Jump to main content.


Brooks, J.R., P.J. Schulte, B.J. Bond, R. Coulombe, T.M. Hinckley, N. McDowell, and N. Phillips. 2003. Does foliage on the same branch compete for the same water? Experiments on Douglas-fir trees. Trees 17:101-108. WED-01-078

Do branchlets within a branch have autonomous water supplies, or do they share a common water supply system? We hypothesized that if branchlets shared a common water supply, then stomatal conductance (gs) on sunlit foliage would increase with reduced transpiration of competing foliage on the branch. We reduced transpiration of other foliage on the branch through bagging and shading, and we monitored the gas-exchange responses of the remaining sunlit foliage on the branch relative to control branches for several age classes of Douglas-fir trees (aged 10 years, 20 years, and 450 years old). Contrary to our hypothesis, we found no increases in gs in either young or old trees following transient reductions in the amount of transpiring leaf area. The diurnal change in water potential, mid-day stomatal closure and associated photosynthetic decline occurred at the same time and were of the same magnitude on both treated and untreated branches, with the exception of photosynthesis in one 450-year-old tree. Hydraulic conductance measurements of branch junctions indicate that xylem within branches is only partially interconnected which would reduce the effective-ness of shading as a means of increasing water supply to the remaining sunlit foliage. The lack of a response implies that when a branch is in partial shade, the remaining sunlit foliage has no advantage with respect to water status over foliage on a branch completely in the sun.

ORD Home | NHEERL Home


Local Navigation


Jump to main content.