Presented below are water quality standards that are in effect for Clean Water Act purposes.

EPA is posting these standards as a convenience to users and has made a reasonable effort to assure their accuracy. Additionally, EPA has made a reasonable effort to identify parts of the standards that are not approved, disapproved, or are otherwise not in effect for Clean Water Act purposes.

DEPARTMENT OF ENERGY AND ENVIRONMENT

NOTICE OF FINAL RULEMAKING

Water Quality Standards

The Director of the Department of Energy and Environment (DOEE), in accordance with the authority set forth in the District Department of the Environment Establishment Act of 2005, effective February 15, 2006 (D.C. Law 16-51; D.C. Official Code §§ 8-151.01 *et seq.* (2013 Repl. & 2019 Supp.)), Sections 5 and 21 of the Water Pollution Control Act of 1984, effective March 16, 1985 (D.C. Law 5-188; D.C. Official Code §§ 8-103.04 and 8-103.20 (2013 Repl.)), and Mayor's Order 98-50, dated April 15, 1998, as amended by Mayor's Order 2006-61, dated June 14, 2006, hereby gives notice of the final rulemaking action to amend Chapter 11 (Water Quality Standards) of Title 21 (Water and Sanitation) of the District of Columbia Municipal Regulations (DCMR).

DOEE is conducting the triennial review of the District of Columbia's Water Quality Standards (WQS) regulations as required by Section 5(a) of the Water Pollution Control Act (D.C. Official Code § 8-103.04(a)), and Section 303(c) of the federal Clean Water Act (33 USC § 1313(c)). The purpose of the WQS triennial review is to update the District's WQS based on Environmental Protection Agency (EPA) recommendations, which are created using new data, analysis, and studies to enhance water quality and protect designated uses.

On September 15, 2017 at 64 DCR 9089, DOEE published in the D.C. Register the first proposed rulemaking updating the WQS. This rulemaking proposed to update the recreational criteria for E.coli bacteria, aquatic life criteria for ammonia and cadmium, and ninety-four (94) human health criteria. DOEE held a public hearing on the first proposed rulemaking on October 26, 2017. Written comments on the proposed rulemaking were received from the EPA, environmental groups, and DC Water. Comments on the first proposed rulemaking are posted to DOEE's website at https://doee.dc.gov/service/water-quality-regulations. EPA comments included necessary revisions to the aquatic life criteria for ammonia and commended DOEE on its proposal to update the recreational criteria for E.coli bacteria. The environmental groups were concerned that the proposed update to the recreational criteria for E.coli bacteria did not protect public health. DC Water requested DOEE to undertake a Use Attainability Analysis of the District's primary contact recreation, which exists in the District's WQS, and defer from making any changes to the existing recreational criteria for *E.coli*. DC Water undertook their own analysis and noted that adopting the updated criteria would result in "adverse social and economic consequences." Based on all the comments received, DOEE made changes, the substantive change was removing the update to the recreational criteria for E.coli. The current recreational criteria for E.coli in the WQS will remain. Compliance with the current *E. coli* criteria is being implemented through DC Water's Long-Term Control Plan for combined sewer overflows which is underway. DOEE needs more time to analyze available data and understand the impacts of adopting the new recreational criteria for E.coli criteria into the WQS.

The second proposed rulemaking was published in the *D.C. Register* on June 28, 2019 at 66 DCR 7697. The updates to the aquatic life criteria for ammonia and cadmium, and 94 human health

criteria remained. Prior to promulgating the second proposed rulemaking, DOEE undertook a study to consider the socio-economic, institutional, technological, and environmental impacts (SITE) of applying and enforcing the ammonia, cadmium, and 94 chemical constituents updates to the WQS. The study is available on DOEE's website at <u>https://doee.dc.gov/service/water-quality-regulations</u>.

The second proposed rulemaking was open for public comment for thirty (30) days. In July 2019, DC Water requested an extension to sixty (60) days. DOEE held a public hearing on the second proposed rulemaking on September 5, 2019. Written comments on the second proposed rulemaking were received from EPA, a District resident, and DC Water. EPA and the individual District resident supported the more stringent criteria and requested that DOEE consider adopting further EPA recommended water quality criteria like the recreational criteria for E. coli, copper, selenium, aluminum, and diazinon. DC Water requested an additional two hundred forty (240)day comment period extension to fully understand how the ammonia criteria impacts their EPA National Pollutant Discharge Elimination System (NPDES) permit limit. In addition to that request, DC Water included a draft recalculation of ammonia limits, based on the updates to the aquatic life criteria for ammonia, for Blue Plains wastewater treatment plant. The recalculated limits were lower than the current permit limits. DOEE is not promulgating the proposed aquatic life criteria for ammonia at this time. DOEE will continue to evaluate how the aquatic life criteria for ammonia may impact stakeholders. In addition, DC Water is undertaking their own analyses to more fully understand how the aquatic life criteria may impact their federal NPDES permit. The current aquatic life criteria for ammonia in the WOS remains unchanged.

This final rulemaking updates the aquatic life criteria for cadmium and the 94 human health criteria. No other substantive changes were made.

The update to the aquatic life criteria for cadmium is based on EPA recommendations, the 2016 Aquatic Life Ambient Water Quality Criteria – Cadmium (EPA 820-R-16-002). Chronic cadmium exposure can lead to adverse effects in the growth, reproductive, immune, and endocrine systems of aquatic life. Cadmium is, however, a naturally occurring metal found in mineral deposits and distributed ubiquitously at low concentrations in the environment. The updated chronic criterion is less stringent than the current chronic criterion, while the acute is more stringent.

The updates to the human health criteria are based on EPA's 2015 recommendations that revise the human health criteria for 94 chemical constituents. The revisions are based on EPA's existing methodologies, Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health (2000) (EPA-822-B00-004). Examples of these chemicals include DDT and its breakdown products, benzene, and heptachlor epoxide. The recommendations reflect the latest scientific information on factors like body weight, drinking water intake, fish consumption rates, bioaccumulation factors, and toxicity values. Most of the updated criteria are becoming more stringent.

These rules were adopted as final on February 19, 2020 and shall become effective on the date of publication of this notice in the *D.C. Register*.

Chapter 11, WATER QUALITY STANDARDS, of Title 21 DCMR, WATER AND SANITATION, is amended as follows:

Section 1104, STANDARDS, is amended as follows:

Strike the current Subsection 1104.8 in its entirety, and insert the following in its place, to read as follows:

1104.8 Unless otherwise stated, the numeric criteria that shall be met to attain and maintain designated uses are as follows in Tables 1 through 3:

Table 1: Conventional Constituents Numeric Criteria

Constituent	Class A	Class B	Class C
Chlorophyll $a^{a,b}$ ($\mu g/L$)(seasonal segment average)			
July 1 through September 30			25
Dissolved Oxygen (mg/L)			
Instantaneous minimum (year-round) ^c			5.0
February 1 through May 31 ^{a,b}			
7-day mean			6.0
Instantaneous minimum			5.0
June 1 through January 31 ^{a,b}			
30-day mean			5.5
7-day mean		_	4.0
Instantaneous minimum ^d			3.2
$E. coli^{e} (MPN/100 mL)$			
Geometric mean (Geometric mean of 5 samples over a maximum period of 30 days)	126		_
Single Sample Value	410		
Hydrogen Sulfide (maximum $\mu g/L$)			2.0
Oil and Grease (mg/L)			10.0
pH			
Greater than	6.0	6.0	6.0
And less than	8.5	8.5	8.5
Secchi Depth ^{a,b} (m)(seasonal segment average)			
April 1 through October 31			0.8
Temperature (°C)			
Maximum			32.2
Maximum change above ambient			2.8
Total Dissolved Gases (maximum % saturation)			110
Turbidity Increase above Ambient (NTU)	20	20	20

Footnotes:

^a Attainment of the dissolved oxygen, water clarity and chlorophyll *a* water quality criteria that apply to tidal influenced Class C waters will be determined following the guidelines documented in the 2003 United States Environmental Protection Agency publication: <u>Ambient Water Quality Criteria for Dissolved Oxygen</u>, Water Clarity and Chlorophyll *a* for the Chesapeake Bay and its Tidal Tributaries, EPA 903-R-03-002 (April 2003, Region III Chesapeake Bay Program Office, Annapolis, Maryland); <u>2004 Addendum</u>, EPA 903-R-04-005 (October 2004); <u>2007 Addendum</u>, EPA 903-R-07-003 CBP/TRS 285/07 (July 2007); <u>2007 Chlorophyll Criterion Addendum</u>, EPA 903-R-07-005 CBP/TRS 288-07 (November 2007); <u>2008 Addendum</u>, EPA 903-R-08-001 CBP/TRS 290-08 (September 2008); and <u>2010 Criterion Addendum</u>, EPA 903-R-10-002 CBP/TRS-301-10 (May 2010).

^b Shall apply to only tidally influenced waters.

^c Shall apply to only nontidal waters.

^d At temperatures greater than 29°C in tidally influenced waters, an instantaneous minimum dissolved oxygen concentration of 4.3 mg/L shall apply.

^e The geometric mean criterion shall be used for assessing water quality trends and for permitting. The single sample value criterion shall be used for assessing water quality trends only.

Constituent ^a	Cla	ss C	Class D ^b
Trace metals and inorganics in μ g/L,	CCC	СМС	30-Day
except where stated otherwise (see Notes	4-Day Avg	1-Hour Avg	Avg
below)			
Ammonia, mg total ammonia nitrogen	See Footnote g	See Footnote h	—
(TAN)/L			
Antimony, total recoverable	—	—	640
Arsenic, dissolved	150	340	0.14 ^c
Cadmium, dissolved	See Footnotes d	See Footnotes d	
	and e	and e	
Chlorine, total residual	11	19	
Chromium, hexavalent, dissolved	11 ^e	16 ^e	—
Chromium, trivalent, dissolved	See Footnotes d	See Footnotes d	
	and e	and e	
Copper, dissolved	See Footnotes d	See Footnotes d	
	and e	and e	
Cyanide, free	5.2	22	400
Iron, dissolved	1,000	—	
Lead, dissolved	See Footnotes d	See Footnotes d	
	and e	and e	
Mercury, dissolved	0.77 ^e	1.4 ^e	0.15
Methylmercury (mg/kg, fish tissue residue)			0.3

Table 2: Trace Metals and Inorganics Numeric Criteria

Constituent ^a	Cla	ss C	Class D ^b
Trace metals and inorganics in μ g/L, except where stated otherwise (see Notes below)	CCC 4-Day Avg	CMC 1-Hour Avg	30-Day Avg
Nickel, dissolved	See Footnotes d and e	See Footnotes d and e	4,600
Selenium, total recoverable	5	20	4,200
Silver, dissolved	—	See Footnotes d and e	65,000
Thallium, dissolved	—	—	0.47
Zinc, dissolved	See Footnotes d and e	See Footnotes d and e	26,000

Footnotes:

^a For constituents without numerical criteria, standards have not been developed at this time. However, the National Pollutant Discharge Elimination System (NPDES) permitting authority shall address constituents without numerical standards in NPDES permit actions by using the narrative criteria for toxics contained in these water quality standards.

^b The Class D human health criteria for metals will be based on total recoverable metals.

^c The criteria is based on carcinogenicity of 10^{-6} risk level.

^d The formulas for calculating the criterion for the hardness dependent constituents indicated above are as follows:

Constituent	CCC	СМС
Cadmium	e ^{(0.7977[ln(hardness)] - 3.909)}	e ^{(0.9789[ln(hardness)] - 3.866)}
Chromium III	e ^{(0.8190[ln(hardness)] + 0.6848)}	$e^{(0.8190[\ln(hardness)] + 3.7256)}$
Copper	e ^{(0.8545[ln(hardness)] - 1.702)}	e ^{(0.9422[ln(hardness)] - 1.700)}
Lead	e ^{(1.2730[ln(hardness)] - 4.705)}	e ^{(1.2730[ln(hardness)] - 1.460)}
Nickel	e ^{(0.8460[ln(hardness)] + 0.0584)}	e ^{(0.8460[ln(hardness)] + 2.255)}
Silver	—	e ^{(1.7200[ln(hardness)] - 6.590)}
Zinc	e ^{(0.8473[ln(hardness)] + 0.884)}	e ^{(0.8473[ln(hardness)] + 0.884)}

^e The criterion is multiplied by the EPA conversion factor in Table 2b as specified in Subsection 1105.10:

Constituent	CCC	СМС
Cadmium	1.101672 – [(ln hardness)(0.041838)]	1.136672 – [(ln hardness)(0.041838)]
Chromium III	0.860	0.316
Chromium VI	0.962	0.982

Table 2b: Conversion Factors for Dissolved Metals^f

Constituent	CCC	СМС
Copper	0.960	0.960
Lead	1.46203 – [(ln hardness)(0.145712)]	1.46203 – [(ln hardness)(0.145712)]
Mercury	0.85	0.85
Nickel	0.997	0.998
Silver	—	0.85
Zinc	0.986	0.978

^f Hardness in in Tables 2a and 2b shall be measured as mg/L of calcium carbonate (CaCO₃). The minimum hardness value allowed for use in these formulas shall not be less than 25 mg/L as CaCO₃, even if the actual ambient hardness is less than 25 mg/L as CaCO₃. The maximum hardness value allowed for use in these formulas shall not exceed 400 mg/L as CaCO₃, even if the actual ambient water hardness is greater than 400 mg/L as CaCO₃.

^g Criterion Continuous Concentration (CCC) for Total Ammonia:

- (a) The CCC criterion for ammonia (in mg N/L) (i) shall be the thirty (30)-day average concentration for total ammonia computed for a design flow specified in Subsection 1105.5; and (ii) shall account for the influence of the pH and temperature as shown in Table 2b and Table 2c. The highest four (4)-day average within the thirty (30)-day period shall not exceed 2.5 times the CCC.
- (b) The CCC criterion in Table 2c for the period March 1st through June 30th was calculated using the following formula, which shall be used to calculate unlisted values: CCC = $[(0.0577/(1+10^{7.688-pH})) + (2.487/(1+10^{pH-7.688}))] X MIN(2.85, 1.45 X 10^{0.028 X (25-T)})]$, where MIN indicates the lesser of the two values (2.85, 1.45 X 10^{0.028 X (25-T)}) separated by a comma.
- (c) The CCC criterion in Table 2d for the period July 1st through February 28/29th, was calculated using the following formula, which shall be used to calculate unlisted values: $CCC = [(0.0577/(1+10^{7.688-pH})) + (2.487/(1+10^{pH-7.688}))] X [1.45 X 10^{0.028 X} (25-MAX(T,7)]]$, where MAX indicates the greater of the two values (T,7) separated by a comma.

Table 2c. Total Ammonia (In Milligrams of Nitrogen Per Liter)Ccc Criterion for Various Ph And Temperatures for March 1st Through June 30th

	Temperature (°C)												
pН	0	14	16	18	20	22	24	26	28	30			
6.50	6.67	6.67	6.06	5.33	4.68	4.12	3.62	3.18	2.80	2.46			
6.60	6.57	6.57	5.97	5.25	4.61	4.05	3.56	3.13	2.75	2.42			
6.70	6.44	6.44	5.86	5.15	4.52	3.98	3.42	3.00	2.64	2.32			
6.80	6.29	6.29	5.72	5.03	4.42	3.89	3.42	3.00	2.64	2.32			
6.90	6.12	6.12	5.56	4.89	4.30	3.78	3.32	2.92	2.57	2.25			
7.00	5.91	5.91	5.37	4.72	4.15	3.65	3.21	2.82	2.48	2.18			
7.10	5.67	5.67	5.15	4.53	3.98	3.50	3.08	2.70	2.38	2.09			
7.20	5.39	5.39	4.90	4.31	3.78	3.33	2.92	2.57	2.26	1.99			

-								1		1
7.30	5.08	5.08	4.61	4.06	3.57	3.13	2.76	2.42	2.13	1.87
7.40	4.73	4.73	4.30	3.97	3.49	3.06	2.69	2.37	2.08	1.83
7.50	4.36	4.36	3.97	3.49	3.06	2.69	2.37	2.08	1.83	1.61
7.60	3.98	3.98	3.61	3.18	2.79	2.45	2.16	1.90	1.67	1.47
7.70	3.58	3.58	3.25	2.86	2.51	2.21	1.94	1.71	1.50	1.32
7.80	3.18	3.18	2.89	2.54	2.23	1.96	1.73	1.52	1.33	1.17
7.90	2.80	2.80	2.54	2.24	1.96	1.73	1.52	1.33	1.17	1.03
8.00	2.43	2.43	2.21	1.94	1.71	1.50	1.32	1.16	1.02	0.897
8.10	2.10	2.10	1.91	1.68	1.47	1.29	1.14	1.00	0.879	0.773
8.20	1.79	1.79	1.63	1.43	1.26	1.11	0.973	0.855	0.752	0.661
8.30	1.52	1.52	1.39	1.22	1.07	0.941	0.827	0.727	0.639	0.562
8.40	1.29	1.29	1.17	1.03	0.906	0.796	0.700	0.615	0.541	0.475
8.50	1.09	1.09	0.990	0.870	0.765	0.672	0.591	0.520	0.457	0.401
8.60	0.920	0.920	0.836	0.735	0.646	0.568	0.499	0.439	0.386	0.339
8.70	0.778	0.778	0.707	0.622	0.547	0.480	0.422	0.371	0.326	0.287
8.80	0.661	0.661	0.601	0.528	0.464	0.408	0.359	0.315	0.277	0.208
8.90	0.565	0.565	0.513	0.451	0.397	0.349	0.306	0.269	0.237	0.208
9.00	0.486	0.486	0.442	0.389	0.342	0.300	0.264	0.232	0.204	0.179

Table 2d. Total Ammonia (Milligrams of Nitrogen Per Liter)Ccc Criterion for Various Ph And Temperatures for July 1st Through February 28th/29th

	Temperature (°C)												
pН	0-7	8	9	10	11	12	13	14	15*	16*			
6.50	10.8	10.1	9.51	8.92	8.36	7.84	7.35	6.89	6.46	6.06			
6.60	10.7	9.99	9.37	8.79	8.24	7.72	7.24	6.79	6.36	5.97			
6.70	10.5	9.81	9.20	8.62	8.08	7.58	7.11	6.66	6.25	5.86			
6.80	10.2	9.58	8.98	8.42	7.90	7.40	6.94	6.51	6.10	5.72			
6.90	9.93	9.31	8.73	8.19	7.68	7.20	6.75	6.33	5.93	5.56			
7.00	9.60	9.00	8.43	7.91	7.41	6.95	6.52	6.11	5.73	5.37			
7.10	9.20	8.63	8.09	7.58	7.11	6.67	6.25	5.86	5.49	5.15			
7.20	8.75	8.20	7.69	7.21	6.76	6.34	5.94	5.57	5.22	4.90			
7.30	8.24	7.73	7.25	6.79	6.37	5.97	5.60	5.25	4.92	4.61			
7.40	7.69	7.21	6.76	6.33	5.94	5.57	5.22	4.89	4.59	4.30			
7.50	7.09	6.64	6.23	5.84	5.48	5.13	4.81	4.51	4.23	3.97			
7.60	6.46	6.05	5.67	5.32	4.99	4.68	4.38	4.11	3.85	3.61			
7.70	5.81	5.45	5.11	4.79	4.49	4.21	3.95	3.70	3.47	3.25			
7.80	5.17	4.84	4.54	4.26	3.99	3.74	3.51	3.29	3.09	2.89			
7.90	4.54	4.26	3.99	3.74	3.51	3.29	3.09	2.89	2.71	2.54			
8.00	3.95	3.70	3.47	3.26	3.05	2.86	2.68	2.52	2.36	2.21			
8.10	3.41	3.19	2.99	2.81	2.63	2.47	2.31	2.17	2.03	1.91			
8.20	2.91	2.73	2.56	2.4	2.25	2.11	1.98	1.85	1.74	1.63			
8.30	2.47	2.32	2.18	2.04	1.91	1.79	1.68	1.58	1.48	1.39			

8.40	2.09	1.96	1.84	1.73	1.62	1.52	1.42	1.33	1.25	1.17
8.50	1.77	1.66	1.55	1.46	1.37	1.28	1.20	1.13	1.06	0.990
8.60	1.49	1.40	1.31	1.23	1.15	1.08	1.01	0.951	0.892	0.836
8.70	1.26	1.18	1.11	1.04	0.976	0.915	0.858	0.805	0.754	0.707
8.80	1.07	1.01	0.944	0.885	0.829	0.778	0.729	0.684	0.641	0.601
8.90	0.917	0.860	0.806	0.756	0.709	0.664	0.623	0.584	0.548	0.513
9.00	0.790	0.740	0.694	0.651	0.610	0.572	0.536	0.503	0.471	0.442

*At 15°C and above, the criterion for July 1st through February 28th/29th is the same as the criterion for March 1st through June 30th.

^h Criterion Maximum Concentration (CMC) for Total Ammonia:

- (a) The CMC criterion for total ammonia (in mg N/L) (i) shall be the one (1)hour average concentration for total ammonia, computed for a design flow specified in subsection 1105.5; and (ii) shall account for the influence of the pH as shown in Table 2e.
- (b) The CMC criterion was calculated using the following formula, which shall be used to calculate unlisted values: $CMC = [(0.411/(1+10^{7.204-pH})] + [58.4/(1+10^{pH-7.204})].$

Table 2e. Total Ammonia (In Milligrams of Nitrogen Per Liter)Cmc Criterion for Various Ph

рН	CMC	pН	CMC	pН	CMC	pН	CMC
6.50	48.8	7.20	29.5	7.90	10.1	8.60	2.65
6.60	46.8	7.30	26.2	8.00	8.40	8.70	2.20
6.70	44.6	7.40	23.0	8.10	6.95	8.80	1.84
6.80	42.0	7.50	19.9	8.20	5.72	8.90	1.56
6.90	39.1	7.60	17.0	8.30	4.71	9.00	1.32
7.00	36.1	7.70	14.4	8.40	3.88		
7.10	32.8	7.80	12.1	8.50	3.20		

Table 3: Organic Constituents Numeric Criteria

Organic Constituent ^a	CAS	Class C		Class D
$(\mu g/L)$	Number	CCC	CMC	2 0 D
		4-Day Avg	1-Hour Avg	30-Day Avg
Acrolein	107028	3.0	3.0	400
Acrylonitrile	107131	700.0		7.0, ^b
Aldrin	309002	0.4	3.0	0.00000077, ^b
Benzene	71432	1000		16, ^b
Carbamates				—

Organic Constituent ^a	CAS	Class C		Class D	
(<i>μg</i> /L)	Number	CCC	CMC		
		4-Day	1-Hour	30-Day	
		Avg	Avg	Avg	
Carbaryl (Sevin)	63252	2.1	2.1		
Carbon Tetrachloride	56235	1000	—	5, ^b	
Chlordane	57749	0.0043	2.4	0.00032, ^b	
Chlorinated Benzenes (except Di)		25.0			
Chlorobenzene	108907			800	
1,2-Dichlorobenzene	95501	200		3,000	
1,3-Dichlorobenzene	541731	200	—	10	
1,4-Dichlorobenzene	106467	200		900	
Hexachlorobenzene	118741	—	—	0.000079, ^b	
Pentachlorobenzene	608935			0.1	
1,2,4,5-Tetrachlorobenzene	95943			0.03	
1,2,4-Trichlorobenzene	120821			0.076	
Chlorinated Ethanes		50	—		
1,2-Dichloroethane	107062			650, ^b	
Hexachloroethane	67721			0.1, ^b	
1,1,2,2-Tetrachloroethane	79345			3, ^b	
1,1,1-Trichloroethane	71556			200,000	
1,1,2-Trichloroethane	79005			8.9, ^b	
Chlorinated Naphthalenes					
2-Chloronaphthalene	91587	200		1000	
Chlorinated Phenols					
2-Chlorophenol	95578	100		800	
2,4-Dichlorophenol	120832	200		60	
Pentachlorophenol ^c	87865	[I] ^c	[I.A] ^c	0.04, ^b	
2,4,5-Trichlorophenol	95954			600	
2,4,6-Trichlorophenol	88062			2.8, ^b	
3-Methyl-4-Chlorophenol	59507			2,000	
Chloroalkyl Ethers		1000		_	
Bis(2-Chloroethyl) Ether	111444			2.2, ^b	
Bis(2-Chloro-1-methylethyl)	108601			4,000	
Ether				,	
Bis(Chloromethyl) Ether	542881			0.017, ^b	
Chlorophenoxy Herbicide (2,4-D)	94757			12,000	
Chlorophenoxy Herbicide (2,4,5-	93721			400	
TP) [Silvex]					
3,3-Dichlorobenzidine	91941	10		0.15, ^b	
Dichloroethylenes		1000			
1,1-Dichloroethylene	75354			20,000	
Trans-1,2-Dichloroethylene	156605			4,000	

Organic Constituent ^a	CAS	Class C		Class D	
(<i>µg</i> /L)	Number	CCC	СМС		
		4-Day	1-Hour	30-Day	
		Avg	Avg	Avg	
1,2-Dichloropropane	78875	2000		31, ^b	
Dichloropropenes		400	—	—	
1,3-Dichloropropene	542756			12, ^b	
Dieldrin	60571	0.056	0.24	0.0000012, ^b	
2,4-Dimethylphenol	105679	200		3000	
2,4-Dinitrotoluene	121142	33		1.7, ^b	
Dioxin (2,3,7,8-TCDD)	1746016			0.000000051, ^b	
1,2-Diphenylhydrazine	122667	30		0.2, ^b	
Endosulfan		0.056	0.22	89	
alpha-Endosulfan	959988	0.056	0.22	30	
beta-Endosulfan	33213659	0.056	0.22	40	
Endosulfan Sulfate	1031078			40	
Endrin	72208	0.036	0.086	0.03	
Endrin Aldehyde	7421934			1	
Ethylbenzene	100414	40		130	
Halomethanes		1000		—	
Bromoform	75252			120, ^b	
Chloroform	67663	3000		2000	
Chlorodibromomethane	124481			21, ^b	
Dichlorobromomethane	75274			27, ^b	
Methyl Bromide	74839			10,000	
Methylene Chloride	75092			1,000, ^b	
Heptachlor	76448	0.0038	0.52	0.0000059, ^b	
Heptachlor Epoxide	1024573	0.0038	0.52	0.000032, ^b	
Hexachlorobutadiene	87683	10		0.01, ^b	
Hexachlorocyclohexane (HCH)-	608731	—	—	0.010, ^b	
Technical					
alpha-Hexachlorocyclohexane (HCH)	319846			0.00039, ^b	
beta-Hexachlorocyclohexane (HCH)	319857	—	—	0.014, ^b	
gamma- Hexachlorocyclohexane (HCH) [Lindane]	58899	0.08	0.95	4.4	
Hexachlorocyclopentadiene	77474	0.5		4	
Isophorone	78591	1000		1,800, ^b	
Manganese	7439965			100	
Methoxychlor	72435	0.03		0.02	
Mirex	2385855	0.001			
Naphthalene	91203	600			

Organic Constituent ^a	CAS	Class C		Class D	
(<i>µg</i> /L)	Number	CCC	CMC		
		4-Day	1-Hour	30-Day	
		Avg	Avg	Avg	
Nitrobenzene	98953	1000		600	
Nitrophenols		20			
2-Methyl-4,6- Dinitrophenol	534521			30	
2,4-Dinitrophenol	51285			300	
Dinitrophenols	25550587			1,000	
Nitrosamines	—	600	—	1.24, ^b	
N-Nitrosodibutylamine	924163			0.22 ^b	
N-Nitrosodiethylamine	55185			1.24, ^b	
N-Nitrosodimethylamine	62759			3.0, ^b	
N-Nitrosodi-n-Propylamine	621647		_	0.51, ^b	
N-Nitrosodiphenylamine	86306			6.0, ^b	
N-Nitrosopyrrolidine	930552			34, ^b	
Nonylphenol	84852153	6.6	28		
Organochlorides					
4,4'-DDD	72548	0.001	1.1	0.00012, ^b	
4,4'-DDE	72559	0.001	1.1	0.000018, ^b	
4,4'-DDT	50293	0.001	1.1	0.000030, ^b	
Organophosphates					
Guthion	86500	0.01			
Malathion	121755	0.1	_		
Parathion	56382	0.013	0.065		
Phenol	108952			300,000	
Phthalate Esters		100	_		
Bis(2-Ethylhexyl) Phthalate	117817			0.37, ^b	
Butylbenzyl Phthalate	85687			0.10, ^b	
Diethyl Phthalate	84662		_	600	
Dimethyl Phthalate	131113		_	2,000	
Di-n-Butyl Phthalate	84742		_	30	
Polychlorinated Biphenyls (PCB) ^d		0.014		0.000064, ^b	
Polynuclear aromatic hydrocarbons			_		
(PAH)					
Acenaphthene	83329	50		90	
Acenaphthylene	208968				
Anthracene	120127			400	
Benzidine	92875	250		0.011, ^b	
Benzo(a)anthracene	56553			0.0013, ^b	
Benzo(a)pyrene	50328	—		0.00013, ^b	
Benzo(b)fluoranthene	205992	—		0.0013, ^b	
Benzo(k)fluoranthene	207089			0.013, ^b	

Organic Constituent ^a	CAS	Class C		Class D
(<i>μg</i> /L)	Number	CCC	CMC	
		4-Day	1-Hour	30-Day
		Avg	Avg	Avg
Chrysene	218019	_		0.13, ^b
Dibenzo(a,h)anthracene	53703	—		0.00013, ^b
Fluoranthene	206440	400	_	20
Fluorene	86737			70
Indeno(1,2,3-cd)pyrene	193395			0.0013, ^b
Pyrene	129000			30
Tetrachloroethylene	127184	800		29, ^b
Toluene	108883	600		520
Toxaphene	8001352	0.0002	0.73	0.00071, ^b
Tributyltin (TBT)		0.072	0.46	
Trichloroethylene	79016	1000		7, ^b
Vinyl chloride	75014			1.6, ^b

Footnotes:

^a For constituents with blank numeric criteria, EPA has not calculated criteria at this time. However, permit authorities will address these constituents in NPDES permit actions using the narrative criteria for toxics.

^b The criteria are based on carcinogenicity of 10⁻⁶ risk level.

^c The formulas for calculating the concentrations of substances indicated above are as follows:

[I] The numerical CCC for pentachlorophenol in μ g/L shall be given by: $e^{(1.005(pH) - 5.134)}$

[I.A] The numerical CMC for pentachlorophenol in μ g/L shall be given by: $e^{(1.005(pH) - 4.869)}$

^d The polychlorinated biphenyls (PCB) criterion applies to total PCBs (*e.g.*, the sum of all congener, isomer, homolog, or Aroclor analyses.)