Predictive Model of Reproductive Toxicity from ToxCast High Throughput Screening

Matthew Martin (EPA/ORD/NCCT) CPCP – May 2011

U.S. Environmental Protection Agency | Office of Research & Development National Center for Computational Toxicology

May 26, 2011

Overview

• The Problem

- –Human reproductive impairment & the environment
 –Current testing paradigm & in vivo toxicology
- A Solution
 - -In Vitro assays & high-throughput screening
 - -Bioinformatics & predictive models

Human Reproductive Impairment & The Environment

Reproductive Impairment & Toxicity

• What?

- Environmental impact on and causes of reproductive impairment
- Why?
 - -1 in 7 couples experience infertility
 - Miscarriage occurs in a reported 10-25% of all pregnancies
 - Increased focus on Testicular Dysgenesis Syndrome (TDS) & Endometriosis
 - Links between chemical exposure and reproductive anomalies

• How?

- Chemical toxicity studies in rodent
- Human epidemiology studies
- Worker exposure studies
- In Vitro bioactivity profiling?

Reproductive Impairment & Toxicity

Current Testing Paradigm & Reference In Vivo Reproductive Study Data

Current Testing Paradigm

Reproductive Toxicity Testing

- Limited regulatory capacity to require or request reproductive testing
 - Primarily food-use pesticides require study through FIFRA/FQPA
 - In 30 years, ~500-1000 chemicals tested in MGR study
 - >10,000 chemicals currently in the environment
- Repro testing for REACH compliance
 - 70% of costs
 - 90% of animal use
 - Similar to eventual TSCA reform?
- Gross endpoints measured/investigated
 - Lack of mechanistic information
 - Non-gender specific
- Limited effort in predictive modeling of reproductive toxicity
 - Complexity of study design & endpoints
 - Lack of high quality reference information

FIFRA: Federal Insecticide, Fungicide, and Rodenticide Act

FQPA: Food Quality and Protection Act

REACH: Registration, Evaluation, Authorisation and Restriction of Chemical substances

TSCA: Toxic Substance Control Act

ToxRefDB: Capturing & Simplifying the MGR Study Design

F0: 1st Generation Parental Animals

F1: 1st Generation Offspring & 2nd Generation Parental Animals

F2: 2nd Generation Offspring Animals

Reproductive Toxicity as an Endpoint for Predictive Modeling

12 from 39 unacceptable studies in ToxRefDB

Predictive Model of Reproductive Toxicity

ToxCast Data Analysis

Emax: Maximal efficacy/response/activity AC50: Concentration whereby 50% of maximal response was achieved Conc (uM): Micromolar concentrations of chemical

Gene-level Analysis for Modeling

12

Negative = 0Positive = $\{3-12\}$ GeneScore = Avg(AssayScore) ERa = Estrogen Receptor Alpha AR = Androgen Receptor

Model Development Steps

- Defined Class Data In Vivo Reproductive Endpoint Positives and Negatives
- Defined Training Set
 - Acceptable In Vivo Study in ToxRefDB
 - ->2% Active across ~500 Assays (Hit in 10/500 assays)
 - Filtered out potential confounders (e.g., insolubility, decomposition, etc.)
 - Similar profile of In Vivo Activity; Cannot assume negative for toxicity
- Performed Feature Selection
 - Statistical Association with Endpoint
 - Biologically relevant groupings (i.e., gene and gene sets)
- Developed Model
 - 5-Fold CV using LDA
 - Complete model on full training set (used downstream for model validation)
- Model Validation & Example Applications

Chemical Group Training Set Considerations

		Little to No <i>In</i>	
		<i>vitro</i> Activity	Total <i>In vivo</i>
	In vitro Activity	(<2% Active)	Chemical Counts
Acceptable Reproductive Study	206 (A)	50 (B)	256
Unacceptable Reproductive Study	31 (C)	8 (D)	39
No Reproductive Study Available	10 (E)	4 (F)	14
Total In vitro Chemical Counts	247	62	309

Feature Selection & Model Development

Easier communication of model results based on gene or gene-set features

15

Model Summary Statistics

						-	
Cross-Validat	tion Statistics	Full Model Statistics			Parameter Coefficients		
Learner	LDA	ТР	55	F1	73%	PPARα	1.37
CV	5-fold	FP	28	RR	6.3	AR	0.98
No. F	8	FN	13	OR	17	ERα	0.45
Assays	36	TN	110	PPV	66%	PPARγ	0.23
BA Train	77%	SENS	81%	NPV	90%	СҮР	0.28
SD Train	2%	SPEC	80%	Pred	78%	GPCR	0.5
BA Test	74%	BA	80%	P-Value	4.2E-17	OTHER	0.45
SD Test	5%	А	80%	Cutoff	0.6	PXR	-0.21

Model Results By Chemical Group

** = BA based on sensitivity only due to no positive chemicals (lack of confidence in defining chemicals)

External Validation Set

		Evidence of	Predicted	
Chemical		Reproductive	Reproductive	
Group	Chemical Name	Toxicity	Toxicant	
E	НРТЕ	Yes	Yes	
С	Fenitrothion	Yes	Yes	
С	Prochloraz	Yes	Yes	
E	Bromoxynil	Yes	Yes	
E	Methoxychlor	Yes	Yes	
С	Milbemectin	Yes	Yes	
С	Metiram-zinc	Yes	Yes	
С	Chlorsulfuron	Yes	Yes	
F	Methyl cellusolve	Yes	Yes	
С	Abamectin	Yes	Yes	
С	Tebupirimfos	Yes	Yes	
E	Alachlor	Yes	Yes	
С	Tribufos	Yes	No	
С	Spiroxamine	Yes	No	
С	Tefluthrin	Yes	No	
С	Disulfoton	Yes	No	
С	Esfenvalerate	Yes	No	
E	Methyl hydrogen phthalate	No	No	
F	Monocrotophos	No	No	
F	Dimethyl phthalate	No	No	
E	Butralin	No	No	
E	Clorophene	Unknown	Yes	
E	Diniconazole	Unknown	Yes	
E	Niclosamide	Unknown	Yes	
F	Phenoxyethanol	Unknown	No	
E	Symclosene	Unknown	No	

Comparison to EU Repro C&L

Chemical Name	Predicted Positive	Repro C&L	Model Score
Bisphenol A	Yes	R62	6.1
Vinclozolin	Yes	R60&61	4.7
Flusilazole	Yes	R61	4.6
Linuron	Yes	R62&61	2.9
Myclobutanil	Yes	R63	2.4
Fenarimol	Yes	R62	2.5
Fentin	Yes	R63	3.5
Fluazifop-P-butyl	Yes	R63	1.7
Flumioxazin	Yes	R61	0.9
Cyproconazole	Yes	R63	1.2
Diethylhexyl phthalate (DEHP)	Yes	R60&61	0.9
Isoxaflutole	Yes	R63	0.6
Fluazifop-butyl	Yes	R61	1.0
Dibutyl phthalate	Yes	R62&61	0.8
Benomyl	No	R60&61	0.0
Diuron	No		0.4
Lindane	No		0.0
Propazine	No		-0.3
Propargite	No		-0.5

* Requires metabolic activation *

Chemical Testing Prioritization

Conclusions

•Developed a robust, stable, and externally predictive model of reproductive toxicity

•Features and resulting model are easy to communicate and translate for decision making

•Model can readily be updated with new data or replacement of current assay data

•Model can be tuned to perform for different applications

•General model of reproductive toxicity, but provides mechanistic insight for targeted testing

•Recognized data gaps including metabolism, steroidogenesis, reactive chemicals

•Able to perform forward validation study using ToxCast Phase II data and chemical set