

Opportunities to Reduce GHGs Via Energy Efficiency: Lessons from Abroad

Ned Helme, Stacey Davis Mark Houdeshelt, Haibing Ma Center for Clean Air Policy

Clean Air Act Advisory Committee May 26, 2010

Center for Clean Air Policy (CCAP)

- Washington, CA, NY, Beijing and Brusselsbased environmental think tank
- Committed to advancing pragmatic and costeffective climate and air quality policy through analysis, dialogue, and education
- CCAP's 30-country climate policy dialogue produced agreements on emissions trading, design of Clean Development Mechanism; now focused on new climate treaty

Center for Clean Air Policy (CCAP)

- Working with key developing countries (China, India, Brazil, Mexico) and U.S. states to design climate policies
 - » Sectors: electricity, cement, iron & steel, aluminum, oil (Mex)
- Completing major study for EC on sectoral approaches to reducing emissions from these sectors
- Original consultant on design of EU CO₂ emissions trading program and MRV system
- Running multi-stakeholder dialogues in the U.S. and the EU to build agreement on elements of a national climate policy package and EU strategy

 Help Members of Congress and governments worldwide consider and design policies

Presentation Overview

- Review mitigation actions identified for energy intensive industry sectors in Mexico and China and discuss applicability to the US BACT context.
- Review carbon intensity benchmarks developed in Europe and applicability to the US BACT context.
- Draw preliminary lessons and identify some next steps.

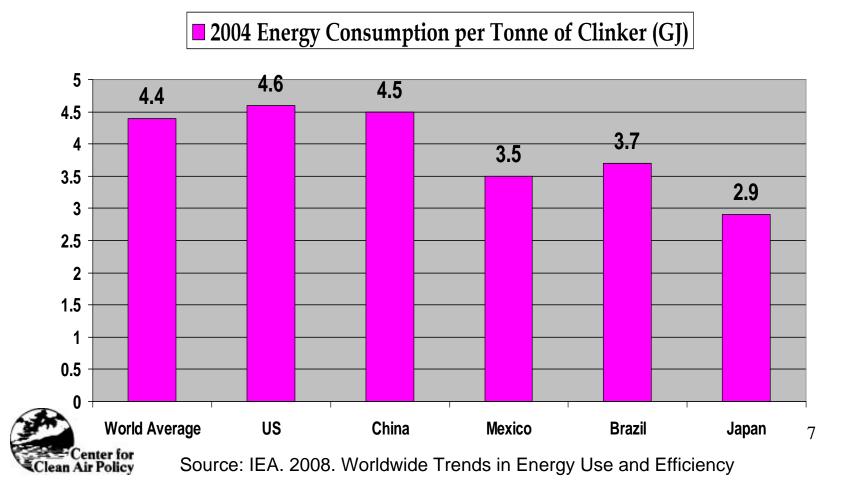
Context for Mitigation Actions Identified through Developing Country Sectoral Studies

- Development of baselines & mitigation cost curves to inform future commitments in key <u>industrial sectors</u>.
 - » Not source-specific
- Seeking to inform how many reductions can be done <u>unilaterally</u>, which ones might qualify for <u>international</u> <u>support</u>, and which ones might earn <u>offset credit</u>.
- Also informing development of <u>Nationally Appropriate</u> <u>Mitigation Actions</u>, including design of cost-effective policy approaches.
- Bottom-up analyses looked at specific technologies.

Caveats on Sectoral Study (Cement)

China study

- Contains "off-the-shelf" efficiency measures, but does not push the envelope on innovative technologies.
- Study does not reflect differences within industry sectors; a large number of SMEs with much lower technology level significantly drag down the sector-wide energy efficiency.
- Data quality not verified; data collection methods may differ due to capacity limits.


Mexico study

- Cement study is based on data from CEMEX, which owns relatively clean installations.
 - » Actual reduction potential could be greater than indicated.
- For energy/electricity use and blending, had data on individual installations for one year. All Mx kilns are dry kilns.

Relative Efficiency of Cement Industry in Select Countries

US cement sector is on par with China, less efficient than Mexico.

Cement Sector: CCAP Analysis of Mitigation Options (China, 2015)

			Total
		Marginal	Emission
		mitigation	Reduction
No.	Measures	$\cos t (\text{CO}_2)$	(Mt CO ₂)
1	Process control systems	-5.2	25.1
2	Use of waste fuels(d)	-4.6	34.8
3	Blended cement	-3.4	54.3
4	Kiln shell heat loss reduction(d)	-2.2	11.6
5	Kiln shell heat loss reduction(w)	-1.5	0
6	Optimize heat recovery(grate cooler)(d)	-0.8	7.7
7	Optimize heat recovery(grate cooler)(w)	0	0
8	High-efficiency motors	0.8	2.4
9	Conversion to grate cooler(w)	1.6	0.1
10	Conversion to semi-wet process(w)	2.4	0.3
Center for Clean Air Policy			8

Cement Sector: CCAP Analysis of Mitigation Options (China, 2015)

No.	Measures	Marginal mitigation cost (\$/tCO ₂)	Total Emission Reduction (Mt CO ₂)
11	Conversion to grate cooler(d)	3.2	24.7
12	Kiln combustion systems(w)	4	0.1
13	Kiln combustion systems(d)	4.8	13.3
14	Conversion to PH/PC-kiln(d)	5.1	19.8
15	Conversion to pre-calciner kiln(d)	5.4	6.1
16	Conversion to multi-stage preheating(d)	5.7	13.7
17	Conversion to precalciner kiln(w)	6.3	0.7
18	Roller press/Horomill	6.9	10.9
19	Variable speed drives	7.5	4.2
20	Low pressure-drop cyclones(d)	8.1	1.1
Cent	er for		9


Clean Air Policy

Cement Sector: CCAP Analysis of Mitigation Options (China, 2015)

No.	Measures	Marginal mitigation cost (\$/tCO ₂)	Total Emission Reduction (Mt CO ₂)
21	Heat recovery for power generation(d)	8.7	5.6
22	High efficiency roller mills(d)	9.2	5.5
23	High-pressure roller press	10.3	3.2
24	Improved grinding media	11.3	0.8
25	High efficiency classifiers(final)	12.3	1.2
26	High efficiency classifiers(d)	13.3	2.1
27	Mechanical transport systems(w)	15.2	0
28	Mechanical transport system(d)	17.1	1.6
29	Raw meal blending system(d)	19.3	0.8
30	Use of waste fuels(w)	21.7	0

China Cement Cost Curve (2015)

Cement Sector: CCAP Analysis of Mitigation Options (Mexico)

	Emissions Reduction Potentials	Emissions	Redux	Redux	Emissions Intensity
No.	2020 Scenario	MtCO2	MtCO2	%	tCO2 / t cement
0	Baseline (BAU)	41.63	0.00	0.0%	0.737
1	Max. EE = 3 GJ/t clinker	39.54	2.09	5.0%	0.700
2	Blending = 72.3%	37.87	3.76	9.0%	0.671
3	Buy RE electricity/offsets	38.15	3.48	8.4%	0.676
4	Alt fuels (tires) = 30%	41.05	0.58	1.4%	0.727
5	Alt fuels (MSW) = 30%	39.17	2.46	5.9%	0.694
6	Alt fuels (sludge) = 30%	36.97	4.66	11.2%	0.655
	Electricity Intensity = 80 KWh/t cement	40.52	1.11	2.7%	0.718

Clean Air Policy

Feedback from CANACEM

• Energy Efficiency:

- » Can't physically retrofit to this efficiency
- » Specific conditions prevent some upgrades
- » Implementation cost is very high (\$1.9 billion)

• Blending:

- » Inexpensive way to reduce emissions
- » Need new NOMs for cement and market support to ensure demand
- » Slag/fly ash supplies limited but pozzolans prevalent in some areas
- » Cost may be underestimated and implementation scenario is unrealistic

• Purchase of Renewable Electricity:

» Cement sector shouldn't be responsible for indirect emissions

• Alternative Fuels:

- » Very promising option (MSW and sludge have high biomass content)
- » barriers are significant

• Electricity intensity:

» Mitigation scenario is infeasible

Promising Cement Sector Mitigation Options – Conclusions (Mexico)

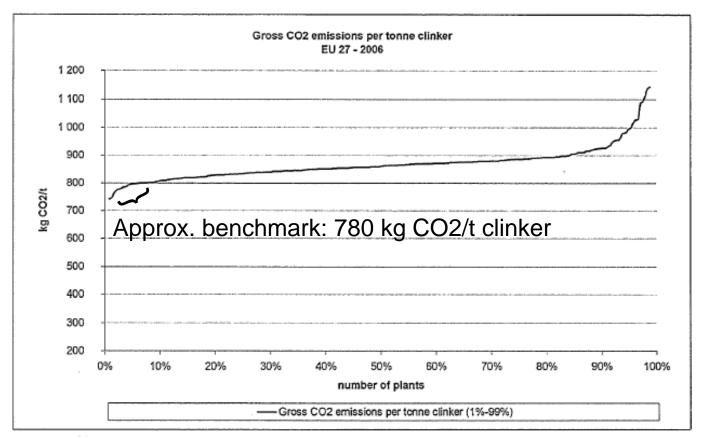
- Cement blending
 - Barriers include market limits (supply of blending materials?)
 - Full implementation cost could be much higher than original estimate (more than \$600 million (2012 USD) over 20 years)
- Use of alternative fuels
 - Primary barriers are legal/regulatory + fuel processing costs
 - Full implementation cost depends upon choice of alternative fuel and relative prices of alternative fuel vs. petcoke
- Replacement of fossil-fuel electricity with renewable electricity built by cement industry (expanded cement sector boundary)
 - > Depends on how the power sector is included in mitigation efforts

Thoughts on Applicability of Cement Sector Analysis for the United States

- Many specific efficiency measures have been identified, some at a low cost per ton.
 - » This is particularly the case for China, which has efficiency levels closer to the U.S.
- Focusing on just efficiency leaves a lot on the table.
- Efficiency measures at existing plants may require high up front investment (and for cement, long paybacks).
 - » How is payback considered in BACT cost analysis?
- Efficiency improvements can be applied more easily to new units than to existing units.
- Cement blending a good option in Mexico/China, but may not reduce emissions from cement plants in the U.S. as blending occurs closer to point of use.

Context for European Benchmarking

- Under Phase III of EUETS, allowance allocations to carbon intensive, trade-exposed industries/products are based on benchmarks.
 - » Benchmarks set at the <u>average of the top 10%</u> for a given product <u>category</u>, regardless of the process type or fuel.
 - » Benchmarks reflect the combination of processes/fuels/ efficiency measures in place at top-performing units, without regard to cost.
- Sources may purchase allowances or offsets to cover annual emissions in excess of their annual allocations – system does not set binding unit-specific standards
- Limited detail available on specific technologies and efficiency measures at top performing units – competitive concerns
- Based on unit-specific emissions and output data.



Sector Definition – Proposed Cement Sector Benchmark Based on Clinker

- Practical difficulties in setting a cement benchmark, in particular:
 - » Cement benchmarking cannot be applied to individual installations due to the trade of clinker between installations including trade with grinding stations.
 - » With cement benchmarking, it becomes necessary to account for the differentiated availability of clinker substitutes and quality differences between blended cements.

European Benchmarking of the Cement Industry

Formula of the linear regression between 10% and 90%: y=1,17 x + 802

US average = 934 kg CO2/ton

Benchmarking Implementation

- Average performance of 10% most efficient installations in (sub)sector calculated for products.
- <u>50-57 benchmarks under development</u> for 19 sectors, 35-41 benchmarks being based on benchmark curves, remainder based on best available technology & samples.
- EU considering "innovation accelerator" to encourage laggards to make large EE improvements
- Benchmark curves cover ~80% of the emissions.
- Consultative and transparent process. For proposed
 Consultative and related documents see:
 19

European Benchmarks

- Aluminum
- Cement
- Ceramics
- Chemicals
- Glass
- Gypsum
- Iron & Steel
- Iron Ore
- Lime

- Mineral Wool
- Non-ferrous metals
- Pulp & Paper
- Refining
- Heat production benchmark (for combustion of fuel for production of hot water/steam)
- Fuel mix benchmark (where the heat produced is not measured--furnaces)

Thoughts on Applicability of European Benchmark for United States BACT

<u>Europe</u>

- No separate data on technologies used in top performing plants (competitive concerns).
 - » Benchmark factors in process, fuels & efficiency.
- One benchmark covers all facilities producing a given product.
 - Costs and regional/sourcespecific issues not considered.
 - » Sources can always buy allowances/offsets.

United States BACT

- Data on individual technologies generally used to define BACT.
 - » Could develop standards/benchmarks reflecting actual available technology combinations.
- Standard is source-specific, considering energy, environmental & other costs.
 - » NSPS, if any, provides floor.
 - » No precedent for compliance via offsets, but possible?

Next Steps

- What is the boundary for BACT analysis?
 - » Include blending?
 - » Include indirect emissions?
 - » For an existing source, include the whole source, or just the narrow modification?
- Can benchmarks be used to define BACT?
 - » Is there precedent for a broader performance std approach? Via NSPS floor?
 - » What are the pros/cons for new/existing source modifications?
 - » Legal justification for use of offsets?
 - » Is there any opportunity for building in EE incentives?

