Table of Contents

1.0 Stack Pipe Data	. 4
Table 1: Stack Pipe ID Prefixes	. 4
2.0 Unit Control Data	. 4
Table 2: Parameter Codes and Descriptions	. 4
Table 3: Control Codes and Descriptions	. 4
3.0 Unit Fuel Data	. 6
Table 4: Unit Fuel Codes and Descriptions	. 6
Table 5: Unit Fuel Indicator Codes and Descriptions	. 6
Table 6: Demonstration Method to Qualify for Monthly Fuel Sampling for Gross Calorific	
Value (GCV) Codes and Descriptions	. 7
Table 7: Demonstration Method to Qualify for Daily or Annual Fuel Sampling for %S (AR	P)
Codes and Descriptions	. 7
4.0 Monitoring Location Attribute Data	.7
Table 8: Duct/Stack Material Codes and Descriptions	. 7
Table 9: Duct/Stack Shape Codes and Descriptions	. 7
5.0 Monitoring Method Data	. 8
Table 10: Parameter Codes and Descriptions for Monitoring Methods	. 8
Table 11: Measured Parameters and Applicable Monitoring Methods	. 9
Table 12: Substitute Data Codes and Descriptions	11
Table 13: Bypass Approach Codes and Descriptions	11
6.0 Supplemental MATS Compliance Method Data	11
Table 14: Supplemental MATS Parameter Codes	11
Table 15: Supplemental MATS Measured Parameters and Applicable Monitoring Methods	12
7.0 Component Data	13
Table 16: Component Type Codes and Descriptions	13
Table 17: Sample Acquisition Method Codes for Components	15
Table 18: Moisture Basis Codes and Descriptions for CEM Analyzer and Sorbent Trap	
Sampling Train Components	16
8.0 Analyzer Range Data	16
Table 19: Analyzer Range Codes and Descriptions	16
9.0 Monitoring System Data	16
Table 20: System Type Codes and Descriptions	16
Table 21: System Designation Codes and Descriptions	17
Table 22: Monitoring System Fuel Codes and Descriptions	18
10.0 Monitoring System Fuel Flow Data	19
Table 23: Units of Measure for Maximum Fuel Flow Rate Codes and Descriptions	19
11.0 Monitoring Formula Data	19
Table 24: Parameter Codes and Descriptions for Monitoring Formula	19
Table 25: F-Factor* Reference Table	20
Table 26: SO2 Formula References	22
Table 27: SO2 Emission Formulas	22
Table 28: SO2 Emission Rate Formula Reference Table for the MATS Rule	24
Table 29 SO2 Emission Formulas for the MATS Rule	25
Table 30: NOx Emission Rate Formula Reference Table	26

Table 31: NOx Emission Rate Formulas (lb/mmBtu)	27
Table 32: Hg Emission Formula Reference Table for the MATS Rule	28
Table 33: Hg Emissions Formulas for the MATS Rule	28
Table 34: HCl Emission Rate Formula Reference Table For the MATS Rule	30
Table 35: HCL Emission Formulas For the MATS Rule	31
Table 36: HF Emission Rate Formula Reference Table For the MATS Rule	32
Table 37: HF Emission Formulas For the MATS Rule	33
Table 38: Moisture Formulas	34
Table 39: CO2 Formula Reference Table	35
Table 40: CO ₂ Concentration and Mass Emission Rate Formulas	35
Table 41: Heat Input Formula Reference Table	38
Table 42: Heat Input Formulas	39
Table 43: Apportionment and Summation Formulas	40
Table 44: NOx Mass Emissions Formulas (lbs/hr)	42
Table 45: Miscellaneous Formula Codes	42
Table 46: Representations for Electronic Reporting of Formulas	43
12.0 Monitoring Default Data	44
Table 47: Parameter Codes and Descriptions for Monitoring Default	44
Table 48: Rounding Rules for Default Values	45
Table 49: Fuel-Specific Minimum Default Moisture Values for SO2, NOx, CO2, and H	leat
Input Rate Calculations	46
Table 50: Fuel-Specific Maximum Default Moisture Values for NOx Emission Rate	
Calculations	46
Table 51: NOx Emission Factors (lb/mmBtu) for Low Mass Emissions Units	46
Table 52: SO2 Emission Factors (lb/mmBtu) for Low Mass Emissions Units	47
Table 53: CO2 Emission Factors (ton/mmBtu) for Low Mass Emissions Units	47
Table 54: Units of Measure Codes by Parameter	47
Table 55: Default Purpose Codes and Descriptions	48
Table 56: Monitoring Default Fuel Codes and Descriptions	48
Table 57: Monitoring Default Operating Condition Codes and Descriptions	51
Table 58: Default Source Codes and Descriptions	51
13.0 Monitoring Span Data	52
Table 59: Component Type Codes and Descriptions for Monitor Span	52
Table 60: Provision for Calculating Maximum Potential Concentrations (MPC)/ Maxim	um
Expected Concentration (MEC)/ Maximum Potential Flow Rate (MPF) Code	s and
Descriptions	52
Table 61: Criteria for Maximum Potential Concentrations (MPC)/ Maximum Expected	50
Concentration (MEC)/ Maximum Potential Flow Rate (MPF) Determinations	53
1 able 62: Flow Span Calibration Units of Measure	54
14. Rectangular Duct WAF Data	33
1 a Die 05: WAF Method Codes and Descriptions	33 EE
15. WOILIOFING LOAD Data	33
16.0 Monitoring Qualification Data	33 EC
Table 65: Qualification Type Codes and Descriptions	30 56
rable 03. Qualification Type Coues and Descriptions	30

17.0 Monitoring Oualification LME Data	. 57
Table 66: Data Requirements for Monitoring Qual LME	. 57
18.0 Monitoring Qualification Percent Data	. 57
Table 67: Qualification Data Type Codes and Descriptions	. 57

1.0 STACK PIPE DATA

Prefix	Description
CS	Common Stack
СР	Common Pipe
MS	Multiple Stack or Duct
MP	Multiple Pipe

TABLE 1: STACK PIPE ID PREFIXES

2.0 UNIT CONTROL DATA

Code	Description	
NOX	Nitrogen Oxides	
SO2	Sulfur Dioxide	
PART	Particulates (opacity)	
HG	Mercury	
HCL	Hydrogen chloride	
HF	Hydrogen fluoride	

TABLE 2: PARAMETER CODES AND DESCRIPTIONS

TABLE 3: CONTROL CODES AND DESCRIPTIONS

Parameter	Control Code	Description
NOX	СМ	Combustion Modification/Fuel Reburning
	DLNB	Dry Low NO _x Premixed Technology (turbines only)
	H2O	Water Injection (turbines and cyclone boilers only)
	LNB	Low NO_x Burner Technology (dry bottom wall-fired boilers or process heaters only)
	LNBO	Low NO _x Burner Technology with Overfire Air (dry bottom wall- fired boilers, dry bottom turbo-fired boilers, or process heaters only)
	LNC1	Low NO _x Burner Technology with Close-Coupled Overfire Air (OFA) (tangentially fired units only)
	LNC2	Low NO _x Burner Technology with Separated OFA (tangentially fired units only)

Parameter	Control Code	Description		
	LNC3	Low NO _x Burner Technology with Close-Coupled and Separated OFA (tangentially fired units only)		
	LNCB	Low NO _x Burner Technology for Cell Burners		
	NH3	Ammonia Injection		
	0	Other		
	OFA	Overfire Air		
	SCR	Selective Catalytic Reduction		
	SNCR	Selective Non-Catalytic Reduction		
	STM	Steam Injection		
SO2	DA	Dual Alkali		
	DL	Dry Lime FGD		
	FBL	Fluidized Bed Limestone Injection		
	МО	Magnesium Oxide		
	0	Other		
	SB	Sodium Based		
	WL	Wet Lime FGD		
	WLS	Wet Limestone		
PART	В	Baghouse(s)		
	ESP	Electrostatic Precipitator		
	HESP	Hybrid Electrostatic Precipitator		
	WESP	Wet Electrostatic Precipitator		
	WS	Wet Scrubber		
	0	Other		
	С	Cyclone		
HG	UPAC	Injection of untreated powdered activated carbon (PAC) sorbents		
	НРАС	Injection of halogenated powdered activated carbon (PAC) sorbents		
	SORB	Injection of other (non-PAC) sorbents		
	APAC	Additives to enhance PAC and existing equipment performance		
	САТ	A catalyst (gold, palladium, or other) used to oxidize mercury		
	REAC	Regenerative Activated Coke Technology		
HCL, HF	DSI	Dry Sorbent Injection		

3.0 UNIT FUEL DATA

Code	Description
С	Coal
CRF	Coal Refuse (culm or gob)
DSL	Diesel Oil*
LPG	Liquefied Petroleum Gas
NNG	Natural Gas
OGS	Other Gas
OIL	Residual Oil
OOL	Other Oil
OSF	Other Solid Fuel
PNG	Pipeline Natural Gas (as defined in §72.2)
PRG	Process Gas
PRS	Process Sludge
РТС	Petroleum Coke
R	Refuse
TDF	Tire Derived Fuel
W	Wood
WL	Waste Liquid

TABLE 4: UNIT FUEL CODES AND DESCRIPTIONS

* Diesel oil is defined in §72.2 as low sulfur fuel oil of grades 1-D or 2-D, as defined by ASTM D-975-91, grades 1-GT or 2-GT, as defined by ASTM D2880-90a, or grades 1 or 2, as defined by ASTM D396-90. By those definitions (specifically ASTM D396-90), kerosene and ultra-low sulfur diesel fuel (ULSD) are considered subsets of diesel oil and therefore should be identified with the code DSL. If a fuel does not qualify as one of these types, the code DSL should not be used.

TABLE 5:	UNIT FUEL	INDICATOR	CODES AND	DESCRIPTIONS
----------	------------------	------------------	-----------	---------------------

Code	Description
Е	Emergency
Ι	Ignition (startup)
Р	Primary
S	Backup (secondary)

TABLE 6: DEMONSTRATION METHOD TO QUALIFY FOR MONTHLY FUEL SAMPLING FOR GROSS CALORIFIC VALUE (GCV) CODES AND DESCRIPTIONS

Code	Description
GHS	720 Hours of Data Using Hourly Sampling
GGC	720 Hours of Data Using an Online Gas Chromatograph
GOC	720 Hours of Data Using an Online Calorimeter

TABLE 7: DEMONSTRATION METHOD TO QUALIFY FOR DAILY OR ANNUAL FUEL SAMPLING FOR %S (ARP) CODES AND DESCRIPTIONS

Code	Description
SHS	720 Hours of Data Using Manual Hourly Sampling
SGC	720 Hours of Data Using Online Gas Chromatograph

4.0 MONITORING LOCATION ATTRIBUTE DATA

TABLE 8: DUCT/STACK MATERIAL CODES AND DESCRIPTIONS

Code	Description	
BRICK	Brick and mortar	
OTHER	Any material other than brick and mortar	

TABLE 9: DUCT/STACK SHAPE CODES AND DESCRIPTIONS

Code	Description
RECT	Rectangular
ROUND	Round

5.0 MONITORING METHOD DATA

TABLE 10: PARAMETER CODES AND DESCRIPTIONS FOR MONITORING METHODS

Code	Description (Units)	
CO2	CO ₂ Mass Emissions Rate (tons/hr)	
CO2M	CO ₂ Mass Emissions (tons)	
H2O	Moisture (%H ₂ O)	
HCLRE	Electrical Output-Based HCL Emission Rate (lb/MWh)	
HCLRH	Heat Input-Based HCL Emission Rate (lb/mmBtu)	
HFRE	Electrical Output-Based HF Emission Rate (lb/MWh)	
HFRH	Heat Input-Based HF Emission Rate (lb/mmBtu)	
HGRE	Electrical Output-Based Hg Emission Rate (lb/GWh)	
HGRH	Heat Input-Based Hg Emission Rate (lb/TBtu)	
HI	Heat Input Rate (mmBtu/hr)	
HIT	Heat Input Total (mmBtu) (LME only)	
NOX	NO _x Mass Emissions Rate (lb/hr)	
NOXM	NO _x Mass Emissions (lb) (LME only)	
NOXR	NO _x Emissions Rate (lb/mmBtu)	
ОР	Opacity (percent)	
SO2	SO ₂ Mass Emissions Rate (lb/hr)	
SO2M	SO ₂ Mass Emissions (lb) (LME only)	
SO2RE	Electrical Output-Based SO ₂ Emission Rate (lb/Mhr)	
SO2RH	Heat Input-Based SO ₂ Emission Rate (lb/mmBtu)	

TABLE 11: MEASURED PARAMETERS AND APPLICABLE MONITORING METHODS

Parameter	Method Code	Description	
CO2	AD	Appendix D Gas and/or Oil Flow System(s) (Formula G-4)	
	AMS	Alternative Monitoring System*	
	CEM	CO2 Continuous Emission Monitor	
CO2M	FSA	Fuel Sampling and Analysis (Formula G-1)	
	LME	Low Mass Emissions (§75.19)	
H2O	MMS	Continuous Moisture Sensor	
	MDF	Moisture Default	
	MTB	Moisture Lookup Table	
	MWD	H ₂ O System with Wet and Dry O ₂ Analyzers	
HCLRE or HCLRH	СЕМ	HCl Continuous Emission Monitoring System	
HFRE or HFRH	СЕМ	HF Continuous Emission Monitoring System	
HGRE	ST	Sorbent Trap Monitoring System	
	CEM	Hg Continuous Emission Monitoring System (Hg CEMS)	
	CEMST	Hg CEMS and Sorbent Trap Monitoring System	
HGRH	ST	Sorbent Trap Monitoring System	
	CEM	Hg Continuous Emission Monitoring System (Hg CEMS)	
	CEMST	Hg CEMS and Sorbent Trap Monitoring System	
HI	AD	Appendix D Gas and/or Oil Flow System(s)	
	ADCALC	Appendix D Gas and/or Oil Flow System at location (unit) and different Oil or Gas Measured at Common Pipe. (Heat Input at the unit is determined by adding the appropriate value apportioned from the Common Pipe to the unit value)	
	AMS	Alternative Monitoring System*	
	CALC	Calculated from Values Measured at Other Locations. (Used for three situations: (1) this is the method at a unit when heat input is determined at a common stack or common pipe and then apportioned to the constituent units; or (2) this is the method at a unit when heat input is determined at multiple stacks and then summed to the unit; or (3) this is the method at a common stack if heat input is determined at the units and then summed to the common stack in order to calculate NO_x mass)	
	CEM	Flow and O ₂ or CO ₂ Continuous Emission Monitors	
	EXP	Exempt from Heat Input monitoring	

Parameter	Method Code	Description	
HIT	LTFF	Long-Term Fuel Flow (Low Mass Emissions §75.19)	
	LTFCALC	Long-Term Fuel Flow (Low Mass Emissions §75.19) at the unit and different Long Term Fuel Flow at the common pipe. (Heat Input at the unit is determined by adding the appropriate value apportioned from the Common Pipe to the unit value)	
	MHHI	Maximum Rated Hourly Heat Input (Low Mass Emissions)	
	CALC	Calculated from values measured at the common pipe. (This is the method at a unit when heat input is determined at a common pipe and apportioned to the constituent units)	
NOX	AMS	Alternative Monitoring System*	
	CEM	NO _x Concentration times Stack Flow rate	
	CEMNOXR	NO_x Concentration times Stack Flow rate and NO_x Emission Rate times Heat Input Rate (one as a primary method and the other as secondary). <i>This method is not permitted after December 31, 2007</i>	
	NOXR	NO _x Emission Rate times Heat Input Rate	
NOXM	LME	Low Mass Emissions (§75.19)	
NOXR	AMS	Alternative Monitoring System*	
	AE	Appendix E	
	CEM	NO _x Emission Rate CEMS	
	PEM	Predictive Emissions Monitoring System (as approved by petition)	
OP	СОМ	Continuous Opacity or Particulate Matter Monitor	
	EXP	Exempted	
SO2	AD	Appendix D Gas and/or Oil Flow System(s)	
	AMS	Alternative Monitoring System*	
	CEM	SO ₂ Continuous Emission Monitor	
	CEMF23	SO_2 Continuous Emission Monitor, and Use of F-23 Equation during hours when only very low sulfur fuel is burned per $\$$ 75.11(e) and 75.11(e)(4)	
	F23	Use of F-23 Equation if only very low sulfur fuel is burned per §§75.11(e) and 75.11(e)(4)	
SO2M	LME	Low Mass Emissions (§75.19)	
SO2RE	CEM	SO ₂ Continuous Emission Monitoring System	
SO2RH	СЕМ	SO ₂ Continuous Emission Monitoring System	

* Use of this method requires EPA approval

Code	Description	Appropriate For Parameter Codes	
FSP75	Fuel-Specific Part 75	NOXR, NOX, SO2, CO2, H2O, and HI	
FSP75C	Fuel-Specific Part 75 with separate co-fired database	NOXR, NOX, SO2, CO2, H2O, and HI	
MHHI	Maximum Rated Hourly Heat Input Rate for LME Units using Long Term Fuel Flow methodology	НІТ	
NLB	Non-Load Based	NOXR, NOX, and HI	
NLBOP	Non-Load Based with Operational Bins	NOXR, NOX, and HI	
OZN75	Ozone vs. Non-Ozone Season	NOX, NOXR	
REV75	Reverse of Standard Part 75	H2O	
SPTS	Standard Part 75	NOXR, NOX, SO2, CO2, H2O, and HI	

TABLE 12: SUBSTITUTE DATA CODES AND DESCRIPTIONS

TABLE 13: BYPASS APPROACH CODES AND DESCRIPTIONS

Code	Description	
BYMAX	MPC or MER* for Highest Emitting Fuel	
BYMAXFS	Fuel-Specific MPC or MER*	

* Note that MEC or MCR may be used for documented controlled hours.

6.0 SUPPLEMENTAL MATS COMPLIANCE METHOD DATA

TABLE 14: SUPPLEMENTAL MATS PARAMETER CODES

Paramenter Code	Description
HG	Mercury
HF	Hydrogen Fluoride
HCL	Hydrogen Chloride
ТМ	Total HAP Metals (Including Hg)
TNHGM	Total non-Hg HAP Metals
IM	Individual HAP Metals (Including Hg)
INHGM	Individual non-Hg HAP Metals
LU	Limited-Use Oil-Fired Unit

TABLE 15: SUPPLEMENTAL MATS MEASURED PARAMETERS AND Applicable Monitoring Methods

Parameter Code	Method Code	Description
HG (Coal and pet coke-fired EGUs and IGCCs only)	LEE	Low Emitting EGU
HF or HCL	LEE	Low Emitting EGU
	QST	Quarterly Stack Testing
	РМО	Percent Moisture in the Oil (Oil-fired EGUs only)
TM	LEE	Low Emitting EGU for Total HAP metals, including Hg
(Oil-fired EGUs only)	QST	Quarterly Stack Testing for Total HAP metals, including Hg
	PMQST	Quarterly Stack Testing for Particulate Matter
	PMCEMS	Particulate Matter Continuous Monitoring System
	PMCPMS	Particulate Matter Continuous Parametric Monitoring System
	CEMS	Continuous Emission Monitoring System (Requires Administrative Approval under 40 CFR 63.7(f))
TNHGM	LEE	Low Emitting EGU for Total non-Hg HAP metals
(Coal & pet coke- fired EGUs and	QST	Quarterly Stack Testing for Total non-Hg HAP metals
IGCCs only)	PMQST	Quarterly Stack Testing for Particulate Matter
	PMCEMS	Particulate Matter Continuous Monitoring System
	PMCPMS	Particulate Matter Continuous Parametric Monitoring System
	CEMS	Continuous Emission Monitoring System (Requires Administrative Approval under 40 CFR 63.7(f))
IM (Oil-fired EGUs	LEE	Low Emitting EGU for each of the individual HAP metals, including Hg
only)	QST	Quarterly Stack Testing for each of the HAP metals, including Hg
	LEST	Low Emitting EGU for some of the HAP metals and Quarterly Stack Testing for the rest
	CEMS	Continuous Emission Monitoring System for the individual HAP metals (Requires Administrative Approval under 40 CRF 63.7(f))
INHGM	LEE	Low Emitting EGU for each of the non-Hg HAP metals
(Coal-fired and IGCC EGUs only)	QST	Quarterly Stack Testing for each of the non-Hg HAP metals
	LEST	Low Emitting EGU for some of the non-Hg HAP metals and Quarterly Stack Testing for the rest

Parameter Code	Method Code	Description
	CEMS	Continuous Emission Monitoring System for the individual non-Hg HAP metals (Requires Administrative Approval under 40 CRF 63.7(f))
LU (Oil-fired units only)	NA	No Applicable Method

7.0 COMPONENT DATA

TABLE 16: COMPONENT TYPE CODES AND DESCRIPTIONS

Code	Description	
BGFF	Billing Gas Fuel Flowmeter	
BOFF	Billing Oil Fuel Flowmeter	
CALR	Calorimeter	
CO2	Carbon Dioxide Concentration Analyzer	
DAHS	Data Acquisition and Handling System	
DL	Data Logger or Recorder	
DP	Differential Pressure Transmitter/Transducer	
FLC	Flow Computer	
FLOW	Stack Flow Monitor	
GCH	Gas Chromatograph	
GFFM	Gas Fuel Flowmeter	
H2O	Percent Moisture (Continuous Moisture System only)	
HCL	HCL Concentration Analyzer	
HF	HF Concentration Analyzer	
HG	Mercury Concentration Analyzer (Hg CEMS)	
MS	Mass Spectrograph	
NOX	Nitrogen Oxide Concentration Analyzer	
O2	Oxygen Concentration Analyzer	
OFFM	Oil Fuel Flowmeter	
OP	Opacity Measurement	
PLC	Programmable Logic Controller	
PRB	Probe	
PRES	Pressure Transmitter/Transducer	

Code	Description
SO2	Sulfur Dioxide Concentration Analyzer
STRAIN	Sorbent Trap Sampling Train Component, consisting of a sample gas flow meter and the associated sorbent trap
TANK	Oil Supply Tank
TEMP	Temperature Transmitter/Transducer

Component	Code	Description	
For CEMS	DIL	Dilution	
	DIN	Dilution In-Stack	
	DOD	Dry Out-of-Stack Dilution	
	DOU	Dilution Out-of-Stack	
	EXT	Dry Extractive	
	IS	In Situ	
	ISP	Point/Path in Situ	
	ISC	Cross Stack in Situ	
	0	Other	
	WXT	Wet Extractive	
For Sorbent Traps	ADSP	Hg Adsorption on Sorbent Medium	
For Volumetric Stack Flow	DP	Differential Pressure	
Monitor	0	Other	
	Т	Thermal	
	U	Ultrasonic	
For Fuel Flowmeter Types	COR	Coriolis	
	DP	Differential Pressure (e.g., Annubar)	
	NOZ	Nozzle	
	0	Other	
	ORF	Orifice	
	PDP	Positive Displacement	
	Т	Thermal Mass Flowmeter	
	TUR	Turbine	
	U	Ultrasonic	
	VCON	V-Cone	
	VEN	Venturi	
	VTX	Vortex	

TABLE 17: SAMPLE ACQUISITION METHOD CODES FOR COMPONENTS

TABLE 18: MOISTURE BASIS CODES AND DESCRIPTIONS FOR CEM ANALYZER AND SORBENT TRAP SAMPLING TRAIN COMPONENTS

Code	Description [*]	
W	Wet	
D	Dry	
В	Both wet and dry (O ₂ only)	

* For sample acquisition method (SAM) codes IS, ISP, ISC, DIN, DOU, DIL, and WXT--wet basis. For SAM code EXT---dry basis. For all stack flow monitors---wet basis. For sampling train (STRAIN) components in sorbent trap systems---dry basis. For others--check with vendor if uncertain.

8.0 ANALYZER RANGE DATA

TABLE 19: ANALYZER RANGE CODES AND DESCRIPTIONS

Code	Description	
Н	High Range	
L	Low Range	
Α	Auto Ranging	

9.0 MONITORING SYSTEM DATA

TABLE 20: SYSTEM TYPE CODES AND DESCRIPTIONS

Code	Description
CO2	CO ₂ Concentration System
FLOW	Stack Flow System
GAS	Gas Fuel Flow System
H2O	Moisture System that uses wet and dry O2 analyzers
H2OM	Moisture System that uses a continuous moisture sensor
Н2ОТ	Moisture System that uses a temperature sensor and a table of lookup values
HCL	HCL Concentration CEMS
HF	HF Concentration CEMS
HG	Hg Concentration CEMS
LTGS	Long Term Gas Fuel Flow System (LME)

Code	Description
LTOL	Long Term Oil Fuel Flow System (LME)
NOX	NO _x Emission Rate System
NOXC	NO _x Concentration System
NOXE	Appendix E NO _x System
NOXP	NO _x Emission Rate PEMS System
02	O ₂ Concentration System
OILM	Mass of Oil Fuel Flow System
OILV	Volumetric Oil Fuel Flow System
OP	Opacity (ARP only)
PM	Particulate Matter Monitoring System
SO2	SO ₂ Concentration System
ST	Sorbent Trap Monitoring System

TABLE 21: SYSTEM DESIGNATION CODES AND DESCRIPTIONS

Code	Description		
Р	Primary.		
РВ	Primary Bypass. A primary bypass (PB) describes a monitoring system located on a bypass stack before a heat recovery steam generator (HRSG). ¹		
RB	Redundant Backup. A redundant backup (RB) monitoring system is operated and maintained by meeting all of the same program QA/QC requirements as a primary system.		
В	Non-Redundant Backup. A non-redundant backup system (B) is a "cold" backup or portable monitoring system, having its own probe, sample interface, and analytical components.		
DB	Data Backup. A data backup system is comprised of the analytical components contained in the primary monitoring system (or in a redundant backup system), but includes a backup DAHS component.		
RM	Reference Method Backup. A reference method (RM) monitoring system is a monitoring system that is operated as a reference method pursuant to the requirements of Appendix A to Part 60.		
CI ²	Certified Monitoring System at the Inlet to an Emission Control Device.		

¹ "P" used for the monitoring system located on the main HRSG stack.

 2 "CI" <u>only</u> used for units with add-on SO₂ or NO_x emission controls. Specifically, the use of a "CI" monitoring system is limited to the following circumstances:

- If the unit has an exhaust configuration consisting of a monitored main stack and an unmonitored bypass stack, and the source elects to report SO₂ data from a certified monitoring system located at the control device inlet (in lieu of reporting maximum potential concentration) during hours in which the flue gases are routed through the bypass stack; or
- If the outlet SO_2 or NO_x monitor is unavailable and proper operation of the add-on emission controls is not verified, and the source elects to report data from a certified SO_2 or NO_x monitor at the control device inlet in lieu of reporting MPC or MER values. However, note that for the purposes of reporting NO_x emission rate, this option may only be used if the inlet NO_x monitor is paired with a diluent monitor and represented as a NO_x -diluent monitoring system in the Component record.

Code	Description
BFG	Blast Furnace Gas
BUT	Butane Gas
CDG	Coal Derived Gas
COG	Coke Oven Gas
DGG	Digester Gas
DSL	Diesel Oil
LFG	Landfill Gas
LPG	Liquefied Petroleum Gas (if measured as a gas)
MIX	Mixture of oil/gas fuel types (for NOXE system for co-fired curve only)
NFS	Non-Fuel-Specific for CEM (including H ₂ O), Sorbent Trap Monitoring Systems, and Opacity Systems
NNG	Natural Gas
OGS	Other Gas
OIL	Residual Oil
OOL	Other Oil
PDG	Producer Gas
PNG	Pipeline Natural Gas (as defined in §72.2)
PRG	Process Gas
PRP	Propane Gas
RFG	Refinery Gas
SRG	Unrefined Sour Gas

TABLE 22: MONITORING SYSTEM FUEL CODES AND DESCRIPTIONS

Г

10.0 MONITORING SYSTEM FUEL FLOW DATA

TABLE 23: UNITS OF MEASURE FOR MAXIMUM FUEL FLOW RATE CODES AND DESCRIPTIONS

Parameter	Code	Description
Volumetric Flow of Oil	SCFH	Standard cubic feet per hour
	GALHR	Gallons per hour
	BBLHR	Barrels per hour
	M3HR	Cubic meters per hour
Mass of Oil	LBHR	Pounds per hour
Gas Flow	HSCF	100 standard cubic feet per hour

11.0 MONITORING FORMULA DATA

TABLE 24: PARAMETER CODES AND DESCRIPTIONS FOR MONITORING FORMULA

Code	Description
CO2	CO ₂ Hourly Mass Emission Rate (tons/hr)
CO2C	CO ₂ Concentration (%CO ₂)
CO2M	CO ₂ Daily Mass (tons)
FC	F-Factor Carbon-Based
FD	F-Factor Dry-Basis
FGAS	Gas Hourly Flow Rate (hscf)
FLOW	Net Stack Gas Volumetric Flow Rate
FOIL	Net Oil Flow Rate to Unit/Pipe
FW	F-Factor Wet-Basis
H2O	Moisture (%H ₂ O)
HCLRE	Electrical Output-Based HCl Emission Rate (lb/MWh)
HCLRH	Heat Input-Based HCl Emission Rate (lb/mmBtu)
HFRE	Electrical Output-Based HF Emission Rate (lb/MWh)
HFRH	Heat Input-Based HF Emission Rate (lb/mmBtu)
HGRE	Electrical Output-Based Hg Emission Rate (lb/GWh)
HGRH	Heat Input-Based Hg Emission Rate (lb/TBtu)
HI	Heat Input Rate (mmBtu/hr)
HIT	Heat Input Total (mmBtu)

Code	Description
NOX	NO _x Hourly Mass Emission Rate (lb/hr)
NOXR	NO _x Emission Rate (lb/mmBtu)
OILM	Oil Mass Flow Rate (lb/hr)
SO2	SO ₂ Hourly Mass Emission Rate (lb/hr)
SO2R	SO ₂ Emission Rate (lb/mmBtu) when Equation D-1h is Used
SO2RE	Electrical Output-Based SO ₂ Emission Rate (lb/MWh)
SO2RH	Heat Input-Based SO ₂ Emission Rate (lb/mmBtu)

TABLE 25: F-FACTOR* REFERENCE TABLE

Option 1: Fuel-Based Constants				
	Fuel	F-Factor (dscf/ mmBtu)	F _c -Factor (scf CO ₂ / mmBtu)	F _w -Factor (wscf/mmBtu)
Coal	Anthracite	10,100	1,970	10,540
	Bituminous	9,780	1,800	10,640
	Sub-bituminous	9,820	1,840	
	Lignite	9,860	1,910	11,950
	Petroleum Coke	9,830	1,850	
	Tire-Derived Fuel	10,260	1,800	
Gas	Natural Gas	8,710	1,040	10,610
	Propane	8,710	1,190	10,200
	Butane	8,710	1,250	10,390
Oil	Oil	9,190	1,420	10,320
Waste	Municipal Solid Waste	9,570	1,820	
Wood	Bark	9,600	1,920	
	Wood Residue	9,240	1,830	

	Option 2: Calculated F-Factors				
Code	Para- meter	Formula	Where:		
F-7A	FD	$F = \frac{3.64(\%H) + 1.53(\%C) + 0.57(\%S) + 0.14(\%N) - 0.46(\%O)}{GCV} \times 10^{-6}$	$F = Dry-basis F-factor (dscf/mmBtu) F_c = Carbon-based F-factor (scf)$		
F-7B	FC	$F_c = \frac{321 \times 10^3 \times (\%C)}{GCV}$	$CO_2/mmBtu)$ $F_w = Wet-basis F-factor$ $(wscf/mmBtu)$ $%H %N = Content of element percent$		
19-14	FW	$F_{w} = \frac{5.57(\%H) + 1.53(\%C) + 0.57(\%S) + 0.14(\%N) - 0.46(\%O) + 0.21(\%H_{2}O)}{GCV_{w}} \times 10^{6}$	$\label{eq:solution} \begin{array}{l} \label{eq:solution} \end{tabular} \\ \end{tabular} \begin{tabular}{lllllllllllllllllllllllllllllllllll$		
F-8**	FD, FC, or FW	$F = \sum_{i=1}^{n} X_i F_i$	$F = Dry-basis F-factor$ $(dscf/mmBtu)$ $F_{c} = Carbon-based F-factor (scf$		
	$\boldsymbol{F}_{c} = \sum_{i=1}^{n} \boldsymbol{X}_{i} (\boldsymbol{F}_{c})_{i}$	n = Number of fuels being combusted $F_{i,}(F_c)_{i,}$ = Applicable F, F_c , or F_w $(F_w)_i$ factor for each fuel type X_i = Fraction of total heat input			
		$F_w = \sum_{i=1}^n X_i (F_w)_i$	derived from each type of fossil fuel		

- * F-factor is the ratio of the gas volume of all the products of combustion (less water) to the heat content of the fuel. F_c-factor is the ratio of the gas volume of the CO₂ generated to the heat content of the fuel (see Part 75, Appendix F, Section 3.3). F-factor is the ratio of the quantity of wet effluent gas generated by the combustion to the heat content of the fuel including free water in the fuel.
- ** This formula is used for affected units that combust combinations of fossil fuels or fossil fuels and wood residue. For affected units that combust a combination of fossil and non-fossil fuels, the selected F-factor must receive state or EPA approval.

Usage	Moisture Basis*	Appropriate Hourly Formulas (Part 75, Appendices D&F)
SO2 CEMS	WET	F-1
	DRY	F-2
Default SO ₂ emission rate when low sulfur fuels are burned (e.g., natural gas)		F-23 (and D-1H)
Oil Fuel Flowmeter		D-2
Gas Fuel Flowmeter		D-4 or D-5 (and D-1H)
Overall values for multiple fuel flowmeter systems		D-12

TABLE 26: SO2 FORMULA REFERENCES

* For sample acquisition method (SAM) codes IS, ISP, ISC, DIN, DOU, DIL, and WXT = wet extractive; for EXT = dry extractive, located under component. Exceptions are possible. Check with vendor if uncertain.

Code	Parameters	Formula	Where:
F-1	SO2	$E_h = K \ x \ C_h \ x \ Q_h$	E_h = Hourly SO ₂ mass emission rate (lb/hr) K = 1.660 x 10 ⁻⁷ for SO ₂ ((lb/scf)/ppm)
F-2	SO2		C_{hp} = Hourly average SO ₂ concentration (ppm (dry))
		$H_{2} = 100 - \% H_{2}O$	C_h = Hourly average SO ₂ concentration (ppm (stack moisture basis))
		$E_h = K x C_{hp} x Q_{hs} x - 100$	Q_h and = Hourly average volumetric flow rate O_{hs} (scfh (stack moisture basis))
			%H ₂ O = Hourly average stack moisture content (percent by volume)
D-1H	SO2R		ER = Default SO ₂ emission rate for natural gas (or "other" gaseous fuel) combustion (lb/mmBtu)
		20 5	S_{total} = Total sulfur content of gaseous fuel (grains/100 scf)
		$ER = \frac{2.0}{7000} \times 10^{6} \times \frac{S_{total}}{GCV}$	GCV = Gross calorific value of the gas (Btu/100 scf)
			2.0 = Ratio of lb $SO_2/lb S$
			7000 = Conversion of grains/100 scf to lb/ 100 scf
			10^6 = Conversion of Btu to mmBtu

TABLE 27: SO2 EMISSION FORMULAS

Code	Parameters	Formula	Where:
D-2	SO2	$SO 2_{rate-oil} = 2.0 \ x \ OIL_{rate} \ x \frac{\% S_{oil}}{100.0}$	$SO_{2_{rate-oil}} = Hourly mass emission rate of SO_{2}$ emitted from combustion of oil (lb/hr) OIL _{rate} = Mass rate of oil consumed per hour during combustion (lb/hr) %S _{oil} = Percent sulfur by weight measured in oil sample 2.0 = Ratio of lb SO ₂ to lb S
D-4	SO2	$SO 2_{rate} = (2.0 / 7000) x GAS_{rate} x S_{gas}$	$SO_{2rate} = Hourly mass rate of SO_2 fromcombustion of gaseous fuel (lb/hr)GAS_{rate} = Hourly metered flow rate of gaseousfuel combusted (100 scf/hr)Sgas = Sulfur content of gaseous fuel(grains/100 scf)2.0 = Ratio of lb SO2/lb S7000 = Conversion of grains/100 scf to lb/100 scf$
D-5	SO2	SO $2_{rate} = ER \ x \ HI \ rate$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
F-23	SO2	$E_h = ER x HI$	E_h=Hourly SO2 mass emission rate (lb/hr)ER=Applicable SO2 default emission rate from Appendix D, Section 2.3.1.1, or Appendix D, Section 2.3.2.1.1 to Part 75 (lb/mmBtu)HI=Hourly heat input rate, determined using a certified flow monitor and diluent monitor, according to Appendix F, Section 5.2 (mmBtu/hr)
D-12*	SO2	$SO 2_{rate} = \frac{\sum_{all-fuels} SO_{2rate-i} t_i}{t_u}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

* This equation is a modified form of Equation D-12 as described in Appendix D, Section 3.5.1, and must be used when reporting in XML format.

TABLE 28: SO2 EMISSION RATE FORMULA REFERENCE TABLEFOR THE MATS RULE

Usage	Moisture Basis	Appropriate Hourly Formulas	
SO ₂ CEMS	WET	S-2 and S-4 for electrical output-based SO ₂ emission limit (lb/MWh)	
		19-2, 19-3, 19-4, 19-7, or 19-8 (select one) for heat input-based SO ₂ emission limit (lb/mmBtu)	
	DRY	S-3 and S-4 for electrical output-based SO ₂ emission limit (lb/MWh)	
		19-1, 19-5, 19-6, or 19-9 (select one) for heat input-based SO_2 emission limit (lb/mmBtu)	

TABLE 29SO2 Emission Formulas for the MATS Rule

Code	Formula			Where:
19-1	$E = K x C_d x F_d x \frac{20.9}{20.9 - \% O_{2_d}}$	The correct convert ppm to	vers SO ₂ lb/sc	ion factor "K" is needed to concentration (C_d or C_w) from f.
19-2	$E = K x C_{w} x F_{w} x - \frac{20.9}{20.9}$	Е	=	Unadjusted heat input-based SO ₂ emission rate (lb/mmBtu)
	$20.9(1-B_{wa})-\%O_{2_w}$	К	=	1.660 x 10 ⁻⁷ (lb/scf-ppm)
19-3*	$E = K x C_w x F_d x - \frac{20.9}{5000 \text{ for } 6000 \text{ for } 60000 \text{ for } 6000 \text{ for } 6000 \text{ for } 60000 \text{ for } 600000 \text{ for } 600000000000000000000000000000000000$	C _d	=	Unadjusted SO ₂ concentration (ppm, dry basis)
	$20.9 x \left[\frac{100 - \% H_2 O}{100} \right] - \% O_{2w}$	C _w	=	Unadjusted SO ₂ concentration (ppm, wet basis)
19-3D	$E = K x C_w x F_d x \frac{20.9}{20.9 x \left[\frac{100 \% H_2 O}{100}\right] - \% O_{2_{dof}} x \left[\frac{100 \% H_2 O}{100}\right]}$	F _d	=	Dry-basis F-factor (dscf/mmBtu)
19-4*	$E = K x \frac{(C_w x F_d)}{(100 - 3)(100)} x \frac{20.9}{(20.0 - 3)(100)}$	F _c	=	Carbon-based F-factor (scf CO2/mmBtu)
10.5*	$(100 - \% H_2 O) \div 100 (20.9 - \% O_{2_d})$	F_{w}	=	Wet-basis F-factor (wscf/mmBtu)
19-5	$E = \frac{20.9 \ x \ K \ x \ C_d \ x \ F_d}{20.9 \ -} \left[\% \ O_{2_w} \div \left(\frac{100 \ -\% \ H_2 \ O}{100} \right) \right]$	\mathbf{B}_{wa}	=	Moisture fraction of ambient air (default value 0.027)
19-5D	E K G E 20.9	%H ₂ O	=	Moisture content of effluent gas
	$E = K x C_d x F_d x \frac{1}{20.9 - \% O_{2_{def}}}$	O _{2d}	=	Oxygen diluent concentration (percent of effluent gas, dry
19-6	$E = K x C_d x F_c x \frac{100}{2}$	0	_	Oursen diluent concentration
	$\% CO_{2_d}$	O_{2w}	_	(percent of effluent gas, wet
19-7	$E = K x C_w x F_c x \frac{100}{\% CO_{2_w}}$	O _{2def}	=	Default diluent cap O_2 value (14.0 percent)
19-8*	$E = K x \frac{(C_w x F_c)}{(100 - \% H_2 O) \div 100} x \frac{100}{\% CO_{2d}}$	CO _{2d}	=	Carbon dioxide diluent concentration (percent of effluent gas, dry basis)
19-9*	$E = K x C_d x \left[\frac{100 - \% H_2 O}{100} \right] x F_c x \frac{100}{\% CO_{2_w}}$	CO _{2w}	=	Carbon dioxide diluent concentration (percent of effluent gas, wet basis)

Code	Formula			Where:
S-2	$M_{h} = K C_{h} Q_{h}$	M_{h}	=	Hourly SO2 mass emission rate (lb/hr)
S-3		Κ	=	1.660 x 10 ⁻⁷ (lb/scf-ppm)
		C_h	=	Unadjusted hourly average
				SO ₂ concentration, dry basis (ppm)
	$M_h = K C_h Q_h (1 - B_{ws})$	Q_h	=	Unadjusted hourly average volumetric flow rate (scfh)
		\mathbf{B}_{ws}	=	Moisture fraction of the stack
				gas, expressed as a decimal (equal to $%H_2O/100$)
S-4		Eho	=	Unadjusted electrical output-
		110		based SO_2 emission rate
	_ <i>M</i> .			(lb/MWh)
	$E_{ho} = \frac{h}{(MW)}$	M_h	=	Hourly SO ₂ mass emission rate
	$(1/1/1/1/)_h$			(lb/hr)
		(MW) _h	=	Hourly gross electrical load
				(megawatts)

TABLE 30: NOx Emission Rate Formula Reference Table

	N	Aoisture Ba	Appropriate Hourly	
Usage	NO _x	CO ₂	O ₂	Formulas
NO _x CEMS (CO ₂ Diluent)	DRY	DRY		19-6
	DRY	WET		19-9
	WET	DRY		19-8
	WET	WET		19-7 or F-6
NO _x CEMS (O ₂ Diluent)	DRY		DRY	19-1 or F-5
	DRY		WET	19-5 or 19-5D
	WET		DRY	19-4
	WET		WET	19-2, 19-3, or 19-3D
Overall Value from Multiple Appendix E Systems				E-2

Code	Parameter	Formula	Where:
19-1 (F-5)	NOXR	$E = K x C_d x F_d x \frac{20.9}{20.9 - \% O_{2_d}}$	Formulas should be multiplied by the conversion factor "K" (if C_d or C_w is in ppm)
19-2	NOXR	$E = K x C_w x F_w x \frac{20.9}{20.9(1-R_w) - \% O_w}$	$\frac{FROM}{ppm NO_x} \frac{TO}{lb/scf} \frac{MULTIPLY BY "K"}{K = 1.194 X 10^7}$
19-3*	NOXR	$E = K x C_w x F_d x \frac{20.9}{20.9 x \left[\frac{100 - \% H_2 O}{100}\right] - \% O_{2_w}}$	$C_{\rm w} = (Pollutant concentration ppm, wet basis)$
19-3D*	NOXR	$E = K x C_w x F_d x \frac{20.9}{20.9 x \left[\frac{100 \cdot \%_{H_2}O}{100}\right] \cdot \%_{O_{2def}} x \left[\frac{100 \cdot \%_{H_2}O}{100}\right]}$	$F_{d} = Dry-basis F-factor (dscf/mmBtu)$ $F_{c} = Carbon-based F-factor (scf CO_2/mmBtu)$ $F_{w} = Wet-basis F-factor (wscf/mmBtu)$ $B_{wa} = Moisture fraction of ambient air$
19-4*	NOXR	$E = K x \frac{(C_w x F_d)}{(100 - \% H_2 O) \div 100} x \frac{20.9}{(20.9 - \% O_{2_d})}$	(default value 0.027) $%\text{H}_2\text{O} = \text{Moisture content of effluent gas}$ $\text{O}_{2_d} = \text{Oxygen diluent concentration}$
19-5*	NOXR	$E = \frac{20.9 \ x \ K \ x \ C_d \ x \ F_d}{20.9 \ \cdot} \left[\frac{9000 \ \cdot}{100} + \frac{1000 \ \cdot}{100} \right]$	$O_{2_{w}} = Oxygen diluent concentration(percent of effluent gas, dry basis)O_{2_{def}} = Default diluent cap O_2 value (14.0percent for boilers, 19.0 percent$
19-5D	NOXR	$E = K x C_d x F_d x \frac{20.9}{20.9 - \% O_{2_{def}}}$	CO_{2_d} = Carbon dioxide diluent concentration (percent of effluent gas_dry basis)
19-6	NOXR	$E = K x C_d x F_c x \frac{100}{\% CO_{2_d}}$	$CO_{2_{w}} = Carbon dioxide diluent$ concentration (percent of effluent gas, wet basis)
19-7 (F-6)	NOXR	$E = K x C_w x F_c x \frac{100}{\% CO_{2_w}}$	$E_{f} = NO_{x} \text{ emission rate for the unit for}$ a given fuel at heat input rate HI _f , lb/mmBtu HI _f = Heat input rate for the hour for a
19-8*	NOXR	$E = K x \frac{(C_w x F_c)}{(100 - \% H_2 O) \div 100} x \frac{100}{\% CO_{2_d}}$	given fuel, during the fuel usage time, as determined using Equation F-19 or F-20 in Section 5.5 of Appendix F to this part, mmBtu/br
19-9*	NOXR	$E = K x C_d x \left[\frac{100 - \% H_2 O}{100} \right] x F_c x \frac{100}{\% CO_{2_w}}$	H_T = Total heat input for all fuels for the hour from Equation E-1 t_f = Fuel usage time for each fuel
E-2	NOXR	$E_{h} = \frac{\sum_{f=1}^{all \ fuels} (E_{f} \ X \ HI_{f} \ t_{f})}{H_{T}}$	(rounded to the nearest fraction of an hour (in equal increments that can range from one hundredth to one quarter of an hour, at the option of the owner or operator))

TABLE 31: NOX EMISSION RATE FORMULAS (LB/MMBTU)

* Note that [(100 - $%H_2O/100$] may also represented as (1 - B_{ws}), where B_{ws} is the proportion by volume of water vapor in the stack gas stream.

Monitoring Methodology	Moisture Basis	Appropriate Hourly Formulas Part 63, Subpart UUUUU, Appendix A		
Hg CEMS	WET	A-2 and A-4 for electrical output-based Hg emission limit (lb/GWh)		
		19-2, 19-3, 19-4, 19-7, or 19-8 (select one) for heat input-based Hg emission limit (lb/TBtu)		
	DRY	A-3 and A-4 for electrical output-based Hg emission limit (lb/GWh)		
		19-1, 19-5, 19-6, or 19-9 (select one) for heat input- based Hg emission limit (lb/TBtu)		
Sorbent Trap Hg Monitoring Systems	DRY	A-3 and A-4 for electrical output-based Hg emission limit (lb/GWh)		
		19-1, 19-5, 19-6, or 19-9 (select one) for heat input- based Hg emission limit (lb/TBtu)		

TABLE 32: HG EMISSION FORMULA REFERENCE TABLE FOR THE MATS RULE

TABLE 33: HG EMISSIONS FORMULAS FOR THE MATS RULE

Code	Formula	Where:
A-2	$M_h = K C_h Q_h$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
A-3	$M_h = K C_h Q_h (1 - B_{ws})$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

Code	Formula	Where:
19-1	$E = K x C_d x F_d x \frac{20.9}{20.9 - \% O_2}$	The conversion factor "K" is needed to convert Hg concentration (C_d or C_w) from μ g/scm to lb/scf.
10.2		- E = Hg emission rate (lb/mmBtu)
19-2	$E = K x C_w x F_w x \frac{20.9}{20.9(1 - B_{wa}) - \% O_{2_w}}$	K = 6.24×10^{-11} (lb-scm/ µg/scf)
19-3*	20.9	$-C_d$ = Hg concentration (µg/scm, dry basis)
17.0	$E = K x C_w x F_d x \frac{20.9}{20.9 x \left[\frac{100 - \% H_2 O}{100}\right] - \% O_{2_w}}$	C_w = Hg concentration (µg/scm, wet basis)
10.2D	20.0	F_d = Dry-basis F-factor (dscf/mmBtu)
19-3D	$E = K x C_w x F_d x \frac{20.9}{20.9x \left[\frac{100 \% H_2 O}{100}\right] - \% O_{2_{def}} x \left[\frac{100 \% H_2 O}{100}\right]}$	F_c = Carbon-based F-factor (scf CO ₂ /mmBtu)
10.4*		$F_{w} = Wet-basis F-factor (wscf/mmBtu)$
19-4	$E = K x \frac{(C_w x F_d)}{(100 - \% H_2 O) \div 100} x \frac{20.9}{(20.9 - \% O_{2d})}$	B_{wa} = Moisture fraction of ambient air (default value 0.027)
19-5*		$%H_2O =$ Moisture content of effluent gas
	$E = \frac{20.9 \ x \ K \ x \ C_d \ x \ F_d}{20.9 \ - \left[\% \ O_{2_w} \div \left(\frac{100 \ - \ \% \ H_2 \ O}{100}\right)\right]}$	O_{2d} = Oxygen diluent concentration (percent of effluent gas, dry basis)
		O_{2w} = Oxygen diluent concentration (percent of
19-5D	20.9	effluent gas, wet basis)
	$E = K x C_d x F_d x \frac{1}{20.9 - \% O_{2_{def}}}$	O_{2def} = Default diluent cap O_2 value (14.0 percent for boilers, 19.0 percent for IGCC units)
19-6	$E = K \times C \times E \times 100$	CO_{2d} = Carbon dioxide diluent concentration
	$E = K x C_d x F_c x {\% CO_{2_d}}$	(percent of efficient gas, dry basis)
19-7	$E = K x C_w x F_c x \frac{100}{\% CO_{2w}}$	$-CO_{2w} = Carbon dioxide diluent concentration(percent of effluent gas, wet basis)$
19-8*	$E = K x \frac{(C_w x F_c)}{(100 - \% H_2 O) \div 100} x \frac{100}{\% CO_{2_d}}$	
19-9*	$E = K x C_d x \left[\frac{100 - \% H_2 O}{100} \right] x F_c x \frac{100}{\% CO_{2w}}$	

Code	Formula			Where:
A-4	М	E _{ho}	=	Electrical output based emissions rate (lb/GWh)
	$E_{ho} = \frac{11 - h}{(MW)_h} \times 10^3$	$(MW)_h$ 10^3	=	Hourly gross electrical load (megawatts) Conversion factor from MW to GW
HG-1		E _f	=	Hg emission rate (lb/TBtu)
	$E_{f} = E \ x \ 10^{6}$	Е	=	Hg emission rate (lb/mmBtu)
		10 ⁶	=	Conversion factor (mmBtu/TBtu)

* Note that [(100 - $%H_2O/100$] may also represented as (1 - B_{ws}), where B_{ws} is the proportion by volume of water vapor in the stack gas stream.

TABLE 34: HCL EMISSION RATE FORMULA REFERENCE TABLE FOR THE MATS RULE

Usage	Moisture Basis	Appropriate Hourly Formulas
HCI CEMS	WET	HC-2 and HC-4 for electrical output-based HCl emission limit (lb/MWh)
		19-2, 19-3, 19-4, 19-7, or 19-8 (select one) for heat input-based HCl emission limit (lb/mmBtu)
	DRY	HC-3 and HC-4 for electrical output-based HCl emission limit (lb/MWh)
		19-1, 19-5, 19-6, or 19-9 (select one) for heat input-based HCl emission limit (lb/mmBtu)

Code	Formula			Where:
19-1	$E = K x C_d x F_d x \frac{20.9}{20.9 - \% O_{2_d}}$	The conversion factor "K" is needed to convert HCl concentration (C_d or C_w) from ppm to lb/scf.		ion factor "K" is needed to concentration $(C_d \text{ or } C_w)$ from f.
19-2	$E = K x C_{w} x F_{w} x - 20.9$	Е	=	Unadjusted heat input-based SO ₂ emission rate (lb/mmBtu)
	$20.9(1 - B_{wa}) - %O_{2_w}$	К	=	9.43 x 10 ⁻⁸ (lb/scf-ppm)
19-3*	$E = K \times C_w \times F_d \times \frac{20.9}{[100, 0.05]}$	C _d	=	Unadjusted HCl concentration (ppm, dry basis)
	$20.9 x \left[\frac{100 - \% H_2 O}{100} \right] - \% O_{2w}$	C _w	=	Unadjusted HCl concentration (ppm, wet basis)
19-3D	$E = K x C_w x F_d x \frac{20.9}{20.9 x \left[\frac{100 \% H_2 O}{100} \right] - \% O_{2_{def}} x \left[\frac{100 \% H_2 O}{100} \right]}$	F _d	=	Dry-basis F-factor (dscf/mmBtu)
19-4*	$E = K x \frac{(C_w x F_d)}{x 20.9}$	· F _c	=	Carbon-based F-factor (scf CO2/mmBtu)
19-5*	$(100 - \% H_2 O) \div 100 (20.9 - \% O_{2_d})$	F _w	=	Wet-basis F-factor (wscf/mmBtu)
	$E = \frac{20.9 \ x \ K \ x \ C_d \ x \ F_d}{20.9 \ z} \left[\frac{20.9 \ x \ K \ x \ C_d \ x \ F_d}{(100 - \% \ H_2 \ O)} \right]$	\mathbf{B}_{wa}	=	Moisture fraction of ambient air (default value 0.027)
	$20.9 \left[\begin{array}{c} 70 O_{2w} \\ 100 \end{array} \right]$	%H ₂ O	=	Moisture content of effluent gas
19-5D	$E = K x C_d x F_d x \frac{20.9}{20.9 - \% O_{2_{def}}}$	O _{2d}	=	Oxygen diluent concentration (percent of effluent gas, dry basis)
19-6	$E = K x C_d x F_c x \frac{100}{\% CO_{2_d}}$	O _{2w}	=	Oxygen diluent concentration (percent of effluent gas, wet basis)
19-7	$E = K x C_w x F_c x \frac{100}{64}$	O _{2def}	=	Default diluent cap O ₂ value (14.0 percent)
19-8*	$\frac{\% CO_{2_w}}{(C_w x F_c)} \frac{100}{100}$	CO _{2d}	=	Carbon dioxide diluent concentration (percent of effluent gas, dry basis)
	$E = K x \frac{(C_{W} + V_{C})}{(100 - \% H_2 O) \div 100} x \frac{100}{\% CO_{2d}}$	CO _{2w}	=	Carbon dioxide diluent
19-9*	$E = K x C_d x \left[\frac{100 - \% H_2 O}{100} \right] x F_c x \frac{100}{\% CO_{2_w}}$			effluent gas, wet basis)

TABLE 35: HCL EMISSION FORMULAS FOR THE MATS RULE

Code	Formula			Where:
HC-2	$M_{h} = K C_{h} Q_{h}$	M_{h}	=	Hourly HCl mass emission rate (lb/hr)
HC-3	$M_h = K C_h Q_h (1 - B_{ws})$	K C _h Q _h B _{ws}	=	9.43 x 10 ⁻⁸ (lb/scf-ppm) Unadjusted hourly average HCl concentration, dry basis (ppm) Unadjusted hourly average volumetric flow rate (scfh) Moisture fraction of the stack
				gas, expressed as a decimal (equal to %H ₂ O/100)
HC-4	$E = M_h$	E _{ho}	=	Unadjusted electrical output- based HCl emission rate (lb/MWh)
	$E_{ho} = \frac{1}{(MW)_h}$	M _h (MW) _h	=	Hourly HCl mass emission rate (lb/hr) Hourly gross electrical load (megawatts)

TABLE 36: HF EMISSION RATE FORMULA REFERENCE TABLE FOR THE MATS RULE

Usage	Moisture Basis	Appropriate Hourly Formulas
HF CEMS	WET	HF-2 and HF-4 for electrical output-based HF emission limit (lb/MWh)
		19-2, 19-3, 19-4, 19-7, or 19-8 (select one) for heat input-based HF emission limit (lb/mmBtu)
	DRY	HF-3 and HF-4 for electrical output-based HF emission limit (lb/MWh)
		19-1, 19-5, 19-6, or 19-9 (select one) for heat input-based HF emission limit (lb/mmBtu)

Code	Formula			Where:
19-1	$E = K x C_d x F_d x \frac{20.9}{20.9 - \% O_{2_d}}$	The con convert ppm to	HF of lb/sc	ion factor "K" is needed to concentration $(C_d \text{ or } C_w)$ from f.
19-2	$E = K x C_{w} x F_{w} x - \frac{20.9}{1}$	Е	=	Unadjusted heat input-based HF emission rate (lb/mmBtu)
	$20.9(1-B_{wa})-\%O_{2_w}$	К	=	5.18 x 10 ⁻⁸ (lb/scf-ppm)
19-3*	$E = K x C_w x F_d x - \frac{20.9}{5000000000000000000000000000000000000$	C _d	=	Unadjusted HF concentration (ppm, dry basis)
	$20.9 x \left[\frac{100 - \% H_2 O}{100} \right] - \% O_{2w}$	C _w	=	Unadjusted HF concentration (ppm, wet basis)
19-3D	$E = K x C_w x F_d x \frac{20.9}{20.9 x \left[\frac{100\% H_2 O}{100}\right] - \% O_{2_{def}} x \left[\frac{100\% H_2 O}{100}\right]}$	F _d	=	Dry-basis F-factor (dscf/mmBtu)
19-4*	$E = K x \qquad (C_w x F_d) \qquad x \qquad 20.9$	F _c	=	Carbon-based F-factor (scf CO2/mmBtu)
10.5*	$\frac{E - K x}{(100 - \% H_2 O) \div 100} x (20.9 - \% O_{2_d})$	Fw	=	Wet-basis F-factor (wscf/mmBtu)
19-5	$E = \frac{20.9 \text{ x K x } C_d \text{ x } F_d}{20.9 \text{ -} \left[\% O_{2_w} \div \left(\frac{100 \text{ -} \% H_2 O}{100}\right)\right]}$	B _{wa}	=	Moisture fraction of ambient air (default value 0.027)
19-5D		%H ₂ O	=	Moisture content of effluent gas
	$E = K x C_d x F_d x \frac{20.9}{20.9 - \% O_{2_{def}}}$	O _{2d}	=	Oxygen diluent concentration (percent of effluent gas, dry basis)
19-6	$E = K x C_d x F_c x \frac{100}{\% CO_{2d}}$	O _{2w}	=	Oxygen diluent concentration (percent of effluent gas, wet basis)
19-7	$E = K x C_w x F_c x \frac{100}{\% CO_{2_w}}$	O _{2def}	=	Default diluent cap O ₂ value (14.0 percent)
19-8*	$E = K x \frac{(C_w x F_c)}{(100 - \% H_2 O) \div 100} x \frac{100}{\% CO_{2d}}$	CO _{2d}	=	Carbon dioxide diluent concentration (percent of effluent gas, dry basis)
19-9*	$E = K x C_d x \left[\frac{100 - \% H_2 O}{100} \right] x F_c x \frac{100}{\% CO_{2_w}}$	CO _{2w}	=	Carbon dioxide diluent concentration (percent of effluent gas, wet basis)

TABLE 37: HF EMISSION FORMULAS FOR THE MATS RULE

Code	Formula		Where:
HF-2	$M_h = K C_h Q_h$	M _h =	Hourly HF mass emission rate (lb/hr)
HF-3	$M_h = K C_h Q_h (1 - B_{ws})$	$ \begin{array}{l} K & = \\ C_h & = \\ Q_h & = \\ B_{ws} & = \end{array} $	5.18 x 10^{-8} (lb/scf-ppm) Unadjusted hourly average HF concentration, dry basis (ppm) Unadjusted hourly average volumetric flow rate (scfh) Moisture fraction of the stack gas, expressed as a decimal (equal to %H ₂ O/100)
HF-4	$E_{_{ho}}=rac{M_{_h}}{(MW)_{_h}}$	$E_{ho} = M_h = (MW)_h = 0$	Unadjusted electrical output- based HF emission rate (lb/MWh) Hourly HF mass emission rate (lb/hr) Hourly gross electrical load (megawatts)

TABLE 38: MOISTURE FORMULAS

Code	Parameter	Formula	Where:
F-31	H2O	$\%_{H_2}O = \frac{(O_{2_d} - O_{2_w})}{O_{2_d}} \times 100$	${}^{9}\!$
M-1K	H2O	$\% H_2 O = \frac{(O_{2d} - O_{2w})}{O_{2d}} \times 100$, as adjusted ¹	$O_{2_{w}} = O_{xygen}$ diluent concentration (percent of effluent gas, wet basis)

¹ Using a K-factor or other mathematical algorithm, per Appendix A, Section 6.5.7(a).

Usage	Moisture Basis	Appropriate Formulas (Part 75, Appendices F, G)
$CO_2 CEMS$	WET	F-14B and F-11
(O ₂ Analyzer)	DRY	F-14A and F-2
$CO_2 CEM$	WET	F-11
(CO ₂ Analyzer)	DRY	F-2
Fuel Sampling		G-1 (and possibly G-2, G-3, G-5, G-6 and G-8)
Gas or Oil Flowmeter		G-4
Overall Value from Multiple Flowmeter Systems		G-4A

TABLE 39: CO2 FORMULA REFERENCE TABLE

TABLE 40: CO_2 Concentration and Mass Emission Rate Formulas

Code	Parameter	Formula	Where:
F-2	CO2	$E_h = K \times C_{hp} \times Q_{hs} \times \frac{100 - \% H_2 O}{100}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
F-11	CO2	$E_h = K \times C_h \times Q_h$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
F-14A	CO2C	$CO_{2d} = 100 \times \frac{F_c}{F} \times \frac{20.9 - O_{2d}}{20.9}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Code	Parameter	Formula	Where:
F-14B	CO2C	$CO_{2w} = \frac{100}{20.9} \times \frac{F_c}{F} \times \left[20.9 \left(\frac{100 - \% H_2 O}{100} \right) - O_{2w} \right]$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
G-1	CO2M	$W_{CO_2} = \frac{\left(MW_c + MW_{O_2}\right) \times W_c}{2000 MW_c}$	
G-2	CO2M	$W_{NCO2} = W_{CO2} - \frac{MW_{CO2}}{MW_c} \times \left(\frac{A\%}{100}\right) \times \left(\frac{C\%}{100}\right) \times W_{COAL}$	$\begin{split} W_{\text{NCO2}} &= \text{Net CO}_2 \text{ mass emissions discharged} \\ & \text{to the atmosphere (tons/day)} \\ W_{\text{CO2}} &= \text{Daily CO}_2 \text{ mass emissions calculated} \\ & \text{by Equation G-1 (tons/day)} \\ MW_{\text{CO2}} &= \text{Molecular weight of carbon dioxide} \\ & (44.0) \\ MW_c &= \text{Molecular weight of carbon (12.0)} \\ A\% &= \text{Ash content of the coal sample} \\ & (\text{percent by weight)} \\ C\% &= \text{Carbon content of ash (percent by} \\ & \text{weight)} \\ W_{\text{COAL}} &= \text{Feed rate of coal from company} \\ & \text{records (tons/day)} \end{split}$
G-3	CO2M	$W_{NCO2} = .99 \times W_{CO2}$	WNCO2= Net CO2 mass emissions from the combustion of coal discharged to the atmosphere (tons/day).99= Average fraction of coal converted into CO2 upon combustionWCO2= Daily CO2 mass emissions from the combustion of coal calculated by Equation G-1 (tons/day)

Code	Parameter	Formula	Where:
G-4	CO2	$W_{CO_2} = \frac{F_c \times H \times U_f \times MW_{CO_2}}{2000}$	$\begin{split} W_{CO_2} &= CO_2 \text{ emitted from combustion} \\ & (tons/hr) \\ F_c &= Carbon-based F-factor, 1,040 \\ & scf/mmBtu \text{ for natural gas; 1,420} \\ & scf/mmBtu for crude, residual, or \\ & distillate oil and calculated according \\ & to the procedures in Section 3.3.5 of \\ & Appendix F to Part 75 for other \\ & gaseous fuels \\ H &= Hourly heat input rate (mmBtu/hr) \\ U_f &= 1/385 scf CO_2/lb-mole at 14.7 psi and \\ & 68EF \\ MW_{CO_2} &= Molecular weight of carbon dioxide \\ & (44.0) \end{split}$
G-4A	CO2	$CO2_{unit} = \frac{\sum_{all-fuels} CO2_{fuel} t_{fuel}}{t_{unit}}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
G-5	CO2M	$SE_{CO_2} = W_{CaCO_3} \times F_u \times \frac{MW_{CO_2}}{MW_{CaCO_3}}$	$\begin{array}{ll} SE_{CO_2} &= CO_2 \text{ emitted from sorbent (tons/day)} \\ W_{CaCO_3} &= Calcium \ carbonate \ used (tons/day) \\ F_u &= 1.00, \ the \ calcium \ to \ sulfur \\ stoichiometric \ ratio \\ MW_{CO_2} &= Molecular \ weight \ of \ carbon \ dioxide \\ (44.0) \\ MW_{CaCO_3} = Molecular \ weight \ of \ calcium \\ carbonate (100.0) \end{array}$
G-6	CO2M	$SE_{CO_2} = F_u \frac{W_{SO_2}}{2000} \frac{MW_{CO2}}{MW_{SO_2}}$	$\begin{array}{ll} \mathrm{SE}_{\mathrm{CO}_2} &= \mathrm{CO}_2 \text{ emitted from sorbent (tons/day)} \\ \mathrm{MW}_{\mathrm{CO}_2} &= \mathrm{Molecular weight of carbon dioxide} \\ & (44.0) \\ \mathrm{MW}_{\mathrm{SO}_2} &= \mathrm{Molecular weight of sulfur dioxide} \\ & (64.0) \\ \mathrm{W}_{\mathrm{SO}_2} &= \mathrm{Sulfur dioxide removed (lb/day)} \\ & \text{based on applicable procedures,} \\ & \text{methods, and equations in \$ 75.15} \\ \mathrm{F}_u &= 1.00, \text{ the calcium to sulfur} \\ & \text{stoichiometric ratio} \end{array}$
G-8	CO2M	$W_t = W_{CO_2} + SE_{CO_2}$	

* See Appendix G, sections 2.1.1 through 2.1.3
** For a unit linked to a common pipe with one additional fuel flowmeter system defined at the unit, a G-4A formula is reported to calculate the unit hourly CO2 rate, even though there is only a single fuel flowmeter defined at the unit. Because the fuel usage time may not be equal to the unit operating time, the hourly CO2 rate

for the fuel may be different from the hourly CO2 rate for the unit. Formula G-4A is used to calculate the unit hourly CO2 rate.

Usage	Moisture Basis*	Appropriate Hourly Formulas (Part 75, Appendices D and F)
CEMS (O ₂ Analyzer)	WET	F-17
	DRY	F-18
CEMS (CO ₂ Analyzer)	WET	F-15
	DRY	F-16
Gas Fuel Flowmeter System		D-6 (F-20)
Oil Fuel Flowmeter System (Mass)		D-8 (F-19)
Oil Fuel Flowmeter System (Volumetric)		D-3 and D-8 (F-19) or F-19V
Overall Value from Multiple Fuel Flowmeter Systems		D-15A
Apportioned Value from Common Stack or Common Pipe		F-21A, F-21B, or F-21
Summed Value from Multiple Stacks		F-21C
Summed Value from Unit		F-25

TABLE 41: HEAT INPUT FORMULA REFERENCE TABLE

* For sample acquisition method (SAM) codes IS, ISP, ISC, DIN, DOU, DIL, and WXT = wet extractive; for EXT = dry extractive, locate under the component. Exceptions are possible.

TABLE 42: HEAT INPUT FORMULAS

Code	Parameter	Formula	Where:		
D-15A	HI	$HI_{rate-hr} = \frac{\sum_{all-finels} HI_{rate-i} t_i}{t_u}$	$\begin{split} HI_{rate-hr} &= Heat input rate from all fuels combusted during the hour (mmBtu/hr) \\ HI_{rate-i} &= Heat input rate for each type of gas or oil combusted during the hour (mmBtu/hr) \\ t_i &= Time each gas or oil fuel was combusted for the hour (fuel usage time) (fraction of an hour) \\ t_u &= Operating time of the unit \end{split}$		
F-15	HI	$HI = Q_{w} x \frac{1}{F_{c}} x \frac{\% CO_{2w}}{100}$	HI = Hourly heat input rate (mmBtu/hr) Q _w , Q _h = Hourly average volumetric		
F-16	HI	$HI = Q_h x \left[\frac{100 - \% H_2 O}{100 F_c} \right] \left[\frac{\% CO_{2d}}{100} \right]$	$F_{c} = Carbon-based F-factor$ $F_{c} = Dry basis F-factor$		
F-17	HI	$HI = Q_W x \frac{1}{F} x \frac{[(20.9/100)(100 - \% H_2 O) - \% O_{2w}]}{20.9}$	$%CO_{2w} = \begin{cases} (dscf/mmBtu) \\ Hourly concentration of CO_2 \\ (percent CO_2, wet basis) \end{cases}$		
F-18	HI	$HI = Q_w x \left[\frac{(100 - \% H_2 O)}{100F} \right] \left[\frac{(20.9 - \% O_{2d})}{20.9} \right]$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		
D-3	OILM	$OIL_{rate} = V_{oil-rate} \ x \ D_{oil}$	$\begin{array}{rcl} {\rm OIL}_{\rm rate} &=& {\rm Mass\ rate\ of\ oil\ consumed\ per\ hr}\\ && (lb/hr)\\ {\rm V}_{\rm oil\mathchar{-}rate} &=& {\rm Volume\ rate\ of\ oil\ consumed\ }\\ && {\rm per\ hr,\ measured\ (scf/hr,\ gal/hr,\ barrels/hr,\ or\ m^3/hr)}\\ {\rm D}_{\rm oil} &=& {\rm Density\ of\ oil,\ measured\ }\\ && (lb/scf,\ lb/gal,\ lb/barrel,\ or\ lb/m^3) \end{array}$		
D-8** (F-19V)	HI	$HI_{rate-oil} = OIL_{rate} \times \frac{GCV_{oil}}{10^6}$	$\begin{array}{rcl} \mathrm{HI}_{\mathrm{rate-oil}} &=& \mathrm{Hourly\ heat\ input\ rate\ from}\\ && \mathrm{combustion\ of\ oil\ (mmBtu/hr)}\\ \mathrm{OIL}_{\mathrm{rate}} &=& \mathrm{Rate\ of\ oil\ consumed\ (lb/hr\ for}\\ && \mathrm{Equation\ D-8\ or\ gal/hr\ for}\\ && \mathrm{Equation\ F-19V)}\\ \mathrm{GCV}_{\mathrm{oil}} &=& \mathrm{Gross\ calorific\ value\ of\ oil}\\ && (\mathrm{Btu/lb\ for\ Equation\ D-8\ or}\\ && \mathrm{Btu/gal\ for\ Equation\ F-19V)}\\ \mathrm{10}^6 &=& \mathrm{Conversion\ of\ Btu\ to\ mmBtu} \end{array}$		

Code	Parameter	Formula	Where:
F-19	НІ	$HI_o = M_o x \frac{GCV_o}{10^6}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
D-6	HI	$HI_{rate-gas} = \frac{GAS_{rate} \times GCV_{gas}}{10^6}$	HI _{rate-gas} ,= Hourly heat input rate from HI _g combustion of gaseous fuel (mmBtu/hr)
F-20	HI	$HI_{g} = \frac{(Q_{g} \times GCV_{g})}{10^{6}}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

** For units required to monitor NO_x mass emissions but <u>not</u> SO₂ mass emissions, if there is a volumetric oil flowmeter, it is possible to use Equation D-8 on a volumetric basis, rather than a mass basis. If this option is used, it is represented as Equation F-19V in the monitoring plan.

Code	Parameter	Formula	Where:		
F-21A	HI	$HI_{i} = HI_{CS}\left(\frac{t_{CS}}{t_{i}}\right)\left[\frac{MW_{i}t_{i}}{\sum_{i=1}^{n}MW_{i}t_{i}}\right]$	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
F-21B	HI	$HI_{i} = HI_{CS}\left(\frac{t_{CS}}{t_{i}}\right)\left[\frac{SF_{i}t_{i}}{\sum_{i=1}^{n}SF_{i}t_{i}}\right]$	$\begin{array}{llllllllllllllllllllllllllllllllllll$		

TABLE 43: APPORTIONMENT AND SUMMATION FORMULAS

Code	Parameter	Formula	Where:		
F-21C	HI	$HI_{Unit} = \frac{\sum_{s=1}^{n} HI_s \ t_s}{t_{Unit}}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
F-21D	HI	$HI_{i} = HI_{CP}\left(\frac{t_{CP}}{t_{i}}\right)\left[\frac{FF_{i}t_{i}}{\sum_{i=1}^{n}FF_{i}t_{i}}\right]$	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
F-25	HI	$HI_{CS} = \frac{\sum_{u=1}^{p} HI_u t_u}{t_{CS}}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$		

Code	Parameter	Formula	Where:		
F-24A	NOX		$E_{(NOx)h}$ = Hourly NO _x mass emissions		
			rate in lb/hr		
		$E_{(NOx)h} = ER_{(NOx)h} \times HI_h$	K = 1.194×10^{-7} for NO _x		
			((lb/scf)/ppm)		
			C_{h_d} = Hourly average, NO _x		
			concentration (ppm (dry))		
F-26A	NOX		C_{h_W} = Hourly average, NO _x		
			concentration, stack moisture		
		$E_{\text{current}} = K \times C_{\text{current}} \times O_{\text{current}}$	basis (ppm (wet))		
		$\Sigma_{(NOx)h}$ $\Sigma_{hw} \Sigma_{h}$	Q_h = Hourly average volumetric		
			flow rate (scfh)		
			$%_0H_2O =$ Hourly average stack moisture		
F-26B	NOX		HI – Hourly average heat input rate		
		$(100 - \% H_2 O)$	(mmBtu/hr)		
		$E_{(NOx)h} = K x C_{hd} x Q_h x - 100$	$ER_{(NOx)_1} = Hourly average NO_x emission$		
		100	rate (lb/mmBtu)		

TABLE 44: NOX MASS EMISSIONS FORMULAS (LBS/HR)

TABLE 45: MISCELLANEOUS FORMULA CODES

Code	Parameter	Description	
N-GAS	FGAS	Net or total gas fuel flow rate (100 scfh)	
N-OIL	FOIL	Net or total oil fuel flow rate (scf/hr, gal/hr, barrels/hr, m ³ /hr, or lb/hr)	
X-FL	FLOW	Average hourly stack flow rate (scfh). (To calculate the average of two or more primary flow monitors, for example, two ultrasonic monitors in an X-pattern)	
T-FL	FLOW	Total stack flow rate (scfh)	
SS-1A	SO2	Total hourly SO_2 mass emissions from the affected unit(s) in a subtractive stack configuration (lb/hr)	
SS-1B	SO2	Hourly SO ₂ mass emissions from a particular affected unit in a subtractive stack configuration (lb/hr)	
SS-2A	NOX	Total hourly NO_x mass emissions from the affected unit(s) in a subtractive stack configuration (lb/hr)	
SS-2B	NOX	Hourly NO_x mass emissions from a particular affected unit in a subtractive stack configuration (lb/hr). (Apportioned by gross load)	
SS-2C	NOX	Hourly NO_x mass emissions from a particular affected unit in a subtractive stack configuration (lb/hr). (Apportioned by steam load)	
SS-3A	HIT	Total hourly heat input for the affected unit(s) in a subtractive stack configuration (mmBtu)	

Code	Parameter	Description	
SS-3B	HI	Hourly heat input rate for a particular affected unit in a subtractive stack configuration (mmBtu/hr)	
NS-1	NOXR	Hourly NO_x apportionment for NO_x affected units in a subtractive stack configuration (lb/mmBtu)	
NS-2	NOXR	Hourly NO _x apportionment for NO _x affected units using simple NO _x apportionment (lb/mmBtu)	

TABLE 46: Representations for Electronic Reporting of Formulas

Operation	Recommended Representation	Example
Addition	+	MW_1 + MW_2
Subtraction	-	(100 - %H ₂ O)
Multiplication	*	C _d * F _d
Division	/	%CO ₂ /100
Exponential Power	**	$1.66 \ge 10^{-7} = 1.66 \ge 10 \ge -7$
Subscript	Underscore	$MW_1 = MW_1$
Fraction of Heat Input from Fuel	X_ <fuel></fuel>	X_oil
Gross Electrical Output	MW_ <unit></unit>	MW_1
Gross Steam Load (Flow)	SF_ <unit></unit>	SF_1
Hourly Emissions	E_h	E_h
Operating Time	T_ <unit stack=""></unit>	T_CS1

12.0 MONITORING DEFAULT DATA

TABLE 47: PARAMETER CODES AND DESCRIPTIONS FOR MONITORING DEFAULT

Category	Parameter Code	Description	
Diluent Cap	CO2N	CO ₂ Diluent Cap.	
	O2X	O ₂ Diluent Cap.	
Low Mass Emissions Parameters (§§75.19 and 75.81(b))	CO2R	CO_2 Default Emission Factor, from Table 45 or Fuel and Unit-Specific CO_2 Default Emission Factor, for Combustion of "Other" Gaseous Fuel (tons/mmBtu).	
	NOXR	NO_x Default Emission Factor, from Table 42 or Fuel and Unit-Specific NO_x Emission Rate ¹ (lb/mmBtu).	
	SO2R	SO_2 Default Emission Factor, from Table 43 or Fuel and Unit- Specific SO_2 Default Emission Factor Calculated Using Equation D-1h, either (1) for combustion of "other" gaseous fuel; or (2) for fuel oil combustion, based on the maximum weight percent sulfur in the operating permit (lb/mmBtu).	
	MHHI	Maximum Rated Hourly Heat Input Rate (mmBtu/hr).	
Missing Data Values	H2ON	Minimum Potential Percent Moisture.	
or	H2OX	Maximum Potential Percent Moisture.	
Maximum Values for Unmonitored	CO2X	Maximum Percent CO ₂ .	
Bypass Stack and Emergency Fuels	O2N	Minimum Potential Percent Oxygen.	
	SO2X	Fuel-Specific Maximum Potential SO ₂ Concentration (ppm).	
	NOCX	Fuel-Specific Maximum Potential (MPC) or Maximum Expected NO _x Concentration (ppm) for all hours or controlled hours. For Appendix E missing data purposes, report the MPC used to calculate the Maximum NO _x Emission Rate for each fuel curve and, if applicable, for Emergency fuel.	
	NORX	Maximum NO_x Emission Rate (MER) and Fuel-Specific Maximum Potential or Maximum Expected NO_x Emission Rate (lb/mmBtu) for all hours or controlled hours. For Appendix E missing data purposes, an MER must be determined for each fuel curve and, if applicable, for Emergency fuel.	
	FLOX	Fuel-Specific Maximum Potential Flow Rate (scfh).	
Moisture Default Parameter	H2O	Hourly Percent Moisture Content (%H ₂ O).	
	BWA	Moisture Fraction in Ambient Air.	

Category	Parameter Code	Description
SO ₂ Emission Rate Parameter for Use in Formula F-23	SO2R	SO ₂ Generic Default Emission Factor for Pipeline Natural Gas; or
		Fuel and Unit-Specific Default Emission Factor Calculated Using Equation D-1h for combustion of "other" gaseous fuel; or
		Emission Factor approved by petition for a very low sulfur solid or liquid fuel (or combination of fuels) per §75.11 (e).
Other Parameters (subject to EPA	MNHI	Minimum Heat Input Rate (mmBtu/hr).
approval of petition)	MNNX	Minimum NO _x Emission Rate (lb/mmBtu).
Other Parameters (not subject to	MNOF	Minimum Oil Flow Rate.
EPA approval of petition)	MNGF	Minimum Gas Flow Rate.

¹ "NOXR" is reported in the following cases: (1) for fuel-and-unit specific NO_x emission rates obtained by testing; and (2) for the maximum potential NO_x emission rate, if that value is reported in the interval from the first hour of use of the LME methodology until the hour of completion of fuel-and-unit specific NO_x emission rate testing (see \$75.19 (a)(4)).

TABLE 48: ROUNDING RULES FOR DEFAULT VALUES

	Round to 0 Decimal Places	Round to 1 Decimal Places	Round to 2 Decimal Places	Round to 3 Decimal Places	Round to 4 Decimal Places	Round to Nearest 1000
Parameter Codes		CO2N, CO2X, H2O, H2ON, H2OX, MHHI, MNGF, MNHI, MNOF, NOCX, O2X, O2N, SO2X		BWA, CO2R, MNNX, NORX, NOXR	SO2R	FLOX

TABLE 49: FUEL-SPECIFIC MINIMUM DEFAULT MOISTURE VALUESFOR SO2, NOX, CO2, AND HEAT INPUT RATE CALCULATIONS

Fuel	Minimum Moisture Default Value
Anthracite Coal	3.0%
Bituminous Coal	6.0%
Sub-bituminous Coal	8.0%
Lignite Coal	11.0%
Wood	13.0%
Natural Gas (boilers only)	14.0%

TABLE 50: FUEL-SPECIFIC MAXIMUM DEFAULT MOISTURE VALUES FOR NOX EMISSION RATE CALCULATIONS

Fuel	Maximum Moisture Default Value
Anthracite Coal	5.0%
Bituminous Coal	8.0%
Sub-bituminous Coal	12.0%
Lignite Coal	13.0%
Wood	15.0%
Natural Gas (boilers only)	18.0%

TABLE 51: NOX EMISSION FACTORS (LB/MMBTU) FOR LOW MASS EMISSIONS UNITS

Boiler Type	Fuel Type	NO _x Emission Factors
Turbine	Natural Gas	0.7
	Oil	1.2
Boiler	Natural Gas	1.5
	Oil	2.0

TABLE 52: SO2 EMISSION FACTORS (LB/MMBTU) FOR LOW MASS EMISSIONS UNITS

Fuel Type	SO ₂ Emission Factors
Pipeline Natural Gas (as defined in §72.2)	0.0006
Natural Gas	0.06
Residual Oil or Other Oil	2.10
Diesel Fuel	0.50

TABLE 53: CO2 EMISSION FACTORS (TON/MMBTU) FOR LOW MASS EMISSIONS UNITS

Fuel Type	CO ₂ Emission Factors
Natural Gas	0.059
Oil	0.081

TABLE 54: UNITS OF MEASURE CODES BY PARAMETER

Units of Measure Code	Description	Parameter Code
РСТ	Percent	CO2N, CO2X, H2O, H2ON, H2OX, O2N, O2X
LBMMBTU	Pounds per Million Btu	MNNX, NOXR, SO2R, NORX
MMBTUHR	Million Btu per Hour	MNHI, MHHI
TNMMBTU	Tons per Million Btu	CO2R
SCFH	Standard Cubic Feet per Hour	MNOF, FLOX
PPM	Parts per million	SO2X, NOCX
GALHR	Gallons of Oil per Hour	MNOF
BBLHR	Barrels of Oil per Hour	MNOF
M3HR	Cubic Meters of Oil per Hour	MNOF
LBHR	Pounds of Oil per Hour	MNOF
HSCF	Hundred SCF of Gas per Hour	MNGF

Code	Description	Parameter Code
DC	Diluent Cap	CO2N, O2X
DM	Default Minimum Fuel Flow Rate	MNGF, MNOF
F23	SO ₂ Emission Rate Default for Use in Equation F-23	SO2R
LM	Low Mass Emissions Unit Default (§§75.19 and 75.81(b))	CO2R, SO2R, NOXR, MHHI
MD	Missing Data, Unmonitored Bypass Stack, or Emergency Fuel	CO2X, FLOX, H2ON, H2OX, MNHI, MNNX, NOCX, NORX, O2N, SO2X
РМ	Primary Measurement Methodology	BWA, H2O

TABLE 55: DEFAULT PURPOSE CODES AND DESCRIPTIONS

TABLE 56: MONITORING DEFAULT FUEL CODES AND DESCRIPTIONS

Туре	Code	Description
LME Defaults	BFG	Blast Furnace Gas
(§75.19)	BUT	Butane (if measured as a gas)
	CDG	Coal Derived Gas
	COG	Coke Oven Gas
	DGG	Digester Gas
	DSL	Diesel Oil
	LFG	Landfill Gas
	LPG	Liquefied Petroleum Gas (if measured as a gas)
	NNG	Natural Gas
	OGS	Other Gas
	OIL	Residual Oil
	OOL	Other Oil
	PDG	Producer Gas
	PNG	Pipeline Natural Gas (as defined in §72.2)
	PRG	Process Gas
	PRP	Propane (if measured as a gas)
	RFG	Refinery Gas
	SRG	Unrefined Sour Gas

Туре	Code	Description
Moisture	ANT	Anthracite Coal
	BT	Bituminous Coal
	CRF	Coal Refuse (culm or gob)
	LIG	Lignite
	NNG	Natural Gas (including Pipeline Natural Gas)
	PNG	Pipeline Natural Gas
	SUB	Sub-bituminous Coal
	W	Wood
SO ₂ Emission Rate Default	NNG	Natural Gas
for Use in Equation F-23	PNG	Pipeline Natural Gas
	OGS	Other Gas
	* or MIX	*With an approved petition, any liquid or solid fuel type that qualifies as very low sulfur fuel, or a mixture of such fuels. See fuel code list in UNIT FUEL DATA
Fuel-Specific CEMS Missing	BFG	Blast Furnace Gas
Data	BUT	Butane (if measured as a gas)
	С	Coal
	CDG	Coal-Derived Gas
	COG	Coke Oven Gas
	CRF	Coal Refuse (culm or gob)
	DGG	Digester Gas
	DSL	Diesel Oil
	LFG	Landfill Gas
	LPG	Liquefied Petroleum Gas (if measured as a gas)
	MIX	Co-Fired Fuels
	NNG	Natural Gas
	OGS	Other Gas
	OIL	Residual Oil
	OOL	Other Oil
	OSF	Other Solid Fuel
	PDG	Producer Gas
	PNG	Pipeline Natural Gas (as defined in §72.2)
	PRG	Process Gas
	PRP	Propane (if measured as a gas)

Туре	Code	Description
	PRS	Process Sludge
	PTC	Petroleum Coke
	R	Refuse
	RFG	Refinery Gas
	SRG	Unrefined Sour Gas
	TDF	Tire-Derived Fuel
	W	Wood
	WL	Waste Liquid
Fuel-Specific MPC/MER or	BFG	Blast Furnace Gas
MEC/MCR Reporting During Bypass Stack Operating	BUT	Butane (if measured as a gas)
Hours	С	Coal
	CDG	Coal-Derived Gas
	COG	Coke Oven Gas
	CRF	Coal Refuse (culm or gob)
	DGG	Digester Gas
	DSL	Diesel Oil
	LFG	Landfill Gas
	LPG	Liquefied Petroleum Gas (if measured as a gas)
	NNG	Natural Gas
	OGS	Other Gas
	OIL	Residual Oil
	OOL	Other Oil
	OSF	Other Solid Fuel
	PDG	Producer Gas
	PNG	Pipeline Natural Gas (as defined in §72.2)
	PRG	Process Gas
	PRP	Propane (if measured as a gas)
	PRS	Process Sludge
	PTC	Petroleum Coke
	R	Refuse
	RFG	Refinery Gas
	SRG	Unrefined Sour Gas
	TDF	Tire-Derived Fuel

Туре	Code	Description
	W	Wood
	WL	Waste Liquid

TABLE 57: MONITORING DEFAULT OPERATING CONDITION CODES AND DESCRIPTIONS

Operating Condition Code	Description
А	Any Hour
С	Controlled Hour
В	Base Load Hour (LME units)
Р	Peak Load Hour (LME units)
U	Uncontrolled Hour

TABLE 58: DEFAULT SOURCE CODES AND DESCRIPTIONS

Default Source Code	Source of Value Description	Parameter
APP*	Approved (Petition)	MNNX, SO2R, MNHI, H2O, MHHI
DATA**	Historical or Other Relevant Data	O2N, O2X, CO2X, H2ON, H2OX, FLOX, SO2X, NOCX, NORX, NOXR, MNOF, MNGF, BWA
PERM	Maximum Weight Percent Sulfur in Fuel Oil, as Specified by Operating Permit (for LME)	SO2R, NORX, NOCX
TEST	Unit/Stack Testing	NOXR, FLOX, SO2X, NOCX, NORX
SAMP	Fuel Sampling	SO2R, CO2R, SO2X
CONT	Contract Maximum	SO2R
DEF	Default Value from Part 75	CO2R, NOXR, CO2N, O2X, SO2R, H2ON, H2OX, SO2X, NOCX, NORX, H2O
MAXD	Maximum Value Based on Design or Nameplate Capacity	MHHI, NORX, NOCX

* "APP" is reported if a source has an approved petition to use a site-specific SO₂ emission factor for very low sulfur solid or liquid fuels.

** "DATA" is reported when a source is reporting the maximum potential NO_x emission rate in the interval from the first hour of use of the LME methodology until the hour of completion of fuel-and-unit specific NO_x emission rate testing (see §75.19 (a)(4)).

13.0 MONITORING SPAN DATA

TABLE 59: COMPONENT TYPE CODES AND DESCRIPTIONS FOR MONITOR SPAN

Code	Description	
CO2	CO ₂ Concentration (percent)	
FLOW	Stack Flow	
HCL	HCl Concentration (ppm)	
HF	HF Concentration (ppm)	
HG	Hg concentration (µg/scm)	
NOX	NO _x Concentration (ppm)	
02	O ₂ Concentration (percent)	
SO2	SO ₂ Concentration (ppm)	

TABLE 60: PROVISION FOR CALCULATING MAXIMUM POTENTIAL CONCENTRATIONS (MPC)/ MAXIMUM EXPECTED CONCENTRATION (MEC)/ MAXIMUM POTENTIAL FLOW RATE (MPF) CODES AND DESCRIPTIONS

Code	Description
F	Formula (low and high-scale SO ₂ , flow rate, and low-scale NO _x only)
HD	Historical Data
TR	Test Results
ТВ	Table Value or Other Default Value from Part 75 or from 40 CFR Part 63, Subpart UUUUU, Appendix A
OL	Other Limit
GS	Low Scale Default for SO ₂ for Gas Units
PL	NO _x MEC Based on Permit Limit
ME	NOx MPC Based on Manufacturer's Estimate of Uncontrolled Emissions
FS	Fuel Sampling and Analysis (for Hg MPC)

TABLE 61: CRITERIA FOR MAXIMUM POTENTIAL CONCENTRATIONS (MPC)/
MAXIMUM EXPECTED CONCENTRATION (MEC)/
MAXIMUM POTENTIAL FLOW RATE (MPF) DETERMINATIONS

Component Type	Scale	Method Used to Determine MPC/MEC/MPF	Selection Criteria	Method Code
NOX	High	800 or 1600 ppm, as applicable	For coal-fired units	ТВ
		400 ppm	For oil- or gas-fired units	ТВ
		2000 ppm Cement kilns		ТВ
		500 ppm	Process heaters burning oil	ТВ
		200 ppm	Process heaters burning only gaseous fuels	ТВ
		Historical CEM data	For initial determination or for changes in MPC as described in Section 2.1.2.5 of Appendix A	HD
		Other constant values from Appendix A, Tables 2-1 and 2-2	If historical data not available by boiler type and fuel	ТВ
		Test results	If historical data not available	TR
		Other, including other state/federal requirements	As justified	OL
		Manufacturer=s estimate of uncontrolled emissions	For initial MPC determination, principally for new units	ME
	Low	Equation A-2	For units with emission controls	F
		Historical CEM data	For initial determination or for changes in MEC as described in Sections 2.1.2.2(c) and 2.1.2.5 of Appendix A	HD
		Other, including other state/federal requirements	As justified	OL
		Test results	If available	TR
		Permit limit	For initial MEC determination, principally for new units	PL
HG	High	Fuel-Specific Default MPC Values from 40 CFR Part 63, Subpart UUUUU, Appendix A	10 μg/scmBituminous coal10 μg/scmSub-bituminous coal16 μg/scmLignite10 μg/scmWaste coal	ТВ
		Site-Specific Emission Testing	Use the highest observed test results	TR
		Fuel Sampling and Analysis	Use the average weight percent of Hg from 3 samples, together with maximum fuel feed rate, fuel GCV, appropriate F- factor, etc.	FS
FLOW	N/A	Equation A-3a and Equation of Continuity*	Based on %CO ₂	F

Component Type	Scale	Method Used to Determine MPC/MEC/MPF	Selection Criteria	Method Code
		Equation A-3b and Equation of Continuity*	Based on %O ₂	F
		Historical data	For changes in MPF, as described in Section 2.1.4.3 of Appendix A	HD
		Test results	If available	TR
SO2	High	Equation A-1a	Based on %CO ₂	F
		Equation A-1b	Based on %O ₂	F
		Historical CEM data	For initial determination or for changes in MPC as described in Section 2.1.1.5 of Appendix A	HD
		Test results	If available	TR
		Other, including other state/federal requirements	As justified	OL
	Low	Equation A-2	For units with emission controls	F
	Historical CEM data		For initial determination or for changes in MEC as described in Section 2.1.1.5 of Appendix A	HD
		# 200 ppm (span value)	For units burning only very low sulfur fuel (as defined in §72.2)	GS
		Other, including other state/federal requirements	As justified	OL

* The maximum potential flow rate (MPF) is calculated using the Equation of Continuity: $MPF = 60 \times MPV \times A_s$. In this equation, MPV is the maximum potential velocity (from Equation A-3a or A-3b or from test results), in units of wet, standard feet per minute, and A_s is the cross-sectional area of the stack at the flow monitor location.

Code	Description	
ACFH	Actual Cubic Feet of Stack Flow per Hour	
ACFM	Actual Cubic Feet of Stack Flow per Minute	
AFPM	Actual Feet of Stack Flow per Minute	
AFSEC	Actual Feet of Stack Flow per Second	
AMSEC	Actual Meters of Stack Flow per Second	
INH2O	Inches of Water	
KACFH	Thousand Actual Cubic Feet of Stack Flow per Hour	
KACFM	Thousand Actual Cubic Feet of Stack Flow per Minute	

TABLE 62: FLOW SPAN CALIBRATION UNITS OF MEASURE

Code	Description	
KAFPM	Thousand Actual Feet of Stack Flow per Minute	
KSCFH	Thousand Standard Cubic Feet of Stack Flow per Hour	
KSCFM	Thousand Standard Cubic Feet of Stack Flow per Minute	
KSFPM	Thousand Standard Feet of Stack Flow per Minute	
MACFH	Million Actual Cubic Feet of Stack Flow per Hour	
MSCFH	Million Standard Cubic Feet of Stack Flow per Hour	
SCFH	Standard Cubic Feet of Stack Flow per Hour	
SCFM	Standard Cubic Feet of Stack Flow per Minute	
SFPM	Standard Feet of Stack Flow per Minute	
SMSEC	Standard Meters of Stack Flow per Second	

14. RECTANGULAR DUCT WAF DATA

TABLE 63: WAF METHOD CODES AND DESCRIPTIONS

Code	Description	
FT	Full Test (CTM-041 §§8.1 and 8.2)	
AT	Abbreviated Test (CTM-041 §8.4.1)	
DF	Default Value (CTM-041 §8.4.2)	

15. MONITORING LOAD DATA

TABLE 64: MAXIMUM LOAD VALUE CODES AND DESCRIPTIONS

Code	Description	
MW	Electrical Capacity (in megawatts)	
KLBHR	Steam (load) Mass Rate (in units of 1000 lbs/hr)	
MMBTUHR	BTUs of Steam Produced (in mmBtu/hr)	

Note: This field is left blank for units that do not produce electrical or steam load.

16.0 MONITORING QUALIFICATION DATA

Category	Code	Description	
Low-emitting EGU (LEE)— Hg or HCl	LEE	LEE qualification	
Gas-Fired	GF	Gas-Fired Qualification	
Low Mass Emitter	LMEA	Low Mass Emitter Qualification (Annual) Required when reporting on a year-round basis	
	LMES	Low Mass Emitter Qualification (Ozone Season) Required when subject to an Ozone-Season NO _x program	
Peaking	РК	Peaking Unit Qualification (Annual)	
	SK	Peaking Unit Qualification for Ozone Season (applies <u>exclusively</u> to sources that report on an ozone season-only basis)	
QA Test Exemption	PRATA1	Single Load RATA Qualification by petition approval	
	PRATA2	Two Load RATA Qualification by petition approval	
	COMPLEX	Exemption from Flow-to-Load Testing Due to Complex Configuration	
	LOWSULF	SO ₂ RATA Exemption for a Source Combusting Only Very Low Sulfur Fuel	

TABLE 65: QUALIFICATION TYPE CODES AND DESCRIPTIONS

17.0 MONITORING QUALIFICATION LME DATA

	Linked to MONITORING QUALIFICATION Record with QualificationTypeCodes		TION DATA Code:		
		LN	IEA	LMES	
Reporting Frequency	Program Applicability	SO ₂ Tons	NO _x Tons	SO ₂ Tons	NO _x Tons
Annual	Subject to Acid Rain Program (or CAIRSO2 plus CAIRNOX), but not subject to Ozone Season NO _x program	✓	✓	Do not rep rec	oort LMES ord
	Subject to Acid Rain Program (or CAIRSO2 plus CAIRNOX), and also subject to Ozone Season NO _x program	✓	✓		~
	Subject to CAIRSO2, but not subject to any NO _x program	\checkmark		Do not report LMES record	
	Subject to Ozone Season NO _x program and reporting year-round, but not subject to CAIRSO2		~		~
	Subject to CAIRNOX, but not subject to CAIRSO2 or Ozone Season NO _x program		~	Do not rep rec	oort LMES ord
Ozone Season Only	Subject to Ozone Season NO _x program and reporting during Ozone Season only	Do not rep rec	oort LMEA cord		~

TABLE 66: DATA REQUIREMENTS FOR MONITORING QUAL LME

18.0 MONITORING QUALIFICATION PERCENT DATA

TABLE 67: QUALIFICATION DATA TYPE CODES AND DESCRIPTIONS

Code	Description
А	Actual Percent Capacity Factor or Fuel Usage
Р	Projected Capacity Factor or Fuel Usage
D	720 Hours of Unit Operating Data (gas-fired only)