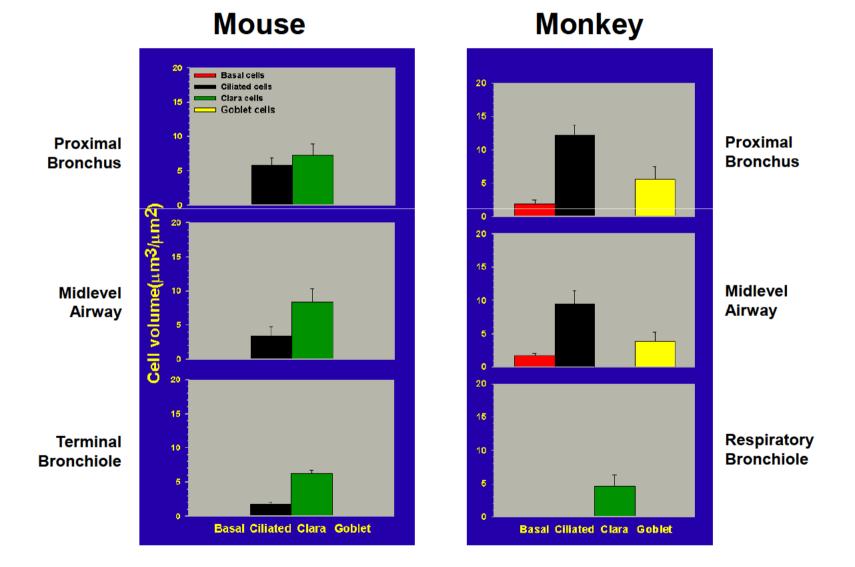

Species Difference in Response and Cell of Origin

Laura S. Van Winkle, PhD DABT Center for Health and the Environment Department of Anatomy, Physiology & Cell Biology School of Veterinary Medicine University of California at Davis

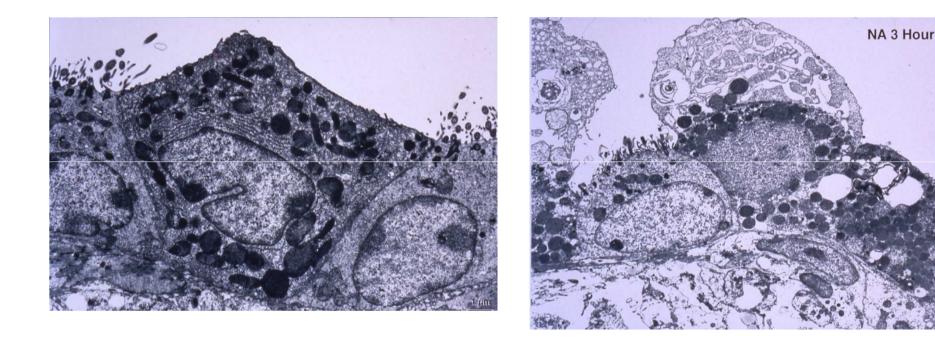
Anatomy and Airway Cell types vary by Species

The following vary position in the tracheo-bronchiolar airway tree:


cell types

susceptibility to injury

local dose (route of exposure)

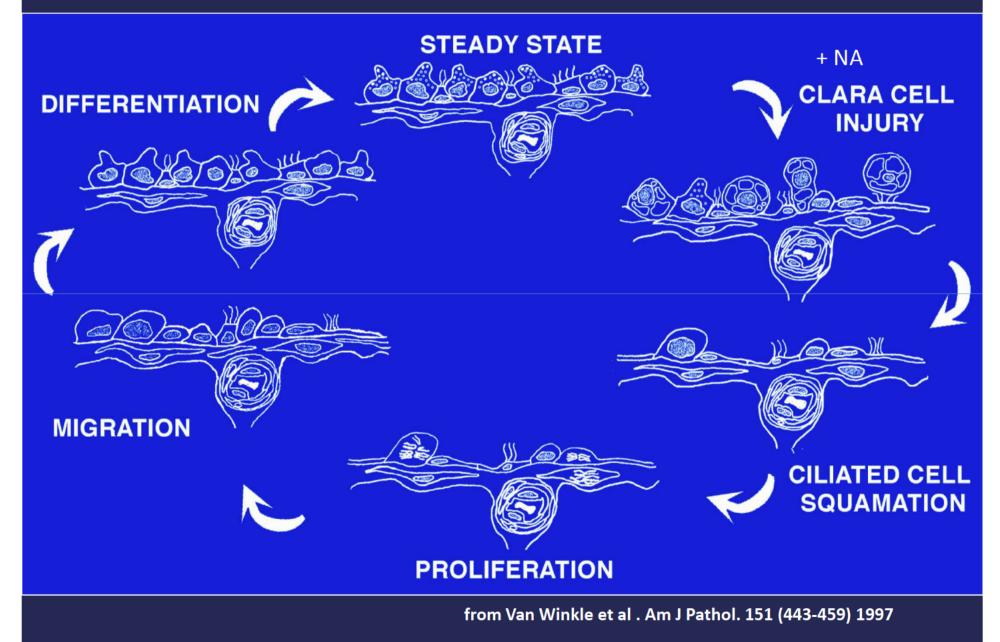

capability to repair

Comparison of Epithelial Composition in Conducting Airways of Mice and Rhesus Monkeys

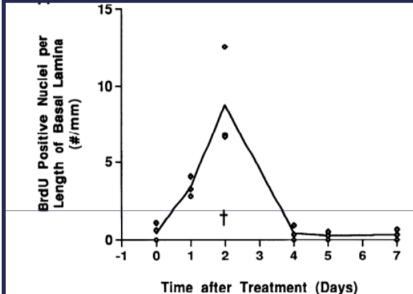
Naphthalene

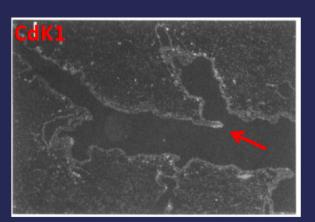
Naphthalene is toxic to Club (Clara) cells regardless of route of exposure

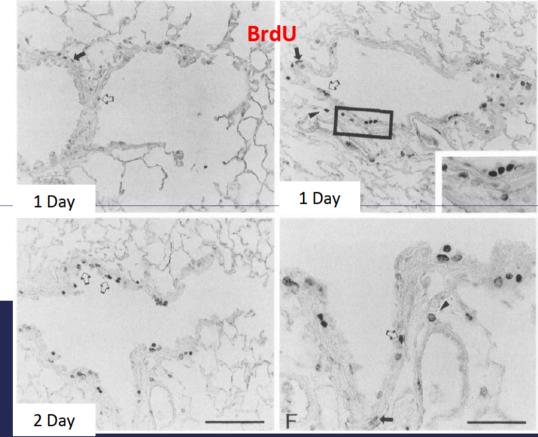
Images from Van Winkle et al 1999


Species and Site Selective Toxicity of Naphthalene in Adult Animals- 24 hrs post exposure

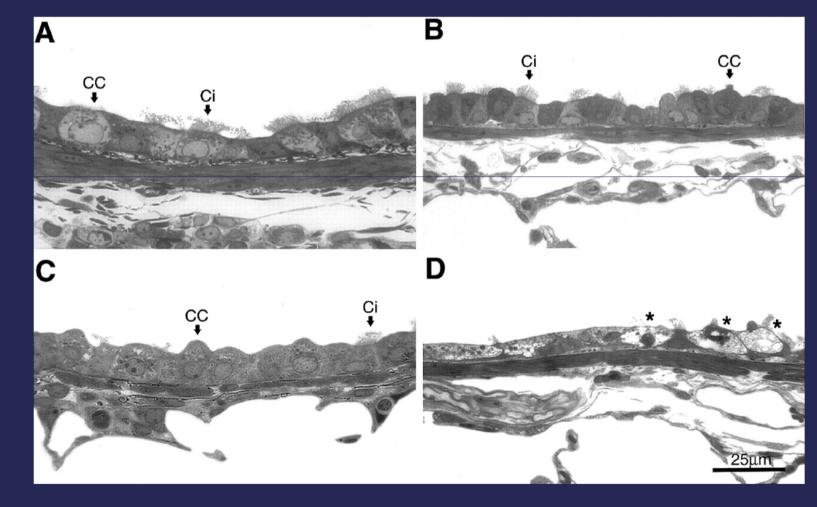
			Distal		Nasal	Epithelium
Species	Dose	Trachea	Bronchiole	Parenchyma	Olfactory	Respiratory
Mouse	50	0	+	0	0	0
	100	0	++	0	0	0
LD ₅₀ =380 mg/kg	200	+	+++	0	0	0
	400	++	++++	0	++	0
inhalation	2-5 ppm	+	+		+	
	10 ppm	+++	++		++	++
Rat	200	0	0	0	++	0
	400	0	0	0	+++	0
LD ₅₀ =1600 mg/kg	800	0	0	0	+++	0
	1600	0	0	0	+++	0


Current OSHA exposures are 10 ppm TWA, 15 ppm STEL

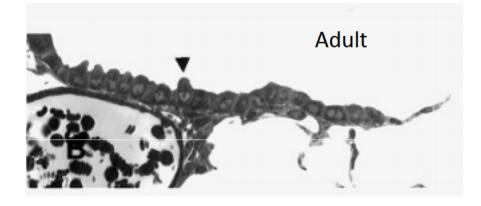

Plopper et al., 1992; 1993; West et al, 2001; Lee et al., 2005; Dodd et al, 2012.


Acute Naphthalene and the Cycle of Injury and Repair

Cell Proliferation following Acute i.p. NA Exposure



Van Winkle et al AJP:Lung 1995 Stripp et al AJP: Lung 1995 Lawson et al Am J Pathol 2002


Female Mice are more susceptible than Male mice to NA toxicity Control Treated

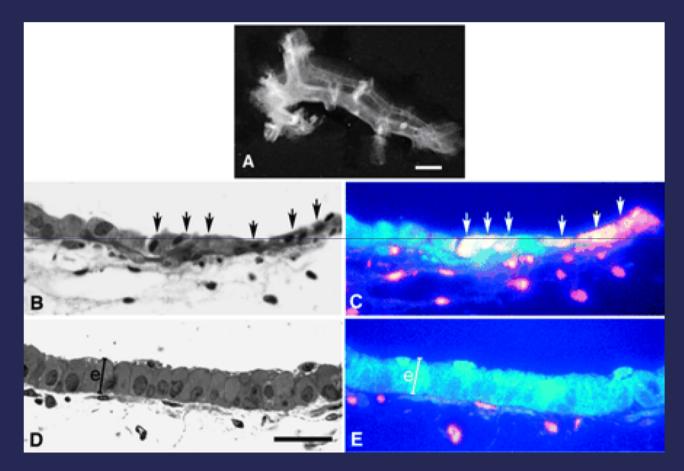
Female

200 mg/kg ip from Van Winkle et al 2002 AJP: Lung p L1122-34

Neonatal mice are more susceptible than adult mice to NA toxicity 25 mg/kg ip

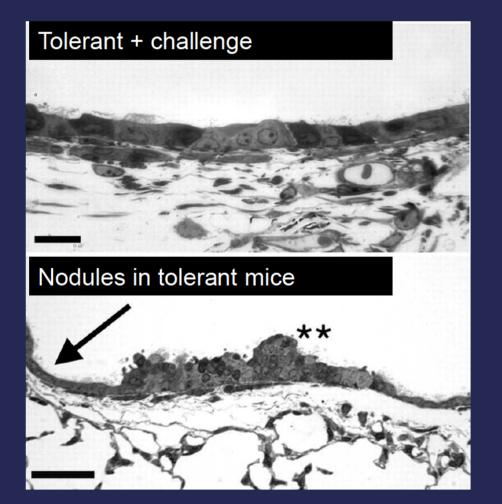
Fanucchi et al TAAP 1997 144(1):96-104

Repeated Inhalation or Injection of Naphthalene causes "Tolerance"


Tolerance is resistance to a high challenge dose following a week or more of exposure to repeated doses well below the LD50

-NA i.p. tolerance Lakritz et al 1996; O'Brien et al 1989

-NA inhalation tolerance West, Van Winkle et al 2003


- incomplete tolerance i.p. in females Sutherland et al 2012
- tolerance is due to induction of gamma GCS West et al 2002

A property intrinsic to the airway epithelium makes it "tolerant"

Repeated Inhalation Exposures to the Bioactivated Cytotoxicant Naphthalene (NA) Produce Airway-Specific Clara Cell Tolerance in Mice Jay A. A. West^{*,1}, Laura S. Van Winkle^{*}, Dexter Morin, Chad A. Fleschner^{*}, Henry Jay Forman and Charles G. Plopper^{*} Toxicological Sciences 75, 161-168 (2003)

Morphology of Epithelium in NA Tolerance (inhaled NA)

West J A A et al. Toxicol. Sci. 2003;75:161-168

Other info re: Mode of Action

- Glutathione depletion occurs early, before tox
- P450 required
- Protein binding of reactive metabolites
- Naphthalene epoxide and downstream metabolites are toxic to Clara cells (Chichester et al studies)
- CYP2F2 contributes to mouse lung Clara cell toxicity- lessons from the knockout mouse
- Female mice are more susceptible than male mice to acute toxicity

Ethylbenzene

Ethylbenzene

- Information concerning the carcinogenicity of ethylbenzene in animals comes from an NTP-sponsored bioassay in male and female rats and mice exposed to 0, 75, 250, or 750 ppm ethylbenzene for up to 2 years (NTP 1999).
- NTP (1999) concluded that ethylbenzene showed some evidence of carcinogenic activity in male mice based on increased incidence of alveolar/bronchiolar neoplasms(NTP 1999).
- Lung: alveolar/ bronchiolar adenoma (5/50, 9/50, 10/50, 16/50); alveolar/ bronchiolar adenoma or carcinoma (7/50, 10/50, 15/50, 19/50)

Evaluation of Potential Modes of Action of Inhaled Ethylbenzene in Rats and Mice

⇒

TABLE 4

Treatment-related Effects in B6C3F1 Mice in the One-week Study

Mice in the Four-week

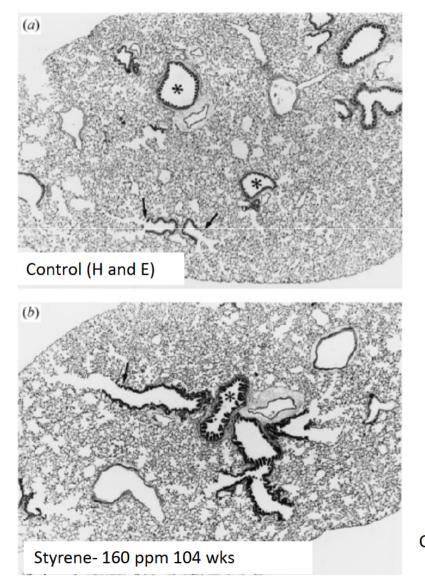
		Males			Female	s	Ma	ales
Exposure (ppm)	0	75	750	0	75	750	0	75
Relative liver weight	6.07 (0.46)	5.88 (0.29)	6.45 (0.44)*	5.39 (0.16)	5.44 (0.25)	6.24 (0.40)*	5.66	6.06
Relative lung weight	0.706 (0.045)	0.724 (0.047)	0.680 (0.051)	0.793 (0.079)	0.786 (0.022)	0.747 (0.064)	(0.49) 0.693	(0.26
Liver S-phase DNA synthesis- LI%							(0.040)	(0.08
Centrilobular	1.89 (1.58)	2.77 (2.06)	23.11 (11.45)*	8.14 (3.45)	8.68 (4.32)	24.40 (7.24)*	2.09 (1.21)	9.48 (5.03
Midzonal	1.87 (1.71)	4.26 (2.25)	11.00 (7.05)*	8.20 (2.76)	9.01 (3.20)	17.40 (6.44)*	3.24 (1.85)	10.13 (5.66
Periportal	1.05 (1.05)	2.14 (1.77)	2.82 (2.20)	4.38 (1.27)	7.39 (3.88)	6.30 (3.11)	3.34 (2.08)	7.81
Lung S-phase DNA synthesis-								
LI% Small airways	3.47 (1.85)	NA	9.73 (5.80)*	5.11 (3.89)	NA	12.74 (10.73)*	3.99 (1.11)	7.27 (3.27
Alveoli	6.63 (4.08)	NA	7.80 (4.51)	5.53 (3.96)	NA	5.33 (2.41)	8.00 (1.27)	4.92 (1.94

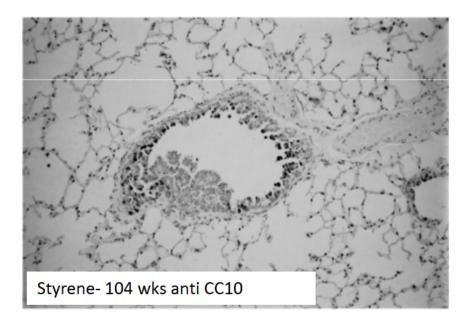
Ma	es	Fem	ales
0	750	0	750
5.66	6.06	5.31	6.00
(0.49)	(0.26)	(0.15)	(0.20)*
0.693	0.699	0.741	0.731
(0.040)	(0.082)	(0.039)	(0.040)
2.09	9.48	12.35	19.29
(1.21)	(5.03)*	(5.23)	(8.34)
3.24	10.11	13.97	17.99
(1.85)	(5.66)	(6.83)	(6.69)
3.34	7.81	12.52	14.76
(2.08)	(3.87)*	(5.45)	(4.90)
3.99	7.27	4.93	10.62
(1.11)	(3.27)	(1.70)	(5.47)


.

9.60 (3.80)

Stott, WT et al <u>Toxicol Sci.</u> 2003 Jan;71(1):53-66


Styrene


24 mos Styrene Oxide vapor in Male/Female Mice

Cruzan et al 2002 Reg Toxicol and Pharm 35, 308-319

Is the Club (Clara) cell a target?

Cruzan, G et al (2001) Journal of Applied Toxicology 21:185-198

Lung cell fractions enriched for CC have enhanced styrene metabolismbut is it the target?

TABLE 4

Metabolism of Styrene to Styrene Oxide by Mouse and Rat Isolated Lung Cells

% Clara	% Type II	R enantiomer ^a	S enantiomer ^a	R/S
Mouse				
18.3 ± 3.5^{b}	33.5 ± 4.9^{b}	19.4 ± 4.1	6.9 ± 2.2	3.62 ± 1.09
55.8 ± 8.0 ^b	$6.5 \pm 2.5^{\circ}$	83.3 ± 27.7	23.0 ± 8.2	3.98 ± 0.75
Rat				
12.8 ± 3.2^{c}	$42.3 \pm 4.1^{\circ}$	3.7 ± 1.1	8.0 ± 2.6	0.47 ± 0.01
$37.3 \pm 9.0^{\circ}$	4.0 ± 1.0^{c}	11.2 ± 3.6	11.0 ± 3.2	1.02 ± 0.09

Note. R and S enantiomer values in pmols/10⁶ cells/min.

^a Calculated on basis of total number of nucleated cells.

^b Percent is mean ± SE for 4 experiments.

^c Percent is mean ± SE for 3 experiments.

Hynes et al Tox Sci 51, 195-201 (1999)

Decrease in labelling index of terminal bronchioles of Cyp2F2 null mice exposed to either styrene or styrene oxide for 5 days (Cruzan et al 2012) compared to styrene exposed WT indicates involvement of CYP2F2 in toxicity. Note that dosing was ip.

CYP2E1-null and Cyp2F2-null mice LDH in BALF- is it CYP2F?

3-

2.5

2 1.5 1. 0.5

0

WT cells

h2E1 cells

nmole/mg protein

Yuan, W et al(2010) Chem-Biol Interactions 186:323-330.

What is the role of the liver?

Table 2

Toxicity of styrene in wild-type and hepatic cytochrome P450 reductase knockout mice.

Strain	Treatment	BALF				
		N	Cells ^b	N	Protein ^c	
WT	Control	7	32 ± 9^{f}	7	336 ± 32^{f}	
WT	Styrenea	9	633 ± 97^{g}	9	740 ± 83^{g}	
KO	Control	6	43 ± 11^{f}	6	379 ± 68^{f}	
KO	Styrenea	8	61 ± 15^{f}	8	429 ± 68^{g}	

Within each column values with different superscripts (f, g) are significantly different (p < 0.05).

^a 600 mg/kg ip 24 h prior to sacrifice.

^b Cells per microliter.

Summary Questions:

- Is there clear morphologic evidence of club (Clara) cell cytotoxicity?
 - Naphthalene- yes
 - Styrene not in vivo, some evidence from in vitro biochemical studies with isolated cells
 - Ethylbenzene no
- Is there a clear temporal distinction between cytotoxicity (from EM or histopath) and proliferation in terminal bronchiolar epithelial cells?
 - Naphthalene- yes, acutely. Not clear that these are separate under conditions of repeated exposure and likely overlaps.
 - Styrene no, cytox not well defined on a cellular basis in intact tissue
 - Ethylbenzene no, cytox not well defined on a cellular basis in intact tissue
- Are there species differences in response in the lung?
 - Naphthalene- yes for both cytotoxicity and tumors in lungs of mice (female) and not rats
 - Styrene tumors in mice but not rat lungs. Cytox unclear
 - Ethylbenzene- tumors in mice (male) but not rat lungs. Cytox unclear