3		E _{CO2}	=	Emissions from coke, pig iron, EAF steel, or BOF steel production, metric tons
4		а	=	Input material <i>a</i>
5		b	=	Output material b
6		Qa	=	Quantity of input material a, metric tons
7		Ca	=	Carbon content of input material a, metric tons C/metric ton material
8		Qb	=	Quantity of output material b, metric tons
9		Cb	=	Carbon content of output material b, metric tons C/metric ton material
10		44/12	=	Stoichiometric ratio of CO_2 to C
11				
12	The Tier	1 meth	odology	equations are as follows:
13				$E_{s,p} = Q_s \times EF_{s,p}$
14				$E_{d,CO2} = Q_d \times EF_{d,CO2}$
15				$E_{p,CO2} = Q_p \times EF_{p,CO2}$
16	where,			
17		E _{s,p}	=	Emissions from sinter production process for pollutant p (CO ₂ or CH ₄), metric ton
18		Qs	=	Quantity of sinter produced, metric tons
19		EF _{s,p}	=	Emission factor for pollutant p (CO ₂ or CH ₄), metric ton p /metric ton sinter
20		Ed,CO2	=	Emissions from DRI production process for CO ₂ , metric ton
21		Qd	=	Quantity of DRI produced, metric tons
22		$EF_{d,CO2}$	=	Emission factor for CO ₂ , metric ton CO ₂ /metric ton DRI
23		Qp	=	Quantity of pellets produced, metric tons
24		$EF_{p,CO2}$	=	Emission factor for CO ₂ , metric ton CO ₂ /metric ton pellets produced
25				

26 Metallurgical Coke Production

27 Coking coal is used to manufacture metallurgical coke that is used primarily as a reducing agent in the production 28 of iron and steel, but is also used in the production of other metals including zinc and lead (see Zinc Production and 29 Lead Production sections of this chapter). Emissions associated with producing metallurgical coke from coking coal 30 are estimated and reported separately from emissions that result from the iron and steel production process. To 31 estimate emissions from metallurgical coke production, a Tier 2 method provided by the 2006 IPCC Guidelines was 32 utilized. The amount of carbon contained in materials produced during the metallurgical coke production process 33 (i.e., coke, coke breeze and coke oven gas) is deducted from the amount of carbon contained in materials 34 consumed during the metallurgical coke production process (i.e., natural gas, blast furnace gas, and coking coal). 35 Light oil, which is produced during the metallurgical coke production process, is excluded from the deductions due 36 to data limitations. The amount of carbon contained in these materials is calculated by multiplying the material-37 specific carbon content by the amount of material consumed or produced (see Table 4-66). The amount of coal tar 38 produced was approximated using a production factor of 0.03 tons of coal tar per ton of coking coal consumed. 39 The amount of coke breeze produced was approximated using a production factor of 0.075 tons of coke breeze per 40 ton of coking coal consumed (AISI 2008; DOE 2000). Data on the consumption of carbonaceous materials (other 41 than coking coal) as well as coke oven gas production were available for integrated steel mills only (i.e., steel mills 42 with co-located coke plants). Therefore, carbonaceous material (other than coking coal) consumption and coke 43 oven gas production were excluded from emission estimates for merchant coke plants. Carbon contained in coke 44 oven gas used for coke-oven underfiring was not included in the deductions to avoid double-counting.

45 Table 4-66: Material Carbon Contents for Metallurgical Coke Production

Material	kg C/kg
Coal Tar	0.62
Coke	0.83
Coke Breeze	0.83
Coking Coal	0.75
Material	kg C/GJ
Coke Oven Gas	12.1
Blast Furnace Gas	70.8
a (222) (222) T (1	

Source: IPCC (2006), Table 4.3. Coke Oven Gas and Blast Furnace Gas, Table 1.3 and EIA for coking coal.

Although the 2006 IPCC Guidelines provide a Tier 1 CH₄ emission factor for metallurgical coke production (i.e., 0.1 g 1

2 CH₄ per metric ton of coke production), it is not appropriate to use because CO₂ emissions were estimated using

3 the Tier 2 mass balance methodology. The mass balance methodology makes a basic assumption that all carbon 4

that enters the metallurgical coke production process either exits the process as part of a carbon-containing

5 output or as CO₂ emissions. This is consistent with a preliminary assessment of aggregated facility-level 6 greenhouse gas CH₄ emissions reported by coke production facilities under EPA's GHGRP. The assessment indicates

7 that CH₄ emissions from coke production are insignificant and below 500 kt or 0.05 percent of total national

8 emissions. Pending resources and significance, EPA continues to assess the possibility of including these emissions

9 in future Inventories to enhance completeness but has not incorporated these emissions into this report.

10 Data relating to the mass of coking coal consumed at metallurgical coke plants and the mass of metallurgical coke

11 produced at coke plants were taken from the Energy Information Administration (EIA) Quarterly Coal Report:

12 October through December (EIA 1998 through 2019) (see Table 4-67). Data on the volume of natural gas

13 consumption, blast furnace gas consumption, and coke oven gas production for metallurgical coke production at

14 integrated steel mills were obtained from the American Iron and Steel Institute (AISI) Annual Statistical Report

15 (AISI 2004 through 2019) and through personal communications with AISI (AISI 2008) (see Table 4-68). The factor

16 for the quantity of coal tar produced per ton of coking coal consumed was provided by AISI (AISI 2008). The factor

17 for the quantity of coke breeze produced per ton of coking coal consumed was obtained through Table 2-1 of the

18 report Energy and Environmental Profile of the U.S. Iron and Steel Industry (DOE 2000). Currently, data on natural

19 gas consumption and coke oven gas production at merchant coke plants were not available and were excluded

20 from the emission estimate. Carbon contents for, metallurgical coke, coal tar, coke oven gas, and blast furnace gas 21 were provided by the 2006 IPCC Guidelines. The C content for coke breeze was assumed to equal the C content of

22 coke. Carbon contents for coking coal was from EIA.

23 Table 4-67: Production and Consumption Data for the Calculation of CO₂ Emissions from 24 Metallurgical Coke Production (Thousand Metric Tons)

Source/Activity Data	1990	2005	2014	2015	2016	2017	2018
Metallurgical Coke Production							
Coking Coal Consumption at Coke Plants	35,269	21,259	19,321	17,879	14,955	15,910	16,635
Coke Production at Coke Plants	25,054	15,167	13,748	12,479	10,755	11,746	12,525
Coal Breeze Production	2,645	1,594	1,449	1,341	1,122	1,193	1,248
Coal Tar Production	1,058	638	580	536	449	477	499

Table 4-68: Production and Consumption Data for the Calculation of CO₂ Emissions from 25 26 Metallurgical Coke Production (Million ft³)

Source/Activity Data	1990	2005	2014	2015	2016	2017	2018
Metallurgical Coke Production							
Coke Oven Gas Production	250,767	114,213	102,899	84,336	74,807	74,997	80,750
Natural Gas Consumption	599	2,996	3,039	2,338	2,077	2,103	2,275
Blast Furnace Gas Consumption	24,602	4,460	4,346	4,185	3,741	3,683	4,022

Iron and Steel Production 1

2 To estimate emissions from pig iron production in the blast furnace, the amount of carbon contained in the

- 3 produced pig iron and blast furnace gas were deducted from the amount of carbon contained in inputs (i.e.,
- 4 metallurgical coke, sinter, natural ore, pellets, natural gas, fuel oil, coke oven gas, carbonate fluxes or slagging
- 5 materials, and direct coal injection). The carbon contained in the pig iron, blast furnace gas, and blast furnace
- 6 inputs was estimated by multiplying the material-specific C content by each material type (see Table 4-69). Carbon
- 7 in blast furnace gas used to pre-heat the blast furnace air is combusted to form CO₂ during this process. Carbon
- 8 contained in blast furnace gas used as a blast furnace input was not included in the deductions to avoid double-9
- counting.
- 10 Emissions from steel production in EAFs were estimated by deducting the carbon contained in the steel produced
- 11 from the carbon contained in the EAF anode, charge carbon, and scrap steel added to the EAF. Small amounts of
- 12 carbon from DRI and pig iron to the EAFs were also included in the EAF calculation. For BOFs, estimates of carbon
- 13 contained in BOF steel were deducted from C contained in inputs such as natural gas, coke oven gas, fluxes (e.g.
- 14 burnt lime or dolomite), and pig iron. In each case, the carbon was calculated by multiplying material-specific
- 15 carbon contents by each material type (see Table 4-69). For EAFs, the amount of EAF anode consumed was
- 16 approximated by multiplying total EAF steel production by the amount of EAF anode consumed per metric ton of
- 17 steel produced (0.002 metric tons EAF anode per metric ton steel produced [AISI 2008]). The amount of flux (e.g.,
- 18 burnt lime or dolomite) used in pig iron production was deducted from the "Other Process Uses of Carbonates"
- 19 source category (CRF Source Category 2A4) to avoid double-counting.
- 20 Carbon dioxide emissions from the consumption of blast furnace gas and coke oven gas for other activities
- 21 occurring at the steel mill were estimated by multiplying the amount of these materials consumed for these 22 purposes by the material-specific carbon content (see Table 4-69).
- 23 Carbon dioxide emissions associated with the sinter production, direct reduced iron production, pig iron
- 24 production, steel production, and other steel mill activities were summed to calculate the total CO₂ emissions from
- 25 iron and steel production (see Table 4-62 and Table 4-63).

Material kg C/kg Coke 0.83 **Direct Reduced Iron** 0.02 Dolomite 0.13 **EAF** Carbon Electrodes 0.82 EAF Charge Carbon 0.83 Limestone 0.12 Pig Iron 0.04 Steel 0.01 Material kg C/GJ Coke Oven Gas 12.1 Blast Furnace Gas 70.8

Table 4-69: Material Carbon Contents for Iron and Steel Production 26

Source: IPCC (2006), Table 4.3. Coke Oven Gas and Blast Furnace Gas, Table 1.3.

- 27 The production process for sinter results in fugitive emissions of CH₄, which are emitted via leaks in the production
- 28 equipment, rather than through the emission stacks or vents of the production plants. The fugitive emissions were
- 29 calculated by applying Tier 1 emission factors taken from the 2006 IPCC Guidelines for sinter production (see Table
- 30 4-70). Although the 1995 IPCC Guidelines (IPCC/UNEP/OECD/IEA 1995) provide a Tier 1 CH₄ emission factor for pig
- 31 iron production, it is not appropriate to use because CO₂ emissions were estimated using the Tier 2 mass balance
- 32 methodology. The mass balance methodology makes a basic assumption that all carbon that enters the pig iron
- 33 production process either exits the process as part of a carbon-containing output or as CO_2 emissions; the
- 34 estimation of CH₄ emissions is precluded. A preliminary analysis of facility-level emissions reported during iron
- 35 production further supports this assumption and indicates that CH₄ emissions are below 500 kt CO₂ Eq. and well

- 1 below 0.05 percent of total national emissions. The production of direct reduced iron also results in emissions of
- 2 CH₄ through the consumption of fossil fuels (e.g., natural gas, etc.); however, these emission estimates are
- 3 excluded due to data limitations. Pending further analysis and resources, EPA may include these emissions in
- 4 future reports to enhance completeness. EPA is still assessing the possibility of including these emissions in future
- 5 reports and have not included this data in the current report.

6 Table 4-70: CH₄ Emission Factors for Sinter and Pig Iron Production

Material Produced	Factor	Unit
Sinter	0.07	kg CH₄/metric ton
Source: IPCC (2006), Table 4.2.		

- 7 Emissions of CO₂ from sinter production, direct reduced iron production and pellet production were estimated by
- 8 multiplying total national sinter production and the total national direct reduced iron production by Tier 1 CO₂
- 9 emission factors (see Table 4-71). Because estimates of sinter production, direct reduced iron production and
- 10 pellet production were not available, production was assumed to equal consumption.

11 Table 4-71: CO₂ Emission Factors for Sinter Production, Direct Reduced Iron Production and

12 Pellet Production

	Metric Ton CO ₂ /Metric
Material Produced	Ton
Sinter	0.2
Direct Reduced Iron	0.7
Pellet Production	0.03
Source: IPCC (2006), Table 4.	1.

13 The consumption of coking coal, natural gas, distillate fuel, and coal used in iron and steel production are adjusted

- 14 for within the Energy chapter to avoid double-counting of emissions reported within the IPPU chapter as these
- 15 fuels were consumed during non-energy related activities. More information on this methodology and examples of
- adjustments made between the IPPU and Energy chapters are described in Annex 2.1, Methodology for Estimating
- 17 Emissions of CO₂ from Fossil Fuel Combustion.
- 18 Sinter consumption and pellet consumption data for 1990 through 2018 were obtained from AISI's Annual
- 19 Statistical Report (AISI 2004 through 2019) and through personal communications with AISI (AISI 2008) (see Table
- 4-72). In general, direct reduced iron (DRI) consumption data were obtained from the U.S. Geological Survey
- 21 (USGS) *Minerals Yearbook Iron and Steel Scrap* (USGS 1991 through 2016) and personal communication with the
- 22 USGS Iron and Steel Commodity Specialist (Fenton 2015 through 2019). However, data for DRI consumed in EAFs
- were not available for the years 1990 and 1991. EAF DRI consumption in 1990 and 1991 was calculated by
- 24 multiplying the total DRI consumption for all furnaces by the EAF share of total DRI consumption in 1992. Also,
- data for DRI consumed in BOFs were not available for the years 1990 through 1993. BOF DRI consumption in 1990
- through 1993 was calculated by multiplying the total DRI consumption for all furnaces (excluding EAFs and cupola)
- 27 by the BOF share of total DRI consumption (excluding EAFs and cupola) in 1994.
- 28 The Tier 1 CO₂ emission factors for sinter production, direct reduced iron production and pellet production were
- 29 obtained through the 2006 IPCC Guidelines (IPCC 2006). Time-series data for pig iron production, coke, natural gas,
- fuel oil, sinter, and pellets consumed in the blast furnace; pig iron production; and blast furnace gas produced at
- 31 the iron and steel mill and used in the metallurgical coke ovens and other steel mill activities were obtained from
- 32 AISI's Annual Statistical Report (AISI 2004 through 2019) and through personal communications with AISI (AISI
- 33 2008) (see Table 4-72 and Table 4-73).
- 34 Data for EAF steel production, flux, EAF charge carbon, and natural gas consumption were obtained from AISI's
- 35 *Annual Statistical Report* (AISI 2004 through 2019) and through personal communications with AISI (AISI 2006
- through 2016 and AISI 2008). The factor for the quantity of EAF anode consumed per ton of EAF steel produced
- 37 was provided by AISI (AISI 2008). Data for BOF steel production, flux, natural gas, natural ore, pellet, sinter
- 38 consumption as well as BOF steel production were obtained from AISI's Annual Statistical Report (AISI 2004

- 1 through 2019) and through personal communications with AISI (AISI 2008). Data for EAF and BOF scrap steel, pig
- 2 iron, and DRI consumption were obtained from the USGS *Minerals Yearbook Iron and Steel Scrap* (USGS 1991
- 3 through 2016). Data on coke oven gas and blast furnace gas consumed at the iron and steel mill (other than in the
- 4 EAF, BOF, or blast furnace) were obtained from AISI's Annual Statistical Report (AISI 2004 through 2019) and
- 5 through personal communications with AISI (AISI 2008).
- 6 Data on blast furnace gas and coke oven gas sold for use as synthetic natural gas were obtained from EIA's *Natural*
- 7 Gas Annual (EIA 2019). Carbon contents for direct reduced iron, EAF carbon electrodes, EAF charge carbon,
- 8 limestone, dolomite, pig iron, and steel were provided by the 2006 IPCC Guidelines. The carbon contents for
- 9 natural gas, fuel oil, and direct injection coal were obtained from EIA (EIA 2017c) and EPA (EPA 2010). Heat
- 10 contents for fuel oil and direct injection coal were obtained from EIA (EIA 1992, 2011); natural gas heat content
- 11 was obtained from Table 37 of AISI's Annual Statistical Report (AISI 2004 through 2018). Heat contents for coke
- 12 oven gas and blast furnace gas were provided in Table 37 of AISI's Annual Statistical Report (AISI 2004 through
- 13 2019) and confirmed by AISI staff (Carroll 2016).

Table 4-72: Production and Consumption Data for the Calculation of CO₂ and CH₄ Emissions from Iron and Steel Production (Thousand Metric Tons)

Source/Activity Data	1990	2005	2014	2015	2016	2017	2018
Sinter Production	1550	2005	2014	2015	2010	2017	2010
Sinter Production	12,239	8,315	5,521	5,079	4,385	4,347	4,687
Direct Reduced Iron	12,239	0,515	5,521	3,079	4,365	4,547	4,007
Production		_					
Direct Reduced Iron		_					
	F1C	1 202	4 700	4 700	6	6	C
Production	516	1,303	4,790	4,790	C	С	С
Pellet Production	~ ~ ~ ~ ~						
Pellet Production	60,563	50,096	37,538	32,146	28,967	28,916	28,916
Pig Iron Production		_					
Coke Consumption	24,946	13,832	11,136	7,969	7,124	7,101	7,618
Pig Iron Production	49,669	37,222	29,375	25,436	22,293	22,395	24,058
Direct Injection Coal		_					
Consumption	1,485	2,573	2,425	2,275	1,935	2,125	2,569
EAF Steel Production		_					
EAF Anode and Charge		_					
Carbon Consumption	67	1,127	1,062	1,072	1,120	1,127	1,133
Scrap Steel		_					
Consumption	42,691	46,600	48,873	44,000	С	С	С
Flux Consumption	319	695	771	998	998	998	998
EAF Steel Production	33,511	52,194	55,174	49,451	52,589	55,825	58,904
BOF Steel Production			· ·				
Pig Iron Consumption	47,307	34,400	23,755	20,349	С	С	С
Scrap Steel			· ·				
Consumption	14,713	11,400	5,917	4,526	С	С	С
Flux Consumption	576	582	454	454	408	408	408
BOF Steel Production	43,973	42,705	33,000	29,396	25,888	25,788	27,704

C – Confidential

Table 4-73: Production and Consumption Data for the Calculation of CO₂ Emissions from Iron and Steel Production (Million ft³ unless otherwise specified)

Source/Activity Data	1990	2005	2014	2015	2016	2017	2018
Pig Iron Production							
Natural Gas	_						
Consumption	56,273	59,844	47,734	43,294	38,396	38,142	40,204
Fuel Oil Consumption	_						
(thousand gallons)	163,397	16,170	16,674	9,326	6,124	4,352	3,365

Consumption 22,033 16,557 16,896 13,921 12,404 12,459 13,33 Blast Furnace Gas
Production 1,439,380 1,299,980 1,000,536 874,670 811,005 808,499 871,8
EAF Steel Production
Natural Gas
Consumption 15,905 19,985 9,622 8,751 3,915 8,105 8,5
BOF Steel Production
Coke Oven Gas
Consumption 3,851 524 524 386 367 374 4
Other Activities
Coke Oven Gas
Consumption 224,883 97,132 85,479 70,029 62,036 62,164 63,4
Blast Furnace Gas
Consumption 1,414,778 1,295,520 996,190 870,485 807,264 804,816 867,8

Uncertainty and Time-Series Consistency – TO BE UPDATED FOR FINAL INVENTORY REPORT

3 The estimates of CO₂ emissions from metallurgical coke production are based on material production and 4 consumption data and average carbon contents. Uncertainty is associated with the total U.S. coking coal 5 consumption, total U.S. coke production and materials consumed during this process. Data for coking coal 6 consumption and metallurgical coke production are from different data sources (EIA) than data for other 7 carbonaceous materials consumed at coke plants (AISI), which does not include data for merchant coke plants. 8 There is uncertainty associated with the fact that coal tar and coke breeze production were estimated based on 9 coke production because coal tar and coke breeze production data were not available. Since merchant coke plant 10 data is not included in the estimate of other carbonaceous materials consumed at coke plants, the mass balance 11 equation for CO₂ from metallurgical coke production cannot be reasonably completed. Therefore, for the purpose 12 of this analysis, uncertainty parameters are applied to primary data inputs to the calculation (i.e., coking coal 13 consumption and metallurgical coke production) only. 14 The estimates of CO₂ emissions from iron and steel production are based on material production and consumption 15 data and average C contents. There is uncertainty associated with the assumption that pellet production, direct 16 reduced iron and sinter consumption are equal to production. There is uncertainty with the representativeness of 17 the associated IPCC default emission factors. There is uncertainty associated with the assumption that all coal used 18 for purposes other than coking coal is for direct injection coal. There is also uncertainty associated with the C 19 contents for pellets, sinter, and natural ore, which are assumed to equal the C contents of direct reduced iron, 20 when consumed in the blast furnace. There is uncertainty associated with the consumption of natural ore under 21 current industry practices. For EAF steel production, there is uncertainty associated with the amount of EAF anode 22 and charge carbon consumed due to inconsistent data throughout the time series. Also for EAF steel production, 23 there is uncertainty associated with the assumption that 100 percent of the natural gas attributed to "steelmaking 24 furnaces" by AISI is process-related and nothing is combusted for energy purposes. Uncertainty is also associated 25 with the use of process gases such as blast furnace gas and coke oven gas. Data are not available to differentiate 26 between the use of these gases for processes at the steel mill versus for energy generation (i.e., electricity and 27 steam generation); therefore, all consumption is attributed to iron and steel production. These data and carbon 28 contents produce a relatively accurate estimate of CO₂ emissions. However, there are uncertainties associated

29 with each.

30 For calculating the emissions estimates from iron and steel and metallurgical coke production, EPA utilizes a

number of data points taken from the AISI *Annual Statistical Report* (ASR). This report serves as a benchmark for

32 information on steel companies in United States, regardless if they are a member of AISI, which represents

33 integrated producers (i.e., blast furnace and EAF). During the compilation of the 1990 through 2016 Inventory

34 report EPA initiated conversation with AISI to better understand and update the qualitative and quantitative

- 1 uncertainty metrics associated with AISI data elements. AISI estimates their data collection response rate to range
- 2 from 75 to 90 percent, with certain sectors of the iron and steel industry not being covered by the ASR. Therefore,
- 3 there is some inherent uncertainty in the values provided in the AISI ASR, including material production and
- 4 consumption data. There is also some uncertainty to which materials produced are exported to Canada. As
- 5 indicated in the introduction to this section, the trend for integrated facilities has moved to more use of EAFs and
- 6 fewer BOFs. This trend may not be completely captured in the current data which also increases uncertainty. EPA
- currently uses an uncertainty range of ±10 percent for the primary data inputs to calculate overall uncertainty
 from iron and steel production, consistent with 2006 IPCC Guidelines. During EPA's discussion with AISI, AISI noted
- 9 that an uncertainty range of ±5 percent would be a more appropriate approximation to reflect their coverage of
- 10 integrated steel producers in the United States. EPA will continue to assess the best range of uncertainty for these
- 11 values.
- 12 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-74 for metallurgical coke

13 production and iron and steel production. Total CO₂ emissions from metallurgical coke production and iron and

steel production for 2017 were estimated to be between 34.4 and 49.2 MMT CO₂ Eq. at the 95 percent confidence

- 15 level. This indicates a range of approximately 18 percent below and 18 percent above the emission estimate of
- 16 41.8 MMT CO₂ Eq. Total CH₄ emissions from metallurgical coke production and iron and steel production for 2017
- 17 were estimated to be between 0.006 and 0.009 MMT CO_2 Eq. at the 95 percent confidence level. This indicates a
- 18 range of approximately 19 percent below and 19 percent above the emission estimate of 0.007 MMT CO₂ Eq.

Table 4-74: Approach 2 Quantitative Uncertainty Estimates for CO₂ and CH₄ Emissions from Iron and Steel Production and Metallurgical Coke Production (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate Uncertainty Range Rela (MMT CO₂ Eq.) (MMT CO₂ Eq.)		ive to Emissior (%		
			Lower Bound	Upper Bound	Lower Bound	Upper Bound
Metallurgical Coke & Iron and Steel Production	CO ₂	41.8	34.4	49.2	-18%	+18%
Metallurgical Coke & Iron and Steel Production	CH4	+	+	+	-19%	+19%

+ Does not exceed 0.05 MMT CO₂ Eq.

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

21 Methodological approaches were applied to the entire time series to ensure consistency in emissions from 1990

23 QA/QC and Verification

24 For more information on the general QA/QC process applied to this source category, consistent with Volume 1,

Chapter 6 of the 2006 IPCC Guidelines, see the QA/QC and Verification Procedures section in the introduction of
 the IPPU chapter.

27 Recalculations Discussion

28 The carbon balance calculations for metallurgical coke production for previous Inventories used a C content of 73

29 percent by weight for coking coal based on Table 4.3 of the 2006 IPCC Guidelines for National Greenhouse Gas

30 Inventories. Based on recommendations as part of the Inventory UNFCCC review this factor was updated to be

31 more consistent with factors used in the Energy calculations of the Inventory. For this Inventory report the C

32 content value for coking coal was updated to 75.4 percent carbon by weight based on data from the U.S. Energy

Information Administration (EIA). This change resulted in an annual average increase in emissions of 1.8 MMT CO₂
 Eq.

through 2018.

Planned Improvements 1

- 2 Future improvements involve improving activity data and emission factor sources for estimating CO₂ and CH₄
- 3 emissions from pellet production. EPA will also evaluate and analyze data reported under EPA's GHGRP to improve
- 4 the emission estimates for this and other Iron and Steel Production process categories. Particular attention will be
- 5 made to ensure time-series consistency of the emissions estimates presented in future Inventory reports,
- 6 consistent with IPCC and UNFCCC guidelines. This is required as the facility-level reporting data from EPA's GHGRP,
- 7 with the program's initial requirements for reporting of emissions in calendar year 2010, are not available for all
- 8 inventory years (i.e., 1990 through 2009) as required for this Inventory. In implementing improvements and
- 9 integration of data from EPA's GHGRP, the latest guidance from the IPCC on the use of facility-level data in national
- inventories will be relied upon.⁵⁹ This is a medium-term improvement and EPA estimates that earliest this 10
- 11 improvement could be incorporated is the 2020 Inventory submission.
- 12 Additional improvements include accounting for emission estimates for the production of metallurgical coke to the
- 13 Energy chapter as well as identifying the amount of carbonaceous materials, other than coking coal, consumed at
- 14 merchant coke plants. Other potential improvements include identifying the amount of coal used for direct
- 15 injection and the amount of coke breeze, coal tar, and light oil produced during coke production. Efforts will also
- 16 be made to identify information to better characterize emissions from the use of process gases and fuels within
- 17 the Energy and IPPU chapters. Additional efforts will be made to improve the reporting between the IPPU and
- 18 Energy chapters, particularly the inclusion of a quantitative summary of the carbon balance in the United States.
- 19 This planned improvement is a medium-term improvement and is still in development; therefore, it is not included
- 20 in this current Inventory report and is not expected until the 2021 Inventory submission.
- 21 EPA also received comments during the Expert Review cycle of the previous (i.e., 1990 through 2016) Inventory on
- 22 recommendations to improve the description of the iron and steel industry and emissive processes. EPA began
- 23 incorporating some of these recommendations into the previous Inventory (i.e., 1990 through 2016) and will
- 24 require some additional time to implement other substantive changes.

4.18 Ferroalloy Production (CRF Source 25 Category 2C2)

26

27 Carbon dioxide (CO₂) and methane (CH₄) are emitted from the production of several ferroalloys. Ferroalloys are 28 composites of iron (Fe) and other elements such as silicon (Si), manganese (Mn), and chromium (Cr). Emissions

29 from fuels consumed for energy purposes during the production of ferroalloys are accounted for in the Energy

- 30 chapter. Emissions from the production of two types of ferrosilicon (25 to 55 percent and 56 to 95 percent silicon),
- 31 silicon metal (96 to 99 percent silicon), and miscellaneous alloys (32 to 65 percent silicon) have been calculated.
- 32 Emissions from the production of ferrochromium and ferromanganese are not included here because of the small
- 33 number of manufacturers of these materials in the United States, and therefore, government information
- 34 disclosure rules prevent the publication of production data for these production facilities.
- 35 Similar to emissions from the production of iron and steel, CO₂ is emitted when metallurgical coke is oxidized
- 36 during a high-temperature reaction with iron and the selected alloying element. Due to the strong reducing
- 37 environment, CO is initially produced, and eventually oxidized to CO₂. A representative reaction equation for the
- 38 production of 50 percent ferrosilicon (FeSi) is given below:
- 39

 $Fe_2O_3 + 2SiO_2 + 7C \rightarrow 2FeSi + 7CO$

⁵⁹ See <http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

- 1 While most of the carbon contained in the process materials is released to the atmosphere as CO₂, a percentage is
- 2 also released as CH₄ and other volatiles. The amount of CH₄ that is released is dependent on furnace efficiency,
- 3 operation technique, and control technology.
- 4 When incorporated in alloy steels, ferroalloys are used to alter the material properties of the steel. Ferroalloys are
- 5 used primarily by the iron and steel industry, and production trends closely follow that of the iron and steel
- 6 industry. As of 2018, 12 companies in the United States produce ferroalloys (USGS 2018a).
- 7 Emissions of CO₂ from ferroalloy production in 2018 were 2.1 MMT CO₂ Eq. (2,063 kt CO₂) (see Table 4-75 and
- 8 Table 4-76), which is a 4 percent reduction since 1990. Emissions of CH₄ from ferroalloy production in 2018 were
- 9 0.01 MMT CO₂ Eq. (0.6 kt CH₄), which is a 15 percent decrease since 1990.

10 Table 4-75: CO₂ and CH₄ Emissions from Ferroalloy Production (MMT CO₂ Eq.)

Gas	1990	2005	2014	2015	2016	2017	2018
CO ₂	2.2	1.4	1.9	2.0	1.8	2.0	2.1
CH_4	+	+	+	+	+	+	+
Total	2.2	1.4	1.9	2.0	1.8	2.0	2.1

11 Table 4-76: CO₂ and CH₄ Emissions from Ferroalloy Production (kt)

Gas	1990	2005	2014	2015	2016	2017	2018
CO ₂	2,152	1,392	1,914	1,960	1,796	1,975	2,063
CH_4	1	+	1	1	1	1	1

12 Methodology

- 13 Emissions of CO₂ and CH₄ from ferroalloy production were calculated⁶⁰ using a Tier 1 method from the 2006 IPCC
- 14 *Guidelines* by multiplying annual ferroalloy production by material-specific default emission factors provided by
- 15 IPCC (IPCC 2006). The Tier 1 equations for CO₂ and CH₄ emissions are as follows:

16

$$E_{CO_2} = \sum_i (MP_i \times EF_i)$$

17 where,

18	E _{CO2}	=	CO ₂ emissions, metric tons
19	MPi	=	Production of ferroalloy type <i>i</i> , metric tons
20	EFi	=	Generic emission factor for ferroalloy type <i>i</i> , metric tons CO ₂ /metric ton specific
21			ferroalloy product
22			
23			$E_{CH_4} = \sum_i (MP_i \times EF_i)$
24	where,		
25	Есн4	=	CH ₄ emissions, kg
-			, 0
26	MPi	=	Production of ferroallov type <i>i</i> . metric tons

=•			
27	EFi	=	Generic emission factor for ferroalloy type <i>i</i> , kg CH ₄ /metric ton specific ferroalloy
28			product

⁶⁰ EPA has not integrated aggregated facility-level GHGRP information to inform these estimates. The aggregated information (e.g., activity data and emissions) associated with production of ferroalloys did not meet criteria to shield underlying confidential business information (CBI) from public disclosure.

- Default emission factors were used because country-specific emission factors are not currently available. The
 following emission factors were used to develop annual CO₂ and CH₄ estimates:
- Ferrosilicon, 25 to 55 percent Si and Miscellaneous Alloys, 32 to 65 percent Si 2.5 metric tons
 CO₂/metric ton of alloy produced; 1.0 kg CH₄/metric ton of alloy produced.
 - Ferrosilicon, 56 to 95 percent Si 4.0 metric tons CO₂/metric ton alloy produced; 1.0 kg CH₄/metric ton of alloy produced.
 - Silicon Metal 5.0 metric tons CO₂/metric ton metal produced; 1.2 kg CH₄/metric ton metal produced.
- 8 It was assumed that 100 percent of the ferroalloy production was produced using petroleum coke in an electric arc
- 9 furnace process (IPCC 2006), although some ferroalloys may have been produced with coking coal, wood, other
- 10 biomass, or graphite carbon inputs. The amount of petroleum coke consumed in ferroalloy production was
- calculated assuming that the petroleum coke used is 90 percent carbon (C) and 10 percent inert material (Onderand Bagdoyan 1993).
- 13 The use of petroleum coke for ferroalloy production is adjusted for within the Energy chapter as this fuel was
- 14 consumed during non-energy related activities. Additional information on the adjustments made within the Energy
- 15 sector for Non-Energy Use of Fuels is described in both the Methodology section of CO₂ from Fossil Fuel
- 16 Combustion (3.1 Fossil Fuel Combustion (CRF Source Category 1A)) and Annex 2.1, Methodology for Estimating
- $17 \qquad \text{Emissions of CO}_2 \text{ from Fossil Fuel Combustion.}$

5

6

7

- 18 Ferroalloy production data for 1990 through 2018 (see Table 4-77) were obtained from the U.S. Geological Survey
- (USGS) through the *Minerals Yearbook: Silicon* (USGS 1996 through 2015) and the *Mineral Industry Surveys: Silicon* (USGS 2014, 2015b, 2016b, 2017, 2018b, 2019). The following data were available from the USGS publications for
- (USGS 2014, 2015b, 2016b, 2017, 2018b, 2019). The following data were available from the USGS publications for
 the time series:
- Ferrosilicon, 25 to 55 percent Si: Annual production data were available from 1990 through 2010.
- Ferrosilicon, 56 to 95 percent Si: Annual production data were available from 1990 through 2010.
- Silicon Metal: Annual production data were available from 1990 through 2005. The production data for 2005 were used as proxy for 2006 through 2010.
- Miscellaneous Alloys, 32 to 65 percent Si: Annual production data were available from 1990 through
 1998. Starting 1999, USGS reported miscellaneous alloys and ferrosilicon containing 25 to 55 percent
 silicon as a single category.
- 29 Starting with the 2011 publication, USGS ceased publication of production quantity by ferroalloy product and
- 30 began reporting all the ferroalloy production data as a single category (i.e., Total Silicon Materials Production). This
- 31 is due to the small number of ferroalloy manufacturers in the United States and government information
- disclosure rules. Ferroalloy product shares developed from the 2010 production data (i.e., ferroalloy product
- production/total ferroalloy production) were used with the total silicon materials production quantity to estimate
- the production quantity by ferroalloy product type for 2011 through 2018 (USGS 2013, 2014, 2015b, 2016b, 2017,
 2018b, 2019).

36 Table 4-77: Production of Ferroalloys (Metric Tons)

Year	Ferrosilicon 25%-55%	Ferrosilicon 56%-95%	Silicon Metal	Misc. Alloys 32- 65%
1990	321,385	109,566	145,744	72,442
2005	123,000	86,100	148,000	NA
2014	176,161	155,436	170,404	NA
2015	180,372	159,151	174,477	NA
2016	165,282	145,837	159,881	NA
2017	181,775	160,390	175,835	NA
2018	189,846	167,511	183,642	NA

NA - Not Available for product type, aggregated along with ferrosilicon (25-55% Si)

Uncertainty and Time-Series Consistency – TO BE UPDATED FOR FINAL INVENTORY REPORT

3 Annual ferroalloy production was reported by the USGS in three broad categories until the 2010 publication: 4 ferroalloys containing 25 to 55 percent silicon (including miscellaneous alloys), ferroalloys containing 56 to 95 5 percent silicon, and silicon metal (through 2005 only, 2005 value used as proxy for 2005 through 2010). Starting 6 with the 2011 Minerals Yearbook, USGS started reporting all the ferroalloy production under a single category: 7 total silicon materials production. The total silicon materials quantity was allocated across the three categories 8 based on the 2010 production shares for the three categories. Refer to the Methodology section for further 9 details. Additionally, production data for silvery pig iron (alloys containing less than 25 percent silicon) are not 10 reported by the USGS to avoid disclosing proprietary company data. Emissions from this production category, 11 therefore, were not estimated. 12 Also, some ferroalloys may be produced using wood or other biomass as a primary or secondary carbon source

- 13 (carbonaceous reductants), however information and data regarding these practices were not available. Emissions
- 14 from ferroalloys produced with wood or other biomass would not be counted under this source because wood-
- 15 based carbon is of biogenic origin.⁶¹ Even though emissions from ferroalloys produced with coking coal or graphite
- 16 inputs would be counted in national trends, they may be generated with varying amounts of CO₂ per unit of
- 17 ferroalloy produced. The most accurate method for these estimates would be to base calculations on the amount
- 18 of reducing agent used in the process, rather than the amount of ferroalloys produced. These data, however, were
- 19 not available, and are also often considered confidential business information.
- 20 Emissions of CH₄ from ferroalloy production will vary depending on furnace specifics, such as type, operation
- 21 technique, and control technology. Higher heating temperatures and techniques such as sprinkle charging will
- reduce CH₄ emissions; however, specific furnace information was not available or included in the CH₄ emission
 estimates.
- 24 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-78. Ferroalloy
- production CO_2 emissions from 2018 were estimated to be between 1.7 and 2.2 MMT CO_2 Eq. at the 95 percent
- 26 confidence level. This indicates a range of approximately 12 percent below and 12 percent above the emission
- estimate of 2.1 MMT CO₂ Eq. Ferroalloy production CH₄ emissions were estimated to be between a range of
- approximately 12 percent below and 12 percent above the emission estimate of 0.01 MMT CO₂ Eq.

Table 4-78: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from Ferroalloy Production (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate (MMT CO ₂ Eq.)	Uncertainty Range Rela (MMT CO ₂ Eq.)		ative to Emission Estimate ^a (%)	
			Lower	Upper	Lower	Upper
			Bound	Bound	Bound	Bound
Ferroalloy Production	CO ₂	2.1	1.7	2.2	-12%	+12%
Ferroalloy Production	CH_4	+	+	+	-12%	+12%

+ Does not exceed 0.05 MMT CO₂ Eq.

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

- 31 Methodological approaches were applied to the entire time series to ensure consistency in emissions from 1990
- 32 through 2018. Details on the emission trends through time are described in more detail in the Methodology
- 33 section, above.

34 **QA/QC and Verification**

⁶¹ Emissions and sinks of biogenic carbon are accounted for in the Land Use, Land-Use Change, and Forestry chapter.

- 1 For more information on the general QA/QC process applied to this source category, consistent with Volume 1,
- 2 Chapter 6 of the 2006 IPCC Guidelines, see the QA/QC and Verification Procedures section in the introduction of
- 3 the IPPU chapter and Annex 8.

4 Planned Improvements

5 Pending available resources and prioritization of improvements for more significant sources, EPA will continue to 6 evaluate and analyze data reported under EPA's GHGRP that would be useful to improve the emission estimates 7 and category-specific QC procedures for the Ferroalloy Production source category. Given the small number of 8 facilities and reporting thresholds, particular attention will be made to ensure completeness and time-series 9 consistency of the emissions estimates presented in future Inventory reports, consistent with IPCC and UNFCCC 10 guidelines. This is required as the facility-level reporting data from EPA's GHGRP, with the program's initial 11 requirements for reporting of emissions in calendar year 2010, are not available for all inventory years (i.e., 1990 12 through 2009) as required for this Inventory. In implementing improvements and integration of data from EPA's 13 GHGRP, the latest guidance from the IPCC on the use of facility-level data in national inventories will be relied 14 upon.⁶² This is a long-term planned improvement and EPA is still assessing the possibility of incorporating this 15 improvement into the national Inventory report. This improvement has not been included in the current Inventory 16 report.

4.19 Aluminum Production (CRF Source Category 2C3)

19 Aluminum is a light-weight, malleable, and corrosion-resistant metal that is used in many manufactured products,

20 including aircraft, automobiles, bicycles, and kitchen utensils. As of recent reporting, the United States was the

21 twelfth largest producer of primary aluminum, with approximately 1 percent of the world total production (USGS

22 2019a). The United States was also a major importer of primary aluminum. The production of primary aluminum—

23 in addition to consuming large quantities of electricity—results in process-related emissions of carbon dioxide

24 (CO₂) and two perfluorocarbons (PFCs): perfluoromethane (CF₄) and perfluoroethane (C_2F_6).

Carbon dioxide is emitted during the aluminum smelting process when alumina (aluminum oxide, Al₂O₃) is reduced to aluminum using the Hall-Heroult reduction process. The reduction of the alumina occurs through electrolysis in

- a molten bath of natural or synthetic cryolite (Na₃AlF₆). The reduction cells contain a carbon (C) lining that serves
- as the cathode. Carbon is also contained in the anode, which can be a C mass of paste, coke briguettes, or
- 29 prebaked C blocks from petroleum coke. During reduction, most of this C is oxidized and released to the
- 30 atmosphere as CO₂.
- Process emissions of CO₂ from aluminum production were estimated to be 1.5 MMT CO₂ Eq. (1,451 kt) in 2018 (see
 Table 4-79). The C anodes consumed during aluminum production consist of petroleum coke and, to a minor
 extent, coal tar pitch. The petroleum coke portion of the total CO₂ process emissions from aluminum production is

considered to be a non-energy use of petroleum coke, and is accounted for here and not under the CO₂ from Fossil

- 35 Fuel Combustion source category of the Energy sector. Similarly, the coal tar pitch portion of these CO₂ process
- 36 emissions is accounted for here.

37 Table 4-79: CO₂ Emissions from Aluminum Production (MMT CO₂ Eq. and kt)

Year	MMT CO ₂ Eq.	kt
1990	6.8	6,831

⁶² See <http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf >.

2005	4.1	4,142
2014	2.8	2,833
2015	2.8	2,767
2016	1.3	1,334
2017	1.2	1,205
2018	1.5	1,451

1 In addition to CO₂ emissions, the aluminum production industry is also a source of PFC emissions. During the

2 smelting process, when the alumina ore content of the electrolytic bath falls below critical levels required for

3 electrolysis, rapid voltage increases occur, which are termed "anode effects." These anode effects cause C from

4 the anode and fluorine from the dissociated molten cryolite bath to combine, thereby producing fugitive emissions 5

of CF₄ and C_2F_6 . In general, the magnitude of emissions for a given smelter and level of production depends on the

6 frequency and duration of these anode effects. As the frequency and duration of the anode effects increase,

7 emissions increase.

8 Since 1990, emissions of CF4 and C2F6 have declined by 94 percent and 88 percent, respectively, to 1.1 MMT CO2

9 Eq. of CF₄ (0.21 kt) and 0.4 MMT CO₂ Eq. of C_2F_6 (0.03 kt) in 2018, as shown in Table 4-80 and Table 4-81. This

10 decline is due both to reductions in domestic aluminum production and to actions taken by aluminum smelting

11 companies to reduce the frequency and duration of anode effects. These actions include technology and

12 operational changes such as employee training, use of computer monitoring, and changes in alumina feeding

13 techniques. Since 1990, aluminum production has declined by 78 percent, while the combined CF4 and C2F6

14 emission rate (per metric ton of aluminum produced) has been reduced by 67 percent. PFC emissions increased by

15 approximately 51 percent between 2017 and 2018 due to increases in both aluminum production and CF4

16 emissions per metric ton of aluminum produced. Increases in CF_4 emissions per metric ton of aluminum may be

17 due to a combination of increased production, increased anode effect duration and/or frequency, and increases in

18 the smelter-specific slope coefficients at individual facilities. The decrease in the ratio of C₂F₆ to CF₄ emissions may

19 be due to combination of a decrease in the measured C_2F_6 to CF_4 weight ratio at some facilities and a change in the relative share of production at each facility. 20

21 Table 4-80: PFC Emissions from Aluminum Production (MMT CO₂ Eq.)

Year	CF ₄	C_2F_6	Total
1990	17.9	3.5	21.5
2005	2.9	0.6	3.4
2014	1.9	0.6	2.5
2015	1.5	0.5	2.0
2016	0.9	0.4	1.4
2017	0.7	0.4	1.0
2018	1.1	0.4	1.6

Note: Totals may not sum due to independent rounding.

22

Year	CF ₄	C_2F_6
1990	2.4	0.3
2005	0.4	+
2014	0.3	0.1
2015	0.2	+
2016	0.1	+
2017	0.1	+
2018	0.2	+
+ Does no	ot exceed ().05 kt.

1 Table 4-81: PFC Emissions from Aluminum Production (kt)

2 In 2018, U.S. primary aluminum production totaled approximately 0.9 million metric tons, a 21 percent increase

from 2017 production levels (USAA 2019). In 2018, three companies managed production at seven operational

4 primary aluminum smelters. Two smelters that were idle at the end of 2017 were restarted and one other smelter

restarted production in 2018. One smelter remained on standby throughout 2018 (USGS 2019b). During 2018,
monthly U.S. primary aluminum production was higher for every month when compared to the corresponding

6 monthly 0.5. primary auminum production was higher for every month when compared to the

7 months in 2017 (USAA 2019, 2018).

8 For 2019, total production for the January to August period was approximately 0.8 million metric tons compared to

9 0.5 million metric tons for the same period in 2018, a 37.9 percent increase (USAA 2019). Based on the increase in

10 production, process CO₂ and PFC emissions are likely to be higher in 2019 compared to 2018 if there are no

11 significant changes in process controls at operational facilities.

12 Methodology

13 Process CO₂ and PFC (i.e., CF₄ and C₂F₆) emission estimates from primary aluminum production for 2010 through 14 2018 are available from EPA's GHGRP—Subpart F (Aluminum Production) (EPA 2019). Under EPA's GHGRP, 15 facilities began reporting primary aluminum production process emissions (for 2010) in 2011; as a result, GHGRP 16 data (for 2010 through 2018) are available to be incorporated into the Inventory. EPA's GHGRP mandates that all 17 facilities that contain an aluminum production process must report: CF4 and C2F6 emissions from anode effects in 18 all prebake and Søderberg electrolysis cells, CO₂ emissions from anode consumption during electrolysis in all 19 prebake and Søderberg cells, and all CO₂ emissions from onsite anode baking. To estimate the process emissions, EPA's GHGRP uses the process-specific equations detailed in subpart F (aluminum production).⁶³ These equations 20 21 are based on the Tier 2/Tier 3 IPCC (2006) methods for primary aluminum production, and Tier 1 methods when 22 estimating missing data elements. It should be noted that the same methods (i.e., 2006 IPCC Guidelines) were used 23 for estimating the emissions prior to the availability of the reported GHGRP data in the Inventory. Prior to 2010, 24 aluminum production data were provided through EPA's Voluntary Aluminum Industrial Partnership (VAIP). 25 As previously noted, the use of petroleum coke for aluminum production is adjusted for within the Energy chapter

as this fuel was consumed during non-energy related activities. Additional information on the adjustments made

- within the Energy sector for Non-Energy Use of Fuels is described in both the Methodology section of CO₂ from
- Fossil Fuel Combustion (3.1 Fossil Fuel Combustion (CRF Source Category 1A)) and Annex 2.1, Methodology for
- 29 Estimating Emissions of CO₂ from Fossil Fuel Combustion.

 ⁶³ Code of Federal Regulations, Title 40: Protection of Environment, Part 98: Mandatory Greenhouse Gas Reporting, Subpart F—Aluminum Production. See <www.epa.gov/ghgreporting/documents/pdf/infosheets/aluminumproduction.pdf>.

1 Process CO₂ Emissions from Anode Consumption and Anode Baking

2 Carbon dioxide emission estimates for the years prior to the introduction of EPA's GHGRP in 2010 were estimated

3 2006 IPCC Guidelines methods, but individual facility reported data were combined with process-specific emissions

4 modeling. These estimates were based on information previously gathered from EPA's Voluntary Aluminum

5 Industrial Partnership (VAIP) program, U.S. Geological Survey (USGS) Mineral Commodity reviews, and The

6 Aluminum Association (USAA) statistics, among other sources. Since pre- and post-GHGRP estimates use the same

7 methodology, emission estimates are comparable across the time series.

8 Most of the CO₂ emissions released during aluminum production occur during the electrolysis reaction of the C
 9 anode, as described by the following reaction:

10

$2Al_2O_3+3C\,\rightarrow\,4Al+3CO_2$

For prebake smelter technologies, CO₂ is also emitted during the anode baking process. These emissions can account for approximately 10 percent of total process CO₂ emissions from prebake smelters.

13 Depending on the availability of smelter-specific data, the CO₂ emitted from electrolysis at each smelter was

14 estimated from: (1) the smelter's annual anode consumption, (2) the smelter's annual aluminum production and

15 rate of anode consumption (per ton of aluminum produced) for previous and/or following years, or (3) the

smelter's annual aluminum production and IPCC default CO₂ emission factors. The first approach tracks the

17 consumption and carbon content of the anode, assuming that all C in the anode is converted to CO₂. Sulfur, ash,

18 and other impurities in the anode are subtracted from the anode consumption to arrive at a C consumption figure.

19 This approach corresponds to either the IPCC Tier 2 or Tier 3 method, depending on whether smelter-specific data

20 on anode impurities are used. The second approach interpolates smelter-specific anode consumption rates to

estimate emissions during years for which anode consumption data are not available. This approach avoids

substantial errors and discontinuities that could be introduced by reverting to Tier 1 methods for those years. The
 last approach corresponds to the IPCC Tier 1 method (IPCC 2006), and is used in the absence of present or historic

23 last approach corresponds to th24 anode consumption data.

25 The equations used to estimate CO₂ emissions in the Tier 2 and 3 methods vary depending on smelter type (IPCC

26 2006). For Prebake cells, the process formula accounts for various parameters, including net anode consumption,

and the sulfur, ash, and impurity content of the baked anode. For anode baking emissions, the formula accounts

for packing coke consumption, the sulfur and ash content of the packing coke, as well as the pitch content and

29 weight of baked anodes produced. For Søderberg cells, the process formula accounts for the weight of paste 30 consumed per metric ton of aluminum produced, and pitch properties, including sulfur, hydrogen, and ash

30 consumed per me 31 content.

32 Through the VAIP, anode consumption (and some anode impurity) data have been reported for 1990, 2000, 2003,

33 2004, 2005, 2006, 2007, 2008, and 2009. Where available, smelter-specific process data reported under the VAIP

were used; however, if the data were incomplete or unavailable, information was supplemented using industry

average values recommended by IPCC (2006). Smelter-specific CO₂ process data were provided by 18 of the 23

36 operating smelters in 1990 and 2000, by 14 out of 16 operating smelters in 2003 and 2004, 14 out of 15 operating

37 smelters in 2005, 13 out of 14 operating smelters in 2006, 5 out of 14 operating smelters in 2007 and 2008, and 3

out of 13 operating smelters in 2009. For years where CO₂ emissions data or CO₂ process data were not reported

39 by these companies, estimates were developed through linear interpolation, and/or assuming representative (e.g.,

40 previously reported or industry default) values.

In the absence of any previous historical smelter-specific process data (i.e., 1 out of 13 smelters in 2009; 1 out of

42 14 smelters in 2006, 2007, and 2008; 1 out of 15 smelters in 2005; and 5 out of 23 smelters between 1990 and

43 2003), CO₂ emission estimates were estimated using Tier 1 Søderberg and/or Prebake emission factors (metric ton

44 of CO_2 per metric ton of aluminum produced) from IPCC (2006).

1 Process PFC Emissions from Anode Effects

Smelter-specific PFC emissions from aluminum production for 2010 through 2018 were reported to EPA under its
 GHGRP. To estimate their PFC emissions and report them under EPA's GHGRP, smelters use an approach identical
 to the Tier 3 approach in the 2006 IPCC Guidelines (IPCC 2006). Specifically, they use a smelter-specific slope

5 coefficient as well as smelter-specific operating data to estimate an emission factor using the following equation:

6	$PFC = S \times AE$
7	$AE = F \times D$

8 where,

9			
10	PFC	=	CF4 or C2F6, kg/MT aluminum
11	S	=	Slope coefficient, PFC/AE
12	AE	=	Anode effect, minutes/cell-day
13	F	=	Anode effect frequency per cell-day
14	D	=	Anode effect duration, minutes
15			

They then multiply this emission factor by aluminum production to estimate PFC emissions. All U.S. aluminum
 smelters are required to report their emissions under EPA's GHGRP.

18 Perfluorocarbon emissions for the years prior to 2010 were estimated using the same equation, but the slope-

19 factor used for some smelters was technology-specific rather than smelter-specific, making the method a Tier 2

rather than a Tier 3 approach for those smelters. Emissions and background data were reported to EPA under the
 VAIP. For 1990 through 2009, smelter-specific slope coefficients were available and were used for smelters

representing between 30 and 94 percent of U.S. primary aluminum production. The percentage changed from year

to year as some smelters closed or changed hands and as the production at remaining smelters fluctuated. For

smelters that did not report smelter-specific slope coefficients, IPCC technology-specific slope coefficients were

applied (IPCC 2006). The slope coefficients were combined with smelter-specific anode effect data collected by

aluminum companies and reported under the VAIP to estimate emission factors over time. For 1990 through 2009,

27 smelter-specific anode effect data were available for smelters representing between 80 and 100 percent of U.S.

28 primary aluminum production. Where smelter-specific anode effect data were not available, representative values

29 (e.g., previously reported or industry averages) were used.

30 For all smelters, emission factors were multiplied by annual production to estimate annual emissions at the

31 smelter level. For 1990 through 2009, smelter-specific production data were available for smelters representing

32 between 30 and 100 percent of U.S. primary aluminum production. (For the years after 2000, this percentage was

near the high end of the range.) Production at non-reporting smelters was estimated by calculating the difference

between the production reported under VAIP and the total U.S. production supplied by USGS or USAA, and then

allocating this difference to non-reporting smelters in proportion to their production capacity. Emissions were then

36 aggregated across smelters to estimate national emissions.

37 Between 1990 and 2009, production data were provided under the VAIP by 21 of the 23 U.S. smelters that

38 operated during at least part of that period. For the non-reporting smelters, production was estimated based on

39 the difference between reporting smelters and national aluminum production levels (USGS and USAA 1990

through 2009), with allocation to specific smelters based on reported production capacities (USGS 1990 through
2009).

42 National primary aluminum production data for 2018 were obtained via USAA (USAA 2019). For 1990 through

43 2001, and 2006 (see Table 4-82) data were obtained from USGS *Mineral Industry Surveys: Aluminum Annual Report*

44 (USGS 1995, 1998, 2000, 2001, 2002, 2007). For 2002 through 2005, and 2007 through 2018, national aluminum

45 production data were obtained from the USAA's *Primary Aluminum Statistics* (USAA 2004 through 2006, 2008

46 through 2019).

1 Table 4-82: Production of Primary Aluminum (kt)

Year	kt
1990	4,048
2005	2,478
2014	1,710
2015	1,587
2016	818
2017	741
2018	897

2 Uncertainty and Time-Series Consistency

3 Uncertainty was assigned to the CO₂, CF₄, and C₂F₆ emission values reported by each individual facility to EPA's

4 GHGRP. As previously mentioned, the methods for estimating emissions for EPA's GHGRP and this report are the

5 same, and follow the 2006 IPCC Guidelines methodology. As a result, it was possible to assign uncertainty bounds

6 (and distributions) based on an analysis of the uncertainty associated with the facility-specific emissions estimated

7 for previous Inventory years. Uncertainty surrounding the reported CO₂, CF₄, and C₂F₆ emission values were

8 determined to have a normal distribution with uncertainty ranges of ±6, ±16, and ±20 percent, respectively. A

9 Monte Carlo analysis was applied to estimate the overall uncertainty of the CO₂, CF₄, and C₂F₆ emission estimates

10 for the U.S. aluminum industry as a whole, and the results are provided below.

11 The results of this Approach 2 quantitative uncertainty analysis are summarized in Table 4-83. Aluminum

12 production-related CO₂ emissions were estimated to be between 1.42 and 1.49 MMT CO₂ Eq. at the 95 percent

13 confidence level. This indicates a range of approximately 2 percent below to 2 percent above the emission

estimate of 1.45 MMT CO₂ Eq. Also, production-related CF₄ emissions were estimated to be between 1.06 and 1.24

15 MMT CO₂ Eq. at the 95 percent confidence level. This indicates a range of approximately 8 percent below to 8

16 percent above the emission estimate of 1.15 MMT CO_2 Eq. Finally, aluminum production-related C_2F_6 emissions

17 were estimated to be between 0.36 and 0.49 MMT CO₂ Eq. at the 95 percent confidence level. This indicates a

range of approximately 15 percent below to 16 percent above the emission estimate of 0.43 MMT CO₂ Eq.

Table 4-83: Approach 2 Quantitative Uncertainty Estimates for CO₂ and PFC Emissions from Aluminum Production (MMT CO₂ Eq. and Percent)

Source	6.44	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimat			
	Gas	(MMT CO ₂ Eq.)	(MMT CO₂ Eq.)		(%)	
			Lower	Upper	Lower	Upper
			Bound	Bound	Bound	Bound
Aluminum Production	CO ₂	1.45	1.42	1.49	-2%	2%
Aluminum Production	CF_4	1.15	1.06	1.24	-8%	8%
Aluminum Production	C_2F_6	0.43	0.36	0.49	-15%	16%

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

21

22 Methodological approaches were applied to the entire time-series to ensure time-series consistency from 1990

23 through 2018. Details on the emission trends through time are described in more detail in the Methodology

24 section, above.

25 **QA/QC and Verification**

26 General quality assurance/quality control (QA/QC) procedures were applied consistent with the U.S. *Inventory*

27 QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of 2006 IPCC Guidelines as described in the introduction

1 of the IPPU chapter (see Annex 8 for more details). For the GHGRP data, EPA verifies annual facility-level reports 2 through a multi-step process (e.g., including a combination of pre-and post-submittal electronic checks and manual 3 reviews by staff) to identify potential errors and ensure that data submitted to EPA are accurate, complete, and consistent (EPA (2015).⁶⁴ Based on the results of the verification process, EPA follows up with facilities to resolve 4 5 mistakes that may have occurred. The post-submittals checks are consistent with a number of general and 6 category-specific QC procedures, including: range checks, statistical checks, algorithm checks, and year-to-year

7 checks of reported data and emissions.

4.20 Magnesium Production and Processing 8 (CRF Source Category 2C4) 9

10 The magnesium metal production and casting industry uses sulfur hexafluoride (SF₆) as a cover gas to prevent the 11 rapid oxidation of molten magnesium in the presence of air. Sulfur hexafluoride has been used in this application 12 around the world for more than thirty years. A dilute gaseous mixture of SF₆ with dry air and/or carbon dioxide 13 (CO₂) is blown over molten magnesium metal to induce and stabilize the formation of a protective crust. A small 14 portion of the SF₆ reacts with the magnesium to form a thin molecular film of mostly magnesium oxide and 15 magnesium fluoride. The amount of SF₆ reacting in magnesium production and processing is considered to be 16 negligible and thus all SF₆ used is assumed to be emitted into the atmosphere. Alternative cover gases, such as 17 AM-cover[™] (containing HFC-134a), Novec[™] 612 (FK-5-1-12) and dilute sulfur dioxide (SO₂) systems can, and are 18 being used by some facilities in the United States. However, many facilities in the United States are still using 19 traditional SF₆ cover gas systems. 20 The magnesium industry emitted 1.1 MMT CO₂ Eq. (0.05 kt) of SF₆, 0.1 MMT CO₂ Eq. (0.1 kt) of HFC-134a, and

- 21 0.001 MMT CO₂ Eq. (1.4 kt) of CO₂ in 2018. This represents an increase of approximately 2 percent from total 2017
- 22 emissions (see Table 4-84) and an increase in SF₆ emissions by 4 percent. The increase can be attributed to an
- 23 increase in die casting and permanent mold SF₆ emissions between 2017 and 2018 as reported through the
- 24 GHGRP, including from two first-time reporters to the GHGRP. In 2018, total HFC-134a emissions decreased from 25
- 0.098 MMT CO₂ Eq. to 0.090 MMT CO₂ Eq., or a 9 percent decrease as compared to 2017 emissions. FK 5-1-12
- 26 emissions decreased from 2017 levels. The emissions of the carrier gas, CO₂, decreased from 3.1 kt in 2017 to 1.4
- 27 kt in 2018, or 53 percent.

Table 4-84: SF₆, HFC-134a, FK 5-1-12 and CO₂ Emissions from Magnesium Production and 28 29 Processing (MMT CO₂ Eq.)

Year	1990	2005	2014	2015	2016	2017	2018
SF ₆	5.2	2.7	0.9	1.0	1.1	1.1	1.1
HFC-134a	0.0	0.0	0.1	0.1	0.1	0.1	0.1
CO ₂	+	+	+	+	+	+	+
FK 5-1-12ª	0.0	0.0	+	+	+	+	+
Total	5.2	2.7	1.0	1.1	1.2	1.2	1.2
	1005						

+ Does not exceed 0.05 MMT CO₂ Eq.

^a Emissions of FK 5-1-12 are not included in totals.

Table 4-85: SF₆, HFC-134a, FK 5-1-12 and CO₂ Emissions from Magnesium Production and 30 31 Processing (kt)

Year	1990	2005	2014	2015	2016	2017	2018
SF ₆	0.2	0.1	+	+	+	+	+

⁶⁴ GHGRP Report Verification Factsheet. https://www.epa.gov/sites/production/files/2015- 07/documents/ghgrp_verification_factsheet.pdf>.

HFC-134a	0.0	0.0	0.1	0.1	0.1	0.1	0.1
CO ₂	1.4	2.9	2.3	2.6	2.7	3.1	1.4
FK 5-1-12 °	0.0	0.0	+	+	+	+	+

+ Does not exceed 0.05 kt

^a Emissions of FK 5-1-12 are not included in totals.

1 Methodology

2 Emission estimates for the magnesium industry incorporate information provided by industry participants in EPA's

SF₆ Emission Reduction Partnership for the Magnesium Industry as well as emissions data reported through
 subpart T (Magnesium Production and Processing) of EPA's GHGRP. The Partnership started in 1999 and, in 2010,

participating companies represented 100 percent of U.S. primary and secondary production and 16 percent of the

casting sector production (i.e., die, sand, permanent mold, wrought, and anode casting). SF₆ emissions for 1999

7 through 2010 from primary production, secondary production (i.e., recycling), and die casting were generally

8 reported by Partnership participants. Partners reported their SF₆ consumption, which is assumed to be equivalent

9 to emissions. Along with SF₆, some Partners also reported their HFC-134a and FK 5-1-12 usage, which is also

assumed to be equal to emissions. The last reporting year was 2010 under the Partnership. Emissions data for

11 2011 through 2018 are obtained through EPA's GHGRP. Under the program, owners or operators of facilities that

12 have a magnesium production or casting process must report emissions from use of cover or carrier gases, which

13 include SF₆, HFC-134a, FK 5-1-12 and CO₂. Consequently, cover and carrier gas emissions from magnesium

14 production and processing were estimated for three time periods, depending on the source of the emissions data:

15 1990 through 1998 (pre-EPA Partnership), 1999 through 2010 (EPA Partnership), and 2011 through 2018 (EPA

16 GHGRP). The methodologies described below also make use of magnesium production data published by the U.S.

17 Geological Survey (USGS) as available.

18 **1990 through 1998**

To estimate emissions for 1990 through 1998, industry SF₆ emission factors were multiplied by the corresponding metal production and consumption (casting) statistics from USGS. For this period, it was assumed that there was

no use of HFC-134a or FK 5-1-12 cover gases and hence emissions were not estimated for these alternatives.

22 Sulfur hexafluoride emission factors from 1990 through 1998 were based on a number of sources and

assumptions. Emission factors for primary production were available from U.S. primary producers for 1994 and

24 1995. The primary production emission factors were 1.2 kg SF₆ per metric ton for 1990 through 1993, and 1.1 kg

25 SF₆ per metric ton for 1994 through 1997. The emission factor for secondary production from 1990 through 1998

was assumed to be constant at the 1999 average Partner value. An emission factor for die casting of 4.1 kg SF₆ per

27 metric ton, which was available for the mid-1990s from an international survey (Gjestland and Magers 1996), was

used for years 1990 through 1996. For 1996 through 1998, the emission factor for die casting was assumed to

decline linearly to the level estimated based on Partner reports in 1999. This assumption is consistent with the

30 trend in SF₆ sales to the magnesium sector that is reported in the RAND survey of major SF₆ manufacturers, which

31 shows a decline of 70 percent from 1996 to 1999 (RAND 2002). Sand casting emission factors for 1990 through

32 2001 were assumed to be the same as the 2002 emission factor. The emission factors for the other processes (i.e.,

33 permanent mold, wrought, and anode casting), about which less is known, were assumed to remain constant at

34 levels defined in Table 4-84. These emission factors for the other processes (i.e., permanent mold, wrought, and

35 anode casting) were based on discussions with industry representatives.

36 The quantities of CO₂ carrier gas used for each production type have been estimated using the 1999 estimated CO₂

emissions data and the annual calculated rate of change of SF₆ use in the 1990 through 1999 time period. For each

- 38 year and production type, the rate of change of SF₆ use between the current year and the subsequent year was
- 39 first estimated. This rate of change is then applied to the CO₂ emissions of the subsequent year to determine the

40 CO₂ emission of the current year. The emissions of carrier gases for permanent mold, wrought, and anode

41 processes are not estimated in this Inventory.

1 **1999 through 2010**

- 2 The 1999 through 2010 emissions from primary and secondary production are based on information provided by
- 3 EPA's industry Partners. In some instances, there were years of missing Partner data, including SF₆ consumption
- 4 and metal processed. For these situations, emissions were estimated through interpolation where possible, or by
- 5 holding company-reported emissions (as well as production) constant from the previous year. For alternative cover
- 6 gases, including HFC-134a and FK 5-1-12, mainly reported data was relied upon. That is, unless a Partner reported
- 7 using an alternative cover gas, it was not assumed it was used. Emissions of alternate gases were also estimated
- 8 through linear interpolation where possible.
- 9 The die casting emission estimates for 1999 through 2010 were also based on information supplied by industry
- 10 Partners. When a Partner was determined to be no longer in production, its metal production and usage rates
- 11 were set to zero. Missing data on emissions or metal input was either interpolated or held constant at the last
- 12 available reported value. In 1999 through 2010, Partners were assumed to account for all die casting tracked by
- USGS. For 1999, die casters who were not Partners were assumed to be similar to Partners who cast small parts.
 Due to process requirements, these casters consume larger quantities of SF₆ per metric ton of processed
- 15 magnesium than casters that process large parts. Consequently, emission estimates from this group of die casters
- were developed using an average emission factor of 5.2 kg SF₆ per metric ton of magnesium. This emission factor
- was developed using an average emission factor of $5.2 \times g$ of 6 per metric tori of magnesium. This emission factor was developed using magnesium production and SF₆ usage data for the year 1999. In 2008, the derived emission
- factor for die casting began to increase after many years of largely decreasing emission factors. This was likely due
- to a temporary decrease in production at many facilities between 2008 and 2010, where those facilities were
- 20 operating at production levels significantly less than full capacity.
- 21 The emissions from other casting operations were estimated by multiplying emission factors (kg SF₆ per metric ton
- of metal produced or processed) by the amount of metal produced or consumed from USGS, with the exception of
- 23 some years for which Partner sand casting emissions data are available. The emission factors for sand casting
- activities were acquired through the data reported by the Partnership for 2002 to 2006. For 1999-2001, the sand
- casting emission factor was held constant at the 2002 Partner-reported level. For 2007 through 2010, the sand
- casting Partner did not report and the reported emission factor from 2005 was applied to the Partner and to all
- 27 other sand casters. Activity data for 2005 was obtained from USGS (USGS 2005b).
- 28 The emission factors for primary production, secondary production and sand casting for the 1999 to 2010 are not
- 29 published to protect company-specific production information. However, the emission factor for primary
- 30 production has not risen above the average 1995 Partner value of 1.1 kg SF₆ per metric ton. The emission factors
- 31 for the other industry sectors (i.e., permanent mold, wrought, and anode casting) were based on discussions with
- 32 industry representatives. The emission factors for casting activities are provided below in Table 4-86.
- 33 The emissions of HFC-134a and FK-5-1-12 were included in the estimates for only instances where Partners
- reported that information to the Partnership. Emissions of these alternative cover gases were not estimated for instances where emissions were not reported.
- 36 Carbon dioxide carrier gas emissions were estimated using the emission factors developed based on GHGRP-
- 37 reported carrier gas and cover gas data, by production type. It was assumed that the use of carrier gas, by
- production type, is proportional to the use of cover gases. Therefore, an emission factor, in kg CO₂ per kg cover gas
- 39 and weighted by the cover gases used, was developed for each of the production types. GHGRP data on which
- 40 these emissions factors are based was available for primary, secondary, die casting and sand casting. The emission
- factors were applied to the total quantity of all cover gases used (SF₆, HFC-134a, and FK-5-1-12) by production type
- 42 in this time period. Carrier gas emissions for the 1999 through 2010 time period were only estimated for those
- 43 Partner companies that reported using CO₂ as a carrier gas through the GHGRP. Using this approach helped ensure
- time-series consistency. The emissions of carrier gases for permanent mold, wrought, and anode processes are not
- 45 estimated in this Inventory.

Die Casting ^a	Permanent Mold	Wrought	Anodes
1.75 ^b	2	1	1
0.72	2	1	1
0.72	2	1	1
0.71	2	1	1
0.81	2	1	1
0.79	2	1	1
0.77	2	1	1
0.88	2	1	1
0.64	2	1	1
0.97	2	1	1
1.41	2	1	1
1.43	2	1	1
	1.75 ^b 0.72 0.71 0.81 0.79 0.77 0.88 0.64 0.97 1.41	1.75 ^b 2 0.72 2 0.72 2 0.71 2 0.71 2 0.79 2 0.77 2 0.88 2 0.64 2 0.97 2 1.41 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

1 Table 4-86: SF₆ Emission Factors (kg SF₆ per metric ton of magnesium)

^a Weighted average includes all die casters, Partners and non-Partners. For the majority of the time series (2000 through 2010), Partners made up 100 percent of die casters in the United States.

 $^{\rm b}$ Weighted average that includes an estimated emission factor of 5.2 kg SF_6 per metric ton of magnesium for die casters that do not participate in the Partnership.

2 2011 through 2018

For 2011 through 2018, for the primary and secondary producers, GHGRP-reported cover and carrier gases
emissions data were used. For sand and die casting, some emissions data was obtained through EPA's GHGRP.

5 Additionally, in 2018 a new GHGRP reporter began reporting permanent mold emissions. The balance of the

6 emissions for this industry segment was estimated based on previous Partner reporting (i.e., for Partners that did

7 not report emissions through EPA's GHGRP) or were estimated by multiplying emission factors by the amount of

8 metal produced or consumed. Partners who did not report through EPA's GHGRP were assumed to have continued

9 to emit SF₆ at the last reported level, which was from 2010 in most cases, unless publicly available sources

10 indicated that these facilities have closed or otherwise eliminated SF₆ emissions from magnesium production (ARB

11 2015). All Partners were assumed to have continued to consume magnesium at the last reported level. Where the

12 total metal consumption estimated for the Partners fell below the U.S. total reported by USGS, the difference was

13 multiplied by the emission factors discussed in the section above, i.e. non-partner emission factors. For the other

14 types of production and processing (i.e., permanent mold, wrought, and anode casting), emissions were estimated 15 by multiplying the industry emission factors with the metal production or consumption statistics obtained from

by multiplying the industry emission factors with the metal production or consumption statistics obtained from
 USGS (USGS 2018). USGS data for 2018 was not yet available at the time of the analysis, so the 2016 values were

held constant through 2018 as a proxy. Where data was submitted late or with errors for 2018 through the GHGRP

18 EPA held values constant at previous year's levels for emissions.

¹⁹ Uncertainty and Time-Series Consistency

20 Uncertainty surrounding the total estimated emissions in 2018 is attributed to the uncertainties around SF₆, HFC-

21 134a, and CO₂ emission estimates. To estimate the uncertainty surrounding the estimated 2018 SF₆ emissions from

22 magnesium production and processing, the uncertainties associated with three variables were estimated: (1)

23 emissions reported by magnesium producers and processors for 2018 through EPA's GHGRP, (2) emissions

- estimated for magnesium producers and processors that reported via the Partnership in prior years but did not
- 25 report 2018 emissions through EPA's GHGRP, and (3) emissions estimated for magnesium producers and
- 26 processors that did not participate in the Partnership or report through EPA's GHGRP. An uncertainty of 5 percent
- 27 was assigned to the emissions (usage) data reported by each GHGRP reporter for all the cover and carrier gases
- 28 (per the 2006 IPCC Guidelines). If facilities did not report emissions data during the current reporting year through
- 29 EPA's GHGRP, SF₆ emissions data were held constant at the most recent available value reported through the
- 30 Partnership. The uncertainty associated with these values was estimated to be 30 percent for each year of

1 extrapolation. The uncertainty of the total inventory estimate remained relatively constant between 2017 and 2 2018.

- 3 Alternate cover gas and carrier gases data was set equal to zero if the facilities did not report via the GHGRP. For
- 4 those industry processes that are not represented in the Partnership, such as permanent mold and wrought
- 5 casting, SF₆ emissions were estimated using production and consumption statistics reported by USGS and
- 6 estimated process-specific emission factors (see Table 4-87). The uncertainties associated with the emission
- 7 factors and USGS-reported statistics were assumed to be 75 percent and 25 percent, respectively. Emissions
- 8 associated with die casting and sand casting activities utilized emission factors based on Partner reported data
- 9 with an uncertainty of 75 percent. In general, where precise quantitative information was not available on the
- 10 uncertainty of a parameter, a conservative (upper-bound) value was used.
- 11 Additional uncertainties exist in these estimates that are not addressed in this methodology, such as the basic
- 12 assumption that SF₆ neither reacts nor decomposes during use. The melt surface reactions and high temperatures
- 13 associated with molten magnesium could potentially cause some gas degradation. Previous measurement studies
- 14 have identified SF₆ cover gas degradation in die casting applications on the order of 20 percent (Bartos et al. 2007).
- 15 Sulfur hexafluoride may also be used as a cover gas for the casting of molten aluminum with high magnesium 16 content; however, the extent to which this technique is used in the United States is unknown.
- 17
- The results of this Approach 2 quantitative uncertainty analysis are summarized in Table 4-87. Total emissions 18
- associated with magnesium production and processing were estimated to be between 1.11 and 1.28 MMT CO₂ Eq.

19 at the 95 percent confidence level. This indicates a range of approximately 7 percent below to 7 percent above the 2018 emission estimate of 1.20 MMT CO₂ Eq. The uncertainty estimates for 2018 are similar to the uncertainty 20

21 reported for 2017 in the previous Inventory.

22 Table 4-87: Approach 2 Quantitative Uncertainty Estimates for SF₆, HFC-134a and CO₂ Emissions from Magnesium Production and Processing (MMT CO₂ Eq. and Percent) 23

Source	Gas	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate ^a				
Source Gas		(MMT CO₂ Eq.)	(MMT CO₂ Eq.)		(%)		
			Lower	Upper	Lower	Upper	
			Bound	Bound	Bound	Bound	
Magnesium	SF ₆ , HFC-	1.20	1.11	1.28	-7%	7%	
Production	134a, CO ₂						

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

- 24 Methodological approaches were applied to the entire time series to ensure time-series consistency from 1990
- 25 through 2018. Details on the emission trends through time are described in more detail in the Methodology
- 26 section, above.

QA/QC and Verification 27

- 28 For the GHGRP data, EPA verifies annual facility-level reports through a multi-step process (e.g., including a
- 29 combination of pre-and post-submittal electronic checks and manual reviews by staff) to identify potential errors
- and ensure that data submitted to EPA are accurate, complete, and consistent (EPA 2015).⁶⁵ Based on the results 30
- 31 of the verification process, EPA follows up with facilities to resolve mistakes that may have occurred. The post-
- 32 submittals checks are consistent with a number of general and category-specific QC procedures, including: range
- 33 checks, statistical checks, algorithm checks, and year-to-year checks of reported data and emissions.

⁶⁵ GHGRP Report Verification Factsheet. https://www.epa.gov/sites/production/files/2015- 07/documents/ghgrp_verification_factsheet.pdf>.

- 1 For more information on the general QA/QC process applied to this source category, consistent with Volume 1,
- 2 Chapter 6 of the 2006 IPCC Guidelines, see the QA/QC and Verification Procedures section in the introduction of
- the IPPU chapter and Annex 8 for more details. 3

Recalculations Discussion 4

- 5 In a few instances GHGRP facilities revised their GHGRP reports due to previously identified reporting errors in
- 6 2016, resulting in a change of SF6 emissions for die casting and sand casting in 2016. The emission factors for die
- 7 casting shown in table 4-86 were updated by holding activity data constant at 2012 levels between 2009 to 2012
- 8 based on additional information from USGS on activity data.

Planned Improvements 9

- Cover gas research conducted over the last decade has found that SF₆ used for magnesium melt protection can 10
- 11 have degradation rates on the order of 20 percent in die casting applications (Bartos et al. 2007). Current emission
- 12 estimates assume (per the 2006 IPCC Guidelines) that all SF₆ utilized is emitted to the atmosphere. Additional
- 13 research may lead to a revision of the 2006 IPCC Guidelines to reflect this phenomenon and until such time,
- 14 developments in this sector will be monitored for possible application to the Inventory methodology. Usage and
- 15 emission details of carrier gases in permanent mold, wrought, and anode processes will be researched as part of a
- 16 future Inventory. Based on this research and data from a permanent mold facility newly reporting the GHGRP, it
 - 17 will be determined if CO₂ carrier gas emissions are to be estimated.
 - 18 Additional emissions are generated as byproducts from the use of alternate cover gases, which are not currently
 - 19 accounted for. Research on this topic is developing, and as reliable emission factors become available, these 20 emissions will be incorporated into the Inventory.

4.21 Lead Production (CRF Source Category 21 **2C5**)

22

23 In 2018, lead was produced in the United States only using secondary production processes. Until 2014, both lead

24 production in the United States involved both primary and secondary processes—both of which emit carbon

dioxide (CO₂) (Sjardin 2003). Emissions from fuels consumed for energy purposes during the production of lead are 25

- 26 accounted for in the Energy chapter.
- 27 Primary production of lead through the direct smelting of lead concentrate produces CO₂ emissions as the lead
- 28 concentrates are reduced in a furnace using metallurgical coke (Sjardin 2003). Primary lead production, in the form
- 29 of direct smelting, previously occurred at a single smelter in Missouri. This primary lead smelter was closed at the
- 30 end of 2013. In 2014, the smelter processed a small amount of residual lead during demolition of the site (USGS
- 31 2015) and in 2018 the smelter processed no lead (USGS 2016, 2019).
- 32 Similar to primary lead production, CO₂ emissions from secondary lead production result when a reducing agent,
- 33 usually metallurgical coke, is added to the smelter to aid in the reduction process. Carbon dioxide emissions from
- 34 secondary production also occur through the treatment of secondary raw materials (Sjardin 2003). Secondary
- 35 production primarily involves the recycling of lead acid batteries and post-consumer scrap at secondary smelters.
- 36 Secondary lead production has increased in the United States over the past decade while primary lead production 37 has decreased to production levels of zero. In 2018, secondary lead production accounted for 100 percent of total
- 38 lead production. The lead-acid battery industry accounted for more than 85 percent of the reported U.S. lead
- consumption in 2018 (USGS 2019). 39
- 40 In 2018, total secondary lead production in the United States was slightly higher than that in 2017. A new
- 41 secondary lead refinery, located in Nevada, was completed in 2016 and production was expected to begin by the

- 1 end of the year. The plant was expected to produce about 80 tons per day of high-purity refined lead for use in
- 2 advanced lead-acid batteries using an electromechanical battery recycling technology system. The United States
- 3 has become more reliant on imported refined lead in recent years owing to the closure of the last primary lead
- 4 smelter in 2013. Exports of spent SLI batteries have been generally decreasing since 2014. During the first 10
- 5 months of 2018, however, 22.9 million spent SLI lead-acid batteries were exported, which was 44 percent more
- 6 than exports in 2017 (USGS 2019).
- 7 As in 2017, U.S. primary lead production remained at production levels of zero for 2018. This is due to the closure
- 8 of the only domestic primary lead smelter in 2013 (year-end), as stated previously. In 2018, U.S. secondary lead
- 9 production increased from 2017 levels (increase of 15 percent), and has increased by 41 percent since 1990 (USGS
- 10 1995 through 2019).
- In 2018, U.S. lead production totaled 1,300,000 metric tons (USGS 2019). The resulting emissions of CO₂ from 2018 11
- 12 lead production were estimated to be 0.6 MMT CO₂ Eq. (585 kt) (see Table 4-88). The 2016 and 2017 CO₂ values
- 13 were also updated and are summarized in Table 4-88 (USGS 2019).
- 14 At last reporting, the United States was the fourth largest mine producer of lead in the world, behind China,
- Australia, and Peru accounting for approximately 6 percent of world production in 2018 (USGS 2019). 15

16 Table 4-88: CO₂ Emissions from Lead Production (MMT CO₂ Eq. and kt)

Year	MMT CO ₂ Eq.	kt
1990	0.5	516
2005	0.6	553
2014	0.5	459
2015	0.5	473
2016	0.4	444
2017	0.5	509
2018	0.6	585

17 After a steady increase in total emissions from 1995 to 2000, total emissions have gradually decreased since 2000

18 and are currently 13 percent higher than 1990 levels.

Methodology 19

- The methods used to estimate emissions for lead production⁶⁶ are based on Siardin's work (Siardin 2003) for lead 20
- production emissions and Tier 1 methods from the 2006 IPCC Guidelines. The Tier 1 equation is as follows: 21

$$CO_2 \ Emissions = (DS \times EF_{DS}) + (S \times EF_S)$$

23 where,

22

24 25 26	DS S	= =	Lead produced by direct smelting, metric ton Lead produced from secondary materials
27	EF _{DS} EFs	=	Emission factor for direct Smelting, metric tons CO ₂ /metric ton lead product Emission factor for secondary materials, metric tons CO ₂ /metric ton lead product

For primary lead production using direct smelting, Sjardin (2003) and the IPCC (2006) provide an emission factor of 28 29

^{0.25} metric tons CO₂/metric ton lead. For secondary lead production, Sjardin (2003) and IPCC (2006) provide an

⁶⁶ EPA has not integrated aggregated facility-level Greenhouse Gas Reporting Program (GHGRP) information to inform these estimates. The aggregated information (e.g., activity data and emissions) associated with Lead Production did not meet criteria to shield underlying confidential business information (CBI) from public disclosure.

- 1 emission factor of 0.25 metric tons CO₂/metric ton lead for direct smelting, as well as an emission factor of 0.2
- 2 metric tons CO₂/metric ton lead produced for the treatment of secondary raw materials (i.e., pretreatment of lead
- acid batteries). Since the secondary production of lead involves both the use of the direct smelting process and the
- 4 treatment of secondary raw materials, Sjardin recommends an additive emission factor to be used in conjunction
- with the secondary lead production quantity. The direct smelting factor (0.25) and the sum of the direct smelting
 and pretreatment emission factors (0.45) are multiplied by total U.S. primary and secondary lead production,
- $^{\circ}$ respectively, to estimate CO₂ emissions.
- 8 The production and use of coking coal for lead production is adjusted for within the Energy chapter as this fuel was
- 9 consumed during non-energy related activities. Additional information on the adjustments made within the Energy
- sector for Non-Energy Use of Fuels is described in both the Methodology section of CO₂ from Fossil Fuel
- 11 Combustion (3.1 Fossil Fuel Combustion (CRF Source Category 1A)) and Annex 2.1, Methodology for Estimating
- 12 Emissions of CO₂ from Fossil Fuel Combustion.
- 13 The 1990 through 2018 activity data for primary and secondary lead production (see Table 4-89) were obtained
- 14 from the U.S. Geological Survey (USGS 1995 through 2019). The 2016 and 2017 lead production values were also
- 15 updated and are summarized in Table 4-89 (USGS 2019).

Year	Primary	Secondary
1990	404,000	922,000
2005	143,000	1,150,000
2014	1,000	1,020,000
2015	0	1,050,000
2016	0	986,000
2017	0	1,130,000
2018	0	1,300,000

16 **Table 4-89: Lead Production (Metric Tons)**

¹⁷ Uncertainty and Time-Series Consistency – TO BE UPDATED ¹⁸ FOR FINAL INVENTORY REPORT

- 19 Uncertainty associated with lead production relates to the emission factors and activity data used. The direct
- 20 smelting emission factor used in primary production is taken from Sjardin (2003) who averaged the values
- 21 provided by three other studies (Dutrizac et al. 2000; Morris et al. 1983; Ullman 1997). For secondary production,
- 22 Sjardin (2003) added a CO₂ emission factor associated with battery treatment. The applicability of these emission
- factors to plants in the United States is uncertain. There is also a smaller level of uncertainty associated with the
- accuracy of primary and secondary production data provided by the USGS which is collected via voluntary surveys;
- 25 the uncertainty of the activity data is a function of the reliability of reported plant-level production data and the
- 26 completeness of the survey response.
- 27 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-90. Lead production CO₂
- 28 emissions in 2018 were estimated to be between 0.4 and 0.5 MMT CO₂ Eq. at the 95 percent confidence level. This
- indicates a range of approximately 15 percent below and 15 percent above the emission estimate of 0.5 MMT CO₂
- 30 Eq.

1 Table 4-90: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from Lead

2	Production	(MMT	CO ₂ Eq.	and Percent))
---	------------	------	---------------------	--------------	---

(MMT CO ₂ Eq.) (%) Lower Upper Lower Up Bound Bound Bound Bo	Source	Gas	2018 Emission Estimate	018 Emission Estimate Uncertainty F		Range Relative to Emission Estimate ^a			
Bound Bound Bound Bo	Source	Gas	(MMT CO ₂ Eq.)	(MMT	CO2 Eq.)		(%)		
				Lower	Upper	Lower	Upper		
				Bound	Bound	Bound	Bound		
Lead Production CO_2 0.5 0.4 0.5 -15% +1	Lead Productio	n CO ₂	0.5	0.4	0.5	-15%	+15%		

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

3 Methodological approaches discussed below were applied to applicable years to ensure time-series consistency in

emissions from 1990 through 2018. Details on the emission trends through time are described in more detail in the
 Methodology section, above.

6 Recalculations Discussion

7 For the current Inventory, 1990 through 2018, updated USGS data on lead was available. The revised production

- 8 values used in the current Inventory resulted in revised emissions estimates for the years 2016 and 2017.
- 9 Compared to the previous Inventory, 1990 through 2017, emissions in the current Inventory for 2016 decreased by
- 10 approximately 1 percent (6 kt) and increased 12 percent (54 kt) for 2017.

11 QA/QC and Verification

12 For more information on the general QA/QC process applied to this source category, consistent with Volume 1,

- 13 Chapter 6 of the *2006 IPCC Guidelines*, see the QA/QC and Verification Procedures section in the introduction of 14 the IPPU chapter.
- 15 Initial review of activity data show that EPA's GHGRP Subpart R lead production data and resulting emissions differ
- 16 from those reported by USGS by between 2 percent and 18 percent across the 2012 through 2017 time-series. EPA
- is still reviewing available GHGRP data, reviewing QC analysis to understand differences in data reporting (i.e.,
- 18 threshold implications), and assessing the possibility of including this planned improvement in future Inventory
- 19 reports (see Planned Improvements section below). Currently, GHGRP data is used for QA purposes only.

20 Planned Improvements

- 21 Pending resources and prioritization of improvements for more significant sources, EPA will continue to evaluate
- 22 and analyze data reported under EPA's GHGRP that would be useful to improve the emission estimates and
- 23 category-specific QC for the Lead Production source category, in particular considering completeness of reported
- lead production given the reporting threshold. Particular attention will be made to ensuring time-series
- 25 consistency of the emissions estimates presented in future Inventory reports, consistent with IPCC and UNFCCC
- 26 guidelines. This is required as the facility-level reporting data from EPA's GHGRP, with the program's initial
- 27 requirements for reporting of emissions in calendar year 2010, are not available for all inventory years (i.e., 1990
- through 2009) as required for this Inventory. In implementing improvements and integration of data from EPA's
- 29 GHGRP, the latest guidance from the IPCC on the use of facility-level data in national inventories will be relied
- 30 upon.⁶⁷

⁶⁷ See <http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

4.22 Zinc Production (CRF Source Category 2 2C6)

Zinc production in the United States consists of both primary and secondary processes. Of the primary and
 secondary processes used in the United States, only the electrothermic and Waelz kiln secondary processes result
 in non-energy carbon dioxide (CO₂) emissions (Viklund-White 2000). Emissions from fuels consumed for energy
 purposes during the production of zinc are accounted for in the Energy chapter.

7 The majority of zinc produced in the United States is used for galvanizing. Galvanizing is a process where zinc 8 coating is applied to steel in order to prevent corrosion. Zinc is used extensively for galvanizing operations in the 9 automotive and construction industry. Zinc is also used in the production of zinc alloys and brass and bronze alloys 10 (e.g., brass mills, copper foundries, and copper ingot manufacturing). Zinc compounds and dust are also used, to a 11 lasser extent by the agriculture, chemicale, paint, and rubber inductries.

11 lesser extent, by the agriculture, chemicals, paint, and rubber industries.

12 Primary production in the United States is conducted through the electrolytic process, while secondary techniques

13 include the electrothermic and Waelz kiln processes, as well as a range of other metallurgical, hydrometallurgical,

and pyrometallurgical processes. Worldwide primary zinc production also employs a pyrometallurgical process

using the Imperial Smelting Furnace process; however, this process is not used in the United States (Sjardin 2003).

16 In the electrothermic process, roasted zinc concentrate and secondary zinc products enter a sinter feed where

17 they are burned to remove impurities before entering an electric retort furnace. Metallurgical coke is added to the

18 electric retort furnace as a carbon-containing reductant. This concentration step, using metallurgical coke and high

19 temperatures, reduces the zinc oxides and produces vaporized zinc, which is then captured in a vacuum

20 condenser. This reduction process also generates non-energy CO₂ emissions.

21	$ZnO + C \rightarrow Zn(gas) + CO_2$	(Reaction 1)
22	$ZnO + CO \rightarrow Zn(gas) + CO_2$	(Reaction 2)

In the Waelz kiln process, electric arc furnace (EAF) dust, which is captured during the recycling of galvanized steel, enters a kiln along with a reducing agent (typically carbon-containing metallurgical coke). When kiln temperatures reach approximately 1,100 to 1,200 degrees Celsius, zinc fumes are produced, which are combusted with air entering the kiln. This combustion forms zinc oxide, which is collected in a baghouse or electrostatic precipitator, and is then leached to remove chloride and fluoride. The use of carbon-containing metallurgical coke in a hightemperature fuming process results in non-energy CO₂ emissions. Through this process, approximately 0.33 metric

tons of zinc is produced for every metric ton of EAF dust treated (Viklund-White 2000).

30 The only companies in the United States that use emissive technology to produce secondary zinc products are

31 American Zinc Recycling (AZR) (formerly "Horsehead Corporation"), PIZO, and Steel Dust Recycling (SDR). For AZR,

32 EAF dust is recycled in Waelz kilns at their Calumet, IL; Palmerton, PA; Rockwood, TN; and Barnwell, SC facilities.

33 These Waelz kiln facilities produce intermediate zinc products (crude zinc oxide or calcine), most of which was

34 transported to their Monaca, PA facility where the products were smelted into refined zinc using electrothermic

technology. In April 2014, AZR permanently shut down their Monaca smelter. This was replaced by their new

36 facility in Mooresboro, NC. The new Mooresboro facility uses a hydrometallurgical process (i.e., solvent extraction

with electrowinning technology) to produce zinc products. The current capacity of the new facility is 155,000 short
 tons, with plans to expand to 170,000 short tons per year. Direct consumption of coal, coke, and natural gas have

been replaced with electricity consumption at the new Mooresboro facility. The new facility is reported to have a

40 significantly lower greenhouse gas and other air emissions than the Monaca smelter (Horsehead 2012b).

41 The Mooresboro facility uses leaching and solvent extraction (SX) technology combined with electrowinning,

42 melting, and casting technology. In this process, Waelz Oxide (WOX) is first washed in water to remove soluble

elements such as chlorine, potassium, and sodium, and then is leached in a sulfuric acid solution to dissolve the

44 contained zinc creating a pregnant liquor solution (PLS). The PLS is then processed in a solvent extraction step in

45 which zinc is selectively extracted from the PLS using an organic solvent creating a purified zinc-loaded electrolyte

- 1 solution. The loaded electrolyte solution is then fed into the electrowinning process in which electrical energy is
- 2 applied across a series of anodes and cathodes submerged in the electrolyte solution causing the zinc to deposit on
- 3 the surfaces of the cathodes. As the zinc metal builds up on these surfaces, the cathodes are periodically harvested
- 4 in order to strip the zinc from their surfaces (Horsehead 2015). Hydrometallurgical production processes are
- 5 assumed to be non-emissive since no carbon is used in these processes (Sjardin 2003).
- PIZO and SDR recycle EAF dust into intermediate zinc products using Waelz kilns, and then sell the intermediate
 products to companies who smelt it into refined products.
- 8 Emissions of CO₂ from zinc production in 2018 were estimated to be 1.0 MMT CO₂ Eq. (1,009 kt CO₂) (see Table
- 9 4-91). All 2018 CO₂ emissions resulted from secondary zinc production processes. Emissions from zinc production
- 10 in the United States have increased overall since 1990 due to a gradual shift from non-emissive primary production
- 11 to emissive secondary production. In 2018, emissions were estimated to be 60 percent higher than they were in
- 12 1990.

13 Table 4-91: CO₂ Emissions from Zinc Production (MMT CO₂ Eq. and kt)

Year	MMT CO ₂ Eq.	kt
1990	0.6	632
2005	1.0	1,030
2014	1.0	956
2015	0.9	933
2016	0.9	925
2017	1.0	1,009
2018	1.0	1,009

14 In 2018, United States primary and secondary refined zinc production were estimated to total 130,000 metric tons

15 (USGS 2019) (see Table 4-92). Domestic zinc mine production increased slightly in 2018, owing to the addition of

16 production from a reopened mine in New York (USGS 2019). Refined zinc production decreased slightly owing to

17 maintenance outages at the Clarksville, TN, smelter (USGS 2019). Primary zinc production (primary slab zinc)

- decreased by fourteen percent in 2018, while secondary zinc production in 2018 increased by 93 percent relative
- 19 to 2017.

20 Table 4-92: Zinc Production (Metric Tons)

Year	Primary	Secondary	Total
1990	262,704	95,708	358,412
2005	191,120	156,000	347,120
2014	110,000	70,000	180,000
2015	125,000	50,000	175,000
2016	111,000	15,000	126,000
2017	117,000	15,000	132,000
2018	101,000	29,000	130,000

Methodology 1

2 3 4	The methods used to estimate non-energy CO ₂ emissions from zinc production ⁶⁸ using the electrothermic prima production and Waelz kiln secondary production processes are based on Tier 1 methods from the 2006 IPCC Guidelines (IPCC 2006). The Tier 1 equation used to estimate emissions from zinc production is as follows:	ry
5	$E_{CO2} = Zn \times EF_{default}$	
6	where,	
7 8 9	E_{CO2}=CO2 emissions from zinc production, metric tonsZn=Quantity of zinc produced, metric tonsEFdefault=Default emission factor, metric tons CO2/metric ton zinc produced	
-		

10

11 The Tier 1 emission factors provided by IPCC for Waelz kiln-based secondary production were derived from coke

12 consumption factors and other data presented in Vikland-White (2000). These coke consumption factors as well as

13 other inputs used to develop the Waelz kiln emission factors are shown below. IPCC does not provide an emission

14 factor for electrothermic processes due to limited information; therefore, the Waelz kiln-specific emission factors

15 were also applied to zinc produced from electrothermic processes. Starting in 2014, refined zinc produced in the

16 United States used hydrometallurgical processes and is assumed to be non-emissive.

17 For Waelz kiln-based production, IPCC recommends the use of emission factors based on EAF dust consumption, if

18 possible, rather than the amount of zinc produced since the amount of reduction materials used is more directly

19 dependent on the amount of EAF dust consumed. Since only a portion of emissive zinc production facilities

20 consume EAF dust, the emission factor based on zinc production is applied to the non-EAF dust consuming facilities 21 while the emission factor based on EAF dust consumption is applied to EAF dust consuming facilities.

22

The Waelz kiln emission factor based on the amount of zinc produced was developed based on the amount of 23 metallurgical coke consumed for non-energy purposes per ton of zinc produced (i.e., 1.19 metric tons coke/metric

24 ton zinc produced) (Viklund-White 2000), and the following equation:

25
$$EF_{Waelz \ Kiln} = \frac{1.19 \ metric \ tons \ coke}{metric \ tons \ zinc} \times \frac{0.85 \ metric \ tons \ C}{metric \ tons \ coke} \times \frac{3.67 \ metric \ tons \ CO_2}{metric \ tons \ C} = \frac{3.70 \ metric \ tons \ CO_2}{metric \ tons \ zinc}$$

26 The Waelz kiln emission factor based on the amount of EAF dust consumed was developed based on the amount

27 of metallurgical coke consumed per ton of EAF dust consumed (i.e., 0.4 metric tons coke/metric ton EAF dust

28 consumed) (Viklund-White 2000), and the following equation:

29
$$EF_{EAF Dust} = \frac{0.4 \text{ metric tons coke}}{\text{metric tons EAF Dust}} \times \frac{0.85 \text{ metric tons C}}{\text{metric tons coke}} \times \frac{3.67 \text{ metric tons CO}_2}{\text{metric tons C}} = \frac{1.24 \text{ metric tons CO}_2}{\text{metric tons EAF Dust}}$$

30 The total amount of EAF dust consumed by AZR at their Waelz kilns was available from AZR (formerly "Horsehead

31 Corporation") financial reports for years 2006 through 2015 (Horsehead 2007, 2008, 2010a, 2011, 2012a, 2013,

32 2014, 2015, and 2016). Total EAF dust consumed by AZR at their Waelz kilns was not available for 2018 so 2015.

33 data was used as proxy. Consumption levels for 1990 through 2005 were extrapolated using the percentage

34 change in annual refined zinc production at secondary smelters in the United States as provided by the U.S.

35 Geological Survey (USGS) Minerals Yearbook: Zinc (USGS 1995 through 2006). The EAF dust consumption values for

⁶⁸ EPA has not integrated aggregated facility-level Greenhouse Gas Reporting Program (GHGRP) information to inform these estimates. The aggregated information (e.g., activity data and emissions) associated with Zinc Production did not meet criteria to shield underlying confidential business information (CBI) from public disclosure.

1 each year were then multiplied by the 1.24 metric tons CO₂/metric ton EAF dust consumed emission factor to

- 2 develop CO₂ emission estimates for AZR's Waelz kiln facilities.
- 3 The amount of EAF dust consumed by SDR and their total production capacity were obtained from SDR's facility in

4 Alabama for the years 2011 through 2017 (SDR 2012, 2014, 2015, and 2017). SDR data for 2018 was not available

- 5 at time of Public Review so 2017 data was used as a proxy. SDR's facility in Alabama underwent expansion in 2011
- 6 to include a second unit (operational since early- to mid-2012). SDR's facility has been operational since 2008.
- 7 Annual consumption data for SDR was not publicly available for the years 2008, 2009, and 2010. These data were
- 8 estimated using data for AZR's Waelz kilns for 2008 through 2010 (Horsehead 2007, 2008, 2010a, 2010b, and
- 9 2011). Annual capacity utilization ratios were calculated using AZR's annual consumption and total capacity for the
- 10 years 2008 through 2010. AZR's annual capacity utilization ratios were multiplied with SDR's total capacity to
- estimate SDR's consumption for each of the years, 2008 through 2010 (SDR 2013).
- 12 PIZO Technologies Worldwide LLC's facility in Arkansas has been operational since 2009. The amount of EAF dust
- 13 consumed by PIZO's facility for 2009 through 2018 was not publicly available. EAF dust consumption for PIZO's
- facility for 2009 and 2010 were estimated by calculating annual capacity utilization of AZR's Waelz kilns and
- multiplying this utilization ratio by PIZO's total capacity (PIZO 2012). EAF dust consumption for PIZO's facility for
- 16 2011 through 2018 were estimated by applying the average annual capacity utilization rates for AZR and SDR
- 17 (Grupo PROMAX) to PIZO's annual capacity (Horsehead 2012, 2013, 2014, 2015, and 2016; SDR 2012, 2014 and
- 18 2017; PIZO 2012, 2014 and 2017). The 1.24 metric tons CO₂/metric ton EAF dust consumed emission factor was
- 19 then applied to PIZO's and SDR's estimated EAF dust consumption to develop CO₂ emission estimates for those
- 20 Waelz kiln facilities.
- 21 Refined zinc production levels for AZR's Monaca, PA facility (utilizing electrothermic technology) were available
- from the company for years 2005 through 2013 (Horsehead 2008, 2011, 2012, 2013, and 2014). The Monaca
- facility was permanently shut down in April 2014 and was replaced by AZR's new facility in Mooresboro, NC. The
- new facility uses hydrometallurgical process to produce refined zinc products. This process is assumed to be non-
- emissive. Production levels for 1990 through 2004 were extrapolated using the percentage changes in annual refined zinc production at secondary smelters in the United States as provided by USGS *Minerals Yearbook: Zinc*
- refined zinc production at secondary smelters in the United States as provided by USGS *Minerals Yearbook: Zinc* (USGS 1995 through 2005). The 3.70 metric tons CO₂/metric ton zinc emission factor was then applied to the
- Monaca facility's production levels to estimate CO₂ emissions for the facility. The Waelz kiln production emission
- factor was applied in this case rather than the EAF dust consumption emission factor since AZR's Monaca facility
- 30 did not consume EAF dust.
- 31 The production and use of coking coal for zinc production is adjusted for within the Energy chapter as this fuel was
- 32 consumed during non-energy related activities. Additional information on the adjustments made within the Energy
- 33 sector for Non-Energy Use of Fuels is described in both the Methodology section of CO₂ from Fossil Fuel
- 34 Combustion (3.1 Fossil Fuel Combustion (CRF Source Category 1A)) and Annex 2.1, Methodology for Estimating
- 35 Emissions of CO₂ from Fossil Fuel Combustion.
- 36 Beginning with the 2017 USGS *Minerals Commodity Summary: Zinc*, United States primary and secondary refined
- 37 zinc production were reported as one value, total refined zinc production. Prior to this publication, primary and
- 38 secondary refined zinc production statistics were reported separately. For the current Inventory report, EPA
- 39 sought expert judgement from the USGS mineral commodity expert to assess approaches for splitting total
- 40 production into primary and secondary values. For years 2016 through 2018, only one facility produced primary
- 2 zinc. Primary zinc produced from this facility was subtracted from the USGS 2016-2018 total zinc production
- 42 statistic to estimate secondary zinc production for these years.

⁴³ Uncertainty and Time-Series Consistency – TO BE UPDATED ⁴⁴ FOR FINAL INVENTORY REPORT

- 45 The uncertainty associated with these estimates is two-fold, relating to activity data and emission factors used.
- 46 First, there is uncertainty associated with the amount of EAF dust consumed in the United States to produce 47 secondary zinc using emission-intensive Waelz kilps. The estimate for the total amount of EAE dust consumed in
- 47 secondary zinc using emission-intensive Waelz kilns. The estimate for the total amount of EAF dust consumed in

- 1 Waelz kilns is based on (1) an EAF dust consumption value reported annually by AZR/Horsehead Corporation as
- 2 part of its financial reporting to the Securities and Exchange Commission (SEC), and (2) an EAF dust consumption
- 3 value obtained from the Waelz kiln facility operated in Alabama by Steel Dust Recycling LLC. Since actual EAF dust
- 4 consumption information is not available for PIZO's facility (2009 through 2010) and SDR's facility (2008 through
- 5 2010), the amount is estimated by multiplying the EAF dust recycling capacity of the facility (available from the
- 6 company's website) by the capacity utilization factor for AZR (which is available from Horsehead Corporation
- 7 financial reports). Also, the EAF dust consumption for PIZO's facility for 2011 through 2016 was estimated by
- 8 multiplying the average capacity utilization factor developed from AZR and SDR's annual capacity utilization rates
 9 by PIZO's EAF dust recycling capacity. Therefore, there is uncertainty associated with the assumption used to
- by PIZO's EAF dust recycling capacity. Therefore, there is uncertainty associated with the assumption used to
 estimate PIZO and SDR's annual EAF dust consumption values (except SDR's EAF dust consumption for 2011
- 11 through 2017, which were obtained from SDR's recycling facility in Alabama).
- 12 Second, there is uncertainty associated with the emission factors used to estimate CO₂ emissions from secondary
- 13 zinc production processes. The Waelz kiln emission factors are based on materials balances for metallurgical coke
- and EAF dust consumed as provided by Viklund-White (2000). Therefore, the accuracy of these emission factors
- 15 depend upon the accuracy of these materials balances. Data limitations prevented the development of emission
- 16 factors for the electrothermic process. Therefore, emission factors for the Waelz kiln process were applied to both
- 17 electrothermic and Waelz kiln production processes.
- 18 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-93. Zinc production CO₂
- 19 emissions from 2017 were estimated to be between 0.8 and 1.2 MMT CO₂ Eq. at the 95 percent confidence level.
- 20 This indicates a range of approximately 16 percent below and 16 percent above the emission estimate of 1.0 MMT
- 21 CO₂ Eq.

Table 4-93: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from Zinc Production (MMT CO₂ Eq. and Percent)

Gas	2018 Emission Estimate	Uncerta	inty Range Relativ	e to Emission Esti	mateª		
	(MMT CO₂ Eq.)	(MMT C	(MMT CO ₂ Eq.)		(MMT CO ₂ Eq.) (%))
		Lower	Upper	Lower	Upper		
		Bound	Bound	Bound	Bound		
CO ₂	1.0	0.8	1.2	-16%	+16%		
		Gas Estimate (MMT CO ₂ Eq.)	Gas Estimate Uncerta (MMT CO ₂ Eq.) (MMT CO Lower Bound	Gas Estimate (MMT CO2 Eq.) Uncertainty Range Relative (MMT CO2 Eq.) Lower Upper Bound	Gas Estimate Uncertainty Range Relative to Emission Estin (MMT CO2 Eq.) (MMT CO2 Eq.) (% Lower Upper Lower Bound Bound Bound		

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

24 Methodological approaches were applied to the entire time series to ensure consistency in emissions from 1990

25 through 2017. Details on the emission trends through time are described in more detail in the Methodology

26 section, above.

27 QA/QC and Verification

28 For more information on the general QA/QC process applied to this source category, consistent with Volume 1,

29 Chapter 6 of the 2006 IPCC Guidelines, see the QA/QC and Verification Procedures section in the introduction of 30 the IPPU chapter.

31 Planned Improvements

32 Pending resources and prioritization of improvements for more significant sources, EPA will continue to evaluate

33 and analyze data reported under EPA's GHGRP that would be useful to improve the emission estimates and

34 category-specific QC for the Zinc Production source category, in particular considering completeness of reported

zinc production given the reporting threshold. Given the small number of facilities in the United States, particular

attention will be made to risks for disclosing CBI and ensuring time series consistency of the emissions estimates

- 37 presented in future Inventory reports, consistent with IPCC and UNFCCC guidelines. This is required as the facility-
- 38 level reporting data from EPA's GHGRP, with the program's initial requirements for reporting of emissions in

- 1 calendar year 2010, are not available for all inventory years (i.e., 1990 through 2009) as required for this Inventory.
- 2 In implementing improvements and integration of data from EPA's GHGRP, the latest guidance from the IPCC on
- 3 the use of facility-level data in national inventories will be relied upon.⁶⁹ This is a long-term planned improvement
- 4 and EPA is still assessing the possibility of including this improvement in future Inventory reports.

4.23 Electronics Industry (CRF Source Category 2E)

- 7 The electronics industry uses multiple greenhouse gases in its manufacturing processes. In semiconductor
- 8 manufacturing, these include long-lived fluorinated greenhouse gases used for plasma etching and chamber
- 9 cleaning (CRF Source Category 2E1), fluorinated heat transfer fluids (CRF Source Category 2E4) used for
- 10 temperature control and other applications, and nitrous oxide (N₂O) used to produce thin films through chemical
- 11 vapor deposition (reported under CRF Source Category 2H3). Similar to semiconductor manufacturing, the
- 12 manufacturing of micro-electro-mechanical systems (MEMS) devices (reported under CRF Source Category 2E5
- 13 Other) and photovoltaic cells (CRF Source Category 2E3) requires the use of multiple long-lived fluorinated
- 14 greenhouse gases for various processes.
- 15 The gases most commonly employed in plasma etching and chamber cleaning are trifluoromethane (HFC-23 or

16 CHF₃), perfluoromethane (CF₄), perfluoroethane (C₂F₆), nitrogen trifluoride (NF₃), and sulfur hexafluoride (SF₆),

17 although other fluorinated compounds such as perfluoropropane (C₃F₈) and perfluorocyclobutane (c-C₄F₈) are also

- 18 used. The exact combination of compounds is specific to the process employed.
- 19 In addition to emission estimates for these seven commonly used fluorinated gases, this Inventory contains
- 20 emissions estimates for N_2O and a combination of other HFCs and unsaturated, low-GWP PFCs such as $C_5F_{8,}C_4F_6$,
- 21 HFC-32, and HFC-134a. These additional HFCs and PFCs are emitted from etching and chamber cleaning processes
- in much smaller amounts, accounting for less than 0.02 percent of emissions (in CO₂e) from these processes. These
- 23 gases have been grouped as "other fluorinated gases" for the purpose of this analysis.
- 24 For semiconductors, a single 300 mm silicon wafer that yields between 400 to 600 semiconductor products
- 25 (devices or chips) may require more than 100 distinct fluorinated-gas-using process steps, principally to deposit
- and pattern dielectric films. Plasma etching (or patterning) of dielectric films, such as silicon dioxide and silicon
- 27 nitride, is performed to provide pathways for conducting material to connect individual circuit components in each
- 28 device. The patterning process uses plasma-generated fluorine atoms, which chemically react with exposed
- dielectric film to selectively remove the desired portions of the film. The material removed as well as undissociated
- fluorinated gases flow into waste streams and, unless emission abatement systems are employed, into the atmosphere. Plasma enhanced chemical vapor deposition (PECVD) chambers, used for depositing dielectric film
- atmosphere. Plasma enhanced chemical vapor deposition (PECVD) chambers, used for depositing dielectric films,
 are cleaned periodically using fluorinated and other gases. During the cleaning cycle the gas is converted to
- fluorine atoms in plasma, which etches away residual material from chamber walls, electrodes, and chamber
- hardware. Undissociated fluorinated gases and other products pass from the chamber to waste streams and,
- 134 Inditivale. Ondissociated indominated gases and other products pass from the chamber to waste s
- 35 unless abatement systems are employed, into the atmosphere.
- 36 In addition to emissions of unreacted gases, some fluorinated compounds can also be transformed in the plasma
- 37 processes into different fluorinated compounds which are then exhausted, unless abated, into the atmosphere.
- 38 For example, when C₂F₆ is used in cleaning or etching, CF₄ is typically generated and emitted as a process
- byproduct. In some cases, emissions of the byproduct gas can rival or even exceed emissions of the input gas, as is
- 40 the case for NF₃ used in remote plasma chamber cleaning, which often generates CF₄ as a byproduct.

⁶⁹ See <http://www.ipcc-nggip.iges.or.jp/public/tb/TFI_Technical_Bulletin_1.pdf>.

- 1 Besides dielectric film etching and PECVD chamber cleaning, much smaller quantities of fluorinated gases are used
- 2 to etch polysilicon films and refractory metal films like tungsten.
- 3 Nitrous oxide is used in manufacturing semiconductor devices to produce thin films by CVD and nitridation
- processes as well as for N-doping of compound semiconductors and reaction chamber conditioning (Doering
 2000).
- 6 Liquid perfluorinated compounds are also used as heat transfer fluids (F-HTFs) for temperature control, device
- 7 testing, cleaning substrate surfaces and other parts, and soldering in certain types of semiconductor
- 8 manufacturing production processes. Leakage and evaporation of these fluids during use is a source of fluorinated
- 9 gas emissions (EPA 2006). Unweighted F-HTF emissions consist primarily of perfluorinated amines,
- 10 hydrofluoroethers, perfluoropolyethers (specifically, PFPMIEs), and perfluoroalkylmorpholines. One percent or less
- 11 consist of HFCs, PFCs, and SF₆ (where PFCs are defined as compounds including only carbon and fluorine). With the
- 12 exceptions of the hydrofluoroethers and most of the HFCs, all of these compounds are very long-lived in the
- 13 atmosphere and have global warming potentials (GWPs) near 10,000.⁷⁰
- 14 For 2018, total GWP-weighted emissions of all fluorinated greenhouse gases and N₂O from deposition, etching,
- and chamber cleaning processes in the U.S. semiconductor industry were estimated to be 5.1 MMT CO₂ Eq. Less
- 16 than 0.02 percent of total emissions from semiconductor manufacturing consist of a combination of HFCs other
- than HFC-23 and unsaturated, low-GWP PFCs including C₄F₆, C₄F₈O, C₅F₈, HFC-32, HFC-41, and HFC-134a. These
- 18 gases have been grouped as "Other F-GHGs". Emissions from all fluorinated greenhouse gases and N₂O are
- 19 presented in Table 4-94 and Table 4-95 below for the years 1990, 2005, and the period 2014 to 2018. Emissions of
- 20 F-HTFs that are HFCs, PFCs or SF₆ are presented in Table 4-94. Table 4-96 shows F-HTF emissions in tons by
- compound group based on reporting to EPA's GHGRP during years 2012 through 2018. Emissions of F-HTFs that
- are not HFCs, PFCs or SF₆ are not included in inventory totals and are included for informational purposes only.
- 23 The rapid growth of this industry and the increasing complexity (growing number of layers)⁷¹ of semiconductor
- products led to an increase in emissions of 153 percent between 1990 and 1999, when emissions peaked at 9.1
- 25 MMTCO₂ Eq. Emissions began to decline after 1999, reaching a low point in 2009 before rebounding slightly and
- 26 plateauing at the current level, which represents a 45 percent decline from 1999 levels. Together, industrial
- 27 growth, adoption of emissions reduction technologies (including but not limited to abatement technologies), and
- shifts in gas usages resulted in a net increase in emissions of approximately 41 percent between 1990 and 2018.
- 29 Total emissions from semiconductor manufacture in 2018 were similar to 2017 emissions, increasing by 3 percent.
- 30 The emissions reported by facilities manufacturing MEMS included emissions of C₂F₆, C₃F₈, C₄F₈, CF₄, HFC-23, NF₃,
- 31 and SF₆, and were equivalent to only 0.08 percent to 0.40 percent of the total reported emissions from
- 32 semiconductor manufacturing in 2011 to 2018. These emissions ranged from 0.0001 to 0.0185 MMT CO₂ Eq. from
- 33 1991 to 2018. Based upon information in the World Fab Forecast (WFF), it appears that some GHGRP reporters
- 34 that manufacture both semiconductors and MEMS are reporting their emissions as only from semiconductor
- 35 manufacturing (GHGRP reporters must choose a single classification per fab). Some fabs that reported as
- 36 manufacturing MEMS in 2011 also later reported their emissions as emissions from manufacturing
- 37 semiconductors. Thus, the decrease in estimated emissions from MEMS manufacturing between 2011 and 2018
- 38 may be partially due to emissions from some fabs being included in the MEMS estimates in the earlier years of the

⁷⁰ The GWP of PFPMIE, a perfluoropolyether used as an F-HTF, is included in the *IPCC Fourth Assessment Report* with a value of 10,300. The GWPs of the perfluorinated amines and perfluoroalkylmorpholines that are used as F-HTFs have not been evaluated in the peer-reviewed literature. However, evaluations by the manufacturer indicate that their GWPs are near 10,000 (78 FR 20632), which is expected given that these compounds are both saturated and fully fluorinated. EPA assigns a default GWP of 10,000 to compounds that are both saturated and fully fluorinated and that do not have chemical-specific GWPs in either the Fourth or the Fifth Assessment Reports.

⁷¹ Complexity is a term denoting the circuit required to connect the active circuit elements (transistors) on a chip. Increasing miniaturization, for the same chip size, leads to increasing transistor density, which, in turn, requires more complex interconnections between those transistors. This increasing complexity is manifested by increasing the levels (i.e., layers) of wiring, with each wiring layer requiring fluorinated gas usage for its manufacture.

- 1 GHGRP but are now included under semiconductor manufacturing emissions. Emissions from non-reporters have
- 2 not been estimated.
- 3 Total GWP-weighted emissions from manufacturing of photovoltaic cells were estimated to range from 0.0018
- 4 MMT CO₂ Eq. to 0.0247 MMT CO₂ Eq. from 1998 to 2018 and were equivalent to between 0.02 percent to 0.50
- 5 percent of the total reported emissions from semiconductor. Emissions from manufacturing of photovoltaic cells
- 6 were estimated based on reported data from a single manufacturer between 2015 and 2017. Reported emissions
- 7 from photovoltaic cell manufacturing consisted of CF₄, C₂F₆, C₄F₈, and CHF₃.
- 8 Emissions from all fluorinated greenhouse gases from photovoltaic and MEMS manufacturing are in the Table
- 9 below 1990, 2005, and the period 2014 to 2018. While EPA has developed an elementary methodology to estimate
- 10 emissions from non-reporters and to back-cast emissions from these sources for the entire time-series, there is
- 11 very high uncertainty associated with these emissions.
- 12 Only F-HTF emissions that consist of HFC, PFC and SF₆ are included in the Inventory totals; emissions of other F-
- 13 HTFs, which account for the vast majority of F-HTF emissions, are provided for informational purposes and are not
- 14 included in the Inventory totals. Since reporting of F-HTF emissions began under EPA's GHGRP in 2011, total F-HTF
- emissions (reported and estimated non-reported) have fluctuated between 0.6 MMT CO₂ Eq. and 1.1 MMT CO₂
- 16 Eq., with an overall declining trend. An analysis of the data reported to EPA's GHGRP indicates that F-HTF
- 17 emissions account for anywhere between 11 percent and 18 percent of total annual emissions (F-GHG, N₂O and F-
- 18 HTFs) from semiconductor manufacturing.⁷² Table 4-96 shows F-HTF emissions in tons by compound group based
- 19 on reporting to EPA's GHGRP during years 2012 through 2018.⁷³

Table 4-94: PFC, HFC, SF₆, NF₃, and N₂O Emissions from Electronics Manufacture⁷⁴ (MMT CO₂ Eq.)

Year	1990	2005	2014	2015	2016	2017	2018
CF ₄	0.8	1.1	1.5	1.5	1.5	1.6	1.7
C ₂ F ₆	2.0	2.0	1.4	1.3	1.2	1.2	1.1
C ₃ F ₈	+	0.1	0.1	0.1	0.1	0.1	0.1
C ₄ F ₈	0.0	0.1	0.1	0.1	0.1	0.1	0.1
HFC-23	0.2	0.2	0.3	0.3	0.3	0.4	0.4
SF ₆	0.5	0.7	0.7	0.7	0.8	0.7	0.8
NF ₃	+	0.5	0.5	0.6	0.6	0.6	0.6
Other F-GHGs	+	+	+	+	+	+	+
Total F-GHGs	3.6	4.6	4.6	4.7	4.7	4.6	4.8
N ₂ O	+	0.1	0.2	0.2	0.2	0.3	0.3
HFC, PFC and SF ₆ F-HTFs	0.000	0.028	0.026	0.019	0.018	0.021	0.020
MEMS	0.000	0.013	0.007	0.006	0.005	0.006	0.008
PV	0.000	0.014	0.030	0.037	0.025	0.025	0.025
Total	3.6	4.8	4.9	5.0	5.0	4.9	5.1

⁷² Emissions data for HTFs (in tons of gas) from the semiconductor industry from 2011 through 2018 were obtained from the EPA GHGRP annual facility emissions reports.

⁷³ Many fluorinated heat transfer fluids consist of perfluoropolymethylisopropyl ethers (PFPMIEs) of different molecular weights and boiling points that are distilled from a mixture. "BP 200 °C" (and similar terms below) indicate the boiling point of the fluid in degrees Celsius. For more information, see https://www.regulations.gov/document?D=EPA-HQ-OAR-2009-0927-0276>.

⁷⁴ An extremely small portion of emissions included in the totals for Semiconductor Manufacture are from the manufacturing of MEMS and photovoltaic cells.

1 Table 4-95: PFC, HFC, SF₆, NF₃, and N₂O Emissions from Electronics Manufacture (metric

2 tons)

Year	1990	2005	2014	2015	2016	2017	2018
CF ₄	115	145	201	206	209	219	233
C_2F_6	160	161	114	108	98	95	91
C_3F_8	0	9	15	15	14	11	12
C ₄ F ₈	0	11	6	6	5	6	6
HFC-23	15	14	21	22	23	25	25
SF ₆	22	30	32	32	36	31	33
NF ₃	3	28	30	34	34	35	37
N ₂ O	120	412	734	793	791	922	857
Total	435	811	1,153	1,216	1,210	1,344	1,294

3 Table 4-96: F-HTF Emissions from Electronics Manufacture by Compound Group (metric 4 tons)

Year	2012	2013	2014	2015	2016	2017	2018
HFCs	1.3	0.9	2.0	1.6	2.7	1.6	1.5
PFCs	1.1	0.4	0.2	0.3	0.3	0.2	0.4
SF ₆	0.5	0.4	0.9	0.6	0.5	0.7	0.6
HFEs	26.1	29.0	25.2	18.9	13.5	16.5	23.5
PFPMIEs	21.9	18.1	18.2	20.7	17.3	14.3	18.3
Perfluoalkylromorpholines	10.7	10.7	10.8	8.1	7.6	5.2	5.9
Perfluorotrialkylamines	45.6	29.5	49.3	43.7	38.6	37.6	42.5
Total F-HTFs	107.3	89.1	106.5	93.9	80.4	76.2	92.6

5 6

Table 4-97: F-GHG^a Emissions from PV and MEMS manufacturing (MMT CO₂ Eq.)

Year	1990	2005	2014	2015	2016	2017	2018
PV	0.0	0.013	0.007	0.006	0.005	0.006	0.008
MEMS	0.0	0.016	0.035	0.037	0.025	0.025	0.025

^a F-GHGs from PV manufacturing include an unspecified mix of HFCs and PFCs, F-GHGs from MEMS manufacturing includes
 those gases but also NF₃ and SF₆.

9 Methodology

10 Emissions are based on data reported through Subpart I, Electronics Manufacture, of EPA's GHGRP, Partner

11 reported emissions data received through EPA's PFC⁷⁵ Reduction/Climate Partnership, EPA's PFC Emissions Vintage

12 Model (PEVM)—a model that estimates industry emissions from etching and chamber cleaning processes in the

absence of emission control strategies (Burton and Beizaie 2001),⁷⁶ and estimates of industry activity (i.e., total

14 manufactured layer area). The availability and applicability of reported emissions data from the EPA Partnership

and EPA's GHGRP and activity data differ across the 1990 through 2018 time series. Consequently, fluorinated

- 16 greenhouse gas (F-GHG) emissions from etching and chamber cleaning processes for semiconductors were
- estimated using seven distinct methods, one each for the periods 1990 through 1994, 1995 through 1999, 2000

18 through 2006, 2007 through 2010, 2011 and 2012, 2013 and 2014, and 2015 through 2018. Nitrous oxide

emissions were estimated using five distinct methods, one each for the period 1990 through 1994, 1995 through

⁷⁵ In the context of the EPA Partnership and PEVM, PFC refers to perfluorocompounds, not perfluorocarbons.

⁷⁶ A Partner refers to a participant in the U.S. EPA PFC Reduction/Climate Partnership for the Semiconductor Industry. Through a Memorandum of Understanding (MoU) with the EPA, Partners voluntarily reported their PFC emissions to the EPA by way of a third party, which aggregated the emissions through 2010.

- 1 2010, 2011 and 2012, 2013 and 2014, and 2015 through 2018. The methodology discussion below for these time
- 2 periods focuses on semiconductor emissions from etching, chamber cleaning, and uses of N₂O. Other emissions for
- 3 MEMS, PV, and HTFs were estimated using the approaches described immediately below.
- 4 GHGRP-reported emissions from the manufacturing of MEMS are available for the years 2011 to 2018. Emissions
- 5 from fabs that reported to the GHGRP as manufacturing MEMS are not included in the semiconductor
- 6 manufacturing totals reported above. Emissions from manufacturing of MEMS for years prior to 2011 were
- 7 calculated by linearly interpolating emissions between 1990 (at zero MMT CO₂ Eq.) and 2011, the first year where
- 8 emissions from manufacturing of MEMS was reported to the GHGRP. Based upon information in the World Fab
- 9 Forecast (WFF), it appears that some GHGRP reporters that manufacture both semiconductors and MEMS are
- 10 reporting their emissions as only from semiconductor manufacturing; however, emissions from MEMS
- 11 manufacturing are likely being included in semiconductor totals. Emissions were not estimated for non-reporters.
- 12 GHGRP-reported emissions from the manufacturing of photovoltaic cells are only available between 2015 and
- 13 2017 and are from a single manufacturer. These reported emissions are scaled by the ratio of reporters to non-
- 14 reporters to estimate the total U.S. emissions from PV. EPA estimates the emissions from manufacturing of PVs
- 15 from non-reporting facilities by calculating the ratio of manufacturing capacity of reporters to non-reporters and
- then multiplying this ratio by the reported emissions, to calculate the total U.S. manufacturing emissions.
- 17 Manufacturing capacities in megawatts were drawn from a 2015 Congressional Research Service Report on U.S.
- Solar Photovoltic Manufacturing⁷⁷ and self-reported capacity by the GHGRP reporter⁷⁸ EPA estimated that during
- 19 the 2015 to 2017 period, 28 percent of emissions were reported through the GHGRP. These emissions are
- estimated for the full time series by linearly scaling the total U.S. capacity between zero in 1997 to the total
 capacity reported in the Congressional Research Service in 2012. Capacities were held constant for non-reporters
- capacity reported in the Congressional Research Service in 2012. Capacities were held constant for non-reporters
 for 2012 to 2018. Emissions per MW from the GHGRP reporter in 2015 were then applied to the total capacity
- prior to 2015. Emissions for 2014 from the GHGRP reporter were scaled to the number of months open in 2014.
- For 2016 and 2017, emissions per MW (capacity) from the GHGRP reporter were applied to the non-reporters. For
- 25 2018, emissions were held constant to 2017 estimates, since there is no evidence that much growth has occurred
- 26 in the U.S. PV cell manufacturing industry in the last two years.
- 27 Facility emissions of F-HTFs from semiconductor manufacturing are reported to EPA under its GHGRP and are
- available for the years 2011 through 2018. EPA estimates the emissions of F-HTFs from non-reporting facilities by
- 29 calculating the ratio of GHGRP-reported fluorinated HTF emissions to GHGRP reported F-GHG emissions from
- 30 etching and chamber cleaning processes, and then multiplying this ratio by the F-GHG emissions from etching and
- 31 chamber cleaning processes estimated for non-reporting facilities. Fluorinated HTF use in semiconductor
- 32 manufacturing is assumed to have begun in the early 2000s and to have gradually displaced other HTFs (e.g., de-
- ionized water and glycol) in electronics manufacturing (EPA 2006). For time-series consistency, EPA interpolated
- 34 the share of F-HTF emissions to F-GHG emissions between 2000 (at 0 percent) and 2011 (at 22 percent) and 35 applied these shares to the unadjusted F-GHG emissions during those years to estimate the fluorinated HTF
- applied these shares to the unadjusted F-GHemissions.

37 **1990 through 1994**

- 38 From 1990 through 1994, Partnership data were unavailable and emissions were modeled using PEVM (Burton and
- 39 Beizaie 2001).⁷⁹ The 1990 to 1994 emissions are assumed to be uncontrolled, since reduction strategies such as
- 40 chemical substitution and abatement were yet to be developed.

⁷⁷ Platzer, Michaela D. (2015) U.S. Solar Photovoltaic Manufacturing: Industry Trends, Global Competition, Federal Support. Congressional Research Service. January 27, 2015. < https://fas.org/sgp/crs/misc/R42509.pdf>.

⁷⁸ <https://www.missionsolar.com/products/>.

⁷⁹ Various versions of the PEVM exist to reflect changing industrial practices. From 1990 to 1994 emissions estimates are from PEVM v1.0, completed in September 1998. The emission factor used to estimate 1990 to 1994 emissions is an average of the 1995 and 1996 emissions factors, which were derived from Partner reported data for those years.

- 1 PEVM is based on the recognition that fluorinated greenhouse gas emissions from semiconductor manufacturing
- 2 vary with: (1) the number of layers that comprise different kinds of semiconductor devices, including both silicon
- 3 wafer and metal interconnect layers, and (2) silicon consumption (i.e., the area of semiconductors produced) for
- 4 each kind of device. The product of these two quantities, Total Manufactured Layer Area (TMLA), constitutes the
- 5 activity data for semiconductor manufacturing. PEVM also incorporates an emission factor that expresses
- 6 emissions per unit of manufactured layer-area. Emissions are estimated by multiplying TMLA by this emission
- 7 factor.
- 8 PEVM incorporates information on the two attributes of semiconductor devices that affect the number of layers:
- 9 (1) linewidth technology (the smallest manufactured feature size),⁸⁰ and (2) product type (discrete, memory or
- 10 logic).⁸¹ For each linewidth technology, a weighted average number of layers is estimated using VLSI product-
- specific worldwide silicon demand data in conjunction with complexity factors (i.e., the number of layers per
- 12 Integrated Circuit (IC) specific to product type (Burton and Beizaie 2001; ITRS 2007). PEVM derives historical
- consumption of silicon (i.e., square inches) by linewidth technology from published data on annual wafer starts
- 14 and average wafer size (VLSI Research, Inc. 2012).
- 15 The emission factor in PEVM is the average of four historical emission factors, each derived by dividing the total
- 16 annual emissions reported by the Partners for each of the four years between 1996 and 1999 by the total TMLA
- estimated for the Partners in each of those years. Over this period, the emission factors varied relatively little (i.e.,
- 18 the relative standard deviation for the average was 5 percent). Since Partners are believed not to have applied
- 19 significant emission reduction measures before 2000, the resulting average emission factor reflects uncontrolled
- 20 emissions. The emission factor is used to estimate world uncontrolled emissions using publicly-available data on
- 21 world silicon consumption.
- 22 As it was assumed for this time period that there was no consequential adoption of fluorinated-gas-reducing
- 23 measures, a fixed distribution of fluorinated-gas use was assumed to apply to the entire U.S. industry to estimate
- 24 gas-specific emissions. This distribution was based upon the average fluorinated-gas purchases made by
- 25 semiconductor manufacturers during this period and the application of IPCC default emission factors for each gas
- 26 (Burton and Beizaie 2001).
- 27 PEVM only addressed the seven main F-GHGs (CF₄, C₂F₆, C₃F₈, C₄F₈, HFC-23, SF₆, and NF₃) used in semiconductor
- 28 manufacturing. Through reporting under Subpart I, data on other F-GHGs (C₄F₆, C₅F₈, HFC-32, HFC-41, HFC-134a)
- 29 used in semiconductor manufacturing became available and EPA was therefore able to extrapolate this data across
- 30 the entire 1990 to 2018 timeseries. To estimate emissions for these "other F-GHGs", emissions data from Subpart I
- 31 were used to estimate the average share or percentage contribution of these gases as compared to total F-GHG
- emissions and then these shares were applied to all years prior to reported data from Subpart I (1990 through
- 33 2010) and to the emissions from non-reporters from 2011-2018.
- To estimate N₂O emissions, it is assumed the proportion of N₂O emissions estimated for 1995 (discussed below)
 remained constant for the period of 1990 through 1994.

⁸⁰ By decreasing features of Integrated Circuit components, more components can be manufactured per device, which increases its functionality. However, as those individual components shrink it requires more layers to interconnect them to achieve the functionality. For example, a microprocessor manufactured with 65 nm feature sizes might contain as many as 1 billion transistors and require as many as 11 layers of component interconnects to achieve functionality, while a device manufactured with 130 nm feature size might contain a few hundred million transistors and require 8 layers of component interconnects (ITRS 2007).

⁸¹ Memory devices manufactured with the same feature sizes as microprocessors (a logic device) require approximately onehalf the number of interconnect layers, whereas discrete devices require only a silicon base layer and no interconnect layers (ITRS 2007). Since discrete devices did not start using PFCs appreciably until 2004, they are only accounted for in the PEVM emissions estimates from 2004 onwards.

1 **1995 through 1999**

- 2 For 1995 through 1999, total U.S. emissions were extrapolated from the total annual emissions reported by the
- 3 Partners (1995 through 1999). Partner-reported emissions are considered more representative (e.g., in terms of
- 4 capacity utilization in a given year) than PEVM-estimated emissions, and are used to generate total U.S. emissions
- 5 when applicable. The emissions reported by the Partners were divided by the ratio of the total capacity of the
- 6 plants operated by the Partners and the total capacity of all of the semiconductor plants in the United States; this
- 7 ratio represents the share of capacity attributable to the Partnership. This method assumes that Partners and non-
- Partners have identical capacity utilizations and distributions of manufacturing technologies. Plant capacity data is
 contained in the World Fab Forecast (WFF) database and its predecessors, which is updated quarterly. Gas-specific
- emissions were estimated using the same method as for 1990 through 1994.
- For this time period emissions of other F-GHGs (C₄F₆, C₅F₈, HFC-32, HFC-41, HFC-134a) were estimated using the method described above for 1990 to 1994.
- 13 For this time period, the N₂O emissions were estimated using an emission factor that was applied to the annual,
- 14 total U.S. TMLA manufactured. The emission factor was developed using a regression-through-the-origin (RTO)
- 15 model: GHGRP reported N₂O emissions were regressed against the corresponding TMLA of facilities that reported
- 16 no use of abatement systems. Details on EPA's GHGRP reported emissions and development of emission factor
- using the RTO model are presented in the 2011 through 2012 section. The total U.S. TMLA was estimated usingPEVM.

19 **2000 through 2006**

- 20 Emissions for the years 2000 through 2006—the period during which Partners began the consequential application
- of fluorinated greenhouse gas-reduction measures—were estimated using a combination of Partner-reported
- 22 emissions and adjusted PEVM modeled emissions. The emissions reported by Partners for each year were
- 23 accepted as the quantity emitted from the share of the industry represented by those Partners. Remaining
- 24 emissions, those from non-Partners, were estimated using PEVM, with one change. To ensure time-series
- 25 consistency and to reflect the increasing use of remote clean technology (which increases the efficiency of the
- 26 production process while lowering emissions of fluorinated greenhouse gases), the average non-Partner emission
- 27 factor (PEVM emission factor) was assumed to begin declining gradually during this period. Specifically, the non-
- Partner emission factor for each year was determined by linear interpolation, using the end points of 1999 (the
- 29 original PEVM emission factor) and 2011 (a new emission factor determined for the non-Partner population based
- 30 on GHGRP-reported data, described below).
- 31 The portion of the U.S. total emissions attributed to non-Partners is obtained by multiplying PEVM's total U.S.
- 32 emissions figure by the non-Partner share of U.S. total silicon capacity for each year as described above.⁸² Gas-
- 33 specific emissions from non-Partners were estimated using linear interpolation of gas-specific emission distribution
- of 1999 (assumed same as total U.S. Industry in 1994) and 2011 (calculated from a subset of non-Partner facilities
- 35 from GHGRP reported emissions data). Annual updates to PEVM reflect published figures for actual silicon
- 36 consumption from VLSI Research, Inc., revisions and additions to the world population of semiconductor

⁸² This approach assumes that the distribution of linewidth technologies is the same between Partners and non-Partners. As discussed in the description of the method used to estimate 2007 emissions, this is not always the case.

- 1 manufacturing plants, and changes in IC fabrication practices within the semiconductor industry (see ITRS 2008
- 2 and Semiconductor Equipment and Materials Industry 2011).^{83, 84, 85}
- 3 For this time period emissions of other F-GHGs (C₄F₆, C₅F₈, HFC-32, HFC-41, HFC-134a) were estimated using the
- 4 method described above for 1990 to 1994.
- 5 Nitrous oxide emissions were estimated using the same methodology as the 1995 through 1999 methodology.

6 **2007 through 2010**

7 For the years 2007 through 2010, emissions were also estimated using a combination of Partner reported

8 emissions and adjusted PEVM modeled emissions to provide estimates for non-Partners; however, two

9 improvements were made to the estimation method employed for the previous years in the time series. First, the

10 2007 through 2010 emission estimates account for the fact that Partners and non-Partners employ different

distributions of manufacturing technologies, with the Partners using manufacturing technologies with greater

- 12 transistor densities and therefore greater numbers of layers.⁸⁶ Second, the scope of the 2007 through 2010
- estimates was expanded relative to the estimates for the years 2000 through 2006 to include emissions from
- 14 research and development (R&D) fabs. This additional enhancement was feasible through the use of more detailed
- data published in the WFF. PEVM databases were updated annually as described above. The published world
- 16 average capacity utilization for 2007 through 2010 was used for production fabs, while for R&D fabs a 20 percent
- 17 figure was assumed (SIA 2009).
- 18 In addition, publicly-available actual utilization data was used to account for differences in fab utilization for
- 19 manufacturers of discrete and IC products for 2010 emissions for non-Partners. The Semiconductor Capacity
- 20 Utilization (SICAS) Reports from SIA provides the global semiconductor industry capacity and utilization,
- 21 differentiated by discrete and IC products (SIA 2009 through 2011). PEVM estimates were adjusted using
- 22 technology-weighted capacity shares that reflect the relative influence of different utilization. Gas-specific

⁸³ Special attention was given to the manufacturing capacity of plants that use wafers with 300 mm diameters because the actual capacity of these plants is ramped up to design capacity, typically over a 2–3 year period. To prevent overstating estimates of partner-capacity shares from plants using 300 mm wafers, *design* capacities contained in WFF were replaced with estimates of *actual installed* capacities for 2004 published by Citigroup Smith Barney (2005). Without this correction, the partner share of capacity would be overstated, by approximately 5 percent. For perspective, approximately 95 percent of all new capacity additions in 2004 used 300 mm wafers, and by year-end those plants, on average, could operate at approximately 70 percent of the design capacity. For 2005, actual installed capacities were estimated using an entry in the World Fab Watch database (April 2006 Edition) called "wafers/month, 8-inch equivalent," which denoted the actual installed capacity instead of the fully-ramped capacity. For 2006, actual installed capacities of new fabs were estimated using an average monthly ramp rate of 1100 wafer starts per month (wspm) derived from various sources such as semiconductor fabtech, industry analysts, and articles in the trade press. The monthly ramp rate was applied from the first-quarter of silicon volume (FQSV) to determine the average design capacity over the 2006 period.

⁸⁴ In 2006, the industry trend in co-ownership of manufacturing facilities continued. Several manufacturers, who are Partners, now operate fabs with other manufacturers, who in some cases are also Partners and in other cases are not Partners. Special attention was given to this occurrence when estimating the Partner and non-Partner shares of U.S. manufacturing capacity.

⁸⁵ Two versions of PEVM are used to model non-Partner emissions during this period. For the years 2000 to 2003 PEVM v3.2.0506.0507 was used to estimate non-Partner emissions. During this time, discrete devices did not use PFCs during manufacturing and therefore only memory and logic devices were modeled in the PEVM v3.2.0506.0507. From 2004 onwards, discrete device fabrication started to use PFCs, hence PEVM v4.0.0701.0701, the first version of PEVM to account for PFC emissions from discrete devices, was used to estimate non-Partner emissions for this time period.

⁸⁶ EPA considered applying this change to years before 2007, but found that it would be difficult due to the large amount of data (i.e., technology-specific global and non-Partner TMLA) that would have to be examined and manipulated for each year. This effort did not appear to be justified given the relatively small impact of the improvement on the total estimate for 2007 and the fact that the impact of the improvement would likely be lower for earlier years because the estimated share of emissions accounted for by non-Partners is growing as Partners continue to implement emission-reduction efforts.

- 1 emissions for non-Partners were estimated using the same method as for 2000 through 2006.
- 2 For this time period emissions of other F-GHGs (C₅F₈, CH₂F₂, CH₃F, CH₂FCF3, C₂H₂F₄) were estimated using the
- 3 method described above for 1990 to 1994.
- 4 Nitrous oxide emissions were estimated using the same methodology as the 1995 through 1999 methodology.

5 **2011 through 2012**

- 6 The fifth method for estimating emissions from semiconductor manufacturing covers the period 2011 through
- 7 2012. This methodology differs from previous years because the EPA's Partnership with the semiconductor
- 8 industry ended (in 2010) and reporting under EPA's GHGRP began. Manufacturers whose estimated uncontrolled
- 9 emissions equal or exceed 25,000 MT CO₂ Eq. per year (based on default F-GHG-specific emission factors and total
- 10 capacity in terms of substrate area) are required to report their emissions to EPA. This population of reporters to
- 11 EPA's GHGRP included both historical Partners of EPA's PFC Reduction/Climate Partnership as well as non-Partners
- some of which use GaAs technology in addition to Si technology.⁸⁷ Emissions from the population of
- 13 manufacturers that were below the reporting threshold were also estimated for this time period using EPA-
- 14 developed emission factors and estimates of facility-specific production obtained from WFF. Inventory totals
- 15 reflect the emissions from both reporting and non-reporting populations.
- 16 Under EPA's GHGRP, semiconductor manufacturing facilities report emissions of F-GHGs (for all types of F-GHGs)
- 17 used in etch and clean processes as well as emissions of fluorinated heat transfer fluids. (Fluorinated heat transfer
- 18 fluids are used to control process temperatures, thermally test devices, and clean substrate surfaces, among other
- 19 applications.) They also report N₂O emissions from CVD and other processes. The F-GHGs and N₂O were
- aggregated, by gas, across all semiconductor manufacturing GHGRP reporters to calculate gas-specific emissions
- for the GHGRP-reporting segment of the U.S. industry. At this time, emissions that result from heat transfer fluid
- 22 use that are HFC, PFC and SF₆ are included in the total emission estimates from semiconductor manufacturing, and
- 23 these GHGRP-reported emissions have been compiled and presented in Table 4-94. F-HTF emissions resulting from
- other types of gases (e.g., HFEs) are not presented in semiconductor manufacturing totals in Table 4-94 and Table
- 25 4-95 but are shown in Table 4-96 for informational purposes.
- 26 Changes to the default emission factors and default destruction or removal efficiencies (DREs) used for GHGRP
- 27 reporting affected the emissions trend between 2013 and 2014. These changes did not reflect actual emission rate
- 28 changes but data improvements. Therefore, for the current Inventory, EPA adjusted the time series of GHGRP-
- reported data for 2011 through 2013 to ensure time-series consistency using a series of calculations that took into
- account the characteristics of a facility (e.g., wafer size and abatement use). To adjust emissions for facilities that
- did not report abatement in 2011 through 2013, EPA simply applied the revised emission factors to each facility's
- 32 estimated gas consumption by gas, process type and wafer size. In 2014, EPA also started collecting information on
- fab-wide DREs and the gases abated by process type, which were used in calculations for adjusting emissions from
 - 34 facilities that abated F-GHGs in 2011 through 2013.
 - To adjust emissions for facilities that abated emissions in 2011 through 2013, EPA first calculated the quantity of gas abated in 2014 using reported F-GHG emissions, the revised default DREs (or the estimated site-specific DRE,⁸⁸ if a site-specific DRE was indicated), and the fab-wide DREs reported in 2014.⁸⁹ To adjust emissions for facilities that abated emissions in 2011 through 2013, EPA first estimated

⁸⁷ GaAs and Si technologies refer to the wafer on which devices are manufactured, which use the same PFCs but in different ways.

⁸⁸ EPA generally assumed site-specific DREs were as follows: CF_4 , Etch (90 percent); all other gases, Etch (98 percent); NF₃, Clean (95 percent); CF_4 , Clean (80 percent), and all other gases, Clean (80 percent). There were a few exceptions where a higher DRE was assumed to ensure the calculations operated correctly when there was 100 percent abatement.

⁸⁹ If abatement information was not available for 2014 or the reported incorrectly in 2014, data from 2015 or 2016 was substituted.

- the percentage of gas passing through abatement systems for remote plasma clean in 2014 using the ratio
 of emissions reported for CF₄ and NF₃.
- EPA then estimated the quantity of NF₃ abated for remote plasma clean in 2014 using the ratio of
 emissions reported for CF₄ (which is not abated) and NF₃. This abated quantity was then subtracted from
 the total abated quantity calculated as described in the bullet above.
- To account for the resulting remaining abated quantity, EPA assumed that the percentage of gas passing
 through abatement systems was the same across all remaining gas and process type combinations where
 abatement was reported for 2014.
- The percentage of gas abated was then assumed to be the same in 2011 through 2013 (if the facility claimed abatement that year) as in 2014 for each gas abated in 2014.
- The revised emission factors and DREs were then applied to the estimated gas consumption for each facility by gas,
 process type and wafer size.⁹⁰
- 13 For the segment of the semiconductor industry that is below EPA's GHGRP reporting threshold, and for R&D
- 14 facilities, which are not covered by EPA's GHGRP, emission estimates are based on EPA-developed emission factors
- 15 for the F-GHGs and N_2O and estimates of manufacturing activity. The new emission factors (in units of mass of CO_2
- 16 Eq./TMLA [MSI]) are based on the emissions reported under EPA's GHGRP by facilities without abatement and on
- 17 the TMLA estimates for these facilities based on the WFF (SEMI 2012, 2013).⁹¹ In a refinement of the method used
- 18 to estimate emissions for the non-Partner population for prior years, different emission factors were developed for
- different subpopulations of fabs, disaggregated by wafer size (200 mm or less and 300 mm). For each of these
- 20 groups, a subpopulation-specific emission factor was obtained using a regression-through-the-origin (RTO) model:
- facility-reported aggregate emissions of seven F-GHGs (CF4, C₂F6, C₃F8, C₄F8, CHF3, SF6 and NF3)⁹² were regressed
- against the corresponding TMLA to estimate an aggregate F-GHG emissions factor (CO₂ Eq./MSI TMLA), and
 facility-reported N₂O emissions were regressed against the corresponding TMLA to estimate a N₂O emissions
- factor (CO₂ Eq./MSI TMLA). For each subpopulation, the slope of the RTO model is the emission factor for that
- subpopulation. Information on the use of point-of-use abatement by non-reporting fabs was not available; thus,
- 26 EPA conservatively assumed that non-reporting facilities did not use point-of-use abatement.
- 27 For 2011 and 2012, estimates of TMLA relied on the capacity utilization of the fabs published by the U.S. Census
- 28 Bureau's Historical Data Quarterly Survey of Plant Capacity Utilization (USCB 2011, 2012). Similar to the
- assumption for 2007 through 2010, facilities with only R&D activities were assumed to utilize only 20 percent of
- 30 their manufacturing capacity. All other facilities in the United States are assumed to utilize the average percent of
- 31 the manufacturing capacity without distinguishing whether fabs produce discrete products or logic products.
- 32 Non-reporting fabs were then broken out into similar subpopulations by wafer size using information available
- through the WFF. The appropriate emission factor was applied to the total TMLA of each subpopulation of non-
- 34 reporting facilities to estimate the GWP-weighted emissions of that subpopulation.
- 35 Gas-specific, GWP-weighted emissions for each subpopulation of non-reporting facilities were estimated using the
- 36 corresponding reported distribution of gas-specific, GWP-weighted emissions from which the aggregate emission
- factors, based on GHGRP-reported data, were developed. Estimated in this manner, the non-reporting population
- 38 accounted for 4.9 and 5.0 percent of U.S. emissions in 2011 and 2012, respectively. The GHGRP-reported emissions

⁹⁰ Since facilities did not report by fab before 2014, fab-wide DREs were averaged if a facility had more than one fab. For facilities that reported more than one wafer size per facility, the percentages of a facility's emissions per wafer size were estimated in 2014 and applied to earlier years, if possible. If the percentage of emissions per wafer size were unknown, a 50/50 split was used.

⁹¹ EPA does not have information on fab-wide DREs for this time period, so it is not possible to estimate uncontrolled emissions from fabs that reported POU abatement. These fabs were therefore excluded from the regression analysis. (They are still included in the national totals.)

⁹² Only seven gases were aggregated because inclusion of F-GHGs that are not reported in the Inventory results in overestimation of emission factor that is applied to the various non-reporting subpopulations.

1 and the calculated non-reporting population emissions are summed to estimate the total emissions from

2 semiconductor manufacturing.

3 2013 and 2014

4 For 2013 and 2014, as for 2011 and 2012, F-GHG and N₂O emissions data received through EPA's GHGRP were 5 aggregated, by gas, across all semiconductor-manufacturing GHGRP reporters to calculate gas-specific emissions 6 for the GHGRP-reporting segment of the U.S. industry. However, for these years WFF data was not available. 7 Therefore, an updated methodology that does not depend on the WFF derived activity data was used to estimate 8 emissions for the segment of the industry that are not covered by EPA's GHGRP. For the facilities that did not 9 report to the GHGRP (i.e., which are below EPA's GHGRP reporting threshold or are R&D facilities), emissions were 10 estimated based on the proportion of total U.S. emissions attributed to non-reporters for 2011 and 2012. EPA used 11 a simple averaging method by first estimating this proportion for both F-GHGs and N₂O for 2011, 2012, and 2015 12 through 2018, resulting in one set of proportions for F-GHGs and one set for N₂O, and then applied the average of 13 each set to the 2013 and 2014 GHGRP reported emissions to estimate the non-reporters' emissions. Fluorinated 14 gas-specific, GWP-weighted emissions for non-reporters were estimated using the corresponding reported

- distribution of gas-specific, GWP-weighted emissions reported through EPA's GHGRP for 2013 and 2014.
- 16 GHGRP-reported emissions in 2013 were adjusted to capture changes to the default emission factors and default
- 17 destruction or removal efficiencies used for GHGRP reporting affected the emissions trend between 2013 and
- 18 2014. EPA used the same method to make these adjustments as described above for 2011 and 2012 GHGRP data.

19 **2015 through 2018**

20 Similar to the methods described above for 2011 and 2012, and 2013 and 2014, EPA relied upon emissions data

- 21 reported directly through the GHGRP. For 2015 through 2018, EPA took an approach similar to the one used for
- 22 2011 and 2012 to estimate emissions for the segment of the semiconductor industry that is below EPA's GHGRP
- reporting threshold, and for R&D facilities, which are not covered by EPA's GHGRP. However, in a change from
- 24 previous years, EPA was able to develop new annual emission factors for 2015 through 2018 using TMLA from WFF
- and a more comprehensive set of emissions, i.e., fabs with as well as without abatement control, as new
- 26 information about the use of abatement in GHGRP fabs and fab-wide were available. Fab-wide DREs represent
- 27 total fab CO₂ Eq.-weighted controlled F-GHG and N₂O emissions (emissions after the use of abatement) divided by
- total fab CO₂ Eq.-weighted uncontrolled F-GHG and N₂O emissions (emission prior to the use of abatement).
- 29 Using information about reported emissions and the use of abatement and fab-wide DREs, EPA was able to
- 30 calculate uncontrolled emissions (each total F-GHG and N₂O) for every GHGRP reporting fab. Using this, coupled
- 31 with TMLA estimated using methods described above (see 2011 through 2012), EPA derived emission factors by
- 32 year, gas type (F-GHG or N₂O), and wafer size (200 mm or 300 mm) by dividing the total annual emissions reported
- by GHGRP reporters by the total TMLA estimated for those reporters. These emission factors were multiplied by
- 34 estimates of non-reporter TMLA to arrive at estimates of total F-GHG and N₂O emissions for non-reporters for each
- 35 year. For each wafer size, the total F-GHG emissions were disaggregated into individual gases using the shares of
- total emissions represented by those gases in the emissions reported to the GHGRP by unabated fabs producing
- 37 that wafer size.

38 Data Sources

- 39 GHGRP reporters, which consist of former EPA Partners and non-Partners, estimated their emissions using a
- 40 default emission factor method established by EPA. Like the Tier 2b Method in the 2006 IPCC Guidelines, this
- 41 method uses different emission and byproduct generation factors for different F-GHGs and process types, but it
- 42 goes beyond the Tier 2b Method by requiring use of updated factors for different wafer sizes (i.e., 300mm vs. 150
- 43 and 200mm) and CVD clean subtypes (in situ thermal, in situ thermal, and remote plasma). Starting with 2014
- 44 reported emissions, EPA's GHGRP required semiconductor manufacturers to apply updated emission factors to
- 45 estimate their F-GHG emissions (40 CFR Part 98). For the years 2011 through 2013 reported emissions,
- 46 semiconductor manufacturers used older emission factors to estimate their F-GHG emissions (Federal Register /

- 1 Vol. 75, No. 230 /December 1, 2010, 74829). Subpart I emission factors were updated for 2014 by EPA as a result
- 2 of a larger set of emission factor data becoming available as part of the Subpart I petition process, which took
- 3 place from 2011 through 2013.
- 4 Historically, partners estimated and reported their emissions using a range of methods and uneven
- 5 documentation. It is assumed that most Partners used a method at least as accurate as the IPCC's Tier 2a
- 6 Methodology, recommended in the 2006 IPCC Guidelines. Partners are estimated to have accounted for between
- 7 56 and 79 percent of F-GHG emissions from U.S. semiconductor manufacturing between 1995 and 2010, with the
- 8 percentage declining in recent years as Partners increasingly implemented abatement measures.
- 9 Estimates of operating plant capacities and characteristics for Partners and non-Partners were derived from the
- 10 Semiconductor Equipment and Materials Industry (SEMI) WFF (formerly World Fab Watch) database (1996 through
- 12 2012 and 2015) (e.g., Semiconductor Materials and Equipment Industry 2017). Actual worldwide capacity
- 12 utilizations for 2008 through 2010 were obtained from Semiconductor International Capacity Statistics (SICAS) (SIA
- 13 2009 through 2011). Estimates of the number of layers for each linewidth was obtained from International
- 14 Technology Roadmap for Semiconductors: 2013 Edition (Burton and Beizaie 2001; ITRS 2007; ITRS 2008; ITRS 2011;
- 15 ITRS 2013). PEVM utilized the WFF, SICAS, and ITRS, as well as historical silicon consumption estimates published
- by VLSI. Actual quarterly U.S. capacity utilizations for 2011, 2012, 2015 and 2016 were obtained from the U.S.
- 17 Census Bureau's Historical Data Quarterly Survey of Plant Capacity Utilization (USCB 2011, 2012, 2015, and 2016).

18 Uncertainty and Time-Series Consistency

19 A quantitative uncertainty analysis of this source category was performed using the IPCC-recommended Approach

- 20 2 uncertainty estimation methodology, the Monte Carlo Stochastic Simulation technique. The equation used to
- 21 estimate uncertainty is:
- 22Total Emissions $(E_T) = GHGRP$ Reported F-GHG Emissions $(E_{R,F-GHG}) + Non-Reporters' Estimated F-GHG23Emissions <math>(E_{NR,F-GHG}) + GHGRP$ Reported N₂O Emissions $(E_{R,N20}) + Non-Reporters' Estimated N₂O Emissions24<math>(E_{NR,N20})$
- 25 where E_R and E_{NR} denote totals for the indicated subcategories of emissions for F-GHG and N₂O, respectively.
- 26 The uncertainty in E_T presented in Table 4-98 below results from the convolution of four distributions of emissions,
- 27 each reflecting separate estimates of possible values of E_{R,F-GHG}, E_{R,N2O}, E_{NR,F-GHG}, and E_{NR,N2O}. The approach and
- 28 methods for estimating each distribution and combining them to arrive at the reported 95 percent confidence
- 29 interval (CI) are described in the remainder of this section.
- 30 The uncertainty estimate of E_{R, F-GHG}, or GHGRP-reported F-GHG emissions, is developed based on gas-specific
- 31 uncertainty estimates of emissions for two industry segments, one processing 200 mm wafers and one processing
- 32 300 mm wafers. Uncertainties in emissions for each gas and industry segment were developed during the
- assessment of emission estimation methods for the subpart I GHGRP rulemaking in 2012 (see Technical Support
- 34 for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor
- 35 Facilities under Subpart I, docket EPA–HQ–OAR–2011–0028).⁹³ The 2012 analysis did not take into account the use
- of abatement. For the industry segment that processed 200 mm wafers, estimates of uncertainties at a 95 percent

⁹³ On November 13, 2013, EPA published a final rule revising subpart I (Electronics Manufacturing) of the GHGRP (78 FR 68162). The revised rule includes updated default emission factors and updated default destruction and removal efficiencies that are slightly different from those that semiconductor manufacturers were required to use to report their 2012 emissions. The uncertainty analyses that were performed during the development of the revised rule focused on these updated defaults, but are expected to be reasonably representative of the uncertainties associated with the older defaults, particularly for estimates at the country level. (They may somewhat underestimate the uncertainties associated with the older defaults at the facility level.) For simplicity, the 2012 estimates are assumed to be unbiased although in some cases, the updated (and therefore more representative) defaults are higher or lower than the older defaults. Multiple models and sensitivity scenarios were run for the subpart I analysis. The uncertainty analysis presented here made use of the Input gas and wafer size model (Model 1) under the following conditions: Year = 2010, f = 20, n = SIA3.

- 1 CI ranged from ± 29 percent for C₃F₈ to ± 10 percent for CF₄. For the corresponding 300 mm industry segment,
- 2 estimates of the 95 percent CI ranged from ± 36 percent for C₄F₈ to ± 16 percent for CF₄. These gas and wafer-
- 3 specific uncertainty estimates are applied to the total emissions of the facilities that did not abate emissions as
- 4 reported under EPA's GHGRP.
- 5 For those facilities reporting abatement of emissions under EPA's GHGRP, estimates of uncertainties for the no
- 6 abatement industry segments are modified to reflect the use of full abatement (abatement of all gases from all
- 7 cleaning and etching equipment) and partial abatement. These assumptions used to develop uncertainties for the
- 8 partial and full abatement facilities are identical for 200 mm and 300 mm wafer processing facilities. For all
- 9 facilities reporting gas abatement, a triangular distribution of destruction or removal efficiency is assumed for each
- 10 gas. The triangular distributions range from an asymmetric and highly uncertain distribution of zero percent
- 11 minimum to 90 percent maximum with 70 percent most likely value for CF₄ to a symmetric and less uncertain
- distribution of 85 percent minimum to 95 percent maximum with 90 percent most likely value for C₄F₈, NF₃, and
 SF₆. For facilities reporting partial abatement, the distribution of fraction of the gas fed through the abatement
- 14 device, for each gas, is assumed to be triangularly distributed as well. It is assumed that no more than 50 percent
- of the gases are abated (i.e., the maximum value) and that 50 percent is the most likely value and the minimum is
- zero percent. Consideration of abatement then resulted in four additional industry segments, two 200-mm wafer-
- processing segments (one fully and one partially abating each gas) and two 300-mm wafer-processing segment
- 18 (one fully and the other partially abating each gas). Gas-specific emission uncertainties were estimated by
- 19 convolving the distributions of unabated emissions with the appropriate distribution of abatement efficiency for
- 20 fully and partially abated facilities using a Monte Carlo simulation.
- 21 The uncertainty in E_{R,F-GHG} is obtained by allocating the estimates of uncertainties to the total GHGRP-reported
- emissions from each of the six industry segments, and then running a Monte Carlo simulation which results in the 95 percent Cl for emissions from GHGRP reporting facilities (E_{R,F-GHG}).
- 24 The uncertainty in E_{R,N20} is obtained by assuming that the uncertainty in the emissions reported by each of the
- 25 GHGRP reporting facilities results from the uncertainty in quantity of N₂O consumed and the N₂O emission factor
- 26 (or utilization). Similar to analyses completed for subpart I (see Technical Support for Modifications to the
- 27 Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I,
- 28 docket EPA–HQ–OAR–2011–0028), the uncertainty of N₂O consumed was assumed to be 20 percent. Consumption
- 29 of N₂O for GHGRP reporting facilities was estimated by back-calculating from emissions reported and assuming no
- 30 abatement. The quantity of N₂O utilized (the complement of the emission factor) was assumed to have a triangular
- distribution with a minimum value of zero percent, mode of 20 percent and maximum value of 84 percent. The
- 32 minimum was selected based on physical limitations, the mode was set equivalent to the subpart I default N₂O
- utilization rate for chemical vapor deposition, and the maximum was set equal to the maximum utilization rate found in ISMI Analysis of Nitrous Oxide Survey Data (ISMI 2009). The inputs were used to simulate emissions for
- 35 each of the GHGRP reporting, N₂O-emitting facilities. The uncertainty for the total reported N₂O emissions was
- then estimated by combining the uncertainties of each of the facilities reported emissions using Monte Carlo
- 37 simulation.
- The estimate of uncertainty in E_{NR, F-GHG} and E_{NR, N2O} entailed developing estimates of uncertainties for the emissions
 factors and the corresponding estimates of TMLA.
- 40 The uncertainty in TMLA depends on the uncertainty of two variables—an estimate of the uncertainty in the
- 41 average annual capacity utilization for each level of production of fabs (e.g., full scale or R&D production) and a
- 42 corresponding estimate of the uncertainty in the number of layers manufactured. For both variables, the
- 43 distributions of capacity utilizations and number of manufactured layers are assumed triangular for all categories
- of non-reporting fabs. The most probable utilization is assumed to be 82 percent, with the highest and lowest
- 45 utilization assumed to be 89 percent, and 70 percent, respectively. For the triangular distributions that govern the
- 46 number of possible layers manufactured, it is assumed the most probable value is one layer less than reported in

- 1 the ITRS; the smallest number varied by technology generation between one and two layers less than given in the
- 2 ITRS and largest number of layers corresponded to the figure given in the ITRS.
- 3 The uncertainty bounds for the average capacity utilization and the number of layers manufactured are used as
- 4 inputs in a separate Monte Carlo simulation to estimate the uncertainty around the TMLA of both individual
- 5 facilities as well as the total non-reporting TMLA of each sub-population.
- 6 The uncertainty around the emission factors for non-reporting facilities is dependent on the uncertainty of the
- 7 total emissions (MMT CO₂ Eq. units) and the TMLA of each reporting facility in that category. For each wafer size
- 8 for reporting facilities, total emissions were regressed on TMLA (with an intercept forced to zero) for 10,000
- 9 emission and 10,000 TMLA values in a Monte Carlo simulation, which results in 10,000 total regression coefficients
- 10 (emission factors). The 2.5th and the 97.5th percentile of these emission factors are determined and the bounds are
- 11 assigned as the percent difference from the estimated emission factor.
- 12 For simplicity, the results of the Monte Carlo simulations on the bounds of the gas- and wafer size-specific
- emissions as well as the TMLA and emission factors are assumed to be normally distributed and the uncertainty
- 14 bounds are assigned at 1.96 standard deviations around the estimated mean. The departures from normality were
- 15 observed to be small.
- 16 The final step in estimating the uncertainty in emissions of non-reporting facilities is convolving the distribution of 17 emission factors with the distribution of TMLA using Monte Carlo simulation.
- 18 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-98, which is also
- 19 obtained by convolving—using Monte Carlo simulation—the distributions of emissions for each reporting and non-
- 20 reporting facility. The emissions estimate for total U.S. F-GHG and N₂O emissions from semiconductor
- 21 manufacturing were estimated to be between 4.7 and 5.3 MMT CO₂ Eq. at a 95 percent confidence level. This
- range represents 6 percent below to 6 percent above the 2018 emission estimate of 5.0 MMT CO₂ Eq. for
- 23 semiconductor emissions for the main seven gases. This range and the associated percentages apply to the
- estimate of total emissions rather than those of individual gases. Uncertainties associated with individual gases will
- 25 be somewhat higher than the aggregate, but were not explicitly modeled.

26 Table 4-98: Approach 2 Quantitative Uncertainty Estimates for HFC, PFC, SF₆, NF₃ and N₂O

27 Emissions from Semiconductor Manufacture (MMT CO₂ Eq. and Percent)^a

Source	Gas	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate ^b						
		(MMT CO₂ Eq.)	(MMT (CO₂ Eq.)	(%)				
			Lower	Upper	Lower	Upper			
			Bound	Bound ^c	Bound	Bound			
Semiconductor Manufacture	HFC, PFC, SF ₆ , NF ₃ , and N ₂ O	5.0	4.7	5.3	-6%	6%			

^a This uncertainty analysis does not include quantification of the uncertainty of emissions from other F-GHGs for semiconductors, heat transfer fluids, PV, and MEMS.

^b Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

^c Absolute lower and upper bounds were calculated using the corresponding lower and upper bounds in percentages.

28 It should be noted that the uncertainty analysis for this source category does not quantify the uncertainty of HFC,

29 PFC, and SF₆ emissions from the use of heat transfer fluids or the other F-GHGs. While these emissions are

- 30 included in the semiconductor manufacturing F-GHG total emissions, they make up a small portion of total
- 31 emissions from the source category (less than 1 percent). Any uncertainty of these emissions would have minimal
- 32 impact on the overall uncertainty estimates, and therefore the uncertainties associated for HTF HFC, PFC, and SF₆

33 emissions was not included in this analysis for this Inventory year.

34 Similarly, the uncertainty was not quantified for emissions from the manufacturing of photovoltaics and micro-

35 electro-mechanical devices. These emissions make up a small portion of total emissions from the source category.

- 1 Any uncertainty of these emissions would have minimal impact on the overall uncertainty estimates, and therefore
- 2 associated uncertainties were not included.
- 3 In an effort to improve the uncertainty analysis for this source category other F-GHGs from semiconductor
- 4 manufacturing, HFC, PFC, and SF₆ emissions from the use of heat transfer fluids and manufacturing of PVs and
- 5 MEMS may be added in future inventory years (see Planned Improvements section below). The emissions reported
- 6 under EPA's GHGRP for 2014, 2015, 2016, 2017, and 2018, which are included in the overall emissions estimates,
- 7 were based on an updated set of default emission factors. This may have affected the trend seen between 2013
- 8 and 2014 (a 24 percent increase), which reversed the trend seen between 2011 and 2013. As discussed in the
- 9 Planned Improvements section, EPA is planning to conduct analysis to determine how much of the 2013 to 2014
- 10 trend may be attributable to the updated factors and to improve time-series consistency.

11 QA/QC and Verification

- 12 For the GHGRP data, EPA verifies annual facility-level reports through a multi-step process (e.g., including a
- 13 combination of pre-and post-submittal electronic checks and manual reviews by staff) to identify potential errors
- and ensure that data submitted to EPA are accurate, complete, and consistent (EPA 2015).⁹⁴ Based on the results
- of the verification process, EPA follows up with facilities to resolve mistakes that may have occurred. The post-
- 16 submittals checks are consistent with a number of general and category-specific QC procedures, including: range
- 17 checks, statistical checks, algorithm checks, and year-to-year checks of reported data and emissions.
- 18 For more information on the general QA/QC process applied to this source category, consistent with Volume 1,
- 19 Chapter 6 of the 2006 IPCC Guidelines, see the QA/QC and Verification Procedures section in the introduction of
- 20 the IPPU chapter and Annex 8 for more details.

21 Recalculations Discussion

- 22 Emissions from 2011 through 2018 were updated to reflect updated emissions reporting in EPA's GHGRP, relative
- to the previous Inventory. Additionally, non-reporter estimates were revised. EPA identified several facilities that
- report to the GHGRP but were being categorized as non-reporters, causing an over-estimation of non-reporter
- 25 TMLA and consequently non-reporter emissions. Together these revisions resulted in an average change of 4
- 26 percent through the 2011 through 2018 timeseries.

27 Planned Improvements

- 28 The Inventory methodology uses data reported through the EPA Partnership (for earlier years) and EPA's GHGRP
- 29 (for later years) to extrapolate the emissions of the non-reporting population. While these techniques are well
- 30 developed, the understanding of the relationship between the reporting and non-reporting populations is limited.
- 31 Further analysis of the reporting and non-reporting populations could aid in the accuracy of the non-reporting
- 32 population extrapolation in future years. In addition, the accuracy of the emissions estimates for the non-reporting
- 33 population could be further increased through EPA's further investigation of and improvement upon the accuracy
- 34 of estimated activity in the form of TMLA.
- 35 Emission factors for semiconductor processes have also been revised over time. Recently, the 2011 to 2013
- 36 portion of the inventory was updated to reflect emission factors and DREs that were revised in 2013 to improve
- times series consistency. However, the effects of these revisions have not yet been applied to the 2000 to 2010
- 38 portion of the time series.
- 39 The Inventory uses utilization from two different sources for various time periods–SEMI to develop PEVM and to
- 40 estimate non-Partner emissions for the period 1995 to 2010 and U.S. Census Bureau for 2011 through 2014. SEMI

⁹⁴ GHGRP Report Verification Factsheet. https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.

- 1 reported global capacity utilization for manufacturers through 2011. U.S. Census Bureau capacity utilization
- 2 include U.S. semiconductor manufacturers as well as assemblers. Further analysis on the impacts of using a new
- 3 and different source of utilization data could prove to be useful in better understanding of industry trends and
- 4 impacts of utilization data sources on historical emission estimates.
- 5 The current Inventory now includes HFC, PFC, and SF₆ emissions resulting the use of heat transfer fluids in the total
- 6 estimates of F-GHG emissions from semiconductor manufacturing. A point of consideration for future Inventory
- 7 reports is the inclusion of the uncertainty surrounding these emissions in the source category uncertainty analysis
- 8 (see also Uncertainty and Time-series Consistency).

4.24 Substitution of Ozone Depleting 9 Substances (CRF Source Category 2F)

10

- Hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) are used as alternatives to several classes of ozone-11
- 12 depleting substances (ODSs) that are being phased out under the terms of the Montreal Protocol and the Clean Air
- Act Amendments of 1990.95 Ozone depleting substances—chlorofluorocarbons (CFCs), halons, carbon 13
- tetrachloride, methyl chloroform, and hydrochlorofluorocarbons (HCFCs)—are used in a variety of industrial 14
- applications including refrigeration and air conditioning equipment, solvent cleaning, foam production, 15
- 16 sterilization, fire extinguishing, and aerosols. Although HFCs and PFCs are not harmful to the stratospheric ozone
- 17 layer, they are potent greenhouse gases. Emission estimates for HFCs and PFCs used as substitutes for ODSs are
- provided in Table 4-99 and Table 4-100.96 18

19 Table 4-99: Emissions of HFCs and PFCs from ODS Substitutes (MMT CO₂ Eq.)

Gas	1990	2005	2014	2015	2016	2017	2018
HFC-23	0	+	+	+	+	+	+
HFC-32	0	0.3	3.4	3.9	4.6	5.3	6.0
HFC-125	+	9.0	40.0	43.4	47.0	50.0	53.3
HFC-134a	+	80.0	73.9	72.5	68.0	63.4	60.5
HFC-143a	+	9.4	26.9	27.6	28.3	28.0	27.7
HFC-236fa	0	1.2	1.4	1.3	1.3	1.2	1.2
CF ₄	0	+	+	+	+	+	0.1
Others ^a	0.2	6.6	11.4	12.8	14.0	15.2	15.7
Total	0.2	106.5	157.1	161.7	163.2	163.1	164.5

+ Does not exceed 0.05 MMT CO₂ Eq.

^a Others represent an unspecified mix of HFCs and PFCs, which includes HFC-152a, HFC-227ea, HFC-245fa, HFC-43-10mee, HCFO-1233zd(E), HFO-1234yf, HFO-1234ze(E), HFO-1336mzz(Z), C₄F₁₀, and PFC/PFPEs, the latter being a proxy for a diverse collection of PFCs and perfluoropolyethers (PFPEs) employed for solvent applications. For estimating purposes, the GWP value used for PFC/PFPEs was based upon C₆F₁₄.

Note: Totals may not sum due to independent rounding.

20 Table 4-100: Emissions of HFCs and PFCs from ODS Substitution (Metric Tons)

Gas	1990	2005	2014	2015	2016	2017	2018
HFC-23	0	1	2	2	2	2	2

⁹⁵ [42 U.S.C § 7671, CAA Title VI].

⁹⁶ Emissions of ODS are not included here consistent with UNFCCC reporting guidelines for national inventories noted in Box 4-1. See Annex 6.2 for more details on emissions of ODS.

HFC-32	0		397	5,001	5,84	11	6,799	7,799	8,821
HFC-125	+		2,583	11,439	12,40)3	13,416	14,291	15,243
HFC-134a	+	5	5,947	51,682	50,71	19	47,553	44,319	42,307
HFC-143a	+		2,096	6,011	6,18	33	6,326	6,272	6,198
HFC-236fa	0		118	145	13	34	129	124	118
CF ₄	0		2	5		6	6	6	7
Others ^a	М		М	Μ		M	Μ	Μ	М

+ Does not exceed 0.5 MT.

M (Mixture of Gases).

^a Others represent an unspecified mix of HFCs and PFCs, which includes HFC-152a, HFC-227ea, HFC-245fa, HFC-43-10mee, HCFO-1233zd(E), HFO-1234yf, HFO-1234ze(E), HFO-1336mzz(Z), C₄F₁₀, and PFC/PFPEs, the latter being a proxy for a diverse collection of PFCs and perfluoropolyethers (PFPEs) employed for solvent applications.

1 In 1990 and 1991, the only significant emissions of HFCs and PFCs as substitutes to ODSs were relatively small

2 amounts of HFC-152a—used as an aerosol propellant and also a component of the refrigerant blend R-500 used in

3 chillers. Beginning in 1992, HFC-134a was used in growing amounts as a refrigerant in motor vehicle air-

4 conditioners and in refrigerant blends such as R-404A.⁹⁷ In 1993, the use of HFCs in foam production began, and in

5 1994 ODS substitutes for halons entered widespread use in the United States as halon production was phased out.

6 In 1995, these compounds also found applications as solvents.

7 The use and subsequent emissions of HFCs and PFCs as ODS substitutes has been increasing from small amounts in

8 1990 to 164.5 MMT CO₂ Eq. emitted in 2018. This increase was in large part the result of efforts to phase out CFCs

9 and other ODSs in the United States. In the short term, this trend is expected to continue, and will likely continue

10 over the next decade as HCFCs, which are interim substitutes in many applications, are themselves phased-out

11 under the provisions of the Copenhagen Amendments to the *Montreal Protocol*. Improvements in the technologies

- 12 associated with the use of these gases and the introduction of alternative gases and technologies, however, may
- 13 help to offset this anticipated increase in emissions.
- 14 Table 4-101 presents emissions of HFCs and PFCs as ODS substitutes by end-use sector for 1990 through 2018. The
- end-use sectors that contributed the most toward emissions of HFCs and PFCs as ODS substitutes in 2018 include
- refrigeration and air-conditioning (128.9 MMT CO₂ Eq., or approximately 78 percent), aerosols (19.2 MMT CO₂ Eq.,
- 17 or approximately 12 percent), and foams (11.8 MMT CO₂ Eq., or approximately 7 percent). Within the refrigeration
- and air-conditioning end-use sector, large retail food was the highest emitting end-use (31.0 MMT CO₂ Eq.),
- 19 followed by motor vehicle air-conditioning. Each of the end-use sectors is described in more detail below.

20 Table 4-101: Emissions of HFCs and PFCs from ODS Substitutes (MMT CO₂ Eq.) by Sector

Sector	1990	2005	2014	2015	2016	2017	2018
Refrigeration/Air Conditioning	+	89.7	122.5	124.8	126.5	126.8	128.9
Aerosols	0.2	11.9	22.6	23.5	22.1	20.7	19.2
Foams	+	2.1	7.9	9.3	10.3	11.2	11.8
Solvents	+	1.7	1.8	1.8	1.9	1.9	2.0
Fire Protection	+	1.1	2.2	2.3	2.4	2.5	2.6
Total	0.2	106.5	157.1	161.7	163.2	163.1	164.5

21 + Does not exceed 0.05 MMT CO₂ Eq.

22 Note: Totals may not sum due to independent rounding.

23 **Refrigeration/Air Conditioning**

24 The refrigeration and air-conditioning sector includes a wide variety of equipment types that have historically used

25 CFCs or HCFCs. End-uses within this sector include motor vehicle air-conditioning, retail food refrigeration,

- 26 refrigerated transport (e.g., ship holds, truck trailers, railway freight cars), household refrigeration, residential and
- 27 small commercial air-conditioning and heat pumps, chillers (large comfort cooling), cold storage facilities, and

⁹⁷ R-404A contains HFC-125, HFC-143a, and HFC-134a.

- 1 industrial process refrigeration (e.g., systems used in food processing, chemical, petrochemical, pharmaceutical, oil
- 2 and gas, and metallurgical industries). As the ODS phaseout has taken effect, most equipment has been retrofitted
- 3 or replaced to use HFC-based substitutes. Common HFCs in use today in refrigeration/air-conditioning equipment
- 4 are HFC-134a, R-410A,⁹⁸ R-404A, and R-507A.⁹⁹ Lower-GWP options such as hydrofluoroolefin (HFO)-1234yf in
- 5 motor vehicle air-conditioning, R-717 (ammonia) in cold storage and industrial applications, and R-744 (carbon
- 6 dioxide) and HFC/HFO blends in retail food refrigeration, are also being used. These refrigerants are emitted to the
- atmosphere during equipment manufacture and operation (as a result of component failure, leaks, and purges), as
- 8 well as at manufacturing (if charged at the factory), installation, servicing, and disposal events.

9 Aerosols

- 10 Aerosol propellants are used in metered dose inhalers (MDIs) and a variety of personal care products and
- 11 technical/specialty products (e.g., duster sprays and safety horns). Many pharmaceutical companies that produce
- 12 MDIs—a type of inhaled therapy used to treat asthma and chronic obstructive pulmonary disease—have replaced
- 13 the use of CFCs with HFC-propellant alternatives. The earliest ozone-friendly MDIs were produced with HFC-134a,
- but the industry is using HFC-227ea as well. Conversely, since the use of CFC propellants was banned in 1978, most
- 15 non-medical consumer aerosol products have not transitioned to HFCs, but to "not-in-kind" technologies, such as
- solid or roll-on deodorants and finger-pump sprays. The transition away from ODS in specialty aerosol products has
- also led to the introduction of non-fluorocarbon alternatives (e.g., hydrocarbon propellants) in certain applications,
- 18 in addition to HFC-134a or HFC-152a. Other low-GWP options such as HFO-1234ze(E) are being used as well. These
- 19 propellants are released into the atmosphere as the aerosol products are used.

20 Foams

- 21 Chlorofluorocarbons and HCFCs have traditionally been used as foam blowing agents to produce polyurethane
- (PU), polystyrene, polyolefin, and phenolic foams, which are used in a wide variety of products and applications.
- 23 Since the Montreal Protocol, flexible PU foams as well as other types of foam, such as polystyrene sheet,
- 24 polyolefin, and phenolic foam, have transitioned almost completely away from fluorocompounds, into alternatives
- such as CO₂ and hydrocarbons. The majority of rigid PU foams have transitioned to HFCs—primarily HFC-134a and
- 26 HFC-245fa. Today, these HFCs are used to produce PU appliance, PU commercial refrigeration, PU spray, and PU
- 27 panel foams—used in refrigerators, vending machines, roofing, wall insulation, garage doors, and cold storage
- applications. In addition, HFC-152a, HFC-134a, and CO₂ are used to produce polystyrene sheet/board foam, which
- is used in food packaging and building insulation. Low-GWP fluorinated foam blowing agents in use include HFO-
- 1234ze(E) and HCFO-1233zd(E). Emissions of blowing agents occur when the foam is manufactured as well as
- 31 during the foam lifetime and at foam disposal, depending on the particular foam type.

32 Solvents

- 33 Chlorofluorocarbons, methyl chloroform (1,1,1-trichloroethane or TCA), and to a lesser extent carbon tetrachloride
- 34 (CCl₄) were historically used as solvents in a wide range of cleaning applications, including precision, electronics,
- 35 and metal cleaning. Since their phaseout, metal cleaning end-use applications have primarily transitioned to non-
- 36 fluorocarbon solvents and not-in-kind processes. The precision and electronics cleaning end-uses have transitioned
- in part to high-GWP gases, due to their high reliability, excellent compatibility, good stability, low toxicity, and
- selective solvency. These applications rely on HFC-43-10mee, HFC-365mfc, HFC-245fa, and to a lesser extent, PFCs.
- Electronics cleaning involves removing flux residue that remains after a soldering operation for printed circuit
 boards and other contamination-sensitive electronics applications. Precision cleaning may apply to either
- 40 electronic components or to metal surfaces, and is characterized by products, such as disk drives, gyroscopes, and

 $^{^{98}}$ R-410A contains HFC-32 and HFC-125.

 $^{^{99}}$ R-507A, also called R-507, contains HFC-125 and HFC-143a.

- 1 optical components, that require a high level of cleanliness and generally have complex shapes, small clearances,
- 2 and other cleaning challenges. The use of solvents yields fugitive emissions of these HFCs and PFCs.

3 Fire Protection

- 4 Fire protection applications include portable fire extinguishers ("streaming" applications) that originally used halon
- 5 1211, and total flooding applications that originally used halon 1301, as well as some halon 2402. Since the
- 6 production and import of virgin halons were banned in the United States in 1994, the halon replacement agent of
- 7 choice in the streaming sector has been dry chemical, although HFC-236fa is also used to a limited extent. In the
- 8 total flooding sector, HFC-227ea has emerged as the primary replacement for halon 1301 in applications that
- 9 require clean agents. Other HFCs, such as HFC-23 and HFC-125, are used in smaller amounts. The majority of HFC-
- 10 227ea in total flooding systems is used to protect essential electronics, as well as in civil aviation, military mobile
- 11 weapons systems, oil/gas/other process industries, and merchant shipping. Fluoroketone FK-5-1-12 is also used as
- a low-GWP option and 2-BTP is being considered. As fire protection equipment is tested or deployed, emissions of
 HFCs occur.
- 14 Methodology

15 A detailed Vintaging Model of ODS-containing equipment and products was used to estimate the actual—versus 16 potential—emissions of various ODS substitutes, including HFCs and PFCs. The name of the model refers to the fact 17 that it tracks the use and emissions of various compounds for the annual "vintages" of new equipment that enter 18 service in each end-use. The Vintaging Model predicts ODS and ODS substitute use in the United States based on 19 modeled estimates of the quantity of equipment or products sold each year containing these chemicals and the 20 amount of the chemical required to manufacture and/or maintain equipment and products over time. Emissions 21 for each end-use were estimated by applying annual leak rates and release profiles, which account for the lag in 22 emissions from equipment as they leak over time. By aggregating the data for 68 different end-uses, the model 23 produces estimates of annual use and emissions of each compound. Further information on the Vintaging Model is 24 contained in Annex 3.9.

25 Uncertainty and Time-Series Consistency

- 26 Given that emissions of ODS substitutes occur from thousands of different kinds of equipment and from millions of
- 27 point and mobile sources throughout the United States, emission estimates must be made using analytical tools
- such as the Vintaging Model or the methods outlined in IPCC (2006). Though the model is more comprehensive
- 29 than the IPCC default methodology, significant uncertainties still exist with regard to the levels of equipment sales,
- equipment characteristics, and end-use emissions profiles that were used to estimate annual emissions for the
 various compounds.
- 32 The uncertainty analysis quantifies the level of uncertainty associated with the aggregate emissions across the 68 33 end-uses in the Vintaging Model. In order to calculate uncertainty, functional forms were developed to simplify 34 some of the complex "vintaging" aspects of some end-use sectors, especially with respect to refrigeration and air-35 conditioning, and to a lesser degree, fire extinguishing. These sectors calculate emissions based on the entire 36 lifetime of equipment, not just equipment put into commission in the current year, thereby necessitating 37 simplifying equations. The functional forms used variables that included growth rates, emission factors, transition 38 from ODSs, change in charge size as a result of the transition, disposal quantities, disposal emission rates, and 39 either stock for the current year or original ODS consumption. Uncertainty was estimated around each variable 40 within the functional forms based on expert judgment, and a Monte Carlo analysis was performed. The most 41 significant sources of uncertainty for this source category include the total stock of refrigerant installed in 42 industrial process refrigeration and cold storage equipment, as well as the emission factor for refrigerant installed 43 in industrial process refrigeration and cold storage equipment.
- The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-102. Substitution of ozone depleting substances HFC and PFC emissions were estimated to be between 163.2 and 182.2 MMT CO₂ Eq.

- at the 95 percent confidence level. This indicates a range of approximately 0.8 percent below to 10.8 percent 1
- 2 above the emission estimate of 164.5 MMT CO₂ Eq.

Table 4-102: Approach 2 Quantitative Uncertainty Estimates for HFC and PFC Emissions 3 4 from ODS Substitutes (MMT CO₂ Eq. and Percent)

Source	Gases	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate ^a					
		(MMT CO₂ Eq.)	(MMT)	CO₂ Eq.)	(%)			
			Lower	Upper	Lower	Upper		
			Bound	Bound	Bound	Bound		
Substitution of Ozone	HFCs and	104 5	102.2	102.2	0.00/	. 10.00/		
Depleting Substances	PFCs	164.5	163.2	182.2	-0.8%	+10.8%		

5 ^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

6

7 Methodological approaches were applied to the entire time series to ensure time-series consistency from 1990

8 through 2018. Details on the emission trends through time are described in more detail in the Methodology

9 section, above.

QA/QC and Verification 10

For more information on the general QA/QC process applied to this source category, consistent with Volume 1, 11

12 Chapter 6 of the 2006 IPCC Guidelines, see the QA/QC and Verification Procedures section in the introduction of

13 the IPPU chapter. Category specific QC findings are described below.

Comparison of Reported Consumption to Modeled Consumption of HFCs 14

Data from EPA's Greenhouse Gas Reporting Program (GHGRP)¹⁰⁰ was also used to perform quality control as a 15

16 reference scenario check on the modeled emissions from this source category as specified in 2006 IPCC Guidelines

17 for National Greenhouse Gas Inventories. To do so, consumption patterns demonstrated through data reported

18 under GHGRP Subpart OO—Suppliers of Industrial Greenhouse Gases and Subpart QQ—Importers and Exporters of

19 Fluorinated Greenhouse Gases Contained in Pre-Charged Equipment or Closed-Cell Foams were compared to the

20 modeled demand for new saturated HFCs (excluding HFC-23) used as ODS substitutes from the Vintaging Model.

21 The collection of data from suppliers of HFCs enables EPA to calculate the reporters' aggregated net supply-the

22 sum of the quantities of chemical produced or imported into the United States less the sum of the quantities of

chemical transformed (used as a feedstock in the production of other chemicals), destroyed, or exported from the 23

United States.¹⁰¹ This allows for a quality control check on emissions from this source because the Vintaging Model 24

25 uses modeled demand for new chemical as a proxy for total amount supplied, which is similar to net supply, as an 26 input to the emission calculations in the model.

Reported Net Supply (GHGRP Top-Down Estimate) 27

- 28 Under EPA's GHGRP, suppliers (i.e., producers, importers, and exporters) of HFCs under Subpart OO began
- 29 annually reporting their production, transformation, destruction, imports, and exports to EPA in 2011 (for supply

¹⁰⁰ For the GHGRP data, EPA verifies annual facility-level and company-level reports through a multi-step process (e.g., including a combination of pre-and post-submittal electronic checks and manual reviews by staff) to identify potential errors and ensure that data submitted to EPA are accurate, complete, and consistent (EPA (2015). Based on the results of the verification process, EPA follows up with facilities to resolve mistakes that may have occurred. The post-submittals checks are consistent with a number of general and category-specific QC procedures, including range checks, statistical checks, algorithm checks, and year-to-year checks of reported data.

¹⁰¹ Chemical that is exported, transformed, or destroyed—unless otherwise imported back to the United States—will never be emitted in the United States.

- 1 that occurred in 2010) and suppliers of HFCs under Subpart QQ began annually reporting their imports and exports
- 2 to EPA in 2012 (for supply that occurred in 2011). Beginning in 2015, bulk consumption data for aggregated HFCs
- 3 reported under Subpart OO were made publicly available under EPA's GHGRP. Data include all saturated HFCs
- 4 (except HFC-23) reported to EPA across the GHGRP-reporting time series. The data include all 26 such saturated
- 5 HFCs listed in Table A-1 of 40 CFR Part 98, where regulations for EPA's GHGRP are promulgated, though not all 6 species were reported in each reporting year. For the first time in 2016, net imports of HFCs contained in pre-
- species were reported in each reporting year. For the first time in 2016, net imports of HFCs contained in pre charged equipment or closed-cell foams reported under Subpart QQ were made publicly available under EPA's
- 8 GHGRP.

9 Modeled Consumption (Vintaging Model Bottom-Up Estimate)

- 10 The Vintaging Model, used to estimate emissions from this source category, calculates chemical demand based on
- 11 the quantity of equipment and products sold, serviced and retired each year, and the amount of the chemical
- 12 required to manufacture and/or maintain the equipment and products.¹⁰² It is assumed that the total demand
- equals the amount supplied by either new production, chemical import, or quantities recovered (usually
- reclaimed) and placed back on the market. In the Vintaging Model, demand for new chemical, as a proxy for
- 15 consumption, is calculated as any chemical demand (either for new equipment or for servicing existing equipment)
- 16 that cannot be met through recycled or recovered material. No distinction is made in the Vintaging Model
- 17 between whether that need is met through domestic production or imports. To calculate emissions, the Vintaging
- 18 Model estimates the quantity released from equipment over time. Thus, verifying the Vintaging Model's calculated
- 19 consumption against GHGRP reported data is one way to check the Vintaging Model's emission estimates.
- 20 There are ten saturated HFC species modeled in the Vintaging Model: HFC-23, HFC-32, HFC-125, HFC-134a, HFC-
- 21 143a, HFC-152a, HFC-227ea, HFC-236fa, HFC-245fa, and HFC-43-10mee. For the purposes of this comparison, only
- nine HFC species are included (HFC-23 is excluded), to more closely align with the aggregated total reported under
- 23 EPA's GHGRP. While some amounts of less-used saturated HFCs, including isomers of those included in the
- 24 Vintaging Model, are reportable under EPA's GHGRP, the data are believed to represent an amount comparable to
- 25 the modeled estimates as a quality control check.

26 Comparison Results and Discussion

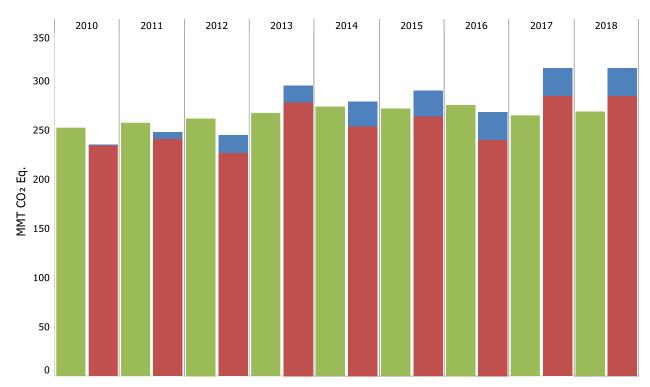
- 27 Comparing the estimates of consumption from these two approaches (i.e., reported and modeled) ultimately
- supports and improves estimates of emissions, as noted in the 2006 IPCC Guidelines (which refer to fluorinated greenhouse gas consumption based on supplies as "potential emissions"):
- 30[W]hen considered along with estimates of actual emissions, the potential emissions approach can assist31in validation of completeness of sources covered and as a QC check by comparing total domestic32consumption as calculated in this 'potential emissions approach' per compound with the sum of all33activity data of the various uses (IPCC 2006).
- Table 4-103 and Figure 4-2 compare the published net supply of saturated HFCs (excluding HFC-23) in MMT CO₂
- Eq. as determined from Subpart OO (supply of HFCs in bulk) and Subpart QQ (supply of HFCs in products and
- foams) of EPA's GHGRP for the years 2010 through 2018 (U.S. EPA 2019a) and the chemical demand as calculated
- by the Vintaging Model for the same time series. 2018 Subpart OO GHGRP values are not yet publicly available and
- are proxied to the last available estimate value, 2017. 2017 and 2018 Subpart QQ GHGRP values are not yet
- 39 publicly available and are proxied to the last available estimate value, 2016.

¹⁰² The model builds an inventory of the in-use stock of equipment and products and ODSs and HFCs in each of the subapplications. Emissions are subsequently estimated by applying annual and disposal emission rates to each population of equipment and products.

1 Table 4-103: U.S. HFC Supply (MMT CO₂ Eq.)

	2010	2011	2012	2013	2014	2015	2016	2017	2018
Reported Net Supply (GHGRP)	235	248	245	295	279	290	268	313	313
Industrial GHG Suppliers	235	241	227	278	254	264	240	285	285
HFCs in Products and Foams	NA	7	18	17	25	26	28	28	28
Modeled Supply (Vintaging Model)	252	258	262	267	273	272	276	265	269
Percent Difference	7%	4%	7%	-9%	-2%	-6%	3%	-15%	-14%

2 NA (Not Available)


3 ^a Importers and exporters of fluorinated gases in products were not required to report 2010 data.

4

5 Figure 4-2: U.S. HFC Consumption (MMT CO₂ Eq.)

- Modeled Consumption
- Reported Bulk Supply

6

As shown, the estimates from the Vintaging Model are lower than the GHGRP estimates by an average of 3 percent
across the time series (i.e., 2010 through 2018). Potential reasons for the differences between the reported and
modeled data, include:

- The Vintaging Model includes fewer saturated HFCs than are reported to EPA's GHGRP. However, the
 additional reported HFCs represent a small fraction of total HFC use for this source category, both in
 GWP-weighted and unweighted terms, and as such, it is not expected that the additional HFCs reported to
 EPA are a major driver for the difference between the two sets of estimates. To the extent lower-GWP
 isomers were used in lieu of the modeled chemicals (e.g., HFC-134 instead of HFC-134a), lower CO₂ Eq.
 amounts in the GHGRP data compared to the modeled estimates would be expected.
- Because the top-down data are reported at the time of actual production or import, and the bottom-up
 data are calculated at the time of actual placement on the market, there could be a temporal discrepancy

- when comparing data. Because the GHGRP data generally increases over time (although some year-to-year variations exist) and the Vintaging Model estimates also increase (through 2016), EPA would expect
 the modeled estimates to be slightly lower than the corresponding GHGRP data due to this temporal
 effect.
- An additional temporal effect can result from the stockpiling of chemicals by suppliers and distributors.
 Suppliers might decide to produce or import additional quantities of HFCs for various reasons such as
 expectations that prices may increase or supplies may decrease in the future. Such stockpiling behavior
 was seen during ODS phasedowns, but it is unclear if such behavior exists amongst HFC suppliers in
 anticipation of potential future controls on HFCs. Any such activity would increase the GHGRP data as
 compared to the modeled data. This effect may be a major reason why the GHGRP data in 2017 and 2018
 are significantly higher than the modeled data.
- Under EPA's GHGRP, all facilities that produce HFCs are required to report their quantities, whereas
 importers or exporters of HFCs or pre-charged equipment and closed-cell foams that contain HFCs are
 only required to report if either their total imports or their total exports of greenhouse gases are greater
 than or equal to 25,000 metric tons of CO₂ Eq. per year. Thus, some imports may not be accounted for in
 the GHGRP data. On the other hand, some exports might also not be accounted for in this data.
- In some years, imports and exports may be greater than consumption because the excess is being used to increase chemical or equipment stockpiles as discussed above; in other years, the opposite may hold true.
 Similarly, relocation of manufacturing facilities or recovery from the recession could contribute to variability in imports or exports. Averaging imports and exports over multiple years can minimize the impact of such fluctuations. For example, when the 2012 and 2013 net additions to the supply are averaged, as shown in Table 4-104, the percent difference between the consumption estimates decreases compared to the 2013-only estimates.

24 Table 4-104: Averaged U.S. HFC Demand (MMT CO₂ Eq.)

	2010-2011 Avg.	2011-2012 Avg.	2012-2013 Avg.	2013-2014 Avg.	2014-2015 Avg.	2015-2016 Avg.	2016-2017 Avg.	2017-2018 Avg.
Reported Net Supply (GHGRP)	242	247	270	287	285	279	291	313
Modeled Demand (Vintaging Model)	255	260	265	270	273	274	270	267
Percent Difference	6%	5%	-2%	-6%	-4%	-2%	-7%	-15%

25 The Vintaging Model does not reflect the dynamic nature of reported HFC consumption, with significant 26 differences seen in each year. Whereas the Vintaging Model projects a slowly increasing overall demand 27 through 2016, and a slight lowering after that, actual consumption for specific chemicals or equipment 28 may vary over time and could even switch from positive to negative (indicating more chemical exported, 29 transformed, or destroyed than produced or imported in a given year). Furthermore, consumption as 30 calculated in the Vintaging Model is a function of demand not met by disposal recovery. If, in any given 31 year, a significant number of units are disposed, there will be a large amount of additional recovery in that 32 year that can cause an unexpected and not modeled decrease in demand and thus a decrease in 33 consumption. On the other hand, if market, economic, or other factors cause less than expected disposal 34 and recovery, actual supply would decrease, and hence consumption would increase to meet that 35 demand not satisfied by recovered quantities, increasing the GHGRP amounts.

The Vintaging Model is used to estimate the emissions that occur in the United States. As such, all
 equipment or products that contain ODS or alternatives, including saturated HFCs, are assumed to
 consume and emit chemicals equally as like equipment or products originally produced in the United
 States. The GHGRP data from Subpart OO (industrial greenhouse gas suppliers) includes HFCs produced or
 imported and used to fill or manufacture products that are then exported from the United States. The
 Vintaging Model estimates of demand and supply are not meant to incorporate such chemical. Likewise,

chemicals may be used outside the United States to create products or charge equipment that is then imported to and used in the United States. The Vintaging Model estimates of demand and supply are meant to capture this chemical, as it will lead to emissions inside the United States. The GHGRP data from Subpart QQ (supply of HFCs in products) accounts for some of these differences; however, the scope of Subpart QQ does not cover all such equipment or products and the chemical contained therein. Depending on whether the United States is a net importer or net exporter of such chemical, this factor may account for some of the difference shown above or might lead to a further discrepancy.

One factor, however, would only lead to modeled estimates to be even higher than the estimates shown and
hence for some years possibly higher than GHGRP data:

 Saturated HFCs are also known to be used as a cover gas in the production of magnesium. The Vintaging Model estimates here do not include the amount of HFCs for this use, but rather only the amount for uses that traditionally were served by ODS. Nonetheless, EPA expects this supply not included in the Vintaging Model estimates to be very small compared to the ODS substitute use for the years analyzed. An indication of the different magnitudes of these categories is seen in the fact that the 2018 emissions from that non-modeled source (0.1 MMT CO₂ Eq.) are much smaller than those for the ODS substitute sector (164.5 MMT CO₂ Eq.).

17

1

2

3 4

5

6

7

18 Using a Tier 2 bottom-up modeling methodology to estimate emissions requires assumptions and expert

19 judgment. Comparing the Vintaging Model's estimates to GHGRP-reported estimates, particularly for more widely

20 used chemicals, can help validate the model but it is expected that the model will have limitations. This

21 comparison shows that Vintaging Model consumption estimates are well within the same order of magnitude as

22 the actual consumption data as reported to EPA's GHGRP although the differences in reported net supply and

23 modeled demand are still significant. Although it can be difficult to capture the observed market variability, the

24 Vintaging Model is periodically reviewed and updated to ensure that the model reflects the current and future

trajectory of ODS and ODS substitutes across all end-uses and the Vintaging Model will continue to be compared to

available top-down estimates in order to ensure the model accurately estimates HFC consumption and emissions.

27 Recalculations Discussion

28 For the current Inventory, updates to the Vintaging Model included renaming the non-metered dose inhaler (non-

29 MDI) aerosol end-use to consumer aerosol and updating stock and emission estimates to align with a recent

30 national market characterization. In addition, a technical aerosol end-use was added to the aerosols sector, in

order to capture a portion of the market that was not adequately encompassed by the current non-MDI aerosol
 end-use (EPA 2019b).

Within the Fire Protection sector, a correction was made to the lifetime for streaming agents, which was changed
 from 18 years to 24 years.

Together, these updates increased greenhouse gas emissions on average by 2.3 percent between 1990 and 2017.

36 Planned Improvements

37 Future improvements to the Vintaging Model are planned for the Foam Blowing sector. Blowing agent transitions

38 and quantities for specific equipment types are under review for commercial refrigeration foam to determine if the

end-use can be disaggregated to align with refrigeration end-uses. In addition, the disaggregation of the rigid

40 polyurethane (PU): spray foam end-use into low-pressure, two-component spray foam and high-pressure, two-

41 component spray foam is anticipated to be completed by the final 2020 submission.

4.25 Electrical Transmission and Distribution (CRF Source Category 2G1)

The largest use of sulfur hexafluoride (SF₆), both in the United States and internationally, is as an electrical insulator and interrupter in equipment that transmits and distributes electricity (RAND 2004). The gas has been employed by the electric power industry in the United States since the 1950s because of its dielectric strength and arc-quenching characteristics. It is used in gas-insulated substations, circuit breakers, and other switchgear. SF₆ has replaced flammable insulating oils in many applications and allows for more compact substations in dense urban areas.

- 9 Fugitive emissions of SF₆ can escape from gas-insulated substations and switchgear through seals, especially from
- 10 older equipment. The gas can also be released during equipment manufacturing, installation, servicing, and
- disposal. Emissions of SF₆ from equipment manufacturing and from electrical transmission and distribution
- systems were estimated to be 4.1 MMT CO₂ Eq. (0.2 kt) in 2018. This quantity represents an 82 percent decrease
- 13 from the estimate for 1990 (see Table 4-105 and Table 4-106). There are a few potential causes for this decrease: a
- sharp increase in the price of SF₆ during the 1990s and a growing awareness of the environmental impact of SF₆
- emissions through programs such as EPA's voluntary SF₆ Emission Reduction Partnership for Electric Power
- 16 Systems (Partnership) and EPA's GHGRP, regulatory drivers at the state and local levels, and research and
- development of alternative gases to SF₆ that can be used in gas-insulated substations. Utilities participating in the
- 18 Partnership have lowered their emission factor from 13 percent in 1999 (kg SF₆ emitted per kg of nameplate
- capacity) to less than 2 percent in 2018. A recent examination of the SF₆ emissions reported by electric power
- systems to EPA's GHGRP revealed that SF₆ emissions from reporters have decreased by 33 percent from 2011 to
- 21 2018,¹⁰³ with much of the reduction seen from utilities that are not participants in the Partnership. These utilities
- 22 may be making relatively large reductions in emissions as they take advantage of relatively large and/or
- 23 inexpensive emission reduction opportunities (i.e., "low hanging fruit," such as replacing major leaking circuit
- 24 breakers) that Partners have already taken advantage of under the voluntary program (Ottinger et al. 2014).

Table 4-105: SF₆ Emissions from Electric Power Systems and Electrical Equipment Manufacturers (MMT CO₂ Eq.)

		Electrical	
	Electric Power	Equipment	
Year	Systems	Manufacturers	Total
1990	22.8	0.3	23.2
2005	7.7	0.7	8.4
2014	4.4	0.4	4.8
2015	3.5	0.3	3.8
2016	3.8	0.3	4.1
2017	3.8	0.3	4.1
2018	3.7	0.3	4.1

Note: Totals may not sum due to independent rounding.

¹⁰³ Analysis of emission trends from the GHGRP is imperfect due to an inconsistent group of reporters year to year.

Table 4-106: SF₆ Emissions from Electric Power Systems and Electrical Equipment 1

2 Manufacturers (kt)

Year	Emissions
1990	1.0
2005	0.4
2014	0.2
2015	0.2
2016	0.2
2017	0.2
2018	0.2

Methodology 3

4 The estimates of emissions from Electrical Transmission and Distribution are comprised of emissions from electric

power systems and emissions from the manufacture of electrical equipment. The methodologies for estimating 5

6 both sets of emissions are described below.

1990 through 1998 Emissions from Electric Power Systems 7

8 Emissions from electric power systems from 1990 through 1998 were estimated based on (1) the emissions 9 estimated for this source category in 1999, which, as discussed in the next section, were based on the emissions 10 reported during the first year of EPA's SF₆ Emission Reduction Partnership for Electric Power Systems (Partnership), and (2) the RAND survey of global SF₆ emissions. Because most utilities participating in the Partnership reported 11 12 emissions only for 1999 through 2011, modeling was used to estimate SF₆ emissions from electric power systems 13 for the years 1990 through 1998. To perform this modeling, U.S. emissions were assumed to follow the same 14 trajectory as global emissions from this source during the 1990 to 1999 period. To estimate global emissions, the 15 RAND survey of global SF₆ sales was used, together with the following equation for estimating emissions, which is 16 derived from the mass-balance equation for chemical emissions (Volume 3, Equation 7.3) in the 2006 IPCC Guidelines.¹⁰⁴ (Although Equation 7.3 of the 2006 IPCC Guidelines appears in the discussion of substitutes for 17 18 ozone-depleting substances, it is applicable to emissions from any long-lived pressurized equipment that is 19 periodically serviced during its lifetime.) 20 Emissions (kilograms SF_6) = SF_6 purchased to refill existing equipment (kilograms) + nameplate capacity of retiring equipment (kilograms) ¹⁰⁵ 21

22 Note that the above equation holds whether the gas from retiring equipment is released or recaptured; if the gas

23 is recaptured, it is used to refill existing equipment, thereby lowering the amount of SF₆ purchased by utilities for 24 this purpose.

- 25 Gas purchases by utilities and equipment manufacturers from 1961 through 2003 are available from the RAND
- 26 (2004) survey. To estimate the quantity of SF_6 released or recovered from retiring equipment, the nameplate
- 27 capacity of retiring equipment in a given year was assumed to equal 81.2 percent of the amount of gas purchased
- 28 by electrical equipment manufacturers 40 years previous (e.g., in 2000, the nameplate capacity of retiring
- 29 equipment was assumed to equal 81.2 percent of the gas purchased in 1960). The remaining 18.8 percent was
- 30 assumed to have been emitted at the time of manufacture. The 18.8 percent emission factor is an average of IPCC

¹⁰⁴ Ideally, sales to utilities in the United States between 1990 and 1999 would be used as a model. However, this information was not available. There were only two U.S. manufacturers of SF₆ during this time period, so it would not have been possible to conceal sensitive sales information by aggregation.

 $^{^{105}}$ Nameplate capacity is defined as the amount of SF₆ within fully charged electrical equipment.

- 1 default SF₆ emission rates for Europe and Japan for 1995 (IPCC 2006). The 40-year lifetime for electrical equipment
- 2 is also based on IPCC (2006). The results of the two components of the above equation were then summed to yield
- $3\qquad estimates \ of \ global \ SF_6 \ emissions \ from \ 1990 \ through \ 1999.$
- 4 U.S. emissions between 1990 and 1999 are assumed to follow the same trajectory as global emissions during this
- 5 period. To estimate U.S. emissions, global emissions for each year from 1990 through 1998 were divided by the
- 6 estimated global emissions from 1999. The result was a time series of factors that express each year's global
- 7 emissions as a multiple of 1999 global emissions. Historical U.S. emissions were estimated by multiplying the factor
- 8 for each respective year by the estimated U.S. emissions of SF₆ from electric power systems in 1999 (estimated to
- 9 be 13.6 MMT CO₂ Eq.).
- 10 Two factors may affect the relationship between the RAND sales trends and actual global emission trends. One is
- 11 utilities' inventories of SF₆ in storage containers. When SF₆ prices rise, utilities are likely to deplete internal
- 12 inventories before purchasing new SF₆ at the higher price, in which case SF₆ sales will fall more quickly than
- emissions. On the other hand, when SF₆ prices fall, utilities are likely to purchase more SF₆ to rebuild inventories, in
- 14 which case sales will rise more quickly than emissions. This effect was accounted for by applying 3-year smoothing
- to utility SF₆ sales data. The other factor that may affect the relationship between the RAND sales trends and
- actual global emissions is the level of imports from and exports to Russia and China. SF₆ production in these
- 17 countries is not included in the RAND survey and is not accounted for in any another manner by RAND. However,
- atmospheric studies confirm that the downward trend in estimated global emissions between 1995 and 1998 was
- 19 real (see the Uncertainty discussion below).

20 1999 through 2018 Emissions from Electric Power Systems

21 Emissions from electric power systems from 1999 to 2018 were estimated based on: (1) reporting from utilities

22 participating in EPA's SF₆ Emission Reduction Partnership for Electric Power Systems (Partners), which began in

23 1999; (2) reporting from utilities covered by EPA's GHGRP, which began in 2012 for emissions occurring in 2011

24 (GHGRP-Only Reporters); and (3) the relationship between utilities' reported emissions and their transmission

25 miles as reported in the 2001, 2004, 2007, 2010, 2013, and 2016 Utility Data Institute (UDI) Directories of Electric

Power Producers and Distributors (UDI 2001, 2004, 2007, 2010, 2013, and 2017), which was applied to the electric

27 power systems that do not report to EPA (Non-Reporters). (Transmission miles are defined as the miles of lines

28 carrying voltages above 34.5 kV).

29 Partners

30 Over the period from 1999 to 2018, Partner utilities, which for inventory purposes are defined as utilities that

either currently are or previously have been part of the Partnership,¹⁰⁶ represented 50 percent, on average, of

- 32 total U.S. transmission miles. Partner utilities estimated their emissions using a Tier 3 utility-level mass balance
- approach (IPCC 2006). If a Partner utility did not provide data for a particular year, emissions were interpolated
- 34 between years for which data were available or extrapolated based on Partner-specific transmission mile growth
- 35 rates. In 2012, many Partners began reporting their emissions (for 2011 and later years) through EPA's GHGRP
- 36 (discussed further below) rather than through the Partnership. In 2018, approximately 1 percent of the total
- 37 emissions attributed to Partner utilities were reported through Partnership reports. Approximately 93 percent of
- 38 the total emissions attributed to Partner utilities were reported and verified through EPA's GHGRP. Partners

¹⁰⁶ Starting in the 1990 to 2015 Inventory, partners who had reported three years or less of data prior to 2006 were removed. Most of these Partners had been removed from the list of current Partners but remained in the Inventory due to the extrapolation methodology for non-reporting partners.

- 1 without verified 2018 data accounted for approximately 6 percent of the total emissions attributed to Partner
- 2 utilities.¹⁰⁷
- 3 The GHGRP program has an "offramp" provision (40 CFR Part 98.2(i)) that exempts facilities from reporting under
- 4 certain conditions. If reported total greenhouse gas emissions are below 15,000 metric tons of carbon dioxide
- 5 equivalent (MT CO₂ Eq.) for three consecutive years or below 25,000 MT CO₂ Eq. for five consecutive years, the
- 6 facility may elect to discontinue reporting. GHGRP reporters that have off-ramped are extrapolated for three years
- 7 of non-reporting using a utility-specific transmission mile growth rate. After three consecutive years of non-
- 8 reporting, they are treated as non-reporters, as described in the section below on non-reporters. Partners that
- 9 have years of non-reporting between reporting years are gap filled by interpolating between reported values.

10 GHGRP-Only Reporters

- 11 EPA's GHGRP requires users of SF₆ in electric power systems to report emissions if the facility has a total SF₆
- 12 nameplate capacity that exceeds 17,820 pounds. (This quantity is the nameplate capacity that would result in
- 13 annual SF₆ emissions equal to 25,000 metric tons of CO₂ equivalent at the historical emission rate reported under
- 14 the Partnership.) As under the Partnership, electric power systems that report their SF₆ emissions under EPA's
- 15 GHGRP are required to use the Tier 3 utility-level mass-balance approach. Many Partners began reporting their
- 16 emissions through EPA's GHGRP in 2012 (reporting emissions for 2011 and later years) because their nameplate
- 17 capacity exceeded the reporting threshold. Some Partners who did not report through EPA's GHGRP continued to
- 18 report through the Partnership.
- 19 In addition, many non-Partners began reporting to EPA for the first time through its GHGRP in 2012. Non-Partner
- 20 emissions reported and verified under EPA's GHGRP were compiled to form a new category of reported data
- 21 (GHGRP-Only Reporters). GHGRP-Only Reporters accounted for 24 percent of U.S. transmission miles and 23
- 22 percent of estimated U.S. emissions from electric power system in 2018.¹⁰⁸
- 23 Emissions for GHGRP-only reporters that off-ramp are extrapolated for three years of non-reporting using a utility-
- 24 specific transmission mile growth rate. After three consecutive years of non-reporting, they are treated as non-
- reporters, and emissions are subsequently estimated based on the methodology described below.

26 Non-Reporters

- 27 Emissions from Non-Reporters (i.e., utilities other than Partners and GHGRP-Only Reporters) in every year since
- 28 1999 were estimated using the results of a regression analysis that correlated emissions from reporting utilities
- 29 (using verified data from both Partners and GHGRP-Only Reporters) with their transmission miles.¹⁰⁹ As noted
- 30 above, non-Partner emissions were reported to the EPA for the first time through its GHGRP in 2012 (representing
- 31 2011 emissions). This set of reported data was of particular interest because it provided insight into the emission
- rate of non-Partners, which previously was assumed to be equal to the historical (1999) emission rate of Partners.
- 33 Specifically, emissions were estimated for Non-Reporters as follows:

¹⁰⁷ Only data reported as of August 4, 2019 are used in the emission estimates for the prior year of reporting. Emissions for Partners that did not report to the Partnership or GHGRP are extrapolated for three years using a utility-specific transmission mile growth rate. After four consecutive years of non-reporting they are included in the 'non-reporting Partners' category.

It should be noted that data reported through EPA's GHGRP must go through a verification process. For electric power systems, verification involved a series of electronic range, completeness, and algorithm checks for each report submitted.

¹⁰⁸ GHGRP-reported and Partner transmission miles from a number of facilities were equal to zero with non-zero emissions. These facilities emissions were added to the emissions totals for their respective parent companies when identifiable and not included in the regression equation when not identifiable or applicable. Other facilities reported non-zero transmission miles with zero emissions, or zero transmission miles and zero emissions. These facilities were not included in the development of the regression equations (discussed further below). These emissions are already implicitly accounted for in the relationship between transmission miles and emissions.

 $^{^{109}}$ In the United States, SF_6 is contained primarily in transmission equipment rated above 34.5 kV.

1 Non-Reporters, 1999 to 2011: First, the 2011 emission rates (per kg nameplate capacity and per 2 transmission mile) reported by Partners and GHGRP-Only Reporters were reviewed to determine whether 3 there was a statistically significant difference between these two groups. Transmission mileage data for 4 2011 was reported through GHGRP, with the exception of transmission mileage data for Partners that did 5 not report through GHGRP, which was obtained from UDI. It was determined that there is no statistically 6 significant difference between the emission rates of Partners and GHGRP-Only reporters: therefore. 7 Partner and GHGRP-Only reported data for 2011 were combined to develop regression equations to 8 estimate the emissions of Non-Reporters. Historical emissions from Non-Reporters were estimated by 9 linearly interpolating between the 1999 regression coefficient (based on 1999 Partner data) and the 2011 10 regression coefficient. 11

- Non-Reporters, 2012 to Present: It was determined that there continued to be no statistically significant difference between the emission rates reported by Partners and by GHGRP-Only Reporters. Therefore, the emissions data from both groups were combined to develop regression equations for 2012. This was repeated for 2013 through 2018 using Partner and GHGRP-Only Reporter data for each year.
- 17oThe 2018 regression equation for reporters was developed based on the emissions reported by a18subset of Partner utilities and GHGRP-Only utilities who reported non-zero emissions and non-zero19transmission miles (representing approximately 70 percent of total U.S. transmission miles). The20regression equation for 2018 is:
- 21 Emissions (kg) = 0.221 × Transmission Miles

16

Table 4-107 below shows the percentage of transmission miles covered by reporters (i.e., associated with reported

data) and the regression coefficient for 1999 (the first year data was reported), and for 2011 through present (the
 years with GHGRP reported data). The coefficient increased between 2015 and 2018.

Table 4-107: Transmission Mile Coverage (Percent) and Regression Coefficients (kg per mile)

	1999	2005	2014	2015	2016	2017	2018
Percentage of Miles Covered by Reporters	50%	50%	74%	73%	73%	74%	70%
Regression Coefficient ^a	0.71	0.35	0.23	0.19	0.21	0.24	0.22

^a Regression coefficient for emissions is calculated utilizing transmission miles as the explanatory variable and emissions as the response variable. The equation utilizes a constant intercept of zero. When calculating the regression coefficient, outliers are also removed from the analysis when the standard residual for that reporter exceeds the value 3.0.

27 Data on transmission miles for each Non-Reporter for the years 2000, 2003, 2006, and 2009, 2012, and 2016 were

obtained from the 2001, 2004, 2007, 2010, 2013, and 2017 UDI Directories of Electric Power Producers and

Distributors, respectively (UDI 2001, 2004, 2007, 2010, 2013, and 2017). The following trends in transmission miles
 have been observed over the time series:

- The U.S. transmission system grew by over 22,000 miles between 2000 and 2003 yet declined by almost
 4,000 miles between 2003 and 2006. Given these fluctuations, periodic increases are assumed to occur
 gradually. Therefore, transmission mileage was assumed to increase at an annual rate of 1.2 percent
 between 2000 and 2003 and decrease by 0.20 percent between 2003 and 2006.
- The U.S. transmission system's annual growth rate grew to 1.7 percent from 2006 to 2009 as transmission
 miles increased by more than 33,000 miles.
- The annual growth rate for 2009 through 2012 was calculated to be 1.5 percent as transmission miles
 grew yet again by over 30,000 miles during this time period.
- The annual transmission mile growth rate for 2012 through 2018 was calculated to be 0.6 percent, as
 transmission miles increased by approximately 30,000 miles.
- Transmission miles for each year for non-reporters were calculated by interpolating between UDI reported values obtained from the 2001, 2004, 2007, 2010, 2013 and 2017 UDI directories. In cases where a non-reporter

- 1 previously reported the GHGRP or the Partnership, transmission miles were interpolated between the most
- 2 recently reported value and the next available UDI value.

3 Total Industry Emissions

- 4 As a final step, total electric power system emissions from 1999 through 2018 were determined for each year by
- 5 summing the Partner reported and estimated emissions (reported data was available through the EPA's SF₆
- 6 Emission Reduction Partnership for Electric Power Systems), the GHGRP-only reported emissions, and the non-
- 7 reporting utilities' emissions (determined using the regression equations).

8 1990 through 2018 Emissions from Manufacture of Electrical Equipment

9 Three different methods were used to estimate 1990 to 2018 emissions from original electrical equipment 10 manufacturers (OEMs).

- OEM emissions from 1990 through 2000 were derived by assuming that manufacturing emissions equaled 10 percent of the quantity of SF₆ provided with new equipment. The 10 percent emission rate is the average of the "ideal" and "realistic" manufacturing emission rates (4 percent and 17 percent, respectively) identified in a paper prepared under the auspices of the International Council on Large Electric Systems (CIGRE) in February 2002 (O'Connell et al. 2002). The quantity of SF₆ provided with new equipment was estimated based on statistics compiled by the National Electrical Manufacturers Association (NEMA). These statistics were provided for 1990 to 2000.
- 18 OEM emissions from 2000 through 2010 were estimated by (1) interpolating between the emission rate • 19 estimated for 2000 (10 percent) and an emission rate estimated for 2011 based on reporting by OEMs 20 through the GHGRP (5.7 percent), and (2) estimating the quantities of SF₆ provided with new equipment 21 for 2001 to 2010. The quantities of SF₆ provided with new equipment were estimated using Partner 22 reported data and the total industry SF₆ nameplate capacity estimate (156.5 MMT CO_2 Eq. in 2010). 23 Specifically, the ratio of new nameplate capacity to total nameplate capacity of a subset of Partners for 24 which new nameplate capacity data was available from 1999 to 2010 was calculated. These ratios were 25 then multiplied by the total industry nameplate capacity estimate for each year to derive the amount of 26 SF₆ provided with new equipment for the entire industry. Additionally, to obtain the 2011 emission rate 27 (necessary for estimating 2001 through 2010 emissions), the estimated 2011 emissions (estimated using 28 the third methodology listed below) were divided by the estimated total quantity of SF₆ provided with 29 new equipment in 2011. The 2011 quantity of SF₆ provided with new equipment was estimated in the 30 same way as the 2001 through 2010 quantities.
- OEM emissions from 2011 through 2018 were estimated using the SF₆ emissions from OEMs reporting to
 the GHGRP, and an assumption that these reported emissions account for a conservatively low estimate
 of 50 percent of the total emissions from all U.S. OEMs.

34 Uncertainty and Time-Series Consistency

- 35 To estimate the uncertainty associated with emissions of SF₆ from Electrical Transmission and Distribution,
- 36 uncertainties associated with four quantities were estimated: (1) emissions from Partners, (2) emissions from
- 37 GHGRP-Only Reporters, (3) emissions from Non-Reporters, and (4) emissions from manufacturers of electrical
- equipment. A Monte Carlo analysis was then applied to estimate the overall uncertainty of the emissions estimate.
- 39 Total emissions from the SF₆ Emission Reduction Partnership include emissions from both reporting (through the
- 40 Partnership or EPA's GHGRP) and non-reporting Partners. For reporting Partners, individual Partner-reported SF₆
- data was assumed to have an uncertainty of 10 percent. Based on a Monte Carlo analysis, the cumulative
- 42 uncertainty of all Partner-reported data was estimated to be 5.2 percent. The uncertainty associated with
- 43 extrapolated or interpolated emissions from non-reporting Partners was assumed to be 20 percent.

- 1 For GHGRP-Only Reporters, reported SF₆ data was assumed to have an uncertainty of 20 percent.¹¹⁰ Based on a
- 2 Monte Carlo analysis, the cumulative uncertainty of all GHGRP-Only reported data was estimated to be 8.8
- 3 percent.
- 4 There are two sources of uncertainty associated with the regression equations used to estimate emissions in 2016
- 5 from Non-Reporters: (1) uncertainty in the coefficients (as defined by the regression standard error estimate), and
- 6 (2) the uncertainty in total transmission miles for Non-Reporters. Uncertainties were also estimated regarding (1)
- 7 estimates of SF₆ emissions from OEMs reporting to EPA's GHGRP, and (2) the assumption on the percent share of
- 8 OEM emissions from OEMs reporting to EPA's GHGRP.
- 9 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 4-108. Electrical
- 10 Transmission and Distribution SF₆ emissions were estimated to be between 3.5 and 4.7 MMT CO₂ Eq. at the 95
- 11 percent confidence level. This indicates a range of approximately 13 percent below and 15 percent above the
- 12 emission estimate of 4.1 MMT CO₂ Eq.

13 Table 4-108: Approach 2 Quantitative Uncertainty Estimates for SF₆ Emissions from

14 Electrical Transmission and Distribution (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate	Uncertainty Range Relative to 2018 Emission Estimate ^a					
		(MMT CO₂ Eq.)	(MMT)	CO₂ Eq.)	(%)			
			Lower	Upper	Lower	Upper		
			Bound	Bound	Bound	Bound		
Electrical Transmission and Distribution	SF_6	4.1	3.5	4.7	-13%	+15%		

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

15 In addition to the uncertainty quantified above, there is uncertainty associated with using global SF₆ sales data to

16 estimate U.S. emission trends from 1990 through 1999. However, the trend in global emissions implied by sales of

17 SF₆ appears to reflect the trend in global emissions implied by changing SF₆ concentrations in the atmosphere. That

is, emissions based on global sales declined by 29 percent between 1995 and 1998 (RAND 2004), and emissions

19 based on atmospheric measurements declined by 17 percent over the same period (Levin et al. 2010).

20 Several pieces of evidence indicate that U.S. SF₆ emissions were reduced as global emissions were reduced. First,

21 the decreases in sales and emissions coincided with a sharp increase in the price of SF₆ that occurred in the mid-

1990s and that affected the United States as well as the rest of the world. A representative from DILO, a major

23 manufacturer of SF₆ recycling equipment, stated that most U.S. utilities began recycling rather than venting SF₆

24 within two years of the price rise. Finally, the emissions reported by the one U.S. utility that reported its emissions

- for all the years from 1990 through 1999 under the Partnership showed a downward trend beginning in the mid-
- 26 1990s.

27 Methodological approaches were applied to the entire time series to ensure time-series consistency from 1990

- 28 through 2018. Details on the emission trends through time are described in more detail in the Methodology
- 29 section, above.

30 QA/QC and Verification

For more information on the general QA/QC process applied to this source category, consistent with Volume 1,

32 Chapter 6 of the 2006 IPCC Guidelines, see the QA/QC and Verification Procedures section in the introduction of

the IPPU chapter.

¹¹⁰ Uncertainty is assumed to be higher for the GHGRP-Only category, because 2011 is the first year that those utilities have reported to EPA.

1 Recalculations Discussion

4

5

The historical emissions estimated for this source category have undergone the following revisions for the period
 1990 through 2017.

- **GHGRP report resubmissions:** Historical estimates for the period 2011 through 2017 were updated relative to the previous report based on revisions to reported historical data in EPA's GHGRP.
- Missing report gap-filling: Previously, only missing data from Partner utilities were gap-filled for, while
 GHGRP-only utilities with missing data were considered non-reporters. Between 2011 and 2018, missing
 data is interpolated between reporting years for all reporting utilities. Data is extrapolated for three years
 if a reporting utility has stopped reporting using a utility specific transmission mile growth rate for 2011
 through 2016 and an industry-wide growth rate for 2017 and 2018. See methodology section for more
 information.
- 12 • **Nameplate capacity:** The previous year's methodology determined the end of year nameplate capacity by 13 summing the Beginning of Year Nameplate Capacity and the Net Increase in Nameplate Capacity for the 14 GHGRP reporters, which aggregates a small portion of hermetically sealed equipment and high-voltage 15 equipment. Beginning in the 2017 reporting year, EPA's GHGRP required that reporters distinguish between the nameplate capacity of non-hermetically sealed equipment from equipment that is 16 17 hermetically sealed. EPA now calculates the end of year nameplate capacity for 2010 to 2017 by using the 18 reported beginning of year nameplate capacity reported for the following year. For 2018, the last year in 19 the time series, the end of year nameplate was determined by using the reported beginning of year 20 nameplate and the net increase in non-hermetically sealed equipment. If, however, a facility stopped 21 reporting prior to 2017, the previous inventory's methodology (i.e., summing the Beginning of Year 22 Nameplate Capacity and the Net Increase in Nameplate Capacity) was used to determine the end of year 23 nameplate capacity with the net increase in nameplate capacity scaled down to adjust for the nameplate 24 capacity of hermetically sealed equipment. EPA calculated the adjustment factor by taking the net 25 increase in non-hermetically sealed equipment divided by the total net increase of both hermetically and 26 non-hermetically sealed equipment using data from the 2017 and 2018 reporting years.
- 27 Transmission miles: First, this inventory year's methodology interpolates between known years of UDI • 28 facility-specific transmission mile data and calculates a growth rate year to year on these interpolated 29 values; whereas, previously, UDI transmission mile data growth was assumed to be the same for all 30 facilities for years where EPA did not have data and did not result in an accurate gap-filling methodology. 31 Estimates from 1990 through 1998 were updated as a result of recalculations made to some Partner 32 transmission mile growth rates which caused a recalculation to the 1999 U.S. emission estimate. As discussed in the Methodology above, the 1990 to 1998 estimates are based, in part, on the emissions 33 34 estimated for this source category in 1999. Second, a correction was made to address an incorrect growth 35 rate being used for extrapolating for transmission miles for all utilities from last year's inventory.

As a result of the recalculations, SF₆ emissions from electrical transmission and distribution decreased by 3.9 percent for 2017 relative to the previous report, and SF₆ nameplate capacity decreased by 3.5 percent for 2017 relative to the previous report. On average, SF₆ emission estimates for the entire time series decreased by

39 approximately 0.18 percent per year.

40 Planned Improvements

EPA plans to more closely examine transmission miles data by company provided by the UDI data sets, which are
 purchased every three years, to identify inconsistencies in the companies included in the data sets and improve
 the transmission mile estimates to address data gaps, as necessary.

- 44 Additionally, as the information on the type of new and retiring equipment is collected through GHGRP reporting,
- 45 EPA expects this data to provide insight into the relative importance of the two types of equipment as potential
- 46 emission sources. Historically, hermetically sealed pressure equipment has been considered to be a relatively small

- 1 source of SF₆ in the United States; however, better estimating its potential source of emissions upon end-of-life
- 2 (i.e., disposal emissions) is an area for further analysis.

4.26 Nitrous Oxide from Product Uses (CRF 3 Source Category 2G3)

- 4
- Nitrous oxide (N₂O) is a clear, colorless, oxidizing liquefied gas with a slightly sweet odor which is used in a wide 5
- 6 variety of specialized product uses and applications. The amount of N₂O that is actually emitted depends upon the 7 specific product use or application.
- 8 There are a total of three N₂O production facilities currently operating in the United States (Ottinger 2014). Nitrous
- 9 oxide is primarily used in carrier gases with oxygen to administer more potent inhalation anesthetics for general
- 10 anesthesia, and as an anesthetic in various dental and veterinary applications. The second main use of N₂O is as a
- 11 propellant in pressure and aerosol products, the largest application being pressure-packaged whipped cream.
- 12 Small quantities of N₂O also are used in the following applications:
- 13 Oxidizing agent and etchant used in semiconductor manufacturing;
- 14 Oxidizing agent used, with acetylene, in atomic absorption spectrometry;
- 15 Production of sodium azide, which is used to inflate airbags; •
- 16 Fuel oxidant in auto racing; and •
- 17 Oxidizing agent in blowtorches used by jewelers and others (Heydorn 1997). •
- 18 Production of N₂O in 2018 was approximately 15 kt (see Table 4-109).

Table 4-109: N₂O Production (kt) 19

Year	kt
1990	16
2005	15
2014	15
2015	15
2016	15
2017	15
2018	15

- 20 Nitrous oxide emissions were 4.2 MMT CO₂ Eq. (14 kt N₂O) in 2018 (see Table 4-110). Production of N₂O stabilized
- during the 1990s because medical markets had found other substitutes for anesthetics, and more medical 21
- 22 procedures were being performed on an outpatient basis using local anesthetics that do not require N_2O . The use
- 23 of N_2O as a propellant for whipped cream has also stabilized due to the increased popularity of cream products
- 24 packaged in reusable plastic tubs (Heydorn 1997).

25 Table 4-110: N₂O Emissions from N₂O Product Usage (MMT CO₂ Eq. and kt)

MMT CO₂ Eq.	kt
4.2	14
4.2	14
4.2	14
4.2	14
	4.2 4.2 4.2

2016	4.2	14
2017	4.2	14
2018	4.2	14

1 Methodology

2 Emissions from N₂O product uses were estimated using the following equation:

3

$$E_{pu} = \sum_{a} (P \times S_a \times ER_a)$$

4 where,

5 6 7	E _{pu} P a	= = =	N ₂ O emissions from product uses, metric tons Total U.S. production of N ₂ O, metric tons specific application
8	Sa	=	Share of N ₂ O usage by application <i>a</i>
9	ER_{a}	=	Emission rate for application <i>a</i> , percent

10 The share of total quantity of N_2O usage by end-use represents the share of national N_2O produced that is used by

the specific subcategory (e.g., anesthesia, food processing). In 2018, the medical/dental industry used an
 estimated 86.5 percent of total N₂O produced, followed by food processing propellants at 6.5 percent. All other

categories combined used the remainder of the N₂O produced. This subcategory breakdown has changed only

slightly over the past decade. For instance, the small share of N₂O usage in the production of sodium azide has

declined significantly during the 1990s. Due to the lack of information on the specific time period of the phase-out

16 in this market subcategory, most of the N₂O usage for sodium azide production is assumed to have ceased after

17 1996, with the majority of its small share of the market assigned to the larger medical/dental consumption

18 subcategory (Heydorn 1997). The N₂O was allocated across the following categories: medical applications, food

19 processing propellant, and sodium azide production (pre-1996). A usage emissions rate was then applied for each 20 sector to estimate the amount of N₂O emitted.

21 Only the medical/dental and food propellant subcategories were estimated to release emissions into the

atmosphere, and therefore these subcategories were the only usage subcategories with emission rates. For the

23 medical/dental subcategory, due to the poor solubility of N₂O in blood and other tissues, none of the N₂O is

assumed to be metabolized during anesthesia and quickly leaves the body in exhaled breath. Therefore, an
 emission factor of 100 percent was used for this subcategory (IPCC 2006). For N₂O used as a propellant in

emission factor of 100 percent was used for this subcategory (IPCC 2006). For N₂O used as a propellant in
 pressurized and aerosol food products, none of the N₂O is reacted during the process and all of the N₂O is emitted

to the atmosphere, resulting in an emission factor of 100 percent for this subcategory (IPCC 2006). For the

remaining subcategories, all of the N₂O is consumed/reacted during the process, and therefore the emission rate
 was considered to be zero percent (Tupman 2003).

30 The 1990 through 1992 N₂O production data were obtained from SRI Consulting's Nitrous Oxide, North America

report (Heydorn 1997). Nitrous oxide production data for 1993 through 1995 were not available. Production data

for 1996 was specified as a range in two data sources (Heydorn 1997; Tupman 2003). In particular, for 1996,

Heydorn (1997) estimates N₂O production to range between 13.6 and 18.1 thousand metric tons. Tupman (2003)

provided a narrower range (15.9 to 18.1 thousand metric tons) for 1996 that falls within the production bounds

described by Heydorn (1997). Tupman (2003) data are considered more industry-specific and current. Therefore,
 the midpoint of the narrower production range was used to estimate N₂O emissions for years 1993 through 2001

(Tupman 2003). The 2002 and 2003 N₂O production data were obtained from the Compressed Gas Association

Nitrous Oxide Fact Sheet and Nitrous Oxide Abuse Hotline (CGA 2002, 2003). These data were also provided as a

range. For example, in 2003, CGA (2003) estimates N₂O production to range between 13.6 and 15.9 thousand

40 metric tons. Due to the unavailability of data, production estimates for years 2004 through 2018 were held

41 constant at the 2003 value.

- 1 The 1996 share of the total quantity of N₂O used by each subcategory was obtained from SRI Consulting's Nitrous
- 2 Oxide, North America report (Heydorn 1997). The 1990 through 1995 share of total quantity of N₂O used by each
- 3 subcategory was kept the same as the 1996 number provided by SRI Consulting. The 1997 through 2001 share of
- 4 total quantity of N₂O usage by sector was obtained from communication with a N₂O industry expert (Tupman
- 5 2003). The 2002 and 2003 share of total quantity of N_2O usage by sector was obtained from CGA (2002, 2003). Due
- 6 to the unavailability of data, the share of total quantity of N₂O usage data for years 2004 through 2018 was
- 7 assumed to equal the 2003 value. The emissions rate for the food processing propellant industry was obtained
- 8 from SRI Consulting's Nitrous Oxide, North America report (Heydorn 1997), and confirmed by a N₂O industry
- 9 expert (Tupman 2003). The emissions rate for all other subcategories was obtained from communication with a
- 10 N_2O industry expert (Tupman 2003). The emissions rate for the medical/dental subcategory was obtained from the
- 11 2006 IPCC Guidelines.

12 Uncertainty and Time-Series Consistency

- 13 The overall uncertainty associated with the 2018 N₂O emission estimate from N₂O product usage was calculated
- 14 using the 2006 IPCC Guidelines (2006) Approach 2 methodology. Uncertainty associated with the parameters used
- $15 \qquad to estimate N_2O \ emissions \ include \ production \ data, \ total \ market \ share \ of \ each \ end \ use, \ and \ the \ emission \ factors$
- 16 applied to each end use, respectively.
- 17 The results of this Approach 2 quantitative uncertainty analysis are summarized in Table 4-111. Nitrous oxide
- emissions from N₂O product usage were estimated to be between 3.2 and 5.2 MMT CO₂ Eq. at the 95 percent
- 19 confidence level. This indicates a range of approximately 24 percent below to 24 percent above the emission
- 20 estimate of 4.2 MMT CO₂ Eq.

Table 4-111: Approach 2 Quantitative Uncertainty Estimates for N₂O Emissions from N₂O Product Usage (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate ^a					
		(MMT CO ₂ Eq.)	I.) (MMT (CO₂ Eq.)	(%)			
			Lower	Upper	Lower	Upper		
			Bound	Bound	Bound	Bound		
N ₂ O from Product Uses	N_2O	4.2	3.2	5.2	-24%	+24%		

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

23 Methodological approaches were applied to the entire time series to ensure consistency in emissions from 1990

- through 2018. Details on the emission trends through time are described in more detail in the Methodology
- 25 section, above.

26 QA/QC and Verification

27 For more information on the general QA/QC process applied to this source category, consistent with Volume 1,

28 Chapter 6 of the 2006 IPCC Guidelines, see the QA/QC and Verification Procedures section in the introduction of

the IPPU chapter.

30 Planned Improvements

31 EPA has recently initiated an evaluation of alternative production statistics for cross-verification and updating

32 time-series activity data, emission factors, assumptions, etc., and a reassessment of N₂O product use subcategories

that accurately represent trends. This evaluation includes conducting a literature review of publications and

- research that may provide additional details on the industry. This work is currently ongoing and thus the results
- 35 have not been incorporated into the current Inventory report.
- 36 Pending additional resources and planned improvement prioritization, EPA may also evaluate production and use
- 37 cycles, and the potential need to incorporate a time lag between production and ultimate product use and

1 resulting release of N₂O. Additionally, planned improvements include considering imports and exports of N₂O for 2 product uses.

3 Finally, for future Inventories, EPA will examine data from EPA's GHGRP to improve the emission estimates for the 4 N₂O product use subcategory. Particular attention will be made to ensure aggregated information can be published 5 without disclosing CBI and time-series consistency, as the facility-level reporting data from EPA's GHGRP are not 6 available for all inventory years as required in this Inventory. EPA is still assessing the possibility of incorporating

7 aggregated GHGRP CBI data to estimate emissions; therefore, this planned improvement is still in development

8 and not incorporated in the current Inventory report.

4.27 Industrial Processes and Product Use 9 **Sources of Precursor Gases**

10

11 In addition to the main greenhouse gases addressed above, many industrial processes can result in emissions of various ozone precursors. The reporting requirements of the UNFCCC¹¹¹ request that information be provided on 12 13 precursor greenhouse gases, which include carbon monoxide (CO), nitrogen oxides (NO_x), non-CH₄ volatile organic 14 compounds (NMVOCs), and sulfur dioxide (SO₂). These gases are not direct greenhouse gases, but indirectly affect 15 terrestrial radiation absorption by influencing the formation and destruction of tropospheric and stratospheric 16 ozone, or, in the case of SO₂, by affecting the absorptive characteristics of the atmosphere. Additionally, some of 17 these gases may react with other chemical compounds in the atmosphere to form compounds that are greenhouse 18 gases. As some of industrial applications also employ thermal incineration as a control technology, combustion 19 byproducts, such as CO and NO_x, are also reported with this source category. NMVOCs, commonly referred to as 20 "hydrocarbons," are the primary gases emitted from most processes employing organic or petroleum based 21 products, and can also result from the product storage and handling. 22 Accidental releases of greenhouse gases associated with product use and handling can constitute major emissions

23 in this category. In the United States, emissions from product use are primarily the result of solvent evaporation,

24 whereby the lighter hydrocarbon molecules in the solvents escape into the atmosphere. The major categories of

25 product uses include: degreasing, graphic arts, surface coating, other industrial uses of solvents (e.g., electronics),

26 dry cleaning, and non-industrial uses (e.g., uses of paint thinner). Product usage in the United States also results in

27 the emission of small amounts of hydrofluorocarbons (HFCs) and hydrofluoroethers (HFEs), which are included

28 under Substitution of Ozone Depleting Substances in this chapter.

29 Total emissions of NO_x, CO, and NMVOCs from non-energy industrial processes and product use from 1990 to 2018

30 are reported in Table 4-112. Sulfur dioxide emissions are presented in Section 2.3 of the Trends chapter and Annex

31 6.3.

32 Table 4-112: NO_x, CO, and NMVOC Emissions from Industrial Processes and Product Use (kt)

Gas/Source	1990	2005	2014	2015	2016	2017	2018
NO _x	592	572	414	414	414	414	414
Industrial Processes							
Other Industrial Processes ^a	343	437	300	300	300	300	300
Metals Processing	88	60	63	63	63	63	63
Chemical and Allied Product							
Manufacturing	152	55	43	43	43	43	43
Storage and Transport	3	15	5	5	5	5	5
Miscellaneous ^b	5	2	2	2	2	2	2
Product Uses							

¹¹¹ See <http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>.

Surface Coating	1	3	1	1	1	1	1
Graphic Arts	+	0	0	0	0	0	0
Degreasing	+	0	0	0	0	0	0
Dry Cleaning	+	0	0	0	0	0	0
Other Industrial Processes ^a	+	0	0	0	0	0	0
Non-Industrial Processes ^c	+	0	0	0	0	0	0
Other	NA	0	0	0	0	0	0
со	4,129	1,557	1,251	1,251	1,251	1,251	1,251
Industrial Processes							
Metals Processing	2,395	752	553	553	553	553	553
Other Industrial Processes ^a	487	484	530	530	530	530	530
Chemical and Allied Product							
Manufacturing	1,073	189	117	117	117	117	117
Miscellaneous ^b	101	32	42	42	42	42	42
Storage and Transport	69	97	7	7	7	7	7
Product Uses							
Surface Coating	+	2	1	1	1	1	1
Other Industrial Processes ^a	4	0	0	0	0	0	0
Dry Cleaning	+	0	0	0	0	0	0
Degreasing	+	0	0	0	0	0	0
Graphic Arts	+	0	0	0	0	0	0
Non-Industrial Processes ^c	+	0	0	0	0	0	0
Other	NA	0	0	0	0	0	0
NMVOCs	7,638	5,849	3,815	3,815	3,815	3,815	3,815
Industrial Processes							
Storage and Transport	1,352	1,308	613	613	613	613	613
Other Industrial Processes ^a	364	414	314	314	314	314	314
Chemical and Allied Product							
Manufacturing	575	213	70	70	70	70	70
Metals Processing	111	45	26	26	26	26	26
Miscellaneous ^b	20	17	24	24	24	24	24
Product Uses							
Surface Coating	2,289	1,578	1,134	1,134	1,134	1,134	1,134
Non-Industrial Processes ^c	1,724	1,446	1,039	1,039	1,039	1,039	1,039
Degreasing	675	280	202	202	202	202	202
Dry Cleaning	195	230	165	165	165	165	165
Graphic Arts	249	194	139	139	139	139	139
Other Industrial Processes ^a	85	88	63	63	63	63	63
Other	+	36	26	26	26	26	26

+ Does not exceed 0.5 kt

NA (Not Available)

^a Includes rubber and plastics manufacturing, and other miscellaneous applications.

^b Miscellaneous includes the following categories: catastrophic/accidental release, other combustion, health services, cooling towers, and fugitive dust. It does not include agricultural fires or slash/prescribed burning, which are accounted for under the Field Burning of Agricultural Residues source.

^c Includes cutback asphalt, pesticide application adhesives, consumer solvents, and other miscellaneous applications.

Note: Totals may not sum due to independent rounding.

1 Methodology

2 Emission estimates for 1990 through 2018 were obtained from data published on the National Emission Inventory

3 (NEI) Air Pollutant Emission Trends web site (EPA 2019), and disaggregated based on EPA (2003). Data were

4 collected for emissions of CO, NOx, volatile organic compounds (VOCs), and SO₂ from metals processing, chemical

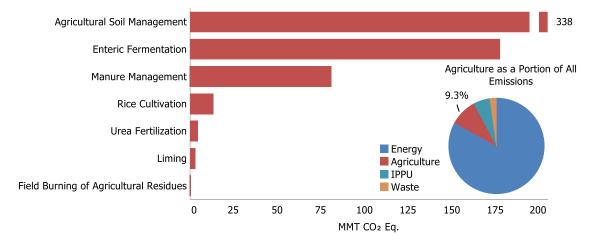
5 manufacturing, other industrial processes, transport and storage, and miscellaneous sources. Emissions were

6 calculated either for individual source categories or for many categories combined, using basic activity data (e.g.,

- 1 the amount of raw material processed or the amount of solvent purchased) as an indicator of emissions. National
- 2 activity data were collected for individual categories from various agencies. Depending on the category, these
- 3 basic activity data may include data on production, fuel deliveries, raw material processed, etc.
- 4 Emissions for product use were calculated by aggregating product use data based on information relating to
- 5 product uses from different applications such as degreasing, graphic arts, etc. Emission factors for each
- 6 consumption category were then applied to the data to estimate emissions. For example, emissions from surface
- 7 coatings were mostly due to solvent evaporation as the coatings solidify. By applying the appropriate product-
- 8 specific emission factors to the amount of products used for surface coatings, an estimate of NMVOC emissions
- 9 was obtained. Emissions of CO and NO_x under product use result primarily from thermal and catalytic incineration
- 10 of solvent-laden gas streams from painting booths, printing operations, and oven exhaust.
- 11 Activity data were used in conjunction with emission factors, which together relate the quantity of emissions to
- 12 the activity. Emission factors are generally available from the EPA's Compilation of Air Pollutant Emission Factors,
- 13 AP-42 (EPA 1997). The EPA currently derives the overall emission control efficiency of a source category from a
- 14 variety of information sources, including published reports, the 1985 National Acid Precipitation and Assessment
- 15 Program emissions inventory, and other EPA databases.

¹⁶ Uncertainty and Time-Series Consistency

- Uncertainties in these estimates are partly due to the accuracy of the emission factors and activity data used. A
 quantitative uncertainty analysis was not performed.
- 19 Methodological approaches were applied to the entire time series to ensure time-series consistency from 1990
- through 2018. Details on the emission trends through time are described in more detail in the Methodology
 section, above.


22 QA/QC and Verification

- 23 For more information on the general QA/QC process applied to this source category, consistent with Volume 1,
- 24 Chapter 6 of the 2006 IPCC Guidelines, see the QA/QC and Verification Procedures section in the introduction of
- the IPPU chapter.

5. Agriculture

- 2 Agricultural activities contribute directly to emissions of greenhouse gases through a variety of processes. This
- 3 chapter provides an assessment of methane (CH₄) and nitrous oxide (N₂O) emissions from enteric fermentation in
- 4 domestic livestock, livestock manure management, rice cultivation, agricultural soil management, and field burning
- 5 of agricultural residues; as well as carbon dioxide (CO₂) emissions from liming and urea fertilization (see Figure
- 6 5-1). Additional CO₂, CH₄ and N₂O fluxes from agriculture-related land-use and land-use conversion activities, such
- 7 as cultivation of cropland, grassland fires and conversion of forest land to cropland, are presented in the Land Use,
- 8 Land-Use Change, and Forestry (LULUCF) chapter. Carbon dioxide emissions from on-farm energy use are reported
- 9 in the Energy chapter.

10 Figure 5-1: 2018 Agriculture Chapter Greenhouse Gas Emission Sources (MMT CO₂ Eq.)

11

- 12 In 2018, the Agriculture sector was responsible for emissions of 618.5 MMT CO₂ Eq.,¹ or 9.3 percent of total U.S.
- 13 greenhouse gas emissions.² Methane emissions from enteric fermentation and manure management represent
- 14 28.0 percent and 9.7 percent of total CH₄ emissions from anthropogenic activities, respectively. Of all domestic
- animal types, beef and dairy cattle were the largest emitters of CH₄. Rice cultivation and field burning of
- agricultural residues were minor sources of CH₄. Emissions of N₂O by agricultural soil management through
- 17 activities such as fertilizer application and other agricultural practices that increased nitrogen availability in the soil
- 18 was the largest source of U.S. N₂O emissions, accounting for 77.8 percent. Manure management and field burning

¹ Following the current reporting requirements under the United Nations Framework Convention on Climate Change (UNFCCC), this Inventory report presents CO₂ equivalent values based on the *IPCC Fourth Assessment Report* (AR4) GWP values. See the Introduction chapter for more information.

² Emissions reported in the Agriculture chapter include those from all states, including Hawaii and Alaska; however, U.S. Territories are not included.

- 1 of agricultural residues were also small sources of N₂O emissions. Urea fertilization and liming each accounted for
- 2 0.1 percent of total CO₂ emissions from anthropogenic activities.
- 3 Table 5-1 and Table 5-2 present emission estimates for the Agriculture sector. Between 1990 and 2018, CO₂ and
- 4 CH₄ emissions from agricultural activities increased by 16.0 percent and 16.2 percent, respectively, while N₂O
- 5 emissions from agricultural activities fluctuated from year to year, but increased by 8.4 percent overall.

6 Table 5-1: Emissions from Agriculture (MMT CO₂ Eq.)

Gas/Source	1990	2005	2014	2015	2016	2017	2018
CO ₂	6.7	7.5	7.5	7.8	7.1	7.6	7.7
Urea Fertilization	2.0	3.1	3.9	4.1	4.0	4.5	4.6
Liming	4.7	4.3	3.6	3.7	3.1	3.1	3.1
CH₄	217.6	238.8	234.3	241.0	245.3	248.4	253.0
Enteric Fermentation	164.2	168.9	164.2	166.5	171.8	175.4	177.6
Manure Management	37.1	51.6	54.3	57.9	59.6	59.9	61.7
Rice Cultivation	16.0	18.0	15.4	16.2	13.5	12.8	13.3
Field Burning of Agricultural Residues	0.3	0.4	0.4	0.4	0.4	0.4	0.4
N ₂ O	330.1	329.6	366.7	365.8	348.1	346.2	357.8
Agricultural Soil Management	315.9	313.0	349.2	348.1	329.8	327.4	338.2
Manure Management	14.0	16.4	17.3	17.5	18.1	18.7	19.4
Field Burning of Agricultural Residues	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Total	554.4	575.9	608.6	614.6	600.5	602.3	618.5

Note: Totals may not sum due to independent rounding.

7 Table 5-2: Emissions from Agriculture (kt)

Gas/Source	1990	2005	2014	2015	2016	2017	2018
CO ₂	6,678	7,499	7,532	7,819	7,122	7,594	7,745
Urea Fertilization	2,011	3,150	3,923	4,082	4,041	4,514	4,598
Liming	4,667	4,349	3,609	3,737	3,081	3,080	3,147
CH ₄	8,705	9,553	9,371	9,639	9,813	9,938	10,119
Enteric Fermentation	6,566	6,755	6,567	6,660	6,874	7,016	7,103
Manure Management	1,485	2,062	2,172	2,316	2,385	2,395	2,467
Rice Cultivation	640	720	616	648	539	510	533
Field Burning of Agricultural Residues	14	16	16	16	16	16	16
N ₂ O	1,108	1,106	1,231	1,227	1,168	1,162	1,201
Agricultural Soil Management	1,060	1,050	1,172	1,168	1,107	1,099	1,135
Manure Management	47	55	58	59	61	63	65
Field Burning of Agricultural Residues	1	1	1	1	1	1	1

Note: Totals may not sum due to independent rounding.

8

Box 5-1: Methodological Approach for Estimating and Reporting U.S. Emissions and Removals

In following the United Nations Framework Convention on Climate Change (UNFCCC) requirement under Article 4.1 to develop and submit national greenhouse gas emission inventories, the emissions and removals presented in this report and this chapter, are organized by source and sink categories and calculated using internationally-accepted methods provided by the Intergovernmental Panel on Climate Change (IPCC) in the *2006 IPCC Guidelines for National Greenhouse Gas Inventories (2006 IPCC Guidelines)*. Additionally, the calculated emissions and removals in a given year for the United States are presented in a common manner in line with the UNFCCC reporting guidelines for the reporting of inventories under this international agreement. The use of consistent methods to calculate emissions and removals by all nations providing their inventories to the UNFCCC ensures that these reports are comparable. The presentation of Agriculture chapter emissions and removals provided in this Inventory do not preclude alternative examinations, but rather, this Inventory presents emissions and removals in a common format consistent with how countries are to report Inventories

under the UNFCCC. The report itself, and this chapter, follows this standardized format, and provides an explanation of the application of methods used to calculate emissions and removals from agricultural activities.

1

5.1 Enteric Fermentation (CRF Source Category 3A)

4 Methane is produced as part of normal digestive processes in animals. During digestion, microbes resident in an 5 animal's digestive system ferment food consumed by the animal. This microbial fermentation process, referred to

as enteric fermentation, produces CH₄ as a byproduct, which can be exhaled or eructated by the animal. The

amount of CH₄ produced and emitted by an individual animal depends primarily upon the animal's digestive

- 8 system, and the amount and type of feed it consumes.
- 9 Ruminant animals (e.g., cattle, buffalo, sheep, goats, and camels) are the major emitters of CH₄ because of their

10 unique digestive system. Ruminants possess a rumen, or large "fore-stomach," in which microbial fermentation

11 breaks down the feed they consume into products that can be absorbed and metabolized. The microbial

12 fermentation that occurs in the rumen enables them to digest coarse plant material that non-ruminant animals

cannot. Ruminant animals, consequently, have the highest CH₄ emissions per unit of body mass among all animal

14 types.

15 Non-ruminant animals (e.g., swine, horses, and mules and asses) also produce CH₄ emissions through enteric

16 fermentation, although this microbial fermentation occurs in the large intestine. These non-ruminants emit

17 significantly less CH₄ on a per-animal-mass basis than ruminants because the capacity of the large intestine to

18 produce CH₄ is lower.

19 In addition to the type of digestive system, an animal's feed quality and feed intake also affect CH₄ emissions. In

20 general, lower feed quality and/or higher feed intake leads to higher CH₄ emissions. Feed intake is positively

correlated to animal size, growth rate, level of activity and production (e.g., milk production, wool growth,

22 pregnancy, or work). Therefore, feed intake varies among animal types as well as among different management

23 practices for individual animal types (e.g., animals in feedlots or grazing on pasture).

24 Methane emission estimates from enteric fermentation are provided in Table 5-3 and Table 5-4. Total livestock CH₄

emissions in 2018 were 177.6 MMT CO₂ Eq. (7,103 kt). Beef cattle remain the largest contributor of CH₄ emissions

from enteric fermentation, accounting for 72 percent in 2018. Emissions from dairy cattle in 2018 accounted for 25

27 percent, and the remaining emissions were from horses, sheep, swine, goats, American bison, mules and asses.³

28 Table 5-3: CH₄ Emissions from Enteric Fermentation (MMT CO₂ Eq.)

Livestock Type	1990	2005	2014	2015	2016	2017	2018
Beef Cattle	119.1	125.2	116.5	118.0	123.0	126.3	128.1
Dairy Cattle	39.4	37.6	42.0	42.6	43.0	43.3	43.6
Swine	2.0	2.3	2.4	2.6	2.6	2.7	2.8
Horses	1.0	1.7	1.5	1.4	1.4	1.3	1.2
Sheep	2.3	1.2	1.0	1.1	1.1	1.1	1.1
American Bison	0.1	0.4	0.4	0.4	0.4	0.4	0.4
Goats	0.3	0.4	0.3	0.3	0.3	0.3	0.3
Mules and Asses	+	0.1	0.1	0.1	0.1	0.1	0.1

³ Enteric fermentation emissions from camels and poultry are not estimated for this Inventory. See Annex 5 for more information on sources and sinks of greenhouse gas emissions not included in this Inventory.

Total 164.2 168.9 164.2 166.5 171.8 175.4 1

+ Does not exceed 0.05 MMT CO₂ Eq.

Note: Totals may not sum due to independent rounding.

Livestock Type	1990	2005	2014	2015	2016	2017	2018
Beef Cattle	4,763	5,007	4,660	4,722	4,919	5,052	5,125
Dairy Cattle	1,574	1,503	1,679	1,706	1,722	1,730	1,744
Swine	81	92	96	102	105	108	111
Horses	40	70	60	57	54	51	48
Sheep	91	49	42	42	42	42	42
American Bison	4	17	14	14	15	15	15
Goats	13	14	13	13	13	13	14
Mules and Asses	1	2	3	3	3	3	3
Total	6,566	6,755	6,567	6,660	6,874	7,016	7,103

1 Table 5-4: CH₄ Emissions from Enteric Fermentation (kt)

Note: Totals may not sum due to independent rounding.

2 From 1990 to 2018, emissions from enteric fermentation have increased by 8.2 percent. Emissions have also

3 increased from 2017 to 2018 by 1.2 percent, largely driven by an increase in beef cattle populations. While

4 emissions generally follow trends in cattle populations, over the long term there are exceptions. For example,

5 while dairy cattle emissions increased 4.6 percent over the entire time series, the population has declined by 2.6

6 percent, and milk production increased 57 percent (USDA 2019). These trends indicate that while emissions per

7 head are increasing, emissions per unit of product (i.e., meat, milk) are decreasing.

8 Generally, from 1990 to 1995 emissions from beef cattle increased and then decreased from 1996 to 2004. These

9 trends were mainly due to fluctuations in beef cattle populations and increased digestibility of feed for feedlot

10 cattle. Beef cattle emissions generally increased from 2004 to 2007, as beef cattle populations increased, and an

11 extensive literature review indicated a trend toward a decrease in feed digestibility for those years. Beef cattle

emissions decreased again from 2007 to 2014, as populations again decreased, but increased from 2015 to 2018,

consistent with another increase in population over those same years. Emissions from dairy cattle generally

- 14 trended downward from 1990 to 2004, along with an overall dairy cattle population decline during the same
- 15 period. Similar to beef cattle, dairy cattle emissions rose from 2004 to 2007 due to population increases and a

16 decrease in feed digestibility (based on an analysis of more than 350 dairy cow diets used by producers across the

U.S.). Dairy cattle emissions have continued to trend upward since 2007, in line with dairy cattle population
 increases. Regarding trends in other animals, populations of sheep have steadily declined, with an overall decrease

of 54 percent since 1990. Horse populations are 22 percent greater than they were in 1990, but their numbers

have been declining by an average of 4 percent annually since 2007. Goat populations increased by about 20

percent through 2007, steadily decreased through 2012, then increased again, by about 1 percent annually,

through 2018, Swine populations have trended upward through most of the time series, increasing 37 percent

from 1990 to 2018. The population of American bison more than tripled over the 1990 to 2018 time period, while

24 the population of mules and asses increased by a factor of 5.

25 Methodology

26 Livestock enteric fermentation emission estimate methodologies fall into two categories: cattle and other

27 domesticated animals. Cattle, due to their large population, large size, and particular digestive characteristics,

account for the majority of enteric fermentation CH₄ emissions from livestock in the United States. A more detailed

29 methodology (i.e., IPCC Tier 2) was therefore applied to estimate emissions for all cattle. Emission estimates for

30 other domesticated animals (horses, sheep, swine, goats, American bison, and mules and asses) were estimated

31 using the IPCC Tier 1 approach, as suggested by the 2006 IPCC Guidelines.

- 1 While the large diversity of animal management practices cannot be precisely characterized and evaluated,
- 2 significant scientific literature exists that provides the necessary data to estimate cattle emissions using the IPCC
- 3 Tier 2 approach. The Cattle Enteric Fermentation Model (CEFM), developed by EPA and used to estimate cattle CH₄
- 4 emissions from enteric fermentation, incorporates this information and other analyses of livestock population,
- 5 feeding practices, and production characteristics. For the current Inventory, CEFM results for 1990 through 2017
- 6 were carried over from the 1990 to 2017 Inventory (i.e., 2019 Inventory submission), and a simplified approach
- 7 was used to estimate 2018 enteric emissions from cattle.

8 1990 to 2017 Inventory Methodology for Cattle

- 9 National cattle population statistics were disaggregated into the following cattle sub-populations:
- 10 Dairy Cattle
- 11 o Calves
- 12 o Heifer Replacements
- 13 o Cows
- Beef Cattle
- 15 o Calves
- 16 Heifer Replacements
- 17 o Heifer and Steer Stockers
- 18 o Animals in Feedlots (Heifers and Steer)
- 19 o Cows
- 20 o Bulls
- 21 Calf birth rates, end-of-year population statistics, detailed feedlot placement information, and slaughter weight
- 22 data were used to create a transition matrix that models cohorts of individual animal types and their specific
- emission profiles. The key variables tracked for each of the cattle population categories are described in Annex
- 3.10. These variables include performance factors such as pregnancy and lactation as well as average weights and
- 25 weight gain. Annual cattle population data were obtained from the U.S. Department of Agriculture's (USDA)
- 26 National Agricultural Statistics Service (NASS) *QuickStats* database (USDA 2016).
- 27 Diet characteristics were estimated by region for dairy, grazing beef, and feedlot beef cattle. These diet
- 28 characteristics were used to calculate digestible energy (DE) values (expressed as the percent of gross energy
- 29 intake digested by the animal) and CH₄ conversion rates (Y_m) (expressed as the fraction of gross energy converted
- 30 to CH₄) for each regional population category. The IPCC recommends Y_m ranges of 3.0±1.0 percent for feedlot
- cattle and 6.5±1.0 percent for other well-fed cattle consuming temperate-climate feed types (IPCC 2006). Given
- 32 the availability of detailed diet information for different regions and animal types in the United States, DE and Y_m
- 33 values unique to the United States were developed. The diet characterizations and estimation of DE and Y_m values
- 34 were based on information from state agricultural extension specialists, a review of published forage quality
- 35 studies and scientific literature, expert opinion, and modeling of animal physiology.
- 36 The diet characteristics for dairy cattle were based on Donovan (1999) and an extensive review of nearly 20 years
- of literature from 1990 through 2009. Estimates of DE were national averages based on the feed components of
- the diets observed in the literature for the following year groupings: 1990 through 1993, 1994 through 1998, 1999
- through 2003, 2004 through 2006, 2007, and 2008 onward.⁴ Base year Y_m values by region were estimated using
- Donovan (1999). As described in ERG (2016), a ruminant digestion model (COWPOLL, as selected in Kebreab et al.
 2008) was used to evaluate Y_m for each diet evaluated from the literature, and a function was developed to adjust
- 42 regional values over time based on the national trend. Dairy replacement heifer diet assumptions were based on
- 43 the observed relationship in the literature between dairy cow and dairy heifer diet characteristics.

⁴ Due to inconsistencies in the 2003 literature values, the 2002 values were used for 2003, as well.

- 1 For feedlot animals, the DE and Y_m values used for 1990 were recommended by Johnson (1999). Values for DE and
- $2 \qquad Y_m \mbox{ for 1991 through 1999 were linearly extrapolated based on the 1990 and 2000 data. \mbox{ DE and } Y_m \mbox{ values for 2000}$
- 3 onwards were based on survey data in Galyean and Gleghorn (2001) and Vasconcelos and Galyean (2007).
- 4 For grazing beef cattle, Y_m values were based on Johnson (2002), DE values for 1990 through 2006 were based on
- 5 specific diet components estimated from Donovan (1999), and DE values from 2007 onwards were developed from
- 6 an analysis by Archibeque (2011), based on diet information in Preston (2010) and USDA-APHIS:VS (2010). Weight
- 7 and weight gains for cattle were estimated from Holstein (2010), Doren et al. (1989), Enns (2008), Lippke et al.
- 8 (2000), Pinchack et al. (2004), Platter et al. (2003), Skogerboe et al. (2000), and expert opinion. See Annex 3.10 for
- 9 more details on the method used to characterize cattle diets and weights in the United States.
- 10 Calves younger than 4 months are not included in emission estimates because calves consume mainly milk and the
- 11 IPCC recommends the use of a Y_m of zero for all juveniles consuming only milk. Diets for calves aged 4 to 6 months
- are assumed to go through a gradual weaning from milk decreasing to 75 percent at 4 months, 50 percent at age 5
- months, and 25 percent at age 6 months. The portion of the diet made up with milk still results in zero emissions.
- For the remainder of the diet, beef calf DE and Y_m are set equivalent to those of beef replacement heifers, while dairy calf DE is set equal to that of dairy replacement heifers and dairy calf Y_m is provided at 4 and 7 months of age
- dairy calf DE is set equal to that of dairy replacement heifers and dairy calf Y_m is provided at 4 and 7 months of age
 by Soliva (2006). Estimates of Y_m for 5 and 6 month old dairy calves are linearly interpolated from the values
- 10 by Soliva (2000). Estimates of Tm for 5 and 6 month old daily calves are integrity interpolated from t
- 17 provided for 4 and 7 months.
- 18 To estimate CH₄ emissions, the population was divided into state, age, sub-type (i.e., dairy cows and replacements,
- 19 beef cows and replacements, heifer and steer stockers, heifers and steers in feedlots, bulls, beef calves 4 to 6
- 20 months, and dairy calves 4 to 6 months), and production (i.e., pregnant, lactating) groupings to more fully capture
- 21 differences in CH₄ emissions from these animal types. The transition matrix was used to simulate the age and
- 22 weight structure of each sub-type on a monthly basis in order to more accurately reflect the fluctuations that
- 23 occur throughout the year. Cattle diet characteristics were then used in conjunction with Tier 2 equations from
- 24 IPCC (2006) to produce CH₄ emission factors for the following cattle types: dairy cows, beef cows, dairy
- 25 replacements, beef replacements, steer stockers, heifer stockers, steer feedlot animals, heifer feedlot animals,
- 26 bulls, and calves. To estimate emissions from cattle, monthly population data from the transition matrix were
- 27 multiplied by the calculated emission factor for each cattle type. More details are provided in Annex 3.10.

28 2018 Inventory Methodology for Cattle

- As noted above, a simplified approach for cattle enteric emissions was used in lieu of the CEFM for 2018. First,
- 30 2018 populations for each of the CEFM cattle sub-populations were estimated, then these populations were
- 31 multiplied by the corresponding implied emission factors developed from the CEFM for the previous Inventory
- 32 year. Dairy cow, beef cow, and bull populations for 2018 were based on data directly from the USDA-NASS
- 33 *QuickStats* database (USDA 2019). Because the remaining CEFM cattle sub-population categories do not
- 34 correspond exactly to the remaining *QuickStats* cattle categories, 2018 populations for these categories were
- estimated by extrapolating the 2017 populations based on percent changes from 2017 to 2018 in similar
- 36 *QuickStats* categories, consistent with Volume 1, Chapter 5 of the 2006 IPCC Guidelines on time-series consistency.
- Table 5-5 lists the *QuickStats* categories used to estimate the percent change in population for each of the CEFM
- 38 categories.

39 Table 5-5: Cattle Sub-Population Categories for 2018 Population Estimates

CEFM Cattle Category	USDA-NASS Quickstats Cattle Category
Dairy Calves	Cattle, Calves
Dairy Cows	Cattle, Cows, Milk
Dairy Replacements 7-11 months	Cattle, Heifers, GE 500 lbs, Milk Replacement
Dairy Replacements 12-23 months	Cattle, Heifers, GE 500 lbs, Milk Replacement
Bulls	Cattle, Bulls, GE 500 lbs
Beef Calves	Cattle, Calves
Beef Cows	Cattle, Cows, Beef
Beef Replacements 7-11 months	Cattle, Heifers, GE 500 lbs, Beef Replacement

Beef Replacements 12-23 months	Cattle, Heifers, GE 500 lbs, Beef Replacement
Steer Stockers	Cattle, Steers, GE 500 lbs
Heifer Stockers	Cattle, Heifers, GE 500 lbs, (Excl. Replacement)
Steer Feedlot	Cattle, On Feed
Heifer Feedlot	Cattle, On Feed

1 Non-Cattle Livestock

- 2 Emission estimates for other animal types were based on average emission factors (Tier 1 default IPCC emission
- 3 factors) representative of entire populations of each animal type. Methane emissions from these animals
- 4 accounted for a minor portion of total CH₄ emissions from livestock in the United States from 1990 through 2018.
- 5 Additionally, the variability in emission factors for each of these other animal types (e.g., variability by age,
- 6 production system, and feeding practice within each animal type) is less than that for cattle.
- 7 Annual livestock population data for 1990 to 2018 for sheep; swine; goats; horses; mules and asses; and American
- 8 bison were obtained for available years from USDA-NASS (USDA 2016). Horse, goat and mule and ass population
- 9 data were available for 1987, 1992, 1997, 2002, 2007, and 2012 (USDA 1992, 1997, 2016); the remaining years
- 10 between 1990 and 2018 were interpolated and extrapolated from the available estimates (with the exception of
- 11 goat populations being held constant between 1990 and 1992). American bison population estimates were
- 12 available from USDA for 2002, 2007, and 2012 (USDA 2016) and from the National Bison Association (1999) for
- 13 1990 through 1999. Additional years were based on observed trends from the National Bison Association (1999),
- interpolation between known data points, and extrapolation beyond 2012, as described in more detail in Annex3.10.
- 16 Methane emissions from sheep, goats, swine, horses, American bison, and mules and asses were estimated by
- using emission factors utilized in Crutzen et al. (1986, cited in IPCC 2006). These emission factors are
- 18 representative of typical animal sizes, feed intakes, and feed characteristics in developed countries. For American
- 19 bison the emission factor for buffalo was used and adjusted based on the ratio of live weights to the 0.75 power.
- 20 The methodology is the same as that recommended by IPCC (2006).
- See Annex 3.10 for more detailed information on the methodology and data used to calculate CH₄ emissions from
 enteric fermentation.

23 Uncertainty and Time-Series Consistency

- 24 A quantitative uncertainty analysis for this source category was performed using the IPCC-recommended Approach
- 25 2 uncertainty estimation methodology based on a Monte Carlo Stochastic Simulation technique as described in ICF
- 26 (2003). These uncertainty estimates were developed for the 1990 through 2001 Inventory (i.e., 2003 submission to
- the UNFCCC). While there are plans to update the uncertainty to reflect recent methodological updates and
- forthcoming changes (see Planned Improvements, below), at this time the uncertainty estimates were directly
- 29 applied to the 2018 emission estimates in this Inventory.
- 30 A total of 185 primary input variables (177 for cattle and 8 for non-cattle) were identified as key input variables for
- 31 the uncertainty analysis. A normal distribution was assumed for almost all activity- and emission factor-related
- 32 input variables. Triangular distributions were assigned to three input variables (specifically, cow-birth ratios for the
- three most recent years included in the 2001 model run) to ensure only positive values would be simulated. For
- 34 some key input variables, the uncertainty ranges around their estimates (used for inventory estimation) were
- 35 collected from published documents and other public sources; others were based on expert opinion and best
- 36 estimates. In addition, both endogenous and exogenous correlations between selected primary input variables
- 37 were modeled. The exogenous correlation coefficients between the probability distributions of selected activity-
- 38 related variables were developed through expert judgment.
- The uncertainty ranges associated with the activity data-related input variables were plus or minus 10 percent or lower. However, for many emission factor-related input variables, the lower- and/or the upper-bound uncertainty

- 1 estimates were over 20 percent. The results of the quantitative uncertainty analysis are summarized in Table 5-6.
- 2 Based on this analysis, enteric fermentation CH₄ emissions in 2018 were estimated to be between 158.1 and 209.6
- 3 MMT CO₂ Eq. at a 95 percent confidence level, which indicates a range of 11 percent below to 18 percent above
- 4 the 2018 emission estimate of 177.6 MMT CO₂ Eq. Among the individual cattle sub-source categories, beef cattle
- 5 account for the largest amount of CH₄ emissions, as well as the largest degree of uncertainty in the emission
- 6 estimates—due mainly to the difficulty in estimating the diet characteristics for grazing members of this animal
- group. Among non-cattle, horses represent the largest percent of uncertainty in the previous uncertainty analysis
 because the Food and Agricultural Organization of the United Nations (FAO) population estimates used for horses
- at that time had a higher degree of uncertainty than for the USDA population estimates used for swine, goats, and
- sheep. The horse populations are now from the same USDA source as the other animal types, and therefore the
- 11 uncertainty range around horses is likely overestimated. Cattle calves, American bison, mules and asses were
- 12 excluded from the initial uncertainty estimate because they were not included in emission estimates at that time.

Table 5-6: Approach 2 Quantitative Uncertainty Estimates for CH₄ Emissions from Enteric Fermentation (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate ^{a, b,}							
	(MMT CO₂ Eq.)		(MMT C	0 ₂ Eq.)	(%)					
			Lower	Upper	Lower	Upper				
			Bound	Bound	Bound	Bound				
Enteric Fermentation	CH ₄	177.6	158.1	209.6	-11%	+18%				

^a Range of emissions estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.
 ^b Note that the relative uncertainty range was estimated with respect to the 2001 emission estimates from the 2003 submission and applied to the 2018 estimates.

^c The overall uncertainty calculated in 2003, and applied to the 2018 emission estimate, did not include uncertainty estimates for calves, American bison, and mules and asses. Additionally, for bulls the emissions estimate was based on the Tier 1 methodology. Since bull emissions are now estimated using the Tier 2 method, the uncertainty surrounding their estimates is likely lower than indicated by the previous uncertainty analysis.

15 Details on the emission trends through time are described in more detail in the Methodology section.

16 **QA/QC and Verification**

17 In order to ensure the quality of the emission estimates from enteric fermentation, the General (IPCC Tier 1) and

18 category-specific (Tier 2) Quality Assurance/Quality Control (QA/QC) procedures were implemented consistent

- 19 with the U.S. Inventory QA/QC plan outlined in Annex 8. Category-specific or Tier 2 QA procedures included
- 20 independent review of emission estimate methodologies from previous inventories.
- Over the past few years, particular importance has been placed on harmonizing the data exchange between the enteric fermentation and manure management source categories. The current Inventory now utilizes the transition

matrix from the CEFM for estimating cattle populations and weights for both source categories, and the CEFM is

used to output volatile solids and nitrogen excretion estimates using the diet assumptions in the model in

- conjunction with the energy balance equations from the IPCC (2006). This approach facilitates the QA/QC process
- 26 for both of these source categories.

27 Recalculations Discussion

28 No recalculations were performed for the 1990 to 2017 estimates. The 2018 estimates were developed using a

29 simplified approach, as noted earlier in the chapter.

1 Planned Improvements

Regular annual data reviews and updates are necessary to maintain an emissions inventory that reflects the
 current base of knowledge. EPA conducts the following list of regular annual assessments of data availability when
 updating the estimates to extend time series each year:

- Further research to improve the estimation of dry matter intake (as gross energy intake) using data from
 appropriate production systems;
- Updating input variables that are from older data sources, such as beef births by month, beef and dairy
 annual calving rates, and beef cow lactation rates;
- Investigating the availability of data for dairy births by month, to replace the current assumption that
 births are evenly distributed throughout the year;
- Updating the diet data to incorporate monthly or annual milk fat data in place of the fixed IPCC default
 value of 4 percent milk fat. Recent improvements efforts have yielded information that the 4 percent
 value is still representative of U.S. milk fat for the year 2018, but EPA continues to investigate the
 availability of data across the time series;
- Investigating the availability of annual data for the DE, Y_m, and crude protein values of specific diet and feed components for grazing and feedlot animals;
- Further investigation on additional sources or methodologies for estimating DE for dairy cattle, given the
 many challenges in characterizing dairy cattle diets;
- Further evaluation of the assumptions about weights and weight gains for beef cows, such that trends
 beyond 2007 are updated, rather than held constant;
- Further evaluation of the estimated weight for dairy cows (i.e., 1,500 lbs) that is based solely on Holstein
 cows as mature dairy cow weight is likely slightly overestimated, based on knowledge of the breeds of
 dairy cows in the United States;

Depending upon the outcome of ongoing investigations, future improvement efforts for enteric fermentation could include some of the following options which are additional to the regular updates, and may or may have implications for regular updates once addressed:

- Potentially updating to a Tier 2 methodology for other animal types (i.e., sheep, swine, goats, horses);
- Investigation of methodologies and emission factors for including enteric fermentation emission
 estimates from poultry;
- Comparison of the current CEFM processing of animal population data to estimates developed using
 annual average populations to determine if the model could be simplified to use annual population data;
- Comparison of the current CEFM with other models that estimate enteric fermentation emissions for
 quality assurance and verification;
- Investigation of recent research implications suggesting that certain parameters in enteric models may be
 simplified without significantly diminishing model accuracy;
- Recent changes that have been implemented to the CEFM warrant an assessment of the current
 uncertainty analysis; therefore, a revision of the quantitative uncertainty surrounding emission estimates
 from this source category will be initiated; and
- Analysis and integration of a more representative spatial distribution of animal populations by state,
 particularly for poultry animal populations.
- EPA received comments during the Public Review period of the 1990 to 2017 Inventory regarding the CEFM model
 and data and assumptions used to calculate enteric fermentation cattle emissions. Many of the comments

- 1 received are consistent with potential planned improvement options listed above. EPA is investigating these
- 2 potential improvements and working with USDA and other experts to utilize the best available data and methods
- 3 for estimating emissions. Many of these improvements are major updates and may take multiple years to
- 4 implement in full.
- 5 In addition to the potential improvements listed above, EPA will review the final 2019 Refinement to the 2006 IPCC
- *Guidelines* and incorporate any changes, as applicable, to update the current Inventory estimation data and
 methodologies.

5.2 Manure Management (CRF Source Category 3B)

10 The treatment, storage, and transportation of livestock manure can produce anthropogenic CH_4 and N_2O

11 emissions. Methane is produced by the anaerobic decomposition of manure and nitrous oxide is produced from

- direct and indirect pathways through the processes of nitrification and denitrification; in addition, there are many
- 13 underlying factors that can affect these resulting emissions from manure management, as described below.
- 14 When livestock or poultry manure are stored or treated in systems that promote anaerobic conditions (e.g., as a
- 15 liquid/slurry in lagoons, ponds, tanks, or pits), the decomposition of the volatile solids component in the manure
- tends to produce CH₄. When manure is handled as a solid (e.g., in stacks or drylots) or deposited on pasture, range,
- 17 or paddock lands, it tends to decompose aerobically and produce CO₂ and little or no CH₄. Ambient temperature,
- 18 moisture, and manure storage or residency time affect the amount of CH₄ produced because they influence the
- 19 growth of the bacteria responsible for CH₄ formation. For non-liquid-based manure systems, moist conditions
- 20 (which are a function of rainfall and humidity) can promote CH₄ production. Manure composition, which varies by
- animal diet, growth rate, and animal type (particularly the different animal digestive systems), also affects the
 amount of CH₄ produced. In general, the greater the energy content of the feed, the greater the potential for CH₄
- amount of CH₄ produced. In general, the greater the energy content of the feed, the greater the potential for CH₄ emissions. However, some higher-energy feeds also are more digestible than lower quality forages, which can
- result in less overall waste excreted from the animal.
- 25 As previously stated, N₂O emissions are produced through both direct and indirect pathways. Direct N₂O emissions
- are produced as part of the nitrogen (N) cycle through the nitrification and denitrification of the N in livestock dung
- and urine.⁵ There are two pathways for indirect N_2O emissions. The first is the result of the volatilization of N in
- 28 manure (as NH_3 and NO_x) and the subsequent deposition of these gases and their products (NH_4^+ and NO_3^-) onto
- soils and the surface of lakes and other waters. The second pathway is the runoff and leaching of N from manure
- 30 into the groundwater below, into riparian zones receiving drain or runoff water, or into the ditches, streams,
- 31 rivers, and estuaries into which the land drainage water eventually flows.
- 32 The production of direct N₂O emissions from livestock manure depends on the composition of the manure
- 33 (manure includes both feces and urine), the type of bacteria involved in the process, and the amount of oxygen
- 34 and liquid in the manure system. For direct N₂O emissions to occur, the manure must first be handled aerobically
- 35 where organic N is mineralized or decomposed to NH₄ which is then nitrified to NO₃ (producing some N₂O as a
- byproduct) (nitrification). Next, the manure must be handled anaerobically where the nitrate is then denitrified to
- 37 N₂O and N₂ (denitrification). NO_x can also be produced during denitrification. (Groffman et al. 2000; Robertson and
- 38 Groffman 2015). These emissions are most likely to occur in dry manure handling systems that have aerobic
- 39 conditions, but that also contain pockets of anaerobic conditions due to saturation. A very small portion of the

⁵ Direct and indirect N₂O emissions from dung and urine spread onto fields either directly as daily spread or after it is removed from manure management systems (i.e., lagoon, pit, etc.) and from livestock dung and urine deposited on pasture, range, or paddock lands are accounted for and discussed in the Agricultural Soil Management source category within the Agriculture sector.

- 1 total N excreted is expected to convert to N₂O in the waste management system (WMS). Indirect N₂O emissions
- 2 are produced when nitrogen is lost from the system through volatilization (as NH₃ or NO_x) or through runoff and
- 3 leaching. The vast majority of volatilization losses from these operations are NH₃. Although there are also some
- 4 small losses of NO_x, there are no quantified estimates available for use, so losses due to volatilization are only
- 5 based on NH₃ loss factors. Runoff losses would be expected from operations that house animals or store manure in
- a manner that is exposed to weather. Runoff losses are also specific to the type of animal housed on the operation
- due to differences in manure characteristics. Little information is known about leaching from manure management
 systems as most research focuses on leaching from land application systems. Since leaching losses are expected to
- be minimal, leaching losses are coupled with runoff losses and the runoff/leaching estimate provided in this
- 10 chapter does not account for any leaching losses.
- 11 Estimates of CH₄ emissions from manure management in 2018 were 61.7 MMT CO₂ Eq. (2,467 kt); in 1990,
- 12 emissions were 37.1 MMT CO₂ Eq. (1,485 kt). This represents a 66 percent increase in emissions from 1990.
- 13 Emissions increased on average by 1.0 MMT CO₂ Eq. (2.0 percent) annually over this period. The majority of this
- 14 increase is due to swine and dairy cow manure, where emissions increased 43 and 119 percent, respectively. From
- 15 2017 to 2018, there was a 3.0 percent increase in total CH₄ emissions from manure management, due to an
- 16 increase in animal populations.
- 17 Although a large quantity of managed manure in the United States is handled as a solid, producing little CH₄, the
- 18 general trend in manure management, particularly for dairy cattle and swine (which are both shifting towards
- 19 larger facilities), is one of increasing use of liquid systems. Also, new regulations controlling the application of
- 20 manure nutrients to land have shifted manure management practices at smaller dairies from daily spread systems
- to storage and management of the manure on site. In many cases, manure management systems with the most
- substantial methane emissions are those associated with confined animal management operations where manure
- 23 is handled in liquid-based systems. Nitrous oxide emissions from manure management vary significantly between
- the types of management system used and can also result in indirect emissions due to other forms of nitrogen loss
- 25 from the system (IPCC 2006).
- 26 While national dairy animal populations have decreased since 1990, some states have seen increases in their dairy
- 27 cattle populations as the industry becomes more concentrated in certain areas of the country and the number of
- animals contained on each facility increases. These areas of concentration, such as California, New Mexico, and
- 29 Idaho, tend to utilize more liquid-based systems to manage (flush or scrape) and store manure. Thus, the shift
- toward larger dairy cattle and swine facilities since 1990 has translated into an increasing use of liquid manure management systems, which have higher potential CH₄ emissions than dry systems. This significant shift in both
- 31 management systems, which have higher potential CH₄ emissions than dry systems. This significant shift in both 32 the dairy cattle and swine industries was accounted for by incorporating state and WMS-specific CH₄ conversion
- factor (MCF) values in combination with the 1992, 1997, 2002, 2007, 2012, and 2017 farm-size distribution data
- reported in the U.S. Department of Agriculture (USDA) *Census of Agriculture* (USDA 2019d).
- In 2018, total N₂O emissions from manure management were estimated to be 19.4 MMT CO₂ Eq. (65 kt); in 1990,
- 36 emissions were 14.0 MMT CO₂ Eq. (47 kt). These values include both direct and indirect N₂O emissions from
- 37 manure management. Nitrous oxide emissions have increased since 1990. Small changes in N₂O emissions from
- individual animal groups exhibit the same trends as the animal group populations, with the overall net effect that
- 39 N₂O emissions showed a 39 percent increase from 1990 to 2018 and a 4.2 percent increase from 2017 through
- 40 2018. Overall shifts toward liquid systems have driven down the emissions per unit of nitrogen excreted as dry
- 41 manure handling systems have greater aerobic conditions that promote N₂O emissions.
- Table 5-7 and Table 5-8 provide estimates of CH₄ and N₂O emissions from manure management by animal
 category.⁶

⁶ Manure management emissions from camels are not estimated for this Inventory. See Annex 5 for more information on sources and sinks of greenhouse gas emissions not included in this Inventory.

Gas/Animal Type	1990	2005	2014	2015	2016	2017	2018
CH₄ª	37.1	51.6	54.3	57.9	59.6	59.9	61.7
Dairy Cattle	14.7	24.3	29.7	30.8	31.5	31.8	32.3
Beef Cattle	3.1	3.3	3.0	3.1	3.3	3.4	3.4
Swine	15.5	20.3	18.0	20.2	21.1	21.0	22.2
Sheep	0.2	0.1	0.1	0.1	0.1	0.1	0.1
Goats	+	+	+	+	+	+	+
Poultry	3.3	3.2	3.3	3.4	3.4	3.4	3.5
Horses	0.2	0.3	0.2	0.2	0.2	0.2	0.2
American Bison	+	+	+	+	+	+	+
Mules and Asses	+	+	+	+	+	+	+
N ₂ O ^b	14.0	16.4	17.3	17.5	18.1	18.7	19.4
Dairy Cattle	5.3	5.5	5.8	6.0	6.1	6.1	6.1
Beef Cattle	5.9	7.2	7.8	7.7	8.1	8.6	9.2
Swine	1.2	1.6	1.7	1.8	1.9	2.0	2.0
Sheep	0.1	0.3	0.3	0.3	0.3	0.3	0.3
Goats	+	+	+	+	+	+	+
Poultry	1.4	1.6	1.6	1.6	1.6	1.6	1.7
Horses	0.1	0.1	0.1	0.1	0.1	0.1	0.1
American Bison ^c	NA						
Mules and Asses	+	+	+	+	+	+	+
Total	51.1	67.9	71.6	75.4	77.7	78.5	81.1

1 Table 5-7: CH₄ and N₂O Emissions from Manure Management (MMT CO₂ Eq.)

+ Does not exceed 0.05 MMT CO₂ Eq.

NA (Not Available)

^a Accounts for CH₄ reductions due to capture and destruction of CH₄ at facilities using anaerobic digesters.

 $^{\rm b}$ Includes both direct and indirect N_2O emissions.

 $^{\rm c}$ There are no American bison N_2O emissions from managed systems; American bison are maintained entirely on pasture, range, and paddock.

Notes: Emissions from manure deposited on pasture are included in the Agricultural Soils Management sector. Totals may not sum due to independent rounding.

2 Table 5-8: CH₄ and N₂O Emissions from Manure Management (kt)

Gas/Animal Type	1990	2005	2014	2015	2016	2017	2018
CH₄ ^a	1,485	2,062	2,172	2,316	2,385	2,395	2,467
Dairy Cattle	589	970	1,190	1,233	1,259	1,270	1,292
Beef Cattle	126	133	120	126	132	136	135
Swine	622	812	719	808	846	840	888
Sheep	7	3	3	3	3	3	3
Goats	1	1	1	1	1	1	1
Poultry	131	129	132	136	136	137	141
Horses	9	12	8	8	8	7	7
American Bison	+	+	+	+	+	+	+
Mules and Asses	+	+	+	+	+	+	+
N₂O ^b	47	55	58	59	61	63	65
Dairy Cattle	18	18	20	20	20	20	21
Beef Cattle	20	24	26	26	27	29	31
Swine	4	5	6	6	6	7	7
Sheep	+	1	1	1	1	1	1
Goats	+	+	+	+	+	+	+
Poultry	5	5	5	5	5	5	6
Horses	+	+	+	+	+	+	+
American Bison ^c	NA						

Mules and Asses	+	+	+	+	+	+	+

+ Does not exceed 0.5 kt.

NA (Not Available)

^a Accounts for CH₄ reductions due to capture and destruction of CH₄ at facilities using anaerobic digesters.

^b Includes both direct and indirect N₂O emissions.

 $^{\rm c}$ There are no American bison N_2O emissions from managed systems; American bison are maintained entirely on pasture, range, and paddock.

Notes: Emissions from manure deposited on pasture are included in the Agricultural Soils Management sector. Totals may not sum due to independent rounding.

1 Methodology

8

2 The methodologies presented in IPCC (2006) form the basis of the CH₄ and N₂O emission estimates for each animal

3 type. This section presents a summary of the methodologies used to estimate CH₄ and N₂O emissions from manure

4 management. See Annex 3.11 for more detailed information on the methodology and data used to calculate CH₄

5 and N₂O emissions from manure management.

6 Methane Calculation Methods

7 The following inputs were used in the calculation of manure management CH₄ emissions for 1990 through 2018:

- Animal population data (by animal type and state);
- 9 Typical animal mass (TAM) data (by animal type);
- Portion of manure managed in each WMS, by state and animal type;
- Volatile solids (VS) production rate (by animal type and state or United States);
- Methane producing potential (B₀) of the volatile solids (by animal type); and
- Methane conversion factors (MCF), the extent to which the CH₄ producing potential is realized for each type of WMS (by state and manure management system, including the impacts of any biogas collection efforts).
- Methane emissions were estimated by first determining activity data, including animal population, TAM, WMS
 usage, and waste characteristics. The activity data sources are described below:
- 18 Annual animal population data for 1990 through 2018 for all livestock types, except goats, horses, mules 19 and asses, and American bison were obtained from the USDA-NASS. For cattle, the USDA populations 20 were utilized in conjunction with birth rates, detailed feedlot placement information, and slaughter 21 weight data to create the transition matrix in the Cattle Enteric Fermentation Model (CEFM) that models 22 cohorts of individual animal types and their specific emission profiles. The key variables tracked for each 23 of the cattle population categories are described in Section 5.1 and in more detail in Annex 3.10. Goat 24 population data for 1992, 1997, 2002, 2007, 2012, and 2017; horse and mule and ass population data for 25 1987, 1992, 1997, 2002, 2007, 2012, and 2017; and American bison population for 2002, 2007, 2012, and 26 2017 were obtained from the Census of Agriculture (USDA 2019d). American bison population data for 27 1990 through 1999 were obtained from the National Bison Association (1999).
- The TAM is an annual average weight that was obtained for animal types other than cattle from
 information in USDA's Agricultural Waste Management Field Handbook (USDA 1996), the American
 Society of Agricultural Engineers, Standard D384.1 (ASAE 1998) and others (Meagher 1986; EPA 1992;
 Safley 2000; ERG 2003b; IPCC 2006; ERG 2010a). For a description of the TAM used for cattle, see Annex
 3.10.
- WMS usage was estimated for swine and dairy cattle for different farm size categories using state and
 regional data from USDA (USDA APHIS 1996; Bush 1998; Ott 2000; USDA 2016c) and EPA (ERG 2000a; EPA
 2002a and 2002b; ERG 2018, ERG 2019). For beef cattle and poultry, manure management system usage
 data were not tied to farm size but were based on other data sources (ERG 2000a; USDA APHIS 2000; UEP

- 1999). For other animal types, manure management system usage was based on previous estimates (EPA 1992). American bison WMS usage was assumed to be the same as not on feed (NOF) cattle, while mules and asses were assumed to be the same as horses.
- VS production rates for all cattle except for calves were calculated by head for each state and animal type in the CEFM. VS production rates by animal mass for all other animals were determined using data from USDA's Agricultural Waste Management Field Handbook (USDA 1996 and 2008; ERG 2010b and 2010c) and data that was not available in the most recent Handbook were obtained from the American Society of Agricultural Engineers, Standard D384.1 (ASAE 1998) or the 2006 IPCC Guidelines (IPCC 2006). American bison VS production was assumed to be the same as NOF bulls.
- B₀ was determined for each animal type based on literature values (Morris 1976; Bryant et al. 1976;
 Hashimoto 1981; Hashimoto 1984; EPA 1992; Hill 1982; Hill 1984).
- MCFs for dry systems were set equal to default IPCC factors based on state climate for each year (IPCC 2006). MCFs for liquid/slurry, anaerobic lagoon, and deep pit systems were calculated based on the forecast performance of biological systems relative to temperature changes as predicted in the van't Hoff-Arrhenius equation which is consistent with IPCC (2006) Tier 2 methodology.
- Data from anaerobic digestion systems with CH₄ capture and combustion were obtained from the EPA
 AgSTAR Program, including information available in the AgSTAR project database (EPA 2019). Anaerobic
 digester emissions were calculated based on estimated methane production and collection and
 destruction efficiency assumptions (ERG 2008).
- For all cattle except for calves, the estimated amount of VS (kg per animal-year) managed in each WMS
 for each animal type, state, and year were taken from the CEFM, assuming American bison VS production
 to be the same as NOF bulls. For animals other than cattle, the annual amount of VS (kg per year) from
 manure excreted in each WMS was calculated for each animal type, state, and year. This calculation
 multiplied the animal population (head) by the VS excretion rate (kg VS per 1,000 kg animal mass per
 day), the TAM (kg animal mass per head) divided by 1,000, the WMS distribution (percent), and the
 number of days per year (365.25).

The estimated amount of VS managed in each WMS was used to estimate the CH₄ emissions (kg CH₄ per year) from
 each WMS. The amount of VS (kg per year) were multiplied by the B₀ (m³ CH₄ per kg VS), the MCF for that WMS
 (percent), and the density of CH₄ (kg CH₄ per m³ CH₄). The CH₄ emissions for each WMS, state, and animal type

30 were summed to determine the total U.S. CH₄ emissions.

31 Nitrous Oxide Calculation Methods

The following inputs were used in the calculation of direct and indirect manure management N₂O emissions for 1990 through 2018:

- Animal population data (by animal type and state);
- TAM data (by animal type);

1

2

3

- Portion of manure managed in each WMS (by state and animal type);
- Total Kjeldahl N excretion rate (Nex);
- Birect N₂O emission factor (EF_{WMS});
- Indirect N₂O emission factor for volatilization (EF_{volatilization});
- Indirect N₂O emission factor for runoff and leaching (EF_{runoff/leach});
- Fraction of N loss from volatilization of NH₃ and NO_x (Frac_{gas}); and
- 42 Fraction of N loss from runoff and leaching (Frac_{runoff/leach}).
- 43 Nitrous oxide emissions were estimated by first determining activity data, including animal population, TAM, WMS
- 44 usage, and waste characteristics. The activity data sources (except for population, TAM, and WMS, which were
- 45 described above) are described below:

- Nex rates for all cattle except for calves were calculated by head for each state and animal type in the
 CEFM. Nex rates by animal mass for all other animals were determined using data from USDA's
 Agricultural Waste Management Field Handbook (USDA 1996 and 2008; ERG 2010b and 2010c) and data
 from the American Society of Agricultural Engineers, Standard D384.1 (ASAE 1998) and IPCC (2006).
 American bison Nex rates were assumed to be the same as NOF bulls.⁷
- All N₂O emission factors (direct and indirect) were taken from IPCC (2006). These data are appropriate
 because they were developed using U.S. data.
- Country-specific estimates for the fraction of N loss from volatilization (Frac_{gas}) and runoff and leaching
 (Frac_{runoff/leach}) were developed. Frac_{gas} values were based on WMS-specific volatilization values as
 estimated from EPA's National Emission Inventory Ammonia Emissions from Animal Agriculture
 Operations (EPA 2005). Frac_{runoff/leaching} values were based on regional cattle runoff data from EPA's Office
 of Water (EPA 2002b; see Annex 3.11).
- 13 To estimate N₂O emissions for cattle (except for calves), the estimated amount of N excreted (kg per animal-year) 14 that is managed in each WMS for each animal type, state, and year were taken from the CEFM. For calves and

15 other animals, the amount of N excreted (kg per year) in manure in each WMS for each animal type, state, and

16 year was calculated. The population (head) for each state and animal was multiplied by TAM (kg animal mass per

- 17 head) divided by 1,000, the nitrogen excretion rate (Nex, in kg N per 1,000 kg animal mass per day), WMS
- 18 distribution (percent), and the number of days per year.
- 19 Direct N₂O emissions were calculated by multiplying the amount of N excreted (kg per year) in each WMS by the

20 N₂O direct emission factor for that WMS (EF_{WMS}, in kg N₂O-N per kg N) and the conversion factor of N₂O-N to N₂O.

- 21 These emissions were summed over state, animal, and WMS to determine the total direct N₂O emissions (kg of
- $22 \qquad N_2O \text{ per year}).$
- 23 Next, indirect N₂O emissions from volatilization (kg N₂O per year) were calculated by multiplying the amount of N
- excreted (kg per year) in each WMS by the fraction of N lost through volatilization (Fractas) divided by 100, the
- emission factor for volatilization (EF_{volatilization}, in kg N₂O per kg N), and the conversion factor of N₂O-N to N₂O.
- 26 Indirect N₂O emissions from runoff and leaching (kg N₂O per year) were then calculated by multiplying the amount
- 27 of N excreted (kg per year) in each WMS by the fraction of N lost through runoff and leaching (Frac_{runoff/leach})
- divided by 100, and the emission factor for runoff and leaching (EF_{runoff/leach}, in kg N₂O per kg N), and the conversion
- factor of N₂O-N to N₂O. The indirect N₂O emissions from volatilization and runoff and leaching were summed to
- $30 \qquad determine the total indirect N_2O emissions.$
- Following these steps, direct and indirect N₂O emissions were summed to determine total N₂O emissions (kg N₂O per year) for the years 1990 to 2018.

33 Uncertainty and Time-Series Consistency

An analysis (ERG 2003a) was conducted for the manure management emission estimates presented in the 1990 through 2001 Inventory (i.e., 2003 submission to the UNFCCC) to determine the uncertainty associated with estimating CH₄ and N₂O emissions from livestock manure management. The quantitative uncertainty analysis for this source category was performed in 2002 through the IPCC-recommended Approach 2 uncertainty estimation methodology, the Monte Carlo Stochastic Simulation technique. The uncertainty analysis was developed based on the methods used to estimate CH₄ and N₂O emissions from manure management systems. A normal probability distribution was assumed for each source data category. The series of equations used were condensed into a single

41 equation for each animal type and state. The equations for each animal group contained four to five variables

⁷ The N₂O emissions from N excreted (Nex) by American bison on grazing lands are accounted for and discussed in the Agricultural Soil Management source category and included under pasture, range and paddock (PRP) emissions. Because American bison are maintained entirely on unmanaged WMS and N₂O emissions from unmanaged WMS are not included in the Manure Management source category, there are no N₂O emissions from American bison included in the Manure Management source category.

- 1 around which the uncertainty analysis was performed for each state. While there are plans to update the
- 2 uncertainty to reflect recent manure management updates and forthcoming changes (see Planned Improvements,
- 3 below), at this time the uncertainty estimates were directly applied to the 2018 emission estimates.
- 4 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 5-9. Manure management
- 5 CH₄ emissions in 2018 were estimated to be between 50.6 and 74.0 MMT CO₂ Eq. at a 95 percent confidence level,
- 6 which indicates a range of 18 percent below to 20 percent above the actual 2018 emission estimate of 61.7 MMT
- 7 CO_2 Eq. At the 95 percent confidence level, N₂O emissions were estimated to be between 16.3 and 24.1 MMT CO_2
- 8 Eq. (or approximately 16 percent below and 24 percent above the actual 2018 emission estimate of 19.4 MMT CO₂
- 9 Eq.).

10 Table 5-9: Approach 2 Quantitative Uncertainty Estimates for CH₄ and N₂O (Direct and

11 Indirect) Emissions from Manure Management (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate	Uncertainty	/ Range Relati	ve to Emissior	n Estimate ^a
		(MMT CO2 Eq.)	(MMT C	O₂ Eq.)	(୨	6)
			Lower	Upper	Lower	Upper
			Bound	Bound	Bound	Bound
Manure Management	CH_4	61.7	50.6	74.0	-18%	+20%
Manure Management	N ₂ O	19.4	16.3	24.1	-16%	+24%

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

12 QA/QC and Verification

- 13 General (Tier 1) and category-specific (Tier 2) QA/QC activities were conducted consistent with the U.S. Inventory
- 14 QA/QC plan outlined in Annex 8. Tier 2 activities focused on comparing estimates for the previous and current
- 15 Inventories for N₂O emissions from managed systems and CH₄ emissions from livestock manure. All errors
- 16 identified were corrected. Order of magnitude checks were also conducted, and corrections made where needed.
- 17 In addition, manure N data were checked by comparing state-level data with bottom up estimates derived at the
- 18 county level and summed to the state level. Similarly, a comparison was made by animal and WMS type for the full
- 19 time series, between national level estimates for N excreted and the sum of county estimates for the full time
- 20 series.
- 21 Time-series data, including population, are validated by experts to ensure they are representative of the best
- 22 available U.S.-specific data. The U.S.-specific values for TAM, Nex, VS, B₀, and MCF were also compared to the IPCC
- 23 default values and validated by experts. Although significant differences exist in some instances, these differences
- are due to the use of U.S.-specific data and the differences in U.S. agriculture as compared to other countries. The
- 25 U.S. manure management emission estimates use the most reliable country-specific data, which are more
- 26 representative of U.S. animals and systems than the IPCC (2006) default values.
- 27 For additional verification of the 1990 to 2018 estimates, the implied CH₄ emission factors for manure
- 28 management (kg of CH₄ per head per year) were compared against the default IPCC (2006) values. Table 5-10
- 29 presents the implied emission factors of kg of CH₄ per head per year used for the manure management emission
- 30 estimates as well as the IPCC (2006) default emission factors. The U.S. implied emission factors fall within the
- range of the IPCC (2006) default values, except in the case of sheep, goats, and some years for horses and dairy
- 32 cattle. The U.S. implied emission factors are greater than the IPCC (2006) default value for those animals due to
- 33 the use of U.S.-specific data for typical animal mass and VS excretion. There is an increase in implied emission
- 34 factors for dairy cattle and swine across the time series. This increase reflects the dairy cattle and swine industry
- 35 trend towards larger farm sizes; large farms are more likely to manage manure as a liquid and therefore produce
- 36 more CH₄ emissions.

Table 5-10: IPCC (2006) Implied Emission Factor Default Values Compared with Calculated Values for CH₄ from Manure Management (kg/head/year)

Animal Type	IPCC Default CH₄ Emission Factors		Implied (CH₄ I	Emission F	actors (k	g/head/ye	ear)	
	(kg/head/year)*	1990	2005		2014	2015	2016	2017	2018
Dairy Cattle	48-112	30.2	54.5		64.2	65.6	66.8	67.2	67.9
Beef Cattle	1-2	1.5	1.6		1.6	1.7	1.7	1.7	1.6
Swine	10-45	11.5	13.3		11.2	11.8	12.1	11.7	12.0
Sheep	0.19-0.37	0.6	0.6		0.5	0.5	0.5	0.5	0.5
Goats	0.13-0.26	0.4	0.3		0.3	0.3	0.3	0.3	0.3
Poultry	0.02-1.4	0.1	0.1		0.1	0.1	0.1	0.1	0.1
Horses	1.56-3.13	4.3	3.1		2.5	2.6	2.6	2.6	2.6
American Bison	NA	1.8	2.0		2.0	2.1	2.1	2.1	2.1
Mules and Asses	0.76-1.14	0.9	1.0		0.9	1.0	1.0	1.0	1.0

NA (Not Applicable)

* Ranges reflect 2006 IPCC Guidelines (Volume 4, Table 10.14) default emission factors for North America across different climate zones.

3 In addition, default IPCC (2006) emission factors for N₂O were compared to the U.S. Inventory implied N₂O

4 emission factors. Default N₂O emission factors from the 2006 IPCC Guidelines were used to estimate N₂O emission

5 from each WMS in conjunction with U.S.-specific Nex values. The implied emission factors differed from the U.S.

6 Inventory values due to the use of U.S.-specific Nex values and differences in populations present in each WMS

7 throughout the time series.

8 Recalculations Discussion

9 The manure management emission estimates include the following recalculations relative to the previous10 Inventory:

- State animal populations were updated to reflect updated USDA NASS datasets, which resulted in
 population changes for:
- 13 o Poultry in 2017,

15

- 14 o Market swine in 2013-2017,
 - Breeding swine in 2017, and
- 16 American bison, goats, horses, and mules and asses in 2013-2015 (USDA 2019a).
- Incorporated 2017 USDA Census of Agriculture data which affected animal populations (bison, goats, horses, and mules and asses), farm-level distribution data which affect WMS distributions for dairy cows and swine, and county-level temperature data which affects MCFs. These updates affected methane and nitrous oxide emissions for 2013 through 2017 (USDA 2019d).
- WMS distribution data for dairy cows were updated with data from the 2016 USDA Agricultural Resource
 Management Survey (ARMS) of dairy producers (ERG 2019).
- Anaerobic digestion data were updated for swine, dairy cows, and poultry using data from EPA's AgSTAR
 Program (EPA 2019).
- 25 These changes impacted total emission estimates for 1990 through 2017, overall decreasing annual estimations

from less than 1 percent to 5.1 percent across the time series. The most significant changes were to the dairy cow

27 emissions estimates, resulting primarily from the dairy cow WMS update. Total dairy cow annual estimations

decreased throughout the entire time series, but most significantly for 2008 through 2015 during which time they

29 decreased by over 10 percent.

Planned Improvements 1

2 Regular annual data reviews and updates are necessary to maintain an emissions inventory that reflects the 3 current base of knowledge. EPA conducts the following list of regular annual assessments of data availability when 4 updating the estimates to extend time series each year:

- 5 Continuing to investigate new sources of WMS data. EPA is working with the USDA Natural Resources • 6 Conservation Service to collect data for potential improvements to the Inventory.
- 7 • Updating the B₀ data used in the Inventory, as data become available.
- 8 EPA notes that many of the improvements identified below are major updates and may take multiple years to fully 9 implement. Potential improvements (long-term improvements) for future Inventory years include:
- 10 Revising the methodology for population distribution to states where USDA population data are withheld 11 due to disclosure concerns. EPA previously discussed these changes with the National Emissions Inventory 12 staff to potentially improve consistency across U.S. inventories.
- 13 Revising the anaerobic digestion estimates to estimate CH₄ emissions reductions due to the use of 14 anaerobic digesters (the Inventory currently estimates only emissions from anaerobic digestion systems).
- 15 Investigating improved emissions estimate methodologies for swine pit systems with less than one month • 16 of storage (the new swine WMS data included this WMS category).
- 17 Comparing CH₄ and N₂O emission estimates with estimates from other models and more recent studies 18 and compare the results to the Inventory, such as USDA's Dairy Gas Emissions Model.
- 19 • Comparing manure management emission estimates with on-farm measurement data to identify opportunities for improved estimates. 20
- 21 Comparing VS and Nex data to literature data to identify opportunities for improved estimates. •
- 22 • Improving collaboration with the Enteric Fermentation source category estimates. For future inventories, 23 it may be beneficial to have the CEFM and Manure Management calculations in the same model, as they 24 rely on much of the same activity data and they depend on each other's outputs to properly calculate 25 emissions.
- 26 Revising the uncertainty analysis to address changes that have been implemented to the CH₄ and N₂O • 27 estimates.
- 28 EPA acknowledges IPCC's 2019 Refinement to 2006 IPCC Guidelines for National Greenhouse Gas ٠ 29 Inventories will provide updated emission factors that may affect emissions estimates for manure 30 management. EPA will work to review these updates and incorporate changes as time and resources 31 allow.

5.3 Rice Cultivation (CRF Source Category 3C) 32

- 33 Most of the world's rice is grown on flooded fields (Baicich 2013) that creates anaerobic conditions leading to CH₄
- 34 production through a process known as methanogenesis. Approximately 60 to 90 percent of the CH₄ produced by
- 35 methanogenic bacteria in flooded rice fields is oxidized in the soil and converted to CO₂ by methanotrophic
- bacteria. The remainder is emitted to the atmosphere (Holzapfel-Pschorn et al. 1985; Sass et al. 1990) or 36
- 37 transported as dissolved CH₄ into groundwater and waterways (Neue et al. 1997). Methane is transported to the
- 38 atmosphere primarily through the rice plants, but some CH₄ also escapes via ebullition (i.e., bubbling through the
- 39 water) and to a much lesser extent by diffusion through the water (van Bodegom et al. 2001).
- 40 Water management is arguably the most important factor affecting CH₄ emissions in rice cultivation, and improved 41
- water management has the largest potential to mitigate emissions (Yan et al. 2009). Upland rice fields are not

- 1 flooded, and therefore do not produce CH₄, but large amounts of CH₄ can be emitted in continuously irrigated
- 2 fields, which is the most common practice in the United States (USDA 2012). Single or multiple aeration events
- 3 with drainage of a field during the growing season can significantly reduce these emissions (Wassmann et al.
- 4 2000a), but drainage may also increase N₂O emissions. Deepwater rice fields (i.e., fields with flooding depths
- 5 greater than one meter, such as natural wetlands) tend to have fewer living stems reaching the soil, thus reducing
- the amount of CH₄ transport to the atmosphere through the plant compared to shallow-flooded systems (Sass
 2001).
- 8 Other management practices also influence CH₄ emissions from flooded rice fields including rice residue straw
- 9 management and application of organic amendments, in addition to cultivar selection due to differences in the
- amount of root exudates⁸ among rice varieties (Neue et al. 1997). These practices influence the amount of organic
- 11 matter available for methanogenesis, and some practices, such as mulching rice straw or composting organic
- amendments, can reduce the amount of labile carbon and limit CH₄ emissions (Wassmann et al. 2000b).
- 13 Fertilization practices also influences CH₄ emissions, particularly the use of fertilizers with sulfate (Wassmann et al.
- 14 2000b; Linquist et al. 2012), which can reduce CH₄ emissions. Other environmental variables also impact the
- 15 methanogenesis process such as soil temperature and soil type. Soil temperature regulates the activity of
- 16 methanogenic bacteria, which in turn affects the rate of CH₄ production. Soil texture influences decomposition of
- soil organic matter, but is also thought to have an impact on oxidation of CH₄ in the soil (Sass et al. 1994).
- 18 Rice is currently cultivated in thirteen states, including Arkansas, California, Florida, Illinois, Kentucky, Louisiana,
- 19 Minnesota, Mississippi, Missouri, New York, South Carolina, Tennessee and Texas. Soil types, rice varieties, and
- 20 cultivation practices vary across the United States, but most farmers apply fertilizers and do not harvest crop
- residues. In addition, a second, ratoon rice crop is sometimes grown in the Southeastern region of the country.
- Ratoon crops are produced from regrowth of the stubble remaining after the harvest of the first rice crop.
- 23 Methane emissions from ratoon crops are higher than those from the primary crops due to the increased amount
- of labile organic matter available for anaerobic decomposition in the form of relatively fresh crop residue straw.
- 25 Emissions tend to be higher in rice fields if the residues have been in the field for less than 30 days before planting
- the next rice crop (Lindau and Bollich 1993; IPCC 2006; Wang et al. 2013).
- A combination of Tier 1 and 3 methods are used to estimate CH₄ emissions from rice cultivation across most of the
- time series, while a surrogate data method has been applied to estimate national emissions for 2016 to 2018 in
- this Inventory due to lack of data in the later years of the time series. National emission estimates based on
- 30 surrogate data will be recalculated in a future Inventory with the Tier 1 and 3 methods as data becomes available.
- 31 Overall, rice cultivation is a minor source of CH₄ emissions in the United States relative to other source categories
- 32 (see Table 5-11, Table 5-12, and Figure 5-2). Most emissions occur in Arkansas, California, Louisiana Mississippi,
- 33 Missouri and Texas. In 2018, CH₄ emissions from rice cultivation were 13.3 MMT CO₂ Eq. (533 kt). Annual emissions
- fluctuate between 1990 and 2018, which is largely due to differences in the amount of rice harvested areas over
- time, which has been decreasing over the past two decades. Consequently, emissions in 2018 are 17 percent lower
- than emissions in 1990.

37 Table 5-11: CH₄ Emissions from Rice Cultivation (MMT CO₂ Eq.)

State	1990	2005	2014	2015	2016	2017	2018
Arkansas	5.4	7.9	5.7	6.4	NE	NE	NE
California	3.3	3.4	3.9	4.1	NE	NE	NE
Florida	+	+	+	+	NE	NE	NE
Illinois	+	+	+	+	NE	NE	NE
Kentucky	+	+	+	+	NE	NE	NE
Louisiana	2.6	2.8	3.2	2.6	NE	NE	NE
Minnesota	+	0.1	+	+	NE	NE	NE

⁸ The roots of rice plants add organic material to the soil through a process called "root exudation." Root exudation is thought to enhance decomposition of the soil organic matter and release nutrients that the plant can absorb and use to stimulate more production. The amount of root exudate produced by a rice plant over a growing season varies among rice varieties.

Total	16.0	18.0	15.4	16.2	13.5	12.8	13.3
Texas	3.0	1.3	0.9	1.4	NE	NE	NE
Tennessee	+	+	+	+	NE	NE	NE
South Carolina	+	+	+	+	NE	NE	NE
New York	+	+	+	+	NE	NE	NE
Missouri	0.6	1.1	0.8	0.7	NE	NE	NE
Mississippi	1.1	1.4	0.8	1.0	NE	NE	NE

+ Does not exceed 0.05 MMT CO $_2$ Eq.

NE (Not Estimated). State-level emissions are not estimated for 2016 through 2018 in this Inventory because data are unavailable. A surrogate data method is used to estimate emissions for these years and are produced only at the national scale.

Note: Totals may not sum due to independent rounding.

1 Table 5-12: CH₄ Emissions from Rice Cultivation (kt)

State	1990	2005	2014	2015	2016	2017	2018
Arkansas	216	315	229	256	NE	NE	NE
California	131	135	155	166	NE	NE	NE
Florida	+	1	+	+	NE	NE	NE
Illinois	+	+	+	+	NE	NE	NE
Kentucky	+	+	+	+	NE	NE	NE
Louisiana	103	113	130	103	NE	NE	NE
Minnesota	1	2	+	+	NE	NE	NE
Mississippi	45	55	31	40	NE	NE	NE
Missouri	22	45	34	26	NE	NE	NE
New York	+	+	+	+	NE	NE	NE
South Carolina	+	+	+	+	NE	NE	NE
Tennessee	+	+	+	+	NE	NE	NE
Texas	122	54	37	57	NE	NE	NE
Total	640	720	616	648	539	510	533

+ Does not exceed 0.5 kt.

NE (Not Estimated). State-level emissions are not estimated for 2016 through 2018 in this Inventory because data are unavailable. A surrogate data method is used to estimate emissions for these years and are produced only at the national scale.

Note: Totals may not sum due to independent rounding.

1 Figure 5-2: Annual CH₄ Emissions from Rice Cultivation, 2015 (MT CO₂ Eq./Year)

2 3

Note: Only national-scale emissions are estimated for 2016 through 2018 in this Inventory using the surrogate data method
 described in the Methodology section; therefore, the fine-scale emission patterns in this map are based on the estimates for
 2015.

6 Methodology

7 The methodology used to estimate CH₄ emissions from rice cultivation is based on a combination of IPCC Tier 1 and 8 3 approaches. The Tier 3 method utilizes a process-based model (DayCent) to estimate CH₄ emissions from rice 9 cultivation (Cheng et al. 2013), and has been tested in the United States (see Annex 3.12) and Asia (Cheng et al. 10 2013, 2014). The model simulates hydrological conditions and thermal regimes, organic matter decomposition, 11 root exudation, rice plant growth and its influence on oxidation of CH₄, as well as CH₄ transport through the plant 12 and via ebullition (Cheng et al. 2013). The method simulates the influence of organic amendments and rice straw 13 management on methanogenesis in the flooded soils, and ratooning of rice crops with a second harvest during the 14 growing season. In addition to CH₄ emissions, DayCent simulates soil C stock changes and N₂O emissions (Parton et 15 al. 1987 and 1998; Del Grosso et al. 2010), and allows for a seamless set of simulations for crop rotations that 16 include both rice and non-rice crops.

17 The Tier 1 method is applied to estimate CH₄ emissions from rice when grown in rotation with crops that are not 18 simulated by DayCent, such as vegetable crops. The Tier 1 method is also used for areas converted between

agriculture (i.e., cropland and grassland) and other land uses, such as forest land, wetland, and settlements. In

- addition, the Tier 1 method is used to estimate CH₄ emissions from organic soils (i.e., Histosols) and from areas
- 21 with very gravelly, cobbly, or shaley soils (greater than 35 percent by volume). The Tier 3 method using DayCent
- 22 has not been fully tested for estimating emissions associated with these crops and rotations, land uses, as well as
- 23 organic soils or cobbly, gravelly, and shaley mineral soils.
- The Tier 1 method for estimating CH₄ emissions from rice production utilizes a default base emission rate and
- 25 scaling factors (IPCC 2006). The base emission rate represents emissions for continuously flooded fields with no

- 1 organic amendments. Scaling factors are used to adjust the base emission rate for water management and organic
- 2 amendments that differ from continuous flooding with no organic amendments. The method accounts for pre-
- 3 season and growing season flooding; types and amounts of organic amendments; and the number of rice
- 4 production seasons within a single year (i.e., single cropping, ratooning, etc.). The Tier 1 analysis is implemented in
- 5 the Agriculture and Land Use National Greenhouse Gas Inventory (ALU) software (Ogle et al. 2016).⁹

6 Rice cultivation areas are based on cropping and land use histories recorded in the USDA National Resources

- 7 Inventory (NRI) survey (USDA-NRCS 2018). The NRI is a statistically-based sample of all non-federal land, and
- 8 includes 489,178 survey locations in agricultural land for the conterminous United States and Hawaii of which
- 9 1,960 include one or more years of rice cultivation. The Tier 3 method is used to estimate CH₄ emissions from
- 10 1,655 of the NRI survey locations, and the remaining 305 survey locations are estimated with the Tier 1 method.
- Each NRI survey location is associated with an "expansion factor" that allows scaling of CH₄ emission to the entire country (i.e., each expansion factor represents the amount of area with the same land-use/management history as
- 13 the survey location). Land-use and some management information in the NRI (e.g., crop type, soil attributes, and
- 14 irrigation) were collected on a 5-year cycle beginning in 1982, along with cropping rotation data in 4 out of 5 years
- 15 for each 5-year time period (i.e., 1979 to 1982, 1984 to 1987, 1989 to 1992, and 1994 to 1997). The NRI program
- 16 began collecting annual data in 1998, with data currently available through 2015 (USDA-NRCS 2018). The current
- 17 Inventory only uses NRI data through 2015 because newer data are not available, but will be incorporated when
- additional years of data are released by USDA-NRCS. The harvested rice areas in each state are presented in Table
- 19 5-13.

20 Table 5-13: Rice Area Harvested (1,000 Hectares)

State/Crop	1990	2005	2014	2015	2016	2017	2018
Arkansas	600	784	700	679	NE	NE	NE
California	249	236	257	280	NE	NE	NE
Florida	0	4	0	0	NE	NE	NE
Illinois	0	0	0	0	NE	NE	NE
Kentucky	0	0	0	0	NE	NE	NE
Louisiana	381	402	375	368	NE	NE	NE
Minnesota	4	9	1	1	NE	NE	NE
Mississippi	123	138	92	98	NE	NE	NE
Missouri	48	94	93	62	NE	NE	NE
New York	1	0	0	0	NE	NE	NE
South Carolina	0	0	0	0	NE	NE	NE
Tennessee	0	1	0	0	NE	NE	NE
Texas	302	118	112	131	NE	NE	NE
Total	1,707	1,788	1,631	1,619	NE	NE	NE

NE (Not Estimated). State-level area data are not available for 2016 through 2018 but will be added in a future Inventory with release of new NRI survey data.

Note: Totals may not sum due to independent rounding.

21 The Southeastern states have sufficient growing periods for a ratoon crop in some years. For example, the growing

season length is occasionally sufficient for ratoon crops to be grown on about 1 percent of the rice fields in

Arkansas. No data are available about ratoon crops in Missouri or Mississippi, and the average amount of

- ratooning in Arkansas was assigned to these states. Ratoon cropping occurs much more frequently in Louisiana
- 25 (LSU 2015 for years 2000 through 2013, 2015) and Texas (TAMU 2015 for years 1993 through 2015), averaging 32
- 26 percent and 45 percent of rice acres planted, respectively. Florida also has a large fraction of area with a ratoon
- crop (49 percent). Ratoon rice crops are not grown in California. Ratooned crop area as a percent of primary crop
- area is presented in Table 5-14.

⁹ See <http://www.nrel.colostate.edu/projects/ALUsoftware/>.

Table 5-14: Average Ratooned Area as Percent of Primary Growth Area (Percent) 1

State	1990-2015
Arkansas ^a	1%
California	0%
Florida ^b	49%
Louisiana ^c	32%
Mississippi ^a	1%
Missouri ^a	1%
Texas ^d	45%

2 ^a Arkansas: 1990–2000 (Slaton 1999 through 2001); 2001–2011 (Wilson 2002 through 2007, 2009 through 2012); 2012–2013 3 (Hardke 2013, 2014). Estimates of ratooning for Missouri and Mississippi are based on the data from Arkansas.

^b Florida - Ratoon: 1990–2000 (Schueneman 1997, 1999 through 2001); 2001 (Deren 2002); 2002–2003 (Kirstein 2003

5 through 2004, 2006); 2004 (Cantens 2004 through 2005); 2005–2013 (Gonzalez 2007 through 2014).

6 ^cLouisiana: 1990–2013 (Linscombe 1999, 2001 through 2014).

7 ^d Texas: 1990–2002 (Klosterboer 1997, 1999 through 2003); 2003–2004 (Stansel 2004 through 2005); 2005 (Texas Agricultural 8 Experiment Station 2006); 2006–2013 (Texas Agricultural Experiment Station 2007 through 2014).

9 While rice crop production in the United States includes a minor amount of land with mid-season drainage or

10 alternate wet-dry periods, the majority of rice growers use continuously flooded water management systems

11 (Hardke 2015; UCCE 2015; Hollier 1999; Way et al. 2014). Therefore, continuous flooding was assumed in the

12 DayCent simulations and the Tier 1 method. Variation in flooding can be incorporated in future Inventories if water

13 management data are collected.

4

Winter flooding is another key practice associated with water management in rice fields, and the impact of winter 14

15 flooding on CH₄ emissions is addressed in the Tier 3 and Tier 1 analyses. Flooding is used to prepare fields for the

16 next growing season, and to create waterfowl habitat (Young 2013; Miller et al. 2010; Fleskes et al. 2005).

17 Fitzgerald et al. (2000) suggests that as much as 50 percent of the annual emissions may occur during winter

18 flooding. Winter flooding is a common practice with an average of 34 percent of fields managed with winter

19 flooding in California (Miller et al. 2010; Fleskes et al. 2005), and approximately 21 percent of the fields managed

20 with winter flooding in Arkansas (Wilson and Branson 2005 and 2006; Wilson and Runsick 2007 and 2008; Wilson

21 et al. 2009 and 2010; Hardke and Wilson 2013 and 2014; Hardke 2015). No data are available on winter flooding

22 for Texas, Louisiana, Florida, Missouri, or Mississippi. For these states, the average amount of flooding is assumed 23

to be similar to Arkansas. In addition, the amount of flooding is assumed to be relatively constant over the

24 Inventory time series.

25 A surrogate data method is used to estimate emissions from 2016 to 2018 associated with the rice CH₄ emissions

26 for Tier 1 and 3 methods. Specifically, a linear regression model with autoregressive moving-average (ARMA)

27 errors was used to estimate the relationship between the surrogate data and the 1990 through 2015 emissions

28 data that were derived using the Tier 1 and 3 methods (Brockwell and Davis 2016). Surrogate data for this model

are based on rice commodity statistics from USDA-NASS.¹⁰ See Box 5-2 for more information about the surrogate 29

30 data method.

31 Box 5-2: Surrogate Data Method

An approach to extend the time series is needed to estimate emissions from Rice cultivation because there are gaps in activity data at the end of the time series. This is mainly due to the fact that the National Resources Inventory (NRI) does not release data every year, and the NRI is a key data source for estimating greenhouse gas emissions.

A surrogate data method has been selected to impute missing emissions at the end of the time series. A linear regression model with autoregressive moving-average (ARMA) errors (Brockwell and Davis 2016) is used to estimate the relationship between the surrogate data and the observed 1990 to 2015 emissions data that has

¹⁰ See <https://quickstats.nass.usda.gov/>.

been compiled using the inventory methods described in this section. The model to extend the time series is given by

$Y{=}X\beta{+}\,\epsilon,$

where Y is the response variable (e.g., CH₄ emissions), X β contains specific surrogate data depending on the response variable, and ϵ is the remaining unexplained error. Models with a variety of surrogate data were tested, including commodity statistics, weather data, or other relevant information. Parameters are estimated from the observed data for 1990 to 2015 using standard statistical techniques, and these estimates are used to predict the missing emissions data for 2016 to 2018.

A critical issue in using splicing methods is to adequately account for the additional uncertainty introduced by predicting emissions with related information without compiling the full inventory. For example, predicting CH₄ emissions will increase the total variation in the emission estimates for these specific years, compared to those years in which the full inventory is compiled. This added uncertainty is quantified within the model framework using a Monte Carlo approach. The approach requires estimating parameters for results in each Monte Carlo simulation for the full inventory (i.e., the surrogate data model is refit with the emissions estimated in each Monte Carlo iteration from the full inventory analysis with data from 1990 to 2015).

1

2 Uncertainty and Time-Series Consistency

Sources of uncertainty in the Tier 3 method include management practices, uncertainties in model structure (i.e.,
 algorithms and parameterization), and variance associated with the NRI sample. Sources of uncertainty in the IPCC
 (2006) Tier 1 method include the emission factors, management practices, and variance associated with the NRI

6 sample. A Monte Carlo analysis was used to propagate uncertainties in the Tier 1 and 3 methods. For 2016 to 2018,

7 there is additional uncertainty propagated through the Monte Carlo analysis associated with the surrogate data

8 method. (See Box 5-2 for information about propagating uncertainty with the surrogate data method.) The

9 uncertainties from the Tier 1 and 3 approaches are combined to produce the final CH₄ emissions estimate using

simple error propagation (IPCC 2006). Additional details on the uncertainty methods are provided in Annex 3.12.

11 Rice cultivation CH₄ emissions in 2018 were estimated to be between 9.2 and 21.6 MMT CO₂ Eq. at a 95 percent

12 confidence level, which indicates a range of 31 percent below to 62 percent above the 2018 emission estimate of

13 13.3 MMT CO₂ Eq. (see Table 5-15).

Table 5-15: Approach 2 Quantitative Uncertainty Estimates for CH₄ Emissions from Rice Cultivation (MMT CO₂ Eq. and Percent)

Source	Inventory Method	Gas	2018 Emission Estimate (MMT CO2 Eq.)	Uncertainty (MMT C	•	ve to Emission Estimate ^a (%)		
			17	Lower	Upper	Lower	, Upper	
				Bound	Bound	Bound	Bound	
Rice Cultivation	Tier 3	CH ₄	10.8	6.9	14.8	-36%	+36%	
Rice Cultivation	Tier 1	CH ₄	2.5	1.3	3.7	-48%	+48%	
Rice Cultivation	Total	CH₄	13.3	9.2	21.6	-31%	+62%	

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

16 **QA/QC and Verification**

17 General (Tier 1) and category-specific (Tier 2) QA/QC activities were conducted consistent with the U.S. Inventory

18 QA/QC plan outlined in Annex 8. Quality control measures include checking input data, model scripts, and results

19 to ensure data are properly handled throughout the inventory process. Inventory reporting forms and text are

20 reviewed and revised as needed to correct transcription errors. Two errors were found in the spreadsheets. First,

21 CH₄ emissions from rice cultivation were not included in the national totals due to an incorrect formula. Second,

- 1 the amount of residue returned to the field was estimated in units of C, but should be in units of dry matter. Both
- 2 errors were corrected.
- 3 Model results are compared to field measurements to verify if results adequately represent CH₄ emissions. The
- 4 comparisons included over 17 long-term experiments, representing about 238 combinations of management
- 5 treatments across all the sites. A statistical relationship was developed to assess uncertainties in the model
- 6 structure, adjusting the estimates for model bias and assessing precision in the resulting estimates (methods are
- 7 described in Ogle et al. 2007). See Annex 3.12 for more information.

8 Recalculations Discussion

- 9 Methodological recalculations are applied to the entire time-series to ensure time-series consistency from 1990
- 10 through 2017. The major improvements were (1) incorporating new land use and crop histories from the NRI
- survey; and (2) modeling SOC stock changes to 30 cm depth with the Tier 3 approach (previously modeled to 20 cm
- 12 depth), which impacts the simulation of methanogenesis in DayCent. The surrogate data method was also applied
- to re-estimate stock changes from 2016 to 2017. These changes resulted in an average increase in rice cultivation
- 14 CH₄ emissions of 1.2 MMT CO₂ Eq. from 1990 to 2018, which is an average of 9 percent larger compared to the
- 15 previous Inventory.

16 Planned Improvements

17 A key planned improvement for rice cultivation is to fill several gaps in the management activity including

- 18 compiling new data on water management, organic amendments and ratooning practices in rice cultivation
- 19 systems. This improvement is expected to be completed for the next Inventory, but the timeline may be extended
- 20 if there are insufficient resources to fund this improvement.

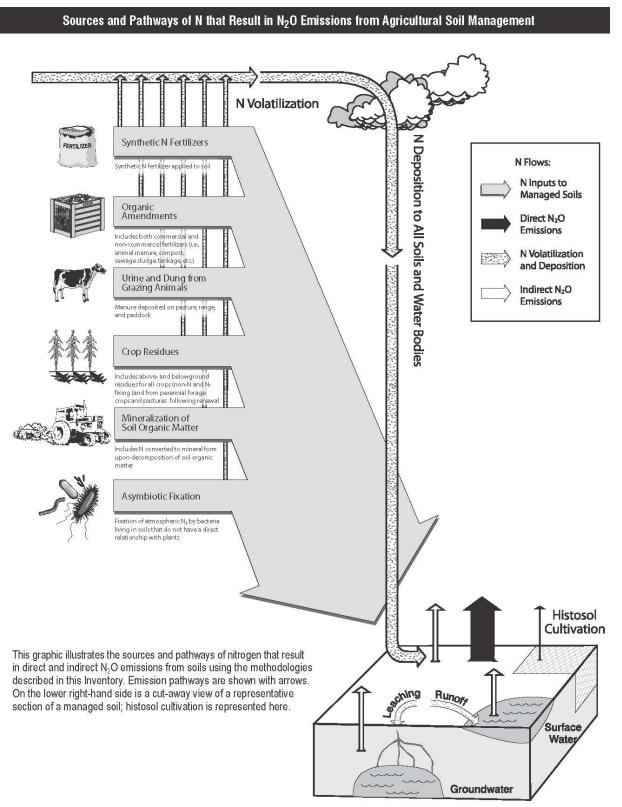
5.4 Agricultural Soil Management (CRF Source Category 3D)

23 Nitrous oxide is naturally produced in soils through the microbial processes of nitrification and denitrification that

- is driven by the availability of mineral nitrogen (N) (Firestone and Davidson 1989).¹¹ Mineral N is made available in
- 25 soils through decomposition of soil organic matter and plant litter, as well as asymbiotic fixation of N from the
- 26 atmosphere.¹² Several agricultural activities increase mineral N availability in soils that lead to direct N₂O
- emissions at the site of a management activity (see Figure 5-3) (Mosier et al. 1998). These activities include
- 28 synthetic N fertilization; application of managed livestock manure; application of other organic materials such as
- 29 biosolids (i.e., sewage sludge); deposition of manure on soils by domesticated animals in pastures, range, and
- 30 paddocks (PRP) (i.e., unmanaged manure); retention of crop residues (N-fixing legumes and non-legume crops and

¹¹ Nitrification and denitrification are driven by the activity of microorganisms in soils. Nitrification is the aerobic microbial oxidation of ammonium (NH_4^+) to nitrate (NO_3^-), and denitrification is the anaerobic microbial reduction of nitrate to N_2 . Nitrous oxide is a gaseous intermediate product in the reaction sequence of denitrification, which leaks from microbial cells into the soil and then into the atmosphere. Nitrous oxide is also produced during nitrification, although by a less well-understood mechanism (Nevison 2000).

 $^{^{12}}$ Asymbiotic N fixation is the fixation of atmospheric N₂ by bacteria living in soils that do not have a direct relationship with plants.


- 1 forages); and drainage of organic soils¹³ (i.e., Histosols) (IPCC 2006). Additionally, agricultural soil management
- 2 activities, including irrigation, drainage, tillage practices, cove crops, and fallowing of land, can influence N
- 3 mineralization from soil organic matter and levels of asymbiotic N fixation. Indirect emissions of N₂O occur when N
- 4 is transported from a site and is subsequently converted to N₂O; there are two pathways for indirect emissions: (1)
- 5 volatilization and subsequent atmospheric deposition of applied/mineralized N, and (2) surface runoff and leaching
- 6 of applied/mineralized N into groundwater and surface water.¹⁴ Direct and indirect emissions from agricultural
- 7 lands are included in this section (i.e., cropland and grassland as defined in Section 6.1 Representation of the U.S.
- 8 Land Base). Nitrous oxide emissions from Forest Land and Settlements soils are found in Sections 6.2 and 6.10,
- 9 respectively.

 $^{^{13}}$ Drainage of organic soils in former wetlands enhances mineralization of N-rich organic matter, thereby increasing N_2O emissions from these soils.

 $^{^{14}}$ These processes entail volatilization of applied or mineralized N as NH₃ and NO_x, transformation of these gases in the atmosphere (or upon deposition), and deposition of the N primarily in the form of particulate NH₄⁺, nitric acid (HNO₃), and NO_x. In addition, hydrological processes lead to leaching and runoff of NO₃⁻ that is converted to N₂O in aquatic systems, e.g., wetlands, rivers, streams and lakes. Note: N₂O emissions are not estimated for aquatic systems associated with N inputs from terrestrial systems in order to avoid double-counting.

1 Figure 5-3: Sources and Pathways of N that Result in N₂O Emissions from Agricultural Soil

2 Management

- 1 Agricultural soils produce the majority of N₂O emissions in the United States. Estimated emissions in 2018 are
- 2 338.2 MMT CO₂ Eq. (1,135 kt) (see Table 5-16 and Table 5-17). Annual N₂O emissions from agricultural soils are 7
- 3 percent greater in the 2018 compared to 1990, but emissions fluctuated between 1990 and 2018 due to inter-
- 4 annual variability largely associated with weather patterns, synthetic fertilizer use, and crop production. From
- 5 1990 to 2018, cropland accounted for 68 percent of total direct emissions on average, while grassland accounted
- 6 for 32 percent. On average, 79 percent of indirect emissions are from croplands and 21 percent from grasslands.
- $7 \qquad \mbox{Estimated direct and indirect N_2O emissions by sub-source category are shown in Table 5-18 and Table 5-19.}$

8 Table 5-16: N₂O Emissions from Agricultural Soils (MMT CO₂ Eq.)

Activity	1990	2005	2014	2015	2016	2017	2018
Direct	272.5	272.2	302.3	294.5	281.0	280.0	285.7
Cropland	185.9	184.1	207.6	200.2	191.6	191.3	196.0
Grassland	86.6	88.1	94.6	94.3	89.4	88.7	89.7
Indirect	43.4	40.8	47.0	53.6	48.8	47.4	52.5
Cropland	34.2	31.8	37.9	43.0	39.2	37.8	42.8
Grassland	9.2	9.1	9.1	10.6	9.6	9.6	9.7
Total	315.9	313.0	349.2	348.1	329.8	327.4	338.2

Notes: Estimates after 2015 are based on a data splicing method (See Methodology section). Totals may not sum due to independent rounding.

9 Table 5-17: N₂O Emissions from Agricultural Soils (kt)

Activity	1990	2005	2014	2015	2016	2017	2018
Direct	915	914	1,014	988	943	939	959
Cropland	623.8	617.7	696.8	671.8	642.9	641.9	657.7
Grassland	290.7	295.8	317.5	316.4	300.0	297.5	300.9
Indirect	146	137	158	180	164	159	176
Cropland	114.8	106.6	127.1	144.2	131.5	126.9	143.5
Grassland	30.7	30.4	30.5	35.6	32.3	32.2	32.6
Total	1,060	1,050	1,172	1,168	1,107	1,099	1,135

Notes: Estimates after 2015 are based on a data splicing method (See Methodology section). Totals may not sum due to independent rounding.

10 Table 5-18: Direct N₂O Emissions from Agricultural Soils by Land Use Type and N Input Type 11 (MMT CO₂ Eq.)

Activity	1990	2005	2014	2015	2016	2017	2018
Cropland	185.8	184.0	207.6	200.2	191.6	191.3	196.0
Mineral Soils	182.1	180.3	204.2	196.8	188.2	187.9	192.6
Synthetic Fertilizer	63.1	64.0	70.5	64.8	60.8	60.5	61.8
Organic Amendment ^a	12.6	13.4	14.2	14.1	14.1	14.0	14.0
Residue N ^b	39.3	39.6	42.4	39.0	37.7	37.7	38.7
Mineralization and	67.1	63.3	77.1	78.9	75.5	75.7	78.1
Asymbiotic Fixation							
Drained Organic Soils	3.8	3.7	3.4	3.4	3.4	3.4	3.4
Grassland	86.7	88.2	94.6	94.3	89.4	88.7	89.7
Mineral Soils	84.2	85.8	92.2	91.8	86.9	86.2	87.2
Synthetic Fertilizer	+	+	+	+	+	+	+
PRP Manure	14.6	12.8	11.6	11.6	11.3	11.2	11.3
Managed Manure ^c	+	+	+	+	+	+	+
Biosolids (i.e., Sewage	0.2	0.5	0.6	0.6	0.6	0.6	0.6
Sludge)							
Residue N ^d	29.7	30.8	31.8	30.4	28.6	28.4	28.7
Mineralization and Asymbiotic Fixation	39.5	41.7	48.2	49.2	46.3	45.9	46.5

Drained Organic Soils	2.5	2.4	2.5	2.5	2.5	2.5	2.5
Total	272.5	272.2	302.3	294.5	281.0	280.0	285.7

^a Organic amendment inputs include managed manure, daily spread manure, and commercial organic fertilizers (i.e., dried blood, dried manure, tankage, compost, and other).

^b Cropland residue N inputs include N in unharvested legumes as well as crop residue N.

^c Managed manure inputs include managed manure and daily spread manure amendments that are applied to grassland soils.

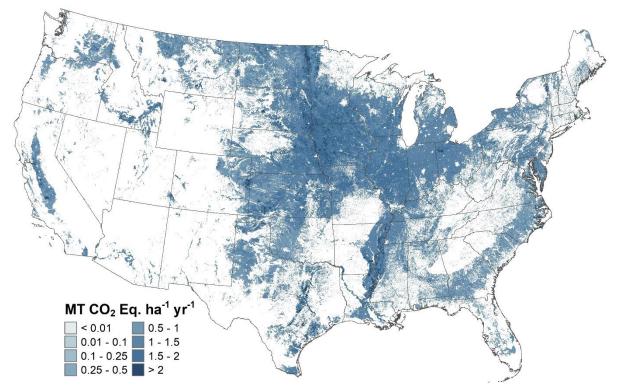
^d Grassland residue N inputs include N in ungrazed legumes as well as ungrazed grass residue N.

Notes: Estimates after 2015 are based on a data splicing method (See Methodology section). Totals may not sum due to independent rounding.

+ Does not exceed 0.05 MMT CO₂ Eq.

1 Table 5-19: Indirect N₂O Emissions from Agricultural Soils (MMT CO₂ Eq.)

Activity	1990	2005	2014	2015	2016	2017	2018
Cropland	34.2	31.8	37.9	43.0	39.2	37.8	42.8
Volatilization & Atm. Deposition	6.5	7.3	8.2	8.6	8.3	8.1	8.2
Surface Leaching & Run-Off	27.7	24.4	29.7	34.4	30.9	29.7	34.6
Grassland	9.2	9.1	9.1	10.6	9.6	9.6	9.7
Volatilization & Atm. Deposition	3.6	3.6	3.6	3.5	3.4	3.4	3.4
Surface Leaching & Run-Off	5.6	5.5	5.5	7.1	6.3	6.2	6.3
Total	43.4	40.8	47.0	53.6	48.8	47.4	52.5


Notes: Estimates after 2015 are based on a data splicing method (See Methodology section). Totals may not sum due to independent rounding.

2 Figure 5-4 and Figure 5-5 show regional patterns for direct N₂O emissions. Figure 5-6 and Figure 5-7 show indirect

N₂O emissions from volatilization, and Figure 5-8 and Figure 5-9 show the indirect N₂O emissions from leaching and
 runoff in croplands and grasslands, respectively.

5

- 1 Figure 5-4: Crops, 2015 Annual Direct N₂O Emissions Estimated Using the Tier 3 DayCent
- 2 Model (MT CO₂ Eq./ha/year)

Note: Only national-scale emissions are estimated for 2016 to 2018 using a splicing method, and therefore the fine-scale
 emission patterns in this map are based on Inventory data from 2015.

6

7 Direct N₂O emissions from croplands occur throughout all of the cropland regions but tend to be high in the

8 Midwestern Corn Belt Region (Illinois, Iowa, Indiana, Ohio, southern Minnesota and Wisconsin, and eastern

9 Nebraska), where a large portion of the land is used for growing highly fertilized corn and N-fixing soybean crops

10 (see Figure 5-4). Kansas, South Dakota and North Dakota have relatively high emissions from large areas of crop

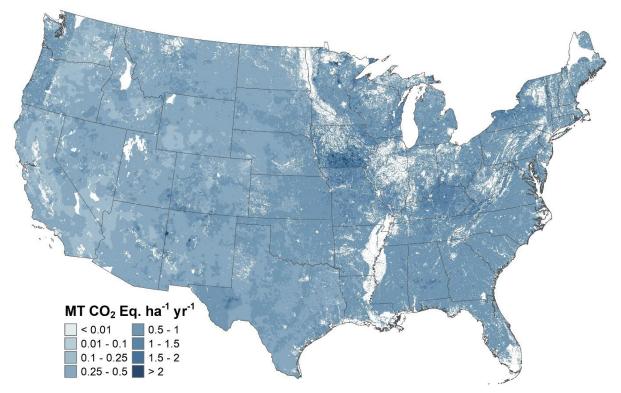
11 production that are found in the Great Plains region. Emissions are also high in the Lower Mississippi River Basin

12 from Missouri to Louisiana, and highly productive irrigated areas, such as Platte River, which flows from Colorado

13 through Nebraska, Snake River Valley in Idaho and the Central Valley in California. Direct emissions are low in

14 many parts of the eastern United States because only a small portion of land is cultivated, and in many western 15 states where rainfall and access to irrigation water are limited.

Direct emissions from grasslands are highest from states in the Great Plains and western United States (see Figure 5-5) where a high proportion of the land is dominated by grasslands and used for cattle and sheep grazing.


However, there are relatively large emissions from local areas in the Southeast, particularly Kentucky, Florida and

19 Tennessee, in addition to areas in Missouri and Iowa, where there can be higher rates of Pasture/Range/Paddock

20 (PRP) manure N additions on a relatively small amount of pasture due to greater stocking rates of livestock per unit

21 of area, compared to other regions of the United States.

- 1 Figure 5-5: Grasslands, 2015 Annual Direct N₂O Emissions Estimated Using the Tier 3
- 2 DayCent Model (MT CO₂ Eq./ha/year)

Note: Only national-scale emissions are estimated for 2016 to 2018 using a splicing method, and therefore the fine-scale
 emission patterns in this map are based on Inventory data from 2015.

6

7 Indirect N₂O emissions from volatilization in croplands have a similar pattern as the direct N₂O emissions with

8 higher emissions in the Midwestern Corn Belt, Lower Mississippi River Basin and Great Plains. Indirect N₂O

9 emissions from volatilization in grasslands are higher in the Southeastern United States, along with portions of the

10 Mid-Atlantic and southern Iowa. The higher emissions in this region are mainly due to large additions of PRP

11 manure N on relatively small but productive pastures that support intensive grazing, which in turn, stimulates NH₃

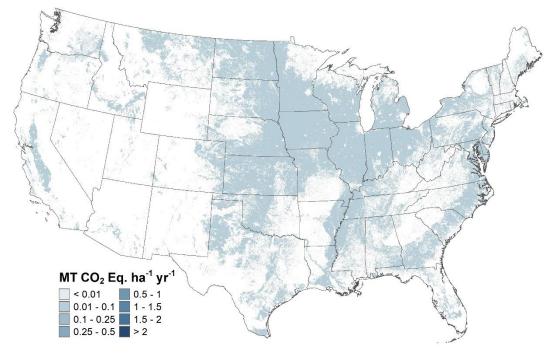
12 volatilization.

13 Indirect N₂O emissions from surface runoff and leaching of applied/mineralized N in croplands is highest in the

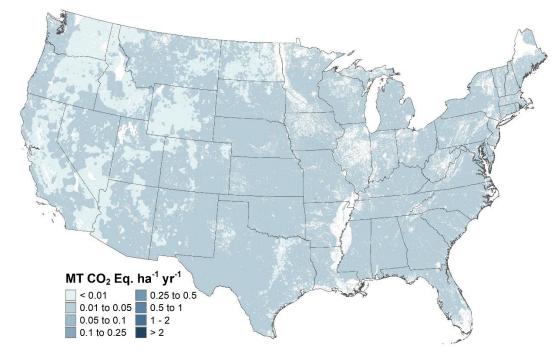
14 Midwestern Corn Belt. There are also relatively high emissions associated with N management in the Lower

15 Mississippi River Basin, Piedmont region of the Southeastern United States and the Mid-Atlantic states. In

additions, small areas of high emissions occur in portions of the Great Plains that have relatively large areas of

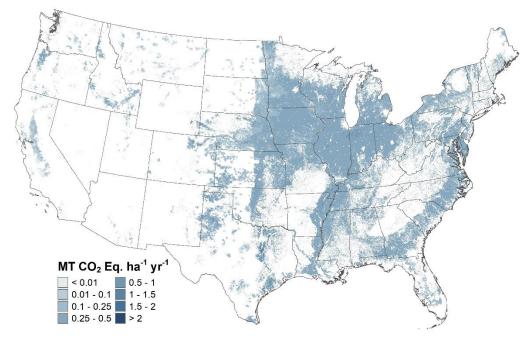

17 irrigated croplands that can have relatively high leaching rates of applied/mineralized N. Indirect N₂O emissions

18 from surface runoff and leaching of applied/mineralized N in grasslands are higher in the eastern United States and

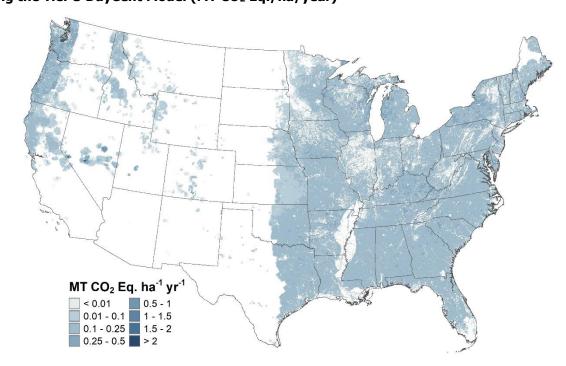

19 coastal Northwest region. These regions have greater precipitation and higher levels of leaching and runoff

20 compared to arid to semi-arid regions in the Western United States.

- 1 Figure 5-6: Crops, 2015 Annual Indirect N₂O Emissions from Volatilization Using the Tier 3
- 2 DayCent Model (MT CO₂ Eq./ha/year)



- 4 Note: Only national-scale emissions are estimated for 2016 to 2018 using a splicing method, and therefore the fine-scale
- 5 emission patterns in this map are based on Inventory data from 2015.
- 6 Figure 5-7: Grasslands, 2015 Annual Indirect N₂O Emissions from Volatilization Using the
- 7 Tier 3 DayCent Model (MT CO₂ Eq./ha/year)


- 8
- 9 Note: Only national-scale emissions are estimated for 2016 to 2018 using a splicing method, and therefore the fine-scale
- 10 emission patterns in this map are based on Inventory data from 2015.

- 1 Figure 5-8: Crops, 2015 Annual Indirect N₂O Emissions from Leaching and Runoff Using the
- 2 Tier 3 DayCent Model (MT CO₂ Eq./ha/year)

- 4 Note: Only national-scale emissions are estimated for 2016 to 2018 using a splicing method, and therefore the fine-scale
- 5 emission patterns in this map are based on Inventory data from 2015.

Figure 5-9: Grasslands, 2015 Annual Indirect N₂O Emissions from Leaching and Runoff Using the Tier 3 DayCent Model (MT CO₂ Eq./ha/year)

8

- 9 Note: Only national-scale emissions are estimated for 2016 to 2018 using a splicing method, and therefore the fine-scale
- 10 emission patterns in this map are based on Inventory data from 2015.

1 Methodology

- 2 The 2006 IPCC Guidelines (IPCC 2006) divide emissions from the agricultural soil management source category into
- 3 five components, including (1) direct emissions from N additions to cropland and grassland mineral soils from
- 4 synthetic fertilizers, biosolids (i.e., sewage sludge) applications, crop residues (legume N-fixing and non-legume
- 5 crops), and organic amendments; (2) direct emissions from soil organic matter mineralization due to land use and
- 6 management change; (3) direct emissions from drainage of organic soils in croplands and grasslands; (4) direct
- 7 emissions from soils due to manure deposited by livestock on PRP grasslands; and (5) indirect emissions from soils
- 8 and water from N additions and manure deposition to soils that lead to volatilization, leaching, or runoff of N and
- 9 subsequent conversion to N_2O .
- 10 In this source category, the United States reports on all croplands, as well as all "managed" grasslands, whereby
- anthropogenic greenhouse gas emissions are estimated consistent with the managed land concept (IPCC 2006),
- 12 including direct and indirect N₂O emissions from asymbiotic fixation¹⁵ and mineralization of N associated with
- decomposition of soil organic matter and residues. One recommendation from IPCC (2006) that has not been
- 14 completely adopted is the estimation of emissions from grassland pasture renewal, which involves occasional
- plowing to improve forage production in pastures. Currently no data are available to address pasture renewal.

16 Direct N₂O Emissions

17 The methodology used to estimate direct N₂O emissions from agricultural soil management in the United States is 18 based on a combination of IPCC Tier 1 and 3 approaches, along with application of a splicing method for latter 19 years in the Inventory time series (IPCC 2006; Del Grosso et al. 2010) where data are not yet available. A Tier 3 20 process-based model (DayCent) is used to estimate direct emissions from a variety of crops that are grown on 21 mineral (i.e., non-organic) soils, as well as the direct emissions from non-federal grasslands except for biosolids 22 (i.e., sewage sludge) amendments (Del Grosso et al. 2010). The Tier 3 approach has been specifically designed and 23 tested to estimate N₂O emissions in the United States, accounting for more of the environmental and management 24 influences on soil N₂O emissions than the IPCC Tier 1 method (see Box 5-3 for further elaboration). Moreover, the 25 Tier 3 approach addresses direct N₂O emissions and soil C stock changes from mineral cropland soils in a single 26 analysis. Carbon and N dynamics are linked in plant-soil systems through biogeochemical processes of microbial 27 decomposition and plant production (McGill and Cole 1981). Coupling the two source categories (i.e., agricultural 28 soil C and N₂O) in a single inventory analysis ensures that there is consistent activity data and treatment of the 29 processes, and interactions are considered between C and N cycling in soils.

- The Tier 3 approach is based on the crop and land use histories recorded in the USDA National Resources Inventory (NRI) (USDA-NRCS 2018a). The NRI is a statistically-based sample of all non-federal land,¹⁶ and includes 349,464
- 32 points on agricultural land for the conterminous United States that are included in the Tier 3 method. The Tier 1
- 33 approach is used to estimate the emissions from an average of 175,527 locations in the NRI survey across the time
- series, which are designated as cropland or grassland (discussed later in this section). Each survey location is
- associated with an "expansion factor" that allows scaling of N_2O emissions from NRI points to the entire country
- 36 (i.e., each expansion factor represents the amount of area with the same land-use/management history as the
- 37 survey location). Each NRI survey location was sampled on a 5-year cycle from 1982 until 1997. For cropland, data
- were collected in 4 out of 5 years in the cycle (i.e., 1979 through 1982, 1984 through 1987, 1989 through 1992, and
- 1994 through 1997). In 1998, the NRI program began collecting annual data, which are currently available through
- 40 2015 (USDA-NRCS 2018a).

¹⁵ N inputs from asymbiotic N fixation are not directly addressed in *2006 IPCC Guidelines*, but are a component of the total emissions from managed lands and are included in the Tier 3 approach developed for this source.

¹⁶ The NRI survey does include sample points on federal lands, but the program does not collect data from those sample locations.

Box 5-3: Tier 1 vs. Tier 3 Approach for Estimating N₂O Emissions

The IPCC (2006) Tier 1 approach is based on multiplying activity data on different N inputs (i.e., synthetic fertilizer, manure, N fixation, etc.) by the appropriate default IPCC emission factors to estimate N₂O emissions on an input-by-input basis. The Tier 1 approach requires a minimal amount of activity data, readily available in most countries (e.g., total N applied to crops); calculations are simple; and the methodology is highly transparent. In contrast, the Tier 3 approach developed for this Inventory is based on application of a processbased model (i.e., DayCent) that represents the interaction of N inputs, land use and management, as well as environmental conditions at specific locations, such as freeze-thaw effects that generate hot moments of N₂O emissions (Wagner-Riddle et al. 2017). Consequently, the Tier 3 approach accounts for land-use and management impacts and their interaction with environmental factors, such as weather patterns and soil characteristics, in a more comprehensive manner, which will enhance or dampen anthropogenic influences. However, the Tier 3 approach requires more detailed activity data (e.g., crop-specific N fertilization rates), additional data inputs (e.g., daily weather, soil types), and considerable computational resources and programming expertise. The Tier 3 methodology is less transparent, and thus it is critical to evaluate the output of Tier 3 methods against measured data in order to demonstrate that the method is an improvement over lower tier methods for estimating emissions (IPCC 2006). Another important difference between the Tier 1 and Tier 3 approaches relates to assumptions regarding N cycling. Tier 1 assumes that N added to a system is subject to N_2O emissions only during that year and cannot be stored in soils and contribute to N_2O emissions in subsequent years. This is a simplifying assumption that is likely to create bias in estimated N_2O emissions for a specific year. In contrast, the process-based model used in the Tier 3 approach includes the legacy effect of N added to soils in previous years that is re-mineralized from soil organic matter and emitted as N2O during subsequent years.

2

1

3 DayCent is used to estimate N₂O emissions associated with production of alfalfa hay, barley, corn, cotton, grass 4 hay, grass-clover hay, oats, peanuts, potatoes, rice, sorghum, soybeans, sugar beets, sunflowers, tobacco and 5 wheat, but is not applied to estimate N₂O emissions from other crops or rotations with other crops,¹⁷ such as 6 sugarcane, some vegetables, tobacco, and perennial/horticultural crops. Areas that are converted between 7 agriculture (i.e., cropland and grassland) and other land uses, such as forest land, wetland and settlements, are not 8 simulated with DayCent. DayCent is also not used to estimate emissions from land areas with very gravelly, cobbly, 9 or shaley soils in the topsoil (greater than 35 percent by volume in the top 30 cm of the soil profile), or to estimate 10 emissions from drained organic soils (Histosols). The Tier 3 method has not been fully tested for estimating N₂O 11 emissions associated with these crops and rotations, land uses, as well as organic soils or cobbly, gravelly, and 12 shaley mineral soils. In addition, federal grassland areas are not simulated with DayCent due to limited activity 13 data on land use histories. For areas that are not included in the DayCent simulations, Tier 1 methods are used to 14 estimate emissions, including (1) direct emissions from N inputs for crops on mineral soils that are not simulated 15 by DayCent; (2) direct emissions from PRP N additions on federal grasslands; (3) direct emissions for land 16 application of biosolids (i.e., sewage sludge) to soils; and (4) direct emissions from drained organic soils in 17 croplands and grasslands.

A splicing method is used to estimate soil N₂O emissions from 2016 to 2018 at the national scale because new NRI
 activity data are not available for those years. Specifically, linear regression models with autoregressive moving average (ARMA) errors (Brockwell and Davis 2016) are used to estimate the relationship between surrogate data
 and the 1990 to 2015 emissions that are derived using the Tier 3 method. Surrogate data for these regression

- 22 models includes corn and soybean yields from USDA-NASS statistics,¹⁸ and weather data from the PRISM Climate
- 23 Group (PRISM 2018). For the Tier 1 method, a linear-time series model is used to estimate emissions from 2016 to

 ¹⁷ A small proportion of the major commodity crop production, such as corn and wheat, is included in the Tier 1 analysis because these crops are rotated with other crops or land uses (e.g., forest lands) that are not simulated by DayCent.
 ¹⁸ See .

- 1 2018 without surrogate data. See Box 5-4 for more information about the splicing method. Emission estimates for
- 2 2016 to 2018 will be recalculated in future Inventory reports when new NRI data are available.

3 Box 5-4: Surrogate Data Method

An approach to extend the time series is needed for Agricultural Soil Management because there are typically data gaps at the end of the time series. This is mainly because the NRI survey program, which provides critical information for estimating greenhouse gas emissions and removals, does not release data every year.

Splicing methods have been used to impute missing data at the end of the emission time series for both the Tier 1 and 3 methods. Specifically, a linear regression model with autoregressive moving-average (ARMA) errors (Brockwell and Davis 2016) is used to estimate emissions based on the modeled 1990 to 2015 emissions data, which has been compiled using the inventory methods described in this section. The model to extend the time series is given by

$Y=X\beta+\varepsilon,$

where Y is the response variable (e.g., soil nitrous oxide), X β for the Tier 3 method contains specific surrogate data depending on the response variable, and ε is the remaining unexplained error. Models with a variety of surrogate data were tested, including commodity statistics, weather data, or other relevant information. The term X β for the Tier 1 method only contains year as a predictor of emission patterns over the time series (change in emissions per year), and therefore, is a linear time series model with no surrogate data. Parameters are estimated from the emissions data for 1990 to 2015 using standard statistical techniques, and these estimates are used in the model described above to predict the missing emissions data for 2016 to 2018.

A critical issue when applying splicing methods is to account for the additional uncertainty introduced by predicting emissions with related information without compiling the full inventory. Specifically, uncertainty will increase for years with imputed estimates based on the splicing methods, compared to those years in which the full inventory is compiled. This additional uncertainty is quantified within the model framework using a Monte Carlo approach. Consequently, the uncertainty from the original inventory data is combined with the uncertainty in the data splicing model. The approach requires estimating parameters in the data splicing models in each Monte Carlo simulation for the full inventory (i.e., the surrogate data model is refit with the draws of parameters values that are selected in each Monte Carlo iteration, and used to produce estimates with inventory data from 1990 to 2015). Therefore, the data splicing method generates emissions estimates from each surrogate data model in the Monte Carlo analysis, which are used to derive confidence intervals in the estimates for the missing emissions data from 2016 to 2018. Furthermore, the 95 percent confidence intervals are estimated using the 3 sigma rules assuming a unimodal density (Pukelsheim 1994).

4

5 Tier 3 Approach for Mineral Cropland Soils

The DayCent biogeochemical model (Parton et al. 1998; Del Grosso et al. 2001 and 2011) is used to estimate direct
N₂O emissions from mineral cropland soils that are managed for production of a wide variety of crops (see list in
previous section) based on the crop histories in the 2015 NRI (USDA-NRCS 2018a). Crops simulated by DayCent are
grown on approximately 85 percent of total cropland area in the United States. The model simulates net primary
productivity (NPP) using the NASA-CASA production algorithm MODIS Enhanced Vegetation Index (EVI) products,
MOD13Q1 and MYD13Q1¹⁹ (Potter et al. 1993, 2007). The model simulates soil temperature, and water dynamics,
using daily weather data using a 4-kilometer gridded product developed by the PRISM Climate Group (2018), and

¹⁹ NPP is estimated with the NASA-CASA algorithm for most of the cropland that is used to produce major commodity crops in the central United States from 2000 to 2015. Other regions and years prior to 2000 are simulated with a method that incorporates water, temperature and moisture stress on crop production (see Metherell et al. 1993), but does not incorporate the additional information about crop condition provided with remote sensing data.

soil attributes from the Soil Survey Geographic Database (SSURGO) (Soil Survey Staff 2019). DayCent is used to

2 estimate direct N₂O emissions due to mineral N available from the following sources: (1) application of synthetic

3 fertilizers; (2) application of livestock manure; (3) retention of crop residues in the field for N-fixing legumes and

4 non-legume crops and subsequent mineralization of N during microbial decomposition (i.e., leaving residues in the

5 field after harvest instead of burning or collecting residues); (4) mineralization of N from decomposition of soil

6 organic matter; and (5) asymbiotic fixation.

7 Management activity data from several sources supplement the activity data from the NRI. The USDA-NRCS 8 Conservation Effects and Assessment Project (CEAP) provides data on a variety of cropland management activities, 9 and is used to inform the inventory analysis about tillage practices, mineral fertilization, manure amendments, 10 cover crop management, as well as planting and harvest dates (USDA-NRCS 2018b; USDA-NRCS 2012). CEAP data 11 are collected at a subset of NRI survey locations, and currently provide management information from 12 approximately 2002 to 2006. These data are combined with other datasets in an imputation analysis that extend 13 the time series from 1990 to 2015. This imputation analysis is comprised of three steps: a) determine the trends in 14 management activity across the time series by combining information from several datasets (discussed below), b) 15 use an artificial neural network to determine the likely management practice at a given NRI survey location (Cheng 16 and Titterington 1994), and c) assign management practices from the CEAP survey to specific NRI locations using 17 predictive mean matching methods that are adapted to reflect the trending information (Little 1988, van Buuren 18 2012). The artificial neural network is a machine learning method that approximates nonlinear functions of inputs 19 and searches through a very large class of models to impute an initial value for management practices at specific 20 NRI survey locations. The predictive mean matching method identifies the most similar management activity 21 recorded in the CEAP survey that matches the prediction from the artificial neural network. The matching ensures 22 that imputed management activities are realistic for each NRI survey location, and not odd or physically 23 unrealizable results that could be generated by the artificial neural network. There are six complete imputations of 24 the management activity data using these methods.

- 25 To determine trends in mineral fertilization and manure amendments from 1979 to 2015, CEAP data are combined 26 with information on fertilizer use and rates by crop type for different regions of the United States from the USDA 27 Economic Research Service. The data collection program was known as the Cropping Practices Surveys through 28 1995 (USDA-ERS 1997), and is now part of data collection known as the Agricultural Resource Management 29 Surveys (ARMS) (USDA-ERS 2018). Additional data on fertilization practices are compiled through other sources 30 particularly the National Agricultural Statistics Service (USDA-NASS 1992, 1999, 2004). The donor survey data from 31 CEAP contain both mineral fertilizer rates and manure amendment rates, so that the selection of a donor via 32 predictive mean matching yields the joint imputation of both rates. This approach captures the relationship 33 between mineral fertilization and manure amendment practices for U.S. croplands based directly on the observed
- 34 patterns in the CEAP survey data.
- To determine the trends in tillage management from 1979 to 2015, CEAP data are combined with Conservation
- 36 Technology Information Center data between 1989 and 2004 (CTIC 2004) and USDA-ERS Agriculture Resource
- 37 Management Surveys (ARMS) data from 2002 to 2015 (Claasen et al. 2018). The CTIC data are adjusted for long-
- term adoption of no-till agriculture (Towery 2001). It is assumed that the majority of agricultural lands are
- 39 managed with full tillage prior to 1985.
- 40 For cover crops, CEAP data are combined with information from 2011 to 2016 in the USDA Census of Agriculture
- 41 (USDA-NASS 2012, 2017). It is assumed that cover crop management was minimal prior to 1990 and the rates
- 42 increased linearly over the decade to the levels of cover crop management in the CEAP survey.
- 43 The IPCC method considers crop residue N and N mineralized from soil organic matter as activity data. However,
- 44 they are not treated as activity data in DayCent simulations because residue production, symbiotic N fixation (e.g.,
- 45 legumes), mineralization of N from soil organic matter, and asymbiotic N fixation are internally generated by the
- 46 model as part of the simulation. In other words, DayCent accounts for the influence of symbiotic N fixation,
- 47 mineralization of N from soil organic matter and crop residue retained in the field, and asymbiotic N fixation on
- 48 N₂O emissions, but these are not model inputs.
- 49 The N_2O emissions from crop residues are reduced by approximately 3 percent (the assumed average burned 50 portion for crop residues in the United States) to avoid double counting associated with non-CO₂ greenhouse gas
- 50 portion for crop residues in the United States) to avoid double counting associated with non-CO₂ greenhouse gas

- 1 emissions from agricultural residue burning. Estimated levels of residue burning are based on state inventory data
- 2 (ILENR 1993; Oregon Department of Energy 1995; Noller 1996; Wisconsin Department of Natural Resources 1993;
- 3 Cibrowski 1996).
- 4 Uncertainty in the emission estimates from DayCent is associated with input uncertainty due to missing
- 5 management data in the NRI survey that is imputed from other sources; model uncertainty due to incomplete
- 6 specification of C and N dynamics in the DayCent model parameters and algorithms; and sampling uncertainty
- 7 associated with the statistical design of the NRI survey. To assess input uncertainty, C and N dynamics at each NRI
- 8 survey location are simulated six times using the imputation product and other model driver data. Uncertainty in
- 9 parameterization and model algorithms are determined using a structural uncertainty estimator derived from
- 10 fitting a linear mixed-effect model (Ogle et al. 2007, Del Grosso et al. 2010). Sampling uncertainty is assessed using
- NRI replicate sampling weights. These data are combined in a Monte Carlo stochastic simulation with 1,000
 iterations for 1990 through 2015. For each iteration, there is a random selection of management data from the
- 13 imputation product (select one of the six imputations), random selection of parameter values and random effects
- for the linear mixed-effect model (i.e., structural uncertainty estimator), and random selection of a set of survey
- 15 weights from the replicates associated with the NRI survey design.
- 16 Nitrous oxide emissions and 95 percent confidence intervals are estimated for each year between 1990 and 2015
- using the DayCent model. However, note that the areas have been modified in the original NRI survey through a
- 18 process in which the Forest Inventory and Analysis (FIA) survey data and the National Land Cover Dataset (Yang et
- al. 2018) are harmonized with the NRI data. This process ensures that the land use areas are consistent across all
- 20 land use categories (See Section 6.1, Representation of the U.S. Land Base for more information). Further
- elaboration on the methodology and data used to estimate N₂O emissions from mineral soils are described in
- 22 Annex 3.12.
- 23 For the Tier 3 method, soil N₂O emissions from 2016 to 2018 associated with mineral soils in croplands are
- estimated using a splicing method that accounts for uncertainty in the original inventory data and the splicing
- 25 method (See Box 5-4). Annual data are currently available through 2015 (USDA-NRCS 2018a), and the Inventory
- time series will be updated in the future when new NRI data are released.
- 27 Nitrous oxide emissions from managed agricultural lands are the result of interactions among anthropogenic 28 activities (e.g., N fertilization, manure application, tillage) and other driving variables, such as weather and soil 29 characteristics. These factors influence key processes associated with N dynamics in the soil profile, including 30 immobilization of N by soil microbial organisms, decomposition of organic matter, plant uptake, leaching, runoff, 31 and volatilization, as well as the processes leading to N₂O production (nitrification and denitrification). It is not 32 possible to partition N₂O emissions into each anthropogenic activity directly from model outputs due to the 33 complexity of the interactions (e.g., N₂O emissions from synthetic fertilizer applications cannot be distinguished 34 from those resulting from manure applications). To approximate emissions by activity, the amount of mineral N 35 added to the soil, or made available through decomposition of soil organic matter and plant litter, as well as 36 asymbiotic fixation of N from the atmosphere, is determined for each N source and then divided by the total 37 amount of mineral N in the soil according to the DayCent model simulation. The percentages are then multiplied 38 by the total of direct N₂O emissions in order to approximate the portion attributed to N management practices. 39 This approach is only an approximation because it assumes that all N made available in soil has an equal 40 probability of being released as N₂O, regardless of its source, which is unlikely to be the case (Delgado et al. 2009). 41 However, this approach allows for further disaggregation of emissions by source of N, which is valuable for
- reporting purposes and is analogous to the reporting associated with the IPCC (2006) Tier 1 method, in that it
- 43 associates portions of the total soil N₂O emissions with individual sources of N.

44 Tier 1 Approach for Mineral Cropland Soils

- The IPCC (2006) Tier 1 methodology is used to estimate direct N₂O emissions for mineral cropland soils that are not simulated by DayCent (e.g., DayCent has not been parametrized to simulate all crop types and some soil types such as *Histosols*). For the Tier 1 method, estimates of direct N₂O emissions from N applications are based on mineral
- 48 soil N that is made available from the following practices: (1) the application of synthetic commercial fertilizers; (2)
- 49 application of managed manure and non-manure commercial organic fertilizers; and (3) decomposition and

mineralization of nitrogen from above- and below-ground crop residues in agricultural fields (i.e., crop biomass
 that is not harvested). Non-manure commercial organic amendments are only included in the Tier 1 analysis
 because these data are not available at the county-level, which is necessary for the DayCent simulations.²⁰

4 Consequently, all commercial organic fertilizer, as well as manure that is not added to crops in the DayCent

5 simulations, are included in the Tier 1 analysis. The following sources are used to derive activity data:

- 6 A process-of-elimination approach is used to estimate synthetic N fertilizer additions for crop areas that 7 are not simulated by DayCent. The total amount of fertilizer used on farms has been estimated at the 8 county-level by the USGS using sales records from 1990 to 2012 (Brakebill and Gronberg 2017). For 2013 9 through 2015, county-level fertilizer used on-farms is adjusted based on annual fluctuations in total U.S. fertilizer sales (AAPFCO 2013 through 2017).²¹ The fertilizer sales for 2015 will be updated when data are 10 released. After subtracting the portion of fertilizer applied to crops and grasslands simulated by DayCent 11 12 (see Tier 3 Approach for Mineral Cropland Soils and Direct N₂O Emissions from Grassland Soils sections for 13 information on data sources), the remainder of the total fertilizer used on farms is assumed to be applied 14 to crops that are not simulated by DayCent.
- Similarly, a process-of-elimination approach is used to estimate manure N additions for crops that are not simulated by DayCent. The total amount of manure available for land application to soils has been estimated with methods described in the Manure Management section (Section 5.2) and annex (Annex 3.10). The amount of manure N applied in the Tier 3 approach to crops and grasslands is subtracted from total annual manure N available for land application (see Tier 3 Approach for Mineral Cropland Soils and Direct N₂O Emissions from Grassland Soils sections for information on data sources). This difference is assumed to be applied to crops that are not simulated by DayCent.
- Commercial organic fertilizer additions are based on organic fertilizer consumption statistics, which are converted to units of N using average organic fertilizer N content (TVA 1991 through 1994; AAPFCO 1995 through 2017). Commercial fertilizers do include some manure and biosolids (i.e., sewage sludge), but the amounts are removed from the commercial fertilizer data to avoid double counting with the manure N dataset described above and the biosolids (i.e., sewage sludge) amendment data discussed later in this section.
- Crop residue N is derived by combining amounts of above- and below-ground biomass, which are
 determined based on NRI crop area data (USDA-NRCS 2018a), crop production yield statistics (USDA-NASS
 2019), dry matter fractions (IPCC 2006), linear equations to estimate above-ground biomass given dry
 matter crop yields from harvest (IPCC 2006), ratios of below-to-above-ground biomass (IPCC 2006), and N
 contents of the residues (IPCC 2006). N inputs from residue were reduced by 3 percent to account for
 average residue burning portions in the United States.

The total increase in soil mineral N from applied fertilizers and crop residues is multiplied by the IPCC (2006)
 default emission factor to derive an estimate of direct N₂O emissions using the Tier 1 method. Further elaboration

36 on the methodology and data used to estimate N₂O emissions from mineral soils are described in Annex 3.12.

37 Soil N₂O emissions from 2016 to 2018 for Tier 1 mineral soil emissions are estimated using a splicing method that is

described in Box 5-4. As with the Tier 3 method, the time series that is based on the splicing methods will be

39 recalculated in a future Inventory report when updated activity data are available.

²⁰ Commercial organic fertilizers include dried blood, tankage, compost, and other, but the dried manure and biosolids (i.e., sewage sludge) is removed from the dataset in order to avoid double counting with other datasets that are used for manure N and biosolids.

²¹ The fertilizer consumption data in AAPFCO are recorded in "fertilizer year" totals, (i.e., July to June), but are converted to calendar year totals. This is done by assuming that approximately 35 percent of fertilizer usage occurred from July to December and 65 percent from January to June (TVA 1992b).

1 Tier 1 Approach for Drainage of Organic Soils in Croplands and Grasslands

The IPCC (2006) Tier 1 method is used to estimate direct N₂O emissions due to drainage of organic soils in croplands and grasslands at a state scale. State-scale estimates of the total area of drained organic soils are

4 obtained from the 2015 NRI (USDA-NRCS 2018a) using soils data from the Soil Survey Geographic Database

5 (SSURGO) (Soil Survey Staff 2019). Temperature data from the PRISM Climate Group (PRISM 2018) are used to

subdivide areas into temperate and tropical climates according to the climate classification from IPCC (2006). To
 estimate annual emissions, the total temperate area is multiplied by the IPCC default emission factor for

estimate annual emissions, the total temperate area is multiplied by the IPCC default emission factor for
 temperate regions, and the total tropical area is multiplied by the IPCC default emission factor for tropical regions

9 (IPCC 2006). Annual NRI data are only available between 1990 and 2015, but the time series was adjusted using

data from the Forest Inventory and Analysis Program (USFS 2019) in order to estimate emissions from 2016 to

11 2018. Further elaboration on the methodology and data used to estimate N₂O emissions from organic soils are

12 described in Annex 3.12.

13 Tier 1 and 3 Approaches for Direct N₂O Emissions from Grassland Soils

14 As with N₂O emissions from croplands, the Tier 3 process-based DayCent model and Tier 1 method described in 15 IPCC (2006) are combined to estimate emissions from non-federal grasslands and PRP manure N additions for 16 federal grasslands, respectively. Grassland includes pasture and rangeland that produce grass or mixed 17 grass/legume forage primarily for livestock grazing. Rangelands are typically extensive areas of native grassland 18 that are not intensively managed, while pastures are typically seeded grassland (possibly following tree removal) 19 that may also have additional management, such as irrigation, fertilization, or inter-seeding legumes. DayCent is 20 used to simulate N₂O emissions from NRI survey locations (USDA-NRCS 2018a) on non-federal grasslands resulting 21 from manure deposited by livestock directly onto pastures and rangelands (i.e., PRP manure), N fixation from 22 legume seeding, managed manure amendments (i.e., manure other than PRP manure such as Daily Spread or 23 manure collected from other animal waste management systems such as lagoons and digesters), and synthetic 24 fertilizer application. Other N inputs are simulated within the DayCent framework, including N input from 25 mineralization due to decomposition of soil organic matter and N inputs from senesced grass litter, as well as 26 asymbiotic fixation of N from the atmosphere. The simulations used the same weather, soil, and synthetic N 27 fertilizer data as discussed under the Tier 3 Approach in the Mineral Cropland Soils section. Mineral N fertilization 28 rates are based on data from the Carbon Sequestration Rural Appraisals (CSRA) conducted by the USDA-NRCS 29 (USDA-NRCS, unpublished data). The CSRA was a solicitation of expert knowledge from USDA-NRCS staff 30 throughout the United States to support the Inventory. Biological N fixation is simulated within DayCent, and 31 therefore is not an input to the model.

32 Manure N deposition from grazing animals in PRP systems (i.e., PRP manure N) is a key input of N to grasslands.

- The amounts of PRP manure N applied on non-federal grasslands for each NRI survey location are based on the
- 34 amount of N excreted by livestock in PRP systems based on the methods described in Manure Management 55 section (Section 5.2) and associated approx (Approx 2.10). The total amount of N excreted in each sound vis division of the section (Section 5.2) and associated approx (Approx 2.10).
- section (Section 5.2) and associated annex (Annex 3.10). The total amount of N excreted in each county is divided
 by the grassland area to estimate the N input rate associated with PRP manure. The resulting input rates are used

36 by the grassiand area to estimate the N input rate associated with PRP manure. The resulting input rates are used 37 in the DayCent simulations. DayCent simulations of non-federal grasslands accounted for approximately 77

percent of total PRP manure N in aggregate across the country.²² The remainder of the PRP manure N in each state

is assumed to be excreted on federal grasslands, and the N₂O emissions are estimated using the IPCC (2006) Tier 1

- 40 method.
- 41 Biosolids (i.e., sewage sludge) are assumed to be applied on grasslands because of the heavy metal content and

42 other pollutants in human waste that limit its use as an amendment to croplands. Biosolids application is

43 estimated from data compiled by EPA (1993, 1999, 2003), McFarland (2001), and NEBRA (2007) (see Section 7.2

- 44 Wastewater Treatment for a detailed discussion of the methodology for estimating sewage sludge available for
- 45 land application application). Biosolids soil amendments are only available at the national scale, and it is not

 $^{^{22}}$ A small amount of PRP N (less than 1 percent) is deposited in grazed pasture that is in rotation with annual crops, and is reported in the grassland N₂O emissions.

- 1 possible to associate application with specific soil conditions and weather at NRI survey locations. Therefore,
- 2 DayCent could not be used to simulate the influence of biosolids amendments on N₂O emissions from grassland
- 3 soils, and consequently, emissions from biosolids are estimated using the IPCC (2006) Tier 1 method.
- 4 Soil N₂O emission estimates from DayCent are adjusted using a structural uncertainty estimator accounting for
- 5 uncertainty in model algorithms and parameter values (Del Grosso et al. 2010). There is also sampling uncertainty
- 6 for the NRI survey that is propagated through the estimate with replicate sampling weights associated with the
- 7 survey. N₂O emissions for the PRP manure N deposited on federal grasslands and applied biosolids N are estimated
- 8 using the Tier 1 method by multiplying the N input by the default emission factor. Emissions from manure N are
- 9 estimated at the state level and aggregated to the entire country, but emissions from biosolids N are calculated
- 10 exclusively at the national scale. Further elaboration on the methodology and data used to estimate N₂O emissions
- 11 from mineral soils are described in Annex 3.12.
- 12 Soil N₂O emissions and 95 percent confidence intervals are estimated for each year between 1990 and 2015 based
- 13 on the Tier 1 and 3 methods, with the exception of biosolids (discussed below). Emissions from 2016 to 2018 are
- estimated using a splicing method as described in Box 5-4. As with croplands, estimates for 2016 to 2018 will be
- 15 recalculated in a future Inventory when new NRI data are released by USDA. Biosolids application data are
- 16 compiled through 2018 in this Inventory, and therefore soil N₂O emissions and confidence intervals are estimated
- using the Tier 1 method for all years in the time series without application of the splicing method.

18 Total Direct N₂O Emissions from Cropland and Grassland Soils

19 Annual direct emissions from the Tier 1 and 3 approaches for mineral and drained organic soils occurring in both

- croplands and grasslands are summed to obtain the total direct N₂O emissions from agricultural soil management
- 21 (see Table 5-16 and Table 5-17).

22 Indirect N₂O Emissions Associated with Nitrogen Management in Cropland and

23 Grasslands

24 Indirect N₂O emissions occur when mineral N applied or made available through anthropogenic activity is

transported from the soil either in gaseous or aqueous forms and later converted into N₂O. There are two

26 pathways leading to indirect emissions. The first pathway results from volatilization of N as NO_x and NH₃ following

application of synthetic fertilizer, organic amendments (e.g., manure, biosolids), and deposition of PRP manure.

- 28 Nitrogen made available from mineralization of soil organic matter and residue, including N incorporated into
- 29 crops and forage from symbiotic N fixation, and input of N from asymbiotic fixation also contributes to volatilized
- 30 N emissions. Volatilized N can be returned to soils through atmospheric deposition, and a portion of the deposited
- N is emitted to the atmosphere as N₂O. The second pathway occurs via leaching and runoff of soil N (primarily in
- 32 the form of NO₃⁻) that is made available through anthropogenic activity on managed lands, mineralization of soil
- 33 organic matter and residue, including N incorporated into crops and forage from symbiotic N fixation, and inputs of
- N into the soil from asymbiotic fixation. The NO_3^- is subject to denitrification in water bodies, which leads to $N_2O_3^$ emissions. Regardless of the eventual location of the indirect N_2O emissions, the emissions are assigned to the
- original source of the N for reporting purposes, which here includes croplands and grasslands.

37 Tier 1 and 3 Approaches for Indirect N_2O Emissions from Atmospheric Deposition of Volatilized N

- The Tier 3 DayCent model and IPCC (2006) Tier 1 methods are combined to estimate the amount of N that is
- volatilized and eventually emitted as N₂O. DayCent is used to estimate N volatilization for land areas whose direct
- 40 emissions are simulated with DayCent (i.e., most commodity and some specialty crops and most grasslands). The N
- 41 inputs included are the same as described for direct N₂O emissions in the Tier 3 Approach for Mineral Cropland
- 42 Soils and Direct N₂O Emissions from Grassland Soils sections. Nitrogen volatilization from all other areas is
- 43 estimated using the Tier 1 method with default IPCC fractions for N subject to volatilization (i.e., N inputs on

- 1 croplands not simulated by DayCent, PRP manure N excreted on federal grasslands, and biosolids [i.e., sewage
- 2 sludge] application on grasslands).
- 3 The IPCC (2006) default emission factor is multiplied by the volatilization data generated from both DayCent and
- 4 Tier 1 methods to estimate indirect N₂O emissions occurring due to re-deposition of the volatilized N (see Table
- 5 5-19). Further elaboration on the methodology and data used to estimate indirect N₂O emissions are described in
- 6 Annex 3.12.

7 Tier 1 and 3 Approaches for Indirect N₂O Emissions from Leaching/Runoff

- 8 As with the calculations of indirect emissions from volatilized N, the Tier 3 DayCent model and IPCC (2006) Tier 1
- 9 method are combined to estimate the amount of N that is subject to leaching and surface runoff into water bodies,
- and eventually emitted as N₂O. DayCent is used to simulate the amount of N transported from lands in the Tier 3
- Approach. Nitrogen transport from all other areas is estimated using the Tier 1 method and the IPCC (2006) default
- 12 factor for the proportion of N subject to leaching and runoff associated with N applications on croplands that are
- 13 not simulated by DayCent, biosolids amendments on grasslands, and PRP manure N excreted on federal
- 14 grasslands.
- 15 For both the DayCent Tier 3 and IPCC (2006) Tier 1 methods, nitrate leaching is assumed to be an insignificant
- source of indirect N_2O in cropland and grassland systems in arid regions, as discussed in IPCC (2006). In the United
- 17 States, the threshold for significant nitrate leaching is based on the potential evapotranspiration (PET) and rainfall
- 18 amount, similar to IPCC (2006), and is assumed to be negligible in regions where the amount of precipitation plus
- 19 irrigation does not exceed 80 percent of PET.
- 20 For leaching and runoff data estimated by the Tier 3 and Tier 1 approaches, the IPCC (2006) default emission factor
- 21 is used to estimate indirect N₂O emissions that occur in groundwater and waterways (see Table 5-19). Further
- $\label{eq:22} elaboration on the methodology and data used to estimate indirect N_2O emissions are described in Annex 3.12.$
- $\label{eq:23} Indirect soil N_2O \ emissions \ from \ 2016 \ to \ 2018 \ are \ estimated \ using \ the \ splicing \ method \ that \ is \ described \ in \ Box \ 5-4.$
- 24 As with the direct N₂O emissions, the time series will be recalculated in a future Inventory report when new
- 25 activity data are compiled.

26 Uncertainty and Time-Series Consistency

- 27 Uncertainty is estimated for each of the following five components of N₂O emissions from agricultural soil
- 28 management: (1) direct emissions simulated by DayCent; (2) the components of indirect emissions (N volatilized
- and leached or runoff) simulated by DayCent; (3) direct emissions calculated with the IPCC (2006) Tier 1 method;
- 30 (4) the components of indirect emissions (N volatilized and leached or runoff) calculated with the IPCC (2006) Tier
- 1 method; and (5) indirect emissions estimated with the IPCC (2006) Tier 1 method. Uncertainty in direct
- emissions, which account for the majority of N₂O emissions from agricultural management, as well as the
- 33 components of indirect emissions calculated by DayCent are estimated with a Monte Carlo Analysis, addressing
- 34 uncertainties in model inputs and structure (i.e., algorithms and parameterization) (Del Grosso et al. 2010). For
- 35 2016 to 2018, there is additional uncertainty propagated through the Monte Carlo Analysis associated with the
- 36 splicing method (See Box 5-4).
- 37 Simple error propagation methods (IPCC 2006) are used to estimate confidence intervals for direct emissions
- calculated with the IPCC (2006) Tier 1 method, the proportion of volatilization and leaching or runoff estimated
- 39 with the IPCC (2006) Tier 1 method, and indirect N₂O emissions. Uncertainty in the splicing method is also included
- 40 in the error propagation for 2016 to 2018 (see Box 5-4). Additional details on the uncertainty methods are
- 41 provided in Annex 3.12.
- 42 Table 5-20 shows the combined uncertainty for direct soil N₂O emissions. The estimated emissions ranges from 31
- 43 percent below to 31 percent above the 2018 emission estimate of 285.7 MMT CO₂ Eq. The combined uncertainty
- for indirect soil N₂O emissions ranges from 69 percent below to 151 percent above the 2018 estimate of 52.5 MMT
- 45 CO₂ Eq.

1 Table 5-20: Quantitative Uncertainty Estimates of N₂O Emissions from Agricultural Soil 2 Management in 2018 (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate					
		(MMT CO ₂ Eq.)	(MMT	CO₂ Eq.)	(%)			
			Lower	Upper	Lower	Upper		
			Bound	Bound	Bound	Bound		
Direct Soil N ₂ O Emissions	N ₂ O	285.7	197.5	373.8	-31%	31%		
Indirect Soil N ₂ O Emissions	N_2O	52.5	16.1	132.0	-69%	151%		

Note: Due to lack of data, uncertainties in PRP manure N production, other organic fertilizer amendments, and biosolids (i.e., sewage sludge) amendments to soils are currently treated as certain; these sources of uncertainty will be included in future Inventory reports.

3 Additional uncertainty is associated with an incomplete estimation of N₂O emissions from managed croplands and

4 grasslands in Hawaii and Alaska. The Inventory currently includes the N₂O emissions from mineral fertilizer and PRP

5 N additions in Alaska and Hawaii, and drained organic soils in Hawaii. Land areas used for agriculture in Alaska and

6 Hawaii are small relative to major crop commodity states in the conterminous United States, so the emissions are

7 likely to be small for the other sources of N (e.g., crop residue inputs), which are not currently included in the
 8 Inventory.

9 Methodological recalculations were applied to the entire time series to ensure time-series consistency from 1990

10 through 2018. Details on the emission trends through time are described in more detail in the Methodology

11 section.

12 QA/QC and Verification

General (Tier 1) and category-specific (Tier 2) QA/QC activities were conducted consistent with the U.S. Inventory
 QA/QC plan outlined in Annex 8. DayCent results for N₂O emissions and NO₃⁻ leaching are compared with field data

representing various cropland and grassland systems, soil types, and climate patterns (Del Grosso et al. 2005; Del

16 Grosso et al. 2008), and further evaluated by comparing the model results to emission estimates produced using

17 the IPCC (2006) Tier 1 method for the same sites. Nitrous oxide measurement data for cropland are available for

18 64 sites representing 796 different combinations of fertilizer treatments and cultivation practices, and

19 measurement data for grassland are available for 13 sites representing 36 different management treatments.

20 Nitrate leaching data are available for 12 sites, representing 279 different combinations of fertilizer treatments and

tillage practices. In general, DayCent predicted N₂O emission and nitrate leaching for these sites reasonably well.

22 See Annex 3.12 for more detailed information about the comparisons.

- The original statistical model developed from the comparisons to experimental data did not separate freeze-thaw affected areas from areas that are not affected by freeze-thaw cycles. Freeze-thaw cycles lead to hot moments or
- 25 pulses in emissions that substantially increase annual emissions (Wagner-Riddle et al. 2017). The empirical model
- estimated that emissions were too high at NRI sites with freeze-thaw effects because most of the experimental
- sites are not influenced by freeze-thaw events, and this led to a reduction in emissions from freeze-thaw events.

28 Therefore, corrective actions were taken to include a freeze-thaw indicator variable in the statistical model to

- address differences in the DayCent model prediction capability for experimental sites with and without freeze-
- 30 thaw events.

31 In addition, quality control uncovered an error in the DayCent simulations associated with no grazing on pastures

32 and rangelands during the recent historical period from 1980 to 2015. In the initial simulations, this led to a large

- 33 increase in N additions to soils from crop and grass residues. Corrective actions were taken to ensure grazing was
- 34 simulated on pastures and rangelands by the DayCent Model.
- 35 Spreadsheets containing input data and probability distribution functions required for DayCent simulations of
- 36 croplands and grasslands and unit conversion factors have been checked, in addition to the program scripts that
- are used to run the Monte Carlo uncertainty analysis. Links between spreadsheets have also been checked,

- 1 updated, and corrected when necessary. Spreadsheets containing input data, emission factors, and calculations
- 2 required for the Tier 1 method have been checked and updated as needed.

Recalculations Discussion

- 4 Methodological recalculations are applied to the entire time-series to ensure time-series consistency from 1990
- 5 through 2018. Several major improvements have been implemented in this Inventory leading to the need for
- 6 recalculations, including (1) development of a more detailed time series of management activity data by combining
- 7 information in an imputation analysis from USDA-NRCS CEAP survey, USDA-ERS ARMS data, CTIC data and USDA
- 8 Census of Agriculture data; (2) incorporating new land use and crop histories from the NRI survey; (3)
- 9 incorporating new land use data from the NLCD; (4) modeling SOC stock changes to 30 cm depth with the Tier 3
- approach (previously modeled to 20 cm depth), which influences the mineralization of N from soil organic matter
- decomposition; (5) modeling the N cycle with freeze-thaw effects on soil N₂O emissions; and (6) addressing the
- 12 effect of cover crops on greenhouse gas emissions and removals. Other improvements include better resolving the
- timing of tillage, planting, fertilization and harvesting based on the USDA-NRCS CEAP survey and state level information on planting and harvest dates; improving the timing of irrigation; and crop senescence using grow
- information on planting and harvest dates; improving the timing of irrigation; and crop senescence using growing
 degree relationships. The surrogate data method was also applied to re-estimate N₂O emissions from 2016 to
- degree relationships. The surrogate data method was also applied to re-estimate N₂O emissions from 2016 to
 2017. These changes resulted in an average increase in emissions of 22 percent from 1990 to 2017 relative to the
- 10 2017. These changes resulted in an average increase in emissions of 22 percent from 1550 to 2017 relative to the
- 17 previous Inventory.

18 Planned Improvements

19 A key improvement for a future Inventory will be to incorporate additional management activity data from the

20 USDA-NRCS Conservation Effects Assessment Project survey. This survey has compiled new data in recent years

21 that will be available for the Inventory analysis by next year. The latest land use data will also be incorporated from

- the USDA National Resources Inventory and related management data from USDA-ERS ARMS surveys.
- 23 Several planned improvements are underway associated with improving the DayCent biogeochemical model.
- 24 These improvements include a better representation of plant phenology, particularly senescence events following
- 25 grain filling in crops. In addition, crop parameters associated with temperature and water stress effects on plant

26 production will be further improved in DayCent with additional model calibration. Model development is

- 27 underway to represent the influence of nitrification inhibitors and slow-release fertilizers (e.g., polymer-coated
- fertilizers) on N₂O emissions. Experimental study sites will continue to be added for quantifying model structural uncertainty. Studies that have continuous (daily) measurements of N₂O (e.g., Scheer et al. 2013) will be given
- 30 priority.
- 31 Improvements are underway to simulate crop residue burning in the DayCent model based on the amount of crop
- 32 residues burned according to the data that is used in the Field Burning of Agricultural Residues source category
- 33 (see Section 5.7). Alaska and Hawaii are not included for all sources in the current Inventory for agricultural soil
- 34 management, with the exception of N₂O emissions from drained organic soils in croplands and grasslands for
- Hawaii, synthetic fertilizer and PRP N amendments for grasslands in Alaska and Hawaii. There is also an
- 36 improvement based on updating the Tier 1 emission factor for N₂O emissions from drained organic soils by using
- 37 the revised factor in the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories:
- 38 *Wetlands* (IPCC 2013).
- In addition, there is a planned improvement associated with implementation of the Tier 1 method. Specifically, soil
 N₂O emissions will be estimated and reported for N mineralization from soil organic matter decomposition that is
- 41 accelerated with Forest Land Converted to Cropland and Grassland Converted to Cropland.
- 42 These improvements are expected to be completed for the next full Inventory analysis (i.e., 2022 submission to the
- 43 UNFCCC, 1990 through 2020 Inventory). However, the timeline may be extended if there are insufficient resources
- 44 to fund all or part of these planned improvements.

¹ 5.5 Liming (CRF Source Category 3G)

2 Crushed limestone (CaCO₃) and dolomite (CaMg(CO₃)₂) are added to soils by land managers to increase soil pH

3 (i.e., to reduce acidification). Carbon dioxide emissions occur as these compounds react with hydrogen ions in

4 soils. The rate of degradation of applied limestone and dolomite depends on the soil conditions, soil type, climate

5 regime, and whether limestone or dolomite is applied. Emissions from liming of soils have fluctuated over the past

6 25 years in the United States, ranging from 3.1 MMT CO₂ Eq. to 6.0 MMT CO₂ Eq. In 2018, liming of soils in the

7 United States resulted in emissions of 3.1 MMT CO₂ Eq. (0.9 MMT C), representing a 33 percent decrease in

8 emissions since 1990 (see Table 5-21 and Table 5-22). The trend is driven by variation in the amount of limestone

9 and dolomite applied to soils over the time period.

10 Table 5-21: Emissions from Liming (MMT CO₂ Eq.)

Source	1990	2005	2014	2015	2016	2017	2018
Limestone	4.1	3.9	3.3	3.5	2.8	2.9	3.0
Dolomite	0.6	0.4	0.3	0.3	0.3	0.2	0.2
Total	4.7	4.3	3.6	3.7	3.1	3.1	3.1

Note: Totals may not sum due to independent rounding.

11 Table 5-22: Emissions from Liming (MMT C)

Source	1990	2005	2014	2015	2016	2017	2018
Limestone	1.1	1.1	0.9	0.9	0.8	0.8	0.8
Dolomite	0.2	0.1	0.1	0.1	0.1	0.1	0.1
Total	1.3	1.2	1.0	1.0	0.8	0.8	0.9

Note: Totals may not sum due to independent rounding.

12 Methodology

13 Carbon dioxide emissions from application of limestone and dolomite to soils were estimated using a Tier 2

14 methodology consistent with IPCC (2006). The annual amounts of limestone and dolomite applied (see Table 5-23)

15 were multiplied by CO₂ emission factors from West and McBride (2005). These emission factors (0.059 metric ton

16 C/metric ton limestone, 0.064 metric ton C/metric ton dolomite) are lower than the IPCC default emission factors

because they account for the portion of carbonates that are transported from soils through hydrological processes

18 and eventually deposited in ocean basins (West and McBride 2005). This analysis of lime dissolution is based on

19 studies in the Mississippi River basin, where the vast majority of lime application occurs in the United States (West

20 2008). Moreover, much of the remaining lime application is occurring under similar precipitation regimes, and so

the emission factors are considered a reasonable approximation for all lime application in the United States (West
 2008).

23 The annual application rates of limestone and dolomite were derived from estimates and industry statistics

24 provided in the Minerals Yearbook and Mineral Industry Surveys (Tepordei 1993 through 2006; Willett 2007a,

25 2007b, 2009, 2010, 2011a, 2011b, 2013a, 2014, 2015, 2016, 2017, 2018; USGS 2008 through 2018). The U.S.

26 Geological Survey (USGS; U.S. Bureau of Mines prior to 1997) compiled production and use information through

27 surveys of crushed stone manufacturers. However, manufacturers provided different levels of detail in survey

- responses so the estimates of total crushed limestone and dolomite production and use were divided into three
- components: (1) production by end-use, as reported by manufacturers (i.e., "specified" production); (2) production
- 30 reported by manufacturers without end-uses specified (i.e., "unspecified" production); and (3) estimated 31 additional production by manufacturers who did not respond to the survey (i.e., "estimated" production).

1 Box 5-5: Comparison of the Tier 2 U.S. Inventory Approach and IPCC (2006) Default Approach

Emissions from liming of soils were estimated using a Tier 2 methodology based on emission factors specific to the United States that are lower than the IPCC (2006) emission default factors. Most lime application in the United States occurs in the Mississippi River basin, or in areas that have similar soil and rainfall regimes as the Mississippi River basin. Under these conditions, a significant portion of dissolved agricultural lime leaches through the soil into groundwater. Groundwater moves into channels and is transported to larger rives and eventually the ocean where CaCO₃ precipitates to the ocean floor (West and McBride 2005). The U.S.-specific emission factors (0.059 metric ton C/metric ton limestone and 0.064 metric ton C/metric ton dolomite) are about half of the IPCC (2006) emission factors (0.12 metric ton C/metric ton limestone and 0.13 metric ton C/metric ton dolomite). For comparison, the 2018 U.S. emission estimate from liming of soils is 3.1 MMT CO₂ Eq. using the U.S.-specific factors. In contrast, emissions would be estimated at 6.4 MMT CO₂ Eq. using the IPCC (2006) default emission factors.

2

- 3 Data on "specified" limestone and dolomite amounts were used directly in the emission calculation because the
- 4 end use is provided by the manufacturers and can be used to directly determine the amount applied to soils.
- 5 However, it is not possible to determine directly how much of the limestone and dolomite is applied to soils for
- 6 manufacturer surveys in the "unspecified" and "estimated" categories. For these categories, the amounts of
- 7 crushed limestone and dolomite applied to soils were determined by multiplying the percentage of total
- 8 "specified" limestone and dolomite production that is applied to soils, by the total amounts of "unspecified" and
- 9 "estimated" limestone and dolomite production. In other words, the proportion of total "unspecified" and "estimated" crushed limestone and dolomite that was applied to soils is proportional to the amount of total
- 10
 - "specified" crushed limestone and dolomite that was applied to soils. 11
 - 12 In addition, data were not available for 1990, 1992 and 2018 on the fractions of total crushed stone production
 - that were limestone and dolomite, and on the fractions of limestone and dolomite production that were applied to 13
 - 14 soils. To estimate the 1990 and 1992 data, a set of average fractions were calculated using the 1991 and 1993
 - 15 data. These average fractions were applied to the quantity of "total crushed stone produced or used" reported for
 - 16 1990 and 1992 in the 1994 Minerals Yearbook (Tepordei 1996). To estimate 2018 data, 2017 fractions were applied
 - 17 to a 2018 estimate of total crushed stone presented in the USGS Mineral Industry Surveys: Crushed Stone and Sand
 - 18 and Gravel in the First Quarter of 2019 (USGS 2019).
 - 19 The primary source for limestone and dolomite activity data is the Minerals Yearbook, published by the Bureau of
 - 20 Mines through 1996 and by the USGS from 1997 to the present. In 1994, the "Crushed Stone" chapter in the
 - 21 Minerals Yearbook began rounding (to the nearest thousand metric tons) quantities for total crushed stone
 - 22 produced or used. It then reported revised (rounded) quantities for each of the years from 1990 to 1993. In order
 - 23 to minimize the inconsistencies in the activity data, these revised production numbers have been used in all of the
 - 24 subsequent calculations.

Mineral	1990	2005	2014	2015	2016	2017	2018
Limestone	19.0	18.1	15.3	16.0	13.0	13.4	13.7
Dolomite	2.4	1.9	1.3	1.2	1.1	0.8	0.8

Table 5-23: Applied Minerals (MMT) 25

Uncertainty and Time-Series Consistency 26

27 Uncertainty regarding the amount of limestone and dolomite applied to soils was estimated at ±15 percent with

28 normal densities (Tepordei 2003; Willett 2013b). Analysis of the uncertainty associated with the emission factors

29 included the fraction of lime dissolved by nitric acid versus the fraction that reacts with carbonic acid, and the

30 portion of bicarbonate that leaches through the soil and is transported to the ocean. Uncertainty regarding the

- 1 time associated with leaching and transport was not addressed in this analysis, but is assumed to be a relatively
- 2 small contributor to the overall uncertainty (West 2005). The probability distribution functions for the fraction of
- 3 lime dissolved by nitric acid and the portion of bicarbonate that leaches through the soil were represented as
- 4 triangular distributions between ranges of zero and 100 percent of the estimates. The uncertainty surrounding
- 5 these two components largely drives the overall uncertainty.
- 6 A Monte Carlo (Approach 2) uncertainty analysis was applied to estimate the uncertainty in CO₂ emissions from
- 7 liming. The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 5-24. Carbon
- 8 dioxide emissions from carbonate lime application to soils in 2018 were estimated to be between -0.34 and 5.94
- 9 MMT CO₂ Eq. at the 95 percent confidence level. This confidence interval represents a range of 111 percent below
- to 88 percent above the 2018 emission estimate of 3.1 MMT CO_2 Eq. Note that there is a small probability of a
- 11 negative emissions value leading to a net uptake of CO₂ from the atmosphere. Net uptake occurs due to the
- 12 dominance of the carbonate lime dissolving in carbonic acid rather than nitric acid (West and McBride 2005).

Table 5-24: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from Liming (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate (MMT CO ₂ Eq.)		y Range Relat CO₂ Eq.)	ve to Emission Estimate ^a (%)	
			Lower	Upper	Lower	Upper
			Bound	Bound	Bound	Bound
Liming	CO ₂	3.1	(0.34)	5.94	-111%	+88%

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

15 Methodological recalculations were applied to the entire time series to ensure time-series consistency from 1990 16 through 2018

16 through 2018.

17 QA/QC and Verification

18 A source-specific QA/QC plan for liming has been developed and implemented, consistent with the U.S. Inventory

19 QA/QC plan outlined in Annex 8. The quality control effort focused on the Tier 1 procedures for this Inventory. No

20 errors were found.

21 **Recalculations**

Adjustments were made in the current Inventory to improve the results. First, limestone and dolomite application

data for 2016 and 2017 were updated with the recently published data from USGS (2019), rather than

24 approximated by a ratio method for 2017. With this revision in the activity data, the emissions decreased by 3.9

and 3.2 percent for 2016 and 2017, respectively, relative to the previous Inventory estimates.

²⁶ 5.6 Urea Fertilization (CRF Source Category 3H)

- 27 The use of urea (CO(NH₂)₂) as a fertilizer leads to greenhouse gas emissions through the release of CO₂ that was
- fixed during the industrial production process. In the presence of water and urease enzymes, urea is converted
- into ammonium (NH₄⁺), hydroxyl ion (OH), and bicarbonate (HCO₃⁻). The bicarbonate then evolves into CO₂ and
- 30 water. Emissions from urea fertilization in the United States totaled 4.6 MMT CO₂ Eq. (1.3 MMT C) in 2018 (Table
- 31 5-25 and Table 5-26). Carbon dioxide emissions have increased by 129 percent between 1990 and 2018 due to an
- 32 increasing amount of urea that is applied to soils. The variation in emissions across the time series is driven by
- 33 increasing amounts of fertilizer applied to soils.

1 Table 5-25: CO₂ Emissions from Urea Fertilization (MMT CO₂ Eq.)

Source	1990	2005	2014	2015	2016	2017	2018
Urea Fertilization	2.0	3.1	3.9	4.1	4.0	4.5	4.6

2 Table 5-26: CO₂ Emissions from Urea Fertilization (MMT C)

Source	1990	2005	2014	2015	2016	2017	2018
Urea Fertilization	0.5	0.9	1.1	1.1	1.1	1.2	1.3

3 Methodology

4 Carbon dioxide emissions from the application of urea to agricultural soils were estimated using the IPCC (2006)

5 Tier 1 methodology. The method assumes that all CO₂ fixed during the industrial process for urea production is

6 released after application. The annual amounts of urea applied to croplands (see Table 5-27) were derived from the

7 state-level fertilizer sales data provided in *Commercial Fertilizer* reports (TVA 1991, 1992, 1993, 1994; AAPFCO

8 1995 through 2018).²³ These amounts were multiplied by the default IPCC (2006) emission factor (0.20 metric tons

9 of C per metric ton of urea), which is equal to the C content of urea on an atomic weight basis. The calculations

10 were made using a Monte Carlo analysis as described in the Uncertainty section.

11 Fertilizer sales data are reported in fertilizer years (July previous year through June current year) so a calculation

12 was performed to convert the data to calendar years (January through December). According to monthly fertilizer

use data (TVA 1992b), 35 percent of total fertilizer used in any fertilizer year is applied between July and December

14 of the previous calendar year, and 65 percent is applied between January and June of the current calendar year.

15 Fertilizer sales data for the 2016, 2017, and 2018 fertilizer years (i.e., July 2015 through June 2016, July 2016

16 through June 2017 and July 2017 through June 2018) were not available for this Inventory. Therefore, urea

application in the 2016, 2017, and 2018 fertilizer years were estimated using a linear, least squares trend of

18 consumption over the data from the previous five years (2011 through 2015) at the state scale. A trend of five

19 years was chosen as opposed to a longer trend as it best captures the current inter-state and inter-annual

20 variability in consumption. State-level estimates of CO₂ emissions from the application of urea to agricultural soils

21 were summed to estimate total emissions for the entire United States. The fertilizer year data is then converted

22 into calendar year data using the method described above.

23 Table 5-27: Applied Urea (MMT)

	1990	2005	2014	2015	2016	2017	2018
Urea Fertilizer ^a	3.3	4.8	6.1	6.2	6.5	6.7	6.9

^a These numbers represent amounts applied to all agricultural land, including *Cropland Remaining Cropland*, Land Converted to Cropland, Grassland Remaining Grassland, Land Converted to Grassland, Settlements Remaining Settlements, Land Converted to Settlements, Forest Land Remaining Forest Land and Land Converted to Forest Land, as it is not currently possible to apportion the data by land-use category.

24 Uncertainty and Time-Series Consistency

25 An Approach 2 Monte Carlo analysis was conducted as described by the IPCC (2006). The largest source of

26 uncertainty was the default emission factor, which assumes that 100 percent of the C in CO(NH₂)₂ applied to soils is

27 ultimately emitted into the environment as CO₂. This factor does not incorporate the possibility that some of the C

²³ The amount of urea consumed for non-agricultural purposes in the United States is reported in the Industrial Processes and Product Use chapter, Section 4.6 Urea Consumption for Non-Agricultural Purposes.

- 1 may be retained in the soil, and therefore the uncertainty range was set from 50 percent emissions to the
- maximum emission value of 100 percent using a triangular distribution. In addition, urea consumption data also 2
- 3 have uncertainty that are represented as normal density distributions. Due to the highly skewed distribution of the
- 4 emissions from the Monte Carlo analysis, the estimated emissions are based on the mode of the posterior
- 5 distribution and the confidence interval is approximated based on the values at 2.5 and 97.5 percentiles. Carbon
- 6 dioxide emissions from urea fertilization of agricultural soils in 2018 were estimated to be between 2.97 and 5.35 7
- MMT CO₂ Eq. at the 95 percent confidence level. This indicates a range of 35 percent below to 16 percent above
- 8 the 2018 emission estimate of 4.6 MMT CO₂ Eq. (Table 5-28).

9 Table 5-28: Quantitative Uncertainty Estimates for CO₂ Emissions from Urea Fertilization 10 (MMT CO₂ Eq. and Percent)

11

Source	Gas	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate ^a						
		(MMT CO ₂ Eq.)	(MMT (CO₂ Eq.)	(%)				
			Lower	Upper	Lower	Upper			
			Bound	Bound	Bound	Bound			
Urea Fertilization	CO2	4.6	2.97	5.35	-35%	+16%			

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

- 12 There are additional uncertainties that are not quantified in this analysis. Urea for non-fertilizer use, such as
- 13 aircraft deicing, may be included in consumption totals, but the amount is likely very small. For example, research
- 14 on aircraft deicing practices based on a 1992 survey found a known annual usage of approximately 2,000 tons of
- 15 urea for deicing; this would constitute 0.06 percent of the 1992 consumption of urea (EPA 2000). Similarly, surveys
- 16 conducted from 2002 to 2005 indicate that total urea use for deicing at U.S. airports is estimated to be 3,740
- 17 metric tons per year, or less than 0.07 percent of the fertilizer total for 2007 (Itle 2009). In addition, there is
- 18 uncertainty surrounding the underlying assumptions behind the calculation that converts fertilizer years to
- 19 calendar years. These uncertainties are negligible over multiple years because an over- or under-estimated value in
- 20 one calendar year is addressed with corresponding increase or decrease in the value for the subsequent year.
- 21 Methodological recalculations were applied to the entire time series to ensure time-series consistency from 1990
- 22 through 2018. Details on the emission trends through time are described in more detail in the Introduction.

QA/QC and Verification 23

24 A source-specific QA/QC plan for Urea Fertilization has been developed and implemented, consistent with the U.S.

- 25 Inventory QA/QC plan. No errors were found in the calculation. Based on the quality control review, it was not
- 26 clear if Urea Ammonium Nitrate (UAN) should also be included as a source of CO₂ emissions. This will be further
- 27 investigated in a future Inventory.

Recalculations 28

- 29 Emissions estimates were derived directly from the Monte Carlo analysis in this Inventory. The mode was selected
- 30 due to the highly skewed distribution of emissions from the Monte Carlo analysis. The entire time series was
- 31 recalculated to use the mode of the distribution. This improvement in the calculation of emissions led to estimates
- 32 that averaged about 13 percent lower than the previous Inventory across the time series.

Planned Improvements 33

- 34 A key planned improvement is to investigate the composition of Urea Ammonium Nitrate (UAN), and determine if
- UAN should be included in the estimation of Urea CO₂ emissions. 35

5.7 Field Burning of Agricultural Residues (CRF Source Category 3F)

Crop production creates large quantities of agricultural crop residues, which farmers manage in a variety of ways. For example, crop residues can be left in the field and possibly incorporated into the soil with tillage; collected and used as fuel, animal bedding material, supplemental animal feed, or construction material; composted and applied to soils; transported to landfills; or burned in the field. Field burning of crop residues is not considered a net source of CO₂ emissions because the C released to the atmosphere as CO₂ during burning is reabsorbed during the next growing season by the crop. However, crop residue burning is a net source of CH₄, N₂O, CO, and NO_x, which are released during combustion.

10 In the United States, field burning of agricultural residues commonly occurs in southeastern states, the Great

11 Plains, and the Pacific Northwest (McCarty 2011). The primary crops that are managed with residue burning

12 include corn, cotton, lentils, rice, soybeans, and wheat (McCarty 2009). In 2018, CH₄ and N₂O emissions from field

burning of agricultural residues were 0.4 MMT CO₂ Eq. (16 kt) and 0.2 MMT CO₂ Eq. (0.6 kt), respectively (Table

14 5-29 and Table 5-30). Annual emissions of CH_4 and N_2O have increased from 1990 to 2018 by 15.7 percent and 15.2

15 percent, respectively. The increase in emissions over time is partly due to higher yielding crop varieties with larger

amounts of residue production and fuel loads, but also linked with an increase in the area burned for some of the

17 crop types.

18	Table 5-29: CH ₄ and N ₂ O Emissions from Field Burning of Agricultural Residues (MMT CO ₂
19	Eq.)

Gas/Crop Type	1990	2005	2014	2015	2016	2017	2018
CH ₄	0.3	0.4	0.4	0.4	0.4	0.4	0.4
Maize	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Rice	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Wheat	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Barley	+	+	+	+	+	+	+
Oats	+	+	+	+	+	+	+
Other Small Grains	+	+	+	+	+	+	+
Sorghum	+	+	+	+	+	+	+
Cotton	+	+	+	+	+	+	+
Grass Hay	+	+	+	+	+	+	+
Legume Hay	+	+	+	+	+	+	+
Peas	+	+	+	+	+	+	+
Sunflower	+	+	+	+	+	+	+
Tobacco	+	+	+	+	+	+	+
Vegetables	+	+	+	+	+	+	+
Chickpeas	+	+	+	+	+	+	+
Dry Beans	+	+	+	+	+	+	+
Lentils	+	+	+	+	+	+	+
Peanuts	+	+	+	+	+	+	+
Soybeans	+	+	0.1	+	+	+	+
Potatoes	+	+	+	+	+	+	+
Sugarbeets	+	+	+	+	+	+	+
N ₂ O	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Maize	+	+	0.1	+	+	+	+
Rice	+	+	+	+	+	+	+
Wheat	0.1	0.1	+	0.1	+	+	+

Barley	+	+	+	+	+	+	+
Oats	+	+	+	+	+	+	+
Other Small Grains	+	+	+	+	+	+	+
Sorghum	+	+	+	+	+	+	+
Cotton	+	+	+	+	+	+	-
Grass Hay	+	+	+	+	+	+	+
Legume Hay	+	+	+	+	+	+	+
Peas	+	+	+	+	+	+	-
Sunflower	+	+	+	+	+	+	-
Tobacco	+	+	+	+	+	+	-
Vegetables	+	+	+	+	+	+	-
Chickpeas	+	+	+	+	+	+	-
Dry Beans	+	+	+	+	+	+	-
Lentils	+	+	+	+	+	+	-
Peanuts	+	+	+	+	+	+	-
Soybeans	+	+	+	+	+	+	-
Potatoes	+	+	+	+	+	+	-
Sugarbeets	+	+	+	+	+	+	
otal	0.5	0.6	0.6	0.6	0.6	0.6	0.0

Table 5-30: CH₄, N₂O, CO, and NO_x Emissions from Field Burning of Agricultural Residues 1

Gas/Crop Type	1990	2005	2014	2015	2016	2017	2018
CH₄	14	16	16	16	16	16	16
Maize	2	3	5	5	5	5	5
Rice	3	3	3	2	2	2	2
Wheat	5	5	4	5	5	5	5
Barley	+	+	+	+	+	+	+
Oats	+	+	+	+	+	+	+
Other Small Grains	+	+	+	+	+	+	+
Sorghum	+	+	+	+	+	+	+
Cotton	1	2	1	1	1	1	1
Grass Hay	+	+	+	+	+	+	+
Legume Hay	+	+	+	+	+	+	+
Peas	+	+	+	+	+	+	+
Sunflower	+	+	+	+	+	+	+
Tobacco	+	+	+	+	+	+	+
Vegetables	+	+	+	+	+	+	+
Chickpeas	+	+	+	+	+	+	+
Dry Beans	+	+	+	+	+	+	+
Lentils	+	+	+	+	+	+	+
Peanuts	+	+	+	+	+	+	+
Soybeans	1	1	2	2	2	2	2
Potatoes	+	+	+	+	+	+	+
Sugarbeets	+	+	+	+	+	+	+
N ₂ O	1	1	1	1	1	1	1
Maize	+	+	+	+	+	+	+
Rice	+	+	+	+	+	+	+
Wheat	+	+	+	+	+	+	+

Barley	+	+	+	+	+	+	+
Oats	+	+	+	+	+	+	+
Other Small Grains	+	+	+	+	+	+	+
Sorghum	+	+	+	+	+	+	+
Cotton	+	+	+	+	+	+	+
Grass Hay	+	+	+	+	+	+	+
Legume Hay	+	+	+	+	+	+	+
Peas	+	+	+	+	+	+	+
Sunflower	+	+	+	+	+	+	+
Tobacco	+	+	+	+	+	+	+
Vegetables	+	+	+	+	+	+	+
Chickpeas	+	+	+	+	+	+	+
Dry Beans	+	+	+	+	+	+	+
Lentils	+	+	+	+	+	+	+
Peanuts	+	+	+	+	+	+	+
Soybeans	+	+	+	+	+	+	+
Potatoes	+	+	+	+	+	+	+
Sugarbeets	+	+	+	+	+	+	+
СО	287	332	338	311	310	308	308
NOx	12	14	14	13	13	13	13

+ Does not exceed 0.5 MMT CO₂ Eq.

Note: Totals may not sum due to independent rounding.

1 Methodology

- 2 A U.S.-specific Tier 2 method is used to estimate greenhouse gas emissions from field burning of agricultural
- 3 residues from 1990 to 2014 (for more details comparing the U.S.-specific approach to the IPCC (2006) default
- 4 approach, see Box 5-6) and a data splicing method with a linear extrapolation was applied to complete the
- 5 emissions time series from 2015 to 2018. In order to estimate the amounts of C and N released during burning, the
- 6 following equation is used:

7	C or N released = Σ for all crop t	ypes and states AB
8		$CAH \times CP \times RCR \times DMF \times BE \times CE \times (FC \text{ or } FN)$
9	where,	
10	Area Burned (AB)	= Total area of crop burned, by state
11	Crop Area Harvested (CAH)	 Total area of crop harvested, by state
12	Crop Production (CP)	 Annual production of crop in kt, by state
13	Residue: Crop Ratio (RCR)	 Amount of residue produced per unit of crop production
14	Dry Matter Fraction (DMF)	= Amount of dry matter per unit of biomass for a crop
15	Fraction of C or N (FC or FN)	= Amount of C or N per unit of dry matter for a crop
16	Burning Efficiency (BE)	= The proportion of prefire fuel biomass consumed ²⁴
17	Combustion Efficiency (CE)	= The proportion of C or N released with respect to the total amount of C or N
18		available in the burned material, respectively

- 19 Crop production data are available by state and year from USDA (2019) for twenty-one crops that are burned in
- 20 the conterminous United States, including maize, rice, wheat, barley, oats, other small grains, sorghum, cotton,

²⁴ In IPCC/UNEP/OECD/IEA (1997), the equation for C or N released contains the variable 'fraction oxidized in burning.' This variable is equivalent to (burning efficiency × combustion efficiency).

1 grass hay, legume hay, peas, sunflower, tobacco, vegetables, chickpeas, dry beans, lentils, peanuts, soybeans,

2 potatoes, and sugarbeets.²⁵ Crop area data are based on the 2015 National Resources Inventory (NRI) (USDA-NRCS

3 2018). In order to estimate total crop production, the crop yield data from USDA Quick Stats crop yields is

4 multiplied by the NRI crop areas. The production data for the crop types are presented in Table 5-31. Alaska and

5 Hawaii are not included in the current analysis, but there is a planned improvement to estimate residue burning

6 emissions for these two states in a future Inventory.

The amount of elemental C or N released through oxidation of the crop residues is used in the following equation
 to estimate CH₄, CO, N₂O, and NO_x emissions from the Field Burning of Agricultural Residues:

Conversion Factor (CF) = conversion, by molecular weight ratio, of CH₄-C to C (16/12), or CO-C to C (28/12), or N₂O-N to N (44/28), or NO_x-N to N (30/14)

13 14

15

Box 5-6: Comparison of Tier 2 U.S. Inventory Approach and IPCC (2006) Default Approach

Emissions from Field Burning of Agricultural Residues are calculated using a Tier 2 methodology that is based on the method developed by the IPCC/UNEP/OECD/IEA (1997). The rationale for using the IPCC/UNEP/OECD/IEA (1997) approach rather than the method provided in the *2006 IPCC Guidelines* is as follows: (1) the equations from both guidelines rely on the same underlying variables (though the formats differ); (2) the IPCC (2006) equation was developed to be broadly applicable to all types of biomass burning, and, thus, is not specific to agricultural residues; (3) the IPCC (2006) method provides emission factors based on the dry matter content rather emission rates related to the amount of C and N in the residues; and (4) the IPCC (2006) default factors are provided only for four crops (corn, rice, sugarcane, and wheat) while this Inventory includes emissions from twenty-one crops.

A comparison of the methods and factors used in: (1) the current Inventory and (2) the default IPCC (2006) approach was undertaken for the time series from 1990 through 2014 to determine the difference in overall estimates between the two approaches. To estimate greenhouse gas emissions from field burning of agricultural residues using the IPCC (2006) methodology, the following equation—cf. IPCC (2006) Equation 2.27—was used:

Emissions (kt) = AB × (M_B× C_f) × G_{ef} × 10⁻⁶

where,

Area Burned (AB)= Total area of crop burned (ha)Mass Burned (MB × Cf)= IPCC (2006) default carbon fractions with fuel biomass consumption US-
Specific Values using NASS Statistics²⁶ (metric tons dry matter burnt ha⁻¹)Emission Factor (Gef)= IPCC (2006) emission factor (g kg⁻¹ dry matter burnt)

The IPCC (2006) Tier 1 method approach that utilizes default combustion factors and emission factors with mass of fuel values derived from national datasets resulted in 27 percent lower emissions of CH₄ and 49 percent lower emissions of N₂O compared to this Inventory. In summary, the IPCC/UNEP/OECD/IEA (1997) method is considered more appropriate for U.S. conditions because it is more flexible for incorporating country-specific data and emissions are estimated based on specific C and N content of the fuel, which is converted into CH₄, CO, N₂O and NO_x, compared to IPCC (2006) approach that is based on dry matter rather than elemental

²⁵ Sugarcane and Kentucky bluegrass (produced on farms for turf grass installations) may have small areas of burning that are not captured in the sample of locations that were used in the remote sensing analysis.

²⁶ NASS yields are used to derive mass of fuel values because IPCC (2006) only provides default values for 4 of the 21 crops included in the Inventory.

composition.

1

Сгор	1990	2005	2013	2014
Maize	296,065	371,256	436,565	453,524
Rice	9,543	11,751	10,894	12,380
Wheat	79,805	68,077	67,388	62,602
Barley	9,281	5,161	4,931	5,020
Oats	5,969	2,646	1,806	2,042
Other Small Grains	2,651	2,051	1,902	2,492
Sorghum	23,687	14,382	18,680	18,436
Cotton	4,605	6,106	3,982	4,396
Grass Hay	44,150	49,880	45,588	46,852
Legume Hay	90,360	91,819	79,669	82,844
Peas	51	660	599	447
Sunflower	1,015	1,448	987	907
Tobacco	1,154	337	481	542
Vegetables	+	1,187	1,844	2,107
Chickpeas	+	5	+	+
Dry Beans	467	1,143	1,110	1,087
Lentils	+	101	72	76
Peanuts	1,856	2,176	2,072	2,735
Soybeans	56,612	86,980	94,756	110,560
Potatoes	18,924	20,026	20,234	19,175
Sugarbeets	24,951	25,635	31,890	31,737

2 Table 5-31: Agricultural Crop Production (kt of Product)

+ Does not exceed 0.5 kt

Note: The amount of crop production has not been analyzed for 2015 to 2018 so a data splicing method is used to estimate emissions for that portion of the time series.

- 3 The area burned is determined based on an analysis of remote sensing products (McCarty et al. 2009, 2010, 2011).
- 4 The presence of fires have been analyzed at 3600 survey locations in the NRI from 1990 to 2002 with LANDFIRE
- 5 data products developed from 30m Landsat imagery (LANDFIRE 2014), and from 2003 through 2014 using 1km
- 6 Moderate Resolution Imaging Spectroradiometer imagery (MODIS) Global Fire Location Product (MCD14ML) using
- 7 combined observations from Terra and Aqua satellites (Giglio et a. 2006). A sample of states are included in the
- 8 analysis with high, medium and low burning rates for agricultural residues, including Arkansas, California, Florida,
- 9 Indiana, Iowa and Washington. The area burned is determined directly from the analysis for these states.
- 10 For other states within the conterminous United States, the area burned for the 1990 through 2014 portion of the
- 11 time series is estimated from a logistical regression model that has been developed from the data collected from
- 12 the remote sensing products for the six states. The logistical regression model is used to predict occurrence of fire
- events. Several variables are tested in the logistical regression including a) the historical level of burning in each
- state (high, medium or low levels of burning) based on an analysis by McCarty et al. (2011), b) year that state laws
- 15 limit burning of fields, in addition to c) mean annual precipitation and mean annual temperature from a 4
- 16 kilometer gridded product developed by the PRISM Climate Group (2015). A K-fold model fitting procedure is used 17 due to low frequency of burning and likelihood that outliers could influence the model fit. Specifically, the model is
- 17 trained with a random selection of sample locations and evaluated with the remaining sample. This process is
- repeated ten times to select a model that is most common among the set of ten, and avoid models that appear to
- be influenced by outliers due to the random draw of survey locations for training the model. In order to address
- 21 uncertainty, a Monte Carlo analysis is used to sample the parameter estimates for the logistical regression model

1 and produce one thousand estimates of burning for each crop in the remaining forty-two states included in this

2 Inventory. State-level area burned data are divided by state-level crop area data to estimate the percent of crop

area burned by crop type for each state. Table 5-32 shows the resulting percentage of crop residue burned at the

4 national scale by crop type. State-level estimates are also available upon request.

	-	_		-
Сгор	1990	2005	2013	2014
Maize	+	+	+	+
Rice	8%	8%	4%	6%
Wheat	1%	2%	2%	1%
Barley	1%	+	1%	1%
Oats	1%	1%	2%	1%
Other Small Grains	1%	1%	1%	1%
Sorghum	1%	1%	1%	1%
Cotton	1%	1%	1%	1%
Grass Hay	+	+	+	+
Legume Hay	+	+	+	+
Peas	+	+	+	+
Sunflower	+	+	+	+
Tobacco	2%	2%	3%	3%
Vegetables	+	+	+	+
Chickpeas	+	1%	+	+
Dry Beans	1%	1%	+	+
Lentils	+	+	+	+
Peanuts	3%	3%	3%	3%
Soybeans	+	+	1%	1%
Potatoes	+	+	+	+
Sugarbeets	+	+	+	+

5 Table 5-32: U.S. Average Percent Crop Area Burned by Crop (Percent)

+ Does not exceed 0.5 percent

Note: The amount of area burned has not been analyzed

for 2015 to 2018 so a data splicing method is used to estimate emissions for

that portion of the time series.

6 Additional parameters are needed to estimate the amount of burning, including residue: crop ratios, dry matter

7 fractions, carbon fractions, nitrogen fractions, burning efficiency and combustion efficiency. Residue: crop product

8 mass ratios, residue dry matter fractions, and the residue N contents are obtained from several sources (IPCC 2006

9 and sources at bottom of Table 5-33). The residue C contents for all crops are based on IPCC (2006) default value

10 for herbaceous biomass. The burning efficiency is assumed to be 93 percent, and the combustion efficiency is

assumed to be 88 percent, for all crop types (EPA 1994). See Table 5-33 for a summary of the crop-specific

12 conversion factors. Emission ratios and mole ratio conversion factors for all gases are based on the *Revised 1996*

13 IPCC Guidelines (IPCC/UNEP/OECD/IEA 1997) (see Table 5-34).

14 Table 5-33: Parameters for Estimating Emissions from Field Burning of Agricultural Residues

Сгор	Residue/Crop Dry Ratio Matter Fraction		Carbon Fraction	Nitrogen Fraction	Burning Efficiency (Fraction)	Combustion Efficiency (Fraction)	
Maize	0.707	0.56	0.47	0.01	0.93	0.88	
Rice	1.340	0.89	0.47	0.01	0.93	0.88	
Wheat	1.725	0.89	0.47	0.01	0.93	0.88	
Barley	1.181	0.89	0.47	0.01	0.93	0.88	
Oats	1.374	0.89	0.47	0.01	0.93	0.88	

Other Small Grains	1.777	0.88	0.47	0.01	0.93	0.88
Sorghum	0.780	0.60	0.47	0.01	0.93	0.88
Cotton	7.443	0.93	0.47	0.01	0.93	0.88
Grass Hay	0.208	0.90	0.47	0.02	0.93	0.88
Legume Hay	0.290	0.67	0.47	0.01	0.93	0.88
Peas	1.677	0.91	0.47	0.01	0.93	0.88
Sunflower	1.765	0.88	0.47	0.01	0.93	0.88
Tobacco	0.300	0.87	0.47	0.01	0.93	0.88
Vegetables	0.708	0.08	0.47	0.01	0.93	0.88
Chickpeas	1.588	0.91	0.47	0.01	0.93	0.88
Dry Beans	0.771	0.90	0.47	0.01	0.93	0.88
Lentils	1.837	0.91	0.47	0.02	0.93	0.88
Peanuts	1.600	0.94	0.47	0.02	0.93	0.88
Soybeans	1.500	0.91	0.47	0.01	0.93	0.88
Potatoes	0.379	0.25	0.47	0.02	0.93	0.88
Sugarbeets	0.196	0.22	0.47	0.02	0.93	0.88

Notes:

Chickpeas: IPCC 2006, Table 11.2; values are for Beans & pulses

Cotton: Combined sources (Heitholt et al. 1992, Halevy 1976, Wells and Meredith 1984, Sadras and Wilson 1997, Pettigrew and Meredith 1997, Torbert and Reeves 1994, Gerik et al. 1996, Brouder and Cassmen 1990, Fritschi et al. 2003, Pettigrew et al. 2005, Bouquet and Breitenbeck 2000, Mahroni and Aharonov 1964, Bange and Milroy

2004, Hollifield et al. 2000, Mondino et al. 2004, Wallach et al. 1978)

Lentils: IPCC 2006, Table 11.2; Beans & pulses

Peas: IPCC 2006, Table 11.2; values are for Beans & pulses

Peanuts: IPCC 2006; Table 11.2; Root ratio and belowground N content valuesare for Root crops, other

Sugarbeets: IPCC 2006; Table 11.2; values are for Tubers

Sunflower: IPCC 2006, Table 11.2; values are for Grains

Sugarcane: combined sources (Wiedenfels 2000, Dua and Sharma 1976, Singels & Bezuidenhout 2002, Stirling et al. 1999, Sitompul et al. 2000)

Tobacco: combined sources (Beyaert 1996, Moustakas and Ntzanis 2005, Crafts-Brandner et al. 1994, Hopkinson 1967, Crafts-Brandner et al. 1987)

Vegetables (Combination of carrots, lettuce/cabbage, melons, onions, peppers and tomatoes):

Carrots: McPharlin et al. 1992; Gibberd et al. 2003; Reid and English 2000; Peach et al. 2000; see IPCC Tubers for R:S and N fraction

Lettuce, cabbage: combines sources (Huett and Dettman 1991; De Pinheiro Henriques & Marcelis 2000; Huett and Dettman 1989; Peach et al. 2000; Kage et al. 2003; Tan et al. 1999; Kumar et al. 1994; MacLeod et al. 1971; Jacobs et al. 2004; Jacobs et al. 2001; Jacobs et al. 2002); values from IPCC Grains used for N fraction

Melons: Valantin et al. 1999; squash for R:S; IPCC Grains for N fraction

Onion: Peach et al. 2000, Halvorson et al. 2002; IPCC 2006 Tubers for N fraction

Peppers: combined sources (Costa and Gianquinto 2002; Marcussi et al. 2004; Tadesse et al. 1999; Diaz-Perez et al. 2008); IPCC Grains for N fraction

Tomatoes: Scholberg et al. 2000a,b; Akintoye et al. 2005; values for AGR-N and BGR-N are from Grains

1 Table 5-34: Greenhouse Gas Emission Ratios and Conversion Factors

Gas	Emission Ratio	Conversion Factor
CH4:C	0.005ª	16/12
CO:C	0.060 ^a	28/12
N ₂ O:N	0.007 ^b	44/28
NO _x :N	0.121 ^b	30/14

^a Mass of C compound released (units of C) relative to mass of total C released from burning (units of C).
^b Mass of N compound released (units of N) relative to mass of total N released from burning (units of N).

- 1 For this Inventory, new activity data on the burned areas have not been analyzed for 2015 to 2018. To complete
- 2 the emissions time series, a linear extrapolation of the trend is applied to estimate the emissions in the last four
- 3 years of the inventory. Specifically, a linear regression model with autoregressive moving-average (ARMA) errors is
- 4 used to estimate the trend in emissions over time from 1990 through 2014, and the trend is used to approximate
- 5 the CH₄, N_2O , CO and NO_x for the last 4 years in the time series from 2015 to 2018 (Brockwell and Davis 2016). The
- 6 Tier 2 method described previously will be applied to recalculate the emissions for the last 4 years in the time
- 7 series (2015 to 2018) in a future Inventory.

8 Uncertainty and Time-Series Consistency

- 9 Emissions are estimated using a linear regression model with autoregressive moving-average (ARMA) errors for
- 10 2018. The linear regression ARMA model produced estimates of the upper and lower bounds to quantify
- uncertainty (Table 5-35), and the results are summarized in Table 5-35. Methane emissions from field burning of
- agricultural residues in 2018 are between 0.33 and 0.46 MMT CO₂ Eq. at a 95 percent confidence level. This
- 13 indicates a range of 16 percent below and 16 percent above the 2018 emission estimate of 0.4 MMT CO_2 Eq.
- 14 Nitrous oxide emissions are between 0.14 and 0.20 MMT CO₂ Eq., or approximately 19 percent below and 13
- 15 percent above the 2018 emission estimate of 0.2 MMT CO₂ Eq.

Table 5-35: Approach 2 Quantitative Uncertainty Estimates for CH₄ and N₂O Emissions from Field Burning of Agricultural Residues (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate ^a						
		(MMT CO₂ Eq.)	(MMT)	CO₂ Eq.)	(%	%)			
			Lower	Upper	Lower	Upper			
			Bound	Bound	Bound	Bound			
Field Burning of Agricultural	<u></u>	0.4	0.22	0.46	1.00/	.1.0/			
Residues	CH4	0.4	0.33	0.46	-16%	+16%			
Field Burning of Agricultural		0.2	0.14	0.20	100/	120/			
Residues	N ₂ O	0.2	0.14	0.20	-19%	+13%			

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

18 Due to data limitations, there are additional uncertainties in agricultural residue burning, particularly the potential

- 19 omission of burning associated with Kentucky bluegrass (produced on farms for turf grass installation) and
- 20 sugarcane.

21 QA/QC and Verification

A source-specific QA/QC plan for field burning of agricultural residues was implemented with Tier 1 analyses,

23 consistent with the U.S. Inventory QA/QC plan outlined in Annex 8. Errors were identified in the assignment of

yields to grass hay, legume hay and other close grown crops for calculation of residue burned, and these errors

25 were documented and corrected in the analysis.

26 **Recalculations**

27 Methodological recalculations are associated with two improvements, a) incorporation of new survey data from

28 the USDA National Resources Inventory (USDA-NRCS 2018), and b) a revision to the logistical regression predicting

29 burned area in states that were not directly analyzed for fire occurrence based on remote sensing products (See

- 30 Methodology section). The logistical regression incorporated revised information on the timing of state legislation
- 31 to restrict burning of residues in agricultural fields. As a result of these two improvements, the emissions increased
- 32 on average across the time series by 178 percent and 189 percent for CH₄ and N₂O, respectively. The absolute
- 33 increases in emissions are 0.2 MMT CO₂ Eq. and 0.1 MMT CO₂ Eq. for CH₄ and N₂O, respectively.

1 Planned Improvements

- 2 The key planned improvement is to estimate the emissions associated with field burning of agricultural residues in
- 3 the states of Alaska and Hawaii. In addition, a new method is in development that will directly link agricultural
- 4 residue burning with the Tier 3 methods that are used in several other source categories, including Agricultural Soil
- 5 Management, Cropland Remaining Cropland, and Land Converted to Cropland chapters of the Inventory. The
- 6 method is based on the DayCent model, and burning events will be simulated directly within the process-based
- 7 model framework using information derived from remote sensing fire products as described in the Methodology
- 8 section. This improvement will lead to greater consistency in the methods for these sources, and better ensure
- 9 mass balance of C and N in the Inventory analysis.

6. Land Use, Land-Use Change, and Forestry

3 This chapter provides an assessment of the greenhouse gas fluxes resulting from land use and land-use change in

4 the United States.¹ The Intergovernmental Panel on Climate Change's 2006 IPCC Guidelines for National

5 *Greenhouse Gas Inventories* (IPCC 2006) recommends reporting fluxes according to changes within and

conversions between all land-use types including: Forest Land, Cropland, Grassland, Wetlands, and Settlements (as
 well as Other Land).

8 The greenhouse gas flux from Forest Land Remaining Forest Land is reported for all forest ecosystem carbon (C)

9 stocks (i.e., aboveground biomass, belowground biomass, dead wood, litter, and C stock changes from mineral and

10 organic soils), harvested wood pools, and non-carbon dioxide (non-CO₂) emissions from forest fires, the application

of synthetic nitrogen fertilizers to forest soils, and the draining of organic soils. Fluxes from *Land Converted to*

- 12 Forest Land are included for aboveground biomass, belowground biomass, dead wood, litter, and C stock changes
- 13 from mineral soils.
- 14 Fluxes are reported for four agricultural land use/land-use change categories: Cropland Remaining Cropland, Land
- 15 *Converted to Cropland, Grassland Remaining Grassland*, and *Land Converted to Grassland*. The reported
- 16 greenhouse gas fluxes from these agricultural lands include changes in soil organic C stocks in mineral and organic

soils due to land use and management, and for the subcategories of *Forest Land Converted to Cropland* and *Forest*

18 Land Converted to Grassland, the changes in aboveground biomass, belowground biomass, dead wood, and litter C

stocks are also reported. The greenhouse gas flux from *Grassland Remaining Grassland* also includes estimates of

- 20 non-CO₂ emissions from grassland fires.
- 21 Fluxes from Wetlands Remaining Wetlands include changes in C stocks and methane (CH₄) and nitrous oxide (N₂O)
- 22 emissions from managed peatlands, as well as aboveground and soil C stock changes in all coastal wetlands, CH₄
- 23 emissions from vegetated coastal wetlands, and N₂O emissions from aquaculture in coastal wetlands. Estimates for
- 24 Land Converted to Wetlands include aboveground and soil C stock changes and CH4 emissions from land converted
- 25 to vegetated coastal wetlands.
- 26 Fluxes from Settlements Remaining Settlements include changes in C stocks from organic soils, N₂O emissions from
- 27 nitrogen fertilizer additions to soils, and CO₂ fluxes from settlement trees and landfilled yard trimmings and food
- 28 scraps. The reported greenhouse gas flux from *Land Converted to Settlements* includes changes in C stocks in
- 29 mineral and organic soils due to land use and management for all land use conversions to settlements, and the C
- 30 stock changes in aboveground biomass, belowground biomass, dead wood, and litter are also included for the
- 31 subcategory Forest Land Converted to Settlements.

¹ The term "flux" is used to describe the net emissions of greenhouse gases accounting for both the emissions of CO_2 to and the removals of CO_2 from the atmosphere. Removal of CO_2 from the atmosphere is also referred to as "carbon sequestration."

- 1 The land use, land-use change, and forestry (LULUCF) sector in 2018 resulted in a net increase in C stocks (i.e., net
- 2 CO₂ removals) of 799.9 MMT CO₂ Eq. (218.1 MMT C).² This represents an offset of approximately 12.0 percent of
- 3 total (i.e., gross) greenhouse gas emissions in 2018. Emissions of CH₄ and N₂O from LULUCF activities in 2018 are
- 4 26.1 MMT CO₂ Eq. and represent 0.4 percent of total greenhouse gas emissions.³
- 5 Total C sequestration in the LULUCF sector decreased by approximately 7.1 percent between 1990 and 2018. This
- 6 decrease was primarily due to a decline in the rate of net C accumulation in Forest Land and *Cropland Remaining*
- 7 *Cropland,* as well as an increase in emissions from *Land Converted to Settlements*.⁴ Specifically, there was a net C
- 8 accumulation in *Settlements Remaining Settlements*, which increased from 1990 to 2018, while the net C
- 9 accumulation in *Forest Land Remaining Forest Land* and *Cropland Remaining Cropland* slowed over this period. Net
- 10 C accumulation remained steady from 1990 to 2018 in *Land Converted to Forest Land, Land Converted to Cropland*,
- Wetlands Remaining Wetlands, and Land Converted to Wetlands, while net C accumulation fluctuated in Grassland Remaining Grassland. Emissions from Land Converted to Grassland decreased during this period. The C stock
- change from LULUCF is summarized in Table 6-1.

14 Table 6-1: Net CO₂ Flux from Land Use, Land-Use Change, and Forestry (MMT CO₂ Eq.)

Land-Use Category	1990	2005	2014	2015	2016	2017	2018
Forest Land Remaining Forest Land	(733.9)	(678.6)	(618.8)	(676.1)	(657.9)	(647.7)	(663.2)
Changes in Forest Carbon Stocks ^a	(733.9)	(678.6)	(618.8)	(676.1)	(657.9)	(647.7)	(663.2)
Land Converted to Forest Land	(109.4)	(110.2)	(110.5)	(110.6)	(110.6)	(110.6)	(110.6)
Changes in Forest Carbon Stocks ^b	(109.4)	(110.2)	(110.5)	(110.6)	(110.6)	(110.6)	(110.6)
Cropland Remaining Cropland	(23.2)	(29.0)	(12.2)	(12.8)	(22.7)	(22.3)	(16.6)
Changes in Mineral and Organic Soil							
Carbon Stocks	(23.2)	(29.0)	(12.2)	(12.8)	(22.7)	(22.3)	(16.6)
Land Converted to Cropland	54.1	53.8	56.7	57.2	55.5	55.6	55.3
Changes in all Ecosystem Carbon							
Stocks ^c	54.1	53.8	56.7	57.2	55.5	55.6	55.3
Grassland Remaining Grassland	9.1	10.7	19.7	13.6	9.6	10.9	11.2
Changes in Mineral and Organic Soil							
Carbon Stocks	9.1	10.7	19.7	13.6	9.6	10.9	11.2
Land Converted to Grassland	(6.7)	(40.3)	(24.9)	(23.2)	(24.8)	(24.9)	(24.6)
Changes in all Ecosystem Carbon							
Stocks ^c	(6.7)	(40.3)	(24.9)	(23.2)	(24.8)	(24.9)	(24.6)
Wetlands Remaining Wetlands	(4.0)	(5.7)	(4.3)	(4.4)	(4.4)	(4.4)	(4.4)
Changes in Organic Soil Carbon Stocks							
in Peatlands	1.1	1.1	0.8	0.8	0.7	0.7	0.7
Changes in Aboveground and Soil							
Carbon Stocks in Coastal Wetlands	(5.1)	(6.8)	(5.1)	(5.1)	(5.1)	(5.1)	(5.1)
Land Converted to Wetlands	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Changes in Aboveground and Soil							
Carbon Stocks ^d	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Settlements Remaining Settlements	(109.6)	(116.6)	(126.6)	(126.8)	(125.7)	(125.9)	(126.2)
Changes in Organic Soil Carbon Stocks	11.3	12.2	15.1	15.7	16.0	16.0	15.9
Changes in Settlement Tree Carbon	(96.4)	(117.4)	(129.4)	(130.4)	(129.8)	(129.8)	(129.8)

² LULUCF Carbon Stock Change is the net C stock change from the following categories: *Forest Land Remaining Forest Land, Land Converted to Forest Land, Cropland Remaining Cropland, Land Converted to Cropland, Grassland Remaining Grassland, Land Converted to Grassland, Wetlands Remaining Wetlands, Land Converted to Wetlands, Settlements Remaining Settlements, and Land Converted to Settlements.*

³ LULUCF emissions include the CH₄ and N₂O emissions reported for *Peatlands Remaining Peatlands*, Forest Fires, Drained Organic Soils, Grassland Fires, and *Coastal Wetlands Remaining Coastal Wetlands*; CH₄ emissions from *Land Converted to Coastal Wetlands*; and N₂O emissions from Forest Soils and Settlement Soils.

⁴ Carbon sequestration estimates are net figures. The C stock in a given pool fluctuates due to both gains and losses. When losses exceed gains, the C stock decreases, and the pool acts as a source. When gains exceed losses, the C stock increases, and the pool acts as a sink; also referred to as net C sequestration or removal.

Stocks Changes in Yard Trimmings and Food							
Scrap Carbon Stocks in Landfills	(24.5)	(11.4)	(12.3)	(12.1)	(11.9)	(12.0)	(12.3)
Land Converted to Settlements	62.9	85.0	81.4	80.1	79.4	79.3	79.3
Changes in all Ecosystem Carbon							
Stocks ^c	62.9	85.0	81.4	80.1	79.4	79.3	79.3
LULUCF Carbon Stock Change	(860.7)	(831.0)	(739.6)	(802.9)	(801.7)	(789.9)	(799.9)

+ Absolute value does not exceed 0.05 MMT CO₂ Eq.

^a Includes the net changes to carbon stocks stored in all forest ecosystem pools and harvested wood products.

^b Includes the net changes to carbon stocks stored in all forest ecosystem pools (excludes drained organic soils which are included in the flux from *Forest Land Remaining Forest Land* because it is not possible to separate the activity data at this time).

^c Includes changes in mineral and organic soil carbon stocks for all land use conversions to cropland, grassland, and settlements, respectively. Also includes aboveground/belowground biomass, dead wood, and litter carbon stock changes for conversion of forest land to cropland, grassland, and settlements, respectively.

^d Includes aboveground and soil carbon stock changes for land converted to vegetated coastal wetlands. Notes: Totals may not sum due to independent rounding. Parentheses indicate net sequestration.

1 Emissions of CH₄ from LULUCF activities are shown in Table 6-2. Forest fires were the largest source of CH₄

2 emissions from LULUCF in 2018, totaling 11.3 MMT CO₂ Eq. (452 kt of CH₄). *Coastal Wetlands Remaining Coastal*

3 Wetlands resulted in CH₄ emissions of 3.6 MMT CO₂ Eq. (144 kt of CH₄). Grassland fires resulted in CH₄ emissions of

4 0.3 MMT CO₂ Eq. (12 kt of CH₄). Land Converted to Wetlands, Drained Organic Soils on forest lands, and Peatlands

5 *Remaining Peatlands* resulted in CH₄ emissions of less than 0.05 MMT CO₂ Eq. each.

6 For N₂O emissions, forest fires were also the largest source from LULUCF in 2018, totaling 7.5 MMT CO₂ Eq. (25 kt

7 of N₂O). Nitrous oxide emissions from fertilizer application to settlement soils in 2018 totaled to 2.4 MMT CO₂ Eq.

8 (8 kt of N₂O). This represents an increase of 20.1 percent since 1990. Additionally, the application of synthetic

9 fertilizers to forest soils in 2018 resulted in N₂O emissions of 0.5 MMT CO₂ Eq. (2 kt of N₂O). Nitrous oxide

emissions from fertilizer application to forest soils have increased by 455.1 percent since 1990, but still account for

a relatively small portion of overall emissions. Grassland fires resulted in N₂O emissions of 0.3 MMT CO₂ Eq. (1 kt of

12 N₂O). Coastal Wetlands Remaining Coastal Wetlands and Drained Organic Soils on forest lands resulted in N₂O

emissions of 0.1 MMT CO₂ Eq. each (less than 0.5 kt of N₂O), and *Peatlands Remaining Peatlands* resulted in N₂O

14 emissions of less than 0.05 MMT CO_2 Eq.

15 Emissions and removals from LULUCF are summarized in Figure 6-1 and Table 6-3 by land-use and category, and

16 Table 6-4 and Table 6-5 by gas in MMT CO₂ Eq. and kt, respectively.

17 Table 6-2: Emissions from Land Use, Land-Use Change, and Forestry by Gas (MMT CO₂ Eq.)

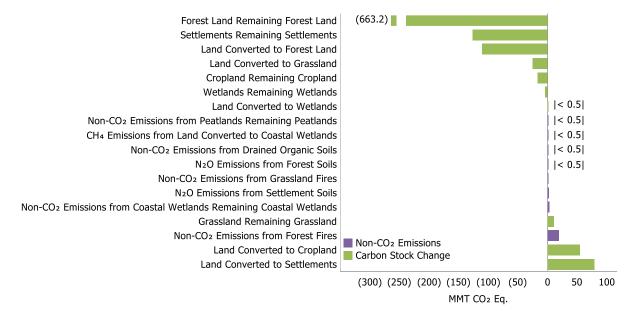
Gas/Land-Use Sub-Category	1990	2005	2014	2015	2016	2017	2018
CH ₄	4.4	8.8	9.5	16.1	7.3	15.2	15.2
Forest Land Remaining Forest Land:							
Forest Fires ^a	0.9	5.0	5.6	12.2	3.4	11.3	11.3
Wetlands Remaining Wetlands: Coastal							
Wetlands Remaining Coastal Wetlands	3.4	3.5	3.6	3.6	3.6	3.6	3.6
Grassland Remaining Grassland:							
Grassland Fires ^b	0.1	0.3	0.4	0.3	0.3	0.3	0.3
Land Converted to Wetlands: Land							
Converted to Coastal Wetlands	+	+	+	+	+	+	+
Forest Land Remaining Forest Land:							
Drained Organic Soils ^c	+	+	+	+	+	+	+
Wetlands Remaining Wetlands:							
Peatlands Remaining Peatlands	+	+	+	+	+	+	+
N ₂ O	3.0	7.5	7.0	11.2	5.5	10.8	10.9
Forest Land Remaining Forest Land:							
Forest Fires ^a	0.6	3.3	3.7	8.1	2.2	7.5	7.5
Settlements Remaining Settlements:							
Settlement Soils ^d	2.0	3.1	2.2	2.2	2.2	2.3	2.4

LULUCF Emissions	7.4	16.3	16.6	27.4	12.8	26.1	26.1
Peatlands Remaining Peatlands	+	+	+	+	+	+	+
Wetlands Remaining Wetlands:							
Drained Organic Soils ^c	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Forest Land Remaining Forest Land:							
Wetlands Remaining Coastal Wetlands	0.1	0.2	0.1	0.1	0.1	0.1	0.1
Wetlands Remaining Wetlands: Coastal							
Grassland Fires ^b	0.1	0.3	0.4	0.3	0.3	0.3	0.3
Grassland Remaining Grassland:							
Forest Soils ^e	0.1	0.5	0.5	0.5	0.5	0.5	0.5
Forest Land Remaining Forest Land:							

+ Does not exceed 0.05 MMT CO₂ Eq.

^a Estimates include emissions from fires on both Forest Land Remaining Forest Land and Land Converted to Forest Land.

^b Estimates include emissions from fires on both Grassland Remaining Grassland and Land Converted to Grassland.


^c Estimates include emissions from drained organic soils on both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

^d Estimates include emissions from N fertilizer additions on both *Settlements Remaining Settlements* and *Land Converted to Settlements*.

^e Estimates include emissions from N fertilizer additions on both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

Note: Totals may not sum due to independent rounding.

1 Figure 6-1: 2017 LULUCF Chapter Greenhouse Gas Sources and Sinks (MMT CO₂ Eq.)

2 3

Note: Parentheses indicate net sequestration.

Table 6-3: Emissions and Removals (Net Flux) from Land Use, Land-Use Change, and Forestry (MMT CO₂ Eq.)

Land-Use Category	1990	2005	2014	2015	2016	2017	2018
Forest Land Remaining Forest Land	(732.2)	(669.8)	(609.0)	(655.3)	(651.7)	(628.4)	(643.9)
Changes in Forest Carbon Stocks ^a	(733.9)	(678.6)	(618.8)	(676.1)	(657.9)	(647.7)	(663.2)
Non-CO ₂ Emissions from Forest Fires ^b	1.5	8.2	9.2	20.3	5.6	18.8	18.8
N ₂ O Emissions from Forest Soils ^c	0.1	0.5	0.5	0.5	0.5	0.5	0.5
Non-CO ₂ Emissions from Drained Organic							
Soils ^d	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Land Converted to Forest Land	(109.4)	(110.2)	(110.5)	(110.6)	(110.6)	(110.6)	(110.6)
Changes in Forest Carbon Stocks ^e	(109.4)	(110.2)	(110.5)	(110.6)	(110.6)	(110.6)	(110.6)

Cropland Remaining Cropland	(23.2)	(29.0)	(12.2)	(12.8)	(22.7)	(22.3)	(16.6)
Changes in Mineral and Organic Soil							
Carbon Stocks	(23.2)	(29.0)	(12.2)	(12.8)	(22.7)	(22.3)	(16.6)
Land Converted to Cropland	54.1	53.8	56.7	57.2	55.5	55.6	55.3
Changes in all Ecosystem Carbon Stocks ^f	54.1	53.8	56.7	57.2	55.5	55.6	55.3
Grassland Remaining Grassland	9.3	11.4	20.6	14.3	10.2	11.5	11.8
Changes in Mineral and Organic Soil							
Carbon Stocks	9.1	10.7	19.7	13.6	9.6	10.9	11.2
Non-CO ₂ Emissions from Grassland Fires ^g	0.2	0.7	0.8	0.7	0.6	0.6	0.6
Land Converted to Grassland	(6.7)	(40.3)	(24.9)	(23.2)	(24.8)	(24.9)	(24.6)
Changes in all Ecosystem Carbon Stocks ^f	(6.7)	(40.3)	(24.9)	(23.2)	(24.8)	(24.9)	(24.6)
Wetlands Remaining Wetlands	(0.5)	(2.0)	(0.6)	(0.6)	(0.7)	(0.7)	(0.7)
Changes in Organic Soil Carbon Stocks in							
Peatlands	1.1	1.1	0.8	0.8	0.7	0.7	0.7
Changes in Aboveground and Soil Carbon							
Stocks in Coastal Wetlands	(5.1)	(6.8)	(5.1)	(5.1)	(5.1)	(5.1)	(5.1)
CH ₄ Emissions from Coastal Wetlands							
Remaining Coastal Wetlands	3.4	3.5	3.6	3.6	3.6	3.6	3.6
N ₂ O Emissions from Coastal Wetlands							
Remaining Coastal Wetlands	0.1	0.2	0.1	0.1	0.1	0.1	0.1
Non-CO ₂ Emissions from Peatlands							
Remaining Peatlands	+	+	+	+	+	+	+
Land Converted to Wetlands	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Changes in Aboveground and Soil Carbon							
Stocks	(+)	(+)	(+)	(+)	(+)	(+)	(+)
CH ₄ Emissions from Land Converted to							
Coastal Wetlands	+	+	+	+	+	+	+
Settlements Remaining Settlements	(107.6)	(113.5)	(124.3)	(124.6)	(123.5)	(123.5)	(123.8)
Changes in Organic Soil Carbon Stocks	11.3	12.2	15.1	15.7	16.0	16.0	15.9
Changes in Settlement Tree Carbon							
Stocks	(96.4)	(117.4)	(129.4)	(130.4)	(129.8)	(129.8)	(129.8)
Changes in Yard Trimming and Food							
Scrap Carbon Stocks in Landfills	(24.5)	(11.4)	(12.3)	(12.1)	(11.9)	(12.0)	(12.3)
N ₂ O Emissions from Settlement Soils ^h	2.0	3.1	2.2	2.2	2.2	2.3	2.4
Land Converted to Settlements	62.9	85.0	81.4	80.1	79.4	79.3	79.3
Changes in all Ecosystem Carbon Stocks ^f	62.9	85.0	81.4	80.1	79.4	79.3	79.3
	7.4	16.3	16.6	27.4	12.8	26.1	26.1
LULUCF Carbon Stock Change ^j	(860.7)	(831.0)	(739.6)	(802.9)	(801.7)	(789.9)	(799.9)
LULUCF Sector Net Total ^k	(853.4)	(814.7)	(723.0)	(775.5)	(788.9)	(763.9)	(773.7)

+ Absolute value does not exceed 0.05 MMT CO₂ Eq.

^a Includes the net changes to carbon stocks stored in all forest ecosystem pools and harvested wood products.

^b Estimates include emissions from fires on both Forest Land Remaining Forest Land and Land Converted to Forest Land.

^c Estimates include emissions from N fertilizer additions on both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

^d Estimates include emissions from drained organic soils on both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

^e Includes the net changes to carbon stocks stored in all forest ecosystem pools.

^f Includes changes in mineral and organic soil carbon stocks for all land use conversions to cropland, grassland, and settlements, respectively. Also includes aboveground/belowground biomass, dead wood, and litter carbon stock changes for conversion of forest land to cropland, grassland, and settlements, respectively.

^g Estimates include emissions from fires on both *Grassland Remaining Grassland* and *Land Converted to Grassland*.

^h Estimates include emissions from N fertilizer additions on both *Settlements Remaining Settlements* and *Land Converted to Settlements* because it is not possible to separate the activity data at this time.

¹ LULUCF emissions include the CH₄ and N₂O emissions reported for *Peatlands Remaining Peatlands*, Forest Fires, Drained Organic Soils, Grassland Fires, and *Coastal Wetlands Remaining Coastal Wetlands*; CH₄ emissions from *Land Converted to Coastal Wetlands*; and N₂O emissions from Forest Soils and Settlement Soils.

¹ LULUCF Carbon Stock Change includes any C stock gains and losses from all land use and land use conversion categories.

^k The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes

in units of MMT CO₂ eq. Notes: Totals may not sum due to independent rounding. Parentheses indicate net sequestration.

Table 6-4: Emissions and Removals from Land Use, Land-Use Change, and Forestry (MMT CO₂ Eq.)

Gas/Land-Use Category	1990	2005	2014	2015	2016	2017	2018
Carbon Stock Change ^a	(860.7)	(831.0)	(739.6)	(802.9)	(801.7)	(789.9)	(799.9)
Forest Land Remaining Forest Land	(733.9)	(678.6)	(618.8)	(676.1)	(657.9)	(647.7)	(663.2)
Land Converted to Forest Land	(109.4)	(110.2)	(110.5)	(110.6)	(110.6)	(110.6)	(110.6)
Cropland Remaining Cropland	(23.2)	(29.0)	(12.2)	(12.8)	(22.7)	(22.3)	(16.6)
Land Converted to Cropland	54.1	53.8	56.7	57.2	55.5	55.6	55.3
Grassland Remaining Grassland	9.1	10.7	19.7	13.6	9.6	10.9	11.2
Land Converted to Grassland	(6.7)	(40.3)	(24.9)	(23.2)	(24.8)	(24.9)	(24.6)
Wetlands Remaining Wetlands	(4.0)	(5.7)	(4.3)	(4.4)	(4.4)	(4.4)	(4.4)
Land Converted to Wetlands	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Settlements Remaining Settlements	(109.6)	(116.6)	(126.6)	(126.8)	(125.7)	(125.9)	(126.2)
Land Converted to Settlements	62.9	85.0	81.4	80.1	79.4	79.3	79.3
CH4	4.4	8.8	9.5	16.1	7.3	15.2	15.2
Forest Land Remaining Forest Land:							
Forest Fires ^b	0.9	5.0	5.6	12.2	3.4	11.3	11.3
Wetlands Remaining Wetlands: Coastal							
Wetlands Remaining Coastal Wetlands	3.4	3.5	3.6	3.6	3.6	3.6	3.6
Grassland Remaining Grassland:							
Grassland Fires ^c	0.1	0.3	0.4	0.3	0.3	0.3	0.3
Land Converted to Wetlands: Land							
Converted to Coastal Wetlands	+	+	+	+	+	+	+
Forest Land Remaining Forest Land:							
Drained Organic Soils ^d	+	+	+	+	+	+	+
Wetlands Remaining Wetlands:							
Peatlands Remaining Peatlands	+	+	+	+	+	+	+
N ₂ O	3.0	7.5	7.0	11.2	5.5	10.8	10.9
Forest Land Remaining Forest Land:							
Forest Fires ^b	0.6	3.3	3.7	8.1	2.2	7.5	7.5
Settlements Remaining Settlements:							
Settlement Soils ^e	2.0	3.1	2.2	2.2	2.2	2.3	2.4
Forest Land Remaining Forest Land:							
Forest Soils ^f	0.1	0.5	0.5	0.5	0.5	0.5	0.5
Grassland Remaining Grassland:							
Grassland Fires ^c	0.1	0.3	0.4	0.3	0.3	0.3	0.3
Wetlands Remaining Wetlands: Coastal							
Wetlands Remaining Coastal Wetlands	0.1	0.2	0.1	0.1	0.1	0.1	0.1
Forest Land Remaining Forest Land:							
Drained Organic Soils ^d	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Wetlands Remaining Wetlands:							
Peatlands Remaining Peatlands	+	+	+	+	+	+	+
LULUCF Emissions ^g	7.4	16.3	16.6	27.4	12.8	26.1	26.1
LULUCF Carbon Stock Change ^a	(860.7)	(831.0)	(739.6)	(802.9)	(801.7)	(789.9)	(799.9)
LULUCF Sector Net Total ^h	(853.4)	(814.7)	(723.0)	(775.5)	(788.9)	(763.9)	(773.7)

+ Absolute value does not exceed 0.05 MMT CO₂ Eq.

^a LULUCF Carbon Stock Change is the net C stock change from the following categories: Forest Land Remaining Forest Land, Land Converted to Forest Land, Cropland Remaining Cropland, Land Converted to Cropland, Grassland Remaining Grassland, Land Converted to Grassland, Wetlands Remaining Wetlands, Land Converted to Wetlands, Settlements Remaining Settlements, and Land Converted to Settlements.

^b Estimates include emissions from fires on both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

^c Estimates include emissions from fires on both Grassland Remaining Grassland and Land Converted to Grassland.

^d Estimates include emissions from drained organic soils on both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

^e Estimates include emissions from N fertilizer additions on both *Settlements Remaining Settlements* and *Land Converted to Settlements*.

- ^f Estimates include emissions from N fertilizer additions on both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.
- ^g LULUCF emissions include the CH₄ and N₂O emissions reported for *Peatlands Remaining Peatlands*, Forest Fires, Drained Organic Soils, Grassland Fires, and *Coastal Wetlands Remaining Coastal Wetlands*; CH₄ emissions from *Land Converted to Coastal Wetlands*; and N₂O emissions from Forest Soils and Settlement Soils.
- ^h The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes in units of MMT CO₂ Eq.

Notes: Totals may not sum due to independent rounding. Parentheses indicate net sequestration.

1 Table 6-5: Emissions and Removals from Land Use, Land-Use Change, and Forestry (kt)

Gas/Land-Use Category	1990	2005	2014	2015	2016	2017	2018
Carbon Stock Change (CO ₂) ^a	(860,747)	(830,952)	(739,565)	(802,929)	(801,734)	(789 <i>,</i> 945)	(799,861)
Forest Land Remaining Forest							
Land	(733,893)	(678,611)	(618,785)	(676,144)	(657 <i>,</i> 899)	(647,721)	(663,247)
Land Converted to Forest Land	(109,423)	(110,220)	(110,475)	(110,557)	(110,572)	(110,576)	(110,579)
Cropland Remaining Cropland	(23,176)	(29,002)	(12,247)	(12,826)	(22,730)	(22,292)	(16,602)
Land Converted to Cropland	54,092	53,816	56,652	57,197	55,454	55,629	55,333
Grassland Remaining Grassland	9,132	10,705	19,738	13,610	9,590	10,911	11,230
Land Converted to Grassland	(6,686)	(40,309)	(24,878)	(23,164)	(24,761)	(24,908)	(24,613)
Wetlands Remaining Wetlands	(4,049)	(5,689)	(4,328)	(4,358)	(4,389)	(4,398)	(4,445)
Land Converted to Wetlands	(44)	(32)	(44)	(44)	(44)	(44)	(44)
Settlements Remaining							
Settlements	(109,567)	(116,642)	(126,550)	(126,789)	(125,734)	(125,855)	(126,165)
Land Converted to Settlements	62,867	85,032	81,351	80,145	79,350	79,310	79,271
CH4	176	352	382	645	292	610	610
Forest Land Remaining Forest							
Land: Forest Fires ^b	35	198	222	489	136	452	452
Wetlands Remaining Wetlands:							
Coastal Wetlands Remaining							
Coastal Wetlands	137	140	143	143	144	144	144
Grassland Remaining Grassland:							
Grassland Fires ^c	3	13	16	13	11	12	12
Land Converted to Wetlands:							
Land Converted to Coastal							
Wetlands	1	+	1	1	1	1	1
Forest Land Remaining Forest							
Land: Drained Organic Soils ^d	1	1	1	1	1	1	1
Wetlands Remaining Wetlands:							
Peatlands Remaining Peatlands	+	+	+	+	+	+	+
N ₂ O	10	25	24	38	18	36	37
Forest Land Remaining Forest							
Land: Forest Fires ^b	2	11	12	27	8	25	25
Settlements Remaining							
Settlements: Settlement Soils ^e	7	10	7	7	8	8	8
Forest Land Remaining Forest							
Land: Forest Soils ^f	+	2	2	2	2	2	2
Grassland Remaining Grassland:							
Grassland Fires ^c	+	1	1	1	1	1	1
Wetlands Remaining Wetlands:							
Coastal Wetlands Remaining							
Coastal Wetlands	+	1	+	+	+	+	+
Forest Land Remaining Forest	_						
Land: Drained Organic Soils ^d	+	+	+	+	+	+	+
Wetlands Remaining Wetlands:							
Peatlands Remaining Peatlands	+	+	+	+	+	+	+

+ Absolute value does not exceed 0.5 kt.

^a LULUCF Carbon Stock Change is the net C stock change from the following categories: Forest Land Remaining Forest Land, Land Converted to Forest Land, Cropland Remaining Cropland, Land Converted to Cropland, Grassland Remaining Grassland, Land Converted to Grassland, Wetlands Remaining Wetlands, Land Converted to Wetlands, Settlements Remaining Settlements, and Land Converted to Settlements.

- ^b Estimates include emissions from fires on both Forest Land Remaining Forest Land and Land Converted to Forest Land.
- ^c Estimates include emissions from fires on both *Grassland Remaining Grassland* and *Land Converted to Grassland*.
- ^d Estimates include emissions from drained organic soils on both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.
- ^e Estimates include emissions from N fertilizer additions on both *Settlements Remaining Settlements* and *Land Converted to Settlements*.
- ^f Estimates include emissions from N fertilizer additions on both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

Notes: Totals may not sum due to independent rounding. Parentheses indicate net sequestration.

1 Box 6-1: Methodological Approach for Estimating and Reporting U.S. Emissions and Removals

In following the United Nations Framework Convention on Climate Change (UNFCCC) requirement under Article 4.1 to develop and submit national greenhouse gas emission inventories, the gross emissions total presented in this report for the United States excludes emissions and removals from LULUCF. The LULUCF Sector Net Total presented in this report for the United States includes emissions and removals from LULUCF. All emissions and removals estimates are calculated using internationally-accepted methods provided by the IPCC in the 2006 *IPCC Guidelines for National Greenhouse Gas Inventories (2006 IPCC Guidelines)* and the 2013 Supplement to the 2006 Guidelines for National Greenhouse Gas Inventories: Wetlands. Additionally, the calculated emissions and removals in a given year for the United States are presented in a common manner in line with the UNFCCC reporting guidelines for the reporting of inventories under this international agreement.⁵ The use of consistent methods to calculate emissions and removals by all nations providing their inventories to the UNFCCC ensures that these reports are comparable. The presentation of emissions and removals provided in the Land Use Land-Use Change and Forestry chapter do not preclude alternative examinations, but rather, this Inventory presents emissions and removals in a common format consistent with how countries are to report Inventories under the UNFCCC. The report itself, and this chapter, follows this standardized format, and provides an explanation of the application of methods used to calculate emissions and removals.

2

6.1 Representation of the U.S. Land Base

4 A national land-use representation system that is consistent and complete, both temporally and spatially, is 5 needed in order to assess land use and land-use change status and the associated greenhouse gas fluxes over the 6 Inventory time series. This system should be consistent with IPCC (2006), such that all countries reporting on 7 national greenhouse gas fluxes to the UNFCCC should: (1) describe the methods and definitions used to determine 8 areas of managed and unmanaged lands in the country (Table 6-6), (2) describe and apply a consistent set of 9 definitions for land-use categories over the entire national land base and time series (i.e., such that increases in 10 the land areas within particular land-use categories are balanced by decreases in the land areas of other categories 11 unless the national land base is changing) (Table 6-7), and (3) account for greenhouse gas fluxes on all managed 12 lands. The IPCC (2006, Vol. IV, Chapter 1) considers all anthropogenic greenhouse gas emissions and removals 13 associated with land use and management to occur on managed land, and all emissions and removals on managed 14 land should be reported based on this guidance (See IPCC 2010, Ogle et al. 2018 for further discussion). 15 Consequently, managed land serves as a proxy for anthropogenic emissions and removals. This proxy is intended

⁵ See <http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>.

- 1 to provide a practical framework for conducting an inventory, even though some of the greenhouse gas emissions
- 2 and removals on managed land are influenced by natural processes that may or may not be interacting with the
- 3 anthropogenic drivers. Guidelines for factoring out natural emissions and removals may be developed in the
- 4 future, but currently the managed land proxy is considered the most practical approach for conducting an
- 5 inventory in this sector (IPCC 2010). This section of the Inventory has been developed in order to comply with this 6 guidance.
- 7 Three databases are used to track land management in the United States and are used as the basis to classify
- 8 United States land area into the thirty-six IPCC land-use and land-use change categories (Table 6-7) (IPCC 2006).
- 9 The three primary databases are the U.S. Department of Agriculture (USDA) National Resources Inventory (NRI),⁶
- the USDA Forest Service (USFS) Forest Inventory and Analysis (FIA)⁷ Database, and the Multi-Resolution Land 10
- Characteristics Consortium (MRLC) National Land Cover Dataset (NLCD).⁸ For this Inventory, NRI data have been 11
- 12 extended through 2015 for the conterminous United States and Hawaii (non-federal lands), NLCD data have been
- 13 extended through 2016 for the conterminous United States and new FIA data cover the entire time series of land
- 14 use data in the conterminous United States and Alaska.
- 15 The total land area included in the United States Inventory is 936 million hectares across the 50 states.⁹
- 16 Approximately 886 million hectares of this land base is considered managed and 46 million hectares is unmanaged,
- 17 which has not changed much over the time series of the Inventory (Table 6-7). In 2018, the United States had a
- 18 total of 282 million hectares of managed Forest Land (0.03 percent decrease compared to 1990). There are 162
- 19 million hectares of cropland (7.2 percent decrease compared to 1990), 337 million hectares of managed Grassland
- 20 (less than 0.01 percent decrease compared to 1990), 39 million hectares of managed Wetlands (1.8 percent
- 21 increase compared to 1990), 45 million hectares of Settlements (34 percent increase compared to 1990), and 22
- 22 million hectares of managed Other Land (2.4 percent increase compared to 1990) (Table 6-7). Wetlands are not
- 23 differentiated between managed and unmanaged with the exception of remote areas in Alaska, and so are reported mostly as managed.¹⁰ In addition, C stock changes are not currently estimated for the entire managed 24
- 25
- land base, which leads to discrepancies between the managed land area data presented here and in the subsequent sections of the Inventory (e.g., Grassland Remaining Grassland within interior Alaska).^{11,12} Planned 26
- 27 improvements are under development to estimate C stock changes and greenhouse gas emissions on all managed
- 28 land and ensure consistency between the total area of managed land in the land-representation description and
- 29 the remainder of the Inventory.
- Dominant land uses vary by region, largely due to climate patterns, soil types, geology, proximity to coastal 30
- 31 regions, and historical settlement patterns (Figure 6-2). Forest Land tends to be more common in the eastern
- 32 United States, mountainous regions of the western United States and Alaska. Cropland is concentrated in the mid-
- 33 continent region of the United States, and Grassland is more common in the western United States and Alaska.

⁶ NRI data are available at <https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/nra/nri/>.

⁷ FIA data are available at <http://www.fia.fs.fed.us/tools-data/default.asp>.

⁸ NLCD data are available at http://www.mrlc.gov/ and MRLC is a consortium of several U.S. government agencies.

⁹ The current land representation does not include areas from U.S. Territories, but there are planned improvements to include these regions in future Inventories. U.S. Territories represent approximately 0.1 percent of the total land base for the United States. See Box 6-2.

¹⁰ According to the IPCC (2006), wetlands are considered managed if they are created through human activity, such as dam construction, or the water level is artificially altered by human activity. Distinguishing between managed and unmanaged wetlands in the conterminous United States and Alaska is difficult due to limited data availability. Wetlands are not characterized within the NRI with information regarding water table management. As a result, all Wetlands in the conterminous United States and Hawaii are reported as managed. See the Planned Improvements section of the Inventory for future refinements to the Wetland area estimates.

¹¹ Other discrepancies occur because the coastal wetlands analysis is based on another land use product (NOAA C-CAP) that is not currently incorporated into the land representation analysis for this section, which relies on the NRI and NLCD for wetland areas. EPA anticipates addressing this discrepancy in a future Inventory.

¹² These "managed area" discrepancies also occur in the Common Reporting Format (CRF) tables submitted to the UNFCCC.

- 1 Wetlands are fairly ubiquitous throughout the United States, though they are more common in the upper Midwest
- 2 and eastern portions of the country, as well as coastal regions. Settlements are more concentrated along the
- 3 coastal margins and in the eastern states.

4 Table 6-6: Managed and Unmanaged Land Area by Land-Use Categories for All 50 States

5 (Thousands of Hectares)

Land Use Categories	1990	2005	2014	2015	2016 ^a	2017 ^a	2018 ^a
Managed Lands	886,515	886,513	886,513	886,513	886,513	886,513	886,513
Forest	281,621	281,681	281,903	281,945	281,796	281,652	281,546
Croplands	174,471	165,727	162,543	161,929	161,933	161,933	161,933
Grasslands	336,840	337,621	336,437	336,529	336,657	336,781	336,863
Settlements	33,446	40,469	44,367	44,799	44,795	44,797	44,797
Wetlands	38,422	39,017	39,048	39,076	39,089	39,108	39,132
Other	21,715	21,997	22,215	22,236	22,243	22,243	22,243
Unmanaged Lands	49,681	49,684	49,683	49,683	49,683	49,683	49,683
Forest	9,243	8,829	8,208	8,208	8,208	8,208	8,208
Croplands	0	0	0	0	0	0	0
Grasslands	25,530	25,962	26,608	26,608	26,608	26,608	26,608
Settlements	0	0	0	0	0	0	0
Wetlands	4,166	4,166	4,165	4,165	4,165	4,165	4,165
Other	10,742	10,727	10,701	10,701	10,701	10,701	10,701
Total Land Areas	936,196	936,196	936,196	936,196	936,196	936,196	936,196
Forest	290,864	290,510	290,111	290,153	290,004	289,860	289,754
Croplands	174,471	165,727	162,543	161,929	161,933	161,933	161,933
Grasslands	362,370	363,583	363,045	363,138	363,266	363,389	363,471
Settlements	33,446	40,469	44,367	44,799	44,795	44,797	44,797
Wetlands	42,589	43,183	43,213	43,241	43,254	43,273	43,297
Other	32,457	32,725	32,917	32,937	32,944	32,944	32,944

6 ^a The land use data for 2017 to 2018 were only partially updated based on new Forest Inventory and Analysis (FIA) data and

7 land used data for 2016 were partially updated with data from National Land Cover Dataset (NLCD) and FIA. In addition, there

8 were no new data incorporated for Alaska. New activity data for the National Resources Inventory (NRI) and NLCD will be

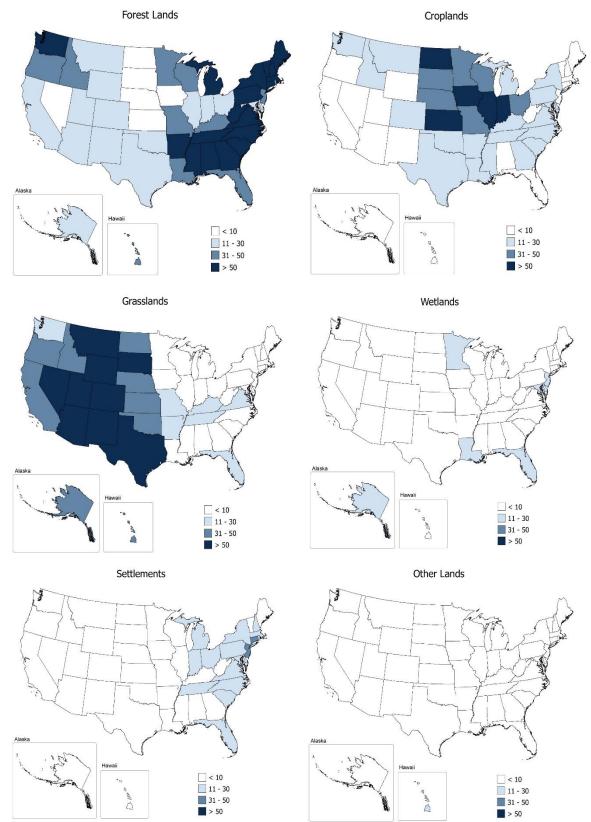
9 incorporated in a future Inventory to update 2016-2018 and 2017-2018, respectively.

10 11

Table 6-7: Land Use and Land-Use Change for the U.S. Managed Land Base for All 50 States (Thousands of Hectares)

Land-Use & Land-Use Change Categories ^a	1990	2005	2014	2015	2016 ^b	2017 ^b	2018 ^b
Total Forest Land	281,621	281,681	281,903	281,945	281,796	281,652	281,546
FF	280,393	280,207	280,438	280,528	280,529	280,380	280,274
CF	169	167	143	139	134	135	135
GF	919	1,162	1,171	1,125	989	992	992
WF	77	28	26	25	25	25	25
SF	12	24	26	27	26	26	26
OF	50	93	99	100	93	93	93
Total Cropland	174,471	165,727	162,543	161,929	161,933	161,933	161,933
CC	162,163	150,304	149,492	148,880	148,885	148,884	148,884
FC	182	86	61	58	58	58	58
GC	11,738	14,820	12,616	12,609	12,609	12,609	12,609
WC	118	178	103	104	104	104	104
SC	75	100	92	99	99	99	99
OC	195	239	178	179	179	179	179
Total Grassland	336,840	337,621	336,437	336,529	336,657	336,781	336,863
GG	327,446	315,161	316,242	316,287	316,408	316,502	316,622
FG	593	560	546	547	553	583	545

CG	8,237	17,523	16,229	16,600	16,600	16,600	16,600
WG	176	542	327	308	308	308	308
SG	43	509	386	346	346	346	346
OG	345	3,328	2,707	2,442	2,442	2,442	2,442
Total Wetlands	38,422	39,017	39,048	39,076	39,089	39,108	39,132
WW	37,860	37,035	37,433	37,602	37,616	37,634	37,658
FW	83	59	57	54	54	54	54
CW	132	566	477	440	440	440	440
GW	297	1,187	928	836	836	836	836
SW	0	, 38	30	25	25	25	25
OW	50	133	123	118	118	118	118
Total Settlements	33,446	40,469	44,367	44,799	44,795	44,797	44,797
SS	30,585	31,522	37,281	38,210	38,210	38,210	38,210
FS	310	549	574	544	539	541	541
CS	1,237	3,602	2,662	2,452	2,452	2,452	2,452
GS	1,255	4,499	3,586	3,352	3,352	3,352	3,352
WS	4	61	51	46	46	46	46
OS	54	235	214	197	197	197	197
Total Other Land	21,715	21,997	22,215	22,236	22,243	22,243	22,243
00	20,953	18,231	18,734	19,000	19,007	19,007	19,007
FO	41	70	94	90	90	90	90
CO	301	590	677	678	678	678	678
GO	391	2,965	2,564	2,331	2,331	2,331	2,331
WO	26	121	127	121	121	121	121
SO	2	20	18	16	16	16	16
Grand Total	886,515	886,513	886,513	886,513	886,513	886,513	886,513
ika alalawa siatiawa awa ((r	-// fau Eausah La	 "C" [Care a state of	(1 A 1/2 6) A 1 -		f


^a The abbreviations are "F" for Forest Land, "C" for Cropland, "G" for Grassland, "W" for Wetlands, "S" for Settlements, and "O" for Other Lands. Lands remaining in the same land-use category are identified with the land-use abbreviation given twice (e.g., "FF" is *Forest Land Remaining Forest Land*), and land-use change categories are identified with the previous land use abbreviation followed by the new land-use abbreviation (e.g., "CF" is *Cropland Converted to Forest Land*).

^b The land use data for 2017 to 2018 were only partially updated based on new Forest Inventory and Analysis (FIA) data and land used data for 2016 were partially updated with data from National Land Cover Dataset (NLCD) and FIA. In addition, there were no new data incorporated for Alaska. New activity data for the National Resources Inventory (NRI) and NLCD will be incorporated in a future Inventory to update 2016-2018 and 2017-2018, respectively.

Notes: All land areas reported in this table are considered managed. A planned improvement is underway to deal with an exception for Wetlands, which based on the definitions for the current U.S. Land Representation Assessment includes both managed and unmanaged lands. U.S. Territories have not been classified into land uses and are not included in the U.S. Land Representation Assessment. See the Planned Improvements section for discussion on plans to include territories in future Inventories. In addition, C stock changes are not currently estimated for the entire land base, which leads to discrepancies between the managed land area data presented here and in the subsequent sections of the Inventory (see land use chapters e.g., *Forest Land Remaining Forest Land* for more information).

1 Figure 6-2: Percent of Total Land Area for Each State in the General Land-Use Categories for

2 **2018**

1 Methodology

2 IPCC Approaches for Representing Land Areas

IPCC (2006) describes three approaches for representing land areas. Approach 1 provides data on the total area for
each individual land-use category, but does not provide detailed information on changes of area between
categories and is not spatially explicit other than at the national or regional level. With Approach 1, total net
conversions between categories can be detected, but not the individual changes (i.e., additions and/or losses)
between the land-use categories that led to those net changes. Approach 2 introduces tracking of individual land-

8 use changes between the categories (e.g., Forest Land to Cropland, Cropland to Forest Land, and Grassland to

9 Cropland), using survey samples or other forms of data, but does not provide spatially-explicit location data.

10 Approach 3 extends Approach 2 by providing spatially-explicit location data, such as surveys with spatially

- 11 identified sample locations and maps derived from remote sensing products. The three approaches are not
- 12 presented as hierarchical tiers and are not mutually exclusive.
- 13 According to IPCC (2006), the approach or mix of approaches selected by an inventory agency should reflect
- 14 calculation needs and national circumstances. For this analysis, the NRI, FIA, and the NLCD have been combined to
- 15 provide a complete representation of land use for managed lands. These data sources are described in more detail
- 16 later in this section. NRI, FIA and NLCD are Approach 3 data sources that provide spatially-explicit representations

of land use and land-use conversions. Lands are treated as remaining in the same category (e.g., *Cropland*

18 *Remaining Cropland*) if a land-use change has not occurred in the last 20 years. Otherwise, the land is classified in a

19 land-use change category based on the current use and most recent use before conversion to the current use (e.g.,

20 Cropland Converted to Forest Land).

21 Definitions of Land Use in the United States

22 Managed and Unmanaged Land

The United States definition of managed land is similar to the general definition of managed land provided by the
 IPCC (2006), but with some additional elaboration to reflect national circumstances. Based on the following
 definitions, most lands in the United States are classified as managed:

- Managed Land: Land is considered managed if direct human intervention has influenced its condition.
 Direct intervention occurs mostly in areas accessible to human activity and includes altering or
 maintaining the condition of the land to produce commercial or non-commercial products or services; to
 serve as transportation corridors or locations for buildings, landfills, or other developed areas for
 commercial or non-commercial purposes; to extract resources or facilitate acquisition of resources; or to
 provide social functions for personal, community, or societal objectives where these areas are readily
 accessible to society.¹³
- Unmanaged Land: All other land is considered unmanaged. Unmanaged land is largely comprised of areas
 inaccessible to society due to the remoteness of the locations. Though these lands may be influenced

¹³ Wetlands are an exception to this general definition, because these lands, as specified by IPCC (2006), are only considered managed if they are created through human activity, such as dam construction, or the water level is artificially altered by human activity. Distinguishing between managed and unmanaged wetlands in the United States is difficult due to limited data availability. Wetlands are not characterized within the NRI with information regarding water table management. Therefore, unless wetlands are managed for cropland or grassland, it is not possible to know if they are artificially created or if the water table is managed based on the use of NRI data. As a result, most wetlands are reported as managed with the exception of wetlands in remote areas of Alaska, but emissions from managed wetlands are only reported for coastal regions and peatlands due to insufficient activity data to estimate emissions and limited resources to improve the inventory. See the Planned Improvements section of the Inventory for future refinements to the wetland area estimates.

indirectly by human actions such as atmospheric deposition of chemical species produced in industry or
 CO₂ fertilization, they are not influenced by a direct human intervention.¹⁴

In addition, land that is previously managed remains in the managed land base for 20 years before re-classifying
 the land as unmanaged in order to account for legacy effects of management on C stocks. Unmanaged land is also
 re-classified as managed over time if anthropogenic activity is introduced into the area based on the definition of

6 managed land.

7 Land-Use Categories

As with the definition of managed lands, IPCC (2006) provides general non-prescriptive definitions for the six main
 land-use categories: Forest Land, Cropland, Grassland, Wetlands, Settlements and Other Land. In order to reflect
 national circumstances, country-specific definitions have been developed, based predominantly on criteria used in
 the land-use surveys for the United States. Specifically, the definition of Forest Land is based on the FIA definition
 of forest,¹⁵ while definitions of Cropland, Grassland, and Settlements are based on the NRI.¹⁶ The definitions for
 Other Land and Wetlands are based on the IPCC (2006) definitions for these categories.

- 14 Forest Land: A land-use category that includes areas at least 120 feet (36.6 meters) wide and at least one 15 acre (0.4 hectare) in size with at least 10 percent cover (or equivalent stocking) by live trees including land that formerly had such tree cover and that will be naturally or artificially regenerated. Trees are woody 16 17 plants having a more or less erect perennial stem(s) capable of achieving at least 3 inches (7.6 cm) in diameter at breast height, or 5 inches (12.7 cm) diameter at root collar, and a height of 16.4 feet (5 m) at 18 19 maturity in situ. Forest Land includes all areas recently having such conditions and currently regenerating 20 or capable of attaining such condition in the near future. Forest Land also includes transition zones, such 21 as areas between forest and non-forest lands that have at least 10 percent cover (or equivalent stocking) 22 with live trees and forest areas adjacent to urban and built-up lands. Unimproved roads and trails, 23 streams, and clearings in forest areas are classified as forest if they are less than 120 feet (36.6 m) wide or an acre (0.4 ha) in size. However, land is not classified as Forest Land if completely surrounded by urban 24 25 or developed lands, even if the criteria are consistent with the tree area and cover requirements for 26 Forest Land. These areas are classified as Settlements. In addition, Forest Land does not include land that 27 is predominantly under an agricultural land use (Oswalt et al. 2014).
- 28 • *Cropland*: A land-use category that includes areas used for the production of adapted crops for harvest; 29 this category includes both cultivated and non-cultivated lands. Cultivated crops include row crops or 30 close-grown crops and also hay or pasture in rotation with cultivated crops. Non-cultivated cropland 31 includes continuous hay, perennial crops (e.g., orchards) and horticultural cropland. Cropland also includes land with agroforestry, such as alley cropping and windbreaks,¹⁷ if the dominant use is crop 32 33 production, assuming the stand or woodlot does not meet the criteria for Forest Land. Lands in temporary fallow or enrolled in conservation reserve programs (i.e., set-asides¹⁸) are also classified as Cropland, as 34 long as these areas do not meet the Forest Land criteria. Roads through Cropland, including interstate 35 36 highways, state highways, other paved roads, gravel roads, dirt roads, and railroads are excluded from 37 Cropland area estimates and are, instead, classified as Settlements.

¹⁴ There are some areas, such as Forest Land and Grassland in Alaska that are classified as unmanaged land due to the remoteness of their location.

¹⁵ See <http://www.fia.fs.fed.us/library/field-guides-methods-proc/docs/2015/Core-FIA-FG-7.pdf>, page 22.

¹⁶ See <https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/nra/nri/>.

¹⁷ Currently, there is no data source to account for biomass C stock change associated with woody plant growth and losses in alley cropping systems and windbreaks in cropping systems, although these areas are included in the Cropland land base.

¹⁸ A set-aside is cropland that has been taken out of active cropping and converted to some type of vegetative cover, including, for example, native grasses or trees, but is still classified as cropland based on national circumstances.

1 Grassland: A land-use category on which the plant cover is composed principally of grasses, grass-like 2 plants (i.e., sedges and rushes), forbs, or shrubs suitable for grazing and browsing, and includes both 3 pastures and native rangelands. This includes areas where practices such as clearing, burning, chaining, 4 and/or chemicals are applied to maintain the grass vegetation. Land is also categorized as Grassland if there have been three or fewer years of continuous hay production.¹⁹ Savannas, deserts, and tundra are 5 considered Grassland.²⁰ Drained wetlands are considered Grassland if the dominant vegetation meets the 6 7 plant cover criteria for Grassland. Woody plant communities of low forbs, shrubs and woodlands, such as 8 sagebrush, mesquite, chaparral, mountain shrubland, and pinyon-juniper, are also classified as Grassland 9 if they do not meet the criteria for Forest Land. Grassland includes land managed with agroforestry 10 practices, such as silvopasture and windbreaks, if the land is principally grasses, grass-like plants, forbs, 11 and shrubs suitable for grazing and browsing, and assuming the stand or woodlot does not meet the 12 criteria for Forest Land. Roads through Grassland, including interstate highways, state highways, other 13 paved roads, gravel roads, dirt roads, and railroads are excluded from Grassland and are, instead, 14 classified as Settlements.

- Wetlands: A land-use category that includes land covered or saturated by water for all or part of the year,
 in addition to lakes, reservoirs, and rivers. Managed Wetlands are those where the water level is
 artificially changed, or were created by human activity. Certain areas that fall under the managed
 Wetlands definition are included in other land uses based on the IPCC guidance and national
 circumstances, including lands that are flooded for most or just part of the year in Croplands (e.g., rice
 cultivation and cranberry production, Grasslands (e.g., wet meadows dominated by grass cover) and
 Forest Lands (e.g., Riparian Forests near waterways).
- 22 • Settlements: A land-use category representing developed areas consisting of units of 0.25 acres (0.1 ha) or 23 more that includes residential, industrial, commercial, and institutional land; construction sites; public 24 administrative sites; railroad yards; cemeteries; airports; golf courses; sanitary landfills; sewage treatment 25 plants; water control structures and spillways; parks within urban and built-up areas; and highways, 26 railroads, and other transportation facilities. Also included are all tracts that may meet the definition of 27 Forest Land, and tracts of less than 10 acres (4.05 ha) that may meet the definitions for Cropland, 28 Grassland, or Other Land but are completely surrounded by urban or built-up land, and so are included in 29 the Settlements category. Rural transportation corridors located within other land uses (e.g., Forest Land, 30 Cropland, and Grassland) are also included in Settlements.
- Other Land: A land-use category that includes bare soil, rock, ice, and all land areas that do not fall into
 any of the other five land-use categories. Following the guidance provided by the IPCC (2006), C stock
 changes and non-CO₂ emissions are not estimated for Other Lands because these areas are largely devoid
 of biomass, litter and soil C pools. However, C stock changes and non-CO₂ emissions are estimated for
 Land Converted to Other Land during the first 20 years following conversion to account for legacy effects.

Land-Use Data Sources: Description and Application to U.S. Land Area Classification

38 U.S. Land-Use Data Sources

- 39 The three main sources for land-use data in the United States are the NRI, FIA, and the NLCD (Table 6-8). These
- 40 data sources are combined to account for land use in all 50 states. FIA and NRI data are used when available for an
- 41 area because these surveys contain additional information on management, site conditions, crop types, biometric
- 42 measurements, and other data that are needed to estimate C stock changes, N₂O, and CH₄ emissions on those

¹⁹ Areas with four or more years of continuous hay production are Cropland because the land is typically more intensively managed with cultivation, greater amounts of inputs, and other practices.

²⁰ 2006 IPCC Guidelines do not include provisions to separate desert and tundra as land-use categories.

- 1 lands. If NRI and FIA data are not available for an area, however, then the NLCD product is used to represent the
- 2 land use.

Table 6-8: Data Sources Used to Determine Land Use and Land Area for the Conterminous United States, Hawaii, and Alaska

	NRI	FIA	NLCD
Forest Land			
Conterminous			
United States			
Non-Federal		•	
Federal		•	
Hawaii			
Non-Federal	•		
Federal			•
Alaska			
Non-Federal		•	•
Federal		•	•
Croplands, Grasslands, Other L	ands, Settlem	ents, and Wetl	ands
Conterminous			
United States			
Non-Federal	•		
Federal			•
Hawaii			
Non-Federal	•		
Federal			•
Alaska			
Non-Federal			•
Federal			•

5 National Resources Inventory

6 For the Inventory, the NRI is the official source of data for land use and land use change on non-federal lands in the 7 conterminous United States and Hawaii, and is also used to determine the total land base for the conterminous 8 United States and Hawaii. The NRI is a statistically-based survey conducted by the USDA Natural Resources 9 Conservation Service and is designed to assess soil, water, and related environmental resources on non-federal 10 lands. The NRI has a stratified multi-stage sampling design, where primary sample units are stratified on the basis of county and township boundaries defined by the United States Public Land Survey (Nusser and Goebel 1997). 11 12 Within a primary sample unit (typically a 160 acre [64.75 ha] square quarter-section), three sample points are 13 selected according to a restricted randomization procedure. Each point in the survey is assigned an area weight 14 (expansion factor) based on other known areas and land-use information (Nusser and Goebel 1997). The NRI 15 survey utilizes data derived from remote sensing imagery and site visits in order to provide detailed information on 16 land use and management, particularly for Croplands and Grasslands (i.e., agricultural lands), and is used as the 17 basis to account for C stock changes in agricultural lands (except federal Grasslands). The NRI survey was 18 conducted every 5 years between 1982 and 1997, but shifted to annualized data collection in 1998. The land use 19 between five-year periods from 1982 and 1997 are assumed to be the same for a five-year time period if the land 20 use is the same at the beginning and end of the five-year period (Note: most of the data has the same land use at 21 the beginning and end of the five-year periods). If the land use had changed during a five-year period, then the 22 change is assigned at random to one of the five years. For crop histories, years with missing data are estimated 23 based on the sequence of crops grown during years preceding and succeeding a missing year in the NRI history. 24 This gap-filling approach allows for development of a full time series of land-use data for non-federal lands in the 25 conterminous United States and Hawaii. This Inventory incorporates data through 2015 from the NRI. The land use 26 patterns are assumed to remain the same from 2016 through 2018 for this Inventory, but the time series will be 27 updated when new data are released.

6-16 DRAFT Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018

1 Forest Inventory and Analysis

The FIA program, conducted by the USFS, is the official source of data on Forest Land area and management data
 for the Inventory and is another statistically-based survey for the conterminous United States in addition to the

- 4 including southeast and south-central coastal Alaska. FIA engages in a hierarchical system of sampling, with
- sampling categorized as Phases 1 through 3, in which sample points for phases are subsets of the previous phase.
 Phase 1 refers to collection of remotely-sensed data (either aerial photographs or satellite imagery) primarily to
- classify land into forest or non-forest and to identify landscape patterns like fragmentation and urbanization.
- 8 Phase 2 is the collection of field data on a network of ground plots that enable classification and summarization of
- 9 area, tree, and other attributes associated with forest-land uses. Phase 3 plots are a subset of Phase 2 plots where
- data on indicators of forest health are measured. Data from all three phases are also used to estimate C stock
- changes for Forest Land. Historically, FIA inventory surveys have been conducted periodically, with all plots in a
- 12 state being measured at a frequency of every five to 14 years. A new national plot design and annual sampling
- design was introduced by the FIA program in 1998 and is now used in all states. Annualized sampling means that a
- portion of plots throughout each state is sampled each year, with the goal of measuring all plots once every five to seven years in the eastern United States and once every ten years in the western United States. See Annex 3.13 to
- 15 seven years in the eastern United States and once every ten years in the western United States. See Annex 3.13 to 16 see the specific survey data available by state. The most recent year of available data varies state by state (range of
- 17 most recent data is from 2015 through 2018; see Table A-219 in Annex 3.13).

18 National Land Cover Dataset

19 As noted above, while the NRI survey sample covers the conterminous United States and Hawaii, land use data are

- 20 only collected on non-federal lands. In addition, FIA only records data for forest land across the land base in the
- 21 conterminous United States and Alaska.²¹ Consequently, gaps exist in the land representation when the datasets
- are combined, such as federal grassland operated by Bureau of Land Management (BLM), USDA, and National Park
- 23 Service, as well as Alaska.²² The NLCD is used to account for land use on federal lands in the conterminous United
- 24 States and Hawaii, in addition to federal and non-federal lands in Alaska with the exception of Forest Lands in
- 25 Alaska.
- 26 NLCD products provide land-cover for 1992, 2001, 2004, 2006, 2008, 2011, 2013, and 2016 in the conterminous
- 27 United States (Yang et al. 2018; Fry et al. 2011; Homer et al. 2007, 2015), and also for Alaska in 2001 and 2011 and
- Hawaii in 2001. A Land Cover Change Product is also available for Alaska from 2001 to 2011. A NLCD change
- 29 product is not available for Hawaii because data are only available for one year, i.e., 2001. The NLCD products are
- 30 based primarily on Landsat Thematic Mapper imagery at a 30-meter resolution, and the land cover categories have
- been aggregated into the 36 IPCC land-use categories for the conterminous United States and Alaska, and into the
- six IPCC land-use categories for Hawaii. The land use patterns are assumed to remain the same after the last year
 of data in the time series, which is 2001 for Hawaii, 2016 for the conterminous United States and 2011 for Alaska,
- but the time series will be updated when new data are released.
- 35 For the conterminous United States, the aggregated maps of IPCC land-use categories derived from the NLCD
- 36 products were used in combination with the NRI database to represent land use and land-use change for federal
- 37 lands, with the exception of forest lands, which are based on FIA. Specifically, NRI survey locations designated as
- federal lands were assigned a land use/land-use change category based on the NLCD maps that had been
- 39 aggregated into the IPCC categories. This analysis addressed shifts in land ownership across years between federal
- 40 or non-federal classes as represented in the NRI survey (i.e., the ownership is classified for each survey location in
- 41 the NRI). The sources of these additional data are discussed in subsequent sections of the report.

²¹ FIA does collect some data on non-forest land use, but these are held in regional databases versus the national database. The status of these data is being investigated.

²² The NRI survey program does not include U.S. Territories with the exception of non-federal lands in Puerto Rico. The FIA program recently began implementing surveys of forest land in U.S. Territories and those data will be used in the years ahead. Furthermore, NLCD does not include coverage for all U.S. Territories.

1 Managed Land Designation

6

7

13

Lands are designated as managed in the United States based on the definition provided earlier in this section. In
order to apply the definition in an analysis of managed land, the following criteria are used:

- All Croplands and Settlements are designated as managed so only Grassland, Forest Land, Wetlands or
 Other Lands may be designated as unmanaged land;²³
 - All Forest Lands with active fire protection are considered managed;
 - All Forest Lands designated for timber harvests are considered managed;
- All Grassland is considered managed at a county scale if there are grazing livestock in the county;
- Other areas are considered managed if accessible based on the proximity to roads and other
 transportation corridors, and/or infrastructure;
- Protected lands maintained for recreational and conservation purposes are considered managed (i.e.,
 managed by public and/or private organizations);
 - Lands with active and/or past resource extraction are considered managed; and
- Lands that were previously managed but subsequently classified as unmanaged, remain in the managed
- 15 land base for 20 years following the conversion to account for legacy effects of management on C stocks.

16 The analysis of managed lands, based on the criteria listed above, is conducted using a geographic information 17 system (Ogle et al. 2018). Lands that are used for crop production or settlements are determined from the NLCD 18 (Fry et al. 2011; Homer et al. 2007; Homer et al. 2015). Forest Lands with active fire management are determined 19 from maps of federal and state management plans from the National Atlas (U.S. Department of Interior 2005) and 20 Alaska Interagency Fire Management Council (1998). It is noteworthy that all forest lands in the conterminous 21 United States have active fire protection, and are therefore designated as managed regardless of accessibility or 22 other criteria. In addition, forest lands with timber harvests are designated as managed based on county-level 23 estimates of timber products in the U.S. Forest Service Timber Products Output Reports (U.S. Department of 24 Agriculture 2012). Timber harvest data do lead to additional designation of managed forest land in Alaska. The 25 designation of grasslands as managed is based on grazing livestock population data at the county scale from the 26 USDA National Agricultural Statistics Service (U.S. Department of Agriculture 2015). Accessibility is evaluated based 27 on a 10-km buffer surrounding road and train transportation networks using the ESRI Data and Maps product (ESRI 28 2008), and a 10-km buffer surrounding settlements using NLCD. Lands maintained for recreational purposes are 29 determined from analysis of the Protected Areas Database (U.S. Geological Survey 2012). The Protected Areas 30 Database includes lands protected from conversion of natural habitats to anthropogenic uses and describes the 31 protection status of these lands. Lands are considered managed that are protected from development if the 32 regulations allow for extractive or recreational uses or suppression of natural disturbance. Lands that are 33 protected from development and not accessible to human intervention, including no suppression of disturbances 34 or extraction of resources, are not included in the managed land base. Multiple data sources are used to 35 determine lands with active resource extraction: Alaska Oil and Gas Information System (Alaska Oil and Gas 36 Conservation Commission 2009), Alaska Resource Data File (U.S. Geological Survey 2012), Active Mines and 37 Mineral Processing Plants (U.S. Geological Survey 2005), and Coal Production and Preparation Report (U.S. Energy 38 Information Administration 2011). A buffer of 3,300 and 4,000 meters is established around petroleum extraction 39 and mine locations, respectively, to account for the footprint of operation and impacts of activities on the 40 surrounding landscape. The buffer size is based on visual analysis of disturbance to the landscape for 41 approximately 130 petroleum extraction sites and 223 mines. After applying the criteria identified above, the 42 resulting managed land area is overlaid on the NLCD to estimate the area of managed land by land use for both

43 federal and non-federal lands in Alaska. The remaining land represents the unmanaged land base. The resulting

²³ All wetlands are considered managed in this Inventory with the exception of remote areas in Alaska. Distinguishing between managed and unmanaged wetlands in the conterminous United States and Hawaii is difficult due to limited data availability. Wetlands are not characterized within the NRI with information regarding water table management. Regardless, a planned improvement is underway to subdivide managed and unmanaged wetlands.

- 1 spatial product is also used to identify NRI survey locations that are considered managed and unmanaged for the
- conterminous United States and Hawaii.24 2

Approach for Combining Data Sources 3

- 4 The managed land base in the United States has been classified into the 36 IPCC land-use/land-use conversion
- 5 categories (Table 6-7) using definitions developed to meet national circumstances, while adhering to IPCC
- 6 guidelines (2006).²⁵ In practice, the land was initially classified into a variety of land-use subcategories within the
- 7 NRI, FIA, and NLCD datasets, and then aggregated into the 36 broad land use and land-use change categories
- 8 identified in IPCC (2006). All three datasets provide information on forest land areas in the conterminous United
- 9 States, but the area data from FIA serve as the official dataset for Forest Land.
- 10 Therefore, another step in the analysis is to address the inconsistencies in the representation of the Forest Land
- 11 among the three databases. NRI and FIA have different criteria for classifying Forest Land in addition to different
- 12 sampling designs, leading to discrepancies in the resulting estimates of Forest Land area on non-federal land in the
- 13 conterminous United States. Similarly, there are discrepancies between the NLCD and FIA data for defining and
- 14 classifying Forest Land on federal lands. Any change in Forest Land Area in the NRI and NLCD also requires a
- 15 corresponding change in other land use areas because of the dependence between the Forest Land area and the
- 16 amount of land designated as other land uses, such as the amount of Grassland, Cropland, and Wetlands (i.e.,
- 17 areas for the individual land uses must sum to the total managed land area of the country).
- FIA is the main database for forest statistics, and consequently, the NRI and NLCD are adjusted to achieve 18
- 19 consistency with FIA estimates of Forest Land in the conterminous United States. Adjustments are made in the
- 20 Forest Land Remaining Forest Land, Land Converted to Forest Land, and Forest Land converted to other uses (i.e.,
- 21 Grassland, Cropland, Settlements, Other Lands, and Wetlands). All adjustments are made at the state scale to
- 22 address the differences in Forest Land definitions and the resulting discrepancies in areas among the land use and
- 23 land-use change categories. There are three steps in this process. The first step involves adjustments for Land
- 24 Converted to Forest Land (Grassland, Cropland, Settlements, Other Lands, and Wetlands), followed by adjustments
- 25 in Forest Land converted to another land use (i.e., Grassland, Cropland, Settlements, Other Lands, and Wetlands),
- 26 and finally adjustments to Forest Land Remaining Forest Land.
- 27 In the first step, Land Converted to Forest Land in the NRI and NLCD are adjusted to match the state-level
- 28 estimates in the FIA data for non-federal and federal Land Converted to Forest Land, respectively. FIA data have
- 29 not provided specific land-use categories that are converted to Forest Land in the past, but rather a sum of all Land
- Converted to Forest Land.²⁶ The NRI and NLCD provide information on specific land use conversions, such as 30
- Grassland Converted to Forest Land. Therefore, adjustments at the state level to NRI and NLCD are made 31
- 32 proportional to the amount of specific land use conversions into Forest Land for the state, prior to any
- 33 adjustments. For example, if 50 percent of land use change to Forest Land is associated with Grassland Converted
- 34 to Forest Land in a state according to NRI or NLCD, then half of the discrepancy with FIA data in the area of Land
- 35 Converted to Forest Land is addressed by increasing or decreasing the area in Grassland Converted to Forest Land. 36
- Moreover, any increase or decrease in Grassland Converted to Forest Land in NRI or NLCD is addressed by a
- 37 corresponding change in the area of Grassland Remaining Grassland, so that the total amount of managed area is
- 38 not changed within an individual state.
- 39 In the second step, state-level areas are adjusted in the NRI and NLCD to address discrepancies with FIA data for
- 40 Forest Land converted to other uses. Similar to Land Converted to Forest Land, FIA have not provided information

²⁴ The exception is cropland and settlement areas in the NRI, which are classified as managed, regardless of the managed land base derived from the spatial analysis described in this section.

²⁵ Definitions are provided in the previous section.

²⁶ The FIA program has started to collect data on the specific land uses that are converted to Forest Land, which will be further investigated and incorporated into a future Inventory.

on the specific land-use changes in the past,²⁷ and so areas associated with Forest Land conversion to other land
 uses in NRI and NLCD are adjusted proportional to the amount of area in each conversion class in these datasets.

- 3 In the final step, the area of *Forest Land Remaining Forest Land* in a given state according to the NRI and NLCD is
- adjusted to match the FIA estimates for non-federal and federal land, respectively. It is assumed that the majority
- 5 of the discrepancy in *Forest Land Remaining Forest Land* is associated with an under- or over-prediction of
- 6 Grassland Remaining Grassland and Wetland Remaining Wetland in the NRI and NLCD. This step also assumes that
- 7 there are no changes in the land use conversion categories. Therefore, corresponding increases or decreases are
- 8 made in the area estimates of Grasslands Remaining Grasslands and Wetlands Remaining Wetlands from the NRI
- 9 and NLCD. This adjustment balances the change in *Forest Land Remaining Forest Land* area, which ensures no
- 10 change in the overall amount of managed land within an individual state. The adjustments are based on the
- 11 proportion of land within each of these land-use categories at the state level according to NRI and NLCD (i.e., a
- 12 higher proportion of Grassland led to a larger adjustment in Grassland area).
- 13 The modified NRI data are then aggregated to provide the land-use and land-use change data for non-federal lands
- 14 in the conterminous United States, and the modified NLCD data are aggregated to provide the land use and land-
- use change data for federal lands. Data for all land uses in Hawaii are based on NRI for non-federal lands and on
- 16 NLCD for federal lands. Land use data in Alaska are based on the NLCD data after adjusting this dataset to be
- 17 consistent with forest land areas in the FIA (Table 6-8). The result is land use and land-use change data for the
- 18 conterminous United States, Hawaii, and Alaska.
- 19 A summary of the details on the approach used to combine data sources for each land use are described below.
- 20 Forest Land: Land representation for both non-federal and federal forest lands in the conterminous 21 United States and Alaska are based on the FIA. FIA is used as the basis for both Forest Land area data as 22 well as to estimate C stocks and fluxes on Forest Land in the conterminous United States and Alaska. FIA 23 does have survey plots in Alaska that are used to determine the C stock changes, and the associated area 24 data for this region are harmonized with the NLCD using the methods described above. NRI is used in the 25 current report to provide Forest Land areas on non-federal lands in Hawaii, and NLCD is used for federal 26 lands. FIA data is being collected in Hawaii and U.S. Territories, however there is insufficient data to make 27 population estimates for this Inventory.
- *Cropland*: Cropland is classified using the NRI, which covers all non-federal lands within 49 states
 (excluding Alaska), including state and local government-owned land as well as tribal lands. NRI is used as
 the basis for both Cropland area data as well as to estimate soil C stocks and fluxes on Cropland. NLCD is
 used to determine Cropland area and soil C stock changes on federal lands in the conterminous United
 States and Hawaii. NLCD is also used to determine croplands in Alaska, but C stock changes are not
 estimated for this region in the current Inventory.
- Grassland: Grassland on non-federal lands is classified using the NRI within 49 states (excluding Alaska),
 including state and local government-owned land as well as tribal lands. NRI is used as the basis for both
 Grassland area data as well as to estimate soil C stocks and non-CO₂ greenhouse emissions on Grassland.
 Grassland area and soil C stock changes are determined using the classification provided in the NLCD for
 federal land within the conterminous United States. NLCD is also used to estimate the areas of federal and
 non-federal grasslands in Alaska, and the federal grasslands in Hawaii, but the current Inventory does not
 include C stock changes in these areas.
- Wetlands: NRI captures wetlands on non-federal lands within 49 states (excluding Alaska), while the land
 representation data for federal wetlands and wetlands in Alaska are based on the NLCD.²⁸

²⁷ The FIA program has started to collect data on specific land uses following conversion from Forest Land, which will be further investigated and incorporated into a future Inventory.

²⁸ This analysis does not distinguish between managed and unmanaged wetlands except for remote areas in Alaska, but there is a planned improvement to subdivide managed and unmanaged wetlands for the entire land base.

- Settlements: NRI captures non-federal settlement area in 49 states (excluding Alaska). If areas of Forest
 Land or Grassland under 10 acres (4.05 ha) are contained within settlements or urban areas, they are
 classified as Settlements (urban) in the NRI database. If these parcels exceed the 10 acre (4.05 ha)
 threshold and are Grassland, they will be classified as such by NRI. Regardless of size, a forested area is
 classified as non-forest by FIA if it is located within an urban area. Land representation for settlements on
 federal lands and Alaska is based on the NLCD.
- Other Land: Any land that is not classified into one of the previous five land-use categories, is categorized
 as Other Land using the NRI for non-federal areas in the conterminous United States and Hawaii and using
 the NLCD for the federal lands in all regions of the United States and for non-federal lands in Alaska.

Some lands can be classified into one or more categories due to multiple uses that meet the criteria of more than
 one definition. However, a ranking has been developed for assignment priority in these cases. The ranking process
 is from highest to lowest priority based on the following order:

13

Settlements > Cropland > Forest Land > Grassland > Wetlands > Other Land

14 Settlements are given the highest assignment priority because they are extremely heterogeneous with a mosaic of 15 patches that include buildings, infrastructure, and travel corridors, but also open grass areas, forest patches, 16 riparian areas, and gardens. The latter examples could be classified as Grassland, Forest Land, Wetlands, and 17 Cropland, respectively, but when located in close proximity to settlement areas, they tend to be managed in a 18 unique manner compared to non-settlement areas. Consequently, these areas are assigned to the Settlements 19 land-use category. Cropland is given the second assignment priority, because cropping practices tend to dominate 20 management activities on areas used to produce food, forage, or fiber. The consequence of this ranking is that 21 crops in rotation with pasture are classified as Cropland, and land with woody plant cover that is used to produce 22 crops (e.g., orchards) is classified as Cropland, even though these areas may also meet the definitions of Grassland 23 or Forest Land, respectively. Similarly, Wetlands are considered Croplands if they are used for crop production, 24 such as rice or cranberries. Forest Land occurs next in the priority assignment because traditional forestry practices 25 tend to be the focus of the management activity in areas with woody plant cover that are not croplands (e.g., 26 orchards) or settlements (e.g., housing subdivisions with significant tree cover). Grassland occurs next in the 27 ranking, while Wetlands and then Other Land complete the list. 28 The assignment priority does not reflect the level of importance for reporting greenhouse gas emissions and 29 removals on managed land, but is intended to classify all areas into a discrete land use category. Currently, the

30 IPCC does not make provisions in the guidelines for assigning land to multiple uses. For example, a wetland is

31 classified as Forest Land if the area has sufficient tree cover to meet the stocking and stand size requirements.

32 Similarly, wetlands are classified as Cropland if they are used for crop production, such as rice, or as Grassland if

they are composed principally of grasses, grass-like plants (i.e., sedges and rushes), forbs, or shrubs suitable for

34 grazing and browsing. Regardless of the classification, emissions and removals from these areas should be included

in the Inventory if the land is considered managed, and therefore impacted by anthropogenic activity in

36 accordance with the guidance provided by the IPCC (2006).

37 QA/QC and Verification

The land base derived from the NRI, FIA, and NLCD was compared to the Topologically Integrated Geographic 38 39 Encoding and Referencing (TIGER) survey (U.S. Census Bureau 2010). The United States Census Bureau gathers 40 data on the population and economy, and has a database of land areas for the country. The area estimates of land-41 use categories, based on NRI, FIA, and NLCD, are derived from remote sensing data instead of the land survey 42 approach used by the United States Census Survey. The Census does not provide a time series of land-use change 43 data or land management information, which is needed for estimating greenhouse gas emissions from land use 44 and land use change. Regardless, the Census does provide sufficient information to provide a check on the 45 Inventory data. The Census has about 46 million more hectares of land in the United States land base compared to 46 the total area estimate of 936 million hectares derived from the combined NRI, FIA, and NLCD data. Much of this 47 difference is associated with open waters in coastal regions and the Great Lakes, which is included in the TIGER 48 Survey of the Census, but not included in the land representation using the NRI, FIA and NLCD. There is only a 0.4

- 1 percent difference when open water in coastal regions is removed from the TIGER data. General QC procedures for
- 2 data gathering and data documentation also were applied consistent with the QA/QC and Verification Procedures
- 3 described in Annex 8.

4 **Recalculations**

- 5 Major updates were made in this Inventory associated with the release of new land use data. The land
- 6 representation data were recalculated from the previous Inventory with the following datasets: a) updated FIA
- 7 data from 1990 to 2018 for the conterminous United States and Alaska, b) updated NRI data from 1990 to 2015 for
- 8 the conterminous United States and Hawaii, and c) updated NLCD data for the conterminous United States from
- 9 2001 through 2016. With recalculations, managed Forest Land increased by an average of 1.3 percent across the
- 10 time series from 1990 to 2017 according to the new FIA data. According to the new NRI and NLCD data, as well as
- 11 harmonization of these data with the new FIA data (See section "Approach for Combining Data Sources"),
- 12 Cropland, Grassland, and Other Land decreased by an average of 0.1 percent, 0.6 percent, and 2.1 percent,
- 13 respectively, and settlements increased by an average of 0.7 percent.

14 Planned Improvements

- 15 A key planned improvement for the Inventory is to fully incorporate area data by land-use type for U.S. Territories.
- 16 Fortunately, most of the managed land in the United States is included in the current land-use data, but a
- 17 complete reporting of all lands in the United States is a key goal for the near future. Preliminary land-use area data
- 18 for U.S. Territories by land-use category are provided in Box 6-2.

19 Box 6-2: Preliminary Estimates of Land Use in U.S. Territories

Several programs have developed land cover maps for U.S. Territories using remote sensing imagery, including the Gap Analysis Program, Caribbean Land Cover project, National Land Cover Dataset, USFS Pacific Islands Imagery Project, and the National Oceanic and Atmospheric Administration (NOAA) Coastal Change Analysis Program (C-CAP). Land-cover data can be used to inform a land-use classification if there is a time series to evaluate the dominate practices. For example, land that is principally used for timber production with tree cover over most of the time series is classified as forest land even if there are a few years of grass dominance following timber harvest. These products were reviewed and evaluated for use in the national Inventory as a step towards implementing a planned improvement to include U.S. Territories in the land representation for the Inventory. Recommendations are to use the NOAA C-CAP Regional Land Cover Database for the smaller island Territories (U.S. Virgin Islands, Guam, Northern Marianas Islands, and American Samoa) because this program is ongoing and therefore will be continually updated. The C-CAP product does not cover the entire territory of Puerto Rico so the NLCD was used for this area. The final selection of land-cover products for these territories is still under discussion. Results are presented below (in hectares). The total land area of all U.S. Territories is 1.05 million hectares, representing 0.1 percent of the total land base for the United States.

Table 6-9: Total Land Area (Hectares) by Land-Use Category for U.S. Territories

		U.S. Virgin		Northern Marianas	American	
	Puerto Rico	Islands	Guam	Islands	Samoa	Total
Cropland	19,712	138	236	289	389	20,764
Forest Land	404,004	13,107	24,650	25,761	15,440	482,962
Grasslands	299,714	12,148	15,449	13,636	1,830	342,777
Other Land	5,502	1,006	1,141	5,186	298	13,133
Settlements	130,330	7,650	11,146	3,637	1,734	154,496
Wetlands	24,525	4,748	1,633	260	87	31,252
Total	883,788	38,796	54,255	48,769	19,777	1,045,385

- 1 Methods in the 2013 Supplement to the 2006 Guidelines for National Greenhouse Gas Inventories: Wetlands (IPCC
- 2 2014) have been applied to estimate emissions and removals from coastal wetlands. Specifically, greenhouse gas
- 3 emissions from coastal wetlands have been developed for the Inventory using the NOAA C-CAP land cover product.
- 4 The NOAA C-CAP product is currently not used directly in the land representation analysis, however, so a planned
- 5 improvement for the next (i.e., 1990 through 2019) Inventory is to reconcile the coastal wetlands data from the C-
- 6 CAP product with the wetlands area data provided in the NRI, FIA and NLCD. In addition, the current Inventory
 7 does not include a classification of managed and unmanaged wetlands, except for remote areas in Alaska.
- does not include a classification of managed and unmanaged wetlands, except for remote areas in Alaska.
 Consequently, there is a planned improved to classify managed and unmanaged wetlands for the conterminous
- 9 United States and Hawaii, and more detailed wetlands datasets will be evaluated and integrated into the analysis
- 10 to meet this objective.
- 11 Lastly, additional land use data from NRI, which currently provides land use information through 2015, and NLCD,
- 12 which currently provides land use information through 2016, will be incorporated and used to recalculate the end
- 13 of the time series for land use and land use change associated with the conterminous United States, Alaska and
- 14 Hawaii. There are also other databases that may need to be integrated into the analysis, particularly for
- 15 Settlements.

6.2 Forest Land Remaining Forest Land (CRF Category 4A1)

Changes in Forest Carbon Stocks (CRF Category 4A1)

Delineation of Carbon Pools

- For estimating carbon (C) stocks or stock change (flux), C in forest ecosystems can be divided into the following five
 storage pools (IPCC 2006):
- Aboveground biomass, which includes all living biomass above the soil including stem, stump, branches,
 bark, seeds, and foliage. This category includes live understory.
- Belowground biomass, which includes all living biomass of coarse living roots greater than 2 millimeters
 (mm) diameter.
- Dead wood, which includes all non-living woody biomass either standing, lying on the ground (but not including litter), or in the soil.
- Litter, which includes the litter, fumic, and humic layers, and all non-living biomass with a diameter less
 than 7.5 centimeters (cm) at transect intersection, lying on the ground.
- Soil organic C (SOC), including all organic material in soil to a depth of 1 meter but excluding the coarse
 roots of the belowground pools.
- 32 In addition, there are two harvested wood pools included when estimating C flux:
- Harvested wood products (HWP) in use.
- HWP in solid waste disposal sites (SWDS).

35 Forest Carbon Cycle

- Carbon is continuously cycled among the previously defined C storage pools and the atmosphere as a result of
- biogeochemical processes in forests (e.g., photosynthesis, respiration, decomposition, and disturbances such as
- 38 fires or pest outbreaks) and anthropogenic activities (e.g., harvesting, thinning, and replanting). As trees

- 1 photosynthesize and grow, C is removed from the atmosphere and stored in living tree biomass. As trees die and
- 2 otherwise deposit litter and debris on the forest floor, C is released to the atmosphere and is also transferred to
- 3 the litter, dead wood, and soil pools by organisms that facilitate decomposition.
- 4 The net change in forest C is not equivalent to the net flux between forests and the atmosphere because timber
- 5 harvests do not cause an immediate flux of all harvested biomass C to the atmosphere. Instead, harvesting
- 6 transfers a portion of the C stored in wood to a "product pool." Once in a product pool, the C is emitted over time
- 7 as CO₂ in the case of decomposition and as CO₂, CH₄, N₂O, CO, and NO_x when the wood product combusts. The rate
- 8 of emission varies considerably among different product pools. For example, if timber is harvested to produce
- 9 energy, combustion releases C immediately, and these emissions are reported for information purposes in the
- 10 Energy sector while the harvest (i.e., the associated reduction in forest C stocks) and subsequent combustion are
- 11 implicitly estimated in the Land Use, Land-Use Change, and Forestry (LULUCF) sector (i.e., the portion of harvested
- timber combusted to produce energy does not enter the HWP pools). Conversely, if timber is harvested and used as lumber in a house, it may be many decades or even centuries before the lumber decays and C is released to the
- as lumber in a house, it may be many decades or even centuries before the lumber decays and C is released to the atmosphere. If wood products are disposed of in SWDS, the C contained in the wood may be released many years
- 14 atmosphere. If wood products are disposed of in SWDS, the C contained in the wood may be released many years 15 or decades later, or may be stored almost permanently in the SWDS. These latter fluxes, with the exception of CH₄
- 15 of decades face, of may be stored annost permanently in the SwDS. These factor fuxes, with the exception 16 from wood in SWDS, which is included in the Waste sector, are also estimated in the UULUCE sector.
- 16 from wood in SWDS, which is included in the Waste sector, are also estimated in the LULUCF sector.

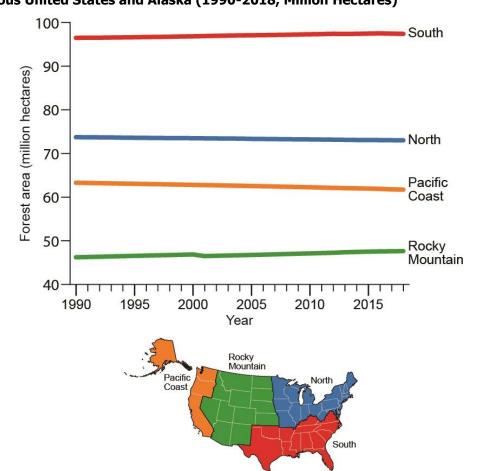
17 Net Change in Carbon Stocks within Forest Land of the United States

18 This section describes the general method for quantifying the net changes in C stocks in the five C storage pools 19 and two harvested wood pools (a more detailed description of the methods and data is provided in Annex 3.13). 20 The underlying methodology for determining C stock and stock change relies on data from the national forest 21 inventory (NFI) conducted by the Forest Inventory and Analysis (FIA) program within the USDA Forest Service. The 22 annual NFI is implemented across all U.S. forest lands within the conterminous 48 states and Alaska and 23 inventories have been initiated in Hawaii and some of the U.S. Territories. The methods for estimation and 24 monitoring are continuously improved and these improvements are reflected in the C estimates (Domke et al. 25 2016; Domke et al. 2017). First, the total C stocks are estimated for each C storage pool at the individual NFI plot, 26 next the annual net changes in C stocks for each pool are estimated, and then the changes in stocks are summed 27 for all pools to estimate total net flux at the population level (e.g., U.S. state). Changes in C stocks from 28 disturbances, such natural disturbances (e.g., wildfires, insects/disease, wind) or harvesting, are included in the net 29 changes. For instance, an inventory conducted after a fire implicitly includes only the C stocks remaining on the NFI 30 plot. The IPCC (2006) recommends estimating changes in C stocks from forest lands according to several land-use 31 types and conversions, specifically Forest Land Remaining Forest Land and Land Converted to Forest Land, with the 32 former being lands that have been forest lands for 20 years or longer and the latter being lands (i.e., croplands, 33 grassland, wetlands, settlements and other lands) that have been converted to forest lands for less than 20 years. 34 The methods and data used to delineate forest C stock changes by these two categories continue to improve and 35 in order to facilitate this delineation, a combination of modeling approaches for carbon estimation were used in

36 this Inventory.

Forest Area in the United States

38 Approximately 32 percent of the U.S. land area is estimated to be forested based on the U.S. definition of forest 39 land as provided in Section 6.1 Representation of the U.S. Land Base. All annual NFI plots included in the public FIA 40 database as of May 2019 (which includes data collected through 2018) were used in this Inventory. The NFIs from 41 each of the conterminous 48 states (CONUS; USDA Forest Service 2018a, 2018b) and Alaska comprise an estimated 42 279 million hectares of forest land that are considered managed and are included in the current Inventory. Some 43 differences also exist in forest land area estimates from the latest update to the Resources Planning Act (RPA) 44 Assessment (Oswalt et al. 2014) and the forest land area estimates included in this report, which are based on the 45 annual NFI data through 2018 for all states (USDA Forest Service 2018b). Sufficient annual NFI data are not yet 46 available for Hawaii and the U.S. Territories to include them in them in this section of the Inventory but estimates of these areas are included in Oswalt et al. (2014). While Hawaii and U.S. Territories have relatively small areas of 47 48 forest land and thus may not substantially influence the overall C budget for forest land, these regions will be


- added to the forest C estimates as sufficient data become available. Since HI was not included in this section of the
- 2 current Inventory there are small differences in the area estimates reported in this section and those reported in
- 3 Section 6.1 Representation of the U.S. Land Base.²⁹ Agroforestry systems that meet the definition of forest land
- 4 are also not currently included in the current Inventory since they are not explicitly inventoried (i.e., classified as
- 5 an agroforestry system) by either the FIA program or the Natural Resources Inventory (NRI)³⁰ of the USDA Natural
- 6 Resources Conservation Service (Perry et al. 2005).
- 7 An estimated 77 percent (211 million hectares) of U.S. forests in southeast and southcentral coastal Alaska and the
- 8 conterminous United States are classified as timberland, meaning they meet minimum levels of productivity and
- 9 have not been removed from production. Approximately ten percent of southeast and southcentral coastal Alaska
- 10 forest land and 80 percent of forest land in the conterminous United States are classified as timberland. Of the
- 11 remaining non-timberland, 30 million hectares are reserved forest lands (withdrawn by law from management for
- 12 production of wood products) and 69 million hectares are lower productivity forest lands (Oswalt et al. 2014).
- 13 Historically, the timberlands in the conterminous 48 states have been more frequently or intensively surveyed
- 14 than the forest land removed from production because it does not meet the minimum level of productivity.
- 15 Since the late 1980s, gross forest land area in southeast and southcentral coastal Alaska and the conterminous
- 16 United States has increased by about 14 million hectares (Oswalt et al. 2014) with the southern region of the
- 17 United States containing the most forest land (Figure 6-3). A substantial portion of this accrued forest land is from
- 18 the conversion of abandoned croplands to forest (e.g., Woodall et al. 2015b). Estimated forest land area in the
- 19 CONUS and Alaska represented here is stable but there are substantial conversions as described in Section 6.1
- 20 Representation of the U.S. Land Base and each of the land conversion sections for each land use category (e.g.,
- 21 Land Converted to Cropland, Land Converted to Grassland). The major influences to the net C flux from forest land
- across the 1990 to 2018 time series are management activities, natural disturbance, and the ongoing impacts of
- 23 current and previous land-use conversions. These activities affect the net flux of C by altering the amount of C
- stored in forest ecosystems and also the area converted to forest land. For example, intensified management of forests that leads to an increased rate of growth of aboveground biomass (and possible changes to the other C
- storage pools) may increase the eventual biomass density of the forest, thereby increasing the uptake and storage
- of C in the aboveground biomass pool.³¹ Though harvesting forests removes much of the C in aboveground
- biomass (and possibly changes C density in other pools), on average, the estimated volume of annual net growth in
- aboveground tree biomass in the conterminous United States is about double the volume of annual removals on
- 30 timberlands (Oswalt et al. 2014). The net effects of forest management and changes in *Forest Land Remaining*
- 31 *Forest Land* are captured in the estimates of C stocks and fluxes presented in this section.

²⁹ See Annex 3.13, Table A-231 for annual differences between the forest area reported in Section 6.1 Representation of the U.S. Land Base and Section 6.2 Forest Land Remaining Forest Land.

³⁰ The Natural Resources Inventory of the USDA Natural Resources Conservation Service is described in Section 6.1 Representation of the U.S. Land Base.

³¹ The term "biomass density" refers to the mass of live vegetation per unit area. It is usually measured on a dry-weight basis. A carbon fraction of 0.5 is used to convert dry biomass to C (USDA Forest Service 2018d).

Figure 6-3: Changes in Forest Area by Region for *Forest Land Remaining Forest Land* in the conterminous United States and Alaska (1990-2018, Million Hectares)

3

4 Forest Carbon Stocks and Stock Change

5 In Forest Land Remaining Forest Land, forest management practices, the regeneration of forest areas cleared more 6 than 20 years prior to the reporting year, and timber harvesting have resulted in net uptake (i.e., net sequestration 7 or accumulation) of C each year from 1990 through 2018. The rate of forest clearing in the 17th century following 8 European settlement had slowed by the late 19th century. Through the later part of the 20th century many areas of 9 previously forested land in the United States were allowed to revert to forests or were actively reforested. The 10 impacts of these land-use changes still influence C fluxes from these forest lands. More recently, the 1970s and 11 1980s saw a resurgence of federally-sponsored forest management programs (e.g., the Forestry Incentive 12 Program) and soil conservation programs (e.g., the Conservation Reserve Program), which have focused on tree 13 planting, improving timber management activities, combating soil erosion, and converting marginal cropland to 14 forests. In addition to forest regeneration and management, forest harvests and natural disturbance have also 15 affected net C fluxes. Because most of the timber harvested from U.S. forest land is used in wood products, and 16 many discarded wood products are disposed of in SWDS rather than by incineration, significant quantities of C in 17 harvested wood are transferred to these long-term storage pools rather than being released rapidly to the 18 atmosphere (Skog 2008). Maintaining current harvesting practices and regeneration activities on these forested 19 lands, along with continued input of harvested products into the HWP pool, C stocks in the Forest Land Remaining 20 Forest Land category are likely to continue to increase in the near term, though possibly at a lower rate. Changes in 21 C stocks in the forest ecosystem and harvested wood pools associated with Forest Land Remaining Forest Land 22 were estimated to result in net uptake of 663.2 MMT CO₂ Eq. (180.9 MMT C) in 2018 (Table 6-10 and Table 6-11). 23 The estimated net uptake of C in the Forest Ecosystem was 564.5 MMT CO₂ Eq. (153.9 MMT C) in 2018 (Table 6-10

- 1 and Table 6-11). The majority of this uptake in 2018, 385.2 MMT CO₂ Eq. (105.1 MMT C), was from aboveground
- 2 biomass. Overall, estimates of average C density in forest ecosystems (including all pools) increased consistently
- 3 over the time series with an average of approximately 192 MT C ha⁻¹ from 1990 to 2018. This was calculated by
- 4 dividing the Forest Land area estimates by Forest Ecosystem C Stock estimates for every year (see Table 6-12) and
- 5 then calculating the mean across the entire time series, i.e., 1990 through 2018. The increasing forest ecosystem C
- 6 density when combined with relatively stable forest area results in net C accumulation over time. Aboveground
- 7 live biomass is responsible for the majority of net C uptake among all forest ecosystem pools (Figure 6-4). These
- 8 increases may be influenced in some regions by reductions in C density or forest land area due to natural
- 9 disturbances (e.g., wildfire, weather, insects/disease), particularly in Alaska. The inclusion of all managed forest
- 10 land in Alaska has increased the interannual variability in carbon stock change estimates over the time series and 11 much of this variability can be attributed to severe fire years. The distribution of carbon in forest ecosystems in
- 12 Alaska is substantially different from forests in the CONUS. In Alaska, more than 12 percent of forest ecosystems in
- is stored in the litter carbon pool whereas in the CONUS only 6 percent of the total ecosystem C stocks are in the
- 14 litter pool. Much of the litter material in forest ecosystems is combusted during fire (IPCC 2006) which is why there
- 15 are substantial C losses in this pool during severe fire years (Figure 6-4).
- 16 The estimated net uptake of C in HWP was 98.8 MMT CO₂ Eq. (26.9 MMT C) in 2018 (Table 6-10 and Table 6-11).
- The majority of this uptake, 67.2 MMT CO₂ Eq. (18.3 MMT C), was from wood and paper in SWDS. Products in use were an estimated 31.5 MMT CO₂ Eq. (8.6 MMT C) in 2018.

19 Table 6-10: Net CO₂ Flux from Forest Ecosystem Pools in *Forest Land Remaining Forest Land* 20 and Harvested Wood Pools (MMT CO₂ Eq.)

Carbon Pool	1990	2005	2014	2015	2016	2017	2018
Forest Ecosystem	(610.1)	(572.6)	(532.8)	(587.4)	(565.5)	(552.0)	(564.5)
Aboveground Biomass	(425.1)	(391.3)	(390.8)	(404.6)	(397.0)	(381.2)	(385.2)
Belowground Biomass	(98.6)	(90.8)	(88.9)	(92.9)	(91.1)	(87.6)	(88.6)
Dead Wood	(81.9)	(84.1)	(80.3)	(88.4)	(87.6)	(83.1)	(86.4)
Litter	(5.0)	(5.2)	30.2	(3.1)	(0.9)	(3.5)	(3.1)
Soil (Mineral)	0.3	(1.8)	(2.7)	(0.6)	8.2	1.4	(3.3)
Soil (Organic)	(0.6)	(0.1)	(1.0)	1.4	2.3	1.4	1.4
Drained Organic Soil ^a	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Harvested Wood	(123.8)	(106.0)	(86.0)	(88.7)	(92.4)	(95.7)	(98.8)
Products in Use	(54.8)	(42.6)	(22.3)	(24.6)	(27.8)	(30.3)	(31.5)
SWDS	(69.0)	(63.4)	(63.7)	(64.1)	(64.6)	(65.5)	(67.2)
Total Net Flux	(733.9)	(678.6)	(618.8)	(676.1)	(657.9)	(647.7)	(663.2)

^a These estimates include C stock changes from drained organic soils from both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*. See the section below on CO₂, CH₄, and N₂O Emissions from Drained Organic Soils for the methodology used to estimate the CO₂ emissions from drained organic soils. Also, Table 6-22 and Table 6-23 for non-CO₂ emissions from drainage of organic soils from both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

Notes: Forest ecosystem C stock changes do not include forest stocks in U.S. Territories because managed forest land for U.S. Territories is not currently included in Section 6.1 Representation of the U.S. Land Base. The forest ecosystem C stock changes do not include Hawaii because there is not sufficient NFI data to support inclusion at this time. However, managed forest land area for Hawaii is included in Section 6.1 Representation of the U.S. Land Base so there are small differences in the forest land area estimates in this Section and Section 6.1. See Annex 3.13, Table A-231 for annual differences between the forest area reported in Section 6.1 Representation of the U.S. Land Base do not include trees on non-forest Land Remaining Forest Land. The forest ecosystem C stock changes do not include trees on non-forest land (e.g., agroforestry systems and settlement areas—see Section 6.10 *Settlements Remaining Settlements* for estimates of C stock change from settlement trees). Forest ecosystem C stocks on managed forest land in Alaska were compiled using the gain-loss method as described in Annex 3.13. Parentheses indicate net C uptake (i.e., a net removal of C from the atmosphere). Total net flux is an estimate of the actual net flux between the total forest C pool and the atmosphere. Harvested wood estimates are based on results from annual surveys and models. Totals may not sum due to independent rounding.

1 Table 6-11: Net C Flux from Forest Ecosystem Pools in *Forest Land Remaining Forest Land* 2 and Harvested Wood Pools (MMT C)

	4000						
Carbon Pool	1990	2005	2014	2015	2016	2017	2018
Forest Ecosystem	(166.4)	(156.2)	(145.3)	(160.2)	(154.2)	(150.5)	(153.9)
Aboveground Biomass	(115.9)	(106.7)	(106.6)	(110.4)	(108.3)	(104.0)	(105.1)
Belowground Biomass	(26.9)	(24.8)	(24.2)	(25.3)	(24.9)	(23.9)	(24.2)
Dead Wood	(22.3)	(22.9)	(21.9)	(24.1)	(23.9)	(22.7)	(23.6)
Litter	(1.4)	(1.4)	8.2	(0.8)	(0.3)	(1.0)	(0.8)
Soil (Mineral)	0.1	(0.5)	(0.7)	(0.2)	2.2	0.4	(0.9)
Soil (Organic)	(0.2)	(0.0)	(0.3)	0.4	0.6	0.4	0.4
Drained Organic Soil ^a	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Harvested Wood	(33.8)	(28.9)	(23.4)	(24.2)	(25.2)	(26.1)	(26.9)
Products in Use	(14.9)	(11.6)	(6.1)	(6.7)	(7.6)	(8.3)	(8.6)
SWDS	(18.8)	(17.3)	(17.4)	(17.5)	(17.6)	(17.9)	(18.3)
Total Net Flux	(200.2)	(185.1)	(168.8)	(184.4)	(179.4)	(176.7)	(180.9)

^a These estimates include carbon stock changes from drained organic soils from both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*. See the section below on CO₂, CH₄, and N₂O Emissions from Drained Organic Soils for the methodology used to estimate the C flux from drained organic soils. Also, see Table 6-22 and Table 6-23 for greenhouse gas emissions from non-CO₂ gases changes from drainage of organic soils from *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

Notes: Forest ecosystem C stock changes do not include forest stocks in U.S. Territories because managed forest land for U.S. Territories is not currently included in Section 6.1 Representation of the U.S. Land Base. The forest ecosystem C stock changes do not include Hawaii because there is not sufficient NFI data to support inclusion at this time. However, managed forest land area for Hawaii is included in Section 6.1 Representation of the U.S. Land Base so there are small differences in the forest land area estimates in this Section and Section 6.1. See Annex 3.13, Table A-231 for annual differences between the forest area reported in Section 6.1 Representation of the U.S. Land Base and Section 6.2 *Forest Land Remaining Forest Land*. The forest ecosystem C stock changes do not include trees on non-forest land (e.g., agroforestry systems and settlement areas—see Section 6.10 *Settlements Remaining Settlements* for estimates of C stock change from settlement trees). Forest ecosystem C stocks on managed forest land in Alaska were compiled using the gain-loss method as described in Annex 3.13. Parentheses indicate net C uptake (i.e., a net removal of C from the atmosphere). Total net flux is an estimate of the actual net flux between the total forest C pool and the atmosphere. Harvested wood estimates are based on results from annual surveys and models. Totals may not sum due to independent rounding.

3 Stock estimates for forest ecosystem and harvested wood C storage pools are presented in Table 6-12. Together,

4 the estimated aboveground biomass and soil C pools account for a large proportion of total forest ecosystem C

5 stocks. Forest land area estimates are also provided in Table 6-12, but these do not precisely match those in

6 Section 6.1 Representation of the U.S. Land Base for *Forest Land Remaining Forest Land*. This is because the forest

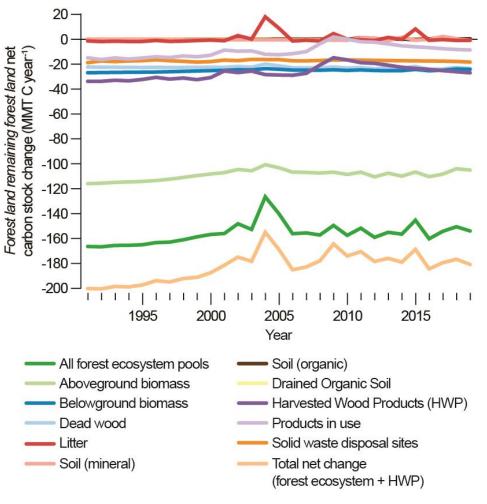
7 land area estimates in Table 6-12 only include managed forest land in the conterminous 48 states and Alaska while

8 the area estimates in Section 6.1 include all managed forest land in Hawaii. Differences also exist because forest

9 land area estimates are based on the latest NFI data through 2018 and woodland areas previously included as

10 forest land have been separated and included in the Grassland categories in this Inventory.³²

11 Table 6-12: Forest Area (1,000 ha) and C Stocks in *Forest Land Remaining Forest Land* and 12 Harvested Wood Pools (MMT C)


	1990	2005	2015	2016	2017	2018	2019
Forest Area (1,000 ha)	279,748	279,749	280,041	280,041	279,893	279,787	279,682
Carbon Pools (MMT C)							

³² See Annex 3.13, Table A-231 for annual differences between the forest area reported in Section 6.1 Representation of the U.S. Land Base and Section 6.2 Forest Land Remaining Forest Land.

Forest Ecosystem	51,527	53,886	55,431	55,592	55,746	55,897	56,051
Aboveground Biomass	11,833	13,484	14,561	14,672	14,780	14,884	14,989
Belowground Biomass	2,350	2,734	2,982	3,008	3,033	3,056	3,081
Dead Wood	2,120	2,454	2,683	2,707	2,731	2,753	2,777
Litter	3,662	3,647	3,638	3,639	3,639	3,640	3,641
Soil (Mineral)	25,636	25,639	25,640	25,640	25,637	25,637	25,638
Soil (Organic)	5,927	5,929	5,927	5,927	5,926	5,926	5,926
Harvested Wood	1,895	2,353	2,567	2,591	2,616	2,642	2,669
Products in Use	1,249	1,447	1,490	1,497	1,505	1,513	1,521
SWDS	646	906	1,076	1,094	1,112	1,129	1,148
Total C Stock	53,423	56,239	57,998	58,183	58,362	58,539	58,720

Notes: Forest area and C stock estimates include all *Forest Land Remaining Forest Land* in the conterminous 48 states and Alaska. Forest ecosystem C stocks do not include forest stocks in U.S. Territories because managed forest land for U.S. Territories is not currently included in Section 6.1 Representation of the U.S. Land Base. The forest ecosystem C stocks do not include Hawaii because there is not sufficient NFI data to support inclusion at this time. However, managed forest land area for Hawaii is included in Section 6.1 Representation of the U.S. Land Base so there are small differences in the forest land area estimates in this Section and Section 6.1. See Annex 3.13, Table A-231 for annual differences between the forest area reported in Section 6.1 Representation of the U.S. Land Base and Section 6.2 *Forest Land Remaining Forest Land*. The forest ecosystem C stocks do not include trees on non-forest land (e.g., agroforestry systems and settlement areas—see Section 6.10 *Settlements Remaining Settlements* for estimates of C stock change from settlement trees). Forest ecosystem C stocks on managed forest land in Alaska were compiled using the gain-loss method as described in Annex 3.13. Harvested wood product stocks include exports, even if the logs are processed in other countries, and exclude imports. Harvested wood estimates are based on results from annual surveys and models. Totals may not sum due to independent rounding. Population estimates compiled using FIA data are assumed to represent stocks as of January 1 of the Inventory year. Flux is the net annual change in stock. Thus, an estimate of flux for 2018 requires estimates of C stocks for 2018 and 2019.

- 1 Figure 6-4: Estimated Net Annual Changes in C Stocks for All C Pools in *Forest Land*
- 2 Remaining Forest Land in the Conterminous U.S. and Alaska (1990-2018, MMT C per Year)

3

4 5

Box 6-3: CO₂ Emissions from Forest Fires

As stated previously, the forest inventory approach implicitly includes all C losses due to disturbances such as forest fires, because only C remaining in the forest is estimated. Net C stock change is estimated by subtracting consecutive C stock estimates. A forest fire disturbance removes C from the forest. The inventory data on which net C stock estimates are based already reflect this C loss. Therefore, estimates of net annual changes in C stocks for U.S. forest land already includes CO₂ emissions from forest fires occurring in the conterminous states as well as the portion of managed forest lands in Alaska. Because it is of interest to quantify the magnitude of CO₂ emissions from fire disturbance, these separate estimates are highlighted here. Note that these CO₂ estimates are based on the same methodology as applied for the non-CO₂ greenhouse gas emissions from forest fires that are also quantified in a separate section below as required by IPCC Guidance and UNFCCC Reporting Requirements.

The IPCC (2006) methodology with U.S.-specific data on annual area burned, potential fuel availability, and firespecific severity and combustion were combined with IPCC default factors as needed to estimate CO₂ emissions from forest fires. The latest information on area burned is used to compile fire emissions for the United States. At the time this Inventory was compiled, the most-recent fire data available were for 2017. That is, fire data for 2018 were not available so estimates from 2017 were used. The 2018 estimates will be updated in subsequent reports as fire data become available. Estimated CO₂ emissions for wildfires in the conterminous 48 states and in Alaska as well as prescribed fires in 2018 were 151 MMT CO₂ per year (Table 6-13). This estimate is an embedded component of the net annual forest C stock change estimates provided previously (i.e., Table 6-11), but this separate approach to estimate CO₂ emissions is necessary in order to associate these emissions with fire. See the discussion in Annex 3.13 for more details on this methodology. Note that in Alaska a portion of the forest lands are considered unmanaged, therefore the estimates for Alaska provided in Table 6-13 include only managed forest land within the state, which is consistent with C stock change estimates provided above.

Year	CO₂ emitted from Wildfires in the Conterminous 48 States (MMT yr ⁻¹)	CO ₂ emitted from Wildfires in Alaska (MMTyr ⁻¹)	CO ₂ emitted from Prescribed Fires (MMTyr ⁻¹)	Total CO₂ emitted (MMTyr ⁻¹)
1990	6.2	5.3	0.2	11.7
2005	20.5	44.1	1.5	66.2
2014	60.3	3.5	10.4	74.2
2015	115.8	41.2	6.1	163.1
2016	34.0	1.7	9.7	45.4
2017	141.1	1.5	8.6	151.1
2018 ^b	141.1	1.5	8.6	151.1

Table 6-13: Estimates of CO2 (MMT per Year) Emissions from Forest Fires in the Conterminous 48 States and Alaska^a

^a These emissions have already been included in the estimates of net annual changes in C stocks, which include the amount sequestered minus any emissions, including the assumption that combusted wood may continue to decay through time.

^b The data for 2018 were unavailable when these estimates were summarized; therefore 2017, the most recent available estimate, is applied to 2018.

1

2 Methodology and Data Sources

3 The methodology described herein is consistent with IPCC (2006). Forest ecosystem C stocks and net annual C 4 stock change were determined according to the stock-difference method for the CONUS, which involved applying 5 C estimation factors to annual forest inventories across time to obtain C stocks and then subtracting between the 6 years to obtain the stock change. The gain-loss method was used to estimate C stocks and net annual C stock 7 changes in Alaska. The approaches for estimating carbon stocks and stock changes on Forest Land Remaining 8 Forest Land are described in Annex 3.13. All annual NFI plots available in the public FIA database (USDA Forest 9 Service 2018b) were used in the current Inventory. Additionally, NFI plots established and measured in 2014 as 10 part of a pilot inventory in interior Alaska were also included in this report as were plots established and measured 11 in 2015 and 2016 as part of the operational NFI in interior Alaska. Some of the data from the pilot and operational 12 NFI in interior Alaska are not yet available in the public FIA database. Only plots which meet the definition of forest 13 land (see Section 6.1 Representation of the U.S. Land Base) are measured in the NFI, as part of the pre-field 14 process in the FIA program, all plots or portions of plots (i.e., conditions) are classified into a land use category. 15 This land use information on each forest and non-forest plot was used to estimate forest land area and land 16 converted to and from forest land over the time series. To implement the stock-difference approach, forest Land 17 conditions in the CONUS were observed on NFI plots at time t_0 and at a subsequent time $t_1=t_0+s$, where s is the 18 time step (time measured in years) and is indexed by discrete (e.g., 5 year) forest age classes. The inventory from to 19 was then projected from t_1 to 2018. This projection approach requires simulating changes in the age-class 20 distribution resulting from forest aging and disturbance events and then applying C density estimates for each age 21 class to obtain population estimates for the nation. To implement the gain-loss approach in Alaska, forest land 22 conditions in Alaska were observed on NFI plots from 2004 to 2017. Plot-level data from the NFI were harmonized 23 with auxiliary data describing climate, forest structure, disturbance, and other site-specific conditions to develop

1 non-parametric models to predict carbon stocks by forest ecosystem carbon pool as well as fluxes over the entire

2 inventory period, 1990 to 2018. First, carbon stocks for each forest ecosystem carbon pool were predicted for the

3 year 2016 for all base intensity NFI plot locations (representing approximately 2,403 ha) in coastal southeast and

4 southcentral Alaska and for 1/5 intensity plots in interior Alaska (representing 12,015 ha). Next, the

- 5 chronosequence of sampled NFI plots and auxiliary information (e.g., climate, forest structure, disturbance, and
- 6 other site-specific data) were used to predict annual gains and losses by forest ecosystem carbon pool. The annual
- 7 gains and losses were then combined with the stock estimates and disturbance information to compile plot- and
- 8 population-level carbon stocks and fluxes for each year from 1990 to 2018. To estimate C stock changes in
- harvested wood, estimates were based on factors such as the allocation of wood to various primary and end-use
 products as well as half-life (the time at which half of the amount placed in use will have been discarded from use)
- products as well as half-life (the time at which half of the amount placed in use will have been discarded from use) and expected disposition (e.g., product pool, SWDS, combustion). An overview of the different methodologies and
- 12 data sources used to estimate the C in forest ecosystems within the conterminous states and Alaska and harvested
- 13 wood products for all of the United States is provided below. See Annex 3.13 for details and additional information
- 14 related to the methods and data.

15 Forest Ecosystem Carbon from Forest Inventory

The United States applied the compilation approach described in Woodall et al. (2015a) for the current Inventory which removes the older periodic inventory data, which may be inconsistent with annual inventory data, from the estimation procedures and enables the delineation of forest C accumulation by forest growth, land use change, and natural disturbances such as fire. Development will continue on a system that attributes changes in forest C to disturbances and delineates *Land Converted to Forest Land* from *Forest Land Remaining Forest Land*. As part of this development, C pool science will continue and will be expanded to improve the estimates of C stock transfers from forest land to other land uses and include techniques to better identify land use change (see the Planned

23 Improvements section below).

24 Unfortunately, the annual FIA inventory system does not extend into the 1970s, necessitating the adoption of a 25 system to estimate carbon stocks prior to the establishment of the annual forest inventory. The estimation of 26 carbon stocks prior to the annual national forest inventory consisted of a modeling framework comprised of a 27 forest dynamics module (age transition matrices) and a land use dynamics module (land area transition matrices). 28 The forest dynamics module assesses forest uptake, forest aging, and disturbance effects (e.g., disturbances such 29 as wind, fire, and floods identified by foresters on inventory plots). The land use dynamics module assesses C stock 30 transfers associated with afforestation and deforestation (Woodall et al. 2015b). Both modules are developed 31 from land use area statistics and C stock change or C stock transfer by age class. The required inputs are estimated 32 from more than 625,000 forest and non-forest observations recorded in the FIA national database (U.S. Forest 33 Service 2018a, b, c). Model predictions prior to the annual inventory period are constructed from the estimation 34 system using the annual estimates. The estimation system is driven by the annual forest inventory system 35 conducted by the FIA program (Frayer and Furnival 1999; Bechtold and Patterson 2005; USDA Forest Service 36 2018d, 2018a). The FIA program relies on a rotating panel statistical design with a sampling intensity of one 674.5 37 m² ground plot per 2,403 ha of land and water area. A five-panel design, with 20 percent of the field plots typically 38 measured each year within a state, is used in the eastern United States and a ten-panel design, with typically 10 39 percent of the field plots measured each year within a state, is used in the western United States. The 40 interpenetrating hexagonal design across the U.S. landscape enables the sampling of plots at various intensities in 41 a spatially and temporally unbiased manner. Typically, tree and site attributes are measured with higher sample 42 intensity while other ecosystem attributes such as downed dead wood are sampled during summer months at 43 lower intensities. The first step in incorporating FIA data into the estimation system is to identify annual inventory 44 datasets by state. Inventories include data collected on permanent inventory plots on forest lands and were 45 organized as separate datasets, each representing a complete inventory, or survey, of an individual state at a 46 specified time. Many of the annual inventories reported for states are represented as "moving window" averages, 47 which mean that a portion—but not all—of the previous year's inventory is updated each year (USDA Forest 48 Service 2018d). Forest C estimates are organized according to these state surveys, and the frequency of surveys

49 varies by state.

- 1 Using this FIA data, separate estimates were prepared for the five C storage pools identified by IPCC (2006) and
- 2 described above. All estimates were based on data collected from the extensive array of permanent, annual forest
- 3 inventory plots and associated models (e.g., live tree belowground biomass) in the United States (USDA Forest
- 4 Service 2018b, 2018c). Carbon conversion factors were applied at the disaggregated level of each inventory plot
- 5 and then appropriately expanded to population estimates.

6 Carbon in Biomass

- 7 Live tree C pools include aboveground and belowground (coarse root) biomass of live trees with diameter at breast
- 8 height (dbh) of at least 2.54 cm at 1.37 m above the litter. Separate estimates were made for above- and
- 9 belowground biomass components. If inventory plots included data on individual trees, aboveground and
- 10 belowground (coarse roots) tree C was based on Woodall et al. (2011a), which is also known as the component
- 11 ratio method (CRM), and is a function of tree volume, species, and diameter. An additional component of foliage,
- 12 which was not explicitly included in Woodall et al. (2011a), was added to each tree following the same CRM
- 13 method.
- 14 Understory vegetation is a minor component of biomass, which is defined in the FIA program as all biomass of
- undergrowth plants in a forest, including woody shrubs and trees less than 2.54 cm dbh. For this Inventory, it was
- assumed that 10 percent of total understory C mass is belowground (Smith et al. 2006). Estimates of C density
- 17 were based on information in Birdsey (1996) and biomass estimates from Jenkins et al. (2003). Understory biomass
- 18 represented over 1 percent of C in biomass, but its contribution rarely exceeded 2 percent of the total carbon
- 19 stocks or stock changes across all forest ecosystem C pools each year.

20 Carbon in Dead Organic Matter

- 21 Dead organic matter was initially calculated as three separate pools—standing dead trees, downed dead wood,
- 22 and litter—with C stocks estimated from sample data or from models as described below. The standing dead tree C
- pool includes aboveground and belowground (coarse root) biomass for trees of at least 12.7 cm dbh. Calculations
- followed the basic method applied to live trees (Woodall et al. 2011a) with additional modifications to account for
- decay and structural loss (Domke et al. 2011; Harmon et al. 2011). Downed dead wood estimates are based on
- 26 measurement of a subset of FIA plots for downed dead wood (Domke et al. 2013; Woodall and Monleon 2008;
- Woodall et al. 2013). Downed dead wood is defined as pieces of dead wood greater than 7.5 cm diameter, at
 transect intersection, that are not attached to live or standing dead trees. This includes stumps and roots of
- 29 harvested trees. To facilitate the downscaling of downed dead wood C estimates from the state-wide population
- analysisted trees. To facilitate the downscaling of downed dead wood c estimates from the state-wide population
 estimates to individual plots, downed dead wood models specific to regions and forest types within each region
- 31 are used. Litter C is the pool of organic C (also known as duff, humus, and fine woody debris) above the mineral
- soil and includes woody fragments with diameters of up to 7.5 cm. A subset of FIA plots are measured for litter C.
- A modeling approach, using litter C measurements from FIA plots (Domke et al. 2016) was used to estimate litter C
- 34 for every FIA plot used in the estimation framework.

35 Carbon in Forest Soil

- 36 Soil carbon is the largest terrestrial C sink with much of that C in forest ecosystems. The FIA program has been
- 37 consistently measuring soil attributes as part of the annual inventory since 2001 and has amassed an extensive
- inventory of soil measurement data on forest land in the conterminous United States and coastal Alaska (O'Neill et
- al. 2005). Observations of mineral and organic soil C on forest land from the FIA program and the International Soil
- 40 Carbon Monitoring Network were used to develop and implement a modeling approach that enabled the
- 41 prediction of mineral and organic (i.e., undrained organic soils) soil C to a depth of 100 cm from empirical
- 42 measurements to a depth of 20 cm and included site-, stand-, and climate-specific variables that yield predictions 43 of soil C stocks specific to forest land in the United States (Domke et al. 2017). This new approach allowed for
- 44 separation of mineral and organic soils, also referred to as Histosols, in the *Forest Land Remaining Forest Land*
- 44 separation of mineral and organic soils, also referred to as instosols, in the *Porest Land Remaining Porest Land* 45 category. Note that mineral and organic (i.e., undrained organic soils) soil C stock changes are reported to a depth
- of 100 cm for *Forest Land Remaining Forest Land* to remain consistent with past reporting in this category,
- 47 however for consistency across land-use categories mineral (e.g., cropland, grassland, settlements) soil C is

- 1 reported to a depth of 30 cm in Section 6.3 Land Converted to Forest Land. Estimates of C stock changes from
- 2 organic soils shown in Table 6-10 and Table 6-11 include separately the emissions from drained organic forest soils,
- 3 the methods used to develop these estimates can be found in the Drained Organic Soils section below.

4 Harvested Wood Carbon

5 Estimates of the HWP contribution to forest C sinks and emissions (hereafter called "HWP contribution") were

- 6 based on methods described in Skog (2008) using the WOODCARB II model. These methods are based on IPCC
- 7 (2006) guidance for estimating the HWP contribution. IPCC (2006) provides methods that allow for reporting of
- 8 HWP contribution using one of several different methodological approaches: Production, stock change and
 9 atmospheric flow, as well as a default method that assumes there is no change in HWP C stocks (see Annex 3.13)
- for more details about each approach). The United States uses the production approach to report HWP
- 11 contribution. Under the production approach, C in exported wood was estimated as if it remains in the United
- 12 States, and C in imported wood was not included in the estimates. Though reported U.S. HWP estimates are based
- 13 on the production approach, estimates resulting from use of the two alternative approaches, the stock change and
- 14 atmospheric flow approaches, are also presented for comparison (see Annex 3.13). Annual estimates of change
- 15 were calculated by tracking the annual estimated additions to and removals from the pool of products held in end
- uses (i.e., products in use such as housing or publications) and the pool of products held in SWDS. The C loss from
- 17 harvest is reported in the Forest Ecosystem component of the Forest Land Remaining Forest Land and Land
- 18 Converted to Forest Land sections and for information purposes in the Energy sector, but the non-CO₂ emissions
- associated with biomass energy are included in the Energy sector emissions (see Chapter 3).
- 20 Solidwood products include lumber and panels. End-use categories for solidwood include single and multifamily
- 21 housing, alteration and repair of housing, and other end uses. There is one product category and one end-use
- category for paper. Additions to and removals from pools were tracked beginning in 1900, with the exception of
- additions of softwood lumber to housing, which began in 1800. Solidwood and paper product production and
- trade data were taken from USDA Forest Service and other sources (Hair and Ulrich 1963; Hair 1958; USDC Bureau of Census 1976; Ulrich 1985, 1989; Steer 1948; AF&PA 2006a, 2006b; Howard 2003, 2007, Howard and Jones 2016,
- of Census 1976; Ulrich 1985, 1989; Steer 1948; AF&PA 2006a, 2006b; Howard 2003, 2007, Howard and Jones 2016,
 Howard and Liang 2019). Estimates for disposal of products reflects the change over time in the fraction of
- 27 products discarded to SWDS (as opposed to burning or recycling) and the fraction of SWDS that were in sanitary
- 28 landfills versus dumps.
- There are five annual HWP variables that were used in varying combinations to estimate HWP contribution usingany one of the three main approaches listed above. These are:
- 31 (1A) annual change of C in wood and paper products in use in the United States,
- 32 (1B) annual change of C in wood and paper products in SWDS in the United States,
- (2A) annual change of C in wood and paper products in use in the United States and other countries where the
 wood came from trees harvested in the United States,
- (2B) annual change of C in wood and paper products in SWDS in the United States and other countries where
 the wood came from trees harvested in the United States,
- 37 (3) C in imports of wood, pulp, and paper to the United States,
- 38 (4) C in exports of wood, pulp and paper from the United States, and
- 39 (5) C in annual harvest of wood from forests in the United States.
- 40 The sum of variables 2A and 2B yielded the estimate for HWP contribution under the production estimation
- 41 approach. A key assumption for estimating these variables that adds uncertainty in the estimates was that
- 42 products exported from the United States and held in pools in other countries have the same half-lives for
- 43 products in use, the same percentage of discarded products going to SWDS, and the same decay rates in SWDS as
- 44 they would in the United States.

45 Uncertainty and Time-Series Consistency

- 1 A quantitative uncertainty analysis placed bounds on the flux estimates for forest ecosystems through a
- 2 combination of sample-based and model-based approaches to uncertainty for forest ecosystem CO₂ flux using IPCC
- 3 Approach 1 (Table 6-14). A Monte Carlo Stochastic Simulation of the methods described above, and probabilistic
- 4 sampling of C conversion factors, were used to determine the HWP uncertainty using IPCC Approach 2. See Annex
- 5 3.13 for additional information. The 2018 net annual change for forest C stocks was estimated to be between -
- 6 846.3 and -480.6 MMT CO₂ Eq. around a central estimate of -663.2 MMT CO₂ Eq. at a 95 percent confidence level.
- 7 This includes a range of -745.5 to -383.4 MMT CO₂ Eq. around a central estimate of -564.5 MMT CO₂ Eq. for forest
- 8 ecosystems and -125.9 to -74.7 MMT CO₂ Eq. around a central estimate of -98.8 MMT CO₂ Eq. for HWP.

9 Table 6-14: Quantitative Uncertainty Estimates for Net CO₂ Flux from *Forest Land* 10

Remaining Forest Land: Changes in Forest C Stocks (MMT CO₂ Eq. and Percent)

Source	Cas	2018 Flux Estimate	Unce	rtainty Range Re	Relative to Flux Estimate		
Source	Gas	(MMT CO ₂ Eq.)	(MMT CO_2 Eq.) (MMT CO_2 Eq.		(%)		
			Lower	Upper	Lower	Upper	
			Bound	Bound	Bound	Bound	
Forest Ecosystem C Pools ^a	CO ₂	(564.5)	(745.5)	(383.4)	-32.1%	32.1%	
Harvested Wood Products ^b	CO ₂	(98.8)	(125.9)	(74.7)	-27.4%	24.4%	
Total Forest	CO ₂	(663.2)	(846.3)	(480.6)	-27.6%	27.5%	

^a Range of flux estimates predicted through a combination of sample-based and model-based uncertainty for a 95 percent confidence interval, IPCC Approach 1.

^b Range of flux estimates predicted by Monte Carlo stochastic simulation for a 95 percent confidence interval, IPCC Approach 2.

Note: Parentheses indicate negative values or net uptake.

QA/QC and Verification 11

12 As discussed above, the FIA program has conducted consistent forest surveys based on extensive statistically-

13 based sampling of most of the forest land in the conterminous United States, dating back to 1952. The FIA program

14 includes numerous quality assurance and quality control (QA/QC) procedures, including calibration among field

15 crews, duplicate surveys of some plots, and systematic checking of recorded data. Because of the statistically-

16 based sampling, the large number of survey plots, and the quality of the data, the survey databases developed by

17 the FIA program form a strong foundation for C stock estimates. Field sampling protocols, summary data, and

18 detailed inventory databases are archived and are publicly available on the Internet (USDA Forest Service 2018d).

19 General quality control procedures were used in performing calculations to estimate C stocks based on survey

20 data. For example, the C datasets, which include inventory variables such as areas and volumes, were compared to

21 standard inventory summaries such as the forest resource statistics of Oswalt et al. (2014) or selected population

22 estimates generated from the FIA database, which are available at an FIA internet site (USDA Forest Service

23 2018b). Agreement between the C datasets and the original inventories is important to verify accuracy of the data 24 used.

25 Estimates of the HWP variables and the HWP contribution under the production estimation approach use data

26 from U.S. Census and USDA Forest Service surveys of production and trade and other sources (Hair and Ulrich

27 1963; Hair 1958; USDC Bureau of Census 1976; Ulrich 1985, 1989; Steer 1948; AF&PA 2006a, 2006b; Howard 2003,

28 2007, Howard and Jones 2016, Howard and Liang 2019). Factors to convert wood and paper to units of C are based

- 29 on estimates by industry and Forest Service published sources (see Annex 3.13). The WOODCARB II model uses
- 30 estimation methods suggested by IPCC (2006). Estimates of annual C change in solidwood and paper products in
- 31 use were calibrated to meet two independent criteria. The first criterion is that the WOODCARB II model estimate
- 32 of C in houses standing in 2001 needs to match an independent estimate of C in housing based on U.S. Census and
- 33 USDA Forest Service survey data. Meeting the first criterion resulted in an estimated half-life of about 80 years for 34
- single family housing built in the 1920s, which is confirmed by other U.S. Census data on housing. The second 35 criterion is that the WOODCARB II model estimate of wood and paper being discarded to SWDS needs to match
- 36 EPA estimates of discards used in the Waste sector each year over the period 1990 to 2000 (EPA 2006). These

- 1 criteria help reduce uncertainty in estimates of annual change in C in products in use in the United States and, to a
- 2 lesser degree, reduce uncertainty in estimates of annual change in C in products made from wood harvested in the
- 3 United States. In addition, WOODCARB II landfill decay rates have been validated by ensuring that estimates of CH₄
- 4 emissions from landfills based on EPA (2006) data are reasonable in comparison to CH₄ estimates based on
- 5 WOODCARB II landfill decay rates.

6 Recalculations

- 7 The methods used in the current Inventory to compile estimates for forest ecosystem carbon stocks and stock
- 8 changes and HWPs from 1990 through 2018 are consistent with those used in the 1990 through 2017 Inventory.
- 9 New NFI data contributed to increases in forest land area and stock changes, particularly in the Intermountain
- 10 West region (Table 6-15). Soil carbon stocks decreased in the latest Inventory relative to the previous Inventory
- and this change can be attributed to refinements in the Digital General Soil Map of the United States (STATSGO2)
- 12 dataset where soil orders may have changed in the updated data product. (Table 6-15) This resulted in a structural
- 13 change in the soil organic carbon estimates for mineral and organic soils across the entire time series (Table 6-10).
- 14 Updated HWPs data from 2003 through 2017 led to changes in Products in Use and SWDS between the previous
- 15 Inventory and the current Inventory (Table 6-16).

Table 6-15: Recalculations of Forest Area (1,000 ha) and C Stocks in *Forest Land Remaining Forest Land* and Harvested Wood Pools (MMT C)

	Previous Estimate	Current Estimate	Current Estimate	
	Year 2018,	Year 2018,	Year 2019,	
	2019 Inventory	2020 Inventory	2020 Inventory	
Forest Area (1000 ha)	273,791	279,787	279,682	
Carbon Pools (MMT C)				
Forest	57,687	55,897	56,051	
Aboveground Biomass	14,664	14,884	14,989	
Belowground Biomass	3,042	3,056	3,081	
Dead Wood	2,744	2,753	2,777	
Litter	3,639	3,640	3,641	
Soil (Mineral)	27,816	25,637	25,638	
Soil (Organic)	5,781	5,926	5,926	
Harvested Wood	2,640	2,642	2,669	
Products in Use	1,510	1,513	1,521	
SWDS	1,130	1,129	1,148	
Total Stock	60,328	58,539	58,720	

18 Table 6-16: Recalculations of Net C Flux from Forest Ecosystem Pools in *Forest Land* 19 *Remaining Forest Land* and Harvested Wood Pools (MMT C)

	Previous Estimate	Current Estimate	Current Estimate	
	Year 2017,	Year 2017,	Year 2018,	
Carbon Pool (MMT C)	2019 Inventory	2020 Inventory	2020 Inventory	
Forest	(141.2)	(150.5)	(153.9)	
Aboveground Biomass	(97.4)	(104.0)	(105.1)	
Belowground Biomass	(22.9)	(23.9)	(24.2)	
Dead Wood	(21.1)	(22.7)	(23.6)	
Litter	(1.0)	(1.0)	(0.8)	
Soil (Mineral)	0.6	0.4	(0.9)	
Soil (Organic)	0.4	0.4	0.4	
Drained organic soil	0.2	0.2	0.2	
Harvested Wood	(28.2)	(26.1)	(26.9)	
Products in Use	(9.7)	(8.3)	(8.6)	
SWDS	(18.4)	(17.9)	(18.3)	
Total Net Flux	(169.4)	(176.7)	(180.9)	

1 Planned Improvements

Reliable estimates of forest C stocks and changes across the diverse ecosystems of the United States require a high
 level of investment in both annual monitoring and associated analytical techniques. Development of improved
 monitoring/reporting techniques is a continuous process that occurs simultaneously with annual Inventory
 submissions. Planned improvements can be broadly assigned to the following categories: development of a robust

6 estimation and reporting system, individual C pool estimation, coordination with other land-use categories, and

7 annual inventory data incorporation.

8 While this Inventory submission includes C change by Forest Land Remaining Forest Land and Land Converted to 9 Forest Land and C stock changes for all IPCC pools in these two categories, there are many improvements that are 10 still necessary. The estimation approach used for the CONUS in the current Inventory for the forest land category 11 operates at the state scale, whereas previously the western United States and southeast and southcentral coastal 12 Alaska operated at a regional scale. While this is an improvement over previous Inventories and led to improved 13 estimation and separation of land use categories in the current Inventory, research is underway to leverage all FIA 14 data and auxiliary information (i.e., remotely sensed information) to operate at finer spatial and temporal scales. 15 As in past submissions, emissions and removals associated with natural (e.g., wild fire, insects, and disease) and 16 human (e.g., harvesting) disturbances are implicitly included in the report given the design of the annual NFI, but 17 not explicitly estimated. In addition to integrating auxiliary information into the estimation framework and 18 leveraging all NFI plot measurements, alternative estimators are also being evaluated which will eliminate latency 19 in population estimates from the NFI, improve annual estimation and characterization of interannual variability, facilitate attribution of fluxes to particular activities, and allow for easier harmonization of NFI data with auxiliary 20 21 data products. The transparency and repeatability of estimation and reporting systems will be improved through 22 the dissemination of open source code (e.g., R programming language) in concert with the public availability of the 23 annual NFI (USDA Forest Service 2018b). Also, several FIA database processes are being institutionalized to 24 increase efficiency and QA/QC in reporting and further improve transparency, completeness, consistency, 25 accuracy, and availability of data used in reporting. Finally, a combination of approaches were used to estimate 26 uncertainty associated with C stock changes in the Forest Land Remaining Forest Land category in this report. 27 There is research underway investigating more robust approaches to total uncertainty (Clough et al. 2016), which 28 will be considered in future Inventory reports. 29 The modeling framework used to estimate downed dead wood within the dead wood C pool will be updated 30 similar to the litter (Domke et al. 2016) and soil C pools (Domke et al. 2017). Finally, components of other pools, 31 such as C in belowground biomass (Russell et al. 2015) and understory vegetation (Russell et al. 2014; Johnson et

32 al. 2017), are being explored but may require additional investment in field inventories before improvements can

33 be realized with the Inventory report.

34 The foundation of forest C estimation and reporting is the annual NFI. The ongoing annual surveys by the FIA 35 program are expected to improve the accuracy and precision of forest C estimates as new state surveys become 36 available (USDA Forest Service 2018b). With the exception of Wyoming and western Oklahoma, all other states in 37 the CONUS now have sufficient annual NFI data to consistently estimate C stocks and stock changes for the future 38 using the state-level compilation system. The FIA program continues to install permanent plots in Alaska as part of 39 the operational NFI and as more plots are added to the NFI they will be used to improve estimates for all managed 40 forest land in Alaska. The methods used to include all managed forest land in Alaska will be used in the years ahead 41 for Hawaii and U.S. Territories as forest C data become available (only a small number of plots from Hawaii are 42 currently available from the annualized sampling design). To that end, research is underway to incorporate all NFI 43 information (both annual and periodic data) and the dense time series of remotely sensed data in multiple 44 inferential frameworks for estimating greenhouse gas emissions and removals as well as change detection and 45 attribution across the entire reporting period and all managed forest land in the United States. Leveraging this 46 auxiliary information will aid not only the interior Alaska effort but the entire inventory system. In addition to fully 47 inventorying all managed forest land in the United States, the more intensive sampling of fine woody debris, litter, 48 and SOC on a subset of FIA plots continues and will substantially improve resolution of C pools (i.e., greater sample

- 1 intensity; Westfall et al. 2013) as this information becomes available (Woodall et al. 2011b). Increased sample
- 2 intensity of some C pools and using annualized sampling data as it becomes available for those states currently not
- 3 reporting are planned for future submissions. The NFI sampling frame extends beyond the forest land use category
- 4 (e.g., woodlands, which fall into the grasslands land use category, and urban areas, which fall into the settlements
- 5 land use category) with inventory-relevant information for trees outside of forest land. These data will be utilized
- 6 as they become available in the NFI.

7 Non-CO₂ Emissions from Forest Fires

8 Emissions of non-CO₂ gases from forest fires were estimated using U.S.-specific data for annual area of forest

9 burned, potential fuel availability, and fire severity as well as the default IPCC (2006) emissions and some

10 combustion factors applied to the IPCC methodology. In 2018, emissions from this source were estimated to be

11 11.3 MMT CO₂ Eq. of CH₄ and 7.5 MMT CO₂ Eq. of N₂O (Table 6-17; kt units provided in Table 6-18). The estimates

of non-CO₂ emissions from forest fires include wildfires and prescribed fires in the conterminous 48 states and all

13 managed forest land in Alaska.

14 Table 6-17: Non-CO₂ Emissions from Forest Fires (MMT CO₂ Eq.)^a

Gas	1990	2005	2014	2015	2016	2017	2018 ^b
CH ₄	0.9	5.0	5.6	12.2	3.4	11.3	11.3
N ₂ O	0.6	3.3	3.7	8.1	2.2	7.5	7.5
Total	1.5	8.2	9.2	20.3	5.6	18.8	18.8

^a These estimates include Non-CO₂ Emissions from Forest Fires on Forest Land Remaining Forest Land and Land Converted to Forest Land.

^b The data for 2018 were unavailable when these estimates were developed, therefore 2017, the most recent available estimate, is applied to 2018.

15 Table 6-18: Non-CO₂ Emissions from Forest Fires (kt)^a

Gas	1990	2005	2014	2015	2016	2017	2018 ^b
CH ₄	35	198	222	489	136	452	452
N_2O	2	11	12	27	8	25	25
CO	801	4,507	5,055	11,125	3,092	10,314	10,314
NOx	22	127	142	312	87	289	289

^a These estimates include Non-CO₂ Emissions from Forest Fires on *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

^b The data for 2018 were unavailable when these estimates were summarized, therefore 2017, the most recent available estimate, is applied to 2018.

16 Methodology and Data Sources

17 Non-CO₂ emissions from forest fires—primarily CH₄ and N₂O emissions—were calculated following IPCC (2006)

18 methodology, which included a combination of U.S. specific data on area burned, potential fuel available for

19 combustion, and estimates of combustion based on fire severity along with IPCC default combustion and emission

factors. The estimates were calculated according to Equation 2.27 of IPCC (2006, Volume 4, Chapter 2), which is:

21 Emis

Emissions = Area burned × Fuel available × Combustion factor × Emission Factor × 10⁻³

where forest area burned is based on Monitoring Trends in Burn Severity (MTBS, Eidenshink et al. 2007 and 2015)

and National Land Cover (NLCD, Homer et al. 2015) data. Fuel estimates are based on current C density estimates

obtained from FIA plot data, combustion is partly a function of burn severity, and emission factors are from IPCC

25 (2006, Volume 4, Chapter 2). See Annex 3.13 for further details.

1 Uncertainty and Time-Series Consistency

2 In order to quantify the uncertainties for non-CO₂ emissions from wildfires and prescribed burns, a Monte Carlo

3 (IPCC Approach 2) sampling approach was employed to propagate uncertainty based on the model and data

4 applied for U.S. forest land. See IPCC (2006) and Annex 3.13 for the quantities and assumptions employed to

5 define and propagate uncertainty. The results of the Approach 2 quantitative uncertainty analysis are summarized

6 in Table 6-19. Methodological recalculations were applied to the entire time series to ensure time-series

7 consistency from 1990 through 2018.

8 Table 6-19: Quantitative Uncertainty Estimates of Non-CO₂ Emissions from Forest Fires

9 (MMT CO₂ Eq. and Percent)^a

Source	Gas	2018 Emission Estimate (MMT CO ₂ Eq.)	Uncertainty (MMT C	0	e to Emission Estimate ^b (%)	
			Lower Bound	Upper Bound	Lower Bound	Upper Bound
Non-CO ₂ Emissions from Forest Fires	CH_4	11.3	9.8	13.0	-13%	15%
Non-CO ₂ Emissions from Forest Fires	N_2O	7.5	6.7	8.3	-11%	12%

^a These estimates include Non-CO₂ Emissions from Forest Fires on *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

^b Range of flux estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

10 **QA/QC and Verification**

11 Tier 1 and Tier 2 QA/QC activities were conducted consistent with the U.S. QA/QC plan. Source-specific quality

12 control measures for estimating non-CO₂ emissions from forest fires included checking input data, documentation,

13 and calculations to ensure data were properly handled through the inventory process. The QA/QC procedures did

14 not reveal any inaccuracies or incorrect input values.

15 **Recalculations**

16 The methods used in the current (1990 through 2018) Inventory to compile estimates of non-CO₂ emissions from 17 forest fires are consistent with those used in the previous 1990 through 2017 Inventory. Forest within the MTBS

defined fire perimeters (MTBS Data Summaries 2018) are estimated according to NLCD spatial datasets (Homer et

al. 2015) rather than Ruefenacht et al. (2008) as in past reports. Most of the differences in annual forest area

- burned (and thus associated emissions) is due to improperly adjusting the proportion of forest land within a fire to
- account for no-data values in an MTBS raster image rather than a similar modified NLCD raster image that
- 22 conformed to the spatial extent of the fire. This calculation error only affected some fires; specifically those where
- the Landsat images included masked areas (such as for cloud cover). The greater the masked area, the greater the
- error in estimated forest land within the fire bounds. These area changes are reflected in the emissions estimates,
- 25 which are also revised. See Annex 3.13 for additional information on these changes. Fuel estimates are based on
- 26 the distribution of stand-level carbon pools (USDA Forest Service 2017) classified according to ecological
- 27 subregions defined in the forest inventory data. Combustion estimates are partly a function of the MTBS severity
- 28 classifications and thus can vary within a fire. Most of the differences in annual forest area burned (and thus
- associated emissions) as seen in Table A-233 relative to the same table in the previous inventory is due to
- 30 improperly adjusting the proportion of forest land within a fire to account for no-data values in an MTBS raster
- 31 image rather than a similar modified NLCD raster image that conformed to the spatial extent of the fire. This 32 calculation error only affected some fires; specifically those where the Landsat images included masked areas
- (such as for cloud cover). The greater the masked area, the greater the error in estimated forest land within the
- 34 fire bounds.

Planned Improvements 1

2 Continuing improvements are planned for developing better fire and site-specific estimates for forest area burned,

3 potential fuel available, and combustion. The goal is to develop easy to apply models based on readily available

4 data to characterize the site and fire for the over twenty thousand fires in the MTBS data. The results will be less

5 reliant on wide regional values or IPCC defaults. Spatially relating potential fuel availability to more localized forest

6 structure is the best example of this. An additional future consideration is to apply the forest inventory data to 7

identify and guantify the likely small additional contribution of fires that are below the minimum size threshold for

8 the MTBS data.

N₂O Emissions from N Additions to Forest Soils 9

Of the synthetic nitrogen (N) fertilizers applied to soils in the United States, no more than one percent is applied to 10

11 forest soils. Application rates are similar to those occurring on cropland soils, but in any given year, only a small

12 proportion of total forested land receives N fertilizer. This is because forests are typically fertilized only twice

13 during their approximately 40-year growth cycle (once at planting and once midway through their life cycle). While

14 the rate of N fertilizer application for the area of forests that receives N fertilizer in any given year is relatively high,

15 the annual application rate is guite low over the entire area of forest land.

16 N additions to soils result in direct and indirect N₂O emissions. Direct emissions occur on-site due to the N

17 additions. Indirect emissions result from fertilizer N that is transformed and transported to another location

18 through volatilization in the form of ammonia [NH₃] and nitrogen oxide [NO_x], in addition to leaching and runoff of

19 nitrates $[NO_3]$, and later converted into N_2O at the off-site location. The indirect emissions are assigned to forest

20 land because the management activity leading to the emissions occurred in forest land.

21 Direct soil N₂O emissions from Forest Land Remaining Forest Land and Land Converted to Forest Land³³ in 2018

22 were 0.3 MMT CO₂ Eq. (1 kt), and the indirect emissions were 0.1 MMT CO₂ Eq. (0.4 kt). Total emissions for 2018

23 were 0.5 MMT CO₂ Eq. (2 kt) and have increased by 455 percent from 1990 to 2018. Total forest soil N₂O emissions

24 are summarized in Table 6-20.

25 Table 6-20: N₂O Fluxes from Soils in *Forest Land Remaining Forest Land* and *Land Converted* to Forest Land (MMT CO₂ Eq. and kt N₂O) 26

	1990	2005	2014	2015	2016	2017	2018
Direct N ₂ O Fluxes from Soils							
MMT CO ₂ Eq.	0.1	0.3	0.3	0.3	0.3	0.3	0.3
kt N ₂ O	+	1	1	1	1	1	1
Indirect N ₂ O Fluxes from Soils							
MMT CO ₂ Eq.	0.0	0.1	0.1	0.1	0.1	0.1	0.1
kt N ₂ O	+	+	+	+	+	+	+
Total							
MMT CO ₂ Eq.	0.1	0.5	0.5	0.5	0.5	0.5	0.5
kt N ₂ O	+	2	2	2	2	2	2

+ Does not exceed 0.05 MMT CO₂ Eq. or 0.5 kt.

Note: Totals may not sum due to independent rounding. The N₂O emissions from Land Converted to Forest Land are included with Forest Land Remaining Forest Land because it is not currently possible to separate the activity data by land use conversion category.

³³ The N₂O emissions from Land Converted to Forest Land are included with Forest Land Remaining Forest Land because it is not currently possible to separate the activity data by land use conversion category.

1 Methodology and Data Sources

2 The IPCC Tier 1 approach is used to estimate N₂O from soils within Forest Land Remaining Forest Land and Land 3 Converted to Forest Land. According to U.S. Forest Service statistics for 1996 (USDA Forest Service 2001), 4 approximately 75 percent of trees planted are for timber, and about 60 percent of national total harvested forest 5 area is in the southeastern United States. Although southeastern pine plantations represent the majority of 6 fertilized forests in the United States, this Inventory also incorporated N fertilizer application to commercial 7 Douglas-fir stands in western Oregon and Washington. For the Southeast, estimates of direct N₂O emissions from 8 fertilizer applications to forests are based on the area of pine plantations receiving fertilizer in the southeastern 9 United States and estimated application rates (Albaugh et al. 2007; Fox et al. 2007). Fertilizer application is rare for 10 hardwoods and therefore not included in the inventory (Binkley et al. 1995). For each year, the area of pine 11 receiving N fertilizer is multiplied by the weighted average of the reported range of N fertilization rates (121 lbs. N 12 per acre). Area data for pine plantations receiving fertilizer in the Southeast are not available for 2005 through 13 2018, so data from 2004 are used for these years. For commercial forests in Oregon and Washington, only fertilizer 14 applied to Douglas-fir is addressed in the inventory because the vast majority (approximately 95 percent) of the 15 total fertilizer applied to forests in this region is applied to Douglas-fir (Briggs 2007). Estimates of total Douglas-fir 16 area and the portion of fertilized area are multiplied to obtain annual area estimates of fertilized Douglas-fir 17 stands. Similar to the Southeast, data are not available for 2005 through 2018, so data from 2004 are used for 18 these years. The annual area estimates are multiplied by the typical rate used in this region (200 lbs. N per acre) to 19 estimate total N applied (Briggs 2007), and the total N applied to forests is multiplied by the IPCC (2006) default 20 emission factor of one percent to estimate direct N₂O emissions.

21 For indirect emissions, the volatilization and leaching/runoff N fractions for forest land are calculated using the

22 IPCC default factors of 10 percent and 30 percent, respectively. The amount of N volatilized is multiplied by the

23 IPCC default factor of one percent for the portion of volatilized N that is converted to N_2O off-site. The amount of

N leached/runoff is multiplied by the IPCC default factor of 0.075 percent for the portion of leached/runoff N that is converted to N₂O off-site. The resulting estimates are summed to obtain total indirect emissions.

25 Is converted to N₂O off-site. The resulting estimates are summed to obtain total indirect en

26 Uncertainty and Time-Series Consistency

27 The amount of N₂O emitted from forests depends not only on N inputs and fertilized area, but also on a large

28 number of variables, including organic C availability, oxygen gas partial pressure, soil moisture content, pH,

29 temperature, and tree planting/harvesting cycles. The effect of the combined interaction of these variables on N₂O

30 flux is complex and highly uncertain. IPCC (2006) does not incorporate any of these variables into the default

31 methodology, except variation in estimated fertilizer application rates and estimated areas of forested land

32 receiving N fertilizer. All forest soils are treated equivalently under this methodology. Furthermore, only

applications of synthetic N fertilizers to forest are captured in this inventory, so applications of organic N fertilizers

are not estimated. However, the total quantity of organic N inputs to soils in the United States is included in the
 inventory for Agricultural Soil Management (Section 5.4) and *Settlements Remaining Settlements* (Section 6.10).

inventory for Agricultural Soll Management (Section 5.4) and Settlements Remaining Settlements (Section 6.10).

36 Uncertainties exist in the fertilization rates, annual area of forest lands receiving fertilizer, and the emission

factors. Fertilization rates are assigned a default level³⁴ of uncertainty at ±50 percent, and area receiving fertilizer

is assigned a ±20 percent according to expert knowledge (Binkley 2004). The uncertainty ranges around the 2004

activity data and emission factor input variables are directly applied to the 2018 emission estimates. IPCC (2006)

40 provided estimates for the uncertainty associated with direct and indirect N₂O emission factor for synthetic N

- 41 fertilizer application to soils.
- 42 Uncertainty is quantified using simple error propagation methods (IPCC 2006). The results of the quantitative
- 43 uncertainty analysis are summarized in Table 6-21. Direct N₂O fluxes from soils in 2018 are estimated to be
- 44 between 0.1 and 1.1 MMT CO₂ Eq. at a 95 percent confidence level. This indicates a range of 59 percent below and
- 45 211 percent above the emission estimate of 0.3 MMT CO₂ Eq. for 2018. Indirect N₂O emissions in 2018 are 0.1

³⁴ Uncertainty is unknown for the fertilization rates so a conservative value of ±50 percent is used in the analysis.

- 1 MMT CO₂ Eq. and have a range are between 0.02 and 0.4 MMT CO₂ Eq., which is 86 percent below to 238 percent
- 2 above the emission estimate for 2018.

Table 6-21: Quantitative Uncertainty Estimates of N₂O Fluxes from Soils in *Forest Land Remaining Forest Land* and *Land Converted to Forest Land* (MMT CO₂ Eq. and Percent)

Source	Cas	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate					
Source	Gas	(MMT CO ₂ Eq.)	(MMT CO ₂ E	(%)				
Forest Land Remaining Forest				Upper	Lower	Upper		
Land			Lower Bound	Bound	Bound	Bound		
Direct N ₂ O Fluxes from Soils	N_2O	0.3	0.1	1.1	-59%	+211%		
Indirect N ₂ O Fluxes from Soils	N_2O	0.1	+	0.4	-86%	+238%		

+ Does not exceed 0.05 MMT CO_2 Eq.

Note: Due to rounding the upper and lower bounds may equal the emission estimate in the above table.

The same methods are applied to the entire time series to ensure time-series consistency from 1990 through 2018,

6 and no recalculations have been done from the previous Inventory. Details on the emission trends through time

7 are described in more detail in the Methodology section, above.

8 QA/QC and Verification

5

9 The spreadsheet containing fertilizer applied to forests and calculations for N₂O and uncertainty ranges are

10 checked and verified based on the sources of these data.

11 CO₂, CH₄, and N₂O Emissions from Drained Organic Soils³⁵

12 Drained organic soils on forest land are identified separately from other forest soils largely because mineralization

of the exposed or partially dried organic material results in continuous CO₂ and N₂O emissions (IPCC 2006). In

addition, the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands

(IPCC 2014) calls for estimating CH₄ emissions from these drained organic soils and the ditch networks used to
 drain them.

- 17 Organic soils are identified on the basis of thickness of organic horizon and percent organic matter. All organic soils
- are assumed to have originally been wet, and drained organic soils are further characterized by drainage or the
- 19 process of artificially lowering the soil water table, which exposes the organic material to drying and the associated
- 20 emissions described in this section. The land base considered here is drained inland organic soils that are
- coincident with forest area as identified by the NFI of the USDA Forest Service (USDA Forest Service 2018).
- 22 The estimated area of drained organic soils on forest land is 70,849 ha and did not change over the time series
- 23 based on the data used to compile the estimates in the current Inventory. These estimates are based on
- 24 permanent plot locations of the NFI (USDA Forest Service 2018) coincident with mapped organic soil locations
- 25 (STATSGO2 2016), which identifies forest land on organic soils. Forest sites that are drained are not explicitly
- identified in the data, but for this estimate, planted forest stands on sites identified as mesic or xeric (which are
- 27 identified in USDA Forest Service 2018) are labeled "drained organic soil" sites.
- Land use, region, and climate are broad determinants of emissions as are more site-specific factors such as
- 29 nutrient status, drainage level, exposure, or disturbance. Current data are limited in spatial precision and thus lack
- 30 site specific details. At the same time, corresponding emissions factor data specific to U.S. forests are similarly

³⁵ Estimates of C and CO₂ emissions from drained organic soils are described in this section but reported in Table 6-10 and Table 6-11 for both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land* in order to allow for reporting of all C stock changes on forest lands in a complete and comprehensive manner.

- 1 lacking. Tier 1 estimates are provided here following IPCC (2014). Total annual non-CO₂ emissions on forest land
- 2 with drained organic soils in 2018 are estimated as 0.1 MMT CO₂ Eq. per year (Table 6-22).
- 3 The Tier 1 methodology provides methods to estimate C emission as CO₂ from three pathways: direct emissions
- 4 primarily from mineralization; indirect, or off-site, emissions associated with dissolved organic carbon releasing
- 5 CO₂ from drainage waters; and emissions from (peat) fires on organic soils. Data about forest fires specifically
- 6 located on drained organic soils are not currently available; as a result, no corresponding estimate is provided
- 7 here. Non-CO₂ emissions provided here include CH₄ and N₂O. Methane emissions generally associated with anoxic
- 8 conditions do occur from the drained land surface but the majority of these emissions originate from ditches
- 9 constructed to facilitate drainage at these sites. Emission of N₂O can be significant from these drained organic soils
- 10 in contrast to the very low emissions from wet organic soils.

11 Table 6-22: Non-CO₂ Emissions from Drained Organic Forest Soils^{a,b} (MMT CO₂ Eq.)

Source	1990	2005	2014	2015	2016	2017	2018
CH4	+	+	+	+	+	+	+
N ₂ O	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Total	0.1	0.1	0.1	0.1	0.1	0.1	0.1

+ Does not exceed 0.05 MMT CO₂ Eq.

^a This table includes estimates from *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

^b Estimates of C and CO₂ emissions from drained organic soils are described in this section but reported in Table 6-10 and Table 6-11 for both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land* in order to allow for reporting of all C stock changes on forest lands in a complete and comprehensive manner.

12 Table 6-23: Non-CO₂ Emissions from Drained Organic Forest Soils^{a,b} (kt)

Source	1990	2005	2014	2015	2016	2017	2018
CH ₄	0.6	0.6	0.6	0.6	0.6	0.6	0.6
N ₂ O	+	+	+	+	+	+	+

+ Does not exceed 0.5 kt.

^a This table includes estimates from *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

^b Estimates of C and CO₂ emissions from drained organic soils are described in this section but reported in Table 6-10 and Table 6-11 for both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land* in order to allow for reporting of all C stock changes on forest lands in a complete and comprehensive manner.

13 Methodology and Data Sources

14 The Tier 1 methods for estimating CO₂, CH₄ and N₂O emissions from drained inland organic soils on forest lands

15 follow IPCC (2006), with extensive updates and additional material presented in the 2013 Supplement to the 2006

16 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (IPCC 2014). With the exception of quantifying

area of forest on drained organic soils, which is user-supplied, all quantities necessary for Tier 1 estimates are

18 provided in Chapter 2, Drained Inland Organic Soils of IPCC (2014).

19 Estimated area of drained organic soils on forest land is 70,849 ha based on analysis of the permanent NFI of the

20 USDA Forest Service and did not change over the time series. The most recent plot data per state within the

21 inventories were used in a spatial overlay with the STATSGO2 (2016) soils data, and forest plots coincident with the

- soil order histosol were selected as having organic soils. Information specific to identifying "drained organic" are
- not in the inventory data so an indirect approach was employed here. Specifically, artificially regenerated forest
- stands (inventory field STDORGCD=1) on mesic or xeric sites (inventory field 11≤PHYSCLCD≤29) are labeled
- ²⁵ "drained organic soil" sites. From this selection, forest area and sampling error for forest on drained organic sites
- 26 are based on the population estimates developed within the inventory data for each state (USDA Forest Service
- 27 2018). Eight states, all temperate forests (including pine forest in northern Florida, which largely display
- 28 characteristics of temperate forests), were identified as having drained organic soils (Table 6-24).

1 Table 6-24: States identified as having Drained Organic Soils, Area of Forest on Drained 2 Organic Soils, and Sampling Error

o	Forest on Drained Organic Soil	Sampling Error (68.3% as ±
State	(1,000 ha)	Percentage of Estimate)
Florida	2.4	79
Georgia	3.7	71
Michigan	18.7	34
Minnesota	30.2	19
North Carolina	1.3	99
Virginia	2.3	102
Washington	2.1	101
Wisconsin	10.1	30
Total	70.8	14

3 The Tier 1 methodology provides methods to estimate emissions for three pathways of C emission as CO₂. Note

4 that subsequent mention of equations and tables in the remainder of this section refer to Chapter 2 of IPCC (2014).

5 The first pathway–direct CO₂ emissions–is calculated according to Equation 2.3 and Table 2.1 as the product of

6 forest area and emission factor for temperate drained forest land. The second pathway–indirect, or off-site,

7 emissions-is associated with dissolved organic carbon releasing CO₂ from drainage waters according to Equation

8 2.4 and Table 2.2, which represent a default composite of the three pathways for this flux: (1) the flux of dissolved

9 organic carbon (DOC) from natural (undrained) organic soil; (2) the proportional increase in DOC flux from drained

10 organic soils relative to undrained sites; and (3) the conversion factor for the part of DOC converted to CO₂ after 11 export from a site. The third pathway–emissions from (peat) fires on organic soils–assumes that the drained

export from a site. The third pathway–emissions from (peat) fires on organic soils–assumes that the drained organic soils burn in a fire but not any wet organic soils. However, this Inventory currently does not include

organic soils burn in a fire but not any wet organic soils. However, this Inventory currently does not include emissions for this pathway because data on the combined fire and drained organic soils information are not

14 available at this time; this may become available in the future with additional analysis.

15 Non-CO₂ emissions, according to the Tier 1 method, include methane (CH₄), nitrous oxide (N₂O), and carbon

16 monoxide (CO). Emissions associated with peat fires include factors for CH₄ and CO in addition to CO₂, but fire

17 estimates are assumed to be zero for the current Inventory, as discussed above. Methane emissions generally

associated with anoxic conditions do occur from the drained land surface but the majority of these emissions

19 originate from ditches constructed to facilitate drainage at these sites. From this, two separate emission factors

are used, one for emissions from the area of drained soils and a second for emissions from drainage ditch
 waterways. Calculations are according to Equation 2.6 and Tables 2.3 and 2.4, which includes the default fraction

of the total area of drained organic soil which is occupied by ditches. Emissions of N₂O can be significant from

these drained soils in contrast to the very low emissions from wet organic soils. Calculations are according to

24 Equation 2.7 and Table 2.5, which provide the estimate as kg N per year.

25 Uncertainty and Time-Series Consistency

26 Uncertainties are based on the sampling error associated with forest area of drained organic soils and the

27 uncertainties provided in the Chapter 2 (IPCC 2014) emissions factors (Table 6-25). The estimates and resulting

quantities representing uncertainty are based on the IPCC Approach 1–error propagation. However, probabilistic

29 sampling of the distributions defined for each emission factor produced a histogram result that contained a mean

and 95 percent confidence interval. The primary reason for this approach was to develop a numerical

31 representation of uncertainty with the potential for combining with other forest components. The methods and

32 parameters applied here are identical to previous inventories, but input values were resampled for this inventory,

33 which results in minor changes in the less significant digits in the resulting estimates, relative to past values. The

34 total non-CO₂ emissions in 2018 from drained organic soils on *Forest Land Remaining Forest Land* and *Land*

35 *Converted to Forest Land* were estimated to be between 0.004 and 0.236 MMT CO₂ Eq. around a central estimate

 $36 \qquad of \ 0.106 \ MMT \ CO_2 \ Eq. \ at \ a \ 95 \ percent \ confidence \ level.$

1 Table 6-25: Quantitative Uncertainty Estimates for Non-CO₂ Emissions on Drained Organic 2 Forest Soils (MMT CO₂ Eq. and Percent)^a

Source	2018 Emission Estimate (MMT CO ₂ Eq.)	Uncertainty Range Relative to Em (MMT CO2 Eq.)			Emission Estimate (%)	
		Lower Bound	Upper Bound	Lower Bound	Upper Bound	
CH ₄	+	+	+	-70%	80%	
N ₂ O	0.1	+	0.2	-100%	128%	
Total	0.1	+	0.2	-96%	122%	

+ Does not exceed 0.05 MMT CO₂ Eq.

^a Range of flux estimates predicted through a combination of sample-based and IPCC defaults for a 95 percent confidence interval, IPCC Approach 1.

3 QA/QC and Verification

4 IPCC (2014) guidance cautions of a possibility of double counting some of these emissions. Specifically, the off-site

5 emissions of dissolved organic C from drainage waters may be double counted if soil C stock and change is based

6 on sampling and this C is captured in that sampling. Double counting in this case is unlikely since plots identified as

7 drained were treated separately in this chapter. Additionally, some of the non-CO₂ emissions may be included in

8 either the Wetlands or sections on N₂O emissions from managed soils. These paths to double counting emissions

9 are unlikely here because these issues are taken into consideration when developing the estimates and this

10 chapter is the only section directly including such emissions on forest land.

11 Planned Improvements

- 12 Additional data will be compiled to update estimates of forest areas on drained organic soils as new reports are
- 13 made available and new geospatial products become available.

6.3 Land Converted to Forest Land (CRF Source Category 4A2)

16 The C stock change estimates for Land Converted to Forest Land that are provided in this Inventory include all

17 forest land in an inventory year that had been in another land use(s) during the previous 20 years.³⁶ For example,

18 cropland or grassland converted to forest land during the past 20 years would be reported in this category.

19 Converted lands are in this category for 20 years as recommended in the 2006 IPCC Guidelines (IPCC 2006), after

20 which they are classified as *Forest Land Remaining Forest Land*. Estimates of C stock changes from all pools (i.e.,

aboveground and belowground biomass, dead wood, litter and soils), as recommended by IPCC (2006), are

22 included in the *Land Converted to Forest Land* category of this Inventory.

³⁶ The annual NFI data used to compile estimates of carbon transfer and uptake in this section are based on 5- to 10-yr remeasurements so the exact conversion period was limited to the remeasured data over the time series.

1 Area of Land Converted to Forest in the United States³⁷

- Land conversion to and from forests has occurred regularly throughout U.S. history. The 1970s and 1980s saw a
 resurgence of federally-sponsored forest management programs (e.g., the Forestry Incentive Program) and soil
- 4 conservation programs (e.g., the Conservation Reserve Program), which have focused on tree planting, improving
- 5 timber management activities, combating soil erosion, and converting marginal cropland to forests. Recent
- 6 analyses suggest that net accumulation of forest area continues in areas of the United States, in particular the
- 7 northeastern United States (Woodall et al. 2015b). Specifically, the annual conversion of land from other land-use
- 8 categories (i.e., Cropland, Grassland, Wetlands, Settlements, and Other Lands) to Forest Land resulted in a fairly
- 9 continuous net annual accretion of Forest Land area from over the time series at an average rate of 1.1 million ha
- 10 year⁻¹.
- 11 Over the 20-year conversion period used in the *Land Converted to Forest Land* category, the conversion of
- 12 cropland to forest land resulted in the largest source of C transfer and uptake, accounting for approximately 40
- 13 percent of the uptake annually. Estimated C uptake has remained relatively stable over the time series across all
- 14 conversion categories (see Table 6-26). The net flux of C from all forest pool stock changes in 2018 was -110.6
- 15 MMT CO₂ Eq. (-30.2 MMT C) (Table 6-26 and Table 6-27).
- 16 Mineral soil C stocks increase slightly over the time series for Land Converted to Forest Land. The small gains are
- 17 associated with Cropland Converted to Forest Land, Settlements Converted to Forest Land, and Other Land
- 18 Converted to Forest Land. Much of this conversion is from soils that are more intensively used under annual crop
- 19 production or settlement management, or are conversions from other land, which has little to no soil C. In
- 20 contrast, Grassland Converted to Forest Land leads to a loss of soil C across the time series, which negates some of
- 21 the gain in soil C with the other land use conversions. Managed pasture to Forest Land is the most common
- 22 conversion. This conversion leads to a loss of soil C because pastures are mostly improved in the United States with
- 23 fertilization and/or irrigation, which enhances C input to soils relative to typical forest management activities.

Table 6-26: Net CO₂ Flux from Forest C Pools in *Land Converted to Forest Land* by Land Use Change Category (MMT CO₂ Eq.)

Land Use/Carbon Pool	1990	2005	2014	2015	2016	2017	2018
Cropland Converted to Forest Land	(45.9)	(46.1)	(46.3)	(46.3)	(46.3)	(46.3)	(46.3)
Aboveground Biomass	(26.1)	(26.3)	(26.4)	(26.4)	(26.4)	(26.4)	(26.4)
Belowground Biomass	(5.1)	(5.1)	(5.1)	(5.2)	(5.2)	(5.2)	(5.2)
Dead Wood	(5.9)	(6.0)	(6.0)	(6.0)	(6.0)	(6.0)	(6.0)
Litter	(8.4)	(8.5)	(8.5)	(8.5)	(8.5)	(8.5)	(8.5)
Mineral Soil	(0.3)	(0.3)	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)
Grassland Converted to Forest Land	(9.8)	(9.6)	(9.6)	(9.6)	(9.7)	(9.7)	(9.7)
Aboveground Biomass	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)
Belowground Biomass	(0.9)	(0.9)	(0.9)	(0.9)	(0.9)	(0.9)	(0.9)
Dead Wood	(0.7)	(0.7)	(0.7)	(0.7)	(0.7)	(0.7)	(0.7)
Litter	(3.8)	(3.8)	(3.8)	(3.8)	(3.8)	(3.8)	(3.8)
Mineral Soil	0.2	0.3	0.3	0.3	0.3	0.3	0.3
Other Land Converted to Forest Land	(14.3)	(14.8)	(14.9)	(14.9)	(14.9)	(14.9)	(14.9)
Aboveground Biomass	(6.3)	(6.3)	(6.3)	(6.3)	(6.3)	(6.3)	(6.3)
Belowground Biomass	(1.2)	(1.2)	(1.2)	(1.2)	(1.2)	(1.2)	(1.2)
Dead Wood	(2.0)	(2.0)	(2.0)	(2.0)	(2.0)	(2.0)	(2.0)
Litter	(4.1)	(4.2)	(4.2)	(4.2)	(4.2)	(4.2)	(4.2)
Mineral Soil	(0.6)	(1.1)	(1.1)	(1.1)	(1.1)	(1.1)	(1.1)
Settlements Converted to Forest Land	(38.6)	(38.7)	(38.8)	(38.9)	(38.9)	(38.9)	(38.9)
Aboveground Biomass	(23.2)	(23.3)	(23.4)	(23.4)	(23.4)	(23.4)	(23.4)
Belowground Biomass	(4.4)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)

³⁷ The estimates reported in this section only include the 48 conterminous states in the US. Land use conversion to forest in Alaska and Hawaii were not included. See Annex 3.13, Table A-234 for annual differences between the forest area reported in Section 6.1 Representation of the U.S. Land Base and Section 6.3 Land Converted to Forest Land.

Dead Wood	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)	(4.6)
Litter	(6.3)	(6.4)	(6.4)	(6.4)	(6.4)	(6.4)	(6.4)
Mineral Soil	+	+	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)
Wetlands Converted to Forest Land	(0.9)	(0.9)	(0.9)	(0.9)	(0.9)	(0.9)	(0.9)
Aboveground Biomass	(0.4)	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)
Belowground Biomass	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)
Dead Wood	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)
Litter	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)
Mineral Soil	+	+	+	+	+	+	+
Total Aboveground Biomass Flux	(60.6)	(60.9)	(61.0)	(61.0)	(61.0)	(61.0)	(61.0)
Total Belowground Biomass Flux	(11.8)	(11.9)	(11.9)	(11.9)	(11.9)	(11.9)	(11.9)
Total Dead Wood Flux	(13.3)	(13.4)	(13.4)	(13.4)	(13.4)	(13.4)	(13.4)
Total Litter Flux	(22.9)	(23.0)	(23.1)	(23.1)	(23.1)	(23.1)	(23.1)
Total Mineral Soil Flux	(0.8)	(1.1)	(1.0)	(1.1)	(1.1)	(1.1)	(1.1)
Total Flux	(109.4)	(110.2)	(110.5)	(110.6)	(110.6)	(110.6)	(110.6)

+ Absolute value does not exceed 0.05 MMT CO₂ Eq.

Notes: Totals may not sum due to independent rounding. Parentheses indicate net uptake. Forest ecosystem C stock changes from land conversion in Alaska are currently included in the Forest Land Remaining Forest Land section because there is not sufficient data to separate the changes at this time. Forest ecosystem C stock changes from land conversion do not include U.S. Territories because managed forest land in U.S. Territories is not currently included in Section 6.1 Representation of the U.S. Land Base. The forest ecosystem C stock changes from land conversion do not include Hawaii because there is not sufficient NFI data to support inclusion at this time. See Annex 3.13, Table A-234 for annual differences between the forest area reported in Section 6.1 Representation of the U.S. Land Converted to *Forest Land*. The forest ecosystem C stock changes from land conversion do not include teres on non-forest land (e.g., agroforestry systems and settlement areas—see Section 6.10 *Settlements Remaining Settlements* for estimates of C stock change from settlement trees). It is not possible to separate emissions from drained organic soils between *Forest Land Remaining Forest Land Converted to Forest Land* so estimates for all organic soils are included in Table 6-10 and Table 6-11 of the *Forest Land Remaining Forest Land* section of the Inventory.

1 Table 6-27: Net C Flux from Forest C Pools in *Land Converted to Forest Land* by Land Use 2 Change Category (MMT C)

Land Use/Carbon Pool	1990	2005	2014	2015	2016	2017	2018
Cropland Converted to Forest Land	(12.5)	(12.6)	(12.6)	(12.6)	(12.6)	(12.6)	(12.6)
Aboveground Biomass	(7.1)	(7.2)	(7.2)	(7.2)	(7.2)	(7.2)	(7.2)
Belowground Biomass	(1.4)	(1.4)	(1.4)	(1.4)	(1.4)	(1.4)	(1.4)
Dead Wood	(1.6)	(1.6)	(1.6)	(1.6)	(1.6)	(1.6)	(1.6)
Litter	(2.3)	(2.3)	(2.3)	(2.3)	(2.3)	(2.3)	(2.3)
Mineral Soil	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)
Grassland Converted to Forest Land	(2.7)	(2.6)	(2.6)	(2.6)	(2.6)	(2.6)	(2.6)
Aboveground Biomass	(1.2)	(1.2)	(1.2)	(1.2)	(1.2)	(1.2)	(1.2)
Belowground Biomass	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)
Dead Wood	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)
Litter	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)
Mineral Soil	+	0.1	0.1	0.1	0.1	0.1	0.1
Other Land Converted to Forest Land	(3.9)	(4.0)	(4.1)	(4.1)	(4.1)	(4.1)	(4.1)
Aboveground Biomass	(1.7)	(1.7)	(1.7)	(1.7)	(1.7)	(1.7)	(1.7)
Belowground Biomass	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)
Dead Wood	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)
Litter	(1.1)	(1.1)	(1.1)	(1.1)	(1.1)	(1.1)	(1.1)
Mineral Soil	(0.2)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)
Settlements Converted to Forest Land	(10.5)	(10.6)	(10.6)	(10.6)	(10.6)	(10.6)	(10.6)
Aboveground Biomass	(6.3)	(6.4)	(6.4)	(6.4)	(6.4)	(6.4)	(6.4)
Belowground Biomass	(1.2)	(1.2)	(1.2)	(1.2)	(1.2)	(1.2)	(1.2)
Dead Wood	(1.2)	(1.2)	(1.2)	(1.2)	(1.2)	(1.2)	(1.2)
Litter	(1.7)	(1.7)	(1.7)	(1.7)	(1.7)	(1.7)	(1.7)
Mineral Soil	+	+	+	+	+	+	+
Wetlands Converted to Forest Land	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)

Aboveground Biomass	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)
Belowground Biomass	+	+	+	+	+	+	+
Dead Wood	+	+	+	+	+	+	+
Litter	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)
Mineral Soil	+	+	+	+	+	+	+
Total Aboveground Biomass Flux	(16.5)	(16.6)	(16.6)	(16.6)	(16.6)	(16.6)	(16.6)
Total Belowground Biomass Flux	(3.2)	(3.2)	(3.2)	(3.2)	(3.2)	(3.2)	(3.2)
Total Dead Wood Flux	(3.6)	(3.7)	(3.7)	(3.7)	(3.7)	(3.7)	(3.7)
Total Litter Flux	(6.3)	(6.3)	(6.3)	(6.3)	(6.3)	(6.3)	(6.3)
Total Mineral Soil Flux	(0.2)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)
Total Flux	(29.8)	(30.1)	(30.1)	(30.2)	(30.2)	(30.2)	(30.2)

+ Absolute value does not exceed 0.05 MMT C.

Notes: Totals may not sum due to independent rounding. Parentheses indicate net uptake. Forest ecosystem C stock changes from land conversion in Alaska are currently included in the *Forest Land Remaining Forest Land* section because there is not sufficient data to separate the changes at this time. Forest ecosystem C stock changes from land conversion do not include U.S. Territories because managed forest land in U.S. Territories is not currently included in Section 6.1 Representation of the U.S. Land Base. The forest ecosystem C stock changes from land conversion do not include Hawaii because there is not sufficient NFI data to support inclusion at this time. See Annex 3.13, Table A-234 for annual differences between the forest area reported in Section 6.1 Representation of the U.S. Land Base and Section 6.3 *Land Converted to Forest Land*. The forest ecosystem C stock changes from land conversion do not include trees on non-forest land (e.g., agroforestry systems and settlement areas—see Section 6.10 *Settlements Remaining Settlements* for estimates of C stock change from settlement trees). It is not possible to separate emissions from drained organic soils between *Forest Land Remaining Forest Land and Land Converted to Forest Land* section of the Inventory.

1 Methodology

2 The following section includes a description of the methodology used to estimate stock changes in all forest C

3 pools for Land Converted to Forest Land. National Forest Inventory data and IPCC (2006) defaults for reference C

4 stocks were used to compile separate estimates for the five C storage pools. Estimates for Aboveground and

5 Belowground Biomass, Dead Wood and Litter were based on data collected from the extensive array of

6 permanent, annual NFI plots and associated models (e.g., live tree belowground biomass estimates) in the United

7 States (USDA Forest Service 2018b, 2018c). Carbon conversion factors were applied at the individual plot and then

8 appropriately expanded to population estimates. To ensure consistency in the Land Converted to Forest Land

9 category where C stock transfers occur between land-use categories, all soil estimates are based on methods from

10 Ogle et al. (2003, 2006) and IPCC (2006).

11 The methods used for estimating carbon stocks and stock changes in the Land Converted to Forest Land are

12 consistent with those used for Forest Land Remaining Forest Land. For land use conversion, IPCC (2006) default

13 biomass C stocks removed due to land use conversion from Croplands and Grasslands were used in the year of

14 conversion on individual plots. All annual NFI plots available through May 2019 were used in this Inventory. Forest

Land conditions were observed on NFI plots at time t₀ and at a subsequent time t₁=t₀+s, where s is the time step

16 (time measured in years) and is indexed by discrete (e.g., 5 year) forest age classes. The inventory from t_0 was then

17 projected from t₁ to 2018. This projection approach requires simulating changes in the age-class distribution

18 resulting from forest aging and disturbance events and then applying C density estimates for each age class to

19 obtain population estimates for the nation.

20 Carbon in Biomass

21 Live tree C pools include aboveground and belowground (coarse root) biomass of live trees with diameter at breast

height (dbh) of at least 2.54 cm at 1.37 m above the forest floor. Separate estimates were made for above and

23 belowground biomass components. If inventory plots included data on individual trees, above- and belowground

- tree C was based on Woodall et al. (2011a), which is also known as the component ratio method (CRM), and is a
- 25 function of volume, species, and diameter. An additional component of foliage, which was not explicitly included in
- 26 Woodall et al. (2011a), was added to each tree following the same CRM method.

- 1 Understory vegetation is a minor component of biomass and is defined as all biomass of undergrowth plants in a
- 2 forest, including woody shrubs and trees less than 2.54 cm dbh. For the current Inventory, it was assumed that 10
- 3 percent of total understory C mass is belowground (Smith et al. 2006). Estimates of C density were based on
- 4 information in Birdsey (1996) and biomass estimates from Jenkins et al. (2003). Understory biomass represented
- 5 over one percent of C in biomass, but its contribution rarely exceeded 2 percent of the total.
- 6 Biomass losses associated with conversion from Grassland and Cropland to Forest Land were assumed to occur in
- 7 the year of conversion. To account for these losses, IPCC (2006) defaults for aboveground and belowground
- 8 biomass on Grasslands and aboveground biomass on Croplands were subtracted from sequestration in the year of
- 9 the conversion. For all other land use (i.e., Other Lands, Settlements, Wetlands) conversions to Forest Land no
- 10 biomass loss data were available and no IPCC (2006) defaults currently exist to include transfers, losses, or gains of
- carbon in the year of the conversion so none were incorporated for these conversion categories. As defaults or country-specific data become available for these conversion categories they will be incorporated.

13 Carbon in Dead Organic Matter

- 14 Dead organic matter was initially calculated as three separate pools—standing dead trees, downed dead wood,
- and litter—with C stocks estimated from sample data or from models. The standing dead tree C pool includes
- aboveground and belowground (coarse root) biomass for trees of at least 12.7 cm dbh. Calculations followed the
- basic method applied to live trees (Woodall et al. 2011a) with additional modifications to account for decay and
- 18 structural loss (Domke et al. 2011; Harmon et al. 2011). Downed dead wood estimates are based on measurement
- 19 of a subset of FIA plots for downed dead wood (Domke et al. 2013; Woodall and Monleon 2008; Woodall et al.
- 20 2013). Downed dead wood is defined as pieces of dead wood greater than 7.5 cm diameter, at transect
- 21 intersection, that are not attached to live or standing dead trees. This includes stumps and roots of harvested
- 22 trees. To facilitate the downscaling of downed dead wood C estimates from the state-wide population estimates to
- 23 individual plots, downed dead wood models specific to regions and forest types within each region are used. Litter
- C is the pool of organic C (also known as duff, humus, and fine woody debris) above the mineral soil and includes
- woody fragments with diameters of up to 7.5 cm. A subset of FIA plots are measured for litter C. A modeling
- approach, using litter C measurements from FIA plots (Domke et al. 2016) was used to estimate litter C for every
- 27 FIA plot used in the estimation framework.

28 Mineral Soil Carbon Stock Changes

29 A Tier 2 method is applied to estimate mineral soil C stock changes for Land Converted to Forest Land (Ogle et al. 30 2003, 2006; IPCC 2006). For this method, land is stratified by climate, soil types, land use, and land management 31 activity, and then assigned reference carbon levels and factors for the forest land and the previous land use. The 32 difference between the stocks is reported as the stock change under the assumption that the change occurs over 33 20 years. Reference C stocks have been estimated from data in the National Soil Survey Characterization Database 34 (USDA-NRCS 1997), and U.S.-specific stock change factors have been derived from published literature (Ogle et al. 35 2003, 2006). Land use and land use change patterns are determined from a combination of the Forest Inventory 36 and Analysis Dataset (FIA), the 2015 National Resources Inventory (NRI) (USDA-NRCS 2018), and National Land 37 Cover Dataset (NLCD) (Yang et al. 2018). See Annex 3.12 (Methodology for Estimating N₂O Emissions, CH₄ 38 Emissions and Soil Organic C Stock Changes from Agricultural Soil Management) for more information about this 39 method. Note that soil C in this Inventory is reported to a depth of 100 cm in the Forest Land Remaining Forest 40 Land category (Domke et al. 2017) while other land-use categories report soil C to a depth of 30 cm. However, to 41 ensure consistency in the Land Converted to Forest Land category where C stock transfers occur between land-use 42 categories, soil C estimates were based on a 30 cm depth using methods from Ogle et al. (2003, 2006) and IPCC 43 (2006), as described in Annex 3.12. For consistency, the same methods are also used for land use conversions to 44 Cropland, Grasslands and Settlements in this Inventory.

1 Uncertainty and Time-Series Consistency

2 A quantitative uncertainty analysis placed bounds on the flux estimates for Land Converted to Forest Land through

3 a combination of sample-based and model-based approaches to uncertainty for forest ecosystem CO₂ Eq. flux

4 (IPCC Approach 1). Uncertainty estimates for forest pool C stock changes were developed using the same

5 methodologies as described in the Forest Land Remaining Forest Land section for aboveground and belowground

6 biomass, dead wood, and litter. The exception was when IPCC default estimates were used for reference C stocks

7 in certain conversion categories (i.e., Cropland Converted to Forest Land and Grassland Converted to Forest Land).

8 In those cases, the uncertainties associated with the IPCC (2006) defaults were included in the uncertainty

9 calculations. IPCC Approach 2 was used for mineral soils and is described in the *Cropland Remaining Cropland*

10 section.

11 Uncertainty estimates are presented in Table 6-28 for each land conversion category and C pool. Uncertainty

estimates were obtained using a combination of sample-based and model-based approaches for all non-soil C

pools (IPCC Approach 1) and a Monte Carlo approach (IPCC Approach 2) was used for mineral soil. Uncertainty

- estimates were combined using the error propagation model (IPCC Approach 1). The combined uncertainty for all
- 15 C stocks in *Land Converted to Forest Land* ranged from 10 percent below to 10 percent above the 2018 C stock
- 16 change estimate of -110.6 MMT CO₂ Eq.

Table 6-28: Quantitative Uncertainty Estimates for Forest C Pool Stock Changes (MMT CO₂ Eq. per Year) in 2018 from *Land Converted to Forest Land* by Land Use Change

Land Use/Carbon Pool	2018 Flux Estimate	Uncertainty Range Relative to Flux Range ^a					
	(MMT CO ₂ Eq.)	(MMT	CO₂ Eq.)	(*	%)		
		Lower	Upper	Lower	Upper		
		Bound	Bound	Bound	Bound		
Cropland Converted to Forest Land	(46.3)	(55.1)	(37.5)	-19%	19%		
Aboveground Biomass	(26.4)	(35.0)	(17.8)	-33%	32%		
Belowground Biomass	(5.2)	(6.2)	(4.1)	-21%	21%		
Dead Wood	(6.0)	(7.2)	(4.8)	-20%	20%		
Litter	(8.5)	(9.6)	(7.4)	-12%	13%		
Mineral Soils	(0.2)	(0.5)	0.1	-133%	133%		
Grassland Converted to Forest Land	(9.7)	(12.1)	(7.2)	25%	25%		
Aboveground Biomass	(4.5)	(5.9)	(3.1)	-32%	32%		
Belowground Biomass	(0.9)	(1.2)	(0.6)	-31%	31%		
Dead Wood	(0.7)	(0.9)	(0.6)	-21%	21%		
Litter	(3.8)	(4.4)	(3.3)	-14%	14%		
Mineral Soils	0.3	(0.1)	0.6	-134%	134%		
Other Lands Converted to Forest Land	(14.9)	(17.3)	(12.6)	-16%	16%		
Aboveground Biomass	(6.3)	(8.4)	(4.2)	-33%	33%		
Belowground Biomass	(1.2)	(1.7)	(0.8)	-35%	35%		
Dead Wood	(2.0)	(2.6)	(1.5)	-28%	28%		
Litter	(4.2)	(4.8)	(3.5)	-15%	15%		
Mineral Soils	(1.1)	(1.9)	(0.4)	-62%	62%		
Settlements Converted to Forest Land	(38.9)	(45.3)	(32.4)	-17%	17%		
Aboveground Biomass	(23.4)	(29.6)	(17.2)	-26%	26%		
Belowground Biomass	(4.5)	(5.8)	(3.2)	-29%	29%		
Dead Wood	(4.6)	(5.7)	(3.4)	-25%	25%		
Litter	(6.4)	(7.3)	(5.5)	-14%	14%		
Mineral Soils	(0.1)	(0.1)	+	-37%	37%		
Wetlands Converted to Forest Land	(0.9)	(1.1)	(0.7)	-18%	18%		
Aboveground Biomass	(0.5)	(0.6)	(0.3)	-31%	31%		
Belowground Biomass	(0.1)	(0.1)	(0.1)	-35%	35%		
Dead Wood	(0.1)	(0.2)	(0.1)	-40%	40%		
Litter	(0.2)	(0.3)	(0.2)	-26%	26%		
Mineral Soils	+	+	+	NA	NA		

Total: Aboveground Biomass	(61.0)	(71.9)	(50.2)	-18%	18%
Total: Belowground Biomass	(11.9)	(13.7)	(10.1)	-15%	15%
Total: Dead Wood	(13.4)	(15.2)	(11.7)	-13%	13%
Total: Litter	(23.1)	(24.7)	(21.5)	-7%	7%
Total: Mineral Soils	(1.1)	(1.7)	(0.6)	-48%	48%
Total: Lands Converted to Forest Lands	(110.6)	(121.9)	(99.3)	-10%	10%

+ Absolute value does not exceed 0.05 MMT CO₂ Eq.

NA (Not Appicable)

^a Range of flux estimate for 95 percent confidence interval

Notes: Parentheses indicate net uptake. It is not possible to separate emissions from drained organic soils between *Forest Land Remaining Forest Land* and *Land Converted to Forest Land* so estimates for organic soils are included in Table 6-10 and Table 6-11 of the *Forest Land Remaining Forest Land* section of the Inventory.

1 QA/QC and Verification

2 See QA/QC and Verification sections under Forest Land Remaining Forest Land and for mineral soil estimates

3 Cropland Remaining Cropland.

4 Recalculations Discussion

5 The approach for estimating carbon stock changes in *Land Converted to Forest Land* is consistent with the methods

6 used for Forest Land Remaining Forest Land and is described in Annex 3.13. The Land Converted to Forest Land

7 estimates in this Inventory are based on the land use change information in the annual NFI. All conversions are

8 based on empirical estimates compiled using plot remeasurements from the NFI, IPCC (2006) default biomass C

9 stocks removed from Croplands and Grasslands in the year of conversion on individual plots and the Tier 2 method

for estimating mineral soil C stock changes (Ogle et al. 2003, 2006; IPCC 2006). All annual NFI plots available

11 through May 2019 were used in this Inventory. This is the second year that remeasurement data from the annual

12 NFI were available throughout the CONUS (with the exception of Wyoming and western Oklahoma) to estimate

13 land use conversion. The availability of remeasurement data from the annual NFI allowed for consistent plot-level 14 estimation of C stocks and stock changes for *Forest Land Remaining Forest Land* and the *Land Converted to Forest*

Land categories. Estimates in the previous Inventory were based on state-level carbon density estimates and a

16 combination of NRI data and NFI data in the eastern United States. The refined analysis in this Inventory resulted in

17 changes in the Land Converted to Forest Land categories. Overall, the Land Converted to Forest Land C stock

18 changes decreased by 8 percent in 2018 between the previous Inventory and the current Inventory (Table 6-29).

19 This decrease is directly attributed to the incorporation of annual NFI data into the compilation system and new

20 data and methods used to compile estimates of C in mineral soils. In the previous Inventory, *Grasslands Converted*

21 *to Forest* Land represented the largest transfer and uptake of C across the land use conversion categories. In this

Inventory, Cropland Converted to Forest Land represented the largest transfer and uptake of C across the land use

change categories followed by *Settlements Converted to Forest Land* (Table 6-29).

Table 6-29: Recalculations of the Net C Flux from Forest C Pools in Land Converted to Forest Land by Land Use Change Category (MMT C).

Conversion category	2017 Estimate,	2017 Estimate,	2018 Estimate,
and Carbon pool (MMT C)	Previous Inventory	Current Inventory	Current Inventory
Cropland Converted to Forest Land	(13.1)	(12.6)	(12.6)
Aboveground Biomass	(7.4)	(7.2)	(7.2)
Belowground Biomass	(1.5)	(1.4)	(1.4)
Dead Wood	(1.7)	(1.6)	(1.6)
Litter	(2.5)	(2.3)	(2.3)
Mineral soil	+	(0.1)	(0.1)
Grassland Converted to Forest Land	(3.0)	(2.6)	(2.6)
Aboveground Biomass	(1.5)	(1.2)	(1.2)
Belowground Biomass	(0.3)	(0.3)	(0.3)
Dead Wood	(0.2)	(0.2)	(0.2)
Litter	(1.1)	(1.0)	(1.0)

Mineral soil	0.1	0.1	0.1
Other Land Converted to Forest Land	(5.0)	(4.1)	(4.1)
Aboveground Biomass	(2.5)	(1.7)	(1.7)
Belowground Biomass	(0.5)	(0.3)	(0.3)
Dead Wood	(0.6)	(0.5)	(0.5)
Litter	(1.4)	(1.1)	(1.1)
Mineral soil	+	(0.3)	(0.3)
Settlements Converted to Forest Land	(11.4)	(10.6)	(10.6)
Aboveground Biomass	(6.8)	(6.4)	(6.4)
Belowground Biomass	(1.3)	(1.2)	(1.2)
Dead Wood	(1.3)	(1.2)	(1.2)
Litter	(1.8)	(1.7)	(1.7)
Mineral soil	+	+	+
Wetlands Converted to Forest Land	(0.4)	(0.2)	(0.2)
Aboveground Biomass	(0.2)	(0.1)	(0.1)
Belowground Biomass	+	+	+
Dead Wood	+	+	+
Litter	(0.1)	(0.1)	(0.1)
Mineral soil	+	+	+
Total Aboveground Biomass Flux	(18.5)	(16.6)	(16.6)
Total Belowground Biomass Flux	(3.6)	(3.2)	(3.2)
Total Dead Wood Flux	(3.9)	(3.7)	(3.7)
Total Litter Flux	(6.9)	(6.3)	(6.3)
Total SOC (mineral) Flux	+	(0.3)	(0.3)
Total Flux	(32.9)	(30.2)	(30.2)

+ Absolute value does not exceed 0.05 MMT C.

Notes: Totals may not sum due to independent rounding. Parentheses indicate net uptake.

1 Planned Improvements

2 There are many improvements necessary to improve the estimation of carbons stock changes associated with land 3 use conversion to forest land over the entire time series. First, soil C has historically been reported to a depth of 4 100 cm in the Forest Land Remaining Forest Land category (Domke et al. 2017) while other land-use categories 5 (e.g., Grasslands and Croplands) report soil carbon to a depth of 30 cm. To ensure greater consistency in the Land 6 Converted to Forest Land category where C stock transfers occur between land-use categories, all mineral soil 7 estimates in the Land Converted to Forest Land category in this Inventory are based on methods from Ogle et al. 8 (2003, 2006) and IPCC (2006). Methods have recently been developed (Domke et al. 2017) to estimate soil C to 9 depths of 20, 30, and 100 cm in the Forest Land category using in situ measurements from the Forest Inventory 10 and Analysis program within the USDA Forest Service and the International Soil Carbon Network. In subsequent 11 Inventories, a common reporting depth will be defined for all land use conversion categories and Domke et al. 12 (2017) will be used in the Forest Land Remaining Forest Land and Land Converted to Forest Land categories to 13 ensure consistent reporting across all forest land. Third, due to the 5 to 10-year remeasurement periods within the 14 FIA program and limited land use change information available over the entire time series, estimates presented in 15 this section may not reflect the entire 20-year conversion history. Work is underway to integrate the dense time 16 series of remotely sensed data into a new estimation system, which will facilitate land conversion estimation over 17 the entire time series.

6.4 Cropland Remaining Cropland (CRF Category 4B1)

Carbon (C) in cropland ecosystems occurs in biomass, dead organic matter, and soils. However, C storage in cropland biomass and dead organic matter is relatively ephemeral and may not need to be reported according to the IPCC (2006), with the exception of C stored in perennial woody crop biomass, such as citrus groves and apple orchards, in addition to the biomass, downed wood and dead organic matter in agroforestry systems. Within soils, C is found in organic and inorganic forms of C, but soil organic C (SOC) is the main source and sink for atmospheric CO₂ in most soils. IPCC (2006) recommends reporting changes in SOC stocks due to agricultural land-use and management activities on both mineral and organic soils.³⁸

- 10 Well-drained mineral soils typically contain from 1 to 6 percent organic C by weight, whereas mineral soils with
- 11 high water tables for substantial periods of a year may contain significantly more C (NRCS 1999). Conversion of
- mineral soils from their native state to agricultural land uses can cause up to half of the SOC to be lost to the
- 13 atmosphere due to enhanced microbial decomposition. The rate and ultimate magnitude of C loss depends on
- subsequent management practices, climate and soil type (Ogle et al. 2005). Agricultural practices, such as clearing,
- drainage, tillage, planting, grazing, crop residue management, fertilization, application of biosolids (i.e., sewage
 sludge) and flooding, can modify both organic matter inputs and decomposition, and thereby result in a net C stock
- change (Paustian et al. 1997a; Lal 1998; Conant et al. 2001; Ogle et al. 2005; Griscom et al. 2017; Ogle et al. 2019).
- 18 Eventually, the soil can reach a new equilibrium that reflects a balance between C inputs (e.g., decayed plant
- 19 matter, roots, and organic amendments such as manure and crop residues) and C loss through microbial
- 20 decomposition of organic matter (Paustian et al. 1997b).
- 21 Organic soils, also referred to as *Histosols*, include all soils with more than 12 to 20 percent organic C by weight,
- 22 depending on clay content (NRCS 1999; Brady and Weil 1999). The organic layer of these soils can be very deep
- 23 (i.e., several meters), and form under inundated conditions that results in minimal decomposition of plant
- residues. When organic soils are prepared for crop production, they are drained and tilled, leading to aeration of
- 25 the soil that accelerates both the decomposition rate and CO₂ emissions.³⁹ Due to the depth and richness of the
- organic layers, C loss from drained organic soils can continue over long periods of time, which varies depending on
- climate and composition (i.e., decomposability) of the organic matter (Armentano and Menges 1986). Due to
- deeper drainage and more intensive management practices, the use of organic soils for annual crop production
 leads to higher C loss rates than drainage of organic soils in grassland or forests (IPCC 2006).
- 30 *Cropland Remaining Cropland* includes all cropland in an Inventory year that has been cropland for a continuous
- time period of at least 20 years. This determination is based on the 2015 United States Department of Agriculture
- 32 (USDA) National Resources Inventory (NRI) land-use survey for non-federal lands (USDA-NRCS 2018a) and the
- National Land Cover Dataset for federal lands (Yang et al. 2018; Homer et al. 2007; Fry et al. 2011; Homer et al.
 2015). Cropland includes all land that is used to produce food and fiber, forage that is harvested and used as feed
- (e.g., hay and silage), in addition to cropland that has been enrolled in the Conservation Reserve Program (CRP)⁴⁰
- 36 (i.e., considered set-aside cropland).

³⁸ Carbon dioxide emissions associated with liming and urea application are also estimated but are included in the Liming and Urea Fertilization sections of the Agriculture chapter of the Inventory.

 $^{^{39}}$ N_2O emissions from drained organic soils are included in the Agricultural Soil Management section of the Agriculture chapter of the Inventory.

⁴⁰ The Conservation Reserve Program (CRP) is a land conservation program administered by the Farm Service Agency (FSA). In exchange for a yearly rental payment, farmers enrolled in the program agree to remove environmentally sensitive land from agricultural production and plant species that will improve environmental health and quality. Contracts for land enrolled in CRP are 10 to 15 years in length. The long-term goal of the program is to re-establish valuable land cover to help improve water quality, prevent soil erosion, and reduce loss of wildlife habitat.

- 1 Cropland in Alaska is not included in the Inventory, but is a relatively small amount of U.S. cropland area
- 2 (approximately 28,700 hectares). Some miscellaneous croplands are also not included in the Inventory due to
- 3 limited understanding of greenhouse gas emissions from these management systems (e.g., aquaculture). This leads
- 4 to a small discrepancy between the managed area in *Cropland Remaining Cropland* (see Table 6-33 in Planned
- 5 Improvements for more details on the land area discrepancies) and the cropland area included in the Inventory
- 6 analysis. Improvements are underway to include croplands in Alaska as part of future C inventories.
- 7 Land-use and land management of mineral soils are the largest contributor to total net C stock change, especially
- 8 in the early part of the time series (see Table 6-30 and Table 6-31). In 2018, mineral soils are estimated to
- 9 sequester 49.4 MMT CO₂ Eq. from the atmosphere (13.5 MMT C). This rate of C storage in mineral soils represents
- about a 15 percent decrease in the rate since the initial reporting year of 1990. Carbon dioxide emissions from
- organic soils are 32.8 MMT CO₂ Eq. (8.9 MMT C) in 2018, which is a 6 percent decrease compared to 1990. In total,
- 12 United States agricultural soils in *Cropland Remaining Cropland* sequestered approximately 16.6 MMT CO₂ Eq. (4.5
- 13 MMT C) in 2018.

Table 6-30: Net CO₂ Flux from Soil C Stock Changes in *Cropland Remaining Cropland* (MMT CO₂ Eq.)

Soil Type	1990	2005	2014	2015	2016	2017	2018
Mineral Soils	(58.2)	(62.4)	(44.7)	(44.9)	(54.3)	(55.1)	(49.4)
Organic Soils	35.0	33.4	32.5	32.1	31.6	32.8	32.8
Total Net Flux	(23.2)	(29.0)	(12.2)	(12.8)	(22.7)	(22.3)	(16.6)

Note: Parentheses indicate net sequestration.

Table 6-31: Net CO₂ Flux from Soil C Stock Changes in *Cropland Remaining Cropland* (MMT C)

Soil Type	1990	2005	2014	2015	2016	2017	2018
Mineral Soils	(15.9)	(17.0)	(12.2)	(12.3)	(14.8)	(15.0)	(13.5)
Organic Soils	9.5	9.1	8.9	8.8	8.6	8.9	8.9
Total Net Flux	(6.3)	(7.9)	(3.3)	(3.5)	(6.2)	(6.1)	(4.5)

Note: Parentheses indicate net sequestration.

18 Soil C stocks increase in *Cropland Remaining Cropland* largely due to sequestration in lands enrolled in CRP (i.e.,

19 set-aside cropland), as well as from conversion of land into hay production, adoption of conservation tillage (i.e.,

20 reduced- and no-till practices), and intensification of crop production by limiting the use of bare-summer fallow in

21 semi-arid regions, and growing a cover crop. However, there is a decline in the net amount of C sequestration (i.e.,

22 2018 is 15 percent less than 1990), and this decline is largely due to lower sequestration rates and less annual

23 cropland enrolled in the CRP that was initiated in 1985. Soil C losses from drainage of organic soils are relatively

stable across the time series with a small decline associated with the land base declining by 6 percent (based on

25 2015 estimates) for *Cropland Remaining Cropland* on organic soils since 1990.

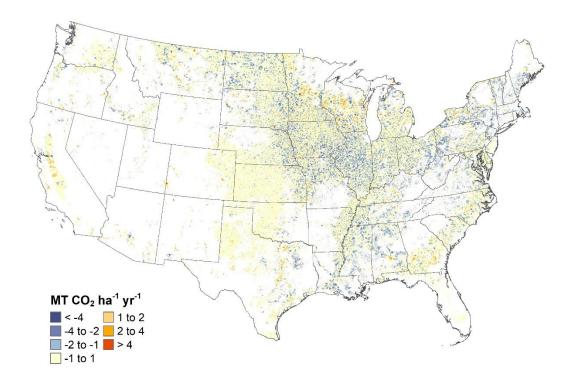
26 The spatial variability in the 2015 annual soil C stock changes⁴¹ are displayed in Figure 6-5 and Figure 6-6 for

27 mineral and organic soils, respectively. Isolated areas with high rates of C accumulation occur throughout the

agricultural land base in the United States, but there are more concentrated areas. In particular, higher rates of net

29 C accumulation in mineral soils occur in the Corn Belt region, which is the region with the largest amounts of

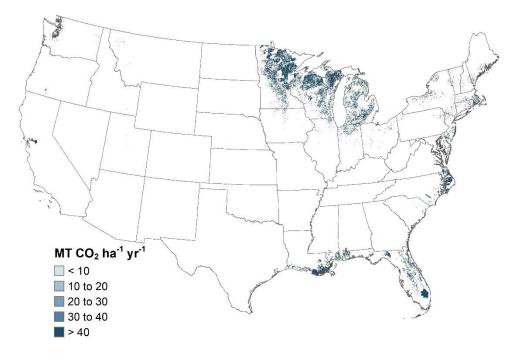
30 conservation tillage and cover crop management, along with moderate rates of CRP enrollment. The regions with


31 the highest rates of emissions from drainage of organic soils occur in the Southeastern Coastal Region (particularly

Florida), upper Midwest and Northeast surrounding the Great Lakes, and isolated areas along the Pacific Coast

- 33 (particularly California), which coincides with the largest concentrations of organic soils in the United States that
- 34 are used for agricultural production.

⁴¹ Only national-scale emissions are estimated for 2016 to 2018 in this Inventory using the surrogate data method, and therefore the fine-scale emission patterns in this map are based on inventory data from 2015.


- 1 Figure 6-5: Total Net Annual Soil C Stock Changes for Mineral Soils under Agricultural
- 2 Management within States, 2015, Cropland Remaining Cropland

7

Note: Only national-scale soil C stock changes are estimated for 2016 to 2018 in the current Inventory using a surrogate data method, and therefore the fine-scale emission patterns in this map are based on inventory data from 2015. Negative values represent a net increase in soil C stocks, and positive values represent a net decrease in soil C stocks.

- 1 Figure 6-6: Total Net Annual Soil C Stock Changes for Organic Soils under Agricultural
- 2 Management within States, 2015, *Cropland Remaining Cropland*

3 4

5

6

Note: Only national-scale soil C stock changes are estimated for 2016 to 2018 in the current Inventory using a surrogate data method, and therefore the fine-scale emission patterns in this map are based on inventory data from 2015.

7 Methodology

8 The following section includes a description of the methodology used to estimate changes in soil C stocks for

- 9 Cropland Remaining Cropland, including (1) agricultural land-use and management activities on mineral soils; and
- 10 (2) agricultural land-use and management activities on organic soils. Carbon dioxide emissions and removals⁴² due
- 11 to changes in mineral soil C stocks are estimated using a Tier 3 method for the majority of annual crops (Ogle et al.
- 12 2010). A Tier 2 IPCC method is used for the remaining crops not included in the Tier 3 method (see Methodology
- section for a list of crops in the Tier 2 and 3 methods) (Ogle et al. 2003, 2006). In addition, a Tier 2 method is used
- for very gravelly, cobbly, or shaley soils (i.e., classified as soils that have greater than 35 percent of soil volume comprised of gravel, cobbles, or shale, regardless of crop). Emissions from organic soils are estimated using a Tier 2
- 16 IPCC method. While a combination of Tier 2 and 3 methods are used to estimate C stock changes across most of
- 17 the time series, a surrogate data method has been applied to estimate stock changes in the last few years of the
- 18 Inventory. Stock change estimates based on surrogate data will be recalculated in a future Inventory report using
- 19 the Tier 2 and 3 methods when data become available.
- 20 Soil C stock changes on non-federal lands are estimated for *Cropland Remaining Cropland* (as well as agricultural
- 21 land falling into the IPCC categories Land Converted to Cropland, Grassland Remaining Grassland, and Land
- 22 Converted to Grassland) according to land-use histories recorded in the USDA NRI survey (USDA-NRCS 2018a). The
- 23 NRI is a statistically-based sample of all non-federal land, and includes approximately 489,178 survey locations in
- agricultural land for the conterminous United States and Hawaii. Each survey location is associated with an
- 25 "expansion factor" that allows scaling of C stock changes from NRI survey locations to the entire country (i.e., each

⁴² Removals occur through uptake of CO₂ into crop and forage biomass that is later incorporated into soil C pools.

- 1 expansion factor represents the amount of area that is expected to have the same land-use/management history
- 2 as the sample point). Land-use and some management information (e.g., crop type, soil attributes, and irrigation)
- 3 were collected for each NRI point on a 5-year cycle beginning from 1982 through 1997. For cropland, data had
- 4 been collected for 4 out of 5 years during each survey cycle (i.e., 1979 through 1982, 1984 through 1987, 1989
- 5 through 1992, and 1994 through 1997). In 1998, the NRI program began collecting annual data, and the annual
- data are currently available through 2015 (USDA-NRCS 2018a). NRI survey locations are classified as *Cropland Remaining Cropland* in a given year between 1990 and 2015 if the land use had been cropland for a continuous
- *Remaining Cropland* in a given year between 1990 and 2015 if the land use had been cropland for a continuous
 time period of at least 20 years. NRI survey locations are classified according to land-use histories starting in 1979,
- and consequently the classifications are based on less than 20 years from 1990 to 1998. This may have led to an
- 10 overestimation of *Cropland Remaining Cropland* in the early part of the time series to the extent that some areas
- 11 are converted to cropland between 1971 and 1978.

12 Mineral Soil Carbon Stock Changes

- 13 An IPCC Tier 3 model-based approach (Ogle et al. 2010) is applied to estimate C stock changes for mineral soils on
- 14 the majority of land that is used to produce annual crops and forage crops that are harvested and used as feed
- 15 (e.g., hay and silage) in the United States. These crops include alfalfa hay, barley, corn, cotton, grass hay, grass-
- 16 clover hay, oats, peanuts, potatoes, rice, sorghum, soybeans, sugar beets, sunflowers, tobacco and wheat, but is
- 17 not applied to estimate C stock changes from other crops or rotations with other crops. The model-based
- approach uses the DayCent biogeochemical model (Parton et al. 1998; Del Grosso et al. 2001, 2011) to estimate
- soil C stock changes, soil nitrous oxide (N₂O) emissions from agricultural soil management, and methane (CH₄)
- 20 emissions from rice cultivation. Carbon and N dynamics are linked in plant-soil systems through the
- biogeochemical processes of microbial decomposition and plant production (McGill and Cole 1981). Coupling the
- two source categories (i.e., agricultural soil C and N_2O) in a single inventory analysis ensures that there is a
- 23 consistent treatment of the processes and interactions between C and N cycling in soils.
- 24 The remaining crops on mineral soils are estimated using an IPCC Tier 2 method (Ogle et al. 2003), including some
- vegetables, tobacco, perennial/horticultural crops, and crops that are rotated with these crops. The Tier 2 method
- is also used for very gravelly, cobbly, or shaley soils (greater than 35 percent by volume), and soil C stock changes
- 27 on federal croplands. Mineral SOC stocks are estimated using a Tier 2 method for these areas because the DayCent
- 28 model, which is used for the Tier 3 method, has not been fully tested for estimating C stock changes associated
- 29 with these crops and rotations, as well as cobbly, gravelly, or shaley soils. In addition, there is insufficient
- 30 information to simulate croplands on federal lands using DayCent.
- A surrogate data method is used to estimate soil C stock changes from 2016 to 2018 at the national scale for land
- 32 areas included in the Tier 2 and Tier 3 methods. Specifically, linear regression models with autoregressive moving-
- average (ARMA) errors (Brockwell and Davis 2016) are used to estimate the relationship between surrogate data
- and the 1990 to 2015 stock change data that are derived using the Tier 2 and 3 methods. Surrogate data for these
- regression models include corn and soybean yields from USDA-NASS statistics,⁴³ and weather data from the PRISM
- Climate Group (PRISM 2018). See Box 6-4 for more information about the surrogate data method. Stock change
- 37 estimates for 2016 to 2018 will be recalculated in future inventories when new NRI data are available.

38 Box 6-4: Surrogate Data Method

Time series extension is needed because there are typically gaps at the end of the time series. This is mainly because the NRI, which provides critical data for estimating greenhouse gas emissions and removals, does not release new activity data every year.

A surrogate data method has been used to impute missing emissions at the end of the time series for soil C stock changes in *Cropland Remaining Cropland, Land Converted to Cropland, Grassland Remaining Grassland,* and *Land Converted to Grassland*. A linear regression model with autoregressive moving-average (ARMA) errors (Brockwell and Davis 2016) is used to estimate the relationship between the surrogate data and the modeled

⁴³ See <https://quickstats.nass.usda.gov/>.

1990 to 2015 emissions data that has been compiled using the inventory methods described in this section. The model to extend the time series is given by

 $Y=X\beta+\varepsilon,$

where Y is the response variable (e.g., soil organic carbon), $X\beta$ contains specific surrogate data depending on the response variable, and ε is the remaining unexplained error. Models with a variety of surrogate data were tested, including commodity statistics, weather data, or other relevant information. Parameters are estimated from the emissions data for 1990 to 2015 using standard statistical techniques, and these estimates are used to predict the missing emissions data for 2016 to 2018.

A critical issue with application of splicing methods is to adequately account for the additional uncertainty introduced by predicting emissions rather than compiling the full inventory. Consequently, uncertainty will increase for years with imputed estimates based on the splicing methods, compared to those years in which the full inventory is compiled. This added uncertainty is quantified within the model framework using a Monte Carlo approach. The approach requires estimating parameters for results in each iteration of the Monte Carlo analysis for the full inventory (i.e., the surrogate data model is refit with the emissions estimated in each Monte Carlo iteration from the full inventory analysis with data from 1990 to 2015), estimating emissions from each model and deriving confidence intervals combining uncertainty across all iterations. This approach propagates uncertainties through the calculations from the original inventory and the surrogate data method. Furthermore, the 95% confidence intervals are estimated using the 3 sigma rules assuming a unimodal density (Pukelsheim 1994).

1

2 Tier 3 Approach. Mineral SOC stocks and stock changes are estimated to a 30 cm depth using the DayCent 3 biogeochemical⁴⁴ model (Parton et al. 1998; Del Grosso et al. 2001, 2011), which simulates cycling of C, N, and 4 other nutrients in cropland, grassland, forest, and savanna ecosystems. The DayCent model utilizes the soil C 5 modeling framework developed in the Century model (Parton et al. 1987, 1988, 1994; Metherell et al. 1993), but 6 has been refined to simulate dynamics at a daily time-step. Input data on land use and management are specified 7 at a daily resolution and include land-use type, crop/forage type, and management activities (e.g., planting, 8 harvesting, fertilization, manure amendments, tillage, irrigation, cover crops, and grazing; more information is 9 provided below). The model simulates net primary productivity (NPP) using the NASA-CASA production algorithm 10 MODIS Enhanced Vegetation Index (EVI) products, MOD13Q1 and MYD13Q1, for most croplands⁴⁵ (Potter et al. 1993, 2007). The model simulates soil temperature, and water dynamics, using daily weather data from a 4 11 kilometer gridded product from the PRISM Climate Group (2018), and soil attributes from the Soil Survey 12 13 Geographic Database (SSURGO) (Soil Survey Staff 2019). This method is more accurate than the Tier 1 and 2 14 approaches provided by the IPCC (2006) because the simulation model treats changes as continuous over time as 15 opposed to the simplified discrete changes represented in the default method (see Box 6-5 for additional 16 information).

17 Box 6-5: Tier 3 Approach for Soil C Stocks Compared to Tier 1 or 2 Approaches

A Tier 3 model-based approach is used to estimate soil C stock changes on the majority of agricultural land on mineral soils. This approach results in a more complete and accurate accounting of soil C stock changes and entails several fundamental differences from the IPCC Tier 1 or 2 methods, as described below.

⁴⁴ Biogeochemical cycles are the flow of chemical elements and compounds between living organisms and the physical environment.

⁴⁵ NPP is estimated with the NASA-CASA algorithm for most of the cropland that is used to produce major commodity crops in the central United States from 2000 to 2015. Other regions and years prior to 2000 are simulated with a method that incorporates water, temperature and moisture stress on crop production (see Metherell et al. 1993), but does not incorporate the additional information about crop condition provided with remote sensing data.

- 1) The IPCC Tier 1 and 2 methods are simplified approaches for estimating soil C stock changes and classify land areas into discrete categories based on highly aggregated information about climate (six regions), soil (seven types), and management (eleven management systems) in the United States. In contrast, the Tier 3 model incorporates the same variables (i.e., climate, soils, and management systems) with considerably more detail both temporally and spatially, and captures multi-dimensional interactions through the more complex model structure.
- 2) The IPCC Tier 1 and 2 methods have a coarser spatial resolution in which data are aggregated to soil types in climate regions, of which there about 30 combinations in the United States. In contrast, the Tier 3 model simulates soil C dynamics at about 350,000 individual NRI survey locations in crop fields and grazing lands.

The IPCC Tier 1 and 2 methods use a simplified approach for estimating changes in C stocks that assumes a stepchange from one equilibrium level of the C stock to another equilibrium level. In contrast, the Tier 3 approach simulates a continuum of C stock changes that may reach a new equilibrium over an extended period of time depending on the environmental conditions (i.e., a new equilibrium often requires hundreds to thousands of years to reach). More specifically, the DayCent model (i.e., daily time-step version of the Century model) simulates soil C dynamics (and CO₂ emissions and uptake) on a daily time step based on C emissions and removals from plant production and decomposition processes. These changes in soil C stocks are influenced by multiple factors that affect primary production and decomposition, including changes in land use and management, weather variability and secondary feedbacks between management activities, climate, and soils.

1

- 2 Historical land-use patterns and irrigation histories are simulated with DayCent based on the 2015 USDA NRI 3 survey (USDA-NRCS 2018a). Additional sources of activity data are used to supplement the activity data from the 4 NRI. The USDA-NRCS Conservation Effects and Assessment Project (CEAP) provides data on a variety of cropland 5 management activities, and is used to inform the inventory analysis about tillage practices, mineral fertilization, 6 manure amendments, cover cropping management, as well as planting and harvest dates (USDA-NRCS 2018b; 7 USDA-NRCS 2012). CEAP data are collected at a subset of NRI survey locations, and currently provide management 8 information from approximately 2002 to 2006. These data are combined with other datasets in an imputation 9 analysis that extend the time series from 1990 to 2015. This imputation analysis is comprised of three steps: a) 10 determine the trends in management activity across the time series by combining information across several 11 datasets (discussed below), b) use an artificial neural network to determine the likely management practice at a 12 given NRI survey location (Cheng and Titterington 1994), and c) assign management practices from the CEAP 13 survey to the specific NRI locations using predictive mean matching methods that is adapted to reflect the trending 14 information (Little 1988, van Buuren 2012). The artificial neural network is a machine learning method that 15 approximates nonlinear functions of inputs and searches through a very large class of models to impute an initial 16 value for management practices at specific NRI survey locations. The predictive mean matching method identifies 17 the most similar management activity recorded in the CEAP survey that matches the prediction from the artificial 18 neural network. The matching ensures that imputed management activities are realistic for each NRI survey 19 location, and not odd or physically unrealizable results that could be generated by the artificial neural network. 20 There are six complete imputations of the management activity data using these methods. 21 To determine trends in mineral fertilization and manure amendments from 1979 to 2015, CEAP data are combined 22 with information on fertilizer use and rates by crop type for different regions of the United States from the USDA 23 Economic Research Service. The data collection program was known as the Cropping Practices Surveys through
- Economic Research Service. The data collection program was known as the Cropping Practices Surveys through
 1995 (USDA-ERS 1997), and is now part of data collection known as the Agricultural Resource Management
 Surveys (ARMS) (USDA-ERS 2018). Additional data on fertilization practices are compiled through other sources
 particularly the National Agricultural Statistics Service (USDA-NASS 1992, 1999, 2004). The donor survey data from
 CEAP contain both mineral fertilizer rates and manure amendment rates, so that the selection of a donor via
 predictive mean matching yields the joint imputation of both rates. This approach captures the relationship
 between mineral fertilization and manure amendment practices for U.S. croplands based directly on the observed
- 30 patterns in the CEAP survey data.

- 1 To determine the trends in tillage management from 1979 to 2015, CEAP data are combined with Conservation
- 2 Technology Information Center data between 1989 and 2004 (CTIC 2004) and USDA-ERS Agriculture Resource
- 3 Management Surveys (ARMS) data from 2002 to 2015 (Claasen et al. 2018). CTIC data are adjusted for long-term
- adoption of no-till agriculture (Towery 2001). It is assumed that the majority of agricultural lands are managed

5 with full tillage prior to 1985. For cover crops, CEAP data are combined with information from 2011 to 2016 in the

- USDA Census of Agriculture (USDA-NASS 2012, 2017). It is assumed that cover cropping was minimal prior to 1990
 and the rates increased linearly over the decade to the levels of cover crop management derived from the CEAP
- 7 and the rates increased linearly over the decade to the levels of cover crop management derived from the CEAP
- 8 survey.
- 9 Uncertainty in the C stock estimates from DayCent associated with management activity includes input uncertainty
- 10 due to missing management data in the NRI survey that is imputed from other sources; model uncertainty due to
- 11 incomplete specification of C and N dynamics in the DayCent model parameters and algorithms; and sampling
- 12 uncertainty associated with the statistical design of the NRI survey. To assess input uncertainty, The C and N
- dynamics at each NRI survey location are simulated six times using the imputation product and other model driver
- data. Uncertainty in parameterization and model algorithms are determined using a structural uncertainty
- estimator as described in Ogle et al. (2007, 2010). Sampling uncertainty was assessed using the NRI replicate
- 16 sampling weights.
- 17 Carbon stocks and 95 percent confidence intervals are estimated for each year between 1990 and 2015 using the
- 18 DayCent model. However, note that the areas have been modified in the original NRI survey through the process in
- 19 which the Forest Inventory and Analysis (FIA) survey data and the National Land Cover Dataset (Homer et al. 2007;
- 20 Fry et al. 2011; Homer et al. 2015) are harmonized with the NRI data. This process ensures that the areas of *Forest*
- 21 Land Remaining Forest Land and Land Converted to Forest Land are consistent with other land use categories while
- 22 maintaining a consistent time series for the total land area of the United States. For example, if the FIA estimate

less *Cropland Converted to Forest Land* than the NRI, then the amount of area for this land use conversion is

- reduced in the NRI dataset and re-classified as *Cropland Remaining Cropland* (See Section 6.1, Representation of
- 25 the U.S. Land Base for more information). Further elaboration on the methodology and data used to estimate
- stock changes from mineral soils are described in Annex 3.12.
- 27 Soil C stock changes from 2016 to 2018 are estimated using a surrogate data method that is described in Box 6-4.
- Future Inventories will be updated with new NRI activity data when the data are made available, and the time series from 2016 to 2018 will be recalculated.
- 30 **Tier 2 Approach**. In the IPCC Tier 2 method, data on climate, soil types, land-use, and land management activity
- 31 are used to classify land area and apply appropriate soil C stock change factors to estimate soil C stock changes to a
- 32 30 cm depth (Ogle et al. 2003, 2006). The primary source of activity data for land use, crop and irrigation histories
- is the 2015 NRI survey (USDA-NRCS 2018a). Each NRI survey location is classified by soil type, climate region, and
- 34 management condition using data from other sources. Survey locations on federal lands are included in the NRI,
- but land use and cropping history are not compiled at these locations in the survey program (i.e., NRI is restricted to data collection on non-federal lands). Therefore, land-use patterns at the NRI survey locations on federal lands
- are based on the National Land Cover Database (NLCD) (Yang et al. 2018; Fry et al. 2011; Homer et al. 2007; Homer
- 38 et al. 2015).
- 39 Additional management activities needed for the Tier 2 method are based on the imputation product described for
- 40 the Tier 3 approach, including tillage practices, mineral fertilization, and manure amendments that are assigned to
- 41 NRI survey locations. The one exception are activity data on wetland restoration of Conservation Reserve Program
- 42 land that are obtained from Euliss and Gleason (2002). Climate zones in the United States are classified using mean
- 43 precipitation and temperature (1950 to 2000) variables from the WorldClim data set (Hijmans et al. 2005) and
- 44 potential evapotranspiration data from the Consortium for Spatial Information (CGIAR-CSI) (Zomer et al. 2008,
- 45 2007) (Figure A-9). IPCC climate zones are then assigned to NRI survey locations.
- 46 Reference C stocks are estimated using the National Soil Survey Characterization Database (NRCS 1997) with
- 47 cultivated cropland as the reference condition, rather than native vegetation as used in IPCC (2006). Soil
- 48 measurements under agricultural management are much more common and easily identified in the National Soil
- 49 Survey Characterization Database (NRCS 1997) than are soils under a native condition, and therefore cultivated
- 50 cropland provides a more robust sample for estimating the reference condition. U.S.-specific C stock change

- 1 factors are derived from published literature to determine the impact of management practices on SOC storage
- 2 (Ogle et al. 2003, 2006). The factors include changes in tillage, cropping rotations, intensification, and land-use
- 3 change between cultivated and uncultivated conditions. U.S. factors associated with organic matter amendments
- 4 are not estimated due to an insufficient number of studies in the United States to analyze the impacts. Instead,
- 5 factors from IPCC (2006) are used to estimate the effect of those activities.
- 6 Changes in soil C stocks for mineral soils are estimated 1,000 times for 1990 through 2015, using a Monte Carlo
- 7 stochastic simulation approach and probability distribution functions for U.S.-specific stock change factors,
- 8 reference C stocks, and land-use activity data (Ogle et al. 2003; Ogle et al. 2006). Further elaboration on the
- 9 methodology and data used to estimate stock changes from mineral soils are described in Annex 3.12.
- 10 Soil C stock changes from 2016 to 2018 are estimated using a surrogate data method that is described in Box 6-4.
- 11 As with the Tier 3 method, future Inventories will be updated with new NRI activity data when the data are made
- 12 available, and the time series will be recalculated (see Planned Improvements section).

Organic Soil Carbon Stock Changes

- 14 Annual C emissions from drained organic soils in *Cropland Remaining Cropland* are estimated using the Tier 2
- 15 method provided in IPCC (2006), with U.S.-specific C loss rates (Ogle et al. 2003) rather than default IPCC rates. The
- 16 final estimates include a measure of uncertainty as determined from the Monte Carlo Stochastic Simulation with
- 17 1,000 iterations. Emissions are based on the annual data for drained organic soils from 1990 to 2015 for *Cropland*
- 18 *Remaining Cropland* areas in the 2015 NRI (USDA-NRCS 2018a). Further elaboration on the methodology and data
- used to estimate stock changes from organic soils are described in Annex 3.12.
- 20 A surrogate data method is used to estimate annual C emissions from organic soils from 2016 to 2018 as described
- 21 in Box 6-4 of this section. Estimates for 2016 to 2018 will be recalculated in future Inventories when new NRI data
- 22 are available.

23 Uncertainty and Time-Series Consistency

24 Uncertainty associated with the *Cropland Remaining Cropland* land-use category is addressed for changes in

- 25 agricultural soil C stocks (including both mineral and organic soils). Uncertainty estimates are presented in Table
- 26 6-32 for each subsource (mineral soil C stocks and organic soil C stocks) and the methods that are used in the
- 27 Inventory analyses (i.e., Tier 2 and Tier 3). Uncertainty for the Tier 2 and 3 approaches is derived using a Monte
- 28 Carlo approach (see Annex 3.12 for further discussion). For 2016 to 2018, additional uncertainty is propagated
- 29 through the Monte Carlo Analysis that is associated with the surrogate data method. Soil C stock changes from the
- Tier 2 and 3 approaches are combined using the simple error propagation method provided by the IPCC (2006).
- 31 The combined uncertainty is calculated by taking the square root of the sum of the squares of the standard
- 32 deviations of the uncertain quantities.
- 33 The combined uncertainty for soil C stocks in *Cropland Remaining Cropland* ranges from 497 percent below to 497
- 34 percent above the 2018 stock change estimate of -16.6 MMT CO₂ Eq. The large relative uncertainty around the 2018 stock change estimate is excluded as a still C stock changes that is not excluded by the summarized by the summary tensor by tensor by tensor by tensor by tensor by te
- 35 2018 stock change estimate is mostly due to variation in soil C stock changes that is not explained by the surrogate
- 36 data method, leading to high prediction error with this splicing method.

Table 6-32: Approach 2 Quantitative Uncertainty Estimates for Soil C Stock Changes occurring within *Cropland Remaining Cropland* (MMT CO₂ Eq. and Percent)

Source	2018 Flux Estimate	Uncertainty Range Relative to Flux Estimate ^a				
Source	(MMT CO₂ Eq.)	(MMT (CO₂ Eq.)	(%)		
		Lower	Upper	Lower	Upper	
		Bound	Bound	Bound	Bound	
Mineral Soil C Stocks: Cropland Remaining Cropland, Tier 3 Inventory Methodology	(43.5)	(123.6)	36.6	-184%	184%	
Mineral Soil C Stocks: Cropland Remaining Cropland, Tier 2 Inventory Methodology	(5.9)	(12.3)	(0.5)	-109%	109%	

Organic Soil C Stocks: Cropland Remaining Cropland, Tier 2 Inventory Methodology	32.8	13.8	51.8	-58%	58%
Combined Uncertainty for Flux associated with Agricultural Soil Carbon Stock Change in Cropland Remaining Cropland	(16.6)	(99.2)	66.0	-497%	497%

^a Range of C stock change estimates predicted by Monte Carlo Stochastic Simulation with a 95 percent confidence interval. Note: Parentheses indicate net sequestration.

1 Uncertainty is also associated with lack of reporting of agricultural woody biomass and dead organic matter C stock

2 changes. The IPCC (2006) does not recommend reporting of annual crop biomass in *Cropland Remaining Cropland*

because all of the biomass senesces each year and so there is no long-term storage of C in this pool. For woody

plants, biomass C stock changes are likely minor in perennial crops, such as orchards and nut plantations. There
 will be some removal and replanting of tree crops each year, but the net effect on biomass C stock changes is

6 probably minor because the overall area and tree density is relatively constant across time series. In contrast,

agroforestry practices, such as shelterbelts, riparian forests and intercropping with trees, may be significantly

8 changing over the Inventory time series, at least in some regions of the United States, but there are currently no

9 datasets to evaluate the trends. Changes in litter C stocks are also assumed to be negligible in croplands over

annual time frames, although there are certainly significant changes at sub-annual time scales across seasons.

11 However, this trend may change in the future, particularly if crop residue becomes a viable feedstock for bioenergy

12 production.

13 Methodological recalculations are applied from 1990 to 2017 with the methodological improvements

14 implemented in this Inventory, ensuring consistency across the time series. Details on the emission trends through

15 time are described in more detail in the introductory section, above.

16 **QA/QC and Verification**

17 Quality control measures included checking input data, model scripts, and results to ensure data are properly

18 handled throughout the inventory process. Inventory reporting forms and text are reviewed and revised as needed

19 to correct transcription errors. Results from the DayCent model are compared to field measurements and soil

20 monitoring sites associated with the NRI (Spencer et al. 2011), and a statistical relationship has been developed to

assess uncertainties in the predictive capability of the model. The comparisons include 72 long-term experiment

sites and 142 NRI soil monitoring network sites, with 948 observations across all of the sites (see Ogle et al. 2007

and Annex 3.12 for more information). The original statistical model developed from the comparisons to

experimental data did not separate croplands and grasslands, and it was discovered through additional testing that

25 the DayCent model had less bias in predicting soil C stock changes for croplands than grasslands. Therefore,

26 corrective actions were taken to include a grassland/cropland indicator variable in the statistical model to address

27 differences in the DayCent model prediction capability.

28 Recalculations Discussion

29 Methodological recalculations are applied to the entire time-series to ensure time-series consistency from 1990

30 through 2017. Several major improvements have been implemented in this Inventory leading to the need for

recalculations, including (1) development of a more detailed time series of management activity data by combining

32 information in an imputation analysis from USDA-NRCS CEAP survey, USDA-ERS ARMS data, CTIC data and USDA

Census of Agriculture Data; (2) incorporating new land use and crop histories from the NRI survey; (3)

- 34 incorporating new land use data from the NLCD; (4) modeling SOC stock changes to 30 cm depth with the Tier 3
- 35 approach (previously modeled to 20 cm depth); (5) modeling the N cycle with freeze-thaw effects on soil N₂O
- 36 emissions; (6) addressing the effect of cover crops on greenhouse gas emissions and removals; and (7)
- 37 incorporating measurements of soil organic C stocks from NRI survey locations for evaluating uncertainty in
- 38 DayCent model estimates. Other improvements include better resolving the timing of tillage, planting, fertilization
- 39 and harvesting based on the USDA-NRCS CEAP survey and state level information on planting and harvest dates;
- 40 improving the timing of irrigation; and crop senescence using growing degree relationships; and estimating soil C

- 1 stock changes on federal lands in the conterminous United States. The surrogate data method was also applied to
- 2 re-estimate stock changes from 2016 to 2017. These changes resulted in an average increase in soil C
- 3 sequestration of 2.5 MMT CO₂ Eq., 36 percent, from 1990 to 2018 relative to the previous Inventory.

4 Planned Improvements

5 A key improvement for a future Inventory will be to incorporate additional management activity data from the

6 USDA-NRCS Conservation Effects Assessment Project survey. This survey has compiled new data in recent years

7 that will be available for the Inventory analysis by next year. The latest land use data will also be incorporated from

- 8 the USDA National Resources Inventory and related management data from USDA-ERS ARMS surveys.
- 9 There are several other planned improvements underway related to the plant production module. Crop

10 parameters associated with temperature effects on plant production will be further improved in DayCent with

11 additional model calibration. Senescence events following grain filling in crops, such as wheat, are being modified

12 based on recent model algorithm development, and will be incorporated. There will also be further testing and

13 parameterization of the DayCent model to reduce the bias in model predictions for grasslands, which was

discovered through model evaluation by comparing output to measurement data from 72 experimental sites and

15 142 NRI soil monitoring network sites (See QA/QC and Verification section).

16 Improvements are underway to simulate crop residue burning in the DayCent model based on the amount of crop

17 residues burned according to the data that are used in the Field Burning of Agricultural Residues source category

18 (see Section 5.7). This improvement will more accurately represent the C inputs to the soil that are associated with

19 residue burning.

20 In the future, the Inventory will include an analysis of C stock changes in Alaska for cropland, using the Tier 2

21 method for mineral and organic soils that is described earlier in this section. This analysis will initially focus on land

use change, which typically has a larger impact on soil C stock changes than management practices, but will be

- 23 further refined over time to incorporate management data that drive C stock changes on long-term cropland. See
- Table 6-33 for the amount of managed area in *Cropland Remaining Cropland* that is not included in the Inventory,
- 25 which is less than one thousand hectares per year. This includes the area in Alaska and also other miscellaneous
- 26 cropland areas, such as aquaculture.

27 Many of these improvements are expected to be completed for the 1990 through 2020 Inventory (i.e., 2021

submission to the UNFCCC). However, the time line may be extended if there are insufficient resources to fund all
 or part of these planned improvements.

Table 6-33: Area of Managed Land in *Cropland Remaining Cropland* that is not included in the current Inventory (Thousand Hectares)

	Area (1	Area (Thousand Hectares)							
Year	Managed Land	Inventory	Not Included in Inventory						
1990	162,163	162,163	<1						
1991	161,721	161,721	<1						
1992	161,252	161,252	<1						
1993	159,449	159,449	<1						
1994	157,732	157,732	<1						
1995	157,054	157,054	<1						
1996	156,409	156,409	<1						
1997	155,767	155,767	<1						
1998	152,016	152,016	<1						
1999	151,135	151,135	<1						
2000	150,981	150,981	<1						
2001	150,471	150,471	<1						

2002	150,175	150,175	<1
2003	150,843	150,843	<1
2004	150,645	150,645	<1
2005	150,304	150,304	<1
2006	149,791	149,791	<1
2007	150,032	150,032	<1
2008	149,723	149,723	<1
2009	149,743	149,743	<1
2010	149,343	149,343	<1
2011	148,844	148,844	<1
2012	148,524	148,524	<1
2013	149,018	149,018	<1
2014	149,492	149,492	<1
2015	148,880	148,880	<1
2016	ND	ND	ND
2017	ND	ND	ND
2018	ND	ND	ND

1 Note: NRI data are not available after 2015, and these years are designated as ND (No data).

2 6.5 Land Converted to Cropland (CRF Category 3 4B2)

4 Land Converted to Cropland includes all cropland in an inventory year that had been in another land use(s) during 5 the previous 20 years (USDA-NRCS 2018), and used to produce food or fiber, or forage that is harvested and used 6 as feed (e.g., hay and silage). For example, grassland or forest land converted to cropland during the past 20 years 7 would be reported in this category. Recently converted lands are retained in this category for 20 years as 8 recommended by IPCC (2006). This Inventory includes all croplands in the conterminous United States and Hawaii, 9 but does not include a minor amount of Land Converted to Cropland in Alaska. Some miscellaneous croplands are 10 also not included in the Inventory due to limited understanding of greenhouse gas dynamics in management 11 systems (e.g., aquaculture). Consequently, there is a discrepancy between the total amount of managed area in 12 Land Converted to Cropland (see Section 6.1 Representation of the U.S. Land Base) and the cropland area included 13 in the Inventory. Improvements are underway to include croplands in Alaska and miscellaneous croplands in future

14 C inventories (see Table 6-37 in Planned Improvement for more details on the land area discrepancies).

15 Land use change can lead to large losses of C to the atmosphere, particularly conversions from forest land

16 (Houghton et al. 1983; Houghton and Nassikas 2017). Moreover, conversion of forest to another land use (i.e.,

deforestation) is one of the largest anthropogenic sources of emissions to the atmosphere globally, although this

18 source may be declining according to a recent assessment (Tubiello et al. 2015).

19 The 2006 IPCC Guidelines recommend reporting changes in biomass, dead organic matter and soil organic carbon

20 (SOC) stocks with land use change. All SOC stock changes are estimated and reported for *Land Converted to*

- 21 *Cropland*, but reporting of C stock changes for aboveground and belowground biomass, dead wood, and litter
- 22 pools is limited to Forest Land Converted to Cropland.⁴⁶

⁴⁶ Changes in biomass C stocks are not currently reported for other land use conversions (other than forest land) to cropland, but this is a planned improvement for a future inventory. Note: changes in dead organic matter are assumed to negligible for other land use conversions (i.e., other than forest land) to cropland.

1 Forest Land Converted to Cropland is the largest source of emissions from 1990 to 2018, accounting for

2 approximately 87 percent of the average total loss of C among all of the land use conversions in Land Converted to

3 Cropland. The pattern is due to the large losses of biomass and dead organic matter C for Forest Land Converted to

4 Cropland. The next largest source of emissions is Grassland Converted to Cropland accounting for approximately 16

- 5 percent of the total emissions (Table 6-34 and Table 6-35).
- 6 The net change in total C stocks for 2018 led to CO₂ emissions to the atmosphere of 55.3 MMT CO₂ Eq. (15.1 MMT
- 7 C), including 28.5 MMT CO₂ Eq. (7.8 MMT C) from aboveground biomass C losses, 5.6 MMT CO₂ Eq. (1.5 MMT C)
- 8 from belowground biomass C losses, 5.9 MMT CO₂ Eq. (1.6 MMT C) from dead wood C losses, 8.5 MMT CO₂ Eq.
- 9 (2.3 MMT C) from litter C losses, 3.1 MMT CO₂ Eq. (0.8 MMT C) from mineral soils and 3.7 MMT CO₂ Eq. (1.0 MMT
- 10 C) from drainage and cultivation of organic soils. Emissions in 2018 are 2 percent higher than emissions in the
- 11 initial reporting year, i.e., 1990.

12 Table 6-34: Net CO₂ Flux from Soil, Dead Organic Matter and Biomass C Stock Changes in 13 Land Converted to Cropland by Land Use Change Category (MMT CO₂ Eq.)

	1990	2005	2014	2015	2016	2017	2018
Grassland Converted to Cropland	6.9	7.5	9.7	10.2	8.5	8.7	8.5
Mineral Soils	4.1	4.0	6.2	6.9	5.2	5.4	5.1
Organic Soils	2.7	3.5	3.4	3.3	3.3	3.3	3.3
Forest Land Converted to Cropland	48.6	48.4	48.6	48.7	48.7	48.7	48.7
Aboveground Live Biomass	28.4	28.4	28.4	28.5	28.5	28.5	28.5
Belowground Live Biomass	5.6	5.6	5.6	5.6	5.6	5.6	5.6
Dead Wood	5.8	5.8	5.9	5.9	5.9	5.9	5.9
Litter	8.3	8.4	8.5	8.5	8.5	8.5	8.5
Mineral Soils	0.4	0.2	0.1	0.1	0.1	0.1	0.1
Organic Soils	0.1	0.1	+	+	+	+	+
Other Lands Converted to Cropland	(2.2)	(2.9)	(2.0)	(2.0)	(2.1)	(2.2)	(2.2)
Mineral Soils	(2.3)	(2.9)	(2.0)	(2.0)	(2.1)	(2.2)	(2.2)
Organic Soils	0.2	0.1	+	+	+	+	+
Settlements Converted to Cropland	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)
Mineral Soils	(0.1)	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)
Organic Soils	+	+	+	+	+	+	+
Wetlands Converted to Cropland	0.8	0.9	0.5	0.5	0.5	0.6	0.6
Mineral Soils	0.3	0.3	0.2	0.2	0.2	0.2	0.2
Organic Soils	0.6	0.6	0.3	0.3	0.3	0.3	0.4
Aboveground Live Biomass	28.4	28.4	28.4	28.5	28.5	28.5	28.5
Belowground Live Biomass	5.6	5.6	5.6	5.6	5.6	5.6	5.6
Dead Wood	5.8	5.8	5.9	5.9	5.9	5.9	5.9
Litter	8.3	8.4	8.5	8.5	8.5	8.5	8.5
Total Mineral Soil Flux	2.3	1.3	4.4	5.0	3.3	3.4	3.1
Total Organic Soil Flux	3.7	4.3	3.8	3.7	3.7	3.7	3.7
Total Net Flux	54.1	53.8	56.7	57.2	55.5	55.6	55.3

14

+ Does not exceed 0.05 MMT CO₂ Eq.

Table 6-35: Net CO₂ Flux from Soil, Dead Organic Matter and Biomass C Stock Changes in 16 17

Land Converted to Cropland (MMT C)

	1990	2005	2014	2015	2016	2017	2018
Grassland Converted to Cropland	1.9	2.0	2.6	2.8	2.3	2.4	2.3
Mineral Soils	1.1	1.1	1.7	1.9	1.4	1.5	1.4
Organic Soils	0.7	1.0	0.9	0.9	0.9	0.9	0.9
Forest Land Converted to Cropland	13.3	13.2	13.3	13.3	13.3	13.3	13.3
Aboveground Live Biomass	7.8	7.7	7.8	7.8	7.8	7.8	7.8
Belowground Live Biomass	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Dead Wood	1.6	1.6	1.6	1.6	1.6	1.6	1.6

¹⁵

Litter	2.3	2.3	2.3	2.3	2.3	2.3	2.3
Mineral Soils	0.1	+	+	+	+	+	+
Organic Soils	+	+	+	+	+	+	+
Other Lands Converted to Cropland	(0.6)	(0.8)	(0.5)	(0.6)	(0.6)	(0.6)	(0.6)
Mineral Soils	(0.6)	(0.8)	(0.5)	(0.6)	(0.6)	(0.6)	(0.6)
Organic Soils	+	+	+	+	+	+	+
Settlements Converted to Cropland	+	+	+	+	+	+	+
Mineral Soils	+	+	+	+	+	+	+
Organic Soils	+	+	+	+	+	+	+
Wetlands Converted to Cropland	0.2	0.3	0.1	0.1	0.1	0.2	0.2
Mineral Soils	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Organic Soils	0.2	0.2	0.1	0.1	0.1	0.1	0.1
Aboveground Live Biomass	7.8	7.7	7.8	7.8	7.8	7.8	7.8
Belowground Live Biomass	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Dead Wood	1.6	1.6	1.6	1.6	1.6	1.6	1.6
Litter	2.3	2.3	2.3	2.3	2.3	2.3	2.3
Total Mineral Soil Flux	0.6	0.4	1.2	1.4	0.9	0.9	0.8
Total Organic Soil Flux	1.0	1.2	1.0	1.0	1.0	1.0	1.0
Total Net Flux	14.8	14.7	15.5	15.6	15.1	15.2	15.1

1 + Does not exceed 0.05 MMT C.

2 Methodology

3 The following section includes a description of the methodology used to estimate C stock changes for Land

4 Converted to Cropland, including (1) loss of aboveground and belowground biomass, dead wood and litter C with

5 conversion of forest lands to croplands, as well as (2) the impact from all land use conversions to cropland on

6 mineral and organic soil C stocks.

7 Biomass, Dead Wood and Litter Carbon Stock Changes

8 A Tier 2 method is applied to estimate biomass, dead wood, and litter C stock changes for Forest Land Converted to 9 Cropland. Estimates are calculated in the same way as those in the Forest Land Remaining Forest Land category 10 using data from the USDA Forest Service, Forest Inventory and Analysis (FIA) program (USDA Forest Service 2018) 11 however there is no country-specific data for cropland biomass, so only a default biomass estimate (IPCC 2006) for 12 croplands was used to estimate carbon stock changes (litter and dead wood carbon stocks were assumed to be 13 zero since no reference C density estimates exist for croplands). The difference between the stocks is reported as 14 the stock change under the assumption that the change occurred in the year of the conversion. If FIA plots include 15 data on individual trees, aboveground and belowground C density estimates are based on Woodall et al. (2011). 16 Aboveground and belowground biomass estimates also include live understory which is a minor component of biomass defined as all biomass of undergrowth plants in a forest, including woody shrubs and trees less than 2.54 17 18 cm dbh. For this Inventory, it was assumed that 10 percent of total understory C mass is belowground (Smith et al. 19 2006). Estimates of C density are based on information in Birdsey (1996) and biomass estimates from Jenkins et al. 20 (2003). 21 For dead organic matter, if FIA plots include data on standing dead trees, standing dead tree C density is estimated

following the basic method applied to live trees (Woodall et al. 2011) with additional modifications to account for

decay and structural loss (Domke et al. 2011; Harmon et al. 2011). If FIA plots include data on downed dead wood,

24 downed dead wood C density is estimated based on measurements of a subset of FIA plots for downed dead wood

- 25 (Domke et al. 2013; Woodall and Monleon 2008). Downed dead wood is defined as pieces of dead wood greater
- 26 than 7.5 cm diameter, at transect intersection, that are not attached to live or standing dead trees. This includes
- stumps and roots of harvested trees. To facilitate the downscaling of downed dead wood C estimates from the
 state-wide population estimates to individual plots, downed dead wood models specific to regions and forest types
- within each region are used. Litter C is the pool of organic C (also known as duff, humus, and fine woody debris)
- above the mineral soil and includes woody fragments with diameters of up to 7.5 cm. A subset of FIA plots are
- 31 measured for litter C. If FIA plots include litter material, a modeling approach using litter C measurements from FIA

- 1 plots is used to estimate litter C density (Domke et al. 2016). See Annex 3.13 for more information about reference
- C density estimates for forest land and the compilation system used to estimate carbon stock changes from forest
 land.

4 Soil Carbon Stock Changes

5 SOC stock changes are estimated for Land Converted to Cropland according to land-use histories recorded in the 6 2015 USDA NRI survey for non-federal lands (USDA-NRCS 2018). Land-use and some management information 7 (e.g., crop type, soil attributes, and irrigation) had been collected for each NRI point on a 5-year cycle beginning in 8 1982. In 1998, the NRI program began collecting annual data, which are currently available through 2015 (USDA-9 NRCS 2018). NRI survey locations are classified as Land Converted to Cropland in a given year between 1990 and 10 2015 if the land use is cropland but had been another use during the previous 20 years. NRI survey locations are 11 classified according to land-use histories starting in 1979, and consequently the classifications are based on less 12 than 20 years from 1990 to 1998, which may have led to an underestimation of Land Converted to Cropland in the 13 early part of the time series to the extent that some areas are converted to cropland from 1971 to 1978. For 14 federal lands, the land use history is derived from land cover changes in the National Land Cover Dataset (Yang et 15 al. 2018; Homer et al. 2007; Fry et al. 2011; Homer et al. 2015).

16 Mineral Soil Carbon Stock Changes

An IPCC Tier 3 model-based approach (Ogle et al. 2010) is applied to estimate C stock changes from 1990 to 2015 for mineral soils on the majority of land that is used to produce annual crops and forage crops that are harvested and used as feed (e.g., hay and silage) in the United States. These crops include alfalfa hay, barley, corn, cotton, grass hay, grass-clover hay, oats, peanuts, potatoes, rice, sorghum, soybeans, sugar beets, sunflowers, tobacco, and wheat. SOC stock changes on the remaining mineral soils are estimated with the IPCC Tier 2 method (Ogle et al. 2003), including land used to produce some vegetables and perennial/horticultural crops and crops rotated with

these crops; land on very gravelly, cobbly, or shaley soils (greater than 35 percent by volume); and land converted

- 24 from another land use or federal ownership.⁴⁷
- For the years 2016 to 2018, a surrogate data method is used to estimate soil C stock changes at the national scale for land areas included in the Tier 2 and Tier 3 methods. Specifically, linear regression models with autoregressive
- 27 moving-average (ARMA) errors (Brockwell and Davis 2016) are used to estimate the relationship between
- surrogate data and the 1990 to 2015 stock change data from the Tier 2 and 3 methods. Surrogate data for these
- 29 regression models include corn and soybean yields from USDA-NASS statistics,⁴⁸ and weather data from the PRISM
- 30 Climate Group (PRISM 2015). See Box 6-4 in the Methodology Section of *Cropland Remaining Cropland* for more
- 31 information about the surrogate data method. Stock change estimates for 2016 to 2018 will be recalculated in
- 32 future inventories when new NRI data are available.
- *Tier 3 Approach*. For the Tier 3 method, mineral SOC stocks and stock changes are estimated using the DayCent
 biogeochemical model (Parton et al. 1998; Del Grosso et al. 2001, 2011). The DayCent model utilizes the soil C
- 35 modeling framework developed in the Century model (Parton et al. 1987, 1988, 1994; Metherell et al. 1993), but
- has been refined to simulate dynamics at a daily time-step. National estimates are obtained by using the model to
- 37 simulate historical land-use change patterns as recorded in the USDA NRI survey (USDA-NRCS 2018). Carbon stocks
- and 95 percent confidence intervals are estimated for each year between 1990 and 2015. See the *Cropland*
- 39 *Remaining Cropland* section and Annex 3.12 for additional discussion of the Tier 3 methodology for mineral soils.
- Soil C stock changes from 2016 to 2018 are estimated using the surrogate data method described in Box 6-4 of the
 Methodology Section in *Cropland Remaining Cropland*. Future inventories will be updated with new activity data

 ⁴⁷ Federal land is not a land use, but rather an ownership designation that is treated as grassland for purposes of these calculations. The specific land use on federal lands is not identified in the NRI survey (USDA-NRCS 2015).
 ⁴⁸ See .

- 1 when the data are made available, and the time series will be recalculated (See Planned Improvements section in
- 2 Cropland Remaining Cropland).
- 3 Tier 2 Approach. For the mineral soils not included in the Tier 3 analysis, SOC stock changes are estimated using a
- 4 Tier 2 Approach, as described in the Tier 2 Approach for mineral soils in *Cropland Remaining Cropland*. This
- 5 includes application of the surrogate data method that is described in Box 6-4 of the Methodology section in
- 6 Cropland Remaining Cropland. As with the Tier 3 method, future inventories will be updated with new NRI activity
- 7 data when the data are made available, and the time series will be recalculated.

8 Organic Soil Carbon Stock Changes

- 9 Annual C emissions from drained organic soils in *Land Converted to Cropland* are estimated using the Tier 2
- 10 method provided in IPCC (2006), with U.S.-specific C loss rates (Ogle et al. 2003) as described in the *Cropland*
- 11 *Remaining Cropland* section for organic soils. Further elaboration on the methodology is also provided in Annex
- 12 3.12.
- 13 The Inventory analysis includes application of the surrogate data method that is described in Box 6-4 of the
- 14 Methodology section in *Cropland Remaining Cropland*. Estimates will be recalculated in future Inventories when
- 15 new NRI data are available.

16 Uncertainty and Time-Series Consistency

- 17 The uncertainty analysis for biomass, dead wood and litter C losses with *Forest Land Converted to Cropland* is
- 18 conducted in the same way as the uncertainty assessment for forest ecosystem C flux associated with *Forest Land*
- 19 *Remaining Forest Land*. Sample and model-based error are combined using simple error propagation methods
- 20 provided by the IPCC (2006) by taking the square root of the sum of the squares of the standard deviations of the
- 21 uncertain quantities. For additional details, see the Uncertainty Analysis in Annex 3.13.
- 22 The uncertainty analyses for mineral soil C stock changes using the Tier 3 and Tier 2 methodologies are based on a
- 23 Monte Carlo approach that is described in *Cropland Remaining Cropland* (Also see Annex 3.12 for further
- discussion). The uncertainty for annual C emission estimates from drained organic soils in *Land Converted to*
- 25 *Cropland* is estimated using a Monte Carlo approach, which is also described in the *Cropland Remaining Cropland*
- section. For 2016 to 2018, there is additional uncertainty propagated through the Monte Carlo Analysis associated
- 27 with a surrogate data method, which is also described in *Cropland Remaining Cropland*.
- 28 Uncertainty estimates are presented in Table 6-36 for each subsource (i.e., biomass C stocks, dead wood C stocks,
- 29 litter C stocks, mineral soil C stocks and organic soil C stocks) and the method applied in the Inventory analysis (i.e.,
- 30 Tier 2 and Tier 3). Uncertainty estimates for the total C stock changes for biomass, dead organic matter and soils
- 31 are combined using the simple error propagation methods provided by the IPCC (2006), as discussed in the
- 32 previous paragraph. The combined uncertainty for total C stocks in *Land Converted to Cropland* ranged from 98
- 33 percent below to 98 percent above the 2018 stock change estimate of 55.3 MMT CO₂ Eq. The large relative
- 34 uncertainty in the 2018 estimate is mostly due to variation in soil C stock changes that is not explained by the
- 35 surrogate data method, leading to high prediction error with this splicing method.

36 Table 6-36: Approach 2 Quantitative Uncertainty Estimates for Soil, Dead Organic Matter

and Biomass C Stock Changes occurring within *Land Converted to Cropland* (MMT CO₂ Eq.

38 and Percent)

Source	2018 Flux Estimate	Uncertainty Range Relative to Flux Estimate ^a				
Jource	(MMT CO ₂ Eq.)	(MMT)	CO₂ Eq.)	(%)		
		Lower	Upper	Lower	Upper	
		Bound	Bound	Bound	Bound	
Grassland Converted to Cropland	8.5	(29.3)	46.2	-446%	446%	
Mineral Soil C Stocks: Tier 3	0.9	(36.7)	38.4	-4302%	4302%	
Mineral Soil C Stocks: Tier 2	4.3	1.3	7.2	-69%	69%	
Organic Soil C Stocks: Tier 2	3.3	0.9	5.8	-74%	74%	

Forest Land Converted to Cropland	48.7	9.5	87.8	-80%	81%
Aboveground Live Biomass	28.5	(7.7)	64.7	-127%	127%
Belowground Live Biomass	5.6	(1.5)	12.8	-127%	127%
Dead Wood	5.9	(1.6)	13.3	-127%	127%
Litter	8.5	(2.3)	19.4	-127%	127%
Mineral Soil C Stocks: Tier 2	0.1	+	0.3	-122%	122%
Organic Soil C Stocks: Tier 2	+	(0.1)	0.1	-994%	994%
Other Lands Converted to Cropland	(2.2)	(3.5)	(1.0)	-57%	57%
Mineral Soil C Stocks: Tier 2	(2.2)	(3.5)	(1.0)	-57%	57%
Organic Soil C Stocks: Tier 2	+	+	+	+	+
Settlements Converted to Cropland	(0.1)	(0.3)	+	-109%	109%
Mineral Soil C Stocks: Tier 2	(0.2)	(0.3)	+	-85%	85%
Organic Soil C Stocks: Tier 2	+	+	0.1	-84%	84%
Wetlands Converted to Croplands	0.6	+	1.1	-92%	92%
Mineral Soil C Stocks: Tier 2	0.2	+	0.5	-101%	101%
Organic Soil C Stocks: Tier 2	0.4	(0.1)	0.9	-138%	138%
Total: Land Converted to Cropland	55.3	0.9	109.8	-98%	98%
Aboveground Live Biomass	28.5	(7.7)	64.7	-127%	127%
Belowground Live Biomass	5.6	(1.5)	12.8	-127%	127%
Dead Wood	5.9	(1.6)	13.3	-127%	127%
Litter	8.5	(2.3)	19.4	-127%	127%
Mineral Soil C Stocks: Tier 3	0.9	(36.7)	38.4	-4302%	4302%
Mineral Soil C Stocks: Tier 2	2.2	(1.0)	5.4	-145%	145%
Organic Soil C Stocks: Tier 2	3.7	1.2	6.2	-67%	67%

+ Does not exceed 0.05 MMT CO_2 Eq.

^a Range of C stock change estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval. Notes: Totals may not sum due to independent rounding. Parentheses indicate negative values or net sequestration.

- 1 Uncertainty is also associated with lack of reporting of agricultural biomass and dead organic matter C stock
- 2 changes. Biomass C stock changes are likely minor in perennial crops, such as orchards and nut plantations, given
- 3 the small amount of change in land used to produce these commodities in the United States. In contrast,
- 4 agroforestry practices, such as shelterbelts, riparian forests and intercropping with trees, may have led to
- 5 significant changes in biomass C stocks at least in some regions of the United States. However, there are currently
- 6 no datasets to evaluate the trends. Changes in dead organic matter C stocks are assumed to be negligible with
- 7 conversion of land to croplands with the exception of forest lands, which are included in this analysis. This
- 8 assumption will be further explored in a future Inventory.
- 9 Methodological recalculations are applied from 1990 to 2017 with the methodological improvements
- 10 implemented in this Inventory, ensuring consistency across the time series. Details on the emission trends through
- 11 time are described in more detail in the introductory section, above.

12 QA/QC and Verification

13 See the QA/QC and Verification section in *Cropland Remaining Cropland* for information on QA/QC steps.

14 Recalculations Discussion

- 15 Methodological recalculations are applied to the entire time-series to ensure time-series consistency from 1990
- 16 through 2018. Differences in biomass, dead wood and litter C stock changes in Forest Land Converted to Cropland
- 17 can be attributed to incorporation of the latest FIA data. Recalculations for the soil C stock changes are associated
- 18 with several improvements to both the Tier 2 and 3 approaches that are discussed in the Recalculations section of
- 19 Cropland Remaining Cropland. As a result of these improvements to the Inventory, Land Converted to Cropland has
- a smaller reported loss of C compared to the previous Inventory, estimated at an average of 13.4 MMT CO₂ Eq.
- 21 over the time series. This represents a 19 percent decline in losses of C for Land Converted to Cropland compared

- 1 to the previous Inventory, and is largely driven by the methodological changes for estimating the soil C stock
- 2 changes.

3 Planned Improvements

- 4 Soil C stock changes with Forest Land Converted to Cropland are undergoing further evaluation to ensure
- 5 consistency in the time series. Different methods are used to estimate soil C stock changes in forest land and
- 6 croplands, and while the areas have been reconciled between these land uses, there has been limited evaluation
- 7 of the consistency in C stock changes with conversion from forest land to cropland.
- 8 There is also an improvement to include an analysis of C stock changes in Alaska for cropland, using the Tier 2
- 9 method for mineral and organic soils that is described earlier in this section. This analysis will initially focus on land
- 10 use change, which typically has a larger impact on soil C stock changes than management practices, but will be
- 11 further refined over time to incorporate management data that drive C stock changes on long-term cropland. See
- 12 Table 6-37 for the amount of managed area in *Land Converted to Cropland* that is not included in the Inventory,
- 13 which is less than one thousand hectares per year. This includes the area in Alaska and other miscellaneous
- 14 cropland areas, such as aquaculture. Additional planned improvements are discussed in the Planned
- 15 Improvements section of *Cropland Remaining Cropland*.

16 **Table 6-37:** Area of Managed Land in *Land Converted to Cropland* that is not included in the 17 current Inventory (Thousand Hectares)

	Area (1	Fhousand Hect	ares)
			Not Included in
Year	Managed Land	Inventory	Inventory
1990	12,308	12,308	<1
1991	12,654	12,654	<1
1992	12,943	12,943	<1
1993	14,218	14,218	<1
1994	15,400	15,400	<1
1995	15,581	15,581	<1
1996	15,888	15,888	<1
1997	16,073	16,073	<1
1998	17,440	17,440	<1
1999	17,819	17,819	<1
2000	17,693	17,693	<1
2001	17,600	17,600	<1
2002	17,487	17,487	<1
2003	16,257	16,257	<1
2004	15,317	15,317	<1
2005	15,424	15,424	<1
2006	15,410	15,410	<1
2007	14,923	14,923	<1
2008	14,399	14,399	<1
2009	13,814	13,814	<1
2010	13,905	13,905	<1
2011	14,186	14,186	<1
2012	14,429	14,429	<1
2013	13,752	13,752	<1
2014	13,050	13,050	<1
2015	13,049	13,049	<1
2016	ND	ND	ND

2017	ND	ND	ND
2018	ND	ND	ND

1 Note: NRI data are not available after 2015, and these years are designated as ND (No data).

6.6 Grassland Remaining Grassland (CRF Category 4C1)

4 Carbon (C) in grassland ecosystems occurs in biomass, dead organic matter, and soils. Soils are the largest pool of C 5 in grasslands, and have the greatest potential for longer-term storage or release of C. Biomass and dead organic 6 matter C pools are relatively ephemeral compared to the soil C pool, with the exception of C stored in tree and 7 shrub biomass that occurs in grasslands. The 2006 IPCC Guidelines recommend reporting changes in biomass, dead 8 organic matter and soil organic C (SOC) stocks with land use and management. C stock changes for aboveground 9 and belowground biomass, dead wood and litter pools are reported for woodlands (i.e., a subcategory of 10 grasslands), and may be extended to include agroforestry management associated with grasslands in the future. 11 For SOC, the 2006 IPCC Guidelines (IPCC 2006) recommend reporting changes due to (1) agricultural land-use and 12 management activities on mineral soils, and (2) agricultural land-use and management activities on organic soils.⁴⁹ 13 Grassland Remaining Grassland includes all grassland in an Inventory year that had been grassland for a 14 continuous time period of at least 20 years (USDA-NRCS 2018). Grassland includes pasture and rangeland that are 15 primarily, but not exclusively used for livestock grazing. Rangelands are typically extensive areas of native 16 grassland that are not intensively managed, while pastures are typically seeded grassland (possibly following tree 17 removal) that may also have additional management, such as irrigation or interseeding of legumes. Woodlands are 18 also considered grassland and are areas of continuous tree cover that do not meet the definition of forest land 19 (See Land Representation Section for more information about the criteria for forest land). The current Inventory 20 includes all privately-owned and federal grasslands in the conterminous United States and Hawaii, but does not 21 include approximately 50 million hectares of Grassland Remaining Grassland in Alaska. This leads to a discrepancy with the total amount of managed area in Grassland Remaining Grassland (see Table 6-41 in Planned 22 23 Improvements for more details on the land area discrepancies) and the grassland area included in the Inventory 24 analysis. 25 In Grassland Remaining Grassland, there has been considerable variation in soil C stocks between 1990 and 2018. 26 These changes are driven by variability in weather patterns and associated interaction with land management 27 activity. Moreover, changes are small on a per hectare rate basis across the time series even in the years with a 28 larger total change in stocks. The net change in total C stocks for 2018 led to net CO₂ emissions to the atmosphere 29 of 11.2 MMT CO₂ Eq. (3.1 MMT C), including 1.4 MMT CO₂ Eq. (0.4 MMT C) from net losses of aboveground 30 biomass C, 0.1 MMT CO₂ Eq. (<0.05 MMT C) from net losses in belowground biomass C, 2.6 MMT CO₂ Eq. (0.7 31 MMT C) from net losses in dead wood C, 0.1 MMT CO₂ Eq. (<0.05 MMT C) from net gains in litter C, 1.8 MMT CO₂

32 Eq. (0.5 MMT C) from net losses in mineral soil C, and 5.4 MMT CO₂ Eq. (1.5 MMT C) from losses of C due to

drainage and cultivation of organic soils (Table 6-38 and Table 6-39). Losses of carbon are 23 percent higher in
 2018 compared to 1990, but as noted previously, stock changes are highly variable from 1990 to 2018, with an

35 average annual change of 9.0 MMT CO₂ Eq. (2.5 MMT C).

 $^{^{49}}$ CO₂ emissions associated with liming and urea fertilization are also estimated but included in the Agriculture chapter of the report.

1 Table 6-38: Net CO₂ Flux from Soil, Dead Organic Matter and Biomass C Stock Changes in

2 Grassland Remaining Grassland (MMT CO₂ Eq.)

Soil Type	1990	2005	2014	2015	2016	2017	2018
Aboveground Live Biomass	1.6	1.5	1.5	1.5	1.5	1.4	1.4
Belowground Live Biomass	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Dead Wood	3.4	3.1	2.7	2.7	2.6	2.6	2.6
Litter	+	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)
Mineral Soils	(2.2)	0.8	10.0	4.0	0.1	1.5	1.8
Organic Soils	6.3	5.2	5.5	5.4	5.4	5.4	5.4
Total Net Flux	9.1	10.7	19.7	13.6	9.6	10.9	11.2

+ Does not exceed 0.05 MMT CO₂ Eq.

Note: Parentheses indicate net sequestration.

Table 6-39: Net CO₂ Flux from Soil, Dead Organic Matter and Biomass C Stock Changes in *Grassland Remaining Grassland* (MMT C)

Soil Type 1990 2005 2014 2015 2016 2017 2018 Aboveground Live Biomass 0.4 0.4 0.4 0.4 0.4 0.4 0.4 **Belowground Live Biomass** + + + + + + + Dead Wood 0.9 0.8 0.7 0.7 0.7 0.7 0.7 Litter + + + + + + + **Mineral Soils** (0.6) 0.2 2.7 + 0.4 0.5 1.1 **Organic Soils** 1.5 1.7 1.4 1.5 1.5 1.5 1.5 **Total Net Flux** 2.5 2.9 5.4 3.7 2.6 3.0 3.1

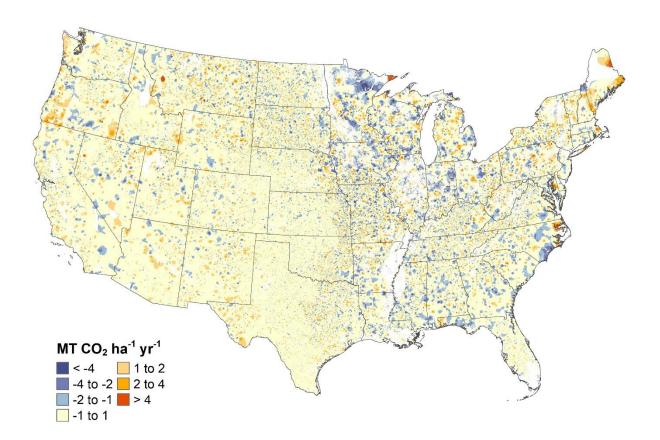
+ Does not exceed 0.05 MMT C Eq.

Note: Parentheses indicate net sequestration.

5 The spatial variability in the 2015 annual soil C stock changes⁵⁰ associated with mineral soils is displayed in Figure

6 6-7 and organic soils in Figure 6-8. Although relatively small on a per-hectare basis, grassland soils gained C in

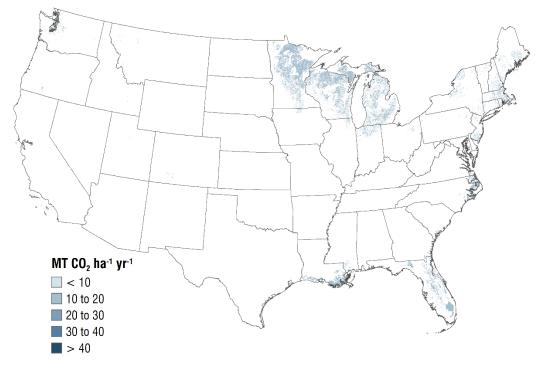
7 isolated areas that mostly occurred in pastures of the eastern United States. For organic soils, the regions with the


8 highest rates of emissions coincide with the largest concentrations of organic soils used for managed grassland,

9 including the Southeastern Coastal Region (particularly Florida), upper Midwest and Northeast, and a few isolated

10 areas along the Pacific Coast.

⁵⁰ Only national-scale emissions are estimated for 2016 to 2018 in the current Inventory using the surrogate data method, and therefore the fine-scale emission patterns in this map are based on inventory data from 2015.


- 1 Figure 6-7: Total Net Annual Soil C Stock Changes for Mineral Soils under Agricultural
- 2 Management within States, 2015, Grassland Remaining Grassland
- 3

8

Note: Only national-scale soil C stock changes are estimated for 2016 to 2018 in the current Inventory using a surrogate data method, and therefore the fine-scale emission patterns in this map are based on inventory data from 2015. Negative values represent a net increase in soil C stocks, and positive values represent a net decrease in soil C stocks.

- 1 Figure 6-8: Total Net Annual Soil C Stock Changes for Organic Soils under Agricultural
- 2 Management within States, 2015, *Grassland Remaining Grassland*

3 4

5

6

Note: Only national-scale soil carbon stock changes are estimated for 2016 to 2018 in the current Inventory using a surrogate data method, and therefore the fine-scale emission patterns in this map are based on inventory data from 2015.

7 Methodology

8 The following section includes a description of the methodology used to estimate C stock changes for *Grassland*

9 Remaining Grassland, including (1) aboveground and belowground biomass, dead wood and litter C for woodlands,

10 as well as (2) the impact from all management on mineral and organic soil C stocks.

11 Biomass, Dead Wood and Litter Carbon Stock Changes

12 The methodology described herein is consistent with IPCC (2006). Woodlands are lands that do not meet the

definition of forest land or agroforestry (see Section 6.1 Representation of the U.S. Land Base) but include woody

vegetation and thus may include the five C storage pools (IPCC 2006) described in the *Forest Land Remaining*

15 *Forest Land* section. Carbon stocks and net annual C stock change were determined according to the stock-

16 difference method for the CONUS, which involved applying C estimation factors to annual forest inventories across

- 17 time to obtain C stocks and then subtracting between the years to obtain the stock change. The methods for
- 18 estimating carbon stocks and stock changes on woodlands in *Grassland Land Remaining Grassland* are consistent
- 19 with those in the *Forest Land Remaining Forest Land* section and are described in Annex 3.13. All annual National
- Forest Inventory (NFI) plots available in the public FIA database (USDA Forest Service 2019) were used in the current Inventory. While the NFI is an all-lands inventory, only those plots that meet the definition of forest land
- 21 current inventory. While the NFI is an all-lands inventory, only those plots that meet the definition of forest land
 22 are typically measured. In some cases, particularly in the Central Plains and Southwest U.S., woodlands, which do
- are typically measured. In some cases, particularly in the central rains and southwest 0.3., woodands, w are typically measured. In some cases, particularly in the central rains and southwest 0.3., woodands, w
- considered a comprehensive assessment of trees outside of forest land that meet the definition of grassland.

1 Soil Carbon Stock Changes

2 The following section includes a brief description of the methodology used to estimate changes in soil C stocks for

3 *Grassland Remaining Grassland*, including: (1) agricultural land-use and management activities on mineral soils;

4 and (2) agricultural land-use and management activities on organic soils. Further elaboration on the methodologies

5 and data used to estimate stock changes from mineral and organic soils are provided in the *Cropland Remaining*

6 *Cropland* section and Annex 3.12.

7 Soil C stock changes are estimated for *Grassland Remaining Grassland* on non-federal lands according to land use

histories recorded in the 2015 USDA NRI survey (USDA-NRCS 2018). Land-use and some management information
 (e.g., grass type, soil attributes, and irrigation) were originally collected for each NRI survey location on a 5-year

cycle beginning in 1982. In 1998, the NRI program began collecting annual data, and the annual data are currently

available through 2015 (USDA-NRCS 2015). NRI survey locations are classified as *Grassland Remaining Grassland* in

a given year between 1990 and 2015 if the land use had been grassland for 20 years. NRI survey locations are

13 classified according to land-use histories starting in 1979, and consequently the classifications are based on less

than 20 years from 1990 to 1998. This may have led to an overestimation of *Grassland Remaining Grassland* in the

early part of the time series to the extent that some areas are converted to grassland between 1971 and 1978. For

16 federal lands, the land use history is derived from land cover changes in the National Land Cover Dataset (Yang et

17 al. 2018; Homer et al. 2007; Fry et al. 2011; Homer et al. 2015).

18 Mineral Soil Carbon Stock Changes

19 An IPCC Tier 3 model-based approach (Ogle et al. 2010) is applied to estimate C stock changes from 1990 to 2015

20 for most mineral soils in Grassland Remaining Grassland. The C stock changes for the remaining soils are estimated

21 with an IPCC Tier 2 method (Ogle et al. 2003), including gravelly, cobbly, or shaley soils (greater than 35 percent by

volume) and additional stock changes associated with biosolids (i.e., sewage sludge) amendments. SOC stock

changes on the remaining soils are estimated with the IPCC Tier 2 method (Ogle et al. 2003), including land on very

gravelly, cobbly, or shaley soils (greater than 35 percent by volume) and land transferred to private ownership

25 from federal ownership.⁵¹

A surrogate data method is used to estimate soil C stock changes from 2016 to 2018 at the national scale for land

areas included in the Tier 2 and Tier 3 methods. Specifically, linear regression models with autoregressive moving-

average (ARMA) errors (Brockwell and Davis 2016) are used to estimate the relationship between surrogate data

and the 1990 to 2015 emissions data from the Tier 2 and 3 methods. Surrogate data for these regression models

includes weather data from the PRISM Climate Group (PRISM Climate Group 2018). See Box 6-4 in the

31 Methodology section of *Cropland Remaining Cropland* for more information about the surrogate data method.

32 Stock change estimates for 2016 to 2018 will be recalculated in future inventories when new NRI data are

33 available.

Tier 3 Approach. Mineral SOC stocks and stock changes for *Grassland Remaining Grassland* are estimated using

the DayCent biogeochemical⁵² model (Parton et al. 1998; Del Grosso et al. 2001, 2011), as described in *Cropland*

36 *Remaining Cropland*. The DayCent model utilizes the soil C modeling framework developed in the Century model 37 (Parton et al. 1987, 1988, 1994; Metherell et al. 1993), but has been refined to simulate dynamics at a daily time-

(Parton et al. 1987, 1988, 1994; Metherell et al. 1993), but has been refined to simulate dynamics at a daily time step. Historical land-use patterns and irrigation histories are simulated with DayCent based on the 2015 USDA NRI

39 survey (USDA-NRCS 2018).

- 40 The amount of manure produced by each livestock type is calculated for managed and unmanaged waste
- 41 management systems based on methods described in Section 5.2 Manure Management and Annex 3.11. Manure N
- 42 deposition from grazing animals (i.e., PRP manure) is an input to the DayCent model, and the remainder is

⁵¹ Federal land is not a land use, but rather an ownership designation that is treated as grassland for purposes of these calculations. The specific land use on federal lands is not identified in the NRI survey (USDA-NRCS 2015).

⁵² Biogeochemical cycles are the flow of chemical elements and compounds between living organisms and the physical environment.

- 1 deposited on federal lands (i.e., the amount that is not included in DayCent simulations is assumed to be applied
- 2 on federal grasslands). Carbon stocks and 95 percent confidence intervals are estimated for each year between
- 3 1990 and 2015 using the NRI survey data. Further elaboration on the Tier 3 methodology and data used to
- 4 estimate C stock changes from mineral soils are described in Annex 3.12.
- 5 Soil C stock changes from 2016 to 2018 are estimated using a surrogate data method described in Box 6-4 of the
- 6 Methodology section in *Cropland Remaining Cropland*. Future inventories will be updated with new activity data
- 7 when the data are made available, and the time series will be recalculated (See Planned Improvements section in
- 8 Cropland Remaining Cropland).
- 9 **Tier 2 Approach**. The Tier 2 approach is based on the same methods described in the Tier 2 portion of *Cropland*
- 10 *Remaining Cropland* section for mineral soils, with the exception of the land use and management data that are
- 11 used in the Inventory for federal grasslands. The NRI (USDA-NRCS 2018) provides land use and management
- 12 histories for all non-federal lands, and is the basis for the Tier 2 analysis for these areas. However, NRI does not
- provide land use information on federal lands. The land use data for federal lands is based on the National Land Cover Database (NLCD) (Yang et al. 2018; Fry et al. 2011; Homer et al. 2007; Homer et al. 2015). In addition, the
- 15 Bureau of Land Management (BLM) manages some of the federal grasslands, and compiles information on
- 16 grassland condition through the BLM Rangeland Inventory (BLM 2014). To estimate soil C stock changes from
- federal grasslands, rangeland conditions in the BLM data are aligned with IPCC grassland management categories
- of nominal, moderately degraded, and severely degraded in order to apply the appropriate emission factors.
- 19 Further elaboration on the Tier 2 methodology and data used to estimate C stock changes from mineral soils are
- 20 described in Annex 3.12.
- 21 The time series of stock changes for non-federal and federal lands has been extended from 2016 to 2018 using a
- surrogate data method described in Box 6-4 of the Methodology Section in *Cropland Remaining Cropland*.

23 Additional Mineral C Stock Change Calculations

24 A Tier 2 method is used to adjust annual C stock change estimates for mineral soils between 1990 and 2018 to 25 account for additional C stock changes associated with biosolids (i.e., sewage sludge) amendments. Estimates of 26 the amounts of biosolids N applied to agricultural land are derived from national data on biosolids generation, 27 disposition, and N content (see Section 7.2, Wastewater Treatment for a detailed discussion of the methodology 28 for estimating sewage sludge available for land application application). Although biosolids can be added to land 29 managed for other land uses, it is assumed that agricultural amendments only occur in *Grassland Remaining* 30 Grassland. Total biosolids generation data for 1988, 1996, and 1998, in dry mass units, are obtained from EPA 31 (1999) and estimates for 2004 are obtained from an independent national biosolids survey (NEBRA 2007). These 32 values are linearly interpolated to estimate values for the intervening years, and linearly extrapolated to estimate 33 values for years since 2004. Nitrogen application rates from Kellogg et al. (2000) are used to determine the amount 34 of area receiving biosolids amendments. The soil C storage rate is estimated at 0.38 metric tons C per hectare per 35 year for biosolids amendments to grassland as described above. The stock change rate is based on country-specific 36 factors and the IPCC default method (see Annex 3.12 for further discussion).

37 Organic Soil Carbon Stock Changes

- 38 Annual C emissions from drained organic soils in *Grassland Remaining Grassland* are estimated using the Tier 2
- 39 method provided in IPCC (2006), which utilizes U.S.-specific C loss rates (Ogle et al. 2003) rather than default IPCC
- 40 rates. For more information, see the *Cropland Remaining Cropland* section for organic soils and Annex 3.12.
- 41 A surrogate data method is used to estimate annual C emissions from organic soils from 2016 to 2018 as described
- 42 in Box 6-4 of the Methodology section in *Cropland Remaining Cropland*. Estimates for 2016 to 2018 will be updated
- 43 in future Inventories when new NRI data are available.

1 Uncertainty and Time-Series Consistency

2 The uncertainty analysis for biomass, dead wood and litter C losses with *Forest Land Converted to Cropland* is

3 conducted in the same way as the uncertainty assessment for forest ecosystem C flux associated with *Forest Land*

4 *Remaining Forest Land*. Sample and model-based error are combined using simple error propagation methods

5 provided by the IPCC (2006) by taking the square root of the sum of the squares of the standard deviations of the

6 uncertain quantities. For additional details, see the Uncertainty Analysis in Annex 3.13.

7 Uncertainty analysis for mineral soil C stock changes using the Tier 3 and Tier 2 methodologies are based on a

8 Monte Carlo approach that is described in the *Cropland Remaining Cropland* section and Annex 3.12. The

9 uncertainty for annual C emission estimates from drained organic soils in *Grassland Remaining Grassland* is

10 estimated using a Monte Carlo approach, which is also described in the *Cropland Remaining Cropland* section. For

- 11 2016 to 2018, there is additional uncertainty propagated through the Monte Carlo Analysis associated with the
- 12 surrogate data method.

13 Uncertainty estimates are presented in Table 6-40 for each subsource (i.e., mineral soil C stocks and organic soil C

stocks) and the method applied in the Inventory analysis (i.e., Tier 2 and Tier 3). Uncertainty estimates from the

15 Tier 2 and 3 approaches are combined using the simple error propagation methods provided by the IPCC (2006),

16 i.e., by taking the square root of the sum of the squares of the standard deviations of the uncertain quantities.

17 The combined uncertainty for soil C stocks in *Grassland Remaining Grassland* ranges from more than 1,296 percent

18 below and above the 2018 stock change estimate of 11.2 MMT CO₂ Eq. The large relative uncertainty is mostly due

19 to variation in soil C stock changes that is not explained by the surrogate data method, leading to high prediction

20 error with this splicing method.

Table 6-40: Approach 2 Quantitative Uncertainty Estimates for C Stock Changes Occurring Within *Grassland Remaining Grassland* (MMT CO₂ Eq. and Percent)

C	2018 Flux Estimate	Uncertainty Range Relative to Flux Estimate ^a					
Source	(MMT CO₂ Eq.)	(MMT (CO₂ Eq.)	(%)			
		Lower	Upper	Lower	Upper		
		Bound	Bound	Bound	Bound		
Woodland Biomass:							
Aboveground live biomass	1.4	1.0	1.9	-31%	31%		
Belowground live biomass	0.1	0.1	0.1	-16%	16%		
Dead wood	2.6	2.0	3.1	-22%	22%		
Litter	(0.1)	(0.1)	+	-105%	105%		
Mineral Soil C Stocks Grassland Remaining	2.0	(4.4.2. 2)	4 4 0 0	50540/	E 0 E 40/		
Grassland, Tier 3 Methodology	2.9	(142.3)	148.0	-5054%	5054%		
Mineral Soil C Stocks: Grassland Remaining	(0.0)	(0,0)		2 222			
Grassland, Tier 2 Methodology	(0.9)	(9.8)	8.0	-998%	998%		
Mineral Soil C Stocks: Grassland Remaining							
Grassland, Tier 2 Methodology (Change in Soil			<i>(</i> , , ,				
C due to Biosolids [i.e., Sewage Sludge]	(0.2)	(0.3)	(0.1)	-50%	50%		
Amendments)							
Organic Soil C Stocks: Grassland Remaining							
Grassland, Tier 2 Methodology	5.4	1.3	9.5	-77%	77%		
Combined Uncertainty for Flux Associated							
with Carbon Stock Changes Occurring in	11.2	(134.3)	156.7	-1,296%	1,296%		
Grassland Remaining Grassland		· ·/	-	,	•		
L Doos not exceed 0.05 MMT CO. Eq.							

+ Does not exceed 0.05 MMT CO_2 Eq.

^a Range of C stock change estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval. Notes: Totals may not sum due to independent rounding. Parentheses indicate negative values or net sequestration.

- 1 Uncertainty is also associated with a lack of reporting on biomass, dead wood and litter C stock changes for
- 2 agroforestry systems. Changes in biomass and dead organic matter C stocks are assumed to be negligible in other
- 3 grasslands, largely comprised of herbaceous biomass, on an annual basis, although there are certainly significant
- 4 changes at sub-annual time scales across seasons.
- 5 Methodological recalculations are applied from 1990 to 2017 with the methodological improvements
- 6 implemented in this Inventory, ensuring consistency across the time series. Details on the emission trends through
- 7 time are described in more detail in the introductory section, above.

8 QA/QC and Verification

- 9 See the QA/QC and Verification section in *Cropland Remaining Cropland*. In addition, quality control uncovered an
- 10 error in the DayCent simulations associated with no grazing on pastures and rangelands during the recent
- 11 historical period from 1980 to 2015. In the initial simulations, this led to a large increase in soil C stocks.
- 12 Corrective actions were taken to ensure grazing was simulated on those lands, which reduced C input to soils and
- 13 the amount of C stock change.

14 **Recalculations Discussion**

- 15 Methodological recalculations are applied to the entire time-series to ensure time-series consistency from 1990
- 16 through 2017. This Inventory is the first reporting of biomass, dead wood and litter C stock changes for
- 17 woodlands. Recalculations for the soil C stock changes are associated with several improvements to both the Tier 2
- and 3 approaches that are discussed in the *Cropland Remaining Cropland* section. As a result of these
- 19 improvements to the Inventory, C stocks decline on average across the time series for *Grassland Remaining*
- 20 Grassland, compared to an average increase in C stocks in the previous Inventory. The average reduction in C
- stock change is 14.0 MMT CO₂ Eq. over the time series, which is a 738 percent decrease in C stock changes
- 22 compared to the previous Inventory. This is largely driven by the methodological changes associated with
- estimating soil C stock changes and to a lesser extent by the inclusion of biomass, dead wood and litter C stock
- 24 changes for woodlands.

25 Planned Improvements

- 26 Grasslands in Alaska are not currently included in the Inventory. This is a significant planned improvement and
- estimates are expected to be available in a future Inventory contingent on funding availability. Table 6-41 provides
- information on the amount of managed area in Alaska that is *Grassland Remaining Grassland*, which includes
- about 50 million hectares per year. For information about other improvements, see the Planned Improvements
- 30 section in *Cropland Remaining Cropland*.

Table 6-41: Area of Managed Land in *Grassland Remaining Grassland* in Alaska that is not included in the current Inventory (Thousand Hectares)

	Area (Thousand Hectares)							
			Not Included in					
Year	Managed Land	Inventory	Inventory					
1990	327,446	277,406	50,040					
1991	326,959	276,918	50,040					
1992	326,462	276,422	50,040					
1993	324,524	274,484	50,040					
1994	322,853	272,8,13	50,040					
1995	322,015	271,975	50,040					
1996	321,164	271,123	50,040					
1997	320,299	270,259	50,040					

1998	318,214	268,174	50,040
1999	317,341	267,301	50,040
2000	316,242	266,202	50,040
2001	315,689	265,649	50,040
2002	315,232	265,192	50,040
2003	315,442	265,403	50,039
2004	315,459	265,421	50,038
2005	315,161	265,123	50,038
2006	314,841	264,804	50,037
2007	314,786	264,749	50,036
2008	314,915	264,878	50,037
2009	315,137	265,099	50,037
2010	314,976	264,942	50,035
2011	314,662	264,627	50,035
2012	314,466	264,413	50,053
2013	315,301	265,239	50,062
2014	316,242	266,180	50,062
2015	316,287	266,234	50,053
2016	ND	ND	ND
2017	ND	ND	ND
2018	ND	ND	ND

¹ Note: NRI data are not available after 2015, and these years are designated as ND (No data).

Non-CO₂ Emissions from Grassland Fires (CRF Source Category 2 4C1) 3

4 Fires are common in grasslands, and are thought to have been a key feature shaping the evolution of the grassland 5 vegetation in North America (Daubenmire 1968; Anderson 2004). Fires can occur naturally through lightning 6 strikes, but are also an important management practice to remove standing dead vegetation and improve forage

7 for grazing livestock. Woody and herbaceous biomass will be oxidized in a fire, although in this section the current

focus is primarily on herbaceous biomass.⁵³ Biomass burning emits a variety of trace gases including non-CO₂ 8

9 greenhouse gases such as CH₄ and N₂O, as well as CO and NO_x that can become greenhouse gases when they react

10 with other gases in the atmosphere (Andreae and Merlet 2001). IPCC (2006) recommends reporting non-CO₂ 11 greenhouse gas emissions from all wildfires and prescribed burning occurring in managed grasslands.

12 Biomass burning in grassland of the United States (Including burning emissions in Grassland Remaining Grassland

13 and Land Converted to Grassland) is a relatively small source of emissions, but it has increased by over 300 percent

14 since 1990. In 2018, CH₄ and N₂O emissions from biomass burning in grasslands were 0.6 MMT CO₂ Eq. (12 kt) and

15 0.3 MMT CO₂ Eq. (1 kt), respectively. Annual emissions from 1990 to 2018 have averaged approximately 0.3 MMT

16 CO_2 Eq. (12 kt) of CH₄ and 0.3 MMT CO_2 Eq. (1 kt) of N₂O (see Table 6-42 and Table 6-43).

Table 6-42: CH₄ and N₂O Emissions from Biomass Burning in Grassland (MMT CO₂ Eq.) 17

18

	1990	2005	2014	2015	2016	2017	2018	
CH ₄	0.1	0.3	0.4	0.3	0.3	0.3	0.3	
N ₂ O	0.1	0.3	0.4	0.3	0.3	0.3	0.3	
Total Net Flux	0.2	0.7	0.8	0.7	0.6	0.6	0.6	
Note: Totals may not sum due to independent rounding								

Note: Totals may not sum due to independent rounding.

⁵³ A planned improvement is underway to incorporate woodland tree biomass into the Inventory.

1 2

Table 6-43: CH ₄ , N ₂ 0	D, CO, and NO _x Emissions from Biomass Bu	urning in Grassland (kt)

	1990	2005	2014	2015	2016	2017	2018
CH ₄	3	13	16	13	12	12	12
N ₂ O	+	1	1	1	1	1	1
CO	84	358	442	356	325	345	331
NO _x	5	22	27	21	20	21	20

+ Does not exceed 0.5 kt.

3

4 Methodology

5 The following section includes a description of the methodology used to estimate non-CO₂ greenhouse gas

6 emissions from biomass burning in grassland, including (1) determination of the land base that is classified as

7 managed grassland; (2) assessment of managed grassland area that is burned each year, and (3) estimation of

8 emissions resulting from the fires. For this Inventory, the IPCC Tier 1 method is applied to estimate non-CO₂

9 greenhouse gas emissions from biomass burning in grassland from 1990 to 2014 (IPCC 2006). A data splicing

10 method is used to estimate the emissions in 2015 to 2018, which is discussed later in this section.

11 The land area designated as managed grassland is based primarily on the 2012 National Resources Inventory (NRI)

12 (Nusser and Goebel 1997; USDA-NRCS 2015). NRI has survey locations across the entire United States, but does not

13 classify land use on federally-owned areas. These survey locations are designated as grassland using land cover

data from the National Land Cover Dataset (NLCD) (Fry et al. 2011; Homer et al. 2007; Homer et al. 2015) (see

15 Section 6.1 Representation of the U.S. Land Base).

16 The area of biomass burning in grasslands (*Grassland Remaining Grassland* and *Land Converted to Grassland*) is

determined using 30-m fire data from the Monitoring Trends in Burn Severity (MTBS) program for 1990 through

- 18 2014.⁵⁴ NRI survey locations on grasslands are designated as burned in a year if there is a fire within a 500 m of the
- 19 survey point according to the MTBS fire data. The area of biomass burning is estimated from the NRI spatial
- 20 weights and aggregated to the country (Table 6-44).

21 Table 6-44: Thousands of Grassland Hectares Burned Annually

	Thousand
Year	Hectares
1990	317
2005	1,343
2014	1,659
2015	NE
2016	NE
2017	NE
2018	NE

Notes: Burned area are not estimated (NE) for 2015 to 2018 but will be updated in a future Inventory.

- 22 For 1990 to 2014, the total area of grassland burned is multiplied by the IPCC default factor for grassland biomass
- 23 (4.1 tonnes dry matter per ha) (IPCC 2006) to estimate the amount of combusted biomass. A combustion factor of

⁵⁴ See <http://www.mtbs.gov/nationalregional/burnedarea.html>.

- 1 1 is assumed in this Inventory, and the resulting biomass estimate is multiplied by the IPCC default grassland
- 2 emission factors for CH₄ (2.3 g CH₄ per kg dry matter), N₂O (0.21 g CH₄ per kg dry matter), CO (65 g CH₄ per kg dry
- 3 matter) and NO_x (3.9 g CH₄ per kg dry matter) (IPCC 2006). The Tier 1 analysis is implemented in the Agriculture
- 4 and Land Use National Greenhouse Gas Inventory (ALU) software (Ogle et al. 2016).⁵⁵
- 5 A linear extrapolation of the trend in the time series is applied to estimate the emissions for 2015 to 2018 because
- 6 new activity data have not been compiled for the current Inventory. Specifically, a linear regression model with
- 7 autoregressive moving-average (ARMA) errors (Brockwell and Davis 2016) is used to estimate the trend in
- 8 emissions over time from 1990 to 2014, and the trend is used to approximate the 2015 to 2018 emissions. The Tier
- 9 1 method described previously will be applied to recalculate the 2015 to 2018 emissions in a future Inventory.

10 Uncertainty and Time-Series Consistency

- 11 Emissions are estimated using a linear regression model with ARMA errors for 2015 to 2018. The linear regression
- 12 ARMA model produced estimates of the upper and lower bounds of the emission estimate and the results are
- 13 summarized in Table 6-45. Methane emissions from Biomass Burning in Grassland for 2018 are estimated to be
- 14 between approximately 0.0 and 0.7 MMT CO₂ Eq. at a 95 percent confidence level. This indicates a range of 100
- 15 percent below and 146 percent above the 2018 emission estimate of 0.3 MMT CO₂ Eq. Nitrous oxide emissions are
- 16 estimated to be between approximately 0.0 and 0.8 MMT CO₂ Eq., or approximately 100 percent below and 146
- 17 percent above the 2018 emission estimate of 0.3 MMT CO₂ Eq.

18 Table 6-45: Uncertainty Estimates for Non-CO₂ Greenhouse Gas Emissions from Biomass

- **Burning in Grassland (MMT CO₂ Eq. and Percent)**
- 20

		2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate ^a					
Source Gas	6	(MMT CO₂ Eq.)	(MMT	CO₂ Eq.)	(%)			
		Lower	Upper	Lower	Upper			
			Bound	Bound	Bound	Bound		
Grassland Burning	CH ₄	0.3	+	0.7	-100%	146%		
Grassland Burning	N_2O	0.3	+	0.8	-100%	146%		

^a Range of emission estimates predicted by linear regression time-series model for a 95 percent confidence interval.

- 21 Uncertainty is also associated with lack of reporting of emissions from biomass burning in grassland of Alaska.
- Grassland burning emissions could be relatively large in this region of the United States, and therefore extending
- this analysis to include Alaska is a planned improvement for the Inventory. There is also uncertainty due to lack of
- reporting combustion of woody biomass, and this is another planned improvement.
- 25 There were no methodological recalculations in this Inventory, but data splicing methods to extend the time series
- for another year were applied in a manner to be consistent with the previous Inventory. Details on the emission trends through time are described in more detail in the introductory section, above
- 27 trends through time are described in more detail in the introductory section, above.

28 QA/QC and Verification

- 29 Quality control measures included checking input data, model scripts, and results to ensure data are properly
- 30 handled throughout the inventory process. Inventory reporting forms and text are reviewed and revised as needed
- to correct transcription errors. Quality control identified problems with input data for common reporting format
- 32 tables in the spreadsheets, which have been corrected.

⁵⁵ See <http://www.nrel.colostate.edu/projects/ALUsoftware/>.

Planned Improvements 1

2 A splicing data method is applied to estimate emissions in the latter part of the time series, which introduces 3 additional uncertainty in the emissions data. Therefore, a key improvement for the next Inventory will be to 4 update the time series with new activity data and recalculate the emissions.

5 Two other planned improvements have been identified for this source category, including a) incorporation of 6 country-specific grassland biomass factors, and b) extending the analysis to include Alaska. In the current 7 Inventory, biomass factors are based on a global default for grasslands that is provided by the IPCC (2006). There is

8 considerable variation in grassland biomass, however, which would affect the amount of fuel available for 9 combustion in a fire. Alaska has an extensive area of grassland and includes tundra vegetation, although some of

10 the areas are not managed. There has been an increase in fire frequency in boreal forest of the region (Chapin et

- 11 al. 2008), and this may have led to an increase in burning of neighboring grassland areas. There is also an effort
- 12 under development to incorporate grassland fires into DayCent model simulations. Both improvements are
- 13 expected to reduce uncertainty and lead to more accurate estimates of non-CO₂ greenhouse gas emissions from 14 grassland burning.

6.7 Land Converted to Grassland (CRF Category 15 4C2)

16

17 Land Converted to Grassland includes all grassland in an Inventory year that had been in another land use(s) during

the previous 20 years (USDA-NRCS 2018).⁵⁶ For example, cropland or forest land converted to grassland during the 18

past 20 years would be reported in this category. Recently converted lands are retained in this category for 20 19

20 years as recommended by IPCC (2006). Grassland includes pasture and rangeland that are used primarily but not

21 exclusively for livestock grazing. Rangelands are typically extensive areas of native grassland that are not

22 intensively managed, while pastures are typically seeded grassland (possibly following tree removal) that may also

23 have additional management, such as irrigation or interseeding of legumes. This Inventory includes all grasslands

24 in the conterminous United States and Hawaii, but does not include Land Converted to Grassland in Alaska.

25 Consequently, there is a discrepancy between the total amount of managed area for Land Converted to Grassland

26 (see Table 6-49 in Planned Improvements) and the grassland area included in the inventory analysis.

27 Land use change can lead to large losses of C to the atmosphere, particularly conversions from forest land

28 (Houghton et al. 1983, Houghton and Nassikas 2017). Moreover, conversion of forest to another land use (i.e.,

29 deforestation) is one of the largest anthropogenic sources of emissions to the atmosphere globally, although this

30 source may be declining according to a recent assessment (Tubiello et al. 2015).

31 IPCC (2006) recommends reporting changes in biomass, dead organic matter, and soil organic C (SOC) stocks due 32 to land use change. All soil C stock changes are estimated and reported for Land Converted to Grassland, but there 33 is limited reporting of other pools in this Inventory. Losses of aboveground and belowground biomass, dead wood 34 and litter C from Forest Land Converted to Grassland are reported, but these C stock changes are not estimated for

other land use conversions to grassland.⁵⁷ 35

⁵⁶ NRI survey locations are classified according to land-use histories starting in 1979, and consequently the classifications are based on less than 20 years from 1990 to 2001. This may have led to an underestimation of Land Converted to Grassland in the early part of the time series to the extent that some areas are converted to grassland between 1971 and 1978.

⁵⁷ Changes in biomass C stocks are not currently reported for other conversions to grassland (other than forest land), but this is a planned improvement for a future Inventory. Note: changes in dead organic matter are assumed to negligible for other land use conversions (i.e., other than forest land) to grassland based on the Tier 1 method in IPCC (2006).

- 1 The largest C losses with Land Converted to Grassland are associated with aboveground biomass, belowground
- 2 biomass, and litter C losses from *Forest Land Converted to Grassland* (see Table 6-46 and Table 6-47). These three
- 3 pools led to net emissions in 2018 of 9.4, 2.4, and 4.9 MMT CO₂ Eq. (2.6, 0.6, and 1.3 MMT C), respectively. Land
- 4 use and management of mineral soils in *Land Converted to Grassland* led to an increase in soil C stocks, estimated
- 5 at 42.2 MMT CO₂ Eq. (11.5 MMT C) in 2018. The gains are primarily associated with conversion of Other Land,
- 6 which have relatively low soil C stocks, to Grassland that tend to have conditions suitable for storing larger
- 7 amounts of C in soils, and also due to conversion of Cropland to Grassland that leads to less intensive management
- of the soil. Drainage of organic soils for grassland management led to CO₂ emissions to the atmosphere of 1.9 MMT
 CO₂ Eq. (0.5 MMT C). The total net C stock change in 2018 for *Land Converted to Grassland* is estimated as a gain of
- 9 CO₂ Eq. (0.5 MMT C). The total net C stock change in 2018 for *Land Converted to Grassland* is estimated as a gain of 24.6 MMT CO₂ Eq. (6.7 MMT C), which represents an increase in C stock changes of 268 percent compared to the
- 11 initial reporting year of 1990.
- Table 6-46: Net CO₂ Flux from Soil, Dead Organic Matter and Biomass C Stock Changes for *Land Converted to Grassland* (MMT CO₂ Eq.)

	1990		2005	2014	2015	2016	2017	2018
Cropland Converted to Grassland	(18.3)	(23.5)	(14.5)	(15.5)	(17.8)	(18.0)	(18.0)
Mineral Soils	(18.9)	((25.0)	(15.9)	(16.9)	(19.1)	(19.4)	(19.3)
Organic Soils	0.6		1.5	1.3	1.4	1.4	1.4	1.3
Forest Land Converted to								
Grassland	15.9		16.0	15.9	15.9	15.9	15.9	15.9
Aboveground Live Biomass	9.8		9.7	9.5	9.4	9.4	9.4	9.4
Belowground Live Biomass	2.5		2.5	2.4	2.4	2.4	2.4	2.4
Dead Wood	(1.2)		(1.0)	(0.9)	(0.9)	(0.9)	(0.9)	(0.9)
Litter	4.8		4.8	4.9	4.9	4.9	4.9	4.9
Mineral Soils	(0.1)		(0.1)	+	(0.1)	(0.1)	+	+
Organic Soils	+		0.2	0.2	0.2	0.2	0.2	0.2
Other Lands Converted Grassland	(4.2)	(31.7)	(25.5)	(22.8)	(22.2)	(22.1)	(21.9)
Mineral Soils	(4.2)	(31.7)	(25.6)	(22.9)	(22.3)	(22.2)	(21.9)
Organic Soils	+		+	0.1	0.1	0.1	0.1	0.1
Settlements Converted Grassland	(0.2)		(1.4)	(1.1)	(1.0)	(0.9)	(1.0)	(0.9)
Mineral Soils	(0.2)		(1.4)	(1.1)	(1.0)	(0.9)	(1.0)	(0.9)
Organic Soils	+		+	+	+	+	+	+
Wetlands Converted Grassland	0.1		0.2	0.3	0.3	0.3	0.3	0.3
Mineral Soils	+		+	+	+	+	+	+
Organic Soils	0.1		0.2	0.3	0.3	0.3	0.2	0.2
Aboveground Live Biomass	9.8		9.7	9.5	9.4	9.4	9.4	9.4
Belowground Live Biomass	2.5		2.5	2.4	2.4	2.4	2.4	2.4
Dead Wood	(1.2)		(1.0)	(0.9)	(0.9)	(0.9)	(0.9)	(0.9)
Litter	4.8		4.8	4.9	4.9	4.9	4.9	4.9
Total Mineral Soil Flux	(23.4)	(58.2)	(42.5)	(40.8)	(42.4)	(42.5)	(42.2)
Total Organic Soil Flux	0.8		1.9	1.9	1.9	1.9	1.9	1.9
Total Net Flux	(6.7)	(40.3)	(24.9)	(23.2)	(24.8)	(24.9)	(24.6)

14 + Does not exceed 0.05 MMT CO₂ Eq.

15 Notes: Totals may not sum due to independent rounding. Parentheses indicate negative values or net sequestration.

16

Table 6-47: Net CO₂ Flux from Soil, Dead Organic Matter and Biomass C Stock Changes for *Land Converted to Grassland* (MMT C)

	1990	2005	2014	2015	2016	2017	2018
Cropland Converted to Grassland	(5.0)	(6.4)	(4.0)	(4.2)	(4.8)	(4.9)	(4.9)
Mineral Soils	(5.2)	(6.8)	(4.3)	(4.6)	(5.2)	(5.3)	(5.3)
Organic Soils	0.2	0.4	0.4	0.4	0.4	0.4	0.4
Forest Land Converted to Grassland	4.3	4.4	4.3	4.3	4.3	4.3	4.3
Aboveground Live Biomass	2.7	2.6	2.6	2.6	2.6	2.6	2.6
Belowground Live Biomass	0.7	0.7	0.6	0.6	0.6	0.6	0.6

Dead Wood	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)
Litter	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Mineral Soils	+	+	+	+	+	+	+
Organic Soils	+	+	0.1	0.1	0.1	0.1	0.1
Other Lands Converted Grassland	(3.8)	(8.6)	(6.9)	(6.2)	(6.1)	(6.0)	(6.0)
Mineral Soils	(1.2)	(8.6)	(7.0)	(6.3)	(6.1)	(6.1)	(6.0)
Organic Soils	+	+	+	+	+	+	+
Settlements Converted Grassland	+	(0.4)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)
Mineral Soils	+	(0.4)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)
Organic Soils	+	+	+	+	+	+	+
Wetlands Converted Grassland	+	0.1	0.1	0.1	0.1	0.1	0.1
Mineral Soils	+	+	+	+	+	+	+
Organic Soils	+	0.1	0.1	0.1	0.1	0.1	0.1
Aboveground Live Biomass	2.7	2.6	2.6	2.6	2.6	2.6	2.6
Belowground Live Biomass	0.7	0.7	0.6	0.6	0.6	0.6	0.6
Dead Wood	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)
Litter	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Total Mineral Soil Flux	(6.4)	(15.9)	(11.6)	(11.1)	(11.6)	(11.6)	(11.5)
Total Organic Soil Flux	0.2	0.5	0.5	0.5	0.5	0.5	0.5
Total Net Flux	(1.8)	(11.0)	(6.8)	(6.3)	(6.8)	(6.8)	(6.7)

1 + Does not exceed 0.05 MMT C.

2 Notes: Totals may not sum due to independent rounding. Parentheses indicate negative values or net sequestration.

3 Methodology

4 The following section includes a description of the methodology used to estimate C stock changes for Land

5 Converted to Grassland, including (1) loss of aboveground and belowground biomass, dead wood and litter C with

6 conversion of *Forest Land Converted to Grassland*, as well as (2) the impact from all land use conversions to

7 grassland on mineral and organic soil C stocks.

8 Biomass, Dead Wood, and Litter Carbon Stock Changes

9 A Tier 3 method is applied to estimate biomass, dead wood and litter C stock changes for Forest Land Converted to

10 Grassland. Estimates are calculated in the same way as those in the Forest Land Remaining Forest Land category

using data from the USDA Forest Service, Forest Inventory and Analysis (FIA) program (USDA Forest Service 2018)

12 and in the eastern US, IPCC (2006) defaults for biomass in grasslands.

13 There are limited data on grassland carbon stocks so default biomass estimates (IPCC 2006) for grasslands were

14 used to estimate carbon stock changes (litter and dead wood carbon stocks were assumed to be zero since no

15 reference C density estimates exist for croplands) in the eastern US. The difference between the stocks is reported

as the stock change under the assumption that the change occurred in the year of the conversion. The amount of

biomass C that is lost abruptly with Forest Land Converted to Grasslands is estimated based on the amount of C

18 before conversion and the amount of C following conversion according to remeasurements in the FIA program.

19 This approach is consistent with IPCC (2006) that assumes there is an abrupt change during the first year, but does

- 20 not necessarily capture the slower change over the years following conversion until a new steady is reached. It was
- 21 determined that using an IPCC Tier I approach that assumes all carbon is lost in the year of conversion for Forest
- 22 Land Converted to Grasslands in the West and Great Plains states does not accurately characterize the transfer of
- carbon in woody biomass during abrupt or gradual land use change. To estimate this transfer of carbon in woody
 biomass, state-specific carbon densities for woody biomass remaining on these former forest lands following
- biomass, state-specific carbon densities for woody biomass remaining on these former forest lands following
 conversion to grasslands were developed and included in the estimation of carbon stock changes from Forest Land
- 26 Converted to Grasslands were developed and included in the estimation of carbon stock changes from rolest Land 26 Converted to Grasslands in the West and Great Plains states. A review of the literature in grassland and rangeland
- ecosystems (Asner et al. 2003, Huang et al. 2009, Tarhouni et al. 2016), as well as an analysis of FIA data, suggests
- 27 ecosystems (Asher et al. 2005, huang et al. 2005, random et al. 2010), as well as an analysis of FIA data, suggests 28 that a conservative estimate of 50 percent of the woody biomass carbon density was lost during conversion from
- 29 Forest Land to Grasslands. This estimate was used to develop state-specific carbon density estimates for biomass,

- 1 dead wood, and litter for Grasslands in the West and Great Plains states and these state-specific carbon densities
- 2 were applied in the compilation system to estimate the carbon losses associated with conversion from forest land
- 3 to grassland in the West and Great Plains states. Further, losses from forest land to what are often characterized as
- 4 woodlands are included in this category using FIA plot re-measurements and the methods and models described
- 5 hereafter.
- 6 If FIA plots include data on individual trees, aboveground and belowground C density estimates are based on
- 7 Woodall et al. (2011). Aboveground and belowground biomass estimates also include live understory which is a
- 8 minor component of biomass defined as all biomass of undergrowth plants in a forest, including woody shrubs and
- 9 trees less than 2.54 cm dbh. For this Inventory, it was assumed that 10 percent of total understory C mass is
- belowground (Smith et al. 2006). Estimates of C density are based on information in Birdsey (1996) and biomass
- 11 estimates from Jenkins et al. (2003).
- 12 If FIA plots include data on standing dead trees, standing dead tree C density is estimated following the basic
- 13 method applied to live trees (Woodall et al. 2011) with additional modifications to account for decay and structural
- 14 loss (Domke et al. 2011; Harmon et al. 2011). If FIA plots include data on downed dead wood, downed dead wood
- 15 C density is estimated based on measurements of a subset of FIA plots for downed dead wood (Domke et al. 2013;
- 16 Woodall and Monleon 2008). Downed dead wood is defined as pieces of dead wood greater than 7.5 cm diameter,
- 17 at transect intersection, that are not attached to live or standing dead trees. This includes stumps and roots of
- 18 harvested trees. To facilitate the downscaling of downed dead wood C estimates from the state-wide population
- estimates to individual plots, downed dead wood models specific to regions and forest types within each region
 are used. Litter C is the pool of organic C (also known as duff, humus, and fine woody debris) above the mineral
- soil and includes woody fragments with diameters of up to 7.5 cm. A subset of FIA plots are measured for litter C. If
- FIA plots include litter material, a modeling approach using litter C measurements from FIA plots is used to
- estimate litter C density (Domke et al. 2016). See Annex 3.13 for more information about reference C density
- 24 estimates for forest land.

25 Soil Carbon Stock Changes

Soil C stock changes are estimated for Land Converted to Grassland according to land use histories recorded in the 26 27 2015 USDA NRI survey for non-federal lands (USDA-NRCS 2018). Land use and some management information 28 (e.g., crop type, soil attributes, and irrigation) were originally collected for each NRI survey locations on a 5-year 29 cycle beginning in 1982. In 1998, the NRI Program began collecting annual data, and the annual data are currently 30 available through 2015 (USDA-NRCS 2018). NRI survey locations are classified as Land Converted to Grassland in a 31 given year between 1990 and 2015 if the land use is grassland but had been classified as another use during the 32 previous 20 years. NRI survey locations are classified according to land use histories starting in 1979, and 33 consequently the classifications are based on less than 20 years from 1990 to 1998. This may have led to an 34 underestimation of Land Converted to Grassland in the early part of the time series to the extent that some areas 35 are converted to grassland between 1971 and 1978. For federal lands, the land use history is derived from land 36 cover changes in the National Land Cover Dataset (Yang et al. 2018; Homer et al. 2007; Fry et al. 2011; Homer et al.

37 2015).

38 Mineral Soil Carbon Stock Changes

An IPCC Tier 3 model-based approach (Ogle et al. 2010) is applied to estimate C stock changes for *Land Converted*

- 40 to Grassland on most mineral soils that are classified in this land use change category. C stock changes on the
- 41 remaining soils are estimated with an IPCC Tier 2 approach (Ogle et al. 2003), including prior cropland used to
- 42 produce vegetables, tobacco, and perennial/horticultural crops; land areas with very gravelly, cobbly, or shaley 43 soils (greater than 35 percent by volume); and land converted to grassland from another land use other than
- 44 cropland.
- A surrogate data method is used to estimate soil C stock changes from 2016 to 2018 at the national scale for land
- 46 areas included in the Tier 2 and Tier 3 methods. Specifically, linear regression models with autoregressive moving-
- 47 average (ARMA) errors (Brockwell and Davis 2016) are used to estimate the relationship between surrogate data

- 1 regression models include weather data from the PRISM Climate Group (PRISM Climate Group 2018). See Box 6-4
- 2 in the Methodology section of *Cropland Remaining Cropland* for more information about the surrogate data
- 3 method. Stock change estimates for 2016 to 2018 will be recalculated in future inventories when new NRI data are
- 4 available.
- 5 *Tier 3 Approach.* Mineral SOC stocks and stock changes are estimated using the DayCent biogeochemical⁵⁸ model
- 6 (Parton et al. 1998; Del Grosso et al. 2001, 2011). The DayCent model utilizes the soil C modeling framework
- 7 developed in the Century model (Parton et al. 1987, 1988, 1994; Metherell et al. 1993), but has been refined to
- 8 simulate dynamics at a daily time-step. Historical land use patterns and irrigation histories are simulated with
- 9 DayCent based on the 2015 USDA NRI survey (USDA-NRCS 2018). C stocks and 95 percent confidence intervals are
- 10 estimated for each year between 1990 and 2015. See the *Cropland Remaining Cropland* section and Annex 3.12 for
- additional discussion of the Tier 3 methodology for mineral soils.
- 12 Soil C stock changes from 2016 to 2018 are estimated using a surrogate data method described in Box 6-4 of the
- 13 Methodology section in *Cropland Remaining Cropland*. Future inventories will be updated with new activity data
- when the data are made available, and the time series will be recalculated (See Planned Improvements section in
- 15 Cropland Remaining Cropland).
- 16 *Tier 2 Approach.* For the mineral soils not included in the Tier 3 analysis, SOC stock changes are estimated using a
- 17 Tier 2 Approach, as described in the Tier 2 Approach for mineral soils in *Grassland Remaining Grassland* and Annex
- 18 3.12. This analysis includes application of the surrogate data method that is described in Box 6-4 of the
- 19 Methodology section in *Cropland Remaining Cropland*. As with the Tier 3 method, future Inventories will be
- 20 updated with new NRI activity data when the data are made available, and the time series will be recalculated.

21 Organic Soil Carbon Stock Changes

- 22 Annual C emissions from drained organic soils in *Land Converted to Grassland* are estimated using the Tier 2
- 23 method provided in IPCC (2006), with U.S.-specific C loss rates (Ogle et al. 2003) as described in the *Cropland*
- 24 *Remaining Cropland* section and Annex 3.12 for organic soils. A surrogate data method is used to estimate annual
- 25 C emissions from organic soils from 2016 to 2018 as described in Box 6-4 of the Methodology section in *Cropland*
- 26 *Remaining Cropland*. Estimates for 2016 to 2018 will be recalculated in future Inventories when new NRI data are
- 27 available.

28 Uncertainty and Time-Series Consistency

- 29 The uncertainty analysis for biomass, dead wood and litter C losses with *Forest Land Converted to Grassland* is
- 30 conducted in the same way as the uncertainty assessment for forest ecosystem C flux in the *Forest Land Remaining*
- 31 *Forest Land* category. Sample and model-based error are combined using simple error propagation methods
- 32 provided by the IPCC (2006), by taking the square root of the sum of the squares of the standard deviations of the
- 33 uncertain guantities. For additional details see the Uncertainty Analysis in Annex 3.13.
- 34 The uncertainty analyses for mineral soil C stock changes using the Tier 3 and Tier 2 methodologies are based on a
- 35 Monte Carlo approach that is described in the *Cropland Remaining Cropland* section and Annex 3.12. The
- 36 uncertainty for annual C emission estimates from drained organic soils in Land Converted to Grassland is estimated
- using a Monte Carlo approach, which is also described in the *Cropland Remaining Cropland* section. For 2016 to
- 2018, there is additional uncertainty propagated through the Monte Carlo Analysis associated with a surrogate
- data method, which is also described in *Cropland Remaining Cropland*.
- 40 Uncertainty estimates are presented in Table 6-48 for each subsource (i.e., biomass C stocks, mineral soil C stocks
- 41 and organic soil C stocks) and the method applied in the inventory analysis (i.e., Tier 2 and Tier 3). Uncertainty
- 42 estimates from the Tier 2 and 3 approaches are combined using the simple error propagation methods provided by

⁵⁸ Biogeochemical cycles are the flow of chemical elements and compounds between living organisms and the physical environment.

the IPCC (2006), as discussed in the previous paragraph. The combined uncertainty for total C stocks in *Land Converted to Grassland* ranges from 138 percent below to 138 percent above the 2018 stock change estimate of
 24.6 MMT CO₂ Eq. The large relative uncertainty around the 2018 stock change estimate is partly due to large
 uncertainties in biomass and dead organic matter C losses with *Forest Land Conversion to Grassland*. The large
 relative uncertainty is also partly due to variation in soil C stock changes that is not explained by the surrogate data

6 method, leading to high prediction error with this splicing method.

7 Table 6-48: Approach 2 Quantitative Uncertainty Estimates for Soil, Dead Organic Matter

and Biomass C Stock Changes occurring within Land Converted to Grassland (MMT CO₂ Eq.

9 and Percent)

Source	2018 Flux Estimate ^a	Uncertainty Range Relative to Flux Estimate ^a					
Source	(MMT CO₂ Eq.)	(MMT)	CO₂ Eq.)	(9	%)		
		Lower	Upper	Lower	Upper		
		Bound	Bound	Bound	Bound		
Cropland Converted to Grassland	(18.0)	(47.7)	11.8	-166%	166%		
Mineral Soil C Stocks: Tier 3	(15.6)	(45.2)	14.0	-189%	189%		
Mineral Soil C Stocks: Tier 2	(3.7)	(6.6)	(0.7)	-81%	81%		
Organic Soil C Stocks: Tier 2	1.3	+	2.7	-99%	99%		
Forest Land Converted to Grassland	15.9	4.5	27.3	-72%	72%		
Aboveground Live Biomass	9.4	(0.4)	19.3	-104%	104%		
Belowground Live Biomass	2.4	(0.1)	4.8	-105%	104%		
Dead Wood	(0.9)	(1.9)	+	-106%	104%		
Litter	4.9	(0.2)	10.0	-105%	104%		
Mineral Soil C Stocks: Tier 2	+	(0.2)	0.1	-264%	264%		
Organic Soil C Stocks: Tier 2	0.2	+	0.4	-104%	104%		
Other Lands Converted to Grassland	(21.9)	(33.6)	(10.1)	-54%	54%		
Mineral Soil C Stocks: Tier 2	(21.9)	(33.7)	(10.2)	-54%	54%		
Organic Soil C Stocks: Tier 2	0.1	+	0.2	-136%	136%		
Settlements Converted to Grassland	(0.9)	(1.5)	(0.4)	-58%	58%		
Mineral Soil C Stocks: Tier 2	(0.9)	(1.5)	(0.4)	-58%	58%		
Organic Soil C Stocks: Tier 2	+	+	+	-289%	289%		
Wetlands Converted to Grasslands	0.3	+	0.5	-104%	104%		
Mineral Soil C Stocks: Tier 2	+	(0.1)	0.1	-569%	569%		
Organic Soil C Stocks: Tier 2	0.2	+	0.5	-105%	105%		
Total: Land Converted to Grassland	(24.6)	(58.6)	9.4	-138%	138%		
Aboveground Live Biomass	9.4	(0.4)	19.3	-104%	104%		
Belowground Live Biomass	2.4	(0.1)	4.8	-105%	104%		
Dead Wood	(0.9)	(1.9)	+	-106%	104%		
Litter	4.9	(0.2)	10.0	-105%	104%		
Mineral Soil C Stocks: Tier 3	(15.6)	(45.2)	14.0	-189%	189%		
Mineral Soil C Stocks: Tier 2	(26.6)	(38.7)	(14.5)	-46%	46%		
Organic Soil C Stocks: Tier 2	1.9	0.5	3.2	-74%	74%		

+ Absolute value does not exceed 0.05 MMT CO₂ Eq.

^a Range of C stock change estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval. Notes: Totals may not sum due to independent rounding. Parentheses indicate negative values or net sequestration.

10 Uncertainty is also associated with a lack of reporting on biomass, dead wood and litter C stock changes for

agroforestry systems. However, there are currently no datasets to evaluate the trends. Changes in biomass and

12 dead organic matter C stocks are assumed to be negligible with the exception of forest lands, which are included in

13 this analysis in other grasslands. This assumption will be further explored in a future Inventory.

14 Methodological recalculations are applied from 1990 to 2017 with the methodological improvements

15 implemented in this Inventory, ensuring consistency across the time series. Details on the emission trends through

16 time are described in more detail in the introductory section, above.

1 QA/QC and Verification

2 See the QA/QC and Verification section in Cropland Remaining Cropland and Grassland Remaining Grassland for

3 information on QA/QC steps.

4 Recalculations Discussion

5 Methodological recalculations are applied to the entire time-series to ensure time-series consistency from 1990

through 2017. Differences in biomass, dead wood and litter C stock changes in *Forest Land Converted to Grassland* can be attributed to incorporation of the latest FIA data. Recalculations for the soil C stock changes are associated

can be attributed to incorporation of the latest FIA data. Recalculations for the soil C stock changes are associated
 with several improvements to both the Tier 2 and 3 approaches that are discussed in the *Cropland Remaining*

9 *Cropland* section. As a result of these improvements to the Inventory, *Land Converted to Grassland* has a larger

reported gain in C compared to the previous Inventory, estimated at 35.2 MMT CO₂ Eq. on average over the time

series. This represents a 610 percent increase in C stock changes for *Land Converted to Grassland* compared to the

12 previous Inventory, and is largely driven by the methodological changes for estimating the soil C stock changes.

13 Planned Improvements

14 The amount of biomass C that is lost abruptly or the slower changes that continue to occur over a decade or longer

15 with *Forest Land Converted to Grasslands* will be further refined in a future Inventory. The current values are

16 estimated based on the amount of C before conversion and an estimated level of C left after conversion based on

17 limited plot data from the FIA and published literature for the Western United States and Great Plains Regions. The

18 amount of C left after conversion will be further investigated with additional data collection, particularly in the

19 Western United States and Great Plains, including tree biomass, understory biomass, dead wood and litter C pools.

20 Soil C stock changes with land use conversion from forest land to grassland are undergoing further evaluation to

21 ensure consistency in the time series. Different methods are used to estimate soil C stock changes in forest land

22 and grasslands, and while the areas have been reconciled between these land uses, there has been limited

evaluation of the consistency in C stock changes with conversion from forest land to grassland. In addition,

24 biomass C stock changes will be estimated for *Cropland Converted to Grassland*, and other land use conversions to

- 25 grassland, to the extent that data are available.
- 26 An additional planned improvement for the *Land Converted to Grassland* category is to develop an inventory of C

27 stock changes for grasslands in Alaska. Table 6-49 provides information on the amount of managed area in Alaska

- 28 that is *Land Converted to Grassland*, which can reach as high as 54 thousand hectares per year.⁵⁹ Note that areas
- 29 of Land Converted to Grassland in Alaska for 1990 to 2001 are classified as Grassland Remaining Grassland because
- 30 land use change are not available until 2002. For information about other improvements, see the Planned
- 31 Improvements section in *Cropland Remaining Cropland* and *Grassland Remaining Grassland*.

⁵⁹ All of the Land Converted to Grassland based on the land representation is included in the inventory for 1990 through 2001 for the conterminous United States. However, there are no data to evaluate land use change in Alaska for this time period, and so the balance of the managed area that may be converted to grassland in these years is included in *Grassland Remaining Grassland* section. This gap in land use change data for Alaska will be addressed in a future Inventory.

1 Table 6-49: Area of Managed Land in *Land Converted to Grassland* in Alaska that is not

2	included in	the current	Inventory	(Thousand	Hectares)
---	-------------	-------------	-----------	-----------	-----------

	Area (1	Area (Thousand Hectares)							
			Not Included in						
Year	Managed Land	Inventory	Inventory						
1990	9,394	9,394	0						
1991	9,485	9,485	0						
1992	9,691	9,691	0						
1993	11,566	11,566	0						
1994	13,378	13,378	0						
1995	13,994	13,994	0						
1996	14,622	14,622	0						
1997	15,162	15,162	0						
1998	19,052	19,052	0						
1999	19,931	19,931	0						
2000	20,859	20,859	0						
2001	21,968	21,968	0						
2002	22,395	22,392	3						
2003	22,015	22,008	7						
2004	22,557	22,547	10						
2005	22,460	22,447	13						
2006	22,718	22,702	16						
2007	22,450	22,428	21						
2008	22,685	22,661	24						
2009	22,608	22,581	26						
2010	22,664	22,634	29						
2011	22,805	22,750	54						
2012	22,643	22,596	47						
2013	21,472	21,439	33						
2014	20,195	20,163	33						
2015	20,242	20,210	33						
2016	ND	ND	ND						
2017	ND	ND	ND						
2018	ND	ND	ND						

3 Note: NRI data are not available after 2015, and these years are designated as ND (No data).

6.8 Wetlands Remaining Wetlands (CRF Category 4D1)

6 Wetlands Remaining Wetlands includes all wetland in an Inventory year that had been classified as wetland for the

7 previous 20 years, and in this Inventory the flux estimates include Peatlands and Coastal Wetlands.

1 Peatlands Remaining Peatlands

2 Emissions from Managed Peatlands

Managed peatlands are peatlands that have been cleared and drained for the production of peat. The production
 cycle of a managed peatland has three phases: land conversion in preparation for peat extraction (e.g., clearing
 surface biomass, draining), extraction (which results in the emissions reported under *Peatlands Remaining*

6 *Peatlands*), and abandonment, restoration/rewetting, or conversion of the land to another use.

7 Carbon dioxide emissions from the removal of biomass and the decay of drained peat constitute the major

8 greenhouse gas flux from managed peatlands. Managed peatlands may also emit CH₄ and N₂O. The natural

9 production of CH₄ is largely reduced but not entirely shut down when peatlands are drained in preparation for

10 peat extraction (Strack et al. 2004 as cited in the 2006 IPCC Guidelines). Drained land surface and ditch networks

11 contribute to the CH₄ flux in peatlands managed for peat extraction. Methane emissions were considered

insignificant under the IPCC Tier 1 methodology (IPCC 2006) but are included in the emissions estimates for
 Peatlands Remaining Peatlands consistent with the 2013 Supplement to the 2006 IPCC Guidelines for National

Peatlands Remaining Peatlands consistent with the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (IPCC 2013). Nitrous oxide emissions from managed peatlands depend or

14 Greenhouse Gas Inventories: Wetlands (IPCC 2013). Nitrous oxide emissions from managed peatlands depend on 15 site fertility (i.e., concentration of mineral N). In addition, abandoned and restored peatlands continue to release

16 greenhouse gas emissions. Although methodologies are provided for rewetted organic soils (which includes

rewetted/restored peatlands) in IPCC (2013) guidelines, information on the areal extent of rewetted/restored

17 rewetted restored peatiands) in FCC (2013) guidelines, information on the area extent of rewetted restored 18 peatlands in the United States is currently unavailable. This Inventory estimates CO₂, N₂O, and CH₄ emissions from

19 peatlands managed for peat extraction in accordance with IPCC (2006 and 2013) guidelines.

20 CO₂, N₂O, and CH₄ Emissions from Peatlands Remaining Peatlands

21 IPCC (2013) recommends reporting CO₂, N₂O, and CH₄ emissions from lands undergoing active peat extraction (i.e., 22 Peatlands Remaining Peatlands) as part of the estimate for emissions from managed wetlands. Peatlands occur 23 where plant biomass has sunk to the bottom of water bodies and water-logged areas and exhausted the oxygen 24 supply below the water surface during the course of decay. Due to these anaerobic conditions, much of the plant 25 matter does not decompose but instead forms layers of peat over decades and centuries. In the United States, 26 peat is extracted for horticulture and landscaping growing media, and for a wide variety of industrial, personal 27 care, and other products. It has not been used for fuel in the United States for many decades. Peat is harvested from two types of peat deposits in the United States: sphagnum bogs in northern states (e.g., Minnesota) and 28 29 wetlands in states further south (e.g., Florida). The peat from sphagnum bogs in northern states, which is nutrient 30 poor, is generally corrected for acidity and mixed with fertilizer. Production from more southerly states is relatively 31 coarse (i.e., fibrous) but nutrient rich.

32 IPCC (2006 and 2013) recommend considering both on-site and off-site emissions when estimating CO₂ emissions

33 from Peatlands Remaining Peatlands using the Tier 1 approach. The IPCC methodologies estimate only on-site N₂O

and CH₄ emissions, since off-site N₂O estimates are complicated by the risk of double-counting emissions from

35 nitrogen fertilizers added to horticultural peat, and off-site CH₄ emissions are not relevant given the non-energy

36 uses of peat, so methodologies are not provided in IPCC (2013) guidelines.

37 On-site emissions from managed peatlands occur as the land is cleared of vegetation and the underlying peat is

exposed to sun and weather. As this occurs, some peat deposit is lost and CO₂ is emitted from the oxidation of the

39 peat. Since N₂O emissions from saturated ecosystems tend to be low unless there is an exogenous source of

40 nitrogen, N₂O emissions from drained peatlands are dependent on nitrogen mineralization and therefore on soil

fertility. Peatlands located on highly fertile soils contain significant amounts of organic nitrogen in inactive form.

42 Draining land in preparation for peat extraction allows bacteria to convert the nitrogen into nitrates which leach to

43 the surface where they are reduced to N₂O, and contributes to the activity of methanogens and methanotrophs

that result in CH₄ emissions (Blodau 2002; Treat et al. 2007 as cited in IPCC 2013). Drainage ditches, which are

45 constructed to drain the land in preparation for peat extraction, also contribute to the flux of CH₄ through *in situ*

46 production and lateral transfer of CH₄ from the organic soil matrix (IPCC 2013).

- 1 Off-site CO₂ emissions from managed peatlands occur from waterborne carbon losses and the horticultural and
- 2 landscaping use of peat. Dissolved organic carbon from water drained off peatlands reacts within aquatic
- 3 ecosystems and is converted to CO₂, which is then emitted to the atmosphere (Billet et al. 2004 as cited in IPCC
- 4 2013). During the horticultural and landscaping use of peat, nutrient-poor (but fertilizer-enriched) peat tends to be
- 5 used in bedding plants and in greenhouse and plant nursery production, whereas nutrient-rich (but relatively
- 6 coarse) peat is used directly in landscaping, athletic fields, golf courses, and plant nurseries. Most (nearly 94
- 7 percent) of the CO₂ emissions from peat occur off-site, as the peat is processed and sold to firms which, in the
- 8 United States, use it predominantly for the aforementioned horticultural and landscaping purposes.
- 9 Total emissions from *Peatlands Remaining Peatlands* were estimated to be 0.7 MMT CO₂ Eq. in 2018 (see Table
- 10 6-50) comprising 0.7 MMT CO₂ Eq. (696 kt) of CO₂, 0.001 MMT CO₂ Eq. (0.0001 kt) of N₂O, and 0.004 MMT CO₂ Eq.
- 11 (0.0001 kt) of CH₄. Total emissions in 2018 were about 5 percent less than total emissions in 2017.
- 12 Total emissions from *Peatlands Remaining Peatlands* have fluctuated between 0.7 and 1.3 MMT CO₂ Eq. across the
- 13 time series with a decreasing trend from 1990 until 1993, followed by an increasing trend until reaching peak
- emissions in 2000. After 2000, emissions generally decreased until 2006 and then increased until 2009. The trend
- reversed in 2009 and total emissions have generally decreased between 2009 and 2018. Carbon dioxide emissions
- 16 from *Peatlands Remaining Peatlands* have fluctuated between 0.7 and 1.3 MMT CO₂ across the time series, and
- 17 these emissions drive the trends in total emissions. Methane and N₂O emissions remained close to zero across the
- 18 time series. Nitrous oxide emissions showed a decreasing trend from 1990 until 1995, followed by an increasing
- 19 trend through 2001. Nitrous oxide emissions decreased between 2001 and 2006, followed by a leveling off
- between 2008 and 2010, and a general decline between 2011 and 2018. Methane emissions decreased from 1990
- 21 until 1995, followed by an increasing trend through 2000, a period of fluctuation through 2010, and a general
- 22 decline between 2010 and 2018.

23 Table 6-50: Emissions from *Peatlands Remaining Peatlands* (MMT CO₂ Eq.)

Gas	1990	2005	2014	2015	2016	2017	2018
CO2	1.1	1.1	0.8	0.8	0.7	0.7	0.7
Off-site	1.0	1.0	0.7	0.7	0.7	0.7	0.7
On-site	0.1	0.1	0.1	+	+	+	+
N ₂ O (On-site)	+	+	+	+	+	+	+
CH₄ (On-site)	+	+	+	+	+	+	+
Total	1.1	1.1	0.8	0.8	0.7	0.7	0.7

+ Does not exceed 0.05 MMT CO₂ Eq.

Note: These numbers are based on U.S. production data in accordance with Tier 1 guidelines, which does not take into account imports, exports, and stockpiles (i.e., apparent consumption). Off-site N₂O emissions are not estimated to avoid double-counting N₂O emitted from the fertilizer that the peat is mixed with prior to horticultural use (see IPCC 2006). Totals may not sum due to independent rounding.

24 Table 6-51: Emissions from *Peatlands Remaining Peatlands* (kt)

Gas	1990	2005	2014	2015	2016	2017	2018
CO ₂	1,055	1,101	775	755	733	734	696
Off-site	985	1,030	725	706	686	687	652
On-site	70	71	50	49	47	47	44
N ₂ O (On-site)	+	+	+	+	+	+	+
CH₄ (On-site)	+	+	+	+	+	+	+

+ Does not exceed 0.5 kt.

Note: These numbers are based on U.S. production data in accordance with Tier 1 guidelines, which does not take into account imports, exports, and stockpiles (i.e., apparent consumption). Off-site N₂O emissions are not estimated to avoid double-counting N₂O emitted from the fertilizer that the peat is mixed with prior to horticultural use (see IPCC 2006). Totals may not sum due to independent rounding.

Methodology 1

2 The following methodology sections first describes the steps taken to calculate emissions estimates for the years 1990 through 2017, followed by the basic methodology used to update 2018 values. 3

1990-2017 Off-Site CO₂ Emissions 4

5 Carbon dioxide emissions from domestic peat production were estimated using a Tier 1 methodology consistent 6 with IPCC (2006). Off-site CO₂ emissions from Peatlands Remaining Peatlands were calculated by apportioning the 7 annual weight of peat produced in the United States (Table 6-52) into peat extracted from nutrient-rich deposits 8 and peat extracted from nutrient-poor deposits using annual percentage-by-weight figures. These nutrient-rich 9 and nutrient-poor production values were then multiplied by the appropriate default C fraction conversion factor 10 taken from IPCC (2006) in order to obtain off-site emission estimates. For the lower 48 states, both annual 11 percentages of peat type by weight and domestic peat production data were sourced from estimates and industry 12 statistics provided in the Minerals Yearbook and Mineral Commodity Summaries from the U.S. Geological Survey 13 (USGS 1995 through 2015; USGS 2016). To develop these data, the U.S. Geological Survey (USGS; U.S. Bureau of 14 Mines prior to 1997) obtained production and use information by surveying domestic peat producers. On average, 15 about 75 percent of the peat operations respond to the survey; and USGS estimates data for non-respondents on 16 the basis of prior-year production levels (Apodaca 2011).

17 The Alaska estimates rely on reported peat production from the Alaska Department of Natural Resources, Division

18 of Geological & Geophysical Surveys (DGGS) annual Alaska's Mineral Industry reports (DGGS 1993 through 2012).

19 Similar to the U.S. Geological Survey, DGGS solicits voluntary reporting of peat production from producers for the

20 Alaska's Mineral Industry report. However, the report does not estimate production for the non-reporting 21 producers, resulting in larger inter-annual variation in reported peat production from Alaska depending on the

22 number of producers who report in a given year (Szumigala 2011). In addition, in both the lower 48 states and

23 Alaska, large variations in peat production can also result from variations in precipitation and the subsequent

24 changes in moisture conditions, since unusually wet years can hamper peat production. The methodology

25 estimates Alaska emissions separately from lower 48 emissions because the state conducts its own mineral survey

26 and reports peat production by volume, rather than by weight (Table 6-53). However, volume production data

27 were used to calculate off-site CO₂ emissions from Alaska applying the same methodology but with volume-specific

28 C fraction conversion factors from IPCC (2006).⁶⁰ Peat production was not reported for 2015 in Alaska's Mineral

Industry 2014 report (DGGS 2015); and reliable data are not available beyond 2012, so Alaska's peat production in 29 30 2013 through 2018 (reported in cubic yards) was assumed to be equal to the 2012 value.

31 Consistent with IPCC (2013) guidelines, off-site CO₂ emissions from dissolved organic carbon were estimated based 32 on the total area of peatlands managed for peat extraction, which is calculated from production data using the

33

methodology described in the On-Site CO₂ Emissions section below. CO₂ emissions from dissolved organic C were 34 estimated by multiplying the area of peatlands by the default emissions factor for dissolved organic C provided in

35 IPCC (2013).

36 The apparent consumption of peat, which includes production plus imports minus exports plus the decrease in

37 stockpiles, in the United States is over time the amount of domestic peat production. However, consistent with the

38 Tier 1 method whereby only domestic peat production is accounted for when estimating off-site emissions, off-site

39 CO₂ emissions from the use of peat not produced within the United States are not included in the Inventory. The

- 40 United States has largely imported peat from Canada for horticultural purposes; from 2011 to 2014, imports of
- 41 sphagnum moss (nutrient-poor) peat from Canada represented 97 percent of total U.S. peat imports (USGS 2016).
- 42 Most peat produced in the United States is reed-sedge peat, generally from southern states, which is classified as
- 43 nutrient rich by IPCC (2006). Higher-tier calculations of CO_2 emissions from apparent consumption would involve

⁶⁰ Peat produced from Alaska was assumed to be nutrient poor; as is the case in Canada, "where deposits of high-quality [but nutrient poor] sphagnum moss are extensive" (USGS 2008).

- 1 consideration of the percentages of peat types stockpiled (nutrient rich versus nutrient poor) as well as the
- 2 percentages of peat types imported and exported.

3 Table 6-52: Peat Production of Lower 48 States (kt)

Type of Deposit	1990	2005	2013	2014	2015	2016	2017
Nutrient-Rich	595.1	657.6	418.5	416.5	405.0	388.1	374.0
Nutrient-Poor	55.4	27.4	46.5	51.5	50.1	52.9	66.0
Total Production	692.0	685.0	465.0	468.0	455.0	441.0	440.0

Sources: United States Geological Survey (USGS) (1991–2015) *Minerals Yearbook: Peat (1994–2014);* United States Geological Survey (USGS) (2016) *Mineral Commodity Summaries: Peat (2016)*.

4 Table 6-53: Peat Production of Alaska (Thousand Cubic Meters)

	1990	2005	2013	2014	2015	2016	2017				
Total Production	49.7	47.8	93.1	93.1	93.1	93.1	93.1				
Sources: Division of Geolo	Sources: Division of Geological & Geophysical Surveys (DGGS), Alaska Department of Natural Resources (1997–2015)										

Alaska's Mineral Industry Report (1997–2014).

5 1990-2017 On-site CO₂ Emissions

IPCC (2006) recommends basing the calculation of on-site emission estimates on the area of peatlands managed
 for peat extraction differentiated by the nutrient type of the deposit (rich versus poor). Information on the area of

8 land managed for peat extraction is currently not available for the United States, but consistent with IPCC (2006).

an average production rate for the industry was applied to derive an area estimate. In a mature industrialized peat

industry, such as exists in the United States and Canada, the vacuum method can extract up to 100 metric tons per

hectare per year (Cleary et al. 2005 as cited in IPCC 2006).⁶¹ The area of land managed for peat extraction in the

12 lower 48 states of the United States was estimated using nutrient-rich and nutrient-poor production data and the

assumption that 100 metric tons of peat are extracted from a single hectare in a single year, see Table 6-54. The

annual land area estimates were then multiplied by the IPCC (2013) default emission factor in order to calculate

15 on-site CO₂ emission estimates.

16 Production data are not available by weight for Alaska. In order to calculate on-site emissions resulting from

17 *Peatlands Remaining Peatlands* in Alaska, the production data by volume were converted to weight using annual

18 average bulk peat density values, and then converted to land area estimates using the same assumption that a

19 single hectare yields 100 metric tons, see Table 6-55. The IPCC (2006) on-site emissions equation also includes a

20 term that accounts for emissions resulting from the change in C stocks that occurs during the clearing of

21 vegetation prior to peat extraction. Area data on land undergoing conversion to peatlands for peat extraction is

also unavailable for the United States. However, USGS records show that the number of active operations in the

23 United States has been declining since 1990; therefore, it seems reasonable to assume that no new areas are being

24 cleared of vegetation for managed peat extraction. Other changes in C stocks in living biomass on managed

25 peatlands are also assumed to be zero under the Tier 1 methodology (IPCC 2006 and 2013).

26 Table 6-54: Peat Production Area of Lower 48 States (hectares)

	1990*	2005	2013	2014	2015	2016	2017
Nutrient-Rich	5,951	6,576	4,185	4,165	4,050	3,881	3,740
Nutrient-Poor	554	274	465	515	501	529	660
Total Production	6,920	6,850	4,650	4,680	4,550	4,410	4,400

⁶¹ The vacuum method is one type of extraction that annually "mills" or breaks up the surface of the peat into particles, which then dry during the summer months. The air-dried peat particles are then collected by vacuum harvesters and transported from the area to stockpiles (IPCC 2006).

*A portion of the production in 1990 is of unknown nutrient type, resulting in a total production value greater than the sum of nutrient-rich and nutrient-poor.

Sources: Calculated using peat production values in Table 6-52, an assumed yield of 100 metric tons per hectare per year.

1 Table 6-55: Peat Production Area of Alaska (hectares)

	1990	2	2005	2013	2014	2015	2016	2017
Nutrient-Rich	0		0	0	0	0	0	0
Nutrient-Poor	286		104	210	204	209	201	201
Total Production	286		104	210	204	209	201	201

Sources: Calculated using peat production values in Table 6-53, an assumed yield of 100 metric tons per hectare per year.

2 1900-2017 On-site N₂O Emissions

3 IPCC (2006) suggests basing the calculation of on-site N₂O emission estimates on the area of nutrient-rich

4 peatlands managed for peat extraction. These area data are not available directly for the United States, but the on-

5 site CO₂ emissions methodology above details the calculation of area data from production data. In order to

6 estimate N₂O emissions, the area of nutrient rich *Peatlands Remaining Peatlands* was multiplied by the

7 appropriate default emission factor taken from IPCC (2013).

8 1990-2017 On-site CH₄ Emissions

9 IPCC (2013) also suggests basing the calculation of on-site CH₄ emission estimates on the total area of peatlands

10 managed for peat extraction. Area data is derived using the calculation from production data described in the On-

site CO₂ Emissions section above. In order to estimate CH₄ emissions from drained land surface, the area of

12 *Peatlands Remaining Peatlands* was multiplied by the emission factor for direct CH₄ emissions taken from IPCC

13 (2013). In order to estimate CH₄ emissions from drainage ditches, the total area of peatland was multiplied by the

14 default fraction of peatland area that contains drainage ditches, and the appropriate emission factor taken from

15 IPCC (2013). See Table 6-56 for the calculated area of ditches and drained land.

16 Table 6-56: Peat Production (hectares)

	1990	2005	2013	2014	2015	2016	2017
ower 48 States							
Area of Drained Land	6,574	6,508	4,418	4,446	4,323	4,190	4,180
Area of Ditches	346	343	233	234	228	221	220
Total Production	6,920	6,850	4,650	4,680	4,550	4,410	4,400
Maska							
Area of Drained Land	272	99	200	194	198	191	191
Area of Ditches	14	5	11	10	10	10	10
Total Production	286	104	210	204	209	201	201

Sources: Calculated using peat production values in Table 6-46, an assumed yield of 100 metric tons per hectare per year, and an assumed value of 5 percent ditch area.

17 2018 Emissions

18 A basic inventory update was performed for estimating the 2018 inventory year emissions using values from the

19 previous 1990 to 2017 Inventory. Estimates of emissions from peatlands remaining peatlands were forecasted for

20 2018 and peat production values were set equal to 2017. Excel's FORECAST.ETS function was used to predict a

21 2018 value using historical data via an algorithm called "Exponential Triple Smoothing." This method determined

the overall trend and provided an appropriate estimate for 2018.

1 Uncertainty and Time-Series Consistency

A Monte Carlo (Approach 2) uncertainty analysis that was run on the 1990 to 2017 Inventory was applied to
 estimate the uncertainty of CO₂, CH₄, and N₂O emissions from *Peatlands Remaining Peatlands* for 2018, using the
 following assumptions:

- The uncertainty associated with peat production data was estimated to be ± 25 percent (Apodaca 2008)
 and assumed to be normally distributed.
 The uncertainty associated with peat production data stems from the fact that the USGS receives data
- Ine uncertainty associated with peat production data stems from the fact that the USGS receives data
 from the smaller peat producers but estimates production from some larger peat distributors. The peat
 type production percentages were assumed to have the same uncertainty values and distribution as the
 peat production data (i.e., ± 25 percent with a normal distribution).
- The uncertainty associated with the reported production data for Alaska was assumed to be the same as
 for the lower 48 states, or ± 25 percent with a normal distribution. It should be noted that the DGGS
 estimates that around half of producers do not respond to their survey with peat production data;
 therefore, the production numbers reported are likely to underestimate Alaska peat production
 (Szumigala 2008).
- The uncertainty associated with the average bulk density values was estimated to be ± 25 percent with a normal distribution (Apodaca 2008).
- IPCC (2006 and 2013) gives uncertainty values for the emissions factors for the area of peat deposits
 managed for peat extraction based on the range of underlying data used to determine the emission
 factors. The uncertainty associated with the emission factors was assumed to be triangularly distributed.
 - The uncertainty values surrounding the C fractions were based on IPCC (2006) and the uncertainty was
 assumed to be uniformly distributed.
 - The uncertainty values associated with the fraction of peatland covered by ditches was assumed to be ± 100 percent with a normal distribution based on the assumption that greater than 10 percent coverage, the upper uncertainty bound, is not typical of drained organic soils outside of The Netherlands (IPCC 2013).
- 27 The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 6-57. Carbon dioxide
- 28 emissions from *Peatlands Remaining Peatlands* in 2018 were estimated to be between 0.6 and 0.8 MMT CO₂ Eq. at
- 29 the 95 percent confidence level. This indicates a range of 15 percent below to 15 percent above the emission
- 30 estimate of 0.7 MMT CO₂ Eq. Methane emissions from *Peatlands Remaining Peatlands* in 2018 were estimated to
- be between 0.002 and 0.007 MMT CO₂ Eq. This indicates a range of 55 percent below to 88 percent above the
- emission estimate of 0.004 MMT CO₂ Eq. Nitrous oxide emissions from *Peatlands Remaining Peatlands* in 2018
- 33 were estimated to be between 0.0002 and 0.0008 MMT CO_2 Eq. at the 95 percent confidence level. This indicates a
- range of 50 percent below to 62 percent above the emission estimate of 0.0005 MMT CO₂ Eq.

Table 6-57: Approach 2 Quantitative Uncertainty Estimates for CO₂, CH₄, and N₂O Emissions from *Peatlands Remaining Peatlands* (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate	Uncertainty Range Relative to Emission Estima					
		(MMT CO₂ Eq.)	(MMT (CO₂ Eq.)	(%)			
			Lower	Upper	Lower	Upper		
			Bound	Bound	Bound	Bound		
Peatlands Remaining Peatlands	CO ₂	0.7	0.6	0.8	-15%	15%		
Peatlands Remaining Peatlands	CH_4	+	+	+	-55%	88%		
Peatlands Remaining Peatlands	N ₂ O	+	+	+	-50%	62%		

+ Does not exceed 0.05 MMT CO₂ Eq.

21

22

23

24

25

26

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

1 QA/QC and Verification

A QA/QC analysis was performed to review input data and calculations, and no issues were identified. In addition,
 the emission trends were analyzed to ensure they reflected activity data trends.

4 **Recalculations Discussion**

5 No recalculations were performed for the 1990 through 2017 portion of the time series.

6 Planned Improvements

- 7 In order to further improve estimates of CO₂, N₂O, and CH₄ emissions from *Peatlands Remaining Peatlands*, future
- 8 efforts will investigate if improved data sources exist for determining the quantity of peat harvested per hectare
- 9 and the total area undergoing peat extraction.
- 10 Efforts will also be made to find a new source for Alaska peat production. The current source has not been reliably
- 11 updated since 2012 and future publication of these data may discontinue.

12 Coastal Wetlands Remaining Coastal Wetlands

- 13 This Inventory recognizes Wetlands as a "land-use that includes land covered or saturated for all or part of the
- 14 year, in addition to areas of lakes, reservoirs, and rivers." Consistent with ecological definitions of wetlands,⁶² the
- 15 United States has historically included under the category of Wetlands those coastal shallow water areas of
- 16 estuaries and bays that lie within the extent of the Land Representation.
- 17 Additional guidance on quantifying greenhouse gas emissions and removals on Coastal Wetlands is provided in the
- 18 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands
- 19 Supplement), which recognizes the particular importance of vascular plants in sequestering CO₂ from the
- 20 atmosphere within biomass, dead organic material (DOM; including litter and dead wood stocks) and building soil
- 21 carbon stocks. Thus, the Wetlands Supplement provides specific guidance on quantifying emissions on organic and
- 22 mineral soils that are covered or saturated for part of the year by tidal fresh, brackish or saline water and are
- vegetated by vascular plants and may extend seaward to the maximum depth of vascular plant vegetation. The
- 24 United States calculates emissions and removals based upon stock change and presently does not calculate lateral
- 25 flux of carbon to or from any land use. Lateral transfer of organic carbon to coastal wetlands and to marine
- 26 sediments within U.S. waters is the subject of ongoing scientific investigation.
- 27 The United States recognizes both Vegetated Wetlands and Unvegetated Open Water as Coastal Wetlands. Per
- 28 guidance provided by the Wetlands Supplement, sequestration of carbon into biomass, DOM and soil carbon pools
- 29 is recognized only in Vegetated Coastal Wetlands and does not occur in Unvegetated Open Water Coastal
- 30 Wetlands. The United States takes the additional step of recognizing that stock losses occur when Vegetated
- 31 Coastal Wetlands are converted to Unvegetated Open Water Coastal Wetlands.
- 32 This Inventory includes all privately-owned and publicly-owned coastal wetlands (i.e., mangroves and tidal marsh)
- along the oceanic shores on the conterminous U.S., but does not include *Coastal Wetlands Remaining Coastal*
- 34 *Wetlands* in Alaska or Hawaii. Seagrasses are not currently included within the Inventory due to insufficient data
- 35 on distribution, change through time and carbon (C) stocks or C stock changes as a result of anthropogenic
- 36 influence.
- Under the *Coastal Wetlands Remaining Coastal Wetlands* category, the following emissions and removals are
 quantified in this chapter:

⁶² See <https://water.usgs.gov/nwsum/WSP2425/definitions.html>.

- Carbon stock changes and CH₄ emissions on Vegetated Coastal Wetlands Remaining Vegetated Coastal Wetlands,
 - 2) Carbon changes on Vegetated Coastal Wetlands Converted to Unvegetated Open Water Coastal Wetlands,
 - 3) Carbon stock changes on Unvegetated Open Water Coastal Wetlands Converted to Vegetated Coastal Wetlands, and
 - 4) Nitrous Oxide Emissions from Aquaculture in Coastal Wetlands.

3

4

5

6

7 Vegetated coastal wetlands hold C in all five C pools (i.e., aboveground, belowground, dead organic matter [DOM; 8 dead wood and litter], and soil) though typically soil C and, to a lesser extent aboveground and belowground 9 biomass, are the dominant pools, depending on wetland type (i.e., forested vs. marsh). Vegetated Coastal 10 Wetlands are net accumulators of C as soils accumulate C under anaerobic soil conditions and in plant biomass. 11 Emissions from soil C and biomass stocks occur when Vegetated Coastal Wetlands are converted to Unvegetated 12 Open Water Coastal Wetlands (i.e., when managed Vegetated Coastal Wetlands are lost due to subsidence), but 13 are still recognized as Coastal Wetlands in this Inventory. These C stock losses resulting from conversion to 14 Unvegetated Open Water Coastal Wetlands can cause the release of many years of accumulated soil C, as well as 15 the standing stock of biomass C. Conversion of Unvegetated Open Water Coastal Wetlands to Vegetated Coastal 16 Wetlands initiates the building of C stocks within soils and biomass. In applying the 2013 IPCC Wetlands 17 Supplement methodologies for CH₄ emissions, coastal wetlands in salinity conditions less than half that of sea 18 water are sources of CH₄ as result of slow decomposition of organic matter under lower salinity brackish and 19 freshwater, anaerobic conditions. Conversion of Vegetated Coastal Wetlands to or from Unvegetated Open Water 20 Coastal Wetlands do not result in a change in salinity condition and are assumed to have no impact on CH₄ 21 emissions. The Wetlands Supplement provides methodologies to estimate N₂O emissions on coastal wetlands that 22 occur due to aquaculture. While N₂O emissions can also occur due to anthropogenic N loading from the watershed 23 and atmospheric deposition, these emissions are not reported here to avoid double-counting of indirect N₂O 24 emissions with the Agricultural Soils Management, Forest Land and Settlements categories. The N₂O emissions 25 from aquaculture result from the N derived from consumption of the applied food stock that is then excreted as N 26 load available for conversion to N₂O.

- 27 The Wetlands Supplement provides procedures for estimating C stock changes and CH4 emissions from mangroves,
- tidal marshes and seagrasses. Depending upon their height and area, stock changes from managed mangroves may be reported under the Forest Land category or under Coastal Wetlands. If mangrove stature is 5 m or greater or if
- be reported under the Forest Land category or under Coastal Wetlands. If mangrove stature is 5 m or greater or if
 there is evidence that trees can obtain that height, mangroves are reported under the Forest Land category.
- 31 Mangrove forests that are less than 5 m are reported under Coastal Wetlands. All other non-drained, intact coastal
- 32 marshes are intended to be reported under Coastal Wetlands.
- 33 Because of human use and level of regulatory oversight, all coastal wetlands within the conterminous United 34 States are included within the managed land area described in Section 6.1, and as such all estimates of C stock 35 changes, emissions of CH₄, and emissions of N₂O from aquaculture are included in this Inventory. At the present 36 stage of inventory development, Coastal Wetlands are not explicitly shown in the Land Representation analysis while work continues to harmonize data from NOAA's Coastal Change Analysis Program⁶³ with National Resources 37 38 Inventory (NRI) data used to compile the Land Representation. However, a check was undertaken to confirm that 39 Coastal Wetlands recognized by C-CAP represented a subset of Wetlands recognized by the NRI for marine coastal 40 states.

Emissions and Removals from Vegetated Coastal Wetlands Remaining Vegetated Coastal Wetlands

The conterminous United States hosts 2.9 million hectares of intertidal *Vegetated Coastal Wetlands Remaining Vegetated Coastal Wetlands* comprised of tidally influenced palustrine emergent marsh (603,445 ha), palustrine scrub shrub (142,034 ha) and estuarine emergent marsh (1,837,618 ha), estuarine scrub shrub (97,383 ha) and

⁶³ See https://coast.noaa.gov/digitalcoast/tools/lca.html; accessed October 2019.

- 1 estuarine forest (192,151 ha). Mangroves fall under both estuarine forest and estuarine scrub shrub categories
- 2 depending upon height. Dwarf mangroves, found in Texas, do not attain the height status to be recognized as
- 3 Forest Land, and are therefore always classified within Vegetated Coastal Wetlands. *Vegetated Coastal Wetlands*
- 4 Remaining Vegetated Coastal Wetlands are found in cold temperate (52,403 ha), warm temperate (901,671 ha),
- 5 subtropical (1,862,402 ha) and Mediterranean (56,155 ha) climate zones.
- 6 Soils are the largest C pool in Vegetated Coastal Wetlands Remaining Vegetated Coastal Wetlands, reflecting long-
- 7 term removal of atmospheric CO₂ by vegetation and transfer into the soil pool in the form of decaying organic
- 8 matter. Soil C emissions are not assumed to occur in coastal wetlands that remain vegetated. This Inventory
- 9 includes changes in aboveground biomass C stocks along with soils. Currently, insufficient data exist on C stock
- 10 changes in belowground biomass. Methane emissions from decomposition of organic matter in anaerobic
- 11 conditions are significant at salinity less than half that of sea water. Mineral and organic soils are not differentiated
- 12 in terms of C stock changes or CH₄ emissions.
- 13 Table 6-58 through Table 6-60 below summarize nationally aggregated aboveground biomass and soil C stock
- 14 changes and CH₄ emissions on Vegetated Coastal Wetlands. Intact Vegetated Coastal Wetlands Remaining
- 15 Vegetated Coastal Wetlands hold a relatively small aboveground biomass C stock (9 MMT C); however, wetlands
- 16 maintain a large C stock within the top 1 meter of soil (estimated to be 870 MMT C) to which C accumulated at a
- 17 rate of 9.9 MMT CO₂ Eq. in 2018. Methane emissions of 3.6 of MMT CO₂ Eq. in 2018 offset C removals resulting in
- an annual net C removal rate of 6.3 MMT CO₂ Eq in 2018. Dead organic matter stock changes are not calculated in
- 19 *Vegetated Coastal Wetlands Remaining Vegetated Coastal Wetlands* since this stock is considered to be in steady
- 20 state (IPCC 2014). Due to federal regulatory protection, loss of Vegetated Coastal Wetlands slowed considerably in
- 21 the 1970s and the current rates of C stock change and CH₄ emissions are relatively constant over time. Losses of
- 22 Vegetated Coastal Wetlands to Unvegetated Open Water Coastal Wetlands (described later in this chapter) and to
- other land uses do occur, which, because of the depth to which soil C stocks are impacted, have a significant
- 24 impact on the net stock changes in Coastal Wetlands.

Table 6-58: CO₂ Flux from C Stock Changes in *Vegetated Coastal Wetlands Remaining Vegetated Coastal Wetlands* (MMT CO₂ Eq.)

Year	1990	2005	2014	2015	2016	2017	2018
Soil Flux	(9.9)	(10.0)	(9.9)	(9.9)	(9.9)	(9.9)	(9.9)
Aboveground Biomass Flux	(0.02)	0.04	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Total C Stock Change	(9.9)	(9.9)	(9.9)	(9.9)	(9.9)	(9.9)	(9.9)

Note: Parentheses indicate net sequestration. Totals may not sum due to independent rounding.

Table 6-59: CO₂ Flux from C Stock Changes in *Vegetated Coastal Wetlands Remaining Vegetated Coastal Wetlands* (MMT C)

Year	1990	2005	2014	2015	2016	2017	2018
Soil Flux	(2.7)	(2.7)	(2.7)	(2.7)	(2.7)	(2.7)	(2.7)
Aboveground Biomass Flux	(0.01)	0.01	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Total C Stock Change	(2.7)	(2.7)	(2.7)	(2.7)	(2.7)	(2.7)	(2.7)

Note: Parentheses indicate net sequestration. Totals may not sum due to independent rounding.

Table 6-60: CH₄ Emissions from *Vegetated Coastal Wetlands Remaining Vegetated Coastal Wetlands* (MMT CO₂ Eq. and kt CH₄)

Year	1990	2005	2014	2015	2016	2017	2018
Methane Emissions (MMT CO ₂ Eq.)	3.4	3.5	3.6	3.6	3.6	3.6	3.6
Methane Emissions (kt CH ₄)	137	140	143	143	144	144	144

31 Methodology

32 The following section includes a description of the methodology used to estimate changes in aboveground biomass

33 C stocks, soil C stocks and emissions of CH₄ for Vegetated Coastal Wetlands Remaining Vegetated Coastal

- 1 Wetlands. Dead organic matter is not calculated for Vegetated Coastal Wetlands Remaining Vegetated Coastal
- 2 *Wetlands* since it is assumed to be in steady state (IPCC 2013).

3 Soil Carbon Stock Changes

- 4 Soil C stock changes are estimated for *Vegetated Coastal Wetlands Remaining Vegetated Coastal Wetlands* for
- 5 both mineral and organic soils on wetlands below the elevation of high tides (taken to be mean high water spring
- 6 tide elevation) and as far seawards as the extent of intertidal vascular plants according to the national LiDAR
- 7 dataset, the national network of tide gauges and land use histories recorded in the 1996, 2001, 2005, and 2010
- 8 NOAA C-CAP surveys.⁶⁴ Federal and non-federal lands are represented. Trends in land cover change are
- 9 extrapolated to 1990 and 2017 from these datasets. Based upon NOAA C-CAP, coastal wetlands are subdivided
- 10 into freshwater (palustrine) and saline (estuarine) classes and further subdivided into emergent marsh, scrub shrub
- and forest classes.⁶⁵ Soil C stock changes, stratified by climate zones and wetland classes, are derived from a
 synthesis of peer-reviewed literature (Lynch 1989; Orson et al. 1990; Kearny & Stevenson 1991; Roman et al. 1997;
- Craft et al. 1998; Orson et al. 1998; Merrill 1999; Hussein et al. 2004; Church et al. 2006; Köster et al. 2007;
- 14 Callaway et al. 2012 a & b; Bianchi et al. 2013; Crooks et al. 2014; Weston et al. 2014; Villa & Mitsch 2015; Marchio
- et al. 2016; Noe et al. 2016). To estimate soil C stock changes, no differentiation is made between organic and
- 16 mineral soils.
- 17 Tier 2 level estimates of soil C removal associated with annual soil C accumulation from managed Vegetated
- 18 Coastal Wetlands Remaining Vegetated Coastal Wetlands were developed with country-specific soil C removal
- 19 factors multiplied by activity data of land area for *Vegetated Coastal Wetlands Remaining Vegetated Coastal*
- 20 Wetlands. The methodology follows Eq. 4.7, Chapter 4 of the Wetlands Supplement, and is applied to the area of
- 21 Vegetated Coastal Wetlands Remaining Vegetated Coastal Wetlands on an annual basis. A single soil emission
- factor was used based on Holmquist et al. (2018). The authors found no statistical support to disaggregate soil C
- 23 removal factors by climate region, vegetation type, or salinity range (estuarine or palustrine).

24 Aboveground Biomass Carbon Stock Changes

- 25 Aboveground biomass C Stocks for Palustrine and Estuarine marshes are estimated for Vegetated Coastal
- 26 Wetlands Remaining Vegetated Coastal Wetlands. Biomass is not sensitive to soil organic content but is
- 27 differentiated based on climate zone. Data are derived from a national assessment combining field plot data and
- aboveground biomass mapping by remote sensing (Byrd et al., 2017; Byrd, et al., 2018). Trends in land cover
- change are derived from the NOAA C-CAP dataset and extrapolated to cover the entire 1990 to 2018 time series.
- 30 Aboveground biomass stock changes per year for wetlands remaining wetlands were determined by calculating
- 31 the difference in area between that year and the previous year to calculate gain/loss of area for each climate type,
- 32 which was multiplied by the mean biomass for that climate type. Currently, a nationwide dataset for belowground
- biomass has not been assembled.

34 Soil Methane Emissions

- 35 Tier 1 estimates of CH₄ emissions for *Vegetated Coastal Wetlands Remaining Vegetated Coastal Wetlands* are
- derived from the same wetland map used in the analysis of wetland soil C fluxes, produced from C-CAP, LiDAR and
- tidal data, in combination with default CH₄ emission factors provided in Table 4.14 of the *Wetlands Supplement*.
- 38 The methodology follows Eq. 4.9, Chapter 4 of the *Wetlands Supplement*, and is applied to the area of *Vegetated*

39 *Coastal Wetlands Remaining Vegetated Coastal Wetlands* on an annual basis.

40 Uncertainty and Time-Series Consistency

41 Underlying uncertainties in estimates of soil and aboveground biomass C stock changes and CH₄ include

⁶⁴ See https://coast.noaa.gov/digitalcoast/tools/lca.html; accessed October 2019.

⁶⁵ See https://coast.noaa.gov/digitalcoast/tools/lca.html; accessed October 2019.

- 1 uncertainties associated with Tier 2 literature values of soil C stocks, aboveground biomass C stocks and CH₄ flux,
- 2 assumptions that underlie the methodological approaches applied and uncertainties linked to interpretation of
- 3 remote sensing data. Uncertainty specific to Vegetated Coastal Wetlands Remaining Vegetated Coastal Wetlands
- 4 include differentiation of palustrine and estuarine community classes, which determines the soil C stock and CH₄
- 5 flux applied. Soil C stocks and CH₄ fluxes applied are determined from vegetation community classes across the 6 coastal zone and identified by NOAA C-CAP. Community classes are further subcategorized by climate zones and
- coastal zone and identified by NOAA C-CAP. Community classes are further subcategorized by climate zones and
 growth form (forest, shrub-scrub, marsh). Aboveground biomass classes were subcategorized by climate zones.
- 8 Uncertainties for soil and aboveground biomass C stock data for all subcategories are not available and thus
- 9 assumptions were applied using expert judgement about the most appropriate assignment of a C stock to a
- 10 disaggregation of a community class. Because mean soil and aboveground biomass C stocks for each available
- 11 community class are in a fairly narrow range, the same overall uncertainty was assigned to each, respectively (i.e.,
- 12 applying approach for asymmetrical errors, where the largest uncertainty for any one soil C stock referenced using
- 13 published literature values for a community class; uncertainty approaches provide that if multiple values are
- 14 available for a single parameter, the highest uncertainty value should be applied to the propagation of errors; IPCC
- 15 2000). Uncertainties for CH₄ flux are the Tier 1 default values reported in the *Wetlands Supplement*. Overall
- 16 uncertainty of the NOAA C-CAP remote sensing product is 15 percent. This is in the range of remote sensing
- 17 methods (±10-15 percent; IPCC 2003). However, there is significant uncertainty in salinity ranges for tidal and non-
- 18 tidal estuarine wetlands and activity data used to apply CH₄ flux emission factors (delineation of an 18 ppt
- 19 boundary) will need significant improvement to reduce uncertainties.
- 20 Table 6-61: Approach 1 Quantitative Uncertainty Estimates for C Stock Changes and CH₄
- 21 Emissions occurring within Vegetated Coastal Wetlands Remaining Vegetated Coastal
- 22 Wetlands (MMT CO₂ Eq. and Percent)

Source		2018 Estimate	Uncerta	Estimate			
Source	Gas	(MMT CO ₂ Eq.)	(MMT	CO₂ Eq.)	(%)		
			Lower	Upper	Lower	Upper	
			Bound	Bound	Bound	Bound	
Soil C Stock Change	CO ₂	(9.9)	(11.7)	(8.1)	-29.5%	29.5%	
Aboveground Biomass C Stock Change	CO ₂	(0.02)	(0.03)	(0.02)	-16.5%	16.5%	
CH ₄ emissions	CH_4	3.6	2.5	4.7	-29.8%	29.8%	
Total Flux		(6.3)	(8.8)	(3.9)	-38.5%	38.5%	

Note: Parentheses indicate net sequestration. Totals may not sum due to independent rounding.

23 QA/QC and Verification

24 NOAA provided National LiDAR Dataset, tide data, and C-CAP land cover and land cover change mapping, all of

25 which are subject to agency internal QA/QC assessment. Acceptance of final datasets into archive and

- 26 dissemination are contingent upon the product compilation being compliant with mandatory QA/QC requirements
- 27 (McCombs et al. 2016). QA/QC and verification of soil C stock datasets have been provided by the Smithsonian
- 28 Environmental Research Center and Coastal Wetland Inventory team leads who reviewed summary tables against
- 29 reviewed sources. Aboveground biomass C stocks are derived from peer-review literature and reviewed by the U.S.
- 30 Geological Survey prior to publishing, by the peer-review process during publishing, and by the Coastal Wetland
- 31 Inventory team leads before inclusion in the inventory. A team of two evaluated and verified there were no
- 32 computational errors within the calculation worksheets. Soil and aboveground biomass C stock change data are
- based upon peer-reviewed literature and CH₄ emission factors derived from the IPCC Wetlands Supplement.

34 **Recalculations**

There were no recalculations for the 1990 through 2017 portion of the time series.

1 Planned Improvements

- 2 Administered by the Smithsonian Environmental Research Center, the Coastal Wetland Carbon Research
- 3 Coordination Network has established a U.S. country-specific database of soil C stock and aboveground biomass
- 4 for coastal wetlands.⁶⁶ This dataset will be updated periodically. Refined error analysis combining land cover
- 5 change and C stock estimates will be provided as new data are incorporated. Through this work, a model is in
- 6 development to represent changes in soil C stocks for estuarine emergent wetlands. The C-CAP dataset for 2015 is
- 7 currently under development with a planned release in 2020. Additional data products for years 2003, 2008 and
- 8 2013 are also planned for release. Once complete, land use change for 1990 through 2018 will be recalculated and
- 9 extended to 2019 with this updated dataset. Work is currently underway to examine the feasibility of
- 10 incorporating seagrass soil and biomass C stocks into the coastal wetland inventory.

Emissions from Vegetated Coastal Wetlands Converted to Unvegetated Open Water Coastal Wetlands

Conversion of intact Vegetated Coastal Wetlands to Unvegetated Open Water Coastal Wetlands is a source of 13 14 emissions from soil, biomass, and DOM C stocks. It is estimated that 4,827 ha of Vegetated Coastal Wetlands were 15 converted to Unvegetated Open Water Coastal Wetlands in 2018. The Mississippi Delta represents more than 40 16 percent of the total coastal wetland of the United States, and over 90 percent of the conversion of Vegetated 17 Coastal Wetlands to Unvegetated Open Water Coastal Wetlands. The drivers of coastal wetlands loss include 18 legacy human impacts on sediment supply through rerouting river flow, direct impacts of channel cutting on 19 hydrology, salinity and sediment delivery, and accelerated subsidence from aquafer extraction. Each of these 20 drivers directly contributes to wetland erosion and subsidence, while also reducing the resilience of the wetland to 21 build with sea-level rise or recover from hurricane disturbance. Over recent decades, the rate of Mississippi Delta 22 wetland loss has slowed, though episodic mobilization of sediment occurs during hurricane events (Couvillion et al. 23 2011; Couvillion et al. 2016). The most recent land cover analysis between the 2005 and 2010 C-CAP surveys 24 coincides with two such events, hurricanes Katrina and Rita (both making landfall in the late summer of 2005), that 25 occurred between these C-CAP survey dates. The dataset, consisting of a time series of four time intervals, each 26 five years in length, creates a challenge in utilizing it to represent the annual rate of wetland loss and for 27 extrapolation between 1990 and 2018. Future updates to the C-CAP surveys will include a new survey for 2008 in 28 addition to other years, which will improve the time series of coastal wetland area change.

- 29 Shallow nearshore open water within the U.S. Land Representation is recognized as falling under the Wetlands
- category within the Inventory. While high resolution mapping of coastal wetlands provides data to support Tier 2
 approaches for tracking land cover change, the depth to which sediment is lost is less clear. This Inventory adopts
- approaches for tracking land cover change, the depth to which sediment is lost is less clear. This Inventory adopts
 the Tier 1 methodological guidance from the *Wetlands Supplement* for estimating emissions following the
- 32 the Tier 1 methodological guidance from the *Wetlands Supplement* for estimating emissions following the 33 methodology for excavation (see Methodology section, below) when Vegetated Coastal Wetlands are converted to
- 34 Unvegetated Open Water Coastal Wetlands, assuming a 1 m depth of disturbed soil. This 1 m depth of disturbance
- is consistent with estimates of wetland C loss provided in the literature (Crooks et al. 2009; Couvillion et al. 2011;
- Delaune and White 2012; IPCC 2013). A Tier 1 assumption is also adopted that all mobilized C is immediately
- 37 returned to the atmosphere (as assumed for terrestrial land use categories), rather than redeposited in long-term
- 38 C storage. The science is currently under evaluation to adopt more refined emissions factors for mobilized coastal
- 39 wetland C based upon the geomorphic setting of the depositional environment.

⁶⁶ See https://serc.si.edu/coastalcarbon; accessed October 2019.

1 Table 6-62: CO₂ Flux from C Stock Changes in *Vegetated Coastal Wetlands Converted to*

2 Unvegetated Open Water Coastal Wetlands (MMT CO₂ Eq.)

Year	1990	20	05	2014	2015	2016	2017	2018
Soil Flux	4.8		3.1	4.8	4.8	4.8	4.8	4.8
Aboveground Biomass Flux	0.04	0	03	0.04	0.04	0.04	0.04	0.04
Dead Organic Matter Flux	0.001	0.00	04	0.001	0.001	0.001	0.001	0.001
Total C Stock Change	4.8		3.1	4.8	4.8	4.8	4.8	4.8

Note: Totals may not sum due to independent rounding.

Table 6-63: CO₂ Flux from C Stock Changes in *Vegetated Coastal Wetlands Converted to Unvegetated Open Water Coastal Wetlands* (MMT C)

Year	1990	2005	2014	2015	2016	2017	2018
Soil Flux	1.3	0.8	1.3	1.3	1.3	1.3	1.3
Aboveground Biomass Flux	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Dead Organic Matter Flux	+	+	+	+	+	+	+
Total C Stock Change	1.3	0.9	1.3	1.3	1.3	1.3	1.3

+ Absolute values does not exceed 0.0005 MMT C.

Note: Totals may not sum due to independent rounding.

5 Methodology

6 The following section includes a brief description of the methodology used to estimate changes in soil,

7 aboveground biomass and DOM C stocks for Vegetated Coastal Wetlands Converted to Unvegetated Open Water

8 Coastal Wetlands.

9 Soil Carbon Stock Changes

10 Soil C stock changes are estimated for Vegetated Coastal Wetlands Converted to Unvegetated Open Water Coastal

11 *Wetlands* on lands below the elevation of high tides (taken to be mean high water spring tide elevation) within the

12 U.S. Land Representation according to the national LiDAR dataset, the national network of tide gauges and land

use histories recorded in the 1996, 2001, 2005 and 2010 NOAA C-CAP surveys. Publicly-owned and privately-

owned lands are represented. Trends in land cover change are extrapolated to 1990 and 2018 from these datasets.
 The C-CAP database provides peer reviewed country-specific mapping to support IPCC Approach 3 quantification

The C-CAP database provides peer reviewed country-specific mapping to support IPCC Approach 3 quantification of coastal wetland distribution, including conversion to and from open water. Country-specific soil C stocks were

17 updated in 2018 based upon analysis of an assembled dataset of 1,959 cores from across the conterminous United

18 States (Holmquist et al. 2018). This analysis demonstrated that it was not justified to stratify C stocks based upon

19 mineral or organic soil classification, climate zone, nor wetland classes. Following the Tier 1 approach for

20 estimating CO₂ emissions with extraction provided within the *Wetlands Supplement*, soil C loss with conversion of

21 Vegetated Coastal Wetlands to Unvegetated Open Water Coastal Wetlands is assumed to affect soil C stock to

22 one-meter depth (Holmquist et al. 2018) with all emissions occurring in the year of wetland conversion, and

23 multiplied by activity data of land area for managed coastal wetlands. The methodology follows Eq. 4.6 in the

24 Wetlands Supplement.

25 Aboveground Biomass Carbon Stock Changes

26 Aboveground biomass C stocks for palustrine and estuarine marshes are estimated for *Vegetated Coastal*

- 27 Wetlands Converted to Unvegetated Open Water Coastal Wetlands. Biomass C stock is not sensitive to soil organic
- 28 content but is differentiated based on climate zone. Aboveground biomass C stock data are derived from a
- 29 national assessment combining field plot data and aboveground biomass mapping by remote sensing (Byrd et al.,
- 30 2017; Byrd, et al., 2018). Trends in land cover change are derived from the NOAA C-CAP dataset and extrapolated
- to cover the entire 1990 to 2018 time series. Conversion to open water results in emissions of all aboveground

- 1 biomass C stocks during the year of conversion; therefore, emissions are calculated by multiplying the C-CAP
- 2 derived area lost that year in each climate zone by its mean aboveground biomass. Currently, a nationwide dataset
- 3 for belowground biomass has not been assembled.

4 Dead Organic Matter

- 5 Dead organic matter (DOM) carbon stocks, which include litter and dead wood stocks for subtropical estuarine
- 6 forested wetlands as an emission for Vegetated Coastal Wetlands Converted to Unvegetated Open Water Coastal
- 7 *Wetlands* across all years. Data are not currently available for either palustrine or estuarine scrub/shrub wetlands
- 8 for any climate zone. Data for estuarine forested wetlands in other climate zones are not included since there is no
- 9 estimated loss of these forests to unvegetated open water coastal wetlands across any year based on C-CAP data.
- 10 Tier 1 estimates of mangrove DOM were used (IPCC 2013). Trends in land cover change are derived from the NOAA
- 11 C-CAP dataset and extrapolated to cover the entire 1990 to 2018 time series. Conversion to open water results in
- emissions of all DOM C stocks during the year of conversion; therefore, emissions are calculated by multiplying the
- 13 C-CAP derived area lost that year in by its Tier 1 DOM C stock.

14 Soil Methane Emissions

15 A Tier 1 assumption has been applied that salinity conditions are unchanged and hence CH₄ emissions are assumed

to be zero with conversion of Vegetated Coastal Wetlands to Unvegetated Open Water Coastal Wetlands.

17 Uncertainty and Time-Series Consistency

18 Underlying uncertainties in estimates of soil and aboveground biomass C stock changes are associated with 19 country-specific (Tier 2) literature values of these stocks, and Tier 1 estimates are associated with subtropical 20 estuarine forested wetland DOM stocks. Assumptions that underlie the methodological approaches applied and 21 uncertainties linked to interpretation of remote sensing data are also included in this uncertainty assessment. 22 Uncertainty specific to coastal wetlands include differentiation of palustrine and estuarine community classes, 23 which determines the soil C stock applied. Soil C stocks applied are determined from vegetation community classes 24 across the coastal zone and identified by NOAA C-CAP. Community classes are further subcategorized by climate 25 zones and growth form (forest, shrub-scrub, marsh). Soil and aboveground biomass C stock data for all 26 subcategories are not available and thus assumptions were applied using expert judgement about the most 27 appropriate assignment of a soil and aboveground biomass C stock to a disaggregation of a community class. 28 Because mean soil and aboveground biomass C stocks for each available community class are in a fairly narrow 29 range, the same overall uncertainty was assigned to each (i.e., applying approach for asymmetrical errors, where 30 the largest uncertainty for any one soil C stock referenced using published literature values for a community class; 31 if multiple values are available for a single parameter, the highest uncertainty value should be applied to the 32 propagation of errors; IPCC 2000). For aboveground biomass C stocks, the mean standard error was very low and 33 largely influenced by error in estimated map area (Byrd et al. 2018). Uncertainty for subtropical estuarine forested 34 wetland DOM stocks were derived from those listed for the Tier 1 estimates (IPCC 2013). Overall uncertainty of the 35 NOAA C-CAP remote sensing product is 15 percent. This is in the range of remote sensing methods (±10-15 36 percent; IPCC 2003).

37 Table 6-64: Approach 1 Quantitative Uncertainty Estimates for CO₂ Flux Occurring within

38 Vegetated Coastal Wetlands Converted to Unvegetated Open Water Coastal Wetlands (MMT

39 **CO₂ Eq. and Percent**)

Source	2018 Flux Estimate	Uncertainty Range Relative to Flux Estimate					
Source	(MMT CO ₂ Eq.)	(MMT CO ₂ Eq.)		(%)			
		Lower	Upper	Lower	Upper		
		Bound	Bound	Bound	Bound		
Soil C Stock	4.8	4.1	5.5	-41.7%	+41.7%		
Aboveground Biomass C Stock	0.04	0.03	0.05	-16.5%	+16.5%		
Dead Organic Matter C Stock	0.001	0.001	0.002	-25.8%	+25.8%		
Total Flux	4.8	3.0	6.7	-32.1%	+32.1%		

- 1 Note: Totals may not sum due to independent rounding.
- 2 The C-CAP dataset, consisting of a time series of four time intervals, each five years in length, and two major
- 3 hurricanes striking the Mississippi Delta in the most recent time interval (2006 to 2010), creates a challenge in
- 4 utilizing it to represent the annual rate of wetland loss and for extrapolation to 1990 and 2018. Uncertainty in the
- 5 defining the long-term trend will be improved with release of the 2015 survey, expected in 2020.
- 6 More detailed research is in development that provides a longer term assessment and more highly refined rates of
- 7 wetlands loss across the Mississippi Delta (e.g., Couvillion et al. 2016), which could provide a more refined regional
- 8 Approach 2-3 for assessing wetland loss and support the national-scale assessment provided by C-CAP.
- 9 Based upon the IPCC Tier 1 methodological guidance in the *Wetlands Supplement* for estimating emissions with
- 10 excavation in coastal wetlands, it has been assumed that a 1-meter column of soil has been remobilized with
- erosion and the C released immediately to the atmosphere as CO₂. This depth of disturbance is a simplifying
- assumption that is commonly applied in the scientific literature to gain a first-order estimate of scale of emissions
- 13 (e.g., Delaune and White 2012). It is also a simplifying assumption that all that C is released back to the
- atmosphere immediately and future development of the country-specific estimate may refine the emissions both
- in terms of scale and rate. Given that erosion has been ongoing for multiple decades the assumption that the C
- 16 eroded is released to the atmosphere the year of erosion is a reasonable simplification, but one that could be
- 17 further refined.

18 **QA/QC and Verification**

19 Data provided by NOAA (i.e., National LiDAR Dataset, NOS Tide Data, and C-CAP land cover and land cover change

- 20 mapping) undergo internal agency QA/QC procedures. Acceptance of final datasets into archive and dissemination
- are contingent upon assurance that the data product is compliant with mandatory NOAA QA/QC requirements
- 22 (McCombs et al. 2016). QA/QC and Verification of the soil C stock dataset have been provided by the Smithsonian
- 23 Environmental Research Center and by the Coastal Wetlands project team leads who reviewed the estimates
- against primary scientific literature. Aboveground biomass C stocks are derived from peer-review literature and
- reviewed by the U.S. Geological Survey prior to publishing, by the peer-review process during publishing, and by
- the Coastal Wetland Inventory team leads before inclusion in the Inventory. Dead organic matter data are derived
- from peer-reviewed literature and undergo review as per IPCC methodology. Land cover estimates were assessed to ensure that the total land area did not change over the time series in which the inventory was developed, and
- to ensure that the total land area did not change over the time series in which the inventory was developed, and were verified by a second QA team. A team of two evaluated and verified there were no computational errors
- 30 within the calculation worksheets. Two biogeochemists at the USGS, in addition to members of the NASA Carbon
- 31 Monitoring System Science Team, corroborated the assumption that where salinities are unchanged CH₄ emissions
- 32 are constant with conversion of Unvegetated Open Water Coastal Wetlands to Vegetated Coastal Wetlands.

33 **Recalculations**

34 There were no recalculations for the 1990 through 2017 portion of the time series.

35 Planned Improvements

- 36 A refined uncertainty analysis and efforts to improve times series consistency are planned for the 1990 through
- 37 2019 Inventory (i.e., 2021 submission to the UNFCCC). An approach for calculating the fraction of remobilized
- 38 coastal wetland soil C returned to the atmosphere as CO₂ is currently under review and may be included in future
- 39 reports. Research by USGS is investigating higher resolution mapping approaches to quantify conversion of coastal
- 40 wetlands is also underway. Such approaches may form the basis for a full Approach 3 land representation
- 41 assessment in future years.
- 42 The C-CAP dataset for 2015 is currently under development with a planned release in 2020. Additional data
- 43 products for years 2003, 2008, and 2013 are also planned for release. Once complete, land use change for 1990
- through 2018 will be recalculated and extended to 2019 with this updated dataset. C-CAP data harmonization with
- 45 the National Land Cover Dataset (NLCD) will be incorporated into a future iteration of the inventory.

Stock Changes from Unvegetated Open Water Coastal Wetlands Converted to Vegetated Coastal Wetlands

Open Water within the U.S. land base, as described in the Land Representation, is recognized as Coastal Wetlands
 within the Inventory. The appearance of vegetated tidal wetlands on lands previously recognized as open water
 reflects either the building of new vegetated marsh through sediment accumulation or the transition from other

6 lands uses through an intermediary open water stage as flooding intolerant plants are displaced and then replaced

- 7 by wetland plants. Biomass, DOM and soil C accumulation on Unvegetated Open Water Coastal Wetlands
- 8 *Converted to Vegetated Coastal Wetlands* begins with vegetation establishment.
- 9 Within the United States, conversion of Unvegetated Open Water Coastal Wetlands to Vegetated Coastal
- 10 Wetlands is predominantly due to engineered activities, which include active restoration of wetlands (e.g.,
- 11 wetlands restoration in San Francisco Bay), dam removals or other means to reconnect sediment supply to the
- 12 nearshore (e.g., Atchafalaya Delta, Louisiana, Couvillion et al., 2011). Wetlands restoration projects have been
- 13 ongoing in the United States since the 1970s. Early projects were small, a few hectares in size. By the 1990s,
- 14 restoration projects, each hundreds of hectares in size, were becoming common in major estuaries. In a number of
- 15 coastal areas e.g., San Francisco Bay, Puget Sound, Mississippi Delta and south Florida, restoration activities are in
- 16 planning and implementation phases, each with the goal of recovering tens of thousands of hectares of wetlands.
- 17 During wetland restoration, Unvegetated Open Water Coastal Wetland is a common intermediary phase bridging
- 18 land use transitions from Cropland or Grassland to Vegetated Coastal Wetlands. The period of open water may last
- 19 from five to 20 years depending upon management. The conversion of these other land uses to Unvegetated Open
- 20 Water Coastal Wetland will result in reestablishment of wetland biomass and soil C sequestration and may result
- 21 in cessation of emissions from drained organic soil. Only changes in soil, DOM and aboveground biomass C stocks
- are reported in the Inventory at this time, but improvements are being evaluated to include belowground biomass
- 23 C stock changes.

Table 6-65: CO₂ Flux from C Stock Changes from *Unvegetated Open Water Coastal Wetlands Converted to Vegetated Coastal Wetlands* (MMT CO₂ Eq.)

Year	1990	2005	2014	2015	2016	2017	2018
Soil C Flux	(0.004)	(0.002)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
Aboveground Biomass C Flux	(0.01)	(0.004)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Dead Organic Matter C Flux	(+)	0	(+)	(+)	(+)	(+)	(+)
Total C Stock Change	(0.02)	(0.01)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)

+ Absolute value does not exceed 0.0005 MMT CO $_2$ Eq.

Note: Parentheses indicate net sequestration. Totals may not sum due to independent rounding.

Table 6-66: CO₂ Flux from C Stock Changes from Unvegetated Open Water Coastal Wetlands Converted to Vegetated Coastal Wetlands (MMT C)

Year	1990	2005	2014	2015	2016	2017	2018
Soil C Flux	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Aboveground Biomass C Flux	(0.003)	(0.001)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)
Dead Organic Matter C Flux	(+)	0	(+)	(+)	(+)	(+)	(+)
Total C Stock Change	(0.005)	(0.002)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)

+ Absolute value does not exceed 0.0005 MMT C.

Note: Parentheses indicate net sequestration. Totals may not sum due to independent rounding.

1 Methodology

2 The following section includes a brief description of the methodology used to estimate changes in soil,

aboveground biomass and dead organic matter C stocks, and CH₄ emissions for *Unvegetated Open Water Coastal*

4 Wetlands Converted to Vegetated Coastal Wetlands.

5 Soil Carbon Stock Change

6 Soil C stock changes are estimated for Unvegetated Open Water Coastal Wetlands Converted to Vegetated Coastal 7 Wetlands on lands below the elevation of high tides (taken to be mean high water spring tide elevation) according 8 to the national LiDAR dataset, the national network of tide gauges and land use histories recorded in the 1996, 9 2001, 2005 and 2010 NOAA C-CAP surveys. Privately-owned and publicly-owned lands are represented. Trends in 10 land cover change are extrapolated to 1990 and 2018 from these datasets. C-CAP provides peer reviewed country-11 level mapping of coastal wetland distribution, including conversion to and from open water. Country-specific soil C 12 stock change associated with soil C accretion, stratified by climate zones and wetland classes, are derived from a 13 synthesis of peer-reviewed literature and updated this year based upon refined review of the dataset (Lynch 1989; 14 Orson et al. 1990; Kearny & Stevenson 1991; Roman et al. 1997; Craft et al. 1998; Orson et al. 1998; Merrill 1999; 15 Hussein et al. 2004; Church et al. 2006; Koster et al. 2007; Callaway et al. 2012 a & b; Bianchi et al. 2013; Crooks et 16 al. 2014; Weston et al. 2014; Villa & Mitsch 2015; Marchio et al. 2016; Noe et al. 2016). Soil C stock changes are 17 stratified based upon wetland class (Estuarine, Palustrine) and subclass (Emergent Marsh, Scrub Shrub). For soil C

18 stock change no differentiation is made for soil type (i.e., mineral, organic).

19 Tier 2 level estimates of C stock changes associated with annual soil C accumulation in managed Vegetated Coastal

20 Wetlands were developed using country-specific soil C removal factors multiplied by activity data on Unvegetated

21 Coastal Wetlands converted to Vegetated Coastal Wetlands. The methodology follows Eq. 4.7, Chapter 4 of the

- 22 Wetlands Supplement, and is applied to the area of Unvegetated Coastal Wetlands converted to Vegetated Coastal
- 23 Wetlands on an annual basis. Emission factors were developed from literature references that provided soil C
- removal factors disaggregated by climate region and vegetation type by salinity range (estuarine or palustrine) as
- 25 identified using NOAA C-CAP as described above.

26 Aboveground Biomass Carbon Stock Changes

27 Quantification of regional coastal wetland aboveground biomass C stock changes for palustrine and estuarine

28 marsh vegetation are presented for Unvegetated Open Water Coastal Wetlands Converted to Vegetated Coastal

29 Wetlands. Biomass C stock is not sensitive to soil organic content but differentiated based on climate zone. Data

are derived from a national assessment combining field plot data and aboveground biomass mapping by remote

sensing (Byrd et al., 2017; Byrd, et al., 2018). Trends in land cover change are derived from the NOAA C-CAP

dataset and extrapolated to cover the entire 1990 through 2018 time series. Conversion of open water to

Vegetated Coastal Wetlands results in the establishment of a standing biomass C stock; therefore, stock changes that occur are calculated by multiplying the C-CAP derived area gained that year in each climate zone by its mean

aboveground biomass. Currently, a nationwide dataset for belowground biomass has not been assembled.

36 Dead Organic Matter

37 Dead organic matter (DOM) carbon stocks, which include litter and dead wood stocks, are added for subtropical

38 estuarine forested wetlands for Vegetated Coastal Wetlands Converted to Unvegetated Open Water Coastal

39 *Wetlands* across all years. Tier 1 or 2 data on DOM are not currently available for either palustrine or estuarine

40 scrub/shrub wetlands for any climate zone. Data for estuarine forested wetlands in other climate zones are not

41 included since there is no estimated loss of these forests to unvegetated open water coastal wetlands across any

42 year based on C-CAP data. Tier 1 estimates of mangrove DOM were used (IPCC 2013). Trends in land cover change

43 are derived from the NOAA C-CAP dataset and extrapolated to cover the entire 1990 through 2018 time series.

Dead organic matter removals are calculated by multiplying the C-CAP derived area gained that year by its Tier 1
 DOM C stock.

1 Soil Methane Emissions

A Tier 1 assumption has been applied that salinity conditions are unchanged and hence CH₄ emissions are assumed
 to be zero with conversion of Vegetated Open Water Coastal Wetlands to Vegetated Coastal Wetlands.

4 Uncertainty and Time-Series Consistency

5 Underlying uncertainties in estimates of soil and aboveground biomass C stock changes include uncertainties 6 associated with country-specific (Tier 2) literature values of these C stocks and assumptions that underlie the 7 methodological approaches applied and uncertainties linked to interpretation of remote sensing data. Uncertainty 8 specific to coastal wetlands include differentiation of palustrine and estuarine community classes that determines 9 the soil C stock applied. Soil C stocks applied are determined from vegetation community classes across the coastal 10 zone and identified by NOAA C-CAP. Community classes are further subcategorized by climate zones and growth 11 form (forest, shrub-scrub, marsh). Soil and aboveground biomass C stock data for all subcategories are not 12 available and thus assumptions were applied using expert judgement about the most appropriate assignment of a 13 soil C stock to a disaggregation of a community class. Because mean soil and aboveground biomass C stocks for 14 each available community class are in a fairly narrow range, the same overall uncertainty was applied to each, 15 respectively (i.e., applying approach for asymmetrical errors, where the largest uncertainty for any one soil C stock 16 referenced using published literature values for a community class; uncertainty approaches provide that if multiple 17 values are available for a single parameter, the highest uncertainty value should be applied to the propagation of 18 errors; IPCC 2000). For aboveground biomass C stocks, the mean standard error was very low and largely 19 influenced by error in estimated map area (Byrd et al. 2018). Uncertainty for subtropical estuarine forested 20 wetland DOM stocks were derived from those listed for the Tier 1 estimates (IPCC 2013). Overall uncertainty of the

21 NOAA C-CAP remote sensing product is 15 percent. This is in the range of remote sensing methods (±10 to 15)

22 percent; IPCC 2003).

23 Table 6-67: Approach 1 Quantitative Uncertainty Estimates for C Stock Changes Occurring

within Unvegetated Open Water Coastal Wetlands Converted to Vegetated Coastal Wetlands (MMT CO₂ Eq. and Percent)

Source	2018 Flux Estimate (MMT CO ₂ Eq.)		Uncertainty Range (MMT CO₂ Eq.)		Relative to Flux Estimate (%)		
		Lower	Upper	Lower	Upper		
		Bound	Bound	Bound	Bound		
Soil C Stock Flux	(0.004)	(0.005)	(0.004)	-29.5%	29.5%		
Aboveground Biomass C Stock Flux	(0.01)	(0.01)	(0.01)	-16.5%	16.5%		
Dead Organic Matter C Stock Flux	(+)	(+)	(+)	-25.8%	25.8		
Total Flux	(0.02)	(0.02)	(0.01)	-32.1%	32.1%		

+ Absolute value does not exceed 0.0005 MMT CO₂ Eq.

Note: Parentheses indicate net sequestration. Totals may not sum due to independent rounding.

26 **QA/QC and Verification**

27 NOAA provided data (i.e., National LiDAR Dataset, NOS Tide Data, and C-CAP land cover and land cover change

28 mapping), which undergo internal agency QA/QC assessment procedures. Acceptance of final datasets into the

29 archive for dissemination are contingent upon assurance that the product is compliant with mandatory NOAA

30 QA/QC requirements (McCombs et al. 2016). QA/QC and Verification of soil C stock dataset has been provided by

31 the Smithsonian Environmental Research Center and Coastal Wetlands project team leads who reviewed produced

32 summary tables against primary scientific literature. Aboveground biomass C reference stocks are derived from an

analysis by the Blue Carbon Monitoring project and reviewed by U.S. Geological Survey prior to publishing, the

34 peer-review process during publishing, and the Coastal Wetland Inventory team leads before inclusion in the

35 inventory. Dead organic matter data are derived from peer-reviewed literature and undergo review as per IPCC

36 methodology. Land cover estimates were assessed to ensure that the total land area did not change over the time

37 series in which the inventory was developed, and verified by a second QA team. A team of two evaluated and

- 1 verified there were no computational errors within calculation worksheets. Two biogeochemists at the USGS, also
- 2 members of the NASA Carbon Monitoring System Science Team, corroborated the simplifying assumption that
- 3 where salinities are unchanged CH₄ emissions are constant with conversion of Unvegetated Open Water Coastal

4 Wetlands to Vegetated Coastal Wetlands.

5 Recalculations

6 There were no recalculations for the 1990 through 2017 portion of the time series.

7 Planned Improvements

- 8 Administered by the Smithsonian Environmental Research Center, the Coastal Wetland Carbon Research
- 9 Coordination Network has established a U.S. country-specific database of published data quantifying soil C stock
- 10 and aboveground biomass in coastal wetlands. Reference values for soil and aboveground biomass C stocks will be
- 11 updated as new data emerge. Refined error analysis combining land cover change and soil and aboveground
- 12 biomass C stock estimates will be updated at those times.
- 13 The C-CAP dataset for 2015 is currently under development with a planned release in 2020. Additional data
- products for years 2003, 2008, and 2013 are also planned for release. Once complete, land use change for 1990
- 15 through 2018 will be recalculated and extended to 2019 with this updated dataset. C-CAP data harmonization with
- 16 the NLCD is an ongoing process and will occur in future iterations of the inventory.

17 N₂O Emissions from Aquaculture in Coastal Wetlands

18 Shrimp and fish cultivation in coastal areas increases nitrogen loads resulting in direct emissions of N₂O. Nitrous

19 oxide is generated and emitted as a byproduct of the conversion of ammonia (contained in fish urea) to nitrate

20 through nitrification and nitrate to N_2 gas through denitrification (Hu et al. 2012). Nitrous oxide emissions can be

- 21 readily estimated from data on fish production (IPCC 2013 Wetlands Supplement).
- 22 Aquaculture production in the United States has fluctuated slightly from year to year, with resulting N₂O emissions

23 increasing from 0.1 in 1990 to upwards of 0.2 MMT CO₂ Eq. between 1992 and 2010. Levels have essentially

remained consistent since 2011. Aquaculture production data were updated through 2016; however, data through

25 2018 are not yet available and in this analysis are held constant with 2016 emissions of 0.1 MMT CO₂ Eq.

26 Table 6-68: N₂O Emissions from Aquaculture in Coastal Wetlands (MMT CO₂ Eq. and kt N₂O)

Year	1990	2005	2014	2015	2016	2017	2018
Emissions (MMT CO ₂ Eq.)	0.1	0.2	0.1	0.1	0.1	0.1	0.1
Emissions (kt N ₂ O)	0.4	0.6	0.5	0.5	0.5	0.5	0.5

27 Methodology

28 The methodology to estimate N₂O emissions from Aquaculture in Coastal Wetlands follows guidance in the 2013

- *IPCC Wetlands Supplement* by applying country-specific fisheries production data and the IPCC Tier 1 default
 emission factor.
- 31 Each year NOAA Fisheries document the status of U.S. marine fisheries in the annual report of *Fisheries of the*
- 32 United States (National Marine Fisheries Service, 2018), from which activity data for this analysis is derived.⁶⁷ The
- fisheries report has been produced in various forms for more than 100 years, primarily at the national level, on
- 34 U.S. recreational catch and commercial fisheries landings and values. In addition, data are reported on U.S.
- 35 aquaculture production, the U.S. seafood processing industry, imports and exports of fish-related products, and

⁶⁷ See https://www.fisheries.noaa.gov/resource/document/fisheries-united-states-2017-report; accessed October 2019.

- 1 domestic supply and per capita consumption of fisheries products. Within the aquaculture chapter, mass of
- 2 production for catfish, striped bass, tilapia, trout, crawfish, salmon and shrimp are reported. While some of these
- 3 fisheries are produced on land and some in open water cages, all have data on the quantity of food stock
- 4 produced, which is the activity data that is applied to the IPCC Tier 1 default emissions factor to estimate emissions
- 5 of N₂O from aquaculture. It is not apparent from the data as to the amount of aquaculture occurring above the
- 6 extent of high tides on river floodplains. While some aquaculture likely occurs on coastal lowland floodplains, this
- 7 is likely a minor component of tidal aquaculture production because of the need for a regular source of water for
- 8 pond flushing. The estimation of N₂O emissions from aquaculture is not sensitive to salinity using IPCC approaches
- 9 and as such the location of aquaculture ponds on the landscape does not influence the calculations.
- 10 Other open water shellfisheries for which no food stock is provided, and thus no additional N inputs, are not
- applicable for estimating N₂O emissions (e.g., clams, mussels, and oysters) and have not been included in the
- 12 analysis. The IPCC Tier 1 default emissions factor of 0.00169 kg N₂O-N per kg of fish produced is applied to the
- 13 activity data to calculate total N₂O emissions.

14 Uncertainty and Time-Series Consistency

- 15 Uncertainty estimates are based upon the Tier 1 default 95 percent confidence interval provided within the
- 16 *Wetlands Supplement* for N₂O emissions. Uncertainties in N₂O emissions from aquaculture are also based on
- 17 expert judgement of the NOAA *Fisheries of the United States* fisheries production data (± 100 percent) multiplied
- by the default uncertainty level for N₂O emissions found in Table 4.15, chapter 4 of the *Wetlands Supplement*.
- 19 Given the overestimate of fisheries production from coastal wetland areas due to the inclusion of fish production
- 20 in non-coastal wetland areas, this is a reasonable initial first approximation for an uncertainty range.

21 Table 6-69: Approach 1 Quantitative Uncertainty Estimates for N₂O Emissions for

22 Aquaculture Production in Coastal Wetlands (MMT CO₂ Eq. and Percent)

	2018 Emissions Estimate	Uncertainty Range Relative to Emissions Estimate ^a					
Source	Lowe	(MMT CO₂ Eq.)		(%)			
		Lower	Upper	Lower	Upper		
		Bound	Bound	Bound	Bound		
Combined Uncertainty for N ₂ O Emissions							
for Aquaculture Production in Coastal	0.1	0.00	0.31	-116%	116%		
Wetlands							

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

23 QA/QC and Verification

24 NOAA provided internal QA/QC review of reported fisheries data. The Coastal Wetlands Inventory team consulted

- 25 with the Coordinating Lead Authors of the Coastal Wetlands chapter of the 2013 IPCC Wetlands Supplement to
- assess which fisheries production data to include in estimating emissions from aquaculture. It was concluded that
- 27 N₂O emissions estimates should be applied to any fish production to which food supplement is supplied be they
- 28 pond or open water and that salinity conditions were not a determining factor in production of N₂O emissions.

29 Recalculations

- 30 A NOAA report was released in 2018 that contained updated fisheries data for 2016 (National Marine Fisheries
- Service 2018). This new value was applied for 2016 and also applied in 2017 and 2018 until more recent data are
- released. This resulted in a decrease in N₂O emissions by 0.01 MMT CO₂ Eq. (0.04 kt N₂O) for 2016 and 2017
- 33 compared to the previous Inventory.

6.9 Land Converted to Wetlands (CRF Source Category 4D2)

Emissions and Removals from Land Converted to Vegetated

4 Coastal Wetlands

5 Land Converted to Vegetated Coastal Wetlands occurs as a result of inundation of unprotected low-lying coastal

6 areas with gradual sea-level rise, flooding of previously drained land behind hydrological barriers, and through

7 active restoration and creation of coastal wetlands through removal of hydrological barriers. All other land

8 categories (i.e., Forest Land, Cropland, Grassland, Settlements and Other Lands) are identified as having some area

9 converting to Vegetated Coastal Wetlands. Between 1990 and 2018 the rate of annual transition for *Land*

10 *Converted to Vegetated Coastal Wetlands* ranged from 2,619 ha/year to 5,316 ha/year.⁶⁸ Conversion rates were

11 higher during the period 2010 through 2018 than during the earlier part of the time series.

12 At the present stage of Inventory development, Coastal Wetlands are not explicitly shown in the Land

13 Representation analysis while work continues harmonizing data from NOAA's Coastal Change Analysis Program (C-

14 CAP)⁶⁹ with NRI, FIA and NLDC data used to compile the Land Representation.

15 Following conversion to Vegetated Coastal Wetlands, there are increases in plant biomass and soil C storage.

16 Additionally, at salinities less than half that of seawater, the transition from upland dry soils to wetland soils results

17 in CH₄ emissions. In this Inventory analysis, soil and aboveground biomass C stock changes as well as CH₄ emissions

are quantified. Estimates of emissions and removals are based on emission factor data that have been applied to

assess changes in soil and aboveground biomass C stocks and CH₄ emissions for Land Converted to Vegetated

20 Coastal Wetlands. The United States calculates emissions and removals based upon stock change and presently

does not calculate lateral flux of carbon to or from any land use. Lateral transfer of organic carbon to coastal

22 wetlands and to marine sediments within U..S waters is the subject of ongoing scientific investigation.

Table 6-70: CO₂ Flux from C Stock Changes in Land Converted to Vegetated Coastal Wetlands (MMT CO₂ Eq.)

Year	1990	2005	2014	2015	2016	2017	2018
Soil Flux	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Aboveground Biomass Flux	(0.03)	(0.02)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
Total C Stock Change	(0.04)	(0.03)	(0.04)	(0.04)	(0.04)	(0.04)	(0.04)

Table 6-71: CO₂ Flux from C Stock Changes in Land Converted to Vegetated Coastal Wetlands (MMT C)

Year	1990	2005	2014	2015	2016	2017	2018
Soil Flux	(0.004)	(0.002)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
Aboveground Biomass Flux	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Total C Stock Change	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)

Table 6-72: CH₄ Emissions from *Land Converted to Vegetated Coastal Wetlands* (MMT CO₂ Eq. and kt CH₄)

⁶⁹ See https://coast.noaa.gov/digitalcoast/tools/lca.html; accessed October 2019.

⁶⁸ Data from C-CAP; see https://coast.noaa.gov/digitalcoast/tools/lca.html; accessed October 2019.

Year	1990	2005	2014	2015	2016	2017	2018
Methane Emissions (MMT CO ₂ Eq.)	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Methane Emissions (kt CH ₄)	0.6	0.5	0.6	0.6	0.6	0.6	0.6

1 Methodology

The following section includes a description of the methodology used to estimate changes in soil and aboveground
 biomass C stocks and CH₄ emissions for *Land Converted to Vegetated Coastal Wetlands*.

4 Soil Carbon Stock Changes

5 Soil C removals are estimated for Land Converted to Vegetated Coastal Wetlands for land below the elevation of

6 high tides (taken to be mean high water spring tide elevation) and as far seawards as the extent of intertidal

7 vascular plants within the U.S. Land Representation according to the national LiDAR dataset, the national network

of tide gauges and land use histories recorded in the 1996, 2001, 2005, and 2010 NOAA C-CAP surveys.⁷⁰ As a QC

9 step, a check was undertaken confirming that Coastal Wetlands recognized by C-CAP represent a subset of

10 Wetlands recognized by the NRI for marine coastal states. Delineating Vegetated Coastal Wetlands from

11 ephemerally flooded upland Grasslands represents a particular challenge in remote sensing. Moreover, at the

boundary between wetlands and uplands, which may be gradual on low lying coastlines, the presence of wetlands

13 may be ephemeral depending upon weather and climate cycles and as such impacts on the emissions and

14 removals will vary over these time frames. Federal and non-federal lands are represented. Trends in land cover

change are extrapolated to 1990 and 2018 from these datasets. Based upon NOAA C-CAP, wetlands are subdivided

16 into freshwater (Palustrine) and saline (Estuarine) classes and further subdivided into emergent marsh, scrub shrub

17 and forest classes. Soil C stock changes, stratified by climate zones and wetland classes, are derived from a

synthesis of peer-reviewed literature (Lynch 1989; Orson et al. 1990; Kearny & Stevenson 1991; Roman et al. 1997;
 Craft et al. 1998; Orson et al. 1998; Merrill 1999; Hussein et al. 2004; Church et al. 2006; Koster et al. 2007;

Craft et al. 1998; Orson et al. 1998; Merrill 1999; Hussein et al. 2004; Church et al. 2006; Koster et al. 2007;
 Callaway et al. 2012 a & b; Bianchi et al. 2013; Crooks et al. 2014; Weston et al. 2014; Villa & Mitsch 2015; March

Callaway et al. 2012 a & b; Bianchi et al. 2013; Crooks et al. 2014; Weston et al. 2014; Villa & Mitsch 2015; Marchio et al. 2016; Noe et al. 2016). To estimate soil C stock changes no differentiation is made for soil type (i.e., mineral,

22 organic).

23 Tier 2 level estimates of soil C removal associated with annual soil C accumulation from Land Converted to

24 Vegetated Coastal Wetlands were developed using country-specific soil C removal factors multiplied by activity

25 data of land area for Land Converted to Vegetated Coastal Wetlands for that given year. Currently, data are not

available to account for C stock changes for the 20 years prior to conversion to coastal wetlands as per IPCC

27 convention. The methodology follows Eq. 4.7, Chapter 4 of the *IPCC Wetlands Supplement*, and is applied to the

area of Land Converted to Vegetated Coastal Wetlands on an annual basis. Emission factors were developed from

29 literature references that provided soil C removal factors disaggregated by climate region, vegetation type by

30 salinity range (estuarine or palustrine) as identified using NOAA C-CAP as described above.

31 Aboveground Biomass Carbon Stock Changes

32 Aboveground biomass C stocks for palustrine and estuarine marshes are estimated for Lands Converted to

33 *Vegetated Coastal Wetlands.* Biomass is not sensitive to soil organic content but rather is differentiated based on

34 climate zone. Data are derived from a national assessment combining field plot data and aboveground biomass

35 mapping by remote sensing (Byrd et al., 2017; Byrd, et al., 2018). Trends in land cover change are derived from the

36 NOAA C-CAP dataset and extrapolated to cover the entire 1990 through 2018 time series. Stock changes that occur

by converting lands to vegetated wetlands are calculated by multiplying the C-CAP derived area gained that year in

38 each climate zone by its mean aboveground biomass. A nationwide dataset for belowground biomass has not been

- assembled to date. Currently, data are not available to account for C stock changes for the 20 years prior to
- 40 conversion to coastal wetlands as per IPCC convention.

⁷⁰ See https://coast.noaa.gov/digitalcoast/tools/lca.html; accessed October 2019.

1 Soil Methane Emissions

2 Tier 1 estimates of CH₄ emissions for Land Converted to Vegetated Coastal Wetlands are derived from the same

3 wetland map used in the analysis of wetland soil C fluxes, produced from C-CAP, LiDAR and tidal data, in

4 combination with default CH₄ emission factors provided in Table 4.14 of the *IPCC Wetlands Supplement*. The

5 methodology follows Eq. 4.9, Chapter 4 of the *IPCC Wetlands Supplement*, and is applied to the total area of *Land*

6 *Converted to Vegetated Coastal Wetlands* on an annual basis. Currently, data are not available to account for C

7 stock changes for the 20 years prior to conversion to coastal wetlands as per IPCC convention.

8 Uncertainty and Time-Series Consistency

9 Underlying uncertainties in estimates of soil C removal factors, aboveground biomass change, and CH4 emissions

10 include error in uncertainties associated with Tier 2 literature values of soil C removal estimates, aboveground

11 biomass stocks, and IPCC default CH₄ emission factors, uncertainties linked to interpretation of remote sensing

12 data, as well as assumptions that underlie the methodological approaches applied.

13 Uncertainty specific to coastal wetlands include differentiation of palustrine and estuarine community classes

14 which determines the soil C removal and CH₄ flux applied. Soil C removal and CH₄ fluxes applied are determined

15 from vegetation community classes across the coastal zone and identified by NOAA C-CAP. Community classes are

16 further subcategorized by climate zones and growth form (forest, shrub-scrub, marsh). Aboveground biomass

- 17 classes were subcategorized by climate zones. Soil and aboveground biomass C removal data for all subcategories
- are not available and thus assumptions were applied using expert judgement about the most appropriate
- 19 assignment to a disaggregation of a community class. Because mean soil and aboveground biomass C removal for
- 20 each available community class are in a fairly narrow range, the same overall uncertainty was assigned to each,
- 21 respectively (i.e., applying approach for asymmetrical errors, the largest uncertainty for any soil C stock value
- should be applied in the calculation of error propagation; IPCC 2000). Uncertainties for CH₄ flux are the Tier 1
- 23 default values reported in the IPCC Wetlands Supplement. Overall uncertainty of the NOAA C-CAP remote sensing
- 24 product is 15 percent. This is in the range of remote sensing methods (±10-15 percent; IPCC 2003). However, there
- is significant uncertainty in salinity ranges for tidal and non-tidal estuarine wetlands and activity data used to

estimate the CH₄ flux (e.g., delineation of an 18 ppt boundary), which will need significant improvement to reduce
 uncertainties.

28 Table 6-73: Approach 1 Quantitative Uncertainty Estimates for C Stock Changes occurring

29 within Land Converted to Vegetated Coastal Wetlands (MMT CO₂ Eq. and Percent)

Courses	2018 Estimate	Uncertainty Range Relative to Estimate ^a					
Source	(MMT CO ₂ Eq.)	(MMT)	CO₂ Eq.)	(%)			
		Lower	Upper	Lower	Upper		
		Bound	Bound	Bound	Bound		
Soil C Stock Change	(0.01)	(0.01)	(0.01)	-29.5%	29.5%		
Aboveground Biomass C Stock Change	(0.03)	(0.03)	(0.03)	-16.5%	16.5%		
Methane Emissions	0.01	0.01	0.02	-29.8%	29.8%		
Total Uncertainty	(0.03)	(0.04)	(0.02)	-38.5%	38.5%		

^a Range of flux estimates based on error propagation at 95 percent confidence interval.

Note: Totals may not sum due to independent rounding.

30 QA/QC and Verification

31 NOAA provided National LiDAR Dataset, tide data, and C-CAP land cover and land cover change mapping, all of

32 which are subject to agency internal mandatory QA/QC assessment (McCombs et al. 2016). QA/QC and verification

33 of soil C stock dataset has been provided by the Smithsonian Environmental Research Center and Coastal Wetland

34 Inventory team leads. Aboveground biomass C stocks are derived from peer-review literature, reviewed by U.S.

35 Geological Survey prior to publishing, by the peer-review process during publishing, and by the Coastal Wetland

36 Inventory team leads prior to inclusion in the inventory. Land cover estimates were assessed to ensure that the

- 1 total land area did not change over the time series in which the inventory was developed, and verified by a second
- QA team. A team of two evaluated and verified there were no computational errors within the calculation 2
- 3 worksheets. Soil C stock, emissions/removals data are based upon peer-reviewed literature and CH4 emission
- 4 factors derived from the IPCC Wetlands Supplement.

Recalculations Discussion 5

- 6 An error was found in the calculation for soil carbon removal for subtropical estuarine scrub/shrub wetlands for
- 7 the 1990 to 2017 time series. There currently is no soil C accumulation rate calculated from field data for
- 8 subtropical estuarine scrub/shrub wetlands so the rate from the most applicable wetland type is used as a proxy.
- 9 This rate was erroneously entered as 0.45 t C ha⁻¹ yr⁻¹, which is the value calculated for subtropical palustrine
- emergent wetlands, and was changed to be 1.09 t C ha⁻¹ yr⁻¹, which is the value calculated for subtropical estuarine 10
- 11 emergent wetlands and the more applicable rate to this wetland type. This rate is also already used for the
- 12 subtropical estuarine scrub/shrub soil C accumulation rate for Wetlands Remaining Wetlands calculations. The
- 13 resulting changes in total C removals is below detection at the scale of MMT CO₂ yr⁻¹.

Planned Improvements 14

- 15 Administered by the Smithsonian Environmental Research Center, the Coastal Wetland Carbon Research
- Coordination Network has established a U.S. country-specific database of soil C stocks and aboveground biomass 16
- 17 for coastal wetlands.⁷¹ This dataset will be updated periodically. Refined error analysis combining land cover
- 18 change and C stock estimates will be provided as new data are incorporated. Through this work, a model is in
- 19 development to represent changes in soil C stocks and will be incorporated into the 2021 NIR submission.
- 20 The C-CAP dataset for 2015 is currently under development with a planned release in early 2020. Additional data
- 21 products for years 2003, 2008, and 2013 are also planned for release. Once complete, land use change for 1996
- 22 through 2018 will be recalculated and extended to 2019 with this updated dataset. Currently, biomass from lands
- 23 converted to wetlands are only tracked for one year due to lack of available data. In 2020, data harmonization of
- 24 C-CAP with the National Land Cover dataset (NLCD) will occur that will enable 20-year tracking of biomass as per
- 25 IPCC guidance.
- 26 Once harmonization happens for the land cover data, analyses will occur to address the loss of biomass and dead
- 27 organic matter (litter and standing dead wood C stocks) that occurs when lands (e.g., forest lands, grasslands) are
- 28 converted to vegetated coastal wetlands.

Settlements Remaining Settlements 6.10 29 (CRF Category 4E1)

30

Soil Carbon Stock Changes (CRF Category 4E1) 31

- 32 Soil C stock changes for Settlements Remaining Settlements occur in both mineral and organic soils. The United
- 33 States does not, however, estimate changes in soil organic C stocks for mineral soils in Settlements Remaining
- 34 Settlements. This approach is consistent with the assumption of the Tier 1 method in the 2006 IPCC Guidelines
- 35 (IPCC 2006) that inputs equal outputs, and therefore the soil carbon stocks do not change. This assumption may be
- 36 re-evaluated in the future if funding and resources are available to conduct an analysis of soil C stock changes for
- 37 mineral soils in Settlements Remaining Settlements. Drainage of organic soils is common when wetland areas have

⁷¹ See https://serc.si.edu/coastalcarbon; accessed October 2019.

- 1 been developed for settlements. Organic soils, also referred to as *Histosols*, include all soils with more than 12 to
- 2 20 percent organic C by weight, depending on clay content (NRCS 1999, Brady and Weil 1999). The organic layer of
- 3 these soils can be very deep (i.e., several meters), and form under inundated conditions that results in minimal
- 4 decomposition of plant residues. Drainage of organic soils leads to aeration of the soil that accelerates
- 5 decomposition rate and CO₂ emissions.⁷² Due to the depth and richness of the organic layers, C loss from drained
- 6 organic soils can continue over long periods of time, which varies depending on climate and composition (i.e.,
- 7 decomposability) of the organic matter (Armentano and Menges 1986).
- 8 Settlements Remaining Settlements includes all areas that have been settlements for a continuous time period of
- 9 at least 20 years according to the 2015 United States Department of Agriculture (USDA) National Resources
- 10 Inventory (NRI) (USDA-NRCS 2018)⁷³ or according to the National Land Cover Dataset (NLCD) for federal lands
- 11 (Yang et al. 2018; Fry et al. 2011; Homer et al. 2007, 2015). The Inventory includes settlements on privately-owned
- 12 lands in the conterminous United States and Hawaii. Alaska and the small amount of settlements on federal lands
- are not included in this Inventory even though these areas are part of the U.S. managed land base. This leads to a
- discrepancy with the total amount of managed area in *Settlements Remaining Settlements* (see Section 6.1
- 15 Representation of the U.S. Land Base) and the settlements area included in the Inventory analysis. There is a
- 16 planned improvement to include CO₂ emissions from drainage of organic soils in settlements of Alaska and federal
- 17 lands as part of a future Inventory.
- 18 CO₂ emissions from drained organic soils in settlements are 15.9 MMT CO₂ Eq. (4.3 MMT C) in 2018. Although the
- 19 flux is relatively small, the amount has increased by over 41 percent since 1990 due to an increase in area of
- 20 drained organic soils in settlements.

Table 6-74: Net CO₂ Flux from Soil C Stock Changes in *Settlements Remaining Settlements* (MMT CO₂ Eq.)

Soil Type	1990	2005	2014	2015	2016	2017	2018
Organic Soils	11.3	12.2	15.1	15.7	16.0	16.0	15.9

Table 6-75: Net CO₂ Flux from Soil C Stock Changes in *Settlements Remaining Settlements* (MMT C)

Soil Type	1990	2005	2014	2015	2016	2017	2018
Organic Soils	3.1	3.3	4.1	4.3	4.4	4.4	4.3

25 Methodology

- 26 An IPCC Tier 2 method is used to estimate soil organic C stock changes for organic soils in *Settlements Remaining*
- 27 Settlements (IPCC 2006). Organic soils in Settlements Remaining Settlements are assumed to be losing C at a rate
- similar to croplands due to deep drainage, and therefore emission rates are based on country-specific values for cropland (Ogle et al. 2003).
- 30 The land area designated as settlements is based primarily on the 2018 NRI (USDA-NRCS 2018) with additional
- information from the NLCD (Yang et al. 2018; Fry et al. 2011; Homer et al. 2007, 2015). It is assumed that all
- 32 settlement area on organic soils is drained, and those areas are provided in Table 6-76 (See Section 6.1,
- 33 Representation of the U.S. Land Base for more information). The area of drained organic soils is estimated from
- 34 the NRI spatial weights and aggregated to the country (Table 6-76). The area of land on organic soils in *Settlements*
- 35 *Remaining Settlements* has increased from 2 thousand hectares in 1990 to over 36 thousand hectares in 2015. The

 $^{^{72}}$ N₂O emissions from soils are included in the N₂O Emissions from Settlement Soils section.

⁷³ NRI survey locations are classified according to land-use histories starting in 1979, and consequently the classifications are based on less than 20 years from 1990 to 1998. This may have led to an overestimation of *Settlements Remaining Settlements* in the early part of the time series to the extent that some areas are converted to settlements between 1971 and 1978.

- area of land on organic soils are not currently available from NRI for Settlements Remaining Settlements after
- 2 2015.

Table 6-76: Thousands of Hectares of Drained Organic Soils in *Settlements Remaining Settlements*

Year	Area (Thousand Hectares)
1990	220
2005	235
2013	284
2014	291
2015	303
2016	ND
2017	ND
2018	ND

Note: No NRI data are available after 2015, designated as ND (No data)

5 To estimate CO₂ emissions from drained organic soils across the time series from 1990 to 2015, the total area of

6 organic soils in *Settlements Remaining Settlements* is multiplied by the country-specific emission factors for

7 *Cropland Remaining Cropland* under the assumption that there is deep drainage of the soils. The emission factors

8 are 11.2 MT C per ha in cool temperate regions, 14.0 MT C per ha in warm temperate regions, and 14.3 MT C per

9 ha in subtropical regions (see Annex 3.12 for more information).

10 A linear extrapolation of the trend in the time series is applied to estimate the emissions from 2016 to 2018

because NRI activity data are not available for these years to determine the area of drained organic soils in

12 Settlements Remaining Settlements. Specifically, a linear regression model with autoregressive moving-average

13 (ARMA) errors (Brockwell and Davis 2016) is used to estimate the trend in emissions over time from 1990 to 2015,

and in turn, the trend is used to approximate the 2016 to 2018 emissions. The Tier 2 method described previously

15 will be applied in future inventories to recalculate the estimates beyond 2015 as activity data become available.

16 Uncertainty and Time-Series Consistency

17 Uncertainty for the Tier 2 approach is derived using a Monte Carlo approach, along with additional uncertainty

18 propagated through the Monte Carlo Analysis for 2016 to 2018 based on the linear time series model. The results

19 of the Approach 2 Monte Carlo uncertainty analysis are summarized in Table 6-77. Soil C losses from drained

20 organic soils in Settlements Remaining Settlements for 2018 are estimated to be between 7.6 and 24.2 MMT CO2

Eq. at a 95 percent confidence level. This indicates a range of 52 percent below and 52 percent above the 2018

22 emission estimate of 15.9 MMT CO₂ Eq.

Table 6-77: Uncertainty Estimates for CO₂ Emissions from Drained Organic Soils in *Settlements Remaining Settlements* (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate	Uncertainty	Range Relativ	e to Emission	Estimate ^a	
		(MMT CO2 Eq.)	(MMT C	(MMT CO₂ Eq.)		(%)	
		Lower	Upper	Lower	Upper		
			Bound	Bound	Bound	Bound	
Organic Soils	CO ₂	15.9	7.6	24.2	-52%	52%	

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

25 Methodological recalculations are applied using the new activity data described above. Details on the emission

trends through time are described in more detail in the Methodology section, above.

1 QA/QC and Verification

2 Quality control measures included checking input data, model scripts, and results to ensure data are properly

3 handled throughout the inventory process. Inventory reporting forms and text are reviewed and revised as needed

4 to correct transcription errors. These checks uncovered a few errors in the spreadsheets that were corrected.

5 There was also an error in handling of activity data for this source category in which settlement areas were only

6 included if they had been in agriculture during the past. This led to a significant under-estimation in the area of

- 7 drained organic soils in settlements that has been corrected in this Inventory (see Recalculations Discussion
- 8 below).

9 Recalculations Discussion

10 The entire time series was recalculated based on updates to the land representation data with the release of the

11 2018 NRI (USDA-NRCS 2018) and additional information from the NLCD (Yang et al. 2018; Fry et al. 2011; Homer et

12 al. 2007, 2015). In addition, the data splicing method has been used to re-estimate CO_2 emissions for 2016 to 2017

in the previous Inventory. However, the major change was the correction of a quality control problem that led to an under-estimation of drained organic soils in settlements. The recalculations led to an increase in emissions of

15 $11.9 \text{ MMT CO}_2 \text{ Eq.}, \text{ or } > 6,500 \text{ percent}, \text{ on average across the entire time series.}$

16 Planned Improvements

17 This source will be updated to include CO₂ emissions from drainage of organic soils in settlements of Alaska and

18 federal lands in order to provide a complete inventory of emissions for this category. See Table 6-78 for the

amount of managed land area in *Settlements Remaining Settlements* that is not included in the Inventory due to

20 these omissions. The managed settlements area that is not included in the Inventory is in the range of 150 to 160

thousand hectares each year. These improvements will be made as funding and resources are available to expand

22 the inventory for this source category.

Table 6-78: Area of Managed Land in *Settlements Remaining Settlements* that is not included in the current Inventory (Thousand Hectares)

	Area (Thousand Hectares)							
Year	SRS Managed Land Area (Section 6.1)	SRS Area Included in Inventory	SRS Area Not Included in Inventory					
1990	30,585	30,425	159					
1991	30,589	30,430	159					
1992	30,593	30,434	159					
1993	30,505	30,346	159					
1994	30,423	30,264	159					
1995	30,365	30,206	159					
1996	30,316	30,157	158					
1997	30,264	30,105	158					
1998	30,200	30,041	159					
1999	30,144	29,992	152					
2000	30,101	29,949	152					
2001	30,041	29,889	152					
2002	30,034	29,882	152					
2003	30,530	30,378	152					
2004	31,011	30,859	152					
2005	31,522	31,370	152					

Area (Thousand Hectares)

2006	31,964	31,812	152
2007	32,469	32,317	152
2008	33,074	32,922	152
2009	33,646	33,494	152
2010	34,221	34,069	152
2011	34,814	34,662	152
2012	35,367	35,215	152
2013	36,308	36,156	152
2014	37,281	37,129	152
2015	38,210	38,058	152
2016	ND	ND	ND
2017	ND	ND	ND
2018	ND	ND	ND

1 Note: NRI data are not available after 2015, and these years are designated as ND (No data).

Changes in Carbon Stocks in Settlement Trees (CRF Source Category 4E1)

4 Settlements are land uses where human populations and activities are concentrated. In these areas, the 5 anthropogenic impacts on tree growth, stocking and mortality are particularly pronounced (Nowak 2012) in 6 comparison to forest lands where non-anthropogenic forces can have more significant impacts. Trees in 7 settlement areas of the United States are estimated to account for an average annual net sequestration of 115.4 8 MMT CO₂ Eq. (31.5 MMT C) over the period from 1990 through 2018. Net C sequestration from settlement trees in 9 2018 is estimated to be 129.8 MMT CO₂ Eq. (35.4 MMT C) (Table 6-79). Dominant factors affecting carbon flux 10 trends for settlement trees are changes in the amount of settlement area (increasing sequestration due to more 11 land and trees) and net changes in tree cover (e.g., tree losses vs tree gains through planting and natural 12 regeneration), which has been trending downward recently and decreasing net sequestration. In addition, changes 13 in species composition, tree sizes and tree densities affect base C flux estimates. Annual sequestration increased 14 by 35 percent between 1990 and 2018 due to increases in settlement area and changes in tree cover. 15 Trees in settlements often grow faster than forest trees because of their relatively open structure (Nowak and

16 Crane 2002). Because tree density in settlements is typically much lower than in forested areas, the C storage per

17 hectare of land is in fact smaller for settlement areas than for forest areas. Also, percent tree cover in settlement

areas are less than in forests and this tree cover varies significantly across the United States (e.g., Nowak and

19 Greenfield 2018a). To quantify the C stored in settlement trees, the methodology used here requires analysis per

20 unit area of tree cover, rather than per unit of total land area (as is done for *Forest Lands*).

Table 6-79: Net Flux from Settlement Trees in Settlements Remaining Settlements (MMT CO₂ Eq. and MMT C)^a

Year	MMT CO₂ Eq.	MMT C
1990	(96.4)	(26.3)
2005	(117.4)	(32.0)
2014	(129.4)	(35.3)
2015	(130.4)	(35.6)
2016	(129.8)	(35.4)
2017	(129.8)	(35.4)
2018	(129.8)	(35.4)

^aThese estimates include net CO₂ and C flux from Settlement Trees on Settlements Remaining Settlements and Land Converted to Settlements. Note: Parentheses indicate net sequestration.

1 Methodology

2 To estimate net carbon sequestration in settlement areas, three types of data are required by state:

- 3 1. Settlement area
- 4 2. Percent tree cover in settlement areas
- 5 3. Carbon sequestration density per unit of tree cover

6 Settlement Area

7 Settlements area is defined in Section 6.1 Representation of the U.S. Land Base as a land-use category representing

8 developed areas. The data used to estimate settlement area within Section 6.1 comes from the NRI as updated

9 through 2015. Annual estimates of CO₂ flux (Table 6-79) were developed based on estimates of annual settlement

area and tree cover derived from developed land. Developed land, which was used to estimate tree cover in

settlement areas, is about six percent higher than the area categorized as *Settlements* in the Representation of the

12 U.S. Land Base developed for this report. Developed land is likely a better proxy for tree cover in settlement areas

13 than urban areas as urban land areas were about 36 percent smaller than settlement areas in 2011.

14 Percent Tree Cover in Settlement Areas

15 Percent tree cover in settlement area is needed to convert settlement land area to settlement tree cover area.

16 Converting to tree cover area is essential as tree cover, and thus carbon estimates, can vary widely among states in

17 settlement areas due to variations in the amount of tree cover (e.g., Nowak and Greenfield 2018a). However, since

18 the specific geography of settlement area is unknown because they are based on NRI sampling methods, NLCD

developed land was used to estimate the percent tree cover to be used in settlement areas. NLCD developed

20 classes 21-24 (developed, open space (21), low intensity (22), medium intensity (23), and high intensity (24)) were

21 used to estimate percent tree cover in settlement area by state (U.S. Department of Interior 2018, MRLC 2013).

- a) "Developed, Open Space areas with a mixture of some constructed materials, but mostly vegetation in
 the form of lawn grasses. Impervious surfaces account for less than 20 percent of total cover. These areas
 most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted
 in developed settings for recreation, erosion control, or aesthetic purposes." Plots designated as either
 park, recreation, cemetery, open space, institutional or vacant land were classified as Developed Open
 Space.
- b) "Developed, Low Intensity areas with a mixture of constructed materials and vegetation. Impervious
 surfaces account for 20 to 49 percent of total cover. These areas most commonly include single-family
 housing units." Plots designated as single family or low-density residential land were classified as
 Developed, Low Intensity.
- c) "Developed, Medium Intensity areas with a mixture of constructed materials and vegetation.
 Impervious surfaces account for 50 to 79 percent of the total cover. These areas most commonly include
 single-family housing units." Plots designated as medium density residential, other urban or mixed urban
 were classified as Developed, Medium Intensity.
- d) "Developed High Intensity highly developed areas where people reside or work in high numbers.
 Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces
 account for 80 to 100 percent of the total cover." Plots designated as either commercial, industrial, high

- density residential, downtown, multi-family residential, shopping, transportation or utility were classified
 as Developed, High Intensity.
- As NLCD is known to underestimate tree cover (Nowak and Greenfield 2010), photo-interpretation of tree cover within NLCD developed lands was conducted for the years of c. 2011 and 2016 using 1,000 random points to
- 5 determine an average adjustment factor for NLCD tree cover estimates in developed land and determine recent
- 6 tree cover changes. This photo-interpretation of change followed methods detailed in Nowak and Greenfield
- 7 (2018b). Percent tree cover (%TC) in settlement areas by state was estimated as:
- 8 %TC in state = state NLCD %TC x national photo-interpreted %TC / national NLCD %TC
- 9 Percent tree cover in settlement areas by year was set as follows:
- 10 1990 to 2011: used 2011 NLCD tree cover adjusted with 2011 photo-interpreted values
- 2012 to 2015: used 2011 NLCD tree cover adjusted with photo-interpreted values, which were
 interpolated from values between 2011 and 2016
- 2016 to 2018: used 2011 NLCD tree cover adjusted with 2016 photo-interpreted values

14 Carbon Sequestration Density per Unit of Tree Cover

15 Methods for quantifying settlement tree biomass, C sequestration, and C emissions from tree mortality and

decomposition were taken directly from Nowak et al. (2013), Nowak and Crane (2002), and Nowak (1994). In

17 general, net C sequestration estimates followed three steps, each of which is explained further in the paragraphs

18 below. First, field data from cities and urban areas within entire states were used to estimate C in tree biomass

19 from field data on measured tree dimensions. Second, estimates of annual tree growth and biomass increment

20 were generated from published literature and adjusted for tree condition, crown competition, and growing season

to generate estimates of gross C sequestration in settlement trees for all 50 states and the District of Columbia.

Third, estimates of C emissions due to mortality and decomposition were subtracted from gross C sequestration estimates to obtain estimates of net C sequestration. Carbon storage, gross and net sequestration estimates were

- 24 standardized per unit tree cover based on tree cover in the study area.
- 25 Settlement tree carbon estimates are based on published literature (Nowak et al. 2013; Nowak and Crane 2002;

Nowak 1994) as well as newer data from the i-Tree database⁷⁴ and Forest Service urban forest inventory data

27 (e.g., Nowak et al. 2016, 2017) (Table 6-80). These data are based on collected field measurements in several U.S.

cities between 1989 and 2017. Carbon storage and sequestration in these cities were estimated using the U.S.

29 Forest Service's i-Tree Eco model (Nowak et al. 2008). This computer model uses standardized field data from

30 randomly located plots, along with local hourly air pollution and meteorological data to quantify urban forest

- 31 structure, values of the urban forest, and environmental effects, including total C stored and annual C
- 32 sequestration (Nowak et al. 2013).

33 In each city, a random sample of plots were measured to assess tree stem diameter, tree height, crown height and

crown width, tree location, species, and canopy condition. The data for each tree were used to estimate total dry-

35 weight biomass using allometric models, a root-to-shoot ratio to convert aboveground biomass estimates to whole

tree biomass, and wood moisture content. Total dry weight biomass was converted to C by dividing by two (50

- 37 percent carbon content). An adjustment factor of 0.8 was used for open grown trees to account for settlement
- trees having less aboveground biomass for a given stem diameter than predicted by allometric models based on
- 39 forest trees (Nowak 1994). Carbon storage estimates for deciduous trees include only C stored in wood. Estimated
- 40 C storage was divided by tree cover in the area to estimate carbon storage per square meter of tree cover.

⁷⁴ See <http://www.itreetools.org>.

Table 6-80: Carbon Storage (kg C/m² tree cover), Gross and Net Sequestration (kg C/m² tree cover/year) and Tree Cover (percent) among Sampled U.S. Cities (see Nowak et al. 1

2

2013) 3

				Sequestr	ration				
e !!	•		-					Tree	
City	Storage	SE	Gross	SE	Net	SE	Ratioa	Cover	SE
Adrian, MI	12.17	1.88	0.34	0.04	0.13	0.07	0.36	22.1	2.3
Albuquerque, NM	5.61	0.97	0.24	0.03	0.20	0.03	0.82	13.3	1.5
Arlington, TX	6.37	0.73	0.29	0.03	0.26	0.03	0.91	22.5	0.3
Atlanta, GA	6.63	0.54	0.23	0.02	0.18	0.03	0.76	53.9	1.6
Austin, TX	3.57	0.25	0.17	0.01	0.13	0.01	0.73	30.8	1.1
Baltimore, MD	10.30	1.24	0.33	0.04	0.20	0.04	0.59	28.5	1.0
Boise, ID	7.33	2.16	0.26	0.04	0.16	0.06	0.64	7.8	0.2
Boston, MA	7.02	0.96	0.23	0.03	0.17	0.02	0.73	28.9	1.5
Camden, NJ	11.04	6.78	0.32	0.20	0.03	0.10	0.11	16.3	9.9
Casper, WY	6.97	1.50	0.22	0.04	0.12	0.04	0.54	8.9	1.0
Chester, PA	8.83	1.20	0.39	0.04	0.25	0.05	0.64	20.5	1.7
Chicago (region), IL	9.38	0.59	0.38	0.02	0.26	0.02	0.70	15.5	0.3
Chicago, IL	6.03	0.64	0.21	0.02	0.15	0.02	0.70	18.0	1.2
Corvallis, OR	10.68	1.80	0.22	0.03	0.20	0.03	0.91	32.6	4.1
El Paso, TX	3.93	0.86	0.32	0.05	0.23	0.05	0.72	5.9	1.0
Freehold, NJ	11.50	1.78	0.31	0.05	0.20	0.05	0.64	31.2	3.3
Gainesville, FL	6.33	0.99	0.22	0.03	0.16	0.03	0.73	50.6	3.1
Golden, CO	5.88	1.33	0.23	0.05	0.18	0.04	0.79	11.4	1.5
Grand Rapids, MI	9.36	1.36	0.30	0.04	0.20	0.05	0.65	23.8	2.0
Hartford, CT	10.89	1.62	0.33	0.05	0.19	0.05	0.57	26.2	2.0
Houston, TX	4.55	0.48	0.31	0.03	0.25	0.03	0.83	18.4	1.0
Indiana ^b	8.80	2.68	0.29	0.08	0.27	0.07	0.92	20.1	3.2
Jersey City, NJ	4.37	0.88	0.18	0.03	0.13	0.04	0.72	11.5	1.7
Kansas ^b	7.42	1.30	0.28	0.05	0.22	0.04	0.78	14.0	1.6
Kansas City (region), MO/KS	7.79	0.85	0.39	0.04	0.26	0.04	0.67	20.2	1.7
Lake Forest Park, WA	12.76	2.63	0.49	0.07	0.42	0.07	0.87	42.4	0.8
Las Cruces, NM	3.01	0.95	0.31	0.14	0.26	0.14	0.86	2.9	1.0
Lincoln, NE	10.64	1.74	0.41	0.06	0.35	0.06	0.86	14.4	1.6
Los Angeles, CA	4.59	0.51	0.18	0.02	0.11	0.02	0.61	20.6	1.3
Milwaukee, WI	7.26	1.18	0.26	0.03	0.18	0.03	0.68	21.6	1.6
Minneapolis, MN	4.41	0.74	0.16	0.02	0.08	0.05	0.52	34.1	1.6
Moorestown, NJ	9.95	0.93	0.32	0.03	0.24	0.03	0.75	28.0	1.6
Morgantown, WV	9.52	1.16	0.30	0.04	0.23	0.03	0.78	39.6	2.2
Nebraska ^b	6.67	1.86	0.27	0.07	0.23	0.06	0.84	15.0	3.6
New York, NY	6.32	0.75	0.33	0.03	0.25	0.03	0.76	20.9	1.3
North Dakota ^b	7.78	2.47	0.28	0.08	0.13	0.08	0.48	2.7	0.6
Oakland, CA	5.24	0.19	NA	NA	NA	NA	NA	21.0	0.2
Oconomowoc, WI	10.34	4.53	0.25	0.10	0.16	0.06	0.65	25.0	7.9
Omaha, NE	14.14	2.29	0.51	0.08	0.40	0.07	0.78	14.8	1.6
Philadelphia, PA	8.65	1.46	0.33	0.05	0.29	0.05	0.86	20.8	1.8
Phoenix, AZ	3.42	0.50	0.38	0.04	0.35	0.04	0.94	9.9	1.2
Roanoke, VA	9.20	1.33	0.40	0.06	0.27	0.05	0.67	31.7	3.3
Sacramento, CA	7.82	1.57	0.38	0.06	0.33	0.06	0.87	13.2	1.7
San Francisco, CA	9.18	2.25	0.24	0.05	0.22	0.05	0.92	16.0	2.6
Scranton, PA	9.24	1.28	0.40	0.05	0.30	0.04	0.74	22.0	1.9
Seattle, WA	9.59	0.98	0.67	0.06	0.55	0.05	0.82	27.1	0.4
South Dakota ^b	3.14	0.66	0.13	0.03	0.11	0.02	0.87	16.5	2.2
Syracuse, NY	9.48	1.08	0.30	0.03	0.22	0.04	0.72	26.9	1.3
Tennessee ^b	6.47	0.50	0.34	0.02	0.30	0.02	0.89	37.7	0.8
Washington, DC	8.52	1.04	0.26	0.03	0.21	0.03	0.79	35.0	2.0
Woodbridge, NJ	8.19	0.82	0.29	0.03	0.21	0.03	0.73	29.5	1.7

- 1 SE Standard Error
- 2 NA Not Available
- 3 ^a Ratio of net to gross sequestration.
- 4 ^b Statewide assessment of urban areas.

5 To determine gross sequestration rates, tree growth rates need to be estimated. Base growth rates were

- 6 standardized for open-grown trees in areas with 153 days of frost-free length based on measured data on tree
- 7 growth (Nowak et al. 2013). These growth rates were adjusted to local tree conditions based on length of frost-
- 8 free season, crown competition (as crown competition increased, growth rates decreased), and tree condition (as
- 9 tree condition decreased, growth rates decreased). Annual growth rates were applied to each sampled tree to
- estimate gross annual sequestration that is, the difference in C storage estimates between year 1 and year (x + 1)
- 11 represents the gross amount of C sequestered. These annual gross C sequestration rates for each tree were then 12 scaled up to city estimates using tree population information. Total C sequestration was divided by total tree cover
- to estimate a gross carbon sequestration density (kg C/m² of tree cover/year). The area of assessment for each city
- 14 or state was defined by its political boundaries; parks and other forested urban areas were thus included in
- 15 sequestration estimates.
- 16 Where gross C sequestration accounts for all C sequestered, net C sequestration for settlement trees considers C
- 17 emissions associated with tree death and removals. The third step in the methodology estimates net C emissions
- 18 from settlement trees based on estimates of annual mortality, tree condition, and assumptions about whether
- 19 dead trees were removed from the site. Estimates of annual mortality rates by diameter class and condition class
- 20 were obtained from a study of street-tree mortality (Nowak 1986). Different decomposition rates were applied to
- 21 dead trees left standing compared with those removed from the site. For removed trees, different rates were
- applied to the removed/aboveground biomass in contrast to the belowground biomass (Nowak et al. 2002). The
 estimated annual gross C emission rates for each plot were then scaled up to city estimates using tree population
- 24 information.
- The full methodology development is described in the underlying literature, and key details and assumptions were made as follows. The allometric models applied to the field data for the Nowak methodology for each tree were taken from the scientific literature (see Nowak 1994, Nowak et al. 2002), but if no allometric model could be found for the particular species, the average result for the genus or botanical relative was used. The adjustment (0.8) to account for less live tree biomass in open-grown urban trees was based on information in Nowak (1994). Measured tree growth rates for street (Frelich 1992; Fleming 1988; Nowak 1994), park (deVries 1987), and forest
- 31 (Smith and Shifley 1984) trees were standardized to an average length of growing season (153 frost free days) and
- 32 adjusted for site competition and tree condition. Standardized growth rates of trees of the same species or genus
- 33 were then compared to determine the average difference between standardized street tree growth and
- 34 standardized park and forest growth rates. Crown light exposure (CLE) measurements (number of sides and/or top
- of tree exposed to sunlight) were used to represent forest, park, and open (street) tree growth conditions. Local
- tree base growth rates were then calculated as the average standardized growth rate for open-grown trees
- 37 multiplied by the number of frost-free days divided by 153. Growth rates were then adjusted for CLE. The CLE
- 38 adjusted growth rate was then adjusted based on tree condition to determine the final growth rate. Assumptions
- for which dead trees would be removed versus left standing were developed specific to each land use and were
 based on expert judgment of the authors. Decomposition rates were based on literature estimates (Nowak et al.
- 41 2013).
- 42 Estimates of gross and net sequestration rates for each of the 50 states and the District of Columbia (Table 6-81)
- 43 were compiled in units of C sequestration per unit area of tree canopy cover. These rates were used in conjunction
- 44 with estimates of state settlement area and developed land percent tree cover data to calculate each state's
- 45 annual net C sequestration by urban trees. This method was described in Nowak et al. (2013) and has been
- 46 modified here to incorporate developed land percent tree cover data.
- 47 Net annual C sequestration estimates were obtained for all 50 states and the District of Columbia by multiplying
- 48 the gross annual emission estimates by 0.73, the average ratio for net/gross sequestration (Table 6-81). However,
- 49 state specific ratios were used where available.

1 State Carbon Sequestration Estimates

2 The gross and net annual C sequestration values for each state were multiplied by each state's settlement area of

3 tree cover, which was the product of the state's settlement area and the state's tree cover percentage based on

4 NLCD developed land. The model used to calculate the total carbon sequestration amounts for each state, can be

- 5 written as follows:
- Net state annual C sequestration (t C/yr) = Gross state sequestration rate (t C/ha/yr) × Net to Gross state
 sequestration ratio × state settlement Area (ha) × % state tree cover in settlement area

8 The results for all 50 states and the District of Columbia are given in Table 6-81. This approach is consistent with

9 the default IPCC Gain-Loss methodology in IPCC (2006), although sufficient field data are not yet available to

10 separately determine interannual gains and losses in C stocks in the living biomass of settlement trees. Instead, the

11 methodology applied here uses estimates of net C sequestration based on modeled estimates of decomposition,

12 as given by Nowak et al. (2013).

13 Table 6-81: Estimated Annual C Sequestration (Metric Tons C/Year), Tree Cover (Percent),

and Annual C Sequestration per Area of Tree Cover (kg C/m²/ year) for settlement areas in United States by State and the District of Columbia (2018)

				Gross Annual	Net Annual	Net: Gross
				Sequestration	Sequestration	Annual
	Gross Annual	Net Annual	Tree	per Area of	per Area of	Sequestration
State	Sequestration	Sequestration	Cover	Tree Cover	Tree Cover	Ratio
Alabama	2,060,001	1,501,070	53.5	0.376	0.274	0.73
Alaska	111,722	81,409	47.4	0.169	0.123	0.73
Arizona	172,750	125,878	4.6	0.388	0.283	0.73
Arkansas	1,266,164	922,622	48.9	0.362	0.264	0.73
California	2,007,869	1,463,083	16.9	0.426	0.311	0.73
Colorado	142,719	103,996	8.0	0.216	0.157	0.73
Connecticut	618,683	450,818	58.7	0.262	0.191	0.73
Delaware	97,533	71,070	24.4	0.366	0.267	0.73
DC	11,995	8,741	25.1	0.366	0.267	0.73
Florida	4,322,610	3,149,776	40.3	0.520	0.379	0.73
Georgia	3,411,478	2,485,857	56.3	0.387	0.282	0.73
Hawaii	285,700	208,182	41.7	0.637	0.464	0.73
Idaho	59,611	43,437	7.4	0.201	0.146	0.73
Illinois	662,891	483,032	15.5	0.310	0.226	0.73
Indiana	472,905	437,275	17.1	0.274	0.254	0.92
lowa	177,692	129,480	8.6	0.263	0.191	0.73
Kansas	290,461	226,027	10.8	0.310	0.241	0.78
Kentucky	926,269	674,949	36.8	0.313	0.228	0.73
Louisiana	1,512,145	1,101,861	47.0	0.435	0.317	0.73
Maine	394,471	287,441	55.5	0.242	0.176	0.73
Maryland	818,044	596,088	40.1	0.353	0.257	0.73
Massachusetts	1,002,723	730,659	57.2	0.278	0.203	0.73
Michigan	1,343,325	978,847	34.7	0.241	0.175	0.73
Minnesota	313,364	228,340	13.1	0.251	0.183	0.73
Mississippi	1,518,448	1,106,454	57.3	0.377	0.275	0.73
Missouri	850,492	619,732	23.2	0.313	0.228	0.73
Montana	48,911	35,640	4.9	0.201	0.147	0.73
Nebraska	98,584	83,192	7.3	0.261	0.220	0.84
Nevada	41,181	30,008	4.8	0.226	0.165	0.73
New Hampshire	363,989	265,229	59.3	0.238	0.174	0.73
New Jersey	904,868	659,355	40.7	0.321	0.234	0.73
New Mexico	177,561	129,384	10.2	0.288	0.210	0.73
New York	1,531,415	1,115,903	39.9	0.263	0.192	0.73
North Carolina	3,064,797	2,233,239	54.1	0.341	0.249	0.73

Total	48,065,406	35,405,113				
Wyoming	29,984	21,849	4.7	0.199	0.145	0.73
Wisconsin	697,863	508,515	25.9	0.246	0.180	0.73
West Virginia	699,320	509,577	64.1	0.264	0.192	0.73
Washington	1,063,871	775,216	37.6	0.282	0.206	0.73
Virginia	1,968,537	1,434,422	52.9	0.321	0.234	0.73
Vermont	176,564	128,658	50.6	0.234	0.170	0.73
Utah	118,880	86,625	11.7	0.235	0.172	0.73
Texas	4,239,494	3,089,211	28.5	0.403	0.294	0.73
Tennessee	1,591,278	1,422,789	41.1	0.332	0.297	0.89
South Dakota	29,489	25,573	2.9	0.258	0.224	0.87
South Carolina	1,801,029	1,312,364	53.8	0.370	0.269	0.73
Rhode Island	121,940	88,855	50.0	0.283	0.206	0.73
Pennsylvania	1,794,939	1,307,927	40.2	0.267	0.195	0.73
Oregon	682,468	497,297	39.9	0.265	0.193	0.73
Oklahoma	699,044	509,376	22.1	0.364	0.265	0.73
Ohio	1,248,841	909,999	28.2	0.271	0.198	0.73
North Dakota	18,492	8,787	1.8	0.244	0.116	0.48

1 Uncertainty and Time-Series Consistency

2 Uncertainty associated with changes in C stocks in settlement trees includes the uncertainty associated with

3 settlement area, percent tree cover in developed land and how well it represents percent tree cover in settlement

4 areas, and estimates of gross and net C sequestration for each of the 50 states and the District of Columbia. A 10

5 percent uncertainty was associated with settlement area estimates based on expert judgment. Uncertainty

6 associated with estimates of percent settlement tree coverage for each of the 50 states was based on standard

7 error associated with the photo-interpretation of national tree cover in developed lands. Uncertainty associated

8 with estimates of gross and net C sequestration for each of the 50 states and the District of Columbia was based on 9 standard error estimates for each of the state-level sequestration estimates (Table 6-82). These estimates are

based on field data collected in each of the 50 states and the District of Columbia, and uncertainty in these

11 estimates increases as they are scaled up to the national level.

12 Additional uncertainty is associated with the biomass models, conversion factors, and decomposition assumptions

13 used to calculate C sequestration and emission estimates (Nowak et al. 2002). These results also exclude changes

14 in soil C stocks, and there is likely some overlap between the settlement tree C estimates and the forest tree C

estimates (e.g., Nowak et al. 2013). Due to data limitations, urban soil flux is not quantified as part of this analysis,

16 while reconciliation of settlement tree and forest tree estimates will be addressed through the land-representation

17 effort described in the Planned Improvements section of this chapter.

18 A Monte Carlo (Approach 2) uncertainty analysis was applied to estimate the overall uncertainty of the

19 sequestration estimate in 2018. The results of this quantitative uncertainty analysis are summarized in Table 6-82.

20 The change in C stocks in Settlement Trees in 2018 was estimated to be between -195.4 and -62.2 MMT CO₂ Eq. at

a 95 percent confidence level. This analysis indicates a range of 51 percent more sequestration to 52 percent less

22 sequestration than the 2018 flux estimate of -129.8 MMT CO₂ Eq.

Table 6-82: Approach 2 Quantitative Uncertainty Estimates for Net CO₂ Flux from Changes in C Stocks in Settlement Trees (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Flux Estimate (MMT CO ₂ Eq.)	Uncertainty Range Rela (MMT CO ₂ Eq.)			imate %)
			Lower Bound	Upper Bound	Lower Bound	Upper Bound
Changes in C Stocks in Settlement Trees	CO ₂	(129.8)	(195.42)	(62.22)	-51%	52%

Note: Parentheses indicate negative values or net sequestration.

Methodological recalculations were applied to the entire time series to ensure time-series consistency from 1990 1

- 2 through 2018. Details on the emission trends through time are described in more detail in the Methodology
- 3 section, above.

QA/QC and Verification 4

- 5 Tier 1 and Tier 2 QA/QC activities were conducted consistent with the U.S. QA/QC plan. Source-specific quality
- 6 control measures for settlement trees included checking input data, documentation, and calculations to ensure
- 7 data were properly handled through the inventory process. Errors that were found during this process were
- 8 corrected as necessary.

Recalculations Discussion 9

- 10 In this 2018 assessment, the settlement area estimates have been updated with the latest NRI data through 2015
- 11 (projected to 2018). Due to this update, settlement area in 2017 increased from 43,118,102 ha (2017 report
- 12 estimate) to 44,799,282 ha (+ 3.9 percent). This area increase led to a 4.8 percent overall increase in the net
- 13 carbon sequestration estimate in 2017 (from 123.9 MMT CO₂ Eq. to 129.8 MMT CO₂ Eq.).

Planned Improvements 14

- 15 A consistent representation of the managed land base in the United States is discussed in Section 6.1
- 16 Representation of the U.S. Land Base, and discusses a planned improvement by the USDA Forest Service to
- 17 reconcile the overlap between Settlement Trees and the forest land categories. Estimates for Settlement Trees are
- 18 based on tree cover in settlement areas. What needs to be determined is how much of this settlement area tree
- 19 cover might also be accounted for in "forest" area assessments as some of these forests may fall within settlement
- 20 areas. For example, "forest" as defined by the USDA Forest Service Forest Inventory and Analysis (FIA) program fall
- 21 within urban areas. Nowak et al. (2013) estimates that 1.5 percent of forest plots measured by the FIA program fall 22
- within land designated as Census urban, suggesting that approximately 1.5 percent of the C reported in the Forest
- 23 source category might also be counted in the urban areas. The potential overlap with settlement areas is unknown. 24 Future research may also enable more complete coverage of changes in the C stock of trees for all settlements
- 25 land.
- 26 To provide more accurate emissions estimates in the future, the following actions will be taken:
- 27 a) Photo interpretation of settlement tree cover will be updated every few years to update tree cover 28 estimates and trends
- 29 b) Areas for photo interpretation of settlement area tree cover will be updated as new NLCD developed land 30 information becomes available
- 31 c) Overlap between forest and NLCD developed land (settlement area proxy) will be estimated based on 32 Forest Service Forest Inventory plot data

N₂O Emissions from Settlement Soils (CRF Source Category 33

- 4E1) 34
- 35 Of the synthetic N fertilizers applied to soils in the United States, approximately 1.5 percent are currently applied
- 36 to lawns, golf courses, and other landscaping within settlement areas, and contributes to soil N₂O emissions. The
- 37 area of settlements is considerably smaller than other land uses that are managed with fertilizer, particularly
- 38 cropland soils, and therefore, settlements account for a smaller proportion of total synthetic fertilizer application
- 39 in the United States. In addition to synthetic N fertilizers, a portion of surface applied biosolids (i.e., sewage sludge)
- 40 is used as an organic fertilizer in settlement areas, and drained organic soils (i.e., soils with high organic matter
- 41 content, known as Histosols) also contribute to emissions of soil N2O.

- 1 N additions to soils result in direct and indirect N₂O emissions. Direct emissions occur on-site due to the N
- 2 additions in the form of synthetic fertilizers and biosolids as well as enhanced mineralization of N in drained
- 3 organic soils. Indirect emissions result from fertilizer and biosolids N that is transformed and transported to
- another location in a form other than N₂O (i.e., ammonia [NH₃] and nitrogen oxide [NO_x] volatilization, nitrate
 [NO₃⁻] leaching and runoff), and later converted into N₂O at the off-site location. The indirect emissions are
- [NO₃] leaching and runoff), and later converted into N₂O at the off-site location. The indirect emissions are
 assigned to settlements because the management activity leading to the emissions occurred in settlements.
- 7 Total N₂O emissions from soils in *Settlements Remaining Settlements*⁷⁵ are 2.4 MMT CO₂ Eq. (8.1 kt of N₂O) in
- 2018. There is an overall increase of 20 percent from 1990 to 2018 due to an expanding settlement area leading to
- 9 more synthetic N fertilizer applications that peaked in the mid-2000s. Inter-annual variability in these emissions is
- directly attributable to variability in total synthetic fertilizer consumption, area of drained organic soils, and
- 11 biosolids applications in the United States. Emissions from this source are summarized in Table 6-83.

Table 6-83: N₂O Emissions from Soils in *Settlements Remaining Settlements* (MMT CO₂ Eq. and kt N₂O)

	1990	2005	2014	2015	2016	2017	2018
MMT CO ₂ Eq.							
Direct N ₂ O Emissions from Soils	1.6	2.5	1.9	1.8	1.9	2.0	2.0
Synthetic Fertilizers	0.8	1.6	0.9	0.8	0.9	1.0	1.0
Biosolids	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Drained Organic Soils	0.6	0.7	0.8	0.8	0.8	0.8	0.8
Indirect N ₂ O Emissions from Soils	0.4	0.6	0.4	0.3	0.3	0.4	0.4
Total	2.0	3.1	2.2	2.2	2.2	2.3	2.4
kt N ₂ O							
Direct N ₂ O Emissions from Soils	6	9	6	6	6	7	7
Synthetic Fertilizers	3	6	3	3	3	3	4
Biosolids	1	1	1	1	1	1	1
Drained Organic Soils	2	2	3	3	3	3	3
Indirect N ₂ O Emissions from Soils	1	2	1	1	1	1	1
Total	7	11	8	7	8	8	8

14 Methodology

15 For settlement soils, the IPCC Tier 1 approach is used to estimate soil N₂O emissions from synthetic N fertilizer,

16 biosolids additions, and drained organic soils. Estimates of direct N₂O emissions from soils in settlements are based

17 on the amount of N in synthetic commercial fertilizers applied to settlement soils, the amount of N in biosolids

applied to non-agricultural land and surface disposal (see Section 7.2, Wastewater Treatment for a detailed

discussion of the methodology for estimating biosolids available for non-agricultural land application), and the area

20 of drained organic soils within settlements.

Nitrogen applications to settlement soils are estimated using data compiled by the USGS (Brakebill and Gronberg
 2017). The USGS estimated on-farm and non-farm fertilizer use is based on sales records at the county level from

23 1987 through 2012 (Brakebill and Gronberg 2017). Non-farm N fertilizer is assumed to be applied to settlements

- 24 and forest lands; values for 2013 through 2018 are based on 2012 values adjusted for annual total N fertilizer sales
- in the United States because there is no activity data on non-farm application after 2012. Settlement application is
- 26 calculated by subtracting forest application from total non-farm fertilizer use. The total amount of fertilizer N
- $\label{eq:27} applied to settlements is multiplied by the IPCC default emission factor (1 percent) to estimate direct N_2O$
- 28 emissions (IPCC 2006) for 1990 to 2012.

⁷⁵ Estimates of Soil N₂O for *Settlements Remaining Settlements* include emissions from *Land Converted to Settlements* because it was not possible to separate the activity data.

- 1 Biosolids applications are derived from national data on biosolids generation, disposition, and N content (see
- 2 Section 7.2, Wastewater Treatment for further detail). The total amount of N resulting from these sources is
- 3 multiplied by the IPCC default emission factor for applied N (one percent) to estimate direct N₂O emissions (IPCC
- 4 2006) for 1990 to 2018.
- 5 The IPCC (2006) Tier 1 method is also used to estimate direct N₂O emissions due to drainage of organic soils in
- 6 settlements at the national scale. Estimates of the total area of drained organic soils are obtained from the 2015
- 7 NRI (USDA-NRCS 2018) using soils data from the Soil Survey Geographic Database (SSURGO) (Soil Survey Staff
- 8 2011). To estimate annual emissions from 1990 to 2015, the total area is multiplied by the IPCC default emission
- 9 factor for temperate regions (IPCC 2006). This Inventory does not include soil N₂O emissions from drainage of
- 10 organic soils in Alaska and federal lands, although this is a planned improvement for a future Inventory.
- 11 For indirect emissions, the total N applied from fertilizer and biosolids is multiplied by the IPCC default factors of
- 12 10 percent for volatilization and 30 percent for leaching/runoff to calculate the amount of N volatilized and the
- amount of N leached/runoff. The amount of N volatilized is multiplied by the IPCC default factor of one percent for
- the portion of volatilized N that is converted to N₂O off-site and the amount of N leached/runoff is multiplied by the IPCC default factor of 0.075 percent for the portion of leached/runoff N that is converted to N₂O off-site. The
- resulting estimates are summed to obtain total indirect emissions from 1990 to 2015 for fertilizer and from 1990
- 17 to 2018 for biosolids.
- A linear extrapolation of the trend in the time series is applied to estimate the direct and indirect N₂O emissions
- 19 for fertilizer and drainage of organic soils from 2016 to 2018 because N fertilizer inputs and area data for these
- 20 two sources have not been compiled for the latter part of the time series. Specifically, a linear regression model
- 21 with autoregressive moving-average (ARMA) errors (Brockwell and Davis 2016) is used to estimate the trend in
- emissions over time from 1990 to 2015, and in turn, the trend is used to approximate the 2016 to 2018 emissions.
- 23 The time series will be recalculated for the years beyond 2015 in a future inventory with the methods described
- 24 above for 1990 to 2015. This Inventory does incorporate updated activity data on biosolids application in
- 25 settlements through 2018.

26 Uncertainty and Time-Series Consistency

- 27 The amount of N₂O emitted from settlement soils depends not only on N inputs and area of drained organic soils,
- but also on a large number of variables that can influence rates of nitrification and denitrification, including organic
- 29 C availability; rate, application method, and timing of N input; oxygen gas partial pressure; soil moisture content;
- 30 pH; temperature; and irrigation/watering practices. The effect of the combined interaction of these variables on
- 31 N₂O emissions is complex and highly uncertain. The IPCC default methodology does not explicitly incorporate any
- 32 of these variables, except variations in the total amount of fertilizer N and biosolids applications, which in turn,
- 33 leads to uncertainty in the results.
- 34 Uncertainties exist in both the fertilizer N and biosolids application rates in addition to the emission factors.
- 35 Uncertainty in fertilizer N application is assigned a default level of ±50 percent.⁷⁶ Uncertainty in the area of
- drained organic soils is based on the estimated variance from the NRI survey (USDA-NRCS 2018). For 2016 to 2018,
- there is also additional uncertainty associated with the fit of the linear regression ARMA model for the data
- 38 splicing methods.
- 39 For biosolids, there is uncertainty in the amounts of biosolids applied to non-agricultural lands and used in surface
- 40 disposal. These uncertainties are derived from variability in several factors, including: (1) N content of biosolids; (2)
- 41 total sludge applied in 2000; (3) wastewater existing flow in 1996 and 2000; and (4) the biosolids disposal practice
- 42 distributions to non-agricultural land application and surface disposal. In addition, there is uncertainty in the direct
- 43 and indirect emission factors that are provided by IPCC (2006).

 $^{^{76}}$ No uncertainty is provided with the USGS fertilizer consumption data (Brakebill and Gronberg 2017) so a conservative ±50 percent is used in the analysis. Biosolids data are also assumed to have an uncertainty of ±50 percent.

- 1 Uncertainty is propagated through the calculations of N₂O emissions from fertilizer N and drainage of organic soils
- 2 based on a Monte Carlo analysis. The results are combined with the uncertainty in N₂O emissions from the
- 3 biosolids application using simple error propagation methods (IPCC 2006). The results are summarized in Table
- 4 6-84. Direct N₂O emissions from soils in *Settlements Remaining Settlements* in 2018 are estimated to be between
- 5 1.4 and 2.8 MMT CO₂ Eq. at a 95 percent confidence level. This indicates a range of 30 percent below to 38 percent
- above the 2018 emission estimate of 2.0 MMT CO₂ Eq. Indirect N₂O emissions in 2018 are between 0.2 and 0.5
- 7 MMT CO₂ Eq., ranging from 39 percent below to 39 percent above the estimate of 0.4 MMT CO₂ Eq.

Table 6-84: Quantitative Uncertainty Estimates of N₂O Emissions from Soils in *Settlements Remaining Settlements* (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emissions (MMT CO ₂ Eq.)		ty Range Relat CO2 Eq.)	ive to Emission १)	Estimate ^a %)
Settlements Remaining Settlements		· - · ·	Lower Bound	Upper Bound	Lower Bound	Upper Bound
Direct N ₂ O Emissions from Soils	N ₂ O	2.0	1.4	2.8	-30%	38%
Indirect N ₂ O Emissions from Soils	N ₂ O	0.4	0.2	0.5	-39%	39%

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval. Note: These estimates include direct and indirect N₂O emissions from *Settlements Remaining Settlements* and *Land Converted to Settlements* because it was not possible to separate the activity data.

- 10 Methodological recalculations are applied with the new activity data described above. Details on the emission
- 11 trends through time are described in more detail in the Methodology section, above.

12 **QA/QC and Verification**

- 13 The spreadsheet containing fertilizer, drainage of organic soils, and biosolids applied to settlements and
- calculations for N₂O and uncertainty ranges have been checked. An error was found in the uncertainty calculation
 that was corrected.

16 **Recalculations Discussion**

The entire time series was recalculated based on updates to the land representation data with the release of the 2018 NRI (USDA-NRCS 2018) and additional information from the NLCD (Yang et al. 2018; Fry et al. 2011; Homer et al. 2007, 2015). The amount of fertilizer applied to settlements was also revised based on the USGS data product with information about off-farm fertilizer application (Brakebill and Gronberg 2017). In addition, the data splicing method has been used to re-estimate N₂O emissions for 2016 and 2017 from the previous Inventory. These recalculations led to a decrease in emissions of 0.27 MMT CO₂ Eq., or 15 percent, on average across the time series.

24 Planned Improvements

25 This source will be extended to include soil N₂O emissions from drainage of organic soils in settlements of Alaska

and federal lands in order to provide a complete inventory of emissions for this category. Data on fertilizer amount

- 27 and area of drained organic soils will be compiled to update emissions estimates from 2016 to 2018 in a future
- 28 Inventory.

Changes in Yard Trimmings and Food Scrap Carbon Stocks in Landfills (CRF Category 4E1)

In the United States, yard trimmings (i.e., grass clippings, leaves, and branches) and food scraps (food waste from
 residential, commercial, and institutional sources) account for a significant portion of the municipal waste stream,

and a large fraction of the collected yard trimmings and food scraps are put in landfills. Carbon (C) contained in
 landfilled yard trimmings and food scraps can be stored for very long periods.

Carbon-storage estimates within the Inventory are associated with particular land uses. For example, harvested
wood products are reported under *Forest Land Remaining Forest Land* because these wood products originated
from the forest ecosystem. Similarly, C stock changes in yard trimmings and food scraps are reported under

10 Settlements Remaining Settlements because the bulk of the C, which comes from yard trimmings, originates from

settlement areas and because food scraps are generated by settlements. While the majority of food scraps

12 originate from cropland and grassland, this Inventory has chosen to report these with the yard trimmings in the

13 Settlements Remaining Settlements section. Additionally, landfills are considered part of the managed land base

under settlements (see Section 6.1 Representation of the U.S. Land Base), and therefore reporting these C stock changes that occur entirely within landfills fits most appropriately within the *Settlements Remaining Settlements*

16 section.

17 Both the amount of yard trimmings collected annually and the fraction that is landfilled have declined over the last

decade. In 1990, over 58 million metric tons (wet weight) of yard trimmings and food scraps were generated (i.e.,

19 put at the curb for collection to be taken to disposal sites or to composting facilities) (EPA 2016). Since then,

20 programs banning or discouraging yard trimmings disposal in landfills have led to an increase in backyard

21 composting and the use of mulching mowers, and a consequent 1.4 percent decrease in the tonnage of yard

trimmings generated (i.e., collected for composting or disposal in landfills). At the same time, an increase in the

number of municipal composting facilities has reduced the proportion of collected yard trimmings that are
 discarded in landfills—from 72 percent in 1990 to 31 percent in 2017 (EPA 2018). The net effect of the reduction in

25 generation and the increase in composting is a 57 percent decrease in the quantity of yard trimmings disposed of

26 in landfills since 1990.⁷⁷

27 Food scrap generation has grown by 61 percent since 1990, and while the proportion of total food scraps

generated that are eventually discarded in landfills has decreased slightly, from 82 percent in 1990 to 76 percent in

29 2017, the tonnage disposed of in landfills has increased considerably (by 50 percent) due to the increase in food

30 scrap generation.⁷⁸ Although the total tonnage of food scraps disposed of in landfills has increased from 1990 to

31 2017, the difference in the amount of food scraps added from one year to the next has generally decreased, and

32 consequently the annual carbon stock *net changes* from food scraps have generally decreased as well (as shown in

- Table 6-85 and Table 6-86). As described in the Methodology section, the carbon stocks are modeled using data on
- the amount of yard trimmings and food scraps landfilled since 1960. These materials decompose over time,
- 35 producing CH₄ and CO₂. Decomposition happens at a higher rate initially, then decreases. As decomposition

36 decreases, the carbon stock becomes more stable. Because the cumulative carbon stock left in the landfill from

37 previous years is (1) not decomposing as much as the carbon introduced from yard trimmings and food scraps in a

single more recent year; and (2) is much larger than the carbon introduced from yard trimmings and food scraps in a single more recent year, the total carbon stock in the landfill is primarily driven by the more stable 'older' carbon

- a single more recent year, the total carbon stock in the landfill is primarily driven by th
 stock, thus resulting in less annual change in later years."
- 41 Overall, the decrease in the landfill disposal rate of yard trimmings has more than compensated for the increase in
- food scrap disposal in landfills, and the net result is a decrease in annual *net change* in landfill C storage from 24.5
- 43 MMT CO₂ Eq. (6.7 MMT C) in 1990 to 12.3 MMT CO₂ Eq. (3.3 MMT C) in 2018 (Table 6-85 and Table 6-86).

⁷⁷ Landfilled yard trimming amounts were not estimated for 2018; the values are estimated from 1990-2017.

⁷⁸ Food scrap generation was not estimated for 2018; the values are estimated from 1990-2017.

Table 6-85: Net Changes in Yard Trimmings and Food Scrap Carbon Stocks in Landfills 1

2 (MMT CO₂ Eq.)

Carbon Pool	1990	2005	2014	2015	2016	2017	2018
Yard Trimmings	(20.1)	(7.5)	(8.3)	(8.4)	(8.4)	(8.4)	(8.8)
Grass	(1.7)	(0.6)	(0.8)	(0.8)	(0.8)	(0.7)	(0.7)
Leaves	(8.7)	(3.4)	(3.8)	(3.9)	(3.9)	(4.0)	(4.0)
Branches	(9.8)	(3.4)	(3.7)	(3.7)	(3.7)	(3.8)	(3.8)
Food Scraps	(4.4)	(3.9)	(3.9)	(3.7)	(3.5)	(3.6)	(3.5)
Total Net Flux	(24.5)	(11.4)	(12.3)	(12.1)	(11.9)	(12.0)	(12.3)

Notes: Totals may not sum due to independent rounding. Parentheses indicate net sequestration.

3 Table 6-86: Net Changes in Yard Trimmings and Food Scrap Carbon Stocks in Landfills TC)

4 (MM	
--------------	--

Carbon Pool	1990	2005	2014	2015	2016	2017	2018
Yard Trimmings	(5.5)	(2.0)	(2.3)	(2.3)	(2.3)	(2.3)	(2.4)
Grass	(0.5)	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)
Leaves	(2.4)	(0.9)	(1.0)	(1.1)	(1.1)	(1.1)	(1.1)
Branches	(2.7)	(0.9)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)
Food Scraps	(1.2)	(1.1)	(1.1)	(1.0)	(1.0)	(1.0)	(1.0)
Total Net Flux	(6.7)	(3.1)	(3.3)	(3.3)	(3.2)	(3.3)	(3.3)

Notes: Totals may not sum due to independent rounding. Parentheses indicate net sequestration.

Methodology 5

6 When wastes of biogenic origin (such as yard trimmings and food scraps) are landfilled and do not completely

7 decompose, the C that remains is effectively removed from the C cycle. Empirical evidence indicates that yard

8 trimmings and food scraps do not completely decompose in landfills (Barlaz 1998, 2005, 2008; De la Cruz and

9 Barlaz 2010), and thus the stock of C in landfills can increase, with the net effect being a net atmospheric removal

10 of C. Estimates of net C flux resulting from landfilled yard trimmings and food scraps were developed by estimating

11 the change in landfilled C stocks between inventory years, based on methodologies presented for the Land Use,

12 Land-Use Change, and Forestry sector in IPCC (2003) and the 2006 IPCC Guidelines for National Greenhouse Gas 13 Inventories (IPCC 2006). Carbon stock estimates were calculated by determining the mass of landfilled C resulting

14 from yard trimmings and food scraps discarded in a given year; adding the accumulated landfilled C from previous

15 years; and subtracting the mass of C that was landfilled in previous years and has since decomposed.

16 To determine the total landfilled C stocks for a given year, the following were estimated: (1) The composition of

17 the yard trimmings; (2) the mass of yard trimmings and food scraps discarded in landfills; (3) the C storage factor of 18 the landfilled yard trimmings and food scraps; and (4) the rate of decomposition of the degradable C. The

19 composition of yard trimmings was assumed to be 30 percent grass clippings, 40 percent leaves, and 30 percent

20 branches on a wet weight basis (Oshins and Block 2000). The yard trimmings were subdivided, because each

21 component has its own unique adjusted C storage factor (i.e., moisture content and C content) and rate of

22 decomposition. The mass of yard trimmings and food scraps disposed of in landfills was estimated by multiplying

23 the quantity of yard trimmings and food scraps discarded by the proportion of discards managed in landfills. Data

24 on discards (i.e., the amount generated minus the amount diverted to centralized composting facilities) for both

25 yard trimmings and food scraps were taken primarily from Advancing Sustainable Materials Management: Facts

26 and Figures 2015 (EPA 2018), which provides data for 1960, 1970, 1980, 1990, 2000, 2005, 2010, 2014, and 2015.

27 To provide data for some of the missing years, detailed backup data were obtained from the 2012, 2013, and 2014,

28 and 2015 versions of the Advancing Sustainable Materials Management: Facts and Figures reports (EPA 2018), as

29 well as historical data tables that EPA developed for 1960 through 2012 (EPA 2016). Remaining years in the time

30 series for which data were not provided were estimated using linear interpolation. Due to the limited update this

31 inventory year, the amount of yard trimming and food scraps for 2018 were not estimated (2018 emissions were

32 projected, as described later in this chapter). It is assumed that the proportion of each individual material (food

33 scraps, grass, leaves, branches) that is landfilled is the same as the proportion across the overall waste stream,

- although the EPA (2018) report and historical data tables (EPA 2016) do not subdivide the discards (i.e., total
- 2 generated minus composted) of individual materials into amounts landfilled and combusted (it provides a mass of
- 3 overall waste stream discards managed in landfills⁷⁹ and combustors with energy recovery).
- 4 The amount of C disposed of in landfills each year, starting in 1960, was estimated by converting the discarded
- 5 landfilled yard trimmings and food scraps from a wet weight to a dry weight basis (the EPA reports provide wet
- 6 weight data), and then multiplying by the initial (i.e., pre-decomposition) C content (as a fraction of dry weight).
- 7 The dry weight of landfilled material was calculated using dry weight to wet weight ratios (Tchobanoglous et al.
- 8 1993, cited by Barlaz 1998) and the initial C contents and the C storage factors were determined by Barlaz (1998,
- 9 2005, 2008) (Table 6-87).
- 10 The amount of C remaining in the landfill for each subsequent year was tracked based on a simple model of C fate.
- 11 As demonstrated by Barlaz (1998, 2005, 2008), a portion of the initial C resists decomposition and is essentially
- 12 persistent in the landfill environment. Barlaz (1998, 2005, 2008) conducted a series of experiments designed to
- 13 measure biodegradation of yard trimmings, food scraps, and other materials, in conditions designed to promote
- decomposition (i.e., by providing ample moisture and nutrients). After measuring the initial C content, the
- materials were placed in sealed containers along with methanogenic microbes from a landfill. Once decomposition was complete, the yard trimmings and food scraps were re-analyzed for C content; the C remaining in the solid
- 17 sample can be expressed as a proportion of the initial C (shown in the row labeled "C Storage Factor, Proportion of
- 18 Initial C Stored (%)" in Table 6-87).
- 19 The modeling approach applied to simulate U.S. landfill C flows builds on the findings of Barlaz (1998, 2005, 2008).
- 20 The proportion of C stored is assumed to persist in landfills. The remaining portion is assumed to degrade over
- time, resulting in emissions of CH₄ and CO₂. (CH₄ and CO₂ are the primary constituents of landfill gas and emissions.
- 22 However, the 2006 IPCC Guidelines set an internal convention to not report biogenic CO₂ from activities in the
- 23 waste sector. The CH₄ emissions resulting from decomposition of yard trimmings and food scraps are reported in
- 24 the *Waste* chapter.) The degradable portion of the C is assumed to decay according to first-order kinetics. The
- 25 decay rates for each of the materials are shown in Table 6-87.
- 26 The first-order decay rates, *k*, for each waste component are derived from De la Cruz and Barlaz (2010):
- 27 De la Cruz and Barlaz (2010) calculate first-order decay rates using laboratory data published in Eleazer et 28 al. (1997), and a correction factor, f_i is calculated so that the weighted average decay rate for all 29 components is equal to the EPA AP-42 default decay rate (0.04) for mixed MSW for regions that receive 30 more than 25 inches of rain annually (EPA 1995). Because AP-42 values were developed using landfill data 31 from approximately 1990, De la Cruz and Barlaz used 1990 waste composition for the United States from 32 EPA's Characterization of Municipal Solid Waste in the United States: 1990 Update (EPA 1991) to calculate 33 f. De la Cruz and Barlaz multiplied this correction factor by the Eleazer et al. (1997) decay rates of each 34 waste component to develop field-scale first-order decay rates.
- De la Cruz and Barlaz (2010) also use other assumed initial decay rates for mixed MSW in place of the AP 42 default value based on different types of environments in which landfills in the United States are
 located, including dry conditions (less than 25 inches of rain annually, k=0.02) and bioreactor landfill
 conditions (moisture is controlled for rapid decomposition, k=0.12).
- 39 Similar to the methodology in the Landfills section of the Inventory (Section 7.1), which estimates CH₄ emissions,
- 40 the overall MSW decay rate is estimated by partitioning the U.S. landfill population into three categories based on
- 41 annual precipitation ranges of: (1) Less than 20 inches of rain per year, (2) 20 to 40 inches of rain per year, and (3)
- 42 greater than 40 inches of rain per year. These correspond to overall MSW decay rates of 0.020, 0.038, and 0.057

⁷⁹ EPA (2018 and 2016) reports discards in two categories: "combustion with energy recovery" and "landfill, other disposal," which includes combustion without energy recovery. For years in which there is data from previous EPA reports on combustion without energy recovery, EPA assumes these estimates are still applicable. For 2000 to present, EPA assumes that any combustion of MSW that occurs includes energy recovery, so all discards to "landfill, other disposal" are assumed to go to landfills.

year⁻¹, respectively. De la Cruz and Barlaz (2010) calculate component-specific decay rates corresponding to the
 first value (0.020 year⁻¹), but not for the other two overall MSW decay rates.

3 To maintain consistency between landfill methodologies across the Inventory, EPA developed correction factors (f)

for decay rates of 0.038 and 0.057 year⁻¹ through linear interpolation. A weighted national average component-

5 specific decay rate is calculated by assuming that waste generation is proportional to population (the same

6 assumption used in the landfill methane emission estimate), based on population data from the 2000 U.S. Census.

7 The percent of census population is calculated for each of the three categories of annual precipitation (noted in

8 the previous paragraph); the population data are used as a surrogate for the number of landfills in each annual

9 precipitation category. The component-specific decay rates are shown in Table 6-87.

For each of the four materials (grass, leaves, branches, food scraps), the stock of C in landfills for any given year is calculated according to Equation 1:

12 13

14

$$LFC_{i,t} = \sum_{n} W_{i,n} \times (1 - MC_i) \times ICC_i \times \{ [CS_i \times ICC_i] + [(1 - (CS_i \times ICC_i)) \times e^{-k(t-n)}] \}$$

15 where,

16	t	=	Year for which C stocks are being estimated (year),
17	i	=	Waste type for which C stocks are being estimated (grass, leaves, branches, food
18			scraps),
19	LFC _{i,t}	=	Stock of C in landfills in year t, for waste i (metric tons),
20	Wi,n	=	Mass of waste <i>i</i> disposed of in landfills in year <i>n</i> (metric tons, wet weight),
21	n	=	Year in which the waste was disposed of (year, where 1960 < <i>n</i> < <i>t</i>),
22	MCi	=	Moisture content of waste <i>i</i> (percent of water),
23	CSi	=	Proportion of initial C that is stored for waste <i>i</i> (percent),
24	ICCi	=	Initial C content of waste <i>i</i> (percent),
25	е	=	Natural logarithm, and
26	k	=	First-order decay rate for waste <i>i</i> , (year ^{−1}).

For a given year t, the total stock of C in landfills (*TLFCt*) is the sum of stocks across all four materials (grass, leaves,
branches, food scraps). The annual flux of C in landfills (*Ft*) for year t is calculated in Equation 2 as the change in

29 stock compared to the preceding year:

30

$$F_t = TLFC_t - TLFC_{(t-1)}$$

Thus, as seen in Equation 1, the C placed in a landfill in year *n* is tracked for each year *t* through the end of the

32 inventory period. For example, disposal of food scraps in 1960 resulted in depositing about 1,135,000 metric tons

of C in landfills. Of this amount, 16 percent (179,000 metric tons) is persistent; the remaining 84 percent (956,000

metric tons) is degradable. By 1965, more than half of the degradable portion (518,000 metric tons) decomposes,
 leaving a total of 617,000 metric tons (the persistent portion, plus the remainder of the degradable portion).

Continuing the example, by 2017, the total food scraps C originally disposed of in 1960 had declined to 178,900

37 metric tons (i.e., virtually all degradable C had decomposed). By summing the C remaining from 1960 with the C

remaining from food scraps disposed of in subsequent years (1961 through 2017), the total landfill C from food

39 scraps in 2017 was 45.3 million metric tons. This value is then added to the C stock from grass, leaves, and

40 branches to calculate the total landfill C stock in 2017, yielding a value of 275.5 million metric tons (as shown in

Table 6-88).⁸⁰ In the same way total net flux is calculated for forest C and harvested wood products, the total net

42 flux of landfill C for yard trimmings and food scraps for a given year (Table 6-86) is the difference in the landfill C

43 stock for that year and the stock in the next year. For example, the net change in 2017 shown in Table 6-86 (3.3

44 MMT C) is equal to the stock in 2017 (275.5 MMT C) minus the stock in 2018 (278.8 MMT C). The C stocks used in

45 the net change calculation are shown in Table 6-88.

⁸⁰ Carbon stock mass and decomposition was not estimated for 2018; the values are only estimated from 1990 to 2017.

1 Table 6-87: Moisture Contents, C Storage Factors (Proportions of Initial C Sequestered),

2 Initial C Contents, and Decay Rates for Yard Trimmings and Food Scraps in Landfills

Variable		Food Sevens			
variable	Grass	Leaves	Branches	Food Scraps	
Moisture Content (% H ₂ O)	70	30	10	70	
C Storage Factor, Proportion of Initial C					
Stored (%)	53	85	77	16	
Initial C Content (%)	45	46	49	51	
Decay Rate (year ⁻¹)	0.323	0.185	0.016	0.156	

3 Table 6-88: C Stocks in Yard Trimmings and Food Scraps in Landfills (MMT C)

Carbon Pool	1990	2005	2014	2015	2016	2017	2018	2019
Yard Trimmings	156.0	203.1	223.4	225.7	228.0	230.3	232.6	234.9
Branches	14.6	18.1	20.0	20.2	20.4	20.6	20.8	21.0
Leaves	66.7	87.3	96.6	97.7	98.7	99.8	100.9	102.0
Grass	74.7	97.7	106.8	107.8	108.9	109.9	110.9	111.9
Food Scraps	17.9	33.2	42.2	43.3	44.3	45.3	46.3	47.2
Total Carbon Stocks	173.9	236.3	265.7	269.0	272.3	275.5	278.8	282.2

Note: Totals may not sum due to independent rounding.

4 To develop the 2018 and 2019 C stock estimates, estimates of yard trimming and food scrap carbon stocks were

5 forecasted for 2018 and 2019, based on data from the 1990 through 2007 inventory. These forecasted values were

6 used to calculate net changes in carbon stocks for the previous year. Excel's FORECAST.ETS function was used to

7 predict a 2018 and 2019 value using historical data via an algorithm called "Exponential Triple Smoothing". This

8 method determined the overall trend and provided appropriate carbon stock estimates for 2018 and 2019.

9 Uncertainty and Time-Series Consistency

10 The uncertainty analysis for landfilled yard trimmings and food scraps includes an evaluation of the effects of

11 uncertainty for the following data and factors: disposal in landfills per year (tons of C), initial C content, moisture

12 content, decay rate, and proportion of C stored. The estimates of C storage in landfills are also a function of the

13 composition of the yard trimmings (i.e., the proportions of grass, leaves and branches in the yard trimmings

14 mixture). There are respective uncertainties associated with each of these factors.

15 A Monte Carlo (Approach 2) uncertainty analysis that was run on the 1990-2017 inventory was applied to estimate

16 the overall uncertainty of the C storage estimate for 2018. The results of the Approach 2 quantitative uncertainty

analysis are summarized in Table 6-89. Total yard trimmings and food scraps CO₂ flux in 2018 was estimated to be

18 between -19.3 and -5.0 MMT CO₂ Eq. at a 95 percent confidence level (or 19 of 20 Monte Carlo stochastic

simulations). This indicates a range of 57 percent below to 59 percent above the 2018 flux estimate of -12.3 MMT
 CO₂ Eq.

21 Table 6-89: Approach 2 Quantitative Uncertainty Estimates for CO₂ Flux from Yard

22 Trimmings and Food Scraps in Landfills (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Flux Estimate	Uncert	ainty Range Rel	ative to Flux Es	timateª			
		(MMT CO ₂ Eq.)	(MMT)	CO2 Eq.)	(9	%)			
			Lower	Upper	Lower	Upper			
			Bound	Bound	Bound	Bound			
Yard Trimmings and Food	CO ₂	(12.3)	(19.3)	(5.0)	-57%	59%			
Scraps	CO_2	(12.3)	(19.3)	(5.0)	-57%	59%			

^a Range of flux estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval. Note: Parentheses indicate negative values or net C storage.

1 QA/QC and Verification

- 2 Tier 1 and Tier 2 QA/QC activities were conducted consistent with the U.S. QA/QC plan. Source-specific quality
- 3 control measures for Landfilled Yard Trimmings and Food Scraps included checking that input data were properly
- 4 transposed within the spreadsheet, checking calculations were correct, and confirming that all activity data and
- 5 calculations documentation was complete and updated to ensure data were properly handled through the
- 6 inventory process.
- 7 Order of magnitude checks and checks of time-series consistency were performed to ensure data were updated
- 8 correctly and any changes in emissions estimates were reasonable and reflected changes in activity data. An
- 9 annual change trend analysis was also conducted to ensure the validity of the emissions estimates. No errors were
- 10 found.

11 Recalculations

- 12 A recent review of the total net flux methodology determined that the net flux was calculated incorrectly for this
- 13 category in the 1990 to 2017 Inventory. The net change for a specific year was calculated by subtracting the C
- stock in the previous year from the C stock in the specific year. This calculation has been corrected, to calculate
- 15 the net change by subtracting the C stock in the next year from C stock in the specific year. The corrections
- 16 resulted in slight changes across the time series. The methodological approach now used is consistent with the
- 17 calculation of net C flux for forest ecosystems and harvested wood products in Chapter 6.2 of this Inventory.

18 Planned Improvements

- 19 Future work is planned to evaluate the consistency between the estimates of C storage described in this chapter
- and the estimates of landfill CH₄ emissions described in the Waste chapter. For example, the Waste chapter does
- not distinguish landfill CH₄ emissions from yard trimmings and food scraps separately from landfill CH₄ emissions
- from total bulk (i.e., municipal solid) waste, which includes yard trimmings and food scraps. In future years, as time
- and resources allow, EPA will further evaluate both categories to ensure consistency. However, because there are
- 24 no plans to separate out yard trimmings and food scraps when estimating landfill emissions in the Waste chapter
- 25 (section 7.2) this evaluation may not be possible. In part, this is because the estimates in section 7.2 are developed
- 26 using data from EPA's Greenhouse Gas Reporting Program for which only very few facilities break out these types
- 27 of waste (for more details on the landfills methodology see section 7.2).
- 28 In addition, data from recent peer-reviewed literature will be evaluated that may modify the default C storage
- factors, initial C contents, and decay rates for yard trimmings and food scraps in landfills. Based upon this
- 30 evaluation, changes may be made to the default values.
- 31 EPA will also investigate updates to the decay rate estimates for food scraps, leaves, grass, and branches. Currently
- 32 the inventory calculations use 2010 U.S. Census data to take into account the fact that these items are relative to
- population. EPA will evaluate using decay rates that vary over time based on Census data changes over time.
- 34 Yard waste composition will also be investigated to determine if changes need to be made based on changes in
- residential practices, a review of available literature will be conducted to determine if there are changes in the
- allocation of yard trimmings. For example, leaving grass clippings in place is becoming a more common practice,
- thus reducing the percentage of grass clippings in yard trimmings disposed in landfills. In addition, agronomists
- 38 may be consulted for determining the mass of grass per acre on residential lawns to provide an estimate of total
- 39 grass generation for comparison with Inventory estimates.
- 40 Finally, EPA will review available data to ensure all types of landfilled yard trimmings and food scraps are being
- 41 included in Inventory estimates, such as debris from road construction and commercial food waste not included in
- 42 other chapter estimates.

6.11 Land Converted to Settlements (CRF Category 4E2)

Land Converted to Settlements includes all settlements in an Inventory year that had been in another land use(s) 3 during the previous 20 years (USDA-NRCS 2015).⁸¹ For example, cropland, grassland or forest land converted to 4 5 settlements during the past 20 years would be reported in this category. Converted lands are retained in this 6 category for 20 years as recommended by IPCC (2006). This Inventory includes all settlements in the conterminous 7 United States and Hawaii, but does not include settlements in Alaska. Areas of drained organic soils on settlements 8 in federal lands are also not included in this Inventory. Consequently, there is a discrepancy between the total 9 amount of managed area for Land Converted to Settlements (see Section 6.1 Representation of the U.S. Land Base) 10 and the settlements area included in the Inventory analysis.

- 11 Land use change can lead to large losses of carbon (C) to the atmosphere, particularly conversions from forest land
- 12 (Houghton et al. 1983). Moreover, conversion of forest to another land use (i.e., deforestation) is one of the largest
- anthropogenic sources of emissions to the atmosphere globally (Schimel 1995), although this source may be
- 14 declining globally according to a recent assessment (Tubiello et al. 2015).
- 15 IPCC (2006) recommends reporting changes in biomass, dead organic matter, and soil organic C (SOC) stocks due
- to land use change. All soil C stock changes are estimated and reported for *Land Converted to Settlements*, but
- 17 there is limited reporting of other pools in this Inventory. Loss of aboveground and belowground biomass, dead
- 18 wood and litter C are reported for *Forest Land Converted to Settlements*, but not for other land use conversions to 19 settlements.
- 20 Forest Land Converted to Settlements is the largest source of emissions from 1990 to 2018, accounting for
- 21 approximately 76 percent of the average total loss of C among all of the land use conversions in Land Converted to
- 22 Settlements. Losses of aboveground and belowground biomass, dead wood and litter C losses in 2018 are 36.9, 7.2,
- 23 6.7, and 9.9 MMT CO₂ Eq. (10.1, 2.0, 1.8, and 2.7 MMT C). Mineral and organic soils also lost 16.2 and 2.4 MMT
- 24 CO₂ Eq. in 2018 (4.4 and 0.6 MMT C). The total net flux is 79.3 MMT CO₂ Eq. in 2018 (21.6 MMT C), which is a 26
- 25 percent increase in CO₂ emissions compared to the emissions in the initial reporting year of 1990. The main driver
- 26 of net emissions for this source category is the conversion of forest land to settlements, with large losses of
- 27 biomass, deadwood and litter C.

Table 6-90: Net CO₂ Flux from Soil, Dead Organic Matter and Biomass C Stock Changes for *Land Converted to Settlements* (MMT CO₂ Eq.)

	1990	2005	2014	2015	2016	2017	2018
Cropland Converted to							
Settlements	3.4	9.8	6.7	6.2	6.0	6.0	5.9
Mineral Soils	2.8	8.4	5.8	5.3	5.2	5.2	5.2
Organic Soils	0.6	1.3	0.9	0.8	0.8	0.8	0.8
Forest Land Converted to							
Settlements	54.6	59.9	62.9	63.0	62.9	62.9	62.9
Aboveground Live Biomass	32.5	35.1	36.8	36.9	36.9	36.9	36.9
Belowground Live Biomass	6.3	6.8	7.1	7.2	7.2	7.2	7.2
Dead Wood	5.8	6.3	6.7	6.7	6.7	6.7	6.7
Litter	8.7	9.4	9.8	9.9	9.9	9.9	9.9
Mineral Soils	1.1	2.0	2.1	2.0	1.9	1.9	1.9
Organic Soils	0.2	0.3	0.3	0.3	0.3	0.3	0.3

⁸¹ NRI survey locations are classified according to land-use histories starting in 1979, and consequently the classifications are based on less than 20 years from 1990 to 2001. This may have led to an underestimation of *Land Converted to Settlements* in the early part of the time series to the extent that some areas are converted to settlements from 1971 to 1978.

Grassland Converted							
Settlements	5.2	16.3	12.7	11.9	11.3	11.3	11.3
Mineral Soils	4.6	14.9	11.7	11.0	10.4	10.4	10.4
Organic Soils	0.6	1.4	1.0	0.9	0.9	0.9	0.9
Other Lands Converted to							
Settlements	(0.4)	(1.4)	(1.3)	(1.2)	(1.2)	(1.2)	(1.2)
Mineral Soils	(0.4)	(1.6)	(1.5)	(1.3)	(1.3)	(1.3)	(1.3)
Organic Soils	+	0.2	0.1	0.1	0.1	0.1	0.1
Wetlands Converted to							
Settlements	+	0.5	0.4	0.4	0.4	0.4	0.4
Mineral Soils	+	0.1	0.1	0.1	0.1	0.1	0.1
Organic Soils	+	0.4	0.3	0.3	0.3	0.3	0.3
Total Aboveground Biomass Flux	32.5	35.1	36.8	36.9	36.9	36.9	36.9
Total Belowground Biomass Flux	6.3	6.8	7.1	7.2	7.2	7.2	7.2
Total Dead Wood Flux	5.8	6.3	6.7	6.7	6.7	6.7	6.7
Total Litter Flux	8.7	9.4	9.8	9.9	9.9	9.9	9.9
Total Mineral Soil Flux	8.1	23.8	18.2	17.0	16.3	16.2	16.2
Total Organic Soil Flux	1.4	3.6	2.7	2.5	2.4	2.4	2.4
Total Net Flux	62.9	85.0	81.4	80.1	79.4	79.3	79.3

+ Does not exceed 0.05 MMT CO₂ Eq.

Table 6-91: Net CO₂ Flux from Soil, Dead Organic Matter and Biomass C Stock Changes for *Land Converted to Settlements* (MMT C)

	1990	2005	2014	2015	2016	2017	2018
Cropland Converted to							
Settlements	0.9	2.7	1.8	1.7	1.6	1.6	1.6
Mineral Soils	0.8	2.3	1.6	1.5	1.4	1.4	1.4
Organic Soils	0.2	0.4	0.2	0.2	0.2	0.2	0.2
Forest Land Converted to							
Settlements	14.9	16.3	17.1	17.2	17.1	17.1	17.1
Aboveground Live Biomass	8.9	9.6	10.0	10.1	10.1	10.1	10.1
Belowground Live Biomass	1.7	1.9	1.9	2.0	2.0	2.0	2.0
Dead Wood	1.6	1.7	1.8	1.8	1.8	1.8	1.8
Litter	2.4	2.6	2.7	2.7	2.7	2.7	2.7
Mineral Soils	0.3	0.5	0.6	0.5	0.5	0.5	0.5
Organic Soils	+	0.1	0.1	0.1	0.1	0.1	0.1
Grassland Converted							
Settlements	1.4	4.4	3.5	3.2	3.1	3.1	3.1
Mineral Soils	1.3	4.1	3.2	3.0	2.8	2.8	2.8
Organic Soils	0.2	0.4	0.3	0.3	0.2	0.2	0.2
Other Lands Converted to							
Settlements	(0.1)	(0.4)	(0.4)	(0.3)	(0.3)	(0.3)	(0.3)
Mineral Soils	(0.1)	(0.4)	(0.4)	(0.4)	(0.4)	(0.4)	(0.4)
Organic Soils	+	+	+	+	+	+	+
Wetlands Converted to							
Settlements	+	0.1	0.1	0.1	0.1	0.1	0.1
Mineral Soils	+	+	+	+	+	+	+
Organic Soils	+	0.1	0.1	0.1	0.1	0.1	0.1
Total Aboveground Biomass Flux	8.9	9.6	10.0	10.1	10.1	10.1	10.1
Total Belowground Biomass Flux	1.7	1.9	1.9	2.0	2.0	2.0	2.0
Total Dead Wood Flux	1.6	1.7	1.8	1.8	1.8	1.8	1.8
Total Litter Flux	2.4	2.6	2.7	2.7	2.7	2.7	2.7
Total Mineral Soil Flux	2.2	6.5	5.0	4.6	4.4	4.4	4.4
Total Organic Soil Flux	0.4	1.0	0.7	0.7	0.7	0.7	0.6
Total Net Flux	17.1	23.2	22.2	21.9	21.6	21.6	21.6

+ Does not exceed 0.05 MMT C.

1 Methodology

2 The following section includes a description of the methodology used to estimate C stock changes for Land

3 Converted to Settlements, including (1) loss of aboveground and belowground biomass, dead wood and litter C

4 with conversion of forest lands to settlements, as well as (2) the impact from all land use conversions to

5 settlements on mineral and organic soil C stocks.

6 Biomass, Dead Wood, and Litter Carbon Stock Changes

7 A Tier 2 method is applied to estimate biomass, dead wood, and litter C stock changes for Forest Land Converted to 8 Settlements. Estimates are calculated in the same way as those in the Forest Land Remaining Forest Land category 9 using data from the USDA Forest Service, Forest Inventory and Analysis (FIA) program (USDA Forest Service 2018), 10 however there is no country-specific data for settlements so the biomass, litter, and dead wood carbon stocks on 11 these converted lands were assumed to be zero. The difference between the stocks is reported as the stock 12 change under the assumption that the change occurred in the year of the conversion. If FIA plots include data on 13 individual trees, aboveground and belowground C density estimates are based on Woodall et al. (2011). 14 Aboveground and belowground biomass estimates also include live understory which is a minor component of 15 biomass defined as all biomass of undergrowth plants in a forest, including woody shrubs and trees less than 2.54 16 cm dbh. For this Inventory, it was assumed that 10 percent of total understory C mass is belowground (Smith et al. 17 2006). Estimates of C density are based on information in Birdsey (1996) and biomass estimates from Jenkins et al. 18 (2003). If FIA plots include data on standing dead trees, standing dead tree C density is estimated following the 19 basic method applied to live trees (Woodall et al. 2011) with additional modifications to account for decay and 20 structural loss (Domke et al. 2011; Harmon et al. 2011). If FIA plots include data on downed dead wood, downed 21 dead wood C density is estimated based on measurements of a subset of FIA plots for downed dead wood (Domke 22 et al. 2013; Woodall and Monleon 2008). Downed dead wood is defined as pieces of dead wood greater than 7.5 23 cm diameter, at transect intersection, that are not attached to live or standing dead trees. This includes stumps 24 and roots of harvested trees. To facilitate the downscaling of downed dead wood C estimates from the state-wide 25 population estimates to individual plots, downed dead wood models specific to regions and forest types within 26 each region are used. Litter C is the pool of organic C (also known as duff, humus, and fine woody debris) above 27 the mineral soil and includes woody fragments with diameters of up to 7.5 cm. A subset of FIA plots are measured 28 for litter C. If FIA plots include litter material, a modeling approach using litter C measurements from FIA plots is 29 used to estimate litter C density (Domke et al. 2016). See Annex 3.13 for more information about reference C 30 density estimates for forest land and the compilation system used to estimate carbon stock changes from forest 31 land.

32 Soil Carbon Stock Changes

Soil C stock changes are estimated for *Land Converted to Settlements* according to land-use histories recorded in
 the 2015 USDA NRI survey for non-federal lands (USDA-NRCS 2018). Land use and some management information

35 were originally collected for each NRI survey location on a 5-year cycle beginning in 1982. In 1998, the NRI program

began collecting annual data, and the annual data are currently available through 2015 (USDA-NRCS 2018).

37 NRI survey locations are classified as *Land Converted to Settlements* in a given year between 1990 and 2015 if the

38 land use is settlements but had been classified as another use during the previous 20 years. NRI survey locations

39 are classified according to land-use histories starting in 1979, and consequently the classifications are based on less

40 than 20 years from 1990 to 1998. This may have led to an underestimation of *Land Converted to Settlements* in the

early part of the time series to the extent that some areas are converted to settlement between 1971 and 1978.
 For foderal lands, the land use bitter is derived from land source changes in the National Land Course Dataset (Yang

For federal lands, the land use history is derived from land cover changes in the National Land Cover Dataset (Yang
et al. 2018; Fry et al. 2011; Homer et al. 2007, 2015).

44 Mineral Soil Carbon Stock Changes

1 An IPCC Tier 2 method (Ogle et al. 2003) is applied to estimate C stock changes for Land Converted to Settlements

- 2 on mineral soils from 1990 to 2015. Data on climate, soil types, land-use, and land management activity are used
- to classify land area and apply appropriate stock change factors (Ogle et al. 2003, 2006). Reference C stocks are
- 4 estimated using the National Soil Survey Characterization Database (USDA-NRCS 1997) with cultivated cropland as
- 5 the reference condition, rather than native vegetation as used in IPCC (2006). Soil measurements under
- agricultural management are much more common and easily identified in the National Soil Survey Characterization
 Database (USDA-NRCS 1997) than are soils under a native condition, and therefore cultivated cropland provide a
- Database (USDA-NRCS 1997) than are soils under a native condition, and therefore cultivated cropland provide a
 more robust sample for estimating the reference condition. U.S.-specific C stock change factors are derived from
- published literature to determine the impact of management practices on SOC storage (Ogle et al. 2003, Ogle et al.
- 10 2006). However, there are insufficient data to estimate a set of land use, management, and input factors for
- settlements. Moreover, the 2015 NRI survey data (USDA-NRCS 2018) do not provide the information needed to
- 12 assign different land use subcategories to settlements, such as turf grass and impervious surfaces, which is needed
- 13 to apply the Tier 1 factors from the IPCC guidelines (2006). Therefore, the United States has adopted a land use
- 14 factor of 0.7 to represent a net loss of soil C with conversion to settlements under the assumption that there are
- additional soil C losses with land clearing, excavation and other activities associated with development. More
- specific factor values can be derived in future inventories as data become available. See Annex 3.12 for additional
- 17 discussion of the Tier 2 methodology for mineral soils.
- 18 A linear extrapolation of the trend in the time series is applied to estimate soil C stock changes from 2016 to 2018
- 19 because NRI activity data are not available for these years. Specifically, a linear regression model with
- autoregressive moving-average (ARMA) errors (Brockwell and Davis 2016) is used to estimate the trend in stock
- changes over time from 1990 to 2015, and in turn, the trend is used to approximate stock changes from 2016 to
- 22 2018. The Tier 2 method described previously will be applied to recalculate the 2016 to 2018 emissions in a future
- 23 Inventory.

24 Organic Soil Carbon Stock Changes

- 25 Annual C emissions from drained organic soils in Land Converted to Settlements are estimated using the Tier 2
- 26 method provided in IPCC (2006). The Tier 2 method assumes that organic soils are losing C at a rate similar to
- 27 croplands, and therefore uses the country-specific values for cropland (Ogle et al. 2003). To estimate CO₂
- emissions from 1990 to 2015, the area of organic soils in *Land Converted to Settlements* is multiplied by the Tier 2
- 29 emission factor, which is 11.2 MT C per ha in cool temperate regions, 14.0 MT C per ha in warm temperate regions
- 30 and 14.3 MT C per ha in subtropical regions (See Annex 3.12 for more information). Similar to the mineral soil C
- stocks changes, a linear extrapolation of the trend in the time series is applied to estimate the emissions from 2016
- to 2018 because NRI activity data are not available for these years to determine the area of *Land Converted to*
- 33 Settlements.

34 Uncertainty and Time-Series Consistency

- 35 The uncertainty analysis for C losses with *Forest Land Converted to Settlements* is conducted in the same way as
- 36 the uncertainty assessment for forest ecosystem C flux in the *Forest Land Remaining Forest Land* category. Sample
- and model-based error are combined using simple error propagation methods provided by the IPCC (2006), i.e., by
- taking the square root of the sum of the squares of the standard deviations of the uncertain quantities. For
- 39 additional details see the Uncertainty Analysis in Annex 3.13. The uncertainty analysis for mineral soil C stock
- changes and annual C emission estimates from drained organic soils in *Land Converted to Settlements* is estimated
 using a Monte Carlo approach, which is also described in the *Cropland Remaining Cropland* section.
- 42 Uncertainty estimates are presented in Table 6-92 for each subsource (i.e., biomass C, dead wood, litter, mineral
- soil C and organic soil C) and the method applied in the inventory analysis (i.e., Tier 2 and Tier 3). Uncertainty
- estimates from the Tier 2 and 3 approaches are combined using the simple error propagation methods provided by
- 45 the IPCC (2006), i.e., as described in the previous paragraph. There are also additional uncertainties propagated
- through the analysis associated with the data splicing methods applied to estimate soil C stock changes from 2016
- 47 to 2018. The combined uncertainty for total C stocks in *Land Converted to Settlements* ranges from 33 percent
- 48 below to 33 percent above the 2018 stock change estimate of 79.3 MMT CO_2 Eq.

1 Table 6-92: Approach 2 Quantitative Uncertainty Estimates for Soil, Dead Organic Matter

- and Biomass C Stock Changes occurring within *Land Converted to Settlements* (MMT CO₂ Eq.
- 3 and Percent)

	2018 Flux Estimate	Uncertai	nty Range Rela	ative to Flux E	stimate ^a
Source	(MMT CO ₂ Eq.)	(MMT)	CO₂ Eq.)	(9	%)
		Lower	Upper	Lower	Upper
		Bound	Bound	Bound	Bound
Cropland Converted to Settlements	5.9	2.6	9.3	-56%	56%
Mineral Soil C Stocks	5.2	1.9	8.4	-63%	63%
Organic Soil C Stocks	0.8	0.2	1.4	-76%	76%
Forest Land Converted to Settlements	62.9	38.5	87.4	-39%	39%
Aboveground Biomass C Stocks	36.9	14.0	59.9	-62%	62%
Belowground Biomass C Stocks	7.2	2.7	11.7	-62%	62%
Dead Wood	6.7	3.5	10.9	-47%	62%
Litter	9.9	3.7	16.0	-62%	62%
Mineral Soil C Stocks	1.9	1.4	2.4	-27	27%
Organic Soil C Stocks	0.3	0.1	0.5	-68%	68%
Grassland Converted to Settlements	11.3	7.2	15.3	-36%	36%
Mineral Soil C Stocks	10.4	6.4	14.4	-38%	38%
Organic Soil C Stocks	0.9	0.2	1.6	-80%	80%
Other Lands Converted to Settlements	(1.2)	(1.8)	(0.5)	-56%	56%
Mineral Soil C Stocks	(1.3)	(1.9)	(0.7)	-49%	49%
Organic Soil C Stocks	0.1	0.1	0.3	-152%	152%
Wetlands Converted to Settlements	0.4	0.1	0.8	-83%	133%
Mineral Soil C Stocks	0.1	+	0.1	-87%	87%
Organic Soil C Stocks	0.3	+	0.8	100%	161%
Total: Land Converted to Settlements	79.3	53.0	105.7	-33%	33%
Aboveground Biomass C Stocks	36.9	14.0	59.9	-62%	62%
Belowground Biomass C Stocks	7.2	2.7	11.7	-62%	62%
Dead Wood	6.7	3.5	10.9	-47%	62%
Litter	9.9	3.7	16.0	-62%	62%
Mineral Soil C Stocks	16.2	11.0	21.4	-32%	16%
Organic Soil C Stocks	2.4	(6.0)	10.7	-351%	352%

+ Does not exceed 0.05 MMT CO_2 Eq.

^a Range of C stock change estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

4 Methodological recalculations are applied using the new activity data described above. Details on the emission

5 trends are described in more detail in the Methodology section, above.

6 QA/QC and Verification

7 Quality control measures included checking input data, model scripts, and results to ensure data are properly

- 8 handled throughout the inventory process. Inventory reporting forms and text are reviewed and revised as needed
- 9 to correct transcription errors. These checks uncovered errors in the calculation of uncertainty for mineral soils
- 10 that were corrected. There was also an error in handling of activity data for this source category in which
- settlement areas were only included if they had been in agriculture during the past. This led to an under-
- 12 estimation of drained organic soils in settlements that has been corrected in this Inventory.

13 Recalculations Discussion

- 14 The entire time series for mineral and organic soils was recalculated based on updates to the land representation
- data with the release of the 2018 NRI (USDA-NRCS 2018) and additional information from the NLCD (Yang et al.
- 16 2018; Fry et al. 2011; Homer et al. 2007, 2015), as well as the data splicing method that was applied to re-estimate
- 17 CO₂ emissions from mineral and organic soils for 2016 to 2017. In addition, the entire time series was updated with

- 1 recalculated biomass and dead organic matter losses for *Forest Land Converted to Settlements*. The time series was
- 2 also corrected based on the quality control problem that led to an under-estimation of drained organic soils in
- 3 settlements. The recalculations led to a decrease in emissions of 1.8 MMT CO₂ Eq., or 1.8 percent, on average
- 4 across the time series.

5 Planned Improvements

6 A planned improvement for the *Land Converted to Settlements* category is to develop an inventory of mineral soil

- 7 C stock changes in Alaska and losses of C from drained organic soils in federal lands. This includes C stock changes
- 8 for biomass, dead organic matter and soils. See Table 6-93 for the amount of managed land area in *Land Converted*
- 9 to Settlements that is not included in the Inventory due to these omissions. The managed area that is not included

10 in the Inventory ranges between 0 and about 600 thousand hectares depending on the year.

- 11 There are plans to improve classification of trees in settlements and to include transfer of biomass with *Forest*
- 12 Land Converted to Settlements (i.e., currently assume that all biomass is removed during conversion). There are
- 13 also plans to extend the Inventory to include C losses associated with drained organic soils in settlements occurring
- 14 on federal lands. New land representation data will also be compiled, and the time series recalculated for the
- 15 latter years in the time series that are estimated using data splicing methods in this Inventory. These
- 16 improvements will be made as funding and resources are available to expand the inventory for this source
- 17 category.

18 Table 6-93: Area of Managed Land in *Settlements Remaining Settlements* that is not

- 19 included in the current Inventory (Thousand Hectares)
- 20

	Area (Thousand Hecta	res)
Year	LCS Managed Land Area (Section 6.1)	LCS Area Included in Inventory	LCS Area Not Included in Inventory
1990	2,861	2,861	0
1991	3,238	3,238	0
1992	3,592	3,592	0
1993	4,178	4,107	72
1994	4,777	4,630	147
1995	5,384	5,161	223
1996	5,927	5,658	269
1997	6,520	6,174	346
1998	7,065	6,650	416
1999	7,577	7,116	461
2000	8,095	7,568	528
2001	8,544	7,947	597
2002	8,886	8,284	602
2003	8,941	8,335	606
2004	8,957	8,345	612
2005	8,947	8,341	606
2006	8,959	8,352	607
2007	8,902	8,295	607
2008	8,722	8,111	610
2009	8,541	7,930	611
2010	8,335	7,725	611

2011	8,108	7,498	611
2012	7,918	7,298	620
2013	7,504	6,932	572
2014	7,087	6,586	501
2015	6,589	6,165	424
2016	ND	ND	ND
2017	ND	ND	ND
2018	ND	ND	ND

1 Note: NRI data are not available after 2015, and these years are designated as ND (No data).

Other Land Remaining Other Land (CRF 6.12 2 **Category 4F1) – TO BE UPDATED FOR FINAL** 3 **INVENTORY REPORT** 4

5 Land use is constantly occurring, and areas under a number of differing land-use types remain in their respective 6 land-use type each year, just as other land can remain as other land. While the magnitude of Other Land

7 Remaining Other Land is known (see Table 6-7), research is ongoing to track C pools in this land use. Until such

8 time that reliable and comprehensive estimates of C for Other Land Remaining Other Land can be produced, it is

9 not possible to estimate CO₂, CH₄ or N₂O fluxes on Other Land Remaining Other Land at this time.

Land Converted to Other Land (CRF 6.13 10 Category 4F2) – TO BE UPDATED FOR FINAL 11 **INVENTORY REPORT** 12

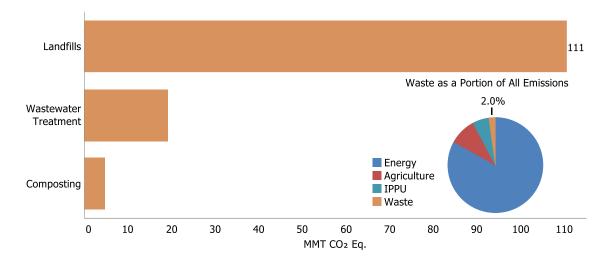
13 Land-use change is constantly occurring, and areas under a number of differing land-use types are converted to

other land each year, just as other land is converted to other uses. While the magnitude of these area changes is 14 15 known (see Table 6-7), research is ongoing to track C across Other Land Remaining Other Land and Land Converted

16

to Other Land. Until such time that reliable and comprehensive estimates of C across these land-use and land-use 17 change categories can be produced, it is not possible to separate CO₂, CH₄ or N₂O fluxes on Land Converted to

18 Other Land from fluxes on Other Land Remaining Other Land at this time.


¹ 7. Waste

2 Waste management and treatment activities are sources of greenhouse gas emissions (see Figure 7-1). Landfills

3 accounted for approximately 17.4 percent of total U.S. anthropogenic methane (CH₄) emissions in 2018, the third

4 largest contribution of any CH₄ source in the United States. Additionally, wastewater treatment and composting of

- 5 organic waste accounted for approximately 2.2 percent and 0.4 percent of U.S. CH₄ emissions, respectively. Nitrous
- 6 oxide (N₂O) emissions from the discharge of wastewater treatment effluents into aquatic environments were
- 7 estimated, as were N₂O emissions from the treatment process itself. Nitrous oxide emissions from composting
- 8 were also estimated. Together, these waste activities account for 1.7 percent of total U.S. N₂O emissions. Nitrogen
- 9 oxides (NO_x), carbon monoxide (CO), and non-CH₄ volatile organic compounds (NMVOCs) are emitted by waste
- 10 activities and are addressed separately at the end of this chapter. A summary of greenhouse gas emissions from
- 11 the Waste chapter is presented in Table 7-1 and Table 7-2.

12 Figure 7-1: 2018 Waste Chapter Greenhouse Gas Sources (MMT CO₂ Eq.)

13

14 Overall, in 2018, waste activities generated emissions of 134.4 MMT CO₂ Eq., or 2.0 percent of total U.S.

15 greenhouse gas emissions.¹

¹ Emissions reported in the Waste chapter for landfills and wastewater treatment include those from all 50 states, including Hawaii and Alaska, as well as from U.S. Territories to the extent those waste management activities are occurring. Emissions for composting include all 50 states, including Hawaii and Alaska, but not U.S. Territories. Composting emissions from U.S. Territories are assumed to be small.

1 Table 7-1: Emissions from Waste (MMT CO₂ Eq.)

Gas/Source	1990	2005	2014	2015	2016	2017	2018
CH ₄	195.3	148.6	129.0	128.0	124.7	124.3	127.2
Landfills	179.6	131.3	112.6	111.3	108.0	107.7	110.6
Wastewater Treatment	15.3	15.4	14.3	14.6	14.4	14.1	14.2
Composting	0.4	1.9	2.1	2.1	2.3	2.4	2.5
N ₂ O	3.7	6.1	6.6	6.7	6.9	7.2	7.2
Wastewater Treatment	3.4	4.4	4.8	4.8	4.9	5.0	5.0
Composting	0.3	1.7	1.9	1.9	2.0	2.2	2.2
Total	199.0	154.7	135.6	134.7	131.6	131.4	134.4

Note: Totals may not sum due to independent rounding.

2 Table 7-2: Emissions from Waste (kt)

Gas/Source	1990	2005	2014	2015	2016	2017	2018
CH₄	7,811	5,945	5,160	5,120	4,988	4,971	5,089
Landfills	7,182	5,253	4,503	4,452	4,322	4,308	4,422
Wastewater Treatment	614	618	573	583	575	566	569
Composting	15	75	84	85	91	98	98
N ₂ O	12	20	22	22	23	24	24
Wastewater Treatment	11	15	16	16	16	17	17
Composting	1	6	6	6	7	7	7

Note: Totals may not sum due to independent rounding.

3 Carbon dioxide (CO₂), CH₄, and N₂O emissions from the incineration of waste are accounted for in the Energy

4 sector rather than in the Waste sector because almost all incineration of municipal solid waste (MSW) in the

5 United States occurs at waste-to-energy facilities where useful energy is recovered. Similarly, the Energy sector

6 also includes an estimate of emissions from burning waste tires and hazardous industrial waste, because virtually

7 all of the combustion occurs in industrial and utility boilers that recover energy. The incineration of waste in the

8 United States in 2018 resulted in 11.4 MMT CO₂ Eq. emissions, more than half of which is attributable to the

9 combustion of plastics. For more details on emissions from the incineration of waste, see Section 7.4.

10

Box 7-1: Methodological Approach for Estimating and Reporting U.S. Emissions and Removals

In following the United Nations Framework Convention on Climate Change (UNFCCC) requirement under Article 4.1 to develop and submit national greenhouse gas emission inventories, the emissions and removals presented in this report and this chapter, are organized by source and sink categories and calculated using internationally-accepted methods provided by the Intergovernmental Panel on Climate Change (IPCC) in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2006 IPCC Guidelines). Additionally, the calculated emissions and removals in a given year for the United States are presented in a common manner in line with the UNFCCC reporting guidelines for the reporting of inventories under this international agreement. The use of consistent methods to calculate emissions and removals by all nations providing their inventories to the UNFCCC ensures that these reports are comparable. The presentation of emissions and sinks provided in the Waste Chapter of the Inventory do not preclude alternative examinations, but rather, this Inventory presents emissions and removals in a common format consistent with how countries are to report Inventories under the UNFCCC. The report itself, and this chapter, follows this standardized format, and provides an explanation of the application of methods used to calculate emissions and removals from waste management and treatment activities.

1 2

Box 7-2: Waste Data from EPA's Greenhouse Gas Reporting Program

On October 30, 2009, the U.S. Environmental Protection Agency (EPA) published a rule requiring annual reporting of greenhouse gas data from large greenhouse gas emission sources in the United States. Implementation of the rule, codified at 40 CFR Part 98, is referred to as EPA's Greenhouse Gas Reporting Program (GHGRP). The rule applies to direct greenhouse gas emitters, fossil fuel suppliers, industrial gas suppliers, and facilities that inject CO₂ underground for sequestration or other reasons and requires reporting by sources or suppliers in 41 industrial categories. Annual reporting is at the facility level, except for certain suppliers of fossil fuels and industrial greenhouse gases. Data reporting by affected facilities includes the reporting of emissions from fuel combustion at that affected facility. In general, the threshold for reporting is 25,000 metric tons or more of CO₂ Eq. per year.

EPA's GHGRP dataset and the data presented in this Inventory are complementary. The GHGRP dataset continues to be an important resource for the Inventory, providing not only annual emissions information, but also other annual information, such as activity data and emission factors that can improve and refine national emission estimates and trends over time. GHGRP data also allow EPA to disaggregate national inventory estimates in new ways that can highlight differences across regions and sub-categories of emissions, along with enhancing application of QA/QC procedures and assessment of uncertainties. For an overview on use of GHGRP data in the Inventory, see Annex 9.

EPA uses annual GHGRP data in a number of categories to improve the national estimates presented in this Inventory consistent with IPCC guidelines. Within the Waste Chapter, see section 7.1. EPA uses directly reported GHGRP data for net CH₄ emissions from MSW landfills for the years 2010 to 2018 of the Inventory. MSW landfills subject to the GHGRP began collecting data in 2010. This data is also used to back-cast emissions from MSW landfills for the years 2005 to 2009.

3

4 7.1 Landfills (CRF Source Category 5A1)

5 In the United States, solid waste is managed by landfilling, recovery through recycling or composting, and 6 combustion through waste-to-energy facilities. Disposing of solid waste in modern, managed landfills is the most 7 commonly used waste management technique in the United States. More information on how solid waste data are 8 collected and managed in the United States is provided in Box 7-3. The municipal solid waste (MSW) and industrial 9 waste landfills referred to in this section are all modern landfills that must comply with a variety of regulations as 10 discussed in Box 7-3. Disposing of waste in illegal dumping sites is not considered to have occurred in years later 11 than 1980 and these sites are not considered to contribute to net emissions in this section for the timeframe of 12 1990 to the current Inventory year. MSW landfills, or sanitary landfills, are sites where MSW is managed to prevent 13 or minimize health, safety, and environmental impacts. Waste is deposited in different cells and covered daily with 14 soil; many have environmental monitoring systems to track performance, collect leachate, and collect landfill gas. 15 Industrial waste landfills are constructed in a similar way as MSW landfills, but are used to dispose of industrial 16 solid waste, such as RCRA Subtitle D wastes (e.g., non-hazardous industrial solid waste defined in Title 40 of the 17 Code of Federal Regulations or CFR in section 257.2), commercial solid wastes, or conditionally exempt small-18 quantity generator wastes (EPA 2016). 19 After being placed in a landfill, organic waste (such as paper, food scraps, and yard trimmings) is initially

20 decomposed by aerobic bacteria. After the oxygen has been depleted, the remaining waste is available for

- consumption by anaerobic bacteria, which break down organic matter into substances such as cellulose, amino
- acids, and sugars. These substances are further broken down through fermentation into gases and short-chain

- 1 organic compounds that form the substrates for the growth of methanogenic bacteria. These methane (CH₄)
- 2 producing anaerobic bacteria convert the fermentation products into stabilized organic materials and biogas
- 3 consisting of approximately 50 percent biogenic carbon dioxide (CO₂) and 50 percent CH₄, by volume. Landfill
- 4 biogas also contains trace amounts of non-methane organic compounds (NMOC) and volatile organic compounds
- 5 (VOC) that either result from decomposition byproducts or volatilization of biodegradable wastes (EPA 2008).
- 6 Methane and CO₂ are the primary constituents of landfill gas generation and emissions. However, the 2006 IPCC
- 7 *Guidelines* set an international convention to not report biogenic CO₂ from activities in the Waste sector (IPCC
- 8 2006). Net carbon dioxide flux from carbon stock changes in landfills are estimated and reported under the Land
- 9 Use, Land-Use Change, and Forestry (LULUCF) sector (see Chapter 6 of this Inventory). Additionally, emissions of
- 10 NMOC and VOC are not estimated because they are emitted in trace amounts. Nitrous oxide (N_2O) emissions from
- 11 the disposal and application of sewage sludge on landfills are also not explicitly modeled as part of greenhouse gas
- emissions from landfills. Nitrous oxide emissions from sewage sludge applied to landfills as a daily cover or for
 disposal are expected to be relatively small because the microbial environment in an anaerobic landfill is not very
- 14 conducive to the nitrification and denitrification processes that result in N₂O emissions. Furthermore, the 2006
- 15 *IPCC Guidelines* did not include a methodology for estimating N_2O emissions from solid waste disposal sites
- 16 "because they are not significant." Therefore, only CH₄ generation and emissions are estimated for landfills under
- 17 the Waste sector.
- 18 Methane generation and emissions from landfills are a function of several factors, including: (1) the total amount
- and composition of waste-in-place, which is the total waste landfilled annually over the operational lifetime of a
- 20 landfill; (2) the characteristics of the landfill receiving waste (e.g., size, climate, cover material); (3) the amount of
- 21 CH₄ that is recovered and either flared or used for energy purposes; and (4) the amount of CH₄ oxidized as the
- 22 landfill gas that is not collected by a gas collection system passes through the cover material into the
- atmosphere. Each landfill has unique characteristics, but all managed landfills employ similar operating practices,
- including the application of a daily and intermediate cover material over the waste being disposed of in the landfill
- to prevent odor and reduce risks to public health. Based on recent literature, the specific type of cover material
- used can affect the rate of oxidation of landfill gas (RTI 2011). The most commonly used cover materials are soil,
- 27 clay, and sand. Some states also permit the use of green waste, tarps, waste derived materials, sewage sludge or
- biosolids, and contaminated soil as a daily cover. Methane production typically begins within the first year after
- 29 the waste is disposed of in a landfill and will continue for 10 to 60 years or longer as the degradable waste 30 decomposes over time.
- In 2018, landfill CH₄ emissions were approximately 110.6 MMT CO₂ Eq. (4,422 kt), representing the third largest
- 32 source of CH₄ emissions in the United States, behind enteric fermentation and natural gas systems. Emissions from
- 33 MSW landfills accounted for approximately 95 percent of total landfill emissions (95.6 MMT CO₂ Eq.), while
- industrial waste landfills accounted for the remainder (15.0 CO₂ Eq). Estimates of operational MSW landfills in the
- United States have ranged from 1,700 to 2,000 facilities (EPA 2019a; EPA 2019c; Waste Business Journal [WBJ]
- 36 2016; WBJ 2010). More recently, the Environment Research & Education Foundation (EREF) conducted a
- 37 nationwide analysis of MSW management and counted 1,540 operational MSW landfills in 2013 (EREF 2016).
- 38 Conversely, there are approximately 3,200 MSW landfills in the United States that have been closed since 1980 (for
- 39 which a closure data is known, (EPA 2019a; WBJ 2010). While the number of active MSW landfills has decreased
- 40 significantly over the past 20 years, from approximately 6,326 in 1990 to as few as 1,540 in 2013, the average
- 41 landfill size has increased (EREF 2016; EPA 2019b; BioCycle 2010). With regard to industrial waste landfills, the WBJ
- 42 database (WBJ 2016) includes approximately 1,200 landfills accepting industrial and/or construction and
- 43 demolition debris for 2016 (WBJ 2016). Only 169 facilities with industrial waste landfills met the reporting
- 44 threshold under Subpart TT (Industrial Waste Landfills) of EPA's Greenhouse Gas Reporting Program (GHGRP
- 45 codified in 40 CFR part 98), indicating that there may be several hundred industrial waste landfills that are not
- 46 required to report under EPA's GHGRP.
- 47 The annual amount of MSW generated and subsequently disposed in MSW landfills varies annually and depends
- 48 on several factors (e.g., the economy, consumer patterns, recycling and composting programs, inclusion in a
- 49 garbage collection service). The estimated annual quantity of waste placed in MSW landfills increased 10 percent
- from approximately 205 MMT in 1990 to 226 MMT in 2000 and then decreased by 8.8 percent to 212 MMT in
- 51 2018 (see Annex 3.14, Table A-235). The total amount of MSW generated is expected to increase as the U.S.

- 1 population continues to grow, but the percentage of waste landfilled may decline due to increased recycling and
- 2 composting practices. Net CH₄ emissions from MSW landfills have decreased since 1990 (see Table 7-3 and Table
- 3 7-4).
- 4 The estimated quantity of waste placed in industrial waste landfills (from the pulp and paper, and food processing
- 5 sectors) has remained relatively steady since 1990, ranging from 9.7 MMT in 1990 to 10.1 MMT in 2018 (see Annex
- 6 3.14, Table A-235). CH₄ emissions from industrial waste landfills have also remained at similar levels recently,
- ranging from 14.3 MMT CO₂ Eq in 2005 to 15.0 MMT CO₂ Eq in 2018 when accounting for both CH₄ generation and
 oxidation.
- 9 EPA's Landfill Methane Outreach Program (LMOP) collects information on landfill gas energy projects currently
- 10 operational or under construction throughout the United States. LMOP's project and technical database contains
- 11 certain information on the gas collection and control systems in place at landfills that are a part of the program,
- 12 which can include the amount of landfill gas collected and flared. In 2019, LMOP identified 22 new landfill gas-to-
- 13 energy (LFGE) projects (EPA 2019a) that began operation. While the amount of landfill gas collected and
- 14 combusted continues to increase, the rate of increase in collection and combustion no longer exceeds the rate of
- additional CH₄ generation from the amount of organic MSW landfilled as the U.S. population grows (EPA 2019b).
- 16 Landfill gas collection and control is not accounted for at industrial waste landfills in this chapter (see the
- 17 Methodology discussion for more information).

18 Table 7-3: CH₄ Emissions from Landfills (MMT CO₂ Eq.)

Activity	1990	2005	2014	2015	2016	2017	2018
MSW CH ₄ Generation	205.3	-	-	-	-	-	-
Industrial CH ₄ Generation	12.1	15.9	16.6	16.6	16.6	16.6	16.7
MSW CH ₄ Recovered	(17.9)	-	-	-	-	-	-
MSW CH ₄ Oxidized	(18.7)	-	-	-	-	-	-
Industrial CH ₄ Oxidized	(1.2)	(1.6)	(1.7)	(1.7)	(1.7)	(1.7)	(1.7)
MSW net CH ₄ Emissions							
(GHGRP)		117.0	97.7	96.4	93.1	92.7	95.6
Industrial CH ₄ Emissions ^a	10.9	14.3	14.9	14.9	14.9	15.0	15.0
Total	179.6	131.3	112.6	111.3	108.0	107.7	110.6

^a Methane recovery is not calculated for industrial landfills because this is not a common practice in the United States. Only 1 landfill of 169 that report to Subpart TT (Industrial Waste Landfills) of the GHGRP had an active gas collection and control system during the year 2018 (EPA 2019b).

"-" Not applicable due to methodology change.

Note: Totals may not sum due to independent rounding. Parentheses indicate negative values. For years 1990 to 2004, the Inventory methodology for MSW landfills uses the first order decay methodology. A methodological change occurs in year 2005. For years 2005 to 2018, directly reported net CH₄ emissions from the GHGRP data plus a scale-up factor are used to account for emissions from landfill facilities that are not subject to the GHGRP. These data incorporate CH₄ recovered and oxidized for MSW landfills. As such, CH₄ generation and CH₄ recovery are not calculated separately. See the Time-Series Consistency section of this chapter for more information.

1 Table 7-4: CH₄ Emissions from Landfills (kt)

Activity	1990	2005	2014	2015	2016	2017	2018
MSW CH ₄ Generation	8,214	-	-	-	-	-	-
Industrial CH ₄ Generation	484	636	662	663	664	665	666
MSW CH ₄ Recovered	(718)	-	-	-	-	-	-
MSW CH ₄ Oxidized	(750)	-	-	-	-	-	-
Industrial CH ₄ Oxidized	(48)	(64)	(66)	(66)	(66)	(67)	(67)
MSW net CH ₄ Emissions							
(GHGRP)	-	4,681	3,907	3 <i>,</i> 855	3,724	3,709	3,823
Industrial CH ₄ Emissions ^a	436	572	596	597	598	599	599
Total	7,182	5,253	4,503	4,452	4,322	4,308	4,422

^a Methane recovery is not calculated for industrial landfills because this is not a common practice in the United States. Only 1 landfill of 169 that report to Subpart TT (Industrial Waste Landfills) of the GHGRP had an active gas collection and control system during the year 2018 (EPA 2019b).

"-" Not applicable due to methodology change.

Note: Totals may not sum due to independent rounding. Parentheses indicate negative values. For years 1990 to 2004, the Inventory methodology for MSW landfills uses the first order decay methodology. A methodological change occurs in year 2005. For years 2005 to 2018, directly reported net CH₄ emissions from the GHGRP data plus a scale-up factor are used to account for emissions from landfill facilities that are not subject to the GHGRP. These data incorporate CH₄ recovered and oxidized for MSW landfills. As such, CH₄ generation and CH₄ recovery are not calculated separately. See the Time-Series Consistency section of this chapter for more information.

2 Methodology

3 Methodology Applied for MSW Landfills

4 Methane emissions from landfills can be estimated using two primary methods. The first method uses the first

5 order decay (FOD) model as described by the 2006 IPCC Guidelines to estimate CH₄ generation. The amount of CH₄

6 recovered and combusted from MSW landfills is subtracted from the CH₄ generation and is then adjusted with an

7 oxidation factor. The oxidation factor represents the amount of CH₄ in a landfill that is oxidized to CO₂ as it passes

8 through the landfill cover (e.g., soil, clay, geomembrane). This method is presented below and is similar to

9 Equation HH-5 in 40 CFR Part 98.343 for MSW landfills, and Equation TT-6 in 40 CFR Part 98.463 for industrial

10 waste landfills.

 $CH_{4,Solid Waste} = [CH_{4,MSW} + CH_{4,Ind} - R] - Ox$

12 where,

11

13	CH ₄ ,Solid Waste	= Net CH₄ emissions from solid waste
14	CH _{4,MSW}	= CH ₄ generation from MSW landfills
15	CH _{4,Ind}	= CH ₄ generation from industrial waste landfills
16	R	= CH ₄ recovered and combusted (only for MSW landfills)
17	Ox	= CH ₄ oxidized from MSW and industrial waste landfills before release to the atmosphere

18 The second method used to calculate CH₄ emissions from landfills, also called the back-calculation method, is

based on directly measured amounts of recovered CH₄ from the landfill gas and is expressed below and by

Equation HH-8 in 40 CFR Part 98.343. The two parts of the equation consider the portion of CH_4 in the landfill gas

that is not collected by the landfill gas collection system, and the portion that is collected. First, the recovered CH4 is adjusted with the collection efficiency of the gas collection and control system and the fraction of hours the

is adjusted with the collection efficiency of the gas collection and control system and the fraction of hours the
 recovery system operated in the calendar year. This quantity represents the amount of CH₄ in the landfill gas that is

24 not captured by the collection system; this amount is then adjusted for oxidation. The second portion of the

equation adjusts the portion of CH₄ in the collected landfill gas with the efficiency of the destruction device(s), and

26 the fraction of hours the destruction device(s) operated during the year.

1		CH4,Solid Was	$te = \left[\left(\frac{R}{CE \ x \ f_{REC}} - R\right) x(1 - OX) + R \ x \left(1 - (DE \ x \ f_{Dest})\right)\right]$
2	where,		
3 4	CH4,Solid Waste	= Net CH4	emissions from solid waste
5		R = Quan	tity of recovered CH4 from Equation HH-4 of EPA's GHGRP
6		CE	= Collection efficiency estimated at the landfill, considering system coverage,
7		operatior	n, and cover system materials from Table HH-3 of EPA's GHGRP. If area by soil
8		cover typ	e information is not available, the default value of 0.75 should be used. (percent)
9		f _{REC}	= fraction of hours the recovery system was operating (percent)
10		OX	= oxidation factor (percent)
11		DE	= destruction efficiency (percent)
12		f_{Dest}	= fraction of hours the destruction device was operating (fraction)
13			

- 14 The current Inventory uses both methods to estimate CH₄ emissions across the time series within EPA's Waste
- 15 Model, as summarized in Figure 7-2 below. This chapter provides a summary of the methods, activity data, and
- 16 parameters used. Additional step-wise explanations to generate the net emissions are provided in Annex 3.14.

17 Figure 7-2: Timeline of Methodologies Used to Compile the U.S. Inventory Emission

18 Estimates for MSW Landfills

	1990-2004 ¹		2005 - 2009 ²	2010 to Present ³
Method	Country-specific First-order decay (FOD) model		Back-casted EPA Greenhouse Gas Reporting Program (GHGRP) Reported Net Emissions	EPA GHGRP Reported Net Emissions
Parameters	IPCC 2006 Emission factors: • DOC = 0.20 • MCF = 0.5 • DOC _f = 0.5 • OX = 0.10 • DE = 0.99	 Activity data: National waste generation data multiplied by the national disposal factor 	 Net GHGRP Emissions (metric tons) Scale-up factor (9%) Emission factors are facility-specific 	 Net GHGRP Emissions (metric tons) Scale-up factor (9%) Emission factors are facility-specific

¹ Corresponds to Steps 1 – 3 in Annex 3.14 ² Corresponds to Step 4 in Annex 3.14

³ Corresponds to Step 5 in Annex 3.14

19

The Waste Model is a spreadsheet developed by the IPCC for purposes of estimating methane emissions from solid waste disposal sites, adapted to the United States by the inclusion and usage of U.S.-specific parameters. The

- 22 Waste Model contains activity and waste generation information from both the MSW and Industrial landfill sectors
- and estimates the amount of CH₄ emissions from each sector for each year of the time series, using both of the
- aforementioned methods. Prior to the 1990 through 2015 Inventory, only the FOD method was used.
- 25 Methodological changes were made to the 1990 through 2015 Inventory to incorporate higher tier data (i.e., CH₄
- 26 emissions as directly reported to EPA's GHGRP), which cannot be directly applied to earlier years in the time series
- 27 without significant bias. The technique used to merge the directly reported GHGRP data with the previous
- 28 methodology is described as the overlap technique in the Time-Series Consistency chapter of the 2006 IPCC
- 29 *Guidelines*. Additional details on the technique used is included in the Time Series Consistency section of this
- 30 chapter, Annex 3.14, and a technical memorandum (RTI 2017).

A summary of the methodology used to generate the current 1990 through 2018 Inventory estimates for MSW

32 landfills is as follows and is also illustrated in Annex Figure A-18:

1 **1940 through 1989:** These years are included for historical waste disposal amounts. Estimates of the 2 annual quantity of waste landfilled for 1960 through 1988 were obtained from EPA's Anthropogenic 3 Methane Emissions in the United States, Estimates for 1990: Report to Congress (EPA 1993) and an 4 extensive landfill survey by the EPA's Office of Solid Waste in 1986 (EPA 1988). Although waste placed in 5 landfills in the 1940s and 1950s contributes very little to current CH₄ generation, estimates for those years 6 were included in the FOD model for completeness in accounting for CH₄ generation rates and are based 7 on the population in those years and the per capita rate for land disposal for the 1960s. For the Inventory 8 calculations, wastes landfilled prior to 1980 were broken into two groups: wastes disposed in managed, 9 anaerobic landfills (Methane Conversion Factor, MCF, of 1) and those disposed in uncategorized solid 10 waste disposal waste sites (MCF of 0.6) (IPCC 2006). Uncategorized sites represent those sites for which 11 limited information is known about the management practices. All calculations after 1980 assume waste is disposed in managed, anaerobic landfills. The FOD method was applied to estimate annual CH₄ 12 13 generation. Methane recovery amounts were then subtracted and the result was then adjusted with a 10 14 percent oxidation factor to derive the net emissions estimates.

15 1990 through 2004: The Inventory time series begins in 1990. The FOD method is exclusively used for this 16 group of years. The national total of waste generated (based on state-specific landfill waste generation 17 data) and a national average disposal factor for 1989 through 2004 were obtained from the State of 18 Garbage (SOG) survey every two years (i.e., 2002, 2004 as published in BioCycle 2006). In-between years 19 were interpolated based on population growth. For years 1989 to 2000, directly reported total MSW 20 generation data were used; for other years, the estimated MSW generation (excluding construction and 21 demolition waste and inerts) were presented in the reports and used in the Inventory. The FOD method 22 was applied to estimate annual CH4 generation. Landfill-specific CH4 recovery amounts were then 23 subtracted from CH₄ generation and the result was adjusted with a 10 percent oxidation factor to derive the net emissions estimates. 24

25 **2005 through 2009:** Emissions for these years are estimated using net CH₄ emissions that are reported by • 26 landfill facilities under EPA's GHGRP. Because not all landfills in the United States are required to report to 27 EPA's GHGRP, a 9 percent scale-up factor is applied to the GHGRP emissions for completeness. Supporting 28 information, including details on the technique used to estimate emissions for 2005 to 2009, to develop the scale-up factor, and to ensure time-series consistency by incorporating the directly reported GHGRP 29 30 emissions is presented in Annex 3.14 and in RTI 2018a. A single oxidation factor is not applied to the 31 annual CH4 generated as is done for 1990 to 2004 because the GHGRP emissions data are used, which 32 already take oxidation into account. The GHGRP allows facilities to use varying oxidation factors (i.e., 0, 33 10, 25, or 35 percent) depending on their facility-specific calculated CH₄ flux rate. The average oxidation 34 factor from the GHGRP facilities is 19.5 percent (from reporting years 2011 to 2017).

 2010 through 2018: Net CH₄ emissions as directly reported to the GHGRP are used with a 9 percent scaleup factor to account for landfills that are not required to report to the GHGRP. A combination of the FOD method and the back-calculated CH₄ emissions were used by the facilities reporting to the GHGRP.
 Landfills reporting to the GHGRP without gas collection and control apply the FOD method, while most landfills with landfill gas collection and control apply the back-calculation method. As noted above, GHGRP facilities use a variety of oxidation factors. The average oxidation factor from the GHGRP facilities is 19.5 percent.

A detailed discussion of the data sources and methodology used to calculate CH₄ generation and recovery is
 provided below. Supporting information, including details on the technique used to ensure time-series consistency
 by incorporating the directly reported GHGRP emissions is presented in the Time-Series Consistency section of this
 chapter and in Annex 3.14.

1 Methodology Applied for Industrial Waste Landfills

2 Emissions from industrial waste landfills are estimated from industrial production data (ERG 2019), waste disposal 3 factors, and the FOD method. There are currently no data sources that track and report the amount and type of 4 waste disposed of in the universe of industrial waste landfills in the United States. EPA's GHGRP provides some 5 insight into waste disposal in industrial waste landfills, but is not comprehensive. Data reported to the GHGRP on 6 industrial waste landfills suggests that most of the organic waste which would result in methane emissions is 7 disposed at pulp and paper and food processing facilities. Of the 169 facilities that reported to subpart TT of the 8 GHGRP in 2018, 92 (54 percent) are in the North American Industrial Classification System (NAICS) for Pulp, Paper, 9 and Wood Products (NAICS 321 and 322) and 12 (7 percent) are in Food Manufacturing (NAICS 311). Based on this 10 limited information, the Inventory methodology assumes most of the organic waste placed in industrial waste 11 landfills originates from the food processing (meat, vegetables, fruits) and pulp and paper sectors, thus estimates 12 of industrial landfill emissions focused on these two sectors. To validate this assumption, EPA recently conducted 13 an analysis of data reported to subpart TT of the GHGRP in the 2016 reporting year. Waste streams of facilities 14 reporting to subpart TT were designated as either relating to food and beverage, pulp and paper, or other based 15 on their primary NAICS code. The total waste disposed by facilities under each primary NAICS reported in 2016 16 were calculated in order to determine that 93 percent of the total organic waste quantity reported under subpart 17 TT is originating from either the pulp and paper or food and beverage sector (RTI 2018b). Although this memo 18 concluded that subpart TT data reported to the GHGRP are able to confirm the Inventory methodological 19 assumption that most organic waste placed in industrial waste landfills is from pulp and paper or food processing 20 facilities, EPA is currently unable to use these net emissions directly reported to the GHGRP for industrial landfills. 21 While subpart TT waste disposal information for pulp and paper facilities correlates well with the production data 22 currently used to estimate Inventory emissions, the same cannot be said for food and beverage facilities. Waste 23 disposal data prior to 1990 does not correlate well between the two data sources, and no waste disposal data are 24 reported for these facilities through subpart TT of the GHGRP prior to 1960. GHGRP data for food and beverage 25 facilities in the 1960s are an order of magnitude smaller than production data currently used to estimate emissions 26 for this sector in the Inventory. Because of these discrepancies, EPA is maintaining its current approach to 27 estimating emissions from industrial landfills using production data from the pulp and paper and food and 28 beverage sectors. 29

The composition of waste disposed of in industrial waste landfills is expected to be more consistent in terms of composition and quantity than that disposed of in MSW landfills. The amount of waste landfilled is assumed to be

- a fraction of production that is held constant over the time series as explained in Annex 3.14.
- 32 Landfill CH₄ recovery is not accounted for in industrial waste landfills. Data collected through EPA's GHGRP for
- industrial waste landfills (Subpart TT) show that only one of the 169 facilities, or 1 percent of facilities, have active
- 34 gas collection systems (EPA 2019b). However, because EPA's GHGRP is not a national database and comprehensive
- data regarding gas collection systems have not been published for industrial waste landfills, assumptions regarding
- 36 a percentage of landfill gas collection systems, or a total annual amount of landfill gas collected for the non-
- 37 reporting industrial waste landfills have not been made for the Inventory methodology.
- The amount of CH₄ oxidized by the landfill cover at industrial waste landfills was assumed to be 10 percent of the CH₄ generated (IPCC 2006; Mancinelli and McKay 1985; Czepiel et al. 1996) for all years.

40 Uncertainty and Time-Series Consistency

41 Several types of uncertainty are associated with the estimates of CH₄ emissions from MSW and industrial waste

42 landfills when the FOD method is applied directly for 1990 to 2004 in the Waste Model and, to some extent, in the

- 43 GHGRP methodology. The approach used in the MSW emission estimates assumes that the CH₄ generation
- 44 potential (L_o) and the rate of decay that produces CH₄ from MSW, as determined from several studies of CH₄
- 45 recovery at MSW landfills, are representative of conditions at U.S. MSW landfills. When this top-down approach is
- 46 applied at the nationwide level, the uncertainties are assumed to be less than when applying this approach to
- 47 individual landfills and then aggregating the results to the national level. In other words, the FOD method as
- 48 applied in this Inventory is not facility-specific modeling and while this approach may over- or under-estimate CH₄

1 generation at some landfills if used at the facility-level, the result is expected to balance out because it is being

- 2 applied nationwide.
- 3 There is a high degree of uncertainty associated with the FOD model, particularly when a homogeneous waste
- 4 composition and hypothetical decomposition rates are applied to heterogeneous landfills (IPCC 2006). There is less
- 5 uncertainty in EPA's GHGRP data because this methodology is facility-specific, uses directly measured CH₄ recovery
- 6 data (when applicable), and allows for a variety of landfill gas collection efficiencies, destruction efficiencies,
- 7 and/or oxidation factors to be used.
- 8 Uncertainty also exists in the scale-up factor applied for years 2005 to 2009 and in the back-casted emissions
- 9 estimates for 2005 to 2009. As detailed in RTI (2018a), limited information is available for landfills that do not
- 10 report to the GHGRP. RTI developed an initial list of landfills that do not report to the GHGRP with the intent of
- 11 quantifying the total waste-in-place for these landfills that would add up to the scale-up factor. Input was provided
- by industry, LMOP, and additional EPA support. However, many gaps still exist and assumptions were made for
- 13 many landfills in order to estimate the scale-up factor. Additionally, a simple methodology was used to back-cast
- emissions for 2005 to 2009 using the GHGRP-reported emissions from 2010 to 2018. This methodology does not
- 15 factor in annual landfill to landfill changes in landfill CH₄ generation and recovery. Because of this, an uncertainty
- 16 factor of 25 percent is applied to emissions for 2005 to 2009.
- 17 With regard to the time series and as stated in 2006 IPCC Guidelines Volume 1: Chapter 5 Time-Series Consistency
- 18 (IPCC 2006), "the time series is a central component of the greenhouse gas inventory because it provides
- 19 information on historical emissions trends and tracks the effects of strategies to reduce emissions at the national
- 20 level. All emissions in a time series should be estimated consistently, which means that as far as possible, the time
- series should be calculated using the same method and data sources in all years" (IPCC 2006). This chapter
- 22 however, recommends against back-casting emissions back to 1990 with a limited set of data and instead provides
- 23 guidance on techniques to splice, or join methodologies together. One of those techniques is referred to as the
- overlap technique. The overlap technique is recommended when new data becomes available for multiple years.
- This was the case with the GHGRP data for MSW landfills, where directly reported CH₄ emissions data became
- available for more than 1,200 MSW landfills beginning in 2010. The GHGRP emissions data had to be merged with
- 27 emissions from the FOD method to avoid a drastic change in emissions in 2010, when the datasets were combined.
- EPA also had to consider that according to IPCC's good practice, efforts should be made to reduce uncertainty in
 Inventory calculations and that, when compared to the GHGRP data, the FOD method presents greater
- 30 uncertainty.
- In evaluating the best way to combine the two datasets, EPA considered either using the FOD method from 1990
- to 2009, or using the FOD method for a portion of that time and back-casting the GHGRP emissions data to a year
- 33 where emissions from the two methodologies aligned. Plotting the back-casted GHGRP emissions against the
- 34 emissions estimates from the FOD method showed an alignment of the data in 2004 and later years which
- 35 facilitated the use of the overlap technique while also reducing uncertainty. Therefore, EPA decided to back-cast
- the GHGRP emissions from 2009 to 2005 only, in order to merge the datasets and adhere to the IPCC *Good*
- 37 *Practice Guidance* for ensuring time series consistency.
- Aside from the uncertainty in estimating landfill CH₄ generation, uncertainty also exists in the estimates of the
- 39 landfill gas oxidized at MSW landfills. Facilities directly reporting to EPA's GHGRP can use oxidation factors ranging
- 40 from 0 to 35 percent, depending on their facility-specific CH₄ flux. As recommended by the 2006 IPCC Guidelines
- for managed landfills, a 10 percent default oxidation factor is applied in the Inventory for both MSW landfills
- 42 (those not reporting to the GHGRP and for the years 1990 to 2004 when GHGRP data are not available) and
- 43 industrial waste landfills regardless of climate, the type of cover material, and/or presence of a gas collection
- 44 system.
- 45 Another significant source of uncertainty lies with the estimates of CH₄ recovered by flaring and gas-to-energy
- 46 projects at MSW landfills that are sourced from the Inventory's CH₄ recovery databases (used for years 1990 to
- 47 2004). Four CH₄ recovery databases are used to estimate nationwide CH₄ recovery for MSW landfills for 1990 to
- 48 2004; whereas directly reported CH₄ emissions, which accounts for CH₄ recovery, is used for facilities reporting to
- 49 the GHGRP for years 2005 to 2018. The GHGRP MSW landfills database was added as a fourth recovery database
- 50 starting with the 1990 through 2013 Inventory report (two years before the full GHGRP data set started being used

1 for net CH₄ emissions for the Inventory). Relying on multiple databases for a complete picture introduces

2 uncertainty because the coverage and characteristics of each database differs, which increases the chance of

3 double counting avoided emissions. Additionally, the methodology and assumptions that go into each database

4 differ. For example, the flare database assumes the midpoint of each flare capacity at the time it is sold and

5 installed at a landfill; the flare may be achieving a higher capacity, in which case the flare database would

 $\label{eq:constraint} 6 \qquad \text{underestimate the amount of CH_4 recovered.}$

The LFGE database was updated annually until 2015. The flare database was populated annually until 2015 by the
voluntary sharing of flare sales data by select vendors, which likely underestimated recovery for landfills not
included in the three other recovery databases used by the Inventory. The EIA database has not been updated
since 2006 and has, for the most part, been replaced by the GHGRP MSW landfills database. To avoid double
counting and to use the most relevant estimate of CH4 recovery for a given landfill, a hierarchical approach is used
among the four databases. GHGRP data and the EIA data are given precedence because facility data were directly
reported; the LFGE data are given second priority because CH4 recovery is estimated from facility-reported LFGE

system characteristics; and the flare data are given the lowest priority because this database contains minimal

15 information about the flare, no site-specific operating characteristics, and includes smaller landfills not included in

16 the other three databases (Bronstein et al. 2012). The coverage provided across the databases most likely

17 represents the complete universe of landfill CH₄ gas recovery; however, the number of unique landfills between 18 the four databases does differ

18 the four databases does differ.

19 The 2006 IPCC Guidelines default value of 10 percent for uncertainty in recovery estimates was used for two of the

four recovery databases in the uncertainty analysis where metering of landfill gas was in place (for about 64

21 percent of the CH₄ estimated to be recovered). This 10 percent uncertainty factor applies to the LFGE database; 12

22 percent to the EIA database; and 1 percent for the GHGRP MSW landfills dataset because of the supporting

information provided and rigorous verification process. For flaring without metered recovery data (the flare database), a much higher uncertainty value of 50 percent is used. The compounding uncertainties associated with

database), a much higher uncertainty value of 50 percent is used. The compounding uncertainties associated with
 the four databases in addition to the uncertainties associated with the FOD method and annual waste disposal

26 quantities leads to the large upper and lower bounds for MSW landfills presented in Table 7-5.

27 The lack of landfill-specific information regarding the number and type of industrial waste landfills in the United

28 States is a primary source of uncertainty with respect to the industrial waste generation and emission estimates.

29 The approach used here assumes that most of the organic waste disposed of in industrial waste landfills that

30 would result in CH₄ emissions consists of waste from the pulp and paper and food processing sectors. However,

31 because waste generation and disposal data are not available in an existing data source for all U.S. industrial waste

32 landfills, a straight disposal factor is applied over the entire time series to the amount produced to determine the 33 amounts disposed. Industrial waste facilities reporting under EPA's GHGRP do report detailed waste stream

information, and these data have been used to improve, for example, the DOC value used in the Inventory

35 methodology for the pulp and paper sector. A 10 percent oxidation factor is also applied to CH₄ generation

estimates for industrial waste landfills, and carries the same amount of uncertainty as with the factor applied to

37 CH₄ generation for MSW landfills.

The results of the *2006 IPCC Guidelines* Approach 2 quantitative uncertainty analysis are summarized in Table 7-5.

There is considerable uncertainty for the MSW landfills estimates due to the many data sources used, each with its own uncertainty factor.

Table 7-5: Approach 2 Quantitative Uncertainty Estimates for CH₄ Emissions from Landfills (MMT CO₂ Eq. and Percent)

Source	Gas	2018 Emission Estimate	Uncerta	inty Range Relat	ive to Emission Es	stimate ^a
		(MMT CO ₂ Eq.)	(MMT (CO₂ Eq.)	(%	%)
			Lower	Upper	Lower	Upper
			Bound	Bound	Bound	Bound
Total Landfills	CH₄	110.6	97.6	155.0	-12%	+40%
MSW	CH₄	95.6	69.4	116.5	-27%	+22%

Industrial	CH_4	15.0	21.3	41.1	42%	+174%

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

1 **QA/QC** and Verification

2 General quality assurance/quality control (QA/QC) procedures were applied consistent with the U.S. Inventory QA/QC plan, which is in accordance with Vol. 1, Chapter 6 of 2006 IPCC Guidelines (see Annex 8 for more details). 3 4 QA/QC checks are performed for the transcription of the published data set (e.g., EPA's GHGRP dataset) used to 5 populate the Inventory data set in terms of completeness and accuracy against the reference source. Additionally, 6 all datasets used for this category have been checked to ensure they are of appropriate quality and are 7 representative of U.S. conditions. The primary calculation spreadsheet is tailored from the 2006 IPCC Guidelines 8 waste model and has been verified previously using the original, peer-reviewed IPCC waste model. All model input 9 values and calculations were verified by secondary QA/QC review. Stakeholder engagements sessions in 2016 and 10 2017 were used to gather input on methodological improvements and facilitate an external expert review on the 11 methodology, activity data, and emission factors.

- 12 Category-specific checks include the following:
- Evaluation of the secondary data sources used as inputs to the Inventory dataset to ensure they are
 appropriately collected and are reliable;
- Cross-checking the data (activity data and emissions estimates) with previous years to ensure the data are
 reasonable, and that any significant variation can be explained through the activity data;
- Conducting literature reviews to evaluate the appropriateness of country-specific emission factors (e.g.,
 DOC values, precipitation zones with respect to the application of the k values) given findings from recent
 peer-reviewed studies; and
- Reviewing secondary datasets to ensure they are nationally complete and supplementing where
 necessary (e.g., using a scale-up factor to account for emissions from landfills that do not report to EPA's
 GHGRP).

A primary focus of the QA/QC checks in past Inventories was to ensure that CH₄ recovery estimates were not
 double-counted and that all LFGE projects and flares were included in the respective project databases. QA/QC
 checks performed in the past for the recovery databases were not performed in this Inventory, because new data
 were not added to the recovery databases in this Inventory year.

- 27 For the GHGRP data, EPA verifies annual facility-level reports through a multi-step process (e.g., combination of 28 electronic checks and manual reviews by staff) to identify potential errors and ensure that data submitted to EPA 29 are accurate, complete, and consistent.² Based on the results of the verification process, EPA follows up with 30 facilities to resolve mistakes that may have occurred. The post-submittals checks are consistent with a number of 31 general and category-specific QC procedures, including range checks, statistical checks, algorithm checks, and year-32 to-year checks of reported data and emissions. For the MSW Landfills sector, under subpart HH of the GHGRP, 33 MSW Landfills with gas collection are required to report emissions from their site using both a forward- (using a 34 first order decay model as a basis) and back-calculating (using parameters specific to the landfill itself, such as 35 measured recovery and collection efficiency of the landfill gas) methodology. Reporters can choose which of these 36 two methodologies they believe best represents the emissions at their landfill and are required to submit that 37 value as their total subpart HH emissions. Facilities are generally not expected to switch between the two 38 equations each year, as the emissions calculated using each method can vary greatly and can have a significant 39 effect on emission trends for that landfill, and potentially the entire MSW Landfill sector under the GHGRP. Key 40 checks are in place to assure that emissions are trending in a sensible way year over year for each reporting
- 41 landfill.

² See <https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.

1 Recalculations Discussion

- 2 Revisions to the individual facility reports submitted to EPA's GHGRP can be made at any time and a portion of
- 3 facilities have revised their reports since 2010 for various reasons, resulting in changes to the total net CH₄
- 4 emissions for MSW landfills. These recalculations increased net emissions for MSW landfills from 2005 to 2015 by
- 5 less than 0.5 percent when compared to the previous Inventory report. Each Inventory year, the back-casted
- 6 emissions for 2005 to 2009 will be recalculated using the most recently verified data from the GHGRP. Changes in
- 7 these data result in changes to the back-casted emissions.

8 Planned Improvements

- 9 EPA has received recommendations from industry stakeholders regarding the DOC values and decay rates (k value)
- 10 required to be used in the GHGRP calculations based on recent trends in the composition of waste disposed in
- 11 MSW landfills. Stakeholders have suggested that newer, more up-to-date default values for both k and DOC in the
- 12 GHGRP could then be reflected in the 2005 and later years of the Inventory. In response, EPA is developing a
- 13 multivariate analysis using publicly available subpart HH GHGRP data, solving for optimized DOC and k values
- 14 across the more than 1,100 landfills reporting to the program. The results of this analysis could help inform future
- 15 GHGRP rulemaking where changes could be made to the default DOC and k values contained within subpart HH,
- 16 which could then be carried over to the Inventory emissions estimates for MSW landfills upon promulgation of any
- 17 revisions to 40 CFR part 98.
- 18 EPA is also actively working to identify potential improvements to the DOC and k values for application to 1990 to
- 19 2004 in the Inventory time series. The Inventory currently uses one value of 0.20 for the DOC for the years 1990 to
- 20 2004. With respect to improvements to the DOC value, EPA developed a database with MSW characterization data
- from individual studies across the United States. EPA will review this data against the Inventory time series to
- assess the validity of the current DOC value and how it is applied in the FOD method. Waste characterization
- 23 studies vary greatly in terms of the granularity of waste types included and the spatial boundaries of each study
- 24 (e.g., one landfill, a metro area, statewide).
- 25 EPA is investigating the k values for the three climate types (dry, moderate, and wet) against new data and other
- landfill gas models, and how they are applied to the percentage of the population assigned to these climate types.
- 27 EPA will also assess the uncertainty factor applied to these k values in the Waste Model. With respect to the scale-
- 28 up factor, EPA will periodically assess the impact to the waste-in-place and emissions data from facilities that have
- resubmitted annual reports during any reporting years, are new reporting facilities, and from facilities that have
- 30 stopped reporting to the GHGRP to ensure national estimates are as complete as possible. Facilities may stop
- reporting to the GHGRP when they meet the "off-ramp" provisions (reported less than 15,000 metric tons of CO_2
- equivalent for 3 consecutive years or less than 25,000 metric tons of CO₂ equivalent for 5 consecutive years). If
 warranted, EPA will revise the scale-up factor to reflect newly acquired information to ensure completeness of the
- 34 Inventory.
- 35 In the next (1990 to 2019) Inventory cycle, EPA will also begin investigating the prevalence of food-related waste
- 36 deposited into industrial waste landfills. EPA will record the findings from this exercise in a memorandum and if
- 37 any changes to the methodology or assumptions for industrial waste landfills are warranted, EPA will implement
- the changes during the following Inventory cycle.
- Additionally, with the recent publication of the 2019 Refinement to the 2006 IPCC Guidelines for National
- 40 Greenhouse Gas Inventories (2019 Refinement), EPA will begin to review and update applicable emission factors,
- 41 methodologies, and assumptions underlying emission estimates for landfills and make any applicable changes
- 42 during the next (1990 to 2019) Inventory cycle per the *2019 Refinement*.
- 43

Box 7-3: Nationwide Municipal Solid Waste Data Sources

Municipal solid waste generated in the United States can be managed through landfilling, recycling, composting, and combustion with energy recovery. There have been three main sources for nationwide solid waste management data in the United States:

- The *BioCycle* and Earth Engineering Center of Columbia University's SOG in America surveys [no longer published];
- The EPA's Advancing Sustainable Materials Management: Facts and Figures reports; and
- The EREF's MSW Generation in the United States reports.

The SOG surveys and, now EREF, collected state-reported data on the amount of waste generated and the amount of waste managed via different management options: landfilling, recycling, composting, and combustion. The survey asked for actual tonnages instead of percentages in each waste category (e.g., residential, commercial, industrial, construction and demolition, organics, tires) for each waste management option. If such a breakdown is not available, the survey asked for total tons landfilled. The data are adjusted for imports and exports across state lines so that the principles of mass balance are adhered to, whereby the amount of waste managed does not exceed the amount of waste generated. The SOG and EREF reports present survey data aggregated to the state level.

The EPA Advancing Sustainable Materials Management: Facts and Figures reports use a materials flow methodology, which relies heavily on a mass balance approach. Data are gathered from industry associations, key businesses, similar industry sources, and government agencies (e.g., the Department of Commerce and the U.S. Census Bureau) and are used to estimate tons of materials and products generated, recycled, combusted with energy recovery or landfilled nationwide. The amount of MSW generated is estimated by estimating production and then adjusting these values by addressing the imports and exports of produced materials to other countries. MSW that is not recycled, composted, or combusted is assumed to be landfilled. The data presented in the report are nationwide totals.

In this Inventory, emissions from solid waste management are presented separately by waste management option, except for recycling of waste materials. Emissions from recycling are attributed to the stationary combustion of fossil fuels that may be used to power on-site recycling machinery, and are presented in the stationary combustion chapter in the Energy sector, although the emissions estimates are not called out separately. Emissions from solid waste disposal in landfills and the composting of solid waste materials are presented in the Landfills and Composting sections in the Waste sector of this report. In the United States, almost all incineration of MSW occurs at waste-to-energy (WTE) facilities or industrial facilities where useful energy is recovered, and thus emissions from waste incineration are accounted for in the Incineration chapter of the Energy sector of this report.

2 3

1

Box 7-4: Overview of U.S. Solid Waste Management Trends

As shown in Figure 7-3 and Figure 7-4, landfilling of MSW is currently and has been the most common waste management practice. A large portion of materials in the waste stream are recovered for recycling and composting, which is becoming an increasingly prevalent trend throughout the country. Materials that are composted and recycled would have previously been disposed in a landfill.

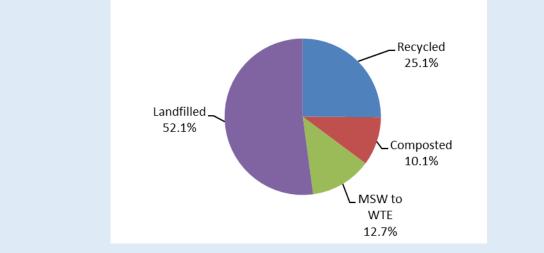
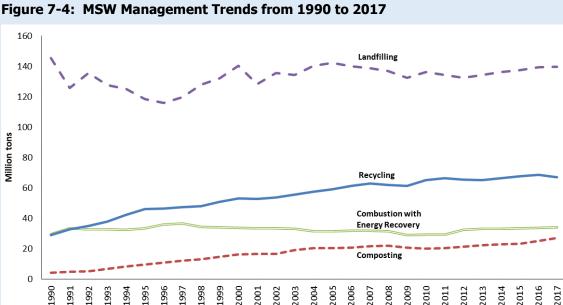
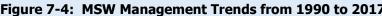




Figure 7-3: Management of Municipal Solid Waste in the United States, 2017

Source: EPA (2019c) Note: 2017 is the latest year of available data.

Source: EPA (2019c).

Note: 2017 is the latest year of available data.

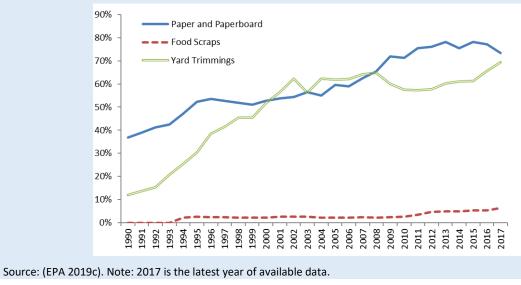
Table 7-6 presents a typical composition of waste disposed of at a typical MSW landfill in the United States over time. It is important to note that the actual composition of waste entering each landfill will vary from that presented in Table 7-6. Due to China's recent ban on accepting certain kinds of solid waste by the end of 2017 (WTO 2017), inclusive of some paper and paperboard waste, plastic waste, and other miscellaneous inorganic wastes, there has been a slight increase in the disposal of paper and paperboard and plastic wastes in 2017 (Table 7-6). EPA expects these numbers to continuing increasing until new markets for recycling of these goods are identified.

Understanding how the waste composition changes over time, specifically for the degradable waste types (i.e., those types known to generate CH₄ as they break down in a modern MSW landfill), is important for estimating greenhouse gas emissions. Increased diversion of degradable materials so that they are not disposed of in landfills reduces the CH₄ generation potential and CH₄ emissions from landfills. For certain degradable waste

types (i.e., paper and paperboard), the amounts discarded have decreased over time due to an increase in waste diversion through recycling and composting (see Table 7-6 and Figure 7-5). As shown in Figure 7-5, the diversion of food scraps has been consistently low since 1990 because most cities and counties do not practice curbside collection of these materials, although the quantity has been slowly increasing in recent years. Neither Table 7-6 nor Figure 7-5 reflect the frequency of backyard composting of yard trimmings and food waste because this information is largely not collected nationwide and is hard to estimate.

Table 7-6: Materials Discarded ^a in the Municipal Waste Stream by Waste Type from 1990
to 2017 (Percent) ^b

Waste Type	1990	2005	2014	2015	2016	2017
Paper and						
Paperboard	30.0%	24.7%	14.3%	13.3%	12.7%	13.1%
Glass	6.0%	5.8%	5.2%	5.0%	4.9%	4.9%
Metals	7.2%	7.9%	9.5%	9.5%	9.8%	9.9%
Plastics	9.5%	16.4%	18.5%	18.9%	18.9%	19.2%
Rubber and Leather	3.2%	2.9%	3.0%	3.3%	3.4%	3.5%
Textiles	2.9%	5.3%	7.3%	7.7%	8.0%	8.0%
Wood	6.9%	7.5%	8.1%	8.0%	8.8%	8.7%
Other ^c	1.4%	1.8%	2.2%	2.2%	2.2%	2.2%
Food Scraps	13.6%	18.5%	21.7%	22.0%	22.1%	22.0%
Yard Trimmings	17.6%	7.0%	7.9%	7.8%	6.9%	6.2%
Miscellaneous						
Inorganic Wastes	1.7%	2.2%	2.3%	2.3%	2.3%	2.3%


^a Discards after materials and compost recovery. In this table, discards include combustion with energy recovery. Does not include construction & demolition debris, industrial process wastes, or certain other wastes.

^b Data for all years are from the EPA's Advancing Sustainable Materials Management: Facts and Figures 2016 and 2017 Tables and Figures report (Table 4) published in November 2019 (EPA 2019c).

^c Includes electrolytes in batteries and fluff pulp, feces, and urine in disposable diapers. Details may not add to totals due to rounding.

Note: 2017 is the latest year of available data.

1

1 Box 7-5: Description of a Modern, Managed Landfill

Modern, managed landfills are well-engineered facilities that are located, designed, operated, and monitored to ensure compliance with federal, state, and tribal regulations. Municipal solid waste (MSW) landfills must be designed to protect the environment from contaminants which may be present in the solid waste stream. Additionally, many new landfills collect and destroy landfill gas through flares or landfill gas-to-energy projects. Requirements for affected MSW landfills may include:

- Siting requirements to protect sensitive areas (e.g., airports, floodplains, wetlands, fault areas, seismic impact zones, and unstable areas);
- Design requirements for new landfills to ensure that Maximum Contaminant Levels (MCLs) will not be exceeded in the uppermost aquifer (e.g., composite liners and leachate collection systems);
- Leachate collection and removal systems;
- Operating practices (e.g., daily and intermediate cover, receipt of regulated hazardous wastes, use of landfill cover material, access options to prevent illegal dumping, use of a collection system to prevent stormwater run-on/run-off, record-keeping);
- Air monitoring requirements (explosive gases);
- Groundwater monitoring requirements;
- Closure and post-closure care requirements (e.g., final cover construction); and
- Corrective action provisions.

Specific federal regulations that affected MSW landfills must comply with include the 40 CFR Part 258 (Subtitle D of RCRA), or equivalent state regulations and the NSPS 40 CFR Part 60 Subpart WWW. Additionally, state and tribal requirements may exist.³

7.2 Wastewater Treatment (CRF Source Category 5D)

5 Wastewater treatment processes can produce anthropogenic methane (CH₄) and nitrous oxide (N₂O) emissions. 6 Wastewater from domestic and industrial sources is treated to remove soluble organic matter, suspended solids, 7 pathogenic organisms, and chemical contaminants.⁴ Treatment may either occur on site, most commonly through 8 septic systems or package plants, or off site at centralized treatment systems. In the United States, approximately 9 19 percent of domestic wastewater is treated in septic systems or other on-site systems, while the rest is collected 10 and treated centrally (U.S. Census Bureau 2017). Centralized wastewater treatment systems may include a variety 11 of processes, ranging from physical separation of material that readily settles out, to treatment operations that use 12 biological processes to convert and remove contaminants, to advanced treatment for removal of targeted 13 pollutants, such as nutrients. Some wastewater may also be treated through the use of constructed (or semi-14 natural) wetland systems, though it is much less common in the United States (ERG 2016). Constructed wetlands 15 may be used as the primary method of wastewater treatment, or as a later treatment step following settling and 16 biological treatment. Constructed wetlands develop natural processes that involve vegetation, soil, and associated

17 microbial assemblages to trap and treat incoming contaminants (IPCC 2014).

³ For more information regarding federal MSW landfill regulations, see

<http://www.epa.gov/osw/nonhaz/municipal/landfill/msw_regs.htm>.

⁴ Throughout the Inventory, emissions from domestic wastewater also include any commercial and industrial wastewater collected and co-treated with domestic wastewater.

- 1 Soluble organic matter is generally removed using biological processes in which microorganisms consume the
- 2 organic matter for maintenance and growth. The resulting biomass (sludge) is removed from the effluent prior to
- 3 discharge to the receiving stream. Microorganisms can biodegrade soluble organic material in wastewater under
- 4 aerobic or anaerobic conditions, where the latter condition produces CH₄. During collection and treatment,
- 5 wastewater may be accidentally or deliberately managed under anaerobic conditions. In addition, the sludge may
- 6 be further biodegraded under aerobic or anaerobic conditions. The generation of N₂O may also result from the
- 7 treatment of domestic wastewater during both nitrification and denitrification of the nitrogen (N) present, usually
- 8 in the form of urea, ammonia, and proteins. These compounds are converted to nitrate (NO₃) through the aerobic
- process of nitrification. Denitrification occurs under anoxic conditions (without free oxygen) and involves the
 biological conversion of nitrate into dinitrogen gas (N₂). Nitrous oxide can be an intermediate product of both
- biological conversion of nitrate into dinitrogen gas (N2). Nitrous oxide can be an intermediate product of both
 processes but has typically been associated with denitrification. More recent research suggests that higher
- emissions of N₂O may in fact originate from nitrification (Ahn et al. 2010), while other research suggests that N₂O
- 13 may also result from other types of wastewater treatment operations (Chandran 2012).
- 14 The principal factor in determining the CH₄ generation potential of wastewater is the amount of degradable
- 15 organic material in the wastewater. Common parameters used to measure the organic component of the
- 16 wastewater are the biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Under the same
- 17 conditions, wastewater with higher COD (or BOD) concentrations will generally yield more CH₄ than wastewater
- 18 with lower COD (or BOD) concentrations. BOD represents the amount of oxygen that would be required to
- 19 completely consume the organic matter contained in the wastewater through aerobic decomposition processes,
- 20 while COD measures the total material available for chemical oxidation (both biodegradable and non-
- biodegradable). The BOD value is most commonly expressed in milligrams of oxygen consumed per liter of sample
- during 5 days of incubation at 20°C, or BOD₅. Because BOD is an aerobic parameter, it is preferable to use COD to
- estimate CH₄ production, since CH₄ is produced only in anaerobic conditions. The principal factor in determining
- the N₂O generation potential of wastewater is the amount of N in the wastewater. The variability of N in the
 influent to the treatment system, as well as the operating conditions of the treatment system itself, also impact
- 26 the N₂O generation potential.
- 27 In 2018, CH₄ emissions from domestic wastewater treatment were 8.4 MMT CO₂ Eq. (334 kt CH₄). Emissions
- remained fairly steady from 1990 through 1999 but have decreased since that time due to decreasing percentages
- of wastewater being treated in anaerobic systems, generally including reduced use of on-site septic systems and
- 30 central anaerobic treatment systems (EPA 1992, 1996, 2000, and 2004; U.S. Census Bureau 2017). In 2018, CH₄
- emissions from industrial wastewater treatment were estimated to be 5.9 MMT CO₂ Eq. (235 kt CH₄). Industrial
- 32 emission sources have generally increased across the time series through 1999 and then fluctuated up and down
- 33 with production changes associated with the treatment of wastewater from the pulp and paper manufacturing,
- meat and poultry processing, fruit and vegetable processing, starch-based ethanol production, petroleum refining,
 and brewery industries. Table 7-7 and Table 7-8 provide CH₄ emission estimates from domestic and industrial
- 36 wastewater treatment.
- 37 With respect to N₂O, the United States identifies two distinct sources for N₂O emissions from domestic
- 38 wastewater: emissions from centralized wastewater treatment processes, and emissions from effluent from
- 39 centralized treatment systems that has been discharged into aquatic environments. The 2018 emissions of N₂O
- from centralized wastewater treatment processes and from effluent were estimated to be 0.4 MMT CO_2 Eq. (1.2 kt
- 41 N₂O) and 4.6 MMT CO₂ Eq. (15.6 kt N₂O), respectively. Total N₂O emissions from domestic wastewater were
- estimated to be 5.0 MMT CO_2 Eq. (16.8 kt N_2O). Nitrous oxide emissions from wastewater treatment processes
- 43 gradually increased across the time series as a result of increasing U.S. population and protein consumption.
- 44 Nitrous oxide emissions are not estimated from industrial wastewater treatment because there is no IPCC
- 45 methodology provided or industrial wastewater emission factors available. Table 7-7 and Table 7-8 provide N₂O
- 46 emission estimates from domestic wastewater treatment.

Table 7-7: CH₄ and N₂O Emissions from Domestic and Industrial Wastewater Treatment (MMT CO₂ Eq.)

Activity 1990 2005 2014 2015 2016 2017 2018	Activity	1990	2005	2014	2015	2016	2017	2018
---	----------	------	------	------	------	------	------	------

CH₄	15.3	15.4	14.3	14.6	14.4	14.1	14.2
Domestic	10.4	10.0	8.9	9.0	8.7	8.3	8.4
Industrial ^a	4.9	5.5	5.4	5.5	5.7	5.8	5.9
N ₂ O	3.4	4.4	4.8	4.8	4.9	5.0	5.0
Centralized WWTP	0.2	0.3	0.3	0.3	0.4	0.4	0.4
Domestic Effluent	3.2	4.1	4.4	4.4	4.5	4.6	4.6
Total	18.7	19.9	19.1	19.4	19.2	19.1	19.2

^a Industrial activity includes the pulp and paper manufacturing, meat and poultry processing, fruit and vegetable processing, starch-based ethanol production, petroleum refining, and breweries industries.

Note: Totals may not sum due to independent rounding.

1 Table 7-8: CH₄ and N₂O Emissions from Domestic and Industrial Wastewater Treatment (kt)

Activity	1990	2005	2014	2015	2016	2017	2018
CH ₄	614	618	573	583	575	566	569
Domestic	417	398	356	361	348	334	334
Industrial ^a	197	219	217	221	227	232	235
N₂O	11	15	16	16	16	17	17
Centralized WWTP	1	1	1	1	1	1	1
Domestic Effluent	11	14	15	15	15	15	16

^a Industrial activity includes the pulp and paper manufacturing, meat and poultry processing, fruit and vegetable processing, starch-based ethanol production, petroleum refining, and breweries industries.

Note: Totals may not sum due to independent rounding.

2 Methodology

3 Domestic Wastewater CH4 Emission Estimates

Domestic wastewater CH₄ emissions originate from both septic systems and from centralized treatment systems,
such as publicly owned treatment works (POTWs). Within these centralized systems, CH₄ emissions can arise from
aerobic systems that are not well managed or that are designed to have periods of anaerobic activity (e.g.,
constructed wetlands and facultative lagoons), anaerobic systems (anaerobic lagoons and anaerobic reactors), and
from anaerobic digesters when the captured biogas is not completely combusted. The methodological equations
are:

10	Emissions from Septic Systems = A
11	= $US_{POP} \times (\% \text{ onsite}) \times (EF_{SEPTIC}) \times 1/10^9 \times 365.25$
12	<i>Emissions from Centrally Treated Aerobic Systems (other than Constructed Wetlands) + Emissions from</i>
13	<i>Centrally Treated Aerobic Systems (Constructed Wetlands Only) + Emissions from Centrally Treated Aerobic</i>
14	<i>Systems (Constructed Wetlands used as Tertiary Treatment) =</i> B
15	where,
16	<i>Emissions from Centrally Treated Aerobic Systems (other than Constructed Wetlands)</i>
17	= {[(% collected) × (total BOD ₅ produced) × (% aerobico _{TCW}) × (% aerobic w/out primary)] + [(%
18	collected) × (total BOD ₅ produced) × (% aerobico _{TCW}) × (% aerobic w/primary) × (1-% BOD removed in
19	prim. treat.)]} × (% operations not well managed) × (B ₀) × (MCF-aerobic_not_well_man)
20 21 22	<i>Emissions from Centrally Treated Aerobic Systems (Constructed Wetlands Only)</i> = $[(\% \text{ collected}) \times (\text{total BOD}_5 \text{ produced}) \times (\% \text{aerobiccw})] \times (B_0) \times (\text{MCF-constructed wetlands})$
23	Emissions from Centrally Treated Aerobic Systems (Constructed Wetlands used as Tertiary Treatment)

1 2) × 3.79 × (B _o) × (MCF-constructed wetlands)] × 1/10 ⁶ × 365.25						
3 4 5 6	$Emissions from Centrally Treated Anaerobic Systems = C = \{[(\% collected) \times (total BOD_5 produced) \times (\% anaerobic) \times (\% anaerobic w/out primary)] + [(% collected) \times (total BOD_5 produced) \times (\% anaerobic) \times (\% anaerobic w/primary) \times (1-\% BOD removed in prim. treat.)]\} \times (B_0) \times (MCF-anaerobic)$							
7 8	<i>Emissions from Anaerobic Digesters</i> = D = [(POTW_flow_AD) × (digester gas)/(100)] × 0.0283 × (FRAC_CH ₄) × 365.25 × (662) × (1-DE) × 1/10 ⁹							
9	Total Domestic CH_4 Emissions from Wastewater (kt) = A + B + C + D							
10	where,							
11	USPOP	= U.S. population						
12	% onsite	= Flow to septic systems / total flow						
13	% collected	= Flow to POTWs / total flow						
14	% aerobicotcw	= Flow to aerobic systems, other than wetlands only / total flow to						
15		POTWs						
16	% aerobic _{cw}	= Flow to aerobic systems, constructed wetlands used as sole treatment						
17		/ total flow to POTWs						
18	% anaerobic	= Flow to anaerobic systems / total flow to POTWs						
19	% aerobic w/out primary	= Percent of aerobic systems that do not employ primary treatment						
20	% aerobic w/primary	= Percent of aerobic systems that employ primary treatment						
21	% BOD removed in prim. treat.	= Percent of BOD removed in primary treatment						
22		= Percent of aerobic systems that are not well managed and in which						
23	, operations not wen managed	some anaerobic degradation occurs						
24	% anaerobic w/out primary	= Percent of anaerobic systems that do not employ primary treatment						
25	% anaerobic w/primary	= Percent of anaerobic systems that employ primary treatment						
26	EFSEPTIC	= Methane emission factor – septic systems						
27	Total BOD₅ produced	= kg BOD/capita/day × U.S. population × 365.25 days/yr						
28	BODcw,INF	= BOD concentration in wastewater entering the constructed wetland						
29	Bo	= Maximum CH ₄ -producing capacity for domestic wastewater						
30	1/10 ⁶	= Conversion factor, kg to kt						
31	365.25	= Days in a year						
32	3.79	= Conversion factor, gallons to liters						
33	MCF-aerobic_not_well_man.	= CH ₄ correction factor for aerobic systems that are not well managed						
34	MCF-anaerobic	= CH ₄ correction factor for anaerobic systems						
35	MCF-constructed wetlands	= CH ₄ correction factor for surface flow constructed wetlands						
36	DE	= CH ₄ destruction efficiency from flaring or burning in engine						
37	POTW_flow_CW	= Wastewater flow to POTWs that use constructed wetlands as tertiary						
38		treatment (MGD)						
39	POTW_flow_AD	= Wastewater influent flow to POTWs that have anaerobic digesters						
40		(MGD)						
41	digester gas	= Cubic feet of digester gas produced per person per day						
42	100	= Wastewater flow to POTW (gallons/person/day)						
43	0.0283	= Conversion factor, ft ³ to m ³						
44	FRAC_CH ₄	= Proportion of CH ₄ in biogas						
45	662	= Density of CH ₄ (g CH ₄ /m ³ CH ₄)						
46	1/10 ⁹	= Conversion factor, g to kt						
47	Emissions from Contis Systems							

47 Emissions from Septic Systems:

48 Methane emissions from septic systems were estimated by multiplying the U.S. population by the percent of

49 wastewater treated in septic systems (about 18 percent) and an emission factor (10.7 g CH₄/capita/day) (Leverenz

- et al. 2010), and then converting the result to kt/year. U.S. population data were taken from the U.S. Census
- 2 Bureau International Database (U.S. Census Bureau 2019) and include the populations of the United States,
- 3 American Samoa, Guam, Northern Mariana Islands, Puerto Rico, and the U.S. Virgin Islands. Table 7-9 presents U.S.
- 4 population for 1990 through 2018.

5 Emissions from Centrally Treated Aerobic and Anaerobic Systems:

6 Methane emissions from POTWs were estimated by multiplying the total BOD₅ produced in the United States by

- 7 the percent of wastewater treated centrally, or percent collected (about 82 percent) (U.S. Census Bureau 2017),
- 8 the relative percentage of wastewater treated by aerobic and anaerobic systems (other than constructed
- 9 wetlands), the relative percentage of aerobic systems at wastewater facilities with and without primary treatment
- 10 (EPA 1992, 1996, 2000, and 2004), the relative percentage of anaerobic systems at wastewater facilities with and
- without primary treatment (EPA 1992, 1996, 2000, and 2004), the percentage of BOD₅ treated after primary
 treatment (67.5 percent, 32.5 percent removed in primary treatment) (Metcalf & Eddy 2014), the maximum CH₄-
- treatment (67.5 percent, 32.5 percent removed in primary treatment) (Metcalf & Eddy 2014), the maximum CH₄producing capacity of domestic wastewater (B₀, 0.6 kg CH₄/kg BOD) (IPCC 2006), and the relative methane
- correction factors (MCF) for not well-managed aerobic (0.3) (IPCC 2006), and anaerobic (0.8) (IPCC 2006) systems.
- All aerobic systems are assumed to be well-managed as there are currently no data available to quantify the
- 16 number of systems that are not well-managed.

17 Table 7-9 presents total BOD₅ produced for 1990 through 2018. The proportions of domestic wastewater treated

18 onsite versus at centralized treatment plants were based on data from the 1989, 1991, 1993, 1995, 1997, 1999,

19 2001, 2003, 2005, 2007, 2009, 2011, 2013, 2015 and 2017 *American Housing Surveys* conducted by the U.S. Census

20 Bureau (U.S. Census Bureau 2017), with data for intervening years obtained by linear interpolation and 2018

forecasted using 1990 to 2017 data. The BOD₅ production rate was determined using BOD generation rates per

- 22 capita both with and without kitchen scraps (Metcalf & Eddy 2003; Metcalf & Eddy 2014) as well as an estimated
- percent of housing units that utilize kitchen garbage disposals (ERG 2018a). The percent BOD₅ removed by primary
- treatment for domestic wastewater was obtained from Metcalf & Eddy (2014). The percent of wastewater flow to
- aerobic and anaerobic systems, the percent of aerobic and anaerobic systems that do and do not employ primary
 treatment, and the wastewater flow to POTWs that have anaerobic digesters were obtained from the 1992, 1996,
- 27 2000, and 2004 *Clean Watersheds Needs Survey* (CWNS) (EPA 1992, 1996, 2000, and 2004). Data for intervening
- years were obtained by linear interpolation and the years 2005 through 2018 were forecasted from the rest of the
- time series. The percent of wastewater flow to aerobic systems that use only constructed wetlands and
- 30 wastewater flow to POTWs that use constructed wetlands as tertiary treatment were obtained from the 1992,
- 31 1996, 2000, 2004, 2008, and 2012 CWNS (EPA 1992, 1996, 2000, 2004, 2008b, and 2012). Data for intervening

32 years were obtained by linear interpolation and the years 2013 through 2018 were forecasted from the rest of the

33 time series.

Table 7-9: U.S. Population (Millions) and Domestic Wastewater BOD₅ Produced (kt)

Year	Population	BOD ₅
1990	253	8,131
2005	300	9,624
2014	323	9,657
2015	325	9,743
2016	327	9,828
2017	329	9,911
2018	333	10,032
6	6 B (2040) 500

Sources: U.S. Census Bureau (2019); ERG (2019a).

- 1 For constructed wetlands, an MCF of 0.4 was used, which is the IPCC suggested MCF for surface flow wetlands.
- 2 This is the most conservative factor for constructed wetlands and was recommended by IPCC (2014) when the type
- 3 of constructed wetland is not known. A BOD₅ concentration of 30 mg/L was used for wastewater entering
- 4 constructed wetlands used as tertiary treatment based on U.S. secondary treatment standards for POTWs. These
- 5 standards are based on plants generally utilizing simple settling and biological treatment (EPA 2013).
- 6 In addition, methane emissions were calculated for systems that treat wastewater with constructed wetlands and
- systems that use constructed wetlands as tertiary treatment; however, constructed wetlands are a relatively small
- 8 portion of wastewater treated centrally (<0.1 percent).

9 Emissions from Anaerobic Digesters:

- 10 Total CH₄ emissions from anaerobic digesters were estimated by multiplying the wastewater influent flow to
- 11 POTWs with anaerobic digesters, the cubic feet of digester gas generated per person per day divided by the flow to
- POTWs, the fraction of CH₄ in biogas (0.65), the density of CH₄ (662 g CH₄/ m^3 CH₄) (EPA 1993a), one minus the
- destruction efficiency from burning the biogas in an energy/thermal device (0.99 for enclosed flares) and then
- 14 converting the results to kt/year.
- 15 The CH₄ destruction efficiency for CH₄ recovered from sludge digestion operations, 99 percent, was selected based
- 16 on the range of efficiencies (98 to 100 percent) recommended for flares in *AP-42 Compilation of Air Pollutant*
- 17 Emission Factors, Chapter 2.4 (EPA 1998), along with data from CAR (2011), Sullivan (2007), Sullivan (2010), and
- 18 UNFCCC (2012). The cubic feet of digester gas produced per person per day (1.0 ft³/person/day) and the
- proportion of CH₄ in biogas (0.65) come from Metcalf & Eddy (2014). The wastewater flow to a POTW (100
- 20 gal/person/day) was taken from the Great Lakes-Upper Mississippi River Board of State and Provincial Public
- Health and Environmental Managers, "*Recommended Standards for Wastewater Facilities (Ten-State Standards)*"
 (2004).
- 23 Table 7-10 presents domestic wastewater CH₄ emissions for both septic and centralized systems, including
- 24 anaerobic digesters, in 2018.

Table 7-10: Domestic Wastewater CH₄ Emissions from Septic and Centralized Systems

26 (2018, MMT CO₂ Eq. and Percent)

	CH ₄ Emissions (MMT CO ₂ Eq.)	% of Domestic Wastewater CH ₄
Septic Systems	5.9	70.4%
Centrally-Treated Aerobic Systems	0.03	0.4%
Centrally-Treated Anaerobic Systems	2.2	26.8%
Anaerobic Digesters	0.2	2.4%
Total	8.4	100%

Note: Totals may not sum due to independent rounding.

27 Industrial Wastewater CH₄ Emission Estimates

28 Methane emission estimates from industrial wastewater were developed according to the methodology described

in the 2006 IPCC Guidelines. Industry categories that are likely to produce significant CH₄ emissions from

30 wastewater treatment were identified and included in the Inventory. The main criteria used to identify these

31 industries are whether they generate high volumes of wastewater, whether there is a high organic wastewater

load, and whether the wastewater is treated using methods that result in CH₄ emissions. The top six industries that

33 meet these criteria are pulp and paper manufacturing; meat and poultry processing; vegetables, fruits, and juices

34 processing; starch-based ethanol production; petroleum refining; and breweries. Wastewater treatment emissions

for these sectors for 2018 are displayed in Table 7-11 below. Table 7-12 contains production data for these

36 industries.

1 Table 7-11: Industrial Wastewater CH₄ Emissions by Sector (2018, MMT CO₂ Eq. and

2 Percent)

	CH4 Emissions (MMT CO2 Eq.)	% of Industrial Wastewater CH ₄
Meat & Poultry	4.8	81.3%
Pulp & Paper	0.6	9.8%
Fruit & Vegetables	0.2	3.0%
Petroleum Refineries	0.2	2.6%
Ethanol Refineries	0.1	2.4%
Breweries	0.05	1%
Total	5.9	100%

Note: Totals may not sum due to independent rounding.

Table 7-12: U.S. Pulp and Paper, Meat, Poultry, Vegetables, Fruits and Juices, Ethanol, Breweries, and Petroleum Refining Production (MMT)

		Meat (Live Weight	Poultry (Live Weight	Vegetables, Fruits and			Petroleum
Year	Pulp and Paper ^a	Killed)	Killed)	Juices	Ethanol	Breweries	Refining
1990	83.6	27.3	14.6	38.7	2.5	23.9	702.4
2005	92.4	31.4	25.1	42.9	11.7	23.2	818.6
2014	80.9	32.2	26.9	45.3	42.8	22.5	903.9
2015	80.9	32.8	27.7	44.6	44.2	22.4	914.5
2016	79.9	34.2	28.3	43.2	45.8	22.3	926.0
2017	80.0	35.4	28.9	42.7	47.2	21.8	933.5
2018	75.7	36.4	29.4	42.1	48.0	21.5	951.4

^a Pulp and paper production is the sum of market pulp production plus paper and paperboard production. Sources: FAO (2019a) and FAO (2019b); USDA (2019a); Cooper (2018) and RFA (2019a and 2019b); Beer Institute (2011) and TTB (2019); EIA (2019).

5 Methane emissions from these categories were estimated by multiplying the annual product output by the

6 average outflow, the organics loading (in COD) in the outflow, the maximum CH₄ producing potential of industrial

7 wastewater (B_0), and the percentage of organic loading assumed to degrade anaerobically in a given treatment

system (MCF). Ratios of BOD:COD in various industrial wastewaters were obtained from EPA (1997a) and used to

9 estimate COD loadings. The B_0 value used for all industries is the IPCC default value of 0.25 kg CH₄/kg COD (IPCC

10 2006).

11 For each industry, the percent of plants in the industry that treat wastewater on site, the percent of plants that

12 have a primary treatment step prior to biological treatment, and the percent of plants that treat wastewater

13 anaerobically were defined. The percent of wastewater treated anaerobically onsite (TA) was estimated for both

14 primary treatment (%TA_p) and secondary treatment (%TA_s). For plants that have primary treatment in place, an

15 estimate of COD that is removed prior to wastewater treatment in the anaerobic treatment units was

16 incorporated. The values used in the %TA calculations are presented in Table 7-13 below.

17 The methodological equations are:

18
$$CH_4$$
 (industrial wastewater) = $[P \times W \times COD \times \%TA_p \times B_0 \times MCF] + [P \times W \times COD \times \%TA_s \times B_0 \times MCF]$

1		$\text{MTA}_{p} = [\text{MPlants}_{o} \times \text{MWW}_{a,p} \times \text{MCOD}_{p}]$
2	$%TA_s =$	$[\%Plants_a \times \%WW_{a,s} \times \%COD_s] + [\%Plants_t \times \%WW_{a,t} \times \%COD_s]$
3	where,	
4	CH ₄ (industrial was	tewater)= Total CH₄ emissions from industrial wastewater (kg/year)
5	P	= Industry output (metric tons/year)
6	W	= Wastewater generated (m^3 /metric ton of product)
7	COD	= Organics loading in wastewater (kg/m ³)
8	%TA _p	= Percent of wastewater treated anaerobically on site in primary treatment
9	%TAs	= Percent of wastewater treated anaerobically on site in secondary treatment
10	%Plants _o	= Percent of plants with onsite treatment
11	%WW _{a,p}	= Percent of wastewater treated anaerobically in primary treatment
12	%CODp	= Percent of COD entering primary treatment
13	%Plants _a	= Percent of plants with anaerobic secondary treatment
14	%Plantst	= Percent of plants with other secondary treatment
15 16	%WW _{a,s}	 Percent of wastewater treated anaerobically in anaerobic secondary treatment
17	%WW _{a,t}	= Percent of wastewater treated anaerobically in other secondary treatment
18	%CODs	= Percent of COD entering secondary treatment
19	Bo	= Maximum CH ₄ producing potential of industrial wastewater (kg CH ₄ /kg COD)
20	MCF	= CH ₄ correction factor, indicating the extent to which the organic content
21		(measured as COD) degrades anaerobically
22 23	-	quations for calculating %TA were used for secondary treatment in the pulp and paper bic systems with anaerobic portions. These equations are:
24	%TAa =	$= [\%Plants_a \times \%WW_{a,s} \times \%COD_s] + [\%Plant_{s,t} \times \%WW_{a,t} \times COD_s]$
25		$%TA_{a,t} = [%Plants_{a,t} \times %WW_{a,s} \times %COD_s]$
26	where,	
27	%TAa	= Percent of wastewater treated anaerobically on site in secondary treatment
28	%TA _{a,t}	= Percent of wastewater treated in aerobic systems with anaerobic portions
29		on site in secondary treatment
30	%Plants _a	= Percent of plants with anaerobic secondary treatment
31	%Plants _{a,t}	= Percent of plants with partially anaerobic secondary treatment
32	%WW _{a,s}	= Percent of wastewater treated anaerobically in anaerobic secondary
33		treatment
34	%WW _{a,t}	= Percent of wastewater treated anaerobically in other secondary treatment
35	%CODs	= Percent of COD entering secondary treatment
36 37	As described below, the valuin detail in ERG (2008), ERG	ues presented in Table 7-13: were used in the emission calculations and are described (2013a), and ERG (2013b).

Table 7-13: Variables Used to Calculate Percent Wastewater Treated Anaerobically by Industry (Percent)

	Industry								
Variable	Pulp and	Meat	Poultry	Fruit/ Vegetable	Ethanol Production	Ethanol Production	Petroleum	Breweries	Breweries – Non-
	Paper	Processing	Processing	Processing	– Wet Mill	– Dry Mill	Refining	– Craft	Craft
%TA _p	0	0	0	0	0	0	0	0	0
%TAs	0	33	25	4.2	33.3	75	23.6	0	0
%TA _a	2.2	0	0	0	0	0	0	0	0
%TA _{a,t}	11.8	0	0	0	0	0	0	0	0

%Plants _o	60	100	100	11	100	100	100	100	1
%Plants _a	5	33	25	5.5	33.3	75	23.6	0	0
%Plants _{a,t}	28	0	0	0	0	0	0	0	0
%Plants _t	35	67	75	5.5	66.7	25	0	0	0
%WW _{a,p}	0	0	0	0	0	0	0	0	0
%WW _{a,s}	100	100	100	100	100	100	100	0	0
%WW _{a,t}	0	0	0	0	0	0	0	0	0
%COD _p	100	100	100	100	100	100	100	0	0
%COD _s	42	100	100	77	100	100	100	0	0

Note: Due to differences in data availability and methodology, zero values in the table are for calculation purposes only and may indicate unavailable data.

Sources: ERG (2008); ERG (2013a); and ERG (2013b).

1 Pulp and Paper. Wastewater treatment for the pulp and paper industry typically includes neutralization, screening,

2 sedimentation, and flotation/hydrocycloning to remove solids (World Bank 1999; Nemerow and Dasgupta 1991).

3 Secondary treatment (storage, settling, and biological treatment) mainly consists of lagooning. In determining the

4 percent that degrades anaerobically, both primary and secondary treatment were considered. In the United States,

5 primary treatment is focused on solids removal, equalization, neutralization, and color reduction (EPA 1993b). The

6 vast majority of pulp and paper mills with on-site treatment systems use mechanical clarifiers to remove

7 suspended solids from the wastewater. About 10 percent of pulp and paper mills with treatment systems use

8 settling ponds for primary treatment and these are more likely to be located at mills that do not perform

9 secondary treatment (EPA 1993b). However, because the vast majority of primary treatment operations at U.S.

pulp and paper mills use mechanical clarifiers, and less than 10 percent of pulp and paper wastewater is managed in primary settling ponds that are not expected to have anaerobic conditions, negligible emissions are assumed to

12 occur during primary treatment.

13 Approximately 42 percent of the BOD passes on to secondary treatment, which consists of activated sludge,

14 aerated stabilization basins, or non-aerated stabilization basins. Based on EPA's OAQPS Pulp and Paper Sector

15 Survey, 5.3 percent of pulp and paper mills reported using anaerobic secondary treatment for wastewater and/or

16 pulp condensates (ERG 2013a). Twenty-eight percent of mills also reported the use of quiescent settling ponds.

17 Using engineering judgment, these systems were determined to be aerobic with possible anaerobic portions. For

the truly anaerobic systems, an MCF of 0.8 is used, as these are typically deep stabilization basins. For the partially

anaerobic systems, an MCF of 0.2 is used, which is the *2006 IPCC Guidelines*-suggested MCF for shallow lagoons.

A time series of CH₄ emissions for 1990 through 2018 was developed based on paper and paperboard production data from the Food and Agricultural Organization of the United Nations (FAO) database FAOSTAT. (FAO 2019a) and

market pulp production data from FAO Pulp and Paper Capacities Reports (FAO 2019b). Market pulp production

values were available directly for 1998, 2000 through 2003, and 2010 through 2017. Where market pulp data were

24 unavailable, a percent of woodpulp that is market pulp was applied to woodpulp production values from FAOSTAT

to estimate market pulp production (FAO 2019a). The percent of woodpulp that is market pulp for 1990 to 1997

26 was assumed to be the same as 1998, 1999 was interpolated between values for 1998 and 2000, 2000 through

27 2009 were interpolated between values for 2003 and 2010, and 2018 was forecasted from the rest of the time

series. A time series of the overall wastewater outflow for 1990 through 1994 varies based on data outlined in ERG

29 (2013a) to reflect historical wastewater flow. Wastewater generation rates for 1995, 2000, and 2002 were

30 estimated from the 2014 American Forest and Paper Association (AF&PA) Sustainability Report (AF&PA 2014).

31 Wastewater generation rates for 2004, 2006, 2008, 2010, 2012, and 2014 were estimated from the 2016 AF&PA

32 Sustainability Report (AF&PA 2016). Data for 2005 and 2016 were obtained from the 2018 AF&PA Sustainability

Report (AF&PA 2018). Data for intervening years were obtained by linear interpolation, while 2015, 2017 and 2018

34 were forecasted from the rest of the time series. The average BOD concentrations in raw wastewater was

35 estimated to be 0.4 grams BOD/liter for 1990 to 1998, while 0.3 grams BOD/liter was estimated for 2014 through

36 2018 (EPA 1997b; EPA 1993b; World Bank 1999; Malmberg 2018). Data for intervening years were obtained by

37 linear interpolation. The COD:BOD ratio used to convert the organic loading to COD for pulp and paper mills was

38 2.5 for the entire time series (Malmberg 2018).

- 1 *Meat and Poultry Processing*. The meat and poultry processing industry makes extensive use of anaerobic lagoons
- 2 in sequence with screening, fat traps, and dissolved air flotation when treating wastewater on site. About 33
- 3 percent of meat processing operations (EPA 2002) and 25 percent of poultry processing operations (U.S. Poultry
- 4 2006) perform on-site treatment in anaerobic lagoons. The IPCC default B_0 of 0.25 kg CH₄/kg COD and default MCF
- 5 of 0.8 for anaerobic lagoons were used to estimate the CH₄ produced from these on-site treatment systems.
- 6 Production data on carcass weight and live weight killed for the meat and poultry industry were obtained from the
- USDA Agricultural Statistics Database and the Agricultural Statistics Annual Reports (USDA 2019a). Data collected
 by EPA's Office of Water provided estimates for wastewater flows into anaerobic lagoons: 5.3 and 12.5 m³/metric
- by EPA's Office of water provided estimates for wastewater nows into anaerobic lagoons. 5.5 and 12.5 in /ineffic
 ton for meat and poultry production (live weight killed), respectively (EPA 2002). The loadings are 2.8 and 1.5 g
- BOD/liter for meat and poultry, respectively (EPA 2002). The COD:BOD ratio used to convert the organic loading to
- 11 COD for both meat and poultry facilities was 3 (EPA 1997a).
- 12 *Vegetables, Fruits, and Juices Processing*. Treatment of wastewater from fruits, vegetables, and juices processing
- 13 includes screening, coagulation/settling, and biological treatment (lagooning). The flows are frequently seasonal,
- 14 and robust treatment systems are preferred for on-site treatment. Effluent is suitable for discharge to POTWs. This
- 15 industry is likely to use lagoons intended for aerobic operation, but the large seasonal loadings may develop
- 16 limited anaerobic zones. In addition, some anaerobic lagoons may also be used (Nemerow and Dasgupta 1991).
- 17 Consequently, 4.2 percent of these wastewater organics are assumed to degrade anaerobically (ERG 2008). The
- 18 IPCC default B_0 of 0.25 kg CH₄/kg COD and default MCF of 0.8 for anaerobic treatment were used to estimate the
- 19 CH₄ produced from these on-site treatment systems. The USDA National Agricultural Statistics Service (USDA
- 20 2019a, 2019c) provided production data for potatoes, other vegetables, citrus fruit, non-citrus fruit, and grapes
- 21 processed for wine. Outflow and BOD data, presented in Table 7-14 were obtained from CAST (1995) for apples,
- apricots, asparagus, broccoli, carrots, cauliflower, cucumbers (for pickles), green peas, pineapples, snap beans, and
- spinach; EPA (1974) for potato and citrus fruit processing; and EPA (1975) for all other commodities. The COD:BOD
- ratio used to convert the organic loading to COD for all fruit, vegetable, and juice facilities was 1.5 (EPA 1997a).

25 Table 7-14: Wastewater Flow (m³/ton) and BOD Production (g/L) for U.S. Vegetables,

26 Fruits, and Juices Production

Commodity	Wastewater Outflow (m ³ /ton)	BOD (g/L)	
Vegetables			
Potatoes	10.27	1.765	
Other Vegetables	9.93	0.755	
Fruit			
Apples	9.09	8.17	
Citrus Fruits	10.11	0.317	
Non-citrus Fruits	12.59	1.226	
Grapes (for wine)	2.78	1.831	

Sources: CAST (1995); EPA (1974); EPA (1975).

27 Ethanol Production. Ethanol, or ethyl alcohol, is produced primarily for use as a fuel component, but is also used in

28 industrial applications and in the manufacture of beverage alcohol. Ethanol can be produced from the

29 fermentation of sugar-based feedstocks (e.g., molasses and beets), starch- or grain-based feedstocks (e.g., corn,

30 sorghum, and beverage waste), and cellulosic biomass feedstocks (e.g., agricultural wastes, wood, and bagasse).

31 Ethanol can also be produced synthetically from ethylene or hydrogen and carbon monoxide. However, synthetic

32 ethanol comprises only about 2 percent of ethanol production and is only in an experimental stage in the United

33 States. Currently, ethanol is mostly made from sugar and starch crops, but with advances in technology, cellulosic

biomass is increasingly used as ethanol feedstock (DOE 2013).

35 Ethanol is produced from corn (or other starch-based feedstocks) primarily by two methods: wet milling and dry

36 milling. Historically, the majority of ethanol was produced by the wet milling process, but now the majority is

37 produced by the dry milling process. The dry milling process is cheaper to implement and is more efficient in terms

38 of actual ethanol production (Rendleman and Shapouri 2007). The wastewater generated at ethanol production

1 facilities is handled in a variety of ways. Dry milling facilities often combine the resulting evaporator condensate

2 with other process wastewaters, such as equipment wash water, scrubber water, and boiler blowdown and

3 anaerobically treat this wastewater using various types of digesters. Wet milling facilities often treat their

4 steepwater condensate in anaerobic systems followed by aerobic polishing systems. Wet milling facilities may treat

- 5 the stillage (or processed stillage) from the ethanol fermentation/distillation process separately or together with 6 steepwater and/or wash water. Methane generated in anaerobic digesters is commonly collected and either flared
- 5 Steepwater and/or wash water. Methane generated in anderobic digesters is commonly collected and either har 7 or used as fuel in the othered production process (EPC 2006)

7 or used as fuel in the ethanol production process (ERG 2006).

8 Available information was compiled from the industry on wastewater generation rates, which ranged from 1.25

9 gallons per gallon ethanol produced (for dry milling) to 10 gallons per gallon ethanol produced (for wet milling)

10 (Ruocco 2006a; Ruocco 2006b; Merrick 1998; Donovan 1996; NRBP 2001). COD concentrations were found to be

about 3 g/L (Ruocco 2006a; Merrick 1998; White and Johnson 2003). One hundred percent of plants were

estimated to have on-site wastewater treatment, and the variables used to calculate percent wastewater treated anaerobically are presented in Table 7-13. A default MCF of 0.8 for anaerobic treatment was used to estimate the

14 CH₄ produced from these on-site treatment systems. The amount of CH₄ recovered through the use of

- 15 biomethanators was estimated, and a 99 percent destruction efficiency was used. Biomethanators are anaerobic
- 16 reactors that use microorganisms under anaerobic conditions to reduce COD and organic acids and recover biogas
- 17 from wastewater (ERG 2006). Methane emissions for dry milling and wet milling processes were then estimated as
- 18 follows:

19

20	$Methane = [Production \times Flow \times COD \times 3.785 \times ([\%Plants_o \times \%WW_{a,p} \times \%COD_p] + [\%Plants_a \times \%WW_{a,s} \times \%WW_{a$
21	$(COD_s] + [(Production \times WW_{a,t} \times (COD_s]) \times B_0 \times MCF \times (Not Recovered] + [Production \times Flow \times 3.785 \times 10^{-10} MCF \times (Not Recovered)]$
22	$COD \times ([\%Plants_{o} \times \%WW_{a,p} \times \%COD_{p}] + [\%Plants_{a} \times \%WW_{a,s} \times \%COD_{s}] + [\%Plants_{t} \times \%WW_{a,t} \times \%COD_{s}])$
23	\times B _o \times MCF \times (% Recovered) \times (1-DE)] \times 1/10 ⁹

24 where,

25	Production	= Gallons ethanol produced (wet milling or dry milling)
26	Flow	= Gallons wastewater generated per gallon ethanol produced
27	COD	= COD concentration in influent (g/l)
28	3.785	= Conversion factor, gallons to liters
29	%Plants₀	= Percent of plants with onsite treatment
30	%WW _{a,p}	= Percent of wastewater treated anaerobically in primary treatment
31	%CODp	= Percent of COD entering primary treatment
32	%Plants _a	= Percent of plants with anaerobic secondary treatment
33	%Plantst	= Percent of plants with other secondary treatment
34	%WW _{a,s}	= Percent of wastewater treated anaerobically in anaerobic secondary treatment
35	%WW _{a,t}	= Percent of wastewater treated anaerobically in other secondary treatment
36	%CODs	= Percent of COD entering secondary treatment
37	Bo	 Maximum methane producing capacity (g CH₄/g COD)
38	MCF	= Methane correction factor
39	% Recovered	= Percent of wastewater treated in system with emission recovery
40	% Not Recovered	= 1 - percent of wastewater treated in system with emission recovery
41	DE	= Destruction efficiency of recovery system
42	1/10 ⁹	= Conversion factor, g to kt

43 A time series of CH₄ emissions for 1990 through 2017 was developed based on dry and wet milling production data

44 from the Renewable Fuels Association (RFA) (Cooper 2018). In 2018, production for dry and wet milling was based

45 on total production data and the average monthly grain-use for dry and wet milling (RFA 2019a; RFA 2019b).

46 *Petroleum Refining*. Petroleum refining wastewater treatment operations have the potential to produce CH₄

47 emissions from anaerobic wastewater treatment. EPA's Office of Air and Radiation performed an Information

1 Collection Request (ICR) for petroleum refineries in 2011.⁵ Of the responding facilities, 23.6 percent reported

2 using non-aerated surface impoundments or other biological treatment units, both of which have the potential to

3 lead to anaerobic conditions (ERG 2013b). In addition, the wastewater generation rate was determined to be 26.4

4 gallons per barrel of finished product (ERG 2013b). An average COD value in the wastewater was estimated at 0.45

5 kg/m³ (Benyahia et al. 2006). A default MCF of 0.3 was used for partially aerobic systems.

The equation used to calculate CH₄ generation at petroleum refining wastewater treatment systems is presented
 below:

$$Methane = Flow \times COD \times \%TA \times B_0 \times MCF$$

9 where,

8

10	Flow	= Annual flow treated through anaerobic treatment system (m ³ /year)
11	COD	= COD loading in wastewater entering anaerobic treatment system (kg/m ³)
12	%TA	= Percent of wastewater treated anaerobically on site
13	Bo	 Maximum methane producing potential of industrial wastewater (kg CH₄/kg COD)
14	MCF	= Methane correction factor

15 A time series of CH₄ emissions for 1990 through 2018 was developed based on production data from the EIA 2019.

16 *Breweries.* Since 2010, the number of breweries has increased from less than 2,000 to more than 7,000 (Brewers

17 Association 2019). This increase has primarily been driven by craft breweries, which have increased by over 250

18 percent during that period. Craft breweries were defined as breweries producing less than six million barrels of

19 beer per year, and non-craft breweries produce greater than six million barrels. With their large amount of water

20 use and high strength wastewater, breweries generate considerable CH₄ emissions from anaerobic wastewater

21 treatment. However, because many breweries recover their CH₄, their emissions are much lower.

22 The Alcohol and Tobacco Tax and Trade Bureau (TTB) provides total beer production in barrels per year for

different facility size categories from 2007 to the present (TTB 2019). For years prior to 2007 where TTB data were

not readily available, the Brewers Almanac (Beer Institute 2011) was used, along with an estimated percent of craft

and non-craft breweries based on the breakdown of craft and non-craft for the years 2007 through 2018.

26 The amount of water usage by craft breweries was estimated using the Brewers Association's 2015 Sustainability

27 Benchmarking Report (Brewers Association 2016a) and the 2016 Benchmarking Update (Brewers Association 2017;

28 ERG 2018b). Non-craft brewery water usage values were from the Beverage Industry Environmental Roundtable

29 (BIER) benchmarking study (BIER 2017).

30 To determine the overall amount of wastewater produced, data on water use per unit of production and a

31 wastewater-to-water ratio were used from the Benchmarking Report (Brewers Association 2016a) for both craft

32 and non-craft breweries. Since brewing is a batch process, and different operations have varying organic loads,

full-strength brewery wastewater can vary widely on a day to day basis. However, the organic content of brewery

34 wastewater does not substantially change between craft and non-craft breweries. On average, full-strength

35 wastewater is about 10,600 mg/L BOD, with a typical BOD:COD ratio of 0.6 (Brewers Association 2016b). Some

36 breweries may collect and discharge high-strength wastewater from particular brewing processes (known as "side

streaming") to a POTW, greatly reducing the organics content of the wastewater that is treated on site.
Subsequently, the MCF for discharge to a POTW was assumed to be zero (ERG 2018b).

39 Breweries may treat some or all of their wastewater on site prior to discharge to a POTW or receiving water. On-

40 site treatment operations can include physical treatment (e.g., screening, settling) which are not expected to

41 contribute to CH₄ emissions, or biological treatment, which may include aerobic treatment or pretreatment in

42 anaerobic reactors (ERG 2018b). The IPCC default B₀ of 0.25 kg CH₄/kg COD and default MCFs of 0.8 for anaerobic

- 43 treatment and 0 for aerobic treatment were used to estimate the CH₄ produced from these on-site treatment
- systems (IPCC 2006). The amount of CH₄ recovered through anaerobic wastewater treatment was estimated, and a

⁵ Available online at <https://www.epa.gov/stationary-sources-air-pollution/comprehensive-data-collected-petroleum-refining-sector>.

- 1 99 percent destruction efficiency was used (ERG 2018b; Stier J. 2018). Very limited activity data are available on
- 2 the number of U.S. breweries that are performing side streaming or pretreatment of wastewater prior to
- 3 discharge.
- 4 The assumed distribution of wastewater treatment for craft and non-craft breweries are shown in Table 7-15.

5 Table 7-15: Wastewater Treatment Distribution for Breweries

Operation Type		
Non-Craft	Craft	
0%	99%	
0%	0.5%	
1%	0%	
99%	0.5%	
	Non-Craft 0% 0% 1%	

Source: Stier, J. (2018)

7	
8	$Methane = [(Production \times Water Usage \times WW: W \times 31)/264.172) \times COD \times ([\%Plants_{potw} \times MCF_{potw}] + COD \times ([\%Plants_{potw} \times MCF_{potw}]) + COD \times ([\%Plants_{potw} \times MCF_{potw} \times MCF_{potw}]) + COD \times ([\%Plants_{potw} \times MCF_{potw}]) + COD \times ([\%P$
9	$[\%Plants_{ss} \times MCF_{potw}] + [\%Plants_{aer} \times MCF_{aer}] + [\%Plants_a \times MCF_a]) \times B_0 \times \% \text{ Not Recovered}] +$
10	[(Production × Water Usage × WW:W × 31)/264.172) × COD × ([%Plants _{potw} × MCF _{potw}] + [%Plants _{ss} ×
11	$MCF_{potw}] + [\%Plants_{aer} \times MCF_{aer}] + [\%Plants_a \times MCF_a]) \times B_0 \times (\% \text{ Recovered}) \times (1-DE)] \times 1/10^6$

12 where,

13	Production	= Barrels beer produced (non-craft breweries or craft breweries)
-		,
14	Water Usage	 Barrels water utilized per barrels beer produced
15	WW:W	= Ratio, barrels of wastewater generated per barrels of water utilized
16	COD	= COD concentration in influent (kg/m3)
17	31	= Conversion factor, gallons to barrels beer
18	264.172	= Conversion factor, gallons to m3
19	%Plants _{potw}	= Percent of plants that discharge to POTW without pretreatment
20	MCFpotw	= Methane correction factor, discharge to POTW
21	%Plants _{ss}	= Percent of plants with sidestreaming prior to POTW discharge
22	%Plants _{aer}	 Percent of plants with primary aerobic treatment
23	MCFaer	= Methane correction factor, aerobic systems
24	%Plants _a	= Percent of plants with anaerobic treatment
25	MCFa	= Methane correction factor, anaerobic systems
26	Bo	 Maximum methane producing capacity (g CH₄/g COD)
27	% Recovered	= Percent of wastewater treated in system with emission recovery
28	% Not Recovere	d = 1 - percent of wastewater treated in system with emission recovery
29	DE	= Destruction efficiency of recovery system
30	1/10 ⁶	= Conversion factor, kg to Gg

31 Domestic Wastewater N₂O Emission Estimates

32 Nitrous oxide emissions from domestic wastewater (wastewater treatment) were estimated using the IPCC (2006)

- 33 methodology and supplemented with IPCC (2014) methodology to include constructed wetland emissions,
- 34 including calculations that take into account N removal with biosolids, non-consumption and
- 35 industrial/commercial wastewater N, and emissions from advanced and constructed wetlands at centralized
- 36 wastewater treatment plants:

1 In the United States, a certain amount of N is removed with biosolids, which is applied to land, incinerated, or

2 landfilled (N_{SLUDGE}). The value for N discharged into aquatic environments as effluent is reduced to account for the

3 biosolids application.

4 The 2006 IPCC Guidelines use annual, per capita protein consumption (kg protein/person-year). For this Inventory,

5 the amount of protein available to be consumed is estimated based on per capita annual food availability data and

6 its protein content. Those data are then adjusted using a factor to account for the fraction of protein actually7 consumed.

8 Small amounts of gaseous nitrogen oxides are formed as byproducts in the conversion of nitrate to N gas in anoxic

9 biological treatment systems. Approximately 7 g N₂O is generated per capita per year if wastewater treatment 10 includes intentional nitrification and denitrification (Scheehle and Doorn 2001). Analysis of the use of treatment

includes intentional nitrification and denitrification (Scheehle and Doorn 2001). Analysis of the use of treatment
 systems in the United States that include denitrification has shown a significant increase in the time period

between 2004 and 2012, from serving populations totaling 2.4 million people to 21.3 million people (EPA 2004 and

13 EPA 2012). This is consistent with efforts throughout the United States to improve nutrient removal at centralized

14 treatment systems in response to specific water quality concerns. Based on an emission factor of 7 g per capita per

15 year, and data from CWNS 2004, 2008, and 2012, approximately 21.2 metric tons of additional N₂O may have been

16 emitted via denitrification in 2004, while about 186 metric tons may have been emitted via denitrification in both

17 2008 and 2012. Similar analyses were completed for each year in the Inventory using data from CWNS on the

18 amount of wastewater in centralized systems treated in denitrification units. Plants without intentional

19 nitrification or denitrification are assumed to generate 3.2 g N_2O per capita per year.

20 Constructed wetlands may be used as the sole treatment unit at a centralized wastewater treatment plant or may

21 serve as tertiary treatment after simple settling and biological treatment. Emissions from all constructed wetland

22 systems were included in the estimates of emissions from centralized wastewater treatment plant processes and

23 effluent from these plants. The emission factor of 0.0013 kg N₂O-N/kg N produced for constructed wetlands is

24 from IPCC (2014).

25 N₂O emissions from wastewater treatment plants are estimated, and as such, the N associated with these

emissions is subtracted from the amount of N estimated to be discharged into aquatic environments as effluent,
 consistent with the 2006 IPCC Guidelines.

Nitrous oxide emissions from domestic wastewater were estimated using the following methodology: NaOrotau = NaOrotaut + NaOrotaut

29		$N_2OTOTAL = N_2OPLANT + N_2OEFFLUENT$				
30	$N_2O_{PLANT} = N_2O_{NIT/DENIT} + N_2O_{WOUT NIT/DENIT} + N_2O_{CW ONLY} + N_2O_{CW TERTIARY}$					
31	$N_2O_{NIT/DENIT} = [(US_{POPND}) \times EF_2 \times F_{IND-COM}] \times 1/10^9$					
32	N2Owout nit/denit	= {[(USpop × WWTP) - USpopnd - USpopcw] × 10^6 × $F_{IND-COM}$ × EF_1 } × $1/10^9$				
33	$N_2O_{CW ONLY} = \{ [(US_{POPCW} \times 10^6 \times Protein \times F_{NPR} \times F_{NON-CON} \times F_{IND-COM}) \times EF_4] \times 44/28 \} \times 1/10^6 \}$					
34	N ₂ O _{cw tertiary} =	= {[($N_{CW,INF} \times POTW_flow_CW \times 3.79 \times 365.25$) × EF ₄] × 44/28} × 1/10 ⁶				
35 36	$N_2O_{EFFLUENT} = [(US_{POP} \times W)]$	$\begin{aligned} \text{WTP} \times \text{Protein} \times \text{F}_{\text{NPR}} \times \text{F}_{\text{NON-CON}} \times \text{F}_{\text{IND-COM}}) &- \text{N}_{\text{SLUDGE}} - (\text{N}_2\text{O}_{\text{PLANT}} \times 10^6 \times 28/44)] \times \\ & \text{EF}_3 \times 44/28 \times 1/10^6 \end{aligned}$				
37	where,					
38	N ₂ Ototal	= Annual emissions of N_2O (kt)				
39	N ₂ O _{plant}	= N ₂ O emissions from centralized wastewater treatment plants (kt)				
40	N ₂ Onit/denit	= N ₂ O emissions from centralized wastewater treatment plants with				
41		nitrification/denitrification (kt)				
42	N2Owout NIT/DENIT	= N ₂ O emissions from centralized wastewater treatment plants without				
43		nitrification/denitrification (kt)				
11	N O	- N.O. omissions from controlized wastewater treatment plants with constructed				

1 2	N2Ocw tertiary	 = N₂O emissions from centralized wastewater treatment plants with constructed wetlands used as tertiary treatment (kt)
3	N2OEFFLUENT	= N_2O emissions from wastewater effluent discharged to aquatic environments (kt)
-		
4	USPOP	= U.S. population
5	USpopnd	= U.S. population that is served by biological denitrification
6	USpopcw	= U.S. population that is served by only constructed wetland systems
7	WWTP	 = Fraction of population using WWTP (as opposed to septic systems)
8	POTW_flow_CW	= Wastewater flow to POTWs that use constructed wetlands as tertiary treatment
9		(MGD)
10	EF1	= Emission factor – plants without intentional denitrification
11	EF ₂	= Emission factor – plant with intentional nitrification or denitrification
12	Protein	= Annual per capita protein consumption (kg/person/year)
13	Ncw,inf	= Influent nitrogen concentration to constructed wetlands used as tertiary
14		treatment (mg/L)
15	F _{NPR}	= Fraction of N in protein (kg N/kg protein)
16	FNON-CON	= Factor for non-consumed protein added to wastewater
17	FIND-COM	= Factor for industrial and commercial co-discharged protein into the sewer
18	Nsludge	= N removed with sludge, kg N/year
19	EF₃	= Emission factor (kg N ₂ O -N/kg sewage-N produced) – from effluent
20	EF ₄	= Emission factor (kg N ₂ O -N/kg N produced) – constructed wetlands
21	3.79	= Conversion factor, gallons to liters
22	44/28	= Molecular weight ratio of N ₂ O to N ₂
23	28/44	= Molecular weight ratio of N ₂ to N ₂ O
24	1/10 ⁶	= Conversion factor, kg to Gg
25	1/10 ⁹	= Conversion factor, g to Gg

26 U.S. population data were taken from the U.S. Census Bureau International Database (U.S. Census Bureau 2019) 27 and include the populations of the United States, American Samoa, Guam, Northern Mariana Islands, Puerto Rico, 28 and the U.S. Virgin Islands. The fraction of the U.S. population using wastewater treatment plants is based on data 29 from the 1989, 1991, 1993, 1995, 1997, 1999, 2001, 2003, 2005, 2007, 2009, 2011, 2013, 2015 and 2017 American 30 Housing Survey (U.S. Census Bureau 2017). Data for intervening years were obtained by linear interpolation and 31 2018 was forecasted using 1990 to 2017 data. The emission factor (EF1) used to estimate emissions from 32 wastewater treatment for plants without intentional nitrification or denitrification was taken from IPCC (2006), 33 while the emission factor (EF₂) used to estimate emissions from wastewater treatment for plants with intentional 34 nitrification or denitrification was taken from Scheehle and Doorn (2001). The emission factor (EF4) used to 35 estimate emissions from surface flow constructed wetlands (0.0013 kg N₂O -N/kg N produced) was taken from 36 IPCC (2014). Data on annual per capita protein intake were provided by the U.S. Department of Agriculture 37 Economic Research Service (USDA 2019b) and FAO (2019c). Protein consumption data was used directly from 38 USDA for 1990 to 2010 and 2011 through 2013 was calculated using FAO data and a scaling factor. 2014 through 39 2018 were forecasted from data for 1990 through 2013. An emission factor to estimate emissions from effluent 40 (EF₃) has not been specifically estimated for the United States, thus the default IPCC value (0.005 kg N₂O-N/kg 41 sewage-N produced) was applied (IPCC 2006). The fraction of N in protein (0.16 kg N/kg protein) was also obtained 42 from IPCC (2006). The factor for non-consumed protein (1.2) and the factor for industrial and commercial co-43 discharged protein (1.25) were obtained from IPCC (2006). The amount of nitrogen removed by denitrification 44 systems was taken from EPA (2008a), while the population served by denitrification systems was estimated from 45 Clean Watersheds Needs Survey (EPA 1992, 1996, 2000, 2004, 2008b, and 2012). Sludge generation was obtained from EPA (1999) for 1988, 1996, and 1998 and from Beecher et al. (2007) for 2004. Intervening years were 46 47 interpolated and estimates for 2005 through 2018 were forecasted from the rest of the time series. The influent 48 nitrogen concentration to constructed wetlands used as tertiary treatment (25 mg/L) was obtained from Metcalf & 49 Eddy (2014). An estimate for the N removed as sludge (N_{SLUDGE}) was obtained by determining the amount of sludge 50 disposed by incineration, by land application (agriculture or other), through surface disposal, in landfills, or through 51 ocean dumping (EPA 1993b; Beecher et al. 2007; McFarland 2001; EPA 1999). In 2018, 301 kt N was removed with

- 1 sludge. Table 7-16 presents the data for U.S. population, population served by biological denitrification, population
- 2 served by wastewater treatment plants, available protein, protein consumed, and nitrogen removed with sludge.

3 Table 7-16: U.S. Population (Millions), Population Served by Biological Denitrification

- 4 (Millions), Fraction of Population Served by Wastewater Treatment (percent), Available
- 5 Protein (kg/person-year), Protein Consumed (kg/person-year), and Nitrogen Removed with
- 6 Sludge (kt-N/year)

Veer	Donulation	Domulation		Available Protein	Protein Consumed	N Removed
Year	Population	Population_{ND}	WWTP Population	Available Protein	Protein Consumed	with Sludge
1990	253	2.0	75.6	43.1	33.2	214.2
2005	300	7.1	78.8	44.9	34.7	261.1
2014	323	20.8	80.8	44.3	34.1	288.7
2015	325	21.8	80.1	44.3	34.1	291.8
2016	327	22.8	81.1	44.3	34.1	294.8
2017	329	23.8	82.1	44.3	34.1	297.9
2018	333	24.8	81.9	44.3	34.1	300.9

Sources: Population: U.S. Census Bureau (2019); Population_{ND}: EPA (1992), EPA (1996), EPA (2000), EPA (2004), EPA (2008b), EPA (2012); WWTP Population: U.S. Census Bureau (2017); Available Protein: USDA (2019b); N Removed with sludge: Beecher et al. (2007), McFarland (2001), EPA (1999), EPA (1993c).

7 Uncertainty and Time-Series Consistency

- 8 The overall uncertainty associated with both the 2018 CH₄ and N₂O emission estimates from wastewater
- 9 treatment and discharge was calculated using the 2006 IPCC Guidelines Approach 2 methodology (IPCC 2006).
- 10 Uncertainty associated with the parameters used to estimate CH₄ emissions include that of numerous input
- 11 variables used to model emissions from domestic wastewater, and wastewater from pulp and paper
- 12 manufacturing, meat and poultry processing, fruits and vegetable processing, ethanol production, petroleum
- $13 \qquad \mbox{refining, and breweries. Uncertainty associated with the parameters used to estimate N_2O emissions include that \\$
- of biosolids disposal, total U.S. population, average protein consumed per person, fraction of N in protein, non-
- consumption nitrogen factor, emission factors per capita and per mass of sewage-N, and for the percentage of
- total population using centralized wastewater treatment plants. Uncertainty associated with constructed wetlands
- 17 parameters including U.S. population served by constructed wetlands, and emission and conversion factors are
- 18 from IPCC (2014), whereas uncertainty associated with POTW flow to constructed wetlands and influent BOD and
- 19 nitrogen concentrations were based on expert judgment.
- 20 The results of this Approach 2 quantitative uncertainty analysis are summarized in Table 7-17. Methane emissions
- from wastewater treatment were estimated to be between 10.2 and 17.4 MMT CO₂ Eq. at the 95 percent
- 22 confidence level (or in 19 out of 20 Monte Carlo Stochastic Simulations). This indicates a range of approximately 28
- 23 percent below to 23 percent above the 2018 emissions estimate of 14.2 MMT CO₂ Eq. Nitrous oxide emissions
- from wastewater treatment were estimated to be between 1.3 and 10.5 MMT CO₂ Eq., which indicates a range of
- 25 approximately 74 percent below to 109 percent above the 2018 emissions estimate of 5.0 MMT CO₂ Eq.

Table 7-17: Approach 2 Quantitative Uncertainty Estimates for CH₄ Emissions from Wastewater Treatment (MMT CO₂ Eq. and Percent)

	Gas	2018 Emission Estimate	Uncertainty Range Relative to Emission Estimate ^a				
Source		(MMT CO ₂ Eq.)	(MMT CO ₂ Eq.)		(%)		
			Lower	Upper	Lower	Upper	
			Bound	Bound	Bound	Bound	
Wastewater Treatment	CH₄	14.2	10.2	17.4	-28%	+23%	
Domestic	CH_4	8.4	6.0	10.2	-28%	+22%	

Industrial	CH_4	5.9	3.0	8.8	-48%	+50%
Wastewater Treatment	N₂O	5.0	1.3	10.5	-74%	+109%

^a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

1 **QA/QC** and Verification

General QA/QC procedures were applied to activity data, documentation, and emission calculations consistent
 with the U.S. *Inventory* QA/QC plan, which is in accordance with Vol. 1 Chapter 6 of *2006 IPCC Guidelines* (see
 Annex 8 for more details). This effort included a general or Tier 1 analysis, including the following checks:

- 5 Checked for transcription errors in data input;
 - Ensured references were specified for all activity data used in the calculations;
 - Checked a sample of each emission calculation used for the source category;
 - Checked that parameter and emission units were correctly recorded and that appropriate conversion factors were used;
- Checked for temporal consistency in time series input data for each portion of the source category;
 - Confirmed that estimates were calculated and reported for all portions of the source category and for all years;
- 13 Investigated data gaps that affected trends of emissions estimates; and
- Compared estimates to previous estimates to identify significant changes.
- All transcription errors identified were corrected and documented. The QA/QC analysis did not reveal any systemic
 inaccuracies or incorrect input values.

17 **Recalculations Discussion**

18 Population data were updated to reflect revised U.S. Census Bureau datasets which resulted in changes to 2010

19 through 2017 values (U.S. Census Bureau 2019). *American Housing Survey* data were updated for percent of

20 wastewater treated centrally which affected 2016 and 2017 (U.S. Census Bureau 2017). EPA also updated the

21 percent calculation for centrally treated aerobic systems without primary sedimentation which affected the entire

time series.

6

7

8

9

11

12

- 23 EPA evaluated pulp and paper wastewater generation data and updated values for 2005 and 2016 which affected
- emissions calculations for 2005 and 2015 through 2017 (AF&PA 2018). Market pulp production values were
- 25 updated to include "pulp of other fiber and paper and paperboard" and "dissolving pulp, wood and other raw
- 26 materials" after confirmation with NCASI that these values were appropriate to include in the market pulp
- 27 production (Malmberg 2019). This update affected emissions calculations for 1998 and 2000 through 2003.
- 28 EPA investigated updated sources for fruits, vegetables, and juices wastewater characteristics and outflow. EPA
- 29 evaluated a source that includes updated BOD and wastewater outflow information for some fruits and vegetables
- 30 included in the Inventory and determined updates to activity data were appropriate (CAST 1995). This update
- 31 affected industrial emissions calculations for the entire time series.
- 32 EPA updated the methodology used to estimate ethanol production for wet and dry milling as the source used in
- 33 previous Inventories is no longer readily available. EPA conferred with RFA and determined publicly available
- 34 production data used in conjunction with monthly grain-use data are an appropriate surrogate for calculating the
- 35 ethanol production at wet and dry mills (Lewis 2019; RFA 2019a; RFA 2019b).

36 Planned Improvements

- 37 IPCC recently announced the availability of the 2019 Refinement to the 2006 Guidelines for National Greenhouse
- 38 *Gas Inventories*. EPA is planning to incorporate the following improvements to the Inventory based on these
- 39 refinements:

- 1 Restructure the activity data on treatment systems in use at domestic and industrial treatment plants to 2 mirror the types of systems provided in the refinements and incorporate updated emission factors, 3 including incorporating nitrous oxide emission estimates for septic systems. 4 Develop the activity data to estimate methane and nitrous oxide emissions associated with wastewater • 5 discharge using the new IPCC emission factors. Review and update the estimate of total organics in the wastewater, total organics and N removed during 6 7 treatment, and sludge produced, using updated default factors where necessary. 8 Identify key industries that have potential to generate nitrous oxide emissions for inclusion in the 9 Inventory. EPA expects that this improvement may take more than one cycle to fully incorporate into the 10 Inventory. EPA is continuing to monitor the following potential sources for updating inventory data, including: 11 12 Anaerobic sludge digester and biogas data compiled by the Water Environment Federation (WEF) in 13 collaboration with other entities as a potential source of updated activity data; 14 Reports based on international research and other countries' inventory submissions to inform potential • 15 updates to the Inventory's emission factors, methodologies, or included industries; and 16 Additional data sources for improving the uncertainty of the estimate of N entering municipal treatment 17 systems. 18 EPA also investigated data collected under the EPA's Greenhouse Gas Reporting Program (GHGRP) Subpart II, 19 Industrial Wastewater Treatment for use in improving the emission estimates for the industrial wastewater 20 category and for identifying whether anaerobic sludge digesters are in use. Because reporting data from the 21 GHGRP are not available for all inventory years and because only a few industrial facilities are required to report, 22 GHGRP data are not able to be used to improve estimates in the Inventory. 23 The inclusion of wastewater treatment emissions from dairy products processing into inventory estimates was 24 investigated. To date, there are insufficient data to determine if this industry constitutes a key source for the 25 United States. EPA will continue focusing on collecting wastewater treatment system data and wastewater 26 characteristics data. Anecdotal information obtained during previous investigations into the dairy products 27 processing industry noted that wastewater is often discharged to the sewer. EPA therefore reviewed the factor 28 used to reflect the contribution of nitrogen to domestic wastewater treatment systems from industrial and 29 commercial wastewater (FIND-COM = 1.25) to determine if it is appropriate for U.S. emissions estimates (and thereby 30 captures the vast majority of dairy products processing wastewater). EPA reviewed available industrial and 31 commercial flow contributions to POTWs using the CWNS data. After evaluating CWNS flow data for all available 32 years (1992, 1996, 2000, 2004, 2008, and 2012), EPA determined the default IPCC factor of 1.25 appropriately
- reflects the contributions of industrial and commercial wastewater flow to POTWs across the time series.
- EPA will continue to look for methods to improve the transparency of the fate of sludge produced in wastewatertreatment.

³⁶ 7.3 Composting (CRF Source Category 5B1)

- 37 Composting of organic waste, such as food waste, garden (yard) and park waste, and wastewater treatment sludge
- and/or biosolids, is common in the United States. Composting reduces the amount of methane-generating waste
- 39 entering landfills, destroys pathogens in the waste, sequesters carbon, and provides a source of organic matter.
- 40 Composting can also generate a saleable product and reduce the need for chemical fertilizers when the end
- 41 product is used as a fertilizer or soil amendment. If the end product is of lesser quality, it can be disposed of in a
- 42 landfill.
- 43 Composting naturally converts a large fraction of the degradable organic carbon in the waste material into carbon
- dioxide (CO₂) through aerobic processes without anthropogenic influence. With anthropogenic influences (e.g., at
- 45 commercial or large on-site composting operations), anaerobic conditions can be created in sections of the

- 1 compost pile when there is excessive moisture or inadequate aeration (or mixing) of the compost pile, resulting in
- 2 the formation of methane (CH₄). This CH₄ is then oxidized to a large extent in the aerobic sections of the compost.
- 3 The estimated CH₄ released into the atmosphere ranges from less than 1 percent to a few percent of the initial C
- 4 content in the material (IPCC 2006). Depending on how well the compost pile is managed, nitrous oxide (N₂O)
- 5 emissions can also be produced. The formation of N₂O depends on the initial nitrogen content of the material and
- 6 is mostly due to nitrogen oxide (NO_x) denitrification during the thermophilic and secondary mesophilic stages of
- 7 composting (Cornell 2007). Emissions vary and range from less than 0.5 percent to 5 percent of the initial nitrogen content of the material (IPCC 2006). Animal manures are typically expected to generate more N₂O than, for
- 8
- 9 example, yard waste, however data are limited.
- 10 Even though CO₂ emissions are generated, they are not included in net greenhouse gas emissions for composting
- 11 because they are considered biogenic, or natural occurring. In accordance with the 2006 IPCC Guidelines, only
- 12 anthropogenic emissions are included in the emission estimates for composting.
- 13 From 1990 to 2018, the amount of waste composted in the United States increased from 3,810 kt to 24,594 kt.
- 14 There was some fluctuation in the amount of waste composted between 2006 to 2009. A peak of 20,049 kt
- 15 composted was observed in 2008, followed by a steep drop the following year to 18,824 kt composted,
- 16 presumably driven by the economic crisis of 2009. Since then, the amount of waste composted has gradually
- 17 increased, and when comparing 2010 to 2018, a 34 percent increase in waste composted is observed. Emissions of
- 18 CH₄ and N₂O from composting from 2010 to 2018 have increased by the same percentage. In 2018, CH₄ emissions
- 19 from composting (see Table 7-18 and Table 7-19) were 2.5 MMT CO₂ Eq. (98 kt), and N₂O emissions from
- 20 composting were 2.2 MMT CO₂ Eq. (7 kt), representing consistent emissions trends when compared to 2017. The
- 21 wastes composted primarily include yard trimmings (grass, leaves, and tree and brush trimmings) and food scraps
- 22 from the residential and commercial sectors (such as grocery stores; restaurants; and school, business, and factory
- 23 cafeterias). The composted waste quantities reported here do not include small-scale backyard composting and
- 24 agricultural composting mainly due to lack of consistent and comprehensive national data. Additionally, it is
- 25 assumed that backyard composting tends to be a more naturally-managed process with less chance of generating 26 anaerobic conditions and CH₄ and N₂O emissions. Agricultural composting is accounted for in Volume 4, Chapter 5
- 27 (Cropland) of this Inventory, as most agricultural composting operations are assumed to then land-apply the
- 28 resultant compost to soils.
- 29 The growth in composting since the 1990s and specifically over the past decade is attributable primarily to the
- 30 following factors: (1) the enactment of legislation by state and local governments that discouraged the disposal of
- 31 yard trimmings and food waste in landfills, (2) yard trimming collection and yard trimming drop off sites provided

32 by local solid waste management districts/divisions, (3) an increased awareness of the environmental benefits of

- 33 composting, and (4) loans or grant programs to establish or expand composting infrastructure.
- 34 Most bans or diversion laws on the disposal of yard trimmings were initiated in the early 1990s by state or local
- 35 governments (U.S. Composting Council 2010). California, for example, enacted a waste diversion law for organics
- 36 including yard trimmings and food scraps in 1999 (AB939) that required jurisdictions to divert 50 percent of the
- 37 waste stream by 2000, or be subjected to fines. By 2010, 25 states, representing about 50 percent of the nation's
- 38 population, had enacted such legislation (ILSR 2014; BioCycle 2010). There are many more initiatives at the metro
- 39 and municipal level across the United States. More than 3,280 composting facilities exist in the United States with
- 40 most (71 percent) composting yard trimmings only (ISLR 2014).
- 41 In more recent years, bans and diversions have become more common for food wastes as well. As of September
- 42 2018, five states (California, Connecticut, Massachusetts, Rhode Island, Vermont) and six municipalities (Austin, TX;
- 43 Boulder, CO; New York City, NY; San Francisco, CA; Seattle, WA) had implemented organic waste bans or
- 44 mandatory recycling laws, most having taken effect after 2013 (BioCycle 2018a). In 2017, BioCycle released a
- 45 report in which 27 of 43 states that responded to their organics recycling survey noted that food waste (collected
- 46 residential, commercial, institutional, and industrial food waste) was recycled via anaerobic digestion and/or
- 47 composting. These 27 states reported an estimated total of 1.8 million tons of food waste diverted from landfills in
- 48 2016 (BioCycle 2018b). There are a growing number of initiatives to encourage households and businesses to
- 49 compost or beneficially reuse food waste, although many states and municipalities currently have limited
- 50 resources to address this directly.

1 Table 7-18: CH ₄ and N ₂ O Emissions from Co	mposting (MMT CO ₂ Eq.)
--	------------------------------------

Activity	1990	2005	2014	2015	2016	2017	2018
CH_4	0.4	1.9	2.1	2.1	2.3	2.4	2.5
N ₂ O	0.3	1.7	1.9	1.9	2.0	2.2	2.2
Total	0.7	3.5	4.0	4.0	4.3	4.6	4.7

2 Table 7-19: CH₄ and N₂O Emissions from Composting (kt)

Activity	1990	2005	2014	2015	2016	2017	2018
CH ₄	15	75	84	85	91	98	98
N ₂ O	1	6	6	6	7	7	7

Methodology 3

4 Methane and N₂O emissions from composting depend on factors such as the type of waste composted, the 5 amount and type of supporting material (such as wood chips and peat) used, temperature, moisture content (e.g., 6

wet and fluid versus dry and crumbly), and aeration during the composting process.

7 The emissions shown in Table 7-18 and Table 7-19 were estimated using the IPCC default (Tier 1) methodology

8 (IPCC 2006), which is the product of an emission factor and the mass of organic waste composted (note: no CH₄

9 recovery is expected to occur at composting operations in the emission estimates presented):

$$E_i = M imes EF_i$$

11 where,

10

12 13	Ei M	= CH ₄ or N ₂ O emissions from composting, kt CH ₄ or N ₂ O, = mass of organic waste composted in kt,
14 15	EFi	= emission factor for composting, 4 t CH_4/kt of waste treated (wet basis) and 0.3 t N_2O/kt of waste treated (wet basis) (IPCC 2006), and
16	i	= designates either CH_4 or N_2O .

17 Per IPCC Tier 1 methodology defaults, the emission factors for CH₄ and N₂O assume a moisture content of 60

18 percent in the wet waste. (IPCC 2006). While the moisture content of composting feedstock can vary significantly 19 by type, composting as a process ideally proceeds between 40 to 65 percent moisture (University of Maine 2016

20 and Cornell 1996).

21 Estimates of the quantity of waste composted (M, wet weight as generated) are presented in Table 7-20 for select

22 years. Estimates of the quantity composted for 1990, 2005, 2010, and 2014 to 2015 were taken from EPA's

23 Advancing Sustainable Materials Management: Facts and Figures 2015 (EPA 2018); the estimates of the quantities

24 composted for 2016 and 2017 were taken from EPA's Advancing Sustainable Materials Management: 2016 and

25 2017 Tables and Figures (EPA 2019); the estimate of the quantity composted for 2018 was extrapolated using the

26 2017 quantity composted and a ratio of the U.S. population growth between 2017 to 2018 (U.S. Census Bureau

27 2019).

28 Table 7-20: U.S. Waste Composted (kt)

Activity	1990	2005	2014	2015	2016	2017	2018
Waste Composted	3,810	18,643	20,884	21,219	22.780	24,485	24,594

1 Uncertainty and Time-Series Consistency

- 2 The estimated uncertainty from the 2006 IPCC Guidelines is ±50 percent for the Tier 1 methodology.
- 3 Emissions from composting in 2018 were estimated to be between 2.3 and 7.0 MMT CO₂ Eq., which indicates a
- 4 range of 50 percent below to 50 percent above the 2018 emission estimate of each gas (see Table 7-21).

5 **Table 7-21: Tier 1 Quantitative Uncertainty Estimates for Emissions from Composting (MMT** 6 **CO₂ Eq. and Percent)**

Source Gas	Gas	2018 Emission Estimate		Uncertainty Range Relative to Emission Estimate						
Source Gas		(MMT CO ₂ Eq.)	(MMT)	CO₂ Eq.)	(%)					
			Lower	Upper	Lower	Upper				
			Bound	Bound	Bound	Bound				
Compositing	CH_4	2.5	1.2	3.7	-50%	+50%				
Composting N	N ₂ O	2.2	1.1	3.3	-50%	+50%				

7 QA/QC and Verification

- 8 General QA/QC procedures were applied to data gathering and input, documentation, and calculations consistent
- 9 with the U.S. Inventory QA/QC Plan, which is in accordance with Vol. 1 Chapter 6 of 2006 IPCC Guidelines (see
- 10 Annex 8 for more details). No errors were found for the current Inventory.

11 Recalculations Discussion

- 12 Composting estimates for 2016 and 2017 were revised with the November 2019 publication of EPA's Advancing
- 13 Sustainable Materials Management: 2016 and 2017 Tables and Figures report.

14 Planned Improvements

- 15 EPA completed a literature search on emission factors and composting systems and management techniques that
- 16 will be documented in a technical memorandum for the next (1990 to 2019) Inventory. The purpose of this
- 17 literature review was to compile all published emission factors specific to various composting systems and
- 18 composted materials in the United States. This information will be used to determine whether the emission factors
- used in the current methodology can be revised or expanded to account for geographical differences and/or
- differences in composting systems used. For example, outdoor composting processes in arid regions typically require the addition of moisture compared to similar composting processes in wetter climates. Additionally,
- 22 composting systems that primarily compost food waste may generate CH₄ at different rates than those that
- compositing systems that primarily composition waste may generate Critical at unrelent rates than those that
 compositing systems that primarily composition waste may generate Critical at unrelent rates than those that
 compositing systems that primarily composition waste may generate Critical at unrelent rates than those that
- material. This information will also be used to reassess the variance in emissions and associated uncertainty factors
- 25 applied to each greenhouse gas (CH_4 and N_2O).
- 26 Relatedly, EPA has received comments during previous Inventory cycles recommending that calculations for the
- 27 composting sector be based on waste subcategories (i.e., leaves, grass and garden debris, food waste) and
- 28 category-specific moisture contents. At this time, EPA is not aware of any available datasets which would enable
- 29 estimations to be performed at this level of granularity. EPA will continue to search for data which could lead to
- 30 the development of subcategory-specific composting emission factors to be used in future Inventory cycles.
- 31 Efforts are also being made to improve the completeness of the composting Inventory by incorporating composted
- 32 waste from U.S. territories. In 2016, EPA conducted a desk-based investigation into industrial/commercial
- 33 composting facilities in the U.S. territories and identified facilities in Puerto Rico. Additional efforts are being made
- 34 to collect information on the year the identified facilities began operating, an estimate of the quantity of waste

- 1 composted, and approximate land area or population (or households) the facilities serve. This data may be
- 2 incorporated into the current or future Inventories as a methodological improvement.
- 3 Additionally, EPA is actively collecting information on stand-alone anaerobic digesters in the United States so that
- 4 this source may be included in future Inventory estimates. In 2018, EPA conducted a review of publicly available
- 5 information on anaerobic digestion in the United States. While many primary sources were evaluated, EPA
- 6 determined that a report by the Environmental Research and Education Foundation (EREF) and data from an
- 7 information collection request (ICR) by EPA Region 5 provided the most relevant data; however, the data provided
- 8 by each report were not detailed enough to allow for the creation of a time series of waste sent to anaerobic
- 9 digesters in the United States for purposes of including this source in future Inventory emissions estimates. EPA is
- aware of a new ICR report which is expected to be published in Fall 2019 which could potentially be used to
- 11 construct an emissions time series for this source. Once this ICR is published, EPA will determine if a time series for
- emissions from stand-alone anaerobic digesters can indeed be created for Inventory purposes, and if so, will
 incorporate this emission source within the next two Inventory cycles.

7.4 Waste Incineration (CRF Source Category 5C1)

- 16 As stated earlier in this chapter, carbon dioxide (CO_2), nitrous oxide (N_2O), and methane (CH_4) emissions from the
- incineration of waste are accounted for in the Energy sector rather than in the Waste sector because almost all
 incineration of municipal solid waste (MSW) in the United States occurs at waste-to-energy facilities where useful
- energy is recovered. Similarly, the Energy sector also includes an estimate of emissions from burning waste tires
- and hazardous industrial waste, because virtually all of the combustion occurs in industrial and utility boilers that
- recover energy. The incineration of waste in the United States in 2018 resulted in 11.4 MMT CO₂ Eq. of emissions,
- 22 over half of which (6.4 MMT CO₂ Eq.) is attributable to the combustion of plastics. For more details on emissions
- 23 from the incineration of waste, see Section 3.3 of the Energy chapter.
- 24 Additional sources of emissions from waste incineration include medical waste incineration. As described in Annex
- 25 5 of this report, data are not readily available for that source and emission estimates are not provided. An analysis
- 26 of the likely level of emissions was conducted based on a 2009 study of hospital/medical/infectious waste
- 27 incinerator (HMIWI) facilities in the United States (RTI 2009). Based on that study's information of waste
- throughput and an analysis of the fossil-based composition of the waste, it was determined that annual
- 29 greenhouse gas emissions for medical waste incineration would be below 500 kt CO₂ Eq. per year and considered
- 30 insignificant for the purposes of Inventory reporting under the UNFCCC. See also Annex 5.

7.5 Waste Sources of Precursor Greenhouse

32 Gases

- 33 In addition to the main greenhouse gases addressed above, waste generating and handling processes are also
- 34 sources of precursor gases. The reporting requirements of the UNFCCC⁶ request that information be provided on
- 35 precursor greenhouse gases, which include carbon monoxide (CO), nitrogen oxides (NO_x), non-CH₄ volatile organic
- 36 compounds (NMVOCs), and sulfur dioxide (SO₂). These gases are not direct greenhouse gases, but indirectly affect
- terrestrial radiation absorption by influencing the formation and destruction of tropospheric and stratospheric
- ozone, or, in the case of SO₂, by affecting the absorptive characteristics of the atmosphere. Additionally, some of

7-38 DRAFT Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018

⁶ See <http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>.

- 1 these gases may react with other chemical compounds in the atmosphere to form compounds that are greenhouse
- 2 gases. Total emissions of NO_x, CO, and NMVOCs from waste sources for the years 1990 through 2018 are provided
- 3 in Table 7-22. Sulfur dioxide emissions are presented in Section 2.3 of the Trends chapter and Annex 6.3.

4 Table 7-22: Emissions of NO_x, CO, and NMVOC from Waste (kt)

Gas/Source	1990	2005	2014	2015	2016	2017	2018
NO _x	+	2	2	2	2	2	2
Landfills	+	2	2	2	2	2	2
Wastewater Treatment	+	0	0	0	0	0	0
Miscellaneous ^a	+	0	0	0	0	0	0
со	1	7	8	8	8	8	8
Landfills	1	6	8	8	8	8	8
Wastewater Treatment	+	+	1	1	1	1	1
Miscellaneous ^a	+	0	0	0	0	0	0
NMVOCs	673	114	68	68	68	68	68
Wastewater Treatment	57	49	29	29	29	29	29
Miscellaneous ^a	557	43	26	26	26	26	26
Landfills	58	22	13	13	13	13	13

+ Does not exceed 0.5 kt.

^a Miscellaneous includes TSDFs (Treatment, Storage, and Disposal Facilities under the Resource Conservation and Recovery Act [42 U.S.C. § 6924, SWDA § 3004]) and other waste categories.

Note: Totals may not sum due to independent rounding.

5 Methodology

- 6 Emission estimates for 1990 through 2018 were obtained from data published on the National Emission Inventory
- 7 (NEI) Air Pollutant Emission Trends web site (EPA 2019) and disaggregated based on EPA (2003). Emission
- 8 estimates of these gases were provided by sector, using a "top down" estimating procedure—emissions were
- 9 calculated either for individual sources or for many sources combined, using basic activity data (e.g., the amount of
- 10 raw material processed) as an indicator of emissions. National activity data were collected for individual categories
- 11 from various agencies. Depending on the category, these basic activity data may include data on production, fuel
- 12 deliveries, raw material processed, etc.

Uncertainty and Time-Series Consistency

14 No quantitative estimates of uncertainty were calculated for this source category. Methodological recalculations

- 15 were applied to the entire time series to ensure time-series consistency from 1990 through 2018. Details on the
- 16 emission trends through time are described in more detail in the Methodology section, above.

1 8. Other

- 2 The United States does not report any greenhouse gas emissions under the Intergovernmental Panel on Climate
- 3 Change (IPCC) "Other" sector.

9. Recalculations and Improvements

2 Each year, many emission and sink estimates in the Inventory of U.S. Greenhouse Gas Emissions and Sinks are 3 recalculated and revised, as efforts are made to improve the estimates through the use of better methods and/or 4 data with the goal of improving inventory quality, including the transparency, completeness, consistency and 5 overall usefulness of the report. In this effort, the United States follows the 2006 IPCC Guidelines (IPCC 2006), 6 which states, "Both methodological changes and refinements over time are an essential part of improving 7 inventory quality. It is good practice to change or refine methods when available data have changed; the 8 previously used method is not consistent with the IPCC guidelines for that category; a category has become key; 9 the previously used method is insufficient to reflect mitigation activities in a transparent manner; the capacity for 10 inventory preparation has increased; improved inventory methods become available; and/or for correction of 11 errors." 12 In general, when methodological changes have been implemented, the previous Inventory's time series (i.e., 1990 13 to 2017) will be recalculated to reflect the change, per guidance in IPCC (2006). Changes in historical data are 14 generally the result of changes in statistical data supplied by other agencies, and do not necessarily impact the

15 entire time series.

16 The results of all methodological changes and historical data updates made in the current Inventory are presented

17 in Table 9-1 and Table 9-2. To understand the details of any specific recalculation or methodological improvement,

see the *Recalculations* within each source/sink categories' section found in Chapters 3 through 7 of this report and

a discussion of Inventory improvements in Annex 8. Table 9-1 summarizes the quantitative effect of all changes on

20 U.S. greenhouse gas emissions in the Energy, Industrial Processes and Product Use (IPPU), Agriculture, and Waste

sectors, while Table 9-2 summarizes the quantitative effect of changes on annual net fluxes from Land Use, Land-

Use Change, and Forestry (LULUCF). Both tables present results relative to the previously published Inventory (i.e.,
 the 1990 to 2017 report) in units of million metric tons of carbon dioxide equivalent (MMT CO₂ Eq.).

The following source and sink categories underwent the most significant methodological and historical data changes. A brief summary of the recalculations and/or improvements undertaken are provided for these categories.

27 Agricultural Soil Management (N_2O). Several major improvements have been implemented in this • 28 Inventory leading to the need for recalculations, including additional information from the United States 29 Department of Agriculture-Natural Resource Conservation Service's Conservation Effects Assessment 30 Project (USDA-NRCS CEAP) survey, United States Department of Agriculture- Economic Research Service's 31 Agricultural Resource Management Survey (USDA-ERS ARMS) data, Conservation Technology Information Center (CTIC) data and USDA Census of Agriculture data, Natural Resource Inventory (NRI) survey, 32 33 (National Land Cover Database) NLCD data, modeling soil organic carbon stock changes to 30 cm with the 34 Tier 3 approach (previously modeled to 20 cm depth), modeling the N cycle with freeze-thaw effects on 35 soil N₂O emission, and addressing the effect of cover crops on greenhouse gas emissions and removals. Other improvements include better resolving the timing of tillage, planting, fertilization and harvesting 36 37 based on the USDA-NRCS CEAP survey and state-level information on planting and harvest dates; 38 improving the timing of irrigation; and crop senescence using growing degree relationships. The surrogate 39 data method was also applied to re-estimate N₂O emissions from 2016 to 2017. These changes resulted in

- an average increase in emissions of 57.3 MMT CO₂ Eq. (22 percent) from 1990 to 2017 relative to the
 previous Inventory.
- 3 Forest Land Remaining Forest Land: Changes in Forest Carbon Stocks (CO2). New national forest inventory 4 (NFI) data contributed to increases in forest land area and stock changes, particularly in the Intermountain 5 West region. Soil carbon stocks decreased in the latest Inventory relative to the previous Inventory and 6 this change can be attributed to refinements in the Digital General Soil Map of the United States 7 (STATSGO2) dataset where soil orders may have changed in the updated data product. This resulted in a 8 structural change in the soil organic carbon estimates for mineral and organic soils across the entire time 9 series. Updated harvested wood products (HWPs) data from 2003 through 2017 led to changes in 10 Products in Use and Solid Waste Disposal Sites (SWDS) between the previous Inventory and the current 11 Inventory. The recalculations resulted in an average annual increase in C stock change losses of 46.4 MMT 12 CO₂ Eq. (7 percent), across the 1990 through 2017 time series, relative to the previous Inventory.
- 13 Land Converted to Grassland: Changes in all Ecosystem Carbon Stocks (CO₂). Differences in biomass, dead • 14 wood and litter C stock changes in Forest Land Converted to Grassland can be attributed to incorporation 15 of the latest Forest Inventory and Analysis National Program (FIA) data. Recalculations for the soil C stock 16 changes are associated with several improvements to both the Tier 2 and 3 approaches that are discussed 17 in the Cropland Remaining Cropland section. As a result of these improvements to the Inventory, Land 18 Converted to Grassland has a larger reported gain in C compared to the previous Inventory, estimated at 19 an average of 35.2 MMT CO₂ Eq. over the time series. This represents greater than 610 percent increase 20 of C for Land Converted to Grassland compared to the previous Inventory and is largely driven by the 21 methodological changes for estimating the soil C stock changes.
- 22 Natural Gas Systems (CH₄). EPA thoroughly evaluated relevant information available and made several • 23 updates to the Inventory, including: using EPA's Greenhouse Gas Reporting Program (GHGRP), Bureau of 24 Ocean Energy Management (BOEM), and other data to calculate emissions from offshore production; and 25 using GHGRP and Zimmerle et al. 2019 study data to calculate gathering and boosting station emissions. 26 In addition, certain sources did not undergo methodological updates, but CH₄ and/or CO₂ emissions 27 changed by greater than 0.05 MMT CO_2 Eq., comparing the previous estimate for 2017 to the current 28 (recalculated) estimate for 2017 (the emissions changes were mostly due to GHGRP data submission 29 revisions). These sources include: hydraulically fractured (HF) gas well completions; production segment 30 pneumatic controllers; liquids unloading; production segment storage tanks; HF and non-HF gas well 31 workovers; and acid gas removal (AGR) vents, flares, reciprocating compressors, and blowdowns at gas 32 processing plants. The recalculations resulted in an average decrease in CH₄ emission estimates across the 33 1990 through 2017 time series, compared to the previous Inventory, of 14.1 MMT CO₂ Eq., or 8 percent.
- 34 Grassland Remaining Grassland: Changes in Mineral and Organic Carbon Stocks (CO2). The current • 35 Inventory is the first reporting of biomass, dead wood and litter C stock changes for woodlands. 36 Recalculations for the soil C stock changes are associated with several improvements to both the Tier 2 37 and 3 approaches that are discussed in the Cropland Remaining Cropland section. As a result of these 38 improvements to the Inventory, C stocks decline on average across the time series for Grassland 39 Remaining Grassland, compared to an average increase in C stocks in the previous Inventory. The average 40 reduction in C stock change is 14.0 MMT CO₂ Eq. over the time series, which is a 738 percent decrease in C 41 stock changes compared to the previous Inventory. This is largely driven by the methodological changes 42 associated with estimating soil C stock changes and to a lesser extent by the inclusion of biomass, dead 43 wood and litter C stock changes for woodlands.
- Land Converted to Cropland: Changes in all Ecosystem Carbon Stocks (CO₂). Differences in biomass, dead
 wood and litter C stock changes in Forest Land Converted to Cropland can be attributed to incorporation
 of the latest FIA data. Recalculations for the soil C stock changes are associated with several
 improvements to both the Tier 2 and 3 approaches that are discussed in the Recalculations section of
 Cropland Remaining Cropland. As a result of these improvements to the Inventory, Land Converted to
 Cropland has a smaller reported loss of C compared to the previous Inventory, estimated at an average of
 13.4 MMT CO₂ Eq. over the time series. This represents a 19 percent decline in losses of C for Land

- *Converted to Cropland* compared to the previous Inventory and is largely driven by the methodological
 changes for estimating the soil C stock changes.
- 3 Settlements Remaining Settlements: Changes in Organic Soil Carbon Stocks (CO2). The entire time series 4 was recalculated based on updates to the land representation data with the release of the 2018 NRI 5 (USDA-NRCS 2018) and additional information from the National Land Cover Database (Yang et al. 2018; 6 Fry et al. 2011; Homer et al. 2007, 2015). In addition, the data splicing method has been used to re-7 estimate CO₂ emissions for 2016 to 2017 in the previous Inventory. However, the major change was the 8 correction of a quality control problem that led to an under-estimation of drained organic soils in 9 settlements. The recalculations led to an increase in emissions of 12.0 MMT CO₂ Eq., or > 6,500 percent, 10 on average across the entire time series.
- 11 Land Converted to Forest Land: Changes in Carbon Stocks (CO₂). The Land Converted to Forest Land 12 estimates in this Inventory are based on the land use change information in the annual NFI. This is the 13 second year that remeasurement data from the annual NFI were available throughout the CONUS (with 14 the exception of Wyoming and western Oklahoma) to estimate land use conversion. The availability of 15 remeasurement data from the annual NFI allowed for consistent plot-level estimation of C stocks and 16 stock changes for Forest Land Remaining Forest Land and the Land Converted to Forest Land categories. 17 Estimates in the previous Inventory were based on state-level carbon density estimates and a 18 combination of NRI data and NFI data in the eastern United States. The refined analysis in this Inventory 19 resulted in changes in the Land Converted to Forest Land categories. Overall, the Land Converted to Forest 20 Land C stock changes decreased by 8 percent in 2018 between the previous Inventory and the current 21 Inventory. This decrease is directly attributed to the incorporation of annual NFI data into the compilation 22 system and new data and methods used to compile estimates of C in mineral soils. In the previous 23 Inventory, Grasslands Converted to Forest Land represented the largest transfer and uptake of C across 24 the land use conversion categories. In this Inventory, Cropland Converted to Forest Land represented the 25 largest transfer and uptake of C across the land use change categories followed by Settlements Converted 26 to Forest Land. These changes resulted in an average annual increase in C stock of 9.8 MMT CO₂ Eq. (8 27 Percent) relative to the previous Inventory.
- 28 Fossil Fuel Combustion (CO₂). The Energy Information Administration (EIA 2019) updated energy 29 consumption statistics across the time series relative to the previous Inventory. As a result of updated 30 liquid petroleum gas (LPG) heat contents, EIA updated LPG consumption in the residential, commercial, 31 industrial, and transportation sectors across the time series. EIA also revised sector allocations for 32 propane and total hydrocarbon gas liquids for 2010 through 2017, and for distillate fuel oil in 2017, which 33 impacted petroleum consumption by sector for those years. EIA also revised 2017 natural gas 34 consumption in all sectors. EIA revised assumptions for the percentage of fossil fuels consumed for non-35 combustion use which impacted non-energy use sequestration statistics, particularly for petroleum coke 36 and residual fuel across the time series relative to the previous Inventory. These changes resulted in an 37 average annual decrease of 6.5 MMT CO₂ Eq. (less than 0.1 percent) in CO₂ emissions from fossil fuel 38 combustion for the period 1990 through 2017, relative to the previous Inventory.
- 39 Substitution of Ozone Depleting Substances (HFCs) For the current Inventory, updates to the Vintaging • 40 Model included renaming the non-metered dose inhaler (non-MDI) aerosol end-use to consumer aerosol 41 and updating stock and emission estimates to align with a recent national market characterization. In 42 addition, a technical aerosol end-use was added to the aerosols sector, in order to capture a portion of 43 the market that was not adequately encompassed by the current non-MDI aerosol end-use (EPA 2019b). 44 Within the Fire Protection sector, a correction was made to the lifetime for streaming agents, which was 45 changed from 18 years to 24 years. Together, these updates increased greenhouse gas emissions an 46 average of 4.8 MMT CO₂ Eq (3 percent).

Finally, in addition to the more significant methodological updates noted above, the Inventory includes newcategories not included in the previous Inventory that improve completeness of the national estimates.

1 Specifically, the inclusion of fluorinated greenhouse gases (HFCs, NF₃, PFCs, and SF₆) from the Electronics Industry

2 from manufacturing micro-electronic mechanical systems (MEMS) and photovoltaics (PV).³⁹⁴

3

4 Table 9-1: Revisions to U.S. Greenhouse Gas Emissions (MMT CO₂ Eq.)

							Average Annual
Gas/Source	1990	2005	2014	2015	2016	2017	Change
CO ₂	7.1	1.3	(9.2)	(9.3)	(13.2)	(14.8)	(1.1)
Fossil Fuel Combustion	1.3	(4.1)	(13.4)	(14.1)	(19.0)	(18.1)	(6.5)
Electric Power Sector	NC	NC	NC	NC	NC	+	+
Transportation	+	(0.9)	(7.9)	(8.7)	(13.7)	(13.1)	(2.5)
Industrial	(0.4)	(3.3)	(5.9)	(5.9)	(5.9)	(4.7)	(4.2
Residential	+	+	0.2	0.3	0.4	(0.3)	+
Commercial	1.7	0.1	0.2	0.2	0.2	+	0.2
U.S. Territories	NC	+	NC	NC	NC	+	÷
Non-Energy Use of Fuels	+	0.1	0.1	0.1	+	(0.1)	+
Natural Gas Systems	2.1	2.7	4.1	4.3	4.4	4.0	2.9
Cement Production	NC	NC	NC	NC	NC	NC	NO
Lime Production	NC	NC	NC	NC	NC	NC	N
Other Process Uses of Carbonates	NC	NC	NC	NC	NC	NC	N
Glass Production	NC	NC	NC	NC	+	+	+
Soda Ash Production	NC	NC	NC	NC	NC	NC	N
Carbon Dioxide Consumption	NC	NC	NC	NC	NC	NC	N
Incineration of Waste	+	+	+	+	0.2	0.3	
Titanium Dioxide Production	NC	NC	NC	NC	NC	NC	N
Aluminum Production	NC	NC	NC	NC	+	NC	
Iron and Steel Production & Metallurgical Coke							
Production	3.1	1.9	(0.2)	0.1	1.3	(1.0)	1.8
Ferroalloy Production	NC	NC	NC	NC	NC	NC	N
Ammonia Production	NC	NC	NC	NC	NC	NC	N
Urea Consumption for Non-Agricultural Purposes	NC	NC	NC	NC	NC	(1.2)	-
Phosphoric Acid Production	NC	NC	+	NC	NC	+	-
Petrochemical Production	0.4	0.6	(0.2)	NC	0.2	0.7	0.4
Carbide Production and Consumption	NC	NC	NC	NC	NC	NC	N
Lead Production	NC	NC	NC	NC	+	0.1	-
Zinc Production	NC	NC	NC	NC	NC	NC	N
Petroleum Systems	0.7	0.6	0.9	1.0	0.8	1.1	0.8
Abandoned Oil and Gas Wells	+	+	+	+	+	+	-
Magnesium Production and Processing	NC	NC	NC	NC	NC	NC	N
Liming	NC	NC	NC	NC	(0.1)	(0.1)	
Urea Fertilization	(0.4)	(0.4)	(0.6)	(0.6)	(0.8)	(0.5)	(0.5
International Bunker Fuels ^b	NC	NC	NC	NC	NC	NC	Ň
Wood Biomass, Ethanol, and Biodiesel							
Consumption ^a	NC	NC	NC	NC	+	+	-
CH₄c	(5.4)	(11.8)	(23.0)	(22.9)	(26.6)	(26.1)	(10.8
Stationary Combustion	+	+	+	+	+	+	
Mobile Combustion	+	+	0.1	0.1	0.1	0.1	-
Coal Mining	NC	NC	NC	NC	NC	(0.9)	+
Abandoned Underground Coal Mines	NC	NC	NC	NC	NC	NC	NC

 $^{^{394}}$ This completeness improvement was phased so while these emissions are currently reported as an "Unspecified Mix of HFCs, NF₃, PFCs, and SF₆," EPA anticipates being able to report the specific gases in future submissions.

Natural Gas Systems	(9.8)	(13.3)	(24.0)	(25.3)	(25.8)	(26.5)	(14.1)
Petroleum Systems	4.2	2.1	1.5	1.1	0.7	1.2	3.5
Abandoned Oil and Gas Wells	+	+	+	+	+	0.1	+
Petrochemical Production	NC	NC	NC	NC	NC	NC	NC
Carbide Production and Consumption	NC	NC	NC	NC	NC	NC	NC
Iron and Steel Production & Metallurgical Coke							
Production	NC	NC	NC	NC	NC	NC	NC
Ferroalloy Production	NC	NC	NC	NC	NC	NC	NC
Enteric Fermentation	NC	NC	+	+	+	+	+
Manure Management	+	(2.2)	(3.5)	(3.0)	(1.9)	(1.8)	(1.7)
Rice Cultivation	+	1.3	2.7	3.9	(0.2)	1.4	1.2
Field Burning of Agricultural Residues	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Landfills	NC	(0.1)	+	0.1	0.1	+	+
Wastewater Treatment	0.1	+	+	0.1	0.2	(0.1)	+
Composting	NC	NC	NC	NC	0.1	0.3	+
Incineration of Waste	NC	NC	NC	NC	NC	NC	NC
International Bunker Fuels ^b	NC	NC	+	+	+	+	+
N ₂ O ^c	64.3	56.8	86.5	69.9	61.9	60.7	57.1
Stationary Combustion	+	+	+	+	+	+	+
Mobile Combustion	+	(1.7)	(0.5)	(0.5)	(0.5)	(0.6)	(0.3)
Adipic Acid Production	NC	NC	NC	NC	NC	NC	NC
Nitric Acid Production	NC	NC	NC	NC	NC	NC	NC
Manure Management	NC	(0.1)	(0.1)	(0.1)	(0.1)	+	(0.1)
Agricultural Soil Management	64.2	58.5	86.9	70.3	62.2	61.0	57.3
Field Burning of Agricultural Residues	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Wastewater Treatment	+	+	+	+	+	+	+
N ₂ O from Product Uses	NC	NC	NC	NC	NC	NC	NC
Caprolactam, Glyoxal, and Glyoxylic Acid	Ne	i i i i i i i i i i i i i i i i i i i	inc.	Ne	Ne	Ne	i i c
Production	NC	NC	NC	NC	NC	0.1	+
Incineration of Waste	NC	NC	NC	NC	NC	NC	NC
Composting	NC	NC	NC	NC	0.1	0.3	+
Electronics Industry	NC	NC	+	+	+	+	+
Natural Gas Systems	+	+	+	+	+	+	+
Petroleum Systems	+	+	+	+	+	+	+
International Bunker Fuels ^b	NC	NC	+	+	+	+	+
HFCs, PFCs, SF ₆ and NF ₃	+	4.4	12.1	12.2	11.1	10.2	5.0
HFCs	(0.1)	4.3	11.8	12.5	11.4	10.4	4.8
Substitution of Ozone Depleting Substances ^d	(0.1)	4.3	11.8	12.5	11.4	10.4	4.8
HCFC-22 Production	NC	NC	+	NC	NC	+	+
Electronics Industry	NC	+	+	+	+	+	+
Magnesium Production and Processing	NC	NC	NC	NC	NC	NC	NC
PFCs	NC	+	+	+	+	(0.1)	+
Aluminum Production	NC	NC	NC	NC	+	(0.1)	+
Electronics Industry	NC	+	+	+	+	(0.1)	+
Substitution of Ozone Depleting Substances ^d	NC	NC	+	+	+	+	+
SF ₆	0.1	+	0.2	(0.3)	(0.3)	(0.2)	+
Electrical Transmission and Distribution	0.1	+	0.2	(0.3)	(0.3)	(0.2)	+
Electronics Industry	NC	+	+	+	+	+	+
Magnesium Production and Processing	NC	NC	NC	NC	+	+	+
NF ₃	NC	+	+	+	+	+	+
Electronics Industry	NC	+	+	+	+	+	+
Unspecified Mix of HFCs, NF ₃ , PFCs and SF ₆	NC*	NC*	NC*	NC*	NC*	NC*	NC*
Electronics Industry	NC*	NC*	NC*	NC*	NC*	NC*	NC*
Net Emissions (Sources and Sinks)	19.7	(23.9)	13.3	(14.6)	(33.1)	(19.7)	(10.1)
Percentage change	0.4%	-0.4%	0.2%	-0.2%	-0.6%	-0.3%	-0.2%

Notes: Net change in total emissions presented without LULUCF. Totals may not sum due to independent rounding NC (No Change)

- + Absolute value does not exceed 0.05 MMT CO₂ Eq. or 0.05 percent.
- * Indicates a new source for the current Inventory year. Emissions from new sources are captured in net emissions and percent change totals.
- ^a Emissions from Wood Biomass, Ethanol, and Biodiesel Consumption are not included specifically in summing Energy sector totals. Net carbon fluxes from changes in biogenic carbon reservoirs are accounted for in the estimates for Land Use, Land-Use Change, and Forestry.
- ^b Emissions from International Bunker Fuels are not included in totals.
- ^c LULUCF emissions of CH₄ and N₂O are reported separately from gross emissions totals. LULUCF emissions include the CH₄, and N₂O emissions from *Peatlands Remaining Peatlands*; CH₄ and N₂O emissions reported for Non-CO₂ Emissions from Forest Fires, Non-CO₂ Emissions from Grassland Fires, and *Coastal Wetlands Remaining Coastal Wetlands*; CH₄ emissions from Land Converted to Coastal Wetlands; and N₂O emissions from Forest Soils and Settlement Soils.
- ^d Small amounts of PFC emissions also result from this source.
- ^e LULUCF Carbon Stock Change is the net C stock change from the following categories: Forest Land Remaining Forest Land, Land Converted to Forest Land, Cropland Remaining Cropland, Land Converted to Cropland, Grassland Remaining Grassland, Land Converted to Grassland, Wetlands Remaining Wetlands, Land Converted to Wetlands, Settlements Remaining Settlements, and Land Converted to Settlements.

^f The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.

1 Table 9-2: Revisions to U.S. Greenhouse Gas Emissions and Removals (Net Flux) from Land 2 Use, Land-Use Change, and Forestry (MMT CO₂ Eq.)

							Average
							Annual
Land-Use Category	1990	2005	2014	2015	2016	2017	Change
Forest Land Remaining Forest Land	(63.3)	(39.6)	(50.9)	(31.5)	(31.4)	(15.9)	(49.4)
Changes in Forest Carbon Stocks ^a	(62.3)	(39.2)	(50.0)	(30.9)	(29.0)	(26.7)	(47.1)
Non-CO ₂ Emissions from Forest Fires ^b	(1.0)	(0.4)	(0.8)	(0.6)	(2.4)	10.7	(2.3)
N ₂ O Emissions from Forest Soils ^c	NC						
Non-CO ₂ Emissions from Drained Organic							
Soils ^d	+	+	+	+	+	+	+
Land Converted to Forest Land	9.6	9.7	10.0	10.0	10.1	10.0	9.8
Changes in Forest Carbon Stocks ^e	9.6	9.7	10.0	10.0	10.1	10.0	9.8
Cropland Remaining Cropland	17.8	(2.5)	(0.2)	(6.5)	(12.8)	(12.0)	3.0
Changes in Mineral and Organic Soil							
Carbon Stocks	17.8	(2.5)	(0.2)	(6.5)	(12.8)	(12.0)	3.0
Land Converted to Cropland	(21.5)	(12.8)	(10.1)	(9.5)	(11.9)	(11.2)	(13.5)
Changes in all Ecosystem Carbon Stocks ^f	(21.5)	(12.8)	(10.1)	(9.5)	(11.9)	(11.2)	(13.5)
Grassland Remaining Grassland	13.3	5.2	27.3	4.0	11.2	11.0	14.1
Changes in Mineral and Organic Soil							
Carbon Stocks	13.3	5.2	27.3	4.0	11.2	11.0	14.1
Non-CO ₂ Emissions from Grassland Fires ^g	NC						
Land Converted to Grassland	(15.4)	(45.4)	(32.8)	(32.9)	(33.3)	(33.3)	(35.3)
Changes in all Ecosystem Carbon Stocks ^f	(15.4)	(45.4)	(32.8)	(32.9)	(33.3)	(33.3)	(35.3)
Wetlands Remaining Wetlands	+	+	+	+	+	+	+
Changes in Organic Soil Carbon Stocks in							
Peatlands	NC						
Changes in Aboveground and Soil Carbon							
Stocks in Coastal Wetlands	+	+	+	+	+	+	+
CH ₄ Emissions from Coastal Wetlands							
Remaining Coastal Wetlands	NC						
N ₂ O Emissions from Coastal Wetlands							
Remaining Coastal Wetlands	NC	NC	NC	NC	+	+	+
Non-CO ₂ Emissions from Peatlands				-			
Remaining Peatlands	NC						
Land Converted to Wetlands	+	+	+	+	+	+	+

Changes in Aboveground and Soil Carbon Stocks	+	+	+	+	+	+	+
CH ₄ Emissions from Land Converted to							
Coastal Wetlands	NC						
				-	-	-	-
Settlements Remaining Settlements	13.1	11.7	8.9	8.3	8.7	8.6	11.7
Changes in Organic Soil Carbon Stocks	11.2	11.7	13.8	14.4	14.7	14.7	11.9
Changes in Settlement Tree Carbon							
Stocks	(0.1)	(0.6)	(4.4)	(6.0)	(5.9)	(5.9)	(1.0)
Changes in Yard Trimming and Food Scrap							
Carbon Stocks in Landfills	1.5	+	(0.2)	0.2	0.2	(0.1)	0.5
N ₂ O Emissions from Settlement Soils ^h	0.6	0.6	(0.4)	(0.4)	(0.2)	(0.1)	0.2
Land Converted to Settlements	(0.1)	(1.0)	(5.2)	(6.3)	(7.0)	(6.9)	(1.6)
Changes in all Ecosystem Carbon Stocks ^f	(0.1)	(1.0)	(5.2)	(6.3)	(7.0)	(6.9)	(1.6)
LULUCF Emissions ⁱ	(0.4)	0.2	(1.2)	(0.9)	(2.7)	10.6	(2.0)
LULUCF Total Net Flux ^j	(46.0)	(74.9)	(51.8)	(63.6)	(63.7)	(60.4)	(59.1)
LULUCF Sector Total ^k	(46.4)	(74.6)	(53.0)	(64.5)	(66.3)	(49.8)	(61.1)
Percent Change	-5.7%	-10.1%	-7.9%	-9.1%	-9.2%	-7.0%	-8.4%

Note: Totals may not sum due to independent rounding

NC (No Change)

+ Absolute value does not exceed 0.05 MMT CO₂ Eq. or 0.05 percent.

^a Includes the net changes to carbon stocks stored in all forest ecosystem pools and harvested wood products.

^b Estimates include emissions from fires on both Forest Land Remaining Forest Land and Land Converted to Forest Land.

^c Estimates include emissions from N fertilizer additions on both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

^d Estimates include emissions from drained organic soils on both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

^e Includes the net changes to carbon stocks stored in all forest ecosystem pools.

^f Includes changes in mineral and organic soil carbon stocks for all land use conversions to cropland, grassland, and settlements, respectively. Also includes aboveground/belowground biomass, dead wood, and litter carbon stock changes for conversion of forest land to cropland, grassland, and settlements, respectively.

^g Estimates include emissions from fires on both Grassland Remaining Grassland and Land Converted to Grassland.

^h Estimates include emissions from N fertilizer additions on both *Settlements Remaining Settlements* and *Land Converted to Settlements* because it is not possible to separate the activity data at this time.

¹ LULUCF emissions include the CH₄ and N₂O emissions reported for Peatlands Remaining Peatlands, Forest Fires, Drained Organic Soils, Grassland Fires, and Coastal Wetlands Remaining Coastal Wetlands; CH₄ emissions from Land Converted to Coastal Wetlands; and N₂O emissions from Forest Soils and Settlement Soils.

^j LULUCF Carbon Stock Change includes any C stock gains and losses from all land use and land use conversion categories.

^k The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.

1

10. References

2 **Executive Summary**

3 BEA (2019) 2018 Comprehensive Revision of the National Income and Product Accounts: Current-dollar and "real"

4 *GDP, 1929–2018*. Bureau of Economic Analysis (BEA), U.S. Department of Commerce, Washington, D.C. Available

- 5 online at: <http://www.bea.gov/national/index.htm#gdp>.
- Duffield, J. (2006) Personal communication. Jim Duffield, Office of Energy Policy and New Uses, U.S. Department of
 Agriculture, and Lauren Flinn, ICF International. December 2006.
- 8 EIA (2019a) *Electricity Generation. Monthly Energy Review, November 2019.* Energy Information Administration,
 9 U.S. Department of Energy, Washington, D.C. DOE/EIA-0035(2019/11).
- 10 EIA (2019b) *Electricity in the United States. Electricity Explained.* Energy Information Administration, U.S.
- 11 Department of Energy, Washington, D.C. Available online at:
- 12 <https://www.eia.gov/energyexplained/index.php?page=electricity_in_the_united_states>.
- 13 EIA (2018) International Energy Statistics 1980-2018. Energy Information Administration, U.S. Department of
- 14 Energy. Washington, D.C. Available online at: <https://www.eia.gov/beta/international/>.
- EPA (2019a) Acid Rain Program Dataset 1996-2018. Office of Air and Radiation, Office of Atmospheric Programs,
 U.S. Environmental Protection Agency, Washington, D.C.
- 17 EPA (2019b) Greenhouse Gas Reporting Program (GHGRP). 2019 Envirofacts. Subpart HH: Municipal Solid Waste
- 18 Landfills and Subpart TT: Industrial Waste Landfills. Available online at:
- 19 <http://www.epa.gov/enviro/facts/ghg/search.html>.
- 20 EPA (2019c) "1970 2018 Average annual emissions, all criteria pollutants in MS Excel." National Emissions
- 21 Inventory (NEI) Air Pollutant Emissions Trends Data. Office of Air Quality Planning and Standards, May 2019.
- 22 Available online at: <https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data>.
- EPA (1997) Compilation of Air Pollutant Emission Factors, AP-42. Office of Air Quality Planning and Standards, U.S.
 Environmental Protection Agency. Research Triangle Park, NC. October 1997.
- 25 FHWA (1996 through 2018) *Highway Statistics*. Federal Highway Administration, U.S. Department of
- 26 Transportation, Washington, D.C. Report FHWA-PL-96-023-annual. Available online at:
- 27 <http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.htm>.
- 28 IEA (2019) CO₂ Emissions from Fossil Fuel Combustion Overview. International Energy Agency. Available online
- 29 at: <https://webstore.iea.org/CO2-emissions-from-fuel-combustion-2019>.

- 1 IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
- 2 Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K., Plattner, M.
- 3 Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press,
- 4 Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
- 5 IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth
- 6 Assessment Report of the Intergovernmental Panel on Climate Change. [S. Solomon, D. Qin, M. Manning, Z. Chen,
- M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press. Cambridge, United Kingdom
 996 pp.
- 9 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 10 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 11 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 12 IPCC (1996) *Climate Change 1995: The Science of Climate Change*. Intergovernmental Panel on Climate Change.
- 13 [J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.)]. Cambridge
- 14 University Press. Cambridge, United Kingdom.
- 15 National Academies of Sciences, Engineering, and Medicine (2018) *Improving Characterization of Anthropogenic*
- Methane Emissions in the United States. Washington, DC: The National Academies Press. Available online at:
 https://doi.org/10.17226/24987>.
- 18 National Research Council (2010) Verifying Greenhouse Gas Emissions: Methods to Support International Climate
- 19 Agreements. Washington, DC: The National Academies Press. Available online at:
- 20 <https://doi.org/10.17226/12883>.
- 21 NOAA/ESRL (2019a) *Trends in Atmospheric Carbon Dioxide*. Available online at:
- 22 <http://www.esrl.noaa.gov/gmd/ccgg/trends/>. 19 December 2019.
- 23 NOAA/ESRL (2019b) Trends in Atmospheric Methane. Available online at:
- 24 <https://www.esrl.noaa.gov/gmd/ccgg/trends_ch₄/>. 19 December 2019.
- 25 NOAA/ESRL (2019c) Nitrous Oxide (N₂O) hemispheric and global monthly means from the NOAA/ESRL
- 26 Chromatograph for Atmospheric Trace Species data from baseline observatories (Barrow, Alaska; Summit,
- 27 Greenland; Niwot Ridge, Colorado; Mauna Loa, Hawaii; American Samoa; South Pole). Available online at:
- 28 <https://www.esrl.noaa.gov/gmd/dv/hats/cats/cats_conc.html>. 19 December 2019.
- 29 UNFCCC (2014) Report of the Conference of the Parties on its Nineteenth Session, Held in Warsaw from 11 to 23
- 30 November 2013. (FCCC/CP/2013/10/Add.3). January 31, 2014. Available online at:
- 31 <http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>.
- 32 U.S. Census Bureau (2019) U.S. Census Bureau International Database (IDB). Available online at:
- 33 https://www.census.gov/programs-surveys/international-programs.html.

34 Introduction

- 35 IPCC (2014) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth
- 36 Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y.
- 37 Sokona, J. Minx, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J.
- 38 Savolainen, S. Schlomer, C. von Stechow, and T. Zwickel (eds.)]. Cambridge University Press, Cambridge, United
- 39 Kingdom and New York, NY, USA, 1435 pp.
- 40 IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
- 41 Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M.
- 42 Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press,
- 43 Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

- 1 IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth
- 2 Assessment Report of the Intergovernmental Panel on Climate Change. [S. Solomon, D. Qin, M. Manning, Z. Chen,
- 3 M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press. Cambridge, United Kingdom
- 4 996 pp.
- 5 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 8 IPCC (2001) *Climate Change 2001: The Scientific Basis. Intergovernmental Panel on Climate Change.* [J.T. Houghton,
- 9 Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, C.A. Johnson, and K. Maskell (eds.)]. Cambridge 10 University Press. Cambridge, United Kingdom.
- IPCC/TEAP (2005) Special Report: Safeguarding the Ozone Layer and the Global Climate System, Chapter 4:
 Refrigeration. 2005. Available online at: https://www.ipcc.ch/site/assets/uploads/2018/03/sroc04-1.pdf
- NOAA (2017) Vital Signs of the Planet. Available online at: http://climate.nasa.gov/causes/. Accessed on 9
 January 2017.
- 15 NOAA/ESRL (2019a) *Trends in Atmospheric Carbon Dioxide*. Available online at:
- 16 <http://www.esrl.noaa.gov/gmd/ccgg/trends/>. October 7, 2019.
- 17 NOAA/ESRL (2019b) *Trends in Atmospheric Methane*. Available online at:
- 18 <https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/>. October 7, 2019.
- 19 NOAA/ESRL (2019c) Nitrous Oxide (N₂O) hemispheric and global monthly means from the NOAA/ESRL
- 20 Chromatograph for Atmospheric Trace Species data from baseline observatories (Barrow, Alaska; Summit,
- 21 *Greenland; Niwot Ridge, Colorado; Mauna Loa, Hawaii; American Samoa; South Pole).* Available online at:
- 22 <https://www.esrl.noaa.gov/gmd/dv/hats/cats/cats_conc.html>. October 7, 2019
- 23 NOAA/ESRL (2019d) Sulfur Hexafluoride (SF₆) hemispheric and global monthly means from the NOAA/ESRL
- 24 Chromatograph for Atmospheric Trace Species data from baseline observatories (Barrow, Alaska; Summit,
- 25 *Greenland; Niwot Ridge, Colorado; Mauna Loa, Hawaii; American Samoa; South Pole)*. Available online at:
- 26 <https://www.esrl.noaa.gov/gmd/dv/hats/cats/cats_conc.html>. October 7, 2019.
- UNEP/WMO (1999) Information Unit on Climate Change. Framework Convention on Climate Change. Available
 online at: http://unfccc.int>.
- 29 UNFCCC (2014) Report of the Conference of the Parties on its nineteenth session, held in Warsaw from 11 to 23
- 30 November 2013. (FCCC/CP/2013/10/Add.3). January 31, 2014. Available online at:
- 31 <http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>.
- 32 USGCRP (2017) Climate Science Special Report: Fourth National Climate Assessment, Volume I. [Wuebbles, D.J.,
- 33 D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research
- 34 Program, Washington, DC, USA, 470 pp, doi: 10.7930/J0J964J6. Available online at:
- 35 <https://science2017.globalchange.gov/>.
- 36 WMO/UNEP (2014) Assessment for Decision-Makers: Scientific Assessment of Ozone Depletion: 2014. Available
- 37 online at: <https://www.esrl.noaa.gov/csd/assessments/ozone/2014/>.
- 38 WMO (2015) "Is the Ozone Layer on the Mend? Highlights from the most recent WMO/UNDP Ozone Assessment"
- 39 Bulletin no. Vol (64)(1). Available online at: https://public.wmo.int/en/resources/bulletin/ozone-layer-mend-0>.

Trends in Greenhouse Gas Emissions

- 2 BEA (2019) 2018 Comprehensive Revision of the National Income and Product Accounts: Current-dollar and "real"
- 3 GDP, 1929–2018. Bureau of Economic Analysis (BEA), U.S. Department of Commerce, Washington, D.C. Available
- 4 online at: <http://www.bea.gov/national/index.htm#gdp>.
- Duffield, J. (2006) Personal communication. Jim Duffield, Office of Energy Policy and New Uses, U.S. Department of
 Agriculture, and Lauren Flinn, ICF International. December 2006.
- EIA (2019a) *Monthly Energy Review, November 2019.* Energy Information Administration, U.S. Department of
 Energy, Washington, D.C. DOE/EIA-0035(2019/02).
- 9 EIA (2019b) Fuel Oil and Kerosene Sales. Energy Information Administration, U.S. Department of Energy,
- 10 Washington, D.C. January 2019.
- 11 EIA (2018) "In 2017, U.S. electricity sales fell by the greatest amount since the recession" Available online at:
- 12 <https://www.eia.gov/todayinenergy/detail.php?id=35612>.
- 13 EPA (2019a) Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 2018.
- 14 Office of Transportation and Air Quality, U.S. Environmental Protection Agency. Available online at:
- 15 <https://www.epa.gov/fuel-economy/trends-report>.
- 16 EPA (2019b) 1970 2018 Average annual emissions, all criteria pollutants in MS Excel. National Emissions Inventory
- 17 (NEI) Air Pollutant Emissions Trends Data. Office of Air Quality Planning and Standards, May 2019. Available online
- 18 at: <https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data>.
- 19 IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth
- 20 Assessment Report of the Intergovernmental Panel on Climate Change. [S. Solomon, D. Qin, M. Manning, Z. Chen,
- M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press. Cambridge, United Kingdom
 996 pp.
- 23 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 24 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 25 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 26 U.S. Census Bureau (2019) U.S. Census Bureau International Database (IDB). Available online at:
- 27 <https://www.census.gov/programs-surveys/international-programs.html>.
- 28 USDA (2019) Personal communication. Claudia Hitaj, USDA Economic Research Service, and Vincent Camobreco,
- 29 U.S. EPA. September 2019.

30 Energy

- 31 EIA (2019) Monthly Energy Review, November 2019, Energy Information Administration, U.S. Department of
- 32 Energy, Washington, DC. DOE/EIA-0035(2019/11).
- 33 IEA (2019) CO₂ Emissions from Fossil Fuel Combustion Overview. International Energy Agency. Available online
- 34 at: <https://webstore.iea.org/co2-emissions-from-fuel-combustion-2019>.

35 Carbon Dioxide Emissions from Fossil Fuel Combustion

- AAR (2008 through 2018) *Railroad Facts*. Policy and Economics Department, Association of American Railroads,
 Washington, D.C. Obtained from Clyde Crimmel at AAR.
- 38 AISI (2004 through 2018) Annual Statistical Report, American Iron and Steel Institute, Washington, D.C.

- 1 APTA (2007 through 2017) Public Transportation Fact Book. American Public Transportation Association,
- 2 Washington, D.C. Available online at: http://www.apta.com/resources/statistics/Pages/transitstats.aspx>.
- 3 APTA (2006) *Commuter Rail National Totals*. American Public Transportation Association, Washington, D.C.
- 4 BEA (2018) Table 1.1.6. Real Gross Domestic Product, Chained 2012 Dollars. Bureau of Economic Analysis (BEA),
- 5 U.S. Department of Commerce, Washington, D.C. September 2018. Available online at:
- 6 https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey.
- Benson, D. (2002 through 2004) Unpublished data. Upper Great Plains Transportation Institute, North Dakota State
 University and American Short Line & Regional Railroad Association.
- Browning (2019) Updated On-highway CH₄ and N₂O Emission Factors for GHG Inventory. Memorandum from ICF to
 Sarah Roberts, Office of Transportation and Air Quality, U.S. Environmental Protection Agency. September 2019.
- Browning, L. (2018a). Updated Methodology for Estimating Electricity Use from Highway Plug-In Electric Vehicles.
 Technical Memo, October 2018.
- Browning, L. (2018b). Updated Non-Highway CH₄ and N₂O Emission Factors for U.S. GHG Inventory. Technical
 Memo, November 2018.
- Browning, L. (2017) Updated Methodology for Estimating CH₄ and N₂O Emissions from Highway Vehicle Alternative
 Fuel Vehicles. Technical Memo, October 2017.
- 17 Coffeyville Resources Nitrogen Fertilizers (2012) Nitrogen Fertilizer Operations. Available online at:
- 18 <http://coffeyvillegroup.com/NitrogenFertilizerOperations/index.html>.
- 19 Dakota Gasification Company (2006) CO₂ Pipeline Route and Designation Information. Bismarck, ND.
- 20 DHS (2008) Email Communication. Elissa Kay, Department of Homeland Security and Joe Aamidor, ICF 21 International. January 11, 2008.
- DLA Energy (2019) Unpublished data from the Fuels Automated System (FAS). Defense Logistics Agency Energy,
 U.S. Department of Defense. Washington, D.C.
- DOC (1991 through 2019) Unpublished Report of Bunker Fuel Oil Laden on Vessels Cleared for Foreign Countries.
 Form-563. Foreign Trade Division, Bureau of the Census, U.S. Department of Commerce. Washington, D.C.
- DOE (1993 through 2017) *Transportation Energy Data Book*. Office of Transportation Technologies, Center for
 Transportation Analysis, Energy Division, Oak Ridge National Laboratory. ORNL-6978.
- 28 DOE (2012) 2010 Worldwide Gasification Database. National Energy Technology Laboratory and Gasification
- 29 Technologies Council. Available online at:
- <http://www.netl.doe.gov/technologies/coalpower/gasification/worlddatabase/index.html>. Accessed on 15
 March 2012.
- DOT (1991 through 2018) *Airline Fuel Cost and Consumption*. U.S. Department of Transportation, Bureau of
 Transportation Statistics, Washington, D.C. DAI-10. Available online at: http://www.transtats.bts.gov/fuel.asp>.
- Eastman Gasification Services Company (2011) Project Data on Eastman Chemical Company's Chemicals-from-Coal
 Complex in Kingsport, TN.
- EIA (2019a) *Monthly Energy Review, November 2019,* Energy Information Administration, U.S. Department of
 Energy, Washington, DC. DOE/EIA-0035(2019/11).
- EIA (2019b) *Quarterly Coal Report: April June 2019*. Energy Information Administration, U.S. Department of
 Energy. Washington, D.C. DOE/EIA-0121.
- EIA (2019c) Form EIA-923 detailed data with previous form data (EIA-906/920), Energy Information Administration,
 U.S. Department of Energy. Washington, DC. DOE/EIA.
- 42 EIA (2019d) "Natural gas prices, production, consumption, and exports increased in 2018." *Today in Energy*.
- 43 Available online at: < https://www.eia.gov/todayinenergy/detail.php?id=37892>.

- 1 EIA (2019e) Electric Power Annual 2018. Energy Information Administration, U.S. Department of Energy.
- 2 Washington, D.C. DOE/EIA-0348(17).
- EIA (2019f) Natural Gas Annual 2018. Energy Information Administration, U.S. Department of Energy. Washington,
 D.C. DOE/EIA-0131(17).
- 5 EIA (2019g) Annual Coal Report 2018. Energy Information Administration, U.S. Department of Energy. Washington,
 6 D.C. DOE/EIA-0584.
- 7 EIA (2019h) Alternative Fuels Data Tables. Energy Information Administration, U.S. Department of Energy.
- 8 Washington, D.C. Available online at: https://www.eia.gov/renewable/>.
- 9 EIA (2018) "Both natural gas supply and demand have increased from year-ago levels." Today in Energy. Available
 10 online at: https://www.eia.gov/todayinenergy/detail.php?id=37193.
- EIA (2017) International Energy Statistics 1980-2016. Energy Information Administration, U.S. Department of
 Energy. Washington, D.C. Available online at: ">https://www.eia.gov/beta/international/.
- EIA (1991 through 2018) *Fuel Oil and Kerosene Sales*. Energy Information Administration, U.S. Department of
 Energy. Washington, D.C. Available online at: http://www.eia.gov/petroleum/fueloilkerosene.
- 15 EIA (2009a) *Emissions of Greenhouse Gases in the United States 2008, Draft Report.* Office of Integrated Analysis
- and Forecasting, Energy Information Administration, U.S. Department of Energy. Washington, D.C. DOE-EIA 0573(2009).
- 18 EIA (2009b) *Manufacturing Consumption of Energy 2006*. Energy Information Administration, U.S. Department of 19 Energy. Washington, D.C. Released July, 2009.
- EIA (2008) *Historical Natural Gas Annual, 1930 2008*. Energy Information Administration, U.S. Department of
 Energy. Washington, D.C.
- 22 EIA (2007) Personal Communication. Joel Lou, Energy Information Administration and Aaron Beaudette, ICF
- International. Residual and Distillate Fuel Oil Consumption for Vessel Bunkering (Both International and Domestic)
 for American Samoa, U.S. Pacific Islands, and Wake Island. October 24, 2007.
- EIA (2003) Personal Communication. Kent Forsberg, Energy Information Administration and ICF International.
 Distillate Fuel Oil Consumption.
- EIA (2001) U.S. Coal, Domestic and International Issues. Energy Information Administration, U.S. Department of
 Energy. Washington, D.C. March 2001.
- EIA (1990-2001) *State Energy Data System*. Energy Information Administration, U.S. Department of Energy.
 Washington, D.C.
- EPA (2019a) Acid Rain Program Dataset 1996-2018. Office of Air and Radiation, Office of Atmospheric Programs,
 U.S. Environmental Protection Agency, Washington, D.C.
- 33 EPA (2019b) Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 2018.
- 34 Office of Transportation and Air Quality, U.S. Environmental Protection Agency. Available online at:
- 35 <https://www.epa.gov/fuel-economy/trends-report>.
- 36 EPA (2018a) *MOtor Vehicle Emissions Simulator (MOVES) 2014b*. Office of Transportation and Air Quality, U.S.
- 37 Environmental Protection Agency, Washington, D.C. Available online at: https://www.epa.gov/moves-.
- 38 EPA (2018b) The Emissions & Generation Resource Integrated Database (eGRID) 2016 Technical Support
- 39 Document. Clean Air Markets Division, Office of Atmospheric Programs, U.S. Environmental Protection Agency,
- 40 Washington, D.C. Available Online at: https://www.epa.gov/sites/production/files/2018-
- 41 02/documents/egrid2016_technicalsupportdocument_0.pdf>.
- 42 EPA (2010) Carbon Content Coefficients Developed for EPA's Mandatory Reporting Rule. Office of Air and
- 43 Radiation, Office of Atmospheric Programs, U.S. Environmental Protection Agency, Washington, D.C.

- 1 Erickson, T. (2003) *Plains CO₂ Reduction (PCOR) Partnership*. Presented at the Regional Carbon Sequestration
- Partnership Meeting Pittsburgh, Pennsylvania, Energy and Environmental Research Center, University of North
 Dakota. November 3, 2003.
- 4 FAA (2019) Personal Communication between FAA and John Steller, Mausami Desai, and Vincent Camobreco for
- 5 aviation emissions estimates from the Aviation Environmental Design Tool (AEDT). January 2019.
- 6 FHWA (1996 through 2018) Highway Statistics. Federal Highway Administration, U.S. Department of
- 7 Transportation, Washington, D.C. Report FHWA-PL-96-023-annual. Available online at:
- 8 <http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.htm>.
- 9 FHWA (2015) Off-Highway and Public-Use Gasoline Consumption Estimation Models Used in the Federal Highway
- 10 *Administration*, Publication Number FHWA-PL-17-012. Available online at:
- 11 <https://www.fhwa.dot.gov/policyinformation/pubs/pl17012.pdf>.
- 12 Fitzpatrick, E. (2002) *The Weyburn Project: A Model for International Collaboration*.
- 13 FRB (2019) *Industrial Production and Capacity Utilization*. Federal Reserve Statistical Release, G.17, Federal
- 14 Reserve Board. Available online at: <http://www.federalreserve.gov/releases/G17/table1_2.htm>.
- Gaffney, J. (2007) Email Communication. John Gaffney, American Public Transportation Association and Joe
 Aamidor, ICF International. December 17, 2007.
- 17 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 18 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 19 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 20 Marland, G. and A. Pippin (1990) "United States Emissions of Carbon Dioxide to the Earth's Atmosphere by
- 21 Economic Activity." *Energy Systems and Policy*, 14(4):323.
- 22 SAIC/EIA (2001) Monte Carlo Simulations of Uncertainty in U.S. Greenhouse Gas Emission Estimates. Final Report.
- 23 Prepared by Science Applications International Corporation (SAIC) for Office of Integrated Analysis and Forecasting,
- 24 Energy Information Administration, U.S. Department of Energy. Washington, D.C. June 22, 2001.
- U.S. Aluminum Association (USAA) (2008 through 2018) U.S. Primary Aluminum Production. U.S. Aluminum
 Association, Washington, D.C.
- 27 USAF (1998) Fuel Logistics Planning. U.S. Air Force: AFPAM23-221. May 1, 1998.
- U.S. Census Bureau (2001 through 2011) *Current Industrial Reports Fertilizer Materials and Related Products: Annual Summary*. Available online at: https://www.census.gov/data/tables/time-series/econ/cir/mq325b.html>.
- United States Geological Survey (USGS) (2019a) 2019 Mineral Commodity Summaries: Aluminum. U.S. Geological
 Survey, Reston, VA.
- USGS (2019b) 2019 Mineral Commodity Summary: Titanium and Titanium Dioxide. U.S. Geological Survey, Reston,
 VA.
- 34 USGS (2014 through 2019a) Mineral Industry Surveys: Silicon. U.S. Geological Survey, Reston, VA.
- 35 USGS (2014 through 2019b) *Mineral Commodity Summary, Lead*. U.S. Geological Survey, Reston, VA.
- 36 USGS (2014 through 2018) *Minerals Yearbook: Nitrogen [Advance Release*]. Available online at:
- 37 <http://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/>.
- 38 USGS (1991 through 2017) *Minerals Yearbook Iron and Steel Scrap*. U.S. Geological Survey, Reston, VA.
- 39 USGS (1991 through 2015a) Minerals Yearbook: Manufactured Abrasives Annual Report. U.S. Geological Survey,
- 40 Reston, VA. Available online at: http://minerals.usgs.gov/minerals/pubs/commodity/abrasives/>.
- 41 USGS (1991 through 2015b) *Minerals Yearbook: Titanium*. U.S. Geological Survey, Reston, VA.

- 1 USGS (1991 through 2015c) *Minerals Yearbook: Silicon Annual Report*. U.S. Geological Survey, Reston, VA. Available
- 2 online at: <http://minerals.usgs.gov/minerals/pubs/commodity/silicon/>.
- 3 USGS (1996 through 2013) *Minerals Yearbook: Silicon*. U.S. Geological Survey, Reston, VA.
- 4 USGS (1995 through 2013) *Minerals Yearbook: Lead Annual Report*. U.S. Geological Survey, Reston, VA.
- USGS (1995, 1998, 2000, 2001, 2002, 2007) *Minerals Yearbook: Aluminum Annual Report*. U.S. Geological Survey,
 Reston, VA.

7 Stationary Combustion (excluding CO₂)

- 8 EIA (2019) *Monthly Energy Review, November 2019*. Energy Information Administration, U.S. Department of
 9 Energy. Washington, D.C. DOE/EIA-0035(2019/11).
- 10 EIA (2017) International Energy Statistics 1980-2016. Energy Information Administration, U.S. Department of
- 11 Energy. Washington, D.C. Available online at: https://www.eia.gov/beta/international/>.
- EPA (2019) Acid Rain Program Dataset 1996-2018. Office of Air and Radiation, Office of Atmospheric Programs,
 U.S. Environmental Protection Agency, Washington, D.C.
- 14 EPA (2018). *MOtor Vehicle Emissions Simulator (MOVES) 2014b*. Office of Transportation and Air Quality, U.S.
- 15 Environmental Protection Agency. Available online at: <http://www.epa.gov/otaq/models/moves/index.htm>.
- EPA (1997) Compilation of Air Pollutant Emission Factors, AP-42. Office of Air Quality Planning and Standards, U.S.
 Environmental Protection Agency. Research Triangle Park, NC. October 1997.
- 18 FHWA (1996 through 2018) Highway Statistics. Federal Highway Administration, U.S. Department of
- 19 Transportation, Washington, D.C. Report FHWA-PL-96-023-annual. Available online at:
- 20 <http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.htm>.
- 21 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 22 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 23 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 24 SAIC/EIA (2001) Monte Carlo Simulations of Uncertainty in U.S. Greenhouse Gas Emission Estimates. Final Report.
- 25 Prepared by Science Applications International Corporation (SAIC) for Office of Integrated Analysis and Forecasting,
- 26 Energy Information Administration, U.S. Department of Energy. Washington, D.C. June 22, 2001.

27 Mobile Combustion (excluding CO₂)

- 28 AAR (2008 through 2018) Railroad Facts. Policy and Economics Department, Association of American Railroads,
- 29 Washington, D.C. Obtained from Clyde Crimmel at AAR.
- 30 ANL (2018) The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET2018).
- 31 Argonne National Laboratory. Available online at: <https://greet.es.anl.gov>.
- 32 ANL (2006) Argonne National Laboratory (2006) GREET model Version 1.7. June 2006.
- 33 APTA (2007 through 2017) Public Transportation Fact Book. American Public Transportation Association,
- 34 Washington, D.C. Available online at: http://www.apta.com/resources/statistics/Pages/transitstats.aspx.
- 35 APTA (2006) *Commuter Rail National Totals*. American Public Transportation Association, Washington, D.C.
- 36 Available online at: <http://www.apta.com/research/stats/rail/crsum.cfm>.
- BEA (1991 through 2015) Unpublished BE-36 survey data. Bureau of Economic Analysis, U.S. Department of
 Commerce. Washington, D.C.
- 39 Benson, D. (2002 through 2004) Personal communication. Unpublished data developed by the Upper Great Plains
- 40 Transportation Institute, North Dakota State University and American Short Line & Regional Railroad Association.

- 1 Browning (2019) Updated On-highway CH₄ and N₂O Emission Factors for GHG Inventory. Memorandum from ICF to
- 2 Sarah Roberts and Justine Geidosch, Office of Transportation and Air Quality, U.S. Environmental Protection
- 3 Agency. September 2019.
- Browning, L. (2018a). Updated Methodology for Estimating Electricity Use from Highway Plug-In Electric Vehicles.
 Technical Memo, October 2018.
- Browning, L. (2018b) "Updated Non-Highway CH₄ and N₂O Emission Factors for U.S. GHG Inventory." Technical
 Memo, November 2018.
- Browning, L. (2017) "Updated Methodology for Estimating CH₄ and N₂O Emissions from Highway Vehicle
 Alternative Fuel Vehicles." Technical Memo, October, 2017.
- Browning, L. (2009) Personal communication with Lou Browning, "Suggested New Emission Factors for Marine
 Vessels," ICF International.
- Browning, L. (2005) Personal communication with Lou Browning, "Emission control technologies for diesel highway
 vehicles specialist," ICF International.
- DHS (2008) Email Communication. Elissa Kay, Department of Homeland Security and Joe Aamidor, ICF
 International. January 11, 2008.
- DLA Energy (2019) Unpublished data from the Defense Fuels Automated Management System (DFAMS). Defense
 Energy Support Center, Defense Logistics Agency, U.S. Department of Defense. Washington, D.C.
- DOC (1991 through 2019) Unpublished Report of Bunker Fuel Oil Laden on Vessels Cleared for Foreign Countries.
 Form-563. Foreign Trade Division, Bureau of the Census, U.S. Department of Commerce. Washington, D.C.
- DOE (1993 through 2017) *Transportation Energy Data Book*. Office of Transportation Technologies, Center for
 Transportation Analysis, Energy Division, Oak Ridge National Laboratory. ORNL-6978.
- DOT (1991 through 2018) Airline *Fuel Cost and Consumption*. U.S. Department of Transportation, Bureau of
 Transportation Statistics, Washington, D.C. DAI-10. Available online at: http://www.transtats.bts.gov/fuel.asp>.
- EIA (2019a) *Monthly Energy Review, October 2019,* Energy Information Administration, U.S. Department of Energy,
 Washington, D.C. DOE/EIA-0035(2019/02).
- EIA (2019f) *Natural Gas Annual 2018*. Energy Information Administration, U.S. Department of Energy, Washington,
 D.C. DOE/EIA-0131(11).
- EIA (1991 through 2018) *Fuel Oil and Kerosene Sales*. Energy Information Administration, U.S. Department of
 Energy. Washington, D.C. Available online at: http://www.eia.gov/petroleum/fueloilkerosene>.
- 30 EIA (2016) "Table 3.1: World Petroleum Supply and Disposition." *International Energy Annual.* Energy Information
- 31 Administration, U.S. Department of Energy. Washington, D.C. Available online at:
- 32 <https://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=5&pid=66&aid=13>.
- EIA (2011) *Annual Energy Review 2010*. Energy Information Administration, U.S. Department of Energy,
 Washington, D.C. DOE/EIA-0384(2011). October 19, 2011.
- 35 EIA (2007) Personal Communication. Joel Lou, Energy Information Administration and Aaron Beaudette, ICF
- 36 International. *Residual and Distillate Fuel Oil Consumption for Vessel Bunkering (Both International and Domestic)*
- 37 for American Samoa, U.S. Pacific Islands, and Wake Island. October 24, 2007.
- 38 EIA (2002) Alternative Fuels Data Tables. Energy Information Administration, U.S. Department of Energy,
- 39 Washington, D.C. Available online at: <http://www.eia.doe.gov/fuelrenewable.html>.
- 40 EPA (2019b) Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 2018.
- 41 Office of Transportation and Air Quality, U.S. Environmental Protection Agency. Available online at:
- 42 <https://www.epa.gov/fuel-economy/trends-report>.

- 1 EPA (2019c) Confidential Engine Family Sales Data Submitted to EPA by Manufacturers. Office of Transportation
- 2 and Air Quality, U.S. Environmental Protection Agency.
- 3 EPA (2019d) Annual Certification Test Results Report. Office of Transportation and Air Quality, U.S. Environmental
- 4 Protection Agency. Available online at: <https://www.epa.gov/compliance-and-fuel-economy-data/annual-
- 5 certification-test-data-vehicles-and-engines>.
- EPA (2018a) *Motor Vehicle Emissions Simulator (MOVES) 2014b*. Office of Transportation and Air Quality, U.S.
 Environmental Protection Agency. Available online at: https://www.epa.gov/moves.
- 8 EPA (2016g) "1970 2015 Average annual emissions, all criteria pollutants in MS Excel." National Emissions
- 9 Inventory (NEI) Air Pollutant Emissions Trends Data. Office of Air Quality Planning and Standards. Available online
- 10 at: <https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data>.
- EPA (2000) *Mobile6 Vehicle Emission Modeling Software*. Office of Mobile Sources, U.S. Environmental Protection
 Agency, Ann Arbor, Michigan.
- EPA (1999a) *Emission Facts: The History of Reducing Tailpipe Emissions*. Office of Mobile Sources. May 1999. EPA
 420-F-99-017. Available online at: https://www.epa.gov/nsceps.
- 15 EPA (1999b) Regulatory Announcement: EPA's Program for Cleaner Vehicles and Cleaner Gasoline. Office of Mobile
- 16 Sources. December 1999. EPA420-F-99-051. Available online at:
- 17 <https://nepis.epa.gov/Exe/ZyPDF.cgi/P1001Z9W.PDF?Dockey=P1001Z9W.PDF>.
- 18 EPA (1998) Emissions of Nitrous Oxide from Highway Mobile Sources: Comments on the Draft Inventory of U.S.
- 19 *Greenhouse Gas Emissions and Sinks, 1990–1996.* Office of Mobile Sources, Assessment and Modeling Division,
- 20 U.S. Environmental Protection Agency. August 1998. EPA420-R-98-009.
- EPA (1994a) *Automobile Emissions: An Overview.* Office of Mobile Sources. August 1994. EPA 400-F-92-007.
 Available online at: ">https://www.epa.gov/nscep>.
- EPA (1994b) *Milestones in Auto Emissions Control*. Office of Mobile Sources. August 1994. EPA 400-F-92-014.
 Available online at: https://www.epa.gov/nscep.
- EPA (1993) *Automobiles and Carbon Monoxide*. Office of Mobile Sources. January 1993. EPA 400-F-92-005.
 Available online at: https://www.epa.gov/nscep.
- 27 Esser, C. (2003 through 2004) Personal Communication with Charles Esser, Residual and Distillate Fuel Oil
- Consumption for Vessel Bunkering (Both International and Domestic) for American Samoa, U.S. Pacific Islands, and
 Wake Island.
- 30 FAA (2019) Personal Communication between FAA and John Steller, Mausami Desai and Vincent Camobreco for
- 31 aviation emission estimates from the Aviation Environmental Design Tool (AEDT). January 2019.
- 32 FHWA (1996 through 2018) Highway Statistics. Federal Highway Administration, U.S. Department of
- 33 Transportation, Washington, D.C. Report FHWA-PL-96-023-annual. Available online at:
- 34 <http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.htm>.
- 35 FHWA (2015) *Off-Highway and Public-Use Gasoline Consumption Estimation Models Used in the Federal Highway*
- 36 *Administration*, Publication Number FHWA-PL-17-012. Available online at:
- 37 <https://www.fhwa.dot.gov/policyinformation/pubs/pl17012.pdf>.
- Gaffney, J. (2007) Email Communication. John Gaffney, American Public Transportation Association and Joe
 Aamidor, ICF International. December 17, 2007.
- HybridCars.com (2019). Monthly Plug-In Electric Vehicle Sales Dashboard, 2010-2018. Available online at
 https://www.hybridcars.com/december-2017-dashboard/>.
- 42 ICF (2006a) Revised Gasoline Vehicle EFs for LEV and Tier 2 Emission Levels. Memorandum from ICF International to
- 43 John Davies, Office of Transportation and Air Quality, U.S. Environmental Protection Agency. November 2006.

- 1 ICF (2006b) Revisions to Alternative Fuel Vehicle (AFV) Emission Factors for the U.S. Greenhouse Gas Inventory.
- Memorandum from ICF International to John Davies, Office of Transportation and Air Quality, U.S. Environmental
 Protection Agency. November 2006.
- ICF (2004) Update of Methane and Nitrous Oxide Emission Factors for On-Highway Vehicles. Final Report to U.S.
 Environmental Protection Agency. February 2004.
- 6 ICF (2017b) Updated Non-Highway CH₄ and N₂O Emission Factors for U.S. GHG Inventory. Memorandum from ICF
- to Sarah Roberts and Justine Geidosch, Office of Transportation and Air Quality, U.S. Environmental Protection
 Agency. October 2017.
- Lipman, T. and M. Delucchi (2002) "Emissions of Nitrous Oxide and Methane from Conventional and Alternative
 Fuel Motor Vehicles." *Climate Change*, 53:477-516.
- 11 SAE (2010) Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using Travel Survey Data. Society of
- 12 Automotive Engineers. Report J2841, Available online at:
- 13 <https://www.sae.org/standards/content/j2841_201009/>.
- Raillnc (2014 through 2018) *Raillnc Short line and Regional Traffic Index*. Carloads Originated Year-to-Date.
 December 2019. Available online at: < https://www.railinc.com/rportal/railinc-indexes>.
- 16 Santoni, G., B. Lee, E. Wood, S. Herndon, R. Miake-Lye, S. Wofsy, J. McManus, D. Nelson, M. Zahniser (2011)
- Aircraft emissions of methane and nitrous oxide during the alternative aviation fuel experiment. Environ Sci
 Technol. 2011 Aug 15; 45(16):7075-82.
- U.S. Census Bureau (2000) *Vehicle Inventory and Use Survey*. U.S. Census Bureau, Washington, D.C. Database CD EC97-VIUS.
- 21 Whorton, D. (2006 through 2014) Personal communication, Class II and III Rail energy consumption, American
- 22 Short Line and Regional Railroad Association.

23 Carbon Emitted from Non-Energy Uses of Fossil Fuels

- ACC (2019a) "Guide to the Business of Chemistry, 2019," American Chemistry Council.
- 25 ACC (2019b) "U.S. Resin Production & Sales 2018 vs. 2017." Available online at:
- 26 <https://plastics.americanchemistry.com/Year-End-Resin-Stats.pdf>.
- 27 ACC (2018) "U.S. Resin Production & Sales 2017 vs. 2016." Available online at:
- 28 <https://plastics.americanchemistry.com/Sales-Data-by-Resin.pdf>.
- 29 ACC (2017) "U.S. Resin Production & Sales 2016 vs. 2015."
- 30 ACC (2016) "U.S. Resin Production & Sales 2015 vs. 2014."
- ACC (2015) "PIPS Year-End Resin Statistics for 2014 vs. 2013: Production, Sales and Captive Use." Available online
- at: <http://www.americanchemistry.com/Jobs/EconomicStatistics/Plastics-Statistics/Production-and-Sales-Data-
 by-Resin.pdf>.
- 34 ACC (2014) "U.S. Resin Production & Sales: 2013 vs. 2012," American Chemistry Council. Available online at:
- 35 http://www.americanchemistry.com/Jobs/EconomicStatistics/Plastics-Statistics/Production-and-Sales-Data-by-
 36 Resin.pdf>.
- ACC (2013) "U.S. Resin Production & Sales: 2012 vs. 2011," American Chemistry Council. Available online at:
- 38 <http://www.americanchemistry.com/Jobs/EconomicStatistics/Plastics-Statistics/Production-and-Sales-Data-by-39 Resin.pdf>.
- 40 ACC (2003-2011) "PIPS Year-End Resin Statistics for 2010: Production, Sales and Captive Use." Available online at:
- 41 <http://www.americanchemistry.com/Jobs/EconomicStatistics/Plastics-Statistics/Production-and-Sales-Data-by-
- 42 Resin.pdf>.

- 1 Bank of Canada (2019) Financial Markets Department Year Average of Exchange Rates. Available online at:
- 2 <https://www.bankofcanada.ca/rates/exchange/annual-average-exchange-rates/#download>.
- 3 Bank of Canada (2018) Financial Markets Department Year Average of Exchange Rates. Available online at: <
- 4 https://www.bankofcanada.ca/rates/exchange/annual-average-exchange-rates/>.
- Bank of Canada (2017) Financial Markets Department Year Average of Exchange Rates. Available online at:
 https://www.icao.int/CAFICS/News%20Library/nraa-2016-en-2.pdf>.
- Bank of Canada (2016) Financial Markets Department Year Average of Exchange Rates. Available online at:
 http://www.bankofcanada.ca/stats/assets/pdf/nraa-2015.pdf>.
- Bank of Canada (2014) Financial Markets Department Year Average of Exchange Rates. Available online at:
 http://www.bankofcanada.ca/stats/assets/pdf/nraa-2013.pdf>.
- Bank of Canada (2013) Financial Markets Department Year Average of Exchange Rates. Available online at:
 http://www.bankofcanada.ca/stats/assets/pdf/nraa-2012.pdf>.
- Bank of Canada (2012) Financial Markets Department Year Average of Exchange Rates. Available online at:
 http://www.bankofcanada.ca/stats/assets/pdf/nraa-2011.pdf>.
- 15 EIA (2019) *Monthly Energy Review, November 2019.* Energy Information Administration, U.S. Department of 16 Energy, Washington, D.C. DOE/EIA-0035 (2019/11).
- EIA (2017) *EIA Manufacturing Consumption of Energy (MECS) 2014.* U.S. Department of Energy, Energy Information
 Administration, Washington, D.C.
- EIA (2013) *EIA Manufacturing Consumption of Energy (MECS) 2010.* U.S. Department of Energy, Energy Information
 Administration, Washington, D.C.
- EIA (2010) *EIA Manufacturing Consumption of Energy (MECS) 2006.* U.S. Department of Energy, Energy Information
 Administration, Washington, D.C.
- EIA (2005) *EIA Manufacturing Consumption of Energy (MECS) 2002.* U.S. Department of Energy, Energy Information
 Administration, Washington, D.C.
- EIA (2001) *EIA Manufacturing Consumption of Energy (MECS) 1998.* U.S. Department of Energy, Energy Information
 Administration, Washington, D.C.
- EIA (1997) *EIA Manufacturing Consumption of Energy (MECS) 1994.* U.S. Department of Energy, Energy Information
 Administration, Washington, D.C.
- EIA (1994) *EIA Manufacturing Consumption of Energy (MECS) 1991.* U.S. Department of Energy, Energy Information
 Administration, Washington, D.C.
- 31 EPA (2019a) "Criteria pollutants National Tier 1 for 1970 2018." National Emissions Inventory (NEI) Air Pollutant
- 32 Emissions Trends Data. Office of Air Quality Planning and Standards, May 2019. Available online at:
- 33 https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data.
- 34 EPA (2019b) Advancing Sustainable Materials Management: 2016 and 2017 Data Tables. Office of Land and
- 35 Emergency Management, U.S. Environmental Protection Agency. Washington, D.C. Available online at:
- 36 <https://www.epa.gov/sites/production/files/2019-
- 37 11/documents/2016_and_2017_facts_and_figures_data_tables_0.pdf>.
- 38 EPA (2018a) Advancing Sustainable Materials Management: Facts and Figures 2015, Assessing Trends in Material
- 39 Generation, Recycling and Disposal in the United States. Washington, D.C.
- 40 EPA (2018b) *Resource Conservation and Recovery Act (RCRA) Info*, Biennial Report, GM Form (Section 2- Onsite
- 41 Management) and WR Form.

- 1 EPA (2017) EPA's Pesticides Industry Sales and Usage, 2008 2012 Market Estimates. Available online at:
- <https://www.epa.gov/sites/production/files/2017-01/documents/pesticides-industry-sales-usage-2016_0.pdf>
 Accessed September 2017.
- 4 EPA (2016a) Advancing Sustainable Materials Management: 2014 Facts and Figures Fact Sheet. Office of Solid
- 5 Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C. Available online at:
- 6 <https://www.epa.gov/sites/production/files/2016-11/documents/2014_smmfactsheet_508.pdf>.
- FPA (2016b) *Resource Conservation and Recovery Act (RCRA) Info*, Biennial Report, GM Form (Section 2- Onsite
 Management) and WR Form.
- 9 EPA (2015) *Resource Conservation and Recovery Act (RCRA) Info*, Biennial Report, GM Form (Section 2- Onsite
 10 Management) and WR Form.
- 11 EPA (2014a) Municipal Solid Waste in the United States: 2012 Facts and Figures. Office of Solid Waste and
- 12 Emergency Response, U.S. Environmental Protection Agency, Washington, D.C. Available online at:
- 13 <http://www.epa.gov/epaoswer/non-hw/muncpl/msw99.htm>.
- EPA (2014b) Chemical Data Access Tool (CDAT). U.S. Environmental Protection Agency, June 2014. Available online
 at: http://java.epa.gov/oppt_chemical_search/. Accessed January 2015.
- 16 EPA (2013a) Municipal Solid Waste in the United States: 2011 Facts and Figures. Office of Solid Waste and
- 17 Emergency Response, U.S. Environmental Protection Agency, Washington, D.C. Available online at:
- 18 <http://www.epa.gov/epaoswer/non-hw/muncpl/msw99.htm>.
- EPA (2013b) *Resource Conservation and Recovery Act (RCRA) Info*, Biennial Report, GM Form (Section 2- Onsite
 Management) and WR Form.
- EPA (2011) EPA's Pesticides Industry Sales and Usage, 2006 and 2007 Market Estimates. Available online at:
 http://www.epa.gov/oppbead1/pestsales/. Accessed January 2012.
- 23 EPA (2009) Biennial Reporting System (BRS) Database. U.S. Environmental Protection Agency, Envirofacts
- Warehouse. Washington, D.C. Available online at: http://www.epa.gov/enviro/html/brs/. Data for 2001-2007
 are current as of Sept. 9, 2009.
- 26 EPA (2004) EPA's Pesticides Industry Sales and Usage, 2000 and 2001 Market Estimates. Available online at:
 27 http://www.epa.gov/oppbead1/pestsales/. Accessed September 2006.
- EPA (2002) EPA's Pesticides Industry Sales and Usage, 1998 and 1999 Market Estimates, Table 3.6. Available online
 at: http://www.epa.gov/oppbead1/pestsales/99pestsales/market estimates1999.pdf>. Accessed July 2003.
- 30 EPA (2001) AP 42, Volume I, Fifth Edition. Chapter 11: Mineral Products Industry. Available online at:
 31 http://www.epa.gov/ttn/chief/ap42/ch11/index.html.
- 34 EPA (2000b) *Toxics Release Inventory, 1998*. U.S. Environmental Protection Agency, Office of Environmental
- 35 Information, Office of Information Analysis and Access, Washington, D.C. Available online at:
- 36 <http://www.epa.gov/triexplorer/chemical.htm>.
- 37 EPA (1999) EPA's Pesticides Industry Sales and Usage, 1996-1997 Market Estimates. Available online at:
- 38 <http://www.epa.gov/oppbead1/pestsales/97pestsales/market_estimates1997.pdf>.
- 39 EPA (1998) EPA's Pesticides Industry Sales and Usage, 1994-1995 Market Estimates. Available online at:
- 40 <http://www.epa.gov/oppbead1/pestsales/95pestsales/market_estimates1995.pdf>.
- 41 FEB (2013) Fiber Economics Bureau, as cited in C&EN (2013) Lackluster Year for Chemical Output: Production
- 42 stayed flat or dipped in most world regions in 2012. Chemical & Engineering News, American Chemical Society, 1
- 43 July. Available online at: <http://www.cen-online.org>.

- 1 FEB (2012) Fiber Economics Bureau, as cited in C&EN (2012) Too Quiet After the Storm: After a rebound in 2010,
- 2 chemical production hardly grew in 2011. Chemical & Engineering News, American Chemical Society, 2 July.
- 3 Available online at: <http://www.cen-online.org>.
- FEB (2011) Fiber Economics Bureau, as cited in C&EN (2011) *Output Ramps up in all Regions*. Chemical Engineering
 News, American Chemical Society, 4 July. Available online at: http://www.cen-online.org>.
- FEB (2010) Fiber Economics Bureau, as cited in C&EN (2010) *Output Declines in U.S., Europe*. Chemical &
 Engineering News, American Chemical Society, 6 July. Available online at: http://www.cen-online.org>.
- FEB (2009) Fiber Economics Bureau, as cited in C&EN (2009) *Chemical Output Slipped In Most Regions* Chemical &
 Engineering News, American Chemical Society, 6 July. Available online at: http://www.cen-online.org>.
- FEB (2007) Fiber Economics Bureau, as cited in C&EN (2007) *Gains in Chemical Output Continue*. Chemical &
 Engineering News, American Chemical Society. July 2, 2007. Available online at: http://www.cen-online.org.
- FEB (2005) Fiber Economics Bureau, as cited in C&EN (2005) *Production: Growth in Most Regions* Chemical &
- Engineering News, American Chemical Society, 11 July. Available online at: http://www.cen-online.org.
- FEB (2003) Fiber Economics Bureau, as cited in C&EN (2003) *Production Inches Up in Most Countries,* Chemical &
 Engineering News, American Chemical Society, 7 July. Available online at: http://www.cen-online.org>.
- 16 FEB (2001) Fiber Economics Bureau, as cited in ACS (2001) *Production: slow gains in output of chemicals and*
- products lagged behind U.S. economy as a whole Chemical & Engineering News, American Chemical Society, 25
 June. Available online at: ">http://pubs.acs.org/cen>.
- Financial Planning Association (2006) Canada/US Cross-Border Tools: US/Canada Exchange Rates. Available online
 at: http://www.fpanet.org/global/planners/US_Canada_ex_rates.cfm. Accessed on August 16, 2006.
- Gosselin, Smith, and Hodge (1984) "Clinical Toxicology of Commercial Products." Fifth Edition, Williams & Wilkins,
 Baltimore.
- 23 ICIS (2016) "Production issues force US melamine plant down" Available online at:
- 24 <https://www.icis.com/resources/news/2016/05/03/9994556/production-issues-force-us-melamine-plant-
- 25 down/>.
- 26 ICIS (2008) "Chemical profile: Melamine" Available online at:
- <https://www.icis.com/resources/news/2008/12/01/9174886/chemical-profile-melamine/>. Accessed November,
 2017.
- 29 IISRP (2003) "IISRP Forecasts Moderate Growth in North America to 2007" International Institute of Synthetic
- 30 Rubber Producers, Inc. New Release. Available online at: http://www.iisrp.com/press-releases/2003-Press-
- 31 Releases/IISRP-NA-Forecast-03-07.html>.
- IISRP (2000) "Synthetic Rubber Use Growth to Continue Through 2004, Says IISRP and RMA" International Institute
 of Synthetic Rubber Producers press release.
- INEGI (2006) Producción bruta total de las unidades económicas manufactureras por Subsector, Rama, Subrama y
 Clase de actividad. Available online at:
- 36 <http://www.inegi.gob.mx/est/contenidos/espanol/proyectos/censos/ce2004/tb_manufacturas.asp>. Accessed 37 on August 15, 2006.
- 38 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 39 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 40 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- Marland, G., and R.M. Rotty (1984) "Carbon dioxide emissions from fossil fuels: A procedure for estimation and
 results for 1950-1982," Tellus 36b:232-261.
- 43 NPRA (2002) North American Wax A Report Card. Available online at:
- 44 <http://www.npra.org/members/publications/papers/lubes/LW-02-126.pdf>.

- RMA (2018) 2017 U.S. Scrap Tire Management Summary. Rubber Manufacturers Association, Washington, D.C. July
 2018.
- RMA (2016) 2015 U.S. Scrap Tire Management Summary. Rubber Manufacturers Association, Washington, D.C.
 August 2016.
- 5 RMA (2014) *2013 U.S. Scrap Tire Management Summary*. Rubber Manufacturers Association, Washington, D.C.
 6 November 2014.
- 7 RMA (2011) U.S. Scrap Tire Management Summary: 2005-2009. Rubber Manufacturers Association, Washington,
- 8 D.C. October 2011, updated September 2013.
- 9 RMA (2009) "Scrap Tire Markets: Facts and Figures Scrap Tire Characteristics." Rubber Manufacturers
 10 Association., Washington D.C. Available online at:
- 11 http://www.rma.org/scrap_tires/scrap_tire_markets/scrap_tire_characteristics/ Accessed on 17 September 2009.
- 12 U.S. Census Bureau (2014) 2012 Economic Census. Available online at:
- 13 <http://www.census.gov/econ/census/schedule/whats_been_released.html>. Accessed November 2014.
- 14 U.S. Census Bureau (2009) *Soap and Other Detergent Manufacturing: 2007*. Available online at:
- 15 http://smpbff1.dsd.census.gov/TheDataWeb_HotReport/servlet/HotReportEngineServlet?emailname=vh@boc&f
- $16 \qquad ilename=mfg1.hrml \& 20071204152004.Var. NAICS2002=325611 \& forward=20071204152004.Var. NAICS2002>.$
- U.S. Census Bureau (2004) Soap and Other Detergent Manufacturing: 2002. Issued December 2004. EC02-31I 325611 (RV). Available online at: http://www.census.gov/prod/ec02/ec0231i325611.pdf>.
- 19 U.S. Census Bureau (1999) *Soap and Other Detergent Manufacturing: 1997*. Available online at:
- 20 <http://www.census.gov/epcd/www/ec97stat.htm>.
- 21 U.S. International Trade Commission (1990-2018) "Interactive Tariff and Trade DataWeb: Quick Query." Available
- 22 online at: <http://dataweb.usitc.gov/>. Accessed September 2019.

23 Incineration of Waste

- ArSova, Ljupka, Rob van Haaren, Nora Goldstein, Scott M. Kaufman, and Nickolas J. Themelis (2008) "16th Annual Bis Cucle Nationwide Survey The State of Carbons in America" *Bis Cucle* 10 Press
- 25 BioCycle Nationwide Survey: The State of Garbage in America" *BioCycle*, JG Press, Emmaus, PA. December.
- Bahor, B (2009) Covanta Energy's public review comments re: *Draft Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2007.* Submitted via email on April 9, 2009 to Leif Hockstad, U.S. EPA.
- 28 De Soete, G.G. (1993) "Nitrous Oxide from Combustion and Industry: Chemistry, Emissions and Control." In A. R.
- Van Amstel, (ed.) Proc. of the International Workshop Methane and Nitrous Oxide: Methods in National Emission
 Inventories and Options for Control, Amersfoort, NL. February 3-5, 1993.
- Energy Recovery Council (2009) "2007 Directory of Waste-to-Energy Plants in the United States." Accessed on
 September 29, 2009.
- 33 EIA (2017) *MSW Incineration for Heating or Electrical Generation, December 2017,* Energy Information
- 34 Administration, U.S. Department of Energy, Washington, DC. DOE/EIA-0035. Available online at:
- 35 <https://www.eia.gov/opendata/?src=-f3>.
- 36 EPA (2019) Advancing Sustainable Materials Management: 2016 and 2017 Data Tables. Office of Land and
- 37 Emergency Management, U.S. Environmental Protection Agency. Washington, D.C. Available online at:
- 38 <https://www.epa.gov/sites/production/files/2019-
- 39 11/documents/2016_and_2017_facts_and_figures_data_tables_0.pdf>.
- 40 EPA (2018a) Advancing Sustainable Materials Management: 2015 Data Tables. Office of Land and Emergency
- 41 Management, U.S. Environmental Protection Agency. Washington, D.C. Available online at:
- 42 <https://www.epa.gov/sites/production/files/2018-
- 43 07/documents/smm_2015_tables_and_figures_07252018_fnl_508_0.pdf>.

- 1 EPA (2018b). Greenhouse Gas Reporting Program Data. Washington, DC: U.S. Environmental Protection Agency.
- 2 Available online at: <https://www.epa.gov/ghgreporting/ghg-reporting-program-data-sets>.
- 3 EPA (2016) Advancing Sustainable Materials Management: 2014 Fact Sheet. Office of Land and Emergency
- 4 Management, U.S. Environmental Protection Agency. Washington, D.C. Available online at:
- 5 https://www.epa.gov/sites/production/files/2016-11/documents/2014_smmfactsheet_508.pdf>.
- 6 EPA (2015) Advancing Sustainable Materials Management: Facts and Figures 2013 Assessing Trends in Material
- 7 *Generation, Recycling and Disposal in the United States.* Office of Solid Waste and Emergency Response, U.S.
- 8 Environmental Protection Agency. Washington, D.C. Available online at:
- 9 http://www3.epa.gov/epawaste/nonhaz/municipal/pubs/2013_advncng_smm_rpt.pdf>.
- 10 EPA (2007, 2008, 2011, 2013, 2014) *Municipal Solid Waste in the United States: Facts and Figures*. Office of Solid
- 11 Waste and Emergency Response, U.S. Environmental Protection Agency. Washington, D.C. Available online at:
- 12 <http://www.epa.gov/osw/nonhaz/municipal/msw99.htm>.
- EPA (2006) Solid Waste Management and Greenhouse Gases: A Life-Cycle Assessment of Emissions and Sinks.
 Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency. Washington, D.C.
- EPA (2000) Characterization of Municipal Solid Waste in the United States: Source Data on the 1999 Update. Office
 of Solid Waste, U.S. Environmental Protection Agency. Washington, D.C. EPA530-F-00-024.
- Goldstein, N. and C. Madtes (2001) "13th Annual BioCycle Nationwide Survey: The State of Garbage in America."
 BioCycle, JG Press, Emmaus, PA. December 2001.
- 19 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 20 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 21 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- Kaufman, et al. (2004) "14th Annual BioCycle Nationwide Survey: The State of Garbage in America 2004" Biocycle,
 JG Press, Emmaus, PA. January 2004.
- RMA (2018) "2017 U.S. Scrap Tire Management Summary." Rubber Manufacturers Association, Washington, DC.
 July 2018. Available online at:
- 26 <https://www.ustires.org/system/files/USTMA_scraptire_summ_2017_072018.pdf.>
- 27 RMA (2016) "2015 U.S. Scrap Tire Management Summary." Rubber Manufacturers Association. August 2016.
- 28 Available online at: https://rma.org/sites/default/files/RMA_scraptire_summ_2015.pdf>.
- 29 RMA (2014) "2013 U.S. Scrap Tire Management Summary." Rubber Manufacturers Association. November 2014.
- 30 Available online at: < https://www.ustires.org/sites/default/files/MAR_027_USTMA.pdf >.
- 31 RMA (2013) "U.S. Scrap Tire Management Summary 2005-2009." Rubber Manufacturers Association. October
- 32 2011; Updated September 2013. Available online at:
- 33 <https://www.ustires.org/sites/default/files/MAR_025_USTMA.pdf >.
- RMA (2012a) "Rubber FAQs." Rubber Manufacturers Association. Available online at: http://www.rma.org/about-rma/rubber-faqs/>. Accessed on 19 November 2014.
- 36 RMA (2012b) "Scrap Tire Markets: Facts and Figures Scrap Tire Characteristics." Rubber Manufacturers
- 37 Association. Available online at:
- 38 <http://www.rma.org/scrap_tires/scrap_tire_markets/scrap_tire_characteristics/>. Accessed 18 on January 2012.
- Schneider, S. (2007) E-mail between Shelly Schneider of Franklin Associates (a division of ERG) and Sarah Shapiro of
 ICF International, January 10, 2007.
- 41 Shin, D. (2014) Generation and Disposition of Municipal Solid Waste (MSW) in the United States–A National
- 42 Survey. Thesis. Columbia University, Department of Earth and Environmental Engineering, January 3, 2014.
- 43 Simmons, et al. (2006) "15th Nationwide Survey of Municipal Solid Waste Management in the United States: The
- 44 State of Garbage in America." BioCycle, JG Press, Emmaus, PA. April 2006.

- 1 van Haaren, Rob, Themelis, N., and Goldstein, N. (2010) "The State of Garbage in America." BioCycle, October
- 2 2010. Volume 51, Number 10, pg. 16-23.

3 Coal Mining

- 4 AAPG (1984) Coalbed Methane Resources of the United States. AAPG Studies in Geology Series #17.
- Creedy, D.P. (1993) Methane Emissions from Coal Related Sources in Britain: Development of a Methodology.
 Chemosphere, 26: 419-439.
- 7 DMME (2019) DGO Data Information System. Department of Mines, Minerals and Energy of Virginia. Available
- 8 online at <https://www.dmme.virginia.gov/dgoinquiry/frmmain.aspx>.
- 9 EIA (2019) Annual Coal Report 2018. Table 1. Energy Information Administration, U.S. Department of Energy.
- 10 El Paso (2009) Shoal Creek Mine Plan, El Paso Exploration & Production.
- 11 EPA (2019) Greenhouse Gas Reporting Program (GHGRP) 2018 Envirofacts. Subpart FF: Underground Coal Mines.
- 12 Available online at <http://www.epa.gov/ghgreporting/ghgdata/reported/coalmines.html>.
- 13 EPA (2005) Surface Mines Emissions Assessment. Draft. U.S. Environmental Protection Agency.
- 14 EPA (1996) Evaluation and Analysis of Gas Content and Coal Properties of Major Coal Bearing Regions of the United
- 15 States. EPA/600/R-96-065. U.S. Environmental Protection Agency.
- 16 ERG (2019). Correspondence between ERG and Buchanan Mine.
- Geological Survey of Alabama State Oil and Gas Board (GSA) (2019) Well Records Database. Available online at
 http://www.gsa.state.al.us/ogb/database.aspx>.
- 19 IEA (2019) *Key World Energy Statistics*. Coal Production, International Energy Agency.
- 20 IPCC (2011) Use of Models and Facility-Level Data in Greenhouse Gas Inventories. Report of IPCC Expert Meeting on
- 21 Use of Models and Measurements in Greenhouse Gas Inventories 9-11 August 2010, Sydney, Australia. Eds:
- 22 Eggleston H.S., Srivastava N., Tanabe K., Baasansuren J., Fukuda M. IGES.
- 23 JWR (2010) No. 4 & 7 Mines General Area Maps. Walter Energy: Jim Walter Resources.
- King, Brian (1994) Management of Methane Emissions from Coal Mines: Environmental, Engineering, Economic and
 Institutional Implication of Options. Neil and Gunter Ltd.
- McElroy OVS (2019) Marshall County VAM Abatement Project Offset Verification Statement submitted to
 California Air Resources Board, July 2019.
- MSHA (2019) Data Transparency at MSHA. Mine Safety and Health Administration. Available online at
 .
- Mutmansky, Jan M. and Yanbei Wang (2000) Analysis of Potential Errors in Determination of Coal Mine Annual
 Methane Emissions. *Mineral Resources Engineering*, 9(4).
- 32 Saghafi, Abouna (2013) Estimation of Fugitive Emissions from Open Cut Coal Mining and Measurable Gas Content.
- 13th Coal Operators' Conference, University of Wollongong, The Australian Institute of Mining and Metallurgy &
- 34 Mine Managers Association of Australia. 306-313.
- USBM (1986) *Results of the Direct Method Determination of the Gas Contents of U.S. Coal Basins*. Circular 9067.
 U.S. Bureau of Mines.
- 37 West Virginia Geological & Economic Survey (WVGES) (2019) Oil & Gas Production Data. Available online at
- 38 <http://www.wvgs.wvnet.edu/www/datastat/datastat.htm>.

1 Abandoned Underground Coal Mines

- 2 EPA (2004) Methane Emissions Estimates & Methodology for Abandoned Coal Mines in the U.S. Draft Final Report.
- 3 Washington, D.C. April 2004.
- 4 MSHA (2019) U.S. Department of Labor, Mine Health & Safety Administration, Mine Data Retrieval System.
- 5 Available online at: <https://www.msha.gov/mine-data-retrieval-system>.

6 Petroleum Systems

- API (1992) *Global Emissions of Methane from Petroleum Sources*. American Petroleum Institute, Health and
 Environmental Affairs Department, Report No. DR140, February 1992.
- 9 Enverus DrillingInfo (2019) March 2019 Download. DI Desktop[®] Enverus DrillingInfo, Inc.
- EPA (1997) Compilation of Air Pollutant Emission Factors, AP-42. Office of Air Quality Planning and Standards, U.S.
 Environmental Protection Agency. Research Triangle Park, NC. October 1997.

EPA (1999) *Estimates of Methane Emissions from the U.S. Oil Industry (Draft Report).* Prepared by ICF International.
 Office of Air and Radiation, U.S. Environmental Protection Agency. October 1999.

- 14 EPA (2019) Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2018: Updates Under Consideration for
- 15 Offshore Production Emissions (Offshore Production memo). U.S. Environmental Protection Agency. September
- 16 2019. Available at: https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems.
- EPA (2019) *Greenhouse Gas Reporting Program*. U.S. Environmental Protection Agency. Data reported as of August
 4, 2019.
- EPA/GRI (1996) *Methane Emissions from the Natural Gas Industry*. Prepared by Radian. U.S. Environmental
 Protection Agency. April 1996.
- 21 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 22 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 23 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.

24 Natural Gas Systems

- 25 Enverus DrillingInfo (2019) March 2019 Download. DI Desktop[®] Enverus DrillingInfo, Inc.
- 26 EPA (2019) Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2018: Updates Under Consideration for
- 27 Natural Gas Gathering & Boosting Station Emissions (G&B Station memo). U.S. Environmental Protection Agency.
- 28 September 2019. Available at: https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems.
- 29 EPA (2019) Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2018: Updates Under Consideration for
- 30 Offshore Production Emissions (Offshore Production memo). U.S. Environmental Protection Agency. September
- 31 2019. Available at: https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems.
- EPA (2019) *Greenhouse Gas Reporting Program- Subpart W Petroleum and Natural Gas Systems*. Environmental
 Protection Agency. Data reported as of August 4, 2019.
- 34 GRI/EPA (1996) Methane Emissions from the Natural Gas Industry. Prepared by Harrison, M., T. Shires, J. Wessels,
- 35 and R. Cowgill, eds., Radian International LLC for National Risk Management Research Laboratory, Air Pollution
- 36 Prevention and Control Division, Research Triangle Park, NC. EPA-600/R-96-080a.
- GTI (2001) Gas Resource Database: Unconventional Natural Gas and Gas Composition Databases. Second Edition.
 GRI-01/0136.
- 39 Lamb, et al. (2015) "Direct Measurements Show Decreasing Methane Emissions from Natural Gas Local
- 40 Distribution Systems in the United States." *Environmental Science & Technology, Vol. 49* 5161-5169.

- 1 Lavoie et al. (2017) "Assessing the Methane Emissions from Natural Gas-Fired Power Plants and Oil Refineries."
- 2 Environmental Science & Technology. 2017 Mar 21;51(6):3373-3381. doi: 10.1021/acs.est.6b05531.
- 3 PHMSA (2019) Gas Distribution Annual Data. Pipeline and Hazardous Materials Safety Administration, U.S.
- Department of Transportation, Washington, DC. Available online at: https://cms.phmsa.dot.gov/data-and-statistics/pipeline/gas-distribution-gas-gathering-gas-transmission-hazardous-liquids >.
- 5 Statistics/pipeline/gas-distribution-gas-gathering-gas-transmission-hazardous-iiquius >.
- Zimmerle et al. (2019) "Characterization of Methane Emissions from Gathering Compressor Stations." October
 2019. Available at https://mountainscholar.org/handle/10217/195489.
- Zimmerle, et al. (2015) "Methane Emissions from the Natural Gas Transmission and Storage System in the United
 States." *Environmental Science and Technology, Vol. 49* 9374–9383.

Abandoned Oil and Gas Wells

- 11 Alaska Oil and Gas Conservation Commission, Available online at: http://doa.alaska.gov/ogc/publicdb.html.
- Arkansas Geological & Conservation Commission, "List of Oil & Gas Wells Data From November 1, 1936 to January
 1, 1955." http://www.geology.ar.gov/pdf/IC-10%20SUPPLEMENT_v.pdf.
- 14 The Derrick's Handbook of Petroleum: A Complete Chronological and Statistical Review of Petroleum
- 15 Developments From 1859 to 1898 (V.1), (1898-1899) (V.2).
- 16 Enverus DrillingInfo (2019) March 2019 Download. DI Desktop[®] Enverus DrillingInfo, Inc.
- 17 GRI/EPA (1996) Methane Emissions from the Natural Gas Industry. Prepared by Harrison, M., T. Shires, J. Wessels,
- 18 and R. Cowgill, eds., Radian International LLC for National Risk Management Research Laboratory, Air Pollution
- 19 Prevention and Control Division, Research Triangle Park, NC. EPA-600/R-96-080a.
- 20 Florida Department of Environmental Protection Oil and Gas Program, Available online at:
- 21 <https://floridadep.gov/water/oil-gas>.
- 22 Geological Survey of Alabama, Oil & Gas Board, Available online at: https://www.gsa.state.al.us/ogb/>.
- GTI (2001) Gas Resource Database: Unconventional Natural Gas and Gas Composition Databases. Second Edition.
 GRI-01/0136.
- Kang, et al. (2016) "Identification and characterization of high methane-emitting abandoned oil and gas wells."
 PNAS, vol. 113 no. 48, 13636–13641, doi: 10.1073/pnas.1605913113.
- Oklahoma Geological Survey. "Oklahoma Oil: Past, Present, and Future." Oklahoma Geology Notes, v. 62 no. 3,
 2002 pp. 97-106.
- Pennsylvania Department of Environmental Protection, Oil and Gas Reports Oil and Gas Operator Well Inventory.
 Available online at:
- 31 <http://www.depreportingservices.state.pa.us/ReportServer/Pages/ReportViewer.aspx?/Oil_Gas/OG_Well_Invent</p>
 32 ory.>
- 33 Texas Railroad Commission, Oil and Gas Division, "History of Texas Initial Crude Oil, Annual Production and
- 34 Producing Wells, Crude Oil Production and Well Counts (since 1935)." Available online at:
- 35 http://www.rrc.state.tx.us/oil-gas/research-and-statistics/production-data/historical-production-data/crude-oil-
- 36 production-and-well-counts-since-1935/>.
- Townsend-Small, et al. (2016) "Emissions of coalbed and natural gas methane from abandoned oil and gas wells in the United States." *Geophysical Research Letters, Vol. 43*, 1789–1792.
- 39 United States Geological Survey's (USGS) Mineral Resources of the United States Annual Yearbooks, available
- 40 online at: <https://minerals.usgs.gov/minerals/pubs/usbmmyb.html>.

- 1 Virginia Department of Mines Minerals and Energy, "Wells Drilled for Oil and Gas in Virginia prior to 1962.",
- 2 Virginia Division of Mineral Resources. Available online at:
- 3 <https://www.dmme.virginia.gov/commercedocs/MRR_4.pdf>.

4 Energy Sources of Precursor Greenhouse Gases

- 5 EPA (2019) "1970 2018 Average annual emissions, all criteria pollutants in MS Excel." National Emissions
- 6 Inventory (NEI) Air Pollutant Emissions Trends Data. Office of Air Quality Planning and Standards, May 2019.
- 7 Available online at: <https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data>.
- 8 EPA (2003) E-mail correspondence containing preliminary ambient air pollutant data. Office of Air Pollution and
- 9 the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency. December 22, 2003.
- EPA (1997) *Compilation of Air Pollutant Emission Factors, AP-42*. Office of Air Quality Planning and Standards, U.S.
 Environmental Protection Agency. Research Triangle Park, NC. October 1997.

12 International Bunker Fuels

- 13 Anderson, B.E., et al. (2011) Alternative Aviation Fuel Experiment (AAFEX), NASA Technical Memorandum, in press.
- ASTM (1989) *Military Specification for Turbine Fuels, Aviation, Kerosene Types*, NATO F-34 (JP-8) and NATO F-35.
 February 10, 1989.
- 16 Chevron (2000) *Aviation Fuels Technical Review (FTR-3)*. Chevron Products Company, Chapter 2.
- DHS (2008) Personal Communication with Elissa Kay, Residual and Distillate Fuel Oil Consumption (International
 Bunker Fuels). Department of Homeland Security, Bunker Report. January 11, 2008.
- 19 DLA Energy (2019) Unpublished data from the Defense Fuels Automated Management System (DFAMS). Defense 20 Energy Support Center, Defense Logistics Agency, U.S. Department of Defense. Washington, D.C.
- 21 DOC (1991 through 2019) Unpublished Report of Bunker Fuel Oil Laden on Vessels Cleared for Foreign Countries.
- 22 Form-563. Foreign Trade Division, Bureau of the Census, U.S. Department of Commerce. Washington, D.C.
- 23 DOT (1991 through 2013) Fuel Cost and Consumption. Federal Aviation Administration, Bureau of Transportation
- 24 Statistics, U.S. Department of Transportation. Washington, D.C. DAI-10.
- EIA (2019) *Monthly Energy Review, November 2019,* Energy Information Administration, U.S. Department of
 Energy, Washington, D.C. DOE/EIA-0035(2019/11).
- FAA (2019) Personal Communication between FAA and Vince Camobreco for aviation emission estimates from the
 Aviation Environmental Design Tool (AEDT). December 2019.
- 29 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 30 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 31 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 32 USAF (1998) Fuel Logistics Planning. U.S. Air Force pamphlet AFPAM23-221, May 1, 1998.

33 Wood Biomass and Biofuel Consumption

- 34 EIA (2019a) *Monthly Energy Review, November 2019*. Energy Information Administration, U.S. Department of
- 35 Energy. Washington, D.C. DOE/EIA-0035(2019/11).
- 36 EIA (2019b) *Monthly Biodiesel Production Report. October 2019*. Energy Information Administration, U.S.
- 37 Department of Energy. Washington, D.C.
- 38 EPA (2019) Acid Rain Program Dataset 1996-2018. Office of Air and Radiation, Office of Atmospheric Programs,
- 39 U.S. Environmental Protection Agency, Washington, D.C.

- 1 EPA (2010) Carbon Content Coefficients Developed for EPA's Mandatory Reporting Rule. Office of Air and
- 2 Radiation, Office of Atmospheric Programs, U.S. Environmental Protection Agency, Washington, D.C.
- 3 Lindstrom, P. (2006) Personal Communication. Perry Lindstrom, Energy Information Administration and Jean Kim,
- 4 ICF International.

Industrial Processes and Product Use

- 6 EPA (2014) Greenhouse Gas Reporting Program. Developments on Publication of Aggregated Greenhouse Gas
- 7 Data, November 25, 2014. See http://www.epa.gov/ghgreporting/confidential-business-information-ghg-
- 8 reporting>.
- 9 EPA (2002) Quality Assurance/Quality Control and Uncertainty Management Plan for the U.S. Greenhouse Gas
- 10 Inventory: Procedures Manual for Quality Assurance/Quality Control and Uncertainty Analysis, U.S. Greenhouse
- 11 Gas Inventory Program, U.S. Environmental Protection Agency, Office of Atmospheric Programs, EPA 430-R-02-
- 12 007B, June 2002.
- 13 IPCC (2011) Use of Models and Facility-Level Data in Greenhouse Gas Inventories (Report of IPCC Expert Meeting
- 14 on Use of Models and Measurements in Greenhouse Gas Inventories 9-11 August 2010, Sydney, Australia) eds.:
- 15 Eggleston H.S., Srivastava N., Tanabe K., Baasansuren J., Fukuda M., Pub. IGES, Japan 2011.

16 Cement Production

- 17 EPA (2015). Greenhouse Gas Reporting Program Report Verification. Available online at
- 18 <https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.
- 19 EPA Greenhouse Gas Reporting Program (2018) Aggregation of Reported Facility Level Data under Subpart H -
- 20 National Level Clinker Production from Cement Production for Calendar Years 2014, 2015, 2016, and 2017. Office
- of Air and Radiation, Office of Atmospheric Programs, U.S. Environmental Protection Agency, Washington, D.C.
- 22 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 23 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 24 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- U.S. Bureau of Mines (1990 through 1993) *Minerals Yearbook: Cement Annual Report.* U.S. Department of the
 Interior, Washington, D.C.
- 27 United States Geological Survey (USGS) (2019) Mineral Commodity Summaries: Cement 2019. U.S. Geological
- Survey, Reston, VA. February 2019. Available at: https://www.usgs.gov/centers/nmic/cement-statistics-and-information>.
- 30 USGS (1995 through 2014) *Minerals Yearbook Cement*. U.S. Geological Survey, Reston, VA.
- Van Oss (2013a) 1990 through 2012 Clinker Production Data Provided by Hendrik van Oss (USGS) via email on
 November 8, 2013.
- 33 Van Oss (2013b) Personal communication. Hendrik van Oss, Commodity Specialist of the U.S. Geological Survey
- 34 and Gopi Manne, Eastern Research Group, Inc. October 28, 2013.

35 Lime Production

- 36 EPA (2015). Greenhouse Gas Reporting Program Report Verification. Available online at
- 37 <https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.

- 1 EPA (2018) Greenhouse Gas Reporting Program (GHGRP). Aggregation of Reported Facility Level Data under
- Subpart S-National Lime Production for Calendar Years 2010 through 2017. Office of Air and Radiation, Office of
 Atmospheric Programs, U.S. Environmental Protection Agency, Washington, D.C.
- 4 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 5 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 6 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- Males, E. (2003) Memorandum from Eric Males, National Lime Association to Mr. William N. Irving & Mr. Leif
 Hockstad, Environmental Protection Agency. March 6, 2003.
- 9 Miner, R. and B. Upton (2002) Methods for estimating greenhouse gas emissions from lime kilns at kraft pulp mills.
 10 Energy. Vol. 27 (2002), p. 729-738.
- Seeger (2013) Memorandum from Arline M. Seeger, National Lime Association to Mr. Leif Hockstad, Environmental
 Protection Agency. March 15, 2013.
- 13 United States Geological Survey (USGS 2019) 2019 Mineral Commodities Summary: Lime. U.S. Geological Survey,
- 14 Reston, VA (February 2019).
- 15 USGS (2018) (1992 through 2016) *Minerals Yearbook: Lime*. U.S. Geological Survey, Reston, VA (August 2019).

16 Glass Production

- EPA (2009) Technical Support Document for the Glass Manufacturing Sector: Proposed Rule for Mandatory
 Reporting of Greenhouse Gases. U.S. Environmental Protection Agency, Washington, D.C.
- 18 Reporting of Greenhouse Guses. U.S. Environmental Protection Agency, Washington, D.C.
- 19 EPA (2015). *Greenhouse Gas Reporting Program Report Verification*. Available online at
- 20 <https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.
- 21 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 22 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 23 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- OIT (2002) *Glass Industry of the Future: Energy and Environmental Profile of the U.S. Glass Industry.* Office of
 Industrial Technologies, U.S. Department of Energy. Washington, D.C.
- U.S. Bureau of Mines (1991 and 1993a) *Minerals Yearbook: Crushed Stone Annual Report*. U.S. Department of the
 Interior. Washington, D.C.
- United States Geological Survey (USGS) (2017) *Minerals Industry Surveys; Soda Ash in January 2017*. U.S. Geological
 Survey, Reston, VA. March 2017.
- USGS (2019) *Mineral Industry Surveys: Soda Ash in December 2018*. U.S. Geological Survey, Reston, VA. Accessed
 September 24, 2019.
- USGS (2018) *Mineral Industry Surveys: Soda Ash in February 2018*. U.S. Geological Survey, Reston, VA. Accessed
 September 2018.
- 34 USGS (1995 through 2015a) *Minerals Yearbook: Crushed Stone Annual Report*. U.S. Geological Survey, Reston, VA.
- 35 USGS (1995 through 2015b) *Minerals Yearbook: Soda Ash Annual Report.* U.S. Geological Survey, Reston, VA.
- 36 USGS (2016a) Minerals Yearbook: Crushed Stone Annual Report: Advance Data Release of the 2016 Annual Tables.
- 37 U.S. Geological Survey, Reston, VA. November 2018.
- Willett (2019a) Personal communication, Jason Willett, U.S. Geological Survey and John Steller, U.S. Environmental
 Protection Agency. September 5, 2019.
- 40 Willett (2018a) Personal communication, Jason Christopher Willett, U.S. Geological Survey and John Steller, U.S.
- 41 Environmental Protection Agency. January 4, 2018.

- 1 Willett (2018b) Personal communication, Jason Christopher Willett, U.S. Geological Survey and John Steller, U.S.
- 2 Environmental Protection Agency. December 4, 2018.

Other Process Uses of Carbonates

- 4 AISI (2018 through 2019) Annual Statistical Report. American Iron and Steel Institute.
- 5 Kostick, D. S. (2012) Personal communication. Dennis S. Kostick of U.S. Department of the Interior U.S. Geological
- Survey, Soda Ash Commodity Specialist with Gopi Manne and Bryan Lange of Eastern Research Group, Inc. October
 2012.
- 8 U.S. Bureau of Mines (1991 and 1993a) *Minerals Yearbook: Crushed Stone Annual Report*. U.S. Department of the 9 Interior. Washington, D.C.
- U.S. Bureau of Mines (1990 through 1993b) *Minerals Yearbook: Magnesium and Magnesium Compounds Annual Report*. U.S. Department of the Interior. Washington, D.C.
- United States Geological Survey (USGS) (2013) *Magnesium Metal Mineral Commodity Summary for 2013*. U.S.
 Geological Survey, Reston, VA.
- 14 USGS (2017a) *Mineral Industry Surveys: Soda Ash in January 2017*. U.S. Geological Survey, Reston, VA. March 2017.
- USGS (2018) *Mineral Industry Surveys: Soda Ash in February 2018*. U.S. Geological Survey, Reston, VA. Accessed
 September 2018.
- 17 USGS (2019) *Mineral Industry Surveys: Soda Ash in April 2019*. U.S. Geological Survey, Reston, VA. July 2019.
- 18 USGS (1995a through 2017) *Minerals Yearbook: Crushed Stone Annual Report*. U.S. Geological Survey, Reston, VA.
- 19 USGS (1994 through 2015b) *Minerals Yearbook: Soda Ash Annual Report*. U.S. Geological Survey, Reston, VA.
- 20 USGS (1995b through 2012) *Minerals Yearbook: Magnesium Annual Report*. U.S. Geological Survey, Reston, VA.
- Willett (2017a) Personal communication, Jason Christopher Willett, U.S. Geological Survey and Mausami Desai and
 John Steller, U.S. Environmental Protection Agency. March 9, 2017.
- Willett (2018a) Personal communication, Jason Christopher Willett, U.S. Geological Survey and John Steller, U.S.
 Environmental Protection Agency. January 4, 2018.
- Willett (2018b) Personal communication, Jason Christopher Willett, U.S. Geological Survey and John Steller, U.S.
 Environmental Protection Agency. December 4, 2018.
- 27 Willett (2019) Personal communication, Jason Christopher Willett, U.S. Geological Survey and John Steller, U.S.
- 28 Environmental Protection Agency. September 5, 2019.

29 Ammonia Production

- 30 ACC (2019) Business of Chemistry (Annual Data). American Chemistry Council, Arlington, VA.
- 31 Bark (2004) *CoffeyvilleNitrogen Plant*. December 15, 2004. Available online at:
- 32 <http://www.gasification.org/uploads/downloads/Conferences/2003/07BARK.pdf>.
- 33 Coffeyville Resources Nitrogen Fertilizers (2012) Nitrogen Fertilizer Operations. Available online at:
- 34 <http://coffeyvillegroup.com/NitrogenFertilizerOperations/index.html>.
- 35 Coffeyville Resources Nitrogen Fertilizers (2011) Nitrogen Fertilizer Operations. Available online at:
- 36 <http://coffeyvillegroup.com/NitrogenFertilizerOperations/index.html>.
- 37 Coffeyville Resources Nitrogen Fertilizers (2010) Nitrogen Fertilizer Operations. Available online at:
- 38 <http://coffeyvillegroup.com/NitrogenFertilizerOperations/index.html>.

- 1 Coffeyville Resources Nitrogen Fertilizers (2009) Nitrogen Fertilizer Operations. Available online at:
- 2 <http://coffeyvillegroup.com/NitrogenFertilizerOperations/index.html>.
- 3 Coffeyville Resources Nitrogen Fertilizers, LLC (2005 through 2007a) Business Data. Available online at:
- 4 http://www.coffeyvillegroup.com/businessSnapshot.asp>.
- Coffeyville Resources Nitrogen Fertilizers (2007b) Nitrogen Fertilizer Operations. Available online at:
 http://coffeyvillegroup.com/nitrogenMain.aspx>.
- Coffeyville Resources Energy, Inc. (CVR) (2012) CVR Energy, Inc. 2012 Annual Report. Available online at:
 http://cvrenergy.com>.
- 9 CVR (2013) CVR Energy, Inc. 2013 Annual Report. Available online at: <http://cvrenergy.com>.
- 10 CVR (2014) CVR Energy, Inc. 2014 Annual Report. Available online at: http://cvrenergy.com>.
- 11 CVR (2015) CVR Energy, Inc. 2015 Annual Report. Available online at: http://cvrenergy.com>.
- 12 CVR (2016) CVR Energy, Inc. 2016 Annual Report. Available online at: http://cvrenergy.com>.
- 13 CVR (2017) CVR Energy, Inc. 2017 Annual Report. Available online at: http://cvrenergy.com>.
- 14 CVR (2018) CVR Energy, Inc. 2018 Annual Report. Available online at: http://cvrenergy.com.EFMA (2000a) Best
- 15 *Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry*. Booklet No. 1 of 8:
- 16 Production of Ammonium. Available online at: http://fertilizerseurope.com/site/index.php?id=390>.
- 17 EFMA (2000b) Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry.
- 18 Booklet No. 5 of 8: Production of Urea and Urea Ammonium Nitrate. Available online at:
- 19 <http://fertilizerseurope.com/site/index.php?id=390>.
- 20 EPA Greenhouse Gas Reporting Program (2018) Aggregation of Reported Facility Level Data under Subpart G -
- Annual Urea Production from Ammonia Manufacturing for Calendar Years 2011-2016. Office of Air and Radiation,
 Office of Atmospheric Programs, U.S. Environmental Protection Agency, Washington, D.C.
- 23 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 24 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 25 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- U.S. Census Bureau (2011) *Current Industrial Reports Fertilizer Materials and Related Products: 2010 Summary.* Available online at: http://www.census.gov/manufacturing/cir/historical_data/mq325b/index.html.
- U.S. Census Bureau (2010) *Current Industrial Reports Fertilizer Materials and Related Products: 2009 Summary.* Available online at: http://www.census.gov/manufacturing/cir/historical_data/mq325b/index.html.
- U.S. Census Bureau (2009) *Current Industrial Reports Fertilizer Materials and Related Products: 2008 Summary.* Available online at: http://www.census.gov/manufacturing/cir/historical_data/mg325b/index.html.
- U.S. Census Bureau (2007) *Current Industrial Reports Fertilizer Materials and Related Products: 2006 Summary.* Available online at: http://www.census.gov/industry/1/mg325b065.pdf>.
- U.S. Census Bureau (2006) *Current Industrial Reports Fertilizer Materials and Related Products: 2005 Summary*.
 Available online at: http://www.census.gov/cir/www/325/mq325b.html.
- 38 U.S. Census Bureau (2004, 2005) Current Industrial Reports Fertilizer Materials and Related Products: Fourth
- 39 *Quarter Report Summary*. Available online at: <http://www.census.gov/cir/www/325/mq325b.html>.
- 40 U.S. Census Bureau (1998 through 2003) *Current Industrial Reports Fertilizer Materials and Related Products:*
- 41 Annual Reports Summary. Available online at: http://www.census.gov/cir/www/325/mq325b.html.

- 1 U.S. Census Bureau (1991 through 1994) Current Industrial Reports Fertilizer Materials Annual Report. Report No.
- 2 MQ28B. U.S. Census Bureau, Washington, D.C.
- 3 United States Geological Survey (USGS) (2019) 2019 Mineral Commodity Summaries: Nitrogen (Fixed) Ammonia.
- 4 February 2018. Available online at: <https://prd-wret.s3-us-west-
- 5 2.amazonaws.com/assets/palladium/production/atoms/files/mcs-2019-nitro.pdf>.
- USGS (2018a) 2016 Minerals Yearbook: Nitrogen [Advance Release]. August 2018. Available online at:
 https://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/myb1-2016-nitro.pdf>.
- 8 USGS (2018b) *Minerals Commodity Summaries: Nitrogen (Fixed) Ammonia*. Available online at:
- 9 <http://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/>.
- 10 USGS (2017) 2015 Minerals Yearbook: Nitrogen [Advance Release]. August 2017. Available online at:
- 11 https://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/myb1-2015-nitro.pdf>.
- 12 USGS (2016) 2014 Minerals Yearbook: Nitrogen [Advance Release]. October 2016. Available online at:
- 13 https://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/myb1-2014-nitro.pdf>.
- 14 USGS (2015) 2013 Minerals Yearbook: Nitrogen [Advance Release]. August 2015. Available online at:
- 15 http://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/myb1-2013-nitro.pdf>.
- 16 USGS (2014) 2012 Minerals Yearbook: Nitrogen [Advance Release]. September 2014. Available online at:
- 17 <http://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/myb1-2012-nitro.pdf>.
- 18 USGS (1994 through 2009) *Minerals Yearbook: Nitrogen*. Available online at:
- 19 <http://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/>.

20 Urea Consumption for Non-Agricultural Purposes

- EFMA (2000) Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry.
 Booklet No. 5 of 8: Production of Urea and Urea Ammonium Nitrate.
- 23 EPA Greenhouse Gas Reporting Program (2018) Aggregation of Reported Facility Level Data under Subpart G -
- Annual Urea Production from Ammonia Manufacturing for Calendar Years 2011-2016. Office of Air and Radiation,
- 25 Office of Atmospheric Programs, U.S. Environmental Protection Agency, Washington, D.C.
- 26 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 29 TFI (2002) U.S. Nitrogen Imports/Exports Table. The Fertilizer Institute. Available online at:
- 30 <http://www.tfi.org/statistics/usnexim.asp>. August 2002.
- U.S. Census Bureau (2001 through 2011) *Current Industrial Reports Fertilizer Materials and Related Products: Annual Summary*. Available online at: http://www.census.gov/manufacturing/cir/historical_data/index.html.
- 33 U.S. Department of Agriculture (2012) Economic Research Service Data Sets, Data Sets, U.S. Fertilizer
- Imports/Exports: Standard Tables. Available online at: <http://www.ers.usda.gov/data-products/fertilizer-
 importsexports/standard-tables.aspx>.
- 36 U.S. ITC (2002) United States International Trade Commission Interactive Tariff and Trade DataWeb, Version 2.5.0.
- 37 Available online at: http://dataweb.usitc.gov/scripts/user_set.asp. August 2002.
- 38 USGS (1994 through 2019a) *Minerals Yearbook: Nitrogen*. Available online at:
- 39 <http://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/>.
- 40 USGS (2019b) *Minerals Commodity Summaries: Nitrogen (Fixed) Ammonia*. Available online at:
- 41 <http://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/>.

1 Nitric Acid Production

- 2 Climate Action Reserve (CAR) (2013) Project Report. Available online at:
- 3 <https://thereserve2.apx.com/myModule/rpt/myrpt.asp?r=111>. Accessed on 18 January 2013.
- 4 Desai (2012) Personal communication. Mausami Desai, U.S. Environmental Protection Agency, January 25, 2012.
- 5 EPA (2018) Greenhouse Gas Reporting Program (GHGRP). Aggregation of Reported Facility Level Data under
- 6 Subpart V -National Nitric Acid Production for Calendar Years 2010 through 2017. Office of Air and Radiation,
- 7 Office of Atmospheric Programs, U.S. Environmental Protection Agency, Washington, D.C.
- 8 EPA (2015). Greenhouse Gas Reporting Program Report Verification. Available online at
- 9 https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.
- EPA (2013) *Draft Nitric Acid Database*. U.S. Environmental Protection Agency, Office of Air and Radiation.
 September 2010.
- EPA (2012) Memorandum from Mausami Desai, U.S. EPA to Mr. Bill Herz, The Fertilizer Institute. November 26,
 2012.
- 14 EPA (2010) Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from the Nitric Acid
- 15 Production Industry. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency. Research
- 16 Triangle Park, NC. December 2010. Available online at: http://www.epa.gov/nsr/ghgdocs/nitricacid.pdf>.
- EPA (1998) *Compilation of Air Pollutant Emission Factors, AP-42.* Office of Air Quality Planning and Standards, U.S.
 Environmental Protection Agency. Research Triangle Park, NC. February 1998.
- 19 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 20 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 21 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 22 U.S. Census Bureau (2010a) *Current Industrial Reports. Fertilizers and Related Chemicals: 2009.* "Table 1: Summary
- of Production of Principle Fertilizers and Related Chemicals: 2009 and 2008." June, 2010. MQ325B(08)-5. Available
- 24 online at: <http://www.census.gov/manufacturing/cir/historical_data/mq325b/index.html>.
- U.S. Census Bureau (2010b) Personal communication between Hilda Ward (of U.S. Census Bureau) and Caroline
 Cochran (of ICF International). October 26, 2010 and November 5, 2010.
- 27 U.S. Census Bureau (2009) *Current Industrial Reports. Fertilizers and Related Chemicals: 2008.* "Table 1: Shipments
- and Production of Principal Fertilizers and Related Chemicals: 2004 to 2008." June, 2009. MQ325B(08)-5. Available
- 29 online at: <http://www.census.gov/manufacturing/cir/historical_data/mq325b/index.html>.
- 30 U.S. Census Bureau (2008) *Current Industrial Reports. Fertilizers and Related Chemicals: 2007.* "Table 1: Shipments
- and Production of Principal Fertilizers and Related Chemicals: 2003 to 2007." June, 2008. MQ325B(07)-5. Available
- 32 online at: <http://www.census.gov/manufacturing/cir/historical_data/mq325b/index.html>.

Adipic Acid Production

- 34 ACC (2019) Business of Chemistry (Annual Data). American Chemistry Council, Arlington, VA.
- C&EN (1995) "Production of Top 50 Chemicals Increased Substantially in 1994." *Chemical & Engineering News*,
 73(15):17. April 10, 1995.
- 37 C&EN (1994) "Top 50 Chemicals Production Rose Modestly Last Year." *Chemical & Engineering News*, 72(15):13.
 38 April 11, 1994.
- C&EN (1993) "Top 50 Chemicals Production Recovered Last Year." *Chemical & Engineering News*, 71(15):11. April
 12, 1993.
 - 10-26 DRAFT Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018

- C&EN (1992) "Production of Top 50 Chemicals Stagnates in 1991." *Chemical & Engineering News*, 70(15): 17. April
 13, 1992.
- 3 CMR (2001) "Chemical Profile: Adipic Acid." *Chemical Market Reporter*. July 16, 2001.
- 4 CMR (1998) "Chemical Profile: Adipic Acid." Chemical Market Reporter. June 15, 1998.
- 5 CW (2005) "Product Focus: Adipic Acid." *Chemical Week*. May 4, 2005.
- 6 CW (1999) "Product Focus: Adipic Acid/Adiponitrile." *Chemical Week*, p. 31. March 10, 1999.
- Desai (2010, 2011) Personal communication. Mausami Desai, U.S. Environmental Protection Agency and Adipic
 Acid Plant Engineers. 2010 and 2011.
- 9 EPA (2019) Greenhouse Gas Reporting Program. Subpart E, S-CEMS, BB, CC, LL Data Set (XLSX) (Adipic Acid Tab).
- 10 Office of Air and Radiation, Office of Atmospheric Programs, U.S. Environmental Protection Agency, Washington,
- 11 D.C. Available online at: <https://www.epa.gov/ghgreporting/ghg-reporting-program-data-sets>.
- 12 EPA (2015). *Greenhouse Gas Reporting Program Report Verification*. Available online at
- 13 https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.
- 14 EPA (2014 through 2018) Greenhouse Gas Reporting Program. Subpart E, S-CEMS, BB, CC, LL Data Set (XLSX)
- 15 (Adipic Acid Tab). Office of Air and Radiation, Office of Atmospheric Programs, U.S. Environmental Protection
- 16 Agency, Washington, D.C. Available online at: http://www2.epa.gov/ghgreporting/ghg-reporting-program-data-
- 17 sets>.
- 18 EPA (2010 through 2013) Analysis of Greenhouse Gas Reporting Program data Subpart E (Adipic Acid), Office of
- 19 Air and Radiation, Office of Atmospheric Programs, U.S. Environmental Protection Agency, Washington, D.C.
- 20 ICIS (2007) "Adipic Acid." ICIS Chemical Business Americas. July 9, 2007.
- 21 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 22 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 23 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 24 Reimer, R.A., Slaten, C.S., Seapan, M., Koch, T.A. and Triner, V.G. (1999) "Implementation of Technologies for
- 25 Abatement of N₂O Emissions Associated with Adipic Acid Manufacture." Proceedings of the 2nd Symposium on
- 26 Non-CO₂ Greenhouse Gases (NCGG-2), Noordwijkerhout, The Netherlands, 8-10 Sept. 1999, Ed. J. van Ham *et al.*,
- 27 Kluwer Academic Publishers, Dordrecht, pp. 347-358.
- Thiemens, M.H., and W.C. Trogler (1991) "Nylon production; an unknown source of atmospheric nitrous oxide."
 Science 251:932-934.

30 Caprolactam, Glyoxal and Glyoxylic Acid Production

- ACC (2019) Business of Chemistry (Annual Data). American Chemistry Council, Arlington, VA.
- 32 AdvanSix (2018). AdvanSix Hopewell Virginia Information Sheet. Retrieved from:
- 33 https://www.advan6.com/hopewell/ on October 2, 2018.
- 34 BASF (2018). BASF: Freeport, Texas Fact Sheet. Retrieved from https://www.basf.com/documents/corp/en/about-35 us/strategy-and-organization/verbund/BASF Freeport.pdf on October 2, 2018.
- Fibrant (2018). Fibrant LLC Contact Page. Retrieved from: http://www.fibrant52.com/en/contact on October 2,
 2018.
- 38 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 39 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 40 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.

- 1 TechSci n.d. (2017). Fibrant B.V. to Discontinue Caprolactam Plant in the United States. Retrieved from:
- https://www.techsciresearch.com/news/1356-fibrant-b-v-to-discontinue-caprolactam-plant-in-the-united states.html.
- 4 Carbide Production and Consumption
- 5 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 6 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 7 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 8 U.S. Census Bureau (2005 through 2019) USITC Trade DataWeb. Available online at: http://dataweb.usitc.gov/.
- 9 United States Geological Survey (2018a) 2016 Minerals Yearbook: Abrasives, Manufactured [Advance Release]. U.S.
- 10 Geological Survey, Reston, VA. Available online at:
- 11 <http://minerals.usgs.gov/minerals/pubs/commodity/abrasives/myb1-2016-abras.pdf>.
- 12 USGS (2019a) Mineral Industry Surveys, Manufactured Abrasives in the First Quarter 2019, Table 1, July 2019 U.S.
- Geological Survey, Reston, VA. Available online at: https://www.usgs.gov/centers/nmic/manufactured-abrasives statistics-and-information.
- USGS (2017c) USGS 2015 Minerals Yearbook Silicon [Advance Release]. November 2017. Table 4. U.S. Geological
 Survey, Reston, VA. Available online at: http://minerals.usgs.gov/minerals/pubs/commodity/silicon/.
- 17 USGS (2019) Mineral Commodity Summaries: Abrasives (Manufactured), February 2019. Available online at:
- https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/mcs-2019 abras.pdf.
- 20 USGS (1991a through 2015) Minerals Yearbook: Manufactured Abrasives Annual Report. U.S. Geological Survey,
- 21 Reston, VA. Available online at: http://minerals.usgs.gov/minerals/pubs/commodity/abrasives/>.
- 22 USGS (1991b through 2015) *Minerals Yearbook: Silicon Annual Report.* U.S. Geological Survey, Reston, VA.
- 23 Available online at: http://minerals.usgs.gov/minerals/pubs/commodity/silicon/.

24 **Titanium Dioxide Production**

- Gambogi, J. (2002) Telephone communication. Joseph Gambogi, Commodity Specialist, U.S. Geological Survey and
 Philip Groth, ICF International. November 2002.
- 27 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 28 Inventories Programme, Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 29 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 30 United States Geological Survey (2019) *Mineral Commodity Summary: Titanium and Titanium Dioxide*. U.S.
- 31 Geological Survey, Reston, Va. February 2019. Available online at:
- 32 <https://minerals.usgs.gov/minerals/pubs/commodity/titanium/index.html>.
- 33 USGS (1991 through 2015) Minerals Yearbook: Titanium. U.S. Geological Survey, Reston, VA.

34 Soda Ash Production

- 35 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- United States Geological Survey (USGS) (2019) *Mineral Industry Surveys: Soda Ash in April 2019*. U.S. Geological
 Survey, Reston, VA. Accessed August 2019.
- 40 USGS (2018a) *Mineral Commodity Summary: Soda Ash*. U.S. Geological Survey, Reston, VA. Accessed August 2019.

- 1 USGS (2018b) Mineral Industry Surveys: Soda Ash in February 2018. U.S. Geological Survey, Reston, VA. Accessed
- 2 September 2018.
- 3 USGS (2017) *Mineral Industry Surveys: Soda Ash in January 2017*. U.S. Geological Survey, Reston, VA. March
- 2017.USGS (2016) *Mineral Industry Surveys: Soda Ash in November 2016*. U.S. Geological Survey, Reston, VA.
 January 2017.
- USGS (2015a) *Mineral Industry Surveys: Soda Ash in July 2015*. U.S. Geological Survey, Reston, VA. September
 2015.
- 8 USGS (1994 through 2015b) *Minerals Yearbook: Soda Ash Annual Report*. U.S. Geological Survey, Reston, VA.
- 9 USGS (1995c) Trona Resources in the Green River Basin, Southwest Wyoming. U.S. Department of the Interior, U.S.
- 10 Geological Survey. Open-File Report 95-476. Wiig, Stephen, Grundy, W.D., Dyni, John R.

11 Petrochemical Production

- 12 ACC (2019) Business of Chemistry (Annual Data). American Chemistry Council, Arlington, VA.
- 13 ACC (2014a) U.S. Chemical Industry Statistical Handbook. American Chemistry Council, Arlington, VA.
- 14 ACC (2014b) Business of Chemistry (Annual Data). American Chemistry Council, Arlington, VA.
- ACC (2002, 2003, 2005 through 2011) *Guide to the Business of Chemistry*. American Chemistry Council, Arlington,
 VA.
- 17 AN (2014) *About Acrylonitrile: Production*. AN Group, Washington, D.C. Available online at:
- 18 <http://www.angroup.org/about/production.cfm>.
- 19 EPA Greenhouse Gas Reporting Program (2019) Aggregation of Reported Facility Level Data under Subpart X -
- National Petrochemical Production for Calendar Years 2010 through 2018. Office of Air and Radiation, Office of
 Atmospheric Programs, U.S. Environmental Protection Agency, Washington, D.C.
- 22 EPA (2015). Greenhouse Gas Reporting Program Report Verification. Available online at
- 23 https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.
- EPA (2008) Technical Support Document for the Petrochemical Production Sector: Proposed Rule for Mandatory
 Reporting of Greenhouse Gases. U.S. Environmental Protection Agency. September 2008.
- EPA (2000) *Economic Impact Analysis for the Proposed Carbon Black Manufacturing NESHAP*, U.S. Environmental
 Protection Agency. Research Triangle Park, NC. EPA-452/D-00-003. May 2000.
- 28 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- Johnson, G. L. (2005 through 2010) Personal communication. Greg Johnson of Liskow & Lewis, on behalf of the International Carbon Black Association (ICBA) and Caroline Cochran, ICF International. September 2010.
- 33 Johnson, G. L. (2003) Personal communication. Greg Johnson of Liskow & Lewis, on behalf of the International
- 34 Carbon Black Association (ICBA) and Caren Mintz, ICF International. November 2003.

35 HCFC-22 Production

- 36 ARAP (2010) Electronic mail communication from Dave Stirpe, Executive Director, Alliance for Responsible
- 37 Atmospheric Policy to Deborah Ottinger of the U.S. Environmental Protection Agency. September 10, 2010.
- 38 ARAP (2009) Electronic mail communication from Dave Stirpe, Executive Director, Alliance for Responsible
- 39 Atmospheric Policy to Deborah Ottinger of the U.S. Environmental Protection Agency. September 21, 2009.

- 1 ARAP (2008) Electronic mail communication from Dave Stirpe, Executive Director, Alliance for Responsible
- 2 Atmospheric Policy to Deborah Ottinger of the U.S. Environmental Protection Agency. October 17, 2008.
- 3 ARAP (2007) Electronic mail communication from Dave Stirpe, Executive Director, Alliance for Responsible
- 4 Atmospheric Policy to Deborah Ottinger of the U.S. Environmental Protection Agency. October 2, 2007.
- ARAP (2006) Electronic mail communication from Dave Stirpe, Executive Director, Alliance for Responsible
 Atmospheric Policy to Sally Rand of the U.S. Environmental Protection Agency. July 11, 2006.
- ARAP (2005) Electronic mail communication from Dave Stirpe, Executive Director, Alliance for Responsible
 Atmospheric Policy to Deborah Ottinger of the U.S. Environmental Protection Agency. August 9, 2005.
- ARAP (2004) Electronic mail communication from Dave Stirpe, Executive Director, Alliance for Responsible
 Atmospheric Policy to Deborah Ottinger of the U.S. Environmental Protection Agency. June 3, 2004.
- ARAP (2003) Electronic mail communication from Dave Stirpe, Executive Director, Alliance for Responsible
 Atmospheric Policy to Sally Rand of the U.S. Environmental Protection Agency. August 18, 2003.
- ARAP (2002) Electronic mail communication from Dave Stirpe, Executive Director, Alliance for Responsible
 Atmospheric Policy to Deborah Ottinger of the U.S. Environmental Protection Agency. August 7, 2002.
- 15 ARAP (2001) Electronic mail communication from Dave Stirpe, Executive Director, Alliance for Responsible
- 16 Atmospheric Policy to Deborah Ottinger of the U.S. Environmental Protection Agency. August 6, 2001.
- 17 ARAP (2000) Electronic mail communication from Dave Stirpe, Executive Director, Alliance for Responsible
- 18 Atmospheric Policy to Sally Rand of the U.S. Environmental Protection Agency. August 13, 2000.
- ARAP (1999) Facsimile from Dave Stirpe, Executive Director, Alliance for Responsible Atmospheric Policy to
 Deborah Ottinger Schaefer of the U.S. Environmental Protection Agency. September 23, 1999.
- ARAP (1997) Letter from Dave Stirpe, Director, Alliance for Responsible Atmospheric Policy to Elizabeth Dutrow of
 the U.S. Environmental Protection Agency. December 23, 1997.
- 23 EPA (2015). Greenhouse Gas Reporting Program Report Verification. Available online at
- 24 https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.
- 25 IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth
- 26 Assessment Report of the Intergovernmental Panel on Climate Change. [S. Solomon, D. Qin, M. Manning, Z. Chen,
- M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press. Cambridge, United Kingdom
 996 pp.
- 29 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 30 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 31 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- RTI (2008) "Verification of Emission Estimates of HFC-23 from the Production of HCFC-22:Emissions from 1990
 through 2006." Report prepared by RTI International for the Climate Change Division. March 2008.
- RTI (1997) "Verification of Emission Estimates of HFC-23 from the Production of HCFC-22: Emissions from 1990
- through 1996." Report prepared by Research Triangle Institute for the Cadmus Group. November 25, 1997; revised
 February 16, 1998.
- 37 UNFCCC (2014) Report of the Conference of the Parties on its nineteenth session, held in Warsaw from 11 to 23
- 38 November 2013. United Nations Framework Convention on Climate Change, Warsaw. (FCCC/CP/2013/10/Add.3).
- 39 January 31, 2014. Available online at: http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>.

40 **Carbon Dioxide Consumption**

ARI (1990 through 2010) CO₂ Use in Enhanced Oil Recovery. Deliverable to ICF International under Task Order 102,
 July 15, 2011.

- 1 ARI (2007) CO2-EOR: An Enabling Bridge for the Oil Transition. Presented at "Modeling the Oil Transition—a
- 2 DOE/EPA Workshop on the Economic and Environmental Implications of Global Energy Transitions." Washington,
- 3 D.C. April 20-21, 2007.
- 4 ARI (2006) CO₂-EOR: An Enabling Bridge for the Oil Transition. Presented at "Modeling the Oil Transition—a
- DOE/EPA Workshop on the Economic and Environmental Implications of Global Energy Transitions." Washington,
 D.C. April 20-21, 2006.
- 7 Broadhead (2003) Personal communication. Ron Broadhead, Principal Senior Petroleum Geologist and Adjunct
- 8 faculty, Earth and Environmental Sciences Department, New Mexico Bureau of Geology and Mineral Resources,
- 9 and Robin Pestrusak, ICF International. September 5, 2003.
- 10 COGCC (2014) Monthly CO₂ Produced by County (1999-2009). Available online at:
- 11 <http://cogcc.state.co.us/COGCCReports/production.aspx?id=MonthlyCO2ProdByCounty>. Accessed October 2014.
- 13 Denbury Resources Inc. (2002 through 2010) Annual Report: 2001 through 2009, Form 10-K. Available online at:
- 14 <http://www.denbury.com/investor-relations/SEC-Filings/SEC-Filings-Details/default.aspx?FilingId=9823015>.
- 15 Accessed September 2014.
- 16 EPA Greenhouse Gas Reporting Program (2019). Aggregation of Reported Facility Level Data under Subpart PP -
- 17 National Level CO₂ Transferred for Food & Beverage Applications for Calendar Years 2010 through 2017. Office of
- 18 Air and Radiation, Office of Atmospheric Programs, U.S. Environmental Protection Agency, Washington, D.C.
- 19 EPA (2015). *Greenhouse Gas Reporting Program Report Verification*. Available online at
- 20 <https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.
- 21 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 23 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 24 New Mexico Bureau of Geology and Mineral Resources (2006) Natural Accumulations of Carbon Dioxide in New
- 25 Mexico and Adjacent Parts of Colorado and Arizona: Commercial Accumulation of CO₂. Available online at:
- 26 <http://geoinfo.nmt.edu/staff/broadhead/CO2.html#commercial>.

27 **Phosphoric Acid Production**

- 28 EFMA (2000) "Production of Phosphoric Acid." Best Available Techniques for Pollution Prevention and Control in
- 29 the European Fertilizer Industry. Booklet 4 of 8. European Fertilizer Manufacturers Association. Available online at:
- 30 <http://www.efma.org/Publications/BAT%202000/Bat04/section04.asp>.
- FIPR (2003a) "Analyses of Some Phosphate Rocks." Facsimile Gary Albarelli, the Florida Institute of Phosphate
 Research, Bartow, Florida, to Robert Lanza, ICF International. July 29, 2003.
- 33 FIPR (2003b) Florida Institute of Phosphate Research. Personal communication. Mr. Michael Lloyd, Laboratory
- 34 Manager, FIPR, Bartow, Florida, to Mr. Robert Lanza, ICF International. August 2003.
- 35 NCDENR (2013) North Carolina Department of Environment and Natural Resources, Title V Air Permit Review for
- 36 PCS Phosphate Company, Inc. Aurora. Available online at:
- 37 <http://www.ncair.org/permits/permit_reviews/PCS_rev_08282012.pdf>. Accessed on January 25, 2013.
- 38 United States Geological Survey (USGS) (2019) *Mineral Commodity Summaries: Phosphate Rock 2019*. February
- 2019. U.S. Geological Survey, Reston, VA. Accessed August 2019. Available online at:
- 40 <https://www.usgs.gov/centers/nmic/phosphate-rock-statistics-and-information>.
- 41 USGS (2019b) Communication between Stephen Jasinski (USGS) and EPA on November 15, 2019.
- 42 USGS (2018) Mineral Commodity Summaries: Phosphate Rock 2018. January 2018. U.S. Geological Survey, Reston,
- 43 VA. Available online at: https://www.usgs.gov/centers/nmic/phosphate-rock-statistics-and-information.

- 1 USGS (2017) Mineral Commodity Summaries: Phosphate Rock 2017. January 2017. U.S. Geological Survey, Reston,
- 2 VA. Available online at: https://www.usgs.gov/centers/nmic/phosphate-rock-statistics-and-information.
- 3 USGS (2016) Mineral Commodity Summaries: Phosphate Rock 2016. January 2016. U.S. Geological Survey, Reston,
- 4 VA. Available online at: https://www.usgs.gov/centers/nmic/phosphate-rock-statistics-and-information>.
- 5 USGS (1994 through 2015b) *Minerals Yearbook. Phosphate Rock Annual Report*. U.S. Geological Survey, Reston, VA.
- USGS (2012) Personal communication between Stephen Jasinski (USGS) and Mausami Desai (EPA) on October 12,
 2012.

8 Iron and Steel Production and Metallurgical Coke Production

- 9 American Coke and Coal Chemicals Institute (ACCCI) (2016) U.S. & Canadian Coke Plants as of February 2016.
- 10 ACCCI, Washington, D.C. February 2016.
- American Iron and Steel Institute (AISI) (2004 through 2018) *Annual Statistical Report*, American Iron and Steel
 Institute, Washington, D.C.
- AISI (2006 through 2017) Personal communication, Mausami Desai, U.S. EPA, and American Iron and Steel
 Institute, December 2017.
- AISI (2008) Personal communication, Mausami Desai, U.S. EPA, and Bruce Steiner, Technical Consultant with the
 American Iron and Steel Institute, October 2008.
- Carroll (2016) Personal communication, Mausami Desai, U.S. EPA, and Colin P. Carroll, Director of Environment,
 Health and Safety, American Iron and Steel Institute, December 2016.
- Carroll (2017) Personal communication, John Steller, U.S. EPA, and Colin P. Carroll, Director of Environment, Health
 and Safety, American Iron and Steel Institute, November 2017.
- DOE (2000) *Energy and Environmental Profile of the U.S. Iron and Steel Industry*. Office of Industrial Technologies,
 U.S. Department of Energy. August 2000. DOE/EE-0229.EIA.
- EIA (1998 through 2018) *Quarterly Coal Report: October-December*, Energy Information Administration, U.S.
 Department of Energy. Washington, D.C. DOE/EIA-0121.
- EIA (2016b) *Natural Gas Annual 2016.* Energy Information Administration, U.S. Department of Energy. Washington,
 D.C. DOE/EIA-0131(06).
- EIA (2017c) *Monthly Energy Review, December 2017*, Energy Information Administration, U.S. Department of
 Energy, Washington, D.C. DOE/EIA-0035(2015/12).
- EIA (2016c) *Monthly Energy Review, December 2016*, Energy Information Administration, U.S. Department of
 Energy, Washington, D.C. DOE/EIA-0035(2015/12).
- EIA (1992) Coal and lignite production. *EIA State Energy Data Report 1992*, Energy Information Administration, U.S.
 Department of Energy, Washington, D.C.
- 33 EPA (2010) Carbon Content Coefficients Developed for EPA's Mandatory Reporting Rule. Office of Air and
- 34 Radiation, Office of Atmospheric Programs, U.S. Environmental Protection Agency, Washington, D.C.
- Fenton (2015 through 2018) Personal communication. Michael Fenton, Commodity Specialist, U.S. Geological
 Survey and Marty Wolf, Eastern Research Group. September 16, 2015.
- 37 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 38 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 39 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.

- 1 IPCC/UNEP/OECD/IEA (1995) "Volume 3: Greenhouse Gas Inventory Reference Manual. Table 2-2." IPCC Guidelines
- 2 *for National Greenhouse Gas Inventories.* Intergovernmental Panel on Climate Change, United Nations
- 3 Environment Programme, Organization for Economic Co-Operation and Development, International Energy
- 4 Agency. IPCC WG1 Technical Support Unit, United Kingdom.
- 5 USGS (2019) 2019 USGS Minerals Yearbook Iron and Steel. U.S. Geological Survey, Reston, VA.
- 6 USGS (2018) 2018 USGS Minerals Yearbook Iron and Steel. U.S. Geological Survey, Reston, VA.
- 7 USGS (2017) 2017 USGS Minerals Yearbook Iron and Steel. U.S. Geological Survey, Reston, VA.
- 8 USGS (1991 through 2017) USGS Minerals Yearbook Iron and Steel Scrap. U.S. Geological Survey, Reston, VA.

9 Ferroalloy Production

- 10 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 13 Onder, H., and E.A. Bagdoyan (1993) Everything You've Always Wanted to Know about Petroleum Coke. Allis
- Mineral Systems.USGS (2019) *Mineral Industry Surveys: Silicon in May 2019*. U.S. Geological Survey, Reston, VA.
 August 2019.
- 16 United States Geological Survey (USGS) (2018a) 2015 Minerals Yearbook: Ferroalloys. U.S. Geological Survey,
- Reston, VA. May 2018.USGS (2018b) *Mineral Industry Surveys: Silicon in July 2018*. U.S. Geological Survey, Reston,
 VA. September 2018.
- 19 USGS (2017) *Mineral Industry Surveys: Silicon in April 2017*. U.S. Geological Survey, Reston, VA. June 2017.
- United States Geological Survey (USGS) (2016a) 2014 Minerals Yearbook: Ferroalloys. U.S. Geological Survey,
 Reston, VA. October 2016.
- USGS (2016b) *Mineral Industry Surveys: Silicon in December 2016*. U.S. Geological Survey, Reston, VA. December
 2016.USGS (2015a) *2012 Minerals Yearbook: Ferroalloys*. U.S. Geological Survey, Reston, VA. April 2015.
- 24 USGS (2015b) *Mineral Industry Surveys: Silicon in June 2015*. U.S. Geological Survey, Reston, VA. September 2015.
- USGS (2014) *Mineral Industry Surveys: Silicon in September 2014.* U.S. Geological Survey, Reston, VA. December
 2014.
- 27 USGS (1996 through 2013) Minerals Yearbook: Silicon. U.S. Geological Survey, Reston, VA.

28 Aluminum Production

- EPA (2019) Greenhouse Gas Reporting Program (GHGRP). Envirofacts, Subpart: F Aluminum Production. Available
 online at: http://www.epa.gov/enviro/facts/ghg/search.html.
- 31 EPA (2015). Greenhouse Gas Reporting Program Report Verification. Available online at
- 32 <https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.
- 33 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- USAA (2019) U.S. Primary Aluminum Production: Report for August 2019. U.S. Aluminum Association, Washington,
 D.C. September 2019.
- 38 USAA (2018) U.S. Primary Aluminum Production: Report for August 2018. U.S. Aluminum Association, Washington,
- 39 D.C. September 2018.

- 1 USAA (2017) U.S. Primary Aluminum Production: Report for September 2017. U.S. Aluminum Association,
- 2 Washington, D.C. October 2017.
- 3 USAA (2016a) U.S. Primary Aluminum Production: Report for February 2016. U.S. Aluminum Association,
- 4 Washington, D.C. March 2016.
- 5 USAA (2016b) U.S. Primary Aluminum Production: Report for August 2016. U.S. Aluminum Association,
- 6 Washington, D.C. August 2016.
- 7 USAA (2015) U.S. Primary Aluminum Production: Report for June 2015. U.S. Aluminum Association, Washington,
 8 D.C. July 2015.
- 9 USAA (2014) U.S. Primary Aluminum Production 2013. U.S. Aluminum Association, Washington, D.C. October 2014.
- 10 USAA (2013) U.S. Primary Aluminum Production 2012. U.S. Aluminum Association, Washington, D.C. January 2013.
- 11 USAA (2012) U.S. Primary Aluminum Production 2011. U.S. Aluminum Association, Washington, D.C. January 2012.
- 12 USAA (2011) U.S. Primary Aluminum Production 2010. U.S. Aluminum Association, Washington, D.C.
- 13 USAA (2010) U.S. Primary Aluminum Production 2009. U.S. Aluminum Association, Washington, D.C.
- 14 USAA (2008, 2009) U.S. Primary Aluminum Production. U.S. Aluminum Association, Washington, D.C.
- 15 USAA (2004, 2005, 2006) Primary Aluminum Statistics. U.S. Aluminum Association, Washington, D.C.
- 16 USGS (2019a) 2017 Mineral Yearbook: Aluminum. U.S. Geological Survey, Reston, VA.
- 17 USGS (2019b) 2019 Mineral Commodity Summaries: Aluminum. U.S. Geological Survey, Reston, VA.
- 18 USGS (2007) 2006 Mineral Yearbook: Aluminum. U.S. Geological Survey, Reston, VA.
- USGS (1995, 1998, 2000, 2001, 2002) *Minerals Yearbook: Aluminum Annual Report*. U.S. Geological Survey, Reston,
 VA.

21 Magnesium Production and Processing

- ARB (2015) "Magnesium casters successfully retool for a cleaner future." California Air Resources Board News
- 23 Release. Release # 15-07. February 5, 2015. Accessed October 2017. Available online at:
- 24 <https://www.arb.ca.gov/newsrel/newsrelease.php?id=704>.
- Bartos S., C. Laush, J. Scharfenberg, and R. Kantamaneni (2007) "Reducing greenhouse gas emissions from
 magnesium die casting." *Journal of Cleaner Production*, 15: 979-987, March.
- 27 EPA (2019) Envirofacts. Greenhouse Gas Reporting Program (GHGRP), Subpart T: Magnesium Production and
- 28 Processing. Available online at: http://www.epa.gov/enviro/facts/ghg/search.html. Accessed on October 2018.
- 29 Gjestland, H. and D. Magers (1996) "Practical Usage of Sulphur [Sulfur] Hexafluoride for Melt Protection in the
- Magnesium Die Casting Industry." #13, 1996 Annual Conference Proceedings, International Magnesium
 Association. Ube City, Japan.
- 32 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 33 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 34 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- RAND (2002) RAND Environmental Science and Policy Center, "Production and Distribution of SF₆ by End-Use
- Applications" Katie D. Smythe. International Conference on SF₆ and the Environment: Emission Reduction
 Strategies. San Diego, CA. November 21-22, 2002.
- 38 USGS (2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005a, 2003, 2002) *Minerals*
- 39 Yearbook: Magnesium Annual Report. U.S. Geological Survey, Reston, VA. Available online at:
- 40 <http://minerals.usgs.gov/minerals/pubs/commodity/magnesium/index.html#mis>.

- 1 USGS (2010b) Mineral Commodity Summaries: Magnesium Metal. U.S. Geological Survey, Reston, VA. Available
- 2 online at: <http://minerals.usgs.gov/minerals/pubs/commodity/magnesium/mcs-2010-mgmet.pdf>.
- 3 USGS (2005b) Personal Communication between Deborah Kramer of the USGS and Jeremy Scharfenberg of ICF 4 Consulting.

Lead Production 5

- 6 Dutrizac, J.E., V. Ramachandran, and J.A. Gonzalez (2000) Lead-Zinc 2000. The Minerals, Metals, and Materials 7 Society.
- 8 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 9 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T. 10 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 11 Morris, D., F.R. Steward, and P. Evans (1983) Energy Efficiency of a Lead Smelter. Energy 8(5):337-349.
- Sjardin, M. (2003) CO₂ Emission Factors for Non-Energy Use in the Non-Ferrous Metal, Ferroalloys and Inorganics 12 13 Industry. Copernicus Institute. Utrecht, the Netherlands.
- 14 Ullman (1997) Ullman's Encyclopedia of Industrial Chemistry: Fifth Edition. Volume A5. John Wiley and Sons.
- 15 United States Geological Survey (USGS) (2019) 2019 Mineral Commodity Summary, Lead. U.S. Geological Survey,
- 16 Reston, VA. February 2019. Available online at: < https://prd-wret.s3-us-west-
- 17 2.amazonaws.com/assets/palladium/production/atoms/files/mcs2019 all.pdf>.
- 18 USGS (2018) 2018 Mineral Commodity Summary, Lead. U.S. Geological Survey, Reston, VA. January 2018.
- 19 USGS (2017) 2017 Mineral Commodity Summary, Lead. U.S. Geological Survey, Reston, VA. January 2017.
- 20 USGS (2016) 2016 Mineral Commodity Summary, Lead. U.S. Geological Survey, Reston, VA. January 2016.
- 21 USGS (2015) 2015 Mineral Commodity Summary, Lead. U.S. Geological Survey, Reston, VA. January 2015.
- 22 USGS (2014) Mineral Commodity Summary, Lead. U.S. Geological Survey, Reston, VA. February 2014.
- 23 USGS (1995 through 2013) Minerals Yearbook: Lead Annual Report. U.S. Geological Survey, Reston, VA.

Zinc Production 24

- 25 Horsehead Corp. (2016) Form 10-k, Annual Report for the Fiscal Year Ended December 31, 2015. Available online
- 26 at: <https://www.sec.gov/Archives/edgar/data/1385544/000119312516725704/d236839d10k.htm>. Submitted 27 on January 25, 2017.
- 28 Horsehead Corp. (2015) Form 10-k, Annual Report for the Fiscal Year Ended December 31, 2014. Available online
- 29 at: <http://www.sec.gov/Archives/edgar/data/1385544/000138554415000005/zinc-2014123110k.htm>. 30 Submitted on March 2, 2015.
- 31 Horsehead Corp. (2014) Form 10-k, Annual Report for the Fiscal Year Ended December 31, 2013. Available online
- 32 at: <http://www.sec.gov/Archives/edgar/data/1385544/000138554414000003/zinc-2013123110k.htm>.
- 33 Submitted on March 13, 2014.
- 34 Horsehead Corp. (2013) Form 10-k, Annual Report for the Fiscal Year Ended December 31, 2012. Available online
- 35 at: <http://www.sec.gov/Archives/edgar/data/1385544/000119312513110431/0001193125-13-110431-
- 36 index.htm>. Submitted March 18, 2013.
- 37 Horsehead Corp. (2012a) Form 10-k, Annual Report for the Fiscal Year Ended December 31, 2011. Available online
- at: <http://www.sec.gov/Archives/edgar/data/1385544/000119312512107345/d293011d10k.htm>. Submitted on 38
- 39 March 9, 2012.

- 1 Horsehead Corp. (2012b) Horsehead's New Zinc Plant and its Impact on the Zinc Oxide Business. February 22, 2012.
- 2 Available online at: http://www.horsehead.net/downloadAttachmentNDO.php?ID=118>. Accessed on September
- 3 10, 2015.
- 4 Horsehead Corp. (2011) 10-k Annual Report for the Fiscal Year Ended December 31, 2010. Available online at:
- 5 http://google.brand.edgar-online.com/default.aspx?sym=zinc>. Submitted on March 16, 2011.
- Horsehead Corp. (2010a) 10-k Annual Report for the Fiscal Year Ended December 31, 2009. Available online at:
 http://google.brand.edgar-online.com/default.aspx?sym=zinc. Submitted on March 16, 2010.
- 8 Horsehead Corp. (2010b) *Horsehead Holding Corp. Provides Update on Operations at its Monaca, PA Plant.* July 28,
 9 2010. Available online at: ">http://www.horsehead.net/pressreleases.php?showall=no&news=&ID=65>.
- Horsehead Corp (2008) 10-k Annual Report for the Fiscal Year Ended December 31, 2007. Available online at:
 http://google.brand.edgar-online.com/default.aspx?sym=zinc. Submitted on March 31, 2008.
- 12 Horsehead Corp (2007) Registration Statement (General Form) S-1. Available online at http://google.brand.edgar-
- 13 online.com/default.aspx?sym=zinc>. Submitted on April 13, 2007.
- 14 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 15 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 16 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 17 Nyrstar (2017) 2016 Clarksville Fact Sheet. Available online at:
- 18 http://www.nyrstar.com/~/media/Files/N/Nyrstar/operations/melting/fact-sheet-clarksville-en.pdf>. Accessed on
- 19 September 27, 2017.
- 20 Nyrstar (2016) 2015 Clarksville Fact Sheet.
- 21 PIZO (2017) Available online at http://pizotech.com/index.html. Accessed on January 12, 2017.
- 22 PIZO (2014) Available online at <http://pizotech.com/index.html>. Accessed on December 9, 2014.
- 23 PIZO (2012) Available online at http://pizotech.com/index.html. Accessed on October 10, 2012.
- Steel Dust Recycling (SDR) (2017) Personal communication. Jeremy Whitten, EHS Manager, Steel Dust Recycling
 LLC and John Steller, U.S. Environmental Protection Agency. January 26, 2017.
- SDR (2015) Personal communication. Jeremy Whitten, EHS Manager, Steel Dust Recycling LLC and Gopi Manne,
 Eastern Research Group, Inc. September 22, 2015.
- SDR (2014) Personal communication. Art Rowland, Plant Manager, Steel Dust Recycling LLC and Gopi Manne,
- 29 Eastern Research Group, Inc. December 9, 2014.
- 30 SDR (2013) Available online at http://steeldust.com/home.htm>. Accessed on October 29, 2013.
- SDR (2012) Personal communication. Art Rowland, Plant Manager, Steel Dust Recycling LLC and Gopi Manne,
 Eastern Research Group, Inc. October 5, 2012.
- Sjardin (2003) CO₂ Emission Factors for Non-Energy Use in the Non-Ferrous Metal, Ferroalloys and Inorganics
 Industry. Copernicus Institute. Utrecht, the Netherlands.
- 35 USGS (2019) 2019 Mineral Commodity Summary: Zinc. U.S. Geological Survey, Reston, VA. January 2019
- USGS (2018) 2018 Mineral Commodity Summary: Zinc. U.S. Geological Survey, Reston, VA. January 2018. United
 States Geological Survey.
- USGS (2017) 2017 Mineral Commodity Summary: Zinc. U.S. Geological Survey, Reston, VA. January 2017.
- 39 USGS (2016) 2016 Mineral Commodity Summary: Zinc. U.S. Geological Survey, Reston, VA. January 2016.
- 40 USGS (2015) 2015 Mineral Commodity Summary: Zinc. U.S. Geological Survey, Reston, VA. January 2015.
- 41 USGS (1995 through 2014) *Minerals Yearbook: Zinc Annual Report.* U.S. Geological Survey, Reston, VA.

- 1 Viklund-White (2000) The use of LCA for the environmental evaluation of the recycling of galvanized steel. ISIJ
- 2 International, Vol. 40. No. 3, pp 292-299.

3 Electronics Industry

- Burton, C.S., and R. Beizaie (2001) "EPA's PFC Emissions Model (PEVM) v. 2.14: Description and Documentation"
 prepared for Office of Global Programs, U. S. Environmental Protection Agency, Washington, DC. November 2001.
- 6 Citigroup Smith Barney (2005) *Global Supply/Demand Model for Semiconductors*. March 2005.
- Doering, R. and Nishi, Y (2000) "Handbook of Semiconductor Manufacturing Technology", Marcel Dekker, New
 York, USA, 2000.
- 9 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 10 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 11 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- ISMI (2009) Analysis of Nitrous Oxide Survey Data. Walter Worth. June 8, 2009. Available online at:
 http://sematech.org/docubase/document/5015atr.pdf>.
- 14 ITRS (2007, 2008, 2011, 2013) International Technology Roadmap for Semiconductors: 2006 Update, January 2007;
- 15 International Technology Roadmap for Semiconductors: 2007 Edition, January 2008; International Technology
- 16 Roadmap for Semiconductors: 2011, January 2012; Update, International Technology Roadmap for
- 17 Semiconductors: 2013 Edition, Available online at: http://www.itrs.net/Links/2013ITRS/Home2013.htm. These
- 18 and earlier editions and updates are available online at: <http://public.itrs.net>. Information about the number of
- 19 interconnect layers for years 1990–2010 is contained in Burton and Beizaie, 2001. PEVM is updated using new
- 20 editions and updates of the ITRS, which are published annually. SEMI Semiconductor Equipment and Materials
- 21 Industry (2017) World Fab Forecast, August 2018 Edition.
- Platzer, Michaela D. (2015) U.S. Solar Photovoltaic Manufacturing: Industry Trends, Global Competition, Federal
 Support. Congressional Research Service. January 27, 2015. < https://fas.org/sgp/crs/misc/R42509.pdf>
- 24 SEMI Semiconductor Equipment and Materials Industry (2018) World Fab Forecast, June 2018 Edition.
- 25 SEMI Semiconductor Equipment and Materials Industry (2016) World Fab Forecast, May 2017 Edition.
- 26 SEMI Semiconductor Equipment and Materials Industry (2013) *World Fab Forecast, May 2013 Edition*.
- 27 SEMI Semiconductor Equipment and Materials Industry (2012) World Fab Forecast, August 2012 Edition.
- 28 Semiconductor Industry Association (SIA) (2009-2011) STATS: SICAS Capacity and Utilization Rates Q1-Q4 2008, Q1-
- 29 Q4 2009, Q1-Q4 2010. Available online at:
- 30 <http://www.semiconductors.org/industry_statistics/semiconductor_capacity_utilization_sicas_reports/>.
- United States Census Bureau (USCB) (2011, 2012, 2015, 2016, 2017, 2018) *Historical Data: Quarterly Survey of Plant Capacity Utilization*. Available online at: < https://www.census.gov/programs-surveys/qpc.html>.
- 33 U.S. EPA (2006) Uses and Emissions of Liquid PFC Heat Transfer Fluids from the Electronics Sector. U.S.
- 34 Environmental Protection Agency, Washington, DC. EPA-430-R-06-901.
- U.S. EPA Greenhouse Gas Reporting Program (GHGRP) Envirofacts. Subpart I: Electronics Manufacture. Available
 online at: http://www.epa.gov/enviro/facts/ghg/search.html.
- 37 VLSI Research, Inc. (2012) Worldwide Silicon Demand. August 2012.

38 Substitution of Ozone Depleting Substances

- 39 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 40 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 41 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.

- 1 U.S. EPA (2019a) Suppliers of Industrial GHGs and Products Containing GHGs. Greenhouse Gas Reporting Program.
- 2 Available online at: <https://www.epa.gov/ghgreporting/suppliers-industrial-ghgs-and-products-containing-ghgs>.
- 3 U.S. EPA (2019b) Proposed Updates to the Non -MDI Aerosol End-use in the Vintaging Model. Prepared for U.S.
- 4 EPA's Stratospheric Protection Division by ICF under EPA Contract Number EP-BPA-16-H-0021. October 3, 2019.
- 5 EPA (2015). Greenhouse Gas Reporting Program Report Verification. Available online at
- 6 <https://www.epa.gov/sites/production/files/2015-07/documents/ghgrp_verification_factsheet.pdf>.

7 Electrical Transmission and Distribution

- 8 IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth
- 9 Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen,
- M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). Cambridge University Press. Cambridge, United Kingdom
 996 pp.
- 12 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 13 Inventories Programme, The Intergovernmental Panel on Climate Change. H.S. Eggleston, L. Buendia, K. Miwa, T.
- 14 Ngara, and K. Tanabe (eds.). Hayama, Kanagawa, Japan.
- 15 IPCC (1996) Climate Change 1995: The Science of Climate Change. Intergovernmental Panel on Climate Change, J.T.
- Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.). Cambridge University
 Press. Cambridge, United Kingdom.
- Levin et al. (2010) "The Global SF₆ Source Inferred from Long-term High Precision Atmospheric Measurements and
 its Comparison with Emission Inventories." *Atmospheric Chemistry and Physics*, 10: 2655–2662.
- O'Connell, P., F. Heil, J. Henriot, G. Mauthe, H. Morrison, L. Neimeyer, M. Pittroff, R. Probst, J.P. Tailebois (2002)
 SF₆ in the Electric Industry, Status 2000, CIGRE. February 2002.
- 22 RAND (2004) "Trends in SF₆ Sales and End-Use Applications: 1961-2003," Katie D. Smythe. *International Conference*
- on SF₆ and the Environment: Emission Reduction Strategies. RAND Environmental Science and Policy Center,
 Scottsdale, AZ. December 1-3, 2004.
- 25 UDI (2017) 2017 UDI Directory of Electric Power Producers and Distributors, 125th Edition, Platts.
- 26 UDI (2013) 2013 UDI Directory of Electric Power Producers and Distributors,121st Edition, Platts.
- 27 UDI (2010) 2010 UDI Directory of Electric Power Producers and Distributors, 118th Edition, Platts.
- 28 UDI (2007) 2007 UDI Directory of Electric Power Producers and Distributors, 115th Edition, Platts.
- 29 UDI (2004) 2004 UDI Directory of Electric Power Producers and Distributors, 112th Edition, Platts.
- 30 UDI (2001) 2001 UDI Directory of Electric Power Producers and Distributors, 109th Edition, Platts.
- 31 UNFCCC (2014) Report of the Conference of the Parties on its nineteenth session, held in Warsaw from 11 to 23
- 32 November 2013. United Nations Framework Convention on Climate Change, Warsaw. (FCCC/CP/2013/10/Add.3).
- 33 January 31, 2014. Available online at: http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>.

34 Nitrous Oxide from Product Use

- 35 CGA (2003) "CGA Nitrous Oxide Abuse Hotline: CGA/NWSA Nitrous Oxide Fact Sheet." Compressed Gas
- 36 Association. November 3, 2003.
- 37 CGA (2002) "CGA/NWSA Nitrous Oxide Fact Sheet." Compressed Gas Association. March 25, 2002.
- Heydorn, B. (1997) "Nitrous Oxide—North America." *Chemical Economics Handbook*, SRI Consulting. May 1997.

- 1 IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth
- 2 Assessment Report of the Intergovernmental Panel on Climate Change. [S. Solomon, D. Qin, M. Manning, Z. Chen,
- 3 M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press. Cambridge, United Kingdom
- 4 996 pp.
- 5 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- / Ngara, anu K. Tanabe (eus.)j. Hayama, Kanagawa, Japan.
- Ottinger (2014) Personal communication. Deborah Ottinger (CCD, U.S. EPA) and Mausami Desai (U.S. EPA). Email
 received on January 29, 2014.
- Tupman, M. (2003) Personal communication. Martin Tupman, Airgas Nitrous Oxide and Daniel Lieberman, ICF
 International. August 8, 2003.

Industrial Processes and Product Use Sources of Precursor

13 Greenhouse Gases

- 14 EPA (2019) "1970 2018 Average annual emissions, all criteria pollutants in MS Excel." National Emissions
- 15 Inventory (NEI) Air Pollutant Emissions Trends Data. Office of Air Quality Planning and Standards, May 2019.
- 16 Available online at: <https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data>.
- EPA (2003) Email correspondence containing preliminary ambient air pollutant data. Office of Air Pollution and the
 Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency. December 22, 2003.
- 19 EPA (1997) Compilation of Air Pollutant Emission Factors, AP-42. Office of Air Quality Planning and Standards, U.S.
- 20 Environmental Protection Agency. Research Triangle Park, NC. October 1997.

21 Agriculture

22 Enteric Fermentation

- Archibeque, S. (2011) Personal Communication. Shawn Archibeque, Colorado State University, Fort Collins,
 Colorado and staff at ICF International.
- Crutzen, P.J., I. Aselmann, and W. Seiler (1986) Methane Production by Domestic Animals, Wild Ruminants, Other
 Herbivores, Fauna, and Humans. Tellus, 38B:271-284.
- Donovan, K. (1999) Personal Communication. Kacey Donovan, University of California at Davis and staff at ICF
 International.
- Doren, P.E., J. F. Baker, C. R. Long and T. C. Cartwright (1989) Estimating Parameters of Growth Curves of Bulls, J
 Animal Science 67:1432-1445.
- Enns, M. (2008) Personal Communication. Dr. Mark Enns, Colorado State University and staff at ICF International.
- 32 EPA (2002) Quality Assurance/Quality Control and Uncertainty Management Plan for the U.S. Greenhouse Gas
- 33 Inventory: Procedures Manual for Quality Assurance/Quality Control and Uncertainty Analysis, U.S. Greenhouse
- 34 Gas Inventory Program, U.S. Environmental Protection Agency, Office of Atmospheric Programs, EPA 430-R-02-
- 35 007B, June 2002.
- 36 ERG (2016) Development of Methane Conversion Rate Scaling Factor and Diet-Related Inputs to the Cattle Enteric
- 37 Fermentation Model for Dairy Cows, Dairy Heifers, and Feedlot Animals. ERG, Lexington, MA. December 2016.

- 1 Galyean and Gleghorn (2001) Summary of the 2000 Texas Tech University Consulting Nutritionist Survey. Texas
- Tech University. Available online at <http://www.depts.ttu.edu/afs/burnett_center/progress_reports/bc12.pdf>.
 June 2009.
- 4 Holstein Association (2010) History of the Holstein Breed (website). Available online at:
- 5 http://www.holsteinusa.com/holstein_breed/breedhistory.html. Accessed September 2010.
- ICF (2006) Cattle Enteric Fermentation Model: Model Documentation. Prepared by ICF International for the
 Environmental Protection Agency. June 2006.
- 8 ICF (2003) Uncertainty Analysis of 2001 Inventory Estimates of Methane Emissions from Livestock Enteric
 9 Fermentation in the U.S. Memorandum from ICF International to the Environmental Protection Agency. May 2003.
- 10 IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth
- 11 Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen,
- M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). Cambridge University Press. Cambridge, United Kingdom
 996 pp.
- 14 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 15 Inventories Programme, The Intergovernmental Panel on Climate Change. H.S. Eggleston, L. Buendia, K. Miwa, T.
- 16 Ngara, and K. Tanabe (eds.). Hayama, Kanagawa, Japan.
- Johnson, D. (2002) Personal Communication. Don Johnson, Colorado State University, Fort Collins, and ICF
 International.
- Johnson, D. (1999) Personal Communication. Don Johnson, Colorado State University, Fort Collins, and David
 Conneely, ICF International.
- Kebreab E., K. A. Johnson, S. L. Archibeque, D. Pape, and T. Wirth (2008) Model for estimating enteric methane
 emissions from United States dairy and feedlot cattle. J. Anim. Sci. 86: 2738-2748.
- Lippke, H., T. D. Forbes, and W. C. Ellis. (2000) Effect of supplements on growth and forage intake by stocker steers grazing wheat pasture. J. Anim. Sci. 78:1625-1635.
- National Bison Association (1999) Total Bison Population—1999. Report provided during personal email
 communication with Dave Carter, Executive Director, National Bison Association, July 19, 2011.
- Pinchak, W.E., D. R. Tolleson, M. McCloy, L. J. Hunt, R. J. Gill, R. J. Ansley, and S. J. Bevers (2004) Morbidity effects
 on productivity and profitability of stocker cattle grazing in the southern plains. J. Anim. Sci. 82:2773-2779.
- Platter, W. J., J. D. Tatum, K. E. Belk, J. A. Scanga, and G. C. Smith (2003) Effects of repetitive use of hormonal
 implants on beef carcass quality, tenderness, and consumer ratings of beef palatability. J. Anim. Sci. 81:984-996.
- Preston, R.L. (2010) What's The Feed Composition Value of That Cattle Feed? Beef Magazine, March 1, 2010.
 Available at: http://beefmagazine.com/nutrition/feed-composition-tables/feed-composition-value-cattle--0301>.
- Skogerboe, T. L., L. Thompson, J. M. Cunningham, A. C. Brake, V. K. Karle (2000) The effectiveness of a single dose
 of doramectin pour-on in the control of gastrointestinal nematodes in yearling stocker cattle. Vet. Parasitology
 87:173-181.
- 36 Soliva, C.R. (2006) Report to the attention of IPCC about the data set and calculation method used to estimate
- 37 methane formation from enteric fermentation of agricultural livestock population and manure management in
- 38 Swiss agriculture. On behalf of the Federal Office for the Environment (FOEN), Berne, Switzerland.
- 39 U.S. Department of Agriculture (USDA) (2017) Quick Stats: Agricultural Statistics Database. National Agriculture
- 40 Statistics Service, U.S. Department of Agriculture. Washington, D.C. Available online at
- 41 <http://quickstats.nass.usda.gov/>. Accessed June 1, 2017.
- 42 USDA (2019) Quick Stats: Agricultural Statistics Database. National Agriculture Statistics Service, U.S. Department
- 43 of Agriculture. Washington, D.C. Available online at http://quickstats.nass.usda.gov/. Accessed August 1, 2016.

- USDA (2012) Census of Agriculture: 2012 Census Report. United States Department of Agriculture. Available online
 at: http://www.agcensus.usda.gov/Publications/2012/>.
- 3 USDA (2007) Census of Agriculture: 2007 Census Report. United States Department of Agriculture. Available online
- 4 at: <http://www.agcensus.usda.gov/Publications/2007/index.asp>.
- 5 USDA (2002) Census of Agriculture: 2002 Census Report. United States Department of Agriculture. Available online 6 at: http://www.agcensus.usda.gov/Publications/2002/index.asp.
- USDA (1997) Census of Agriculture: 1997 Census Report. United States Department of Agriculture. Available online
 at: http://www.agcensus.usda.gov/Publications/1997/index.asp. Accessed July 18, 2011.
- 9 USDA (1996) Beef Cow/Calf Health and Productivity Audit (CHAPA): Forage Analyses from Cow/Calf Herds in 18
- States. National Agriculture Statistics Service, U.S. Department of Agriculture. Washington, D.C. Available online at
 http://www.aphis.usda.gov/vs/ceah/cahm. March 1996.
- USDA (1992) Census of Agriculture: 1992 Census Report. United States Department of Agriculture. Available online
 at: http://www.agcensus.usda.gov/Publications/1992/index.asp. Accessed July 18, 2011.
- USDA:APHIS:VS (2010) Beef 2007–08, Part V: Reference of Beef Cow-calf Management Practices in the United
 States, 2007–08. USDA–APHIS–VS, CEAH. Fort Collins, CO.
- 16 USDA:APHIS:VS (2002) Reference of 2002 Dairy Management Practices. USDA–APHIS–VS, CEAH. Fort Collins, CO.
- 17 Available online at <http://www.aphis.usda.gov/vs/ceah/cahm>.
- 18 USDA:APHIS:VS (1998) Beef '97, Parts I-IV. USDA–APHIS–VS, CEAH. Fort Collins, CO. Available online at
- 19 <http://www.aphis.usda.gov/animal_health/nahms/beefcowcalf/index.shtml#beef97>.
- USDA:APHIS:VS (1996) Reference of 1996 Dairy Management Practices. USDA–APHIS–VS, CEAH. Fort Collins, CO.
 Available online at http://www.aphis.usda.gov/vs/ceah/cahm.
- USDA:APHIS:VS (1994) Beef Cow/Calf Health and Productivity Audit. USDA–APHIS–VS, CEAH. Fort Collins, CO.
 Available online at http://www.aphis.usda.gov/vs/ceah/cahm.
- 24 USDA:APHIS:VS (1993) Beef Cow/Calf Health and Productivity Audit. USDA–APHIS–VS, CEAH. Fort Collins, CO.
- 25 August 1993. Available online at <http://www.aphis.usda.gov/vs/ceah/cahm>.
- 26 Vasconcelos and Galyean (2007) Nutritional recommendations of feedlot consulting nutritionists: The 2007 Texas
- 27 Tech University Study. J. Anim. Sci. 85:2772-2781.

28 Manure Management

- 29 ASAE (1998) ASAE Standards 1998, 45th Edition. American Society of Agricultural Engineers. St. Joseph, MI.
- Bryant, M.P., V.H. Varel, R.A. Frobish, and H.R. Isaacson (1976) In H.G. Schlegel (ed.)]; Seminar on Microbial Energy
 Conversion. E. Goltz KG. Göttingen, Germany.
- 32 Bush, E. (1998) Personal communication with Eric Bush, Centers for Epidemiology and Animal Health, U.S.
- 33 Department of Agriculture regarding National Animal Health Monitoring System's (NAHMS) Swine '95 Study.
- EPA (2019) AgSTAR Anaerobic Digester Database. Available online at: https://www.epa.gov/agstar/livestock-anaerobic-digester-database. Accessed July 2019.
- 36 EPA (2008) Climate Leaders Greenhouse Gas Inventory Protocol Offset Project Methodology for Project Type
- 37 Managing Manure with Biogas Recovery Systems. Available online at:
- 38 <http://www.epa.gov/climateleaders/documents/resources/ClimateLeaders_DraftManureOffsetProtocol.pdf>.
- 39 EPA (2005) National Emission Inventory—Ammonia Emissions from Animal Agricultural Operations, Revised Draft
- 40 Report. U.S. Environmental Protection Agency. Washington, D.C. April 22, 2005. Available online at:
- 41 <ftp://ftp.epa.gov/EmisInventory/2002finalnei/documentation/nonpoint/nh3inventory_draft_042205.pdf>.
- 42 Accessed August 2007.

- 1 EPA (2002a) Development Document for the Final Revisions to the National Pollutant Discharge Elimination System
- 2 (NPDES) Regulation and the Effluent Guidelines for Concentrated Animal Feeding Operations (CAFOS). U.S.
- 3 Environmental Protection Agency. EPA-821-R-03-001. December 2002.
- 4 EPA (2002b) Cost Methodology for the Final Revisions to the National Pollutant Discharge Elimination System
- Regulation and the Effluent Guidelines for Concentrated Animal Feeding Operations. U.S. Environmental
 Protection Agency. EPA-821-R-03-004. December 2002.
- EPA (1992) Global Methane Emissions from Livestock and Poultry Manure, Office of Air and Radiation, U.S.
 Environmental Protection Agency. February 1992.
- 9 ERG (2019) "Incorporation of USDA 2016 ARMS Dairy Data into the Manure Management Greenhouse Gas 10 Inventory." Memorandum to USDA OCE and EPA from ERG, December 2019.
- 11 ERG (2018) "Incorporation of USDA 2009 ARMS Swine Data into the Manure Management Greenhouse Gas
- 12 Inventory." Memorandum to USDA OCE and EPA from ERG, November 2018.
- ERG (2010a) "Typical Animal Mass Values for Inventory Swine Categories." Memorandum to EPA from ERG. July 19,
 2010.
- ERG (2010b) Telecon with William Boyd of USDA NRCS and Cortney Itle of ERG Concerning Updated VS and Nex
 Rates. August 8, 2010.
- ERG (2010c) "Updating Current Inventory Manure Characteristics new USDA Agricultural Waste Management Field
 Handbook Values." Memorandum to EPA from ERG. August 13, 2010.
- 19 ERG (2008) "Methodology for Improving Methane Emissions Estimates and Emission Reductions from Anaerobic
- Digestion System for the 1990-2007 Greenhouse Gas Inventory for Manure Management." Memorandum to EPA
 from ERG. August 18, 2008.
- 22 ERG (2003a) "Methodology for Estimating Uncertainty for Manure Management Greenhouse Gas Inventory."
- 23 Contract No. GS-10F-0036, Task Order 005. Memorandum to EPA from ERG, Lexington, MA. September 26, 2003.
- ERG (2003b) "Changes to Beef Calves and Beef Cows Typical Animal Mass in the Manure Management Greenhouse
 Gas Inventory." Memorandum to EPA from ERG, October 7, 2003.
- 26 ERG (2001) Summary of development of MDP Factor for methane conversion factor calculations. ERG, Lexington,
 27 MA. September 2001.
- 28 ERG (2000a) Calculations: Percent Distribution of Manure for Waste Management Systems. ERG, Lexington, MA.
 29 August 2000.
- ERG (2000b) Discussion of Methodology for Estimating Animal Waste Characteristics (Summary of Bo Literature
 Review). ERG, Lexington, MA. June 2000.
- 32 Groffman, P.M., R. Brumme, K. Butterbach-Bahl, K.E. Dobbie, A.R. Mosier, D. Ojima, H. Papen, W.J. Parton, K.A.
- Smith, and C. Wagner-Riddle (2000) "Evaluating annual nitrous oxide fluxes at the ecosystem scale." Global
 Biogeochemical Cycles, 14(4):1061-1070.
- Hashimoto, A.G. (1984) "Methane from Swine Manure: Effect of Temperature and Influent Substrate Composition
 on Kinetic Parameter (k)." Agricultural Wastes, 9:299-308.
- Hashimoto, A.G., V.H. Varel, and Y.R. Chen (1981) "Ultimate Methane Yield from Beef Cattle Manure; Effect of
 Temperature, Ration Constituents, Antibiotics and Manure Age." Agricultural Wastes, 3:241-256.
- Hill, D.T. (1984) "Methane Productivity of the Major Animal Types." Transactions of the ASAE, 27(2):530-540.
- 40 Hill, D.T. (1982) "Design of Digestion Systems for Maximum Methane Production." Transactions of the ASAE,
- 41 25(1):226-230.

- 1 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 2 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 3 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- Morris, G.R. (1976) Anaerobic Fermentation of Animal Wastes: A Kinetic and Empirical Design Fermentation. M.S.
 Thesis. Cornell University.
- National Bison Association (1999) Total Bison Population—1999. Report provided during personal email
 communication with Dave Carter, Executive Director, National Bison Association July 19, 2011.
- 8 Ott, S.L. (2000) Dairy '96 Study. Stephen L. Ott, Animal and Plant Health Inspection Service, U.S. Department of
 9 Agriculture. June 19, 2000.
- Robertson, G. P. and P. M. Groffman (2015). Nitrogen transformations. Soil Microbiology, Ecology, and
 Biochemistry, pages 421-446. Academic Press, Burlington, Massachusetts, USA.
- Safley, L.M., Jr. (2000) Personal Communication. Deb Bartram, ERG and L.M. Safley, President, Agri-Waste
 Technology. June and October 2000.
- Sweeten, J. (2000) Personal Communication. John Sweeten, Texas A&M University and Indra Mitra, ERG. June2000.
- 16 UEP (1999) Voluntary Survey Results—Estimated Percentage Participation/Activity. Caged Layer Environmental
- Management Practices, Industry data submissions for EPA profile development, United Egg Producers and National
 Chicken Council. Received from John Thorne, Capitolink. June 2000.
- USDA (2019a) Quick Stats: Agricultural Statistics Database. National Agriculture Statistics Service, U.S. Department
 of Agriculture. Washington, D.C. Available online at: http://quickstats.nass.usda.gov/>.
- 21 USDA (2019b) Chicken and Eggs 2018 Summary. National Agriculture Statistics Service, U.S. Department of
- 22 Agriculture. Washington, D.C. February 2019. Available online at:
- 23 <http://www.nass.usda.gov/Publications/index.asp>.
- 24 USDA (2019c) Poultry Production and Value 2018 Summary. National Agriculture Statistics Service, U.S.
- 25 Department of Agriculture. Washington, D.C. April 2019. Available online at:
- 26 <http://www.nass.usda.gov/Publications/index.asp>.
- USDA (2019d) 1987, 1992, 1997, 2002, 2007, 2012, and 2017 Census of Agriculture. National Agriculture Statistics
- 28 Service, U.S. Department of Agriculture. Washington, D.C. Available online at: <
- 29 https://www.nass.usda.gov/AgCensus/index.php>. May 2019.
- 30 USDA (2018a) Chicken and Eggs 2017 Summary. National Agriculture Statistics Service, U.S. Department of
- 31 Agriculture. Washington, D.C. February 2018. Available online at:
- 32 <http://www.nass.usda.gov/Publications/index.asp>.
- 33 USDA (2018b) Poultry Production and Value 2017 Summary. National Agriculture Statistics Service, U.S.
- 34 Department of Agriculture. Washington, D.C. April 2018. Available online at:
- 35 <http://www.nass.usda.gov/Publications/index.asp>.
- 36 USDA (2017a) Chicken and Eggs 2016 Summary. National Agriculture Statistics Service, U.S. Department of
- 37 Agriculture. Washington, D.C. February 2017. Available online at:
- 38 <http://www.nass.usda.gov/Publications/index.asp>.
- 39 USDA (2017b) Poultry Production and Value 2016 Summary. National Agriculture Statistics Service, U.S.
- 40 Department of Agriculture. Washington, D.C. April 2017. Available online at:
- 41 <http://www.nass.usda.gov/Publications/index.asp>.
- 42 USDA (2016a) Chicken and Eggs 2015 Summary. National Agriculture Statistics Service, U.S. Department of
- 43 Agriculture. Washington, D.C. February 2016. Available online at:
- 44 <http://www.nass.usda.gov/Publications/index.asp>.

- 1 USDA (2016b) Poultry Production and Value 2015 Summary. National Agriculture Statistics Service, U.S.
- 2 Department of Agriculture. Washington, D.C. April 2016. Available online at:
- 3 <http://www.nass.usda.gov/Publications/index.asp>.
- 4 USDA (2015a) Chicken and Eggs 2014 Summary. National Agriculture Statistics Service, U.S. Department of
- 5 Agriculture. Washington, D.C. February 2015. Available online at:
- 6 <http://www.nass.usda.gov/Publications/index.asp>.
- 7 USDA (2015b) Poultry Production and Value 2014 Summary. National Agriculture Statistics Service, U.S.
- 8 Department of Agriculture. Washington, D.C. April 2015. Available online at:
- 9 <http://www.nass.usda.gov/Publications/index.asp>.
- 10 USDA (2014a) Chicken and Eggs 2013 Summary. National Agriculture Statistics Service, U.S. Department of
- 11 Agriculture. Washington, D.C. February 2014. Available online at:
- 12 <http://www.nass.usda.gov/Publications/index.asp>.
- 13 USDA (2014b) Poultry Production and Value 2013 Summary. National Agriculture Statistics Service, U.S.
- 14 Department of Agriculture. Washington, D.C. April 2014. Available online at:
- 15 <http://www.nass.usda.gov/Publications/index.asp>.
- 16 USDA (2013a) Chicken and Eggs 2012 Summary. National Agriculture Statistics Service, U.S. Department of
- 17 Agriculture. Washington, D.C. February 2013. Available online at:
- 18 <http://www.nass.usda.gov/Publications/index.asp>.
- 19 USDA (2013b) Poultry Production and Value 2012 Summary. National Agriculture Statistics Service, U.S.
- 20 Department of Agriculture. Washington, D.C. April 2013. Available online at:
- 21 <http://www.nass.usda.gov/Publications/index.asp>.
- 22 USDA (2012a) Chicken and Eggs 2011 Summary. National Agriculture Statistics Service, U.S. Department of
- 23 Agriculture. Washington, D.C. February 2012. Available online at:
- 24 <http://www.nass.usda.gov/Publications/index.asp>.
- 25 USDA (2012b) Poultry Production and Value 2011 Summary. National Agriculture Statistics Service, U.S.
- 26 Department of Agriculture. Washington, D.C. April 2012. Available online at:
- 27 <http://www.nass.usda.gov/Publications/index.asp>.
- 28 USDA (2011a) Chicken and Eggs 2010 Summary. National Agriculture Statistics Service, U.S. Department of
- 29 Agriculture. Washington, D.C. February 2011. Available online at:
- 30 <http://www.nass.usda.gov/Publications/index.asp>.
- 31 USDA (2011b) Poultry Production and Value 2010 Summary. National Agriculture Statistics Service, U.S.
- 32 Department of Agriculture. Washington, D.C. April 2011. Available online at:
- 33 http://www.nass.usda.gov/Publications/index.asp>.
- 34 USDA (2010a) Chicken and Eggs 2009 Summary. National Agriculture Statistics Service, U.S. Department of
- 35 Agriculture. Washington, D.C. February 2010. Available online at:
- 36 <http://www.nass.usda.gov/Publications/index.asp>.
- 37 USDA (2010b) Poultry Production and Value 2009 Summary. National Agriculture Statistics Service, U.S.
- 38 Department of Agriculture. Washington, D.C. April 2010. Available online at:
- 39 <http://www.nass.usda.gov/Publications/index.asp>.
- 40 USDA (2009a) Chicken and Eggs 2008 Summary. National Agriculture Statistics Service, U.S. Department of
- 41 Agriculture. Washington, D.C. February 2009. Available online at:
- 42 <http://www.nass.usda.gov/Publications/index.asp>.
- 43 USDA (2009b) Poultry Production and Value 2008 Summary. National Agriculture Statistics Service, U.S.
- 44 Department of Agriculture. Washington, D.C. April 2009. Available online at:
- 45 http://www.nass.usda.gov/Publications/index.asp>.

- 1 USDA (2009c) Chicken and Eggs Final Estimates 2003-2007. National Agriculture Statistics Service, U.S.
- 2 Department of Agriculture. Washington, D.C. March 2009. Available online at:
- 3 <a>http://usda.mannlib.cornell.edu/usda/nass/SB980/sb1024.pdf>.
- 4 USDA (2009d) Poultry Production and Value—Final Estimates 2003-2007. National Agriculture Statistics Service,
- 5 U.S. Department of Agriculture. Washington, D.C. May 2009. Available online at:
- 6 http://usda.mannlib.cornell.edu/usda/nass/SB994/sb1028.pdf>.
- USDA (2008) Agricultural Waste Management Field Handbook, National Engineering Handbook (NEH), Part 651.
 Natural Resources Conservation Service, U.S. Department of Agriculture.
- 9 USDA (2004a) Chicken and Eggs—Final Estimates 1998-2003. National Agriculture Statistics Service, U.S.
- 10 Department of Agriculture. Washington, D.C. April 2004. Available online at:
- 11 <http://usda.mannlib.cornell.edu/reports/general/sb/>.
- 12 USDA (2004b) Poultry Production and Value—Final Estimates 1998-2002. National Agriculture Statistics Service,
- 13 U.S. Department of Agriculture. Washington, D.C. April 2004. Available online at:
- 14 <http://usda.mannlib.cornell.edu/reports/general/sb/>.
- 15 USDA (1999) Poultry Production and Value—Final Estimates 1994-97. National Agriculture Statistics Service, U.S.
- 16 Department of Agriculture. Washington, D.C. March 1999. Available online at:
- 17 <http://usda.mannlib.cornell.edu/reports/general/sb/>.
- 18 USDA (1998) Chicken and Eggs—Final Estimates 1994-97. National Agriculture Statistics Service, U.S. Department
- 19 of Agriculture. Washington, D.C. December 1998. Available online at:
- 20 <http://usda.mannlib.cornell.edu/reports/general/sb/>.
- USDA (1996) Agricultural Waste Management Field Handbook, National Engineering Handbook (NEH), Part 651.
 Natural Resources Conservation Service, U.S. Department of Agriculture. July 1996.
- 23 USDA (1995a) Poultry Production and Value—Final Estimates 1988-1993. National Agriculture Statistics Service,
- 24 U.S. Department of Agriculture. Washington, D.C. March 1995. Available online at:
- 25 <http://usda.mannlib.cornell.edu/reports/general/sb/>.
- 26 USDA (1995b) Chicken and Eggs—Final Estimates 1988-1993. National Agriculture Statistics Service, U.S.
- 27 Department of Agriculture. Washington, D.C. December 1995. Available online at:
- 28 <http://usda.mannlib.cornell.edu/reports/general/sb/>.
- 29 USDA (1994) Sheep and Goats—Final Estimates 1989-1993. National Agriculture Statistics Service, U.S. Department
- 30 of Agriculture. Washington, D.C. January 31, 1994. Available online at:
- 31 <http://usda.mannlib.cornell.edu/reports/general/sb/>.
- 32 USDA APHIS (2003) Sheep 2001, Part I: Reference of Sheep Management in the United States, 2001 and Part IV:
- Baseline Reference of 2001 Sheep Feedlot Health and Management. USDA-APHIS-VS. Fort Collins, CO. #N356.0702.
- 34 Available online at<http://www.aphis.usda.gov/animal_health/nahms/sheep/index.shtml#sheep2001>.
- 35 USDA APHIS (2000) Layers '99—Part II: References of 1999 Table Egg Layer Management in the U.S. USDA-APHIS-
- 36 VS. Fort Collins, CO. Available online at
- 37 <http://www.aphis.usda.gov/animal_health/nahms/poultry/downloads/layers99/Layers99_dr_PartII.pdf>.
- 38 USDA APHIS (1996) Swine '95: Grower/Finisher Part II: Reference of 1995 U.S. Grower/Finisher Health &
- 39 Management Practices. USDA-APHIS-VS. Fort Collins, CO. Available online at:
- 40 <http://www.aphis.usda.gov/animal_health/nahms/swine/downloads/swine95/Swine95_dr_PartII.pdf>.

41 Rice Cultivation

- 42 Baicich, P. (2013) The Birds and Rice Connection. *Bird Watcher's Digest*. Available online at:
- 43 <http://www.usarice.com/doclib/194/6867.pdf>.

- 1 Brockwell, P.J., and R.A. Davis (2016) Introduction to time series and forecasting. Springer.
- Cantens, G. (2004 through 2005) Personal Communication. Janet Lewis, Assistant to Gaston Cantens, Vice
 President of Corporate Relations, Florida Crystals Company and ICF International.
- Cheng, K., S.M. Ogle, W.J. Parton, G. Pan. (2014) "Simulating greenhouse gas mitigation potentials for Chinese
 croplands using the DAYCENT ecosystem model." *Global Change Biology* 20:948-962.
- Cheng, K., S.M. Ogle, W.J. Parton and G. Pan. (2013) "Predicting methanogenesis from rice paddies using the
 DAYCENT ecosystem model." *Ecological Modelling* 261-262:19-31.
- Bel Grosso, S.J., S.M. Ogle, W.J. Parton, and F.J. Breidt (2010) "Estimating Uncertainty in N₂O Emissions from U.S.
 Cropland Soils." Global Biogeochemical Cycles, 24, GB1009, doi:10.1029/2009GB003544.
- Deren, C. (2002) Personal Communication and Dr. Chris Deren, Everglades Research and Education Centre at the
 University of Florida and Caren Mintz, ICF International. August 15, 2002.
- Fitzgerald, G.J., K. M. Scow & J. E. Hill (2000) "Fallow Season Straw and Rice Management Effects on Methane
 Emissions in California Rice." Global biogeochemical cycles, 14 (3), 767-776.
- Fleskes, J.P., Perry, W.M., Petrik, K.L., Spell, R., and Reid, F. (2005) Change in area of winter-flood and dry rice in
 the northern Central Valley of California determined by satellite imagery. California Fish and Game, 91: 207-215.
- Gonzalez, R. (2007 through 2014) Email correspondence. Rene Gonzalez, Plant Manager, Sem-Chi Rice Company
 and ICF International.
- 18 Hardke, J.T. (2015) Trends in Arkansas rice production, 2014. B.R. Wells Arkansas Rice Research Studies 2014.
- Norman, R.J. and Moldenhauer, K.A.K. (Eds.). Research Series 626, Arkansas Agricultural Experiment Station,
 University of Arkansas.
- Hardke, J. (2014) Personal Communication. Dr. Jarrod Hardke, Rice Extension Agronomist at the University of
 Arkansas Rice Research and Extension Center and Kirsten Jaglo, ICF International. September 11, 2014.
- Hardke, J. (2013) Email correspondence. Dr. Jarrod Hardke, Rice Extension Agronomist at the University of
 Arkansas Rice Research and Extension Center and Cassandra Snow, ICF International. July 15, 2013.
- Hardke, J.T., and Wilson, C.E. Jr., (2014) Trends in Arkansas rice production, 2013. B.R. Wells Arkansas Rice
- Research Studies 2013. Norman, R.J., and Moldenhauer, K.A.K., (Eds.). Research Series 617, Arkansas Agricultural
 Experiment Station, University of Arkansas.
- Hardke, J.T., and Wilson, C.E. Jr., (2013) Trends in Arkansas rice production. B.R. Wells Arkansas Rice Research
- Studies 2012. Norman, R.J., and Moldenhauer, K.A.K., (Eds.). Research Series 609, Arkansas Agricultural Experiment
 Station, University of Arkansas.
- Hollier, C. A. (ed), (1999) Louisiana rice production handbook. Louisiana State University Agricultural Center. LCES
 Publication Number 2321. 116 pp.
- Holzapfel-Pschorn, A., R. Conrad, and W. Seiler (1985) "Production, Oxidation, and Emissions of Methane in Rice
 Paddies." *FEMS Microbiology Ecology*, 31:343-351.
- 35 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 36 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 37 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 38 Kirstein, A. (2003 through 2004, 2006) Personal Communication. Arthur Kirstein, Coordinator, Agricultural
- 39 Economic Development Program, Palm Beach County Cooperative Extension Service, FL and ICF International.
- Klosterboer, A. (1997, 1999 through 2003) Personal Communication. Arlen Klosterboer, retired Extension
 Agronomist, Texas A&M University and ICF International. July 7, 2003.
- Lindau, C.W. and P.K. Bollich (1993) "Methane Emissions from Louisiana First and Ratoon Crop Rice." *Soil Science*, 156:42-48.

- Linquist, B.A., M.A. Adviento-Borbe, C.M. Pittelkow, C.v. Kessel, et al. (2012) Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. *Field Crops Research*, 135:10-21.
- 3 Linscombe, S. (1999, 2001 through 2014) Email correspondence. Steve Linscombe, Professor with the Rice
- 4 Research Station at Louisiana State University Agriculture Center and ICF International.

LSU, (2015) Louisiana ratoon crop and conservation: Ratoon & Conservation Tillage Estimates. Louisiana State
 University, College of Agriculture AgCenter. Online at: www.lsuagcenter.com.

Miller, M.R., Garr, J.D., and Coates, P.S., (2010) Changes in the status of harvested rice fields in the Sacramento
 Valley, California: Implications for wintering waterfowl. Wetlands, 30: 939-947.

- Neue, H.U., R. Wassmann, H.K. Kludze, W. Bujun, and R.S. Lantin (1997) "Factors and processes controlling
 methane emissions from rice fields." *Nutrient Cycling in Agroecosystems* 49: 111-117.
- 11 Ogle, S.M., F.J. Breidt, M. Easter, S. Williams and K. Paustian. (2007) "An empirically based approach for estimating 12 uncertainty associated with modeling carbon sequestration in soils." *Ecological Modelling* 205:453-463.
- 13 Ogle, S.M., S. Spencer, M. Hartman, L. Buendia, L. Stevens, D. du Toit, J. Witi (2016) "Developing national baseline
- 14 GHG emissions and analyzing mitigation potentials for agriculture and forestry using an advanced national GHG
- 15 inventory software system." In Advances in Agricultural Systems Modeling 6, Synthesis and Modeling of
- 16 Greenhouse Gas Emissions and Carbon Storage in Agricultural and Forestry Systems to Guide Mitigation and
- 17 Adaptation, S. Del Grosso, L.R. Ahuja and W.J. Parton (eds.), American Society of Agriculture, Crop Society of
- 18 America and Soil Science Society of America, pp. 129-148.
- Parton, W.J., M.D. Hartman, D.S. Ojima, and D.S. Schimel (1998) "DAYCENT: Its Land Surface Submodel: Description
 and Testing". Glob. Planet. Chang. 19: 35-48.
- Parton, W.J., D.S. Schimel, C.V. Cole, D.S. Ojima (1987) "Analysis of factors controlling soil organic matter levels in
 Great Plains grasslands." Soil Science Society of America Journal 51:1173-1179.
- 23 Sass, R. L. (2001) CH₄ Emissions from Rice Agriculture. Good Practice Guidance and Uncertainty Management in
- 24 National Greenhouse Gas Inventories. 399-417. Available online at: http://www.ipcc-
- 25 nggip.iges.or.jp/public/gp/bgp/4_7_CH4_Rice_Agriculture.pdf>.
- Sass, R.L., F.M. Fisher, P.A. Harcombe, and F.T. Turner (1990) "Methane Production and Emissions in a Texas Rice
 Field." *Global Biogeochemical Cycles*, 4:47-68.
- Sass, R.L., F.M. Fisher, S.T. Lewis, M.F. Jund, and F.T. Turner. (1994) "Methane emissions from rice fields: effect of
 soil texture." *Global Biogeochemical Cycles* 8:135-140.
- Schueneman, T. (1997, 1999 through 2001) Personal Communication. Tom Schueneman, Agricultural Extension
 Agent, Palm Beach County, FL and ICF International.
- Slaton, N. (1999 through 2001) Personal Communication. Nathan Slaton, Extension Agronomist—Rice, University
 of Arkansas Division of Agriculture Cooperative Extension Service and ICF International.
- Stansel, J. (2004 through 2005) Email correspondence. Dr. Jim Stansel, Resident Director and Professor Emeritus,
 Texas A&M University Agricultural Research and Extension Center and ICF International.
- 36 TAMU (2015) Texas Rice Crop Survey. Texas A&M AgriLIFE Research Center at Beaumont. Online at:
- 37 <https://beaumont.tamu.edu/>.
- 38 Texas Agricultural Experiment Station (2007 through 2014) Texas Rice Acreage by Variety. Agricultural Research
- and Extension Center, Texas Agricultural Experiment Station, Texas A&M University System. Available online at:
 http://beaumont.tamu.edu/CropSurvey/CropSurveyReport.aspx>.
- 41 Texas Agricultural Experiment Station (2006) 2005 Texas Rice Crop Statistics Report. Agricultural Research and
- 42 Extension Center, Texas Agricultural Experiment Station, Texas A&M University System, p. 8. Available online at:
- 43 <http://beaumont.tamu.edu/eLibrary/TRRFReport_default.htm>.

- 1 University of California Cooperative Extension (UCCE) (2015) Rice Production Manual. Revised (2015) UCCE, Davis,
- 2 in collaboration with the California Rice Research Board.
- 3 USDA (2005 through 2015) Crop Production Summary. National Agricultural Statistics Service, Agricultural Statistics
- 4 Board, U.S. Department of Agriculture, Washington, D.C. Available online at: http://usda.mannlib.cornell.edu.
- 5 USDA (2012) Summary of USDA-ARS Research on the Interrelationship of Genetic and Cultural Management
- 6 Factors That Impact Grain Arsenic Accumulation in Rice. News and Events. Agricultural Research Service, U.S.
- 7 Department of Agriculture, Washington, D.C. Available online at:
- 8 <http://www.ars.usda.gov/is/pr/2012/120919.htm>. September 2013.
- 9 USDA (2003) *Field Crops, Final Estimates 1997-2002*. Statistical Bulletin No. 982. National Agricultural Statistics
- Service, Agricultural Statistics Board, U.S. Department of Agriculture, Washington, D.C. Available online at:
- 11 <http://usda.mannlib.cornell.edu/usda/reports/general/sb/>>. September 2005.
- 12 USDA (1998) Field Crops Final Estimates 1992-1997. Statistical Bulletin Number 947 a. National Agricultural
- 13 Statistics Service, Agricultural Statistics Board, U.S. Department of Agriculture, Washington, D.C. Available online 14 at: http://usda.mannlib.cornell.edu/>. July 2001.
- 15 USDA (1994) Field Crops Final Estimates 1987-1992. Statistical Bulletin Number 896. National Agricultural Statistics
- Service, Agricultural Statistics Board, U.S. Department of Agriculture, Washington, D.C. Available online at:
 http://usda.mannlib.cornell.edu/. July 2001.
- 18 USDA-NRCS (2018) Summary Report: 2015 National Resources Inventory. Natural Resources Conservation Service,
- 19 Washington, D.C., and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa.
- 20 https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1422028.pdf.
- van Bodegom, P.M., R. Wassmann, T.M. Metra-Corton (2001) "A process based model for methane emission
 predictions from flooded rice paddies." *Global Biogeochemical Cycles* 15: 247-263.
- 23 Wang, J.J., S.K. Dodla, S. Viator, M. Kongchum, S. Harrison, S. D. Mudi, S. Liu, Z. Tian (2013) Agriculture Field
- 24 Management Practices and Greenhouse Gas Emissions from Louisiana Soils. *Louisiana Agriculture*, Spring 2013: 8-
- 25 9. Available online at: http://www.lsuagcenter.com/NR/rdonlyres/78D8B61A-96A8-49E1-B2EF-
- 26 BA1D4CE4E698/93016/v56no2Spring2013.pdf>.
- 27 Wassmann, R. H.U. Neue, R.S. Lantin, K. Makarim, N. Chareonsil5, L.V. Buendia, and H. Rennenberg (2000a)
- Characterization of methane emissions from rice fields in Asia II. Differences among irrigated, rainfed, and deepwater rice." *Nutrient Cycling in Agroecosystems*, 58(1):13-22.
- 30 Wassmann, R., R.S. Lantin, H.U. Neue, L.V. Buendia, et al. (2000b) "Characterization of Methane Emissions from
- Rice Fields in Asia. III. Mitigation Options and Future Research Needs." *Nutrient Cycling in Agroecosystems*,
 58(1):23-36.
- Way, M.O., McCauley, G.M., Zhou, X.G., Wilson, L.T., and Morace, B. (Eds.), (2014) 2014 Texas Rice Production
 Guidelines. Texas A&M AgriLIFE Research Center at Beaumont.
- Wilson, C. (2002 through 2007, 2009 through 2012) Personal Communication. Dr. Chuck Wilson, Rice Specialist at
 the University of Arkansas Cooperative Extension Service and ICF International.
- 37 Wilson, C.E. Jr., and Branson, J.W., (2006) Trends in Arkansas rice production. B.R. Wells Arkansas Rice Research
- Studies 2005. Norman, R.J., Meullenet, J.-F., and Moldenhauer, K.A.K., (Eds.). Research Series 540, Arkansas
 Agricultural Experiment Station, University of Arkansas.
- 40 Wilson, C.E. Jr., and Branson, J.W., (2005) Trends in Arkansas rice production. B.R. Wells Arkansas Rice Research
- Studies 2004. Norman, R.J., Meullenet, J.-F., and Moldenhauer, K.A.K., (Eds.). Research Series 529, Arkansas
 Agricultural Experiment Station, University of Arkansas.
- 43 Wilson, C.E. Jr., Runsick, S.K., and Mazzanti, R., (2010) Trends in Arkansas rice production. B.R. Wells Arkansas Rice
- Research Studies 2009. Norman, R.J., and Moldenhauer, K.A.K., (Eds.). Research Series 581, Arkansas Agricultural
 Experiment Station, University of Arkansas.

- 1 Wilson, C.E. Jr., Runsick, S.K., Mazzanti, R., (2009) Trends in Arkansas rice production. B.R. Wells Arkansas Rice
- 2 Research Studies (2008) Norman, R.J., Meullenet, J.-F., and Moldenhauer, K.A.K., (Eds.). Research Series 571,
- 3 Arkansas Agricultural Experiment Station, University of Arkansas.
- 4 Wilson, C.E. Jr., and Runsick, S.K., (2008) Trends in Arkansas rice production. B.R. Wells Arkansas Rice Research
- 5 Studies 2007. Norman, R.J., Meullenet, J.-F., and Moldenhauer, K.A.K., (Eds.). Research Series 560, Arkansas
- 6 Agricultural Experiment Station, University of Arkansas.
- 7 Wilson, C.E. Jr., and Runsick, S.K., (2007) Trends in Arkansas rice production. B.R. Wells Arkansas Rice Research
- Studies 2006. Norman, R.J., Meullenet, J.-F., and Moldenhauer, K.A.K., (Eds.). Research Series 550, Arkansas
 Agricultural Experiment Station, University of Arkansas.
- 10 Yan, X., H. Akiyana, K. Yagi, and H. Akimoto (2009) "Global estimations of the inventory and mitigation potential of
- 11 methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change
- 12 Guidelines." *Global Biogeochemical Cycles*, 23, DOI: 0.1029/2008GB003299.
- 13 Young, M. (2013) Rice and Ducks. Ducks Unlimited, Memphis, TN. Available online at:
- 14 <http://www.ducks.org/conservation/farm-bill/rice-and-ducks---by-matt-young>.

Agricultural Soil Management

- AAPFCO (2008 through 2017) Commercial Fertilizers: 2008-2015. Association of American Plant Food Control
 Officials. University of Missouri. Columbia, MO.
- AAPFCO (1995 through 2000a, 2002 through 2007) Commercial Fertilizers: 1995-2007. Association of American
 Plant Food Control Officials. University of Kentucky. Lexington, KY.
- 20 Brockwell, Peter J., and Richard A. Davis (2016) Introduction to time series and forecasting. Springer.
- Cibrowski, P. (1996) Personal Communication. Peter Cibrowski, Minnesota Pollution Control Agency and Heike
 Mainhardt, ICF Incorporated. July 29, 1996.
- Cheng, B., and D.M. Titterington (1994) "Neural networks: A review from a statistical perspective." Statistical
 science 9: 2-30.
- 25 Claassen, R., M. Bowman, J. McFadden, D. Smith, and S. Wallander (2018) Tillage intensity and conservation
- cropping in the United States, EIB 197. United States Department of Agriculture, Economic Research Service,
- 27 Washington, D.C.
- CTIC (2004) 2004 Crop Residue Management Survey. Conservation Technology Information Center. Available at
 ">http://www.ctic.purdue.edu/CRM/>.
- 30 Del Grosso, S.J., A.R. Mosier, W.J. Parton, and D.S. Ojima (2005) "DAYCENT Model Analysis of Past and
- Contemporary Soil N₂O and Net Greenhouse Gas Flux for Major Crops in the USA." Soil Tillage and Research, 83: 9 24. doi: 10.1016/j.still.2005.02.007.
- Del Grosso, S.J., S.M. Ogle, W.J. Parton, and F.J. Breidt (2010) "Estimating Uncertainty in N₂O Emissions from U.S.
 Cropland Soils." *Global Biogeochemical Cycles*, 24, GB1009, doi:10.1029/2009GB003544.
- 35 Del Grosso, S.J., W.J. Parton, C.A. Keough, and M. Reyes-Fox. (2011) Special features of the DAYCENT modeling
- 36 package and additional procedures for parameterization, calibration, validation, and applications, in Methods of
- 37 Introducing System Models into Agricultural Research, L.R. Ahuja and Liwang Ma, editors, p. 155-176, American
- 38 Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI. USA.
- 39 Del Grosso, S.J., W.J. Parton, A.R. Mosier, M.D. Hartman, J. Brenner, D.S. Ojima, and D.S. Schimel (2001) "Simulated
- 40 Interaction of Carbon Dynamics and Nitrogen Trace Gas Fluxes Using the DAYCENT Model." In Schaffer, M., L. Ma,
- 41 S. Hansen, (eds.). Modeling Carbon and Nitrogen Dynamics for Soil Management. CRC Press. Boca Raton, Florida.
- 42 303-332.

- Del Grosso, S.J., T. Wirth, S.M. Ogle, W.J. Parton (2008) Estimating agricultural nitrous oxide emissions. EOS 89,
 529-530.
- 3 Delgado, J.A., S.J. Del Grosso, and S.M. Ogle (2009) "15N isotopic crop residue cycling studies and modeling suggest
- 4 that IPCC methodologies to assess residue contributions to N₂O-N emissions should be reevaluated." *Nutrient*
- 5 *Cycling in Agroecosystems*, DOI 10.1007/s10705-009-9300-9.
- 6 Edmonds, L., N. Gollehon, R.L. Kellogg, B. Kintzer, L. Knight, C. Lander, J. Lemunyon, D. Meyer, D.C. Moffitt, and J.
- 7 Schaeffer (2003) "Costs Associated with Development and Implementation of Comprehensive Nutrient
- 8 Management Plans." Part 1. Nutrient Management, Land Treatment, Manure and Wastewater Handling and
- 9 Storage, and Recordkeeping. Natural Resource Conservation Service, U.S. Department of Agriculture.
- 10 EPA (2003) Clean Watersheds Needs Survey 2000—Report to Congress, U.S. Environmental Protection Agency.
- 11 Washington, D.C. Available online at: <http://www.epa.gov/owm/mtb/cwns/2000rtc/toc.htm>.
- EPA (1999) Biosolids Generation, Use and Disposal in the United States. Office of Solid Waste, U.S. Environmental
 Protection Agency. Available online at: http://biosolids.policy.net/relatives/18941.PDF>.
- EPA (1993) Federal Register. Part II. Standards for the Use and Disposal of Sewage Sludge; Final Rules. U.S.
 Environmental Protection Agency, 40 CFR Parts 257, 403, and 503.
- Firestone, M. K., and E.A. Davidson, Ed. (1989) Microbiological basis of NO and N₂O production and consumption in
 soil. Exchange of trace gases between terrestrial ecosystems and the atmosphere. New York, John Wiley & Sons.
- ILENR (1993) Illinois Inventory of Greenhouse Gas Emissions and Sinks: 1990. Office of Research and Planning,
 Illinois Department of Energy and Natural Resources. Springfield, IL.
- 20 IPCC (2013) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. The
- 21 Intergovernmental Panel on Climate Change. [T, Hiraishi, T. Krug, K. Tanabe, N. Srivastava, B. Jamsranjav, M.
- 22 Fukuda and T. Troxler (eds.)]. Hayama, Kanagawa, Japan.
- 23 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 24 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 25 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- Little, R. (1988) "Missing-data adjustments in large surveys." *Journal of Business and Economic Statistics* 6: 287–
 296.
- 28 McFarland, M.J. (2001) Biosolids Engineering, New York: McGraw-Hill, p. 2.12.
- McGill, W.B., and C.V. Cole (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic
 matter. *Geoderma* 26:267-286.
- 31 Metherell, A.K., L.A. Harding, C.V. Cole, and W.J. Parton (1993) "CENTURY Soil Organic Matter Model
- Environment." Agroecosystem version 4.0. Technical documentation, GPSR Tech. Report No. 4, USDA/ARS, Ft.
 Collins, CO.
- NEBRA (2007) A National Biosolids Regulation, Quality, End Use & Disposal Survey. North East Biosolids and
 Residuals Association, July 21, 2007.
- Noller, J. (1996) Personal Communication. John Noller, Missouri Department of Natural Resources and Heike
 Mainhardt, ICF Incorporated. July 30, 1996.
- Ogle, S.M., F.J. Breidt, M. Easter, S. Williams and K. Paustian (2007) "Empirically-Based Uncertainty Associated with Modeling Carbon Sequestration Rates in Soils." *Ecological Modeling* 205:453-463.
- 40 Oregon Department of Energy (1995) Report on Reducing Oregon's Greenhouse Gas Emissions: Appendix D
- 41 Inventory and Technical Discussion. Oregon Department of Energy. Salem, OR.
- 42 Parton, W.J., M.D. Hartman, D.S. Ojima, and D.S. Schimel (1998) "DAYCENT: Its Land Surface Submodel: Description
- 43 and Testing." *Glob. Planet. Chang.* 19: 35-48.

- 1 Potter, C., S. Klooster, A. Huete, and V. Genovese (2007) Terrestrial carbon sinks for the United States predicted
- 2 from MODIS satellite data and ecosystem modeling. *Earth Interactions* 11, Article No. 13, DOI 10.1175/EI228.1.
- 3 Potter, C. S., J.T. Randerson, C.B. Fields, P.A. Matson, P.M. Vitousek, H.A. Mooney, and S.A. Klooster (1993)
- 4 "Terrestrial ecosystem production: a process model based on global satellite and surface data." *Global* 5 *Biogeochemical Cycles* 7:811-841.
- PRISM Climate Group (2018) *PRISM Climate Data*, Oregon State University, http://prism.oregonstate.edu,
 downloaded 18 July 2018.
- 8 Pukelsheim, F. (1994) "The 3-Sigma-Rule." American Statistician 48:88-91.
- Ruddy B.C., D.L. Lorenz, and D.K. Mueller (2006) County-level estimates of nutrient inputs to the land surface of
 the conterminous United States, 1982-2001. Scientific Investigations Report 2006-5012. U.S Department of the
 Interior.
- 12 Scheer, C., S.J. Del Grosso, W.J. Parton, D.W. Rowlings, P.R. Grace (2013) Modeling Nitrous Oxide Emissions from
- Irrigated Agriculture: Testing DAYCENT with High Frequency Measurements, Ecological Applications, in press.
 Available online at: http://dx.doi.org/10.1890/13-0570.1>.
- 15 Soil Survey Staff (2019) Gridded Soil Survey Geographic (gSSURGO) Database for the Conterminous United States.
- United States Department of Agriculture, Natural Resources Conservation Service. Available online at
 https://gdg.sc.egov.usda.gov/. April, 2019 (FY2019 official release).
- 10 Town D (2001) Descend Communication Des Towns and in a director state to the CTIC (4000) to
- Towery, D. (2001) Personal Communication. Dan Towery regarding adjustments to the CTIC (1998) tillage data to reflect long-term trends, Conservation Technology Information Center, West Lafayette, IN, and Marlen Eve,
- 20 National Resource Ecology Laboratory, Fort Collins, CO. February 2001.
- TVA (1991 through 1992a, 1993 through 1994) Commercial Fertilizers. Tennessee Valley Authority, Muscle Shoals,
 AL.
- 23 USDA-ERS (2018) Agricultural Resource Management Survey (ARMS) Farm Financial and Crop Production Practices:
- Tailored Reports. Available online at: https://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-practices/.
- USDA-ERS (1997) Cropping Practices Survey Data—1995. Economic Research Service, United States Department of
 Agriculture. Available online at: http://www.ers.usda.gov/data/archive/93018/>.
- 28 USDA-NASS (2019) Quick Stats. National Agricultural Statistics Service, United States Department of Agriculture,
- 29 Washington, D.C. < http://quickstats.nass.usda.gov/>.
- USDA-NASS (2017) 2017 Census of Agriculture. USDA National Agricultural Statistics Service, Complete data
 available at www.nass.usda.gov/AgCensus.
- USDA-NASS (2012) 2012 Census of Agriculture. USDA National Agricultural Statistics Service, Complete data
 available at www.nass.usda.gov/AgCensus.
- 34 USDA-NASS (2004) Agricultural Chemical Usage: 2003 Field Crops Summary. Report AgCh1(04)a. National
- 35 Agricultural Statistics Service, U.S. Department of Agriculture, Washington, D.C. Available online at:
- 36 <Hhttp://usda.mannlib.cornell.edu/reports/nassr/other/pcu-bb/agcs0504.pdfH>.
- 37 USDA-NASS (1999) Agricultural Chemical Usage: 1998 Field Crops Summary. Report AgCH1(99). National
- 38 Agricultural Statistics Service, U.S. Department of Agriculture, Washington, DC. Available online at:
- 39 <http://usda.mannlib.cornell.edu/reports/nassr/other/pcu-bb/agch0599.pdf>.
- 40 USDA-NASS (1992) Agricultural Chemical Usage: 1991 Field Crops Summary. Report AgCh1(92). National
- 41 Agricultural Statistics Service, U.S. Department of Agriculture, Washington, D.C. Available online at:
- 42 <http://usda.mannlib.cornell.edu/reports/nassr/other/pcu-bb/agch0392.txtH>.

- 1 USDA-NRCS (2012) Assessment of the Effects of Conservation Practices on Cultivated Cropland in the Upper
- 2 Mississippi River Basin. US Department of Agriculture, Natural Resources Conservation Service,
- 3 https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1042093.pdf
- 4 USDA-NRCS (2018a) Summary Report: 2015 National Resources Inventory. Natural Resources Conservation Service,
- 5 Washington, D.C., and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa.
- 6 https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1422028.pdf.
- 7 USDA-NRCS (2018b) CEAP Cropland Farmer Surveys. USDA Natural Resources Conservation Service.
- 8 https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/nra/ceap/na/?cid=nrcs143_014163.
- 9 USFS (2019) Forest Inventory and Analysis Program. United States Department of Agriculture, US Forest Service,
- 10 https://www.fia.fs.fed.us/tools-data/default.asp.
- 11 Van Buuren, S. (2012) "Flexible imputation of missing data." Chapman & Hall/CRC, Boca Raton, FL.
- 12 Wagner-Riddle, C., Congreves, K. A., Abalos, D., Berg, A. A., Brown, S. E., Ambadan, J. T., Gao, X. & Tenuta, M.
- 13 (2017) "Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles." *Nature*
- 14 *Geosciences* 10(4): 279-283.
- Wisconsin Department of Natural Resources (1993) Wisconsin Greenhouse Gas Emissions: Estimates for 1990.
 Bureau of Air Management, Wisconsin Department of Natural Resources, Madison, WI.
- 17 Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M.,
- 18 Granneman, B., Liknes, G. C., Rigge, M. & Xian, G. (2018) "A new generation of the United States National Land
- 19 Cover Database: Requirements, research priorities, design, and implementation strategies." *ISPRS Journal of*
- 20 *Photogrammetry and Remote Sensing* 146: 108-123.

21 Liming

- 22 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- Tepordei, V.V. (1997 through 2015) "Crushed Stone," In Minerals Yearbook. U.S. Department of the Interior/U.S.
 Geological Survey. Washington, D.C. Available online at: http://minerals/.
- Tepordei, V.V. (2003b) Personal communication. Valentin Tepordei, U.S. Geological Survey and ICF Consulting,
 August 18, 2003.
- 29 Tepordei, V.V. (1996) "Crushed Stone," In Minerals Yearbook 1994. U.S. Department of the Interior/Bureau of
- 30 Mines, Washington, D.C. Available online at:
- 31 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>. Accessed August 2000.
- Tepordei, V.V. (1995) "Crushed Stone," In Minerals Yearbook 1993. U.S. Department of the Interior/Bureau of
 Mines, Washington, D.C. pp. 1107–1147.
- Tepordei, V. V. (1994) "Crushed Stone," In Minerals Yearbook 1992. U.S. Department of the Interior/Bureau of
 Mines, Washington, D.C. pp. 1279-1303.
- 36 USGS (2019) Mineral Industry Surveys: Crushed Stone and Sand and Gravel in the First Quarter of 2019, U.S.
- 37 Geological Survey, Reston, VA. Available online at:
- 38 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>.
- USGS (2018) Mineral Industry Surveys: Crushed Stone and Sand and Gravel in the First Quarter of 2018, U.S.
- 40 Geological Survey, Reston, VA. Available online at:
- 41 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>.

- 1 USGS (2017) Mineral Industry Surveys: Crushed Stone and Sand and Gravel in the First Quarter of 2017, U.S.
- 2 Geological Survey, Reston, VA. Available online at:
- 3 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>.
- 4 USGS (2016) Mineral Industry Surveys: Crushed Stone and Sand and Gravel in the First Quarter of 2016, U.S.
- 5 Geological Survey, Reston, VA. Available online at:
- 6 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>.
- 7 USGS (2015) Mineral Industry Surveys: Crushed Stone and Sand and Gravel in the First Quarter of 2015, U.S.
- 8 Geological Survey, Reston, VA. Available online at:
- 9 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>.
- 10 USGS (2014) Mineral Industry Surveys: Crushed Stone and Sand and Gravel in the First Quarter of 2014, U.S.
- 11 Geological Survey, Reston, VA. Available online at:
- 12 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>.
- 13 USGS (2013) Mineral Industry Surveys: Crushed Stone and Sand and Gravel in the First Quarter of 2013, U.S.
- 14 Geological Survey, Reston, VA. Available online at:
- 15 ">http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>.
- 16 USGS (2012) Mineral Industry Surveys: Crushed Stone and Sand and Gravel in the First Quarter of 2012, U.S.
- 17 Geological Survey, Reston, VA. Available online at:
- 18 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>.
- 19 USGS (2011) Mineral Industry Surveys: Crushed Stone and Sand and Gravel in the First Quarter of 2011, U.S.
- 20 Geological Survey, Reston, VA. Available online at:
- 21 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>.
- 22 USGS (2010) Mineral Industry Surveys: Crushed Stone and Sand and Gravel in the First Quarter of 2010, U.S.
- 23 Geological Survey, Reston, VA. Available online at:
- 24 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>.
- 25 USGS (2009) Mineral Industry Surveys: Crushed Stone and Sand and Gravel in the First Quarter of 2009, U.S.
- 26 Geological Survey, Reston, VA. Available online at:
- 27 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>.
- 28 USGS (2008) Mineral Industry Surveys: Crushed Stone and Sand and Gravel in the First Quarter of 2008, U.S.
- 29 Geological Survey, Reston, VA. Available online at:
- 30 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>.
- 31 USGS (2007) Mineral Industry Surveys: Crushed Stone and Sand and Gravel in the First Quarter of 2007. U.S.
- 32 Geological Survey, Reston, VA. Available online at:
- 33 ">http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals/pubs/commodity/stone_crushed/index.html#mis>">http://minerals/pubs/commodity/stone_crushed/index.html#mis>
- West, T.O., and A.C. McBride (2005) "The contribution of agricultural lime to carbon dioxide emissions in the
 United States: dissolution, transport, and net emissions," Agricultural Ecosystems & Environment 108:145-154.
- 36 West, T.O. (2008) Email correspondence. Tristram West, Environmental Sciences Division, Oak Ridge National
- Laboratory, U.S. Department of Energy and Nikhil Nadkarni, ICF International on suitability of liming emission
 factor for the entire United States. June 9, 2008.
- Willett, J.C. (2016) "Crushed Stone," In Minerals Yearbook. U.S. Department of the Interior/U.S. Geological Survey.
 Washington, D.C. Available online at: http://minerals.usgs.gov/minerals/. Accessed: 30 August 2017.
- 41 Willett, J.C. (2019) Personal communication. Jason Willett. Preliminary data tables from "Crushed Stone," In 2017
- 42 Minerals Yearbook. U.S. Department of the Interior/U.S. Geological Survey. Washington, D.C. September 10, 2019.
- 43 Willett, J.C. (2018) Personal communication. Jason Willett. Preliminary data tables from "Crushed Stone," In 2016
- 44 Minerals Yearbook. U.S. Department of the Interior/U.S. Geological Survey. Washington, D.C. November 16, 2018.

- 1 Willett, J.C. (2017) Personal communication. Jason Willett. Preliminary data tables from "Crushed Stone," In 2015
- 2 Minerals Yearbook. U.S. Department of the Interior/U.S. Geological Survey. Washington, D.C. August 31, 2017.
- 3 Willett, J.C. and Thompson, D.V. (2017) Crushed stone and sand and gravel in the second quarter 2015: U.S.
- 4 Geological Survey Mineral Industry Surveys. http://minerals.usgs.gov/minerals/>. Accessed: 30 August 2017.
- 5 Willett, J.C. (2016) "Crushed Stone," In Minerals Yearbook 2014. U.S. Department of the Interior/U.S. Geological
- 6 Survey, Washington, D.C. Available online at:
- http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis. Accessed September
 2016.
- 9 Willett, J.C. (2015) "Crushed Stone," In Minerals Yearbook 2013. U.S. Department of the Interior/U.S. Geological
- 10 Survey, Washington, D.C. Available online at:
- <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>. Accessed September
 2015.
- 13 Willett, J.C. (2014) "Crushed Stone," In Minerals Yearbook 2012. U.S. Department of the Interior/U.S. Geological
- 14 Survey, Washington, D.C. Available online at:
- <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>. Accessed September
 2014.
- 17 Willett, J.C. (2013a) "Crushed Stone," In Minerals Yearbook 2011. U.S. Department of the Interior/U.S. Geological
- 18 Survey, Washington, D.C. Available online at:
- 19 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>. Accessed May 2013.
- Willett, J.C. (2013b) Personal Communication. Jason Willet, U.S. Geological Survey and ICF International.
 September 9, 2013.
- 22 Willett, J.C. (2011a) "Crushed Stone," In Minerals Yearbook 2009. U.S. Department of the Interior/U.S. Geological
- 23 Survey, Washington, D.C. Available online at:
- 24 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>. Accessed August 2011.
- 25 Willett, J.C. (2011b) "Crushed Stone," In Minerals Yearbook 2010. U.S. Department of the Interior/U.S. Geological
- 26 Survey, Washington, D.C. Available online at:
- <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>. Accessed September
 2012.
- 29 Willett, J.C. (2010) "Crushed Stone," In Minerals Yearbook 2008. U.S. Department of the Interior/U.S. Geological
- 30 Survey, Washington, D.C. Available online at:
- 31 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>. Accessed August 2010.
- 32 Willett, J.C. (2009) "Crushed Stone," In Minerals Yearbook 2007. U.S. Department of the Interior/U.S. Geological
- 33 Survey, Washington, D.C. Available online at:
- 34 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>. Accessed August 2009.
- Willett, J.C. (2007a) "Crushed Stone," In Minerals Yearbook 2005. U.S. Department of the Interior/U.S. Geological Survey, Washington, D.C. Available online at:
- 37 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>. Accessed August 2007.
- 38 Willett, J.C. (2007b) "Crushed Stone," In Minerals Yearbook 2006. U.S. Department of the Interior/U.S. Geological
- 39 Survey, Washington, D.C. Available online at:
- 40 <http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/index.html#mis>. Accessed August 2008.

41 Urea Fertilization

- 42 AAPFCO (2008 through 2018) Commercial Fertilizers. Association of American Plant Food Control Officials.
- 43 University of Missouri. Columbia, MO.

- 1 AAPFCO (1995 through 2000a, 2002 through 2007) Commercial Fertilizers. Association of American Plant Food
- 2 Control Officials. University of Kentucky. Lexington, KY.
- 3 AAPFCO (2000b) 1999-2000 Commercial Fertilizers Data, ASCII files. Available from David Terry, Secretary, AAPFCO.
- 4 EPA (2000) Preliminary Data Summary: Airport Deicing Operations (Revised). EPA-821-R-00-016. August 2000.
- 5 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 6 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 7 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 8 Itle, C. (2009) Email correspondence. Cortney Itle, ERG and Tom Wirth, U.S. Environmental Protection Agency on
- 9 the amount of urea used in aircraft deicing. January 7, 2009.
- 10 TVA (1991 through 1994) Commercial Fertilizers. Tennessee Valley Authority, Muscle Shoals, AL.
- 11 TVA (1992b) Fertilizer Summary Data 1992. Tennessee Valley Authority, Muscle Shoals, AL.

12 Field Burning of Agricultural Residues

- Akintoye, H.A., Agbeyi, E.O., and Olaniyan, A.B. (2005) "The effects of live mulches on tomato (Lycopersicon
 esculentum) yield under tropical conditions." *Journal of Sustainable Agriculture* 26: 27-37.
- Bange, M.P., Milroy, S.P., and Thongbai, P. (2004) "Growth and yield of cotton in response to waterlogging." *Field Crops Research* 88: 129-142.
- Beyaert, R.P. (1996) *The effect of cropping and tillage management on the dynamics of soil organic matter*. PhD
 Thesis. University of Guelph.
- Bouquet, D.J., and Breitenbeck, G.A. (2000) "Nitrogen rate effect on partitioning of nitrogen and dry matter by
 cotton." *Crop Science* 40: 1685-1693.
- 21 Brockwell, Peter J., and Richard A. Davis (2016) Introduction to time series and forecasting. Springer.Cantens, G.
- (2004 through 2005) Personal Communication. Janet Lewis, Assistant to Gaston Cantens, Vice President of
 Corporate Relations, Florida Crystals Company and ICF International.
- Brouder, S.M., and Cassman, K.G (1990) "Root development of two cotton cultivars in relation to potassium uptake
 and plant growth in a vermiculitic soil." *Field Crops Res.* 23: 187-203.
- Costa, L.D., and Gianquinto, G. (2002) "Water stress and watertable depth influence yield, water use efficiency,
 and nitrogen recovery in bell pepper: lysimeter studies." *Aust. J. Agric. Res.* 53: 201–210.
- 28 Crafts-Brandner, S.J., Collins, M., Sutton, T.G., and Burton, H.R. (1994) "Effect of leaf maleic hydrazide
- concentration on yield and dry matter partitioning in burley tobacco (Nicotiana tabacum L.)." *Field Crops Research* 37: 121-128.
- De Pinheiro Henriques, A.R., and Marcelis, L.F.M. (2000) "Regulation of growth at steady-state nitrogen nutrition in lettuce (Lactuca sativa L.): Interactive effects of nitrogen and irradiance." *Annals of Botany* 86: 1073-1080.0.
- Díaz-Pérez, J.C., Silvoy, J., Phatak,S.C., Ruberson, J., and Morse, R. (2008) Effect of winter cover crops and co-till on the yield of organically-grown bell pepper (Capsicum annum L.). *Acta Hort*. 767:243-247.
- Dua, K.L., and Sharma, V.K. (1976) "Dry matter production and energy contents of ten varieties of sugarcane at Muzaffarnagar (Western Uttar Pradesh)." *Tropical Ecology* 17: 45-49.
- EPA (1994) International Anthropogenic Methane Emissions: Estimates for 1990, Report to Congress. EPA 230-R-93 010. Office of Policy Planning and Evaluation, U.S. Environmental Protection Agency, Washington, D.C.
- 39 Fritschi, F.B., Roberts, B.A., Travis, R.L., Rains, D.W., and Hutmacher, R.B. (2003) "Seasonal nitrogen concentration,
- 40 uptake, and partitioning pattern of irrigated Acala and Pima cotton as influenced by nitrogen fertility level." *Crop*
- 41 *Science* 44:516–527.

- Gerik, T.J., K.L. Faver, P.M. Thaxton, and K.M. El-Zik. (1996) "Late season water stress in cotton: I. Plant growth,
 water use, and yield." *Crop Science* 36: 914–921.
- 3 Gibberd, M.R., McKay, A.G., Calder, T.C., and Turner, N.C. (2003) "Limitations to carrot (Daucus carota L.)
- productivity when grown with reduced rates of frequent irrigation on a free-draining, sandy soil." Australian
 Journal of Agricultural Research 54: 499-506.
- Giglio, L., I. Csiszar, and C.O. Justice (2006) "Global distribution and seasonality of active fires as observed with the
 Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors" J. Geophys. Res. 111, G02016,
 doi:10.1029/2005JG000142.
- Halevy, J. (1976) "Growth rate and nutrient uptake of two cotton cultivars grown under irrigation." Agronomy
 Journal 68: 701-705.
- Halvorson, A.D., Follett, R.F., Bartolo, M.E., and Schweissing, F.C. (2002) "Nitrogen fertilizer use efficiency of
 furrow-irrigated onion and corn." *Agronomy Journal* 94: 442-449.
- Heitholt, J.J., Pettigrew, W.T., and Meredith, W.R. (1992) "Light interception and lint yield of narrow-row cotton."
 Crop Science 32: 728-733.
- 15 Hollifield, C.D., Silvertooth, J.C., and Moser, H. (2000) "Comparison of obsolete and modern cotton cultivars for
- 16 irrigated production in Arizona." 2000 Arizona Cotton Report, University of Arizona College of Agriculture,
- 17 http://ag.arizona.edu/pubs/crops/az1170/.
- Hopkinson, J.M. (1967) "Effects of night temperature on the growth of Nicotiana tabacum." Australian Journal of
 Experimental Agriculture and Animal Husbandry 7: 78–82.
- Huett, D.O., and Dettman, E.B. (1991) Effect of nitrogen on growth, quality and nutrient uptake of cabbages grown
 in sand culture. *Australian Journal of Experimental Agriculture* 29: 875-81.
- Huett, D.O., and Dettman, B. (1989) "Nitrogen response surface models of zucchini squash, head lettuce and
 potato." *Plant and Soil* 134: 243-254.
- 24 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 25 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 26 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 27 IPCC/UNEP/OECD/IEA (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.
- Intergovernmental Panel on Climate Change, United Nations Environment Programme, Organization for Economic
 Co-Operation and Development, International Energy Agency, Paris, France.
- Jacobs, J.L., Ward, G.N., and Kearney, G. (2004) "Effects of irrigation strategies and nitrogen fertilizer on turnip dry
- matter yield, water use efficiency, nutritive characteristics and mineral content in western Victoria." Australian
 Journal of Experimental Agriculture 44: 13-26.
- Jacobs, J.L., Ward, G.N., McDowell, A.M., and Kearney, G. (2002) "Effect of seedbed cultivation techniques, variety,
 soil type and sowing time, on brassica dry matter yields, water use efficiency and crop nutritive characteristics in
 western Victoria." *Australian Journal of Experimental Agriculture* 42: 945-952.
- 36 Jacobs, J.L., Ward, G.N., McDowell, A.M., and Kearney, G.A. (2001) "A survey on the effect of establishment
- techniques, crop management, moisture availability and soil type on turnip dry matter yields and nutritive
- 38 characteristics in western Victoria." *Australian Journal of Experimental Agriculture* 41: 743–751.
- Kage, H., Alt, C., and Stűtzel, H. (2003) "Aspects of nitrogen use efficiency of cauliflower II. Productivity and
 nitrogen partitioning as influenced by N supply." *Journal of Agricultural Science* 141: 17–29.
- Kumar, A., Singh, D.P., and Singh, P. (1994) "Influence of water stress on photosynthesis, transpiration, water-use
 efficiency and yield of Brassica juncea L. *Field Crops Research* 37: 95-101.
- 43 LANDFIRE (2008) Existing Vegetation Type Layer, LANDFIRE 1.1.0, U.S. Department of the Interior, Geological
- 44 Survey. Accessed 28 October 2010 at <http://landfire.cr.usgs.gov/viewer/>.

- MacLeod, L.B., Gupta, U.C., and Cutcliffe, J.A. {1971) "Effect of N, P, and K on root yield and nutrient levels in the
 leaves and roots of rutabagas grown in a greenhouse." *Plant and Soil* 35: 281-288.
- 3 Mahrani, A., and Aharonov, B. (1964) "Rate of nitrogen absorption and dry matter production by upland cotton
- 4 grown under irrigation." Israel J. Agric. Res. 14: 3-9.
- Marcussi, F.F.N., Bôas, R.L.V., de Godoy, L.J.G., and Goto, R. (2004) "Macronutrient accumulation and partitioning
 in fertigated sweet pepper plants." *Sci. Agric. (Piracicaba, Braz.)* 61: 62-68.
- 7 McCarty, J.L. (2011) "Remote Sensing-Based Estimates of Annual and Seasonal Emissions from Crop Residue
- Burning in the Contiguous United States." *Journal of the Air & Waste Management Association*, 61:1, 22-34, DOI:
 10.3155/1047-3289.61.1.22.
- 10 McCarty, J.L. (2010) Agricultural Residue Burning in the Contiguous United States by Crop Type and State.
- 11 Geographic Information Systems (GIS) Data provided to the EPA Climate Change Division by George Pouliot,
- 12 Atmospheric Modeling and Analysis Division, EPA. Dr. McCarty's research was supported by the NRI Air Quality
- 13 Program of the Cooperative State Research, Education, and Extension Service, USDA, under Agreement No.
- 14 20063511216669 and the NASA Earth System Science Fellowship.
- McCarty, J.L. (2009) Seasonal and Interannual Variability of Emissions from Crop Residue Burning in the Contiguous
 United States. Dissertation. University of Maryland, College Park.
- 17 McPharlin, I.R., Aylmore, P.M., and Jeffery, R.C. (1992) "Response of carrots (Daucus carota L.) to applied
- phosphorus and phosphorus leaching on a Karrakatta sand, under two irrigation regimes." Australian Journal of
 Experimental Agriculture 32:225-232.
- Mondino, M.H., Peterlin, O.A., and Garay, F. (2004) "Response of late-planted cotton to the application of growth regulator (chlorocholine chloride, CYCOCEL 75)." *Expl Agric.* 40: 381–387.
- Moustakas, N.K., and Ntzanis, H. (2005) "Dry matter accumulation and nutrient uptake in flue-cured tobacco
 (Nicotiana tabacum L.)." *Field Crops Research* 94: 1-13.
- Peach, L., Benjamin, L.R., and Mead, A. (2000) "Effects on the growth of carrots (Daucus carota L.), cabbage
- (Brassica oleracea var. capitata L.) and onion (Allium cepa L.) of restricting the ability of the plants to intercept
 resources." *Journal of Experimental Botany* 51: 605-615.
- Pettigrew, W.T., and Meredith, W.R., Jr. (1997) "Dry matter production, nutrient uptake, and growth of cotton as
 affected by potassium fertilization." *J. Plant Nutr.* 20:531–548.
- Pettigrew, W.T., Meredith, W.R., Jr., and Young, L.D. (2005) "Potassium fertilization effects on cotton lint yield,
 yield components, and reniform nematode populations." *Agronomy Journal* 97: 1245-1251.
- PRISM Climate Group (2015) PRISM Climate Data. Oregon State University. July 24, 2015. Available online at:
 http://prism.oregonstate.edu>.
- Reid, J.B., and English, J.M. (2000) "Potential yield in carrots (Daucus carota L.): Theory, test, and an application."
 Annals of Botany 85: 593-605.
- Sadras, V.O., and Wilson, L.J. (1997) "Growth analysis of cotton crops infested with spider mites: II. Partitioning of dry matter." *Crop Science* 37: 492-497.
- Scholberg, J., McNeal, B.L., Jones, J.W., Boote, K.J., Stanley, C.D., and Obreza, T.A. (2000a) "Growth and canopy
 characteristics of field-grown tomato." *Agronomy Journal* 92: 152-159.
- Scholberg, J., McNeal, B.L., Boote, K.J., Jones, J.W., Locasio, S.J., and Olson, S.M. (2000b) "Nitrogen stress effects
 on growth and nitrogen accumulation by field-grown tomato." *Agronomy Journal* 92:159-167.
- Singels, A. and Bezuidenhout, C.N. (2002) "A new method of simulating dry matter partitioning in the Canegro
 sugarcane model." *Field Crops Research* 78: 151 164.

- 1 Sitompul, S.M., Hairiah, K., Cadisch, G., and Van Noordwuk, M. (2000) "Dynamics of density fractions of macro-
- organic matter after forest conversion to sugarcane and woodlots, accounted for in a modified Century model."
 Netherlands Journal of Agricultural Science 48: 61-73.
- 4 Stirling, G.R., Blair, B.L., Whittle, P.J.L., and Garside, A.L. (1999) "Lesion nematode (Pratylenchus zeae) is a
- 5 component of the yield decline complex of sugarcane." In: Magarey, R.C. (Ed.), *Proceedings of the First*
- 6 Australasian Soilborne Disease Symposium. Bureau of Sugar Experiment Stations, Brisbane, pp. 15–16.
- 7 Tan, D.K.Y., Wearing, A.H., Rickert, K.G., and Birch, C.J. (1999) "Broccoli yield and quality can be determined by
- cultivar and temperature but not photoperiod in south-east Queensland." Australian Journal of Experimental
 Agriculture 39: 901–909.
- Tadesse, T., Nichols, M.A., and Fisher, K.J., 1999. Nutrient conductivity effects on sweet pepper plants grown using
 a nutrient film technique. 1. Yield and fruit quality. New Zealand Journal of Crop and Horticultural Science, 27:
- 12 229-237.
- Torbert, H.A., and Reeves, D.W. (1994) "Fertilizer nitrogen requirements for cotton production as affected by
 tillage and traffic." *Soil Sci. Soc. Am. J.* 58:1416-1423.
- 15 USDA-NRCS (2018) Summary Report: 2015 National Resources Inventory, Natural Resources Conservation Service,
- 16 Washington, D.C., and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa.
- 17 https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1422028.pdf.
- 18 USDA (2019) Quick Stats: U.S. & All States Data; Crops; Production and Area Harvested; 1990 2018. National
- 19 Agricultural Statistics Service, U.S. Department of Agriculture. Washington, D.C. U.S. Department of Agriculture,
- 20 National Agricultural Statistics Service. Washington, D.C., Available online at: http://quickstats.nass.usda.gov/.
- Valantin, M., Gary, C., Vaissiére, B.E., and Frossard, J.S. (1999) "Effect of fruit load on partitioning of dry matter and
 energy in cantaloupe (Cucumis melo L.)." *Annals of Botany* 84: 173-181.
- Wallach, D., Marani, A., and Kletter, E. (1978) "The relation of cotton crop growth and development to final yield."
 Field Crops Research 1: 283-294.
- Wells, R., and Meredith, W.R., Jr. (1984) "Comparative growth of obsolete and modern cultivars. I. Vegetative dry
 matter partitioning." *Crop Science* 24: 858-872.4.
- 27 Wiedenfels, R.P. (2000) "Effects of irrigation and N fertilizer application on sugarcane yield and quality." Field Crops
- 28 Research 43: 101-108.

²⁹ Land Use, Land-Use Change, and Forestry

- 30 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 33 UNFCCC (2014) Report of the Conference of the Parties on its nineteenth session, held in Warsaw from 11 to 23
- 34 November 2013. United Nations Framework Convention on Climate Change, Warsaw. (FCCC/CP/2013/10/Add.3).
- 35 January 31, 2014. Available online at: http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>.

Representation of the U.S. Land Base

- 37 Alaska Department of Natural Resources (2006) Alaska Infrastructure 1:63,360. Available online at:
- 38 <http://dnr.alaska.gov/SpatialUtility/SUC?cmd=extract&layerid=75>.
- 39 Alaska Interagency Fire Management Council (1998) Alaska Interagency Wildland Fire Management Plan. Available
- 40 online at: <http://agdc.usgs.gov/data/blm/fire/index.html>.

- 1 Alaska Oil and Gas Conservation Commission (2009) Oil and Gas Information System. Available online at:
- 2 <http://doa.alaska.gov/ogc/publicdb.html>.
- 3 EIA (2011) Coal Production and Preparation Report Shapefile. Available online at:
- 4 <http://www.eia.gov/state/notes-sources.cfm#maps>.
- 5 ESRI (2008) ESRI Data & Maps. Redlands, CA: Environmental Systems Research Institute. [CD-ROM].
- Fry, J., Xian, G., Jin, S., Dewitz, J., Homer, C., Yang, L., Barnes, C., Herold, N., and J. Wickham. (2011) Completion of
 the 2006 National Land Cover Database for the Conterminous United States, PE&RS, Vol. 77(9):858-864.
- 8 Homer, C., J. Dewitz, J. Fry, M. Coan, N. Hossain, C. Larson, N. Herold, A. McKerrow, J.N. VanDriel and J. Wickham.
- 9 (2007) Completion of the 2001 National Land Cover Database for the Conterminous United States,
- 10 Photogrammetric Engineering and Remote Sensing, Vol. 73, No. 4, pp 337-341.
- Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., Wickham, J.D., and
- 12 Megown, K. (2015) Completion of the 2011 National Land Cover Database for the conterminous United States-
- 13 Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing, v.
- 14 81, no. 5, p. 345-354.
- 15 IPCC (2014) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands.
- Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds.). Published: IPCC,
 Switzerland.
- 18 IPCC (2010) Revisiting the use of managed land as a proxy for estimating national anthropogenic emissions and
- removals. [Eggleston HS, Srivastava N, Tanabe K, Baasansuren J, (eds.)]. Institute for Global Environmental Studies,
 Intergovernmental Panel on Climate Change, Hayama, Kanagawa, Japan.
- 21 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- Jin, S., L. Yang, P. Danielson, C. Homer, J. Fry, and G. Xian. (2013) A comprehensive change detection method for updating the National Land Cover Database to circa 2011. Remote Sensing of Environment, 132: 159-175.
- 26 NOAA Coastal Change Analysis Program (C-CAP) Regional Land Cover Database. Data collected 1995-present
- 27 Charleston, SC: National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center. Data accessed
- 28 at: <www.csc.noaa.gov/landcover>.
- Nusser, S.M. and J.J. Goebel (1997) "The national resources inventory: a long-term multi-resource monitoring
 programme." Environmental and Ecological Statistics 4:181-204.
- 31 Ogle, S.M., G. Domke, W.A. Zurz, M.T. Rocha, T. Huffman, A. Swan, J.E. Smith, C. Woodall, T. Krug (2018)
- Delineating managed land for reporting greenhouse gas emissions and removals to the United Nations Framework
 Convention on Climate Change. Carbon Balance and Management 13:9.
- Smith, W.B., P.D. Miles, C.H. Perry, and S.A. Pugh (2009) Forest Resources of the United States, 2007. Gen. Tech.
 Rep. WO-78. U.S. Department of Agriculture Forest Service, Washington, D.C.
- 36 U.S. Census Bureau (2010) Topologically Integrated Geographic Encoding and Referencing (TIGER) system
- 37 shapefiles. U.S. Census Bureau, Washington, D.C. Available online at: http://www.census.gov/geo/www/tiger.
- U.S. Department of Agriculture (2015) County Data Livestock, 1990-2014. U.S. Department of Agriculture,
- 39 National Agriculture Statistics Service, Washington, D.C.
- 40 U.S. Department of Agriculture, Forest Service. Timber Product Output (TPO) Reports. Knoxville, TN: U.S.
- 41 Department of Agriculture Forest Service, Southern Research Station. 2012. http://srsfi
- 42 a2.fs.fed.us/php/tpo_2009/tpo_rpa_int1.php. Accessed November 2017.

- 1 U.S. Department of Interior (2005) Federal Lands of the United States. National Atlas of the United States, U.S.
- 2 Department of the Interior, Washington D.C. Available online at:
- 3 <http://nationalatlas.gov/atlasftp.html?openChapters=chpbound#chpbound>.
- 4 United States Geological Survey (USGS), Gap Analysis Program (2012) Protected Areas Database of the United
- 5 States (PADUS), version 1.3 Combined Feature Class. November 2012.
- 6 USGS (2012) Alaska Resource Data File. Available online at: http://ardf.wr.usgs.gov/>.
- USGS (2005) Active Mines and Mineral Processing Plants in the United States in 2003. U.S. Geological Survey,
 Reston, VA.
- 9 Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M.,
- 10 Granneman, B., Liknes, G. C., Rigge, M. & Xian, G. (2018) A new generation of the United States National Land
- 11 Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS Journal of
- 12 Photogrammetry and Remote Sensing 146: 108-123.

13 Forest Land Remaining Forest Land: Changes in Forest Carbon

14 Stocks

- 15 AF&PA (2006a and earlier) Statistical roundup. (Monthly). Washington, D.C. American Forest & Paper Association.
- AF&PA (2006b and earlier) Statistics of paper, paperboard and wood pulp. Washington, D.C. American Forest &
 Paper Association.
- 18 Amichev, B.Y. and J.M. Galbraith (2004) "A Revised Methodology for Estimation of Forest Soil Carbon from Spatial
- 19 Soils and Forest Inventory Data Sets." Environmental Management 33(Suppl. 1):S74-S86.
- 20 Bechtold, W.A.; Patterson, P.L. (2005) The enhanced forest inventory and analysis program—national sampling
- design and estimation procedures. Gen. Tech. Rep. SRS-80. Asheville, NC: U.S. Department of Agriculture Forest
- 22 Service, Southern Research Station. 85 p.
- Birdsey, R. (1996) "Carbon Storage for Major Forest Types and Regions in the Conterminous United States." In R.N.
- 24 Sampson and D. Hair, (eds.). Forest and Global Change, Volume 2: Forest Management Opportunities for
- 25 Mitigating Carbon Emissions. American Forests. Washington, D.C., 1-26 and 261-379 (appendices 262 and 263).
- Coulston, J.W., Wear, D.N., and Vose, J.M. (2015) Complex forest dynamics indicate potential for slowing carbon
 accumulation in the southeastern United States. Scientific Reports. 5: 8002.
- 28 Domke, G.M., J.E. Smith, and C.W. Woodall. (2011) Accounting for density reduction and structural loss in standing
- dead trees: Implications for forest biomass and carbon stock estimates in the United States. Carbon Balance andManagement. 6:14.
- Domke, G.M., Woodall, C.W., Smith, J.E., Westfall, J.A., McRoberts, R.E. (2012) Consequences of alternative tree level biomass estimation procedures on U.S. forest carbon stock estimates. Forest Ecology and Management. 270:
 108-116.
- Domke, G.M., Perry, C.H., Walters, B.F., Woodall, C.W., and Smith, J.E. (2016) A framework for estimating litter carbon stocks in forests of the United States. Science of the Total Environment 557–558: 469–478.
- Domke, G.M., Woodall, C.W., Walters, B.F., Smith, J.E. (2013) From models to measurements: comparing down
 dead wood carbon stock estimates in the U.S. forest inventory. PLoS ONE 8(3): e59949.
- Domke, G.M., Perry, C.H., Walters, B.F., Woodall, C.W., Nave, L., Swanston, C. (2017) Toward inventory-based
 estimates of soil organic carbon in forests of the United States. Ecological Applications. 27(4), 1223-1235.
- 40 EPA (2006) Municipal solid waste in the United States: 2005 Facts and figures. Office of Solid Waste, U.S.
- 41 Environmental Protection Agency. Washington, D.C. (5306P) EPA530-R-06-011. Available online at:
- 42 <http://www.epa.gov/msw/msw99.htm>.

- Frayer, W.E., and G.M. Furnival (1999) "Forest Survey Sampling Designs: A History." Journal of Forestry 97(12): 4 10.
- 3 Freed, R. (2004) Open-dump and Landfill timeline spreadsheet (unpublished). ICF International. Washington, D.C.
- Hair, D. (1958) "Historical forestry statistics of the United States." Statistical Bull. 228. U.S. Department of
 Agriculture Forest Service, Washington, D.C.
- Hair. D. and A.H. Ulrich (1963) The Demand and price situation for forest products 1963. U.S. Department of
 Agriculture Forest Service, Misc Publication No. 953. Washington, D.C.
- 8 Harmon, M.E., C.W. Woodall, B. Fasth, J. Sexton, M. Yatkov. (2011) Differences between standing and downed
- 9 dead tree wood density reduction factors: A comparison across decay classes and tree species. Res. Paper. NRS-15.
- 10 Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 40 p.
- Howard, J. L. and Liang, S. (2019). U.S. timber production, trade, consumption, and price statistics 1965 to 2017.
 Res. Pap. FPL-RP-701. Madison, WI: USDA, Forest Service, Forest Products Laboratory.
- Howard, J. L. and Jones, K.C. (2016) U.S. timber production, trade, consumption, and price statistics 1965 to 2013.
 Res. Pap. FPL-RP-679. Madison, WI: USDA, Forest Service, Forest Products Laboratory.
- Howard, J. L. (2007) U.S. timber production, trade, consumption, and price statistics 1965 to 2005. Res. Pap. FPL RP-637. Madison, WI: USDA, Forest Service, Forest Products Laboratory.
- 17 Howard, J. L. (2003) U.S. timber production, trade, consumption, and price statistics 1965 to 2002. Res. Pap. FPL-
- 18 RP-615. Madison, WI: USDA, Forest Service, Forest Products Laboratory. Available online at:
- 19 <http://www.fpl.fs.fed.us/documnts/fplrp/fplrp615/fplrp615.pdf>.
- IPCC (2014) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands.
 [Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M., and Troxler, T.G. (eds.)]. Switzerland.
- 22 IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth
- 23 Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen,
- 24 M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom
- and New York, NY, USA, 996 pp.
- 26 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- Jenkins, J.C., D.C. Chojnacky, L.S. Heath, and R.A. Birdsey (2003) "National-scale biomass estimators for United
 States tree species." Forest Science 49(1):12-35.
- Jandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M. F., Bampa, F., van Wesemael, B., Harrison, R.B., Guerrini, I.A.,
- deB Richter Jr., D., Rustad, L., Lorenz, K., Chabbi, A., Miglietta, F. (2014) Current status, uncertainty and future
- needs in soil organic carbon monitoring. Science of the Total Environment, 468, 376-383.
- Johnson, K. Domke, G.M., Russell, M.B., Walters, B.F., Hom, J., Peduzzi, A., Birdsey, R., Dolan, K., Huang, W. (2017).
 Estimating aboveground live understory vegetation carbon in the United States. Environmental Research Letters.
- Ogle, S.M., Woodall, C.W., Swan, A., Smith, J.E., Wirth. T. In preparation. Determining the Managed Land Base for
 Delineating Carbon Sources and Sinks in the United States. Environmental Science and Policy.
- 38 O'Neill, K.P., Amacher, M.C., Perry, C.H. (2005) Soils as an indicator of forest health: a guide to the collection,
- analysis, and interpretation of soil indicator data in the Forest Inventory and Analysis program. Gen. Tech. Rep. NC 258. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Research Station. 53 p.
- 230.51, radi, with 0.3. Department of Agriculture, rolest service, north central research station. $35 \, \text{p}$.
- Oswalt, S.N.; Smith. W.B.; Miles, P.D.; Pugh, S.A. (2014) Forest Resources of the United States, 2012. Gen. Tech.
 Rep. WO-91. Washington, D.C. U.S. Department of Agriculture, Forest Service, Washington Office. 218 p.
- Perry, C.H., C.W. Woodall, and M. Schoeneberger (2005) Inventorying trees in agricultural landscapes: towards an
 accounting of "working trees". In: "Moving Agroforestry into the Mainstream." Proc. 9th N. Am. Agroforestry

- 1 Conf., Brooks, K.N. and Folliott, P.F. (eds.). 12-15 June 2005, Rochester, MN [CD-ROM]. Dept. of Forest Resources,
- Univ. Minnesota, St. Paul, MN, 12 p. Available online at: http://cinram.umn.edu/afta2005/>. (verified 23 Sept 2006).
- 4 Russell, M.B.; D'Amato, A.W.; Schulz, B.K.; Woodall, C.W.; Domke, G.M.; Bradford, J.B. (2014) Quantifying
- 5 understory vegetation in the U.S. Lake States: a proposed framework to inform regional forest carbon stocks.
- 6 Forestry. 87: 629-638.
- Russell, M.B.; Domke, G.M.; Woodall, C.W.; D'Amato, A.W. (2015) Comparisons of allometric and climate-derived
 estimates of tree coarse root carbon in forests of the United States. Carbon Balance and Management. 10: 20.
- 9 Skog, K.E. (2008) Sequestration of carbon in harvested wood products for the United States. Forest Products
 10 Journal 58:56-72.
- 11 Smith, J.E.; Heath, L.S.; Skog, K.E.; Birdsey, R.A. (2006) Methods for calculating forest ecosystem and harvested
- 12 carbon with standard estimates for forest types of the United States. Gen. Tech. Rep. NE-343. Newtown Square,
- 13 PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 216 p.
- Smith, W. B., P. D. Miles, C. H. Perry, and S. A. Pugh (2009) Forest Resources of the United States, 2007. General
 Technical Report WO-78, U.S. Department of Agriculture Forest Service, Washington Office.
- 16 Smith, J.E., L.S. Heath, and M.C. Nichols (2010) U.S. Forest Carbon Calculation Tool User's Guide: Forestland Carbon
- Stocks and Net Annual Stock Change. General Technical Report NRS-13 revised, U.S. Department of Agriculture
 Forest Service, Northern Research Station, 34 p.
- Steer, Henry B. (1948) Lumber production in the United States. Misc. Pub. 669, U.S. Department of Agriculture
 Forest Service. Washington, D.C.
- Ulrich, Alice (1985) U.S. Timber Production, Trade, Consumption, and Price Statistics 1950-1985. Misc. Pub. 1453,
 U.S. Department of Agriculture Forest Service. Washington, D.C.
- 23 Ulrich, A.H. (1989) U.S. Timber Production, Trade, Consumption, and Price Statistics, 1950-1987. USDA
- 24 Miscellaneous Publication No. 1471, U.S. Department of Agriculture Forest Service. Washington, D.C., 77.
- United Nations Framework Convention on Climate Change (2013) Report on the individual review of the inventory
 submission of the United States of America submitted in 2012. FCCC/ARR/2012/USA. 42 p.
- 27 USDA Forest Service (2018a) Forest Inventory and Analysis National Program: Program Features. U.S. Department
- of Agriculture Forest Service. Washington, D.C. Available online at: http://fia.fs.fed.us/program-features/>.
- 29 Accessed 1 November 2018.
- 30 USDA Forest Service. (2018b) Forest Inventory and Analysis National Program: FIA Data Mart. U.S. Department of
- 31 Agriculture Forest Service. Washington, D.C. Available online at: http://apps.fs.fed.us/fiadb-
- 32 downloads/datamart.html>. Accessed on 1 November 2018.
- 33 USDA Forest Service. (2018c) Forest Inventory and Analysis National Program, FIA library: Field Guides, Methods
- 34 and Procedures. U.S. Department of Agriculture Forest Service. Washington, D.C. Available online at:
- 35 http://www.fia.fs.fed.us/library/field-guides-methods-proc/. Accessed on 1 November 2018.
- 36 USDA Forest Service (2018d) Forest Inventory and Analysis National Program, FIA library: Database
- 37 Documentation. U.S. Department of Agriculture, Forest Service, Washington Office. Available online at:
- 38 <http://fia.fs.fed.us/library/database-documentation/>. Accessed on 1 November 2018.
- U.S. Census Bureau (1976) Historical Statistics of the United States, Colonial Times to 1970, Vol. 1. Washington,
 D.C.
- Wear, D.N., Coulston, J.W. (2015) From sink to source: Regional variation in U.S. forest carbon futures. Scientific
 Reports. 5: 16518.
- Westfall, J.A., Woodall, C.W., Hatfield, M.A. (2013) A statistical power analysis of woody carbon flux from forest
 inventory data. Climatic Change. 118: 919-931.

- 1 Woodall, C.W., Coulston, J.W., Domke, G.M., Walters, B.F., Wear, D.N., Smith, J.E., Anderson, H.-E., Clough, B.J.,
- 2 Cohen, W.B., Griffith, D.M., Hagan, S.C., Hanou, I.S.; Nichols, M.C., Perry, C.H., Russell, M.B., Westfall, J.A., Wilson,
- B.T. (2015a) The U.S. Forest Carbon Accounting Framework: Stocks and Stock change 1990-2016. Gen. Tech. Rep.
- 4 NRS-154. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 49 pp.
- 5 Woodall, C.W., L.S. Heath, G.M. Domke, and M.C. Nichols (2011a) Methods and equations for estimating
- 6 aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. Gen. Tech. Rep. NRS-88.
- 7 Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 30 p.
- 8 Woodall, C.W., Amacher, M.C., Bechtold, W.A., Coulston, J.W., Jovan, S., Perry, C.H., Randolph, K.C., Schulz, B.K.,
- 9 Smith, G.C., Tkacz, B., Will-Wolf, S. (2011b) "Status and future of the forest health indicators program of the United
- 10 States." Environmental Monitoring and Assessment. 177: 419-436.
- 11 Woodall, C.W., and V.J. Monleon (2008) Sampling protocol, estimation, and analysis procedures for the down
- 12 woody materials indicator of the FIA program. Gen. Tech. Rep. NRS-22. Newtown Square, PA: U.S. Department of
- 13 Agriculture, Forest Service, Northern Research Station. 68 p.
- Woodall, C.W., Walters, B.F., Oswalt, S.N., Domke, G.M., Toney, C., Gray, A.N. (2013) Biomass and carbon
 attributes of downed woody materials in forests of the United States. Forest Ecology and Management 305: 48-59.
- 16 Woodall, C.W., Walters, B.F., Coulston, J.W., D'Amato, A.W., Domke, G.M., Russell, M.B., Sowers, P.A. (2015b)
- 17 Monitoring network confirms land use change is a substantial component of the forest carbon sink in the eastern
- 18 United States. Scientific Reports. 5: 17028.
- 19 Zhu, Zhiliang, and McGuire, A.D., eds., (2016) Baseline and projected future carbon storage and greenhouse-gas
- 20 fluxes in ecosystems of Alaska: U.S. Geological Survey Professional Paper 1826, 196 p., Available online at:
- 21 <http://dx.doi.org/10.3133/pp1826>.

Forest Land Remaining Forest Land: Non-CO₂ Emissions from Forest Fires

- Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z.L., Quayle, B. and Howard, S., (2007). A project for monitoring trends
 in burn severity. Fire ecology, 3(1), pp.3-21.
- Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N., Wickham, J. and Megown, K.,
 (2015). Completion of the 2011 National Land Cover Database for the conterminous United States–representing a
- decade of land cover change information. Photogrammetric Engineering & Remote Sensing, 81(5), pp.345-354.
- 29 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- MTBS Data Summaries. 2018. MTBS Data Access: Fire Level Geospatial Data. (2018, August last revised). MTBS
 Project (USDA Forest Service/U.S. Geological Survey). Available online: http://mtbs.gov/direct-download
- 34 [06Aug2018].
- 35 Ogle, S. M., G. M. Domke, W. A. Kurz, M. T. Rocha, T. Huffman, A. Swan, J. E. Smith, C. W. Woodall, and T. Krug.
- 36 (2018). Delineating managed land for reporting national greenhouse gas emissions and removals to the United
- 37 Nations framework convention on climate change. Carbon Balance and Management 13:9.
- 38 Ruefenacht, B., Finco, M.V., Nelson, M.D., Czaplewski, R., Helmer, E.H., Blackard, J.A., Holden, G.R., Lister, A.J.,
- 39 Salajanu, D., Weyermann, D. and Winterberger, K., (2008). Conterminous US and Alaska forest type mapping using
- 40 forest inventory and analysis data. Photogrammetric Engineering & Remote Sensing, 74(11), pp.1379-1388.
- 41 Smith, J. E., L. S. Heath, and C. M. Hoover. (2013). Carbon factors and models for forest carbon estimates for the
- 42 2005-2011 National Greenhouse Gas Inventories of the United States. For. Ecology and Management 307:7–19.

- 1 USDA Forest Service (2018b) Forest Inventory and Analysis National Program: FIA Data Mart. U.S. Department of
- 2 Agriculture Forest Service. Washington, D.C. Available online at: http://apps.fs.fed.us/fiadb-
- 3 downloads/datamart.html>. Accessed on 1 November 2018.
- 4 USDA Forest Service (2018d) Forest Inventory and Analysis National Program, FIA library: Database
- 5 Documentation. U.S. Department of Agriculture, Forest Service, Washington Office. Available online at:
- 6 <http://fia.fs.fed.us/library/database-documentation/>. Accessed on 1 November 2018.

7 Forest Land Remaining Forest Land: N₂O Emissions from Soils

- Albaugh, T.J., Allen, H.L., Fox, T.R. (2007) Historical Patterns of Forest Fertilization in the Southeastern United
 States from 1969 to 2004. Southern Journal of Applied Forestry, 31, 129-137(9).
- 10 Binkley, D. (2004) Email correspondence regarding the 95 percent confidence interval for area estimates of
- southern pine plantations receiving N fertilizer (±20%) and the rate applied for areas receiving N fertilizer (100 to
- 12 200 pounds/acre). Dan Binkley, Department of Forest, Rangeland, and Watershed Stewardship, Colorado State
- University and Stephen Del Grosso, Natural Resource Ecology Laboratory, Colorado State University. September
 19, 2004.
- Binkley, D., R. Carter, and H.L. Allen (1995) Nitrogen Fertilization Practices in Forestry. In: Nitrogen Fertilization in the Environment, P.E. Bacon (ed.), Marcel Decker, Inc., New York.
- 17 Briggs, D. (2007) Management Practices on Pacific Northwest West-Side Industrial Forest Lands, 1991-2005: With
- Projections to 2010. Stand Management Cooperative, SMC Working Paper Number 6, College of Forest Resources,
 University of Washington, Seattle.
- Fox, T.R., H. L. Allen, T.J. Albaugh, R. Rubilar, and C.A. Carlson (2007) Tree Nutrition and Forest Fertilization of Pine
- 21 Plantations in the Southern United States. Southern Journal of Applied Forestry, 31, 5-11.
- 22 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 25 USDA Forest Service (2001) U.S. Forest Facts and Historical Trends. FS-696. U.S. Department of Agriculture Forest
- 26 Service, Washington, D.C. Available online at: http://www.fia.fs.fed.us/library/ForestFactsMetric.pdf>.

27 Forest Land Remaining Forest Land: Drained Organic Soils

- 28 IPCC (2014) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands,
- Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds.). Published: IPCC,
 Switzerland.
- 31 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 32 Inventories Programme, The Intergovernmental Panel on Climate Change, H.S. Eggleston, L. Buendia, K. Miwa, T.
- 33 Ngara, and K. Tanabe (eds.). Hayama, Kanagawa, Japan.
- 34 STATSGO2 (2016) Soil Survey Staff, Natural Resources Conservation Service, United States Department of
- Agriculture. U.S. General Soil Map (STATSGO2). Available online at https://sdmdataaccess.sc.egov.usda.gov.
 Accessed 10 November 2016.
- 37 USDA Forest Service (2018) Forest Inventory and Analysis National Program: FIA Data Mart. U.S. Department of
- 38 Agriculture Forest Service. Washington, DC; 2015. Available online at http://apps.fs.fed.us/fiadb-
- 39 downloads/datamart.html>. Accessed 1 November 2018.

1 Land Converted to Forest Land

- 2 Birdsey, R. (1996) "Carbon Storage for Major Forest Types and Regions in the Conterminous United States." In R.N.
- 3 Sampson and D. Hair, (eds.). Forest and Global Change, Volume 2: Forest Management Opportunities for
- 4 Mitigating Carbon Emissions. American Forests. Washington, D.C., 1-26 and 261-379 (appendices 262 and 263).
- 5 Brockwell, Peter J., and Richard A. Davis. Introduction to time series and forecasting. Springer, 2016.
- 6 Domke, G.M., J.E. Smith, and C.W. Woodall. (2011) Accounting for density reduction and structural loss in standing
- 7 dead trees: Implications for forest biomass and carbon stock estimates in the United States. Carbon Balance and
- 8 Management. 6:14.Domke, G.M., Perry, C.H., Walters, B.F., Woodall, C.W., Nave, L., Swanston, C. (2017) Toward
- 9 inventory-based estimates of soil organic carbon in forests of the United States. Ecological Applications. 27(4),
- 10 1223-1235.
- Domke, G.M., Perry, C.H., Walters, B.F., Woodall, C.W., and Smith, J.E. (2016) A framework for estimating litter carbon stocks in forests of the United States. Science of the Total Environment 557–558: 469–478.
- Domke, G.M., Woodall, C.W., Walters, B.F., Smith, J.E. (2013) From models to measurements: comparing down dead wood carbon stock estimates in the U.S. forest inventory. PLoS ONE 8(3): e59949.
- 15 Harmon, M.E., C.W. Woodall, B. Fasth, J. Sexton, M. Yatkov. (2011) Differences between standing and downed
- dead tree wood density reduction factors: A comparison across decay classes and tree species. Res. Paper. NRS-15.
- 17 Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 40 p.
- 18 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 21 Jenkins, J.C., D.C. Chojnacky, L.S. Heath, and R.A. Birdsey (2003) "National-scale biomass estimators for United
- 22 States tree species." Forest Science 49(1):12-35.Ogle, S.M., M.D. Eve, F.J. Breidt, and K. Paustian (2003)
- 23 "Uncertainty in estimating land use and management impacts on soil organic carbon storage for U.S.
- agroecosystems between 1982 and 1997." Global Change Biology 9:1521-1542.
- Ogle, S.M., F.J. Breidt, and K. Paustian. (2006) "Bias and variance in model results due to spatial scaling of
 measurements for parameterization in regional assessments." Global Change Biology 12:516-523.
- 27 Smith, J.E.; Heath, L.S.; Skog, K.E.; Birdsey, R.A. (2006) Methods for calculating forest ecosystem and harvested
- carbon with standard estimates for forest types of the United States. Gen. Tech. Rep. NE-343. Newtown Square,
 PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 216 p.
- 30 USDA Forest Service (2018b) Forest Inventory and Analysis National Program: FIA Data Mart. U.S. Department of
- 31 Agriculture Forest Service. Washington, D.C. Available online at: http://apps.fs.fed.us/fiadb-
- 32 downloads/datamart.html>. Accessed on 1 November 2018.
- 33 USDA Forest Service (2018c) Forest Inventory and Analysis National Program, FIA library: Field Guides, Methods
- 34 and Procedures. U.S. Department of Agriculture Forest Service. Washington, D.C. Available online at:
- 35 <http://www.fia.fs.fed.us/library/field-guides-methods-proc/>. Accessed on 1 November 2018.
- 36 USDA-NRCS (2018) Summary Report: 2015 National Resources Inventory, Natural Resources Conservation Service,
- 37 Washington, D.C., and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa.
- 38 https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1422028.pdf.
- 39 USDA-NRCS (1997) "National Soil Survey Laboratory Characterization Data," Digital Data, Natural Resources
- 40 Conservation Service, U.S. Department of Agriculture. Lincoln, NE.
- 41 Woodall, C.W., L.S. Heath, G.M. Domke, and M.C. Nichols (2011a) Methods and equations for estimating
- 42 aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. Gen. Tech. Rep. NRS-88.
- 43 Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 30 p.

- 1 Woodall, C.W., and V.J. Monleon (2008) Sampling protocol, estimation, and analysis procedures for the down
- 2 woody materials indicator of the FIA program. Gen. Tech. Rep. NRS-22. Newtown Square, PA: U.S. Department of 3 Agriculture, Forest Service, Northern Research Station. 68 p.
- 4 Woodall, C.W., Walters, B.F., Coulston, J.W., D'Amato, A.W., Domke, G.M., Russell, M.B., Sowers, P.A. (2015b)
- 5 Monitoring network confirms land use change is a substantial component of the forest carbon sink in the eastern 6 United States. Scientific Reports. 5: 17028.
- 7 Woodall, C.W., Walters, B.F., Oswalt, S.N., Domke, G.M., Toney, C., Gray, A.N. (2013) Biomass and carbon
- 8 attributes of downed woody materials in forests of the United States. Forest Ecology and Management 305: 48-59.
- 9 Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M.,
- 10 Granneman, B., Liknes, G. C., Rigge, M. & Xian, G. (2018) A new generation of the United States National Land
- 11 Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS Journal of
- 12 Photogrammetry and Remote Sensing 146: 108-123.

Cropland Remaining Cropland 13

- Armentano, T. V., and E.S. Menges (1986). Patterns of change in the carbon balance of organic soil-wetlands of the 14 15 temperate zone. Journal of Ecology 74: 755-774.
- 16 Brady, N.C. and R.R. Weil (1999) The Nature and Properties of Soils. Prentice Hall. Upper Saddle River, NJ, 881.
- 17 Brockwell, Peter J., and Richard A. Davis (2016) Introduction to time series and forecasting. Springer.
- 18 Cheng, B., and D.M. Titterington (1994) "Neural networks: A review from a statistical perspective." Statistical 19 science 9: 2-30.
- 20 Claassen, R., M. Bowman, J. McFadden, D. Smith, and S. Wallander (2018) Tillage intensity and conservation
- 21 cropping in the United States, EIB 197. United States Department of Agriculture, Economic Research Service, 22 Washington, D.C.
- 23 Conant, R. T., K. Paustian, and E.T. Elliott (2001). "Grassland management and conversion into grassland: effects on 24 soil carbon." Ecological Applications 11: 343-355.
- 25 CTIC (2004) National Crop Residue Management Survey: 1989-2004. Conservation Technology Information Center, 26 Purdue University, Available online at: http://www.ctic.purdue.edu/CRM/.
- 27 Daly, C., R.P. Neilson, and D.L. Phillips (1994) "A Statistical-Topographic Model for Mapping Climatological 28 Precipitation Over Mountainous Terrain." Journal of Applied Meteorology 33:140-158.
- 29 Del Grosso, S.J., W.J. Parton, A.R. Mosier, M.D. Hartman, J. Brenner, D.S. Ojima, and D.S. Schimel (2001) "Simulated
- 30 Interaction of Carbon Dynamics and Nitrogen Trace Gas Fluxes Using the DAYCENT Model." In Modeling Carbon
- 31 and Nitrogen Dynamics for Soil Management, Schaffer, M., L. Ma, S. Hansen, (eds.). CRC Press, Boca Raton, Florida, 32 pp. 303-332.
- 33 Del Grosso, S.J., S.M. Ogle, W.J. Parton (2011) Soil organic matter cycling and greenhouse gas accounting
- 34 methodologies, Chapter 1, pp 3-13 DOI: 10.1021/bk-2011-1072.ch001. In: Understanding Greenhouse Gas
- 35 Emissions from Agricultural Management, L. Guo, A. Gunasekara, L. McConnell (eds.). American Chemical Society,
- 36 Washington, D.C.
- 37 Edmonds, L., R. L. Kellogg, B. Kintzer, L. Knight, C. Lander, J. Lemunyon, D. Meyer, D.C. Moffitt, and J. Schaefer
- 38 (2003) "Costs associated with development and implementation of Comprehensive Nutrient Management Plans."
- 39 Part I—Nutrient management, land treatment, manure and wastewater handling and storage, and recordkeeping.
- 40 Natural Resources Conservation Service, U.S. Department of Agriculture. Available online at:
- 41 <http://www.nrcs.usda.gov/technical/land/pubs/cnmp1.html>.

- 1 Euliss, N., and R. Gleason (2002) Personal communication regarding wetland restoration factor estimates and
- 2 restoration activity data. Ned Euliss and Robert Gleason of the U.S. Geological Survey, Jamestown, ND, to Stephen
- 3 Ogle of the National Resource Ecology Laboratory, Fort Collins, CO. August 2002.
- Fry, J., Xian, G., Jin, S., Dewitz, J., Homer, C., Yang, L., Barnes, C., Herold, N., and Wickham, J. (2011) Completion of the 2006
 National Land Cover Database for the Conterminous United States, PE&RS, Vol. 77(9):858-864.
- 6 Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J.
- 7 V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T.,
- 8 Hamsik, M. R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S. M., Minnemeyer, S., Polasky, S., Potapov, P.,
- 9 Putz, F. E., Sanderman, J., Silvius, M., Wollenberg, E. & Fargione, J. (2017) "Natural climate solutions." Proceedings of the
- 10 National Academy of Sciences of the United States of America 114(44): 11645-11650.
- Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis (2005) Very high resolution interpolated climate
 surfaces for global land areas. International Journal of Climatology 25: 1965-1978.
- Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., Herold, N., McKerrow, A., VanDriel, J.N., and
- Wickham, J. (2007) Completion of the 2001 National Land Cover Database for the Conterminous United States.
 Photogrammetric Engineering and Remote Sensing, Vol. 73, No. 4, pp 337-341.
- Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., Wickham, J.D., and
- 17 Megown, K. (2015) Completion of the 2011 National Land Cover Database for the conterminous United States-
- 18 Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing, v.
- 19 81, no. 5, p. 345-354.
- 20 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 21 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 22 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 23 IPCC (2003) Good Practice Guidance for Land Use, Land-Use Change, and Forestry. The Intergovernmental Panel on
- 24 Climate Change, National Greenhouse Gas Inventories Programme, J. Penman, et al., eds. August 13, 2004.
- 25 Available online at: <http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm>.
- Lal, R., Kimble, J. M., Follett, R. F. & Cole, C. V. (1998) *The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect.* Chelsea, MI: Sleeping Bear Press, Inc.
- Little, R. (1988) "Missing-data adjustments in large surveys." *Journal of Business and Economic Statistics* 6: 287–
 296.
- McGill, W.B., and C.V. Cole (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic
 matter. *Geoderma* 26:267-286.
- 32 Metherell, A.K., L.A. Harding, C.V. Cole, and W.J. Parton (1993) "CENTURY Soil Organic Matter Model
- Environment." Agroecosystem version 4.0. Technical documentation, GPSR Tech. Report No. 4, USDA/ARS, Ft.
 Collins, CO.
- 35 Mesinger, F., G. DiMego, E. Kalnay, K. Mitchell, P. C. Shafran, W. Ebisuzaki, D. Jovic, J. Woollen, E. Rogers, E. H.
- Berbery, M. B. Ek, Y. Fan, R. Grumbine, W. Higgins, H. Li, Y. Lin, G. Manikin, D. Parrish, and W. Shi (2006) North American regional reanalysis. Bulletin of the American Meteorological Society 87:343-360.
- 38 NRCS (1999) Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys, 2nd
- Edition. Agricultural Handbook Number 436, Natural Resources Conservation Service, U.S. Department of
- 40 Agriculture, Washington, D.C.
- NRCS (1997) "National Soil Survey Laboratory Characterization Data," Digital Data, Natural Resources Conservation
 Service, U.S. Department of Agriculture. Lincoln, NE.
- 43 NRCS (1981) Land Resource Regions and Major Land Resource Areas of the United States, USDA Agriculture
- 44 Handbook 296, United States Department of Agriculture, Natural Resources Conservation Service, National Soil
- 45 Survey Cente., Lincoln, NE, pp. 156.

- 1 Ogle, S. M., Alsaker, C., Baldock, J., Bernoux, M., Breidt, F. J., McConkey, B., Regina, K. & Vazquez-Amabile, G. G.
- 2 (2019) "Climate and Soil Characteristics Determine Where No-Till Management Can Store Carbon in Soils and
- 3 Mitigate Greenhouse Gas Emissions." Scientific Reports 9(1): 11665.
- Ogle, S.M., F.J. Breidt, M. Easter, S. Williams, K. Killian, and K. Paustian (2010) "Scale and uncertainty in modeled
 soil organic carbon stock changes for U.S. croplands using a process-based model." *Global Change Biology* 16:810820.
- Ogle, S.M., F.J. Breidt, M. Easter, S. Williams and K. Paustian (2007) "Empirically-Based Uncertainty Associated with
 Modeling Carbon Sequestration Rates in Soils." *Ecological Modeling* 205:453-463.
- 9 Ogle, S.M., F.J. Breidt, and K. Paustian (2006) "Bias and variance in model results due to spatial scaling of 10 measurements for parameterization in regional assessments." *Global Change Biology* 12:516-523.
- Ogle, S. M., et al. (2005) "Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions." *Biogeochemistry* 72: 87-121.
- 13 Ogle, S.M., M.D. Eve, F.J. Breidt, and K. Paustian (2003) "Uncertainty in estimating land use and management
- impacts on soil organic carbon storage for U.S. agroecosystems between 1982 and 1997." *Global Change Biology* 9:1521-1542.
- Parton, W.J., M.D. Hartman, D.S. Ojima, and D.S. Schimel (1998) "DAYCENT: Its Land Surface Submodel: Description
 and Testing". *Glob. Planet. Chang.* 19: 35-48.
- 18 Parton, W.J., D.S. Ojima, C.V. Cole, and D.S. Schimel (1994) "A General Model for Soil Organic Matter Dynamics:
- Sensitivity to litter chemistry, texture and management," in Quantitative Modeling of Soil Forming Processes.
 Special Publication 39, *Soil Science Society of America*, Madison, WI, 147-167.
- Parton, W.J., D.S. Schimel, C.V. Cole, D.S. Ojima (1987) "Analysis of factors controlling soil organic matter levels in
 Great Plains grasslands." Soil Science Society of America Journal 51:1173-1179.
- Parton, W.J., J.W.B. Stewart, C.V. Cole. (1988) "Dynamics of C, N, P, and S in grassland soils: a model."
 Biogeochemistry 5:109-131.
- Paustian, K., et al. (1997a). "Agricultural soils as a sink to mitigate CO₂ emissions." *Soil Use and Management* 13:
 230-244.
- 27 Paustian, K., et al. (1997b) Management controls on soil carbon. In Soil organic matter in temperate
- agroecosystems: long-term experiments in North America (Paul E.A., K. Paustian, and C.V. Cole, eds.). Boca Raton,
 CRC Press, pp. 15-49.
- 30 Potter, C. S., J.T. Randerson, C.B. Fields, P.A. Matson, P.M. Vitousek, H.A. Mooney, and S.A. Klooster (1993)
- "Terrestrial ecosystem production: a process model based on global satellite and surface data." *Global Biogeochemical Cycles* 7:811-841.
- Potter, C., S. Klooster, A. Huete, and V. Genovese (2007) Terrestrial carbon sinks for the United States predicted from MODIS satellite data and ecosystem modeling. *Earth Interactions* 11, Article No. 13, DOI 10.1175/EI228.1.
- PRISM Climate Group (2018) *PRISM Climate Data*, Oregon State University, http://prism.oregonstate.edu,
 downloaded 18 July 2018.
- 37 Pukelsheim, F. (1994) "The 3-Sigma-Rule." American Statistician 48:88-91
- 38 Soil Survey Staff (2016) State Soil Geographic (STATSGO) Database for State. Natural Resources Conservation
- 39 Service, United States Department of Agriculture. Available online at:
- 40 <http://www.ncgc.nrcs.usda.gov/products/datasets/statsgo/index.html>.
- 41 Spencer, S., S.M. Ogle, F.J. Breidt, J. Goebel, and K. Paustian. (2011) "Designing a national soil carbon monitoring
- 42 network to support climate change policy: a case example for US agricultural lands." Greenhouse Gas Management
- 43 & Measurement 1: 167-178.

- 1 Towery, D. (2001) Personal Communication. Dan Towery regarding adjustments to the CTIC (1998) tillage data to
- 2 reflect long-term trends, Conservation Technology Information Center, West Lafayette, IN, and Marlen Eve,
- National Resource Ecology Laboratory, Fort Collins, CO. February 2001. 3
- 4 USDA-ERS (2018) Agricultural Resource Management Survey (ARMS) Farm Financial and Crop Production Practices:
- 5 Tailored Reports. Available online at: https://www.ers.usda.gov/data-products/arms-farm-financial-and-crop- 6 production-practices/>.
- 7 USDA-ERS (1997) Cropping Practices Survey Data—1995. Economic Research Service, United States Department of 8 Agriculture. Available online at: <http://www.ers.usda.gov/data/archive/93018/>.
- 9 USDA-FSA (2015) Conservation Reserve Program Monthly Summary – September 2015. U.S. Department of
- 10 Agriculture, Farm Service Agency, Washington, D.C. Available online at: https://www.fsa.usda.gov/Assets/USDA-
- FSA-Public/usdafiles/Conservation/PDF/sep2015summary.pdf>. 11
- 12 USDA-NASS (2017) 2017 Census of Agriculture. USDA National Agricultural Statistics Service, Complete data 13 available at www.nass.usda.gov/AgCensus.
- 14 USDA-NASS (2012) 2012 Census of Agriculture. USDA National Agricultural Statistics Service, Complete data 15 available at www.nass.usda.gov/AgCensus.
- 16 USDA-NASS (2004) Agricultural Chemical Usage: 2003 Field Crops Summary. Report AgCh1(04)a. National
- 17 Agricultural Statistics Service, U.S. Department of Agriculture, Washington, D.C. Available online at:
- 18 <Hhttp://usda.mannlib.cornell.edu/reports/nassr/other/pcu-bb/agcs0504.pdfH>.
- 19 USDA-NASS (1999) Agricultural Chemical Usage: 1998 Field Crops Summary. Report AgCH1(99). National
- 20 Agricultural Statistics Service, U.S. Department of Agriculture, Washington, DC. Available online at:
- <http://usda.mannlib.cornell.edu/reports/nassr/other/pcu-bb/agch0599.pdf>. 21
- 22 USDA-NASS (1992) Agricultural Chemical Usage: 1991 Field Crops Summary. Report AgCh1(92). National
- 23 Agricultural Statistics Service, U.S. Department of Agriculture, Washington, D.C. Available online at:
- 24 <http://usda.mannlib.cornell.edu/reports/nassr/other/pcu-bb/agch0392.txtH>.
- 25 USDA-NRCS (2012) Assessment of the Effects of Conservation Practices on Cultivated Cropland in the Upper
- 26 Mississippi River Basin. US Department of Agriculture, Natural Resources Conservation Service,
- 27 https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1042093.pdf.
- 28 USDA-NRCS (2018a) Summary Report: 2015 National Resources Inventory. Natural Resources Conservation Service,
- 29 Washington, D.C., and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa.
- 30 <https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1422028.pdf>.
- 31 USDA-NRCS (2018b) CEAP Cropland Farmer Surveys. USDA Natural Resources Conservation Service.
- 32 https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/nra/ceap/na/?cid=nrcs143 014163.
- 33 USDA-NRCS (2000) Digital Data and Summary Report: 1997 National Resources Inventory. Revised December 2000.
- 34 Resources Inventory Division, Natural Resources Conservation Service, United States Department of Agriculture, 35 Beltsville, MD.
- 36 Van Buuren, S. (2012) "Flexible imputation of missing data." Chapman & Hall/CRC, Boca Raton, FL.
- 37 Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M.,
- 38 Granneman, B., Liknes, G. C., Rigge, M. & Xian, G. (2018) "A new generation of the United States National Land
- 39 Cover Database: Requirements, research priorities, design, and implementation strategies." ISPRS Journal of
- 40 Photogrammetry and Remote Sensing 146: 108-123.
- 41 Zomer RJ, Trabucco A, Bossio DA, van Straaten O, Verchot LV (2008) Climate Change Mitigation: A Spatial Analysis
- 42 of Global Land Suitability for Clean Development Mechanism Afforestation and Reforestation. Agric. Ecosystems
- 43 and Envir. 126: 67-80.

- 1 Zomer RJ, Bossio DA, Trabucco A, Yuanjie L, Gupta DC & Singh VP (2007) Trees and Water: Smallholder
- 2 Agroforestry on Irrigated Lands in Northern India. Colombo, Sri Lanka: International Water Management Institute.
- 3 pp 45. (IWMI Research Report 122).

4 Land Converted to Cropland

- 5 Birdsey, R. (1996) "Carbon Storage for Major Forest Types and Regions in the Conterminous United States." In R.N.
- 6 Sampson and D. Hair, (eds.). Forest and Global Change, Volume 2: Forest Management Opportunities for
- 7 Mitigating Carbon Emissions. American Forests. Washington, D.C., 1-26 and 261-379 (appendices 262 and 263).
- 8 Brockwell, Peter J., and Richard A. Davis (2016) Introduction to time series and forecasting. Springer.
- 9 Del Grosso, S.J., W.J. Parton, A.R. Mosier, M.D. Hartman, J. Brenner, D.S. Ojima, and D.S. Schimel (2001) "Simulated
- 10 Interaction of Carbon Dynamics and Nitrogen Trace Gas Fluxes Using the DAYCENT Model." In *Modeling Carbon*
- and Nitrogen Dynamics for Soil Management, Schaffer, M., L. Ma, S. Hansen, (eds.). CRC Press, Boca Raton, Florida,
 pp. 303-332.
- 13 Del Grosso, S.J., S.M. Ogle, W.J. Parton (2011) "Soil organic matter cycling and greenhouse gas accounting
- 14 methodologies." Chapter 1, pp 3-13 DOI: 10.1021/bk-2011-1072.ch001. In: Understanding Greenhouse Gas
- 15 Emissions from Agricultural Management (L. Guo, A. Gunasekara, L. McConnell. Eds.), American Chemical Society,
- 16 Washington, D.C.
- 17 Del Grosso, S.J., W.J. Parton, A.R. Mosier, M.D. Hartman, J. Brenner, D.S. Ojima, and D.S. Schimel (2001) "Simulated
- 18 Interaction of Carbon Dynamics and Nitrogen Trace Gas Fluxes Using the DAYCENT Model." In Schaffer, M., L. Ma,
- S. Hansen, (eds.); *Modeling Carbon and Nitrogen Dynamics for Soil Management*. CRC Press. Boca Raton, Florida.
 303-332.
- 21 Domke, G.M., J.E. Smith, and C.W. Woodall. (2011) "Accounting for density reduction and structural loss in
- standing dead trees: Implications for forest biomass and carbon stock estimates in the United States". *Carbon Balance and Management* 6:14.
- Domke, G.M., et al. (2013) "From models to measurements: comparing down dead wood carbon stock estimates in
 the U.S. forest inventory." *PLoS ONE* 8(3): e59949.
- Domke, G.M., Perry, C.H., Walters, B.F., Woodall, C.W., and Smith, J.E. (2016) "A framework for estimating litter
 carbon stocks in forests of the United States." *Science of the Total Environment* 557–558: 469–478.
- Fry, J., Xian, G., Jin, S., Dewitz, J., Homer, C., Yang, L., Barnes, C., Herold, N., and Wickham, J. (2011) "Completion of the
 2006 National Land Cover Database for the Conterminous United States." *PE&RS*, Vol. 77(9):858-864.
- 30 Harmon, M.E., C.W. Woodall, B. Fasth, J. Sexton, M. Yatkov. (2011) Differences between standing and downed
- dead tree wood density reduction factors: A comparison across decay classes and tree species. Res. Paper. NRS-15.
- 32 Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 40 p.
- Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., Herold, N., McKerrow, A., VanDriel, J.N., and Wickham,
 J. (2007) "Completion of the 2001 National Land Cover Database for the Conterminous United States."
 Photogrammetric Engineering and Remote Sensing, Vol. 73, No. 4, pp 337-341.
- Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., Wickham, J.D., and
- 37 Megown, K. (2015) "Completion of the 2011 National Land Cover Database for the conterminous United States-
- Representing a decade of land cover change information." *Photogrammetric Engineering and Remote Sensing* 81:
 345-354.
- Houghton, R.A., et al. (1983) "Changes in the carbon content of terrestrial biota and soils between 1860 and 1980:
 a net release of CO₂ to the atmosphere." *Ecological Monographs* 53: 235-262.
- 42 Houghton, R. A. and Nassikas, A. A. (2017) "Global and regional fluxes of carbon from land use and land cover
- 43 change 1850–2015." *Global Biogeochemical Cycles* 31(3): 456-472.

- 1 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 2 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 3 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- Jenkins, J.C., D.C. Chojnacky, L.S. Heath, and R.A. Birdsey (2003) "National-scale biomass estimators for United
 States tree species." *Forest Science* 49(1):12-35.
- Metherell, A.K., L.A. Harding, C.V. Cole, and W.J. Parton (1993) *CENTURY Soil Organic Matter Model Environment. Agroecosystem version 4.0.* Technical documentation, GPSR Tech. Report No. 4, USDA/ARS, Ft. Collins, CO.
- 8 Ogle, S.M., F.J. Breidt, M. Easter, S. Williams, K. Killian, and K. Paustian (2010) "Scale and uncertainty in modeled
- soil organic carbon stock changes for U.S. croplands using a process-based model." *Global Change Biology* 16:810820.
- 11 Ogle, S.M., M.D. Eve, F.J. Breidt, and K. Paustian (2003) "Uncertainty in estimating land use and management
- impacts on soil organic carbon storage for U.S. agroecosystems between 1982 and 1997." *Global Change Biology* 9:1521-1542.
- Parton, W.J., M.D. Hartman, D.S. Ojima, and D.S. Schimel (1998) "DAYCENT: Its Land Surface Submodel: Description
 and Testing". *Glob. Planet. Chang.* 19: 35-48.
- 16 Parton, W.J., D.S. Ojima, C.V. Cole, and D.S. Schimel (1994) "A General Model for Soil Organic Matter Dynamics:
- 17 Sensitivity to litter chemistry, texture and management," in *Quantitative Modeling of Soil Forming Processes*.
- 18 Special Publication 39, Soil Science Society of America, Madison, WI, 147-167.
- Parton, W.J., D.S. Schimel, C.V. Cole, D.S. Ojima (1987) "Analysis of factors controlling soil organic matter levels in
 Great Plains grasslands." Soil Science Society of America Journal 51:1173-1179.
- Parton, W.J., J.W.B. Stewart, C.V. Cole. (1988) "Dynamics of C, N, P, and S in grassland soils: a model."
 Biogeochemistry 5:109-131.
- PRISM Climate Group (2018) *PRISM Climate Data*, Oregon State University, http://prism.oregonstate.edu,
 downloaded 18 July 2018.
- 25 Smith, J.E.; Heath, L.S.; Skog, K.E.; Birdsey, R.A. (2006) Methods for calculating forest ecosystem and harvested
- carbon with standard estimates for forest types of the United States. Gen. Tech. Rep. NE-343. Newtown Square,
 PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 216 p.
- Tubiello, F. N., et al. (2015) "The Contribution of Agriculture, Forestry and other Land Use activities to Global
 Warming, 1990-2012." *Global Change Biology* 21:2655-2660.
- 30 USDA Forest Service (2019) Forest Inventory and Analysis National Program: FIA Data Mart. U.S. Department of
- 31 Agriculture Forest Service. Washington, DC; 2015. Available online at <http://apps.fs.fed.us/fiadb-
- 32 downloads/datamart.html>. Accessed 2 October 2019.
- 33 USDA-NRCS (2018) Summary Report: 2015 National Resources Inventory. Natural Resources Conservation Service,
- 34 Washington, D.C., and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa.
- 35 <https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1422028.pdf>.
- 36 Woodall, C.W., and V.J. Monleon (2008) Sampling protocol, estimation, and analysis procedures for the down
- 37 woody materials indicator of the FIA program. Gen. Tech. Rep. NRS-22. Newtown Square, PA: U.S. Department of
- 38 Agriculture, Forest Service, Northern Research Station. 68 p.
- 39 Woodall, C.W., L.S. Heath, G.M. Domke, and M.C. Nichols (2011) Methods and equations for estimating
- 40 aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. Gen. Tech. Rep. NRS-88.
- 41 Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 30 p.
- 42 Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M.,
- 43 Granneman, B., Liknes, G. C., Rigge, M. & Xian, G. (2018) "A new generation of the United States National Land
- 44 Cover Database: Requirements, research priorities, design, and implementation strategies." *ISPRS Journal of*
- 45 *Photogrammetry and Remote Sensing* 146: 108-123.

1 Grassland Remaining Grassland: Soil Carbon Stock Changes

- 2 Brockwell, Peter J., and Richard A. Davis (2016) Introduction to time series and forecasting. Springer.
- 3 Del Grosso, S.J., S.M. Ogle, W.J. Parton (2011) Soil organic matter cycling and greenhouse gas accounting
- 4 methodologies, Chapter 1, pp 3-13 DOI: 10.1021/bk-2011-1072.ch001. In: Understanding Greenhouse Gas
- Emissions from Agricultural Management (L. Guo, A. Gunasekara, L. McConnell. Eds.), American Chemical Society,
 Washington, D.C.
- 7 Del Grosso, S.J., W.J. Parton, A.R. Mosier, M.D. Hartman, J. Brenner, D.S. Ojima, and D.S. Schimel (2001) "Simulated
- 8 Interaction of Carbon Dynamics and Nitrogen Trace Gas Fluxes Using the DAYCENT Model." In Modeling Carbon
- and Nitrogen Dynamics for Soil Management, Schaffer, M., L. Ma, S. Hansen, (eds.). CRC Press, Boca Raton, Florida,
- 10 pp. 303-332.
- 11 Edmonds, L., R. L. Kellogg, B. Kintzer, L. Knight, C. Lander, J. Lemunyon, D. Meyer, D.C. Moffitt, and J. Schaefer
- 12 (2003) "Costs associated with development and implementation of Comprehensive Nutrient Management Plans."
- 13 Part I—Nutrient management, land treatment, manure and wastewater handling and storage, and recordkeeping.
- 14 Natural Resources Conservation Service, U.S. Department of Agriculture. Available online at:
- 15 <http://www.nrcs.usda.gov/technical/land/pubs/cnmp1.html>.
- EPA (1999) Biosolids Generation, Use and Disposal in the United States. Office of Solid Waste, U.S. Environmental
 Protection Agency. Available online at: http://biosolids.policy.net/relatives/18941.PDF>.
- Fry, J., Xian, G., Jin, S., Dewitz, J., Homer, C., Yang, L., Barnes, C., Herold, N., and Wickham, J. (2011) Completion of
 the 2006 National Land Cover Database for the Conterminous United States, PE&RS, Vol. 77(9):858-864.
- Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., Herold, N., McKerrow, A., VanDriel, J.N., and Wickham,
- J. (2007) Completion of the 2001 National Land Cover Database for the Conterminous United States.
 Photogrammetric Engineering and Remote Sensing, Vol. 73, No. 4, pp 337-341.
- Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., Wickham, J.D., and
- Megown, K. (2015) Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing, v. 81, no. 5, p. 345-354.
- 26 no. 5, p. 345-354.
- 27 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 28 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 29 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 30 Kellogg, R.L., C.H. Lander, D.C. Moffitt, and N. Gollehon (2000) Manure Nutrients Relative to the Capacity of
- Cropland and Pastureland to Assimilate Nutrients: Spatial and Temporal Trends for the United States. U.S.
- 32 Department of Agriculture, Washington, D.C. Publication number nps00-0579.
- 33 Metherell, A.K., L.A. Harding, C.V. Cole, and W.J. Parton (1993) "CENTURY Soil Organic Matter Model
- Environment." Agroecosystem version 4.0. Technical documentation, GPSR Tech. Report No. 4, USDA/ARS, Ft.
 Collins, CO.
- NEBRA (2007) A National Biosolids Regulation, Quality, End Use & Disposal Survey. North East Biosolids and
 Residuals Association. July 21, 2007.
- Nusser, S.M. and J.J. Goebel (1997) The national resources inventory: a long-term multi-resource monitoring
 programme. *Environmental and Ecological Statistics* 4:181-204.
- 40 Ogle, S.M., F.J. Breidt, M. Easter, S. Williams, K. Killian, and K. Paustian (2010) "Scale and uncertainty in modeled
- 41 soil organic carbon stock changes for U.S. croplands using a process-based model." *Global Change Biology* 16:810-

42 820.

- 1 Ogle, S.M., M.D. Eve, F.J. Breidt, and K. Paustian (2003) "Uncertainty in estimating land use and management
- impacts on soil organic carbon storage for U.S. agroecosystems between 1982 and 1997." *Global Change Biology*9:1521-1542.
- 4 Parton, W.J., D.S. Ojima, C.V. Cole, and D.S. Schimel (1994) "A General Model for Soil Organic Matter Dynamics:
- 5 Sensitivity to litter chemistry, texture and management," in Quantitative Modeling of Soil Forming Processes.
- 6 Special Publication 39, Soil Science Society of America, Madison, WI, 147-167.
- Parton, W.J., D.S. Schimel, C.V. Cole, D.S. Ojima (1987) "Analysis of factors controlling soil organic matter levels in
 Great Plains grasslands." Soil Science Society of America Journal 51:1173-1179.
- 9 Parton, W.J., J.W.B. Stewart, C.V. Cole. (1988) "Dynamics of C, N, P, and S in grassland soils: a model."
- 10 Biogeochemistry 5:109-131.
- 11 Parton, W.J., M.D. Hartman, D.S. Ojima, and D.S. Schimel (1998) "DAYCENT: Its Land Surface Submodel: Description
- 12 and Testing". *Glob. Planet. Chang.* 19: 35-48.PRISM Climate Group, Oregon State University,
- 13 <http://prism.oregonstate.edu>, created 24 July 2015.
- PRISM Climate Group (2018) *PRISM Climate Data*, Oregon State University, <http://prism.oregonstate.edu>,
 downloaded 18 July 2018.
- 16 United States Bureau of Land Management (BLM) (2014) Rangeland Inventory, Monitoring, and Evaluation
- 17 *Reports*. Bureau of Land Management. U.S. Department of the Interior. Available online at:
- 18 <http://www.blm.gov/wo/st/en/prog/more/rangeland_management/rangeland_inventory.html>.
- 19 USDA-NRCS (2018) Summary Report: 2015 National Resources Inventory. Natural Resources Conservation Service,
- 20 Washington, D.C., and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa.
- 21 <https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1422028.pdf>.
- 22 USDA Forest Service (2019) Forest Inventory and Analysis National Program: FIA Data Mart. U.S. Department of
- 23 Agriculture Forest Service. Washington, DC; 2015. Available online at http://apps.fs.fed.us/fiadb-
- 24 downloads/datamart.html>. Accessed 2 October 2019.
- 25 Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M.,
- 26 Granneman, B., Liknes, G. C., Rigge, M. & Xian, G. (2018) "A new generation of the United States National Land
- 27 Cover Database: Requirements, research priorities, design, and implementation strategies." *ISPRS Journal of*
- 28 Photogrammetry and Remote Sensing 146: 108-123.

Grassland Remaining Grassland: Non-CO₂ Emissions from Grassland Fires

- Anderson, R.C. Evolution and origin of the Central Grassland of North America: climate, fire and mammalian
 grazers. *Journal of the Torrey Botanical Society* 133: 626-647.
- Andreae, M.O. and P. Merlet (2001) Emission of trace gases and aerosols from biomass burning. *Global Biogeochemical Cycles* 15:955-966.
- 35 Brockwell, Peter J., and Richard A. Davis (2016) Introduction to time series and forecasting. Springer.
- 36 Chapin, F.S., S.F. Trainor, O. Huntington, A.L. Lovecraft, E. Zavaleta, D.C. Natcher, A.D. McGuire, J.L. Nelson, L. Ray,
- 37 M. Calef, N. Fresco, H. Huntington, T.S. Rupp, L. DeWilde, and R.L. Naylor (2008) Increasing wildfires in Alaska's
- Boreal Forest: Pathways to potential solutions of a wicked problem. *Bioscience* 58:531-540.
- 39 Daubenmire, R. (1968) Ecology of fire in grasslands. *Advances in Ecological Research* 5:209-266.
- 40 Fry, J., Xian, G., Jin, S., Dewitz, J., Homer, C., Yang, L., Barnes, C., Herold, N., and Wickham, J. (2011) Completion of
- 41 the 2006 National Land Cover Database for the Conterminous United States, PE&RS, Vol. 77(9):858-864.

- Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., Herold, N., McKerrow, A., VanDriel, J.N., and Wickham,
 J. (2007) Completion of the 2001 National Land Cover Database for the Conterminous United States.
 Photogrammetric Engineering and Remote Sensing, Vol. 73, No. 4, pp 337-341.
- 4 Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., Wickham, J.D., and
- 5 Megown, K. (2015) Completion of the 2011 National Land Cover Database for the conterminous United States-
- 6 Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing, v. 81,
- 7 no. 5, p. 345-354.
- 8 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 9 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 10 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 11 Ogle, S.M., S. Spencer, M. Hartman, L. Buendia, L. Stevens, D. du Toit, J. Witi (2016) "Developing national baseline
- 12 GHG emissions and analyzing mitigation potentials for agriculture and forestry using an advanced national GHG
- 13 inventory software system." In Advances in Agricultural Systems Modeling 6, Synthesis and Modeling of
- 14 Greenhouse Gas Emissions and Carbon Storage in Agricultural and Forestry Systems to Guide Mitigation and
- 15 Adaptation, S. Del Grosso, L.R. Ahuja and W.J. Parton (eds.), American Society of Agriculture, Crop Society of
- 16 America and Soil Science Society of America, pp. 129-148.
- Nusser, S.M. and J.J. Goebel (1997) The national resources inventory: a long-term multi-resource monitoring
 programme. *Environmental and Ecological Statistics* 4:181-204.
- 19 USDA-NRCS (2015) Summary Report: 2012 National Resources Inventory, Natural Resources Conservation Service,
- 20 Washington, D.C., and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa. Available
- 21 online at: <http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd396218.pdf>.

22 Land Converted to Grassland

- Asner, G.P., Archer, S., Hughes, R.F., Ansley, R.J. and Wessman, C.A. (2003) "Net changes in regional woody
- vegetation cover and carbon storage in Texas drylands, 1937–1999." *Global Change Biology* 9(3): 316-335.
- 25 Birdsey, R. (1996) "Carbon Storage for Major Forest Types and Regions in the Conterminous United States." In R.N.
- 26 Sampson and D. Hair, (eds.). Forest and Global Change, Volume 2: Forest Management Opportunities for
- 27 Mitigating Carbon Emissions. American Forests. Washington, D.C., 1-26 and 261-379 (appendices 262 and 263).
- Breshears, D.D., Knapp, A.K., Law, D.J., Smith, M.D., Twidwell, D. and Wonkka, C.L., 2016. Rangeland Responses to
 Predicted Increases in Drought Extremity. Rangelands, 38(4), pp.191-196.
- 30 Brockwell, Peter J., and Richard A. Davis (2016) Introduction to time series and forecasting. Springer.
- 31 Del Grosso, S.J., S.M. Ogle, W.J. Parton. (2011) Soil organic matter cycling and greenhouse gas accounting
- 32 methodologies, Chapter 1, pp 3-13 DOI: 10.1021/bk-2011-1072.ch001. In: Understanding Greenhouse Gas
- 33 Emissions from Agricultural Management (L. Guo, A. Gunasekara, L. McConnell. Eds.), American Chemical Society,
- 34 Washington, D.C.
- 35 Del Grosso, S.J., W.J. Parton, A.R. Mosier, M.D. Hartman, J. Brenner, D.S. Ojima, and D.S. Schimel (2001) "Simulated
- 36 Interaction of Carbon Dynamics and Nitrogen Trace Gas Fluxes Using the DAYCENT Model." In Modeling Carbon
- and Nitrogen Dynamics for Soil Management (Schaffer, M., L. Ma, S. Hansen, (eds.). CRC Press, Boca Raton, Florida,
 pp. 303-332.
- 39 Domke, G.M., J.E. Smith, and C.W. Woodall. (2011) Accounting for density reduction and structural loss in standing
- dead trees: Implications for forest biomass and carbon stock estimates in the United States. Carbon Balance and
 Management. 6:14.
- 42 Domke, G.M., et al. 2013. From models to measurements: comparing down dead wood carbon stock estimates in
- 43 the U.S. forest inventory. PLoS ONE 8(3): e59949.

- Domke, G.M., Perry, C.H., Walters, B.F., Woodall, C.W., and Smith, J.E. (2016) A framework for estimating litter carbon stocks in forests of the United States. Science of the Total Environment 557–558: 469–478.
- 3 Epstein, H.E., Gill, R.A., Paruelo, J.M., Lauenroth, W.K., Jia, G.J. and Burke, I.C., 2002. The relative abundance of
- 4 three plant functional types in temperate grasslands and shrublands of North and South America: effects of
- 5 projected climate change. Journal of Biogeography, 29(7), pp.875-888.
- Fry, J., Xian, G., Jin, S., Dewitz, J., Homer, C., Yang, L., Barnes, C., Herold, N., and Wickham, J. (2011) Completion of
 the 2006 National Land Cover Database for the Conterminous United States, *PE&RS*, Vol. 77(9):858-864.
- 8 Harmon, M.E., C.W. Woodall, B. Fasth, J. Sexton, M. Yatkov. (2011) Differences between standing and downed
- 9 dead tree wood density reduction factors: A comparison across decay classes and tree species. Res. Paper. NRS-15.
- 10 Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 40 p.
- Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., Herold, N., McKerrow, A., VanDriel, J.N., and Wickham,
- 12 J. (2007) Completion of the 2001 National Land Cover Database for the Conterminous United States. 13 *Photogrammetric Engineering and Remote Sensing*, Vol. 73, No. 4, pp 337-341.
- 15 Photogrammetric Engineering and Kemote Sensing, Vol. 75, No. 4, pp 557-541.
- Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., Wickham, J.D., and
- 15 Megown, K. (2015) Completion of the 2011 National Land Cover Database for the conterminous United States-
- Representing a decade of land cover change information. *Photogrammetric Engineering and Remote Sensing*, v. 81,
 no. 5, p. 345-354.
- Houghton, R.A., et al. (1983) "Changes in the carbon content of terrestrial biota and soils between 1860 and 1980:
 a net release of CO₂ to the atmosphere." *Ecological Monographs* 53: 235-262.
- Houghton, R. A. and Nassikas, A. A. (2017) "Global and regional fluxes of carbon from land use and land cover change 1850–2015." *Global Biogeochemical Cycles* 31(3): 456-472.
- Huang, C.Y., Asner, G.P., Martin, R.E., Barger, N.N. and Neff, J.C. (2009) "Multiscale analysis of tree cover and
 aboveground carbon stocks in pinyon–juniper woodlands." *Ecological Applications* 19(3): 668-681.
- 24 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change, [H.S. Eggleston, L. Buendia, K. Miwa, T
 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- Jenkins, J.C., D.C. Chojnacky, L.S. Heath, and R.A. Birdsey (2003) "National-scale biomass estimators for United
 States tree species." Forest Science 49(1):12-35.
- Jurena, P.N. and Archer, S., (2003). Woody plant establishment and spatial heterogeneity in grasslands. Ecology,
 84(4), pp.907-919.
- Lenihan, J.M., Drapek, R., Bachelet, D. and Neilson, R.P., (2003). Climate change effects on vegetation distribution, carbon, and fire in California. Ecological Applications, 13(6), pp.1667-1681.
- 33 Metherell, A.K., L.A. Harding, C.V. Cole, and W.J. Parton (1993) "CENTURY Soil Organic Matter Model
- Environment." Agroecosystem version 4.0. Technical documentation, GPSR Tech. Report No. 4, USDA/ARS, Ft.
 Collins, CO.
- 36 Ogle, S.M., F.J. Breidt, M. Easter, S. Williams, K. Killian, and K. Paustian (2010) "Scale and uncertainty in modeled
- soil organic carbon stock changes for U.S. croplands using a process-based model." *Global Change Biology* 16:810 820.
- 39 Ogle, S.M., M.D. Eve, F.J. Breidt, and K. Paustian (2003) "Uncertainty in estimating land use and management
- 40 impacts on soil organic carbon storage for U.S. agroecosystems between 1982 and 1997." *Global Change Biology* 41 9:1521-1542.
- 42 Parton, W.J., D.S. Ojima, C.V. Cole, and D.S. Schimel (1994) "A General Model for Soil Organic Matter Dynamics:
- 43 Sensitivity to litter chemistry, texture and management," in Quantitative Modeling of Soil Forming Processes.
- 44 Special Publication 39, *Soil Science Society of America*, Madison, WI, 147-167.

- 1 Parton, W.J., D.S. Schimel, C.V. Cole, D.S. Ojima (1987) "Analysis of factors controlling soil organic matter levels in
- 2 Great Plains grasslands." Soil Science Society of America Journal 51:1173-1179.
- 3 Parton, W.J., J.W.B. Stewart, C.V. Cole (1988) "Dynamics of C, N, P, and S in grassland soils: a model."
- 4 Biogeochemistry 5:109-131.
- Parton, W.J., M.D. Hartman, D.S. Ojima, and D.S. Schimel (1998) "DAYCENT: Its Land Surface Submodel: Description
 and Testing". *Glob. Planet. Chang.* 19: 35-48.
- PRISM Climate Group (2018) *PRISM Climate Data*, Oregon State University, <http://prism.oregonstate.edu>,
 downloaded 18 July 2018.
- Scholes, R.J. and Archer, S.R., 1997. Tree-grass interactions in savannas 1. Annual review of Ecology and
 Systematics, 28(1), pp.517-544.
- Sims, P.L., Singh, J.S. and Lauenroth, W.K., 1978. The structure and function of ten western North American
 grasslands: I. Abiotic and vegetational characteristics. The Journal of Ecology, pp.251-285.
- 13 Smith, J.E.; Heath, L.S.; Skog, K.E.; Birdsey, R.A. (2006) Methods for calculating forest ecosystem and harvested
- 14 carbon with standard estimates for forest types of the United States. Gen. Tech. Rep. NE-343. Newtown Square,
- 15 PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 216 p.
- Tarhouni, M., et al. (2016) Measurement of the aboveground biomass of some rangeland species using a digital
 non-destructive technique. *Botany Letters* 163(3):281-287.
- Tubiello, F. N., et al. (2015) "The Contribution of Agriculture, Forestry and other Land Use activities to Global
 Warming, 1990-2012." *Global Change Biology* 21:2655-2660.
- 20 United States Bureau of Land Management (BLM) (2014) Rangeland Inventory, Monitoring, and Evaluation
- 21 *Reports*. Bureau of Land Management. U.S. Department of the Interior. Available online at:
- 22 <http://www.blm.gov/wo/st/en/prog/more/rangeland_management/rangeland_inventory.html>.
- 23 USDA Forest Service (2019) Forest Inventory and Analysis National Program: FIA Data Mart. U.S. Department of
- Agriculture Forest Service. Washington, DC; 2015. Available online at http://apps.fs.fed.us/fiadb-
- 25 downloads/datamart.html>. Accessed 2 October 2019.
- 26 USDA-NRCS (2018) Summary Report: 2015 National Resources Inventory. Natural Resources Conservation Service,
- 27 Washington, D.C., and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa.
- 28 <https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1422028.pdf>.
- 29 Woodall, C.W., and V.J. Monleon (2008) Sampling protocol, estimation, and analysis procedures for the down
- woody materials indicator of the FIA program. Gen. Tech. Rep. NRS-22. Newtown Square, PA: U.S. Department of
 Agriculture, Forest Service, Northern Research Station. 68 p.
- Woodall, C.W., L.S. Heath, G.M. Domke, and M.C. Nichols. (2011) Methods and equations for estimating
- aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. Gen. Tech. Rep. NRS-88.
 Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station, 30 p.
- Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 30 p.
- Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M.,
- 36 Granneman, B., Liknes, G. C., Rigge, M. & Xian, G. (2018) "A new generation of the United States National Land
- 37 Cover Database: Requirements, research priorities, design, and implementation strategies." *ISPRS Journal of*
- 38 *Photogrammetry and Remote Sensing* 146: 108-123.

Wetlands Remaining Wetlands: CO₂, CH₄, and N₂O Emissions from Peatlands Remaining Peatlands

- 41 Apodaca, L. (2011) Email correspondence. Lori Apodaca, Peat Commodity Specialist, USGS and Emily Rowan, ICF
- 42 International. November.

- 1 Apodaca, L. (2008) E-mail correspondence. Lori Apodaca, Peat Commodity Specialist, USGS and Emily Rowan, ICF 2 International. October and November.
- 3 Cleary, J., N. Roulet and T.R. Moore (2005) "Greenhouse gas emissions from Canadian peat extraction, 1990-2000: A life-cycle analysis." Ambio 34:456-461. 4
- 5 Division of Geological & Geophysical Surveys (DGGS), Alaska Department of Natural Resources (1997–2015)
- 6 Alaska's Mineral Industry Report (1997–2014). Alaska Department of Natural Resources, Fairbanks, AK. Available 7 online at <http://www.dggs.dnr.state.ak.us/pubs/pubs?reqtype=minerals>.
- 8 IPCC (2013) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands.
- 9 Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds.). Published: IPCC, 10 Switzerland.
- 11 IPCC (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth
- 12 Assessment Report (AR4) of the IPCC. The Intergovernmental Panel on Climate Change, R.K. Pachauri, A. Resinger
- 13 (eds.). Geneva, Switzerland.
- 14 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 15 Inventories Programme, The Intergovernmental Panel on Climate Change. H.S. Eggleston, L. Buendia, K. Miwa, T.
- 16 Ngara, and K. Tanabe (eds.). Hayama, Kanagawa, Japan.
- 17 Szumigala, D.J. (2011) Phone conversation. Dr. David Szumigala, Division of Geological and Geophysical Surveys, 18 Alaska Department of Natural Resources and Emily Rowan, ICF International. January 18, 2011.
- 19 Szumigala, D.J. (2008) Phone conversation. Dr. David Szumigala, Division of Geological and Geophysical Surveys,
- 20 Alaska Department of Natural Resources and Emily Rowan, ICF International. October 17, 2008.
- 21 USGS (1991–2015) Minerals Yearbook: Peat (1994–2014). United States Geological Survey, Reston, VA. Available
- 22 online at < http://minerals.usgs.gov/minerals/pubs/commodity/peat/index.html#myb >.
- 23 USGS (2016) Mineral Commodity Summaries: Peat (2016). United States Geological Survey, Reston, VA. Available
- online at <http://minerals.usgs.gov/minerals/pubs/mcs/2016/mcs2016.pdf>. 24

Wetlands Remaining Coastal Wetlands: Emissions and 25

Removals from Coastal Wetlands Remaining Coastal Wetlands 26

- 27 Bianchi, T. S., Allison, M. A., Zhao, J., Li, X., Comeaux, R. S., Feagin, R. A., & Kulawardhana, R. W. (2013) Historical 28 reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in
- 29 coastal wetlands. Estuarine, Coastal and Shelf Science 119: 7-16.
- 30 Byrd, K. B., Ballanti, L. R., Thomas, N. M., Nguyen, D. K., Holmquist, J. R., Simard, M., Windham-Myers, L., Schile, L.
- 31 M., Parker, V. T., ... and Castaneda-Moya, E. (2017) Biomass/Remote Sensing dataset: 30m resolution tidal marsh
- 32 biomass samples and remote sensing data for six regions in the conterminous United States: U.S. Geological Survey
- 33 data release, https://doi.org/10.5066/F77943K8.
- 34 Byrd, K. B., Ballanti, L., Thomas, N., Nguyen, D., Holmquist, J.R., Simard, M., and Windham-Myers, L. (2018) A
- 35 remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States. ISPRS
- 36 Journal of Photogrammetry and Remote Sensing 139: 255-271.
- 37 Callaway, J. C., Borgnis, E. L., Turner, R. E. & Milan, C. S. (2012a) Carbon sequestration and sediment accretion in 38 San Francisco Bay tidal wetlands. Estuaries and Coasts 35(5): 1163-1181.
- 39 Callaway, J. C., Borgnis, E. L., Turner, R. E., Milan, C. S., Goodfriend, W., & Richmond, S. (2012b) "Wetland Sediment
- 40 Accumulation at Corte Madera Marsh and Muzzi Marsh". San Francisco Bay Conservation and Development Commission.
- 41
- 42 Church, T. M., Sommerfield, C. K., Velinsky, D. J., Point, D., Benoit, C., Amouroux, D. & Donard, O. F. X. (2006)
- 43 Marsh sediments as records of sedimentation, eutrophication and metal pollution in the urban Delaware Estuary.

- 1 Marine Chemistry 102(1-2): 72-95.
- Couvillion, B. R., Barras, J. A., Steyer, G. D., Sleavin, W., Fischer, M., Beck, H., & Heckman, D. (2011) Land area
 change in coastal Louisiana (1932 to 2010) (pp. 1-12). U.S. Department of the Interior, U.S. Geological Survey.
- 4 Couvillion, B. R., Fischer, M. R., Beck, H. J. and Sleavin, W. J. (2016) Spatial Configuration Trends in Coastal
- 5 Louisiana from 1986 to 2010. Wetlands 1-13.
- Craft, C. B., & Richardson, C. J. (1998) Recent and long-term organic soil accretion and nutrient accumulation in the
 Everglades. Soil Science Society of America Journal 62(3): 834-843.
- Crooks, S., Findsen, J., Igusky, K., Orr, M. K. and Brew, D. (2009) Greenhouse Gas Mitigation Typology Issues Paper:
 Tidal Wetlands Restoration. Report by PWA and SAIC to the California Climate Action Reserve.
- 10 Crooks, S., Rybczyk, J., O'Connell, K., Devier, D. L., Poppe, K., Emmett-Mattox, S. (2014) Coastal Blue Carbon
- 11 Opportunity Assessment for the Snohomish Estuary: The Climate Benefits of Estuary Restoration. Report by
- 12 Environmental Science Associates, Western Washington University, EarthCorps, and Restore America's Estuaries.
- 13 DeLaune, R. D., & White, J. R. (2012) Will coastal wetlands continue to sequester carbon in response to an increase
- in global sea level?: A case study of the rapidly subsiding Mississippi river deltaic plain. Climatic Change, 110(1),
 297-314.
- 16 Holmquist, J. R., Windham-Myers, L., Bliss, N., Crooks, S., Morris, J. T., Megonigal, J. P. & Woodrey, M. (2018)
- Accuracy and Precision of Tidal Wetland Soil Carbon Mapping in the Conterminous United States. Scientific reports
 8(1): 9478.
- Hu, Z., Lee, J. W., Chandran, K., Kim, S. and Khanal, S. K. (2012) N2O Emissions from Aquaculture: A Review.
 Environmental Science & Technology 46(12): 6470-6480.
- Hussein, A. H., Rabenhorst, M. C. & Tucker, M. L. (2004) Modeling of carbon sequestration in coastal marsh soils.
 Soil Science Society of America Journal 68(5): 1786-1795.
- 23 IPCC (2000) Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.
- 24 Quantifying Uncertainties in Practice, Chapter 6. Penman, J., Kruger, D., Galbally, I., Hiraishi, T., Nyenzi, B.,
- 25 Emmanuel, S., Buendia, L., Hoppaus, R., Martinsen, T., Meijer, J., Miwa, K. and Tanabe, K. (eds). Institute of Global
- Environmental Strategies (IGES), on behalf of the Intergovernmental Panel on Climate Change (IPCC): Hayama,
 Japan.
- 28 IPCC (2003) Good Practice Guidance for Land Use, Land-Use Change and Forestry. LUCF Sector Good Practice
- 29 Guidance, Chapter 3. Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa,
- 30 K., Ngara, T., Tanabe, K. and Wagner, F. (eds). Institute of Global Environmental Strategies (IGES), on behalf of the
- 31 Intergovernmental Panel on Climate Change (IPCC): Hayama, Japan.
- 32 IPCC (2013) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands.
- Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds.). Published: IPCC,
 Switzerland.
- Kearney, M. S. & Stevenson, J. C. (1991) Island land loss and marsh vertical accretion rate evidence for historical
 sea-level changes in Chesapeake Bay. Journal of Coastal Research 7(2): 403-415.
- Köster, D., Lichter, J., Lea, P. D., & Nurse, A. (2007) Historical eutrophication in a river–estuary complex in mid coast Maine. Ecological Applications 17(3): 765-778.
- Lu, M & Megonigal, J. P. (2017) Final Report for RAE Baseline Assessment Project. Memo to Silvestrum Climate
 Associates by Smithsonian Environmental Research Center, Maryland.
- Lynch, J. C. (1989) Sedimentation and nutrient accumulation in mangrove ecosystems of the Gulf of Mexico. M.S.
 thesis, Univ. of Southwestern Louisiana, Lafayette, LA.
- 43 Marchio, D. A., Savarese, M., Bovard, B., & Mitsch, W. J. (2016) Carbon sequestration and sedimentation in
- 44 mangrove swamps influenced by hydrogeomorphic conditions and urbanization in Southwest Florida. Forests 7:

- 1 116-135.
- 2 McCombs, J. W., Herold, N. D., Burkhalter, S. G. and Robinson C. J. (2016) Accuracy Assessment of NOAA Coastal
- 3 Change Analysis Program 2006-2010 Land Cover and Land Cover Change Data. Photogrammetric Engineering & 4 Remote Sensing. 82:711-718.
- 5 Merrill, J. Z. (1999) Tidal Freshwater Marshes as Nutrient Sinks: particulate Nutrient Burial and Denitrification. 6 Ph.D. Dissertation, University of Maryland, College Park, MD, 342 pp.
- 7 National Marine Fisheries Service (2018) Fisheries of the United States, 2017. U.S. Department of Commerce, 8 NOAA Current Fishery Statistics No. 2017.
- 9 Noe, G. B., Hupp, C. R., Bernhardt, C. E., & Krauss, K. W. (2016) Contemporary deposition and long-term
- 10 accumulation of sediment and nutrients by tidal freshwater forested wetlands impacted by sea level rise. Estuaries 11 and Coasts 39(4): 1006-1019.
- 12 Orson, R. A., Simpson, R. L., & Good, R. E. (1990) Rates of sediment accumulation in a tidal freshwater marsh. 13 Journal of Sedimentary Research 60(6): 859-869.
- 14 Orson, R., Warren, R. & Niering, W. (1998) Interpreting sea level rise and rates of vertical marsh accretion in a 15 southern New England tidal salt marsh. Estuarine, Coastal and Shelf Science 47(4): 419-429.
- 16 Roman, C., Peck, J., Allen, J., King, J. & Appleby, P. (1997) Accretion of a New England (USA) salt marsh in response 17 to inlet migration, storms, and sea-level rise. Estuarine, Coastal and Shelf Science 45(6): 717-727.
- 18 Villa, J. A. & Mitsch W. J. (2015) Carbon sequestration in different wetland plant communities of Southwest Florida. 19 International Journal for Biodiversity Science, Ecosystems Services and Management 11: 17-28
- 20 Weston, N. B., Neubauer, S. C., Velinsky, D. J., & Vile, M. A. (2014) Net ecosystem carbon exchange and the
- 21 greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120: 163-189.

Land Converted to Wetlands 22

- 23 Bianchi, T. S., Allison, M. A., Zhao, J., Li, X., Comeaux, R. S., Feagin, R. A., & Kulawardhana, R. W. (2013) Historical
- 24 reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in 25
- coastal wetlands. Estuarine, Coastal and Shelf Science 119: 7-16.
- 26 Byrd, K. B., Ballanti, L. R., Thomas, N. M., Nguyen, D. K., Holmquist, J. R., Simard, M., Windham-Myers, L., Schile, L.
- 27 M., Parker, V. T., ... and Castaneda-Moya, E. (2017) Biomass/Remote Sensing dataset: 30m resolution tidal marsh
- 28 biomass samples and remote sensing data for six regions in the conterminous United States: U.S. Geological Survey 29 data release, https://doi.org/10.5066/F77943K8.
- 30 Byrd, K. B., Ballanti, L., Thomas, N., Nguyen, D., Holmquist, J.R., Simard, M., and Windham-Myers, L. (2018) A
- 31 remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States. ISPRS 32 Journal of Photogrammetry and Remote Sensing 139: 255-271.
- 33 Callaway, J. C., Borgnis, E. L., Turner, R. E. & Milan, C. S. (2012a) Carbon sequestration and sediment accretion in 34 San Francisco Bay tidal wetlands. Estuaries and Coasts 35(5): 1163-1181.
- 35 Callaway, J. C., Borgnis, E. L., Turner, R. E., Milan, C. S., Goodfriend, W., & Richmond, S. (2012b). "Wetland 36 Sediment Accumulation at Corte Madera Marsh and Muzzi Marsh". San Francisco Bay Conservation and
- 37 **Development Commission.**
- 38 Church, T. M., Sommerfield, C. K., Velinsky, D. J., Point, D., Benoit, C., Amouroux, D. & Donard, O. F. X. (2006).
- 39 Marsh sediments as records of sedimentation, eutrophication and metal pollution in the urban Delaware Estuary. 40 Marine Chemistry 102(1-2): 72-95.
- 41 Craft, C. B., & Richardson, C. J. (1998). Recent and long-term organic soil accretion and nutrient accumulation in
- 42 the Everglades. Soil Science Society of America Journal 62(3): 834-843.

- 1 Crooks, S., Rybczyk, J., O'Connell, K., Devier, D.L., Poppe, K., Emmett-Mattox, S. (2014) Coastal Blue Carbon
- 2 Opportunity Assessment for the Snohomish Estuary: The Climate Benefits of Estuary Restoration. Report by
- 3 Environmental Science Associates, Western Washington University, EarthCorps, and Restore America's Estuaries.
- Hussein, A. H., Rabenhorst, M. C. & Tucker, M. L. (2004) Modeling of carbon sequestration in coastal marsh soils.
 Soil Science Society of America Journal 68(5): 1786-1795.
- 6 IPCC (2003) Good Practice Guidance for Land Use, Land-Use Change and Forestry. LUCF Sector Good Practice
- 7 Guidance, Chapter 3. Jim Penman, Michael Gytarsky, Taka Hiraishi, Thelma Krug, Dina Kruger, Riitta Pipatti,
- 8 Leandro Buendia, Kyoko Miwa, Todd Ngara, Kiyoto Tanabe and Fabian Wagner (eds). Institute of Global
- 9 Environmental Strategies (IGES), on behalf of the Intergovernmental Panel on Climate Change (IPCC): Hayama,
- 10 Japan.
- 11 IPCC (2000) Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.
- 12 Quantifying Uncertainties in Practice, Chapter 6. Penman, J and Kruger, D and Galbally, I and Hiraishi, T and Nyenzi,
- B and Emmanuel, S and Buendia, L and Hoppaus, R and Martinsen, T and Meijer, J and Miwa, K and Tanabe, K
- 14 (eds). Institute of Global Environmental Strategies (IGES), on behalf of the Intergovernmental Panel on Climate
- 15 Change (IPCC): Hayama, Japan.
- Kearney, M. S. & Stevenson, J. C. (1991) Island land loss and marsh vertical accretion rate evidence for historical
 sea-level changes in Chesapeake Bay. Journal of Coastal Research 7(2): 403-415.
- 18 Köster, D., Lichter, J., Lea, P. D., & Nurse, A. (2007). Historical eutrophication in a river–estuary complex in mid-19 coast Maine. Ecological Applications 17(3): 765-778.
- Lu, M & Megonigal, J.P. (2017) Final Report for RAE Baseline Assessment Project. Memo to Silvestrum Climate
 Associates by Smithsonian Environmental Research Center, Maryland.
- Lynch, J. C., Sedimentation and nutrient accumulation in mangrove ecosystems of the Gulf of Mexico, M.S. thesis,
 Univ. of Southwestern Louisiana, Lafayette, La., 1989.
- 24 Marchio, D.A., Savarese, M., Bovard, B., & Mitsch, W.J. (2016) Carbon sequestration and sedimentation in
- mangrove swamps influenced by hydrogeomorphic conditions and urbanization in Southwest Florida. Forests 7:
 116-135.
- 27 McCombs, J.W., Herold, N.D., Burkhalter, S.G. and Robinson C.J., (2016) Accuracy Assessment of NOAA Coastal
- 28 Change Analysis Program 2006-2010 Land Cover and Land Cover Change Data. Photogrammetric Engineering &
- 29 Remote Sensing. 82:711-718.
- Merrill, J. Z. 1999. Tidal Freshwater Marshes as Nutrient Sinks: particulate Nutrient Burial and Denitrification. Ph.D.
 Dissertation, University of Maryland, College Park, MD, 342pp.
- 32 Noe, G. B., Hupp, C. R., Bernhardt, C. E., & Krauss, K. W. (2016) Contemporary deposition and long-term
- accumulation of sediment and nutrients by tidal freshwater forested wetlands impacted by sea level rise. Estuaries
 and Coasts 39(4): 1006-1019.
- Orson, R. A., Simpson, R. L., & Good, R. E. (1990) Rates of sediment accumulation in a tidal freshwater marsh.
 Journal of Sedimentary Research 60(6): 859-869.
- Orson, R., Warren, R. & Niering, W. (1998) Interpreting sea level rise and rates of vertical marsh accretion in a
 southern New England tidal salt marsh. Estuarine, Coastal and Shelf Science 47(4): 419-429.
- Roman, C., Peck, J., Allen, J., King, J. & Appleby, P. (1997) Accretion of a New England (USA) salt marsh in response
 to inlet migration, storms, and sea-level rise. Estuarine, Coastal and Shelf Science 45(6): 717-727.
- 41 Villa, J. A. & Mitsch W. J. (2015) "Carbon sequestration in different wetland plant communities of Southwest
- 42 Florida". International Journal for Biodiversity Science, Ecosystems Services and Management 11: 17-28.
- 43 Weston, N. B., Neubauer, S. C., Velinsky, D. J., & Vile, M. A. (2014) Net ecosystem carbon exchange and the
- 44 greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120: 163-189.

¹ Settlements Remaining Settlements: Soil Carbon Stock

2 Changes

- Armentano, T. V., and E.S. Menges (1986). Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. Journal of Ecology 74: 755-774.
- 5 Brady, N.C. and R.R. Weil (1999) The Nature and Properties of Soils. Prentice Hall. Upper Saddle River, NJ, 881.
- 6 Brockwell, Peter J., and Richard A. Davis (2016) Introduction to time series and forecasting. Springer.
- Fry, J., Xian, G., Jin, S., Dewitz, J., Homer, C., Yang, L., Barnes, C., Herold, N., and J. Wickham. (2011) Completion of
 the 2006 National Land Cover Database for the Conterminous United States, PE&RS 77(9):858-864.
- 9 Homer, C., J. Dewitz, J. Fry, M. Coan, N. Hossain, C. Larson, N. Herold, A. McKerrow, J.N. VanDriel and J. Wickham.
- 10 (2007) Completion of the 2001 National Land Cover Database for the Conterminous United States.
- 11 Photogrammetric Engineering and Remote Sensing 73(4): 337-341.
- Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., Wickham, J.D., and
- 13 Megown, K. (2015) Completion of the 2011 National Land Cover Database for the conterminous United States-
- Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing81(5):345-354.
- 16 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 17 Inventories Programme, The Intergovernmental Panel on Climate Change. H.S. Eggleston, L. Buendia, K. Miwa, T.
- 18 Ngara, and K. Tanabe (eds.). Hayama, Kanagawa, Japan.
- 19 NRCS (1999) Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys, 2nd
- Edition. Agricultural Handbook Number 436, Natural Resources Conservation Service, U.S. Department of
 Agriculture, Washington, D.C.
- Nusser, S.M. and J.J. Goebel (1997) The national resources inventory: a long-term multi-resource monitoring
 programme. Environmental and Ecological Statistics 4:181-204.
- Ogle, S.M., M.D. Eve, F.J. Breidt, and K. Paustian (2003) Uncertainty in estimating land use and management
 impacts on soil organic carbon storage for U.S. agroecosystems between 1982 and 1997. Global Change Biology
 9:1521-1542.
- 27 Soil Survey Staff (2011) State Soil Geographic (STATSGO) Database for State. Natural Resources Conservation
- 28 Service, United States Department of Agriculture. Available online at:
- 29 <http://www.ncgc.nrcs.usda.gov/products/datasets/statsgo/index.html>.
- 30 USDA-NRCS (2018) Summary Report: 2015 National Resources Inventory, Natural Resources Conservation Service,
- 31 Washington, D.C., and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa.
- 32 https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1422028.pdf.
- 33 Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M.,
- 34 Granneman, B., Liknes, G. C., Rigge, M. & Xian, G. (2018) A new generation of the United States National Land
- 35 Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS Journal of
- 36 Photogrammetry and Remote Sensing 146: 108-123.

Settlements Remaining Settlements: Changes in Carbon Stocks in Settlement Trees

- deVries, R.E. (1987) A Preliminary Investigation of the Growth and Longevity of Trees in Central Park. M.S. thesis,
- 40 Rutgers University, New Brunswick, NJ.

- 1 Frelich, L.E. (1992) Predicting Dimensional Relationships for Twin Cities Shade Trees. University of Minnesota,
- 2 Department of Forest Resources, St. Paul, MN, p. 33.
- Fleming, L.E. (1988) Growth Estimation of Street Trees in Central New Jersey. M.S. thesis, Rutgers University, New
 Brunswick, NJ.
- 5 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change. H.S. Eggleston, L. Buendia, K. Miwa, T.
 Ngara, and K. Tanabe (eds.). Hayama, Kanagawa, Japan.
- 8 MRLC (2013) National Land Cover Database 2001 (NLCD2001). Available online at:
- 9 <http://www.mrlc.gov/nlcd2001.php>. Accessed August 2013.
- Nowak, D.J. (1986) Silvics of an Urban Tree Species: Norway maple (Acer platanoides L.). M.S. thesis, College of
 Environmental Science and Forestry, State University of New York, Syracuse, NY.
- 12 Nowak, D.J. (1994) Atmospheric carbon dioxide reduction by Chicago's urban forest. In: Chicago's Urban Forest
- 13 Ecosystem: Results of the Chicago Urban Forest Climate Project. E.G. McPherson, D.J. Nowak, and R.A. Rowntree
- 14 (eds.). General Technical Report NE-186. U.S. Department of Agriculture Forest Service, Radnor, PA. pp. 83–94.
- Nowak, D.J. (2012) Contrasting natural regeneration and tree planting in 14 North American cities. Urban Forestry
 and Urban Greening. 11: 374– 382.
- Nowak, D.J. and D.E. Crane (2002) Carbon storage and sequestration by urban trees in the United States.
 Environmental Pollution 116(3):381–389.
- 19 Nowak, D.J. and E. Greenfield (2010) Evaluating the National Land Cover Database tree canopy and impervious
- cover estimates across the conterminous United States: A comparison with photo-interpreted estimates.
 Environmental Management. 46: 378-390.
- Nowak, D.J. and E.J. Greenfield (2018a) U.S. urban forest statistics, values and projections. Journal of Forestry.
 116(2):164–177.
- Nowak, D.J. and E.J. Greenfield (2018b) Declining urban and community tree cover in the United States. Urban
 Forestry and Urban Greening. 32:32-55.
- Nowak, D.J., D.E. Crane, J.C. Stevens, and M. Ibarra (2002) Brooklyn's Urban Forest. General Technical Report NE 290. U.S. Department of Agriculture Forest Service, Newtown Square, PA.
- Nowak, D.J., R.E. Hoehn, D.E. Crane, J.C. Stevens, J.T. Walton, and J. Bond (2008) A ground-based method of
 assessing urban forest structure and ecosystem services. Arboric. Urb. For. 34(6): 347-358.
- Nowak, D.J., E.J. Greenfield, R.E. Hoehn, and E. Lapoint (2013) Carbon storage and sequestration by trees in urban
 and community areas of the United States." Environmental Pollution 178: 229-236.
- Nowak, D.J. A.R. Bodine, R.E. Hoehn, C.B. Edgar, D.R. Hartel, T.W. Lister, T.J. Brandeis (2016) Austin's Urban Forest,
 2014. USDA Forest Service, Northern Research Station Resources Bulletin. NRS-100. Newtown Square, PA. 55 p.
- Nowak, D.J. A.R. Bodine, R.E. Hoehn, C.B. Edgar, G. Riley, D.R. Hartel, K.J. Dooley, S.M. Stanton, M.A. Hatfield, T.J.
- Brandeis, T.W. Lister (2017) Houston's Urban Forest, 2015. USDA Forest Service, Southern Research Station
 Resources Bulletin. SRS-211. Newtown Square, PA. 91 p.
- 37 Smith, W.B. and S.R. Shifley (1984) Diameter Growth, Survival, and Volume Estimates for Trees in Indiana and
- Illinois. Research Paper NC-257. North Central Forest Experiment Station, U.S. Department of Agriculture Forest
 Service, St. Paul, MN.
- 40 U.S. Department of Interior (2018) National Land Cover Database 2011 (NLCD2011). Accessed online August 16,
- 41 2018. Available online at: https://www.mrlc.gov/nlcd11_leg.php.

¹ Settlements Remaining Settlements: N₂O Emissions from Soils

- 2 Brakebill, J.W. and Gronberg, J.M. (2017) County-Level Estimates of Nitrogen and Phosphorus from Commercial
- 3 Fertilizer for the Conterminous United States, 1987-2012. U.S. Geological Survey,
- 4 https://doi.org/10.5066/F7H41PKX.
- 5 Brockwell, Peter J., and Richard A. Davis (2016) Introduction to time series and forecasting. Springer.
- 6 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 7 Inventories Programme, The Intergovernmental Panel on Climate Change. H.S. Eggleston, L. Buendia, K. Miwa, T.
- 8 Ngara, and K. Tanabe (eds.). Hayama, Kanagawa, Japan.
- 9 Soil Survey Staff (2016) State Soil Geographic (STATSGO) Database for State. Natural Resources Conservation
- 10 Service, United States Department of Agriculture. Available online at:
- 11 <http://www.ncgc.nrcs.usda.gov/products/datasets/statsgo/index.html>.
- 12 USDA-NRCS (2018) Summary Report: 2015 National Resources Inventory, Natural Resources Conservation Service,
- 13 Washington, D.C., and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa.
- 14 https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1422028.pdf.

Settlements Remaining Settlements: Changes in Yard Trimmings and Food Scrap Carbon Stocks in Landfills

- Barlaz, M.A. (2008) "Re: Corrections to Previously Published Carbon Storage Factors." Memorandum to Randall
 Freed, ICF International. February 28, 2008.
- Barlaz, M.A. (2005) "Decomposition of Leaves in Simulated Landfill." Letter report to Randall Freed, ICF Consulting.
 June 29, 2005.
- Barlaz, M.A. (1998) "Carbon Storage during Biodegradation of Municipal Solid Waste Components in Laboratory Scale Landfills." Global Biogeochemical Cycles 12:373–380.
- De la Cruz, F.B. and M.A. Barlaz (2010) "Estimation of Waste Component Specific Landfill Decay Rates Using
 Laboratory-Scale Decomposition Data" Environmental Science & Technology 44:4722–4728.
- Eleazer, W.E., W.S. Odle, Y. Wang, and M.A. Barlaz (1997) "Biodegradability of Municipal Solid Waste Components
 in Laboratory-Scale Landfills." Environmental Science & Technology 31:911–917.
- 27 EPA (2018) Advancing Sustainable Materials Management: Facts and Figures 2015. U.S. Environmental Protection
- Agency, Office of Solid Waste and Emergency Response, Washington, D.C. Available online at
- 29 https://www.epa.gov/smm/advancing-sustainable-materials-management-facts-and-figures-report.
- 30 EPA (2016) Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures. U.S.
- 31 Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C. Available
- 32 online at <https://archive.epa.gov/epawaste/nonhaz/municipal/web/html/msw99.html>.
- 33 EPA (1995) Compilation of Air Pollutant Emission Factors. U.S. Environmental Protection Agency, Office of Air
- 34 Quality Planning and Standards, Research Triangle Park, NC. AP-42 Fifth Edition. Available online at
- 35 <http://www3.epa.gov/ttnchie1/ap42/>.
- 36 EPA (1991) Characterization of Municipal Solid Waste in the United States: 1990 Update. U.S. Environmental
- 37 Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C. EPA/530-SW-90-042.
- 38 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 39 Inventories Programme, The Intergovernmental Panel on Climate Change. H.S. Eggleston, L. Buendia, K. Miwa, T.
- 40 Ngara, and K. Tanabe (eds.). Hayama, Kanagawa, Japan.

- 1 IPCC (2003) Good Practice Guidance for Land Use, Land-Use Change, and Forestry. The Intergovernmental Panel on
- 2 Climate Change, National Greenhouse Gas Inventories Programme, J. Penman et al. (eds.). Available online at
- 3 <http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm>.
- 4 Oshins, C. and D. Block (2000) "Feedstock Composition at Composting Sites." Biocycle 41(9):31–34.
- 5 Tchobanoglous, G., H. Theisen, and S.A. Vigil (1993) Integrated Solid Waste Management, 1st edition. McGraw-Hill,
- 6 NY. Cited by Barlaz (1998) "Carbon Storage during Biodegradation of Municipal Solid Waste Components in
- 7 Laboratory-Scale Landfills." Global Biogeochemical Cycles 12:373–380.

8 Land Converted to Settlements

- 9 Birdsey, R. (1996) "Carbon Storage for Major Forest Types and Regions in the Conterminous United States." In R.N.
- 10 Sampson and D. Hair, (eds.). Forest and Global Change, Volume 2: Forest Management Opportunities for
- 11 Mitigating Carbon Emissions. American Forests. Washington, D.C., 1-26 and 261-379 (appendices 262 and 263).
- 12 Brockwell, Peter J., and Richard A. Davis (2016) Introduction to time series and forecasting. Springer. Domke, G.M.,
- 13 Perry, C.H., Walters, B.F., Woodall, C.W., and Smith, J.E. (2016) A framework for estimating litter carbon stocks in
- 14 forests of the United States. Science of the Total Environment 557–558: 469–478.
- 15 Domke, G.M., J.E. Smith, and C.W. Woodall. (2011) Accounting for density reduction and structural loss in standing
- dead trees: Implications for forest biomass and carbon stock estimates in the United States. Carbon Balance andManagement. 6:14.
- Domke, G.M., Woodall, C.W., Walters, B.F., Smith, J.E. (2013) From models to measurements: comparing down
 dead wood carbon stock estimates in the U.S. forest inventory. PLoS ONE 8(3): e59949.
- Domke, G.M., Perry, C.H., Walters, B.F., Woodall, C.W., and Smith, J.E. (2016) A framework for estimating litter carbon stocks in forests of the United States. Science of the Total Environment 557–558: 469–478.
- Fry, J., Xian, G., Jin, S., Dewitz, J., Homer, C., Yang, L., Barnes, C., Herold, N., and Wickham, J. (2011) Completion of
 the 2006 National Land Cover Database for the Conterminous United States, PE&RS, Vol. 77(9):858-864.
- Harmon, M.E., C.W. Woodall, B. Fasth, J. Sexton, M. Yatkov. (2011) Differences between standing and downed
- 25 dead tree wood density reduction factors: A comparison across decay classes and tree species. Res. Paper. NRS-15.
- 26 Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 40 p.
- 27 Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., Herold, N., McKerrow, A., VanDriel, J.N., and
- Wickham, J. (2007) Completion of the 2001 National Land Cover Database for the Conterminous United States.
 Photogrammetric Engineering and Remote Sensing, Vol. 73, No. 4, pp 337-341.
- 30 Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., Wickham, J.D., and
- 31 Megown, K. (2015) Completion of the 2011 National Land Cover Database for the conterminous United States-
- Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing, v.
 81, no. 5, p. 345-354.
- 34 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- Inventories Programme, The Intergovernmental Panel on Climate Change, H.S. Eggleston, L. Buendia, K. Miwa, T
 Ngara, and K. Tanabe (eds.). Hayama, Kanagawa, Japan.
- Jenkins, J.C., D.C. Chojnacky, L.S. Heath, and R.A. Birdsey (2003) "National-scale biomass estimators for United
 States tree species." Forest Science 49(1):12-35.
- Ogle, S.M., M.D. Eve, F.J. Breidt, and K. Paustian (2003) "Uncertainty in estimating land use and management
 impacts on soil organic carbon storage for U.S. agroecosystems between 1982 and 1997." Global Change Biology
- 41 9:1521-1542.
- 42 Ogle, S.M., F.J. Breidt, and K. Paustian (2006) "Bias and variance in model results due to spatial scaling of
- 43 measurements for parameterization in regional assessments." Global Change Biology 12:516-523.

- 1 Schimel, D.S. (1995) "Terrestrial ecosystems and the carbon cycle." Global Change Biology 1: 77-91.
- 2 Smith, J.E.; Heath, L.S.; Skog, K.E.; Birdsey, R.A. (2006) Methods for calculating forest ecosystem and harvested
- 3 carbon with standard estimates for forest types of the United States. Gen. Tech. Rep. NE-343. Newtown Square,
- 4 PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 216 p.
- Tubiello, F. N., et al. (2015). "The Contribution of Agriculture, Forestry and other Land Use activities to Global
 Warming, 1990-2012." Global Change Biology 21:2655-2660.
- 7 USDA Forest Service (2018) Forest Inventory and Analysis National Program: FIA Data Mart. U.S. Department of
- 8 Agriculture Forest Service. Washington, DC; 2015. Available online at <http://apps.fs.fed.us/fiadb-
- 9 downloads/datamart.html>. Accessed 1 November 2018.
- 10 USDA-NRCS (2018) Summary Report: 2015 National Resources Inventory, Natural Resources Conservation Service,
- 11 Washington, D.C., and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa.
- 12 https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1422028.pdf.
- 13 USDA-NRCS (1997) "National Soil Survey Laboratory Characterization Data," Digital Data, Natural Resources
- 14 Conservation Service, U.S. Department of Agriculture. Lincoln, NE.
- 15 Woodall, C.W., L.S. Heath, G.M. Domke, and M.C. Nichols. (2011) Methods and equations for estimating
- aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. Gen. Tech. Rep. NRS-88.
- 17 Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 30 p.
- 18 Woodall, C.W., and V.J. Monleon (2008) Sampling protocol, estimation, and analysis procedures for the down
- 19 woody materials indicator of the FIA program. Gen. Tech. Rep. NRS-22. Newtown Square, PA: U.S. Department of
- 20 Agriculture, Forest Service, Northern Research Station. 68 p.
- 21 Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M.,
- 22 Granneman, B., Liknes, G. C., Rigge, M. & Xian, G. (2018) A new generation of the United States National Land
- 23 Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS Journal of
- 24 Photogrammetry and Remote Sensing 146: 108-123.

25 Waste

26 Landfills

- 40 CFR Part 60, Subpart WWW (2005) Standards of Performance for Municipal Solid Waste Landfills, 60.750--
- 28 60.759, Code of Federal Regulations, Title 40. Available online at:
- 29 <http://www.access.gpo.gov/nara/cfr/waisidx_05/40cfr60_05.html>.
- 40 CFR Part 258, Subtitle D of RCRA (2012) Criteria for Municipal Solid Waste Landfills, 258.1—258.75, Code of
 Federal Regulations, Title 40. Available online at: https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.25.258>.
- 32 BioCycle (2010) "The State of Garbage in America" By L. Arsova, R. Van Haaren, N. Goldstein, S. Kaufman, and N.
- 33 Themelis. *BioCycle*. December 2010. Available online at: <https://www.biocycle.net/2010/10/26/the-state-of-
- 34 garbage-in-america-4/>.
- BioCycle (2006) "The State of Garbage in America" By N. Goldstein, S. Kaufman, N. Themelis, and J. Thompson Jr.
- 36 *BioCycle.* April 2006. Available online at: <https://www.biocycle.net/2006/04/21/the-state-of-garbage-in-america-37 2/>.
- 38 Bronstein, K., Coburn, J., and R. Schmeltz (2012) "Understanding the EPA's Inventory of U.S. Greenhouse Gas
- 39 Emissions and Sinks and Mandatory GHG Reporting Program for Landfills: Methodologies, Uncertainties,
- 40 Improvements and Deferrals." Prepared for the U.S. EPA International Emissions Inventory Conference, August

- 1 2012, Tampa, Florida. Available online at:
- 2 <http://www.epa.gov/ttnchie1/conference/ei20/session3/kbronstein.pdf>.
- 3 Czepiel, P., B. Mosher, P. Crill, and R. Harriss (1996) "Quantifying the Effect of Oxidation on Landfill Methane
- 4 Emissions." *Journal of Geophysical Research*, 101(D11):16721-16730.
- 5 EIA (2007) Voluntary Greenhouse Gas Reports for EIA Form 1605B (Reporting Year 2006). Available online at:
 6 <ftp://ftp.eia.doe.gov/pub/oiaf/1605/cdrom/>.
- 7 EPA (2019a) Landfill Methane Outreach Program (LMOP). 2019 Landfill and Project Level Data. September 2019.
 8 Available online at: < https://www.epa.gov/Imop/landfill-gas-energy-project-data>.
- 9 EPA (2019b) Greenhouse Gas Reporting Program (GHGRP). 2019 Amazon S3 Data. Subpart HH: Municipal Solid 10 Waste Landfills and Subpart TT: Industrial Waste Landfills.
- 11 EPA (2019c) Advancing Sustainable Materials Management: Facts and Figures 2016 and 2017. November 2019.
- 12 Available online at: <https://www.epa.gov/sites/production/files/2019-
- 13 11/documents/2016_and_2017_facts_and_figures_data_tables_0.pdf>.
- 14 EPA (2016) Industrial and Construction and Demolition Landfills. Available online at:
- 15 https://www.epa.gov/landfills/industrial-and-construction-and-demolition-cd-landfills.
- EPA (2008) *Compilation of Air Pollution Emission Factors, Publication AP-42*, Draft Section 2.4 Municipal Solid
 Waste Landfills. October 2008.
- EPA (1993) Anthropogenic Methane Emissions in the United States, Estimates for 1990: Report to Congress, U.S.
 Environmental Protection Agency, Office of Air and Radiation. Washington, D.C. EPA/430-R-93-003. April 1993.
- EPA (1988) *National Survey of Solid Waste (Municipal) Landfill Facilities*, U.S. Environmental Protection Agency.
 Washington, D.C. EPA/530-SW-88-011. September 1988.
- EREF (The Environmental Research & Education Foundation) (2016). Municipal Solid Waste Management in the
 United States: 2010 & 2013.
- ERG (2019) Draft Production Data Supplied by ERG for 1990-2018 for Pulp and Paper, Fruits and Vegetables, and
 Meat. August.
- 26 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 27 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 28 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- Mancinelli, R. and C. McKay (1985) "Methane-Oxidizing Bacteria in Sanitary Landfills." *Proc. First Symposium on Biotechnical Advances in Processing Municipal Wastes for Fuels and Chemicals*, Minneapolis, MN, 437-450. August.
- 31 RTI (2018a) Methodological changes to the scale-up factor used to estimate emissions from municipal solid waste
- landfills in the Inventory. Memorandum prepared by K. Bronstein and M. McGrath for R. Schmeltz (EPA). March 22,
 2018.
- RTI (2018b) Comparison of industrial waste data reported under Subpart TT and the Solid Waste chapter of the
- 35 GHG Inventory. Memorandum prepared by K. Bronstein, B. Jackson, and M. McGrath for R, Schmeltz (EPA).
- 36 October 12, 2018.
- 37 RTI (2017) Methodological changes to the methane emissions from municipal solid waste landfills as reflected in
- the public review draft of the 1990-2015 Inventory. Memorandum prepared by K. Bronstein and M. McGrath for R.
- 39 Schmeltz (EPA). March 31, 2017.
- 40 RTI (2011) Updated Research on Methane Oxidation in Landfills. Memorandum prepared by K. Weitz (RTI) for R.
- 41 Schmeltz (EPA). January 14, 2011.

- 1 U.S. Census Bureau (2019) Annual Estimates of the Resident Population: April 1, 2010 to July 1, 2018. Available
- 2 online at
- 3 <https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=PEP_2018_PEPANNRES&pro
- 4 dType=table>.
- 5 Waste Business Journal (WBJ) (2016) Directory of Waste Processing & Disposal Sites 2016.
- 6 WBJ (2010) Directory of Waste Processing & Disposal Sites 2010.
- 7 WTO (2017). "China's import ban on solid waste queried at import licensing meeting". World Trade Organization.
- 8 Published October 3, 2017. Available online at: <
- 9 https://www.wto.org/english/news_e/news17_e/impl_03oct17_e.htm>.

10 Wastewater Treatment

- 11 AF&PA (2018) "2018 AF&PA Sustainability Report: Advancing U.S. Paper and Wood Products Industry Sustainability
- Performance." American Forest & Paper Association. Available online at: https://www.afandpa.org/docs/default-13
 source/default-document-library/2018sustainabilityreport pages.pdf> Accessed July 2019.
- 14 AF&PA (2016) "2016 AF&PA Sustainability Report: Advancing U.S. Paper and Wood Products Industry Sustainab
- AF&PA (2016) "2016 AF&PA Sustainability Report: Advancing U.S. Paper and Wood Products Industry Sustainability
 Performance." American Forest & Paper Association. Available online at: http://afandpa.org/docs/default-
- 16 source/sust-toolkit/af-amp-pa-2016-sustainability-report_final.pdf?sfvrsn=2> Accessed May 2017.
- 17 AF&PA (2014) "2014 AF&PA Sustainability Report." American Forest & Paper Association. Available online at:
- <http://afandpa.org/docs/default-source/sust-toolkit/2014_sustainabilityreport_final.pdf?sfvrsn=2>. Accessed
 June 2017.
- 20 Ahn et al. (2010) N2O Emissions from Activated Sludge Processes, 2008-2009: Results of a National Monitoring
- 21 Survey in the United States. Environ. Sci. Technol. 44: 4505-4511.
- Beecher et al. (2007) "A National Biosolids Regulation, Quality, End Use & Disposal Survey, Preliminary Report."
 Northeast Biosolids and Residuals Association, April 14, 2007.
- Beer Institute (2011) Brewers Almanac. Available online at: http://www.beerinstitute.org/multimedia/brewers-
 almanac/>.
- Benyahia, F., M. Abdulkarim, A. Embaby, and M. Rao. (2006) Refinery Wastewater Treatment: A true Technological
 Challenge. Presented at the Seventh Annual U.A.E. University Research Conference.
- BIER (2017) Beverage Industry Environmental Roundtable. 2016 Trends and Observations. Available online at:
 https://www.bieroundtable.com/benchmarking-coeu. Accessed April 2018.
- 30 Brewers Association (2019) Statistics: Number of Breweries. Available online at:
- 31 <https://www.brewersassociation.org/statistics-and-data/national-beer-stats/>. Accessed July 2019.
- 32 Brewers Association (2017). 2016 Sustainability Benchmarking Update. Available online at:
- <https://www.brewersassociation.org/best-practices/sustainability/sustainability-benchmarking-tools>. Accessed
 April 2018.
- 35 Brewers Association (2016a) 2015 Sustainability Benchmarking Report. Available online at:
- 36 <https://www.brewersassociation.org/best-practices/sustainability/sustainability-benchmarking-tools>. Accessed
- 37 March 2018.
- 38 Brewers Association (2016b) Wastewater Management Guidance Manual. Available online at:
- 39 <https://www.brewersassociation.org/educational-publications/wastewater-management-guidance-manual>.
- 40 Accessed September 2017.
- 41 CAST (1995) Council for Agricultural Science and Technology. Waste Management and Utilization in Food
- 42 Production and Processing. U.S.A. October 1995. ISBN 1-887383-02-6. Available online at: < http://www.cast-
- 43 science.org/download.cfm?PublicationID=2889&File=70E92280D92EC9A1EED60A5AA8D2734E.cfusion>.

- 1 Climate Action Reserve (CAR) (2011) Landfill Project Protocol V4.0, June 2011. Available online at:
- 2 <http://www.climateactionreserve.org/how/protocols/us-landfill/>.
- 3 Chandran, K. (2012) Greenhouse Nitrogen Emissions from Wastewater Treatment Operation Phase I: Molecular
- 4 Level Through Whole Reactor Level Characterization. WERF Report U4R07.
- Cooper (2018) Email correspondence. Geoff Cooper, Renewable Fuels Association to Kara Edquist, ERG. "Wet Mill
 vs. Dry Mill Ethanol Production." May 18, 2018.
- DOE (2013) U.S. Department of Energy Bioenergy Technologies Office. Biofuels Basics. Available online at:
 http://energy.gov/eere/bioenergy/biofuels-basics. Accessed September 2013.
- 9 Donovan (1996) Siting an Ethanol Plant in the Northeast. C.T. Donovan Associates, Inc. Report presented to
- Northeast Regional Biomass Program (NRBP). (April). Available online at: http://www.nrbp.org/pdfs/pub09.pdf>.
 Accessed October 2006.
- EIA (2019) Energy Information Administration. U.S. Refinery and Blender Net Production of Crude Oil and
 Petroleum Products (Thousand Barrels). Available online at:
- 14 <https://www.eia.gov/dnav/pet/pet_pnp_refp_dc_nus_mbbl_m.htm>. Accessed September 2019.
- 15 EPA (2013) U.S. Environmental Protection Agency. Report on the Performance of Secondary Treatment
- 16 Technology. EPA-821-R-13-001. Office of Water, U.S. Environmental Protection Agency. Washington, D.C. March
- 17 2013. Available online at: https://www.epa.gov/sites/production/files/2015-
- 18 11/documents/npdes_secondary_treatment_report_march2013.pdf>.
- 19 EPA (2012) U.S. Environmental Protection Agency. Clean Watersheds Needs Survey 2012 Report to Congress.
- 20 U.S. Environmental Protection Agency, Office of Wastewater Management. Washington, D.C. Available online at:
- <https://www.epa.gov/cwns/clean-watersheds-needs-survey-cwns-2012-report-and-data#access>. Accessed
 February 2016.
- 23 EPA (2008a) U.S. Environmental Protection Agency. Municipal Nutrient Removal Technologies Reference
- Document: Volume 2 Appendices. U.S. Environmental Protection Agency, Office of Wastewater Management.
 Washington, D.C.
- 26 EPA (2008b) U.S. Environmental Protection Agency. Clean Watersheds Needs Survey 2008 Report to Congress.
- 27 U.S. Environmental Protection Agency, Office of Wastewater Management. Washington, D.C. Available online at:
- 28 <https://www.epa.gov/cwns/clean-watersheds-needs-survey-cwns-2008-report-and-data>. Accessed December 29 2015.
- 30 EPA (2004) U.S. Environmental Protection Agency. Clean Watersheds Needs Survey 2004 Report to Congress.
- U.S. Environmental Protection Agency, Office of Wastewater Management. Washington, D.C.
- 32 EPA (2002) U.S. Environmental Protection Agency. Development Document for the Proposed Effluent Limitations
- 33 Guidelines and Standards for the Meat and Poultry Products Industry Point Source Category (40 CFR 432). EPA-
- 34 821-B-01-007. Office of Water, U.S. Environmental Protection Agency. Washington, D.C. January 2002.
- 35 EPA (2000) U.S. Environmental Protection Agency. Clean Watersheds Needs Survey 2000 Report to Congress.
- Office of Wastewater Management, U.S. Environmental Protection Agency. Washington, D.C. Available online at:
 https://www.epa.gov/cwns/clean-watersheds-needs-survey-cwns-2000-report-and-data>. Accessed July 2007.
- 38 EPA (1999) U.S. Environmental Protection Agency. Biosolids Generation, Use and Disposal in the United States.
- Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency. Washington, D.C. EPA530-
- 40 R-99-009. September 1999.
- 41 EPA (1998) U.S. Environmental Protection Agency. "AP-42 Compilation of Air Pollutant Emission Factors." Chapter
- 42 2.4, Table 2.4-3, page 2.4-13. Available online at: <http://www.epa.gov/ttn/chief/ap42/ch02/final/c02s04.pdf>.
- 43 EPA (1997a) U.S. Environmental Protection Agency. Estimates of Global Greenhouse Gas Emissions from Industrial
- 44 and Domestic Wastewater Treatment. EPA-600/R-97-091. Office of Policy, Planning, and Evaluation, U.S.
- 45 Environmental Protection Agency. Washington, D.C. September 1997.

- 1 EPA (1997b) U.S. Environmental Protection Agency. Supplemental Technical Development Document for Effluent
- 2 Guidelines and Standards (Subparts B & E). EPA-821-R-97-011. Office of Water, U.S. Environmental Protection
- 3 Agency. Washington, D.C. October 1997.
- 4 EPA (1996) U.S. Environmental Protection Agency. 1996 Clean Water Needs Survey Report to Congress.
- 5 Assessment of Needs for Publicly Owned Wastewater Treatment Facilities, Correction of Combined Sewer
- 6 Overflows, and Management of Storm Water and Nonpoint Source Pollution in the United States. Office of
- 7 Wastewater Management, U.S. Environmental Protection Agency. Washington, D.C.
- 8 EPA (1993a) U.S. Environmental Protection Agency, "Anthropogenic Methane Emissions in the U.S.: Estimates for
 9 1990, Report to Congress." Office of Air and Radiation, Washington, DC. April 1993.
- 10 EPA (1993b) U.S. Environmental Protection Agency. Development Document for the Proposed Effluent Limitations
- 11 Guidelines and Standards for the Pulp, Paper and Paperboard Point Source Category. EPA-821-R-93-019. Office of
- 12 Water, U.S. Environmental Protection Agency. Washington, D.C. October 1993.
- 13 EPA (1993c) Standards for the Use and Disposal of Sewage Sludge. 40 CFR Part 503.
- 14 EPA (1992) U.S. Environmental Protection Agency. Clean Watersheds Needs Survey 1992 Report to Congress.
- 15 Office of Wastewater Management, U.S. Environmental Protection Agency. Washington, D.C.
- 16 EPA (1975) U.S. Environmental Protection Agency. Development Document for Interim Final and Proposed Effluent
- 17 Limitations Guidelines and New Source Performance Standards for the Fruits, Vegetables, and Specialties Segment
- 18 of the Canned and Preserved Fruits and Vegetables Point Source Category. United States Environmental
- 19 Protection Agency, Office of Water. EPA-440/1-75-046. Washington D.C. October 1975.
- 20 EPA (1974) U.S. Environmental Protection Agency. Development Document for Effluent Limitations Guidelines and
- 21 New Source Performance Standards for the Apple, Citrus, and Potato Processing Segment of the Canned and
- 22 Preserved Fruits and Vegetables Point Source Category. Office of Water, U.S. Environmental Protection Agency,
- 23 Washington, D.C. EPA-440/1-74-027-a. March 1974.
- 24 ERG (2018a) Updates to Domestic Wastewater BOD Generation per Capita. August 2018.
- 25 ERG (2018b) Inclusion of Wastewater Treatment Emissions from Breweries. July 2018.
- ERG (2016) Revised Memorandum: Recommended Improvements to the 1990-2015 Wastewater Greenhouse Gas
 Inventory. November 2016.
- 28 ERG (2013a) Revisions to Pulp and Paper Wastewater Inventory. October 2013.
- 29 ERG (2013b) Revisions to the Petroleum Refinery Wastewater Inventory. October 2013.
- ERG (2008) Planned Revisions of the Industrial Wastewater Inventory Emission Estimates for the 1990-2007
 Inventory. August 10, 2008.
- ERG (2006) Memorandum: Assessment of Greenhouse Gas Emissions from Wastewater Treatment of U.S. Ethanol
 Production Wastewaters. Prepared for Melissa Weitz, EPA. 10 October 2006.
- 55 FIOLOCION Wastewaters. Frepared for Menssa Weitz, LFA. 10 October
- 34 FAO (2019a) FAOSTAT-Forestry Database. Available online at:
- 35 <http://faostat3.fao.org/home/index.html#DOWNLOAD>. Accessed May 2019.
- 36 FAO (2019b) "Pulp and Paper Capacities Report." United States. From 1998 2003, 2000 2005, 2001 2006,
- 37 2002 2007, 2003 2008, 2010 2015, 2011 2016, 2012 2017, 2013 2018, 2014 2019, 2015 2020, 2016 -
- 38 2021, 2017 2022 reports. Available online at:< http://www.fao.org/forestry/statistics/81757/en/> Accessed June
- 39 2019.
- 40 FAO (2019c) FAOSTAT-Food Balance Sheets. Available online at:
- 41 <http://faostat3.fao.org/home/index.html#DOWNLOAD>. Accessed June 2019.
- 42 Great Lakes-Upper Mississippi River Board of State and Provincial Public Health and Environmental Managers.
- 43 (2004) Recommended Standards for Wastewater Facilities (Ten-State Standards).

- 1 IPCC (2014) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands.
- [Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds.)]. Published:
 IPCC, Switzerland.
- 4 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 5 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 6 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- Leverenz, H.L., G. Tchobanoglous, and J.L. Darby (2010) "Evaluation of Greenhouse Gas Emissions from Septic
 Systems." Water Environment Research Foundation. Alexandria, VA.
- 9 Lewis, A. (2019). Email correspondence. Ann Lewis, RFA to Kara Edquist, ERG. "Wet Mill vs Dry Mill Ethanol
 10 Production." August 20, 2019.
- 11 Malmberg, B. (2019) Email correspondence. Barry Malmberg, NCASI to Kara Edquist, ERG. "Question on
- 12 Wastewater Inventory Pulp and Paper production data." July 1, 2019.
- 13 Malmberg, B. (2018) Draft Pulp and Paper Information for Revision of EPA Inventory of U.S. Greenhouse Gas
- 14 Emissions and Sinks, Waste Chapter. National Council for Air and Stream Improvement, Inc. Prepared for Rachel
- 15 Schmeltz, EPA. June 13, 2018.
- 16 McFarland (2001) Biosolids Engineering, New York: McGraw-Hill, p. 2.12.
- Merrick (1998) Wastewater Treatment Options for the Biomass-to-Ethanol Process. Report presented to National
 Renewable Energy Laboratory (NREL). Merrick & Company. Subcontract No. AXE-8-18020-01. October 22, 1998.
- Metcalf & Eddy, Inc. (2014) Wastewater Engineering: Treatment and Resource Recovery, 5th ed. McGraw HillPublishing.
- Metcalf & Eddy, Inc. (2003) Wastewater Engineering: Treatment, Disposal and Reuse, 4th ed. McGraw Hill
 Publishing.
- Nemerow, N.L. and A. Dasgupta (1991) Industrial and Hazardous Waste Treatment. Van Nostrand Reinhold. NY.
 ISBN 0-442-31934-7.
- 25 NRBP (2001) Northeast Regional Biomass Program. An Ethanol Production Guidebook for Northeast States.
- 26 Washington, D.C. (May 3). Available online at: http://www.nrbp.org/pdfs/pub26.pdf>. Accessed October 2006.
- Rendleman, C.M. and Shapouri, H. (2007) New Technologies in Ethanol Production. USDA Agricultural Economic
 Report Number 842.
- 29 RFA (2019a). Renewable Fuels Association. Annual U.S. Fuel Ethanol Production. Available online at:
- 30 <https://ethanolrfa.org/statistics/annual-ethanol-production/>. Accessed May 2019.
- RFA (2019b). Renewable Fuels Association. Monthly Grain Use for U.S. Ethanol Production Report. Available online
 at: https://ethanolrfa.org/statistics/feedstock-use-co-product-output/. Accessed May 2019.
- Ruocco (2006a) Email correspondence. Dr. Joe Ruocco, Phoenix Bio-Systems to Sarah Holman, ERG. "Capacity of
 Bio-Methanators (Dry Milling)." October 6, 2006.
- Ruocco (2006b) Email correspondence. Dr. Joe Ruocco, Phoenix Bio-Systems to Sarah Holman, ERG. "Capacity of
 Bio-Methanators (Wet Milling)." October 16, 2006.
- Scheehle, E.A., and Doorn, M.R. (2001) "Improvements to the U.S. Wastewater Methane and Nitrous Oxide
 Emissions Estimate." July 2001.
- Stier, J. (2018) Personal communications between John Stier, Brewers Association Sustainability Mentor and Amie
 Aguiar, ERG. Multiple dates.
- 41 Sullivan (SCS Engineers) (2010) The Importance of Landfill Gas Capture and Utilization in the U.S. Presented to
- 42 SWICS, April 6, 2010. Available online at:
- 43 <http://www.scsengineers.com/Papers/Sullivan_Importance_of_LFG_Capture_and_Utilization_in_the_US.pdf>.

- 1 Sullivan (SCS Engineers) (2007) Current MSW Industry Position and State of the Practice on Methane Destruction
- 2 Efficiency in Flares, Turbines, and Engines. Presented to Solid Waste Industry for Climate Solutions (SWICS). July
- 3 2007. Available online at:
- 4 <http://www.scsengineers.com/Papers/Sullivan_LFG_Destruction_Efficiency_White_Paper.pdf>.
- 5 TTB (2019) Alcohol and Tobacco Tax and Trade Bureau. Beer Statistics. Available online at:
- 6 <https://www.ttb.gov/beer/beer-stats.shtml>. Accessed May 2019.
- 7 UNFCCC (2012) CDM Methodological tool, Project emissions from flaring (Version 02.0.0). EB 68 Report. Annex 15.
- 8 Available online at: http://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-06-
- 9 v1.pdf/history_view>.
- 10 U.S. Census Bureau (2019) International Database. Available online at:
- 11 https://www.census.gov/population/international/data/idb/informationGateway.php. Accessed June 2019.
- 12 U.S. Census Bureau (2017) "American Housing Survey." Table 1A-4: Selected Equipment and Plumbing--All Housing
- 13 Units. From 1989, 1991, 1993, 1995, 1997, 1999, 2001, 2003, 2005, 2007, and 2009 reports. Table C-04-AO
- 14 Plumbing, Water, and Sewage Disposal--All Occupied Units. From 2011, 2013, 2015, and 2017 reports. Available
- 15 online at <http://www.census.gov/programs-surveys/ahs/data.html>. Accessed June 2019.
- 16 USDA (2019a) U.S. Department of Agriculture. National Agricultural Statistics Service. Washington, D.C. Available
- 17 online at: <http://www.nass.usda.gov/Publications/Ag_Statistics/index.asp> and
- 18 <https://quickstats.nass.usda.gov/>. Accessed May 2019.
- 19 USDA (2019b) U.S. Department of Agriculture. Economic Research Service. Nutrient Availability. Washington D.C.
- 20 Available online at:<https://www.ers.usda.gov/data-products/food-availability-per-capita-data-system/food-
- 21 availability-per-capita-data-system>. Accessed May 2019.
- 22 USDA (2019c) U.S. Department of Agriculture. National Agricultural Statistics Service. Vegetables 2018 Summary.
- Available online at: <https://usda.library.cornell.edu/concern/publications/02870v86p?locale=en>. Accessed June
 2019.
- U.S. Poultry (2006) Email correspondence. John Starkey, USPOULTRY to D. Bartram, ERG. 30 August 2006.
- 26 White and Johnson (2003) White, P.J. and Johnson, L.A. Editors. Corn: Chemistry and Technology. 2nd ed. AACC
- 27 Monograph Series. American Association of Cereal Chemists. St. Paul, MN.

28 Composting

- 29 BioCycle (2018a) Organic Waste Bans And Recycling Laws to Tackle Food Waste. Prepared by E. Broad Lieb, K.
- Sandson, L. Macaluso, and C. Mansell. Available online at: https://www.biocycle.net/2018/09/11/organic-waste-bans-recycling-laws-tackle-food-waste/>.
- 32 BioCycle (2018b). State Food Waste Recycling Data Collection, Reporting Analysis. Prepared by Nora Goldstein.
- Available online at: http://compostcolab.wpengine.com/wp-content/uploads/2018/11/State-Food-Waste-
 Recycling-Data-Collection-Reporting-Analysis.pdf>.
- 34 Recycling-Data-Collection-Reporting-Analysis.pdf>.
- 35 BioCycle (2010) The State of Garbage in America. Prepared by Rob van Haaren, Nickolas Themelis and Nora
- 36 Goldstein. Available online at <http://www.biocycle.net/images/art/1010/bc101016_s.pdf>.
- Cornell Composting (1996). Monitoring Compost Moisture. Cornell Waste Management Institute. Available online
 at: http://compost.css.cornell.edu/monitor/monitormoisture.html>.
- 39 Cornell Waste Management Institute (2007) The Science of Composting. Available online at
- 40 <http://cwmi.css.cornell.edu/chapter1.pdf/>.
- 41 EPA (2019) Advancing Sustainable Materials Management: 2016 and 2017 Tables and Figures. Office of Solid Waste
- 42 and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C. Available online at:

- 1 <https://www.epa.gov/sites/production/files/2019-
- 2 11/documents/2016_and_2017_facts_and_figures_data_tables_0.pdf>.
- 3 EPA (2018) Advancing Sustainable Materials Management: 2015 Tables and Figures. Office of Solid Waste and
- 4 Emergency Response, U.S. Environmental Protection Agency, Washington, D.C. Available online at
- 5 https://www.epa.gov/sites/production/files/2018-
- 6 07/documents/smm_2015_tables_and_figures_07252018_fnl_508_0.pdf>.
- 7 EPA (2016) Advancing Sustainable Materials Management: Facts and Figures 2014. Office of Solid Waste and
- 8 Emergency Response, U.S. Environmental Protection Agency, Washington, D.C. Available online at
- 9 https://www.epa.gov/sites/production/files/2016-11/documents/2014_smm_tablesfigures_508.pdf>.
- 10 EPA (2014) Municipal Solid Waste in the United States: 2012 Facts and Figures. Office of Solid Waste and
- 11 Emergency Response, U.S. Environmental Protection Agency, Washington, D.C. Available online at
- 12 <http://epa.gov/epawaste/nonhaz/municipal/pubs/2012_msw_dat_tbls.pdf>.
- 13 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 5: Waste, Chapter 4: Biological
- 14 Treatment of Solid Waste, Table 4.1. The National Greenhouse Gas Inventories Programme, The
- 15 Intergovernmental Panel on Climate Change, H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe (eds.).
- 16 Hayama, Kanagawa, Japan. Available online at <http://www.ipcc-
- 17 nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_4_CH4_Bio_Treat.pdf>.
- Institute for Local Self-Reliance (ISLR) (2014). State of Composting in the US: What, Why, Where & How. Available
 at <http://ilsr.org/wp-content/uploads/2014/07/state-of-composting-in-us.pdf>.
- 20 University of Maine (2016). Compost Report Interpretation Guide. Soil Testing Lab. Available online at:
- 21 <https://umaine.edu/soiltestinglab/wp-content/uploads/sites/227/2016/07/Compost-Report-Interpretation-
- 22 Guide.pdf>.
- 23 U.S. Census Bureau (2019) Population Estimates: Vintage 2018 Annual Estimates of the Resident Population for the
- 24 United States, Regions, States, and Puerto Rico, April 1, 2010 to July 1, 2018. Available online at <
- 25 https://www2.census.gov/programs-surveys/popest/tables/2010-2018/state/totals/nst-est2018-01.xlsx>.
- 26 U.S. Composting Council (2010) Yard Trimmings Bans: Impact and Support. Prepared by Stuart Buckner, Executive
- 27 Director, U.S., Composting Council. Available online at <http://recyclingorganizations.org/webinars/RONA-YT-Ban-
- 28 impacts-and-support-8.19.pdf>.

29 Waste Incineration

- 30 RTI (2009) Updated Hospital/Medical/Infectious Waste Incinerator (HMIWI) Inventory Database. Memo dated July
- 6, 2009. Available online at: <https://nepis.epa.gov/Exe/ZyPDF.cgi/P1009ZW6.PDF?Dockey=P1009ZW6.pdf>.

32 Waste Sources of Precursor Greenhouse Gas Emissions

- 33 EPA (2019) "1970 2018 Average annual emissions, all criteria pollutants in MS Excel." National Emissions
- 34 Inventory (NEI) Air Pollutant Emissions Trends Data. Office of Air Quality Planning and Standards, May 2019.
- 35 Available online at: https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data.
- 36 EPA (2003) Email correspondence containing preliminary ambient air pollutant data. Office of Air Pollution and the
- 37 Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency. December 22, 2003.

Recalculations and Improvements

BOEM (2011) OCS Platform Activity. Bureau of Ocean Energy Management, U.S. Department of Interior.

- 1 CTIC (2004) National Crop Residue Management Survey: 1989-2004. Conservation Technology Information Center,
- 2 Purdue University, Available online at: <http://www.ctic.purdue.edu/CRM/>.
- 3 EIA (2019) Monthly Energy Review, November 2019, Energy Information Administration, U.S. Department of
- 4 Energy, Washington, DC. DOE/EIA-0035(2019/11).
- EPA (2019) *Greenhouse Gas Reporting Program- Subpart W Petroleum and Natural Gas Systems*. Environmental
 Protection Agency. Data reported as of August 4, 2019.
- 7 USDA Forest Service (2019) Forest Inventory and Analysis National Program: FIA Data Mart. U.S. Department of
- 8 Agriculture Forest Service. Washington, DC; 2015. Available online at http://apps.fs.fed.us/fiadb-
- 9 downloads/datamart.html>. Accessed 2 October 2019.
- Fry, J., Xian, G., Jin, S., Dewitz, J., Homer, C., Yang, L., Barnes, C., Herold, N., and J. Wickham. (2011) Completion of
 the 2006 National Land Cover Database for the Conterminous United States, PE&RS 77(9):858-864.
- Homer, C., J. Dewitz, J. Fry, M. Coan, N. Hossain, C. Larson, N. Herold, A. McKerrow, J.N. VanDriel and J. Wickham.
- 13 (2007) Completion of the 2001 National Land Cover Database for the Conterminous United States.
- 14 Photogrammetric Engineering and Remote Sensing 73(4): 337-341.
- Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., Wickham, J.D., and
- 16 Megown, K. (2015) Completion of the 2011 National Land Cover Database for the conterminous United States-
- 17 Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing
- 18 81(5):345-354.
- 19 IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas
- 20 Inventories Programme, The Intergovernmental Panel on Climate Change. [H.S. Eggleston, L. Buendia, K. Miwa, T.
- 21 Ngara, and K. Tanabe (eds.)]. Hayama, Kanagawa, Japan.
- 22 MRLC (2013) National Land Cover Database 2001 (NLCD 2001). Available online at:
- 23 <http://www.mrlc.gov/nlcd2001.php>. Accessed August 2013.
- 24 USDA-ERS (2018) Agricultural Resource Management Survey (ARMS) Farm Financial and Crop Production Practices:
- Tailored Reports. Available online at: https://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-practices/>.
- USDA-NASS (2017) 2017 Census of Agriculture. USDA National Agricultural Statistics Service, Complete data
 available at www.nass.usda.gov/AgCensus.
- 29 USDA-NRCS (2018a) Summary Report: 2015 National Resources Inventory, Natural Resources Conservation Service,
- 30 Washington, D.C., and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa.
- 31 <https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1422028.pdf>.
- USDA-NRCS (2018b) CEAP Cropland Farmer Surveys. USDA Natural Resources Conservation Service.
 https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/nra/ceap/na/?cid=nrcs143_014163
- 34 Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M.,
- 35 Granneman, B., Liknes, G. C., Rigge, M. & Xian, G. (2018) A new generation of the United States National Land
- 36 Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS Journal of
- 37 Photogrammetry and Remote Sensing 146: 108-123.
- 38 Zimmerle, et al. (2015) "Methane Emissions from the Natural Gas Transmission and Storage System in the United
- 39 States." *Environmental Science and Technology, Vol. 49* 9374–9383.