Jump to main content.


Leibowitz, S.G., and K.C. Vining. 2003. Temporal connectivity in a prairie pothole complex. Wetlands 23(1):13-25. NHEERL-COR-2338

A number of studies have noted the occurrence of intermittent surface-water connections between depressional wetlands in general and prairie potholes in particular. Yet, the ecological implications of such connections remain largely unexplored. In 1995, we observed spillage into and out of a North Dakota wetland during two field visits. Between May 3 and May 26, there was a positive relationship between specific conductance and water level at this site, suggesting an external source of dissolved ions. We estimated that specific conductance may have increased at the site by as much as 614 μS cm -1 due to spillage from the upslope wetland. Based on a spatial analysis that compared National Wetlands Inventory maps with 1996 color infrared imagery, we estimated that 28% of the area's wetlands had a temporary surface water connection to at least one other wetland at that time, including one complex of 14 interconnected wetlands. These results indicate that the connectivity observed in 1995 was not confined to the two wetlands nor to that single year. The degree of connectivity we observed would be expected to occur during the wetter portions of the region's 20-year wet-dry cycle. We hypothesize that intermittent surface-water connections between wetlands occur throughout the prairie pothole region. Given patterns in relief and precipitation, these connections most likely would have occurred in the eastern portion of the prairie pothole region. However, wetland drainage may have altered historical patterns. The implication of these spatial and temporal trends is that surface-water connections between depressional wetlands should be viewed as a probability event that has some distribution over time and space. We refer to connections that are impermanent, temporally discontinuous, or sporadic as temporal connectivity. The most intriguing feature of these temporary connections may be that they could affect biodiversity or population dynamics through transport of individuals or reproductive bodies. Research is needed to determine whether these connections actually cause these biological effects and to characterize the distribution and effects of this phenomenon.

ORD Home | NHEERL Home


Local Navigation


Jump to main content.