

THE LEADER IN ENVIRONMENTAL TESTING

Radiochemical Analytical Challenges with Hydrofrac Fluids

Terry Romanko Technical Director TestAmerica St. Louis

Proprietary and Confidential

Feb 24-25, 2011

Flowback Composition

- Relatively High TDS (some >250,000 mg/L)
 - ~ Barium (>4,000 mg/L)
 - ~ Calcium (>31,000 mg/L)
 - ~ Strontium (>2,000 mg/L)
 - ~ Iron (>100 mg/L)

Gross Alpha/Beta

- Gross Alpha/Beta (EPA 900.0/SW846 9310)
 - ~ "Rough" screening
 - Mass on planchet limited to 100 mg for alpha
 - High solids leads to reduced aliquot and counting efficiency
 - ~ EPA 900.1/SM 7110C can help, but ...

Radium

Ra-226/228 Analytical

Radium Co-precipitation

- Most "traditional" precipitation chemistry methods employ sulfate co-precipitation
- Various Pb/Sr/Ba concentrations added
- ~ EDTA cleanup
- ~ Eventually barium sulfate
 - carrier for chemical recovery calculation
 - ~30 mg barium

Ra-226/228 Analytical

Interferences

- ~ TDS and Ba/Ca/Sr all cause problems
 - General competition in chemistry
 - Large qty of barium sulfate precipitate

- Spoils gravimetric chemical recovery
- For GFPC creates flaking issue
- For GFPC increases self-absorption

Ra-226/228 Analytical

Possible Solutions

- ~ Reduce aliquot (increases MDC)
- ~ Ba-133 as tracer for chemical yield
 - Still have large qty of precipitate
- ~ Use "non-traditional" method
 - Gamma Spectroscopy (direct count)
 - Gamma Spectroscopy (Ga. Tech method)

Gamma Ra-226

Ra-226 has one weak gamma emission
~ 3% abundance at 186 keV

- U-235 has several gamma emissions
 - ~ 11% at 144 keV
 - ~ 54% at 186 keV

U-235 is large interference for Ra-226!!

Ra-226 Decay Chain

Ra 215 (944) 1.60 ms	Ra 216 1.85-7 s	Ra 217 (9**) 1.6156 s	Ra 218 1.455 s	Ra 219 ⁰⁰⁺ 10.0 ms	Ra 220 23.0 ms	Ra 221 ^{5*} 28.0 s	Ra 222 38.0 s	Ra 223 ^{3*} 11.4 d	Ra 224 87.8 h	Ra 225 1* 14.8 d	Ra 226 1.6E3 a	
E 8.26	E9 <i>5</i> 3	E9.16	E 3 <i>5</i> 6	E 8.13	E7.60	E629	E6.63	E556	E5.79	E 367	Ω E+27	
⁽²⁹⁾ Fr214 ⁽¹⁻⁾ 3.40 ms 5.00 ms	Fr215 [™] 9.0⊟8s	Fr216 ⁽¹⁻⁾ 7.0E-7 s	Fr217 ^{≌⊷} 2.2⊟5 s	Fr218 ⁽¹⁻⁾ 7.0E-4 s	Fr 219 54 20.0 ms	Fr 220 ^{1*} 27.5 s	Fr221 ^{5∿} 4.80 m	Fr 222 ²⁻ 14.8 m	Fr 223 349 21.8 m	Fr 224 160 s	Fr 225 3.00 m	ľ
E3.59	E9 <i>5</i> 4	E9.18	E 8.47	E 8.01	E7.45	E620	E6.46	EZE	E 1.15	EZZZ	E 1 <i>2</i> 7	
Rn 213 (44) 25.0 ms	Rn 214 2.75-7 s	Rn 215 ** 2.3E-6 s	Rn 216 45.0 s	Rn 217 5** 5.4E4 s	Rn 218 35.0 ms	Rn 219 5** 3.96 s	Rn 220 55.6 s	Rn 221 ⁷⁴⁺⁾ 25.0 m	Rn 222 91.8 h	Rn 223 " 43.0 m	Rn 224 107 m	
E824	E921	E824	E 3 20	E729	E7.26	E6.96	E6.41	E 1.22	α = 5.59			
4 At 212 (19)	At 213 4 1.1E-7 s	At 214 ¹⁻ 2.0E-6 s	At 215 ** 1.0E-4 s	At 216 19 3.0E-4 s	At 217 32.0 ms	At 218 2.00 s	At 219 54.0 s					
E7 23	E9.25	E 2.99	E 8.18	E7.96	E7.20		E6.39					
25.5 s 520 ms	45.0 s 3.0E-7 s	Po213 ** 4.2E-6 s	Po214 1.8E-4s	Po 215 ** 2.00 ms	Po 216 150 ms	Po217 10.0 s	Po 218 183 s B					
E7.60	E856	E854		E7.53	E691	E 6.66	ρα E6.12					
Bi 210 3.5B6 a 5.01 d	Bi 211 " 130 s	Bi 212 "* 60.6 m	Bi 213 45.7 m	Bi 214 19.9 m	Bi 215 7.40 m							
E 1.16	E6.75	E225	E1.43		EZ25							
Р6 209 - ^{ст} 3.25 h	P6 210 20.4 a	96.1 m	P6 212 10.6 h	P6 213 CT.	Pb 214 26.8 m							
E .5++ T1 000 - 5(*)	E D5+	E137 T1010 (51)	E 57.4	EZOT	β	e						
186 s	132 s	^{79.2 s}										
E 5.00	E 3 <i>5</i> 6	E5.48										

Gamma Ra-226

- First progeny of Ra-226, Rn-222 (gas), can escape matrix.
- Seal in a geometry, then allow for decay chain to <u>ingrow</u>
- Measure Bi-214 (46% gamma at 609 keV)

Ra-226 to Rn-222 Ingrowth

Secular equilibrium

- Half-life of Ra-226 (1600 years) is much greater than of Rn-222 (91.8 hrs)
- Rest of decay chain down to Pb-210 has short half-life (<30 min.)
 - 7 days = 72% ingrowth
 - 14 days = 92% ingrowth
 - 21 days = 98% ingrowth

Direct Count

Direct Count (No Preparation)

- ~ Place sample (e.g. 1L) in geometry
- ~ Count after ingrowth
- ~ MDC of 30-50 pCi/L
- ~ Ra-226/228 concentration:
 - Flowback duration
 - Ba content

Ga Tech Method

- Georgia Tech Research Institute (Bernd Kahn, Robert Rosson)
 - ~ Coprecipitate Radium with barium sulfate
 - ~ Modify by adding Ba-133 as tracer
 - ~ Allow ingrowth (can use any time)
 - ~ Ra-226, Ra-228, and Ba-133 recovery from single analysis
 - ~ Should allow for lower MDC (<5 pCi)

Other Considerations

- What is actual sample matrix?
- What is ultimate goal of analysis?
- What are regulatory requirements?
- ?????

Questions/Contact Info

Questions?

- Terry Romanko Radiochemistry Technical Director
 - St. Louis Laboratory
 - terry.romanko@testamericainc.com
 - 314-298-8566