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Preface

EXTREMELY hazardous substances (EHSs)' can be released accidentally as a
result of chemical spills, industrial explosions, fires, or accidents involving
railroad cars and trucks transporting EHSs. The people in communities sur-
rounding industrial facilities where EHSs are manufactured, used, or stored and
in communities along the nation’s railways and highways are potentially at risk
of being exposed to airborne EHSs during accidental releases. Pursuant to the
Superfund Amendments and Reauthorization Act of 1986, the U.S. Environ-
mental Protection Agency (EPA) has identified approximately 400 EHSs on the
basis of acute lethality data in rodents.

As part of its efforts to develop acute exposure guideline levels for EHSs,
EPA and the Agency for Toxic Substances and Disease Registry (ATSDR)
requested that the National Research Council (NRC) in 1991 develop guidelines
for establishing such levels. In response to that request, the NRC published
Guidelines for Developing Community Emergency Exposure Levels for Hazard-
ous Substances in 1993.

Using the 1993 NRC guidelines report, the National Advisory Committee
(NAC) on Acute Exposure Guideline Levels for Hazardous Substances—
consisting of members from EPA, the Department of Defense (DOD), the
Department of Energy (DOE), the Department of Transportation, other federal
and state governments, the chemical industry, academia, and other organizations

'As defined pursuant to the Superfund Amendments and Reauthorization Act of
1986.

Xi
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from the private sector—has developed acute exposure guideline levels
(AEGLSs) for approximately 80 EHSs.

In 1998, EPA and DOD requested that the NRC independently review the
AEGLs developed by NAC. In response to that request, the NRC organized
within its Committee on Toxicology the Subcommittee on Acute Exposure
Guideline Levels, which prepared this report. This report is the first volume in
the series Acute Exposure Guideline Levels for Selected Airborne Chemicals.
It reviews the appropriateness of the AEGLs for four chemicals for their scien-
tific validity, completeness, and consistency with the NRC guideline reports.

This report has been reviewed in draft form by individuals chosen for their
diverse perspectives and technical expertise, in accordance with procedures
approved by the NRC's Report Review Committee. The purpose of this inde-
pendent review is to provide candid and critical comments that will assist the
institution in making its published report as sound as possible and to ensure that
the report meets institutional standards for objectivity, evidence, and respon-
siveness to the study charge. The review comments and draft manuscript remain
confidential to protect the integrity of the deliberative process. We wish to
thank the following individuals for their review of this report: Gary Carolson,
Purdue University; Charles Feigley, University of South Carolina, Charleston;
and Ralph Kodell, National Center for Toxicological Research.

Although the reviewers listed above have provided many constructive
comments and suggestions, they were not asked to endorse the conclusions or
recommendations nor did they see the final draft of the report before its release.
The review of this report was overseen by Mary Vore, appointed by the Com-
mission on Life Sciences, who was responsible for making certain that an
independent examination of this report was carried out in accordance with
institutional procedures and that all review comments were carefully considered.
Responsibility for the final content of this report rests entirely with the
authoring committee and the institution.

The subcommittee gratefully acknowledges the valuable assistance provided
by the following persons: Roger Garrett, Paul Tobin, and Ernest Falke (all from
EPA); George Rusch (Honeywell, Inc.); Po Yung Lu, Sylvia Talmage, Robert
Young, and Sylvia Milanez (all from Oak Ridge National Laboratory), and Karl
Rozman (University of Kansas Medical Center). Aida Neel was the project
assistant. Ruth Crossgrove edited the report. We are grateful to James J. Reisa,
director of the Board on Environmental Studies and Toxicology (BEST), and
David Policansky, associate director of BEST, for their helpful comments. The
subcommittee particularly acknowledges Kulbir Bakshi, project director for the
subcommittee, for bringing the report to completion. Finally, we would like to
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thank all members of the subcommittee for their expertise and dedicated effort
throughout the development of this report.

Daniel Krewski, Chair
Subcommittee on Acute Exposure
Guideline Levels

Bailus Walker, Chair
Committee on Toxicology
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Introduction

IN the Bhopal disaster of 1984, approximately 2,000 residents living near a
chemical plant were killed and 20,000 more suffered irreversible damage to
their eyes and lungs following accidental release of methyl isocyanate. The toll
was particularly high because the community had little idea what chemicals
were being used at the plant, how dangerous they might be, and what steps to
take in case of emergency. This tragedy served to focus international attention
on the need for governments to identify hazardous substances and to assist local
communities in planning how to deal with emergency exposures.

In the United States, the Superfund Amendments and Reauthorization Act
(SARA) of 1986 required the U.S. Environmental Protection Agency (EPA) to
identify extremely hazardous substances (EHSs) and, in cooperation with the
Federal Emergency Management Agency and the Department of Transportation,
to assist Local Emergency Planning Committees (LEPCs) by providing guid-
ance for conducting health-hazard assessments for the development of
emergency-response plans for sites where EHSs are produced, stored, trans-
ported, or used. SARA also required the Agency for Toxic Substances and
Disease Registry (ATSDR) to determine whether chemical substances identified
at hazardous waste sites or in the environment present a public-health concern.

As a first step in assisting the LEPCs, EPA identified approximately 400
EHSs largely on the basis of their “immediately dangerous to life and health”
(IDLH) values developed by the National Institute for Occupational Safety and
Health in experimental animals. Although several public and private groups,
such as the Occupational Safety and Health Administration and the American
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Conference of Governmental Industrial Hygienists, have established exposure
limits for some substances and some exposures (e.g., workplace or ambient air
quality), these limits are not easily or directly translated into emergency expo-
sure limits for exposures at high levels but of short duration, usually less than
1 h, and only once in a lifetime for the general population, which includes
infants, children, the elderly, and persons with diseases, such as asthma, heart
disease, or lung disease.

The National Research Council (NRC) Committee on Toxicology (COT) has
published many reports on emergency exposure guidance levels and spacecraft
maximum allowable concentrations for chemicals used by the Department of
Defense (DOD) and the National Aeronautics and Space Administration
(NASA) (NRC 1968; 1972; 1984a,b,c,d; 1985a,b; 1986a,b; 1987; 1988, 1994,
1996a,b; 2000). COT has also published guidelines for developing emergency
exposure guidance levels for military personnel and for astronauts (NRC 1986b,
1992). Because of the experience of COT in recommending emergency expo-
sure levels for short-term exposures, EPA and ATSDR in 1991 requested that
COT develop criteria and methods for developing emergency exposure levels
for EHSs for the general population. In response to that request, the NRC
assigned this project to the COT Subcommittee on Guidelines for Developing
Community Emergency Exposure Levels for Hazardous Substances. The report
of that subcommittee, Guidelines for Developing Community Emergency
Exposure Levels for Hazardous Substances (NRC 1993), provides step-by-step
guidance for setting emergency exposure levels for EHSs. Guidance is given
on what data are needed, what data are available, how to evaluate them, and
how to present the results.

In November1995, the National Advisory Committee for Acute Exposure
Guideline Levels for Hazardous Substances (NAC') was established to identify,
review, and interpret relevant toxicologic and other scientific data and to
develop acute exposure guideline levels (AEGLs) for high-priority, acutely
toxic chemicals. The NRC’s previous name for acute exposure levels—com-
munity emergency exposure levels (CEELs)—was replaced by the term AEGLs
to reflect the broad application of these values to planning, response, and
prevention in the community, the workplace, transportation, the military, and
the remediation of Superfund sites.

'NAC is composed of members from EPA, DOD, many other federal and state
agencies, industry, academia, and other organizations. The roster of NAC is shown on
page 9.
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AEGLs represent threshold exposure limits (exposure levels below which
adverse health effects are not likely to occur) for the general public and are
applicable to emergency exposures ranging from 10 min to 8 h. Three levels—
AEGL-1, AEGL-2, and AEGL-3—are developed for each of five exposure
periods (10 min, 30 min, 1 h, 4 h, and 8 h) and are distinguished by varying
degrees of severity of toxic effects.

The three AEGLs are defined as follows:

AEGL-1 is the airborne concentration (expressed as ppm (parts per
million) or mg/m® (milligrams per cubic meter)) of a substance
above which it is predicted that the general population, including
susceptible individuals, could experience notable discomfort, irrita-
tion, or certain asymptomatic nonsensory effects. However, the
effects are not disabling and are transient and reversible upon cessa-
tion of exposure.

AEGL-2 is the airborne concentration (expressed as ppm or mg/m®)
of a substance above which it is predicted that the general popula-
tion, including susceptible individuals, could experience irreversible
or other serious, long-lasting adverse health effects or an impaired
ability to escape.

AEGL-3 is the airborne concentration (expressed as ppm or mg/m®)
of a substance above which it is predicted that the general popula-
tion, including susceptible individuals, could experience life-threat-
ening health effects or death.

Airborne concentrations below AEGL-1 represent exposure levels that can
produce mild and progressively increasing but transient and nondisabling odor,
taste, and sensory irritation or certain asymptomatic, nonsensory effects. With
increasing airborne concentrations above each AEGL, there is a progressive
increase in the likelihood of occurrence and the severity of effects described for
each corresponding AEGL. Although the AEGL values represent threshold
levels for the general public, including susceptible subpopulations, such as
infants, children, the elderly, persons with asthma, and those with other ill-
nesses, it is recognized that individuals, subject to unique or idiosyncratic
responses, could experience the effects described at concentrations below the
corresponding AEGL.
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SUMMARY OF REPORT ON GUIDELINES FOR DEVELOPING AEGLS

As described in the Guidelines for Developing Community Emergency
Exposure Levels for Hazardous Substances (NRC 1993) and the NAC guide-
lines report Standing Operating Procedures on Acute Exposure Guideline
Levels for Hazardous Substances, the first step in establishing AEGLs for a
chemical is to collect and review all relevant published and unpublished infor-
mation available on a chemical. Various types of evidence are assessed in
establishing AEGL values for a chemical. These include information from (1)
chemical-physical characterizations, (2) structure-activity relationships, (3) in
vitro toxicity studies, (4) animal toxicity studies, (5) controlled human studies,
(6) observations of humans involved in chemical accidents, and (7) epidemio-
logic studies. Toxicity data from human studies are most applicable and are
used when available in preference to data from animal studies and in vitro
studies. Toxicity data from inhalation exposures are most useful for setting
AEGLs for airborne chemicals, because inhalation is the most likely route of
exposure and because extrapolation of data from other routes would lead to
additional uncertainty to the AEGL estimate.

For most chemicals, actual human toxicity data are not available or critical
information on exposure is lacking, so toxicity data from studies conducted in
laboratory animals are extrapolated to estimate the potential toxicity in humans.
Such extrapolation requires experienced scientific judgment. The toxicity data
from animal species most representative of humans in terms of pharmaco-
dynamic and pharmacokinetic properties are used for determining AEGLs. If
data are not available on the species that best represents humans, the data from
the most sensitive animal species are used to set AEGLs. Uncertainty factors
are commonly used when animal data are used to estimate minimal risk levels
for humans. The magnitude of uncertainty factors depends on the quality of the
animal data used to determine the no-observed-adverse-effect level (NOAEL)
and the mode of action of the substance in question. When available,
pharmocokinetic data on tissue doses are considered for interspecies extrapola-
tion.

For substances that affect several organ systems or have multiple effects, all
endpoints—including reproductive (in both sexes), developmental, neurotoxic,
respiratory, and other organ-related effects—are evaluated, the most important
or most sensitive effect receiving the greatest attention. For carcinogenic
chemicals, theoretical excess carcinogenic risk is estimated, and the AEGLs
corresponding to carcinogenic risks of 1 in 10,000 (1 x10*), 1 in 100,000 (1
x107), and 1 in 1,000,000 (1 x10°) exposed persons are estimated.
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REVIEW OF AEGL REPORTS

As NAC began developing chemical-specific AEGL reports, EPA and DOD
asked the NRC to review independently the NAC reports for their scientific
validity, completeness, and consistency with the NRC guideline reports (NRC
1993; NRC in press). The NRC assigned this project to the COT Subcommittee
on Acute Exposure Guideline Levels. The subcommittee has expertise in
toxicology, epidemiology, pharmacology, medicine, industrial hygiene,
biostatistics, risk assessment, and risk communication.

The AEGL draft reports are initially prepared by ad hoc AEGL Development
Teams consisting of a chemical manager, two chemical reviewers, and a staff
scientist of the NAC contracto—QOak Ridge National Laboratory. The draft
documents are then reviewed by NAC and elevated from “draft” to “proposed”
status. After the AEGL documents are approved by NAC, they are published
in the Federal Register for public comment. The reports are then revised by
NAC in response to the public comments, elevated from “proposed” to “in-
terim” status, and sent to the NRC Subcommittee on Acute Exposure Guideline
Levels for final evaluation.

The NRC subcommittee’s review of the AEGL reports prepared by NAC and
its contractors involves oral and written presentations to the subcommittee by
the authors of the reports. The NRC subcommittee provides advice and recom-
mendations for revisions to ensure scientific validity and consistency with the
NRC guideline reports (NRC 1993, in press). The revised reports are presented
at subsequent meetings until the subcommittee is satisfied with the reviews.

Because of the enormous amount of data presented in the AEGL reports, the
NRC subcommittee can not verify all the data used by NAC. The NRC sub-
committee relies on NAC for the accuracy and completeness of the toxicity data
cited in the AEGLs reports.

This report is the first volume in the series Acute Exposure Guideline Levels
for Selected Airborne Chemicals. AEGL documents for four chemicals—
aniline, arsine, monomethylhydrazine, and dimethyl hydrazine—are published
as an appendix to this report. The subcommittee concludes that the AEGLs
developed in those documents are scientifically valid conclusions based on the
data reviewed by NAC and are consistent with the NRC guideline reports.
AEGL reports for additional chemicals will be presented in subsequent volumes.

REFERENCES

NRC (National Research Council). 1968. Atmospheric Contaminants in Spacecraft.
Washington, DC: National Academy of Sciences.
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Aniline!

Acute Exposure Guideline Levels

SUMMARY

ANILINE is an aromatic amine used chiefly in the chemical industry in the man-
ufacture of dyes, dye intermediates, rubber accelerators, antioxidants, drugs,
photographic chemicals, isocyanates, herbicides, and fungicides. Production of
aniline oil in 1993 was approximately 1 billion pounds. The primary effect of
an acute exposure to aniline is the oxidation of the hemoglobin in red blood
cells (RBCs), resulting in the formation of methemoglobin. The effect may
occur following inhalation, ingestion, or dermal absorption. In conjunction with
methemoglobinemia, chronic exposures or exposures to high concentrations
may produce signs and symptoms of headache, paresthesia, tremor, pain,
narcosis/coma, cardiac arrhythmia, and possibly death.

'This document was prepared by AEGL Development Team members Robert Snyder
and George Rodgers of the National Advisory Committee on Acute Exposure Guideline
Levels for Hazardous Substances (NAC) and Sylvia Talmadge of the Oak Ridge Na-
tional Laboratory. The NAC reviewed and revised the document, which was then
reviewed by the National Research Council (NRC) Subcommittee on Acute Exposure
Guideline Levels. The NRC subcommittee concludes that the AEGLs developed in this
document are scientifically valid conclusions based on the data reviewed by the NAC
and are consistent with the NRC guidelines reports (NRC 1993; NRC in press).

15
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No reliable data on human exposures via the inhalation route were located.
All acute exposure guideline level (AEGL) values are based on a study in which
rats were exposed to aniline at concentrations of 0, 10, 30, 50, 100, or 150 parts
per million (ppm) for 8 or 12 h (Kim and Carlson 1986). The only reported
effect was methemoglobin formation. The relationship between aniline concen-
tration and methemoglobin formation appeared to be linear. Furthermore, at a
constant concentration (100 ppm), the formation of methemoglobin between 3
and 8 h was basically linear, reaching an asymptote at 8 h. Based on the linear
relationship between aniline concentration and methemoglobin formation and
between methemoglobin formation and time at a constant aniline concentration,
a linear relationship between concentration and exposure duration (C' x t =k,
where C = exposure concentration, t = exposure duration, and k = a constant)
was chosen for time-scaling aniline concentrations to the appropriate AEGL
exposure durations.

The AEGL-1 was based on an exposure of rats to a concentration of 100 ppm
for 8 h, which resulted in elevation of methemoglobin from a control value of
1.1% (range, 0.4% to 2.1%) to 22%. A review of the published data indicates
that methemoglobin levels of 15-20% in humans results in clinical cyanosis but
no hypoxic symptoms. Although inhalation data for comparison purposes are
not available, oral ingestion data suggest that humans may be considerably more
sensitive to methemoglobin-forming chemicals than rats. Therefore, a default
uncertainty factor of 10-fold was used for interspecies extrapolation (NRC
1993). Several sources also indicate that newborns may be more sensitive to
methemoglobin-forming chemicals than adults. Because of the absence of
specific quantitative data on sensitive human subpopulations and the fact that
there are data suggesting greater susceptibility of infants, a default uncertainty
factor of 10-fold was used for intraspecies extrapolation (NRC 1993). It is
believed that an intraspecies uncertainty factor of 10 is protective of the general
population including susceptible individuals. The default uncertainty factors of
10 for each of the interspecies and intraspecies variabilities are also supported
by the small database of information and the lack of reliable human inhalation
studies. The data were scaled across time using C' x t = k because of data
indicating a linear relationship between concentration and exposure duration as
related to methemoglobin formation.

The AEGL-2 was based on the same study with rats in which a concentration
of 150 ppm for 8 h resulted in elevation of methemoglobin from a control value
of 1.1% to 41%. This level of methemoglobin is associated with fatigue,
lethargy, exertional dyspnea, and headache in humans and was considered the
threshold for disabling effects. Since the same mode of action applies to
AEGL-2 effects, the 150-ppm concentration was divided by a combined uncer-
tainty factor of 100 and scaled across time using the same reasons and relation-
ships as those used for the AEGL-1 above.
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Data on concentrations of aniline inducing methemoglobin levels at the
threshold for lethality were not available. Based on the fact that the relationship
between the concentration of aniline and methemoglobin formation is linear, the
dose-response curve from the study on which the AEGL-1 and AEGL-2 values
were based was extrapolated to a concentration resulting in >70% formation of
methemoglobin, the threshold for lethality. The concentration of 250 ppm for
8 h was chosen as the threshold for lethality, according to Kiese (1974) and
Seger (1992). Since the same mode of action applies to AEGL-3 effects, the
250-ppm concentration was divided by a combined uncertainty factor of 100
and scaled across time using the same reasons and relationships as those used
for the AEGL-1 above.

Several studies with rats support the AEGL-3 values. A 10-min exposure to
aniline at 15,302 ppm resulted in no toxic effects, and a 4-h exposure at 359
ppm resulted in severe toxic effects but no deaths. Dividing these values by a
total uncertainty factor of 100 and scaling across time using C' x t = k results
in values similar to those derived from the Kim and Carlson (1986) study.
Studies with repeated exposures of rats resulted in additional effects on the
blood and spleen, but concentrations up to 87 ppm, 6 h/d, 5 d/w for 2 w were
not disabling or life-threatening.

The derived AEGLs are listed in Table 1-1. Because aniline is absorbed
through the skin in quantities sufficient to induce systemic toxicity, a skin
notation was added to the summary table. The reported odor threshold for
aniline ranges from 0.012 to 10 ppm. Therefore, the odor of aniline will be
noticeable by most individuals at the AEGL-1 concentrations. The odor is
somewhat pungent but not necessarily unpleasant.

1. INTRODUCTION

Aniline is an aromatic amine used in the manufacture of dyes, dye intermedi-
ates, rubber accelerators, and antioxidants. It has also been used as a solvent,
in printing inks, and as an intermediate in the manufacture of pharmaceuticals,
photographic developers, plastics, isocyanates, hydroquinones, herbicides,
fungicides, and ion-exchange resins. It is produced commercially by catalytic
vapor phase hydrogenation of nitrobenzene (Benya and Cornish 1994; HSDB
1996). Production of aniline oil was listed at approximately 1 billion pounds in
1993 (U.S.ITC 1994). Chemical and physical properties are listed in Table 1-2.

Aniline may be absorbed following inhalation, ingestion, and dermal expo-
sures. The inhalation toxicity of aniline was studied in several animal species,
but only one study that utilized multiple exposure concentrations for sublethal
effects was located. Data from human studies lack specific details or exposures



TABLE 1-1 Summary of AEGL Values for Aniline®

Classification 30 min lh 4h 8h Endpoint (Reference)

AEGL-1° 16 ppm 8.0 ppm 2.0 ppm 1.0 ppm 22% Methemoglobin - cyanosis (Kim
(Nondisabling) (61 mg/m*) (30 mg/m’*) (7.6 mg/m’) (3.8 mg/m?) and Carlson 1986)

AEGL-2 24 ppm 12 ppm 3.0 ppm 1.5 ppm 41% Methemoglobin - lethargy (Kim
(Disabling) (91 mg/m’) (46 mg/m’) (11 mg/m®) (5.7 mg/m?) and Carlson 1986)

AEGL-3 40 ppm 20 ppm 5.0 ppm 2.5 ppm >70% Methemoglobin - lethality
(Lethal) (152 mg/m’) (76 mg/m?) (19 mg/m’) (9.5 mg/m?) (extrapolated from data of Kim and

Carlson 1986)

*Cutaneous absorption of the neat material may occur, adding to the systemic toxicity.
°The aromatic, amine-like odor of aniline will be noticeable by most individuals at these concentrations.
Abbreviations: ppm, parts per million; mg/m®, milligrams per cubic meter.

81
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TABLE 1-2 Chemical and Physical Data
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Parameter

Value

Reference

Synonyms

Molecular formula
Molecular weight
CAS Registry No.

Physical description

Solubility in water

Vapor pressure

Vapor density (air = 1)
Density (water = 1)
Melting point

Boiling point

Odor

Odor threshold

Conversion factors

Benzenamine, aniline oil,

phenylamine, aminobenzene,

aminophen, arylamine
C.H,NH,

93.13

62-53-3

Colorless oily liquid (freshly
distilled); darkens on exposure

to air and light
1 gin28.6 mL

15 mm Hg at 77°C
7.6 torr at 20°C
0.67 mm Hg at 25°C

3.22

1.002 (20/4°C)
16.3°C

184-186°C
aromatic amine-like
pungent, oily

0.012 to 10 ppm
0.5 ppm

1.0 ppm

1 ppm = 3.8 mg/m’
1 mg/m* = 0.26 ppm

Budavari et al. 1996,
Benya and Cornish 1994

Benya and Cornish 1994
Budavari et al. 1996
HSDB 1996

Budavari et al. 1996

Budavari et al. 1996

Benya and Cornish 1994
ACGIH 1991
U.S. EPA 1987

Benya and Cornish 1994
Benya and Cornish 1994
Benya and Cornish 1994
Budavari et al. 1996

NIOSH 1997
U.S. EPA 1992

U.S. EPA 1992
DOT 1985
Billings and Jones 1981

ACGIH 1991

were oral or percutaneous to the liquid or an aniline dye. The primary effect of
inhalation exposure to aniline vapor is the formation of methemoglobin in the
RBCs. Hemolysis of the red cells and effects on the spleen occur following
daily repeated or long-term exposures.

2.1. Acute Lethality

2. HUMAN TOXICITY DATA

No information on acute lethal concentrations for humans by the inhalation
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route was located. According to Bodansky (1951) and Kiese (1974), methemo-
globin (the primary effect of inhalation exposure) levels above 85% may be
lethal if treatment is not initiated. Seger (1992) cites a concentration of >70%
as a potentially lethal level. Deaths of adults have occurred from ingestion, and
infant deaths have occurred from absorption of aniline from diapers stenciled
with ink containing aniline (Gosselin et al. 1984). Incidences of aniline intoxi-
cation in infants attributed to aniline dye through dermal exposure are numer-
ous: (Graubarth et al. 1945; Kagan et al. 1949; Etteldorf 1951; Pickup and Eeles
1953; Ramsay and Harvey 1959; Smith 1992). In one study, most of the infants
were visibly cyanotic and methemoglobin levels in these infants ranged from
30% to 60% (Etteldorf 1951). Complete recovery followed treatment with
methylene blue. In a summary of these and several other reports, an overall
infant mortality of 5-10% was reported (Gosselin et al. 1984).

2.2. Nonlethal Toxicity

The reported odor threshold for aniline ranges from 0.012 to 10 ppm (Table
1-2). Although the odor may be somewhat pungent, no adverse effects are
predicted to occur at the odor threshold.

With increasing concentrations of aniline, exposure can cause headaches,
methemoglobinemia, paresthesias, tremor, pain, narcosis/coma, cardiac arrhyth-
mia, and possibly death (Benya and Cornish 1994). However, according to
Bodansky (1951), Kiese (1974), and Seger (1992), the formation of methemo-
globin concentrations of <15% are asymptomatic; methemoglobin levels
exceeding 15% of the circulating blood pigment result in clinical cyanosis; and
hypoxic symptoms including lethargy and semistupor are associated with serum
levels of 55-60% or greater. Signs and symptoms associated with methemo-
globin formation are summarized in Table 1-3.

In sampling data from 18 workplace sites provided by the Occupational Safe-
ty and Health Administration (OSHA 1997), measurable concentrations were
present in 3 of 18 samples; these concentrations were 0.070, 0.14, and 0.177

2.2.1. Experimental Studies

Two papers cited older data. However, symptoms at specific concentrations
were not defined in the summary papers and details of the studies were not
available. Flury and Zernik (1931) cited the following human data: a concentra-
tion of approximately 130 ppm was tolerated for 1/2 to 1 h without immediate
or late sequalae and a concentration of 40-53 ppm was tolerated for 6 h without
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TABLE 1-3 Signs and Symptoms Associated with Methemoglobin Concentrations
in Humans

Methemoglobin

Concentration (%) Signs and Symptoms

1.1 Normal level

1-15 None

15-20 Clinical cyanosis (chocolate brown blood);
no hypoxic symptoms

30 Fatigue; recovery without treatment

20-45 Anxiety, exertional dyspnea, weakness, fatigue,
dizziness, lethargy, headache, syncope, tachycardia

45-55 Decreased level of consciousness

55-70, ~60 Hypoxic symptoms: semistupor, lethargy, seizures, coma,
bradycardia, cardiac arrhythmias

>70 Heart failure from hypoxia,
High incidence of mortality

>85 Lethal

Sources: Kiese 1974; Seger 1992.

distinct symptoms. Henderson and Haggard (1943) cited the following data: a
concentration of 5 ppm was considered safe for daily exposure, concentrations
of 7 to 53 ppm produced slight symptoms after several hours, and 100 to 160
ppm as the maximum concentration that could be inhaled for 1 h without serious
disturbance. The statements by Henderson and Haggard were based on several
studies including those of Flury and Zernik (1931).

2.2.2. Epidemiology Studies

No epidemiology studies in which exposure concentrations were measured
were identified in the available literature.
2.2.3. Accidents

No accidental inhalation exposures to aniline in which concentrations were
known were identified in the available literature. However, methemoglobin

levels were measured after accidental exposures to liquid aniline or aromatic
nitro or amino compounds (Hamblin and Mangelsdorff 1938; Mangelsdorff
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1956). In these occupational exposures, methemoglobin levels reached 50-72%;
the subjects were cyanotic and complained of headache, dizziness, and weak-
ness. In some cases, oxygen therapy was instituted and intravenous dextrose
solutions were administered; in one case, methylene blue was administered
intravenously. Regardless of whether or not treatment was given, the half-life
of methemoglobin ranged between 3 and 10 h following cessation of exposure,
and levels were below 10% in less than 20 h. No deaths occurred.

2.3. Developmental and Reproductive Effects

No developmental and reproductive toxicity data on humans concerning
aniline were identified in the available literature.

2.4. Genotoxicity

In an in vitro assay with cultured human fibroblasts, aniline produced only
marginal increases in sister chromatid exchanges at the highest dose tested, 10
mM; whereas two metabolites of aniline, 2-aminophenol and N-phenylhydroxy-
lamine, doubled the frequency of sister chromatid exchanges at the highest
tested nontoxic concentration, 0.1 mM (Wilmer et al. 1981).

2.5. Carcinogenicity

Historically, bladder tumors have been associated with exposures in the
aniline dye industry. However, conclusive evidence for any one particular
exposure could not be obtained in these studies since the workers were exposed
to many chemicals within the same work area. For example, Case et al. (1954)
investigated the incidence of bladder tumors among British workers in the
chemical dye industry. In addition to aniline, the workers were exposed to other
aromatic amines, including "'- and $-naphthylamine, benzidine, and auramine.
Although exposures could not be quantified, there was insufficient evidence to
suggest that aniline was a cause of bladder cancers. More recent studies indi-
cate that $-naphthylamine, 4-aminodiphenyl, 4-nitrodiphenyl, 4,4'-diaminodi-
phenyl, or o-toluidine may be involved in increased cancers in the dye industry
(Ward et al. 1991; Benya and Cornish 1994).

On the basis of inadequate human data and sufficient animal data, U.S. EPA
(1994) in their Integrated Risk Information System (IRIS) classified aniline as
B2, a probable human carcinogen. The International Agency for Research on
Cancer has classified the evidence for carcinogenicity of aniline in humans as
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inadequate and in animals as limited (IARC 1987). Based on a high-dose feed-
ing study with rats (NCI 1978), the National Institute for Occupational Safety
and Health (NIOSH 1997) considers aniline and its homologues occupational
carcinogens; however, OSHA (1995) has not classified aniline as an occupa-
tional carcinogen. ACGIH (1999) categorized aniline as A3, a confirmed
animal carcinogen with unknown relevance to humans. Animal feeding studies
(NCI 1978; CIIT 1982) indicate that aniline may be a very weak carcinogen in
male and female rats (i.e., 3,000 and 2,000 ppm dietary threshold in the two
studies, respectively) but not in male or female mice. Animal studies are
summarized in Section 3.5 and a quantitative cancer risk assessment is per-
formed in Appendix A.

2.6. Summary

Human toxicity data are limited to secondary citations. Because these
citations provided no experimental details, they cannot be considered reliable.
Deaths have occurred from aniline ingestion and skin absorption, but doses were
unknown. Reviews of the older literature indicate that a concentration of 5 ppm
was considered safe for daily exposures, concentrations of 7 to 53 ppm pro-
duced slight symptoms after several hours, a concentration of 40 to 53 ppm was
tolerated for 6 h without distinct symptoms, a concentration of 130 ppm may be
tolerated for 0.5 to 1 h without immediate or late sequalae, and 100 to 160 ppm
was the maximum concentration that could be inhaled for 1 h without serious
disturbance. In studies of accidents with unknown exposure concentrations,
methemoglobin levels of up to 72% were measured. Recoveries occurred with
a minimum of medical intervention following cessation of exposure.

There is no conclusive evidence from studies of cancers in dye workers that
aniline is the causative agent. Two known metabolites of aniline induced sister
chromatid exchange in the single study with cultured human fibroblasts. No
studies on possible reproductive or developmental effects in humans associated
with aniline exposures were located.

3. ANIMAL TOXICITY DATA
3.1. Acute Lethality

Acute lethality data are summarized in Table 1-4 and discussed below.
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TABLE 1-4 Summary of Acute Lethal Inhalation Data in Laboratory
Animals®

Concentration Exposure

Species  (ppm) Time Effect Reference

Rat 839° 4h LC;, E.I du Pont de Nemours
1982a

Rat 478° 4h LC,, E.L. du Pont de Nemours
1982a

Rat 250¢ 4h Approximate LC,, Carpenter et al. 1949

Rat 550 8h 82% mortality Comstock and Oberst

1952, as cited in
Oberst et al. 1956

Mouse  ~175 7h LC,, von Oettingen et al. 1947

LCs, (lethal concentration for 50% of the animals) values were obtained 14 d post-
exposure (Carpenter et al. 1949; E.I. du Pont de Nemours 1982a).

®Head-only exposure.

“Whole-body exposure.

dConcentrations not measured.

3.1.1. Rats

Six Sherman rats (gender not specified) were exposed to graded concentra-
tions of aniline vapor for 4 h and observed for 14 d post-exposure (Carpenter et
al. 1949). The concentration that killed approximately half of the rats (exact
number not stated) was 250 ppm. Concentrations were based upon empirical
calculation and were not measured. An 8-h exposure to 550 ppm killed 82% of
an unreported number of rats (Comstock and Oberst 1952, as cited in Oberst et
al. 1956). Methemoglobinemia was the only pathologic change cited; no further
details were reported.

Groups of 10 8-w-old Crl:CD rats were exposed to various concentrations of
aniline vapor/aerosol for 4 h (E.I. du Pont de Nemours 1982a). The atmo-
spheres were generated by passing nitrogen over liquid aniline in a heated flask.
The vapor/aerosol was diluted with humidified (45%) and oxygen-enriched
(21%) air; the temperature of the exposure chamber was maintained at 27°C.
Air samples were analyzed by gas chromatography. Two routes of exposure,
head-only, using wire mesh restrainers, and whole-body, were compared to
assess the significance of skin absorption and restraint on mortality. LCs (lethal
concentration for 50% of the animals) values for head-only and whole-body
exposures were 839 ppm (95% confidence limit (CL), 802-882 ppm) and
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TABLE 1-5 Mortality of Rats Exposed to Aniline via Head-Only or Whole-Body
Exposures for 4 h

Head-Only Exposures Whole-Body Exposures
Concentration (ppm) Mortality Concentration Mortality
681 0/10 359 0/10
790 2/10 400 2/10
834 5/10 453 4/10
896 8/10 530 7/10

786 10/10

Source: E.I. du Pont de Nemours 1982a.

478 ppm (95% CL, 442-540 ppm), respectively. The lower value for whole-
body exposure suggests significant dermal absorption. Mortality at each expo-
sure concentration is listed in Table 1-5.

All deaths occurred by d 4 post-exposure. "Signs observed during exposures
by both routes were similar and included cyanosis, prostration, tremors, pallor,
clear to reddish-brown eye, mouth, and nasal discharges, corneal clouding,
tachypnea, and hair loss" (E.I. du Pont de Nemours 1982a). The severity of the
signs was generally dose-related. An initial weight loss at 24-72 h post-expo-
sure was followed by a normal weight gain.

3.1.2. Mice

A 7-h LC,, for the mouse of approximately 175 ppm was reported by von
Oettingen et al. (1947). Deaths occurred at all tested concentrations, which
ranged from approximately 115 to 390 ppm; however, analytical determinations
(both colorimetric and spectrophotometric) of calculated concentrations showed
substantial variations, ranging from 49% to 81% of calculated concentrations.
The discrepancy between calculated and analyzed values was probably due to
condensation of aniline on the sides of the exposure chamber. The authors
stated that the actual lethal values probably were within the range of the calcu-
lated and analyzed concentrations. In that case, the 7-h LCs, value for the
mouse lies within the range of 175 to 288 ppm. Mice exposed to aniline became
restless and cyanotic (ears and tails), and their eyes showed signs of irritation.
Tremors, followed by convulsions and then depression, preceded death.
Histologic examinations revealed hepatic fatty infiltrations.
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3.2. Nonlethal Toxicity
3.2.1. Dogs

Except for cyanosis of the mucous membranes, dogs failed to show any signs
of methemoglobinemia at methemoglobin concentrations of less than about
60%. At levels of 60-70% the predominant signs were salivation, ataxia and
vomiting. Ataxia and vomiting occurred at 71-80% and loss of consciousness
occurred at 81-90% (Bodansky 1951).

Oberst et al. (1956) exposed two male beagle dogs to aniline at 5 ppm for 6
h/d, 5 d/w for up to 26 w. Prior to daily exposure, the dogs were exercised on
a treadmill for 5 min. Blood and urine analyses were performed and body
weights were measured pre-exposure and weekly during exposure. Animals
were observed daily for toxic signs. Aside from an increase in free chromogen
content of the urine, there were no signs of exposure. Pathologic examinations
at sacrifice revealed no adverse effects.

3.2.2. Rats

Kakkar et al. (1992) exposed six male Wistar rats to a single nominal concen-
tration of 15,302 ppm for 10 min; the animals were sacrificed 24 h later. Earlier
studies (not presented) had shown this to be the highest concentration tolerated
without any mortality or acute toxicity. Biochemical changes in the brains of
these rats suggested impairment of antioxidant defenses. No other signs of
toxicity were reported. The exposure was performed under static conditions,
and the measurement method was not described.

As discussed in Section 3.1.1, groups of 10 8-w-old Crl:CD rats were ex-
posed to aniline vapor/aerosol at concentrations of 359, 400, 453, 530, or 786
ppm for 4 h (E.I. du Pont de Nemours 1982a). No deaths occurred at the lowest
concentration. Signs at 359 ppm included cyanosis, tremors, lacrimation,
salivation, semi-prostration, an initial body-weight loss followed by normal
gain, and a reddish-brown perineal area.

Groups of five adult male Sprague-Dawley rats (200-250 g) were exposed to
reagent grade aniline at concentrations of 0, 10, 30, 50, 100, or 150 ppm for 8
h/d for 5 d or 12 h/d for 4 d (Kim and Carlson 1986). Exposure concentrations
were achieved by passing air through a bottle containing aniline; concentrations
were monitored continuously using a gas chromotograph. Blood samples were
taken for methemoglobin measurements prior to and following each daily
exposure. The mean pre-exposure (control) methemoglobin level was approxi-
mately 1.1% (range of 0.4% to 1.7%). All results were presented
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graphically; thus, the levels of methemoglobin following 8 or 12 h of exposure
on d 1, presented in Table 1-6, are estimates read from the graphs.

Statistical analyses were not performed on the data; however, it can be seen
from the data in Table 1-6 that the methemoglobin levels following exposures
to 0, 10, and 30 ppm for 8 h are not different. An additional 4 h of exposure (12
h of exposure) at the higher concentrations resulted in only slightly higher
methemoglobin levels.

In rats exposed at concentrations of 30 or 50 ppm for 8 h for up to 5 d,
methemoglobin levels returned to control values after overnight recovery (10
ppm was identified by the authors as a no-effect level), whereas in the groups
exposed at 150 ppm for 8 h or 50 or 150 ppm for 12 h for a maximum of 4 d,
methemoglobin levels increased with increasing days of exposure. Hematocrit
levels, measured 1 w after the start of exposure, were reduced at concentrations
of $30 ppm. Signs of aniline intoxication either did not occur or were not
reported.

Kim and Carlson (1986) also studied the formation and disappearance of
methemoglobin from rat blood over time. The methemoglobin level in groups
of five rats was measured at 3, 6, 8, 10, and 12 h during exposure to 100 ppm
(Figure 1-1). Following exposure for 8 or 12 h, there was no difference in the
maximum methemoglobin level (i.e., the increase with time begins tapering off
between 6 and 8 h and reaches an asymptote at 8 h). In addition, there were no
differences in the peak aniline levels in blood and fat or the rate of aniline
elimination from fat and blood. The methemoglobin levels read from the
original graph are approximately 10.5%, 18%, 22%, 22%, and 23% at the 3-, 6-,
8-, 10-, and 12-h exposure durations, respectively. Following 8 or 12 h of
exposure, recovery was rapid as shown in the graph (Figure 1-1).

TABLE 1-6 Methemoglobin Levels in Rats Following 8 or 12 h of Exposure to
Aniline

Concentration (ppm)  Methemoglobin % at 8 h*  Methemoglobin % at 12 h*

0 1.1 (0.4-1.7) 1.1 (0.4-1.7)
10 0.4-1.7 0.4-1.7

30 1.6 3.3

50 47 6.5

100 22 23

150 41 46

*Values shown represent estimates from graphic representations of the data.
Source: Kim and Carlson 1986.



28 ACUTE EXPOSURE GUIDELINE LEVELS FOR SELECTED AIRBORNE CHEMICALS

100

9
2 10 ] \ X\
SS===a=!

0 2 4 6 8 10 12 14 16
Time (hours)

FIGURE 1-1 Formation and disappearance of methemoglobin from blood of rats
exposed at 100 ppm for 8 or 12 h. Source: Modified from Kim and Carlson 1986.

In a similar study, groups of 14 male rats were exposed to aniline at concen-
trations of 0, 10, 30, or 90 ppm for 3, 6, or 12 h daily, 5 d/w for 2 w (Burgess
et al. 1984). Methemoglobin levels were measured daily (not reported), and
hematology and pathology were evaluated after the tenth exposure and after 14
d of recovery. Ten ppm was a no-effect level for all exposure durations. At 30
and 90 ppm, methemoglobin levels plateaued after four exposures (level not
stated), remained at a steady-state level to the tenth day of exposure, and
decreased to normal 14 d after exposure. Hemolysis (decreased erythrocyte
counts, splenic congestion, and hemosiderin deposition) was seen at 30 and 90
ppm at all exposure durations after the tenth exposure (time of onset could not
be determined). Hemolysis was accompanied by compensatory increases in
mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCHb).
After the 14-d recovery period, spleens were nearly normal, but MCV and
MCHD remained elevated in the 90-ppm exposure group. The authors noted
that effects were predominantly concentration, not time, dependent. Body
weights and clinical signs were unaffected. The study was reported in an
abstract, and no further details were available.

Groups of 16 male Crl:CD rats were placed in restraints and exposed head-
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only to aniline vapor at 17, 45, or 87 ppm for 6 h/d, 5 d/w for 2 w (E.I. du Pont
de Nemours 1982b; O'Neal 1982). Concentrations were generated and analyzed
as in the E.I. du Pont de Nemours 1982a study. Clinical and histopathologic
evaluations were made after 2 w. The 17-ppm concentration for 2 w
was considered a minimal effect level—no-observed-adverse-effect level
(LOAEL)—on hematologic parameters and histopathology of the spleen. Cy-
anosis occurred only in the group exposed at 87 ppm for 2 w.

Further details of the above study were discussed in U.S. EPA (1994). After
the last exposure, methemoglobin levels were elevated in a dose-dependent
manner: 17 ppm, 0% to 2.9% (no different from controls); 45 ppm, 2.2% to
5.4%; and 87 ppm, 4.2% to 23%. The animals exposed at 45 and 87 ppm were
anemic with decreases in RBC counts, hemoglobin content, MCHDb concentra-
tion, and hematocrit, and accompanying increases in erythropoietin foci,
reticuloendothelial cell hypertrophy, and hemosiderin deposition in the spleen.
The animals in the 87-ppm exposure group were judged cyanotic. In the 17-
ppm exposure group, effects were limited to mild splenic congestion.

Oberst et al. (1956) exposed nine male Wistar rats to aniline at 5 ppm for 6
h/d, 5 d/w for up to 26 w. Exposed rats developed a mild hemoglobinemia
(0.6%) with some blueness of the skin during w 23 of exposure. Based on the
slight increase of methemoglobin content and the absence of spleen toxicity,
U.S. EPA (1994) considered this concentration a free-standing no-observed-
adverse-effect level (NOAEL).

Acute nonlethal studies using the rat are summarized in Table 1-7.

TABLE 1-7 Summary of Acute Sublethal Inhalation Data in Rats

Species Concentration Exposure

(ppm) Time Effect Reference
Rat 15,302 10 min No deaths; oxidative Kakkar et al.
changes in brain 1992
Rat 359 4h No deaths; cyanosis, trem- E.I. du Pont de

ors, lacrimation, salivation, Nemours 1982a
semi-prostration, initial

weight loss followed by

normal gain, reddish-brown

perineal area

Rat 150 8h No deaths; 41% Kim and
methemoglobin Carlson 1986
Rat 150 12h No deaths; 46% Kim and

methemoglobin Carlson 1986
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3.2.3. Mice

Oberst et al. (1956) exposed 20 female mice to aniline at 5 ppm for 6 h/d, 5
d/w for 20 w. Blood and urine analyses conducted prior to and during exposure
and pathologic examinations made at sacrifice revealed no effects.

3.2.4 Guinea pigs

Oberst et al. (1956) exposed 10 guinea pigs to ainline at 5 ppm for 6 h/d, 5
d/w for 20 w. Blood and urine analyses conducted prior to and during exposure
and pathologic examinations made at sacrifice revealed no effects.

3.3. Developmental and Reproductive Effects

No studies addressing developmental or reproductive effects following acute
inhalation exposure to aniline were located. However, because effects on
development and reproduction arise after systemic uptake, oral administration
of aniline can be considered for evaluating potential developmental and repro-
ductive toxicity. Aniline (administered as aniline hydrochloride) readily crosses
the placental barrier in rodents (Price et al. 1985).

Price et al. (1985) administered aniline hydrochloride by gavage at doses of
10, 30, or 100 milligrams per kilogram per day (mg/kg/d) to timed-pregnant
Fischer 344 (F344) rats. Intubation was on gestation d 7 through 20 (group 1)
or gestation d 7 through parturition (group 2). Both a reference teratogen
(hydroxyurea) and vehicle control group were included in the study protocol.
All exposed females survived to scheduled termination, although signs of
aniline toxicity—decreased body-weight gain, methemoglobinemia, increased
relative spleen weight, decreased erythrocyte count, and hematologic changes
indicative of increased hematopoietic activity— were evident in dams exposed
at 100 mg/kg/d. Effects on the hematologic profile were not described for the
lower doses. In group 1, maternal absolute weight gain was decreased only in
the high-dose group, whereas maternal relative spleen weights were increased
in all dose groups (in a dose-dependent manner); the other factors were exam-
ined only in the 100-mg/kg/d group. On d 20, fetuses from dams in group 1
exposed at 100 mg/kg/d exhibited increased relative liver weights and enhanced
hematopoietic activity, but there was no evidence of embryolethality or terato-
genicity. Effects in pups observed from post-natal d 0 to 60 (group 2) included
transient decreased body weights (dose-related; significant only in the 100-
mg/kg/d group), elevated relative liver weights (not dose related), and elevated
relative spleen weights (dose-related trend, only on post-natal d 25). A statisti-
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cally nonsignificant, but exposure-related, increase in the number of exposed
litters with one or more neonatal deaths was observed; the deaths were observed
in conjunction with mild but persistent signs of maternal toxicity through post-
natal d 30. No evidence of toxicity was observed in pups surviving to post-natal
d 60. Price et al. (1985) concluded that doses of aniline that were maternally
toxic but nonlethal did not present a selective risk for developmental toxicity to
the fetus in the F344 rat.

3.4. Genotoxicity

Aniline and its hydrochloride were tested in standard mutagenicity, cell-
transforming, and DNA-damaging tests with mixed results. Results of reverse
mutagen assays using Salmonella typhimurium both in the presence and in the
absence of an activating system and at doses of up to 2,500 microgram (p.g) per
plate in studies by McCann et al. (1975), Simon (1979a), and Haworth et al.
(1983) were generally negative (U.S. EPA 1994). Positive responses were
obtained in the two L5178Y mouse lymphoma cell mutation assays (Amacher
et al. 1980; McGregor et al. 1991). Aniline was negative with and without
metabolic activation in a mitotic recombination test with Saccharomyces
cerevisiae (Simon 1979b).

An increased frequency of sister chromatid exchanges was obtained in vivo
in bone-marrow cells of male Swiss mice at intraperitoneal doses of 210 and
420 mg/kg (Parodi et al. 1982, 1983) and in vitro Chinese hamster cells (Abe
and Sasaki 1977), although in the latter study, no chromosomal aberrations were
observed.

Aniline gave positive responses in the mouse bone-marrow micronucleus
assay when administered via ingestion or intraperitoneal injection (Ashby et al.
1991; Westmoreland and Gatehouse 1991). However, the positive responses
occurred only at a specific time after administration and at what the authors
considered high doses (1,000 mg/kg orally and 300 mg/kg intraperitoneally).

Aniline transformed the Balb/3T3 mouse cell line at doses of 0.8 to 100
pg/mL (without a clear dose-response effect), but not the Syrian hamster
embryo cells (Dunkel et al. 1981). Results were negative in DNA damage
assays in Escherichia coli (Mamber et al. 1983) and Bacillus subtilis (McCarroll
et al. 1981).

3.5. Carcinogenicity

The National Cancer Institute conducted a bioassay of aniline hydrochloride
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for possible carcinogenicity using F344 rats and B6C3F, mice (NCI 1978).
Aniline hydrochloride was administered in the feed to groups of approximately
50 male and 50 female animals of each species at concentrations of 0.3% (3,000
ppm) and 0.6% (6,000 ppm) of the diet for rats and 0.6% (6,000 ppm) and 1.2%
(12,000 ppm) for mice. Groups of 25 or 50 animals were used as concurrent
controls. The exposure duration was 103 w; this was followed by a 5-w obser-
vation period. Hemangiosarcomas of the spleen and the combined incidence of
fibrosarcomas and sarcomas (NOS (not otherwise specified)) of the spleen were
each elevated (p <0.05) in male rats. The combined incidence of fibrosarcomas
and sarcomas NOS of multiple body organs was also significant in male rats.
Incidences in the 0, 3,000- and 6,000-ppm dose groups were 0/24, 1/50, and
7/50, respectively. A compound-related (but statistically nonsignificant)
increase in fibrosarcomas or sarcomas NOS of either the spleen alone or multi-
ple organs of the body cavity was observed in female rats. These incidences
were statistically significant and associated with increased dietary concentra-
tions of aniline hydrochloride. These was no evidence of compound-related
carcinogenicity in mice of either sex. There were no effects on survival for
either species.

In the above study, the origin of the tumors was the spleen, a rare site for
F344 rats. No bladder tumors were observed. The sequence of pathologic
events for this type of tumor is methemoglobinemia, splenic hemosiderosis,
splenic fibrosis, splenic sarcoma, and metastatic sarcoma (Goodman et al.
1984). This sequence of events is unlikely to occur until the capacity of the
erythrocyte to cope with the insult from continuous high-dose aniline exposure
is exceeded (Bus and Popp 1987). Although this sequence of events is unlikely
to occur with a single acute exposure, Khan et al. (1997) observed changes in
the spleen of rats, including congestion of splenic blood vessels, marked expan-
sion of red pulp, splenic weight change, increased lipid peroxidation, and
malondialdehyde-protein adducts 24 h after a single high-dose oral exposure of
aniline hydrochloride at 259 mg/kg.

In a second carcinogenicity study, aniline hydrochloride was administered in
the diet to CD-F (F344) rats (130/sex/group) at levels of 0, 200, 600, or 2,000
ppm (CIIT 1982). There was an increased incidence of primary splenic sarco-
mas in male rats in the high-dose group (incidence of 31/90 compared with
incidences of 0/64, 0/90, and 1/90 in the 0-, 200-, and 600-ppm groups, respec-
tively). Stromal hyperplasia and fibrosis of the splenic red pulp also occurred
in males in the high-dose group and, to a lesser extent, in females in the high-
dose group. U.S. EPA (1994) notes that the stromal hyperplasia and fibrosis of
the spleen may represent a precursor lesion of sarcoma.
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On the basis of induction of tumors of the spleen and the body cavity in two
studies with rats, U.S. EPA (1994) in their IRIS document classified aniline as
B,, a probable human carcinogen. Evidence is inadequate in humans and
sufficient in animals. Although aniline is a relatively weak carcinogen, a
quantitative cancer risk assessment was performed to demonstrate that aniline
does not pose a significant cancer risk at the calculated AEGLs (Appendix A).

3.6. Summary

The primary consequence of acute inhalation exposure to aniline is formation
of methemoglobin. In rats exposed to aniline, formation of methemoglobin
occurred rapidly after exposure, reaching a steady-state in 6 to 8 h. Methemo-
globin was removed from the blood with a measurable half-life following
termination of exposure. The only reported effect of 8-h exposures of rats at 30,
50, 100, or 150 ppm was the induction of methemoglobin at levels of 1.6%,
4.7%, 22%, and 41%, respectively. The concentration of 30 ppm appears to be
a threshold for methemoglobin formation in the rat. No deaths occurred from
a 4-h exposure at 359 ppm or a 10-min exposure at 15,302 ppm. Aniline was
not a developmental toxicant at doses that were maternally toxic. No informa-
tion on the reproductive toxicity of aniline was located. Results of genotoxicity
tests were mixed or equivocal, most mutagenicity studies being negative. Ina
2-y feeding study, daily ingestion of aniline hydrochloride produced increased
sarcomas of the spleen in male and female rats but not in male or female mice.
The sarcomas were of a rare type and appeared to be related to chronic adminis-
tration of aniline.

4. SPECIAL CONSIDERATIONS
4.1. Metabolism and Disposition

Aniline is lipophilic (pK, 0of 4.6) and is expected to be rapidly and completely
absorbed in the small intestine (Kao et al. 1978). No information on relative
bioavailability following inhalation exposure was located, but as indicated by
methemoglobin formation during inhalation experiments, systemic absorption
by both the inhalation and the percutaneous routes is extensive. Percutaneous
absorption of aniline in hairless mice was 4.7% of the nominal applied doses
(Susten et al. 1990).
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Aromatic amines are initially metabolized by aromatic and N-hydroxylation
(oxidation reactions) and N-acetylation. Following aromatic ring hydroxylation,
the ring structure may be further conjugated with glucuronic acid or sulfate
(Parkinson 1996). N-hydroxylation results in the potential methemoglobin-
generating metabolite, phenylhydroxylamine.

Aniline is rapidly and extensively metabolized following oral administration.
In the pig and sheep, approximately 30% of a 50-mg/kg dose of "*C-labeled
aniline was excreted in the urine, as measured by "*C activity, within 3 h after
administration, whereas approximately 50% of the dose was excreted in rats.
Within 24 h, more than half the administered dose was excreted by pigs and
sheep and 96% of the dose was excreted by rats. Fecal radioactivity was low.
N-acetylated metabolites accounted for most of the excretion—N-acetyl-p-
aminophenyl glucuronide being the primary metabolite in sheep and pig urine
and N-acetyl-p-aminophenyl sulfate being the primary metabolite in the rat (Kao
et al. 1978). Biologic monitoring of workers exposed to aniline showed that p-
aminophenol constituted 15-55% of the parent compound in the urine; the o-
and m-isomers were also formed (Piotrowski 1984).

4.2. Mechanism of Toxicity

Many of the aromatic amines have the ability to convert the ferrous (Fe™)
iron in hemoglobin to the oxidized ferric form (Fe™), resulting in the formation
of methemoglobin. Methemoglobin is unable to transport oxygen, resulting in
signs and symptoms of oxygen deficiency. Aniline does not readily oxidize
hemoglobin in vitro; it must be metabolized to an active form to induce
methemoglobinemia (Smith 1996). Phenylhydroxylamine has been identified
as the potential active metabolite, because it produces methemoglobin following
administration to dogs (Kiese 1974) and in vitro (Jenkins et al. 1972). Recy-
cling of phenylhydroxylamine may occur: following the reaction of phenyl-
hydroxylamine and hemoglobin to form methemoglobin and nitrosobenzene,
nitrosobenzene may be reduced by cell processes to regenerate phenylhydrox-
ylamine. This process would account for the greater potency of phenylhydrox-
ylamine compared with nitrite as a methemoglobin-generating chemical.

In an in vitro study in which phenylhydroxylamine (0.5 milligram per
milliliter (mg/mL)) was added to samples of rat and human blood, blood from
the human subjects produced less methemoglobin in the human subjects than in
the rats (approximately 35% in human blood and 60% in rat blood) (Jenkins et
al. 1972). There was no more variation in methemoglobin levels among the
cells from different humans than among the cells from different rats.
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4.3. Structure-Activity Relationships

Aspreviously noted, many aromatic amines and their metabolites and deriva-
tives are methemoglobin-generating chemicals (Smith 1996).

4.4. Other Relevant Information

In the absence of a known chemical condition such as hemoglobin M,
elevated levels of methemoglobin are impossible to maintain without constant
infusion of a methemoglobin-inducing chemical. Hemoglobin autoxidation
occurs spontaneously in the presence of oxygen and is probably responsible for
the low percent (<2%) of methemoglobin normally found in human blood and
in blood of most other mammals (Smith 1996). A variety of intraerythrocytic
mechanisms reduce methemoglobin to hemoglobin, the most important being
methemoglobin reductase, which accounts for 95% of the reducing activity.

4.4.1. Susceptible Subpopulations

Infants are more sensitive to methemoglobin-generating chemicals than
adults, as they have reduced levels of nicotine adenine dinucleotide (NADH, the
cofactor (electron donor) for methemoglobin reductase) and a high concentra-
tion of fetal hemoglobin in their erythrocytes (fetal hemoglobin is more suscep-
tible to oxidation than adult hemoglobin) (Seger 1992). NADH lacks full
activity until infants are 4 mon of age. Human fetal livers are weakly capable
of hydroxylating aniline by about 6 w after conception (Pelkonen and Karki
1973). Instances of cyanosis or methemoglobinemia in infants due to percu-
taneous absorption of aniline dyes from ink were reported in Section 2.1

Inrare instances, humans may suffer from hereditary deficiencies of enzymes
responsible for reducing methemoglobin. "Rare individuals" with an inherited
deficiency of NADH-methemoglobin reductase have 10-50% of their circulating
blood pigment in the form of methemoglobin. The effect is primarily cosmetic
as these individuals have a compensatory polycythemia, although symptoms
may occur during exercise. Other individuals may have a deficiency of erythro-
cyte NADPH-glucose-6-phosphate dehydrogenase, an enzyme responsible, via
the pentose phosphate shunt, for generating an alternate source of energy for the
cell; these individuals do not have elevated levels of methemoglobin, as this is
a minor methemoglobin-reducing system (Kiese 1974; Smith 1996; Seger
1992). Individuals with hemoglobin M, caused by a substitution of amino acids
on the hemoglobin molecule, maintain methemoglobin levels 0f25-30% and are
clinically cyanotic (Seger 1992).
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4.4.2. Species Differences

There are large species differences in the response of hemoglobin to the
administration of aniline. Differences appear to be related to the rate of metabo-
lism and formation of specific metabolites as well as to the level of enzymes
responsible for reducing methemoglobin (Kiese 1974; Calabrese 1991). Spicer
(1950) compared the methemoglobin response in dogs, cats, and rabbits injected
intravenously with aniline. Injections of 15 mg/kg of body weight produced an
average methemoglobin response of 28.3% in dogs and 56.4% in cats, whereas
an injection of 30 mg/kg produced a response of only 3.2% in rabbits. How-
ever, on the basis of blood volume, the response in the dog and cat were more
similar, 25% and 32%, respectively, following injection of aniline at 1.1 mg/g
of hemoglobin. Jenkins et al. (1972) found that an intravenous injection of 20
mg/kg to rats induced a methemoglobin level of 10.9%. For two other
methemoglobin-forming chemicals, acetanilide and acetophenetidine, humans
were half as susceptible as the cat and one-tenth as susceptible as the rat
(Calabrese 1991).

At the low concentration used in the Oberst et al (1956) study with dogs, rats,
mice, and guinea pigs (5 ppm for 6 h/d, 5 d/w), no well-defined clinical signs
of intoxication occurred in any species; rats showed a slight deviation from pre-
exposure methemoglobin levels (maximum, 0.6%), and dogs had an increase of
chromogen in their urine, although circulating methemoglobin was not elevated.
No clear species differences could be distinguished among these minor effects.

A single oral administration of aniline hydrochloride to male Sprague-
Dawley rats at 2 millimole per kilogram (mmole/kg) (259 mg/kg; presumably
186 mg/kg of aniline) resulted in a peak methemoglobin level of 37% at 0.5 h
following administration (Khan et al. 1997). A single oral dose of 100 mg of
aniline hydrochloride (presumably about 1.0 mg of aniline/kg of body weight)
to two human subjects resulted in an increase in methemoglobin content to 11%
(Brodie and Axelrod 1948). In another study, oral administration of aniline at
40 mg/kg to two rats produced a mean maximum increase of 16.6% in
methemoglobin within 1 to 4 h. Administration of 65 mg (presumably about 0.9
mg/kg) produced a maximum increase of 16.1% in an adult male volunteer
(Jenkins et al. 1972). The maximum level in the volunteer was reached 2 h after
administration and returned to normal 1 h later. The no-effect dose in 20 male
and female volunteers in this study was 15 mg (0.2 mg/kg). The 20 volunteers
were given an oral dose mid-morning (10 a.m.) of 5, 15, and 25 mg on succes-
sive mornings followed by treatment of some of these volunteers with 35, 45,
55, and 65 mg, whereas the rats, which were fed ad libitum, were administered
a single treatment by gastric intubation. It should be noted that an intravenous
dose of 40 mg/kg to rats produced a lower increase in methemoglobin (11.7%)
than the oral dose (16.6%) and that the increase in methemoglobin formation in
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rats plateaued between oral doses of 40 and 300 mg/kg. The authors noted that
the greater sensitivity may be due to differences in the extent to which aniline
is metabolized or to differences in the activities of enzymes that promote the
reduction of methemoglobin.

Mier (1988) reported on the ingestion of aniline by a 4.5-y-old child weigh-
ing 16 kg. Ingestion of approximately 1 teaspoon (approximately 0.3125
mg/kg) produced a methemoglobin level of 68% by 6 h after ingestion. At this
time, treatment consisted of intravenous methylene blue to which she was
poorly responsive followed by blood exchange 13 h after ingestion.

Smith (1996) summarized data on the spontaneous methemoglobin reductase
activity of mammalian erythrocytes. Using nitrated RBCs with glucose as a
substrate, the data reflect the ratio of the activity of the species to the activity in
human RBCs. Activity in rat cells and human cells ranged from 1.3 to 5.0.
Activity in cells of the cat and dog was similar to that in human cells, and that
of the rabbit was 3.3 to 7.5 times greater. Most studies show that the spontane-
ous methemoglobin reductase activity of human erythrocytes is within an order
of magnitude of that of other mammals (Smith 1996).

Differential spontaneous methemoglobin reductase activity among species is
not the sole determining factor for interspecies differences. The inherent
sensitivity of the hemoglobin molecule to oxidation; the presence of other
reducing agents, such as reduced glutathione, cysteine, and ascorbic acid; and
the extent to which the methemoglobin-forming metabolite is formed and its
biologic half-life are interacting factors (Calabrese 1991).

4.4.3. Concentration-Exposure Duration Relationship

No single study clearly addressed various exposure durations and concentra-
tions or their relationship. However, the relationship between concentration of
aniline and methemoglobin formation at a fixed exposure duration (8 h) is linear
(Table 1-6), and although the data are limited, methemoglobin formation
increased by less than a factor of 2, i.e., was linear when comparing the 3- and
6-h exposure durations at a constant concentration of 100 ppm before reaching
an asymptote at 8 h (Figure 1-1). Based on the linear relationship between
concentration and methemoglobin formation in the Kim and Carlson (1986)
study, a value of n = 1 for scaling across time was selected (C' x t = k) for
AEGL development.

Asnoted, during exposure to a constant concentration, the level of methemo-
globin does not approach equilibrium until 6-8 h after initiation of exposure
(Figure 1-1). Therefore, methemoglobin levels at the shorter exposure durations
are lower than those at 8 h (e.g., the level is 10.5% at 3 h for a constant exposure
to 100 ppm), and any effect used as an endpoint at § h may not be present at the
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shorter exposure duration. Because of the 6-8 h lag time before the
methemoglobin plateau (and consequential effect) is reached, the value of n =
1 for scaling is considered appropriate, and a more conservative value for
scaling to the shorter time periods is unnecessary.

5. DATA ANALYSIS FOR AEGL-1
5.1. Human Data Relevant to AEGL-1

Henderson and Haggard (1943), in citing older reports, listed 5 ppm as a
maximum concentration considered safe for daily exposures but did not give the
basis for their statement. No additional human data are available for the deriva-
tion of AEGL-1 values for aniline.

5.2. Animal Data Relevant to AEGL-1

Kim and Carlson (1986) exposed animals to several concentrations within the
time periods relevant to development of the AEGLs. The authors also followed
the increase in methemoglobin (the primary effect of aniline exposure) over
time during exposure to a single concentration. Their study determined that a
single 8-h exposure to a concentration of 50 ppm was a LOAEL for generation
of methemoglobin in the rat (4.7%) but a NOAEL for any clinical effects. Their
study also determined that a concentration of 100 ppm for 8 h resulted in a
methemoglobin level of 22%. In humans, this level is characterized by clinical
cyanosis but no evidence for hypoxia. Furthermore, this level is not reached in
rats until completion of a full 8 h of exposure. In the study by Burgess et al.
(1984), clinical signs were unaffected by exposure at 90 ppm for up to 12 h
daily, 5 d/w for 2 w. Details of the study were not reported. The study by E.L
du Pont de Nemours (1982b) used head-only exposures of rats; whole-body
exposures are considered more relevant to AEGL development, inasmuch as
head-only exposures do not account for potential percutaneous absorption.

5.3. Derivation of AEGL-1

The concentration of 100 ppm for 8 h in the study by Kim and Carlson
(1986) was used as the basis for the AEGL-1. This exposure results in a
methemoglobin level of 22% but no hypoxic signs in rats. A review of the
literature revealed that methemoglobin levels of 15-20% in humans results in
clinical cyanosis, but no sign of clinical hypoxia (Kiese 1974; Seger 1992).
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Although inhalation data for comparison purposes are not available, oral inges-
tion data suggest that humans may be considerably more sensitive to
methemoglobin-forming chemicals than rats. Oral administration of aniline at
40 mg/kg to rats produced a maximum increase of 16.6% in methemoglobin,
whereas oral administration of aniline at 0.9 mg/kg to a human volunteer
produced a maximum increase of 16.1%. A 10-fold uncertainty factor is
generally applied when extrapolating from valid results of studies on experi-
mental animals to humans (NRC 1993). Thus, an uncertainty factor of 10 was
used for interspecies extrapolation. Differences in sensitivity to aniline among
human subpopulations are known to occur, but the extent of the differences in
the general population (excluding rare inherited disorders) is unknown. Infants
are more sensitive to methemoglobin-generating chemicals than adults as they
have reduced levels of nicotine adenine dinucleotide (NADH, the cofactor (elec-
tron donor) for methemoglobin reductase) and a high concentration of fetal
hemoglobin in their erythrocytes (fetal hemoglobin is more oxidizable than
adult hemoglobin) (Seger 1992). When quantitative data on a sensitive sub-
population are lacking, a 10-fold uncertainty factor is generally applied to ac-
count for the variation in sensitivity in the human population (NRC 1993).
Thus, an intraspecies uncertainty factor of 10 was applied to account for the
difference in sensitivity between infants and adults. It is believed that an
intraspecies uncertainty factor of 10 is protective of infants. The uncertainty
factors of 10 for each of the interspecies and intraspecies variabilities are
dictated by the small database and the lack of reliable human inhalation studies.
The data were scaled across time using C' x t = k and k = 480 ppm"min. (The
relationship between concentration of aniline and methemoglobin formation at
a fixed time (8 h) is linear.) Although an n value of 1 is not the most conserva-
tive when scaling to shorter time periods, it is believed that the total uncertainty
factor of 100 is protective of human health. The calculated values are listed in
Table 1-8; calculations are in Appendix B.

6. DATA ANALYSIS FOR AEGL-2

6.1. Human Data Relevant to AEGL-2

No human data relevant to the calculation of an AEGL-2 were located. Using
the descriptions of Kiese (1974) and Seger (1992), concentrations of

TABLE 1-8 AEGL-1 Values for Aniline
AEGL Level 30 min 1h 4h 8h

AEGL-1 16 ppm 8.0 ppm 2.0 ppm 1.0 ppm
(61 mg/m®) (30 mg/m’) (7.6 mg/m®) (3.8 mg/m®)




40 ACUTE EXPOSURE GUIDELINE LEVELS FOR SELECTED AIRBORNE CHEMICALS

aniline that induce methemoglobinemia levels greater than 30% (fatigue) and
less than about 60% of the circulating hemoglobin (lethargy and semistupor)
would be applicable to derivation of an AEGL-2.

6.2. Animal Data Relevant to AEGL-2

The study by Kim and Carlson (1986) determined that a concentration of 150
ppm for 8 h resulted in 41% methemoglobinemia. No report of clinical signs
was included by these authors. According to Bodansky (1951), dogs failed to
show any clinical signs at methemoglobin concentrations of less than about

60%.

6.3. Derivation of AEGL-2

The 8-h exposure at 150 ppm to rats resulted in elevation of methemoglobin
to 41% with no reported clinical signs. A review of the literature revealed that
methemoglobin levels of 30-45% in humans are associated with fatigue, leth-
argy, exertional dyspnea, and headache. These signs or symptoms were consid-
ered the threshold for disabling effects. The 8-h exposure at 150 ppm was
chosen as the basis for the AEGL-2 calculations. The level of methemoglobin
attained after 8 h of exposure, 41%, may produce anxiety and signs of fatigue;
these signs are below the definition of the AEGL-2. Although inhalation data
for comparison purposes are not available, ingestion data suggest that humans
may be considerably more sensitive to methemoglobin-forming chemicals than
rats. Oral administration of aniline at 40 mg/kg to rats produced a maximum
increase of 16.6% in methemoglobin, whereas oral administration of 0.9 mg/kg
to a human volunteer produced a maximum increase of 16.1%. A 10-fold
uncertainty factor is generally applied when extrapolating from valid results of
studies on experimental animals to humans (NRC 1993). Thus, an uncertainty
factor of 10 was used for interspecies extrapolation. Differences in sensitivity
to aniline among human subpopulations are known to occur, but the extent of
the differences in the general population (excluding rare inherited disorders) is
unknown. Infants are more sensitive to methemoglobin-generating chemicals
than adults, as they have reduced levels of nicotine adenine dinucleotide
(NADH, the cofactor (electron donor) for methemoglobin reductase) and a high
concentration of fetal hemoglobin in their erythrocytes (fetal hemoglobin is
more oxidizable than adult hemoglobin) (Seger 1992). When data on a sensitive
subpopulation are lacking, a 10-fold uncertainty factor is generally applied to
account for the variation in sensitivity among the human population (NRC
1993). Thus, an intraspecies uncertainty factor of 10 was applied to account for
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TABLE 1-9 AEGL-2 Values for Aniline
AEGL Level 30 min 1h 4h 8h

AEGL-2 24 ppm 12 ppm 3.0 ppm 1.5 ppm
(91 mg/m®) (46 mg/m®) (11 mg/m®) (5.7 mg/m®)

the difference in sensitivity between infants and adults. It is believed that the
intraspecies uncertainty factor of 10 is protective of infants. Based on the linear
relationship between methemoglobin formation and aniline concentration, the
data were scaled to the relevant time periods using the relationship C' x t = k
and k =720 ppm"min. Calculations are in Appendix B, and results are listed in
Table 1-9.

The 8-h AEGL-2 is 1.5 ppm. Flury and Zernik (1931) cite human data in
which a concentration of 40-53 ppm was tolerated for 6 h without distinct symp-
toms. Although of questionable reliability, their citation indicates that sensitive
individuals should be protected during an 8-h exposure to 1.5 ppm.

7. DATA ANALYSIS FOR AEGL-3
7.1. Human Data Relevant to AEGL-3

No human data relevant to the calculation of an AEGL-3 were located. Using
the descriptions of Bodansky (1951), Kiese (1974), and Seger (1992), concen-
trations of about 60% are associated with lethargy and semi-stupor, concentra-
tions of 70% are considered the threshold for lethality, and concentrations
exceeding 85% may be lethal if treatment is not initiated. Hamblin and
Mangelsdorff (1938) and Mangelsdorff (1956) cite recovery of workers from
methemoglobin levels up to 72% with little or no medical treatment.

7.2. Animal Data Relevant to AEGL-3

No studies resulting in a methemoglobin level relevant to the definition of the
AEGL-3 were available. The study by E.I. du Pont de Nemours (1982a) with
Crl:CD rats did not report methemoglobin levels but did report that no deaths
occurred after exposure to a concentration of 359 ppm for 4 h. Kakkar et al.
(1992) reported a 10-min no-adverse-effect concentration of 15,302 ppm. The
study by Kim and Carlson (1986) with Sprague-Dawley rats did not address
methemoglobin levels greater than 41%; those data showed that the methemo-
globin level (after 8 h of exposure) varies directly with the concentration of
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FIGURE 1-2 Measured and projected methemoglobin levels in rats exposed to aniline
for 8 h. Source: Data from Kim and Carlson 1986.

aniline. Therefore, the graph of concentration versus methemoglobin level at
8 h can be extrapolated to attain a concentration resulting in a methemoglobin
level of 70-80%, the defined threshold for lethality in humans (Figure 1-2).

7.3. Derivation of AEGL-3

An aniline concentration of 250 ppm, which is projected to result in a
methemoglobin level between 70% and 80% after an 8-h exposure was identi-
fied as the basis for the AEGL-3. The same uncertainty factors and scaling
procedure (the value of k in the formula C' x t =k is 1,200 ppm'min) as used
for the AEGL-1 were applied to calculations of the AEGL-3. Calculations are
in Appendix B, and values appear in Table 1-10.

The 1-h AEGL-3 value is 20 ppm and is considered safe for sensitive individ-
uals when compared with generalizations in older references. Henderson and
Haggard (1943) cited human data in which a concentration of 100 to 160 ppm
was the maximum concentration that could be inhaled for 1 h without serious
disturbance. The American Industrial Hygiene Association (AIHA 1955) stated
that 50-100 ppm could probably be tolerated for 60 min. Two additional studies
with rats support the AEGL-3 values. The 4-h exposure of rats to 359 ppm
resulted in serious signs but no deaths (E.I. du Pont de Nemours 1982a). Using
the combined interspecies and intraspecies uncertainty factor of
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TABLE 1-10 AEGL-3 Values for Aniline
AEGL Level 30 min 1h 4h 8h

AEGL-3 40 ppm 20 ppm 5.0 ppm 2.5 ppm
(152 mg/m’®) (76 mg/m’) (19 mg/m®) (9.5 mg/m®)

100 and extrapolating across time, the 1-h AEGL-3 value from this study would
be 14 ppm. Using the same combined uncertainty factor and extrapolation
across time, the 10-min concentration of 15,302 ppm in the study by Kakkar et
al. (1992) results in a 1-h AEGL-3 value of 25.5 ppm. It should also be noted
that 5 ppm, 6 h/d, 5 d/w for 20-26 w was a NOAEL for dogs, rats, mice and
guinea pigs (Oberst et al. 1956).

8. SUMMARY OF AEGLs
8.1. AEGL Values and Toxicity Endpoints
The AEGL values and toxicity endpoints are summarized in Table 1-11.

Because aniline is absorbed through the skin, a skin notation was added to the
table of values.

8.2. Comparisons with Other Standards and Guidelines

Standards and guidance levels for workplace and community exposures are
listed in Table 1-12. The American Industrial Hygiene Association (AIHA
1955) stated that 50-100 ppm could probably be tolerated for 60 min based on

TABLE 1-11 Summary and Relationship of AEGL Values®

Exposure Duration

Classification 30 min lh 4h 8h
AEGL-1 16 ppm 8.0 ppm 2.0 ppm 1.0 ppm
(Nondisabling) (61 mg/m’) (30 mg/m*) (7.6 mg/m’) (3.8 mg/m’)
AEGL-2 24 ppm 12 ppm 3.0 ppm 1.5 ppm
(Disabling) (91 mg/m®) (46 mg/m®) (11 mg/m®) (5.7 mg/m®)
AEGL-3 40 ppm 20 ppm 5.0 ppm 2.5 ppm
(Lethal) (152 mg/m’) (76 mg/m®) (19 mg/m’) (9.5 mg/m®)

?Cutaneous absorption of the neat material may occur, adding to the systemic toxicity.
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TABLE 1-12 Extant Standards and Guidelines for Aniline

Exposure Duration

Guideline 30 min lh 4h 8h
AEGL-1 16 ppm 8 ppm 2 ppm 1 ppm
AEGL-2 24 ppm 12 ppm 3 ppm 1.5 ppm
AEGL-3 40 ppm 20 ppm 5 ppm 2.5 ppm
ERPG-1 Not derived

ERPG-2 Not derived

ERPG-3 Not derived

NIOSH IDLH? 100 ppm

NIOSH REL® —°
OSHA PEL® 5 ppm
ACGIH

TLV-TWA! 2 ppm°
MAK (German)® 10 ppm 2 ppm°
MAC (Netherlands)® 1 mg/m® °

*NIOSH 1994, 1997.

"NIOSH 1997.

‘Potential occupational carcinogen; occupational exposure should be limited to the
lowest feasible concentration.

{ACGIH 1999.

°Skin notation; caution against cutaneous and mucous membrane exposures (aniline and
homologues).

‘German Reasearch Association 1999.

EMinistry of Social Affairs and Employment 1999.

a Manufacturing Chemists Association chemical safety data sheet. Because
most of these standards are protective of any adverse health effect, they are
comparable only to the AEGL-1 levels. The ACGIH time-weighted average
(TWA) of 2 ppm is based on the slight increase in methemoglobin in rats
exposed at 5 ppm for 6 h/d, 5 d/w for up to 26 w (Oberst et al. 1956) and the
fact that skin absorption can contribute to aniline systemic toxicity in humans.
The ACGIH Threshold Limit Value (TLV) is intended for repeated daily
exposure of the healthy adult worker and is not necessarily comparable to a
single 8-h exposure. However, it should be noted that both the 8-h AEGL-1 and
AEGL-2 are below the 8-h ACGIH TWA, and the 8-h AEGL-3 is only slightly
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above the 8-h ACGIH TWA. The OSHA permissible exposure limit (PEL) is
5 ppm. The German and the Dutch 8-h maximum workplace concentrations are
slightly lower than the 8-h AEGL-1. Emergency response planning guidelines
(ERPGs) have not been derived.

The NIOSH immediately dangerous to life and health (IDLH) is based on
Henderson and Haggard (1943), AIHA (1955), and von Oettingen (1941).
Henderson and Haggard, in turn, is based on the animal studies of Flury and
Zernik (1931). The statement by Henderson and Haggard that 100 to 160 ppm
is the maximum concentration that could be inhaled for 1 h without serious
disturbance appears to be the basis for the IDLH of 100 ppm. This 30-min
guideline concentration is greater than the 30-min AEGL-3.

The ACGIH TLV-TWA is the time-weighted average concentration for a
conventional 8-h workday and a 40-h workweek to which it is believed that
nearly all workers may be repeatedly exposed, day after day, without adverse
effects.

The NIOSH IDLH is defined by the NIOSH-OSHA Standard Completions
Program only for the purpose of respirator selection and represents a maximum
concentration from which, in the event of respiratory failure, one could escape
within 30 min without experiencing any escape-impairing or irreversible health.

The OSHA PEL is a time-weighted average (8 h/d, 40 h/w).

8.3. Data Adequacy and Research Needs

Recent or definitive inhalation exposure-response data for aniline in humans
are lacking. However, accidental human exposures to liquid aniline or aniline-
containing dyes confirm that the primary effect is on the blood and consists of
the conversion of hemoglobin to methemoglobin. Accidental human exposures
also provide qualitative as well as quantitative information on symptoms and
effects associated with specific blood methemoglobin concentrations. Recent
animal studies which utilized reliable measurement techniques provided good
concentration-response data and confirmed the primary toxicologic endpoint of
methemoglobin formation. The key study was well designed, conducted and
documented.

Data indicate that human infants are more sensitive to methemoglobin-gener-
ating chemicals than adults since they have reduced levels of nicotine adenine
dinucleotide (NADH, the cofactor (electron donor) for methemoglobin reduc-
tase) and a high concentration of fetal hemoglobin in their erythrocytes (fetal
hemoglobin is more oxidizable than adult hemoglobin). Oral exposures of
humans and animals to low doses indicate that humans may be considerably
more sensitive to aniline-induced methemoglobin formation than laboratory rats.
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The differences in sensitivity between human infants and adults and between
humans and laboratory animals are reflected in the uncertainty factor adjust-
ments used in the development of the AEGL values. It is believed that the
interspecies and intraspecies default values of 10 each for a total uncertainty
factor of 100 will be protective of human health. The margin of safety of the
AEGL values derived from acute animal exposures is supported by the gradual
uptake/effect in the key study in that maximal methemoglobin formation was
reached only after 6-8 h and by the only marginally greater effects in animal
studies following repeated exposures at concentrations similar to those of the
acute studies.

The available data from oral bioassays with aniline suggest that a tumorigenic
response may occur following long-term, repeated high-dose exposures that
cause repetitive tissue damage in the spleen as a consequence of physiologic
adaptation to the chronic damage to erythrocytes (Bus and Popp 1987). The
AEGL values were not based on carcinogenicity in rats, because formation of
methemoglobin was a more sensitive endpoint than induction of tumors of the
spleen. In addition, the endpoint of carcinogenicity was not used because the
route-to-route extrapolation used in the carcinogenicity risk assessment adds
additional uncertainty to the calculated values.
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APPENDIX A
CARCINOGENICITY ASSESSMENT FOR ANILINE

No inhalation slope factor is available for aniline, and the available inhalation
studies did not examine the endpoint of carcinogenicity. Based on the chronic
oral administration of aniline hydrochloride to CD-F rats (CIIT 1982), U.S. EPA
in its Integrated Risk Information Systems (IRIS) has estimated an oral slope
factor of 5.7 x 10°/mg/kg/d (U.S. EPA 1994). In that study, spleen tumor
incidences in rats administered 0, 200, 600, or 2,000 ppm in the diet were 0/64,
0/90, 1/90, and 31/90, respectively. Aniline also has genotoxic action.

The inhalation slope factor can be estimated by dividing the oral slope factor
by 70 kg and multiplying by the inhalation rate of 20 m*/d:

Inhalation slope factor = oral slope factor x 1/70 kg x 20 m*/d
5.7 x 10°/mg/kg/d x 1/70 kg x 20 m’/d
1.6 x 107/mg/m’.

To convert to a dose or concentration of aniline that would cause an excess
cancer risk of 10 (a virtually safe dose), the risk is divided by the slope factor:

dose = risk/slope
dose = (risk of 1 x 10)/(1.6 x 107 (mg/m*)™)
= 6.3 x 10? mg/m’.

To convert a 70-y exposure to a 24-h exposure, the virtually safe dose is
multiplied by the number of days in 70 yr:

24-h exposure = 6.3 x 10? mg/m’ x 25,600 d
1,613 mg/m’.

To adjust for uncertainties in assessing potential cancer risks for short-term
exposures under the multistage model, the 24-h exposure is divided by an
adjustment factor of 6 (Crump and Howe 1984).

(1,613 mg/m*)/6 = 269 mg/m’ (71 ppm).
The 24-h exposure can be converted to the shorter AEGL time points:
24-h exposure = 269 mg/m’ (71 ppm)

8-h exposure = 806 mg/m’ (212 ppm)
4-h exposure = 1,613 mg/m’ (425 ppm)
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1-h exposure = 6,451 mg/m* (1698 ppm)
30-min exposure = 12,900 mg/m® (3395 ppm).

For 107 and 107 risk levels, the 10 values are reduced by 10-fold and 100-
fold, respectively. Because the cancer risk from a short-term exposure to aniline
at the AEGL concentrations is estimated to be well below 1 in 10,000, even for
individuals at a sensitive age, the AEGL values are based on the more stringent
requirements for methemoglobin formation.
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APPENDIX B

DERIVATION OF AEGL VALUES

Derivation of AEGL-1

Key study: Kim and Carlson (1986)

Toxicity

endpoint: Methemoglobin level of 22% at exposure of 100 ppm for 8
h

Scaling: C' x t=k, based on the linear relationship between concen-

tration of aniline and methemoglobin formation

Uncertainty
factors: 10 for interspecies

10 for intraspecies
Calculations: 100 ppm/(10 x 10) = 1 ppm

C'xt=k
1 ppm X 480 min = 480 ppmimin

30-min AEGL-1: 480 ppmimin/30 min = 16 ppm
1-h AEGL-1: 480 ppmimin/60 min = 8.0 ppm
4-h AEGL-1: 480 ppmimin/240 min = 2.0 ppm
8-h AEGL-1: 480 ppmimin/480 min = 1.0 ppm

Derivation of AEGL-2

Key study: Kim and Carlson (1986)

Toxicity

endpoint: Methemoglobin level of 41% at exposure of 150 ppm for 8
h

Scaling: C' x t =Kk, based on the linear relationship between concen-

tration of aniline and methemoglobin formation

Uncertainty
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factors:

Calculations:

30-min AEGL-1:
1-h AEGL-1:
4-h AEGL-1:
8-h AEGL-1:

10 for interspecies
10 for intraspecies

150 ppm/(10 x 10) = 1.5 ppm
C'xt=k
1.5 ppm x 480 min = 720 ppmimin

720 ppmimin/30 min = 24 ppm
720 ppmAmin/60 min = 12 ppm
720 ppmimin/240 min = 3.0 ppm
720 ppmimin/480 min = 1.5 ppm

Derivation of AEGL-3

Key study:
Toxicity
endpoint:

Scaling:

Uncertainty
factors:

Calculations:

30-min AEGL-1:
1-h AEGL-1:
4-h AEGL-1:
8-h AEGL-1:

Kim and Carlson (1986)

Projected methemoglobin level of 70-80% at exposure of
250 ppm for 8 h

C' x t=Kk, based on the linear relationship between concen-
tration of aniline and methemoglobin formation

10 for interspecies
10 for intraspecies

250 ppm/(10 x 10) = 2.5 ppm
C'xt=k
2.5 ppm X 480 min = 1,200 ppmAmin

1,200 ppmimin/30 min = 40 ppm
1,200 ppmimin/60 min = 20 ppm
1,200 ppmimin/240 min = 5.0 ppm
1,200 ppmimin/480 min = 2.5 ppm
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APPENDIX C

DERIVATION SUMMARY FOR
ACUTE EXPOSURE GUIDELINE LEVELS
FOR ANILINE (CAS No. 62-53-3)

AEGL-1 Values - Aniline

30 min 1h 4 h 8h

16 ppm 8.0 ppm 2.0 ppm 1.0 ppm

Key reference: Kim, Y.C., and G.P. Carlson. 1986. The effect of an un-
usual workshift on chemical toxicity. II. Studies on the exposure of rats to
aniline. Fundam. Appl. Toxicol. 7:144-152

Test Species/Strain/Number: Adult male Sprague-Dawley rats,
S/exposure group

Exposure Route/Concentrations/Durations: Inhalation: 0-150 ppm for 8 h

Effects: Concentration (ppm)  Methemoglobin Formation (%)*

0 1.1 (0.4-1.7)
10 1.1 (0.4-1.7)
30 1.6
50 47
100 22
150 41

* Values are estimates from data presented as graphs.

Endpoint/Concentration/Rationale: The only effect of aniline administra-
tion was formation of methemoglobin. Administration of 100 ppm for 8 h
to rats resulted in elevation of methemoglobin to 22% but no hypoxic
signs. A review of the literature revealed that methemoglobin levels of
15-20% in humans result in clinical cyanosis but no hypoxic symptoms.
This effect was considered to be mild and reversible and, therefore, within
the definition of the AEGL-1. The 8-h exposure to 100 ppm was chosen as
the basis for the AEGL-1 calculations.

Uncertainty Factors/Rationale: Total uncertainty factor: 100
Interspecies: 10 - A review of oral administration studies suggested
that humans may be considerably more sensitive to methemoglobin
formation than rats. Oral administration of aniline to rats at 40 mg/kg
produced a maximum increase of 16.6% in methemoglobin, whereas
oral administration of 0.9 mg/kg to a human volunteer produced a max-
imum increase of 16.1%. (Continued)
Intraspecies: 10 - Infants are more sensitive to methemoglobin-gen-
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erating chemicals than adults, because they have reduced levels of nico-
tine adenine dinucleotide (NADH, the cofactor (electron donor) for
methemoglobin reductase), and a high concentration of fetal hemoglo-
bin in their erythrocytes (fetal hemoglobin is more oxidizable than adult
hemoglobin) (Seger 1992).

Modifying Factor: Not applicable

Animal to Human Dosimetric Adjustment: Not applied; insufficient data.

Time Scaling: C" x t =k, where n = 1 and k = 480 ppm"min; based on the
linear relationship between concentration and methemoglobin formation
(Kim and Carlson 1986)

Data Adequacy: The key study was well designed, conducted, and docu-
mented. Values were presented graphically. Supporting data were sparse,
probably because aniline is not a vapor at room temperature, and poison-
ings have involved contact with the liquid. Although human data are
sparse, it is believed that a total uncertainty factor of 100 is protective of
human health. Because aniline is absorbed through the skin, which in-
creases the systemic toxicity, direct skin contact with the liquid would be
additive and result in onset of adverse effects at airborne concentrations
below the respective AEGL values. Therefore, direct skin contact with the
liquid should be avoided.
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AEGL-2 Values - Aniline

30 min 1h 4 h 8h

24 ppm 12 ppm 3.0 ppm 1.5 ppm

Key reference: Kim, Y.C., and G.P. Carlson. 1986. The effect of an un-
usual workshift on chemical toxicity. II. Studies on the exposure of rats to
aniline. Fundam. Appl. Toxicol. 7:144-152

Test Species/Strain/Sex/Number: Adult male Sprague-Dawley rats,
S/exposure group

Exposure Route/Concentrations/Durations: Inhalation: 0-150 ppm for 8 h

Effects: Concentration (ppm) Methemoglobin Formation (%)

0 1.1 (0.4-1.7)
10 1.1 (0.4-1.7)
30 1.6
50 47
100 22
150 41

* Values are estimates from data presented as graphs.

Endpoint/Concentration/Rationale: Administration of 150 ppm for 8 h to
rats resulted in elevation of methemoglobin to 41% with no reported toxic
signs. A review of the literature revealed that methemoglobin levels of
30-45% in humans are associated with fatigue, lethargy, exertional dys-
pnea, and headache. These signs and symptoms were considered the
threshold for disabling effects. The 8-h exposure to 150 ppm was chosen
as the basis for the AEGL-2 calculations.

Uncertainty Factors/Rationale: Total uncertainty factor: 100
Interspecies: 10 - A review of oral administration studies suggested
that humans may be considerably more sensitive to methemoglobin
formation than rats. Oral administration of aniline to rats at 40 mg/kg
produced a maximum increase of 16.6% in methemoglobin, whereas
oral administration of 0.9 mg/kg to a human volunteer produced a max-
imum increase of 16.1%.
Intraspecies: 10 - Infants are more sensitive to methemoglobin- gener-
ating chemicals than adults, because they have reduced levels of nico-
tine adenine dinucleotide (NADH, the cofactor (electron donor) for
methemoglobin reductase), and a high concentration of fetal hemoglo-
bin in their erythrocytes (fetal hemoglobin is more oxidizable than adult
hemoglobin) (Seger 1992).

Modifying Factor: Not applicable
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Animal to Human Dosimetric Adjustment: Not applied; insufficient data

Time Scaling: C" x t =k, where n = 1 and k = 720 ppm"min; based on the
linear relationship between concentration and methemoglobin formation
(Kim and Carlson 1986)

Data Adequacy: The key study was well designed, conducted, and docu-
mented. Values were presented graphically. Supporting data were sparse,
probably because aniline is not a vapor at room temperature, and poison-
ings have involved contact with the liquid. Although human data are
sparse, it is believed that a total uncertainty factor of 100 is protective of
human health. Because aniline is absorbed through the skin, which in-
creases the systemic toxicity, direct skin contact with the liquid would be
additive and result in onset of adverse effects at airborne concentrations
below the respective AEGL values. Therefore, direct skin contact with the
liquid should be avoided.
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AEGL-3 Values - Aniline

30 min 1h 4 h 8h

40 ppm 20 ppm 5.0 ppm 2.5 ppm

Key reference: Kim, Y.C., and G.P. Carlson. 1986. The effect of an un-
usual workshift on chemical toxicity. II. Studies on the exposure of rats to
aniline. Fundam. Appl. Toxicol. 7:144-152

Test Species/Strain/Sex/Number: Adult male Sprague-Dawley rats,
S/exposure group

Exposure Route/Concentrations/Durations: 0-150 ppm for 8 h

Effects: Concentration (ppm)  Methemoglobin Formation (%)*

0 1.1 (0.4-1.7)
10 1.1 (0.4-1.7)
30 1.6
50 47
100 22
150 41

* Values are estimates from data presented as graphs.

Endpoint/Concentration/Rationale: Because the exposures did not result
in effects consistent with the definition of an AEGL-3, the concentration
vs percent hemoglobin formation data presented by the authors was
graphed and projected to a methemoglobin level of 70-80%, which was
considered the threshold for lethality in humans. This value was approxi-
mately 250 ppm. An 8-h exposure to 250 ppm was chosen as the basis for
the AEGL-3 calculations.

Uncertainty Factors/Rationale: Total uncertainty factor: 100
Interspecies: 10 - A review of oral administration studies suggested
that humans may be considerably more sensitive to methemoglobin
formation than rats. Oral administration of aniline to rats at 40 mg/kg
produced a maximum increase of 16.6% in methemoglobin, whereas
oral administration of 0.9 mg/kg to a human volunteer produced a max-
imum increase of 16.1%.
Intraspecies: 10 - Infants are more sensitive to methemoglobin- gener-
ating chemicals than adults, because they have reduced levels of nico-
tine adenine dinucleotide (NADH, the cofactor (electron donor) for
methemoglobin reductase), and a high concentration of fetal hemoglo-
bin in their erythrocytes (fetal hemoglobin is more oxidizable than adult
hemoglobin) (Seger 1992).

Modifying Factor: Not applicable
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Animal to Human Dosimetric Adjustment: Not applied; insufficient data

Time Scaling: C" % t=k, where n =1 and k = 1,200 ppm"min; based on
the linear relationship between concentration and methemoglobin forma-
tion (Kim and Carlson 1986)

Data Adequacy: The key study was well designed, conducted, and docu-
mented. Values were presented graphically. Supporting data were sparse,
probably because aniline is not a vapor at room temperature and poison-
ings have involved contact with the liquid. Although human data are
sparse, it is believed that a total uncertainty factor of 100 is protective of
human health. Because aniline is absorbed through the skin, which
increases the systemic toxicity, direct skin contact with the liquid would
be additive and result in onset of adverse effects at airborne concentrations
below the respective AEGL values. Therefore, direct skin contact with the
liquid should be avoided.




