An Updated Inhalation Unit Risk Factor for Arsenic and Inorganic Arsenic Compounds

Neeraja (Neera) Erraguntla, Ph.D., DABT and Roberta Grant, Ph.D.

What's in a name?

	The
	6

Background

Goal: To protect the general population including children and pregnant women from Lung Cancer/Respiratory Cancer from chronic exposure to inorganic arsenic in ambient air.

Problem Formulation focused on Inhalation Pathway & Human Epidemiology Studies

Background

- The Toxicology Division (TD) of TCEQ has developed Inhalation Screening values called Air Monitoring Comparison Values (AMCVs) for ambient air monitoring
- These values are similar to EPA's Reference Concentrations (RfC) and California's Reference Exposure Levels (RELs)

TCEQ's Process

- Using the Toxicity Factor Guidelines TCEQ developed a Unit Risk Factor (URF) based on Updated and New Epidemiological data with Statistical Support provided by Sielken & Associates
- Toxicology Excellence For Risk Assessment (TERA) organized a Peer-Review.
 - Dr. David Gaylor, Dr. Kyle Steenland, & Dr. Kirk Kitchin were the peer-reviewers.
 - 2 Rounds of Public Comment period
 - URFs are available on the Toxnet website

http://toxnet.nlm.nih.gov/

TCEQ Arsenic Unit Risk Factor (URF)

Erraguntla NK, Sielken RL Jr, Valdez-Flores C, Grant RL. (2012)An updated inhalation unit risk factor for arsenic and inorganic arsenic compounds based on a combined analysis of epidemiology studies. Regul Toxicol Pharmacol 64(2):329-41.

Development Support Document (DSD) is available
http://www.tceq.state.tx.us/toxicology/dsd
/final.html

Table 1. Summary of the 4 epidemiological studies of arsenic with adequate dose-response data for cancer risk assessment

Study location and exposure period	Most recent dose- response data	Last year of cohort follow- up	Number of workers Person-years (PY)	Cancer site SMR ^a (p-value) (Standard Mortality Ratios)	Range of cumulative arsenic exposure (mg/m ³ - yr) ^b
Tacoma, WA Asarco copper smelter (1940-64)	Enterline <i>et</i> <i>al.</i> (1995)	1986	2,802 84,916	Respiratory 209.7 (p<0.01)	<0.750 to 45+
Montana copper smelter (1938-1958)	Lubin <i>et al.</i> 2000; Lubin <i>et al.</i> 2008	1989	8,014 144,851° (restricted cohort) 256,850 (full cohort)	Respiratory 187 (P<0.001) (restricted cohort) 156 (p<0.001) (full cohort)	1 to 26.2+
Ronnskar, copper smelter (1928-1967)	Järup <i>et al.</i> (1989); Viren and Silvers (1994)	1981	3,916 127,189	Lung 372 (p<0.001)	<0.25 to 100+
United Kingdom tin smelter (1937-1991)	Jones <i>et al.</i> 2007	2001	1,462 35,942	Lung 161 (p<0.001)	<0.002 to 4.5+

Figure 1. Lung Cancer Mortality Rates versus Incidence Rates^a

Lung cancer mortality is reasonably predictive of lung cancer incidence (i.e., five-year survival is only about 15% according to the American Cancer Society 2005)

Dose Metric & Dose-Response Assessment

- Occupational concentrations were converted to environmental concentrations for the general population using standard procedures.
- The dose metric used for the dose-response assessments is cumulative arsenic exposure (µg/m³-yr)

URFs Contd...

- The models used here are based on human epidemiological studies and have been fit to a linear equation (linear multiplicative relative risk model) for use with the BEIR IV methodology (NRC 1988).
- Air concentrations are solved iteratively with lifetable analyses using the BEIR IV approach (NRC 1988). Air concentrations based on extra risk are calculated as opposed to added risk.
- Mortality and survival rates are used to calculate air concentrations based on a lifetime exposure of 70 years, the default used by TCEQ for exposure analysis (TCEQ 2006).

Texas and US Specific Mortality Rates

- Texas-specific mortality rates for 2001-2005 for lung cancer and Texas-specific survival rates for 2005 are used in the calculation of PODs and URFs.
- Didn't make much difference in final URF what mortality rates were used.

Peer Reviewer's Suggestions resulted in 3 types of Analysis

- 1) Combined- Analysis using Inverse Variance
- 2) Meta-Analysis Using Dose-Response Models to Fit the Combined Data
- 3) Sensitivity analysis with the UK study and using US Mortality and Survival rates (See Appendix of the Arsenic DSD)

Combined- Analysis using Inverse Variance

- The individual URF's were weighted based on inverse variance
- The individual weighted URFs were then combined together to calculate a final URF.

Preferred URFs and 10⁻⁵ Risk Air Concentrations Tacoma, Montana & Swedish Cohorts

Study and Inverse Variance 1. (Person Years -PY)	β (Maximum Likelihood Estimate-MLE) URF 10 ⁻⁵ Risk Air Concentration	β (95% Lower Confidence Limit - LCL) URF 10 ⁻⁵ Risk Air Concentration	β (95% Upper Confidence Limit- UCL) URF 10 ⁻⁵ Risk Air Concentration	Ratio: URF (95% UCL) to URF (MLE)
Tacoma cohort (Enterline et al. 1995) All workers adjusting for year of hire 3.13E+08 (84,916 PY)	1.19E-04/ μg/m ³ 0.0837 μg/m ³	2.72E-05/ μg/m ³ 0.367 μg/m ³	2.12E-04/ μg/m ³ 0.0471 μg/m ³	1.8
Montana cohort (Lubin et al. 2008) Full cohort 2.65E+08 (256,850 PY)	2.18E-04/ μg/m ³ 0.046 μg/m ³	1.18E-04/ μg/m ³ 0.0850 μg/m ³	3.19E-04/ μg/m ³ 0.0313 μg/m ³	1.5
Sweden cohort (Järup et al. 1989) All workers adjusting for year of hire 2.60E +08 (127,189 PY)	1.11E-04/ μg/m ³ 0.0902 μg/m ³	8.76E-04/ μg/m ³ 1.14 μg/m ³	2.13E-04/ μg/m ³ 0.0470 μg/m ³	1.9
Ratio: high to low URFs (MLE)	2.0			

Final URF

• Final URF (Risk per $\mu g/m^3$) =

= [(URF₁ x Weight₁) + (URF₂ x Weight₂) + (URF₃ x Weight₃)]/[Weight₁ + Weight₂ + Weight₃]

Where, Weight_i = [1/SE(URFi)]² for i=1, 2, and 3.

= 1.5 E-04 per $\mu g/m^3$ (Rounding to 2 significant figures)

The resulting air concentration at a 1 in 100,000 excess lung cancer risk is 0.067 µg/m³ (rounded to two significant figures).

Meta-Analysis

- Meta-Analysis on the combined data from the three studies with similar dose metric was conducted.
 - The linear multiplicative rate ratio model was fit to the combined data using Poisson regression and maximum likelihood estimation (MLE).

VRF (MLE) = 1.60E-04 per μg/m³ (95% UCL: 2.19E-4 per μg/m³) based on meta-analysis with different alpha intercepts for different cohorts and common slope

Summary

Combined- Analysis Using Inverse Variance of the URFs to Weight Individual URFs:

VRF (MLE) =1.5E-04 per μg/m³ (95 % UCL: 2.05 ×10-4 per μg/m³)

Meta-analysis

*****URF (MLE) = 1.60E-04 per µg/m³ (95% UCL: 2.19E-4 per µg/m³)

Uncertainty Analysis

- Uncertainty in Dose-Response modeling due to use of cumulative dose as the dose-metric
- Estimating risks for the general population from occupational workers
- Co-exposures to other compounds

Questions

Neeraja.erraguntla@tceq.texas.gov

*****512-239-2492

Sign Up for TCEQ Toxicology Related Announcements

join-tox@listserv.tceq.texas.gov

