

AN ALTERNATIVES ASSESSMENT FOR THE FLAME RETARDANT DECABROMODIPHENYL ETHER (DecaBDE)

FINAL REPORT

January 2014

An Alternatives Assessment for the Flame Retardant Decabromodiphenyl Ether (DecaBDE) Executive Summary

This report provides detailed hazard information for 29 substances and mixtures that have been identified as potentially viable alternatives to decabromodiphenyl ether (decaBDE) in a variety of polymers and applications. Chemicals were selected for evaluation based on their potential as substitutes to decaBDE, not because they are expected to be safer than decaBDE. The purpose of the report is to provide human health and ecological hazard information; a fully informed choice of alternatives will likely require consideration of other factors, such as cost and efficacy. Efficacy of the flame retardant alternatives was not tested. The U.S. Environmental Protection Agency (EPA) developed the report with input from a partnership of stakeholders from business, government, academia, and environmental organizations. This report:

- 1. Identifies potentially viable and non-viable flame retardant alternatives for decaBDE in a variety of applications and end-uses;
- 2. Provides a use, life-cycle, and exposure overview for decaBDE;
- 3. Supplies hazard profiles for decaBDE and 29 chemical alternatives; and
- 4. Presents a general discussion of factors relevant to substitution decisions.

The hazard profiles for decaBDE and its alternatives can be found in Chapter 4 of the report. DecaBDE and the 29 alternatives evaluated in this alternative assessment fall into five general chemical classes:

- 1. Discrete halogenated flame retardants;
- 2. Polymeric brominated flame retardants;
- 3. Discrete phosphorus flame retardants, nitrogen flame retardants, and phosphorus/nitrogen flame retardants;
- 4. Polymeric phosphorus flame retardants and nitrogen flame retardants; and
- 5. Inorganic flame retardants.

Some of the alternatives have been in use for decades and others are relatively new to the market. The hazard profiles show that some of the alternatives have similar hazard profiles to decaBDE; other alternatives have trade-offs in hazard endpoints; some alternatives have preferable profiles compared to decaBDE. Flame retardants with similar profiles are persistent, potentially bioaccumulative, and tend to have hazards for carcinogenicity, developmental neurotoxicity and repeated dose toxicity. Other alternatives are associated with the concern for hazard based on different endpoints, for example aquatic toxicity, and present hazard trade-offs when compared to decaBDE. The large polymers are anticipated to be safer because their large size limits bioavailability. Unfortunately, their long-term fate in the environment is not known and some stakeholders point out that halogenated polymers can generate halogenated dioxins and furans during combustion; combustion by-products are not assessed in the report.

Some of the hazard profiles in this report are based largely on empirical data and others rely heavily on estimated values. Uncertainty is associated with estimated concern for hazards. Chemicals with limited empirical data that are currently or likely to be used at high volumes should be priority for further testing.

Background

In December 2009, EPA released the Polybrominated Diphenyl Ethers (PBDEs) Action Plan. The PBDE Action Plan summarizes hazard, exposure, and use information for three commercial PBDE mixtures, including decaBDE. DecaBDE is a flame retardant used in a variety of applications, including textiles, plastics, wiring insulation, and building and construction materials. Debromination (the physical or metabolic removal of bromine atoms) can convert decaBDE to lower brominated PBDE congeners, contributing further to the potential risk from exposure to these congeners. In March 2012, EPA initiated rulemaking and proposed a simultaneous significant new use rule (SNUR) and test rule for PBDEs under the Toxic Substances Control Act (TSCA). The proposed SNUR designates any use of decaBDE in manufacturing, importation, or processing that is not ongoing as of December 31, 2013 as a significant new use. Additionally, the manufacture (including import) or processing of any article to which PBDEs have been added will also be considered a significant new use. The proposed PBDE test rule requires testing of the health and environmental effects of PBDEs by manufacturers and processors of decaBDE and/or articles containing decaBDE for any use after December 31, 2013. In December 2009, the largest producers and suppliers of decaBDE in the U.S. committed to end its production, importation, and sales for all uses by the end of 2013. As part of the Agency's efforts to manage chemical risks, the Action Plan called upon the DfE Program to conduct an alternatives assessment for decaBDE. A DfE Alternatives Assessment is a process for identifying and comparing potential chemical alternatives that can be used as substitutes to replace chemicals that the Agency has designated for action. DfE alternatives assessments provide information on functional class, intrinsic hazard, exposure properties, and environmental fate for chemical alternatives. It is expected that the information in DfE Alternatives Assessments will influence the selection of safer, more sustainable alternatives when combined with other information not highlighted in DfE Alternatives Assessments such as performance, cost, and efficacy of the alternatives. Alternative materials and barrier technologies could also be approaches for flame retardancy but were not a focus of this report.

Goal of the Partnership and Report

DfE convened a multi-stakeholder partnership to assess the potential human health and environmental hazards of decaBDE and its alternatives. The information presented in this report is based on the partnership's knowledge and the DfE Program's research. Chapter 1 of the report provides background information on decaBDE and defines the report's purpose and scope. Chapter 2 describes the materials and products in which decaBDE is used and briefly discusses flammability standards relevant to products that contain decaBDE. Chapter 3 provides background information on flame retardants and outlines which flame retardants are and are not included in the alternatives assessment. Chapter 3 provides details on two flame-retardant technologies not assessed in the report (inherently flame retardant materials and nanosilicates) and describes flame retardant modes of action. Chapter 4 is the largest part of the report and explains the hazard evaluation methodology and the hazard profiles for decaBDE and the 29 identified alternatives. Chapter 5 provides information on exposure and life-cycle considerations for decaBDE and its alternatives. Chapter 6 discusses considerations for selecting flame retardants and provides relevant resources for moving towards a substitution decision.

Results

With the assistance of the partnership, EPA identified 29 potentially functional, viable alternatives to decaBDE for use in select polyolefins, styrenics, engineering thermoplastics, thermosets, elastomers, or waterborne emulsions and coatings. The scope of this assessment was focused on the human health and environmental hazards of potential flame retardant substitutes. The human health endpoints evaluated in DfE alternatives assessments include acute toxicity, carcinogenicity, genotoxicity, reproductive toxicity, developmental toxicity, neurotoxicity, repeated dose toxicity, skin sensitization, respiratory sensitization, eye irritation, and dermal irritation. Large polymers were generally designated as Low concern for human health endpoints compared to discrete chemicals because the large polymers generally cannot be absorbed or easily metabolized. Although irritation can occur without absorption, it was not identified as a hazard for any of the large polymers and therefore was not a distinguishing characteristic in this assessment. Acute mammalian toxicity was Low for decaBDE and all but two of the alternatives: tris(tribromoneopentyl) phosphate and the substituted amine phosphate mixture. Carcinogenicity and genotoxicity hazards varied among the alternatives, with many Low or Moderate results. None of the chemicals had High concerns for carcinogenicity and only zinc borate had a High concern for genotoxicity. DecaBDE was Low for genotoxicity and Moderate for carcinogenicity. Reproductive, developmental, neurological, and repeated dose toxicity varied from Low to High across discrete chemicals. DecaBDE has High developmental toxicity, Moderate repeated dose toxicity, and an estimated Low neurological hazard in adults. Irritation and sensitization endpoints were generally not distinguishing, but five chemicals had at least one designation of Moderate, High, or Very High for one or more irritation or sensitization endpoints, whereas decaBDE has Low designations for these endpoints.

The aquatic toxicity endpoints evaluated in DfE alternatives assessments include acute and chronic aquatic toxicity. Aquatic toxicity hazards varied significantly due to the diverse chemistries of the alternatives. Large discrete chemicals and large polymers (both halogenated and non-halogenated) had generally Low aquatic toxicity hazards. The larger chemicals and compounds with high K_{ow} values are not expected to be bioavailable in the water column. For inorganic compounds, aquatic toxicity varied from Low to High. The metal species influences toxicity, as does the type of anion with which it is associated (e.g., a metal hydroxide). Metal compounds will have different solubilities depending on the anion involved, which will contribute to the level of toxicity of the metal compound. The aluminum, antimony and zinc compounds have Moderate to High aquatic toxicity. For ammonium polyphosphate, magnesium hydroxide and red phosphorus, aquatic toxicity was Low. In addition to some of the inorganic compounds, some of the phosphorus and/or nitrogen-containing compounds had High or Very High measured or predicted aquatic toxicity.

Chemical flame retardants must be stable by design in order to maintain their flame retardant properties throughout the lifetime of the product and most are designated as High or Very High for persistence. Additionally, the High persistence associated with the large polymers in this assessment is due to the limited bioavailability and lack of assimilation by microorganisms. The alternatives without High persistence were triphenyl phosphate, which is readily biodegradable (low persistence), as well as resorcinol bis-diphenyl phosphate, an inherently biodegradable chemical that degrades slowly (Moderate persistence), however these substances have aquatic toxicity hazards and bioaccumulation potential.

The ability of a chemical to accumulate in living organisms is described by the bioconcentration, bioaccumulation, biomagnification, and/or trophic magnification factors. DecaBDE has High potential for bioaccumulation, as do its breakdown products (lower brominated diphenyl ether congeners). Some of the alternatives assessed in this report also have a High potential for bioaccumulation, including the discrete brominated chemicals and, based on presence of oligomers below 1,000 daltons, some of the phenyl phosphates. The potential for a molecule to be absorbed by an organism tends to be lower when the molecule is greater than 1,000 daltons in size. This is reflected in the Low hazard designations for bioaccumulation for the polymeric flame retardants without low molecular weight components below 1,000 daltons. The inorganic flame retardants assessed in this report do not have High potential to bioaccumulate, nor do the discrete nitrogen-based flame retardants.

How to Use This Report

Audiences for this report include stakeholders interested in chemical hazards and safer alternatives, including but not limited to chemical manufacturers, component manufacturers, product manufacturers, retailers, consumers, non-governmental organizations, consultants, and state and federal regulators. Three potential uses of this report include:

Identification of potential substitutes. This report allows stakeholders interested in chemical substitution to identify functional substitutes for decaBDE in certain plastics. The list of potential alternatives introduced in Chapter 3 includes chemicals identified by stakeholders as viable, functional alternatives as well as chemicals that are not considered functional alternatives and information on inherently flame retardant polymers. The inclusion of a chemical in this assessment does not indicate environmental- or health-based preferability. By identifying potential functional alternatives, this report assists manufacturers in selecting chemicals for additional performance testing.

Selection of alternative chemicals based on comparative chemical hazard assessment. This report helps decision-makers understand and compare the hazards associated with potential alternatives and supplement information on performance and cost. Some alternatives may be associated with hazard concerns similar to those of decaBDE; others may be associated with different hazard concerns. Use of the hazard information in Chapter 4 may help businesses avoid the cost of repeated substitution. The information in Chapter 4 is a robust human health and environmental profile for each chemical that is based on empirical data and enhanced with modeling and expert judgment to fill data gaps. The profiles can help decision-makers understand which potential alternatives may come under scrutiny in the future and choose the safest possible alternative now in order to reduce future costs. In addition to reading the hazard summary tables (Table 4-4, Table 4-5, and Table 4-6), decision-makers should review the full hazard assessments for each chemical available in Section 4.8. The hazard assessments provide more information on hazard criteria, data interpretation and information to ensure a complete understanding of the hazard profiles of each alternative.

Use of hazard information for further analysis and decision-making. The information in this report can be used to inform further analyses on preferred alternative chemicals, such as risk

assessments or life-cycle assessments. For example, a decision-maker could identify several functional alternatives with preferable hazard profiles, and conduct product-specific risk assessments based on exposure expectations along the product's life-cycle. This type of supplementary information may be helpful in guiding product-specific decision-making. Information in this report also can be used to identify the Very Persistent Very Bioaccumulative chemicals targeted under European REACH policy. This report does not evaluate the relative hazards of alternatives, but GreenScreenTM (www.cleanproduction.org/Greenscreen.php) is one tool that can be used for this purpose. The criteria used to develop the hazard assessments in this report can also be used to inform Green Chemistry design if availability of safer alternatives is limited.

Hazard Summary Table

Table ES-1 Screening Level Hazard Summary for DecaBDE and Halogenated Flame Retardant Alternatives

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from predictive models and/or professional judgment. [§] Based on analogy to experimental data for a structurally similar compound.

× This alternative may contain impurities. These impurities have hazard designations that differ from the flame retardant alternative, Brominated poly(phenylether), as follows, based on experimental data: HIGH for human health, HIGH for aquatic toxicity, and VERY HIGH for bioaccumulation.

^T This chemical is subject to testing in an EPA consent order for this endpoint.

		Human Health Effects								Aqı Toxi	uatic city ^{**}	Environmental Fate				
Chemical (for full chemical name and relevant trade names see the individual profiles in Section 4.8)	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
DecaBDE and Halogenated Flame Retardant Altern	natives	DDE	1.D.				A 14									
	Deca	BDE :	and Dis	crete H	alogena	ted FR	Alterna	tives	L -	Г		1				L
Bis(hexachlorocyclopentadieno) Cyclooctane	13560-89-9	L	M ^s	<i>M</i> [∗]	VL	VL	L	M	L		VL	L	L	L	VH	H
Brominated Poly(phenylether)	Confidential	L	L¤	L	VL¤	M¤	L¤	L¤	L		L	VL	L	L¤	VH ^T	H^{T} ¤
Decabromodiphenyl Ethane	84852-53-9	L	M [§]	L	L	$H^{\$}$	L	L	L		VL	VL	L	L	VH	H
Decabromodiphenyl Ether	1163-19-5	L	Μ	L	L	Η	L	Μ	L		L	L	L	L	VH	H
Ethylene Bis-Tetrabromophthalimide	32588-76-4	L	M	L	L	M [§]	L	L	L		VL	VL	L	L	VH	H
Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether	21850-44-2	L	M	Μ	M	М	L	M	L		L	L	L	L	VH	H
Tris(tribromoneopentyl) Phosphate	19186-97-1	M	М	L	M	M	H	L	L		L	L	L	L	Н	M
Tris(tribromophenoxy) Triazine	25713-60-4	L	L	L				L			L	VL	L		VH	H

**Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Table ES-1 Continued

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned using values from predictive models and/or professional judgment.

^d This hazard designation would be assigned MODERATE if >5% of the particles are in the respirable range as a result of dust forming operations.

Different formulations of the commercial product are available. One of these many formulations has an average MW of ~1,600 and contains significant amounts of lower MW components. These lower MW components have hazard designations different than the polymeric flame retardant, as follows: HIGH (estimated) for bioaccumulation; HIGH (experimental) for acute aquatic toxicity; HIGH estimated for chronic aquatic toxicity; MODERATE (experimental) for developmental; and MODERATE (estimated) for carcinogenicity, genotoxicity, repeated dose, reproductive, and skin and respiratory sensitization toxicity.

						Human	h Health	• Effects					Aqı Toxi	Aquatic Env Toxicity ^{**}		Environmental Fate	
Chemical (for full chemical name and relevant trade names see the individual profiles in Section 4.8)	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation	
Halogenated Flame Retardant Alternatives Continu	ied					•		•				•					
		Poly	meric H	Ialogen	ated FR	Alterna	atives ^P										
Brominated Epoxy Polymers	68928-70-1	L	L♦	L	L♦	L♦	L	$L \phi^{d}$	L	•	L	L	$L \blacklozenge$	$L \blacklozenge$	VH	L♦	
Brominated Epoxy Polymer(s)	Confidential	L	L♦	L♦	L♦	L♦	L	$L \phi^{d}$	L♦	•	L	L	L♦	L♦	VH	L♦	
Mixture of brominated epoxy polymer(s) and bromobenzyl acrylate	Confidential	L	L♦	L♦	L♦	L♦	L	$L \phi^{d}$	L♦	•	L	L	L♦	L♦	VH	L♦	
Brominated Epoxy Resin End-Capped with Tribromophenol	135229-48-0	L	L	L	L	L	L	L ^d	L		L	VL	L	L	VH	L	
Brominated Polyacrylate	59447-57-3	L	L	L	L	L	L	L ^d	L		L	L	L	L	VH	L	
Brominated Polystyrene	88497-56-7	L	L	L	L	L	L	L ^d	L		L	L	L	L	VH	L	

**Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

^P The range of polymer molecular weight can be broad. The polymers listed here have low toxicity for human health and aquatic endpoints. Not all polymers will have this low toxicity; hazards will vary with physical-chemical properties.

Table ES-2 Screening Level Hazard Summary for Organic Phosphorus or Nitrogen Flame Retardant Alternatives

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned using values from predictive models and/or professional judgment.

[§] Based on analogy to experimental data for a structurally similar compound.

^{*} The highest hazard designation of any of the oligomers with MW <1,000.

[•] The highest hazard designation of a representative component of the oligomeric mixture with MWs <1,000.

			Human Health Effects								Aquatic Toxicity ^{**}		Environmental Fate			
Chemical (for full chemical name and relevant trade names see the individual profiles in Section 4.8)	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Organic Phosphorus or Nitrogen Flame Retardant	t (PFR or NFR) A	Altern	atives													
		Discre	te PFR	, NFR a	nd P/N	FR Alte	rnatives	1								
Substituted Amine Phosphate Mixture ¹	Confidential	Η	М	M	М	М	L	M	L	M [§]	Μ	VL	M	L	H	L
Triphenyl Phosphate	115-86-6	L	M	L	L	L	L	Н	L		L	VL	VH	VH	L	Μ
		Pol	ymeric	PFR ar	nd NFR	Alterna	ntives									
Bisphenol A bis-(diphenyl phosphate); BAPP	181028-79-5	L	М	L	L	L^{\S}	$L^{\$}$	L	L		L	L	L	L	Η	H^{\diamond}
Melamine Cyanurate ¹	37640-57-6	L	M	M	M [§]	M [§]	L	H	L		L	L	L	L	VH	L
Melamine Polyphosphate ¹	15541-60-3	L	M	M	L^{\S}	L	L^{\S}	M	L		L	VL	L	L	Н	L
N-alkoxy Hindered Amine Reaction Products	191680-81-6	L	M	L	Н	H	L	H	L		L	VL	H	H	H	H [‡]

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

¹Hazard designations are based upon the component of the salt with the highest hazard designation, including the corresponding free acid or base.

Table ES-2 Continued

 vL = very Low nazaro L = Low nazaro M = Moderate nazaro H = High nazaro vH = very High nazaro — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from predictive models and/or professional judgment. ¹ This hazard designation would be assigned MODERATE if >5% of the particles are in the respirable range as a result of dust forming operations [§] Based on analogy to experimental data for a structurally similar compound. [‡] The highest hazard designation of any of the oligomers with MW <1,000. [§] Phosphonate Oligomer, with a MW range of 1,000 to 5,000, may contain significant amounts of an impurity, depending on the final product preparation. This impurity has hazard designations that differ from the polymeric flame retardant, as follows: MODERATE (experimental) for carcinogenicity, reproductive and repeated dose toxicity, skin sensitization, eye and dermal irritation; and HIGH (experimental) for developmental toxicity and acute and chronic aquatic toxicity. 																
		Human Health EffectsAquatic Toxicity**Environmental Fate														
Chemical (for full chemical name and relevant trade names see the individual profiles in Section 4.8)	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation	
Organic Phosphorus or Nitrogen Flame Retardant	(PFR or NFR)	Alterna	atives (Continu	ed											
Phosphonata Olizomor $^{\frac{1}{2}}$	68664.06.2	Poly	ymeric	PFR an	d NFR	Alterna	tives	τ §¥	τ §¥		∎. Na‡¥	14	τ¥	ττ [‡]	VII	11
Polyphosphonate	68664-06-2			$\frac{L}{L}$				L^{d}			L				VH VH	
Phosphoric acid, mixed esters with [1,1'-bisphenyl- 4,4'-diol] and phenol; BPBP	1003300-73-9	L	М	L	L§	L§	L	L	L		VL	VL	$H^{\$}$	$H^{\$}$	Н	M [‡]
Poly[phosphonate-co-carbonate]	77226-90-5	L	L	L	L	L	L	L^{d}	L		L	L	L	L	VH	L
Resorcinol Bis-Diphenylphosphate; RDP	125997-21-9	L	M [§]	L	L	Μ	M	M			L	VL	VH	VH	Μ	H [‡]

**Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Table ES-3 Screening Level Hazard Summary for Inorganic Flame Retardant Alternatives

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from predictive models and/or professional judgment.

^d This hazard designation would be assigned MODERATE if >5% of the particles are in the respirable range as a result of dust forming operations.

^R Recalcitrant: Substance is comprised of metallic species that will not degrade, but may change oxidation state or undergo complexation processes under environmental conditions. * Ongoing studies may result in a change in this endpoint.

			Human Health Effects								Aquatic Toxicity ^{**}		Environmental Fate			
Chemical (for full chemical name and relevant trade names see the individual profiles in Section 4.8)	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Inorganic Flame Retardant Alternatives	•		1		-											
Aluminum Diethylphosphinate	225789-38-8	L	L	L	VL	M	M	M	L		L	VL	Μ	Μ	H^{R}	L
Aluminum Hydroxide	21645-51-2	L	L	L	L	L	Μ	M	L		VL	VL	М	M	H^{R}	L
Ammonium Polyphosphate	68333-79-9	L	L	L	L	L	L	L ^d	L		VL	L	L	L	VH	L
Antimony Trioxide ¹	1309-64-4	L	M*	Μ	М	L	L	H	L		L	Μ	H	Μ	H^{R}	L
Magnesium Hydroxide	1309-42-8	L	L	L	L	L	L	L	L		Μ	L	L	L	H^{R}	L
Red Phosphorus	7723-14-0	L	L	M	L	L	L	L	L		Μ	Μ	L	L	Н	
Zinc Borate	1332-07-6	L	L	H	M	M	H	L	L		L	L	H	H	HR	

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

¹ This compound is included in the ongoing EPA Work Plan evaluation for Antimony Trioxide.

Acknowledgements

This project could not have been completed without the participation of the Flame-Retardant Alternatives for DecaBDE Partnership. The Partnership includes the following stakeholders:

Academics

Alissa Cordner, Brown University Julie Herbstman, Columbia University Heather Stapleton, Duke University Joseph G. Allen, Harvard School of Public Health Carol Handwerker, Purdue University Inez Hua, Purdue University Jeffery W. Youngblood, Purdue University Alexander B. Morgan, University of Dayton Research Institute Ravi Mosurkal, University of Massachusetts – Lowell Ramaswamy Nagarajan, University of Massachusetts - Lowell Jack Geibig, University of Tennessee – Knoxville Alexandra Bergstein, Yale University

Consultants

Andy Beevers, Applied Market Information Cris A. Williams, ENVIRON Ann Blake, Environmental and Public Health Consulting Susan Hazen, Hazen Consulting Mark Buczek, Independent Consultant Bob Kerr, Pure Strategies Ken Soltys, Pure Strategies Pat Beattie, SciVera Tom Osimitz, SciVera Andy Hall, Sustainable Value Cycle Solutions Emily Campbell, ToxServices Margaret Whittaker, ToxServices

NGOs

Pamela Miller, Alaska Community Action on Toxics Moira McKernan, while at the American Bird Conservancy Sue Chiang, Center for Environmental Health Anna Lennquist, ChemSec Jerker Ligthart, ChemSec Kathleen A. Curtis, Clean and Healthy New York Sharyle Patton, Commonweal Susan Klosterhaus, Cradle to Cradle Products Innovation Institute Mike Belliveau, Environmental Health Strategy Center Arlene Blum, Green Science Policy Institute Alex Madonik, Green Science Policy Institute David Santillo, Greenpeace International Gary Cohen, Health Care Without Harm (IGC) Tom Lent, Healthy Building Network Jim Vallette, Healthy Building Network Joelle M. Fishkin, International Association of Fire Chiefs Ken Kraus, while at International Association of Fire Chiefs Ken LaSala, International Association of Fire Chiefs Ed Plaugher, International Association of Fire Chiefs Michael Murray, National Wildlife Federation Brian Penttila, Pacific Northwest Pollution Prevention Resource Center Ed Hopkins, Sierra Club Sheila Davis, Silicon Valley Toxics Coalition Baskut Tuncak, The Center for International Environmental Law Pam Eliason, Toxics Use Reduction Institute Laurie Valerian, Washington Toxics Coalition

Flame Retardant Industry

Hideo Kawasaki, ADEKA CORPORATION Tetsuo Kamimoto, ADEKA CORPORATION Ray Dawson, Albemarle Susan Landry, Albemarle Robert Simon, American Chemistry Council Jackson Morrill, American Chemistry Council Guru Zingde, Amfine Jay Ghosh, BASF Nikolas Kaprinidis, BASF Martin Klatt, BASF Rodrigo Lima, BASF Al Wiedow, while at BASF Dick Stob, BurnGard Tim Reilly, Clariant Adrian Beard, Clariant Geoffrey Gettliffe, Clariant Thomas Kelley, Dover Chemical Maggie Baumann, FRX Polymers[®], Inc. Marc Lebel, FRX Polymers®, Inc. Jan-Pleun Lens, FRX Polymers®, Inc. Robert Campbell, Great Lakes Solutions, A Chemtura Business Mary Harscher, Great Lakes Solutions, A Chemtura Business Steve Scherrer, Great Lakes Solutions, A Chemtura Business Gary Rex, J. M. Huber Corp. Pierre Georlette, ICL Industrial Products Marc Leifer, ICL Industrial Products Sergei Levchik, ICL Industrial Products Hanna Silberberg, ICL Industrial Products Joel Tenney, ICL Industrial Products

Andy Wang, ICL Industrial Products Gerald Roston, InPore Technologies, Inc. Karl-Heinz Spriesterbach, Nabaltec Brigitte Dero, Phosphorus, Inorganic & Nitrogen Flame Retardants Association Doug Hunter, Southern Clay Products

Compounders and Resin Manufacturers

Carmen Rodriquez, Altulgas International Emile Homsi, DSM John Friddle, Eagle Performance Products Robert McKay, GE Plastics (part of Sabic) Harald Wiedemann, Huntsman Patricia Hubbard, PolyOne Steve Paolucci, PolyOne

Automotive Industry

Filipa Rio, Alliance of Automobile Manufacturers Amy Lilly, Hyundai KIA America Technical Center Jake Welland, Hyundai KIA America Technical Center John Kreitz, Sage Automotive Interiors Lynn Smith, United States Council for Automotive Research Bing Xu, United States Council for Automotive Research

Aerospace Industry

Lisa Goldberg, Aerospace Industry Association Susan Baker, Boeing Charles Ingebretson, Boeing John Harris, Boeing Chris T. Zervas, Boeing Walter Desrosier, General Aviation Manufacturers Association Jim Boyle, Majilite Richard Forselius, Sikorsky Aircraft/United Technology Corporation

Electronics Industry

Angus Hsieh, Acer Fern Abrams, Association Connecting Electronics Industries (IPC) Albert Tsang, Dell Helen Holder, Hewlett-Packard Cory Robertson, Hewlett-Packard Bob Pfahl, iNEMI Christopher Cleet, Information Technology Industry Council Mark Ezzo, Ingersoll Rand Steve Tisdale, Intel Tim McGrady, LG Electronics David Thompson, Panasonic Mike Moss, Samsung Keiko Hirai, Sony Doug Smith, Sony Craig Hershberg, Toshiba

Shipping Pallet Industry

Mike Mullin, Brambles David Deal, CHEP Larry Culleen, Arnold and Porter, for iGPS Gary Glass, iGPS Lewis Taffer, iGPS Bruce Torrey, iGPS

Textile Industry

Janan Rabiah, Association for Contract Textiles Brad Miller, Business and Institutional Furniture Manufacturer's Association Dave Panning, Business and Institutional Furniture Manufacturer's Association John Gant, Glen Raven, Inc. Gabe Wing, Herman Miller Ryan Trainer, International Sleep Products Association Aaron Smith, Kimball International Hardy Poole, National Textile Association Barry A. Cik, Naturepedic Yan Chen, while at Schneller Sarah Friedman, SEAMS Bob Beaty, TSG Finishing

Recyclers

David Wagger, Institute of Scrap Recycling Industries, Inc. George Martin, Leigh Fibers, Inc.

U.S. Federal Government

Rohit Khanna, Consumer Product Safety Commission Dale Ray, Consumer Product Safety Commission Treye Thomas, Consumer Product Safety Commission Linda S. Birnbaum, National Institute of Environmental Health Sciences and National **Toxicology Program** June K. Dunnick, National Institute of Environmental Health Sciences Rick Davis, National Institute of Standards and Technology Jeffrey W. Gilman, National Institute of Standards and Technology Shannon Cuniff, while at the Office of the Secretary of Defense Paul J. Yaroschak, Office of the Secretary of Defense Peggy Auerbach, U.S. Army Nikki Bass, U.S. Army George Murnyak, while at the U.S. Army Andrew Rak, Noblis, for the U.S. Army Gwendolyn Hudson, U.S. EPA – Office of Children's Health Protection (ASPH Fellow) Onvemaechi Nweke, U.S. EPA - Office of Environmental Justice

Linda Barr, U.S. EPA – Office of Resource Conservation and Recovery Paul Randall, U.S. EPA – National Risk Management Research Laboratory Bradley Grams, U.S. EPA – Region 5 Stephen Sturdivant, U.S. EPA – Region 6 John Katz, U.S. EPA – Region 9 Eileen Sheehan, U.S. EPA – Region 9 Barnett Rattner, U.S. Geological Survey

State and Local Governments

Bob Boughton, California Department of Toxic Substances Control Robert Brushia, California Department of Toxic Substances Control June Soo Park, California Department of Toxic Substances Control Debbie Raphael, California Department of Toxic Substances Control Tom Hornshaw, Illinois Environmental Protection Agency Gary Styzens, Illinois Environmental Protection Agency Andrea Lani, Maine Department of Environmental Protection Deborah Rice, while at the Maine Department of Environmental Protection Alister Innes, Minnesota Pollution Control Agency Alex Stone, Washington State Department of Ecology

International

Pim Leonards, ENFIRO Shannon Castellarin, Environment Canada Kate McKlerlie, while at Environment Canada Lothar Lissner, Kooperationsstelle Hamburg IFE GmbH Raluca Aurora Stepa, Kooperationsstelle Hamburg IFE GmbH Harry Baikowitz, Independent Consultant

DecaBDE Partnership EPA Contacts

Clive Davies, Design for the Environment Emma Lavoie, Design for the Environment

Technical Consultant

Lauren Heine, Clean Production Action Abt Associates Inc. SRC Inc.

Table of Contents

1	Inti	roducti	on	1-1
	1.1	Backg	round	1-1
	1.2	Purpo	se of the Flame-Retardant Alternatives Assessment	1-3
	1.3	Scope	of the Flame-Retardant Alternatives Assessment	1-3
	1.4	Chem	ical Alternatives Assessment as a Risk Management Tool	1-5
	1.5	Refere	ences	1-8
2	Pro	ducts a	nd Materials	2-1
	2.1	Mater	ials Outlined in the Scope	2-1
		2.1.1	Polyolefins	2-2
		2.1.2	Styrenics	2-2
		2.1.3	Engineering Thermoplastics	2-2
		2.1.4	Thermosets	2-4
		2.1.5	Elastomers	2-5
		2.1.6	Waterborne Emulsions and Coatings	2-6
	2.2	Uses of	of decaBDE	2-7
		2.2.1	Electrical and Electronic Equipment	2-8
		2.2.2	Textiles	2-9
		2.2.3	Building and Construction	2-9
		2.2.4	Transportation	2-10
		2.2.5	Storage and Distribution Products	2-11
	2.3	Flamn	nability Tests	2-11
	2.4	Refere	ences	2-14
	-	-		0 1
3	Bac	kgroui	nd on Flame Retardants	3-1
3	Bac 3.1	kgrou Gener	al Information on Flame Retardants	 3-1
3	Bac 3.1 3.2	kgrou Gener Flame	al Information on Flame Retardants Retardants Included in this Assessment	3-1 3-1 3-4
3	Bac 3.1 3.2 3.3	kgroun Gener Flame Flame	ad on Flame Retardants al Information on Flame Retardants Retardants Included in this Assessment Retardants Not Included in this Assessment	3-1 3-1 3-4 3-15
3	Bac 3.1 3.2 3.3	Ekgroun Gener Flame Flame 3.3.1	al Information on Flame Retardants Retardants Included in this Assessment Retardants Not Included in this Assessment Chemicals That Were Excluded from this Assessment	3-1 3-1 3-4 3-15 3-15
3	Bac 3.1 3.2 3.3	kgrou Gener Flame Flame 3.3.1 3.3.2	al Information on Flame Retardants Retardants Included in this Assessment Retardants Not Included in this Assessment Chemicals That Were Excluded from this Assessment Inherently Flame Retardant Materials	3-1 3-1 3-15 3-15 3-19
3	Bac 3.1 3.2 3.3	Ekgroun Gener Flame 3.3.1 3.3.2 3.3.3	al Information on Flame Retardants Retardants Included in this Assessment Retardants Not Included in this Assessment Chemicals That Were Excluded from this Assessment Inherently Flame Retardant Materials Nanosilicates: Clays and Colloidal Solids	3-1 3-1 3-15 3-15 3-15 3-19 3-22
3	Bac 3.1 3.2 3.3 3.4	Gener Flame 3.3.1 3.3.2 3.3.3 Flame	al Information on Flame Retardants	3-1 3-1 3-15 3-15 3-15 3-19 3-22 3-24
3	Bac 3.1 3.2 3.3 3.4	Agroun Gener Flame 3.3.1 3.3.2 3.3.3 Flame 3.4.1	al Information on Flame Retardants	3-1 3-1 3-15 3-15 3-15 3-19 3-22 3-24 3-24
3	Bac 3.1 3.2 3.3 3.4	Gener Flame 3.3.1 3.3.2 3.3.3 Flame 3.4.1 3.4.2	al Information on Flame Retardants	3-1 3-1 3-15 3-15 3-15 3-19 3-22 3-24 3-24 3-24
3	Bac 3.1 3.2 3.3 3.4	Gener Flame 3.3.1 3.3.2 3.3.3 Flame 3.4.1 3.4.2 3.4.3	al Information on Flame Retardants	3-1 3-1 3-15 3-15 3-15 3-19 3-22 3-24 3-24 3-27 3-27
3	Bac 3.1 3.2 3.3 3.4	Gener Flame 5.3.1 3.3.2 3.3.3 Flame 3.4.1 3.4.2 3.4.3 3.4.4	al Information on Flame Retardants	3-1 3-1 3-15 3-15 3-19 3-22 3-24 3-24 3-27 3-27 3-28
3	Bac 3.1 3.2 3.3 3.4	kgroun Gener Flame 3.3.1 3.3.2 3.3.3 Flame 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5	al Information on Flame Retardants	3-1 3-1 3-15 3-15 3-15 3-19 3-22 3-24 3-24 3-27 3-27 3-28 3-28
3	Bac 3.1 3.2 3.3 3.4	kgroun Gener Flame 3.3.1 3.3.2 3.3.3 Flame 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 Referee	al Information on Flame Retardants	3-1 3-1 3-15 3-15 3-15 3-19 3-22 3-24 3-24 3-27 3-27 3-28 3-28 3-30
3	Bac 3.1 3.2 3.3 3.4 3.4	kgroun Gener Flame 3.3.1 3.3.2 3.3.3 Flame 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 Refere zard Ex	al Information on Flame Retardants	3-1 3-1 3-15 3-15 3-15 3-19 3-22 3-24 3-24 3-27 3-27 3-28 3-28 3-28 3-30 4-1
3	Bac 3.1 3.2 3.3 3.4 3.4 3.5 Haz 4.1	kgroun Gener Flame Flame 3.3.1 3.3.2 3.3.3 Flame 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 Referee zard Ex	al Information on Flame Retardants	3-1 3-1 3-15 3-15 3-15 3-19 3-22 3-24 3-24 3-27 3-27 3-28 3-28 3-30 4-1
3	Bac 3.1 3.2 3.3 3.4 3.4 3.5 Haz 4.1	kgroun Gener Flame 3.3.1 3.3.2 3.3.3 Flame 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 Referee zard Ex Toxico 4.1.1	al Information on Flame Retardants	3-1 3-1 3-15 3-15 3-15 3-19 3-22 3-24 3-24 3-27 3-27 3-28 3-28 3-30 4-1 4-1
3	Bac 3.1 3.2 3.3 3.4 3.4 3.5 Haz 4.1	kgroun Gener Flame 3.3.1 3.3.2 3.3.3 Flame 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 Reference zard Ex Toxico 4.1.1 4.1.2	al Information on Flame Retardants	3-1 3-1 3-15 3-15 3-15 3-19 3-22 3-24 3-24 3-27 3-27 3-28 3-28 3-30 4-1 4-1 4-1
3	Bac 3.1 3.2 3.3 3.4 3.4 3.5 Haz 4.1	kgroun Gener Flame Flame 3.3.1 3.3.2 3.3.3 Flame 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 Referee zard Extra toxic of 4.1.1 4.1.2 4.1.3	al Information on Flame Retardants	
3	Bac 3.1 3.2 3.3 3.4 3.4 3.5 Haz 4.1	kgroun Gener Flame 3.3.1 3.3.2 3.3.3 Flame 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 Referee zard Ex Toxice 4.1.1 4.1.2 4.1.3 Data S	al Information on Flame Retardants	3-1 3-1 3-15 3-15 3-15 3-19 3-22 3-24 3-24 3-27 3-27 3-28 3-28 3-30 4-1 4-1 4-1 4-1 4-7 4-8
3	Bac 3.1 3.2 3.3 3.4 3.4 3.5 Haz 4.1	kgroun Gener Flame J.3.1 J.3.2 J.3.3 Flame J.4.1 J.4.2 J.4.3 J.4.4 J.4.5 Reference Zard Ex Toxico 4.1.1 4.1.2 4.1.3 Data S 4.2.1	al Information on Flame Retardants	

	4.2.3 Assessment of Polymers and Oligomers	4-11
4.3	Importance of Physical and Chemical Properties, Environmental Transport, and	l
	Biodegradation	4-11
4.4	Evaluating Human Health Endpoints	4-18
	4.4.1 Endpoints Characterized and Evaluated Against Criteria Based on Meas	ured
	Data	4-18
	4.4.2 SAR – Application of SAR and Expert Judgment to Endpoint Criteria	4-20
4.5	Evaluating Environmental Toxicity and Fate Endpoints	4-21
	4.5.1 Aquatic Toxicity	4-21
	4.5.2 Bioaccumulation	4-22
	4.5.3 Environmental Persistence	4-23
4.6	Endocrine Activity	4-26
4.7	Hazard Summary Table	4-29
4.8	Hazard Evaluations	4-34
	Aluminum Diethylphosphinate	4-34
	Aluminum Hydroxide	4-52
	Ammonium Polyphosphate	4-69
	Antimony Trioxide	4-90
	Bis(hexachlorocyclopentadieno) Cyclooctane	4-124
	Bisphenol A Bis-(diphenyl phosphate), BAPP	4-148
	Brominated Epoxy Polymers	4-173
	Brominated Epoxy Polymer(s)	4-184
	Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate	4-195
	Brominated Epoxy Resin End-Capped with Tribromophenol	4-206
	Brominated Polyacrylate	4-218
	Brominated Poly(phenylether)	4-229
	Brominated Polystyrene	4-249
	Decabromodiphenyl Ethane	4-261
	Decabromodiphenyl Ether	4-289
	Ethylene Bis-Tetrabromophthalimide (EBTBP)	4-339
	Magnesium Hydroxide	4-360
	Melamine Cyanurate	4-381
	Melamine Polyphosphate	4-432
	N-alkoxy Hindered Amine Reaction Products	4-467
	Phosphonate Oligomer	4-491
	Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol; BPBF	4-519
	Polyphosphonate	4-539
	Poly[phosphonate-co-carbonate]	4-551
	Red Phosphorus	4-562
	Resorcinol Bis-Diphenylphosphate; RDP	4-587
	Substituted Amine Phosphate Mixture	4-616
	Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether	4-658
	Triphenyl Phosphate	4-680
	Tris(tribromoneopentyl) Phosphate	4-707
	Tris(tribromophenoxy) Triazine	4-723
	Zinc Borate	4-736

	4.9	Refere	ences	
5	Gen	eral Ex	xposure Information and Other Life-Cycle Considerations	
	5.1	Potent	ial Exposure Pathways and Routes (General)	
		5.1.1	Occupational versus General Population Exposures	
		5.1.2	Inhalation Exposures	
		5.1.3	Dermal Exposures	
		5.1.4	Ingestion Exposures	
		5.1.5	Human and Environmental Exposure to DecaBDE	
		5.1.6	Physical-Chemical Properties for the Alternatives to DecaBDE inc	cluded in this
			Assessment that May Impact Exposure	
	5.2	Extrac	tion	5-13
		5.2.1	Inorganic Flame Retardants	5-13
		5.2.2	Halogenated Flame Retardants	5-14
		5.2.3	Phosphorous-Based Flame Retardants	5-15
		5.2.4	Nitrogen-Based Flame Retardants	5-16
	5.3	Chemi	ical Manufacturing	5-16
	5.4	Produc	ct Manufacturing	5-18
	5.5	Use		
	5.6	End-of	f-Life	
		5.6.1	Electronics	
		5.6.2	Textiles	
		5.6.3	Storage and Distribution Products	5-27
	5.7	Refere	ences	
6	Cor	sidera	tions for Selecting Flame Retardants	6-1
	6.1	Prefera	able Human Health and Environmental Attributes	6-1
		6.1.1	Low Human Health Hazard	6-2
		6.1.2	Low Ecotoxicity	6-4
		6.1.3	Readily Degradable: Low Persistence	6-5
		6.1.4	Low Bioaccumulation Potential	6-7
		6.1.5	Low Exposure Potential	
	6.2	Consic	derations for poorly or incompletely characterized chemicals	
	6.3	Social	Considerations	6-10
	6.4	Perfor	mance Considerations	
	6.5	Econo	mic Considerations	
	6.6	Movin	g Towards a Substitution Decision	6-14
	6.7	Releva	ant Resources	
		6.7.1	Resources for state and local government activities	
		6.7.2	Resources for EPA regulations and activities	
	C O	6.7.3	Resources for global regulations	6-16
	6.8	The El	NFIRO project	
	6.9	Refere	ences	6-18

Appendix A Additional Reading and Background References

List of Acronyms and Abbreviations

ABS	Acrylonitrile butadiene styrene
ACR	Acute to chronic ratio
ASTM	American Society for Testing and Materials
BAF	Bioaccumulation factor
BCF	Bioconcentration factor
BUN	Blood urea nitrogen
CA - C	Chemical action in condensed phase
CA - G	Chemical action in gas phase
CASRN	Chemical Abstracts Service Registry Number
CDC	Centers for Disease Control and Prevention
CF	Char former
CFR	Code of Federal Regulations
CHL	Chinese hamster lung cells
СНО	Chinese hamster ovary cells
ChV	Chronic value
CPE	Chlorinated polyethylene
CPSC	Consumer Product Safety Commission
D	Dilution effect
DecaBDE	Decabromodiphenyl ether
DfE	Design for the Environment
DMSO	Dimethyl sulfoxide
E_bC_{50}	Concentration at which 50% reduction of biomass is observed
EC ₅₀	Half maximal effective concentration
ECHA	European Chemicals Agency
ECOSAR	Ecological Structure Activity Relationships
EDSP	Endocrine Disruptor Screening Program
EEC	European Economic Community
EPA	U.S. Environmental Protection Agency
EPI	Estimation Program Interface
EPDM	Ethylene propylene diene monomer
E_rC_{50}	Concentration at which a 50% inhibition of growth rate is observed
ERMA	Environmental Risk Management Authority
EU	European Union
EVA	Ethylene vinyl acetate
FAA	Federal Aviation Administration
FM	Factory Mutual
FMVSS	Federal Motor Vehicle Safety Standard
GD	Gestation day
GHS	Globally Harmonized System of Classification and Labeling of Chemicals
GLP	Good laboratory practice
HIPS	High-impact polystyrene
HPLC	High performance liquid chromatography
HPV	High Production Volume
HS	Heat sink

HSDB	Hazardous Substances Data Bank
ICCA	International Council of Chemical Associations
Ι	Intumescent
IARC	International Agency for Research on Cancer
IC2	Interstate Chemicals Clearinghouse
ID ₅₀	Median ineffective dose
IFC	International Fire Code
IFR	Inherently flame retardant
IRIS	Integrated Risk Information System
IUCLID	International Uniform Chemical Information Database
K _{oc}	Sediment/soil adsorption/desorption coefficient
Kow	Octanol/water partition coefficient
LbL	Layer-by-layer
LC_{50}	Median lethal concentration
LC_{100}	Absolute lethal concentration
LCA	Life cycle assessment
LCP	Liquid crystal polymer
LD_{50}	Median lethal dose
LD	Lactation day
LFL	Lower limit of flammability
LOAEC	Lowest observed adverse effect concentration
LOAEL	Lowest observed adverse effect level
LOEC	Lowest observed effect concentration
LOEL	Lowest observed effect level
MF	Molecular formula
MITI	Japanese Ministry of International Trade and Industry
MMT	Montmorillonite clay
MSDS	Material Safety Datasheet
MSP	Mesoporous silicate particle
MW	Molecular weight
NAS	National Academy of Sciences
NCI	National Cancer Institute
NCP	New Chemicals Program
NES	No effects at saturation
NFPA	National Fire Protection Association
NGO	Non-governmental organization
NICNAS	National Industrial Chemicals Notification and Assessment Scheme
NOAEC	No observed adverse effect concentration
NOAEL	No observed adverse effect level
NOEC	No observed effect concentration
NOEL	No observed effect level
NTP	National Toxicology Program
OECD	Organisation of Economic Cooperation and Development
OPP	Office of Pesticide Programs
OPPT	Office of Pollution Prevention and Toxics
ORD	Office of Research and Development

PBDE	Polybrominated diphenyl ether
PA	Polyamide
PBT	Polybutylene terephthalate
PBT Profiler	Persistent, Bioaccumulative, and Toxic Chemical Profiler
PC	Polycarbonate
PC-ABS	Polycarbonate-acrylonitrile butadiene styrene
PE	Polyethylene
PET	Polyethylene terephthalate
phr	Parts per hundred resin
PMN	Premanufacture Notice
PP	Polypropylene
PPE-HIPS	Polyphenylene ether – high-impact polystyrene
ppm	parts per million
PS	Polystyrene
PVC	Polyvinyl chloride
QSAR	Quantitative Structure Activity Relationship
REACH	Registration, Evaluation, Authorisation and Restriction of Chemicals
RoHS	Restriction of Hazardous Substances
RP-BR	Red phosphorus and butyl rubber
SAR	Structure Activity Relationship
Sb	Antimony
SF	Sustainable Futures
SIDS	Screening Information Data Set
SMILES	Simplified Molecular-Input Line-Entry System
SPARC	Sparc Performs Automated Reasoning in Chemistry
SVHC	Substance of Very High Concern
TD _{Lo}	Lowest toxic dose
TL_{50}	Median tolerance limit
TG	Test guidelines
TPU	Thermoplastic polyurethane
TRI	Toxics Release Inventory
TSCA	Toxic Substances Control Act
TSCATS	Toxic Substance Control Act Test Submission
UCLA	University of California, Los Angeles
UFL	Upper limit of flammability
UL	Underwriters Laboratory
UPE	Unsaturated polyester
VCCEP	Voluntary Children's Chemical Evaluation Program
WAF	Water accommodated fraction

THIS PAGE INTENTIONALLY LEFT BLANK

1 Introduction

1.1 Background

As part of its effort to enhance the Agency's current chemicals management program, U.S. Environmental Protection Agency (EPA) has taken steps to identify chemicals that may pose environmental and health concerns; in 2009-2011 EPA developed action plans to investigate potential regulatory and voluntary actions. In December 2009, EPA released the Polybrominated Diphenyl Ethers (PBDEs) Action Plan¹ that summarizes hazard, exposure, and use information for three commercial PBDE mixtures, including decabromodiphenyl ether (decaBDE). DecaBDE is a flame retardant used in a variety of applications, including textiles, plastics, wiring insulation, and building and construction materials.

As described in the Action Plan, EPA's Design for the Environment (DfE) Program initiated this multi-stakeholder partnership alternatives assessment: *Flame Retardant Alternatives for Decabromodiphenyl Ether (decaBDE).* DfE's partnerships provide a basis for informed decision-making by developing an in-depth comparison of potential human health and environmental impacts of chemical alternatives. The DfE Alternatives Assessment reports provide information of interest to a number of stakeholder groups interested in chemical hazards. As part of the partnership on flame retardant alternatives to decaBDE, representatives from industry, academia, federal and state governments, and non-governmental organizations (NGOs) engaged with DfE to select and evaluate flame retardant alternatives to decaBDE and develop this report. This report is intended to provide information that will enable the selection of safer alternatives to decaBDE, for a variety of products.

DecaBDE has been used at high volume in a broad range of products, but is now being phased out in the U.S. by its manufacturers (U.S. EPA 2010a). The process leading to the phase-out began with EPA's Voluntary Children's Chemical Evaluation Program (VCCEP)². The VCCEP developed industry-sponsored screening level risk assessments for pentaBDE, octaBDE, and decaBDE to evaluate the potential risks to children and prospective parents from potential PBDE exposures (U.S. EPA 2009a). In August 2005, EPA released its Data Needs Decision documents on PBDEs (U.S. EPA 2009a). For decaBDE, EPA indicated a need to further understand fate and transport of decaBDE in the environment, particularly with respect to the significance of its breakdown products, as this could relate to its risk characterization (U.S. EPA 2005). The decaBDE data needs were not met by the VCCEP sponsors and decaBDE was subsequently terminated from the VCCEP program (U.S. EPA 2009a). EPA then announced its intention to proceed with a test rule under Toxic Substances Control Act (TSCA) section 4 (U.S. EPA 2009a). Before a test rule was proposed, the main manufacturers or importers volunteered to phase out manufacture, import and sales of decaBDE (U.S. EPA 2009a).

The use of decaBDE was restricted in particular electrical and electronic equipment under the European Union Restriction of Hazardous Substances Directive, with some exemptions (Council

¹ The Polybrominated Diphenyl Ethers (PBDEs) Action Plan is available online at: <u>http://www.epa.gov/opptintr/existingchemicals/pubs/pbdes ap 2009 1230 final.pdf</u>

² Information on VCCEP is available at: <u>http://www.epa.gov/oppt/vccep</u>.

of the European Union 2003; Council of the European Union 2011). Additionally, in the U.S., the states of Maine, Maryland, Oregon, Vermont, and Washington have imposed restrictions on the manufacture and/or use of decaBDE in certain applications (Washington 2006; Oregon Legislative Assembly 2009; Vermont 2009; Maine 2010; Maryland 2010). Some additional states have proposed legislation restricting the manufacture and/or use of decaBDE; up-to-date information on state regulations can be found in the U.S. State-level Chemicals Policy Database maintained by the Lowell Center for Sustainable Production: http://www.chemicalspolicy.org/chemicalspolicy.us.state.database.php (Lowell Center for Sustainable Production: University of Massachusetts Lowell 2012). In the private sector, the retailer Wal-Mart has reported that they banned the purchase of all consumer products containing

PBDEs, including decaBDE, from their suppliers (Layton 2011).

DecaBDE is effective in meeting fire safety standards for plastics and textiles that are used for the manufacture of consumer electronics, appliances, wire and cable insulation, building materials (flooring, wall coverings, and roofing), seating, electronics and paneling for cars, buses and airplanes, and storage and distribution products including plastic shipping pallets. Few potential alternatives to decaBDE are "drop-in" replacements (those that require negligible process changes). Use of alternatives may necessitate additional changes in product formulation or movement to different classes of polymers. As companies that have been using decaBDE in their products prepare for the phase out, this alternatives assessment will be an important resource. The information will help reduce the potential for the unintended consequences that could result if functional, but poorly understood alternatives are chosen.

This alternatives assessment evaluated flame retardant alternatives judged by knowledgeable stakeholders³ as most likely to be used in applications that previously had been filled by decaBDE. This report did not evaluate efficacy of these alternatives in regards to specific materials, product applications or related standards; stakeholders provided professional judgment about whether chemicals are likely to meet flammability tests in various uses. The alternatives included in this assessment are potentially viable⁴ and functional but not necessarily preferable. Selection of a chemical for evaluation in the report does not denote preferability in terms of environmental or health hazard, or any other metric. Rather, the report provides information that will help decision makers consider environmental and human health profiles for available alternatives, so that they can choose the safest possible functional alternative. This information focuses on the potential hazard associated with a particular chemical. This report also presents general information on exposures to flame retardants, life-cycle considerations, and economic, performance, and social factors. The report provides information that will enable informed selection of alternative flame retardants to decaBDE.

Assessments of alternatives to decaBDE have been conducted by several organizations in the past, including the Swedish Chemicals Inspectorate, European Commission, Danish Ministry of

³ In particular, chemists and engineers at ADEKA Corporation, Albemarle, Amfine Chemical Corporation, BASF, Boeing, Clariant, Eagle Performance Products, FRX Polymers[®], Inc., Great Lakes Chemical – A Chemtura Company, PolyOne, TSG Finishing, University of Dayton ICL Industrial Products, University of Dayton Research Institute, and University of Massachusetts – Lowell.

⁴Viability refers to the functional performance of a chemical as a flame retardant in certain plastics, not the environmental preferability of the chemical.

the Environment, State of Illinois, State of Washington, Clean Production Action, and the University of Massachusetts at Lowell (Pure Strategies Inc. for the Lowell Center for Sustainable Production 2005; Illinois Environmental Protection Agency 2006; Clean Production Action 2007; Danish Ministry of the Environment 2007; European Chemicals Bureau 2007; Washington State Department of Health 2008; Pure Strategies Inc. for Maine Department of Environmental Protection 2010). These assessments looked at decaBDE in a range of applications including television enclosures, other electrical and electronic equipment, textiles, residential upholstered furniture and plastics. A few of the studies acknowledged a lack of key information on a number of chemicals, which prevented them from conducting a full hazard assessment of the potential alternatives. In this alternatives assessment report, DfE filled gaps with modeled data estimations and expert judgment, and included assessment of new-to-market decaBDE alternatives.

1.2 Purpose of the Flame-Retardant Alternatives Assessment

The purpose of this alternatives assessment is to identify potentially functional and viable alternatives for decaBDE, evaluate their human health and environmental profiles, and inform decision makers in order for organizations to choose safer alternatives to decaBDE.

1.3 Scope of the Flame-Retardant Alternatives Assessment

The partnership refined the scope of this assessment from the PBDEs Action Plan with information supplied by experts in industries that use decaBDE in their products and from academics, NGOs and government participants. The assessment provides hazard information (human toxicity, ecotoxicity and environmental fate) on flame retardants that were selected for evaluation in this report as potentially functional alternatives to decaBDE. While this project is not designed to recommend specific flame retardants, it does evaluate potential alternatives to decaBDE that have the potential to be functional and viable in certain applications. Therefore, this evaluation can support informed substitution and has the potential to identify environmentally preferable substitutes.

The partnership on flame retardant alternatives to decaBDE is an assessment of hazards of flame retardant chemicals that are potentially functional and viable³ alternatives to decaBDE. These alternatives have the potential to enable a product to meet relevant flammability standards when used in one or more of the material classes listed below. These materials include those in which decaBDE is currently used or was used in the past. Additionally, polycarbonate (PC) and polycarbonate-acrylonitrile butadiene styrene (PC-ABS) were included because they can be used with some of the alternative flame retardants. The material types that are most relevant to this project include:

1. Polyolefins

- a. Polypropylene
- b. Polyethylene
- c. Ethylene vinyl acetate (EVA)
- 2. Styrenics
 - a. High-impact polystyrene
 - b. Acrylonitrile butadiene styrene

- 3. Engineering thermoplastics
 - a. Polyesters
 - i. Polybutylene terephthalate
 - ii. Polyethylene terephthalate
 - b. Polyamides, e.g., nylon
 - c. PC and PC blends, e.g., PC-ABS
 - d. Polyphenylene ether high-impact polystyrene
- 4. Thermosets
 - a. Unsaturated polyesters
 - b. Epoxies (electronics, building and aerospace applications)
 - c. Melamine-based resins
- 5. Elastomers
 - a. Ethylene propylene diene monomer rubber
 - b. Thermoplastic polyurethanes
 - c. EVA
- 6. Waterborne emulsions and coatings including but not limited to those designed for textile back coatings such as:
 - a. Acrylic emulsions
 - b. Polyvinyl chloride emulsions
 - c. Ethylene vinyl chloride emulsions
 - d. Urethane emulsions

The scope was outlined in terms of categories of materials rather than specific applications or end-use products because decaBDE has many varied applications. In this approach, the partnership intended to provide toxicity and environmental fate information on potential flame retardant alternatives for product manufacturers who must make substitution decisions, as well as for other interested or affected parties (e.g., end users, downstream processors).

The alternative flame retardant chemicals⁵ will be evaluated for hazard potential independent of the materials in which they might be used or incorporated. While the assessment will not attempt to include comprehensive life cycle assessment (LCA) information, it will, by both inclusion and by reference, note relevant life-cycle considerations that may aid in the selection of alternatives. Due to these constraints, this assessment does not provide all of the information that a decision maker may need to be able to choose an alternative flame retardant.

The report is organized as follows:

⁵ For the purposes of this report, 'chemicals' include both discrete substances that can be represented by a definite structural diagram (such as methane) and reaction mixtures that cannot. Reaction mixtures include those that are well defined with a few components (such as propylene glycol), mixtures that may be difficult to characterize and/or are of variable composition (such as polychlorinated biphenyls or Aroclors), and polymers.

- *Chapter 1 (Introduction):* This chapter provides background on the Partnership on Flame Retardant Alternatives to decaBDE project, including the purpose and scope of the partnership and of this report.
- *Chapter 2 (Products and Materials):* This chapter describes the products and materials in which decaBDE has been used, as well as technical information about flammability standards and other performance criteria.
- *Chapter 3 (Background on Flame Retardants):* This chapter describes chemical flame retardants generally, as well as those specific to this assessment.
- *Chapter 4 (Evaluation of Flame Retardants):* This chapter explains the chemical assessment method used in this report and summarizes the assessment of hazards associated with each flame retardant chemical.
- *Chapter 5 (General Exposure Information and Life Cycle Considerations):* This chapter includes potential exposure pathways associated with flame retardants along each stage of their life-cycle and resources for life cycle impact information that decision makers may need.
- *Chapter 6 (Considerations for Selecting Flame Retardants):* This chapter summarizes the results of the assessment and identifies human health, environmental, economic, performance and social considerations for selecting alternative flame retardants.

1.4 Chemical Alternatives Assessment as a Risk Management Tool

Among other actions, the Agency chose to conduct an alternatives assessment as a suitable risk management tool for decaBDE in the PBDEs Action Plan. The Agency chose this tool to inform the chemical substitution that may occur as an outcome of other activities described in the Action Plan. Chemical alternatives assessments provide information on the environmental and human health profiles of chemicals that may be used as substitutes so that industry and other stakeholders can use this information, in combination with analyses of cost, performance, and other factors to choose alternatives.

Chemical alternatives assessment, LCA, and risk assessment are all tools that can be used to improve the sustainability profiles of chemicals and products. These tools, which can be complementary, should be selected according to the ultimate action they are intended to support and other regulatory and policy considerations. DfE alternatives assessments establish a foundation that other tools, such as risk assessment and LCA, can build upon.

The focus of this DfE alternatives assessment report is a comparative hazard assessment of the chemical alternatives that may be substituted for decaBDE in a variety of uses. Comparative chemical hazard assessment is a comparison of chemicals within the same functional use group (e.g., solvent, surfactant, flame retardant, ink developer) that evaluates alternatives across a consistent and comprehensive set of hazard endpoints. Information about chemical hazards derived from this type of comparative chemical hazard assessment can be used by decision-

makers, in combination with other inputs, such as information on cost and performance, to select safer alternative chemicals.

In many cases, the hazard status of chemicals included in DfE Alternatives Assessments is not fully characterized by empirical data. A full data set would improve any assessment. Unfortunately, a full empirical data set is not available for most chemicals. Because EPA authority to require data is limited (e.g., EPA has no minimum measured data requirements for new chemicals (U.S. EPA 2009b; U.S. EPA 2010b)) and because developing such data is expensive and takes time, EPA has developed a suite of predictive modeling tools to estimate chemical hazard (U.S. EPA 2010b). EPA uses modeled data and subject matter expertise to fill data gaps for the TSCA new chemicals program when little or no experimental data are submitted. Although modeled data should be interpreted with care, when combined with available empirical data, the data set comprises the best available information. Even with a reliance on modeled data for some endpoints information from DfE Alternatives Assessment can support decision making concerning safer alternative chemicals.

Risk assessment and alternatives assessment are both based on the premise that risk is a function of hazard and exposure. Risk assessment characterizes the nature and magnitude of hazard and exposure from chemical contaminants and other stressors. The DfE alternatives assessment evaluates and compares the nature of the chemical hazards and reflects a view that when exposure is comparable, risk is reduced through the use of less hazardous chemicals. Alternatives assessment strives to decrease the reliance on exposure controls thus reducing risk even when exposure controls fail.

Chemical alternatives assessment differs substantially from LCA. An LCA can present a robust picture of many environmental impacts associated with the material and energy inputs and outputs throughout the life cycle of a product, and by doing so can identify opportunities for reducing those impacts. However, unlike chemical alternatives assessment, LCA typically provides a limited (if any) review of inherent toxicity.

DfE's 'functional use' approach to alternatives assessment orients chemical evaluations within a given product type and functionality. Under this approach, factors related to *exposure scenarios*, such as physical form and route of exposure, can be constant within a given functional use analysis and will fall out of the comparison so that a reduction in hazard is a reduction of risk. When less hazardous alternatives have different physical-chemical profiles or require different use levels, it may be appropriate to also conduct an exposure assessment. DfE alternatives assessments consider intrinsic properties of chemical substitutes that affect *exposure potential*, including absorption potential, persistence, and bioaccumulation. Under this approach, the health and environmental hazard profiles in the alternatives assessments become the key variable and source of distinguishing characteristics. Information on key properties that can be used to evaluate significant differences in environmental fate and transport, including persistence, bioaccumulation, and physical properties, are included in Chapters 4 and 5.

Chemical alternatives assessment is most useful in identifying safer substitutes when available alternatives meet performance requirements and are expected to present lower hazards for human health and the environment. This report relied on literature review and expert stakeholders to

select the chemicals now included in this report. These chemicals were chosen as likely, but not necessarily proven, functional alternatives. While their performance in specific products must be verified, the information in Table 3-2 of this report on functionality is, at a minimum, a good start to understanding which alternatives might be valuable for a given functional use. Although the information in Table 3-2 does provide useful information, performance and efficacy of the alternatives are not the primary focus of this report. Product manufacturers transitioning to new flame retardants may have to test a number of chemicals or chemical combinations to determine if they meet performance requirements in final products. During decision-making, risk assessment or LCA could be applied to the lower-hazard or potentially preferable alternatives to complement the alternatives assessment findings. Alternatives assessment can identify scenarios in which initial comparisons indicate that there may be no preferable alternatives to the chemical being considered. However, this can guide innovation and product development by understanding the characteristics of a safer alternative.

The DfE chemical alternatives assessment approach is aligned with green chemistry principles⁶. Two of those principles are especially noteworthy:

- Principle 4: Design of safer chemicals "Chemical products should be designed to effect their desired function while minimizing their toxicity," and
- Principle 10: Design for degradability "Chemical products should be designed so that at the end of their function they break down into innocuous degradation products and do not persist in the environment."

DfE incorporates these two green chemistry principles in its criteria and applies them in its assessment of chemical hazard and fate in the environment. This approach enables identification of safer substitutes that emphasize greener chemistry and points the way to innovation in safer chemical design where hazard becomes a part of a performance evaluation.

⁶ <u>http://www.epa.gov/sciencematters/june2011/principles.htm</u>

1.5 References

- Clean Production Action (2007). The Green Screen for Safer Chemicals: Evaluating Flame Retardants for TV Enclosures.
- Council of the European Union (2003). Restriction of Hazardous Substances European Parliament and the Council of the European Union. Official Journal of the European Union **2002/95/EC**.
- Council of the European Union (2011). Restriction of the use of certain hazardous substances in electrical and electronic equipment (recast). European Parliament and the Council of the European Union. Official Journal of the European Journal. **Directive 2011/65/EU**.
- Danish Ministry of the Environment (2007). Health and Environmental Assessment of Alternatives to Deca-BDE in Electrical and Electronic Equipment. Environmental Protection Agency.
- European Chemicals Bureau (2007). Review on production processes of decabromodiphenyl ether (decaBDE) used in polymeric application in electrical and electronic equipment, and assessment of the availability of potential alternatives to decaBDE. Institute on Health and Consumer Protection.
- Illinois Environmental Protection Agency (2006). A Report to the General Assembly and the Governor In Response to Public Act 94-100 *DecaBDE Study: A Review of Available Scientific Research*.
- Layton, L. (2011). Wal-Mart bypasses federal regulators to ban controversial flame retardant. Washington Post.
- Lowell Center for Sustainable Production: University of Massachusetts Lowell. (2012). "U.S. State-level Chemicals Policy Database." Retrieved January 5, 2012, from http://www.chemicalspolicy.org/chemicalspolicy.us.state.database.php.
- Maine (2010). Restriction on Sale and Distribution of Brominated Flame Retardants. <u>Title 38</u> <u>§1609.</u>
- Maryland (2010). Environment Decabrominated Diphenyl Ether Prohibitions. <u>Senate Bill</u> <u>556: Chapter 320</u>.
- Oregon Legislative Assembly (2009). Relating to decabrominated diphenyl ether; creating new provisions; and amending ORS 453.005, 453.025 and 453.085. <u>Senate Bill 596</u>.
- Pure Strategies Inc. for Maine Department of Environmental Protection (2010). "Decabromodiphenyl Ether Flame Retardant in Plastic Pallets: A Safer Alternatives Assessment."
- Pure Strategies Inc. for the Lowell Center for Sustainable Production (2005). Decabromodiphenylether: An Investigation of Non-Halogen Substitutes in Electronic Enclosure and Textile Applications, University of Massachusetts Lowell.
- U.S. EPA. (2005). "Voluntary Children's Chemical Evaluation Program: Data Needs Decision Document of Decabromodiphenyl Ether, June, 2006." Retrieved November 18, 2013, from <u>http://www.epa.gov/oppt/vccep/pubs/finaldeca.pdf</u>.

- U.S. EPA. (2009a). "Polybrominated Diphenyl Ethers (PBDEs) Action Plan." Retrieved November 18, 2013, from <u>http://www.epa.gov/opptintr/existingchemicals/pubs/actionplans/pbdes_ap_2009_1230_final.pdf</u>.
- U.S. EPA. (2009b). "Statement of Lisa P. Jackson Administrator, U.S. Environmental Protection Agency Legislative Hearing on the Toxic Substances Control Act (TSCA) Senate Committee on Environment and Public Works December 2, 2009." Retrieved November 18, 2013, from <u>http://www.epa.gov/aging/press/epanews/2009/2009_1202_2.htm</u>.
- U.S. EPA. (2010a). "DecaBDE Phase-out Initiative." Retrieved March 23, 2011, from http://www.epa.gov/oppt/existingchemicals/pubs/actionplans/deccadbe.html.
- U.S. EPA. (2010b). "TSCA New Chemicals Program (NCP) Chemical Categories." Retrieved November 18, 2013, from <u>http://www.epa.gov/oppt/newchems/pubs/npcchemicalcategories.pdf</u>.
- Vermont (2009). An Act Relating to Health Care Reform. H.444.
- Washington (2006). An act relating to brominated flame retardant. <u>House Bill (HB) 1488/Senate</u> <u>Bill (SB) 5515</u>.
- Washington State Department of Health (2008). Alternatives to Deca-BDE in Televisions and Residential Upholstered Furniture. Department of Ecology. Olympia, WA.

THIS PAGE INTENTIONALLY LEFT BLANK

2 Products and Materials

Decabromodiphenyl ether (decaBDE) is used for fire safety in a broad range of plastics and polymers with product applications in diverse sectors. Presented below are the categories of materials (Section 2.1) and sectors and products (Section 2.2) for which decaBDE has been or is currently used. Flammability standards relevant for products containing decaBDE are discussed briefly at the end of the chapter (Section 2.3).

2.1 Materials Outlined in the Scope

The materials included in this section are those in which decaBDE is currently or was used in the past across the globe. Additionally, polycarbonate (PC) and polycarbonate-acrylonitrile butadiene styrene (PC-ABS) were included because they can be used with some of the alternative flame retardants. These materials are polymers, made up of chains of repeating monomer units. Table 2-1 displays end-uses by polymer group, each of which may contain several different polymers. A key characteristic of these polymers is whether or not they can be reprocessed and therefore this is touched on in each section. The end-use products and sectors for these materials are discussed in Section 2.2. DecaBDE may not be used in all polymer/end-use application combinations; those relevant to decaBDE are noted in Section 2.2.

		-		End-	Use Applic	ations			-
Polymer Group	Electronics	Wire and Cable	Public Buildings	Construction Materials	Automotive	Aviation	Storage and Distribution Products	Textiles	Waterborne emulsions & coatings
Polyolefins	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Styrenics	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Engineering Thermoplastics	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Thermosets	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Elastomers	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Waterborne emulsions and coatings ¹	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark

Table 2-1: Summary	of Polymers and	Their End-Use	Application
i ubic a it Summary	of I orymony und	Inch Line Cov	- ppmcution

¹ Includes acrylic, polyvinyl chloride (PVC), ethylene vinyl chloride, and urethane emulsions

Source: Personal communication with members of the partnership

2.1.1 Polyolefins

There are a variety of polyolefins but only three in which decaBDE is commonly used: polypropylene (PP), which has the molecular formula (MF) $(C_3H_6)_n$; polyethylene (PE), which has the MF $(C_2H_4)_n$; and ethylene vinyl acetate (EVA)⁷, which is a copolymer of ethylene and vinyl acetate, $(C_2H_4)_m$ ($C_4H_6O_2$)_n (Mark 2009). Polyolefins are polymers with single carbon bonds, but are derived from hydrocarbons with carbon-carbon double bonds (e.g., ethylene). The basic repeating unit has the MF (C_nH_{2n}). Polyolefins can soften and eventually melt upon heating. As a result, they can be reprocessed which allows them to be remolded repeatedly (Harper and Modern Plastics 2000; Rex 2011). Polyolefin materials can be flexible and are used for applications such as garbage bags, undergarments for wet suits, foam shoes, seat cushions, arm rests, shrink film, and other products (Mark 2009). Additional important polyolefins applications include wire and cable, electrical connectors, battery casings, foamed sheets and pipes for thermal insulations.

2.1.2 Styrenics

Styrenics are based on styrene monomers, also known as vinyl benzene, which consist of a phenyl group attached to a two-carbon chain, $CH_2=CH(C_6H_5)$. There are several different types of styrene plastics, two of which can contain decaBDE: high-impact polystyrene (HIPS) and acrylonitrile butadiene styrene (ABS). Polystyrene (PS) and styrene copolymers tend to be brittle, so rubber particles are added to increase impact resistance (Howe-Grant 1997a; Rex 2011). Like polyolefins, styrenics can soften and eventually melt upon heating. As a result, they can also be reprocessed which allows them to be remolded repeatedly (Harper and Modern Plastics 2000; Rex 2011). The following descriptions provide an overview of each material and its general application.

HIPS. HIPS is produced by combining PS with rubber particles, which gives it the mechanical properties that make it suitable for use in durable molded items. Its historical use in television casings is a well-known example (Harper and Modern Plastics 2000).

ABS. ABS is a mixture of acrylonitrile, butadiene, and styrene. In general, ABS is widely used in the casing of equipment for telephones, televisions, and computers (Harper and Modern Plastics 2000).

2.1.3 Engineering Thermoplastics

Engineering thermoplastics are materials that are typically not cross-linked, can soften and eventually melt upon heating, and have high levels of mechanical and thermal performance in molded goods when compared to commodity thermoplastics (e.g., PP, PE, HIPS, etc.). As a result, thermoplastics can be reprocessed (Harper and Modern Plastics 2000). This property of thermoplastics allows them to be remolded repeatedly. There are several types of engineering thermoplastics in which decaBDE can be used, including polyester, polyamide (PA), PC, and

⁷ EVA is a copolymer of ethylene (an olefin) and vinyl acetate, therefore it is considered to be a polyolefin. However, EVA also has elastomeric properties. For this reason, this report classifies EVA as both a polyolefin and an elastomer. For further discussion on EVA, see Section 2.1.5 on elastomers.

polyethylene ether – high-impact polystyrene (PPE-HIPS). The following descriptions provide an overview of each material and their general applications.

Polyesters. Polyesters (see Figure 2-1) are a broad class of thermoplastics characterized by an ester linkage. Within this class, decaBDE can be used in polybutylene terephthalate (PBT) and polyethylene terephthalate (PET). The only structural difference between PBT and PET is the presence of four methylene repeat units in each PBT repeat unit rather than the two present in each PET repeat unit. PBT has numerous automotive applications such as the exterior as well as connectors for under-the-hood electronic controls. Another major use of PBT is in glass-reinforced grades that are often in switches and connectors for electrical equipment. PET has many commercial applications in injection moldings, blow-molded bottles, and films (Harper and Modern Plastics 2000). Polyesters are also used in commercial and domestic carpeting and textile fibers.

PAs. PAs (see Figure 2-2), also referred to as nylons, are characterized by amide groups along the polymer backbones. There are several types of PAs, the majority of which are used in injection molding applications in information technologies and the transportation industry, mostly for automobiles. PAs are used in automobile exteriors (e.g., wheel covers and handles), interiors (e.g., chair and seat belt mechanisms and light housings), under-the-hood applications, and commercial and domestic carpeting and textile fibers (Howe-Grant 1997d). Glass-reinforced grades also use PAs in electrical switches and connectors.

PCs. PCs (see Figure 2-3) contain a carbonate group and have an excellent combination of mechanical properties, which make them ideal for a variety of applications. PC is a good choice for applications requiring higher use temperatures, lower flammability, and greater impact strength, assuming that the application can afford the higher cost of PC. They are commonly used to manufacture roofing panels, windows for aircraft, trains, and schools, and to make automotive components, such as headlamps and bumpers. Additionally, PC is used to make plastic bottles, CDs & DVDs, electrical equipment, especially connectors, and motorcycle and football helmets. PC is also commonly blended with other materials, such as ABS, to achieve lower cost and improved
properties (Howe-Grant 1997e). For example, sometimes PC is added to polymers to impart improved thermal deflection properties. PC-ABS blends are used for equipment housing and structural parts that require high levels of stiffness, gloss, and impact resistance (Weil and Levchik 2009).

PPE-HIPS. PPE-HIPS, a polymer blend, imparts a higher heat resistance compared to PS. PPE-HIPS is commonly used for dishwashers, washing machines, hair dryers, cameras, instrument housings, and in television accessories (Harper and Modern Plastics 2000).

2.1.4 Thermosets

Thermosets (also referred to as 'thermoset plastics') undergo an irreversible chemical crosslinking reaction upon curing. Unlike styrenics, polyolefins and thermoplastics, thermosets cannot be reprocessed once they cure/polymerize; they are insoluble in most solvents and can only be broken up by breaking chemical bonds (Mark 2009). While the inability to reprocess thermosets presents some drawbacks, it also gives thermoset plastics enhanced properties that are maintained in extreme conditions (Harper and Modern Plastics 2000). There are several types of thermosets in which decaBDE can be used, including unsaturated polyesters (UPEs), epoxies, and melamine-based resins. The following descriptions provide an overview of each material and their general applications.

UPE. UPEs are produced from maleic anhydrides and alcohols, and are used to produce molding compounds. UPEs contain an unsaturated diacid (typically maleic acid or fumaric acid) which can be cross-linked during the curing process; additionally a reactive solvent/monomer is also added before curing (American Composites Manufacturers Association 2004). Other acids and alcohols are added for desired chemical properties. Typical applications include automotive and building components, commercial connectors, and various household articles (Harper and Modern Plastics 2000; Troitzsch 2004).

Epoxies. Epoxies are co-polymers formed from the reaction of two chemicals: a resin that consists of a short chain polymer with epoxy groupings at either end and a hardening or cross linking agent. The reaction forms a three-dimensional lattice. These epoxies have excellent adhesion properties as well as chemical and heat resistance. As a result, they can be used in thermal insulation as well as in electronics (Mark 2009). Epoxies are used broadly, from high-performance military to commodity commercial applications, such as connectors, relays, printed circuit boards, switches, coils, aircraft skins, and satellite parts (Harper and Modern Plastics 2000).

Melamine-Based Resins. Melamine-based resins are a type of amino resin made by combining melamine ($C_3H_6N_6$) with formaldehyde (CH_2O). Melamine-based resins are used as textile-finishing materials to provide wash-and-wear properties to cellulosic fabrics (Howe-Grant 1997b).

2.1.5 Elastomers

Elastomers are rubberlike materials that can recover their original shape after being stretched or compressed (Howe-Grant 1997c). There are three types of elastomers in which decaBDE can be used: (1) ethylene propylene diene monomer (EPDM) rubber, (2) thermoplastic polyurethanes (TPUs), and (3) EVA⁸. The following descriptions provide an overview of each material and their general applications.

EPDM. EPDM (see Figure 2-4) is a copolymer of ethylene, propylene, and a diene, and is mainly used in automotive applications as radiator hoses and seals; in building and construction as roofing membranes and pond liners; in cable and wire as insulation and jacketing; and in appliances as molded components (Howe-Grant 1997c; Ciesielski 2000).

TPUs. TPUs contain carbamate groups, also referred to as urethane groups, in their backbone structure (Howe-Grant 1997f). The mechanical properties of TPUs fall between rubber polymers and thermoplastics, and they are made into products through injection or extrusion. TPUs have a variety of uses in automobiles, as well as in medical equipment, wire and cable, and other applications (Randall 2010).

⁸ EVA is a copolymer of ethylene (an olefin) and vinyl acetate, therefore it is considered to be a polyolefin. However, EVA also has elastomeric properties. For this reason, this report classifies EVA as both a polyolefin and an elastomer.

EVA. EVA (see Figure 2-5) is typically used in 'hot-melt' formulations. EVA based hotmelts have various applications, such as packaging, bookbinding and labeling (SpecialChem 2011).

2.1.6 Waterborne Emulsions and Coatings

There are three types of waterborne emulsions and coatings in which decaBDE can be used: acrylic, PVC and ethylene vinyl chloride, and urethane. The following descriptions provide an overview of each material and their general applications.

Acrylic. Acrylic emulsions are aqueous, anionic, emulsion-polymerized dispersions of acrylate copolymers. According to a manufacturer website, acrylic emulsions are used for their heat sealability, resistance to heat and light discoloration, good initial color and clarity, and overall durability (Lubrizol 2011). Acrylic emulsions may fade over time, depending on the quality of the colorants or pigments used (Jones 2004; Friddle 2011). Acrylic emulsions span a wide range of polymer and end-use properties. While acrylic emulsions are frequently used in nonwoven and paper saturation applications, many are equally applicable for paint and coatings applications. These formulations can be molded into very soft, flexible coatings or very hard, stiff coatings (Friddle 2011).

PVC and Ethylene Vinyl Chloride. Vinyl chloride emulsions are aqueous anionic dispersions of vinyl chloride and copolymers. These emulsions are primarily designed for coating, impregnation and saturation of fibrous materials such as paper, nonwovens and textiles. Their heat reactive nature poses excellent adhesion to various substrates, and they are commonly used in wall covering and resilient flooring (Friddle 2011).

Vinyl chloride polymers are used in textile coatings, nonwovens, paper, paints, and graphic arts applications. Ethylene vinyl chloride polymers are used in a variety of adhesive applications, such as paper packaging, wood bonding, furniture, book binding, wall and ceiling coverings, flooring, consumer glues, and film laminates (Friddle 2011).

Urethane. Polyurethanes (see Figure 2-6) are the most well-known polymers used to make foams, though they can also be elastomers. Polyurethane materials are commonly formulated as paints or finishing coats to protect or seal wood and textiles (Friddle 2011).

2.2 Uses of decaBDE

The purpose of this section is to highlight the various uses of decaBDE. The profile of industries and products using decaBDE has changed in recent years, mainly due to changing international and state-based regulations. Segmentation of decaBDE uses by weight in the U.S. is suggested to be 26 percent for textiles, 26 percent for automotive/transportation, 26 percent for building and construction, 13 percent for electrical and electronic equipment, and 9 percent for other uses (Levchik 2010). This data does not include imports of manufactured goods into the U.S. At the time of publication of this report, this data was the most conclusive information located in light of the shifting landscape of decaBDE uses in certain industries and products. For information on exposure to flame retardants due to the use of these products, see Chapter 5. The uses of decaBDE outlined in this chapter are global uses, however, in regards to any regulatory statutes which require the use of flame retardants in this report, these are more U.S. based unless otherwise stated.

Many electronics manufacturers have moved away from using decaBDE in HIPS, especially in Europe, where the Restriction of Hazardous Substances (RoHS) Directive has banned the use of decaBDE in electronics with certain exemptions (Council of the European Union 2003; Washington State Department of Health 2008; Council of the European Union 2011). A use profile of decaBDE for the years prior to RoHS was not available when this report was compiled. However, in 2003 it was estimated that 80 percent of decaBDE was used in electronics (which included television enclosures, central processing unit housing and wire and cable) and 10 to 20 percent of decaBDE was used in textiles (which included upholstered furniture and automotive upholstery) (Hardy 2003). Additionally, although HIPS containing decaBDE was once used in office machines such as printers, copiers, and fax machines, these products are now made using other types of plastics that do not contain decaBDE (Pure Strategies Inc. for Maine Department of Environmental Protection 2010). To the best of our knowledge decaBDE was not used in mattresses or polyurethane foam for furniture, but can be used in textile back-coatings for furniture (Trainer 2010). For further information on flame retardants for polyurethane foam, refer to the Profiles of Chemical Flame-Retardant Alternatives for Low-Density Polyurethane Foam report (U.S. EPA 2005).

2.2.1 Electrical and Electronic Equipment

 Box 2-1 DecaBDE is, or has been, used in the following electric and electronic applications: Housings and internal components of TVs Mobile phones and fax machines Audio and video equipment Remote controls Communications cables Capacitor films Building cables Wire and cable, e.g., heat shrinkable tubes Connectors in electrical and electronic equipment Circuit breakers Coils of bobbins (i.e., for use in 	Historically, most decaBDE was used in electrical and electronic equipment in plastic casings, wire and cable and small electrical components to meet fire safety standards (see Table 2-2). The main use of decaBDE was in the front and back panels of televisions made of HIPS (Levchik 2010). Additionally, decaBDE was often used in electronic connectors made from glass-filled PBT or nylons (Levchik 2010). With the European RoHS Directive, many global companies have phased out decaBDE in these uses.
 transformers) Printing and photocopy machine components – e.g., plastic housing for toner cartridges Scanner components Source: Bromine Science and Environmental Forum 2007 	Despite this transition, decaBDE is still used in a variety of electronic equipment including household appliances and tools such as vacuum cleaners (in both the casings and internal components) and washing machines (internal components only) because the markets for these products are

more domestic than global and European Union regulations have not impacted the use of decaBDE in these products as significantly (Levchik 2010). In these appliances, the housings are typically made from PP, HIPS or ABS.

Another use of decaBDE is in small electrical parts, such as light sockets or decorative lights (e.g., Christmas lights), and wires and cables. These products are usually made from high density PE, PP or PPE (Levchik 2010). DecaBDE is also used in the plastics PBT and PA, which are found in electrical, automotive, and plumbing parts such as housings, switches and other small inner parts of larger electrical equipment (Weil and Levchik 2009). DecaBDE is also commonly used in electrical components of cars and airplanes, which will be discussed in Section 2.2.4.

2.2.2 Textiles

Another major use of decaBDE is in textiles. Flame retardants are applied to textiles in order to meet required flammability standards (see Table 2-2). They are often applied to the back of a fabric as part of a coating that also contains antimony trioxide in an acrylic or EVA copolymer (Pure Strategies Inc. for the Lowell Center for Sustainable Production 2005).

The uses of decaBDE in textiles for the automotive and aviation sectors are discussed in more detail in Section 2.2.4. DecaBDE is not used in consumer clothing (e.g., children's pajamas) (Pure Strategies Inc. for the Lowell Center for Sustainable Production 2005) or in residential carpet (Levchik 2010). Residential carpet is mainly flame retarded by addition of aluminium hydroxide to the back coating. Children's pajamas often meet flammability standards without the use of flame retardants. Box 2-2 DecaBDE is or has been used in the following textile applications:

- \circ Transportation
 - Public transit busses
 - Trains
 - Airplanes
 - Ships
- Public occupancy spaces
 - Draperies of theatres, hotels, conference rooms, student dormitories
- High-risk occupancy areas
 - Furniture of nursing homes, hospitals, prisons, hotels
- Military
 - Tarps
 - Tents
 - Protective clothing

Source: Bromine Science and Environmental Forum 2007

This is because children's pajamas need to pass the Consumer Product Safety Commission (CPSC) ignition test (three seconds of flame exposure), which can be passed by synthetic fabrics without addition of any flame retardant (Levchik 2010).

Box 2-3 DecaBDE is used in the following building and construction applications:

- Pipes
- Lamp holders
- Stadium seats
- Reinforced plastics
- Switches and connectors
- Facing laminates for insulation panel
- Film for use under the roof and to protect building areas
- Electrical ducts and fittings
- Components in analytical equipment in industrial
- Medical laboratories
- Air ducts for ventilation systems
- Pillars for telephone and communication cables

Source: Bromine Science and Environmental Forum 2007

2.2.3 Building and Construction

DecaBDE is used in wall and roof panels, which are typically made from UPE glass composites; floor tiles; and commercial grade carpeting. DecaBDE is also used in insulation materials, foamed polyolefins, and in roofing materials such as membranes and films for use under roofs to protect building areas. DecaBDE can also be found in ducting elements such as the duct covering or insulation.

2.2.4 Transportation

In automobiles, decaBDE is added to plastics used to house and insulate electrical and electronic equipment under the hood. There are no broad federal fire safety standards or regulations for these applications; safety standards are established by each manufacturer. Interior materials, such as cushioning and fabric must meet the Federal Motor Vehicle Safety Standard (FMVSS) No. 302 (U.S. Department of Transportation and National Highway Traffic Safety Administration 1972; Levchik 2010). DecaBDE may also be used in parts of the heating, ventilation, and air conditioning system close to or in contact with electrical parts (Levchik 2010).

In aircraft, decaBDE is used in electrical and electronic equipment (Levchik 2010), and interior components. Materials used on aircraft must meet Federal Aviation Administration (FAA) Technical Standard Orders (FAA 2010).

DecaBDE was likely also used in electronic parts for trains, ships, and elsewhere in the transportation industry for which there was not direct stakeholder representation in the partnership.

Box 2-4: DecaBDE is used in the following	Automotive uses:						
aviation and automotive applications	• Electrical & electronic equipment						
	 Battery cases 						
Aviation uses:	 Battery trays 						
 Electrical wiring and cables 	 Engine controls 						
 Interior components 	 Electrical connectors 						
 Electric & electronic equipment 	 Components of radio, disk, GPS 						
 Navigation and 	and computer systems						
telecommunications equipment	 Reinforced plastics 						
 Computers and computer 	 Instrument panels 						
devices	 Interior trim 						
 Audio and video equipment 	• Under hood and internal parts						
 Electrical connectors 	 Terminal/fuse block 						
 Galley appliances 	 Higher amperage wire and cable 						
 Housings and internal 	jacketing (ignition wires)						
components of entertainment	 Fabric back coating 						
units	 Rear deck 						
 Remote controls 	 Upholstery 						
 Communications cables 	 Sun visor 						
 Capacitor films 	 Head rest 						
 Cables 	 Trim panel 						
 Circuit breakers 	-						
 Cartridges and connectors 							
 Air ducts for ventilation systems 							
 Electrical ducts and fittings 	Source: Bromine Science and Environmental Forum						
 Switches and connectors 	2006; Baker 2011						

2.2.5 Storage and Distribution Products

There are approximately three billion shipping pallets in use in the U.S., of which over 900 million are plastic (Pure Strategies Inc. for Maine Department of Environmental Protection 2010). According to the National Fire Protection Association (NFPA), plastic pallets that have not been treated with flame retardants are considered a greater fire hazard than wooden pallets. Plastic pallets are typically made of polyolefins, which are very combustible if they are not flame retarded.

Additionally, the International Fire Code (IFC), a widely adopted fire code but separate from the NFPA, requires plastic pallets be protected by an approved specialized engineered fire protection system unless they meet Underwriters Laboratory (UL) 2335 standards (see Table 2-2). Even though wood ignites at a lower temperature than plastic, once a fire begins, plastic burns at a higher temperature, and thus releases more heat (Pure Strategies Inc. for Maine Department of Environmental Protection 2010). NFPA 13 and IFC provide the basis for all state and local fire prevention laws and regulations governing warehouse construction and management throughout the country (Pure Strategies Inc. for Maine Department of Environmental Protection 2010).

To comply with fire standard NFPA 13, plastic pallets must comply with one of the two following options: (1) users must implement systems such as pallet storage management practices (e.g., how high the pallets are stacked and how close together stacks of pallets are) or sprinkler systems in warehouses that make it as safe as wooden pallets to use non-flame retarded plastic pallets, or (2) the pallets must pass tests consistent with American National Standards Institute/Factory Mutual (FM) 4996 (see Table 2-2) that demonstrate that the fire hazard of the plastic pallet or other material handling product is less than or equal to the fire hazard of a wooden pallet (FM Approvals 2013). In order to meet the fire code specifications, flame retardants, often decaBDE, are integrated into plastic pallets to reduce the pallet's fire hazard (Levchik 2010; Pure Strategies Inc. for Maine Department of Environmental Protection 2010).

2.3 Flammability Tests

DecaBDE is used as a flame retardant in certain products in the U.S. either because of state or federal fire safety standards or for insurance purposes. Rather than specifying what flame retardants should be used, such standards specify the performance standards a product must meet under fire stress (Posner and Boras 2005). The stringency of the standard varies depending on the application (e.g., flammability requirements established for aircraft are much more stringent than those for clothing). Furthermore, decaBDE is sometimes added to products even without manufacturer requirements due to concerns for brand image and market pressure (Illinois Environmental Protection Agency 2007). Flammability standards may be developed by a variety of entities, including regulatory agencies such as the CPSC, or companies such as UL.

Table 2-2 provides a brief overview of the flammability tests required for a variety of products in which decaBDE is used. This list is not comprehensive but does address many of the standards which lead to the use of decaBDE in the sectors discussed above.

Test	Sectors and Products that Use Test	Description
UL 94	Electrical and Electronic Equipment: electronic enclosures	Assesses resistance to ignition from small internal (short circuit) or external (candle) ignition source. Small scale ignition resistance test.
UL 746 pt C	Electrical and Electronic Equipment: plastics in electronics and electrical parts	Based on UL 94.
NFPA 701	Textiles: public occupancy spaces: e.g., draperies of theatres, hotels, conference rooms, student dormitories	Assesses the propagation of a flame beyond the area exposed to the ignition source. A burner flame is applied for 45 seconds. To pass the test an average weight loss for ten specimens must be less than forty percent and fallen fragments should not burn more than two seconds.
California Technical Bulletin 133	Textiles: high risk occupancy areas: e.g., furniture of nursing homes, hospitals, prisons, hotels	Uses a full scale piece of furniture or mock up. Designed as a screening test. The fabric is exposed to a 1.5 inch methane flame for twelve seconds. Drips, burn time and char lengths are monitored along with temperature, mass lost, smoke and carbon monoxide.
FM 4880	Building and Construction: public occupancy decorative wall and roof panels	Uses 750 lbs. of wood crib. The test ends when the flame reaches the structural limits or the crib stops burning. Tested material must not support self-propagating fire reaching structural limits.
American Society for Testing and Materials (ASTM) E- 84	Building and Construction: insulation materials, foamed polyolefins, membranes, films sheets, ducting elements, ducts covering and insulation	Assesses the flame spread and smoke index. The tested material is mounted on the ceiling of the tunnel. Two gas burners are applied for ten minutes. The flame spread index and smoke index are calculated in relation to the flame spread and smoke density of red oak panels and concrete.
ASTM E648-10e1	Building and Construction: public occupancy floor tiles and carpeting	Measures the critical radiant flux, which is the minimum heat flux needed for materials to propagate the flame. The burning distance is converted to a critical radiant flux through the known flux distribution along the length of the test sample.
FMVSS 302	Automotive and Aviation: car seats, headliners, carpets, door panels, dash panels	Assesses flame spread from cigarettes and matches in the passenger compartment. A 1.5 inch flame is applied for fifteen seconds and flame travel and its speed on a horizontal specimen is recorded.
14 Code of Federal Regulations (CFR) Part 25 regulations: Sections 25.853, 25.855, 25.856, 25.869, Appendix F	Aviation: flooring, sidewalls, baggage compartment, insulation, ducting, interior parts, wiring	Materials and parts must successfully pass test(s) in order to show compliance. Nine different tests are specified in the CFR and some materials/parts must pass multiple tests. Variations of configurations require individual testing. For specific details on the flammability tests see Appendix F of 14 CFR Part 25.

Table 2-2: Summary of Flammability Tests Relevant to decaBDE Uses.

Test	Sectors and Products that Use Test	Description
UL 2335	Shipping Pallets	Assesses the performance of plastic pallets under fire stress. The goal of this test is to match the performance of plastic pallets to wood pallets. Six pallet stacks are ignited in the middle. The time to activate the first and last sprinkler, the number of sprinklers activated and the temperature at the ceiling are all recorded. Sprinklers are mounted above the stacks and are activated at 165°F. To pass the test no more than six sprinklers can be activated.
FM 4996	Shipping Pallets	This standard sets fire performance requirements for plastic pallets so that they can be assigned a classification as equivalent to wood pallets in an effort to determine the demand on a sprinkler system in the event of a fire. The test consists of eight stacks of pallets placed in a specified arrangement. Ignition is provided by four igniters placed at the center of the array. Water is applied to the test array by a simulated sprinkler. A calorimeter and water application apparatus determine the quantities of water need to supress and control the fire. The performance criteria require that the fire must be controlled when a water application density of 0.15 gallons per minute/ft ² is applied and that the controlled fire will not continue to grow within the 10 minute test frame. If the pallets tested meet or exceed the performance criteria, it is designated "equivalent to wood."

Source: FM Approvals 2013; Levchik 2010; Baker 2011

2.4 References

American Composites Manufacturers Association (2004) "Composite Basics: Materials."

- Baker, S. (2011). Personal Communication. Uses of decaBDE in aviation. E-mail to Emma Lavoie.
- Bromine Science and Environmental Forum. (2007). "About Bromine." Retrieved October 2007, from http://www.bsef.com/bromine/what_is_bromine/index.php
- Ciesielski, A. (2000). <u>An Introduction to Rubber Technology</u>. Shawbury, Shrewsbury, Shropshire, UK, Rapra Technology Limited.
- Council of the European Union (2003). Restriction of Hazardous Substances European Parliament and the Council of the European Union. Official Journal of the European Union 2002/95/EC.
- Council of the European Union (2011). Restriction of the use of certain hazardous substances in electrical and electronic equipment (recast). European Parliament and the Council of the European Union. Official Journal of the European Journal. Directive 2011/65/EU.
- FAA. (2010). "Technical Standard Orders." 2010, from http://www.faa.gov/aircraft/air_cert/design_approvals/tso/.
- FM Approvals (2013). American National Standard for Classification of Pallets and Other Material Handling Products as Equivalent to Wood Pallets. Norwood, MA.
- Friddle, J. (2011). Personal Communication DfE Polymer Descriptions for Textiles. E. Lavoie.
- Hardy, M. L. (2003). <u>DBDPO VCCEP: Introduction and Hazard Assessment</u> Peer Consultation Meeting on Decabromodiphenyl Ether, Cincinnati, OH.
- Harper, C. and Modern Plastics (2000). Modern Plastics Handbook, McGraw-Hill.
- Howe-Grant, M. (1997a). Kirk-Othmer Encyclopedia of Chemical Technology
- Howe-Grant, M. (1997b). <u>Kirk-Othmer Encyclopedia of Chemical Technology Amino Resins</u> <u>and Plastics</u>.
- Howe-Grant, M. (1997c). <u>Kirk-Othmer Encyclopedia of Chemical Technology Elastomers</u>, <u>Synthetic (survey)</u>.
- Howe-Grant, M. (1997d). <u>Kirk-Othmer Encyclopedia of Chemical Technology Polyamides</u> (Plastics).
- Howe-Grant, M. (1997e). Kirk-Othmer Encyclopedia of Chemical Technology Polycarbonates.
- Howe-Grant, M. (1997f). <u>Kirk-Othmer Encyclopedia of Chemical Technology Urethane</u> <u>Polymers</u>.
- Illinois Environmental Protection Agency (2007). Report on Alternative to the Flame Retardant DecaBDE: Evaluation of Toxicity, Availablity, Affordability, and Fire Safety Issues: A report to the governor and the general assembly.
- Jones, F. N. (2004). "Aspects of Longevity of Oil and Acrylic Paints." Just Paint (12).

- Levchik, S. (2010). <u>Uses of Decabromodiphenyl Oxide (DecaBDE) Flammability Standards</u> Design for the Environment Kick Off Meeting, Crystal City, VA.
- Lubrizol. (2011). "Acrylic Emulsions." Retrieved November 1, 2011, from <u>http://www.lubrizol.com/Coatings/Acrylics.html</u>.
- Mark, J. E. (2009). Polymer Data Handbook. USA, Oxford University Press.
- Posner, S. and L. Boras (2005). Survey and technical assessment of alternative to Decabromodiphenyl ether (decaBDE) in plastics. The Swedish Chemicals Inspectorate. Stockholm.
- Pure Strategies Inc. for Maine Department of Environmental Protection (2010). "Decabromodiphenyl Ether Flame Retardant in Plastic Pallets: A Safer Alternatives Assessment."
- Pure Strategies Inc. for the Lowell Center for Sustainable Production (2005). Decabromodiphenylether: An Investigation of Non-Halogen Substitutes in Electronic Enclosure and Textile Applications, University of Massachusetts Lowell.
- Randall, D. L., Steve, eds. (2010). The Polyurethanes Book, John Wiley & Sons, Ltd.
- Rex, G. (2011). Personal Communication. E-mail to E. Lavoie.
- SpecialChem. (2011). "Ethylene Vinyl Acetate." Retrieved 2/15/2011, from http://www.specialchem4adhesives.com/tc/ethylene-copolymers/index.aspx?id=eva.
- Trainer, R. (2010). Personal Communication with Ryan Trainer DecaBDE Alternatives Assessment (e-mail). L. M. Emma Lavoie.
- Troitzsch, J. (2004). <u>Plastics Flammability Handbook: Principles, Regulations, Testing, and</u> <u>Approval</u>. Cincinnati, Hanser Gardner.
- U.S. Department of Transportation and National Highway Traffic Safety Administration. (1972). "Standard No. 302 - Flammability of Interior Materials - Passenger Cars, Multipurpose Passenger Vehicles, Trucks, and Buses." Retrieved November 18, 2013, from <u>http://www.nhtsa.gov/cars/rules/import/fmvss/index.html#SN302</u>.
- U.S. EPA. (2005). "Furniture Flame Retardancy Partnership: Environmental Profiles of Chemical Flame-Retardant Alternatives for Low-Density Polyurethane Foam (EPA 742-R-05-002A)." Retrieved November 18, 2013, from <u>http://www.epa.gov/dfe/pubs/flameret/ffr-alt.htm</u>.
- Washington State Department of Health (2008). Alternatives to Deca-BDE in Televisions and Residential Upholstered Furniture. Department of Ecology. Olympia, WA.
- Weil, E. D. and S. V. Levchik (2009). <u>Flame Retardants for Plastics and Textiles: Practical Applications</u>, Hanser.

THIS PAGE INTENTIONALLY LEFT BLANK

3 Background on Flame Retardants

This chapter begins with background information on flame retardants, including their classification (Section 3.1). Section 3.2 presents the flame retardants included in this assessment and Section 3.3 discusses those which were considered but excluded from the assessment. Section 3.4 presents the mechanisms by which flame retardants reduce or prevent combustion.

3.1 General Information on Flame Retardants

Flame retardants decrease the ignitability of materials and inhibit the combustion process, limiting the amount of heat released. The simplest way, in theory, of preventing polymer combustion is to design the polymer so that it is thermally stable. Thermally stable polymers are less likely to decompose into combustible gases under heat stress, which prevents combustion from initiating. Because thermally stable polymers are often difficult and expensive to process and may have performance limitations, manufacturers use other means, such as flame-retardant chemicals, to impart flame-retardant properties to polymers.

Flame retardants decrease the likelihood of a fire occurring and/or decrease a range of undesirable consequences of a fire (Lyons 1970; Cullis and Hirschler 1981). However, in other instances the incomplete combustion resulting from the use of flame retardants, where oxidation and/or thermal transfer are inhibited, can produce negative by-products. Carbon monoxide (CO), a by-product of incomplete combustion, acts as an asphyxiant in poorly-ventilated fire scenarios and can lead to CO poisoning and death (Nelson 1998; Peck 2011). These by-products are in addition to the production of other toxic chemicals (e.g., halogenated dioxins and furans) generated during combustion of materials containing flame retardants.

Fire occurs in three stages: (1) thermal decomposition, where the solid, or condensed phase, breaks down into gaseous decomposition products as a result of heat; (2) combustion chain reactions in the gas phase, where thermal decomposition products react with an oxidant (usually air) and generate more combustion products, which can then propagate the fire and release heat; and (3) transfer of the heat generated from the combustion process back to the condensed phase to continue the thermal decomposition process (Hirschler 1992; Beyler and Hirschler 2002).

The basic mechanisms of flame retardancy will vary depending on the flame retardant and polymer system. Flame retardants can be classified based on the phase (solid or gas) in which they act to reduce or prevent propagation of flame. Other flame retardants may form protective barriers over a polymer which may insulate the flammable polymer from heat or reduce the amount of polymer that is available to burn as fuel. In either state, gaseous or condensed, flame retardants will act to decrease the release rate of heat (Hirschler 1994), thus reducing the burning rate, flame spread, and/or smoke generation (Morose 2006). These mechanisms are discussed further in Section 3.4.

Typically, flame retardants contain one or more of the following elements: chlorine, bromine, aluminum, boron, nitrogen, phosphorus, or silicon (Lyons 1970; Cullis and Hirschler 1981). There are a number of alternatives and synergists that are also effective. Some elements, such as zinc (often used as zinc borate or zinc stannate) and molybdenum (often used as ammonium molybdates), are effective primarily as smoke suppressants in mixtures of flame retardants. In

addition, antimony trioxide can serve as an effective synergist in combination with halogenated flame retardants.

The amount of flame retardant needed to pass a given flammability standard varies due to a number of factors. In general, the lowest levels of flame retardants are required with brominebased chemistries, and higher levels are required when using mineral-type compounds. Ranges of typical "loading levels" (how much of a flame retardant is added to a material) for common flame retardants are shown in Table 3-1. Loading levels also depend on the polymers in which the flame retardant is used. For example, bromine-based flame retardants are used in a wide variety of products (e.g., polyolefins, styrene, polyamides (PAs), polyesters, polycarbonates (PCs) and textiles) and thus have a wide range of loading levels⁹. This is demonstrated by the fact that when used in polyesters, bromine-based flame retardants have a loading level of about 8 percent, whereas when bromine-based flame retardants are used in textiles, they are usually at about a 17 percent loading. On the other hand, the flame retardants that are not used in such a wide variety of products have much smaller loading ranges. For example, chlorophosphates have a 9 percent loading in epoxy resins and a 10 percent loading in polyurethane and are not reportedly used with other polymers (Weil and Levchik 2009).

Table 5-1. Typical Loading Levels of	Common France Actar dants
Type of Flame Retardant	Loading (wt %)
Bromine-based	2 to 25% ¹
Aluminum Hydroxide	13 to 60%
Magnesium Hydroxide	53 to 60%
Chlorophosphates	9 to 10%
Organophosphorus	5 to 30%
¹ Polyethylene (PE) can require up to 31% of a bromine	e based flame retardant and 7-8 %
antimony trioxide. However, this is rarely practiced in	the market thus the upper limit
displayed above is 25%.	
Source: Weil and Levchik 2009	

 Table 3-1: Typical Loading Levels⁸ of Common Flame Retardants

Flame-Retardant Classification

Flame retardants can be classified into four main categories according to chemical composition:

- *Inorganic*: This category includes flame retardants and synergists such as silicon dioxide, metal hydroxides (e.g., aluminum hydroxide and magnesium hydroxide), antimony compounds (e.g., antimony trioxide), boron compounds (e.g., zinc borate which is often used as a synergist for both halogenated and non-halogenated flame retardants), and other metal compounds (molybdenum trioxide). As a group, these flame retardants represent the largest fraction of total flame retardants in use (Norwegian Pollution Control Agency 2009).
- *Halogenated*: These flame retardants are primarily based on bromine and chlorine. Typical halogenated flame retardants are halogenated paraffins, halogenated aliphatic and

⁹ These loading levels can be measured in percent by weight (i.e., percent in relation to the total weight of the components or final product) or in parts per hundred resin (phr) (i.e., all phrs will be over 100). Information in Table 3-1 is presented as a percentage of the weight of the final product.

aromatic compounds, and halogenated polymeric materials. Some halogenated flame retardants also contain other elements, such as phosphorus or nitrogen. The effectiveness of halogenated additives, as discussed below in Section 3.4, is due to their interference with volatile substances which are created in the combustion process, decreasing their combustibility. Brominated compounds represent approximately 18 to 21 percent (by volume) of the global flame-retardant production (Hirschler 1998).

- *Phosphorus-based*: This category represents about 20 percent (by volume) of the global production of flame retardants and includes organic and inorganic phosphates, phosphonates, and phosphinates as well as red phosphorus, covering a wide range of phosphorus compounds with different oxidation states. There are also halogenated phosphate esters, often used as flame retardants for polyurethane foams or as flame-retardant plasticizers, but not commonly used in electronics applications (Hirschler 1998; Green 2000; Weil and Levchik 2004).
- *Nitrogen-based*: These flame retardants include melamine and melamine derivatives (e.g., melamine cyanurate, melamine polyphosphate). Nitrogen-containing flame retardants are often used in combination with phosphorus-based flame retardants, with both elements in the same molecule (Morose 2006).

Halogenated flame retardants are commonly blended with a synergist, such as antimony trioxide. A synergist multiplicatively enhances the flame retardant effect. Many flame-retardant synergists do not have significant flame-retardant properties by themselves; their addition increases the overall effectiveness of the flame-retardant system. It should also be noted that the synergists may be very system specific; they are not universal. For example, antimony trioxide only shows flame retardant synergism with halogenated flame retardants and has no effect when combined with inorganic, phosphorus, or nitrogen-based flame retardants.

Flame retardants also can be classified by how they are incorporated into a polymer – additively or reactively. No reactive-type flame retardants were identified as alternatives to decabromodiphenyl ether (decaBDE) in this assessment.

- Additive: Additive flame retardants are incorporated into polymers via physical mixing, and are not chemically bound to the polymer. Flame-retardant compounds are mixed with existing polymers without undergoing any chemical reactions. As a result, the polymer/additive mixture is less susceptible to combustion than the polymer alone. Since additive flame retardants can be incorporated into the product up until the final stages of manufacturing, it is usually easier for manufacturers to use additive flame retardants than reactive flame retardants.
- *Reactive:* Reactive flame retardants are incorporated into polymers via chemical reactions and must be incorporated at an early stage of manufacturing. Once introduced, they become a permanent part of the polymer structure i.e., the chemically-bound reactive flame-retardant chemicals cease to exist as separate chemical entities. As a result, reactive flame retardants have a greater effect on the chemical and physical properties of the polymer into which they are incorporated than do additive flame retardants. For

examples of reactive flame retardants, refer to the Flame Retardants in Printed Circuit Boards Draft Report (U.S. EPA 2008).

Flame retardants can also be coated on the external surface of the polymer to form a protective barrier or to improve their compatibility with the polymeric matrix.

Both reactive and additive flame retardants can significantly change the properties of the polymers into which they are incorporated. Each flame retardant polymer combination is unique. For example, they may change the viscosity, flexibility, density, electrical properties, tensile strength, and flexural strength; and may also increase the susceptibility of the polymers to photochemical and thermal degradation.

3.2 Flame Retardants Included in this Assessment

With the assistance of the partnership, the U.S. Environmental Protection Agency (EPA) identified 29 alternatives to decaBDE which fit the scope of this project: to identify potentially functional, viable alternatives for use in the identified polyolefins, styrenics, engineering thermoplastics, thermosets, elastomers or waterborne emulsions and coatings (see Chapter 1). The impetus behind this alternatives assessment is the potential for adverse human health and environmental effects through decaBDE exposure. DecaBDE can break down into other polybrominated diphenyl ether congeners, which may be persistent, bioaccumulative, and toxic to both humans and the environment (U.S. EPA 2009). It is important to stress that these alternatives were not chosen based on environmental preferability but based on their functionality and viability. These alternatives were identified through the following process:

- EPA developed an initial list of alternatives based on a review of the literature (Posner and Boras 2005; Danish Ministry of the Environment 2007; European Chemicals Bureau 2007; Washington State Department of Health 2008; Pure Strategies Inc. for Maine Department of Environmental Protection 2010) and consultation with industry experts.
- 2) This list was presented to the partnership, and through multiple discussions EPA confirmed which chemicals were potentially viable alternatives and identified any additional alternatives which were not found through the literature review process.
- 3) Chemicals that were initially included as potential alternatives (identified through the literature review) but were not deemed viable by the experts on the partnership were excluded from the assessment (see Section 3.3).

Chemical Alternatives and the Toxic Substances Control Act

EPA's Design for the Environment (DfE) program is administered by the Office of Pollution Prevention and Toxics (OPPT), which is charged with the implementation of the Toxic Substances Control Act (TSCA) and the Pollution Prevention Act (PPA).

Central to the administration of TSCA is the management of the TSCA Inventory. <u>Section 8 (b)</u> of TSCA requires EPA to compile, keep current, and publish a list of each chemical substance that is manufactured or processed in the United States. Companies are required to verify the TSCA status of any substance they wish to manufacture or import for a TSCA-related purpose. For more information, please refer to the TSCA Chemical Substance Inventory website: <u>http://www.epa.gov/opptintr/existingchemicals/pubs/tscainventory/basic.html</u>.

TSCA and DfE Alternatives Assessments

Substances selected for evaluation in a DfE Alternatives Assessment generally fall under the TSCA regulations and therefore must be listed on the TSCA inventory, or be exempt or excluded from reporting before being manufactured in or imported to, or otherwise introduced in commerce in, the United States. For more information see http://www.epa.gov/oppt/newchems/pubs/whofiles.htm.

To be as inclusive as possible, DfE Alternatives Assessments may consider substances that may not have been reviewed under TSCA, and therefore may not be listed on the TSCA inventory. DfE has worked with stakeholders to identify and include chemicals that are of interest and likely to be functional alternatives, *regardless of their TSCA status*. Chemical identities are gathered from the scientific literature and from stakeholders and, for non-confidential substances, appropriate TSCA identities are provided.

Persons are advised that substances, including DfE-identified functional alternatives, may not be introduced into U.S. commerce unless they are in compliance with TSCA. Introducing such substances without adhering to the TSCA provisions may be a violation of applicable law. Those who are considering using a substance discussed in this report should check with the manufacturer or importer about the substance's TSCA status. If you have questions about reportability of substances under TSCA, please contact the OPPT Industrial Chemistry Branch at 202-564-8740.

Table 3-2 presents the potentially viable flame retardant alternatives included in this assessment, along with a summary of the polymers in which they are most often used, and end-use products into which the polymers are incorporated. The chemicals in Table 3-2 are additive flame retardants unless otherwise noted. Their modes of flame-retardant action are also given in Table 3-2 and discussed in Section 3.4. These modes of action include:

- CA C: Chemical action in condensed phase,
- CA G: Chemical action in gas phase,
- HS: Heat sink,
- CF: Char former,
- I: Intumescent¹⁰, and
- D: Dilution effect

¹⁰ Intumescence is when a compound swells as a result of heat exposure, thus increasing in volume, and decreasing in density.

	Chemical					End-	Use Ap	oplications	3			
Flame Retardant Chemicals for Assessment ¹	Abstracts Service Registry Number (CASRN)	Polymer Applications ²	Electronics	Wire and Cable	Public Buildings	Construction Materials	Automotive	Aviation	Storage and Distribution Products	Textiles	Waterborne emulsions & coatings	Mode of Action ⁴
		Chlorinated polyethylene (CPE)	~	~								
		Elastomers	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
		Emulsions								\checkmark	\checkmark	
Decabromodiphenyl ether		Engineering Thermoplastic	✓				\checkmark				\checkmark	CA - C (with metal hydroxide [HS])
decaBDE	1163-19-5	High-impact polystyrene (HIPS)	~									
		Polyethylene (PE)	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark	~			
		Polypropylene (PP)	\checkmark	\checkmark			\checkmark		\checkmark			
		Thermosets	\checkmark		\checkmark	\checkmark						
		Elastomers	\checkmark	\checkmark			\checkmark	\checkmark				
		Epoxy resins	\checkmark				\checkmark	\checkmark				
		РА	\checkmark				\checkmark	\checkmark		\checkmark		
Aluminum diethylphosphinate	225789-38-8	Polybutylene terephthalate (PBT)	~				~	~				CF + I +HS
Aluminum diethylphosphinate		Polyethylene terephthalate (PET)	~				~	~		~		
		Thermoplastic polyurethane (TPU)		~								

Table 3-2: Summary of Chemicals for Assessment with Polymer and End-Use Application

¹For full chemical name and relevant trade names see the synonym section of the individual profiles in Section 4.8.

²If a polymer is not listed for any specific flame retardant, then the flame retardant is not functional in that material application

³All categories may include military uses

⁴CA - C: Chemical action in condensed phase, CA - G: Chemical action in gas phase. Physical action can be HS: Heat sink, CF: Char former, I: Intumescent, or D: Dilution effect.

	Chemical					End-	Use Ap	oplications	3			
Flame Retardant Chemicals for Assessment ¹	Abstracts Service Registry Number (CASRN)	Polymer Applications ²	Electronics	Wire and Cable	Public Buildings	Construction Materials	Automotive	Aviation	Storage and Distribution Products	Textiles	Waterborne emulsions & coatings	Mode of Action ⁴
		Elastomers		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
		Emulsions								\checkmark		HS + I
Aluminum hydroxide	21645-51-2; 8064-00-4	Ethylene vinyl acetate (EVA)		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
		PE		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
		Thermosets	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
	68333-79-9; 14728-39-3	Elastomers		\checkmark								
		Emulsions								\checkmark	\checkmark	
Ammonium polyphosphate		PE		\checkmark	\checkmark	\checkmark			\checkmark			CA - C + I
		РР	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			
		Thermosets			\checkmark	\checkmark		\checkmark	\checkmark			
		Elastomers	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
		Emulsions							\checkmark		\checkmark	
		Engineering Thermoplastic	\checkmark	✓	✓	~	\checkmark	\checkmark				
Antimony trioxide	1200 64 4	HIPS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			CA - G
(Used as a synergist only)	1309-04-4	PE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			(synergists)
		РР	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
		Polyvinyl chloride (PVC)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark		
		Thermosets	 ✓ 		✓	✓						

¹ For full chemical name and relevant trade names see the synonym section of the individual profiles in Section 4.8. ²If a polymer is not listed for any specific flame retardant, then the flame retardant is not functional in that material application ³All categories may include military use ⁴CA - C: Chemical action in condensed phase, CA - G: Chemical action in gas phase. Physical action can be HS: Heat sink, CF: Char former, I: Intumescent, or D: Dilution effect.

	Chemical					End-	Use Ap	oplications	3			
Flame Retardant Chemicals for Assessment ¹	Abstracts Service Registry Number (CASRN)	Polymer Applications ²	Electronics	Wire and Cable	Public Buildings	Construction Materials	Automotive	Aviation	Storage and Distribution Products	Textiles	Waterborne emulsions & coatings	Mode of Action ⁴
		CPE	\checkmark	\checkmark							\checkmark	
		Elastomers	\checkmark	\checkmark	\checkmark	\checkmark						CA - G + CF; CA - G + CA - C
Bis		Engineering Thermoplastic	\checkmark									
(hexachlorocyclopentadieno)	13560-89-9	HIPS	\checkmark									(with metal
cyclooctalle		PE	\checkmark	\checkmark	\checkmark	\checkmark						hydroxide
		PP	\checkmark	\checkmark								0x1dc [115])
		Thermosets	\checkmark		\checkmark	\checkmark					\checkmark	
	5945-33-5;	Polyphenylene ether – high- impact polystyrene (PPE-HIPS)	~									
phosphate)	181028-79-5 (reaction	PC	\checkmark									CA - C + CF;
phosphate)	(reaction products)	Polycarbonate- acrylonitrile butadiene styrene (PC- ABS)	~									(synergist)
Brominated Epoxy Polymer(s)	Confidential	Acrylonitrile butadiene styrene (ABS)	1									CA - G
		HIPS	\checkmark									
		PE							\checkmark			

¹For full chemical name and relevant trade names see the synonym section of the individual profiles in Section 4.8. ²If a polymer is not listed for any specific flame retardant, then the flame retardant is not functional in that material application ³All categories may include military uses ⁴CA - C: Chemical action in condensed phase, CA - G: Chemical action in gas phase. Physical action can be HS: Heat sink, CF: Char former, I: Intumescent, or D: Dilution effect.

	Chemical					End-	Use Ap	oplications	3			
Flame Retardant Chemicals for Assessment ¹	Abstracts Service Registry Number (CASRN)	Polymer Applications ²	Electronics	Wire and Cable	Public Buildings	Construction Materials	Automotive	Aviation	Storage and Distribution Products	Textiles	Waterborne emulsions & coatings	Mode of Action ⁴
		ABS	\checkmark									CA - G + CA
		HIPS	\checkmark									
Brominated Epoxy Polymers	68928-70-1	Nylon	\checkmark				\checkmark					- C (with metal
1 2 2		PBT	\checkmark				\checkmark					hydroxide [HS])
		Unsaturated polyester (UPE)			\checkmark	\checkmark						
Mixture of Brominated Epoxy	Confidential	ABS	\checkmark									CA - G
Polymer(s) and Bromobenzyl		HIPS	\checkmark									
Acrylate		PE							\checkmark			
		ABS	\checkmark									
		HIPS	\checkmark									CA - G + CA
Brominated epoxy resin end-	135229-48-0	Nylon	\checkmark				\checkmark					metal
capped with tribioniophenor		PBT	\checkmark				\checkmark					hydroxide
		UPE			\checkmark	\checkmark						[[[]]])
Brominated polyacrylate		РА	\checkmark				\checkmark					
		PBT	\checkmark				\checkmark					
	59447-57-3	PP	\checkmark				\checkmark		\checkmark			CA - G
		PE							\checkmark			

¹For full chemical name and relevant trade names see the synonym section of the individual profiles in Section 4.8. ²If a polymer is not listed for any specific flame retardant, then the flame retardant is not functional in that material application ³All categories may include military uses

⁴CA - C: Chemical action in condensed phase, CA - G: Chemical action in gas phase. Physical action can be HS: Heat sink, CF: Char former, I: Intumescent, or D: Dilution effect.

	Chemical											
Flame Retardant Chemicals for Assessment ¹	Abstracts Service Registry Number (CASRN)	Polymer Applications ²	Electronics	Wire and Cable	Public Buildings	Construction Materials	Automotive	Aviation	Storage and Distribution Products	Textiles	Waterborne emulsions & coatings	Mode of Action ⁴
		CPE	\checkmark	\checkmark							\checkmark	
		Elastomers	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			
		Emulsions								\checkmark	\checkmark	CA - G
Brominated poly(phenylether)	Confidential	Engineering Thermoplastics	\checkmark	~			\checkmark				~	
		HIPS	\checkmark									
		PE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			
		РР	\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	
		Thermosets	\checkmark		\checkmark	\checkmark						
		PA	\checkmark				\checkmark					
		PET	\checkmark									
Prominated polystyrapa	99407 56 7	РВТ	\checkmark									CA G
Brominated polystyrene	88497-30-7	Thermoplastic polyester	\checkmark									CA-0
		Thermoset polyester	\checkmark									

¹For full chemical name and relevant trade names see the synonym section of the individual profiles in Section 4.8. ²If a polymer is not listed for any specific flame retardant, then the flame retardant is not functional in that material application ³All categories may include military uses ⁴CA - C: Chemical action in condensed phase, CA - G: Chemical action in gas phase. Physical action can be HS: Heat sink, CF: Char former, I: Intumescent, or D: Dilution effect.

	Chemical					End-	Use Ap	oplications	3			
Flame Retardant Chemicals for Assessment ¹	Abstracts Service Registry Number (CASRN)	Polymer Applications ²	Electronics	Wire and Cable	Public Buildings	Construction Materials	Automotive	Aviation	Storage and Distribution Products	Textiles	Waterborne emulsions & coatings	Mode of Action ⁴
		СРЕ	\checkmark	\checkmark							\checkmark	
		Elastomers	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			
		Emulsions								\checkmark	\checkmark	CA - G +
Decabromodiphenvl ethane	84852-53-9	Engineering Thermoplastics	\checkmark	\checkmark			\checkmark				\checkmark	CA - C (with metal hydroxide [HS])
		HIPS	\checkmark									
		PE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			
		РР	\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	
		Thermosets	\checkmark		\checkmark	\checkmark						
		CPE		\checkmark							\checkmark	
		Elastomers				\checkmark						CA - G:
Ethylene bis-	32588-76-4	Engineering Thermoplastic	\checkmark									CA - C (Increased
tetrabromophthalimide		HIPS	\checkmark									thermal
		PE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			stability)
		РР	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			
		Elastomers		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Magnesium hydroxide ⁵		EVA		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	1309-42-8	РА	\checkmark									CF + HS
		PE		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			-
		PP		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	

¹For full chemical name and relevant trade names see the synonym section of the individual profiles in Section 4.8. ²If a polymer is not listed for any specific flame retardant, then the flame retardant is not functional in that material application ³All categories may include military uses ⁴CA - C: Chemical action in condensed phase, CA - G: Chemical action in gas phase. Physical action can be HS: Heat sink, CF: Char former, I: Intumescent, or D: Dilution effect. ⁵Previously assessed by Design for the Environment (DfE) in other alternatives assessments (<u>http://www.epa.gov/dfe/alternative_assessments.html</u>)

	Chemical					End-	Use Ap	oplications	3			
Flame Retardant Chemicals for Assessment ¹	Abstracts Service Registry Number (CASRN)	Polymer Applications ²	Electronics	Wire and Cable	Public Buildings	Construction Materials	Automotive	Aviation	Storage and Distribution Products	Textiles	Waterborne emulsions & coatings	Mode of Action ⁴
		РА	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
Malamina avanurata	27640 57 6	PBT	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	$HS \pm D$
Melanine Cyanurate	37040-37-0	TPU	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	HS + D
		UPE	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
		Epoxy resins	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
		РА	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
		PBT	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
		PE							\checkmark			
Melamine polyphosphate ^{5,6}	15541-60-3	Phenolic based composites	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	HS + D + CF
		PP							 Image: A state 			
		TPU	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
		UPE	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
N alkovy hindered amine		PE thin films				\checkmark				\checkmark		
N-alkoxy hindered amine reaction products	191680-81-6	PP thin films and fibers				\checkmark				\checkmark		CA - G
Phosphonate oligomer ⁷	68664-06-2	Thermosets	\checkmark		\checkmark	\checkmark						CA - C; CF

¹For full chemical name and relevant trade names see the synonym section of the individual profiles in Section 4.8. ²If a polymer is not listed for any specific flame retardant, then the flame retardant is not functional in that material application

³All categories may include military uses

⁴CA - C: Chemical action in condensed phase, CA - G: Chemical action in gas phase. Physical action can be HS: Heat sink, CF: Char former, I: Intumescent, or D: Dilution effect. ⁵Previously assessed by DfE in other alternatives assessments (<u>http://www.epa.gov/dfe/alternative_assessments.html</u>)

⁶This CASRN is specifically for Melamine Pyrophosphate. Please consult the Chemical Considerations section of this chemical's hazard profile for additional identity information on the closely related melamine phosphate salts that are anticipated to have similar hazard profiles.

⁷Also available as a reactive oligomer to react with the host polymer system

	Chemical		End-Use Applications ³									
Flame Retardant Chemicals for Assessment ¹	Abstracts Service Registry Number (CASRN)	Polymer Applications ²	Electronics	Wire and Cable	Public Buildings	Construction Materials	Automotive	Aviation	Storage and Distribution Products	Textiles	Waterborne emulsions & coatings	Mode of Action ⁴
Phosphoric acid, mixed esters		PPE-HIPS	\checkmark				\checkmark	\checkmark				CA – C +
with [1,1'-bisphenol-4,4'-diol]	1003300-73-9	PC	\checkmark				\checkmark	\checkmark				CF;
and phenol		PC-ABS	\checkmark				\checkmark	\checkmark				(synergist)
	68664-06-2	Elastomers	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				CA - C; CF
Polyphosphonate		Engineering Thermoplastic	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Polv[phosphonate-co-	77226-90-5	Elastomers	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				CA - C; CF
carbonate]		Engineering Thermoplastic	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark				
	7723-14-0	Elastomers		\checkmark								CA - G + CA - C
		Emulsions					\checkmark				\checkmark	
Dad nhaanhama		Epoxy resins	\checkmark				\checkmark	\checkmark			\checkmark	
Red phosphorus		РА	\checkmark	\checkmark				\checkmark				
		PA 66 GF	\checkmark									
		РР	\checkmark	\checkmark								
Resorcinol bis- diphenylphosphate125997-21-9; 57583-54-7	PPE-HIPS	\checkmark									CA - C + CF:	
	57583-54-7	PC-ABS	\checkmark									synergist

¹For full chemical name and relevant trade names see the synonym section of the individual profiles in Section 4.8 ²If a polymer is not listed for any specific flame retardant, then the flame retardant is not functional in that material application ³All categories may include military uses ⁴CA - C: Chemical action in condensed phase, CA - G: Chemical action in gas phase. Physical action can be HS: Heat sink, CF: Char former, I: Intumescent, or D: Dilution effect.

	Chemical					End-	Use Ap	oplications	3			
Flame Retardant Chemicals for Assessment ¹	Abstracts Service Registry Number (CASRN)	Polymer Applications ²	Electronics	Wire and Cable	Public Buildings	Construction Materials	Automotive	Aviation	Storage and Distribution Products	Textiles	Waterborne emulsions & coatings	Mode of Action ⁴
	66034-17-1 and confidential	Elastomers	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			CA - C; CF + I
		EVA		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Substituted amine phosphate		PE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
		PP	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
		TPU	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Tetrabromobisphenol A bis (2,3-dibromopropyl ether)	21850-44-2	Elastomers	\checkmark		\checkmark	\checkmark	\checkmark					CA - G + CA
		РР	~		~	~	~					metal hydroxide [HS])
	115.96.6	PPE-HIPS	\checkmark									
Thphenyl phosphate	115-80-0	PC-ABS	\checkmark									CA - C + CF
Tris(tribromoneopentyl) phosphate	19186-97-1	PP	\checkmark		\checkmark	\checkmark				\checkmark		$\begin{array}{c} CA - G + CA \\ - C + CF + I \end{array}$
Tris(tribromophenoxy) triazine	25712 60 4	ABS	\checkmark									CA - G + CF + D
	23713-00-4	HIPS	\checkmark									
Zinc borate (Synergist for halogen and non-halogen)	138265-88-0; 1332-07-6	EVA	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
		PE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			HS + CF + CA - C
		PP	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			

¹ For full chemical name and relevant trade names see the synonym section of the individual profiles in Section 4.8. ²If a polymer is not listed for any specific flame retardant, then the flame retardant is not functional in that material application ³All categories may include military uses

⁴CA - C: Chemical action in condensed phase, CA - G: Chemical action in gas phase. Physical action can be HS: Heat sink, CF: Char former, I: Intumescent, or D: Dilution effect. ⁵Previously assessed by DfE in other alternatives assessments (<u>http://www.epa.gov/dfe/alternative_assessments.html</u>) *Source:* Personal communication with members of the partnership.

3.3 Flame Retardants Not Included in this Assessment

In addition to the chemicals listed in Table 3-2, the partnership considered other flame retardants for the assessment, including individual chemicals and materials. Section 3.3.1 describes chemicals that were identified as possible alternatives to decaBDE and the reasons they were excluded from the assessment. Sections 3.3.2 and 3.3.3 describe two general types of nanomaterials that were not assessed because EPA does not have sufficient experience to apply data from one form of a chemical substance (such as a bulk material) to a particular nanoform of that chemical.

3.3.1 Chemicals That Were Excluded from this Assessment

The chemicals listed in this section were identified as possible alternatives to decaBDE, but were not included in the alternatives assessment. Reasons for exclusion included:

- Not commercially available¹¹;
- The flame retardant is a blend of which a majority of the chemicals are included in the assessment;
- Compared to other chemicals being assessed, the flame retardant is used or has the potential to be used in only small quantities;
- Outside the scope of the project: not a flame retardant or not relevant to materials in the scope;
- The Hazard Evaluation Criteria (U.S. EPA 2011) cannot yet be applied to evaluation of nanomaterials;
- Regulatory action has been proposed or implemented making future use unlikely;
- Will be addressed qualitatively in this report;
- Limited use as a decaBDE replacement due to toxic byproducts or regulations; and
- Not functional in materials in which decaBDE has been used.

A summary of the chemicals which were discussed but not included in this assessment are listed in Table 3-3 with the reason for exclusion. Additionally, it is likely that the Partnership omitted some potential alternatives. For example, TBBPA carbonate oligomer (CASRN 94334-64-2; 71342-77-3) was mentioned but not identified as a high priority alternative and tetradecabromo-1,4-diphenoxybenzene (CASRN 58965-66-5) was not brought up during the survey of available alternatives. These chemicals and others not yet identified or currently under development may be included in future versions of this report.

¹¹ Some flame retardants that are currently in the process of market commercialization are included in the list of flame retardants in Section 3.2.

Chemical Name	CASRN	Justification for Exclusion		
1,2 - bis(pentabromophenoxy) ethane	61262-53-1	This chemical is no longer on the market. Neither is the similar but lower brominated 1,2 - bis(tribromophenoxy) ethane.		
Ammonium polyphosphate + melamine + pentaerythritol		The flame retardant is a blend, of which the ammonium polyphosphate and melamine are included in the assessment.		
Boehmite (Aluminum hydroxide oxide)	1318-23-6	Compared to other chemicals being assessed, it is used and/or has the potential to be only in small quantities. A similar but different compound to aluminum hydroxide.		
Calcium molybdate (Powellite)	7789-82-4	This is more of a smoke suppressant than a stand-alone flame retardant and is for PVC.		
Diphenyl cresyl phosphate (DPK)	26444-49-5	DPK is mostly used as plasticizer in PVC, and is not used as a decaBDE replacement.		
Ethylenediamine-o-phosphate	14852-17-6	Compared to other chemicals being assessed, it is used and/or has the potential to be used in small quantities.		
"Green Armor"	Confidential	The chemical is undergoing the Premanufacture Notice (PMN) review process at EPA. ¹ The manufacturer prefers not to include this substance in the DfE process until PMN review is complete.		
Huntite / hydromagnesite Mg ₃ Ca(CO ₃)(OH) ₂ 3H ₂ O		Compared to other chemicals being assessed, it is used and/or has the potential to be used in small quantities.		
KSS - Potassium 3- (phenylsulfonyl)benzenesulfonate	63316-43-8 (monosulfonate); 63316-33-6 (disulfonate)	KSS is mainly used in PCs, and not in PC blends.		
Mesoporous silicate particles (MSPs)		The DfE Hazard Evaluation Criteria (U.S. EPA 2011) cannot yet be applied to evaluation of nanomaterials. EPA does not have sufficient experience to apply data from one form of a chemical substance (such as a bulk material) to a particular nanoform of that chemical. These materials are not assessed in this report but they are still of interest and are discussed in Section 3.3.3.		

Table 3-3: Chemicals Considered but Not Included in the Final Alternatives Assessment

¹ Anyone who plans to manufacture or import a new chemical substance for a non-exempt commercial purpose is required by section 5 of TSCA to provide EPA with a PMN which must be submitted at least 90 days prior to the manufacture or import of the chemical.

Chemical Name	CASRN	Justification for Exclusion			
Nanoclays		The DfE Hazard Evaluation Criteria (U.S. EPA 2011) cannot yet be applied to evaluation of nanomaterials. EPA does not have sufficient experience to apply data from one form of a chemical substance (such as a bulk material) to a particular nanoform of that chemical. These materials are not assessed in this report but they are still of interest and are discussed in Section 3.3.3.			
Pentaerythritol	115-77-5	In contrast to melamine cyanurate and melamine polyphosphate, which are included in the assessment and can be used as flame retardants by themselves, pentaerythritol must be combined with melamine AND a phosphate to be effective and so is not included in this assessment as a stand-alone flame retardant			
Phosphonic acid, (3-{[hydroxymethyl]amino}-3- oxopropyl)-dimethyl ester	20120-33-6	Limited use as a decaBDE replacement: this compound's use in the United States is almost zero because it is used with compounds which can release formaldehyde.			
Poly(aryl ether ketone) (PAEK – various suppliers – covers PEK, PEEK, PEKK, etc.)		Will be addressed qualitatively in the report: this is an inherently flame retardant (IFR) polymer (see Section 3.3.2).			
Polyetherimde	61128-46-9	Will be addressed qualitatively in the report: this is an IFR polymer (see Section 3.3.2)			
PET with built-in phosphorus on polyester backbone	25038-59-9	Not effective in most materials where decaBDE is currently used to meet required flammability standards. Therefore, the use of this chemical is limited and not a priority for assessment.			
Short-Chain Chlorinated Paraffins (SCCPs) Medium-Chain Chlorinated Paraffins (MCCPs) Long-Chain Chlorinated Paraffins (LCCPs) very Long-Chain Chlorinated Paraffins (vLCCPs)	Chlorinated paraffins are categories of chemicals and defined as: $C_x H_{(2x-y+2)} Cl_y$ SCCPs: $10 \le x \le 13, 3 \le y \le 12$ MCCPs: $14 \le x \le 17, 3 \le y \le 15$	 EPA has entered into Consent Decrees with the major manufacturers of SCCPs that end manufacture and distribution of these substances in U.S. commerce. EPA has also proposed a Significant New Use Rule for any use of "alkanes, C12-13, chloro" (CASRN 71011-12-6). EPA is requiring all manufacturers of all CPs (which are not correctly listed on the TSCA Inventory) to submit TSCA section 5 premanufacture notices for these 			
	MCCPS: $14 \le x \le 17$, $3 \le y \le 13$ LCCPs: $18 \le x \le 20$, $5 \le y \le 17$ vLCCPs: $x \ge 21$, $y \ge 5$	substances, where they will be evaluated for potential regulatory action. In addition, EPA is evaluating whether the manufacturing, processing, distribution in commerce, use and/or disposal of MCCPs and LCCPs should also be addressed under TSCA section 6(a).			
Tetrabromobisphenol A	79-94-7	Was not identified as a prevalent alternative to decaBDE. Additionally, a full discussion of TBBPA manufacturing, process and hazard is provided in a previous DfE report (U.S. EPA 2008).			
Tetrakis (hydroxymethyl) phosphonium, urea,	124-64-1	Not effective in most materials where decaBDE is currently used to meet required			

Chemical Name	CASRN	Justification for Exclusion				
chloride salts		flammability standards. Therefore, the use of this chemical is limited and not a pri-				
		for assessment.				
Tricresyl phosphate 1330–78–5		Outside of the scope of this project: this is a plasticizer for PVC.				
		Previously assessed and limited use as a decaBDE replacement: this chemical is not				
Tris (1,3-dichloropropyl-2) phosphate	13674-87-8	used as a primary flame retardant in textile backcoatings and TDCPP was reviewed in				
		DfE's Furniture Flame Retardancy Report (U.S. EPA 2005).				
Tris (2-hydroxyethyl) isocyanurate 839-90-7		Not a flame retardant; part of a curing system for coatings.				
		Limited use as a decaBDE replacement: this is a potential alternative synergist to				
Zine melyhdata	13767 32 3	antimony trioxide when used in textiles. It is also a smoke suppressant. However, it is				
	13707-32-3	not a particularly viable alternative synergist because of cost and municipal water				
		discharge restrictions.				

3.3.2 Inherently Flame Retardant Materials

In addition to the use of flame retardant chemicals, flame retardancy can be achieved through the use of IFRs. IFR materials meet fire code standards without special processing or chemical additives. IFRs are not flammable, which means that the protection is built into the fiber and is less likely to be worn away or washed out (DuPont 2010). IFRs can be used in a multitude of materials, and are not limited to fibers. IFR technologies are used in textiles, electronics, aircraft, and ground transportation vehicles and may be used in place of decaBDE in some instances. Table 3-4 includes a few examples of IFRs, their attributes, and end-use products relevant to this assessment. Flame retardancy can also be achieved through the use of inherently flame retardant barriers that physically prevent fire spread to flammable materials. This report assessed flame retardant additives and did not assess polymers in which these additives are used nor these IFR materials for their own inherent hazard.

Inherently Flame Botordont Material	Description and Attributes	End Uses Relevant to this Assessment
Graphite impregnated foam	 Relatively new technology which is self- extinguishing and highly resistant to combustion. Can meet airline fire safety standards for the seats with a reduced dependency on flame-retarded fabric. (U.S. EPA 2005) 	 Largely used in niche markets, e.g., general aircraft seating (U.S. EPA 2005)
Low heat release plastics (Nomex, Teflon)	 Characterized by lower heat release capacities. High melt temperature (if any), hard to process using conventional plastics processing methods. (Walters and Lyon 2003) 	 Aircraft Firefighter apparel Soldier protection fabric Flame retardant tents (Nagarajan 2012)
Polyimides	 Linear polymers which contain a ring structure along the backbone. This backbone structure gives the polymer good high temperature properties. PIs have excellent physical properties and are used in applications where parts are exposed to harsh environments. Oxidative stability allows them to withstand continuous service in air at temps of 260°C. PIs will burn but they have a self-extinguishing property. (Modern Plastics and Charles A. Harper 1999) 	 Wire enamel Bearings for appliances in aircrafts, seals and gaskets Flexible wiring and electrical motor insulation – used with film version of PI (Modern Plastics and Charles A. Harper 1999)
Polyketones	 Family of aromatic polyether ketones includes structures which vary in the location and number of ketonic and ether linkages on their repeat units including PEK, PEEK, PEEKK and other combinations. All have very high thermal properties due to their aromaticity of their back bones and are readily processed via injection molding. Toughness is high for such high-heat resistance materials. Low moisture absorption and good hydrolytic stability lend these materials to their applications. (Modern Plastics and Charles A. Harper 1999) 	 Airplane and automobile engines (Modern Plastics and Charles A. Harper 1999)

Table 3-4: Examples and Descriptions of Inherently Flame Retardant Materials

Inherently Flame Retardant Material	Description and Attributes	End Uses Relevant to this Assessment
Geopolymers	 Polysialate family of inorganic matrices. Geopolymer is a two-part system consisting of an alumina liquid and a silica powder that cures at around 150°C. Low curing temperatures, high temperature resistance, and low cost. Compatible with carbon, glass, Kevlar, steel, cellulosics. (Nagarajan 2012) 	 Items with high-use temperatures anticipated Engine exhaust system Aircrafts (Nagarajan 2012)
Liquid Crystal Polymer (LCP)	 Aromatic copolyesters - the presence of phenyl rings in the backbone gives chain rigidity, forming rod- like chain structures. Self-reinforcing with high mechanical properties. Known for high-temperature resistance, particularly heat-distortion temperature. Excellent mechanical properties, especially in flow direction. Good electrical insulation properties and low flammability. LCPs show little dimensional change when exposed to high temperatures and a low coefficient of thermal expansion. Can be high priced and often exhibit poor abrasion resistance. Can be injection molded on conventional equipment and regrind may be used. (Modern Plastics and Charles A. Harper 1999) 	 Automotive Electrical chemical processing Household applications such as in ovens or microwave cookware (Modern Plastics and Charles A. Harper 1999)
Polyarylates	 Amorphous, aromatic polyesters prepared from dicarboxylic acids and bisphenols. Aromatic rings give the polymer good temperature resistance. Shows good toughness and ultraviolet resistance. Transparent and has good electrical properties. Abrasion resistance of polyarylates is superior to PC. Extreme rigidity of polymer chains (due to aromatic rings) leads to difficulty in processing. Polyarylates, while having low heat release, may not be IFR in all fire risk scenarios. (Modern Plastics and Charles A. Harper 1999) 	 Automotive applications such as door handles, brackets, and headlamp and mirror housings Electrical applications for connectors and fuses (Modern Plastics and Charles A. Harper 1999)

3.3.3 Nanosilicates: Clays and Colloidal Solids

Nanosilicate clays and colloidal solids may be relevant considerations for alternative flame retardant formulations. The DfE Hazard Evaluation Criteria cannot yet be applied to evaluation of nanomaterials. EPA does not have sufficient experience to apply data from one form of a chemical substance (such as a bulk material) to a particular nanoform of that chemical. Nanomaterials are not assessed in this report but they are still of interest to the partnership and this section provides a brief overview, including applications and available hazard information on two relevant example materials: organoclays and mesoporous silicate particles (MSPs). The information in this section is not intended to be comprehensive but is rather a starting point to help the reader conduct further research. Additional books and peer-reviewed publication references on nanosilicate flame retardants are provided in Appendix A.

Organoclays

Organoclays were developed in the 1930s and 1940s (Theng 1974) and were originally used as rheological modifiers, additives used to thicken coating materials. They have since been modified and Cloisite organoclays are now designed for use in plastics and rubbers for applications including flame retardant synergists. The use of bentonite (Mehta and Weiss 1978) and organoclays (Jonas 1970; Breitenfellner and Kainmülle 1985; Shain 1987) as additives to flame retardant formulations is claimed in several older patents; just over ten years ago Gilman, Kashiwagi and Lichtenhan (1997) published a paper on "Nanocomposites as a revolutionary new flame retardant approach." However, in the years that followed, it was discovered that adding organoclays to materials does not, by itself, enable materials to pass flame tests (Morgan 2006; Morgan and Wilke 2007). Organoclays improve flame retardant performance through synergistic actions, which has been documented for a variety of flame retardant additive types. When burned, organoclay particles in a nanocomposite move to the surface of the specimen increasing char strength and serving as a drip suppressant through formation of an insulating layer that can delay gasification. The typical loading amount varies between approximately three and six percent by weight (Gilman 1999; Gilman, Jackson et al. 2000).

Organoclays may pose a hazard to human health (minimal to moderate eye irritation, respiratory irritation observed in acute studies using high exposure levels, potential carcinogenicity) (US/International Council of Chemical Associations (ICCA) 2007), but the Organisation of Economic Cooperation and Development (OECD) has determined that organoclays are "of low priority for further work" (US/ICCA 2007).

Mesoporous silicate particles

MSPs can be thought of as holey silica 'beads.' Due to the large size of the pores, polymers interact with both the internal surfaces of the pores and the external surfaces of the particle, thereby forming a physically cross-linked polymer-particle network. The network created by the MSP, combined with their surface chemistry, improves the char barrier formed during combustion that reduces flame intensity while simultaneously improving the mechanical performance of the polymer into which they are compounded. (Some MSPs have surface areas in the range 200 to 1,200 m²/g, uniform pores in the mesometric size range of 2 to 50 nm, and pore volumes between 0.20 and 2.0 cm³/g (Pinnavaia, Roston et al.)). As with organoclays, MSPs on

their own will not typically result in achieving flame retardancy, but by replacing a portion of the flame retardant loading with about 0.5 to 3 percent by weight MSPs, flame retardancy may be reached (Roston 2011).

Some MSP materials have been tested in various thermosets (e.g., glassy epoxy and polyester), and thermoplastics (e.g., PP, PE, and nylon 6) to assess their effectiveness as both a flame retardant agent and mechanical reinforcing agent. Some particles have demonstrated the ability to reduce fire intensity while simultaneously increasing the strength of the composite (Pinnavaia, Roston et al.). Test results have also shown a reduction in dripping during fires (Pinnavaia, Roston et al.). Manufacturer brochures state that their MSPs are low-toxicity submicron inorganic compositions that can be easily dispersed in a polymer matrix without the use of organic surface modification (University of California, Los Angeles (UCLA) 2009).

Layer-by-layer technology

Layer-by-layer (LbL) coatings are nanocomposite structures assembled by an alternate deposition of anionic and cationic monolayers onto a substrate (Li, Schulz et al. 2009; Kim, Harris et al. 2012). The deposition of the anionic monolayer and the cationic monolayer (collectively known as a bilayer) is repeated until a coating with the desired properties is created (Li, Schulz et al. 2009). Electrostatic, van der Waals, covalent, and hydrogen bonds hold the monolayers together in LbL coatings (Kim, Harris et al. 2012; Carosio, Blasio et al. 2013). The LbL deposition technique was discovered in 1966, developed in the 1990s, and was reported in 2009 as being used for developing flame-retardant coatings (Li, Schulz et al. 2009; Li, Schulz et al. 2010; Apaydin, Laachachi et al. 2013). Flame-retardant LbL coatings are gaining attention beyond just the areas of academic research and development. Some industrial companies are now pursuing internal studies on the effectiveness of LbL coatings as flame retardants in commercial products including fabrics, foams, and films. Research has shown that LbL coatings can be effective flame retardants for a number of different substrates including cotton fabric (Li, Schulz et al. 2009; Laufer, Kirkland et al. 2012b), polyurethane foam (Kim, Harris et al. 2012; Laufer, Kirkland et al. 2012a), PC (Carosio, Blasio et al. 2013), nylon 6 (Apaydin, Laachachi et al. 2013), and PET (Carosio, Laufer et al. 2011). Specifically, some clay-based LbL coatings have been shown to effectively decrease the flammability of materials by generating a protective intumescent char layer when exposed to flames that limits heat and mass transfer (Li, Mannen et al. 2011; Kim, Harris et al. 2012; Laufer, Kirkland et al. 2012a; Apaydin, Laachachi et al. 2013). Montmorillonite clay (MMT) has proved to be compatible in the LbL process and effective as a flame retardant; the clay requires little processing prior to deposition because it is a naturallyoccurring, inherently anionic material that is known to catalyze char formation (Bourbigot, Gilman et al. 2004; Kim, Harris et al. 2012; Apaydin, Laachachi et al. 2013). Recently, LbL flame retardant formulations formed solely from natural feedstocks (Chitosan and MMT) were used to provide flame retardancy for polyurethane foam with significant reductions in flame spread and heat release (Laufer, Kirkland et al. 2012a). Another system using strictly plant-based matter (Chitosan and phytic acid) was found to deliver localized intumescent protection for cotton fabrics from 100% renewable resources (Laufer, Kirkland et al. 2012b).
3.4 Flame Retardant Modes of Action

Polymer combustion is a complex process involving a number of interrelated and interdependent stages. It is possible to decrease the overall rate of polymer combustion by interfering with one or more of these stages. The basic mechanisms of flame retardancy will vary depending on the flame retardant and polymer system. Flame retardants can be classified based on the phase (solid or gas) in which they act to reduce or prevent propagation of flame. Other flame retardants may form protective barriers over a polymer which may insulate the flammable polymer from heat or reduce the amount of polymer that is available to burn as fuel.

3.4.1 Chemical Action in Condensed and Gas Phases

During fire, significant polymer degradation can occur due to heat in the condensed phase (1 mm from the flame/polymer interface), giving rise to volatile species that are liberated into the gas phase of the flame. Flame retardant compositions can either act on the condensed phase or the gas phase.

Radical Scavengers in the Gas Phase

Radical scavengers are also classified as chemical action flame retardant additives as they modify the radical process in the gas phase through chemical interaction with highly reactive species.

Halogenated Flame Retardants:

Halogenated flame retardants (e.g., decaBDE) mainly work through this mode of action by interfering with the gas phase of the combustion process (Troitzsch 1998). The mechanism of action of these types of flame retardants is shown in Figure 3-1. First, the flame retardant material breaks down and releases halogen radicals (X^{\bullet}) that react with the polymeric material (RH). The resulting reaction forms the corresponding halide (HX). The highly reactive radicals, hydrogen (H^{\bullet}) and hydroxyl (OH^{\bullet}), are responsible for degradation of volatile polymeric species into low molecular weight (MW) fragments. These radicals react with HX to produce less reactive (more stable) species, in some cases water, as shown in Figure 3-1. The addition of a catalytic amount of HX reduces the overall rate of combustion in this chain reaction (Hastie 1973). Consequently, the heat release rate and the heat transferred to the polymer are also reduced. When the gas phase is saturated with less reactive radicals or species, the conditions for limiting combustion can be reached, thus extinguishing the flame.

Figure 3-1: Mechanism of action of halogenated flame retardant $X^{\bullet} + RH \rightarrow R^{\bullet} + HX$ $HX + H^{\bullet} \rightarrow H_2 + X^{\bullet}$ $HX + OH^{\bullet} \rightarrow H_2O + X^{\bullet}$ *Source*: Troitzsch 1998

Many aliphatic and aromatic halogenated flame retardants have been developed to meet specific compatibility requirements with commercial plastics. Brominated flame retardants are the

preferred choice of halogenated flame retardants from a manufacturing standpoint due to their cost effectiveness, effectiveness at low loading levels for some applications, and ease of processing (minimal/no detrimental effect on polymer processing). This preferability does not consider hazard, risk, or performance.

Intumescents, Organic Char Forming Compounds and Radical Scavengers in the Condensed Phase

In the condensed phase, flame retardants can form protective barriers, which may be through intumescence or char formation, to prevent the propagation of flames. Phosphorous-based (e.g., ammonium polyphosphate, melamine polyphosphate) and nitrogen-based (e.g., melamine cyanurate) flame retardants both act in this way.

Some flame retardants cover the flammable polymer surface with a non-flammable protective coating. This helps insulate the polymer from the source of heat, reducing the formation of combustible breakdown products and release to the gas phase. The non-flammable coating may also prevent gaseous oxidants (e.g., oxygen from the air) from contacting the polymer surface. Intumescent compounds, which swell as a result of heat exposure, lead to the formation of a protective barrier in which the gaseous products of polymer decomposition are trapped.

Alternatively, a non-flammable layer can be directly applied to the surface of the polymer to form a non-intumescent barrier coating. The formation of a thermally insulating char layer significantly influences subsequent degradation by serving as a protective coating layer preventing oxygen supply to the condensed phase. The properties of the char layer can further be bolstered by the presence of inorganic compounds. Many phosphorus-containing compounds form such non-intumescent surface chars. Char formation has several roles in flame retarding action. Char formation during combustion is an energy intensive process and occurs at the expense of other undesirable degradation reactions. There is dilution of the flame zone, and reduction in the amount of fuel available for further degradation (Kuryla 1979).

As mentioned above, both phosphorous- and nitrogen-based flame retardants work in the condensed phase. Below is a discussion on the modes of actions for these flame retardants.

Phosphorous Based Flame Retardants:

Phosphorous based flame retardants work efficiently in the condensed phase during combustion of a polymer. When heated, phosphorous reacts to produce phosphoric acid derivatives as shown in Figure 3-2. This acid is responsible for the formation of a glassy layer, which prevents flame propagation. Phosphorous-based flame retardants also generate intumescent char which acts as a two way barrier, namely hindering passage of combustible gas from the polymer to the flame and shielding the polymer layer from the flame. A range of phosphorous-based compounds including phosphines, phosphine oxides, phosphonium compounds, phosphonates, phosphinates, elemental red phosphorus, phosphites and phosphates are used as flame retardant additives. Phosphorus based flame retardants also include ammonium polyphosphate, melamine polyphosphate, and phosphate esters. Even though their predominant mode of action is through physical action (charring), there are certain proposed radical reactions that can take place during the combustion process as shown in Figure 3-2 (Carnaham, Haaf et al. 1979).

Inorganic phosphorus compounds are primarily used in PAs and phenolic resins, or as components in intumescent formulations. In the case of an intumescent material, a foamed char is developed on the surface upon combustion. In addition to char, intumescent materials can adhere to molten polymer, and help prevent dripping, which is necessary in fire quenching.

Nitrogen Based Flame Retardants:

Nitrogen-based compounds are often intumescent and were originally used in nitrogencontaining polymers such as polyurethanes and PAs. Melamine, melamine cyanurate, other melamine salts and guanidine compounds are currently the most used group of nitrogencontaining flame retardants. Melamine is used as a flame retardant additive for PP and PE. Melamine cyanurate is used as a flame retardant for PAs and polyesters (PET/PBT), epoxies and polyurethane resins. Melamine phosphate is also used in polyesters (PET/PBT).

3.4.2 Fillers / Diluents

Another mode of action is that exerted by inert solids incorporated into polymers. Such materials are known as fillers. Fillers include minerals like calcium carbonate or wollastonite. Sometimes the term filler gets used with magnesium and aluminum hydroxides due to their mineral structure. These mineral hydroxide fillers that impart flame retardant properties can be categorized as functional fillers. Metal hydroxides decompose with endothermicity when exposed to a fire and dilute the condensed phase of the burning polymer. These additives act as a heat sink, releasing water and/or carbon monoxide that interfere with combustion products in the vapor phase. As a result, fillers keep polymers cool and prevent them from thermally decomposing. Since fillers act predominantly via a physical rather than a chemical process, large loadings of fillers are needed to meet flammability standards.

3.4.3 Inorganic and Hydrated Compounds and Synergists

Metal hydroxides are the largest (by tonnage) class of all flame retardants used commercially and are employed alone or in combination with other flame retardants to achieve necessary improvements in flame retardancy. Metal hydroxides can function both in the condensed and gas phases of a fire by absorbing heat and decomposing to release their water. This process cools both the polymer and the flame and dilutes the flammable gas mixture. The high concentrations (typically 13 to 60 percent or greater by weight) required to impart flame retardants properties often adversely affect the mechanical properties of the polymer into which they are incorporated.

Aluminum hydroxide, also known as alumina trihydrate, is the largest volume flame retardant in use today. The low decomposition temperature (220-230°C), limits the polymers in which it can be incorporated. Magnesium hydroxide is stable to temperatures above 330-350°C and can be processed into several polymers.

Antimony trioxide may not be considered a flame retardant by itself but is often used as a synergist. It is used in plastics, rubbers, textiles, paper and paints with organochlorine and organobromine compounds to diminish the flammability of a wide range of plastics and textiles. Boron compounds display synergism with antimony oxide. Zinc borate can function as a flame retardant and smoke suppressant.

Antimony-based compounds are synergistic co-additives used in combination with halogenated flame retardants, facilitating the reduction in total amount of flame retardants required to achieve a desired level of flame retardancy. Antimony oxides and antimonates are converted to volatile species by halogen acids in the fire. The halogen acids react with the antimony-containing

materials to form antimony trihalide and/or antimony halide oxide. The higher MWs of antimony halides in comparison to hydrogen halides, allow them to remain in the combustion zone longer, thus improving the efficiency of flame retardancy. This synergism only occurs in the presence of halogen flame retardants, as antimony does not react to form any other species in the presence of non-halogenated flame retardants.

Antimony oxychloride or trichloride reduces the rate at which the halogen leaves the flame zone, thus increasing the probability of reaction with the reactive species (i.e., hydroxyl radicals). The mechanism of action also involves radical scavenging as shown in Figure 3-3.

Other Metal Based Compounds

Molybdenum compounds have been used as flame retardants in cellulosic materials and PVCs for many years and more recently with other polymers, mainly as smoke suppressants. Zinc compounds, such as zinc stannate and zinc hydroxy-stannate, are also used as synergists and as partial replacements for antimony trioxide.

3.4.4 Melting and Dripping

Some flame-retardant chemicals inhibit combustion by interfering with the transfer of heat from combustion back to the polymer (e.g., melamine cyanurate). Certain chemicals may promote depolymerization, which lowers the MW of the polymer and facilitates melting. As the burning melt drips away from the bulk of the polymer it carries with it a proportion of the heat that would otherwise contribute to polymer decomposition and volatilization. By reducing the release of volatile decomposition products into the gas phase, these flame retardants reduce the amount of gaseous decomposition products available to feed the flame. While enhanced melting should decrease flammability in theory, in practice droplets of burning molten polymer may help spread a fire to other combustible materials.

3.4.5 Smoldering (Non-Flaming) Combustion

Smoldering (non-flaming) combustion and the closely related phenomenon of glowing combustion (i.e., only embers are present) occur primarily with high-surface area polymeric materials that break down during combustion to form a residual carbonaceous char (typically

cellulosic materials). In general, it is possible to inhibit non-flaming combustion either by retarding or preventing the initial breakdown of the polymer to form a char, or by interfering with the further combustion of this char. Boric acid and phosphates are the primary flame retardants used for preventing non-flaming combustion of organic polymers.

3.5 References

- Apaydin, K., A. Laachachi, et al. (2013). "Polyallylamine-montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide." <u>Polymer</u> <u>Degradation and Stability</u> **98**: 627-634.
- Beyler, C. L. and M. M. Hirschler (2002). <u>Thermal Decomposition of Polymers. In SFPE</u> <u>Handbook of Fire Protection Engineering</u>, DiNenno, P.J.
- Bourbigot, S., J. W. Gilman, et al. (2004). "Kinetic analysis of the thermal degradation of polystyrene-montmorillonite nanocomposite." <u>Polymer Degradation and Stability</u> 84: 483-492.
- Breitenfellner, B. and T. Kainmülle (1985). Flame-retarding, reinforced molding material based on thermoplastic polyesters and the use thereof. U.S.
- Carnaham, J., W. Haaf, et al. (1979). <u>Proceedings of Fourth International Conference of</u> <u>Flammability Standards</u>, San Francisco.
- Carosio, F., A. D. Blasio, et al. (2013). "Layer by layer nanoarchitectures for the surface protection of polycarbonate." <u>European Polymer Journal</u> **49**: 397-404.
- Carosio, F., G. Laufer, et al. (2011). "Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric." <u>Polymer Degradation and Stability</u> **96**: 745-750.
- Cullis, C. F. and M. M. Hirschler (1981). <u>The Combustion of Organic Polymers</u>. Oxford, Oxford University Press.
- Danish Ministry of the Environment (2007). Health and Environmental Assessment of Alternatives to Deca-BDE in Electrical and Electronic Equipment. Environmental Protection Agency.
- DuPont. (2010). "DuPont Personal Protection NOMEX Frequently Asked Questions." Retrieved February 10, 2011, from <u>http://www2.dupont.com/Personal_Protection/en_US/products/Nomex/nomexind/nomex</u> <u>industrial_faq.html#5QD</u>.
- European Chemicals Bureau (2007). Review on production processes of decabromodiphenyl ether (decaBDE) used in polymeric application in electrical and electronic equipment, and assessment of the availability of potential alternatives to decaBDE. Institute on Health and Consumer Protection.
- Gilman, J. W. (1999). "Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposities." <u>Applied Clay Science</u> **15**: 31-49.
- Gilman, J. W., C. L. Jackson, et al. (2000). "Flammability Properties of Polymer-Layered Silicate Nanocomposites. Polypropylene and Polystyrene Nanocomposites." <u>Chemical</u> <u>Matter</u> 12: 1866-1873.
- Gilman, J. W., T. Kashiwagi, et al. (1997). <u>Nanocomposites: A revolutionary new flame</u> retardant approach. 42nd International SAMPE Symposium.
- Green, J. (2000). Chapter 5: Phosphorus-containing flame retardants. <u>Fire Retardancy of</u> <u>Polymeric Materials, Grand, A.F., Wilkie, C.A.</u> New York, Marcel Dekker: 147.

- Hastie, J. W. (1973). "Molecular basics of flame inhibition." Journal of Research of the National <u>Bureau of Standards</u> 1973(77A): 733-754.
- Hirschler, M. M. (1992). <u>Fire hazard and fire risk assessment; ASTM STP 1150</u>. Amer. Soc. Testing and Materials, Philadelphia, PA.
- Hirschler, M. M. (1994). <u>Fire Retardance, Smoke Toxicity and Fire Hazard</u>. Proceedings of Flame Retardants '94, London, UK.
- Hirschler, M. M. (1998). <u>Fire Performance of Poly(Vinyl Chloride) Update and Recent</u> <u>Developments.</u> Proceedings of Flame Retardants '98, London, UK, Interscience Communications.
- Jonas, D. M. (1970). Solid polymer compositions having flame retardant and drip resistant properties and additive compositions for imparting said properties thereto. U.S.
- Kim, Y. S., R. Harris, et al. (2012). "Innovative Approach to Rapid Growth of Highly Clay-Filled Coatings on Porous Polyurethane Foam." <u>ACS Macro Letters</u> 1: 820-524.
- Kuryla, W. C. (1979). Flame retardancy of polymeric materials. New York, Marcel Dekker.
- Laufer, G., C. Kirkland, et al. (2012a). "Clay-Chitosan Nanobrick Walls: Completely Renewable Gas Barrier and Flame-Retardant Nanocoatings." <u>ACS Appl Mater Interfaces</u> 4(3): 1643-1649.
- Laufer, G., C. Kirkland, et al. (2012b). "Intumescent Mulitlayer Nanocoating, Made with Renewable Polyelectrolytes, for Flame-Retardant Cotton." <u>Biomacromolecules</u> **13**(9): 2843-2848.
- Li, Y.-C., S. Mannen, et al. (2011). "Intumescent All-Polymer Multilayer Nanocoating Capable of Extinguishing Flame on Fabric." <u>Advanced Materials</u> **23**(34): 3926-3931.
- Li, Y.-C., J. Schulz, et al. (2009). "Polyelectrolyte/Nanosilicate Thin-Film Assemblies: Influence of pH on Growth, Mechnical Behavior, and Flammability." <u>ACS Appl Mater</u> <u>Interfaces</u> **1**(10): 2338-2347.
- Li, Y.-C., J. Schulz, et al. (2010). "Flame Retardant Behavior of Polyelectrolyte-Clay Thin Film Assemblies on Cotton Fabric." <u>ACS Nano</u> **4**(6): 3325-3337.
- Lyons, J. W. (1970). The Chemistry and Use of Fire Retardants. New York, Wiley.
- Mehta, R. K. S. and P. Weiss (1978). Bentonite/halogen flame retarding additive. US.
- Modern Plastics and Charles A. Harper (1999). Modern Plastics Handbook McGraw Hill
- Morgan, A. and C. A. Wilke (2007). <u>Flame Retardant Polymer Nanocomposites</u>. NY, John Wiley & Sons.
- Morgan, A. B. (2006). "Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems." <u>Polymers for Advanced Technologies</u> 17: 206-217.
- Morose, G. (2006). An Investigation of Alternatives to Tetrabromobisphenol A (TBBPA) and Hexabromocyclododecane (HBCD) Prepared for: The Jennifer Altman Foundation.
- Nagarajan, R. (2012). Personal Communication Inherently Flame Retardant Materials. L. B. Emma Lavoie.

- Nelson, G. L. (1998). "Carbon Monoxide and Fire Toxicity: A Review and Analysis of Recent Work." <u>Fire Techonology</u> **34**(1): 39-58.
- Norwegian Pollution Control Agency (2009). Emerging New Brominated Flame Retardants in Flame Retarded Products and the Environment.
- Peck, M. D. (2011). "Structure Fires, Smoke Production, and Smoke Alarms." <u>J Burn Care Res</u> 32(5): 511-518.
- Pinnavaia, T. J., G. P. Roston, et al. (2011). <u>Mesoporous silicate particle as fire retardants in plastics</u>. 22nd Annual Conference on Recent Advances in Flame Retardancy of Polymeric Materials, Stamford, CT.
- Posner, S. and L. Boras (2005). Survey and technical assessment of alternative to Decabromodiphenyl ether (decaBDE) in plastics. The Swedish Chemicals Inspectorate. Stockholm.
- Pure Strategies Inc. for Maine Department of Environmental Protection (2010). "Decabromodiphenyl Ether Flame Retardant in Plastic Pallets: A Safer Alternatives Assessment."
- Roston, G. P. (2011). Personal Communication. Loading Levels in Nanomaterials. E-mail to Emma Lavoie and Lauren Brown.
- Shain, A. L. (1987). Low smoke generating, high char forming, flame retardant thermoplastic multi-block copolyesters. U.S.
- Theng, B. K. G. (1974). Interactions with Positively Charged Organic Species. <u>The Chemistry of</u> <u>Clay-Organic Reaction</u>. NY, John Wiley & Sons.
- Troitzsch, J. H. (1998). "Overview of flame retardants, fire and fire safety, markets and applications, mode of action and main familites, role in fire gases and residues." <u>Chemistry Today</u> **16**(1/2): 18.
- U.S. EPA. (2005). "Furniture Flame Retardancy Partnership: Environmental Profiles of Chemical Flame-Retardant Alternatives for Low-Density Polyurethane Foam (EPA 742-R-05-002A)." Retrieved November 18, 2013, from <u>http://www.epa.gov/dfe/pubs/flameret/ffr-alt.htm</u>.
- U.S. EPA. (2008). "Flame Retardants in Printed Circuit Boards (Review Draft)." Retrieved November 18, 2013, from <u>http://www.epa.gov/dfe/pubs/projects/pcb/full_report_pcb_flame_retardants_report_draft_11_10_08_to_e.pdf</u>.
- U.S. EPA. (2009). "Polybrominated Diphenyl Ethers (PBDEs) Action Plan." Retrieved November 18, 2013, from <u>http://www.epa.gov/opptintr/existingchemicals/pubs/actionplans/pbdes_ap_2009_1230_final.pdf</u>.
- U.S. EPA. (2011). "Design for the Environment Program Alternatives Assessment Criteria for Hazard Evaluation (version 2.0)." Retrieved November 18, 2013, from <u>http://www.epa.gov/dfe/alternatives_assessment_criteria_for_hazard_eval.pdf</u>.

- UCLA. (2009). "UC TSR&TP Amorphous Silica Literature Review." Retrieved March 2011, from <u>http://www.maa.org/pubs/Calc_articles/ma002.pdf</u>.
- US/ICCA (2007). SIDS Initial Assessment Profile: Organoclays Category.
- Walters, R. N. and R. E. Lyon (2003). "Molar Group Contributions to Polymer Flammability." <u>J.</u> <u>App. Polym. Sci</u> **87**: 548-563.
- Washington State Department of Health (2008). Alternatives to Deca-BDE in Televisions and Residential Upholstered Furniture. Department of Ecology. Olympia, WA.
- Weil, E. D. and S. Levchik (2004). "A Review of Current Flame Retardant Systems for Epoxy Resins." Journal of Fire Science 22: 25-40.
- Weil, E. D. and S. V. Levchik (2009). <u>Flame Retardants for Plastics and Textiles: Practical</u> <u>Applications</u>, Hanser.

THIS PAGE INTENTIONALLY LEFT BLANK

4 Hazard Evaluation of DecaBDE and Alternatives

This chapter summarizes the toxicological and environmental hazards of decabromodiphenyl ether (decaBDE) and each alternative chemical that was identified as a potential functional substitute for decaBDE. Evaluations of chemical formulations may also include associated substances (e.g., starting materials, byproducts, and impurities) if their presence is specifically required to allow that alternative to fully function in the assigned role. Otherwise, pure substances were analyzed in this assessment. Users of the alternative assessments should be aware of the purity of the trade product they purchase, as the presence of impurities may alter the assessment of the alternative. This report is a hazard assessment, not a risk assessment. Hazard assessment as a risk management tool is discussed in more detail in Section 1.4.

Toxicological and environmental endpoints included in the hazard profiles are discussed in Section 4.1 along with the criteria used to evaluate each hazard endpoint. Data sources and the review methodology are described in Section 4.2. The report then offers a detailed description of the utility of physical-chemical properties in understanding hazard in Section 4.3 and the process of evaluating human health and environmental endpoints in Sections 4.4 and 4.5, respectively. A discussion of the evaluation of endocrine activity is included in Section 4.6. The characteristics of each chemical included in the alternatives assessment are summarized in the comparative hazard summary table in Section 4.7. Lastly, the collected data and hazard profile of each chemical are presented in Section 4.8.

4.1 Toxicological and Environmental Endpoints

The assessment of endpoints with the intent to create hazard profiles for a Design for the Environment (DfE) alternatives assessment follows the guidance of the "Alternatives Assessment Criteria for Hazard Evaluation" (U.S. EPA 2011b). The definitions for each endpoint evaluated following these criteria are outlined in Section 4.1.1 and the criteria by which these endpoints are evaluated are outlined in Section 4.1.2. Lastly, there are endpoints which DfE characterizes but does not assign criteria to and these are summarized in Section 4.1.3.

4.1.1 Definitions of Each Endpoint Evaluated Against Criteria

Hazard designations for each chemical discussed in this report were made by direct comparison of the experimental or estimated data to the *DfE "Alternatives Assessment Criteria for Hazard Evaluation"* (U.S. EPA 2011b). Table 4-1 provides brief definitions of human health toxicity, environmental toxicity and environmental fate endpoints.

Table 4-1: Definitions of Toxicological and Environmental Endpoints for Haza	ard
Assessment	

Endpoint Category	Endpoint	Definition
Human Health Effects	Acute Mammalian Toxicity	Adverse effects occurring following oral or dermal administration of a single dose of a substance, or multiple doses given within 24 hours, or an inhalation exposure of 4 hours.

Endpoint Category	Endpoint	Definition
	Carcinogenicity	Capability of a substance to increase the incidence of malignant neoplasms, reduce their latency, or increase their severity or multiplicity.
	Mutagenicity/Genotoxicity	<i>Mutagenicity</i> - The ability of an agent to induce permanent, transmissible changes in the amount, chemical properties or structure of the genetic material. These changes may involve a single gene or gene segment, a block of genes, parts of chromosomes, or whole chromosomes. Mutagenicity differs from genotoxicity in that the change in the former case is transmissible to subsequent cell generations.
		<i>Genotoxicity</i> – The ability of an agent or process to alter the structure, information content, or segregation of DNA, including those which cause DNA damage by interfering with normal replication process, or which in a non- physiological manner (temporarily) alter its replication.
	Reproductive Toxicity	The occurrence of biologically adverse effects on the reproductive systems of females or males that may result from exposure to environmental agents. The toxicity may be expressed as alterations to the female or male reproductive organs, the related endocrine system, or pregnancy outcomes. The manifestation of such toxicity may include, but is not limited to: adverse effects on onset of puberty, gamete production and transport, reproductive cycle normality, sexual behavior, fertility, gestation, parturition, lactation, developmental toxicity, premature reproductive senescence or modifications in other functions that were dependent on the integrity of the reproductive systems.
	Developmental Toxicity	Adverse effects in the developing organism that may result from exposure prior to conception (either parent), during prenatal development, or postnatally to the time of sexual maturation. Adverse developmental effects may be detected at any point in the lifespan of the organism. The major manifestations of developmental toxicity include: (1) death of the developing organism, (2) structural abnormality, (3) altered growth, and (4) functional deficiency.
	Neurotoxicity	An adverse change in the structure or function of the central and/or peripheral nervous system following exposure to a chemical, physical or biological agent.

Endpoint Category	Endpoint	Definition		
	Repeated Dose Toxicity	Adverse effects (immediate or delayed) that impair normal physiological function (reversible and irreversible) of specific target organs or biological systems following repeated exposure to a chemical substance by any route relevant to humans. Adverse effects include biologically significant changes in body and organ weights, changes that affect the function or morphology of tissues and organs (gross and microscopic), mortality, and changes in biochemistry, urinalysis, and hematology parameters that are relevant for human health; may also include immunological and neurological effects.		
	Respiratory Sensitization	Hypersensitivity of the airways following inhalation of a substance.		
	Skin Sensitization	A cell-mediated or antibody-mediated allergic response characterized by the presence of inflammation that may result in cell death, following an initial induction exposure to the same chemical substance, i.e., skin allergy.		
	Eye Irritation/Corrosivity	Irritation or corrosion to the eye following the application of a test substance.		
	Skin Irritation/Corrosion	Skin irritation- reversible damage to the skin following the application of a test substance for up to 4 hours. Skin corrosion- irreversible damage to the skin namely, visible necrosis through the epidermis and into the dermis following the application of a test substance for up to 4 hours.		
	Environmental toxicity refers to adver inhabit the wild; the assessment is foc organisms (freshwater fish, invertebra	rse effects observed in living organisms that typically used on effects in three groups of surrogate aquatic ates, and algae).		
Environmental Toxicity	Aquatic Toxicity (Acute)	The property of a substance to be injurious to an organism in a short-term, aquatic exposure to that substance.		
	Aquatic Toxicity (Chronic)	The property of a substance to cause adverse effects to aquatic organisms during aquatic exposures which were determined in relation to the life-cycle of the organism.		
Environmental Fate	Environmental Persistence	The length of time the chemical exists in the environment, expressed as a half-life, before it is destroyed (i.e., transformed) by natural or chemical processes. For alternative assessments, the amount of time for complete assimilation (ultimate removal) is preferred over the initial step in the transformation (primary removal).		
	Bioaccumulation	The process in which a chemical substance is absorbed in an organism by all routes of exposure as occurs in the natural environment, e.g., dietary and ambient environment sources. Bioaccumulation is the net result of competing processes of chemical uptake into the organism at the respiratory surface and from the diet and chemical elimination from the organism including respiratory exchange, fecal egestion, metabolic biotransformation of the parent compound and growth dilution.		

The hazard profile for each chemical contains endpoint specific summary statements (see Section 4.8). For each of the endpoints listed in Table 4-1, these summary statements provide the hazard designation, the type of data (experimental or estimated) and the rationale. The endpoint summaries may also include explanatory comments, a discussion of confounding factors or an indication of the confidence in the data to help put the results in perspective.

4.1.2 Criteria

Table 4-2 summarizes the criteria that were used by the U.S. Environmental Protection Agency (EPA) DfE Program to interpret the data presented in the hazard evaluations. The *DfE Alternatives Assessment Criteria for Hazard Evaluation* underwent internal and public comment, and were finalized in 2011 (U.S. EPA 2011b). A hazard designation for each human health endpoint was not given for each route of exposure but rather was based on the exposure route with the highest hazard designation. Data may have been available for some or all relevant routes of exposure.

The details as to how each endpoint was evaluated are described below and in the DfE full criteria document, *DfE Alternatives Assessment Criteria for Hazard Evaluation*, available at: <u>http://www.epa.gov/dfe/alternatives_assessment_criteria_for_hazard_eval.pdf</u>.

Endpoint	Very High	High	Moderate	Low	Very Low
	·	Human Health	Effects		
Acute mammalian toxicity					
Oral median lethal dose (LD ₅₀) (mg/kg)	≤50	>50-300	>300-2000	>2000	_
Dermal LD ₅₀ (mg/kg)	≤200	>200-1000	>1000-2000	>2000	_
Inhalation median lethal concentration (LC ₅₀) - vapor/gas (mg/L)	≤2	>2-10	>10-20	>20	_
Inhalation LC ₅₀ - dust/mist/ fume (mg/L)	≤0.5	>0.5-1.0	>1-5	>5	_
Carcinogenicity	·	•			
Carcinogenicity	Known or presumed human carcinogen (equivalent to Globally Harmonized System of Classification and Labeling of Chemicals (GHS) Categories 1A	Suspected human carcinogen (equivalent to GHS Category	Limited or marginal evidence of carcinogenicity in animals (And inadequate evidence in humons)	Negative studies or robust mechanism- based Structure Activity Relationship (SAR) (As described	_
	Categories IA and 1B)	2)	humans)	(As described above)	

Table 4-2: Criteria Used to Assign Hazard Designations

Endpoint	Very High	High	Moderate	Low	Very Low	
Mutagenicity/Genotoxicity	Mutagenicity/Genotoxicity					
Germ cell mutagenicity	GHS Category 1A or 1B: Substances known to induce heritable mutations or to be regarded as if they induce heritable mutations in the germ cells of humans	GHS Category 2: Substances which cause concern for humans owing to the possibility that they may induce heritable mutations in the germ cells of humans OR	Evidence of mutagenicity supported by positive results in <i>in vitro</i> OR <i>in</i> <i>vivo</i> somatic	Negative for chromosomal aberrations and gene mutations, or no structural		
Mutagenicity and genotoxicity in somatic cells		Evidence of mutagenicity supported by positive results in <i>in vitro</i> AND <i>in vivo</i> somatic cells and/or germ cells of humans or animals	cells of humans or animals	alerts.		
Reproductive toxicity	•					
Oral (mg/kg/day)	_	<50	50-250	>250-1000	>1000	
Dermal (mg/kg/day)	_	<100	100–500	>500-2000	>2000	
Inhalation - vapor, gas (mg/L/day)	-	<1	1–2.5	>2.5-20	>20	
Inhalation - dust/mist/fume (mg/L/day)	_	<0.1	0.1–0.5	>0.5-5	>5	
Developmental toxicity						
Oral (mg/kg/day)	_	<50	50-250	>250-1000	>1000	
Dermal (mg/kg/day)	-	<100	100–500	>500-2000	>2000	
Inhalation - vapor, gas (mg/L/day)	_	<1	1–2.5	>2.5-20	>20	
Inhalation - dust/mist/fume (mg/L/day)	_	<0.1	0.1–0.5	>0.5-5	>5	
Neurotoxicity						
Oral (mg/kg/day)	_	<10	10-100	>100	-	
Dermal (mg/kg/day)	_	<20	20-200	>200	_	
Inhalation - vapor, gas (mg/L/day)	_	<0.2	0.2–1.0	>1.0	_	
Inhalation - dust/mist/fume (mg/L/day)	_	<0.02	0.02-0.2	>0.2	_	
Repeated-dose toxicity						
Oral (mg/kg/day)	_	<10	10-100	>100		

Endpoint	Very High	High	Moderate	Low	Very Low
Dermal (mg/kg/day)	_	<20	20-200	>200	_
Inhalation - vapor, gas (mg/L/day)	_	<0.2	0.2–1.0	>1.0	_
Inhalation - dust/mist/fume (mg/L/day)	_	<0.02	0.02–0.2	>0.2	_
Sensitization		•	•		
Skin sensitization	_	High frequency of sensitization in humans and/or high potency in animals (GHS Category 1A)	Low to moderate frequency of sensitization in human and/or low to moderate potency in animals (GHS Category 1B)	Adequate data available and not GHS Category 1A or 1B	_
Respiratory sensitization	_	Occurrence in humans or evidence of sensitization in humans based on animal or other tests (equivalent to GHS Category 1A and 1B)	Limited evidence including the presence of structural alerts	Adequate data available indicating lack of respiratory sensitization	_
Irritation/corrosivity		•			
Eye irritation/corrosivity	Irritation persists for >21 days or corrosive	Clearing in 8– 21 days, severely irritating	Clearing in ≤7 days, moderately irritating	Clearing in <24 hours, mildly irritating	Not irritating
Skin irritation/corrosivity	Corrosive	Severe irritation at 72 hours	Moderate irritation at 72 hours	Mild or slight irritation at 72 hours	Not irritating
Endocrine activity		•	•		
Endocrine Activity	For this endpoin qualitative asses	t, High/Moderate sment of availab	e/Low etc. charact le data will be pre	erizations will not pared.	apply. A
	Envi	ronmental Toxi	city and Fate		
Aquatic toxicity					
Acute aquatic toxicity – LC_{50} or half maximal effective concentration (EC_{50}) (mg/L)	<1.0	1–10	>10-100	>100 or No Effects at Saturation (NES)	_
Chronic aquatic toxicity – lowest observed effect concentration (LOEC) or chronic value (ChV) (mg/L) Environmental persistence	<0.1	0.1–1	>1-10	>10 or NES	_

Endpoint	Very High	High	Moderate	Low	Very Low
Persistence in water, soil, or sediment	Half-life >180 days or recalcitrant	Half-life of 60– 180 days	Half-life <60 but ≥16 days	Half-life <16 days OR passes Ready Biodegradability test not including the 10-day window. No degradation products of concern.	Passes Ready Biodegradability test with 10-day window. No degradation products of concern.
Persistence in air (half-life days)	For this endpoin qualitative asses	t, High/Moderate, sment of available	/Low etc. characte e data will be prep	erizations will not pared.	apply. A
Bioaccumulation	-				
Bioconcentration Factor (BCF)/Bioaccumulation Factor (BAF)	>5000	5000-1000	<1000–100	<100	_
Log BCF/BAF	>3.7	3.7–3	<3-2	<2	_

Very High or Very Low designations (if an option for a given endpoint in Table 4-2) were assigned only when there were experimental data located for the chemical under evaluation. In addition, the experimental data must have been collected from a well conducted study specifically designed to evaluate the endpoint under review. If the endpoint was estimated using experimental data from a close structural analog, by professional judgment, or from a computerized model, then the next-level designation was assigned (e.g., use of data from a structural analog that would yield a designation of very high would result in a designation of high for the chemical in review). One exception is for the estimated persistence of polymers with an average molecular weight (MW) >1,000 daltons, which may result in a Very High designation.

4.1.3 Endpoints Characterized but Not Evaluated

Several additional endpoints were characterized, but not evaluated against hazard criteria. This is because the endpoints lacked a clear consensus concerning the evaluation criteria (endocrine activity), data and expert judgment were limited for industrial chemicals (persistence in air, terrestrial ecotoxicology), or the information was valuable for the interpretation of other toxicity and fate endpoints (including toxicokinetics and transport in the environment).

Toxicological Endpoint	Definition
Toxicokinetics	The determination and quantification of the time course of absorption, distribution, biotransformation, and excretion of chemicals (sometimes referred to as <i>pharmacokinetics</i>).
Biomonitoring Information	The measured concentration of a chemical in biological tissues where the analysis samples were obtained from a natural or non-experimental setting.
Environmental Transport	The potential movement of a chemical, after it is released to the environment, within and between each of the environmental compartments, air, water, soil, and sediment. Presented as a qualitative summary in the alternative assessment based on physical- chemical properties, environmental fate parameters, and simple volatilization models. Also includes distribution in the environment as estimated from a fugacity model ¹ .
Persistence in Air	The half-life for destructive removal of a chemical substance in the atmosphere. The primary chemical reactions considered for atmospheric persistence include hydrolysis, direct photolysis, and the gas phase reaction with hydroxyl radicals, ozone, or nitrate radicals. Results are used as input into the environmental transport models.

Table 4-3: Definitions of Endpoints and Information Characterized but Not EvaluatedAgainst Hazard Criteria

Toxicological Endpoint	Definition
Immunotoxicology	Adverse effects on the normal structure or function of the immune system caused by chemical substances (e.g., gross and microscopic changes to immune system organs, suppression of immunological response, autoimmunity, hypersensitivity, inflammation, and disruption of immunological mechanistic pathways).
Terrestrial Ecotoxicology	Reported experimental values from guideline and nonguideline studies on adverse effects on the terrestrial environment. Studies on soil, plants, birds, mammals, invertebrates were also included.
Endocrine Activity	A change in endocrine homeostasis caused by a chemical or other stressor from human activities (e.g., application of pesticides, the discharge of industrial chemicals to air, land, or water, or the use of synthetic chemicals in consumer products.)

¹A fugacity model predicts partitioning of chemicals among air, soil, sediment, and water under steady state conditions for a default model "environment" (U.S. EPA 2011e).

4.2 Data Sources and Assessment Methodology

This section explains how data were collected (Section 4.2.1), prioritized and reviewed (Section 4.2.2) for use in the development of hazard profiles. High-quality experimental studies lead to a thorough understanding of behavior and effects of the chemical in the environment and in living organisms. Analog approaches and SAR-based estimation methods are also useful tools and are discussed throughout this section. Information on how polymers differ from discrete chemicals in terms of how they are evaluated is presented in Section 4.2.3.

4.2.1 Identifying and Reviewing Measured Data

For each chemical assessed, data were collected in a manner consistent with the *High Production Volume (HPV) Chemical Challenge Program Guidance* (U.S. EPA 1999b) on searching for existing chemical information. This process resulted in a comprehensive search of the literature for available experimental data. For chemicals well characterized by experimental studies this usually resulted in the collection of recent high-quality reviews or peer-reviewed risk assessments. These were supplemented by primary searches of scientific literature published after these secondary sources were released, this explained in greater detail below. For chemicals that are not as well characterized, that is, where these secondary sources were not available or lacked relevant or adequate data, a comprehensive search of the primary scientific literature was done. Subsequently, these searches led to the collection and review of articles from the scientific literature, industrial submissions, encyclopedic sources, and government reports. In addition, data presented in EPA public databases (e.g., integrated risk information system (IRIS); the High Production Volume Information System) and confidential databases were obtained for this project. Generally, foreign language (non-English) reports were not used unless they provided information that was not available from other sources.

Chemical assessments were performed by first searching for experimental data for all endpoints in Table 4-2. For most alternatives assessed, high quality secondary sources were not available; therefore a comprehensive search of the literature was performed to identify experimental data. In some cases, confidential studies submitted to EPA by chemical manufacturers were also available to support hazard designations. For those chemicals that were expected to form stable metabolites, searches were performed to identify relevant fate and toxicity information for the metabolite or degradation product.

Well Studied Chemicals – Literature Search Strategy

As mentioned above, for chemicals that have been well characterized, the literature review focused primarily on the use of secondary sources, such as Agency for Toxic Substances and Disease Registry Toxicological Profiles or IRIS assessments. Using high-quality secondary sources maximized available resources and eliminated potential duplication of effort. However, more than one secondary source was typically used to verify reported values, which also reduced the potential for presenting a value that was transcribed incorrectly from the scientific literature. Although other sources might also contain the same experimental value for an endpoint, effort was not focused on building a comprehensive list of these references, as it would not have enhanced the ability to reach a conclusion in the assessment. When data for a selected endpoint could not be located in a secondary source for an otherwise well studied chemical, the primary literature was searched by endpoint and experimental studies were assessed for relevant information.

Making Predictions in the Absence of Measured Data

In the absence of primary or secondary data, hazard designations were based on (1) Quantitative Structure Activity Relationships (QSAR)-based estimations from the EPA New Chemical Program's predictive methods; (2) analog data; (3) class-based assignments from the EPA Chemical Categories document and (4) expert judgment by EPA subject matter experts.

For chemicals that lacked experimental information, QSAR assessments were made using either EPA's Estimation Program Interface (EPISuiteTM) for physical-chemical property and environmental fate endpoints or EPA's Ecological Structure Activity Relationships (ECOSARTM) QSARs for ecotoxicity. For the cancer endpoint, estimates were also obtained from EPA's OncoLogic expert system. These estimation methods have been automated, and are available for free (U.S. EPA 2012c). Often analog data were used to support predictions from models. These approaches were described in the EPA Pollution Prevention (P2) Framework and Sustainable Futures (SF) program (U.S. EPA 2005b; U.S. EPA 2011e).

For some physical-chemical properties that could not be estimated using EPISuiteTM, such as acid/base dissociation constants, other available methods (e.g., the Sparc Performs Automated Reasoning in Chemistry website for dissociation constants) were used. All estimation methods employed were limited to those freely available in the public domain.

The methodology and procedures used to assess polymers are described in Section 4.2.3. In addition, the endpoints for impurities or oligomers with a MW >1,000 daltons were estimated using professional judgment and the results assessed for inclusion in the overall hazard designation. This process is described, as appropriate, under the corresponding endpoints appearing in Section 4.3.

When QSAR models were not available, professional judgment was used to identify hazards for similar chemicals using the guidance from EPA's New Chemicals Categories (U.S. EPA 2010f). The categories identify substances that share chemical and toxicological properties and possess potential health or environmental concerns (U.S. EPA 2010a). In the absence of an identified category, analogs for which experimental data are available were identified using EPA's Analog Identification Methodology (AIM) or by substructure searches of confidential EPA databases (U.S. EPA 2012a). If a hazard designation was still not available, the expert judgment of scientists from EPA's New Chemical Program would provide an assessment of the physical-chemical properties, environmental fate, aquatic toxicity and human health endpoints to fill remaining data gaps.

4.2.2 Hierarchy of Data Adequacy

Once the studies were obtained, they were evaluated to establish whether the hazard data were of sufficient quality to meet the requirements of the assessment process. The adequacy and quality of the studies identified in the literature review are described in the Data Quality field of the chemical assessments presented in Section 4.8. The tiered approach described below represents a general preferred data hierarchy, but the evaluation of toxicological data also requires flexibility based on expert judgment.

- 1. One or more studies conducted in a manner consistent with established testing guidelines
- 2. Experimentally valid but nonguideline studies (i.e., do not follow established testing guidelines)
- 3. Reported data without supporting experimental details
- 4. Estimated data using SAR methods or professional judgment based on an analog approach
- 5. Expert judgment based on mechanistic and structural considerations

In general, data were considered adequate to characterize an endpoint if they were obtained using the techniques identified in the HPV data adequacy guidelines (U.S. EPA 1999b). Studies performed according to Harmonized EPA or Organisation for Economic Cooperation and Development guidelines were reviewed to confirm that the studies followed all required steps.

Experimental studies published in the open literature were reviewed for their scientific rigor and were also compared and contrasted to guideline studies to identify potential problems arising from differences in the experimental design. Data from adequate, well-performed, experimental studies were used to assign hazard designations in preference to those lacking in sufficient experimental detail. When multiple adequate studies were available for a given endpoint, any discrepancies that were identified within the set of data were examined further and addressed using a weight-of-evidence approach that was described in the data entry to characterize the endpoint whenever possible.

When available, experimental data from guideline or well-performed experimental studies were preferred (Items 1 and 2 in the hierarchy list). Information from secondary sources such as Material Safety Data Sheets, or online databases (such as the National Library of Medicine's Hazardous Substances Data Bank, Item 3 in the hierarchy list) was considered appropriate for

some endpoints when it included numerical values for effect levels that could be compared to the evaluation criteria.

4.2.3 Assessment of Polymers and Oligomers

The methodology and procedures used to assess polymers were slightly different than those used for oligomers, discrete compounds and simple mixtures. Although experimental data for polymers were identified using the literature search techniques discussed above in Section 4.2.1, in the absence of experimental data, estimates were performed using professional judgment as presented in the literature and the SF Polymer Assessment guidance (U.S. EPA 2010d). The polymers are a mixture of molecules with a distribution of components (e.g., different chain lengths) that depend on the monomers used, their molar ratios, the total number of monomeric units in the polymer chain, and the manufacturing conditions. To account for this variation, the average MW profile (also referred to as the number average molecular weight MW_n) was used in their assessment as the individual chains rarely have the same degree of polymerization and weight yet their physical, chemical, and environmental properties are essentially identical for the purposes of this assessment. The polymers evaluated as alternatives typically have average MWs ranging from >1,000 to <100,000 daltons.

For polymers with relatively low average MWs (i.e., those with average MWs generally less than 2,000), the alternative assessment also determined the amount of oligomers and unchanged monomers (starting materials) in the MW profile with MWs <1,000 daltons. Special attention was paid to materials that have a MW <1,000 daltons as these materials often have the highest hazard (potentially bioavailable substances) in the mixture. This type of assessment was similar to the evaluation of the hazards of impurities present in discrete chemical products. Methodological differences between the evaluation of discrete products and polymers are discussed in Section 4.3.

For the Alternatives Assessment, there were chemicals that are mixtures of low MW oligomers comprised of 2 or 3 repeating units. The hazard assessment evaluated all oligomers present. From all the oligomers, the higher concern material was used to assign the hazard designation. This process is essentially identical to the evaluation of the hazards associated with impurities or byproducts present in discrete chemical products. As a result, the alternatives assessment process determined the amount of oligomers and unchanged monomers (starting materials) present and considered their potential hazards in the alternatives designation.

4.3 Importance of Physical and Chemical Properties, Environmental Transport, and Biodegradation

Physical-chemical properties provide basic information on the characteristics of a chemical substance and were used throughout the alternatives assessment process. These endpoints provide information required to assess potential environmental release, exposure, and partitioning as well as insight into the potential for adverse toxicological effects. The physical-chemical properties are provided in the individual chemical hazard profiles presented in Section 4.8. For information on how key physical-chemical properties of alternatives can be used to address the potential for human and environmental exposure, please refer to Table 5-1.

Descriptions of relevant physical-chemical properties and how they contribute to the hazard assessments are presented below.

Molecular Weight (MW)

MW informs how a chemical behaves in a physical or biological system including bioavailability and environmental fate. In general, but not strictly, larger compounds tend to be less mobile in biological and environmental systems. Their large size restricts their transport through biological membranes and lowers their vapor pressure. Polymers and oligomers evaluated in this alternatives assessment were mixtures that contain a distribution of components and they may not have a unique MW (see also Section 4.2.3). To account for variation in these mixtures, the average MW or MW_n , determined experimentally (typically using high pressure liquid chromatography, viscosity, or light-scattering), was used in the assessment of polymers. The assessment of polymers also includes oligomers and unchanged monomers (starting materials) that have MW of <1,000 daltons as these were often the highest concern materials (bioavailable substances) in the mixture.

Melting Point and Boiling Point

These two properties provide an indication of the physical state of the material at ambient temperature. Chemicals with a melting point more than 25°C were assessed as a solid. Those with a melting point less than 25°C and a boiling point more than 25°C were assessed as a liquid and those with a boiling point less than 25°C were assessed as a gas. The physical state was used throughout the assessment, such as in the determination of potential routes of human and environmental exposure, as described in Section 5.2. The melting and boiling points were also useful in determining the potential environmental fate, ecotoxicity, and human health hazards of a chemical. For example, organic compounds with high melting points generally have low water solubility and low rates of dissolution. These properties influence a material's bioavailability and were therefore taken into account in both the assessment process and the evaluation of experimental studies. Similarly, chemicals with a low melting point also have a higher potential to be absorbed through the skin, gastrointestinal tract, and lungs.

In the absence of experimental data, the melting point value was not reported and no estimations were performed. If a chemical decomposes before it melts, this information was included in the assessment. For boiling point, the maximum value reported in the assessment was 300°C for high boiling materials including polymers (U.S. EPA 1999b). Melting points for polymers and/or oligomers were not reported as these materials typically reach a softening point and do not undergo the phase change associated with melting (i.e., solid to liquid).

Vapor Pressure

Vapor pressure is useful in determining the potential for a chemical substance to volatilize to the atmosphere from dry surfaces, from storage containers, or during mixing, transfer, or loading/unloading operations (see Section 5.2). In the assessment process, chemicals with a vapor pressure less than 1×10^{-6} mm Hg have a low potential for inhalation exposure resulting from gases or vapors. Vapor pressure is also useful for determining the potential environmental

fate of a substance. Substances with a vapor pressure more than $1 \ge 10^{-4}$ mm Hg generally exist in the gas phase in the atmosphere. Substances with a vapor pressure between $1 \ge 10^{-4}$ and $1 \ge 10^{-8}$ mm Hg exist as a gas/particulate mixture. Substances with a vapor pressure less than $1 \ge 10^{-8}$ mm Hg exist as a particulate. The potential atmospheric degradation processes described below in the reactivity section generally occur when a chemical exists in the gas phase. Gases in the atmosphere also have the potential to travel long distances from their original point of release. Materials in the liquid or solid (particulate) phases in the atmosphere generally undergo deposition onto the Earth's surface.

A maximum vapor pressure of 1×10^{-8} mm Hg was assigned for chemicals without experimental data or for those substances that were anticipated by professional judgment to be nonvolatile (U.S. EPA 2011e). The maximum vapor pressure of 1×10^{-8} mm Hg was also the default value reported for the vapor pressure of polymers with a MW >1,000 daltons (U.S. EPA 2010d).

Water Solubility

The water solubility of a chemical provides an indication of its distribution between environmental media, potential for environmental exposure through release to aquatic compartments, and potential for human exposure through ingestion of drinking water. Water solubility was also used extensively to determine potential human health and ecotoxicity hazards. In general, chemicals with water solubility less than $1 \ge 10^{-5}$ g/L indicate a lower concern for both the expression of adverse effects, and potential aquatic and general population exposure due to their low bioavailability. However, chemicals with a low bioavailability also tend to be more environmentally persistent. Low bioavailability is different than no bioavailability, and the two should not be used interchangeably.

Within the context of this alternatives assessment, the following descriptors were used according to ranges of water solubility values: more than 10,000 mg/L was considered very soluble; 1,000–10,000 mg/L represents soluble; 100–1,000 mg/L represents moderately soluble, 1–100 mg/L represents slightly soluble, and less than 1 mg/L represents insoluble, noting that these guidelines were not followed consistently within the scientific literature (U.S. EPA 2011e). Chemicals with higher water solubility were more likely to be transported into groundwater with runoff during storm events, be absorbed through the gastrointestinal tract or lungs, partition to aquatic compartments, undergo atmospheric removal by rain washout, and possess a greater potential for human exposure through the ingestion of contaminated drinking water. Chemicals with lower water solubility are generally more persistent and have a greater potential to bioconcentrate.

The water solubility of a substance was also used to evaluate the quality of experimental aquatic toxicity and oral exposure human health studies as well as the reliability of aquatic toxicity estimates. If the water solubility of a substance was lower than the reported exposure level in these experiments, then the study was likely to be regarded as inadequate due to potentially confounding factors arising from the presence of un-dissolved material. For aquatic toxicity estimates obtained using SARs, when the estimated toxicity was higher than a chemical's water solubility (i.e., the estimated concentration in water at which adverse effects appear cannot be reached because it was above the material's water solubility), the chemical was described as

having NES. An NES designation is equivalent to a low aquatic toxicity hazard designation for that endpoint.

While assessing the water solubility of a chemical substance, its potential to disperse in an aqueous solution was also considered. Ideally, a chemicals potential to disperse would be obtained from the scientific literature. In the absence of experimental data, the potential for dispersion can be determined from chemical structure and/or comparison to closely related analogs. There are two general structural characteristics that lead to the formation of dispersions in water: (1) chemicals that have both a hydrophilic (polar) head and a hydrophobic (nonpolar) tail (e.g., surfactants), and (2) molecules that have a large number of repeating polar functional groups (e.g., polyethylene oxide).

The potential for a chemical to disperse influences potential exposure, environmental fate, and toxicity. Dispersible chemicals have greater potential for human and environmental exposure, leachability, and aquatic toxicity than what might be anticipated based on the material's water solubility alone.

Chemicals without experimental data or chemicals that were anticipated by professional judgment to be sufficiently insoluble and thus were not bioavailable were assigned a water solubility maximum value of 1×10^{-3} mg/L (U.S. EPA 2011e). A water solubility of 1×10^{-3} mg/L is the default value used for discrete organics as well as non-ionic polymers with a MW >1,000 daltons according to information contained in the literature concerning polymer assessment and the SF Polymer Assessment guidance (U.S. EPA 2010d). This assignment is consistent with an analysis of the chemicals used in the development of the water solubility estimation program in EPA's EPISuiteTM software. The training set for this model included 1,450 chemicals with a MW range 27-628 daltons and experimental water solubility values ranging from miscible to 4×10^{-7} mg/L (Meylan, Howard et al. 1996; U.S. EPA 2011i). Given that water solubility decreases with MW, a default value of 1×10^{-3} mg/L is consistent with the limited bioavailability expected for materials with a MW >1,000 daltons.

Octanol/Water Partition Coefficient (Kow)

The octanol/water partition coefficient, commonly expressed as its log value (i.e., $\log K_{ow}$) is one of the most useful properties for performing a hazard assessment. The log K_{ow} indicates the partitioning of a chemical between octanol and water, where octanol is used to mimic fat and other hydrophobic components of biological systems. Chemicals with a log K_{ow} less than 1 are highly soluble in water (hydrophilic), while those with a log K_{ow} more than 4 are not very soluble in water (hydrophobic). A log K_{ow} more than 8 indicates that the chemical is not readily bioavailable and is essentially insoluble in water. In addition, a log K_{ow} greater than approximately 8 may be difficult to obtain experimentally.

The log K_{ow} can be used as a surrogate for the water solubility in a hazard assessment and is frequently used to estimate the water solubility if an experimental value is not available. It can also be used to estimate other properties important to the assessment, including bioconcentration and soil adsorption, and is a required input for SAR models used to estimate ecotoxicity values.

For chemicals without data, that are not within the domain of EPISuiteTM or that were expected to be insoluble in water (WS <1 x 10^{-3} mg/L), a minimum value of 10 was assigned for the log K_{ow} (U.S. EPA 2011e). Insoluble chemicals that could be run through EPISuiteTM software may use a log K_{ow} >10 if the result appeared to be valid based on expert review. This assignment is consistent with an analysis of the chemicals ("training set") used in the development of the octanol/water partition coefficient estimation program in the EPISuiteTM software. The training set for this model included 10,946 chemicals with a MW range 18-720 daltons and experimental log K_{ow} values ranging from -3.89 to 8.70 (Meylan and Howard 1995; U.S. EPA 2011h). Given that log K_{ow} increases with MW, a default value of 10 is consistent with the limited bioavailability expected for materials with a MW >1,000 daltons. A maximum log K_{ow} of -2 was used for water soluble materials. For most polymers and other materials that are anticipated to be insoluble in both water and octanol, the log K_{ow} cannot be measured and was therefore not listed.

Flammability (Flash Point)

The flash point of a substance is defined as the minimum temperature at which the substance emits sufficient vapor to form an ignitable mixture with air. Flash point can be used to identify hazards associated with the handling of volatile chemicals. Substances with a flash point above 37.8°C (100°F) were commonly referred to as non-flammable, as this is the flammability definition used in the shipping industry. There are exceptions to this definition such as chemicals that may form explosive mixtures in the presence of air.

Explosivity

Explosivity refers to the potential for a chemical to form explosive mixtures in air and can be defined using the limits of flammability. The lower limit of flammability (LFL) is defined as the minimum concentration of a combustible substance that is capable of propagating a flame through a homogenous mixture in the presence of an ignition source. The upper limit of flammability (UFL) is similarly defined as the highest concentration that can propagate a flame. LFLs and UFLs are commonly reported as the volume percent or volume fraction of the flammable component in air at 25°C. If the ambient air concentration of the gas (or vapor) is between the upper and lower explosion limit, then the material has the potential to explode if it comes in contact with an ignition source. Knowledge regarding the explosivity of a given material in air is also useful in identifying potential hazards associated with the manufacture and use of that material.

pН

The pH scale measures how acidic or basic a substance is on a range from 0 to 14. A pH of 7 is neutral. A pH less than 7 is acidic, and a pH greater than 7 is basic. This scale is used primarily to identify potential hazards associated with skin or eye contact with a chemical or its aqueous solutions. The corrosive nature of chemicals that form either strongly basic (high pH) or strongly acidic (low pH) solutions are generally likely to result in harm to skin and other biological membranes. For corrosive chemicals, some experimental studies, such as biodegradation tests, require additional analysis to determine if the tests were performed at concentrations that cause harm to microbes in the test (and, therefore, may result in incorrectly identifying a chemical as

persistent in the environment). For chemicals that form moderately basic or acidic solutions in water, the pH of the resulting solution can be used in lieu of a measured dissociation constant.

Dissociation Constant in Water (pKa)

The dissociation constant determines if a chemical will ionize under environmental conditions. The dissociation constant in water provides the amount of the dissociated and undissociated forms of an acid, base, or organic salt in water. Knowledge of the dissociation constant is required to assess the importance of the other physical-chemical properties used in the hazard assessment. As the percentage of ionization increases, the water solubility increases while the vapor pressure, Henry's Law constant, and octanol/water partition coefficient decrease. For acids and bases, the dissociation constant is expressed as the pK_A and pK_B , respectively.

Henry's Law Constant

Henry's Law constant is the ratio of a chemical's concentration in the gas phase to that in the liquid phase (at equilibrium). In environmental assessments, the Henry's Law constant is typically measured in water at 25°C. The Henry's Law constant provides an indication of a chemical's volatility from water, which can be used to derive partitioning within environmental compartments and the amount of material removed by stripping in a sewage treatment plant. Henry's Law constant values less than 1×10^{-7} atm-m³/mole indicate slow volatilization from water to air (the Henry's Law constant for the volatilization of water from water is 1×10^{-7} atm-m³/mole) and values more than 1×10^{-3} atm-m³/mole indicate rapid volatilization from water to air. To aid in determining the importance of volatilization, the assessment uses two models based on the Henry's Law constant. These models determine the half-life for volatilization from a model river and a model lake. A maximum value of 1×10^{-8} atm-m³/mole for the Henry's Law constant was assigned for chemicals without experimental data or for those that were anticipated by professional judgment to be nonvolatile.

Sediment/Soil Adsorption/Desorption Coefficient (Koc)

The soil adsorption coefficient provides a measure of a chemical's ability to adsorb to the organic portion of soil and sediment. This provides an indication of the potential for the chemical to leach through soil and be introduced into groundwater, which may lead to environmental exposures to wildlife or humans through the ingestion of drinking water drawn from underground sources. Chemicals with high soil adsorption coefficients are expected to be strongly adsorbed to soil and are unlikely to leach into ground water. The soil adsorption coefficient also describes the potential for a chemical to partition from environmental waters to suspended solids and sediment. The higher the K_{oc} the more strongly a chemical is adsorbed to soil. Strong adsorption may impact other fate processes, such as the rate of biodegradation, by making the chemical less bioavailable.

The soil adsorption coefficient, K_{oc} , is normalized with respect to the organic carbon content of the soil to account for geographic differences. The assignments for the degree that a chemical is adsorbed to soil within the context of the assessment were described qualitatively as very strong (above 30,000), strong (above 3,000), moderate (above 300), low (above 30), and negligible

(above 3). When determining the potential for a chemical to adsorb to soil and suspended organic matter, the potential for a chemical to form chemical bonds with humic acids and attach to soil also needs to be considered, although this process is generally limited to a small number of chemical classes.

A maximum value of 30,000 for the K_{oc} was assigned for chemicals without experimental data or for those that were anticipated by professional judgment to be strongly absorbed to soil (U.S. EPA 2011e). A default K_{oc} of 30,000 was used for polymers with a MW >1,000 daltons.

Reactivity

The potential for a substance to undergo irreversible chemical reactions in the environment can be used in the assessment of persistence. The primary chemical reactions considered in an environmental fate assessment are: hydrolysis, photolysis, and the gas phase reaction with hydroxyl radicals, ozone or nitrate radicals. The most important reaction considered in the hazard assessment of organic compounds is hydrolysis, or the reaction of a chemical substance with water. Because the rate of hydrolysis reactions can change substantially as a function of pH, studies performed in the pH range typically found in the environment (pH 5–9) were considered. The second reaction considered in the assessment is photolysis, the reaction of a chemical with sunlight. Both hydrolysis and photolysis occur in air, water, and soil, while only hydrolysis was considered in sediment. The half-lives for reactive processes, if faster than removal via biodegradation, were used to assign the hazard designation by direct comparison to the DfE persistence criteria.

For the atmospheric compartment, persistence also includes the evaluation of oxidative gasphase processes. These processes include the reaction with ozone, hydroxyl radicals, and nitrate radicals. Since the average concentration of these oxidative species in the atmosphere has been measured, the experimental or estimated rate constants were converted to, and reported as, a half-life in the assessment using standard pseudo first-order kinetics (U.S. EPA 2011f; U.S. EPA 2011d).

For inorganic compounds, an additional chemical process was considered, the potential to be reduced or oxidized (undergo a redox reaction) under environmental conditions. Redox reactions change the oxidation state of the species through the transfer of electrons to form another compound (such as the reduction of Cr(VI) to Cr(III)). A change in the oxidation state of a metal or inorganic species can result in significant changes in the material's hazard designation. In this example, going from Cr(VI) to Cr(III) makes the compound less toxic.

Environmental Transport

The persistence of a chemical substance is based on determining the importance of removal processes that may occur once a chemical enters the environment. As noted in Section 4.3, chemicals with a half-life of less than 60 days are expected to be at most a Moderate hazard designation for persistence. Persistence does not directly address the pathways in which a chemical substance might enter the environment (e.g., volatilization or disposal in a landfill) and focuses instead on the removal processes that are expected to occur once it is released into air,

water, soil, or sediment. Similarly, the persistence assessment does not address what might happen to a chemical substance throughout its life cycle, such as disposal during incineration of consumer or commercial products. Understanding the environmental transport of a chemical substance can help identify processes relevant to environmental assessment. For example, if a chemical is toxic to benthic organisms and partitions primarily to sediment, its potential release to water should be carefully considered in the selection of alternatives.

Biodegradation

In the absence of rapid hydrolysis or other chemical reactions, biodegradation is typically the primary environmental degradation process for organic compounds. Determining the importance of biodegradation is, therefore, an important component of the assessment. Biodegradation processes are divided into two types. The first is primary biodegradation, in which a chemical substance is converted to another substance. The second is ultimate biodegradation, in which a chemical is completely mineralized to small building-block components (e.g., CO₂ and water). DfE persistence criteria use data that are reported as percent of theoretical ultimate degradation in the guideline Ready Biodegradability test or as a half-life in other experimental studies; both of these measurements can be compared directly to the DfE criteria in 4.1.2. When considering primary degradation, the assessment process includes an evaluation of the potential for the formation of metabolites that were more persistent than the parent materials. Chemical substances that undergo rapid primary degradation but only slow ultimate biodegradation were considered to have stable metabolites. In the absence of measured data on the substance of interest, DfE evaluated the potential for biodegradation for chemicals with a MW <1,000 daltons using the EPA EPISuiteTM models. EPISuiteTM estimates the probability for ready biodegradation as well as the potential for primary and ultimate removal, as described in Section 4.3. A default Very High persistence hazard designation was assigned for polymers with a MW >1,000 daltons according to information contained in the literature concerning polymer assessment and the SF Polymer Assessment guidance (U.S. EPA 2010d).

4.4 Evaluating Human Health Endpoints

After data collection and analysis of the physical-chemical properties for the chemicals being assessed the comparison of the data against the hazard criteria can begin. Section 4.4.1 discusses how measured data are used to make hazard designations for human health endpoints and Section 4.4.2 presents the approach for filling in data gaps to make these hazard designations.

4.4.1 Endpoints Characterized and Evaluated Against Criteria Based on Measured Data

This section provides a short description of how measured data were used to designate the level of hazard for each endpoint. As a reminder, the criteria for the hazard designations are in Table 4-2.

For acute mammalian toxicity the median lethal doses or concentrations were used to assign the hazard designation. Four levels of hazard designation have been defined ranging from Low to Very High.

For cancer the hazard designation was contingent on the level of evidence for increased incidence of cancer, and not potency. The definitions applied in DfE criteria are based on International Agency for Research on Cancer levels of evidence (International Agency for Research on Cancer 2006). For example, a designation of Very High concern requires that the substance be characterized as a "known or presumed human carcinogen", whereas a designation of Low concern requires either negative studies or robust SAR conclusions. A designation of Moderate was applied as a default value when there was an absence of data suggesting High carcinogenicity, and an absence of data supporting Low carcinogenicity (i.e., a lack of negative studies or weak SAR conclusions).

Similarly, the hazard designation for mutagenicity/genotoxicity was also based on the level of evidence rather than potency. Complete data requirements for this endpoint were both gene mutation and chromosomal aberration assays. For instances of incomplete or inadequate mutagenicity/genotoxicity data, a Low hazard designation cannot be given.

For chronic endpoints, such as reproductive, developmental, neurological and repeated dose toxicity, the hazard designation was based on potency. The evaluation considers both lowest observed adverse effect levels (LOAELs) and identification of no observed adverse effect levels (NOAELs) when available. The LOAEL and the NOAEL are experimental dose levels, and their reliability is dictated by the study design. In studies for which the lowest dose tested resulted in an adverse effect (and therefore a NOAEL was not established), and in studies for which the highest dose tested was a NOAEL, a conservative approach using professional judgment was used to address uncertainty regarding the lowest dose or exposure level that might be expected to cause a particular adverse effect. For example, in the absence of an established a NOAEL, an identified LOAEL might fall within the range of a Moderate hazard; however, it is uncertain if a lower dose, such as one that falls within the range of High hazard exists because no lower doses were tested. In such cases, professional judgment was applied to assign a hazard designation when possible. Some degree of uncertainty was evident in results from studies in which a NOAEL may fall within one hazard range (e.g., Moderate hazard) and the identified LOAEL falls within a different hazard range (e.g., Low hazard) because the true LOAEL may fall in either category, but there were not enough experimental data points to determine the true LOAEL. Professional judgment was also applied to these cases to assign a hazard descriptor when possible and the rationale used was described in the assessment. Developmental neurotoxicity was considered and was evaluated using the developmental toxicity criteria, which are more stringent than the criteria for neurotoxicity, and thus designed to be more protective (U.S. EPA 2011b).

The criteria for skin and respiratory sensitization, which are immune-based responses, consider the frequency and potency of the reactions. For skin sensitization, categories were based on the weight of evidence¹² from traditional animal bioassays, but *in vitro* alternative studies were also considered. At this time, there are no standard test methods for respiratory sensitization; as a result there was often no designation for this endpoint.

The evaluation of skin and eye irritation and corrosivity were based on the time to recovery.

¹² Generally, weight of evidence is defined as the process for characterizing the extent to which the available data support a hypothesis that an agent causes a particular effect (U.S. EPA 1999a).

4.4.2 SAR – Application of SAR and Expert Judgment to Endpoint Criteria

If measured data pertaining to human health criteria were not available, potential adverse effects were estimated with SAR analysis. To make these estimates, DfE relied on the expertise of scientists in EPA's New Chemicals Program who have reviewed thousands of chemicals and associated data using these methods. SAR uses the molecular structure of a chemical to infer a physicochemical property that can be related to specific effects on human health. These correlations may be qualitative ("simple SAR") or quantitative (QSAR). Information on EPA's use of SAR analysis has been published by U.S. EPA (1994a). Public access to free validated quantitative SAR models for human health endpoints is far more limited than physical-chemical properties, environmental fate parameters, or ecotoxicology. Carcinogenicity was assessed using the OncoLogic expert system that provides a qualitative result directly applicable to the DfE criteria. For other endpoints that required SAR approaches, an analog approach using expert judgment was used as discussed in Section 4.2. All estimates obtained in this project were reviewed by EPA scientists having subject matter expertise. Estimates for the other human health endpoints were based on expert judgment using an analog approach and not through the use of computerized SAR methodologies.

Carcinogenicity

The potential for a chemical to cause cancer in humans was estimated using OncoLogic expert system. This program uses a decision tree based on the known carcinogenicity of chemicals with similar chemical structures, information on mechanisms of action, short-term predictive tests, epidemiological studies, and expert judgment.

Polymer Assessment

Estimates for polymers were obtained using information contained in the literature concerning polymer assessment and the SF Polymer Assessment guidance based on the MW profile (U.S. EPA 2010d). Those polymers with MW >1,000 were assessed using an appropriate representative structure that has a MW less than or equal to the average MW. For polymers with an average MW >1,000 daltons and a significant amount of low MW material <1,000 daltons, the low MW components were also assessed for their environmental fate and potential toxicity in order to identify any possible hazards for the most bioavailable fraction. Similarly, the presence of unreacted monomers requires that the assessment consider these components for polymers of any MW range. The properties for polymers with an average MW >1,000 with no low MW components were generally evaluated as a single high MW material for each of the properties described below. In general, polymers with an average MW >1,000 were not amenable to the available SAR estimation methods and based on the literature are assumed to have low to no bioavailability. Polymers with MW >1,000 that were not degradable or reactive are also typically not bioavailable. Polymers with an average MW >10,000 have potential for adverse effects due to lung overloading when respirable particles are present (less than ten microns). The potential for fibrosis or cancer are not assumed with high MW compounds. There may be exceptions to the rules of thumb outlined above and as such this guidance should not be held as absolute thresholds.

Polymers and oligomers with MWs <1,000 were assessed using a representative structure for all the MW species anticipated to be present in the mixture. The procedures were essentially identical to those employed for the evaluation of impurities or byproducts in discrete chemicals, although in this case the oligomer with the highest concern was used to drive the hazard designation. Unreacted monomers, if present, were also assessed and considered in the hazard evaluation.

4.5 Evaluating Environmental Toxicity and Fate Endpoints

As with endpoints previously mentioned, the preferred method for the evaluation of environmental endpoints is the use of experimental data. In their absence, the alternatives assessment uses computerized QSAR models developed by EPA for the evaluation of environmental endpoints that can be directly compared to the DfE criteria. When measured data were not available, the aquatic toxicity was estimated using EPA's ECOSARTM software and the persistence designation was estimated using models in EPA's EPISuiteTM software. The hazard designation was determined by applying the criteria to these estimates. As a direct result of the design of these models and their direct application to DfE criteria, the evaluation of environmental endpoints using experimental or estimated data was discussed together in the following subsections.

4.5.1 Aquatic Toxicity

For ecological toxicity, the alternatives assessment focused on the hazard designations for acute and chronic studies on freshwater species of algae, invertebrates, and fish, (often referred to as the "three surrogate species"). Aquatic toxicity values were reported in the assessment as follows:

- Acute (estimated or experimental) LC₅₀ or EC₅₀ in mg/L
- Chronic (experimental) No observed effect concentration (NOEC) in mg/L
- Chronic (estimated) ChV, or the geometric mean between the NOEC and the LOEC, in mg/L

Experimental data and estimates reported in the alternatives assessment include information on the species tested and typically focus on freshwater aquatic organisms. Test data on other organisms (e.g., worms) were included in the assessment if data or models were readily available. These data would be evaluated using professional judgment in support of the hazard designations assigned using the three surrogate freshwater species; however, they were not used exclusively to assign a hazard designation as DfE criteria are not available. For the estimated results from ECOSARTM, the equations are derived from surrogate species of fish, zooplankton, and phytoplankton. While these surrogate species can comprise several genera as well as families, the equations are not intended to be species specific, but rather estimate toxicity to the general trophic levels they represent (Mayo-Bean, Nabholz et al. 2011).

If an experimental or estimated effect level exceeded the known water solubility of a chemical substance, or if the log K_{ow} exceeded the ECOSARTM cut-off values for acute and chronic endpoints (which are class specific), No Effects at Saturation (NES) were determined for the aquatic toxicity endpoints. NES indicates that at the highest concentration achievable, which is

the limit of a chemical's water solubility, no adverse effects were observed (or would be expected). In these cases, a Low hazard designation was assigned. In the cases where both an estimated water solubility and ECOSARTM estimate were used, then an additional factor of ten was applied to the water solubility before a NES designation was assigned to account for the combined uncertainty in the model estimates.

In the case where an experimental aquatic toxicity value was significantly higher than the chemical's water solubility, it was likely the result of a poorly conducted study. In this circumstance, which is generally more frequent for formulated products or mixtures, additional details were provided in the data quality section to describe why the reported values could not be used to assign a hazard designation. No effects at saturation are also expected in most cases for insoluble organics, oligomers, or non-ionic polymers with a MW >1,000 daltons resulting in an overall low hazard concern for aquatic toxicity (Nabholz, Clements et al. 1993).

EPA's ECOSARTM estimation program uses chemical structure to estimate toxicity of a substance using class-specific QSARs. ECOSARTM automatically determines all classes that a chemical may be related to based on the molecular features of the substance and, therefore, may provide multiple class-specific estimates for some or all of the species and durations estimated (Mayo-Bean, Nabholz et al. 2011). Modeled results are dependent on the functional groups present on the molecule as well as the diversity of chemicals with experimental data used to build the models (the training set). The hazard profiles report estimates for every class identified by ECOSARTM. However, the hazard designation was based on the most conservative ECOSARTM estimate (highest hazard value). If professional judgment indicates that certain class-specific estimates were not appropriate for a particular substance, the narcosis (baseline toxicity) associated with the neutral organic class will be used. Experimental log K_{ow} values were used preferentially as input into ECOSARTM. In their absence, estimated log K_{ow} values from EPISuiteTM were used. ECOSARTM is maintained and developed as a stand-alone program (http://www.epa.gov/oppt/newchems/tools/21ecosar.htm), but is also accessible through the EPA EPISuiteTM program after it is installed; therefore the Estimations Program Interface (EPI) program may also be used as a citation for the ECOSARTM values in this report.

There were instances where sufficient experimental data are not available to build a chronic QSAR for some of the three surrogate species. When ECOSARTM did not provide chronic estimates, the acute value (experimental or estimated) was divided by an acute to chronic ratio (ACR) to arrive at the ChV. ACRs of 10 were used for fish and daphnid and an ACR of 4 was used for algae (Rand, Wells et al. 1995).

4.5.2 Bioaccumulation

Bioaccumulation is a process in which a chemical substance is absorbed in an organism by all routes of exposure as occurs in the natural environment, e.g., from dietary and ambient environment sources. Bioaccumulation is the net result of the competing processes; this includes uptake, metabolism and elimination of a chemical in an organism. Bioaccumulation can be evaluated using the BAF, the steady state ratio of a chemical in an organism relative to its concentration in the ambient environment, where the organism is exposed through ingestion and direct contact. Experimental BAFs have not been widely available in the scientific literature and, as a result, experimental BCFs are more commonly used to evaluate the bioaccumulation hazard.

BCFs are defined as the ratio of the concentration of a chemical in an organism to the concentration of the chemical in the organism's surroundings; BCFs are typically measured for fish (in water) using guideline studies.

Experimental BAF or BCF values can be compared directly to the DfE criteria for this endpoint to assign a hazard designation. The BCF/BAF designations range from <100 for a Low designation to >5,000 for a Very High designation (see 4.1.2). If experimental values were available for both of these endpoints, and the BCF and BAF were >100 (i.e., above the Low designation), the largest factor was used to assign hazard designation. If experimental BCFs <100 were available, the estimated upper trophic BAF from EPISuiteTM was used preferentially if its use resulted in a more conservative hazard designation and if the potential for metabolism was accurately accounted for within the model estimates.

In the absence of experimental data, evaluation of bioaccumulation potential can be done using the log K_{ow} and the log octanol/air partition coefficient K_{oa} as estimated by EPISuiteTM. However, analysis using K_{oa} requires the use of metabolism data for higher trophic, air breathing organisms, which can be difficult to obtain from the scientific literature and cannot be readily estimated. BAFs and BCFs from EPISuiteTM were, therefore, typically used for the bioaccumulation hazard designation when experimental data were lacking. These values can be compared directly to DfE criteria and the most conservative result was used for the hazard designation. For chemicals that had estimated bioaccumulation data, available experimental monitoring data were used to provide insight into the reliability of the model results. For example, an estimated Low bioaccumulation potential may be increased to a Moderate designation if a chemical was routinely identified in samples from higher trophic levels, or a High designation if the chemical was routinely measured in animals at the top of the food chain.

An estimate of Low is the default value used for discrete organics with a MW >1,000 daltons in the assignment of bioaccumulation hazard. This assignment is consistent with an analysis of the chemicals used in the development of the bioconcentration and bioaccumulation estimation programs in the EPISuiteTM software (U.S. EPA 2011g). The training sets for these models included 527 and 421 chemicals, respectively, with a MW range 68-992 daltons (959 daltons for BAF). Given that BCF and BAF reach a maximum and then decrease with increasing log K_{ow}, a default value of Low is, in general, consistent with the limited bioavailability expected for materials with a MW >1,000 daltons. DfE will use all available well-conducted studies when evaluating bioaccumulation potential for materials with a MW >1,000, including environmental biomonitoring data on higher trophic levels.

In general, for polymers with a MW >1,000 daltons, the default bioaccumulation designation of Low was assigned, arising from their predicted limited bioavailability (U.S. EPA 2010d). A more detailed analysis was performed for compounds at or near this bright line cutoff as well as for polymers with components where residuals <1,000 had the potential to be present.

4.5.3 Environmental Persistence

A chemical's persistence in the environment is evaluated by determining the type and rate of potential removal processes. These removal processes were generally divided into two categories: chemical and biological. Of the chemical degradation processes, an evaluation of

environmental persistence includes the reaction of a chemical with water, also known as hydrolysis, because water is ubiquitous in the environment. Hydrolysis rate constants can be obtained from the literature or estimated, and the resulting half-lives can be compared directly to DfE criteria. For commercial chemicals, hydrolysis tends to be a slower environmental removal process than biodegradation. Direct and indirect photolysis also represents other potential chemical degradation processes that are considered in the alternative assessment, and they are discussed later in this section.

Biodegradation, the most prevalent biological removal process, was divided into two types. The first is primary biodegradation, in which a chemical substance is converted to another substance through a single transformation. The second is ultimate biodegradation, in which a chemical is completely degraded to CO_2 , water, and mineral oxides (such as phosphates for chemicals containing phosphorus). DfE criteria utilize ultimate biodegradation preferentially for the persistence hazard designation, although primary removal rates were informative in assigning hazard designations particularly for materials that were transformed slowly, and to a lesser extent for those that are transformed rapidly.

If ultimate biodegradation data were not available, primary removal data were used in some cases. For primary removal processes, the potential for the formation of degradation products that are more persistent than the parent compounds must be considered in the hazard designation. When present, the persistent degradation products should be evaluated for fate and toxicity. Half-life data on the persistent degradation products, if available, were used to determine the assignment for the persistence designation. In the absence of persistent degradation products, primary biodegradation half-life data were compared directly to the DfE criteria to assign a hazard designation.

Biodegradation processes can be classified as either aerobic or anaerobic. Aerobic biodegradation is an oxidative process that occurs in the presence of oxygen. Anaerobic biodegradation is a reductive process that occurs only in the absence of oxygen. Aerobic biodegradation is typically assessed for soil and water, while anaerobic biodegradation is generally assessed in sediment. For determining the persistence hazard, the importance of both aerobic and anaerobic biodegradation as well as partitioning and transport in the environment were considered to determine what removal processes were most likely to occur. Anaerobic degradation may use any of several electron acceptors depending on their availability in a given environment and the prevailing redox potential (E_h). The biodegradative populations that are dominant in a given environment vary with the conditions and so do their biodegradative capabilities.

One aspect of the assessment is to determine the potential for removal of a chemical substance, and especially removal attributable to biodegradation within a sewage treatment plant and other environments. In this assessment, the term "ready biodegradability" refers to a chemical's potential to undergo ultimate degradation in guideline laboratory studies. A positive result in a test for ready biodegradability can be considered as indicative of rapid and ultimate degradation in most environments including biological sewage treatment plants. Ready tests typically include a 10-day window, beginning when the biodegradation parameter (e.g., disappearance of dissolved organic carbon from test substance, or theoretical oxygen demand) reaches 10%. The

10-day window must occur within the 28-day length of the test. If the pass level of the test (60% for oxygen demand and CO2 production; 70% for dissolved organic carbon disappearance) is met in the 10-day window, the chemical received a Very Low hazard designation. Those that did not pass the 10-day window criterion but met the pass level in 28 days received a Low hazard designation. If ready biodegradability test data were available but the chemical did not meet the pass level, the chemical was evaluated based on measured data using the DfE half-life criteria (Table 4-1). These half-life criteria were also used to assign a hazard designation for nonguideline ultimate biodegradation studies reported in the scientific literature.

In the absence of a reported half-life, experimental data were also used to approximate half-life as appropriate. For example, a chemical that undergoes <5% removal in 30 days would be expected to have a half-life >60 days and would be assigned a High persistence concern.

When experimental data on the biodegradation of a chemical substance were not available, the potential of that substance to undergo this removal process was assessed from the results of the EPISuiteTM models. These models fall into one of four classes: Rapid biodegradation models based on linear and non-linear regressions that estimate the probability that a chemical substance will degrade fast; expert survey models that estimated the rate of ultimate and primary biodegradation using semi-quantitative methods; probability of ready biodegradability in the Organisation of Economic Cooperation and Development (OECD) 301C test; and probability of rapid biodegradation under methanogenic anaerobic conditions. Each of these is discussed in the following paragraphs.

The first models (Biowin 5 and 6) used in the screening assessment estimated ready biodegradability in the OECD 301C test and are also known as Japanese Ministry of International Trade and Industry (MITI) models. These models provided the probability that a material passes this standardized test. Those chemicals that were estimated to pass the ready biodegradability test received a Low persistence designation. If a chemical was not estimated to pass the MITI test, the results of the other EPISuiteTM biodegradation models were used.

The rapid biodegradation potential models within EPISuiteTM (Biowin 1 and 2) were useful for determining if a chemical substance was expected to biodegrade quickly in the environment. If a chemical was likely to biodegrade quickly, it was generally assigned a Low hazard designation for persistence. The results of the estimates from these models may be used in concert with the semi-quantitative output from a second set of models, which include ultimate and primary biodegradation survey models (Biowin 3 and 4) for evaluating persistence. These models provided a numeric result, ranging from 1 to 5, which relates to the amount of time required for complete ultimate degradation (Biowin 3) and removal of the parent substance by primary degradation (Biowin 4) of the test compound. The numeric result from Biowin 3 was converted to an estimated half-life for removal that can be compared directly to DfE criteria. If results from different models (other than the MITI models) led to a different hazard designation, then the ultimate biodegradation model results were used preferentially. If the transport properties indicate the potential for the material to partition to sediment, an anoxic compartment, then the results of the anaerobic probability model (Biowin 7) will also be evaluated.
Half-lives for hydrolysis from experimental studies or EPISuiteTM estimates were used in preference to biodegradation data when they suggested that hydrolysis is a more rapid removal process. Hydrolysis half-lives were compared directly to DfE criteria to assign the persistence designation. Similar to primary biodegradation, breakdown products resulting from hydrolysis were evaluated for fate and toxicity when they were expected to be more persistent than the parent compound.

Photolysis may also be an important environmental removal process. In general, environmental removal rates from photolysis do not compete with biodegradation or hydrolysis although there are exceptions such as iodides. Photolysis may be an important removal process for chemicals that were not bioavailable because of their limited water solubility. Estimation methods for photolysis rates were not available using computerized SAR tools. If experimental or suitable analog data were available, the rate of photolysis was evaluated relative to other removal processes.

When evaluating the environmental persistence designation, it should be noted that chemicals with a High or Very High designation can degrade over time, although this process may occur at a very slow rate. As a result, a Very High designation may have been assigned if persistent degradates were expected to be produced, even at a very slow rate, in the absence of experimental biodegradation data for the parent substance.

Chemicals that contain a metal were assigned a High persistence designation in the assessment, as these inorganic moieties are recalcitrant. In this instance, an 'R' footnote was added to the hazard summary table to indicate that the persistence potential was based on the presence of a recalcitrant inorganic moiety. The assessment process also included the evaluation of the potential chemical reactions of metal-containing and inorganic moieties to determine if they were potentially transformed to more or less hazardous forms.

Polymers with a MW >1,000 generally received a Very High persistence designation due to their lack of bioavailability.

4.6 Endocrine Activity

Chemicals included in DfE alternatives assessments were screened for potential endocrine activity, consistent with the DfE Alternatives Assessment Criteria. **Endocrine activity** refers to a change in endocrine homeostasis caused by a chemical or other stressor. An **endocrine disruptor** is an external agent that interferes in some way with the role of natural hormones in the body, in a manner causing adverse effects. Relevant data are summarized in the hazard assessments for each chemical, located in Section 4.8. Data on endocrine activity were available for decaBDE and some of the alternatives included in this report. For chemicals without available data on endocrine activity, this was acknowledged with a "no data located" statement. When endocrine activity data were available, the data are summarized as a narrative. A unique hazard designation of Low, Moderate or High is not provided for this endpoint in Table 4-2, for reasons discussed below.

The document *Special Report on Environmental Endocrine Disruption: An Effects Assessment and Analysis* describes EPA's activities regarding the evaluation of endocrine disruption (U.S.

EPA 1997). This report was requested by the Science Policy Council and prepared by EPA's Risk Assessment Forum. This report states that "Based on the current state of the science, the Agency does not consider endocrine disruption to be an adverse endpoint per se, but rather to be a mode or mechanism of action potentially leading to other outcomes, for example, carcinogenic, reproductive or developmental effects, routinely considered in reaching regulatory decisions" (U.S. EPA 1997). The report also states that "Evidence of endocrine disruption alone can influence priority setting for further testing and the assessment of results of this testing could lead to regulatory action if adverse effects are shown to occur" (U.S. EPA 1997).

The 1996 Food Quality Protection Act (FQPA) directed EPA to develop a scientifically validated screening program to determine whether certain substances may cause hormonal effects in humans. In response, EPA established the Endocrine Disruptor Screening Program (EDSP) (U.S. EPA 2012b). The EDSP is developing requirements for the screening and testing of thousands of chemicals for their potential to affect the endocrine system. When complete, EPA will use these screening and testing approaches to set priorities and conduct further testing when warranted. The science related to measuring and demonstrating endocrine disruption is relatively new, and validated testing methods at EPA are still being developed.

The EDSP proposes a two-tiered approach that includes initial screening followed by more indepth testing when warranted (U.S. EPA 2011a). The Tier 1 screening battery is intended to identify chemicals with the potential to interact with the estrogen, androgen, or thyroid hormone systems through any of several recognized modes of action. Positive findings for Tier 1 tests identify the potential for an interaction with endocrine systems, but do not fully characterize the nature of possible effects in whole animals. Tier 2 testing is intended to confirm, characterize, and quantify the effects for chemicals that interact with estrogen, androgen, and thyroid hormone systems. These test methods must undergo a four-stage validation process (protocol development, optimization/prevalidation, validation, and peer-review) prior to regulatory acceptance and implementation. Validation is ongoing for Tier 1 and Tier 2 methods¹³. Once validated test methods have been established for screening and testing of potential endocrine disruptors, guidance must be developed for interpretation of these test results using an overall weight-of-evidence characterization.

To assess the data on endocrine activity, DfE applies the weight of evidence approach developed by the EDSP (U.S. EPA 2011c). This process integrates and evaluates data, and always relies on professional judgment (U.S. EPA 2011c). To evaluate endocrine activity with this weight of evidence approach, DfE examined multiple lines of evidence (when available) and considered the nature of the effects within and across studies, including number, type, and severity/magnitude of effects, conditions under which effects occurred (e.g., dose, route, duration), consistency, pattern, range, and interrelationships of effects observed within and among studies, species, strains, and sexes, strengths and limitations of the *in vitro* and *in vivo* information, and biological plausibility of the potential for an interaction with the endocrine, androgen, or thyroid hormonal pathways.

Most test data for chemicals in this report consist of *in vitro* assays, but results of *in vitro* assays

¹³ Information on the status of assay development and validation efforts for each assay in EPA's EDSP can be found at: <u>http://www.epa.gov/oscpmont/oscpendo/pubs/assayvalidation/status.htm</u>

alone were not generally expected to provide a sufficient basis to support a hazard designation for endocrine disruption. EPA expects that *in vivo* evidence would typically be given greater

Chemical Alternatives and the Toxic Substances Control Act

EPA's DfE program is administered by the Office of Pollution Prevention and Toxics (OPPT), which is charged with the implementation of the Toxic Substances Control Act (TSCA) and the Pollution Prevention Act (PPA).

Central to the administration of TSCA is the management of the TSCA Inventory. <u>Section 8 (b)</u> of TSCA requires EPA to compile, keep current, and publish a list of each chemical substance that is manufactured or processed in the United States. Companies are required to verify the TSCA status of any substance they wish to manufacture or import for a TSCA-related purpose. For more information, please refer to the TSCA Chemical Substance Inventory website: <u>http://www.epa.gov/opptintr/existingchemicals/pubs/tscainventory/basic.html</u>.

TSCA and DfE Alternatives Assessments

Substances selected for evaluation in a DfE Alternatives Assessment generally fall under the TSCA regulations and therefore must be listed on the TSCA inventory, or be exempt or excluded from reporting before being manufactured in or imported to, or otherwise introduced in commerce in, the United States. For more information see http://www.epa.gov/oppt/newchems/pubs/whofiles.htm.

To be as inclusive as possible, DfE Alternatives Assessments may consider substances that may not have been reviewed under TSCA, and therefore may not be listed on the TSCA inventory. DfE has worked with stakeholders to identify and include chemicals that are of interest and likely to be functional alternatives, *regardless of their TSCA status*. Chemical identities are gathered from the scientific literature and from stakeholders and, for non-confidential substances, appropriate TSCA identities are provided.

Persons are advised that substances, including DfE-identified functional alternatives, may not be introduced into U.S. commerce unless they are in compliance with TSCA. Introducing such substances without adhering to the TSCA provisions may be a violation of applicable law. Those who are considering using a substance discussed in this report should check with the manufacturer or importer about the substance's TSCA status. If you have questions about reportability of substances under TSCA, please contact the OPPT Industrial Chemistry Branch at 202-564-8740.

overall influence in the weight of evidence evaluation than *in vitro* findings because of the inherent limitations of such assays. Although *in vitro* assays can provide insight into the mode of action, they have limited ability to account for normal metabolic activation and clearance of the compound, as well as normal intact physiological conditions (e.g., the ability of an animal to compensate for endocrine alterations).

As described in the DfE Alternatives Assessment Criteria, endocrine activity was summarized in a narrative, rather than by High, Moderate or Low hazard designation. The endocrine activity summaries can be found in the hazard profiles. This is an appropriate approach because there is no consensus on what constitutes high, moderate or low concern for this endpoint. The summary of endocrine activity largely relies on representative studies and expert review summaries.

4.7 Hazard Summary Table

Table 4-4 Screening Level Hazard Summary for DecaBDE and Halogenated Flame Retardant Alternatives

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from predictive models and/or professional judgment.[§] Based on analogy to experimental data for a structurally similar compound. ¤ This alternative may contain impurities. These impurities have hazard designations that differ from the flame retardant alternative, Brominated poly(phenylether), as follows, based on experimental data: HIGH for human health, HIGH for aquatic toxicity, VERY HIGH for bioaccumulation, and VERY HIGH for persistence.^T This chemical is subject to testing in an EPA consent order for this endpoint.

			Human Health Effects										Aqı Toxi	uatic city ^{**}	Environmental Fate	
Chemical (for full chemical name and relevant trade names see the individual profiles in Section 4.8)	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
DecaBDE and Halogenated Flame Retardant Alternatives																
Bis(havashlorosyslopantadiano) Cyslopstano	13560 80 0	IBDE 3			alogena			uves	т		X/T	T	T	T	VII	11
Bis(nexacinorocycropentacieno) Cycrooctane	13300-89-9	L	M.°	₩.°	VL	VL		IVI	L		VL	L	L	L	νн	П
Brominated Poly(phenylether)	Confidential	L	L¤	L	VL¤	M¤	L¤	L¤	L		L	VL	L	L¤	$\mathbf{V}\mathbf{H}^{T}$	$H^{T_{a}}$
Decabromodiphenyl Ethane	84852-53-9	L	M [§]	L	L	$H^{\$}$	L	L	L		VL	VL	L	L	VH	H
Decabromodiphenyl Ether	1163-19-5	L	Μ	L	L	Н	L	Μ	L		L	L	L	L	VH	H
Ethylene Bis-Tetrabromophthalimide	32588-76-4	L	M	L	L	M [§]	L	L	L		VL	VL	L	L	VH	H
Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether	21850-44-2	L	М	Μ	М	М	L	М	L		L	L	L	L	VH	H
Tris(tribromoneopentyl) Phosphate	19186-97-1	М	M	L	M	M	Н	L	L		L	L	L	L	H	М
Tris(tribromophenoxy) Triazine	25713-60-4	L	L	L		L		L		1	L	VL	L	L	VH	H

**Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Table 4-4 Continued

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from predictive models and/or professional judgment.

^d This hazard designation would be assigned MODERATE if >5% of the particles are in the respirable range as a result of dust forming operations.

Different formulations of the commercial product are available. One of these many formulations has an average MW of ~1,600 and contains significant amounts of lower MW components. These lower MW components have hazard designations different than the polymeric flame retardant, as follows: HIGH (estimated) for bioaccumulation; HIGH (experimental) for acute aquatic toxicity; HIGH estimated for chronic aquatic toxicity; MODERATE (experimental) for developmental; and MODERATE (estimated) for carcinogenicity, genotoxicity, repeated dose, reproductive, and skin and respiratory sensitization toxicity.

			Human Health Effects										Aquatic Toxicity ^{**}		Environmental Fate	
Chemical (for full chemical name and relevant trade names see the individual profiles in Section 4.8)	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Halogenated Flame Retardant Alternatives Continu	ed		•			•	•	•								•
Polymeric Halogenated FR Alternatives ^P																
Brominated Epoxy Polymers	68928-70-1	L	L♦	L	$L \blacklozenge$	$L \blacklozenge$	L	$L \blacklozenge^{d}$	L	•	L	L	L♦	$L \blacklozenge$	VH	L♦
Brominated Epoxy Polymer(s)	Confidential	L	L♦	L♦	L♦	L♦	L	$L \blacklozenge^{d}$	L♦	•	L	L	L♦	L♦	VH	L♦
Mixture of brominated epoxy polymer(s) and bromobenzyl acrylate	Confidential	L	L♦	L♦	L♦	L♦	L	L♦ ^d	L♦	•	L	L	L♦	L♦	VH	L♦
Brominated Epoxy Resin End-Capped with Tribromophenol	135229-48-0	L	L	L	L	L	L	L ^d	L		L	VL	L	L	VH	L
Brominated Polyacrylate	59447-57-3	L	L	L	L	L	L	L ^d	L		L	L	L	L	VH	L
Brominated Polystyrene	88497-56-7	L	L	L	L	L	L	L ^d	L		L	L	L	L	VH	L

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

^P The range of polymer molecular weight can be broad. The polymers listed here have low toxicity for human health and aquatic endpoints. Not all polymers will have this low toxicity; hazards will vary with physical-chemical properties.

Table 4-5 Screening Level Hazard Summary for Organic Phosphorus or Nitrogen Flame Retardant Alternatives

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from predictive models and/or professional judgment.

[§] Based on analogy to experimental data for a structurally similar compound.

^{*} The highest hazard designation of any of the oligomers with MW <1,000.

[•] The highest hazard designation of a representative component of the oligomeric mixture with MWs <1,000.

			Human Health Effects									Aquatic Toxicity ^{**}		Environmental Fate		
Chemical (for full chemical name and relevant trade names see the individual profiles in Section 4.8)	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Organic Phosphorus or Nitrogen Flame Retardant (PFR or NFR) Alternatives																
Discrete PFR, NFR and P/NFR Alternatives																
Substituted Amine Phosphate Mixture ¹	Confidential	H	M	М	М	М	L	M	L	M^{\S}	Μ	VL	M	L	H	L
Triphenyl Phosphate	115-86-6	L	M	L	L	L	L	Н	L		L	VL	VH	VH	L	Μ
		Pol	ymeric	PFR an	d NFR	Alterna	tives									
Bisphenol A bis-(diphenyl phosphate); BAPP	181028-79-5	L	M	L	L	$L^{\$}$	$L^{\$}$	L	L		L	L	L	L	Н	H^{\diamond}
Melamine Cyanurate ¹	37640-57-6	L	M	M	M [§]	M [§]	L	H	L		L	L	L	L	VH	L
Melamine Polyphosphate ¹	15541-60-3	L	M	M	L^{\S}	L	L^{\S}	M	L		L	VL	L	L	H	L
N-alkoxy Hindered Amine Reaction Products	191680-81-6	L	M	L	Н	Н	L	Н	L		L	VL	H	Н	Н	H [‡]

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

¹ Hazard designations are based upon the component of the salt with the highest hazard designation, including the corresponding free acid or base.

Table 4-5 Continued

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from predictive models and/or professional judgment.

^d This hazard designation would be assigned MODERATE if >5% of the particles are in the respirable range as a result of dust forming operations

[§] Based on analogy to experimental data for a structurally similar compound.

^{\ddagger} The highest hazard designation of any of the oligomers with MW <1,000.

^{*}Phosphonate Oligomer, with a MW range of 1,000 to 5,000, may contain significant amounts of an impurity, depending on the final product preparation. This impurity has hazard designations that differ from the polymeric flame retardant, as follows: MODERATE (experimental) for carcinogenicity, reproductive and repeated dose toxicity, skin sensitization, eye and dermal irritation; and HIGH (experimental) for developmental toxicity and acute and chronic aquatic toxicity.

			Human Health Effects										Aqı Toxi	iatic city ^{**}	Environmental Fate	
Chemical (for full chemical name and relevant trade names see the individual profiles in Section 4.8)	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Organic Phosphorus or Nitrogen Flame Retardant (PFR or NFR) Alternatives Continued																
		Pol	ymeric	PFR an	d NFR	Alterna	tives									
Phosphonate Oligomer [¥]	68664-06-2	L	М	$L^{\$}$	$L^{{\mathbb{Y}}}$	$L^{{\mathbb{Y}}}$	M^{\ddagger}	$L^{\S{Y}}$	$L^{\S{Y}}$		$M^{\ddagger {\tt Y}}$	M^{\ddagger}	L¥	H^{\ddagger}	VH	H^{\ddagger}
Polyphosphonate	68664-06-2	L	L	L	L	L	L	L^d	L		L	L	L	L	VH	L
Discussion of the state of the first of the state of the							· 	· 								
4,4'-diol] and phenol; BPBP	1003300-73-9	L	М	L	L^{\S}	L^{\S}	L	L	L		VL	VL	H^{\S}	H^{\S}	Η	M^{\ddagger}
	7700 (00 5	-						- d	-	1	•	-	-			-
Poly[phosphonate-co-carbonate]	//226-90-5	L	L	L	L	L		L^{u}	L		L	L	L	L	VH	L
Resorcingl Bis-Diphenylphosphate: RDP	125997-21.0	т	M§	т	т	М	M	M	T		т	VI	VII	VII	М	u‡
	123777-21-9		171								L	V L	νΠ	VП		П

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Table 4-6 Screening Level Hazard Summary for Inorganic Flame Retardant Alternatives

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from predictive models and/or professional judgment.

^d This hazard designation would be assigned MODERATE if >5% of the particles are in the respirable range as a result of dust forming operations.

^R Recalcitrant: Substance is comprised of metallic species that will not degrade, but may change oxidation state or undergo complexation processes under environmental conditions. * Ongoing studies may result in a change in this endpoint.

Aquatic Environmental **Human Health Effects** Toxicity** Fate Skin Sensitization **Dermal Irritation** Bioaccumulation Carcinogenicity Developmental **Repeated Dose** Acute Toxicity **Eye Irritation** Reproductive Neurological Genotoxicity Sensitization Respiratory Persistence Chronic Chemical Acute (for full chemical name and relevant trade names see the individual profiles in Section 4.8) CASRN **Inorganic Flame Retardant Alternatives** H^{R} Aluminum Diethylphosphinate 225789-38-8 L L L **VL** М М М L L VL Μ Μ L H^{R} Aluminum Hydroxide 21645-51-2 L L L L L Μ М VL VL М М L L Ammonium Polyphosphate 68333-79-9 L^{d} L L L L L L L VL L L L VH L Antimony Trioxide¹ M H^{R} 1309-64-4 Η L Μ M L L Η L L Μ Μ L $H^{\mathbf{R}}$ Magnesium Hydroxide 1309-42-8 L L L L L L L L Μ L L L L **Red Phosphorus** 7723-14-0 L М L L L L L L L Η L Т M HR Zinc Borate 1332-07-6 L L H М М H L L Η Η L L L

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

¹ This compound is included in the ongoing EPA Work Plan evaluation for Antimony Trioxide.

4.8 Hazard Evaluations

Aluminum Diethylphosphinate

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. ^R Recalcitrant: Substance is comprised of metallic species that will not degrade, but may change oxidation state or undergo complexation processes under environmental conditions.

			Human Health Effects									Aquatic Toxicity ^{**}		Environmental Fate		
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Aluminum Diethylphosphinate	225789-38-8	L	L	L	VL	M	M	M	L		L	VL	Μ	Μ	H^{R}	L

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Aluminum Diethylphosphinate

\ <u>Q</u> /		CASRN: 225789-38-8					
		MW: 390.27					
		$\mathbf{MF:} \ 3 \ C_4 H_{11} PO_2 \cdot Al$					
3+		Physical Forms: Neat: Solid					
$ \begin{array}{c} & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $							
SMILES: CCP(=O)(CC)O[A1](OP(=O)(CC)CC)OP(=O)(CC)CC							
Synonyms: Exolit OP 930; Aluminium diethylphosphinate; Aluminium tris(diet	hylphosphinate)						
Chemical Considerations: This alternative is an inorganic compound and in the structural considerations were used to complete this hazard profile.	e absence of experimental data, professional judg	gment using chemical class and					
Polymeric: No							
Oligomers: Not applicable							
Metabolites, Degradates and Transformation Products: None							
Analog: Confidential aluminum metal salts Analog Structure: Not applicable Endpoint(s) using analog values: Absorption, distribution, metabolism & excretion, carcinogenicity, developmental toxicity, immunotoxicity, neurotoxicity, repeated dose effects Analog Structure: Not applicable							
Structural Alerts: Not applicable	- 1						
Risk Phrases: Not classified by Annex VI Regulation (EC) No 1272/2008 (ESIS	5, 2011).						
Hazard and Risk Assessments: Hazard assessment in Design for the Environm Draft, November 8, 2008 (EPA, 2008).	azard and Risk Assessments: Hazard assessment in Design for the Environment Alternatives Assessment for Flame Retardants in Printed Circuit Boards, Review raft, November 8, 2008 (EPA, 2008).						

Aluminum Diethylphosphinate CASRN 225789-38-8										
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY							
	PHYSICAL/CHEMICAL PR	OPERTIES								
Melting Point (°C)	Decomposes at 315 (Measured)	Submitted confidential study	Adequate.							
	Decomposes at 300 (Measured)	Submitted confidential study								
	>400 according to EU Method A.1 using differential scanning calorimetry (Measured)	ECHA, 2013; Submitted confidential study	-							
	Decomposes at 330 (Measured)	De Boysère and Dietz, 2005	Sufficient details were not available to assess the quality of this study.							
	Decomposes at >300 (Measured)	Clariant, 2007	Sufficient details were not available to assess the quality of this study.							
	>400 (Measured)	NICNAS, 2005	Sufficient details were not available to assess the quality of this study. Reported for a commercial formulation.							
Boiling Point (°C)	Expected to decompose before boiling (Estimated)	Professional judgment	Based on available data for melting point.							
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	Professional judgment; EPA, 1999	Cutoff value for compounds that are anticipated to be nonvolatile, according to HPV assessment guidance.							

Aluminum Diethylphosphinate CASRN 225789-38-8										
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY							
Water Solubility (mg/L)	2.5×10 ³ (Measured)	Submitted confidential study	Sufficient details were not available to assess the quality of this study. Aluminum diethylphosphinate has low wettability and very slow dissolution. This gives a kinetically controlled solubility of <1 mg/L by guideline 92/69/ European Economic Community (EEC) A.6. If aluminum diethylphosphinate is formed by precipitation of a soluble salt, the remaining equilibrium solubility of 2.5×10^3 mg/L is found. This can be assumed to be the true limit of solubility under ideal conditions.							
	<1 (Measured) According to EU Method A.6	ECHA, 2013; Submitted confidential study	Guideline study; aluminum diethylphosphinate has low wettability and very slow dissolution. If aluminum diethylphosphinate is formed by precipitation of a soluble salt, the remaining equilibrium solubility of 2.5×10^3 mg/L is found, which can be assumed to be the true limit of solubility under ideal conditions.							
	<1 (Measured) According to EU Method A.6	NICNAS, 2005; Submitted confidential study	Reported in a secondary source for a commercial formulation.							
Log K _{ow}	-0.44 (Estimated)	Stuer-Lauridsen et al., 2007; Beard and Marzi, 2005	Reported in a secondary source; it is unclear whether this value reflects the chemical's low water solubility or its lipophobicity.							

Aluminum Diethylphosphinate CASRN 225789-38-8										
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY							
Flammability (Flash Point)	Not readily combustible according to guideline 96/69/EEC, test A.10. (Measured)	Submitted confidential study	Guideline study.							
	No self-ignition below 402°C (Measured)	ECHA, 2013; Submitted confidential study	Adequate.							
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No data located; based on its use as a flame retardant.							
Pyrolysis	Major products are diethylphosphinic acid, ethylphosphonic acid, phosphoric acid, and their respective salts (Measured)	Beard and Marzi, 2005	Study details and test conditions were not available.							
pH	4.0 (Measured)	Beard and Marzi, 2005	Value was reported in conference presentation authored by Clariant Corp. and UMSICHT. Value suggests the potential for dissolution.							
pKa	Dissociated within 24 hours at pH 4.5 during Japanese Ministry of International Trade and Industry (MITI) test (Measured)	NICNAS, 2005	Available data suggest that this compound is likely to dissociate under environmental conditions. However, it has potential for dissociation as a function of pH that will have a significant influence on its environmental fate. Available data are not adequate to assess its dissociation under typical environmental conditions. Reported for a commercial formulation.							

Aluminum Diethylphosphinate CASRN 225789-38-8										
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY						
		HUMAN HEALTH EFF	ECTS							
Toxicokinetics		Based on estimates of physical and chem	nical properties, analogs, and pro	ofessional judgment, aluminum						
		diethylphosphinate is determined to not	be readily absorbed through ski	n but is absorbed through the						
		inhalation of dust and oral exposure.								
Dermal Absorption	in vitro			No data located.						
Absorption,	Oral, Dermal or Inhaled	Absorption as neat solid negligible	Professional judgment	Estimates based on						
Distribution,		through skin. Absorption good through		physical/chemical properties and						
Metabolism &		lungs. Absorption good through		confidential analogs.						
Excretion		gastrointestinal tract. (Estimated)								
		Male rats (2/dose group) administered	Submitted confidential study	Study details from an abstract						
		(unradiolabeled) test substance via single		reported in a confidential						
		oral gavage at 180 and 1,000 mg/kg		submission; study conducted						
		bw/day.		according to Organisation of						
				Economic Cooperation and						
		Only a small amount of the administered		Development (OECD) 417; small						
		dose was absorbed by the gastro-		number of animals tested.						
		intestinal tract. The major route of								
		elimination was in the feces (unabsorbed								
		fraction) and a small amount of free test								
		substance was detected in the urine.								
		After 36 hours, no test substance was								
		detected.								
Acute Mammalian	Toxicity	LOW: Experimental studies indicate that	at oral and dermal routes to rats	do not produce substantial						
		mortality at levels up to 2,000 mg/kg. No	ethality data were located for i	nhalation exposure.						
Acute Lethality	Oral	Rat oral LD_{50} >2,000 mg/kg	NICNAS, 2005; Submitted	Reported in a secondary source for						
			confidential study	a commercial formulation. Test						
				substance was Exolit OP 930.						
	Dermal	Rat dermal LD_{50} >2,000 mg/kg	NICNAS, 2005; Submitted	Reported in a secondary source for						
			confidential study	a commercial formulation. Test						
				substance was Exolit OP 930.						
	Inhalation			No data located.						
Carcinogenicity		LOW: Aluminum diethylphosphinate is	estimated to be of low hazard fo	r carcinogenicity based on						
		comparison to analogous metal salts and	l professional judgment.							

Aluminum Diethylphosphinate CASRN 225789-38-8											
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY							
	OncoLogic Results			No data located.							
	Carcinogenicity (Rat	Not expected to be carcinogenic	Professional judgment	Estimated based on analogy to							
	and Mouse)	(Estimated)		confidential metal salts.							
	Combined Chronic			No data located.							
	Toxicity/										
	Carcinogenicity										
Genotoxicity		LOW: Experimental studies indicate that aluminum diethylphosphinate does not cause gene mutations in bacteria or chromosomal aberrations in mammalian cells.									
	Gene Mutation in vitro	Negative, <i>Salmonella typhimurium</i> strains TA1535, TA1537, TA98 and TA100 with and without metabolic activation	NICNAS, 2005; Submitted confidential study	Reported in a secondary source for a commercial formulation.							
	Gene Mutation in vivo			No data located.							
	Chromosomal Aberrations <i>in vitro</i>	Negative, chromosomal aberrations in Chinese hamster lung cells with and without metabolic activation	NICNAS, 2005; Submitted confidential study	Reported in a secondary source for a commercial formulation.							
	Chromosomal Aberrations <i>in vivo</i>	Negative, mammalian erythrocyte micronucleus test in NMRI mice; oral (unspecified)	Submitted confidential study	Study reported in a submitted confidential study; Study conducted according to OECD Guideline 474 (Mammalian Erthrocyte Micronucleus Test).							
	DNA Damage and Repair			No data located.							
	Other (Mitotic Gene Conversion)			No data located.							
Reproductive Effe	cts	VERY LOW: There were no reproducti	ve effects reported in a reproduc	ction/developmental toxicity screen							
		in rats at doses up to 1,000 mg/kg-day.	In addition, aluminum diethylph	osphinate is estimated to be of low							
		hazard for reproductive effects resulting	g from the presence of a bioavail	able metal species, by professional							
		judgment based on a comparison to ana	logous metal salts.								
	Reproduction/	Expected to have low hazard potential	Professional judgment	Estimated based on analogy to							
	Developmental Toxicity	for reproductive effects (Estimated)		confidential metal salts.							
	Screen										

	Aluminum Diethylphosphinate CASRN 225789-38-8										
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY								
Combined Repeated Dose with	Rats (Sprague Dawley); oral administration of 250 and 1,000 mg/kg bw-day; 15 days prior to mating and throughout gestation and lactation up to 	Submitted confidential study	Study reported in a submitted confidential study; Study conducted according to OECD Guideline 421 (Reproductive/Developmental Toxicity Screening Test). Toxicity Screening Test).								
Reproduction/	4										
Developmental Toxici Screen	ty										
Reproduction and			No data located.								
Fertility Effects											

Aluminum Diethylphosphinate CASRN 225789-38-8								
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Developmental Eff	ects	MODERATE: There were no developmental effects reported in a reproduction/developmental toxicity screen in rats at doses up to 1,000 mg/kg-day. There is moderate hazard for aluminum diethylphosphinate given exposure may result in neurodevelopmental effects based on the presence of a phosphinate; there were no experimental studies specifically designed to evaluate the neurodevelopmental endpoint located. The potential for neurodevelopmental effects cannot be ruled out.						
	Reproduction/ Developmental Toxicity Screen	Expected to have a moderate hazard potential for developmental and neurodevelopmental effects resulting from the presence of a phosphinate. (Estimated)	Professional judgment	Estimated based on analogy to phosphate esters and associated cholinesterase inhibition.				

	Aluminum Diethylphosphinate CASRN 225789-38-8						
PROPERTY/END	POINT	DATA	REFERENCE	DATA QUALITY			
		Rats (Sprague Dawley); oral administration of 250 and 1,000 mg/kg bw-day; 15 days prior to mating and throughout gestation and lactation up to post-partum Day 3. No clinical signs of toxicity or change in food consumption. Slight reduction in body weight and body weight gain; reduced terminal body weight and absolute and relative kidney weights (males, 1,000 mg/kg-day). No adverse effect on estrus cycle, implantation, gestation length, corpora lutea or sex ratios. No effect on sperm (motility, morphology, concentration). Increase in the number of days of pre-coital interval and a reduction in copulation plugs (1,000 mg/kg-day). No treatment-related macroscopic anomalies in pups dying or sacrificed at term. NOAEL = 1,000 mg/kg-day	Submitted confidential study	Study details reported in a confidential submission; Study conducted according to OECD Guideline 421 (Reproductive/Developmental Toxicity Screening Test).			
Combin Dose wit Reprodu Develop	ed Repeated th uction/ omental Toxicity			No data located.			
Screen							
Prenata	l Development			No data located.			
Postnata	al Development			No data located.			

Aluminum Diethylphosphinate CASRN 225789-38-8							
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Neurotoxicity		MODERATE: Aluminum diethylphosphinate is estimated to be of moderate hazard for neurotoxicity, due					
		to the presence of a bioavailable metal s	pecies and based on comparison	to aluminum hydroxide with			
	Neurotoxicity Screening Battery (Adult)	Expected to have a moderate hazard potential for neurotoxic effects resulting from the presence of bioavailable metal	Professional judgment	Estimated based on professional judgment and analogy to aluminum hydroxide			
		species. (Estimated)		ny dioxide.			
		Rat NOAEL >1,000 mg/kg	Beard and Marzi, 2005	Study details and test conditions were not available.			
		90-day Rat, oral gavage, impaired learning in a labyrinth maze test	Bilkei-Gorzo, 1993 (as cited in ATSDR, 2008)	Reported in a secondary source; dose reported as 35 mg/kg-day as aluminum hydroxide with citric			
		NOAEL = Not established LOAEL = $35 \text{ mg Al/kg-day as aluminum}$		acid; citric acid was added to increase absorption; it is not proven			
		tested) (Estimated by analogy)		aluminum hydroxide and not based on citric acid; also, the background aluminum content of the diet fed to rats was not reported; only one dose			
				tested.			
		90-day Rat, oral gavage, impaired learning in a labyrinth maze test NOAEL = Not established LOAEL = 300 mg Al/kg-day as aluminum hydroxide (only dose tested)	Bilkei-Gorzo, 1993	The background aluminum content of the diet fed to rats was not reported; only one dose tested; study description lacks sufficient details on individual results			
		(Estimated by analogy)		details on marvidua results.			
Repeated Dose Effe	ects	MODERATE: Estimated to be of moder bioavailable metal species based on corr	rate hazard for immunotoxicity,	due to the presence of a			
		Experimental studies indicate that oral of mg/kg-day.	exposure to rats produces no adv	verse effects at levels up to 1,000			
		28- day NOAEL >1,000 mg/kg-day, rats	NICNAS, 2005; Submitted confidential study	Reported in a secondary source for a commercial formulation. Test substance was Exolit OP 930.			

Aluminum Diethylphosphinate CASRN 225789-38-8							
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	Immune System Effects	Expected to have a moderate hazard potential for immunotoxicity effects resulting from the presence of bioavailable metal species.(Estimated)	Professional judgment	Estimated based on analogy to confidential metal salts.			
Skin Sensitization		LOW: Negative for skin sensitization in	guinea pigs.				
	Skin Sensitization	Non-sensitizing, guinea pigs	NICNAS, 2005; Submitted confidential study	Reported in a secondary source for a commercial formulation.			
Respiratory Sensit	ization	No data located.	1				
	Respiratory Irritation			No data located.			
Eye Irritation	1	LOW: Aluminum diethylphosphinate is	slightly to non-irritating in rabb	it eyes.			
	Eye Irritation	Slightly irritating, rabbits	NICNAS, 2005	Reported in a secondary source for a commercial formulation.			
		Not irritating, rabbits	Submitted confidential study	Study reported in a submitted confidential study.			
Dermal Irritation	·	VERY LOW: Aluminum diethylphosphinate is not irritating to rabbit skin.					
	Dermal Irritation	Non-irritating, rabbit	NICNAS, 2005; Submitted confidential study	Reported in a secondary source for a commercial formulation.			
Endocrine Activity	7	No data located.					
				No data located.			
Immunotoxicity		Aluminum diethylphosphinate is estimated to be of moderate hazard for immunotoxicity, due to the presence of a bioavailable metal species, based on comparison to analogous metal salts and professional judgment.					
	Immune System Effects	Expected to have a moderate hazard potential for immunotoxicity effects resulting from the presence of bioavailable metal species. (Estimated)	Professional judgment	Estimated based on analogy to confidential metal salts.			
		ECOTOXICITY					
ECOSAR Class		Not applicable					
Acute Toxicity		MODERATE: The measured green alga	ae EC_{50} is between 10 and 100 mg	g/L. For fish and <i>Daphnia</i> , adequate			
		toxicity values have not been determined	d; reported values are not LC_{50} b	ut the highest dose tested.			
Fish LC ₅₀		Danio rerio (Zebra fish) 96-hour LC ₅₀ >11 mg/L (Experimental)	NICNAS, 2005	Reported in a secondary source for a commercial formulation.			

Aluminum Diethylphosphinate CASRN 225789-38-8							
PROPERTY/ENDPOINT	DATA REFERENCE DATA QU						
	Danio rerio (Zebra fish) 96-hour LC ₅₀ >9.2 mg/L (Experimental)	Submitted confidential study	Study reported in a submitted confidential study.				
	Danio rerio (Zebra fish) 96-hour LC ₅₀ >100 mg/L (Experimental)	Submitted confidential study	Study reported in a submitted confidential study; Study conducted according to EU Method C.1 (Acute Toxicity for Fish).				
Daphnid LC ₅₀	Daphnia magna 48-hour LC ₅₀ >33.7 mg/L (Experimental)	NICNAS, 2005	Reported in a secondary source for a commercial formulation.				
	<i>Daphnia magna</i> 48-hour LC ₅₀ >33 mg/L (Experimental)	Submitted confidential study	Study reported in a submitted confidential study.				
	<i>Daphnia magna</i> 48-hour EC ₅₀ >100 mg/L; 48-hour NOEC = 100 mg/L	Submitted confidential study	Study reported in a submitted confidential study; Study conducted according to OECD Guideline 202 (Daphnia sp. Acute Immobilization Test).				
Green Algae EC ₅₀	Scenedesmus subspicatus 72-hour E_bC_{50} of 60 mg/L (Experimental); Scenedesmus subspicatus 72-hour E_rC_{50} of 76 mg/L (Experimental)	NICNAS, 2005	Reported in a secondary source for a commercial formulation.				
	72-hour $EC_{50} = 50 mg/L$ (Experimental)	Submitted confidential study	Study reported in a submitted confidential study.				
	Scenedesmus subspicatus 72-hour EC ₅₀ >180 mg/L (Experimental)	Submitted confidential study	Study reported in a submitted confidential study; Study conducted according to EU Method c.3 (Algal Inhibition Test).				
Chronic Aquatic Toxicity	MODERATE: An experimental value of	f 1.8 mg/L was reported for gree	en algae, while measured toxicity				
	values for fish and <i>Daphnia</i> are >10 mg/	L. Submitted confidential study	Study reported in a sympletted				
FISN CN V	48 mg/L (Estimated)	Submitted confidential study	confidential study.				
	Danio rerio (Zebra fish) 28-day NOEC = 100 mg/L; LOEC >100 mg/L (Experimental)	Submitted confidential study	Study reported in a submitted confidential study; Study conducted according to OECD Guideline 215 (Fish, Juvenile Growth Test).				

Aluminum Diethylphosphinate CASRN 225789-38-8						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Daphnid ChV		Daphnia magna 21-day $EC_{50} = 22.3$ mg/L for immobility (Experimental) Daphnia magna 21-day $EC_{50} = 46.2$ mg/L for reproduction (Experimental) Daphnia magna 21-day LOEC = 32 mg/L for immobility and reproduction (Experimental) Daphnia magna 21-day NOEC = 10 mg/L for immobility and reproduction (Experimental)	NICNAS, 2005; Submitted confidential study	Reported in a secondary source for a commercial formulation.		
Green Algae ChV		1.8 mg/L (Experimental)	Submitted confidential study	Study reported in a submitted confidential study.		
		ENVIRONMENTAL F.	ATE			
Transport		Although the behavior of metal salts und the local environment (predominately pH anticipated to be dominated by leaching precipitation of the metal ion onto soil or land or surface water. Volatilization of th be an important fate process. Nevertheles pH-dependent dissociation, and adequate	er environmental conditions is de I), transport of both the metal sp through soil, runoff to aqueous en sediment, and wet and dry depo his ionic compound from either w ss, the environmental fate of this e data are not available.	ependent on the characteristics of ecies and the organic anion is nvironments, adsorption and/or sition of dust particulates in air to yet or dry surfaces is not expected to organic salt will be dependent on its		
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	Professional judgment	Cutoff value for nonvolatile compounds.		
Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}		Approximately 0.38 according to OECD Guideline 121 (Measured)	ECHA, 2013; Submitted confidential study	Guideline study.		
	Level III Fugacity Model			This substance is not amenable to the model.		

	Aluminum Diethylphosphinate CASRN 225789-38-8						
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Persistence		HIGH: For the organic counter-ion, estimates indicate that the half-life for ultimate aerobic biodegradation in water is less than 60 days, which converts to moderate potential for persistence. However, the metal ion is recalcitrant to biodegradation or other typical environmental removal processes.					
Water	Aerobic Biodegradation	Organic counter-ion: Days-weeks (primary survey model) Weeks (ultimate survey model) (Estimated)	EPI				
		Metal ion: Recalcitrant (Estimated)	Metal ions will not degrade in the environment.				
		Not readily biodegradable according to OECD Guideline 301 F (Measured)	Guideline study.				
		Not inherently biodegradable according to OECD Guideline 302 C (Inherent Biodegradability: Modified MITI Test (II)) (Measured)	ECHA, 2013; Submitted confidential study	Guideline study.			
		Not inherently biodegradable (Measured)	Stuer-Lauridsen et al., 2007	Sufficient details were not available to assess the quality of this study.			
		Not readily biodegradable (Measured)	NICNAS, 2005	Reported in a secondary source for a commercial formulation.			
		Not readily biodegradable (Measured)	Stuer-Lauridsen et al., 2007	Sufficient details were not available to assess the quality of this study.			
	Volatilization Half-life for Model River	Not a significant fate process (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.			
	Volatilization Half-life for Model Lake	Not a significant fate process (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.			
Soil	Aerobic Biodegradation	Respiration inhibition of activated sludge microorganisms $LC_{50} = 1968$ mg/L, NOEC = 483 mg/L (Measured)	NICNAS, 2005; Submitted confidential study	Reported in a secondary source for a commercial formulation.			
	Anaerobic Biodegradation	No degradation according to ISO/DIS 14853 (Measured)	Stuer-Lauridsen et al., 2007	Guideline study reported in a secondary source.			

	Aluminum Diethylphosphinate CASRN 225789-38-8							
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Soil Biodegradation w/ Product Identification			No data located.				
	Sediment/Water Biodegradation			No data located.				
Air	Atmospheric Half-life	Not a significant fate process (Estimated)	Professional judgment	This chemical is expected to exist entirely in particulate form in air.				
Reactivity Photolysis		Not a significant fate process (Estimated)	Mill, 2000; Professional judgment	The substance does not contain functional groups that would be expected to absorb light at environmentally significant wavelengths.				
	Hydrolysis	Metal salts form a variety of hydroxylation products as a function of pH. Hydrolysis of the organic counter-ion is not expected to be a significant fate process (Estimated)	Wolfe and Jeffers, 2000; Professional judgment	The organic counter ion does not contain functional groups that would be expected to hydrolyze readily under environmental conditions.				
Environmental Half-life		Organic counter-ion: <60 days Metal ion: Recalcitrant (Estimated)	EPI; Professional judgment	Based on estimated biodegradation half-lives for the organic counter-ion and metal ions will not degrade in the environment.				
Bioaccumulation		LOW: Aluminum diethylphosphinate is not expected to have potential for bioaccumulation.						
	Fish BCF	<100 (Estimated)	Professional judgment	Available data suggests this chemical will dissociate under environmental conditions.				
	BAF			No data located.				
Metabolism in fish				No data located.				
		ENVIRONMENTAL MONITORING AN	D BIOMONITORING					
Environmental Mo	onitoring	No data located.						
Ecological Biomon	itoring	No data located.						
Human Biomonito	ring	This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2011).						

ATSDR (Agency for Toxic Substances and Disease Registry). Draft toxicological profile for aluminum. [Online] U.S. Department of Health and Human Services: September **2008.** <u>http://www.atsdr.cdc.gov/toxprofiles/tp22.pdf.</u>

Beard, A; Marzi, T. New phosphorus based flame retardants for E&E applications: A case study on their environmental profile in view of European legislation on chemicals and end-of-life (REACH), WEEE, RoHS). In *Addcon 2005*, September 20-21, 2005, Hamburg, Germany. **2005**. <u>http://www.flameretardants-online.com/images/userdata/pdf/175_EN.pdf</u>

Bilkei-Gorzo, A. Neurotoxic effect of enteral aluminum. Food Chem Toxicol. 1993. 31(5):357-361.

Clariant. Exolit OP 930 Product Data Sheet; 2007.

De Boysère, J.; Dietz, M. Halogen-free flame retardants for electronic applications. *OnBoard Technology*. [Online] **2005**, 20. <u>http://www.onboard-technology.com/pdf_febbraio2005/020505.pdf</u>

CDC (Centers for Disease Control and Prevention). *Fourth national report on human exposure to environmental chemicals, updated tables*. Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on May 10, 2011).

ECHA (European Chemicals Agency). Information on registered substances. **2013.** http://echa.europa.eu/web/guest/information-on-chemicals/registered-substances (accessed Jan, 22, 2013).

EPA (U.S. Environmental Protection Agency). Alternatives Assessment for Flame Retardants in Printed Circuit Boards, Review Draft. **2008**. <u>http://www.epa.gov/dfe/pubs/projects/pcb/full_report_pcb_flame_retardants_report_draft_11_10_08_to_e.pdf</u>.

EPI (EPIWIN/EPISUITE) Estimation Program Interface for Windows, Version 3.20. U.S. Environmental Protection Agency: Washington, DC. <u>http://www.epa.gov/opptintr/exposure/</u>.

ESIS (European chemical Substances Information System) Classification, Labeling and Packaging of Dangerous Substances Annex VI to Regulation (EC) No 1272/2008 [Online] <u>http://esis.jrc.ec.europa.eu/</u> (accessed on May 10, 2011).

Mill, T. (2000) Photoreactions in Surface Waters. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (355-382). Boca Raton: Lewis Publishers.

NICNAS (National Industrial Chemicals Notification and Assessment Scheme). Full public report on chemical in Exolit OP 1312. [Online] **2005.**

http://www.nicnas.gov.au/publications/car/new/std/stdfullr/std1000fr/std1168fr.pdf

Stuer-Lauridsen, F.; Karl-Heinz, C.; Andersen, T. T. *Health and Environmental Assessment of Alternatives to Deca-BDE in Electrical and Electronic Equipment*; Environmental Project No. 1142; [Online] Danish Ministry for the Environment, Danish Environmental Protection Agency. **2007.** <u>http://www2.mst.dk/Udgiv/publications/2007/978-87-7052-351-6/pdf/978-87-7052-352-3.pdf</u>

U.S. EPA (Environmental Protection Agency). High Production Volume (HPV) Challenge. Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. <u>http://www.epa.gov/hpv/pubs/general/datadfin.htm</u>

Wolfe, N.; Jeffers, P. (2000) Hydrolysis. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (311-334). Boca Raton: Lewis Publishers.

Aluminum Hydroxide

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. ^R Recalcitrant: Substance is comprised of metallic species that will not degrade, but may change oxidation state or undergo complexation processes under environmental conditions.

			Human Health Effects				Aquatic Toxicity ^{**}		Environmental Fate							
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Aluminum Hydroxide	21645-51-2	L	L	L	L	L	Μ	М	L		VL	VL	М	M	H^{R}	L

**Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Aluminum Hydroxide

	GAGDNI 01/15 51 0				
HO	CASRN: 21645-51-2				
	MW: 78.01				
AIOH	MF: AlH ₃ O ₃				
	Physical Forms:				
HO	Neat: Solid				
	Use: Flame retardant				
SMILES: O[A1](O)O					
Synonyms: Aluminum hydroxide (Al(OH) ₃); Aluminum trioxide; Gibbsite; Bayer	site; Nordstrandite; Aluminum trihydrate				
Chemical Considerations: This alternative is an inorganic compound and in the a structural considerations were used to complete this hazard profile.	bsence of experimental data, professional judgment using chemical class and				
Polymeric: No					
Oligomers: Not applicable					
Metabolites, Degradates and Transformation Products: None					
Analog: Unspecified analogous aluminum compounds were discussed in the	Analog Structure: Not applicable				
structural based professional judgment rationale.					
Endpoint(s) using analog values: Carcinogenicity, reproductive effects,					
immunotoxicity					
Structural Alerts: Aluminum compounds (EPA, 2010).					
Risk Phrases: Not classified by Annex I Directive 67/548/ European Economic C	ommunity & IUCLID (Pakalin et al., 2007).				
Hazard and Risk Assessments: Risk assessment completed for aluminum hydrox	tide by the National Research Council Subcommittee on Flame-Retardant Chemicals				
(NRC, 2000). Hazard assessment completed for Design for the Environment (DfE) Alternatives Assessment for Flame Retardants in Printed Circuit Boards, Review				
Draft, November 8, 2008 (EPA, 2008).					

Aluminum Hydroxide CASRN 21645-51-2										
PROPERTY/ENDPOINT	DATA	DATA REFERENCE								
	PHYSICAL/CHEMICAL PROPERTIES									
Melting Point (°C)	Decomposes at approximately 200 (Measured)	European Commission, 2000	Adequate.							
	Decomposes at approximately 150-220 to Al_2O_3 and H_2O (Measured)	European Commission, 2000								
	Decomposes (loses water) at 300 (Measured)									
Boiling Point (°C)	The substance is expected to decompose before boiling (Estimated)	Professional judgment	Based on the values included in the melting point section of this assessment.							
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	Professional judgment; EPA, 1999	Cutoff value for compounds that are anticipated to be nonvolatile, according to HPV assessment guidance.							
ater Solubility (mg/L) ≤0.09 at pH 6-7 Organisation of Economic Cooperation and Development (OECD) Guideline 105 Purity calculated based on aluminum oxide (Measured)		ECHA, 2013	Guideline study reporting non- specific value that is in agreement with other experimental values indicating poor solubility.							

Aluminum Hydroxide CASRN 21645-51-2							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	0.0117 to 0.0947 at pH 7.5-8.1 and 21- 24°C.	Submitted study	Reported in a nonguideline study done to prepare for toxicity testing.				
	Reported as 11.7 to 94.7 μ g/L Al(OH) ₃ and 4.06 to 32.75 μ g/L Al.						
	100 mg of Al(OH) ₃ was dissolved in 100 mL distilled water or test media prepared according to OECD 201, 202 or 211, filtered, and then analyzed using Graphite Furnace Atomic Absorption Spectrometry (GF AAS) and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). (Measured)						
	1.5 at 20°C at pH 7 (Measured)	European Commission, 2000	Measured values were not				
	1.5x10 ⁻² at 20 °C at pH 8-9 (Measured)	European Commission, 2000	consistently reported, but are				
	Insoluble in water (Estimated)	Lide, 2006	sufficient for subsequent components of the hazard assessment				
	Practically insoluble in water (Estimated)	O'Neil, 2001; Lewis, 2000	of the nazard assessment.				
Log K _{ow}			No data located. This inorganic compound is not amenable to available estimation methods.				
Flammability (Flash Point)	Not flammable (Estimated)	European Commission, 2000	Adequate.				
Explosivity	Not explosive (Estimated)	European Commission, 2000	Adequate.				
Pyrolysis			No data located.				
рН	pH of a saturated solution in water was 6 to 7 (Measured)	ECHA, 2013	Determined in a water solubility study.				
pKa	Not applicable (Estimated)	Professional judgment	Determination of dissociation constant is not possible due to the insolubility of the test substance.				

Aluminum Hydroxide CASRN 21645-51-2					
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY	
		HUMAN HEALTH EFF	ECTS		
Toxicokinetics		Toxicokinetic data suggest that aluminum hydroxide is not readily absorbed in humans following oral			
		exposure. Excretion occurs primarily th	rough feces, and less so in urine.	Animal studies indicated that	
	aluminum accumulated in intestinal cells but was not found in other tissues.				
Dermal Absorption in vitro		26		No data located.	
Absorption,	Oral, Dermal or Inhaled	²⁰ Al labeled aluminum hydroxide (in	ECHA, 2013	Reported in a secondary source.	
Distribution,		water suspension) was administered to		Adequate, performed in accordance	
Metabolism &		rats by oral gavage.		with OECD guidelines and good	
Excretion		T		laboratory practice (GLP);	
		The mean fractional uptake of ²⁶ Al from		Aluminium hydroxide, was	
		aluminum hydroxide was 0.025±0.041%		suspended in water with added 1%	
		compared to a mean fractional uptake of 0.070 ± 0.00570 from ²⁶ Al lobeled		carboxymethylcellulose (to	
		$0.079\pm0.0057\%$ from Allabeled		maintain a suspension).	
		auminum citrate in solution. Aluminum			
		loss biogyoilable then soluble			
		compounds			
		After rate were exposed to aluminum	HSDR 2013	Reported in a secondary source	
		hydroxide in drinking water for 10	115DB, 2015	study details and test conditions	
		weeks aluminum accumulated in		were not provided	
		intestinal cells but not in other tissues		were not provided.	
		In metabolic studies in humans 12% of	HSDB 2013	Reported in a secondary source	
		an oral load of aluminum hydroxide was	11022, 2010	study details and test conditions	
		retained, but absorption was not		were not provided.	
		calculated.		I I I I I I I I I I I I I I I I I I I	
		The absorbed fraction of aluminum	HSDB, 2013	Reported in a secondary source.	
		hydroxide in two human males dosed		study details and test conditions	
		orally was 0.01%.		were not provided.	
		Adult humans with renal failure who	HSDB, 2013	Reported in a secondary source,	
		ingested 1.5–3.0 g aluminum hydroxide		study details and test conditions	
		per day for 20-32 days absorbed between		were not provided.	
		100 and 568 mg aluminum per day (7-			
		19% of the dose).			

Aluminum Hydroxide CASRN 21645-51-2					
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY	
		Adult humans taking aluminum antacids had a 3-fold increase of aluminum levels in the urine; minimal aluminum was absorbed and was mostly excreted in the feces.	ATSDR, 2008	Reported in a secondary source, study details were not provided.	
Acute Mammalian	Toxicity	LOW: Aluminum hydroxide has low acute toxicity based on oral LD ₅₀ >2,000 mg/kg-bw in rats.			
Acute Lethality	Oral	Rat oral $LD_{50}>5,000 \text{ mg/kg bw}$ Rat oral $LD_{50}>2,000 \text{ mg/kg bw}$	European Commission, 2000 ECHA, 2013	Reported in a secondary source, study details and test conditions were not provided. Reported in a secondary source.	
				Performed in accordance with OECD guidelines and GLP.	
	Dermal			No data located.	
	Inhalation			No data located.	
Carcinogenicity		LOW: Aluminum hydroxide is estimated to be of low hazard for carcinogenicity based on professional			
		judgment and comparison to analogous	aluminum compounds.		
	OncoLogic Results Carcinogenicity (Rat and Mouse) Combined Chronic	Low potential for carcinogenicity (Estimated)	Professional judgment	Estimated based on professional judgment and comparison to analogous aluminum compounds.	
	1 OXICILY/ Carcinogenicity				
Genotoxicity		LOW: Aluminum hydroxide did not cause mutations in bacteria <i>in vitro</i> and did not cause chromosomal aberrations <i>in vitro</i> .			
	Gene Mutation in vitro	Negative in mouse lymphoma cells with and without metabolic activation	ECHA, 2013	Adequate, performed in accordance with OECD guidelines and GLP.	
	Gene Mutation in vivo			No data located.	
	Chromosomal Aberrations <i>in vitro</i>			No data located.	
	Chromosomal Aberrations <i>in vivo</i>	Negative for induction of micronuclei in polychromatic erythrocytes of bone marrow in Sprague-Dawley rats	ECHA, 2013	Adequate, performed in accordance with OECD guidelines and GLP.	

Aluminum Hydroxide CASRN 21645-51-2				
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY
	DNA Damage and Repair			No data located.
	Other (Mitotic Gene Conversion)			No data located.
Reproductive Effects		LOW: Aluminum hydroxide is estimated to be of low hazard for reproductive effects based on professional		
		judgment and comparison to analogous aluminum compounds.		
	Reproduction/ Developmental Toxicity Screen	Low potential for reproductive effects (Estimated)	Professional judgment	Estimated based on professional judgment and comparison to analogous aluminum compounds.
	Combined Repeated Dose with Reproduction/			
	Developmental Toxicity Screen			
	Reproduction and Fertility Effects			
Developmental Eff	ects	LOW: Aluminum hydroxide does not show developmental toxicity when administered orally to rats or mice at dose levels up to 266 mg/kg-day. There were no data located regarding developmental neurotoxicity		
	Reproduction/ Developmental Toxicity Screen	at dose levels up to 200 mg/kg-day. The		No data located.
	Combined Repeated Dose with Reproduction/ Developmental Toxicity			No data located.
	Screen			
	Prenatal Development	Low potential for developmental neurotoxicity (Estimated)	Professional judgment	Estimated based on analogy to structurally similar compounds.
		Mouse, oral, no developmental effects, NOAEL = 266 mg/kg-day (highest dose tested)	Domingo et al., 1989	Adequate.

Aluminum Hydroxide CASRN 21645-51-2				
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY
		Mouse, oral, NOAEL = 268 mg/kg-day (highest dose tested)	Gomez et al., 1989	Abstract only.
		Mouse, oral, NOAEL = 300 mg/kg-day (only dose tested)	Colomina et al., 1994	Abstract only.
		Rat, oral, NOAEL = 768 mg/kg-day (highest dose tested)	Gomez et al., 1990	Abstract only.
		Rat, oral, NOAEL = 384 mg/kg-day (only dose tested)	Llobet et al., 1990	Abstract only.
	Postnatal Development			No data located.
		impaired learning in a labyrinth maze test in a 90-day oral study in rats at 35 mg Al/kg/day as aluminum hydroxide with citric acid. Impaired learning in a labyrinth maze test was also reported in rats orally exposed to 300 mg Al/kg/day as aluminum hydroxide; there is uncertainty in the threshold of response, the possibility that effects occur at doses <100 mg/kg/day (in the Moderate - High hazard designation range) cannot be ruled out.		
	Neurotoxicity Screening Battery (Adult)	30-day Rat, oral diet, no significant effects noted, NOAEL = 1,252 mg Al/kg-day	Thorne et al. 1986, 1987 (as described in ATSDR, 2008)	Reported in a secondary source.
		90-day Rat, oral gavage, impaired learning in a labyrinth maze test NOAEL = Not established LOAEL = 35 mg Al/kg-day as aluminum hydroxide with citric acid (only dose tested)	Bilkei-Gorzo, 1993 (as described in ATSDR, 2008)	Reported in a secondary source; dose reported as 35 mg/kg-day as aluminum hydroxide with citric acid; citric acid was added to increase absorption; it is not proven that negative effects only related to aluminum hydroxide and not based on citric acid; also, the background aluminum content of the diet fed to rats was not reported; only one dose tested.
		90-day Rat, oral gavage, impaired learning in a labyrinth maze test NOAEL = Not established LOAEL = 300 mg Al/kg-day as aluminum hydroxide (only dose tested)	Bilkei-Gorzo, 1993	The background aluminum content of the diet fed to rats was not reported; only one dose tested; study description lacks sufficient details on individual results.

Aluminum Hydroxide CASRN 21645-51-2				
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY
Repeated Dose Effects		MODERATE: Aluminum hydroxide is estimated to have potential for immunotoxicity based on professional judgment and comparison to analogous aluminum compounds. Aluminum hydroxide is of low hazard for repeated dose effects based on an experimental study indicating no adverse effects in rats following oral doses up to 14,470 ppm (302 mg/kg-day). In addition, a low potential for repeated dose effect is estimated based on professional judgment and comparison to analogous aluminum compounds.		
		Low potential for repeated dose effects but moderate potential for immunotoxicity. (Estimated)	Professional judgment	Estimated based on professional judgment and comparison to analogous aluminum compounds.
		28-day Rat (male), oral diet, no systemic effects noted. NOAEL = 14,470 ppm/diet (302 mg Al/kg-day)	Hicks et al., 1987	Study details from primary source.
		6-Week human, oral, LOAEL = 25 mg Al/kg-day (Reduction in primed cytotoxic T-cells, only dose tested)	ATSDR, 2008	Reported in a secondary source.
Skin Sensitization		LOW: Aluminum hydroxide is not a skin sensitizer in guinea pigs.		
	Skin Sensitization	Low potential for skin sensitization (Estimated)	Professional judgment	Estimated based on professional judgment and comparison to analogous aluminum compounds.
		Not sensitizing to guinea pigs in an <i>in vivo</i> maximization test	ECHA, 2013	Reported in a secondary source; conducted in accordance with OECD guidelines and GLP.
Respiratory Sensitization		No data located.		
	Respiratory Sensitization			No data located.
Eye Irritation		VERY LOW: Aluminum hydroxide is not irritating to rabbit eyes.		
	Eye Irritation	Not irritating, rabbits	ECHA, 2013	Reported in a secondary source; Conducted in accordance with OECD guidelines and GLP.

Aluminum Hydroxide CASRN 21645-51-2						
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY		
Dermal Irritation		VERY LOW: Aluminum hydroxide is not irritating to skin.				
Dermal Irritation		Not irritating, rabbits	ECHA, 2013	Reported in a secondary source. Conducted in accordance with OECD guidelines and GLP.		
		Not irritating, rabbits, mice and pigs	ECHA, 2013	Reported in a secondary source; nonguideline studies.		
Endocrine Activity	7	No data located.				
				No data located.		
Immunotoxicity		Aluminum hydroxide is estimated to ha	ve potential for immunotoxicity	based on professional judgment and		
		comparison to analogous aluminum con	pounds.			
	Immune System Effects	Moderate potential for immunotoxicity (Estimated)	Professional judgment	Estimated based on professional judgment and comparison to analogous aluminum compounds.		
		6-Week human, oral LOAEL = 25 mg Al/kg-day (Reduction in primed cytotoxic T-cells, only dose tested)	ATSDR, 2008	Reported in a secondary source.		
		ECOTOXICITY				
ECOSAR Class		Not applicable				
Acute Toxicity	YoxicityMODERATE: Aluminum hydroxide is estimated to be of moderate hazard for acute aquatic toxicity of on potential for dissolved aluminum species to cause adverse effects in aquatic species, as described in EPA New Chemical Categories document which includes inorganic salts of aluminum (Professional judgment; EPA, 2010). Additional studies for acute toxicity to daphnia and algae are ongoing; the rest these studies may affect the acute aquatic hazard designation.			ard for acute aquatic toxicity based quatic species, as described in the of aluminum (Professional and algae are ongoing; the results of		
Fish LC ₅₀		Salmo trutta 96-hour NOEC >100 mg/L (Experimental)	European Commission, 2000	Reported in a secondary source. The effect concentration is greater than the measured water solubility.		
Daphnid LC50		Daphnia magna 48-hour NOEC >100 mg/L (Experimental)	European Commission, 2000	Reported in a secondary source. Study details and test conditions were not available and the effect concentration is greater than the measured water solubility.		
Aluminum Hydroxide CASRN 21645-51-2						
-------------------------------------	--	---	--	--	--	--
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	Daphnia magna 48-hour NOEC >0.135 mg/L (Experimental)	ECHA, 2013	Study conducted with aluminum powder.			
	Daphnia magna 48-hr EC50 = 0.8240 mg/L (Experimental)	TSCATS, 1996	Study incorrectly cited in source; results are for a different test substance, vanadium hydroxide oxide.			
Green Algae EC50	Selenastrum capricornutum 72-hour NOEC >100 mg/L (Experimental)	European Commission, 2000	Reported in a secondary source. The effect concentration is greater than the measured water solubility.			
	Selenastrum capricornutum 96-hr EC50 = 0.6560 mg/L (Experimental)	TSCATS, 1996	Study incorrectly cited in source; results are for a different test substance, vanadium hydroxide oxide.			
	Pseudokirchnerella subcapitata 96-hr EC50 = 0.46 mg/L (Experimental)	ECHA, 2013	Reported in a secondary source. EC ₅₀ range: 0.57 mg/L at pH of 7.6 and 0.46 mg/L at pH of 8.2. The water solubility of aluminum hydroxide under basic pH conditions is not available; experimental details are not sufficient to address the confidence limits of these data points.			
	Pseudokirchnerella subcapitata 72-hour NOEC = 0.004 – 0.052 mg/L (Experimental)	ECHA, 2013	Reported in a secondary source. DfE criteria are based on LC and EC_{50} values; therefore a NOEC value is not sufficient to determine a hazard designation.			
Chronic Aquatic Toxicity	MODERATE: Aluminum hydroxide is based on potential for dissolved aluminu the EPA Chemical Categories documen judgment; EPA, 2010). An additional st study may affect the chronic aquatic has	estimated to be of moderate haza im species to cause adverse effec t which includes inorganic salts o tudy for chronic toxicity to daph zard designation.	ard for chronic aquatic toxicity ts in aquatic species, as described in of aluminum (Professional nia is ongoing; the results of this			

		Aluminum Hydroxide CASRN 21645-51-2			
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Fish ChV		Pimephales promelas 42-day NOEC = 0.102 mg/L, LOEC = 0.209 mg/L (Experimental)TSCATS, 1996		Study incorrectly cited in source; results are for a different test substance, vanadium hydroxide oxide.	
Daphnid ChV		Daphnia magna 21-day NOEC = 0.091 mg/L, LOEC = 0.197 mg/L (Experimental)	Study incorrectly cited in source; results are for a different test substance, vanadium hydroxide oxide.		
Green Algae ChV				No data located.	
		ENVIRONMENTAL F.	ATE		
		of the local environment (predominately dominated by leaching through soil; rund metal ion onto soil or sediment; and wet a Volatilization of this ionic compound from process. Under acidic pHs typically encou aluminum hydroxide colloids while unde predominate. Other factors influencing it extent of absorption on suspended partic	pH), transport of the aluminum off to aqueous environments; ads and dry deposition dust particula m either wet or dry surfaces is no untered in the environment, it may r basic conditions; anionic alumi ts behavior include the presence les, and the presence of other alu	(III) species is anticipated to be corption and/or precipitation of the ates in air to land or surface water. of expected to be an important fate ay form insoluble polymeric num hydroxide is expected to of dissolved organic matter, the minum species.	
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	Professional judgment	Cutoff value for non-volatile compounds.	
Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}		>30,000 (Estimated)	Professional judgment; EPA, 2004	Cutoff value for non-mobile compounds.	
	Level III Fugacity Model			No data located.	
Persistence		HIGH: As an inorganic material, aluminum hydroxide is not expected to biodegrade or oxidize under typical environmental conditions. Aluminum hydroxide does not absorb light at environmentally relevant wavelengths and is not expected to photolyze. No degradation processes for aluminum hydroxide under typical environmental conditions were identified.			

	Aluminum Hydroxide CASRN 21645-51-2						
PRO	PERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Water	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment	Substance is or contains inorganic elements, such as metal ions or oxides, that are expected to be found in the environment >180 days after release.			
	Volatilization Half-life for Model River	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law constant.			
	Volatilization Half-life for Model Lake	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law constant.			
Soil	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment	Substance contains inorganic elements.			
	Anaerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment	Substance contains inorganic elements.			
	Soil Biodegradation w/ Product Identification			No data located.			
	Sediment/Water Biodegradation			No data located.			
Air	Atmospheric Half-life	>1 year (Estimated)	Professional judgment	Substance contains inorganic elements.			
Reactivity	Photolysis	Not a significant fate process (Estimated)	Professional judgment	Aluminum hydroxide does not absorb UV light at environmentally relevant wavelengths and is not expected to undergo photolysis.			
	Hydrolysis			Dissociation of aluminum hydroxide in environmental waters is dependent both on the pH and the local concentration of other aluminum species; dissociation will not occur unless in highly acidic waters, e.g., pH 3.			

	Aluminum Hydroxide CASRN 21645-51-2						
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Environmental Half-Life				No data located. Inorganic compounds are outside the estimation domain (EPI).			
Bioaccumulation		LOW: Aluminum hydroxide is not expec	ted to bioaccumulate.				
	Fish BCF	<100 (Estimated)	Professional judgment	Aluminum hydroxide is an inorganic			
	BAF	<100 (Estimated)	Professional judgment	compound and is not anticipated to bioaccumulate or bioconcentrate. This inorganic compound is not amenable to available quantitative structure activity relationship models.			
	Metabolism in Fish			No data located.			
	·]	ENVIRONMENTAL MONITORING AN	D BIOMONITORING				
Environmental Mo	nitoring	No data located.					
Ecological Biomoni	toring	No data located.					
Human Biomonitoring This chemical was not included in the National Health and Nutrition Examination Survey biomonitor (CDC, 2011).			tion Survey biomonitoring report				

ATSDR (Agency for Toxic Substances and Disease Registry). Draft toxicological profile for aluminum. [Online] U.S. Department of Health and Human Services: September **2008.** <u>http://www.atsdr.cdc.gov/toxprofiles/tp22.pdf.</u>

Bilkei-Gorzo, A. Neurotoxic effect of enteral aluminum. Food Chem Toxicol. 1993, 31(5):357-361.

Colomina, M. T.; Gomez, M.; Domingo, J. L.; et al. Lack of maternal and developmental toxicity in mice given high doses of aluminum hydroxide and ascorbic acid during gestation. *Pharmacol Toxicol.* **1994**, 74(4-5):236-239 (Abstract Only).

CDC (Centers for Disease Control and Prevention). *Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables.* Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> as of May 10, 2011.

Domingo, J. L.; Gomez, M.; Bosque, M. A.; et al. Lack of teratogenicity of aluminum hydroxide in mice. *Life Sciences*. **1989**, 45(3):243-247.

ECHA (European Chemicals Agency). Information on registered substances. **2013.** <u>http://apps.echa.europa.eu/registered/data/dossiers/DISS-9e9ede9a-0fd5-2b35-e044-00144f67d031/DISS-9e9ede9a-0fd5-2b35-e044-00144f67d031_DISS-9e9ede9a-0fd5-2b35-e044-00144f67d031.html (accessed December, 2013).</u>

EPA (Environmental Protection Agency). High Production Volume (HPV) Challenge. Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. <u>http://www.epa.gov/hpv/pubs/general/datadfin.htm</u>

EPA. 2004. The Pollution Prevention (P2) Framework, EPA-748-B-03-001. Office of Pollution Prevention and Toxics 7403M, U.S. Environmental Protection Agency, Washington, DC. 20460. October 2003 version updated in January 2004. Latest version available at <u>http://www.epa.gov/opptintr/newchems/pubs/sustainable/p2frame-june05a2.pdf</u>

EPA (U.S. Environmental Protection Agency). Alternatives Assessment for Flame Retardants in Printed Circuit Boards, Review Draft. **2008**. <u>http://www.epa.gov/dfe/pubs/projects/pcb/full_report_pcb_flame_retardants_report_draft_11_10_08_to_e.pdf</u>.

EPA (U.S. Environmental Protection Agency). TSCA New Chemicals Program (NCP) Chemical Categories. Washington D.C. **2010**. <u>http://www.epa.gov/oppt/newchems/pubs/npcchemicalcategories.pdf</u> (accessed on Sept. 8, 2011). European Commission – Aluminium hydroxide IUCLID Dataset. European Chemicals Bureau. 2000.

Gomez, M.; Domingo, J. L.; Bosque, A.; et al. Teratology study of aluminum hydroxide in mice. *Toxicologist* **1989**, 9(1):273 (Abstract Only).

Gomez, M.; Bosque, M. A.; Domingo, J.; et al. Evaluation of the maternal and developmental toxicity of aluminum from high doses of aluminum hydroxide in rats. Vet. Hum. Toxicol. **1990**, 32(6):545-548 (Abstract Only).

Hicks, J. S.; Hackett, D. S.; Sprague, G. L. Toxicity and aluminum concentration in bone following dietary administration of two sodium aluminum phosphate formulations in rats. *Food Chem. Toxic.* **1987**, *25*(7):533-538.

HSDB (Hazardous Substances Data Bank). Aluminum hydroxide. National Library of Medicine. **2013.** <u>http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB</u> (accessed December, 2013).

Lewis, R. L., Sr. Sax's Dangerous Properties of Industrial Materials, 10th ed.; John Wiley & Sons, Inc.: New York, NY. 2000.

Lide, D. R, ed. CRC Handbook of Chemistry and Physics, 86th edition, CRC Press Taylor & Francis: Boca Raton, FL. 2006.

Llobet, J. M.; Gomez, M.; Domingo, J. L.; et al. Teratology studies of oral aluminum hydroxide, aluminum citrate, and aluminum hydroxide together with citric acid in rats. *Teratology* **1990**, 42(2):27A (Abstract Only).

NRC (National Research Council). *Toxicological Risks of Selected Flame Retardant Chemicals*. Subcommittee on Flame-Retardant Chemicals, National Academy Press: Washington D.C. **2000**.

O'Neil, ed. Merck Index, 13th ed.; Merck & Co., Inc.: Whitehouse Station, NJ. 2001.

Pakalin, S.; Cole, T.; Steinkellner, J.; et al. Review on production processes of decabromodiphenyl ether (DECABDE) used in polymeric applications in electrical and electronic equipment, and assessment of the availability of potential alternatives to DECABDE. [Online] January **2007.** <u>http://ecb.jrc.ec.europa.eu/documents/Existing-</u> Chemicals/Review_on_production_process_of_decaBDE.pdf (accessed on January 20, 2011).

TSCATS (Toxic Substance Control Act Test Submission Database). 1996.

Thorne, B.M.; Cook, A.; Donohoe, T.; et al. Aluminum toxicity and behavior in the weanling Long-Evans rat. *Bull Pyschon Soc.* **1987**. 25:129-132.

Thorne, B.M.; Donohoe, T.; Lin, K-N., et al. Aluminum ingestion and behavior in the Long-Evans rat. Physiol Behav. **1986.** 36(1):63-67.

Ammonium Polyphosphate

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. ^d This hazard designation would be assigned MODERATE if >5% of the particles are in the respirable range as a result of dust forming operations.

			Human Health Effects				Aquatic Toxicity ^{**}		Enviro Fa	nmental nte						
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Ammonium Polyphosphate	68333-79-9	L	L	L	L	L	L	L^{d}	L		VL	L	L	L	VH	L

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Ammonium Polyphosphate

0 0		CASRN: 68333-79-9				
	MW: ~100,000					
		MF: $(NH_4)_k \cdot H_{(n+2-k)} P_n O_{(3n+1)}$ (NAS, 2000)				
		Physical Forms: Neat: Solid				
		Use: Flame retardant				
SMILES: This polymer inorganic salt with MW >1,000 and no low MW compone	ents is not amenable to SMILES notation.					
Synonyms: Polyphosphoric acids, ammonium salts; APPII; AP 422; AP 462; APP (fireproofing agent); APP 422; Albaplas AP 95; Amgard CL; Amgard MC; Amgard TR; Ammonium polyphosphate; Ammonium polyphosphates; Antiblaze MC; Antiblaze MCM; Budit 3076; Budit 3076DC; Budit 3077; Budit 365; DFP-I; EINECS 269- 789-9; Exolit 462; Exolit 263; Exolit 422; Exolit 442; Exolit 454; Exolit 455; Exolit 462; Exolit 470; Exolit AP 422; Exolit AP 423; Exolit AP 462; FR- Cros 480; FR-Cros 484; Fire-Trol LCG-R; Flameguard PT 8; Hostaflam 423; Hostaflam AP 420; Hostaflam AP 422; Hostaflam AP 462; Hostaflam AP 464; Hostaflam TP-AP 751; Hostaflam TP-AP 752; Novawhite; Phos-Chek P 30; Phos-Chek P 40; Phos-Chek P 60; Poly-N 10-34-0; Poly-N 11-37-0; Polymetaphosphoric acid, ammonium salt: Polyphosphoric acid, ammonium salt: Sumisafe: Taien A: Taien H						
Chemical Considerations: High-MW ammonium polyphosphate (n>50) with a m retardants (Gard, 2005, Schrödter et al., 2005). These insoluble ammonium polyph $(NH_4)_k \cdot H_{(n+2-k)}P_nO_{(3n+1)}$, where n typically can range from 70 (Wanjie International hydrogen ions with ammonium ions. MWs can be as high as 100,000 g/mole and c was assessed as a non-bioavailable material. Prior assessments for similar polypho a flame retardant.	inimum of water-soluble fractions are being u osphates are long chain, ionic phosphate poly Co., 2007) to $>1,000$ (PINFA, 2010) and k realigomers with a MW <1,000 are not expected sphates evaluated the lower, water soluble models and the lower.	used to an increasing extent in flame mers with the following MF: epresents the degree of replacement of I. The high MW inorganic polymer pieties, which also have application as				
Polymeric: Yes Oligomers: Not applicable						
Metabolites, Degradates and Transformation Products: Ammonia; phosphate (Leisewitz et al., 2000)					
Analog: No analogs Endpoint(s) using analog values: Not applicable	Analog Structure: Not applicable					
Structural Alerts: Not applicable						
Risk Phrases: Not classified by Annex I Directive 67/548/European Economic Community & IUCLID (Pakalin et al., 2007).						
Hazard and Risk Assessments: The Maine Department of Environmental Protection (MDEP) Safer Alternative Assessment for Decabromodiphenyl Ether Flame Retardant in Plastic Pallets includes a Green Screen Assessment of Ammonium Polyphosphate (MDEP, 2007) although this was performed on lower MW materials.						

Ammonium Polyphosphate CASRN 68333-79-9								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
PHYSICAL/CHEMICAL PROPERTIES								
Melting Point (°C)	Decomposes at > 275°C (Measured)	IUCLID, 2000	Consistent with values reported in other secondary sources.					
	Decomposes at 300°C for long chain ammonium polyphosphate (Measured)	OECD SIDS, 2007	Consistent with values reported in other secondary sources.					
	Decomposes at approx. 150°C for short chain ammonium polyphosphate (Measured)	OECD SIDS, 2007	Reported for the low MW ammonium polyphosphate.					
Boiling Point (°C)	>275, decomposition with evolution of ammonia and phosphoric acid (Measured)	Clariant, 2011	Reported in chemical datasheet, consistent with the high melting point expected for this chemical.					
Vapor Pressure (mm Hg)	<10 ⁻⁸ at 25°C (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large high MW polymers.					
	<0.75 at 20°C reported as < 1 hPa (Measured)	IUCLID, 2000; OECD SIDS, 2007	Ammonium polyphosphate will have negligible vapor pressure as an inorganic salt. Any measurable vapor pressure is due to decomposition and the release of ammonia gas.					
Water Solubility (mg/L)	0.5% (w/w) at 25°C in 10% suspension (Measured)	Clariant, 2011	Reported in chemical datasheet.					
	0.5-0.05% max. at 25°C in 10% suspension (Measured)	Wanjie International Co., 2007	Inadequate. This value likely represents a dispersion and is not an indication of the material's true water solubility.					
Log K _{ow}			No data located; polymers with a MW >1,000 are outside the domain of the available estimation methods.					
Flammability (Flash Point)	Nonflammable (Estimated)	Professional judgment	No data located; based on its use as a flame retardant.					
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No data located; based on its use as a flame retardant.					

Ammonium Polyphosphate CASRN 68333-79-9							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Pyrolysis			No data located.				
рН	5.5-7.5 at 25°C in 10% suspension (Measured)	Clariant, 2011	Measured by chemical supplier. Data are likely for the formulated material in water, and would be dependent on the ammonium/polyphosphate ratios.				
pKa			No data located.				

Ammonium Polyphosphate CASRN 68333-79-9								
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
		HUMAN HEALTH EFI	FECTS					
Toxicokinetics		Absorption is not expected for any rout	te of exposure. This inorganic pol	ymer moiety is large with a MW				
	>1,000. Based on professional judgment, it is expected to have limited bioavailability and therefore is not							
		expected to be readily absorbed, distrib	outed or metabolized in the body.					
Dermal Absorption	n <i>in vitro</i>			No data located.				
Absorption,	Oral, Dermal or	Gastrointestinal absorption of higher	NAS, 2000	Limited study details reported in a				
Distribution,	Inhaled	polyphosphates following ingestion is		secondary source.				
Metabolism &		probably low; they are most likely						
Excretion		hydrolyzed by stomach acids to						
	-	phosphate and ammonium ions.						
	Other	No absorption is expected for all routes	Professional judgment	Estimated based on				
		of exposure if insoluble in water		physical/chemical properties and				
		(Estimated)		limited bioavailability.				
Acute Mammalian	a Toxicity	LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and						
		therefore is of low potential for acute n	ammalian toxicity. This low haz	ard designation is also supported				
		by a rat oral median lethal dose (LD ₅₀)	of >2,000 mg/kg, a rat dermal Ll	D ₅₀ of >2,000 mg/kg, and a 4-hour				
	1	rat median lethal concentration (LC ₅₀)	of >5.09 mg/L.					
Acute Lethality	Oral	Rat oral $LD_{50} > 2,000 \text{ mg/kg}$	UNEP, 2008	Although limited study details were				
				reported in a secondary source,				
				results indicated that LD_{50} values				
				were greater than the high dosages				
				tested.				
		Rat oral $LD_{50} = 4,740 \text{ mg/kg}$	IUCLID, 2000; Clariant, 2009	Although limited study details were				
				reported in a secondary source,				
				results indicated that LD ₅₀ values				
				were greater than the high dosages				
				tested; data for commercial mixture				
				Exolit 422 (purity not specified).				
		Rabbit oral LD ₅₀ >2,000 mg/kg	UNEP, 2008	Although limited study details were				
				reported in a secondary source,				
				results indicated that LD ₅₀ values				
				were greater than the high dosages				
				tested.				

Ammonium Polyphosphate CASRN 68333-79-9						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
	Dermal	Rat dermal LD ₅₀ >5,000 mg/kg	IUCLID, 2000; UNEP, 2008	Although limited study details were reported in a secondary source, results indicated that LD ₅₀ values were greater than the high dosages tested; data for commercial mixture Exolit 456 (90% ammonium polyphosphate and 10% monoammonium phosphate).		
		Rat dermal LD ₅₀ >2,000 mg/kg	UNEP, 2008	Although limited study details were reported in a secondary source, results indicated that LD_{50} values were greater than the high dosages tested.		
	Inhalation	Rat Inhalation 4-hour LC ₅₀ >5.09 mg/L	UNEP, 2008	Although limited study details were reported in a secondary source, results indicate that LC_{50} values are greater than the highest concentration tested; it is unspecified if the inhaled substance is a vapor/gas or dust/mist/fume.		
Carcinogenicity		LOW: This polymer is large, with a MW >1,000. It is expected to have few to no residual monomers. Additionally, crosslinking, swellability, dispersability, reactive functional groups, inhalation potential, and hindered amine groups are not expected. Therefore, there is low potential for carcinogenicity based on professional judgment. No data located.				
	OncoLogic Results Carcinogenicity (Rat and Mouse) Combined Chronic Toxicity/ Carcinogenicity	Limited bioavailability expected; crosslinking swellability, dispersability, reactive functional groups, inhalation potential, and hindered amine groups are not expected. (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff value for large high MW polymers.		
Genotoxicity		LOW: This polymer is large, with a M therefore has low potential for genotox	W >1,000. It is expected to have li icity.	mited bioavailability and		
	Gene Mutation in vitro	Limited bioavailability expected (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff value for large high MW polymers.		

Ammonium Polyphosphate CASRN 68333-79-9						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
		Negative, Ames assay, <i>Salmonella</i> <i>Typhimurium</i> TA98. TA100, TA1535, TA1537, TA1538, and <i>E. coli</i> WP2uvrA; with and without metabolic activation	ESIS, 2000	Reported in a secondary source, study details and test conditions were not provided.		
	Gene Mutation in vivo			No data located.		
	Chromosomal Aberrations <i>in vitro</i>			No data located.		
	Chromosomal Aberrations <i>in vivo</i>			No data located.		
	DNA Damage and Repair			No data located.		
	Other (Mitotic Gene Conversion)			No data located.		
Reproductive Effe	ets	LOW: This polymer is large, with a M	W >1,000. It is expected to have li	mited bioavailability and		
		therefore has low potential for reproductive effects based on professional judgment and the polymer				
	Reproduction/ Developmental Toxicity Screen Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen Reproduction and Fertility Effects	Limited bioavailability expected (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff value for large high MW polymers.		

Ammonium Polyphosphate CASRN 68333-79-9					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Developmental Eff	ects	LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and			
		therefore has low potential for developmental effects based on professional judgment and the polymer			
		assessment literature. No data located.			
	Reproduction/				
	Developmental Toxicity				
	Combined Repeated				
	Dose with	I imited bioavailability expected	Professional judgment:	Based on cutoff values for large	
	Reproduction/	(Estimated)	Boethling et al., 1997	high MW polymers.	
	Developmental Toxicity	()		ingi in i polymoro.	
	Screen				
	Prenatal Development				
	Postnatal Development				
Neurotoxicity		LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and			
		therefore has low potential for neurotoxicity based on professional judgment and the polymer assessment			
		literature. No data located.			
	Neurotoxicity	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large	
	Screening Battery	(Estimated)	Boethling et al., 1997	high MW polymers.	
Dana a ta di Dana Eff	(Adult)				
Repeated Dose En	ects	LOW: This polymer is large, with a M	w >1,000. It is expected to have h	inited bloavallability; nowever,	
		because the WW_n is >10,000, there is the respirable range as a result of dust form	ning operations. No experiments	II >5% of the particles are in the	
		Limited bioavailability expected	Professional judgment:	Based on cutoff values for large	
		(Estimated)	Boethling et al., 1997	high MW polymers.	
		This polymer MW _n is >10.000: There is	Professional judgment:	Based on cutoff values for large	
		uncertain potential for lung effects from	Boethling et al., 1997	high MW polymers.	
		lung overload if respirable particles are			
		inhaled; Polymers with a MW >10,000			
		have the potential for irreversible lung			
		damage as a result of lung overloading.			
		(Estimated)			

Ammonium Polyphosphate CASRN 68333-79-9								
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Skin Sensitization		LOW: Not a skin sensitizer in guinea pigs.						
	Skin Sensitization	Not a skin sensitizer, guinea pigs	Safepharm, 1993 (as described in NAS, 2000)	Reported in chemical data sheet; adequate study details provided.				
Respiratory Sensit	ization	No data located.						
	Respiratory Sensitization			No data located.				
Eye Irritation		VERY LOW: Mixtures containing prin	narily ammonium polyphosphate	were not irritating to rabbit eyes.				
	Eye Irritation	Not irritating, rabbits Not irritating, rabbits	UNEP, 2008 ESIS, 2000	Reported in secondary source; study details and test conditions were not provided; data for commercial mixture (70% ammonium polyphosphate and 30% monoammonium phosphate). Reported in a secondary source; study details and test conditions were not provided; data for commercial mixture Exolit 456 (90% ammonium polyphosphate and 10% monoammonium				
				phosphate). Study in accordance with Organisation of Economic Cooperation and Development (OECD) 405 guideline.				
Dermal Irritation		LOW: Mixtures containing primarily a skin of rabbits.	ummonium polyphosphate were n	ot irritating to slightly irritating to				
	Dermal Irritation	Not irritating, rabbits 4-hour occlusion	UNEP, 2008	Reported in a secondary source; study details and test conditions were not provided; data for commercial mixture (70% ammonium polyphosphate and 30% monoammonium phosphate).				

	Ammonium Polyphosphate CASRN 68333-79-9					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
		Slightly irritating, rabbits; 24-hour occlusive patch test	ESIS, 2000; IUCLID, 2000	Reported in a secondary source; study details and test conditions were not provided; data for commercial mixture Exolit 422 (purity not specified).		
		Not irritating	ESIS, 2000; IUCLID, 2000	Reported in a secondary source; study details and test conditions were not provided; data for commercial mixture Exolit 456 (90% ammonium polyphosphate and 10% monoammonium phosphate). Study in accordance with OECD 404 guideline.		
		Not irritating, rabbits. Very slight erythema in 2/3 animals 1-hour after exposure to AMGARD LR4; however, no skin reaction was observed after 24 and 72 hours.	NAS, 2000	Limited study details reported in a secondary source. Study was conducted using AMGARD LR2 (liquid containing test substance, urea and water) and AMGARD L4 (powder).		
		Not irritating, rabbits exposed 5 times (23 hours for each exposure) to fabric treated with LR2	NAS, 2000	Limited study details reported in a secondary source. Study was conducted using AMGARD LR2 (liquid containing test substance, urea and water).		
		Not irritating, human volunteers	NAS, 2000	Limited study details reported in a secondary source. Study was conducted using AMGARD LR2 (liquid containing test substance, urea and water).		
Endocrine Activity	,	This polymer is large, with a MW >1,0	00. It is not expected to have end	ocrine activity due to its poor		
		bioavailability and inability to be read	ny metabolized in the body based	on professional judgment.		
		(Estimated)	Boethling et al., 1997	Based on cutoff values for large high MW polymers.		

Ammonium Polyphosphate CASRN 68333-79-9								
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Immunotoxicity		This polymer is large, with a MW >1,0	00. It is expected to have limited	bioavailability and therefore has				
		low potential for immunotoxicity based on professional judgment and the polymer assessment literature.						
		No data located.						
	Immune System Effects	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large				
		(Estimated)	Boethling et al., 1997	high MW polymers.				
		ECOTOXICITY						
ECOSAR Class		Not applicable						
Acute Toxicity		comprised of minimal low MW aligon	a $MW > 1,000$ that do not contain are are estimated to have no effectively the set of	reactive functional groups and are				
		nolymers have NFS because the amount	t dissolved in water is not anticir	ated to reach a concentration at				
		which adverse effects may be expressed	L Based on professional judgmen	t, guidance for the assessment of				
		aquatic toxicity hazard leads to a low p	otential for hazard for those mat	erials that display NES.				
		Experimental data are also consistent v	with this hazard designation.					
Fish LC ₅₀		NES	Professional judgment	The large MW, limited				
				bioavailability and low water				
				solubility suggest there will be				
				NES.				
		Oncorhynchus mykiss 96-hour LC ₅₀	IUCLID, 2000; UNEP, 2008	Inadequate; limited study details				
		>101 mg/L		reported in a secondary source and				
		(Experimental)		value is much greater than the				
		Danie annie 06 henre L.C. 100	Clariant 2000	anticipated water solubility.				
		$Danio Terio 90-nour LC_{50} = 100 - 100 - 100 mg/l$	Clariant, 2009	reported in a secondary source and				
		(Experimental)		value is much greater than the				
				anticipated water solubility.				
		Brachvdanio rerio 96-hour LC_{50}	IUCLID. 2000	Guideline study red in a secondary				
		>500 mg/L	2	source with limited study details;				
		(Experimental)		OECD 203. Test substance: Exolit				
				456 (90% ammonium				
				polyphosphate and 10% of				
				ammonium phosphate).				

Ammonium Polyphosphate CASRN 68333-79-9							
PROPERTY/ENDPOINT	DATA	DATA REFERENCE					
	Freshwater fish (<i>Oncorhynchus mykiss</i>) 96-hour $LC_{50} = 123,000 - 1,326,000$ μ g/L (123 - 1,326 mg/L) (Experimental)	ECOTOX	Limited study details reported in a secondary source.				
	Freshwater fish (<i>Oncorhynchus</i> <i>tshawytscha</i>) 96-hour LC ₅₀ = 685 – 1,195 mg/L (Experimental)	Buhl and Hamilton, 1998	Limited study details reported in a secondary source. Study conducted with Fire-Trol LCG-R (composed primarily of liquid ammonium polyphosphate with attapulgite clay, a corrosion inhibitor and iron oxide).				
	Freshwater fish (<i>Oncorhynchus mykiss</i>) LC ₅₀ = 872 – >10,000 mg/L (Experimental)	Gaikowski et al., 1996	Limited study details reported in a secondary source. Study conducted with Fire-Trol LCG-R (composed primarily of liquid ammonium polyphosphate with attapulgite clay, a corrosion inhibitor and iron oxide).				
	Freshwater fish (<i>Oncorhynchus mykiss</i>) 96-hour $LC_{50} = 1,006,000 - 10,000,000$ μ g/L (1,006 - 10,000 mg/L) (Experimental)	ECOTOX	Limited study details reported in a secondary source.				
	Freshwater fish (<i>Pimephales promelas</i>) 96-hour $LC_{50} = 519,000 - 2,317,000$ μ g/L (519 - 1,080 mg/L) (Experimental)	ECOTOX	Limited study details reported in a secondary source.				

Ammonium Polyphosphate CASRN 68333-79-9						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Daphnid LC ₅₀	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.			
	<i>Hyalella azteca</i> 96-hour LC ₅₀ = 73 mg/L (Experimental)	McDonald et al., 1997	Limited study details reported in a secondary source. Study conducted with Fire-Trol LCG-R (composed primarily of liquid ammonium polyphosphate with attapulgite clay, a corrosion inhibitor and iron oxide).			
	Daphnia magna 48-hour $EC_{50} = 90,890$ $\mu g/L$ (90.89 mg/L) (Experimental)	ECOTOX	Limited study details provided in a secondary source.			
	$\begin{array}{l} Daphnia \ magna \ 48-hour \ EC_{50} = \\ 848,000 - 1,036,000 \ \mu g/L \ (848 - 1,036 \ mg/L) \\ (Experimental) \end{array}$	ECOTOX	Limited study details reported in a secondary source.			
	$\begin{array}{l} Daphnia \ magna \ 24 \ hour \ EC_{50} = \\ 1,007,000 \ -1,976,000 \ (1,007 \ -1,676 \ mg/L) \\ (Experimental) \end{array}$	ECOTOX	Limited study details reported in a secondary source.			
Green Algae EC ₅₀	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.			
Chronic Aquatic Toxicity	LOW: Water insoluble polymers with a MW >1,000 that do not contain reactive functional groups and are comprised of minimal low MW oligomers are estimated to have NES. These polymers have NES because the amount dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed. Based on professional judgment, guidance for the assessment of aquatic toxicity hazard leads to a low potential for those materials that display NES.					

Ammonium Polyphosphate CASRN 68333-79-9						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Fish ChV		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.		
Daphnid ChV		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.		
Green Algae ChV		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.		
		ENVIRONMENTAL I	FATE			
Transport		The estimated negligible water solubility and estimated negligible vapor pressure indicate that this ionic polymer is anticipated to partition predominantly to soil and sediment. The estimated Henry's Law Constant of $<10^{-8}$ atm-m ³ /mole indicates that it is not expected to volatilize from water to the atmospher The estimated K _{oc} of >30,000 indicates that it is not anticipated to migrate from soil into groundwater at also has the potential to adsorb to sediment.				
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large high MW polymers.		
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	>30,000 (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to adsorb strongly to soil and sediment.		
Level III Fugacity Model				This substance is not amenable to the model.		

		Ammonium Polyphosphate CAS	SRN 68333-79-9				
PRO	PERTY/ENDPOINT	DATA	DATA QUALITY				
Persistence		VERY HIGH: This polymer is large, with a MW >1,000. It is expected to have negligible water solubility and poor bioavailability to microorganisms indicating that biodegradation is not expected to be an important removal process in the environment. Hydrolysis is expected for ammonium polyphosphates, mainly via end-clipping of a monophosphate unit to form monoammonium phosphate. Hydrolysis rates increase with increasing chain lengths, but reach a limit when n>50. Qualitative statements from manufacturers indicate hydrolysis is slow, but increases with prolonged exposure to water and elevated temperatures. Therefore, hydrolysis is not expected to occur at a rate that would greatly reduce the polymeric chain. Furthermore, long-chain ammonium polyphosphates produced for flame retardant applications may be formulated with melamine or other stabilizers that impede hydrolysis. The polymer does not contain functional groups that would be expected to absorb light at environmentally-relevant wavelengths. Evaluation of these degradation values suggest a half-life for the polymer is >180 days.					
Water	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large high MW polymers.			
Volatilization Half-life for Model River Volatilization Half-life for Model Lake		>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.			
		>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.			
Soil	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment	The substance has a MW >1,000 and is not anticipated to be assimilated by microbial populations; therefore, biodegradation is not expected.			
		The half-life values ranged from 5.2-8.7 days in soil under aerobic conditions for liquid ammonium polyphosphate. Liquid ammonium polyphosphate hydrolyzed faster than solid ammonium polyphosphate and anaerobic conditions, caused by subsequent flooding, accelerated hydrolysis. (Measured)	OECD SIDS, 2007	Not applicable; this non-guideline study is for the low MW, liquid form of ammonium polyphosphate.			

Ammonium Polyphosphate CASRN 68333-79-9							
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
		Study results: None/not reported Test method: Field Test Ammonium polyphosphate breaks down to ammonia and phosphate rapidly in soil and sewage sludge. (Measured)	Leisewitz et al., 2000	Not applicable; biodegradation data is expected for the more soluble low MW ammonium polyphosphate. Reported in a secondary source.			
	Anaerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment	The substance has a MW >1,000 and is not anticipated to be assimilated by microbial populations; therefore, biodegradation is not expected.			
		Polyphosphate hydrolyzed faster than solid ammonium polyphosphate and anaerobic conditions, caused by flooding, accelerated hydrolysis. (Measured)	OECD SIDS, 2007	Not applicable; this non-guideline study is for the liquid form of ammonium polyphosphate.			
	Soil Biodegradation w/ Product Identification			No data located.			
	Sediment/Water Biodegradation			No data located.			
Air	Atmospheric Half-life	Not a significant fate process (Estimated)	Professional judgment	This substance is expected to exist entirely in particulate form in air and is not anticipated to undergo gas- phase chemical reactions.			
Reactivity	Photolysis	Not a significant fate process (Estimated)	Mill, 2000; Professional judgment	The substance does not contain functional groups that would be expected to absorb light at environmentally significant wavelengths.			

Ammonium Polyphosphate CASRN 68333-79-9					
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY	
Η	lydrolysis	Not a significant fate process (Estimated)	Gard, 2005; Wanjie International Co., 2007; PINFA, 2010; EFRA, 2011; Professional judgment	Hydrolysis is expected, mainly via end-clipping of a monophosphate unit to form monoammonium phosphate. Qualitative statements from manufacturers indicate hydrolysis is slow, but increases with prolonged exposure to water and elevated temperatures. Hydrolysis is not expected to occur at a rate that would greatly reduce the polymeric chain to a MW <1,000 g/mole.	
		Chemical hydrolysis of polyphosphates proceeds slowly in sterile, neutral solutions at room temperature. Solubility is pH dependent: at pH > 7 the substance will completely hydrolyze to HPO_4^{2-} and at pH 4-7 the substance will completely hydrolyze to $H_2PO_4^{-}$. (Measured)	OECD SIDS, 2007	Consistent with values reported in other secondary sources.	
Environmental Half-life		>180 days (Estimated)	Professional judgment	The substance has a MW >1,000 and is not anticipated to be assimilated by microorganisms. Therefore, biodegradation is not expected to be an important removal process. It is also not expected to be removed by other degradative processes under environmental conditions because of limited water solubility and limited partitioning to air.	

Ammonium Polyphosphate CASRN 68333-79-9							
PROPER	TY/ENDPOINT	DATA	REFERENCE DATA QUALI				
Bioaccumulation		LOW: This ionic polymer is large, with a MW >1,000. It is expected to have negligible water solubility and poor bioavailability indicating that it will have low potential for bioaccumulation based on professional judgment.					
	Fish BCF	<100 (Estimated)	Professional judgment	The substance has a MW >1,000 and is not anticipated to be assimilated b aquatic organisms; therefore, bioconcentration is not expected.			
BAF				No data located.			
	Metabolism in Fish			No data located.			
		ENVIRONMENTAL MONITORING A	ND BIOMONITORING				
Environmental Mo	nitoring	No data located.	No data located.				
Ecological Biomonitoring		No data located.	No data located.				
Human Biomonitoring		This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2011).					

Boethling, Robert S. and Nabholz, J. Vincent "Environmental Assessment of Polymers under the U.S. Toxic Substances Control Act", pp. 187-234, in Ecological Assessment of Polymers Strategies for Product Stewardship and Regulatory Programs, Hamilton, John D. and Sutcliffe, Roger (eds.), (1997) Van Nostrand Reinhold.

Buhl KJ and Hamilton SJ (1998) Acute toxicity of fire-retardant and foam-suppressant chemicals to early life stages of Chinook salmon (Oncorhynchus Tshawytscha). Environmental Toxicology and Chemistry 17(8):1589-1599.

Clariant. Clariant Additives Exolit AP 422. **2011.** Available: <u>http://www.additives.clariant.com/bu/additives/PDS_Additives.nsf/www/DS-OSTS-7SHDAQ?open</u>

Clariant. Exolit AP 422 Safety Data Sheet. **2009.** Available: ec.europa.eu/environment/waste/stakeholders/individual_bus/clariant/att_4a.pdf

Centers for Disease Control and Prevention (CDC). *Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables.* Department of Health and Human Services. **2011.** Available at: http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf as of May 10, 2011.

ECOTOX database. U.S. Environmental Protection Agency. http://cfpub.epa.gov/ecotox/. (Accessed December, 2013).

European Chemical Substances Information System (ESIS). IUCLID Dataset for ammonium polyphosphate. European Commission Joint Research Centre. **2000.** Available: ecb.jrc.ec.europa.eu/iuclid-datasheet/68333799.pdf

European Flame Retardants Association (EFRA). **2011.** Flame Retardants Fact Sheet: Ammonium polyphosphate (APP). Available at: <u>http://www.cefic-efra.com/images/stories/factsheet/6APPFactSheetAB-1_00.pdf</u>. As of March 2, 2011

Gaikowski MP, Hamilton SJ, Buhl KJ, et al. (1996) Acute toxicity of three fire-retardant and two fire-suppressant foam formulations to the early life stages of rainbow trout (Oncorhynchus Mykiss). Environmental Toxicology and Chemistry 15(8):1365-1374.

Gard, D.R. *Phosphoric Acids and Phosphates*. Kirk-Othmer Encyclopedia of Chemical Technology. Wiley-Interscience. **2005**. Published Online: July 15, 2005.

IUCLID (International Uniform Chemical Information Database). Polyphosphoric acids, ammonium salts. CAS No. 68333-79-9. European Commission –European Chemicals Bureau. **2000.**

Leisewitz A., Kruse H, Schramm E (2000) Substituting environmentally relevant flame retardants: Assessment fundamentals Volume 1: Results and summary overview.

Maine Department of Environmental Protection (MDEP). Decabromodiphenyl ether flame retardant in plastic pallets. A safer alternatives assessment. Appendices. Prepared by Pure Strategies, Inc., Gloucester, MA. **2007.**

McDonald SF, Hamilton SJ, Buhl KJ, et al. (1997) Acute toxicity of fire-retardant and foam-suppressant chemicals to Hyalella Azteca (Saussure). Environmental Toxicology and Chemistry 16(7):1370-1376.

Mill, T. (2000) Photoreactions in Surface Waters. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (355-382). Boca Raton: Lewis Publishers.

NAS (National Academy of Sciences). Toxicological risks of selected flame-retardant chemicals. Subcommittee on Flame-Retardant Chemicals, Committee on Toxicology, Board on Environmental Studies and Toxicology, National Research Council. **2000.** Available: www.nap.edu/catalog/9841.html.

Pakalin, S.; Cole, T.; Steinkellner, J.; et al. Review on production processes of decabromodiphenyl ether (DECABDE) used in polymeric applications in electrical and electronic equipment, and assessment of the availability of potential alternatives to DECABDE. [Online] **2007.** Available at:

http://publications.jrc.ec.europa.eu/repository/bitstream/11111111/5259/1/EUR%2022693.pdf as of January 20, 2011.

PINFA. Flame Retardant Fact Sheet. 2010. Available: www.pinfa.eu/uploads/Documents/Exolit_AP.pdf

Safepharm Laboratories, Ltd (Safepharm). AMGARD LR4: *Magnusson & Kligman Maximization study in the guinea pig*. Project 74/162. Derby, UK. **1993.**

Schrödter, K.; Bettermann, G.; Staffel, T.; et al. *Phosphoric Acid and Phosphates* Ullmann's Encyclopedia of Industrial Chemistry. Wiley-Interscience. **2005.** Published Online: July 15, 2005.

United Nations Environmental Programme (UNEP). Screening Information Dataset (SIDS) for ammonium polyphosphate. Organization for Economic Development (OECD). **2008.** <u>http://webnet.oecd.org/Hpv/UI/handler.axd?id=a394f471-d429-4a3a-a4cc-556e354363b7</u> Wanjie International Co., Ltd. Product fact sheet for ammonium polyphosphate. **2007.** Available at: <u>http://www.wuzhouchem.com/cataloged/indu/ammonium_polyphosphate.htm as of February 16</u>, 2011.

Antimony Trioxide

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment.^R Recalcitrant: Substance is comprised of metallic species that will not degrade, but may change oxidation state or undergo complexation processes under environmental conditions.* Ongoing studies may result in a change in this endpoint.

			Human Health Effects			Aqı Toxi	iatic city ^{**}	Environmental Fate								
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Veurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
	<u> </u>	4							•1	- •1			1			
Antimony Trioxide ¹	1309-64-4	L	M *	Μ	М	L	L	Η	L		L	Μ	Η	Μ	H^{R}	L

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

¹ This compound is included in the ongoing EPA Work Plan evaluation for Antimony Trioxide.

Antimony Trioxide

Sb	CASRN: 1309-64-4			
O^{-} / O^{-}	MW: 291.5			
	MF: Sb ₂ O ₃ (Empirical)			
	Physical Forms: Neat: Solid			
0 0	Use: Flame retardant synergist			
Representative Structure				
SMILES: O=[Sb]O[Sb]=O (Empirical)				
Synonyms: Antimony oxide; Antimony white; Antimony (III) oxide; Antimonious C; Thermoguard B; Timonox; Timonox White Star; Flowers of antimony; Exitelite	oxide; Antimony sesquioxide; C.I. Pigment White 11; Diantimony trioxide; Patox ; Senarmonite; Valentinite; Weiss-piessglanz			
Chemical Considerations: This alternative is an inorganic compound. In the absence considerations were used to complete this hazard profile.	nce of experimental data, professional judgment using chemical class and structural			
Polymeric: No Oligomers: Not applicable				
Metabolites, Degradates and Transformation Products: None				
Analog: Confidential antimony-containing salts and compoundsAnalog Structure: The analogs are confidential and cannot be suitably represented here.Endpoint(s) using analog values: neurological toxicityrepresented here.				
Structural Alerts: None				
Risk Phrases: R40: Limited evidence of a carcinogenic effect (EU RAR, 2008) and H351: Suspected of causing cancer by inhalation (ESIS, 2012).				
Hazard and Risk Assessments: Risk assessments completed for antimony trioxide by the European Union in 2008 (EU RAR, 2008) and the Subcommittee on Flame-Retardant Chemicals (NRC, 2000).				

Antimony Trioxide CASRN 1309-64-4				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	PHYSICAL/CHEMICAL PH	ROPERTIES		
Melting Point (°C)	656 (Measured)	ICSC, 2005	Adequate; measured in the absence of oxygen.	
	655 (Measured)	OECD SIDS, 2008		
	655 for the mineral valentinite 570 for the mineral senarmontite (Measured)	Lide, 2008		
Boiling Point (°C)	1,425 (Measured)	ICSC, 2005; Lide, 2008; O'Neil, 2011	Adequate; decomposes on heating.	
	1,550 (Measured)	ATSDR, 1992; ICSC, 2005; OECD SIDS, 2008	Reported as sublimation temperature.	
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	Professional judgment; 1999	Cutoff value for compounds that are anticipated to be non-volatile	
	1 mm Hg at 574°C (Measured)	Sax, 1979; EU RAR, 2008	Value measured at a nonstandard temperature. Result consistent with a vapor pressure below criteria cutoffs.	
Water Solubility (mg/L)	14 at 30°C (Measured)	ICSC, 2005	Water solubility of antimony trioxide is pH dependent; pH for this measurement not provided.	
	20 at pH 5; 30 at pH 9 (Measured)	UBA, 2001	Reported values, which span a relatively narrow range, are consistently reported in secondary	
	 19.7 at pH 5; 25.6 at pH 7; 28.7 at pH 9 Ten grams of the Sb₂O₃ was mixed with 100 mL distilled water; agitated for 24 hours at 20°C, filtered an analyzed using atomic absorption. (Measured) 	EU RAR, 2008	sources.	

Antimony Trioxide CASRN 1309-64-4			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	2.76 at pH 8 100 mg Sb ₂ O ₃ in 1-L reconstituted water after 7 days (Measured)	Canada, 2010; OECD SIDS, 2008	This value, reported in secondary sources with limited details, is one order of magnitude (10 times) less than other reported values listed above. The difference between these values (approximately 3 and 30 mg) has no impact on the other endpoints in this assessment and may be a result of a typographical error in either study or differences in study methods, analysis, or reporting.
	<28.7 (Measured)	ERMA, 2011	Sufficient details were not available to assess the quality of this study.
	Dissolution in water decreases from pH 1 to pH 7. Above pH 7, the solubility increases rapidly to pH 8, at which point a new equilibrium is established. (Measured)	OECD SIDS, 2008	Within multiple studies the data demonstrate the pH dependency of antimony trioxide solubility.
Log K _{ow}			No data located; inorganic compounds are outside the estimation domain of EPI.
Flammability (Flash Point)	Not combustible (Measured)	ICSC, 2005	Adequate.
Explosivity	Not expected (Estimated)	Professional judgment	No data located; based on its use as a flame retardant.
Pyrolysis	Not applicable (Estimated)	Professional judgment	Inorganic compounds do not undergo pyrolysis.
рН		Professional judgment	This substance is not expected to produce ions that would alter the pH of the solution in aqueous conditions.

Antimony Trioxide CASRN 1309-64-4					
PROPERTY/ENDPOINT DATA		DATA	REFERENCE	DATA QUALITY	
pKa				Not applicable; inorganic compounds are outside the estimation domain of SPARC (2009).	
		HUMAN HEALTH EFF	ECTS		
Toxicokinetics		Antimony trioxide is expected to have no absorption through skin and has poor absorption through the lungs and gastrointestinal (GI) tract according to experimental data. Following oral exposure, the majority of antimony trioxide is excreted in the feces. The compound accumulates in lungs with inhalation exposure due to slow absorption and clearance.			
Dermal Absorption in vitroA percutaneous study in human skin showed 0.26% absorptionOECD SIDS, 2008		OECD SIDS, 2008	Reported in a secondary source, limited study details provided.		
Absorption, Distribution, Metabolism & Excretion	Oral, Dermal, or Inhaled	Not absorbed through the skin; poor absorption through the lung and GI tract (Estimated by analogy)	Professional judgment	Based on closely related confidential analogs with similar structures, functional groups, and physical/chemical properties.	
		Absorption in rats orally administered 2% antimony trioxide in the diet was distributed to the thyroid, GI contents, spleen, heart, bone, muscle, lungs, liver, and GI tissue. The highest concentrations (concentrations not specified) were found in the whole blood, thyroid, and bones. The majority (99%) is excreted in the feces and also in urine within 7 days post-exposure.	NTP, 2005; OECD SIDS, 2008	Reported in a secondary source, limited study details provided.	

Antimony Trioxide CASRN 1309-64-4				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Six groups of Sprague-Dawley rats were administered antimony trioxide IP, IV, or by gavage (100 or 1,000 mg/kg-bw). Following oral administration, antimony trioxide had low absorption (0.3% of 100 mg/kg-bw; 0.05% of 1,000 mg/kg- bw), with a C_{max} at 24 hours and slower elimination from the blood. Antimony underwent significant distribution to the tissues with the majority being found in bone marrow and thyroid, followed by the ovaries, spleen, liver, lung, heart, femur, and skin. The majority of antimony trioxide was excreted in the feces and also in urine.	ECHA, 2011	Reported in a secondary source.
		Occupationally exposed smelter workers had increased (unspecified) levels of antimony in blood and urine following inhalation exposure Antimony has been detected in low (unspecified) amounts in human breast milk, placenta, amniotic fluid, umbilical cord blood, and fetal liver	NTP, 2005 OECD SIDS, 2008	Reported in a secondary source, occupational reports, no exposure or duration details; detected concentrations not specified. Reported in a secondary source, limited study details provided; detected concentrations not specified.
	Dermal			No data located.
	Inhalation	Occupational studies measured elevated antimony levels in the lungs of smelter workers both deceased and still living (retired ~20 years) indicating that antimony accumulates and is retained in the lungs long after exposure stopped; measured antimony in the lungs of deceased smelter workers was 12 times greater than in the lungs of unexposed referents	EPA, 2002; NTP, 2005	Reported in a secondary source, limited study details provided; detected concentrations not specified.

Antimony Trioxide CASRN 1309-64-4			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	 Fischer 344 rats (65/sex/group) were exposed (whole-body) to antimony trioxide dust at target concentrations of 0, 0.05, 0.5, or 5.0 mg/m³ (duration-adjusted concentrations: 0, 0.01, 0.09, or 0.80 mg/m³) for 6 hours/day, 5 days/week, for 1 year. The mass median aerodynamic diameter (MMAD) was 3.7 microns, and sigma g was 1.7 for all concentrations. Some animals were held for an additional 1-year recovery period and interim sacrifices were made at the end of 6 and 12 months during exposure as well as the end of the 6- and 12-month post-exposure recovery time. Lung clearance times were 2.3, 3.6, and 9.5 months for the low, mid-, and high-concentration groups, exposed animals retained 10.6, 120, and 1,460 micrograms/g lung tissue in the three exposure groups, respectively, after 1 year of exposure. 	EPA, 2002; Newton et al., 1994	The antimony trioxide atmosphere for treated rats was generated using fluidizing bed generators; resulting dust-laden streams were then delivered into inhalation chambers.
	Hamsters were exposed to pure antimony trioxide (volume median diameter of 7.0 microns) or dust containing 1.6% antimony (by weight) via intratracheal instillation and lung clearance was determined. The half-life of elimination from hamster lungs was 20–40 days.	EPA, 2002	Reported in a secondary source, limited study details provided.

Antimony Trioxide CASRN 1309-64-4					
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY	
Acute Mammalian Toxicity		LOW: Antimony trioxide is considered	LOW: Antimony trioxide is considered of low acute toxicity for oral, dermal, and inhalation exposure.		
Acute Lethality	Oral	No deaths were reported in rats administered antimony trioxide in food at \leq 16,714 mg/kg-day	ATSDR, 1992	Reported in a secondary source, limited study details provided.	
		Rat oral LD ₅₀ >20,000 mg/kg	EU RAR, 2008	Reported in a secondary source	
	Dermal	Rabbit dermal LD ₅₀ >8,300 mg/kg-bw	OECD SIDS, 2008	Reported in a secondary source, limited study details provided.	
	Inhalation	Rat 4-hour LC_{50} >5,200 mg/m ³ dust (5.2 mg/L)	OECD SIDS, 2008	Reported in a secondary source, limited study details provided.	
Carcinogenicity	-	MODERATE: There is limited evidence that inhalation of antimony trioxide is carcinogenic in rats. There was no carcinogenicity following inhalation to antimony trioxide dust in rats for 1 year. Other inhalation studies reported a potential for lung tumors; however, these studies may be considered unreliable due to study limitations. A 2 year cancer bioassay is in progress at National Toxicology Program (NTP).			
	OncoLogic Results			No data located. This inorganic compound is not amenable to available estimation methods.	
	Carcinogenicity (Rat and Mouse)			No data located.	
	Antimony Trioxide CASRN 1309-64-4				
---------	--	---	---	--	
PROPERT	FY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Combined Chronic Toxicity/ Carcinogenicity	DATA Wistar rats (45/sex/group) were exposed to 45 mg/m ³ antimony trioxide dust (duration-adjusted concentration = 9.4 mg/m ³ ; MMAD = 2.80) or 36–40 mg/m ³ antimony ore (duration-adjusted = 7.9 mg/m ³ ; MMAD = 4.78) up to 52 weeks at 7 hours/day, 5 days/week. Interim sacrifices were performed at 6, 9, and 12 months (5/sex/group) and the remaining animals were allowed to recover for 20 weeks. Slight decreases in body weight, and slightly raised white and yellow foci were observed on pleural surfaces in lung. After 6 months, all animals developed interstitial fibrosis, alveolar- wall cell hypertrophy, and hyperplasia, and cuboidal and columnar cell metaplasia of the lungs. The affected area increased in size after 12 months	REFERENCE Groth et al., 1986; EPA, 2002	DATA QUALITY Reported in a secondary source, limited study details provided. Only one concentration was tested. Study conducted prior to the implementation of guideline studies developed from standardized methodologies. The chemical substance used in testing also contained detectable levels of arsenic, a known human carcinogen.	
		 area increased in size arter 12 months and the extent of fibrosis increased after 4–5 months recovery. An increased incidence (27%) of lung tumors (squamous-cell carcinomas, bronchoalveolar adenomas, bronchoalveolar carcinomas, and scirrhous carcinomas) was observed in females only, while no lung tumors were reported for controls. 			

Antimony Trioxide CASRN 1309-64-4			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Rats exposed via inhalation to 4.01 mg antimony/m ³ as antimony trioxide dust for 6 hours/day, 5 days/week for 1 year did not exhibit an increase in the incidence of lung tumors.	Newton et al. 1994; ATSDR, 1992; EPA, 2002	Reported in a secondary source, limited study details provided. Units measured as mg antimony/m ³ as antimony trioxide.
	Increased incidence of lung tumors was observed in female rats exposed to 4.2 or 36 mg antimony/m ³ as antimony trioxide dust 6 hours/day, 5 days/week, for 1 year.	Watt, 1980, 1983; ATSDR, 1992	Reported in a secondary source, limited study details provided. Units measured as mg antimony/m ³ as antimony trioxide. Only female rats were tested. Study conducted prior to the implementation of guideline studies developed from standardized methodologies.
Genotoxicity	MODERATE: Antimony trioxide does cells <i>in vitro</i> . While antimony trioxide of there were also negative results for chro rats. Positive results were found in an <i>i</i> blood and bone marrow cells and for ch exposure for 21 days but the study had occurred in human lymphocytes and Cl cytogenetic assay in human lymphocyte	not appear to cause gene mutation caused chromosomal aberrations in pmosomal aberrations and micronu <i>n vivo</i> inhalation micronucleus assu- aromosomal aberrations in mouse l limitations. <i>In vitro</i> induction of si- ninese hamster V79 cells. Positive r s.	as in bacteria or mouse lymphoma n B6C3F1 mouse bone marrow, nclei in <i>in vivo</i> studies of mice and ay in B6C3F1 mouse peripheral bone marrow following oral ster chromatid exchange (SCE) results were also observed in a
Gene Mutation in	<i>n vitro</i> Negative in two Ames tests using <i>Salmonella</i> strains TA1535, TA1537, TA100, TA98, and <i>E. coli</i> strains WP2PuvrA and WP2P.	EU RAR, 2008	Reported in a secondary source. Performed according to Organisation of Economic Cooperation and Development (OECD) Guideline 471 and good laboratory practice (GLP).
Gene Mutation <i>i</i>	Negative in the mouse lymphoma L5178Y mutation assay.	EU RAR, 2008	Reported in a secondary source. Performed according to OECD Guideline 476 and GLP.

	Antimony Trioxide CASRN 1309-64-4			
PROPERT	Y/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Chromosomal Aberrations <i>in vitro</i>	Positive in a cytogenetic assay using human lymphocytes isolated from two different donors, with and without metabolic activation.	EU RAR, 2008	Reported in a secondary source. Performed according to OECD Guideline 473 and GLP.
		Positive for inducing SCE in human lymphocytes and V79 Chinese hamster cells.	EU RAR, 2008	Reported in a secondary source.
	Chromosomal Aberrations <i>in vivo</i>	Positive in micronucleus bone marrow and peripheral blood assay in B6C3F1 male and female mice, inhalation exposure.	NTP, 2011	Reported in a secondary source. Study results are limited because antimony trioxide appears to have effects on erythroid colony development.
		Negative for an increase in the incidence of micronuclei in CD-1 mice following single (5,000 mg/kg) or repeat (400, 667, or 1,000 mg/kg/day; males only) oral administration of antimony trioxide (bone marrow micronucleus assay).	EU RAR, 2008	Reported in a secondary source. Performed according to OECD Guideline 474 and GLP). No lethality reported.
		Negative in a chromosomal aberrations test in mouse bone marrow following single gavage administration of 400, 667 or 1,000 mg/kg bw to male and female Swiss albino mice (5/sex/group). Observations were made 6, 12, 18 and 24 hours post exposure.	EU RAR, 2008	Reported in a secondary source. Study results are limited because no positive control was used and is inadequate for determining hazard designation.

Antimony Trioxide CASRN 1309-64-4			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Positive in a chromosomal aberrations test in mouse bone marrow following repeated gavage administration of 400, 667 or 1,000 mg/kg bw to male Swiss albino mice (5/sex/group) daily for 21 days. Observations were made on days 7, 14, and 21. Frequencies of chromosomal aberrations were significantly increased in a dose- dependent manner, but did not show a duration-dependent association.	EU RAR, 2008	Reported in a secondary source. Study results are limited because only male mice were tested, exposure to the highest dose was lethal by day 20 of treatment, and no positive control was used. Lethality in this study was not seen in other studies at similar doses. Due to lethality, no chromosomal aberrations were evaluated in the high dose group on the day 21 observation. The EU RAR considers these results to be questionable due to the unexplained lethality in the high dose group, and inconsistencies in reporting.
	Negative for chromosome aberrations and micronuclei in the bone marrow of male and female Sprague-Dawley rats (6/group) administered 250, 500, or 1,000 mg/kg bw/day for 21 days. The mitotic index and percentage of polychromatic erythrocytes showed no evidence of bone marrow toxicity.	EU RAR, 2008	Reported in a secondary source. No lethality reported.
DNA Damage and Repair	 Positive in two <i>Bacillus subtilis</i> Rec assays using strains H17 (Rec⁺) and M45 (Rec⁻). Negative in a rat liver unscheduled DNA synthesis study in male Alderly Park AlPk:ApfSD rats (5/dose) following a single oral dose of 3,200 or 5,000 mg/kg. 	EU RAR, 2008 EU RAR, 2008	Reported in a secondary source. Performed according to OECD Guideline 486 and GLP.
Other (Mitotic Gene Conversion)			No data located.

Antimony Trioxide CASRN 1309-64-4			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Reproductive Effects	MODERATE: Reproductive effects following inhalation exposure to antimony trioxide cannot be ruled out. A single reproductive study is available reporting a measured LOEC value of 0.21 mg/L antimony trioxide dust in rats for difficulty conceiving and reduced numbers of offspring however, this study has limitations. Oral repeated dose studies did not report changes in reproductive organs		
Reproduction/ Developmental Toxicity Screen			No data located.
Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen			No data located.
Reproduction and Fertility Effects	Rats exposed to 250 mg antimony trioxide dust/m ³ for 4 hours/day beginning 3–5 days before estrus, through mating and gestation, until 3-5 days before birth (total 63–78 days) had difficulty conceiving and delivered reduced numbers of offspring. LOAEC = 209 mg/m ³ (0.21 mg/L)	ATSDR, 1992; EPA, 2002	Reported in secondary sources; a NOAEC was not identified. There is uncertainty as to the lowest concentration at which effects might occur. It is possible effects may occur at lower concentrations. Only one concentration was tested. Study conducted prior to the implementation of guideline studies developed from standardized methodologies.
	Changes in menstrual cycles, spontaneous late abortions, and early interruption of pregnancies were reported for female workers exposed to antimony dusts at an antimony metallurgical plant Rat and Mouse, oral (gavage), 4-week	ATSDR, 1992; EPA, 2002 OECD SIDS, 2008	Occupational exposures involving mixed compounds, undefined control group; reported in a secondary source, limited study details provided. Reported in a secondary source;
	repeated dose study; No effects on testicular toxicity. NOAEL = 1,200 mg/kg-day (highest dose tested)		study was not designed as a reproductive study. It was not specified if other reproductive parameters were examined.

Antimony Trioxide CASRN 1309-64-4				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Wistar rats, male and female, dietary	OECD SIDS, 2008	Reported in a secondary source,
		exposure 84–1,879 mg/kg-day for 90		study details and test conditions
		days. No effects in testes ≤1,686 mg/kg-		were not provided. Did not
		day; No effects in ovaries and uterus		conduct a comprehensive
		\leq 1,879 mg/kg-day.		evaluation of reproductive
		NOAEL = 1,686 mg/kg-day (male)		parameters, but did examine
		NOAEL = 1,879 mg/kg-day (female)		reproductive organs. Sources cited
		LOAEL = not identified		four significant figures in results.
Developmental Eff	ects	LOW: Low potential for developmental effects based on expert judgment. Available data are insufficient to		
		determine a hazard designation for this endpoint. The highest concentration tested was identified as a		
		NOAEC (0.0063 mg/L), but a LOAEC was not identified. It is possible that effects could occur at		
		concentrations that could be designated as Moderate or High potential for hazard if tested at higher		
		concentrations.		
	Reproduction /	Low potential for developmental effects	Expert judgment	Estimated based on expert
	Developmental Toxicity	(Estimated)		judgment.
	Screen			
	Combined Repeated			No data located.
	Dose with			
	Reproduction/			
	Developmental Toxicity			
	Screen			

Antimony Trioxide CASRN 1309-64-4				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Increased incidence of spontaneous abortions in female workers at an antimony metallurgy plant.	ATSDR, 1992	Reported in a secondary source, limited study details provided. Occupational exposures involving mixed compounds, undefined control group.
	Postnatal Development			No data located.
Neurotoxicity		LOW: Potential for neurotoxicity based mg/kg-day) for dogs and rabbits fall int	on professional judgment. The exponent of the total of total of the total of to	perimental LOAEL values (6,544
	Neurotoxicity Screening Battery (Adult)			No data located.
	Developmental Neurotoxicity			No data located.
	Other Neurotoxicity	Dogs developed muscle weakness and difficulty moving the hind limbs when administered antimony trioxide by gavage for 32 days. LOAEL = 6,544 mg/kg-day (only dose tested)	ATSDR, 1992	Reported in a secondary source, no study details or test conditions provided. A NOEL was not identified. There is uncertainty as to the lowest dose at which effects might occur. It is possible effects may occur at lower doses that would warrant a moderate or high hazard designation.
		Abnormal gait was observed in rabbits following a single dermal application LOAEL= 6,685 mg/kg-day (only dose tested).	ATSDR, 1992	Reported in a secondary source, limited study details provided. This was a lethal dose in the range finding study. A NOEL was not identified. There is uncertainty as to the lowest dose at which effects might occur. It is possible effects may occur at lower doses that would warrant a moderate or high hazard designation.

Antimony Trioxide CASRN 1309-64-4			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Repeated Dose Effects	HIGH: Based on inhalation repeated de experimental animals. Toxicity followin clearance and particle overload followed low hazard for repeated dose effects foll antimony trioxide is poorly absorbed we and mice is in progress at NTP.	ose LOAEC values ranging from 0 g inhalation of antimony trioxide of d by inflammatory responses and f lowing oral administration and tox hen administered orally. A 2-year i	.00092 to 0.045 mg/L dust in lust is due to impaired lung ibrosis. LOAEL values indicate a icokinetic studies indicate that nhalation cancer bioassay in rats
	Several occupational studies examined mine and smelter workers exposed to airborne dust concentrations of up to 138 mg/m ³ antimony trioxide (0.138 mg/L), and particle size averaging <5 mm, concentrated in the mid lung region. A common finding in the subjects examined was antimony pneumoconiosis characterized by diffuse, densely distributed punctuate opacities, having a round, polygonal or irregular shape, and averaging <1 mm diameter.	EPA, 2002	Reported in a secondary source; occupational exposures to airborne mixtures of antimony trioxide and/or pentoxide.

Antimony Trioxide CASRN 1309-64-4			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	24 guinea pigs were exposed to 45.4 mg/m ³ antimony trioxide dust (approximately 38.1 mg antimony/m ³) 2 hours/day, 7 days/week for 2 weeks followed by 3 hours/day for 8–265 days. Particle size was assumed to be <1 micron. Necropsy revealed increased lung weight, interstitial pneumonitis, and subpleural petechial hemorrhages in animals exposed for \geq 30 days. Increased liver weight, fatty degeneration, and cloudy swelling of the liver were noted in animals exposed for \geq 48 days, and decreased white blood counts and splenic hypertrophy and hyperplasia were seen in about 50% of the exposed animals. LOAEC = 45.4 mg/m ³ (0.045 mg/L)	EPA, 2002	Reported in a secondary source, study details and test conditions were not provided. Only one concentration tested. Study conducted prior to the implementation of guideline studies developed from standardized methodologies.
	Inhalation exposure of rats, 6 hours/day, 5 days/week ≥13 weeks resulted in proliferation of alveolar macrophages. LOAEC = 0.92 mg/m ³ (0.00092 mg/L) Dogs developed severe diarrhea and muscle weakness when administered	ATSDR, 1992 ATSDR, 1992	Reported in a secondary source, study details and test conditions were not provided. Study conducted prior to the implementation of guideline studies developed from standardized methodologies. Reported in a secondary source, study details and test conditions
	antimony trioxide by gavage for 32 days. LOAEL = $6,544 \text{ mg/kg/day}$		were not provided.

Antimony Trioxide CASRN 1309-64-4			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Fischer 344 rats (50/sex/group) were exposed to target concentrations of 0, 0.2, 1.0, 5.0, or 25.0 mg/m ³ (actual concentrations were 0, 0.25, 1.08, 4.92, or 23.46 mg/m ³) for 6 hours/day, 5 days/week, 13 weeks (duration-adjusted concentrations = 0, 0.05, 0.19, 0.88, or 4.20 mg/m ³ , respectively). Interim sacrifices (5/sex/group) were conducted at weeks 1, 2, 4, 8, and 13, and some animals were held an additional 27 weeks for recovery. Complete gross and histopathological examinations were conducted on all animals, while hematology and clinical chemistry analysis were performed for 5/sex/group at exposure and recovery weeks 1,2,4,8, and 13. Body weight in males and females was reduced at the two highest	Newton et al., 1994; EPA, 2002	Reported in a secondary source.
	reduced at the two highest concentrations, and mean and absolute lung weights were increased in both sexes at the two highest concentrations during exposure and early part of recovery. Gross necropsy revealed discolored lungs and microscopic examination found particle-laden and degenerating macrophages, cellular debris in the lumen of the alveoli, pneumatocyte hyperplasia, and alveolar wall thickening, which were still present at week 27 of recovery. NOAEL = $1.08 \text{ mg/m}^3 (0.0011 \text{ mg/L})$ LOAEL = $4.92 \text{ mg/m}^3 (0.0049 \text{ mg/L})$		

	Antimony Trioxide CASRN	1309-64-4	
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Fischer 344 rats (65/sex/group) were exposed (whole-body) to antimony trioxide at target concentrations of 0, 0.05, 0.5, or 5.0 mg/m ³ (duration- adjusted concentrations: 0, 0.01, 0.09, or 0.80 mg/m ³) for 6 hours/day, 5 days/week for 1 year. Some animals were held for an additional 1-year recovery period and interim sacrifices were made at the end of 6 and 12 months during exposure as well as the end of the 6- and 12-month post-exposure recovery time. Gross and histopathological examinations were conducted on all animals and hematology analyses were performed on subgroups at 12, 18, and 24 months. Ophthalmoscopic evaluation found an 11, 2, 28 and 32% increased incidence of cataracts from lowest to highest test concentration, respectively. Interstitial inflammation and granulomatous inflammation were observed at all concentrations. Statistical analysis indicated a significant increase in incidence and severity of these effects at the high exposure in both sexes.	Newton et al., 1994; EPA, 2002	Reported in a secondary source, not a guideline study.
	Pulmonary clearance was decreased by 80% in the high concentration group and the clearance halftime was increased from 2 months to 10 months. LOAEC = $0.05 \text{ mg/m}^3 (0.0005 \text{ mg/L})$		

Antimony Trioxide CASRN 1309-64-4							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Wistar rats (50 females/group) and Sinclair S-1 miniature pigs (3 females/group) to 0, 1.9, or 5.0 mg/m ³ (duration-adjusted concentrations = 0, 0.3, and 0.9 mg/m ³ , respectively) antimony trioxide for 6 hours/day, 5 days/week for 1 year. Particle size was 0.44 and 0.40 microns for the low and high concentrations, respectively. Survival, hematology and clinical chemistry were not affected by exposure for either species. Lung weights were increased and pulmonary focal fibrosis, adenomatous hyperplasia, multinucleated giant cells, cholesterol clefts, pneumonocyte hyperplasia, and pigmented macrophages were observed.	EPA, 2002	Reported in a secondary source. Study conducted prior to the implementation of guideline studies developed from standardized methodologies.				
	Necropsy revealed pulmonary discoloration and increased alveolar- intralveolar macrophages in both exposure groups, while focal subacute- chronic interstitial inflammation and granulomatous inflammation observed in the high exposure group. LOAEC = 1.9 mg/m^3 (0.0019 mg/L, lowest concentration tested)						

Antimony Trioxide CASRN 1309-64-4							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Wistar rats, male and female, dietary exposure of 0, 1,000, 5,000, or 20,000 ppm (male: 0, 84, 421, 1,686 mg/kg-day; female: 0, 97, 494, 1,879 mg/kg-day) for 90 days. In high-dose males: increased triglycerides, red blood cells, and urine volume; decreased alkaline phosphatase activity. In high-dose females: increased red blood cells, urine volume, serum cholesterol, and aspartate and alanine aminotransferase; decreased alkaline phosphatase activity (mid-dose too) and urine specific gravity. NOAEL = 5,000 ppm (494 and 421 mg/kg-day in females and males, respectively) LOAEL = 20,000 ppm (1,879 and 1,686 mg/kg-day in females and males,	NTP, 2005	Reported in a secondary source.				
	respectively) Male Wistar rats, dietary exposure, 500 or 1,000 mg antimony trioxide/kg-day, for 24 weeks. Decreased red blood cell count; increased serum glutamic oxaloacetic transaminase. LOAEL = 500 mg/kg-day Rats (strain and sex not given), dietary exposure, 670 mg antimony trioxide/kg- day, for 12 weeks. Decreased weight gain, spleen weight, and heart weight; increased lung weight. LOAEL = 670 mg/kg-day (only dose tested)	NTP, 2005 NTP, 2005	Reported in a secondary source, study details and test conditions were not provided. Reported in a secondary source, study details and test conditions were not provided.				

Antimony Trioxide CASRN 1309-64-4								
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
		Rats (strain and sex not given), dietary exposure, 420–490 mg antimony trioxide/kg-day for 24 weeks. Decreased weight gain, decreased red blood cells, and cloudy swelling in hepatic cords. LOAEL = 418 mg/kg-day	ATSDR, 1992; NTP, 2005	Reported in a secondary source, study details and test conditions were not provided.				
Skin Sensitization		LOW: Antimony trioxide was not sensit	izing in guinea pigs.					
	Skin Sensitization	Not sensitizing to guinea pigs. OECD SIDS, 2008		Reported in a secondary source, limited study details provided.				
Respiratory Sensiti	zation	No data located.						
	Respiratory Sensitization			No data located.				
Eye Irritation		LOW: Antimony trioxide is mildly irritating to rabbit eyes.						
	Eye Irritation							
		Instillation of 34.5–83.6 mg antimony (as antimony trioxide) into the eyes of rabbits did not produce irritation.	ATSDR, 1992	Reported in a secondary source, limited study details provided.				
		Two studies showed reversible mild eye irritation in rabbits.	OECD SIDS, 2008	Reported in a secondary source, limited study details provided.				
Dermal Irritation MODERATE: Antimony trioxide is reported to produce skin irritation in workers.								
	Dermal Irritation	Human case study reports have indicated that antimony trioxide may cause dermatitis on damp skin; irritation associated with sweat ducts.	OECD SIDS, 2008	Reported in a secondary source, human case study reports.				
Endocrine Activity		No data located.						
				No data located.				

Antimony Trioxide CASRN 1309-64-4										
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY						
Immunotoxicity		Inhalation exposure to antimony trioxide caused decreased white blood counts and splenic hypertrophy and								
		hyperplasia in guinea pigs.								
	Immune System Effects	24 guinea pigs were exposed to 45.4 mg/m ³ antimony trioxide dust (approximately 38.1 mg antimony/m ³) 2 hours/day, 7 days/week for 2 weeks followed by 3 hours/day for 8–265 days. Particle size was assumed to be <1 micron. Decreased white blood counts and splenic hypertrophy and hyperplasia	EPA, 2002	Reported in a secondary source, no study details and test conditions were provided. Only one concentration tested.						
		were seen in about 50% of the exposed animals.								
		$LOAEC = 45.4 \text{ mg/m}^{\circ} (0.045 \text{ mg/L})$								
ECOSAR Class		Not applicable								
Acute Toxicity		HICH: Based on the acute toxicity value	e of 1 77 mg antimony (Sh)/L in <i>Cl</i>	alarahydra viridissima. Some						
Acute Tokeny		experimental acute toxicity values for fi experimental aquatic toxicity values for Studies for algae were inadequate due to	sh and daphnia were in the Moder fish and daphnia exceed the water o study limitations and uncertainti	ate hazard range, while other r solubility of the compound. es.						
Fish LC ₅₀		<i>Lepomis macrochirus</i> 96-hour LC ₅₀ >530 mg/L (Experimental)	ECOTOX	Inadequate; data exceeds measured water solubility of compound; limited data make it difficult to determine whether the data refer to antimony ion or antimony trioxide.						
		Danio rerio 96-hour LC ₅₀ >1,000 mg/L (Experimental)	IUCLID, 2000	Inadequate; data exceeds measured water solubility of compound; limited data make it difficult to determine whether the data refer to antimony ion or antimony trioxide.						

Antimony Trioxide CASRN 1309-64-4								
PROPERTY/ENDPOINT	DATA	DATA QUALITY						
	<i>Pimephales promelas</i> 96-hour LC ₅₀ >80 mg/L (Experimental)	ECOTOX	Inadequate; data exceeds measured water solubility of compound; limited data make it difficult to determine whether the data refer to antimony ion or antimony trioxide.					
	<i>Pimephales promelas</i> 96-hour $LC_{50} =$ 14.4 mg Sb/L (Experimental)	EU RAR, 2008	Reported in a secondary source. Test substance identified as SbCl ₃ .					
	Pagrus major (marine) 96-hour LC ₅₀ = 6.9 mg Sb/L (Experimental)	EU RAR, 2008	Reported in a secondary source. Test substance identified as SbCl ₃ ; uncertainties exist regarding test concentrations and speciation so this study was not considered when designating hazard for this endpoint.					
Daphnid LC ₅₀	Daphnia magna 48-hour EC ₅₀ = 423 mg/L (Experimental)	ECOTOX	Inadequate; data exceeds measured water solubility of compound; limited data make it difficult to determine whether the data refer to antimony ion or antimony trioxide.					
	Daphnia magna 48-hour EC ₅₀ >1,000 mg/L (Experimental)	IUCLID, 2000	Inadequate; data exceeds measured water solubility of compound; limited data make it difficult to determine whether the data refer to antimony ion or antimony trioxide.					
	Daphnia magna 48-hour $LC_{50} = 12.1 \text{ mg}$ Sb/L (Experimental)	EU RAR, 2008	Reported in a secondary source.					
Other Aquatic Invertebrates	<i>Chlorohydra viridissima</i> (hydra), 96- hour $LC_{50} = 1.77 - 1.95$ mg Sb/L; measured filtered (Experimental)	EU RAR, 2008	Reported in a secondary source. Test substance identified as SbCl ₃ ; reliable study conducted in a sensitive species.					

Antimony Trioxide CASRN 1309-64-4								
PROPERTY/ENDPOINT	DATA	DATA REFERENCE						
Green Algae EC ₅₀	Pseudokirchneriella subcapitata 72-hour $EC_{50} = 0.73 \text{ mg}/L$ (Estimated; based on chlorophyll A concentration)	ECOTOX	Inadequate; reported in a secondary source; not a traditional endpoint for determining hazard potential; <i>Pseudokirchneriella</i> <i>subcapitata</i> is more recently known as <i>Raphidocelis</i> <i>subcapitata</i> .					
	Raphidocelis subcapitata 72-hour EC_{50} >36.6 mg Sb/L (growth rate)NOEC = 2.11 mg Sb/L (Experimental)	EU RAR, 2008	Reported in a secondary source. Test substance identified as SbCl ₃ .					
	Raphidocelis subcapitata 72-hour EC_{50} >2.4 mg Sb/L (growth rate) There was a 3% inhibition of growth rate at the limit concentration (2.4 mg/L) NOEC = 0.396 mg Sb/L LOEC = 1.32 mg Sb/L (Experimental)	EU RAR, 2008	Reported in a secondary source. Test substance identified as $Sb_2O_{3;}$ uncertainties exist regarding the concentration response since the limit concentration resulted in only a 3% inhibition of growth rate which is considered the most sensitive endpoint; it is unclear where a significant inhibition of growth would occur.					
	Lemma minor 96-hour $EC_{50} > 25.5 \text{ mg}$ Sb/L; NOEC = 12.5 mg Sb/L LOEC = 25.5 mg Sb/L (reduction in frond production) (Experimental)	EU RAR, 2008	Reported in a secondary source. Test substance identified as SbCl ₃ .					
Chronic Aquatic Toxicity	MODERATE: Based on experimental L	OECs ranging from 2.31 to 4.50 m	g Sb/L in fish and daphnia.					
Fish ChV	Pimephales promelas 28-day NOEC = 2.31 mg Sb/L; LOEC 4.50 mg Sb/L (growth – weight) (Experimental)	EU RAR, 2008	Reported in a secondary source. Test substance identified as SbCl ₃ .					

Antimony Trioxide CASRN 1309-64-4								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
	Pimephales promelas 28-day NOEC = 1.13 mg Sb/L (growth – length); LOEC = 2.31 mg Sb/L (Experimental)	EU RAR, 2008	Reported in a secondary source. Test substance identified as SbCl ₃ .					
	Pimephales promelas 28-day NOEC >0.0075 mg Sb/L (growth) (Experimental)	EU RAR, 2008	Reported in a secondary source. There were no effects reported at the highest dose tested. Test substance identified as Sb_2O_3 .					
Daphnid ChV	Daphnia magna 21-day NOEC = 1.74 mg Sb/L; LOEC = 3.13 mg Sb/L (Experimental)	EU RAR, 2008	Reported in a secondary source. Test substance identified as SbCl ₃ .					
	Daphnia ChV = 3.8 mg/L (Estimated)	EPI; Professional judgment	Based on SARs (not computerized) developed for confidential antimony salts.					
Green Algae ChV			No data located.					
Chronic Toxicity to Soil Invertebrates	 Folsomia candida (springtails) in Sb₂O₃- amended soil at measured concentrations of 90, 322, 999, 2,930, and 10,119 mg Sb/kg soil dry weight (dw). Controls of uncontaminated field soil and an untreated artificial soil were used and a positive control using the herbicide Betosip was used. 28-day LC₅₀ and EC₅₀ (reproduction) >10,119 mg Sb/kg dw NOEC (reproduction) = 999 mg Sb/kg 	Moser, 2007	Study conducted according to OECD 207.					
	dw LOEC (reproduction) = 2,930 mg Sb/kg dw (Experimental)							

Antimony Trioxide CASRN 1309-64-4									
PROP	PERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
	ENVIRONMENTAL FATE								
Transport		The limited mobility observed under experimental conditions and the low vapor pressure indicates that antimony trioxide is anticipated to partition predominantly to soil and sediment. It will not volatilize from water. Soil mobility and sediment adsorption tests indicate that antimony trioxide will be immobile in soil, and therefore will not be expected to migrate into groundwater.							
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	Professional judgment	Cutoff value for non-volatile compounds. This inorganic compound is not amenable to available estimation methods.					
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	No significant evidence of mobility in sand, clay, or sandy and silt loams when tested at 100 µL concentration after 24 hours (Non-TSCA Protocol/Guideline) (Measured)	EPA, 2006; EPA, 2004	Although not a guideline study, the data suggest that antimony trioxide will have a $K_{oc} > 30,000$, the cutoff value for non-mobile substances.					
	Level III Fugacity Model			Not all input parameters for this model were available to run the estimation software (EPI).					
Persistence		HIGH: Antimony trioxide is an inorgani the environment for more than 180 days designation. Based on water solubility st slowly dissolve resulting in the release of other oxidation states. Additionally, resu that antimony may be oxidized by bacter environmental conditions. Antimony trid environmentally significant wavelengths for antimony trioxide under typical environ	ic substance containing metallic at after release, resulting in a very h udies under a range of pH values, antimony ions and, depending on alts from a pure culture study using ria. Antimony trioxide is not antici- oxide does not contain functional g , and therefore is not expected to p ronmental conditions were identifi	oms that are likely to be found in igh persistence/recalcitrant hazard antimony trioxide is expected to pH, be oxidized or reduced to g autotrophic bacterium indicate pated to undergo hydrolysis under roups expected to absorb light at bhotolyze. No degradation processes ied.					
Water	Aerobic Biodegradation			No data located.					
	Volatilization Half-life for Model River			No data located.					
	Volatilization Half-life for Model Lake			No data located.					

	Antimony Trioxide CASRN 1309-64-4								
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Soil	Aerobic Biodegradation	Autotrophic bacteria, <i>Stibiobacter</i> <i>senarmontii</i> , were grown in a mineral medium containing antimony trioxide during a pure culture study. Antimony trioxide was oxidized at rates of 45.5–51.6 and 13.5–19.3 mg/month for senarmonite and valentinite, respectively; little oxidation occurred in the sterile medium. (Measured)	EPA, 1985	Nonguideline study that demonstrated that the half-life of antimony trioxide is anticipated to be >180 days.					
	Anaerobic Biodegradation			No data located.					
	Soil Biodegradation w/ Product Identification			No data located.					
	Sediment/Water Biodegradation	10 and 100 ppm antimony trioxide with added nutrients were incubated with natural bottom sediment from Puget Sound under aerobic or anaerobic conditions for up to 120 days. Three organoantimony biotransformation products were found in solution after 60 days. Two of these were identified as methylstibonic acid and dimethylstibonic acid. No determination of rate or conditions affecting the transformation was made. However, it was estimated that much less than 0.1% of the antimony present was transformed. (Measured)	ATSDR, 1992	Nonguideline study reported in a secondary source that demonstrated limited biodegradation.					
Air	Atmospheric Half-life			No data located.					

Antimony Trioxide CASRN 1309-64-4								
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Reactivity	Photolysis	Not a significant fate process (Estimated)	Boethling and Mackay, 2000; Professional judgment	The substance does not contain functional groups that would be expected to absorb light at environmentally significant wavelengths.				
	Hydrolysis	Reacts with acids producing Sb ³⁺ compounds and bases producing [Sb(OH) ₄] ⁻ (Measured)	UBA, 2001	Although hydrolysis may occur upon contact with strong acids or bases, these data do not address the potential for hydrolysis under environmental conditions.				
Environmental Half-Life		>180 days (Estimated)	Professional judgment	Antimony trioxide is an inorganic compound. Antimony ions, oxides, or hydroxides are expected to be found in the environment >180 days after release.				
Bioaccumulation		LOW: Antimony trioxide is an inorganic compound and is not expected to bioaccumulate.						
	Fish BCF	<100 (Estimated)	Professional judgment	Antimony trioxide is an inorganic				
		No reliable bioaccumulation or bioconcentration studies located.	OECD SIDS, 2008	compound and is not anticipated to bioaccumulate or bioconcentrate.				
BAF		<100 (Estimated)	(Estimated) Professional judgment					
	Metabolism in Fish			No data located.				
		ENVIRONMENTAL MONITORING AN	ND BIOMONITORING					
Environmental Monitoring Antimony trioxide has been detected in dust samples collected downwind from a copper smeltin Washington state (Crecelius et al., 1975, as described in EPA, 1985). Antimony is thought to ox trioxide in combustion and incineration processes (EU RAR, 2008). Antimony trioxide is found in ores such as senarmonite, valentinite and exitelite (Canada, 2010).		n a copper smelting plant in y is thought to oxidize to antimony r trioxide is found naturally occurring						
Ecological Biomon	itoring	No data located.						

Antimony Trioxide CASRN 1309-64-4							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Human Biomonitoring	Women working in an antimony metallurgi antimony, and antimony pentasulfides were plant workers had ten times the antimony co performed on urine, breast milk, placental t chemical was not included in the National H 2011). Additionally, it was reported that ant placenta, amniotic fluid and umbilical cord	cal plant, exposed to unspecified amore compared with a similar group of w concentration in their blood compared issue, amniotic fluid and umbilical co Health and Nutrition Examination Su timony has been found in fetal liver a blood (EU RAR, 2008).	ounts of antimony trioxide, metallic omen not exposed to antimony. The to controls; additional sampling was ord blood samples (EPA, 1985). This rvey biomonitoring report (CDC, as well as in human breast milk,				

ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological profile for antimony and compounds. 1992.

Boethling, R.; McKay, D. Handbook of Property Estimation Methods for Chemicals, Environmental Health Sciences. Boca Raton: Lewis Publishers. 2000.

Canada. Environment Canada Health Canada *Screening Assessment for the Challenge for Antimony trioxide*. **2010.** <u>http://www.ec.gc.ca/ese-ees/9889ABB5-3396-435B-8428-F270074EA2A7/batch9_1309-64-4_en.pdf</u> (accessed on May 16, 2011).

Crecelius E.; Bothner, M.; Carpenter, R. Geochemistries of arsenic, antimony, mercury, and related elements in sediments of Puget Sound. *Environ. Sci. Technol.* **1975**, 9(4):325-33.

CDC (Centers for Disease Control and Prevention). *Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables.* Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> as of May 10, 2011.

ECOTOX database. U.S. Environmental Protection Agency. <u>http://cfpub.epa.gov/ecotox/</u>. (Accessed May 16, 2011).

ECHA (European Chemicals Agency). 2011. <u>http://apps.echa.europa.eu/registered/registered-sub.aspx#search</u>.

EPA. Health and environmental effects profile for antimony oxides. 1985. EPA 600/x-85/271

EPA. TSCA Section 4 Chemicals; Antimony Compounds. http://www.epa.gov/oppt/chemtest/pubs/antim.pdf. 2006.

EPA (Environmental Protection Agency). High Production Volume (HPV) Challenge. Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. http://www.epa.gov/hpv/pubs/general/datadfin.htm

EPA. IRIS (Integrated Risk Information System). Toxicological review of antimony trioxide (1309-64-4). **2002.** <u>http://www.epa.gov/iris/subst/0676.htm</u> (accessed on May 16, 2011).

EPA. 2004. The Pollution Prevention (P2) Framework, EPA-748-B-03-001. Office of Pollution Prevention and Toxics 7403M, U.S. Environmental Protection Agency, Washington, DC. 20460. October 2003 version updated in January 2004. Latest version available at http://www.epa.gov/opptintr/newchems/pubs/sustainable/p2frame-june05a2.pdf

EPI (*EPIWIN/EPISUITE*) *Estimation Program Interface for Windows*, Version 4.00. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

ERMA (Environmental Risk Management Authority). New Zealand. HSNO Chemical Classification Information Database (Antimony trioxide). **2011.** <u>www.ermanz.govt.nz</u>.

European chemical Substances Information System (ESIS) Classification, Labeling and Packaging of Dangerous Substances Annex VI to Regulation (EC) No 1272/2008 [Online] available at: <u>http://ecb.jrc.ec.europa.eu/esis/index.php?PGM=cla</u> as of January 19, **2012**.

EU RAR. Draft European Union Risk Assessment Report for Diantimony Trioxide. **2008**. <u>http://esis.jrc.ec.europa.eu/doc/existing-chemicals/risk_assessment/REPORT/datreport415.pdf</u> as of March 14, 2012.

Groth, D. H.; Stettler, L. E.; Burg, J. R.; Busey, W. M.; Grant, G. C.; Wong, L. **1986**. Carcinogenic effects of antimony trioxide and antimony ore concentrate in rats. *J. Toxicol. Environ. Health* 18(4): 607-626.

IUCLID (International Uniform Chemical Information Database). Dataset for diantimony trioxide. European Commission – European Chemicals Bureau. 2000

ICSC. IPCS INCHEM. Antimony trioxide. http://www.inchem.org/documents/icsc/icsc/eics0012.htm. 2005.

International Antimony Oxide Industry Association. TSCA Section 8(e) Notification on Antimony Oxide (CAS No. 1309-64-4). Doc. No. 8EHQ-04-15523. Received by U.S. EPA OPPT Feb. 4, 2004. Lide, D. R., ed. *CRC Handbook of Chemistry and Physics*, 88th edition, CRC Press: Boca Raton. **2008.**

Moser, T. (2007). Acute and reproduction toxicity of antimony trioxide aged residues in contaminated soil according to the International Standard ISO 11267 (1999) "Soil Quality - Inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants". International Antimony Association, Brussels, Belgium.

Newton P.; Bolte H.; Daly I.; et al. Subchronic and chronic inhalation toxicity of antimony trioxide in the rat. Fundam. Appl. Toxicol. **1994**. 22:561-576.

NRC (National Research Council). Subcommittee on Flame-Retardant Chemicals; *Toxicological risks of selected flame retardant chemicals*. Washington D.C.: National Academy Press **2000**.

NTP (National Toxicology Program). Antimony Trioxide. Brief review of toxicological literature. 2005.

NTP (National Toxicology Program). Database search application; micronucleus: study summary. [Online] Available online at: http://ntp-

apps.niehs.nih.gov/ntp_tox/index.cfm?current%5Fstrain%5Fid=B6C3F1&activetab=summary&endpointlist=MN&fuseaction=micron ucleus%2EmicronucleusData&cas%5Fno=1309%2D64%2D4&study%5Fno=G10676B as of May 16, 2011.

OECD SIDS (Organisation of Economic Cooperation and Development Screening Information Dataset) **2008.** Initial Assessment Profile. <u>http://webnet.oecd.org/Hpv/UI/handler.axd?id=13e93c97-6605-4eac-961f-8af23cc6ad32</u> (accessed on May 16, 2011).

O'Neil, M.; Heckelman, P.E.; Koch, C.B.; et al. eds. e-Merck Index. 14th ed. Basic Search. Whitehouse Station, NJ: Merck & Co., Inc. **2011.** <u>https://themerckindex.cambridgesoft.com/TheMerckIndex/index.asp</u> (accessed on May 16, 2011).

Sax, N.I. Dangerous properties of industrial materials. 5th ed. New York: Van Nostrand Rheinhold, 1979.

SPARC. *SPARC On Line Calculator pKa/property server*. Ver 4.5 September, 2009. Available from, <u>http://ibmlc2.chem.uga.edu/sparc/</u> (accessed on March 14, 2012).

UBA (Umweltbundesamt). *Substituting Environmentally Relevant Flame Retardants: Assessment Fundamentals. Results and summary overview*. Environmental Research of the Federal Ministry of the Environment, Nature Conservation and Nuclear Industry. Berlin, **2001**.

Watt, W.D. **1980**. Chronic inhalation toxicity of antimony trioxide: Validation of the T.L.V.-progress report-summary of results. OTS206195.

Watt, W. D. **1983**. Chronic inhalation toxicity of antimony trioxide: Validation of the threshold limit value. Wayne State University, Detroit, Michigan. (as cited in EU RAR, 2008).

Bis(hexachlorocyclopentadieno) Cyclooctane

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. [§] Based on analogy to experimental data for a structurally similar compound.

		Human Health Effects					Aqı Toxi	Aquatic Toxicity**EnvironmentaFate		nmental ate						
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Bis(hexachlorocyclopentadieno) Cyclooctane	13560-89-9	L	M [§]	M [§]	VL	VL	L	M	L		VL	L	L	L	VH	Н

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Bis(hexachlorocyclopentadieno) Cyclooctane

Polymeric: No					
Oligomers: Not applicable					
Metabolites, Degradates and Transformation Products: None					
Analogs: Chlordane (57-74-9), decabromodiphenyl ether (decaBDE) (1163-19-5, organochlorine pesticides, and confidential structures Endpoint(s) using analog values: Carcinogenicity, genotoxicity, repeated dose	Analog Structures: CI	$Br \rightarrow Br = Br - Br - Br - Br - Br - Br - Br -$			
Structural Alerts: Aliphatic halogenated hydrocarbons, cyclic halogenated hydrocarbons for neurotoxicity, and chlorinated hydrocarbons for reproductive toxicity					
(EPA, 2011).	-				
Risk Phrases: Not classified by Annex I Directive 67/548/ European Economic Community & IUCLID (Pakalin et al., 2007).					
Hazard and Risk Assessments: Risk assessment completed for bis(hexachlorocyc al., 2007).	lopentadieno) cyclooctane by th	e European Chemicals Bureau in 2007 (Pakalin et			

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9					
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
PHYSICAL/CHEMICAL PROPERTIES					
Melting Point (°C)	Decomposes at 350°C (Measured)	Occidental Chemical Company, 2009	Material decomposes before melting.		
Boiling Point (°C)	Decomposes at 350°C (Measured)	Occidental Chemical Company, 2009	Material decomposes before boiling.		
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	EPI; EPA, 1999	Cutoff value for non-volatile compounds according to HPV assessment guidance.		
	0.006 at 200°C (Measured)	Occidental Chemical Company, 2009	Value reported at an elevated temperature.		
Water Solubility (mg/L)	4.4×10^{-5} (Measured)	Occidental Chemical Company, 2009	Adequate, nonguideline study.		
	2.49x10 ⁻⁴ (Measured)	Occidental Chemical Company, 2009			
	2.07×10^{-4} to 5.72×10^{-4} (Measured)	Chou et al., 1979			
Log K _{ow}	11 (Estimated)	EPI; EPA, 1999	Estimated value is greater than the cutoff value, >10, according to methodology based on HPV assessment guidance.		
Flammability (Flash Point)	Nonflammable (Estimated)	Professional judgment	No data located; based on its use as a flame retardant.		
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No data located; based on its use as a flame retardant.		
Pyrolysis			No data located.		
рН	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize in environmental conditions.		
pK _a	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize in environmental conditions.		

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	HUMAN HEALTH EFFECTS				
Toxicokinetics		As a neat material, bis(hexachlorocyclop	entadieno) cyclooctane is estima	ted to not be absorbed through the	
		skin and it is also estimated to have poor	skin absorption when in solutio	n. This compound is expected to be	
		poorly absorbed via the lungs and gastro	ointestinal tract. Bis(hexachloroc	yclopentadieno) cyclooctane is not	
		easily absorbed in the gastrointestinal tr	act with 93-98% of an administe	red dose excreted through the feces	
		unchanged. Plasma levels peaked at 10 h	iours after administration; the h	ignest levels of	
		bis(nexachiorocyclopentadieno) cyclooci	ane were lound in the liver, whe	re metabolism is thought to take	
Dermal Absorption	n in vitro	place, and in the ovaries. Dis(nexacinoro	Cyclopentauleno) Cyclooctalle is (No data located	
Absorption	Oral Dermal or	Not absorbed through the skin as the neat	Professional judgment	Based on closely related	
Distribution.	Inhaled	material: poor skin absorption if in	i foressional judgitient	confidential analogs with similar	
Metabolism &		solution: poor absorption from the lung		structures, functional groups, and	
Excretion		and gastrointestinal tract		physical/chemical properties.	
		(Estimated)			
		In a toxicokinetic study, most excretion	IUCLID, 2003	Guideline study.	
		occurred through the feces unchanged			
		(93-98%), less than 0.1% was excreted in			
		urine and 0.004% excreted in expired air;			
		plasma levels peaked at 10 hours, and			
		tissue levels did not increase			
		26% of radiolobalad chamical was			
		remaining in carcass: the highest levels			
		were found in the ovaries and liver			
	Oral	In a toxicokinetic study in rats, very little	Chou et al., 1979	Unpublished study, but sufficient	
		of the chemical is absorbed in the gastro-		study details reported.	
		intestinal tract; 95% of administered			
		radioactive dose was excreted in the			
		feces; the small amount of chemical that			
		did absorb was then excreted slowly;			
		after absorption, the highest amount was			
		found in the liver where metabolism			
		takes place			

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9				
PROPERTY/ENDPOINT DATA		REFERENCE	DATA QUALITY	
Acute Mammalian Toxicity		LOW: Based on the acute oral and dermal toxicity values >3,160 mg/kg in rats and >8,000 mg/kg in rabbits, respectively. Although the acute inhalation study in rats produced no deaths, the LC ₅₀ value of >2.25 mg dust/L air (highest concentration tested) was not included in the hazard designation because there is		
		uncertainty regarding the potential for adverse effects between 2.25 and 5 mg/L.		
Acute Lethality	Oral	Rat (Sherman-Wistar) oral LD ₅₀ >25,000 mg/kg; no mortalities at highest dose tested (25,000 mg/kg)	Occidental Chemical Company, 1992	Not specified as a guideline study, but follows general Organisation of Economic Cooperation and Development (OECD) guidelines.
		Rat (Sprague-Dawley) oral LD ₅₀ >3,160 mg/kg; no mortalities at the highest dose tested (3,160 mg/kg)	IUCLID, 2003	Not specified as a guideline study and reported in a secondary source, but follows general OECD guidelines.
	Dermal	Rabbit dermal LD ₅₀ >8,000 mg/kg; no mortalities at highest dose tested (8,000 mg/kg)	Occidental Chemical Company, 1992	Not specified as a guideline study, but follows general OECD guidelines.
	Inhalation	Rat inhalation 1-hour $LC_{50}>300 \text{ mg}$ dust/L air; no mortalities at highest dose tested (300 mg dust /L air)	IUCLID, 2003	Limited study details reported in a secondary source; not the preferred 4-hour exposure.
		Rat inhalation 4-hour $LC_{50} > 2.25$ mg dust/L air (2,250 mg/m ³); no mortalities at highest dose tested (2.25 mg dust/L air)	Occidental Chemical Company, 1992	Not specified as a guideline study, but follows general OECD guidelines.
Carcinogenicity		MODERATE: There is potential for carcinogenicity based on analogy to chlordane and decaBDE, the latter for expression of adverse effects in longer term studies. No carcinogenicity data regarding exposure to Bis(hexachlorocyclopentadieno) cyclooctane located.		
	OncoLogic Results			Not amenable to available estimation method.
	Carcinogenicity (Rat and Mouse)	There is potential for oncogenicity (Estimated by analogy)	Professional judgment	Estimated by analogy to chlordane.

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Combined Chronic Toxicity/ Carcinogenicity	Potential for carcinogenicity; increased incidence of neoplastic nodules of the liver in rats; equivocal evidence of increased incidences of hepatocellular adenomas or carcinomas and thyroid gland follicular cell adenomas or carcinomas in male mice. (Estimated by analogy)	Professional judgment	Estimated based on the high potential for bioaccumulation and by analogy to observations on decaBDE where adverse effects were not present in 90-day studies but were expressed following chronic exposure in a National Toxicology Program (NTP) study. No data located.
Genotoxicity		MODERATE: There is estimated to be a	an uncertain potential for mutag	enicity based on analogy to
		mammalian cells <i>in vitro</i> . A moderate ha genotoxicity based on chlordane and bec bis(hexachlorocyclopentadieno) cyclooct	zard designation is assigned beca cause there were no data located ane to cause chromosomal aberr	ause of the uncertain potential for regarding the potential for rations.
	Gene Mutation in vitro	Uncertain potential for mutagenicity	Professional judgment	Estimated by analogy to chlordane.
		(Estimated by analogy) Negative, Ames assay in <i>Salmonella</i> <i>typhimurium</i> strains TA98, TA100, TA1535, TA1537, TA1538 with and without metabolic activation. Negative, Mouse lymphoma assay in L5178Y TK +/- cells with and without metabolic activation.	IUCLID, 2003 IUCLID, 2003	Not specified as a guideline study and reported in a secondary source, but follows general OECD guidelines. Not specified as a guideline study and reported in a secondary source, but follows general OECD guidelines.
	Gene Mutation in vivo			No data located.
	Chromosomal			No data located.
	Aberrations <i>in vitro</i>			No data located
	Aberrations <i>in vivo</i>			no data located.
	DNA Damage and			No data located.
	Repair			

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9				
PROPERTY/ENDPOI	NT	DATA	REFERENCE	DATA QUALITY
Other (Mito	otic Gene			No data located.
Conversion				
Reproductive Effects		VERY LOW: Bis(hexachlorocyclopentae	dieno) cyclooctane did not cause	reproductive effects at oral doses
		as high as 5,000 mg/kg-day in a combine	d repeated dose/reproduction/de	velopmental toxicity study in rats.
Reproductio	on/			No data located.
Developmen Screen	ital Toxicity			
Combined F	Repeated	No adverse effects were observed in an	Brock et al., 2010	Guideline study (OECD 422).
Dose with		oral (gavage) developmental and		
Reproductio	on/	reproductive toxicity study in male and		
Developmen	ntal Toxicity	female rats (exposure to males: 21 days		
Screen		premating, 14 day mating period, and 28 days after completion of mating period; exposure to females: 21 days premating, 14 days mating, and up to 25 days after mating [gestation days (GD) 0 – lactation day (LD) 3]); no effects on reproductive or fertility indices through LD 4, and no effects on implantation or fetal indices through GD 20. NOEL = 5,000 mg/kg-day (highest dose tested)		
Reproduction Fertility Eff	on and ects			No data located.
Developmental Effects VI		VERY LOW: Bis(hexachlorocyclopentadieno) cyclooctane did not cause developmental effects at oral doses		
		as high as 5,000 mg/kg-day in a combine	d repeated dose/reproduction/de	velopmental toxicity study in rats.
Reproductio Developmen Screen	on/ ntal Toxicity			No data located.

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9				
PROPERTY/END	OPOINT	DATA	REFERENCE	DATA QUALITY
Combin Dose wi Reprod Develop Screen	ned Repeated ith luction/ pmental Toxicity	No adverse effects were observed in an oral (gavage) developmental and reproductive toxicity study in male and female rats (exposure to males: 21 days premating, 14 day mating period, and 28 days after completion of mating period; exposure to females: 21 days premating, 14 days mating, and up to 25 days after mating [GD 0–LD 3]); no effects on fetal development through LD 4, and no effects on external and visceral examinations through GD 20. NOEL = 5,000 mg/kg-day (highest dose tested)	Brock et al., 2010	Guideline study (OECD 422).
Prenata	al Development			No data located.
Postnat	tal Development			No data located.

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9										
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY							
Neurotoxicity	LOW: Bis(hexachlorocyclopentadieno) of	cyclooctane did not cause neurot	oxic effects at oral doses as high as							
	5,000 mg/kg-day in a combined repeated	dose/reproduction/development	tal toxicity study in rats.							
Neurotoxicity Screening	No adverse effects were observed in a	Brock et al., 2010	Guideline study (OECD 422).							
Battery (Adult)	28-day oral (gavage) study in male and									
	female rats; no effects observed in									
	functional observational battery									
	evaluations (activity/arousal, autonomic,									
	neuromuscular, physiological, and									
	sensimotor); a significant lower									
	frequency of urination was observed in									
	females exposed to 750 and 5,000 mg/kg-									
	day, but was not considered biologically									
	significant; a significant increase in									
	rearing counts for males exposed to 1,500									
	mg/kg-day during 20-30-min. trials, but									
	was considered not to be treatment									
	related.									
	NOEL = 5,000 mg/kg-day (highest dose									
	tested)									
Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9										
---	--	---	--	--	--	--	--	--	--	--
PROPERTY/ENDPOINT	DATA	DATA REFERENCE DATA QUALITY								
Repeated Dose Effects	MODERATE: Bis(hexachlorocyclopentadieno) cyclooctane caused adverse liver and lung effects in rats following inhalation exposure to 0.64 mg dust/L (lowest concentration tested). No NOAEL was identified in this study so it is possible that effects could occur at lower concentrations. Bis(hexachlorocyclopentadieno) cyclooctane did not cause systemic effects at oral doses up to 5,000 mg/kg-day in a 28-day combined repeated dose/reproduction/developmental toxicity study in rats, in a 90-day dietary exposure study in rats at concentrations up to 100,000 ppm in the diet, or in a 28-day dermal exposure study in rabbits at doses up to 2,000 mg/kg-day. There is potential for chloracne estimated by analogy to organochlorine pesticides and potential for systemic effects estimated based on the high potential for bioaccumulation and potential for expression of adverse effects in longer term studies by analogy to decaBDE.									
	There is a potential for chloracne. (Estimated by analogy) No adverse effects were observed in a 28-day oral (gavage) study in male and	Professional judgment Brock et al., 2010	Estimated by analogy to organochlorine pesticides. Guideline study (OECD 422).							
	parameters (clinical signs, food consumption, body weight), clinical pathology (hematology, coagulation, clinical chemistry), or anatomic pathology (organ weight, abnormalities, microscopic).									
	tested)									

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
	In a 28-day inhalation (dust) study (6 hour/day, 5 days/week) in rats, a significantly increased absolute liver weight with hepatocytomegaly of centrilobular hepatocytes, increased absolute lung weights, and increased numbers of macrophages in the alveoli in both males and females were observed. There were no effects on body weight, signs of toxicity, urinalysis, hematology, clinical chemistry, or gross pathology. LOAEC = 0.64 mg/L (lowest concentration tested)	Occidental Chemical Corporation, 1992	Not specified as a guideline study, but follows general OECD guidelines.					
	In a 90-day oral (dietary) study in rats, there were no significant treatment- related effects observed; no effects on body or organ weights, urinalysis, clinical chemistry or hematology; there was a non-significant increased absolute and relative liver weights that were not associated with histopathological lesions. NOAEL = 100,000 ppm (highest dose tested)	Occidental Chemical Corporation, 1992	Not specified as a guideline study, but follows general OECD guidelines.					

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
		In a 28-day dermal exposure (5 day/week, on shaved abraded skin) study in rabbits, no significant treatment- related adverse effects were observed. No effects on body weights, urinalysis, hematology, clinical chemistry, gross pathology, or histopathology; a significant decrease in liver and ovary weights were reported in female rats, though there were no associated changes in absolute organ weights or histopathological effects. NOAEL = 2,000 mg/kg-day (highest dose tested) Potential for repeated dose effects (Estimated by analogy and bioaccumulation)	Occidental Chemical Corporation, 1992	Not specified as a guideline study, but follows general OECD guidelines. Estimated based on the high potential for bioaccumulation and by analogy to observations on decaBDE where adverse effects were not present in 90-day studies		
				but were expressed following		
Skin Sensitization		LOW: Bis(heyachlorocyclonentadieno) o	velooctane was not a skin sensiti	izer in one study of guinea pigs		
	Skin Sensitization	Negative for skin sensitization, guinea pigs	Brett, 1975	Not specified as a guideline study, but follows general OECD guidelines (modified Buehler).		
Respiratory Sensit	ization	No data located.				
	Respiratory Sensitization			No data located.		
Eye Irritation		VERY LOW: Bis(hexachlorocyclopentae	dieno) cyclooctane is not an eye-	irritant in rabbits.		
	Eye Irritation	Non-irritant, rabbit	Occidental Chemical Corporation, 1992	Not specified as a guideline study, but follows general OECD guidelines.		
Dermal Irritation		LOW: Estimated not to cause dermal irr	ritation based on expert judgmen	nt.		

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9								
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Dermal Irritation	Low potential for dermal irritation. (Estimated)	Expert judgment	Estimated based on expert judgment.				
Endocrine Activity		No data located.						
				No data located.				
Immunotoxicity		No potential immunotoxic effects identif	ied by expert judgment.					
	Immune System Effects			No data located.				
		ECOTOXICITY						
ECOSAR Class		Vinyl/allyl halides						
Acute Toxicity LOW: Estimated data suggest no effects at saturation (NES) for the acute aquatic toxicity endpoints;								
experimental study details provided are insufficient to assess the hazard of acute aquati								
		consistent with this hazard call.						
Fish LC ₅₀		Lepomis macrochirus (bluegill) 96-hour	IUCLID, 2003	Sufficient details were not available				
		$TL_{50} \ge 100 \text{ mg/L}$ - highest dose tested		to assess the quality of this study				
		(flow-through conditions) (Experimental)		(non-good laboratory practice				
				(GLP), study was given a Klimish				
				code of 3 - invalid).				
		Lepomis macrochirus (bluegill) 96-hour	IUCLID, 2003	Sufficient details were not available				
		$TL_{50} \ge 100 \text{ mg/L}$ - highest dose tested		to assess the quality of this study				
		(static conditions) (Experimental)		(non-GLP, study was given a				
				Klimish code of 3 - invalid).				
		Fish 96-hour $LC_{50} = 1.89 \times 10^{-6} \text{ mg/L}$	ECOSAR version 1.11	NES: The log K_{ow} of 11 for this				
		(Estimated)		chemical exceeds the structure				
		ECOSAR: Vinyl/allyl halides		activity relationship (SAR)				
				limitation for log K_{ow} of 5.0; NES				
				are predicted for these endpoints.				

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
	Fish 96-hour $LC_{50} = 7.2 \times 10^{-6} \text{ mg/L}$ (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 11 for this chemical exceeds the SAR limitation for log K_{ow} of 5.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.					
Daphnid LC ₅₀	Daphnid 96-hour $LC_{50} = 2.07 \times 10^{-8} \text{ mg/L}$ (Estimated) ECOSAR: Vinyl/allyl halides	ECOSAR version 1.11	NES: The log K_{ow} of 11 for this chemical exceeds the SAR limitation for log K_{ow} of 5.0; NES are predicted for these endpoints.					
	(Estimated) ECOSAR: Neutral organics		chemical exceeds the SAR limitation for log K_{ow} of 5.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.					
Green Algae Green Algae EC ₅₀	Green algae 96-hour $EC_{50} =$ 5.4x10 ⁻⁶ mg/L (Estimated) ECOSAR: Vinvl/allyl halides	ECOSAR version 1.11	NES: The log K_{ow} of 11 for this chemical exceeds the SAR limitation for log K_{ow} of 6.4; NES are predicted for these endpoints					

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Green algae 96-hour EC ₅₀ = 0.00025 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 11 for this chemical exceeds the SAR limitation for log K_{ow} of 6.4; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.				
Chronic Aquatic Toxicity	LOW: Estimated data suggest NES for c	hronic aquatic toxicity endpoint	s .				
Fish ChV	Fish 30-day ChV = 1.31x10 ⁻⁸ mg/L (Estimated) ECOSAR: Vinyl/allyl halides	ECOSAR version 1.11	NES: The log K_{ow} of 11 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted for these endpoints.				
	Fish 30-day ChV = 5.57x10 ⁻⁷ mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 11 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.				

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Daphnid ChV	Daphnid ChV = 6.06x10 ⁻⁶ mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 11 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.					
Green Algae ChV	Green algae ChV = 6.52x10 ⁻⁵ mg/L (Estimated) ECOSAR: Vinyl/allyl halides	ECOSAR version 1.11	Chemical may not be soluble enough to measure this predicted effect; the toxicity value was determined from a predicted SAR using established acute to chronic ratios (ACRs) and ECOSAR regression techniques; NES: the log K _{ow} of 11 for this chemical exceeds the SAR limitation for log K _{ow} of 8.0; NES are predicted for these endpoints.					

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Green algae ChV = 0.00049 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Chemical may not be soluble enough to measure this predicted effect; the toxicity value was determined from a predicted SAR using established ACRs and ECOSAR regression techniques; NES: the log K_{ow} of 11 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.				
	ENVIRONMENTAL FA	ATE					
Transport	Based on the Level III fugacity models incorporating the available experimental property data, bis(hexachlorocyclopentadieno) cyclooctane is expected to partition primarily to soil.Bis(hexachlorocyclopentadieno) cyclooctane is expected to be immobile in soil based on its estimated K _{oc} .Estimated volatilization half-lives indicate that it will be slightly volatile from surface water. Volatilization from dry surface is also not expected based on its estimated vapor pressure. In the atmosphere, bis(hexachlorocyclopentadieno) cyclooctane is expected to exist solely in the particulate phase, based on its estimated vapor pressure. Particulates may be removed from air by wet or dry deposition.						

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9								
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Henry's Law Constant (atm-m ³ /mole)	7.4x10 ⁻⁶ (Estimated)	EPI					
	Sediment/Soil Adsorption/Desorption	>30,000 (Estimated)	EPI; EPA, 2004	Cutoff value for non-mobile compounds.				
	Coefficient – K _{oc}	4,500,000 (Measured)	IUCLID, 2003 (citing from Chou et al., 1979)	Insufficient details were reported to assess the quality of this nonguideline study; however the results are consistent with other high MW, highly halogenated compounds.				
	Level III Fugacity Model	Air $\leq 1\%$ (Estimated) Water = 5% Soil = 92% Sediment = 3%	EPI					
Persistence		VERY HIGH: The persistence for bis(he degradation studies and estimations base with aerobic and anaerobic sewage-sludg respectively. Bis(hexachlorocyclopentadie expected to be an important fate process locations which renders them resistant to process with a measured degradation rat suggest a half-life >180 days. Environmen Bis(hexachlorocyclopentadieno) cyclooct Antarctic locations.	xachlorocyclopentadieno) cycloo d on quantitative structure activ ge microorganisms reported no bi eno) cyclooctane has low water so the two allylic chlorines capable displacement. Photolysis is not o e of <10% after 168 hours. Comp ntal monitoring data supports a o ane has been detected in many pl	ctane is a result of experimental ity relationships (QSARs). Studies iodegradation in 2-3 to 6 weeks, olubility and hydrolysis is not e of hydrolysis are at bridgehead expected to be an important removal piled, these degradation endpoints designation of very high persistence. faces, including remote Arctic and				
Water	Aerobic Biodegradation	0% degradation after 21 days; 0.001 and 100 mg/L bis(hexachlorocyclopentadieno) cyclooctane dilutions made in water inoculated with 2 mL/L settled sewage- sludge containing microorganisms (Measured) 0% after 14 days; not readily	IUCLID, 2003; Occidental Chemical Company, 2009 IUCLID, 2003; Occidental	Adequate, nonguideline study. Adequate, nonguideline study.				

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9								
PRO	PERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Volatilization Half-life for Model River	8 days (Estimated)	EPI					
	Volatilization Half-life for Model Lake	100 days (Estimated)	EPI					
Soil	Aerobic Biodegradation	<1% degradation after 2 weeks; OECD 301C measuring biochemical oxygen demand; 100 ppm bis(hexachlorocyclopentadieno) cyclooctane with 30 ppm activated sludge inoculum (Measured)	MITI, 1998	Adequate, guideline study.				
	Anaerobic Biodegradation	Not probable (Anaerobic-methanogenic biodegradation probability model) (Estimated)	EPI					
		0% after 2-6 weeks; Using C-14 labeled bis(hexachlorocyclopentadieno) cyclooctane; with anaerobic sewage sludge inoculum (Measured)	IUCLID, 2003; Occidental Chemical Company, 2009	Nonguideline study; sufficient details were not available to assess the quality of this study.				
	Soil Biodegradation w/ Product Identification			No data located.				
	Sediment/Water Biodegradation			No data located.				
Air	Atmospheric Half-life	5.6 hours (Estimated)	EPI					
Reactivity	Photolysis	Half-life: >24 years (Measured) Reported as <10% after 168 hours	IUCLID, 2003	Adequate; nonguideline study.				
	Hydrolysis	Not a significant fate process (Estimated)	Wolfe and Jeffers, 2000; Professional judgment	The substance does not contain functional groups that would be expected to hydrolyze readily under environmental conditions.				

Bis(hexachlorocyclopentadieno) Cyclooctane CASRN 13560-89-9							
PROPERTY/ENDPOINT DATA DATA REFERENCE DATA QUALI							
Environmental Half-life		>180 days (Estimated)	EPI; PBT Profiler	Half-life estimated for the predominant compartment, as determined by EPI and the PBT Profiler methodology.			
Bioaccumulation		HIGH: Estimated BAF and available m bis(hexachlorocyclopentadieno) cyclooc	onitoring data suggest very high p tane bioaccumulation.	potential for			
	Fish BCF	23 to 121 (carp) (Measured); 14 to 96 (bluegill) (Measured)	MITI, 1998	Guideline study measured at a water solubility of 0.0027 mg/L.			
		1.97 at 96 hours to 7.02 at 48 hours <i>Lepomis macrochirus</i> (Measured)	IUCLID, 2003	Nonguideline study.			
	BAF	23,000 (Estimated)	EPI				
	Metabolism in Fish			No data located.			
		ENVIRONMENTAL MONITORING A	ND BIOMONITORING				
Environmental Mo	Environmental Monitoring Bis(hexachlorocyclopentadieno) cyclooctane was detected in the particulate phase of air samples at 6 location the Great Lakes region and Lake Erie and Lake Michigan sediment (Hoh et al., 2006); in Japanese industria along the Pacific coast (Kubota, 1979); in Ottawa, Canada residential indoor dust samples (Zhu et al., 2007 2012); in indoor dust collected from an e-waste recycling area and two control areas (rural and urban) in Sc China (Zheng et al., 2010); and in atmosphere and seawater samples taken from East Greenland Sea and the northern and southern Atlantic toward Antarctica (Moller et al., 2010, 2011).						
Ecological BiomonitoringBis(hexachlorocyclopentadieno) cyclooctane has been detected i (Hoh et al., 2006); Ring-Billed Gulls from Canada (Gentes et al. food webs; five different fish species in South Korea; and plasm Tomy et al., 2007; Kang et al., 2009 and Venier et al., 2010).			ane has been detected in archived fis Canada (Gentes et al., 2012); fish f buth Korea; and plasma of nestling b Venier et al., 2010).	sh (walleye) samples from Lake Erie from Lake Winnipeg and Lake Ontario bald eagles (Sverko et al., 2011 citing			
Human Biomonitoring		This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2011). Bis(hexachlorocyclopentadieno) cyclooctane was measured in human hair and indoor dust collected from an e-waste recycling area and two control areas in South China (Zheng et al., 2010); it was detected in serum samples in Guiyu and Haojiang (Ren et al., 2009) and Laizhou Bay residents (He et al., 2013).					

Brett, B. Report to Hooker Chemical Corporation. Skin sensitization tests with five samples in albino guinea pigs. Industrial Bio-Test Laboratories, Inc. TSCATS submission OTS0205956. **1975**.

Brock, W.J.; Schroeder, R.R.; McKnight, C.A.; et al. Oral repeat dose and reproductive toxicity of the chlorinated flame retardant dechlorane plus. *Int. J. Toxicol.* **2010**, 29(6):582-593.

Chou, T.W.; Liu, D.H.; Mabey, W.R.; et al. Metabolism and environmental screening studies on Dechlorane Plus. Hooker Research Center. TSCATS submission OTS0535793. **1979**.

CDC (Centers for Disease Control and Prevention). *Fourth national report on human exposure to environmental chemicals, updated tables*. Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on May 10, 2011).

Dodson, R. Perovich, L., Covaci, A., et al. After the PBDE Phase-Out: A Broad Suite of Flame Retardants in Repeat House Dust Samples from California. *Environ. Sci. Technol.* **2012.** Article ASAP

ECOSAR/EPI (*EPIWIN/EPISUITE*) *Estimations Programs Interface for Windows*, Version 1.11. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

U.S. EPA (Environmental Protection Agency). High Production Volume (HPV) Challenge. Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. http://www.epa.gov/hpv/pubs/general/datadfin.htm

EPA (U.S. Environmental Protection Agency) Sustainable Futures. *Using NonCancer Screening within the SF Initiative*. U.S. Environmental Protection Agency: Washington DC. **2011**. <u>http://www.epa.gov/opptintr/sf/pubs/noncan-screen.htm#systemic</u> (accessed on February 09, 2011).

EPA. 2004. The Pollution Prevention (P2) Framework, EPA-748-B-03-001. Office of Pollution Prevention and Toxics 7403M, U.S. Environmental Protection Agency, Washington, DC. 20460. October 2003 version updated in January 2004. Latest version available at http://www.epa.gov/opptintr/newchems/pubs/sustainable/p2frame-june05a2.pdf

EPI (EPIWIN/EPISUITE) Estimation Program Interface for Windows, Version 4.0. U.S. Environmental Protection Agency: Washington D.C. http://www.epa.gov/opptintr/exposure/.

Gentes, M; Letcher, RJ; Caron-Beaudoin, E; Verreault, J. (2012.) Novel flame retardants in urban-feeding ring-billed gulls from the St. Lawrence River, Canada. Environ Sci Technol: [Epub ahead of print]

He, S.; Li, M.; Jin, J.; Wang, Y.; Bu, Y.; Xu, M.; Yeng, X.; Liu, A. Concentrations and trends of halogenated flame retardants in the pooled serum of residents of Laizhou Bay, China. *Environ Toxicol Chem.* **2013.** [Epub ahead of print]

Hoh, E.; Zhu, L.; Hites, R. Dechlorane Plus, a chlorinated flame retardant, in the Great Lakes. *Environ. Sci. Technol.* **2006**, 40:1184-1189.

IUCLID (International Uniform Chemical Information Database). Dataset for Dechlorane Plus. European Commission – European Chemicals Bureau. 2003

Kang, J. H.; Kim, J. C.; Chang, Y. S. Dechlorane Plus in fish from urban-industrial rivers. Organohalogen Compd. 2009, 71, 1356–1359.

Kubota, Y. Experience with the chemical substances control law in Japan. Ecotoxicol. Environ. Saf. 1979, 3:256-268

MITI (Japanese Ministry of International Trade and Industry). Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. 1998, Compiled under the supervision of Chemical Products Safety Division, Basic Industries Bureau, Ministry of International Trade & Industry, Japan; Chemicals Inspection & Testing Institute, Japan. Ed.; Japan Chemical Industry Ecology-Toxicology & Information Center. **1998**.

Moller, A.; Xie, Z.; Sturm, R.; et al.; Large-scale distribution of dechlorane plus in air and seawater from the Arctic to Antarctica. *Environ. Sci. Technol.* **2010**, 44(23):8977-8982.

Moller, A.; Xie, Z.; Cai, M.; et al. Polybrominated diphenyl ethers vs. alternate brominated flame retardants and dechloranes from East Asia to the Arctic. *Environ. Sci. Technol.* **2011**, 45(16):6793-6799.

Occidental Chemical Corporation. *Initial Submission: Letter Submitting Toxiciological Reviews on Dechlorane Plus and 2,5-Dichlorobenzotrifluoride with attachments. Occidental Chemical Corporation:* Wayne, NJ, 1958 (as cited in TSCA Section 8(e)) Substantial Risk Notice. U.S. EPA. 8EHQ-0292-2490). **1992**.

Occidental Chemical Company. Revised test plan and robust summary for Dechlorane Plus. **2009**. <u>http://www.epa.gov/chemrtk/pubs/summaries/dechlorp/c15635tc.htm</u> (accessed on January 6, 2011).

PBT Profiler *Persistent (P), Bioaccumulative (B), and Toxic (T) Chemical (PBT) Profiler*. U.S. Environmental Protection Agency: Washington D.C. <u>www.pbtprofiler.net</u>.

Pakalin, S.; Cole, T.; Steinkellner, J.; et al. Review on production processes of decabromodiphenyl (DECABDE) used in polymeric applications in electrical and electronic equipment, and assessment of the availability of potential alternatives to DECABDE.

European Chemicals Bureau. **2007**. http://ecb.jrc.ec.europa.eu/documents/Existing-Chemicals/Review_on_production_process_of_decaBDE.pdf (accessed on February 08, 2011).

Ren, G.; Yu, Z.; Ma, S.; et al. Determination of Dechlorane Plus in serum from electronics dismantling workers in south china. Environ. Sci. Technol. **2009**, 43:9453-9457.

Sverko, E.; Tomy, G.T.; Reiner, E.J.; Li, Y-F.; McCarry, B.E.; Arnot, J.A.; Law, R.J. and A. Hites, R.A. Dechlorane Plus and Related Compounds in the Environment: A Review. Environmental Science & Technology. **2011**, 45:5088-5098.

Tomy, G. T.; Pleskach, K.; Ismail, N.; Whittle, D. M.; Helm, P. A.; Sverko, E.; Zaruk, D.; Marvin, C. H. Isomers of Dechlorane Plus in Lake Winnipeg and Lake Ontario food webs. Environ. Sci. Technol. **2007**, 41, 2249–2254.

Venier, M.; Wierda, M.; Bowerman, W.; et al. Flame retardants and organochlorine pollutants in bald eagle plasma from the Great Lakes region. Chemosphere **2010**, 80(10):1234-1240.

Wolfe, N.; Jeffers, P. (2000) Hydrolysis. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (311-334). Boca Raton: Lewis Publishers.

Zheng, J.; Wang, J.; Luo, X.; et al. Dechlorane Plus in human hair from an e-waste recycling area in South China: Comparison with dust. Environ. Sci. Technol. **2010**, 44:9298-9303.

Zhu J.; Feng Y.; Shoeib M. Detection of Dechlorane Plus in residential indoor dust in the city of Ottawa, Canada. Environ. Sci. Technol. **2007**, 41:7694-7698.

Bisphenol A Bis-(diphenyl phosphate), BAPP

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. [§] Based on analogy to experimental data for a structurally similar compound.

[•] The highest hazard designation of a representative component of the oligomeric mixture with MWs <1,000.

			Human Health Effects				AquaticEnvironmenToxicity**Fate		nmental ate							
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
														•		
Bisphenol A Bis-(diphenyl phosphate); BAPP	181028-79-5	L	М	L	L	$L^{\$}$	L^{\S}	L	L		L	L	L	L	Н	H^{\diamond}

**Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

BAPP

Polymeric: Yes

Oligomers: The n = 1 structure comprises 80-85% of the mixture, with the balance primarily made up of higher oligomers (n = 2, 3, 4, etc.). The commercial mixture contains triphenyl phosphate as an impurity.

Metabolites, Degradates and Transformation Products: None identified. Degradation of BAPP has been demonstrated in experimental studies (Iwami, 1994; Hogg, 1997; Armstrong and White, 1999); however the degradates have not been identified. Degradation of BAPP by sequential dephosphorylation could produce phenol (CASRN 108-95-2), diphenyl phosphate (CASRN 838-85-7), and bisphenol A (CASRN 80-05-1). The importance of dephosphorylation relative to possible competing pathways has not been demonstrated in a published study. Therefore the hazards of the theoretical degradation products were not considered in this hazard assessment.

Analogs: Confidential compounds

Analog Structures: No structure provided for confidential compounds.

Endpoint(s) using analog values: Developmental effects; neurotoxicity

Structural Alerts: None

Risk Phrases: For CASRN 5945-33-5 R53 - May cause long-term adverse effects in the aquatic environment (ESIS, 2012; under review CLH, 2011).

Hazard and Risk Assessments: Risk assessment completed for BAPP by the National Industrial Chemicals Notification and Assessment Scheme (NICNAS NA/869, 2000; NICNAS NA/773, 2000).

Bispl	Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
	PHYSICAL/CHEMICAL PR	OPERTIES			
Melting Point (°C)	41.3-68.6 (Measured)	Hogg, 1997; NICNAS NA/773, 2000	Results from differential scanning calorimetry analysis were originally reported as a boiling point range of 41.3-68.6°C in the NICNAS document. The melting point range is likely from a commercial product or mixture.		
	7; OECD 102 (Measured)	Chemtura, 2011	Reported for oligomer where n=1 (CASRN 5945-33-5).		
Boiling Point (°C)	>201 (decomposes) (Measured)	Hogg, 1997	Reported to decompose without boiling at temperatures above 201°C.		
	>240 – 250 (Measured)	Lightbody, 1999	Inadequate; the reported data are for a commercial mixture.		
	Decomposes above 350 without boiling; Organisation of Economic Cooperation and Development (OECD) 103 (Measured)	Chemtura, 2011	Reported for oligomer where n=1 (CASRN 5945-33-5).		
Vapor Pressure (mm Hg)	<9x10 ⁻⁶ at 25°C (Extrapolated)	Tremain, 1997	Although a definitive value could not be reported in this study, the test chemical contained 1-3% triphenyl phosphate and residual phenol, which may have contributed to scatter in the data. These results suggest, however, that the EPI estimates for this endpoint are reasonable.		

Bisp	Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	2.1x10 ⁻⁸ (Estimated, n = 1)	EPI; Boethling et al., 1997	Although the higher MW oligomers are outside the domain of the available estimation methods, their vapor pressures are anticipated to be below the cutoff values.	
	2.3x10 ⁻¹⁸ at 25°C (Extrapolated)	Tremain, 2000; Boethling et al., 1997	Inadequate; the data are for the commercial mixture extrapolated to 25°C. However, the data are consistent with a vapor pressure below the cutoff values for the higher MW oligomers.	
	1x10 ⁻⁶ ; OECD 104 (Measured)	Chemtura, 2011	Reported for oligomer where n=1 (CASRN 5945-33-5).	
Water Solubility (mg/L)	0.389 – 0.462 (Measured)	Hogg, 1997	Although the commercial mixture was likely used as test material, the reported value provides an upper boundary for the most soluble component of the mixture, the oligomer with $n = 1$. The experiment was performed in acidic conditions (pH 5.5-6) and the purity of the test chemical was not specified.	
	<10 ⁻³ (Estimated)	EPI; Boethling et al., 1997	Estimated data based on the predominant oligomer component, n = 1, representing 85% of the commercial mixture. Although the higher MW oligomers are outside the domain of the available estimation methods, their water solubility values are anticipated to be below the cutoff values.	

Bispl	Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	$<2x10^{-2}$ (Measured)	Lightbody, 1999	Inadequate; the reported data are for a commercial mixture.	
Log K _{ow}	>6 (Measured)	Iwami, 1995	The commercial mixture was likely used as test material; cutoff too low to address endpoints for the hazard assessment.	
	>10 (Estimated)	EPI; Boethling et al., 1997	Estimated data based on the predominant oligomer component, $n = 1$, representing 85% of the commercial mixture. Although the higher MW oligomers are outside the domain of the available estimation methods, their K _{ow} values are anticipated to be above the cutoff values.	
	4.0 (n = 1); 5.2 (n = 2) (Measured)	Lightbody, 1999	Inadequate; the reported data are for a commercial mixture. The results are more consistent with the measured value for the triphenyl phosphate impurity (log K_{ow} =4.59) than with the BAPP oligomers.	
	4.5, >4.9; OECD 107 (Measured)	Chemtura, 2011	Reported for oligomer where n=1 (CASRN 5945-33-5).	
Flammability (Flash Point)	>300 (Measured)	NICNAS NA/773, 2000	Reported in a secondary source,	
	>360, closed cup (Measured)	NICNAS NA/869, 2000	study details and test conditions were not provided.	
	281; European Economic Community (EEC) method No A9 (Measured)	Chemtura, 2011	Reported for oligomer where n=1 (CASRN 5945-33-5).	
Explosivity	Not explosive; EEC method No A14 (Measured)	Chemtura, 2011	Reported for oligomer where n=1 (CASRN 5945-33-5).	
Pyrolysis			No data located.	

	Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
рН		Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.	
pK _a		Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.	
		HUMAN HEALTH EFF	ECTS		
Toxicokinetics		Based on professional judgment, absorp	tion is not expected for any rout	e of exposure for the neat material.	
		Poor absorption of the low MW fraction	in solution can be expected in a	l routes.	
Dermal Absorption	n <i>in vitro</i>			No data located.	
Absorption,	Oral, Dermal or Inhaled	No absorption is expected for any route	Professional judgment	Based on closely related	
Distribution,		of exposure; poor absorption of low MW		confidential analogs with similar	
Metabolism &		fraction (0% <500, 85% <1,000) in		structures, functional groups, and	
Excretion		solution by all routes		physical/chemical properties.	
		(Estimated by analogy)			
Acute Mammalian	Toxicity	LOW: Based on oral and dermal LD ₅₀ values of >2,000 mg/kg in rats for both the commercial mixture and its understanding the sector in both the commercial mixture and			
		its predominant component. No data loc	cated regarding the acute inhalat	ion hazard.	
Acute Lethality	Oral	Rat oral $LD_{50} > 2,000 \text{ mg/kg}$	NICNAS NA/869, 2000	Reported in a secondary source.	
				Study conducted according to	
				OECD guidelines (OECD 401).	
				Data are for commercial mixture.	
		Rat oral $LD_{50} > 2,000 \text{ mg/kg}$	NICNAS NA/7/3, 2000	Reported in a secondary source.	
				Study conducted according to	
				EEC/OECD guidelines (OECD	
				401). Data are for the predominant	
				component.	
	Dermal	Rat dermal $LD_{50} > 2,000 \text{ mg/kg}$	NICNAS NA/869, 2000	Reported in a secondary source.	
				Study conducted according to	
				EEC/OECD guidelines (OECD	
				402). Data are for commercial	
				mixture.	

Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Rat dermal LD ₅₀ >2,000 mg/kg	NICNAS NA/773, 2000	Reported in a secondary source. Study conducted according to EEC/OECD guidelines (OECD 402). Data are for the predominant component.
~	Inhalation			No data located.
Carcinogenicity		MODERATE: BAPP may have low pote	ential for carcinogenicity based o	n expert judgment; there were no
		structural alerts in the molecule. However	ver, there is uncertainty regardin	g the carcinogenicity of BAPP due
		to the lack of data for this substance. Ca	arcinogenic effects cannot be con	pletely ruled out.
	OncoLogic Results			No data located; not amenable to
	Construction and the Construction of the Const			available estimation methods.
	and Mouse)	Low potential for agrainageniaity		Estimated based on expert
	Combined Chronic Toxicity/ Carcinogenicity	(Estimated)	Expert judgment	judgment; no data located.
Genotoxicity		LOW: There is uncertain potential for n	nutagenicity based on experimen	tal studies. Neither the commercial
		mixture nor the predominant componen did not induce chromosomal aberration	t induced gene mutations in seve s in Chinese hamster ovary (CHO	ral <i>in vitro</i> assays in bacteria and)) or Chinese hamster lung (CHL)
		cells in vitro. The commercial mixture di	id not increase micronucleated p	olychromatic erythrocytes in
		mouse bone marrow cells <i>in vivo</i> .		
	Gene Mutation in vitro	Negative, Ames assay (standard plate) in	NICNAS NA/869, 2000	Sufficient study details were
		Salmonella typhimurium strains TA98,		reported in a secondary source;
		TA100, TA1537, TA1535, and <i>E. coli</i>		used OECD test guidelines (OECD
		WP2uvrA with and without metabolic		471 & 472). Data are for
		activation		commercial mixture.
		Negative, Ames assay (standard plate) in	NICNAS NA/773, 2000	Sufficient study details were
		Salmonella typhimurium strains 1 A98,		reported in a secondary source;
		WD2uurA with and without metabalia		471 & 472) Data are for the
		activation		predominant component
	Gene Mutation in vivo			No data located.

	Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5			
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Chromosomal Aberrations <i>in vitro</i>	Uncertain potential for mutagenicity based on a positive result for chromosome aberrations in CHL cells (Estimated by analogy)	Professional judgment	Based on a structurally similar confidential analog.
		Negative, did not produce chromosomal aberrations in CHO cells with and without metabolic activation	NICNAS NA/869, 2000	Sufficient study details were reported in a secondary source; used OECD test guidelines (OECD 473). Data are for commercial mixture.
		Negative, did not produce chromosomal aberrations in CHL cells with and without metabolic activation	NICNAS NA/773, 2000	Sufficient study details were reported in a secondary source; used EC/EEC test guidelines (EC Directives 87/18/EEC and 88/320/EEC). Data are for the predominant component.
	Chromosomal Aberrations <i>in vivo</i>	Negative; did not increase micronucleated polychromatic erythrocytes in bone marrow cells of mice treated with 2,000 mg/kg at 0 and 24 hours. No mortalities or adverse effects were observed in treated animals.	NICNAS NA/869, 2000	Sufficient study details were reported in a secondary source; used OECD test guidelines (OECD 474). Data are for commercial mixture.
	DNA Damage and Repair			No data located.
	Other (Mitotic Gene Conversion)			No data located.
Reproductive Effe	ects	LOW: Estimated to have low potential f	or reproductive effects based on	expert judgment. No data located.
	Reproduction/ Developmental Toxicity Screen			
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen	(Estimated)	Expert judgment	judgment.

Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Reproduction and Fertility Effects			
Developmental Eff	rects	LOW: Estimated to have low potential for developmental effects based on a structurally similar confidential analog. No fetal effects reported. Experimental data located are inadequate to designate a hazard for this endpoint. Although predicted to have low hazard, there is high uncertainty due to lack of data related to developmental neurotoxicity.		
	Reproduction/ Developmental Toxicity Screen	Oral, developmental study; no fetal effects reported. (Estimated by analogy)	Professional judgment	Based on a structurally similar confidential analog.
	Combined Repeated Dose with Reproduction/ Developmental Toxicity			No data located.
	Prenatal Development Postnatal Development	14-day developmental study in rats via oral gavage NOAEL: 1,000 mg/kg-day	Illinois EPA, 2007; WA Department of Health, 2006	Insufficient study details reported in a secondary source. Data are for commercial mixture.

Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5				
PROPER	XTY/ENDPOINT	DATA REFERENCE DATA QUALITY		
Neurotoxicity		LOW: Estimated based on analogy to pl phenol (BPBP). In one experimental stu to 1,000 mg/kg-day following 28-day ora not designed to assess all neurological pa designation. Although low hazard is pr inhibition which is associated with phos	hosphoric acid, mixed esters with idy of BPBP, there were no neuro il administration of the commerc arameters; however, it supports t redicted, there is uncertainty due phate esters.	[1,1'-bisphenyl-4,4'-diol] and otoxic effects observed at doses up ial mixture to rats. This study was the estimated Low hazard to lack of data on cholinesterase
	Neurotoxicity Screening Battery (Adult)	In a 28-day oral (gavage) study of Sprague-Dawley rats, there were no treatment-related changes in any of the parameters measured (body weight gain, food consumption, clinical signs, organ weights, clinical chemistry, hematology, gross necropsy, histopathology). There were no notable neurotoxicological abnormalities reported in weekly evaluations. ≥1,000 mg/kg-day (highest dose tested)	NICNAS NA/869, 2000	Limited study details were reported for the neurotoxicity endpoint; it is unclear what neurological parameters were evaluated; it appears that this study was not designed to assess all neurological parameters; therefore neurotoxicity cannot be ruled out; used OECD test guidelines (OECD 407). Data are for commercial mixture.
		28-day oral (gavage) study NOAEL = 1,000 mg/kg (Estimated by analogy)	Confidential study submitted for analog and Professional judgment	Estimated based on analogy to phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol (CASRN 1003300-73-9).

Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Repeated Dose Effects	LOW: There were no treatment-related changes in systemic toxicity parameters measured at doses up to 1,000 mg/kg-day in a 28-day oral study in Sprague-Dawley rats. Although only one species has been studied, these were comprehensive OECD or EEC guideline studies that found no dose-related effects for either the commercial mixture or its predominant component.		
	In a 28-day oral (gavage) study in Sprague-Dawley rats, there were no treatment-related changes in any of the parameters measured (body weight gain, food consumption, clinical signs, neurotoxicology parameters, organ weights, clinical chemistry, hematology, gross necropsy, histopathology) NOEL ≥1,000 mg/kg-day (highest dose tested)	NICNAS NA/869, 2000	Sufficient study details were reported; used OECD test guidelines (OECD 407). Data are for commercial mixture.
	In a 28-day oral (gavage) study in Sprague-Dawley rats, there were no treatment-related changes in any of the parameters measured (clinical signs, organ weights, clinical chemistry, hematology, gross necropsy, histopathology) NOEL \geq 1,000 mg/kg-day (highest dose tested)	NICNAS NA/773, 2000	Sufficient study details were reported; used EEC test guidelines (EEC Directive 92/69/EEC, Method B7). Data are for the predominant component.
Immune System Effects	Low potential for immunotoxicity. (Estimated)	Expert judgment	Estimated based on expert judgment.
Skin Sensitization	LOW: Commercial mixture and its predominant component were not skin sensitizers in two studies of guinea pigs.		
Skin Sensitization	Non-sensitizing, guinea pig	NICNAS NA/869, 2000	Conducted according to EEC/OECD guidelines (OECD 406). Data are for commercial mixture.

	Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5			
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Non-sensitizing, guinea pig	NICNAS NA/773, 2000	Conducted according to EEC/OECD guidelines (OECD 406). Data are for the predominant component.
Respiratory Sensit	tization	No data located.		
	Respiratory Sensitization			No data located.
Eye Irritation		LOW: Commercial mixture was slight rabbit eyes.	ly irritating and predominant co	mponent was non-irritating to
	Eye Irritation	Slightly irritating, rabbit	NICNAS NA/869, 2000	Conducted according to EEC/OECD guidelines (OECD 405). Data are for commercial mixture.
		Non-irritant, rabbit	NICNAS NA/773, 2000	Conducted according to EEC/OECD guidelines (OECD 405). Data are for the predominant component.
Dermal Irritation		LOW: Commercial mixture was slight rabbit skin.	ly irritating and predominant co	mponent was non-irritating to
	Dermal Irritation	Slightly irritating, rabbit	NICNAS NA/869, 2000	Conducted according to EEC/OECD guidelines (OECD 404). Data are for commercial mixture.
		Non-irritant, rabbit	NICNAS NA/773, 2000	Conducted according to EEC/OECD guidelines (OECD 404). Data are for the predominant component.
Endocrine Activity	y	No experimental data were located to e	evaluate and determine if BAPP	affects endocrine activity.
		Low potential for endocrine activity. (Estimated)	Expert judgment	Estimated based on expert judgment.

Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Immunotoxicity		Estimated to have low potential for imm	unotoxicity based on expert judg	ment. No experimental data for
		this substance were located.		
	Immune System Effects	Low potential for immunotoxicity.	Expert judgment	Estimated based on expert
		(Estimated)		judgment.
		ECOTOXICITY		
ECOSAR Class				
Acute Toxicity		LOW: Experimental data for both the p	redominant component $(n = 1)$ a	nd the commercial mixture for
		fish, daphnia, and algae indicate no effe	cts up to the limits of the water so	olubility. Estimates are consistent
F : LLC		with NES.	NUCNAS NA (960, 2000	
Fish LC ₅₀		Oncorhynchus mykiss (rainbow trout),	NICNAS NA/869, 2000	Conducted according to OECD
		90-nour LC ₅₀ >0.025 mg/L NOEC = 0.025 mg/L		guidelines (OECD 203); not toxic
		(Experimental)		apholity
		(Experimental)	NICNAS NA/772 2000	Conducted according to OECD
		96 hour I C. >1 mg/I	MCNAS NA/775, 2000	guidelines (OECD 203): not toxic
		NOEC $>1 \text{ mg/L}$		up to the limits of its water
		(Experimental)		solubility. Data are for the
		(Experimental)		predominant component
		Fish 96-hour I Cro – NFS	FCOSAR version 1 11	Estimated data based on the high
		(Estimated)		K_{ow} of the predominant oligomer
		ECOSAR: Neutral organics		component, $n = 1$, representing
				85% of the commercial mixture.
				Although the higher MW
				oligomers are outside the domain
				of the estimation method, they are
				also anticipated to display NES.
				ECOSAR also provided results for
				the Esters, and Esters (phosphate)
				classes; however, professional
				judgment indicates that this
				compound does not lie within the
				domain of the ECOSAR model.

Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Daphnid LC ₅₀	Daphnia magna, 48-hour EC ₅₀ >0.034 mg/L; NOEC = 0.034 mg/L (immobilization) (Experimental)	NICNAS NA/869, 2000	Conducted according to OECD guidelines (OECD 202); not toxic up to the limits of its water solubility. Data are for commercial mixture.
	Daphnia magna, 48-hour EC ₅₀ >1 mg/L; NOEC >1 mg/L (immobilization) (Experimental)	NICNAS NA/773, 2000	Conducted according to OECD guidelines (OECD 202); not toxic up to the limits of its water solubility. Data are for the predominant component.
	Daphnid 48-hour LC ₅₀ = NES (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimated data based on the high K_{ow} of the predominant oligomer component, $n = 1$, representing 85% of the commercial mixture. Although the higher MW oligomers are outside the domain of the estimation method, they are also anticipated to display NES. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.
Green Algae EC ₅₀	Selanastrum subspicatus 72-hour EbC ₅₀ >0.02 mg/L; NOEC = 0.02 mg/L (growth) (Experimental) Selanastrum subspicatus 72-hour EbC ₅₀	NICNAS NA/869, 2000 NICNAS NA/773, 2000	Conducted according to OECD guidelines (OECD 201); not toxic up to the limits of its water solubility. Data are for commercial mixture.
	<pre>>1 mg/L; NOEC >1 mg/L (growth) (Experimental)</pre>		guidelines (OECD 201); not toxic up to the limits of its water solubility. Data are for the predominant component.

Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Green algae 96-hour LC ₅₀ = NES (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimated data based on the high K_{ow} of the predominant oligomer component, n = 1, representing 85% of the commercial mixture. Although the higher MW oligomers are outside the domain of the estimation method, they are also anticipated to display NES. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.	
Chronic Aquatic Toxicity	LOW: Experimental data for the comm	ercial mixture in <i>Daphnia</i> indicat	te no toxicity effects up to the	
Fish ChV	Fish ChV = NES (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimated data based on the high K_{ow} of the predominant oligomer component, $n = 1$, representing 85% of the commercial mixture. Although the higher MW oligomers are outside the domain of the estimation method, they are also anticipated to display NES. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model	

Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Daphnid ChV	$\begin{array}{c} Daphnia \ magna, \ 21 \ day \ EC_{50} \\ > 0.02 \ mg/L; \\ NOEC = 0.02 \ mg/L \\ (reproduction \ test) \\ (Experimental) \\ \end{array}$	NICNAS NA/869, 2000	Conducted according to OECD guidelines (OECD 211); not toxic up to the limits of its water solubility. Data are for commercial mixture.	
	Daphna ChV = NES (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimated data based on the high K_{ow} of the predominant oligomer component, n = 1, representing 85% of the commercial mixture. Although the higher MW oligomers are outside the domain of the estimation method, they are also anticipated to display NES. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.	
Saltwater Invertebrate ChV			No data located.	
Green Algae ChV	Green algae ChV = NES (Estimated) ECOSAR neutral organics	ECOSAR version 1.11	Estimated data based on the high K_{ow} of the predominant oligomer component, $n = 1$, representing 85% of the commercial mixture. Although the higher MW oligomers are outside the domain of the estimation method, they are also anticipated to display NES. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.	

Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5					
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
ENVIRONMENTAL FATE					
Transport	The environmental fate is described usin predominant component. Based on the I property data, the lowest MW oligomer expected to be immobile in soil based on not expected to be an important transpo will be nonvolatile from surface water. V pressure. In the atmosphere, BAPP is ex vapor pressure. Particulates may be rem of the commercial mixture are anticipate	The environmental fate is described using estimates on the lowest MW oligomer of BAPP, which is the predominant component. Based on the Level III fugacity models incorporating the available experimental property data, the lowest MW oligomer is expected to partition primarily to soil and sediment. BAPP is expected to be immobile in soil based on its estimated K _{oc} . Leaching of BAPP through soil to groundwater is not expected to be an important transport mechanism. Estimated volatilization half-lives indicate that BAPP will be nonvolatile from surface water. Volatilization from dry surface is also not expected based on its estimated vapor pressure. In the atmosphere, BAPP is expected to exist solely in the particulate phase, based on its estimated vapor pressure. Particulates may be removed from air by wet or dry deposition. The higher MW components of the commercial mixture are anticipated to behave similarly to that described above.			
Henry's Law Constan (atm-m ³ /mole)	t Predominant component (5945-33-5): <10 ⁻⁸ (Estimated)	EPI; Professional judgment	Estimated data based on the predominant oligomer component, n = 1, representing 85% of the commercial mixture. The higher MW oligomers are also expected to have Henry's Law Constant values below this cutoff.		
Sediment/Soil Adsorption/Desorptio Coefficient – K _{oc}	n >3.39x10 ⁴ (Measured) Predominant component (5945-33-5):	Hogg, 1997 EPI	Data obtained using a high performance liquid chromatography (HPLC) method similar to OECD TGP/94.75 method. Although a commercial mixture was likely used as test material, the reported value provides a lower boundary for the most mobile component of the mixture, the oligomer with $n = 1$. Estimated data based on the		
	30,000 (Estimated)		predominant oligomer component, n = 1, representing 85% of the commercial mixture.		

Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5				
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY
	Level III Fugacity Model	Air = <1% (Estimated) Water = 1.1% Soil = 42% Sediment = 57%	EPI	Estimated data based on the predominant oligomer component, $n = 1$, representing 85% of the commercial mixture.
Persistence		HIGH: Experimental studies were on the commercial mixture which is estimated to contain approximately 85% BAPP. BAPP is not readily biodegradable. In a Japanese Ministry of International Trade and Industry (MITI)-I (OECD Test TG 301C) test 6% biodegradation occurred over 28 days in sewage sludge. BAPP does not contain chromophores that absorb at wavelengths >290 nm, and therefore is not expected to be susceptible to direct photolysis by sunlight. The atmospheric half-life of BAPP is estimated to be 5.5 hours, although it is expected to exist primarily in the particulate phase in air. Enzymatic or basic hydrolysis leading to the production of phenol (CASRN 108-95-2), diphenyl phosphate (CASRN 838-85-7), and bisphenol A (CASRN 80-05-1) through sequential dephosphorylation is theoretically possible but has not been demonstrated.		
Water	Aerobic Biodegradation	Days-weeks (Primary survey model) Months (Ultimate survey model) (Estimated)	EPI	Estimated data based on the predominant oligomer component, $n = 1$, representing 85% of the commercial mixture.
		6% biodegradation detected after 28 days in activated sludge according to a MITI-I Ready Test (OECD TG 301C) (Measured)	Iwami, 1994	The commercial mixture was likely used as test material.
		2% biodegradation detected after 28 days in sewage sludge according to Ready Test Modified Sturm Test (OECD TG 301). (Measured)	Armstrong and White, 1999	The data are for the commercial mixture.
	Volatilization Half-life for Model River	>1 year (Estimated)	EPI	Estimated data based on the predominant oligomer component, $n = 1$, representing 85% of the commercial mixture.

	Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5				
PRO	PERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Volatilization Half-life for Model Lake	>1 year (Estimated)	EPI	Estimated data based on the predominant oligomer component, $n = 1$, representing 85% of the commercial mixture.	
Soil	Aerobic Biodegradation			No data located.	
Ar Bio	Anaerobic Biodegradation	Not probable (Anaerobic-methanogenic biodegradation probability model) (Estimated)	EPI	Estimated data based on the predominant oligomer component, $n = 1$, representing 85% of the commercial mixture.	
	Soil Biodegradation with Product Identification			No data located.	
	Sediment/Water Biodegradation			No data located.	
Air	Atmospheric Half-life	5.5 hours (Estimated)	EPI	Estimated data based on the predominant oligomer component, $n = 1$, representing 85% of the commercial mixture.	
Reactivity	Photolysis	Not a significant fate process (Estimated)	Mill, 2000; Professional judgment	The substance does not contain functional groups that would be expected to absorb light at environmentally significant wavelengths.	
	Hydrolysis	>1 year at 25°C and pH 4.0, 7.0 and 9.0 (Measured)	Hogg, 1997	The commercial mixture was likely used as test material. Data indicate the resistance of the material to hydrolysis under environmental conditions. Purity of the test chemical was not specified.	

Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		>1 year at pH 5 and pH 7; 6.3 days at pH 9 15 hours at pH 10 (Estimated)	EPI	Estimated data based on the predominant oligomer component, n = 1, representing 85% of the commercial mixture. Hydrolysis rates are expected to be pH- dependent and may be limited by the low water solubility of this compound. Under basic conditions, sequential dephosphorylation reactions may occur.
Environmental Hal	f-Life	>1 year (Estimated)	EPI; PBT Profiler	Half-life estimated for the predominant compartment, as determined by EPI and the PBT Profiler methodology for the predominant oligomer component, n = 1, representing 85% of the commercial mixture.
Bioaccumulation		HIGH: Although measured BCF values f bioaccumulation hazard designation, the estimated BAF value. The estimated BAF <1,000 daltons, suggests that BAPP may	for the components of the polyme overall bioaccumulation designa F of 1,100 for the predominant co bioaccumulate in higher trophic	eric mixture result in a Moderate ation for BAPP is high based on an omponent of the mixture with a MW levels.
	Fish BCF	\leq 100 (Measured) According to a method equivalent to OECD 305C in <i>Cyprinus carpio</i> with HPLC analysis of the n=1, n=2 and n=3 components BCF range: \leq 1.1 - \leq 159 BCF range: \leq 2.17 - \leq 159	Submitted confidential study Chemtura, 2011	Although the commercial mixture was used as the test material, the BCF for each individual oligomer was measured. Reported for oligomer where n=1
		analogy) $6.8 - 62$ (Estimated by		UADKIN 3943-33-3.

Bisphenol A Bis-(diphenyl phosphate) CASRN 181028-79-5 and 5945-33-5				
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY
		66 (Estimated)	EPI	Estimated data based on the predominant oligomer component, $n = 1$, representing 85% of the commercial mixture.
	BAF	1,100 (Estimated)	EPI	Estimated data based on the predominant oligomer component, $n = 1$, representing 85% of the commercial mixture.
	Metabolism in fish			No data located.
]	ENVIRONMENTAL MONITORING AN	D BIOMONITORING	
Environmental Mo	nitoring	No data located.		
Ecological Biomoni	itoring	No data located.		
Human Biomonitor	ring	This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2011).		
Armstrong, K.; White, D. *NcendX P-30 Determination of Ready Biodegradability by Modified Sturm Test.* Inveresk Report No. 18, Inveresk Research. **1999**.

Chemtura Corporation. Proposal for Harmonised Classification and Labelling. CLH REPORT FOR EC NO. 425-220-8. **2011**. <u>http://echa.europa.eu/documents/10162/13626/clh_1-methylethylidene_en.pdf</u>.

CDC (Centers for Disease Control and Prevention). Fourth national report on human exposure to environmental chemicals, updated tables. Department of Health and Human Services. **2011**. <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on May 10, 2011).

CLH report Proposal for Harmonised Classification and Labelling Substance Name: (1-methylethylidene)di-4,1-phenylene tetraphenyl diphosphate; aka Bisphenol A Diphosphate; aka Bisphenol A Polyphosphate. **2011.** <u>http://www.google.com/url?sa=t&rct=j&q=clh%20report%20for%20ec%20no.%20425-220-</u> <u>&&source=web&cd=1&cad=rja&ved=0CC0QFjAA&url=http%3A%2F%2Fecha.europa.eu%2Fdocuments%2F10162%2F13626%2Fc</u> <u>Ih 1-methylethylidene_en.pdf&ei=x3i_UP6YPIq80QHmqIDICQ&usg=AFQjCNFXY3wOdSu1FtHOm5xq1AHACWcvQA</u> (accessed on December 5, 20120.

ECOSAR/EPI (*EPIWIN/EPISUITE*) *Estimations Programs Interface for Windows*, Version 1.11. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

EPA (Environmental Protection Agency). High Production Volume (HPV) Challenge. Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. http://www.epa.gov/hpv/pubs/general/datadfin.htm

EPA. 2004. The Pollution Prevention (P2) Framework, EPA-748-B-03-001. Office of Pollution Prevention and Toxics 7403M, U.S. Environmental Protection Agency, Washington, DC. 20460. October 2003 version updated in January 2004. Latest version available at http://www.epa.gov/opptintr/newchems/pubs/sustainable/p2frame-june05a2.pdf

EPI (*EPIWIN/EPISUITE*) *Estimation Program Interface for Windows*. Version 4.0. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

ESIS (European chemical Substances Information System). Classification, labeling and packaging of dangerous substances annex VI to regulation (EC) No 1272/2008. [Online] <u>http://esis.jrc.ec.europa.eu/index.php?PGM=cla</u> (accessed on April 6, **2012**).

Hogg, A.S. *Determination of General Physico-Chemical Properties*. Project No. 106/010, Safepharm Laboratories Limited, Derby. **1997**.

Illinois Environmental Protection Agency. Report on Alternatives to Flame Retardant DecaBDE: Evaluation of Toxicity, Availability, Affordability, and Fire Safety Issues. A report to the governor and general assembly. **2007**.

Iwami, S. *Ready Biodegradability Test of E-890*. Project No. 4F020G, Mitsubisi-kasei Institute of Environmental Science, Japan. **1994**.

Iwami, S. Determination of 1-octanol/water Partition Coefficient of E-890 by HPLC Method. Project No. Mitsubishi Chemical Safety Institute Ltd, Japan. **1995**.

Lightbody, S.M. *Physico-Chemical Testing with NcendX P-30 (Boiling Point, Water Solubility, Partition Co-efficient, Adsorption/Desorption Co-efficient)*. Inveresk Report No. 17979, Inveresk Research. **1999**.

Mill, T. (2000) Photoreactions in Surface Waters. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (355-382). Boca Raton: Lewis Publishers.

NICNAS NA/773 (National Industrial Chemicals Notification and Assessment Scheme). *Phosphoric acid, (1-methylethylidene) di- 4,1-phenylene tetraphenyl ester (Fyrolflex BDP)*. File No. NA/773. **2000**.

NICNAS NA/869 (National Industrial Chemicals Notification and Assessment Scheme). *Phosphoric Trichloride, Reaction Products with Bisphenol A and Phenol*). File No. NA/869. **2000**.

PBT Profiler. *Persistent (P), Bioaccumulative (B), and Toxic (T) Chemical (PBT) Profiler*. U.S. Environmental Protection Agency: Washington D.C. <u>www.pbtprofiler.net</u>.

Tremain, S.P. Determination of Vapour Pressure. Project No. 106/012, Safepharm Laboratories Limited, Derby. 1997.

Tremain, S.P. Determination of Vapour Pressure. SPL Project No. 685/013, Safepharm Laboratories Limited. 2000.

Washington Department of Health. *Washington State polybrominated diphenyl ether (PBDE) chemical action plan: Final plan.* Deca-BDE alternatives assessment. Washington State Department of Health. January 19, 2006. Department of Health publication No. 334-079. **2006**.

Brominated Epoxy Polymers

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. ^d This hazard designation would be assigned MODERATE if >5% of the particles are in the respirable range as a result of dust forming operations.

♦ Different formulations of the commercial product are available. One of these many formulations has an average MW of ~1,600 and contains significant amounts of lower MW components. These lower MW components have hazard potentials different than the polymeric flame retardant, as follows: HIGH estimated potential for bioaccumulation; HIGH experimental for acute aquatic toxicity; HIGH estimated for chronic aquatic toxicity; MODERATE experimental for developmental toxicity; and MODERATE estimated for carcinogenicity, repeated dose, reproductive, and respiratory sensitization toxicity.

			Human Health Effects				Aqu Toxi	uatic city ^{**}	Environmental Fate							
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Brominated Epoxy Polymers	68928-70-1	L	L♦	L	L♦	L♦	L	$L \blacklozenge^{d}$	L	•	L	L	L♦	L♦	VH	L♦

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Brominated Epoxy Polymers							
O O	0	CASRN: 68928-70-1					
Br Br OH Br	Br 🛆 🛽	MW: 10,000 to >50,000; 0% <1,000					
		MF: $(C_{21}H_{20}Br_4O_4 \cdot C_{15}H_{12}Br_4O_2)_n$					
	I In I	Physical Forms:					
		Neat: Solid					
	U U	Use: Flame retardant					
SMILES: The polymer component with MW >1,000 is not amenable to SMILES not	otation.						
Synonyms: Phenol, 4,4'-(1-methylethylidene)bis[2,6-dibromo-, polymer with 2,2'-[(1-methylethylidene)bis[(2,6-dibromo-4,1-phenylene)oxymethylene]]bis[oxirane]; 4,4'-propane-2,2-diylbis(2,6-dibromophenol) - 2,2'-{propane-2,2-diylbis[(2,6-dibromobenzene-4,1-diyl)oxymethanediyl]}dioxirane (1:1); Tetrabromobisphenol A - Tetrabromobisphenol A diglycidyl ether polymer; Tetrabromobisphenol A, 2,2-bis(4-(2,3-epoxypropyloxy)dibromophenyl)propane polymer							
Chemical Considerations: This alternative is a high MW polymer. The extent of polymer.	olymerization and thus average	MW is formulation dependent. The higher MW					
oligomers, with a MW $>1,000$, are assessed together using professional judgment an	d information contained in the	literature concerning polymer assessment					
(Boethling et al., 1997). However, it should be noted that at least one formulation of with $12.7\% < 1.000$ resulting from the presence of unchanged starting materials. The	CASRN 68928-70-1 has a nun	nber average molecular weight (MW_n) of 1,600 so unchanged storting materials, if present in the					
commercial formulation are provided in Table 4-4 as a footnote (\bullet)	summary of the nazarus of the	se unchanged starting materials, it present in the					
Polymeric: Yes							
Oligomers: Commercial brominated epoxy polymer products represented by CASE	RN 68928-70-1 typically are con	mprised of high MW epoxy-terminated oligomers.					
Metabolites, Degradates and Transformation Products: None							
Analog: No analog	Analog Structure: Not applic	cable					
Endpoint(s) using analog values: Not applicable							
Structural Alerts: None identified							
Risk Phrases: Not classified by Annex VI Regulation (EC) No 1272/2008 (ESIS, 2011).							
Hazard and Risk Assessments: None identified							

Brominated Epoxy Polymers CASRN 68928-70-1								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
	PHYSICAL/CHEMICAL PR	ROPERTIES						
Melting Point (°C)	135–150 (Measured)	ICL Industrial Products, 2011	For the commercial product F- 2300H. The melting points reported cover a broad range and are anticipated to be formulation specific liquid-glass transition temperatures.					
	105-115; 150 ± 5 (Measured)	NICNAS, 2001	For the commercial product F- 2300H. The melting points reported cover a broad range and are anticipated to be formulation specific liquid-glass transition temperatures.					
Boiling Point (°C)	>300 (Estimated)	Professional judgment	Cutoff value used for large, high MW solids.					
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW non- ionic polymers.					
Water Solubility (mg/L)	<10 ⁻³ (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW non- ionic polymers.					
	Insoluble (Measured)	ICL Industrial Products, 2011; NICNAS, 2001	For the commercial product F- 2300H; qualitative value that cannot be used to evaluate other endpoints within the hazard assessment.					
Log K _{ow}			No data located; polymers with a MW >1,000 are outside the domain of the available estimation methods.					
Flammability (Flash Point)	Nonflammable (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.					
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.					
Pyrolysis			No data located.					

Brominated Epoxy Polymers CASRN 68928-70-1							
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
рН		Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.			
pKa		Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.			
		HUMAN HEALTH EFF	ECTS				
Toxicokinetics		There is no absorption expected for any route of exposure. This polymer is large, with a MW >1,000. expected to have limited bioavailability and therefore is not expected to be readily absorbed, distribut metabolized in the body. However, there are formulations of the commercial product available that n contain significant amounts of lower MW components; absorption may occur more readily in this case					
Dermal Absorptio	n <i>in vitro</i>		No data located.				
Absorption, Distribution, Metabolism & Excretion	Oral	No absorption is expected for any route of exposure (Estimated)	Professional judgment	Estimated based on professional judgment.			
Acute Mammaliar	n Toxicity	LOW: This polymer is large, with a MV has low potential for acute mammalian	V >1,000. It is expected to have lin toxicity.	mited bioavailability and therefore			
Acute Lethality	Oral Dermal Inhalation	Limited bioavailability expected (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff values for large high MW polymers.			
Carcinogenicity		LOW: This polymer is large, with a MV crosslinking, swellability, dispersability has low potential for carcinogenicity.	V >1,000. It is expected to have fe , potential for inhalation, nor hin	w to no residual monomers, dered amine groups and therefore			
	OncoLogic Results			No data located.			
	Carcinogenicity (Rat and Mouse) Combined Chronic Toxicity/ Carcinogenicity	Limited bioavailability expected (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff values for large high MW polymers.			

	Brominated Epoxy Polymers CASRN 68928-70-1								
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Genotoxicity		LOW: Brominated Epoxy Polymers were not mutagenic in bacteria and did not cause chromosomal							
		aberrations in human lymphocytes. In addition, these polymers are large, with a MW >							
		expected to have limited bioavailability	and therefore low potential for g	enotoxicity.					
	Gene Mutation in vitro	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large					
		(Estimated)	Boethling et al., 1997	high MW polymers.					
		Negative, Salmonella typhimurium	Submitted confidential study	Reported in a submitted					
		strains TA1535, TA1537, TA98 and		confidential study; Study conducted					
		TA100 and <i>Escherichia coli</i> strain		in accordance with Good laboratory					
		WP2uvrA with and without metabolic		practice (GLP) and Organisation of					
		activation.		Economic Cooperation and					
				Development (OECD) principles.					
	Gene Mutation in vivo								
	Chromosomal	Negative, chromosomal aberrations in	Submitted confidential study	Reported in a submitted					
	Aberrations in vitro	human lymphocytes with and without		confidential study; Study conducted					
		metabolic activation. Test material was		in accordance with GLP and OECD					
		considered to be non-clastogenic.		principles.					
	Chromosomal								
	Aberrations in vivo								
	DNA Damage and								
	Repair								
	Other (Mitotic Gene								
	Conversion)								
Reproductive Effe	cts	LOW: This polymer is large, with a MV	V >1,000. It is expected to have lin	nited bioavailability and therefore					
		has low potential for reproductive effect	ts.						
	Reproduction /								
	Developmental Toxicity								
	Screen								
	Combined Repeated	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large					
	Dose with	(Estimated)	Boethling et al., 1997	high MW polymers.					
	Reproduction /								
	Developmental Toxicity								
	Screen								

Brominated Epoxy Polymers CASRN 68928-70-1									
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
	Reproduction and Fertility Effects								
Developmental Eff	fects	LOW: This polymer is large, with a MV	V >1,000. It is expected to have lin	mited bioavailability and therefore					
		has low potential for developmental effe	cts.						
	Reproduction/ Developmental Toxicity Screen								
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen Prenatal Development	Limited bioavailability expected (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff values for large high MW polymers.					
	Postnatal Development								
Neurotoxicity		LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore has low potential for neurotoxicity.							
	Neurotoxicity Screening	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large					
	Battery (Adult)	(Estimated)	Boethling et al., 1997	high MW polymers.					
Repeated Dose Eff	ects	LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability; however,							
		because the MW _n is >10,000, there is the possibility of lung overloading if >5% of the particles are in the							
		respirable range as a result of dust forming operations.							
		This polymer MW_n is >10,000; potential for irreversible lung damage as a result of lung overloading (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff values for large high MW polymers.					
Skin Sensitization		LOW: Not a skin sensitizer in a local ly	nph node assay in mice.						
	Skin Sensitization	Low potential for skin sensitization. (Estimated)	Expert judgment	Estimated based on expert judgment.					
		Not sensitizing, local lymph node assay in mice; application of test substance to the dorsal surface of the ear	Submitted confidential study	Reported in a submitted confidential study; Study conducted in accordance with GLP and OECD guideline 429 ("Skin Sensitization: Local Lymph Node Assay").					

Brominated Epoxy Polymers CASRN 68928-70-1									
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Respiratory Sensit	ization	No data located.							
	Respiratory			No data located.					
	Sensitization								
Eye Irritation		LOW: Estimated not to have potential for eye irritation based on expert judgment. No data locate							
	Eye Irritation	Low potential for skin sensitization.	Expert judgment	Estimated based on expert					
		(Estimated)		judgment.					
Dermal Irritation		LOW: Estimated not to have potential f	or dermal irritation based on exp	pert judgment. No data located.					
	Dermal Irritation	Low potential for skin sensitization.	Expert judgment	Estimated based on expert					
		(Estimated)		judgment.					
Endocrine Activity	7	This polymer is large, with a MW >1,000. It is not expected to have endocrine activity due to its poor							
		bioavailability and inability to be readil	y metabolized in the body.						
		Limited bioavailability expected	Professional judgment;	Based on cutoff values for large					
		(Estimated)	Boethling et al., 1997	high MW polymers.					
Immunotoxicity		This polymer is large, with a MW >1,00	This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore has						
		low potential for immunotoxicity.							
	Immune System Effects	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large					
		(Estimated)	Boethling et al., 1997	high MW polymers.					
		ECOTOXICITY							
ECOSAR Class		Not applicable							
Acute Toxicity		LOW: Non-ionic polymers with a MW	>1,000 and negligible water solub	oility are estimated to display no					
		effects at saturation (NES). These polyn	ners display NES because the am	ount dissolved in water is not					
		anticipated to reach a concentration at v	which adverse effects may be exp	ressed. Guidance for the					
		assessment of aquatic toxicity hazard le	ads to a low potential for those m	aterials that display NES.					
Fish LC ₅₀		NES	Professional judgment	The large MW, limited					
				bioavailability and low water					
				solubility suggest there will be					
				NES.					

		Brominated Epoxy Polymers CAS	SRN 68928-70-1					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Daphnid LC ₅₀		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Green Algae EC ₅₀		NES Professional judgment The large MW, limited bioavailability and low v solubility suggest there v NES.						
Chronic Aquatic T	oxicity	LOW: Non-ionic polymers with a MW >1,000 and negligible water solubility are estimated to display These polymers display NES because the amount dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed. Guidance for the assessment of aquatic toxic hazard leads to a low potential for those materials that display NES.						
Fish ChV		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Daphnid ChV		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Green Algae ChV		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES				
		ENVIRONMENTAL F	ATE					
Transport		The estimated negligible water solubility is anticipated to partition predominantly $<10^{-8}$ atm-m ³ /mole indicates that it is not K _{oc} of >30,000 indicates that it is not anti potential to adsorb to sediment.	and estimated negligible vapor p to soil and sediment. The estima expected to volatilize from water icipated to migrate from soil into	pressure indicate that this polymer ted Henry's Law Constant of to the atmosphere. The estimated groundwater and also has the				
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to have low vapor pressure and are not expected to undergo volatilization.				

Brominated Epoxy Polymers CASRN 68928-70-1							
PROPEI	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	>30,000 (Estimated)	0,000 (Estimated) Professional judgment; Boethling et al., 1997				
	Level III Fugacity Model			No data located.			
Persistence		VERY HIGH: This polymer is large, wit poor bioavailability to microorganisms is be important removal processes in the er polybrominated benzenes has been obser material. As a result, a half-life for this h persistence.	h a MW >1,000. It is expected to ndicating that neither biodegrada nvironment. Although debromina eved, this process is not anticipate high MW polymer of >180 days le	have negligible water solubility and ation nor hydrolysis are expected to ation by photodegradation of ed to lead to ultimate removal of the ads to a potential for very high			
Water	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to be non-biodegradable.			
Volatilization Half-life Model River	Volatilization Half-life for Model River	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.			
	Volatilization Half-life for Model Lake	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.			
Soil	Aerobic Biodegradation			No data located.			
	Anaerobic Biodegradation			No data located.			
	Soil Biodegradation with Product Identification			No data located.			
	Sediment/Water Biodegradation			No data located.			
Air	Atmospheric Half-life			No data located.			
Reactivity	Photolysis	Not a significant fate process (Estimated)	Professional judgment	Bromine substituents may be susceptible to photolysis in the environment; however, this is expected to be a relatively slow process for a high MW brominated			

	Brominated Epoxy Polymers CASRN 68928-70-1							
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
				epoxy polymer and is not anticipated to result in the ultimate degradation of this substance.				
	Hydrolysis	>1 year (Estimated)	Professional judgment	Given the limited solubility estimated for this material, hydrolysis is not anticipated to occur to an appreciable extent.				
Environmental Half-Life		>180 days (Estimated)	Professional judgment	The substance is a high MW polymer and is not anticipated to be assimilated by microorganisms. Therefore, biodegradation is not expected to be an important removal process. It is also not expected to undergo removal by other degradative processes under environmental conditions.				
Bioaccumulation		LOW: Due to the large size and limited bioavailability of the high MW brominated epoxy polymer, it has low potential for bioconcentration or bioaccumulation.						
	Fish BCF	<100 (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW, insoluble polymers.				
	BAF			No data located.				
	Metabolism in Fish			No data located.				
		ENVIRONMENTAL MONITORING A	ND BIOMONITORING					
Environmental Mo	nitoring	No data located.						
Ecological Biomoni	toring	No data located.						
Human Biomonitoring		This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2011).						

Boethling, Robert S. and Nabholz, J. Vincent "Environmental Assessment of Polymers under the U.S. Toxic Substances Control Act", pp. 187-234, in Ecological Assessment of Polymers Strategies for Product Stewardship and Regulatory Programs, Hamilton, John D. and Sutcliffe, Roger (eds.), (1997) Van Nostrand Reinhold.

CDC (Centers for Disease Control and Prevention). *Fourth national report on human exposure to environmental chemicals, updated tables*. Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on May 10, 2011).

ESIS (European chemical Substances Information System) Classification, labeling and packaging of dangerous substances annex VI to regulation (EC) No 1272/2008 [Online]. <u>http://ecb.jrc.ec.europa.eu/esis/index.php?PGM=cla</u> (accessed on May 10, **2011**).

ICL Industrial Products. *F-2300H*. Brominated Epoxy Polymer MSDS. <u>http://www.icl-ip.com/brome.nsf/viewAllByUNID/6A59162E67EFC8E2C225702900511DB6/\$file/9223_enF-2300H.pdf</u> (accessed on July 1, **2011**).

NICNAS (National Industrial Chemicals Notification and Assessment Scheme). Polybrominated flame retardants (PBFRs). Priority Existing Chemical Assessment Report No. 20. National Industrial Chemicals Notification and Assessment Scheme, June **2001**.

Brominated Epoxy Polymer(s)

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame-retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. ^d This hazard designation would be assigned MODERATE if >5% of the particles are in the respirable range as a result of dust forming operations.

♦ Different formulations of the commercial product are available. One of these many formulations has an average MW of ~1,600 and contains significant amounts of lower MW components. These lower MW components have hazard potentials different than the polymeric flame retardant, as follows: HIGH estimated potential for bioaccumulation; HIGH experimental for acute aquatic toxicity; HIGH estimated potential for chronic aquatic toxicity; MODERATE experimental for developmental; and MODERATE estimated for carcinogenicity, genotoxicity, repeated dose and reproductive toxicity, and skin and respiratory sensitization.

			Human Health Effects					Aquatic Toxicity**Environmental Fate								
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Brominated Epoxy Polymer(s)	Confidential	L	L♦	L♦	L♦	L♦	L	$L \blacklozenge^{d}$	$L \blacklozenge$	•	L	L	L♦	$L \blacklozenge$	VH	L♦

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

	CASRN: Confidential CASRNs
	MW: Average MW 40,300;
	<5% MW <1,000 (for Polyquel 241)
	Average MW 50,000; 0% MW <1,000 (for Polyquel 240)
	MF: Confidential MFs
	Physical Forms: Neat: Solid
	Use: Flame retardant
SMILES: These confidential materials are not amenable to the generation of a singl	e SMILES notation.
Synonyms: Polyquel 240, Brominated epoxy polymer; Polyquel 241, Brominated epoxy polyquel 241, Brominated epoxy polyquel 241,	boxy polymer, containing low MW components
Chemical Considerations: This alternative is a polymer; the majority of this polym >1,000, are assessed together using professional judgment and information contained However, for some formulations it should be noted that <5% of this commercial pro MW <1,000 materials are provided in Table 4-4 as a footnote (\blacklozenge).	er is comprised of high MW oligomers. The higher MW oligomers, with a MW d in the literature concerning polymer assessment (Boethling et al., 1997). duct consists of components with a MW <1,000. A summary of the hazards of the
Polymeric: Yes Oligomers: Polyquel 241: The majority of this confidential commercial product (> confidential commercial product is comprised of only high MW epoxy-terminated o	95%) is comprised of high MW epoxy-terminated oligomers. Polyquel 240: The ligomers.
Metabolites, Degradates and Transformation Products: None	
Analog: Confidential Endpoint(s) using analog values: Boiling point	Analog Structure: Not applicable
Structural Alerts: None identified	
Risk Phrases: Not classified by Annex VI Regulation (EC) No 1272/2008 (ESIS, 20	011).
Hazard and Risk Assessments: None identified	

Brominated Epoxy Polymer(s)										
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY							
PHYSICAL/CHEMICAL PROPERTIES										
Melting Point (°C)	145-155 (Measured)	asured) Warmington, 2010								
Boiling Point (°C)	Decomposes (Estimated)	Submitted Confidential Study	Based on analogy to a confidential polymer with a similar structure and functional groups.							
	>300 (Estimated)	Professional judgment	Cutoff value used for large, high MW solids.							
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	Professional judgment; EPA, 1999	Cutoff value for large, high MW non- ionic polymers according to HPV polymer assessment guidance.							
Water Solubility (mg/L)	<10 ⁻³ (Estimated)	Professional judgment; EPA, 1999	Cutoff value for large, high MW non- ionic polymers according to HPV polymer assessment guidance.							
Log K _{ow}			No data; polymers with a MW >1,000 are outside the domain of the available estimation methods.							
Flammability (Flash Point)	Nonflammable (Estimated)	Professional judgment	No data located; based on its use as a flame retardant.							
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No data located; based on its use as a flame retardant.							
Pyrolysis			No data located.							
рН	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.							
рКа	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.							

Brominated Epoxy Polymer(s)							
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
		HUMAN HEALTH EFF	ECTS				
Toxicokinetics		There is no absorption expected for any route of exposure. This polymer is large, with a MW >1,000. It is					
		expected to have limited bioavailability	xpected to have limited bioavailability and therefore is not expected to be readily absorbed, distributed or				
		metabolized in the body. However, there	e are formulations of the commer	cial product available that may			
Downol Abcountion	n in witho	contain significant amounts of lower M	v components; absorption may o	No data logated			
Dermal Absorption		No sharmtion is supported for any nexts	Drofessional in domant	No dala localed.			
Absorption,	Oral	No absorption is expected for any route	Professional judgment	Estimated based on professional			
Distribution,		(Estimated)		judgment.			
Nietabolism &		(Estimated)					
Excretion	Torrigitar	LOW. This polymon is longer with a MW	V > 1 000. It is anneated to have li	nited biggrouidsbiliter on d therefore			
Acute Mammanan	TOXICITY	LOW: This polymer is large, with a NIV	v >1,000. It is expected to have in toxicity	miled bloavanability and therefore			
A outo L otholity	Oral	has low potential for acute mammanan					
Acute Lethanty		Limited bioavailability expected	Professional judgment;	Based on cutoff values for large			
	Inholotion	(Estimated)	Boethling et al., 1997	high MW polymers.			
Carainaganiaity		LOW. This relevant is large with a MW > 1,000. It is amounted to have four to no periodual monomou					
Carcinogenicity		crosslinking swellshility dispersability notential for inhelation nor hindered aming groups and therefore					
		has low potential for carcinogenicity.	, potentiai for finialation, nor finit	uereu annie groups and therefore			
	OncoLogic Results			No data located.			
	Carcinogenicity (Rat						
	and Mouse)	Limited biographility expected	Drofessional judgment:	Pasad on sutoff values for large			
	Combined Chronic	(Estimated)	Roothling at al 1007	high MW polymore			
	Toxicity/	(Estimated)	Documing et al., 1997	lingii wi w porymers.			
	Carcinogenicity						
Genotoxicity		LOW: This polymer is large, with a MV	V >1,000. It is expected to have lin	nited bioavailability and therefore			
		has low potential for genotoxicity.					
	Gene Mutation in vitro						
	Gene Mutation in vivo						
	Chromosomal	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large			
	Aberrations in vitro	(Estimated)	Boethling et al., 1997	high MW polymers.			
	Chromosomal						
	Aberrations in vivo						

Brominated Epoxy Polymer(s)							
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	DNA Damage and Repair						
	Other (Mitotic Gene Conversion)						
Reproductive Effe	cts	LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore					
		has low potential for reproductive effect	ts.				
	Reproduction/ Developmental Toxicity Screen						
	Combined Repeated Dose with Perroduction/	Limited bioavailability expected	Professional judgment; Boethling et al., 1997	Based on cutoff values for large			
	Developmental Toxicity Screen	(Estimated)		ingii wiw porymers.			
	Reproduction and Fertility Effects						
Developmental Eff	ects	LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore					
		has low potential for developmental effe	ects.				
	Reproduction/ Developmental Toxicity						
	Combined Repeated	Limited bioavailability expected	Professional judgment.	Based on cutoff values for large			
	Reproduction/ Developmental Toxicity	(Estimated)	Boethling et al., 1997	high MW polymers.			
	Screen						
	Prenatal Development						
	Postnatal Development						
Neurotoxicity		LOW: This polymer is large, with a MV has low potential for neurotoxicity.	V >1,000. It is expected to have lin	nited bioavailability and therefore			
	Neurotoxicity Screening	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large			
	Battery (Adult)	(Estimated)	Boethling et al., 1997	high MW polymers.			

Brominated Epoxy Polymer(s)								
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Repeated Dose Eff	<i>iects</i>	LOW: This polymer is large, with a MV	V >1,000. It is expected to have lin	mited bioavailability; however,				
		because the MW_n is >10,000, there is the	e possibility of lung overloading i	f >5% of the particles are in the				
		respirable range as a result of dust form	ing operations.					
		This polymer MW_n is >10,000; potential	Professional judgment;	Based on cutoff values for large				
		for irreversible lung damage as a result	Boethling et al., 1997	high MW polymers.				
		of lung overloading						
GI • G • • • • •		(Estimated)	· · · · · · · · · · · · · · · · · · ·					
Skin Sensitization		LOW: Estimated not to have potential f	or skin sensitization based on exp	pert judgment. No data located.				
	Skin Sensitization	Low potential for skin sensitization.	Expert judgment	Estimated based on expert				
	•	(Estimated)		judgment.				
Respiratory Sensit	ization	No data located.						
	Respiratory			No data located.				
Ene Innitedian	Sensitization							
Eye Irritation	T. T. '4 4'	LOW: Estimated not to have potential i	or eye irritation based on expert	Judgment. No data located.				
	Eye Irritation	Low potential for skin sensitization.	Expert judgment	Estimated based on expert				
Down of Iwrite tion		(Estimated)	an damaal innitation haaad on am	judgment.				
Dermai Irritation	Desarra al Israita di an	LOW: Estimated not to have potential I	or dermal irritation based on exp	Estimated have don supert				
	Dermal Irritation	(Estimated)	Expert judgment	Estimated based on experi				
Endoorino Activity	7	(Estimated) This polymory is lorge with a $MW > 1.00$	0. It is not expected to have ende	grine activity due to its poor				
Endocrine Activity	Y	his polymer is large, with a lyrw >1,000. It is not expected to have endocrine activity due to its poor bioavailability and inability to be readily metabolized in the body.						
		Limited bioavailability expected	Professional judgment:	Based on cutoff values for large				
		(Estimated)	Boethling et al 1997	high MW polymers				
Immunotoxicity		This polymer is large with a MW >1.00	0 It is expected to have limited h	ioavailability and therefore has				
minunotoxicity		low potential for immunotoxicity.	o. It is expected to have infliced b	four variability and therefore has				
	Immune System Effects	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large				
	_	(Estimated)	(Estimated) Boethling et al., 1997					
		ECOTOXICITY						
ECOSAR Class		Not applicable						
Acute Toxicity		LOW: Non-ionic polymers with a MW	>1,000 and negligible water solub	ility are estimated to display no				
		effects at saturation (NES). These polyn	ners display NES because the amo	ount dissolved in water is not				
		anticipated to reach a concentration at	which adverse effects may be exp	ressed. Guidance for the				
assessment of aquatic toxicity hazard leads to a low potential for those materials that display NES.								

Brominated Epoxy Polymer(s)							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Fish LC ₅₀	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Daphnid LC ₅₀	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Green Algae EC ₅₀	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Chronic Aquatic Toxicity	LOW: Non-ionic polymers with a MW : These polymers display NES because th concentration at which adverse effects r hazard leads to a low potential for those	>1,000 and negligible water solub le amount dissolved in water is no nay be expressed. Guidance for the e materials that display NES.	ility are estimated to display NES. t anticipated to reach a he assessment of aquatic toxicity				
Fish ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Daphnid ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Green Algae ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				

Brominated Epoxy Polymer(s)							
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
		ENVIRONMENTAL F	ATE				
Transport		The estimated negligible water solubility and estimated negligible vapor pressure indicate that this polymer is anticipated to partition predominantly to soil and sediment. The estimated Henry's Law Constant of $<10^{-8}$ atm-m ³ /mole indicates that it is not expected to volatilize from water to the atmosphere. The estimated K _{oc} of >30,000 indicates that it is not anticipated to migrate from soil into groundwater and also has the potential to adsorb to sediment.					
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to have low vapor pressure and are not expected to undergo volatilization.			
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	>30,000 (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value used for large, high MV polymers. High MW polymers are expected to adsorb strongly to soil and sediment.			
	Level III Fugacity Model			No data located.			
Persistence		VERY HIGH: This polymer is large, with poor bioavailability to microorganisms is be important removal processes in the en- polybrominated benzenes has been obser- material. As a result, a half-life for this h persistence.	h a MW >1,000. It is expected to ndicating that neither biodegrada nvironment. Although debromina rved, this process is not anticipato high MW polymer of >180 days le	have negligible water solubility and ation nor hydrolysis are expected to ation by photodegradation of ed to lead to ultimate removal of the eads to a potential for very high			
Water	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to be non-biodegradable.			
	Volatilization Half-life for Model River	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.			
	Volatilization Half-life for Model Lake	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.			
Soil	Aerobic Biodegradation			No data located.			
	Anaerobic Biodegradation			No data located.			

Brominated Epoxy Polymer(s)						
PRO	PERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
	Soil Biodegradation with Product Identification			No data located.		
	Sediment/Water Biodegradation			No data located.		
Air	Atmospheric Half-life			No data located.		
Reactivity	Photolysis	Not a significant fate process (Estimated)	Professional judgment	Bromine substituents may be susceptible to photolysis in the environment; however, this is expected to be a relatively slow process for a high MW brominated epoxy polymer and is not anticipated to result in the ultimate degradation of this substance.		
	Hydrolysis	>1 year (Estimated)	Professional judgment	Given the limited solubility estimated for this material, hydrolysis is not anticipated to occur to an appreciable extent.		
Environmental Half-Life		>180 days (Estimated)	Professional judgment	The substance is a high MW polymer and is not anticipated to be assimilated by microorganisms. Therefore, biodegradation is not expected to be an important removal process. It is also not expected to undergo removal by other degradative processes under environmental conditions.		
Bioaccumulatio	n	LOW: Due to the large size and limited bioavailability of the polymer, it is of low potential for bioconcentration or bioaccumulation.				
	Fish BCF	<100 (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW, insoluble polymers.		
	BAF			No data located.		

Brominated Epoxy Polymer(s)							
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY			
	Metabolism in Fish		No data located.				
	ENVIRONMENTAL MONITORING AND BIOMONITORING						
Environmental Mo	nitoring	No data located.					
Ecological Biomoni	toring	No data located.					
Human Biomonitoring This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring re (CDC, 2011).			tion Survey biomonitoring report				

Boethling, Robert S. and Nabholz, J. Vincent "Environmental Assessment of Polymers under the U.S. Toxic Substances Control Act", pp. 187-234, in Ecological Assessment of Polymers Strategies for Product Stewardship and Regulatory Programs, Hamilton, John D. and Sutcliffe, Roger (eds.), (1997) Van Nostrand Reinhold.

CDC (Centers for Disease Control and Prevention). *Fourth national report on human exposure to environmental chemicals, updated tables*. Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on May 10, 2011).

EPA (Environmental Protection Agency). High Production Volume (HPV) Challenge. Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. http://www.epa.gov/hpv/pubs/general/datadfin.htm

ESIS (European chemical Substances Information System) Classification, labeling and packaging of dangerous substances annex VI to regulation (EC) No 1272/2008 [Online]. <u>http://ecb.jrc.ec.europa.eu/esis/index.php?PGM=cla</u> (accessed on May 10, 2011).

Warmington, A (ed). Speciality Chemicals Magazine. Quartz business Media ltd., September 2010, v.30(9) p. 40-1. 2010.

Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. ^d This hazard designation would be assigned MODERATE if >5% of the particles are in the respirable range as a result of dust forming operations.

Different formulations of the commercial product are available. One of these many formulations has an average MW of ~1,600 and contains significant amounts of lower MW components. These lower MW components have hazard potentials different than the polymeric flame retardant, as follows: HIGH estimated potential for bioaccumulation; HIGH experimental for acute aquatic toxicity; HIGH estimated for chronic aquatic toxicity; MODERATE experimental for developmental; and MODERATE estimated for carcinogenicity, genotoxicity, repeated dose and reproductive toxicity, and skin and respiratory sensitization.

			Human Health Effects				Aqu Toxi	atic city ^{**}	Environmental Fate							
Chemical	CASEN	cute Toxicity	arcinogenicity	Jenotoxicity	keproductive)evelopmental	Veurological	kepeated Dose	kin Sensitization	tespiratory censitization	ye Irritation	Dermal Irritation	cute	hronic	ersistence	sioaccumulation
	CHORI	~					~		02	HO	Ц		~			
Mixture of brominated epoxy polymer(s) and bromobenzyl acrylate	Confidential	L	L♦	L♦	L♦	L♦	L	L♦ ^d	L♦	٠	L	L	L♦	L♦	VH	L♦

**Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate

	CASRN: Confidential CASRNs				
	MW: Average MW 61,200;				
	<1% MW <1,000 (Polyquel 145)				
	Average MW 45,000; <2% MW <1,000 (Polyquel 146)				
	MF: Confidential MFs				
	Physical Forms: Neat: Solid				
	Use: Flame retardant				
SMILES: These mixtures containing confidential material are not amenable to the	generation of a single SMILES notation.				
Synonyms: Polyquel 145, Mixture of brominated epoxy polymers and bromobenzy bromobenzyl acrylate homopolymer	acrylate homopolymer; Polyquel 146, Mixture of brominated epoxy polymer and				
Chemical Considerations: These alternatives are confidential mixtures comprised >1,000, and are assessed using professional judgment and information contained in hazard evaluation, presented in Table 4-4, is based on the most hazardous material t Polyquel 145 contains <1% of components with a MW <1,000. Polyquel 146 contains MW <1,000 materials are provided in Table 4-4 as a footnote (\blacklozenge).	of high MW polymers. All components are high MW oligomers, with a MW the literature concerning polymer assessment (Boethling et al., 1997). The final ypically present in the commercial product, using a conservative approach. ins <2% of components with a MW <1,000. A summary of the hazards of the				
Polymeric: Yes Oligomers: These commercial products are confidential mixtures comprised of tw polyacrylate and for Polyquel 145, an end capped brominated epoxy polymer.	o or three high MW polymers: a brominated epoxy polymer, a brominated				
Metabolites, Degradates and Transformation Products: None					
Analog: Confidential Endpoint(s) using analog values: Boiling point	Analog Structure: Confidential structure				
Structural Alerts: None identified					
Risk Phrases: Not classified by Annex VI Regulation (EC) No 1272/2008 (ESIS. 2	011).				
Hazard and Risk Assessments: None identified	, ,				

Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate										
PROPERTY/ENDPOINT	PROPERTY/ENDPOINT DATA DATA REFERENCE DATA QUALI									
PHYSICAL/CHEMICAL PROPERTIES										
Melting Point (°C)			No data located.							
Boiling Point (°C)	Decomposes (Estimated)	Professional judgment	Based on analogy to a confidential polymer with a similar structure and functional groups.							
	>300 (Estimated)	Professional judgment	Cutoff value used for large, high MW solids.							
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW non- ionic polymers.							
Water Solubility (mg/L)	<10 ⁻³ (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW non- ionic polymers.							
Log K _{ow}			No data located. Polymers with a MW >1,000 are outside the domain of the available estimation methods.							
Flammability (Flash Point)	Nonflammable (Estimated)	Professional judgment	No data located; based on its use as a flame retardant.							
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No data located; based on its use as a flame retardant.							
Pyrolysis			No data located.							
рН	Not applicable	Professional judgment	This polymer mixture does not contain functional groups that would be expected to ionize.							
pKa	Not applicable	Professional judgment	This polymer mixture does not contain functional groups that would be expected to ionize.							

Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
		HUMAN HEALTH EFF	ECTS			
Toxicokinetics	cs There is no absorption expected for any route of exposure. These polymers are large, with MW >1,0 They are expected to have limited bioavailability and therefore are not expected to be readily absorb distributed or metabolized in the body.					
Dermal Absorption	n <i>in vitro</i>			No data located.		
Absorption, Distribution, Metabolism & Excretion	Oral	No absorption is expected for any route of exposure (Estimated)	Professional judgment	Estimated based on professional judgment.		
Acute Mammalian	Toxicity	LOW: These polymers are large, with N	AW >1,000. They are expected to	have limited bioavailability and		
		therefore have low potential for acute m	ammalian toxicity.			
Acute Lethality	Oral Dermal Inhalation	Limited bioavailability expected (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff values for large high MW polymers.		
Carcinogenicity		LOW: These polymers are large, with N crosslinking, swellability, dispersability have low potential for carcinogenicity.	AW >1,000. They are expected to , potential for inhalation, nor him	have few to no residual monomers, dered amine groups and therefore		
	OncoLogic Results			No data located.		
	Carcinogenicity (Rat and Mouse) Combined Chronic Toxicity/ Carcinogenicity	Limited bioavailability expected (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff values for large high MW polymers.		
Genotoxicity		LOW: These polymers are large, with N therefore have low potential for genotox	AW >1,000. They are expected to cicity.	have limited bioavailability and		
	Gene Mutation in vitroGene Mutation in vivoChromosomalAberrations in vitroChromosomalAberrations in vivoDNA Damage andRepair	Limited bioavailability expected (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff values for large high MW polymers.		

Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate					
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY	
	Other (Mitotic Gene				
	Conversion)				
Reproductive Effe	cts	LOW: These polymers are large, with MW >1,000. They are expected to have limited bioavailability and			
	Г	therefore have low potential for reproductive effects.			
	Reproduction/				
	Developmental Toxicity				
	Screen				
	Combined Repeated				
	Dose with	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large	
	Reproduction/	(Estimated)	Boethling et al., 1997	high MW polymers.	
	Developmental Toxicity				
	Screen Donno duration and				
	Keproduction and				
Dovolonmental Eff	Pertility Effects	I OW: These polymore are large with N	AW >1 000. They are expected to	have limited biographility and	
	cets	therefore have low potential for developmental effects.			
	Reproduction/				
	Developmental Toxicity				
	Screen				
	Combined Repeated				
	Dose with	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large	
	Reproduction/	(Estimated)	Boethling et al., 1997	high MW polymers.	
	Developmental Toxicity				
	Screen				
	Prenatal Development				
	Postnatal Development				
Neurotoxicity		LOW: These polymers are large, with MW >1,000. They are expected to have limited bioavailability and			
therefore have low potential for neurotoxicity.					
	Neurotoxicity Screening	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large	
	Battery (Adult)	(Estimated)	Boethling et al., 1997	high MW polymers.	

Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate				
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY
Repeated Dose Effects		LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability; however,		
_		because the MW _n is >10,000, there is the possibility of lung overloading if >5% of the particles are in the		
		respirable range as a result of dust forming operations.		
		The polymer mixture MW_n is >10,000;	Professional judgment;	Based on cutoff values for large
		potential for irreversible lung damage as	Boethling et al., 1997	high MW polymers.
		a result of lung overloading (Estimated)		
Skin Sensitization		LOW: Estimated not to have notential for skin sensitization based on expert judgment. No data located		
	Skin Sensitization	Low potential for skin sensitization.	Expert judgment	Estimated based on expert
		(Estimated)	1 5 6	judgment.
Respiratory Sensit	ization	No data located.	·	
	Respiratory			No data located.
	Sensitization			
Eye Irritation		LOW: Estimated not to have potential for eye irritation based on expert judgment. No data located.		
	Eye Irritation	Low potential for eye irritation.	Expert judgment	Estimated based on expert
D		(Estimated)		judgment.
Dermal Irritation		LOW: Estimated not to have potential f	or dermal irritation based on exp	pert judgment. No data located.
	Dermal Irritation	Low potential for dermal irritation.	Expert judgment	Estimated based on expert
Endoarino Activity	-	(Estimated)	000 They are not expected to have	judgment.
Endocrine Activity		hioavailability and inability to be readily metabolized in the body		
		Limited bioavailability expected	Professional judgment:	Based on cutoff values for large
		(Estimated)	Boethling et al., 1997	high MW polymers.
Immunotoxicity		These polymers are large, with MW >1,	000. They are expected to have li	mited bioavailability and therefore
		have low potential for immunotoxicity.		
	Immune System Effects	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large
		(Estimated)	Boethling et al., 1997	high MW polymers.
ECOTOXICITY				
ECOSAR Class Not applicable				
Acute Toxicity	cute Toxicity LOW: Non-ionic polymers with a MW >1,000 and negligible water solubility are estimated to display ne			ility are estimated to display no
		effects at saturation (NES). These polymers display NES because the amount dissolved in water is not		
		anticipated to reach a concentration at which adverse effects may be expressed. Guidance for the		
assessment of aquatic toxicit			ads to a low potential for those m	aterials that display NES.

Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Fish LC ₅₀	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.
Daphnid LC ₅₀	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.
Green Algae EC ₅₀	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.
Chronic Aquatic Toxicity	LOW: Non-ionic polymers with a MW >1,000 and negligible water solubility are estimated to display NES. These polymers display NES because the amount dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed. Guidance for the assessment of aquatic toxicity hazard leads to a low potential for those materials that display NES.		
Fish ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.
Daphnid ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.
Green Algae ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.

Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate					
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY	
ENVIRONMENTAL FATE					
Transport		The estimated negligible water solubility and estimated negligible vapor pressure indicate that these polymers are anticipated to partition predominantly to soil and sediment. The estimated Henry's Law Constant of $<10^{-8}$ atm-m ³ /mole indicates that they are not expected to volatilize from water to the atmosphere. The estimated K _{oc} of >30,000 indicates that they are not anticipated to migrate from soil into groundwater and also have the potential to adsorb to sediment.			
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to have low vapor pressure and are not expected to undergo volatilization.	
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	>30,000 (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value used for large, high MW polymers. High MW polymers are expected to adsorb strongly to soil and sediment.	
	Level III Fugacity Model			No data located.	
Persistence		VERY HIGH: These polymers are large, with MW >1,000. They are expected to have negligible water solubility and poor bioavailability to microorganisms indicating that neither biodegradation nor hydrolysis are expected to be important removal processes in the environment. Although debromination by photodegradation of polybrominated benzenes has been observed, this process is not anticipated to lead to ultimate removal of the material. As a result, a half-life for these high MW polymer of >180 days leads to a potential for very high persistence.			
Water	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to be non-biodegradable.	
	Volatilization Half-life for Model River	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.	
	Volatilization Half-life for Model Lake	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.	
Soil	Aerobic Biodegradation			No data located.	
	Anaerobic Biodegradation			No data located.	
	Soil Biodegradation with Product Identification			No data located.	

Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate				
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY
	Sediment/Water Biodegradation			No data located.
Air	Atmospheric Half-life			No data located.
Reactivity	Photolysis	Not a significant fate process (Estimated)	Professional judgment	Bromine substituents may be susceptible to photolysis in the environment; however, this is expected to be a relatively slow process for a high MW brominated epoxy polymer and is not anticipated to result in the ultimate degradation of this substance.
	Hydrolysis	>1 year (Estimated)	Professional judgment	Given the limited solubility estimated for this material, hydrolysis is not anticipated to occur to an appreciable extent.
Environmental	Half-Life	>180 days (Estimated)	Professional judgment	The substance is a high MW polymer and is not anticipated to be assimilated by microorganisms. Therefore, biodegradation is not expected to be an important removal process. It is also not expected to undergo removal by other degradative processes under environmental conditions.
Bioaccumulation		LOW: Due to the large size and limited bioavailability of the high MW polymer mixtures, they have low potential for bioconcentration or bioaccumulation.		
	Fish BCF	<100 (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW, insoluble polymers.
	BAF			No data located.
	Metabolism in Fish			No data located.

Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
ENVIRONMENTAL MONITORING AND BIOMONITORING				
Environmental Monitoring	No data located.			
Ecological Biomonitoring	No data located.			
Human Biomonitoring	This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2011).			

Boethling, Robert S. and Nabholz, J. Vincent "Environmental Assessment of Polymers under the U.S. Toxic Substances Control Act", pp. 187-234, in Ecological Assessment of Polymers Strategies for Product Stewardship and Regulatory Programs, Hamilton, John D. and Sutcliffe, Roger (eds.), (1997) Van Nostrand Reinhold.

CDC (Centers for Disease Control and Prevention). *Fourth national report on human exposure to environmental chemicals, updated tables*. Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on May 10, 2011).

ESIS (European chemical Substances Information System) Classification, labeling and packaging of dangerous substances annex VI to regulation (EC) No 1272/2008 [Online]. <u>http://ecb.jrc.ec.europa.eu/esis/index.php?PGM=cla</u> (accessed on May 10, 2011).
Brominated Epoxy Resin End-Capped with Tribromophenol

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. ^d This hazard designation would be assigned MODERATE if >5% of the particles are in the respirable range as a result of dust forming operations.

Chemical Number of the second state Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Bevelopmental Neurological Neurological Skin Sensitization Eye Irritation Bermal Irritation Dermal Irritation Persistence	Bioaccumulation
Brominated Epoxy Resin End-Capped with Tribromophenol135229-48-0 L L L L L L L L L VL L L VH	L

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Brominated Epoxy Resin End-Capped with Tribromophenol

Br OH Br Br OH B	r CASRN: 135229-48-0							
\downarrow	MW: 15,000; 0% <1,000							
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{MF:} (\mathbf{C}_{15}\mathbf{H}_{12}\mathbf{Br}_{4}\mathbf{O}_{2} \cdot \mathbf{C}_{6}\mathbf{H}_{3}\mathbf{Br}_{3}\mathbf{O} \cdot \mathbf{C}_{3}\mathbf{H}_{5}\mathbf{ClO})_{n}$							
Br Br Br Br Br	Br Physical Forms: Neat: Solid							
	Use: Flame retardant							
SMILES: This polymer with MW >1,000 and no low MW components is not amenable to SMILES notation.								
Synonyms: 2,2'-[(1-Methylethylidene)bis[(2,6-dibromo-4,1-phenylene)oxymethyl 2,4,6-tribromophenol; Phenol, 4,4'-(1-methylethylidene)bis[2,6-dibromo-, polyme	Synonyms: 2,2'-[(1-Methylethylidene)bis[(2,6-dibromo-4,1-phenylene)oxymethylene]]bisoxirane polymer with 2,2',6,6'-tetrabromo-4,4'-isopropylidenediphenol and 2,4,6-tribromophenol; Phenol, 4,4'-(1-methylethylidene)bis[2,6-dibromo-, polymer with (chloromethyl)oxirane and 2,4,6-tribromophenol							
Chemical Considerations: This alternative is a polymer. The extent of polymerization and thus average MW is formulation dependent. The higher MW oligomers with a MW >1,000 are assessed together using information contained in the literature concerning polymer assessment and professional judgment (Boethling et al., 1997). Additionally, lower MW formulations of brominated epoxy resin end-capped with tribromophenol exist and the simplest oligomer, comprised of each monomer, has a MW of 970. Although below the cutoff of 1,000 used in the polymer assessment criteria, this oligomer is anticipated to possess physical/chemical properties similar to that of the higher MW material, including limited absorption in biological systems. As a result, the assessment of the oligomers with a MW $< 1,000$ were performed in a manner identical to the remaining components of the polymer								
Polymeric: Yes Oligomers: This substance is a brominated epoxy polymer end-capped with tribro oligomers with an average MW of 15,000 with 0% MW <1,000.The MW of the si	pmophenol. Tribromophenol end-capped epoxy polymer typically consists of mplest oligomer comprised of each monomer is 970.							
Metabolites, Degradates and Transformation Products: None								
Analog: No analog Endpoint(s) using analog values: Not applicable	Analog Structure: Not applicable							
Structural Alerts: None identified								
Risk Phrases: Not classified by Annex VI Regulation (EC) No 1272/2008 (ESIS,	Risk Phrases: Not classified by Annex VI Regulation (EC) No 1272/2008 (ESIS, 2011).							
Hazard and Risk Assessments: A hazard characterization was completed for Brominated epoxy resin end-capped with tribromophenol in 2010 (EPA, 2010).								

Brominated Epoxy Resin End-Capped with Tribromophenol CASRN 135229-48-0									
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY						
	PHYSICAL/CHEMICAL	PROPERTIES							
Melting Point (°C)	180–220 (Measured)	ICL Industrial Products, 2009	The melting points reported cover a broad range and are anticipated to be formulation specific liquid-glass transition temperatures for the commercial product F-3100.						
	105–120 (Measured)	NICNAS, 2006	The melting points reported cover a broad range and are anticipated to be formulation specific liquid-glass transition temperatures for the commercial product F-3020, the brominated epoxy resin end-capped with tribromophenol with low MW oligomers that is expected to behave similarly to the high MW polymer.						
Boiling Point (°C)	>300 (Estimated)	Professional judgment	Cutoff value used for large, high MW non-ionic polymers.						
	Decomposition temperature: 340 (Measured)	ICL Industrial Products, 2009	The melting points reported cover a broad range and are anticipated to be formulation specific liquid-glass transition temperatures for the commercial product F-3100.						
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW non- ionic polymers.						
Water Solubility (mg/L)	<10 ⁻³ (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW non- ionic polymers.						
Log K _{ow}			No data located; polymers with a MW >1,000 are outside the domain of the available estimation methods.						
Flammability (Flash Point)	Nonflammable (Estimated)	Professional judgment	No data located; based on its use as a flame retardant.						

Brominated Epoxy Resin End-Capped with Tribromophenol CASRN 135229-48-0									
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Explosivity		Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No data located; based on its use as a flame retardant.					
Pyrolysis				No data located.					
рН		Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.					
pKa		Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.					
		HUMAN HEALTH EFF	ECTS						
Toxicokinetics		There is no absorption expected for any route of exposure. This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore is not expected to be readily absorbed, distributed or metabolized in the body.							
Dermal Absorption	n <i>in vitro</i>			No data located.					
Absorption, Distribution, Metabolism & Excretion	Oral, Dermal or Inhaled	No absorption is expected for all routes of exposure (Estimated)	Professional judgment	Estimated based on limited bioavailability and professional judgment.					
Acute Mammalian	Toxicity	LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore							
		has low potential for acute mammalian toxicity.							
Oral		Rat Oral LD ₅₀ >2,000 mg/kg (Acute Oral Toxicity-Limit Test).	NICNAS, 2006	Reported in a secondary source. Conducted according to Organisation of Economic Cooperation and Development (OECD) TG 401 guideline study for the commercial product F-3020, the brominated epoxy resin end- capped with tribromophenol with low MW oligomers that is expected to behave similarly to the high MW polymer.					
	Dermal			No data located.					

	Bromina	ted Epoxy Resin End-Capped with Tribro	mophenol CASRN 135229-48-0				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Carcinogenicity		LOW: This polymer is large, with a MW >1,000. It is expected to have few to no residual monomers, crosslinking, swellability, dispersability, reactive functional groups, potential for inhalation nor hindered amine groups and therefore has low potential for carcinogenicity.					
	OncoLogic Results			No data located.			
	Carcinogenicity (Rat and Mouse)	Limited bioavailability expected	Professional judgment	Based on cutoff values for large			
	Combined Chronic Toxicity/	(Estimated)	Boethling et al., 1997	high MW polymers.			
~	Carcinogenicity						
Genotoxicity		LOW: This polymer is large, with a MV	> >1,000. It is expected to have lin	nited bioavailability and therefore			
		has low potential for genotoxicity. Bacte	rial reverse mutation test is nega	tive for gene mutations.			
	Gene Mutation <i>in vitro</i>	Negative for gene mutations in Salmonella typhimurium strains TA1535, TA1537, TA1538, TA100, TA98 with and without exogenous metabolic activation	NICNAS, 2006	Reported in secondary sources. Guideline study according to OECD TG 471 for the commercial product F-3020, the brominated epoxy resin end-capped with tribromophenol with low MW oligomers that is expected to behave similarly to the high MW polymer.			
	Gene Mutation in vivo			No data located.			
	Chromosomal Aberrations <i>in vitro</i>			No data located.			
	Chromosomal Aberrations <i>in vivo</i>			No data located.			
	DNA Damage and Repair			No data located.			
	Other (Mitotic Gene Conversion)			No data located.			

Brominated Epoxy Resin End-Capped with Tribromophenol CASRN 135229-48-0									
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Reproductive Effe	cts	LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore							
		has low potential for reproductive effects.							
	Reproduction/ Developmental Toxicity Screen								
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen	Limited bioavailability expected (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff values for large, high MW polymers.					
	Reproduction and Fertility Effects								
Developmental Eff	<i>iects</i>	LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore							
		has low potential for developmental effects.							
	Reproduction/ Developmental Toxicity Screen								
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen	Limited bioavailability expected (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff values for large, high MW polymers.					
	Prenatal Development Postnatal Development								
Neurotoxicity		LOW: This polymer is large, with a MW has low potential for neurotoxicity.	V >1,000. It is expected to have line	mited bioavailability and therefore					
	Neurotoxicity Screening Battery (Adult)			No data located.					
Repeated Dose Eff	ects	LOW: This polymer is large, with a MW	>1,000. It is expected to have lin	mited bioavailability; however,					
		because the MW_n is >10,000, there is the	e possibility of lung overloading i	f >5% of the particles are in the					
		respirable range as a result of dust forming operations. No experimental data located.							

Brominated Epoxy Resin End-Capped with Tribromophenol CASRN 135229-48-0									
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
		This polymer MW_n is >10,000; potential for irreversible lung damage as a result of lung overloading (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff values for large, high MW polymers.					
Skin Sensitization		LOW: No evidence of reactions indicative of skin sensitization to brominated epoxy resin end-capped with							
		tribromophenol in a study of guinea pig	<u>s.</u>						
Skin Sensitization		No evidence of reactions indicative of skin sensitization, guinea pig skin sensitization – Magnusson & Kligman maximization test.	Reported in a secondary source. Conducted according to OECD TG 406 guideline study for the commercial product F-3020, the brominated epoxy resin end-capped with tribromophenol with low MW oligomers that is expected to behave similarly to the high MW polymer						
Respiratory Sensit	ization	No data located.							
	Respiratory Sensitization			No data located.					
Eye Irritation		LOW: Brominated epoxy resin end-capped with tribromophenol is a mild eye irritant in rabbits; irritation							
		begins to clear within 24 hours and is co	mpletely cleared within 48 hours	•					
	Eye Irritation	Minimally irritating, rabbit; clearing within 24 hours and complete clearing within 48 hours; acute eye irritation/corrosion study.	NICNAS, 2006	Reported in a secondary source. Conducted according to OECD TG 405 guideline study for the commercial product F-3020, the brominated epoxy resin end-capped with tribromophenol with low MW oligomers that is expected to behave similarly to the high MW polymer.					

Brominated Epoxy Resin End-Capped with Tribromophenol CASRN 135229-48-0									
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Dermal Irritation		VERY LOW: Brominated epoxy resin end-capped with tribromophenol is not irritating to the skin of rabbits.							
	Dermal Irritation	Non-irritating to the skin of rabbits, acute dermal irritation/corrosion study.	al irritation/corrosion study. NICNAS, 2006 Reported in a secondary Conducted according to 404 guideline study for t commercial product F-3 brominated epoxy resin with tribromophenol wit oligomers that is expect behave similarly to the h						
Endocrine Activity	7	This polymer is large, with a MW >1,00 bioavailability and inability to be readily	0. It is not expected to have endogy metabolized in the body.	crine activity due to its poor					
		Limited bioavailability expected (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff values for large, high MW polymers.					
Immunotoxicity		This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore has low potential for immunotoxicity.							
	Immune System Effects	Limited bioavailability expected (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff values for large, high MW polymers.					
		ECOTOXICITY							
ECOSAR Class Acute Toxicity		Not applicable LOW: Non-ionic polymers with a MW >1,000 that do not contain reactive functional groups and are comprised of minimal low MW oligomers are estimated to display no effects at saturation (NES). These polymers display NES because the amount dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed. Guidance for the assessment of aquatic toxicity hazard leads to a low potential for acute aquatic toxicity for those materials that display NES.							
Fish LC ₅₀		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.					

Brominated Epoxy Resin End-Capped with Tribromophenol CASRN 135229-48-0								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Daphnid LC ₅₀	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.					
Green Algae EC ₅₀	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.					
Chronic Aquatic Toxicity	LOW: Non-ionic polymers with a MW >1,000 that do not contain reactive functional groups and are comprised of minimal low MW oligomers are estimated to display NES. These polymers display NES because the amount dissolved in water is not anticipated to reach a concentration at which adverse effec may be expressed. Guidance for the assessment of aquatic toxicity hazard leads to a low potential for chronic aquatic toxicity for those materials that display NES.							
Fish ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.					
Daphnid ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.					
Green Algae ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.					
ENVIRONMENTAL FATE								
Transport	The estimated negligible water solubility is anticipated to partition predominantly atm-m ³ /mole indicates that it is not expect >30,000 indicates that it is not anticipated adsorb to sediment.	and estimated negligible vapor p to soil and sediment. The estima eted to volatilize from water to th d to migrate from soil into groun	pressure indicate that this polymer ted Henry's Law Constant of $< 10^{-8}$ e atmosphere. The estimated K _{oc} of dwater and also has the potential to					

Brominated Epoxy Resin End-Capped with Tribromophenol CASRN 135229-48-0							
PROPI	ERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to have low vapor pressure and are not expected to undergo volatilization.			
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	>30,000 (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value used for large, high MW polymers. High MW polymers are expected to adsorb strongly to soil and sediment.			
	Level III Fugacity Model			No data located.			
rersistence		vEKT HIGH: This polyher is large, wit poor bioavailability to microorganisms in be important removal processes in the er polybrominated benzenes has been obser material. As a result, a half-life for this h persistence.	a MW >1,000. It is expected to adicating that neither biodegrada wironment. Although debromina wed, this process is not anticipate igh MW polymer of >180 days le	ation nor hydrolysis are expected to ation by photodegradation of ed to lead to ultimate removal of the ads to a potential for very high			
Water	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW polymers.			
	Volatilization Half-life for Model River	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.			
	Volatilization Half-life for Model Lake	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.			
Soil	Aerobic Biodegradation			No data located.			
	Anaerobic Biodegradation			No data located.			
	Soil Biodegradation with Product Identification			No data located.			
	Sediment/Water Biodegradation			No data located.			
Air	Atmospheric Half-life			No data located.			

	Brominated Epoxy Resin End-Capped with Tribromophenol CASRN 135229-48-0								
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Reactivity	Photolysis	Not a significant fate process (Estimated)	Professional judgment	Bromine substituents are susceptible to photolysis however; this is expected to be a relatively slow process for brominated epoxy resin end-capped with tribromophenol and is not anticipated to lead to ultimate removal of the material.					
	Hydrolysis	>1 year (Estimated)	Professional judgment	Given the limited solubility estimated for this material, hydrolysis is not anticipated to occur to an appreciable extent.					
Environmental Half-Life		>180 days (Estimated)	Professional judgment	The substance has a MW >1,000 and is not anticipated to be assimilated by microorganisms. Therefore, biodegradation is not expected to be an important removal process. Other degradative processes under environmental conditions are not anticipated to be facile.					
Bioaccumulation		LOW: Due to the large size and water insolubility of this high MW polymer, it is of low potential for bioconcentration or bioaccumulation.							
	Fish BCF	<100 (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW, insoluble polymers according to polymer assessment literature.					
	BAF			No data located.					
	Metabolism in Fish			No data located.					
		ENVIRONMENTAL MONITORING AN	D BIOMONITORING						
Environmental Mo	nitoring	No data located.							
Ecological Biomon	itoring	No data located.							
Human Biomonitor	ring	This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2011).							

Boethling, Robert S. and Nabholz, J. Vincent "Environmental Assessment of Polymers under the U.S. Toxic Substances Control Act", pp. 187-234, in Ecological Assessment of Polymers Strategies for Product Stewardship and Regulatory Programs, Hamilton, John D. and Sutcliffe, Roger (eds.), (1997) Van Nostrand Reinhold.

CDC (Centers for Disease Control and Prevention). *Fourth national report on human exposure to environmental chemicals, updated tables*. Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on May 10, 2011).

EPA (U.S. Environmental Protection Agency). Office of Pollution Prevention and Toxics. *Screening-Level Hazard Characterization Document for Phosphoryl Chloride, Polymer with Resorcinol Phenyl Ester (CASRN 125997-21-9).* U.S. Environmental Protection Agency: Washington D.C. **2010**.

http://www.epa.gov/chemrtk/hpvis/hazchar/125997219_Phosphoryl%20chloride,%20polymer%20with%20resorcinol%20phenyl%20e ster_%20June%202010.pdf (accessed April 5, 2012).

ESIS (European chemical Substances Information System) Classification, labeling and packaging of dangerous substances annex VI to regulation (EC) No 1272/2008 [Online] available at: <u>http://ecb.jrc.ec.europa.eu/esis/index.php?PGM=cla</u> as of May 10, **2011**.

ICL Industrial Products. Material Safety Data Sheet (MSDS) for F-3100. www.icl-ip.com. 2009.

NICNAS (National Industrial Chemicals Notification and Assessment Scheme). *Phenol, 4,4'-(1-methylethylidene)bis[2,6-dibromo-, polymer with (chloromethyl)oxirane and 2,4,6-tribromophenol (F-3020).* File No. LTD/1261. **2006.**

Brominated Polyacrylate

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. ^d This hazard designation would be assigned MODERATE if >5% of the particles are in the respirable range as a result of dust forming operations.

			Human Health Effects					Aquatic Toxicity**Environme Fate		nmental nte						
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Brominated Polyacrylate	59447-57-3	L	L	L	L	L	L	L^{d}	L		L	L	L	L	VH	L

**Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Brominated Polyacrylate

		CASRN: 59447-57-3				
* / n*	MW: 80,000 (Measured); 0% <1,000					
		$\mathbf{MF:} (C_{10}H_5Br_5O_2)_n$				
O [∽] O Br		Physical Forms:				
↓ _Br		Neat: Solid				
Br Br Br	Use: Flame retardant					
SMILES: This polymer with MW >1,000 and no low MW components is not amenable to SMILES notation.						
Synonyms: 2-Propenoic acid, (2,3,4,5,6-pentabromophenyl)methyl ester, homopoly Ameribrom FR 1025; FR 1025; FR 1025P; PBB-PA; Pentabromo-benzyl-acrylate, acrylate); Polymer of 2,3,4,5,6-pentabromobenzyl acrylate; Pentabromobenzyl acry	ymer; 2-Propenoic acid, (pentabromophenyl polymer; (Poly)pentabromobenzyl acrylate; late homopolymer; Ameribrom FR 1025; F	l)methyl ester, homopolymer; Poly(2,3,4,5,6-pentabromobenzyl R 1025; FR 1025P; PBB-PA				
Chemical Considerations: This alternative is a high MW polymer. The high MW the literature concerning polymer assessment and professional judgment (Bo	(MW >1,000) oligomers were assessed toge ethling et al., 1997).	ther using information contained in				
Polymeric: Yes Oligomers: The formula for this polymer is $(C_{10}H_5Br_5O_2)_n$ and the average MW is approximately 80,000 daltons (NICNAS, 2001) with oligomers below 500 or 1,000 not expected.						
Metabolites, Degradates and Transformation Products: None						
Analog: No analog	Analog Structure: Not applicable					
Endpoint(s) using analog values: Not applicable	Endpoint(s) using analog values: Not applicable					
Structural Alerts: None identified						
Risk Phrases: Not classified by Annex I Directive 67/548/European Economic Community & IUCLID (Pakalin et al., 2007).						
Hazard and Risk Assessments: None identified						

Brominated Polyacrylate CASRN 59447-57-3							
PROPERTY/ENDPOINT	DATA	DATA QUALITY					
	PHYSICAL/CHEMICAL PH	ROPERTIES					
Melting Point (°C)	180 (glass transition temperature) (Measured)	Sigma-Aldrich, 2011	The melting points reported cover a broad range and are anticipated to be				
	190-220 (glass transition temperature) (Measured)	NICNAS, 2001; Mack, 2004	formulation specific liquid-glass transition temperatures.				
Boiling Point (°C)	>300 (Estimated)	>300 (Estimated) Professional judgment C					
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW polymers.				
	<0.075 (Measured)	NICNAS, 2001	Reported in a secondary source. Insufficient information provided to assess the quality of the data.				
Water Solubility (mg/L)	<10 ⁻³ (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW polymers.				
	3.5-3.8 (Measured)	NICNAS, 2001	Reported in a secondary source; value inconsistent with that expected for a highly halogenated polymer with a MW >10,000.				
Log K _{ow}			No data located; polymers with a MW >1,000 are outside the domain of the available estimation methods.				
Flammability (Flash Point)	Nonflammable (Estimated)	Professional judgment	No data located; based on its use as a flame retardant.				
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No data located; based on its use as a flame retardant.				
Pyrolysis			No data located.				
рН			No data located.				
pKa			No data located.				

Brominated Polyacrylate CASRN 59447-57-3								
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
HUMAN HEALTH EFFECTS								
Toxicokinetics		Brominated polyacrylate has a MW >1,0	00 and limited water solubility. T	here is no absorption expected for				
		any route of exposure for this compound	; therefore it is not expected to be	e absorbed, distributed or				
		metabolized in the body. The lack of abso	orption is expected to result in low	v hazard potential.				
Dermal Absorption	in vitro			No data located.				
Absorption,	Oral, Dermal or Inhaled	No absorption is expected for all routes of	Professional judgment	Estimated based on professional				
Distribution,		exposure		judgment.				
Metabolism &		(Estimated by analogy)						
Excretion								
Acute Mammalian	Toxicity	LOW: This polymer is large, with a MW	>1,000. It is expected to have lim	ited bioavailability and therefore				
		has a low potential for acute mammalian	toxicity. No data located.					
Acute Lethality	Oral	Limited bioavailability expected	Professional judgment; Boethling	Based on polymer assessment				
	Dermal	(Estimated)	et al., 1997	literature.				
	Inhalation							
Carcinogenicity		LOW: This polymer is large, with a MW	>1,000. It is expected to have few	y to no residual monomers.				
		Additionally, crosslinking, swellability, d	ispersability, reactive functional	groups, inhalation potential, and				
		hindered amine groups are not expected	and therefore this chemical has a	low potential for carcinogenicity.				
		No data located.						
	OncoLogic Results	Limited bioavailability expected	Professional judgment; Boethling	Based on cutoff values for large high				
	Carcinogenicity (Rat and	(Estimated)	et al., 1997	MW polymers.				
	Mouse)							
	Combined Chronic							
	Toxicity/ Carcinogenicity							
Genotoxicity		LOW: This polymer is large, with a MW	>1,000. It is expected to have lim	ited bioavailability and therefore				
		has a low potential for genotoxicity. No d	ata located.					
	Gene Mutation in vitro							
	Gene Mutation in vivo							
	Chromosomal	I imited bioavailability avpacted	Professional judgment: Boothling	Based on cutoff values for large high				
	Aberrations in vitro	(Estimated)	ot al. 1007	MW polymore				
	Chromosomal		ci ai., 1997	ivi vv porymers.				
	Aberrations in vivo							
	DNA Damage and Repair							

Brominated Polyacrylate CASRN 59447-57-3								
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Other (Mitotic Gene							
	Conversion)							
Reproductive Effec	ts	LOW: This polymer is large, with a MW	>1,000. It is expected to have lim	ited bioavailability and therefore				
		as a low potential for reproductive effects. No data located.						
	Reproduction/	Limited bioavailability expected	Professional judgment; Boethling	Based on cutoff values for large high				
	Developmental Toxicity	(Estimated)	et al., 1997	MW polymers.				
	Screen							
	Combined Repeated Dose							
	with Reproduction/							
	Developmental Toxicity							
	Screen							
	Reproduction and							
	Fertility Effects							
Developmental Effe	ects	LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore						
	1	has a low potential for developmental effects. No data located.						
	Reproduction/	Limited bioavailability expected	Professional judgment; Boethling	Based on cutoff values for large high				
	Developmental Toxicity	(Estimated)	et al., 1997	MW polymers.				
	Screen	-						
	Combined Repeated Dose							
	with Reproduction/							
	Developmental Toxicity							
	Screen	-						
	Prenatal Development	-						
	Postnatal Development							
Neurotoxicity		LOW: This polymer is large, with a MW	>1,000. It is expected to have lim	iited bioavailability and therefore				
		has a low potential for neurotoxicity. No	data located.					
	Neurotoxicity Screening	Limited bioavailability expected	Professional judgment; Boethling	Based on cutoff values for large high				
	Battery (Adult)	(Estimated)	et al., 1997	MW polymers.				

Brominated Polyacrylate CASRN 59447-57-3									
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Repeated Dose Effe	cts	LOW: This polymer is large, with a MW	LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability; however,						
		because the MW_n is >10,000, there is the	possibility of lung overloading if	>5% of the particles are in the					
		respirable range as a result of dust formi	ng operations. No experimental o	lata located.					
	Limited bioavailability expected Professional judgment; Boethling Based on								
		(Estimated)	et al., 1997	MW polymers.					
		This polymer MW_n is >10,000; potential	Professional judgment; Boethling	Based on cutoff values for large high					
		for irreversible lung damage as a result of	et al., 1997	MW polymers.					
		lung overloading							
		(Estimated by analogy)							
Skin Sensitization		LOW: Estimated not to have potential fo	r skin sensitization based on exp	ert judgment.					
	Skin Sensitization	Low potential for skin sensitization	Expert judgment	Estimated based on expert judgment.					
		(Estimated)							
Respiratory Sensitiz	atory Sensitization No data located.								
	Respiratory Sensitization No data located			No data located.					
Eye Irritation		LOW: Estimated not to have potential for eye irritation based on expert judgment.							
	Eye Irritation	Low potential for eye irritation	Expert judgment	Estimated based on expert judgment.					
		(Estimated)							
Dermal Irritation		LOW: Estimated not to have potential for dermal irritation based on expert judgment.							
	Dermal Irritation	Low potential for dermal irritation	Expert judgment	Estimated based on expert judgment.					
		(Estimated)							
Endocrine Activity		This polymer is large, with a MW >1,000	. It is not expected to have endoc	rine activity due to its limited					
		bioavailability and inability to be readily	metabolized in the body.						
				No data located.					
Immunotoxicity		This polymer is large, with a MW >1,000	. It is expected to have limited bi	pavailability and therefore has a low					
potential for immunotoxicity. No data located.									
	Immune System Effects	Limited bioavailability expected	Professional judgment; Boethling	Based on cutoff values for large high					
		(Estimated)	et al., 1997	MW polymers.					
		ECOTOXICITY							
ECOSAR Class Not applicable									

	Brominated Polyacrylate CAS	SRN 59447-57-3					
PROPERTY/ENDPOINT	DATA REFERENCE DATA QUALITY						
Acute Toxicity	LOW: Non-ionic polymers with a MW >1,000 that do not contain reactive functional groups and are comprised of minimal low MW oligomers are estimated to display no effects at saturation (NES). These polymers display NES because the amount dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed. Guidance for the assessment of aquatic toxicity hazard results in a Low hazard categorization for those materials that display NES.						
Fish LC ₅₀	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Daphnid LC_{50}	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Green Algae EC ₅₀	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Chronic Aquatic Toxicity	LOW: Non-ionic polymers with a MW comprised of minimal low MW oligom the amount dissolved in water is not an expressed. Guidance for the assessmen those materials that display NES.	>1,000 that do not contain reactiv ers are estimated to display NES. T aticipated to reach a concentration t of aquatic toxicity hazard results	e functional groups and are These polymers display NES because at which adverse effects may be in a low hazard categorization for				
Fish ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Daphnid ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Green Algae ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				

	Brominated Polyacrylate CASRN 59447-57-3							
PROPE	RTY/ENDPOINT	DATA	DATA QUALITY					
		ENVIRONMENTAL F	ATE					
Transport		The estimated negligible water solubility anticipated to partition predominantly to atm-m ³ /mole indicates that it is not expen- >30,000 indicates that it is not anticipate adsorb to sediment.	and estimated negligible vapor p o soil and sediment. The estimate cted to volatilize from water to th d to migrate from soil into groun	pressure indicate that this polymer is d Henry's Law Constant of $<10^{-8}$ e atmosphere. The estimated K_{oc} of dwater and also has the potential to				
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to have low vapor pressure and are not expected to undergo volatilization.				
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	>30,000 (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to adsorb strongly to soil and sediment.				
	Level III Fugacity Model			No data located.				
Persistence		VERY HIGH: This polymer is large, wit limited bioavailability to microorganism to be important removal processes in the benzenes has been observed, this process result, a half-life for this high MW polym	h a MW >1,000. It is expected to s indicating that neither biodegra e environment. Although photode is not anticipated to lead to ultim ner of >180 days leads to the pote	have negligible water solubility and adation nor hydrolysis are expected gradation of polybrominated nate removal of the material. As a ntial for very high persistence.				
Water	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to be non-biodegradable.				
	Volatilization Half-life for Model River	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.				
	Volatilization Half-life for Model Lake	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.				
Soil	Aerobic Biodegradation			No data located.				
	Anaerobic Biodegradation			No data located.				
	Soil Biodegradation with Product Identification			No data located.				

Brominated Polyacrylate CASRN 59447-57-3						
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
	Sediment/Water Biodegradation			No data located.		
Air	Atmospheric Half-life			No data located.		
Reactivity	Photolysis		Professional judgment	Bromine substituents are susceptible to photolysis; however this is expected to be a relatively slow process for brominated polyacrylate and is not anticipated to lead to ultimate removal of the material.		
	Hydrolysis	>1 year (Estimated)	Professional judgment	Given the limited solubility estimated for this material, hydrolysis is not anticipated to occur to an appreciable extent.		
Environmental Half-Life		>180 days (Estimated)	Professional judgment	The substance has a MW >1,000 and is not anticipated to be assimilated by microorganisms. Therefore, biodegradation is not expected to be an important removal process. Other degradative processes under environmental conditions are also not anticipated.		
Bioaccumulation		LOW: Due to the large size and limited bioavailability of this polymer, it has low potential for bioconcentration or bioaccumulation.				
	Fish BCF	<100 (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW, insoluble polymers.		
	BAF			No data located.		
	Metabolism in Fish			No data located.		
		ENVIRONMENTAL MONITORING AN	D BIOMONITORING			
Environmental Mo	onitoring	No data located.				
Ecological Biomon	itoring	No data located.				

Brominated Polyacrylate CASRN 59447-57-3									
PROPERTY/ENDPOINT	DPOINT DATA REFERENCE DATA QUALITY								
Human Biomonitoring	This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report								

Boethling, Robert S. and Nabholz, J. Vincent "Environmental Assessment of Polymers under the U.S. Toxic Substances Control Act", pp. 187-234, in Ecological Assessment of Polymers Strategies for Product Stewardship and Regulatory Programs, Hamilton, John D. and Sutcliffe, Roger (eds.), (1997) Van Nostrand Reinhold.

CDC (Centers for Disease Control and Prevention). *Fourth national report on human exposure to environmental chemicals, updated tables*. Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on May 10, 2011).

EPA (U.S. Environmental Protection Agency) Sustainable Futures. *Using NonCancer Screening within the SF Initiative*. U.S. Environmental Protection Agency: Washington D.C. **2010**. <u>http://www.epa.gov/opptintr/sf/pubs/noncan-screen.htm#systemic</u> (accessed February 09, 2011).

Mack, A. *Flame retardants, Halogenated.* Kirk-Othmer Encyclopedia of Chemical Technology. Wiley-Interscience. Published Online: July 15, **2004**.

NICNAS (National Industrial Chemicals Notification and Assessment Scheme). Priority Existing Chemical Assessment Report No. 20. Polybrominated Flame Retardants (PBFRs) [Online] June **2001.** http://www.nicnas.gov.au/publications/car/pec/pec20/pec 20 full report pdf.pdf

Pakalin, S.; Cole, T.; Steinkellner, J.; et al. Review on production processes of decabromodiphenyl ether (DECABDE) used in polymeric applications in electrical and electronic equipment, and assessment of the availability of potential alternatives to DECABDE. [Online] January 2007. <u>http://ecb.jrc.ec.europa.eu/documents/Existing-</u> Chemicals/Review_on_production_process_of_decaBDE.pdf (accessed on January 20, 2011).

Sigma-Aldrich. On-line Catalog 2011. <u>http://www.sigmaaldrich.com/catalog/</u> (accessed on April 14, 2011).

Brominated Poly(phenylether)

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment.^m This alternative may contain impurities. These impurities have hazard designations that differ from the flame retardant alternative, Brominated poly(phenylether), as follows, based on experimental data: HIGH for human health, HIGH for aquatic toxicity, VERY HIGH for bioaccumulation, and VERY HIGH for persistence.^T This chemical is subject to testing in an EPA consent order for this endpoint.

]	Human	Health	Effects					Aqua Toxic	atic ity ^{**}	Enviro F	onmental Fate
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Brominated Poly(phenylether)	Confidential	L	L¤	L	VL¤	M¤	L¤	Γ¤	L		L	VL	L	L¤	VH ^T	$H^T x$

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

		CASRN: Confidential CASRN			
		MW: >1,000			
		MF: Confidential MF			
		Physical Forms: Neat: Solid			
		Use: Flame retardant			
SMILES: Confidential SMILES notation; not amenable to the generation of a SMI	LES notation				
Synonyms: Emerald Innovation 1000 [™] ; Brominated PPE; Br PPE					
Chemical Considerations: This material was assessed using guidance from High F polymer assessment, and by analysis of confidential materials with similar structure Boethling et al., 1997). Impurities have been found in analogous substances and confor the impurities are provided in the hazard summary table. This chemical is subject presence of impurities is also required under consent order. Polymeric: Not a polymer by EPA definition (EPA, 1997) Oligomers: Not applicable	Production Volume criteria, information conservations, substituents, and MWs, in the absence of ald potentially be present in this substance.	A summary of the hazard designations ation endpoints. Testing for the			
Metabolites, Degradates and Transformation Products: Photodegradation – pote	ential for debromination (Professional judgr	ment)			
Analog: None Endpoint(s) using analog values: Not applicable	Analog Structure: Not applicable				
Structural Alerts: None identified					
Risk Phrases: Not classified by Annex VI Regulation (EC) No 1272/2008 (ESIS, 2012).					
Hazard and Risk Assessments: None identified					

Brominated Poly(phenylether)									
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY						
PHYSICAL/CHEMICAL PROPERTIES									
Melting Point (°C)	186-307 (Measured) According to a modified capillary method/melting temperature device with liquid bath method and designed to be compatible with Organisation of Economic Cooperation and Development (OECD) Guideline 102	Submitted confidential study	Adequate, guideline study.						
	270-329 (Measured) According to an OECD guideline study.	Submitted confidential study	Adequate, guideline study.						
Boiling Point (°C)	 >450 at 102.81 kPa (Measured) According to a differential scanning calorimetry procedure American Society for Testing and Materials (ASTM) E537- 86, designed to be compatible with OECD Guideline 103 	Submitted confidential study	Cutoff value obtained from guideline study.						
Vapor Pressure (mm Hg)	<9.8x10 ⁻⁷ at 25°C (Measured) According to OECD Guideline 104	Submitted confidential study	Cutoff value obtained from guideline study.						
Water Solubility (mg/L)	<6.63x10 ⁻⁵ at 20°C (Measured) Determined to be less than the limit of quantitation (LOQ) according to the column elution method, Test Guidelines, OPPTS 830.7840	Submitted confidential study	Cutoff value obtained from a guideline study.						
	\leq 7.96x10 ⁻² at 20°C (Measured) According to the column elution method, designed to be compatible with OECD Guideline 105	Submitted confidential study	Cutoff value obtained from a study equivalent to a guideline study.						
Log K _{ow}	 >9.4 (Measured) According to high performance liquid chromatography (HPLC) Method designed to be compatible with for OECD Guideline Method 117 	Submitted confidential study	Cutoff value obtained from guideline study.						

Brominated Poly(phenylether)				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Flammability (Flash Point)	Not highly flammable (Measured) According to Method A10 Flammability (Solids) of Commission Regulation (EC) No 440/2008	Submitted confidential study	Adequate, guideline studies.	
	No relative self-ignition temperature below its melting temperature (Measured) According to a study compatible with method A16 Relative Self-Ignition Temperature for Solids of Commission Regulation (EC) No 44012008	Submitted confidential study		
	>10 J is the lowest spark energy capable of igniting a dispersed dust of this mixture according to ASTM E 2019 Standard Test Method for the Minimum Ignition Energy of a Dust Cloud in Air and IEC 61241-2-3 Part 2 Section 3 (Measured)	Submitted confidential study		
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.	
Pyrolysis			No data located.	
рН	Not applicable	Professional judgment	This material does not contain any function groups that are anticipated to ionize in solution.	
pKa	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.	

	Brominated Poly(phenylether)				
PROPEI	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
		HUMAN HEALTH EFI	FECTS		
Toxicokinetics		Poor absorption is expected. Even thoug potential for debromination suggest it co	h this substance is large and poo ould be bioavailable. No data loc	rly soluble in water, its structure and ated.	
Dermal Absorption	n <i>in vitro</i>			No data located.	
Absorption, Distribution, Metabolism & Excretion	Oral, Dermal or Inhaled	Poor absorption is expected for all routes of exposure based on physical/chemical properties (Estimated)	Professional judgment	Professional judgment based on the analysis of confidential materials with similar structures, substituents, and MW.	
Acute Mammalian	Toxicity	LOW: Available experimental data indicate a Low hazard designation. Based on oral and dermal LD ₅₀ >2,000 mg/kg. There were no acute toxicity data located for the inhalation route.			
Acute Lethality	Oral	Limited bioavailability expected (Estimated)	Professional judgment	Professional judgment based on the analysis of confidential materials with similar structures, substituents, and MW.	
		Rat, oral LD ₅₀ >2,000 mg/kg	Confidential study	Reported in a submitted confidential study; study conducted according to OECD 420.	
	Dermal	Rat, oral LD50 >2,000 mg/kg	Confidential study	Reported in a submitted confidential study; study conducted according to OECD 402.	
	Inhalation			No data located.	
Carcinogenicity		LOW: This material has a MW >1,000 a bioavailability and few to no low MW co reactive functional groups, potential for chemical has a low potential for carcinog	nd limited water solubility. It is omponents. Additionally, no cross inhalation, or hindered amine gr genicity. No experimental data lo	expected to have limited slinking, swellability, dispersability, roups are expected and therefore this ocated.	
	OncoLogic Results			No data located.	
	Carcinogenicity (Rat and Mouse)	Limited bioavailability expected (Estimated)	Professional judgment	Professional judgment based on the analysis of confidential materials with	
	Combined Chronic Toxicity/ Carcinogenicity			similar structures, substituents, and MW.	

Brominated Poly(phenylether)			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Genotoxicity	LOW: This material did not cause gene mutations in bacteria or in L5178Y TK +/- mouse cells, and did not cause chromosomal aberrations in human lymphocyte cells <i>in vitro</i> .		
Gene Mutation <i>in vitro</i>	Negative, Ames assay of <i>Salmonella</i> <i>typhimurium</i> strains TA98, TA100, TA1535, TA1537 and <i>Escherichia coli</i> WP2 <i>uvrA</i> both with and without metabolic activation.	Submitted confidential study	Study conducted according to OECD test guideline 471.Test substance purity: 100%.
	Negative for mutagenicity in a L5178Y TK +/- mouse lymphoma assay with or without metabolic activation	Confidential study	Study details reported in a submitted confidential study; conducted according to OECD 476; test substance purity: 100%.
Gene Mutation <i>in vivo</i>	Limited bioavailability expected (Estimated)	Professional judgment	Professional judgment based on the analysis of confidential materials with similar structures, substituents, and MW.
Chromosomal Aberrations <i>in vitro</i>	Negative for chromosomal aberrations in human lymphocytes both with and without metabolic activation.	Submitted confidential study	Study conducted according to OECD test guideline 473. Test substance purity: 100%.
Chromosomal Aberrations <i>in vivo</i>	Limited bioavailability expected (Estimated)	Professional judgment	Professional judgment based on the analysis of confidential materials with similar structures, substituents, and MW.
DNA Damage and Repair			No data located.
Other			No data located.
Reproductive Effects	VERY LOW: No reproductive effects we rats at doses up to 1,000 mg/kg-day.	ere noted in a reproduction/deve	lopmental toxicity screening test in
Reproduction/ Developmental Toxicity Screen	Limited bioavailability expected (Estimated)	Professional judgment	Professional judgment based on the analysis of confidential materials with similar structures, substituents, and MW.

	Brominated Poly(phenylether)			
PROPER'	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Reproduction/developmental toxicity screening test in rats orally (gavage) exposed to 0, 100, 300, or 1,000 mg/kg- day for up to 8 weeks (2 week maturation phase, pairing, gestation and early lactation (females). Maternal toxicity: there were no effects on body weight or food and water consumption; No treatment-related effects on mating, conception rates or gestation lengths were reported NOAEL = 1,000 mg/kg-day (highest dose tested)	Confidential study	Study details reported in a submitted confidential study; conducted according to OECD 421.
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen			No data located.
	Reproduction and Fertility Effects			No data located.
Developmental Effe	cts	MODERATE: No developmental effects	were noted in a reproduction/de	velopmental toxicity screening test in
		rats at doses up to 1,000 mg/kg-day. Pot diphenyl ethers cannot be ruled out ther	ential for developmental neuroto efore a moderate designation is a	xicity by analogy to brominated pplied conservatively.
	Reproduction/ Developmental Toxicity Screen	Limited bioavailability expected although similarity to brominated diphenyl ethers raises a structural alert associated with developmental neurotoxicity (Estimated)	Professional judgment	Professional judgment based on the analysis of substances with similar structures, substituents, and MW.
		Reproduction/developmental toxicity screening test in rats orally (gavage) exposed to 0, 100, 300, or 1,000 mg/kg- day for up to 8 weeks (2 week maturation phase, pairing, gestation and early	Confidential study	Study details reported in a submitted confidential study; conducted according to OECD 421.

	Brominated Poly(phenylether)			
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		lactation (females); Maternal toxicity: there were no effects on body weight or food and water consumption; Developmental effects: There were no changes in litter size at birth and on post- partum days 1 and 4 compared to controls; offspring body weight gain and litter weights on post-partum days 1 and 4 were also comparable to controls; No clinical signs of toxicity or changes in organ weights were observed in offspring; in addition there were no relevant macroscopic or microscopic abnormalities observed	REFERENCE	
		Maternal and Developmental: NOAEL = 1,000 mg/kg-day (highest dose tested) LOAEL >1,000 mg/kg-day		
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen			No data located.
	Prenatal Development			No data located.
	Postnatal Development			No data located.
Neurotoxicity		LOW: Estimated based on physical chem MW >1,000 and limited water solubility. potential for neurotoxicity. There were no performance tests or sensory reactivity in a comprehensive neurotoxicity study.	ical properties and limited expe It is expected to have limited bio o treatment-related changes in b a 28-day repeated dose study in	rimental data. This material has a pavailability and therefore is of low pehavioral parameters, functional n rats; this study was not designed as

Brominated Poly(phenylether)				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Neurotoxicity Screening Battery (Adult)	Limited bioavailability expected (Estimated)	Professional judgment	Professional judgment based on the analysis of confidential materials with similar structures, substituents, and MW.
		28-day repeated dose oral (gavage) study in rats exposed to 0, 30, 300, or 1,000 mg/kg-day; There were no treatment-related changes in behavioral parameters, functional performance tests or sensory reactivity. NOAEL = 1,000 mg/kg-day (highest dose tested) LOAEL >1,000 mg/kg-day	Confidential study	Reported in a submitted confidential study; study conducted according to OECD 407.
Repeated Dose Effe	epeated Dose Effects LOW: Available experimental data reported no effects in rats at a dose of 1,000 mg/kg-day (highest dose tested) following 7- or 28-day repeated dose studies.			f 1,000 mg/kg-day (highest dose
		Limited bioavailability expected (Estimated)	Professional judgment	Professional judgment based on the analysis of confidential materials with similar structures, substituents, and MW.

Brominated Poly(phenylether)				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	28-day repeated dose oral (gavage) study in rats exposed to 0, 30, 300, or 1,000 mg/kg-day; No mortality or clinical signs reported; No changes in body weight, food consumption, water consumption, hematology, blood chemistry, urinalysis, organ weights or thyroid hormone levels were observed; necropsy and histopathology did not reveal any treatment related abnormalities; In addition, there were no treatment-related changes in behavioral parameters, functional performance tests or sensory reactivity. NOAEL = 1,000 mg/kg-day (highest dose tested)	Confidential study	Reported in a submitted confidential study; study conducted according to OECD 407; test substance purity: 100%.	
	7-day repeated dose oral (gavage) range- finding toxicity study in rats exposed to 0, 250, 500, or 1,000 mg/kg-day; No mortality or clinical signs of toxicity reported; no effects on body weight or food and water consumption were reported; No macroscopic abnormalities were reported. NOAEL = 1,000 mg/kg-day LOAEL >1,000 mg/kg-day	Confidential study	Reported in a submitted confidential study; test substance purity: 100%.	

Brominated Poly(phenylether)				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Skin Sensitization		LOW: This test substance is not a skin sensitizer based on results of a local lymph node assay in mice.		
	Skin Sensitization	Low potential for skin sensitization (Estimated)	Expert judgment	Professional judgment based on the analysis of confidential materials with similar structures, substituents, and MW.
		Not a skin sensitizer in a local lymph node assay in mice.	Confidential study	Study details reported in a submitted confidential study; conducted according to OECD 429; test substance purity: 100%.
Respiratory Sensitization		No data located.		
]	Respiratory Sensitization			No data located.
Eye Irritation		LOW: This material was a minimal eye irritant in rabbits.		
]	Eye Irritation	Minimally irritating in rabbits; clearing within 24 hours.	Submitted confidential study	Study conducted according to OECD test guideline 405. Test substance purity: 100%.
Dermal Irritation		VERY LOW: This material was not a skin irritant in rabbits.		
]	Dermal Irritation	No evidence of skin irritation in rabbits.	Submitted confidential study	Study conducted according to OECD test guideline 404; single 4-hour, semi-occluded application to intact skin. Test substance purity: 100%.
Endocrine Activity No data located. This material has a MW >1,000 and limited water solubility. It is not exp endocrine activity due to its poor bioavailability and inability to readily metabolize in the		lity. It is not expected to have netabolize in the body.		
		Limited bioavailability expected (Estimated)	Professional judgment	Professional judgment based on the analysis of confidential materials with similar structures, substituents, and MW.

Brominated Poly(phenylether)				
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Immunotoxicity		This material has a MW >1,000 and limited water solubility. It is expected to have limited bioavailability and therefore is of low potential for immunotoxicity. No experimental data located.		
	Immune System Effects	Limited bioavailability expected (Estimated)	Professional judgment	Professional judgment based on the analysis of confidential materials with similar structures, substituents, and MW.
		ECOTOXICITY		
ECOSAR Class		Not applicable		
Acute Toxicity		LOW: Experimental data in fish, daphni non-ionic solids with a MW >1,000 that of minimal low MW components are estimat dissolved in water is not anticipated to re Guidance for the assessment of aquatic t that display NES.	a, and algae indicate no effects a lo not contain reactive functiona ated to display NES. These solids each a concentration at which ad oxicity hazard leads to a low pote	t saturation (NES). In addition, l groups and are comprised of display NES because the amount verse effects may be expressed. ential for hazard for those materials
Fish LC ₅₀		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.
		<i>Oncorhynchus mykiss</i> (rainbow trout) 96- hour Lethal Loading Rate (LL ₅₀) >100 mg/L; No Observed Effect Loading rate = 100 mg/L (Experimental)	Submitted confidential study	Conducted according to OECD 203; test substance purity was described as "natural complex substance"; fish were exposed to water accommodated fraction (WAF) at a single nominal loading rate of 100 mg/L). The concentration in the WAF ranged from 0.184 to 0.0270 mg/L between zero and 96 hours of the test. Toxicity cannot be attributed to a single component of the mixture and is based on nominal loading rates; There were no adverse effects at the limit of water solubility; therefore, NES is predicted.

Brominated Poly(phenylether)								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Daphnid LC ₅₀	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.					
	Daphnia magna 48-hour Effective Loading Rate (EL ₅₀) >100 mg/L; No Observed Effect Loading rate = 100 mg/L (static test conditions) (Experimental)	Submitted confidential study	Conducted according to OECD 202; test substance purity was described as "natural complex substance"; Daphnia exposed to WAF at a single nominal loading rates of 100 mg/L). The concentration in the WAF ranged from 0.0436 mg/L to the limit of quantitation between zero and 48 hours of the test. Toxicity cannot be attributed to a single component of the mixture and are based on nominal loading rates; There were no adverse effects at the limit of water solubility; therefore, NES is predicted.					
Green Algae EC ₅₀	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.					
	Pseudokirchneriella subcapitata 72-hour Effective Loading rate (EL ₅₀) >100 mg/L (growth rate); No Observed Effect Loading rate = 100 mg/L (Experimental)	Submitted confidential study	Conducted according to OECD 201; test substance purity: 100%; algae exposed to WAF at a single nominal loading rates of 100 mg/L). The concentration in the WAF ranged from less than the limit of quantitation to 0.19 mg/L between zero and 72 hours of the test. Toxicity cannot be attributed to a single component of the mixture and are based on nominal loading rates; There were no adverse effects at the limit of water solubility; therefore, NES is predicted.					
Brominated Poly(phenylether)								
--	--	---	--	--	--	--	--	--
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Chronic Aquatic Toxicity	LOW: Test data regarding chronic aquatic toxicity for fish and algae were not located on this substance therefore potential for hazard is uncertain. Test data for daphnids included water accommodated fractions with test substance below limit of quantitation suggesting NES due to poor solubility.							
Fish ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.					
Daphnid ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.					
	Daphnia magna 21- day; Semi-static test conditions21-day EL_{50} (reproduction) >100 mg/L) NOEC (reproduction) = 100 mg/L LOEC (reproduction) >100 mg/L21-day EL_{50} (growth) >100 mg/L NOEC (growth) = 100 mg/L LOEC (growth) >100 mg/L (Experimental)	Submitted confidential study	Conducted according to OECD 211; test substance composition and/or purity not specified; Daphnia exposed to WAF at nominal loading rates of 1.0, 3.2, 10, 32, and 100 mg/L. The concentration in the WAF was below the limit of quantitation at on day 0, 2, 9, 12, 19 and 21 in both fresh and old media.					
Green Algae ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.					
	ENVIRONMENTAL I	ATE						
Transport	The estimated negligible water solubility is anticipated to partition predominantly atm-m ³ /mole indicates that it is not exper >430,000 indicates that it is not anticipat to adsorb to sediment.	y and estimated negligible vapor p y to soil and sediment. The estima cted to volatilize from water to th ted to migrate from soil into grou	pressure indicate that this substance ited Henry's Law Constant of $<10^{-8}$ are atmosphere. The measured K _{oc} of indwater and also has the potential					
Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	Professional judgment	Cutoff value for nonvolatile compounds.					

Brominated Poly(phenylether)					
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Sediment/Soil Adsorption/Desorption	>30,000 (Estimated)	EPA, 2004; Professional judgment	Cutoff value for nonmobile compounds.		
Coefficient – K _{oc}	K _{oc} >430,000 (Measured) According to an HPLC screening method, designed to be compatible to OECD Guideline 121	Submitted confidential study	Cutoff value obtained from guideline study.		
Level III Fugacity Model			No data located.		
Persistence	VERY HIGH: This substance has a MW >1,000. It is expected to have negligible water solubility and poor bioavailability to microorganisms indicating that biodegradation is not expected to be an important removal processes in the environment. One experimental biodegradation test using activated sludge resulted in no degradation after 28 days. Estimated hydrolysis half-lives of >1 year indicate that this will not be an important environmental removal process. Although photodegradation of brominated aromatic compounds has been observed, this process is not anticipated to lead to ultimate removal of the material. As a result, a half-life for this high MW solid is expected to be >180 days. While test data from environmental fate studies were not located on this substance, EPA has predicted its behavior in the environment based upon physical-chemical properties and data on structurally similar chemicals. To enable a reasoned evaluation of the human health and environmental effects of the Premanufacture Notice (PMN) substance and potential degradation products, EPA requires the manufacturer to provide test data on this substance using the OPPTS 835.4400 test guideline on anaerobic metabolism in aquatic sediment 24 months from commencement of manufacture or prior to a confidential production volume, whichever comes later. EPA and the manufacturer are also negotiating additional				

Brominated Poly(phenylether)								
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Water	Aerobic Biodegradation	Not readily degradable (Measured) 0% degraded/biochemical oxygen demand after 28 days; activated sludge ready biodegradability test; Method Relating to New Chemical Substances - Biodegradability Test of Chemical Substances by Microorganisms Yakushokuhatsu 0331 No. 7, Heisei 23.03.29 c- Seikyoku No. 5, Kanpokihatsu No. 110331009	Submitted confidential study	Study performed according to a standardized method.				
		Not readily degradable (Measured) 0% degraded/CO ₂ evolution after 28 days; Method designed to be compatible with OECD 301B	Submitted confidential study	Study performed according to a standardized method.				
		Toxicity of the test material to a mixed population of activated sewage sludge microorganisms was determined: $EC_{50} > 1000 \text{ mg/L}$ after 3-hours NOEC = 1000 mg/L after 3 hours (Measured) According to OECD 209, method C.11 of EC No. 440/2008 and US EPA Draft Ecological Effects Test Guidelines OPPTS 850.6800	Submitted confidential study	Supporting information provided in study performed according to a standardized method.				
		Recalcitrant (Estimated)	Professional judgment	High MW solids are expected to be non-biodegradable due to their limited bioavailability.				
	Volatilization Half-life for Model River	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law constant.				

Brominated Poly(phenylether)								
PRO	OPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Volatilization Half-life for Model Lake	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law constant.				
Soil	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment	High MW solids are expected to be nonbiodegradable due to their limited bioavailability.				
	Anaerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment	High MW solids are expected to be resistant to removal under anoxic conditions biodegradable due to their limited bioavailability.				
	Soil Biodegradation w/ Product Identification			No data located.				
	Sediment/Water Biodegradation			No data located.				
Air	Atmospheric Half-life	Not a significant fate process (Estimated)	Professional judgment	This chemical is expected to exist in the particulate phase in the atmosphere.				
Reactivity	Photolysis	Not a significant fate process (Estimated)	Professional judgment	The bromine substituent is susceptible to photolysis however; this is expected to be a relatively slow process and is not anticipated to lead to ultimate removal of the material.				
	Hydrolysis	>1 year (Estimated)	Professional judgment	Given the limited solubility estimated for this material, hydrolysis is not anticipated to occur to an appreciable extent.				

Brominated Poly(phenylether)						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Environmental Half-Life	>180 days (Estimated)	Professional judgment	The substance has a MW greater than 1,000 and is not anticipated to be assimilated by microorganisms. Therefore, biodegradation is not expected to be an important removal process. It is also not expected to be readily removed by other degradative processes under environmental conditions because of limited water solubility and lack of reactive functional groups.			
Bioaccumulation	HIGH: The bioaccumulation designation for this compound is based upon physical-chemical properties and by analogy to structurally similar chemicals. As test data regarding bioaccumulation were not located on this substance, the potential for bioconcentration or bioaccumulation is uncertain. To enable a reasoned evaluation of the human health and environmental effects of the PMN substance and potential degradation products, EPA requires the manufacturer to provide test data on this substance using the OECD 305 test guideline for bioaccumulation in fish with dietary exposure, 36 months from commencement of manufacture or prior to attaining a confidential production volume, whichever comes later. Although this substance is large and insoluble in water, its structure and potential for debromination suggest it could be bioavailable					
Fish BCF	<100 (Estimated)	Professional judgment	The substance has a MW >1,000 and is not anticipated to be assimilated by aquatic organisms; therefore, bioconcentration is not expected.			
BAF Motobolism in Fish	Potential for bioaccumulation using criteria for a conservative approach (Estimated)	Professional judgment	This compound is outside the MW domain of the corresponding EPI models. The potential for bioaccumulation is based on analogy to a structurally similar confidential analog.			
Ivietadolisii in Fish			ino data localed.			

Brominated Poly(phenylether)							
PROPERTY/ENDPOINT	DATA REFERENCE DATA QUALITY						
ENVIRONMENTAL MONITORING AND BIOMONITORING							
Environmental Monitoring	No data located.						
Ecological Biomonitoring	No data located.						
Human Biomonitoring	This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2011).						

CDC (Centers for Disease Control and Prevention). *Fourth national report on human exposure to environmental chemicals, updated tables*. Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on January 16, 2012).

ESIS (European chemical Substances Information System) Classification, labeling and packaging of dangerous substances annex VI to Regulation (EC) No 1272/2008 [Online] <u>http://esis.jrc.ec.europa.eu/index.php?PGM=cla</u> (accessed on accessed on January 16, 2012).

EPA. (**1997**). "Polymer Exemption Guidance Manual." Retrieved December 18, 2013, from <u>http://www.epa.gov/oppt/newchems/pubs/polyguid.pdf</u>.

EPA (U.S. Environmental Protection Agency). High Production Volume (HPV) Challenge. *Determining the Adequacy of Existing Data*. U.S. Environmental Protection Agency: Washington D.C. **1999**. <u>http://www.epa.gov/hpv/pubs/general/datadfin.htm</u>

EPA. 2004. The Pollution Prevention (P2) Framework, EPA-748-B-03-001. Office of Pollution Prevention and Toxics 7403M, U.S. Environmental Protection Agency, Washington, DC. 20460. October 2003 version updated in January 2004. Latest version available at http://www.epa.gov/opptintr/newchems/pubs/sustainable/p2frame-june05a2.pdf

Brominated Polystyrene

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. ^d This hazard designation would be assigned MODERATE if >5% of the particles are in the respirable range as a result of dust forming operations.

		Human Health Effects					Aquatic Toxicity**Environ F		nmental ate						
CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
88497-56-7	L	L	L	L	L	L	L^{d}	L		L	L	L	L	VH	L
	CASRN 88497-56-7	CASRN CASRN E 88497-56-7 L	CASRN V Cascinogenicity B88497-56-7 L L	CASRN V Carcinogenicity Genotoxicity Carcinogenicity Carcinogenicity Carcinogenicity Carcinogenicity	CASRN Variety	Human Kebrodnctive Acute Toxicity CASRN Acute Toxicity Varietity Carcinogenicity Bevelopmental L L L	Human Health Kebrodrotity Yante Loxicity Ventological L L L L Nentological L L L L L	Human Health Effects Human Health Effects Acnte Loxicity Acnte Loxicity CASRN Yencological Rebroductive Carcinogenicity Nenrological L L L L L L L L 88497-56-7 L L L L L L L L L	Human Health Effects CASRN Acute Toxicity Acute Toxicity CASRN Carcinogenicity acute Toxicity Skin Sensitization F F F Skin Sensitization F L L L	Human Health Effects CASEN Acute Toxicity Carcinogenicity Carcinogenicity Carcinogenicity Carcinogenicity Reproductive Carcinogenicity Repeated Dose Neurological Respiratory Respiratory Respiratory T T T T T	Human Health Effects CASKN Acute Toxicity Acute Toxicity Carcinogenicity Carcinogenicity Acute Toxicity CASKN Carcinogenicity Acute Toxicity Repeated Dose Beneformental Respiratory Eye Irritation Fyel Irritation Fyel Irritation	CASEN T <td>Addition T<</td> <td>Admatric Toxicity Valuation CASEN Human Health Leftects Admatric Local CASEN Acute Toxicity Acute Toxicity Acute Toxicity CASEN Acute Toxicity Acute Toxicity Acute Toxicity Casen Begin and to topological Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Casen Begin and topological Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Begin and topological Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Begin and toxicity Acute Toxicity Acute Toxicity Acute Toxicity Begin and toxicity Begin and toxicity Acute Toxicity Acute Toxicity Acute Toxicity Begin and toxicity Begin and toxicity Acute Toxicity Acute Toxicity Acute Toxicity Begin and toxicity Begin and toxicity Acute Toxicity Acute Toxicity Acute Toxicity Begin and toxic</td> <td>Human Health Effects Admatic Loxicity, Environ Estimation CASRN A L L L L L L L L L Environ Estimation CASRN Acute Toxicity, state Carcinogenicity Acute Toxicity, state Carcinogenicity Acute Toxicity, state Environ Estimation Case Acute Toxicity Bervelopmental Neurological <</td>	Addition T<	Admatric Toxicity Valuation CASEN Human Health Leftects Admatric Local CASEN Acute Toxicity Acute Toxicity Acute Toxicity CASEN Acute Toxicity Acute Toxicity Acute Toxicity Casen Begin and to topological Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Casen Begin and topological Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Begin and topological Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Acute Toxicity Begin and toxicity Acute Toxicity Acute Toxicity Acute Toxicity Begin and toxicity Begin and toxicity Acute Toxicity Acute Toxicity Acute Toxicity Begin and toxicity Begin and toxicity Acute Toxicity Acute Toxicity Acute Toxicity Begin and toxicity Begin and toxicity Acute Toxicity Acute Toxicity Acute Toxicity Begin and toxic	Human Health Effects Admatic Loxicity, Environ Estimation CASRN A L L L L L L L L L Environ Estimation CASRN Acute Toxicity, state Carcinogenicity Acute Toxicity, state Carcinogenicity Acute Toxicity, state Environ Estimation Case Acute Toxicity Bervelopmental Neurological <

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Brominated Polystyrene

[].	CASRN: 88497-56-7					
* tn*	MW: 80,000 – 800,000 (Measured); 0%<1,000					
Br	$\mathbf{MF:} (\mathbf{C}_{8}\mathbf{H}_{8-\mathbf{m}}\mathbf{Br}_{\mathbf{m}})_{\mathbf{n}}$					
	Physical Forms: Neat: Solid					
Br	Use: Flame retardant					
Representative Structure						
SMILES: This polymer with MW >1,000 and no low MW components is not amen	hable to SMILES notation.					
Synonyms: Benzene, ethenyl-, homopolymer, brominated; Brominated ethenylben Polystyrene, brominated; Pyro-Chek 68PB/BC; Saytex HP-775; Saytex HP-3010; S 80 (CASRN 148993-99-1).	Synonyms: Benzene, ethenyl-, homopolymer, brominated; Brominated ethenylbenzene homopolymer; Firemaster BP-411; Firemaster CP-44HF; FR-803P; Polystyrene, brominated; Pyro-Chek 68PB/BC; Saytex HP-775; Saytex HP-3010; Saytex HP-7010P; Saytex HP-7010G; Saytex HP-3010. Related trade name: PDBS 80 (CASRN 148993-99-1).					
Chemical Considerations: This alternative is a high MW polymer. The number ar a variable mixture of mono, di, tri and tetra brominated materials. The ratio of m ar 68% (m = 2.6-2.7) are typical (Mack, 2004). These high MW oligomers were assess assessment and professional judgment (Boethling et al., 1997). Closely related materials	d locations of the bromines on the phenyl rings are unspecified and expected to be d n in the MF $(C_8H_{8-m}Br_m)_n$ are product specific; although bromine content of 66-sed together using information contained in the literature concerning polymer erials are indicated in the analog section.					
Polymeric: Yes Oligomers: The general formula for this polymer is $(C_8H_{8-m}Br_m)_n$ and the average M expected.	AW is 80,000 to 800,000 daltons (NICNAS, 2001) with oligomers MW <1,000 not					
Metabolites, Degradates and Transformation Products: None						
Analog: Tribrominated polystyrene (CASRN 57137-10-7); Benzene, ethenyl-, arbromo derivs., homopolymers (CASRN 148993-99-1) Endpoint(s) using analog values: Decomposition	Analog Structures: $\begin{array}{c} & \downarrow \\ & \downarrow \\ Br \\ & Br \\ $					

Structural Alerts: None identified

Risk Phrases: Not classified by Annex I Directive 67/548/European Economic Community & IUCLID (Pakalin et al., 2007).

Hazard and Risk Assessments: None identified

Brominated Polystyrene CASRN 88497-56-7										
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY							
PHYSICAL/CHEMICAL PROPERTIES										
Melting Point (°C)	195 (glass transition temperature) (Measured)	Ioffe and Kampf, 2002	The melting points reported cover a broad range and are anticipated to be formulation specific liquid-glass transition temperature.							
	130-140 (glass transition temperature) (Measured)	Ioffe and Kampf, 2002								
Boiling Point (°C)	Decomposes (Estimated by analogy)	Professional judgment	Based on data from 148993-99-1.							
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW polymers.							
Water Solubility (g/L)	<10 ⁻⁶ (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW non- ionic polymers.							
Log K _{ow}			No data located; polymers with a MW >1,000 are outside the domain of the available estimation methods.							
Flammability (Flash Point)	Nonflammable (Estimated)	Professional judgment	No data located; based on its use as a flame retardant.							
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No data located; based on its use as a flame retardant.							
Pyrolysis			No data located.							
рН	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.							
pKa	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.							

Brominated Polystyrene CASRN 88497-56-7									
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
HUMAN HEALTH EFFECTS									
Toxicokinetics		There is no absorption expected for any route of exposure. This polymer is large, with a MW >1,000. It is							
		expected to have limited bioavailability and therefore is not expected to be readily absorbed, distributed or							
		metabolized in the body.							
Dermal Absorption	n <i>in vitro</i>			No data located.					
Absorption,	Oral, Dermal or Inhaled	No absorption is expected for any route of	Professional judgment	Estimated based on professional					
Distribution,		exposure		judgment.					
Metabolism &		(Estimated)							
Excretion									
Acute Mammalian	Toxicity	LOW: This polymer is large, with a MW	>1,000. It is expected to have lim	ited bioavailability and therefore is					
		of low potential for acute mammalian tox	icity as confirmed by the availab	le data.					
Acute Lethality	Oral	Rat Oral LD ₅₀ >15,380 mg/kg	Industrial Bio-Test Laboratories,	Guideline study.					
			1977b						
	Dermal	Rabbit Dermal LD ₅₀ >3,038 mg/kg	Industrial Bio-Test Laboratories,	Guideline study.					
			1977a						
	Inhalation	Rat Inhalation (dust) 4-hour $LC_{50} > 5.25$	Springborn Labs Inc., 1991	Guideline study.					
		mg/L							
		No gross tissue changes were observed							
		(a mean aerodynamic diameter of $3.8 \pm$							
		1.97 microns)							
Carcinogenicity		LOW: This polymer is large, with a MW	>1,000. Based on professional ju	dgment, It is expected to have few to					
		no residual monomers. Additionally, cros	slinking, swellability, dispersabil	lity, reactive functional groups,					
		inhalation potential, and hindered amine	groups are not expected. Therefo	ore there is low potential for					
		carcinogenicity. No data located.		-					
	OncoLogic Results	Limited bioavailability expected;	Professional judgment; Boethling	Based on cutoff values for large high					
	Carcinogenicity (Rat and	crosslinking, swellability, dispersability,	et al., 1997	MW polymers.					
	Mouse)	reactive functional groups, inhalation							
	Combined Chronic	potential, and hindered amine groups are							
	Toxicity/ Carcinogenicity	not expected.							
		(Estimated)							

Brominated Polystyrene CASRN 88497-56-7							
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Genotoxicity		LOW: This polymer is large, with a MW	>1,000. It is expected to have lim	ited bioavailability and therefore has			
		low potential for genotoxicity. In vitro Am	es test is negative for gene mutat	tions.			
	Gene Mutation in vitro	Limited bioavailability expected	Professional judgment; Boethling	Based on cutoff values for large high			
		(Estimated)	et al., 1997	MW polymers.			
		Negative for gene mutations in Salmonella	Microbiological Associates, 1978	Guideline study.			
		typhimurium strains TA1535, TA1537,					
		TA1538, TA100, and TA98 with and					
		without exogenous metabolic activation					
	Gene Mutation in vivo			No data located.			
	Chromosomal			No data located.			
	Aberrations in vitro						
	Chromosomal			No data located.			
	Aberrations <i>in vivo</i>						
	DNA Damage and			No data located.			
	Repair						
	Other (Mitotic Gene			No data located.			
	Conversion)						
Reproductive Effec	ts	LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore has					
		a low potential for reproductive effects. No data located.					
	Reproduction/	Limited bioavailability expected	Professional judgment; Boethling	Based on cutoff values for large high			
	Developmental Toxicity	(Estimated)	et al., 1997	MW polymers.			
	Screen						
	Combined Repeated						
	Dose with Reproduction/						
	Developmental Toxicity						
	Screen						
	Reproduction and						
	Fertility Effects						
Developmental Effects		LOW: This polymer is large, with a MW	>1,000. It is expected to have lim	ited bioavailability and therefore has			
		a low potential for developmental effects.	No data located.				
	Reproduction/	Limited bioavailability expected	Professional judgment; Boethling	Based on cutoff values for large high			
	Developmental Toxicity	(Estimated)	et al., 1997	MW polymers.			
	Screen						

Brominated Polystyrene CASRN 88497-56-7							
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	Combined Repeated						
	Dose with Reproduction/						
	Developmental Toxicity						
	Screen						
	Prenatal Development						
	Postnatal Development						
Neurotoxicity		LOW: This polymer is large, with a MW	>1,000. It is expected to have lim	ited bioavailability and therefore has			
		a low potential for neurotoxicity. No data	located.				
	Neurotoxicity Screening	Limited bioavailability expected	Professional judgment; Boethling	Based on cutoff values for large high			
	Battery (Adult)	(Estimated)	et al., 1997	MW polymers.			
Repeated Dose Effe	cts	LOW: This polymer is large, with a MW	>1,000. It is expected to have lim	ited bioavailability; however,			
		because the MW_n is >10,000, there is the	possibility of lung overloading if	>5% of the particles are in the			
		respirable range as a result of dust forming	ng operations. No experimental d	ata located.			
		Limited bioavailability expected	Professional judgment; Boethling	Based on cutoff values for large high			
		(Estimated)	et al., 1997	MW polymers.			
		This polymer MW_n is >10,000; potential	Professional judgment; Boethling	Based on cutoff values for large high			
		for irreversible lung damage as a result of	et al., 1997	MW polymers.			
		lung overloading (Estimated by analogy)					
Skin Sensitization		LOW: Estimated not to have potential for skin sensitization based on expert judgment. No data located.					
	Skin Sensitization	Not expected to be a skin sensitizer	Expert judgment	Estimated based on expert judgment.			
		(Estimated)					
Respiratory Sensitiz	zation	No data located.	1				
	Respiratory Sensitization			No data located.			
Eye Irritation		LOW: Brominated polystyrene is a mild of	eye irritant in rabbits; irritation	begins to clear within 24 hours and is			
	1	completely cleared within 48 hours.	1				
	Eye Irritation	Minimally irritating, rabbit clearing within	Industrial Bio-Test Laboratories,	Adequate, guideline study.			
		24 hours	1977b				
Dermal Irritation		LOW: Estimated not to have potential for	r dermal irritation. Available exp	perimental data are inadequate to			
		make a hazard designation for this endpo	int.				
	Dermal Irritation	Not expected to be a skin irritant	Expert judgment	Estimated based on expert judgment.			
		(Estimated)					

Brominated Polystyrene CASRN 88497-56-7						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
		Moderately irritating, rabbit. Skin reactions characterized by pale red to red, well- defined erythema and moderate to severe edema that subsided by 7 days. Slight desquamation at test skin site at 14 days. (Test substance was administered as a fine powder in a slurry containing 1.0% aqueous methylcellulose)	Industrial Bio-Test Laboratories, 1977a	Result likely due to the presence of an impurity.		
Endocrine Activity		This polymer is large, with a MW >1,000.	It is not expected to have endocr	rine activity due to its poor		
		Limited bioavailability expected (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff values for large high MW polymers.		
Immunotoxicity		This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore has a low potential for immunotoxicity. No data located.				
	Immune System Effects	Limited bioavailability expected (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff values for large high MW polymers.		
		ECOTOXICITY				
Acute Toxicity		LOW: Non-ionic polymers with a MW >1 comprised of minimal low MW oligomers amount dissolved in water is not anticipat expressed. Bioavailability is limited becau size.	,000 that do not contain reactive . These polymers display no effe- ted to reach a concentration at w use this chemical cannot be absor	functional groups and are cts at saturation (NES) because the hich adverse effects may be bed through membranes due to large		
Fish LC ₅₀		Fish (<i>Orizias latipes</i>) 48-hour TLm >500 mg/L (Experimental)	Nissan Ferro Organic Chem Inc, 1990	Inadequate; Organisation of Economic Cooperation and Development (OECD) guidelines recommend study duration of 96-hours for this endpoint. Units are not applicable to screening methodology.		
		INES	Professional judgment	and low water solubility suggest there will be NES.		

Brominated Polystyrene CASRN 88497-56-7						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Daphnid LC ₅₀		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.		
Green Algae EC ₅₀		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.		
Chronic Aquatic To	oxicity	LOW: Brominated polystyrene is compr reactive functional groups and are comp because the amount dissolved in water is be expressed. Bioavailability is limited b large size.	rised of non-ionic polymers with a prised of minimal low MW oligom s not anticipated to reach a concer ecause this chemical cannot be ab	MW >1,000 that do not contain ers. These polymers display NES ntration at which adverse effects may psorbed through membranes due to		
Fish ChV		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.		
Daphnid ChV		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.		
Green Algae ChV		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.		
		ENVIRONMENTAL	FATE			
Transport The estimated negligible water solubility and estimate atm-m ³ /mole indicates that it is not expected to water solubility and estimate atm-m ³ /mole indicates that it is not anticipated to migrate from adsorb to sediment.				pressure indicate that this polymer is d Henry's Law Constant of $<10^{-8}$ the atmosphere. The estimated K _{oc} of dwater and also has the potential to		
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to have low vapor pressure and are not expected to undergo volatilization.		
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	>30,000 (Estimated)	Professional judgment Boethling et al., 1997	Cutoff value used for large, high MW polymers. High MW polymers are expected to adsorb strongly to soil and sediment.		

Brominated Polystyrene CASRN 88497-56-7						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
	Level III Fugacity Model			No data located.		
Persistence		VERY HIGH: This polymer is large, with poor bioavailability to microorganisms in be important removal processes in the en has been observed, this process is not ant half-life for this high MW polymer of >18	n a MW >1,000. It is expected to adicating that neither biodegrada vironment. Although photodegra icipated to lead to ultimate remov 80 days leads to the potential for	have negligible water solubility and tion nor hydrolysis are expected to adation of brominated polystyrenes val of the material. As a result, a very high persistence.		
Water	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to be non-biodegradable.		
	Volatilization Half-life for Model River	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.		
	Volatilization Half-life for Model Lake	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.		
Soil	Aerobic Biodegradation			No data located.		
	Anaerobic Biodegradation			No data located.		
	Soil Biodegradation with Product Identification			No data located.		
	Sediment/Water Biodegradation			No data located.		
Air	Atmospheric Half-life			No data located.		
Reactivity	Photolysis	Photodegradation observed based on a decreased MW of brominated polystyrene (Measured)	Kaeriyama et al., 1972	The bromine substituent is susceptible to photolysis; however, this is expected to be a relatively slow process for brominated polystyrene and is not anticipated to lead to ultimate removal of the material.		
	Hydrolysis	>1 year (Estimated)	Professional judgment	Given the limited solubility estimated for this material, hydrolysis is not anticipated to occur to an appreciable extent.		

Brominated Polystyrene CASRN 88497-56-7						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Environmental Half-life		>180 days (Estimated)	Professional judgment	The substance has a MW >1,000 and is not anticipated to be assimilated by microorganisms. Therefore, biodegradation is not expected to be an important removal process. Other degradative processes under environmental conditions are also not anticipated.		
Bioaccumulation		LOW: Due to the large size and water insolubility of this high MW polymer, it is of low potential for bioconcentration or bioaccumulation.				
	Fish BCF	<100 (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW, insoluble polymers.		
	BAF			No data located.		
	Metabolism in Fish			No data located.		
		ENVIRONMENTAL MONITORING A	ND BIOMONITORING			
Environmental Mo	nitoring	No data located.				
Ecological Biomoni	toring	No data located.				
Human Biomonitoring		This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2011).				

Boethling, Robert S. and Nabholz, J. Vincent "Environmental Assessment of Polymers under the U.S. Toxic Substances Control Act", pp. 187-234, in Ecological Assessment of Polymers Strategies for Product Stewardship and Regulatory Programs, Hamilton, John D. and Sutcliffe, Roger (eds.), (1997) Van Nostrand Reinhold.

CDC (Centers for Disease Control and Prevention). (2011). Fourth national report on human exposure to environmental chemicals, updated tables. Department of Health and Human Services.

Industrial Bio-Test Laboratories Inc. (1977a). Report to Ferro Corporation, Acute dermal toxicity study with JM-631 in Albino rabbits. EPA Document No. 86-900000142, Fiche No. OTS0522213.

Industrial Bio-Test Laboratories Inc. (1977b). Report to Ferro Corporation, Acute toxicity studies with Jm-631. <u>EPA Document No.</u> 86-900000140, Fiche No. OTS0522211.

Ioffe, D. and A. Kampf (2002). Bromine - Organic Compounds. Kirk-Othmer Encyclopedia of Chemical Technology, Wiley-Interscience.

Kaeriyama, K., Y. Shimura, et al. (1972). "Photodegradation of brominated polystyrene." J. Appl. Polym. Sci. 16(11): 3035-3038.

Mack, A. G. (2004). Flame Retardants, Halogenated. Kirk-Othmer Encyclopedia of Chemical Technology., Wiley-Interscience.

Microbiological Associates (1978). Report to Ferro Corporation, Activity of JM-631 in the Salmonella/Microsomal assay for bacterial mutagenicity. <u>EPA Document No. 86-90000014</u>, Fiche No. OTS0522214.

Nissan Ferro Organic Chem Inc. (1990). Toxic level test and bioaccumulation test with brominated polystyrene (Sample \$S-346) in fish with test data. <u>EPA Document No. 86-900000145</u>, Fiche No. OTS0522216.

Pakalin, S., T. Cole, et al. (2007). Review on production processes of decabromodiphenyl ether (DECABDE) used in Polymeric applications in electrical and electronic equipment, and assessment of the availability of potential alternatives to DECABDE. European Commission Joint Research Centre.

Springborn Labs Inc. (1991). Acute inhalation toxicity study in rats with Pyro-Chek LM (amended final report). <u>EPA Document No.</u> <u>86-910000862</u>, Fiche No. OTS0530450.

Decabromodiphenyl Ethane

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. [§] Based on analogy to experimental data for a structural similar compound.

			Human Health Effects			Aqu Toxic	atic ity ^{**}	Enviro F	nmental ate							
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Decabromodiphenyl Ethane	84852-53-9	L	M [§]	L	L	H^{\S}	L	L	L		VL	VL	L	L	VH	H

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Decabromodiphenyl Ethane

Br		CASRN: 84852-53-9				
Br Br Br		MW: 971.2				
Br		MF: $C_{14}H_4Br_{10}$				
		Physical Forms: Neat: Solid				
Dr		Use: Flame retardant				
SMILES: c1(Br)c(Br)c(Br)c(Br)c(Br)c1CCc1c(Br)c(Br)c(Br)c1Br						
Synonyms: Benzene, 1,1'-(1,2-ethanediyl)bis[2,3,4,5,6-pentabromo-]; 1,1'-(1,2-Ethanediyl) bis[2,3,4,5,6-pentabromo-benzene]; Ethane 1,2-(bispentabromophenyl); EBP; Bis(pentabromophenyl) ethane; 1,1'-(ethane-1,2-diyl)bis[pentabromobenzene]; Decabromodiphenyl ethane; DBDP-Ethane; DBDPE; DBDiPhEt; DBDE; EBPE; DeBrPylE; Saytex 8010; Firemaster 2100						
Chemical Considerations: This is a discrete organic chemical with a MW <1,000 due to an absence of experimental data. Measured values from experimental studies	EPI v 4.0 was used to estimate physical/chers were incorporated into the estimations.	mical and environmental fate values				
Polymeric: No Oligomers: Not applicable						
Metabolites, Degradates and Transformation Products: Photodegradation – pot	ential to form lower brominated congeners (V	Wang et al., 2010)				
Analog: Decabromodiphenyl ether (decaBDE), confidential analogs Endpoint(s) using analog values: Carcinogenicity; developmental toxicity; neurotoxicity; absorption, distribution, metabolism & excretion	Analog Structure:	Br Br Br				
	DecaBI (1163-19	DE 9-5)				
Structural Alerts: Immunotoxicity, polyhalogenated aromatic hydrocarbons (EPA	Structural Alerts: Immunotoxicity, polyhalogenated aromatic hydrocarbons (EPA, 2011); test data are available to address this category.					
Risk Phrases: Not classified by Annex I Directive 67/548/European Economic Co	mmunity & IUCLID (Pakalin et al., 2007).					
Hazard and Risk Assessments: An environmental risk evaluation report was com	pleted by the UK government Environment A	Agency (Dungey et al., 2007).				

Decabromodiphenyl Ethane CASRN 84852-53-9								
PROPERTY/ENDPOINT DATA DATA REFERENCE DATA QUALIT								
PHYSICAL/CHEMICAL PROPERTIES								
Melting Point (°C)	350 (Measured)	Mack, 2004	Adequate.					
Boiling Point (°C)	>350 (Estimated)	Professional judgment	Based on the reported experimental melting point value.					
Vapor Pressure (mm Hg)	$<7.5 \text{ x}10^{-7}$ (Measured)	Hardy, 2004	Adequate.					
Water Solubility (mg/L)	7.2×10^{-4} (Measured)	Hardy, 2004	Adequate.					
Log K _{ow}	14 (Estimated)	EPI; EPA, 1999	Estimated value is greater than the cutoff value, >10, according to methodology based on HPV assessment guidance.					
	3.55 According to column elution method OPPTS 830.7560. The concentration in the water phase was very close to the measured water solubility. It was noted that a higher stock solution concentration could have led to a higher K _{OW} value using this technique. (Measured)	Pakalin et al., 2007 and Dungey et al., 2007	The value was reported in a secondary source and was obtained using a guideline study, however, it is considered unreliable based on comparison to other substances that contain multiple bromine atoms.					
Flammability (Flash Point)	Nonflammable (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.					
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.					
Pyrolysis			No data located.					
рН	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.					
pKa	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.					

Decabromodiphenyl Ethane CASRN 84852-53-9						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
		HUMAN HEALTH EFF	ECTS			
Toxicokinetics		Decabromodiphenyl ethane, as a neat material, is estimated to not be absorbed through the skin and to have poor skin absorption when in solution. Decabromodiphenyl ethane is expected to have poor absorption via the lungs and gastrointestinal (GI) tract. Decabromodiphenyl ethane is poorly absorbed in the GI tract following oral exposure and is mainly excreted in the feces. If absorption does occur, decabromodiphenyl ethane is distributed to the serum, liver, kidney, and adipose tissues and undergoes biotransformation to form metabolites.				
Dermal Absorption	in vitro			No data located.		
Absorption, Distribution, Metabolism & Excretion	Oral, Dermal or Inhaled	Not absorbed through the skin as the neat material; poor absorption through skin if in solution; poor absorption from the lung and GI tract. (Estimated by analogy)	Professional judgment	Based on closely related confidential analogs with similar structures, functional groups, and physical/chemical properties.		
		In an acute (single dose) oral study in rats, decabromodiphenyl ethane was poorly absorbed (if at all) in the GI tract and was excreted in the feces. There were no detectable levels of decabromodiphenyl ethane in bile, blood or urine. This finding is consistent with the poor solubility and the MW of decabromodiphenyl ethane.	Hardy, 2004	Guideline study (performed according to good laboratory practice (GLP)); reported in a secondary source; test substance: Saytex 8010.		
		Rats, single oral (gavage) dose of 100 mg/kg-day of unlabeled and ¹⁴ C-labeled decabromodiphenyl ethane; tissues, bile and feces and urine were assayed for radiochemical content. In one group of rats that were euthanized 168 hours post dosing, 89% of radioactive content was recovered in the feces with none in urine; radioactivity in tissues were generally below the limit of detection with <0.2% of the dose found	Black, 2012	Unpublished study; the study suggests decabromodiphenyl ethane is poorly absorbed by the oral route.		

Decabromodiphenyl Ethane CASRN 84852-53-9						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	 in tissues. In another group of rats assayed 8 – 24 hours post-dosing by bile duct annulation, no bile samples had increased levels of radioactivity compared to controls. A group of jugular catheterized rats assayed at 0.25, 0.5, 1, 2, 6, 12, 24, 48, and 72 hours found that levels of radioactive content in blood and plasma were below the limit of detection at all time points; tissues from rats sacrificed at 2, 24, and 72 hours post exposure found the majority of radioactivity in the GI tract through 24 hours with no radioactivity found by 72 hours post exposure; it was presumed to have been 					
	excreted in the feces. Rats, 90-day oral exposure; decabromodiphenyl ethane was found to be distributed to all tissues examined (serum, liver, kidney, and adipose); biotransformation occurred in rats, though debromination to lower brominated bromodiphenyl ethanes was not the primary metabolic pathway; proposed metabolites were identified as MeSO ₂ -nona-BDPE and EtSO ₂ -nona BDPE	Wang et al., 2010	The study suggests decabromodiphenyl ethane is absorbed by the oral route and biotransformation occurred.			

Decabromodiphenyl Ethane CASRN 84852-53-9						
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Acute Mammalian	1 Toxicity	LOW: Based on a rat oral LD ₅₀ of >5,00 inhalation hazard data located.	LOW: Based on a rat oral LD ₅₀ of >5,000 mg/kg and a rabbit dermal LD ₅₀ of >2,000 mg/kg. No acute inhalation hazard data located.			
Acute Lethality	Oral	Rat oral LD ₅₀ >5,000 mg/kg	Hardy et al., 2002; Hardy, 2004	Guideline study; test substance: Saytex 8010.		
	Dermal	Rabbit dermal LD ₅₀ >2,000 mg/kg	Hardy et al., 2002; Hardy, 2004	Guideline study, reported in a secondary source; test substance: Saytex 8010.		
	Inhalation			No data located.		
Carcinogenicity		MODERATE: Potential for carcinogenicity based on analogy to decaBDE and professional judgment. No experimental carcinogenicity data for exposure to decabromodiphenyl ethane was located.				
	OncoLogic Results			Structure could not be evaluated by OncoLogic.		
	Carcinogenicity (Rat and Mouse)	Potential for carcinogenicity; increased incidence of neoplastic nodules of the liver in rats; equivocal evidence of increased incidences of hepatocellular adenomas or carcinomas and thyroid gland follicular cell adenomas or carcinomas in male mice. (Estimated by analogy)	Professional judgment	Estimated based on the high potential for bioaccumulation and by analogy to decaBDE which resulted in potential carcinogenic effects following chronic exposure in a National Toxicology Program study.		
	Combined Chronic Toxicity/ Carcinogenicity			No data located.		

Decabromodiphenyl Ethane CASRN 84852-53-9						
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Genotoxicity		LOW: Based on negative experimental results for gene mutations in <i>Salmonella</i> and chromosomal				
		aberrations in Chinese hamster ovary (CHO) cells.				
	Gene Mutation in vitro	Negative for gene mutations in	Hardy et al., 2002; Hardy, 2004	Guideline study (according to		
		Salmonella typhimurium strains TA98,		Japanese Ministry of International		
		TA100, TA1535, TA1537 and		Trade and Industry (MITI) and GLP		
		Escherichia coli WP2 uvrA with and		guidelines), reported in a secondary		
		without exogenous metabolic activation.		source; test substance: Saytex 8010.		
	Gene Mutation in vivo			No data located.		
	Chromosomal	Negative for chromosomal aberrations in	Hardy et al., 2002; Hardy, 2004	Guideline study (according to MITI		
	Aberrations in vitro	CHO cells with and without metabolic		and GLP guidelines), reported in a		
		activation.		secondary source; test substance:		
				Saytex 8010.		
	Chromosomal			No data located.		
	Aberrations <i>in vivo</i>					
	DNA Damage and			No data located.		
	Repair					
	Other (Mitotic Gene			No data located.		
	Conversion)					
Reproductive Effe	cts	LOW: The located data suggest no repr	oductive effects based on a NOE	L for maternal and fetal toxicity of		
		\geq 1,250 mg/kg/day in rats and rabbits. H	owever, there is uncertainty in th	his hazard designation because the		
		exposure was of subchronic (gestational) duration and the studies were n	ot experimentally designed as a		
		reproduction toxicity screen or combine	d repeated dose/reproduction/de	velopmental toxicity screen.		
	Reproduction/			No data located.		
	Developmental Toxicity					
	Screen					
	Combined Repeated			ino data located.		
	Dose with					
	Reproduction/					
	Developmental Toxicity					
	Screen					

Decabromodiphenyl Ethane CASRN 84852-53-9					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Reproduction and Fertility Effects	There was no evidence of treatment- related adverse effects on the reproductive system in two developmental toxicity studies in rats and rabbits. NOEL (maternal and fetal) ≥1,250 mg/kg/day (highest dose tested) LOEL: not established	Hardy, 2004, Hardy et al., 2010	Guideline study (according to US Toxic Substances Control Act (TSCA) Guidelines and GLP) reported in a secondary source; test substance: Saytex 8010.	
Developmental Effects		HIGH: Estimated to be High for develop maternal or fetal toxicity effects in rats of decabromodiphenyl ethane. Some roden indicate adverse effects for the neurodev studies located for decabromodiphenyl of decabromodiphenyl ethane, neurodevelo	pmental neurotoxicity based on a or rabbits exposed during gestati at developmental neurotoxicity st velopmental endpoint. There we ethane. Due to the analogous pro opmental toxicity is predicted.	nalogy to decaBDE. There were no on to doses up to 1,250 mg/kg/day udies of the analog decaBDE re no developmental neurotoxicity operties of decaBDE and	
	Reproduction/ Developmental Toxicity Screen	• • • • • • • • • • • • • • • • • • •		No data located.	
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen			No data located.	
	Prenatal Development	In two developmental oral gavage studies in mated female rats (gestation days (GD) 6-15) and rabbits (GD 6-18), there were no treatment-related fetal malformations or developmental variations. No maternal toxicity was evident. NOEL (maternal and fetal) ≥1,250 mg/kg/day (highest dose tested) LOEL: Not established	Hardy et al., 2002; Hardy, 2004; Hardy et al., 2010	Guideline study (according to US TSCA Guidelines and GLP) reported in a secondary source; test substance: Saytex 8010.	

Decabromodiphenyl Ethane CASRN 84852-53-9			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Postnatal Development/Developm ental Neurotoxicity	Evaluation of locomotor activity in C57BL6/J mice. NOAEL: not established LOAEL: 6 mg/kg-day (based on decreased T4 levels in male mice and effects on locomotor	EPA, 2008; Washington DOE, 2008; Professional judgment	Estimated based on analogy to decaBDE; study details reported in a secondary source.
	(Estimated by analogy) Single dose gavage in male Sprague Dawley rats; NOAEL: Not established LOAEL: 6.7 mg/kg (Dose-related disruption in habituation [changes in locomotion, rearing, total activity] at both doses). (Estimated by analogy)	EPA, 2008; Professional judgment	Estimated based on analogy to decaBDE; each dose administered a single time; not a guideline study. Study details reported in a secondary source.
	NMRI male mice gavaged with decaBDE (99% pure) at 0, 2.22, or 20.1 mg/kg on PNDs3-19 or 0, 1.34, 13.4 or 20.1 mg/kg on PND10. Dose-related disruption in habituation (changes in locomotion, rearing, total activity) at 2, 4, and 6 months following exposure to 20.1 mg/kg on PND3. NOAEL: 2.22 mg/kg LOAEL: 20.1 mg/kg (Estimated by analogy)	European Chemicals Bureau 2002; EPA, 2008; Professional judgment	Estimated based on analogy to decaBDE; each dose administered a single time; not a guideline study. Study details reported in a secondary source.

Decabromodiphenyl Ethane CASRN 84852-53-9				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Neurotoxicity		LOW: There were no adult neurotoxicity studies of decabromodiphenyl ethane located. Developmental neurotoxicity is associated with the analog decaBDE, but does not directly trigger a hazard potential for adult neurotoxicity. There is no reported evidence to support a potential for hazard for adult neurotoxicity for this compound or analogous highly brominated compounds.		
	Neurotoxicity Screening Battery (Adult)	Low potential for neurological effects. (Estimated)	Professional judgment	Estimated based on the absence of structural alerts that have been [experimentally] associated with the adult neurotoxicity endpoint.
Repeated Dose End	ects	LOW: Based on a NOAEL and LOAEL of ≥1,000 mg/kg/day in 28 and 90-day oral rat studies, respectively. Experimental data for decabromodiphenyl ethane reported increased liver weights associated with minimal and transient hepatocellular vacuolization following a 90-day oral exposure. The increase in liver weights was associated with minimal to slight hepatocellular vacuolation, which had no long-term effect and was resolved after a 28-day recovery period at the highest doses tested (1,000 mg/kg/day). A LOAEL was not established in the 28-day study, as the highest doses tested did not produce adverse effects		
		In a 28-day oral gavage study in rats, there was no mortality or clinical signs of toxicity, and no treatment-related statistically significant effects for changes in body weight, food consumption, body weight gain, hematology, serum chemistry, urinalysis, gross necropsy, relative and absolute organ weight, or histopathology. NOAEL >1,250 mg/kg/day (highest dose tested) LOAEL: not established	Hardy, 2004	Guideline study (according to US TSCA Guidelines and GLP), reported in a secondary source Organisation for Economic Cooperation and Development (OECD) 407; test substance: Saytex 8010.

Decabromodiphenyl Ethane CASRN 84852-53-9			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	In a 90-day oral gavage study in rats, there was no mortality, clinical or systemic signs of toxicity or ocular lesions; no changes in urine or serum chemistry, hematology, body weight, body weight gain or food consumption. Mean liver weights increased in males at the highest dose tested (but not at lower doses). Increased liver weight was associated with minimal to slight hepatocellular vacuolation and minimal to slight centrilobular hepatocytomegaly; liver changes returned to normal after a 28-day recovery period; no changes in female rat livers. There were no immunotoxicity effects, noted in a 90- day oral gavage study in rats. NOAEL ≥320 mg/kg/day	Hardy et al., 2002; Hardy, 2004	Guideline study (according to US TSCA Guidelines and GLP), reported in a secondary source; OECD 408; test substance: Saytex 8010.
	LOAEL = 1,000 mg/kg/day (highest dose tested) In a 90-day oral study in rats, there were no significant changes in body weight, or absolute and relative liver and kidney weights; hepatotoxicity indicated by changes in serum chemistry including increased TBA levels, decreased Cr, AST, and ALP activities; increased serum T3 thyroid hormone levels; increased CYP3A2 mRNA expression. LOAEL = 100 mg/kg/day (only dose tested)	Wang et al., 2010	Only one dose tested; a NOAEL was not established; no histopathological assessments were made on the liver; data are insufficient to determine a hazard designation for this endpoint.

Decabromodiphenyl Ethane CASRN 84852-53-9				
PROPER	TY/ENDPOINT	DATA REFERENCE DATA QUALITY		
Skin Sensitization		LOW: Experimental data for decabromodiphenyl ethane were negative for skin sensitization in the guinea		
		pig.		
	Skin Sensitization	Negative for skin sensitization, guinea	Hardy et al., 2002; Hardy, 2004	Guideline study, reported in a
		pigs		secondary source; test substance:
				Saytex 8010.
Respiratory Sensiti	zation	No data located.		
	Respiratory			No data located.
	Sensitization			
Eye Irritation		VERY LOW: Decabromodiphenyl ethan	ne is not an eye irritant in rabbits	5.
	Eye Irritation	Non-irritant, rabbit	Hardy et al., 2002; Hardy, 2004	Guideline study, reported in a
				secondary source; test substance:
				Saytex 8010.
Dermal Irritation		VERY LOW: Decabromodiphenyl ethane is not a skin irritant in rabbits.		
	Dermal Irritation	Non-irritant, rabbit	Hardy et al., 2002; Hardy, 2004	Guideline study, reported in a
				secondary source; test substance:
				Saytex 8010.
Endocrine Activity		There were limited data located for this endpoint.		
		90-day oral study in rats; increased	Wang et al., 2010	Only one dose tested; a NOAEL
		serum T3 thyroid hormone levels; no		was not established, so it is
		effects on thyroxine levels		uncertain where effects would
				occur; did not evaluate thyroid
				weight, or histopathology.
Immunotoxicity		There were no immunotoxicity effects noted in a 90-day oral gavage study in rats.		
	Immune System Effects	There were no immunotoxicity effects,	Hardy et al., 2002; Hardy, 2004	Guideline study (according to US
		noted in a 90-day oral gavage study in		TSCA Guidelines and GLP),
		rats.		reported in a secondary source;
				OECD 408; test substance: Saytex
				8010.

Decabromodiphenyl Ethane CASRN 84852-53-9			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	ECOTOXICITY		
ECOSAR Class			
Acute Toxicity	LOW: Experimental values for daphnia invertebrate suggest that decabromodip acutely toxic to fish, daphnia or green al	and fish, and ECOSAR estimation henyl ethane exhibits no effects a gae	ons for green algae and saltwater t saturation (NES) and is not
Fish LC ₅₀	Rainbow trout (<i>Oncorhynchus mykiss</i>) 96-hour LLR ₅₀ >110 mg/L (static, nominal) (Experimental)	Hardy et al., 2012	The reported value was determined using a water accommodated fraction (WAF). According to OECD guidelines, WAFs should only be used to determine toxicity of multi-component substances. As a result, the reported value is greater than this material's water solubility.
	Fish 96-hour LC ₅₀ = 4.29x10 ° mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 14 for this chemical exceeds the structure activity relationship (SAR) limitation for log K_{ow} of 5.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.

Decabromodiphenyl Ethane CASRN 84852-53-9			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Daphnid LC ₅₀	Daphnia (<i>Daphnia magna</i>) 48-hour LLR ₅₀ >110 mg/L (static, nominal) (Experimental)	Hardy et al., 2012	The reported value was determined using a WAF. According to OECD guidelines, WAFs should only be used to determine toxicity of multi- component substances. As a result, the reported value is greater than this material's water solubility.
	Daphnia (<i>Daphnia magna</i>) 48-hour EC ₅₀ = 19 μ g/L (0.019 mg/L, nominal) (Experimental)	Nakari and Huhtala, 2010	Although in a guideline study (ISO 6341, 1996), the reported value is greater than the substance's water solubility (0.72 μ g/L).
	Daphnia 48-hour LC ₅₀ = 1.35x10 ⁻⁷ mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 14 for this chemical exceeds the SAR limitation for log K_{ow} of 5.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
Saltwater Invertebrate LC ₅₀	Mysid Shrimp 96-hour LC ₅₀ = 28 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 14 for this chemical exceeds the SAR limitation for log K_{ow} of 5.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to

Decabromodiphenyl Ethane CASRN 84852-53-9			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
			narcosis.
Green Algae EC ₅₀	Green Algae (<i>Pseudokirchneriella</i> <i>subcapitata</i>) 96-hour EL ₅₀ and NOAEL >110 mg/L (static, nominal) (Experimental)	Hardy et al., 2012	The reported value was determined using a WAF. According to OECD guidelines, WAFs should only be used to determine toxicity of multi- component substances. As a result, the reported value is greater than this material's water solubility.
	Green Algae 96-hour EC ₅₀ = 1.01x10 ⁻⁵ mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 14 for this chemical exceeds the SAR limitation for log K_{ow} of 6.4; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.

Decabromodiphenyl Ethane CASRN 84852-53-9			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Chronic Aquatic Toxicity	LOW: Estimated data suggest NES for o	chronic aquatic toxicity endpoint	5.
Fish ChV	Zebra fish (<i>Danio rerio</i>) static-renewal (48-hr renewal intervals) egg-larvae test: LOEC = 12.5 μ g/L (0.0125 mg/L, nominal) based on mortality of eggs and hatched larvae; NOEC <12.5 μ g/L (0.0125 mg/L, nominal) (Experimental)	Nakari and Huhtala, 2010	Not a standard test for the determination of hazard for which emphasis is strongly placed on whole organism studies; Supporting information presented in a non-standard, guideline study (ISO 12890, 1999) with insufficient study details. The solvent dimethyl sulfoxide was used to solubilize test substance into solution. Non-standard dilution water was used. Test concentrations were above the identified water solubility value (0.72 μ g/L).
	(Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 14 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
Daphnid ChV	Daphnid ChV = 9. 91x10 ⁻⁸ mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 14 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative

Decabromodiphenyl Ethane CASRN 84852-53-9								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
			purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.					
Saltwater Invertebrate ChV	Mysid Shrimp ChV = 2.91x10 ⁻¹⁴ mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 14 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.					
Green Algae ChV	Green Algae ChV = 2.68x10 ⁻⁵ mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 14 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.					
Decabromodiphenyl Ethane CASRN 84852-53-9								
---	--	---------------------------------	---	--	--	--	--	--
PROPERTY/ENDPOINT	DATA	DATA REFERENCE DATA QUALIT						
Sediment Dwelling Organisms ChV	Midge (<i>Chironmus riparius</i>) 28-day; there were no treatment-related effects for mean development times, emergence rates and development rates. NOEC = 5,000 mg/kg dry sediment (highest concentration tested) LOEC >5,000 mg/L (Experimental)	Hardy, 2004; Hardy et al., 2012	Adequate, guideline study (according to OECD, OPPTS and GLP); the LOEC and NOEC were determined from visual interpretation of the concentration- response-curve and statistical analysis of the survival/reproduction and dry weight data.					
	Oligochaete (<i>Lumbriculus variegates</i>) 28-day; there were no significant treatment-related effects on mean dry weight/oligochaete. NOEC = 5,000 mg/kg dry sediment (highest concentration tested) LOEC >5,000 mg/L (Experimental)	Hardy, 2004; Hardy et al., 2012	Adequate, guideline study (according to OECD, OPPTS and GLP); the LOEC and NOEC were determined from visual interpretation of the concentration- response-curve and statistical analysis of the survival/reproduction and dry weight data.					
Earthworm Subchronic Toxicity	Earthworm 28-day survival and reproduction test: NOEC (survival) = 3,720 mg/kg dry soil (highest dose tested); LOEC (reproduction) = 3,720 mg/kg dry soil; NOEC (reproduction) = 1,910 mg/kg dry soil (Experimental)	Hardy, 2011	Adequate, guideline study (according to OECD, OPPTS and GLP).					

Decabromodiphenyl Ethane CASRN 84852-53-9						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
ENVIRONMENTAL FATE						
TransportBased on the Level III fugacity models incorporating the located experimental decabromodiphenyl ethane is expected to partition primarily to soil. Decabro to be immobile in soil based on its estimated Koc. Leaching of decabromodiphe groundwater is not expected to be an important transport mechanism. Estima indicate that it will be non-volatile from surface water. Volatilization from dr based on its vapor pressure. In the atmosphere, decabromodiphenyl ethane is particulate phase, based on its estimated vapor pressure. Particulates may be deposition.				ental property data, bromodiphenyl ethane is expected liphenyl ethane through soil to timated volatilization half-lives n dry surface is also not expected ne is expected to exist solely in the y be removed from air by wet or dry		
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	EPI; Professional judgment	Cutoff value for nonvolatile compounds based on the ionic nature of the material.		
$\begin{array}{l} \textbf{Sediment/Soil} \\ \textbf{Adsorption/Desorption} \\ \textbf{Coefficient} - \textbf{K}_{oc} \end{array}$		>30,000 (Estimated)	EPI; EPA, 2004	Cutoff value for nonmobile compounds.		
	Level III Fugacity Model	Air = <1% Water = 4.5% Soil = 95% Sediment = <1% (Estimated)	EPI			

	Decabromodiphenyl Ethane CASRN 84852-53-9								
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Persistence		VERY HIGH: Very high persistence of decabromodiphenyl ethane is expected based on experimental biodegradation data. Decabromodiphenyl ethane was determined to not be readily biodegradable in a 28-day MITI test nor was it inherently degradable in a 90-day aerobic sewage/soil test using pre-exposed inoculum. Decabromodiphenyl ethane is not expected to undergo hydrolysis since it does not contain hydrolysable functional groups. The atmospheric half-life of decabromodiphenyl ethane is estimated to be 4.5 days, although it is expected to exist primarily in the particulate phase in air. Laboratory studies have demonstrated photolysis of decabromodiphenyl ethane, although the rate of this process under environmental conditions has not been established.							
Water	Aerobic Biodegradation	Not inherently biodegradable according to OECD, 2000 guideline study (Measured). The decabromodiphenyl ethane treated bottles evolved an amount of the theoretical inorganic carbon (ThIC) equivalent to that of the untreated controls. Transformation of [14 C]-labeled decabromodiphenyl ethane was not observed in the 90-d aerobic study. Not readily biodegradable by activated sewage sludge over 28 days (MITI/OECD 301C Modified MITI)	Hardy, 2004 Hardy, 2004	Adequate, guideline study. Adequate, guideline study.					
	Volatilization Half-life for Model River	(Measured) >1 year (Estimated)	EPI						
	Volatilization Half-life for Model Lake	>1 year (Estimated)	EPI						
Soil	Aerobic Biodegradation			No data located.					
	Anaerobic Biodegradation	Not biodegradable by anaerobic sewage bacteria within 60 days (Measured)	Schaeffer and Mathews, 2011	Adequate nonguideline study.					
	Soil Biodegradation w/ Product Identification			No data located.					
Sediment/Water Biodegradation				No data located.					

	Decabromodiphenyl Ethane CASRN 84852-53-9							
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Air	Atmospheric Half-life	4.5 days (Estimated)	EPI					
Reactivity Photolysis		Debrominated congeners identified by a photolytic degradation with a 125W high- pressure mercury lamp experiment using GC/EI-MS and GC/ECNI-MS analysis. (Measured)	Wang et al., 2010	Nonguideline study that demonstrates the potential for both direct and indirect photolysis in the environment. The significance of the laboratory removal rates under environmental conditions cannot be determined.				
	Hydrolysis	Not a significant fate process (Estimated)	Wolfe and Jeffers, 2000; Professional judgment	The substance does not contain functional groups that would be expected to hydrolyze readily under environmental conditions.				
Environmental Half-Life		>1 year (Estimated)	EPI; PBT Profiler	Half-life estimated for the predominant compartment, as determined by EPI and the PBT Profiler methodology.				
Bioaccumulation		HIGH: The bioaccumulation hazard des data reporting detections in many differ estimated bioaccumulation factor is low, many species from different habitats and aquatic or terrestrial species.	signation is estimated based on d ent species including those highe , the persistence of decabromodi d trophic levels indicates high po	ecabromodiphenyl ethane monitoring er on the food chain. Although the phenyl ethane and its detection in otential for bioaccumulation hazard in				
Fish BCF		<2.5 at a concentration of 0.5 mg/L after 8 weeks in carp (<i>Cyprinus carpio</i>) (Measured)	Hardy, 2004	Adequate.				
		<25 at a concentration of 0.05 mg/L after 8 weeks in carp (<i>Cyprinus carpio</i>) (Measured)	Hardy, 2004	Adequate.				
	BAF	62 (Estimated)	EPI					
	Metabolism in Fish			No data located.				

Decabromodiphenyl Ethane CASRN 84852-53-9							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
ENVIRONMENTAL MONITORING AND BIOMONITORING							
Environmental Monitoring	Decabromodiphenyl ethane was reported in Decabromodiphenyl ethane was reported in (Venier, 2008) and house dust (Karlsson, 2 2009; Dodson et al., 2012). The presence of (Ricklund et al., 2010). The presence of dec al., 2008). A review article by Betts (2009) environment.	n sludge, sediment, and collected from ambient air samples (Egebäck, 20 007; Ali, 2011; Stapleton, 2008; Ha decabromodiphenyl ethane was rep cabromodiphenyl ethane in sludge for refers to a number of articles repor	om 2001-2002 (Kierkegaard, 2004). 12), air around the Great Lakes arrad, 2008, Dirtu, 2011; Takigami, ported in Swedish lake sediment from countries worldwide (Ricklund et ting decabromodiphenyl ethane in the				
Ecological Biomonitoring	Decabromodiphenyl ethane was detected ir white sucker (5 samples), and burbot (5 sar below the detection limit up to 2.71 (mean (mean 0.66) ng/g lipid weight, respectively captive giant and red pandas from China w (87% detection frequency) and not detected the limit of detection was 0.053-2.49 ng/g. ethane was detected in the muscle of 28 of breasted rail (n=5), ruddy-breasted crake (r concentrations ranging from not detected to Decabromodiphenyl ethane was detected ir of wild terrestrial bird, and two species of c (ng/g lipid weight) in the eggs ranged from (n=9), nd-0.9 in Kentish plover (n=8), 0.3-7 ring-necked pheasant (n=4), 0.1-1.0 in mall colonies of herring gulls from the Laurentia analyzed and decabromodiphenyl ethane w 44 ng/g w.w. The occurrence and concentra collected from the Great Lakes increased fr ranging from 13 to about 200 ng/g, lipid wa Lakes Michigan and Huron. In a study of 2 ethane was detected once at 8.2 ng/g fat (L1 common sole from three nursery zones alon decabromodiphenyl ethane concentrations and the same species (common sole) collected in	n walleye (5 samples), emerald shim nples) from Lake Winnipeg, Canad 1.01), 1.51 (mean 0.30), 1.63 (mean . Decabromodiphenyl ethane was for ith concentrations ranging from not d to 40.9 ng/g lipid weight (71% det In wild water birds from China's Po 29 birds. It was detected in white-b n=5), Chinese-pond heron (n=5), and o 220, 5-62, 4-16, 33-800, and 29-1 n 54% of eggs sampled of five speci- captive birds collected from North C not detected (nd) to 0.9 in Saunder 2.2 in black-winged stilt (n=6), 0.4- lard (n=11), and nd-1.7 in swan goo an Great Lakes of North America co as detected in two out of seven poo ations of decabromodiphenyl ethane com 2004 to 2006. From 2004 to 20 eight. In 2005, concentrations were 5 peregrine falcon eggs from Canad OD = 1.1 ng/g fat, LOQ = 5.2 ng/g ng the French Atlantic coast collected ranging from 0.18 to 3.90 ng/g fat. I in 2007 2008 and 2009 from the sai	er (5 samples), goldeye (3 samples), a at concentrations that ranged from n 0.62), 0.24 (mean 0.08), and 3.30 bund in various tissues of 21 of 26 detected to 863 ng/g lipid weight tection frequency), respectively, where earl River Delta, decabromodiphenyl reasted water hen (n=11), slaty- d common snipe (n=3) at 10 ng/g lipid weight, respectively. ies of wild aquatic birds, one species China in 2008. Detected concentrations 's gull (n=12), nd-0.1 in common tern 0.7 in common coot (n=4), 0.9-2.4 in ose (n=9). Pools of eggs from seven ollected between 1982 and 2006 were ls showing concentrations at 9.3 and e detected in herring gull eggs 06, the eggs contained concentrations up to 2880 ng/g at two locations of da and Spain, decabromodiphenyl fat). Six pooled samples of juvenile ed in 2003 and 2004 contained In a further study, muscle and liver of me three nursery zones plus an				

Decabromodiphenyl Ethane CASRN 84852-53-9						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	additional one contained mean concentratio 0.28 to 1.13 ng/g fat), and from <lod 14<br="" to="">of polar bears (n = 165) from Alaska, the Ca ethane was detected in samples from the Ca (detection frequency: around 3%) but not th mussel (<i>Mytilus edulis</i>) collected from vario Malaysia, the Philippines and Vietnam from locations. The concentrations ranged from < and Korea. Mean concentrations of decabro <i>molitorella</i>) (n = 12), Crucian carp (<i>Carassi</i> 6) were reported to range from LOD (not gi Chinese mystery snail (<i>Cipangopaludina ch</i> one reptile, Chinese Water Snake (<i>Enhydris</i> prawns was 84.3 ng/g fat, while in the rema collected from southern China, the concentr muscle, liver and kidney were 9.6-16.3, 13.7 Bighead (<i>Hypophthalmichthys nobilis</i>) and <3.80 ng/g fat. Decabromodiphenyl ethane two brominated flame retardant manufactur samples collected in 2009 from the remote <i>A</i> detected in 10% of Brunnich's guillemot eg leaves (n=10; mean 20.2 ng/g) and pine nee et al., 2009; Betts, 2009; Sagerup et al., 201 al., 2009; Gao et al., 2009; Gauthier et al., 2</lod>	ns in sole muscle samples ranging in the second state of the samples ranging in the second state of the s	from 0.9 to 1.9 pg/g w.w. (or from 33 ng/g fat) in liver. In adipose tissue European Arctic, decabromodiphenyl ion: around 10%) and the Hudson Bay een mussel (<i>Perna viridis</i>) and Blue Hong Kong, India, Indonesia, Japan, 1 ethane was detected in 17 out of 67 elevels detected in mussels from Japan nt species of fish Mud carp (<i>Cirrhinus</i> snakehead (<i>Ophicephalus argus</i>) (n = 38 ng/g fat. Two invertebrate species, <i>crobrachium nipponense</i>) (n = 7) and zed and the mean concentration in the above the LOD. In wildlife samples ne in watercock (<i>Gallicrex cinerea</i>) ctively. In carp (<i>Cyprinus sp.</i>), centrations in liver and muscle were all 0 locations in southern Arkansas near .3 and 100 ng/g lipid weight. In ecabromodiphenyl ethane was n of 581 pg/g w.w. In eucalyptus om a rural site in southern China (Shi aw et al., 2006; Hu et al., 2008; Luo et al, 2013).			
Human Biomonitoring	(CDC, 2011).	onal Health and Nutrition Examinat	tion Survey biomonitoring report			

Ali N, Harrad S, Goosey E, Neels H, Covaci A (2011.) "Novel" brominated flame retardants in Belgian and UK indoor dust: Implications for human exposure. Chemosphere 83 (10): 1360–1365.

Betts, K. Glut of data on "new" flame retardant documents its presence all over the world. *Environ. Sci. Technol.* 2009, 43:236-237.

Black, S. Pharmacokinetic studies of [14C]decabromodiphenyl ethane (EBP). Final study report. Albemarle Corporation. RTI International. RTI report No.: RTI/0212983.001.002. September 13, **2012.**

CDC (Centers for Disease Control and Prevention). *Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables.* Department of Health and Human Services **2011**. Available at: http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf as of May 10, 2011.

Dirtu AC, Van Den Eede N, Ali N, Neels H, Covaci A (2011), Profile for Chlorinated and Brominated Organic Contaminants in Indoor Dust. Case Study for Iasi, Eastern Romania. Organohalogen Compounds, 73, 3-12.

Dodson, R., Perovich, L., Covaci, A., et al. After the PBDE Phase-Out: A Broad Suite of Flame Retardants in Repeat House Dust Samples from California. *Environ. Sci. Technol.* **2012.** Article ASAP

Dungey, S.; Akintoye, L. *Environmental risk evaluation report: 1,1'- (Ethane-1,2-diyl)bis[penta-bromobenzene] CAS: 84852-53-9.* Environment Agency, Wallingford, Oxfordshire. **2007.** <u>http://publications.environment-agency.gov.uk/PDF/SCHO0507BMOR-E-E.pdf</u>

ECOSAR/EPI (*EPIWIN/EPISUITE*) *Estimations Programs Interface for Windows*, Version 1.11. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

Egebäck, A.L., Sellström, U., McLachlan, M.S. Decabromodiphenyl ethane and decabromodiphenyl ether in Swedish background air. *Chemosphere*. **2012**. 86(3):264-269.

EPI (EPIWIN/EPISUITE) Estimation Program Interface for Windows, Version 4.0. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

[HPV Assessment Guidance] EPA (U.S. Environmental Protection Agency). Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. <u>http://www.epa.gov/hpv/pubs/general/datadeqfn.pdf</u>

EPA. 2004. The Pollution Prevention (P2) Framework, EPA-748-B-03-001. Office of Pollution Prevention and Toxics 7403M, U.S. Environmental Protection Agency, Washington, DC. 20460. October 2003 version updated in January 2004. Latest version available at <u>http://www.epa.gov/opptintr/newchems/pubs/sustainable/p2frame-june05a2.pdf</u>

EPA Sustainable Futures. *Using NonCancer Screening within the SF Initiative*. U.S. Environmental Protection Agency: Washington D.C. **2011**. available at: <u>http://www.epa.gov/opptintr/sf/pubs/noncan-screen.htm#systemic</u> as of February 09, 2011.

EPA (U.S. Environmental Protection Agency). Toxicological Review of Decabromodiphenyl ether (BDE-209) (CAS No. 1163-19-5). In Support of Summary Information on the Integrated Risk Information System (IRIS). EPA/635/R-07/008F. **2008**.

European Chemicals Bureau (2002). European Union Risk Assessment Report Bis(Pentabromophenyl) Ether: Risk Assessment. CAS No. 1163-19-5. EINECS No. 214-604-9. Luxemborg.

European Food Safety Authority (EFSA) Panel on Contaminants in the Food Chain, Scientific Opinion on Emerging and Novel Brominated Flame Retardants (BFRs) in Food. *EFSA Journal*. **2012**; 10(10):2908.

Gao F, Luo XJ, Yang ZF, Wang XM, Mai BX Brominated flame retardants, polychlorinated biphenyls, and organochlorine pesticides in bird eggs from the Yellow River Delta, North China. *Environ Sci Technol.* **2009**, 43 : 6956-6962.

Gauthier, L.T., Potter, D., Hebert, C.E., Letcher RJ Temporal trends and spatial distribution of non-polybrominated diphenyl ether flame retardants in the eggs of colonial populations of Great Lakes herring gulls. *Environ Sci Technol.* **2009**, 43 : 312-317.

Hardy, M. L. *Saytex* ® 8010 Flame Retardant. Health, Safety and Environment Department; Toxicology and Regulatory Affairs. July 13, **2004** (Updated Sept 2005, Feb 2010, January 2011).

Hardy, M.L., Krueger H., Blankinship A.S., et al. Studies of the potential toxicity of decabromodiphenyl ethane to five aquatic and sediment organisms. *Ecotoxicology and Environmental Safety*. **2012**, 75:73-79.

Hardy, M. L., Margitich D., Ackerman L., Smith R.L. The subchronic oral toxicity of ethane, 1,2-Bis(pentabromophenyl) (Saytex 8010) in rats. *Int. J. Toxicol.* **2002**, 21:165-170.

Hardy, M. L., Mercieca M., Rodwell D., et al. Prenatal developmental toxicity of decabromodiphenyl ethane in the rat and rabbit. *Birth Defects Res. B Dev. Reprod. Toxicol.* **2010**, 89:139-146.

Hardy, M.L., Aufderheide J., Krueger H.O., et al. Terrestrial toxicity evaluation of decabromodiphenyl ethane on organisms from three trophic levels. *Ecotoxicol Environ Saf.* **2011.** 74(4):703-710.

Harrad S, Ibarra C, Abdallah MAE, Boon R, Neels H, Covaci A. 2008. Concentrations of brominated flame retardants in dust from United Kingdom cars, homes, and offices: Causes of variability and implications for human exposure. Environment International, 34, 1170-1175.

Hu, G.C.; Luo, X.J; Dai, J.Y; Zhang, X.L.; Wu, H.; Zhang, C.L.; Guo, W.; Xu, M.Q.; Mai, B.X.; Wei, F.W. Brominated flame retardants, polychlorinated pesticides in captive giant panda (*Ailuropoda melanoeuca*) and red panda (*Ailurus fulgens*) from China. *Environ Sci Technol.* **2008**. 42 : 4704-4709.

Kierkegaard, A.; Björklund, J.; Fridén, U. Identification of the flame retardant decabromodiphenyl ethane in the environment. *Environ Sci Technol.* **2004**, 38(12):3247-53.

Karlsson M, Julander A, van Bavel B and Hardell L, 2007. Levels of brominated flame retardants in blood in relation to levels in household air and dust. Environment International, 33, 62-69.

Law, K.; Halldorson, T.; Danell, R.; Stern, G.; Gewurtz, S.; Alaee, M.; Marvin, C.; Whittle, M.; Tomy, G. Bioaccumulation and trophic transfer of some brominated flame retardants in a Lake Winnipeg (Canada) food web. *Environ Toxicol Chem.* **2006**. 25 (8): 2177-2186.

Luo, X.J.; Zhang, X.L.; Liu, J.; Wu, J.P.; Luo, Y.; Chen, S.J.; Mai, B.X.; Yang, Z.Y. Persistent halogenated compounds in waterbirds from an e-waste recycling region in South China. *Environ Sci Technol.* **2009**. 43: 306-311.

Mack, A. G. *Flame Retardants, Halogenated.* Kirk-Othmer Encyclopedia of Chemical Technology. New York, NY: John Wiley & Sons; **2004.** Online Posting Date: September 17, 2004.

Nakari, T.; Huhtala, S. In vivo and in vitro toxicity of decabromodiphenyl ethane, a flame retardant. *Environ. Toxicol.*, **2010**, 25:333–338.

OECD (Organisation of Economic Cooperation and Development). Guidance document on aquatic toxicity testing of difficult substances and mixtures. OECD Environmental Health and Safety Publication: Series on Testing and Assessment, No. 23. Organization for Economic Co-operation and Development. Paris. **2000.** ENV/JM/MONO(2000)6.

Pakalin, S.; Cole, T.; Steinkellner, J.; et al. Review on production processes of decabromodiphenyl ether (DECABDE) used in polymeric applications in electrical and electronic equipment, and assessment of the availability of potential alternatives to DECABDE. [Online] **2007.** Available at: <u>http://ecb.jrc.ec.europa.eu/documents/Existing-</u> Chemicals/Review_on_production_process_of_decaBDE.pdf as of January 20, 2011.

PBT Profiler. *Persistent (P), Bioaccumulative (B), and Toxic (T) Chemical (PBT) Profiler*. U.S. Environmental Protection Agency: Washington D.C. <u>www.pbtprofiler.net</u>. Ricklund, N., Kierkegaard, A., McLachlan, M. S. An international survey of decabromodiphenyl ethane (deBDethane) and decabromodiphenyl ether (decaBDE) in sewage sludge samples. *Chemosphere* **2008**, 73:1799-1804.

Ricklund, N., Kierkegaard, A., McLachlan, M. Levels and potential sources of decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (DecaBDE) in lake and marine sediments in Sweden. *Environ. Sci. Technol.*, **2010**, 44(6):1987–1991.

Sagerup, K.; Herzke, D.; Harju, M.; Evenset, A.; Christensen, G.N.; Routti, H.; Fuglei, E.; Aars, J.; Strom, H.; Gabrielsen, G.W.; New brominated flame retardants in Arctic biota. Statlig program for forurensningsovervåking. **2010.** SPFO-report 1070/2010 TA-2630/2010. http://www.klif.no/publikasjoner/2630/ta2630.pdf October 18, 2012.

Schaeffer, E. and Mathews, M. **2011**. SAYTEX 8010: biodegradation in anaerobic digester sludge. Wildlife International, Ltd. Easton, MD.

Shi, T; Chen, S-J; Luo, X-J; Zhang, X-L; Tang, C-M; Luo, Y; Maa, Y-J; Wua, J-P; Peng, X-Z; Mai, B-X. Occurrence of brominated flame retardants other than polybrominated diphenyl ethers in environmental and biota samples from southern China. *Chemosphere*, **2009**. 74, 910–916.

Stapleton HM, Allen JG, Kelly SM, Konstantinov A, Klosterhaus S, Watkins D, McClean MD and Webster TF, 2008. Alternate and new brominated flame retardants detected in US house dust. Environmental Science and Technology, 42, 6910-6316.

Takigami, H., Suzuki, G., Hirai, Y., Ishikawa, Y., Sunami, M., Sakai, S. Flame retardants in indoor dust and air of a hotel in Japan. *Environ Int.* **2009**. 35(4): 688-693.

Tian, M.; Chen, S-J.; Luo, Y.; Wang, J.; Zhu, Z-C.; Luo, X-J.; Mai, B-X. Air-plant exchange of brominated flame retardants at a rural site: Influencing factor, interspecies difference, and forest scavenging. *Environ Toxicol Chem.* **2013.** [Epub ahead of print]

Venier, M. and Hites, R.A. Flame retardants in the atmosphere near the Great Lakes. *Environmental Science and Technology*. **2008**. 42, 4745-4751.

Wang, F., Wang, J., Dai, J., et al. Comparative tissue distribution, biotransformation and associated biological effects by decabromodiphenyl ethane and decabrominated diphenyl ether in male rats after a 90-day oral exposure study. *Environ. Sci. Technol.* **2010.** 44:5655-5660.

Washington Department of Ecology. Alternatives to Deca-BDE in Televisions and Computers and Residential Furniture. Implementation of RCW 70.76: Identifying safer and technically feasible alternatives to the flame retardant called Deca-BDE used in the electronic enclosures of televisions and computers and in residential upholstered furniture Final report. Department of Ecology Publication No. 09-07-041; Department of Health Publication No. 334-181. **2008**. Available at: http://www.ecy.wa.gov/biblio/0907041.html.

Wolfe, N.; Jeffers, P. (2000) Hydrolysis. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (311-334). Boca Raton: Lewis Publishers.

Wu, J-P; Guan, Y-T; Zhang, Y.; Luo, X-J; Zhi, H; Chen, S-J and Mai, B-X, Trophodynamics of Hexabromocyclododecanes and Several Other Non-PBDE Brominated Flame Retardants in a Freshwater Food Web. *Environ Sci Technol*, **2010**. 44, 5490-5495

Zhu, L.; Hites, R.A. Brominated flame retardants in tree bark from North America. *Environ Sci Technol* 2006. 40: 3711-3116.

Decabromodiphenyl Ether

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were																
assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment.																
		Human Haakh Effects Aquatic Environmental														
					L		ieann i	lieus					Toxi	city ^{**}	Fat	e
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
	1	· · ·				1								. –		
Decabromodiphenyl Ether	1163-19-5	L	Μ	L	L	Η	L	Μ	L		L	L	L	L	VH	H

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Decabromodiphenyl Ether

CASRN: 1163-19-5 MW: 959.2 MF: C₁₂Br₁₀O Physical Forms: Neat: Solid

Use: Flame retardant

SMILES: O(c1c(c(c(c1Br)Br)Br)Br)Br)c1c(c(c(c(c1Br)Br)Br)Br)Br

Synonyms: DecaBDE; Benzene, 1,1'-oxybis[2,3,4,5,6-pentabromo-; 1,1'-Oxybis(2,3,4,5,6-pentabromobenzene); Adine 505; BDE 209; BDE-209; Berkflam B; Bis(pentabromophenyl) ether, Bis(pentabromophenyl) oxide; Bromkal 83-0DE; Decabromodiphenyl oxide (DBDPO); DE 83; De 83R; Decabrom; Decabromodiphenyl oxide; Decabromobiphenyl ether; Decabromobiphenyl oxide; FR 300; FR 300BA; PBED 209; Saytex 102; Saytex 102E; Tardex 100 *Unverifiable Synonyms:* AFR 1021; BR 55N; Bromkal 82-10DE; Caliban F/R-P 39P; DB 10; DB 101; DB 102; DP 10F; EB 10; EB 10FP; EB 10W; EB 10WS; EBR 700; F/R-P 53; Fire Cut 83D; Flame Cut 110R; Flame Cut Br 100; FR 10; FR-PE; FR-PE(H); FRP 53; Nonnen DP 10; Nonnen DP 10(F); PBED 209; Planelon DB; Planelon DB 100; Planelon DB 101; Plasafety EB 10; Plasafety EBR 700

Chemical Considerations: This is a discrete organic chemical with a MW <1,000. EPI v 4.0 was used to estimate physical/chemical and environmental fate values in the absence of experimental data. Measured values from experimental studies were incorporated into the estimations.

Decabromodiphenyl ether (decaBDE) is part of the Polybrominated Diphenyl Ether (PBDEs) Action Plan which addresses: the voluntary phase-out of manufacture and import of decaBDE by manufacturers in the U.S.; development of a Significant New Use Rule and combined Section 4 test rule where the significant new use would be manufacture, (including import) of decaBDE or articles to which decaBDE has been added (EPA, 2009).

Polymeric: No

Oligomers: Not applicable

Metabolites, Degradates and Transformation Products: Photodegradation – potential to form lower brominated diphenyl ether congeners and possibly polybrominated dibenzofurans (European Chemicals Bureau, 2002); Fish metabolism - lower brominated diphenyl ether (BDE) congeners a range of penta- to nonaBDEs (with 2,2',4,4',5,6'-hexabromodiphenyl ether being most prevalent) (Noyes et. al., 2011); Anaerobic Biodegradation - lower brominated diphenyl ether congeners (Illinois EPA, 2007); Pyrolysis - polybrominated dibenzofurans and polybrominated dibenzo-p-dioxins (European Chemicals Bureau, 2002)

Analog: No analog	Analog Structure: Not applicable
Endpoint(s) using analog values: Not applicable	

Structural Alerts: Polyhalogenated aromatic hydrocarbons, immunotoxicity (EPA 2011); test data are available to address this category.

Risk Phrases: Not classified by Annex VI Regulation (EC) No 1272/2008 (ESIS, 2012).

Hazard and Risk Assessments: Hazard assessment completed by EPA - IRIS Toxicological Review of Decabromodiphenyl ether (2008). Assessments were prepared for decaBDE by the Washington Department of Ecology and Department of Health (2008), Illinois Environmental Protection Agency (2007), Danish Environmental Protection Agency (2007), European Chemicals Bureau (2002), German Federal Ministry of the Environment (2001), and the National Academy of Sciences National Research Council (2000). The Maine Department of Environmental Protection, Safer Alternatives Assessment for Decabromodiphenyl Ether Flame Retardant in Plastic Pallets, includes a Green Screen Assessment of decaBDE (Maine DEP, unpublished). DecaBDE was also part of the High Production Volume Data Summary and Test Plan (EPA, 2005) and the Voluntary Children's Chemical Evaluation Program (EPA, 2012).

Decabromodiphenyl Ether CASRN 1163-19-5									
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY						
PHYSICAL/CHEMICAL PROPERTIES									
Melting Point (°C)	300-310 (Measured)	European Chemicals Bureau, 2000; European Chemicals Bureau, 2002	Adequate; consistent values, which span a relatively narrow range, have been reported in a secondary sources.						
	305 (Measured)	Lide, 2008	Adequate value cited from standard reference source.						
	307 (Measured)	Fu and Suuberg, 2011	Adequate value obtained from differential scanning calorimeter.						
Boiling Point (°C)	>320 (decomposes) (Measured)	European Chemicals Bureau, 2002	Adequate; reported in a secondary source.						
Vapor Pressure (mm Hg)	3.5×10 ⁻⁸ at 21°C (Measured) Good laboratory practice (GLP) Spinning Rotor Method	Stenzel and Nixon, 1997a; European Chemicals Bureau, 2002	Adequate, guideline study.						
	9.02x10 ⁻¹³ at 25°C (Extrapolated) Knudsen Effusion Method	Fu and Suuberg, 2011	Adequate value for low volatility substance; obtained using an indirect measurement technique.						
Water Solubility (mg/L)	<1.00×10 ⁻⁴ at 25°C (Measured) GLP Column Elution Method Organisation of Economic Cooperation and Development (OECD) 105 Value reported was the detection limit (<0.1 ppb)	Stenzel and Nixon, 1997b; European Chemicals Bureau, 2002	Adequate; guideline study.						
	2×10^{-3} to 3×10^{-3} (Measured)	European Chemicals Bureau, 2000	Sufficient details were not available to assess the quality of this study reported in a secondary source.						
Log K _{ow}	6.27 (Measured) OPPTS 830.7560.GLP Generator Column Method	MacGregor and Nixon, 1997; European Chemicals Bureau, 2002	Adequate, guideline study.						
Flammability (Flash Point)	Not flammable (Estimated)	European Chemicals Bureau, 2000	Adequate; value reported in a secondary source.						

Decabromodiphenyl Ether CASRN 1163-19-5							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.				
Pyrolysis	Polybrominated dibenzo-p-dioxins (PBDDs) and polybrominated dibenzofurans (PBDFs) are formed by thermal reaction involving a free radical mechanism (Measured)	-p-dioxins European Chemicals Bureau, Supporting in secondary so are formed by ng a free radical					
рН	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.				
pK _a	Not applicable	Professional judgment	Dissociation is not expected; the chemical does not contain ionizable functional groups.				
	HUMAN HEALTH EFF	ECTS					
Toxicokinetics	Although experimental findings in human and animal studies suggest that decaBDE is poorly absorbed following oral and dermal administration, even low levels of decaBDE are physiologically relevant due to its chemical properties. 82.5-91.3% of decaBDE is eliminated from the body in the feces with ≤0.05% excreted in urine. DecaBDE is mainly excreted as unchanged parent compound but may also be excreted in the form of metabolites. Some conversion of parent compound may be mediated by intestinal epithelium or microflora.						
	Monitoring studies in humans, with unknown levels of exposure, demonstrate that decaBDE can be absorbed distributed to mammary tissue and secreted in human breast milk during lactation.						

Decabromodiphenyl Ether CASRN 1163-19-5							
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Dermal Absorption <i>in vitro</i>		Skin of female hairless mice were exposed in a flow-through diffusion cell system to carrier-free ¹⁴ C-labeled decaBDE (>98% pure) at doses of 6, 30 or 60 nmol. % absorption was determined at 6, 12, 18 and 24 hours.	EPA, 2008	Reported in a secondary source. The results of this may overestimate the amount of decaBDE that would be absorbed by human skin, as mouse skin has been found to be more permeable to several chemicals.			
		Most of dose was taken up within the first 6 hours and very little compound was absorbed (0.04-0.34%). Total dose retained in the skin and transported to receptor fluid was 20.5%, 3.3% and 1.9% for 6, 30 and 60 nmol doses, respectively.					
Absorption, Distribution, Metabolism, and Excretion	Oral	Uptake and disposition of ¹⁴ C-DecaBDE after dietary exposure: F344/N male rats fed 238 to 51,000 ppm unlabeled Deca- BDE (97.9-99.2% pure) in the diet on days 1-7 and equal doses of ¹⁴ C-DecaBDE on day 8. Average daily consumption estimated to be 3,718 mg/kg-day. Analysis of day 12 liver and fat.	European Chemicals Bureau, 2002	Study details reported in a secondary source.			
		the feces 72 hours after exposure. Recovery was not related to administered unlabeled dose. Low level of radioactivity in the liver (mean = 0.02% of the ¹⁴ C-dose of 6 groups; range: $0.006 - 0.064\%$ and fat (mean of 0.11% of the ¹⁴ C-dose; range: 0.072 - 0.161%)					

Decabromodiphenyl Ether CASRN 1163-19-5							
PROPERTY/ENDPOIN	Г ДАТА	REFERENCE	DATA QUALITY				
PROPERTY/ENDPOINT	Image: Construct of the system DATA Uptake and disposition of ¹⁴ C-DecaBDE after dietary exposure: F344/N male rats fed 277 or 48,000 ppm unlabeled DecaBDE on days 1-7 and equal amounts of ¹⁴ C -DecaBDE on day 8. Doses were equivalent to 22-25 and 4,500-5,000 mg/kg-day; rats were sacrificed 24-, 48-, or 72-hours post-exposure with the radiolabe Blood, urine, feces, liver, kidney, lung, muscle, fat, skin, brain, gut contents and gut tissue were analyzed. 82.5% to 86.4% of radioactivity was recovered in feces. Recovery was not related to administered unlabeled dose or time of sacrifice. Excretion in the urine was ≤0.01%. Trace levels of radioactivity were found in all major organs and tissues with the highest concentration found in the liver, kidney, lung, skin and adipose tissue DecaBDE and 3 main metabolites were detected in the feces % of metabolites	REFERENCE European Chemicals Bureau, 2002	Study details reported in a secondary source.				
	increased with increasing DecaBDE						
	primary compound eliminated.						

	Decabromodiphenyl Ether CASRN 1163-19-5			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Sprague-Dawley rats given single oral dose of 6 µmol/kg (~2.9 mg/kg) ¹⁴ C DBDPO.	European Chemicals Bureau, 2002	Study details reported in a secondary source.
		Major route of excretion (~90% of the dose within 3 days) was via the feces, with only		
		minor amounts ($<0.05\%$ of the dose) excreted via urine. Excretion via bile was $\sim 9.5\%$ of dose within 3 days		
		~3% of total administered radioactivity was detected in tissues 3 days after dosing		
		(liver (~ 0.9%), muscle (~ 0.7%), skin (~ 0.4%), adipose tissue (~ 0.3%), colon wall (~ 0.25%), jejunum wall (~ 0.05%).		
		jejunum content (~0.05%), with minor amounts (<0.05%) in plasma, kidney,		
		heart, lung, adrenals, testis, red blood cells, thymus and spleen). 8 phenolic metabolites were present in faces, but the majority of		
		radioactivity was identified as unchanged DBDPO.		
		DBDPO was metabolized via debromination.		
		Rats were fed diets containing 1.0 mg/kg- day technical decaBDE for 2 years.	Darnerud et al., 2001	Sufficient study details reported in a secondary source; test substance is identified as a commercial product
		3-fold higher bromine concentrations were measured in adipose tissue, suggesting that		composed of 77.4% BDE209, 21.8% nonaBDE, and 0.8% octaBDE.
		bloaccumulation is low but retention in body fat may be pronounced.		Analytical methods were not specific for DecaBDE or any specific congener: the bromine levels in
				adipose tissue cannot be ascribed to any particular congener or mixture of
				congeners of BDE.

Decabromodiphenyl Ether CASRN 1163-19-5				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Sprague-Dawley rats (dams, fetuses and/or nursing pups) were administered DecaBDE by gavage at doses of 10, 100, or 1,000 mg/kg-day on gestation days (GD) 6 – lactation day (LD) 4. Levels of DecaBDE were similar in the plasma of dams, fetal litters and neonatal pups following oral doses of 10 mg/kg- day. Plasma concentrations appear to plateau at oral doses of \geq 10 mg/kg-day. Rats exposed to higher doses of DecaBDE did not have higher levels in their plasma than the low-dose group did. Levels of DecaBDE were lower in the plasma of fetuses and in maternal milk than in plasma of dams, while neonatal plasma levels were similar to or higher than maternal plasma levels. Steady-state plasma levels were achieved within 14 days with adipose half-lives ranging from 0.4 to 2.8 days. Absorption from the gastrointestinal route exhibited	Biesemeier et al., 2010	Adequate; corn oil or soyaphospholipon/Lutrol F127-water were used as gavage vehicle for this compound; higher concentrations of DecaBDE were detected in plasma and in milk with corn oil as the vehicle compared to soyaphospholipon/Lutrol F127-water.	
Inhalation	Although pulmonary exposure may occur	European Chemicals Bureau,	Brief statement reported in a	
	as a result of small particle size (<5 µm),	2002	secondary source.	
	systemic absorption via this route is			
	unknown.			

Decabromodiphenyl Ether CASRN 1163-19-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Other	Disposition of ¹⁴ C-decaBDE after IV dosing: intravenous study in F344/N rats injected with 1.07 mg/kg ¹⁴ C-decaBDE 75% of intra-venous dose was detected in feces and gut contents after 72 hours (suggests biliary excretion). Remaining ¹⁴ C-decaBDE was detected in tissues, mainly in muscle, skin, liver and fat. Trace amounts of radioactivity were detected in urine, the spleen and brain. Excreted material in the feces was primarily unchanged decaBDE.	European Chemicals Bureau, 2002	Study details reported in a secondary source; 9.5% of the administered dose was found in the tail indicating that the dose was delivered incompletely and an unknown amount was given through the tail vein.
	Biliary excretion of ¹⁴ C-decaBDE after IV administration: intravenous study in F344/N rats injected with 0.9 mg/kg ¹⁴ C- decaBDE. 7.17% of administered dose was detected in the bile within 4 hours. Rate of excretion was 2.2% of the dose per hour. Metabolite identification was not carried out in this study	European Chemicals Bureau, 2002	Study details reported in a secondary source; 5.38 % of the administered dose was found in the tail indicating that the dose was delivered incompletely and an unknown amount was given through the tail vein.
	Study conducted to study levels of PBDEs in human breast milk. Mean concentration of decaBDE was 0.9 ng/g lw (1.2% of total PBDEs in the milk), suggesting that some decaBDE is absorbed, distributed to mammary tissue and secreted in human breast milk during lactation.	EPA, 2008	Reported in a secondary source. Information is from monitoring data in human populations. No measured dosing studies have been conducted to determine if BDE-209 distributes to other tissues as well.

Decabromodiphenyl Ether CASRN 1163-19-5				
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Milk samples collected from 40-first time mothers with 8 week old infants. Mean and total concentrations of 12 triBDE through decaBDE congeners were 96 and 50 ng/g lw, respectively. BDE-47 was found at the highest level, followed by hexaBDE and pentaBDE-99 and 100. DecaBDE-209 was a minor congener in breast milk (0.8 and 0.4 ng/g lw, respectively).	EPA, 2008	Reported in a secondary source. Information is from monitoring data in human populations. No measured dosing studies have been conducted to determine if BDE-209 distributes to other tissues as well.
Acute Mammalian Toxicity		LOW: Based on acute oral and dermal L LC ₅₀ >48.2 mg/L in rats.	D ₅₀ values >2000 mg/kg in rats a	nd rabbits and an acute inhalation
Acute Lethality	Oral	Rat $LD_{50} > 2,000 \text{ mg/kg}$ Rat $LD_{50} > 5,000 \text{ mg/kg}$	European Chemicals Bureau, 2002 European Chemicals Bureau, 2002	Reported in a secondary source; guideline study. Reported in a secondary source; nonguideline study; necropsies were not performed.
	Dermal	Rabbit LD ₅₀ >2,000 mg/kg	European Chemicals Bureau, 2002	Reported in a secondary source; nonguideline study. Clinical signs of toxicity were not reported and necropsies were not performed.
	Inhalation	Rat 1-hour LC ₅₀ >48.2 mg/L dust Spartan rats exposed for 1 hour to 2,000 or 48,200 mg/m ³ (2.0 or 48.2 mg/L) dust; No deaths or effect on body weight; Dyspnea, ocular discharge, and eye squint, increased motor activity were observed at 48.2 mg/L.	European Chemicals Bureau, 2002	Reported in a secondary source; nonguideline study. Necropsy was not performed and the particle size distribution was not given.

	Decabromodiphenyl Ether CASRN 1163-19-5			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Single intratracheal injection to male Sprague Dawley rats (n = 50) Dose: 20 mg decaBDE (77.4%) dust (length mean diameter 3.17 μ m). Scattered focal aggregates of alveolar macrophages in the lungs showing clear, angulated, cytoplasmic vacuoles; slight thickening of the interalveolar septa.	European Chemicals Bureau, 2002	Reported in a secondary source; nonguideline study.
Carcinogenicity	I	MODERATE: Based on National Toxico	logy Program (NTP) determinat	ions of equivocal evidence of
		carcinogenicity in male mice (increased in	ncidence of hepatocellular adeno	omas or carcinomas and thyroid
		gland follicular cell adenomas or carcino	mas) and some evidence of carcin	nogenicity in male and female rats
		(increased incidences of non-neoplastic n carcinogenic potential" by IRIS	odules in the liver). Classified as	"Suggestive evidence of
	OncoLogic Results	careinogenie potentiai by iters.		No data located.
	Carcinogenicity (Rat and Mouse)			No data located.
	Combined Chronic Toxicity/ Carcinogenicity	2-year carcinogenicity study (dietary) in B6C3F1 mice (50/sex/group)	NTP, 1986; European Chemicals Bureau 2002	Study details provided in secondary sources: guideline study in
	i omenoj, curemogemenoj	Doses: 0, 25,000, 50,000 ppm		accordance with GLP procedures.
		Average daily consumption: Males: 0, 3,200 and 6,650 mg/kg Females: 0, 3,760 and 7,780 mg/kg Increased incidence of granulomas in the liver (25,000 ppm, males); centrilobular hypertrophy with enlarged hepatocytes with frothy vacuolatedcytoplasm (25,000 and 50,000 ppm, males); follicular cell hyperplasia of the thyroid gland (25,000 and 50,000 ppm, males); and increased incidence of stomach ulcers (50,000 ppm, females). No clinical signs of toxicity and no adverse		NTP concludes that there was equivocal evidence of carcinogenicity for male mice based on increased combined incidence of both hepatocellular adenomas and carcinomas in the low dose group and on thyroid gland follicular cells adenomas or carcinomas (combined) in both groups; results are based on Kaplan Meier estimated tumor incidences at the end of the study after adjusting for early mortality.

Decabromodiphenyl Ether CASRN 1163-19-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	effects on survival, food consumption or body weight. No evidence of carcinogenicity in females. NOAEL: not established		
	LOAEL (systemic): 25,000 ppm (3,200 mg/kg-day) based on increased incidence of non-neoplastic lesions in several tissues in males		
	in males 2-year carcinogenicity study (dietary) in Fisher 344/N rats (50/sex/group) Doses: 0, 25,000, 50,000 ppm Average daily consumption: Males: 0, 1,120 and 2,240 mg/kg Females: 0, 1,200 and 2,550 mg/kg Increased incidence of thrombosis and degeneration in the liver without foci of necrosis associated and fibrosis of the spleen and lymphoid hyperplasia of the mandibular lymph nodes (50,000 ppm, males); hematopoiesis in the spleen (25,000 and 50,000, female); acanthosis of the fore stomach (25,000 and 50,000, males); and dose dependent decreased incidence of C-cell hyperplasia of the thyroid gland (males). No clinical signs of toxicity and no adverse effects on survival, food consumption or body weight. NOAEL (systemic): 25,000 ppm (1,120	NTP, 1986; European Chemicals Bureau, 2002	Study details provided in secondary sources; guideline study in accordance with GLP procedures. NTP concludes that there was <i>some</i> <i>evidence of carcinogenicity</i> for male and female rats based on increased incidences of non-neoplastic nodules in the liver in the low dose males and high dose males and females.

Decabromodiphenyl Ether CASRN 1163-19-5				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	respectively) LOAEL (systemic): 50,000 ppm (2,240 and 2,550 mg/kg-day in male and females, respectively) based on neoplastic lesions, degeneration in the liver, spleen fibrosis, lymphoid hyperplasia of the mandibular lymph nodes. LOAEL (local effects): 25,000 ppm based on the slight increase in fore stomach acanthosis			
	 2-year carcinogenicity study (dietary) in Sprague-Dawley rats (25/sex/group) Doses: 0, 0.01, 0.1, 1 mg/kg-day. There was no increased incidence of tumors or changes in organ histopathology in treated rats compared to controls. No clinical signs of toxicity and no effects 	Kociba et al., 1975; European Chemicals Bureau, 2002	Test substance: 77.4% decaBDE, 21.8% nonaBDE, 0.8% octaBDE.	
	on survival, food consumption, body weight, hematology, urinalysis, clinical chemistry, organ weights. Classified as "Suggestive evidence of carcinogenic potential" by EPA IRIS; weight of evidence suggests carcinogenicity and the potential for possible carcinogenic effects in humans	EPA, 2008	Summary of overall weight of evidence reviewed by IRIS.	

Decabromodiphenyl Ether CASRN 1163-19-5					
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Genotoxicity	LOW: Based on negative results for gene	LOW: Based on negative results for gene mutations in bacterial and mammalian cells and lack of			
	chromosomal aberrations in Chinese har	hromosomal aberrations in Chinese hamster ovary (CHO) cells in vitro.			
Gene Mutation <i>in vitro</i>	Negative in <i>Salmonella typhimurium</i> strains TA98, TA100, TA1535, TA1537 and <i>Escherichia coli</i> WP2 <i>uvrA</i> in the presence or absence of exogenous metabolic activation. No evidence of cytotoxicity.	European Chemicals Bureau, 2002; EPA, 2008	Guideline study in accordance with GLP procedures; study details reported in a secondary source.		
	Positive in <i>Salmonella typhimurium</i> strains TA1535, TA98, TA100) in the presence or absence of exogenous metabolic activation. Doses: 50, 150, 500, 1500, 5000 µg/plate	European Chemicals Bureau, 2002	Positive results were only observed at $500 \mu g/plate$ and may be a result of the presence of an impurity. In addition, the purity of decaBDE used in the study is unknown (data reported in a secondary source).		
	Negative in <i>Saccharomyces cerevisiae</i> with and without metabolic activation	Darnerud et al., 2001	Study details provided in summary reported in a secondary source.		
	Negative, mouse lymphoma L 5178 Y/TK+/- assay Doses: 7, 8, 9, 10 μg/plate in dimethyl sulfoxide (DMSO)	European Chemicals Bureau, 2002; EPA, 2008	Guideline study in accordance with GLP procedures. Results may be weighted less heavily due to the narrow range of test concentrations used in the study; study details reported in a secondary source.		
Gene Mutation in vivo			No data located.		
Chromosomal Aberrations <i>in vitro</i>	Negative, sister chromatid exchange/chromosomal aberrations in CHO cells in the presence or absence of exogenous metabolic activation. Doses: 50, 100, 200, 500 µg/ml in DMSO	European Chemicals Bureau, 2002; EPA, 2008	Guideline study in accordance with GLP procedures; study details reported in a secondary source.		
Chromosomal	Negative, mammalian chromosomal	European Chemicals Bureau,	Limited study details reported in a		
Aberrations <i>in vivo</i>	aberration test in rat bone marrow cells. Doses: 3, 30, 100 mg/kg/day in diet	2002	secondary source.		
DNA Damage and Repa	ir <u> </u>		No data located.		
Other (Mitotic Gene Conversion)			No data located.		

Decabromodiphenyl Ether CASRN 1163-19-5				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Reproductive Effects	LOW: Based on a LOAEL of 500 mg/kg-	day in mice for adverse effects o	n sperm and no adverse	
	reproductive effects following 13 week an	nd 2 year exposures in rats and n	nice.	
Reproduction/			No data located.	
Developmental Toxicity				
Screen				
Combined Repeated Dose			No data located.	
with Reproduction/				
Developmental Toxicity				
Screen				
Reproduction and	One generation reproductive study in	European Chemicals Bureau,	Reported in a secondary source.	
Fertility Effects	Sprague Dawley rats (10 males, 20 females	2002	Results may be weighted less heavily	
	in low dose groups; 15 males, 30 females		due to the fact that the highest dose	
	in high dose groups).		tested did not produce parental	
	Doses: 0, 3, 30 or 100 mg decaBDE/kg		toxicity. In addition, individual data	
	body weight/day in the diet.		were not available (only a summary	
	Study duration: 60 days prior to mating, 15		provided in secondary source); Test	
	days during mating, and throughout		substance composition identified as	
	gestation and weaning.		commercial DBDPO (77.4%	
			decaBDE, 21.8% nonaBDE, 0.8%	
	No adverse effects on fertility		octaBDE).	
	NOAEL: 100 mg/kg/day		, , , , , , , , , , , , , , , , , , ,	
	LOAEL: not established as highest dose			
	tested did not produce adverse effects			

Decabromodiphenyl Ether CASRN 1163-19-5				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Oral gavage study in male CD-1 mice (50/group) Doses: 0, 10, 100, 500 or 1500 mg/kg-day on PNDs 21-70	EPA, 2008	Study details reported in a secondary source.	
	Reduced amplitude of sperm lateral head displacement, reduced sperm mitochondrial membrane potential, increased sperm H_2O_2 generation.			
	NOAEL: 100 mg/kg-day LOAEL: 500 mg/kg-day			
	13 week and 2 year carcinogenicity studies in B6C3F1 mice and F344/N rats did not produce adverse macroscopic or histological changes in the testes, prostate ovaries, or uterus.	NTP, 1986; European Chemicals Bureau, 2002	Guideline studies reported in a secondary source.	
	Doses: 0, 3,100, 6,200, 12,500, 25,000, or 50,000 ppm (13 week study) or 0, 25,000 or 50,000 ppm (2 year studies)			

Decabromodiphenyl Ether CASRN 1163-19-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	 28-day oral study in Wistar rats (10/sex/group) Doses: 0, 1.87, 3.75, 7.5, 15, 30, 60 mg/kg-day; 2 doses of 30 mg/kg at 4-hour intervals were used for the 60 mg/kg-day group due to the limited solubility of the test substance; There was a significant dose-dependent change in epididymis weight and seminal vesicle weight, though there were no effects on sperm counts or epididymal sperm morphology. NOAEL = 30 mg/kg-day LOAEL = 60 mg/kg-day (decreased 	Van der Ven et al., 2008 (as described in Hardy et al., 2009)	Reported in a review; test substance described as consisting of a composite of equal proportions from 3 manufacturer's products (purity >97%); data were evaluated using benchmark dose analysis; this study was not designed as a reproductive study, and did not evaluate all reproductive parameters.
Developmental Effects	HIGH: A number of rodent developmen published. The hazard designation for th values in the located studies. The adverse abnormal behavior. DecaBDE was also d product where resorptions were increase	tal neurotoxicity studies addressi is endpoint is based on the most e effects in these studies were red levelopmentally toxic in rats via ed at 10 and 100 mg/kg, but not fe	ng decaBDE exposure have been conservative NOAEL and LOAEL uced thyroid hormone levels and oral exposure to a low purity or a high purity product.
Reproduction/ Developmental Toxicity			No data located.
Screen Combined Repeated Do with Reproduction/ Developmental Toxicity Screen	5e		No data located.

Decabromodiphenyl Ether CASRN 1163-19-5				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Prenatal Exposure	Oral gavage study in pregnant Sprague Dawley rats (n = 20) Dose: 0, 10, 100 or 1,000 mg decaBDE/kg body weight/day Study duration: GD 6-15 Statistically significant increase in resorptions (10 and 100 mg/kg-day) No gross external abnormalities. Significant increase in the number of litters with subcutaneous edema and delayed ossification of normally developed bones of the skull (1,000 mg/kg/day). NOAEL (maternal) = 1,000 mg/kg/day LOAEL (conceptus) = 10 mg/kg/day	European Chemicals Bureau, 2002	Study results may be weighted less heavily due to the low compound purity; test substance identified as a commercial mixture (77.4% decaBDE, 21.8% nonabromodiphenyl ether, 0.8% octabromodiphenyl ether) used in the study), which is lower than the purity of the products currently supplied in the EU. Study details reported in a secondary source.	
	Oral gavage study in pregnant Sprague Dawley rats (25/group) Dose: 0, 100, 300 or 1,000 mg/kg/day of decaBDE (purity of 97.34%) Study duration: GD 0-19 No adverse maternal clinical findings or effects on body weight, body weight gain or liver weights. No adverse treatment-related effects on external malformations or variations, skeletal variation or ossification. No adverse effects on fetal weight, sex ratio, total/late resorptions. NOAEL (maternal, developmental): 1,000 mg/kg-day	European Chemicals Bureau, 2002; EPA, 2008	Guideline study in accordance with GLP procedures. Study details reported in a secondary source.	

Decabromodiphenyl Ether CASRN 1163-19-5				
PROPER	FY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Oral gavage (corn oil) study in rats, 0, 100, 300, 1,000 mg/kg/day, (half exposed GD6- 20, other half exposed GD6 through LD4). No maternal treatment-related effects on mortality, clinical signs of toxicity, body weight, body weight gain, or food	Biesemeier et al., 2010	LOAEL not identified.
		 consumption. No effects on gestational or litter parameters (mean gestational length, mean number of pups born, percentage of males at birth, mean live litter size, postnatal survival, mean offspring body weight and weight gains through PND 21). NOAEL = 1,000 mg/kg/day (highest dose tested) 		
		 Rat, neurodevelopmental study, oral (gavage) administered 0, 1, 10, 100, or 1,000 mg/kg/day, GD 6 through weaning. No treatment-related neurobehavioral effects were observed (startle response, learning, and memory tests assessed); No changes in were reported in motor activity evaluations at 2, 4, or 6 months of age; No neuropathological or morphometric changes reported. NOAEL = 1,000 mg/kg/day (highest dose tested) 	Biesemeier et al., 2011	LOAEL not identified; GLP/guideline compliant study.

Decabromodiphenyl Ether CASRN 1163-19-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Postnatal Exposure/Developmental neurotoxicity	Evaluation of locomotor activity in C57BL6/J mice Dose: 0, 6 or 20 mg/kg on PNDs 2-15 with observation after placement in a novel environment on PND70 and using special functional observational battery	EPA, 2008; Washington DOE, 2008	Study details reported in a secondary source.
	No adverse effects on developmental endpoints (on pinnae detachment, incisor eruption, eye opening, vaginal opening or testes descent).		
	Declined locomotor activity in males and females on PND70 (decline was significantly different for males at 6 and 20 mg/kg compared to controls);		
	Decreased % of pups performing the palpebral reflex on PND 14 compared to controls (6 or 20 mg/kg-day);		
	Decreased number of pups (males) adequately performed an effective forelimb grip (PND 14 and 16) compared with same-sex controls (20 mg/kg-day);		
	Increased struggling behavior (males) on PND20, decreased T4 levels (males) on PND70;		
	Decreased T ₄ levels (males) on PND70. NOAEL: not established LOAEL: 6 mg/kg-day (based on decreased T4 levels in male mice and effects on locomotor activity in male mice on PND70)		

Decabromodiphenyl Ether CASRN 1163-19-5				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Single dose gavage in male Sprague Dawley rats (20 rats from 3-5 litters/group) Doses: 0, 6.7 or 20.1 mg/kg on PND3 Dose-related disruption in habituation	EPA, 2008	Each dose administered a single time; not a guideline study. Study details reported in a secondary source.
		(changes in locomotion, rearing, total activity) at both doses.		
		NOAEL: Not established LOAEL: 6.7 mg/kg		
		NMRI male mice (10 mice from 3-5 litters/group) gavaged with decaBDE (99% pure) at 0, 2.22, or 20.1 mg/kg on PNDs3- 19 or 0, 1.34, 13.4 or 20.1 mg/kg on PND10. Dose-related disruption in habituation	European Chemicals Bureau 2002; EPA, 2008	Each dose administered a single time; not a guideline study. Study details reported in a secondary source.
		(changes in locomotion, rearing, total activity) at 2, 4, and 6 months following exposure to 20.1 mg/kg on PND3. NOAEL (NMRI mice): 2.22 mg/kg LOAEL (NMRI mice): 20.1 mg/kg		
Neurotoxicity		LOW: There were no neurotoxicity studies addressing decaBDE exposure located. While developmental neurotoxicity studies indicated a potential for hazard, these positive indications do not trigger a hazard potential for adult neurotoxicity. There is no reported evidence to support a hazard potential for adult neurotoxicity for this compound or analogous highly brominated compounds.		
	Neurotoxicity Screening Battery (Adult)	Low potential for neurological effects. (Estimated)	Professional judgment	Estimated based on the absence of structural alerts that have been [experimentally] associated with the adult neurotoxicity endpoint.

Decabromodiphenyl Ether CASRN 1163-19-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Repeated Dose Effects	MODERATE: Based on a LOAEL of 80	mg/kg-day for adverse liver and	thyroid effects following a 30-day
	oral exposure in rats. A NOAEL was not	established in the 2-year carcino	genicity study. The LOAEL of 3,200
	mg/kg/day yields uncertainty to the dose	levels where adverse effects may	begin. These subchronic effects
	appear consistent with the observed chro	nic effects although the latter we	re observed at higher doses.
	30-day dietary study in male Sprague-	European Chemicals Bureau,	Results may be weighted less heavily
	Dawley rats (number/group not specified)	2002	due to the low compound purity
	Doses: 0, 100, 1,000, 10,000 ppm		(77.4% decaBDE - 21.8%
	(~0, 8, 80, 800 mg/kg/day)		nonabromodiphenyl oxide) used in
			the study, which is lower than the
	Enlarged livers (1,000 ppm); thyroid		purity of the products currently
	hyperplasia (1,000 and 10,000 ppm);		supplied in the EU; study details
	hepatic centrilobular cytoplasmic		reported in a secondary source;
	enlargement and vacuolisation and renal		Design for the Environment (DfE)
	hyaline degenerative cytoplasmic changes		Alternatives Assessment criteria
	(10,000 ppm).		values are tripled for chemicals
	No clinical signs of toxicity and no adverse		evaluated in 28-day studies; the
	effects on food consumption, body weight,		LOAEL of 80 mg/kg-day falls within
	organ weight or hematological/urinary		the Moderate hazard criteria.
	parameters.		
	NOAEL: 100 ppm (8 mg/kg/day)		
	LOAEL: 1,000 ppm (80 mg/kg/day) based		
	on incidence of enlarged livers		

Decabromodiphenyl Ether CASRN 1163-19-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	14-day dietary study in B6C3F1 mice and F344/N rats (5/sex/group). Doses: 0, 5,000, 10,000, 20,000, 50,000, or 100,000 ppm decaBDE (99% purity).	European Chemicals Bureau, 2002; Maine, unpublished; EPA, 2008	Guideline study in accordance with GLP procedures; study details reported in a secondary source.
	Estimated average doses: Mice: 0, 1,027, 2,143, 4,246, 10,536, or 20,994 mg/kg-day in male mice and 0, 1,146, 2,286, 4,627, 11,348, or 23,077 mg/kg-day in female mice. Rats: 0, 472, 928, 1,846, 4,569, or 9,326 mg/kg-day in male rats and 0, 538, 1,061, 2,137, 5,323, or 10,853 mg/kg-day in		
	female rats. No adverse effects on health, survival body weight, clinical signs or gross pathology.		
	NOAEL (mice): 20,994 mg/kg-day in male mice and 23,077 mg/kg-day in female mice LOAEL: Not established, as highest dose tested did not produce adverse effects		
	NOAEL (rats): 9,326 mg/kg-day in male rats and 10,853 mg/kg-day in female rats LOAEL: Not established, as highest dose tested did not produce adverse effects		

Decabromodiphenyl Ether CASRN 1163-19-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	13-week dietary study in B6C3F1 mice and F344/N rats (10/sex/group) Doses: 0, 3,100, 6,200, 12,500, 25,000, 50,000 ppm	European Chemicals Bureau, 2002; Maine, unpublished; EPA, 2008	Guideline study in accordance with GLP procedures; study details reported in a secondary source.
	Estimated average doses: Mice: 0, 666, 1,355, 2,659, 5,278, or 10,233 mg/kg-day in males and 0, 702, 1,437, 2,899, 5,687, or 11,566 mg/kg-day in females		
	Rats: 0, 191, 372, 781, 1,536, or 3,066 mg/kg-day in male rats and 0, 238, 504, 967, 1,955, or 3,944 mg/kg-day in female rats		
	No adverse effects on health, survival body weight, clinical signs or gross pathology.		
	NOAEL (mice): 10,233 mg/kg-day in males and 11,566 mg/kg-day in females LOAEL (mice): Not established, as highest dose tested did not produce adverse effects		
	NOAEL (rats): 3,066 mg/kg-day in male rats and 3,944 mg/kg-day in female rats LOAEL (rats): Not established, as highest dose tested did not produce adverse effects		
Decabromodiphenyl Ether CASRN 1163-19-5			
--	--	---	--
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
PROPERTY/ENDPOINT 28-day dieta (10/sex/groi Doses: 0, 10 mg/kg/day 0 No adverse weight, foo gross patho No AEL: 1, for males at LOAEL: Not tested did n 28-day oral (10/sex/groi Doses: 0, 1. day; 2 doses: intervals we group due to test substan There were behavior, fo weight repo Occasional hypertrophy were no cha aminotransfi no changes (ALP) in m ALP levels the highest CYP1AmR protein, and	DATA ary study in F344/N rats up) 00, 1,000 ppm (0, 7, 70 (M); 0, 8, 80 mg/kg/day (F)) effects on health, survival body d consumption, behavior, or logy. 000 ppm (70 or 80 mg/kg-day nd females, respectively) ot established, as highest dose ot produce adverse effects I study in Wistar rats up) 87, 3.75, 7.5, 15, 30, 60 mg/kg- s of 30 mg/kg at 4-hour ere used for the 60 mg/kg-day o the limited solubility of the ce; no changes in appearance, ood consumption or body orted; slight hepatic centrilobular y occurred in male rats; there anges in plasma alanine ferase in males or females and in plasma alkaline phosphatase ale rats reported; decreased were reported in female rats at dose; increased hepatic NA, CYP2B mRNA, CYP1A1 I 7-pentoxyresorufin O-	European Chemicals Bureau, 2002; EPA, 2008	Guideline study; study details reported in a secondary source; DfE Alternatives Assessment criteria values are tripled for chemicals evaluated in 28-day studies; while the LOAEL was not established, the NOAEL of ~70-80 mg/kg-day (highest dose tested) falls within the Moderate hazard criteria (30 - 300 mg/kg-day); it is uncertain if repeated dose effects may occur within this range. Study reported in a review; test substance described as consisting of a composite of equal proportions from 3 manufacturer's product (purity >97%); data were evaluated using benchmark dose analysis; DfE Alternatives Assessment criteria values are tripled for chemicals evaluated in 28-day studies; the LOAEL of 60 mg/kg-day falls within the Moderate hazard criteria; however, these effects may be the result of an adaptive response by the liver and not considered adverse.

Decabromodiphenyl Ether CASRN 1163-19-5				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	in both males and females in the 60 mg/kg-			
	day group;			
	T3 levels were increased in female rats, but			
	not male rats in the high dose group; there			
	was no effect on T4 levels in males. There			
	were also no histological or weight			
	changes in the thyroids or pituitaries			
	reported;			
	There was decreased adrenal CYP17			
	adrenal activity observed in females but			
	not males. No other histopathological or			
	weight changes in the adrenal glands were			
	reported			
	In the absence of histopathological			
	alterations, changes in hepatic enzymes			
	may be the result of an adaptive response			
	by the liver.			
	NOAEL = 30 mg/kg-day			
	LOAEL = 60 mg/kg-day (changes in			
	hepatic enzyme and enzyme mRNA			
	levels)			

Decabromodiphenyl Ether CASRN 1163-19-5				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	2-year carcinogenicity study (dietary) in B6C3F1 mice (50/sex/group) Doses: 0, 25,000, 50,000 ppm Average daily consumption: Males: 0, 3,200 and 6,650 mg/kg/day Females: 0, 3,760 and 7,780 mg/kg/day	European Chemicals Bureau, 2002; EPA, 2008	Guideline study in accordance with GLP procedures; study details reported in a secondary source.	
	Increased incidence of granulomas in the liver (25,000 ppm, males); centrilobular hypertrophy with enlarged hepatocytes with frothy vacuolated cytoplasm (25,000 and 50,000 ppm, males); follicular cell hyperplasia of the thyroid gland (25,000 and 50,000 ppm, males); increased incidence of stomach ulcers (50,000 ppm, females).			
	No clinical signs of toxicity and no adverse effects on survival, food consumption or body weight.			
	LOAEL: 25,000 ppm (3,200 mg/kg-day) based on increased incidence of non neoplastic lesions in several tissues			

Decabromodiphenyl Ether CASRN 1163-19-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	2-year carcinogenicity study (dietary) in Fisher 344/N rats (50/sex/group) Doses: 0, 25,000, 50,000 ppm Average daily consumption: Males: 0, 1,120 and 2,240 mg/kg Females: 0, 1,200 and 2,550 mg/kg	European Chemicals Bureau, 2002; EPA, 2008	Guideline study in accordance with GLP procedures; study details reported in a secondary source.
	Increased incidence of thrombosis and degeneration in the liver without foci of necrosis associated, fibrosis of the spleen and lymphoid hyperplasia of the mandibular lymph nodes (50,000 ppm, males); hematopoiesis in the spleen (25,000 and 50,000, female); acanthosis of the fore stomach (25,000 and 50,000, males); dose-dependent decreased incidence of C-cell hyperplasia of the thyroid gland (males).		
	No clinical signs of toxicity and no compound-related effects on survival		
	mg/kg-day) LOAEL (systemic): 50,000 ppm (2,240 mg/kg-day) based on neoplastic lesions, degeneration in the liver, spleen fibrosis, lymphoid hyperplasia of the mandibular lymph nodes LOAEL (local effects): 25,000 ppm (1,120		
	mg/kg-day) based on the slight increase in fore stomach acanthosis		

Decabromodiphenyl Ether CASRN 1163-19-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	4-day oral gavage study in Long-Evans female weanling rats (8/group). Doses: 0, 0.3, 1, 3, 10, 30, 60 or 100 mg/kg-day	EPA, 2008	A 4-day exposure study may not be a good indicator of chronic exposure effects; study details reported in a secondary source.
	No dose-related effects on body weight, liver weight or changes in TSH, T3 or T4 levels.		
	NOAEL: 100 mg/kg/day LOAEL: not established, as highest dose tested did not produce adverse effects		
	In chronic dietary studies in male rats, decaBDE has caused histological changes in lymphoid organs (spleen, mandibular lymph nodes) at 2,240 mg/kg-day.	EPA, 2008	Study details reported in a secondary source.
	No cytotoxic effects in splenocytes from C57BL/6 mice incubated in culture with 3 µmol/L decaBDE (purity not specified).	EPA, 2008	Study details reported in a secondary source.
	No attenuation of interleukin-2-receptor α chain (CD25) expression (demonstrating a lack of effect on the immune system in an immunosuppressive manner).		
Skin Sensitization	LOW: Based on negative results for skin	sensitization in guinea pigs and	human volunteers.
Skin Sensitization	Negative, guinea pigs	European Chemicals Bureau, 2002	Reported in a secondary source; study was performed using a mixture of polybrominated diphenyl oxides (commercial octaBDE) which comprised of <3% decaBDE.
	Negative, human volunteers	European Chemicals Bureau, 2002	Reported in a secondary sources; concentrations tested were very low (2-5%).

Decabromodiphenyl Ether CASRN 1163-19-5				
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Respiratory Sensiti	zation	No data located.	·	
	Respiratory Sensitization			No data located.
Eye Irritation		LOW: DecaBDE is a mild eye irritant in	rabbits.	
	Eye Irritation	Transient, mild irritation, rabbits	European Chemicals Bureau,	Reported in a secondary source;
		(reversible in 48 hours)	2002	guideline study in accordance with GLP procedures.
Dermal Irritation		LOW: DecaBDE is a slight skin irritant i	n humans.	
	Dermal Irritation	Non-irritant, rabbit	European Chemicals Bureau, 2002	Reported in a secondary source; guideline study using commercial decaBDE as dry solid.
		Slight irritation, human volunteers	European Chemicals Bureau, 2002	Reported in a secondary source.
		metabolites of decaBDE are known to produce estrogenic effects. In addition, decaBDE is listed as a poten endocrine disrupter on the EU Priority List of Suspected Endocrine Disrupters and on the Red List of		
		<i>Pimephales promelas</i> (fathead minnows) fed 3 or 300 ng/g bw-day BDE-209 or 15 μ g/g bw-day 6-propyl-2-thiouricil (PTU) as a positive control for 28 days followed by a 14 day depuration. 3 ng/g bw-day: 53% decline in TT4; 46% decline in TT3 300 ng/g bw-day: 59% decline in TT4; 62% decline in TT3 Both doses: 62% reduced brain deiodinase activity and elevated relative mRNA expression in genes associated with thyroid pathways. Decreased gonadal-somatic index and increased mortality.	Noyes et al., 2013	Study details reported in a primary source. It is not known if the parent BDE-209 or its metabolites were driving the effects.

Decabromodiphenyl Ether CASRN 1163-19-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	<i>Pimephales promelas</i> (fathead minnows) fed 0.16 μg/g BDE-209 for 28 days. Reduced rates of outer and inner ring deiodination of thyroxine (74%). Significantly increased thyroid follicular epithelial cell heights	Noyes et al., 2011	Study details from primary source.
	Ongoing unpublished studies at the University of Southern Maine indicate effects on blood concentrations of hormone T_4 in male mice and no effects on treated females.	Maine, unpublished	This is an ongoing study at the University of Southern Maine. No definitive conclusions regarding the potential for decaBDE to produce endocrine disruption have been made.
	DecaBDE is listed as a potential endocrine disruptor on the EU Priority List of Suspected Endocrine Disruptors.	European Commission, 2012	"Potential for endocrine disruption. In vitro data indicating potential for endocrine disruption in intact organisms. Also included effects in- vivo that may, or may not, be endocrine disruption-mediated. May include structural analyses and metabolic considerations".
	4-day oral gavage study in Long-Evans female weanling rats (8/group). Doses: 0, 0.3, 1, 3, 10, 30, 60 or 100 mg/kg-day	EPA, 2008	A 4-day exposure study may not be a good indicator of chronic exposure effects; study details reported in a secondary source.
	No dose-related effects on TSH, T3 or T4 levels.		
	LOAEL: not established, as highest dose tested did not produce adverse effects		

Decabromodiphenyl Ether CASRN 1163-19-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	28-day oral study in Wistar rats (10/sex/group) Doses: 0, 1.87, 3.75, 7.5, 15, 30, 60 mg/kg- day; 2 doses of 30 mg/kg at 4-hour intervals were used for the 60 mg/kg-day group due to the limited solubility of the test substance; T3 levels were increased in female rats, but not male rats in the high dose group; there was no effect on T4 levels in males. There were also no histological or weight changes in the thyroids or pituitaries reported; There was decreased adrenal CYP17 adrenal activity observed in females but not males. No other histopathological or weight changes in the adrenal glands were reported	Van der Ven et al., 2008 (as described in Hardy et al., 2009)	Study reported in a review; test substance describes as consisting of a composite of equal proportions from 3 manufacturer's product (purity >97%).
	2-year carcinogenicity study (dietary) in Sprague-Dawley rats (25/sex/group) Doses: 0, 0.01, 0.1, 1 mg/kg-day; There were no changes in organ histopathology in treated rats compared to controls; No clinical signs of toxicity and no effects on survival, food consumption, body weight, hematology, urinalysis, clinical chemistry, organ weights.	Kociba et al., 1975; European Chemicals Bureau, 2002	Test substance: 77.4% decaBDE, 21.8% nonaBDE, 0.8% octaBDE.

Decabromodiphenyl Ether CASRN 1163-19-5					
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Immunotoxicity		Histological changes in lymphoid organs	occurred at 2,240 mg/kg-day in a	a chronic study of rats.	
	Immune System Effects	In chronic dietary studies in male rats, decaBDE has caused histological changes in lymphoid organs (spleen, mandibular lymph nodes) at 2,240 mg/kg-day.	EPA, 2008	Study details reported in a secondary source.	
		No cytotoxic effects in splenocytes from C57BL/6 mice incubated in culture with 3 µmol/L decaBDE (purity not specified).	EPA, 2008	Study details reported in a secondary source.	
		No attenuation of interleukin-2-receptor α chain (CD25) expression (demonstrating a lack of effect on the immune system in an immunosuppressive manner).			
	ΕCOTOXICITY				
		Aquatic Toxicity			
ECOSAR Class					
Acute Toxicity		LOW: The log K _{ow} of the compound (6.27) exceeds the ECOSAR cutoff value of 5.0 for acute endpoints and therefore, no effects at saturation (NES) are predicted. Although experimental studies were located for fish and green algae, they were considered to be inadequate due to deviations from standard protocols and resulting toxicity values that exceed the compound's water solubility			
Fish LC ₅₀		<i>Oryzias latipes</i> 48 hour LC ₅₀ >500 mg/L (Experimental)	European Chemicals Bureau, 2002	OECD guidelines for acute aquatic toxicity (203) state that the preferred exposure duration is 96 hours.	
		96 hour LC ₅₀ = 0.129 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	The log K_{ow} exceeds the ECOSAR cutoff value of 5.0 for acute endpoints and therefore, NES are predicted. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.	

Decabromodiphenyl Ether CASRN 1163-19-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Daphnid LC ₅₀	48 hour $LC_{50} = 0.137 \text{ mg/L}$ (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	The log K _{ow} exceeds the ECOSAR cutoff value of 5.0 for acute endpoints and therefore, NES are predicted. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to parcosis
Other Freshwater Invertebrate LC ₅₀	Mysid shrimp 96 hour LC ₅₀ = 0.006 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	The log K _{ow} exceeds the ECOSAR cutoff value of 5.0 for acute endpoints and therefore, NES are predicted. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
Green Algae EC ₅₀	Skeletonema costatum, Thalassiosira pseudonana 72 hour $EC_{50}>1 mg/L$ (Experimental)Chlorella sp. 96 hour $EC_{50}>1 mg/L$ (Experimental)	European Chemicals Bureau, 2002 European Chemicals Bureau, 2002	Reported in a secondary source; the reported toxicity limit exceeds the compound's water solubility. Reported in a secondary source, the reported toxicity limit exceeds the compound's water solubility.

Decabromodiphenyl Ether CASRN 1163-19-5				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	96 hour EC ₅₀ = 0.416 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	The log K_{ow} exceeds the ECOSAR cutoff value of 5.0 for acute endpoints and thus, NES are predicted. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to parcosis	
Chronic Aquatic Toxicity	LOW: Based on estimated values for fish, daphnia and algae that exceed the water solubility and are therefore predicted to have NES. Although not currently applicable to DfE aquatic toxicity criteria, a chronic dietary fish study identified decreased thyroid hormone, deiodinase activity and gonad size, plus increased mortality after dietary exposure to part per billion doses of decaBDE			
Fish ChV	<i>Pimephales promelas</i> (fathead minnows) fed 3 or 300 ng/g bw-day BDE-209 or 15 μg/g bw-day 6-propyl-2-thiouricil (PTU) as a positive control for 28 days followed by a 14 day depuration. 3 ng/g bw-day: 53% decline in TT4; 46% decline in TT3 300 ng/g bw-day: 59% decline in TT4; 62% decline in TT3 Both doses: 62% reduced brain deiodinase activity and elevated relative mRNA expression in genes associated with thyroid pathways. Decreased gonadal-somatic index and increased mortality.	Noyes et al., 2013	Study details reported in a primary source. It is not known if the parent BDE-209 or its metabolites were driving the effects.	

Decabromodiphenyl Ether CASRN 1163-19-5			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	30-day ChV = 0.018 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	The ChV value exceeds the water solubility by more than a factor of 10, and therefore, NES are predicted. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
Daphnid ChV	ChV = 0.031 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	The ChV value exceeds the water solubility by more than a factor of 10 and therefore, NES are predicted. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
Saltwater Invertebrate ChV	Mysid shrimp ChV = 0.00015 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	This chemical may not be soluble enough to measure this predicted effect. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.

Decabromodiphenyl Ether CASRN 1163-19-5								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Green Algae ChV	ChV = 0.324 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	The ChV value exceeds the water solubility by more than a factor of 10, and therefore, NES are predicted. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to parcosis					
Sediment Dwelling Organisms ChV	<i>Lumbriculus variegatus</i> NOEC ≥5,000 mg/kg dry weight based on nominal concentrations (Experimental)	European Chemicals Bureau, 2002	Reported in a secondary source; guideline study (American Society for Testing and Materials 1706-95b and OPPTS No. 850.1736). DfE has not established hazard criteria for studies based on sediment concentrations nor sediment dwelling organisms at the time of this report.					
	Terrestrial Ecotoxici	ty						
Chicken embryo toxicity	Chicken embryo $LD_{50} = 740 \text{ ng/g ww; egg}$ injection study (Experimental)	Sifleet, 2009	Test substance identified as BDE-209.					
Earthworm Subchronic Toxicity	56-day NOEC (survival or reproduction) >4,910 mg/kg dry weight using nominal concentrations (Experimental)	European Chemicals Bureau, 2002	Reported in a secondary source; guideline study (OECD 207 test guideline).					

Decabromodiphenyl Ether CASRN 1163-19-5						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
ENVIRONMENTAL FATE						
Transport	The transport evaluation for decaBDE is based on both estimated and experimental physical and chemical properties. Based on the Level III fugacity models incorporating the located experimental property data, decaBDE is expected to partition primarily to soil. It is not expected to dissociate at environmentally-relevant pHs. DecaBDE is expected to have low mobility in soil based on its estimated K _{oc} . Therefore, leaching of decaBDE through soil to groundwater is not expected to be an important transport mechanism. Estimated volatilization half-lives for a model river indicate that it will have moderate potential to volatilize from surface water. Volatilization potential from a model lake is expected to be low. In the atmosphere, decaBDE is expected to exist primarily in the particulate phase. Particulate phase decaBDE will be removed from air by wet or dry deposition.					
Henry's Law Constant (atm-m ³ /mole)	4.4×10^{-4} at 25°C (Estimated)	EPI	Value was obtained from the measured vapor pressure and water solubility.			
Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	2.8×10^5 (Estimated)	EPI				
Level III Fugacity Mode	Air: $<1\%$ (Estimated) Water = 1.5% Soil = 63% Sediment = 35%	EPI	In addition to EPI estimates, these results were obtained by using the measured vapor pressure, $\log K_{ow}$, and water solubility.			
Persistence	VERY HIGH: The persistence potential for decaBDE is Very High; it is not expected to degrade rapidly under aerobic conditions. Slow degradation through debromination may occur under anaerobic conditions. The anaerobic experimental results are indicative of limited removal but at very low rates that are possibly background level degradation under the test conditions. Experimental studies indicate no degradation after 2 weeks in a ready biodegradation test, but no data were located for soil or water. Results from biodegradation estimation models also suggest decaBDE is recalcitrant under aerobic conditions. Nonguideline experimental studies indicate decaBDE may be capable of undergoing limited anaerobic biodegradation; however the removal rate also suggests Very High persistence. The initially formed degradation products are also expected to be persistent. DecaBDE is not expected to hydrolyze in the environment based on experimental data. Experimental data indicate that decaBDE may undergo photolysis to debrominated transformation products. Data concerning the kinetics of these photolysis reactions were not located.					

Decabromodiphenyl Ether CASRN 1163-19-5								
PROPER	TY/ENDPOINT	REFERENCE	DATA QUALITY					
Water	Aerobic Biodegradation	No degradation after 2 weeks (Measured) OECD Test Guideline 301C	MITI, 1998	Guideline study; reported 80% retention in water (control) and sludge. Study hypothesized that loss of compound is due to decaBDE converting to an intermediate product under the study conditions.				
	Volatilization Half-life for Model River	7.3 hours (Estimated)	EPI	Estimation model was calculated using all applicable measured input values and the Henry's Law Constant obtained from the measured vapor pressure and water solubility.				
	Volatilization Half-life for Model Lake	340 days (Estimated)	EPI	Estimation model was calculated using all applicable measured input values and the Henry's Law Constant obtained from the measured vapor pressure and water solubility.				
Soil Aerobic Biodegradation		BDE 209 (decaBDE) showed no significant degradation after 160 days (Measured)	Nyholm et al., 2010	Nonguideline study, although the low rate of removal is consistent with aerobic degradation experiments in water.				
		Soils spiked with 1, 10, and 100 mg/kg BDE 209 (decaBDE) and incubated for up to 180 days; No degradation of BDE 209 was observed. (Measured)	Liu et al., 2011	Nonguideline study, although the low rate of removal is consistent with other aerobic degradation experiments.				
	Anaerobic Biodegradation	No degradation after 4 months in incubated, acclimated anaerobic sediments (Measured)	European Chemicals Bureau, 2002	Reported in a secondary source with limited study details.				
		<1% degradation after 32 weeks in anaerobic river sediments (Measured)	Schaefer and Siddiqui, 2001; European Chemicals Bureau, 2002	Reported in a secondary source. Study used C-14 labeled test substance, analyzed by high performance liquid chromatography.				

	Decabromodiphenyl Ether CASRN 1163-19-5							
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
		DecaBDE in sewage sludge was broken down into octa- and nona- BDEs; study run with and without organic chemical primers; half-life ~700 days with primers, longer without primers. (Measured)	Gerecke et al., 2005 and Gerecke et al., 2006 (as described in Illinois EPA, 2007)	Reported in a secondary source with limited study details.				
		Breakdown to hexa- and nona-BDEs in anaerobic sediment cultures after 3.5 years. Half-life = 10 years. Mole fraction distribution of presumed metabolites with ≤ 9 Br is $\leq 3\%$ (Measured)	Nies et al., 2005 (as described in Illinois EPA, 2007)	Reported in a secondary source with limited study details.				
		Rapid breakdown to nonaBDEs in anaerobic sediment cultures in the presence of organic solvents. (Measured)	Skoczynska et al., 2005 (as described in Illinois EPA, 2007)	Reported in a secondary source with limited study details. Primary source not available to be verified.				
		Debromination of decaBDE was found to occur in species specific studies with <i>Sulfurospillum multivorans</i> to hepta- and octa- BDEs in the presence of trichloroethylene. <i>Dehalococcoides</i> species were not able to debrominate decaBDE. (Measured)	He et al., 2006 (as described in Illinois EPA, 2007)	Reported in a secondary source with limited study details.				
	Soil Biodegradation w/ Product Identification			No data located.				
	Sediment/Water Biodegradation			No data located.				
Air	Atmospheric Half-life	320 days (Estimated)	EPI					
Reactivity	Photolysis	Degradation to lower brominated diphenyl ether congeners and sometimes polybrominated dibenzofurans reported under varying conditions in several laboratory studies using UV and natural sunlight. (Measured)	European Chemicals Bureau, 2002	Based on a summary of several laboratory studies under varying conditions, using UV and natural light.				

Decabromodiphenyl Ether CASRN 1163-19-5							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	DecaBDE absorbed into clays and organic rich sediments experienced debromination in UV and natural light. Debromination of decaBDE absorbed on three metal oxides did not occur. (Measured)	Ahn et al., 2006 (as described in Illinois EPA, 2007)	Reported in a secondary source with limited study details.				
	No evidence of light-mediated debromination of decaBDE applied to soil in sewage sludge in a field study. The soils were plowed under which may have impacted sunlight exposure. (Measured)	Sellstrom et al., 2005 (as described in Illinois EPA, 2007)	Reported in a secondary source with limited study details.				
	No significant degradation of BDE-209 (decaBDE) occurred in personal vehicle dust samples after 56 days of constant UVA irradiation under laboratory conditions; however degradation occurred when the study was performed with decaBDE absorbed to sodium sulfate. (Measured)	Lagalante et al., 2011	Nonguideline study demonstrating the relative stability of decaBDE under the test conditions.				
	BDE-209 (decaBDE) spiked and non- spiked (natural) dust samples were exposed to sunlight for 200 cumulative hours. <38% of the original decaBDE mass was degraded in the spiked dust, 25% of which could not be accounted for and was lost to unknown pathways and/or products. The remaining 13% was accounted for by the formation of lower brominated congeners. (Measured)	Stapleton and Dodder, 2008	Nonguideline study demonstrating the potential for photolytic degradation of similar highly brominated materials.				
Hydrolysis	No degradation at pH 5 and 7 at 100°C after six weeks. (Measured)	European Chemicals Bureau, 2002	Reported in a secondary source.				

Decabromodiphenyl Ether CASRN 1163-19-5							
PROPERT	FY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Environmental Half-life		360 days (Estimated)	PBT Profiler, Professional judgment	Half-life estimated for the predominant compartment, as determined by EPI and the PBT Profiler methodology.			
Bioaccumulation		HIGH: Based on estimated BAF values suggesting that the potential for bioaccumulation is high and located monitoring data indicating that decaBDE has been detected in higher trophic level organisms. DecaBDE degradation, transformation and metabolism products also contribute to the high bioaccumulation hazard designation. These compounds are lower brominated congeners and also have been detected in monitoring studies (ATSDR, 2004).					
I	Fish BCF	\leq 5 to \leq 50 (Measured) 6 week exposure in <i>Cyprinus carpio</i> with sample concentrations of 60 ppb and 6 ppb, respectively using a method identified as flow-through bioaccumulation test of a chemical substance in fish or shellfish	MITI, 1998 (as described in European Chemicals Bureau, 2002); J-Check, 2013	Nonguideline study of a commercial product mixture containing ≥75% decaBDE, approximately 17% nonaBDE and 8% octaBDE.			
I	BAF	49,000 (Estimated)	EPI				
		0.0% uptake from diet after 90 days in <i>Cyprinus carpio</i> (Measured)	Stapleton et al., 2004	Adequate, nonguideline study.			
		0.005% uptake from diet after 120 days in <i>Oncorhynchus mykiss</i> (Measured)	Kierkegaard et al., 1999	Adequate, nonguideline study.			
Ν	Metabolism in Fish	Little or no uptake from water phase exposure; limited uptake (~0.02-0.13%) observed when exposed from food, after 120-day exposure period. (Measured)	European Chemicals Bureau, 2002	Reported in a secondary source.			
		Found to be metabolized in juvenile fathead minnows and to accumulate after 28-day treatment at 9.8 μ g/g food. A range of penta- to octaBDEs metabolites were detected with 2,2',4,4',5,6'- hexabromodiphenyl ether being most prevalent. (Measured)	Noyes et. al., 2011	Adequate, nonguideline study.			

	Decabromodiphenyl Ether CASRN 1163-19-5					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
		<i>In vitro</i> metabolism of BDE-209 (decaBDE) by microsomal fractions of Chinese sturgeon found that BDE-209 was biotransformed in liver. Debrominated products: BDE-126, BDE-154, BDE-188, BDE-184, BDE-183, BDE-202, BDE-201, and BDE-204/197; after incubation. (Measured) A physiologically based pharmacokinetic	Wan et al., 2013			
		model (PBPK) of BDE-209 in Chinese sturgeon was used to develop a Bayesian hierarchical model to estimate partition coefficients. The low calculated partition ratios from blood to tissues would lead to high bioaccumulation of BDE-209, especially in absorbing organs. (Estimated)				
]	ENVIRONMENTAL MONITORING AN	D BIOMONITORING			
Environmental Mor	nitoring	Detected in surface water particulates; wet a treatment plants; sediments and soils world dust (HSDB, 2011; Dodson et al., 2012).	and dry deposition samples; sludge wide; urban, rural, and suburban at	and effluents from wastewater mospheric air; indoor air and house		
Ecological BiomonitoringDetected in tree bark; fish and shellfish worldwide; in cats; owl and peregrine falco respectively (HSDB, 2011); peregrine falcon eggs in California (Park et al., 2009); predator mammals, marine fish, marine invertebrates, marine mammals, marine/aq (Canada, 2010); eucalyptus leaves and pine needles (Tian, 2013).		falcon eggs in Belgium and Sweden, 009); birds of prey, herbivore and ne/aquatic/other birds and vegetation				
Human Biomonitoring Detected in breast milk (HSDB, 2011); serum (Thuresson, 2006; He et al., 2013) and blood (EPA, 2003) chemical was not included in the National Health and Nutrition Examination Survey biomonitoring rep 2011).				(3) and blood (EPA, 2008). This Survey biomonitoring report (CDC,		

Ahn M-Y, Filley TR, Jafvert CT, et al. Photodegradation of decabromodiphenyl ether adsorbed onto clay minerals, metal oxides, and sediment. *Environ. Sci. Technol.* **2006**, 40: 215-220.

ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Polybrominated Biphenyls and Polybrominated Diphenyl Ethers. U.S. Department of Health and Human Services: September 2004. http://www.atsdr.cdc.gov/toxprofiles/tp68.pdf

Biesemeier J., Beck M., Silberberg H., et al. Effects of dose, administration route, and/or vehicle on decabromodiphenyl ether concentrations in plasma of maternal, fetal, and neonatal rats and in milk of maternal rats. Drug Metab. Dispos. **2010.** 38(10):1648-1654.

Biesemeier J., Beck M., Silberberg H., et al. **2011**. An oral developmental neurotoxicity study of decabromodiphenyl ether (DecaBDE) in rats. *Birth Defects Res B Dev Reprod Toxicol* 92(1):17-35.

CDC (Centers for Disease Control and Prevention). *Fourth national report on human exposure to environmental chemicals, updated tables*. Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on May 10, 2011).

Canada, 2010. Ecological State of the Science Report on Decabromodiphenyl Ether (decaBDE) September 7, 2010. Environment Canada. Available at: <u>http://www.ec.gc.ca/lcpe-cepa/default.asp?lang=En&n=B901A9EB&offset=9&toc=show</u> as Sept 14, 2011.

Danish Environmental Protection Agency. Health and Environmental Assessment of Alternatives to Deca-BDE in Electrical and Electronic Equipment. DHI Water and Environment. Environmental Project No. 1142. **2007**.

Darnerud PO; Erikson GS; Jóhannesson T; et al. Vilukela M. Polybrominated diphenyl ethers: Occurrence, dietary exposure, and toxicology. *Environ. Health. Perspect.* **2001**, 109(1):49-68.

Dodson, R. Perovich, L., Covaci, A., et al. After the PBDE Phase-Out: A Broad Suite of Flame Retardants in Repeat House Dust Samples from California. *Environ. Sci. Technol.* **2012.** 46(24):13056-13066.

ECOSAR/EPI (EPIWIN/EPISUITE) Estimations Programs Interface for Windows, Version 1.11. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

EPA (U.S. Environmental Protection Agency). High Production Volume (HPV) Data Summary for benzene 1,1'-ioxybis[2,3,4,5-pentabromo (a.k.a.Decabromodiphenyl oxide, Decabromodiphenyl ether). **2005**.

EPA (U.S. Environmental Protection Agency). Toxicological Review of Decabromodiphenyl ether (BDE-209) (CAS No. 1163-19-5). In Support of Summary Information on the Integrated Risk Information System (IRIS). EPA/635/R-07/008F. **2008**.

EPA (U.S. Environmental Protection Agency). Polybrominated Diphenyl Ethers (PBDEs) Action Plan. **2009**. <u>http://www.epa.gov/opptintr/existingchemicals/pubs/actionplans/pbdes_ap_2009_1230_final.pdf</u>.

EPA (U.S. Environmental Protection Agency) Sustainable Futures. *Using NonCancer Screening within the SF Initiative*. U.S. Environmental Protection Agency: Washington DC. **2011**. <u>http://www.epa.gov/opptintr/sf/pubs/noncan-screen.htm#systemic</u> (accessed on February 09, 2011).

EPA, **2012**. Voluntary Children's Chemical Evaluation Program (VCCEP): Decabromodiphenyl Ether (A.K.A. Decabromodiphenyl Oxide (DBDPO). CAS # 1163-19-5. Available at: <u>http://www.epa.gov/oppt/vccep/pubs/chem21.html</u>

EPI (*EPIWIN/EPISUITE*) *Estimation Program Interface for Windows*, Version 4.0. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

ESIS. European chemical Substances Information System. 2012. European Commission. http://esis.jrc.ec.europa.eu/.

European Chemicals Bureau. EU Risk Assessment Report for Bis(Pentabromophenyl) Ether. CAS No. 1163-19-5. EINECS No. 214-604-9. **2002**.

European Chemicals Bureau. IUCLID Dataset: Bis(Pentabromophenyl) Ether. 2000. <u>http://ecb.jrc.ec.europa.eu/esis/</u> (accessed March 1, 2011).

European Commission. EU priority list of suspected endocrine disruptors. **2012**. <u>http://ec.europa.eu/environment/endocrine/strategy/substances_en.htm#priority_list</u> (accessed April, 2012).

Fu, J; Suuberg, E.M. Vapor pressure of solid polybrominated diphenyl ethers determined via Knudsen effusion method. *Environ. Sci. Technol.* **2011**, 30:2216-2219.

German Federal Ministry of the Environment. *Substituting Environmentally Relevant Flame Retardants: Assessment Fundamentals: Results and summary overview*. Berlin, Germany: Federal Environmental Agency (Umweltbundesamt), June **2001**.

Gerecke AC, Giger W, Hartmann PC, et al. Anaerobic degradation of brominated flame retardants in sewage sludge. *Chemosphere* **2006**, 64: 311-317.

HSDB (Hazardous Substances Data Bank), 2011. Decabromodiphenyl ether (CASRN: 1163-19-5). Hazardous Substances Data Bank. Database if the National Library of Medicine's TOXNET system. http://toxnet.nlm.nih.gov. (Accessed on July 18, 2011).

Hardy et al. 2009. Toxicology and Human Health Risk Assessment of Decabromodiphenyl Ether. Critical Reviews in Toxicology 39(S3):1-44.

He J, Robrock KR, and Alverez-Cohen L. Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). *Environ. Sci. Technol.* **2006**, 40: 4429-4434.

He S, Li M, Jin J, Wang Y, Bu Y, Xu M, Yeng X, Liu A. Concentrations and trends of halogenated flame retardants in the pooled serum of residents of Laizhou Bay, China. *Environ Toxicol Chem.* 32(6):1242-1247. **2013.**

Illinois Environmental Protection Agency. Report on alternatives to the flame retardant decaBDE: evaluation of toxicity, availability, affordability, and fire safety issues: A report to the governor and the general assembly. **2007**.

J-Check (Japan CHEmicals Collaborative Knowledge database). Bioaccumulation: aquatic/sediment study for CASRN 1163-19-5. **2013**. <u>http://www.safe.nite.go.jp/jcheck/english/template.action</u> (accessed February 12, 2013).

Kierkegaard, A.; Balk, L.; Tjärnlund, U.; de Wit, C.; Jansson. B. Dietary Uptake and Biological Effects of Decabromodiphenyl Ether in Rainbow Trout (Oncorhynchus mykiss). *Environ. Sci. Technol.* 33(10): 1612-1617. **1999**.

Kociba, RJ; Frauson, LO; Humiston, CG; et al. Results of a two-year dietary feeding study with decabromodiphenyl oxide (DBDPO) in rats. J Combust Toxicol 2:267–285. **1975.**

Lagalante, A.; Shedden, C.; Greenbacker, P. Levels of polybrominated diphenyl ethers (PBDEs) in dust from personal automobiles in conjunction with studies on the photochemical degradation of decabromodiphenyl ether (BDE-209). *Environ Int.* **2011**, 37(5): 899-906

Lide, D.R. CRC Handbook of Chemistry and Physics 88TH Edition 2007-2008. CRC Press, Taylor & Francis, Boca Raton, FL, p. 3-134. **2008**.

Liu, L.; Zhu, W.; Xiao, L. Yang, L. Effect of decabromodiphenyl ether (BDE 209) and dibromodiphenyl ether (BDE 15) on soil microbial activity and bacterial community composition, *Journal of Hazardous Materials*, Volume 186, 883-890, **2011**.

MacGregor, J.; Nixon, W. Decabromodiphenyl oxide (DBDPO): Determination of the n-octanol water partition coefficient. Wildlife International, Ltd. Easton, MD. **1997**.

Maine, unpublished. Decabromodiphenyl Ether Flame Retardant in Plastic Pallets. A Safer Alternatives Assessment Maine Department of Environmental Protection; Maine Center for Disease Control & Prevention.

MITI (Japanese Ministry of International Trade and Industry). Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. Compiled under the supervision of Chemical Products Safety Division, Basic Industries Bureau, Ministry of International Trade & Industry, Japan; Chemicals Inspection & Testing Institute, Japan. Ed.; Japan Chemical Industry Ecology-Toxicology & Information Center. **1998**.

NAS (National Academy of Sciences) Toxicological risks of selected flame-retardant chemicals. Washington, DC: The National Academies Press, p. 131-145. **2000.** <u>http://www.nap.edu/openbook.php?record_id=9841&page=139#p2000a45a9960139001</u> (accessed June 23, 2008).

Nies L, Ahn M-Y, Filley T, et al. Progress Report: Anaerobic microbial reductive debromination of polybrominated diphenyl ethers. U.S. EPA National Center for Environmental Research. EPA Grant No. R830251. **2005**.

Noyes, P; Hinton, D; Stapleton H. Accumulation and debromination of decabromodiphenyl 1 ether (BDE-209) in juvenile fathead minnows (*Pimephales promelas*) induces thyroid disruption and liver alterations. *Toxicol. Sci.* **2011**, 122(2): 265-274. Noyes, P; Lema, S; Macauly, L; Douglas, N; Stapleton, H. Low Level Exposure to the Flame Retardant BDE-209 Reduces Thyroid Hormone Levels and Disrupts Thyroid Signaling in Fathead Minnows. *Environ. Sci. Technol.* **2013**, 47(17): 10012-10021.

NTP (National Toxicology Program). Toxicology and carcinogenesis studies of decabromodiphenyl oxide (CAS No. 1163-19-5) in F344/N rats and B6C3F1 mice (feed studies). National Toxicology Program, Research Triangle Park, NC. NIH Publication No. 83-2565. **1986**.

Nyholm, J.R.; Lundberg, C.; Andersson, P.L. Biodegradation kinetics of selected brominated flame retardants in aerobic and anaerobic soil, *Environmental Pollution*, Volume 158, Issue 6, Pages 2235-2240. **2010**.

Park, J; Holden, A; Chu, V; et al. Time-trends and congener profiles of PBDEs and PCBs in California Peregrine Falcons (*Falco peregrinus*). *Environ. Sci. Technol.* 43 (23):8744–8751. **2009**.

PBT Profiler *Persistent (P), Bioaccumulative (B), and Toxic (T) Chemical (PBT) Profiler*. U.S. Environmental Protection Agency: Washington D.C. <u>www.pbtprofiler.net</u>.

Schaefer, E.; Siddiqui. A. Decabromodiphenyl oxide (DBDPO): An activated sludge, respiration inhibition test. Wildlife International, Ltd. Easton, MD. **2001**.

Sellstrom U, DeWit CA, Lundgren N, et al. Effect of sewage-sludge application on concentrations of higher-brominated diphenyl ethers in soil and earthworms. *Environ. Sci. Technol.* **2005**, 39: 9064-9070.

Sifleet S. Toxicology of decabromodiphenyl ether in avian embryos: disposition of the flame retardant BDE-209 in yolk-injected chicken embryos (*Gallus gallus*). **2009**. A thesis presented to the Faculty of the School of Marine Science; College of William and Mary, Virginia; Master of Science thesis. <u>http://web.vims.edu/library/Theses/Sifleet09.pdf</u>

Skoczynska E, Zegers B, deVoogt P, et al. Reductive debromination of polybrominated diphenyl ethers (PBDEs) by anaerobic sediment microorganisms. *Organohal. Comp.* **2005**, 67: 572-574;

Stapleton, H.; Alaee, M.; Letcher, R.; Baker, J. 1.Debromination of the Flame Retardant Decabromodiphenyl Ether by Juvenile Carp (*Cyprinus carpio*) following Dietary Exposure. *Environ Sci* Technol 38:112-119. **2004**.

Stapleton, H.; Dodder, N. Photodegradation of decabromodiphenyl ether in house dust by natural sunlight. *Environ Toxicol Chem.* 27(2): 306-312. **2008**.

Stenzel, J.; Nixon, W. Decabromodiphenyl oxide (DBDPO): Determination of the vapor pressure using a spinning rotor gauge. Wildlife International, Ltd. Easton, MD. **1997a**.

Stenzel, J.; Nixon, W. Decabromodiphenyl oxide (DBDPO): Determination of the water solubility. Wildlife International, Ltd. Easton, MD. **1997b**.

Tian, M.; Chen, S-J.; Luo, Y.; Wang, J.; Zhu, Z-C.; Luo, X-J.; Mai, B-X. Air-plant exchange of brominated flame retardants at a rural site: Influencing factor, interspecies difference, and forest scavenging. *Environ Toxicol Chem*.32(6):1248-1253. **2013.**

Thuresson K, Höglund P, Hagmar L, Sjödin A, Bergman A, Jakobsson K. Apparent half-lives of hepta- to decabrominated diphenyl ethers in human serum as determined in occupationally exposed workers. *Environ Health Perspect.* **2006** Feb;114(2):176-81.

Washington Department of Ecology. Alternatives to Deca-BDE in Televisions and Computers and Residential Furniture. Implementation of RCW 70.76: Identifying safer and technically feasible alternatives to the flame retardant called Deca-BDE used in the electronic enclosures of televisions and computers and in residential upholstered furniture Final report. Department of Ecology Publication No. 09-07-041; Department of Health Publication No. 334-181. **2008**. Available at: http://www.ecy.wa.gov/biblio/0907041.html.

Wan, Y.; Zhang, K.; Dong, Z.; Hu, Z. Distribution is a Major Factor Affecting Bioaccumulation of Decabrominated Diphenyl Ether: Chinese Sturgeon (*Acipenser sinensis*) as an Example. *Environ Sci Technol*.47(5): 2279-2286. **2013**.

Ethylene Bis-Tetrabromophthalimide (EBTBP)

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. [§] Based on analogy to experimental data for a structurally similar compound.

			Human Health Effects				Aquatic Toxicity ^{**}		Environmental Fate							
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Ethylene Bis-Tetrabromophthalimide	32588-76-4	L	M	L	L	M [§]	L	L	L		VL	VL	L	L	VH	H

**Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Ethylene Bis-Tetrabromophthalimide (EBTBP)

Ethylene Bis-Tetrabromophthalimide CASRN 32588-76-4										
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY							
PHYSICAL/CHEMICAL PROPERTIES										
Melting Point (°C)	446 (Measured)	NIEHS, 1999	Nonguideline study, yet established method considered sufficient for a screening assessment.							
Boiling Point (°C)	>300 (Estimated)	EPI; EPA, 1999	Cutoff value for high boiling point compounds according to High Production Volume (HPV) assessment guidance.							
Vapor Pressure (mm Hg)	0.0000017 (Measured) Reported as 2.27×10^{-4} Pa at 20°C using the spinning rotor gauge method Organisation of Economic Cooperation and Development (OECD) 104	Lezotte et al., 2005	Guideline study with commercial product. Purity of the sample was not provided or determined.							
Water Solubility (mg/L)	<10 ⁻³ (Estimated)	EPI; EPA, 1999	Cutoff value for non-soluble compounds according to HPV assessment guidance.							
Log K _{ow}	9.8 (Estimated)	EPI; EPA, 1999	Near cutoff value for non-soluble compounds according to HPV assessment guidance.							
Flammability (Flash Point)	Nonflammable (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.							
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.							
Pyrolysis			No data located.							
рН	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.							
рКь	5.48 (Estimated)	SPARC								

		Ethylene Bis-Tetrabromophthalimide CASRN 32588-76-4									
PROPERTY/ENDPOINT DATA DATA REFERENCE DATA QUA											
		HUMAN HEALTH EFFECTS									
Toxicokinetics		Ethylene bis-tetrabromophthalimide as a neat material is estimated to not be absorbed by any route of									
		exposure and is expected to have poor al	bsorption for all routes when in s	olution. Ethylene bis-							
		tetrabromophthalimide is distributed th	rough tissues, but dissipates after	r exposure ceases; it is excreted							
	• •.	primarily in the feces and urine. There v	were no data located regarding al	bsorption or metabolism.							
Dermal Absorption	n in vitro			No data located.							
Absorption,	Oral, Dermal or Inhaled	No absorption through all routes as neat	Professional judgment	Based on closely related							
Distribution,		material; poor absorption through all		confidential analogs with similar							
Metabolism &		routes when in solution (Estimated by		structures, functional groups, and							
Excretion		analogy)		physical/chemical properties.							
		Rat, oral (gavage), 14-day exposure to	NIEHS 1999; IUCLID 2000	Reported in a secondary source							
		14C-labeled BT93; excreted primarily in		with limited study details.							
		the feces (65% of total dose) and urine									
		(15% of total dose); minor amounts of									
		14C-label was found in tissues, but									
		dissipated within the 30-day withdrawal									
		period.									
Acute Mammalian	Toxicity	LOW: Based on acute oral and dermal LD ₅₀ values of >2000 mg/kg and the inhalation LC ₅₀ value of									
		>20 mg/L.	r								
Acute Lethality	Oral	Rat oral $LD_{50} > 5,000 \text{ mg/kg}$	IUCLID, 2000	Reported in a secondary source;							
				limited study details provided.							
		Rat oral $LD_{50} > 7,500 \text{ mg/kg}$	NIEHS 1999; EPA, 2008a	Reported in a secondary source;							
				some study details provided.							
	Dermal	Rabbit dermal LD ₅₀ >2,000 mg/kg	IUCLID, 2000	Reported in a secondary source;							
				some study details provided.							
	Inhalation	Rat inhalation 1 hr LC ₅₀ >203 mg/L	NIEHS, 1999; IUCLID, 2000	Reported in a secondary source;							
				limited study details provided; not							
				the preferred 4-hour exposure.							

		Ethylene Bis-Tetrabromophthalimide CASRN 32588-76-4						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Other Acute Effects		Rat 1-hour inhalation to a dust atmosphere of ethylene bis (tetrabromophthalimide) of $4,500 \pm$ $3,000 \text{ mg/m}^3$ resulted in dyspnea, and dry, red, brown matter around the muzzle. There were no changes in body weight gain during a 14-day observation period. LOAEL = $4,500 \pm 3,000 \text{ mg/m}^3$	NIEHS, 1999	Reported in a secondary source; limited study details provided; the rats were only exposed to one concentration of the test substance and the mean concentration the rats were exposed to was quite variable, as indicated by a large standard deviation.				
Carcinogenicity		MODERATE: Estimated based on lack suitable analog: carcinogenicity cannot	of experimental carcinogenicity be ruled out.	data for this compound or a				
	OncoLogic Results			Not amenable to available estimation method.				
	Carcinogenicity (Rat and Mouse)			No data located.				
	Combined Chronic Toxicity/ Carcinogenicity			No data located.				
Genotoxicity		LOW: Ethylene bis-tetrabromophthalimide did not cause mutations in bacterial cells or chromosomal aberrations in mammalian cells <i>in vitro</i> .						
	Gene Mutation in vitro	Negative, <i>S. typhimurium</i> TA98, TA100, TA1535, TA1537, TA1538; <i>E. coli</i> WP2uvrA with and without metabolic activation.	NIEHS, 1999; IUCLID, 2000; EPA, 2008a; CCRIS, 2011; NTP, 2011	Reported in secondary sources; sufficient study details provided.				
		Negative, <i>S. typhimurium</i> TA98, TA1535, TA1537 with and without metabolic activation.	Zeiger et al., 1985	Reported in a primary source; adequate study details provided.				
		Negative, <i>S. typhimurium</i> TA98, TA100, TA1535, TA1537, TA1538; <i>S. cerevisiae</i> D4 with and without metabolic activation.	NIEHS, 1999; IUCLID, 2000; EPA, 2008a	Reported in a secondary source; sufficient study details provided.				
	Gene Mutation in vivo			No data located.				

Ethylene Bis-Tetrabromophthalimide CASRN 32588-76-4							
PROPER'	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	Chromosomal	Negative, Chinese hamster ovary cells	EPA, 2008a	Reported in a secondary source;			
	Aberrations in vitro	with and without metabolic activation.		sufficient study details provided.			
	Chromosomal			No data located.			
-	Aberrations in vivo						
	DNA Damage and			No data located.			
-	Repair						
	Other (Mitotic Gene			No data located.			
	Conversion)						
Reproductive Effec	ets	LOW: Based on professional judgment,	there is low potential for reprodu	uctive toxicity.			
	Reproduction /	Low potential for reproductive toxicity.	Expert judgment	Estimated based on expert			
	Developmental Toxicity	(Estimated)		judgment.			
	Screen						
	Combined Repeated						
	Dose with						
	Reproduction /						
	Developmental Toxicity						
	Screen						
	Reproduction and						
	Fertility Effects						
Developmental Effe	ects	MODERATE: Ethylene bis-tetrabromo	phthalimide did not cause develo	pmental effects in rats or rabbits			
		following gestational exposure at oral doses as high as 1,000 mg/kg bw-day. However, there is a lack of					
		developmental neurotoxicity data for this compound. A concern for developmental neurotoxicity has been					
		identified for DecaBDE, an analog that shares a key structural feature with ethylene bis-					
		tetrabromophthalimide. Ethylene bis-tetrabromophthalimide also possesses structural features that are not					
		present in DecaBDE and, as a result, the confidence in this assignment is low. Given the absence of					
		developmental neurotoxicity data, poten	itial concerns cannot be ruled out	t, and an estimated Moderate			
		hazard designation is consistent with the	e assessment methodology discuss	sed in Chapter 4.			
	Reproduction/			No data located.			
	Developmental Toxicity						
	Screen						

Ethylene Bis-Tetrabromophthalimide CASRN 32588-76-4				
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY
Co Do Rej De Scr	ombined Repeated ose with eproduction/ evelopmental Toxicity reen			No data located.
Pre	enatal Development	Sprague-Dawley rats (25/group) were administered ethylene bis- tetrabromophthalimide by gavage at 0, 100, 500, or 1,000 mg/kg bw-day on gestation days (GD) 6-15. There were no treatment-related effects on maternal survival, body weight gains, food consumption. There were no treatment- related changes in intrauterine survival and fetal weight, and no changes in the incidence of developmental malformations and variations compared to controls Parental toxicity: NOAEL >1,000 mg/kg bw-day (highest dose tested) Reproductive toxicity: NOAEL >1,000 mg/kg bw-day (highest dose tested)	NIEHS, 1999; IUCLID, 2000; EPA, 2008a	Reported in secondary sources; sufficient study details provided; follows OECD guidelines. The study is in accordance with EPA OPPTS method 870.3700.

Ethylene Bis-Tetrabromophthalimide CASRN 32588-76-4				
PROPERT	Y/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		New Zealand white rabbits (20/group) were administered ethylene bis- tetrabromophthalimide by gavage at 0 or 1,000 mg/kg bw-day on GD 7-19. There were no treatment-related effects on maternal survival, body weight gains, food consumption. There were no treatment-related changes in intrauterine survival and fetal weight, and no changes in the incidence of developmental malformations and variations compared to controls Parental toxicity: NOAEL >1,000 mg/kg bw-day (highest dose tested Reproductive toxicity: NOAEL >1,000 mg/kg bw-day (highest dose tested	NIEHS, 1999; IUCLID, 2000; EPA, 2008a	Reported in secondary sources; sufficient study details provided. The study is in accordance with OPPTS method 870.3700; only one dose level tested.
]]]	Postnatal Development/ Developmental Neurotoxicity	Evaluation of locomotor activity in C57BL6/J mice. NOAEL: not established LOAEL: 6 mg/kg-day (based on decreased T4 levels in male mice and effects on locomotor (Estimated by analogy)	EPA, 2008b; Washington DOE, 2008; Professional judgment	Estimated based on analogy to decaBDE which contains similar structural features; study details reported in a secondary source. It should also be noted that ethylene bis-tetrabromophthalimide contains structural features that are not present in decaBDE. Analogs possessing experimental data and containing all of the structural features of ethylene bis- tetrabromophthalimide were not located.

Ethylene Bis-Tetrabromophthalimide CASRN 32588-76-4				
PROPERTY/ENDPOI	NT DATA	REFERENCE	DATA QUALITY	
	Single dose gavage in male Sprague Dawley rats; NOAEL: Not established LOAEL: 6.7 mg/kg (Dose-related disruption in habituation [changes ir locomotion, rearing, total activity] a both doses). (Estimated by analogy)	EPA, 2008b; Professional judgment t	Estimated based on analogy to decaBDE; each dose administered a single time; not a guideline study. Study details reported in a secondary source. It should also be noted that ethylene bis- tetrabromophthalimide contains structural features that are not present in decaBDE. Analogs possessing experimental data and containing all of the structural features of ethylene bis- tetrabromophthalimide were not located	
	NMRI male mice gavaged with decaBDE (99% pure) at 0, 2.22, or 2 mg/kg on PNDs3-19 or 0, 1.34, 13.4 20.1 mg/kg on PND10. Dose-related disruption in habituation (changes in locomotion, rearing, tota activity) at 2, 4, and 6 months follow exposure to 20.1 mg/kg on PND3. NOAEL: 2.22 mg/kg LOAEL: 20.1 mg/kg (Estimated by analogy)	20.1 European Chemicals Bureau 2002; EPA, 2008b; Professional judgment	Estimated based on analogy to decaBDE; each dose administered a single time; not a guideline study. Study details reported in a secondary source. It should also be noted that ethylene bis- tetrabromophthalimide contains structural features that are not present in decaBDE. Analogs possessing experimental data and containing all of the structural features of ethylene bis- tetrabromophthalimide were not located.	

Ethylene Bis-Tetrabromophthalimide CASRN 32588-76-4				
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY
Neurotoxicity		LOW: Estimated to have Low potential for neurotoxicity effects estimated based on the absence of structural alerts that have been [experimentally] associated with the neurotoxicity endpoint. There were no experimental data located on this endpoint for ethylene bis-tetrabromophthalimide or an analog.		
	Neurotoxicity Screening Battery (Adult)	Low potential for neurological effects. (Estimated)	Professional judgment	Estimated based on the absence of structural alerts that have been [experimentally] associated with the neurotoxicity endpoint.
Repeated Dose Effects		LOW: A 28- or 90-day dietary exposure to ethylene bis-tetrabromophthalimide in rats at doses as high as 1,000 mg/kg bw-day did not cause adverse effects on growth parameters, clinical chemistry, organ weights and weight ratios, or macro and micro pathology. By analogy to decaBDE and with the potential for bioaccumulation, there is potential for expression of adverse effects in longer term studies.		
		Potential for repeated dose effects (Estimated by analogy and bioaccumulation)	Professional judgment	Estimated based on the high potential for bioaccumulation and by analogy to observations on decaBDE where adverse effects were not present in 90-day studies but were expressed following chronic exposure in a National Toxicology Program study.
		In a 28-day oral (dietary) study in male rats (10/group) fed 0, 0.01, 0.1, or 1% ethylene bis-tetrabromophthalimide, there were no treatment-related changes in growth parameters or food consumption, clinical chemistry, terminal organ weights or weight ratios, or gross and microscopic tissues. NOAEL >1% in diet (>1,000 mg/kg- bw-day) (highest dose tested)	NIEHS, 1999; IUCLID, 2000; EPA, 2008a	Reported in a secondary source; sufficient study details provided. The study does not conform to current guidelines.

Ethylene Bis-Tetrabromophthalimide CASRN 32588-76-4									
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY					
		In a 90-day oral (dietary) study in rats fed 0, 0.01, 0.1, or 1% ethylene bis- tetrabromophthalimide, there were no treatment-related changes in growth parameters or food consumption, clinical chemistry, terminal organ weights or weight ratios, or gross and microscopic tissues; there were unspecified changes in urinalysis. NOAEL >1% in diet (>1,000 mg/kg bw- day) (highest dose tested)	NIEHS 1999; IUCLID 2000; EPA, 2008a	Reported in a secondary source; sufficient study details provided. The study does not conform to current guidelines.					
Skin Sensitization		LOW: Estimated to have Low potential for skin sensitization based on expert judgment.							
	Skin Sensitization	Low potential for skin sensitization (Estimated)	Expert judgment	Estimated based on expert judgment.					
Respiratory Sensitization		No data located.							
Respiratory Sensitization				No data located.					
Eye Irritation		VERY LOW: Ethylene bis-tetrabromophthalimide is not an eye irritant in rabbits.							
	Eye Irritation	Not irritating, New Zealand white rabbit	NIEHS, 1999; IUCLID, 2000	Reported in a secondary source; some study details provided.					
		Not initiating, alonio fabbit	10CLID, 2000	limited study details provided.					
Dermal Irritation		VERY LOW: Ethylene bis-tetrabromophthalimide is not a skin irritant in rabbits.							
	Dermal Irritation	Not irritating, rabbit; 24-hour occlusive dressing	IUCLID, 2000	Reported in a secondary source; limited study details provided.					
		Not irritating, rabbit; 24-hour abraded and nonabraded sites: 24-hour occlusive	NIEHS, 1999; IUCLID, 2000	Reported in secondary sources; sufficient study details provided.					
		dressing		r i i i i i i i i i i i i i i i i i i i					
Endocrine Activity		No data located.							
				No data located.					
Immunotoxicity		Estimated to have no potential for immunotoxicity based on expert judgment.							
	Immune System Effects	Expected to not have potential for	Expert judgment	Estimated based on expert					
		immunotoxicity (Estimated)		judgment.					
Ethylene Bis-Tetrabromophthalimide CASRN 32588-76-4									
---	---	--	---	--	--	--	--	--	--
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY						
	ECOTOXICITY								
ECOSAR Class	Imides; Amides								
Acute Toxicity	LOW: Estimated data suggest no effects at saturation (NES) for the acute aquatic toxicity endpoints;								
	experimental results are too short a duration to assess the hazard of acute aquatic toxicity, but are								
	consistent with this hazard designation.								
Fish LC ₅₀	Oryzias latipes (orange-red killifish) 48-hour $LC_{50} > 500 \text{ mg/L}$ (static) (Experimental)	NIEHS, 1999; IUCLID, 2000; EPA, 2008a	48-hour exposure study as opposed to preferred 96-hour study; according to Japanese Ministry of						
			International Trade and Industry (MITI) guidelines.						
	Fish 96-hour $LC_{50} = 0.000084 \text{ mg/L}$ (Estimated) ECOSAR: Amides	ECOSAR version 1.11	NES: The log K_{ow} of 9.8 for this chemical exceeds the structure activity relationship (SAR) limitation for log K_{ow} of 5.0; NES are predicted for these endpoints.						
	Fish 96-hour $LC_{50} = 0.00022 \text{ mg/L}$ (Estimated) ECOSAR: Imides	ECOSAR version 1.11	NES: The log K_{ow} of 9.8 for this chemical exceeds the SAR limitation for log K_{ow} of 5.0; NES are predicted for these endpoints.						
	Fish 96-hour LC ₅₀ = 0.00019 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 9.8 for this chemical exceeds the SAR limitation for log K_{ow} of 5.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.						

Ethylene Bis-Tetrabromophthalimide CASRN 32588-76-4							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Daphnid LC ₅₀	Daphnid 48-hour LC ₅₀ = 0.000274 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 9.8 for this chemical exceeds the SAR limitation for log K_{ow} of 5.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.				
	Daphnid 48-hour $LC_{50} = 0.000469 \text{ mg/L}$ (Estimated) ECOSAR: Imides	ECOSAR version 1.11	NES: The log K_{ow} of 9.8 for this chemical exceeds the SAR limitation for log K_{ow} of 5.0; NES are predicted for these endpoints.				
	Daphnid 48-hour $LC_{50} = 0.000695 \text{ mg/L}$ (Estimated) ECOSAR: Amides	ECOSAR version 1.11	NES: The log K_{ow} of 9.8 for this chemical exceeds the SAR limitation for log K_{ow} of 5.0; NES are predicted for these endpoints.				
Green Algae EC ₅₀	Green algae 96-hour EC ₅₀ = 0.003 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 9.8 for this chemical exceeds the SAR limitation for log K_{ow} of 6.4; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.				

Ethylene Bis-Tetrabromophthalimide CASRN 32588-76-4								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
	Green algae 96-hour $EC_{50} = 0.02 \text{ mg/L}$ (Estimated) ECOSAR: Imides	ECOSAR version 1.11	NES: The log K_{ow} of 9.8 for this chemical exceeds the SAR limitation for log K_{ow} of 6.4; NES are predicted for these endpoints.					
	Green algae 96-hour $EC_{50} = 0.014 \text{ mg/L}$ (Estimated) ECOSAR: Amides	ECOSAR version 1.11	NES: The log K_{ow} of 9.8 for this chemical exceeds the SAR limitation for log K_{ow} of 6.4; NES are predicted for these endpoints.					
Chronic Aquatic Toxicity	LOW: Estimated data suggest NES for o	chronic aquatic toxicity endpoint	s.					
Fish ChV	Fish 30-day ChV = 0.000000494 mg/L (Estimated) ECOSAR: Amides Fish 30-day ChV = 0.0000196 mg/L (Estimated) ECOSAP: Imides	ECOSAR version 1.11 ECOSAR version 1.11	NES: The log K_{ow} of 9.8 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted for these endpoints. NES: The log K_{ow} of 9.8 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES					
	Fish 30-day ChV = 0.0000148 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	are predicted for these endpoints. NES: The log K_{ow} of 9.8 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.					
Daphnid ChV	Daphnid ChV = 0.00000917 mg/L (Estimated) ECOSAR: Amides	ECOSAR version 1.11	NES: The log K_{ow} of 9.8 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted for these endpoints.					

Ethylene Bis-Tetrabromophthalimide CASRN 32588-76-4							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Daphnid ChV = 0.000115 mg/L (Estimated) ECOSAR: Imides	ECOSAR version 1.11	NES: The log K_{ow} of 9.8 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted for these endpoints.				
	Daphnid ChV = 0.000101 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 9.8 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.				
Green Algae ChV	Green algae ChV = 0.004 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 9.8 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.				
	Green algae ChV = 0.008 mg/L (Estimated) ECOSAR: Imides	ECOSAR version 1.11	NES: The log K_{ow} of 9.8 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted for these endpoints.				

Ethylene Bis-Tetrabromophthalimide CASRN 32588-76-4						
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
		Green algae ChV = 1.59 mg/L (Estimated) ECOSAR: Amides	n algaeECOSAR version 1.11= 1.59 mg/Lnated)SAP: A mides			
ECOSTA: TAIMees ENVIRONMENTAL FATE						
Transport		The transport evaluation for ethylene bis chemical properties. Based on the Level I data, ethylene bis-tetrabromophthalimid dissociate at environmentally-relevant pI mobility in soil based on its estimated K _{ot} through soil to groundwater is not expect volatilization half-lives indicate that it wi bis-tetrabromophthalimide is expected to pressure. Particulates will be removed fr	s-tetrabromophthalimide is based III fugacity models incorporating e is expected to partition primari H. Ethylene bis-tetrabromophtha c. Therefore, leaching of ethylene ted to be an important transport II be non-volatile from surface w o exist in the particulate phase, ba om air by wet or dry deposition.	l on estimated physical and g the located experimental property ily to soil. It is not expected to limide is expected to have low bis-tetrabromophthalimide mechanism. Estimated ater. In the atmosphere, ethylene ased on its estimated vapor		
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	EPI; Professional judgment	Cutoff value for nonvolatile compounds.		
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	>30,000 (Estimated)	EPI; EPA, 2004	Cutoff value for nonmobile compounds.		
	Level III Fugacity ModelAir $\leq 1\%$ Water = 5.4% Soil = 95% Sediment $\leq 1\%$ (Estimated)EPI					
Persistence		VERY HIGH: The very high persistence experimental data and quantitative struct observed in activated sludge during a MI conditions. Results from biodegradation recalcitrant under aerobic conditions. Ar considered probable. The atmospheric has hours, although it is expected to exist print environmental fate processes indicates the the environment.	for ethylene bis-tetrabromophth eture activity relationship (QSAR (TI test, indicating it is not biode models provided similar results a naerobic degradation under meth alf-life of ethylene bis-tetrabromo marily in the particulate phase in nat ethylene bis-tetrabromophtha	alimide is based on limited c) estimates. No degradation gradable under the stringent test and indicate that it will be nanogenic conditions is not ophthalimide is estimated to be 3.3 n air. Resistance to most limide is expected to be persistent in		

	Ethylene Bis-Tetrabromophthalimide CASRN 32588-76-4							
PI	ROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Water	Aerobic Biodegradation	Recalcitrant (Primary and Ultimate Survey Model) (Estimated)	EPI					
	Volatilization Half-life for Model River	>1 year (Estimated)	EPI					
	Volatilization Half-life for Model Lake	>1 year (Estimated)	EPI					
Soil	Aerobic Biodegradation	0% after 28 days MITI test (Measured)	EPA, 2008a	Guideline study reported in a secondary source.				
	Anaerobic Biodegradation	Not probable (Anaerobic-methanogenic biodegradation probability model) (Estimated)	EPI					
	Soil Biodegradation w/ Product Identification			No data located.				
	Sediment/Water Biodegradation			No data located.				
Air	Atmospheric Half-life	3.3 hours (Estimated)	EPI					
Reactivity	Photolysis			No data located.				
	Hydrolysis			No data located.				
Environmen	tal Half-life	>180 days (Estimated)	EPI; PBT Profiler	Half-life estimated for the predominant compartment, as determined by EPI and the PBT Profiler methodology.				
Bioaccumula	ation	HIGH: The potential for bioaccumulatio estimated BAF. When a single BCF meas indicate that estimated BAF values are u that anticipated for high MW chemicals	n of ethylene bis-tetrabromopht surement is available Design for sed in a conservative approach. with a high degree of bromination	halimide is high based on the the Environment assessment criteria The BAF estimate is consistent with on.				

Ethylene Bis-Tetrabromophthalimide CASRN 32588-76-4							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Fish BCF	<0.3 - <3 depending on the concentration tested; in Japanese carp using OECD Test Guideline 305C (Measured)	Hardy, 2004	Guideline study reported in a secondary source. This study is mos appropriately applied to organic chemicals with K_{OW} values of 1.5-6.0; the experimental set up did not include exposure through food.				
BAF	1.7×10^5 (Estimated)	EPI					
Metabolism in Fish			No data located.				
]	ENVIRONMENTAL MONITORING AN	D BIOMONITORING					
Environmental Monitoring	No data located.						
Ecological Biomonitoring	No data located.						
Human Biomonitoring This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring (CDC, 2011).							

CCRIS. *Chemical Carcinogenesis Research Information System*. 1,2-bis(tetrabromophthalimide) ethane. **2011**. <u>http://toxnet.nlm.nih.gov</u> (Accessed on March, 2011).

Centers for Disease Control and Prevention (CDC). *Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables.* Department of Health and Human Services **2011**. Available at: http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf as of May 10, 2011.

[HPV Assessment Guidance] EPA (U.S. Environmental Protection Agency). *Determining the Adequacy of Existing Data*. U.S. Environmental Protection Agency: Washington D.C. **1999**. http://www.epa.gov/hpv/pubs/general/datadeqfn.pdf

ECOSAR/EPI (EPIWIN/EPISUITE) Estimations Programs Interface for Windows, Version 1.11. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

U.S. EPA (Environmental Protection Agency). High Production Volume (HPV) Challenge. Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. <u>http://www.epa.gov/hpv/pubs/general/datadfin.htm</u>

EPA. 2004. The Pollution Prevention (P2) Framework, EPA-748-B-03-001. Office of Pollution Prevention and Toxics 7403M, U.S. Environmental Protection Agency, Washington, DC. 20460. October 2003 version updated in January 2004. Latest version available at http://www.epa.gov/opptintr/newchems/pubs/sustainable/p2frame-june05a2.pdf

EPA (U.S. Environmental Protection Agency). High Production Volume Challenge. Robust summaries and test plans: 1H-isonindole-1,3(2H)-dione, 2,2'-(1,2-ethanediyl)bis(4,5,6,7-tetrabromo-. **2008a**. http://www.epa.gov/chemrtk/pubs/summaries/1hisoind/c15090tc.htm

EPA (U.S. Environmental Protection Agency). Toxicological Review of Decabromodiphenyl ether (BDE-209) (CAS No. 1163-19-5). In Support of Summary Information on the Integrated Risk Information System (IRIS). EPA/635/R-07/008F. **2008b**.

EPI (*EPIWIN/EPISUITE*) Estimation Program Interface for Windows, Version 4.10. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

European Chemicals Bureau. EU Risk Assessment Report for Bis(Pentabromophenyl) Ether. CAS No. 1163-19-5. EINECS No. 214-604-9. **2002**.

Hardy, ML. A comparison of the fish bioconcentration factors for brominated flame retardants with their nonbrominated analogues. *Environ Toxicol Chem* **2004**, 23:657-661.

IUCLID (International Uniform Chemical Information Database). N,N'-ethylenebis(3,4,5,6-tetrabromophthalimide (32588-76-4). European Commission. European Chemicals Bureau. **2000**. <u>http://ecb.jrc.ec.europa.eu/iuclid-datasheet/32588764.pdf</u>

Lezotte, F.; Nixon, W. Determination of the vapor pressure of Saytex BT93 using the spinning rotor gauge method. Wildlife International, Ltd. Easton, MD. **2005**.

NIEHS (National Institute of Environmental Health Sciences). Ethylenebis(tetrabromophthalimide) [CASRN 32588-76-4]. Review of toxicological literature. National Institute of Environmental Health Sciences **1999**. <u>http://ntp.niehs.nih.gov/ntp/htdocs/Chem_Background/ExSumPdf/Ethylenebistet.pdf</u>

NTP (National Toxicology Program). Genetic toxicology studies for ethylenebis(tetrabromophthalimide).National Toxicology Program. **2011**. <u>http://ntp-apps.niehs.nih.gov/ntp_tox/index.cfm?searchterm=32588-76-4&fuseaction=ntpsearch.searchresults</u>

PBT Profiler *Persistent (P), Bioaccumulative (B), and Toxic (T) Chemical (PBT) Profiler*. U.S. Environmental Protection Agency: Washington D.C. <u>www.pbtprofiler.net</u>.

Pakalin, S., Cole, T., Steinkellner, J., et al. Review on production processes of decabromodiphenyl ether (DECABDE) used in Polymeric applications in electrical and electronic equipment, and assessment of the availability of potential alternatives to DECABDE. [Online] **2007**. Available at: <u>http://ecb.jrc.ec.europa.eu/documents/Existing-</u> Chemicals/Review on production process of decaBDE.pdf as of January 20, 2011.

SPARC. SPARC On Line Calculator pKa/property server. Ver 4.5 September, 2009. Available at: <u>http://archemcalc.com/sparc/</u> as of May 10, 2011.

Stuer-Lauridsen, F; Cohr, K-H; Andersen T.T. *Assessment of Alternatives to Deca-BDE in Electrical and Electrical Equipment*. Danish Ministry of the Environment. Health and Environmental **2007**. Environmental Project No. 1142.

Washington Department of Ecology. Alternatives to Deca-BDE in Televisions and Computers and Residential Furniture. Implementation of RCW 70.76: Identifying safer and technically feasible alternatives to the flame retardant called Deca-BDE used in the electronic enclosures of televisions and computers and in residential upholstered furniture Final report. Department of Ecology Publication No. 09-07-041; Department of Health Publication No. 334-181. **2008**. Available at: http://www.ecy.wa.gov/biblio/0907041.html.

Zeiger E., Haworth S., Mortelmans K, et al. Mutagenicity testing of di(2-ethylhexyl)phthalate and related chemicals in Salmonella. *Environ. Mutagen.* **1985**, 7:213-232

Magnesium Hydroxide

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. ^R Recalcitrant: Substance is comprised of metallic species that will not degrade, but may change oxidation state or undergo complexation processes under environmental conditions.

			Human Health Effects				Aquatic Toxicity ^{**}		Environmental Fate							
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Magnesium Hydroxide	1309-42-8	L	L	L	L	L	L	L	L		Μ	L	L	L	H^{R}	L

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Magnesium Hydroxide

	CASRN: 1309-42-8			
	MW: 58.32			
ОН	MF: MgH ₂ O ₂			
	Physical Forms:			
HO ^{-wy}	Neat: Solid			
	Use: Flame retardant			
SMILES: O[Mg]O				
Synonyms: Magnesium hydroxide (Mg(OH)2); Brucite; Milk of Magnesia; Alcanex NHC 25; Asahi Glass 200-06; Baschem 12; Combustrol 500; Duhor; Duhor N; Ebson RF; FloMag H; FloMag HUS; Hydro-mag MA; Hydrofy G 1.5; Hydrofy G 2.5; Hydrofy N; Kisuma 4AF; Kisuma 5; Kisuma 5A; Kisuma 5B; Kisuma 5B-N; Kisuma 5BG; Kisuma 78; Kisuma S 4; Kyowamag F; Lycal 96 HSE; Mag Chem MH 10; Magnesia hydrate; MagneClear 58; Magnesia magma; Magnesiamaito; Magnesium dihydroxide; Magnesium hydroxide gel; Magnesium(II) hydroxide; Magnifin H 10; Magox; Marinco H; Marinco H 1241; Martinal VPF 8812; Milmag: Mint-Q-Mag: Nemalite: Oxaine M: Phillips Magnesia Tablets: Phillips Milk of Magnesia Liquid: Reachim: Star 200; Versamag				
Chemical considerations: This alternative is an inorganic compound. In the absen considerations were used to complete this hazard profile.	ce of experimental data, professional judgment using chemical class and structural			
Polymeric: No Oligomers: Not applicable				
Metabolites, Degradates and Transformation Products: Not applicable				
Analog: No analogs; Mg ²⁺ ions are expected to form when Mg(OH) ₂ and other magnesium containing compounds dissociate in aqueous conditions. Studies included in this assessment include other sources of Mg ²⁺ like MgCl ₂ . Endpoint(s) using analog values: Not applicable				
Structural Alerts: None				
Risk Phrases: Not classified by Annex VI Regulation (EC) No 1272/2008 (ESIS, 2011).				
Hazard and Risk Assessments: Risk assessment completed for magnesium hydroxide by the National Academy of Sciences in 2000 (NAS, 2000).				

	Magnesium Hydroxide CASR	N 1309-42-8								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY							
PHYSICAL/CHEMICAL PROPERTIES										
Melting Point (°C)	Decomposes at 350 (Measured)	Hodgman, 1959; Lewis, 1997; Lewis, 2000	MgO and H_2O are decomposition products.							
	Decomposes at 380 (Measured)	IUCLID, 2000								
	350 (Measured)	Lide, 2000; Aldrich, 2006	-							
Boiling Point (°C)	Will decompose before boiling (Measured)	IUCLID, 2000	Decomposition occurs upon melting as described in additional sources above.							
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	Professional judgment; EPA, 1999	Cutoff value for nonvolatile compounds according to HPV assessment guidance. This inorganic compound is not amenable to available estimation methods.							
Water Solubility (mg/L)	1.78 at 20°C, pH 8.3 (Measured) According to Organisation of Economic Cooperation and Development (OECD) 105 column elution method	ECHA, 2013	Guideline study; results are in agreement with other experimental values.							
	9 at 18°C (Measured)	Hodgman, 1959; IUCLID, 2000	Measured values, which span a							
	1 at 20°C (Measured)	IUCLID, 2000	relatively narrow range, are							
	6 at 20°C (Measured)	IUCLID, 2000	sources.							
	<8 at 20°C (Measured)	IUCLID, 2000								
	40 at 100°C (Measured)	Hodgman, 1959	Value obtained at an elevated temperature.							
Log K _{ow}			No data located; inorganic compounds are outside the estimation domain of EPI.							
Flammability (Flash Point)	Not flammable (Estimated)	IUCLID, 2000	Adequate.							
Explosivity	Not explosive (Estimated)	IUCLID, 2000	Adequate.							

Magnesium Hydroxide CASRN 1309-42-8									
PROPER'	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Pyrolysis		Not applicable (Estimated)	Professional judgment	Inorganic compounds do not undergo pyrolysis.					
рН		9.5-10.5 (Measured)	O'Neil et al., 2011	Adequate.					
		pH of a saturated solution in water was 8.3 (Measured)	ECHA, 2013	Reported in a secondary source, determined from a water solubility study.					
pK _a				No data located; inorganic compounds are outside the estimation domain of the SPARC model.					
		HUMAN HEALTH EFF	ECTS						
Toxicokinetics		Some magnesium hydroxide is absorbed	l following ingestion and is excre	ted primarily in urine.					
Dermal Absorption	in vitro			No data located.					
Absorption,	Oral, Dermal or Inhaled	The magnesium ion is poorly absorbed;	IUCLID, 2000	Reported in a secondary source,					
Distribution,		when taken orally, only 5-15% of the		limited study details provided.					
Metabolism &		magnesium from a dose of magnesium							
Excretion		hydroxide is absorbed and this							
		magnesium is readily excreted in the							
		urine, if kidney function is normal.							
Acute Mammalian	Toxicity	LOW: Acute lethality values suggest that magnesium hydroxide has Low hazard for acute toxicity for oral							
		exposure. There were no adequate data located regarding acute dermal and inhalation exposure.							
Acute Lethality	Oral	Rat oral $LD_{50} = 8,500 \text{ mg/kg-bw}$	Lewis, 2000	Reported in a secondary source,					
				limited study details provided.					
		Mouse oral $LD_{50} = 8,500 \text{ mg/kg-bw}$	Lewis, 2000	Reported in a secondary source,					
				limited study details provided.					
		Human infant oral TD_{Lo} (behavioral) =	Lewis, 2000	Reported in a secondary source,					
		2,747 mg/kg		limited study details provided.					
		Probable human oral lethal dose =	HSDB, 2013	Reported in a secondary source,					
		5-15 g/kg-bw		limited study details provided.					
	Dermal			No data located.					
	Inhalation	Rat inhalation LC_{50} >2.1 mg/L	ECHA, 2013	Reported in a secondary source.					
				There was no mortality at the					
				highest dose tested (2.1 mg/L) .					

Magnesium Hydroxide CASRN 1309-42-8								
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Carcinogenicity		LOW: Experimental studies indicate that magnesium hydroxide has low hazard for carcinogenicity.						
	OncoLogic Results			Structure could not be evaluated by OncoLogic.				
	Carcinogenicity (Rat and Mouse)	5-week, repeated-dose/carcinogenicity study, oral (diet), rat; Decreased number of carcinogen- induced DNA synthesis in the large bowel epithelial cells.	BIBRA, 1993	Reported in a secondary source, limited study details provided.				
	Combined Chronic Toxicity/ Carcinogenicity	 NOAEL >2,000 ppin (approximately 100 mg/kg/day, highest dose tested) 96-week chronic toxicity/carcinogenicity study on MgCl₂, oral, mouse; no significant differences in tumor incidence between treated and control animals except for dose-related decrease in the incidence of hepatocellular carcinomas in males. 	Kurata et al., 1989	Sufficient study details reported in a primary source.				
		227-day, chronic toxicity/ carcinogenicity study, oral (diet), rat; decreased number of colon tumors in rats pretreated with a known colon carcinogen. NOAEL >50 mg/kg/day (highest dose tested)	BIBRA, 1993	Reported in a secondary source, limited study details provided.				
		16-week carcinogenicity study, oral (diet), rat; inhibitory effects on colon carcinogenesis, carcinogen-induced expression of <i>c-myc</i> proto-oncogene and cell proliferation. NOAEL = 0.2% in diet (highest concentration tested)	Wang et al., 1993	Sufficient study details reported in a primary source.				

	Magnesium Hydroxide CASRN 1309-42-8			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Inhalation exposure of male rats to short $(4.9 \times 0.31 \text{ mm})$ or long $(12 \times 0.44 \text{ mm})$ MgSO ₄ /5Mg(OH) ₂ 3H ₂ 0 filaments for 6 hour/day, 5 day/week for up to 1 year did not increase the incidence of any tumor types in animals sacrificed 1 day or 1 year after cessation of exposure.	NAS, 2000	Reported in a secondary source, limited study details provided.
Genotoxicity		LOW: Experimental studies indicate that	at magnesium hydroxide is not m	utagenic to bacteria or mammalian
		cells in vitro and does not cause chromos	somal aberrations in human lymp	phocytes <i>in vitro</i> .
	Gene Mutation <i>in vitro</i>	Negative, Ames Assay in Salmonella and Escherichia coli	BIBRA, 1993	Reported in a secondary source, limited study details provided. Only 3 strains of <i>Salmonella</i> were tested; current regulatory guidelines suggest that at least 4 strains be used in Ames tests.
		Negative; mouse lymphoma assay, L5178Y cells; with and without metabolic activation	ECHA, 2013	Reported in a secondary source.
	Gene Mutation in vivo			No data located.
	Chromosomal Aberrations <i>in vitro</i>	Negative; did not induce chromosomal aberrations in human lymphocytes; with and without metabolic activation	ECHA, 2013	Reported in a secondary source.
	Chromosomal Aberrations <i>in vivo</i>			No data located.
	DNA Damage and Repair			No data located.
	Other (Mitotic Gene Conversion)			No data located.

Magnesium Hydroxide CASRN 1309-42-8			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Reproductive Effects	LOW: There were no reproductive effects observed in rats in a repeated dose toxicity study with the reproduction/developmental toxicity screen at doses of magnesium hydroxide as high as 1,000 mg/kg-day. In addition, magnesium hydroxide is expected to have low hazard for reproductive effects based on a nonstandard experimental study indicating magnesium chloride produces no adverse effects on reproductive performance or outcomes at levels up to 96 mg/kg/day of Mg ²⁺ ion.		
Reproduction/ Developmental Toxicity Screen	10-day (gestation days (GDs) 6-15) reproductive/developmental study on MgCl ₂ , oral, rat; no maternal or reproductive effects. NOAEL >96 mg/kg/day for Mg ²⁺ ion (highest dose tested) LOAEL: Not established	NAS, 2000	Reported in a secondary source, limited study details provided.
Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen	Repeated dose toxicity study with the reproduction/developmental toxicity screen; rat, oral (gavage), 0, 110, 330, 1,000 mg/kg-day magnesium hydroxide. Males exposed for 29 days: 2 weeks prior to mating, during mating and up to termination; females exposed for 41-45 days: 2 weeks premating, during mating, post coitum, and 4 days of lactation. There were no reproductive effects observed in any dose group. NOAEL >1,000 mg/kg-day LOAEL: Not established	ECHA, 2013	Reported in a secondary source. Study conducted according to OECD 422.
Reproduction and Fertility Effects			No data located.

Magnesium Hydroxide CASRN 1309-42-8				
PROPER'	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Developmental Effects		LOW: Magnesium hydroxide is expected to have low hazard for developmental effects based on a nonstandard experimental study indicating magnesium chloride produces no adverse effects on developmental outcomes at levels up to 96 mg/kg/day of Mg ²⁺ ion and an experimental study from a secondary source showing no effect on human newborns. In addition, there were no developmental effects observed in rats in a repeated dose toxicity study with the reproduction/developmental toxicity screen at doses as high as 1,000 mg/kg-day.		
	Reproduction/ Developmental Toxicity Screen	10-day (GD 6-15) reproductive/developmental study on MgCl ₂ , oral, rat; no maternal or reproductive effects. NOAEL >96 mg/kg/day for Mg ²⁺ ion (highest dose tested) LOAEL: Not established	NAS, 2000	Reported in a secondary source, limited study details provided.
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen	Repeated-dose/developmental study (fetal exposure at unspecified dose levels during 3 rd trimester), 27 hypertensive women treated with magnesium hydroxide, no effect on newborns except slightly increased body weight and hypermagnesiumemia. Cord serum Mg levels reported to be 70-100% of maternal levels after treatment (potentially causing neurological depression in neonate, characterized by respiratory depression, muscle weakness, decreased reflexes). Prolonged magnesium treatment during pregnancy may be associated with maternal and fetal hypocalcemia and adverse effects on fetal bone mineralization.	HSDB, 2013	Reported in a secondary source, limited study details provided. Maternal treatment doses not specified.

	Magnesium Hydroxide CASRN 1309-42-8			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Repeated dose toxicity study with the reproduction/developmental toxicity screen; rat, oral (gavage), 0, 110, 330, 1,000 mg/kg-day. Males exposed for 29 days: 2 weeks prior to mating, during mating and up to termination; females exposed for 41-45 days: 2 weeks premating, during mating, post coitum, and 4 days of lactation. There were no developmental effects observed in any dose group. NOAEL >1,000 mg/kg-day LOAEL = Not established	ECHA, 2013	Reported in a secondary source. Study conducted according to OECD 422.
	Prenatal Development			No data located.
	Postnatal Development			No data located.
Neurotoxicity		LOW: Magnesium hydroxide is expected to be of low hazard for neurotoxicity based on expert judgment.		
	Neurotoxicity Screening	Low potential for neurotoxicity.	Expert judgment	Estimated based on expert
	Battery (Adult)	(Estimated)		judgment.

Magnesium Hydroxide CASRN 1309-42-8			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Repeated Dose Effects	LOW: Experimental studies indicate ma	gnesium ions produce no advers	e systemic effects in rats or mice at
	magnesium levels ≥1,000 mg/kg/day of n	nagnesium hydroxide.	
	96-week repeated-dose study for MgCl ₂ ,	Kurata et al., 1989	Adequate, primary source.
	oral (0, 0.5, 2% in the diet), mouse;		
	decreased body weight gain, increased		
	food/water consumption and increased		
	relative brain, heart and kidney weights		
	in high dose (2%) females, no effects in		
	males.		
	Female:		
	NOAEL = $87 \text{ mg/kg-day for Mg}^{2+}$ ion		
	$LOAEL = 470 \text{ mg/kg/day for Mg}^{2+}$ ion		
	Male:		
	NOAEL = $336 \text{ mg/kg-day for Mg}^{2+}$ ion		
	(highest dose tested)		
	LOAEL: Not established		
	00 day repeated dose study for MgCl	NAS 2000	Deported in a secondary source, no
	90-day repeated-dose study for $MgCl_2$, oral mouse (M: 73, 146, 322, 650, 1,368	NAS, 2000	study details provided
	mg/kg day: E: 02, 100, 201, 817, 1,660		study details provided.
	mg/kg day): decreased body weight gain		
	in males and females at highest doses		
	tested (1.660 mg/kg-day): repaired tubular		
	vacuolation in males administered 650		
	mg/kg-day for Mg^{2+} ion		
	Female:		
	NOAEL = 817 mg/kg/day for Mg^{2+} ion		
	$LOAEL = 1,660 \text{ mg/kg/day for Mg}^{2+}$ ion		
	Male:		
	NOAEL = $322 \text{ mg/kg/day for Mg}^{2+}$ ion		
	$LOAEL = 650 \text{ mg/kg/day for Mg}^{2+}$ ion		

Magnesium Hydroxide CASRN 1309-42-8			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	90-day repeated-dose study for MgCl ₂ , oral, mouse; decreased body weight gain, renal tubular vacuolation in males. Female: NOAEL = 587 mg/kg/day for Mg ²⁺ ion Male: LOAEL = 840 mg/kg-day NOAEL = 420 mg/kg/day for Mg ²⁺ ion	NAS, 2000	Reported in a secondary source, no study details provided.
	32-week repeated-dose study, diet, rat; no effects on body weight or liver weight. NOAEL >1,000 ppm (approximately 50 mg/kg/day)	BIBRA, 1993	Reported in a secondary source, no study details provided.
	Inhalation exposure of male rats to short (4.9 x 0.31 mm) or long (12 x 0.44 mm) MgSO ₄ /5Mg(OH) ₂ ·3H ₂ O filaments for 6 hour/day, 5 day/week for up to 1 year (concentration not specified) exhibited a slight increase in the incidence of pulmonary lesions 1 year after cessation of exposure. Histopathological examination revealed a slight increase in segmental calcification of the pulmonary artery and thickening of the lung pleura in rats exposed to both short and long filaments for 4 weeks or 1 year. There were no effects on survival or body, lung, liver, kidney and spleen weights of animals sacrificed 1 day or 1 year following a 1-year exposure period	NAS, 2000	Reported in a secondary source, no study details provided.

Magnesium Hydroxide CASRN 1309-42-8			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	 4-week repeated-dose study, oral, human; caused diarrhea, abdominal discomfort, and increased serum magnesium levels. LOAEL = 400 mg/day 	BIBRA, 1993	Reported in a secondary source, no study details provided.
	Repeated dose toxicity study with the reproduction/developmental toxicity screen; rat, oral (gavage), 0, 110, 330, 1,000 mg/kg-day. Males exposed for 29 days: 2 weeks prior to mating, during mating and up to termination; females exposed for 41-45 days: 2 weeks premating, during mating, post coitum, and 4 days of lactation. There were no toxicologically relevant changes in any of the parental parameters examined. NOAEL >1,000 mg/kg-day LOAEL: Not established	ECHA, 2013	Reported in a secondary source. Study conducted according to OECD 422.
	Human systemic effects: chlorine level changes, coma, somnolence.	Lewis, 2000	Reported in a secondary source, no study details provided.
	Repeated use in humans may rarely cause rectal stones composed of magnesium carbonate and magnesium hydroxide.	IUCLID, 2000	Reported in a secondary source, no study details provided.
Immune System Effects	Low potential for immunotoxicity. (Estimated)	Expert judgment	Estimated based on expert judgment.
Skin Sensitization	LOW: Magnesium hydroxide is not estin	mated to cause skin sensitizatio	n based on professional judgment.
Skin Sensitization	Does not cause skin sensitization (Estimated)	Professional judgment	Estimated by professional judgment.
Respiratory Sensitization	No data located.	·	
Respiratory Sensitization			No data located.

	Magnesium Hydroxide CASRN 1309-42-8				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Eye Irritation		MODERATE: Based on irritation and damage to the corneal epithelium in rabbits that cleared within 2-3			
		days.			
	Eye Irritation	Moderately irritating to rabbit eyes.	IUCLID, 2000	Reported in a secondary source,	
				limited study details provided.	
		Administration of milk of magnesia	HSDB, 2013	Reported in a secondary source,	
		twice a day for 3-4 days caused damage		limited study details provided. Milk	
		to corneal epithelium of rabbit eyes;		of magnesia is a mixture containing	
		however, effects disappeared within 2-3		magnesium hydroxide and inactive	
		days.		ingredients.	
Dermal Irritation		LOW: An experimental study indicates	that magnesium hydroxide is not	t an irritant to rabbit skin.	
	Dermal Irritation	Moderate potential for dermal irritation	Expert judgment	Estimated based on expert	
		based on experimental aqueous pH		judgment.	
		values. (Estimated)			
		Causes skin irritation	Fisher Scientific, 2007	Reported in a secondary source, no	
				experimental study was identified or	
				study details provided.	
		Not corrosive in an <i>in vitro</i> human skin	ECHA, 2013	Reported in a secondary source.	
		corrosion test.		Study conducted according to	
				OECD guideline 431.	
		Not irritating in an <i>in vitro</i> skin irritation	ECHA, 2013	Reported in a secondary source. In	
		test.		vitro skin irritation: reconstructed	
				human epidermis model test.	
		Not irritating, rabbits	Submitted confidential study	Reported in a submitted confidential	
				study.	
Endocrine Activity		No data located.			
				No data located.	
Immunotoxicity		Magnesium hydroxide is expected to ha	ve low potential for immunotoxic	rity based on expert judgment.	
	Immune System Effects	Low potential for immunotoxicity	Expert judgment	Estimated based on expert	
		(Estimated)		judgment.	

Magnesium Hydroxide CASRN 1309-42-8					
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
	ECOTOXICITY				
ECOSAR Class	Not applicable				
Acute Toxicity	LOW: Estimated LC ₅₀ values for all of the standard toxicity test organisms are greater than 100 mg/L.				
	Experimental LC ₅₀ values are much greater than the anticipated water solubility, suggesting no effects at				
	saturation (NES).				
Fish LC ₅₀	96-hour $LC_{50} = 1,110 \text{ mg/L}$	Mount et al., 1997	Estimated from the measured $LC_{50}s$		
	(Estimated)		for MgCl ₂ and MgSO ₄ , modified by		
			a MW adjustment for Mg(OH) ₂ ;		
			expected to display NES because		
			the amount dissolved in water is not		
			anticipated to reach a concentration		
			at which adverse effects may be		
			expressed.		
	<i>Pimephalis promelas</i> 96-hour $LC_{50} =$	ECHA, 2013	Reported in a secondary source.		
	511 mg/L; static conditions		Test material diluted to 61% in		
	(Experimental)		aqueous suspension.		
	<i>Onchorinchus mykiss</i> 96-hour $LC_{50} =$	ECHA, 2013	Reported in a secondary source.		
	775.8 mg/L; static conditions		Test material diluted to 61% in		
	(Experimental)		aqueous suspension.		
Daphnid LC ₅₀	48-hour $LC_{50} = 648 \text{ mg/L}$	Biesinger and Christensen,	Estimated from the measured $LC_{50}s$		
	(Estimated)	1972; Mount et al., 1997	for $MgCl_2$ and $MgSO_4$, modified by		
			a MW adjustment for $Mg(OH)_2$;		
			expected to display NES because		
			the amount dissolved in water is not		
			anticipated to reach a concentration		
			at which adverse effects may be		
			expressed.		
	Daphnia magna 48-nour $LC_{50} = 284.76$	ECHA, 2013	Reported in a secondary source.		
	(Experimental)		rest material diluted to 61% in		
Other Freedowster Invested weter I.C.	(Experimental) Communication LC $= 64.7 \text{ mm}^3$	O'Connoll at al. 2004	aqueous suspension.		
Other Freshwater Invertebrate LC ₅₀	$Gammarus \ lacustris \ LC_{50} = 64. / \ mg/L$	O Connell et al., 2004	Reported in a secondary source,		
	(Experimental)		study details and test conditions		
			were not provided. Not a standard		
			test species.		

	Magnesium Hydroxide CASRN 1309-42-8			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Green Algae EC ₅₀	96-hour EC ₅₀ = 2,111 mg/L (Estimated)	Professional judgment	Estimated using an acute to chronic ratio (ACR) of 4; expected to display NES because the amount dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed.	
	Scenedesmus subspicatus and Selenastrum capricornutum 72-hour $EC_{50} > 100 \text{ mg/L}$ (for growth and biomass) (Experimental)	ECHA, 2013	Reported in a secondary source.	
Chronic Aquatic Toxicity	LOW: Estimated ChVs are all >10 mg	g/L and exceed the anticipated v	water solubility, suggesting NES.	
Fish ChV	403 mg/L (Estimated)	Professional judgment	Estimated using an ACR of 3:3; expected to display NES because the amount dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed.	
Daphnid ChV	197 mg/L (Estimated)	Suter, 1996	Estimated from the measured ChV for Mg^{2+} ion, modified by a MW adjustment for $Mg(OH)_2$; expected to display NES because the amount dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed.	
Green Algae ChV	528 mg/L (Estimated)	ECOTOX	Estimated from the measured NOEC and LOEC for MgSO ₄ , modified by a MW adjustment for Mg(OH) ₂ ; expected to display NES because the amount dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed.	

	Magnesium Hydroxide CASRN 1309-42-8			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		ENVIRONMENTAL F	ATE	
Transport		The low water solubility, the estimated v estimated Henry's Law Constant of <1x1 immobile in the environment. Magnesiu	apor pressure of <1x10 ⁻⁸ mm Hg, 0 ⁻⁸ atm-m ³ /mole indicate that ma n hydroxide is a mineral occurrin	estimated K_{oc} of >30,000 and agnesium hydroxide will be relatively ag naturally in the environment.
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	Professional judgment	Cutoff value for nonvolatile compounds. This inorganic compound is not amenable to available estimation methods.
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	>30,000 (Estimated)	Professional judgment; EPA, 2004	Cutoff value for nonmobile compounds.
	Level III Fugacity Model			Not all input parameters for this model were available to run the estimation software (EPI).
Persistence		HIGH: As an inorganic compound, mag undergo hydrolysis under environmenta environmentally relevant wavelengths ar and it is expected to be found in the envi it may participate in natural cycles and f	nesium hydroxide is not expected l conditions. Magnesium hydroxi nd is not expected to photolyze. M ronment >180 days after release. Form complexes in environmental	to biodegrade, oxidize in air, or de does not absorb light at lagnesium hydroxide is recalcitrant As a naturally occurring compound, waters.
Water	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment	Substance is or contains inorganic elements, such as metal ions or oxides, that are expected to be found in the environment >180 days after release.
	Volatilization Half-life for Model River	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.
	Volatilization Half-life for Model Lake	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.
Soil	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment	This inorganic compound is not amenable to available estimation methods.

		Magnesium Hydroxide CASR	N 1309-42-8	
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Anaerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment	This inorganic compound is not amenable to available estimation methods.
	Soil Biodegradation with Product Identification			No data located.
	Sediment/Water Biodegradation			No data located.
Air	Atmospheric Half-life	>1 year (Estimated)	Professional judgment	Substance does not contain functional groups amenable to atmospheric degradation processes.
Reactivity	Photolysis	Not a significant fate process (Estimated)	Professional judgment	Magnesium hydroxide does not absorb UV light at environmentally relevant wavelengths and is not expected to undergo photolysis.
	Hydrolysis	Not a significant fate process (Estimated)	Professional judgment	Substance does not contain functional groups amenable to hydrolysis.
Environmental Ha	lf-life			Not all input parameters for this model were available to run the estimation software (EPI).
Bioaccumulation		LOW: Magnesium hydroxide is not expected to bioaccumulate based on professional judgment.		
	Fish BCF	<100 (Estimated)	Professional judgment	This inorganic compound is not amenable to available estimation methods.
	BAF	<100 (Estimated)	Professional judgment	This inorganic compound is not amenable to available estimation methods.
	Metabolism in Fish			No data located.
		ENVIRONMENTAL MONITORING AN	ID BIOMONITORING	
Environmental Mo	onitoring	Magnesium hydroxide is a mineral that occ	curs naturally in the environment.	
Ecological Biomonitoring		No data located.		

Magnesium Hydroxide CASRN 1309-42-8									
PROPERTY/ENDPOINT	PROPERTY/ENDPOINT DATA DATA REFERENCE DATA QUALITY								
Human Biomonitoring	This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report								
	(CDC, 2011).								

Aldrich. 2007-2008 Handbook of Fine Chemicals. Milwaukee, WI: Aldrich Chemical Co. 2006.

BIBRA International. Toxicity profile: Magnesium hydroxide, 1st Ed. Great Britain: BIBRA. **1993.**

Biesinger, K.E.; Christensen, G.M. Effects of various metals on survival, growth, reproduction and metabolism of Daphnia magna. *J. Fish Res. Board Can.* **1972**, 29(12):1691-1700.

CDC (Centers for Disease Control and Prevention). *Fourth national report on human exposure to environmental chemicals, updated tables*. Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on May 10, 2011).

ECHA (European Chemicals Agency). Information on registered substances. **2013.** <u>http://apps.echa.europa.eu/registered/data/dossiers/DISS-9ea79197-1fe4-5688-e044-00144f67d031/AGGR-b7f868f3-337e-48ac-8f47-d5d7445c8973_DISS-9ea79197-1fe4-5688-e044-00144f67d031.html#L-9adf9459-3347-4fcc-b1c9-47f4c891001f (accessed December, 2013).</u>

ECOTOX database. U.S. Environmental Protection Agency. <u>http://cfpub.epa.gov/ecotox/</u>. (Accessed July 3, 2008).

EPA (Environmental Protection Agency). High Production Volume (HPV) Challenge. Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. <u>http://www.epa.gov/hpv/pubs/general/datadfin.htm</u>

EPA. 2004. The Pollution Prevention (P2) Framework, EPA-748-B-03-001. Office of Pollution Prevention and Toxics 7403M, U.S. Environmental Protection Agency, Washington, DC. 20460. October 2003 version updated in January 2004. Latest version available at http://www.epa.gov/opptintr/newchems/pubs/sustainable/p2frame-june05a2.pdf.

EPI (EPIWIN/EPISUITE) Estimation Program Interface for Windows, Version 4.0. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

ESIS (European chemical Substances Information System). Classification, labelling and packaging of dangerous substances annex VI to regulation (EC) No 1272/2008 [Online] <u>http://esis.jrc.ec.europa.eu/index.php?PGM=cla</u> (accessed on May 10, 2011).

Fisher Scientific. Magnesium hydroxide. Material Safety Data Sheet. **2007.** <u>https://fscimage.fishersci.com/msds/13405.htm</u>. (accessed on May 13, 2011).

Hodgman, C.D., ed. 1959-1960 CRC handbook of chemistry and physics, 41st ed. Cleveland, OH: Chemical Rubber Publishing Company. **1959.**

HSDB (Hazardous Substances Data Bank). National Library of Medicine. **2013.** <u>http://toxnet.nlm.nih.gov/</u>. (Accessed December, 2013)

IUCLID (International Uniform Chemical Information Database). *Dataset for magnesium hydroxide*. European Commission – European Chemicals Bureau. **2000**.

Kurata, Y.; Tamano, S.; Shibata, M.-A.; et al. Lack of carcinogenicity of magnesium chloride in a long-term feeding study in B6C3F1 mice. *Food Chem. Toxicol.* **1989**, 27(9):559-563.

Lewis, R.J. Sr., ed. Hawley's condensed chemical dictionary. 13th ed. New York, NY: John Wiley & Sons, Inc., p. 691. 1997.

Lewis, R.J., Sr., ed. Sax's dangerous properties of industrial materials. 10th ed. New York: John Wiley & Sons, Inc. 2000.

Lide, D.R., ed. 2000-2001 CRC Handbook of Chemistry and Physics, 81st ed. Boca Raton, 2000.

O'Neil, M.; Heckelman, P.E.; Koch, C.B.; et al. eds. e-Merck Index. 14th ed. Basic Search. Whitehouse Station, NJ: Merck & Co., Inc. **2011.** <u>https://themerckindex.cambridgesoft.com/TheMerckIndex/index.asp</u> (accessed on May 16, 2011).

Mount, D.R.; Gulley, D.D.; Hockett, J.R.; et al. Statistical models to predict the toxicity of major ions to *Ceriodaphnia dubia*, *Daphnia magna* and *Pimephales promelas* (Fathead Minnows). *Environ. Toxicol. Chem.* **1997**, 16:2009-2019.

NAS (National Academy of Sciences) Toxicological risks of selected flame-retardant chemicals. Washington, DC: The National Academies Press, p. 131-145. **2000.** <u>http://www.nap.edu/openbook.php?record_id=9841&page=139#p2000a45a9960139001</u> (accessed June 23, 2008).

O'Connell, S.; Whitley, A.; Burkitt, J.; et al. DfE Phase II Rev 0.6. Scottsdale, AZ: HDP User Group International, Inc. **2004.** <u>http://www.dell.com/downloads/global/corporate/environ/HDPUG_DfE_2.pdf</u> (accessed June 23, 2008).

SPARC. SPARC On Line Calculator pKa/property server. Ver 4.6 October, 2011. Available from, <u>http://ibmlc2.chem.uga.edu/sparc/</u> as of March 16, 2012.

Suter, G.W. II. Toxicological benchmarks for screening contaminants of potential concern for effects on freshwater biota. *Environ. Toxicol. Chem.* **1996.** 15:1232-1241.

Wang, A.; Yoshimi, N.; Tanaka, T.; et al. Inhibitory effects of magnesium hydroxide on c-*myc* expression and cell proliferation induced by methylazoxymethanol acetate in rat colon. *Cancer Lett.* **1993**, 75:73-78.

Melamine Cyanurate

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. [§] Based on analogy to experimental data for a structurally similar compound.

		Human Health Effects					Aquatic Toxicity ^{**}		Environmental Fate							
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
	•									•						
Melamine Cyanurate ¹	37640-57-6	L	M	M	$M^{\$}$	M [§]	L	Η	L		L	L	L	L	VH	L

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

¹ Hazard designations are based upon the component of the salt with the highest hazard designation, including the corresponding free acid or base.

Melamine Cyanurate

Chemical Considerations: This alternative is an organic salt of melamine (CASRN 108-78-1) and cyanuric acid (CASRN 108-80-5) organized in a well ordered crystalline complex, with extensive intramolecular hydrogen bonding. The abundance of complimentary hydrogen bonds effectively link melamine and cyanuric acid into stable lattice chains. The potential for dissolution of these chains are dependent on pH. The simplest 1:1 melamine cyanurate complex has an empirical MW of 255; although higher MW networks are expected because the integrated melamine cyanurate complex has a higher degree of stabilization than isolated components (Perdigáo et al., 2006). This assessment will consider the worst case hazard concerns which may include those from the dissolution of melamine and cyanuric acid from the complex.

Polymeric: No

Oligomers: Not applicable

Metabolites, Degradates and Transformation Products: Melamine (CASRN 108-78-1); cyanuric acid (CASRN 108-80-5)

Analogs: Confidential analog, nitrogen heterocycles Endpoint(s) using analog values: Reproductive effects: developmental effects	Analog Structures: Confidential; nitrogen heterocycles is a class of cyclic compounds that have nitrogen atoms and at least one other element as members			
	of its ring.			

Structural Alerts: Aromatic amine (EPA, 2011)

Risk Phrases: Xn- harmful; R48/22 - harmful: danger of serious damage to health by prolonged exposure if swallowed (ECHA, 2011a).

Hazard and Risk Assessments: None identified

Melamine Cyanurate CASRN 37640-57-6										
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY							
PHYSICAL/CHEMICAL PROPERTIES										
Melting Point (°C)			No data located.							
Boiling Point (°C)	>350 decomposes (Measured)	Leisewitz et al., 2001; ECHA, 2011a	Based on the reported thermal stability value.							
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	Professional judgment; EPA, 1999	Cutoff value for nonvolatile compounds according to HPV assessment guidance; based on the ionic nature of the material.							
Water Solubility (mg/L)	Approximately 27 at 20°C (Organisation of Economic Cooperation and Development (OECD) 105) (Measured)	ECHA, 2011a	Guideline study.							
	10 at 20°C (Measured)	Nonguideline studies at neutral pH								
	1 at 20°C (Measured)	ECHA, 2011a	that substantiate the limited solubility anticipated under neutral conditions.							
	2 at 25°C (Measured)	Ciba, 2001								
	1.5 at 37°C (Measured)	ECHA, 2011a	7							
	Under neutral conditions melamine and cyanuric acid form a stable and insoluble hydrogen-bonded network; the network is destabilized at pH extremes (Measured)	Rovner, 2008	Non-quantitative supporting information that describes the behavior of the compound in water.							
	Very insoluble in water (Measured)	Crews, 2006	Inadequate; qualitative, nonspecific value.							
	Not soluble at room temperature (Measured)	ICL Industrial Products (IP), 2011								
Log K _{ow}	Melamine Cyanurate: <0 (Estimated) Melamine: -1.37 (Measured) Cyanuric Acid: -0.47 (Measured)	ECHA, 2011a; Hansch, 1995; Kaune et al., 1998; Pakalin et al., 2007	Inadequate, based on experimental water solubility data. These values are not applicable for the melamine cyanurate complex.							

	Melamine Cyanurate CASRN 37640-57-6						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Flammability (Flash	n Point)	Self-ignition temperature: >400°C (Measured)	perature: >400°C ECHA, 2011a Adequate.				
Explosivity		Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.			
Pyrolysis				No data located.			
рН		5-6 (Measured)	ECHA, 2011a	Inadequate, these data are not			
		5.5 (Measured)	Ciba, 2001 consistent with the well condu- water solubility studies; purity material not reported.				
pK _a		Melamine: 5 (Measured) Cyanuric Acid: 6.88, 11.4, 13.5 (Measured)	ECHA, 2011a	Inadequate, these data values are not applicable for the melamine cyanurate complex.			
		HUMAN HEALTH EFF	ECTS				
Toxicokinetics		The melamine cyanurate complex is expected to have limited bioavailability for dermal and inhalation routes of exposure due to its low water solubility under neutral conditions. It is expected to not be absorb through skin and to have poor absorption through the lung and gastrointestinal tract. The dissolution of melamine cyanurate and the solubility and precipitation of melamine and cyanuric acid appear to be pH- dependent indicating that ingestion of this compound may enhance bioavailability. Melamine is distribute to the stomach, small intestine, cecum, and large intestine, and found in blood and urine of rats. Cyanuric acid distributes rapidly following oral administration with the highest concentrations found in blood, live and kidney. The elimination phase half-life for melamine is approximately 3 hours. Cyanuric acid is quic excreted primarily in the urine as the unchanged compound.					
Dermal Absorption	n <i>in vitro</i>			No data located.			
Absorption, Distribution, Metabolism & Excretion	Oral, Dermal or Inhaled	Melamine cyanurate: Not absorbed through skin; poor absorption through lung and gastrointestinal tract (Estimated)	Professional judgment.	Estimated based on limited bioavailability and not expected to be readily absorbed; however, ingested melamine cyanurate could be dissociated to form melamine and cyanuric acid in the low pH			
				environment found in the stomach.			
	Melamine Cyanurate CASRN 37640-57-6						
--------	-------------------------------------	--	----------------------------------	--			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
		Melamine and cyanuric acid co- exposure: The solubility of melamine and cyanuric acid in urine was higher than in water suggesting a pH-dependent effect. The lowest solubility was at a pH of 5–5.5; Solubility in human urine was in the range of 250 mg/L at pH 3 and 8. The solubility limits for melamine and cyanurate increased with increasing pH over the range of 5-8.3 and solubility at pH 5 was 30 mg/L in rats. There is a pH-dependent precipitation of melamine and cyanuric acid in rat and human urine. No difference in crystal formation was observed at the 1- or 24- hour time point.	ECHA, 2011a	Study details reported in a secondary source.			
		Melamine and cyanuric acid co- exposure: Melamine and cyanuric acid orally (gavage) administered separately formed crystals of melamine cyanurate in the kidneys of rats. There was decreased creatinine clearance, increased in serum creatinine and Blood Urea Nitrogen (BUN) ratio; increased absolute and relative kidney weight. Melamine: The elimination phase half- life calculated from plasma data was 2.7	ECHA, 2011a Mast et al., 1983	Sufficient details reported in a secondary source.			
		hite calculated from plasma data was 2.7 hours, and the urinary half-life was 3.0 hours. The renal clearance was determined to be 2.5 mL/min. Melamine: Distributed to stomach, small intestine, cecum, and large intestine, and found in blood and urine of rats.	ЕСНА, 2011b	Study details reported in a secondary source.			

		Melamine Cyanurate CASRN	37640-57-6	
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Cyanuric acid: There was 98% recovery of ingested cyanuric acid in urine of 2 volunteers; elimination half-life estimated to be 2.2–3.5 hours; consistent with the one-compartment open model with first order input and elimination; cyanuric acid is excreted rapidly and nearly completely after ingestion.	OECD SIDS, 1999b	Study details reported in a secondary source.
		Cyanuric acid: Distributes rapidly following oral administration to rats; highest concentrations found in blood, liver and kidney with maximum concentrations 30 minutes after dosing; excreted primarily in urine as unchanged substance; poor dermal absorption.	ECHA, 2011b	Sufficient details reported in a secondary source; test substance identified as 2,4,6-isocyanuric acid.
Acute Mammalian	Toxicity	LOW: Estimated based on measured ac	ute oral, dermal, and inhalation	toxicity values for the dissolution
		products melamine and cyanuric acid. T bioavailability and water solubility that exposure.	The melamine cyanurate complex is consistent with a low hazard fo	is also estimated to have limited for dermal and inhalation routes of
Acute Lethality	Oral	Melamine: Rat $LD_{50} = 3,161 \text{ mg/kg b.w.}$ (male), 3,828 mg/kg (female)	NTP, 1983; Melnick et al., 1984	Sufficient study details reported.
		Melamine: Mouse $LD_{50} = 3,296 \text{ mg/kg}$ (male), 7,014 mg/kg (female)	NTP, 1983; Melnick et al., 1984	Sufficient study details reported.
		Melamine: Mouse $LD_{50} = 4,550 \text{ mg/kg}$	American Cyanamid Company, 1955; May, 1979; Trochimowicz et al., 2001	Sufficient study details were not available. Reported in secondary sources.
		Melamine: Rat $LD_{50} = 3,160 \text{ mg/kg}$ (male), 3,850 mg/kg (female)	Trochimowicz et al., 2001	Sufficient study details were not reported.
		Melamine: Rat LD ₅₀ >6,400 mg/kg	BASF, 1969 (as described in IUCLID, 2000 and OECD SIDS, 1999a)	Sufficient study details were not available.
		Melamine: $LD_{50} \approx 4,800 \text{ mg/kg}$	Hoechst, 1963 (as described in IUCLID, 2000)	Sufficient study details were not available.

	Melamine Cyanurate CASRN	37640-57-6	
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Cyanuric acid: Rat LD ₅₀ >5,000 mg/kg	ECHA, 2011b	Sufficient study details reported in a secondary source; OECD guideline 420.
	Cyanuric acid: Rat $LD_{50} = 7,700 \text{ mg/kg}$	OECD SIDS, 1999b	Reported in a secondary source with limited study details provided; purity unknown.
	Cyanuric acid: Mouse $LD_{50} = 3,400$ mg/kg	OECD SIDS, 1999b	Reported in a secondary source with limited study details provided; purity unknown.
	Cyanuric acid: Rabbit LD ₅₀ >10 mg/kg	OECD SIDS, 1999b	Reported in a secondary source with limited study details provided; purity unknown.
Dermal	Melamine cyanurate: Estimated to have limited bioavailability and therefore has low potential for hazard for the dermal route of exposure (Estimated)	Professional judgment	Based on physical chemical properties including limited bioavailability and low water solubility.
	Melamine: Rabbit LD ₅₀ >1,000 mg/kg	Unknown, 1990	Sufficient study details were not available.
	Cyanuric acid: Rabbit LD ₅₀ >7,940 mg/kg	OECD SIDS, 1999b	Reported in a secondary source with limited study details provided; purity unknown.
	Cyanuric acid: Rabbit LD ₅₀ >5,000 mg/kg	ECHA, 2011b	Sufficient study details reported in a secondary source; OECD guideline 402.
Inhalation	Melamine cyanurate: Estimated to have limited bioavailability and therefore has low potential for hazard for the inhalation route of exposure (Estimated)	Professional judgment	Based on physical chemical properties including limited bioavailability and low water solubility.
	Melamine: Rat $LC_{50} = 3.248 \text{ mg/L}$	Ubaidullajev, 1993	The study details, if present, were not translated into English.
	Cyanuric acid: Rat LC ₅₀ >5.25 mg/L	ECHA, 2011b	Sufficient study details reported in a secondary source; OECD guideline 403.

Melamine Cyanurate CASRN 37640-57-6				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Carcinogenicity MODERATE: Estimated bas exposure causes carcinogenic carcinogenicity to humans. T conditions in which it produc located as to the carcinogenic Research on Cancer (IARC) humans.		MODERATE: Estimated based on the d exposure causes carcinogenicity in exper carcinogenicity to humans. Tumor form conditions in which it produces bladder located as to the carcinogenic potential of Research on Cancer (IARC) classifies m humans.	issolution product melamine. Th rimental animals; however, there ation in animals appears to happ calculi. Cyanuric acid is not carc of the melamine cyanurate compl elamine as Group 3: <i>not classifia</i>	ere is evidence that oral melamine was no evidence located as to its en in a mechanical nature under inogenic. There were no data ex. The International Agency for <i>ble as to its carcinogenicity to</i>
	OncoLogic Results	Melamine: Marginal (Estimated)	OncoLogic, 2008	
	Carcinogenicity (Rat and Mouse)	Melamine: Group 3: melamine is not classifiable as to its carcinogenicity to humans; there is inadequate evidence in humans for the carcinogenicity of melamine, and there is sufficient evidence in experimental animals for the carcinogenicity of melamine under conditions in which it produces bladder calculi.	IARC, 1999	IARC classification statement.
		Melamine: Significant formation of transitional cell carcinomas in the urinary bladder of dosed male rats and significant chronic inflammation in the kidney of dosed female rats were observed following exposure in the feed for up to 103 weeks. Carcinoma formation was significantly correlated with the incidence of bladder stones. A transitional-cell papilloma was observed in the urinary bladder of a single high dose male rat, and compound related lesions were observed in the urinary tract of dosed animals.	NTP, 1983; Huff, 1984; Melnick et al., 1984	Sufficient study details reported.

	Melamine Cyanurate CASRN 37640-57-6				
PROPERTY	Y/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
		Melamine: Increased incidence of acute and chronic inflammation and epithelial hyperplasia of the urinary bladder were observed in male mice following oral (feed) exposure for up to 103 weeks. Bladder stones and compound related lesions were observed in the urinary tract of test animals. There was no evidence of bladder tumor development. Melamine	NTP, 1983; Huff, 1984; Melnick et al., 1984	Sufficient study details reported.	
		was not considered carcinogenic. Melamine: Melamine-induced proliferative lesions of the rat urinary tract were directly due to the irritant stimulation of calculi, and not to molecular interactions between melamine or its metabolites with the bladder epithelium.	Okumura et al., 1992	Sufficient study details reported.	
		Melamine: Water intake, used as an index of urinary output, was increased by NaCl treatment. Calculus formation resulting from melamine administration was suppressed dose-dependently by the simultaneous NaCl treatment. The main constituents of calculi were melamine and uric acid (total contents 61.1– 81.2%). The results indicate that melamine-induced proliferative lesions of the urinary tract of rats were directly due to the irritation induced-stimulation of calculi, and not molecular interactions between melamine itself or its metabolites with the bladder epithelium.	Ogasawara et al., 1995	Sufficient study details reported.	

	Melamine Cyanurate CASRN 37640-57-6			
PROPER'	FY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Melamine: As an initiator, melamine caused no significant increase in papillomas per mouse when compared to controls.	Perrella and Boutwell, 1983	Sufficient study details reported; nonguideline study.
		Melamine: Diffuse papillary hyperplasia of the bladder epithelium and bladder calculi were observed in all melamine treated rats. Elevated spermidine/spermine N1- acetyltransferase activity following melamine treatment was considered to be an indicator of cell proliferation.	Matsui-Yuasa et al., 1992	Sufficient study details reported; nonguideline study.
		Melamine: Decreased antitumor activity was correlated with increasing demethylation; melamine was considered inactive as an antitumor drug.	Rutty and Connors, 1977	Sufficient study details were not available.
		Melamine: In an <i>in vitro</i> cytotoxicity study in cultured ADJ/PC6 plasmacytoma ascites tumor cells the ID_{50} was 470 µg/mL after 72 hours of treatment.	Rutty and Abel, 1980	Sufficient study details were not available.
	Combined Chronic Toxicity/ Carcinogenicity	Melamine: No effects were observed in rats fed 1,000 ppm of melamine. Four of the 10 rats fed 10,000 ppm of melamine had bladder stones associated with the development of benign papillomas.	Anonymous, 1958 (as described in EPA, 1992)	Sufficient study details were not available.
		Melamine: Increased incidence of urinary bladder stones (6/20 rats) was noted in the 10,000 ppm dose group, and was associated with an increase in benign papillomata. The NOAEL was determined to be 1,000 ppm (67 mg/kg).	American Cyanamid Company, 1955	Sufficient study details were not available.

	Melamine Cyanurate CASRN 37640-57-6			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Cyanuric acid: Rat, oral (drinking water), 2-year toxicity and oncogenicity study; there was no evidence of treatment-related carcinogenic effects in tissues or organs in any treatment group.	ЕСНА, 2011b	Sufficient study details reported in a secondary source; EU Method B.33 (combined chronic toxicity/carcinogenicity test); test substance identified as s- triazinetriol, monosodium salt (monosodium cyanurate monohydrate) 99.7% (equivalent to 77.4% cyanuric acid).
		Cyanuric acid: Mouse, oral (drinking water), 2-year toxicity and oncogenicity study; there was no evidence of treatment-related carcinogenic effects in tissues or organs in any treatment group.	ECHA, 2011b	Sufficient study details reported in a secondary source; EU Method B.33 (combined chronic toxicity/carcinogenicity test); test substance identified as monosodium cyanurate monohydrate (equivalent to 77.5% cyanuric acid).
Genotoxicity		MODERATE: Melamine cyanurate is ex- for melamine. For melamine, positive re- chromatid exchange assays conducted b <i>in vitro</i> genotoxicity testing was conduct this may not account for potential activa Proposed genotoxicity testing using a me was never conducted (Personal Commu- or chromosomal aberrations <i>in vitro</i> . The demonstrated negative results for an <i>in</i>	stimated to be a moderate hazard sults were observed for <i>in vivo</i> cl y National Toxicology Program (ed with metabolic activation syst ation from bladder epithelial cells etabolic activation system from b nication, 2007; 2008). Cyanuric a ere was one study located for me <i>vitro</i> chromosomal aberration stu	I for genotoxicity based on the data promosome aberration and sister (NTP) in 1988 and 1989. Available ems from the liver. NTP suggests s, which is the target organ. ladder epithelial cells (NTP, 1983) acid does not cause gene mutations elamine cyanurate, which ady.
	Gene Mutation <i>in vitro</i>	Melamine: Bacterial forward mutation assay: Negative with and without liver activationMelamine: Bacterial forward mutation assay: NegativeMelamine: Bacterial reverse mutation assay: Negative with and without liver activation	Haworth et al., 1983; NCI/NTP, 2007 Seiler, 1973 Lusby et al., 1979	Sufficient study details reported. Sufficient study details were not available. Sufficient study details were not available.

	Melamine Cyanurate CASRN 37640-57-6				
PROPERT	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
		Melamine: Bacterial reverse mutation assay: Negative with and without unspecified metabolic activation	Mast et al., 1982a	Sufficient study details were not available.	
		Melamine: <i>In vitro</i> mouse lymphoma test: Negative with and without liver activation	McGregor et al., 1988; NCI/NTP, 2007	Sufficient study details reported.	
		Melamine: Chinese hamster ovary (CHO) cells/hypoxanthine-guanine phosphoribosyl-transferase forward mutation assay: Negative with and without liver activation	Mast et al., 1982a	Sufficient study details were not available.	
		Cyanuric acid: Negative for mutagenicity to <i>S. typhimurium</i> TA1535, TA1537, TA98, TA100 with and without metabolic activation	OECD SIDS, 1999b	Reported in a secondary source with limited study details provided; purity unknown.	
		Cyanuric acid: Negative for bacteriophage Lambda induction in <i>E.</i> <i>coli</i> with and without metabolic activation	OECD SIDS, 1999b	Reported in a secondary source with limited study details provided; purity unknown.	
	Gene Mutation in vivo			No data located.	
	Chromosomal Aberrations <i>in vitro</i>	Melamine cyanurate: <i>In vitro</i> chromosomal aberrations test: Negative in Chinese hamster lung fibroblasts (V79) with and without metabolic activation	ECHA, 2011a	OECD guideline 473.	
		Melamine: <i>In vitro</i> chromosomal aberrations test: Negative in CHO with and without liver activation	Galloway et al., 1987; NCI/NTP, 2007	Sufficient study details reported.	
		Melamine: <i>In vitro</i> sister chromatid exchange assay: Negative in CHO with and without liver activation	Galloway et al., 1987; NCI/NTP, 2007	Sufficient study details reported.	

	Melamine Cyanurate CASRN 37640-57-6				
PROPER'	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
		Melamine: <i>In vitro</i> sister chromatid exchange assay: Negative in CHO with and without liver activation	Mast et al., 1982a	Sufficient study details were not available.	
		Cyanuric acid: Negative for chromosomal aberrations in Chinese hamster lung cells with and without metabolic activation	OECD SIDS, 1999b	Reported in a secondary source with limited study details provided; 99.5% purity.	
		Cyanuric acid: Negative for sister chromatid exchange in CHO cells with and without metabolic activation	OECD SIDS, 1999b; ECHA, 2011b	Sufficient study details reported in secondary sources; purity equivalent to 77% cyanurate.	
	Chromosomal Aberrations <i>in vivo</i>	Melamine: In vivo mouse micronucleus test: The initial test gave a positive trend (P = 0.003) for chromosomal damage; however, both peripheral blood smears and the repeat bone marrow test were negative. The overall conclusion was that melamine does not induce chromosomal damage.	NTP, 1983; Shelby et al., 1993	Sufficient study details reported.	
		Melamine: <i>In vivo</i> mouse micronucleus test: Negative without activation	Mast et al., 1982b	Sufficient study details were not available.	
		Melamine: <i>In vivo</i> chromosome aberrations test in mice: Positive	NCI/NTP, 2007	Sufficient study details reported.	
		Melamine: <i>In vivo</i> sister chromatid exchange assay in mice: Positive	NCI/NTP, 2007	Sufficient study details reported.	
	DNA Damage and Repair	Melamine: In vivo and in vitro unscheduled DNA synthesis (UDS) test: None of the tested chemicals, including melamine, were genotoxic hepatocarcinogens in the <i>in vivo</i> assay, and melamine was negative for UDS in the <i>in vitro</i> assay.	Mirsalis et al., 1983	Sufficient study details were not available.	
		Melamine: SOS/ <i>umu</i> test: Negative for its ability to result in DNA damage and induce the expression of the <i>umu</i> operon	Reifferscheid and Heil, 1996	Nonguideline study.	

	Melamine Cyanurate CASRN 37640-57-6				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
		Melamine: DNA synthesis-inhibition test in Hela S3 cells: Inhibits DNA synthesis by 50% at >300 μM	Heil and Reifferscheid, 1992	Sufficient study details were not available.	
	Other	Melamine: Sex-linked recessive lethal/reciprocal translocation: Results were considered equivocal based on 0.18% and 0.36% total lethal following oral and injection exposure, respectively, compared to control total lethal of 0.07% for oral and 0.09% for injection.	NCI/NTP, 2007	Sufficient study details reported.	
		Melamine: Drosophila Muller-5 test: Negative for mutagenicity	Rohrborn, 1959	Sufficient study details were not available.	
		Melamine: Drosophila melanogaster Sex-linked recessive lethal: No mutagenic effects were observed.	Luers and Rohrborn, 1963	Sufficient study details were not available.	
		Melamine: <i>In vitro</i> flow cytometric DNA repair assay: Negative for genotoxic effects	Seldon et al., 1994	Nonguideline study.	
		Melamine: Microscreen assay: Positive for genetic toxicity in <i>E.coli</i> WP2s	Rossman et al., 1991	Nonguideline study.	
		Melamine: Growth and genotoxic effects to bacteria (<i>Salmonella</i> <i>typhimurium</i>) and yeast (<i>Saccharomyces</i> <i>cerevisiae</i>): Non-mutagenic in <i>S.typhimurium</i> with or without S-9 mix. The growth of eight out of nine strains tested was delayed by 10 mM melamine during 24-hour cultivation. <i>S. cerevisiae</i> strain was tested, and did not recover its growth following 48 hour cultivation	Ishiwata et al., 1991	Sufficient study details were not available.	

	Melamine Cyanurate CASRN 37640-57-6			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Reproductive Effects MODERATE: Potential for reproductive toxicity estimated based on data for a confidential anal reports a NOAEL of 1,600 ppm (191-341 mg/kg/day) in rats orally exposed. Data based on the di products indicate no effects on reproductive parameters in rats orally exposed to cyanuric acid f generations or when exposed to melamine in a 13-week toxicity study. There were no data locate reproductive toxicity following exposure to melamine cyanurate.		a for a confidential analog that ed. Data based on the dissolution posed to cyanuric acid for up to 3 here were no data located regarding		
	Reproduction/ Developmental Toxicity Screen	Rat, oral; potential for reproductive toxicity NOAEL = 1,600 ppm (191-341 mg/kg/day) (Estimated by analogy)	Professional judgment	Estimated based on analogy to confidential analog; LOAEL not identified; study details not provided.
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen	Cyanuric acid: Rat, oral (gavage), males exposed for 45 days, females exposed from 14 days prior to mating to lactation day (LD) 3; there were no effects on reproductive parameters including copulation index, fertility index, gestation length, numbers of corpora lutea or implantations, implantation index, gestation index, delivery index and behavior at delivery and lactation. NOAEL ≥600 mg/kg/day (highest dose tested)	OECD SIDS, 1999b	Reported in a secondary source; conducted according to OECD guidelines; 99.8% purity. LOAEL not established for reproductive toxicity.

	Melamine Cyanurate CASRN 37640-57-6			
PROPERTY/ENDPOIN	Г ДАТА	REFERENCE	DATA QUALITY	
	Cyanuric acid: Rat, oral, exposure initiated at 36 days of age to F_0 generation, 21 days to F_1 and F_2 parents and administered until termination of each generation; F_0 males and females exposed minimum of 100 days, F_1 and F_2 male and females exposed a minimum of 120 days; There were no treatment- related reproductive effects observed. NOAEL $F_0 \ge \sim 470$ mg/kg-day (male)	ЕСНА, 2011b	Sufficient study details reported in secondary source; EU Method B.35 (two-generation reproduction toxicity test); test substance identified as sodium salt of cyanuric acid (equivalent to 77.5% cyanuric acid).	
	NOAEL $F_0 \ge -950 \text{ mg/kg-day}$ (female)			
Reproduction Fertility Effec	and Melamine: Reproductive dysfunction ts was observed at 0.5 mg/m ³ and included effects on spermatogenesis (genetic material, sperm morphology, motility, and count), effects on the embryo/fetus (fetal death), pre-implantation mortality (reduction in the number of implants per female), and total number of implants per corpora lutea.	Ubaidullajev, 1993	Study details, if present, were not translated into English; insufficient study details reported.	
	Melamine: There were no treatment- related macroscopic or microscopic effects on mammary glands, ovaries, prostate, seminal vesicles, testes and uterus in rats and mice in a 13-week study.	OECD SIDS, 1999a	Study details, including administered dose information, were not provided.	
Developmental Effects	MODERATE: Estimated based on ana	logy to nitrogen heterocycles. D	ata for dissolution products	
	melamine and cyanuric acid indicate no developmental effects in rats orally exposed to cyanuric acid or melamine during gestation. There were no data located regarding developmental toxicity following exposure to melamine cyanurate.			
Reproduction Developmenta Screen	Potential for developmental toxicityI Toxicity(Estimated by analogy)	Professional judgment	Estimated based on analogy to nitrogen heterocycles.	

Melamine Cyanurate CASRN 37640-57-6				
PROPER	FY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen	Cyanuric acid: Rat, oral (gavage), males exposed for 45 days, females exposed from 14 days prior to mating to LD 3. There were no effects in offspring parameters including number sex ratio, live birth and viability indices, body weight, or incidences of external and visceral abnormalities.	OECD SIDS, 1999b	Reported in a secondary source; conducted according to OECD guidelines; 99.8% purity. LOAEL not established for developmental toxicity.
		NOAEL ≥600 mg/kg/day (highest dose tested) Cyanuric acid: Rat, oral, exposure initiated at 36 days of age to F ₀ generation, 21 days to F ₁ and F ₂ parents and administered until termination of each generation; F ₀ males and females exposed minimum of 100 days, F ₁ and F ₂ male and females exposed a minimum of 120 days. There were no treatment- related developmental effects observed. NOAEL F ₀ ≥~470 mg/kg-day (male) NOAEL F ₀ ≥~950 mg/kg-day (female)	ECHA, 2011b	Sufficient study details reported in secondary source; EU Method B.35 (two-generation reproduction toxicity test); test substance identified as sodium salt of cyanuric acid (equivalent to 77.5% cyanuric acid).
	Prenatal Development	Melamine: Signs of maternal toxicity at 136 mg/kg-day included decreased body weight and feed consumption, hematuria (23/25 rats), indrawn flanks (7/25 rats), and piloerection (1/25 rats). No adverse effects on gestational parameters and no signs of developmental toxicity were noted. NOAEL ≥1,060 mg/kg-day	Hellwig et al., 1996 (as cited in OECD SIDS, 1999a)	Study details reported in a secondary source.

Melamine Cyanurate CASRN 37640-57-6				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Cyanuric acid: Rat, oral (gavage); exposure on gestation days 6-15; There were no developmental effects observed. NOAEL = 5,000 mg/kg-day (highest dose tested)	ECHA, 2011b	Sufficient study details reported in a secondary source; EU method B.31 (prenatal developmental toxicity study); test substance identified as monosodium cyanurate monohydrate; 99% purity (equivalent to 77.4% cyanuric acid).
	Postnatal Development	Melamine: Only minor effects on the fetuses or litters, including a non-significant increase in resorptions in the group treated on the 4 th and 5 th days of gestation, were observed.	Thiersch, 1957	Sufficient study details were not available.
Neurotoxicity		LOW: Estimated to not have potential for	or neurotoxicity based on expert	judgment.
	Neurotoxicity Screening Battery (Adult)	Potential for neurotoxicity is expected to be low (Estimated)	Expert judgment	Estimated based on expert judgment.
Repeated Dose Effects HIGH: Based on kidney toxicity following repeated oral exposure to melamine cyanurate a co-exposure to melamine and cyanuric acid in rats. Kidney effects included increased plasm nitrogen and creatinine levels, the formation of precipitates in the kidney and acute renal f oral exposure to the dissolution product melamine also results in urinary bladder stones at moderate hazard range. The hazard designation for cyanuric acid is considered to be low.			amine cyanurate and simultaneous ed increased plasma blood urea and acute renal failure. Repeated bladder stones at doses in the sidered to be low.	

Melamine Cyanurate CASRN 37640-57-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Melamine cyanurate: Rat, 7-day feeding study. Increased plasma BUN and creatinine levels at 666 ppm (66.6 mg/kg/day; nominal); severe kidney toxicity at 2,000 ppm (200 mg/kg-day); and formation of precipitates in the kidney. There were also mortality, signs of toxicity, decreased body weight and food consumption, changes in organ weights, gross pathology and non- neoplastic histopathology at higher doses. NOAEL: 200 ppm (~ 10 mg/kg-day) LOAEL: 660 ppm (~ 66.6 mg/kg-day) – based on increased plasma BUN and creatinine levels	ECHA, 2011a	Reported in a secondary source. Study designed to test kidney toxicity; test substance identified as melaminzyanurat; purity >99%.	
	Melamine and cyanuric acid co- exposure: Rat, oral 14-day oral (gavage) study of melamine and cyanuric acid co- exposure (each at 1.2, 12, 120 mg/kg- day); crystal formation in renal distal tubular lumens and collecting ducts were observed on day 3 in the 12 mg/kg-day group; crystal in proximal tubular lumens of renal cortex on day 3 and mortal acute renal failure on day 7 occurred at doses of 120 mg/kg-day. NOEL: 1.2 mg/kg-day LOEL: 12 mg/kg-day (based on crystals of melamine cyanurate in kidneys)	ECHA, 2011a	Reported in a secondary source. Study focused on renal crystal formation.	

Melamine Cyanurate CASRN 37640-57-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Melamine and cyanuric acid co- exposure: 7-day feeding study in rats; Signs of toxicity evident, at doses of 33 mg/kg-day, there were pale yellow and enlarged kidneys and increased BUN and serum creatinine; histopathological evaluation showed golden brown crystals in renal tubules of all rats at this dose. There were no significant differences in kidney weights or crystals or tubular changes in rats administered melamine (200 mg/kg-day) or cyanuric acid (200 mg/kg-day) alone. NOAEL: 10 mg/kg-day LOAEL: 33 mg/kg-day (based on kidney	ECHA, 2011a; Jacob et al., 2011	Both melamine and cyanurate were added to feed with a 1:1 ratio; primary source.	
	Melamine and cyanuric acid co- exposure: Melamine and cyanuric acid orally (gavage) administered separately formed crystals of melamine cyanurate in kidney of rats. There was decreased creatinine clearance, increased in serum creatinine and BUN; increased absolute and relative kidney weight.	ECHA, 2011a	Reported in a secondary source. Effect levels not identified.	

Melamine Cyanurate CASRN 37640-57-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Melamine: Rat 28-day dietary toxicity study: Clinical signs included a dose- related increase in pilo-erection, lethargy, bloody urine spots in the cage and on the pelage of animals, and chromodacryorrhea. The incidence of urinary bladder calculi and urinary bladder hyperplasia in treated animals was dose-dependent, with a significant relationship between the calculi and hyperplasia. Calculi composition indicated the presence of an organic matrix containing melamine, phosphorus, sulfur, potassium, and chloride. Crystals of dimelamine monophosphate were identified in the urine. NOAEL: 2,000 ppm (240 mg/kg/day), excluding the observed increase in water consumption and the incidence of crystalluria. LOAEL: 4,000 ppm (475 mg/kg/day) based on the formation of calculi	RTI, 1983	Sufficient study details reported.
	Melamine: Rabbit and dog 28-day dietary toxicity study: No significant rise in the body temperature of rabbits was noted. Gross histological examination of the heart, lung, liver, spleen, thyroid, pancreas, intestines, kidneys and bladder did not show pathological changes. A zone of fat was found in the inner part of the renal cortex in two dogs, but also in the kidneys of 3 control dogs.	Lipschitz and Stokey, 1945	Sufficient study details were not available.

Melamine Cyanurate CASRN 37640-57-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Melamine: Rat 28-day dietary toxicity study: Incidence and size of bladder stones were directly related to the amount of substance administered. The larger stones were found to be unchanged melamine in a matrix of protein, uric acid and phosphate.	American Cyanamid Company, 1984	Sufficient study details were not available.	
	Lowest effect dose (LED): 1,500 ppm (~125 mg/kg) in males.			
	Melamine: Rat 90-day dietary toxicity study: One male rat receiving 18,000	NTP, 1983; Melnick et al., 1984; ECHA, 2011a	Sufficient study details reported.	
	died. Mean body weight gain and feed consumption were reduced. Stones and			
	diffuse epithelial hyperplasia in the urinary bladders were observed in male			
	rats of all treatment groups. Focal epithelial hyperplasia was observed in only 1 male. A second and third 12 week			
	repeated dose toxicity study was conducted in rats at a dose range of 750			
	to 18,000 ppm; bladder stones were observed at all dose levels At 18,000			
	ppm, stones occurred in diets with and without the addition of ammonium			
	chloride to drinking water. LOAEL = 700 ppm (72 mg/kg/day)			

Melamine Cyanurate CASRN 37640-57-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Melamine: Mouse 90-day dietary toxicity study: a single female mouse died after receiving 9,000 ppm. Mean body weight gain relative to controls was depressed. The incidence of mice with bladder stones was dose-related and was greater in males than in females. Sixty percent of mice having bladder ulcers also had urinary bladder stones. Bladder ulcers were multifocal or associated with inflammation (cystitis). Epithelial hyperplasia and bladder stones were observed together in 2 mice. Also, epithelial cell atypia was seen. NOAEL: 6,000 ppm (600 mg/kg-day)	NTP, 1983; Melnick et al., 1984	Sufficient study details reported.	
	LOAEL: 9,000 ppm (900 mg/kg-day) Melamine: Increased incidence of acute and chronic inflammation and epithelial hyperplasia of the urinary bladder was observed in mice following oral (feed) exposure for up to 103 weeks. There was also increased incidence of bladder stones in male mice. LOAEL = 2,250 mg/kg diet (lowest dose tested)	NTP, 1983; ECHA, 2011a	Repeated dose effects described in a carcinogenicity bioassay study.	
	Melamine: Dog 1-year dietary toxicity study: crystalluria started 60 to 90 days into treatment, and persisted during the study period. No other effects attributable to melamine were observed.	American Cyanamid Company, 1955	Sufficient study details were not available.	

Melamine Cyanurate CASRN 37640-57-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Melamine: Rat 30-month dietary toxicity study: Neither accumulation of calculi nor any treatment-related urinary bladder lesions were found.	Mast et al., 1982c (as described in EPA, 1992)	Sufficient study details were not available.	
	Melamine: Rat 24- to 30-month dietary toxicity study: A dose-related trend for dilated glands in glandular gastric mucosa and inflammation in non- glandular gastric mucosa was observed. Urinary bladder calculi formation was not observed.	American Cyanamid Company, 1983 (as described in OECD SIDS, 1999a)	Sufficient study details were not available.	

Melamine Cyanurate CASRN 37640-57-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Cyanuric acid: Rat, oral (gavage), combined repeat dose and reproductive/developmental toxicity screening test; males exposed for 44 days, females exposed from 14 days prior to mating to LD 3. Toxic effects included: reddish urine, decreased body weight gain (males), increased erythrocytes and leukocytes in urine, decreased erythrocyte count, hemoglobin, and hematocrit (male), increased urea nitrogen and creatinine, decreased sodium (male), dilation of renal tubules, necrosis or hyperplasia of the tubular epithelium, increased basophilic tubules, neutrophilic infiltration, mineralization and fibrosis in the kids, hyperplasia of the mucosal epithelium in urinary bladder and vacuolization of the zona fasciculate in the adrenals, increased absolute and relative kidney weight and relative adrenal weights (both sexes), atrophic thymus (females).	OECD SIDS, 1999b	Reported in a secondary source with limited study details provided; 99.8% purity.	
	LOAEL = 600 mg/kg/day			

Melamine Cyanurate CASRN 37640-57-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Cyanuric acid: Rat, oral (drinking water), 2-year toxicity and oncogenicity study; red urine in males at the highest dose was observed (371 mg/kg-day); there were no treatment-related changes in hematology, clinical chemistry, urinalysis, or organ weights; non- neoplastic lesion in urinary tracts and heart and urinary tract lesions of males exposed to 5,375 ppm (371 mg/kg-day) for 6-12 months; There were no treatment-related lesions in rats exposed for 18 or 24 months. NOAEL = 154 mg/kg-day (male) LOAEL = 371 mg/kg-day (male)	ECHA, 2011b	Sufficient study details reported in a secondary source; EU Method B.33 (combined chronic toxicity/carcinogenicity test); test substance identified as s- trazinetriol, monosodium salt (monosodium cyanurate monohydrate) 99.7% (equivalent to 77.4% cyanuric acid).
	Cyanuric acid: Mouse, oral (drinking water), 2-year toxicity and oncogenicity study; there were no treatment-related effects. NOAEL \geq 1,520 mg/kg-day (male) NOAEL \geq 1,580 mg/kg-day (female)	ЕСНА, 2011b	Sufficient study details reported in a secondary source; EU Method B.33 (combined chronic toxicity/carcinogenicity test); test substance identified as monosodium cyanurate monohydrate (equivalent to 77.5% cyanuric acid).
	Cyanuric acid: Mouse, oral (drinking water), 13-week subchronic toxicity study; there were no treatment related effects at doses as high as 1,523 mg/kg- day (males) and 1,582 mg/kg-day (females) NOAEL ≥1,523 mg/kg-day (male) NOAEL ≥1,582 mg/kg-day (female)	ЕСНА, 2011b	Sufficient study details reported in a secondary source; test substance identified as s-trazinetriol, monosodium salt (monosodium cyanurate monohydrate) 99.5% (equivalent to 76.9% cyanuric acid).

	Melamine Cyanurate CASRN 37640-57-6			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Cyanuric acid: Rat, oral (drinking water, 13-week toxicity study; there were no treatment-related effects NOAEL \geq 521 mg/kg-day (male) NOAEL \geq 717 mg/kg-day (female)	ECHA, 2011b	Sufficient study details reported in a secondary source; test substance identified as s-trazinetriol, monosodium salt (monosodium cyanurate monohydrate) (equivalent to 77.34% cyanuric acid).
	Immune System Effects	Melamine: Did not inhibit the mitogenesis of B- and T- lymphocytes in an <i>in vitro</i> mouse lymphocyte mitogenesis test.	ECHA, 2011a	Reported in a secondary source.
Skin Sensitization		LOW: Estimated based on evidence of n	nild skin sensitization following e	exposure to the dissolution product
		cyanuric acid in mice. Melamine, also a	dissolution product of melamine	cyanurate, was not a skin sensitizer
		to humans or guinea pigs. There were no	o data located for melamine cyan	Section in the sensitization.
	Skin Sensitization	Melamine: No evidence of primary	American Cyanamid Company,	Sufficient study details were not
		bumon noteh toot	1955; 1focmimowicz et al.,	avallable.
		Molomines Non consisting to guines	2001 Eccept and Doudshush	Sufficient study details were not
		pigs	1963/1981 (as described in	available
		pigs	OFCD SIDS 1999 and	avanable.
			Trochimowicz et al. 2001):	
			Trochimowicz et al. 2001), Trochimowicz et al. 2001	
		Cyanuric acid: Borderline or mild skin	FCHA 2011b	Sufficient study details reported in a
		sensitization in mice		secondary source: OECD guideline
				429.
Respiratory Sensiti	zation	No data located.	l	<u> </u>
	Respiratory Sensitization			No data located.
Eye Irritation		LOW: Estimated based on mild-to-mod	erate irritation to rabbit eyes foll	lowing exposure to the dissolution
		products melamine and cyanuric acid. T	There were no data located for m	elamine cyanurate for eye
		irritation.		
	Eye Irritation	Melamine: Non-irritating to rabbit eyes	BASF, 1969 (as described in OECD SIDS, 1999a and IUCLID, 2000)	Sufficient study details were not available.

	Melamine Cyanurate CASRN 37640-57-6				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
		Melamine: Non-irritating to rabbit eyes following 0.5 mL of 10% melamine	American Cyanamid Company, 1955; Trochimowicz et al., 2001	Sufficient study details were not available.	
		Melamine: Mild irritant to rabbit eyes following exposure to 30 mg of dry powder	American Cyanamid Company, 1955; Trochimowicz et al., 2001	Sufficient study details were not available.	
		Melamine: Slightly irritating to rabbit eyes	Marhold, 1972 (as described in IUCLID, 2000 and RTECS, 2009)	Sufficient study details were not available.	
		Cyanuric acid: Slightly to moderately irritating to rabbit eyes	OECD SIDS, 1999b	Sufficient study details reported in secondary source; OECD guideline 405.	
		Cyanuric acid: Slightly irritating to rabbit eyes; fully reversible within 3 days	ECHA, 2011b	Sufficient study details reported in a secondary source; OECD guideline 405.	
Dermal Irritation		LOW: Estimated based on slight irritati cyanuric acid. Melamine, also a dissolut There were no data located for melamin	on to rabbit skin following expos ion product of melamine cyanura e cvanurate for skin irritation.	sure to the dissolution product ate was not irritating to rabbit skin.	
	Dermal Irritation	Melamine: Not irritating to rabbit skin	Rijcken, 1995 (as described in OECD SIDS, 1999a)	OECD 404 guideline study.	
		Melamine: Not irritating to rabbit skin	BASF, 1969 (as described in OECD SIDS, 1999a and IUCLID, 2000)	Sufficient study details were not available.	
		Melamine: Not irritating to rabbit skin	American Cyanamid Company, 1955; Trochimowicz et al., 2001	Sufficient study details were not available.	
		Melamine: Not irritating to rabbit skin	Fasset and Roudabush, 1963/1981 (as described in OECD SIDS, 1999a and Trochimowicz et al., 2001); Trochimowicz et al., 2001	Sufficient study details were not available.	

Melamine Cyanurate CASRN 37640-57-6					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
		Cyanuric acid: Slightly irritating to rabbit skin	OECD SIDS, 1999b; ECHA, 2011b	Sufficient study details reported in a secondary source; OECD guideline 404.	
Endocrine Activity	,	There were insufficient data located to d In one study, melamine did not exhibit e	lescribe the effect of melamine cy strogenic activity <i>in vitro</i> in a yea	anurate on the endocrine system. Ast two-hybrid assay.	
		Melamine: Showed no estrogenic activity (no change in B-galactosidase activity) in an <i>in vitro</i> yeast two-hybrid assay in <i>Saccharomyces cerevisiae</i> Y 190	ECHA, 2011a	Reported in a secondary source. Nonguideline study.	
Immunotoxicity		Located data were not sufficient to deter	rmine the hazard potential for th	is endpoint.	
	Immune System Effects	Melamine: Did not inhibit the mitogenesis of B- and T- lymphocytes in an <i>in vitro</i> mouse lymphocyte mitogenesis test.	ECHA, 2011a	Reported in a secondary source.	
		ECOTOXICITY			
ECOSAR Class		Melamine: Anilines (amino-meta), Melamines; Cyanuric acid: Aromatic triazines			
Acute Toxicity		LOW: Melamine cyanurate has low water solubility and therefore it is estimated that it will display no effects at saturation (NES) because the amount dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed. A Low hazard potential is also assigned for the dissociation products, melamine and cyanuric acid, based on experimental data.			
Fish LC ₅₀		Melamine cyanurate:	No data located.	Not amenable to estimation by available models that cannot accept chemicals with complex organic cations and anions.	
		Melamine cyanurate: Melamine cyanurate has low water solubility and therefore it is estimated that it will display NES. Melamine : Leuciscus idus melanotus	Professional judgment OECD SIDS, 1999a	The amount of melamine cyanurate dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed. Study details reported in a	
		48-hour LC ₅₀ >500 mg/L (Experimental)		secondary source.	

Melamine Cyanurate CASRN 37640-57-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Melamine: Oryzias latipes 48-hour LC ₅₀ = 1,000 mg/L (Experimental)	OECD SIDS, 1999a	Study details reported in a secondary source.
	Melamine: <i>Poecilia reticulata</i> 96-hour LC ₅₀ >3,000 mg/L (Experimental)	OECD SIDS, 1999a	Study details reported in a secondary source.
	Melamine: <i>Poecilia reticulata</i> 4,400 mg/L dose lethal to <10% (Experimental)	OECD SIDS, 1999a	Study details reported in a secondary source.
	Melamine: Fish 96-hour $LC_{50} = 2,680$ mg/L (Estimated) ECOSAR: Anilines (amino-meta)	ECOSAR version 1.11	
	Melamine: Fish 96-hour $LC_{50} = 391$ mg/L (Estimated) ECOSAR: Melamines	ECOSAR version 1.11	
	Melamine: Fish 96-hour LC ₅₀ = 14,272 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
	Cyanuric acid: <i>Oryzias latipes</i> 96-hour LC ₅₀ >100 mg/L Semi-static and flow-through open conditions (Experimental)	OECD SIDS 1999b	99.7% purity; study details reported in a secondary source; separate experiments conducted with flow- through and semi-static conditions according to OECD TG203 guidelines.

Melamine Cyanurate CASRN 37640-57-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Cyanuric acid: Lepomis macrochirus (fathead minnow) 96-hour LC ₅₀ >1,000 mg/L Static conditions (Experimental)	ECHA, 2011b	Purity unknown; not a guideline study but well-reported in a secondary source.
	Cyanuric acid: <i>Pimephales promelas</i> (bluegill sunfish) 96-hour LC ₅₀ >2,100 mg/L Static conditions (Experimental)	ECHA, 2011b	Well-reported in a secondary source.
	Cyanuric acid: Fish 96-hour $LC_{50} =$ 72.04 mg/L (Estimated) ECOSAR: Aromatic triazines	ECOSAR version 1.11	
	Cyanuric acid : Fish 96-hour LC ₅₀ = 116.98 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
Daphnid LC ₅₀	Melamine cyanurate:	No data located.	Not amenable to estimation by available models that cannot accept chemicals with complex organic cations and anions.
	Melamine cyanurate: Melamine cyanurate has low water solubility and therefore it is estimated that it will display NES.	Professional judgment	The amount of melamine cyanurate dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed.
	Cyanuric acid : <i>Daphnia magna</i> 48-hour EC ₅₀ = 1,000 mg/L (immobilization); static, open-system conditions (Experimental)	OECD SIDS, 1999b	99.7% purity; study details reported in a secondary source; study conducted according to OECD TG202 guidelines guideline study;

	Melamine Cyanurate CASRN 37640-57-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
			1,000 mg/L was the highest dose tested.	
	Cyanuric acid : <i>Daphnia magna</i> 48-hour LC ₅₀ >1,000 mg/L Static conditions (Experimental)	ECHA, 2011b	Not a guideline study, but well- reported in a secondary source; purity not known.	
	Cyanuric acid : Daphnid 48-hour $LC_{50} =$ 34.65 mg/L (Estimated) ECOSAR: Aromatic triazines	ECOSAR version 1.11		
	Cyanuric acid : Daphnid 48-hour LC ₅₀ = 61.33 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.	
	Melamine : Daphnid 48-hour $LC_{50} =$ 6.23 mg/L (Estimated) ECOSAR: Anilines (amino-meta)	ECOSAR version 1.11		
	Melamine: Daphnid 48-hour $LC_{50} =$ 144.34 mg/L (Estimated) ECOSAR: Melamines	ECOSAR version 1.11		
	Melamine: Daphnid 48-hour $LC_{50} =$ 4,805 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.	

Melamine Cyanurate CASRN 37640-57-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Green Algae EC ₅₀	Melamine cyanurate:	No data located.	Not amenable to estimation by available models that cannot accept chemicals with complex organic cations and anions.
	Melamine cyanurate: Melamine cyanurate has low water solubility and therefore it is estimated that it will display NES.	Professional judgment	The amount of melamine cyanurate dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed.
	Melamine: Scenedesmus pannonicus 4- day EC ₅₀ = 940 mg/L (Experimental); 4-day NOEC = 320 mg/L (Experimental)	OECD SIDS, 1999a	Reported in a secondary source, study details and test conditions were not provided.
	Melamine : Green algae 96-hour $EC_{50} = 2.79 \text{ mg/L}$ (Estimated) ECOSAR class: Anilines (amino-meta)	ECOSAR version 1.11	
	Melamine: Green algae 96-hour $EC_{50} =$ 325 mg/L (Estimated) ECOSAR class: Melamines	ECOSAR version 1.11	
	Melamine: Green algae 96-hour EC ₅₀ = 4,396 mg/L (Estimated) ECOSAR class: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
	Cyanuric acid: Selenastrum capricornutum 72-hour $EC_{50} = 620 \text{ mg/L}$ (biomass) 72-hour NOEC = 62.5 mg/L (Experimental)	OECD SIDS, 1999b	Cyanuric acid (99.7% purity); study details reported in a secondary source; study conducted according to OECD TG201 guidelines.

Melamine Cyanurate CASRN 37640-57-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Cyanuric acid : Green algae 96-hour $EC_{50} = 0.11 \text{ mg/L}$ (Estimated) ECOSAR: Aromatic triazines	ECOSAR version 1.11		
	Cyanuric acid : Green algae 96-hour EC ₅₀ = 56.87 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.	
Chronic Aquatic Toxicity	LOW: Melamine cyanurate has low water solubility and therefore it is estimated that it will display NES because the amount dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed. A Low potential for hazard is also for assigned for the dissociation products, melamine			
Fish ChV	Melamine cyanurate:	No data located.	Not amenable to estimation by available models that cannot accept chemicals with complex organic cations and anions	
	Melamine cyanurate: Melamine cyanurate has low water solubility and therefore it is estimated that it will display NES.	Professional judgment	The amount of melamine cyanurate dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed.	
	Melamine: Jordanella floridae 35-day NOEC ≥1,000 mg/L (Experimental)	OECD SIDS, 1999a	Reported in a secondary source, study details and test conditions were not provided.	
	Melamine: Salmo gairdneri NOEC (macroscopic) = 500 mg/L (Experimental); NOEC (microscopic) <125 mg/L (Experimental)	OECD SIDS, 1999a	Reported in a secondary source, study details and test conditions were not provided.	

Melamine Cyanurate CASRN 37640-57-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Melamine: Daphnia magna 21-day LC_{50} = 32-56 mg/L, 21-day LC_{100} = 56 mg/L, 21-day NOEC = 18 mg/L (Experimental)	OECD SIDS, 1999a	Reported in a secondary source, study details and test conditions were not provided.	
	Melamine: Fish ChV = 263 mg/L (Estimated) ECOSAR: Anilines (amino-meta)	ECOSAR version 1.11	The toxicity value was estimated through application of acute to chronic ratios (ACRs).	
	Melamine : Fish ChV = 1,102 mg/L (Estimated) ECOSAR: Melamines	ECOSAR version 1.11		
	Melamine : Fish ChV = 1,076 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.	
	Cyanuric acid: Oncorhynchus mykiss (rainbow trout) 28-day LOEC ≥1,000 mg/L (based on growth rate) Semi-static conditions (OECD guideline 215) (Experimental)	ECHA, 2011b	Guideline study; well-reported in a secondary source; >97% purity.	
	Cyanuric acid : Fish ChV = 1.85 mg/L (Estimated) ECOSAR: Aromatic triazines	ECOSAR version 1.11		

Melamine Cyanurate CASRN 37640-57-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Cyanuric acid : Fish ChV = 11.38 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.	
Daphnid ChV	Melamine cyanurate:	No data located.	Not amenable to estimation by available models that cannot accept chemicals with complex organic cations and anions.	
	Melamine cyanurate: Melamine cyanurate has low water solubility and therefore it is estimated that it will display NES.	Professional judgment	The amount of melamine cyanurate dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed.	
	Cyanuric acid : <i>Daphnia magna</i> 21-day $EC_{50} = 65.9 \text{ mg/L}$ (reproduction rate); NOEC = 32.0 mg/L Semi-static, open-system conditions (OECD TG202) (Experimental)	OECD SIDS, 1999b	99.7% purity; study details reported in a secondary source; guideline study.	
	Cyanuric acid: Daphnia magna 21-day $EC_{50} = 2,117 \text{ mg/L cyanuric acid}$ (immobilization) LOEC = 378 mg/L cyanuric acid (mortality and reproduction) NOEC = 121 mg/L cyanuric acid Static conditions (OECD guideline 211) (Experimental)	ECHA, 2011b	Guideline study; well-reported in a secondary source; >97% purity.	
	Cyanuric acid: Daphnid ChV = 1.49 mg/L (Estimated) ECOSAR class: Aromatic triazines	ECOSAR version 1.11		

	Melamine Cyanurate CASRN 37640-57-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Cyanuric acid : Daphnid ChV = 6.37 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.	
	Melamine: Daphnid ChV = 0.078 mg/L (Estimated) ECOSAR class: Anilines (amino-meta)	ECOSAR version 1.11		
	Melamine: Daphnid ChV = 14.85 mg/L (Estimated) ECOSAR: Melamines	ECOSAR version 1.11	The toxicity value was estimated through application of ACRs.	
	Melamine: Daphnid ChV = 343.93 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.	
Green Algae ChV	Melamine cyanurate:	No data located.	Not amenable to estimation by available models that cannot accept chemicals with complex organic cations and anions.	
	Melamine cyanurate: Melamine cyanurate has low water solubility and therefore it is estimated that it will display NES.	Professional judgment	The amount of melamine cyanurate dissolved in water is not anticipated to reach a concentration at which adverse effects may be expressed.	
	Melamine: Green algae ChV = 0.70 mg/L (Estimated) ECOSAR: Anilines (amino-meta)	ECOSAR version 1.11	The toxicity value was estimated through application of ACRs.	

Melamine Cyanurate CASRN 37640-57-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Melamine: Green algae ChV = 81.26 mg/L (Estimated) ECOSAR: Melamines	ECOSAR version 1.11	The toxicity value was estimated through application of ACRs.	
	Melamine: Green algae ChV = 313.17 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.	
	Cyanuric acid : <i>Navicula pelliculosa</i> 72- hour $EC_{50} = 2,041 \text{ mg/L cyanuric acid}$ (biomass) 96-hour $EC_{50} > 3,780 \text{ mg/L cyanuric acid}$ (biomass) 72-hour $EC_{50} > 3,780 \text{ mg/L cyanuric acid}$ (growth rate) 96-hour $EC_{50} > 3,780 \text{ mg/L cyanuric acid}$ (growth rate) 72-hour NOEC= 945 mg/L cyanuric acid 96-hour NOEC= 3,780 mg/L cyanuric acid Static conditions (ISO 10253) (Experimental)	ECHA, 2011b	Guideline study; well-reported in a secondary source; 99.1% purity.	

	Melamine Cyanurate CASRN 37640-57-6			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Cyanuric acid: Selenastrum capricornutum 24-hour $EC_{50} > 1,000 \text{ mg/L}$ (based on decreased <i>in vivo</i> chlorophyll alpha) 48-hour $EC_{50} > 1,000 \text{ mg/L}$ (based on decreased <i>in vivo</i> chlorophyll alpha) 72-hour $EC_{50} = 872 \text{ mg/L}$ (based on decreased number of cells) 96-hour $EC_{50} > 712 \text{ mg/L}$ (based on decreased number of cells) (Experimental)	ECHA, 2011b	Cyanuric acid; not a guideline study, but test procedures followed those of U.S. EPA Algal Assay Procedure: Bottle test (1971); well- reported in a secondary source; 77.5% purity.
		Cyanuric acid: Green algae ChV = 0.06 mg/L (Estimated) ECOSAR: Aromatic triazines	ECOSAR version 1.11	
		Cyanuric acid: Green algae ChV = 12.55 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
		ENVIRONMENTAL F.	ATE	
Transport		The measured low water solubility and example anticipated to partition predominantly to from soil to groundwater; aromatic amin volatilize from water. Volatilization from atmosphere, melamine cyanurate is experimentary of pressure. Particulates may be remained as the pressure of the pr	stimated low vapor pressure indi soil and sediment. Melamine cy- tes tend to bind with humic matter dry surface is also not expected cted to exist solely in the particul oved from air by wet or dry depo	cate that melamine cyanurate is anurate is not expected to migrate er in soil. It is not expected to based on its vapor pressure. In the ate phase, based on its estimated osition.
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	Professional judgment	Cutoff value for nonvolatile compounds based on the ionic nature of the material.

	Melamine Cyanurate CASRN 37640-57-6					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	>1,000 (Estimated)	Professional judgment	Driven by structural analysis of melamine; aromatic amines form covalent bonds to humic matter in soils and sediments, binding irreversibly.		
	Level III Fugacity Model			Not all input parameters for this model were available to run the estimation software (EPI) for the hydrogen bonded melamine cyanurate complex.		
Persistence		VERY HIGH: Based on an experimental readily biodegradable. This result is cons likely to be readily assimilated by microo operative under environmental condition dissolution under neutral conditions, nor rapidly dissociates under pH extremes. If Melamine cyanurate does not contain ch not expected to be susceptible to direct p cyanuric acid salts, have experimental st aerobic conditions when assessed as their studies indicate that cyanuric acid may d	biodegradation study (OECD 30 sistent with its negligible water so organisms. Other degradative pro- us. Melamine cyanurate is not exp- under the pHs typically found in t is least soluble at pH 5 but most romophores that absorb at wavel hotolysis by sunlight. The dissoci- udies indicating that they are not corresponding neutral organic of egrade in anoxic environs.	01B) that demonstrated it was not olubility suggesting that it is not occesses are not expected to be pected to undergo complete in the environment. However, it it soluble at pH 3.5 and below. lengths >290 nm, indicating that it is ation products, melamine and c expected to biodegrade under components. However, experimental		
Water	Aerobic Biodegradation	Melamine cyanurate: Not readily biodegradable according to OECD Guideline 301 B (Ready Biodegradability: CO2 Evolution Test) (Measured)	ECHA, 2011a	Adequate, guideline study.		
	Volatilization Half-life for Model River	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.		
	Volatilization Half-life for Model Lake	>1 year (Estimated)	Professional judgment	Based on the magnitude of the estimated Henry's Law Constant.		
Melamine Cyanurate CASRN 37640-57-6						
-------------------------------------	--	--	--	--	--	--
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Soil	Aerobic Biodegradation	Melamine: Not readily biodegradable: 0% biodegradation detected after 2 weeks with 100 ppm in 30 ppm activated sludge (OECD TG 301C) (Measured); 0% degradation after 28 days with 100 mg DOC/L in activated sludge (Zahn-Wellens test, OECD 302B) (Measured) Cyanuric Acid: Not readily biodegradable: 0% biodegradation detected after 2 weeks with 100 ppm in 30 ppm activated sludge (0% biochemical oxygen demand; 7.8% total organic carbon) (OECD TG 301C) (Measured)	MITI, 1998; OECD SIDS, 1999a	Adequate values from guideline studies for the melamine cyanurate complex components.		
	Anaerobic Biodegradation	Cyanuric Acid: 100% degradation after 72-96 hours in anaerobic sewage at 10 μ g/mL (Measured); 0% methane production after 1-year incubation in anoxic aquifer slurries (Measured) Melamine: 0-8.9% nitrification was	Saldick, 1974; Adrian and Suflita, 1994 IUCLID, 2000	Inadequate, these data values are not applicable for the melamine cyanurate complex. This value is for melamine. Reported		
		observed after 28 days incubation with bacteria in Webster silty clay loam under anaerobic conditions (Measured)		in a secondary source, study details and test conditions were not provided.		
	Soil Biodegradation w/ Product Identification	Melamine: Nitrification of melamine occurs in soil at a low rate (0.7 % organic N found as NO ₃ -N in week 10, and 0% in week 28). (Measured) Cyanuric Acid: 35 % nitrification at week 10 and 73 % at week 28. (Measured)	ECHA, 2011a	Nonguideline studies for the melamine cyanurate complex components.		
	Sediment/Water Biodegradation			No data located.		
Air	Atmospheric Half-life	Melamine: 16 days (Estimated) Cyanuric Acid: 43 hours (Estimated)	EPI			

	Melamine Cyanurate CASRN 37640-57-6					
PROP	ERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
		Melamine Cyanurate: The test substance was found to be thermally stable within the range 40-290°C according to a method similar to OECD Guideline 113 (Screening Test for Thermal Stability and Stability in Air) (Measured)	ECHA, 2011a	Nonguideline study.		
Reactivity	Photolysis	Melamine Cyanurate, Melamine and Cyanuric acid: Not a significant fate process (Estimated)	Mill, 2000; Professional judgment	These substances do not contain functional groups that would be expected to absorb light at environmentally significant wavelengths.		
	Hydrolysis	Melamine Cyanurate: The effect of pH on the solubility of melamine cyanurate has established that the minimum lies at pH 5. Decreasing the pH results in the formation of melamine cations and cyanuric acid in solution at pH 3.5 and below. Increasing the pH from 5 to 7.5 results in only a marginal increase in the dissolution of the melamine cyanurate complex. (Measured)	WHO, 2009	These results are consistent with that expected in a closed system. Under environmental conditions, infinite dilution may alter the equilibrium of the process towards enhanced dissolution.		
Environmental H	Ialf-life	Melamine Cyanurate: >1 year (Estimated) Melamine: 75 days (Estimated) Cyanuric Acid: 30 days (Estimated)	Professional judgment; EPI; PBT Profiler	Melamine cyanurate is not anticipated to be assimilated by microorganisms. Therefore, biodegradation is not expected to be an important removal process. It is also not expected to be removed by other degradative processes under environmental conditions because of its limited water solubility and limited partitioning to air.		

	Melamine Cyanurate CASRN 37640-57-6						
PROPERTY/ENDPO	INT	DATA REFERENCE DATA Q					
Bioaccumulation	LOW have j for th exper	LOW: Melamine cyanurate has negligible water solubility under near neutral conditions and is expected to have poor bioavailability resulting in low potential for bioaccumulation. In addition, experimental BCF data for the organic components of melamine cyanurate, melamine and cyanuric acid are <100. These experimental values also indicate a low potential for bioaccumulation.					
Fish BCF	Melar	mine Cyanurate: <100 (Estimated)	Professional judgment	This estimated value is based on the BCF results for the components melamine and cyanurate.			
	Melar carpia concer <3.8 in weeks 302B) Cyan carpia concer <0.5 in weeks	mine: <0.38 in carp (<i>Cyprinus</i>) after 6 weeks at 2.0 ppm ntration; n carp (<i>Cyprinus carpio</i>) after 6 a t 0.2 ppm concentration (OECD) (Measured) uric Acid: <0.1 in carp (<i>Cyprinus</i>) after 6 weeks at 10 ppm ntration; n carp (<i>Cyprinus carpio</i>) after 6 a t 1 ppm concentration (Measured)	MITI, 1998	Adequate values from guideline studies for the melamine cyanurate complex components.			
BAF	Melar Cyant	mine: <1 (Measured) uric Acid: 2.1 (Estimated)	OECD SIDS, 1999a; IUCLID, 2000; EPI	These values are for the individual components.			
Metabolism	in Fish Melar elimin fathea and ra (Meas	mine: Uptake, bioaccumulation and nation study with ¹⁴ C-melamine in d minnow (BCF = 0.48 and 0.26) inbow trout (BCF = $0.11, 0.05, 0.03$) sured)	ECHA, 2011a	Nonguideline studies that support the low bioaccumulation potential for this substance.			
	ENVIRONMENTAL MONITORING AND BIOMONITORING						
Environmental Monitoring	No da	ta located.					
Ecological Biomonitoring	No da	ta located.	located.				
Human Biomonitoring This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring re (CDC, 2011).							

Adrian, NR; Suflita, JM. Anaerobic biodegradation of halogenated and nonhalogenated N-, S-, and other O-heterocyclic compounds in aquifer slurries. *Environ. Toxicol. Chem.* **1994**, 13:1551-1557.

American Cyanamid Company. *Melamine: acute and chronic toxicity*; Report 55-21, Unpublished data, 1955.

American Cyanamid Company. Summary of company study, 1984.

Anonymous. *AERO Melamine, In-House publication*. American Cyanamid Company: Wayne, NJ, **1958** (as cited in TSCA Section 8(e) Substantial Risk Notice. U.S. EPA. 8EHQ-0192-1995).

BASF AG, Department of Toxicology. (XIX/5). Unpublished data, (as cited in Melamine OECD SIDS document and Melamine IUCLID document). **1969**.

CDC (Centers for Disease Control and Prevention). *Fourth national report on human exposure to environmental chemicals, updated tables*. Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on May 10, 2011).

Ciba. *Technical Support Handbook DSM Melapur Plastics Additives*. **2001.** Available at <u>http://www.hansolfine.co.kr/melapur.pdf as</u> of March 12, 2012.

Crews, GM. *Ullmann's Encyclopedia of Industrial Chemistry*. 7th ed. New York, NY: John Wiley & Sons; Melamine and Guanamines. Online Posting Date: July 15, 2006. **2006**.

ECOSAR/EPI (EPIWIN/EPISUITE) Estimations Programs Interface for Windows, Version 1.11. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

U.S. EPA (Environmental Protection Agency). High Production Volume (HPV) Challenge. Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. <u>http://www.epa.gov/hpv/pubs/general/datadfin.htm</u>

EPA (U.S. Environmental Protection Agency) Sustainable Futures. *Using NonCancer Screening within the SF Initiative*. U.S. Environmental Protection Agency: Washington DC. **2011**. <u>http://www.epa.gov/opptintr/sf/pubs/noncan-screen.htm#systemic</u> (accessed on February 09, 2011).

EPI (*EPIWIN/EPISUITE*) *Estimation Program Interface for Windows*, Version 4.00. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

ECHA (European Chemicals Agency). *Melamine cyanurate*. Registered Substances Database. **2011a**. <u>http://apps.echa.europa.eu/registered/data/dossiers/DISS-9eb230bf-9ed0-1955-e044-00144f67d031/AGGR-a3a77856-6622-456f-8995-5483f815f4a4_DISS-9eb230bf-9ed0-1955-e044-00144f67d031.html (accessed on June 14, 2011).</u>

ECHA (European Chemicals Agency). *Cyanuric acid*. Registered Substances Database. **2011b**. http://apps.echa.europa.eu/registered/data/dossiers/DISS-9c7f523d-20c7-373f-e044-00144f67d249/AGGR-3fddcbaa-68ea-4e97-bb90-7c0133a13252_DISS-9c7f523d-20c7-373f-e044-00144f67d249.html#AGGR-3fddcbaa-68ea-4e97-bb90-7c0133a13252 (accessed on June 14, 2011).

Fasset, DW; Roudabush, RL. Unpublished Data, Lab. of Ind. Med., Eastman Kodak Co. 1963/1981.

Galloway, SM; Armstrong, MJ; Reuben, C; et al. Chromosome Aberrations and Sister Chromatid Exchanges in Chinese hamster ovary cells: evaluations of 108 chemicals. *Environ. Mol. Mutagen.* **1987**, 10(suppl. 10), 1-175.

Hansch, C, Leo AD. Exploring QSAR - hydrophobic, electronic, and steric constants. Washington, DC: American Chemical Society., p. 6. **1995.**

Haworth, S; Lawlor, T; Mortelmans, K; et al. Salmonella Mutagenicity Test Results for 250 Chemicals. *Environ. Mutagen.* **1983**, Suppl. 1, 3-142.

Heil, J; Reifferscheid, G. Detection of mammalian carcinogens with an immunological DNA synthesis-inhibition test. *Carcinogenesis* **1992**, 13(12):2389-2394.

Hellwig, J; Gembrandt, C; Hildebrandt, B. *Melamine – Prenatal toxicity in Wistar rats after oral administration (diet);* Project No. 32R0242/94007. [also cited as BASF AG, Department of Toxicology: unpublished report, (32RO242/94007), 04.15.1996, sponsors: Agrolinz, A-4021 Linz, Austria; BASF AG, Ludwigshafen, Germany]. **1996**.

Hoechst, AG. Unveroffentl. Unters. Ber. 1963, 5(7).

Huff, JE. Carcinogenesis Results on Seven Amines, Two Phenols, and One Diisocyanate Used in Plastics and Synthetic Elastomers. *Ind. Haz. Plast. Syth. Elast.* **1984**.

IARC (International Agency for Research on Cancer). Summary and evaluations. Melamine. Vol. 73, p. 329. 1999.

ICL IP. ICL Industrial Products. FR-6120; Melamine Cyanurate. 2011.

IUCLID (International Uniform Chemical Information Database). *Dataset for Melamine*. European Commission – European Chemicals Bureau. **2000**.

Ishiwata, H; Sugita, T; Kozaki, M.; et al. Inhibitory effects of melamine on the growth and physiological activities of some microorganisms. *J. Food Hyg. Soc. Japan.* **1991,** 32(5):408-413.

Jacob, C, Reunschuessel R, Von Tungeln L, et al. Dose-response assessment of nephrotoxicity from a 7-day combined exposure to melamine and cyanuric acid in F344 rats. *Toxicol. Sci.* **2011**, 119(2):391-397.

Kaune, A; Bruggeman, R; Kettrup, A. "High-performance liquid chromatographic measurement of the octanol-water partition coefficient of s-triazine herbicides and some of their degradation products", *J. Chromatogr. A.* **1998**, 805(1-2):119-126.

Leisewitz, A; Kruse, H; Schramm, E. Substituting Environmentally Relevant Flame Retardants: Assessment Fundamentals. Results and summary overview. Federal Environmental Agency. Germany June. **2001**.

Lipshitz, W. L; Stokey, E. The mode of action of three new diuretics: Melamine, Adenine and Formoguanamine. *J. Pharmacol. Exp. Therap.* **1945**, *83*, 235-249.

Luers, H; Rohrborn, G. The mutagenic activity of ethylenimine derivatives with different numbers of reactive groups. In *Genetic Today*, Proceedings of the 11th International Congress, Vol 1, pp 64-65. **1963**.

Lusby, AF; Simmons, Z; McGuire, PM. Variation in Mutagenicity of s-Triazine Compounds Tested on Four Salmonella Strains. *Envirn. Mutag.* **1979**, 1:287-290.

Marhold, JV. *Sbornik vysledku toxixologickeho vysetreni latek a pripravku*. Institut Pro Vychovu Vedoucicn Pracovniku Chemickeho Prumyclu Praha: Czechoslovakia, pp. 153 (in Czechoslovakian). **1972**.

Mast, RW; Friedman, MA; Finch, RA. Mutagenicity testing of melamine. *Toxicologist.* 1982a, 2:172.

Mast, RW; Naismith, RW; Friedman, MA. Mouse micronucleus assay of melamine. Environ. Mutag. 1982b, 4:340-341.

Mast, RW; Boyson, BG; Giesler, PJ; et al. *Evaluation of the Chronic Toxicity of Melamine in a 30 Month Fischer 344 Rat Feeding Study*. Society of Toxicology Abstract. **1982c.**

Mast, RW; Jeffcoat, AR; Sadler, BM; et al. Metabolism, disposition and excretion of [14C]melamine in male Fischer 344 rats. *Food Chem Toxicol.* **1983**, 21(5):807-810.

Matsui-Yuasa, I; Otani, S; Yano, Y; et al. Spermidine/Spermine N1-Acetyltransferase, a new Biochemical Marker for Epithelial Proliferation in Rat Bladder. *Jpn. J. Cancer Res.* **1992**, 83:1037-1040.

May, DR. Cyanamids. In *Kirk-Othmer encyclopedia of chemical technology*, 3rd ed.; John Wiley and Sons: New York, Vol 7, pp 291-306. [data also cited as Patel, B. K. 2000. Cyanamids. In Kirk-Othmer encyclopedia of chemical technology, Online ed., posting date: December 4, 2000.] **1979**.

McGregor, DB; Brown, A; Cattanach, P; et al. Responses of the L5178Y tk+/tk- Mouse Lymphoma Cell Forward Mutation Assay: III. 72 Coded Chemicals. *Environ. Mol. Mutagen.* **1988**, 12:85-154.

Melnick, RL; Boorman, GA; Haseman, JK; et al. Urolithiasis and bladder carcinogenicity of melamine in rodents. *Toxicol. Appl. Pharmacol.* **1984**, 72:292-303.

Mill, T. (2000) Photoreactions in Surface Waters. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (355-382). Boca Raton: Lewis Publishers.

Mirsalis, J; Tyson, K; Beck, J; et al. Spalding, J. Induction of unscheduled DNA synthesis (UDS) in hepatocytes following *in vitro* and *in vivo* treatment. *Environ. Mutagen.* **1983**, 5:482.

MITI (Japanese Ministry of International Trade and Industry). *Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan.* Compiled under the supervision of Chemical Products Safety Division, Basic Industries Bureau, Ministry of

International Trade & Industry, Japan; Chemicals Inspection & Testing Institute, Japan. Ed.; Japan Chemical Industry Ecology-Toxicology & Information Center: **1998**.

NCI/NTP (National Cancer Institute/National Toxicology Program). *Carcinogenesis Technical Report Series, Melamine*. U.S. Department of Health and Human Services. TR-245 Y83. **2007**.

http://ntpapps.niehs.nih.gov/ntp_tox/index.cfm?fuseaction=ntpsearch.searchresults&searchterm=1 08-78-1 (accessed on July, 12 2007).

NTP (National Toxicological Program). *NTP Carcinogenesis Bioassay of Melamine (CAS No. 108-78-1) in F344/N Rats and B6C3F1 Mice (Feed Study);* TR No. 245; National Toxicological Program: Research Triangle Park, NC, **1983**.

OECD SIDS (Organisation of Economic Cooperation and Development Screening Information Data Set). *Full SIDS Dossier on the HPV Phase 2 Chemical: Melamine*. Austria. **1999a**. <u>http://www.chem.unep.ch/irptc/sids/OECDSIDS/108781.pdf</u>.</u>

OECD SIDS (Organisation of Economic Cooperation and Development Screening Information Data Set). *Full SIDS Dossier on the HPV Phase 2 Chemical: Isocyanuric acid (CAS No: 108-80-5).* SIDS Initial Assessment Report of 9th SIAM; France, June 29–July 1. **1999b**.

Ogasawara, H; Imaida, K; Ishiwata, H; et al. Urinary bladder carcinogenesis induced by melamine in F344 male rats: correlation between carcinogeneiity and urolith formation. *Carcinogenesis* **1995**, 16:2773-2777.

Okumura, M; Hasegawa, R; Shirai, T; et al. Relationship between calculus formation and carcinogenesis in the urinary bladder of rats administered the non-genotoxic agents, thymine or melamine. *Carcinogensis* **1992**, 13(6):1043-1045.

OncoLogic. U.S. EPA and LogiChem, Inc., Version 7.0. 2008.

Pakalin, S, Cole, T, Steinkellner, J, et al. Review on production processes of decabromodiphenyl ether (DECABDE) used in polymeric applications in electrical and electronic equipment, and assessment of the availability of potential alternatives to DECABDE. [Online] **2007.** <u>http://ecb.jrc.ec.europa.eu/documents/Existing-</u> Chemicals/Review_on_production_process_of_decaBDE.pdf (accessed on January 20, 2011).

PBT Profiler. *Persistent (P), Bioaccumulative (B), and Toxic (T) Chemical (PBT) Profiler*. U.S. Environmental Protection Agency: Washington D.C. <u>www.pbtprofiler.net</u>.

Perdigáo, L; Champness, N; Beton, P. Surface self-assembly of the cyanuric acid–melamine hydrogen bonded network. *Chem. Commun.* **2006**, 538-540.

Perrella, FW; Boutwell, RK. Triethylenemelamine: an initiator of two-stage carcinogenesis in mouse skin which lacks the potential of a complete carcinogen. *Cancer Lett.* **1983**, 21(1):37-41.

Reifferscheid G; Heil, J. Validation of the SOS/*umu* test using test results of 486 chemicals and comparison with the Ames test and carcinogenicity data. *Mutat. Res.* **1996**, 369:129-145.

Rijcken, WRP. *Primary skin irritation/corrosion study with melamine in the rabbit*; Confidential NOTOX project 146205 for DSM Melamine; **1995**.

Rohrborn, G. Mutation tests with melamine and trimethylolmelamine. Dros. Info. Serv. 1959, 33:156 (reference cites an abstract).

Rossman, TG.; Molina, M; Meyer, L; et al. Performance of 133 compounds in the lambda prophage induction endpoint of the Microscreen assay and a comparison with S.typhimurium mutagenicity and rodent carcinogenicity assays. *Mutat. Res.* **1991**, 260:349-367.

Rovner, S. "Anatomy of A Pet Food Catastrophe" Chemical and Engineering News. May 12, 2008, 86(18):41-43.

Research Triangle Institute (RTI). Evaluation of Urolithiasis Induction by Melamine (CAS No. 108-78-1) in Male Weanling Fischer 344 Rats. *Parts I and II: In-Life Observations, Necropsy, and Histopathology of Urinary Bladders and Analysis of Plasma, Urine and Calculi.* RTI: Research Triangle Park, N.C., **1983**. [Additional citations for the above reference include the following: TSCA Section 8(e) Substantial Risk Notice. 2004. U.S. EPA. TSCATS 8EHQ-0192-1995A. <u>http://www.epa.gov/oppt/tsca8e</u>; American Cyanamid Co. 1982 Evaluation of Urolithiasis by Melamine (CAS No. 108-78-1) in Male Weanling Fischer 344 Rats. Unpublished data].

RTECS (2009) Registry of toxic effects of chemical substances for Melamine.

Rutty, CJ; Connors, TA. In vitro studies with hexamethylmelamine. Biochem. Pharmacol. 1977, 26(24):2385-2391.

Rutty, CJ; Abel, G. In vitro cytotoxicity of the methylmelamines. Chem. Biol. Interact. 1980, 29(2):235-246.

Saldick J. Biodegradation of cyanuric acid. *Appl. Microbiol.* **1974**, 28:1004-1008.

Seiler, JP. A survey on the Mutagenicity of Various Pesticides. Experientia. 1973, 29:622-623.

Seldon, JR; Dolbeare, F; Clair, JH; et al. Validation of a flow cytometric *in vitro* DNA repair (UDS) assay in rat hepatocytes. *Mutat. Res.* **1994**, 315(2):147-167.

Shelby, MD; Erexson, GL; Hook, GJ; et al. Evaluation of a three-exposure mouse bone marrow micronucleus protocol: results with 49 chemicals. *Environ. Mol. Mutagen.* **1993**, 21:160-179.

Trochimowicz, HJ; Kennedy, GL; Krivanek, ND; Alkylpyridines and Miscellaneous Organic Nitrogen Compounds. [Online] Patty's Toxicology. [DOI: 10.1002/0471435139.tox060]. **2001**.

Ubaidullajev, RU. Gigiena i Sanitariya, 1993, 58:14-16 (in Russian).

Unknown. Acute toxicity data. J. American College Toxicol. 1990, 1:100.

WHO, 2009. World Health Organization. Toxicological and Health Aspects of Melamine and Cyanuric Acid. Geneva, **2009**. <u>http://www.who.int/foodsafety/publications/chem/Melamine_report09.pdf</u> (accessed on July 19, 2011).

Melamine Polyphosphate

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame-retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance, including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. [§] Based on analogy to experimental data for a structurally similar compound.

			Human Health Effects				Aquatic Toxicity ^{**}		Environmental Fate							
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
										•					•	
Melamine Polyphosphate ¹	15541-60-3	L	М	М	$L^{\$}$	L	$L^{\$}$	M	L		L	VL	L	L	H	L

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

¹Hazard designations are based upon the component of the salt with the highest hazard designation, including the corresponding free acid or base.

Melamine Polyphosphate

μ	CASRN: 15541-60-3				
H_2N N_2 N_1 N_2 O O	MW: >1,000				
$H_{N, \mathbb{Z}} = H_{N, \mathbb{Z}} + $	$\mathbf{MF:} C_3 H_6 N_6 \cdot (H_3 PO_4)_n$				
	Physical Forms:				
NH ₂	Neat: Solid				
	Use: Flame retardant				
SMILES: $n(c(nc(n1)N)N)c1N(H)(H)OP(=O)(O)OP(=O)(O)O(n=1)$					
Synonyms: Diphosphoric acid, compound with 1,3,5-triazine-2,4,6-triamine; Polyphosphoric acids, compounds with melamine. melamine pyrophosphate is 15541-60-3. The CASRN 218768-84-4 is associated with the product Melapur 200, not the chemica	The CASRN for the compound melamine polyphosphate.				
Chemical Considerations: This alternative contains a polymeric moiety. Although the chain length of the polyphosphoric acid is not specified, the smaller, water- soluble polyphosphate ions were used in assessment (generally as the diphosphate ion, $n=1$). Melamine polyphosphate will freely dissociate under environmental conditions. Measured values from studies on the dissociated components were used to supplement data gaps as appropriate and EPI v 4.0 was used to estimate physical/chemical and environmental fate values in the absence of experimental data. Measured values from experimental studies were incorporated into the estimations					
Polymeric: Yes Oligomers: Melamine polyphosphate is a complex mixture consisting of melamine and polyphosphate chains of varying length	1.				
Metabolites, Degradates and Transformation Products: Melamine (CASRN 108-78-1)					
Analogs: Confidential structurally similar polymers; Polyphosphoric acid (8017-16-1) and melamine (108-78-1) Analog Structurally	icture:				
are the dissociated components of this salt Endpoint(s) using analog values: Reproductive effects; neurotoxicity; immunotoxicity $N_{\downarrow}N_{\downarrow}N_{\downarrow}N_{\downarrow}N_{\downarrow}N_{\downarrow}N_{\downarrow}N_{\downarrow}$	$ \begin{array}{c} P \\ HO \\ HO \\ HO \\ OH \end{array} \begin{array}{c} O \\ P \\ OH \\ OH \end{array} \begin{array}{c} O \\ P \\ OH \\ OH \end{array} $				
Structural Alerts: Aromatic amine, genetic toxicity (EPA, 2010)					
Risk Phrases: Not classified by Annex I Directive 67/548/European Economic Community & IUCLID (Pakalin et al., 2007).					
Hazard and Risk Assessments: Australian Safety and Compensation Council National Industrial Chemicals Notification and Assessment Scheme (NICNAS), October 30, 2006 (Australia, 2006); U.S. EPA Design for the Environment Alternatives Assessment for Flame Retardants in Printed Circuit Boards, Review Draft, November 8, 2008 (EPA, 2008).					

	Melamine Polyphosphate CASRN 15541-60-3						
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY			
PHYSICAL/CHEMICAL PROPERTIES							
Melting Point (°C)		>400 (Measured)	Submitted confidential study	Adequate; value for the melamine polyphosphate salt.			
		>400 (Measured)	Australia, 2006	Adequate; value for the melamine polyphosphate salt.			
Boiling Point (°C)		>300 (Estimated)	EPI; Professional judgment	As an organic salt, it is expected to decompose before boiling.			
Vapor Pressure (mi	n Hg)	<10 ⁻⁸ (Estimated)	EPI; Boethling et al., 1997	Cutoff value for nonvolatile compounds			
Water Solubility (m	ıg/L)	20,000 (Measured)	Submitted confidential study	Adequate; value for the melamine polyphosphate salt.			
		20,000 (Measured)	Australia, 2006	Adequate.			
Log K _{ow}		<-2 (Estimated)	EPI	Cutoff value for highly water soluble substances.			
Flammability (Flasl	h Point)	Not highly flammable (Measured)	Submitted confidential study	Adequate.			
Explosivity		Not a potential explosive (Measured)	Submitted confidential study	Adequate.			
		Not a potential explosive (Measured)	Australia, 2006	Adequate.			
Pyrolysis				No data located.			
рН				No data located.			
pK _a				No data located.			
		HUMAN HEALTH EFF	ECTS				
Toxicokinetics		No toxicokinetic data located for melamine polyphosphate or polyphosphoric acid; limited data for melamine indicate an elimination phase half-life of 2.7 hours from plasma and 3.0 hours for urine.					
Dermal Absorption	in vitro			No data located.			
Absorption, Distribution,	Oral, Dermal or Inhaled	Melamine polyphosphate: Low for all routes (Estimated)	Professional judgment	Estimates based on physical/chemical properties.			

Melamine Polyphosphate CASRN 15541-60-3					
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Metabolism &		Melamine: The elimination phase half-life	Mast et al., 1983	Adequate, nonguideline study.	
Excretion		calculated from plasma data was 2.7 hours,			
		and the urinary half-life was 3.0 hours. The			
		renal clearance was determined to be 2.5			
		mL/minute.			
		Melamine: Distributed to stomach, small	ECHA, 2011b	Study details reported in a secondary	
		intestine, cecum, and large intestine, and		source.	
		found in blood and urine of rats.			
Acute Mammalian '	Foxicity	LOW: Melamine polyphosphate is expec	ted to be of low hazard for acute	toxicity based on experimental	
		evidence for melamine polyphosphate, pl	nosphoric acids and melamine. T	he weight of evidence indicates that	
		when administered orally and dermally t	o rats, mice and rabbits, melami	ne polyphosphate, polyphosphoric	
		acid, and melamine do not produce mort	ality at doses >1,000 mg/kg.		
Acute Lethality	Oral	Melamine polyphosphate: Rat (Gavage)	Ciba, 2005 (as described in	Sufficient study details reported.	
		LD ₅₀ >2,000 mg/kg	Australia, 2006)		
		Melamine polyphosphate: Rat LD ₅₀	NOTOX B.V., 1998 (as described	Limited study details reported.	
		>2,000 mg/kg bw	in Australia, 2006)		
		Melamine polyphosphate: Rat (Gavage)	Submitted confidential study	Study details reported in a	
		LD ₅₀ >2,000 mg/kg		confidential study.	
		Melamine polyphosphate: Rat LD ₅₀	Submitted confidential study	Limited study details reported in a	
		>2,000 mg/kg		confidential study.	
		Polyphosphoric acid: LD ₅₀ = 4,000 mg/kg	ARZNAD, 1957	Limited study details reported. The	
		(species unknown)		test substance was identified as	
				polyphosphates, and was described as	
				containing 1/3 Kurrol's potassium salt	
				and 2/3 pyrophosphate.	

	Melamine Polyphosphate CASRN 15541-60-3						
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
		Melamine: Rat $LD_{50} = 3,161 \text{ mg/kg}$ (male), 3,828 mg/kg (females)	NTP, 1983; Melnick et al., 1984	Sufficient study details reported.			
		Melamine: Mouse $LD_{50} = 3,296 \text{ mg/kg}$ (male), 7,014 mg/kg (female)	NTP, 1983; Melnick et al., 1984	Sufficient study details reported.			
		Melamine: Mouse $LD_{50} = 4,550 \text{ mg/kg}$	Trochimowicz et al., 2001; American Cyanamid Company, 1955; May, 1979	Limited study details reported.			
		Melamine: Rat $LD_{50} = 3,160 \text{ mg/kg}$ (male) and 3,850 mg/kg (female)	Trochimowicz et al., 2001	Limited study details reported.			
		Melamine: Rat LD ₅₀ >6,400 mg/kg	BASF, 1969 (as described in OECD SIDS, 1999 and IUCLID, 2000a)	Limited study details reported.			
		Melamine: $LD_{50} \approx 4,800 \text{ mg/kg}$	Hoechst, 1963 (as described in IUCLID, 2000a)	Limited study details reported.			
	Dermal	Melamine: Rabbit LD ₅₀ >1,000 mg/L	Unknown, 1990	Limited study details reported.			
	Inhalation	Melamine: Rat $LC_{50} = 3.248 \text{ mg/L}$	Ubaidullajev, 1993	Limited study details reported.			
Carcinogenicity		MODERATE: Estimated based on the di	issolution product melamine. The	ere is experimental evidence that			
		oral melamine exposure causes carcinogenicity in animals; however, no data were located to support its					
		carcinogenicity in humans. Tumor forma	ation in animals appeared to hap	pen in a mechanical nature under			
		conditions in which it produced bladder	calculi. No carcinogenicity data f	or melamine polyphosphate were			
		located. The International Agency for Re	esearch on Cancer (IARC) classif	ies melamine as Group 3: not			
		classifiable as to its carcinogenicity to hum	nans.				
	OncoLogic Results	Melamine: Marginal (Estimated)	UncoLogic, 2008				
	Carcinogenicity (Rat and	Melamine: Group 3: melamine is not	IARC, 1999	IARC classification statement.			
	Mouse)	classifiable as to its carcinogenicity to					
		numans; there is inadequate evidence in					
		numans for the carcinogenicity of					
		melamine, and there is sufficient evidence					
		in experimental animals for the					
		carchinogenicity of metalinine under					
		calculi.					

	Melamine Polyphosphate CASRN 15541-60-3					
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	Melamine: Significant formation of transitional cell carcinomas in the urinary bladder of male rats and significant chronic inflammation in the kidney of dosed female rats were observed. Carcinoma formation was significantly correlated with the incidence of bladder stones. A transitional-cell papilloma was observed in the urinary bladder of a single high dose male rat, and compound related lesions were observed in the urinary tract of dosed animals.	NTP, 1983; Huff, 1984; Melnick et al., 1984	Sufficient study details reported.			
	Melamine: Increased incidence of acute and chronic inflammation and epithelial hyperplasia of the urinary bladder were observed in male mice. Bladder stones and compound-related lesions were observed in the urinary tract of test animals. Melamine was not considered carcinogenic.	NTP, 1983; Huff, 1984; Melnick et al., 1984	Sufficient study details reported.			
	Melamine: Melamine-induced proliferative lesions of the rat urinary tract were directly due to the irritant stimulation of calculi, and not to molecular interactions between melamine or its metabolites with the bladder epithelium.	Okumura et al., 1992	Sufficient study details reported.			

Melamine Polyphosphate CASRN 15541-60-3						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	DATA Melamine: Water intake, used as an index of urinary output, was increased by NaCl treatment. Calculus formation resulting from melamine administration was suppressed dose-dependently by the simultaneous NaCl treatment. The main constituents of calculi were melamine and uric acid (total contents 61.1–81.2%). The results indicate that melamine-induced proliferative lesions of the urinary tract of rats were directly due to the irritation stimulation of calculi, and not molecular	REFERENCE Ogasawara et al., 1995	Sufficient study details reported.			
	interactions between melamine itself or its metabolites with the bladder epithelium. Melamine: As an initiator, melamine caused no significant increase in papillomas per mouse when compared to controls.	Perrella and Boutwell, 1983	Nonguideline study.			
	Melamine: Diffuse papillary hyperplasia of the bladder epithelium and bladder calculi were observed in all melamine treated rats. Elevated spermidine/spermine N1-acetyltransferase activity following melamine treatment was considered to be an indicator of cell proliferation.	Matsui-Yuasa et al., 1992	Nonguideline study.			
	Melamine: Decreased antitumor activity was correlated with increasing demethylation; melamine was considered inactive as an antitumor drug. Melamine: In an <i>in vitro</i> cytotoxicity study in cultured ADJ/PC6 plasmacytoma ascites tumor cells, the ID ₅₀ was 470	Rutty and Connors, 1977 Rutty and Abel, 1980	Limited study details reported. Limited study details reported.			

Melamine Polyphosphate CASRN 15541-60-3						
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY		
,	Combined Chronic Toxicity/ Carcinogenicity	Melamine: No effects were observed in rats fed 1,000 ppm of melamine. Four of the 10 rats fed 10,000 ppm melamine had bladder stones associated with the development of benign papillomas.	Anonymous, 1958 (as described in EPA, 1992)	Limited study details reported.		
		Melamine: Increased incidence of urinary bladder stones (6/20 rats) was noted in the 10,000 ppm dose group, and was associated with an increase in benign papillomata. The NOAEL was determined to be 1,000 ppm (67 mg/kg).	American Cyanamid Company, 1955	Limited study details reported.		
Genotoxicity		MODERATE: Melamine polyphosphate data for melamine. For melamine, positiv sister chromatid exchange assays conduc Available <i>in vitro</i> genotoxicity testing was suggests this may not account for potenti Proposed genotoxicity testing using a me was never conducted (Personal Commun	is estimated to be a moderate has ve results were observed for <i>in vir</i> ted by National Toxicology Progra s conducted with metabolic activa al activation from bladder epithe tabolic activation system from bla ication, 2007; 2008).	zard for genotoxicity based on the vo chromosome aberration and ram (NTP) in 1988 and 1989. ation systems from the liver. NTP clial cells, which is the target organ. adder epithelial cells (NTP, 1983)		
	Gene Mutation <i>in vitro</i>	Melamine: Bacterial forward mutation assay: Negative with and without liver activation Melamine: Bacterial forward mutation assay: Negative	Haworth et al., 1983; NCI/NTP, 2007 Seiler, 1973	Sufficient study details reported. Limited study details reported.		
		Melamine: Bacterial reverse mutation assay: Negative with and without liver activation Melamine: Bacterial reverse mutation assay: Negative with and without	Lusby et al., 1979 Mast et al., 1982a	Limited study details reported. Limited study details reported.		
		unspecified metabolic activation Melamine: <i>In vitro</i> mouse lymphoma test: Negative with and without liver activation	McGregor et al., 1988; NCI/NTP, 2007	Sufficient study details reported.		

Melamine Polyphosphate CASRN 15541-60-3						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	Melamine: Chinese hamster ovary (CHO) cells/hypoxanthine-guanine phosphoribosyl-transferase forward mutation assay: Negative with and without liver activation	Mast et al., 1982a	Limited study details reported.			
Gene Mutation in vivo			No data located.			
Chromosomal Aberrations in vitro	Melamine: In vitro chromosomal aberrations test: Negative in CHO with and without liver activation	Galloway et al., 1987; NCI/NTP, 2007	Sufficient study details reported.			
	Melamine: <i>In vitro</i> sister chromatid exchange assay: Negative in CHO with and without liver activation	Galloway et al., 1987; NCI/NTP, 2007	Sufficient study details reported.			
	Melamine: <i>In vitro</i> sister chromatid exchange assay: Negative in CHO with and without liver activation	Mast et al., 1982a	Limited study details reported.			
Chromosomal Aberrations	Melamine: In vivo mouse micronucleus	NTP, 1983; Shelby et al., 1993	Sufficient study details reported.			
in vivo	test: The initial test gave a positive trend $(P = 0.003)$ for chromosomal damage; however, both peripheral blood smears and the repeat bone marrow test were negative. The overall conclusion was that melamine does not induce chromosomal damage.					
	Melamine: <i>In vivo</i> mouse micronucleus test: Negative without activation	Mast et al., 1982b	Limited study details reported.			
	Melamine: In vivo chromosome aberrations test in mice: Positive	NCI/NTP, 2007	Sufficient study details reported.			
	Melamine: <i>In vivo</i> sister chromatid exchange assay in mice: Positive	NCI/NTP, 2007	Sufficient study details reported.			

Melamine Polyphosphate CASRN 15541-60-3			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
DNA Damage and Repair	Melamine: In vivo and in vitro unscheduled DNA synthesis (UDS) test: None of the tested chemicals, including melamine, were genotoxic hepatocarcinogens in the <i>in vivo</i> assay, and melamine was negative for UDS in the <i>in</i> <i>vitro</i> assay.	Mirsalis et al., 1983	Limited study details reported.
	Melamine: SOS/ <i>umu</i> test: Negative for its ability to result in DNA damage and induce the expression of the <i>umu</i> operon	Reifferscheid and Heil, 1996	Nonguideline study.
	Melamine: DNA synthesis-inhibition test in Hela S3 cells: Inhibits DNA synthesis by 50% at greater than 300 μM	Heil and Reifferscheid, 1992	Limited study details reported.
Other	Melamine: Sex-linked recessive lethal/reciprocal translocation: Results were considered equivocal based on 0.18% and 0.36% total lethal following oral and injection exposure, respectively, compared to control total lethal of 0.07% for oral and 0.09% for injection.	NCI/NTP, 2007	Sufficient study details reported.
	Melamine: Drosophila Muller-5 test:Negative for mutagenicityMelamine: Drosophila melanogaster Sex-linked recessive lethal: No mutageniceffects were observedMelamine: In vitro flow cytometric DNA	Rohrborn, 1959 Luers and Rohrborn, 1963 Seldon et al., 1994	Limited study details reported. Limited study details reported. Nonguideline study.
	repair assay: Negative for genotoxic effects Melamine: Microscreen assay: Positive for genetic toxicity in <i>E. coli</i> WP2 cells	Rossman et al., 1991	Nonguideline study.

	Melamine Polyphosphate CASRN 15541-60-3			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Melamine: Growth and genotoxic effects to bacteria (<i>Salmonella typhimurium</i>) and yeast (<i>Saccharomyces cerevisiae</i>): Non- mutagenic in <i>S.typhimurium</i> with or without S-9 mix. The growth of eight out of nine strains tested was delayed by 10 mM melamine during 24 hour cultivation. <i>S. cerevisiae</i> strain was tested, and did not recover its growth following 48 hour cultivation.	Ishiwata et al., 1991	Limited study details reported.
Reproductive Effect	ts	LOW: Estimated based on analogy to str no data for melamine polyphosphate loca low hazard designation.	ructurally similar compound and ated. Experimental data for the n	professional judgment. There were nelamine component also support a
	Reproduction/ Developmental Toxicity Screen	Rat, oral; potential for reproductive toxicity (Estimated by analogy)	Professional judgment	Estimated based on analogy to confidential analog; LOAEL not identified; study details not provided.
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen			No data located.
	Reproduction and Fertility Effects	Melamine: Reproductive dysfunction was observed at 0.5 mg/m ³ and included effects on spermatogenesis (genetic material, sperm morphology, motility, and count), effects on the embryo/fetus (fetal death), pre-implantation mortality (reduction in the number of implants per female), and total number of implants per corpora lutea.	Ubaidullajev, 1993	Study details, if present, were not translated into English.
		Melamine: There were no treatment- related macroscopic or microscopic effects on mammary glands, ovaries, prostate, seminal vesicles, testes and uterus in rats and mice in a 13-week study.	OECD SIDS, 1999	Study details, including administered dose information, were not provided.

Melamine Polyphosphate CASRN 15541-60-3					
PROPERTY/ENDPOINT	DATA REFERENCE DATA QUALITY				
Developmental Effects	LOW: Melamine polyphosphate is estim for melamine. For melamine, no adverse	ated to have Low hazard for deve effects on gestational parameters	elopmental effects based on the data s, no signs of developmental toxicity.		
Reproduction/ Developmental Toxicity Screen	No data located.				
Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen			No data located.		
Prenatal Development	Melamine: Signs of maternal toxicity at 136 mg/kg-day included decreased body weight and feed consumption, hematuria (23/25 rats), indrawn flanks (7/25 rats), and piloerection (1/25 rats). No adverse effects on gestational parameters and no signs of developmental toxicity were noted. NOAEL \geq 1,060 mg/kg-day	Hellwig et al., 1996 (as cited in OECD SIDS, 1999)	Sufficient study details reported.		
Postnatal Development	Melamine: Only minor effects on the fetuses or litters, including a non-significant increase in resorptions in the group treated on the 4 th and 5 th days of gestation, were observed.	Thiersch, 1957	Sufficient study details were not available.		
Neurotoxicity	LOW: Based on professional judgment t	hrough analogy to structurally si	milar polymers.		
Neurotoxicity Screening Battery (Adult)	Potential for neurotoxicity is expected to be low (Estimated)	Professional judgment	Estimated based on analogy and professional judgment.		

Melamine Polyphosphate CASRN 15541-60-3					
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Repeated Dose Effe	cts	MODERATE: Melamine polyphosphate	is expected to have moderate haz	zard for repeated dose effects based	
		on the data for melamine. Stones and dif	fuse epithelial hyperplasia in the	urinary bladders were observed in	
		male rats at doses as low as 700 ppm (72	mg/kg/day).		
		Polyphosphoric Acid: Rat Repeated-Dose	ARZNAD, 1957	Sufficient study details were not	
		Toxicity Study: An oral repeated-dose		available.	
		toxicity test in rats resulted in a TD _{Lo} of			
		450 mg/kg. The test substance was			
		identified as polyphosphates, and was			
		described as containing 1/3 Kurrol's			
		potassium salt and 2/3 pyrophosphate.			
		Toxic effects included changes in liver			
		weight, changes in tubules (including acute			
		renal failure, acute tubular necrosis), and			
		weight loss or decreased weight gain.			

Melamine Polyphosphate CASRN 15541-60-3			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Melamine: Rat 28-day dietary toxicity study: Clinical signs included a dose- related increase in pilo-erection, lethargy, bloody urine spots in the cage and on the pelage of animals, and chromodacryorrhea. The incidence of urinary bladder calculi and urinary bladder hyperplasia in treated animals was dose-dependent, with a significant relationship between the calculi and hyperplasia. Calculi composition indicated the presence of an organic matrix containing melamine, phosphorus, sulfur, potassium, and chloride. Crystals of dimelamine monophosphate were identified in the urine. NOAEL = was estimated to be 2,000 ppm (240 mg/kg/day), excluding the observed increase in water consumption and the incidence of crystalluria.	RTI, 1983	Sufficient study details reported.
	(475 mg/kg/day) based on the formation of calculi. Melamine: Rabbit and dog 28-day dietary toxicity study: No significant rise in the body temperature of rabbits was noted. Gross histological examination of the heart, lung, liver, spleen, thyroid, pancreas, intestines, kidneys and bladder did not show pathological changes. A zone of fat was found in the inner part of the renal cortex in two dogs, but also in the kidneys of 3 control dogs.	Lipschitz and Stokey, 1945	Sufficient study details were not available.

Melamine Polyphosphate CASRN 15541-60-3				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Melamine: Rat 28-day dietary toxicity study: Incidence and size of bladder stones were directly related to the amount of substance administered. The larger stones were found to be unchanged melamine in a matrix of protein, uric acid and phosphate.	American Cyanamid Company, 1984	Sufficient study details were not available.	
	Lowest effective dose: 1,500 ppm (~125 mg/kg) in males.			
Chronic	Melamine: Rat 90-day dietary toxicity study: one male rat receiving 18,000 ppm and two males receiving 6,000 ppm died. Mean body weight gain and feed consumption were reduced. Stones and diffuse epithelial hyperplasia in the urinary bladders were observed in male rats of all treatment groups. Focal epithelial hyperplasia was observed in only 1 male. A second and third 13-week repeated dose toxicity study was conducted in rats at a dose range of 750 to 18,000 ppm; bladder stones were observed at all dose levels. LOAEL = 700 ppm (72 mg/kg/day)	NTP, 1983; Melnick et al., 1984; ECHA, 2011b	Sufficient study details reported.	

Melamine Polyphosphate CASRN 15541-60-3			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Melamine: Mouse 90-day Dietary Toxicity Study: A single female mouse died after receiving 9,000 ppm. Mean body weight gain relative to controls was depressed. The incidence of mice with bladder stones was dose-related and was greater in males than in females. Sixty percent of mice having bladder ulcers also had urinary bladder stones. Bladder ulcers were multifocal or associated with inflammation (cystitis). Epithelial hyperplasia and bladder stones were observed together in 2 mice. Also, epithelial cell atypia was seen.	NTP, 1983; Melnick et al., 1984	Sufficient study details reported.
	NOAEL: 6,000 ppm (600 mg/kg-day) LOAEL: 9,000 ppm (900 mg/kg-day) Melamine: Increased incidence of acute and chronic inflammation and epithelial hyperplasia of the urinary bladder was observed in mice following oral (feed) exposure for up to 103 weeks. There was also increased incidence of bladder stones in male mice. LOAEL = 2,250 ppm (lowest dose tested)	NTP, 1983; ECHA, 2011a	Repeated dose effects described in a carcinogenicity bioassay study.
	Melamine: Dog 1-year dietary toxicity study: crystalluria started 60 to 90 days into treatment, and persisted during the study period. No other effects attributable to melamine were observed. Melamine: Rat 30-month dietary toxicity study: neither accumulation of calculi nor any treatment-related urinary bladder lesions were found.	American Cyanamid Company, 1955 Mast et al., 1982c (as cited in EPA, 1992)	Sufficient study details were not available. Sufficient study details were not available.

Melamine Polyphosphate CASRN 15541-60-3			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Melamine: Rat 24- to 30-month dietary toxicity study: a dose-related trend for dilated glands in glandular gastric mucosa and inflammation in non-glandular gastric mucosa was observed. Urinary bladder calculi formation was not observed.	American Cyanamid Company, 1983 (as cited in OECD SIDS, 1999)	Sufficient study details were not available.
Immune System Effects	Melamine: Did not inhibit the mitogenesis of B- and T- lymphocytes in an <i>in vitro</i> mouse lymphocyte mitogenesis test.	ECHA, 2011b	Reported in a secondary source.
Skin Sensitization	LOW: Melamine polyphosphate is not ex	xpected to be a skin sensitizer bas	ed on the data for melamine.
Skin Sensitization	Melamine: No evidence of primary dermal irritation or sensitization in a human patch test	American Cyanamid Company, 1955; Trochimowicz et al., 2001	Limited study details reported.
	Melamine: Non-sensitizing to guinea pigs	(as cited in OECD SIDS, 1993) and Trochimowicz et al., 2001); Trochimowicz et al., 2001	Limited study details reported.
Respiratory Sensitization	No data located.		
Respiratory Sensitization			No data located.
Eye Irritation	LOW: Melamine polyphosphate is slight	ly irritating to rabbit eyes.	
Eye Irritation	Melamine polyphosphate: Slightly irritating	NOTOX B.V., 1998 (as cited in Australia, 2006)	Limited study details reported.
	Melamine polyphosphate: Slightly irritating	Submitted confidential study	Limited study details reported.
	Melamine: Non-irritating to rabbit eyes	BASF, 1969 (as cited in OECD SIDS, 1999 and IUCLID, 2000a)	Limited study details reported.
	Melamine: Non-irritating to rabbit eyes following 0.5 mL of 10% melamine	American Cyanamid Company, 1955; Trochimowicz et al., 2001	Limited study details reported.
	Melamine: Mild irritant to rabbit eyes following exposure to 30 mg of dry powder	American Cyanamid Company, 1955; Trochimowicz et al., 2001	Limited study details reported.

Melamine Polyphosphate CASRN 15541-60-3				
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Melamine: Slightly irritating to rabbit eyes	Marhold, 1972 (as cited in IUCLID, 2000a and RTECS, 2009)	Limited study details reported.
Dermal Irritation		VERY LOW: Melamine polyphosphate	is not a skin irritant in rabbits.	
	Dermal Irritation	Melamine polyphosphate: Not irritating	NOTOX B.V., 1998 (as cited in Australia, 2006)	Limited study details reported.
		Melamine polyphosphate: Not irritating	Submitted confidential study	Limited study details reported.
		Melamine: Not irritating to rabbit skin	Rijcken, 1995 (as cited in OECD SIDS, 1999)	Organisation of Economic Cooperation and Development (OECD) 404 guideline study
		Melamine: Not irritating to rabbit skin	BASF, 1969 (as cited in OECD SIDS, 1999 and IUCLID, 2000a)	Limited study details reported.
		Melamine: Not irritating to rabbit skin	American Cyanamid Company, 1955; Trochimowicz et al., 2001	Limited study details reported.
		Melamine: Not irritating to rabbit skin	Fasset and Roudabush, 1963/1981 (as cited in OECD SIDS, 1999 and Trochimowicz et al., 2001); Trochimowicz et al., 2001	Limited study details reported.
Endocrine Activity		There were insufficient data located to d	escribe the effect of melamine pol	yphosphate on the endocrine
		system. In one study, melamine did not e	xhibit estrogenic activity <i>in vitro</i>	in a yeast two-hybrid assay.
		Melamine: Showed no estrogenic activity (no change in B-galactosidase activity) in an <i>in vitro</i> yeast two-hybrid assay in <i>Saccharomyces cerevisiae</i> Y 190	ECHA, 2011a	Reported in a secondary source. Nonguideline study.
Immunotoxicity		Potential for immunotoxic effects based judgment.	on analogy to structurally similar	polymers and professional
	Immune System Effects	Melamine: Did not inhibit the mitogenesis of B- and T- lymphocytes in an <i>in vitro</i> mouse lymphocyte mitogenesis test.	ECHA, 2011b	Reported in a secondary source.
ECOSAR Class		Anilines (amino meta) Triazines		
LUOSAN CIASS		Ammines (ammo-meta), mazines		

Melamine Polyphosphate CASRN 15541-60-3					
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Acute Toxicity	LOW: Melamine polyphosphate is expected to be of low hazard for acute toxicity to aquatic organisms based on experimental data for melamine polyphosphate and melamine. For melamine, the weight of evidence suggests that the acute values are >100 mg/L. For melamine polyphosphate, no effects were observed at the highest concentration tested (3.0 mg/L). Melamine polyphosphate is not predicted to cause eutrophication				
Fish LC ₅₀	Melamine polyphosphate: Freshwaterfish 96-hour $LC_{50} = 100 \text{ mg/L}$ (Experimental)Melamine: Leuciscus idus melanotus 48-hour $LC_{50} > 500 \text{ mg/L}$ (Experimental)Melamine: Oryzias latipes 48-hour $LC_{50} = 1,000 \text{ mg/L}$ (Experimental)Melamine: Poecilia reticulata 96-hour $LC_{50} > 3,000 \text{ mg/L}$ (Experimental)Melamine: Poecilia reticulata 4,400 mg/Ldose lethal to <10% (Experimental)Melamine: Fish 96-hour $LC_{50} = 2,680$ mg/L (Estimated)ECOSAR: Anilines (amino-meta)Melamine: Fish 96-hour $LC_{50} = 391 \text{ mg/L}$ (Estimated)ECOSAR: MelaminesMelamine: Fish 96-hour $LC_{50} = 14,272$ mg/L (Estimated)	Ciba, 2005 (as cited in Australia, 2006) OECD SIDS, 1999 OECD SIDS, 1999 OECD SIDS, 1999 OECD SIDS, 1999 ECOSAR version 1.11 ECOSAR version 1.11	Reported in a secondary source, study details and test conditions were not reported. Study details reported in secondary source. Study details reported in secondary source. Study details reported in secondary source. Study details reported in secondary source. Narcosis classes (neutral organics) are provided for comparative purposes;		
Daphnid LC ₅₀	ECOSAR: Neutral organics Melamine polyphosphate: Daphnia	Ciba, 2005 (as cited in Australia)	DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis. Reported in a secondary source, study		
	magna 48-hour $EC_{50} > 100 \text{ mg/L}$	2006)	details and test conditions were not reported.		

Melamine Polyphosphate CASRN 15541-60-3			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Melamine: <i>Daphnia magna</i> 48-hour LC ₅₀ >2,000 mg/L (Experimental)	OECD SIDS, 1999	Study details reported in secondary source.
	Melamine : Daphnid 48-hour $LC_{50} = 6.23$ mg/L (Estimated) ECOSAR: Anilines (amino-meta)	ECOSAR version 1.11	
	Melamine : Daphnid 48-hour $LC_{50} =$ 144.34 mg/L (Estimated) ECOSAR: Melamines	ECOSAR version 1.11	
	Melamine : Daphnid 48-hour LC ₅₀ = 4,805 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
Green Algae EC ₅₀	Melamine polyphosphate: Selenastrum capricornutum 96-hour $EC_{50} > 3.0 \text{ mg/L}$ (Experimental); 96-hour NOEC = 3.0 mg/L (Experimental)	Submitted confidential study	No effects observed at highest concentration tested.
	Melamine polyphosphate: Selenastrum capricornutum 96-hour $EC_{50} > 3.0 \text{ mg/L}$ (Experimental); 96-hour NOEC = 3.0 mg/L (Experimental)	Australia, 2006	Reported in a secondary source, study details and test conditions were not provided; no effects observed at highest concentration tested.
	Melamine polyphosphate: In a 96-hour control growth test (<i>Selenastrum</i> <i>capricornutum</i>), melamine polyphosphate causes increased algal growth, but growth is 95% less than growth in standard medium with adequate phosphorous. This indicates that melamine polyphosphate is not a good source of phosphorous for algal growth and does not cause eutrophication. (Experimental)	Submitted confidential study	Sufficient study details reported in a confidential study.

Melamine Polyphosphate CASRN 15541-60-3			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Melamine : Green algae 96-hour EC ₅₀ = 2.79 mg/L (Estimated) ECOSAR: Anilines (amino-meta)	ECOSAR version 1.11	
	Melamine : Green algae 96-hour EC ₅₀ = 325 mg/L (Estimated) ECOSAR: Melamines	ECOSAR version 1.11	
	Melamine : Green algae 96-hour EC ₅₀ = 4,396 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
	Melamine: Scenedesmus pannonicus 4- day $EC_{50} = 940 \text{ mg/L}$ (Experimental); 4- day NOEC = 320 mg/L (Experimental)	OECD SIDS, 1999	Reported in a secondary source, study details and test conditions were not provided.
Chronic Aquatic Toxicity	LOW: Melamine polyphosphate is expec based on experimental data for melamine >10 mg/L.	ted to be of low hazard for chron e. For melamine, the weight of ev	ic toxicity to aquatic organisms idence suggests that the ChVs are
Fish ChV	Melamine: Jordanella floridae 35-day NOEC ≥1,000 mg/L (Experimental)	OECD SIDS, 1999	Reported in a secondary source, study details and test conditions were not provided.
	Melamine: Salmo gairdneri NOEC (macroscopic) = 500 mg/L (Experimental); NOEC (microscopic) <125 mg/L (Experimental)	OECD SIDS, 1999	Reported in a secondary source, study details and test conditions were not provided.
	Melamine : Fish ChV = 263 mg/L (Estimated) ECOSAR: Anilines (amino-meta)	ECOSAR version 1.11	The toxicity value was estimated through application of acute to chronic ratios (ACRs).
	Melamine : Fish ChV = 1,102 mg/L (Estimated) ECOSAR: Melamines	ECOSAR version 1.11	

Melamine Polyphosphate CASRN 15541-60-3			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Melamine : Fish ChV = 1,076 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
Daphnid ChV	Melamine: Daphnia magna 21-day $LC_{50} =$ 32-56 mg/L, 21-day $LC_{100} =$ 56 mg/L, 21day NOEC = 18 mg/L (Experimental) Melamine: Daphnid ChV = 0.078 mg/L (Estimated)	OECD SIDS, 1999 ECOSAR version 1.11	Reported in a secondary source, study details and test conditions were not provided.
	ECOSAR: Anilines (amino-meta) Melamine : Daphnid ChV = 14.85 mg/L (Estimated) ECOSAR: Melamines	ECOSAR version 1.11	The toxicity value was estimated through application of ACRs.
	Melamine : Daphnid ChV = 343.93 mg/L (Estimated) ECOSAR class: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
Green Algae ChV	Melamine: Green algae $ChV = 0.70 \text{ mg/L}$ (Estimated) ECOSAR: Anilines (amino-meta) Melamine: Green algae $ChV = 81.26$	ECOSAR version 1.11 ECOSAR version 1.11	The toxicity value was estimated through application of ACRs.
	mg/L (Estimated) ECOSAR: Melamines		

Melamine Polyphosphate CASRN 15541-60-3				
PROPERT	Y/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Melamine: Green algae ChV = 313.17 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
ENVIRONMENTAL FATE				
Transport		Melamine polyphosphate has a high measured water solubility of 20 g/L and its Henry's Law Constant and vapor pressure are below cutoff values. It is expected to partition predominately to water and soil. It may migrate from soil into groundwater. As a salt, volatilization from either wet or dry surfaces is not expected to be an important fate process.		
H (a	enry's Law Constant htm-m ³ /mole)	<10 ⁻⁸ (Estimated)	EPI; Professional judgment	Cutoff value for nonvolatile compounds.
Se Do Co	ediment/Soil Adsorption/ esorption oefficient – K _{oc}	Melamine polyphosphate: 13 (Estimated)	EPI	
	evel III Fugacity Model	Melamine polyphosphate: Air = 0% Water = 37% Soil = 63% Sediment = 0% (Estimated)	EPI	

Melamine Polyphosphate CASRN 15541-60-3				
PROPERTY/ENDPOINT DATA		REFERENCE	DATA QUALITY	
Persistence HIGH: Melamine polyphosphate is expected to show for melamine, which is expected to be fully dissociat evidence suggests that melamine will biodegrade, at Although pure culture studies showed evidence of bi less than 10 days, an original MITI test detected less guideline OECD 302B studies observed no degradat This results in an expected environmental persisten melamine or its cation by hydrolysis or direct photo groups present on this molecule do not tend to unde Polyphosphoric acid is expected to have low persiste that polyphosphoric acid will hydrolyze under envir expected to participate in natural cycles and be read		ed to show high persistence in the environment based on the data y dissociated under environmental conditions. The weight of egrade, at rates consistent with a High hazard designation. lence of biodegradation by enzymatic hydrolytic deamination in tected less than 30% degradation after 14 days and two separate o degradation after 28 days and 16% degradation after 20 days. persistence half-life between 60 and 180 days. Degradation of rect photolysis is not expected to be significant as the functional id to undergo these reactions under environmental conditions. w persistence in the environment. The weight of evidence suggests inder environmental conditions. The phosphates formed are ind be readily assimilated.		
Water Aerobic Bid	Aerobic Biodegradation	Melamine polyphosphate: Weeks (Primary survey model) Months (Ultimate survey model) (Estimated) Melamine: 16% removal after 20 days with activated sludge, 14% removal after 10 days with adapted sludge (Measured)	EPI OECD SIDS, 1999	These values are for the dissociated component, melamine. Reported in a secondary source, study details and test conditions were not provided.
		Melamine: 0% removal after 28 days with activated sludge (Measured) Melamine: 0% removal after 14 days with	OECD SIDS, 1999 OECD SIDS, 1999	
		activated sludge (Measured) Melamine: <30% removal after 14 days with activated sludge (Measured)	OECD SIDS, 1999	
		Melamine: <1% removal after 5 days with an adapted inoculum (Measured)	IUCLID, 2000a	
		Melamine: 0% removal after 14 days with activated sludge (Measured)	IUCLID, 2000a	
		Melamine: <30% removal after 14 days with activated sludge (Measured)	IUCLID, 2000a	

Melamine Polyphosphate CASRN 15541-60-3				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Melamine: <20% removal after 20 days, 14% removal after 10 days with adapted inoculum (Measured)	IUCLID, 2000a	
		Study results: 100%/<10 days Test method: Other: Pure culture study	Takagi et al., 2012	Melamine degradation was found to occur in species specific biodegradation studies.
		Bacterium, <i>Nocardioides sp.</i> strain ATD6 rapidly degraded melamine and accumulated cyanuric acid and ammonium, via the intermediates ammeline and ammelide. (Measured)		
	Volatilization Half-life for Model River	Melamine polyphosphate: >1 year (Estimated)	EPI	Based on the magnitude of the estimated Henry's Law Constant.
	Volatilization Half-life for Model Lake	Melamine polyphosphate: >1 year (Estimated)	EPI	Based on the magnitude of the estimated Henry's Law Constant.
Soil	Aerobic Biodegradation	Melamine: Not readily biodegradable: 0% biodegradation detected after 2 weeks with 100 ppm in 30 ppm activated sludge (OECD TG 301C) (Measured); 0% degradation after 28 days with 100 mg DOC/L in activated sludge (Zahn-Wellens test, OECD 302B) (Measured)	MITI, 1998; OECD SIDS, 1999	Adequate values from guideline studies for the dissociated component, melamine.
		Study results: 100%/4 days Test method: Other: Pure culture study Bacterium, <i>A. citrulli</i> strain B-12227 rapidly degraded melamine and accumulated cyanuric acid, ammeline and ammelide, via the intermediates ammeline and ammelide. (Measured)	Shiomi and Ako, 2012	Melamine degradation was found to occur in species specific biodegradation studies.

Melamine Polyphosphate CASRN 15541-60-3								
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
		A set of soil bacteria has been identified whose members rapidly metabolize melamine as their source of nitrogen to support growth; these bacteria contain an enzyme which hydrolytically deaminate melamine (Measured)	Cook and Hutter, 1984; Cook and Hutter, 1981	Melamine degradation was found to occur in species specific biodegradation studies.				
	Anaerobic Biodegradation	Melamine: 0-8.9% nitrification was observed after 28 days incubation with bacteria in Webster silty clay loam under anaerobic conditions (Measured)	IUCLID, 2000a	This value is for the dissociated component, melamine. Reported in a secondary source, study details and test conditions were not provided.				
	Soil Biodegradation w/ Product Identification	Melamine: Nitrification of melamine occurs in soil at a low rate (0.7% organic N found as NO ₃ -N in week 10, and 0% in week 28). (Measured)	ECHA, 2011a, 2011b	Nonguideline studies for the dissociated component, melamine.				
	Sediment/Water Biodegradation			No data located.				
Air	Atmospheric Half-life	Melamine polyphosphate: 21 days (Estimated)	EPI					
Reactivity	Photolysis	Melamine polyphosphate: Not a significant fate process (Estimated)	Mill, 2000; Professional judgment	The substance does not contain functional groups that would be expected to absorb light at environmentally significant wavelengths.				
	Hydrolysis	Polyphosphoric acid: The half-life for the hydrolysis to phosphoric acid is several days at 25°C (Measured)	Kirk-Othmer, 2005	This value is for the dissociated component, polyphosphoric acid. These studies indicate polyphosphoric acid would undergo hydrolysis under environmental conditions to phosphate ions. Reported in a secondary source, study details and test conditions were not provided.				
		Melamine Polyphosphate CASR	RN 15541-60-3					
--------------------------	--------------------	--	--	--	--	--	--	--
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
		Polyphosphoric acid: Hydrolysis occurs in 2 months at 20°C (Measured)	IUCLID, 2000b	This value is for the dissociated component, polyphosphoric acid. Reported in a secondary source, study details and test conditions were not provided available.				
Environmental Half-life		Melamine polyphosphate: 120 days (Estimated)	EPI; PBT Profiler	Half-life estimated for the predominant compartment, as determined by EPI and the PBT Profiler methodology.				
Bioaccumulation		LOW: Based on the relatively high water BCF of 3.2. In addition, the experimenta <3.8, and estimated BAF <1.	r solubility of melamine polyphos l bioconcentration values for the	sphate (20 g/L) and an estimated melamine component are low, BCF				
	Fish BCF	Melamine polyphosphate: 3.2 (Estimated)	EPI					
		Melamine: <0.38 in carp (<i>Cyprinus</i> <i>carpio</i>) after 6 weeks at 2.0 ppm concentration; <3.8 in carp (<i>Cyprinus carpio</i>) after 6 weeks at 0.2 ppm concentration (OECD 302B) (Measured)	MITI, 1998	Adequate values from guideline studies for the dissociated component, melamine.				
	BAF	Melamine polyphosphate: 0.9 (Estimated)	EPI					
		Melamine: <1 (Measured)	OECD SIDS, 1999; IUCLID, 2000a	This value is for the dissociated component, melamine.				
	Metabolism in Fish	Melamine: Uptake, bioaccumulation and elimination study with ¹⁴ C-melamine in fathead minnow and rainbow trout: BCFs <1 (Measured)	ECHA, 2011a, 2011b	Nonguideline studies that support the low potential for bioaccumulation of this substance.				
		ENVIRONMENTAL MONITORING AN	D BIOMONITORING					
Environmental Mo	nitoring	No data located.	No data located.					
Ecological Biomonitoring		No data located.						

Melamine Polyphosphate CASRN 15541-60-3						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Human Biomonitoring	This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report					
	(CDC, 2011).					

American Cyanamid Company. *Melamine: acute and chronic toxicity*; Report 55-21, Unpublished data. 1955.

American Cyanamid Company. 2-Year chronic feeding study of melamine in Fischer 344 rats. Unpublished data by Hazelton Raltech. Report for American Cyanamid Company. **1983**.

American Cyanamid Company. Summary of company study. 1984.

Anonymous. AERO Melamine, In-House publication. American Cyanamid Company: Wayne, NJ. 1958.

ARZNAD Arzneimittel-Forschung. Drug Research; Verlag, Cantor, ed., 7:172. 1957.

Australia. National Industrial Chemicals Notification and Assessment Scheme (NICNAS). *Melapur 200 and Polymer in Exolit OP 1312*. [Online]; Australia Department of Health and Aging: **2006** http://www.nicnas.gov.au/publications/CAR/new/Ltd/LtdFULLR/ltd1000FR/ltd1282FR.pdf.

BASF AG, Department of Toxicology. (XIX/5). Unpublished data. 1969.

Boethling, Robert S. and Nabholz, J. Vincent "Environmental Assessment of Polymers under the U.S. Toxic Substances Control Act", pp. 187-234, in Ecological Assessment of Polymers Strategies for Product Stewardship and Regulatory Programs, Hamilton, John D. and Sutcliffe, Roger (eds.), (1997) Van Nostrand Reinhold.

Ciba. RCC Ltd. Acute Oral Toxicity Study in Rats; Test Report Number A 18685; Unpublished report, Ciba Specialty Chemicals Inc. (Sponsor): Toxicology, Fullinsdorf, Switzerland, **2005**. Unpublished report.

CDC (Centers for Disease Control and Prevention). *Fourth national report on human exposure to environmental chemicals, updated tables*. Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on May 10, 2011).

Cook AM and Hutter R (1984) Deethylsimazine: Bacterial dechlorination, deamination, and complete degradation. Journal of Agricultural and Food Chemistry 32:581-585.

Cook Am and Hutter R (1981) s-Triazines as nitrogen sources for bacteria. Journal of Agricultural and Food Chemistry 29:1135-1143.

ECOSAR/EPI (EPIWIN/EPISUITE) Estimations Programs Interface for Windows, Version 1.11. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

EPA (U.S. Environmental Protection Agency). TSCA Section 8E Substantial Risk Notice. 8EHQ-0192-1995. 1992.

EPA (U.S. Environmental Protection Agency). Alternatives Assessment for Flame Retardants in Printed Circuit Boards, Review Draft. **2008**. <u>http://www.epa.gov/dfe/pubs/projects/pcb/full_report_pcb_flame_retardants_report_draft_11_10_08_to_e.pdf</u>.

U.S. EPA (Environmental Protection Agency). Sustainable Futures Using NonCancer Screening within the Sustainable Futures Initiative Environmental Protection Agency: Washington D.C. 2010. http://www.epa.gov/opptintr/sf/pubs/noncan-screen.htm#systemic (accessed on February 09, 2011).

EPI (*EPIWIN/EPISUITE*) *Estimation Program Interface for Windows*, Version 4.00. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

ECHA (European Chemicals Agency). *Melamine*. Registered Substances Database. <u>http://apps.echa.europa.eu/registered/data/dossiers/DISS-9c8039ea-8496-674c-e044-00144f67d249/DISS-9c8039ea-8496-674c-e044-00144f67d249_DISS-9c8039ea-8496-674c-e044-00144f67d249.html (accessed on June 14, 2011). **2011a**</u>

ECHA (European Chemicals Agency). *Melamine cyanurate*. Registered Substances Database. **2011**. <u>http://apps.echa.europa.eu/registered/data/dossiers/DISS-9eb230bf-9ed0-1955-e044-00144f67d031/AGGR-a3a77856-6622-456f-8995-5483f815f4a4_DISS-9eb230bf-9ed0-1955-e044-00144f67d031.html (accessed on June 14, 2011). **2011b**</u>

Fasset, DW; Roudabush, RL. Unpublished Data, Lab. of Ind. Med., Eastman Kodak Co. 1963/1981.

Galloway, SM; Armstrong, MJ; et al. Chromosome Aberrations and Sister Chromatid Exchanges in Chinese hamster ovary cells: evaluations of 108 chemicals. *Environ. Mol. Mutagen.* **1987**, 10(Suppl. 10), 1-175.

Haworth, S; Lawlor, T; Mortelmans, K; et al. Salmonella Mutagenicity Test Results for 250 Chemicals. *Environ. Mutagen.* **1983**, Suppl. 1:3-142.

Heil, J; Reifferscheid, G. Detection of mammalian carcinogens with an immunological DNA synthesis-inhibition test. *Carcinogenesis* **1992**, 13(12):2389-2394.

Hellwig, J; Gembrandt, C; Hildebrandt, B. *Melamine – Prenatal toxicity in Wistar rats after oral administration (diet);* Project No. 32R0242/94007. [also cited as BASF AG, Department of Toxicology: unpublished report, (32RO242/94007), 04.15.1996, sponsors: Agrolinz, A-4021 Linz, Austria; Basf AG, Ludwigshafen, Germany]. **1996**.

Hoechst, AG. Unveroffentl. Unters. Ber. 1963, 5:(7).

Huff, JE. Carcinogenesis Results on Seven Amines, Two Phenols, and One Diisocyanate Used in Plastics and Synthetic Elastomers. *Ind. Haz. Plast. Syth. Elast.* **1984**.

IARC (International Agency for Research on Cancer). Summary and evaluations. Melamine. Vol. 73, p. 329. 1999.

Ishiwata, H; Sugita, T; Kozaki, M; et al. Inhibitory effects of melamine on the growth and physiological activities of some microorganisms. *J. Food Hyg. Soc. Japan.* **1991**, 32(5):408-413.

IUCLID (International Uniform Chemical Information Database). *Dataset for Melamine*. European Commission – European Chemicals Bureau. **2000a**.

IUCLID (International Uniform Chemical Information Database). *Dataset for Polyphosphoric Acids*. European Commission – European Chemicals Bureau. **2000b**.

Kirk-Othmer; Gard, D. R. Phosphoric Acids and Phosphates. [Online], July 15, 2005. 2005.

Lehrner. Personal Communication by email between Kathleen Vokes and Theo Lehner, January 22, 2008.

Lipshitz, WL; Stokey, E. The mode of action of three new diuretics: melamine, adenine and formoguanamine. *J. Pharmacol. Exp. Therap.* **1945**, 83:235-249.

Luers, H; Rohrborn, G. The mutagenic activity of ethylenimine derivatives with different numbers of reactive groups. In *Genetic Today*, Proceedings of the 11th International Congress, Vol 1, pp 64-65. **1963**.

Lusby, AF; Simmons, Z; McGuire, PM. Variation in mutagenicity of s-triazine compounds tested on four salmonella strains. *Environ. Mutag.* **1979**, 1:287-290.

Marhold, JV. *Sbornik vysledku toxixologickeho vysetreni latek a pripravku*. Institut Pro Vychovu Vedoucicn Pracovniku Chemickeho Prumyclu Praha: Czechoslovakia, pp. 153 (in Czechoslovakian). **1972**.

Mast, RW; Friedman, MA; Finch, RA. Mutagenicity testing of melamine. *Toxicologist*, **1982a**, 2:172.

Mast, RW; Naismith, RW; Friedman, MA. Mouse micronucleus assay of melamine. Environ. Mutag. 1982b, 4:340-341.

Mast, RW; Boyson, BG; Giesler, PJ; et al. *Evaluation of the Chronic Toxicity of Melamine in a 30 Month Fischer 344 Rat Feeding Study*. Society of Toxicology Abstract: 1982. **1982c**.

Mast, RW; Jeffcoat, AR; Sadler, BM; et al. Metabolism, disposition and excretion of [14C]melamine in male Fischer 344 rats. *Food Chem Toxicol.* **1983**, 21(5):807-810.

Matsui-Yuasa, I; Otani, S; Yano, Y; et al. Spermidine/Spermine N1-Acetyltransferase, a new Biochemical Marker for Epithelial Proliferation in Rat Bladder. *Jpn. J. Cancer Res.* **1992**, 83:1037-1040.

May, DR. Cyanamids. In *Kirk-Othmer encyclopedia of chemical technology*, 3rd ed.; John Wiley and Sons: New York, Vol 7, pp 291-306. [data also cited as Patel, B. K. 2000. Cyanamids. In Kirk-Othmer encyclopedia of chemical technology, Online ed., posting date: December 4, 2000.] Note: data not cited. **1979**.

McGregor, DB; Brown, A; Cattanach, P; et al. Responses of the L5178Y tk+/tk- Mouse Lymphoma Cell Forward Mutation Assay: III. 72 Coded Chemicals. *Environ. Mol. Mutagen.* **1988**, 12:85-154.

Melnick, RL; Boorman, GA; Haseman, JK; et al. Urolithiasis and Bladder Carcinogenicity of Melamine in Rodents. *Toxicol. Appl. Pharmacol.* **1984**, 72:292-303.

Mill, T. (2000) Photoreactions in Surface Waters. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (355-382). Boca Raton: Lewis Publishers.

Mirsalis, J; Tyson, K; Beck, J; et al. Induction of unscheduled DNA synthesis (UDS) in hepatocytes following *in vitro* and *in vivo* treatment. *Environ. Mutagen.* **1983**, 5:482.

MITI (Japanese Ministry of International Trade and Industry). *Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan.* Compiled under the supervision of Chemical Products Safety Division, Basic Industries Bureau, Ministry of International Trade & Industry, Japan; Chemicals Inspection & Testing Institute, Japan. Ed.; Japan Chemical Industry Ecology-Toxicology & Information Center: **1998**

NCI/NTP (National Cancer Institute/National Toxicology Program). *Carcinogenesis Technical Report Series, Melamine*. U.S. Department of Health and Human Services. TR-245 Y83. **2007**. <u>http://ntp.niehs.nih.gov/ntp/htdocs/LT_rpts/tr245.pdf</u> (accessed on July, 2007).

NOTOX B.V. *Screening Tests for Primary Skin and Eye Irritation in the rabbit and Acute Oral Toxicity in the Rat*; Test Report Number 221941 and 221952; Unpublished report, DSM Melapur (Sponsor): Hertogenbosch, The Netherlands. **1998.**

NTP (National Toxicological Program). *NTP Carcinogenesis Bioassay of Melamine (CAS No. 108-78-1) in F344/N Rats and B6C3F1 Mice (Feed Study)*; TR No. 245; National Toxicological Program: Research Triangle Park, NC, **1983**.

OECD SIDS (Organisation of Economic Cooperation and Development Screening Information Data Set). Full SIDS Dossier on the HPV Phase 2 Chemical: Melamine. Austria. **1999**. http://www.chem.unep.ch/irptc/sids/OECDSIDS/108781.pdf.

Ogasawara, H; Imaida, K; Ishiwata, H; et al. Urinary bladder carcinogenesis induced by melamine in F344 male rats: correlation between carcinogeneicity and urolith formation. *Carcinogenesis* **1995**, 16:2773-2777.

Okumura, M.; Hasegawa, R.; Shirai, T.; et al. Relationship between calculus formation and carcinogenesis in the urinary bladder of rats administered the non-genotoxic agents, thymine or melamine. *Carcinogenesis* **1992**, 13(6):1043-1045.

OncoLogic. U.S. EPA and LogiChem, Inc. Version 7.0. 2008.

Pakalin, S; Cole, T; Steinkellner, J; et al. Review on Production Processes of Decabromodiphenyl Ether (DECABDE) used in Polymeric Applications in Electrical and Electronic Equipment, and Assessment of the Availability of Potential Alternatives to DECABDE. [Online]. **2007**.

http://publications.jrc.ec.europa.eu/repository/bitstream/11111111/5259/1/EUR%2022693.pdf. (accessed on January 20, 2011).

PBT Profiler *Persistent (P),Bioaccumulative (B), and Toxic (T) Chemical (PBT)Profiler*, U.S. Environmental Protection Agency: Washington D.C. <u>www.pbtprofiler.net</u>.

Perrella, FW; Boutwell, RK. Triethylenemelamine: an initiator of two-stage carcinogenesis in mouse skin which lacks the potential of a complete carcinogen. *Cancer Lett.* **1983**, 21(1):37-41.

Reifferscheid G.; Heil, J. Validation of the SOS/*umu* test using test results of 486 chemicals and comparison with the Ames test and carcinogenicity data. *Mutat. Res.* **1996**, 369:129-145.

Research Triangle Institute (RTI). Evaluation of Urolithiasis Induction by Melamine (CAS No. 108-78-1) in Male Weanling Fischer 344 Rats. *Parts I and II: In-Life Observations, Necropsy, and Histopathology of Urinary Bladders and Analysis of Plasma, Urine and Calculi.* RTI: Research Triangle Park, N.C. **1983**. [Additional citations for the above reference include the following:

Rijcken, W. R. P. *Primary skin irritation/corrosion study with melamine in the rabbit*; Confidential NOTOX project 146205 for DSM Melamine. **1995**.

Rohrborn, G. Mutation tests with melamine and trimethylolmelamine. Dros. Info. Serv. 1959, 33:156 (reference cites an abstract).

Rutty, CJ; Connors, TA. In vitro studies with hexamethylmelamine. Biochem. Pharmacol. 1977, 26:(24), 2385-2391.

Rutty, CJ; Abel, G. In vitro cytotoxicity of the methylmelamines. Chem. Biol. Interact. 1980, 29(2):235-246.

Rossman, T. G.; Molina, M.; Meyer, L.; Boone, P; Klein, C.B.; Wang, Z; Li, F; Lin, W.C; Kinney, P.L. Performance of 133 compounds in the lambda prophage induction endpoint of the Microscreen assay and a comparison with S.typhimurium mutagenicity and rodent carcinogenicity assays. *Mutat. Res.* **1991**, 260:349-367.

Shiomi N and Ako M (2012) Biodegradation of melamine and cyanuric acid by a newly-isolated microbacterium strain. Advances in Microbiology 2:303-309.

Seiler, JP. A survey on the Mutagenicity of Various Pesticides. *Experientia*. 1973, 29:622-623.

Seldon, JR.; Dolbeare, F; Clair, JH; et al. Validation of a flow cytometric *in vitro* DNA repair (UDS) assay in rat hepatocytes. *Mutat. Res.* **1994**, 315(2):147-167.

Shelby, MD; Erexson, GL; Hook, GJ; et al. Evaluation of a three-exposure mouse bone marrow micronucleus protocol: results with 49 chemicals. *Environ. Mol. Mutagen.* **1993**, 21:160-179.

Shigeru, M. (Chemtura). Personal Communication. October, 2007.

TSCA Section 8(e) Substantial Risk Notice. U.S. EPA. TSCATS 8EHQ-0192-1995A. <u>http://www.epa.gov/oppt/tsca8e</u>; American Cyanamid Co. 1982. Evaluation of Urolithiasis by Melamine (CAS No. 108-78-1) in Male Weanling Fischer 344 Rats. Unpublished data]. **1983**.

Takagi K, Fujii K, Yamazaki K, et al. (2012) Biodegradation of melamine and its hydroxyl derivatives by a bacterial consortium containing a novel Nocardioides species. Applied Microbiology and Biotechnology 94:1647-1656.

Thiersch, J. B. Effect of 2,4,6, Triamino-"S"-Triazine (TR), 2,4,6 "Tris" (Ethyleneimino)-"S"Triazine (TEM) and N, N', N"-Triethylenephosphoramide (TEPA) on Rat Litter in Utero. Proceedings of the Society for Experimental Biology and Medicine, p 94. **1957**.

Trochimowicz, HJ; Kennedy, GL; Krivanek, ND; Alkylpyridines and Miscellaneous Organic Nitrogen Compounds. [Online] Patty's Toxicology. [DOI: 10.1002/0471435139.tox060]. **2001**.

Ubaidullajev, R. U, Gigiena i Sanitariya, 1993, 58:14-16 (in Russian).

Unknown. Acute toxicity data. J.American College Toxicol. 1990, 1:100.

N-alkoxy Hindered Amine Reaction Products

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. [‡] The highest hazard designation of any of the oligomers with MW <1,000

			Human Health Effects				Aqı Toxi	uatic icity ^{**}	Enviror Fa	imental ite						
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
N-alkoxy Hindered Amine Reaction Products	191680-81-6	L	М	L	H	H	L	H	L		L	VL	H	H	Н	H^{\ddagger}

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

N-alkoxy Hindered Amine Reaction Products

	CASRN: 191680-81-6				
	MW: >1,300 (92%); 670-1,300 (3%); <670 (5%)				
	MF:				
	Physical Forms: Neat: Solid				
	Use: Flame retardant				
, o					
Representative Structure					
SMILES: N4C(N(CCNCCCN)CCCN)=NC(N(C2CC(C)(C)N(OC3CCCCC3)C(C)(C)C2)CCCC)=NC=4N(C1CC(C)(C)NC(C Structure))(C)C1)CCCC (Representative				
Synonyms: 1,3-Propanediamine, N1,N1'-1,2-ethanediylbis-, reaction products with cyclohexane and peroxidized N-butyl-2,2,6,6-tetramethyl-4-piperidinamine-2,4,6-trichloro-1,3,5-triazine reaction products; Flamestab Nor 116					
Chemical Considerations: This alternative is a polymer. The structure shown is the simplest depiction of an oligomer with a MW $<1,000$ (approximately 770) that includes all combinations of monomers. This review assesses oligomers with a MW $<1,000$ using a representative structure. The representative structure lies within the domain of the available estimation methods. EPI v4.0 estimation methods were used for physical/chemical and environmental fate values in the absence of					
experimental data. The higher MW oligomers with a MW >1,000 are assessed together using information contained in the literature concerning polymer assessment					

and professional judgment (Boethling et al., 1997).

Polymeric: Yes

Oligomers: The MF and MW of this polymer are variable; approximately 90% of the oligomers in this polymer have a MW >1,300 (NICNAS, 2001). The mixture is based on a substituted aliphatic tetra amine, where the substituents on the amine groups are variable. The presence of material in the commercial product with a MW <670 is likely the result of unchanged starting materials.

Metabolites, Degradates and Transformation Products: None				
Analog: No analog	Analog Structure: Not applicable			
Endpoint(s) using analog values: Not applicable				
Structural Alerts: Hindered amines (EPA, 2010)				
Risk Phrases: Not classified by Annex VI Regulation (European Commission) No 1272/2008 (ESIS, 2011).				
Hazard and Risk Assessments: This polymer has been assessed by NICNAS (NICNAS, 2001).				

	N-alkoxy Hindered Amine Reaction	on Products CASRN 191680-81-6						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
PHYSICAL/CHEMICAL PROPERTIES								
Melting Point (°C)	113–121 softening point (Measured)	Ciba Additives, 1997a	Value is a result from differential scanning calorimetry analysis on the commercial product, with a reported endotherm trough at 120.43°C. The value of 113°C likely corresponds to a softening point for the polymer.					
Boiling Point (°C)	Decomposes (Measured)	Ciba Additives, 1997b	The commercial product was found to decompose without boiling at 260°C at a reduced pressure of 6 kPa.					
	>300 (Estimated)	EPI; EPA, 1999	Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. Cutoff value according to High Production Volume (HPV) assessment guidance.					
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	EPI; EPA, 1999	Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. Cutoff value according to HPV polymer assessment guidance.					
Water Solubility (mg/L)	<10 ⁻³ (Estimated)	EPI; EPA, 1999	Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. Cutoff value according to HPV assessment guidance.					
Log K _{ow}	10 (Estimated)	EPI; EPA, 1999	Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. Estimated value is greater than the cutoff value, >10, according to methodology based on HPV assessment guidance.					

	N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6							
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Flammability (Flash	n Point)	>110°C (Measured)	NICNAS, 2001	Sufficient details were not available to assess the quality of this study.				
Explosivity		Not explosive European Economic Community method A.14 (Measured)	NICNAS, 2001	Adequate; guideline study.				
Pyrolysis				No data located.				
рН				No data located.				
pK _a		2.4 to 10.2 (Estimated)	NICNAS, 2001	Inadequate. Compound only contains basic functional groups.				
		HUMAN HEALTH EFF	ECTS					
Toxicokinetics		As a neat material, N-alkoxy hindered amine reaction products is estimated to not be absorbed by any route of exposure. This compound is expected to have poor absorption through all routes when in solution. This material is predominately a polymer with a MW >1,000 however at present there is no MW cutoff for the hindered amine category of new chemicals (EPA, 2010b).						
Dermal Absorption	n <i>in vitro</i>			No data located.				
Absorption, Distribution, Metabolism & Excretion	Oral, Dermal or Inhaled	Not absorbed by any route as a neat material; poor absorption for all routes when in solution	Professional judgment	Based on closely related confidential analogs with similar structures, functional groups, and physical/chemical properties.				
Acute Mammalian	Toxicity	LOW: Based on an acute oral LD ₅₀ >5,000 mg/kg and an acute dermal LD ₅₀ >2,000 mg/kg for rats.						
Acute Lethality	Oral	Rat Oral LD ₅₀ >5,000 mg/kg bw	NICNAS, 2001	Reported in a secondary source. Guideline study (Organisation of Economic Cooperation and Development (OECD) 401, limit test).				
	Dermal	Rat Dermal LD ₅₀ >2,000 mg/kg bw	NICNAS, 2001	Reported in a secondary source. Guideline study (OECD 402, limit test).				
	Inhalation			No data located.				
Carcinogenicity		MODERATE: There is uncertainty due substance to be carcinogenic however su	to lack of data for this substance ich effects cannot be ruled out.	e. EPA does not expect this				

N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	OncoLogic Results			This polymer is not amenable to available estimation methods.	
	Carcinogenicity (Rat and Mouse)			No data located.	
	Combined Chronic Toxicity/ Carcinogenicity			No data located.	
Genotoxicity		LOW: N-alkoxy hindered amine reaction typhimurium or Escherichia coli and did (CHO) cells in the presence and absence	n products did not induce gene r not induce chromosomal aberra of metabolic activation.	nutations in <i>Salmonella</i> itions in Chinese hamster ovary	
	Gene Mutation <i>in vitro</i>	Negative for gene mutations in Salmonella typhimurium strains TA1535, TA1537, TA98, TA100 and E. coli strain WP2uvrA with and without metabolic activation.	NICNAS, 2001	Reported in a secondary source. Guideline study (OECD 471, bacterial reverse mutation test).	
	Gene Mutation in vivo			No data located.	
	Chromosomal Aberrations <i>in vitro</i>	Negative for chromosomal aberrations in CHO cells with and without metabolic activation. No evidence of clastogenicity.	NICNAS, 2001	Reported in a secondary source. Guideline study (OECD 473, <i>in vitro</i> mammalian chromosomal aberration test).	
	Chromosomal Aberrations <i>in vivo</i>			No data located.	
	DNA Damage and Repair			No data located.	
	Other (Mitotic Gene Conversion)			No data located.	

	N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Reproductive Effe	ets	HIGH: Estimated potential for reprodu structure.	ctive effects based on analogy to	other hindered amines similar in			
	Reproduction/ Developmental Toxicity Screen			No data located.			
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen			No data located.			
	Reproduction and Fertility Effects	Toxicity to male reproductive system (Estimated by analogy)	Professional judgment, Toxic Substances Control Act (TSCA) New Chemicals Program – Chemical Categories	Estimated based on analogy to hindered amines similar in structure.			
Developmental Eff	ects	HIGH: Estimated potential for developmental effects based on analogy to other hindered amines similar in structure.					
	Reproduction/ Developmental Toxicity Screen	Delayed skeletal maturation LOAEL = 1,200 mg/kg/day (Estimated by analogy)	Professional judgment	Estimated based on analogy to hindered amines similar in structure.			
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen			No data located.			
	Prenatal Development			No data located.			
	Postnatal Development			No data located.			
Neurotoxicity		LOW: Estimated not to have potential f	or neurotoxicity based on expert	judgment. No data located.			
	Neurotoxicity Screening Battery (Adult)	No potential for neurotoxicity (Estimated)	Expert judgment	Estimated based on expert judgment.			

	N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Repeated Dose Eff	ects	HIGH: Estimated potential for repeated dose effects based on analogy to other hindered amines similar in				
		structure. Experimental data reported that N-alkoxy hindered amine reaction products did not produce				
		adverse effects in a 28-day oral gavage study in rats at oral doses up to 1,000 mg/kg/day; however				
		uncertainty remains for exposures of lor	nger duration.			
		Toxicity to liver, blood, and	Professional judgment, TSCA	Estimated based on analogy		
		gastrointestinal tract	New Chemicals Program –	hindered amines similar in		
		(Estimated by analogy)	Chemical Categories	structure.		
		28-day oral gavage study in Sprague-	NICNAS, 2001	Reported in a secondary source.		
		Dawley rats. No treatment-related		Guideline study (OECD 407). The		
		clinical effects or changes in clinical		hindered amines category suggests		
		chemistry, hematology, urinalysis or		need for a 90-day oral test.		
		organ weight.				
		NOAEL = 1,000 mg/kg/day				
		LOAEL = not established as highest				
		dose tested did not produce adverse				
		effects				
	Immune System Effects	Effects on thymus, spleen, lymph and	Professional judgment, TSCA	Estimated based on analogy		
		nodes	New Chemicals Program –	hindered amines similar in		
		(Estimated by analogy)	Chemical Categories	structure.		
Skin Sensitization		LOW: N-alkoxy hindered amine reaction products did not produce skin sensitization in an experimental				
		study in guinea pigs.				
	Skin Sensitization	No evidence of sensitization, guinea pig	NICNAS, 2001	Reported in a secondary source.		
				Guideline study (OECD 406).		
Respiratory Sensit	ization	No data located.				
	Respiratory			No data located.		
	Sensitization					
Eye Irritation		LOW: N-alkoxy hindered amine reaction	n products are slightly irritating	to rabbit eyes with clearing within		
		24 hours.				
	Eye Irritation	Slightly irritating, rabbit.	NICNAS, 2001	Reported in a secondary source.		
		Most symptoms cleared in 24 hours or		Guideline study (OECD 405, acute		
		less. Redness persisted for 48 hours.		eye irritation/corrosion).		

N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6							
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Dermal Irritation		VERY LOW: N-alkoxy hindered amine reaction products are not irritating to rabbit skin.					
	Dermal Irritation	Non-irritating, rabbit	NICNAS, 2001	Reported in a secondary source. Guideline study (OECD 404, acute dermal irritation/corrosion).			
Endocrine Activity		No data located.					
				No data located.			
Immunotoxicity		Estimated potential for immunotoxic eff	ects based on analogy to other hi	indered amines similar in structure.			
	Immune System Effects	Effects on thymus, spleen, lymph and nodes (Estimated by analogy)	Professional judgment, TSCA New Chemicals Program – Chemical Categories	Estimated based on analogy hindered amines similar in structure.			
	ECOTOXICITY						
ECOSAR Class		Polycationic Polymers; Aliphatic Amines;	Triazines				
Acute Toxicity		HIGH: Based on estimated acute aquati polycationic polymer SAR.	c toxicity values for fish, daphnic	l, and green algae using			
Fish LC ₅₀		<i>Pimephales promelas</i> 96-hour LC ₅₀ >0.268 mg/L, NOEC = 0.268 mg/L (48- hour static-renewal, mean measured) (OECD TG 203) (Experimental)	NICNAS, 2001	Reported in a secondary source. Guideline study; reported values are greater than the water solubility; no effects at saturation (NES) were observed for this endpoint.			
		Fish 96-hour $LC_{50} = 0.280 \text{ mg/L}$ (Estimated)	Professional judgment	Predictions based on SARs for polycationic polymers with >3.5% amine-N.			
		Fish 96-hour $LC_{50} = 0.0015 \text{ mg/L}$ (Estimated) ECOSAR: Aliphatic amines	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K _{ow} of 10 for this chemical exceeds the SAR limitation of 6.0; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES.			

Ν	N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Fish 96-hour $LC_{50} = 3.28 \times 10^{-8} mg/L$ (Estimated) ECOSAR: Triazines	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K_{ow} of 10 for this chemical exceeds the SAR limitation of 5.0; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES.				
	Fish 96-hour $LC_{50} = 6.56 \times 10^{-5} mg/L$ (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K_{ow} of 10 for this chemical exceeds the SAR limitation of 5.0; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.				
Daphnid LC ₅₀	Daphnia 48-hour $EC_{50} > 0.312 \text{ mg/L}$, NOEC = 0.312 mg/L (24- hour static- renewal, mean measured) (OECD TG 202) (Experimental)	NICNAS, 2001	Reported in a secondary source. Guideline study; reported values are greater than the water solubility; NES were observed for this endpoint.				

N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Daphnid 48-hour $LC_{50} = 0.1 \text{ mg/L}$ (Estimated)	Professional judgment	Predictions based on SARs for polycationic polymers with >3.5% amine-N.
	Daphnid 48-hour LC ₅₀ = 0.000846 mg/L (Estimated) ECOSAR: Aliphatic amines	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K _{ow} of 10 for this chemical exceeds the SAR limitation of 5.0; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES.
	Daphnid 48-hour $LC_{50} = 1.05 \times 10^{-5} \text{ mg/L}$ (Estimated) ECOSAR: Triazines	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K_{ow} of 10 for this chemical exceeds the SAR limitation of 5.0; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES.

N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Daphnid 48-hour LC ₅₀ = 1.05x10 ⁻⁵ mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K _{ow} of 10 for this chemical exceeds the SAR limitation of 5.0; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
Green Algae EC ₅₀	Green Algae (<i>Pseudokirchneriella</i> subcapitata) 72-hour EbC ₅₀ >0.083 mg/L, NOEC = 0.083 mg/L (static, measured at study termination) (OECD TG 201) (Experimental) Green algae 96-hour EC ₅₀ = 0.04 mg/L (Estimated)	NICNAS, 2001 Professional judgment	Reported in a secondary source. Guideline study; reported values are greater than the water solubility; NES were observed for this endpoint. Predictions based on SARs for polycationic polymers with >3.5% amine-N.

N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Green algae 96-hour LC ₅₀ = 0.005 mg/L (Estimated) ECOSAR: Aliphatic amines	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K_{ow} of 10 for this chemical exceeds the SAR limitation of 7.0; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES.
	Green algae 96-hour LC ₅₀ = 0.000657 mg/L (Estimated) ECOSAR: Triazines	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K_{ow} of 10 for this chemical exceeds the SAR limitation of 6.4; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES.

Ν	N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Green algae 96-hour LC ₅₀ = 1.05x10 ⁻⁵ mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K _{ow} of 10 for this chemical exceeds the SAR limitation of 6.4; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.	
Chronic Aquatic Toxicity	HIGH: Based on estimated chronic aqua	atic toxicity values for fish, daph	nid, and green algae using	
Fish ChV	Fish ChV = 0.016 mg/L (Estimated)	Professional judgment	Predictions based on SARs for polycationic polymers with >3.5% amine-N.	
	ChV = 5.31x10 ⁻⁵ mg/L (Estimated) ECOSAR: Aliphatic amines	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K _{ow} of 10 for this chemical exceeds the structure activity relationship (SAR) limitation of 8.0; NES are predicted for these endpoints. The higher oligomers outside the domain of the estimation method are anticipated to display NES.	

N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Fish ChV = 5.19x10 ⁻⁶ mg/L (Estimated) ECOSAR: Triazines	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K_{ow} of 10 for this chemical exceeds the SAR limitation of 8.0; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES.	
	Fish ChV = 5.19x10 ⁻⁶ mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K _{ow} of 10 for this chemical exceeds the SAR limitation of 8.0; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.	

N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Daphnid ChV	ChV = 0.014 mg/L (Estimated) ECOSAR: Aliphatic amines	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K _{ow} of 10 for this chemical exceeds the SAR limitation of 8.0; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES.	
	ChV = 4.67x10 ⁻⁵ mg/L (Estimated) ECOSAR: Triazines	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K _{ow} of 10 for this chemical exceeds the SAR limitation of 8.0; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES.	

N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	ChV = 4.04x10 x10 ⁻⁵ (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K _{ow} of 10 for this chemical exceeds the SAR limitation of 8.0; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
	ChV = 0.007 mg/L (Estimated)	Professional judgment	Predictions based on SARs for polycationic polymers with >3.5% amine-N.
Saltwater Invertebrate ChV	ChV = 0.014 mg/L (Estimated) ECOSAR: Aliphatic amines	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K _{ow} of 10 for this chemical exceeds the SAR limitation of 8.0; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES.

N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Green Algae ChV	ChV = 0.000234 mg/L (Estimated) ECOSAR: Aliphatic amines	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K_{ow} of 10 for this chemical exceeds the SAR limitation of 7.0; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES.	
	ChV = 0.002 mg/L (Estimated) ECOSAR: Triazines	ECOSAR version 1.11	NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K_{ow} of 10 for this chemical exceeds the SAR limitation of 7.0; NES are predicted for these endpoints. The higher oligomers outside the domain of the estimation method are anticipated to display NES.	

N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	ChV = 0.002 mg/L (Estimated) ECOSAR: Neutral organics		NES: Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. The log K_{ow} of 10 for this chemical exceeds the SAR limitation of 8.0; NES are predicted for these endpoints The higher oligomers outside the domain of the estimation method are anticipated to display NES. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.	
	ChV = 0.02 mg/L (Estimated)	Professional judgment	Predictions based on SARs for polycationic polymers with >3.5% amine-N.	
	ENVIRONMENTAL F	АТЕ		
Transport	Based on the Level III fugacity models in reaction products are expected to partitic immobile in soil based on its estimated K soil to groundwater is not expected to be lives indicate that it will be non-volatile f expected based on its vapor pressure. In particulate phase, based on its estimated deposition.	corporating the available proper on primarily to soil and sediment oc. Leaching of N-alkoxy hindere an important transport mechani rom surface water. Volatilization the atmosphere, this compound i vapor pressure. Particulates ma	rty data, N-alkoxy hindered amine t. This compound is expected to be ed amine reaction products through ism. Estimated volatilization half- n from dry surface is also not is expected to exist solely in the y be removed from air by wet or dry	

N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6				
PROPE	PROPERTY/ENDPOINT DATA DATA REFERENCE DATA QUALIT			DATA QUALITY
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	EPI; Professional judgment	Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. Cutoff value for nonvolatile compounds.
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	>30,000 (Estimated)	EPI; EPA, 2004	Estimate based on a representative oligomer with a MW <1,000 that includes all monomers. Cutoff value for non-mobile compounds.
	Level III Fugacity Model	Air: <1% (Estimated) Water: <1% Soil = 53% Sediment = 47%	EPI	Estimate based on a representative oligomer with a MW <1,000 that includes all monomers.
Persistence		HIGH: The persistence for N-alkoxy hindered amine reaction products is based on an experimental guideline biodegradation study (4% removal after 28 days). Although a biodegradation half-life was not calculated based on this study, it indicates that biodegradation of N-alkoxy hindered amine reaction products is possible under the stringent test conditions. Approximately 90% of the commercial N-alkoxy hindered amine reaction products substance has a MW >1,300 and is not anticipated to be assimilated by microorganisms. This polymer is not expected to be removed by other degradative processes under environmental conditions, such as hydrolysis, since it lacks the functional groups that hydrolyze under environmental conditions. This polymer does not contain chromophores that absorb at wavelengths >290 nm, and therefore it is not expected to be susceptible to direct photolysis by sunlight. The atmospheric half-life is estimated to be 19 minutes, olthough it is expected to exist primerily in the particulate phase in air		
Water	Aerobic Biodegradation	Ready Test: Modified Sturm Test (OECD TG 301B); 4.37% biodegradation detected after 28 days in sewage sludge (Measured)	Toxicon, 1997	Adequate, guideline study.
	Volatilization Half-life for Model River	>1 year (Estimated)	EPI	
	Volatilization Half-life for Model Lake	>1 year (Estimated)	EPI	
Soil	Aerobic Biodegradation			No data located.

N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6				
PROPE	PROPERTY/ENDPOINT DATA DATA REFERENCE DATA QUAL			DATA QUALITY
	Anaerobic Biodegradation	Not probable (Anaerobic-methanogenic biodegradation probability model) (Estimated)	EPI	Estimate based on a representative oligomer with a MW <1,000 that includes all monomers.
	Soil Biodegradation with Product Identification			No data located.
	Sediment/Water Biodegradation			No data located.
Air	Atmospheric Half-life	19 minutes (Estimated)	EPI	Estimate based on a representative oligomer with a MW <1,000 that includes all monomers.
Reactivity	Photolysis	Not a significant fate process (Estimated)	Mill, 2000; Professional judgment	The substance does not contain functional groups that would be expected to absorb light at environmentally significant wavelengths.
	Hydrolysis	Not a significant fate process (Estimated)	Wolfe and Jeffers, 2000; Professional judgment	The substance does not contain functional groups that would be expected to hydrolyze readily under environmental conditions.
Environmental Ha	lf-Life	>180 days (Estimated)	EPI; PBT Profiler	Half-life estimated for the predominant compartment, as determined by EPI and the PBT Profiler methodology, for a representative oligomer with a MW <1,000.
Bioaccumulation	HIGH: A representative oligomer (with MW 770) that includes all combinations of monomers has an estimated BAF of 2,300; this BAF value, which accounts for metabolism, suggests that this substance has potential to bioaccumulate in higher trophic levels.			nations of monomers has an suggests that this substance has
	Fish BCF	27 (Estimated)	EPI	Estimate based on a representative oligomer with a MW <1,000 that includes all monomers.

N-alkoxy Hindered Amine Reaction Products CASRN 191680-81-6				
PROPER	RTY/ENDPOINT	REFERENCE	DATA QUALITY	
	BAF	2,300 (Estimated)	EPI	Estimate based on a representative oligomer with a MW <1,000 that includes all monomers.
	Metabolism in Fish			No data located.
		ENVIRONMENTAL MONITORING AN	D BIOMONITORING	
Environmental Mo	nitoring	No data located.		
Ecological Biomoni	toring	No data located.		
Human Biomonitor	ing	This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2011).		

Boethling, Robert S. and Nabholz, J. Vincent "Environmental Assessment of Polymers under the U.S. Toxic Substances Control Act", pp. 187-234, in Ecological Assessment of Polymers Strategies for Product Stewardship and Regulatory Programs, Hamilton, John D. and Sutcliffe, Roger (eds.), (1997) Van Nostrand Reinhold.

Ciba Additives. Thermal Analysis Report of CGL-116; Ciba Additives Analytical Research Department, Tarrytown NY USA. 1997a.

Ciba Additives. Characterisation of CGL-116; Ciba Additives Analytical Research Department, Tarrytown NY USA. 1997b.

CDC (Centers for Disease Control and Prevention). *Fourth national report on human exposure to environmental chemicals, updated tables*. Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on May 10, 2011).

[HPV Assessment Guidance] EPA (U.S. Environmental Protection Agency). *Determining the Adequacy of Existing Data*. U.S. Environmental Protection Agency: Washington D.C. 1999. http://www.epa.gov/hpv/pubs/general/datadeqfn.pdf

ECOSAR/EPI (EPIWIN/EPISUITE) Estimations Programs Interface for Windows, Version 1.11. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

EPA (U.S. Environmental Protection Agency). TSCA New Chemicals Program (NCP) Chemical Categories. U.S. Environmental Protection Agency: Washington D.C. **2010**. http://www.epa.gov/oppt/newchems/pubs/npcchemicalcategories.pdf (accessed on Sept. 8, 2011).

EPI (*EPIWIN/EPISUITE*) *Estimation Program Interface for Windows*, Version 4.0. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

ESIS (European chemical Substances Information System) Classification, labeling and packaging of dangerous substances annex VI to Regulation (EC) No 1272/2008 [Online] <u>http://ecb.jrc.ec.europa.eu/esis/index.php?PGM=cla</u> (accessed on May 10, **2011**).

Mill, T. (2000) Photoreactions in Surface Waters. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (355-382). Boca Raton: Lewis Publishers.

NICNAS NA/999 (National Industrial Chemicals Notification and Assessment Scheme). 1,3-Propanediamine, N,N"-1,2ethanediylbis-, reaction products with cyclohexane and peroxidized N-butyl-2,2,6,6-tetramethyl-4-piperidinamine-2,4,6-trichloro-1,3,5-triazine reaction products (Flamestab NOR 116FF/TKA 45009). File No. NA/869. **2001.**

PBT Profiler *Persistent (P), Bioaccumulative (B), and Toxic (T) Chemical (PBT)Profiler*, U.S. Environmental Protection Agency: Washington D.C. <u>www.pbtprofiler.net</u>.

Toxicon. TKA 45009: "Ready" Biodegradability: Carbon Dioxide Evolution Test (Modified Sturm Test); Toxicon Project J9703009e; Toxicon Environmental Sciences, 106 Coastal Way, Jupiter, Florida US. **1997.**

Wolfe, N.; Jeffers, P. (2000) Hydrolysis. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (311-334). Boca Raton: Lewis Publishers.

Phosphonate Oligomer

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. [§] Based on analogy to experimental data for a structurally similar compound.

^{*} The highest hazard designation of any of the oligomers with MW <1,000.

^{*} Phosphonate Oligomer, with a MW range of 1,000 to 5,000, may contain significant amounts of an impurity, depending on the final product preparation. This impurity has hazard designations that differ from the polymeric flame retardant, as follows: MODERATE (experimental) designation for carcinogenicity, reproductive and repeated dose toxicity, skin sensitization, eye and dermal irritation; and HIGH (experimental) designation for developmental toxicity and acute & chronic aquatic toxicity.

		Human Health Effects											Aquatic Toxicity ^{**}		Environmental Fate	
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Phosphonate Oligomer [¥]	68664-06-2	L	M	L^{\S}	$L^{\mathbb{Y}}$	$L^{\mathbb{Y}}$	M^{\ddagger}	$L^{\S{F}}$	$L^{\S{F}}$		$M^{\ddagger \Psi}$	M [‡]	L¥	H^{\ddagger}	VH	H^{\ddagger}

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Phosphonate Oligomer

Polymeric: Yes

Oligomers: The polymers are produced from the trans-esterification of methyldiphenylphosphonate and bisphenol A. The MW of Phosphonate Oligomer ranges between 1,000 and 5,000. Oligomers with MW <1,000 are expected to be present in 25% of the Phosphonate Oligomer formulation.

	Phosphonate Oligomer CASRN 68664-06-2					
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	PHYSICAL/CHEMICAL PROPERTIES					
Melting Point (°C)	90 softening point (Measured)	FRX Polymers, Inc., 2009	The value corresponds to a softening point for the polymer.			
Boiling Point (°C)	>300 (Estimated for n \ge 3 oligomers)	Professional judgment	Cutoff value used for large, high MW solid.			
	>300 (Estimated for n=1; n=2 oligomers)	EPI; EPA, 1999	Cutoff value for high boiling point compounds according to High Production Volume (HPV) assessment guidance.			
Vapor Pressure (mm Hg)	$<10^{-8}$ (Estimated for n \ge 3 oligomers)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW polymers.			
	<10 ⁻⁸ (Estimated for n=1; n=2 oligomers)	EPI; EPA, 1999	Cutoff value for nonvolatile compounds according to HPV assessment guidance.			
Water Solubility (mg/L)	$<10^{-3}$ (Estimated for n \ge 3 oligomers)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW non- ionic polymers.			
	0.0015 (Estimated for n=1)	EPI				
	<10 ⁻³ (Estimated for n=2)	EPI; EPA, 1999	Cutoff value for non soluble compounds according to HPV assessment guidance.			
Log K _{ow}	No data located for $n \ge 3$ oligomers	Professional judgment	This polymer is not amenable to available estimation methods.			
	7.2 (Estimated for n=1)	EPI				
	11 (Estimated for n=2)	EPI; EPA, 1999	Estimated value is greater than the cutoff value, >10, according to methodology based on HPV assessment guidance.			
Flammability (Flash Point)	Nonflammable (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.			

Phosphonate Oligomer CASRN 68664-06-2				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Explosivity		Not expected to form explosive mixtures with air (Estimated)Professional judgmentNo ex on its		No experimental data located; based on its use as a flame retardant.
Pyrolysis		No data located.		
рН		Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.
pK _a		Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.
		HUMAN HEALTH EFF	ECTS	
Toxicokinetics		No absorption is expected for any route of exposure for the neat material of Phosphonate Oligomer. The lower MW fraction, in solution, is predicted to have poor absorption for all routes. The higher MW oligomers are large, with a MW >1,000. Based on professional judgment, Phosphonate Oligomer is expected to have limited bioavailability and therefore is not expected to be readily absorbed, distributed or metabolized in the body.		
Dermal Absorption	n <i>in vitro</i>			No data located.
Absorption, Distribution, Metabolism & Excretion	Oral, Dermal or Inhaled	No absorption of Phosphonate Oligomer is expected for any route; poor absorption of the low MW fraction when in solution is expected for all routes. (Estimated)	Professional judgment	Estimated based on physical/chemical properties and limited bioavailability.
Acute Mammalian	Toxicity	LOW: Based on experimental LD ₅₀ valu	es of >2,000 mg/kg. The majority	of this polymer consists of high
		MW oligomers. Thus, this compound is	also expected to have limited bio	availability and therefore has low
	Onol	potential for acute mammalian toxicity.	EBX Polymore Inc. 2010	Conducted according to
	Orai		TRA Forymers, me., 2010	Organisation of Economic Cooperation and Development (OECD) 420; test substance: FRX oligophosphonate.
	Dermal	Limited bioavailability expected	Professional judgment;	Based on cutoff value for large,
	Inhalation	(Estimated)	Boethling et al., 1997	high MW non-ionic polymers.

Phosphonate Oligomer CASRN 68664-06-2					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Carcinogenicity		MODERATE: There is uncertainty for Phosphonate Oligomer due to the lack of data for this substance.			
		Carcinogenic effects cannot be ruled out	•		
	OncoLogic Results			This polymer is not amenable to	
				available estimation methods.	
	Carcinogenicity (Rat and Mouse)			No data located.	
	Combined Chronic			No data located.	
	Toxicity/				
	Carcinogenicity				
Genotoxicity	L	LOW: Estimated for Phosphonate Oligo	omer based on analogy to BAPP	(181028-79-5).	
	Gene Mutation in vitro	Limited bioavailability expected for the	Professional judgment;	Based on polymer assessment	
		high MW (>1,000) components.	Boethling et al., 1997	literature.	
		(Estimated)			
		Negative, Ames assay (standard plate) in	NICNAS NA/869, 2000;	Based on analogy to BAPP;	
		Salmonella typhimurium strains TA98,	Professional judgment	Sufficient study details were	
		TA100, TA1537, TA1535, and <i>E. coli</i>		reported in a secondary source;	
		WP2uvrA with and without metabolic		used OECD test guidelines (OECD	
		activation. (Estimated by analogy)		471 & 472). Data are for	
				commercial mixture of BAPP.	
		Negative, Ames assay (standard plate) in	NICNAS NA/773, 2000;	Based on analogy to BAPP.	
		Salmonella typhimurium strains TA98,	Professional judgment	Sufficient study details were	
		TA100, TA1537, TA1535, and <i>E. coli</i>		reported in a secondary source;	
		WP2uvrA with and without metabolic		used OECD test guidelines (OECD	
		activation. (Estimated by analogy)		471 & 472). Data are for the	
				predominant component of BAPP.	
	Gene Mutation in vivo			No data located.	
	Chromosomal	Negative for chromosome aberrations in	FRX Polymers, Inc, 2011c	Conducted in compliance with	
	Aberrations in vitro	Chinese hamster lung (CHL)/IU cells		good laboratory practice.	
		with and without metabolic activation.			

Phosphonate Oligomer CASRN 68664-06-2				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Negative, did not produce chromosomal aberrations in CHO cells with and without metabolic activation. (Estimated by analogy)	NICNAS NA/869, 2000; Professional judgment	Based on analogy to BAPP. Sufficient study details were reported in a secondary source; used OECD test guidelines (OECD 473). Data are for commercial mixture of BAPP.	
	Negative, did not produce chromosomal aberrations in CHL cells with and without metabolic activation. (Estimated by analogy)	NICNAS NA/773, 2000; Professional judgment	Based on analogy to BAPP. Sufficient study details were reported in a secondary source; used EC/European Economic Community (EEC) test guidelines (EC Directives 87/18/EEC and 88/320/EEC). Data are for the predominant component of BAPP.	
Chromosomal Aberrations <i>in vivo</i>	Negative; did not increase micronucleated polychromatic erythrocytes in bone marrow cells of mice. (Estimated by analogy)	NICNAS NA/869, 2000; Professional judgment	Based on analogy to BAPP. Sufficient study details were reported in a secondary source; used OECD test guidelines (OECD 474). Data are for commercial mixture of BAPP.	
DNA Damage and Repair			No data located.	
Other			No data located.	
Reproductive Effects	LOW: The high MW components of Pho and therefore have low potential for rep assessment literature. No structural aler were identified for the lower MW oligon	osphonate Oligomer are expecte roductive effects based on profe ts or mechanistic pathways asso neric material (n=1 and n=2).	d to have limited bioavailability ssional judgment and the polymer ociated with reproductive effects	
Reproduction/ Developmental Toxicity Screen	Limited bioavailability expected. (Estimated for n ≥3 oligomers) No data located (For n=1 and n=2 oligomers)	Professional judgment; Boethling et al., 1997 Professional judgment	Based on cutoff value for large, high MW non-ionic polymers.No structural alerts or mechanistic pathways associated with reproductive effects were identified for the lower MW oligomeric	

Phosphonate Oligomer CASRN 68664-06-2				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen	Limited bioavailability expected. (Estimated for n≥3 oligomers) No data located (For n=1 and n=2 oligomers)	Professional judgment; Boethling et al., 1997 Professional judgment	Based on cutoff value for large, high MW non-ionic polymers. No structural alerts or mechanistic pathways associated with reproductive effects were identified for the lower MW oligomeric material.
	Reproduction and Fertility Effects	Limited bioavailability expected. (Estimated for n ≥3 oligomers) No data located (For n=1 and n=2 oligomers)	Professional judgment; Boethling et al., 1997 Professional judgment	Based on cutoff value for large, high MW non-ionic polymers. No structural alerts or mechanistic pathways associated with reproductive effects were identified for the lower MW oligomeric material.
Developmental Eff	ects	LOW: The high MW polymeric material is expected to have limited bioavailability and therefore has low		
		potential for developmental effects based on professional judgment and the polymer assessment literature. No structural alerts or mechanistic pathways associated with developmental effects were identified for the lower MW objective material $(n=1 \text{ and } n=2)$.		
	Reproduction/ Developmental Toxicity Screen	Limited bioavailability expected. (Estimated for n≥3 oligomers) No data located (Estimated for n=1 and n=2 oligomers)	Professional judgment; Boethling et al., 1997 Professional judgment	Based on cutoff value for large, high MW non-ionic polymers.No structural alerts or mechanistic pathways associated with reproductive effects were identified for the lower MW oligomeric material.
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen	Limited bioavailability expected. (Estimated for n≥3 oligomers) No data located (Estimated for n=1 and n=2 oligomers)	Professional judgment; Boethling et al., 1997 Professional judgment	Based on cutoff value for large, high MW non-ionic polymers.No structural alerts or mechanistic pathways associated with reproductive effects were identified for the lower MW oligomeric material.

Phosphonate Oligomer CASRN 68664-06-2						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Neurotoxicity		MODERATE: A moderate hazard is estimated for the Phosphonate Oligomer. There is potential for				
		neurotoxicity based on the presence of the phenol structural alert.				
	Neurotoxicity Screening	Limited bioavailability expected.	Professional judgment;	Based on cutoff value for large,		
	Battery (Adult)	(Estimated for $n \ge 3$ oligomers)	Boethling et al., 1997	high MW non-ionic polymers.		
	Other	Potential for neurotoxic effects based on	Professional Judgment	Estimated based on a structural		
		a structural alert for organophosphates		alert for organophosphates and		
		(Estimated by analogy)		professional judgment.		
Repeated Dose Eff	ects	LOW: A low hazard is estimated for the	lower MW oligomers of Phosphere	onate Oligomer based on analogy		
_		to BAPP (181028-79-5), which has a low	hazard potential for this endpoin	nt. The hazard designation for		
		oligomers with n ≥3 is also of low hazard	l potential based on limited bioav	ailability.		
		Limited bioavailability expected.	Professional judgment;	Based on cutoff value for large,		
		(Estimated for $n \ge 3$ oligomers)	Boethling et al., 1997	high MW non-ionic polymers.		
		In a 28-day oral (gavage) study in	NICNAS NA/869, 2000;	Based on analogy to BAPP.		
		Sprague-Dawley rats, there were no	Professional judgment	Sufficient study details were		
		treatment-related changes in any of the		reported; used OECD test		
		parameters measured.		guidelines (OECD 407). Data are		
		NOEL ≥1,000 mg/kg-day (highest dose		for commercial mixture of BAPP.		
		tested) (Estimated by analogy)				
		In a 28-day oral (gavage) study in	NICNAS NA/773, 2000;	Based on analogy to BAPP.		
		Sprague-Dawley rats, there were no	Professional judgment	Sufficient study details were		
		treatment-related changes in any of the		reported; used EEC test guidelines		
		parameters measured NOEL ≥1,000		(EEC Directive 92/69/EEC,		
		mg/kg-day (highest dose tested).		Method B7). Data are for the		
		(Estimated by analogy)		predominant component of BAPP.		
Skin Sensitization		LOW: Based on expert judgment, Phosp	phonate Oligomer is not estimated	d to have potential for skin		
		sensitization. No experimental data were	e located for this compound. For	the lower MW oligomers, the		
		hazard designation is low based on analog	ogy to BAPP (181028-79-5).			
	Skin Sensitization	Not expected to be a skin sensitizer	Expert judgment	Estimated based on expert		
		(Estimated for $n \ge 3$ oligomers)		judgment.		

Phosphonate Oligomer CASRN 68664-06-2				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Non-sensitizing, guinea pig (Estimated by analogy)	NICNAS NA/869, 2000; Professional judgment	Based on analogy to BAPP. Conducted according to EEC/OECD guidelines (OECD 406). Data are for commercial mixture of BAPP.
		Non-sensitizing, guinea pig (Estimated by analogy)	NICNAS NA/773, 2000; Professional judgment	Based on analogy to BAPP. Conducted according to EEC/OECD guidelines (OECD 406). Data are for the predominant component of BAPP.
Respiratory Sensit	ratory Sensitization No data located.			
	Respiratory Sensitization			No data located.
Eye Irritation		MODERATE: There is potential for irr	itation for Phosphonate Oligome	r based on the phenol moieties.
	Eye Irritation	Uncertain potential for irritation based on the phenol moieties. (Estimated)	Professional judgment	Estimated based on phenol moieties.
Dermal Irritation		MODERATE: There is potential for irr	itation for Phosphonate Oligome	r based on the phenol moieties
	Dermal Irritation	Uncertain potential for irritation based on the phenol moieties. (Estimated)	Professional judgment	Estimated based on phenol moieties.
Endocrine Activity	y	Based on expert judgment; Phosphonat	e Oligomer is not expected to hav	ve endocrine activity due to its poor
		bioavailability and inability to be readil	y metabolized in the body.	
		Limited bioavailability expected. (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff value for large, high MW non-ionic polymers.
Immunotoxicity		Based on expert judgment; Phosphonate	e Oligomer is expected to have lin	nited bioavailability and therefore
		has low potential for hazard.		
	Immune System Effects	Limited bioavailability expected. (Estimated)	Protessional judgment; Boethling et al., 1997	Based on cutoff value for large, high MW non-ionic polymers.

Phosphonate Oligomer CASRN 68664-06-2					
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
ECOTOXICITY					
ECOSAR Class	Not applicable for $n \ge 3$ oligomers. Polyphe	nols for $n=1$ and $n=2$.			
Acute Toxicity	LOW: Estimated data for Phosphonate	Oligomer suggest no effects at sa	turation (NES) for the acute		
	aquatic toxicity endpoints for the n=1 ar	nd n=2 oligomers and the non-ior	ic polymers with a MW >1,000		
	that do not contain reactive functional g	roups and are estimated to have	NES. These polymers display NES		
	because the amount dissolved in water is not anticipated to reach a concentration at which adverse effects				
	may be expressed. Bloavailability is limi	ted because this chemical cannot	be absorbed through membranes		
Fich I C	NES	Professional judgment	The large MW limited		
F 1511 L C ₅₀	INES .	i foressional judgment	bioavailability and low water		
			solubility suggest there will be		
			NES.		
	Fish	ECOSAR version 1.11	NES: The log K_{ow} of 7.2 for this		
	96-hour $LC_{50} = 0.022 \text{ mg/L}$		chemical exceeds the SAR		
	(Estimated for n=1)		limitation for log Kow of 5.5; NES		
	ECOSAR: Phenols, Poly		are predicted for these endpoints.		
	Fish	ECOSAR version 1.11	NES: The log K_{ow} of 7.2 for this		
	96-hour $LC_{50} = 0.009 \text{ mg/L}$		chemical exceeds the SAR		
	(Estimated for n=1)		limitation for log K _{ow} of 5.0; NES		
	ECOSAR: Neutral organics		are predicted for these endpoints.		
			Narcosis classes (neutral organics)		
			are provided for comparative		
			methodology will use the lowest		
			estimated toxicity value provided		
			by ECOSAR classes that have a		
			more specific mode of action		
			relative to narcosis. ECOSAR also		
			provided results for the Esters, and		
			Esters (phosphate) classes;		
			however, professional judgment		
			indicates that this compound does		
			not lie within the domain of the		
			ECOSAR model.		

Phosphonate Oligomer CASRN 68664-06-2				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Fish 96-hour $LC_{50} = 0.00026 \text{ mg/L}$ (Estimated for n=2) ECOSAR: Phenols, Poly	ECOSAR version 1.11	NES: The log K_{ow} of 11 for this chemical exceeds the SAR limitation for log K_{ow} of 5.5; NES are predicted for these endpoints.	
	Fish 96-hour LC ₅₀ = 0.0000087 mg/L (Estimated for n=2) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K _{ow} of 11 for this chemical exceeds the SAR limitation for log K _{ow} of 5.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.	
Daphnid LC ₅₀	Daphnia magna 48-hour EC ₅₀ >0.275 mg/L; semi static conditions. (Experimental)	FRX Polymers, Inc, 2011a	Study conducted according to guidelines for daphnia acute immobilization test; test substance purity = 96.39% . It is not clear if the reported value represents nominal or actual concentrations of dissolved species.	
	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.	

Phosphonate Oligomer CASRN 68664-06-2				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Daphnid 48-hour $LC_{50} = 0.022 \text{ mg/L}$ (Estimated for n=1) ECOSAR: Phenols, Poly Daphnid	ECOSAR version 1.11	NES: The log K_{ow} of 7.2 for this chemical exceeds the SAR limitation for log K_{ow} of 5.5; NES are predicted for these endpoints.	
	48-hour LC ₅₀ = 0.013 mg/L (Estimated for n=1) ECOSAR: Neutral organics	ECOSAR Version 1.11	NES: The log K _{ow} of 7.2 for this chemical exceeds the SAR limitation for log K _{ow} of 5.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.	
	Daphnid	ECOSAR version 1.11	NES: The log K_{ow} of 11 for this	
	48-hour $LC_{50} = 0.000061 \text{ mg/L}$		chemical exceeds the SAR	
	(Estimated for $n=2$) ECOSAR: Phenols Poly		limitation for log K_{ow} of 5.5; NES are predicted for these endpoints	
	Daphnid 48-hour $LC_{50} = 0.000061 \text{ mg/L}$ (Estimated for n=2) ECOSAR: Phenols, Poly	ECOSAR version 1.11	purposes; DfE assessment methodology will use the lowess estimated toxicity value provide by ECOSAR classes that have a more specific mode of action relative to narcosis. ECOSAR a provided results for the Esters, a Esters (phosphate) classes; however, professional judgment indicates that this compound do not lie within the domain of the ECOSAR model. NES: The log K _{ow} of 11 for this chemical exceeds the SAR limitation for log K _{ow} of 5.5; NI are predicted for these endpoint	

Phosphonate Oligomer CASRN 68664-06-2			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Daphnid 48-hour LC ₅₀ = 0.000024 mg/L (Estimated for n=2) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K _{ow} of 11 for this chemical exceeds the SAR limitation for log K _{ow} of 5.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.
Green Algae EC ₅₀	Pseudokirchneriella subcapitata 72-hour EC ₅₀ >0.124 mg/L (Experimental) NES	FRX Polymers, Inc, 2011b Professional judgment	Study conducted according to guidelines for algal growth inhibition test; test substance purity = 96.39%. It is not clear if the reported value represent nominal or actual concentrations of dissolved species. The large MW, limited
			bioavailability and low water solubility suggest there will be NES.
	Green algae 96-hour EC ₅₀ = 0.19 mg/L (Estimated for n=1) ECOSAR: Phenols, Poly	ECOSAR version 1.11	NES: The log K_{ow} of 7.2 for this chemical exceeds the SAR limitation for log K_{ow} of 6.4; NES are predicted for these endpoints.

Phosphonate Oligomer CASRN 68664-06-2			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Green algae 96-hour EC ₅₀ = 0.012 mg/L (Estimated for n=1) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 7.2 for this chemical exceeds the SAR limitation for log K_{ow} of 6.4; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.
	Green algae 96 hour EC = 0.018 mg/J	ECOSAR version 1.11	NES: The log K_{ow} of 11 for this chemical exceeds the SAP
	(Estimated for $n=2$)		limitation for log K _{ow} of 6.4: NES
	ECOSAR: Phenols, Poly		are predicted for these endpoints.

Phosphonate Oligomer CASRN 68664-06-2								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
	Green algae 96-hour EC ₅₀ = 0.000024 mg/L (Estimated for n=2) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K _{ow} of 11 for this chemical exceeds the SAR limitation for log K _{ow} of 6.4; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.					
Chronic Aquatic Toxicity	HIGH: Based on estimated data for chro	onic aquatic toxicity endpoints fo	r the n=1 and n=2 oligomers. It					
	should be noted that the estimated value	es may be near the limit of the do	main of applicability for this					
	estimation model and there is a high deg	ree of uncertainty in these estimates	ated results.					
Fish ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.					
	Fish 30-day ChV = 0.005 mg/L (Estimated for n=1) ECOSAR: Phenols, Poly	ECOSAR version 1.11	The estimated value is close to the cutoff value of this ECOSAR class. There is a high degree of uncertainty as the estimates for this compound are at the limits of the domain for this estimation model.					

Phosphonate Oligomer CASRN 68664-06-2									
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY						
	Fish 30-day ChV = 0.0015 mg/L (Estimated for n=1) ECOSAR: Neutral organics	ECOSAR version 1.11	The estimated value is close to the cutoff value of this ECOSAR class. There is a high degree of uncertainty as the estimates for this compound are at the limits of the domain for this estimation model. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.						
	Fish	ECOSAR version 1.11	NES: The log K_{ow} of 11 for this						
	30-day ChV = 0.000037 mg/L		chemical exceeds the SAR						
	(Estimated for $n=2$) ECOSAR: Phenols Poly		initiation for log K_{ow} of 8.0; NES						
	ECOSAR. FIICIOIS, FOIY		are predicted for these endpoints.						

Phosphonate Oligomer CASRN 68664-06-2								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
	Fish 30-day ChV = 0.0000022 mg/L (Estimated for n=2) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K _{ow} of 11 for this chemical exceeds the SAR limitation for log K _{ow} of 8.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.					
Daphnid ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.					
	Daphnid Daphnid ChV = 0.006 mg/L (Estimated for n=1) ECOSAR: Phenols, Poly	ECOSAR version 1.11	The estimated value is close to the cutoff value of this ECOSAR class. There is a high degree of uncertainty as the estimates for this compound are at the limits of the domain for this estimation model.					

Phosphonate Oligomer CASRN 68664-06-2									
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY						
	Daphnid Daphnid ChV = 0.003 mg/L (Estimated for n=1) ECOSAR: Neutral organics	ECOSAR version 1.11	The estimated value is close to the cutoff value of this ECOSAR class. There is a high degree of uncertainty as the estimates for this compound are at the limits of the domain for this estimation model. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.						
	Daphnid Darhrid ChV 0.000012 mg/	ECOSAR version 1.11	NES: The log K_{ow} of 11 for this						
	Dapnnia CNV = 0.000013 mg/L (Estimated for n=2)		cnemical exceeds the SAK limitation for log K of 8.0: NFS						
	ECOSAR: Phenols, Poly		are predicted for these endpoints.						

Phosphonate Oligomer CASRN 68664-06-2								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
	Daphnid Daphnid ChV = 0.00001 mg/L (Estimated for n=2) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K _{ow} of 11 for this chemical exceeds the SAR limitation for log K _{ow} of 8.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.					
Green Algae ChV	NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.					
	Green algae ChV = 0.054 mg/L (Estimated for n=1) ECOSAR: Phenols, Poly	ECOSAR version 1.11	Chemical may not be soluble enough to measure this predicted effect; ChV value exceeds water solubility.					

Phosphonate Oligomer CASRN 68664-06-2									
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY						
	Green algae ChV = 0.034 mg/L (Estimated for n=1) ECOSAR: Neutral organics	ECOSAR version 1.11	Chemical may not be soluble enough to measure this predicted effect; ChV value exceeds water solubility. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.						
	Green algae $ChV = 0.000 \text{ mg/}$	ECOSAR version 1.11	NES: The log K_{ow} of 11 for this shemical exceeds the SAP						
	Cnv = 0.009 mg/L (Estimated for n=2)		chemical exceeds the SAK						
	ECOSAR: Phenols, Poly		are predicted for these endpoints.						

Phosphonate Oligomer CASRN 68664-06-2								
PROPERTY	/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
		Green algae ChV = 0.00037 mg/L (Estimated for n=2) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 11 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model				
		ENVIRONMENTAL F.	ATE					
Transport		The estimated negligible water solubility is anticipated to partition predominantly $<10^{-8}$ atm-m ³ /mole indicates that it is not K_{oc} of >30,000 indicates that it is not anti potential to adsorb to sediment.	and estimated negligible vapor p to soil and sediment. The estima expected to volatilize from water cipated to migrate from soil into	pressure indicate that this polymer ted Henry's Law Constant of to the atmosphere. The estimated groundwater and also has the				
Her (atı	enry's Law Constant m-m ³ /mole)	<10 ⁻⁸ (Estimated for n≥3 oligomers)	Professional judgment; Boethling et al., 1997	Cutoff value used for large, high MW polymers. High MW polymers are expected to have low vapor pressure and are not expected to undergo volatilization.				
		<10 ⁻⁸ (Estimated for n=1 and n=2)	EPI; Professional judgment	Cutoff value for nonvolatile compounds.				

		Phosphonate Oligomer CASR	N 68664-06-2				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	>30,000 (Estimated for n≥3 oligomers)	Professional judgment; Boethling et al., 1997	Cutoff value used for large, high MW polymers. High MW polymers are expected to adsorb strongly to soil and sediment			
		>30,000 (Estimated for n=1 and n=2)	EPI; EPA, 2004	Cutoff value for non-mobile compounds.			
	Level III Fugacity Model	Air $\leq 1\%$ Water $< 1\%$ Soil = 53% Sediment = 46% (Estimated for n = 1 and n = 2)	EPI	No data located for the high MW component of the polymers.			
Persistence		VERY HIGH: The high MW component solubility and poor bioavailability to mic are expected to be important removal pr groups that would be expected to absorb degradation values suggest a half-life of 2	s (MW >1,000) of this polymer an roorganisms indicating that neith ocesses in the environment. The p light at environmentally significa >180 days.	re expected to have negligible water ner biodegradation nor hydrolysis polymer does not contain functional ant wavelengths. Evaluation of these			
Water	Aerobic Biodegradation	Recalcitrant (Estimated for $n \ge 3$ oligomers)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to be non-biodegradable.			
		Weeks (Primary Survey Model) Recalcitrant (Ultimate Survey Model) for n=1 (Estimated)	EPI				
		Weeks-months (Primary Survey Model Recalcitrant (Ultimate Survey Model) for n=2 (Estimated)	EPI				
	Volatilization Half-life for Model River	>1 year (Estimated)	Professional judgment	This polymer is anticipated to be nonvolatile.			
	Volatilization Half-life for Model Lake	>1 year (Estimated)	Professional judgment	This polymer is anticipated to be nonvolatile.			
Soil	Aerobic Biodegradation	Recalcitrant (Estimated for $n \ge 3$ oligomers)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to be non-biodegradable.			

Phosphonate Oligomer CASRN 68664-06-2								
PROI	PERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Anaerobic Biodegradation	Recalcitrant (Estimated for n ≥3 oligomers)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to be resistant to removal under anoxic conditions due to their limited bioavailability.				
	Soil Biodegradation w/ Product Identification			No data located.				
	Sediment/Water Biodegradation			No data located.				
Air	Atmospheric Half-life			No data located.				
Reactivity	Photolysis	Not a significant fate process (Estimated)	Mill, 2000; Professional judgment	The substance does not contain functional groups that would be expected to absorb light at environmentally significant wavelengths.				
Hydrolysi	Hydrolysis	>1 year (Estimated)	Professional judgment	Given the limited solubility estimated for this material, hydrolysis is not anticipated to occur to an appreciable extent.				
Environmental	Half-life	>180 days (Estimated)	Professional judgment	The majority of this substance has a MW >1,000 and is not anticipated to be assimilated by microorganisms. Therefore, biodegradation is not expected to be an important removal process. It is also not expected to be removed by other degradative processes under environmental conditions because of limited water solubility and limited partitioning to air.				

		Pho	N 68664-06-2			
PROPER	TY/ENDPOINT		DATA	L	REFERENCE	DATA QUALITY
Bioaccumulation		HIGH: Altho conservative a anticipated. T oligomers are	ugh meast approach. The high N e expected	ured BCF values The BAF estima IW oligomers do to have poor bios	are available, estimated BAF valu tes are consistent with the potenti not contribute to the bioaccumul availability and are not expected	ues are incorporated for a fal for bioaccumulation that is ation designation. The high MW to be bioaccumulative.
	Fish BCF	Eight compon MW <1,000 w "Bioconcentra substances in : <i>Cyprinus carp</i> 0.01 and 0.007 Results: Mass to charge ratio (m/z) 383 517 688 822 976 537 577 825	ents of this vere tested tion test of fish and sh <i>io</i> . Test co I mg/L. High Conc. Level BCF \leq 41 \leq 85 \leq 60 \leq 67 \leq 53 274 82-250 <20-52	s polymer with according to f chemical ellfish" in ncentrations of Low Conc. Level BCF <222 <223-242 <142 <114-280 <128 <200-560 <200-534 <200	FRX Polymers Inc., 2012	Reported as Japanese notification, guideline study.
		<100 (Estimat	ed for n≥3	oligomers)	Professional judgment	The substance has a MW >1,000 and is not anticipated to be taken up by aquatic organisms; therefore, bioconcentration is not expected.
		10,000 (Estim	ated for n=	=1)	EPI	
		190 (Estimate	d for $n=2$)		EPI	

Phosphonate Oligomer CASRN 68664-06-2									
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY					
	BAF	For n ≥3 oligomers		No data located.					
		780,000 (Estimated for n=1)	EPI						
		64,000 (Estimated for n=2)	EPI						
	Metabolism in Fish	No data located.							
		ENVIRONMENTAL MONITORING AN	D BIOMONITORING						
Environmental Mo	nitoring	No data located.							
Ecological Biomoni	Biomonitoring No data located.								
Human Biomonitoring This chemical was not included in the National Health and Nutrition Examination Survey biomonitorin (CDC, 2011).				tion Survey biomonitoring report					

Boethling, Robert S. and Nabholz, J. Vincent "Environmental Assessment of Polymers under the U.S. Toxic Substances Control Act", pp. 187-234, in Ecological Assessment of Polymers Strategies for Product Stewardship and Regulatory Programs, Hamilton, John D. and Sutcliffe, Roger (eds.), (1997) Van Nostrand Reinhold.

CDC (Centers for Disease Control and Prevention). *Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables.* Department of Health and Human Services **2011.** Available at: <u>http://www.cdc.gov/exposurereport/</u> as of May 10, 2011

[HPV Assessment Guidance] EPA (U.S. Environmental Protection Agency). High Production Volume (HPV) Challenge. Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. http://www.epa.gov/hpv/pubs/general/datadfin.htm

ECOSAR/EPI (EPIWIN/EPISUITE) Estimations Programs Interface for Windows, Version 1.11. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

EPI (EPIWIN/EPISUITE) Estimation Program Interface for Windows, Version 4.1. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>

U.S. EPA. 2004. The Pollution Prevention (P2) Framework, EPA-748-B-03-001. Office of Pollution Prevention and Toxics 7403M, U.S. Environmental Protection Agency, Washington, DC. 20460. October 2003 version updated in January 2004. Latest version available at http://www.epa.gov/opptintr/newchems/pubs/sustainable/p2frame-june05a2.pdf

EPA Sustainable Futures. *Using Non Cancer Screening within the SF Initiative*. U.S. Environmental Protection Agency: Washington D.C. **2010**. http://www.epa.gov/opptintr/sf/pubs/noncan-screen.htm#systemic as of February 19, 2012.

EPA. TSCA New Chemicals Program Chemical Categories. U.S. Environmental Protection Agency: Washington, DC. **2010c.** <u>http://www.epa.gov/oppt/newchems/pubs/npcchemicalcategories.pdf as of November 25</u>, 2013.

European Chemical Substances Information System (ESIS) Classification, Labeling and Packaging of Dangerous Substances Annex VI to Regulation (EC) No 1272/2008 [Online] available at: http://esis.jrc.ec.europa.eu/home.php as of May 10, **2011**.

FRX Polymers. FRX 100 Homopolymer Material Safety Data Sheet (MSDS). Revised October 2, 2009.

FRX Polymers, Inc. FRX oligophosphonate: Acute oral toxicity in the rat – fixed dose method. FRX Polymers, Inc. Chelmsford, MA. Project number 41003294. **2010**. (Submitted unpublished study).

FRX Polymers, Inc. Final report. Acute immobilization test of FRX OL 1001 with Daphnia magna. Study No. A100584. **2011a**. (Submitted unpublished study).

FRX Polymers, Inc. Final report. Growth inhibition test of FRX OL 1001 with green algae. Study No. A100583. **2011b**. (Submitted unpublished study).

FRX Polymers, Inc. Chromosomal aberration study of FRX OL 1001 in cultured mammalian cells. FRX Polymers, Inc. Chelmsford, MA. B1001175. **2011c**. (Submitted unpublished study).

FRX Polymers, Inc. Final report. Bioconcentration Study of FRX OL 1001 with Carp. Study No. A100581. **2012**. (Submitted unpublished study).

Mill, T. (2000) Photoreactions in Surface Waters. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (355-382). Boca Raton: Lewis Publishers.

NICNAS NA/773 (National Industrial Chemicals Notification and Assessment Scheme). *Phosphoric acid, (1-methylethylidene) di- 4,1-phenylene tetraphenyl ester (Fyrolflex BDP)*. File No. NA/773. **2000**.

NICNAS NA/869 (National Industrial Chemicals Notification and Assessment Scheme). *Phosphoric Trichloride, Reaction Products with Bisphenol A and Phenol*). File No. NA/869. **2000**.

Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol; BPBP

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. ^{*} The highest hazard designation of any of the oligomers with MW <1,000.

[§] Based on analogy to experimental data for a structurally similar compound.

			Human Health Effects					Aquatic Toxicity**EnvironmentaFate			nmental ate					
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
		•	•					•		•						
Phosphoric acid, mixed esters with [1,1'- bisphenyl-4,4'-diol] and phenol; BPBP	1003300-73-9	L	М	L	$L^{\$}$	$L^{\$}$	L	L	L		VL	VL	H^{\S}	H^{\S}	Н	M [‡]

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol; BPBP

		CASRN: 1003300-73-9		
		$\mathbf{MW}_{\mathbf{k}} (50.6 (n - 1), 074.8 (n - 2))$		
\square		NIV: $(n \ge 2)$; $(n \ge 1)$; $9/4.8$ $(n = 2)$;		
	-	≥1000 (l1≥3)		
		MF: $C_{36}H_{28}O_8P_2$ (n = 1)		
		Physical Forms:		
l ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		Neat: Solid or liquid (depending on		
	(oligomer distribution)		
n = 1	-4	Use: Flame retardant		
SMILES: O=P(Oc1ccccc1)(Oc1ccccc1)Oc1ccc(cc1)c1ccc(cc1)OP(=O)(Oc1ccccc1)Oc1	$\operatorname{ccccc1}(n=1)$			
c1(c6cc(OP(=O)(Oc8ccc(c4ccc(OP(=O)(Oc9ccccc9)Oc5ccccc5)cc4)cc8)Oc3ccccc3)ccc6)ccc(OP(=O)(Oc7cccc7)Oc2cccc2)d	cc1 (n = 2)		
Synonyms: Phosphoric acid, P,P'-[1,1'-biphenyl]-4,4'-diyl P,P,P',P'-tetraphenyl ester; Bip 1752F.	henyl-4,4'-diyl tetraphenyl bis(phosph	nate); BPBP; ADK STAB FP-800; T-		
Chemical Considerations: The $n = 1$ (>80% of composition) and $n = 2$ oligometric are am	enable to EPI v4.1 estimation methods	s for physical/chemical and		
environmental fate values and ECOSAR v1.11 for ecotoxicity values in the absence of ex-	perimental data. The higher MW oligo	omers (n = 2-4) that have MWs >1.000		
are assessed together using information contained in the literature concerning polymer ass	essment and professional judgment (E	Boethling et al., 1997).		
Polymeric: Yes				
Oligomers: The $n = 1$ structure comprises >80% of the mixture, with the balance primar	ily made up of higher oligomers ($n = 2$	2, 3, 4, etc.).		
Analog: Confidential compounds Anal	og Structure: No structure provided f	for confidential compounds.		
Endpoint(s) using analog values: Acute and chronic aquatic toxicity,		-		
reproductive and developmental effects				
Metabolites, Degradates and Transformation Products: None identified. Degradation	of Phosphoric acid, mixed esters with	[1,1'-bisphenyl-4,4'-diol] and phenol		
has not been well demonstrated in experimental studies (Submitted confidential study); no	degradates have been identified. Deg	gradation of Phosphoric acid, mixed		
esters with [1,1'-bisphenyl-4,4'-diol] and phenol by sequential dephosphorylation could pr	oduce phenol (CASRN 108-95-2), 4,4	'-dihydroxybiphenyl (CASRN 92-88-		
6) and diphenyl phosphate (CASRN 838-85-7). The importance of dephosphorylation rela	tive to possible competing pathways h	has not been demonstrated in a		
published study. Therefore the hazards of the theoretical degradation products were not considered in this hazard assessment.				
Structural Alerts: None identified				
Risk Phrases: None				
Hazard and Risk Assessments: None				

Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol CASRN 1003300-73-9				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	PHYSICAL/CHEMICAL PR	OPERTIES		
Melting Point (°C)	53 - 83 (Measured)According to Organisation of EconomicCooperation and Development (OECD)102; using good laboratory practice (GLP)	Submitted confidential studies	Guideline study reported in a submitted confidential study for the polymeric mixture.	
	65-85 (Measured)	Adeka-Palmarole, 2013	Guideline study reported for the commercial product ADK STAB FP-800.	
Boiling Point (°C)	Not determinable; decomposes above 260°C before boiling according to OECD 103 study; using GLP (Measured)	Submitted confidential studies	Guideline study reported in a submitted confidential study for the polymeric mixture.	
	>300 (Estimated for n=1; n=2 oligomers)	EPI; EPA, 1999	Estimate based on the representative oligomers (n=1 and n=2) with a MW <1,000. Cutoff value for high boiling point compounds according to High Production Volume (HPV) assessment guidance.	
	>300 (Estimated for n \ge 3 oligomers)	Professional judgment	Cutoff value for high boiling point compounds according to HPV assessment guidance.	
Vapor Pressure (mm Hg)	4.0x10 ⁻⁷ (Measured) According to OECD 104 study; using GLP.	Submitted confidential studies	Guideline study reported in a submitted confidential study for the polymeric mixture.	
	$<10^{-8}$ (Estimated for n \ge 3 oligomers)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW polymers.	
	2.1x10 ⁻⁸ (Estimated for n=1; n=2 oligomers)	EPI	Estimate based on the representative oligomers (n=1 and n=2) with a MW <1,000.	

Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol CASRN 1003300-73-9			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Water Solubility (mg/L)	<0.01 (Measured) According to OECD 105 study; using GLP	Submitted confidential studies	Guideline study reported in a submitted confidential study.
	<10 ⁻³ (Estimated) for n=1; n=2	EPI; EPA, 1999	Cutoff value for non soluble compounds according to HPV assessment guidance.
	$<10^{-3}$ (Estimated for n \ge 3 oligomers)	Professional judgment; Boethling et al., 1997	Cutoff value for large high MW polymers.
Log K _{ow}	5.5 (Measured) According to GLP OECD 117 study; high performance liquid chromatography (HPLC) method	Submitted confidential studies	Reported in a submitted confidential study. Sufficient experimental details are not available to evaluate the results, although the reported value is likely for the commercial mixture and not a specific oligomer.
	9.2 (Estimated for n=1); 14 (Estimated for n=2)	EPI; EPA, 1999	Estimated value for n=2 oligomer is greater than the cutoff value, >10, according to methodology based on HPV assessment guidance.
	No data located (for n \geq 3 oligomers)	Professional judgment	This polymer is not amenable to available estimation methods.
Flammability (Flash Point)	Not highly flammable (Measured) According to a GLP EC method A.14 study	Submitted confidential studies	Reported in a submitted confidential study.
Explosivity	Not explosive (Measured)	Submitted confidential studies	Reported in a submitted confidential study.
Pyrolysis	>400°C (Measured) Auto-ignition temperature; GLP EC method A.15 study	Submitted confidential studies	Reported in a submitted confidential study.
рН	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.

Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol CASRN 1003300-73-9				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
pK _a		Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.
HUMAN HEALTH EFFECTS				
Toxicokinetics		There were no experimental studies available on the absorption, distribution, metabolism and/or excretion (ADME) of BPBP. Its absorption and systemic availability after topical or oral administration is expected to be limited, because of its MW (650.6), low water solubility (<0.01 mg/L at 20°C) and high lipophilicity (Log $K_{ow} = 5.5$ at 25°C) and because of the absence of relevant toxicity findings in available toxicity studies. Based on professional judgment, only limited absorption is expected by any route, followed by rapid excretion in feces and urine. This judgment is supported by a closely related analog. Availability of BPBP under a vapor state is unlikely because of its low vapor pressure (4.0 x 10 ⁻⁷ mm Hg at 25°C) and its decomposition at high temperatures prior to boiling. Its availability as an inhalable aerosol is unlikely because of its particle size.		
Dermal Absorption	n <i>in vitro</i>			No data located.
Absorption, Distribution, Metabolism & Excretion	Oral, Dermal or Inhaled	Estimated low potential for absorption expected by any route, followed by rapid excretion in feces and urine (Estimated by analogy) No absorption is expected for any route of exposure; poor absorption may be assumed of low MW oligomers (0% <600; 85% <1000) in solution in all routes (Estimated by analogy)	Submitted confidential studies; Professional judgment	Based on physical-chemical properties and confidential structural analogs.
Acute Mammalian	Toxicity	LOW: Based on oral and dermal LD_{50} v	alues of >2000 mg/kg in rats for 1 ue to mist particle size and solubi	BPBP. No experimental data were
		potential is estimated to be low.	ie to mist particle size and solubi	ncy properties, the minatation
Acute Lethality	Oral	LD_{50} >2000 mg/kg (no deaths)	Submitted confidential study	GLP OECD 420 (fixed dose) study; reported in a submitted confidential study.
	Dermal	$LD_{50} > 2000 \text{ mg/kg} \text{ (no deaths)}$	Submitted confidential study	GLP OECD 402 study; reported in a submitted confidential study.

Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol CASRN 1003300-73-9				
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY
	Inhalation			No data available; due to particle size and solubility properties assumed low hazard.
Carcinogenicity		MODERATE: BPBP may have low pote	ential for carcinogenicity based o	n professional judgment; there
		were no structural alerts in the molecule	e, and a similar confidential analog	og was negative for carcinogenicity.
		However, there is uncertainty regarding	the carcinogenicity of BPBP due be completely ruled out	e to the lack of data for this
	Oncol agia Degulta	substance. Carcinogenic effects cannot	be completely ruled out.	No data logatad: not amonable to
	OlicoLogic Results			available estimation methods.
	Carcinogenicity (Rat and Mouse)	Low potential for carcinogenicity		Professional judgment (based on
	Combined Chronic Toxicity/ Carcinogenicity	(Estimated based on analogy)	Professional judgment	similar confidential analog); no data located.
Genotoxicity		LOW: BPBP was not mutagenic to bact	eria <i>in vitro</i> or in mouse lymphod	vte (L5178Y) cells. No
		chromosomal aberrations were detected in an <i>in vitro</i> mammalian chromosomal aberration assay with		
		Chinese hamster fibroblasts.		
	Gene Mutation <i>in vitro</i>	Negative for mutagenicity in <i>S.</i> <i>typhimurium</i> and <i>E. coli</i> (strains not specified; metabolic activation not specified); No relevant cytotoxicity	Submitted confidential study	GLP OECD 471 study; reported in a submitted confidential study.
		Negative for mutagenicity in mouse lymphocyte (L5178Y) cells (metabolic activation unspecified); No relevant cytotoxicity	Submitted confidential study	GLP OECD 476 study; reported in a submitted confidential study.
	Gene Mutation in vivo			No data located.
	Chromosomal Aberrations <i>in vitro</i>	Negative for chromosomal aberrations in Chinese hamster fibroblasts (metabolic activation unspecified); No relevant cytotoxicity	Submitted confidential study	GLP OECD 473 study; reported in a submitted confidential study.
	Chromosomal Aberrations <i>in vivo</i>			No data located.

Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol CASRN 1003300-73-9				
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	DNA Damage and Repair			No data located.
	Other (Mitotic Gene Conversion)			No data located.
Reproductive Effects		LOW: Estimated based on analogy to a	similar confidential analog. The	re were no reproductive effects
		reported in studies using a confidential s	structural analog at doses up to 1	,000 mg/kg-day.
	Reproduction/ Developmental Toxicity Screen	Low potential based on structural analog; No maternal or fetal toxicity reported at 1,000 mg/kg-day NOAEL = 1,000 mg/kg-day (highest dose tested) (Estimated by analogy)	Submitted confidential study; Professional judgment	Estimate based on professional judgment (based on similar confidential analog - GLP OECD 421 study; reported in a submitted confidential study.
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen			No data located.
	Reproduction and Fertility Effects			No data located
Developmental Eff	lects	LOW: Estimated based on analogy to a reported in a confidential structural ana hazard, there is high uncertainty due to	similar confidential analog. Then log at doses up to 1,000 mg/kg-d lack of data related to developm	re were no developmental effects ay. Although predicted to have low ental neurotoxicity.
	Reproduction/ Developmental Toxicity Screen	Low potential based on structural analog No maternal or fetal toxicity reported at 1,000 mg/kg-day NOAEL = 1,000 mg/kg-day (highest dose tested) (Estimated by analogy)	Submitted confidential study; Professional judgment	Estimate based on professional judgment (based on similar confidential analog - GLP OECD 421 study; reported in a submitted confidential study.
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen			No data located.

Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol CASRN 1003300-73-9				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Prenatal Development			No data located.
	Postnatal Development			No data located.
Neurotoxicity		LOW: There were no neurotoxic effects	observed at doses up to 1,000 mg	g/kg in a 28-day rat oral (gavage)
		study. Although low hazard is predicted	l, there is uncertainty due to lack	of data on cholinesterase
		inhibition which is associated with phos	phate esters.	
	Neurotoxicity Screening	In a 28-day oral (gavage) study, no	Submitted confidential study	GLP OECD 407 study; reported in
	Battery (Adult)	effects from BPBP on: clinical		a submitted confidential study.
		observations, neurotoxicity parameters,		
		body weight, food intake, hematology,		
		blood chemistry, urine analysis, or		
		pathology. No abnormal observations in		
		the recovery group.		
		NOAEL = 1,000 mg/kg (gavage)		
Repeated Dose Effe	ects	LOW: No treatment-related effects were reported in a sub-acute 28-day rat oral (gavage) study with BPBP,		
		indicating a NOAEL of 1,000 mg/kg.		
		In a 28-day study, no effects from BPBP	Submitted confidential study	GLP OECD 407 study; reported in
		in clinical observations, neurotoxicology		a submitted confidential study.
		parameters, body weight, food intake,		
		hematology, blood chemistry, urine		
		analysis, or pathology. No abnormal		
		observations in the recovery group.		
		NOAEL = 1,000 mg/kg (gavage)		
		Low potential based on a 90-day study	Professional judgment	Estimate based on professional
		for a confidential structural analog		judgment and data from a
		(Estimated based on analogy)	~	confidential structural analog
	Immune System Effects	Low potential for immunotoxicity.	Expert judgment	No data located. Estimated based on
		(Estimated)		expert judgment.
Skin Sensitization		LOW: No sensitizing effect detected in a	Mouse Local Lymph Node Assa	y (LLNA) with BPBP.
	Skin Sensitization	Not sensitizing; no irritation or relevant	Submitted confidential study	GLP OECD 429 study; reported in
		increase in ear thickness (LLNA-test)		a submitted confidential study.

Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol CASRN 1003300-73-9				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Respiratory Sensit	ization	No data located.		
	Respiratory Sensitization			No data located.
Eye Irritation		VERY LOW: BPBP is not an eye irritar	nt in rabbits.	
	Eye Irritation	Not irritating, rabbits; only minor findings at 1 hour post installation	Submitted confidential study	GLP OECD 405 study; reported in a submitted confidential study.
Dermal Irritation		VERY LOW: BPBP is not a skin irritan	t in rabbits.	
Dermal Irritation		Not irritating, rabbits; no signs of irritation at any observation time point of the study	Submitted confidential study	GLP OECD 404 study; reported in a submitted confidential study.
Endocrine Activity		No experimental data were located.		
				No data located.
Immunotoxicity BPBP is estimated to have low potential for immunotoxicity based on expert judgm data for this substance were located.		pert judgment. No experimental		
	Immune System Effects	Low potential for immunotoxicity. (Estimated)	Expert judgment	No data located. Estimated based on expert judgment.
		ECOTOXICITY		
ECOSAR Class				
Acute Toxicity		HIGH: Estimated based on an EC_{50} value of <1.0 mg/L in algae for a structurally similar confidential analog. While ECOSAR estimates for algae indicate no effects at saturation (NES), experimental data is preferred over estimates to determine the hazard designation. The results of experimental studies and estimates for fish and daphnia indicate NES.		
Fish LC ₅₀		LC ₅₀ >100 mg/L	Submitted confidential study	GLP OECD 203 study; reported in a submitted confidential study; sufficient experimental details are not available to address why the reported LC_{50} is higher than the water solubility.

Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol CASRN 1003300-73-9				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Fish 96-hour $LC_{50} = 0.000193 \text{ mg/L}$ (Estimated for n=1) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimates were performed on oligomers of the polymeric mixture that have a MW <1,000; NES: The log K_{ow} of 9.2 for this n=1 oligomer exceeds the SAR limitation of log K_{ow} 5.0. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.	
	Fish 96-hour $LC_{50} = 0.000000279 \text{ mg/L}$ (Estimated for n=2) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimates were performed on oligomers of the polymeric mixture that have a MW <1,000; NES: The log K_{ow} of 14 for this n=2 oligomer exceeds the SAR limitation of log K_{ow} 5.0. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.	
Daphnid LC ₅₀	EC ₅₀ >100 mg/L	Submitted confidential study	GLP OECD 202 study; reported in a submitted confidential study; sufficient experimental details are not available to address why the reported LC_{50} is higher than the water solubility.	

Phosphoric aci	Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol CASRN 1003300-73-9						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Daphnid 48-hour $LC_{50} = 0.000213 \text{ mg/L}$ (Estimated for n=1) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimates were performed on oligomers of the polymeric mixture that have a MW <1,000; NES: The log K _{ow} of 9.2 for this n=1 oligomer exceeds the SAR limitation of log K _{ow} 5.0. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.				
	Daphnid 48-hour $LC_{50} = 0.0000000465 \text{ mg/L}$ (Estimated for n=2) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimates were performed on oligomers of the polymeric mixture that have a MW <1,000; NES: The log K_{ow} of 14 for this n=2 oligomer exceeds the SAR limitation of log K_{ow} 5.0. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.				
Green Algae EC ₅₀	Green algae NOEC >100 mg/L	Submitted study	GLP OECD 201 study submitted to EPA; study methodology has limitations due to the limited water solubility of this substance. Sufficient experimental details are not available to address why the reported NOEC is higher than the water solubility.				
	Green algae EC ₅₀ <1.0 mg/L	Submitted confidential study	Reported in a submitted confidential study.				
Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol CASRN 1003300-73-9							
---	---	---------------------	---	--	--	--	--
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Green algae 96-hour $EC_{50} = 0.002 \text{ mg/L}$ (Estimated for n=1) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimates were performed on oligomers of the polymeric mixture that have a MW <1,000; NES: The log K_{ow} of 9.2 for this n=1 oligomer exceeds the SAR limitation of log K_{ow} 6.4. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.				
	Green algae 96-hour $EC_{50} = 0.00000295 \text{ mg/L}$ (Estimated for n=2) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimates were performed on oligomers of the polymeric mixture that have a MW <1,000; NES: The log K_{ow} of 14 for this n=2 oligomer exceeds the SAR limitation of log K_{ow} 6.4 ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.				

Phosphoric aci	ic acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol CASRN 1003300-73-9						
PROPERTY/ENDPOINT	DATA	REFERENCE DATA QUALITY					
Toxicity to microorganisms	NOEC ≥1,000 mg/L	Submitted confidential study	GLP OECD 209 study; reported in a submitted confidential study.				
Chronic Aquatic Toxicity	HIGH: Estimated based on a NOEC val	ue of <0.1 mg/L in algae for a str	ucturally similar confidential				
	analog. While ECOSAR estimates for a	lgae indicate NES, experimental	data are preferred over estimates				
	to determine the hazard designation. T	he results of estimates for fish an	d daphnia indicate NES.				
	Fish $ChV = 0.0000413 \text{ mg/L}$	ECOSAR version 1.11	Estimates were performed on				
	(Estimated for n=1)		oligomers of the polymeric mixture				
	ECOSAR: Neutral organics		that have a MW <1,000. NES: The				
			log K_{ow} of 9.2 for this n=1 oligomer				
			exceeds the SAR limitation of log				
			K _{ow} 8.0. ECOSAR also provided				
			results for the Esters, and Esters				
			(phosphate) classes; however,				
			professional judgment indicates that				
			this compound does not lie within				
			the domain of the ECOSAR model.				
	Fish ChV = 0.0000000971 mg/L	ECOSAR version 1.11	Estimates were performed on				
	(Estimated for n=2)		oligomers of the polymeric mixture				
	ECOSAR: Neutral organics		that have a MW <1,000. NES: The				
			$\log K_{ow}$ of 14 for this n=2 oligomer				
			exceeds the SAR limitation of log				
			K _{ow} 8.0. ECOSAR also provided				
			results for the Esters, and Esters				
			(phosphate) classes; however,				
			professional judgment indicates that				
			this compound does not lie within				
			the domain of the ECOSAR model.				

Phosphoric acid	acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol CASRN 1003300-73-9						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Daphnid ChV	Daphnid Daphnid ChV = 0.000131 mg/L (Estimated for n=1) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimates were performed on oligomers of the polymeric mixture that have a MW <1,000. NES: The log K_{ow} of 9.2 for this n=1 oligomer exceeds the SAR limitation of log K_{ow} 8.0. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.				
	Daphnid Daphnid ChV = 0.0000000903 mg/L (Estimated for n=2) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimates were performed on oligomers of the polymeric mixture that have a MW <1,000. NES: The log K_{ow} of 14 for this n=2 oligomer exceeds the SAR limitation of log K_{ow} 8.0. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.				

Phosphoric aci	oric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol CASRN 1003300-73-9						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Green Algae ChV	Green algae NOEC <0.1 mg/L (Estimated by analogy)	Submitted confidential study	Reported in a submitted confidential study.				
	Green algae ChV = 0.003 mg/L (Estimated for n=1) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimates were performed on oligomers of the polymeric mixture that have a MW <1,000. NES: The log K_{ow} of 9.2 for this n=1 oligomer exceeds the SAR limitation of log K_{ow} 8.0. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.				
	Green algae ChV = 0.00000847 mg/L (Estimated for n=2) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimates were performed on oligomers of the polymeric mixture that have a MW <1,000. NES: The log K_{ow} of 14 for this n=2 oligomer exceeds the SAR limitation of log K_{ow} 8.0. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.				

Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol CASRN 1003300-73-9					
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
	ENVIRONMENTAL F	ATE			
Transport	The environmental fate is described using estimates on the lowest MW oligomer of BPBP, which is the predominant component. Based on the Level III fugacity models incorporating the available experimental property data, the lowest MW oligomer is expected to partition primarily to soil and sediment. BPBP is expected to be immobile in soil based on the measured K_{oc} of the commercial mixture. Leaching of BPBP through soil to groundwater is not expected to be an important transport mechanism. Estimated volatilization half-lives indicate that BPBP will be non-volatile from surface water. Volatilization from dry surfaces is also not expected based on its vapor pressure. In the atmosphere, BPBP is expected to exist solely in the particulate phase, based on its measured vapor pressure. Particulates may be removed from air by we or dry deposition. The higher MW components of the commercial product are anticipated to behave similar to that described above.				
Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated for the n=1; n=2 oligomers)	EPI; Professional judgment	Estimated based on predominant oligomer components. The higher MW oligomers are also expected to have Henry's Law Constant values below this cutoff.		
$\begin{array}{l} \textbf{Sediment/Soil} \\ \textbf{Adsorption/Desorption} \\ \textbf{Coefficient} - \textbf{K}_{oc} \end{array}$	4.6 x 10^5 (Measured) Calculated from the reported $Log_{10} K_{oc} =$ 5.7; according to HPLC method OECD 121 study; using GLP	Submitted confidential study	Confidential guideline study.		
Level III Fugacity Model	Air: <1% (Estimated) Water: 1% Soil: 42% Sediment: 57%	EPI	Estimated data based on the predominant oligomer component, n = 1, representing 80% of the commercial mixture.		
	Air: <1% (Estimated) Water: 3.7% Soil: 94% Sediment: 2%	EPI	Estimate based on the n=2 oligomer component.		

Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol CASRN 1003300-73-9							
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Persistence		HIGH: BPBP was not readily biodegradable in a guideline Japanese Ministry of International Trade and Industry (MITI)-I test (1% biodegradation in OECD TG 301C). The n≥3 oligomers, with a MW >1,000 are expected to have negligible water solubility and poor bioavailability to microorganisms indicating that biodegradation is not expected to be an important removal process in the environment. Abiotic degradation by hydrolysis is limited due to the low water solubility of BPBP (<0.01 mg/L). Similar to other phosphate esters, BPBP hydrolysis is expected to be dependent on pH, occurring slowest under neutral and acidic conditions. BPBP oligomers (n=1 and n=2) do not contain chromophores that absorb at wavelengths >290 nm, and therefore, are not expected to be susceptible to direct photolysis by sunlight. Enzymatic or basic hydrolysis leading to the production of phenol (CASRN 108-95-2), 4,4'-dihydroxybiphenyl (CASRN 92-88-6) and diphenyl phosphate (CASRN 838-85-7) through sequential dephosphorylation is theoretically possible but has not been demonstrated.					
Water	Aerobic Biodegradation	Not readily biodegradable 1% biodegradation detected after 28 days in activated sludge; GLP OECD 301C MITI-I study (Measured)	Submitted confidential study	Confidential guideline study.			
		Days (Primary survey model) Months (Ultimate survey model) (Estimated)	EPI	Estimated data based on the predominant oligomer component, n = 1, representing 80% of the commercial mixture.			
		Days (Primary survey model) Recalcitrant (Ultimate survey model) (Estimated)	EPI	Estimated data based on the n=2 oligomer.			
		Recalcitrant (Estimated for $n \ge 3$ oligomers)	Professional judgment; Boethling et al, 1997	High MW polymers are expected to be non-biodegradable.			
	Volatilization Half-life for Model River	>1 year (Estimated for the n=1; n=2 oligomers)	EPI	Estimate based on the $n=1$ and $n=2$ oligomer components.			
	Volatilization Half-life for Model Lake	>1 year (Estimated for the n=1; n=2 oligomers)	EPI	Estimate based on the $n=1$ and $n=2$ oligomer components.			

	Phosphoric ac	id, mixed esters with [1,1'-bisphenyl-4,4'-	-diol] and phenol CASRN 100	3300-73-9
PRO	PERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Soil	Aerobic Biodegradation			No data available.
Anaerobic Biodegradation		Not probable (Anaerobic-methanogenic biodegradation probability model) (Estimated)	EPI	Estimated data based on the $n=1$ and $n=2$ oligomers.
	Soil Biodegradation w/ Product Identification			No data available.
	Sediment/Water Biodegradation			No data available.
Air	Atmospheric Half-life	6.5 hours (Estimated)	EPI	Estimate based on the n= 1 oligomer component.
		3.9 hours (Estimated)	EPI	Estimate based on the n=2 oligomer component.
Reactivity	Photolysis	Not a significant fate process	Mill, 2000; Professional judgment	The substance does not contain functional groups that would be expected to absorb light at environmentally significant wavelengths.
	Hydrolysis	>1 year at pH 7; 44 days at pH 8 4.4 days at pH 9 (Estimated for n=1)	EPI	Hydrolysis rates are expected to be pH-dependent and may be limited the by low water solubility of this
		>1 year at pH 7; 40 days at pH 8 4 days at pH 9 (Estimated for n=2)	EPI	compound. Under basic conditions, sequential dephosphorylation reactions may occur.
Environmental	Half-Life	>1 year (Estimated for n=1)	EPI; PBT Profiler	Half-life estimated for the predominant compartment (sediment), as determined by EPI and the PBT Profiler methodology.
		>1 year (Estimated for n=2)	EPI; PBT Profiler	Half-life estimated for the predominant compartment (soil), as determined by EPI and the PBT Profiler methodology.

Phosphoric	Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol CASRN 1003300-73-9					
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Bioaccumulation	MODERATE: Although measured Bo hazard designation, the overall bioacc for the predominant oligomer compor MW oligomers that may be found in t bioaccumulation.	CF values for a commercial mixture cumulation designation is Moderate nent, $n = 1$, representing 80% of the his mixture (n=2, 3, 4) are expected	e result in a Low bioaccumulation based on the estimated BCF value commercial mixture. The higher to have low potential for			
Fish BCF	172 (Estimated for n=1)3.2 (Estimated for n=2)	EPI				
	<100 (Estimated for n≥3 oligomers)	Professional judgment	The components with a MW >1,000 are not anticipated to be taken up by aquatic organisms; therefore, bioconcentration is not expected.			
	12 (Measured) According to GLP OECD 305C; on the commercial product	Confidential study	Guideline study on the commercial product mixture. This study did not assess the concentration of each oligomer in either the water or the fish. Therefore the BCF of the individual components of the mixture could not be determined.			
BAF	34 (Estimated for n=1) 27 (Estimated for n=2)	EPI				
Metabolism in Fish			No data located.			
	ENVIRONMENTAL MONITORING	AND BIOMONITORING				
Environmental Monitoring	No data located.					
Ecological Biomonitoring	No data located.					
Human Biomonitoring	This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2013).					

Adeka-Palmarole. Product information sheet. 2013. <u>http://www.adeka-palmarole.com/additives/flame-retardants/443-adk-stab-fp-800.html</u> (accessed on April 16, 2013).

Boethling, Robert S. and Nabholz, J. Vincent "Environmental Assessment of Polymers under the U.S. Toxic Substances Control Act", pp. 187-234, in Ecological Assessment of Polymers Strategies for Product Stewardship and Regulatory Programs, Hamilton, John D. and Sutcliffe, Roger (eds.), (1997) Van Nostrand Reinhold.

CDC (Centers for Disease Control and Prevention). Fourth national report on human exposure to environmental chemicals, updated tables. Department of Health and Human Services. 2013. <u>http://www.cdc.gov/exposurereport/pdf/FourthReport_UpdatedTables_Mar2013.pdf</u> (accessed on April 16, 2013).

[HPV Assessment Guidance] EPA (U.S. Environmental Protection Agency). Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. <u>http://www.epa.gov/hpv/pubs/general/datadeqfn.pdf</u>

U.S. EPA (Environmental Protection Agency). High Production Volume (HPV) Challenge. Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. http://www.epa.gov/hpv/pubs/general/datadfin.htm

ECOSAR/EPI (EPIWIN/EPISUITE) Estimations Programs Interface for Windows, Version 1.11. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

EPI (*EPIWIN/EPISUITE*) *Estimation Program Interface for Windows*. Version 4.1. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

Mill, T. (2000) Photoreactions in Surface Waters. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (355-382). Boca Raton: Lewis Publishers.

PBT Profiler. *Persistent (P), Bioaccumulative (B), and Toxic (T) Chemical (PBT) Profiler*. U.S. Environmental Protection Agency: Washington D.C. <u>www.pbtprofiler.net</u>.

Polyphosphonate

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. ^d This hazard designation would be assigned MODERATE if >5% of the particles are in the respirable range as a result of dust forming operations.

			Human Health Effects				Aquatic Toxicity**Environme Fate		mental te							
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Polyphosphonate	68664-06-2	L	L	L	L	L	L	L^{d}	L		L	L	L	L	VH	L
										1					, 11	

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Polyphosphonate

Г Л	CASRN:	68664-06-2		
	MW: 10, <1% MW	000 to 50,000; 7 <1,000		
	MF: C ₁₅ H	$H_{16}O_2(C_{16}H_{17}O_3P)_n$		
$ \sim 0 + P' + P + O' + O'$	Physical	Forms: Solid		
	Use: Flan	ne retardant		
∣ L _n				
Representative structure				
SMILES: The polymer components with MW >1,000 are not amenable to SMILES	notation.			
Synonyms: Nofia® HM1100; FRX 100 (polyphosphonate) (Polymeric additive); F methylethylidene)bis[phenol]	RX100; Phosphonic acid, P-methyl-, diphenyl ester, po	olymer with 4,4'-(1-		
Chemical Considerations: This alternative is a high MW polymer with <1% low (together using the professional judgment and information contained in the literature	<1,000) MW oligomers. The high MW oligomers, with concerning polymer assessment (Boethling et al., 1997)	h a MW $>1,000$, are assessed 7).		
Polymeric: Yes Oligomers: The polymer is produced from the condensation of methyldiphenylpho between 10,000 and 50,000. Oligomers with MW <1,000 are expected to be present anticipated to predominate.	sphonate and bisphenol A equivalents. The MW of pol at $<1\%$ in the polyphosphonate mixture. Phenoxy ter	lyphosphonate ranges minated oligomers are		
Metabolites, Degradates and Transformation Products: None				
Analog: No analog Endpoint(s) using analog values: Not applicable				
Structural Alerts: No data located.				
Risk Phrases: Not classified by Annex VI Regulation (EC) No 1272/2008 (ESIS, 2011).				
Hazard and Risk Assessments: None identified.				

	Polyphosphonate CASRN 68664-06-2							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
	PHYSICAL/CHEMICAL PR	OPERTIES						
Melting Point (°C)	C)90 softening point (Measured)FRX Polymers, Inc., 2009							
Boiling Point (°C)	>300 (Estimated)	>300 (Estimated) Professional judgment						
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW polymers.					
Water Solubility (mg/L)	<10 ⁻³ (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW non- ionic polymers.					
Log K _{ow}			No data located; polymers with a MW >1,000 are outside the domain of the available estimation methods.					
Flammability (Flash Point)	Nonflammable (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.					
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.					
Pyrolysis			No data located.					
рН	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.					
pK _a	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.					

Polyphosphonate CASRN 68664-06-2						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
		HUMAN HEALTH EFF	ECTS			
Toxicokinetics		No absorption is expected for any route	of exposure for polyphosphonate	e. This polymer is large, with a MW		
		>1,000. Based on professional judgment, it is expected to have limited bioavailability and therefore is not				
		expected to be readily absorbed, distribution	uted or metabolized in the body.			
Dermal Absorption	n <i>in vitro</i>			No data located.		
Absorption,	Oral, Dermal or Inhaled	No absorption is expected for any route	Professional judgment	Estimated based on professional		
Distribution,		of exposure		judgment.		
Metabolism &		(Estimated)				
Excretion						
Acute Mammalian	Toxicity	LOW: Based on experimental LD ₅₀ valu	es >2,000 mg/kg. This compound	l is also expected to have limited		
		bioavailability and therefore has low po	tential for acute mammalian toxi	city.		
	Oral	Limited bioavailability expected	Professional judgment;	Based on cutoffs for large high MW		
		(Estimated)	Boethling et al., 1997	polymers		
		Rat oral $LD_{50} > 2,000 \text{ mg/kg}$	FRX Polymers, Inc., 2011	Conducted according to		
				Organisation of Economic		
				Cooperation and Development420;		
				test substance: FRX		
				polyphosphonate.		
	Dermal			No data located.		
	Inhalation			No data located.		
Carcinogenicity		LOW: This polymer is large, with a MV	V >1,000. Based on professional j	udgment, it is expected to have few		
		to no residual monomers. Additionally,	crosslinking, swellability, dispers	sability, reactive functional groups,		
		inhalation potential, and hindered amin	e groups are not expected. There	fore, there is low potential for		
		carcinogenicity.	1			
	OncoLogic Results			No data located.		
	Carcinogenicity (Rat	Limited bioavailability expected;	Professional judgment;	Based on cutoffs for large high MW		
	and Mouse)	crosslinking, swellability, dispersability,	Boethling et al., 1997	polymers.		
	Combined Chronic	reactive functional groups, inhalation				
	Toxicity/	potential, and hindered amine groups are				
	Carcinogenicity	not expected.				
	gj	(Estimated)				

Polyphosphonate CASRN 68664-06-2									
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Genotoxicity		LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore							
		has low potential for genotoxicity.							
	Gene Mutation in vitro								
	Gene Mutation in vivo								
	Chromosomal								
	Aberrations in vitro								
	Chromosomal	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large					
	Aberrations in vivo	(Estimated)	Boethling et al., 1997	high MW polymers.					
	DNA Damage and								
	Repair								
	Other (Mitotic Gene								
	Conversion)								
Reproductive Effe	cts	LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore							
		has low potential for reproductive effects.							
	Reproduction /								
	Developmental Toxicity								
	Screen								
	Combined Repeated								
	Dose with	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large					
	Reproduction/	(Estimated)	Boethling et al., 1997	high MW polymers.					
	Developmental Toxicity								
	Screen	-							
	Reproduction and								
	Fertility Effects								
Developmental Effects		LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore							
		has low potential for developmental effe	cts.						
	Keproduction/	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large					
	Developmental Toxicity	(Estimated)	Boethling et al.,1997	high MW polymers.					
	Screen								

		8664-06-2						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen Prenatal Development Postnatal Development							
Neurotoxicity	*	LOW: This polymer is large, with a MW	V >1,000. It is expected to have lin	nited bioavailability and therefore				
		has low potential for neurotoxicity.						
	Neurotoxicity Screening Battery (Adult)	Limited bioavailability expected (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff values for large high MW polymers.				
Repeated Dose Eff	ects	LOW: This polymer is large, with a MV	V >1,000. It is expected to have lin	nited bioavailability; however,				
		because the MW _n is >10,000, there is the possibility of lung overloading if >5% of the particles are in the						
		respirable range as a result of dust forming operations.						
		Limited bioavailability expected	Professional judgment;	Based on cutoff values for large				
		(Estimated)	Boethling et al., 1997	high MW polymers.				
		This polymer's MWn is >10,000; potential for irreversible lung damage as a result of lung overloading. (Estimated)Professional judgment; Boethling et al., 1997Based on cutoff values for high MW polymers.						
Skin Sensitization		LOW: Based on expert judgment, polyphosphonate is estimated not to have potential for skin sensitization						
	Skin Sensitization	Not expected to be a skin sensitizer (Estimated)	Expert judgment	Estimated based on expert judgment by analogy to other high MW polymers with similar structural features.				
Respiratory Sensit	ization	No data located.						
	Respiratory Sensitization			No data located.				
Eye Irritation		LOW: Based on expert judgment, polyp	hosphonate is estimated not to h	ave potential for eye irritation.				
	Eye Irritation	Not expected to be an eye irritant (Estimated)	Expert judgment	Estimated based on expert judgment by analogy to other high MW polymers with similar structural features.				

Polyphosphonate CASRN 68664-06-2										
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY						
Dermal Irritation		LOW: Based on expert judgment, polyphosphonate is estimated not to have potential for dermal irritation.								
	Dermal Irritation	Not expected to be a skin irritant (Estimated)	ected to be a skin irritant Expert judgment Estimated b judgment by MW polyme structural fe							
Endocrine Activit	y	No data located. This polymer is large, with a MW >1,000. Based on professional judgment, polyphosphonate is not expected to have endocrine activity due to its poor bioavailability and inability to be readily metabolized in the body.								
		Limited bioavailability expected (Estimated)	Professional judgment; Boethling et al., 1997	Based on cutoff values for large high MW polymers.						
Immunotoxicity		Based on professional judgment polypho has low potential for hazard.	osphonate is expected to have lim	ited bioavailability and therefore						
	Immune System Effects	Limited bioavailability expected (Estimated)	Professional judgment;Based on cutoff values foBoethling et al., 1997high MW polymers.							
		ECOTOXICITY								
ECOSAR Class		Not applicable								
Acute Toxicity		LOW: Non-ionic polymers with a MW > comprised of minimal low MW oligomer polymers display NES because the amou which adverse effects may be expressed. through membranes due to its large size	>1,000 that do not contain reactiv rs are estimated to have no effect ınt dissolved in water is not antic Bioavailability is limited becaus	e functional groups and are s at saturation (NES). These ipated to reach a concentration at e this chemical cannot be absorbed						
Fish LC ₅₀		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.						
		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.						
		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.						

	Polyphosphonate CASRN 68664-06-2							
PROPERTY/I	ENDPOINT	DATA REFERENCE DATA QUALITY						
Chronic Aquatic Toxicity LOW: Non-ionic polymers with a MW >1,000 that do not contain reactive functional groups and comprised of minimal low MW oligomers are estimated to display NES. These polymers display because the amount dissolved in water is not anticipated to reach a concentration at which advers may be expressed. Bioavailability is limited because this chemical cannot be absorbed through n due to its large size.								
Fish ChV		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Daphnid ChV		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Green Algae ChV		NES Professional judgment		The large MW, limited bioavailability and low water solubility suggest there will be NES.				
		ENVIRONMENTAL F	ATE					
Transport	sport The estimated negligible water solubility and estimated negligible vapor pressure indicate that th anticipated to partition predominantly to soil and sediment. The estimated Henry's Law Constant $<10^{-8}$ atm-m ³ /mole indicates that it is not expected to volatilize from water to the atmosphere. The K _{oc} of >30,000 indicates that it is not anticipated to migrate from soil into groundwater and also be potential to adsorb to sediment.							
Hen (atm	Henry's Law Constant (atm-m ³ /mole) <10 ⁻⁸ (Estimated)		Professional judgment; Boethling et al., 1997	Cutoff value used for large, high MW polymers. High MW polymers are expected to have low vapor pressure and are not expected to undergo volatilization.				
Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}		>30,000 (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value used for large, high MW polymers. High MW polymers are expected to adsorb strongly to soil and sediment.				

Polyphosphonate CASRN 68664-06-2								
PRO	DPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Level III Fugacity Model			No data located.				
Persistence		VERY HIGH: This polymer is large, with a MW >1,000. It is expected to have negligible water solubility and poor bioavailability to microorganisms indicating that neither biodegradation nor hydrolysis are expected to be important removal processes in the environment. The polymer does not contain functional groups that would be expected to absorb light at environmentally significant wavelengths. Evaluation of these degradation values suggest a half-life of >180 days.						
Water	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment; EPA, 2010	High MW polymers are expected to be non-biodegradable.				
	Volatilization Half-life for Model River	>1 year (Estimated)	Professional judgment	This high MW polymer is anticipated to be nonvolatile.				
	Volatilization Half-life for Model Lake	>1 year (Estimated)	Professional judgment	This high MW polymer is anticipated to be nonvolatile.				
Soil	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to be non-biodegradable.				
	Anaerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to be resistant to removal under anoxic conditions due to their limited bioavailability.				
	Soil Biodegradation w/ Product Identification			No data located.				
Sediment/Water Biodegradation				No data located.				
Air	Atmospheric Half-life			No data located.				
Reactivity	Photolysis	Not a significant fate process (Estimated)	Mill, 2000; Professional judgment	The substance does not contain functional groups that would be expected to absorb light at environmentally significant wavelengths.				

Polyphosphonate CASRN 68664-06-2							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Hydrolysis	>1 year (Estimated)	Professional judgment	Given the limited solubility estimated for this material, hydrolysis is not anticipated to occur to an appreciable extent.				
Environmental Half-life	>180 days (Estimated)	Professional Judgment	The majority of this substance has a MW >1,000 and is not anticipated to be assimilated by microorganisms. Therefore, biodegradation is not expected to be an important removal process. It is also not expected to be removed by other degradative processes under environmental conditions because of limited water solubility and limited partitioning to air.				
Bioaccumulation	LOW: This polymer is large, wit this polymer should be of low po	LOW: This polymer is large, with a MW >1,000. It is expected to have poor bioavailability indicating that this polymer should be of low potential for bioaccumulation.					
Fish BCF	<100 (Estimated)	Professional judgment	The majority of this substance has a MW >1,000 and is not anticipated to be taken up by aquatic organisms; therefore, bioconcentration is not expected.				
BAF			No data located.				
Metabolism in Fish			No data located.				

Polyphosphonate CASRN 68664-06-2							
PROPERTY/ENDPOINT	DATA REFERENCE DATA QUALITY						
ENVIRONMENTAL MONITORING AND BIOMONITORING							
Environmental Monitoring	No data located.						
Ecological Biomonitoring	No data located.						
Human Biomonitoring	This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2011).						

Boethling, Robert S. and Nabholz, J. Vincent "Environmental Assessment of Polymers under the U.S. Toxic Substances Control Act", pp. 187-234, in Ecological Assessment of Polymers Strategies for Product Stewardship and Regulatory Programs, Hamilton, John D. and Sutcliffe, Roger (eds.), (1997) Van Nostrand Reinhold.

CDC (Centers for Disease Control and Prevention). *Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables.* Department of Health and Human Services 2011. Available at: <u>http://www.cdc.gov/exposurereport/</u> as of May 10, 2011

European Chemical Substances Information System (ESIS) Classification, Labeling and Packaging of Dangerous Substances Annex VI to Regulation (EC) No 1272/2008 [Online] available at: http://esis.jrc.ec.europa.eu/home.php as of May 10, 2011.

FRX Polymers. FRX 100 Homopolymer Material Safety Data Sheet (MSDS). Revised October 2, 2009.

FRX Polymers, Inc. FRX polyphosphonate: Acute oral toxicity in the rat – fixed dose method. FRX Polymers, Inc. Chelmsford, MA. Project number 3224/0001. 2011. (Submitted unpublished study).

Mill, T. (2000) Photoreactions in Surface Waters. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (355-382). Boca Raton: Lewis Publishers.

Poly[phosphonate-co-carbonate]

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame-retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. ^d This hazard designation would be assigned MODERATE if >5% of the particles are in the respirable range as a result of dust forming operations.

			Human Health Effects				Aquatic Toxicity ^{**}		Environ- mental Fate							
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Poly[phosphonate-co-carbonate]	77226-90-5	L	L	L	L	L	L	L^{d}	L		L	L	L	L	VH	L
																-

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Poly[phosphonate-co-carbonate]

		CASRN: 77226-90-5				
	_	MW: >1,000; <1% <1,000				
	MF: $C_{15}H_{16}O_2(C_{16}H_{14}O_3)_n(C_{16}H_{17}O_3P)_m$					
		Physical Forms: Neat: Solid				
	Use: Flame retardant					
Representative structure						
SMILES: This polymer with MW >1,000 and <1% low MW components is not am	enable to SMILES notation.					
Synonyms: Nofia® CO3000; Nofia® CO6000; Carbonic acid, diphenyl ester, poly methylethylidene)bis[phenol]; FRX CO35; FRX CO60	mer with diphenyl P-methylphosphonate a	nd 4,4'- (1-				
Chemical Considerations: This alternative is a polymer. Poly[phosphonate-co-carbut would have identical hazard characterizations. The MW of the oligomers are ge concerning polymer assessment and professional judgment (Boethling et al., 1997).	bonate] polymers differ in their ratio of po nerally >1,000 and are assessed using info Representative structure drawn to show si	lyphosphonate/polycarbonate (m to n) rmation contained in the literature mplest combination of all feedstock.				
Polymeric: Yes						
Oligomers: The MW for the Poly[phosphonate-co-carbonate] polymers range between 10,000 and 50,000; with <1% MW <1,000 oligomers expected. Phenoxy terminated oligomers are anticipated to predominate.						
Metabolites, Degradates and Transformation Products: None						
Analog: No analog	nalog: No analog Analog Structure: Not applicable					
Endpoint(s) using analog values: Not applicable						
Structural Alerts: None identified.						
Risk Phrases: Not classified by Annex VI Regulation (EC) No 1272/2008 (ESIS, 2011).						
Hazard and Risk Assessments: None identified.						

Poly[phosphonate-co-carbonate] CASRN 77226-90-5										
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY							
PHYSICAL/CHEMICAL PROPERTIES										
Melting Point (°C)	220–250 (glass transition temperature) (Measured)	FRX Polymers, Inc., 2009	The melting points reported cover a broad range and are anticipated to be							
	120 (softening point)FRX Polymers, Inc., 2009(Measured)Inc., 2009		the formulation specific liquid-glass transition temperature or softening point.							
Boiling Point (°C)	>300 (Estimated)	ed) Professional judgment								
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	Professional judgment; Boethling et al., 1997	Cutoff value for large, high MW polymers.							
Water Solubility (mg/L)	<10 ⁻³ (Estimated)	Professional judgment, Boethling et al., 1997	Cutoff value for large, high MW non- ionic polymers.							
	Insoluble (Measured)	FRX Polymers, Inc., 2009	Nonspecific value provided by commercial supplier.							
			No data located.							
Flammability (Flash Point)	>450°C (Measured)	FRX Polymers, Inc., 2009	Sufficient details were not available to assess the quality of this study.							
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.							
Pyrolysis			No data located.							
рН	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.							
pKa	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.							

Poly[phosphonate-co-carbonate] CASRN 77226-90-5									
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
	HUMAN HEALTH EFFECTS								
Toxicokinetics		There is no absorption expected for any route of exposure for the neat material. Poor absorption of the low							
		MW traction in solution can be expected for all routes. This polymer is large, with a MW >1,000. Based on							
		readily absorbed, distributed or metabolized in the body.							
Dermal Absorption	n <i>in vitro</i>			No data located.					
Absorption,	Oral, Dermal or Inhaled	No absorption of the neat material is	Professional judgment	Estimated based on					
Distribution,		expected for any route of exposure; poor		physical/chemical properties and					
Metabolism &		absorption of low MW fraction in		limited bioavailability.					
Excretion		solution for all routes.							
		(Estimated)							
Acute Mammalian	Toxicity	LOW: Based on experimental LD ₅₀ values >2,000 mg/kg. This compound is also expected to have limited							
	1	bioavailability and therefore is of low po	otential for acute mammalian tox	icity.					
Acute Lethality	Oral	Rat oral $LD_{50} > 2,000 \text{ mg/kg}$	FRX Polymers, Inc., 2011	Conducted according to					
				Organisation of Economic					
				Cooperation and Development420;					
				test substance: FRX					
				polyphosphonate.					
	Dermal	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large					
	Inhalation	(Estimated)	Boethling et al., 1997	high MW polymers.					
Carcinogenicity		LOW: This polymer is large, with a MW >1,000. Based on expert judgment, it is expected to have few to no							
		residual monomers. Additionally, crosslinking, swellability, dispersability, reactive functional groups,							
		innalation potential, and hindered amin	e groups are not expected. There	tore, there is low potential for					
		Limited biogenicity based on professional ju	Drofossional indemants	Deced on outoff volves for large					
	OncoLogic Results	Limited bloavailability expected,	Professional judgment,	based off cutoff values for large					
	and Movee)	reactive functional groups inhelation	Documing et al., 1997	ingi wiw polymers.					
	anu Wouse)	notential and hindered amine groups are							
	Tomoined Unronic	not expected							
	LUXICILY/ Carcinogenicity	(Estimated)							
Acute Mammalian Acute Lethality Carcinogenicity	Toxicity Oral Dermal Inhalation OncoLogic Results Carcinogenicity (Rat and Mouse) Combined Chronic Toxicity/ Carcinogenicity	solution for all routes. (Estimated) LOW: Based on experimental LD ₅₀ value bioavailability and therefore is of low portection Rat oral LD ₅₀ >2,000 mg/kg Limited bioavailability expected (Estimated) LOW: This polymer is large, with a MV residual monomers. Additionally, crossles inhalation potential, and hindered aminecarcinogenicity based on professional juection Limited bioavailability expected; crosslinking, swellability, dispersability, reactive functional groups, inhalation potential, and hindered amine groups are not expected. (Estimated)	<pre>tes >2,000 mg/kg. This compound otential for acute mammalian tox FRX Polymers, Inc., 2011 Professional judgment; Boethling et al., 1997 V >1,000. Based on expert judgme inking, swellability, dispersability e groups are not expected. There indgment and the polymer assessm Professional judgment; Boethling et al., 1997</pre>	physical/chemical properties and limited bioavailability.I is also expected to have limited acity.Conducted according to Organisation of Economic Cooperation and Development420; test substance: FRX polyphosphonate.Based on cutoff values for large high MW polymers.ent, it is expected to have few to no cy, reactive functional groups, efore, there is low potential for nent literature. No data located.Based on cutoff values for large high MW polymers.					

		Poly[phosphonate-co-carbonate] CASRN 77226-90-5						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Genotoxicity		LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore						
		has low potential for genotoxicity based on professional judgment.						
	Gene Mutation in vitro							
	Gene Mutation in vivo							
	Chromosomal							
	Aberrations in vitro							
	Chromosomal	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large				
	Aberrations in vivo	(Estimated)	Boethling et al., 1997	high MW polymers.				
	DNA Damage and							
	Repair							
	Other (Mitotic Gene							
	Conversion)							
Reproductive Effect	ets	LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore						
		has low potential for reproductive effects based on professional judgment.						
	Reproduction /							
	Developmental Toxicity							
	Screen							
	Combined Repeated							
	Dose with	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large				
	Reproduction /	(Estimated)	Boethling et al., 1997	high MW polymers.				
	Developmental Toxicity							
	Screen							
	Reproduction and							
	Fertility Effects							

		ASRN 77226-90-5							
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Developmental Eff	ects	LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore							
		has low potential for developmental effects based on professional judgment.							
	Reproduction /								
	Developmental Toxicity								
	Screen								
	Combined Repeated								
	Dose with	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large					
	Reproduction/	(Estimated)	Boethling et al., 1997	high MW polymers.					
	Developmental Toxicity								
	Screen								
	Prenatal Development								
	Postnatal Development								
Neurotoxicity		LOW: This polymer is large, with a MW >1,000. It is expected to have limited bioavailability and therefore							
		has low potential for neurotoxicity based on professional judgment.							
	Neurotoxicity Screening	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large					
Battery (Adult)		(Estimated)	Boethling et al., 1997	high MW polymers.					
Repeated Dose Eff	ects	LOW: Inis polymer is large, with a NIW >1,000. It is expected to have limited bioavailability; however, hence the MIW is $\ge 10,000$, there is the possibility of large second a discrete second secon							
		because the $N_1 N_n$ is >10,000, there is the possibility of lung overloading II >5% of the particles are in the							
		respirable range as a result of dust forming operations.							
		Limited bioavailability expected	Professional judgment;	Based on cutoff values for large					
		(Estimated)	Boethling et al., 1997	high MW polymers.					
		This polymer's MW_n is >10,000;	Professional judgment;	Based on cutoff values for large					
		potential for irreversible lung damage as	Boethling et al., 1997	high MW polymers.					
		a result of lung overloading							
		(Estimated)							
Skin Sensitization		LOW: Estimated not to have potential f	or skin sensitization based on exp	bert judgment. No data located.					
Skin Sensitization		Not expected to be a skin sensitizer	Expert judgment	Estimated based on expert					
Dearstanderer C. 10		(Estimated)		juagment.					
Respiratory Sensit	Degrine to my	no data located.		No data logatad					
	Kespiratory			no data located.					
1	Sensitization								

Poly[phosphonate-co-carbonate] CASRN 77226-90-5										
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY						
Eye Irritation		LOW: Uncertain potential for irritation based on the phenol moieties and professional judgment. No data								
		located.								
	Eye Irritation	Uncertain potential for irritation based	Professional judgment	Estimated based on cutoff values						
		on the phenol moieties.		for large high MW polymers.						
		(Estimated)								
Dermal Irritation		LOW: Uncertain potential for irritation	based on the phenol moieties and	d professional judgment. No data						
		located.								
	Dermal Irritation	Uncertain potential for irritation based	Professional judgment	Estimated based on cutoff values						
		on the phenol moieties.		for large high MW polymers.						
		(Estimated)								
Endocrine Activity		No data located. This polymer is large, v	with a MW >1,000. Based on expe	ert judgment, it is not expected to						
		have endocrine activity due to its poor b	ioavailability and inability to be	readily metabolized in the body.						
		Limited bioavailability expected	Professional judgment	Based on cutoff values for large						
		(Estimated) Boethling et al., 1997 high MW polymers.								
Immunotoxicity		This polymer is large, with a MW >1,000. Based on expert judgment, it is expected to have limited								
		bioavailability and therefore has low potential for hazard.								
	Immune System Effects	Limited bioavailability expected	Professional judgment;	Based on cutoff values for large						
		(Estimated)	Boethling et al., 1997	high MW polymers.						
		ECOTOXICITY								
ECOSAR Class		Not applicable								
Acute Toxicity		LOW: Non-ionic polymers with a MW >1,000 that do not contain reactive functional groups and are								
		comprised of minimal low MW oligomers are estimated to display no effects at saturation (NES). These								
		polymers display NES because the amount dissolved in water is not anticipated to reach a concentration at								
		which adverse effects may be expressed. Bioavailability is limited because this chemical cannot be absorbed								
		through membranes due to large size.								
Fish LC ₅₀		NES	Professional judgment	The large MW, limited						
				bioavailability and low water						
				solubility suggest there will be						
				NES.						
Daphnid LC ₅₀		NES	Professional judgment	The large MW, limited						
				bioavailability and low water						
				solubility suggest there will be						
				NES.						

	Poly[phosphonate-co-carbonate] CASRN 77226-90-5							
PROPERTY/E	NDPOINT	DATA	REFERENCE	DATA QUALITY				
Green Algae EC ₅₀		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Chronic Aquatic Toxicity	y	LOW: Non-ionic polymers with a MW >	>1,000 that do not contain reactiv	e functional groups and are				
		comprised of minimal low MW oligomers are estimated to display NES. These polymers display NES						
		because the amount dissolved in water is	s not anticipated to reach a conce	entration at which adverse effects				
		may be expressed. Guidance for the assessment of aquatic toxicity hazard leads to a low potential for hazard						
		for those materials that display NES.						
Fish ChV		NES	Professional judgment	bioavailability and low water solubility suggest there will NES.				
Daphnid ChV		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
Green Algae ChV		NES	Professional judgment	The large MW, limited bioavailability and low water solubility suggest there will be NES.				
		ENVIRONMENTAL F	ATE					
Transport		The estimated negligible water solubility and estimated negligible vapor pressure indicate that these polymer are anticipated to partition predominantly to soil and sediment. The estimated Henry's Law Constant of $<10^{8}$ atm-m ³ /mole indicates that these are not expected to volatilize from water to the atmosphere. The estimated K _{oc} of >30,000 indicates that they are not anticipated to migrate from soil into groundwater and have the potential to adsorb to sediment.						
Henr (atm-	y's Law Constant ·m ³ /mole)	<10 ⁻⁸ (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to have low vapor pressure and are not expected to undergo volatilization.				
Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}		>30,000 (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to adsorb strongly to soil and sediment.				

	Poly[phosphonate-co-carbonate] CASRN 77226-90-5							
PRO	PERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Level III Fugacity Model			No data located.				
Persistence		VERY HIGH: A very limited fraction of are not anticipated to be assimilated by important removal process. They are als environmental conditions because of lim expected to partition primarily to sedim- lack the functional groups that hydrolyz chromophores that absorb at wavelength direct photolysis by sunlight.	these polymers is expected to have microorganisms and biodegradat so not expected to be removed by ited water solubility and limited p ent and soil, where their estimated we under environmental conditions hs >290 nm, and therefore, they a	ve a MW of <1,000; therefore, they ion is not expected to be an other degradative processes under partitioning to air. They are d half-life is >1 year. The polymers s. These polymers do not contain re not expected to be susceptible to				
Water	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment; Boethling et al., 1997	Most high MW polymers are expected to be non-biodegradable.				
	Volatilization Half-life for Model River	>1 year (Estimated)	Professional judgment	This high MW polymer is anticipated to be nonvolatile.				
	Volatilization Half-life for Model Lake	>1 year (Estimated)	Professional judgment	This high MW polymer is anticipated to be nonvolatile.				
Soil	Aerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment; Boethling et al., 1997	High MW polymers are expected to be non-biodegradable.				
	Anaerobic Biodegradation	Recalcitrant (Estimated)	Professional judgment	High MW polymers are expected to be resistant to removal under anoxic conditions due to their limited bioavailability.				
	Soil Biodegradation with Product Identification			No data located.				
	Sediment/Water Biodegradation			No data located.				
Air	Atmospheric Half-life			No data located.				
Reactivity	Photolysis	Not a significant fate process (Estimated)	Mill, 2000; Professional judgment	The substance does not contain functional groups that would be expected to absorb light at environmentally significant wavelengths.				

Poly[phosphonate-co-carbonate] CASRN 77226-90-5								
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Hydrolysis	>1 year (Estimated)	Professional judgment	Given the limited solubility estimated for this material, hydrolysis is not anticipated to occur to an appreciable extent.				
Environmental Half-Life		>180 days (Estimated)	Professional judgment	The substance has a MW >1,000 and is not anticipated to be assimilated by microorganisms. Therefore, biodegradation is not expected to be an important removal process. It is also not expected to be removed by other degradative processes under environmental conditions because of limited water solubility and limited partitioning to air.				
Bioaccumulation		LOW: These polymers are expected to have negligible water solubility and poor bioavailability indicating that these polymers should have low potential for bioaccumulation.						
	Fish BCF	<100 (Estimated)	Professional judgment	The substance has a MW >1,000 and is not anticipated to be assimilated by aquatic organisms; therefore, bioconcentration is not expected.				
	BAF			No data located.				
Metabolism in Fish								
		ENVIRONMENTAL MONITORI	VIRONMENTAL MONITORING AND BIOMONITORING					
Environmental Monitoring		No data located.	No data located.					
Ecological Biomonitoring		No data located.						
Human Biomonitoring		This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2011).						

Boethling, Robert S. and Nabholz, J. Vincent "Environmental Assessment of Polymers under the U.S. Toxic Substances Control Act", pp. 187-234, in Ecological Assessment of Polymers Strategies for Product Stewardship and Regulatory Programs, Hamilton, John D. and Sutcliffe, Roger (eds.), (1997) Van Nostrand Reinhold.

CDC (Centers for Disease Control and Prevention). *Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables.* Department of Health and Human Services **2011.** Available at: <u>http://www.cdc.gov/exposurereport/</u> as of May 10, 2011

European Chemical Substances Information System (ESIS) Classification, Labeling and Packaging of Dangerous Substances Annex VI to Regulation (EC) No 1272/2008 [Online] available at: http://esis.jrc.ec.europa.eu/home.php as of May 10, 2011.

FRX Polymers, Inc. Material Safety Data Sheet. FRX CO 35 Polyphosphonate Copolymer (CAS 77226-90-5). Chelmsford, MA. 2009.

FRX Polymers, Inc. FRX polyphosphonate: Acute oral toxicity in the rat – fixed dose method. FRX Polymers, Inc. Chelmsford, MA. Project number 41103591. **2011**. (Submitted unpublished study).

Mill, T. (2000) Photoreactions in Surface Waters. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (355-382). Boca Raton: Lewis Publishers.

Red Phosphorus

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance, including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were																
assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment.																
			Human Health Effects					Aquatic		Environmental						
			-		-	1	-		-		-	-	Toxicity		Fate	
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Red Phosphorus	7723-14-0	L	L	M	L	L	L	L	L		Μ	Μ	L	L	Η	L

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Red Phosphorus

	CASRN: 7723-14-0					
	MW: >1,000 (Estimated)					
$\star + \mathbf{P} = P$	$\mathbf{MF:} (\mathbf{P}_4)_{\mathbf{n}}$					
$\mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P}$	Physical Forms: Neat: Solid					
	Use: Flame retardant					
SMILES: This polymeric form of elemental phosphorous is not amenable to SMILES notation.						
Synonyms: Phosphorus; Red amorphous phosphorus; Violet phosphorus; Exolit RP 605; Exolit RP 650; Exolit RP 652; Exolit RP 654; Hishigado; Hishigado AP; Hishigado CP; Hishigado NP 10; Hishigado PL; Hostaflam RP 602; Hostaflam RP 614; Hostaflam RP 622; Hostaflam RP 654; Novared 120UFA; Novared 120UFA; Novared 120VFA; Novared 140; Novared 280; Novared C 120; Novared F 5; Novaexcel 140; Novaexcel 150; Novaexcel F 5; Novaexcel ST 100; Novaexcel ST 140; Novaexcel ST 300						
Chemical Considerations: This alternative is an inorganic compound. Red phosphorus refers specifically to the crystalline and amorphous forms of elemental phosphorus which are red in color and consist of random networks of P_4 -tetrahedron links. This assessment on red phosphorous does not address other allotropes of elemental phosphorus. White, yellow or black phosphorus do not necessarily have the same properties, fate, or toxicity as red phosphorus. Not all literature entries identify which allotropic form is discussed (Daubert and Danner, 1989; Kelly, 2006).						
Polymeric: The elemental form of red phosphorous produced commercially is an amorphous solid (Brummer et al., 2005). Oligomers: Not applicable						
Metabolites, Degradates and Transformation Products: Phosphine (CASRN 7803-51-2), phosphorus oxides, hypophosphores phosphoric acid (CASRN 7664-38-2)	norus acid (CASRN 6303-21-5),					
Analog: No analog Analog Structure: Not applicable Endpoint(s) using analog values: Not applicable Analog Structure: Not applicable						
Structural Alerts: None						
Risk Phrases: 11- Highly flammable; 16- Explosive when mixed with oxidizing substances; 52/53- Harmful to aquatic orga effects in the aquatic environment (ESIS, 2011). The risk phrases 52/53 are likely to be appropriate only for the yellow/white CASRN and an EINECS number with red phosphorus and is generally considered more toxic and reactive than red phosphorus and section.	nisms; may cause long-term adverse e allotrope of phosphorus which shares a rus.					
Hazard and Risk Assessments: Risk assessments completed in 2007 for red phosphorus by the Danish Environmental Prote 2007) and the Maine Department of Environmental Protection (Maine DEP, 2007).	ection Agency (Stuer-Lauridsen et al.,					

	Red Phosphorus CASRN 7723-14-0									
PROPERTY/ENDPOINT	DATA QUALITY									
PHYSICAL/CHEMICAL PROPERTIES										
Melting Point (°C)	Sublimation point: 416°C (Measured) Triple point: 589.5°C at 43.1 atm	O'Neil, 2010	This substance sublimes.							
	Sublimation point: 431°C (Measured) Triple point: 590°C	Lide, 2008								
	>590°C (Measured)	IUCLID, 2000	Inadequate; nonspecific value.							
Boiling Point (°C)	Sublimation point: 416°C (Measured) Triple point: 589.5°C at 43.1 atm	O'Neil, 2010	This substance sublimes.							
	Sublimation point: 431°C (Measured) Triple point: 590°C	Lide, 2008								
	>400°C (Measured)	IUCLID, 2000	Inadequate; appears to be a cutoff value, and is inconsistent with the reported ability for red phosphorous to sublime.							
Vapor Pressure (mm Hg)	0.03 at 21°C (Measured)	Sigma-Aldrich, 2011	Adequate, consistent values, which							
	0.05 at 25°C (Measured)	EPA, 2010	span a relatively narrow range.							
	1 at 237°C (Measured)	Spanggord et al., 1983	This value was measured at an elevated temperature.							
	<0.075 at 20°C (Measured)	IUCLID, 2000	Inadequate; nonspecific value.							
Water Solubility (mg/L)	<10 ⁻³ (Estimated)	Professional judgment; EPA, 1999	Based on this chemical's high MW amorphous structure; cutoff value for substances that are not anticipated to display appreciable water solubility according to the High Production Volume (HPV) assessment guidance.							
	Not soluble or insoluble (Measured)	IUCLID, 2000; Stuer-Lauridsen et al., 2007; Lide, 2008	Qualitative descriptions consistent with the low water solubility							
	Red phosphorus does not dissolve in water without decomposition (Measured)	Beard, 2000	anticipated for red phosphorous.							

Red Phosphorus CASRN 7723-14-0							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Log K _{ow}			No data located; elemental inorganic materials are outside the estimation domain of EPI estimation models.				
Flammability (Flash Point)	Red phosphorus ignites in air at approximately 300°C (Measured)	Diskowski and Hofmann, 2000	Adequate.				
	Highly flammable (Measured)	Stuer-Lauridsen et al., 2007	Supporting qualitative value.				
	Ignited by friction, static electricity, heating or by oxidizing agents (Measured)	EPA, 2010; Clariant, 2010	Reported in a secondary source, no study details provided.				
Explosivity	May explode when exposed to heat or by chemical reaction with oxidizers. It does not react until >260°C. (Measured)	Stuer-Lauridsen et al., 2007	Adequate.				
Pyrolysis	Releases phosphorus oxides and phosphorus acids depending on the available oxygen content while burning. (Measured)	Leisewitz et al., 2001	Adequate.				
рН	5-6 at 100 g/L and 20°C (Measured)	IUCLID, 2000	Red phosphorous slowly hydrolyzes to phosphoric acid in the presence of oxygen; therefore the pH of a water solution would be dependent on both its age and concentration.				
pK _a		Professional judgment	The substance does not contain functional groups that would be expected to ionize.				
Red Phosphorus CASRN 7723-14-0							
---	-------------------------	---	--	--	--	--	
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	HUMAN HEALTH EFFECTS						
Toxicokinetics		Red phosphorus is not absorbed through	the skin and is expected to have	poor absorption from the lung and			
		the gastrointestinal tract.	1				
Dermal Absorption	n <i>in vitro</i>	Red phosphorus is practically unabsorbable	HSDB, 2011	Reported in a secondary source; limited study details provided.			
Absorption, Distribution, Metabolism & Excretion	Oral, Dermal or Inhaled	Not absorbed from the skin, poor absorption from the lung and gastrointestinal tract (Estimated by analogy)	Professional judgment	Based on analogy to similar compounds.			
		Not absorbed through the gastrointestinal tract and, therefore, relatively harmless when ingested	HSDB, 2011	Reported in a secondary source; limited study details provided.			
	Toxicity	LOW: Based on oral LD_{50} values >10,000 mg/kg in rats. Several studies reported values that fall within the criteria range for a Very High hazard designation; however, the allotrope of phosphorous used could not b verified and the experimental details from the studies could not be assessed. Some studies of red phosphor in mixtures with butyl rubber showed toxicity: red phosphorus and butyl rubber (RP-BR) smoke at concentrations between 0.1-5.3 mg/L caused mild histological changes in the respiratory tract, respiratory distress, laryngeal lesions and pulmonary congestion in several animal studies (including human) following exposure. This profile is not assessing mixtures					
Acute Lethality	Oral	Rat, mouse LD ₅₀ : 11.5 mg/kg	RTECS; Maine DEP, 2007	Reported in secondary sources; the form of phosphorus is not specified therefore this value is unverifiable.			
		Rabbit LD ₅₀ : 105 mg/kg	RTECS	Reported in a secondary source; this value is unverifiable.			
		Cat, dog LD ₅₀ : 5 mg/kg	RTECS	Reported in a secondary source; this value is unverifiable.			
		Rat LD ₅₀ >10,000 mg/kg-bw - 15,000 mg/kg-bw	ECHA, 2012; NRC, 1997; Maine DEP, 2007	Unpublished studies reported in secondary sources; studies conducted according to Organisation of Economic Cooperation and Development guidelines.			

Red Phosphorus CASRN 7723-14-0				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Single dosage of 0.66 mg/kg did not produce mortality in rabbits or guinea pigs. Cirrhosis-like symptoms were observed.	Maine DEP, 2007	Reported in secondary sources.	
Inhalation	Rat, rabbit $LC_{Lo} = 0.15 \text{ mg/L} (150 \text{ mg/m}^3)$ Cardiac: EKG changes not diagnostic of specified effects; Liver: fatty liver, degeneration; Kidney/ureter/bladder: other changes.	RTECS	Reported in a secondary source.	
	Rat LC_{50} (1 -hour exposures): 2.32-4.3 mg/L (2,320 – 4,300 mg/m ³)	NRC, 1997; Maine DEP, 2007	Reported in secondary sources.	
	Sprague Dawley rats and Beagle dogs exposed to RP-BR and black powder mixture at 1.128-1.882 mg/L (1,128-1,882 mg/m ³). Exposure: 60-240 minutes (rats) or 30-240 minutes (dogs)	EPA, 2010	Adequate; however, study details are not available; reported in a secondary source.	
	Respiratory distress (leading to prostration and death in some cases). Transient hypoactivity, salivation, conjunctivitis.			

Red Phosphorus CASRN 7723-14-0				
PROPERT	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Sprague Dawley rats exposed to an aerosol generated by combustion of RP/BR for 1 or 4 hours. 1 hour exposures: 3.15, 4.33, 5.36 or 8.46 mg/L (3,150, 4,330, 5,360, 8,460 mg/m ³) 4 hour exposure: 1.53 mg/L (1,530 mg/m ³) 1-hour LC ₅₀ = 4.597 mg/L (4,597 mg/m ³) Slightly-moderately deformed epiglottis (blunted tip or partially to virtually absent, ulceration, edema); laryngeal lesions (severe ulceration and edema with fibrin substance on the mucosal surface of the ventral larynx); moderate-severe pulmonary congestion, edema, hemorrhage.	EPA, 2010	Reported in a secondary source.
		Porton Wistar rats exposed to combustion aerosols of red phosphorus at 3.1 or 3.2 mg/L (3,100 or 3,200 mg/m ³) for 30 minutes. Laryngeal inflammation, blood in tracheal lumen, severe pulmonary congestion and edema, hepatic congestion.	EPA, 2010	Reported in a secondary source.

	Red Phosphorus CASRN 7723-14-0			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Rats, mice, and rabbits exposed to unformulated pure red phosphorus smoke as ortho-phosphoric acid for 1 hour. Rat 1-hour $LC_{50} = 1.217 \text{ mg/L} (1,217 \text{ mg/m}^3 \text{ as phosphorus})$ Mouse 1-hour $LC_{50} = 0.856 \text{ mg/L} (856 \text{ mg/m}^3 \text{ as phosphorus})$ Rabbit 1-hour $LC_{50} = 5.337 \text{ mg/L} (5,337 \text{ mg/m}^3 \text{ as phosphorus})$	EPA, 2010	Reported in a secondary source; inhalation toxicity to the red phosphorous smoke may be the result of exposure to the phosphoric acid that is generated by combustion of the smoke generating device used to make the aerosol.
		Death, necrosis and inflammation in the larynx and trachea, pulmonary congestion, hemorrhage, edema, pneumonitis, congestion in liver and kidney (rats, mice guinea pig), cortical necrosis in kidney (mice).		
		Guinea pigs exposed to RP-BR smoke at 120-2.277 mg/L (2,277 mg/m ³) for 5-150 minutes. Death, respiratory distress	EPA, 2010	Reported in a secondary source.
		Mild histological changes in the respiratory tract of rabbits and rats (abnormalities in the larynx and trachea, alveolitis, frank pneumonia) exposed to pyrotechnic mixtures containing red phosphorus.	Marrs, 1984	Adequate. Histological effects seem to be a result of orthophosphoric acid aerosol.
		Reversible symptoms of respiratory distress in workers exposed to 0.1-0.7 mg/L (100-700 mg/m ³) red phosphorus smoke for <15 minutes.	EPA, 2010	Reported in a secondary source.

Red Phosphorus CASRN 7723-14-0					
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Carcinogenicity		LOW: Estimated not to have potential for carcinogenicity based on expert judgment. Red phosphorus is not listed as a known carcinogen by the International Agency for Research on Cancer (IARC), National Toxicology Program, EPA or California Proposition 65; however, no long-term carcinogenicity studies were			
	OncoLogic Results Carcinogenicity (Rat and Mouse) Combined Chronic Toxicity/ Carcinogenicity	Low potential for carcinogenicity. (Estimated)	Expert judgment	Estimated based on expert judgment.	
Genotoxicity		MODERATE: Uncertain potential for mutagenicity based on expert judgment. There is a lack of gene mutation data, genotoxic effects cannot be ruled out. Negative results for both chromosomal aberrations and gene mutation assays are required for a categorization of Low			
	Gene Mutation in vitro	Uncertain potential for mutagenicity. (Estimated)	Expert judgment	Estimated based on expert judgment.	
	Gene Mutation in vivo			No data located.	
	Chromosomal Aberrations <i>in vitro</i>			No data located.	
	Chromosomal Aberrations <i>in vivo</i>	Micronucleus test in rat bone marrow polychromatic and normachromatic red blood cells. Weak clastogenic effect in both bone marrow and red blood cells following exposure to 1.000 mg/m ³ for 2 weeks.	NRC, 1997; Maine DEP, 2007	Reported in secondary sources.	
	DNA Damage and Repair			No data located.	
	Other (Mitotic Gene Conversion)			No data located.	
Reproductive Effects		LOW: Estimated not to have potential fo located.	r reproductive effects based on e	xpert judgment. No adequate data	
	Reproduction/ Developmental Toxicity Screen	Low potential for reproductive effects. (Estimated)	Expert judgment	Estimated based on expert judgment.	

Red Phosphorus CASRN 7723-14-0			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen			No data located.
Reproduction and Fertility Effects	Sprague Dawley rats exposed to RP-BR smoke at 132 or 1,186 mg/m ³ 5 days/week for 10 weeks. No dominant lethal or single generation reproductive effects. No effects on testicular toxicity; however, the fixative used to judge histopathology was not clear.	NRC, 1997	Reported in a secondary source; limited details provided on specific reproductive/fertility parameters measured in the study.
	NOAEL = not established		
Developmental Effects	LOW: Estimated not to have potential fo	r developmental effects based on	expert judgment. No adequate
	experimental data were located.		
Reproduction/ Developmental Toxicity Screen	(Estimated)	Expert judgment	Estimated based on expert judgment.
Combined Repeated Dose with Reproduction/	Pregnant Sprague Dawley rats exposed to RP-BR smoke at 0.132 or 1.183 mg/L (132	NRC, 1997	Reported in a secondary source; developmental endpoints were not
Developmental Toxicity Screen	or 1,186 mg/m ³) 5 days/week on gestation days 6-15.		fully evaluated.
	No dose-related increases in malformations or variations.		
	In a single-generation using same exposure concentrations, decrease in birth weight on PND 1 for rats in the 1.183 mg/L group (recovered on PDNs 14 and 21).		
Prenatal Development			No data located.
Postnatal Development			No data located.

Red Phosphorus CASRN 7723-14-0				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Neurotoxicity		LOW: Estimated not to have potential fo	r neurotoxicity based on expert j	udgment. Exposure to red
		phosphorus/butyl rubber (RB-BR) aeros	ols increased locomotor activity i	n rats with incomplete recovery
		post-exposure.		
	Neurotoxicity Screening	Low potential for neurotoxicity.	Expert judgment	Estimated based on expert judgment.
	Battery (Adult)	(Estimated)		
		Sprague Dawley rats exposed to RP-BR	NRC, 1997	Reported in a secondary source;
		aerosols at 400–1,200 mg/m ³ 2.25		limited details provided.
		hour/day, 4 days/week for 4 weeks;		-
		increased motor activity with incomplete		
		recovery after 2 weeks (M).		
		LOAEL = 0.4 mg/L		
	Developmental	Phosphorus is classified as a potential	Grandjean and Landrigan, 2006	It is unclear if the data pertain to red
	Neurotoxicity	developmental neurotoxicant on the Clean		phosphorus or white phosphorus,
		Production Action Red List.		which is more toxic.
Repeated Dose Effe	cts	LOW: Estimated not to have potential for repeated dose effects based on professional judgment.		
		Experimental toxicity values located are based on inhalation exposure to a pyrotechnic mixture of red		
		phosphorus- and red phosphorus/butyl rubber (RP-BR) smoke and not solely red phosphorous; reported		
		toxicity in studies using the RP-BR mixtures as the test substance cannot be specifically attributed to red		
		phosphorus.		
		Low potential for repeated dose effects.	Professional judgment	Estimated based on professional
		(Estimated)		judgment.

Red Phosphorus CASRN 7723-14-0				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Female Portan-strain mice, female Wistar rats and female Dunkin-Hartley guinea pigs exposed to a pyrotechnic mixture of red phosphorus smoke 1 hour/day, 5 days/week for 180 or 200 exposures. Concentrations: 15 and 130 mg/m ³ (0.015– 0.13 mg/L)	Marrs et al., 1989	Adequate, guideline study; the test substance for this study was a pyrotechnic mixture of red phosphorus smoke; the toxicity reported cannot be attributed to any one component of the mixture including red phosphorus.	
	Over 50% of mice died in each dose group; 80% of rats died in the high dose group; 38% of guinea pigs died in the low dose group and all died during or immediately after exposure to the high dose (death appeared due to pulmonary congestion).			
	Depressed growth at both doses (mice, rats).			
	Increased incidence of aggregates of macrophages containing granules in the lungs (mice); severe congestion in the lungs (guinea pigs), though no dose-related changes in rat lungs.			
	Other findings: renal disease (mice, rats, guinea pigs), chronic interstitial nephritis (mice, guinea pigs), nephropathy (rats). LOAEL = 0.015 mg/L			

Red Phosphorus CASRN 7723-14-0				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Rats (60/group) were exposed to RP-BR smoke at 0, 22, and 165 mg/m ³ (0.022, 0.165 mg/L) for 12 weeks (8 minutes/day, 5 days/week).	NRC, 1997	Reported in a secondary source; limited study details provided.	
	Reddening and swelling of the eyelids that subsided at study termination.			

Red Phosphorus CASRN 7723-14-0			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Rats (Sprague Dawley and Fisher 344), mice (Swiss and A-strain), guinea pigs and rabbits were exposed to 8-43 mg/m ³ (low exposure) or 80-288 mg/m ³ (high exposure) RP-BR 5 days/week for 12 weeks.	NRC, 1997	Reported in a secondary source.
	Daily average exposures were 22 and 165 mg/m ³ (0.022 and 0.165 mg/L) for low and high concentrations, respectively.		
	Increased breathing rate (rats); histological changes in the lungs, trachea, upper respiratory tract and other organs (rats, mice). Authors concluded that these changes were not related to the exposure (sporadic, not unlike what was observed in controls).		
	Morphological lesions in the lung, trachea, nasal turbines, liver, kidney, heart, testes, ovaries, urinary bladder and other organs, however these changes were also seen in controls (guinea pigs, rabbits).		
	NOAEL: 0.165 mg/L (165 mg/m ³) LOAEL: not established as highest concentration tested did not produce adverse effects.		

Red Phosphorus CASRN 7723-14-0			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Sprague-Dawley rats were exposed to RP- BR aerosols at 400-1,200 mg/m ³ for 2.25 hour/day, 4 days/week for 4 weeks.	NRC, 1997	Reported in a secondary source; limited study details provided.
	Wheezing, labored breathing (males at high dose); deceased body weight and food consumption that returned to normal during 14-day recovery period; Pulmonary edema (resolved during recovery); terminal bronchial fibrosis (400 mg/m ³) that did not exhibit recovery during the observation period.		
	LOAEL = 0.4 mg/L (based on terminal incidences of bronchial fibrosis)		
	Sprague-Dawley (males only) exposed to RP-BR smoke at 50, 180, 300, 750 and 1,200 mg/m ³ for 13 weeks. Most of the animals died during the first 2 weeks of exposure. Decrease in body weight (750 and 1,200 mg/m ³); 10.8% spontaneous death or in moribund state (1,200 mg/m ³); congestion/hemorrhage in lungs; terminal bronchiolar fibrosis and erosions of the laryngeal mucosa with deposition of fibrin on the surface. No deaths at 300 mg/m ³ or less.	NRC, 1997	Reported in a secondary source.
	NOAEL: 0.05 mg/L (50 mg/m ³) LOAEL: 0.18 mg/L (180 mg/m ³) based on incidence of terminal bronchiolar fibrosis		

Red Phosphorus CASRN 7723-14-0			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Sprague Dawley rats exposed to RP-BR aerosols at 400-1,200 mg/m ³ 2.25 hours/day, 4 days/week for 4 weeks.	NRC, 1997	Reported in a secondary source; limited study details provided.
	Decreased cholesterol and blood urea nitrogen (BUN) at (400 mg/m ³ , female; 750 mg/m ³ , male). Increased triglycerides (400 mg/m ³ , female).		
	Female rats exposed to 1,000 mg/m ³ (1 mg/L) had significant decreases in cholesterol and triglycerides and those exposed to 750 mg/m ³ (0.75 mg/L) had decreased BUN after the recovery period.		
	LOAEL = 0.4 mg/L (based on decreased cholesterol and BUN in female rats)		
Immune System Effects	Low potential for immunotoxicity (Estimated)	Expert judgment	Estimated based on expert judgment.
	Sprague Dawley rats exposed to RP-BR aerosols at 400–1,200 mg/m ³ 2.25 hours/day, 4 days/week for 4 weeks.	NRC, 1997	Reported in a secondary source; limited study details provided.
	Decreased white blood cell count in males and increased blood lymphocytes in females at 750 mg/m ³ .		
	Decreased activity of plasma membrane- associated extoenzyme 5'-nucleotidase in macrophages at 750 mg/m ³ . Decreased alkaline phosphatase in macrophages after		

Red Phosphorus CASRN 7723-14-0							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Sprague Dawley rats exposed to RP-BR aerosols 2.25 hour/day, 4 days/week for 13 weeks.	NRC, 1997	Reported in a secondary source; limited study details provided.				
	Increased ATP levels at 300 mg/m ³ ; decreased activity of 5'-nucleotidase at 750 mg/m ³ .						
Skin Sensitization	LOW: Based on experimental data show	ng a lack of sensitization in guine	ea pigs.				
Skin Sensitization	Not sensitizing, guinea pigs	Maine DEP, 2007	Reported in a secondary source, data are for red phosphorus; limited study details provided.				
Respiratory Sensitization	No data located.						
Respiratory Sensitization			No data located.				
Eye Irritation	MODERATE: Exposure to red phosphorus may cause corneal injury.						
Eye Irritation	May cause corneal injury, rabbit (development of numerous fine blood vessels, dilation)	HSDB, 2011	Reported in a secondary source.				
	Conjunctivitis, rats (1,813 mg/m ³ for 180 minutes or 1,128 mg/m ³ for 60 minutes) and dogs (1,882 mg/m ³ for 240 minutes) Exposure to red phosphorus smoke. Symptoms resolved within 3 days post- exposure.	NRC, 1997; EPA, 2010	Reported in secondary sources.				
	Negative, rabbit (100 mg)	NRC, 1997	Reported in a secondary source.				
	Reversible irritation of the eyes and mucous membranes in workers exposed to 0.1-0.7 mg/L (100-700 mg/m ³) red phosphorus smoke for <15 minutes.	EPA, 2010	Reported in a secondary source.				
Dermal Irritation	MODERATE: Prolonged contact with red phosphorus may cause skin irritation. Red phosphorus was not a skin irritant in guinea pigs.						
Dermal Irritation	Negative, guinea pigs (0.5 g on application site)	NRC, 1997	Reported in a secondary source.				

Red Phosphorus CASRN 7723-14-0							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Severe irritation, rabbits Application of RP-BR residue	NRC, 1997	Reported in a secondary source; substance tested was a commercial material comprised of a combination of red phosphorus with butyl/rubber.				
	Prolonged or repeated contact may cause skin irritation	Maine DEP, 2007	Reported in a secondary source; information originally reported in a MSDS for red phosphorus; no study details were provided.				
Endocrine Activity	Estimated not to have potential for endo	crine activity based on expert jud	gment.				
	Low potential for endocrine activity (Estimated)	Expert judgment	Estimated based on expert judgment.				
Immunotoxicity	Estimated not to have potential for immunotoxicity based on expert judgment. Exposure to red phosphorus/butyl rubber (RP-BR) aerosols may cause decreases in white blood cell and lymphocyte decreased activity of 5'nucleotides in macrophages, and increased ATP activity.						
Immune System Effects	Low potential for immunotoxicity (Estimated)	Expert judgment	Estimated based on expert judgment.				
	Sprague Dawley rats exposed to RP-BR aerosols at 400–1,200 mg/m ³ 2.25 hours/day, 4 days/week for 4 weeks.	NRC, 1997	Reported in a secondary source; limited study details provided.				
	Decreased white blood cell count in males and increased blood lymphocytes in females at 750 mg/m ³ .						
	Decreased activity of plasma membrane- associated extoenzyme 5'-nucleotidase in macrophages at 750 mg/m ³ . Decreased alkaline phosphatase in macrophages after 14-day recovery period (male).						

Red Phosphorus CASRN 7723-14-0							
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
		Sprague Dawley rats exposed to RP-BR aerosols 2.25 hour/day, 4 days/week for 13 weeks.	NRC, 1997	Reported in a secondary source; limited study details provided.			
		Increased ATP levels at 300 mg/m ³ ; decreased activity of 5'-nucleotidase at 750 mg/m ³ .					
		ECOTOXICITY					
ECOSAR Class		Not applicable					
Acute Toxicity		LOW: Experimental LC_{50} values are high saturation (NES) can be assigned.	her than the water solubility of th	ne test substance; no effects at			
Fish LC ₅₀		96-hour $LC_{50} = 33 \text{ mg/L}$ (Experimental)	ERMA	Reported in a secondary source; limited study details provided. Effect level higher than the water solubility therefore NES can be predicted.			
Daphnid LC ₅₀		$LC_{50} = 10.5 \text{ mg/L} \text{ (Experimental)}$	ERMA	Reported in a secondary source; limited study details provided. Effect level higher than the water solubility therefore NES can be predicted.			
		48-hour $LC_{50} = 1,051 \text{ mg/L}$ (Experimental)	Maine DEP, 2007	Reported in a secondary source; limited study details provided. Effect level higher than the water solubility therefore NES can be predicted.			
Green Algae EC ₅₀		ECb ₅₀ = 9.5 mg/L (Experimental)	ERMA	Reported in a secondary source; limited study details provided. It is not clear which allotrope of phosphorous was used in this study. Effect level higher than the water solubility therefore NES can be predicted.			

Red Phosphorus CASRN 7723-14-0						
PRO	PERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Chronic Aquati	ic Toxicity	gher than the water solubility of	the test substance; NES can be			
Fish ChV		Pimephales promelas 30-day NOEC) = 0.007 mg/L (0.7 μg/L) (Experimental)	ERMA	Reported in a secondary source; limited study details provided. Effect level higher than the water solubility therefore NES can be predicted.		
Daphnid ChV				No data located.		
Green Algae Cl	nV			No data located.		
		ENVIRONMENTAL	FATE			
Transport		vapor pressure and estimated \mathbf{K}_{α} in the environment and will part	$_{c}$ of >30,000 indicate that red ition primarily to soil and sediment.			
	Henry's Law Constant (atm-m ³ /mole)			This inorganic compound is not amenable to available estimation methods.		
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	>30,000 (Estimated)	Professional judgment; 2004	Cutoff value for non-mobile compounds.This inorganic compound is not amenable to available estimation methods.		
	Level III Fugacity Model			Not all input parameters for this model were available for it to be run for this inorganic compound.		
Persistence		HIGH: Red phosphorus is estimated to phosphorus is relatively nonreactive un phosphorus will slowly undergo hydroly eventually convert to phosphine and hy products will lead to the formation of p	display high persistence in the end der typical environmental condity vsis under environmental conditi pophosphorous acid. Subsequent hosphoric oxides and acids.	nvironment. Elemental red ions. Measured data indicate that red ons (<3% in 4 months) and will t oxidation of these hydrolysis		
Water	Aerobic Biodegradation			No data located; elemental inorganic materials are outside the domain of the EPI estimation models.		
	Volatilization Half-life for Model River			No data located.		

	Red Phosphorus CASRN 7723-14-0						
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	Volatilization Half-life for Model Lake			No data located.			
Soil	Aerobic Biodegradation			No data located.			
	Anaerobic Biodegradation			No data located.			
	Soil Biodegradation w/ Product Identification			No data located.			
	Sediment/Water Biodegradation			No data located.			
Air	Atmospheric Half-life			No data located.			
Reactivity	Photolysis	Not a significant fate process (Estimated)	Professional judgment	The substance does not contain functional groups that would be expected to absorb light at environmentally significant wavelengths.			
	Hydrolysis	0.7% after 24 hours, 3.7% after 700 hours (Measured)	Walz and Beard, 2000	These nonguideline studies indicate that hydrolysis will occur slowly under environmental conditions.			
		Red phosphorus conversion rate of 2.7% over 4 months at room temperature (Measured)	Walz and Beard, 2000; Stuer- Lauridsen et al., 2007				
		Red phosphorus does not dissolve readily in water; atoms on the surface of the amorphous solid react slowly with water initially forming phosphine (7803-51-2) and hypophosphorous acid (6303-21-5). (Measured)	Leisewitz et al., 2001				
Environmental Ha	lf-life			No data located.			

Red Phosphorus CASRN 7723-14-0						
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Bioaccumulation		LOW: Due to the large size, water insolubility and amorphous nature of this inorganic substance, elemental phosphorous has a low potential for bioconcentration or bioaccumulation as it is unlikely to pass through biological membranes.				
	Fish BCF	<100 (Estimated)	Professional judgment	Red phosphorus has very low water solubility. It is also a large, amorphous solid and is unlikely to pass through biological membranes.		
	BAF			No data located.		
	Metabolism in Fish			No data located.		
		ENVIRONMENTAL MONITORING A	ND BIOMONITORING			
Environmental Mo	nitoring	No data located.				
Ecological Biomoni	itoring	No data located.				
Human Biomonitoring This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring rep (CDC, 2011).						

Beard, A. Exolit® Red Phosphorus – Environmental Information. Clariant GmbH. Hürth-Knapsack, Germany. 2000.

Brummer, J.; Keely, J.; Munday, T. Kirk-Othmer Encyclopedia of Chemical Technology. *Phosphorus*. Online Posting Date: August 19, **2005**.

Clariant GmbH. *Safety Precautions in Handling Red Phosphorus Powder Grades*. Clariant Produkte (Deutschland) GmbH BU Additives – BL Flame Retardants. Huerth-Knapsack, Germany. **2010**.

CDC (Centers for Disease Control and Prevention). *Fourth national report on human exposure to environmental chemicals, updated tables*. Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on June 10, 2011).

Daubert, T.; Danner, R. Physical and thermodynamic properties of pure chemicals: data compilation; design institute for physical property data. American Institute of chemical Engineers. New York, NY: Hemisphere Pub. Corp. **1989.**

Diskowski, H.; Hofmann, T. Ullmann's Encyclopedia of Industrial Chemistry. *Phosphorus*. New York, NY: John Wiley & Sons. Online Posting Date: June 15, **2000.**

ECHA (European Chemicals Agency). Information on registered substances. **2012**. <u>http://apps.echa.europa.eu/registered/registered-sub.aspx</u>.

EPA. 2004. The Pollution Prevention (P2) Framework, EPA-748-B-03-001. Office of Pollution Prevention and Toxics 7403M, U.S. Environmental Protection Agency, Washington, DC. 20460. October 2003 version updated in January 2004. Latest version available at http://www.epa.gov/opptintr/newchems/pubs/sustainable/p2frame-june05a2.pdf

EPA (U.S. Environmental Protection Agency). Proposed acute exposure guideline levels (AEGLs) for red phosphorus. U.S. Environmental Protection Agency, Office of Pollution Pesticides and Toxins (OPPT). **2010**. <u>http://www.epa.gov/oppt/aegl/pubs/red_phosphorus_proposed_mar_2010_v1.pdf</u>

EPA (U.S. Environmental Protection Agency). Sustainable Futures. *Using NonCancer Screening within the SF Initiative*. U.S. Environmental Protection Agency: Washington D.C. available at: <u>http://www.epa.gov/opptintr/sf/pubs/noncan-screen.htm#systemic</u> as of February 09, **2011a**.

[HPV Assessment Guidance] EPA (U.S. Environmental Protection Agency). *Determining the Adequacy of Existing Data*. U.S. Environmental Protection Agency: Washington D.C. **1999**. http://www.epa.gov/hpv/pubs/general/datadeqfn.pdf

EPI (*EPIWIN/EPISUITE*) *Estimation Program Interface for Windows*, Version 4.0. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

ERMA (Environmental Risk Management Authority). Phosphorus, amorphous (red) New Zealand. <u>http://www.ermanz.govt.nz/search-databases/Pages/ccid-details.aspx?SubstanceID=1732</u>. (Accessed on March 25, **2011**)

ESIS (European chemical Substances Information System). Classification, labeling and packaging of dangerous substances annex VI to regulation (EC) No 1272/2008. [Online] <u>http://ecb.jrc.ec.europa.eu/esis/index.php?PGM=cla</u> (accessed on June 30, 2011).

IUCLID (International Uniform Chemical Information Database). Dataset for phosphorus. European Commission Joint Research Centre. **2000.** <u>http://ecb.jrc.ec.europa.eu/iuclid-datasheet/7723140.pdf</u>

Grandjean, P.; Landrigan, P.J. Developmental neurotoxicity of industrial chemicals. *Lancet* 2006, 368:2167-2178.

HSDB (Hazardous Substances Data Bank). Phosphorus, elemental (CASRN: 7723-14-0) National Library of Medicine. http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~vrSOqf:1. (Accessed on March 19, **2011**)

Kelly, P. Encyclopedia of inorganic chemistry. *Phosphorus: Inorganic Chemistry*. New York, NY: John Wiley & Sons. Online Posting Date: March 15, **2006**.

Leisewitz, A., Kruse, H.; Schramm. E. Substituting environmentally relevant flame retardants: assessment fundamentals. Results and summary overview. June **2001**. http://www.oekorecherche.de/english/berichte/volltext/Flame%20Retardants.pdf.

Lide, D.R, ed. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, FL: CRC Press Taylor & Francis, 2008.

Maine DEP. Decabromodiphenyl ether flame retardant in plastic pallets. A safer alternatives assessment. Prepared for: Maine Department of Environmental Protection. By: Pure Strategies, Inc. Gloucester, MA, **2007.**

Marrs TC. Histological changes produced by exposure of rabbits and rats to smokes produced from red phosphorus, *Toxicol. Lett.* **1984,** 21:141-146.

Marrs, T.C., Colgrave, H.; Edginton, J.; et al. The toxicity of a red phosphorus smoke after repeated inhalation. *J. Haz. Mat.* **1989**, 22:269-282.

O'Neil, M., ed. *e-Merck Index*. 14th ed. Basic Search. Whitehouse Station, NJ: Merck & Co., Inc. **2010**. <u>https://themerckindex.cambridgesoft.com/TheMerckIndex/index.asp</u> as of July 1, 2011.

NRC (National Research Council). Toxicity of military smokes and obscurants, Volume 1. Committee on Toxicology, Commission on Life Sciences, National Research Council. **1997**. <u>http://www.nap.edu/catalog/5582.html</u>.

RTECS. Registry of Toxic Effects of Chemical Substances (RTECS). National Institute for Occupational Safety and Health (NIOSH).

Spanggord, R.; Podoll, R.; Rewick, R.; et al. Environmental fate of white phosphorus/felt and red phosphorus/butyl rubber military screening smokes. Phase 1. Literature review. Menlo Park, CA: SRI International **1983.**

Sigma-Aldrich. Material Safety Data Sheet (MSDS) for Phosphorus, red. <u>http://www.sigmaaldrich.com/</u> (accessed on June 30, 2011).

Stuer-Lauridsen, F.; Cohr, K-H.; Andersen, T. Health and environmental assessment of alternatives to Deca-BDE in electrical and electronic equipment. Danish Environmental Protection Agency. February **2007**. <u>http://www2.mst.dk/Udgiv/publications/2007/978-87-7052-351-6/pdf/978-87-7052-352-3.pdf</u>.

Walz, R.; Beard, A. Chemical Behaviour of Red Phosphorus in Water. Clariant GmbH. Sulzbach, Germany. 2000.

Resorcinol Bis-Diphenylphosphate; RDP

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance, including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. [‡] The highest hazard designation of any of the oligomers with MW <1,000.

[§] Based on analogy to experimental data for a structural similar compound.

			Human Health Effects					Aquatic Toxicity ^{**}		Environmental Fate						
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Resorcinol Bis-Diphenylphosphate; RDP	125997-21-9	L	M [§]	L	L	Μ	Μ	Μ	L		L	VL	VH	VH	Μ	H^{\ddagger}

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Resorcinol Bis-Diphenylphosphate; RDP

Polymeric: Yes

Oligomers: The major component of this polymer is the oligomer where n=1, which typically comprises 95-99% of the mixture (EPA, 2010a). The balance is made up of higher oligomers (n=2, 3, etc.) and a triphenyl phosphate impurity (1-5% w/w).

Metabolites, Degradates and Transformation Products: Hydroxy-RDP, dihydroxy-RDP, resorcinol diphenyl phosphate, and hydroxyl-resorcinol diphenyl phosphate, resorcinol (108-46-3), resorcinol conjugates, resorcinyl glucuronide and resorcinyl sulfate were identified as metabolites (Freudenthal et al., 2000). Environmental degradation of RDP has been demonstrated in experimental studies (IUCLID, 2001); however the degradates have not been identified. Degradation of RDP by sequential dephosphorylation could produce phenol (CASRN 108-95-2), diphenyl phosphate (CASRN 838-85-7), or resorcinol (CASRN 108-46-3). The importance of dephosphorylation relative to possible competing pathways has not been demonstrated in a published study.

Analog: Aryl phosphates and other confidential analogs	Analog Structure: The analogs are structural classes or confidential and cannot
Endpoint(s) using analog values: Carcinogenicity and neurotoxicity	be suitably represented here.

Structural Alerts: Organophosphates, neurotoxicity (EPA, 2011a).

Risk Phrases: Not classified by Annex I Directive 67/548/European Economic Community (EEC) & IUCLID (Pakalin et al., 2007).

Hazard and Risk Assessments: An assessment was completed for resorcinol bis-diphenylphosphate by Washington State in 2006 (Laflamme, 2006).

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9									
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY						
PHYSICAL/CHEMICAL PROPERTIES									
Melting Point (°C)	-12 (Measured)	The reported values are for the pour point of the commercial polymeric							
	-13 (Measured)	Great Lakes, 2003	mixture, which is a liquid at room						
	-16.7 (Measured)	temperatures.							
Boiling Point (°C)	300 (Measured)	UBA, 2001a, 2003	Decomposition may occur before the						
	>300 (Measured)	AkzoNobel, 1998; Bayer, 2002; UBA, 2001b; Supresta, 2011	boiling point is reached.						
	>300 decomposes (Measured)	UBA, 2001b; Great Lakes, 2003							
	370 decomposes (Measured)	Supresta, 2011							
	>400 decomposes (Measured)	Bayer, 2002							
	38 at 138 Pa (Measured)	UBA, 2001a; 2001b; 2003							
Vapor Pressure (mm Hg)	1.9×10^{-5} at 20°C (Measured)	1.9x10 ⁻⁵ at 20°C (Measured) EPA, 2010							
	0.007 at 38°C (Measured)	UBA, 2001a, 2001b, 2003	the commercial polymeric mixture.						
	0.28 (Measured)	Supresta, 2011							
	<0.075 at 38°C (Measured)	IUCLID, 2001							
Water Solubility (mg/L)	1.05 mg/L at 20°C (Measured)	EPA, 2010a	The reported experimental data is for the commercial polymeric mixture.						
Log K _{ow}	4.93 (Measured)	EPA, 2010a; Wildlife International Ltd., 2003	The reported experimental data is for the commercial polymeric mixture.						
	4.9 (Measured)	ICL Industrial, 2009							
Flammability (Flash Point)	>230°C (Measured)	ICL Industrial, 2009	Adequate.						
	>240°C (Measured)	Chang Chun, no date							
	302°C (Measured)	Bayer, 2002							
Explosivity	Not explosive (Measured)	IUCLID, 2001; ICL Industrial, 2009	Insufficient study details to assess the quality of this value.						
Pyrolysis			No data located.						

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9							
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
рН		Not applicable	Professional judgment	This polymer does not contain functional groups that would be expected to ionize.			
pKa		Not applicable	Professional judgment	This polymer does not contain functional groups that would be expected to ionize.			
		HUMAN HEALTH EFF	ECTS				
Toxicokinetics		Resorcinol bis-diphenylphosphate was r extent following dermal exposure. Meta in expired air as CO ₂ .	eadily absorbed via the oral rout bolism was extensive with metab	te and was absorbed to a lesser polites excreted in feces, urine, and			
Dermal Absorption	n <i>in vitro</i>			No data located.			
Absorption, Distribution, Metabolism & Excretion	Oral, Dermal or Inhaled	Studies were conducted on rats, mice and monkeys following exposure to radiolabeled tetraphenyl resorcinol diphosphate (purity: 99%) via intravenous injection, oral, inhalation, and dermal routes of exposure. Blood, urine and feces were collected for approximately 7 days and metabolites were isolated and characterized; the brain, mesenteric fat, kidneys, liver, lungs, tests/ovaries and spleen were collected from rats at time of necropsy. RDP was absorbed and was extensively metabolized; Metabolism was consistent between species, sexes, and individual animals; Excretion occurred primarily in the feces and then urine. The major metabolites in the feces	Freudenthal et al., 2000; UK Environment Agency, 2009	Nonguideline study.			

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9							
PROPER'	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
		(RDP half ester), hydroxy-RDP half ester, dihydroxy-RDP, and hydroxy- RDP; Metabolites found in urine included resorcinol, resorcinyl glucuronide, and resorcinyl sulfate.	Freudenthal et al. 2000: UK	Nonguideline study			
		intravenous dose of 100 mg/kg radiolabeled tetraphenyl resorcinol diphosphate (purity: 99%).	Environment Agency, 2009	Trongulacinic study.			
		In rats, 13%, 45%, and 7% of the administered intravenous dose was excreted in urine, feces, and expired air (as CO2), respectively, 7 days after exposure. In monkeys, 24% and 26% was excreted					
		in urine and feces, respectively; expired air was not measured. There were no data reported for mice following intravenous exposure.					

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	Rats were exposed to radiolabeled tetraphenyl resorcinol diphosphate (purity: 99%) via a single oral gavage dose of 100 mg/kg.	Freudenthal et al., 2000; UK Environment Agency, 2009	Nonguideline study.			
	83% of the administered dose of RDP was absorbed; 80% of the absorbed radiolabelled dose was excreted in the feces as metabolites, 7% was excreted in the urine and 5% was excreted as CO2 in expired air. Un-metabolized RDP was found in the feces following oral exposure, indicating that some of the administered oral dose was not absorbed through the gastrointestinal route.					
	Rats and monkeys were administered a dermal dose of 100 mg/kg radiolabelled ¹⁴ C-tetraphenyl resorcinol diphosphate (purity: 99%) for 6 hours. 20% of RDP was absorbed in the systemic circulation in rats following the six-hour exposure and <10% was absorbed in monkeys. 7 days post-exposure, rats eliminated 7, 32, and 1% of administered dose in the urine, feces, and expired air, respectively. 1% of the administered dose was eliminated in expired air in monkeys after 7 days; the remaining absorbed	Freudenthal et al., 2000; UK Environment Agency, 2009	Nonguideline study.			

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
		 Rats were exposed to radiolabeled tetraphenyl resorcinol diphosphate via nose-only inhalation for 6 hours at a target delivered dose of 100 mg/kg 60% of RDP was excreted in the feces in males and 52% in females following exposure. 10% in males and 7% in females was excreted in the urine. 	Freudenthal et al., 2000; UK Environment Agency, 2009	Nonguideline study; doses are not reported in standard mg/L units; the authors state that actual retained dose in the lung cannot be measured accurately for the inhalation study.	
Acute Mammalian Toxicity		LOW: Based on an oral $LD_{50} > 5,000 \text{ mg/kg-bw}$ and a dermal $LD_{50} > 2,000 \text{ mg/kg-bw}$ in rats. The acute inhalation study in rats produced no deaths at the highest dose tested. The LC_{50} of >4.14 mg/L could not be used to evaluate the hazard designation because it is uncertain at which dose the LC_{50} would occur; the criteria threshold for Low is 5 mg/L for mists. Though unlikely, it is uncertain if the LC_{50} could occur between 4.15 mg/L and 5.0 mg/L (a Moderate hazard designation).			
Acute Lethality	Oral	Rat Oral LD ₅₀ >5,000 mg/kg-bw	EPA, 2010	Guideline study reported in a secondary source. Data are for the commercial polymeric mixture.	
	Dermal	Rat Dermal LD ₅₀ >2,000 mg/kg-bw	EPA, 2010	Guideline study reported in a secondary source. Data are for the commercial polymeric mixture.	
	Inhalation	Rat Inhalation (aerosol, nose-only) LC ₅₀ >4.14 mg/L	EPA, 2010	The study is a quality guideline study reported in a secondary source; It cannot be used to determine a hazard designation because there were no effects at the highest concentrations tested (4.14 mg/L); From this data, it cannot be determined if effects happened at 4.15 mg/L (Moderate) or at a concentration that can be considered Low; therefore, this study cannot be used to determine a hazard designation.	

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9					
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY	
Carcinogenicity		MODERATE: Estimated to have uncert	ain potential for carcinogenicity	based on analogy to aryl phosphate	
		analogs and professional judgment.			
	OncoLogic Results			Structure could not be evaluated by	
				OncoLogic.	
	Carcinogenicity (Rat	Uncertain potential for oncogenicity	Professional judgment	Estimated by analogy to aryl	
	and Mouse)	(Estimated by analogy)		phosphates.	
	Combined Chronic			No data located.	
	Toxicity/				
	Carcinogenicity				
Genotoxicity		LOW: Resorcinol bis-diphenylphosphat	e did not cause gene mutations o	r chromosomal aberrations <i>in vitro</i>	
		and did not produce an increase in micr	onuclei in mice <i>in vivo</i> .		
	Gene Mutation in vitro	Negative in Salmonella typhimurium	Pakalin et al., 2007; EPA, 2010	Guideline study. Data are for the	
		(strains not indicated) with and without		commercial polymeric mixture.	
		metabolic activation at concentrations up			
		to 5,000 μ g/plate.			
		No cytotoxicity was evident.		~	
		Negative in Escherichia coli (strains not	Pakalin et al., 2007; EPA, 2010	Guideline study. Data are for the	
		indicated) with and without metabolic		commercial polymeric mixture.	
		activation at concentrations up to 5,000			
		µg/plate.			
		No cytotoxicity was evident.			
	Gene Mutation in vivo		D 1 1 4 1 2007 ED 4 2010	No data located.	
	Chromosomal	Negative in chromosomal aberration test	Pakalin et al., 2007; EPA, 2010	Guideline study. Data are for the	
	Aberrations in vitro	(cultured human lymphocytes) with and		commercial polymeric mixture.	
		without metabolic activation at			
		concentrations up to 625 µg/mL.			
		Criteterrieity data not in diasted			
	Chuomosomol	Cytotoxicity data not indicated.	Debalin et al. 2007; EDA 2010	Cuidalina studu Data are fan tha	
	Chromosomal A homeotions	negative in mammalian erythrocyte	Pakalin et al., 2007; EPA, 2010	Guideline study. Data are for the	
	Aderrations in vivo	micronucleus test (Swiss mice) following		commercial polymeric mixture.	
		a single oral dose of 5,000 mg/kg-bw.			

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9				
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY
		Negative in mammalian erythrocyte micronucleus test (mice) following single oral dose of 500 mg/kg bw.	UK Environment Agency, 2009	Study details reported in a secondary source; Study was conducted in accordance with good laboratory practice (GLP) and Organisation of Economic Cooperation and Development (OECD) Guideline 474.
	DNA Damage and Repair			No data located.
	Other (Mitotic Gene Conversion)			No data located.
Reproductive Effects		LOW: Experimental data for resorcinol performance or fertility parameters at d dietary study in rats. There may be pote analog.	bis-diphenylphosphate indicate loses up to 1,000 mg/kg-day (high ntial for reproductive toxicity ba	no adverse effects on reproductive nest dose tested) in a two generation used on analogy to confidential
	Reproduction/ Developmental Toxicity Screen			No data located.
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen			No data located.

	Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Reproduction and Fertility Effects	Two generation dietary reproduction study in rats. Sprague-Dawley rats (30/sex/dose) were fed 0, 50, 500, or 1,000 mg/kg/day resorcinol bis- diphenylphosphate in the diet for 10 weeks. No clinical signs of toxicity. No effects on litter survival. No adverse effects on any reproductive or fertility parameter measured. No treatment-related lesions in any reproductive organ. NOAEL (parental systemic and reproductive toxicity) = ~ 1,000 mg/kg bw/day LOAEL: not established as highest concentration tested did not produce adverse effects.	Pakalin et al., 2007; EPA, 2010	Guideline study. Data are for the commercial polymeric mixture.
		Potential for reproductive toxicity; no pregnancies (1,000 mg/kg/day); reduced litter size and weight (250 mg/kg/day) NOEL = 50 mg/kg-day LOEL = 250 mg/kg/day (Estimated by analogy)	Professional judgment; Confidential study	Estimated by analogy to confidential analog.
Developmental Effects		MODERATE: Based on a NOAEL of 50 mg/kg bw-day in a two generation dietary reproduction study in		
		rats. Adverse effects included delayed va day. No adverse developmental effects w bis-diphenylphosphate at doses up to 10	aginal opening and preputial sepa vere observed in rabbits following 00 mg/kg bw-day.	aration at a dose of 500 mg/kg bw- g oral administration of resorcinol
	Reproduction/ Developmental Toxicity Screen			No data located.

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9				
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY
Combined Repe Dose with Reproduction/ Developmental ' Screen	ated Foxicity	Two generation dietary reproduction study in rats. Sprague-Dawley rats (30/sex/dose) were fed 0, 50, 500, or 1,000 mg/kg/day resorcinol bis- diphenylphosphate in the diet for 10	Pakalin et al., 2007; EPA, 2010	Guideline study. Data are for the commercial polymeric mixture.
		 Weeks. Vaginal opening and preputial separation were delayed at 500 and 1,000 mg/kg, but effect was considered secondary to reduction of body weight in F1 generation during week 1 (treated animals had decreased body weights compared to controls during week 1, reportedly due to an initial aversion to taste of diet). NOAEL: 50 mg/kg bw-day (for vaginal opening and preputial separation) LOAEL: 500 mg/kg bw-day 		

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9					
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY	
		Developmental oral gavage study in rabbits. Pregnant New Zealand white rabbits (27/group) were dosed with 0, 50, 200 or 1,000 mg/kg resorcinol bis- diphenylphosphate by oral gavage on gestation days (GDs) 6-28. No clinical signs of toxicity. No adverse effects on maternal food consumption, body weight gain or organ weights. No adverse effects on fetal body weights, viability, or any developmental endpoint measured.	EPA, 2010	Guideline study reported in a secondary source. Data are for the commercial polymeric mixture.	
		NOAEL (maternal and developmental toxicity) = 1,000 mg/kg LOAEL: not established as highest concentration tested did not produce adverse effects			

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Prenatal Development	 Pregnant rabbits; oral gavage; GD 6-23; 0, 50, 200 or 1,000 mg/kg test material No deaths or clinical signs of toxicity. No significant effect on body weight, body weight gain, food consumption or organ weight. No significant effect on litter weight or pup viability. No gross external, skeletal or soft tissues malformations or anomalies. NOAEL = 1,000 mg/kg-day (highest dose tested) 	UK Environment Agency, 2009	Study details reported in a secondary source; Study conducted according to GLP
		LOAEL = Not established		
	Postnatal Development			No data located.
Neurotoxicity		MODERATE: Based on a 28-day inhala (NOAEL = 0.1 mg/L); criteria values ar 0.5 mg/kg-day falls within the Moderate	tion LOAEL of 0.5 mg/L for inhi e tripled for chemicals evaluated hazard criteria (0.06 - 0.6 mg/L)	in the plasma ChE in rats in 28-day studies; the LOAEL of
	Neurotoxicity Screening Battery (Adult)	28-day oral (gavage) study NOAEL = 1,000 mg/kg (Estimated by analogy)	Submitted confidential study; Professional judgment	Estimated based on analogy to phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol (CASRN 1003300-73-9)

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	 28-day inhalation study in rats; 0, 0.1, 0.5 and 2.0 mg/L (aerosol); Significant inhibition of plasma ChE (0.5 and 2.0 mg/L). No clinical signs suggestive of neurotoxic effect and ChE was not affected after study termination NOAEL : 0.1 mg/L LOAEL : 0.5 mg/L (plasma ChE inhibition) 	UK Environment Agency, 2009; Heinrich et al., 2000	Study details reported in a secondary source; study was not designed to assess all neurological parameters; criteria values are tripled for chemicals evaluated in 28-day studies; the LOAEL of 0.5 mg/kg-day falls within the Moderate hazard criteria (0.06 - 0.6 mg/L).				
	 28-day oral (gavage) study in mice; 0, 500, 1,500, 5,000 mg/kg Dose-related decrease in plasma ChE compared to controls, which was no longer apparent after the 60 day recovery period. No NOAEL/LOAEL determined 	UK Environment Agency, 2009	Study details reported in a secondary source; study was not designed to assess all neurological parameters; cannot rule out all neurotoxicity.				
Repeated Dose Effects	MODERATE: Experimental data for rerats following a 4-week inhalation expose Environment criteria threshold for a low dose studies; criteria values are tripled f from 0.06 – 0.6 mg/L. No other exposure organ. There is also potential for liver to 300 mg/kg/day for that analog (higher th	sorcinol bis-diphenylphosphate r ure to 0.5 mg/L aerosol (NOAEL v hazard designation is 0.2 mg/L or 28-day study evaluations mak e-related gross or microscopic pa oxicity based on a confidential an nan the criteria threshold for a lo	reported alveolar histiocytosis in L = 0.1 mg/L). The Design for the for mists based on 90-day repeated sing the Moderate hazard range thology was identified in any alog, though no effects occurred at ow hazard designation).				
Repeated dose effects	28-day oral study, rats Potential for liver toxicity. NOEL = 300 mg/kg/day (Estimated based on analogy)	Professional judgment; Confidential study	Estimated based on analogy to confidential analog.				
Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9							
--	--	-----------	--	--	--	--	--
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	In a 4-week inhalation study Sprague- Dawley rats (10/sex/group) were exposed (aerosol, nose only) to 0, 100, 500 or 2,000 mg/m ³ (0, 0.1, 0.5, or 2 mg/L) resorcinol bis-diphenylphosphate. No deaths or clinical signs of toxicity. Decreased body weight and food consumption in males and significant inhibition of plasma cholinesterase in females at 2,000 mg/m ³ . White foci in the lungs at 2,000 mg/m ³ and alveolar histiocytosis at 500 and 2,000 mg/m ³ . Although lung changes are relevant, they were not considered to be a reflection of a specific toxic response to resorcinol bis-diphenylphosphate; these changes are characteristic of exposure to non- cytotoxic water-insoluble materials. No other gross or microscopic pathology in any organ. NOAEC: 100 mg/m ³ (0.1 mg/L) LOAEC: 500 mg/m ³ (0.5 mg/L) based	EPA, 2010	Guideline study reported in a secondary source. Data are for the commercial polymeric mixture.				

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Immune System Effe	 Negative, oral gavage study in mice. Female B6C3F1 mice (50/group) were exposed via oral gavage to 0, 500, 1,500, or 5,000 mg/kg-day resorcinol bis-diphenylphosphate for 28 days. No deaths, clinical signs of toxicity, or effects on body or organ weights. No adverse histopathological changes or necropsy findings. No treatment-related changes in peritoneal cell numbers or cell types, peritoneal macrophage phagocytic activity or host susceptibility to infection. No adverse effect on splenic natural killer cell activity, lymphocyte blastogenesis, or antibody-forming cell function. There were significant decreases in erythrocyte cholinesterase activity and plasma pseudocholinesterase activity in all dose groups, but both enzyme activities returned to control levels at the end of the 60 day recovery period. NOAEL: 5,000 mg/kg-day LOAEL: not established, as highest dose tested did not produced adverse effects 	EPA, 2010	Guideline study reported in a secondary source. Data are for the commercial polymeric mixture.				
Skin Sensitization	LOW: Estimated not to have potential f	or skin sensitization based on ex	pert judgment.				
Skin Sensitization	No potential for skin sensitization (Estimated)	Expert judgment	Estimated by expert judgment.				
Respiratory Sensitization	No data located.						
Respiratory Sensitization			No data located.				

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9								
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
Eye Irritation		LOW: Resorcinol bis-diphenylphosphate produced mild irritation in rabbit eyes; however, clearing						
		occurred within 24 hours.						
	Eye Irritation	Rabbit, minimally irritating.	EPA, 2010	Guideline study reported in a				
		0.1 ml instilled into the left eyes of 3		secondary source. Data are for the				
		rabbits produced slight conjunctival		commercial polymeric mixture.				
		redness and chemosis that was reversible						
		by 24 hours.						
Dermal Irritation VERY LOW: Resorcinol bis-diphenylphosphate is not a dermal irritant in				in rabbits.				
	Dermal Irritation	Rabbit, not irritating	EPA, 2010	Guideline study reported in a				
				secondary source. Data are for the				
				commercial polymeric mixture.				
Endocrine Activity		No experimental data were located to eva	luate and determine if RDP affe	cts endocrine activity.				
		However, resorcinol, a metabolite of RDI	P, is listed as a suspected endocrin	ne disruptor by the EU.				
		Resorcinol is listed as a potential	European Commission, 2012	"Potential for endocrine disruption.				
		endocrine disruptor on the EU Priority		In vitro data indicating potential for				
		List of Suspected Endocrine Disruptors.		endocrine disruption in intact				
				organisms. Also included effects in-				
				vivo that may, or may not, be				
				endocrine disruption-mediated. May				
				include structural analyses and				
				metabolic considerations".				

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9								
PROPER	TY/ENDPOINT	DATA	REFERENCEDATA QUALITY					
Immunotoxicity		Resorcinol bis-diphenylphosphate had no effect on immunological parameters at doses up to 5,000 mg/kg-						
		day (highest dose tested) in an oral gavage study in mice.						
	Immune System Effects	day (highest dose tested) in an oral gava Negative, oral gavage study in mice. Female B6C3F1 mice (50/group) were exposed via oral gavage to 0, 500, 1,500, or 5,000 mg/kg-day resorcinol bis- diphenylphosphate for 28 days. No deaths, clinical signs of toxicity, or effects on body or organ weights. No adverse histopathological changes or necropsy findings. No treatment-related changes in peritoneal cell numbers or cell types, peritoneal macrophage phagocytic activity or host susceptibility to infection. No adverse effect on splenic natural killer cell activity, lymphocyte blastogenesis, or antibody-forming cell function. There were significant decreases in erythrocyte cholinesterase activity and plasma pseudocholinesterase activity in all dose groups, but both enzyme activities returned to control levels at the end of the 60 day recovery	ge study in mice. EPA, 2010	Guideline study reported in a secondary source. Data are for the commercial polymeric mixture.				
		NOAEL: 5,000 mg/kg-day LOAEL: not established, as highest dose tested did not produced adverse effects.						

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9										
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY							
	ECOTOXICITY									
ECOSAR Class										
Acute Toxicity	loxicity VERY HIGH: Based on measured EC ₅₀ values for daphnia. Measured values for fish and algae are higher									
	than the water solubility limit, suggestin	an the water solubility limit, suggesting no effects at saturation (NES).								
Fish LC ₅₀	Brachydanio rerio 96-hour LC ₅₀ = 12.3 mg/L (OECD Guideline 203) (Experimental)	EPA, 2010	Guideline study reported in a secondary source. Data are for the commercial polymeric mixture. Given that the reported value is greater than the water solubility, NES were observed for this endpoint.							
	Fish 96-hour $LC_{50} = NES$ (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimates were performed on oligomers of the polymeric mixture that have a MW <1,000; NES are estimated for the n=1 and higher oligomers. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.							
Daphnid LC ₅₀	$Dapnhia magna 48-hour EC_{50} = 0.7 mg/L (U.S. EPA OPPTS 850.1010)$ (Experimental)	EPA, 2010	Guideline study reported in a secondary source.							
	(Estimated) ECOSAR: Neutral organics	ECOSAK version 1.11	Estimates were performed on oligomers of the polymeric mixture that have a MW <1,000; NES are estimated for the n=1 and higher oligomers. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.							

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Other Freshwater Invertebrate LC ₅₀			No data located.					
Green Algae EC ₅₀	Pseudokirchneriella subcapitata 72-hour $EC_{50} = 48.6 \text{ mg/L}$ (OECD Guideline 201) (Experimental)	EPA, 2010	Guideline study reported in a secondary source. Data are for the commercial polymeric mixture. Given that the reported value is greater than the water solubility, NES was observed for this endpoint.					
	Pseudokirchneriella subcapitata 72-hour NOEC = 10 mg/L (water accommodated fraction (WAF)) 72-hour LOEC = 100 mg/L (WAF) (OECD Guideline 201) (Experimental)	UK Environment Agency, 2009	Study details reported in a secondary source. Study conducted according to GLP.					
	Green algae 96-hour EC ₅₀ = NES (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimates were performed on oligomers of the polymeric mixture that have a MW <1,000; NES are estimated for the n=1 and higher oligomers. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.					

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9										
PROPERTY/ENDPOINT	DATA	DATA REFERENCE DATA QUALITY								
Chronic Aquatic Toxicity	VERY HIGH: Based on an experimental 21-day NOEC 0.021 mg/L in <i>Daphnia magna</i> . Estimated ChV values suggest a High hazard with the n = 1 oligomer (phosphate esters ECOSAR class) of 0.0093 mg/L for fish.									
Fish ChV	ChV – NES (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimates were performed on oligomers of the polymeric mixture that have a MW <1,000; NES are estimated for the n=1 and higher oligomers. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.							
Daphnid ChV	Daphnia magna 21d-NOEC = 0.021 mg/L 21-d EC ₅₀ = 0.037 mg/L Semi-static (OECD guideline 211) (Experimental)	Submitted confidential study	Reported in a submitted confidential study; Guideline study conducted according to GLP; test substance is identified as the n=1 oligomer (CASRN: 57583-54-7); it is reported that the toxicity may be a result of the presence of undissolved test substance, although toxicity by the dissolved substance could not be ruled out.							
	ChV – NES (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Estimates were performed on oligomers of the polymeric mixture that have a MW <1,000; NES are estimated for the n=1 and higher oligomers. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.							

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9							
PROPERTY/ENDPOINT DATA DATA REFERENCE DATA QUA							
Green Algae ChV	ChV – NES (Estimated) ECOSAR: Neutral organics	ChV – NES (Estimated) ECOSAR: Neutral organics					
ENVIRONMENTAL FATE							
TransportThe environmental fate is described for the oligomer where n=1, which is the primary componen commercial product. Based on the Level III fugacity models incorporating the located experimend data, resorcinol bis-diphenylphosphate is expected to partition primarily to soil and sediment. Red diphenylphosphate is expected to be immobile in soil based on its estimated Koc. Leaching of reso diphenylphosphate through soil to groundwater is not expected to be an important transport med Estimated volatilization half-lives indicate that it will be non-volatile from surface water. Volatili dry surface is also not expected to exist solely in the particulate phase, based on its estimated vapor Particulates may be removed from air by wet or dry deposition. The higher MW components of the commercial product are anticipated to be based similarly to that described above							
Henry's Law Co (atm-m ³ /mole)	nstant <10 ⁻⁸ (Estimated for n=1 and n=2)	EPI	Cutoff value for nonvolatile compounds. Higher MW components are also expected to have Henry's Law Constant values below this cutoff.				
Sediment/Soil Adsorption/Deso Coefficient – K _{oc}	rption >30,000 (Estimated for n=1 and n=2)	EPI; EPA, 1999	Cutoff value for non mobile compounds according to HPV assessment guidance. Higher MW components are also expected to have K _{oc} values above this cutoff.				

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9							
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Level III Fugacity ModelAir: <1% (Estimated for n=1) Water = 1% Soil = 40% Sediment = 59%Air: <1% (Estimated for n=2) Water = 1% Soil = 42% Sediment = 57%			EPI	Estimates were performed on representative components of the polymer.			
Persistence		MODERATE: Moderate persistence is en- biodegradation studies that indicate the p The commercial mixture was determined 84/449/EEC, C.6 "Biotic degradation - th occurred and after 56 days, 66% biodegr and n=2) do not contain chromophores th to be susceptible to direct photolysis by s diphenylphosphate oligomers are estimate exist primarily in the particulate phase in phenol (CASRN 108-95-2), diphenyl photo- through sequential dephosphorylation is	xpected for resorcinol bis-diphen potential for biodegradation of the l to be inherently biodegradable the Closed Bottle test" test. After 2 radation occurred. Resorcinol bis hat absorb at wavelengths >290 r unlight. The atmospheric half-lift ted to be 6.1 (n=1) and 4.1 (n=2) I n air. Enzymatic or basic hydroly sphate (CASRN 838-85-7), and re theoretically possible but has not	ylphosphate based on experimental the commercial polymeric mixture. using the guidelines of Directive 28 days, 37% biodegradation a-diphenylphosphate oligomers (n=1 thm, and therefore, are not expected the of resorcinol bis- hours, although they are expected to vsis leading to the production of esorcinol (CASRN 108-46-3) t been demonstrated.			
Water	Aerobic Biodegradation	37% degradation after 28 days; 66% degradation after 56 days Using Directive 84/449/EEC, C.6; inherent biodegradation, 2.7 mg/L of compound in activated sludge (Measured)	IUCLID, 2001	The data is for the commercial polymeric mixture (CASRN 125997-21-9).			
	Volatilization Half-life for Model River	>1 year (Estimated for n=1 and n=2)	EPI	Based on the magnitude of the estimated Henry's Law Constant.			
	Volatilization Half-life for Model Lake	>1 year (Estimated for n=1 and n=2)	EPI	Based on the magnitude of the estimated Henry's Law Constant.			
Soil	Aerobic Biodegradation			No data located.			

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9							
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	Anaerobic Biodegradation	Not probable (Anaerobic-methanogenic biodegradation probability model for n=1 and n=2) (Estimated)	EPI				
	Soil Biodegradation with Product Identification			No data located.			
	Sediment/Water Biodegradation			No data located.			
Air	Atmospheric Half-life	6.1 hours (Estimated for n=1) 4.1 hours (Estimated for n=2)	EPI				
Reactivity	Photolysis	Not a significant fate process (Estimated for n=1 and n=2)	Mill, 2000; Professional judgment	The substance does not contain functional groups that would be expected to absorb light at environmentally significant wavelengths.			
	Hydrolysis	Half-life = 320 days at pH 7 Half-life = 32 days at pH 8 Half-life = 3 days pH 9 (Estimated for n=1) Half-life = 240-320 days at pH 7 Half-life = 24-32 days at pH 8 Half-life = 2-3 days pH 9 (Estimated for n=2)	EPI	Hydrolysis rates are expected to be pH-dependent and may be limited by the low water solubility of this compound. Under basic conditions, sequential dephosphorylation reactions may occur.			

Resorcinol Bis-Diphenylphosphate CASRN 125997-21-9								
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY				
		Half-life = 11 days (20°C; pH 4) Half-life = 17 days (20°C; pH 7) Half-life = 21 days (20°C; pH 9) OECD 111 (Measured)	IUCLID, 2001	Inadequate. Although reported as a guideline study, phosphate esters as a chemical class have been observed to hydrolyze more rapidly under basic pHs then under neutral or acidic conditions. The reported half-lives do not follow this trend, and are therefore suspect. Under basic conditions, sequential dephosphorylation reactions may occur.				
Environmental Half-life		>180 days (Estimated for n=1 and n=2)	Half-life estimated for the predominant compartment, as determined by EPI and the PBT Profiler methodology.					
Bioaccumulation HIGH: The estimated BCF value for the n=1 component has high potential for bioaccum MW oligomers that may be found in this mixture (n=2, 3, 4) are expected to have more for bioaccumulation based on their large size and low solubility according to the polym literature (Boetbling et al. 1997)				al for bioaccumulation. The higher ed to have moderate or low potential g to the polymer assessment				
	Fish BCF	1,300 (Estimated for n=1) 59 (Estimated for n=2)	EPI					
	BAF 81 (Estimated for n=1) 7 (Estimated for n=2)		EPI					
	Metabolism in Fish	No data located.		No data located.				
		ENVIRONMENTAL MONITORING AN	D BIOMONITORING					
Environmental Mon	nitoring	No data located.						
Ecological Biomonit	toring	No data located.						
Human Biomonitori	ing	This chemical was not included in the bion	nonitoring report (CDC, 2011).					

AkzoNobel (AkzoNobel Functional Chemicals). AkzoNobel. Fyrolflex RDP technical data sheet. December 1, 1998.

Bayer. Disflammoll RDP Material Safety Data Sheet, MSDS No. 821601/05. February 4, 2002.

Boethling, Robert S. and Nabholz, J. Vincent "Environmental Assessment of Polymers under the U.S. Toxic Substances Control Act", pp. 187-234, in Ecological Assessment of Polymers Strategies for Product Stewardship and Regulatory Programs, Hamilton, John D. and Sutcliffe, Roger (eds.), (1997) Van Nostrand Reinhold.

Chang Chun. (Chang Chun Plastics Co., Ltd). No date. Phosphorus Flame Retardant (PFR) Material Safety Data Sheet.

CDC (Centers for Disease Control and Prevention). *Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables.* Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> as of May 10, 2011.

UK Environment Agency. Environmental risk evaluation report: Tetraphenyl resorcinol diphosphate (CAS no. 57586-54-7). **2009**. <u>http://www.environment-agency.gov.uk/</u>

U.S. EPA (Environmental Protection Agency). High Production Volume (HPV) Challenge. Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. http://www.epa.gov/hpv/pubs/general/datadfin.htm

EPA (U.S. Environmental Protection Agency). Screening level hazard characterization phosphoryl chloride, polymer with resorcinol phenyl ester (CASRN 125997-21-9). **2010.** <u>http://www.epa.gov/chemrtk/hpvis/hazchar/125997219_Phosphoryl%20chloride,%20polymer%20with%20resorcinol%20phenyl%20e ster_%20June%202010.pdf</u> (accessed on February 08, 2010).

EPA Sustainable Futures. *Using NonCancer Screening within the SF Initiative*. U.S. Environmental Protection Agency: Washington D.C. available at: <u>http://www.epa.gov/opptintr/sf/pubs/noncan-screen.htm#systemic</u> as of February 09, **2011**.

ECOSAR/EPI (EPIWIN/EPISUITE) Estimations Programs Interface for Windows, Version 1.11. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

EPI (EPIWIN/EPISUITE) Estimation Program Interface for Windows, Version 4.0. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

European Commission. EU priority list of suspected endocrine disruptors. **2012**. <u>http://ec.europa.eu/environment/endocrine/strategy/substances_en.htm#priority_list</u> (accessed June, 2013).

Freudenthal, R., McDonald, L., Johnson, J., et al. Comparative metabolism and toxicokinetics of ¹⁴C-resorcinol bisdiphenylphosphate (RDP) in the rat, mouse, and monkey. International Journal of Toxicology 19:233-242. **2000**.

Great Lakes. (Great Lakes Chemical Corporation). Reophos PDP Material Safety Data Sheet, MSDS No. 00660. February 25, 2003.

Henrich, R., Ryan, B.M., Selby, R., Garthawaite, S., Morrissey, R. and Freudenthal, R.I., 2000. Two-generation oral (diet) reproductive toxicity study of resorcinol bis-diphenylphosphate (Fyrolflex RDP). *International Journal of Toxicology*, 19 (4), 243-255.

ICL Industrial. 2009. Fyroflex Material Safety Data Sheet, March 6, 2009.

IUCLID (International Uniform Chemical Information Database). Dataset for Phosphoryl chloride, polymer with resorcinol phenyl ester. **2001.** European Commission – European Chemicals Bureau.

Laflamme, D. Flame Retardant Alternatives. Washington State Department of Health. February 2006.

Mill, T. (2000) Photoreactions in Surface Waters. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (355-382). Boca Raton: Lewis Publishers.

PBT Profiler *Persistent (P), Bioaccumulative (B), and Toxic (T) Chemical (PBT) Profiler*, U.S. Environmental Protection Agency: Washington D.C. <u>www.pbtprofiler.net</u>.

Pakalin, S.; Cole, T.; Steinkellner, J.; et al. review on production processes of decabromodiphenyl (DECABDE) used in polymeric applications in electrical and electronic equipment, and assessment of the availability of potential alternatives to DECABDE. Supresta. Product bulletin for Fyrolflex-RDP. **2011.** http://www.supresta.com/pdfs/Fyrolflex-RDP-product-bulletin.pdf.

UBA (Umweltbundesamt). Substituting Environmentally Relevant Flame Retardants: Assessment Fundamentals, Volume 1: Results and Summary Overview. Berlin, Germany: Umweltbundesamt (Federal Environmental Agency) p97. **2001a.**

UBA (Umweltbundesamt). Substituting Environmentally Relevant Flame Retardants: Assessment Fundamentals, Volume 3: Toxicological and Ecotoxicological Substance Profiles of Selected Flame Retardants. Berlin, Germany: Umweltbundesamt (Federal Environmental Agency), p151. **2001b.**

UBA (Umweltbundesamt). Emission of Flame Retardants from Consumer Products and Building Materials. Berlin, Germany: Umweltbundesamt (Federal Environmental Agency), p185. **2003.**

Weil, E.D. *Flame Retardants, Phosphorus.* Kirk-Othmer Encyclopedia of Chemical Technology. Wiley-Interscience. Posted online: October 18, **2001**.

Wildlife International Ltd. Determination of the n-Octanol/Water Partition Coefficient of Fyroflex RDP by the Shake Flask Method. Unpublished Study. **2003.**

Substituted Amine Phosphate Mixture

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. [§] Based on analogy to experimental data for a structurally similar compound.

			Human Health Effects					Aquatic Toxicity ^{**}		Environmental Fate						
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Substituted Amine Phosphate Mixture ¹	Confidential	H	M	M	M	М	L	M	L	M [§]	Μ	VL	М	L	H	L

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

¹Hazard designations are based upon the component of the salt with the highest hazard designation, including the corresponding free acid or base.

Substituted Amine Phosphate Mixture

Polymeric: No				
Oligomers: Not applicable				
Metabolites, Degradates and Transformation Products: Pyrophosphoric acid (2466-09-3), Piperazine (110-85-0), glycine (56-40-6) and other confidential substances.				
Analog: Piperazine (110-85-0); and confidential analogs, piperazine-containing compounds. Analog Structure:				
Endpoint(s) using analog values: Respiratory sensitization	HN N N H			
	Piperazine			
Structural Alerts: Amines, potential nephrotoxins (EPA, 2011).				
Risk Phrases: Not classified by Annex VI Regulation (EC) No. 1272/2008 (ESIS, 2011).				
Hazard and Risk Assessments: None identified.				

Substituted Amine Phosphate Mixture				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	PHYSICAL/CHEMICAL PR	OPERTIES		
Melting Point (°C)	>300 (Estimated)	Professional judgment	The components of this mixture are ionic compounds and are anticipated to be high melting solids. Cutoff value for high melting compounds.	
Boiling Point (°C)	>270 decomposes (Measured)	Adeka-Palmarole, 2011	Product information for FP-2100J; refers to the ionic compounds in ADK stabilizers.	
	>260 decomposes (Measured)	Adeka-Palmarole, 2011	Product information for FP-2200; refers to the ionic compounds in ADK stabilizers.	
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	Professional judgment; EPA, 1999	Cutoff value for nonvolatile compounds according to HPV assessment guidance. Applies to both ionic solids present in the substituted amine phosphate mixture.	
Water Solubility (mg/L)	Piperazine pyrophosphate: >1,000,000 (Estimated)	EPI		
	Substituted amine phosphate component: >1,000,000 (Estimated)	EPI		
	Substituted amine phosphate component: approximately 800; 900 (Measured)	Confidential MSDS, 2011; Weil, 2001	Inadequate; these reported values are inconsistent with structurally similar phosphates.	
Log K _{ow}	Piperazine pyrophosphate: <-2 (Estimated)	EPI		
	Substituted amine phosphate component: <-2 (Estimated)	ЕРІ		

	Substituted Amine Phosphate Mixture			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Flammability (Flash Point) N		Nonflammable (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.
Explosivity		Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.
Pyrolysis				No data located.
рН				No data located.
pKa				No data located.
		HUMAN HEALTH EFF.	ECTS	
		phosphate mixture is estimated to not be absorbed through the skin and absorption is expected through the lung and gastrointestinal (GI) tract. Following absorption, limited data suggest distribution throughout the GI system, liver, and kidney for the substituted amine phosphate and piperazine components. Data for the substituted amine phosphate component indicate an elimination phase half-life of 2.7 hours from plasma and 3 hours for urine. Data for the piperazine component indicate rapid elimination from blood and kidney.		
Dermal Absorption	n in vitro			No data located.
Absorption, Distribution, Metabolism & Excretion	Oral, Dermal or Inhaled	Substituted amine phosphate mixture: Not absorbed from the skin, absorption through lung and GI tract. (Estimated by analogy) Substituted amine phosphate component: The elimination phase half- life calculated from plasma data was 2.7 hours, and the urinary half-life was 3.0 hours. The renal clearance was determined to be 2.5 mL/min. (Measured for the free base)	Professional judgment Confidential study	Based on closely related analogs with similar structures, functional groups, and physical/chemical properties. Nonguideline study.

Substituted Amine Phosphate Mixture				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Substituted amine phosphate component: Distributed to stomach, small intestine, cecum, and large intestine, and found in blood, and urine of rats. (Measured for the free base)	Confidential study	Study details reported in a secondary source.
		Piperazine: Pig, oral (gavage); peak plasma concentrations occurred 1 hour after exposure; quickly eliminated from blood. Distributed primarily to kidneys and liver; eliminated quickly from kidney, and slower from liver, skeleton, muscle, fat and skin. Low potential for bioaccumulation. (Measured for the free base)	ECHA, 2011	Study details reported in a secondary source.
Acute Mammalian	Toxicity	HIGH: Using a conservative approach, mixture is estimated based on toxicity for is estimated to be low for oral and derm piperazine components of the mixture.	acute toxicity hazard potential fo or inhalation exposure to the pipe al routes of exposure to the subst	r the substituted amine phosphate razine moiety in rats. The hazard ituted amine phosphate and
Acute Lethality	Oral	Substituted amine phosphate component: Rat LD ₅₀ = 3,161 mg/kg b.w. (male), 3,828 mg/kg (females) (Measured for the free base)	Confidential study	Adequate.
		Substituted amine phosphate component: Mouse $LD_{50} = 3,296 \text{ mg/kg}$ (male), 7,014 mg/kg (female) (Measured for the free base)		Adequate.
		Substituted amine phosphate component: Mouse $LD_{50} = 4,550 \text{ mg/kg}$ (Measured for the free base)	Confidential study	Limited study details reported in a confidential study.
		Substituted amine phosphate component: Rat $LD_{50} = 3,160 \text{ mg/kg}$ (male) and 3850 mg/kg (female) (Measured for the free base)	Confidential study	Limited study details reported in a confidential study.

	Substituted Amine Phosphate Mixture			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Substituted amine phosphate component: Rat LD ₅₀ >6,400 mg/kg (Measured for the free base)	Confidential study	Limited study details reported in a confidential study.
		Substituted amine phosphate component: $LD_{50} \approx 4,800 \text{ mg/kg}$	Confidential study	Limited study details reported in a confidential study.
		Piperazine: Rat LD ₅₀ = 1,900–4,500 mg/kg	IUCLID, 2000	Reported results taken from 3 studies. Limited study details reported in a secondary source.
		Piperazine: Mouse $LD_{50} = 600-4,200$ mg/kg	IUCLID, 2000	Reported results taken from 3 studies. Limited study details reported in a secondary source.
		Piperazine: Rat LD ₅₀ = 2,500 mg/kg	ECHA, 2011	Study details reported in a secondary source; according to Organisation of Economic Cooperation and Development (OECD) Guideline 401.
		Piperazine: Rat $LD_{50} = 3,200 \text{ mg/kg}$	ECHA, 2011	Study details reported in a secondary source; according to OECD Guideline 401.
		Piperazine: Rat $LD_{50} = 2,600 \text{ mg/kg}$	ECHA, 2011	Study details reported in a secondary source; according to OECD Guideline 401.
	Dermal	Piperazine: Rabbit LD ₅₀ = 4,000 mg/L	ECHA, 2011	Limited study details provided in a secondary source.
		Substituted amine phosphate component: Rabbit LD ₅₀ >1,000 mg/L	Confidential study	Limited study details reported in a confidential study.
	Inhalation	Substituted amine phosphate component: Rat LC ₅₀ = 3.248 mg/L	Confidential study	Study details, if present, were not translated into English; reported in a confidential study.
		Piperazine: Rat 4-hour $LC_{50} = 2.0 \text{ mg/L}$	ECHA, 2011	Study details reported in a secondary source.
		Piperazine: Rat 4-hour $LC_{50} = 0.8 \text{ mg/L}$	ECHA, 2011	Study details reported in a secondary source.

Substituted Amine Phosphate Mixture				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Piperazine: Rat 2-hour $LC_{50} = 5.4 \text{ mg/L}$.	IUCLID, 2000	Limited study details reported in a secondary source.
Carcinogenicity		MODERATE: The carcinogenicity haza	rd potential for the substituted a	mine phosphate mixture is
		estimated to be Moderate based on the substituted amine phosphate component. There is evidence that oral exposure to the substituted amine phosphate component causes carcinogenicity in experimental animals. However, there is no evidence located as to the substituted amine phosphate component's carcinogenicity to humans. Tumor formation in animals appeared to happen in a mechanical nature under conditions in which it produced bladder calculi. No data were located as to the carcinogenic potential of the substituted amine phosphate mixture or salts. The International Agency for Research on Cancer (IARC) classifies the substituted amine phosphate component as Group 3: not classifiable as to its carcinogenicity to humans.		
	OncoLogic Results	Substituted amine phosphate component: Marginal (Estimated for free base)	OncoLogic, 2008	
	Carcinogenicity (Rat and Mouse)	Substituted amine phosphate component: Group 3: It is not classifiable as to its carcinogenicity to humans; there is inadequate evidence in humans for carcinogenicity, and there is sufficient evidence in experimental animals for carcinogenicity under conditions in which it produces bladder calculi. (Measured for the free base)	IARC	Classification statement.

Substituted Amine Phosphate Mixture				
PROPER'	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Substituted amine phosphate component: Significant formation of transitional cell carcinomas in the urinary bladder of male rats and significant chronic inflammation in the kidney of dosed female rats were observed following exposure in the feed for up to 103 weeks. Carcinoma formation was significantly correlated with the incidence of bladder stones. A transitional-cell papilloma was observed in the urinary bladder of a single high dose male rat, and compound related lesions were observed in the urinary tract of dosed animals. (Measured for the free hase)	Confidential study	Reported in a confidential study.	
		Substituted amine phosphate component: Increased incidence of acute and chronic inflammation and epithelial hyperplasia of the urinary bladder were observed in male mice following oral (feed) exposure for up to 103 weeks. Bladder stones and compound related lesions were observed in the urinary tract of test animals. There was no evidence of bladder tumor development. The compound was not considered carcinogenic. (Measured for the free base)	Confidential study	Reported in a confidential study.

	Substituted Amine Phosphate Mixture				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
		Substituted amine phosphate component: Proliferative lesions of the rat urinary tract were directly due to the irritant stimulation of calculi, and not to molecular interactions between it or its metabolites with the bladder epithelium. (Measured for the free base)	Confidential study	Reported in a confidential study.	
		Substituted amine phosphate component: Water intake, used as an index of urinary output, was increased by NaCl treatment. Calculus formation resulting from administration was suppressed dose-dependently by the simultaneous NaCl treatment. The main constituents of calculi were the substituted amine phosphate component and uric acid (total contents 61.1– 81.2%). The results indicated proliferative lesions of the urinary tract of rats were directly due to the irritation- induced stimulation of calculi, and not molecular interactions between itself or its metabolites with the bladder epithelium. (Measured for the free base)	Confidential study	Reported in a confidential study.	
		Substituted amine phosphate component: As an initiator, it caused no significant increase in papillomas per mouse when compared to controls.	Confidential study	Reported in a confidential study; nonguideline study.	

Substituted Amine Phosphate Mixture				
PROPER	FY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Substituted amine phosphate component: Diffuse papillary hyperplasia of the bladder epithelium and bladder calculi were observed in all the treated rats. Elevated spermidine/spermine N1- acetyltransferase activity following treatment was considered to be an indicator of cell proliferation. (Measured for the free base)	Confidential study	Reported in a confidential study; nonguideline study.
		Substituted amine phosphate component: Decreased antitumor activity was correlated with increasing demethylation; the component was considered inactive as an antitumor drug. (Measured for the free base)	Confidential study	Limited study details reported in a confidential study.
		Substituted amine phosphate component: In an <i>in vitro</i> cytotoxicity study in cultured ADJ/PC6 plasmacytoma ascites tumor cells, the ID_{50} was 470 µg/mL after 72 hours of treatment. (Measured for the free base)	Confidential study	Limited study details reported in a confidential study.
	Combined Chronic Toxicity/ Carcinogenicity	Substituted amine phosphate component: No effects were observed in rats fed 1,000 ppm. 4 of the 10 rats fed 10,000 ppm had bladder stones associated with the development of benign papillomata. (Measured for the free base)	Confidential study	Limited study details reported in a confidential study.

Substituted Amine Phosphate Mixture				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Substituted amine phosphate component: Increased incidence of urinary bladder stones (6/20 rats) was noted in the 10,000 ppm dose group, and was associated with an increase in benign papillomata. The NOAEL was determined to be 1,000 ppm (67 mg/kg). (Measured for the free base)	Confidential study	Limited study details reported in a confidential study.
Genotoxicity		MODERATE: Estimated based on positive results for chromosomal aberrations <i>in vivo</i> in mice exposed to the substituted amine phosphate component and positive results for gene mutations following <i>in vitro</i> exposure to the piperazine component in mouse lymphoma assays. There were also positive results <i>in vitro</i> for DNA synthesis-inhibition in Hela S3 cell and genetic toxicity in <i>Escherichia coli</i> WP2s in a microscreen assay following exposure to the substituted amine phosphate component. No data were located for the substituted amine phosphate component.		
	Gene Mutation in vitro	Substituted amine phosphate component: Bacterial forward mutation assay: Negative with and without liver activation (Measured for the free base)	Confidential study	Reported in a confidential study.
		Substituted amine phosphate component: Bacterial forward mutation assay: Negative (Measured for the free base)	Confidential study	Limited study details reported in a confidential study.
		Substituted amine phosphate component: Bacterial reverse mutation assay: Negative with and without liver activation (Measured for the free base)	Confidential study	Limited study details reported in a confidential study.
		Substituted amine phosphate component: Bacterial reverse mutation assay: Negative with and without unspecified metabolic activation (Measured for the free base)	Confidential study	Limited study details reported in a confidential study.

Substituted Amine Phosphate Mixture				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Substituted amine phosphate component: <i>In vitro</i> mouse lymphoma test: Negative with and without liver activation (Measured for the free base)	Confidential study	Reported in a confidential study.	
	Substituted amine phosphate component: Chinese hamster ovary (CHO) cells/hypoxanthine-guanine phosphoribosyl-transferase forward mutation assay: Negative with and without liver activation (Measured for the free base)	Confidential study	Limited study details reported in a confidential study.	
	Piperazine: <i>S. typhimurium</i> TA98, TA100, TA1535, TA1537 gene mutation assay: Negative with and without metabolic activation (Measured for the free base)	IUCLID, 2000; ECHA, 2011	Study details reported in a secondary source; according to OECD Guideline 471.	
	Piperazine: <i>E. coli</i> reverse mutation assay: Negative without metabolic activation	IUCLID, 2000	Results taken from several studies. Limited study details reported in a secondary source.	
	Piperazine: Mouse lymphoma assay: Positive	IUCLID, 2000	Limited study details reported in a secondary source.	
	Piperazine: Mammalian cell gene mutation assay; mouse lymphoma L5178Y cells; toxicity-related increases in gene mutations in the presence of metabolic activation and negative without metabolic activation	ECHA, 2011	Study details reported in secondary source; equivalent to OECD Guideline 476; test substance identified as piperazine polyphosphate.	

Substituted Amine Phosphate Mixture			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Gene Mutation <i>in vivo</i>	Substituted amine phosphate component: <i>In vivo</i> mouse micronucleus test: The initial test gave a positive trend (P=0.003) for chromosomal damage; however, both peripheral blood smears and the repeat bone marrow test were negative. The overall conclusion was that the substituted amine phosphate component does not induce chromosomal damage. (Measured for the free base)	Confidential study	Reported in a confidential study.
	Substituted amine phosphate component: In vivo mouse micronucleus test: Negative without activation (Measured for the free base) Piperazine: E. coli reverse mutation assay: Negative without metabolic activation	Confidential study IUCLID, 2000	Limited study details reported in a confidential study. Results taken from several studies. Limited study details reported in a secondary source.
Chromosomal Aberrations <i>in vitro</i>	Substituted amine phosphate component: <i>In vitro</i> chromosomal aberrations test: Negative CHO cells with and without liver activation (Measured for the free base)	Confidential study	Reported in a confidential study.
	Substituted amine phosphate component: <i>In vitro</i> sister chromatid exchange assay: Negative in CHO cells with and without liver activation (Measured for the free base)	Confidential study	Reported in a confidential study.
	Substituted amine phosphate component: <i>In vitro</i> sister chromatid exchange assay: Negative in CHO cells with and without liver activation (Measured for the free base)	Confidential study	Limited study details reported in a confidential study.

Substituted Amine Phosphate Mixture				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Piperazine: Chromosomal aberration assay: Negative in CHO cells with and without metabolic activation	ECHA, 2011	Study details reported in secondary source; equivalent to OECD Guideline 473.	
Chromosomal Aberrations <i>in vivo</i>	Substituted amine phosphate component: <i>In vivo</i> chromosome aberrations test in mice: Positive (Measured for the free base)	Confidential study	Reported in a confidential study.	
DNA Damage and Repair	Substituted amine phosphate component: In vivo and in vitro unscheduled DNA synthesis (UDS) test: None of the tested chemicals, including the substituted amine phosphate component were genotoxic hepatocarcinogens in the <i>in vivo</i> assay. They were also negative for UDS in the <i>in vitro</i> assay. (Measured for the free base)	Confidential study	Limited study details reported in a confidential study.	
	Substituted amine phosphate component: SOS/ <i>umu</i> test: Negative for its ability to result in DNA damage and induce the expression of the <i>umu</i> operon Substituted amine phosphate component: DNA synthesis-inhibition test in Hela S3 cells: Inhibits DNA synthesis by 50% at greater than 300 μM	Confidential study Confidential study	Reported in a confidential study; nonguideline study. Limited study details reported in a confidential study.	

Substituted Amine Phosphate Mixture			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Other	Substituted amine phosphate component: Sex-linked recessive lethal/reciprocal translocation: Results were considered equivocal based on 0.18% and 0.36% total lethality following oral and injection exposure, respectively, compared to control total lethal of 0.07% for oral and 0.09% for	Confidential study	Reported in a confidential study.
	Substituted amine phosphate component: <i>Drosophila</i> Muller-5 test: Negative for mutagenicity (Measured for the free base)	Confidential study	Insufficient study details were reported in a confidential study.
	Substituted amine phosphate component: Drosophila melanogaster Sex-linked recessive lethal: No mutagenic effects were observed (Measured for the free base)	Confidential study	Limited study details reported in a confidential study.
	Substituted amine phosphate component: <i>In vitro</i> flow cytometric DNA repair assay: Negative for genotoxic effects (Measured for the free base)	Confidential study	Reported in a confidential study; nonguideline study.
	Substituted amine phosphate component: Microscreen assay: Positive for genetic toxicity in <i>E.coli</i> WP2 cells	Confidential study	Reported in a confidential study; nonguideline study.

Substituted Amine Phosphate Mixture				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Substituted amine phosphate component: Growth and genotoxic effects to bacteria (<i>Salmonella</i> <i>typhimurium</i>) and yeast (<i>Saccharomyces</i> <i>cerevisiae</i>): Non-mutagenic in <i>S.typhimurium</i> with or without S-9 mix. The growth of eight out of nine strains tested was delayed by 10 mM during 24 hr cultivation. <i>S. cerevisiae</i> strain was tested, and did not recover its growth following 48 hour cultivation. (Measured for the free base)	Confidential study	Limited study details reported in a confidential study.
		Piperazine: Mammalian cell transformation test: Negative in mouse BALB/3T3 cells; piperazine did not induce transformed foci	ECHA, 2011	Study details reported in secondary source; according to EU method B.21.
Reproductive Effec	:ts	MODERATE: Hazard potential for representation of the set of the se	roductive toxicity of the substitut for the piperazine moiety from p l litter size in both generations. T s could occur at doses between 12. n is >250 mg/kg/day). There were hosphate mixture or substituted a	ed amine phosphate mixture is iperazine dihydrochloride; rats he NOAEL is identified at 125 5 and 250 mg/kg/day (the criteria no adequate reproductive toxicity mine phosphate component of the
	Reproduction/ Developmental Toxicity Screen			No data located.
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen			No data located.

Substituted Amine Phosphate Mixture				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Reproduction and Fertility Effects	Piperazine: Rat, oral, 2-generation reproduction toxicity study; at 300 mg/kg/day: Decreased body weight gain in F_0 males and in both sexes of F_1 parental generation; no effect on number of pregnancies; decreased litter size in both generations (91% - F_0 , 85% - F_1 offspring); reduction of implantation sites in F_1 females; no difference in offspring sex ratios. NOAEL = 227 mg/kg/day piperazine dihydrochloride (~125 mg/kg/day piperazine base) LOAEL = 544 mg/kg/day piperazine dihydrochloride (~300 mg/kg/day piperazine base)	ECHA, 2011	Reported in a secondary source. Test substance identified as piperazine dihydrochloride.	
	Piperazine: Rat, oral; potential for reproductive toxicity NOAEL = 250 mg/kg/day	Professional judgment; Confidential study	Test substance is identified as piperazine dihydrochloride; a LOAEL was not identified. Reported in a confidential study.	
	Substituted amine phosphate component: There were no treatment- related macroscopic or microscopic effects on mammary glands, ovaries, prostate, seminal vesicles, testes and uterus in rats and mice in a 13-week study. (Measured for the free base)	Confidential study	Limited study details reported in a confidential study.	

Substituted Amine Phosphate Mixture				
PROPERTY/ENDPOINT DATA		REFERENCE	DATA QUALITY	
Developmental Effects MOD estim judgr LOA Embr effect expos were		MODERATE: Hazard potential for developmental toxicity of the substituted amine phosphate mixture is estimated to be Moderate based on data for piperazine moiety from piperazine phosphate and professional judgment. There is uncertainty if effects could occur at doses between 94 and 250 mg/kg/day because a LOAEL was not identified (the criteria cutoff dose for a Low hazard designation is >250 mg/kg/day). Embryotoxicity was reported in conjunction with maternal toxicity and was considered to be a secondary effect. Data for the substituted amine phosphate component showed no developmental effects in rats exposed during gestation to doses up to 1,060 mg/kg-day. A conservative approach was used since there were no measured values for the substituted amine phosphate mixture.		
	Reproduction/ Developmental Toxicity Screen	Piperazine: Rabbit, oral; potential for developmental toxicity NOEL = 225 mg/kg/day	Professional judgment; Confidential study	Test substance identified as piperazine phosphate; a LOAEL was not identified. Reported in a confidential study.
		Piperazine: Rat, oral; potential for developmental toxicity NOEL = 1,000 mg/kg/day	Professional judgment; Confidential study	Test substance identified as piperazine phosphate; a LOAEL was not identified. Reported in a confidential study.
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen			No data located.
	Prenatal Development	Substituted amine phosphate component: Signs of maternal toxicity at 136 mg/kg/day included decreased body weight and feed consumption, hematuria (23/25 rats), indrawn flanks (7/25 rats), and piloerection (1/25 rats). No adverse effects on gestational parameters and no signs of developmental toxicity were noted. NOAEL \geq 1,060 mg/kg/day (Measured for the free base)	Confidential study	Reported in a confidential study.

	Substituted Amine Phosphate Mixture			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Piperazine: Rabbit, oral, gestation days (GDs) 6-18. At 210 mg/kg/day piperazine base: maternal neurotoxicity, decreased body weight and food consumption; embryotoxic effects as resorption, retardation of ossification, and reduced fetal weight. These effects were considered secondary to maternal toxicity; no developmental effects or significant maternal toxicity was reported in the 94 mg/kg/day dose group. NOAEL (maternal toxicity) = 42 mg/kg/day piperazine base LOAEL (maternal toxicity) = 94 mg/kg/day piperazine base NOAEL (developmental) = 94 mg/kg/day piperazine base	ECHA, 2011	Reported in a secondary source. Test substance identified as piperazine phosphate; Developmental effects occurred at 210 mg/kg/day piperazine base; however, these effects occurred in conjunction with maternal toxicity and are considered secondary effects.	
	 Piperazine: Rat, oral, GD 6-15. At 210 mg/kg/day piperazine base: maternal toxicity: excessive salivation, lethargy and reduced body weight gain, body weight and food consumption at 2,100 mg/kg/day; No embyrotoxic effects reported. NOAEL (maternal toxicity) = 420 mg/kg/day piperazine base LOAEL (maternal toxicity) = 2,100 mg/kg/day piperazine base NOAEL (developmental) = 2,100 mg/kg/day piperazine base 	ECHA, 2011	Reported in a secondary source. Test substance identified as piperazine phosphate.	
	Piperazine: Rabbit, oral; potential for developmental effects NOAEL = 225 mg/kg/day	Professional judgment	Estimated based on professional judgment.	
Postnatal Developme	nt		No data located.	

Substituted Amine Phosphate Mixture				
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY
Neurotoxicity LOW: Neurotoxicity hazard potential of the substituted amine phosphate mixture is estimated to b		e mixture is estimated to be low		
based on expert judgment.				
	Neurotoxicity Screening	Potential for neurotoxicity is expected to	Expert judgment	Estimated based on expert
	Battery (Adult)	be low.		judgment.
		(Estimated)		

Substituted Amine Phosphate Mixture				
PROPERTY/ENDPOINT	DATA REFERENCE DATA QUALITY			
Repeated Dose Effects	MODERATE: Repeated dose effects from the substituted amine phosphate mixture is estimated based on			
	effects following repeated oral exposure to the substituted amine phosphate component in rats. Decreased			
	body weight gain and feed consumption along with stones and diffuse epithelial hyperplasia in the urinary			
	bladder were reported at a dose of 72 mg/kg/day. No data were located for the substituted amine phosphate			
	mixture or salts.			
	Substituted amine phosphate	Confidential study	Reported in a confidential study.	
	component: Rat 28-day dietary toxicity			
	study: Clinical signs included a dose-			
	related increase in piloerection, lethargy,			
	bloody urine spots in the cage and on the			
	pelage of animals, and			
	chromodacryorrhea. The incidence of			
	urinary bladder calculi and urinary			
	bladder hyperplasia in treated animals			
	was dose-dependent, with a significant			
	relationship between the calculi and			
	hyperplasia. Calculi composition			
	indicated the presence of an organic			
	matrix containing the substituted amine			
	phosphate component, phosphorus,			
	sulfur, potassium, and chloride. Crystals			
	of its monophosphate were identified in			
	the urine.			
	NOAEL: 2,000 ppm (240 mg/kg/day),			
	excluding the observed increase in water			
	consumption and the incidence of			
	crystalluria			
	LOAEL: 4,000 ppm (475 mg/kg/day)			
	based on the formation of calculus			
	(Measured for the free base)			
Substituted Amine Phosphate Mixture				
-------------------------------------	--	--------------------	--	--
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Substituted amine phosphate component: Rabbit and dog 28-day dietary toxicity study: No significant rise in the body temperature of rabbits was noted. Gross histological examination of the heart, lung, liver, spleen, thyroid, pancreas, intestines, kidneys and bladder did not show pathological changes. A zone of fat was found in the inner part of the renal cortex in 2 dogs, but also in the kidneys of 3 control dogs. (Measured for the free base)	Confidential study	Insufficient study details were reported in a confidential study. Unspecified number of animals tested.	
	Substituted amine phosphate component: Rat 28-day dietary toxicity study: Incidence and size of bladder stones were directly related to the amount of substance administered. The larger stones were found to be unchanged in a matrix of protein, uric acid and phosphate. Lowest effective dose (LED): 1,500 ppm (~125 mg/kg) in males (Measured for the free base)	Confidential study	Insufficient study details were reported in a confidential study.	

Substituted Amine Phosphate Mixture				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Substituted amine phosphate component: Rat 90-day dietary toxicity study: 1 male rat administered 18,000 ppm and 2 males administered 6,000 ppm died. Mean body weight gain and feed consumption were reduced. Stones and diffuse epithelial hyperplasia in the urinary bladders were observed in male rats of all treatment groups. Focal epithelial hyperplasia was observed in only 1 male. A second and third 13-week repeated dose toxicity study was conducted in rats at a dose range of 750 to 18,000 ppm bladder stones were observed at all dose levels. LOAEL: 750 ppm (72 mg/kg-day) based on urinary bladder stones (Measured for the free base)	Confidential study	Reported in a confidential study.	

Substituted Amine Phosphate Mixture			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Substituted amine phosphate component: Mouse 90-day dietary toxicity study: A single female mouse died after receiving 9,000 ppm. Mean body weight gain relative to controls was depressed. The incidence of mice with bladder stones was dose-related and was greater in males than in females. 60% of mice having bladder ulcers also had urinary bladder stones. Bladder ulcers were multifocal or associated with inflammation (cystitis). Epithelial hyperplasia and bladder stones were observed together in 2 mice. Also, epithelial cell atypia was seen. NOAEL: 6,000 ppm (600 mg/kg-day) LOAEL: 9,000 ppm (900 mg/kg-day)	Confidential study	Reported in a confidential study.
	(Measured for the free base) Substituted amine phosphate component: Increased incidence of acute and chronic inflammation and epithelial hyperplasia of the urinary bladder was observed in mice following oral (feed) exposure for up to 103 weeks. There was also increased incidence of bladder stones in male mice. LOAEL = 2,250 mg/kg diet (lowest dose tested) (Measured for the free base) Substituted amine phosphate	Confidential study Confidential study	Reported in a confidential study. Repeated dose effects described in a carcinogenicity bioassay study.
	component: Dog 1-Year dietary toxicity study: Crystalluria started 60 to 90 days into treatment and persisted during the study period. No other effects were observed.		reported in a confidential study.

Substituted Amine Phosphate Mixture			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Substituted amine phosphate component: Rat 30-month dietary toxicity study: Neither accumulation of calculi nor any treatment-related urinary bladder lesions were found. (Measured for the free base)	Confidential study	Insufficient study details were reported in a confidential study.
	Substituted amine phosphate component: Rat 24 to 30-month dietary toxicity study: A dose-related trend for dilated glands in glandular gastric mucosa and inflammation in nonglandular gastric mucosa was observed. Urinary bladder calculi formation was not observed. (Measured for the free base)	Confidential study	Insufficient study details were reported in a confidential study.
	Piperazine: Rat 90-day dietary toxicity study: Only effect noted was a treatment- related decrease in body weight gain (>10%) NOAEL: 627 mg/kg-day LOAEL = 2,394 mg/kg-day	ECHA, 2011	According to guideline: FDA 1986, Toxicological principles for Safety Assessment of Direct Food Additives and Color Additives Used in Food; sufficient study details reported in a secondary source; dose recalculated to piperazine base.
Immune System Effects	Potential for immunotoxicity is expected to be low. (Estimated)	Expert judgment	Estimated based on expert judgment.
	Substituted amine phosphate component: No inhibition of <i>in vitro</i> murine lymphocyte mitogenesis. (Measured for the free base)	Confidential study	Reported in a confidential study.

Substituted Amine Phosphate Mixture					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Skin Sensitization		LOW: Neither the substituted amine phosphate mixture nor the piperazine pyrophosphate component are			
		skin sensitizers.			
	Skin Sensitization	Substituted amine phosphate mixture:	Professional judgment;	Based on closely related analogs	
		No skin sensitization in guinea pigs	Confidential study	with similar structures, functional	
		using Magnusson-Kligman assay		groups, and physical/chemical	
		(Estimated by analogy)		properties.	
		Substituted amine phosphate mixture:	Submitted confidential study	Study details reported in a	
		Not a skin sensitizer based on local		confidential study; conducted	
		lymph node assay (LLNA) in the mouse.		according to OECD 429;	
		Piperazine pyrophosphate: No skin	Submitted confidential study	Study details reported in a	
		sensitization in guinea pigs using		confidential study; test substance	
		Magnusson-Kligman assay		purity >95%; study conducted	
				according to OECD 406	
Respiratory Sensiti	zation	MODERATE: Respiratory sensitization	hazard potential for the substitu	ited amine phosphate mixture is	
		estimated to be Moderate based on anal	ogy to the piperazine-containing	compounds.	
	Respiratory	Piperazine molety: Hazard potential for	Professional judgment	Estimated based on analogy to	
	Sensitization	respiratory sensitization.		piperazine-containing compounds.	
		(Estimated by analogy)			
Eye Irritation		MODERATE: Based on indications of n	nild to moderate eye irritation in	rabbits for both the substituted	
		amine phosphate and piperazine pyroph	osphate components of the subst	ituted amine phosphate mixture.	
		In addition, eye irritation hazard due to	the substituted amine phosphate	e mixture is estimated to be	
		Moderate based on data for a confidenti	al analog showing eye irritation	in rabbits.	
	Eye Irritation	Substituted amine phosphate mixture:	Professional judgment;	Reported in a confidential study.	
		Moderate eye irritation in rabbits.	Confidential studies	Based on two closely related	
		(Estimated by analogy)		analogs with similar structures,	
				functional groups, and physical/	
				chemical properties.	
		Substituted amine phosphate	Submitted confidential study	Limited study details reported in a	
		component: Mildly irritating to rabbit		confidential study.	
		eyes.			
		Piperazine pyrophosphate: Moderately	Submitted confidential study	Study details reported in a	
		irritating to rabbit eyes.		submitted confidential study.	

Substituted Amine Phosphate Mixture					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Dermal Irritation		VERY LOW: Based on no indication of	dermal irritation for the substitu	ted amine phosphate component	
		and no irritation to mild irritation for the piperazine pyrophosphate component of the substituted amine			
		phosphate mixture.	r		
	Dermal Irritation	Substituted amine phosphate mixture:	Professional judgment;	Reported in a confidential study.	
		Not irritating to rabbit skin.	Submitted confidential study	Based on closely related analogs	
		(Estimated by analogy)		with similar structures, functional	
				groups, and physical/chemical	
		Substituted emine abcombate	Submitted confidential study	properties.	
		substituted amine phosphate	Submitted confidential study	study details reported in a	
		Diporazina pyrophosphata: Not	Submitted confidential study	Study details reported in a	
		irritating to mild irritation to rabbit skin	Submitted confidential study	submitted confidential study	
Endocrine Activity		There were insufficient data located to d	escribe the effect of the substitut	ed amine phosphate mixture on the	
Endocrine Activity		endocrine system. In one study, the subs	tituted amine phosphate compon	ent did not exhibit estrogenic	
		activity <i>in vitro</i> in a yeast two-hybrid ass	sav.	ent did not exhibit estrogenie	
		Substituted amine phosphate	Confidential study	Reported in a confidential study.	
		component: Showed no estrogenic	2	No guideline followed.	
		activity (no change in B-galactosidase			
		activity) in an in vitro yeast two-hybrid			
		assay in Saccharomyces cerevisiae Y			
		190. (Measured for the free base)			
Immunotoxicity		There is estimated to be no potential for	immunotoxicity of the substitute	d amine phosphate mixture based	
		on expert judgment. Data located for the	e substituted amine phosphate co	mponent are not sufficient to	
		determine the hazard potential for this e	endpoint.		
	Immune System Effects	Potential for immunotoxicity is expected	Expert judgment	Estimated based on expert	
		to be low.		judgment.	
		(Estimated)	Confidential study	Departed in a confidential study.	
		Substituted amine phosphate	Confidential study	Reported in a confidential study.	
		murine lumphoeute mitogenesis			
		(Measured for the free base)			
		murine lymphocyte mitogenesis. (Measured for the free base)			

Substituted Amine Phosphate Mixture					
PROPERTY/ENDPOINT	DATA REFERENCE DATA QUALITY				
ECOTOXICITY					
ECOSAR Class	Substituted amine phosphate component: C	Confidential structure class; Piperaz	ine pyrophosphate: Aliphatic		
	amines.				
Acute Toxicity	MODERATE: Acute toxicity hazard for the substituted amine phosphate mixture is estimated based on an experimental LC ₅₀ value of 21 mg/L in <i>Daphnia magna</i> for the piperazine moiety of the ionized mixture which represents the most conservative value. Although measured toxicity values for the substituted amine				
	phosphate free base indicate a low hazar	d designation for this component	of the mixture, a conservative		
	approach was used since there are no m	easured values for the substituted	amine phosphate mixture.		
Fish LC ₅₀	Substituted amine phosphate	Confidential study	Study details reported in a		
	component: Leuciscus idus melanotus		confidential study.		
	48-hour LC_{50} >500 mg/L (Experimental)		~		
	Substituted amine phosphate	Confidential study	Study details reported in a		
	component: Oryzias latipes 48-hour		confidential study.		
	$LC_{50} = 1,000 \text{ mg/L}$				
	(Experimental)				
	Substituted amine phosphate	Confidential study	Study details reported in secondary		
	component: Poecilia reticulata 96-hour		source.		
	$LC_{50} > 3,000 \text{ mg/L}$				
	(Experimental)				
	Substituted amine phosphate	Confidential study	Study details reported in a		
	component: Poecilia reticulata 4,400		confidential study; unspecified		
	mg/L dose lethal to <10%		exposure duration.		
	(Experimental)		~		
	Piperazine: <i>Poecilia reticulata</i> (guppy)	ECHA, 2011	Study details reported in a		
	96-hour LC ₅₀ >1,800 mg/L		secondary source; according to EU		
	Semi-static conditions		Method C.1.		
	(Experimental)	PQQQ AP			
	Substituted amine phosphate	ECOSAR version 1.11			
	component: Fish 96-hour $LC_{50} = 391$				
	mg/L				
	(Estimated)				
	ECOSAR: Confidential structure class				

Substituted Amine Phosphate Mixture			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Substituted amine phosphate component: Fish 96-hour LC ₅₀ = 14,272 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
	Piperazine pyrophosphate: Fish 96- hour LC ₅₀ >10,000 mg/L (Estimated) ECOSAR: Aliphatic amines	ECOSAR version 1.11	No effects at saturation (NES): The LC_{50} value exceeds the water solubility (1.0e ⁺⁶ mg/L); NES are predicted for these endpoints.
	Piperazine pyrophosphate: Fish 96- hour $LC_{50} \ge 10,000 \text{ mg/L}$ (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The LC_{50} value exceeds the water solubility $(1.0e^{+6} mg/L)$; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
Daphnid LC ₅₀	Substituted amine phosphate component: Daphnia magna 48-hour LC ₅₀ >2,000 mg/L (Experimental)	Confidential study	Study details reported in a confidential study.
	Piperazine: <i>Daphnia magna</i> 48-hour LC ₅₀ = 21 mg/L Static conditions (EU Method C.2) (Experimental)	ECHA, 2011	Study details reported in a secondary source; guideline study.

	Substituted Amine Phosphate Mixture			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Substituted amine phosphate component: Daphnid 48-hour LC ₅₀ = 144 mg/L (Estimated) ECOSAR: Confidential structure class	ECOSAR version 1.11		
	Substituted amine phosphate component: Daphnid 48-hour LC ₅₀ = 4,805 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.	
	Piperazine pyrophosphate: Daphnid 48-hour LC ₅₀ >10,000 mg/L (Estimated) ECOSAR: Aliphatic amines	ECOSAR version 1.11		
	Piperazine pyrophosphate: Daphnid 48-hour LC ₅₀ >10,000 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The LC_{50} value exceeds the water solubility $(1.0x10^6 \text{ mg/L})$; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.	
	Substituted amine phosphate component: Scenedesmus pannonicus 4- day EC ₅₀ = 940 mg/L (Experimental); 4-day NOEC = 320 mg/L (Experimental)	Confidential study	Reported in a confidential study.; Study details and test conditions were not provided.	

Substituted Amine Phosphate Mixture			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Substituted amine phosphate component: Green algae 96-hour EC ₅₀ = 325 mg/L (Estimated) ECOSAR: Confidential structure class	ECOSAR version 1.11	
	Substituted amine phosphate component: Green algae 96-hour EC ₅₀ = 4,396 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
	Piperazine pyrophosphate: Green algae 96-hour EC ₅₀ >10,000 mg/L (Estimated) ECOSAR: Aliphatic amines	ECOSAR version 1.11	
	Piperazine pyrophosphate: Green algae 96-hour EC ₅₀ >10,000 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The LC_{50} value exceeds the water solubility (1.0x10 ⁶ mg/L); NES are predicted for these endpoints.
Chronic Aquatic Toxicity	LOW: The substituted amine phosphate measured chronic toxicity values for the pyrophosphate, and on estimated values all three surrogate species.	mixture chronic toxicity hazard piperazine moiety, on estimated for the substituted amine phosph	potential is estimated based on values for piperazine nate component of the mixture, for
Fish ChV	Substituted amine phosphate component: Jordanella floridae 35-day NOEC ≥1,000 mg/L (Experimental)Substituted amine phosphate component: Salmo gairdneri NOEC (macroscopic) = 500 mg/L (Experimental); NOEC (microscopic) <125 mg/L (Experimental)	Confidential study Confidential study	Reported in a confidential study; study details and test conditions were not provided. Reported in a confidential study; study details and test conditions were not provided.

Substituted Amine Phosphate Mixture			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Substituted amine phosphate component: Daphnia magna 21-day $LC_{50} = 32-56 \text{ mg/L}, 21-day LC_{100} = 56$ mg/L, 21day NOEC = 18 mg/L (Experimental)	Confidential study	Reported in a confidential study; study details and test conditions were not provided.
	Substituted amine phosphate component: Fish ChV = 1,102 mg/L (Estimated) ECOSAR: Confidential structure class	ECOSAR version 1.11	
	Substituted amine phosphate component: Fish ChV = 1,076 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
	Piperazine pyrophosphate: Fish ChV ≥10,000 mg/L (Estimated) ECOSAR: Aliphatic amines	ECOSAR version 1.11	
	Piperazine pyrophosphate: Fish ChV ≥10,000 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The LC_{50} value exceeds the water solubility $(1.0x10^6 \text{ mg/L})$; NES are predicted for these endpoints. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.

Substituted Amine Phosphate Mixture			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Daphnid ChV	Piperazine: <i>Daphnia magna</i> 21-day NOEC = 12.5 mg/L (immobile neonates) LOEC = 25 mg/L (immobile neonates) NOEC = 50 mg/L (reproduction) NOEC = 25 mg/L (growth) Semi-static conditions (OECD Guideline 211) (Experimental)	ECHA, 2011	Study details reported in a secondary source; guideline study.
	Substituted amine phosphate component: Daphnid ChV = 14.85 mg/L (Estimated) ECOSAR: Confidential structure class	ECOSAR version 1.11	The toxicity value was estimated through application of acute to chronic ratios (ACRs).
	Substituted amine phosphate component: Daphnid ChV = 343.93 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
	Piperazine pyrophosphate: Daphnid ChV = 2,408 mg/L (Estimated) ECOSAR: Aliphatic amines	ECOSAR version 1.11	
	Piperazine pyrophosphate: Daphnid ChV >10,000 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The LC_{50} value exceeds the water solubility (1.0x10 ⁶ mg/L); NES are predicted for these endpoints.

	Substituted Amine Phosphate Mixture							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Green Algae ChV	Piperazine: Selenastrum capricornutum (Pseudokirchnerella subcapitata) 72- hour NOEC >1,000 mg/L (growth rate) Static conditions (OECD Guideline 201) (Experimental)	ECHA, 2011	Study details reported in secondary source; guideline study.					
	Substituted amine phosphate component: Green algae ChV = 0.70 mg/L (Estimated) ECOSAR: Confidential structure class	ECOSAR version 1.11	The toxicity value was estimated through application of ACRs.					
	Substituted amine phosphate component: Green algae ChV = 81.26 mg/L (Estimated) ECOSAR: Confidential structure class	ECOSAR version 1.11	The toxicity value was estimated through application of ACRs.					
	Substituted amine phosphate component: Green algae ChV = 313.17 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11						
	Piperazine pyrophosphate: Green algae ChV >10,000 mg/L (Estimated) ECOSAR: Aliphatic amines	ECOSAR version 1.11						
	Piperazine pyrophosphate: Green algae ChV = 259,000 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.					

	Substituted Amine Phosphate Mixture							
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
ENVIRONMENTAL FATE								
Transport		The substituted amine phosphate mixture is comprised of approximately 50% piperazine pyrophosphate and 50% of a substituted amine phosphate. Both of these ionic compounds have high estimated water solubility. Therefore, this mixture can be expected to partition predominately to water and soil. The components are anticipated to migrate from soil into groundwater based on the estimated K_{oc} values of <100. Volatilization from either wet or dry surfaces is not expected to be an important fate process based on the estimated vapor pressure of this mixture.						
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	Professional judgment	In water, the substituted amine phosphate mixture components are expected to be fully dissociated. Volatilization of the dissociated species from either wet surfaces is not expected to be an important fate process.				
		Piperazine pyrophosphate: <10 ⁻¹⁰ (Estimated)	EPI					
		Substituted amine phosphate: <10 ⁻¹⁰ (Estimated)	EPI					
	Sediment/Soil Adsorption/Desorption	Piperazine pyrophosphate: 62 (Estimated)	EPI					
Coeff Level	Coefficient – K _{oc}	Substituted amine phosphate: 13 (Estimated)	EPI					
	Level III Fugacity Model	Piperazine pyrophosphate: Air: <1% (Estimated) Water = 20% Soil = 80% Sediment: <1%	EPI					

Substituted Amine Phosphate Mixture							
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
		Substituted amine phosphate: Air: <1% (Estimated) Water = 35% Soil = 65% Sediment: <1%	EPI				
Persistence		HIGH: The substituted amine phosphate mixture is estimated to show high persistence in the based on experimental data for the organic components. The persistence of the inorganic phose components of this mixture were not considered to be a factor in the assignment of this hazard The organic component of the confidential substituted amine phosphate undergoes biodegrad to measured results; however the rates of removal are slow. The organic portion of the substit phosphate component is considered to be inherently biodegradable, not readily biodegradable					
Water	Aerobic Biodegradation	 Piperazine pyrophosphate: Days-Weeks (Primary survey model) Weeks-Months (Ultimate survey model) (Estimated) Piperazine: Not readily biodegradable according to OECD 301C; 1.4% degradation after 2 weeks. (Measured for free base) 	EPI MITI, 1998	Measured biodegradation indicate slow removal by this pathway for the dissociated species, piperazine.			
		 Piperazine: Readily biodegradable according to OECD 301F; 65-70% in 2 weeks by O₂ and CO₂ and 39% by dissolved organic carbon and OECD 301D; 90% in 2 weeks. Inherently biodegradable according to 302A; 96% degradation after 52 days. (Measured for free base) Substituted amine phosphate: Weeks (Primary survey model) Months (Ultimate survey model) (Estimated) 	ECHA, 2011 EPI	Measured biodegradation indicate potential for biodegradation for the dissociated species, piperazine.			

Substituted Amine Phosphate Mixture								
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
		Substituted amine phosphate dissociation product: The range of reported aerobic biodegradation rates span from 0% removal to <30% removal after 14 days with activated sludge. (Measured for dissociation species)	Confidential study	Measured biodegradation indicate limited removal by this pathway for a dissociated species of the substituted amine phosphate.				
	Volatilization Half-life for Model River	>1 year (Estimated)	Professional judgment	Based on the estimated Henry's Law Constant and the low rates of volatilization for completely dissociated species; applies to both ionic solids present in the substituted amine phosphate mixture.				
	Volatilization Half-life for Model Lake	>1 year (Estimated)	Professional judgment	Based on the estimated Henry's Law Constant and the low rates of volatilization for completely dissociated species; applies to both ionic solids present in the substituted amine phosphate mixture.				
Soil	Aerobic Biodegradation	Substituted amine phosphate dissociation product: Not readily biodegradable: 0% biodegradation detected after 2 weeks with 100 ppm in 30 ppm activated sludge (OECD TG 301C) (Measured); 0% degradation after 28 days with 100 mg DOC/L in activated sludge (Zahn-Wellens test, OECD 302B). (Measured) Piperazine: In a variety of soil samples, complete degradation took 24 to 68 days with a lag period of 15 to 60 days respectively. Some samples reported no degradation at 3 months. (Measured for free base)	Confidential study; EU RAR, 2005	Value for dissociation product of the substituted amine phosphate component and piperazine pyrophosphate dissociation species, piperazine. Measured biodegradation demonstrate removal by this pathway.				

	Substituted Amine Phosphate Mixture							
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Anaerobic Biodegradation	Substituted amine phosphate dissociation product: 0-8.9% nitrification was observed after 28 days incubation with bacteria in Webster silty clay loam under anaerobic conditions. (Measured) Piperazine: No degradation after 6 months under denitrifying, sulfate reducing, or methanogenic conditions. (Measured for free base)	Confidential study; Bae, 2002	Value for dissociated component of the substituted amine phosphate and piperazine pyrophosphate dissociation species, piperazine. Measured biodegradation rates demonstrate no removal by this pathway.				
	Soil Biodegradation with Product Identification	Substituted amine phosphate dissociation product: Nitrification occurs in soil at a low rate (0.7 % organic N found as NO ₃ -N in week 10, and 0 % in week 28). (Measured)	Confidential study	Nonguideline study for the dissociated product of the substituted amine phosphate component.				
	Sediment/Water Biodegradation			No data located.				
Air	Atmospheric Half-life			No data located.				
Reactivity	Photolysis	Substituted amine phosphate: Not a significant fate process (Estimated)	Mill, 2000; Professional judgment	This compound does not contain functional groups that would be expected to absorb light at environmentally significant wavelengths.				
		Piperazine: 0.8 hour half-life (Measured for free base)	OECD SIDS, 2004	Value for piperazine pyrophosphate dissociation species, piperazine.				
	Hydrolysis	Not a significant fate process (Estimated)	Wolfe and Jeffers, 2000; Professional judgment	Both ionic solids present in the substituted amine phosphate mixture do not contain functional groups that would be expected to hydrolyze readily under environmental conditions.				

Substituted Amine Phosphate Mixture						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Environmental Half-Life		Substituted amine phosphate: 120 days (Estimated)	EPI; PBT Profiler	Half-life estimated for the predominant compartment, as		
		Piperazine pyrophosphate: 75 days (Estimated)	EPI; PBT Profiler	determined by EPI and the PBT Profiler methodology.		
Bioaccumulation		LOW: The substituted amine phosphate mixture is expected to have low potential for bioconcentration and bioaccumulation based on estimated BCF and BAF values of <100 for the two components of the mixture, piperazine pyrophosphate and substituted amine phosphate.				
	Fish BCF	Piperazine pyrophosphate: 3.2 (Estimated)	EPI			
		Substituted amine phosphate component: 3.2 (Estimated)	EPI			
	BAF	Piperazine pyrophosphate: 0.9 (Estimated)	EPI			
		Substituted amine phosphate component: 0.9 (Estimated)	EPI			
	Metabolism in Fish	Substituted amine phosphate dissociation product: Uptake, bioaccumulation and elimination study with ¹⁴ C-labeled compound in fathead minnow (BCF = 0.48 and 0.26) and rainbow trout (BCF = 0.11, 0.05, 0.03) (Measured)	Confidential study	Nonguideline study that supports the low bioaccumulation potential for this substance and its dissociation products.		
		ENVIRONMENTAL MONITORING AN	D BIOMONITORING			
Environmental Mor	nitoring	No data located.				
Ecological Biomonit	toring	No data located.				
Human Biomonitoring		These chemicals were not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2011).				

Adeka–Palmarole. Product information sheet. 2011. http://www.adeka-

palmarole.com/index.php?option=com_content&view=article&id=195%3Aadk-stab-fp-2100j&catid=58&Itemid=156 (accessed on June 07, 2011).

Bae, HS; Cho, YG; Oh, SE; et al. Anaerobic degradation of pyrrolidine and piperidine coupled with nitrate reduction. *Chemosphere* **2002**, 48:329-334.

CDC (Centers for Disease Control and Prevention). Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables, February 2011. Available at: <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> as of May 10, 2011.

ECHA (European Chemicals Agency). Information on registered substances. **2011**. <u>http://apps.echa.europa.eu/registered/registered-sub.aspx</u> (accessed on July 13, 2011).

ECOSAR/EPI (EPIWIN/EPISUITE) Estimations Programs Interface for Windows, Version 1.11. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

U.S. EPA (Environmental Protection Agency). High Production Volume (HPV) Challenge. Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. http://www.epa.gov/hpv/pubs/general/datadfin.htm

EPA Sustainable Futures. *Using NonCancer Screening within the SF Initiative*. U.S. Environmental Protection Agency: Washington D.C. available at: <u>http://www.epa.gov/opptintr/sf/pubs/noncan-screen.htm#systemic</u> as of February 09, **2011**.

EPI (*EPIWIN/EPISUITE*) *Estimation Program Interface for Windows*, Version 4.0. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

European Union Risk Assessment Report. *Piperazine Risk Assessment CAS No: 110-85-0 EINECS No: 203-808-3*. European Chemicals Bureau. 3rd Priority List v. 56. **2005**.

European chemical Substances Information System (ESIS) Classification, Labeling and Packaging of Dangerous Substances Annex VI to Regulation (EC) No 1272/2008 [Online] available at: <u>http://esis.jrc.ec.europa.eu/index.php?PGM=cla</u> as of March 14, 2012.

IARC. International Agency for Research on Cancer World Health Organization.

IUCLID (International Uniform Chemical Information Database). *Dataset for Piperazine*. European Commission – European Chemicals Bureau. **2000**.

MITI (Japanese Ministry of International Trade and Industry). *Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan*. Compiled under the supervision of Chemical Products Safety Division, Basic Industries Bureau, Ministry of International Trade & Industry, Japan; Chemicals Inspection & Testing Institute, Japan. Ed.; Japan Chemical Industry Ecology-Toxicology & Information Center: **1998**.

Mill, T. (2000) Photoreactions in Surface Waters. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (355-382). Boca Raton: Lewis Publishers.

OECD SIDS (Organisation of Economic Cooperation and Development Screening Information Dataset). Initial Assessment Profile. SIAM 18, 20-23. **2004**. <u>http://webnet.oecd.org/Hpv/UI/handler.axd?id=fab0c5dd-0473-446e-9c90-a839404aa31f</u> (accessed on July, 13, 2011).

OncoLogic. U.S. EPA and LogiChem, Inc. Version 7.0. 2008.

PBT Profiler. *Persistent (P), Bioaccumulative (B), and Toxic (T) Chemical (PBT) Profiler*. U.S. Environmental Protection Agency: Washington D.C. <u>www.pbtprofiler.net</u>.

Weil, E. Kirk-Othmer Encyclopedia of Chemical Technology. New York, NY: John Wiley & Sons; Flame Retardants, Phosphorus. Online Posting Date: October 18, 2001. **2001**.

Wolfe, N.; Jeffers, P. (2000) Hydrolysis. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (311-334). Boca Raton: Lewis Publishers.

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard **L** = Low hazard **M** = Moderate hazard **H** = High hazard **VH** = Very High hazard — Endpoints in colored text (**VL**, **L**, **M**, **H**, and **VH**) were assigned based on empirical data. Endpoints in black italics (*VL*, *L*, *M*, *H*, and *VH*) were assigned using values from estimation software and professional judgment.

		Human Health Effects				Aquatic Toxicity ^{**}		Enviro Fa	nmental ate							
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Tetrabromobisphenol A Bis (2,3- dibromopropyl) Ether	21850-44-2	L	М	M	М	М	L	М	L		L	L	L	L	VH	Н

**Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether

Br	CASRN: 21850-44-2				
Br Br Br	MW: 943.62				
	$\mathbf{MF:} \mathbf{C}_{21}\mathbf{H}_{20}\mathbf{Br}_{8}\mathbf{O}_{2}$				
Br Br Br	Physical Forms: Neat: Solid				
	Use: Flame retardant				
SMILES: O(c1c(cc(cc1Br)C(c1cc(c(OCC(Br)CBr)c(c1)Br)Br)(C)C)Br)CC(Br)CBr					
Synonyms: Benzene, 1,1'-(1-methylethylidene)bis[3,5-dibromo-4-(2,3-dibromopropoxy) dibromopropoxy)benzene; 1,1'-(1-Methylethylidene)bis[3,5-dibromo-4-(2,3-dibromopropoxy)benzene); 1,1'-(isopropylidene)bis[3,5-dibromo-4-(2,3-dibromopropoxy) dibromopropoxy)benzene]; 2,2-Bis[3,5-dibromo-4(2,3-dibromopropoxy)phenyl]propan (2,3-dibromopropoxy)-3,5-dibromophenyl]propane; 3,3',5,5'-TetrabromobisphenolA bis dibromopropoxy)benzene]; 403AF; Bis(2,3-dibromopropoxy)tetrabromobisphenolA, B Fire guard 3100; Flame Cut 121K; Flame Cut 121R; GX 5532; Propane, 2,2-bis[3,5-dibromopropoxy] SAYTEX HP-800 A; HP-800 AG; HP-800 AGC; Tetrabromobisphenol A bis(2,3-dibromopropy] ether Tetrabromobisphenol-A-bis-2,3-dibromopropy] ether Tetrabromobisphenol-A-bis-2	Synonyms: Benzene, 1,1'-(1-methylethylidene)bis[3,5-dibromo-4-(2,3-dibromopropoxy)-; 1,1'-(1-Methylethylidene)bis(3,5-dibromo-4-(2,3-dibromopropoxy))benzene; 1,1'-(1-Methylethylidene)bis[3,5-dibromo-4-(2,3-dibromopropoxy)]benzene; 1,1'-(Isopropylidene)bis(3,5-dibromo-4-(2,3-dibromopropoxy))benzene]; 1,1'-(isopropylidene)bis[3,5-dibromo-4-(2,3-dibromopropoxy)benzene]; 1,1'-propane-2,2-diylbis[3,5-dibromo-4-(2,3-dibromopropoxy)benzene]; 2,2-Bis[3,5-dibromo-4-(2,3-dibromopropoxy)benzene]; 2,2-Bis[3,5-dibromo-4-(2,3-dibromopropoxy)phenyl]propane; 2,2-Bis[3,5-dibromo-4-(2,3-dibromopropoxy)phenyl]propane; 2,2-Bis[3,5-dibromo-4-(2,3-dibromopropoxy)phenyl]propane; 2,2-Bis[4-(2,3-dibromopropoxy)-3,5-dibromophenyl]propane; 3,3',5,5'-TetrabromobisphenolA bis92,3-dibromopropyl) ether; 4,4'-Isopropylidenebis[2,6-dibromo-1-(2,3-dibromopropoxy)benzene]; 403AF; Bis(2,3-dibromopropoxy)tetrabromobisphenolA; Bromcal 66.8; Bromkal 66-8; D 5532; Dibromopropydian; FG 3100; FR 720; Fire guard 3100; Flame Cut 121K; Flame Cut 121R; GX 5532; Propane, 2,2-bis[3,5-dibromo-4-(2,3-dibromopropoxy)phenyl]-; PE-68; Pyroguard SR 720; SAYTEX HP-800 A; HP-800 AG; HP-800 AGC; Tetrabromobisphenol A bis(2,3-dibromopropyl ether); Tetrabromobisphenol A bis(2,3-dibromopropyl) ether; TBBPA-DBPE				
values as required. Measured values for available endpoints were incorporated into the	stimations.				
Polymeric: No Oligomers: Not applicable					
Metabolites, Degradates and Transformation Products: None identified; although the TBBPA has not been demonstrated in a published study. The hazards of the theoretical study.	is compound contains a TBBPA backbone, degradation of this compound to legradation products were not considered in this hazard assessment.				
Analog: No analogAnEndpoint(s) using analog values: Not applicableAn	alog Structure: Not applicable				
Structural Alerts: Polyhalogenated aromatic hydrocarbons, immunotoxicity (EPA, 2011).					
Risk Phrases: Not classified by Annex I Directive 67/548/European Economic Community & IUCLID (Pakalin et al., 2007).					
Hazard and Risk Assessments: Risk assessment complete for TBBPA bis (2,3-dibromopropyl) ether by the European Chemicals Bureau in 2007 (Pakalin et al., 2007).					

Т	etrabromobisphenol A Bis (2,3-dibromoprop	yl) Ether CASRN 21850-44-2							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY						
PHYSICAL/CHEMICAL PROPERTIES									
Melting Point (°C)	117 (Measured)	Tokyo Chemical Industry Co., 2010; ChemSpider, 2011	Selected value for assessment.						
	114 (Measured)	NICNAS, 2001	Sufficient details were not available to assess the quality of this study; value reported in a secondary source.						
	90-100 (Measured)	IPCS, 1995; Great Lakes Chemical Corporation, 1982a	These reported values may be for a commercial mixture.						
	95 (Measured)	asured) Mack, 2004							
	107.3 (Measured) Reported as a range 104.3-116.6 using Optical melting determination	ECHA, 2013	Nonguideline, non-good laboratory practice (GLP) study reported in a secondary source.						
	113.39 (Measured) Differential scanning calorimeter	ECHA, 2013	Nonguideline, non-GLP study reported in a secondary source.						
Boiling Point (°C)	Decomposition at >270 (Measured)	IPCS, 1995	Decomposition is expected before the boiling point is reached.						
Vapor Pressure (mm Hg)	2.2 \pm 0.15 \times 10 ⁻⁴ at 20°C Static test according to Organisation of Economic Cooperation and Development (OECD) TG 104 (Vapor pressure curve) and EU Method A.4 (Vapor Pressure); GLP study; Purity of test substance 95.1% (Measured)	ECHA, 2013	Guideline study reported for FR-720 in a secondary source.						
	<10 ⁻⁸ (Estimated)	EPI; EPA, 1999	Cutoff value for nonvolatile compounds according to HPV assessment guidance.						

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether CASRN 21850-44-2								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY					
Water Solubility (mg/L)	<10 ⁻³ (Estimated)	EPI; EPA, 1999	Cutoff value for non soluble compounds according to High Production Volume assessment guidance.					
	1×10^3 (Measured)	IPCS, 1995	Inadequate; these values are not					
	<1×10 ³ (Measured)	NICNAS, 2001	consistent with a non polar, highly brominated material with a MW near 1,000.					
	<0.1 mg/L (Measured) Reported as 0.144 μ g/L at 20°C using OECD TG 105 (Water solubility) column elution method; GLP-study; Radiochemical purity of test substance (¹⁴ C-TBBPA-DBPE) > 99%.	ECHA, 2013	Cutoff value from a guideline study reported in a secondary source.					
Log K _{ow}	12 (Estimated)	EPI; EPA, 1999	Estimated value is greater than the cutoff value, >10, according to methodology based on HPV assessment guidance.					
Flammability (Flash Point)	Autoignition: 740°C (Measured) Ignition produced orange flame; according to IEC 61241-2-1 Method B Minimum ignition; GLP study	ECHA, 2013	Nonguideline study; purity of test substance TDBPE 720 not stated. Reported in a secondary source.					
	Autoignition: >500 mJ (Measured) No ignition was observed; according to IEC 61241-2-3 Minimum ignition energy; GLP study	ECHA, 2013	Nonguideline; purity of test substance TDBPE 720 not stated. Reported in a secondary source.					
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.					
Pyrolysis			No data located.					
рН	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.					

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether CASRN 21850-44-2						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
pK _a		Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.		
		HUMAN HEALTH EFF	ECTS			
Toxicokinetics		TBBPA bis (2,3-dibromopropyl) ether, as a neat material, is estimated not to be absorbed through the skin, to have poor skin absorption when in solution, and to have poor absorption via the lungs and gastrointestinal tract. An experimental study in rats showed that the majority (95%) of TBBPA bis (2,3-dibromopropyl) ether is rapidly eliminated in the feces following single or multiple oral doses and absorption is slow and minimal. However, if absorbed, TBBPA bis (2,3-dibromopropyl) ether is slowly				
Dormal Absorption	in vitro	eminiated from the blood, with the liver	being the main organ for deposi	No data located		
Absorption, Distribution, Metabolism & Excretion	Oral, Dermal or Inhaled	Not absorbed through the skin as a neat material and poor absorption through skin when in solution; poor absorption through the lung and gastrointestinal tract. (Estimated by analogy) Following single or repeated (5 or 10 days) oral administrations of 20 mg/kg [¹⁴ C]-TBBPA bis (2,3-dibromopropyl) ether to male F-344 rats, the compound	Professional judgment Knudsen et al., 2007; ECHA, 2013	Based on closely related confidential analogs with similar structures, functional groups, and physical/chemical properties. Study details reported in primary source.		
		was poorly absorbed from the gastrointestinal tract and uptake to the systemic circulation was considered slow. The C_{max} (0.6 µg/mL) occurred at 7.4 hours after dosing. Distribution to the tissues accounted for <1% of the dose at 96 hours while 95% of the dose (in [¹⁴ C] equivalents) was excreted in the feces within 36 hours of administration. Elimination in the urine accounted for <0.1% of the administered dose and 1% of the dose (as metabolites) was excreted in the bile after 24 hours.				

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether CASRN 21850-44-2								
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Other	Male Fischer-344 rats were dosed with TBBA-DBPE by IV administration. Fecal excretion of [¹⁴ C] equivalents was 27% by 36h, 71% by 96h. Urinary elimination was minimal (<0.1%). A single peak that co-eluted with the standard of TBBA-DBPE was detected in extracts of whole blood following IV administration. TBBA-DBPE elimination from the blood was slow. Kinetic constants following IV dosing were: $t_{1/2b}$: 24.8h; CL _b : 0.1mL/min. Systemic bioavailability was 2.2%. Liver was the major site of disposition.	ECHA, 2013	Well conducted study. Not performed according to GLP and standard testing guidelines.				
Acute Mammalian	Toxicity	LOW: Based on oral and dermal LD ₅₀ values >2, 000 mg/kg and an inhalation LC ₅₀ value >20 mg/L.						
Acute Lethality	Oral	Mouse $LD_{50} > 20,000 \text{ mg/kg}$ Rat oral $LD_{50} > 2,000 \text{ mg/kg}$	IPCS, 1995 ECHA, 2013	Limited study details reported in a secondary source. Sufficient study details reported in a secondary source. GLP study				
				conducted using OECD guidelines.				
	Dermal	Mouse LD ₅₀ >20,000 mg/kg	IPCS, 1995	Limited study details reported in a secondary source.				
		Rat dermal $LD_{50} > 2,000 \text{ mg/kg}$	ECHA, 2013	Sufficient study details reported in a secondary source. GLP study conducted using OECD guidelines.				
	Inhalation	Mouse LC ₅₀ >87,000 mg/m ³ (87 mg/L)	Great Lakes Chemical Corporation, 1982b	Limited study details reported in a secondary source.				
		Rat 1 hr-inhalation $LC_{50} > 24.4 \text{ mg/L};$	ECHA, 2013	Sufficient study details reported in a				
Canaina caniait-		Whole-body exposure to dust.		secondary source.				
Carcinogenicity		alkylation and professional judgment	ed to have potential for carcinog	emercy based on the potential for				
	OncoLogic Results	any auton and processional judgillent.		No data located.				
	Sheologic Results			110 Juli 1000000				

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether CASRN 21850-44-2				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Carcinogenicity (Rat and Mouse)	There is potential for carcinogenicity effects based on a mechanistic consideration of the potential for alkylation (Estimated)	Professional judgment	Based on mechanistic considerations.
	Combined Chronic Toxicity/ Carcinogenicity			No data located.
Genotoxicity		MODERATE: TBBPA bis (2,3-dibromo assay, while it was negative in other assa for mutagenicity in mouse lymphoma ce potential for genotoxicity based on the p not cause chromosomal aberrations or s (<i>in vitro</i>), was negative in an <i>in vivo</i> micr synthesis in rats.	propyl) ether was mutagenic to S nys in S. Typhimurium and E. coli Ils. TBBPA bis (2,3-dibromopro octential for alkylation. TBBPA I ister chromatid exchanges in Chi conucleus assay in mice and did m	<i>Salmonella typhimurium</i> in one This substance was also negative pyl) ether is also estimated to have bis (2,3-dibromopropyl) ether did inese hamster ovary (CHO) cells not produce unscheduled DNA
	Gene Mutation <i>in vitro</i>	There is potential for mutagenicity based on a mechanistic consideration of the potential for alkylation. (Estimated) Positive, Ames assay (standard plate) in <i>Salmonella typhimurium</i> strains TA1535 and TA100 with and without metabolic activation and TA98 without metabolic activation	Professional judgment Great Lakes Chemical Corporation, 1982a; ECHA, 2013	Based on closely related confidential analogs with similar structures and functional groups. Sufficient study details reported.
		Negative, <i>Salmonella typhimurium</i> strains TA1535, TA1537, TA100 and TA98 and <i>Escherichia coli</i> Wp2uvrA with and without metabolic activation.	Submitted confidential study; ECHA, 2013	Reported in a submitted confidential study; Study conducted according to GLP.
		Negative, mouse lymphoma L5178Y cells with and without metabolic activation.	Submitted confidential study; ECHA, 2013	Reported in a submitted confidential study; Study conducted according to GLP.
	Gene Mutation in vivo			No data located.
	Chromosomal Aberrations <i>in vitro</i>	Negative chromosomal aberrations in CHO cytogenetic assay with and without metabolic activation (precipitation was observed at the highest concentration).	IPCS, 1995	Reported in a secondary source.

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether CASRN 21850-44-2				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Negative, sister chromatid exchanges in CHO cells with and without metabolic activation.	Submitted confidential study	Reported in a submitted confidential study; Study conducted according to GLP.
	Chromosomal Aberrations <i>in vivo</i>	Negative for micronucleated polychromatic erythrocytes in B6C3F1 mice.	NTP, 2011; ECHA, 2013	Reported in a secondary source.
	DNA Damage and Repair	Negative for unscheduled DNA synthesis assay in Sprague Dawley rats at 10, 50, 100, 500 or 1,000 μ g/mL.	IPCS, 1995	Reported in a secondary source.
	Other (Mitotic Gene Conversion)	Negative, unscheduled DNA synthesis, rat hepatocytes.	Submitted confidential study	Reported in a submitted confidential study; Study conducted according to GLP.
Reproductive Effects		MODERATE: Estimated to have potent	ial for reproductive effects based	l on the potential for alkylation and
	T	professional judgment.	1	
	Reproduction/ Developmental Toxicity Screen	There is potential for reproductive effects based on a mechanistic consideration of the potential for alkylation (Estimated)	Professional judgment	Based on mechanistic considerations.
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen			No data located.
	Fertility Effects			no data located.

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether CASRN 21850-44-2				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Developmental Effects		MODERATE: Estimated to have potent	ial for developmental effects bas	ed on the potential for alkylation
-		and professional judgment.		
	Reproduction/ Developmental Toxicity Screen	There is potential for developmental effects based on a mechanistic consideration of the potential for alkylation (Estimated)	Professional judgment	Based on mechanistic considerations.
	Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen			No data located.
	Prenatal Development			No data located.
	Postnatal Development			No data located.
Neurotoxicity		LOW: Estimated not to have potential f	or neurotoxicity based on expert	judgment; no data located.
	Neurotoxicity Screening Battery (Adult)	Low potential for neurotoxicity. (Estimated)	Expert judgment	Estimated based on expert judgment.
Repeated Dose Effects		MODERATE: There is potential for live	er toxicity because TBBPA bis (2	,3-dibromopropyl) ether is a highly
		brominated compound and potential for	· immunotoxicity associated with	polyhalogenated aromatic
		hydrocarbon structure. Located data we	ere insufficient.	
		Potential for liver effects based on a mechanistic consideration of this highly brominated compound (Estimated)	Professional judgment	Based on closely related confidential analogs with similar structures and functional groups.
		Mice were administered TBBPA bis (2,3-dibromopropyl) ether in their diet at 200 or 2,000 mg/kg-day for 90 days. No deaths, or abnormal symptoms observed in gross pathological examination. NOAEL = 2,000 mg/kg-day (highest dose tested)	IPCS, 1995; ECHA, 2013	Limited study details reported in a secondary source. Reported study details were not sufficient to evaluate the study quality and were considered insufficient to determine a hazard designation.
		polyhalogenated aromatic hydrocarbons structure.	judgment	Estimated based on the presence of a structural alert.

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether CASRN 21850-44-2				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Skin SensitizationLOW: Not a skin sensitizer in guinea pigs. There is potential for skin sensitization based of for alkylation.		nsitization based on the potential		
	Skin Sensitization	There is potential for skin sensitization based on a mechanistic consideration of the potential for alkylation. (Estimated by analogy)	Professional judgment	Based on mechanistic considerations.
		Not sensitizing, guinea pigs	Submitted confidential study; ECHA, 2013	Reported in a submitted confidential study; Study conducted according to GLP.
Respiratory Sensiti	ization	No data located.		
	Respiratory Sensitization			No data located.
Eye Irritation		LOW: Minimal eye irritation in rabbits clearing within 48 hours.		
	Eye Irritation	Low potential for eye irritation. (Estimated)	Expert judgment	Estimated based on expert judgment.
		Workers report development of eye irritation following exposure to a complex mixture of airborne contaminants that included TBBPA bis (2,3-dibromopropyl) ether.	Great Lakes Chemical Corporation, 1999	Evidence is based on isolated incidents and workers were exposed to a complex mixture of airborne contaminants while melt processing that uses thermoplastic resin formulators containing this substance as an additive.
		Minimal irritation, rabbits; irritation was reversed within 24-48 hours.	Submitted confidential study; ECHA, 2013	Reported in a submitted confidential study; Study conducted according to GLP and OECD guidelines.
Dermal Irritation		LOW: Not a skin irritant in rabbits.		
	Dermal Irritation	Low potential for dermal irritation. (Estimated)	Expert judgment	Estimated based on expert judgment.
		Negative, rabbits	Submitted confidential study; ECHA, 2013	Reported in a submitted confidential study; Study conducted according to GLP and OECD guidelines.

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether CASRN 21850-44-2				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Workers report development of dermal irritation following exposure to a complex mixture of airborne contaminants that included TBBPA bis (2,3-dibromopropyl) ether.	Great Lakes Chemical Corporation, 1999	Evidence is based on isolated incidents and workers were exposed to a complex mixture of airborne contaminants while melt processing that uses thermoplastic resin formulators containing this substance as an additive.
Endocrine Activity		Based on 4 <i>in vitro</i> assays, TBBPA bis (2 TBBPA bis (2,3-dibromopropyl) ether n TBBPA bis (2,3-dibromopropyl) ether a estrogenic activity via interference with does not appear to interfere with AhR-n dibromopropyl) ether competed with thy transthyretin (TTR), but did not exhibit	A-3-dibromopropyl) ether can inten nay have potential estrogenic and ppears to inhibit sulfation of estr estrogen receptors (ER). TBBPA nediated, androgenic or progesta yroid hormone precursor thyrox thyroid hormone (T3) mimickin	eract with the endocrine system. I transthyretin-binding effects. radiol (E2), but does not exhibit a bis (2,3-dibromopropyl) ether also genic pathways. TBBPA bis (2,3- ine (T4) for binding to human g activity.
		Negative; did not cause inhibition of CYP17 catalytic activity in human H295R adrenocortical carcinoma cells.	Cantón et al., 2006	Data taken from primary study.
		Positive for estradiol sulfotransferase (E2SULT)-enzyme inhibition in E2SULT assay.	Hamers et al., 2006	Data taken from primary study.
		Negative for agonistic and antagonistic interactions with aryl hydrocarbon (AhR), androgen (AR), progesterone (PR), and estrogen (ER) receptors in series of CALUX assays.	Hamers et al., 2006	Data taken from primary study.
		Positive for displacement of thyroid hormone precursor thyroxine (T4) from plasma transport protein in TTR binding assay.	Hamers et al., 2006	Data taken from primary study.
		Negative for potentiating and antagonistic activity with T3-mediated cell proliferation in T-screen.	Hamers et al., 2006	Data taken from primary study.

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether CASRN 21850-44-2				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Immunotoxicity		Potential for immunotoxicity based on the presence of polyhalogenated aromatic hydrocarbon structure		
		and professional judgment.		
	Immune System Effects	Potential for immunotoxicity based on	EPA, 2011; Professional	Estimated based on the presence of
		the presence of polyhalogenated	judgment	a structural alert.
		aromatic hydrocarbon structure.		
		(Estimated)		
FCOSAR Class		Halo ethers		
Acute Toxicity		I OW: Based on experimental and estim	astad acuta toxicity values for fish	danhnid and algae that suggest
Acute Toxicity		no effects at saturation (NES).	lated acute toxicity values for fish	i, uapinnu, anu aigae that suggest
Fish LC ₅₀		Fish 96-hour LC ₅₀ = 1.5×10^{-5} mg/L	ECOSAR version 1 11	NES: The log K _{ent} of 12 for this
2 1011 22 0 30		(Estimated)		chemical exceeds the structure
		ECOSAR: Halo ethers		activity relationship (SAR)
				limitation for $\log K_{ow}$ of 5.0; NES
				are predicted.
		Fish 96-hour $LC_{50} = 2.2 \times 10^{-6} \text{ mg/L}$	ECOSAR version 1.11	NES: The log K _{ow} of 12 for this
		(Estimated)		chemical exceeds the SAR
		ECOSAR: Neutral organics		limitation for log K_{ow} of 5.0; NES
				are predicted. Narcosis classes
				(neutral organics) are provided for
				comparative purposes; DfE
				assessment methodology will use
				the lowest estimated toxicity value
				provided by ECOSAR classes that
				relative to percessio
		Fish (Omerica latings) 96 hour I C	ЕСНА 2013	Sufficient study details reported in a
		500 mg/L	ECHA, 2013	secondary source. GLP study
		Semi-static conditions		conducted using OFCD and
		Som State conditions.		Japanese guidelines The value
				exceeds the estimated water
				solubility; NES are predicted.

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether CASRN 21850-44-2			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Fish (<i>Oncorhynchus mykiss</i>) 96-hour $LC_{50} > 100 \text{ mg/L}$; Static conditions.	ECHA, 2013	Sufficient study details reported in a secondary source. GLP study conducted using OECD guidelines. The value exceeds the estimated water solubility; NES are predicted.
Daphnid LC ₅₀	Daphnia 48-hour $LC_{50} = 3.01 \times 10^{-6} \text{ mg/L}$ (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 12 for this chemical exceeds the SAR limitation for log K_{ow} of 5.0; NES are predicted. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
	Daphnia magna 48-hour $EC_{50} > 100$ mg/L; Water accommodated fraction (WAF) nominal concentration.	ECHA, 2013	Sufficient study details reported in a secondary source. GLP study conducted using OECD guidelines. The value exceeds the estimated water solubility; NES are predicted.
Green Algae EC ₅₀	Green algae 96-hour $EC_{50} = 8.48 \times 10^{-5}$ mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 12 for this chemical exceeds the SAR limitation for log K_{ow} of 6.4; NES are predicted. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether CASRN 21850-44-2				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Green algae (<i>Pseudokirchnerella</i> subcapitata) 48 and 72-hour EC_{50} (growth rate/biomass) > 100 mg/L; WAF nominal concentration.	ECHA, 2013	Sufficient study details reported in a secondary source. GLP study conducted using OECD guidelines. The value exceeds the estimated water solubility; NES are predicted.	

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether CASRN 21850-44-2			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Chronic Aquatic Toxicity	LOW: Based on estimated chronic toxic	ity values for fish, daphnid and g	green algae that suggest NES.
Fish ChV	Fish ChV = 8.78×10^{-7} mg/L (Estimated) ECOSAR: Halo ethers	ECOSAR version 1.11	NES: The log K_{ow} of 12 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted.
	Fish ChV = 6.6x10 ⁻⁷ mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 12 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.
Daphnid ChV	Daphnid ChV = 3.38x10 ⁻⁶ mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 12 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether CASRN 21850-44-2						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Green Algae ChV		Green Algae ChV = 0.000157 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The log K_{ow} of 12 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0; NES are predicted. Narcosis classes (neutral organics) are provided for comparative purposes; DfE assessment methodology will use the lowest estimated toxicity value provided by ECOSAR classes that have a more specific mode of action relative to narcosis.		
		ENVIRONMENTAL F	ATE			
1 ransport		Evaluation of TBBPA bis (2,3-dibromopropyl) ether transport is based entirely on estimations from quantitative structure activity relationships. TBBPA bis (2,3-dibromopropyl) ether is expected to have low mobility in soil based on estimations indicating strong absorption to soil. If released to the atmosphere, TBBPA bis (2,3-dibromopropyl) ether is likely to exist solely as particulate. As a particulate, atmospheric oxidation is not expected to be a significant route of environmental removal. Based on the Henry's Law Constant, volatilization from water or moist soil is not expected to occur at an appreciable rate. Level III fugacity models indicate that TBBPA bis (2,3-dibromopropyl) ether will partition predominantly to sediment and soil				
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	EPI; Professional judgment	Cutoff value for nonvolatile compounds.		
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	>30,000 (Estimated)	EPI; EPA, 1999	Cutoff value for nonmobile compounds according to HPV assessment guidance.		
		>30,000 (Measured) Reported as log K _{OC} >>5.63at 25°C; OECD TG 121: Estimation of Adsorption Coefficient on Soil and Sewage Sludge (HPLC); GLP-study	ECHA, 2013	Guideline study reported in a secondary source, although the experimental values were outside the scope of the protocol (log K_{OC} 1.5-5.0); radiochemical purity of test substance (TBBA-bis(2,3-dibromopropyl ether)) >99%.		
Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether CASRN 21850-44-2						
--	---	---	------------	---	--	--
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
		>30,000 (Measured) Reported as log K _{OC} values of 6.1 (soil) and 7.6 (sludge) at pH 7.0; OECD Guideline 121: Estimation of Adsorption Coefficient on Soil and Sewage Sludge (HPLC); GLP-study	ECHA, 2013	Guideline study reported in a secondary source, although the experimental values were outside the scope of the protocol (log K_{OC} 1.5-5.0); purity of test substance (FR-720) not stated.		
	Level III Fugacity Model	Air: <1% (Estimated) Water = 5% Soil = 95% Sediment: <1%	EPI			
Persistence		VERY HIGH: High persistence of TBBPA bis (2,3-dibromopropyl) ether is expected as a result of located biodegradation studies and the absence of other expected likely removal processes under environmental conditions. In the course of a 28-day Japanese Ministry of International Trade and Industry (MITI) test, only 1% of TBBPA bis (2,3-dibromopropyl) ether was degraded. TBBPA bis (2,3-dibromopropyl) ether will exist primarily in the particulate phase in the atmosphere and is not expected to undergo removal by gas phase oxidation reactions. It is also not anticipated to undergo removal by hydrolysis.				
Water	Aerobic Biodegradation	1% after 4 weeks OECD 301C; test concentration of 100 mg/L and concentration of activated sludge inoculum of 30 mg/L (Measured)	MITI, 2007	Adequate, guideline study.		
		Passes Ready Test: No Test method: OECD TG 301B: CO2 Evolution Test 1% degradation after 29 days using an activated sludge inoculum. (Measured)	ECHA, 2013	Adequate, guideline study reported in a secondary source; purity of test substance FR-720 is 95%.		
	Volatilization Half-life for Model River	>1 year (Estimated)	EPI			
	Volatilization Half-life for Model Lake	>1 year (Estimated)	EPI			

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether CASRN 21850-44-2					
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Soil	Aerobic Biodegradation	0% degradation after 120 days in soil; OECD TG 307:Aerobic and Anaerobic Transformation in Soil; test concentration of 70.0 kBq/40 g soil dry weight; GLP- study (Measured)	ECHA, 2013	Adequate guideline study reported in a secondary source with ¹⁴ C-TBBPA- DBPE. No transformation products were observed; degradation assessed with 4 different soil types.	
	Anaerobic Biodegradation	0% degradation after 100 days in natural sediment; OECD TG 308: Aerobic and Anaerobic Transformation in Aquatic Sediment Systems; GLP-study (Measured)	ECHA, 2013	Adequate, guideline study reported in a secondary source with ¹⁴ C-TBBPA- DBPE.Degradation results assessed with 2 sediment types, material mass balance was reported for both types: 1.98% in water and 84.48% in sediment.	
	Soil Biodegradation w/ Product Identification			No data located.	
	Sediment/Water Biodegradation			No data located.	
Air	Atmospheric Half-life	12 hours (Estimated)	EPI		
Reactivity	Photolysis			No data located.	
	Hydrolysis	50%/>1 year at 50°C and pH 4, 7, and 9 OECD TG 111: Hydrolysis as a function of pH and OPPTS 835.21 10: Hydrolysis as a function of pH; GLP study		Adequate, guideline study reported in a secondary source. Test substance purity (PE-68; CASRN 21850-44-2) not stated, no degradation was observed after 5 days in triplicate samples prepared for each pH level. The substance does not contain functional groups that would be expected to hydrolyze readily under environmental conditions.	
Environmental Ha	lf-life	>180 days (Estimated)	EPI; PBT Profiler	Half-life estimated for the predominant compartment, as determined by EPI and the PBT Profiler methodology.	

Tetrabromobisphenol A Bis (2,3-dibromopropyl) Ether CASRN 21850-44-2						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
		Aquatic mesocosm study; a controlled source of TBBPA bis (2,3-dibromopropyl) ether was applied and analyzed by GC-MS over the course of the study. TBBPA bis (2,3-dibromopropyl) ether was detected in both the particulate and sediment compartments. Degradation products were detected but not all were identified. (Measured)	de Jourdan, et al., 2013	Nonguideline field study providing supporting data about the partitioning and fate/persistence of this compound under environmental conditions.		
Bioaccumulation		HIGH: Based on an estimated BAF of 12,000 and its detection in Great Lakes Herring gull eggs, potential for bioaccumulation is high.				
	Fish BCF	3.4 to 43 (15 μg/L concentration) <17 to 130 (1.5 μg/L concentration) (Measured)	MITI, 2007	Adequate, guideline study.		
	BAF	12,000 (Estimated)	EPI			
	Metabolism in Fish			No data located.		
		ENVIRONMENTAL MONITORING AN	D BIOMONITORING			
Environmental Monitoring		TBBPA bis (2,3-dibromopropyl) ether was identified in dust collected near an artificial stream and pond system in Berlin, Germany (Harju et al., 2009); in sewage sludge samples from southern China; in sediments from southern China (Shi et al., 2009) and in water, sediment and soil along the Liuyang River in China (Qu et al., 2011).				
Ecological Biomonitoring		Detected in Great Lakes Herring gull eggs (Letcher and Chu, 2010).				
Human Biomonitoring		This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2011).				

Cantón, R.; Sanderson, J.; Nijmeijer, S.; et al. *In vitro* effects of brominated flame retardants and metabolites on CYP17 catalytic activity: A novel mechanism of action? *Toxicol. Appl. Pharmacol.* **2006**, 274:274-281.

ChemSpider; Structure-based Chemistry Information. Royal Society of Chemistry: London. **2011.** http://www.chemspider.com (accessed on January 20, 2011).

CDC (Centers for Disease Control and Prevention). *Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables.* Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on May 10, 2011).

de Jourdan, B.; Hanson, M.; Muir, D.; Solomon, K. Environmental fate of three novel brominated flame retardants in aquatic mesocosms. *Environ Toxicol Chem.* 32(5):1060-1068. **2013**.

 $ECHA (2013). 1,1^{-(isopropylidene)bis[3,5-dibromo-4-(2,3-dibromopropoxy)benzene]. Registered substances. European Chemicals Agency. http://apps.echa.europa.eu/registered/data/dossiers/DISS-d6b26f7d-78a6-4269-e044-00144f67d031/DISS-d6b26f7d-78a6-4269-e044-00144f67d031_DISS-d6b26f7d-78a6-4269-e044-00144f67d031.html 11/4/2013.$

ECOSAR/EPI (EPIWIN/EPISUITE) Estimations Programs Interface for Windows, Version 1.11. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

EPA Sustainable Futures. *Using NonCancer Screening within the SF Initiative*. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/sf/pubs/noncan-screen.htm#systemic</u> (accessed on February 09, **2011**).

[HPV Assessment Guidance] EPA (U.S. Environmental Protection Agency). Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. **1999**. http://www.epa.gov/hpv/pubs/general/datadeqfn.pdf

EPI (*EPIWIN/EPISUITE*) *Estimation Program Interface for Windows*, Version 4.0. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

Great Lakes Chemical Corporation. Letter from Great Lakes Chemical Corporation to U.S. EPA regarding skin and eye irritation in workers exposed to bis(2,3,-Dibromopropyl)Ether, Tetrabromobisphenol A-. TSCA Section 8E Report, OTS05573935. U.S. EPA Doc. No. 88990000194. **1999.**

Great Lakes Chemical Corporation. Ames/Salmonella plate assay report on bis(2,3-dibromopropyl)ether of tetrabromobisphenol A with attachments. TSCA Section 8E, OTS0503680. U.S. EPA Doc. No. 8888200436. **1982a.**

Great Lakes Chemical Corporation. Ames/Salmonella plate assay report on bis(2,3-dibromopropyl)ether of tetrabromobisphenol A with attachments. TSCA Section 8E Report, OTS0503680. U.S. EPA Doc. No. 8888200426. **1982b**

Hamers, T.; Kamstra, J.; Sonneveld, E.; et al. *In vitro* profiling of the endocrine-disrupting potency of brominated flame retardants. *Toxicol. Sci.* **2006**, 92(1):157-173.

Harju, M.; Heimstad, E.; Herzke, D.; et al. Current state of knowledge and monitoring requirements - emerging "new" brominated flame retardants in flame retarded products and the environment (TA-2462/2008) [Online] Norwegian Pollution Control Authority. **2009.** <u>www.klif.no/publikasjoner/2462/ta2462.pdf</u> (accessed on January 20, 2011).

IPCS (International Programme on Chemical Safety). Environmental Health Criteria 172. Tetrabromobisphenol A and derivatives. **1995.** <u>http://www.inchem.org/documents/ehc/ehc/ehc172.htm</u> (accessed on January 14, 2011).

Knudsen, G.A.; Jacobs, L.M.; Kuester, R.K.; et al. Absorption, distribution, metabolism and excretion of intravenously and orally administered tetrabromobisphenol A [2,3-dibromopropyl ether] in male Fischer-344 rats. *Toxicology* **2007**, 237:158-167.

Letcher, R.; Chu, S. High-sensitivity method for determination of tetrabromobisphenol-S and tetrabromobisphenol-A derivative flame retardants in great lakes herring gull eggs by liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry. *Environ Sci Technol.* **2010**, 44(22):8615-8621.

Mack, A.G. *Flame Retardants, Halogenated*. Kirk-Othmer Encyclopedia of Chemical Technology. Wiley-Interscience. Posted online: September 17, **2004**.

MITI (Japanese Ministry of International Trade and Industry). *Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan.* Compiled under the supervision of Chemical Products Safety Division, Basic Industries Bureau, Ministry of International Trade & Industry, Japan; Chemicals Inspection & Testing Institute, Japan. Ed.; Japan Chemical Industry Ecology-Toxicology & Information Center: 2007.

NICNAS (National Industrial Chemicals Notification and Assessment Scheme). Priority Existing Chemical Assessment Report No. 20. Polybrominated Flame Retardants (PBFRs) [Online] **2001.** http://www.nicnas.gov.au/publications/car/pec/pec_20/pec_20_full_report_pdf.pdf.

NTP (National Toxicology Program). Tetrabromobisphenol A-bis(2,3-dibromopropyl ether) National Toxicology Program, Department of Health and Human Services. **2011.** <u>http://ntp-apps.niehs.nih.gov/ntp_tox/index.cfm?searchterm=21850-44-</u>2&fuseaction=ntpsearch.searchresults.

PBT Profiler *Persistent (P),Bioaccumulative (B), and Toxic (T) Chemical (PBT)Profiler*, U.S. Environmental Protection Agency: Washington D.C. <u>www.pbtprofiler.net</u>.

Pakalin, S., Cole, T., Steinkellner, J., et al. Review on production processes of decabromodiphenyl ether (DECABDE) used in polymeric applications in electrical and electronic equipment, and assessment of the availability of potential alternatives to DECABDE. [Online]. **2007.** <u>http://ecb.jrc.ec.europa.eu/documents/Existing-</u> Chemicals/Review_on_production_process_of_decaBDE.pdf (accessed on January 20, 2011).

Qu, G.; Shi, J.; Wang, T.; et al. Identification of tetrabromobisphenol A diallyl ether as an emerging neurotoxicant in environmental samples by bioassay-directed fractionation and HPLC-APCI-MS/MS. *Environ. Sci. Technol.* **2011**, 45(11):5009-5016.

Shi, T.; Chen, S.-J.; Luo, X.-J.; et al. Occurrence of brominated flame retardants other than polybrominated diphenyl ethers in environmental and biota samples from southern China. *Chemosphere* **2009**, 74:910-916.

Tokyo Chemical Industry Co., LTD. Safety Data Sheet for 2,2-Bis[3,5-dibromo-4-(2,3-dibromopropoxy)phenyl]propane [Online] **2010.** <u>http://www.tciamerica.com/catalog/B2022.html</u> (accessed on May 31, 2011).

Triphenyl Phosphate

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (*VL*, *L*, *M*, *H*, and *VH*) were assigned using values from estimation software and professional judgment.

			Human Health Effects				Aquatic Toxicity ^{**}		Environmental Fate							
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Triphenyl Phosphate	115-86-6	L	М	L	L	L	L	Η	L		L	VL	VH	VH	L	Μ

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Triphenyl Phosphate

	C	ASRN: 115-86-6			
	Μ	MW: 326.29			
	Μ	$\mathbf{IF:} \mathbf{C}_{18}\mathbf{H}_{15}\mathbf{O}_{4}\mathbf{P}$			
	Pl N	hysical Forms: Neat: Solid			
	U	se: Flame retardant			
SMILES: O=P(Oc1ccccc1)(Oc1ccccc1)Oc1ccccc1					
Synonyms: Phosphoric acid, triphenyl ester; TPP					
Chemical Considerations: This is a discrete organic chemical with a MW <1,000. due to an absence of experimental data. Measured values from experimental studies	EPI v 4.0 was used to estimate physical/chemic were incorporated into the estimations.	cal and environmental fate values			
Polymeric: No Oligomers: Not applicable					
Metabolites, Degradates and Transformation Products: Diphenyl phosphate (C.	ASRN 838-85-7) and phenol (CASRN 108-95-2	2)			
Analog: No analog Endpoint(s) using analog values: Not applicable	Analog Structure: Not applicable				
Structural Alerts: Organophosphates; Neurotoxicity (EPA, 2012).					
Risk Phrases: R50/53: Very toxic to aquatic organisms. May cause long-term adverse effects in the aquatic environment (OECD SIDS, 2002).					
Hazard and Risk Assessments: Design for the Environment (DfE) Alternatives Assessment for Furniture Flame Retardancy Partnership, September, 2005 (EPA, 2005)					

	Triphenyl Phosphate CASRN 115-86-6								
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY						
PHYSICAL/CHEMICAL PROPERTIES									
Melting Point (°C)	50.5 (Measured)	Lide, 2008	Adequate.						
	49 Reported as 49-50°C (Measured)	EC, 2000	Reported in a secondary source; consistent with value reported in primary source.						
Boiling Point (°C)	245 Reported at 11 mmHg (Measured)	O'Neil, 2006	Adequate.						
	>300 (Estimated)	EPI; EPA, 1999	Cutoff value for high boiling point compounds according to High Production Volume assessment guidance.						
	220 Reported at 5 mmHg (Measured)	EC, 2000	Reported in a secondary source; consistent with value reported in primary source.						
Vapor Pressure (mm Hg)	6.28x10 ⁻⁶ (Extrapolated)	Dobry and Keller, 1957	Adequate.						
	1.5×10^{-6} (Measured)	EC, 2000	Reported in a secondary source.						
Water Solubility (mg/L)	1.9 (Measured)	Saeger et al., 1979	Adequate.						
	0.75 (Measured) OECD Guideline 105	EC, 2000	Guideline study reported in a secondary source.						
	0.025 (Measured)	EC, 2000	Reported in a secondary source; not consistent with other measured values.						
Log K _{ow}	4.59 (Measured)	Hansch and Leo, 1995	Adequate.						
	4.76 (Measured)	OECD SIDS, 2002	Reported in a secondary source; consistent with value reported in primary source.						
Flammability (Flash Point)	220°C (Measured)	Lewis, 2001	Adequate.						
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.						
Pyrolysis			No data located.						

	Triphenyl Phosphate CASRN 115-86-6						
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
рН		Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.			
pK _a		Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.			
		HUMAN HEALTH EFF	ECTS				
Toxicokinetics		Triphenyl phosphate is hydrolyzed in the TPP can be detected in human breast mi	e liver to produce diphenyl phosp lk.	ohate as the primary metabolite.			
Dermal Absorption	n <i>in vitro</i>			No data located.			
Absorption, Distribution, Metabolism &	Oral, Dermal or Inhaled	Triphenyl phosphate is hydrolyzed in rat liver homogenate to produce the metabolite diphenyl phosphate. (Measured)	OECD SIDS, 2002	Reported in a secondary source.			
Excretion	Other	TPP concentraions in milk were analyzed in a human cohort study conducted between 1997 and 2007. Median concentration across all subjects was 8.5 ng/g (min-max values: 3.2-11 ng/g).	ECHA, 2012	Limited study details reported in a secondary source.			
Acute Toxicity		LOW: Oral LD ₅₀ in rats and mice is >5,000 mg/kg and the dermal LD ₅₀ in rabbits is >7,900 mg/kg. No					
		adequate data were located to assess the	toxicity of inhalation exposure.				
Acute Lethality	Oral	Rat, mouse, oral $LD_{50} > 5,000 \text{ mg/kg}$ Several rat, oral, $LD_{50} > 6,400 \text{ mg/kg}$	OECD SIDS, 2002 ATSDR, 2009	Reported in a secondary source. Reported in a secondary source.			
	Dermal	Rabbit dermal $LD_{50} > 10,000 \text{ mg/kg}$ Rabbit dermal $LD_{50} > 7,900 \text{ mg/kg}$	OECD SIDS, 2002 ATSDR, 2009	Reported in a secondary source. Reported in a secondary source.			
	Inhalation	Rat LC ₅₀ >200,000 mg/m ³ (dust), 1-hour exposure, 14-day observation	ATSDR, 2009	Reported in a secondary source. Insufficient exposure time (1 hour), no data on method or good laboratory practice.			
Carcinogenicity		MODERATE: OncoLogic modeling indi carcinogenicity assays were found.	cates a marginal to low potential	for carcinogenicity. No long-term			
	OncoLogic Results	Marginal to Low (Estimated)	OncoLogic, 2008				

	Triphenyl Phosphate CASRN 115-86-6					
PROPERT	Y/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
C	Carcinogenicity (Rat and Iouse)	Mouse lung adenoma test: Male A/St mice (20/group) received IP injections of either 20 mg/kg (18/6 weeks); 40 mg/kg (3/1 week); or 80 mg/kg. No significant increase in incidence of adenoma compared to negative controls, and positive control (urethane) produced 19.6 tumors/mouse with 100% survival.	OECD SIDS, 2002	Reported in a secondary source. Nonstandard study, limited histopathology and short-duration, reported in a secondary source.		
C	Combined Chronic Coxicity/ Carcinogenicity			No data located.		
Genotoxicity		LOW: Triphenyl phosphate was not mutagenic in bacteria or mammalian cells <i>in vitro</i> and did not cause chromosomal aberrations in vitro. In addition, triphenyl phosphate did not result in DNA damage in hamster fibroblast cells				
G	Gene Mutation in vitro	Negative, Ames assay in <i>Salmonella typhimurium</i> strains TA98, TA100, TA1537, TA1538 with and without metabolic activation.	ATSDR, 2009; ECHA, 2012	Reported in a secondary source.		
		Negative, forward mutation assay in mouse lymphoma L5178Y cells.	OECD SIDS, 2002; ECHA, 2012	Reported in a secondary source.		
G	Gene Mutation in vivo			No data located.		
C A	Chromosomal Aberrations <i>in vitro</i>	Negative in chromosome aberration test in Chinese hamster V79 cells; with and without metabolic activation.	ECHA, 2012	Reported in a secondary source.		
C	Chromosomal berrations <i>in vivo</i>			No data located.		
D	NA Damage and Repair	Negative, unscheduled DNA synthesis in hamster fibroblast cells.	OECD SIDS, 2002	Reported in a secondary source.		
O C	Other (Mitotic Gene Conversion)	Negative, mitotic gene conversion assay in <i>Saccharomyces cerevisiae</i> with and without activation.	OECD SIDS, 2002	Reported in a secondary source.		

Triphenyl Phosphate CASRN 115-86-6					
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Reproductive Effects	LOW: Based on a rat oral reproductive/developmental NOAEL = 690 mg/kg-bw/day for reproductive effects (highest dose tested). In addition, no histopathological effects on reproductive organs were reported following 3 weeks of dermal exposure in rabbits. Correlation of TPP in house dust and decreased sperm counts in humans has been reported, however rat studies did not measure the same endpoint, so there are insufficient data for this effect				
Reproduction/ Developmental Toxicity Screen	Reproductive/developmental dietary study (91 days premating and continuing through gestation), 40 male and 40 female rats/group, test compound concentrations of 0, 0.25, 0.50, 0.75, or 1.0% (~0, 166, 341, 516 or 690 mg/kg-bw/day, respectively). No signs of parental toxicity, no reproductive effects (number pregnant, corpora lutea, implantations, implantation efficiency, resorptions). NOAEL (reproductive effects) = 690 mg/kg-bw/day (highest dose tested) LOAEL = not identified; there were no effects at the highest dose tested	OECD SIDS, 2002; ATSDR, 2009	Reported in a secondary source. A LOAEL was not identified; there were no effects at the highest dose tested.		
Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen Reproduction and Fertility Effects	Rabbits, dermal (clipped, intact), 5x/week, 3 weeks, 50% solution in ethanol; no effect on the reproductive organs reported up to the highest dose tested (1,000 mg/kg/day) NOAEL = 1,000 mg/kg/day	OECD SIDS, 2002	No data located. Reported in a secondary source. Organs examined by histopathology; there were no effects at the highest dose tested; dermal repeated-dose study.		

Triphenyl Phosphate CASRN 115-86-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Other	Men living in homes with higher amounts of TPP in house dust had reduced sperm count and altered hormone levels related to fertility and thyroid function. Each interquartile range (IQR) TPP increase in house dust samples was associated with a 19% decrease in sperm concentrations and a 10% increase in protactin levels	Betts, 2010; Meeker and Stapleton, 2010	The actual exposure to TPP is unknown; it is not known if TPP or other substances found in the household dust caused or contributed to the reported toxicity.	
Developmental Effects	LOW: Based on a rat oral reproductive/	developmental NOAEL = 690 mg	/kg-bw/day for fetal effects (highest	
	dose tested). There were no data located	for the developmental neurotoxic	city endpoint. Decreased	
	cholinesterase activity in pregnant lab an	imals has been shown to have a l	negative impact on fetal brain	
	development. As a result, there is uncerta	ain potential for developmental n	eurotoxicity for this substance.	
Reproduction/	Reproductive/developmental (dietary)	OECD SIDS, 2002; ATSDR,	Reported in a secondary source. A	
Developmental Toxicity	study, 91 days premating (males and	2009	LOAEL was not identified; there	
Screen	females), continuing through gestation and lactation (females only), 40 male and 40 female rats/group, test compound concentrations of 0, 0.25, 0.50, 0.75, or 1.0% (~0, 166, 341, 516 or 690 mg/kg- bw/day, respectively), no effects on fetal endpoints (viability, early or late deaths, fetal weight, length or distribution) or skeletal anomalies. NOAEL (developmental effects) = 690 mg/kg-bw/day		were no effects at the highest dose tested.	
Combined Repeated Dose			No data located.	
with Reproduction/				
Developmental Toxicity				
Screen				
Prenatal Development			No data located.	
Postnatal Development			No data located.	

Triphenyl Phosphate CASRN 115-86-6					
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY	
	Developmental	There were no data located for the	Professional judgment	No data located.	
	Neurotoxicity	developmental neurotoxicity endpoint.			
		Decreased cholinesterase activity in			
		pregnant lab animals has been shown to			
		have a negative impact on fetal brain			
		development. As a result, there is uncertain			
		potential for developmental neurotoxicity			
		for this substance.			
	Other			No data located.	
Neurotoxicity		LOW: Based on an adult rat neurotoxici	ty screening battery NOAEL = 7	11 mg/kg-bw/day; all other	
		experimental results are consistent with t	this hazard designation.		
	Acute and 28-day Delayed	Two female hens/dose in delayed	OECD SIDS, 2002	Reported in a secondary source. No	
	Neurotoxicity of	neurotoxicity test, gavage, 2,000, 3,000,		data on test substance purity.	
	Organophosphorus	5,000, 8,000, or 12,500 mg/kg, no signs of			
	Substances (Hen)	toxicity in-life or at necropsy			
		NOAEL ≥12,500 mg/kg			
		Several acute oral studies in hens,	OECD SIDS, 2002	Reported in a secondary source. No	
		administered doses up to 12,500 mg/kg,		data on test substance purity.	
		generally found no signs of paralysis,			
		histopathological changes in examined			
		nerve tissues, or behavior immediately			
		after or during observation periods of up to			
		36 days. However, blood cholinesterase			
		was decreased by up to 87% in studies			
		where it was measured.			
		NOAEL >12,500 mg/kg			

Triphenyl Phosphate CASRN 115-86-6						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
]	Neurotoxicity Screening Battery (Adult)	4-month dietary study, 10 rats/dose, 0.25, 0.5, 0.75 or 1% test concentration (161, 345, 517 or 711 mg/kg-bw/day, respectively), no neurobehavioral effects (open field, accelerating rotarod, forelimb grip strength and negative geotaxis examinations). NOAEL = 711 mg/kg-bw-day (highest dose tested)	ATSDR, 2009	Reported in a secondary source.		
	Other	There is potential for neurotoxic effects based on a structural alert for organophosphates (Estimated)	Professional judgment	Estimated based on a structural alert for organophosphates and professional judgment.		
Repeated Dose Effects		HIGH: Based on weight of evidence inclu phosphate in the diet for 28 days. The NC across the High and Moderate hazard de criteria values are tripled for chemicals e mg/kg-day and the Moderate hazard ran	iding reduced body weight in ma DAEL of 23.5 mg/kg-day and the signation ranges (DfE criteria ar valuated in 28-day studies makin ge between 30 and 300 mg/kg-da	le rats administered triphenyl LOAEL of 161.4 mg/kg-day span e for 90-day repeated dose studies; ng the High hazard range < 30 y).		
		28-day repeated dose oral exposure study in rats. 0, 250, 1,000, 4,000 ppm in diet. Effects on body weights were observed Male: NOAEL = 250 ppm (23.5 mg/kg-day) LOAEL = 1,000 ppm (161.4 mg/kg-day)	ECHA, 2012	Reported in secondary source. DfE criteria are for 90-day repeated dose studies. Criteria values are tripled for chemicals evaluated in 28-day studies.		

Triphenyl Phosphate CASRN 115-86-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	35-day repeated-dose oral (dietary) study, 5 male rats/group, test compound concentrations of 0, 0.5, and 5.0% (~0, 350, and 3,500 mg/kg-day, respectively), with a 0.1% (~70 mg/kg-day) dose replacing the high dose group after 3 days. Slight reduction in body weight gain and increase in liver weight in 350 mg/kg-day dose group. NOAEL = 70 mg/kg-day LOAEL = 350 mg/kg-day	OECD SIDS, 2002	Reported in a secondary source. Limited study details provided.	
	4-month repeated-dose dietary study, Sprague-Dawley rats, 10 rats/dose, 0.25, 0.5, 0.75 or 1% test concentration (161, 345, 517 or 711 mg/kg-bw/day, respectively), reduced body weight gain (11%) at 345 mg/kg-bw/day. NOAEL = 161 mg/kg-bw/day LOAEL = 345 mg/kg-bw/day	ATSDR, 2009	Reported in a secondary source.	

Triphenyl Phosphate CASRN 115-86-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	21-day repeated-dose dermal study, 10 male and 10 female rabbits/group, test compound concentrations of 0, 100, and 1,000 mg/kg-bw/day, no mortality, clinical symptoms, or changes in body weight, hematology, clinical chemistry, necropsy, organ weights and histopathology reported; only decreased acetyl cholinesterase levels in plasma, erythrocytes and brain were reported and not considered to be of toxicological relevance as there was no clinical or histological correlation.	OECD SIDS, 2002	Reported in a secondary source. Treatment period only 21 days.	
	NOAEL = 1,000 mg/kg-bw/day In a 3-month study, rats were orally gavaged with test substances at 0, 380 and 1900 mg/kg-day. No toxic effects were observed. NOEL: 1900 mg/kg-day; highest dose tested LOEL: Not established	ATSDR, 2009	Limited study details reported in a secondary source. Primary source is an abstract with few experimental	

	Triphenyl Phosphate CASRN 115-86-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Immune System Effects	120-day dietary study, rats, 0, 0.25, 0.5, 0.75, and 1% of triphenyl phosphate (~0, 161, 345, 517 and 711 mg/kg-bw/day); initial, secondary, and tertiary immunizations with sheep red blood cells performed at 60, 81, and 102 days, respectively. No significant effects were reported on the weight and histopathology of the spleen, thymus and lymph nodes, and no significant changes to the humoral response were reported. NOEL = 711 mg/kg/day	ATSDR, 2009	Reported in a secondary source.	
	Rabbits exposed to up to 1,000 mg/kg- bw/day, applied 5 days/week for 3 weeks to intact or abraded skin, had no gross or microscopic effects on the spleen, thymus, or lymph nodes.	ATSDR, 2009	Reported in a secondary source.	
Skin Sensitization	LOW: Based on an experimental study in sensitizer	n guinea pigs indicating that trip	henyl phosphate is not a skin	
Skin Sensitization	Several human case studies have reported allergic dermatitis; 15 of 23,192 (0.065%) human volunteers patch tested from 1950 to 1962 had positive reactions to cellulose acetate film containing 7-10% triphenyl phosphate and 3-4% phthalic esters.	OECD SIDS, 2002	Reported in a secondary source. Limited study details provided; patch tests conducted with mixtures; unclear which component of mixture caused low incidence of sensitization.	
	A confidential skin sensitization study with negative results in guinea pigs. None of the patients tested in two separate studies of 343 and 174 patients, respectively, had sensitization reactions to triphenyl phosphate.	Confidential study OECD SIDS, 2002	Reported in a confidential study. Reported in a secondary source. Limited study details provided.	

Triphenyl Phosphate CASRN 115-86-6				
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Not sensitizing, guinea pig maximization test	OECD SIDS, 2002	Study reported in a secondary source; conducted according to OECD Guideline 406.
Respiratory Sensiti	zation	No data located.		
	Respiratory Sensitization			No data located.
Eye Irritation		LOW: Triphenyl phosphate is mildly irri	itating to rabbit eyes with effects	clearing within 72 hours.
	Eye Irritation	Not irritating, rabbits	OECD SIDS, 2002	Study reported in a secondary source; conducted according to OECD Guideline 405.
		Mild irritation in rabbit eyes, clearing within 72 hours.	OECD SIDS, 2002	Reported in a secondary source.
Dermal Irritation		VERY LOW: Triphenyl Phosphate is not	t a skin irritant in rabbits.	
	Dermal Irritation	Not irritating, rabbits; semi-occlusive or occlusive conditions for 4, 24, or 72 hours	OECD SIDS, 2002	Study reported in a secondary source; conducted according to OECD Guideline 404.
		Non-irritant, rabbit	ATSDR, 2009	Reported in a secondary source.
Endocrine Activity		Triphenyl phosphate was found to be ina to be a moderate androgen-receptor (AR shown to inhibit human AR in the absence addition, triphenyl phosphate significant decreased sperm count and altered horm	ctive in an estrogen-receptor bin) binder in a competitive binding ce of agonist and to inhibit testos ly impaired reproduction in zebr one levels in men.	ding assay; however, it was shown assay. Triphenyl phosphate was terone-induced AR activity. In afish and was correlated with
		21-day reproduction study in zebrafish. Significant decrease in fecundity, significant increases of plasma 17B- estradiol (E2) concentrations, vitellogenin (VTG) levels, and E2/testosterone (T) and E2/11-ketotestosterone (11-KT) ratios. Sex-dependent changes in transcriptional profiles of several genes of the hypothalamus-pituitary-gonad (HPG) axis.	Liu et al., 2013	Adequate primary source.

Triphenyl Phosphate CASRN 115-86-6				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Study conducted to determine effects of triaryl phosphates on mouse and human nuclear receptors. Mouse constitutively active receptor (CAR) was activated by 1.3-fold following exposure to TPP. Testosterone-induced AR-dependent	Honkakoski et al., 2004	Adequate primary source.	
	Exposure to TPP in zebrafish resulted in severe pericardial edema and blocked looping of the atrium and ventricle. TPP- induced cardiotoxicity in zebrafish embryos is mediated through an AHR independent pathway.	McGee et al., 2013	Adequate primary source.	
	In a luciferase reporter-gene assay using cultured cells, TPP inhibited the luciferase expression induced by dihydrotestosterone (10^{-9} M) . IC ₅₀ for antiandrogenic activity = 0.000047 - 0.0006 M	Ohyama et al., 2006	Primary source in Japanese with English abstract.	

	Triphenyl Phosphate CASRN 115-86-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Endocrine disrupting potential was investigated using human cells lines (H295R, MVLN) and zebrafish plasma. TPP was cytotoxic to H295R cells (showing <80% cell viability at \geq 10 mg/L) and significantly increased E2 and T production. Transcription of CYP19A1 was significantly up-regulated and transcription of SULT1E1 gene was down- regulated. No binding affinity to E2 receptor in MVLN cells, but binding of E2 to ER was reduced in a dose-dependent manner. Plasma E2 was significantly increased in fish plasma and T and 11-KT were decreased (1 mg/L). Changes in transcription of steroidogenic genes and vitellogenin gene were observed	Liu et al., 2012	Adequate, primary source.	
	Men living in homes with higher amounts of TPP in house dust had reduced sperm count and altered hormone levels related to fertility and thyroid function. Each interquartile range (IQR) TPP increase in house dust samples was associated with a 19% decrease in sperm concentrations and a 10% increase in prolactin levels.	Betts, 2010; Meeker and Stapleton, 2010	The actual exposure to TPP is unknown; it is not known if TPP or other substances found in the household dust caused or contributed to the reported toxicity.	
	Inactive in a binding assay with the rat uteri estrogen receptor from ovariectomized Sprague-Dawley rats	ATSDR, 2009	Reported in a secondary source.	
	Moderate binding in a competitive androgen-receptor (AR) binding assay using recombinant rat protein expressed in <i>Escherichia coli</i> .	ATSDR, 2009	Reported in a secondary source.	

Triphenyl Phosphate CASRN 115-86-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Inhibited AR activity in COS-1 cells transfected with human AR both in the absence of agonist, as well as inhibited testosterone-induced AR activity by 30-40%.	ATSDR, 2009	Reported in a secondary source.
Immunotoxicity	Oral exposure of rats to triphenyl phosp	nate for 4 months and dermal ex	posure of rabbits for 3 weeks
	produced no effects on immune function	parameters.	
Immune System Effects	120-day dietary study, rats, 0, 0.25, 0.5, 0.75, and 1% of triphenyl phosphate (~0, 161, 345, 517 and 711 mg/kg-bw/day); initial, secondary, and tertiary immunizations with sheep red blood cells performed at 60, 81, and 102 days, respectively. No significant effects were reported on the weight and histopathology of the spleen, thymus and lymph nodes, and no significant changes to the humoral response were reported. NOEL = 711 mg/kg/day	ATSDR, 2009	Reported in a secondary source.
	Rabbits, up to 1,000 mg/kg-bw/day, applied 5 days/week for 3 weeks to intact or abraded skin had no gross or microscopic effects on the spleen, thymus, or lymph nodes.	ATSDR, 2009	Reported in a secondary source.
	ECOTOXICITY		
ECOSAR Class	Esters (phosphate), Esters		
Acute Toxicity	VERY HIGH: Based on experimental fis	h 96-hour LC ₅₀ values of 0.4 and	0.85 mg/L.
Fish LC ₅₀	Fish 96-hour $LC_{50} = 0.4 \text{ mg/L}$ (Experimental)	OECD SIDS, 2002	Reported in a secondary source.
	Fish 96-hour $LC_{50} = 0.85 \text{ mg/L}$ (Experimental)	OECD SIDS, 2002	Reported in a secondary source. Guideline study.

Triphenyl Phosphate CASRN 115-86-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Fish 96-hour LC ₅₀ = 290 mg/L (Experimental)	OECD SIDS, 2002	Limited study details reported in a secondary source. The study does not meet important criteria for standard methods (e.g. test substance concentration at solubility threshold in water).
	Fish 96-hour LC ₅₀ = 1.62 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.
Daphnid LC ₅₀	Daphnid 48-hour $LC_{50} = 1.28 \text{ mg/L}$	FMC Industrial Chemical Division 1979	Sufficient study details reported.
	Daphnid 48-hour $EC_{50} = 1.35 \text{ mg/L}$ (Experimental)	OECD SIDS, 2002	Study reported in a secondary source; conducted according to US EPA 660/3-75-009.
	Daphnid 48-hour $LC_{50} = 1.28 \text{ mg/L}$ (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.
	Daphnid 48-hour $LC_{50} = 1.0 \text{ mg/L}$ (Experimental)	Mayer et al., 1981	Sufficient study details reported.
Other Freshwater Invertebrate LC ₅₀	Mysidopsis bahia 96-hour LC ₅₀ >0.18 - 0.32 mg/L (Experimental)	OECD SIDS, 2002	Reported in a secondary source.
Green Algae EC ₅₀)	Green algae 96-hour $EC_{50} = 2.0 \text{ mg/L}$ (Experimental)	OECD SIDS, 2002	Reported in a secondary source.
	Green algae 96-hour $EC_{50} = 2.0 \text{ mg/L}$ (Experimental)	Mayer et al., 1981	Sufficient study details reported

Triphenyl Phosphate CASRN 115-86-6			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Green algae (<i>Scenedesmus subspicatus</i>) 72-hour LOEC = 0.5 - 5 mg/L NOEC = 0.25 - 2.5 mg/L (Experimental)	OECD SIDS, 2002	Study reported in secondary source; conducted according to OECD guideline 201.
	Green algae 96-hour $EC_{50} = 1.59 \text{ mg/L}$ (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.
Chronic Aquatic Toxicity	VERY HIGH: Based on an experimental available for daphnia or algae.	l fish 30-day LOEC = 0.037 mg/L	. No chronic experimental data were
Fish ChV	Fish 30-day LOEC = 0.23 mg/L (Experimental) Oncorhynchus mykiss 30-day LOEC = 0.037 mg/L (Experimental)	OECD SIDS, 2002 ECHA, 2012	Reported in a secondary source. Guideline study. Reported in a secondary source.
	Fish ChV = 0.15 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.
Daphnid ChV	Daphnid ChV = 0.186 mg/L (Estimated) ECOSAR: Neutral organic	ECOSAR version 1.11	ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.
Green Algae ChV	Green algae ChV = 0.925 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	

Triphenyl Phosphate CASRN 115-86-6				
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
ENVIRONMENTAL FATE				
Transport		Level III fugacity models incorporating available physical and chemical property data indicate that at steady state TPP is expected to be found primarily in soil and to a lesser extent, water Triphenyl phosphate is expected to have moderate mobility in soil, based on measured K _{oc} values in silty clay, loamy sand and silt loam. Leaching through soil to groundwater may occur, though it is not expected to be an important transport mechanism. Triphenyl phosphate may volatilize from moist soil and water surfaces based on its Henry`s Law constant. Volatilization from dry surface is not expected based on its vapor pressure. In the atmosphere, triphenyl phosphate is expected to exist in both the vapor phase and particulate phase. Particulates may be removed from air by wet or dry deposition.		
	Henry's Law Constant (atm-m ³ /mole)	1.2x10 ⁻⁵ (Measured) Mayer et al., 1981; Huckins et al., 1991		Adequate.
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	2,514–3,561 in silty clay, loamy sand and silt loam (Measured)	Anderson et al., 1993	Adequate.
	Level III Fugacity Model	Air: <1% (Estimated) Water = 15% Soil = 75% Sediment = 9.6%	EPI	Reported in a Level III Fugacity model. Experimental data is consistent with partitioning to sediment.
Persistence	rsistence LOW: The persistence of triphenyl phosphate is based on experimental data. Under aerobic condition Japanese MITI ready biodegradability test (OECD Test Guidelines (TG) 301C), 90% biodegradation triphenyl phosphate occurred after 28 days, and 93.8% triphenyl phosphate removal as dissolved orge carbon (DOC) occurred over 20 days in an OECD 303A guideline study. TPP does not meet the criter very low persistence because the percent removal in the criteria does not occur within a 10-day windo loamy sand, a half-life of 37 days was observed under aerobic conditions. Triphenyl phosphate was determined to be inherently biodegradable in a river die-away test, after degrading 100% over 3 days river water. Triphenyl phosphate may degrade under anaerobic conditions, with primary degradation 31.1% after 3 days (89.7% after 40 days) in river sediment. However, removal under anaerobic condit not anticipated to be an important fate process. Triphenyl phosphate will undergo hydrolysis under a conditions, with half-lives of 3 days at pH 9; it is relatively stable to hydrolysis under neutral and acid conditions, with half-lives of 28 days at pH 5 and 19 days at pH 7. Triphenyl phosphate is not expected susceptible to direct photolysis by sunlight, since it does not absorb light at wavelengths >290 nm. The atmospheric half-live of vapor-phase triphenyl phosphate is estimated to be 12 hours.		ata. Under aerobic conditions in a 301C), 90% biodegradation of ate removal as dissolved organic TPP does not meet the criteria for occur within a 10-day window. In Triphenyl phosphate was degrading 100% over 3 days in ns, with primary degradation of noval under anaerobic conditions is undergo hydrolysis under alkaline olysis under neutral and acidic nyl phosphate is not expected to be at wavelengths >290 nm. The be 12 hours.	

Triphenyl Phosphate CASRN 115-86-6				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Water	Aerobic Biodegradation	Inherently Biodegradable: Degraded 100% after 3 days in river water (River die-away test) (Measured)	OECD SIDS, 2002	Adequate, guideline study.
		Passes Ready Test: Yes Test method: OECD TG 301C: Modified MITI Test (I)	OECD-SIDS, 2002	Reported in a guideline study.
		83-94% biodegradation after 28 days at 100 mg/L of test substance. (Measured)		
	Volatilization Half-life for Model River	13 days (Estimated)	EPI	
	Volatilization Half-life for Model Lake	150 days (Estimated)	EPI	
Soil	Aerobic Biodegradation	Study results: 93.8%/20 days Test method: 303A: Activated Sludge Units - Simulation Test Removal as DOC, using initial concentration of 5 mg/L with activated sludge. Reported as inherently biodegradable. (Measured)	OECD SIDS, 2002; EC, 2000	Adequate, guideline study.
		Study results: 77%/28 days Test method: Other Reported as ultimately biodegradable. Monsanto Shake Flask Procedure (precursor to Closed bottle test). (Measured)	OECD SIDS, 2002	Reported in a secondary source.
		Study results: 82%/28 days Test method: CO2 Evolution Modified Sturm test. Reported as ultimately biodegradable. Measured in domestic, adapted activated sludge. (Measured)	OECD SIDS, 2002	Reported in a secondary source.

	Triphenyl Phosphate CASRN 115-86-6			
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		Study results: 93%/49 days Test method: 302A: Inherent - Modified SCAS Test Reported as inherently biodegradable. (Measured)	OECD SIDS, 2002	Reported in a guideline study.
	Anaerobic Biodegradation	Primary degradation: 31.1% removal after 3 days in river sediment; 89.7% removal after 40 days (Measured)	OECD SIDS, 2002	Adequate, guideline study.
	Soil Biodegradation with Product Identification			No data located.
	Sediment/Water Biodegradation	Primary degradation: 43.3% removal after 3 days in river sediment; 86.9% removal after 40 days (Measured)	OECD SIDS, 2002	Adequate, guideline study.
Air	Atmospheric Half-life	12 hours (Estimated)	EPI	
Reactivity	Photolysis	Not a significant fate process (Estimated)	Mill, 2000; Professional judgment	Triphenyl phosphate does not contain functional groups that would be expected to absorb light of wavelengths >290 nm.
		A 0.1 mg/L solution (with acetone) was exposed to a mercury lamp to examine the effect of UV light on the degradation of TPP. High pressure lamp (100W): 100%/20 mins Low pressure lamp (15W): 100%/1 hour (Measured)	EC, 2000	Reported in a secondary source under laboratory conditions.
	Hydrolysis	Half-lives at 25°C: >28 days at pH 5; 19 days at pH 7; 3 days at pH 9 (Measured)	OECD SIDS, 2002	Adequate, guideline study.

Triphenyl Phosphate CASRN 115-86-6									
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY					
		50%/7.5 days Reported at pH 8.2 in river/lake water (Measured)	EC, 2000	Reported in a secondary source.					
		50%/1.3 days Reported at pH 9.5 in river/lake water (Measured)	EC, 2000	Reported in a secondary source.					
		100%/10 minutes at pH 13 (Measured)	ЕСНА, 2013	Reported in secondary source. Documentation of study details was not sufficient to assess its reliability.					
Environmental Half-Life		In loamy sand, observed half-lives of 37 days (aerobic) and 21 days (anaerobic) (Measured)	OECD SIDS, 2002	Adequate, guideline study.					
		75 days (Estimated)	EPI; PBT Profiler	Half-life estimated for the predominant compartment, as determined by EPI and the PBT Profiler methodology.					
Bioaccumulation		MODERATE: There is moderate potential for bioaccumulation based on experimental BCF values.							
Fish BCF		132–364 (Rainbow trout) (Measured)	Mayer et al., 1981	Adequate.					
		271 (Rainbow trout) (Measured)	EC, 2000	Reported in a secondary source.					
		364 Reported as 132-364 in rainbow trout (Measured)	OECD SIDS, 2002	Insufficient study details to assess the quality of the reported values.					
		193 Reported as 84-193 in Medaka (Measured)	EC, 2000	Reported in a secondary source.					
		160 Reported as 68-160 in Fathead minnow (Measured)	EC, 2000	Reported in a secondary source.					
		144 Medaka (Measured)	OECD SIDS, 2002	Reported in a secondary source.					

Triphenyl Phosphate CASRN 115-86-6							
PROPERTY/ENDPOINT		DATA	REFERENCE	DATA QUALITY			
		110 Goldfish (Measured)	OECD SIDS, 2002	Reported in a secondary source.			
	BAF	73 (Estimated)	EPI				
	Metabolism in Fish		No data located.				
		ENVIRONMENTAL MONITORING AN	D BIOMONITORING				
Environmental Monitoring		Triphenyl phosphate has been detected in drinking water in samples collected by the USGS. It has also been detected in household dust in the United States (at concentrations of (<173-1,798,100 ng/g), Pakistan, New Zealand, Belgium, Spain and Japan. Triphenyl phosphate has been detected in sediment from Taihu Lake in China at concentrations ranging from 0.41-5.54 μ g/kg and in sediment in the U.S. It has also been detected in river water, seawater, rainwater, snow, wastewater effluent, ambient air, and indoor air. (OECD SIDS, 2002; Betts, 2010; vanderVeen and deBoer, 2012; Stiles et al., 2008; Stapleton et al., 2009; Cao et al., 2012; Ali et al., 2012; HSDB, 2013; Salamova et al., 2013)					
Ecological Biomonitoring		Triphenyl phosphate has been detected in fish tissues. It has also been detected in the blubber of bottlenose dolphins collected from the Gulf of Mexico (Campone et al., 2010; Kuehl and Haebler, 1995).					
Human Biomonitoring		Triphenyl phosphate was detected in human milk, adipose tissue and human plasma. This chemical was not included in the NHANES biomonitoring report (CDC, 2013; Shah et al., 2006; ECHA, 2012).					

Ali N, Van den Eede N, Dirtu AC, et al. (2012) Assessment of human exposure to indoor organic contaminants via dust ingestion in Pakistan. Indoor Air 22(3):200-211.

Anderson, C; Wischer, D; Schmieder, A; et al. Fate of triphenyl phosphate in soil. *Chemosphere* **1993**, 27(5):869-879.

ATSDR (Agency for Toxic Substances and Disease Registry). Draft toxicological profile for phosphate ester flame retardants. U. S. Department of Health and Human Services, Public Health Service, **2009**.

Betts KS (2010) Endocrine damper? Flame retardants linked to male hormone, sperm count changes. Environmental Health Perspectives 118(3):A 130

Campone L, Piccinelli Anna L, Ostman C, et al. (2010) Determination of organophosphorus flame retardants in fish tissues by matrix solid-phase dispersion and gas chromatography. Analytical and Bioanalytical Chemistry 397(2):799-806

Cao S, Zeng X, Song H, et al. (2012) Levels and distributions of organophosphate flame retardants and plasticizers in sediment from Taihu Lake, China. Environmental Toxicology and Chemistry 31(7):1478-1484.

CDC (Centers for Disease Control and Prevention). Fourth national report on human exposure to environmental chemicals, updated tables. Department of Health and Human Services. 2013. <u>http://www.cdc.gov/exposurereport/pdf/FourthReport_UpdatedTables_Mar2013.pdf</u>.

Dobry, A; Keller, R. Vapor pressures of some phosphate and phosphonate esters. J. Phys. Chem. 1957, 61:1448-1449.

EC (2000) IUCLID dataset triphenyl phosphate. http://esis.jrc.ec.europa.eu/doc/IUCLID/data_sheets/115866.pdf.

ECHA (European Chemicals Agency). Information on registered substances. **2012.** <u>http://apps.echa.europa.eu/registered/data/dossiers/DISS-9c823fa6-50fe-0b74-e044-00144f67d249/AGGR-25e8a69c-b7a3-48f4-8aa3-df36b0a9735f_DISS-9c823fa6-50fe-0b74-e044-00144f67d249.html#section_1.1 (accessed April, 2012).</u>

ECOSAR/EPI (EPIWIN/EPISUITE) Estimations Programs Interface for Windows, Version 1.11. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

EPA (U.S. Environmental Protection Agency). High Production Volume (HPV) Challenge. *Determining the Adequacy of Existing Data*. U.S. Environmental Protection Agency: Washington D.C. **1999**. <u>http://www.epa.gov/hpv/pubs/general/datadfin.htm</u>

EPA (U.S. Environmental Protection Agency). Furniture Flame Retardancy Partnership. Environmental profiles of chemical flameretardant alternatives for low-density polyurethane foam volumes 1 and 2. U.S. EPA. September, **2005**. <u>http://www.epa.gov/dfe/pubs/flameret/ffr-alt.htm</u> (accessed on July 18, 2011).

EPA (2012) Using noncancer screening within the SF initiative. Washington, DC: U.S. Environmental Protection Agency. http://www.epa.gov/oppt/sf/pubs/noncan-screen.htm.

EPI (*EPIWIN/EPISUITE*) *Estimation Program Interface for Windows*, Version 4.0. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

FMC Industrial Chemical Division. Acute aquatic toxicity of triphenyl phosphate. ICG/T-79-064. 1979.

Hansch, C., Leo AD. Hoekman. Exploring QSAR - hydrophobic, electronic, and steric constants. Washington, DC: American Chemical Society., p. 155. **1995.**

HSDB (2013) Triphenyl phosphate. Hazardous Substances Data Bank. National Library of Medicine. <u>http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB</u>.

Honkakoski P, Palvimo Jorma J, Penttila L, et al. (2004) Effects of triaryl phosphates on mouse and human nuclear receptors. Biochemical Pharmacology 67(1):97-106.

Huckins, J; Fairchild, J; Boyle, T. Role of exposure mode in the bioavailability of triphenyl phosphate to aquatic organisms. *Arch. Environ. Contam. Toxicol.* **1991**, 21:481-485.

Kuehl DW and Haebler R (1995) Organochlorine, organobromine, metal, and selenium residues in bottlenose dolphins (Tursiops truncatus) collected during an unusual mortality event in the Gulf of Mexico, 1990. Archives of environmental contamination and toxicology 28:494-499.

Lewis, R (ed). Hawley's condensed chemical dictionary. 14th Ed. New York, NY: Wiley-Interscience. 2001.

Lide, D.R. CRC Handbook of Chemistry and Physics. 88th Edition 2007-2008. CRC Press, Boca Raton, FL: Taylor & Francis. 2008.

Liu X, Ji K, Choi K (2012) Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in H295R and MVLN cell lines and in zebrafish. Aquatic toxicology (Amsterdam, Netherlands) 114-115:173-181.

Liu X, Ji K, Jo A, et al. (2013) Effects of TDCPP or TPP on gene transcriptions and hormones of HPG axis, and their consequences on reproduction in adult zebrafish (Danio rerio). Aquatic Toxicology 134-135:104-111.

Mayer, F; Adams, W; Finley, M; et al. Phosphate ester hydraulic fluids: An aquatic environmental assessment of pydrauls 50E and 115E. Aquatic Toxicology and Hazard Assessment: Fourth Conference, ASTM STP 737, Branson, D and K. Dickinson, Eds. American Society for Testing and Materials, p103-123. **1981.**

McGee SP and Konstantinov A Stapleton HM Volz DC (2013) Aryl phosphate esters within a major pentaBDE replacement product induce cardiotoxicity in developing zebrafish embryos: Potential role of the aryl hydrocarbon receptor. Toxicological Sciences 133(1):144-156.

Meeker JD and Stapleton HM (2010) House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters. Environmental Health Perspectives 118(3):318-323.

Mill, T. (2000) Photoreactions in Surface Waters. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (355-382). Boca Raton: Lewis Publishers.

O'Neil MJ, ed; The Merck Index. 14th ed. Whitehouse Station, NJ: Merck and Co., Inc. 2006.

OECD SIDS (Organisation for Economic Cooperation and Development Screening Information Dataset). **2002**. SIDS Initial Assessment Report for Triphenyl Phosphate. <u>http://www.chem.unep.ch/irptc/sids/OECDSIDS/115866.pdf</u>

Ohyama K, Nagata S, Hosogoe N, et al. (2006) Hormonal effects of organic phosphate triesters study by the reporter gene assay. Tokyo-to Kenko Anzen Kenkyu Senta Kenkyu Nenpo 56:333-338.

Oncologic. U.S. EPA and LogiChem, Inc., Version 7.0. **2008**. PBT Profiler *Persistent (P), Bioaccumulative (B), and Toxic (T) Chemical (PBT)Profiler*, U.S. Environmental Protection Agency: Washington D.C. <u>www.pbtprofiler.net</u>. Saeger, V; Hicks, O; Kaley, R; et al. Environmental fate of selected phosphate esters. *Environ. Sci. Technol.* 1979, 13:840-844.

Salamova A, Ma Y, Venier M, et al. (2013) High levels of organophosphate flame retardants in the Great Lakes atmosphere. Environmental Science and Technology Letters epub.

Shah M, Meija J, Cabovska B, et al. (2006) Determination of phosphoric acid triesters in human plasma using solid-phase microextraction and gas chromatography coupled to inductively coupled plasma mass spectrometry. Journal of Chromatography. A 1103(2):329-336.

Stapleton HM, Klosterhaus S, Eagle S, et al. (2009) Detection of organophosphate flame retardants in furniture foam and U.S. house dust. Environmental science & technology 43(19):7490-7495.

Stiles R, Yang I, Lippincott RL, et al. (2008) Measurement of drinking water contaminants by solid phase microextraction initially quantified in source water samples by the USGS. Environmental science & technology 42(8):2976-2981.

van der Veen I and de Boer J (2012) Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88(10):1119-1153.

Tris(tribromoneopentyl) Phosphate

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard **VH** = Very High hazard — Endpoints in colored text (**VL**, L, M, H, and **VH**) were assigned based on empirical data. Endpoints in black italics (*VL*, *L*, *M*, *H*, and *VH*) were assigned using values from estimation software and professional judgment.

			Human Health Effects							Aquatic Toxicity ^{**}		Environmental Fate				
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Tris(tribromoneopentyl) Phosphate	19186-97-1	M	М	L	М	М	H	L	L		L	L	L	L	H	М

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Tris(tribromoneopentyl) Phosphate

Br	CASE	RN: 19186-97-1				
Br Br	MW:	: 1,018.5				
	MF: 0	$C_{15}H_{24}Br_9O_4P$				
	Physic Neat:	sical Forms: t: Solid				
Br Br	Use: I	Flame retardant				
SMILES: C(C(CBr)(CBr)CBr)OP(=O)(OCC(CBr)(CBr)CBr)OCC(CBr)(CBr)CBr						
Synonyms: 1-Propanol, 3-bromo-2,2-bis(bromomethyl)-, 1,1',1"-phosphate; 1-Propanol, 3-bromo-2,2-bis(bromomethyl)-, phosphate (3:1); 3-Bromo-2,2-bis(bromomethyl)propyl]phosphate; Tris(tribromoneopentyl) phosphate; Tris[2,2-bis(bromomethyl)-3-bromopropyl] phosphate; Tris[3-bromo-2,2-bis(bromomethyl)propyl] phosphate; CR-900; Flame Cut 175; Flame Cut 175R; TPB 3070; FR 372; Kronitex PB 370; Reoflam FR 370 Chemical Considerations: This is a discrete organic chemical with a MW slightly greater than 1,000. EPI v 4.0 was used to estimate physical/chemical and						
environmental fate values due to an absence of experimental data. To provide robust estimates, physical-chemical property data from experimental studies were incorporated into the estimation software.						
Polymeric: No Oligomers: Not applicable						
Metabolites, Degradates and Transformation Products: None						
<pre>Analog: No analog Endpoint(s) using analog values: Not applicable</pre>	Analog Structure: Not applicable					
Structural Alerts: None						
Risk Phrases: Not classified by Annex VI Regulation (EC) No 1272/2008 (ESIS, 2011).						
Hazard and Risk Assessments: None identified.						

Tris(tribromoneopentyl) Phosphate CASRN 19186-97-1										
PROPERTY/ENDPOINT	PROPERTY/ENDPOINT DATA REFERENCE									
PHYSICAL/CHEMICAL PROPERTIES										
Melting Point (°C)	183 (Measured)	Fisk et al., 2003	Adequate. Consistent values, which span a relatively narrow range, have							
	182-184 (Measured)	NICNAS, 2001	been reported in secondary sources.							
	180-182 (Measured)	Harju et al., 2009								
Boiling Point (°C)	>300 (Estimated)	EPI; EPA, 1999	Cutoff value for high boiling compounds according to High Production Volume assessment guidance.							
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	EPI; EPA, 1999	Cutoff value for nonvolatile compounds according to HPV assessment guidance.							
Water Solubility (mg/L)	0.9 (Measured)	NICNAS, 2001; Fisk et al., 2003	Adequate.							
Log K _{ow}	8.1 (Estimated)	EPI	This compound may lie just outside of the MW domain for the estimation method, although the results are consistent with a high MW material with limited water solubility.							
	3.7 (Measured)	NICNAS, 2001; Fisk et al., 2003	Value inconsistent with measured water solubility. Reported in a secondary source; study details and test conditions were not provided.							
Flammability (Flash Point)	388.8°C (Measured)	ChemNet, 2011	Adequate.							
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.							
Pyrolysis			No data located.							
рН	Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.							
Tris(tribromoneopentyl) Phosphate CASRN 19186-97-1										
---	-------------------------	---	--	---						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY						
pK _a		Not applicable	Professional judgment	Does not contain functional groups that are expected to ionize under environmental conditions.						
		HUMAN HEALTH EFF	ECTS							
Toxicokinetics		Tris(tribromoneopentyl) phosphate is poorly absorbed in rats following oral (gavage) exposure. In addition, as a neat material, this substance is estimated to not be absorbed through the skin and to have poor skin absorption when in solution. Tris(tribromoneopentyl) phosphate is expected to have poor absorption via the lungs and gastrointestinal (GI) tract. This material is a potential alkylating and crosslinking agent.								
Dermal Absorption	in vitro			No data located.						
Absorption, Distribution, Metabolism & Excretion	Oral, Dermal or Inhaled	Not absorbed through the skin as a neat material and poor absorption through skin when in solution; poor absorption through the lung and GI tract. (Estimated by analogy) Rats administered test substance via oral gavage;	Professional judgment Submitted confidential study	Based on closely related confidential analogs with similar structures, functional groups, and physical/chemical properties. Reported in a submitted confidential study; Study conducted according to						
		1% of administered dose was absorbed, with the proportion of radioactive material excreted as unchanged test material in urine or feces within 48 hours of dosing.		good laboratory practice (GLP).						
		This material is a potential alkylating and crosslinking agent (Estimated)	Professional judgment	Estimated based on professional judgment.						
Acute Mammalian	Toxicity	MODERATE: Estimated to have potent	ial for acute toxicity based on all	kylation and expert judgment; no						
		data located.								
Acute Lethality	Oral	Potential for acute toxicity based on a	Expert judgment	Estimated based on expert						
	Dermal	consideration of the mechanistic		judgment.						
	Inhalation	(Estimated)								

	Tris(tribromoneopentyl) Phosphate CASRN 19186-97-1			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Carcinogenicity		MODERATE: Estimated to have moder	rate potential for carcinogenicity	based on a mechanistic
		consideration of the potential for alkylat	tion and crosslinking using profe	ssional judgment.
	OncoLogic Results			No data located.
	Carcinogenicity (Rat	There is potential for carcinogenicity		
	and Mouse)	based on a consideration of the		Estimated based on professional
	Combined Chronic	mechanistic potential for alkylation and	Professional judgment	iudgment
	Toxicity/	crosslinking.		Judgment.
	Carcinogenicity	(Estimated by analogy)		
Genotoxicity		LOW: Tris(tribromoneopentyl) phosph	ate was not mutagenic in bacteria	a or mouse lymphoma cells and did
		not cause chromosomal aberrations in C	Chinese hamster ovary (CHO) cel	ls in vitro.
	Gene Mutation in vitro	There is potential for mutagenicity based		
		on the potential for alkylation and	Professional judgment	Estimated based on professional
		crosslinking.	, C	judgment.
		(Estimated by analogy)		
		Negative, Saimonella typnimurium	Submitted confidential study	Reported in a submitted confidential
		strains 1A98, 1A100, 1A1555, 1A1557,		study; Study conducted according to
		1A1558 with and without metabolic		GLP.
		Nagativa mousa lumphoma L 5179V	Submitted confidential study	Papartad in a submitted confidential
		calls, with and without matabalia	Submitted confidential study	study
		activation		study.
	Cone Mutation in viva			
	Chromosomal	Negative CHO cells with and without	Submitted confidential study	Reported in a submitted confidential
	Aborrations <i>in vitro</i>	metabolic activation Equivocal results	Submitted confidential study	study
	Aber rations in viro	in cytogenic assay for numerical		study.
		aberrations		
	Chromosomal			No data located
	Aberrations <i>in vivo</i>			Tio data Iocated.
	DNA Damage and			No data located.
	Repair			
	Other (Mitotic Gene			No data located.
	Conversion)			

Tris(tribromoneopentyl) Phosphate CASRN 19186-97-1				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Reproductive Effect	ets	MODERATE: Estimated to have potent	ial for reproductive effects based	l on alkylation and expert
		judgment; no data located.		
	Reproduction /			
	Developmental Toxicity			
	Screen			
	Combined Repeated	Potential for reproductive toxicity based		
	Dose with	on a consideration of the mechanistic	Expert judgment	Estimated based on expert
	Reproduction /	potential for alkylation	Expert Judgment	judgment.
	Developmental Toxicity	(Estimated)		
	Screen			
	Reproduction and			
	Fertility Effects			
Developmental Eff	ects	MODERATE: For developmental toxic	ity a NOAEL of 300 mg/kg-day ຄ	and a LOAEL of 1,000 mg/kg-day
		(for slightly reduced fetal weight and marginally increased placental weight) were reported for rats orally		
		exposed on gestation days (GDs) 1-19 which aligns with a low hazard designation. However, there is		
		moderate potential for neurodevelopmental effects from exposure to tristribromoneopentyl phosphate		
		based on presence of alkylating groups a	and potential for cholinesterase in	nhibition. There were no studies
		located that were specifically designed to	o evaluate the neurodevelopment	al endpoint.
	Reproduction/	There is potential for developmental and	Professional judgment	Estimated based on cholinesterase
	Developmental Toxicity	neurodevelopmental effects based on a		inhibition by analogy to tris (1,3-
	Screen	mechanistic consideration of the		dichloro-2-propyl phosphate.
		potential for alkylation and crosslinking,		
		and cholinesterase inhibition.		
		(Estimated by analogy)		
	Combined Repeated			No data located.
	Dose with			
	Reproduction/			
	Developmental Toxicity			
	Screen			

	Tris(tribromoneopentyl) Phosphate CASRN 19186-97-1			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	Prenatal Development	Pregnant rats; oral gavage; GDs1-19; 100, 300 or 1,000 mg/kg-day test substance. Maternal: No deaths. No significant clinical signs or toxicity or changes in bodyweight or food consumption. No adverse effects on mean implantation count, incidence of pre-or post-implantation losses or numbers of live young. Fetal: Slightly reduced fetal weight and marginally increased placental weight (1,000 mg/kg); No skeletal or visceral anomalies. NOAEL = 300 mg/kg-day for fetuses based on slight reduction of fetal growth	Submitted confidential study	Reported in a submitted confidential study; Study conducted in accordance with GLP.
		reduced fetal weight: marginally		
		increased placental weight)		
	Postnatal Development			No data located.
Neurotoxicity		HIGH: Estimated to have high potential	for neurotoxicity based on the p	otential for the neopentyl alcohol
		groups acting as leaving groups, based o	n professional judgment.	
	Neurotoxicity Screening Battery (Adult)	There is a potential for neurotoxicity using a mechanistic analysis based on the formation of neopentyl alcohol groups due to their ability to act as good leaving	Professional judgment	Estimated based on professional judgment.
		groups. (Estimated by analogy)		

Tris(tribromoneopentyl) Phosphate CASRN 19186-97-1				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Repeated Dose Effects	LOW: There were no treatment-related effects in rats following 28- or 90-day exposures at oral doses up to 20,000 ppm (1,358 and 1,685 mg/kg/day for males and females, respectively in the 90 day dietary study in rats). There is uncertain potential for liver effects based on the bromo substituents of tris(tribute effects) above the state of t			
	There is an uncertain potential for liver effects based on a mechanistic consideration of the reactions of the bromo substituents of this chemical. (Estimated by analogy) 28-day study, rats, oral gavage, 0, 400,	Professional judgment Submitted confidential study	Estimated based on professional judgment. Reported in a submitted confidential	
	8,000, 20,000 ppm test material. No deaths. No treatment-related clinical signs of toxicity or significant changes in body weight, overall body weight gains or food consumption. No changes in hematological or clinical chemistry parameters or in organ weights. No compound-related macroscopic or microscopic effects.		study; Conducted in accordance with GLP.	
	NOAEL = 20,000 ppm (highest dose tested)			

	Tris(tribromoneopentyl) Phosphate CASRN 19186-97-1			
PROPERT	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
		90-day dietary study in rats; 0, 2,000, 10,000, or 20,000 ppm test material.	Submitted confidential study	Reported in a submitted confidential study; Conducted in accordance with GLP.
		No treatment-related deaths or clinical signs of toxicity. No treatment-related		
		changes in body weight, ophthalmic		
		lesions or urinalysis/clinical		
		chemistry/hematological parameters. No		
		necropsy or changes in organ weight. No histopathological changes.		
		NOAEL = $20,000$ ppm (1.358 and 1.685		
		mg/kg/day for males and females,		
		respectively); highest dose tested.		
Skin Sensitization		LOW: Not a skin sensitizer in guinea pigs. There is some potential for skin sensitization based on a mechanistic consideration of the potential for alkylation and crosslinking, based on professional judgment		
	Skin Sensitization	There is potential for skin sensitization	Professional judgment	Based on closely related
		based on a mechanistic consideration of	Jacob	confidential analogs with similar
		the potential for alkylation and		structures, functional groups, and
		crosslinking. (Estimated by analogy)		physical/chemical properties.
		Not sensitizing, guinea pigs	Submitted confidential study	Reported in a submitted confidential study.
Respiratory Sensitiz	ation	No data located.		stady.
	Respiratory			No data located.
	Sensitization			
Eye Irritation		LOW: Estimated to have low potential f	or eye irritation based on expert	judgment.
	Eye Irritation	Low potential for eye irritation.	Expert judgment	Estimated based on expert
Donmal Invitation		(Estimated)	on dommal invitation based on an	judgment.
	Dermal Irritation	Low, Estimated to have low potential I	Expert judgment	Estimated based on expert
		(Estimated)		judgment.

Tris(tribromoneopentyl) Phosphate CASRN 19186-97-1			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Endocrine Activity	No data located.	·	
			No data located.
Immunotoxicity	No data located.		
Immune System Effects			No data located.
	ECOTOXICITY		
ECOSAR Class			
Acute Toxicity	LOW: Tris(tribromopentyl) phosphate' there will be no effects at saturation (NH ECOSAR cutoff values.	s large MW, limited bioavailabil ES). The estimated log K _{ow} of 8.1	ity and low water solubility suggest also is indicative of NES based on
Fish LC ₅₀	Fish 96-hour $LC_{50} > 10 \text{ mg/L}$ (test concentration exceeded water solubility)	Fisk et al., 2003	Inadequate; details are missing as this is a review on various chemicals. In addition, the LC_{50} is greater than the highest test concentration.
	Fish 96-hour LC ₅₀ = 0.006 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The large MW, limited bioavailability and low water solubility suggest there will be NES; the log K_{ow} of 8.1 for this chemical exceeds the SAR limitation for log K_{ow} of 5.0. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.

	Tris(tribromoneopentyl) Phosphate CASRN 19186-97-1				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
	Daphnia 48-hour LC ₅₀ = 0.007 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The large MW, limited bioavailability and low water solubility suggest there will be NES; the log K_{ow} of 8.1 for this chemical exceeds the SAR limitation for log K_{ow} of 5.0. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.		
Green Algae EC ₅₀	Green algae 96-hour EC ₅₀ = 0.037 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The large MW, limited bioavailability and low water solubility suggest there will be NES; the log K_{ow} of 8.1 for this chemical exceeds the SAR limitation for log K_{ow} of 6.4. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.		
Chronic Aquatic Toxicity	LOW: The large MW, limited bioavailability, and low water solubility suggest there will be NES. The estimated log K _w of 8.1 is indicative of NES based on ECOSAR cutoff values.				

Tris(tribromoneopentyl) Phosphate CASRN 19186-97-1				
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Fish ChV	Fish ChV = 0.000495 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The large MW, limited bioavailability and low water solubility suggest there will be NES; the log K_{ow} of 8.1 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.	
Daphnid ChV	Daphnid ChV = 0.00192 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The large MW, limited bioavailability and low water solubility suggest there will be NES; the log K_{ow} of 8.1 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.	

	Tris(tribromoneopentyl) Phosphate CASRN 19186-97-1			
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Green Algae ChV		Green algae ChV = 0.040 mg/L (Estimated) ECOSAR: Neutral organics	ECOSAR version 1.11	NES: The large MW, limited bioavailability and low water solubility suggest there will be NES; the log K_{ow} of 8.1 for this chemical exceeds the SAR limitation for log K_{ow} of 8.0. ECOSAR also provided results for the Esters, and Esters (phosphate) classes; however, professional judgment indicates that this compound does not lie within the domain of the ECOSAR model.
ENVIRONMENTAL FATE				
Transport		Evaluation of tris(tribromoneopentyl) ph structure activity relationships. Tris(trib based on its expected strong absorption t phosphate is likely to exist solely as parti- significant route of environmental remov moist soil is not expected to occur at an a tris(tribromoneopentyl) phosphate will p	nosphate transport is based entire romoneopentyl) phosphate is exp to soil. If released to the atmosphe culate. As a particulate, atmosphe val. Based on the Henry's Law co ppreciable rate. Level III fugacit artition predominantly to the soi	ely on estimations from quantitative bected to have low mobility in soil ere, tris(tribromoneopentyl) eric oxidation is not expected to be a nstant, volatilization from water or y models indicate that l.
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	EPI; Professional judgment	Cutoff value for nonvolatile compounds.
	Sediment/Soil Adsorption/ Desorption Coefficient – K _{oc}	>30,000 (Estimated)	EPI; EPA, 1999	Cutoff value for nonmobile compounds according to HPV assessment guidance.
	Level III Fugacity Model	Air: <1% (Estimated) Water = 1% Soil = 64% Sediment = 35%	EPI	

	Tris(tribromoneopentyl) Phosphate CASRN 19186-97-1				
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Persistence		HIGH: This substance has a MW slightly >1,000. It is expected to have negligible water solubility and poor bioavailability to microorganisms indicating that biodegradation is not expected to be an important removal process in the environment. Estimated hydrolysis half-lives of approximately 10 years indicate that this will not be an important environmental removal process. Tris(tribromoneopentyl) phosphate does not contain functional groups that would be expected to absorb light at environmentally significant wavelengths. As a result, tris(tribromoneopentyl) phosphate is expected to have high potential for environmental persistence.			
Water	Aerobic Biodegradation	Weeks-months (primary survey model); Recalcitrant (ultimate survey model) (Estimated)	EPI	Although this compound may lie just outside of the MW domain for the estimation method, the results are consistent with a high MW material that is not expected to be readily assimilated.	
	Volatilization Half-life for Model River	>1 year (Estimated)	EPI	Based on the magnitude of the estimated Henry's Law Constant.	
	Volatilization Half-life for Model Lake	>1 year (Estimated)	EPI	Based on the magnitude of the estimated Henry's Law Constant.	
Soil	Aerobic Biodegradation			No data located.	
	Anaerobic Biodegradation	Probable (Anaerobic-methanogenic biodegradation probability model) (Estimated)	EPI; Professional judgment	The model predictions are being driven by reduction of the bromine substituent. Under environmental conditions, the rate for anaerobic degradation will likely be attenuated due to the low water solubility and limited bioavailability of this material.	
	Soil Biodegradation with Product Identification			No data located.	
	Sediment/Water Biodegradation			No data located.	
Air	Atmospheric Half-life	Not a significant fate process (Estimated)	Professional judgment	This chemical is expected to exist in the particulate phase in the atmosphere.	

	Tris(tribromoneopentyl) Phosphate CASRN 19186-97-1				
PRO	PERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Reactivity	Photolysis			No data located.	
	Hydrolysis	pH 7 = 9.9 years (Estimated) pH 8 = 9.9 years	EPI		
	Pyrolysis			No data located.	
Environmental	Half-life	>180 days (Estimated)	Professional judgment	The substance has a MW slightly >1,000 and is not anticipated to be assimilated by microorganisms. Therefore, biodegradation is not expected to be an important removal process. It is also not expected to be readily removed by other degradative processes under environmental conditions because of limited water solubility and lack of reactive functional groups.	
Bioaccumulatio	n	MODERATE: The estimated BCF is	>100 and <1,000.	-	
	Fish BCF	609 (Estimated)	EPI		
	BAF	8.8 (Estimated)	EPI		
	Metabolism in Fish			No data located.	
		ENVIRONMENTAL MONITORING	AND BIOMONITORING		
Environmental	Monitoring	No data located.	No data located.		
Ecological Bion	onitoring	No data located.	No data located.		
Human Biomonitoring This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring (CDC, 2011).		mination Survey biomonitoring report			

CDC (Centers for Disease Control and Prevention). *Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables.* Department of Health and Human Services. **2011**. <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> as of May 10, 2011.

ChemNet. ChemNet.com Physical and chemical property page for 19186-97-1 2,2-Bis-(bromomethyl)-3-bromo-1-propanol phosphate. <u>http://www.chemnet.com/cas/en/19186-97-1/Tris(tribromoneopentyl)phosphate.html</u> (accessed January 19, **2011**).

[HPV Assessment Guidance] EPA (U.S. Environmental Protection Agency). High Production Volume (HPV) Challenge. Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. **1999**. http://www.epa.gov/hpv/pubs/general/datadfin.htm

ECOSAR/EPI (EPIWIN/EPISUITE) Estimations Programs Interface for Windows, Version 1.11. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

EPI (*EPIWIN/EPISUITE*) *Estimation Program Interface for Windows*, Version 4.0. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

ESIS (European chemical Substances Information System) Classification, labeling and packaging of dangerous substances annex VI to regulation (EC) No 1272/2008 [Online] available at: http://esis.jrc.ec.europa.eu/clp-ghs as of May 10, **2011**.

Fisk, P. R., Girling, A. E., Wildey. Prioritization of flame retardants for environmental risk assessment. Environment Agency, Chemicals Assessment Section, **2003**.

Harju, M.; Heimstad, E.; Herzke, D.; et al. Current state of knowledge and monitoring requirements - Emerging "new" brominated flame retardants in flame retarded products and the environment (TA-2462/2008). Norwegian Pollution Control Authority, Oslo, Norway. **2009**.

NICNAS (National Industrial Chemicals Notification and Assessment Scheme). Polybrominated flame retardants (PBFRs) priority existing chemical assessment Report No. 20 National Occupational Health and Safety Commission, Australia. **2001**.

Tris(tribromophenoxy) Triazine

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard **H** = High hazard **VH** = Very High hazard — Endpoints in colored text (**VL**, L, M, H, and **VH**) were assigned based on empirical data. Endpoints in black italics (*VL*, L, M, H, and VH) were assigned using values from estimation software and professional judgment.

			Human Health Effects				Aquatic Toxicity ^{**}		Enviro Fa	nmental ate						
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Tris(tribromophenoxy) Triazine	25713-60-4	L	L	L	L	L	L	L	L		L	VL	L	L	VH	Н
	•															

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

Tris(tribromophenoxy) Triazine

Br		CASRN: 25713-60-4		
		MW: 1,067.43		
		$\mathbf{MF:} \mathbf{C}_{21}\mathbf{H}_{6}\mathbf{Br}_{9}\mathbf{N}_{3}\mathbf{O}_{3}$		
Br Br Br		Physical Forms:		
		Neat: Solid		
		Use: Flame retardant		
Br Br Br				
Dr Dr				
SMILES: c1(Br)c(Oc2nc(Oc3c(Br)cc(Br)cc3Br)nc(Oc3c(Br)cc(Br)cc3Br)n2)c(Br)	lcc(Br)c1			
Synonyms: 1,3,5-Triazine, 2,4,6-tris(2,4,6-tribromophenoxy)-; Tris(tribromophenox)-; Tris(tribromophenoxy)-s-triazine; Tris(tribromophenyl) cyanurate	xy) triazine; FR 245; Tris(2,4,6-tribromophe	noxy)-s-triazine;		
Chemical Considerations: This is a discrete organic chemical with a MW slightly environmental fate values due to an absence of experimental data.	greater than 1,000. EPI v 4.0 was used to est	imate physical/chemical and		
Polymeric: No				
Oligomers: Not applicable				
Metabolites, Degradates and Transformation Products: Tribromophenol (NICN	IAS, 2006)			
Analog: No analog Analog Structure: Not applicable				
Endpoint(s) using analog values: Not applicable				
Structural Alerts: Reproductive toxicity, triazines (EPA, 2011)				
Risk Phrases: Not classified by Annex I Directive 67/548/European Economic Community (EEC) & IUCLID (Pakalin et al., 2007).				
Hazard and Risk Assessments: None identified.				

Tris(tribromophenoxy) Triazine CASRN 25713-60-4						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	PHYSICAL/CHEMICAL PR	OPERTIES				
Melting Point (°C)	228-229 (Measured) EC Directive 92/69/EEC A.1	NICNAS, 2006	Adequate; reported in a secondary source. Melting started at 216-218°C, likely due to impurities in test substance.			
Boiling Point (°C)	Decomposition at >275 (Measured) EC Directive 92/69/EEC A.1 using 99.5% pure test substance	NICNAS, 2006	Adequate; reported in a secondary source.			
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	EPI; EPA, 1999	Cutoff value for nonvolatile compounds according to HPV assessment guidance.			
Water Solubility (mg/L)	<10 ⁻³ at 20°C (Measured) Organisation of Economic Cooperation and Development (OECD) TG 105, Good laboratory practice compliant	NICNAS, 2006	Adequate; reported in a secondary source. Reported value also corresponds to the cutoff value for nonsoluble compounds according to High Production Volume assessment guidance.			
Log K _{ow}	>10 (Estimated)	EPI; EPA, 1999	Although this material may be outside the MW domain for the estimation model, the resulting value is consistent with that anticipated for a highly brominated, high MW substance. Cutoff value used according to HPV assessment guidance.			
Flammability (Flash Point)	Nonflammable (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.			
Explosivity	Not expected to form explosive mixtures with air (Estimated)	Professional judgment	No experimental data located; based on its use as a flame retardant.			
Pyrolysis			No data located.			
рН			No data located.			

Tris(tribromophenoxy) Triazine CASRN 25713-60-4					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
pKa				No data located; the high MW precludes the use of available estimation methods.	
		HUMAN HEALTH EFF.	ECTS		
Toxicokinetics		Tris(tribromophenoxy) triazine has a MW >1,000 and limited water solubility. There is no absorption expected for any route of exposure for this compound and is not expected to be absorbed, distributed or metabolized in the body. The lack of absorption is expected to result in low hazard potential.			
Dermal Absorption	n <i>in vitro</i>			No data located.	
Absorption, Distribution, Metabolism & Excretion	Oral, Dermal or Inhaled	No absorption expected for any route of exposure (Estimated)	Professional judgment	Estimated based on professional judgment.	
Acute Mammalian	Toxicity	LOW: Tris(tribromophenoxy) triazine has a MW >1,000 and limited water solubility. It is expected to have limited bioavailability and therefore has low potential for acute mammalian toxicity. In addition, oral and dermal LD ₅₀ values >2,000 indicate a low level of toxicity.			
Acute Lethality	Oral	Limited bioavailability expected (Estimated) Rat oral LD ₅₀ >2,000 mg/kg	Professional judgment; EPA, 1999 NICNAS, 2006	Based on HPV discrete organic chemicals assessment guidance. Reported in a secondary source.	
	Dermal	Rat dermal LD ₅₀ >2,000 mg/kg	NICNAS, 2006	Reported in a secondary source.	
	Inhalation			No data located.	
Carcinogenicity		LOW: Tris(tribromophenoxy) triazine i potential for carcinogenicity based on p	s expected to have limited bioava rofessional judgment.	ilability. It is estimated to have low	
	OncoLogic Results Carcinogenicity (Rat and Mouse) Combined Chronic Toxicity/ Carcinogenicity	Limited bioavailability expected (Estimated)	Professional judgment; EPA, 1999	Based on HPV discrete organic chemicals assessment guidance.	

Tris(tribromophenoxy) Triazine CASRN 25713-60-4					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Genotoxicity		LOW: Tris(tribromophenoxy) triazine v chromosome aberrations in human peri Tris(tribromophenoxy) triazine is expect for genotoxicity.	vas not mutagenic in <i>Salmonella</i> pheral lymphocytes or L5178Y m ted to have limited bioavailability	<i>typhimurium</i> and did not induce nouse lymphoma cells. y and therefore has low potential	
	Gene Mutation <i>in vitro</i>	Limited bioavailability expected (Estimated) Negative, Ames assay in <i>Salmonella</i> <i>typhimurium</i> strains TA1535, TA1537, TA98, TA100, with and without activation.	Professional judgment; EPA, 1999 NICNAS, 2006	Based on HPV discrete organic chemicals assessment guidance. Reported in a secondary source.	
	Gene Mutation in vivo			No data located.	
	Chromosomal Aberrations <i>in vitro</i>	Negative, Mammalian Chromosome Aberration Test in cultured human peripheral lymphocytes, with and without activation. Precipitation was noted at the highest concentration tested.	NICNAS, 2006	Reported in a secondary source.	
		Negative, Mammalian Cell Gene Mutation Test in L5178Y mouse lymphoma cells with and without activation. Precipitation was noted at the highest concentration tested.	NICNAS, 2006	Reported in a secondary source.	
	Chromosomal Aberrations <i>in vivo</i>			No data located.	
	DNA Damage and Repair			No data located.	
	Other (Mitotic Gene Conversion)			No data located.	
Reproductive Effects		LOW: Tris(tribromophenoxy) triazine is expected to have limited bioavailability. It is estimated to have low potential for reproductive effects based on professional judgment.			
	Reproduction/ Developmental Toxicity Screen	Limited bioavailability expected (Estimated)	Professional judgment; EPA, 1999	Based on HPV discrete organic chemicals assessment guidance.	

		Tris(tribromophenoxy) Triazine CA	ASRN 25713-60-4		
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Combined Repeated				
	Dose with				
	Reproduction/				
	Developmental Toxicity				
	Screen				
	Reproduction and				
	Fertility Effects				
Developmental Eff	ects	LOW: Tris(tribromophenoxy) triazine i	s expected to have limited bioava	ilability. It is estimated to have low	
		potential for developmental effects base	d on professional judgment.		
	Reproduction/				
	Developmental Toxicity				
	Screen				
	Combined Repeated				
	Dose with	Limited bioavailability expected	Professional judgment; EPA,	Based on HPV discrete organic	
	Reproduction/	(Estimated)	1999	chemicals assessment guidance.	
	Developmental Toxicity				
	Screen				
	Prenatal Development				
	Postnatal Development				
Neurotoxicity		LOW: Tris(tribromophenoxy) triazine i	s expected to have limited bioava	ilability. It is estimated to have low	
		potential for neurotoxicity based on pro	fessional judgment.		
	Neurotoxicity Screening	Limited bioavailability expected	Professional judgment; EPA,	Based on HPV discrete organic	
	Battery (Adult)	(Estimated)	1999	chemicals assessment guidance.	
Repeated Dose Eff	ects	LOW: Tris(tribromophenoxy) triazine i	s expected to have limited bioava	ilability. It is estimated to have low	
		potential for repeated dose effects based on professional judgment. Results from a 28-day repeated dose			
		study are consistent with this low hazar	d designation.		
		Limited bioavailability expected	Professional judgment; EPA,	Based on HPV discrete organic	
		(Estimated)	1999	chemicals assessment guidance.	

Tris(tribromophenoxy) Triazine CASRN 25713-60-4			
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
	In a 28-day repeated dose study, rats (6/sex) were orally exposed to 0, 10, 50, 250, or 1,000 mg/kg bw-day. There was neither mortality nor treatment-related clinical signs of toxicity. There was a decreased reticulocyte count and relative adrenal weight in females and increased relative liver weight and decreased relative kidney weight in males; however, these effects were not considered dose- or treatment-related. NOAEL = 1,000 mg/kg bw/day (highest dose tested)	NICNAS, 2006	Reported in a secondary source.
Skin Sensitization	LOW: Tris(tribromophenoxy) triazine i	is not a skin sensitizer in guinea j	pigs.
Skin Sensitization	Negative results in a skin sensitization maximization test in guinea pigs (0–6% response rate).	NICNAS, 2006	Reported in a secondary source.
Respiratory Sensitization	No data located.		
Respiratory Sensitization			No data located.
Eye Irritation	LOW: Tris(tribromophenoxy) triazine	is a slight eye irritant in rabbits.	
Eye Irritation	Slightly irritating to rabbit eyes	NICNAS, 2006	Reported in a secondary source.
Dermal Irritation	VERY LOW: Tris(tribromophenoxy) tr	riazine is not a skin irritant in ra	bbits.
Dermal Irritation	Non-irritating to rabbit skin	NICNAS, 2006	Reported in a secondary source.
Endocrine Activity	Tris(tribromophenoxy) triazine is expect to have low potential for endocrine activ	ted to have limited bioavailabilit vity based on professional judgm	y based on its MW. It is estimated ent. No data located.
	Limited bioavailability expected (Estimated)	Professional judgment; EPA, 1999	Based on HPV discrete organic chemicals assessment guidance.

Tris(tribromophenoxy) Triazine CASRN 25713-60-4				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY
Immunotoxicity		No data located. Tris(tribromophenoxy)	triazine is expected to have limit	ted bioavailability based on its MW
		that is slightly above 1,000 dattons. It is professional judgment with some uncert	estimated to have low potential for the second seco	or immunotoxicity based on pround is near the cutoff of 1 000
		daltons.	tainty because the WIW of this con	ipound is near the cutoff of 1,000
	Immune System Effects	Limited bioavailability expected	Professional judgment; EPA,	Based on HPV discrete organic
		(Estimated)	1999	chemicals assessment guidance.
		ECOTOXICITY		
ECOSAR Class		Not applicable		
Acute Toxicity		LOW: Tris(tribromophenoxy) triazine i	s expected to display no effects a	t saturation (NES) because the
		amount dissolved in water is not anticip	ated to reach a concentration at	which adverse effects may be
		expressed.		
Fish LC ₅₀		NES	Professional judgment	The MW >1,000, limited
				bioavailability and low water
				solubility suggest there will be
				NES.
Daphnid LC ₅₀		NES	Professional judgment	The MW >1,000, limited
				bioavailability and low water
				solubility suggest there will be
		NEG		NES.
Green Algae EC ₅₀		NES	Professional judgment	The MW $>1,000$, limited
				bloavailability and low water
				NES
Chronic Aquatic T	ovicity	I OW: Trig (tribromonhonory) trigging	is expected to display NES becau	NES.
Chrome Aquatic 1	oxicity	not anticipated to reach a concentration	is expected to display NES becau	se the amount dissolved in water is
Fich ChV		NES	Drofossional judgment	The MW > 1.000 limited
		INES	Professional Judgment	hioavailability and low water
				solubility suggest there will be
				NFS
Daphnid ChV		NES	Professional judgment	The MW >1.000 . limited
r				bioavailability and low water
				solubility suggest there will be
				NES.

	Tris(tribromophenoxy) Triazine CASRN 25713-60-4				
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
Green Algae ChV		NES	Professional judgment	The MW >1,000, limited bioavailability and low water solubility suggest there will be NES.	
		ENVIRONMENTAL F	ATE		
Transport		The transport assessment for tris(tribron for high MW (>1,000), water insoluble, n through soil to groundwater is not expec volatilization half-lives indicate that it wi is also not expected based on its vapor pr in the particulate phase, based on its esti or dry deposition.	nophenoxy) triazine is based alm nonvolatile materials. Leaching of ted to be an important transport ill be nonvolatile from surface wa ressure. In the atmosphere, this c mated vapor pressure. Particulat	ost entirely on behavior anticipated f tris(tribromophenoxy) triazine mechanism. Estimated ater. Volatilization from dry surface ompound is expected to exist solely tes may be removed from air by wet	
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	EPI; Professional judgment	Although this material may be outside the MW domain for the estimation model, the resulting value is consistent with that anticipated for a highly brominated, high MW substance. Cutoff value used for nonvolatile compounds.	
	Sediment/Soil Adsorption/Desorption Coefficient – K _{oc}	>30,000 (Estimated)	EPI; EPA, 1999	Although this material may be outside the MW domain for the estimation model, the resulting value is consistent with that anticipated for a highly brominated, high MW substance. Cutoff value for non mobile compounds according to HPV assessment guidance.	
	Level III Fugacity Model	Air: $<1\%$ (Estimated) Water = 4.2% Soil = 93% Sediment = 2.8%	EPI	Although this material may be outside the MW domain for the estimation model, the resulting value is consistent with that anticipated for a highly brominated, high MW substance.	

		Tris(tribromophenoxy) Triazine CA	ASRN 25713-60-4	
PROPE	ERTY/ENDPOINT	DATA	DATA QUALITY	
Persistence		VERY HIGH: Biodegradation is not exp biodegradation occurred in a 28-day read only 4% of the test substance was remove major removal process. Volatilization, at occur. Therefore, tris(tribromophenoxy)	ected to be a major removal prod dy biodegradation test. In a guid ed in 72 days. Therefore, biodegr mospheric photooxidation, and l triazine is expected to be highly	cess based on experimental data. No eline inherent biodegradation test, radation is not expected to be a nydrolysis are also not expected to persistent in the environment.
Water	Aerobic Biodegradation	Not readily biodegradable after 28 days; no degradation measured by biochemical oxygen demand using microorganisms obtained from activated sludge, 6% measured by high performance liquid chromatography (Measured)	NICNAS, 2006	Adequate; value reported in a secondary source.
		Not inherently biodegradable after 72 days; 4% degradation according to OECD 302D (Measured)	NICNAS, 2006	Adequate; value reported in a secondary source.
		Recalcitrant (Estimated)	EPI; Professional judgment	Although this material may be outside the MW domain for the estimation model, the resulting value is consistent with that anticipated for a highly brominated, high MW substance.
		Not probable (Anaerobic-methanogenic biodegradation probability model) (Estimated)	EPI; Professional judgment	Although this material may be outside the MW domain for the estimation model, the resulting value is consistent with that anticipated for a highly brominated, high MW substance.
	Volatilization Half-life for Model River	>1 year (Estimated)	EPI; Professional judgment	Although this material may be outside the MW domain for the estimation model, the resulting value is consistent with that anticipated for a highly brominated, high MW substance.

	Tris(tribromophenoxy) Triazine CASRN 25713-60-4				
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY	
	Volatilization Half-life for Model Lake	>1 year (Estimated)	EPI; Professional judgment	Although this material may be outside the MW domain for the estimation model, the resulting value is consistent with that anticipated for a highly brominated, high MW substance.	
Soil	Aerobic Biodegradation			No data located.	
	Anaerobic Biodegradation			No data located.	
	Soil Biodegradation with Product Identification			No data located.	
	Sediment/Water Biodegradation			No data located.	
Air	Atmospheric Half-life	Not a significant fate process (Estimated)	Professional judgment	This chemical is expected to exist in the particulate phase in the atmosphere.	
Reactivity	Photolysis			No data located.	
	Hydrolysis	Not a significant fate process (Estimated)	Wolfe and Jeffers, 2000; Professional judgment	The substance does not contain functional groups that would be expected to hydrolyze and has negligible water solubility.	
Environmental Half-life		>180 days (Estimated)	EPI; Professional judgment	Although this material may be outside the MW domain for the estimation model, the resulting value is consistent with that anticipated for a highly brominated, high MW substance.	
Bioaccumulation		HIGH: The estimated BAF for this chemical is >5,000. Although measured BCF values were located, estimated BAF values are incorporated for a conservative approach. The BAF estimate is consistent with the potential for bioaccumulation that is anticipated for high MW chemicals with a high degree of bromination.			

	Tris(tribromophenoxy) Triazine CASRN 25713-60-4					
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
	Fish BCF	<0.8 to 9; <8 to 18 Carp (Measured) Using continuous flow-through test	NICNAS, 2006	Results are consistent with chemicals with low water solubility and high MW, suggesting limited transport through gills.		
	BAF	8,800 (Estimated)	EPI	Although this material may be outside the MW domain for the estimation model, the resulting value is consistent with that anticipated for a highly brominated, high MW substance. Assessment criteria indicate estimated BAF may be used in preference to measured BCF values.		
	Metabolism in Fish			No data located.		
]	ENVIRONMENTAL MONITORING AN	D BIOMONITORING			
Environmental Mon	nitoring	No data located.				
Ecological Biomonit	Ecological Biomonitoring No data located.					
Human Biomonitori	ing	This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2011).				

CDC (Centers for Disease Control and Prevention). *Fourth national report on human exposure to environmental chemicals, updated tables*. Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on May 10, 2011).

U.S. EPA (Environmental Protection Agency). High Production Volume (HPV) Challenge. Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. http://www.epa.gov/hpv/pubs/general/datadfin.htm

EPA Sustainable Futures. *Using NonCancer Screening within the SF Initiative*. U.S. Environmental Protection Agency: Washington D.C. **2011.** <u>http://www.epa.gov/opptintr/sf/pubs/noncan-screen.htm#systemic</u> (accessed on February 09, 2011).

EPI (*EPIWIN/EPISUITE*) *Estimation Program Interface for Windows*, Version 4.0. U.S. Environmental Protection Agency: Washington D.C. <u>http://www.epa.gov/opptintr/exposure/</u>.

NICNAS (National Industrial Chemicals Notification and Assessment Scheme). Full Study Report, File No:STD/1132, **2006.** <u>http://www.nicnas.gov.au/publications/car/new/std/stdfullr/std1000fr/std1132fr.pdf</u> (accessed on April 11, 2011).

Pakalin, S.; Cole, T.; Steinkellner, J.; Nicolas, R.; Tissier, C.; Munn, S.; Eisenreich, S. Review on Production Processes of Decabromodiphenyl Ether (DECABDE) used in Polymeric Applications in Electrical and Electronic Equipment, and Assessment of the Availability of Potential Alternatives to DECABDE. [Online] **2007**. http://publications.jrc.ec.europa.eu/repository/handle/11111111/5259 (accessed on January 20, 2011).

Wolfe, N.; Jeffers, P. (2000) Hydrolysis. In Boethling, R.; Mackay, D., *Handbook of Property Estimation Methods for Chemicals*, Environmental Health Sciences (311-334). Boca Raton: Lewis Publishers.

Zinc Borate

Screening Level Hazard Summary

This table only contains information regarding the inherent hazards of flame retardant chemicals. Evaluation of risk considers both the hazard and exposure associated with the substance including combustion and degradation by-products. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. ^R Recalcitrant: substance is or contains inorganics, such as metal ions or elemental oxides, that are expected to be found in the environment >60 days after release.

			Human Health Effects					Aquatic Toxicity ^{**}		Environmental Fate						
Chemical	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Zinc Borate	1332-07-6	L	L	H	M	M	H	L	L		L	L	H	H	HR	L

** Aquatic toxicity: EPA/DfE criteria are based in large part upon water column exposures which may not be adequate for poorly soluble substances such as many flame retardants that may partition to sediment and particulates.

	CASRN: 1332-07-6, 138265-88-0
Zn ²⁺ P	MW: 125
о́н	MF: ZnBO ₃ H (Empirical)
	Physical Forms: Neat: Solid
	Use: Flame retardant
SMILES: Not applicable	
Synonyms: Boric acid, zinc salt; Boron zinc hydroxide oxide; Alcanex FR 100; Alcanex FRC 600; Be FRC 600; Firebrake 415; Firebrake 500; Firebrake ZB; Flamtard Z 10; JS 9502; SZB 2335; Storshield ZB 467 Lite; ZB-Shield; ZN 100; ZSB 2335; ZT; Zinc borate	onrex FC; Borax 2335; Borogard ZB; Climax; ZB 467; 128859; ZB2335; XPI 187; ZB 112; ZB 113; ZB 223; ZB 237; ZB 325;
Chemical Considerations: This alternative is an inorganic compound. Zinc borates have the general have differing and possibly complex ratios for the water of hydration. In the absence of experimental considerations were used to complete this hazard profile.	formula $xZnO \cdot yB_2O_3 \cdot zH_2O$. Zinc borate hydrate analogs may data, professional judgment using chemical class and structural
Polymeric: No Oligomers: Not applicable	
Metabolites, Degradates and Transformation Products: Zinc (23713-49-7), borate (39201-27-9), z 11113-50-1)	inc oxide (1314-13-2), zinc hydroxide, boric acid (10043-35-3;
 Analogs: Zinc borate hydrate analogs include CASRNs 12447-61-9, 12513-27-8, 27043-84-1, 12280-01-2, 12429-73-1, 12536-65-1, 147749-62-2 (Briggs, 2004; Smith, 2002; Lide, 2008; Touval, 2000; Goodwin, 2006); analog data from other confidential compounds was also used. Endpoint(s) using analog values: Not applicable 	Analog Structure: $\begin{bmatrix} Zn^{2+} \end{bmatrix}_{x} \begin{bmatrix} HO_{B} & O^{-} \\ OH \end{bmatrix}_{y} \begin{bmatrix} H_{O} & H \end{bmatrix}_{z}$
Structural Alerts: Boron containing compounds, developmental toxicity (EPA, 2011a).	
Risk Phrases: R50/53 – Very toxic to aquatic organisms, may cause long-term adverse effects in the zinc ions (U.S. Borax, Inc., 2002). Not classified by Annex VI Regulation (EC) No 1272/2008 (ESIS,	aquatic environment. Zinc borate's dissolution produces soluble 2011).
Hazard and Risk Assessments: Risk assessment completed for zinc borate by the National Academy	of Sciences (NAS, 2000); Pesticide Registration Review

completed by EPA (2011b).

Zinc Borate CASRN 1332-07-6, 138265-88-0							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
PHYSICAL/CHEMICAL PROPERTIES							
Melting Point (°C)	980 (for 12513-27-8 and 138265-88-0) (Estimated by analogy)	Lewis, 1993; NAS, 2000; Gowda, 2007; Lide, 2008	The values reported for the zinc borate and its hydrates are consistent with that expected for these inorganic				
	Phase change at 650 (Measured)	U.S. Borax Inc., 2002	salts, which are characterized by high melting points. At elevated				
	>550 (for 12447-61-9) (Estimated by analogy)	EPA, 1991 (as described in Maine DEP, 2007)	may lose their waters of hydration.				
Boiling Point (°C)	>500, Decomposes (Estimated)	Professional judgment	Adequate; decomposition occurs upon melting as described in located sources above. This is anticipated to occur at or above the melting point.				
Vapor Pressure (mm Hg)	<10 ⁻⁸ (Estimated)	Professional judgment; EPA, 1999	Cutoff value for nonvolatile materials according to HPV assessment guidance; expected for an inorganic salt.				
	Negligible (Measured)	HDP, 2004	Qualitative, nonspecific value.				
Water Solubility	<0.28% at 25°C (Measured)	Clayton and Clayton, 1994; HDP, 2004; U.S. Borax Inc., 2002	The values reported for the zinc borate hydrates indicate that its				
	0.1% at pH 5 and 7 and 23°C 0.03% at pH 9 and 23°C (for 12447-61-9) (Estimated by analogy)	Lindsay, 1991	dissolution is pH dependent and includes the pH range 5-7 that is typically found in the environment.				
	Zinc borate is slightly soluble in water. At low pH, zinc borate can dissociate to zinc and borate ions (for 12447-61-9) (Estimated by analogy)	Sanders, 2007	Indicates the potential for liberation of zinc ions under acid conditions such as those found in the stomach.				
Log K _{ow}			No data located. Compound is not amenable to available estimation techniques.				
Flammability (Flash Point)	Nonflammable (Measured)	Sax and Lewis, 1987	Adequate.				

	Zinc Borate CASRN 1332-07-6, 138265-88-0					
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Explosivity		Not explosive (Measured)	U.S. Borax, Inc., 2002	Adequate.		
Pyrolysis		Not applicable (Estimated)	Professional judgment	Inorganic compounds do not undergo pyrolysis.		
рН		7.6 (for 12447-61-9)(Estimated by analogy)In a 1% suspension of product to distilled water by mass concentration (w:w).	Gowda, 2007	Adequate; indicates that this substance is a weak base in solution.		
pK _a				No data located; inorganic compounds are outside the estimation domain of SPARC.		
		HUMAN HEALTH EFF.	ECTS			
Toxicokinetics		Zinc borate is estimated to not be absorb gastrointestinal (GI) tract. Limited toxice stomach to zinc oxide and boric acid.	ed through skin. Absorption is ex okinetic data suggest that zinc bo	xpected through lungs and rate breaks down readily in the		
Dermal Absorption	in vitro			No data located.		
Absorption, Distribution, Metabolism & Excretion	Oral, Dermal or Inhaled	No exposure expected through skin but absorption expected through lungs and GI tract. (Estimated by analogy)	Professional judgment	Based on closely related confidential analogs with similar structures, functional groups, and physical/ chemical properties.		
		Zinc borate readily breaks down to zinc oxide and boric acid in the stomach.	NAS, 2000	Limited study details reported in a secondary source.		
Acute Mammalian 7	Toxicity	LOW: Based on acute toxicity values >2, inadequate to assess inhalation exposure.	000 mg/kg for the oral and derma	al routes of exposure. Data are		
Acute Lethality	Oral	Zinc borate: Rat oral LD ₅₀ >10,000 mg/kg	EPA, 1991 (as described in Maine DEP, 2007)	Limited study details reported in a secondary source.		
		Zinc borate: Rat oral LD ₅₀ >5,000 mg/kg	Cervan, 1992 (as described in Maine DEP, 2007)	Limited study details reported in a secondary source.		
		Zinc borate: Rat oral LD ₅₀ >10,000 mg/kg	Daniels et al., 1969 (as described in Maine DEP, 2007)	Limited study details reported in a secondary source.		
	Dermal	Zinc borate: Rabbit dermal LD ₅₀ >10,000 mg/kg	EPA, 1991 (as described in Maine DEP, 2007)	Limited study details reported in a secondary source.		

	Zinc Borate CASRN 1332-07-6, 138265-88-0					
PROPER	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
	Inhalation	Zinc borate: (species unspecified) inhalation LC ₅₀ >5 mg/L	EFRA, 2006	Inadequate; no study details reported in a secondary source. Species not identified; not specified if aerosol or dust/fume form.		
Carcinogenicity		LOW: There is no evidence of carcinoger	nicity following exposure to zinc l	oorate or its metabolites zinc oxide		
		and boric acid. Zinc borate is not listed a Cancer (IARC), National Toxicology Pro	s a known carcinogen by the Inte ogram (NTP), U.S. EPA or Califo	ernational Agency for Research on rnia Proposition 65.		
	OncoLogic Results			No data located.		
	Carcinogenicity (Rat and Mouse)	Zinc borate: Not listed as a known carcinogen by IARC, NTP, U.S. EPA, or California Proposition 65.	Maine DEP, 2007			
		Boric acid: 2-year feeding study in rats and dogs. No carcinogenic effects observed in either rats or dogs at doses as high as 58.5 and 40.8 mg/kg-day, respectively.	Weir and Fisher, 1972 (as described in Maine DEP, 2007 and HERA, 2005)	Limited study details reported in a secondary source.		
		Boric acid: No carcinogenic effects reported in mice exposed to doses as high as 201 mg/kg-day in an NTP bioassay.	NTP, 1987 (as described in Maine DEP, 2007)	Limited study details reported in a secondary source.		
	Combined Chronic Toxicity/ Carcinogenicity			No data located.		
Genotoxicity		HIGH: Potential for mutagenicity based chromosomal aberrations <i>in vitro</i> . In add negative for genotoxicity.	on exposure to zinc. Zinc borate lition, <i>in vitro</i> and <i>in vivo</i> assays f	did not cause gene mutations or or the metabolite boric acid were		
	Gene Mutation <i>in vitro</i>	Zinc: Potential for mutagenicity based on exposure to zinc (Estimated) Zinc borate: Ames assay in <i>Salmonella</i>	Professional judgment EPA, 1991 (as described in Maine	Estimated based on professional judgment. Limited study details reported in a		
		<i>typhimurium</i> : Negative with and without metabolic activation	DEP, 2007)	secondary source.		

Zinc Borate CASRN 1332-07-6, 138265-88-0					
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
	Boric acid: Mutation assays in <i>S.</i> <i>typhimurium, Escherichia coli,</i> and mammalian cells (L5178Y mouse lymphoma, V79 Chinese hamster cells, C3H/10T1/2 cells): Negative	Haworth et al., 1983; Landolph, 1985; NTP, 1987; Bakke, 1991; Stewart, 1991 (as described in Maine DEP, 2007)	Limited study details reported in a secondary source.		
Gene Mutation in vivo	Boric acid: <i>In vivo</i> mouse bone marrow micronucleus assay: Negative	O'Loughlin, 1991 (as described in Maine DEP, 2007)	Limited study details reported in a secondary source.		
Chromosomal Aberrations <i>in vitro</i>	Zinc borate: Did not induce chromosomal aberrations <i>in vitro</i> : Negative Boric acid : Chromosomal aberration and sister chromatid exchanges in mammalian cells: Negative	EPA, 1991 (as described in Maine DEP, 2007) Haworth et al., 1983; Landolph, 1985; NTP, 1987; Bakke, 1991, Stewart, 1991(as described in Maine DEP, 2007)	Limited study details reported in a secondary source. Limited study details reported in a secondary source.		
Chromosomal Aberrations <i>in vivo</i>			No data located.		
DNA Damage and Repair	Boric acid: Negative in bacterial DNA- damage assay, unscheduled DNA synthesis in hepatocytes	Haworth et al., 1983; Landolph, 1985; NTP, 1987; Bakke, 1991, Stewart, 1991 (as described in Maine DEP, 2007)	Limited study details reported in a secondary source.		
Other (Mitotic Gene Conversion)			No data located.		

Zinc Borate CASRN 1332-07-6, 138265-88-0						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Reproductive Effects	MODERATE: Estimated based on reproductive system effects following exposure to boric acid. Exposure boric acid resulted in male reproductive toxicity including increased incidence of testicular atrophy, reduce sperm count, and degeneration of seminiferous tubules.					
Reproduction/ Developmental Toxicity Screen	Boric acid: Rat 3-generation study; increased incidence of testicular atrophy, degeneration of seminiferous tubules, reduced sperm count and reduced fertility. NOAEL = 17.5 mg boron/kg-day (corresponding to 100 mg boric acid/kg- day)	Weir and Fisher, 1972 (as described in Maine DEP, 2007 and HERA, 2005)	Study details reported in a secondary source.			
Combined Repeated Dose with Reproduction/ Developmental Toxicity Screen	LOAEL = 58.5 mg boron/kg-day (corresponding to 334 mg boric acid/kg- day)		No data located.			
Reproduction and Fertility Effects	Boric acid: Increased incidence of reversible disruption of tubular spermiation in rats administered 175 mg/kg-day LOAEL = 175 mg/kg-day Boric acid: No reproductive effects reported in rats following exposure to a	Linder et al., 1990 (as described in Maine DEP, 2007 and HERA, 2005) Bouissous and Castagnol, 1965 (as described in Maine DEP,	Limited study details reported in a secondary source. Limited study details reported in a secondary source.			
	single dose of 2,000 mg/kg-day NOAEL = 2,000 mg/kg-day Boric acid: Increased incidence of reversible inhibition of spermiation in rats administered 217 mg/kg-day for 14 days LOAEL = 217 mg/kg-day	2007) Ku et al., 1993 (as described in Maine DEP, 2007)	Limited study details reported in a secondary source.			

Zinc Borate CASRN 1332-07-6, 138265-88-0					
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
Developmental Effects	MODERATE: Estimated based on developmental effects following exposure to zinc oxide, known to be formed from zinc borate in the stomach. Exposure to zinc oxide resulted in increased incidence of stillborn				
	pups. Developmental toxicity data for boric acid exposure in rabbits, rats and mice are consistent with the				
	hazard designation.				
Reproduction/			No data located.		
Developmental Toxicity					
Screen					
Combined Repeated Dose			No data located.		
with Reproduction/					
Developmental Toxicity					
Screen					
Prenatal Development	Zinc oxide: Rat, oral (diet) exposure from	Ketcheson et al. 1969 (as	Limited study details reported in a		
	gestation days (GDs) 0 to lactation day 14;	described in Maine DEP, 2007	secondary source.		
	no external malformations were observed.	and ESIS, 2008)			
	There were no effects on maternal weight,				
	daily food intake, duration of gestation				
	and number of viable young/litter				
	decreased pup dry liver weights. There				
	were 4 stillborn pups (not edematous) in				
	dams of rats exposed to 150 mg/kg-day				
	and 2 females had stillborn litters				
	containing edematous pups in rats exposed				
	to 375 mg/kg-day.				
	LOAEL = 150 mg ZnO/kg-day				

	Zinc Borate CASRN 1332-07-6, 138265-88-0						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
		Boric acid: Rabbit; GD 6-19, oral (gavage); developmental effects. Rabbit: Maternal and Developmental NOAEL = 125 mg/kg-day Maternal and Developmental LOAEL = 250 mg/kg-day	U.S. Borax and Chemical Corp, 1992a.	Limited study details reported; TSCATS submission.			
		Kat: NOAEL = 78 mg/kg-day Mouse: NOAEL = 248 mg/kg- day					
	Postnatal Development			No data located.			
Neurotoxicity		HIGH: Estimated based on analogy to data for boric acid. Limited data indicate a 4-hour inhalati to boric acid may cause neurotoxic effects in rats at 0.16 mg/L. Limited data were located regardi neurotoxic effects caused by exposure to zinc borate or zinc oxide. There is also potential for deve neurotoxicity based on boric acid using expert judgment					
	Neurotoxicity	Boric acid: Rat 4-hour dust inhalation; caused reduced righting reflex, hunched posture, lacrimation and rales LOAEL = 0.16 mg/L	U.S. Borax and Chemical Corp., 1992b	Limited study details reported; TSCATS submission.			
		Boric acid: Potential for developmental neurotoxicity (Estimated)	Expert judgment	Estimated based on expert judgment.			
		Zinc borate: Not classified as a developmental neurotoxicant.	Grandjean and Landrigan, 2006 (as described in Maine DEP, 2007)	Limited study details reported in a secondary source.			
		Zinc borate: Not listed as a potential neurotoxicant on the Red List of Chemicals	CPA, 2009 (as described in Maine DEP, 2007)	Limited study details reported in a secondary source.			

Zinc Borate CASRN 1332-07-6, 138265-88-0						
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	Zinc oxide: Rat, 10-day gavage exposure; degenerative changes and histoenzymatic changes, degenerative changes of neurocytes, accompanied with proliferation of the oligodendroglia, and glial proliferation in the white matter. Histoenzymatic changes including decreased ACP, ATPase, AChE, BChE activity and increased TTPase and NSE	Kozik et al., 1980 (as described in Maine DEP, 2007)	Limited study details reported in a secondary source.			
Repeated Dose Effects	LOW: Estimated based on data for boric repeated exposure to boric acid may cau gain, clinical signs of toxicity and change >100 mg/kg-day of boric acid. No repeated dissociation product of zinc borate). Th confidential data for other Zn ²⁺ compound	c acid (a dissociation product of z se effects including decreased foo s in hematological parameters, th ed dose toxicity data were located ere is uncertain potential for imm nds.	inc borate). Limited data indicate of consumption and body weight rough these effects occur at doses of I for zinc borate or zinc (a nunotoxic effects based on			
	Zinc oxide: Ferrets; oral (feed) 21-day exposure; pale livers with fatty infiltration and enlarged kidneys; macrocytic hypochromic anemia, increased reticulocytes and leucocytosis. Increased severity at higher doses. NOAEL = 81.3 mg/kg-day LOAEL = 243.8 mg/kg-day	Straube et al., 1980 (as described in Maine DEP, 2007)	Limited study details reported in a secondary source. Data are for zinc oxide.			
Zinc Borate CASRN 1332-07-6, 138265-88-0						
--	---	---	--	--	--	--
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
	Boric acid: 2-year feeding study in rats and dogs; effects in rats included decreased food consumption and body weight gain, course hair coats, hunched position, swollen pads, inflamed bleeding eyes and changes in hematological parameters. Diarrhea and soft stool was observed in dogs. Testicular effects were reported for both rats and dogs. NOAEL = 100 mg boric acid/kg-day LOAEL = 334 mg boric acid/kg-day	Weir and Fisher, 1972 (as described in Maine DEP, 2007 and HERA, 2005)	Limited study details reported in a secondary source. Values from primary source are reported as boron equivalent doses. Doses as boric acid were not reported but are calculated by dividing the boron equivalent doses with the MW of boric acid (0.1750). i.e., NOAEL = 17.5 mg boron/kg-day (corresponding to 100 mg boric acid/kg-day) LOAEL = 58.5 mg boron/kg-day corresponding to 334 mg boric acid/kg-day)			
Immune System Effects	Uncertain potential for immunotoxic effects (Estimated by analogy)	Professional judgment	Based on confidential data for other Zn ²⁺ compounds.			
Skin Sensitization	LOW: Zinc borate is not a skin sensitizer in guinea pigs.					
Skin Sensitization	Zinc borate: Not a skin sensitizer in guinea pigs Boric acid: Not a skin sensitizer in humans or animals	U.S. Borax Inc., 1996 (as described in Maine DEP, 2007 and NAS, 2000) Wnorowski, 1994a,b,c; Bruze et al., 1995 (as described in Maine	Limited study details reported in a secondary source. Limited study details reported in a secondary source.			
		DEP, 2007)	5			
Respiratory Sensitization	No data located.		-			
Respiratory Sensitization			No data located.			
Eye Irritation	LOW: Zinc borate causes no irritation te	o mild irritation.				
Eye Irritation	Contact with eyes causes irritation	HSDB, 2011	Limited study details reported in a secondary source.			
	Mild conjunctivitis; not considered to be and eye irritant or corrosive, rabbit	U.S. Borax Inc., 1996 (as described in Maine DEP, 2007 and NAS, 2000)	Limited study details reported in a secondary source.			

Zinc Borate CASRN 1332-07-6, 138265-88-0							
PROPERTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
	Eye irritant with mild conjunctivitis, rabbit	EPA, 1991 (as described in Maine DEP, 2007)	Limited study details reported in a secondary source.				
Dermal Irritation	LOW: Zinc borate may cause skin irrita	tion, but is not corrosive.					
Dermal Irritation	Contact with skin causes irritation	HSDB, 2011	No study details reported in a secondary source.				
	Not irritant or corrosive	EPA, 1991 (as described in Maine DEP, 2007)	No study details reported in a secondary source.				
Endocrine Activity	Does not have potential for endocrine ac	tivity based on expert judgment.					
	No potential for endocrine activity Expert judgment Estimated based on ex (Estimated)						
Immunotoxicity	There is uncertain potential for immuno	toxicity based on exposure to zine	c ions.				
Immune System Effects	Uncertain potential for immunotoxic effects (Estimated by analogy)	Professional judgment	Based on confidential data for other Zn ²⁺ compounds.				
	ECOTOXICITY						
ECOSAR Class	Not applicable						
Acute Toxicity	HIGH: Based on estimated potential for described in the EPA Chemical Categor (Professional judgment)	dissolved zinc species to cause ac ies document which includes all s	dverse effects in aquatic species, as soluble complexes of zinc.				
Fish LC ₅₀	Potential for adverse effects in aquatic species. (Estimated)	Professional judgment	Estimated based on aquatic toxicity effects from dissolve zinc species as described in the EPA Chemical Categories document.				
	Zinc borate: Classified as Dangerous to the Environment, R50/R53, very toxic to aquatic organisms may cause long-term effects in the aquatic environment. (Experimental)	EFRA, 2006 (as described in Maine DEP, 2007)	Limited study details reported in the database.				
	Zinc borate: Lepomis macrochirus (bluegill) 96-hour $LC_{50} = 335 \text{ mg/L}$ (Experimental)	ECOTOX	Limited study details reported in the database.				

Zinc Borate CASRN 1332-07-6, 138265-88-0						
PROPERT	FY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
		Zinc borate: Oncorhynchus mykiss (rainbow trout) 96-hour $LC_{50} = 2.7 \text{ mg/L}$ (Experimental)	ECOTOX	Limited study details reported in the database.		
Daphnid LC ₅₀		Zinc borate: Daphnia magna 48-hour $EC_{50} = 75 \text{ mg/L}$ (Experimental)	ECOTOX	Limited study details reported in the database.		
Green Algae EC ₅₀				No data located.		
Chronic Aquatic Tox	l'oxicity HIGH: Based on estimated potential for dissolved zinc species to cause adverse effects in aqua described in the EPA Chemical Categories document which includes all soluble complexes of z (Professional judgment)					
Fish ChV		Potential for adverse effects in aquatic species. (Estimated)	Professional judgment	Estimated based on aquatic toxicity effects from dissolve zinc species as described in the EPA Chemical Categories document.		
		Zinc borate: Classified as Dangerous to the Environment, R50/R53, very toxic to aquatic organisms may cause long-term effects in the aquatic environment. (Experimental)	EFRA, 2006 (as described in Maine DEP, 2007)	Limited study details reported in the database.		
Daphnid ChV				No data located.		
Green Algae ChV				No data located.		
		ENVIRONMENTAL F	ATE			
Transport		The transport evaluation for zinc borate is based on located experimental and estimated physical/chemical properties. The low water solubility, low vapor pressure (10 ⁻⁸), estimated high soil adsorption and Henry's Law Constant (<10 ⁻⁸) indicate that zinc borate will be relatively immobile in the environment. Transport is more likely to occur in water and at low pH, where zinc borate dissociates into zinc and borate ions.				
	Henry's Law Constant (atm-m ³ /mole)	<10 ⁻⁸ (Estimated)	Professional judgment	Cutoff value for nonvolatile compounds such as inorganic salts. This inorganic compound is not amenable to available estimation methods.		

Zinc Borate CASRN 1332-07-6, 138265-88-0						
PROPER	TY/ENDPOINT	DATA	REFERENCE	DATA QUALITY		
	Sediment/Soil Adsorption/ Desorption Coefficient – K _{oc}	Zinc borate is sparingly soluble in water and is not expected to leach through soil. (Estimated)	Professional judgment	Available methods for estimating K_{oc} values cannot be directly applied to inorganic salts.		
	Level III Fugacity Model			Not all input parameters for this model were available to run the estimation software (EPI).		
Persistence		HIGH: Zinc borate is expected to have $I Zn^{2+}$ ions. The behavior of zinc borate in Zn^{2+} and boric acid; the Zn^{2+} will not up or ligand exchange reactions in the envi and hydrated zinc oxide. Zinc borate was temperatures, according to an EPA guid	high persistence in the environme n water is complex. In acidic aque adergo further degradation (but o ronment). In basic aqueous condi as found to be stable in sunlight, u leline study.	ent because of the persistence of eous conditions zinc borate releases can undergo precipitation, sorption, itions, zinc borate forms boric acid under normal and elevated		
Water	Aerobic Biodegradation			No data located.		
	Volatilization Half-life for Model River			No data located.		
	Volatilization Half-life for Model Lake			No data located.		
Soil	Aerobic Biodegradation			No data located.		
	Anaerobic Biodegradation			No data located.		
	Soil Biodegradation with Product Identification			No data located.		
	Sediment/Water Biodegradation			No data located.		
Air	Atmospheric Half-life	>1 year (Estimated)	Professional judgment	Substance is or contains inorganic elements such as metal ions or oxides that are not amenable to atmospheric degradation processes.		

		Zinc Borate CASRN 1332-07-6	5, 138265-88-0				
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY			
Reactivity	Photolysis	Stability to sunlight, normal and elevated temperature, according to EPA Method 830.6313 for metals/metal ions (for 12447-61-9) (Estimated by analogy)	Gowda, 2007	Adequate; guideline study.			
	Hydrolysis	<10 minutes at pH 6 48 hours at pH 9 (for 12447-61-9) (Estimated by analogy)	Lords, 2007	Adequate; formation of insoluble hydrated zinc oxide precipitate occurs at a pH of 9.			
Environmental Half-life				Not all input parameters for this model were available to run the estimation software (EPI).			
Bioaccumulation		LOW: Zinc borate is not expected to be very soluble in water and therefore does not have potential for bioaccumulation.					
Fish BCF BAF		<100 (Estimated)	Professional judgment	This inorganic compound is not amenable to available estimation methods.			
		<100 (Estimated)	Professional judgment	This inorganic compound is not amenable to available estimation methods.			
	Metabolism in Fish			No data located.			
	ENVIRONMENTAL MONITORING AND BIOMONITORING						
Environmental Mo	onitoring	No data located.	No data located.				
Ecological Biomon	iitoring	No data located.					
Human Biomonito	oring	This chemical was not included in the National Health and Nutrition Examination Survey biomonitoring report (CDC, 2011).					

Bakke, J.P. Evaluation of the potential of boric acid to induce unscheduled DNA synthesis in the *in vitro* hepatocyte DNA repair assay using the male F-344 Rat. Study No. 2389-V500-91; and Amendment 1 to the Original Report, Unpublished Report to US Disodium tetraborate decahydrate. SRI International: Menlo Park, CA. **1991**.

Briggs, M. Kirk-Othmer Encyclopedia of Chemical Technology. New York, NY: John Wiley & Sons; Boron Oxides, Boric Acid, and Borates. Online Posting Date: July 13, 2001. **2004**.

Bruze, M., E. Hradil, I-L. Eriksohn, B. Gruvberger, and L.Widstrom. Occupational allergic contact dermatitis from alkanolamine borates in metalworking fluids. *Contact Dermatitis*. **1995**, 32:24-27.

Bouissou, H. and R. Castagnol. Action de l'acide borique dur le testicule de rat. Archives des Maladies Professionelles de Medecin du Travail et de Sécurité Social, **1965**, T286, 293-306.

CDC (Centers for Disease Control and Prevention). *Fourth national report on human exposure to environmental chemicals, updated tables*. Department of Health and Human Services. **2011.** <u>http://www.cdc.gov/exposurereport/pdf/Updated_Tables.pdf</u> (accessed on May 10, 2011).

Clayton, G.D. Clayton, F.E. (eds.) *Patty's industrial hygiene and toxicology*. Volumes 2A, 2B, 2C, 2D, 2E, 2F: Toxicology. 4th ed. New York, NY: John Wiley & Sons Inc., **1993-1994**, p. 4416

CPA (Clean Production Action). Red List of Chemicals. 2009.

ECOTOX. EPA (U.S. Environmental Protection Agency). ECOTOX database. Accessed July 2011. http://cfpub.epa.gov/ecotox/quick_query.htm.

EFRA (European Flame Retardants Association) Flame Retardant Fact Sheet. European Chemical Industry Council, 2006.

EPA (U.S. Environmental Protection Agency). Sustainable Futures. *Using NonCancer Screening within the SF Initiative*. U.S. Environmental Protection Agency: Washington D.C. **2011a**. <u>http://www.epa.gov/opptintr/sf/pubs/noncan-screen.htm#systemic</u> (accessed on February 9, 2011).

EPA (Environmental Protection Agency). Pesticide Registration review. **2011b**. http://www.epa.gov/oppsrrd1/registration_review/zinc_borate/

EPA (U.S. Environmental Protection Agency). **1991**. Pesticide Fact Sheet for Zinc Borate. Available: <u>http://www.epa.gov/nscep/index.html</u>

U.S. EPA (Environmental Protection Agency). High Production Volume (HPV) Challenge. Determining the Adequacy of Existing Data. U.S. Environmental Protection Agency: Washington D.C. 1999. http://www.epa.gov/hpv/pubs/general/datadfin.htm

European Chemical Substances Information System (ESIS). 2008. Risk Assessment Report for Zinc Oxide. European Commission Joint Research Centre. Available: http://ecb.jrc.ec.europa.eu/esis/index.php?PGM=ein

European Chemical Substances Information System. (ESIS) Classification, Labeling and Packaging of Dangerous Substances Annex VI to Regulation (EC) No 1272/2008 [Online] **2011**. <u>http://esis.jrc.ec.europa.eu/clp-ghs/</u> (accessed on March 19, 2012).

Goodwin, F. Kirk-Othmer Encyclopedia of Chemical Technology. NY, NY: John Wiley & Sons; Zinc Compounds. Online Posting Date: February 17, 2006. **2006**.

Gowda, S. Summary of Product Chemistry, Environmental Fate and Ecotoxicity Data for the Zinc Borate Registration Review Decision Document. U.S. EPA, EPA-HQ-OPP-2007-0675-004. **2007**.

Grandjean, P. and P.J. Landrigan. Developmental neurotoxicity of industrial chemicals. Lancet. 2006, 368: 2167-2178.

Haworth, S; Lawlor, T; Mortelmans, K. Salmonella mutagenicity test results for 250 chemicals. *Environ. Mutat.* 1983, Suppl 1:3-142.

HSDB (Hazardous Substances Data Bank). Entry for zinc borate. United States National Library of Medicine. 2011.

HDP (High Density Packaging). User Group International, Inc. The High Density Packaging User Group Design for Environment Phase II project report. January 15, **2004**. <u>www.dell.com/downloads/global/corporate/environ/HDPUG_DfE_2.pdf</u> (accessed on February 15, 2011).

Human & Environmental Risk Assessment on ingredients of European household cleaning products (HERA). 2005. Boric Acid. Edition 1.0. Available: <u>http://www.heraproject.com/files/27-F-06_HERA_Boric_Acid%20_Jan_2005.pdf</u>

Ketcheson, M.R., G.P. Barron, and D.H. Cox. **1969**. Relationship of maternal dietary zinc during gestation and lactation to development and zinc, iron, and copper content of the postnatal rat. J Nutr 98:303-311.

Kozik, M.B., L. Maziarz, and A. Godlewski. Morphological and histochemical changes occurring in the brain of rats fed large doses of zinc oxide. *Folia. Histochem. Cytochem.* **1980**, 18:201-206.

Ku, W.W., R.E. Chapin, R.N. Wine, and B.C. Gladen. Testicular toxicity of boric acid (BA): Relationship of dose to lesion development and recovery in the F344 rat. *Reprod. Toxicol.* **1993**, 7:305-319.

Landolph, L.R. Cytotoxicity and negligible genotoxicity of disodium tetraborate decahydrate ores to cultured mammalian cells. *Am. J. Ind. Med.* **1985**, 7:31-43.

Lewis, R.J., Sr (Ed.). Hawley's Condensed Chemical Dictionary. 12th ed. New York, NY: Van Nostrand Rheinhold Co., p. 1243. **1993**.

Lide, D. R, ed. CRC Handbook of Chemistry and Physics, 88th edition; CRC Press Taylor & Francis: Boca Raton, FL. 2008.

Linder, R.E., L.F. Strader, and G.L. Rehnberg. Effect of acute exposure to boric acid on the male reproductive system of the rat. *J. Toxicol. Environ. Health.* **1990**, 31:133-146.

Lindsay, A. Registration of Zinc Borate (New Chemical), Briefing Memorandum U.S. EPA, EPA-HQ-OPP-2007-0675-005. 1991.

Lords, F. Zinc Borate Response Document October 2007. U.S. EPA, Docket Number: EPA-HQ-OPP-2007-0675-011. 2007.

Maine DEP. Maine Department of Environmental Protections. Decabromodiphenyl ether flame retardant in plastic pallets. Prepared by Pure Strategies, Inc. Gloucester, MA. 2007.

NAS (National Academy of Sciences). Subcommittee on Flame-Retardant Chemicals; *Toxicological Risks of Selected Flame Retardant Chemicals*. National Academy Press: Washington D.C. **2000**.

NTP (National Toxicology Program). Toxicology and carcinogenesis studies of boric acid (CAS #10043-35-3) in B6C3F1 mice. Technical Report Series No. 324. United States National Library of Medicine. **1987**.

O'Loughlin, K.G. Bone marrow erythrocyte micronucleus assay of boric acid in Swiss-Webster mice. Study No. 2389-C400-91, Unpublished report to US Disodium tetraborate decahydrate. SRI International: Menlo Park, CA. **1991**.

Sanders, F. Zinc Borate Summary Document Registration Review: Initial Docket September 2007. U.S. EPA, Docket Number: EPA-HQ-OPP-2007-0675-002. **2007**.

Sax, N.I. and R.J. Lewis, Sr. (eds.). Hawley's Condensed Chemical Dictionary. 11th ed. New York: Van Nostrand Reinhold Co., p. 1251. **1987**.

Smith, R. Ullmann's Encyclopedia of Industrial Chemistry. New York, NY: John Wiley & Sons; Boric Oxide, Boric Acid, and Borates. Online Posting Date: June 15, 2000. **2002**.

SPARC. *SPARC On Line Calculator pKa/property server*. Ver 4.5 September, 2009. Available from, <u>http://ibmlc2.chem.uga.edu/sparc/</u> (accessed on March 14, 2012).

Stewart, KR. Salmonella/microsome plate incorporation assay of boric acid. Study No. 2389-A200-91, Unpublished report to U.S. Disodium tetraborate. SRI International: Menlo Park CA. **1991**.

Straube, E.F., Schuster, N.H.; Sinclair, A.J. Zinc toxicity in the ferret. J. Comp. Pathol. 1980, 90:355-361.

Touval, I. Kirk-Othmer Encyclopedia of Chemical Technology. New York, NY: John Wiley & Sons; *Flame Retardants, Antimony and Other Inorganic Agents*. Online Posting Date: December 4, 2000. **2000**.

U.S. Borax and Chemical Corporation. Initial submission: Developmental toxicity of boric acid in New Zealand white rabbits (final report) with attachments and cover letter dated 010692. U.S. EPA TSCATS submission OTS 0535248. **1992a.**

U.S. Borax and Chemical Corporation. Acute/subacute toxicity of boric acid. U.S. EPA TSCATS submission 8EHQ-0592-04638A. **1992b.**

U.S. Borax, Inc. Material Safety Data Sheet: Firebrake ZB. Valencia, CA: U.S.Borax. 1996.

U.S. Borax, Inc. Material Safety Data Sheet for Firebrake ZB. **2002**. Available at: http://www.sfm.state.or.us/CR2K_SubDB/MSDS/ZINC_BORATE.PDF.

Weir, R.J. and R.S. Fisher. Toxicologic studies on borax and boric acid. *Toxicol. Appl. Pharmacol.* **1972**, 23: 351-364. Wnorowski, G. Dermal sensitization test - Buehler method on boric acid, Study - 3310. Product Safety Labs, East Brunswick, NJ 08816. Unpublished report to US Borax. **1994a**.

Wnorowski, G. Dermal sensitization test -Buehler method on sodium tetraborate decahydrate, Study - 3308. Product Safety Labs, East Brunswick, NJ 08816. Unpublished report to US Borax. **1994b**.

Wnorowski, G. Dermal sensitization test - Buehler method on sodium tetraborate pentahydrate, Study - 3306. Product Safety Labs, East Brunswick, NJ 08816. Unpublished report to US Borax. **1994c**.

4.9 References

- International Agency for Research on Cancer. (2006). "Preamble to the IARC Monographs." Retrieved April 17, 2012, from http://monographs.iarc.fr/ENG/Preamble/currentb6evalrationale0706.php.
- Mayo-Bean, K., K. V. Nabholz, et al. (2011). Methodology Document for the Ecological Structure-Activity Relationship Model (ECOSAR) Class Program. Office of Pollution Prevention and Toxics. Washington, DC.
- Meylan, W. M. and P. H. Howard (1995). "Atom/fragment contribution method for estimating octanol-water partition coefficients." J Pharm Sci 84(1): 83-92.
- Meylan, W. M., P. H. Howard, et al. (1996). "Improved method for estimating water solubility from octanol/water partition coefficient." <u>Environ Toxicol Chem</u> **15**(2): 100-106.
- Nabholz, J. V., R. G. Clements, et al. (1993). Validation of Structure Activity Relationships Used by the USEPA's Office of Pollution Prevention and Toxics for the Environmental Hazard Assessment of Industrial Chemcials. <u>Environmental Toxicology and Risk</u> <u>Assessment</u>. J. W. Gorsuch, F. J. Dwyer, C. G. Ingersoll and T. W. La Point. Philadelphia, American Society for Testing and Materials. **2:** 571-590.
- Rand, G., P. Wells, et al. (1995). Chapter 1: Introduction to Aquatic Toxicology. <u>Fundamentals</u> of Aquatic Toxicology. G. Rand. Washington DC, Taylor & Francis: 53-54.
- U.S. EPA. (1994). "Joint Project on the Evaluation of (Quantitative) Structure Activity Relationships." Retrieved November 18, 2013, from <u>http://www.epa.gov/oppt/newchems/pubs/ene4147.pdf</u>.
- U.S. EPA. (1997). "Special Report on Environmental Endocrine Disruption: An Effects Assessment and Analysis." Retrieved November 18, 2013, from <u>http://www.epa.gov/raf/publications/pdfs/ENDOCRINE.PDF</u>.
- U.S. EPA. (1999a). "Guidelines for Carcinogen Risk Assessment, Review Draft." Retrieved November 18, 2013, from http://www.epa.gov/raf/publications/pdfs/CANCER_GLS.PDF.
- U.S. EPA. (1999b). "High Production Volume (HPV) Challenge: Determining the Adequacy of Existing Data." Retrieved November 18, 2013, from <u>http://www.epa.gov/hpv/pubs/general/datadfin.htm</u>.
- U.S. EPA. (2005). "Pollution Prevention (P2) Framework." Retrieved November 18, 2013, from <u>http://www.epa.gov/oppt/sf/pubs/p2frame-june05a2.pdf</u>.
- U.S. EPA. (2010a). "Chemical Categories Report." Retrieved April 17, 2012, from http://www.epa.gov/opptintr/newchems/pubs/chemcat.htm.
- U.S. EPA. (2010b). "Interpretive Assistance Document for Assessment of Polymers. Sustainable Futures Summary Assessment." Retrieved November 18, 2013, from <u>http://www.epa.gov/oppt/sf/pubs/iad_polymers_092011.pdf</u>.

- U.S. EPA. (2010c). "TSCA New Chemicals Program (NCP) Chemical Categories." Retrieved November 18, 2013, from http://www.epa.gov/oppt/newchems/pubs/npcchemicalcategories.pdf.
- U.S. EPA. (2011a). "Assay Development." Retrieved April 17, 2012, from http://www.epa.gov/oscpmont/oscpendo/pubs/assayvalidation/index.htm.
- U.S. EPA. (2011b). "Design for the Environment Program Alternatives Assessment Criteria for Hazard Evaluation (version 2.0)." Retrieved November 18, 2013, from <u>http://www.epa.gov/dfe/alternatives_assessment_criteria_for_hazard_eval.pdf</u>.
- U.S. EPA. (2011c). "Endocrine Disruptor Screening Program. Weight of the Evidence: Evaluating Results of EDSP Tier 1 Screening to Identify the Need for Tier 2 Testing." Retrieved November 18, 2013, from <u>http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OPPT-2010-0877-0021</u>.
- U.S. EPA. (2011d). "Estimation Program Interface (EPI) Suite." Retrieved April 18, 2012, from http://www.epa.gov/oppt/exposure/pubs/episuite.htm.
- U.S. EPA. (2011e). "Interpretive Assistance Document for Assessment of Discrete Organic Chemicals. Sustainable Futures Summary Assessment." Retrieved November 18, 2013, from <u>http://www.epa.gov/oppt/sf/pubs/iad_discretes_092011.pdf</u>.
- U.S. EPA. (2011f). "On-line AOPWIN™ User's Guide." Retrieved November 18, 2013, from http://www.epa.gov/oppt/exposure/pubs/episuite.htm.
- U.S. EPA. (2011g). "On-line BCFBAF™ User's Guide." Retrieved November 18, 2013, from <u>http://www.epa.gov/oppt/exposure/pubs/episuite.htm</u>.
- U.S. EPA. (2011h). "On-line KOWWIN™ User's Guide." from <u>http://www.epa.gov/oppt/exposure/pubs/episuite.htm</u>.
- U.S. EPA. (2011i). "On-line WSKOWWIN™ User's Guide." from <u>http://www.epa.gov/oppt/exposure/pubs/episuite.htm</u>.
- U.S. EPA. (2012a). "Analog Identification Methodology (AIM)." Retrieved April 17, 2012, from <u>http://www.epa.gov/oppt/sf/tools/aim.htm</u>.
- U.S. EPA. (2012b). "Endocrine Disruptor Screening Program (EDSP)." Retrieved April 17, 2012, from <u>http://www.epa.gov/scipoly/oscpendo/index.htm</u>.
- U.S. EPA. (2012c). "Models & Methods." Retrieved April 17, 2012, from http://www.epa.gov/oppt/sf/tools/methods.htm.

THIS PAGE INTENTIONALLY LEFT BLANK

5 General Exposure Information and Other Life-Cycle Considerations

The purpose of this chapter is to provide general information on exposure and life-cycle considerations for flame retardant chemicals. Section 5.1 includes an overview of exposure considerations and also includes data on some of the physical-chemical properties which impact the probability of exposure to decabromodiphenyl ether (decaBDE) and the alternatives included in the assessment. A quantitative exposure assessment is outside the scope of this project and is not necessary for a comparative hazard assessment. This discussion is framed in the context of five life-cycle stages: extraction (Section 5.2), chemical manufacture (Section 5.3), product manufacture (Section 5.4), product use (Section 5.5) and end-of-life (Section 5.6), as shown in Figure 5-1. Depending on the product type, intermediate steps between chemical and product manufacturing may be relevant; these are briefly discussed in Section 5.4. The chapter is intended to help the reader understand the factors that affect exposure to decaBDE and alternative flame retardants across the life-cycle.

5.1 Potential Exposure Pathways and Routes (General)

Exposure can occur at many points in the life cycle of a flame retardant chemical. Occupational

exposures may occur during raw material extraction, chemical and product manufacturing and at product end-of-life (i.e., reuse, refurbishing, recycling, incinerating or landfilling). Consumers may be exposed while the flame retarded product is being used. Exposures to the general population and environment may result from product manufacturing, use, storage, and end-of-life processes.

The risk associated with a given chemical or substance is influenced by how the exposure occurs. For example, the risk associated with inhaling a chemical can be different from the risk due to ingestion of the same chemical. As a result, exposure is typically characterized by pathway and route. An exposure pathway is the physical course a chemical takes from the source of release to the organism that is exposed. The exposure route is how a chemical gets inside the organism. The three primary routes of exposure are inhalation, dermal absorption, and ingestion. Each chemical's specific physical-chemical properties influence pathways and routes of exposure.

5.1.1 Occupational versus General Population Exposures

Exposures to the general population are different from exposures to workers and should be evaluated separately. Occupational exposures may be both acute and chronic because of direct contact with chemicals at relatively high concentrations while workers are conducting specific tasks such as manufacturing and processing of chemicals. However, certain occupations such as firefighting may result in unique occupational exposure scenarios. It may be more likely for consumers to be exposed chronically, over a long period, but to chemicals incorporated into products or released to the environment from a manufacturing facility. Information on sources of human exposure to decaBDE can be found in Section 5.1.5.

5.1.2 Inhalation Exposures

The physical state of the chemical during chemical manufacturing, downstream processing, incorporation into consumer products, and after release to the environment significantly influences the potential for inhalation exposure. In particular, there are three types of inhalation exposures that may be relevant for evaluation: dust, vapor, and/or mist.

Dust: "Dust is defined as solid particles of a substance or mixture suspended in a gas (usually air)" (United Nations 2011). Chemicals that are manufactured, processed, stored, or used as solids, have the potential to result in fugitive dust which may result in occupational exposures. The potential for fugitive dust formation depends on whether the solid chemical is handled in the crystalline form, as an amorphous solid, or as a fine powder. The particle size distribution and handling techniques can also impact the potential for fugitive dust. It is important to note the physical state of the chemical at the potential point of release and contact. For example, the pure chemical may be manufactured as a solid powder, indicating a potential occupational exposure to dust, but it may be formulated into solution before the majority of people come in contact with it, thereby eliminating inhalation exposure to dust as a possible exposure route. The material safety data sheet and best practice should inform the occupational worker when inhalation exposure to the chemical is likely to occur and what respiratory safety measures should be used. Furthermore, there is potential for a chemical to be released from a manufacturing facility and enter a home either through air, dirt or dust. For example, dirt or dust from a workplace may enter a home on a worker's clothing and be subsequently inhaled by other members of the

household. Additionally, certain chemicals may be released from a product during consumer use and become incorporated into indoor dust. Consumer exposures are dependent on how a chemical is incorporated into a product and on the chemical's physical-chemical properties.

If there is exposure to dust, particle size influences the degree to which the chemical enters the lungs. Particles less than 10 microns in diameter are "respirable" with potential to reach and attach to tissues in the respiratory tract and deep lung where they may be absorbed into the body. Once released into air or other media, the chemical can associate with particulate material through sorption onto particles or as particulates. For example, vapor phase chemicals can partition onto house dust and contribute to ingestion and dermal exposure pathways as well as inhalation.

Design of transfer facilities, engineering controls, and the use of personal protective equipment will have a greater impact on exposure potential in industrial settings than the size of the dust particles. However, the size of the particles in a manufacturing setting can be considered by individual decision-makers. Compounders may specify that the neat flame retardant be produced in a way that minimizes the low particle size fraction. Although manufacturer-specific, the particle size of the flame retardant chemical can be screened to remove the fine material that can then be returned to the manufacturing process. In residential settings, the flame retardants in electrical equipment and furniture, for example, may migrate to the surface of a material and escape from the polymer matrix, then likely becoming part of house dust. Exposure to flame retardants in house dust can be reduced by dusting frequently and using a vacuum cleaner with a HEPA filter.

Vapor: Vapor is defined as "the gaseous form of a substance or mixture released from its liquid or solid state" (United Nations 2011). Exposure to vapors can occur when chemicals volatilize during manufacturing, processing, storage, and use or are associated with particulates in air. Most chemical manufacturing operations occur in closed systems. However, fugitive emissions are expected during open mixing operations, transfer operations, and loading/unloading of raw materials. The more volatile the chemical the greater the fugitive releases and the higher occupational exposures are likely to be. Therefore, vapor pressure (a measure of volatility) is a key indicator of potential occupational exposures to vapors. Particulate exposures can result from the physical breakdown of products, erosion of materials from surfaces or other similar processes.

Mist: Mist is defined as "liquid droplets of a substance or mixture suspended in a gas (usually air)" (United Nations 2011). Both volatile and non-volatile liquids can result in inhalation exposure if manufacturing or use result in the formation of mist. Particle size is an important consideration in determining exposure to chemicals released as a mist. However, it is unlikely that flame retardant chemicals will be dispersed as a mist.

5.1.3 Dermal Exposures

Dermal exposure is also affected by the physical state of the chemical at the point of release and contact. Additionally, studies have shown that the amount of a chemical that is absorbed through the skin is dependent on where on the body the exposure occurs (U.S. EPA 1992). Dermal exposure is generally assumed to be proportional to the concentration of chemical in the

formulation (an exception would be if the solution contains ingredients that enhance dermal transfer). For example, the dermal exposure from contacting a pure chemical is greater than the exposure from contacting a solution that contains only 10 percent of the chemical. In addition to chemical concentration, the extent to which skin will absorb a chemical that it has to come in contact with depends on the chemical's lipophilicity, solubility, polarity volatility, structure and state (e.g., liquid, solid) (U.S. EPA 1992). To be successfully absorbed, compounds must be able to diffuse across both the aqueous pathways and lipid pathways in the skin. To do this, a chemical must first dissolve into the stratum corneum, a stable lipid barrier that is the outermost layer of the skin and the water-based portions of the skin and into the body, which is also water-based (U.S. EPA 2007a). Therefore, the best skin penetrants are "those that exhibit fat- and water-solubility and low levels of crystallinity" (p. 35 U.S. EPA 1992). Dermal exposure to volatile substances is unlikely to occur.

For occupational exposures, screening-level evaluations of dermal exposure can be based on the worker activities involving the chemical. For example, there may be exposure when workers handle bags of solid materials during loading and transfer operations. Maintenance and cleanup activities during shutdown procedures, connecting transfer lines, and sampling activities also result in potential for dermal exposures. For consumers, dermal exposure can occur if a chemical is released from a product that a consumer is handling or is in dust to which an individual comes into contact. Children may have higher dermal exposure because they crawl, roll, or sit on surfaces treated with chemicals and play with objects where residues may settle (U.S. EPA 2008). However, as stated above, absorption of a chemical through the skin is dependent on the properties of the chemical (U.S. EPA 1992).

5.1.4 Ingestion Exposures

Exposures via ingestion typically occur unintentionally when individuals eat food or drink water that has become contaminated with chemicals or ingest dust on hands. Several pathways should be considered. In regards to occupational exposures, often the primary pathway is poor worker hygiene (eating, drinking, or smoking with unwashed hands.) Additionally, dust particles may spread throughout the facility and settle (or deposit) on tables, lunchroom surfaces, or even on food itself. Vapors may similarly spread throughout the facility and may deposit near food or drinks. Another potential pathway for ingestion occurs from dust particles that are too large to be absorbed through the lungs. These "non-respirable particles" can be swallowed, resulting in exposures from this route. Consumers in the general population may also be exposed through ingestion if a chemical is released from a product and incorporated into dust, which can get on hands or deposit on food and thus be consumed inadvertently. This is an important route of exposure for children, particularly infants and toddlers, who may ingest dust and soil through repeated hand-to-mouth behavior (U.S. EPA 2008). Compared to inhalation and dermal exposures, ingestion is typically considered a less significant exposure pathway from an occupational health standpoint. However, ingestion can be an equally or more significant exposure pathway for the general population, especially children's ingestion of house dust, than inhalation and dermal exposures.

5.1.5 Human and Environmental Exposure to DecaBDE

This section summarizes the literature on occupational, consumer and environmental exposures to decaBDE. This information on decaBDE exposure can be instructive. Similar patterns of exposure may occur for alternative chemicals. However, exposure information and data are limited and only available for some of the alternatives (Stapleton, Allen et al. 2008; Betts 2009; Dodge, Pollock et al. 2009; Petito Boyce, Sax et al. 2009; Luo, Chen et al. 2010). Information on products and materials in which decaBDE has been used can be found in Chapter 2.

Human Exposures

According to U.S. Environmental Protection Agency (EPA)'s 2010 exposure assessment of polybrominated diphenyl ethers (PBDEs), individuals in occupations that would lead to higher exposures to specific congeners have higher concentrations of PBDE congeners in their blood than the general public (U.S. EPA 2010a). Workers involved in the manufacturing or recycling and disposal of products containing PBDE flame retardants have greater exposure to the chemical compared to the general population (Sjodin, Hagmar et al. 1999; Thomsen, Lundanes et al. 2001; Thuresson, Hoglund et al. 2006).

Consumer exposure to decaBDE is possible given that it can be released from common home products and become a component in house dust (Stapleton, Alaee et al. 2004; Takigamie, Suzuki et al. 2008) (for a list of products where decaBDE may be used, refer to Section 2.2). It is also possible that workers exposed to decaBDE may inadvertently carry particles containing the chemical home with them. This may lead to exposure to family members through household dust or direct contact, as has been proven with other hazardous chemicals such as pesticides and lead (Thompson, Coronado et al. 2003; Minnesota Department of Health 2010). DecaBDE has been found in dust within automobiles (Lagalante, Oswald et al. 2009) and automobile air (Mandalakis, Stephanou et al. 2008). The primary route of consumer exposure to decaBDE is through the ingestion of dust or, for infants, ingestion of breast milk, followed by food and water ingestion and dermal absorption (Lorber 2008; Petito Boyce, Sax et al. 2009; U.S. EPA 2010a). Inhalation may also be a relevant route of exposure (U.S. EPA 2010a). Children have higher levels of exposure to decaBDE than do adults (Petito Boyce, Sax et al. 2009) likely due to higher hand to mouth behavior.

Environmental Exposures

Environmental releases of decaBDE can occur during each stage of a product's life cycle, including chemical manufacturing, product manufacturing, product storage and use, and end-of-life handling (U.S. EPA 2009). In general, levels of PBDEs in humans and the environment are higher in North America than in other regions of the world, likely due to their greater use in North America (Trudel, Scheringer et al. 2011).

Empirical and predicted data indicate that all PBDEs (including decaBDE) are highly persistent in the environment (Environment Canada 2006) and decaBDE has been found in high and increasing concentrations in the sediment of lakes, rivers, streams and estuaries (Song, Li et al. 2005; Environment Canada 2006; Illinois Environmental Protection Agency 2006). Additionally, decaBDE has also been measured in ambient atmospheric particulates (Illinois Environmental Protection Agency 2006) and in the Arctic environment, providing evidence that it is subject to long-range transport (Environment Canada 2006).

Laboratory studies demonstrate decaBDE's bioavailability and metabolism in fish (Illinois Environmental Protection Agency 2006). DecaBDE has been detected in some but not all species of fish studied (Dodder, Strandberg et al. 2002; European Chemicals Bureau 2002; Johnson-Restrepo, Kannan et al. 2005; Environment Canada 2009; Roberts, Noyest et al. 2011). Also, decaBDE has been measured in birds and their eggs (Lindberg, Sellström et al. 2004; Vorkamp, Thomsen et al. 2005) and in mammals including polar bears, seals, marmots and foxes (Christensen, MacDuffee et al. 2005; Illinois Environmental Protection Agency 2006; Voorspoels, Covaci et al. 2006; Environment Canada 2009). Further, terrestrial species tend to have higher levels of decaBDE than aquatic species for both birds (Jaspers, Covaci et al. 2006) and mammals (Christensen, MacDuffee et al. 2005). These observations indicate bioavailability of decaBDE to wildlife and human food sources with potential for bioaccumulation and biomagnification of decaBDE and/or its degradation products.

5.1.6 Physical-Chemical Properties for the Alternatives to DecaBDE included in this Assessment that May Impact Exposure

Table 5-1 highlights key physical-chemical properties that affect the likelihood of exposure along with the physical-chemical property's relevance to exposure. The properties included in the table are: the physical state of the chemical, vapor pressure, water solubility, dispersibility, log K_{ow} , bioaccumulation potential, and persistence. Descriptions of these properties and how they can be used to predict environmental behavior and hazard potential can be found in Section 4.3. More detailed information on the physical, chemical, and fate properties of each flame retardant chemical can be found in the full chemical summary assessments in Section 4.8.

Table 5-1: Key Physical/Chemical and Fate Properties of Flame Retardant Chemicals

Physical State of Chemical (ambient conditions)

Relevance to exposure: Indicates if a chemical substance is a solid, liquid, or gas under ambient conditions. This is determined from the melting and boiling points. Chemicals with a melting point more than 25° C are considered solid. Those with a melting point less than 25° C and a boiling point more than 25° C are considered liquid and those with a boiling point less than 25° C are considered a gas. Physical state influences potential for dermal and inhalation exposure. For chemicals that exist as a gas, there is generally a potential for direct inhalation but not dermal exposure. For solids, there is potential for the inhalation and ingestion of dust particles and dermal contact. For liquids, there is potential for direct dermal contact but not for direct inhalation of the liquid (except in operations that produce aerosols).

Decabromodiphenyl Ether	Aluminum Diethyl- phosphinate	Aluminum Hydroxide	Ammonium Polyphosphate	Antimony Trioxide	Bis (hexachlorocyclopenta dieno) Cyclooctane	Bisphenol A bis- (diphenylphosphate)
Solid	Solid	Solid	Solid	Solid	Solid	Solid
Brominated Epoxy Polymer(s)	Brominated Epoxy Polymers	Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate	Brominated Epoxy Resin End-Capped with Tribromophenol	Brominated Polyacrylate	Brominated Poly(phenylether)	Brominated Polystyrene
Solid	Solid	Solid	Solid	Solid	Solid	Solid
Decabromodiphenyl Ethane	Ethylene bis- tetrabromo- phthalimide	Magnesium Hydroxide	Melamine Cyanurate	Melamine Polyphosphate	N-alkoxy Hindered Amine Reaction Products	Phosphonate Oligomer
Solid	Solid	Solid	Solid	Solid	Solid	Solid
Phosphoric Acid, mixed esters with [1,1'- bisphenyl-4,4'-diol] and phenol	Polyphosphonate	Poly[phosphonate-co- carbonate]	Red Phosphorous	Resorcinol bis- diphenylphosphate	Substituted Amine Phosphate Mixture	Tetrabromobisphenol A bis (2,3- dibromopropyl ether)
Solid or Liquid ¹	Solid	Solid	Solid	Liquid	Solid	Solid
Triphenyl Phosphate	Tris (tribromoneopentyl) Phosphate	Tris (tribromo- phenoxy) Triazine	Zinc Borate			
Solid	Solid	Solid	Solid			
¹ Depends on the oligomer	distribution					

Vapor Pressure (mm Hg) at 25°C (unless otherwise noted)

Relevance to exposure: Indicates the potential for a chemical to volatilize into the atmosphere. If a chemical has a vapor pressure leading to volatilization at room temperature or typical environmental conditions, then the chemical may evaporate and present the potential for inhalation of the gas or vapor. For a Design for the Environment (DfE) chemical alternatives assessment, inhalation exposure is assumed to occur if the vapor pressure is greater than 1×10^{-8} mm Hg. A default value of $<10^{-8}$ was assigned for chemicals without data that are anticipated to be non-volatile this is based on EPA HPV assessment guidance (U.S. EPA 2011b).

Decabromodiphenyl Ether	Aluminum Diethyl phosphinate	Aluminum Hydroxide	Ammonium Polyphosphate	Antimony Trioxide	Bis (hexachlorocyclopenta dieno) Cyclooctane	Bisphenol A bis- (diphenylphosphate)
3.5×10 ⁻⁸ at 21°C	<10 ^{-8d}	<10 ^{-8c}	<10 ^{-8b}	<10-8	<10 ^{-8c}	<9×10 ^{-6a}
Brominated Epoxy Polymer(s)	Brominated Epoxy Polymers	Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate	Brominated Epoxy Resin End-Capped with Tribromophenol	Brominated Polyacrylate	Brominated Poly(phenylether)	Brominated Polystyrene
<10 ^{-8b}	<10 ^{-8d}	<10 ^{-8b}	<10 ^{-8b}	<10 ^{-8b}	<9.8x10 ⁻⁷	<10 ^{-8b}
Decabromodiphenyl Ethane	Ethylene bis- tetrabromophthalimide	Magnesium Hydroxide	Melamine Cyanurate	Melamine Polyphosphate	N-alkoxy Hindered Amine Reaction Products	Phosphonate Oligomer
<7.5×10 ⁻⁷	$1.7 \text{x} 10^{-6}$	<10 ^{-8b}	<10 ^{-8d}	<10 ^{-8d}	<10 ^{-8d}	<10 ^{-8b}
Phosphoric Acid, mixed esters with [1,1'- bisphenyl-4,4'-diol] and phenol	Polyphosphonate	Poly[phosphonate-co- carbonate]	Red Phosphorous	Resorcinol bis- diphenylphosphate	Substituted Amine Phosphate Mixture	Tetrabromobisphenol A bis (2,3- dibromopropyl ether)
4 x 10 ⁻⁷	<10 ^{-8b}	<10 ^{-8b}	0.03 at 21°C	1.9×10 ⁻⁵ at 20°C	<10 ^{-8c}	<10 ^{-8d}
Triphenyl Phosphate	Tris (tribromoneo- pentyl) Phosphate	Tris (tribromo- phenoxy)Triazine	Zinc Borate			
6.28x10 ^{-6a}	<10 ^{-8d}	<10 ^{-8d}	<10 ^{-8b}			
^a Extrapolated. ^b Estimated	l based on polymer assessme	nt literature (Boethling et al.	, 1997). ^c Estimated based of	on HPV guidance for nonvo	latile compounds. d Estimate	ed.

Water Solubility (mg/L)

Relevance to exposure: Indicates the potential of a chemical to dissolve in water and form an aqueous solution. Water soluble chemicals present a higher potential for human exposure through the ingestion of contaminated drinking water (including well water). In general, absorption after oral ingestion of a chemical with a water solubility less than 10^{-3} mg/L is not expected. Water soluble chemicals are more likely to be transported into groundwater, absorbed through the gastrointestinal tract or lungs, partition to aquatic compartments, and undergo atmospheric removal by rain washout. A water solubility of 10^{-3} mg/L is used for large, high molecular weight non-ionic polymers according to the literature concerning polymer assessment (Boethling et al., 1997). A substance with water solubility at or below 10^{-3} mg/L is considered insoluble.

Decabromodiphenyl Ether	Aluminum Diethyl phosphinate	Aluminum Hydroxide	Ammonium Polyphosphate	Antimony Trioxide	Bis (hexachlorocyclopenta dieno) Cyclooctane	Bisphenol A bis- (diphenylphosphate)
<1.00×10 ⁻⁴	2.5×10 ³	1.5 at 20 °C	0.5% (w/w) at 25°C in 10% suspension	14 at 30 °C	4.4 x 10 ⁻⁵	0.389 - 0.462
Brominated Epoxy Polymer(s)	Brominated Epoxy Polymers	Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate	Brominated Epoxy Resin End-Capped with Tribromophenol	Brominated Polyacrylate	Brominated Poly(phenylether)	Brominated Polystyrene
<10 ^{-3c}	<10 ^{-3b}	<10 ^{-3c}	<10 ^{-3c}	<10 ^{-3c}	6.63x10 ⁻⁵ at 20°C	<10 ^{-3c}
Decabromodiphenyl Ethane	Ethylene bis- tetrabromophthalimide	Magnesium Hydroxide	Melamine Cyanurate	Melamine Polyphosphate	N-alkoxy Hindered Amine Reaction Products	Phosphonate Oligomer
7.2 x 10 ⁻⁴	<10 ^{-3b}	1.78 at 20°C, pH 8.3	2.7 at 20 °C	20,000	<10 ^{-3a}	$0.0015 (\text{for n}=1)^{\text{b}};$ < $10^{-3} (\text{for n}\geq2)^{\text{b}}$
Phosphoric Acid, mixed esters with [1,1'- bisphenyl-4,4'-diol] and phenol	Polyphosphonate	Poly[phosphonate-co- carbonate]	Red Phosphorous	Resorcinol bis- diphenylphosphate	Substituted Amine Phosphate Mixture	Tetrabromobisphenol A bis (2,3- dibromopropyl ether)
<0.01	<10 ^{-3b}	<10 ^{-3c}	<10 ^{-3a}	1.05 at 20°C	>1×10 ^{6b}	<10 ^{-3b}
Triphenyl Phosphate	Tris (tribromoneo- pentyl) Phosphate	Tris (tribromo- phenoxy)Triazine	Zinc Borate			
1.9	0.9	<10-3	0.28%*			
*The water solubility of zi	nc borate is expressed as a per	rcentage and is <0.28% at n	eutral pH. Its dissolution is	pH dependent and will var	y within the range 5-7 that is	typically found in the

environment. Good water solubility data for zinc borate are not available.

^a Estimated based on EPA High Production Volume assessment guidance. ^b Estimated. ^c Estimated based on polymer assessment literature (Boethling et al., 1997).

Log K_{ow}

Relevance to exposure: Indicates a chemical's tendency to partition between water and lipids in biological organisms. A high log K_{ow} value indicates that the chemical is more soluble in octanol (lipophilic) than in water, while a low log K_{ow} value means that the chemical is more soluble in water than in octanol. Log K_{ow} can be used to evaluate absorption and distribution in biological organisms, potential aquatic exposure, and potential general population exposure via ingestion. Generally, chemicals with a log $K_{ow} < 4$ are water soluble and bioavailable, chemicals with a log $K_{ow} \geq 4$ tend to bioaccumulate. Chemicals with a high log K_{ow} also tend to bind strongly to soil and sediment. Log K_{ow} cannot be measured for inorganic substances, polymers, and other materials that are not soluble in either water or octanol. This is indicated in the table with "No data".

Decabromodiphenyl Ether	Aluminum Diethyl phosphinate	Aluminum Hydroxide	Ammonium Polyphosphate	Antimony Trioxide	Bis (hexachlorocyclopenta dieno) Cyclooctane	Bisphenol A bis- (diphenylphosphate)
6.27	-0.44 ^a	No data	No data	No data	11 ^a	>10 ^a
Brominated Epoxy Polymer(s)	Brominated Epoxy Polymers	Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate	Brominated Epoxy Resin End-Capped with Tribromophenol	Brominated Polyacrylate	Brominated Poly(phenylether)	Brominated Polystyrene
No data	No data	No data	No data	No data	>9	No data
Decabromodiphenyl Ethane	Ethylene bis- tetrabromophthalimid e	Magnesium Hydroxide	Melamine Cyanurate	Melamine Polyphosphate	N-alkoxy Hindered Amine Reaction Products	Phosphonate Oligomer
14 ^a	9.8 ^a	No data	<0 ^a	<-2 ^a	10	7.2 $(n=1)^{a}$; 11 $(n=2)^{a}$
Phosphoric Acid, mixed esters with [1,1'- bisphenyl-4,4'-diol] and phenol	Polyphosphonate	Poly[phosphonate-co- carbonate]	Red Phosphorous	Resorcinol bis- diphenylphosphate	Substituted Amine Phosphate Mixture	Tetrabromobisphenol A bis (2,3- dibromopropyl ether)
5.5	No data	No data	No data	4.93	<-2 ^a	12 ^a
Triphenyl Phosphate	Tris (tribromoneo- pentyl) Phosphate	Tris (tribromo- phenoxy)Triazine	Zinc Borate			
4.59	8.1 ^a	>10	No data			
^a Estimated data.						

Bioaccumulation Potential

Relevance to exposure: Indicates the degree to which a chemical substance may increase in concentration within a trophic level. Bioconcentration describes the increase in tissue concentration relative to the water concentrations (environmental sources); bioaccumulation generally includes dietary and environmental sources. As chemicals bioconcentrate or bioaccumulate, there is a higher potential for them to reach a level where a toxic effect may be expressed. Estimated and/or measured bioconcentration and bioaccumulation values are presented as ranges based on relevant DfE hazard categories for each chemical. The DfE criteria for bioaccumulation designations are assigned by the bioaccumulation factor (BAF) or log BAF. The designations for bioaccumulation potential are as follows: Very High (VH) if the BAF (log BAF) is >5,000 (>3.7); High (H) if the BAF is between 5,000 (3.7-3) and 1,000; Moderate (M) if the BAF is between <1,000 and 100 (<3-2); and Low (L) if the BAF is <100 (<2) (U.S. EPA 2011a).

Decabromodiphenyl Ether	Aluminum Diethyl phosphinate	Aluminum Hydroxide	Ammonium Polyphosphate	Antimony Trioxide	Bis (hexachlorocyclopenta dieno) Cyclooctane	Bisphenol A bis- (diphenylphosphate)	
High (1,000-5,000) ^b	Low (<100) ^a	Low (<100) ^a	Low (<100) ^a	Low (<100) ^a	High (1,000-5,000) ^b	High (1,000-5,000) ^b	
Brominate Epoxy Polymer(s)	Brominated Epoxy Polymers	Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate	Brominated Epoxy Resin End-Capped with Tribromophenol	Brominated Polyacrylate	Brominated Poly(phenylether)	Brominated Polystyrene	
Low (<100) ^c	Low (<100) ^c	Low (<100) ^c	Low (<100) ^b	Low (<100) ^c	Moderate (<1,000) ^a	Low (<100) ^c	
Decabromodiphenyl Ethane	Ethylene bis- tetrabromophthalimide	Magnesium Hydroxide	Melamine Cyanurate	Melamine Polyphosphate	N-alkoxy Hindered Amine Reaction Products	Phosphonate Oligomer	
High (1,000-5,000) ^d	High (1,000-5,000) ^b	Low (<100) ^a	Low (<100) ^a	Low (<100) ^a	High (1,000-5,000) ^b	High (1,000-5,000) ^b	
Phosphoric Acid, mixed esters with [1,1'- bisphenyl-4,4'-diol] and phenol	Polyphosphonate	Poly[phosphonate-co- carbonate]	Red Phosphorous	Resorcinol bis- diphenylphosphate	Substituted Amine Phosphate Mixture	Tetrabromobisphenol A bis (2,3- dibromopropyl ether)	
Moderate (172) ^b	Low (<100) ^b	Low (<100) ^c	Low (<100) ^a	High (1,000-5,000) ^b	Low (<100) ^b	High (1,000-5,000) ^b	
Triphenyl Phosphate	Tris (tribromoneo- pentyl) Phosphate	Tris (tribromo- phenoxy)Triazine	Zinc Borate				
Moderate (100-1,000)	Moderate (100-1,000) ^b	High (1,000-5,000) ^b	Low (<100) ^b				
^a Based on professional judgment. ^b Based on estimated data. ^c Estimated based on polymer assessment literature (Boethling et al., 1997). ^d Based on monitoring data.							

Persistence

Relevance to exposure: Indicates the length of time required for a chemical substance to be completely converted to small building blocks including water, carbon dioxide, and ammonia ("ultimate degradation"). Persistence is typically expressed as a 'half-life', which is the time for the amount of the substance to be reduced by one half. For a DfE chemical alternatives assessment, persistent chemicals include those that have metabolic or degradation products that have long half-lives. The longer a chemical or its degradation/metabolism products exist in the environment, the higher the likelihood for human or environmental exposure. "Compartments" refer to those environmental media to which chemicals may partition and include soil, sediment, water and air as standard compartments for fate assessment. Persistence is considered Very High (VH) if the half-life is >180 days or recalcitrant; High (H) if the half-life is 60-180 days; Moderate (M) if the half-life is <60 days but \geq 16 days; Low (L) if half-life is <16 days OR readily passes biodegradability test not including the 10- day window (see DfE Program Alternatives Assessment Criteria for Hazard Evaluation); and Very Low (VL) if passes biodegradability test with 10-day window (see DfE Program Alternatives Assessment Criteria for Hazard Evaluation); and Very Low (VL) if passes biodegradability test with 10-day window (see DfE Program Alternatives Assessment Criteria for Hazard Evaluation); and Very Low (VL) if passes biodegradability test with 10-day window (see DfE Program Alternatives Assessment Criteria for Hazard Evaluation); and Very Low (VL) if passes biodegradability test with 10-day window (see DfE Program Alternatives Assessment Criteria for Hazard Evaluation).

Decabromodiphenyl Ether	Aluminum Diethyl phosphinate	Aluminum Hydroxide	Ammonium Polyphosphate	Antimony Trioxide	Bis (hexachlorocyclopenta dieno) Cyclooctane	Bisphenol A bis- (diphenylphosphate)
Very High (>180 days)	High (60-180 days) ^b	High (60-180 days) ^b	Very High (>180 days) ^c	High (60-180 days) ^b	Very High (>180 days)	High (60-180 days)
Brominate Epoxy Polymer(s)	Brominated Epoxy Polymers	Mixture of Brominated Epoxy Polymer(s) and Bromobenzyl Acrylate	Brominated Epoxy Resin End-Capped with Tribromophenol	Brominated Polyacrylate	Brominated Poly(phenylether)	Brominated Polystyrene
Very High (>180 days) ^c	Very High (>180 days) ^c	Very High (>180 days) ^c	Very High (>180 days) ^c	Very High (>180 days) ^c	Very High (>180 days) ^c	Very High (>180 days) ^c
Decabromodiphenyl Ethane	Ethylene bis- tetrabromophthalimide	Magnesium Hydroxide	Melamine Cyanurate	Melamine Polyphosphate	N-alkoxy Hindered Amine Reaction Products	Phosphonate Oligomer
Very High (>180 days)	Very High (>180 days)	High (60 – 180 days) ^b	Very High (>180 days)	High (60-180 days) ^b	High (60-180 days)	Very High (>180 days) ^a
Phosphoric Acid, mixed esters with [1,1'- bisphenyl-4,4'-diol] and phenol	Polyphosphonate	Poly[phosphonate-co- carbonate]	Red Phosphorous	Resorcinol bis- diphenylphosphate	Substituted Amine Phosphate Mixture	Tetrabromobisphenol A bis (2,3- dibromopropyl ether)
High ^b	Very High (>180 days) ^a	Very High (>180 days) ^a	High (60-180 days)	Moderate (60 – 16 days)	High (60 – 180 days) ^b	Very High (>180 days)
Triphenyl Phosphate	Tris (tribromoneo- pentyl) Phosphate	Tris (tribromo- phenoxy)Triazine	Zinc Borate			
Low (<16 days)	High (60-180 days) ^a	Very High (>180 days)	High (60-180 days) ^b			
^a Based on results from biodegradation estimation model. ^b Based on professional judgment. ^c Estimated based on polymer assessment literature (Boethling et al., 1997).						

5.2 Extraction

This section describes the first step in manufacturing a flame retardant, extracting or synthesizing the basic components which make up the final chemical. As stated in Chapter 3, there are four main categories of flame retardants: inorganic (i.e., metal salts), halogenated (bromine or chlorine), phosphorous-based, or nitrogen-based. Descriptions by category are given below demonstrating how the basic elements of each of the flame retardants for this assessment are extracted, and some exposure considerations associated with extraction are also included. This report is not evaluating the synthesis and processing of each of these materials but is providing information on the primary source of each of their components. In general, the organic flame retardants are derived from petroleum and the inorganic flame retardants are derived from other naturally occurring mineral deposits.

5.2.1 Inorganic Flame Retardants

The inorganic flame retardants considered in this report include the following base elements:

Aluminum

Aluminum, used in aluminum hydroxide (Al(OH)₃), is one of the most plentiful elements in the earth's crust and is usually present as bauxite ore. Bauxite can contain three different aluminum minerals, including gibbsite (Al(OH)₃), böhmite, and diaspore (crystalline structures of AlO(OH)). Bauxite ore also typically contains clay, silt, iron oxides, and iron hydroxides. The majority of bauxite is mined from surface deposits, but some is excavated from underground deposits (International Aluminium Institute 2007). Nearly all of the bauxite consumed in the United States is imported (USGS 2007). By refining bauxite ore using the Bayer process aluminum hydroxide can be made (U.S. EPA 1995b). This process requires mixing finely ground bauxite with sodium hydroxide to form a slurry that is then placed under steam pressure and heat (U.S. EPA 1995a). This creates a mixture of dissolved aluminum oxides and bauxite residues and precipitates out most of the impurities. The remaining slurry contains sodium aluminate that is flash cooled by evaporation and clarified to remove any other fine impurities (U.S. EPA 1995a). Lastly, the solution is sent to a precipitation tank where it is cooled and gibbsite "seeds" (usually from a previous cycle) are added to promote the precipitation of solid aluminum hydroxide crystals (U.S. EPA 1995a).

Magnesium

The mineral form of magnesium hydroxide (Mg(OH)₂), also called brucite, is found throughout the world (Amethyst Galleries Inc 2008; USGS 2008). However, magnesium hydroxide is typically recovered from seawater and magnesia-bearing brines, which constitutes an even greater and more readily available resource than brucite. In 2007, magnesium oxide and other magnesia compounds (including magnesium hydroxide) were recovered from both seawater and well brines in the U.S. (USGS 2008).

Antimony

Antimony (Sb), used in antimony trioxide (Sb₂O₃), can be mined, recovered as a byproduct from the smelting of lead and silver-copper ores, or derived from scrap source materials, including lead-acid batteries (Carlin Undated). Six U.S. companies produce antimony metal and oxide using domestic and foreign feed material (Carlin Undated). However, recycling and domestic mine output supplied less than half of the estimated U.S. demand for antimony, meaning a significant amount of antimony in the U.S. is imported (Carlin Undated). Antimony is mined as a principal product and recovered as a byproduct of the smelting of base metal ores in 23 countries. China, Bolivia, Russia and South Africa account for more than 90 percent of mine production (Carlin Undated). More than 50 percent of available antimony is used in flame retardants (Carlin Undated).

Zinc

Zinc most often occurs in association with the sulfide mineral group as sphalerite (ZnS), which is the principal mineral mined to recover zinc. Other metals associated with sulfide ores include copper, iron, mercury, cadmium, silver and small quantities of gold (U.S. EPA 1994). These metals occur in varying amounts, and depend on the nature of the ore. Zinc ore is recovered from three types of deposits: strata-bound deposits, replacement deposits and vein deposits (U.S. EPA 1994). The largest and most productive deposits are associated with expansive, relatively flat lying sedimentary deposits. The strata-bound zinc ore in these deposits are restricted to welldefined stratigraphic units (a distinct layer of sedimentary or igneous rock), typically limestone, dolomite, or shale (U.S. EPA 1994). Replacement and vein type deposits make up a smaller portion of mined zinc. For the most part, zinc is mined in underground operations, although there are a few surface operations (U.S. EPA 1994).

5.2.2 Halogenated Flame Retardants

Bromine

Bromine is collected from salt brines in the United States and China, from the Dead Sea in Israel and Jordan, and from ocean water in Wales and Japan (Sjodin, Hagmar et al. 1999; Thuresson, Bergman et al. 2006; Bromine Science and Environmental Forum 2007; Qu, Bi et al. 2007). Bromine is typically isolated via a series of redox reactions involving chlorine, sulfur dioxide and acid (MIT 2003; The University of York). During these reactions the brine or seawater is acidified and then chlorinated to oxidize bromide to elemental bromine. At this stage, the bromine is volatilized from the seawater, but it is not concentrated enough for collection or liquefying, so sulfur dioxide is added to reduce the bromine to hydrobromic acid. Chlorine is then added to re-oxidize hydrobromic acid to bromine gas (Br₂). At this point, bromine gas is collected and condensed (Grebe, Bauman et al. 1942). While caustic substances are involved in these processes, they are typically contained in an enclosed tower to prevent worker exposure and environmental release.

Chlorine

Chlorine, one of the most abundant elements on earth (Kostick 2001), is found primarily as the chloride ion (Cl⁻), which is a component of salt found deposited in the earth or dissolved in the oceans. Chlorine is produced industrially via the chloralkali process, which involves the electrolysis of an aqueous sodium chloride (a brine) through an ion exchanging membrane (ERG 2006). Chloride ions are oxidized at an anode on the membrane into chloride. In addition to chlorine, this chloralkali process yields hydrogen gas (H₂) and sodium hydroxide (NaOH). The chloralkali process accounts for more than 95 percent of global chlorine production (ERG 2006).

5.2.3 Phosphorous-Based Flame Retardants

Phosphorus-based flame retardants are commonly synthesized from phosphate rock, which contains the mineral apatite (an impure tri-calcium phosphate). Phosphate esters can also be derived from yellow phosphorus. Large deposits of phosphate rock are found in Russia, Morocco, Florida, Tennessee, Utah, and Idaho (Lide 1993/94). Tri-calcium phosphate, the essential component of phosphate rock, is heated in the presence of carbon and silica in an electric furnace or fuel-fired furnace. Elementary phosphorus is liberated as vapor and may be collected underwater (Lide 1993/94). While elementary phosphorus can form a diatomic molecule with a triple bond, it more readily forms a tetrahedral P_4 molecule. At room temperature, phosphorus can exist in an amorphous or semi-crystalline state, called red phosphorus, which is produced from white phosphorus by extended heating in an inert atmosphere (Calvert 2004).

As for yellow phosphorous, approximately 80 percent of the global phosphorus is mined in China in the form of phosphate ore (Shigeru 2007). Extracting yellow phosphorus from phosphate ore also involves the co-extraction of arsenic, mercury, lead and other heavy metals as impurities that should be well controlled and treated before disposal of wastewater. If producers of yellow phosphorus appropriately treat their wastewater, then environmental releases and human exposures can be prevented. However, improperly treated wastewater can lead to major adverse environmental impacts (Shigeru 2007).

Predictions suggest that the world may be approaching 'peak phosphorous', or the point in time when the maximum production rate is reached. Phosphate-rich rocks are becoming harder to find and the demand for rock phosphate will soon exceed supply (Ulrich, Malley et al. 2009; Beardsley 2011). Depending on the calculation, predictions of peak phosphorous are broad (between twenty and several hundred years away), with some researchers predicting that peak extraction could occur as early as 2030 (Ulrich, Malley et al. 2009). This could have serious economic consequences in that it could raise the cost of products which use phosphorous (Ulrich, Malley et al. 2009) such as fertilizer or phosphorous-based flame retardants. It is suggested that there are ways to manage and mitigate peak phosphorous given that there is "an abundant but often ignored source of phosphorous" in human and animal waste (Beardsley 2011) but technology to extract and use phosphorous from these sources is still in its infancy (Ulrich, Malley et al. 2009).

5.2.4 Nitrogen-Based Flame Retardants

Nitrogen is the largest constituent of the earth's atmosphere and is also present in all living organisms, proteins, and nucleic acids (Kramer 2000). Anhydrous ammonia is produced commercially through the Haber-Bosch process, in which nitrogen and hydrogen react under high temperatures and pressure to produce ammonia (Kramer 2000). In this reaction, the source of nitrogen is air, which is almost 80 percent nitrogen. Additionally, small quantities of nitrates are mined from mineral resources principally in Bolivia and Chile (Kramer 2000). Although the U.S. produces most of its ammonia, the U.S. does import some ammonia mainly from Canada, Russia, and Trinidad and Tobago.

5.3 Chemical Manufacturing

After the extraction or synthesis of the flame retardant's basic components, the flame retardant chemical itself can be manufactured. Unit operations, operating conditions, transfer procedures, and packaging operations vary with the manufacture of different flame retardants and resin chemicals. Potential releases and occupational exposures will depend on each of these parameters. While it is outside the scope of this report to identify and quantify the releases and exposures associated with individual chemicals, this section presents a general description of typical chemical manufacturing processes and identifies potential releases.

Figure 5-2 is a generic process flow diagram for chemical manufacturing. Production volumes and batch sizes associated with flame retardants typically require the raw materials to be stored in large tanks or drums until use. The first step in most chemical manufacturing processes is to load or charge raw materials into some type of reactor or mix tank. Production volumes and batch sizes associated with flame retardant chemicals typically require the raw materials to be stored in large tanks or drums until use. Large-quantity liquids are typically pumped into the reactor, and solids are weighed and transferred via conveyorized, mechanical systems. Small-quantity raw materials may be manually introduced or carefully metered via automated systems. Releases and exposures that are expected from these operations are associated with the raw materials, not the finished flame retardant product (U.S. EPA 2005).

Throughout the chemical manufacturing process, there are several release points that may pose an opportunity for exposures to workers (see Figure 5-2) including packaging operations, leaks from pumps and tanks, fugitive emissions from equipment, cleaning of process equipment, and product sampling activities. Additionally, crude or finished products are often stored on-site in drums, day-tanks, or more permanent storage vessels until the chemical is packaged and shipped to the next user. The transfer and packaging operations, waste management activities, as well as any routine and unplanned maintenance activities, and spills or accidents may result in releases and exposures.

Crude or intermediate products may be transferred through a series of reactors, distillation columns, filtration systems, drying ovens, spray dryers, and other unit operations. These processes typically occur in closed systems, with engineering controls that serve both to regulate operating parameters such as temperature and pressure as well as to minimize fugitive releases. However, there is potential for a variety of solid and liquid releases from these operations, from cleaning process equipment and from sampling activity. Additionally, crude or finished products may be stored on-site in drums, day-tanks, or more permanent storage vessels until the flame retardant formulation is packaged and shipped to customers (e.g., foam and textile manufacturers). The transfer and packaging operations, including storage, are expected to result in releases of the flame retardant chemicals. Finally, miscellaneous operations, such as routine and unplanned maintenance or waste management activities, can result in considerable releases and exposures (U.S. EPA 2005).

After the flame retardant is manufactured, it may need to be formulated into a solution, slurry, or mixture prior to its introduction into the commercial flame retardant formulation. For example, fine powders of a chemical may be formulated into an agglomerated powder or into a solution. The formulation steps usually occur at the chemical manufacturing facility, but additional mixing steps can occur at the formulator's manufacturing plant.

Release points from manufacturing and formulating can include: transfer and packaging operations involving handling a chemical product; routine and unplanned maintenance activities; leaks from pumps and pipelines; fugitive emissions from equipment; product sampling; waste management; and cleaning of equipment for transport and storage vessels.

5.4 Product Manufacturing

Given that decaBDE and its alternatives are used in a wide variety of products (see Chapter 2), this assessment does not include a discussion of the manufacturing process for each end-use product. However, a general discussion of how flame retardants are incorporated into plastics and textiles is included below in an attempt to understand where along the manufacturing process human or environmental exposures may occur. The production of flame retardants and their incorporation into a product is a complex process which involves multiple companies and specialties (European Chemicals Bureau 2002). With this in mind, the description of product manufacturing provided in this report is a generic one that understands that exposure is likely to vary at different facilities. Figure 5-3 displays the various steps flame retardants go through before they are incorporated into a final product for sale. The left side of the figure depicts the textile manufacturing process whereas the right side of the figure depicts the plastic manufacturing process (the plastic is subsequently used to make equipment such as televisions or computers). Supply chains may be more intricate for complex durable goods if materials or parts containing decaBDE are used to build subcomponents that are later aggregated into the final product. This type of assembly may also be considered when choosing chemical alternatives in complex finished goods.

Depending on the processes and equipment used, exposure can occur at each stage of the manufacturing process. For non-textile based polymers (the right half of Figure 5-3) exposure can occur anywhere along the process such as during compounding¹⁴ or masterbatch¹⁵ production and these processes may or may not be carried out in the same facility. The type of polymer being manufactured does not affect release volumes; release is dependent on the type of system used (i.e., closed or open) and the amount of flame retardant used (European Chemicals Bureau 2002).

Exposure potential is highest during the handling of the raw flame retardant (European Chemicals Bureau 2002). For decaBDE, any losses during this stage will be to the air but it is expected that the dust will rapidly settle within the facility. Therefore, exposure may occur dermally or through inhalation. To understand the fate and potential exposure routes of the other alternatives, an understanding of their physical-chemical properties is essential (see Table 5-1). Additionally, compounding is prone to dust generation but losses are thought to be lower than the handling of the flame retardant itself. It is possible that losses may occur early in the mixing cycle and that localized containment may be used to recover the material (European Chemicals Bureau 2002). There may be releases to the air and to the atmosphere at this stage of the manufacturing process.

Textile manufacturing (the left half of Figure 5-3) is a complex process which involves fiber preparation, spinning, knitting, weaving, and dyeing among many other steps, all of which occur in the finishing or upholstery manufacturing steps. The addition of additive flame retardants in textiles occurs in the final stage of wet processing, which occurs before the product is cut and sewn. According to the International Agency for Research on Cancer (IARC), "textile workers are exposed to textile related dusts through the manufacturing process. During the spinning,

¹⁴ Blending of the polymer with various additives

¹⁵ Plastic compounds that contain high concentrations of additives which are subsequently mixed in the main polymer matrix.

weaving and knitting operations, exposure to chemicals is generally limited." During the finishing processes when flame retardant chemicals are applied, IARC states that workers typically have exposures to multiple chemicals, including crease-resistance agents, antimicrobial agents, and flame retardants (IARC 1990).

When incorporating flame retardants into textiles, surface treatment is often used. There are two types of surface treatments: finishes and coatings. Finishes are applied by impregnating the fabrics in an aqueous solution of the chemical. Coatings are applied by incorporating a layer of flame retardant to the fabric, generating a heterogeneous fabric/polymer composite. Flame retardants used for finishes include phosphates and polyphosphates, phosphorous amides, phosphonium derivatives, antimony trioxide, borax and boric acid or halogenated flame retardants. Flame retardants used for coatings include phosphates, phosphonates, and brominated derivatives, which may be applied as backcoatings in the form of a paste or foam (GnoSys UK LtD for the Department of Environment Food and Rural Affairs 2010). As of 2008, the leading flame retardant in backcoating on a wide range of fabrics including synthetic blends, is decaBDE, used with antimony oxide. New chemicals in development for textile coatings are polymers and copolymers of pentabromobenzyl acrylate (CAS Number: 59447-55-1). Additionally, insoluble ammonium phosphates have also been found to work well on charrable fabrics (Weil and Levchik 2008).

Flame retardants in textiles are classified according to their "laundry durability." A non-durable flame retardant is washed off immediately when soaked in water, but may resist dry cleaning. Semi-durable flame retardants resist water soaking and possibly a few washes, while durable flame retardants resist 50 to 100 washes (Weil and Levchik 2008). Washing of flame retarded fabric could result in releases to waste water treatment plants and eventually to the environment.

Flame retardants based mostly on phosphate or phosphonate salts are typically used on infrequently washed or disposable goods given that they are non- or semi-durable. In regards to durable finishes, tetrakis(hydroxymethyl)phosphonium salts reacted with urea and cured with gaseous ammonia have been used for about 50 years in cellulosic fabrics. Other competitive wash-durable phosphorus-based finishes are also in development. Furthermore, polyesters are flame retarded with phosphonate or hexabromocyclododecane in a "thermosol¹⁶" process (Weil and Levchik 2008).

5.5 Use

As discussed in Chapter 2, decaBDE and its alternatives are used in a wide variety of polymers and products, allowing for potential release into a home, office or vehicle. Given that all of the flame retardants in this assessment are additive (as opposed to reacted into the polymer matrix), the potential for the flame retardant chemical to migrate or be released from a product is present. As discussed in Section 3.1, additive flame retardants are incorporated into the product through physical mixing and are not chemically reacted into the polymer. Empirical data on decaBDE

¹⁶ The thermosol process is the process of incorporating flame retardants into synthetic fibers. To run this process, liquid flame retardants are dissolved or dispersed in water (emulsion). Freshly spun hot fiber passes through this solution and the flame retardant penetrates the surface of the fiber because its affinity to the polymer is higher than to water. When the fiber cools down the flame retardant stays close to the surface.

and other PBDEs in house dust demonstrate that additive flame retardants are being released from products into the surrounding environment (Stapleton, Dodder et al. 2004). However, it is difficult to identify or quantify the primary sources of the additive flame retardants, given consumer products are not labeled or identified by specific treatments with flame retardant additives.

There are peer reviewed studies about PBDE and decaBDE exposures. For example, Trudel, Scherinder et al. (2011) found that the body burden¹⁷ of PBDE mixtures is generally higher in the United States and Canada than in other countries, likely due to the more stringent fire safety performance standards in North America and the greater number of consumer products containing these flame retardants. Again using PBDEs as an example, it has been shown that in the U.S., a primary exposure pathway for PBDEs among consumers is inhalation or ingestion of house dust (Johnson, Stapleton et al. 2010). In contrast, the diet constitutes a primary exposure pathway for consumers in Europe, China, and many other countries worldwide (Trudel, Scheringer et al. 2011). PBDE's have a tendency to bioaccumulate in the food chain, particularly in fatty tissues of animals. Consequently, meat and dairy products have higher concentrations of PBDEs than fruit and vegetables (Schecter, Haffner et al. 2010). Additionally, a large number of human samples have been analyzed and PBDE concentrations have increased by nearly a factor of 100 during the last 30 years (U.S. EPA 2009). The bioaccumulation potential of the other alternatives in this assessment is addressed in the Chapter 4 in each chemical's hazard profile.

Exposure levels and routes also vary by age group. Given children's predisposition to put hands and toys in their mouth, they can inadvertently ingest larger amounts of house dust than adults. Some children may be at a higher risk of exposure if family members work with PBDEs and bring dust containing the chemical home with them (Washington State Department of Labor & Industries Undated). The Agency for Toxic Substances and Disease Registry (2004) and the Child-Specific Exposure Factors Handbook (2008) both state that a child's exposure may differ from that of adults because children drink more fluids, eat more food, breathe more air per kilogram of body weight, and have a larger skin surface area in proportion to body volume. Additionally, it is possible for infants to be exposed to bioaccumulative chemicals through breast milk.

In addition to considering consumer exposures to a specific flame retardant, it is important to consider degradation products. For example, under certain conditions, decaBDE can degrade to less brominated congeners, which are potentially more toxic. Photolysis is expected to be the primary degradation process for decaBDE when it is significantly exposed to UV light (U.S. EPA 2009). DecaBDE can undergo photolytic debromination in house dust (Stapleton and Dodder 2008) and in organic films exposed to sunlight through automobile windshields (Ecology Center 2008), demonstrating that debromination may be possible within an automobile. Metabolic debromination of decaBDE can occur in fish, birds, cows, and rats, although its overall significance when compared with other degradation processes is unclear (U.S. EPA 2009). Uncertainty exists for the degradation products of some decaBDE alternatives. Debromination and other degradation processes may be relevant for some of the alternatives. Chapter 4 of this report provides a summary of the chemical-specific information available at the time of publication.

¹⁷ Body burden refers to the amount of a toxic substance present in the human body at a given time.

5.6 End-of-Life

When products reach their end-of-life, there are multiple pathways which they could take, including unregulated and/or regulated recycling (including reuse and refurbishment), landfilling, or incineration. The manner in which a product is handled after use contributes to its environmental and human health impacts. The following sections consider end-of-life issues for some of the types of products requiring flame retardants. Note that there may be overlap in the information presented for each product sector.

5.6.1 Electronics

The amount of used and end-of-life electronic equipment generated annually in the United States is growing rapidly. In 2010, the U.S. electronics recycling industry processed over 3.5 million tons of used and end-of-life electronic equipment (a large increase compared to the 650,000 tons processed in 2002) (Institute of Scrap Recycling Industries Inc 2011), whereas 3.2 million tons, predominately from households, is still sent to landfills (U.S. EPA 2010b). However, the amount being sent to landfills is likely to decline as there is a growing trend of state laws that requires the recycling of used and end-of-life electronics equipment (U.S. EPA 2010b).

Recycling Electronics

The U.S. electronics recycling industry has grown over the past ten years and has the capacity to handle additional tonnage. The biggest challenge is the need to educate households, businesses and government entities on the importance of responsibly recycling their used electronics equipment (Harris 2011; Institute of Scrap Recycling Industries Inc 2011).

The U.S. electronics recycling industry has seen a significant increase in the use of third-party certifications for electronic waste management and recycling (Harris 2011; Institute of Scrap Recycling Industries Inc 2011). Electronics recyclers may be certified to the *Responsible Recycling Practices for Use in Accredited Certification Programs for Electronics Recyclers* – better known as the "R2 Practices", (or simply "R2") or the *e-Stewards Standard for Responsible Recycling and Reuse of Electronic Equipment*®, (as known as "the e-Stewards Standard").¹⁸. The e-Stewards Standard is another certification program by which electronics recyclers may be certified. The certification process helps to ensure that electronics recyclers use the best available practices to protect worker health by minimizing exposure.

In the United States, used and end-of-life electronic equipment is typically collected by the recycling industry (i.e., collectors, repair/refurbishers, recyclers, and brokers). The collected equipment then undergoes a series of tests, or is "triaged", to determine its condition and market value, if any. If a device or component's key functions are in good working condition it can be resold directly as a used product or refurbished (e.g., updated operating systems or cosmetic changes) and then sold as a product on the domestic and global marketplace.

¹⁸ Information about electronics recycling facilities certified to the R2 Practices is available from R2 Solutions at <u>www.R2Solutions.org</u>. For more information about electronics recycling facilities certified to the e-Stewards Standard, go to <u>www.e-stewards.org</u>.

After the triage process, the remaining equipment is disassembled, either manually or mechanically, and segregated into commodity grade streams (e.g., steel, aluminum, plastic, glass, circuit boards that include copper, gold, silver, platinum, palladium, and rare earth oxides) that are then sold into the domestic and international commodities market. Many of the markets for processed raw materials are also outside of the U.S. and the manner in which used electronics are disposed of or recycled will affect the potential environmental and human health impacts.

Figure 5-4 is a depiction of the general electronic recycling process and shows that this process can involve both thermal processing, such as smelting to recover precious metals, and nonthermal processing, such as disassembly, shredding, separation, and chemical treatment (Kang and Schoenung 2005). The potential level of exposure to workers and the general population that results from these processes will vary depending on the management practices used within a facility.

The potential for emissions of halogenated dioxins and furans, mercury, lead, antimony, and other toxic substances exists with smelting operations that may be a part of the recycling process. In addition to the potential emission of toxic chemicals, high operating temperatures may create an occupational hazard and high loads of bromine or chlorine may induce corrosion of gas-cleaning equipment. In sensitive areas, a process step for halide recovery may need to be added (Lehrner 2008). Controlled smelting operations are able to handle high loads of halogenated electronic scrap and effectively control emissions.

Some post-use electronics are exported for reuse, refurbishment and recycling. Unfortunately, a number of these exported electronics end up in countries that do not have the technology to recycle the electronics in a way that does not pose exposure concerns. In the absence of proper practices, procedures and equipment, unregulated recycling processes may pose risks to workers and the public through exposure to toxic chemicals.

Additionally, a 2007 U.S. EPA study examined the waste management of computer, television, hard-copy devices, and cellular devices. The study indicated that 15 to 20 percent of post-use consumer electronics was recycled, and 80 to 85 percent was disposed of in landfills or through incineration (U.S. EPA 2007b).

The methods employed at unregulated recycling sites are sometimes crude and may include the open burning of printed circuit boards, cables, and plastics; acid or cyanide leaching of circuit boards; and gold recovery with cyanide salt leaching or nitric acid and mercury amalgamation (Williams, Kahhat et al. 2008; Sepúlveda, Schluep et al. 2010; Yu, Williams et al. 2010). These methods may pose concern for human and environmental health. Toxic substances released from these processes include leachates, particulate matter, fly and bottom ash, fumes, wastewater, and other effluents, which are released to the soil, groundwater, surface water, sediments, and air (Sepúlveda, Schluep et al. 2010). For example, the burning of electronic components containing flame retardants can produce a range of toxic by-products including halogenated dioxins and furans (U.S. EPA 1998; Tohka and Zevenhoven 2002).

Landfilling Electronics

More than 3.2 million tons of end-of-life electronics, predominately from households, are sent to landfills (U.S. EPA 2010b). Landfills in the United States are for the most part well managed and regulated, but in non-regulated and non-lined landfills, these post-use electronics can contribute to leachate (i.e., the mixture of rainwater and liquids within the waste). This leachate has the potential to seep into the ground or drain into nearby surface water, transporting chemicals where humans and wildlife may be exposed. Additive flame retardants have a higher potential than reactive flame retardants to be released from electronic products (KemI 1995). No reactive flame retardants were identified as alternatives to decaBDE.

To date, most leachability studies in the literature have focused on the potential for discarded electronic devices to release lead and other heavy metals. A small number of studies have investigated leaching potential of brominated flame retardants. For example, Osako et al, found that the levels of several PBDE congeners in both raw and treated leachate were below the limit of detection of 4,000 pg/L (Osako, Kim et al. 2004). Additionally, a study conducted by Beard and Marzi investigated the leachability potential of phosphorus-based and brominated flame retardants from thermoplastic polymers and found that small amounts of phosphorus and bromine, respectively, leached from the polymer (Beard and Marzi 2006). Osako et al. also concluded that the amount of leaching that occurs is dependent upon the chemical properties of the landfill (Osako, Kim et al. 2004).

Incineration of Electronics

According to EFRA, flame retarded plastics can be incinerated in municipal refuse incinerators as long as they are equipped with the proper gas cleaning devices (EFRA 2006). The flame retardant treatment will not prevent incineration at operating temperature.

EPA has done an alternatives assessment for flame retardants used in printed circuit boards, the final report of which will include data on combustion by-products for different burning scenarios. The final report will be posted to the DfE webpage: http://epa.gov/dfe/pubs/projects/pcb/index.htm

5.6.2 Textiles

DecaBDE and its alternatives are often used in the textiles which make up office furniture, commercial grade carpet, or military supplies such as tents, tarps and uniforms. Below is a summary of information on the various textiles, specifically office furniture and commercial grade carpet, which may enter each end-of-life pathway.

Recycling Textiles

Only ten percent of the six billion pounds of carpet disposed of in 2010 was recycled, reconditioned, or reused (Carpet America Recovery Effort (CARE) 2010). As a response to the high rate of carpet disposal in landfills, members of the carpet industry, representatives of government agencies at the federal, state, and local levels (such as the U.S. EPA), and non-governmental organizations created a voluntary partnership in 2002 to increase the amount of post-consumer carpet reused, reconditioned, or recycled. The goal of the ten-year partnership is to reduce the amount of carpet discarded in landfills by 40 percent by 2012 by diverting the carpet to one of four routes: reuse, recycling, waste to energy (incineration technology that uses recovered carpet as a fuel source to generate electricity), or cement kilns (the use of a recovered carpet as an alternative fuel source and as an additive in cement production) (CARE 2006). In order to achieve this benchmark, the carpet industry created the CARE, which, with members of the carpet industry and government, is responsible for monitoring, evaluating, and assessing progress toward the negotiated goals (CARE 2006).

Landfilling Textiles

The frequent replacement of office furniture results in the increased production of products and leads to large volumes of furniture discarded in landfills. Landfilling is also the most common fate of used carpeting. Even though almost all of the components in carpet can be recycled or reused, the total estimated amount of U.S. carpet discarded in 2010 was six billion pounds (CARE 2010).

Research with the objective of investigating the release and transformation of additive and reactive flame retardants from textiles in simulated landfill environments was conducted in 2008 (Horsing 2008). The study found that the environmental conditions of a landfill (e.g., temperature, microbial activity, and pH), the way additives are applied (i.e., additive or reactive), and the nature of the material all affected the leaching of the flame retardants. Based on the

findings of the impact of the different landfill conditions on additive flame retardants, the author concluded that additive flame retardants may "leach and contribute to the contamination of water but not so much in new, well-managed landfills and in developed countries as in old landfills in countries where landfills are poorly managed" (Horsing 2008). Additionally, they found that the only leaching that occurred from products treated with reactive flame retardants was washout from unreacted manufacturing residuals.

Incineration of Textiles

Incineration of textile waste from production sites is difficult given that pieces of fabrics are too long and can cause fire outside the incinerator. The textiles are usually too strong to be ground prior to incineration. Therefore large amounts of textile waste from textile plants are landfilled instead of incinerated (Dahllof 2004). However, smaller flame-retarded textiles and foams can be incinerated. This method is preferred as long as the incinerators are equipped with the proper gas cleaning devices (EFRA 2006).

5.6.3 Storage and Distribution Products

A total of two to three billion storage and distribution pallets, composed of a variety of components including wood, plastic, aluminum, steel, corrugated paperboard, and composite wood, are believed to be in use in the United States (Buehlmann, Bumgardner et al. 2009; Pure Strategies Inc. for Maine Department of Environmental Protection 2010). Wood currently dominates the pallet market and is estimated to comprise 80 to 95 percent of pallets (Buehlmann, Bumgardner et al. 2009; Pure Strategies Inc. for Maine Department of Environmental Protection 2010). Wood's overwhelming presence in the pallet market is due to its low material and production costs and its relative abundance as a raw material. However, the use of plastic pallets is becoming increasingly popular because plastic often is more durable, lighter, and more easily sanitized than wood. In 2010, over 900 million plastic pallets were estimated to be in use (Pure Strategies Inc. for Maine Department of Environmental Protection 2010).

Depending on the materials and construction, and the manner in which they are used, plastic pallets could have an expected lifetime of 20 years. Many plastic pallets are made from recycled plastic and are fully recyclable at the end of their lives (Pure Strategies Inc. for Maine Department of Environmental Protection 2010). When plastic pallets are no longer usable, they are removed from service and can enter a full recycling process (ERM 2008). One manufacturer of high-density polyethylene (HDPE) pallets shreds or grinds damaged pallets for reuse as a raw material, which, in turn, is molded into new pallets. Currently, new plastic pallets are sometimes made with a combination of recycled and new HDPE but the recycled content may increase in the long term. According to one producer of plastic pallets, small quantities of HDPE that might be trimmed or removed during fabrication, handling and processing of extruded plastic are collected for reuse at the pallet production facility.

5.7 References

- Amethyst Galleries Inc. (2008). "The Mineral Brucite." 2008, from <u>http://mineral.galleries.com/Minerals/OXIDES/brucite/brucite.htm</u>.
- ATSDR (2004). Toxicological Profile for Polybrominated Diphenyl Ethers and Polybrominated Biphenyls.
- Beard, A. and T. Marzi (2006). Sustainable phosphorus based flame retardants: a case study on the environmental profile in view of European legislation on chemicals and end-of-life (REACH, WEEE, ROHS). <u>Proceedings of Going Green CARE Innovation 2006</u> <u>Conference</u>. Vienna, Austria,.
- Beardsley, T. M. (2011). "Peak Phosphorous." <u>BioScience</u> 61(2): 97.
- Betts (2009). "Glut of data on "new" flame retardant documents its presence all over the world." <u>Environ Sci Technol</u> **43**(2): 236-237.
- Bromine Science and Environmental Forum. (2007). "About Bromine." Retrieved October 2007, from <u>http://www.bsef.com/bromine/what_is_bromine/index.php</u>
- Buehlmann, U., M. Bumgardner, et al. (2009). "Ban on landfilling of wooden pallets in North Carolina: an assessment of recycling and industry capacity." <u>Journal of Cleaner</u> <u>Production</u> 17: 271-275.
- Calvert, J. (2004). "Phosphourous." 2007, from http://mysite.du.edu/~jcalvert/phys/phosphor.htm.
- CARE. (2006). "Memorandum of Understanding for Carpet Stewardship." Retrieved March, 2011, from <u>http://www.carpetrecovery.org/mou.php</u>.
- CARE (2010). CARE 2010 Annual Report.
- Carlin, J. F. J. (Undated). "Antimony. United States Geological Survey. Minerals Information Publications." Retrieved March 11, from <u>http://minerals.usgs.gov/minerals/pubs/commodity/antimony/060495.pdf</u>
- Christensen, J. R., M. MacDuffee, et al. (2005). "Persistent organic pollutants in British Columbia grizzly bears: consequence of divergent diets." <u>Environmental Science and</u> <u>Technology</u> **39**(18): 6952-6960.
- Dahllof (2004). LCA Methodolgy Issues for Textile Products. <u>Environmental Systems Analysis</u>. Gotebory, Chalmers University of Technology **Licentiate of Engineering**
- Dodder, N. G., B. Strandberg, et al. (2002). "Concentrations and spatial variations of polybrominated diphenyl ethers and several organochlorine compounds in fishes from the northeastern United States." <u>Environmental Science and Technology</u> **36**(2): 146-151.
- Dodge, D. G., M. C. Pollock, et al. (2009). "Review of Brominated and Halogen-free Flame Retardant Levels in Indoor Dust." Journal of Environmental Protection Science **3**: 59-74.
- Ecology Center (2008). Survey of Presence and Breakdown of Brominated Flame Retardants (BFRs) in Vehicle Interior Components via Photodegradation. Ann Arbor, MI.

- EFRA. (2006). "Recylcing and Disposal: End of Life Products Containing Flame Retardants." Retrieved March 2011, from <u>http://www.cefic-</u> efra.com/Objects/2/Files/EFRARecylinganddisposal122006-1_00.pdf.
- Environment Canada (2006). Ecological Screening Assessment Report on Polybrominated Diphenyl Ethers (PBDEs).
- Environment Canada (2009). State of the Science Report on the Bioaccumulation and Transformation of Decabromodiphenyl Ether (DRAFT).
- ERG (2006). Memorandum: Chlorinated Hydrocarbon Manufacturing Segment Description April 14.
- ERM (2008). Streamlined Life Cycle Assessment of iGPS, Typical Pooled Wooden Pallets and Single-Use Wood Pallets, iGPS.
- European Chemicals Bureau (2002). European Union Risk Assessment Report Bis(Pentabromophenyl) Ether: Risk Assessment. CAS No. 1163-19-5. EINECS No. 214-604-9. Luxemborg.
- GnoSys UK LtD for the Department of Environment Food and Rural Affairs (2010). Fire Retardant Technologies: safe products with optimised environmental hazard and risk performance.
- Grebe, J. J., W. C. Bauman, et al. (1942). Bromine Extraction. U.S. Patent 445 706.
- Harris, E. (2011). 2011 Electronics Recycling Survey, Institute of Scrap Recycling Industries Inc.
- Horsing, M. (2008). Leaching and Transformation of Flame Retardants and Plasticizers under Simulated Landfill Conditions. <u>Department of Water and Environmental Studies</u>. Linkoping, Linkoping University
- Illinois Environmental Protection Agency (2006). A Report to the General Assembly and the Governor In Response to Public Act 94-100 *DecaBDE Study: A Review of Available Scientific Research*.
- Institute of Scrap Recycling Industries Inc. (2011). "ISRI Unveils Preliminary Findings from 2011 Electronics Recycling Industry Survey." Retrieved May 23, 2011, from <u>http://www.isri.org/iMIS15_PROD/ISRI/ContentAreas/ISRI_Unveils_Preliminary_Findings_from_2011_Electronics_Recycling_Industry_Survey.aspx.</u>
- International Agency for Research on Cancer (1990). Exposures in the Textile Manufacturing Industry (Groub 2B). **48:** 215.
- International Aluminium Institute. (2007). "Aluminum Production." 2007 from http://www.world-aluminum.org/production/index.html
- Jaspers, V. L., A. Covaci, et al. (2006). "Brominated flame retardants and organochlorine pollutants in aquatic and terrestrial predatory birds of Belgium: levels, patterns, tissue distribution and condition factors." <u>Environmental Pollution</u> **139**(2): 340-352.
- Johnson-Restrepo, B., K. Kannan, et al. (2005). "Polybrominated diphenyl ethers and polychlorinated biphenyls in a marine foodweb of coastal Florida." <u>Environmental Science and Technology</u> **39**(21): 8243-8250.

- Johnson, P., H. M. Stapleton, et al. (2010). "Relationship between Polybrominated Diphenyl Ether Concentrations in House Dust and Serum." <u>Environmental Science and Technology</u> **44**(14): 5627-5632.
- Kang, H.-Y. and J. M. Schoenung (2005). "Electronic waste recycling: A review of U.S. infrastructure and technology options." <u>Resources Conservation & Recycling</u> 45: 368-400.
- KemI (1995). The Flame Retardants Project A collection of reports on some flame- retardants and an updated ecotoxicological summary for tetrabromobisphenol A. PM nr 10/95. The Swedish Chemicals Inspectorate. Solna, Sweden.
- Kostick, D. S. (2001). "Salt. United States Geological Survey, Mineral Factsheets." from http://minerals.usgs.gov/minerals/pubs/commodity/salt/saltmyb01.pdf.
- Kramer, D. A. (2000). "Nitrogen. United States Geological Survey. Minerals Information Publications." from http://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/480400.pdf.
- Lagalante, A. F., T. D. Oswald, et al. (2009). "Polybrominated diphenyl ether (PBDE) levels in dust from previouly owned automobiles at United States dealerships." <u>Environment</u> <u>International</u> 35: 539-544.
- Lehrner (2008). Personal Communication by email between Kathleen Vokes and Theo Lehner.
- Lide, D. R. (1993/94). CRC Handbook of Chemistry and Physics.
- Lindberg, P., U. Sellström, et al. (2004). "Higher brominated diphenyl ethers and hexabromocyclododecane found in eggs of peregrine falcons (Falco peregrinus) breeding in Sweden." <u>Environmental Science and Technology</u> **34**(1): 93-96.
- Lorber, M. (2008). "Exposure of Americans to polybrominated diphenyl ethers." Journal of Exposure Science 18(2-19).
- Luo, X., S. Chen, et al. (2010). "Advances in the study of current-use non-PBDE brominated flame retardants and dechlorane plus in the environment and humans." <u>Science China</u> <u>Chemistry</u> **53**(5): 961-973.
- Mandalakis, M., E. G. Stephanou, et al. (2008). "Emerging Contaminant in Car Interiors: Evaluating the Impact of Airborne PBDEs and PBDD/Fs." <u>Environ. Sci. Technol.</u> **42**(17): 6431-6436.
- Minnesota Department of Health (2010). Take-home Lead: A Preventable Risk for Your Family. St. Paul.
- MIT. (2003). "Inventor of the Week: Henry Dow Bromine Extraction Process." Retrieved October, 2007, from <u>http://web.mit.edu/invent/iow/dow.html</u>
- Osako, M., Y.-J. Kim, et al. (2004). "Leaching of brominated flame retardants in leachate from landfills in Japan." <u>Chemosphere</u> **57**: 1571–1579.
- Petito Boyce, C., S. N. Sax, et al. (2009). "Human Exposure to Decabromodiphenyl Ether, Tertabromobisphenol A, and Decabromodiphenyl Ethane in Indoor Dust." Journal of Environmental Protection Science **3**: 75-96.

- Pure Strategies Inc. for Maine Department of Environmental Protection (2010). "Decabromodiphenyl Ether Flame Retardant in Plastic Pallets: A Safer Alternatives Assessment."
- Qu, W., X. Bi, et al. (2007). "Exposure to polybrominated diphenyl ethers among workers at an electronic waste dismantling region in Guangdong, China." <u>Environment International</u> 33: 1029-1034.
- Roberts, S. C., P. D. Noyest, et al. (2011). "Species-Specific Differences and Structure–Activity Relationships in the Debromination of PBDE Congeners in Three Fish Species." <u>Environ</u> <u>Sci Technol</u> 45(5): 1999-2005.
- Schecter, A., D. Haffner, et al. (2010). "Polybrominated Diphenyl Ethers (PBDEs) and Hexabromocyclodecane (HBCD) in Composite U.S. Food Samples." <u>Environmental</u> <u>Health Perspectives</u> 118(3): 357-362.
- Sepúlveda, A., M. Schluep, et al. (2010). "A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: Examples from China and India." <u>Environmental Impact Assessment Review</u> 30: 28-41.
- Shigeru, M. (2007). Personal Communication.
- Sjodin, A., L. Hagmar, et al. (1999). "Flame Retardant Exposure: Polybrominated Diphenyl Ethers in Blood from Swedish Workers." <u>Environmental Health Perspectives</u> **107**(8): 643-648.
- Song, W., A. Li, et al. (2005). "Polybrominated diphenyl ethers in the sediments of the Great Lakes. 2. Lakes Michigan and Huron." <u>Environmental Science and Technology</u> **39**(10): 3474-3479.
- Stapleton, H. and N. G. Dodder (2008). "Photodegradation of decabromodiphenyl ether in house dust by natural sunlight." <u>Environmental Toxicology and Chemistry</u> **27**: 306-312.
- Stapleton, H. M., M. Alaee, et al. (2004). "Debromination of the flame retardant decabromodiphenyl ether by juvenile carp (Cyprinus carpio)." <u>Environmental Science</u> <u>and Technology</u> **38**(1): 112-119.
- Stapleton, H. M., J. G. Allen, et al. (2008). "Alternate and New Brominated Flame Retardants Detected in U.S. House Dust." <u>Environ Sci Technol</u> **42**: 6910-6916.
- Stapleton, H. M., N. G. Dodder, et al. (2004). "Polybrominated Diphenyl Ethers in House Dust and Clothes Dryer Lint." <u>Environmental Science & Technology</u> **39**(4): 925-931.
- Takigamie, H., G. Suzuki, et al. (2008). "Transfer of brominated flame retardants from components into dust inside television cabinets." <u>Chemosphere</u> **73**(2): 161-169.
- The University of York. (2004). "Extraction of Bromine from Seawater." Retrieved October, 2007, from http://www.york.ac.uk/org/seg/salters/chemistry/DIYResources/AS_%20Storylinetable.htm; EXTRACTIONOFBROMINEFROMSEAWATER.ppt.

- Thompson, B., G. D. Coronado, et al. (2003). "Pesticide take-home pathway among children of agricultural workers: study design, methods, and baseline findings." <u>J Occup Environ</u> <u>Med</u> 45: 42-53.
- Thomsen, C., E. Lundanes, et al. (2001). "Brominated flame retardants in plasma samples from three different occupational groups in Norway." <u>Environmental Monitoring</u> **3**: 366-370.
- Thuresson, K., Å. Bergman, et al. (2006). "Polybrominated diphenyl ether exposure to electronics recycling workers-a follow up study." <u>Chemosphere</u> **64**: 1855-1861.
- Thuresson, K., P. Hoglund, et al. (2006). "Apparent Half-Lives of Hepta-to Decabrominated Diphenyl Ethers in Human Serum as Determined in Occupationally Exposed Workers." <u>Environmental Health Perspectives</u> **114**(2): 176-181.
- Tohka, A. and R. A. Zevenhoven (2002). Processing Wastes and Waste-derived Fuels Containing Brominated Flame Retardants. <u>Helsinki University of Technology</u> <u>Department of Mechanical Engineering.</u>
- Trudel, D., M. Scheringer, et al. (2011). "Total Consumer Exposure to Polybrominated Diphenyl Ethers in North America and Europe." <u>Environmental Science and Technology</u> 45: 2391-2397.
- U.S. EPA. (1992). "Dermal Exposure Assessment: Principles and Applications." Retrieved November 18, 2013, from http://www.epa.gov/oppt/exposure/presentations/efast/usepa_1992d_dermalea.pdf.
- U.S. EPA. (1994). "Technical Resource Document: Extraction and Beneficiation of Ores and Minerals, Volume 1 Lead-Zinc." Retrieved November 18, 2013, from http://www.epa.gov/osw/nonhaz/industrial/special/mining/techdocs/leadzinc.pdf.
- U.S. EPA. (1995a). "EPA Office of Compliance Sector Notebook Project: Profile of the Nonferrous Metals Industry." Retrieved November 18, 2013, from <u>http://www.epa.gov/compliance/resources/publications/assistance/sectors/notebooks/nfm</u> <u>etlsnpt1.pdf</u>.
- U.S. EPA. (1995b). "Identification and Description of Mineral Processing Sectors Alumina & Aluminum." Retrieved November 18, 2013, from http://www.epa.gov/wastes/nonhaz/industrial/special/mining/minedock/id/id4-al.pdf.
- U.S. EPA. (1998). "The Inventory of Sources of Dioxin in the United States, External Review Draft." Retrieved November 18, 2013, from <u>http://www.epa.gov/ncea/pdfs/dioxin/dioxin.pdf</u>.
- U.S. EPA. (2005). "Furniture Flame Retardancy Partnership: Environmental Profiles of Chemical Flame-Retardant Alternatives for Low-Density Polyurethane Foam (EPA 742-R-05-002A)." Retrieved November 18, 2013, from <u>http://www.epa.gov/dfe/pubs/flameret/ffr-alt.htm</u>.
- U.S. EPA. (2007a). "Dermal Exposure Assessment: A Summary of EPA Approaches." Retrieved November 18, 2013, from http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=183584.
- U.S. EPA. (2007b). "Electronics Waste Management in the United States: Approach 2." Retrieved November 18, 2013, from <u>http://www.epa.gov/ecycling/docs/app-2.pdf</u>

- U.S. EPA. (2008). "Child-Specific Exposure Factors Handbook." Retrieved November 18, 2013, from <u>http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=199243</u>.
- U.S. EPA. (2009). "Polybrominated Diphenyl Ethers (PBDEs) Action Plan." Retrieved November 18, 2013, from <u>http://www.epa.gov/opptintr/existingchemicals/pubs/actionplans/pbdes_ap_2009_1230_final.pdf</u>.
- U.S. EPA. (2010a). "An exposure assessment of polybrominated diphenyl ethers." Retrieved November 18, 2013, from <u>http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=210404</u>.
- U.S. EPA. (2010b). "Municipal Solid Waste in the United States: 2009 Facts and Figures." Retrieved November 18, 2013, from <u>http://www.epa.gov/wastes/nonhaz/municipal/pubs/msw2009rpt.pdf</u>.
- U.S. EPA. (2011a). "Design for the Environment Program Alternatives Assessment Criteria for Hazard Evaluation (version 2.0)." Retrieved November 18, 2013, from http://www.epa.gov/dfe/alternatives_assessment_criteria_for_hazard_eval.pdf.
- U.S. EPA. (2011b). "Interpretive Assistance Document for Assessment of Discrete Organic Chemicals. Sustainable Futures Summary Assessment." Retrieved November 18, 2013, from <u>http://www.epa.gov/oppt/sf/pubs/iad_discretes_092011.pdf</u>.
- Ulrich, A., D. Malley, et al. (2009). Peak Phosphorous: Oppotunity in the Making. Water Innovation Centre and International Institute for Sustainable Development.
- United Nations (2011). Globally Harmonized System of Classification and Labelling of Chemicals (GHS). New York and Geneva.
- USGS (2007). 2007 Minerals Yearbook: Bauxite and Alumina.
- USGS (2008). Mineral Commodity Summaries: Magnesium Compounds.
- Voorspoels, S., A. Covaci, et al. (2006). "Remarkable findings concerning the terrestrial toppredator red fox (Vulpes vulpes)." <u>Environmental Science and Technology</u> 40: 2937-2943.
- Vorkamp, K., M. Thomsen, et al. (2005). "Temporal development of brominated flame retardants in peregrine falcon (Falco peregrinus) eggs from South Greenland (1986-2003)." <u>Environmental Science and Technology</u> **39**(21): 8199-8206.
- Washington State Department of Labor & Industries. (Undated). "Workplace Exposure to Polybrominated Diphenyl Ethers (PBDEs)." Retrieved January 26, 2012, from http://www.lni.wa.gov/Safety/Topics/AtoZ/polybrom/default.asp.
- Weil, E. D. and S. V. Levchik (2008). "Flame Retardants in Commercial Use or Development for Textiles." Journal of Fire Science **26**(3): 243-281.
- Williams, E., R. Kahhat, et al. (2008). "Environmental, Social, and Economic Implications of Global Reuse and Recycling of Personal Computers." <u>Environ Sci Technol</u> 42: 6446-6454.
- Yu, J., E. Williams, et al. (2010). "Forecasting Global Generation of Obsolete Personal Computers." <u>Environ Sci Technol</u> 44: 3232-3237.

THIS PAGE INTENTIONALLY LEFT BLANK

6 Considerations for Selecting Flame Retardants

Selecting an alternative chemical flame retardant involves considering a range of factors. Design for the Environment (DfE) chemical alternatives assessments provide extensive information on chemical hazards and provide a more general discussion of other factors relevant to substitution decisions, such as: use information and exposure and life cycle considerations. Decision-makers will likely supplement the human health and environmental information provided in this report with information on cost and performance that may vary depending on the supplier, the materials involved, and the intended application. Alternative flame retardants must not only have a favorable environmental profile, but also must provide satisfactory (or superior) fire safety, have an acceptable cost, and attain the appropriate balance of properties (e.g., mechanical, thermal, aesthetic) in the final product. Users of information in this report may wish to contact the manufacturers of alternative flame retardants for engineering assistance in designing their products with the alternatives.

This chapter outlines attributes that are appropriate for a decision maker to consider in choosing an alternative to decabromodiphenyl ether (decaBDE) and gives a summary of the results of this assessment including certain caveats specific to this assessment that the reader should consider. The chapter begins by describing five general attributes evaluated in this assessment that can inform decision-making about chemical hazards: (1) human health, (2) ecotoxicity, (3) persistence, (4) bioaccumulation potential and (5) exposure potential. The chapter gives special attention to discussion of data gaps in the full characterization of chemicals included in this assessment. The chapter also includes information on the social, performance, and economic considerations that may affect substitution and the chapter concludes by providing additional resources related to state, federal, and international regulations.

The scope of this assessment was focused on the human health and environmental hazards of potential flame retardant substitutes. The report does not include a review or analysis of any additional life-cycle impacts, such as energy and water consumption or global warming potential, associated with any of the baseline or alternative chemicals, or the materials in which they are used. If selection of an alternative flame retardant requires significant material or process changes, relevant life-cycle analyses can be applied to the potentially viable alternatives identified through this hazard-based alternatives assessment, and to the materials in which they are used. Manufacturers may also wish to analyze the life-cycle impacts of materials that do not require the use of a flame retardant, in order to select materials that pose the fewest life-cycle impacts.

6.1 Preferable Human Health and Environmental Attributes

This section identifies a set of positive attributes for consideration when formulating or selecting a flame retardant that will meet flammability standards. In general, a safer chemical has lower human health hazard, lower ecotoxicity, better degradability, lower potential for bioaccumulation and lower exposure potential. As described in Chapter 4, the toxicity information available for each of the alternatives varies. Some hazard characterizations are based on measured data, ranging from one study to many detailed studies examining multiple endpoints, doses and routes of exposures. For other chemicals, there is no chemical-specific toxicity information available, and in these cases either structure activity relationship (SAR) or professional judgment must be

used. In Table 4-4, Table 4-5, and Table 4-6, the hazard designations based on SAR or professional judgment are listed in black italics, while those with hazard designations based on measured test data are listed in color. Readers are encouraged to review the detailed hazard assessments available for each chemical in Chapter 4.

Residual starting materials should be considered and ideally disclosed by the manufacturer in a hazard assessment. For example, several flame retardants are synthesized with bisphenol A or tetrabromobisphenol A. If residual monomers were identified as more than 0.1 percent of the product they were considered in the hazard assessment. It is possible DfE was not aware of/did not predict residuals for some products. The user/purchaser of the flame retardants can ask the manufacturer for detailed product certification to answer questions about residuals, oligomer content or synthesis by-products.

6.1.1 Low Human Health Hazard

The DfE alternatives assessment criteria address a consistent and comprehensive list of human health hazard endpoints. Chemical hazards to human health assessed in this report are: acute toxicity, carcinogenicity, genotoxicity, reproductive and developmental toxicity, neurotoxicity, repeated dose toxicity, skin sensitization, respiratory sensitization, eye irritation and dermal irritation. The DfE criteria describe thresholds to define low, moderate, and high hazard. As described in Chapter 4, where data for certain endpoints were not available or were inadequate, hazard values were assigned using data for structural analogs, SAR modeling and professional judgment. In some cases (e.g., respiratory sensitization) it was not possible to assign hazard values due to a lack of data, models or structural analogs.

For the flame retardant chemicals evaluated in the report, human health hazard endpoints varied due to the different chemistries of decaBDE and the 29 alternatives. Some general trends include the following:

- Large polymers (greater than 1,000 daltons) were generally designated as low concern compared to discrete chemicals, because the large polymers generally cannot be absorbed or easily metabolized. Chemicals with molecular weights (MWs) close to 1,000 may have potential for absorption whereas those with MWs much larger than 1,000 have a much lower potential for absorption (U.S. EPA 2010). Without absorption there cannot be systemic effects. Although irritation can occur without absorption, it was not identified as a hazard for any of the large polymers and therefore was not a distinguishing characteristic in this assessment. The entire MW range of polymeric components was considered. All representative oligomers and low MW polymers were assessed and when they were responsible for the hazard designation, it was indicated as such using footnotes. The presence of oligomers and low MW polymers is dependent upon specific synthesis conditions and final MW range, can vary by application/trade product even for a given CAS Number.
- 2. Acute mammalian toxicity was low for decaBDE and all the alternatives except for tris(tribromoneopentyl) phosphate and the substituted amine phosphate mixture.

- 3. Irritation and sensitization endpoints were generally not distinguishing, but five chemicals had at least one designation of moderate, high, or very high for one or more irritation or sensitization endpoint, whereas decaBDE had low designations for these endpoints.
- 4. Carcinogenicity and mutagenicity hazards varied among the alternatives, with many low or moderate results. None of the chemicals had high concerns for carcinogenicity. Only zinc borate had a high concern for mutagenicity. DecaBDE was low for genotoxicity and moderate for carcinogenicity. For the alternatives, many of the moderate designations for carcinogenicity and mutagenicity result from a lack of data or SAR. DfE criteria are conservative for both of these endpoints in that a lack of data or SAR to designate the hazard as low triggers a default designation of moderate.
- 5. Reproductive, developmental, neurological, and repeated dose toxicity varied from very low to high across discrete chemicals. DecaBDE has high developmental toxicity and moderate repeated dose toxicity.

Examples of DfE Approaches for Neurotoxicity and Degradation Products

This assessment used the DfE hazard criteria that were published in 2011. The 2011 criteria do not specifically address two factors that were important for this assessment of flame retardants: developmental neurotoxicity in the face of incomplete data sets, and theoretical but undemonstrated degradation products. Special consideration, which is summarized below, was given to these factors and used to complement the hazard profiles where relevant. Some of the alternatives have structures that result in questions about potential for degradation products. For example, some of the decaBDE alternatives are synthesized from TBBPA and contain a TBBPA backbone (e.g., tetrabromobisphenol A bis (2,3 dibromopropyl ether) (21850-44-0), brominated epoxy resin end-capped with tribromophenol (135229-48-0), brominated epoxy polymers (68928-70-1)). It is not evident that TBBPA will be released from these substances and the conditions necessary for such degradation are not known. If TBBPA is released through the degradation of these substances, the associated hazard profiles would be influenced by any toxicity associated with TBBPA¹⁹. There is a lack of data to determine if TBBPA might be a degradation product of, for example, TBBPA-bis (2,3 dibromopropyl) ether²⁰ under environmental conditions. Further testing is needed to answer this question. The chemical considerations section of the profiles for the brominated epoxy resin end-capped with tribromophenol and the brominated epoxy polymers describes the potential for low MW components to inform readers how this pathway was considered during the assessment process. For the profiles of the three substances identified above, formation of TBBPA was not explicitly considered when assigning the hazard designations.

There is also inadequate information to fully understand the neurotoxicity of decaBDE and its alternatives. There are two types of neurotoxicity: neurotoxicity which is a result of an exposure

¹⁹ TBBPA has been evaluated in a 2-year carcinogenicity study at the National Toxicology Program (NTP) (NTP 2013b) and in the DfE's Partnership to Evaluate Flame Retardants in Printed Circuit Boards (U.S. EPA 2008b).

²⁰ TBBPA bis (2,3-dibromopropyl) ether has been nominated for consideration for a 2-year cancer bioassay at NTP (Haneke 2002; NTP 2013a).

to a substance during gestation or lactation, referred to as developmental neurotoxicity, and neurotoxicity as a result of exposure to a substance as an adult. Developmental neurotoxicity has been associated with decaBDE (European Chemicals Bureau 2002; U.S. EPA 2008a; Washington Department of Ecology 2008), and organophosphate esters as a class are associated with neurotoxicity. Therefore it is of interest to assess the developmental and adult neurotoxicity of the decaBDE alternatives. The assessment of the neurotoxicity hazard (developmental and adult) of the chemicals assessed in this report presented some challenges as outlined below.

For the highly brominated discrete organics, such as decabromodiphenyl ethane and ethylene bistetrabromophthalimide, data exist for developmental neurotoxicity for some substances but there are no data for adult neurotoxicity. Filling data gaps for neurotoxicity was challenging. One possible approach was to predict that any developmental neurotoxicant is also an adult neurotoxicant (or vice versa). While some substances can be both developmental and adult neurotoxicants, it is also possible for substances to be either developmentally neurotoxic or neurotoxic in adults and not both; therefore, this approach was not used. A second potential approach was to look for neurotoxicity data for a wide range of analogs for highly brominated compounds. Unfortunately, none of the analogs that U.S. Environmental Protection Agency (EPA) identified had any neurotoxicity data based upon adult exposures. The third approach, which was used for this assessment, was to use professional judgment to determine if there are structural alerts to consider highly brominated compounds to be adult neurotoxicants based upon the DfE hazard criteria (see Section 4.1.2). EPA determined there was no evidence of structural alerts and therefore gave the highly brominated discrete organics a hazard designation of estimated Low for adult neurotoxicity. For developmental toxicity, EPA gave substances analogous to decaBDE a hazard designation of High²¹ based on measured developmental neurotoxicity data²² for decaBDE.

Neurotoxicity was also considered for the phosphates as a group. Although many organic phosphates ("organophosphates") are associated with neurotoxicity (e.g., tri-ortho cresyl phosphate and parathion, neither of which is included in this assessment), neurotoxicity data are limited for the organic phosphates in this report. The available data and physical-chemical properties of the discrete phosphate alternatives in this report do not suggest concern for neurotoxicity or developmental neurotoxicity. With some exceptions, phosphates and inorganics are estimated or measured Low for adult neurotoxicity and developmental toxicity in this report. Additional experimental data would help to verify EPA's estimations.

6.1.2 Low Ecotoxicity

Ecotoxicity includes adverse effects observed in wildlife. An aquatic organism's exposure to a substance in the water column has historically been the focus of environmental toxicity considerations by industry and government during industrial chemical review. Surrogate species of fish, aquatic invertebrates and algae are traditionally assessed to consider multiple levels of the aquatic food chain. Aquatic organisms are a focus also because the majority of industrial

²¹ Measured data were available for decaBDE resulting in a measured High designation. DecaBDE is an analog for decabromodiphenyl ethane resulting in an estimated High designation.

²² Developmental toxicity considers additional endpoints beyond neurotoxicity, such as teratogenicity. However, in the case of decaBDE the developmental neurotoxicity data informed the High hazard designation.

chemicals are released to water. Both acute and chronic aquatic toxicity should be considered in choosing a chemical flame retardant. It is common to have limited data on industrial chemicals for terrestrial wildlife. Some human health data (i.e., toxicity studies which use rodents) can be relevant to non-human vertebrates in ecotoxicity evaluations. When evaluating potential concerns for higher trophic level organisms (including humans), bioaccumulation potential (discussed in Section 6.1.4) is an important consideration in conjunction with toxicity for choosing a safer alternative.

For the flame retardant chemicals evaluated in the report, ecotoxicity hazards varied significantly due to the diverse chemistries of the alternatives. Some general trends include the following:

- 1. Large discrete chemicals and large polymers (both halogenated and non-halogenated) had generally low ecotoxicity hazards. The larger chemicals and compounds with high K_{ow} values are not expected to be bioavailable in the water column. Without absorption there cannot be systemic effects. For almost all the chemicals included in this assessment (including decaBDE) the hazard designation was based on professional judgment and/or SAR predicting 'no effects at saturation'.
- 2. For inorganic compounds, aquatic toxicity varied from Low to High hazard. The metal species influences toxicity, as does the type of anion with which it is associated (e.g., a metal hydroxide). Metal compounds will have different solubilities depending on the anion involved, which will contribute to the level of toxicity of the metal compound. The aluminum, antimony and zinc compounds have Moderate to High aquatic toxicity hazard. For aluminum hydroxide, sufficient data are not available to rule out a Moderate concern. For magnesium hydroxide and red phosphorus, aquatic toxicity was Low based on predicted and measured data, respectively.
- 3. In addition to some of the inorganic compounds, some of the phosphorus and/or nitrogen-containing compounds also had High or Very High measured or predicted aquatic toxicity.
- 4. Ecotoxicity data for terrestrial species was limited or completely absent for the chemicals assessed. Therefore, potential for impacts of the alternatives on high trophic level and terrestrial wildlife is unclear and could not be fully assessed.

6.1.3 Readily Degradable: Low Persistence

Persistence describes the tendency of a chemical to resist degradation and removal from environmental media, such as air, water, soil and sediment. Chemical flame retardants must be stable by design in order to maintain their flame retardant properties throughout the lifetime of the product. Therefore, it is not surprising that all but two of the chemicals assessed in this report, including decaBDE, had a persistence value of high or very high. The alternatives without high concern for persistence were triphenyl phosphate, which is readily biodegradable (low persistence), as well as resorcinol bis-diphenyl phosphate (inherently biodegradable), which degrades slowly (moderate persistence). The half-life for a given removal process is used to assign a persistence designation. The half-life measured or estimated to quantify persistence of organic chemicals is not a fixed quantity as is it for a linear decay process such as for the half-life of a radioisotope. Chemicals with half-lives that suggest low or no persistence can still present environmental problems. "Pseudo persistence" can occur when the rate of input (i.e., the emission rate) of a substance exceeds the rate of degradation in, or movement out of, a given area. Even though triphenyl phosphate is by definition not persistent, it demonstrates pseudo persistence in the assessment which should include analysis of volumes of production and release.

A number of the alternatives are high MW polymers (>10,000 daltons) that are predicted to be highly persistent because they are not bioavailable or assimilated by microorganisms. Highly persistent chemicals may ultimately degrade in the right environmental conditions, but time to degradation is much longer than other chemicals, often several months or years.

If the use of higher MW chemicals and polymers for flame retardant applications increases, there would be a need for further information regarding the environmental fate of these chemicals to understand how they behave in the environment, including their persistence in various environmental settings and the identity and toxicity of their degradation products. Environmental monitoring information exists for some of the (non-polymeric) alternatives, including the degradation products, which have been in the marketplace for more than a few years. However, no information was available for other alternative chemicals.

Environmental monitoring could bolster hazard assessments by confirming that environmental fate is as predicted. The lack of such information should not be taken as evidence that environmental releases are not occurring. Environmental detection is not equivalent to environmental persistence; detection in remote areas (e.g., the Arctic) where a chemical is not manufactured is considered to be a sign of persistence and transport from the original point of release. An ideal safer chemical would be stable in the material to which it is added and have low toxicity, but also be degradable at end of life of that material, i.e., persistent in use but not after use. This quality is difficult to achieve for flame retardants.

In addition to the rate of degradation or measured half-life, it is important to be aware of the byproducts formed through the degradation process. In some cases, degradation products might be more toxic, bioaccumulative or persistent than the parent compound. Some of these degradation products are discussed in the hazard profiles, but a complete analysis of this issue is beyond the scope of this assessment. This issue was discussed earlier, in Section 6.1.1 of this chapter, in the context of compounds with a TBBPA backbone that may not degrade to TBBPA. Experimental studies describing this degradation pathway were not available. The report did not consider toxicity from this potential degradation route.

Additionally, a group of three phosphate esters, resorcinol bis-diphenyl phosphate (125997-21-9 "RDP"), bisphenol A bis-(diphenyl phosphate) (181028-79-5 "BAPP") and phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol (1003300-73-9 "BPBP"), could theoretically release biphenol-type structures during degradation by alkaline hydrolysis. However, RDP and BAPP are poorly soluble substances possibly making hydrolysis a less prevalent degradation pathway. Both RDP and BAPP are in commerce and are used in plastics

for electronics. Questions have been raised about whether these substances can release resorcinol and bisphenol A, respectively, during degradation. Experimental data on whether RDP or BAPP release resorcinol or bisphenol-A through degradation are not available. Resorcinol and bisphenol A are associated with endocrine activity; bisphenol A is a priority chemical for regulatory activity and research.

The BPBP alternative is a new to market substance. Applying the same questions and analysis to BPBP, this substance may also have a biphenol type degradant, 4, 4'-dihydroxybiphenyl, that based on its structure, may have potential for endocrine activity.

For the phosphate esters described above, DfE cannot determine the likelihood of release of degradates. DfE includes this information in the hazard profiles of relevant chemicals. Only degradants that were known or predicted to be likely were included in the hazard assessments in this report. Stakeholders are encouraged to conduct additional analyses of the degradation products of preferable alternatives using the assessment methods described in Chapter 4.

In general, metal-containing chemicals are persistent. This is because the metal moiety remains in the environment. Metal-containing compounds can be transformed in chemical reactions that could change their oxidation state, physical/chemical properties, or toxicity. A metal-containing compound may enter into the environment in a toxic (i.e., bioavailable) form, but degrade over time into its inert form. The converse may also occur. The chemistry of the compounds and the environmental conditions it encounters will determine its biotransformation over time. For metals, information relevant to environmental behavior is provided in each chemical assessment in Chapter 4 and should be considered when choosing an alternative.

6.1.4 Low Bioaccumulation Potential

The ability of a chemical to accumulate in living organisms is described by the bioconcentration, bioaccumulation, biomagnification, and/or trophic magnification factors. DecaBDE has high potential hazard for bioaccumulation, as do its break down products (lower brominated diphenyl ether congeners). Some of the alternatives assessed in this report also have a high level of potential for bioaccumulation, including the discrete brominated chemicals and, based on presence of oligomers below 1,000 daltons, also some of the phenyl phosphates. Based on structure activity relationships, the potential for a molecule to be absorbed by an organism tends to be lower when the molecule is larger than 1,000 daltons. This is reflected in the low hazard designations for bioaccumulation for the large polymeric flame retardants without low MW components below 1,000 daltons. The inorganic flame retardants assessed in this report do not have high potential to bioaccumulate. Note that care should be taken not to consider the 1,000 daltons size to be an absolute threshold for absorption – biological systems are dynamic and even relatively large chemicals might be absorbed under certain conditions. In the past, available data suggested that the large size of decaBDE would preclude transport across biological membranes and that its limited water solubility would decrease the potential for absorption (Toxicology Excellence for Risk Assessment 2003). Absorption of decaBDE is poor, whereas lower brominated polybrominated diphenyl ethers (PBDEs) are readily absorbed (ATSDR 2004). Subsequent studies using more sensitive analysis techniques have detected decaBDE in biological samples demonstrating its potential to be absorbed (Lorber 2008). DecaBDE has a MW of 959 daltons. This provides a basis to suggest that the potential for absorption and

potential for bioaccumulation of large molecules around 1,000 daltons is not well understood. Furthermore the initial 1,000 Dalton threshold was established based on the consideration of BCFs. Corresponding thresholds for hazard assessments based on BAF have not yet been rigorously established.

Chemical manufacturers have reduced absorption and bioaccumulation potential of certain substances through the design of larger molecules. Making a molecule bigger (often by making large polymeric molecules) can reduce bioavailability, or minimize the likelihood of low MW components and residuals of concern. A larger polymeric flame retardant molecule may also impact performance properties of the material to which the flame retardant is added in positive or negative ways. A safer molecule also has to perform well in the intended application.

The test guidelines available to predict potential for bioaccumulation have some limitations. For example, they do not require the measurement for the BCFs of different components of a mixture, even if they are known to be present in the test material and sufficiently precise analytical methods are available. This situation often arises for lower MW oligomers or materials that have varying degree of substitution. Bioconcentration tests tend to be limited for chemicals that have low water solubility (hydrophobic), and many flame retardants have low water solubility. Even if performed properly, a bioconcentration test may not adequately measure bioaccumulation potential if dietary exposure dominates over respiratory exposure (i.e., uptake by fish via food versus via their gills). The Organisation for Economic Cooperation and Development program recently updated the fish bioconcentration test, in which dietary uptake is included for the first time (OECD 2012). Dietary uptake is of critical importance and may be a more significant route of exposure for hydrophobic chemicals.

6.1.5 Low Exposure Potential

For humans, chemical exposure may occur at different points throughout the chemical and product lifecycle; by dermal contact, by inhalation, and/or by ingestion; and is affected by multiple physicochemical factors that are discussed in Chapter 5. The DfE alternatives assessment assumes exposure scenarios to chemicals and their alternatives within a 'functionaluse' class to be roughly equivalent. The assessment also recognizes that in some instances chemical properties, manufacturing processes, chemical behavior in particular applications, or use patterns may affect exposure scenarios. For example, some decaBDE flame retardant alternatives may require different loadings to achieve the same flammability protection. Stakeholders should evaluate carefully whether and to what extent manufacturing changes, lifecycle considerations, and physicochemical properties will result in markedly different patterns of exposure as a result of informed chemical substitution. For example, a replacement may leach out, or "bloom" out of the polymer it is flame retarding faster than decaBDE, thus increasing its relative exposure during use or disposal. The combination of high persistence and high potential for bioaccumulation makes an alternative less desirable. Even if human toxicity and ecotoxicity hazards are measured or estimated to be low, dynamic biological systems don't always behave as laboratory experiments might predict. High persistence, high bioaccumulation chemicals, or their degradation products, have high potential for exposure and unpredictable hazards following chronic exposures that may not be captured in the hazard screening process.

6.2 Considerations for Poorly or Incompletely Characterized Chemicals

Experimental data for hazard characterization of industrial chemicals are limited. As described in Chapter 4, for chemicals in this report without full data sets, analogs, SAR modeling, and professional judgment were used to estimate values for those endpoints lacking empirical data. No alternative chemical had empirical data for all of the hazard categories. Nine chemicals had no empirical data at all, and all of their respective endpoints were predicted; an additional six lacked data on at least 10 of the hazard endpoints. Several chemicals included in this analysis appear to have more preferable profiles, with low human health and ecotoxicity endpoints, although they are highly persistent, a frequent property for flame retardants (see Table 4-4, Table 4-5, and Table 4-6). There is less confidence in the results of some seemingly preferable chemicals in which the majority of hazard profile designations are based on estimated effect levels compared to chemicals with full experimental data sets. Empirical data would allow for a more robust assessment that would confirm or refute professional judgments and then support a more informed choice among alternatives for a specific use. Estimated values in the report can, therefore, also be used to prioritize testing needs.

Examples where data are lacking for endpoints reviewed for chemicals in this report include the following:

- The environmental fate of large discrete or polymeric flame retardants (MW approaching or exceeding 1,000 daltons) is uncertain. This is true for both halogenated and non-halogenated chemicals. Polymeric flame retardants are assessed in this report. Some of these polymeric chemicals were designed to be safer alternatives to decaBDE. While SAR analysis shows these chemicals are anticipated to be associated with low hazard, chemical-specific data to support these predictions are lacking. In general, large polymeric flame retardants are predicted to have high persistence but low concern for toxicity or potential for bioaccumulation. Further research is needed to fully understand the environmental fate of polymers approaching or exceeding 1,000 daltons.
- 2. For discrete brominated chemicals with MW and (or) functional groups similar to decaBDE, e.g., decabromodiphenyl ethane and ethylene bistetrabromophthalimide, hazard designations were based on analogy to decaBDE. Because of reactivity, physicochemical and structural properties similar to those of decaBDE, chronic exposure studies are needed to rule out concerns similar to those that have been raised regarding long-term exposure to decaBDE.
- 3. Empirical data is needed to confirm low toxicity and bioaccumulation predictions. Flame retardants are usually highly persistent chemicals by design since they need to maintain their properties throughout the lifetime of the flame retarded product; however, the persistence can be less of a concern for chemicals with a preferable toxicity and bioaccumulation profile. Empirical data for several chemicals identifies them as high or very highly persistent but predicted information identifies them as having low toxicity and/or bioaccumulation hazards.
- 4. An evaluation of potential combustion by-products was not a hazard category in this alternatives assessment. When considering preferred substitutes, a product

manufacturer may wish to consider the types of combustion by-products that may occur when a flame retarded product burns.

In the absence of measured data, DfE encourages users of this alternatives assessment to be cautious in the interpretation of hazard profiles. Chemicals used at high volumes, or likely to be in the future, should be given priority for further testing. Decision-makers are advised to read the full hazard assessments for each chemical, available in Chapter 4, which may inform whether additional assessment or testing is needed. Contact DfE with any questions on the criteria included in hazard assessments or the thresholds, data, and prediction techniques used to arrive at hazard values (www.epa.gov/dfe).

Where hazard characterizations are based on measured data, there are often cases where the amount of test data supporting the hazard rating varies considerably between alternative chemicals. In Table 4-4, Table 4-5, and Table 4-6 the hazard characterizations based on SAR or professional judgment are listed in black italics, while those with hazard characterizations based on measured test data are listed in color. The amount of test data behind these hazard characterizations shown in color can vary from only one study of one outcome or exposure, to many studies in many species and different routes of exposure and exposure duration. In some instances, testing may go well beyond basic guideline studies, and it can be difficult to compare data for such chemicals against those with only a single guideline study, even though hazard designations for both chemicals would be considered "based on empirical data" and thus come with a higher level of confidence. Cases where one chemical has only one study but a second chemical has many studies are complex and merit careful consideration. For hazard screening assessments, such as the DfE approach, a single adequate study can be sufficient to make a hazard rating. Therefore, some designations that are based on empirical data reflect assessment based on one study while others reflect assessment based on multiple studies of different design. The hazard rating does not convey these differences - the full hazard profile should be consulted to understand the range of the available data.

6.3 Social Considerations

Decision-makers should be mindful of social considerations when choosing alternative chemicals. This section highlights occupational, consumer, and environmental justice considerations. Stakeholders may identify additional social considerations for application to their own decision-making processes.

Occupational considerations: Workers might be exposed to flame retardant chemicals from direct contact with chemicals at relatively high concentrations while they are conducting specific tasks related to manufacturing, processing, and application of chemicals (see Section 5.1.1). Many facilities have established risk management practices which are required to be clearly communicated to all employees. The National Institute for Occupational Safety and Health (NIOSH) has established a hierarchy of exposure control practices²³. From best to worst, the practices are: elimination, substitution, engineering controls, administrative controls and personal protection. Switching from high hazard chemicals to inherently lower hazard chemicals can benefit workers by decreasing workplace risks through the best exposure control practices:

²³ <u>http://www.cdc.gov/niosh/topics/engcontrols/</u>

elimination and substitution of hazardous chemicals. While occupational exposures are different to consumer exposures, workers are also consumers and as such workers are relevant to both exposure groups.

Consumer considerations: Consumers are potentially exposed to flame retardant chemicals through multiple pathways described in Chapter 5. As detailed in Section 5.1.5, exposure research documents that people carry body burdens of flame retardants, including decaBDE and its breakdown products. These findings have created pressure throughout the value-chain for substitution, which impacts product manufacturers. DfE alternatives assessments can assist companies in navigating these substitution pressures.

In recent years there has been a greater emphasis on 'green' products. In addition to substituting in alternative chemicals, some organizations advocate for moving away from certain classes of chemicals entirely (e.g., halogenated flame retardants), with product re-design, to avoid future substitutions altogether. Product manufacturers should be mindful of the role of these organizations in creating market pressure for alternative flame retardant chemicals and strategies, and should choose replacement chemicals – or re-designs – that meet the demands of their customers.

Environmental justice considerations: At EPA, environmental justice concerns refer to the disproportionate impacts on people based on race, color, national origin, or income that exist prior to or that may be created by the proposed action. These disproportionate impacts arise because these population groups may experience higher exposures, are more susceptible in response to exposure, or experience both conditions. Factors that are likely to influence resilience/ability to withstand harm from a toxic insult can vary with sociodemographics (e.g., co-morbidities, diet, metabolic enzyme polymorphisms) and are therefore important considerations. Adverse outcomes associated with exposure to chemicals may be disproportionately borne by people of a certain race, national origin or income bracket. Insights into EPA's environmental justice policy can be accessed at:

Some populations have higher exposures to certain chemicals in comparison to the average member of the general population. Low-income populations are over-represented in the manufacturing sector, increasing their occupational exposure to chemicals. Higher exposures to environmental chemicals may also be attributable to atypical product use patterns and exposure pathways. This may be due to a myriad of factors such as cultural practices, language and communication barriers, and economic conditions. The higher exposures may also be a result of the proximity of these populations to sources that emit the environmental chemical (e.g., manufacturing industries, industries that use the chemical as production input, hazardous waste sites, etc.), access to and use of consumer products that may result in additional exposures to the chemical, or higher employment of these groups in occupations associated with exposure to the chemical.

Some populations are disproportionately exposed to chemicals no longer manufactured in the U.S., including some flame retardants like the components of commercial octa- and pentabromodiphenyl ethers (Zota, Adamkiewicz et al. 2010). Low-income households may have

older furniture and other consumer goods, leading to higher exposure to flame retardants as the materials break down over time and chemicals migrate out of products. It is possible that lowincome households are less able than higher income households to replace their furniture with new products possibly containing less hazardous materials. Minorities and low income populations tend to live in low income housing, which is typically low quality housing stock and may be poorly ventilated and contain old carpeting, which is a significant source of household dust, and low-income populations may be less able to afford high quality vacuum cleaners to reduce levels of dust in the home. Also, research has documented that certain communities may have greater exposure to industrial waste, making them more exposed to releases from manufacturing facilities (United Church of Christ 1987; Faber and Krieg 2005; Bullard, Mohai et al. 2007; Mohai, Pellow et al. 2009). Finally, certain populations may experience high exposures to toxic chemicals due to geography, food sources, and cultural practices (Burger and Gochfeld 2011). There is research showing that Alaska Natives are disproportionately impacted by certain flame retardants and other persistent organic pollutants, both because of atmospheric transport of persistent chemicals and because of the biomagnification of chemicals in traditional subsistence food webs (Arctic Monitoring and Assessment Program 2009).

Considering environmental justice in the assessment of an alternative chemical may include exploring product use patterns, pathways and other sources of exposure to the substitute, recognizing how upstream factors such as socio-economic position, linguistic and communication barriers, may alter typical exposure considerations. One tool available to these populations is the Toxics Release Inventory (TRI), which was established under the Emergency Planning and Community Right-to-Know Act to provide information about the presence, releases, and waste management of toxic chemicals. Communities can use information reported to TRI to learn about facilities in their area that release toxic chemicals and to enter into constructive dialogue with those facilities. This information can empower impacted populations by providing an understanding about chemical releases and the associated environmental impacts in their community. Biomonitoring data for the alternative chemical, if available, can also signal the potential for disproportionate exposure among populations with EJ issues.

6.4 Performance Considerations

The DfE approach allows companies to examine hazard profiles of potential replacement chemicals so they can consider the human health and environmental attributes of a chemical in addition to cost and performance considerations. This is intended to allow companies to develop marketable products that meet performance requirements while reducing hazard. This section identifies some of the performance attributes that companies should consider when formulating or selecting a flame retardant, in addition to health and environmental consideration. Performance attributes are critical to the overall function and marketability of flame retardants and should be considered along with other factors. Chapter 2 includes a detailed discussion of the categories of materials, sectors, and products relevant to the chemicals in this assessment, along with a discussion of relevant flammability standards.

The ability of a product to meet required flammability standards is an essential performance consideration for all flame retardant chemicals. The fire safety requirements influence the amount and type of flame retardant, if any, that needs to be added to a resin. Formulations are optimized for cost and performance, so that in some instances it may be equally viable to use a

small quantity of an expensive, highly efficient flame retardant or a larger quantity of a less expensive, less efficient chemical.

In addition to flame retardancy properties, the flame-retarded product must meet all required specifications and product standards (e.g., rigidity, compression strength, weight). The polymer/fire retardant combination used in many of the products which contain decaBDE may be complex chemical formulations. In some instances, replacements exist which could allow for relatively easy substitution of the flame retardant. However, a true "drop-in" exchange of flame retardants is rare; some adjustment of the overall formulation, product re-design, or use of inherently flame retardant materials is usually required. An alternative with similar physical and chemical properties such that existing storage and transfer equipment as well as flame retardant manufacturing technologies could be used without significant modifications. Unfortunately, chemicals that are closer to being "drop-in" substitutes generally have similar physical and chemical properties, and therefore are likely to have similar hazard and exposure profiles. Those seeking alternatives to decaBDE should work with flame retardant manufacturers and/or chemical engineers to develop the appropriate flame retardant formulation for their products.

6.5 Economic Considerations

This section identifies economic attributes that companies often consider when formulating or selecting a flame retardant. Economic factors are best addressed by decision-makers within the context of their organization. Accurate cost estimations must be company-specific; the impact of substituting chemicals on complex product formulations can only be analyzed in-house; and a company must determine for itself how changes will impact market share or other business factors. Cost considerations may be relevant at different points in the chemical and/or product lifecycle. These attributes are critical to the overall function and marketability of flame retardants and flame retarded products and should be considered jointly with performance attributes, social considerations, and human health and environmental attributes.

Substituting chemicals can involve significant costs, as industries must adapt their production processes, and have products re-tested for all required performance and product standards. Decision-makers are advised to see informed chemical substitution decisions as long-term investments, and to replace the use of decaBDE with a chemical they anticipate using for many years to come. This includes attention to potential future regulatory actions motivated by adverse human health and environmental impacts, as well as market trends. One goal is to choose from among the least hazardous options to avoid being faced with the requirement to substitute again.

Flame retardants that are either more expensive per pound or require more flame retardant per unit area to meet the fire safety standards will increase raw material costs. In this situation, a product manufacturer substituting away from decaBDE may pass the cost of a more expensive flame retardant on to customers (e.g., a television manufacturer), who subsequently may pass the cost on to retailers and consumers. In some cases the price premium significantly diminishes over the different stages of the value chain. However, market conditions, competing technologies, and intellectual property issues may influence flame retardant selection when replacing decaBDE.

Handling, disposal, and treatment costs, as well as options for mechanical recycling, may be important considerations when evaluating alternatives. Inherently high hazard chemicals may require special engineering controls and worker protections that are not required of less hazardous alternatives. Disposal costs for high hazard chemicals may also be much higher than for low hazard alternatives. High hazard chemicals may be more likely to result in unanticipated and costly clean-up requirements or enforcement actions should risk management protections fail or unanticipated exposures or spills occur. Also, some chemicals may require specific treatment technologies prior to discharge through wastewater treatment systems. These costs can be balanced against potentially higher costs for the purchase of the alternative chemical. Finally, initial chemical substitution expenses may reduce future costs of mitigating consumer concerns and perceptions related to hazardous chemicals.

It should be noted that, while some assessed alternative chemicals included in this report are currently manufactured in high volume, not all are currently available in quantities that would allow their widespread use immediately. However, prices and availability may change if demand increases.

6.6 Moving Towards a Substitution Decision

As stakeholders proceed with their substitution decisions for decaBDE, the functionality and technical performance of each product must be maintained, which may include product performance in extreme environments over a lifecycle of many years. Critical requirements, such as product safety during operation cannot be compromised. When alternative formulations are developed, the stakeholders should also consider the hazard profiles of the chemicals used to meet product performance, with a goal to drive towards safer chemistry on a path of continuous improvement.

When chemical substitution is the necessary approach, the information in this report can help with selection of safer, functional alternatives. The hazard characterization, performance, economic, and social considerations are all factors that will impact the substitution decision. When choosing safer chemicals, alternatives should ideally have a lower human health hazard, lower ecotoxicity, better degradability, lower potential for bioaccumulation, and lower exposure potential. Where limited data are available characterizing the hazards of potential alternatives, further testing may be necessary before a substitution decision can be made.

Switching to an alternative chemical is a complex decision that requires balancing all of the above factors as they apply to a particular company's cost and performance requirements. DecaBDE is used in a range of polymers and end products; it is therefore unlikely that a single alternative evaluated by this report will fulfill all of the current applications of decaBDE. This report provides hazard information about alternatives to decaBDE to support the decision-making process. Companies seeking a safer alternative should identify the alternatives that may be used in their product (see Table 3-2), and then apply the information provided in this report to aid in their decision-making process.

Alternative chemicals are often associated with trade-offs. For any chemical identified as a potential alternative, some endpoints may appear preferable while other endpoints indicate increased concern relative to the original chemical. A chemical may be designated as a lower

concern for human health but a higher concern for aquatic toxicity or persistence. For example, in the case of high MW polymers, where health hazards and potential bioaccumulation are predicted to be low, one trade-off is high persistence. Additionally, there may be limited information about the polymer's combustion byproducts, or how the polymer behaves in the environment and eventually degrades.

Trade-offs can be difficult to evaluate, and such decisions must be made by stakeholders taking into account relevant information about the chemical's hazard, expected product use, and life-cycle considerations. For example, chemicals expected to have high levels of developmental or reproductive toxicity should be avoided for products intended for use by children or women of child-bearing age. Chemicals with high aquatic toxicity concerns should be avoided if releases to water cannot be mitigated. Nonetheless, even when certain endpoints are more relevant to some uses than others, the full hazard profile must not be ignored.

6.7 Relevant Resources

In addition to the information in this report, a variety of resources provide information on regulations and activities that include review or action on flame retardants at the state, national and global levels, some of which are cited in this section.

6.7.1 Resources for state and local government activities

University of Massachusetts at Lowell created a database which "houses more than 700 state and local legislative and executive branch policies from all 50 states from 1990 to the present. The online database makes it simple to search for policies that your state has enacted or introduced, such as those that regulate or ban specific chemicals, provide comprehensive state policy reform, establish biomonitoring programs, or foster "green" chemistry..." (National Caucus of Environmental Legislators 2008).

http://www.chemicalspolicy.org/chemicalspolicy.us.state.database.php

The Interstate Chemicals Clearinghouse (IC2) is an association of state, local, and tribal governments that promotes a clean environment, healthy communities, and a vital economy through the development and use of safer chemicals and products. The IC2 also created a wiki page to allow stakeholders and members of state organizations to share resources for conducting safer alternatives assessments.

http://www.newmoa.org/prevention/ic2/ http://www.ic2saferalternatives.org/

6.7.2 Resources for EPA regulations and activities

EPA's website has a number of resources regarding regulation development and existing regulations, along with information to assist companies in staying compliant. Some of these sites are listed below.

Laws and Regulations <u>http://www.epa.gov/lawsregs/</u>

Office of Pollution Prevention and Toxics (OPPT): Information on PDBEs http://www.epa.gov/oppt/pbde/

EPA – OPPT's Existing Chemicals Program http://www.epa.gov/oppt/existingchemicals/index.html

America's Children and the Environment <u>http://www.epa.gov/ace/</u>

Integrated Risk Information System (IRIS) <u>http://www.epa.gov/IRIS/</u>

Design for the Environment Program (DfE) http://www.epa.gov/dfe

6.7.3 Resources for global regulations

The European Union (EU)'s REACH (Registration, Evaluation, Authorisation and Restriction of Chemical substances) legislation was enacted in 2007 and has an "aim to improve the protection of human health and the environment through the better and earlier identification of the intrinsic properties of chemical substances" (European Commission 2011a). Their website contains information on legislation, publications and enforcement. http://ec.europa.eu/environment/chemicals/reach/enforcement_en.htm

Under REACH, applicants for authorization are required to control the use of Substances of Very High Concern (SVHC). If a SVHC does not have available alternatives, applicants must carry out their own alternatives assessments. The European Chemicals Agency has published a guidance document for this application that provides direction for conducting an alternatives assessment, as well as creating a substitution plan. http://echa.europa.eu/documents/10162/17229/authorisation_application_en.pdf

The EU also has issued the Restriction of Hazardous Substances directive which ensures that new electrical and electronic equipment put on the market does not contain any of the six banned substances: lead, mercury, cadmium, hexavalent chromium, poly-brominated biphenyls or PBDEs above specified levels (European Commission 2011b). http://www.bis.gov.uk/nmo/enforcement/rohs-home

6.8 The ENFIRO project

ENFIRO, Life Cycle Assessment of Environment-Compatible Flame retardants: Prototypical Case Study (see <u>http://www.enfiro.eu/</u>), is a European Commission FP7 funded research project (Contract-No. 226563) that evaluates viable substitution options for a number of brominated flame retardants for better, safer alternatives (ENFIRO 2011). The consortium is a collaboration between industries, small and medium enterprises and universities. The project delivers a comprehensive dataset on viability of production and application, environmental safety, and a life cycle assessment (LCA) of the alternative flame retardants. Different combinations of the

flame retardant with the product are studied in five applications: printed circuit boards, electronic components, injection-molded products, textile coatings, intumescent paint. Three types of halogen free flame retardants (metal-, phosphorous- and nanoclay-based) are investigated in relation to 1) environmental and toxicological risks, 2) viability of industrial implementation, i.e., production of the flame retardant, 3) fire safety, and 4) application of the flame retardant into the material. The fourteen flame retardants that were considered are: aluminum diethylphosphinate, aluminum trihydroxide, ammonium polyphosphate, bisphenol A bis(diphenyl phosphate), resorcinol bis(diphenyl phosphate), triphenyl phosphate, nanoclay, melamine polyphosphate, zinc borate, zinc stannate, zinc hydroxystannate, dihydro oxaphosphaphenantrene oxide, melamine cyanurate, and pentaerythritol. The project approach is based on the chemical substitution cycle in which the alternative flame retardants are evaluated regarding their environmental and toxicological properties, their flame retardant properties, and their influence on the function of products once incorporated. The main objectives of ENFIRO are 1) to deliver a comprehensive dataset on viability of production and application, environmental safety, and a LCA of the alternative flame retardants, and 2) to recommend certain flame retardant/product combinations for future study based on LCA, life cycle costing and risk assessment studies. The outcome of that assessment together with socio-economic information is used in a LCA. The ENFIRO approach and the results are useful for similar substitution studies, e.g., in REACH. An ENFIRO Stakeholder Forum with members representing flame retardant users (e.g., formulators and users of flame retardants, waste (processing) plants) and other institutes such as non-governmental organizations and policyrelated ones, guide the project.

6.9 References

- Arctic Monitoring and Assessment Program (2009). AMAP Assessment 2009: Human Health in the Arctic. Oslo, Norway.
- ATSDR (2004). Toxicological Profile for Polybrominated Diphenyl Ethers and Polybrominated Biphenyls.
- Bullard, R. D., P. Mohai, et al. (2007). Toxic Wastes and Race at Twenty: 1987-2007. Grassroots Struggles to Dismantle Environmental Racism in the U.S. Cleveland, United Church of Christ Justice and Witness Ministries.
- Burger, J. and M. Gochfeld (2011). "Conceptual environmental justice model for evaluating chemical pathways of exposure in low-income, minority, native American, and other unique exposure populations." <u>Am J Public Health</u> **101**(S1): S64-S73.
- ENFIRO. (2011). "Life Cycle Assessment of Environment-Compatible Flame Retardants: Prototypical Case Study." Retrieved November 2011, from <u>http://www.enfiro.eu/</u>.
- European Chemicals Bureau (2002). European Union Risk Assessment Report Bis(Pentabromophenyl) Ether: Risk Assessment. CAS No. 1163-19-5. EINECS No. 214-604-9. Luxemborg.
- European Commission. (2011a). "REACH." Retrieved March 30, 2011, from <u>http://ec.europa.eu/environment/chemicals/reach/reach_intro.htm</u>.
- European Commission. (2011b). "Working with EEE producers to ensure RoHS compliance through the European Union." Retrieved March 30, 2011, from <u>http://www.rohs.eu/english/index.html</u>.
- Faber, D. R. and E. J. Krieg (2005). Unequal Exposure to Ecological Hazards 2005: Environmental Injustices in the Commonwealth of Massachusetts. Boston, Philanthropy and Environmental Justice Research Project, Northeastern University.
- Haneke, K. E. (2002). Tetrabromobisphenol A bis(2,3-dibromopropyl ether) [21850-44-2]: Review of Toxicological Literature. November 2002. Prepared for National Institute of Environmental Health.
- Lorber, M. (2008). "Exposure of Americans to polybrominated diphenyl ethers." Journal of Exposure Science 18(2-19).
- Mohai, P., D. Pellow, et al. (2009). "Environmental Justice." <u>Annual Review of Environment</u> <u>and Resources</u> **34**.
- National Caucus of Environmental Legislators. (2008). "Lowell Center Releases Searchable State Chemical Policy Database." Retrieved March 30, 2011, from http://www.ncel.net/newsmanager/news_article.cgi?news_id=193.
- National Toxicology Program (NTP). (2013a). "Testing Status: Tetrabromobisphenol A-bis(2,3dibromopropyl ether)." Retrieved May 3, 2013, from http://ntp.niehs.nih.gov/?objectid=BD48F894-123F-7908-7B7E35D7CFAA5298.
- National Toxicology Program (NTP). (2013b). "TR-587: Technical Report Pathology Tables and Curves. Pathology Tables, Survival and Growth Curves from NTP Long-Term Studies.

TR-587: Tetrabromobisphenol A (TBBPA)." Retrieved May 3, 2013, from http://ntp.niehs.nih.gov/?objectid=1AF3931A-FF57-C2F8-3948D37883F3B052.

- OECD. (2012). "Section 3: Degradation and Accumulation." Retrieved April 9, 2012, from http://www.oecd.org/document/57/0,3746,en_2649_34377_2348921_1_1_1_1_0.html.
- Toxicology Excellence for Risk Assessment (2003). Report of the Peer Consulation Meeting on Decabromodiphenyl Ether. Cincinnati, OH.
- U.S. EPA. (2008a). "Toxicological Review of DecaBromodiphenyl Ether (BDE-209) (CAS No. 1163-19-5). In Support of Summary Information on the Integrated Risk Information System (IRIS). EPA/635/R-07/008F." Retrieved November 18, 2013, from http://www.epa.gov/iris/toxreviews/0035tr.pdf.
- U.S. EPA. (2008b). "Flame Retardants in Printed Circuit Boards (Review Draft)." Retrieved November 18, 2013, from http://www.epa.gov/dfe/pubs/projects/pcb/full_report_pcb_flame_retardants_report_draft _11_10_08_to_e.pdf.
- U.S. EPA. (2010). "Interpretive Assistance Document for Assessment of Polymers. Sustainable Futures Summary Assessment." Retrieved November 18, 2013, from <u>http://www.epa.gov/oppt/sf/pubs/iad_polymers_092011.pdf</u>.
- United Church of Christ (1987). Toxic Wasate and Race in the United States: A National Report on the Racial and Socio-Economic Characteristics of Communities with Hazardous Waste Sites, Commission for Racial Justice.
- Waaijers, S. L., Kong D, Hendriks H.S., de Wit C.A., Cousins, I.T., R.H.S. Westerink, M.H.S. Kraak, W. Admiraal, P.E.G. Leonards, P. de Voogt & J.R. Parsons (2013). "Persistence, bioaccumulation and toxicity of halogen-free flame retardants. ." <u>Reviews of</u> <u>Environmental Contamination and Toxicology</u> 222: 1-71.
- Washington Department of Ecology (2008). Alternatives to Deca-BDE in Televisions and Computers and Residential Furniture. Implementation of RCW 70.76: Identifying safer and technically feasible alternatives to the flame retardant called Deca-BDE used in the electronic enclosures of televisions and computers and in residential upholstered furniture Final report, Department of Ecology Publication No. 09-07-041; Department of Health Publication No. 334-181.
- Zota, A., G. Adamkiewicz, et al. (2010). "Are PBDEs an environmental equity concern? Exposure disparities by economic status." <u>Environ Sci Technol</u> **44**(15): 5691-5692.

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix A. Additional Reading and Background References

This report is not intended to be a comprehensive resource on all aspects of flame retardant or polymer nanocomposite technology. This section includes additional books and peer-reviewed publications which can provide additional information to the reader.

In many of the polymers which are included in the scope, a synergist is used to enhance the flame retardant performance. An enhancement in flame retardant performance could mean anything from a greater than expected reduction in heat release rate/flame spread rate, to reduced smoke release/afterglow time, to enhanced onset of ignition time/higher ignition temperature. While there are some known specific chemical synergistic interactions in regards to flame retardancy (antimony-halogen, phosphorus-halogen, phosphorus-nitrogen) there are too many to mention them all. Overall, synergism approaches are not as universal as the use of various flame retardants given that synergism is very fire test/polymer/flame retardant chemistry combination specific. Synergism may only be observed in one specific system and not in any others. However, here are some other minor synergisms (including more information below):

- Inorganic enhancement of intumescent chars
- Metal oxides with halogenated FR
- Metal compounds to enhance char formation in polyvinyl chloride
- Zinc stannates for enhanced smoke reduction
- Borates with halogenated FR and some char forming FR additives

Similar to flame retardants, polymer nanocomposites can be used in a variety of systems. While polymer nanocomposites act as a nearly universal synergist for lowering polymer flammability, in some cases they may have antagonistic interactions with the other flame retardant, or may bring some other undesirable property change to the final formulation. As with synergists, the number of solutions for decreasing flammability with polymer nanocomposites is vast. Studying the literature is necessary to understand what is possible, probable, and currently unknown.

In addition to the fire retardants being assessed in this document other potential technologies for flame retardancy are listed in the references below. These alternative technologies may not yet be commercially viable, or have not yet been assessed by the U.S. Environmental Protection Agency (EPA) Design for the Environment (DfE) program. So while the technology may show an alternate way of providing fire safety to a product, their environmental impact may be unknown. However, the technologies show what is possible and what works, so the reader may be able to develop new fire safe technologies for their product in case other flame retardants are not economically or environmentally viable.

The references are divided into nanocomposite technology and flame retardancy topics below. Most of the references are peer-reviewed papers and there are a few useful books. The field of fire safety is constantly changing and therefore the reader is encouraged to use this list as a starting point to their own literature search.

Polymer Nanocomposite References:

"Polymer/layered silicate nanocomposites: a review from preparation to processing" Ray, S. S.; Okamoto, M. *Prog. Polym. Sci.***2003**, *28*, 1539-1641.

"An overview on the degradability of polymer nanocomposites" Pandey, J. K.; Reddy, K. R.; Kumar, A. P.; Singh, R. P. *Polym. Degrad. Stab.***2005**, *88*, 234-250

"Polymer nanocomposite foams" Lee, L. J.; Zeng, C.; Cao, X.; Han, X.; Shen, J.; Xu, G. *Composites Science and Technology***2005**, *65*, 2344-2364

"Polymer Nanocomposites Containing Carbon Nanotubes" Moniruzzaman, M.; Winey, K. I. *Macromolecules***2006**, *39*, 5194-5205.

"Polymer/montmorillonite nanocomposites with improved thermal properties Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement" Leszczynska, A.; Njuguna, J.; Pielichowski, K.; Banerjee, J. R. *Thermochimca Acta***2007**, *435*, 75-96.

"Polymer/montmorillonite nanocomposites with improved thermal properties Part II. Thermal stability of montmorillonite nanocomposites based on different polymer matrixes" Leszczynska, A.; Njuguna, J.; Pielichowski, K.; Banerjee, J. R. *Thermochimica Acta* **2007**, *454*, 1-22.

"Synthetic, layered nanoparticles for polymeric nanocomposites" Utracki, L. A.; Sepehr, M.; Boccaleri, E. *Polym. Adv. Technol.***2007**, *18*, 1-37.

"Twenty Years of Polymer-Clay Nanocomposites" Okada, A.; Usuki, A. *Macromol. Mater. Eng.***2007**, *291*, 1449-1476.

"Polymer Nanocomposites with Prescribed Morphology: Going beyond Nanoparticle-Filled Polymers" Vaia, R. A.; Maguire, J. F. *Chem. Mater.***2007**, *19*, 2736-2751.

"How Nano are Nanocomposites?" Schaefer, D. W.; Justice, R. S. *Macromolecules***2007**, *40*, 8501-8517.

"Features, Questions, and Future Challenges in Layered Silicates Clay Nanocomposites with Semicrystalline Polymer Matrices" Harrats, C.; Groeninckx, G. *Macromol. Rapid Commun.***2008**, *29*, 14-26.

"From carbon nanotube coatings to high-performance polymer nanocomposites" Bredeau, S.; Peeterbroeck, S.; Bonduel, D.; Alexandre, M.; Dubois, P. *Polym. Intl.***2008**, *57*, 547-553.

"Nanocomposites based on polyolefins and functional thermoplastic materials" Ciardelli, F.; Coiai, S.; Passaglia, E.; Pucci, A.; Ruggeri, G. *Polym. Int.***2008**, *57*, 805-836.

"Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems" Morgan, A. B. *Polym. Adv. Technol.***2006**, *17*, 206-217.

"Polymer nanotechnology: Nanocomposites" Paul, D. R.; Robeson, L. M. *Polymer***2008**, *49*, 3187-3204.

"Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review" Jang, B. Z.; Zhamu, A. *J. Mater. Sci.***2008**, *43*, 5092-5101.

"Toxicity Evaluation for Safer Use of Nanomaterials: Recent Achievements and Technical Challenges" Hussain, S. M.; Braydich-Stolle, L. K.; Schrand, A. M.; Murdock, R. C.; Yu, K. O.; Mattie, D. M.; Schlager, J. J.; Terrones, M. *Adv. Mater.***2009**, *21*, 1549-1559.

"A review and analysis of electrical percolation in carbon nanotube polymer composites" Bauhofer, W.; Kovacs, J. Z. *Composites Science and Technology***2009**, *69*, 1486-1498.

"An assessment of the science and technology of carbon nanotube-based fibers and composites" Chou, T-W.; Gao, L.; Thostenson, E. T.; Zhang, Z.; Byun, J-H. *Composites Science and Technology***2010**, *70*, 1-19.

"Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: A critical review" Bose, S.; Khare, R. A; Moldenaers, P. *Polymer***2010**, *51*, 975-993.

"Recent Advances in Research on Carbon Nanotube-Polymer Composites" Byrne, M. T.; Gun'ko, Y. K. *Adv. Mater.***2010**, *22*, 1672-1688.

"Carbon nanotube-based hierarchical composites: a review" Qian, H.; Greenhalgh, E. S.; Shaffer, M. S. P.; Bismarck, A. J. Mater. Chem. **2010**, 20, 4751-4762.

"Current issues in research on structure-property relationships in polymer nanocomposites" Jancar, J.; Douglas, J. F.; Starr, F. W.; Kumar, S. K.; Cassagnau, P.; Lesser, A. J.; Sternstein, S. S.; Buehler, M. J. *Polymer***2010**, *51*, 3321-3343.

"Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy" Kiliaris, P.; Papaspyrides, C. D. *Progress in Polymer Science***2010**, *35*, 902-958.

"Graphene/Polymer Nanocomposites" Kim, H.; Abdala, A. A.; Macosko, C. W. *Macromolecules***2010**, *43*, 6515-6530.

"Debunking Some Misconceptions about Nanotoxicology" Warheit, D. B. *Nano Letters***2010**, *10*, 4777-4782.

Flame Retardant References:

"A review of current flame retardant systems for epoxy resins" Weil, E. D.; Levchik, S. J. Fire. *Sci.***2004**, *22*, 25-40.

"Commercial Flame Retardancy of Thermoplastic Polyesters – A Review." Weil, E. D.; Levchik, S. *J. Fire Sci.***2004**, *22*, 339-350.

"Commercial Flame Retardancy of Unsaturated Polyester and Vinyl Resins: Review" Weil, E. D.; Levchik, S. *J. Fire Sci.***2004**, *22*, 339-350.

"Thermal decomposition, combustion and fire-retardancy of polyurethanes – a review of the recent literature" Levchik, S. V.; Weil, E. D. *Polym. Int.***2004**, *53*, 1585-1610.

"Thermal decomposition, combustion and flame-retardancy of epoxy resins – a review of the recent literature" Levchik, S. V.; Weil, E. D. *Polym. Int.***2004**, *53*, 1901-1929.

"Recent Advances for Intumescent Polymers" Bourbigot, S.; Le Bras, M.; Duquesne, S.; Rochery, M. *Macromol. Mater. Eng.***2004**, 289, 499-511.

"New developments in flame retardancy of epoxy resins" Levchik, S.; Piotrowski, A.; Weil, E.; Yao, Q. *Polym. Degrad. Stab.***2005**, *88*, 57-62.

"Developments in flame retardant textiles – a review" Horrocks, A. R.; Kandola, B. K.; Davies, P. J.; Zhang, S.; Padbury, S. A. *Polym. Degrad. Stab.***2005**, *88*, 3-12.

"Flammability" Tewarson, A. Chapter 42 in "Physical Properties of Polymers Handbook, Mark J. E. ed. AIP Press, NY 1996. pp 577-604.

"Overview of recent developments in the flame retardancy of polycarbonates" Levchik, S. V.; Weil, E. D. *Polym. Int.***2005**, *54*, 981-998.

"Flame and Smoke Retardants in Vinyl Chloride Polymers – Commercial Usage and Current Developments" Weil, E. D.; Levchik, S.; Moy, P. *J. Fire Sci.***2006**, *24*, 211-236.

"Thermal decomposition, combustion and fire-retardancy of polyurethanes – a review of the recent literature" Levchik, S. V.; Weil, E. D. *Polym. Int.***2004**, *53*, 1585-1610.

"A review of flame retardant polypropylene fibres" Zhang, S.; Horrocks, A. R. *Prog. Polym. Sci.***2003**, *28*, 1517-1438.

"A Review of Recent Progress in Phosphorus-based Flame Retardants" Levchik, S. V.; Weil, E. D. J. Fire Sci. 2006, 24, 345-364.

"Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems" Morgan, A. B. *Polym. Adv. Technol.***2006**, *17*, 206-217.

"Flame Retardants for Polystyrenes in Commercial Use or Development" Weil, E. D.; Levchik, S. V. *J. Fire Sci.***2007**, *25*, 241-264.

"Fire retardant polymers: recent developments and opportunities" Bourbigot, S.; Duquesne, S. J. *Mater. Chem.***2007**, *17*, 2283-2300.

"Flame Retardants in Commercial Use or Development for Polyolefins" Weil, E. D.; Levchik, S. V. J. Fire Sci. 2008, 26, 5-42.

"New Developments in flame retardancy of styrene thermoplastics and foams" Levchik, S. V.; Weil, E. D. *Polym. Int.***2008**, *57*, 431-448.

"Flame Retardants in Commercial Use or Development for Textiles" Weil, E. D.; Levchik, S. V. *J. Fire Sci.***2008**, *26*, 243-281.

"Combined Fire Retardant and Wood Preservative Treatments for Outdoor Wood Applications – A Review of the Literature" Marney, D.C.O.; Russell, L.J. *Fire Technology***2008**, *44*, 1 – 14

"Zinc borates as multifunctional polymer additives" Shen, K. K.; Kochesfahani, S.; Jouffret, F. *Polym. Adv. Technol.***2008**, *19*, 469-474.

"Ignition, Combustion, Toxicity, and Fire Retardancy of Polyurethane Foams: A Comprehensive Review" Singh, H.; Jain, A. K. J. App. Polym. Sci. **2009**, 111, 1115-1143.

"Fire Properties of Polymer Composite Materials" Eds. Mouritz, A. P.; Gibson, A. G. Springer-Verlag, TheNetherlands, 2006. ISBN 978-1-4020-5355-9.

"Flame retardancy of silicone-based materials" Hamdani, S.; Longuet, C.; Perrin, D.; Lopezcuesta, J-M.; Ganachaud, F. *Polym. Degrad. Stab.*, **2009**, *94*, 465-495.

"A Review of Transition Metal-Based Flame Retardants: Transition-Metal Oxide/Salts, and Complexes" Morgan, A. B. ACS Symposium Series 1013 – Fire and Polymers V: Materials and Concepts for Fire Retardancy2009, Oxford University Press, pp 312-328.

"SFPE Handbook of Fire Protection Engineering" 4th Edition, Eds. DiNenno, P. J.; Drysdale, D.; Beyler, C. L.; Walton, W. D.; Custer, R. L. P.; Hall, J. R.; Watts, J. M. National Fire Protection Association, Quincy, MA, 2008. ISBN 978-0-87765-821-4.

"Flame Retardants for Plastics and Textiles: Practical Applications" Weil, E. D.; Levchik, S. V. Hanser Publishers, Cincinnati, OH 2009, ISBN 978-1-56990-454-1.

"A review on flame retardant technology in China. Part I: development of flame retardants" Chen, L.; Wang, Y-Z. *Polym. Adv. Technol.***2010**, *21*, 1-26.
Fire Retardancy of Polymeric Materials, 2nd Edition. Eds. Wilkie, C. A.; Morgan A. B. December 2009 (2010 publishing date), Taylor and Francis. Boca Raton, FL ISBN 978-1-4200-8399-6.

"Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy" Kiliaris, P.; Papaspyrides, C. D. *Progress in Polymer Science***2010**, *35*, 902-958.

"The fire retardant behavior of huntite and hydromagnesite – A review" Hollingbery, L. A.; Hull, T. R. *Polym. Degrad. Stab.***2010**, *95*, 2213-2225.