
 

 
 

 

 
 

  

 
 

  

 

  
 

APPENDIX F 
LABORATORY SUBSAMPLING 

F.1 Introduction 

In most cases a sample that arrives at the laboratory cannot be analyzed in its entirety. Usually 
only a small subsample is taken for analysis, and the analyte concentration of the subsample is 
assumed to be approximately equal to that of the sample itself. Obviously a subsample cannot be 
perfectly representative of a heterogeneous sample. Improper subsampling may introduce a sig-
nificant bias into the analytical process. Even when done properly, subsampling increases the 
variability of the measured result. There are simple methods for controlling the bias, but esti-
mating and controlling the random variability is less straightforward. 

French geologist Pierre Gy has developed a theory of particulate sampling for applications in 
mining exploration and development (Gy, 1992), and his work has been promoted in the United 
States by Francis Pitard (Pitard, 1993). The basic concept of the theory is that the variability in 
the analyte concentration of a laboratory sample depends on the mass of the sample and the 
distribution of particle types and sizes in the material sampled. The particulate sampling theory 
developed by Gy is applicable to the sampling of soils and radioactive waste (EPA, 1992a and 
1992b). In this appendix, the theory is applied in qualitative and quantitative approaches to the 
subsampling of particulate solids in the radiation laboratory. 

There are many examples of the use of Gy�s theory in the mining industry (Assibey-Bonsu, 1996; 
Stephens and Chapman, 1993; Bilonick, 1990; Borgman et al., 1996), and a computer program 
has been developed for its implementation (Minkkinen, 1989). The theory has recently been 
adapted for use in environmental science. To date, most environmental applications have been in 
laboratory and field sampling for hazardous chemicals in Superfund cleanups (Borgman et al., 
1994; Shefsky, 1997), and there are several applications of the theory that involve mixed 
radioactive and hazardous wastes (Tamura, 1976). 

In principle, particulate sampling theory applies to materials of any type, since even gases and 
liquids are composed of particles (molecules). However, sampling large numbers of randomly 
distributed molecules in a fluid presents few 
statistical difficulties; so, the theory is more 
often applied to particulate solids. 

One of the most likely applications of Gy�s 
theory in the radiation laboratory is the sub-
sampling of soils. Natural soils are complex 
mixtures of different particle types, shapes, 
densities, and sizes. Soil particles range from 
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Laboratory Subsampling 

fine clays at less than 4 µm diameter to coarse sand that ranges over 2 mm in diameter, spanning 
about 4 orders of magnitude. Contaminants may be absorbed or chemically combined into the 
soil matrix, adsorbed onto the surfaces of particles, or may occur in discrete particles that are not 
bound to the soil matrix. Contaminant particles in soil can vary in size from fine airborne 
deposits of less than 1 µm diameter to relatively large pellets. These factors and others, including 
radionuclide half-lives, significantly affect the sampling problem. 

F.2 Basic Concepts 

This appendix applies Gy�s sampling theory to subsampling. To avoid confusion, the terms �lot� 
and �sample� will be used here instead of �sample� and �subsample,� respectively. There may be 
several subsampling stages at the laboratory, and all of the stages must be considered. At any 
stage of sampling, the lot is the collection of particles from which a portion is to be taken, and 
the sample is the portion taken to represent the lot. 

In Gy�s theory, the chemical or physical component whose proportion in a lot is of interest is 
called the critical component. In the context of radiochemistry, the critical component may be a 
radionuclide, but, if the chemical form of the radionuclide is known, it may be more useful to 
consider the critical component to be a chemical compound. Certain applications of Gy�s theory 
require knowledge of the density, so the physical form of the compound may also be important. 
In the limited context of this appendix, however, the critical component will be identified with 
the analyte, which is usually a radionuclide. 

The proportion of critical component by mass in a lot, sample, or particle is called the critical 
content. In the context of radiochemistry, the critical content is directly related to the activity 
concentration of the analyte, but it is expressed as a dimensionless number between 0 and 1. 
Many of the mathematical formulas used in Gy�s sampling theory are equally valid if the critical 
content is replaced everywhere by analyte concentration. All the formulas in this appendix will 
be expressed in terms of analyte concentration, not critical content. 

The sampling error of a sample S is defined, for our purposes, as the relative error in the analyte 
concentration of the sample, or (zS ! zL) / zL, where zS is the analyte concentration of the sample 
and zL is the analyte concentration of the lot. If the sample is the entire lot, the sampling error is 
zero by definition. 

A lot may be heterogeneous with respect to many characteristics, including particle size, density, 
and analyte concentration. Of these, analyte concentration is most important for the purposes of 
this appendix. A lot may be considered perfectly homogeneous when all particles have the same 
concentration of analyte. 
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Laboratory Subsampling 

The term �heterogeneity� is commonly used with more than one meaning. Gy attempts to clarify 
the concepts by distinguishing between two types of heterogeneity. The constitutional hetero-
geneity of a lot is determined by variations among the particles without regard to their locations 
in the lot. It is an intrinsic property of the lot itself, which cannot be changed without altering 
individual particles. The distributional heterogeneity of a lot depends not only on the variations 
among particles but also on their spatial distribution.1 Thus, the distributional heterogeneity may 
change, for example, when the material is shaken or mixed. In Gy�s theory, both constitution 
heterogeneity and distributional heterogeneity are quantitative terms, which are defined mathe-
matically. 

Heterogeneity is also sometimes described as either �random� or �nonrandom� (ASTM D5956). 
Random heterogeneity is exhibited by well-mixed material, in which dissimilar particles are 
randomly distributed. Nonrandom heterogeneity occurs when particles are not randomly distrib-
uted, but instead are stratified. There is a natural tendency for a randomly heterogeneous lot to 
become more stratified when shaken, bounced, or stirred. The same material may exhibit both 
random and nonrandom heterogeneity at different times in its history.2 

In MARLAP�s terminology, the representativeness of a sample denotes the closeness of the ana-
lyte concentration of the sample to the analyte concentration of the lot. A sample is representative 
if its analyte concentration is close to the analyte concentration of the lot, just as a measured 
result is accurate if its value is close to the value of the measurand. Representativeness may be 
affected by bias and imprecision in the sampling process, just as accuracy may be affected by 
bias and imprecision in the measurement process.3 

The concept of representativeness is related to the question of heterogeneity. If a lot is completely 
homogeneous, then any sample is perfectly representative of the lot, regardless of the sampling 
strategy, but as the degree of heterogeneity increases, it becomes more difficult to select a 
representative sample. 

F.3 Sources of Measurement Error 

The total variance of the result of a measurement is the sum of the variances of a series of error 
components, including errors produced in the field and in the laboratory. Errors in the laboratory 
may be characterized as those associated with (sub)sampling and those associated with sample 
preparation and analysis. 

1 ASTM D5956 uses the terms �compositional heterogeneity� and �distributional heterogeneity.� 
2 A state of random heterogeneity exists when the distributional heterogeneity is zero. A state of nonrandom hetero-
geneity exists when the distributional heterogeneity is positive. 
3 The term �representativeness� is also like �accuracy� inasmuch as it is used with different meanings by different 
people. The definition provided here is MARLAP�s definition. 
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Laboratory Subsampling 

Note that the practical significance of any error, including sampling error, depends on its magni-
tude relative to the other errors. If a crude analytical procedure is used or if there is a relatively 
large counting uncertainty, the sampling error may be relatively unimportant. In other cases the 
sampling error may dominate. If the standard uncertainty from either source is less than about 
one-third of the standard uncertainty from the other, the smaller uncertainty component contrib-
utes little to the combined standard uncertainty. 

This appendix focuses only on sampling errors, which include:

  � Sampling bias;
  � The fundamental error; and
  � Grouping and segregation errors. 

The following sections define the three types of sampling errors and present methods for con-
trolling or quantifying them. (See Chapter 19, Measurement Uncertainty, for a more general 
discussion of laboratory measurement errors.) 

F.3.1 Sampling Bias 

Sampling bias is often related to distributional heterogeneity. When there is a correlation 
between the physical properties of a particle and its location in the lot, care is required to avoid 
taking a biased sample. For example, if the analyte is primarily concentrated at the bottom of the 
lot, the analyte concentration of a sample taken from the top will be biased low. Situations like 
this may occur frequently in environmental radiochemical analysis, since anthropogenic 
radionuclides are often concentrated in some of the smallest particles, which tend to settle to the 
bottom of the container. 

Sampling bias can be controlled by the use of �correct� sampling procedures. A sampling pro-
cedure is called �correct� if every particle in the lot has the same probability of being selected for 
the sample. As a practical rule, a sample is guaranteed to be unbiased only if the sampling 
procedure is correct. 

RULE 1: A sample is guaranteed to be unbiased only if every particle in the lot has the same 
probability of selection. 

The preceding rule is not being followed, for example, if particles on the bottom or in recesses of 
the container are never selected. 
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Laboratory Subsampling 

Actually the rule stated above is only approximately true.4 It is invalid if the sample consists of 
only a few particles, or if only a few particles in the lot contain most of the mass. Therefore, a 
second practical rule of sampling is that the sample must be many times larger (by mass) than the 
largest particle of the lot. 

RULE 2: The sample must be many times larger (by mass) than the largest particle of the lot. 

Grouping of particles should also be minimized. If the particles form clumps, the effective num-
ber of particles in the lot is actually the number of clumps. For this reason, it is usually necessary 
to do some preparation of the material before sampling. Typical preparation steps in the labora-
tory include drying, grinding, sieving, and mixing, as described in Chapter 12. 

F.3.2 Fundamental Error 

When a sample is taken, the existence of constitutional heterogeneity in a lot leads to an unavoid-
able sampling error, called the fundamental error. Its variance, called the fundamental variance, 
is a property of the lot and the size of the sample. It represents the smallest sampling variance 
that can be achieved without altering individual particles or taking a larger sample. The funda-
mental variance is not affected by homogenizing, or mixing, and exists even when the sampling 
procedure is correct. It cannot be eliminated, but it can be reduced either by increasing the size of 
the sample or by reducing the particle sizes before sampling (e.g., by grinding). 

RULE 3: The fundamental variance may be reduced by:
  � Taking a larger sample or
  � Reducing the particle sizes (grinding) before sampling 

This theoretical minimum sampling variance is only achieved in practice when the lot is in a state 
of pure random heterogeneity (and the sampling is performed correctly). If there is nonrandom 
heterogeneity at the time of sampling, the total sampling variance will be larger than the 
fundamental variance. 

Either method for reducing the fundamental variance may be difficult or costly to implement in 
some situations. When large objects or consolidated materials are contained in the lot, particle 
size reduction for every lot may be unrealistically expensive. Not all materials are amenable to 
particle size reduction (e.g., steel). If available, knowledge of the expected contamination types 
and distributions may be used to reduce the need for particle size reduction. For example, it may 

4 A sample is unbiased if E(ZS / mS) = zL, where ZS is the total analyte activity in the sample, mS is the sample mass, 
zL is the analyte activity concentration of the lot, and E(@) denotes expected value. Equal selection probabilities 
guarantee only that E(ZS) / E(mS) = zL. 
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Laboratory Subsampling 

be known that large objects in the lot are relatively free of analyte. If so, then such objects might 
be removed or analyzed separately using different methods, depending on the project objectives. 

When particle size reduction is required and trace levels of contamination are expected in the lot, 
complete decontamination of grinding or milling equipment is required to avoid the possibility of 
cross-sample contamination. The equipment should be constructed of non-contaminating 
materials that are compatible with the chemical components of the lot. Glass, ceramic and stain-
less steel are typical materials. Particle size reducers, such as ball mills and ceramic plate 
grinders, require dried samples and thorough decontamination. Mechanical splitters may be 
difficult to decontaminate. A grinding blank may be analyzed to check for contamination of the 
grinding equipment (see Section 12.3.1.4, �Subsampling�) 

Contamination from airborne sources (e.g., stack releases or incinerator emissions), leaching 
(e.g., stored mill tailings), or from weathering of contaminated surfaces tends to be dispersed and 
deposited as many fine particles. In these cases, as long as the particles of the matrix are small 
relative to the sample size (Rule 2), grinding the material is unlikely to make dramatic differ-
ences in the fundamental variance, but the variance tends to be small because of the large number 
of contaminant particles. 

If the lot contains only a few contaminant particles, all of which are very small, the fundamental 
variance may remain large even after extensive grinding. However, the analytical procedure may 
be amenable to modifications that permit larger samples to be processed. For example, dissolu-
tion of a large solid sample may be followed by subsampling of the solution to obtain the amount 
needed for further analysis. Since liquid solutions tend to be more easily homogenized than 
solids, subsampling from the solution contributes little to the total sampling error. 

If neither reducing the particle size nor increasing the sample size is feasible, more innovative 
analytical techniques may have to be considered. 

F.3.3 Grouping and Segregation Error 

Since the analyte is often more closely associated with particles having certain characteristics 
(e.g., small or dense), it may become concentrated in one portion of the lot or in clumps spread 
throughout the lot. Such effects tend to increase distributional heterogeneity. 

The existence of distributional heterogeneity leads to a sampling error called the grouping and 
segregation error. The grouping and segregation variance is not as easily quantified as the 
fundamental variance, but there are methods for reducing its magnitude. 

Although the traditional approach to reducing the grouping and segregation error is mixing, or 
homogenizing, the material, Gy and Pitard warn that homogenizing heterogeneous materials is 
often difficult, especially if a large quantity is involved. Using improper methods, such as 
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Laboratory Subsampling 

stirring, may actually tend to increase segregation, and, even if a degree of homogeneity is 
achieved, it is likely to be short-lived, because of the constant influence of gravity. Agitation of 
particulate matter during transport and handling also tends to produce segregation of particles by 
size, shape, and density. During these processes, the denser, smaller, and rounder particles tend to 
settle to the bottom of the container, while less dense, larger, and flatter particles tend to rise to 
the top. 

RULE 4: The effects of homogenizing heterogeneous solid material tend to be short-lived 
because of the constant influence of gravity. Denser, smaller, and rounder particles tend to 
settle to the bottom of a container, while less dense, larger, and flatter particles tend to rise to 
the top. 

Some homogenization of solid material is usually required before sampling to reduce clumping. 
However, since complete homogenization is difficult and likely to be short-lived at best, Gy and 
Pitard recommend sampling procedures to reduce not the distributional heterogeneity itself, but 
its effects on the grouping and segregation error. Gy classifies sampling procedures into two 
categories: (1) increment sampling, and (2) splitting. Increment sampling involves extracting a 
number of small portions, called increments, from the lot, which are combined to form the 
sample. Splitting involves dividing the lot into a large number of approximately equal-sized 
portions and recombining these portions into a smaller number of potential samples. One of the 
potential samples is then randomly chosen as the actual sample. 

A sample composed of many increments will generally be more representative than a sample 
composed of a single increment. For example, if a 25-gram sample is required, it is better to take 
five 5-gram increments, selected from different locations in the sample, than to take a single 25-
gram increment. 

RULE 5: A sample composed of many increments taken from different locations in the lot is 
usually more representative than a sample composed of a single increment. 

The variance reduction achievable by increment sampling depends on the distributional hetero-
geneity of the lot. If the lot is in a state of pure random heterogeneity, increment sampling pro-
vides no benefit. On the other hand, if the lot is highly stratified, the standard deviation of the 
analyte concentration of a small composite sample formed from n independent increments may 
be smaller by a factor of 1 /  n than the standard deviation for a sample composed of a single 
increment.5 Variance reductions intermediate between these two extremes are most likely in prac-
tice. 

5 This statement assumes the stratification is such that a single large increment is likely to have no more 
constitutional heterogeneity than any of the n smaller increment. 
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Figures F.1 and F.2 illustrate what Gy calls �increment delimitation error� and �increment 
extraction error,� respectively. One method for extracting increments is the one-dimensional 
�Japanese slab-cake� method (Gy, 1992; Pitard, 1993). First, the material in the lot is spread out 
into an elongated pile with roughly constant width and height. Then a scoop or spatula is used to 
delimit and extract evenly spaced cross-sections from the pile. A flat-bottomed scoop should be 
used for this purpose to avoid leaving particles at the bottom of the pile. Ideally it should also 
have vertical sides, as shown in Figure F.3, although such scoops may not be commercially 
available. If a spatula is used, its width must be much larger than the largest particles to be 
sampled, since particles will tend to fall off the edges (Figure F.2). 

FIGURE F.1 � Incorrect increment delimitation using a round scoop 

FIGURE F.2 � Incorrect increment extraction using a spatula 

Splitting may be performed correctly by mechanical splitters, such as riffle splitters and sectorial 
splitters, or it may be performed manually by �fractional shoveling� (or �fractional scooping� in 
the laboratory). Fractional shoveling involves removing small portions of equal size from the lot 
and depositing them into two or more empty containers (or piles), cycling through the containers 
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Laboratory Subsampling 

in order, and repeating the process until all the material has been deposited. When this process is 
complete, one container is chosen at random to be the sample. 

FIGURE F.3 � Correct increment delimitation using a rectangular scoop 

The traditional �coning and quartering� method for splitting, although correct, is not recommen-
ded because it produces a subsample from too few increments. With this method, the material is 
mixed by forming it into a cone, adding a fraction of the sample at a time to the apex of the cone. 
After the entire sample is mixed in this way, the cone is flattened into a circular layer. Next the 
circular layer of material is divided into quarters and two opposite quarters are discarded. This 
process may be repeated until a suitable sample size is obtained (Shugar and Dean, 1990). 

Homogenization may also be achieved with some types of grinding equipment, such as a ring-
and-puck mill. 

According to Gy, small quantities of solid material, up to a few kilograms, can be homogenized 
effectively in the laboratory. He recommends the use of a jar-shaker for this purpose and states 
that immediately after the lot is shaken, the sample may be taken directly from the jar using a 
spatula (Gy, 1992). Although Pitard recognizes the possibility of homogenizing small lots in the 
laboratory using a mechanical mixer that rotates and tumbles a closed container, he also states 
that homogenizing heterogeneous materials is often �wishful thinking� and recommends the one-
dimensional Japanese slab-cake procedure instead (Pitard, 1993). 

F.4 Implementation of the Particulate Sampling Theory 

DISCLAIMER: Gy�s theory is currently the best-known and most completely developed theory of 
particulate sampling, but the problem is a difficult one, and the mathematical approaches 
offered may not give satisfactory results for all purposes. Quantitative estimates of the funda-
mental variance are often crude. Conservative assumptions are sometimes needed to permit 
mathematical solutions of the equations, leading to upper bounds for the fundamental variance 
which may be significantly overestimated. It appears that the theory has not been applied pre-
viously to sampling for radiochemical analysis, and no data are available to demonstrate the 
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limits of its applicability. Until such data are available, MARLAP recommends the theory only 
for rough estimates of the uncertainty due to subsampling and as a guide to the factors that are 
important in subsampling and how their impact on the uncertainty might be mitigated. 

F.4.1 The Fundamental Variance 

Gy�s sampling theory  leads to the following equation for the fundamental variance σ2 
FE 

(Gy, 1992; Pitard, 1993): 

2 )
'

1 1 N (z & z 2 m 2 

σ i 
FE  & j i L

 2 (F.1) mS mL i'1 z mL L 

Here 
mS is the mass of the sample; 
mL is the mass of the lot; 
N is the number of particles in the lot; 
zi is the analyte concentration of the ith particle; 
zL is the analyte concentration of the lot; and 
m is the mass of the  ith

i  particle. 

Equation F.1 is usually of only theoretical interest because it involves quantities whose values 
cannot be determined in practice; however, it is the most  general formula for the fundamental 
variance and serves as a starting point for the development of more useful approximation 
formulas, which are derived using  known or assumed properties of the lot. 

F.4.2 Scenario 1 � Natural Radioactive Minerals 

Gy has derived a practical formula for the fundamental variance based on the following  assump-
tions (Gy, 1992):

  � The analyte concentration (actually the critical content) of a particle does not depend on its 
size. More precisely, if the lot is divided into fractions according to particle size and density, 
the analyte concentration of each fraction is a function of particle density but not size.

  � The distribution of particle  sizes is unrelated to density. That is, if the lot is divided into 
fractions by density, each fraction has approximately the same distribution of particle 
diameters. 

The first of these assumptions is often violated when environmental samples are analyzed for 
anthropogenic radionuclides, because in these cases, the analyte concentration of a particle tends 
to be inversely related to its size. The second assumption may also be violated when nonnatural 
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materials are involved. However, when natural materials are analyzed for naturally occurring 
radionuclides, both assumptions may be valid. 

Under the two stated assumptions, the fundamental standard deviation σFE is related to the mass 
of the lot mL, the mass of the sample  mS, and the maximum particle diameter  d by the equation 

σ '
1 1 

 & FE kd 3 (F.2) 
mS mL 

where the value of the coefficient  k depends on the characteristics of the material.6 The 
�maximum� diameter d is defined as the length of the edge of a square mesh that retains no more 
than a specified fraction of oversize by mass. Thus, it is not the size of the largest particle in the 
lot. Gy has found it most convenient to let d be the size of a square mesh that retains only 5 
percent oversize, and his definition will be assumed here. According to Gy, this value of d also 
tends to be the approximate size of the largest particles that are easily identifiable  by sight. 

When  mS is much smaller than  mL, which is often the case, the fundamental standard deviation is 
given more simply by 

kd 3 
σ ' FE (F.3) 

mS 

This formula implies that, to reduce the fundamental standard deviation by half, one may either 
increase the sample size  mS by a factor of 4 or reduce the maximum particle size d by a factor of 
0.52 /3 = 0.63.7 

F.4.3 Scenario 2 � Hot Particles 

As noted, the assumptions of Scenario 1 are often violated when environmental media are 
analyzed for anthropogenic radionuclides, because there is usually a correlation between particle 
size and radionuclide concentration. However, another approximation formula (not due to  Gy) 
may be used if the analyte occurs only in a minuscule fraction of the particles (i.e., �hot par-
ticles�). 

It is assumed that: 

6 Gy (1992) and Pitard (1993) provide more information about the coefficient k. MARLAP presents only a brief 
summary of Scenario 1 because of the difficulty of estimating  k. 
7 Equation F.3 also may be understood to say that the  fundamental standard deviation is inversely proportional to the 
square root of the number of particles in the sample. 
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  � The maximum analyte concentration of a particle zmax is known;
  � Every particle in the  lot has concentration 0 or zmax (approximately); and
  � The high-activity particles make up a small  fraction of the lot both by number and by mass. 

Under these assumptions the fundamental standard deviation σ  is described by the equation8 
FE

z k d 3 
x 

'
1 1 σ  ma H (F

FE k H
& .4) 

mS mL 2zL 

where 
mS is the sample mass; 
mL is the mass of the lot; 
kH is the average density  of a high-activity  particle; 
dH is the maximum diameter of a high-activity particle, defined as in Scenario 1; and 
k is a dimensionless factor. 

The value of the factor k depends on the distribution of sizes of the high-activity particles but is 
most likely to lie between 0.5 and 1.9 

When  mS is much smaller than  mL, Equation F.4 reduces to 

z k
σ ' k H d

3 
max H (F.5) 

FE 2zL mS 

If all the high-activity  particles have approximately the same mass and the sample mass is much 
smaller than the mass of the lot, then Equation F.5 may be rewritten in the simple form 

m
σ L 

FE . (F.6) 
mS nL 

z & z z & z 1/2 8 A more complete  formula is  σ 1 1 
' & max L max L 3 

%H H  FE k k 2 k 2 3 
H d GkG d G , where kG, kG, and dG mS mL 2z max zL 

describe the zero-activity  particles. Equation F.4 is obtained when zmax is much greater than zL, which happens when 
the mass of high-activity material is  very  small. 
9 The factor k equals the square root of  Gy�s �size distribution factor� g. Gy recommends the value g = 0.25 by 
default for most uncalibrated materials of interest in the  mining industry, but no assumption is  made here that the 
same default value is  appropriate for hot particles. If all the particles have the same size, g = 1. 
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where nL is the number of hot particles in the lot. Equation F.6 can also be derived from the fact 
that the number of hot particles in a small sample can be modeled by a Poisson distribution, 
whose mean and variance are numerically  equal (Chapter 19, Measurement Uncertainty). The 
fundamental standard deviation equals the coefficient of variation of the Poisson distribution, 
which is large when the mean is small. 

EXAMPLE F.1 

A 1-kilogram lot of soil contains approximately 1 Bq/g of 240Pu occurring  as hot particles of 
relatively pure plutonium dioxide (240PuO  11.4 g/cm3

2, density  kH = , specific activity 
z 9 

max = 7.44 × 10  ) Bq/g with  �maximum�  diameter dH = 10!3 cm (10 µm). Assume the 
distribution of particle sizes is such that k  . 0.5. What is the fundamental standard deviation 
for a 1-gram  sample? 

According  to Equation F.5, 

7.44× &3 cm 3 
'

109 Bq/g 11.4 g/cm3 10σ   FE 0.5 . 3.3 
2×(1 Bq/g)×(1 g) 

Thus, the fundamental standard deviation is about 330 percent, indicating  that a 1-gram 
sample probably  is inadequate. 

If all the hot particles had the same size, then k would equal 1 and the fundamental standard 
deviation would be about 650 percent. 

When the presence of a small number of hot particles makes it impossible to reduce the funda-
mental standard deviation to an acceptable value by ordinary means (grinding  the material or 
increasing  the sample size), then more innovative methods may be required. For example, the 
entire lot may be spread into a thin layer and an autoradiograph made to locate the hot particles. 
Then, if necessary, a biased sample containing essentially  all of the hot particles may be taken 
and analyzed, and the measured result corrected for sample size to obtain the average analyte 
concentration of the lot. 

F.4.4 Scenario 3 � Particle Surface Contamination 

A third approximation formula may be used if the contaminant occurs in tiny particles (e.g., 
colloidal  particles or molecules) which adhere  randomly to the surfaces of larger host particles of 
the matrix  and cannot be selected without their hosts. In this case the total mass of the contam-
inant particles is assumed to be negligible. If the contaminant particles are also  extremely 
numerous, so that many of them adhere to a typical host particle, then the analyte concentration 
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of a particle tends to be inversely proportional to its diameter. In this case the fundamental 
variance depends primarily on the characteristics of the host particles.10 

Under the stated assumptions, the fundamental standard deviation σFE for typical soils is given by 

1 1 kd 3 
σ ' FE k & (F.7) 

mS mL 2 
where 

mS is the sample mass; 
mL is the mass of the lot; 
k is the average particle density; 
d is the �maximum� particle diameter, as defined for Scenario 1; and 
k is a dimensionless factor. 

The value of the factor k may vary from lot to lot but is always less than 1 and is usually less than 
0.5. 

When the sample mass is small, Equation F.7 reduces to 

k 3 
σ '

d 
 FE k (F.8) 

2mS 

The fundamental standard deviation σFE calculated using  Equation F.8 is never greater than 
kd 3 / 2m 3

S , which is the square root of the ratio of the �maximum� particle mass kd / 2  to the 
mass of the sample  mS. So, as long as the sample is much heavier than the heaviest particle in 
the lot, the fundamental variance in Scenario 3 tends to be small. As in Scenario 1, reducing  the 
fundamental standard by half requires either increasing the sample mass mS by a factor of 4 or 
reducing  the particle diameter by a factor of 0.63. However, note that grinding  may cause the 
assumptions underlying  Equation F.8 to be violated if the contaminant is not redistributed onto 
the newly created particle surfaces. 

10 The formula for σFE given here describes the variability of the total surface area in a sample.  A  more complete 
expression includes a term for the variability of the analyte concentration per unit area, but this term is  negligible if 
the number of contaminant particles is sufficiently  numerous. 
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EXAMPLE F.2 

Suppose a 1-kilogram lot of soil contains 90Sr, which is expected to adhere randomly to the 
surfaces of the particles. The maximum  particle diameter d is found to be approximately 
0.2 cm. If nothing  more is known about the distribution of particles sizes, what is the  maxi-
mum fundamental standard deviation for a 1-gram sample? 

Assuming  the density of the soil particles is k = 2.675 g/cm3 , Equation F.8 with k = 1 gives 
the solution 

(2.675 g/cm3)(0.2 cm)3 
σ ' ' FE 0.10 or 10 percent. 

2×(1  g)  

Note that  since k is usually less than 0.5, the fundamental standard deviation is more likely to 
be less than 5 percent. 

F.5 Summary 

Results derived from particulate sampling  theory provide sampling  protocols that help to control 
sampling errors, including sampling bias, fundamental error, and grouping  and segregation 
errors. Some of the important conclusions are listed below.

  � For most practical purposes, a sample is guaranteed to be unbiased only if all particles in the 
lot have the same probability of selection.

  � The sample mass should be many  times  greater than the heaviest particle in the lot, and 
clumping of  particles should  be  minimized  (e.g., by drying  and sieving).

  � The fundamental variance, which is considered to be the minimum achievable sampling 
variance, may be reduced by increasing  the size of the sample or reducing  the particle sizes 
(grinding) before sampling.

  � Grouping  and segregation of particles, which occur because of the particles� differing 
physical  characteristics and the influence of gravity, tend to increase the sampling  variance. 

  � Grouping  and segregation errors can be reduced by increment sampling  or by splitting. The 
more increments, the better.

  � Correct sampling  requires tools and procedures that ensure each particle in the lot has the 
same probability of selection. Any sampling  tool or procedure that prefers certain particles 
(e.g., because of their density, size, or shape) may produce a sampling bias. 

Laboratory Subsampling 
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Laboratory Subsampling 

  � Small quantities of particulate material can be homogenized effectively in the laboratory 
using mechanical mixers that rotate and tumble a closed container, but the effects of mixing 
tend to be short-lived.

  � Estimation of the fundamental variance requires either knowledge or assumptions about the 
characteristics of the material being analyzed. Quantitative estimates may be crude. 
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