

Pharmaceuticals in municipal wastewater

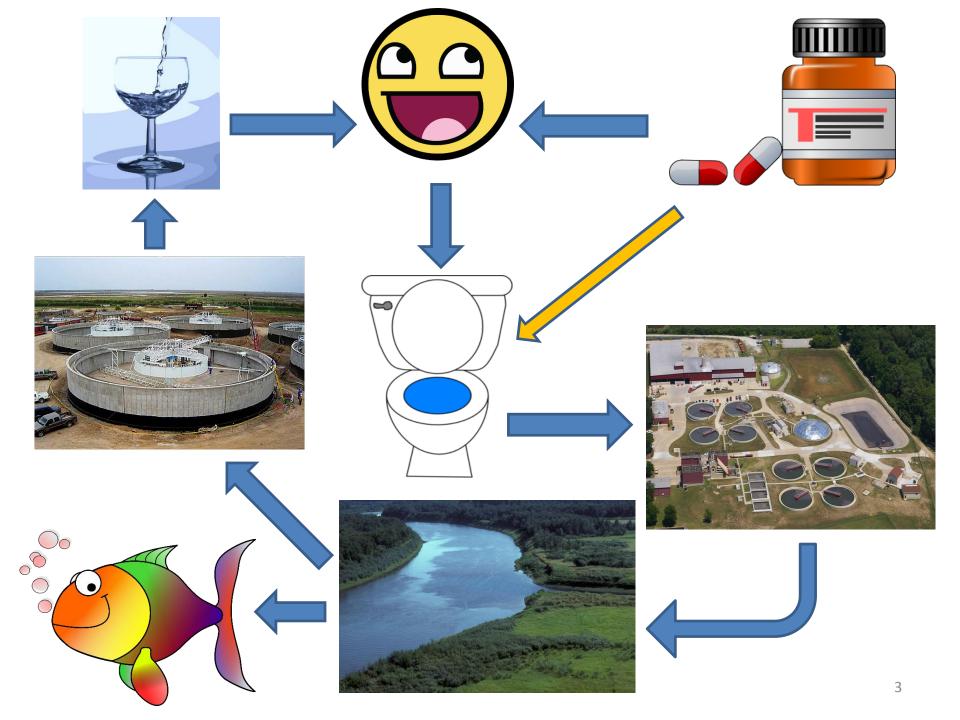
Mitch Kostich, Angela Batt, Susan Glassmeyer and Jim Lazorchak

September 24, 2014

Office of Research and Development National Exposure Research Laboratory

Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

Problem statement


Active pharmaceutical ingredients (APIs) frequently reported in water in low parts per billion range

Biologically active at low concentrations initial concern: effects like therapeutic effects? blood pressure? sexual development? antibiotic resistance?

What are risks to humans and aquatic life?

Challenges:

well over 1000 APIs approved by FDA for use in the US occurrence studies limited to several dozen APIs at a time aquatic life toxicity studies typically one API at a time

Project intent

Inform prioritization of EPA research related to:

Clean Water Act: discharges into ambient waters Safe Drinking Water Act: drinking water quality

Provide screening level estimates of risk for humans and aquatic life narrow the scope of concern which drugs? effect types? intensity? target populations?

Risk-based prioritization

for potential future occurrence or toxicology studies focus on the drugs most likely to present risks identify the critical (for risk estimation) unknowns

Conceptual approach

Prioritize based on risk: higher risk = higher priority

Assume risk proportional to: concentration / effective dose

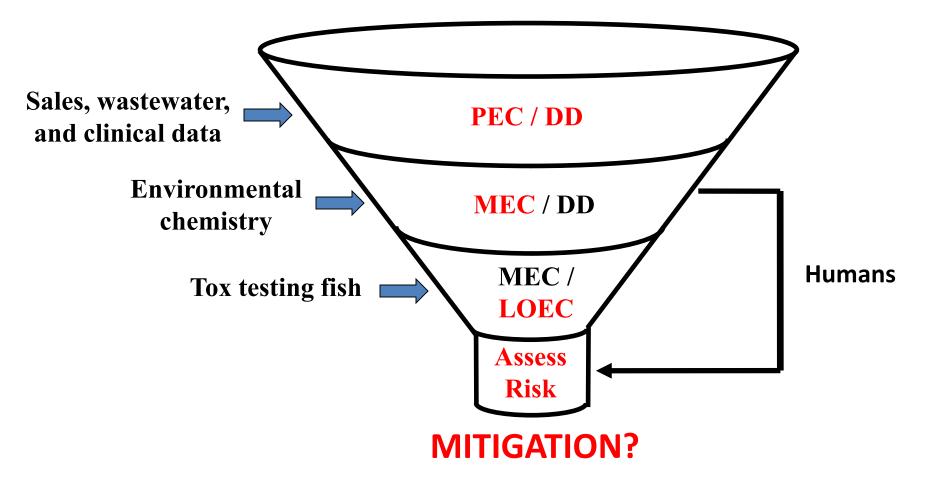
Occurrence data limited; other data more abundant have marketing data and wastewater production rates calculate "predicted environmental concentrations" (PECs)

Approximate potency with min therapeutic daily dose ignores differences in endpoints

Focus on upper end (~99th percentile) of distributions more broadly protective -- asks **how bad might it get?**

Employ tiered approach

Tolerating uncertainty


There are a lot of uncertainties in model parameters like: physiological degradation, WWTP removal, in-stream removal, ecotoxicology, etc.

Replace unknowns with protective defaults: translates uncertainty into higher risk quotient prioritization highlights critical uncertainties false positives much more likely than false negatives

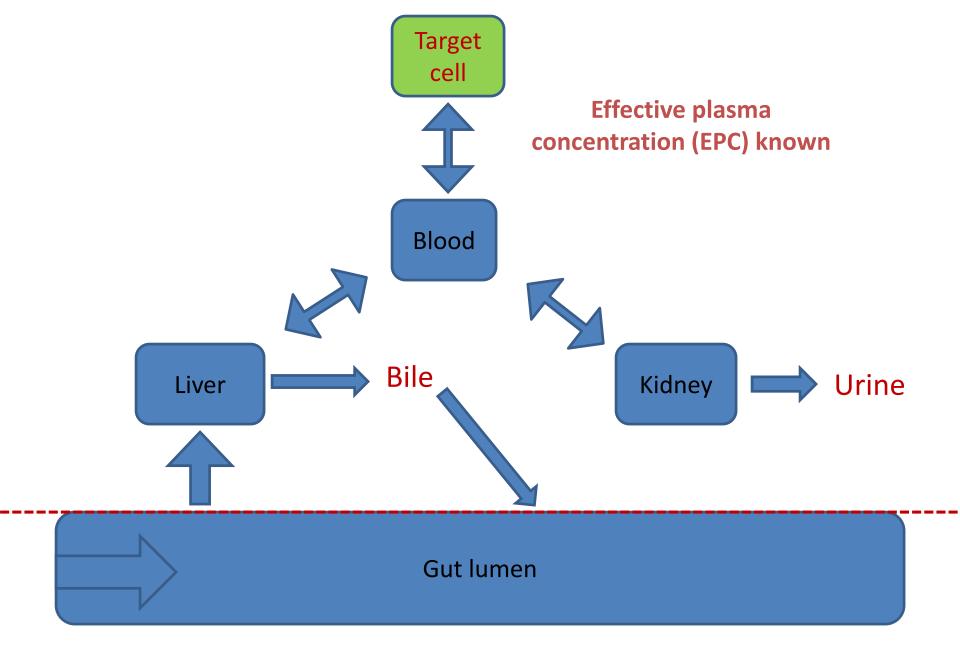
How much uncertainty can we accept?

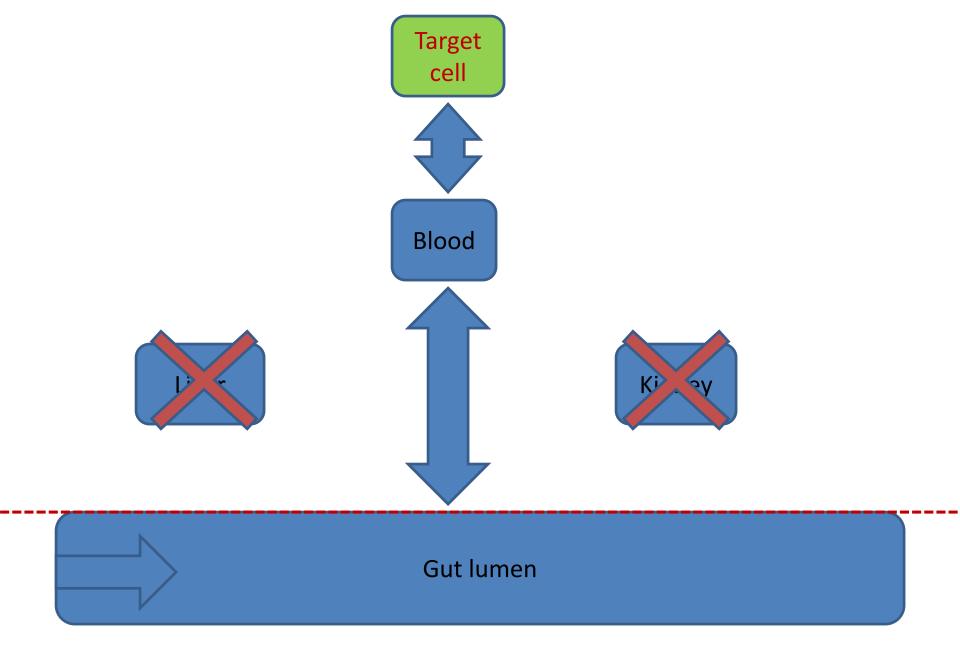
For example: if 105 PPT is 'safe' level then: if PEC is 100 PPT: 0.1-fold (up to 110 PPT) may be problem if PEC is 0.01 PPT: 1000-fold (up to 10 PPT) is ok

Tiered prioritization

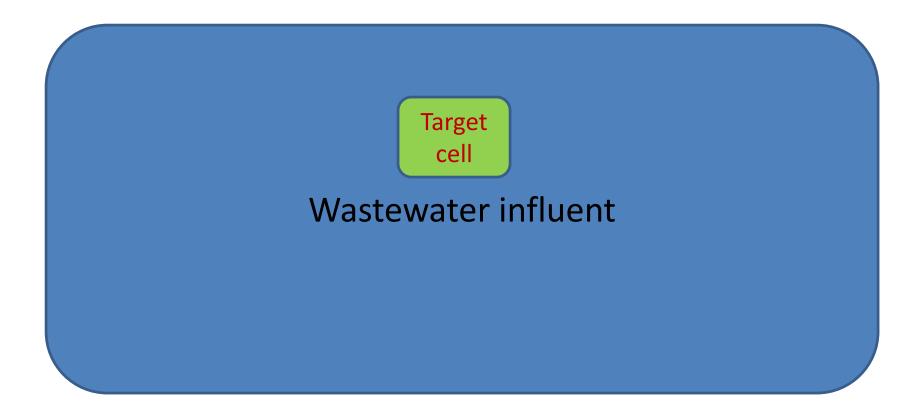
PEC = <u>Predicted Environmental Concentration from sales / wastewater volume</u> **DD** = minimum <u>Daily Dose rate from clinical data</u> **MEC** = <u>Measured Environmental Concentration from literature and effluent study</u> **LOEC** = <u>Lowest Observable Effect Concentration in sensitive aquatic species</u> 7

DPD = Daily Doses Per Decade


Assumes drinking 2 L wastewater influent per day


Rank	API	PEC (PPT)	DPD
1	levothyroxine	19	14
2	estradiol	617	9
3	hydrochlorothiazide	13947	8.2
4	hydrocodone	2561	3.7
5	prednisone	2194	3.2
6	betamethasone	93	2.7
7	furosemide	7283	2.7
•••		•••	•••
50	nitroglycerin	2.9	0.07

What about mixtures?


Mode of action	API / Mode	DPD
thyroid hormone modulator	3	30.7
neurotransmitter modulator	105	28.1
anti-inflammatory	32	26.5
anti-hypertensive	36	22.4
reproductive modulator	26	22
anti-hyperglycemic	7	6.6
lipid modifier	9	5.4
h1 anti-histamine	11	1.9
antibacterial	32	1.9
gastric antacid	9	1.2

A few APIs dominate each mode of action (MOA)

100% bioavailability, no systemic detoxification

Compare effective plasma concentration (EPC) directly to PEC

PEC / EPC EPC = effective plasma concentration

Rank	API	PEC (PPT)	PEC / EPC
1	estradiol	617	2056
2	atorvastatin	2906	45
3	promethazine	1668	6
4	simvastatin	548	6
5	ethinyl estradiol	5.4	5
6	sertraline	615	4
7	hydrocortisone	2368	3
•••	•••	•••	
50	isosorbide mononitrate	250	0.0012

Conclusions: modeling PECs

For healthy adults, **AVERAGE exposure rates low**

relative to therapeutic dose rate, margin of exposure > 100

True for single APIs and their mixtures

For top 50 APIs, harder to model sensitive human sub-populations, or aquatic life

After top 50, risks appear low for aquatic life

Risk estimates vary by >6 orders of magnitude: differentiates APIs strongly even relative to likely errors.

Model parameterized with NATIONAL AVERAGES

Kostich and Lazorchak, 2008. STOTEN, 389:320

DEA data (controlled APIs)

ZIP CODE	1ST QUARTER	2ND QUARTER
DRUG CODE: 1100B DRUG	NAME: DL-AMPHETAMINE	BASE
995	879.09	798.34
996	186.81	196.00
997	143.80	143.08
998	103.86	117.41
999	37.28	26.51

Amount dispensed within 3-digit zip code from DEA for 9 controlled APIs

Population size within 3-digit zip code from US Census

Calculate average per capita consumption within area

Wastewater Plant Data							
Plant ID	Zip Code	Total Flow MGD	Population				
08209000098	81301	0.3	4350				
13000211002	31601	1.21	10900				
22000980001	22000980001 71247 0.05 475						
42006166001	15767	1.48	10243				
39008371001	39008371001 45619 0.77 10203						
10,631 more wastewater plant records. From US EPA Clean Watersheds Needs Survey							

Distribution of local PECs

	50%	75%	90%	95%	99%	Avg PPT
Amphetamine	0.9	1.5	2.2	2.7	5.5	95
Methylphenidate	0.9	1.5	2.2	3.0	4.7	207
Codeine	1.3	2.1	3.4	4.7	7.0	298
Oxycodone	1.0	1.6	2.6	4.0	5.8	429
Hydromorphone	1.0	1.7	3.0	4.2	6.9	10
Hydrocodone	1.0	1.6	2.4	2.9	7.6	354
Methadone	0.9	1.7	3.2	4.8	6.4	70
Morphine	1.1	1.7	3.0	4.3	8.6	211
Fentanyl	1.0	1.6	2.4	3.1	10.4	5
People/Flow	1.1	1.4	1.8	1.9	2.7	511

Results suggests use of 10x assessment factor for extrapolating from national to local estimates

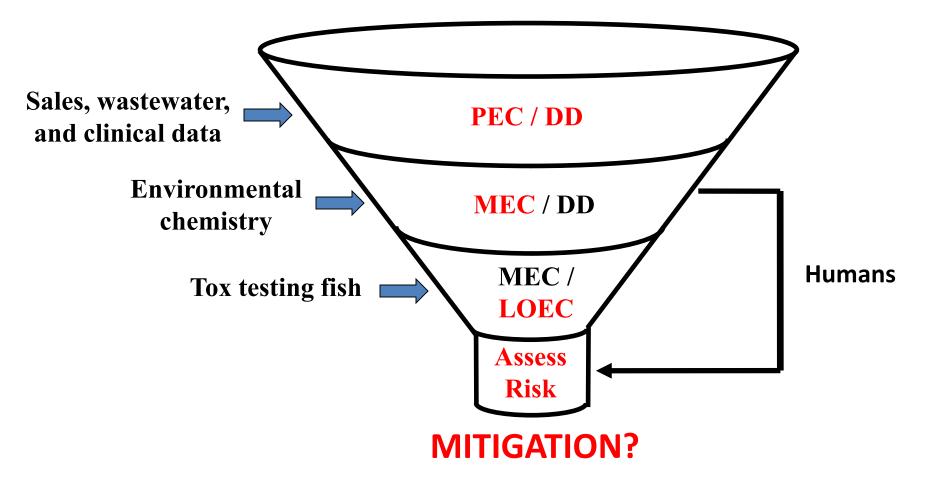
Comparing MECs to PECs

From 62 US studies with 111 APIs, up to 1237 measurements per API, up to 542 sites per API.

	MEC (PPT)	MEC / PEC	MEC (DPD)	Samples
Ethinyl estradiol	273 (14)	<i>41</i> (2.1)	<i>100</i> (5.3)	<i>314</i> (241)
Ofloxacin	23,500	9.4	1.4	124
Azithromycin	14,900	9.1	0.44	101
Norethindrone	872	7	6.4	78
Trimethoprim	37,000	4.1	1.7	995
Atenolol	14,200	3.3	2.1	386
Ciprofloxacin	5600	2.9	0.082	538
Warfarin	330	2	1.2	381

Conclusions: MECs vs PECs

Probably some *artifacts* in measurement data or perhaps another route into environment?


'Assessment factor' of 10x on national PECs to account for spatial + temporal variability

Suggests potential exposure rates for healthy adults low relative to therapeutic levels (margin of exposure >300)

True for single APIs and their mixtures

Kostich, Batt, Glassmeyer, & Lazorchak, 2010. STOTEN, 408:4504.

Tiered prioritization

PEC = Predicted Environmental Concentration from sales / wastewater volumeDD = minimum Daily Dose rate from clinical dataMEC = Measured Environmental Concentration from literature and effluent studyLOEC = Lowest Observable Effect Concentration in sensitive aquatic species20

Municipal Effluent Study

24-hour composite samples from 50 very large WWTPs (15 to >500 MGD)

Assume effluent is worst case water concentration relevant to humans and aquatic life

These 50 WWTPs serve 46M people, produce ~17% of all municipal WWTP effluent

Analytes selected using PEC-based DPD estimates steroidal estrogens, androgens, and other emerging contaminants will be reported elsewhere.

LC-MS/MS with isotopically labeled standards.

Kostich, Batt, and Lazorchak, 2014. Env Pol, 184:354.

Top number of detections

	RL	Ν	Detects	Mean PPT	Max PPT
hydrochlorothiazide	10.0	50	50	1100	2800
metoprolol	14.0	50	49	410	660
atenolol	6.0	50	48	940	3000
carbamazepine	4.4	50	48	97	240
furosemide	38.0	50	45	280	810
ofloxacin	10.0	49	44	160	660
propranolol	4.4	50	44	33	260
sulfamethoxazole	1.0	49	44	330	1000

Hydrochlorothiazide (blood pressure med) in every sample

RL = reporting limit (in PPT = ng/L)
N = number of samples passing QA

Top maximum concentrations

	RL	Ν	Detects	Mean PPT	Max PPT
valsartan	11.0	41	40	1600	5300
ibuprofen	12.0	50	23	460	4200
lisinopril	45.0	49	23	180	3300
atenolol	6.0	50	48	940	3000
sulfamethoxazole	1.6	50	40	910	2900
hydrochlorothiazide	10.0	50	50	1100	2800
gemfibrozil	10.0	50	38	420	2300
acetaminophen	5.0	50	7	79	1500

Valsartan (blood pressure med) up to 5300 PPT

in 24-hour composite effluent samples

Somewhat lower than highest reported elsewhere maybe composite vs. grab sample? big WWTP vs. little?

Top doses per decade (DPD)

	RL	Ν	Detects	Max PPT	DPD
lisinopril	45.0	49	23	3300	9.70
hydrochlorothiazide	10.0	50	50	2800	1.60
valsartan	11.0	41	40	5300	0.96
atenolol	6.0	50	48	3000	0.45
enalaprilat	9.0	49	5	150	0.42
metoprolol	14.0	50	49	660	0.38
alprazolam	9.1	50	15	31	0.30
furosemide	38.0	50	45	810	0.30

One dose per year for lisinopril (blood pressure med) but for most APIs, less than 1 dose / lifetime

Additive mixtures w/i MOA: similar picture

a few analytes dominate each MOA

Top (MEC / EPC)

	RL	Ν	Detects	Max PPT	PPT / EPC
sertraline	5.0	50	32	71	0.71
propranolol	4.4	50	44	260	0.65
desmethylsertraline	9.4	50	9	24	0.24
valsartan	11.0	41	40	5300	0.18
furosemide	38.0	50	45	810	0.08
lisinopril	45.0	49	23	3300	0.07

Below 1 for all, but four APIs a bit close for comfort for rest: less than 10% of EPC (effective plasma conc)

For a few APIs: Potential risks to aquatic life? suggests study of concentration-response across taxa

Top (MEC / Breakpoint)

	RL	Ν	Detects	Max PPT	PPT / BP
ofloxacin	10.0	49	44	660	0.0003
ciprofloxacin	10.0	49	30	260	0.0003
trimethoprim	2.5	43	37	370	0.00009
sulfamethoxazole	1.6	50	40	2900	0.00004
sulfamethazine	10.0	49	1	87	0.000002

All below 0.1% of clinical resistance breakpoint (BP)

Unlikely to directly select for clinical resistance MEC << tolerable concentration for patients

Top (MEC / MIC)

	RL	Ν	Detects	Max PPT	PPT / MIC
ofloxacin	10.0	49	44	660	0.66
ciprofloxacin	10.0	49	30	260	0.26
trimethoprim	2.5	43	37	370	0.03
sulfamethoxazole	1.6	50	40	2900	0.02
sulfamethazine	10.0	49	1	87	5.5e-06

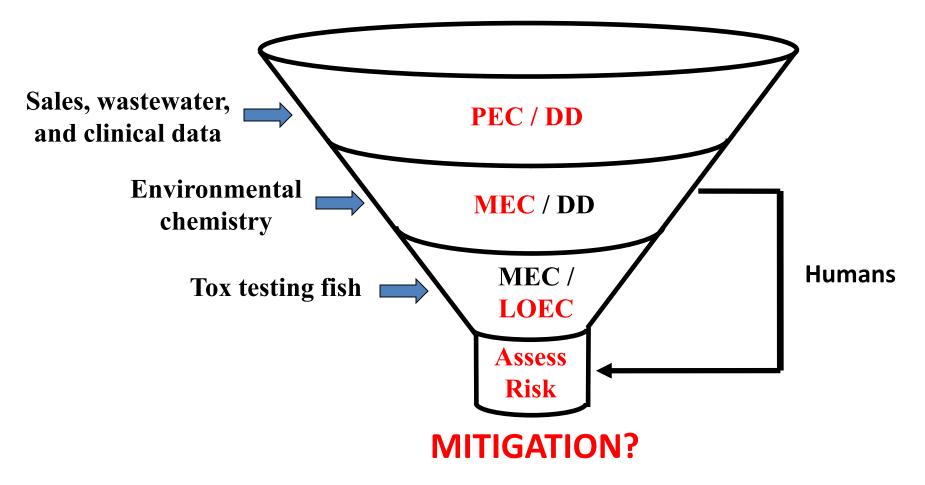
Well below MIC (of most sensitive microbe) for most

ofloxacin and ciprofloxacin close to 1 additive model very close to 1

Potential inhibition of 'good' microbes?

Potential selection for low-level resistance?

Max (MEC / PEC)


	RL	Ν	Detects	Max PPT	MEC / PEC
lisinopril	45.0	49	23	3308	4.06
valsartan	11.0	41	40	5263	2.00
atenolol	6.0	50	48	3046	0.74
metoprolol	14.0	50	49	656	0.45
enalaprilat	9.0	49	5	145	0.39
alprazolam	9.1	50	15	31	0.30
propranolol	4.4	50	44	260	0.26

Well within 10-fold 'assessment factor'

accounts for spatio-temporal variability

Suggests reliability of model estimates and very low risks for lower priority, unmeasured APIs based on applying assessment factor to PECs

Tiered prioritization

PEC = <u>Predicted Environmental Concentration from sales / wastewater volume</u> **DD** = minimum <u>Daily Dose rate from clinical data</u> **MEC** = <u>Measured Environmental Concentration from literature and effluent study</u> **LOEC** = <u>Lowest Observable Effect Concentration in sensitive aquatic species</u>

Conclusions from this work

Risks to healthy adults low: therapeutic effects unlikely harder to assess risks to sensitive human sub-populations pregnant, children, liver or kidney impairment, allergic how to ethically/practically characterize this dose-response?

Potential risks to aquatic life for a few? anti-hypertensive & psychiatric meds (& estrogens)

Potential risks of microbial effects + selection for a few?

Narrows down >1000 APIs to about 10 for future study ecological dose response measurements physiological modeling?

Does not address risks from other routes and sources biosolids, agriculture, manufacturing, small WWTPs

Acknowledgements

Mark Smith Marc Mills The McConnell Group Mohamed Amin Towana Joseph Thuan Tan Randy Braun John Houlihand Herman Haring Shoji Nakayama Kidus Tadele Stephen Hale Kathleen Foley Robert Morrell David Pratt

USEPA Region 2 Division of Environmental Science and Assessment USEPA Region 7 Environmental Services Division

50 WWTPs whose voluntary participation made this study possible

ACRONYMS

API: <u>active pharmaceutical ingredient</u>

BP: <u>breakpoint</u> (concentration defining antibiotic resistance)

DD: minimum therapeutic daily dose (for otherwise healthy adult patient)

DPD: <u>D</u>D <u>per d</u>ecade of consuming 2 liters per day at the PEC or MEC

EPC: effective plasma concentration (freely dissolved fraction) in patients receiving the DD

LC-MS/MS: liquid chromatography-tandem mass spectrometry

LOEC: lowest observable effect concentration (in aquatic life)

MEC: measured environmental concentration

MIC: <u>minimum</u> inhibitory <u>concentration</u> (concentration inhibiting sensitive microbes)

MGD: millions of gallons per day (of wastewater flow)

MOA: (physiological) mechanism of action

N: number of samples passing quality control

PEC: predicted environmental concentration

PPT: parts per trillion (concentration unit equivalent to nanograms per liter)

RL: reporting limit (lowest concentration that can be reliably measured)

WWTP: municipal waste water treatment plant

Pharmaceuticals in municipal wastewater

Mitch Kostich, Angela Batt, Susan Glassmeyer and Jim Lazorchak

September 24, 2014

Office of Research and Development National Exposure Research Laboratory

Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.