Disclaimer - For assistance accessing this document or additional information please contact radiation.questions@epa.gov.

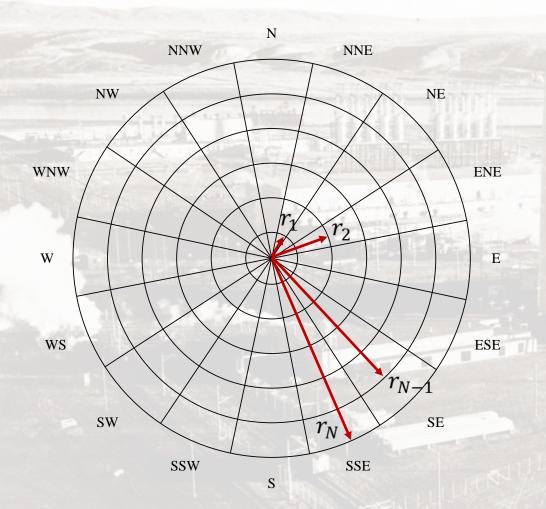
## CAP88-PC V4 TRAINING

### Module 1.2

### **Equations Used For Calculating Dose**






## CAP88 METHODOLOGY

- 1. Calculate  $\chi / Q$  values in each sector
- 2. Calculate air concentrations in each sector
- 3. Calculate deposition rates in each sector
- 4. Calculate ground concentrations in each sector
- Calculate concentrations in vegetables, milk, and meat produced in each sector
- 6. Calculate concentrations in vegetables, milk, and meat ingested by a receptor in each sector
- 7. Calculate dose and risk to a receptor in each sector





## ASSESSMENT AREA & SECTORS



CAP88 calculates the dose to receptors in sectors defined user defined rings and the 16 compass directions.





## Calculation of $\chi / Q$ values

- 1. Calculate  $\chi / Q$  values in each sector
- 2. Calculate air concentrations in each sector
- 3. Calculate deposition rates in each sector
- 4. Calculate ground concentrations in each sector
- 5. Calculate concentrations in vegetables, milk, and meat produced in each sector
- 6. Calculate concentrations in vegetables, milk, and meat ingested by a receptor in each sector
- Calculate dose and risk to a receptor in each sector





## PLUME DISPERSION

$$f(x, y, z) = \begin{cases} \frac{Q\left[\exp\left(\frac{-[z - H(x)]^2}{2[\sigma_z(x)]^2}\right) + \exp\left(\frac{-[z + H(x)]^2}{2[\sigma_z(x)]^2}\right)\right]}{2\pi\mu\sigma_y(x)\sigma_z(x)} \exp\left(\frac{-y^2}{2[\sigma_y(x)]^2}\right) & \text{, if } x < 2x_L \\ \frac{Q}{2\sqrt{\pi}\mu L\sigma_y(x)} \exp\left(\frac{-y^2}{2[\sigma_y(x)]^2}\right) & \text{, if } x \ge 2x_L \end{cases}$$

x is the distance downwind y is the crosswind distance z is the distance above the ground Q is the release rate  $\mu$  is the wind speed  $\sigma_y(x)$  is the horizontal dispersion coefficient  $\sigma_z(x)$  is the vertical dispersion coefficient H(x) is the effective stack height  $x_L$  is the distance where  $\sigma_z(x_L) = 0.47 \times L$ 





## PLUME DISPERSION (CONTINUED)

Averaging the concentration along the y direction:

$$\chi_{\text{ave}}(x,z;Q,\mu) = \begin{cases} \frac{Q}{2\sqrt{2\pi}\mu\sigma_z y_s} \left[ \exp\left(\frac{-[z-H]^2}{2\sigma_z^2}\right) + \exp\left(\frac{-[z+H]^2}{2\sigma_z^2}\right) \right] &, \text{if } x < 2x_L \\ \frac{Q}{2\sqrt{2\mu}Ly_s} &, \text{if } x \ge 2x_L \end{cases}$$

The ground level concentration is found by setting z = 0:

$$\chi_{\text{ave}}(x,0;Q,\mu) = \begin{cases} \frac{Q}{\sqrt{2\pi}\mu\sigma_z(x)y_s(x)} \left[ \exp\left(\frac{-[H(x)]^2}{2\sigma_z^2} \right) \right] & \text{, if } x < 2x_L \\ \frac{Q}{2\sqrt{2}\mu Ly_s(x)} & \text{, if } x \ge 2x_L \end{cases}$$





## **DISPERSION COEFFICIENTS**

|                                                                                                                 | Class     | Distance (m)              | A       | С       | D       | F       | 1        |
|-----------------------------------------------------------------------------------------------------------------|-----------|---------------------------|---------|---------|---------|---------|----------|
| 1                                                                                                               | А         | <i>x</i> ≤ 1,000          | 0.9757  | 3.9280  | 1.0000  | 5.0200  | - march  |
| $\sigma_y(x) = \frac{x^A}{C}$                                                                                   |           | $1,000 < x \le 3,000$     | 0.8660  | 1.8410  | 1.0000  | 5.0200  |          |
| $O_y(x) = C$                                                                                                    | 22000     | $3,000 < x \le 10,000$    | 0.8660  | 1.8410  | 1.0000  | 5.0200  |          |
|                                                                                                                 |           | <i>x</i> > 10,000         | 0.6294  | 0.2083  | 1.0000  | 5.0200  |          |
| $\sigma_z(x) = \frac{x^D}{F}$                                                                                   | В         | <i>x</i> ≤ 1,000          | 0.9986  | 6.2050  | 1.0000  | 8.3500  | 1000     |
| $\sigma_z(x) = F$                                                                                               | THEFT     | $1,000 < x \le 3,000$     | 0.8493  | 2.2130  | 1.0000  | 8.3500  |          |
| the second L.C.                                                                                                 | Senter 10 | $3,000 < x \le 10,000$    | 0.8493  | 2.2130  | 1.0000  | 8.3500  | 1217-1   |
|                                                                                                                 |           | <i>x</i> > 10,000         | 0.6303  | 0.2946  | 1.0000  | 8.3500  |          |
|                                                                                                                 | С         | <i>x</i> ≤ 1,000          | 0.9767  | 7.6230  | 0.9540  | 10.0150 |          |
| 15                                                                                                              |           | $1,000 < x \le 3,000$     | 0.8540  | 3.2660  | 0.8330  | 4.4000  |          |
|                                                                                                                 |           | $3,000 < x \le 10,000$    | 0.8540  | 3.2660  | 0.8330  | 4.4000  |          |
|                                                                                                                 |           | <i>x</i> > 10,000         | 0.6254  | 0.3977  | 0.5524  | 0.3320  | 1 A      |
| Charles The Par                                                                                                 | D         | <i>x</i> ≤ 1,000          | 0.9600  | 10.0000 | 0.8061  | 7.4800  |          |
| The second se | 1-Trans   | $1,000 < x \le 3,000$     | 0.8670  | 5.2610  | 0.6715  | 2.9500  |          |
| and the second                                                                                                  | 120       | 3,000 < <i>x</i> ≤ 10,000 | 0.8670  | 5.2610  | 0.5099  | 0.8100  |          |
|                                                                                                                 |           | x > 10,000                | 0.6342  | 0.6166  | 0.5251  | 0.9300  |          |
|                                                                                                                 | E         | <i>x</i> ≤ 1,000          | 0.9615  | 14.1300 | 0.8600  | 15.5000 |          |
| and the second second                                                                                           |           | $1,000 < x \le 3,000$     | 0.8670  | 7.3570  | 0.6290  | 3.1500  |          |
| Trinity Engineering Asso                                                                                        | ciates    | Juited States             | EUBRIDO | nmen    | tal4Bro | otectio | n Agency |
| And a second second second                                                                                      |           | r > 10.000                | 0.6260  | 0.8042  | 0.1110  | 0.0349  |          |

$$\sigma_y(x) = \frac{x^A}{C}$$
$$\sigma_z(x) = \frac{x^D}{F}$$



## PLUME RISE

 $H(x) = h + \Delta h(x)$ 

h is the height of the stack  $\Delta h$  is the plume rise

CAP88 provides for four methods for calculating the plume rise:

- Buoyant
- Momentum
- Fixed
- None





## BUOYANT PLUME RISE

For Stability Classes A, B, C, and D:

$$\Delta h(x) = \begin{cases} \frac{1.6 F^{1/3} x^{2/3}}{\mu} , x < 10h \\ \frac{1.6 F^{1/3} (10h)^{2/3}}{\mu} , x \ge 10h \end{cases}$$

 $F = 3.7 \times 10^{-5} Q_H$ 





## BUOYANT PLUME RISE

#### For Stability Classes E, F, and G:

$$\Delta h(x) = \begin{cases} \frac{1.6 F^{1/3} x^{2/3}}{\mu} , x < 2.4 \frac{\mu}{\sqrt{S}} \\ 2.9 \left(\frac{F}{\mu S}\right)^{1/3} , x \ge 2.4 \frac{\mu}{\sqrt{S}} \end{cases}$$
$$S = \frac{g}{T} \left(\frac{dT_a}{dz} + \Gamma\right)$$

 $a \land$ 

g is the gravitational acceleration  $T_a$  is the air temperature  $dT_a/dz$  is the vertical temperature gradient  $\Gamma$  is the adiabatic lapse rate of atmosphere (0.0098 K/m)

| Class | $dT_a/dz$ (K/m) |  |  |  |
|-------|-----------------|--|--|--|
| E     | 7.280E-02       |  |  |  |
| F     | 1.090E-01       |  |  |  |
| G     | 1.455E-01       |  |  |  |





## **MOMENTUM PLUME RISE**

 $\Delta h = \frac{1.5 \ v \ d}{\mu}$ 

v is the effluent stack gas velocity

d is the inside stack diameter





## CALCULATION OF AIR CONCENTRATIONS

- 1. Calculate  $\chi / Q$  values in each sector
- 2. Calculate air concentrations in each sector
- 3. Calculate deposition rates in each sector
- 4. Calculate ground concentrations in each sector
- 5. Calculate concentrations in vegetables, milk, and meat produced in each sector
- 6. Calculate concentrations in vegetables, milk, and meat ingested by a receptor in each sector
- 7. Calculate dose and risk to a receptor in each sector





## IN-FLIGHT DECAY/INGROWTH CALCULATIONS

The atom concentration in air for each radionuclide,  $n_i(t) = \chi_i(t)/\lambda_i$ , was calculated by solving the following system of ordinary differential equations (ODEs) as a function of time based on the windspeed:

$$\frac{dn_i}{dt} = -\lambda_i^{\mathsf{e}} n_i(t) + \sum_{j=1}^{i-1} \lambda_{j,i} n_j(t)$$
$$\lambda_i^{\mathsf{e}} \equiv \lambda_i + \lambda_{l,i}$$
$$\lambda_{j,i} \equiv \gamma_{i,i} \lambda_j$$

 $\lambda_i$  is the radioactive decay constant

 $\lambda_{l,i}$  is the physical removal constant

 $\gamma_{i,i}$  is the branching ratio from nuclide j to nuclide i





## CALCULATE OF DEPOSITION RATES

- 1. Calculate  $\chi / Q$  values in each sector
- 2. Calculate air concentrations in each sector
- 3. Calculate deposition rates in each sector
- 4. Calculate ground concentrations in each sector
- Calculate concentrations in vegetables, milk, and meat produced in each sector
- 6. Calculate concentrations in vegetables, milk, and meat ingested by a receptor in each sector
- 7. Calculate dose and risk to receptor in each sector





## WET DEPOSITION RATE

 $R_s(x) = \Phi L \chi_{\rm ave}(x)$ 

 $\chi_{ave}(x)$  is average concentration in plume up to lid height L is lid height (tropospheric mixing layer)

 $\Phi$  is the scavenging coefficient, calculated by multiplying the rainfall ( in cm y<sup>-1</sup>) by a constant (10<sup>-7</sup> y cm<sup>-1</sup> s<sup>-1</sup>)





## DRY DEPOSITION RATE

 $R_d(x,y) = V_d \chi(x,y,0)$ 

 $\chi(x, y, 0)$  is the ground level air concentration  $V_d$  is the deposition velocity

| Parameter    | $V_d$ (m s <sup>-1</sup> ) |  |  |
|--------------|----------------------------|--|--|
| Gases        | 0.0                        |  |  |
| lodine       | 3.5×10 <sup>-2</sup>       |  |  |
| Particulates | 1.8×10 <sup>-3</sup>       |  |  |





## **PLUME DEPLETION**

For dry deposition:

$$\frac{Q^1}{Q} = \exp\left\{-\frac{V_d}{\mu}\sqrt{\frac{2}{\pi}\int_0^x \frac{\exp\left[\frac{-\left(H(x') - V_g x'/\mu\right)^2}{2\sigma_z^2(x')}\right]}{\sigma_z(x')}}dx'\right\}$$

 $V_g$  is the gravitational velocity

For wet deposition:

$$\frac{Q^1}{Q} = \exp\{-\Phi t\}$$

t is the time required to reach the location





## CALCULATION OF GROUND CONCENTRATION

- 1. Calculate  $\chi / Q$  values in each sector
- 2. Calculate air concentrations in each sector
- 3. Calculate deposition rates in each sector
- 4. Calculate ground concentrations in each sector
- Calculate concentrations in vegetables, milk, and meat produced in each sector
- 6. Calculate concentrations in vegetables, milk, and meat ingested by a receptor in each sector
- 7. Calculate dose and risk to a receptor in each sector





## GROUND SURFACE DECAY/INGROWTH CALCULATIONS

The atom concentration in on the ground surface for each radionuclide,  $n_i(t) = C_i^G(t)/\lambda_i$ , was calculated by solving the following system of ordinary differential equations (ODEs) as a function of time:

$$\frac{dn_i}{dt} = d_i - \lambda_i^{\mathbf{e}} n_i(t) + \sum_{j=1}^{i-1} \lambda_{j,i} n_j(t)$$
$$\lambda_i^{\mathbf{e}} \equiv \lambda_i + \lambda_{l,i}$$
$$\lambda_{i,i} \equiv \gamma_{i,i} \lambda_i$$

 $d_i$  is the total deposition rate

 $\lambda_i$  is the radioactive decay constant

 $\lambda_{l,i}$  is the physical removal constant (2% per year)

 $\gamma_{i,i}$  is the branching ratio from nuclide j to nuclide i





# CALCULATE OF CONCENTRATIONS IN VEGETABLES, MILK, AND MEAT

- 1. Calculate  $\chi / Q$  values in each sector
- 2. Calculate air concentrations in each sector
- 3. Calculate deposition rates in each sector
- 4. Calculate ground concentrations in each sector
- Calculate concentrations in vegetables, milk, and meat produced in each sector
- 6. Calculate concentrations in vegetables, milk, and meat ingested by a receptor in each sector
- 7. Calculate dose and risk to receptor in each sector





## CONCENTRATION IN LEAFY VEGETABLES

•  $d_i(r, \theta)$  is the deposition rate in sector  $\theta$  at distance r

Jz (x)

- r<sub>L</sub> is the fraction of deposited activity retained on leafy vegetables
- $\lambda_{E,i}$  is the effective removal constant of the *i*th radionuclide from soil
- $B_{L,i,V}$  is the concentration uptake factor the *i*th radionuclide for leafy vegetables
- $Y_{L,V}$  is the agricultural productivities by unit area for leafy vegetables
- $\lambda_i$  is the radioactive decay constant of the *i*th radionuclide
- $\lambda_W$  is the removal constant from plants due to weathering
- P is the effective surface density of soil (assuming a 15 cm plow layer)
- t<sub>b</sub> is the period of long-term buildup for activity in sediment or soil
- $t_{L,h}$  is the time delay between harvest ingestion of leafy vegetables
- $d_R$  is fraction of radioactivity retained after washing for leafy vegetables and produce





### CONCENTRATION IN NON-LEAFY VEGETABLES

$$\frac{dn_i}{dt} = -\lambda_i^{\mathbf{e}} n_i(t) + \sum_{j=1}^{i-1} \lambda_{j,i} n_j(t)$$

- $d_i(r, \theta)$  is the deposition rate in sector  $\theta$  at distance r
- r<sub>V</sub> is the fraction of deposited activity retained on non-leafy vegetables
- $\lambda_{Ei}$  is the effective removal constant of the *i*th radionuclide from soil
- B<sub>V,i,V</sub> is the concentration uptake factor the *i*th radionuclide for non-leafy vegetables
- $Y_{V,V}$  is the agricultural productivities by unit area for non-leafy vegetables
- $\lambda_i$  is the radioactive decay constant of the *i*th radionuclide
- $\lambda_W$  is the removal constant from plants due to weathering
- *P* is the effective surface density of soil (assuming a 15 cm plow layer)
- $t_b$  is the period of long-term buildup for activity in sediment or soil
- $t_{V,h}$  is the time delay between harvest ingestion of non-leafy vegetables





## **CONCENTRATION IN PASTURE GRASS**

$$C_i^P(r,\theta) = d_i(r,\theta) \left\{ \frac{r_P \left[ 1 - e^{-(\lambda_i + \lambda_W)t_{P,e}} \right]}{Y_{P,V}(\lambda_i + \lambda_W)} + \frac{B_{P,i,V} \left[ 1 - e^{-\lambda_{E,i}t_B} \right]}{P\lambda_{E,i}} \right\} e^{-\lambda_i t_{P,h}}$$


- $d_i(r, \theta)$  is the deposition rate in sector  $\theta$  at distance r
- r<sub>p</sub> is the fraction of deposited activity retained on pasture grass
- $\lambda_{Ei}$  is the effective removal constant of the *i*th radionuclide from soil
- $B_{P,i,V}$  is the concentration uptake factor the *i*th radionuclide for pasture grass
- $Y_{P,V}$  is the agricultural productivities by unit area for pasture grass
- $\lambda_i$  is the radioactive decay constant of the *i*th radionuclide
- $\lambda_W$  is the removal constant from plants due to weathering
- *P* is the effective surface density of soil (assuming a 15 cm plow layer)
- t<sub>b</sub> is the period of long-term buildup for activity in sediment or soil
- $t_{P,h}$  is the time delay between harvest ingestion of pasture grass



## **CONCENTRATION IN STORED FEED**

### L is lid height (tropospheric mixing layer)

- $d_i(r, \theta)$  is the deposition rate in sector  $\theta$  at distance r
- r<sub>S</sub> is the fraction of deposited activity retained on stored feed
- $\lambda_{Ei}$  is the effective removal constant of the *i*th radionuclide from soil
- $B_{S,i,V}$  is the concentration uptake factor the *i*th radionuclide for stored feed
- $Y_{S,V}$  is the agricultural productivities by unit area for stored feed
- $\lambda_i$  is the radioactive decay constant of the *i*th radionuclide
- $\lambda_W$  is the removal constant from plants due to weathering
- *P* is the effective surface density of soil (assuming a 15 cm plow layer)
- $t_b$  is the period of long-term buildup for activity in sediment or soil
- $t_{S,h}$  is the time delay between harvest ingestion of pasture grass





## PARAMETER VALUES

| Parameter      | Leafy Vegetables                        | Non-Leafy                               | Pasture Grass                           | Stored Feed                             |  |
|----------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--|
|                |                                         | Vegetables                              | A AND A A A A A A A A A A A A A A A A A |                                         |  |
| $\lambda_W$    | 2.9 x 10 <sup>-3</sup> h <sup>-1</sup>  |  |
| $\lambda_P$    | 2.28 x 10 <sup>-6</sup> h <sup>-1</sup> |  |
| And the second | (2% per year)                           | (2% per year)                           | (2% per year)                           | (2% per year)                           |  |
| r              | 0.20                                    | 0.20                                    | 0.57                                    | 0.57                                    |  |
| Р              | 215 kg m <sup>-2</sup>                  |  |
| $Y_V$          | 0.716 kg m <sup>-2</sup>                | 0.716 kg m <sup>-2</sup>                | 0.28 kg m⁻²                             | 0.28 kg m <sup>-2</sup>                 |  |
| t <sub>e</sub> | 1,440 h                                 | 1 <i>,</i> 440 h                        | 720 h                                   | 720 h                                   |  |
|                | (60 days)                               | (60 days)                               | (30 days)                               | (30 days)                               |  |
| t <sub>b</sub> | 8.776 x 10 <sup>5</sup> h               |  |
|                | (100 years)                             | (100 years)                             | (100 years)                             | (100 years)                             |  |
| t <sub>h</sub> | 0 h                                     | 0 h                                     | 0 h                                     | 2 <i>,</i> 160 h                        |  |
|                | (0 days)                                | (0 days)                                | (0 days)                                | (90 days)                               |  |
| $d_R$          | 0.5                                     | N/A                                     | N/A                                     | N/A                                     |  |





## **CONCENTRATION IN ANIMAL FEED**

#### $V_g$ is the gravitational velocity

- C<sup>P</sup><sub>i</sub>(r, θ) is the concentration of the *i*th radionuclide in pasture grass in milk in sector θ at distance r
- C<sup>S</sup><sub>i</sub>(r, θ) is the concentration of the *i*th radionuclide in stored feeds in milk in sector θ at distance r
- *f<sub>P</sub>* is the fraction of the year that animals graze on pasture
- $f_S$  is the fraction of daily feed that is pasture grass when the animal grazes on pasture

| Parameter               | Animal Feed |
|-------------------------|-------------|
| $\lambda_i$ is the radi | 0.40        |
|                         | 0.43        |





## CONCENTRATION IN MEAT

 $\lambda_{l,i}$  is the physical removal constant (2% per year)

- F<sub>i,f</sub> is the fraction of the animal's daily intake of the *i*th radionuclide which appears in each kilogram of flesh
- C<sub>i</sub><sup>AF</sup>(r, θ) is the concentration of the *i*th radionuclide in the animal's feed in sector θ at distance r
- $Q_F$  is the amount of feed consumed by the animal per day
- $\lambda_i$  is the radiological decay constant of the *i*th radionuclide
- t<sub>s</sub> is the average time from slaughter to consumption

| Parameter | Meat                                 |  |  |  |
|-----------|--------------------------------------|--|--|--|
| $Q_F$     | 15.6 kg d <sup>-1</sup> (dry weight) |  |  |  |
| $t_s$     | 480 h (20 days)                      |  |  |  |





## CONCENTRATION IN MILK

$$C_i^M(r,\theta) = F_{i,M}C_i^{AF}(r,\theta)Q_F \exp(-\lambda_i t_f)$$

- F<sub>i.M</sub> is the average fraction of the animal's daily intake of the *i*th radionuclide which appears in each liter of milk
- C<sub>i</sub><sup>AF</sup>(r, θ) is the concentration of the *i*th radionuclide in the animal's feed in sector θ at distance r
- $Q_F$  is the amount of feed consumed by the animal per day
- $\lambda_i$  is the radiological decay constant of the *i*th radionuclide
- t<sub>f</sub> is the average transport time of the activity from the feed into the milk and to the receptor

| Parameter      | Milk                                 |
|----------------|--------------------------------------|
| $Q_F$          | 15.6 kg d <sup>-1</sup> (dry weight) |
| t <sub>f</sub> | 48 h (2 days)                        |





## CALCULATION OF DOSE AND RISK TO A RECEPTOR

- 1. Calculate  $\chi / Q$  values in each sector
- 2. Calculate air concentrations in each sector
- 3. Calculate deposition rates in each sector
- 4. Calculate ground concentrations in each sector
- Calculate concentrations in vegetables, milk, and meat produced in each sector
- 6. Calculate concentrations in vegetables, milk, and meat ingested by a receptor in each sector
- 7. Calculate dose and risk to a receptor in each sector





# AVERAGE CONCENTRATIONS IN FOODS

$$\bar{C}_{i}^{V}(r,\theta) = \kappa_{L}^{V}C_{i}^{V}(r,\theta) + \kappa_{R}^{V}\sum_{m=1}^{N}\sum_{k=1}^{16}w_{m,k}C_{i}^{V}(r_{m},\theta_{k})$$

$$\bar{C}_{i}^{M}(r,\theta) = \kappa_{L}^{M}C_{i}^{M}(r,\theta) + \kappa_{R}^{M}\sum_{m=1}^{N}\sum_{k=1}^{16}w_{m,k}C_{i}^{M}(r_{m},\theta_{k})$$

$$\bar{C}_{i}^{F}(r,\theta) = \kappa_{L}^{F}C_{i}^{F}(r,\theta) + \kappa_{R}^{F}\sum_{m=1}^{N}\sum_{k=1}^{16}w_{m,k}C_{i}^{F}(r_{m},\theta_{k})$$

$$\bar{C}_{i}^{L}(r,\theta) = \kappa_{L}^{V}C_{i}^{L}(r,\theta) + \kappa_{R}^{V}\sum_{m=1}^{N}\sum_{k=1}^{16}w_{m,k}C_{i}^{L}(r_{m},\theta_{k})$$





## **AGRICULTURAL FRACTIONS**

For population type runs (weighted by area):  $w_{m,k} = \frac{1}{16} \frac{(r_m^2 - r_{m-1}^2)}{(r_N^2 - r_0^2)}$ 

For individual type runs (unweighted): N

 $w_{m,k} = \frac{1}{16 \times N}$ 

- $\kappa_L^V$  is the fraction of vegetables grown locally
- $\kappa_R^V$  is the fraction of vegetables grown regionally in the assessment area
- $\kappa_L^M$  is the fraction of milk produced locally
- $\kappa_R^M$  is the fraction of milk produced regionally in the assessment area
- $\kappa_L^F$  is the fraction of meat produced locally
- $\kappa_R^F$  is the fraction of meat produced regionally in the assessment area





## CALCULATION OF DOSE AND RISK TO A RECEPTOR

- 1. Calculate  $\chi / Q$  values in each sector
- 2. Calculate air concentrations in each sector
- 3. Calculate deposition rates in each sector
- 4. Calculate ground concentrations in each sector
- Calculate concentrations in vegetables, milk, and meat produced in each sector
- 6. Calculate concentrations in vegetables, milk, and meat ingested by a receptor in each sector
- 7. Calculate dose and risk to a receptor in each sector





## TOTAL DOSE RATE

 $D_{j,a}^{T}(r,\theta) = D_{j}^{X}(r,\theta) + D_{j}^{G}(r,\theta) + D_{j,a}^{A}(r,\theta) + D_{j,a}^{D}(r,\theta)$ 

- D<sup>X</sup><sub>j</sub>(r, θ) is the external air immersion dose rate the *j*th organ of a receptor in sector θ at distance r
- D<sup>G</sup><sub>j</sub>(r, θ) is the external ground surface dose rate the jth organ of a receptor in sector θ at distance r
- D<sup>A</sup><sub>j,a</sub>(r, θ) is the internal dose rate the *j*th organ of a receptor in age group a in sector θ at distance r from inhalation
- D<sup>D</sup><sub>j,a</sub>(r, θ) is the internal dose rate the *j*th organ of a receptor in age group a in sector θ at distance r from ingestion





## EXTERNAL DOSE FROM DIRECT EXPOSURE TO ACTIVITY IN THE AIR (IMMERSION)



- DFX<sub>i,j</sub> is the air immersion dose factor for the *j*th organ for the *i*th radionuclide
- $\chi_i(r,\theta)$  is the air concentration of the *i*th radionuclide





## EXTERNAL DOSE FROM GROUND SURFACE

#### 1. Calculate $\chi / Q$ values in each sector

- 2. Calculate air concentrations in each sector
- 3. Calculate deposition rates in each sector
- Calculate ground concentrations in each sector
   Calculate concentrations in vegetables, milk, and
- meat produced in each sector
  - Calculate concentrations in vegetables, milk, and meat ingested by a receptor in each sector
     Calculate dose and risk to a receptor in each sect
- $S_F$  is the attenuation factor accounting for shielding provided by residential structures
- DFG<sub>i,j</sub> is the ground surface dose factor for the *j*th organ for the *i*th radionuclide
- $C_i^G(r, \theta)$  is the ground concentration of the *i*th radionuclide

| Parameter        | Value |
|------------------|-------|
| y 15 the crosswi | 0.5   |





## **INTERNAL DOSE FROM INHALATION**

#### z is the distance above the ground

- $R_a$  is the breathing rate of age group a
- DFA<sub>i,j,a</sub> is the dose conversion factor for the inhalation of the *i*th radionuclide, for the *j*th organ for age group a
- $\chi_i(r, \theta)$  is the annual average ground-level concentration of the *i*th radionuclide in air in sector  $\theta$  at distance r

| Parameter          | Adult | 15-Year-Old | 10-Year-Old | 5-Year-Old | 1-Year-Old | Infant |
|--------------------|-------|-------------|-------------|------------|------------|--------|
| $R_a (m^3 y^{-1})$ | 5,260 | 5,570       | 3,730       | 2,680      | 1,810      | 1,370  |





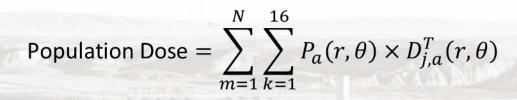
# INTERNAL DOSE FROM INGESTION $\sigma_v(x)$ is the horizontal dispersion coefficient

- DFI<sub>*i*,*j*,*a*</sub> is the DCF for the ingestion of the *i*th radionuclide, the *j*th organ, & age group *a*
- $\bar{C}_i^V(r,\theta)$  is the concentration of the *i*th radionuclide in non-leafy vegetables
- $\bar{C}_i^M(r,\theta)$  is the concentration of the *i*th radionuclide in milk
- $\bar{C}_i^F(r,\theta)$  is the concentration of the *i*th radionuclide in meat
- $\bar{C}_i^L(r,\theta)$  is the concentration of the *i*th radionuclide in leafy vegetables
- $U_a^V$  is the ingestion rate of non-leafy vegetables, fruit, and grains in age group a
- $U_a^M$  is the ingestion rate of milk for individuals in age group a
- $U_a^F$  is the ingestion rate of meat for individuals in age group a
- $U_a^L$  is the ingestion rate of leafy vegetables for individuals in age group a
- $f_g$  is the fraction of produce ingested grown in garden of interest
- $f_L$  is the fraction of leafy vegetables grown in the garden of interest





## **INGESTION DOSE RATE PARAMETERS**


| Parameter | Adult | 15-Year-Old | 10-Year-Old | 5-Year-Old | 1-Year-Old | Infant |
|-----------|-------|-------------|-------------|------------|------------|--------|
| $U_a^V$   | 76.2  | 60.8        | 46.3        | 39.0       | 29.9       | 25.4   |
| $U_a^M$   | 53    | 90          | 113         | 120        | 173        | 132    |
| $U_a^F$   | 84    | 77          | 64          | 44         | 33         | 26     |
| $U_a^L$   | 7.79  | 6.22        | 4.73        | 3.99       | 3.06       | 2.60   |

| Parameter | Value |
|-----------|-------|
| F=37      | 1.00  |
| 1         | 1.00  |





## **POPULATION DOSE**



•  $P_a(r, \theta)$  is the population of age group a in sector  $\theta$  at distance r





## TOTAL RISK

 $R_{j,a}^{T}(r,\theta) = R_{j}^{X}(r,\theta) + R_{j}^{G}(r,\theta) + R_{j,a}^{A}(r,\theta) + R_{j,a}^{D}(r,\theta)$ 

 $R_j^X(r,\theta)$  is the external air immersion risk to the *j*th organ of a receptor  $R_j^G(r,\theta)$  is the external ground surface risk to the *j*th organ of a receptor  $R_{j,a}^A(r,\theta)$  is the internal risk to the *j*th organ of a receptor in age group a  $R_{j,a}^D(r,\theta)$  is the internal risk to the *j*th organ of a receptor in age group





## EXTERNAL RISK FROM DIRECT EXPOSURE TO ACTIVITY IN THE AIR (IMMERSION)

$$R_j^X(r,\theta) = \sum_i \operatorname{RFX}_{i,j} \times \chi_i(r,\theta)$$

- RFX<sub>*i*,*j*</sub> is the air immersion risk conversion factor for the *j*th organ for the *i*th radionuclide (same for all age groups)
- $\chi_i(r, \theta)$  is the air concentration of the *i*th radionuclide





## EXTERNAL RISK FROM GROUND SURFACE

$$R_j^G(r,\theta) = S_F \sum_i \operatorname{RFG}_{i,j} \times C_i^G(r,\theta)$$

- $S_F$  is the attenuation factor accounting for shielding provided by residential structures
- RFG<sub>i,j</sub> is the ground surface risk conversion factor for the *j*th organ for the *i*th radionuclide
- $C_i^G(r, \theta)$  is the ground concentration of the *i*th radionuclide

| Parameter      | Value |  |
|----------------|-------|--|
| S <sub>F</sub> | 0.5   |  |





## **INTERNAL RISK FROM INHALATION**

$$R_{j,a}^{A}(r,\theta) = R_{a} \sum_{i} \operatorname{RFA}_{i,j,a} \times \chi_{i}(r,\theta)$$

- $R_a$  is the breathing rate of age group a
- RFA<sub>i,j,a</sub> is the risk conversion factor for the inhalation of the *i*th radionuclide, for the *j*th organ for age group *a*
- $\chi_i(r, \theta)$  is the annual average ground-level concentration of the *i*th radionuclide in air in sector  $\theta$  at distance r

| Parameter          | Adult | 15-Year-Old | 10-Year-Old | 5-Year-Old | 1-Year-Old | Infant |
|--------------------|-------|-------------|-------------|------------|------------|--------|
| $R_a (m^3 y^{-1})$ | 5,260 | 5,570       | 3,730       | 2,680      | 1,810      | 1,370  |





## **INTERNAL RISK FROM INGESTION** $R_{j,a}^{D}(r,\theta) = \sum_{i} \operatorname{RFI}_{i,j,a} \left[ f_{g} U_{a}^{V} \bar{C}_{i}^{V}(r,\theta) + U_{a}^{M} \bar{C}_{i}^{M}(r,\theta) + U_{a}^{F} \bar{C}_{i}^{F}(r,\theta) + f_{L} U_{a}^{L} \bar{C}_{i}^{L}(r,\theta) \right]$

- RFI<sub>*i*,*j*,*a*</sub> is the RCF for the ingestion of the *i*th radionuclide, the *j*th organ, & age group *a*
- $\bar{C}_i^V(r,\theta)$  is the concentration of the *i*th radionuclide in non-leafy vegetables
- $\bar{C}_i^M(r,\theta)$  is the concentration of the *i*th radionuclide in milk
- $\bar{C}_i^F(r,\theta)$  is the concentration of the *i*th radionuclide in meat
- $\bar{C}_i^L(r,\theta)$  is the concentration of the *i*th radionuclide in leafy vegetables
- $U_a^V$  is the ingestion rate of non-leafy vegetables, fruit, and grains in age group a
- $U_a^M$  is the ingestion rate of milk for individuals in age group a
- $U_a^F$  is the ingestion rate of meat for individuals in age group a
- $U_a^L$  is the ingestion rate of leafy vegetables for individuals in age group a
- $f_g$  is the fraction of produce ingested grown in garden of interest
- $f_L$  is the fraction of leafy vegetables grown in the garden of interest



