Camp Minden M6 and CBI Potential Technology Screening Information

Decineration™	Please describe	Has your technology/	Can your technology/	What is the Destruction	What is the nature	What is the highest
	how your	process been tested	process be implemented	Efficiency of your	and composition of	throughout you have
Leidos	technology or	or used with M6, CBI,	on-site at Camp Minden?	process? 100%	any emissions?	achieved through your
Paritosh Dave	process works	propellants, or similar	Yes		TOVs –	process?
Sr. Program Mngr	and the	materials?		What is the nature of	hydrocarbons /	500 pounds per hour
356 Ninth Ave	equipment	Not bulk M6 / CBI	How long would it take to	the residues/wastes	broken	of RDX (limited by
Suite 106	involved.	but an array of	mobilize, install and be	that will remain, and	nitroamines /	permit cap)
Picatinny Arsenal, NJ 07806	Please see	military munitions	ready to treat material?	what processes/	nitroesters	
	attachment #1	containing	6 -7 months, depending	disposal/recycling will		What is the
973-366-3200		propellants and	on permits from State	be used for this	How are emissions	reasonable maximum
paritosh.r.dave@leidos.com	Is this existing	explosives	& Federal agencies	residue/ waste?	monitored,	daily capacity/
	equipment or			There will be no	captured, tested,	throughput you believe
	does it need to	What permits or	Would it require any	residue / waste	treated and	you could achieve at
U.S. Demil, LLC	be fabricated?	approvals do you	extra handling or		ultimately disposed?	Camp Minden?
David J. Kautz, PE	One unit exists,	have in hand?	preparation of the M6	What percent volume	Please see	1,000 pounds per
140 Irwin Place	more can be	At the team's	and CBI?	reduction (or addition)	attachment #2	hour per machine on
Amherst, NY 14228	fabricated.	physical location, all	No	is achieved? 100%		a 24/7 continuous
		required Federal and			What potential	basis
716-983-3856	Is a donor	State permits for the	What are the key space		hazards to workers,	
dkautz@usdemil.com	explosive	demilitarization of	and logistical		other on-base	What is the reliability
	required?	explosives /	requirements for your		personnel and	and maintenance
	NO	propellants. In LA,	installation on-site		nearby residents	requirements of your
		none.	including storage of		snould be	equipment?
		Describes and all sets	residues/wastes?		considered and now	The equipment is
		Describe actual uses,	A 40'x100' work area		are they managed?	standard industrial
		volumes treated, and	with proper barriers		All standard	components with
		results of tests or	and a 480V, 400amp		hazard potentials	proven reliability and
		applications for IVI6	power teed		when dealing with	24nr repair response
		like materials.			propellants but	if required.
		for the			nothing from the	le it cubicat to
		domilitarization of			technology	is it subject to
					technology.	
		CADe SAA hulk				
		oxplosives and				
		landmines				
		iuiiuiiiiiico.				

ATTACHMENT 1

Science

The science behind the USD Decineration[™] technology has been proven and accepted for decades in both the petroleum industry and in the R&D community. In the petroleum industry, it is the basis for "cracking" long chain hydrocarbons into lighter distillates. In the R&D community, it is the subject of much research into the decomposition of nitramines and nitrate esters; e.g., G.T. Long, Department of Chemistry, University of Utah (Thermal Analysis of High Explosives: Liquid State Decomposition of RDX) and LT K.K. Miles, Naval Postgraduate School (The Thermal Decomposition of RDX).

The application of the science to the carbon-carbon (C-C) bond of hydrocarbons is a mature industrial technology and needs no further explanation in this report.

The application of the science to an industrial "cracking" process of nitramines and nitrate esters is new to the DoD energetics community, and the unique nature of these energetic compounds warrants additional discussion.

The industrial embodiment of the Decineration[™] process is the use of an externally heated, rotating horizontal tube which essentially duplicates the laboratory model known as "a horizontal flat plate in atmosphere". When the energetic is applied to the surface of the hot plate, it begins to decompose via the breaking of various molecular bonds. When a decomposition compound is formed that is in a gaseous state at the tube interior operating temperature (approximately 450°F), the molecule (known as a VOC for EPA regulatory purposes) evolves from the plate and the process terminates. In practical application this provides a set of self-limiting decomposition reactions that do not drive to total decomposition / oxidation as does a combustion process.

For organic-based explosives, the science directs us to look at the, Nitrogen-Nitrogen (N-N), the Carbon-Nitrogen (C-N) and the Nitrogen-Oxygen (N-O) bonds.

The C-N bond dissociation energy is lower than the C-C bond energy (See Table XX below); e.g. the C-N bond will "crack" at a lower energy input (external heat) than the C-C bond. The N-N and N-O bond energies are also lower than the C-C bond energy, and will also break before the C-C bond. The physical consequence of these lower dissociation energies is that when conditions are established under which hydrocarbon "cracking" is achieved, total nitramine bond cracking will occur, and all but the double C=C bond of the nitrate esters will be "cracked". As shown in Table XX below, the double C=C bond in the nitrate ester has a higher dissociation energy than the single C-C bond previously discussed. These C=C bonds typically will not break under the operating temperatures of the Decinerator[™]. The consequence of this is that VOCs are formed, and upon analysis are reported as "broken aniline analogs" and similar compounds.

From a thermochemical perspective, it is possible that some portion of the released nitrogen from the "cracking" process is recombining to form gaseous Nitrogen (N_2), and analysis of the process gases generated by the DecineratorTM reveal the formation of various NO_x compounds.

Average Bond Dissociation Energies (kj/mol)							
Single Bond	Multiple Bond						
C-C	347	C=C	614				
C-N	305	C=N	615				
C-0	358	C=O	745				
N-O	201	N=O	607				
N-N	160	N=N	418				
0-0	146	0=0	495				
C-H	414	C≡C	839				

Table XX – Pertinent Molecules (Bond Dissociation Energy)

The final atomic bonding pair we must review is the Carbon-Oxygen (C-O) molecule, which is common in the nitrate ester compounds. The C-O molecule has a higher bond dissociation energy than the C-C bond and will be broken only if the thermal energy reaches a sufficient level to energize the bond. The thermal conditions under which the Decineration[™] furnace operates will result in some percentage of the total carbon contained in nitrate esters being emitted as CO and CO₂ (broken molecules recombined or evolved into "combustion gases"), although combustion (oxidation) has not occurred. The likely pathway for this evolution of carbon oxides is that the thermal environment is sufficient to break the C-C and C-N bonds adjacent to either side of the C-O bonds, but that not all of the C-O bonds will be broken. This would result in evolution of CO (carbon monoxide), and a likely recombination of CO and "free" oxygen that would be generated by the catalytic converter or thermal oxidizer as CO₂.

Also of interest is the energy released during the decomposition of RDX. It was observed that the decomposition of RDX occurs as a two stage process. The first stage appears to be endothermic while the second is exothermic. The exothermic reaction is not combustion (oxidation) but rather an energy release without oxidation. In this case, the energy is released into the interior of the Decinerator[™] tube. This presents itself physically as an energy source inside the tube causing the furnace zone controllers to reduce heat output. The phenomena can continue past zero controller output at which time the tube temperature will rise. These conditions were noted in the field testing when DODICs containing RDX were processed.

The science of thermal decomposition without oxidation was proven with the Decinerator[™] furnace in two (2) DoD contracts as well as USD privately funded testing.

Images of the molecular arrangement for RDX, HMX and nitrocellulose are shown below, illustrating the bonding pairs discussed above.

ATTACHMENT 2

USD Emissions Abatement System (EAS) – Functional Description

The USD EAS is specifically designed to be an integral part of the DecineratorTM's control system. It is sized to match the DecinerationTM operating conditions and emissions profile, and functions as part of the temperature and "feed forward" logic loops. The feed-forward control philosophy was developed in the 1960s by the iron and steel industry to allow real time stack exhaust data to be utilized to ramp down feed automatically prior to an alarm state. The concept automates the overall DecinerationTM process in that alarms are avoided before they trigger permit condition excursions i.e. eliminating "rolling average" shut downs and or fines.

The EAS is built from individual subsystems that are selected on the basis of the Best Available Technology (BAT) for each of the functional requirements. Every technology chosen is mature, is commercial off-the-shelf (COTS), has been accepted by, and is currently installed and operational in the State of Utah. As the subsystems are COTS, their integration into a complete EAS is simple and more a function of size selection than true engineering. Each subsystem has its own control logic and the entire system is controlled by a PLC which is integrated with the DecineratorTM control.

The following functional component descriptions are listed in order of the process feed route from the DecineratorTM to the emission point.

Component: Wet Scrubber

Function: Particulate Control / SVM collection & Recovery / Chlorine Removal / SO_x removal Design Operating Temperature: 250°F

Operational Efficiency: minimum rating - 99.9%

The wet scrubber utilizes a packed tower with recirculating water to remove particulates. Moreover, by adding chemicals to the recirculating solution, materials of concern such as Chlorine and SO_x can be removed from the gas stream. The captured particulate matter is removed from the wet scrubber by a side stream filter press which allows for the possible reclamation and recycling of metals such as lead and mercury when they are included in the emissions gases.

Component: Draft Fan

Function: Move air through the system (i.e. induce draft through the Decinerator[™]) Design Operating Temperature: 212°F

The fan is powered by an A/C motor under the control of a variable frequency drive (VFD) controller. It is sized to allow a minimum 10:1 turn down ratio for airflow without the need for control vanes. The VFD is multi-looped in that it not only maintains air flow, it is part of the furnace temperature control.

Component: Catalytic Converter

Function: Removal of SVOCs, VOCs and NO_X

Design Operating Temperature: 700°F

Operational Efficiency: minimum rating - 99.9%

The converter utilizes a series of catalyst beds selected to break down the incoming organics and NO_X into carbon dioxide, water and nitrogen gas. The catalyst metals are selected both for their intended function / performance and for their economic availability and operational life-cycle costs. The unit is electrically preheated to 700°F. Once the DecineratorTM begins to produce organic vapors and or NO_X , the energy released by the decomposition of the organics and or NO_X is self-sustaining and the preheater shuts off. This latter feature is characteristic of emission gas catalytic converters, and it represents significant operational cost savings compared to thermal oxidizers or other thermal gas treatment units that require constant energy input to maintain operating temperatures.

Component: Continuous Emissions Monitoring System (CEMS)

Function: Monitor / Data Log Emissions

Design Operating Temperature: 700°F

The CEMS utilizes current state-of-the-art, COTS sampling and analysis equipment. The PLC software data logs (monitor and store) all information required by the Authority of Jurisdiction. Further, the data can be utilized by the Decinerator[™] controller to modify the feed rate (i.e. "feed forward" as discussed above).

Component: Stack

Function: Direct treated gas exiting the catalytic converter vertically for compliant discharge Design Operating Temperature: 700°F

The stack is a vertical, nominal 26" diameter, COR-TEN[™] (non-stainless) steel assembly that mounts at the discharge of the catalytic converter body. The final height would be calculated once an actual physical location is selected but is typically 20 feet in length (30 feet above local grade).