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made available through the EPA Technical Support Center in Las Vegas, Nevada. 

Use of any portion of ProUCL that does not comply with the ProUCL User Guide is not 
recommended. 

ProUCL contains embedded licensed software.  Any modification of the ProUCL source code 
may violate the embedded licensed software agreements and is expressly forbidden.  

ProUCL software provided by the EPA was scanned with McAfee VirusScan v4.5.1 SP1 and is 
certified free of viruses. 
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Executive Summary 

Exposure assessment and cleanup decisions in support of U.S. Environmental Protection Agency 
(EPA) projects are often made based upon the mean concentrations of the contaminants of 
potential concern. A 95% upper confidence limit (UCL) of the unknown population arithmetic 
mean (AM), :1, is often used to: 

• Estimate the exposure point concentration (EPC) term, 
• Determine the attainment of cleanup standards, 
• Estimate background level mean contaminant concentrations, or 
• Compare the soil concentrations with  site specific soil screening levels.  

It is important to compute a reliable, conservative, and stable 95% UCL of the population mean 
using the available data. The 95% UCL should approximately provide the 95% coverage for the 
unknown population mean, :1 . 

The EPA has issued guidance for calculating the UCL of the unknown population mean for 
hazardous waste sites, and ProUCL software has been developed to compute an appropriate 95% 
UCL of the unknown population mean.  All UCL computation methods contained in the EPA 
guidance documents are available in ProUCL, Version 3.0.  Additionally, ProUCL, Version 3.0 
can also compute a 95% UCL of the mean based upon the gamma distribution, which is better 
suited to model positively skewed environmental data sets.  ProUCL tests for normality, 
lognormality, and a gamma distribution of the data set, and computes a conservative and stable 
95% UCL of the unknown population mean, : It should be emphasized that the computation 1 . 
of an appropriate 95% UCL is based upon the assumption that the data set under study consists 
of observations only from a single population. 

Several parametric and distribution-free non-parametric methods are included in ProUCL.  The 
UCL computation methods in ProUCL cover a wide range of skewed data distributions arising 
from the various environmental applications.  For lognormally distributed data sets, the use of 
Land’s H-statistic many times yields unrealistically large and impractical UCL values. This 
occurrence is prevalent when the sample size is small and standard deviation of the log-
transformed data is large.  Gamma distribution has been incorporated in ProUCL to model these 
types of positively skewed data sets. Singh, Singh, and Iaci (2002b) observed that a UCL of the 
mean based upon a gamma distribution results in reliable and stable values of practical merit.  It 
is always desirable to test if an environmental data set follows a gamma distribution.  For data 
sets (of all sizes) which follow a gamma distribution, the EPC term should be computed using an 
adjusted gamma UCL (when 0.1 # k < 0.5) of the mean or an approximate gamma UCL (when k 
$ 0.5) of the mean.  These UCLs approximately provide the specified 95% coverage to the 
population mean, :1 of a gamma distribution.  For values of k < 0.1, a 95% UCL may be obtained 
using the bootstrap-t method or Hall’s bootstrap method when the sample size is small (n < 15), 
and for larger samples, a UCL of the mean should be computed using the adjusted or 
approximate gamma UCL. 
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Introduction 

The computation of a (1-") 100% upper confidence limit (UCL) of the population mean depends 
upon the data distribution. Typically, environmental data are positively skewed, and a default 
lognormal distribution (EPA, 1992) is often  used to model such data distributions.  The H-
statistic based Land’s (Land 1971, 1975) H- UCL of the mean is used in these applications. 
Hardin and Gilbert (1993), Singh, Singh, and Engelhardt (1997,1999), Schultz and Griffin,1999, 
Singh et al. (2002a), and Singh, Singh, and Iaci (2002b) pointed out several  problems associated 
with the use of the lognormal distribution and the H-UCL of the population AM. In practice, for 
lognormal data sets with high standard deviation (sd), F, of the natural log-transformed data 
(e.g., F exceeding 2.0), the H-UCL can become unacceptably large, exceeding the 95% and 99% 
data quantiles, and even the maximum observed concentration, by orders of magnitude (Singh, 
Singh, and Engelhardt, 1997). This is especially true for skewed data sets of smaller sizes (e.g., 
n < 50). 
The H-UCL is also very sensitive to a few low or high values.  For example, the addition of a 
sample with below detection limit measurement can cause the H-UCL to increase by a large 
amount (Singh, Singh, and Iaci, 2002b).  Realizing that use of the H-statistic can result in 
unreasonably large UCL, it is recommended (EPA, 1992) to use the maximum observed value as 
an estimate of the UCL (EPC term) in cases where the H-UCL exceeds the maximum observed 
value. Recently, Singh, Singh and Iaci (2002b), and Singh and Singh (2003) studied the 
computation of the UCLs based upon a gamma distribution and several non-parametric bootstrap 
methods.  Those methods have also been incorporated in ProUCL Version 3.0.  ProUCL 
Version 3.0 contains fifteen UCL computation methods; five are parametric and ten are non­
parametric.  The non-parametric methods do not depend upon any of the data distributions. 

Both lognormal and gamma distributions can be used to model positively skewed data sets.  It 
should be noted that it is difficult to distinguish between a lognormal and a gamma distribution, 
especially when the sample size is small (e.g., n < 50).  Singh, Singh, and Iaci (2002b) observed 
that the UCL based upon a gamma distribution results in reliable and stable values of practical 
merit.  It is therefore always desirable to test if an environmental data set follows a gamma 
distribution. For data sets (of all sizes) which follow a gamma distribution, the EPC term should 
be computed using an adjusted gamma UCL (when 0.1 # k < 0.5) of the mean or an approximate 
gamma UCL (when k $ 0.5) of the mean as these UCLs approximately provide the specified 
95% coverage to the population mean,µ = kθ  of a gamma distribution. For values of k < 0.1, a 1 

95% UCL may be obtained using bootstrap-t  method or Hall’s bootstrap method when the 
sample size is small (n < 15), and for larger samples a UCL of the mean should be computed 
using the adjusted or approximate gamma UCL. For this application, k is the shape parameter of 
a gamma distribution.  It should be noted that both bootstrap-t and Hall’s bootstrap methods 
sometimes result in erratic, inflated, and unstable UCL values especially in the presence of 
outliers. Therefore, these two methods should be used with caution.  The user should examine 
the various UCL results and determine if the UCLs based upon the bootstrap-t and Hall’s 
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bootstrap methods represent reasonable and reliable UCL values of practical merit.  If the results 
based upon these two methods are much higher than the rest of methods (except for the UCLs 
based upon lognormal distribution), then this could be an indication of erratic UCL values. In 
case these two bootstrap methods yield erratic and inflated UCLs, the UCL of the mean should 
be computed using the adjusted or the approximate gamma UCL computation method for highly 
skewed gamma distributed data sets of small sizes. 

ProUCL tests for normality, lognormality, and gamma distribution of a data set, and computes a 
conservative and stable 95% UCL of the population mean, : It should be emphasized that 1 . 
throughout this User Guide, and in the ProUCL software, it is assumed that one is dealing with a 
single population. If multiple populations (e.g., background and site data mixed together) are 
present, it is recommended to separate them out (e.g., using other statistical population 
partitioning techniques), and respective appropriate 95% UCLs should be computed for each of 
the identified populations. Also, outliers if any should be identified and thoroughly investigated. 
Outliers when present distort all statistics (mean, UCLs etc.) of interest. Decisions about their 
exclusion (or inclusion) in the data set used to compute the EPC term should be made by all 
parties involved (e.g., EPA, local agencies, potentially responsible party etc.). The critical 
values of Anderson-Darling test statistic and Kolmogorov-Smirnov test statistic to test for 
gamma distribution were generated using Monte Carlo simulation experiments.  These critical 
values are tabulated in Appendix B for various values of the level of significance.  Singh, Singh, 
and Engelhardt (1997,1999), Singh, Singh, and Iaci (2002b), and Singh and Singh (2003) studied 
several parametric and non-parametric UCL computation methods which have been included in 
ProUCL. Most of the mathematical algorithms and formulas used in the development of 
ProUCL to compute the various statistics are summarized in Appendix A.  For details, the user is 
referred to Singh, Singh, and Iaci (2002b), and Singh and Singh (2003).  ProUCL computes the 
various summary statistics for raw, as well as log-transformed data.  ProUCL defines log-
transform (log) as the natural logarithm (ln) to the base e. ProUCL also computes the maximum 
likelihood estimates (MLEs) and the minimum variance unbiased estimates (MVUEs) of various 
unknown population parameters of normal, lognormal, and gamma distributions.  This, of 
course, depends upon the underlying data distribution.  Based upon the data distribution, 
ProUCL computes the (1-") 100% UCLs of the unknown population mean, :1 using five 
parametric and ten non-parametric methods.  

The five parametric UCL computation methods include: 

1. Student’s-t UCL, 
2. approximate gamma UCL using chi-square approximation, 
3. adjusted gamma UCL (adjusted for level significance), 
4. Land’s H-UCL, and 
5. Chebyshev inequality based UCL (using MVUEs of parameters of a lognormal distribution).  
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The ten non-parametric methods included in ProUCL are: 

1. the central limit theorem (CLT) based UCL, 
2. modified-t statistic (adjusted for skewness) bases UCL, 
3. adjusted-CLT (adjusted for skewness) based UCL, 
4. Chebyshev inequality based UCL (using sample mean and sample standard deviation), 
5. Jackknife method based UCL, 
6. UCL based upon standard bootstrap, 
7. UCL based upon percentile bootstrap, 
8. UCL based upon bias - corrected accelerated (BCA) bootstrap, 
9. UCL based upon bootstrap-t, and 
10. UCL based upon Hall’s bootstrap. 

An extensive comparison of these methods has been performed by Singh and Singh (2003) using 
Monte Carlo simulation experiments.  It is well known that the Jackknife method (with sample 
mean as an estimator) and Student’s-t method yield identical UCL values. However, a typical 
user may be unaware of this fact.  It has been suggested that a 95% UCL based upon the 
Jackknife method may provide adequate coverage to the population mean of skewed 
distributions, which of course is not true (just like a UCL based upon the Student’s-t statistic). 
For the benefit of all ProUCL users, it was decided to retain the Jackknife UCL computation 
method in ProUCL. 

The standard bootstrap and the percentile bootstrap UCL computation methods do not perform 
well (do not provide adequate coverage to population mean) for skewed data sets.  For skewed 
distributions, the bootstrap-t and Hall’s bootstrap (meant to adjust for skewness) methods do 
perform better (in terms of coverage for the population mean) than the various other bootstrap 
methods.  However, it has been noted (e.g., see Singh, Singh, and Iaci (2002b), Singh and Singh 
(2003)) that these two bootstrap methods sometimes yield erratic and inflated UCL values 
(orders of magnitude higher than the other UCLs). This is especially true when outliers may be 
present in a data set. Therefore, whenever applicable (e.g., based upon the findings of Singh and 
Singh (2003)), ProUCL provides a caution statement regarding the use of these two bootstrap 
methods.  ProUCL software provides warning messages whenever the use of these methods is 
recommended.  However, for the sake of completeness, all of the parametric as well as non­
parametric methods have been included in ProUCL.  

The use of some other methods (e.g., bias-corrected accelerated bootstrap method) that were not 
included in ProUCL Version 2.1 was suggested by some practitioners due to opinions that these 
omitted methods may perform better than the various other methods already incorporated in 
ProUCL. In order to satisfy all users, ProUCL Version 3.0 has several additional UCL 
computation methods which were not included in ProUCL, Version 2.1. 
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This User Guide contains software installation instructions and brief descriptions for each 
window in the ProUCL software menu.  A short glossary of terms used in this document and in 
the ProUCL program is also provided. 

Three appendices listed as follows provide additional information and details of the various 
methods and references used in the development of ProUCL Version 3.0. 

! Appendix A is a discussion of the methods incorporated into ProUCL for calculating the 
exposure point concentration term using the various methods and distributions.  Appendix A 
represents a stand-alone technical writeup of the various methods incorporated in ProUCL 
and is provided for review by statistically advanced users. There is duplication between 
some of the information provided in the main body of the User Guide and Appendix A.  This 
duplication is intentional since Appendix A is designed to be a stand-alone technical 
discussion of the methods incorporated into ProUCL. 

! Appendix B contains the tables of the critical values of the Anderson-Darling Test statistic 
and Kolmogorov-Smirnov Test statistic for gamma distribution for various levels of 
significance. 

! Appendix C has the graphs from Singh and Singh (2003) showing coverage comparisons 
(achieved confidence coefficient) for the various UCL computation methods for normal, 
gamma, and lognormal distributions as incorporated in ProUCL software package.   

Should the Maximum Observed Concentration be Used as an Estimate of the EPC Term? 

Singh and Singh (2003) also included the Max Test (using the maximum observed value as an 
estimate of the EPC term) in their simulation studies.  In the past (e.g., EPA 1992 RAGS 
Document), the use of the maximum observed value has been recommended as a default value to 
estimate the EPC term when a 95% UCL (e.g., the H-UCL) exceeded the maximum value. 
However, (e.g., EPA 1992), only two 95% UCL computation methods, namely: the Student’s- t 
UCL and Land’s H-UCL were used to estimate the EPC term.  Today, ProUCL, Version 3.0 can 
compute a 95% UCL of the mean using several methods based upon normal, gamma, lognormal, 
and non-parametric distributions.  Thus, ProUCL, Version 3.0 has about fifteen  95% UCL 
computation methods, at least one of which (depending upon skewness and data distribution) can 
be used to compute an appropriate estimate of the EPC term.  Furthermore, since the EPC term 
represents the average exposure contracted by an individual over an exposure area (EA) during a 
long period of time, therefore, the EPC term should be estimated by using an average value (such 
as an appropriate 95% UCL of the mean) and not by the maximum observed concentration.  With 
the availability of the UCL computation methods, the developers of ProUCL Version 3.0 do not 
consider it necessary to use the maximum observed value as an estimate of the EPC term.  Singh 
and Singh (2003) also noted that for skewed data sets of small sizes (e.g., n < 10 - 20), the Max 
Test does not provide the specified 95% coverage to the population mean, and for larger data 
sets, it overestimates the EPC term.  This can also viewed in the graphs presented in Appendix 
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C. Also, for the skewed distributions (gamma, lognormal) considered, the maximum value is not 
a sufficient statistic for the unknown population mean.  The use of the maximum value as an 
estimate of the EPC term ignores most (except for the maximum value) of the information 
contained in a data set. It is, therefore not desirable to use the maximum observed value as 
estimate of the EPC term representing average exposure to an individual over an EA. 

It should also be noted that for highly skewed data sets, the sample mean may exceed the upper 
90%, 95 %, etc. percentiles, and consequently, a 95% UCL of the mean can exceed the 
maximum observed value of a data set.  This is especially true when one is dealing with highly 
skewed lognormally distributed data sets of small sizes.  For such highly skewed data sets which 
can not be modeled by a gamma distribution, a 95% UCL of the mean should be computed using 
an appropriate non-parametric method.  These observations are summarized in Tables 1-3 of this 
User Guide. 

Alternatively, for such highly skewed data sets, other measures of central tendency such as the 
median (or some higher order quantile such as 70% etc.) and its upper confidence limit may be 
considered. The EPA and all other interested agencies and parties need to come to an agreement 
on the use of median and its UCL to estimate the EPC term.  However, the use of the sample 
median and/or its UCL as estimates of the EPC term needs further research and investigation. 

It is recommended that the maximum observed value NOT be used as an estimate of the 
EPC term.  For the sake of interested users, the ProUCL displays a warning message when the 
recommended 95% UCL (e.g., Hall’s bootstrap UCL etc.) of the mean exceeds the observed 
maximum concentration.  For such cases (when a 95% UCL does exceed the maximum observed 
value), if applicable, an alternative 95% UCL computation method is recommended by ProUCL. 

Handling of Non-Detects 

ProUCL does not handle left-censored data sets with non-detects, which are inevitable in many 
environmental applications.  All parametric as well as non-parametric recommendations (as 
summarized in Tables 1-3) to compute the mean, standard deviation, 95% UCLs and all other 
statistics computed by ProUCL are based upon full data sets without censoring.  It should be 
noted that for mild to moderate number of non-detects (e.g., < 15%), one may use the commonly 
used ½ detection limit (½ DL) proxy method to compute the various statistics.  However, the 
proxy methods should be used cautiously, especially when one is dealing with lognormally 
distributed data sets. For lognormally distributed data sets of small sizes, even a single value -­
small (e.g., obtained after replacing the non-detects by ½ DL) or large (e.g., an outlier) can have 
a drastic influence (can yield an unrealistically large 95% UCL) on the value of the associated 
Land’s 95% UCL. The issue of estimating the mean, standard deviation, and an appropriate 95% 
UCL of the mean based upon left-censored data sets with varying degrees of censoring (e.g., 
15% - 50%, 50% - 75%, greater than 75% etc.) is currently under investigation. 
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Installation Instructions 

! Caution: If you have previous versions of the ProUCL which were installed, you should 
remove or rename the directory in which that version is currently located.  

! Download the file SETUP.EXE from the EPA website and save to a temporary location. 

! Run the SETUP.EXE program.  This will create a ProUCL directory and two folders; USER 
GUIDE and the DATA (sample data). 

! To run the program, use Windows Explorer to locate the  ProUCL application file and double 
click on it, or use the RUN command from the start menu to locate and run ProUCL.exe. 

! To uninstall the program, use Windows Explorer to locate and delete the ProUCL folder. 

Minimum Hardware Requirements 

! Intel Pentium 200MHz 

! 12 MB of hard drive space 

! 48 MB of memory (RAM) 

! CD-ROM drive 

! Windows 98 or newer.  ProUCL was thoroughly tested on NT-4, Windows 2000, and 
Windows XP operating systems.  Limited testing has been conducted on Windows ME. 
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A. ProUCL Menu Structure 

ProUCL contains a pull-down menu structure, similar to a typical Windows  program. 

The screen below appears when the program is executed. 

The following menu options appear on the screen 

1. File 

2. View 

3. Help 

The options available with these menu items are described on the following pages. 
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1. File 

Click on the File menu item to reveal these drop-down menu options. 

The following File drop-down menu options are available: 

! New option: creates new spreadsheet. 

! Open option: browses the disk for a file.  The browse program will start in the working 
directory if a directory has been set. 

! Working directory option:  select and set a working directory. 
Note: A file from the directory must be selected before setting the directory.  All subsequent 
files are read from and saved in the chosen working directory. 

! Print Setup option: sets printer options. For example, one can choose the landscape format. 

! Click on a previously used file to re-open that file. 

! Exit option: exits ProUCL. 
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2. View

Click on the View menu item to reveal these drop-down options. 

The following View drop-down menu options are available: 

! Toolbar: the Toolbar is that row of symbols immediately below the menu items.  Clicking on 
this option toggles the display. This is useful if the user wants to view more data on the 
screen. 

! Status Bar: the Status Bar is the wide bar at the bottom of the screen which displays helpful 
information.  Clicking on this option toggles the display. This is useful if the user wants to 
view more data on the screen. 
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3. Help

Click on the Help menu item to reveal these drop-down options. 

The following Help drop-down menu options are available: 

! Help Topics: help topics have not been developed for Version 3.0. 

! About ProUCL: displays the software version number. 
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B. ProUCL Components 

The following menu structure of ProUCL appears after opening or creating a data file. 

The following menu items are available. 

1. File 
2. Edit 
3. View 
4. Options 
5. Summary Statistics 
6. Histogram 
7. Goodness-of-Fit Tests 
8. UCLs 
9. Window 
10. Help 

The options available with these menu items are described on the following pages. 
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1. File 

Click on the File menu item to reveal these drop-down options. 

The following File drop-down menu options are available: 

! New option: opens a blank spreadsheet screen. 

! Open option: browses the disk and selects a file which is then opened in spreadsheet format. 
The browse program will start in the working directory if a working directory has been set. 

Recognized input format options: 
Excel *.xls 
Text *.txt (tab delimited) 
Lotus *.wk? 
Lotus *.123 
Default *.* will be read in Excel format. 

! Close option: closes the active window. 
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! Save As option: allows the user to save the active window. This option follows the 
Windows standard and saves the active window to a file in Excel 95 (or higher) format. All 
modified/edited data files, and output screens generated by the software, can be saved in 
Excel 95 (or higher) format. 

! Working directory option:  selects and sets a working directory for all I/O operations.  All 
subsequent files are read from and saved in the working directory.  You must select a file 
before you set the working directory. 

! Print option: sends the active window to the printer. 

! Print Preview option: displays a preview of the output on the screen. 

! Print Setup option: follows Windows standard.  The user can choose the landscape format 
under this option. 

! Previously opened files: click on a previously used file to re-open that file. 

! Exit option: exits ProUCL. 

NOTE: All subsequent screens and examples in this User Guide use the spreadsheets given by 
track.xls and Cdelv1.xls to illustrate the various goodness-of-fit test procedures and the UCL 
computation methods as incorporated in the software ProUCL, Version 3.0. 
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1a. Input File Format 

! Data in each column must end with a non-zero value. The last non-zero entry in each 
column is considered as the end of that column’s data.  If your data column ends with a zero 
value, that last zero value will be ignored. This may require you to move observations 
around if your column ends with zero values. 

! The program can read tab delimited Text (ASCII), Excel, and Lotus files. 

! Columns in a Text (ASCII) file should be separated by one tab.  Spaces between columns are 
not allowed in this format. 

! All input data files should have column labels in the first row and numerical data without text 
(e.g., non-numeric characters and blank values) for those variables in the remaining rows. 

! The data file can have multiple variables (columns) with unequal number of observations. 

! Non-numeric text may only appear in the header row (first row) of each column.  All other 
non-numeric data (blank, other characters, and strings) appearing elsewhere in the data file 
are treated as zero entries. The user should make sure that his data set does not contain such 
non-numeric values. 

! A large value, such as 1E31 (1x1031), can be used for missing (alpha numeric text or blank 
values) data. All entries with this value are ignored from the computations. 

! Note that all other zero data (in the beginning or middle of a data column) are treated as valid 
zero values. 

! ProUCL does not handle the left-censored data sets with non-detects which are inevitable in 
environmental applications.  All parametric as well as non-parametric recommendations 
made by ProUCL are based upon full data sets without censoring.  The issue of estimating 
the mean, standard deviation, and a 95% UCL of the mean based upon left-censored data sets 
with varying degrees of censoring is currently under investigation. For mild to moderate 
number of non-detects (e.g., < 15%), one may use the commonly used  ½ detection limit 
(DL) proxy method.  However, the proxy methods should be used cautiously, especially 
when one is dealing with lognormally distributed data sets.  For lognormally distributed data 
sets of small sizes, a single value, whether small (e.g., obtained after replacing the non-detect 
by ½ DL) or large (e.g., an outlier), can have a drastic influence (can yield an unrealistically 
large 95% UCL) on the value of the associated Land’s 95% UCL. 
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1b. Result of Opening an Input Data File 

! The data screen follows the standard Windows design.  It can be resized, or portions of data 
can be viewed using scroll bars. 

! Note that scroll bars appear when the window is activated and the title bar is highlighted. 
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2. Edit 

Click on the Edit menu item to reveal the following drop-down options. 

The following Edit drop-down menu options are available: 

! Erase option: used to remove the highlighted portion of the data.  Note that the erased data is 
not written to any buffer and cannot be recovered. Therefore, when data is erased, it is gone. 

! Copy option: similar to a standard Windows Edit option, such as in Excel.  It performs 
typical edit functions of identifying highlighted data (similar to a buffer). 

! Paste option: similar to a standard Windows Edit option, such as in Excel.  It performs 
typical edit functions of pasting data identified (highlighted) to the current spreadsheet cell.   

! There is no Cut option available in ProUCL because there is no actual buffer available in the 
commercial software(s) used in the development of ProUCL software. 
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3. View 

Click on the View menu item to reveal these drop-down options. 

The following View drop-down menu options are available: 

! Toolbar: the Toolbar is that row of symbols immediately below the menu items.  Clicking on 
this option toggles the display. This is useful if the user wants to view more data on the 
screen. 

! Status Bar: the Status Bar is the wide bar at the bottom of the screen which displays helpful 
information.  Clicking on this option toggles the display. This is useful if the user wants to 
view more data on the screen. 

12 



4. Options 

Click on the Options menu item to reveal these drop-down options. 

Currently, Set Data is the only drop-down menu option available. 

! Set Data option: resets the active portion of the data window. The program examines the 
active spreadsheet and selects default values representing the first row of data (row 2), the 
last row which contains data (dependent upon actual data), the leftmost column (typically 
column 1) where data and text occur, and the rightmost column (dependent upon actual data) 
where data and text occur. 

NOTE: Caution should be exercised when varying from the default values.  If values other 
than the default values are used, calculation errors may result.  Therefore, it is recommended 
to avoid the use of the Set Data option. 

! The user can pre-process the data outside of the ProUCL software by using 
a separate spreadsheet program, such as Excel.  Pre-processing the data 
outside of ProUCL will eliminate the need to use  the Set Data option. 
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4a. The Data Location Screen 

The following Data location screen appears when Set Data option is executed. 

! It is recommended to use the default settings for the data screen. This means that all of 
the data will be processed. 

! Caution:  Highlighting a portion of the spreadsheet before invoking the Set Data option may 
sometimes cause unpredicted results. 

! Caution:  Blank cells in the top data row may confuse the automatic sizing algorithm.  The 
user can avoid this problem by re-setting the Rightmost column value using this option. 

! The first row in the spreadsheet contains the alphanumeric text (column headings), not data. 

! The default Top row of data is row 2. This value can be changed to process a subset of the 
data in the spreadsheet. 

! The default Bottom row is the last row in the spreadsheet which contains nonzero data.  This 
value can be changed to process a subset of the data in the spreadsheet. 

! The selected data must correspond to the same columns as the text in the first row.  The 
Leftmost column value (column number) cannot be changed by the user.  

! The Rightmost column number can be changed by the user.  Note that you must have a 
column of data for the selected Rightmost column. 
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5. 	Summary Statistics 

! This option computes general summary statistics for all variables in the data file. 

! Two Choices are available: 

Raw data (the default option) 
Log-transformed data (Natural logarithm) 

! In ProUCL, Log-transformation means natural logarithm (ln). 

! When computing summary statistics for raw data, a message will be displayed for each 
variable that contains non-numeric values. 

! The Summary Statistics option computes log-transformed data only if all of the data values 
for the selected variable are positive real numbers.  A message will be displayed if non­
numeric characters, zero, or negative values are found in the column corresponding to the 
selected variable. 
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5a. Summary Statistics Menu 

Click on the Summary Statistics menu item to reveal the following drop-down option. 

When the user clicks on the 
Compute option button, 
the window on the right appears. 

! Select your data choice, and click on the Compute button to continue or on the Cancel button 
to cancel the summary operations. 

! The results screen follows the standard Windows design.  It can be edited, widened, printed, 
resized, or scrolled. 

! The resulting Summary Statistics screen can be saved as an Excel file.  Right double click on 
the screen for additional save options. 
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5b. Results Obtained Using the Summary Statistics Option 

On the results screen, the following summary statistics are displayed for each variable in the data 
file: 
T NumObs = Number of Observations 
T Minimum = Minimum value 
T Maximum = Maximum value 
T Mean = Average value 
T Median = Median value 
T Sd = Standard Deviation 
T CV = Coefficient of Variation 
T Skewness = Skewness statistic 
T Variance = Variance statistic 

These summary statistics are described in detail in Appendix A. 

5c. Printing Summary Statistics 

! The summary statistics results and all other results can be printed by clicking the Print option 
under the menu item File.  It is recommended that these statistics be printed in landscape 
format which is available under the Print Setup option. 
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6. Histogram 

! This option produces a histogram for the selected variable in the data file. 

! For data sets with more than one variable, the user should select a variable first.  The 
histogram is computed and displayed for each selected variable, one variable at a time. 

- By default, the program selects the first variable. 

!  The user specifies if the data should be transformed. 

- The default choice is to display the histogram for raw data. 

! Two Choices are available: 

- Raw data (the default option) 
- Log-transformed data (natural logarithm, ln) 

! The user can select the number of bins for the histogram. 

- The default number of bins is 15. 

! Note that in order to display and capture the best histogram window, the user may want to 
maximize the window before printing. 

18 



6a. Histogram Screen 

! Click on the Histogram menu item and then click on the Draw Histogram option. 

! The window on the right 
will appear. 

! Select Raw data or Log-transformed data.


! You can change the number of bins to be used in the histogram.


! Select a variable and then hit the display key to view the histogram for the selected variable.
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6b. Results of Histogram Option 

! The Histogram window shown above has been resized for display and reflects the use of 
default values displayed in Section 6a (Histogram Screen). 

! You may close the window by using normal windows operations or click on the Close 
window button at the bottom left corner of the screen. 

! The histogram can be printed or copied by clicking on the right button on the mouse. 

! Caution: A right click of the mouse will have options other than print and save.  These 
options may function but are NOT recommended due to the program disruption that may 
occur. Use these other options only at your own risk! 
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7. Goodness-of-Fit Tests 

! Several goodness-of-fit tests are available in ProUCL which are described in Appendix A. 

! Throughout this User Guide, and in ProUCL, it is assumed that the user is dealing with a 
single population. If multiple populations are present, it is recommended to separate them 
out (using other statistical techniques). Appropriate tests and statistics (e.g., Goodness-of-fit 
tests, 95% UCLs) should be computed separately for each of the identified populations. 
Also, outliers if any should be identified and thoroughly investigated. The presence of 
outliers distort all statistics including the UCLs. Decisions about their inclusion (or 
exclusion) from the data set to be used to compute the UCLs should be made by all parties 
involved. 

! For data sets with more than one variable, the user should select a variable first.  The data 
distribution is tested using an appropriate goodness-of-fit test and the associated results 
are displayed for the selected variable, one variable at a time. 

‚ By default, the program selects the first variable. 

! This option tests for normal, gamma, or lognormal distribution of the selected variable. 

! The user specifies the distribution (normal, gamma, or lognormal) to be tested. 

! The user specifies the level of significance. Three choices are available for the level of 
significance: 0.01, 0.05, or 0.1. 

‚ The default choice for level of significance is 0.05. 

! ProUCL displays a Quantile-Quantile (Q-Q) plot for the selected variable (or the log-
transformed variable).  A Q-Q plot can be generated for each of the three distributions. 

! The linear pattern displayed by the Q-Q plot suggests approximate goodness-of-fit for the 
selected distribution. 

! The program computes the intercept, slope, and the correlation coefficient for the linear 
pattern displayed by the Q-Q plot. A high value of the correlation coefficient (e.g., > 0.95) is 
an indication of approximate goodness-of-fit for that distribution.  Note that these statistics 
are displayed on the Q-Q plot. 

! On this graph, observations that are well separated from the bulk (central part) of the data 
typically are potential outliers needing further investigation. 
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! Significant and obvious jumps in a Q-Q plot (for any distribution) are indication of the 
presence of more than one population which should be partitioned out before estimating an 
EPC Term.  It is strongly recommended that both graphical and formal goodness-of fit tests 
should be used on the same data set to determine the distribution of the data set under study. 

! In addition to the graphical normal and lognormal Q-Q plot, two more powerful methods are 
also available to test the normality or lognormality of the data set: 

‚	 Lilliefors Test:  a test typically used for samples of larger size ( > 50).  When the 
sample size is greater than 50, the program defaults to the Lilliefors test.  However, 
note that the Lilliefors test is available for samples of all sizes.  There is no applicable 
upper limit for sample size for the Lilliefors test. 

‚	 Shapiro and Wilk W-Test:  a test used for samples of smaller size ( < 50).  W-Test is 
available only for samples of size 50 or less. 

‚	 It should be noted that sometimes, these two tests may lead to different conclusions. 
Therefore, the user should exercise caution interpreting the results. 

! In addition to the graphical gamma Q-Q plot, two more powerful Empirical Distribution 
Function (EDF) procedures are also available to test the gamma distribution of the data set. 
These are the Anderson-Darling Test and the Kolmogorov-Smirnov Test. 

‚	 It should be noted that these two tests may also lead to different conclusions. 
Therefore, the user should exercise caution interpreting the results. 

‚	 These two tests may be used for samples of size in the range 4-2500.  Also, for these 
two tests, the value of k (k hat) should lie in the interval [0.01,100.0]. Consult 
Appendix A for detailed description of k. Extrapolation beyond these sample sizes 
and values of k is not recommended. 

! ProUCL computes the relevant test statistic and the associated critical value, and prints them 
on the associated Q-Q plot. On this Q-Q plot, the program informs the user if the data are 
gamma, normally, or lognormally distributed. It highly recommended not to skip the use of 
graphical Q-Q plot to determine the data distribution as a Q-Q plot also provides the useful 
information about the presence of multiple populations and/or outliers. 

!	 The Q-Q plot can be printed or copied by clicking on the right button on the mouse. 

! Note: In order to capture the entire graph window, the user should maximize the window 
before printing. 
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7a. Goodness-of-Fit Tests Screen 

! Click on the Goodness-of-Fit Tests menu item and a drop-down menu list will appear as 
shown in the screen below: 

! To test your variable for normality, click on Perform Normality Test from the drop-down 
menu list. 

! To test your variable for lognormality, click on Perform Lognormality Test from the drop-
down menu list. 

! To test your variable for gamma distribution, click on Perform Gamma Test from the drop-
down menu list. 
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7b. Result of Selecting Perform Normality Test Option 

The following window will appear: 

! Select a variable.


! Select a Level of Significance.


! Click on either Lilliefors Test or Shapiro-Wilk Test.
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7c. Resulting Q-Q Plot Display to Perform Normality Test 

! The Q-Q plot window shown above has been resized for display. 

! Two different Q-Q plot windows are produced for each Normality test request.  The first 
graph plots the raw data along the vertical axis, and the second plot (as shown above) uses 
the standardized data along the vertical axis. These two Q-Q plots convey the same 
information about the data distribution and potential outliers, and therefore they also look 
very similar, but they do represent two separate (not duplicate) plots.  It is the user’s 
preference to pick one of these two Q-Q plots to assess approximate normality of the data set 
under study. 

! Right click on a graph to print or save that graph. 

! Caution: A right click of the mouse will have options other than print and save.  These 
options may function but are NOT recommended due to the program disruption that may 
occur. Use these other options only at your own risk! 
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7d. Result of Selecting Perform Lognormality Test Option 

The following window will appear: 

! Select a variable.


! Select a Level of Significance.


! Click on either Lilliefors Test or Shapiro-Wilk Test.
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7e. Resulting Lognormal Q-Q Plot Display to Perform Lognormality Test 

! The Q-Q plot window shown above has been resized for display. 

! Two different Q-Q plot windows are produced for each Lognormality test request.  The first 
plot uses the log-transformed data along the vertical axis,  and the second plot (shown above) 
uses the standardized data. As mentioned before, these two plots provide the same 
information about the data distribution and potential outliers, but they do represent two 
separate (not duplicate) plots. The user can pick any of these two Q-Q plots to assess 
approximate lognormality of the data set under study. 

! Right click on a graph to print or save that graph. 

! Caution: As before, a right click of the mouse will have options other than print and save. 
These options may function but are NOT recommended due to the program disruption that 
may occur.  Use these other options only at your own risk! 
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7f. Result of Selecting Perform Gamma Test Option 

The following window will appear: 

! Select a variable.


! Select a Level of Significance.


! Click on either the Anderson - Darling Test or Kolmogorov - Smirnov Test.
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7g. Resulting Gamma Q-Q Plot Display to Perform Gamma Test 

! The Q-Q plot window shown above has been resized for display. 

! Only one Q-Q plot window is produced for each Gamma test request: the display using the 
original raw data (as shown above). 

! Right click on the graph to print or save the graph. 

! Caution: A right click of the mouse will have options other than print and save.  These 
options may function but are NOT recommended due to the program disruption that may 
occur. Use these other options only at your own risk! 
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8. UCLs 

! This option computes the UCLs for the selected variable. 

! The program can compute UCLs using all available methods.  For details regarding the 
various distributions and methods, refer to Appendix A. 

! The user specifies the confidence level; a number in the interval [0.5, 1), 0.5 inclusive.  The 
default choice is 0.95. 

! The program computes several non-parametric UCLs using the Central Limit Theorem, 
Chebyshev inequality, Jackknife, and the various Bootstrap methods. 

! For the bootstrap method, the user can specify the number of bootstrap runs.  The default 
choice for the number of bootstrap runs is 2000.  

! The user is responsible for selecting an appropriate choice for the data distribution: normal, 
gamma, lognormal, or non-parametric.  The user determines the data distribution using the 
Goodness-of-Fit Test option prior to using the UCLs option. The UCLs option will also 
inform the user if the data are normal, gamma, lognormal, or non-parametric.  The program 
computes relevant statistics depending on the user selection. 

! For data sets which are not normal, one should try the gamma UCLs next.  The program will 
offer you advice if you chose the wrong UCLs option. 

! For data sets which are neither normal nor gamma, you should try the lognormal UCLs next. 
The program will offer you advice if you chose the wrong UCLs option. 

! Data sets that are not normal, gamma, or lognormal are classified as non-parametric data sets. 
The user should use non-parametric UCLs option for such data sets.  The program will offer 
you advice if you chose the wrong UCLs option. 

! For lognormal data sets, ProUCL can compute only a 90% or a 95% Land’s statistic based H­
UCL of the mean.  For all other methods, ProUCL can compute a UCL for any confidence 
coefficient in the interval [0.5,1.0), 0.5 inclusive. 

! If you have selected a proper distribution, ProUCL will provide a recommended UCL 
computation method for the 0.95 confidence coefficient. Even though ProUCL can compute 
UCLs for confidence coefficients in the interval [0.5, 1.0), recommendations are provided 
only for 95% UCL computation methods as the EPC term is estimated by a 95% UCL of the 
mean. 
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! ProUCL can compute the H-UCL for sample sizes up to 1000 using the critical values as 
given by Land (1975). 

! For lognormal data sets, ProUCL also computes the Maximum Likelihood Estimates (MLEs) 
of the population percentiles, and the minimum variance unbiased estimates (MVUEs) of the 
population mean, median, standard deviation, and the standard error (SE) of the mean. Note 
that for lognormally distributed background data sets, these MLEs of the population 
percentiles (e.g., 95% percentile) can be used as estimates of the background level threshold 
values. 

! The detailed theory and formulas used to compute these gamma and lognormal statistics are 
given by Land (1971, 1975), Gilbert (1987), Singh, Singh, and Engelhardt (1997, 1999), 
Singh et al. (2002a), Singh et al. (2002b), and Singh and Singh (2003). 

! Formulas, methods, and cited references used in the development of ProUCL are summarized 
in Appendix A. 
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8a. UCLs Computation Screen 

Click on the UCLs menu item and the drop down menu shown below will appear. 

! The Compute UCLs option is intended for general use.  It displays results in a format 
suitable for review by all users. The output results can be printed or saved for subsequent 
use. Saved results can be imported into other documents and reports. 

! The Fixed Excel Format option produces a results screen that can be exported to another 
program written for production purposes.  Therefore, UCL results are stored in specific cells 
and no attempt has been made to accommodate human review.  These fixed format results 
are not formatted to be printed. 
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8b. Results After Clicking on Compute UCLs Drop-Down Menu Item 

! Note that the UCLs are computed for one variable at a time.  The user selects a variable from 
the variable list. 

! The user may change the Confidence Coefficient (default is 0.95).  The range allowed is 
between 0.5 and 1.0, 0.5 inclusive. 

! The user may adjust the number of bootstrap runs (default is 2,000). 

! The user selects one of the options: Normal, Gamma, Lognormal, Non-parametric, or All 
option. The All option is the default choice. The All option automatically determines the 
data distribution without checking for outliers and/or the presence of multiple populations.. It 
is highly recommended to verify the data distribution (for outliers and multiple populations) 
using an appropriate Q-Q plot under the Goodness-of-Fit Tests option. 

! The All option computes and displays the UCLs using all parametric and non-parametric 
methods available in ProUCL.  Finally, the user clicks on the Compute UCLs button. 
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8c. Display After Selecting the Normal UCLs Option 

! This data does not follow the normal distribution for the selected variable. 

! The program notes that the data follow an approximate gamma distribution and suggests in 
blue that the user should try Gamma UCLs. 

! This output spreadsheet is easily saved by using the Save As option under the File menu. 

! Double right click on the UCL output spreadsheet to view a screen with more options to 
save, print, or write this output sheet to a file. 
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8d. Display After Selecting the Gamma UCLs Option 

! Save this output spreadsheet by using the Save As option under the File menu. 

! Double right click on the UCL output spreadsheet to view a screen with more options to 
save, print, or write this output sheet to a file. 
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8e. Display After Selecting the Lognormal UCLs Option 

! Use the Print or Save As option under File menu or double right click on the UCL  output 
spreadsheet to view a screen with more options to save, print, or write this output sheet to a 
file. 
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8f. Display After Selecting the Non-Parametric UCLs Option 

! The program notes that the data follow an approximate gamma distribution, and suggests in 
blue that the user should try Gamma UCLs. 

! Save this output spreadsheet by using the Save As option under the File menu. 

! Double right click on the UCL output spreadsheet to view a screen with more options to 
save, print, or write this output sheet to a file. 
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8g. Display After Selecting the All UCLs Option 

! For explanations of the methods and statistics used, refer to Appendix A.  

! Use the Print or Save As option under File menu or double right click on the UCL output 
spreadsheet to view a screen with more options to save, print, or write this output to a file. 
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8h. Result After Clicking on Fixed Excel Format Drop-Down Menu Item 

! Note that the UCLs are computed for one variable at a time.  The user selects a variable from 
the variable list. 

! For this Fixed Format option, the 0.95 Confidence Coefficient is used in all UCL 
computations. 

! The user may adjust the number of bootstrap runs (default is 2,000). 

! Click on the Compute UCLs button to display the results. 

! This option will display all statistics computed by ProUCL for each of the three parametric 
distributions and also for all non-parametric methods including the five bootstrap methods. 
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8i. Results After Clicking the Fixed Excel Format Compute UCLs Button 

! Note that the output is not sized to fit a printed page. 

! This option can be omitted by all users who are not planning to import the ProUCL 
calculation results into some other software to automate the calculations of exposure point 
concentration terms. That is, all users who are not planning to use ProUCL as a production 
tool to produce UCLs for several variables and data files may skip the use of this option. 

! On Fixed Format output spreadsheet, each row contains a single item description or 
calculated statistic. 

! Three primary columns contain information: 
‚ Column A is a description of the various results and statistics. 
‚ Column E contains all appropriate calculated results. 
‚ Column G contains additional descriptive information as needed. 
‚ Note that information from the primary columns (e.g., A, E, and G) may overflow 

into the columns to the right. 
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! For column E: 
‚ N/A means that the calculation for the associated statistic is not available. 
‚ N/R means that the calculations for the associated statistic may not be reliable. 
‚ Row 15 displays YES if there are too few observations to calculate appropriate UCL 

statistics and displays NO if enough observations are available to compute all 
relevant statistics and UCLs. 

‚	 Row 35 displays AD GAMMA (if data are gamma distributed using A-D test) or 
NOT AD GAMMA (if data are not gamma distributed using A-D test) using  the 
Anderson-Darling Gamma Test for 0.05 level of significance. 

‚	 Similarly, Row 38 displays KS GAMMA or NOT KS GAMMA using the 
Kolmogorov-Smirnov Gamma Test for 0.05 level of significance. 

‚	 As mentioned before, it should be noted that these two goodness-of-fit tests may lead 
to different conclusion (as is the case with other goodness-of-fit tests) about the data 
distribution. In that case, ProUCL leads to the conclusion that the data follow an 
approximate gamma distribution. 

‚ Row 39 displays NOT GAMMA, APPROX GAMMA, or GAMMA depending on the 
results of the two Gamma goodness-of-fit tests. 

‚ Row 52 displays LOGNORMAL or NOT LOGNORMAL depending on the result of 
the appropriate lognormality test for 0.05 level of significance. 

‚ Row 86 displays YES if user inspection is recommended and displays NO if no 
potential problems requiring manual inspection needed with the selected variable. 

‚ Row 87 displays NORMAL, GAMMA, LOGNORMAL, or NON-PARAMETRIC as 
the distribution used in determining 95% UCL computation recommendations. 

‚ Row 88 displays a recommended UCL value to use as an estimate of the EPC term. 
‚ Row 89 displays a second recommended UCL (e.g., use of either Hall’s bootstrap or 

bootstrap-t method may be recommended on the same data set).  These cells will be 
blank if only one UCL is recommended for the selected variable. 

‚ Row 90 displays a third recommended UCL.  These cells will be blank if only one or 
two UCLs are recommended for the selected variable. 

‚ Row 91 displays YES if the recommended 95% UCL exceeds the maximum value in 
the data set. 

‚	 Row 92 displays PLEASE CHECK if the recommended bootstrap UCLs are subject 
to erratic or inflated values due to possible presence of outliers.  Otherwise, row 92 
displays NONE. 

‚	 Row 93 displays IN CASE if the recommended bootstrap UCL has an inflated value 
due to the presence of outliers. Otherwise, row 93 displays NONE. 

! For column G: 
‚ Row 88 displays the name of the recommended 95% UCL. 
‚ Row 89 displays the name of the second recommended 95% UCL.  These cells will 

be blank if only one UCL is recommended for the selected variable. 
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‚	 Row 90 displays the name of the third recommended 95% UCL.  These cells will be 
left blank if only one UCL is recommended for the selected variable. 

‚	 Row 93 displays the name of the alternative UCL to utilize if the recommended 
bootstrap (e.g., bootstrap-t or Hall’s bootstrap) 95% UCL has an inflated value due to 
presence of potential outliers. 
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9. Window 

Click on the Window menu to reveal these drop-down options. 

The following Window drop-down menu options are available: 

! New Window option:  opens a blank spreadsheet window. 

! Cascade option: arranges windows in a cascade format. This is similar to a typical Windows 
program option. 

! Tile option: resizes each window and then displays all open windows. This is similar to a 
typical Windows program option. 

! Arrange Icons: similar to a typical Windows program option. 

! The drop-down options include a list of all open windows with a check mark in front of the 
active window. Click on any of the windows listed to make that window active. 
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10. Help 

Click on the Help menu item to reveal these drop-down options. 

The following Help drop-down menu options are available: 

! Help Topics option: ProUCL version 3.0 does not have an online help program. 

! About ProUCL: displays the software version number. 
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Run Time Notes 

! Cell size can be changed. The user can change the size of a cell by moving the mouse to the 
top row (the gray shaded row with a letter), then moving the mouse to the right side until the 
cursor changes to an arrow symbol (ø), depress the left mouse button. 

! This can be used to reveal additional precision or hidden text. 
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Rules to Remember When Editing or Creating a New Data File 

!  Text may appear in the first row only.  This row has column headers (variable names) for  
your data. 

! All alphanumeric text (including blanks, strings) appearing elsewhere (other than first row) 
will be treated as zero data. 

! Missing data (alphanumeric text, blanks) can be set to a large value such as 1x1031. All 
entries with this value will be ignored from the computations. 

! The last data entry for each column must be non-zero.  The program determines the number 
of observations by working backwards up the data until a non-zero value is encountered. 
Data in each column must end with a non-zero entry as shown above otherwise that zero 
value will be ignored. All intermediate zero entries are treated as valid data. 

! It is recommended to use the default settings of the Data location screen when working with 
your data sets. 
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C. Recommendations to Compute a 95% UCL of the Population Mean (The 
Exposure Point Concentration Term) 

This section describes the recommendations on the computation of a 95% UCL of the unknown 
population arithmetic mean, :1, of a contaminant data distribution.  These recommendations are 
based upon the findings of Singh, Singh, and Engelhardt (1997, 1999); Singh et al. ( 2002a); 
Singh, Singh, and Iaci (2002b); and Singh and Singh (2003).  These recommendations are 
applicable to full data sets without censoring and non-detect observations. 

Recommendations have been summarized for: 

1) normally distributed data sets, 
2) gamma distributed data sets, 
3) lognormally distributed data sets, and 
4) data sets which are non-parametric and do not follow any of the above mentioned three     
distributions included in ProUCL. 

A detailed description of the recommendations can be found in Section 5 of Appendix A.  Also, 
a list of all cited references is given in Appendix A. 

For skewed parametric as well as non-parametric data sets, there is no simple solution to 
compute a 95% UCL of the population mean, :1. Contrary to the general conjecture, Singh et al. 
(2002a), Singh, Singh, and Iaci (2002b), and Singh and Singh (2003) noted that the UCLs based 
upon the skewness adjusted methods, such as the Johnson’s modified-t and Chen’s adjusted-CLT 
do not provide the specified coverage (e.g., 95 %) to the population mean even for mildly to 
moderately skewed (e.g., σ , the sd of log-transformed data in interval [0.5, 1.0)) data sets for $

samples of size as large as 100.  The coverage of the population mean by these skewness-
adjusted UCLs becomes poorer (much smaller than the specified coverage of 0.95) for highly 
skewed data sets, where the skewness levels are defined in Section 3.2.2 of Appendix A as a 

$function of σ or σ  (standard deviation of log-transformed data). 

It should be noted that even though, the simulation results for highly skewed data sets of small 
sizes suggest that the bootstrap-t and Hall’s bootstrap methods do approximately provide the 
adequate coverage to the population mean, sometimes in practice these two bootstrap methods 
yield erratic inflated values (orders of magnitude higher than the other UCL values) when 
dealing with individual highly skewed data sets of small sizes. This is especially true when 
potential outliers may be present in the data set.  Therefore, ProUCL Version 3.0 provides 
warning messages whenever the recommendations are made regarding the use the bootstrap-t 
method or Hall’s bootstrap method. 
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1 D. Recommendations to Compute a 95% UCL of the Population Mean, :
Using Symmetric and Positively Skewed Data Sets 

Graphs from Singh and Singh (2003) showing coverage comparisons (e.g., attainment of the 
specified confidence coefficient) for normal, gamma, and lognormal distributions for the various 
methods considered are given in Appendix C.  The user may want to consult those graphs for a 
better understanding of the recommendations summarized in this section. 

1. 	Normally or Approximately Normally Distributed Data Sets 

•	 For normally distributed data sets, a UCL based upon the Student’s-t statistic as given by 
equation (32) of Appendix A provides the optimal UCL of the population mean.  Therefore, 
for normally distributed data sets, one should always use a 95% UCL based upon the 
Student’s-t statistic. 

•	 The 95% UCL of the mean given by equation (32) based upon Student’s-t statistic may also 
be used when the sd, sy of the log-transformed data is less than 0.5, or when the data set 
approximately follows a normal distribution.  A data set is approximately normal when the 
normal Q-Q plot displays a linear pattern (without outliers and significant jumps) and the 
resulting correlation coefficient is quite high (e.g., 0.95 or higher). 

•	 Student’s-t UCL may also be used when the data set is symmetric (but possibly not normally 
distributed). 	A measure of symmetry (or skewness) is k$3, which is given by equation (43) of 

$Appendix A. As a rule of thumb, a value of k$3 close to zero (e.g., |k3|< 0 2  − 0 3) suggests. . 
approximate symmetry.  The approximate symmetry of a data distribution can also be judged 
by evaluating the histogram of the data set. 
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2. 	Gamma Distributed Skewed Data Sets 

In practice, many skewed data sets can be modeled both by a lognormal distribution and a 
gamma distribution, especially when the sample size is smaller than 100.  Land’s H-statistic 
based, 95% H-UCL of the mean based upon a lognormal model often results in an unjustifiably 
large and impractical 95% UCL value. In such cases, a gamma model, G (k,2), may be used to 
compute a reliable 95% UCL of the unknown population mean, :1. 

•	 Many skewed data sets follow a lognormal as well as a gamma distribution.  It should be 
noted that the population means based upon the two models can differ significantly. The 
lognormal model, based upon a highly skewed (e.g., σ$ ≥ 2 5) data set, will have an. 
unjustifiably large and impractical population mean, :1, and its associated UCL. The gamma 
distribution is better suited to model positively skewed environmental data sets. 

One should always first check if a given skewed data set follows a gamma distribution.  If a 
data set does follow a gamma distribution or an approximate gamma distribution, one should 
compute a 95% UCL based upon a gamma distribution.  Use of highly skewed (e.g.,σ$ ≥ 2.5-
3.0) lognormal distributions should be avoided.  For such highly skewed lognormally 
distributed data sets that can not be modeled by a gamma or an approximate gamma 
distribution, non-parametric UCL computation methods based upon the Chebyshev 
inequality may be used.  ProUCL prints out at least one recommended UCL associated with 
each data set. 

•	 The five bootstrap methods do not perform better than the two gamma UCL computation 
methods.  It is noted that the performances (in terms of coverage probabilities) of bootstrap-t 
and Hall’s bootstrap methods are very similar.  Out of the five bootstrap methods, bootstrap-t 
and Hall’s bootstrap methods perform the best (with coverage probabilities for the population 
mean closer to the nominal level of 0.95).  This is especially true when skewness is quite 
high (e.g., k$  < 0.1) and sample size is small (e.g., n < 10-15).  This is illustrated in the 
graphs given in Appendix C. As mentioned before, whenever the use of Hall’s UCL or 
bootstrap-t UCL is recommended, an informative warning message about their use is also 
printed. 

•	 Also, contrary to the conjecture, the bootstrap BCA method does not perform better than the 
Hall’s method or the bootstrap-t method.  The coverage for the population mean, :1 provided 
by the BCA method is much lower than the specified 95% coverage.  This is especially true 
when the skewness is high (e.g., k$  < 1) and sample size is small (Singh and Singh (2003)). 

•	 From the results presented in Singh, Singh, and Iaci (2002b) and in Singh and Singh (2003), 
it is concluded that for data sets which follow a gamma distribution, a 95% UCL of the mean 
should be computed using the adjusted gamma UCL when the shape parameter, k, is: 
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 0.1 # k < 0.5, and for values of k $ 0.5, a 95% UCL can be computed using an approximate 
gamma UCL of the mean, :1. 

•	 For highly skewed gamma distributed data sets with k < 0.1, bootstrap-t UCL or Hall’s 
bootstrap (Singh and Singh (2003)) may be used when the sample size is small (e.g., n < 15) 
and adjusted gamma UCL should be used when sample size starts approaching and exceeding 
15. The small sample size requirement increases as skewness increases (that is as k

decreases, n is required to increase).


•	 It should be pointed out that the bootstrap-t and Hall’s bootstrap methods should be used 
with caution as some times these methods yield erratic, unreasonably inflated, and unstable 
UCL values, especially in the presence of outliers. In case Hall’s bootstrap and bootstrap-t 
methods yield inflated and erratic UCL results, the 95% UCL of the mean should be 
computed based upon adjusted gamma UCL. 

These recommendations for the use of gamma distribution are summarized in Table 1. 

Table 1 
Summary Table for the Computation of a 95% UCL 
of the Unknown Mean, µ of a Gamma Distribution1 

k$ Sample Size, n Recommendation 

$ .k ≥ 0 5  For all n Approximate Gamma 95%UCL 

01. 0 5 $≤ <k . For all n Adjusted Gamma 95% UCL 

$ .k < 01 
n < 15 

n $ 15 

95% UCL Based Upon Bootstrap-t or Hall’s 
Bootstrap Method * 

Adjusted Gamma 95% UCL if available, 
otherwise use Approximate Gamma 95% UCL 

* If bootstrap-t or Hall’s bootstrap methods yield erratic, inflated, and unstable UCL values 
(which often happens when outliers are present), the UCL of the mean should be computed using 
adjusted gamma UCL. 

50



3. Lognormally Distributed Skewed Data Sets 

For lognormally distributed data sets, LN(:, F2), the H-statistic based UCL provides the 
specified 0.95 coverage for the population mean for all values of F. However, the H-statistic 
often results in unjustifiably large UCL values which do not occur in practice. This is especially 
true when skewness is high (e.g., F > 2.0). The use of a lognormal model unjustifiably 
accommodates large and impractical values of the mean concentration and its UCLs. The 
problem associated with the use of a lognormal distribution is that the population mean, :1 of a 
lognormal model becomes impractically large for larger values of F, which in turn results in 
inflated H-UCL of the population mean, : Since the population mean of a lognormal model 1. 
becomes too large, none of the other methods except for the inflated H-UCL provides the 
specified 95% coverage for that inflated population mean, :1. This is especially true when the 
sample size is small and skewness is high.  For extremely skewed data sets (with F > 2.5-3.0) of 
sizes (e.g., < 70-100), the use of a lognormal distribution based H-UCL should be avoided (e.g., 
see Singh et al. (2002a), Singh and Singh (2003)). Therefore, alternative UCL computation 
methods such as the use of a gamma distribution, or the use of a UCL based upon non-parametric 
bootstrap methods or Chebyshev inequality based methods, are desirable.  All skewed data sets 
should first be tested for a gamma distribution.  For lognormally distributed data sets (that can 
not be modeled by a gamma distribution), the method as summarized in Table 2 on the following 
page, may be used to compute a 95% UCL of the mean.  The details can be found in Appendix 
A. 

ProUCL can compute an H-UCL for samples of sizes up to 1000.  For highly skewed 
lognormally distributed data sets of smaller sizes, some alternative methods to compute a 95% 
UCL of the population mean, :1, are summarized in Table 2.  Since skewness (as defined in 
Section 3.2.2, Appendix A) is a function of F (or σ$ ), the recommendations for the computation 
of the UCL of the population mean are also summarized in Table 2 for various values of the 
MLE,  of F and the sample size, n.  Here is an MLE of F, and is given by the Sd of log-
transformed data given by equation (2) of Appendix A.  Note that Table 2 is only applicable to 
the computation of a 95% UCL of the population mean based upon lognormally distributed data 
sets without non-detect observations. 
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Table 2 
Summary Table for the Computation of a 95% UCL 

of the Unknown  Mean, µ1 of a Lognormal Population 
Sample Size, n Recommendation

 < 0.5 For all n Student’s-t, modified-t, or H-UCL 
0.5 #  < 1.0 For all n H-UCL 

1.0 #  < 1.5 
n < 25 95% Chebyshev (MVUE) UCL 
n $ 25 H-UCL 
n < 20 99% Chebyshev (MVUE) UCL 

1.5 #  < 2.0 20 # n < 50 95% Chebyshev (MVUE) UCL 
n $ 50 H-UCL 
n < 20 99% Chebyshev (MVUE) UCL 

2.0 #  < 2.5 
20 # n < 50 97.5% Chebyshev (MVUE) UCL 
50 # n < 70 95% Chebyshev (MVUE) UCL 

n $ 70 H-UCL 

n < 30 Larger of (99% Chebyshev (MVUE) UCL, 
99% Chebyshev(Mean, Sd)) 

2.5 #  < 3.0 30 # n < 70 97.5% Chebyshev (MVUE) UCL 
70 # n < 100 95% Chebyshev (MVUE) UCL 

n $ 100 H-UCL 
n < 15 Hall’s bootstrap method * 

3.0 # # 3.5 
15 # n < 50 Larger of (99% Chebyshev (MVUE) UCL, 

99% Chebyshev(Mean, Sd)) 
50 # n < 100 97.5% Chebyshev (MVUE) UCL 

100 # n < 150 95% Chebyshev (MVUE) UCL 
n $ 150 H-UCL

 > 3.5 For all n Use non-parametric methods * 

* If Hall’s bootstrap method yields an erratic unrealistically large UCL value, then the UCL of 
the mean may be computed based upon the Chebyshev inequality. 
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4. Data Sets Without a Discernable Skewed Distribution - Non-parametric Skewed Data 
Sets 

The use of gamma and lognormal distributions as discussed here will cover a wide range of 
skewed data distributions. For skewed data sets which are neither gamma nor lognormal, one 
can use a non-parametric Chebyshev UCL or Hall’s bootstrap UCL (for small data sets) of the 
mean to estimate the EPC term. 

•	 For skewed non-parametric data sets with negative and zero values, use a 95%

Chebyshev (Mean, Sd) UCL of the mean, :1 to estimate the EPC term.


•	 For all other non-parametric data sets with only positive values, the following method 
may be used to estimate the EPC term: 

$•	 For mildly skewed data sets with σ # 0.5, one can use the Student’s-t statistic or

modified-t statistic to compute a 95% UCL of the mean, :
1. 

•	 For non-parametric moderately skewed data sets (e.g., F or its estimate, in the interval 
(0.5, 1]), one may use a 95% Chebyshev (Mean, Sd) UCL of the population mean, :1. 

•	 For non-parametric moderately to highly skewed data sets (e.g., in the interval (1.0, 
2.0]), one may use a 99% Chebyshev (Mean, Sd) UCL or 97.5% Chebyshev (Mean, Sd) 
UCL of the population mean, :1, to obtain an estimate of the EPC term. 

•	 For highly skewed to extremely highly skewed data sets with in the interval (2.0, 3.0], 
one may use Hall’s UCL or 99% Chebyshev (Mean, Sd) UCL to compute the EPC term. 

•	 Extremely skewed non-parametric data sets with F exceeding 3.0 are badly behaved and 
UCLs based upon such data sets often provide poor coverage to the population mean. 
For such highly skewed data distributions, none of the methods considered provide the 
specified 95% coverage for the population mean, :1. The coverages provided by the 
various methods decrease as F increases. For such highly skewed data sets of sizes (e.g., 
< 30), a 95% UCL can be computed based upon Hall’s bootstrap method or bootstrap-t 
method.  Hall’s bootstrap method provides the highest coverage (but less than 0.95) when 
the sample size is small.  It is noted that the coverage for the population mean provided 
by Hall’s method (and bootstrap-t method) does not increase much as the sample size, n 
increases. However, as the sample size increases, coverage provided by 99% Chebyshev 
(Mean, Sd) UCL method increases.  Therefore, for larger samples, a UCL should be 
computed based upon  99% Chebyshev (Mean, Sd) method.  This large sample size 
requirement increases as σ increases (e.g., n increases as Sd increases). These$

recommendations are summarized in Table 3 given in the following. 
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Note: As mentioned before, the Hall’s bootstrap method (and also bootstrap-t method) 
sometimes yields erratic and unstable UCL values, especially when the outliers are present. If 
Hall’s bootstrap UCL represents an erratic and unstable value, a UCL of the population mean 
may be computed using  the 99% Chebyshev (Mean, Sd) method. 

µ

Table 3

Summary Table for the Computation of a 95% UCL of the Unknown Mean,


1  of a Skewed Non-parametric Distribution with all Positive Values, 

Where σ$  is the Sd of Log-transformed Data 

$σ Sample Size, n Recommendation 

$ .σ ≤ 0 5  For all n 95% UCL based upon Student’s-t statistic or 
Modified-t statistic 

05  1  0  . $ .< ≤σ For all n 95% Chebyshev (Mean, Sd) UCL 

10 2 0 . $ .< ≤σ 
n < 50 99% Chebyshev (Mean, Sd) UCL 

n $ 50 97.5% Chebyshev (Mean, Sd) UCL 

2 0  3  0  . $ .< ≤σ 
n < 10 Hall’s Bootstrap UCL * 

n $ 10 99% Chebyshev (Mean, Sd) UCL 

30  3  5  . $ .< ≤σ 
n < 30 Hall’s Bootstrap UCL * 

n $ 30 99% Chebyshev (Mean, Sd) UCL 

$σ .> 35 
n < 100 Hall’s Bootstrap UCL * 

n $ 100 99% Chebyshev (Mean, Sd) UCL 

* If the Hall’s bootstrap method yields an erratic and unstable UCL value (e.g., this tends to 
happen when outliers are present), the EPC term may be computed using the 99% Chebyshev 
(Mean, Sd) UCL. 
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E. Should the Maximum Observed Concentration be Used as an Estimate of 
the EPC Term? 

Singh and Singh (2003) also included the Max Test (using the maximum observed value as an 
estimate of the EPC term) in their simulation study.  Previous (e.g., EPA 1992 RAGS Document) 
use of the maximum observed value has been recommended as a default value to estimate the 
EPC term when a 95% UCL (e.g., the H-UCL) exceeded the maximum value.  Only two 95% 
UCL computation methods, namely: the Student’s- t UCL and Land’s H-UCL were used 
previously to estimate the EPC term (e.g., EPA 1992).  ProUCL can compute a 95% UCL of 
mean using several methods based upon normal, Gamma, lognormal, and non-parametric 
distributions. Thus, ProUCL has about fifteen (15) 95% UCL computation methods, at least one 
of which (depending upon skewness and data distribution) can be used to compute an 
appropriate estimate of the EPC term.  Furthermore, since the EPC term represents the average 
exposure contracted by an individual over an exposure area (EA) during a long period of time; 
therefore, the EPC term should be estimated by using an average value (such as an appropriate 
95% UCL of the mean) and not by the maximum observed concentration.  With the availability 
of so many UCL computation methods, the developers of ProUCL, Version 3.0 do not feel any 
need to use the maximum observed value as an estimate of the EPC term.  Singh and Singh 
(2003) also noted that for skewed data sets of small sizes (e.g., <10-20), the Max Test does not 
provide the specified 95% coverage to the population mean, and for larger data sets, it 
overestimates the EPC term which may require unnecessary further remediation.  This can also 
be viewed in the graphs presented in Appendix C. Also, for the distributions considered, the 
maximum value is not a sufficient statistic for the unknown population mean. The use of the 
maximum value as an estimate of the EPC term ignores most (except for the maximum value) of 
the information contained in a data set.  It is, therefore not desirable to use the maximum 
observed value as an estimate of the EPC term representing average exposure by an individual 
over an EA. It is recommended that the maximum observed value NOT be used as an 
estimate of the EPC term. However, for the sake of interested users, ProUCL displays a 
warning message when the recommended 95% UCL (e.g., Hall’s bootstrap UCL etc.) of the 
mean exceeds the observed maximum concentration.  For such cases (when a 95% UCL does 
exceed the maximum observed value), if applicable, an alternative UCL computation method is 
recommended by ProUCL. 

It should also be noted that for highly skewed data sets, the sample mean indeed can even exceed 
the upper 90%, 95 % etc. percentiles, and consequently, a 95% UCL of mean can exceed the 
maximum observed value of a data set.  This is especially true when one is dealing with 
lognormally distributed data sets of small sizes.  For such highly skewed data sets which can not 
be modeled by a gamma distribution, a 95% UCL of the mean should be computed using an 
appropriate non-parametric method.  These recommendations are summarized in Tables 1 
through 3 of this User Guide. 
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Alternatively, for such highly skewed data sets, other measures of central tendency such as the 
median (or some higher order quantile such as 70% etc.) and its upper confidence limit may be 
considered. The EPA, all other interested agencies and parties need to come to an agreement on 
the use of median and its UCL to estimate the EPC term.  However, the use of the sample 
median and/or its UCL as estimates of the EPC term needs further research and investigation. 
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F. Left-Censored Data Sets with Non-detects 

ProUCL does not handle the left-censored data sets with non-detects, which are inevitable in 
many environmental studies. All parametric as well as non-parametric recommendations to 
compute the mean, standard deviation, and a 95% UCL of the mean made by ProUCL software 
are based upon full data sets without censoring. For mild to moderate number of non-detects 
(e.g., < 15%), one may compute these statistics based upon the commonly used rule of thumb of 
using ½ detection limit (DL) proxy method.  However, the proxy methods should be used 
cautiously, especially when one is dealing with lognormally distributed data sets.  For 
lognormally distributed data sets of small sizes, even a single value -- small (e.g., obtained after 
replacing the non-detect by ½ DL) or large (e.g., an outlier) can have a drastic influence (can 
yield an unrealistically large 95% UCL) on the value of the associated Land’s 95% UCL. The 
issue of estimating the mean, standard deviation, and a 95% UCL of the mean based upon left-
censored data sets of varying degrees (e.g., <15%, 15%-50%, 50%-75%, or greater than 75% 
etc.) of censoring is currently under investigation. 
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Glossary 

This glossary defines selected words in this User Guide to describe impractically large UCL 
values of the unknown population mean, µ1. In practice, the UCLs based upon Land’s H-statistic 
(H-UCL), and some bootstrap methods such as the bootstrap-t and Hall’s bootstrap methods 
(especially when outliers are present) can become impractically large. The UCLs based upon 
these methods often become larger than the UCLs based upon all other methods by several 
orders of magnitude.  Such large UCL values are not achievable as they do not occur in practice. 
Words like unstable and unrealistic have been used to describe such impractically large UCL 
values. 

UCL:  Upper Confidence Limit of the unknown population mean. 

Coverage = Coverage Probability:  The coverage probability (e.g., = 0.95) of a UCL of the 
population mean represents the confidence coefficient associated with the UCL. 

Optimum:  An interval is optimum if it possesses optimal properties as defined in the statistical 
literature. This may mean that it is the shortest interval providing the specified coverage  (e.g., 
0.95) to the population mean.  For example, for normally distributed data sets, the UCL of the 
population mean based upon Student’s t distribution is optimum. 

Stable UCL:  The UCL of a population mean is a stable UCL if it represents a number of 
practical merit, which also has some physical meaning. That is, a stable UCL represents a 
realistic number (e.g., contaminant concentration) that can occur in practice.  Also, a stable UCL 
provides the specified (at least approximately, as much as possible, as close as possible to the 
specified value) coverage (e.g., ~0.95) to the population mean. 

Reliable UCL:  This is similar to a stable UCL. 

Unstable UCL = Unreliable UCL = Unrealistic UCL:  The UCL of a population mean is 
unstable, unrealistic, or unreliable if it is orders of magnitude higher than the various other UCLs 
of population mean.  It represents an impractically large value that cannot be achieved in 
practice. For example, the use of Land’s H statistic often results in impractically large inflated 
UCL value. Some other UCLs such as the bootstrap-t UCL and Hall’s UCL, can be inflated by 
outliers resulting in an impractically large and unstable value.  All such impractically large UCL 
values are called unstable, unrealistic, unreliable, or inflated UCLs in this User Guide. 
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METHODS FOR COMPUTING THE EPC TERM ((1-") 100%UCL) 

AS INCORPORATED IN ProUCL VERSION 3.0 SOFTWARE 

1. Introduction 

Exposure assessment and cleanup decisions in support of U.S. EPA projects  are often made 

based upon the mean concentrations of the contaminants of potential concern.  A 95% upper 

confidence limit (UCL) of the unknown population arithmetic mean (AM), :1, is often used to: 

estimate the exposure point concentration (EPC) term (EPA, 1992, EPA, 2002), determine the 

attainment of cleanup standards (EPA, 1989 and EPA, 1991), estimate background level 

contaminant concentrations, or compare the soil concentrations with  site specific soil screening 

levels (EPA, 1996). It is, therefore, important to compute a reliable, conservative, and stable 

95% UCL of the population mean using the available data.  The 95% UCL should 

approximately provide the 95% coverage for the unknown population mean, : EPA (2002) has1. 

developed a guidance document for calculating upper confidence limits for hazardous waste 

sites. All of the UCL computation methods as described in the EPA (2002)  guidance document 

are available in ProUCL, Version 3.0. Additionally, ProUCL, Version 3.0 can also compute a 

95% UCL of the mean based upon the gamma distribution which is better suited to model 

positively skewed environmental data sets. 

Computation of a (1-") 100% UCL of the population mean  depends upon the data 

distribution. Typically, environmental data are  positively skewed, and a default lognormal 

distribution (EPA, 1992) is often used to model such data distributions.  The H-statistic based 

Land’s (Land 1971, 1975) H-UCL of the mean is used in these applications.  Hardin and Gilbert 

(1993), Singh, Singh, and Engelhardt (1997,1999), Schultz and Griffin,1999, Singh et al. 

(2002a), and Singh, Singh, and Iaci (2002b) pointed out several  problems associated with the 
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use of the lognormal distribution and the  H-UCL of the population AM. In practice, for 

lognormal data sets with high standard deviation (Sd), F of the natural log-transformed data 

(e.g., F exceeding 2.0), the H-UCL can become  unacceptably large, exceeding the 95% and 

99% data quantiles, and even the maximum observed concentration,  by orders of magnitude 

(Singh, Singh, and Engelhardt, 1997). This is especially true for skewed data sets of sizes 

smaller than n < 50 - 70.  

The H-UCL is also very sensitive to a few low or high values.  For example, the addition of a 

sample with below detection limit measurement can cause the H-UCL to increase by a large 

amount (Singh, Singh, and Iaci, (2002b)).  Realizing that the use of H-statistic can result in 

unreasonably large UCL, it has been recommended (EPA, 1992) to use the maximum observed 

value as an estimate of the UCL (EPC term) in cases where the H-UCL exceeds the maximum 

observed value. Recently, Singh, Singh and Iaci (2002b), and Singh and Singh (2003) studied 

the computation of the UCLs based upon a gamma distribution and several non-parametric 

bootstrap methods.  Those methods have also been incorporated in ProUCL, Version 3.0.  There 

are fifteen UCL computation methods available in ProUCL; five are parametric and ten are non­

parametric.  The non-parametric methods do not depend upon any of the data distributions. 

Graphs from Singh and Singh (2003) showing coverage comparisons for normal, gamma, and 

lognormal distributions for the various methods are given in Appendix C. 

Both lognormal and gamma distributions can be used to model positively skewed data sets. 

It should be noted that it is hard to distinguish between a lognormal and a gamma distribution, 

especially when the sample size is small such as n < 50 - 70.  In practice many skewed data sets 

follow a lognormal as well as a gamma distribution.  Singh, Singh, and Iaci (2002b) observed 

that the UCL based upon a gamma distribution results in reliable and stable values of practical 

merit.  It is therefore, always desirable to test if an environmental data set follows a gamma 

distribution. For data sets (of all sizes) which follow a gamma distribution, EPC should be 
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computed using an adjusted gamma UCL (when 0.1 # k < 0.5) of the mean or an approximate 

gamma UCL (when k $ 0.5) of the mean  as these UCLs  approximately provide the specified 

95% coverage to the population mean,µ = kθ  of a gamma distribution.  For values of k < 0.1,1 

a 95% UCL may be obtained  using bootstrap-t method or Hall’s bootstrap method when the 

sample size, n is less than 15, and for larger samples, a UCL of the mean should be computed 

using the adjusted or approximate gamma UCL. Here, k is the shape parameter of a gamma 

distribution as described in Section 2.2. It should be pointed out that both bootstrap-t and Hall’s 

bootstrap methods sometimes result in erratic, inflated, and unstable UCL values especially in 

the presence of outliers. Therefore, these two methods should be used with caution.  The user 

should examine the various UCL results and determine if the UCLs based upon the bootstrap-t 

and Hall’s bootstrap methods represent reasonable and reliable UCL values of practical merit.  If 

the results based upon these two methods are much higher than the rest of methods (except for 

the UCLs based upon lognormal distribution), then this could be an indication of erratic UCL 

values. ProUCL prints out a warning message whenever the use of these two bootstrap methods 

is recommended.  In case these two bootstrap methods yield erratic and inflated UCLs, the UCL 

of the mean should be computed using the adjusted or the approximate gamma UCL computation 

method. 

ProUCL has been developed to test for normality, lognormality, and a gamma distribution of 

a data set, and to compute a conservative and stable 95% UCL of the population mean, :1. The 

critical values of Anderson-Darling test statistic and Kolmogorov-Smirnov test statistic to test 

for gamma distribution were generated using Monte Carlo simulation experiments.  These 

critical values are tabulated in Appendix B for various levels of significance.  Singh, Singh, and 

Engelhardt (1997,1999), Singh, Singh, and Iaci (2002b), and Singh and Singh (2003) studied 

several parametric and non-parametric UCL computation methods which have been included in 

ProUCL. Most of the mathematical algorithms and formulae used in ProUCL to compute the 

various statistics are summarized in this Appendix A.  For details, the user is referred to Singh, 

A-3 



Singh, and Iaci (2002b), and Singh and Singh (2003).  Some graphs from Singh and Singh 

(2003) showing coverage comparisons for normal, gamma, and lognormal distributions for the 

various methods are given in Appendix C.  ProUCL computes the various summary statistics for 

raw, as well as log-transformed data.  In this User Guide and in ProUCL, log-transform (log) 

stands for the natural logarithm  (ln) to the base e. ProUCL also computes the maximum 

likelihood estimates (MLEs) and the minimum variance unbiased estimates (MVUEs) of various 

unknown population parameters of normal, lognormal, and gamma distributions.  This, of 

course, depends upon the underlying data distribution.  Based upon the data distribution, 

ProUCL computes the (1-") 100% UCLs of the unknown population mean, :  using five (5)1

parametric and ten (10) non-parametric methods.  

The five parametric UCL computation methods include: 

1) Student’s- t UCL, 

2) approximate gamma UCL, 

3) adjusted gamma UCL, 

4) Land’s H-UCL, and 

5) Chebyshev inequality based UCL (using MVUE of parameters of a lognormal distribution). 

The ten non-parametric methods included in ProUCL are: 

1) the central limit theorem (CLT) based UCL, 

2) modified-t statistic (adjusted for skewness), 

3) adjusted-CLT (adjusted for skewness), 

4) Chebyshev inequality based UCL (using sample mean and sample standard deviation), 

5) Jackknife UCL, 

6) standard bootstrap, 

7) percentile bootstrap, 

8) bias - corrected accelerated (BCA) bootstrap, 
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9) bootstrap-t, and 

10) Hall’s bootstrap. 

An extensive comparison of these methods have been performed by Singh and Singh (2003) 

using Monte Carlo simulation experiments.  It is well known that the Jackknife method (with 

sample mean as an estimator) and Student’s-t method yield identical UCL values. It is also well 

known that the standard bootstrap method and the percentile bootstrap method do not perform 

well (do not provide adequate coverage) for skewed data sets. However, for the sake of 

completeness all of the parametric as well as non-parametric methods have been included in 

ProUCL. Also, it has been noted that the omission of a method (e.g., bias-corrected accelerated 

bootstrap method) triggers the curiosity of some of the users as they start thinking that the 

omitted method may perform better than the various other methods already incorporated in 

ProUCL. In order to satisfy all users, ProUCL Version 3.0 has additional UCL computation 

methods which were not included in ProUCL Version 2.1. 

1.1 Non-detects and Missing Data 

ProUCL does not handle non-detects. All parametric as well as non-parametric 

recommendations to compute the mean, standard deviation, and a 95% UCL of the mean made 

by ProUCL software are based upon full data sets without censoring. The program can be 

modified to incorporate methods which can be used to compute appropriate estimates of the 

population mean and standard deviation, and a UCL of the mean for left-censored data sets with 

non-detects. For now, for data sets with mild to moderate number of non-detects (e.g., < 15%), 

one may replace  non-detects by half of the detection limit (as often done in practice) and use 

ProUCL on the resulting data set to compute an appropriate 95% UCL of the mean, :1. However, 

the proxy methods such as replacing non-detects by ½ of the detection limit (DL) should be used 

cautiously, especially when one is dealing with lognormally distributed data sets.  For 
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replacing the non-detect by ½ DL) or large (e.g., an outlier) can have a drastic influence (can 

yield an unrealistically large 95% UCL) on the value of the associated Land’s 95% UCL. The 

UCL

censored data sets of varying degrees of censoring (e.g., < 15%, 15% - 50%, 50% - 75%, and 

greater than 75%) is currently under investigation. 

Missing data value can be 

entered as a very large value in scientific notation, such as 1.0 E 31. All entries with this value 

2. Procedures to Test for Data Distribution 

Let x1, x2, ... , xn

:1, and variance, F1 
2 . 

Let : and F Sd) of the log-

to the base e) data. Let and sy (= 

Sd yi = log (xi); i = 1, 2, ... , n. Specifically, let 

lognormally distributed data sets of small sizes, even a single value -- small (e.g., obtained after 

issue of estimating the mean, standard deviation, and a 95%  of the mean based upon left-

However, it should be noted that ProUCL can handle missing data.  

will be treated as missing data. 

 be a random sample (e.g., representing lead concentrations) from the 

underlying population (e.g, remediated part of a site) with unknown  mean, 

 represent the population mean and the population standard deviation (

transformed (natural log  ) be the sample mean and sample 

, respectively, of the log-transformed data, 

(1) 

. (2) 

and sx Sd of the raw data, x1 , x2 , .. , xn, obtained by 

replacing y by x in equations (1) and (2), respectively. In this User Guide, irrespective of the 

underlying distribution, :1, and F1 
2

Similarly, let  be the sample mean and 

 represent the mean and variance of the random variable X 
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(in original units), whereas :1 and F 2  represent the mean and variance of its logarithm, given by 

Y = loge(X) = natural logarithm. 

Three data distributions have been considered. These include the normal and lognormal 

distributions, and the gamma distribution.  Shapiro - Wilk (n # 50) and Lilliefors (n > 50) test 

statistics are used to test for normality or lognormality of a data set.  The empirical distribution 

function (EDF) based methods: the Kolmogorov-Smirnov (K-S) test and the Anderson-Darling 

(A-D) test are used to test for a gamma distribution.  Extensive critical values for these two test 

statistics have been obtained via Monte Carlo simulation experiments.  For interested users, 

these critical values are given in Appendix B for various levels of significance. In addition to 

these formal tests, the informal histogram and quantile-quantile (Q-Q) plot are also available to 

test data distributions. A brief description of these tests follows. 

2.1 Test Normality and Lognormality of a Data Set 

ProUCL tests the normality or lognormality of  the data set using the three different 

methods described below.  The program tests normality or lognormality at three different levels 

of significance, namely, 0.01, 0.05, and 0.1.  The details of these methods can be found in the 

cited references. 

2.1.1 Normal Quantile-Quantile (Q-Q) Plot 

This is a simple informal graphical method to test for an approximate  normality or 

lognormality of a data distribution (Hoaglin, Mosteller, and Tukey (1983), Singh (1993)).  A 

linear pattern displayed by the bulk of the data suggests approximate  normality or lognormality 

(performed  on log-transformed data) of the data distribution.  For example, a high value (e.g., 

0.95 or greater) of the correlation coefficient of the linear pattern may suggest  approximate 
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normality (or lognormality) of the data set under study.  However, it should be noted that on this 

graphical display, observations well separated (sticking out) from the linear pattern displayed by 

the bulk data represent the outlying observations. Also, apparent jumps and breaks in the Q-Q 

plot suggest the presence of multiple populations. The correlation coefficient of such a Q-Q plot 

can still be high, which does not necessarily imply that the data follow a normal (or lognormal) 

distribution. Therefore, the informal graphical Q-Q plot test should always be accompanied  by 

other more powerful tests, such as the Shapiro-Wilk test or the Lilliefors test.  The goodness-of-

fit test of a data set should be judged based upon the formal more powerful tests.  The normal Q­

Q plot may be used as an aid to identify outliers and/or to identify multiple populations. 

ProUCL performs the graphical Q-Q plot test on raw data as well as on standardized data.  All 

relevant statistics such as the correlation coefficient are also displayed on the Q-Q plot. 

2.1. 2 Shapiro-Wilk W Test 

This is a powerful test and is often used to test the normality or lognormality of the data set 

under study (Gilbert, 1987). ProUCL performs this test for samples of size 50 or smaller.  Based 

upon the selected level of significance and the computed test statistic, ProUCL also informs the 

user if the data are normally (or lognormally) distributed.  This information should be used to 

obtain an appropriate UCL of the mean.  The program prints the relevant statistics on the Q-Q 

plot of the data (or the standardized data). For convenience, the normality,  lognormality, or 

gamma distribution test results at 0.05 level of significance are also displayed on the UCL Excel-

type output summary sheets. 

2.1.3 Lilliefors Test 

This test is useful for data sets of larger size (Dudewicz and Misra, 1988).  ProUCL performs 

this test for samples of sizes up to 1000.  Based upon the selected level of significance and the 
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computed test statistic, ProUCL informs the user if the data are normally (or lognormally) 

distributed. The user should use this information  to obtain an appropriate UCL of the mean. 

The program prints the relevant statistics on the Q-Q plot of data (or standardized data).  For 

convenience, the normality, lognormality, or gamma distribution test results at 0.05 level of 

significance are also displayed on the UCL output summary  sheets. It should be pointed out 

that sometimes, in practice, these two goodness-of-fit tests can lead to different conclusions. 

2.2 Gamma Distribution 

Singh, Singh, and Iaci (2002b) studied gamma distribution to model positively skewed 

environmental data sets  and to compute a UCL of the mean based upon a gamma distribution. 

They studied several UCL computation methods using Monte Carlo simulation experiments. A 

continuous random variable, X (e.g., concentration of a contaminant), is said to follow a gamma 

distribution, G (k,2) with parameters k > 0 (shape parameter) and 2 > 0 (scale parameter), if  its 

probability density function is given by the following equation: 

( ; 
θkΓ( )  

1ef x  k  ,θ)= 
1 xk − −x/θ ; x >0 (3) 

k 

and zero otherwise. The parameter k is the shape parameter, and 2 is the scale parameter. Many 

positively skewed data sets follow a lognormal as well as a gamma distribution.  Gamma 

distribution can be used to model positively skewed environmental data sets.  It is observed that 

the use of a gamma distribution results in reliable and stable 95% UCL values. It is therefore, 

desirable to test if an environmental data set follows a gamma distribution.  If a skewed data set 

does follow a gamma model, then a 95% UCL of the population mean should be computed using 

a gamma distribution.  For details of the two gamma goodness-of-fit tests, maximum likelihood 

estimation of gamma parameters, and the computation of a 95% UCL of the mean based upon a 

gamma distribution, refer to D’Agostino and Stephens (1986), and  Singh, Singh, and Iaci 
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(2002b). These methods are briefly described as follows. 

For data sets which follow a gamma distribution, the adjusted  95% UCL of the mean based 

upon a gamma distribution is optimal and approximately provides the specified 95% coverage to 

population mean, µ = kθ (Singh, Singh, and Iaci (2002b)). Moreover, this adjusted gamma 1 

UCL yields reasonable numbers of practical merit.  The two test statistics used for testing for a 

gamma distribution are based upon the empirical distribution function (EDF).  The two EDF 

tests included in ProUCL are the Kolmogorov-Smirnov (K-S) test and Anderson - Darling (A-D) 

test which are described in D’Agostino and Stephens (1986) and Stephens (1970).  The 

graphical Q-Q plot for gamma distribution has also been included in ProUCL.  The critical 

values for the two EDF tests are not easily available, especially when the shape parameter, k is 

small (k < 1).  Therefore, the associated critical values have been obtained via extensive Monte 

Carlo simulation experiments.  These critical values for the two test statistics are given in 

Appendix B. The 1%, 5%, and 10% critical values of these two test statistics have been 

incorporated in ProUCL, Version 3.0. A brief description of the three goodness-of-fit tests for 

gamma distribution is given as follows.  It should be noted that the goodness-of-fit tests for 

gamma distribution depend upon the MLEs of gamma parameters, k and 2 which should be 

computed first before performing the goodness-of-fit tests. 

2.2.1 Quantile - Quantile (Q-Q) Plot for a Gamma Distribution 

Let x1, x2, ... , xn be a random sample from the gamma distribution, G(k,2). Let 
$x( )  ≤ x(  )  ≤ ....≤ x(  )   represent the ordered sample.  Let k$  and θ  represent the maximum 1 2 n 

likelihood estimates (MLEs) of k and 2, respectively. For details of the computation of  MLEs of 

k and 2, refer to Singh, Singh, and Iaci (2002b). Estimation of gamma parameters  is also briefly 

described later in this User Guide. The Q-Q plot for gamma distribution is obtained by plotting 

x x( ) );  :  = 1 2the scatter plot of  pairs ( ,  i ,  ,...,  n. The quantiles, x0i  are given by the0i i 
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equation x0i = z0iθ 2 i ,  ,...,  n , where the quantiles z0i  (already ordered) are obtained$ / ;  :  = 1  2  

by using the inverse chi-square distribution and are given as follows. 

z0i 

2∫ f (Χ 2 )dΧ = (i − 1 2) / n i  := 1  2  / ; , ,..., n (4)$ $2k 2 k 
0 

In (4), Χ 2 represents a chi-square random variable with 2k$  degrees of freedom (d.f.).  The$2k 

program, PPCHI2 (Algorithm AS91) as given in Best and Roberts (1975), Applied Statistics 

(1975, Vol. 24, No. 3) has been used to compute the inverse chi-square percentage points, z0i  as 

given by the above equation given by (4). This is an informal graphical test to test for a gamma 

distribution. This informal test should always be accompanied by the formal Anderson-Darling 

test or Kolmogorov- Smirnov test.  A linear pattern displayed by the scatter plot of bulk of the 

data may suggest approximate gamma distribution.  For example, a high value (e.g., 0.95 or 

greater) of the correlation coefficient of the linear pattern may suggest  approximate gamma 

distribution of the data set under study. However, on this Q-Q plot points well separated from 

the bulk of data may represent outliers. Also, apparent breaks and jumps in the gamma Q-Q plot 

suggest the presence of multiple populations.  The correlation coefficient of such a Q-Q plot can 

still be high which does not necessarily imply that the data follow a gamma distribution. 

Therefore, the graphical Q-Q plot test should always be accompanied  by the other more 

powerful formal EDF tests, such as the Anderson-Darling test or the Kolmogorov-Smirnov test. 

The final conclusion about the data distribution should be based upon the formal goodness-of-fit 

tests. The Q-Q plot may be used to identify outliers and/or presence of multiple populations. All 

relevant statistics including the MLE of k are also displayed on the gamma Q-Q plot. 

2.2.2 Empirical Distribution Function (EDF) Based Goodness-of -Fit Tests        

Next, the two formal EDF test statistics used to test for a gamma distribution are described 

briefly. Let F(x) be the cumulative distribution function (CDF) of the gamma random variable 
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X. Let Z=F(X), then Z represents a uniform U(0,1) random variable.  For each x , compute i zi 

using the incomplete gamma function given by the equation  zi = F xi i , ,..., n. The( ); : = 1 2  

algorithm as given in Numerical Recipes  book (Press et al., 1990) has been used to compute the 

incomplete gamma function.  Arrange the resulting, z  in ascending order asi 

z( )  ≤ z(  )  ≤ ...≤ z(  ) . Let z = ∑ zi / n  be the mean of the z i  ,  ,...,  n . Compute the i ; := 1 21 2 n 

following two test statistics.

− iD+ = max {1 / n  z  ( )} and D− = max { z( )  − (i − 1) / n} (5)i i i 

+ −The Kolmogorov - Smirnov test statistic is given by D = max( D  D  ) ., 

Anderson Darling test statistic is given by the following equation. 

n 
2A = −  −  (1 / n)∑ {(2i − 1)[log z( )  + log(1 − z(n+ −i) )]} (6)n i 1


1


The critical values for these two statistics D and A2 are not readily available. For the Anderson-

Darling test, only asymptotic critical values are available in the statistical literature (D’Agostino 

and Stephens (1986)). Some raw critical values for K-S test are given in Schneider (1978), and 

Schneider and Clickner (1976). For these two tests, ExpertFit (2001) software and Law and 

Kelton (2000) use generic critical values for all completely specified distributions as given in 

D’Agostino and Stephens (1986). It is observed that the conclusions derived using these generic 

critical values for completely specified distributions and the simulated critical values for gamma 

distribution with unknown parameters can be different.  Therefore, to test for a gamma 

distribution, it is preferred and advised to use the critical values of these test statistics 

specifically obtained for gamma distributions with unknown parameters. 
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In practice, the distributions are not completely specified and exact critical values for these 

two test statistics are needed. It should be noted that the distributions of the K-S test statistic, D 

and A-D test statistic, A2 do not depend upon the scale parameter, θ , therefore, the scale 

parameter, θ  has been set equal to 1 in all of the simulation experiments.  The critical values for 

these two statistics have been obtained via extensive Monte Carlo simulation experiments for 

several small and large values of the shape parameter, k and with θ = 1 . These critical are 

included in Appendix B. In order to generate the critical values, random samples from gamma 

distributions were generated using the algorithm as given in Whittaker (1974).  It is observed 

that the critical values thus obtained are in close agreement with all available published  critical 

values. The generated critical values for the two test statistics have been incorporated in 

ProUCL for three levels of significance, 0.1, 0.05, and 0.01.  For each of the two tests, if the test 

statistic exceeds the corresponding critical value, then the hypothesis that the data follow a 

gamma distribution is rejected.  ProUCL computes these test statistics and prints them on the 

gamma Q-Q plot and also on the UCL summary output sheets generated by ProUCL.  The 

estimation of the parameters of the three distributions as incorporated in ProUCL is discussed 

next. It should be pointed out that sometimes, in practice, these two goodness-of-fit tests can 

lead to different conclusions. 

3. Estimation of Parameters of the Three Distributions Included in ProUCL 

Through out this User Guide, :  and F1
2 are the mean and variance of the random variable X, 

and : and F2 are the mean and variance of the random variable Y = log(X).  Also, σ 

1

$ represents 

the standard deviation of the log-transformed data.  It should be noted that for both lognormal 

and gamma distributions, the associated random variable can take only positive values.  This is 

typical of environmental data sets to consist of only positive values. 
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3.1 

:1, F1 
2 :1, and variance, F1 

2 . 

(7)f x  x  x( ;  ,  )  (  (  )  /  );µ σ  µ σ1 1 
2 

1 
21 

2= − − 

MVUEs :1, and variance, are respectively given byσ1 
2 

.x sx 
2 

data sets, a UCL :1 It is 

UCL and UCL based upon bootstrap-t 

data sets, the UCLs

3.2 Lognormal Distribution 

If Y = log(X : and variance F2 , X is said to be 

: and F 2 and is denoted by LN(:, F 2) . It should be 

noted that : and F 2 X, but they 

Y, whereas :1, and F1 
2 

:, F 2), are given as follows: 

Mean (8) 

Normal Distribution 

Let X be a continuous random variable (e.g., concentration of COPC), which follows a 

normal distribution, N( ) with mean, The probability density function 

of a normal distribution is given by the following equation: 

exp −∞  <  <  ∞  

For normally distributed data sets, it is well known (Hogg and Craig, 1978) that the minimum 

variance unbiased estimates ( ) of mean, 

the sample mean,  and sample variance, It is also well known that for normally distributed 

 of the unknown mean,  based upon Student’s-t distribution is optimal.  

observed via Monte Carlo simulation experiments (Singh and Singh (2003) Draft EPA Report) 

that for normally distributed data sets, the modified-t 

method also provide the exact 95% coverage to the population mean.  For normally distributed 

 based upon these three methods are very similar. 

) is normally distributed with the mean 

lognormally distributed with parameters 

 are not the mean and variance of the lognormal random variable, 

are the mean and variance of the log-transformed random variable 

represent the mean and variance of X.  Some  parameters of interest of a two-parameter 

lognormal distribution, LN(

σ π1 2 
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Median (9) 

Variance (10) 

Coefficient of Variation (11) 

Skewness (12) 

3.2.1 MLEs of the Parameters of a Lognormal Distribution 

and sy (=y 

MLEs) of :  and F, respectively. The MLE : and 

F 2 MLEs

1978). Therefore, replacing : and F by their MLEs in equations (8) through (12) will result in 

the MLEs The program 

these MLEs These MLEs are also 

printed on the Excel-type output spread sheets generated by ProUCL. 

3.2.2 F 

For lognormal distributions, note that  ) are the maximum likelihood 

estimators (  of any function of the parameters 

 is obtained by simply substituting these  in place of the parameters (Hogg and Craig, 

 (but biased) of the respective parameters of the lognormal distribution.  

ProUCL computes all of   for lognormally distributed data sets.  

Relationship Between Skewness and Standard Deviation, 

CV (given by equation (11) above) and the 

skewness (given by equation (12)) depend only on F. Therefore, in this User Guide and also in 

ProUCL, the standard deviation, F (Sd y

positive values. The larger is the Sd, the larger are the CV and the skewness. 

F = 0.5, the skewness = 1.75; with F =1.0, the skewness = 6.185; 

with F =1.5, the skewness = 33.468; and with F = 2.0, the skewness = 414.36. Thus, the 

F starts approaching and 

Note that for a lognormal distribution, the 

 of log-transformed variable, Y), or its  MLE, s  (= ) has 

been used as a measure of  skewness of lognormal and also of other skewed data sets with 

For example, for a 

lognormal distribution: with 

skewness of a lognormal distribution becomes unreasonably large as 
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exceeding 2.0. Note that for gamma distribution, skewness is a function of the gamma 

parameter, k. As k decreases, skewness increases. 

It is observed (Singh, Singh, Engelhardt (1997), and Singh et al.  (2002a)) that for smaller 

sample sizes (such as smaller than 50), and for values of F approaching 2.0 (and skewness 

approaching 414), the use of the H-statistic based UCL  results in impractical and  unacceptably 

large values. For simplicity, the various levels of skewness of a positive data set as used in 

ProUCL and in this User Guide are summarized as follows: 

Skewness as a Function of F (or its MLE, s = ), Sd of log(X)y 

Standard Deviation  Skewness 

F  < 0.5 Symmetric to mild skewness 

0.5 # F  < 1.0 Mild Skewness to Moderate Skewness 

1.0 # F < 1.5 Moderate Skewness to High Skewness 

1.5 # F < 2.0 High skewness 

2.0 # F < 3.0 Extremely high skewness 

F $ 3.0 Provides poor coverage 

These values of F (or its estimate, Sd of log-transformed data) are used to define skewness levels 

of lognormal and skewed non-parametric data distributions as used in Tables A2 and A3. 

3.2.3 MLEs of the Quantiles of a Lognormal Distribution 

For highly skewed (e.g., F exceeding 1.5), lognormally  distributed populations, the 

population mean, :1,often exceeds the higher quantiles (e.g., 80%, 90%, 95%) of the 

distribution. Therefore, the computation of these quantiles is also of interest.  This is especially 

true when one may want to use the MLEs of the higher order quantiles (e.g., 95%, 97.5% etc.) as 
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an estimate of the EPC term.  The formulae to compute  these quantiles are briefly described 

here. 

The pth quantile (or 100 pth percentile), xp, of the distribution of a random variable, X, is 

defined by the probability statement, P(X # xp ) = p. If z  is the pth quantile of  the standardp

normal random variable, Z, with P(Z # zp ) = p, then the pth quantile of a lognormal distribution 

is given by xp = exp(: + z F). Thus the MLE of the pth quantile is given byp

^ ^x$ p = exp(: + zpF ) (13) 

For example, on the average, 95% of the observations from a lognormal LN(:, F2) distribution 

would lie below exp(: + 1.65F). The 0.5th quantile of the standard normal distribution is z0.5 = 

0, and the 0.5th quantile (or median) of a lognormal distribution is M = exp(:), which is 

obviously smaller than the mean, :1, as given by equation (8). Also note that the mean, :1, is 

greater than xp if and only if F > 2zp.  For example, when  p = 0.80, zp = 0.845, :1 exceeds x 0.80, 

the 80th  percentile if and only if F > 1.69, and, similarly, the  mean, :1, will exceed the 95th 

percentile if and only if F > 3.29. ProUCL computes the MLEs of the 50% (median),  90%, 

95%, and 99% percentiles of lognormally distributed data sets. For lognormally distributed 

background data sets, a 95% or 99% percentile may be used as an estimate of the background 

threshold value, that is background level contaminant concentration. 

3.2.4 MVUEs of Parameters of a Lognormal Distribution 

Even though the sample AM, , is an unbiased estimator of the population AM, :1, it does 

not have the minimum variance (MV). The MV unbiased estimates (MVUEs) of :1 and of a 

lognormal distribution  are given as follows: 
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 (14) 

(15) 

where the series expansion of the function gn( : ) is given in Bradu and Mundlak (1970), and 

Aitchison and Brown (1976). 

Bradu and Mundlak (1970) give the MVUE :̂ 
1, 

(16) 

Tabulations of this function are also provided by Gilbert (1987). 

of the variance of the estimate 

The square root of the variance given by equation (16) is called the standard error (SE) of the 

:̂ 
1, given by equation (14). MVUE  of the 

distribution is given by 

(17) 

estimate,  Similarly, a median of  a lognormal 

MVUEs given by equations 

(14) through (17). 

3.3 Estimation of the Parameters of a Gamma Distribution 

Since the 

2 k and 2. 

k and 2. 

MLE) of k

For lognormally distributed  data set, ProUCL also computes these 

Next, we consider the estimation of parameters of a gamma distribution.  

estimation of gamma parameters is typically not included in standard statistical text books, this 

has been described in some detail in this User Guide.  The population mean and variance of a 

gamma distribution, G(k, ), are functions of both parameters, In order to estimate the 

mean, one has to obtain estimates of The computation of the maximum likelihood 

estimate (  is quite complex and requires the computation of Digamma and Trigamma 
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functions. Several authors (Choi and Wette, 1969,  Bowman and Shenton, 1988, Johnson, Kotz, 

and Balakrishnan, 1994) have studied the estimation of shape and scale parameters of a gamma 

distribution. The maximum likelihood estimation method to estimate shape and scale parameters 

of a gamma distribution is described below. 

Let  be a random sample (e.g., representing contaminant concentrations) of size n 

from a gamma distribution, G(k,2), with unknown shape and scale parameters k and 2, 

respectively. The log likelihood function (obtained using equation (3)) is given as follows: 

(log L x1 , x2 ,..., x ; k ,θ ) = −  nk  log( θ ) − n log Γ (k ) + (k − 1)∑ log x − 
1 ∑ x ( 18)n i iθ 

To find the MLEs of k and 2, we differentiate the log likelihood function as given in (18) with 

respect to k and 2, and set the derivatives to zero. This results in the following two equations:

1
log(θ$) + 

Γ
Γ 

' (
(k

k 
$

$

)
) 
= 

n ∑ log(xi ) , and (19) 

k$ $θ = 
1 ∑ xi = x (20)
n 

Solving equation (20) for θ$  and substituting the result in equation (19), we get the following 

equation: 

1 Γ
Γ 

' (
(k

k 
$

$

)
) 
− log(k$) = ∑ log(  x ) − log  

 
1 ∑ xi  (21)in n 

There does not exist a closed form solution of equation (21).  This equation needs to be solved 

numerically for k$ , which requires the use of Digamma and Trigamma functions. This is quite 

easy to do using a personal computer.  An estimate of k can be computed  iteratively by using the 

Newton-Raphson (Faires and Burden, 1993) method leading to the following iterative equation: 
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kl = kl −1 − 
log(k$ ) − Ψ (k$ ) − M 

(22)l−1 l−1$ $ 
$1/ k − Ψ ' (k$ l −1 )l −1 

$The iterative process stops when k starts to converge. In practice, convergence is typically 

achieved in fewer than 10 iterations. In equation (22) 

1
M = log( x) − ∑ log( xi ) , andn 

Ψ ( )  = 
d (log  Γ (  )  ) , and Ψ ' (  )  = 

d (Ψ (  )  )k k k k
dk dk 

whereΨ ( )  is the Digamma function, and Ψ ' (  )  is the Trigamma function. In order to obtain k k 
the MLEs of k and 2, one needs to compute the Digamma and Trigamma functions.  Good 

approximate values for these two functions (Choi and Wette, 1969) can be obtained using the 

following approximations.  For k $ 8, these functions are approximated  by 

2k k + [ /Ψ ( ) ≈ log( ) − {1 1  − (1  10  − 1 / (21  k )) / k 2 ] / (6k )} / (2k ) (23) 

and 

Ψ ' (  )  ≈ {1 + {1 + [1 − (1  5  − 1 / (7k ))  /  k 2 ] / (3k )} / (2k )} / k (24)k / 2 

For k < 8, one can use the following recurrence relation to compute these functions: 

k ) −Ψ ( )  = Ψ (k + 1 1 / k , 
(25) 

) +and Ψ ' (k ) = Ψ ' (k + 1 1 / k 2 (26) 
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In ProUCL, equations (23) - (26) have been used to estimate k.  The iterative process requires an 

initial estimate of k. A good starting value for k in this iterative process is given 

/ (by k = 1 2  M ) . Thom (1968) suggested the following approximation as an estimate of k:0 

1  4 
$k ≈  1 + 1 + M  (27)

4 M  3  

$Bowman and Shenton (1988) suggested using k  as given by (27) to be a starting value of k for 

an iterative procedure, calculating k$l at the I th iteration from the following formula: 

$ 
k$ l 

kl −1 {log(k$ l −1) − Ψ (k$ l −1)} 
(28)= 

M 

Both equations (22) and (28) have been used to compute the  MLE of k. It is observed that the 

estimate, k$  based upon Newton-Raphson method as given by equation (22) is in close 

agreement with that obtained using equation (28) with Thom’s approximation as an initial 
$estimate. Choi and Wette (1969) further concluded  that the MLE of k, k , is biased high. A 

bias-corrected (Johnson, Kotz, and Balakrishnan, 1994) estimate of k is given by: 

$k$* = (n − 3)k / n + 2 / (3n) (29) 

In (29), k$ is the MLE of k obtained using either (22) or (28). Substitution of equation (29) in 

equation (20) yields an estimate of the scale parameter, 2  given as follows: 

/θ$* = x k$* (30) 

ProUCL computes simple MLE of k and 2, and also bias- corrected estimates of k and 2. The 

bias-corrected estimate of k as given by (29) has been  used in the computation of the UCLs (as 

given by equations (34) and (35)) of the mean of a gamma distribution. 
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4.	 Methods for Computing a UCL of the Unknown Population Mean  

ProUCL computes a (1-") 100 % UCL of the population mean, :1 using the following five 

parametric and ten non-parametric  methods.  Five of the ten non-parametric methods are based 

upon the bootstrap method.  Modified-t and adjusted central limit theorem adjust for skewness 

for skewed data sets. However, it is noted that (Singh, Singh, and Iaci (2002b) and Singh and 

Singh (2003)) this adjustment is not adequate enough for moderately skewed to highly skewed 

data sets. Some graphs from Singh and Singh (2003) showing coverage comparisons for normal, 

gamma, and lognormal distributions for the various methods are given in Appendix C.  The 

methods as included in ProUCL are listed as follows. 

Parametric Methods 

1.	 Student’s-t statistic - assumes  normality or approximate normality 

2.	 Approximate Gamma UCL - assumes gamma distribution of the data set 

3.	 Adjusted Gamma UCL - assumes gamma distribution of the data set 

4.	 Land’s H-Statistic - assumes lognormality 

5.	 Chebyshev Theorem using the MVUE of the parameters of a lognormal distribution 

(denoted by Chebyshev (MVUE)) - assumes lognormality 

Non-parametric Methods 

1.	 Modified- t statistic - modified for skewed distributions 

2.	 Central Limit Theorem (CLT) - to be used for large samples 

3.	 Adjusted Central Limit Theorem  (Adjusted-CLT) - adjusted for skewed distributions and 

to be used for large samples 
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4.	 Chebyshev Theorem using the sample arithmetic mean and Sd (denoted by Chebyshev 

(Mean, Sd)) 

5.	 Jackknife method  - yields the same result as Student’s-t statistic for the UCL of the 

population mean 

6.	  Standard bootstrap 

7.	  Percentile bootstrap 

8.	  Bias-corrected accelerated (BCA) bootstrap 

9.	  Bootstrap-t 

10.  Hall’s bootstrap

Even though it is well known that some of the non-parametric methods (e.g., CLT method, 

UCL based upon Jackknife method (same as Student’s-t UCL), standard bootstrap and percentile 

bootstrap methods) do not perform well to provide the adequate coverage to the population mean 

of skewed distributions, these methods have been included in ProUCL to satisfy the curiosity of 

all users. 

ProUCL can compute a (1-") 100 % UCL (except for the H-UCL and adjusted gamma UCL) 

of the mean  for any confidence coefficient (1-") value lying in the interval [0.5, 1.0). For the 

computation of the H-UCL, only two confidence levels, namely,  0.90 and 0.95 are supported by 

ProUCL. For adjusted gamma UCL, three confidence levels namely, 0.90, 0.95, and 0.99 are 

supported by ProUCL. An approximate gamma UCL can be computed for any level of 

significance in the interval [0.5,1). Based upon the sample size, n,  skewness, and the data 

distribution, the program also makes  recommendations on how to obtain an appropriate 95% 

UCL of the unknown population mean, :1 . These recommendations are summarized in the 

Recommendations and Summary Section 5 of this appendix.  The various algorithms and 

methods used  to compute a (1-") 100% UCL of the mean as incorporated in ProUCL are 

described in section 4.1. 
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4.1 (1-"

The widely used well-known Student’s-t statistic is given by, 

(31) 

) 100% UCL of the Mean Based Upon Student’s-t Statistic 

where sx

using the raw data. :1, and 

standard deviation, F1

with (n!1) degrees of freedom (df). Let t", n!1 be the upper " th

distribution with (n!1) df . 

(32) 

and  are, respectively, the sample mean and sample standard deviation obtained 

If the data are a random sample from a normal population with mean, 

, then the distribution of this statistic is the familiar Student's-t distribution 

 quantile of the Student's-t 

A (1!")100 % UCL :1, is given by, of the population mean, 

UCL 

UCL

where skewness is given by equation (43). to 

F, Sd of log-transformed data starts approaching and 

exceeding 0.5), the UCL

(2002a), and Singh and Singh (2003)). 

0.95) for higher values of the Sd, F, or its MLE, sy. 

For a normally (when the skewness is about ~0) distributed population, equation (32) provides 

the best (optimal) way of computing a of the mean.  Equation (32) may also be used to 

compute a  of the mean based upon very mildly skewed (e.g., |skewness|<0.5) data sets, 

It should be pointed out that even for mildly  

moderately skewed data sets (e.g., when 

 given by (32) may not provide the desired coverage (e.g., =0.95) to the 

population mean.  This is especially true when the sample size is smaller than 20-25 (Singh et al. 

The situation gets worse (coverage much smaller than 
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4.2 Computation of UCL of the Mean of a Gamma, G(k,2) Distribution 

In statistical literature, even though methods exist to compute a UCL of the mean of a gamma 

distribution (Grice and Bain, 1980, Wong, 1993),  those methods have not become popular due 

to their computational complexity.  Those approximate and adjusted methods depend upon the 

Chi-square distribution and an estimate of the shape parameter, k.  As seen above, computation 

of an MLE of k is quite involved, and this works as a deterrent to the use of a gamma 

distribution-based UCL of the mean.  However, the computation  of a gamma UCL currently 

should not be a problem due to easy availability of personal computers. 

Given a random sample, x x21 , ,...,  x of size n from a gamma, G(k,2) distribution, it can ben 

2shown that 2nX / θ follows a Chi-square distribution, χ , with 2nk degrees of freedom (df). 2nk 

When the shape parameter, k, is known, a uniformly most powerful test of size " of the null 

hypothesis, H0::1$Cs, against the alternative hypothesis, H1: :  < Cs, is to reject H0 if1

/ 2 (α ) / 2nk  . The corresponding (1-")100% uniformly most accurate UCL forX Cs < χ 2nk  

the mean, :1, is then given by the probability statement. 

(2 2 ( ) ≥P nkx  / χ  α  µ  ) = 1 − α (33)2nk 1 

where χ α2 ( )  denotes the " cumulative percentage point of the Chi-square distribution (e.g., υ 

2 2α is the area in the left tail).  That is, if Y follows χ , then P Y ≤ χ α )) = α . In practice,υ ( υ ( 
k is not known and needs to be estimated from data. A reasonable method is to replace k by its 

bias -corrected estimate, k$* , as given by equation (29). This results in the following approximate 

(1-") 100% UCL of the mean, :1 . 

$* 2Approximate -UCL = 2nk x / χ $* (α ) (34)
2nk 
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It should be pointed out that the UCL given by equation (34) is an approximate UCL and 

there is no guarantee that the confidence level of (1-") will be achieved by this UCL. However, 

it does provide a way of computing a UCL of the mean of a gamma distribution. Simulation 

studies conducted in Singh, Singh, and Iaci (2002b) and in Singh and Singh (2003) suggest that 

an approximate gamma UCL thus obtained provides the specified coverage (95%) as the shape 

parameter, k approaches  0.5. Thus when k $ 0.5, one can always use the approximate UCL 

given by (34). This approximation is good even for smaller (e.g., n = 5) sample sizes as shown 

in Singh, Singh, and Iaci (2002b), and in Singh and Singh (2003). 

Grice and Bain (1980) computed an adjusted probability level, $ (adjusted level of 

significance), which can be used in (34) to achieve the specified confidence level of (1-"). For 

" = 0.05 (confidence coefficient of 0.95), " = 0.1, and " = 0.01, these probability levels are given 

below in Table 1 for some values of the sample size n. One can use interpolation to obtain an 

adjusted $  for values of n not covered in the table. The adjusted (1-") 100% UCL of the 

gamma mean, :1 = k2 is given by the following equation. 

$* 2Adjusted -UCL = 2nk x / χ $* (β ), (35)
2nk 

where $ is given in Table 1 for " = 0.05, 0.1, and 0.01. Note that as the sample size, n, becomes 

large, the adjusted probability level, $, approaches the specified level of significance, ". Except 

for the computation of the MLE of k, equations (34) and (35) provide simple Chi-square-

distribution-based UCLs of the mean of a gamma distribution.  It should also be noted that the 

UCLs as given by (34) and (35) only depend upon the estimate of the shape parameter, k, and are 

independent of the scale parameter, 2, and its ML estimate.  Consequently, as expected, it is 

observed that coverage probabilities for the mean associated with these UCLs do not depend 

upon the values of the scale parameter, 2. It should also be noted that gamma UCLs do not 

depend upon the standard deviation of data which gets distorted by the presence of outliers. 
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Thus, outliers will have reduced influence on the computation of the gamma distribution based 

UCLs of the mean, :1. 

Table 1. Adjusted Level of Significance, $ 

n 

" = 0.05 

probability level, $ 

" = 0.1 

probability level, $ 

" = 0.01 

probability level, $ 

5 0.0086 0.0432 0.0000 

10 0.0267 0.0724 0.0015 

20 0.0380 0.0866 0.0046 

40 0.0440 0.0934 0.0070 

0.0500 0.1000 0.0100 

4.3 (1-" (H-UCL) 

The one-sided (1!")100% UCL :1

Land (1971, 1975) is given as follows: 

(36) 

UCL given by 

However, it is noticed that in practice, the H-statistic based results can be 

Singh, and Iaci (2002b)). y, drastically inflates the MVUE of 

) 100% UCL of the Mean Based Upon H-Statistic 

 for the mean, , of a lognormal distribution as derived by 

Tables of H-statistic critical values can be found in Land (1975) and also in Gilbert (1987). 

Theoretically, when the population is lognormal, Land (1971) showed that the  

equation (36) possesses optimal properties and is the uniformly most accurate unbiased 

confidence limit.  

quite disappointing and misleading especially when the data set consists of outliers, or is a 

mixture from two or more distributions (Singh, Singh, and Engelhardt, 1997, 1999), Singh, 

Even a minor increase in the Sd, s
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:1 and the associated H-UCL. The presence of low as well as high data values increases the Sd, 

sy, which in turn H-UCL. 

F approaching 

UCL  results UCL values. 

However, the 

In order to provide the specified 

UCL based 

UCL values. 

UCL Therefore, for positively skewed data sets, it is 

UCL

4.4 (1-") 100% UCL of the Mean Based Upon Modified-t Statistic for Asymmetrical 

Populations 

The (1 !")100 % UCL 

obtained is given by 

(37) 

inflates the Furthermore, it is observed (Singh, Singh, Engelhardt, and 

Nocerino (2002a)) that for samples of sizes smaller than 15-25, and for values of 

1.0 and higher (for moderately skewed to highly skewed data sets), the use of H-statistic based 

in impractical and unacceptably large 

In practice many data sets follow a lognormal as well as gamma model.  

population mean based upon a lognormal model can be significantly greater (often unrealistically 

large) than the population mean based upon a gamma model.  

95% coverage for an inflated mean based upon a lognormal model, the resulting 

upon H-statistic also yield impractical Use of a gamma model results in practical 

estimates (e.g., ) of the population mean.  

recommended to test for a gamma model first.  If data follow a gamma distribution, then the 

 of the mean should be computed using a gamma distribution.  The gamma distribution is 

better suited to model positively skewed environmental data sets. 

Chen (1995), Johnson (1978), Kleijnen, Kloppenburg, and Meeuwsen (1986), and Sutton 

(1993) suggested the use of the modified-t statistic for testing the mean of a positively skewed 

distribution (including the lognormal distribution).  of the mean thus 

where , an unbiased moment estimate (Kleijnen, Kloppenburg, and Meeuwsen, 1986) of the 
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third central 

(38) 

It should be pointed out 

F starts approaching and exceeding 

0.75). Specifically, it is observed that the UCL given by equation (37) the 

:1, when F  starts approaching and exceeding 0.75 

(Singh, Singh, and Iaci (2002b)). 

20-25. F increases. F starts 

approaching and exceeding 1.5, the UCL given by equation (37) does not provide the specified 

4.5 (1-") 100% UCL of the Mean Based Upon the Central Limit Theorem 

(CLT)  n approaches 

:1, and variance, F1 
2/n .xn 

(39) 

moment, is given as follows, 

that this modification for a skewed distribution does not perform well 

even for mildly to moderately skewed data sets (e.g., when 

may not provide  

desired coverage of the population mean, 

This is especially true when the sample size is smaller than 

This small sample size requirement increases as For example, when 

coverage (e.g., 95%), even for samples as large as 100.  Since this method does not require any 

distributional assumptions, it is a non-parametric method. 

The Central Limit Theorem  states that the asymptotic distribution, as 

infinity, of the sample  mean,  is normally distributed with mean, 

More precisely, the sequence of random variables given by 

n

function. Since the CLT

has a standard normal limiting distribution.  In practice, for large sample sizes, , the sample 

mean, , has an approximate normal distribution irrespective of the underlying distribution 

 method requires no distributional assumptions, this is a non-parametric 

method. 
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As noted by Hogg and Craig (1978), if F1 sx, the 

n is still valid. 

(1-") 100% UCL

(40) 

CLT n $ 30. 

skewed, specifically when, F (Sd 

of log-transformed variable) starts exceeding 0.5 (Singh, Singh, Iaci 2002b). In practice for 

CLT

4.6 (1-"

(Adjusted -CLT) 

 is replaced by the sample standard deviation, 

normal approximation for large This leads to the following approximate large 

sample non-parametric   of the mean, 

An often cited rule of thumb for a sample size associated with the  method is 

However, this may not be adequate enough if the population is  

skewed data sets, even a sample as large as 100 is not large enough to provide adequate coverage 

to the mean of skewed populations (even for mildly skewed populations).  A refinement of the 

 approach, which makes an adjustment for skewness as discussed by Chen (1995), is given 

as follows. 

) 100% UCL of the Mean Based Upon the Adjusted Central Limit Theorem 

The "adjusted-CLT" UCL z"

equation (40) is replaced by (Chen, 1995) 

(41) 

(42) 

 is obtained if the standard normal quantile,   in the upper limit of 

Thus, the adjusted (1 !") 100 % UCL :1, is given by for the mean, 

Here , the coefficient of skewness (raw data) is given by 
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Skewness (raw data) = (43) 

where an unbiased estimate of the third moment, is given by equation (38).  This is another 

large sample approximation for the UCL of the mean of skewed distributions.  This is a non­

parametric method as it does not depend upon any of the distributional assumptions. 

As with the modified-t UCL, it is observed that this adjusted-CLT UCL does not provide 

adequate coverage to the population mean when  the population is skewed, specifically when F 

starts approaching and exceeding 0.75 (Singh, Singh, and Iaci (2002b), Singh and Singh (2003)). 

This is especially true when the sample size is smaller than 20-25.  This small sample size 

requirement increases as F increases. For example, when F starts approaching and exceeding 

1.5, the UCL given by equation (42) does not provide the specified coverage (e.g., 95%), even 

for samples as large as 100.  Also, it is noted that the UCL as given by (42) does not provide 

adequate coverage to the mean of a gamma distribution, especially when k # 1.0 and sample size 

is small.  Some graphs from Singh and Singh (2003) showing coverage comparisons for normal, 

gamma, and lognormal distributions for the various methods are given in Appendix C. 

Thus, the UCLs based upon these skewness adjusted methods, such as the Johnson’s 

modified-t and Chen’s adjusted-CLT do not provide the specified coverage to the population 

mean for mildly to moderately skewed (e.g.,  F  in (0.5, 1.0)) data sets, even for samples as large 

as 100 (Singh, Singh, and Iaci (2002b)). The coverage of the population mean provided by 

these UCLs becomes worse (much smaller than the specified coverage) for highly skewed data 

sets. 

4.7 	(1-") 100% UCL of the Mean Based Upon the Chebyshev Theorem (Using the Sample 

Mean and Sample Sd) 
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The Chebyshev inequality can be used to obtain a reasonably conservative but stable 

estimate of the UCL of the mean, :1. The two-sided Chebyshev theorem (Hogg and Craig, 1978) 

states that given a random variable,  X, with finite mean and standard deviation, :1 and F 1, we 

have 

(44) 

This result can be applied on the sample mean,  (with mean, :1 and variance, σ 2 / n ) to1 

obtain a conservative UCL for the population mean, : For example, if the right side of equation 1. 

(44) is equated to 0.95, then k = 4.47, and UCL = is a conservative 95% upper 

confidence limit for the population mean, :1. Of course, this would require the user to know the 

value of F 1. The obvious modification would be to replace F 1 with the sample standard 

deviation, sx, but since this is estimated from data, the result is no longer guaranteed to be 

conservative. In general, the following equation can be used to obtain a (1-") 100% UCL of the 

population mean, :1: 

xUCL = + (1/α)s / n  (45)x 

A slight refinement of equation (45) is given (suggested by S. Ferson) as follows, 

xUCL = + ((1/α) −1)s / n (46)x 

ProUCL computes the Chebyshev (1-") 100% UCL of the population mean using equation 

(46). This UCL is denoted by Chebyshev (Mean, Sd) on the output sheets generated by 

ProUCL. Since this Chebyshev method requires no distributional assumptions about the data set 

under study, this is a non-parametric method.  This UCL may be used as an estimate of the 

upper confidence limit of the population mean, :1 when data are not normal, lognormal, or 

gamma distributed especially when Sd, F (or its estimate, sy) starts approaching and exceeding 
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1.5. Recommendations on its use to a compute an estimate of the EPC term are summarized in 

Section 5. 

4.8 	(1-") 100% UCL of the Mean of a Lognormal Population Based Upon the Chebyshev 

Theorem (Using the MVUE of the Mean and its Standard Error) 

ProUCL uses equation (44) on the MVUEs of the lognormal mean and Sd to compute a UCL 

(denoted by (1-")100 % Chebyshev (MVUE) ) of the population mean of a lognormal population. 

^ ^ ^In general, if :1 is an unknown mean, :1 is an estimate, and F (:1) is an estimate of the standard 

^error of :1, then the following equation, 

^	 ^ ^UCL = :1 +((1/") -1)1/2 F (: )	 (47)1

will give an approximate (1-") 100 % UCL for :1, which should tend to be conservative, but this 

is not assured. For example, for a lognormally distributed data set, a  95% (with " =0.05) 

Chebyshev (MVUE) UCL of the mean can be obtained using the following equation, 

^ ^ ^UCL = :1 + (4.359) F (: )	 (48)1

^ ^ ^where, :1 and F (:1) are given by equations (14) and (16), respectively. Thus, for lognormally 

distributed data sets, ProUCL also uses equation (48) to compute a (1-") 100% Chebyshev 

(MVUE) UCL of the mean.  It should be noted that for lognormally distributed data sets,  some 

recommendations  to compute a 95% UCL of the population mean are summarized in Table A2 

of the Recommendations and Summary Section 5.0.  It should however be pointed out that 

goodness-of-fit test for a gamma distribution should be performed first.  If data follow a gamma 

distribution (irrespective of the lognormality of the data set), then the UCL of mean, :1 should be 

computed using a gamma distribution as described in Section 4.2. 
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From Monte-Carlo results discussed in Singh, Singh, and Iaci (2002b) and in Singh and 

Singh (2003), it is observed that for highly skewed gamma distributed data sets (with k < 0.5), 

the coverage provided by the Chebyshev 95% UCL (given by (46)) is smaller than the specified 

coverage of 0.95. This is especially true when the sample size is smaller than 10-20.  As 

expected, for larger samples sizes, the coverage provided by the 95% Chebyshev UCL is at least 

95%. For larger samples, the Chebyshev 95% UCL will result in a higher (but stable) UCL of 

the mean of positively skewed gamma distributions. 

It is observed (Singh and Singh (2003)) that for moderately skewed to highly skewed 

lognormally distributed data sets (e.g., with F exceeding 1), 95% Chebyshev MVUE UCL does 

not provide the specified coverage to the population mean.  This is true when the sample size is 

less than 10-50. Some graphs from Singh and Singh (2003) showing coverage comparisons for 

normal, gamma, and lognormal distributions for the various methods are given in Appendix C. 

For highly skewed (e.g., F > 2), lognormal data sets of sizes, n less than  50-70, the H-UCL 

results in unstable (impractical values which are orders of magnitude higher than other UCLs) 

unjustifiably large UCL values (Singh et al., (2002a)). For such highly skewed lognormally 

distributed data sets of sizes less than 50 - 70, one may want to use 97.5% or 99% Chebyshev 

MVUE UCL of the mean as an estimate of the EPC term (Singh and Singh (2003)). These 

recommendations are summarized in Table A2. 

It should also be noted that for skewed data sets, the coverage provided by a 95% UCL based 

upon Chebyshev inequality is higher than those based upon the percentile bootstrap method or 

the BCA bootstrap method.  Thus for skewed data sets, the Chebyshev inequality based 95% 

UCL of the mean (samples of all sizes from both lognormal and gamma distributions) performs 

better than the 95% UCL based upon the BCA bootstrap method.  Also, when data are 

lognormally distributed, the coverage provided by Chebyshev MVUE UCL (Singh and Singh 

(2003)) is better than the one based upon Hall’s bootstrap or bootstrap-t method.  This is 
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However, for highly skewed data 

coverage than the Chebyshev MVUE UCL

4.9 (1-") 100% UCL of the Mean Using the Jackknife and Bootstrap Methods 

These two 

There exists in the literature of statistics an extensive array of different bootstrap 

:1. In the ProUCL, 

1993, Many, 1997). 

Let x1, x2, ... , xn n

2 , and let 2, which is a function of all n observations. For 

especially true when the sample size starts exceeding 10-15.  

sets of sizes less than 10-15, it is noted that Hall’s bootstrap method provides slightly better 

 method.  Just as for the gamma distribution, it is 

observed that for lognormally distributed data sets, the coverage provided by Hall’s and 

bootstrap-t methods do not increase much with the sample size. 

Bootstrap and jackknife methods as discussed by Efron (1982) are non-parametric statistical 

resampling techniques which can be used to reduce the bias of point estimates and construct 

approximate confidence intervals for parameters, such as the population mean.  

methods require no assumptions regarding the statistical distribution (e.g., normal, lognormal, or 

gamma) of the underlying population, and can be applied to a variety of situations no matter how 

complicated.  

methods for constructing confidence intervals for the population mean, 

Version 3.0 software package, five bootstrap methods have been incorporated: 

1) the standard bootstrap method, 

2) bootstrap-t method (Efron, 1982, Hall, 1988), 

3) Hall’s bootstrap method (Hall, 1992, Manly, 1997), 

4) simple bootstrap percentile method (Manly, 1997), and 

5) bias-corrected accelerated (BCA) percentile bootstrap method (Efron and Tibshirani, 

 be a random sample of size  from a population with an unknown parameter, 

 be an estimate of 

2, could be the populationexample, the parameter, mean, and a reasonable choice for the 
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4.9.1 (1-"

In the jackknife approach, n 2

Specifically, for each index, I, denote by 2̂  
(I)

2 2̂ ) when the i

n

(49) 

(50) 

(51) 

estimate, , might be the sample mean, 

lognormal population, especially when dealing with lognormal data sets. 

) 100% UCL of the Mean Based Upon the Jackknife Method 

 estimates of  are computed by deleting one observation at a 

time (Dudewicz and Misra (1988)).  , the estimate of 

(computed similarly as th observation is omitted from the original sample of size 

, and let the arithmetic mean of these estimates be given by 

Another choice for is the MVUE of the mean of a 

A quantity known as the ith "pseudo-value" is defined by 

2 is given by the following equation. 

2̂

J(2̂ ), is 

given by 

(52) 

The jackknife estimator of 

If the original estimate  is biased, then under certain conditions, part of the bias is removed by 

the jackknife method, and an estimate of the standard error of the jackknife estimate, 

Next, consider the t-type statistic given by 
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(53) 

n!1 degrees of 

(1!")100% UCL for 2, 

(54) 

n, is large, then the upper "th t-quantile in equation (54) can be replaced with 

the corresponding upper " z". Observe, also, that when 2̂  is the 

,

 sx/n1/2, and the UCL in equation (54) 

t- statistic based UCL given by equation (32). ProUCL uses the jackknife 

, which in turn translates equation (54) to the 

UCL given by equation (32). 

of those 

UCL UCL based upon the Student’s-t 

statistic as given by equation (32). 

4.9.2 (1-") 100% UCL of the Mean Based Upon Standard Bootstrap Method 

In n

2̂  
I, of 2

2̂  . A 

illustrated by application to the population :

The t-type statistic given by (53) has an approximate Student's-t distribution with 

freedom, which can be used to derive the following approximate 

If the sample size, 

th standard normal quantile, 

sample mean,   then the jackknife estimate is also the sample  mean,  , and the estimate 

of the standard error given by equation (52) simplifies to 

reduces to the familiar 

estimate as the sample mean leading to 

This method has been included in ProUCL to satisfy the curiosity 

users who do not recognize that this jackknife method (with sample mean as the 

estimator) yields a  of the population mean identical to the 

bootstrap resampling  methods, repeated samples of size  are drawn with replacement 

from a given set of observations.  The process is repeated a large number of times (e.g., 2000 

times), and each time an estimate,  is computed.  The estimates thus obtained are used to 

compute an estimate of the standard error of  description of the bootstrap method, 

mean, 

follows.  

1, and the sample mean, , is given as 
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Step 1. Let (xi1, xi2, ... , xin) represent the ith n

original data set (x1, x2, ..., xn). x 
_ 

i. 

Step 2. N

 . 

, of the N . The 

 sample of size  with replacement from the 

Then compute the sample mean and denote it by 

Perform Step 1 independently  times (e.g., 1000-2000), each time calculating a new 

estimate.  Denote those estimates by The bootstrap estimate of the 

population mean is the arithmetic mean,  estimates 

, is given by,bootstrap estimate of the standard error of the estimate, 

(55) 

2

:1 and . 

2̂  
I , for each of the N The general 

, N The 

difference, 2̂

standard error of 2̂  is given by 

(56) 

The (1!")100% standard bootstrap UCL  for 2 is given by 

(57) 

UCL by using the population AM AM, 

respectively given by :1 and . It is observed that the UCL obtained using the standardx 

UCL obtained using the Student’s-t statistic as given by 

If some parameter,  (say, the population median), other than the mean is of concern with an 

associated estimate (e.g., the sample median), then the same steps described above could be 

applied with the parameter and its estimate used in place of Specifically, the estimate, 

 , would be computed, instead of  bootstrap samples.  

bootstrap estimate, denoted by is the arithmetic mean of the  estimates.  

, provides an estimate of the bias of the estimate, , and an estimate of the 

ProUCL computes the standard bootstrap  and sample 

bootstrap method is quite similar to the 
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equation (32), and, as such, does not adequately adjust for skewness. For skewed data sets, the 

coverage provided by standard bootstrap UCL is much lower than the specified coverage. 

Note: For lognormally distributed data sets, one may want to use the jackknife and  the standard 

bootstrap methods on the MVUE of the population mean, :1, given by equation (14). However, 

the performance of these methods have not been studied. Also,  these methods have not been 

included in ProUCL. 

4.9.3 (1-") 100% UCL of the Mean Based Upon Simple Percentile Bootstrap Method 

Bootstrap resampling of the original data set is used to generate the bootstrap distribution of 

the unknown population mean (Manly, 1997). In this method, xi  , the sample mean is  computed 

from the ith resampling (i=1,2,..., N) of the original data. These xi , i:=1,2,...,N are arranged in 

ascending order as x( )  ≤ x(2) ≤ ....≤ x( N ) . The (1-")100% UCL of the population mean, :  is1 1

given by the value, that exceeds the (1-")100% of the generated mean values.  The 95% UCL of 

the mean is the 95th percentile of the generated means and is given by: 

th95% Percentile − UCL = 95 % ;i = 1 2 xi ,  ,...,  N (58) 

For example, when N=1000, a simple bootstrap 95% percentile-UCL is given by the 950th 

ordered mean value given by .x(950) 

Singh and Singh (2003) observed that for skewed data sets, the coverage provided by this 

simple percentile bootstrap method is much lower than the coverage provided by the bootstrap-t 

and Hall’s bootstrap methods.  It is observed that for skewed (lognormal and gamma) data sets, 

the BCA bootstrap method performs slightly better than the simple percentile method. Some 

graphs from Singh and Singh (2003) showing coverage comparisons for normal, gamma, and 

A-39 



lognormal distributions for the various methods are provided in Appendix C. 

4.9.4	 (1-") 100% UCL of the Mean Based Upon Bias - Corrected Accelerated (BCA) 

Percentile Bootstrap Method 

The BCA bootstrap method is also a percentile bootstrap method which adjusts for bias in 

the estimate (Efron and Tibshirani, 1993, Manly, 1997).  The performance of this method for 

skewed distributions (e.g., lognormal and gamma) is not well studied.  It was conjectured that 

the BCA method would perform better than the various other methods.  Singh and Singh (2003) 

investigated and compare its performance (in terms of coverage probabilities) with parametric 

methods and other bootstrap methods.  For skewed data sets, this method does represent a slight 

improvement (in terms of coverage probability) over the simple percentile method.  However, 

this improvement is not adequate enough and yields UCLs with coverage probability much lower 

than the specified coverage of 0.95. The BCA upper confidence limit of intended (1-") 100% 

coverage is given by the following equation: 

(α 2 )BCA − UCL = x ,	 (59) 

where 	x (α 2 ) is the " 2 100th percentile of the distribution of the x i  = 1 2i ;  ,  ,...,  N . For example, 

when N=2000, x (α 2 ) = (" 2N)th ordered statistic of x i  = 1 2i ;  ,  ,...,  N given by x(α 2 N ) . Here " 2 

is given by the following probability statement. 

z$0 + z (1−α ) 

α = Φ (z$0 + 
1 − a z0 + z (1−α ) )

) (60)2	 $( $ 

)	 thWhere M(.) is the standard normal cumulative distribution function and z(1-"  is the 100*(1-")

percentile of a standard normal distribution.  For example, z (0.95) = 1.645, and M(1.645) = 0.95. 
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Also in equation (60), z$0 (bias correction)and a$ (acceleration factor) are given as follows. 

z$0 = Φ − 1 (
#( xi

N 
< x )

) (61) 

M

where M-1 (.) is the inverse function of a standard normal cumulative distribution function, e.g., 
-1 (0.95)=1.645. a$  is the acceleration factor and is given by the following equation. 

)3∑ ( x x− − i a$ = .− − i 
2 1  5  6[∑ (x x  ) ] 

(62) 

where summation in (62) is being carried from i = 1 to I = n, the sample size. x is the sample 

mean based upon all n observations, and is the mean of (n-1) observations without the ithx− i 

observation, i = 1,2,...,n. 

Singh and Singh (2003) observed that for skewed data sets (e.g., gamma and lognormal), the 

coverage provided by this BCA percentile method is much lower than the coverage provided by 

the bootstrap-t and Hall’s bootstrap methods.  This is especially true when the sample size is 

small.  The BCA method does provide an improvement over the simple percentile method and 

the standard bootstrap method.  However, bootstrap-t and Hall’s bootstrap methods perform 

better (in terms of coverage probabilities) than the BCA method.  For skewed data sets, the BCA 

method also performs better than the modified-t UCL. For gamma distributions, the coverage 

provided by BCA 95% UCL approaches 0.95 as the sample size increases.  For lognormal 

distributions, the coverage provided by the BCA 95% UCL is much lower than the specified 

coverage of 0.95. 

4.9.5 (1-") 100% UCL of the Mean Based Upon Bootstrap-t Method 

Another variation of the bootstrap method, called the "bootstrap-t" by Efron (1982), is a non-
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quantity, t statistic, given by equation (31). 

Specifically, in Steps 1 and 2 described above in Section 4.9.2, if 

parametric method which uses the bootstrap methodology to estimate quantiles of the pivotal 

Rather than using the quantiles of the familiar 

Student’s-t statistic, Hall (1988) proposed to compute estimates of the quantiles of the statistic 

given by equation (31) directly from the data.  

 is the sample mean 

and scomputed from the original data, and x, I are the sample mean and sample standard 

i N quantities 

t(1) # t(2) t(N). The 

" th t", B = t("N). For 

N t(50), would be 

Then 

a (1-") 100% UCL 

(63) 

deviation computed from the th resampling of the original data, the 

are computed and sorted, yielding ordered quantities, # @@@ # 

estimate of the lower  quantile of the pivotal quantity in equation (31) is  

example, if  = 1000 bootstrap samples are generated, then the 50th ordered value, 

the bootstrap estimate of the lower 0.05th quantile of the pivotal quantity in equation (31).  

of the population mean based upon the bootstrap-t method is given by 

Note the ‘-‘ sign in equation (63). UCL based upon the 

. It is observed that the UCL based upon the 

than the other UCLs obtained using the Student’s- t, 

-CLT This is specially true for 

skewed data sets. 

UCLs

For highly skewed (k < 0.1 or F > 2.5-3.0) 

UCL, or Chebyshev inequality UCL) UCL It is noted that for 

ProUCL computes the Bootstrap-t  

quantiles obtained using the sample mean, 

bootstrap-t method is more conservative  

modified -t, adjusted , and the standard bootstrap methods.  

This method seems to adjust for skewness to some extent. 

It is observed that for skewed data sets (e.g., gamma, lognormal), the 95% UCL based upon 

bootstrap-t method performs better than the 95%  based upon the simple percentile and the 

BCA percentile methods (Singh and Singh (2003)).  

data sets of small sizes (e.g., n < 10) the bootstrap-t method performs better than other (adjusted 

gamma  computation methods.  
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gamma distribution, the performances (coverages provided by the respective UCLs) of bootstrap-

t and Hall’s bootstrap methods are very similar.  It is also noted that for larger samples, these two 

methods (bootstrap-t and Hall’s bootstrap) approximately  provide the specified 95% coverage to 

the mean, k2, of the gamma distribution.  For gamma distributed data sets, the coverage provided 

by a bootstrap-t (and Hall’s bootstrap UCL) 95% UCL approaches 95% as sample size increases 

for all values of k considered (k = 0.05-5.0) in Singh and Singh (2003). However, it is noted that 

the coverage provided by these two bootstrap methods is slightly lower than 0.95 for samples of 

smaller sizes. 

For lognormally distributed data sets, the coverage provided by bootstrap-t  95% UCL is a 

little bit lower than the coverage provided by the 95% UCL based upon Hall’s bootstrap method. 

However, it should be noted that for lognormally distributed data sets, for samples of all sizes, 

the coverage provided by these two methods (bootstrap-t and Hall’s bootstrap) is significantly 

lower than the specified 0.95 coverage. This is especially true for moderately skewed  to highly 

skewed (e.g., F>1.0) lognormally distributed data sets.  This can be seen from the graphs 

presented in Appendix C. 

It should be pointed out that the bootstrap-t and Hall’s bootstrap methods sometimes result in 

unstable, erratic, and unreasonably inflated UCL values especially in the presence of outliers 

(Efron and Tibshirani, 1993). Therefore, these two methods should be used with caution. In case 

these two methods result in erratic and inflated UCL values, then an appropriate Chebyshev 

inequality based UCL may be used to estimate the EPC term for non-parametric skewed data 

sets. 

4.9.6 (1-") 100% UCL of the Mean Based Upon Hall’s Bootstrap Method 

Hall (1992) proposed a bootstrap method which adjusts for bias as well as skewness. This 
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method has been included in UCL guidance document (EPA 2002).  For highly skewed data sets 

(e.g., LN(5,4)), it performs slightly better (higher coverage) than the bootstrap-t method.  In this 

method,  xi , sx, I, and k$3i , the sample mean, sample standard deviation, and sample skewness 

are computed from the ith resampling (I = 1, 2,..., N) of the original data.  Let x  be the sample 

mean, sx be the sample standard deviation, and k$3  be the sample skewness (as given by 

equation (43)) computed from the original data.  The quantities Wi and Qi given as follows are 

computed for each of the N bootstrap samples, where 

( )  =W + k  Wi / 3 + k  W  /  27  + k̂ /(6n).Wi = (x − x) / s , and Q W  ˆ 2 ˆ2 3 
i  xi  i i i 3i 3i i 3i 

The quantities Q W( )  given above are arranged in ascending order. For a specified (1-")i i

confidence coefficient, compute the ("N)th ordered value, qα  of quantities Q W( )  . Next,i i

compute W q( ) using the inverse function, which is given as follows:α 

W q  ˆ 1/ 3 ( )  = 3 

 (1+ k̂3 (qα − k3 /(6n))) −1 / k̂3. (64)α  

In equation (64), k$3  is computed using equation (43).  Finally, the (1-") 100% UCL of the 

population mean based upon Hall’s bootstrap method (Manly, 1997) is given as follows: 

x ( )  *  s . (65)UCL = −W q α x 

For gamma distribution, Singh and Singh (2003) observed that the coverage probabilities 

provided by the 95% UCLs based upon bootstrap-t and Hall’s bootstrap methods are in close 

agreement.  For larger samples these two methods approximately  provide the specified 95% 

coverage to the population mean, k2 of a gamma distribution.  For smaller sample sizes (from 

gamma distribution), the coverage provided by these two methods is slightly lower than the 

specified level of 0.95. For both lognormal and gamma distributions, these two methods 
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(bootstrap-t and Hall’s bootstrap) perform better than the other bootstrap methods, namely, the 

standard bootstrap method,  simple percentile, and  bootstrap BCA percentile methods.  This can 

be seen from graphs presented in Appendix C. 

Just like the gamma distribution, for lognormally distributed data sets, it is noted that Hall’s 

UCL and bootstrap-t UCL provide similar coverages.  However, for highly skewed lognormal 

data sets, the coverages based upon Hall’s method and bootstrap-t method are significantly lower 

than the specified 0.95 coverage (Singh and Singh ( 2003)). This is true even in samples of 

larger sizes(e.g., n=100). For lognormal data sets, the coverages provided by Hall’s bootstrap 

and bootstrap-t methods do not increase much with the sample size, n.  For highly skewed (e.g.,

σ  > 2.0) data sets of small sizes (e.g., n < 15), Hall’s bootstrap method (and also bootstrap-t $

method) performs better than Chebyshev UCL, and for larger samples, Chebyshev UCL performs 

better than Hall’s bootstrap method.  Similar to the bootstrap-t method, it should be noted that 

Hall’s bootstrap method sometimes  results in unstable, inflated, and erratic values especially in 

the presence of outliers (Efron and Tibshirani, 1993). Therefore, these two methods should be 

used with caution. If outliers are present in a data set, then a 95% UCL of the mean should be 

computed using alternative UCL computation methods. 

5. Recommendations and Summary 

This section describes the recommendations and summary on the computation of a 95% UCL 

of the unknown population arithmetic mean, :1, of a contaminant data distribution without 

censoring. These recommendations are based  upon the findings of Singh, Singh, and 

Engelhardt (1997, 1999); Singh et al. ( 2002a); Singh, Singh, and Iaci (2002b); and Singh and 

Singh (2003). Recommendations have been summarized for: 1) normally  distributed data sets, 

2) gamma distributed data sets, 3) lognormally distributed data sets, and 4) data sets which are 

non-parametric and do not follow any of the three distributions included in ProUCL. 
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For skewed parametric as well as non-parametric data sets, there is no simple solution to 

compute a 95% UCL of the population mean, : Singh et al. (2002a), Singh, Singh, and Iaci1 . 

(2002b), and Singh and Singh (2003) noted that the UCLs based upon the skewness adjusted 

methods, such as the Johnson’s modified-t and Chen’s adjusted-CLT do not provide the specified 

coverage (e.g., 95%) to the population mean even for mildly to  moderately  skewed (e.g.,σ in$

interval [0.5, 1.0)) data sets for samples of size as large as 100.  The coverage of the population 

mean by these skewness-adjusted UCLs  gets poorer (much smaller than the specified coverage 

of 0.95) for highly skewed data sets, where the skewness levels are defined in Section 3.2.2 as a 

$function ofσ or σ  (standard deviation of log-transformed data). 

5.1 	Recommendations to Compute a 95% UCL of the Unknown Population Mean, :1 Using 

Symmetric and Positively Skewed Data Sets 

Some graphs from Singh and Singh (2003) showing coverage comparisons for normal, 

gamma, and lognormal distributions for the various methods considered are given in Appendix 

C. The user may want to consult those graphs for a better understanding of the summary and 

recommendations made in this section. 

5.1.1 Normally or Approximately Normally Distributed Data sets 

As expected, for a normal distribution, N( :1, F1
2 ), Student’s-t statistic, modified- t statistic, 

and bootstrap-t 95% UCL computation methods result in UCLs which provide coverage 

probabilities close to the nominal level, 0.95.  Contrary to the general conjecture, the bootstrap, 

BCA method does not perform better than the other bootstrap methods (e.g., bootstrap-t). 

Actually, for normally distributed data sets, the coverages for the population mean, :  provided1

by the UCLs based upon the BCA method and Hall’s bootstrap method are lower than the 

specified 95% coverage. This is especially true when the sample size, n is less than 30. For 
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details refer to Singh and Singh (2003). 

•	 For normally distributed data sets, a UCL based upon the Student’s-t statistic as given by 

equation (32) provides the optimal UCL of the population mean.  Therefore, for normally 

distributed data sets, one should always use a 95% UCL based upon the Student’s-t statistic. 

•	 The 95% UCL of the mean given by equation (32) based upon Student’s-t statistic may also 

be used when the Sd, sy of the log-transformed data is less than 0.5, or when the data set 

approximately follows a normal distribution.  A data set is approximately normal when the 

normal Q-Q plot displays a linear pattern (without outliers and jumps) and the resulting 

correlation coefficient is high (e.g., 0.95 or higher). 

•	 Student’s-t UCL may also be used when the data set is symmetric (but possibly not normally 

distributed). A measure of symmetry (or skewness) is k$3 which is given by equation (43). 

A value of k$3 close to zero (e.g., if absolute value of skewness is roughly less than 0.2 or 

0.3) suggests approximate symmetry.  The approximate  symmetry of a data distribution can 

also be judged by looking at the histogram of the data set. 

5.1.2 Gamma Distributed Skewed Data Sets 

In practice, many skewed data sets can be modeled both by a lognormal distribution and a 

gamma distribution especially when the sample size is smaller than 70-100.  As well known, the 

95% H-UCL of the mean based upon a lognormal model often results in unjustifiably large and 

impractical 95% UCL value. In such cases, a gamma model, G(k,2) may be used to compute a 

reliable 95% UCL of the unknown population mean, :1. 

•	 Many skewed data sets follow a lognormal as well as a gamma distribution.  It should be 
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noted that the population means based upon the two models can differ significantly.


Lognormal model based upon a highly skewed (e.g., σ ≥ 2 5  )data set will have an
$ . 

unjustifiably large and impractical population mean, :  and its associated UCL. The gamma 1

distribution is better suited to model positively skewed environmental data sets. 

One should always first check if a given skewed data set follows a gamma distribution. If a 

data set does follow a gamma distribution or an approximate gamma distribution, one should 

compute a 95% UCL based upon a gamma distribution.  Use of highly skewed (e.g.,σ ≥ 2.5-$

3.0) lognormal distributions should be avoided.  For such highly skewed lognormally 

distributed data sets which can not be modeled by a gamma or an approximate gamma 

distribution, non-parametric UCL computation methods based upon the Chebyshev 

inequality may be used. 

•	 The five bootstrap methods do not perform better than the two gamma UCL computation 

methods.  It is noted that the performances (in terms of coverage probabilities)  of bootstrap-t 

and Hall’s bootstrap methods are very similar.  Out of the five bootstrap methods, bootstrap-t 

and Hall’s bootstrap methods perform the best (with coverage probabilities for the population 

mean closer to the nominal level of 0. 95).  This is especially true when skewness is quite 

high (e.g., k$  < 0.1) and sample size is small (e.g., n < 10-15).  This can be seen from graphs 

given in Appendix C. 

•	 The bootstrap BCA method does not perform better than the Hall’s method or the bootstrap-t 

method.  The coverage for the population mean, :   provided by the BCA method is much 1

lower than the specified 95% coverage. This is especially true when the skewness is high 

(e.g., k$ <1) and sample size is small (Singh and Singh (2003)). 

•	 From the results presented in Singh, Singh, and Iaci (2002b) and in Singh and Singh (2003), 
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it is concluded that for data sets which follow a gamma distribution, a 95% UCL of the mean 

should be computed using the adjusted gamma UCL when the shape parameter, k is: 0.1 # k 

< 0.5, and for values of k $ 0.5, a 95% UCL can be computed using an approximate gamma 

UCL of the mean, :1. 

•	 For highly skewed gamma distributed data sets with k < 0.1, bootstrap-t UCL or Hall’s 

bootstrap (Singh and Singh (2003)) may be used when the sample size is smaller than 15, and 

the adjusted gamma UCL should be used when sample size starts approaching and exceeding 

15. The small sample size requirement increases as skewness increases (that is as k


decreases, the required sample size, n increases).


•	 The bootstrap-t and Hall’s bootstrap methods should be used with caution as some times 

these methods yield erratic, unreasonably inflated,  and unstable UCL values especially in the 

presence of outliers. In case Hall’s bootstrap and bootstrap-t methods yield inflated  and 

erratic UCL results, the 95% UCL of the mean should be computed based upon the adjusted 

gamma 95% UCL. ProUCL prints out a warning message associated with the recommended 

use of the UCLs based upon the bootstrap-t method or Hall’s bootstrap method. 

These recommendations for the use of gamma distribution are summarized in Table A1. 

Table A1. 


Summary Table for the Computation of a 95% UCL of the Unknown Mean, µ1


of a Gamma Distribution


k$ Sample Size, n Recommendation 

$ .k ≥ 05  For all n Approximate Gamma  95%UCL 

01 0 5 . $ .≤ k < For all n Adjusted Gamma 95% UCL 
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$ .k < 01 n < 15 
95% UCL Based Upon Bootstrap-t 

or Hall’s Bootstrap Method * 

$ .k < 01 n $ 15 
Adjusted Gamma 95% UCL if available, 

otherwise use Approximate Gamma 95% UCL 

* In case bootstrap-t or Hall’s bootstrap methods yield erratic, inflated, and unstable UCL values, 

the UCL of the mean should be computed using adjusted gamma UCL. 

5.1.3 Lognormally Distributed Skewed Data Sets 

For lognormally, LN(:, F2) distributed data sets, the H-statistic based UCL does provide the 

specified 0.95 coverage for the population mean for all values of F. However, the H-statistic 

often results in unjustifiably large UCL values which do not occur in practice. This is especially 

true when skewness is high (e.g., F > 2.0). The use of a lognormal model unjustifiably 

accommodates large and impractical values of the mean concentration and its UCLs. The 

problem associated with the use of a lognormal distribution is that the population mean, :1, of a 

lognormal model becomes impractically large for larger values of F which in turn results in 

inflated H-UCL of the population mean, :1. Since the population mean of a lognormal model 

becomes too large, none of the other methods except for H-UCL provides the specified 95% 

coverage for that inflated population mean, :1. This is especially true when the sample size is 

small and skewness is high. For extremely highly skewed data sets (with F > 2.5-3.0) of smaller 

sizes (e.g., < 70-100), the use of a lognormal distribution based H-UCL should be avoided (e.g., 

see Singh et al. (2002a), Singh and Singh (2003)). Therefore, alternative UCL computation 

methods such as the use of a gamma distribution or use of a UCL based upon non-parametric 

bootstrap methods or Chebyshev inequality based methods are desirable. 

$As expected for skewed (e.g., with F (or σ ) $ 0.5) lognormally distributed data sets, the 

Student’s-t UCL, modified-t UCL, adjusted -CLT UCL, standard bootstrap method all fail to 
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provide the specified 0.95 coverage for the unknown population mean for samples of all sizes. 

Just like the gamma distribution, the performances (in terms of coverage probabilities) of 

bootstrap-t and Hall’s bootstrap methods are very similar (Singh and Singh (2003)).  However, it 

is noted that the coverage provided by Hall’s bootstrap (and also by bootstrap-t) is much lower 

than the specified 95% coverage for the population mean, :1, for samples of all sizes of varying 

skewness. Moreover, the coverages provided by Hall’s bootstrap or bootstrap-t method do not 

increase much with the sample size. 

Also the coverage provided by the BCA method is much lower than the coverage provided 

by Hall’s method or bootstrap-t method.  Thus the BCA bootstrap method can not be 

recommended to compute a 95% UCL of the mean of a lognormal population.  For highly 

skewed data sets of small sizes (e.g., < 15) with F exceeding 2.5-3.0, even the Chebyshev 

inequality based UCLs fail to provide the specified 0.95 coverage for the population. However, 

as the sample size increases, the coverages provided by the chebyshev inequality based UCLs 

also increase. For such highly skewed data sets ( σ > 2 5  ) of sizes less than 10-15, Hall’s$ . 

bootstrap or bootstrap-t methods provide larger coverage than the coverage provided by the  99% 

Chebyshev (MVUE) UCL. Therefore, for highly skewed lognormally distributed data sets of 

small sizes, one may use Hall’s method to compute an estimate of the EPC term.  The small 

sample size requirement increases with F. Graphs from Singh and Singh (2003) showing 

coverage comparisons for normal, gamma, and lognormal distributions for the various methods 

are given in Appendix C. 

It should be noted that even a small increase in the  Sd, F,  increases skewness considerably. 

For example,  for a lognormal distribution, when F  = 2.5, skewness ~ 11825.1; and when F  = 3, 

skewness ~ 729555. In practice, the occurrence of such highly skewed data sets (e.g., F $ 3) is 

not very common.  Nevertheless, these highly skewed data sets can arise occasionally and, 

therefore, require separate attention. Singh et al. (2002a) observed that when the Sd, F, starts 
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approaching 2.5 (that is, for lognormal data,  when CV > 22.74 and skewness > 11825.1), even 

a 99% Chebyshev (MVUE) UCL fails to provide the desired 95% coverage for the population 

mean, :1. This is especially true when the sample size, n is smaller than 30.  For such 

extremely skewed  data sets, the larger of the two UCLs: the  99% Chebyshev (MVUE) UCL and 

the non-parametric  99% Chebyshev (Mean, Sd) UCL, may be used as an estimate of the EPC. 

It is also noted that, as the sample size increases, the H-UCL starts behaving in a stable 

manner.  Therefore, depending upon the Sd, F (actually its MLE ), for lognormally 

distributed data sets, one can use the H-UCL for samples of larger sizes such as greater than 

70-100. This large sample size requirement increases  as the Sd, , increases, as can be seen in

Table A2. ProUCL can compute an H-UCL for samples of sizes up to 1000.  For lognormally 

distributed data sets of smaller sizes, some alternative methods to compute a  95% UCL of the 

population mean, :   are summarized in Table  A2.1

Furthermore, it is noted that for larger sample sizes (e.g., n > 150), the H-UCL becomes even 

smaller than the Student’s-t UCL and various other UCLs. It should be pointed out that the large 

sample behavior of H-UCL has not been investigated rigorously. For confirmation purposes 

(that is H-UCL does provide the 95% coverage for larger samples also), it is desirable to conduct 

such a study for samples of larger sizes. 

Since skewness (as defined in Section 3.2.2) is a function of F (or σ$ ), the recommendations 

for the computation of the UCL of the population mean are also summarized in Table A2 for 

various values of the MLE of F and the sample size, n.  Here is an MLE  of F, and is given 

by the Sd of log-transformed data given by equation (2).  Note that Table A2 is applicable to the 

computation of a 95% UCL of the population mean based upon lognormally distributed data sets 

without non-detect observations. A method to compute a 95% UCL of the mean of a lognormal 

distribution is summarized as follows: 
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•	 Skewed data sets should be first tested for a gamma distribution.  For lognormally distributed 

data sets (which can not be modeled by a gamma distribution), the method as summarized in 

Table A2 may be used to compute a 95% UCL of the mean. 

•	 Specifically, for highly skewed (e.g., 1.5 < F # 2.5) data sets of small sizes (e.g., n # 50-70), 

the EPC term may be estimated by using a 97.5% or 99% MVUE Chebyshev UCL of the 

population mean. For larger samples (e.g., n > 70), H-UCL may be used to estimate the EPC. 

•	 For extremely highly skewed (e.g., F > 2.5) lognormally distributed data sets, the population 

mean becomes unrealistically large.  Therefore, the use of H-UCL should be avoided 

especially when the sample size is less than100.  For such highly skewed data sets, Hall’s 

bootstrap UCL may be used when the sample size is less than 10-15 (Singh and Singh 

(2003)). The small sample size requirement increases with σ . For example, n = 10 is $

$	 $considered small when σ  = 3.0, and n = 15 is considered small when σ = 3.5. 

•	 Hall’s bootstrap methods should be used with caution as some times it yields erratic, inflated, 

and unstable UCL values, especially in the presence of outliers.  For these highly skewed 

data sets of size, n (e.g., less than 10-15), in case Hall’s bootstrap method yields an erratic 

and inflated UCL value, the 99% Chebyshev MVUE UCL may be used to estimate the EPC 

term. ProUCL displays a warning message associated with the recommended use of Hall’s 

bootstrap method. 
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Table A2. Summary Table for the Computation of a 

95% UCL of the Unknown  Mean, :1 of a Lognormal Population 

Sample Size, n Recommendation

 < 0.5 For all n Student’s-t, modified-t, or H-UCL 

0.5 #  < 1.0 For all n H-UCL 

1.0 #  < 1.5 
n < 25 95% Chebyshev (MVUE) UCL 

n $ 25 H-UCL 

n < 20 99% Chebyshev (MVUE) UCL 

1.5 #  < 2.0 
20 # n < 50 95% Chebyshev (MVUE) UCL 

n $ 50 H-UCL 

n < 20 99% Chebyshev (MVUE) UCL 

1.5 #  < 2.0 
20 #  n < 50 97.5% Chebyshev (MVUE) UCL 

50 # n < 70 95% Chebyshev (MVUE) UCL 

n $ 70 H-UCL 

n < 30 
Larger of (99% Chebyshev (MVUE) UCL or 

99% Chebyshev (Mean, Sd)) 

2.5 #  < 3.0 30 # n < 70 97.5% Chebyshev (MVUE) UCL 

70 # n < 100 95% Chebyshev (MVUE) UCL 

n $ 100 H-UCL 

n < 15 Hall’s bootstrap method * 

3.0 # # 3.5 
15# n < 50 

Larger of (99% Chebyshev (MVUE) UCL, 

99% Chebyshev(Mean, Sd)) 

50 # n < 100 97.5% Chebyshev (MVUE) UCL 

100 # n < 150 95% Chebyshev (MVUE) UCL 

n $ 150 H-UCL

 > 3.5$σ For all n Use non-parametric methods * 

* In case Hall’s bootstrap method yields an erratic unrealistically large UCL value, then the UCL 

of the mean may be computed based upon the Chebyshev inequality. 
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5.1.4 	 Data Sets Without a Discernable Skewed Distribution - Non-parametric Skewed 

Data Sets 

The use of gamma and lognormal distributions as discussed here will cover a wide range of 

skewed data distributions. For skewed data sets which are neither gamma nor lognormal, one can 

use a non-parametric Chebyshev UCL or Hall’s bootstrap UCL (for small samples) of the mean 

to estimate the EPC term. 

•	 For skewed non-parametric data sets with negative and zero values, use a 95% Chebyshev 

(Mean, Sd) UCL for the population mean, :1. 

For all other non-parametric data sets with only positive values, the following method may be 

used to estimate the EPC term. 

$•	 For mildly skewed data sets with σ # 0.5, one can use Student’s-t statistic or modified-t 

statistic to compute a 95% UCL of mean,  :1. 

•	 For non-parametric  moderately skewed data sets (e.g., F  or its estimate,  in the interval 

(0.5, 1]), one may use a 95% Chebyshev (Mean, Sd) UCL of the population mean, :1. 

•	 For non-parametric moderately to highly  skewed data sets (e.g., in the interval (1.0, 

2.0]), one may use a 99% Chebyshev (Mean, Sd) UCL or 97.5% Chebyshev (Mean, Sd) UCL 

of the population mean, :1, to obtain an estimate of the EPC term. 

•	 For highly skewed to extremely highly skewed data sets with in the interval (2.0, 3.0], one 

may use Hall’s UCL or 99% Chebyshev (Mean, Sd) UCL to compute the EPC term. 
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•	 Extremely skewed non-parametric data sets with F exceeding 3.0, provide poor coverage. 

For such highly skewed data distributions, none of the methods considered provide the 

specified 95% coverage for the population mean, :1. The coverages provided by the various 

methods decrease as F increases. For such data sets of sizes less than 30, a 95% UCL can be 

computed based upon Hall’s bootstrap method or bootstrap-t method.  Hall’s bootstrap 

method provides highest coverage (but less than 0.95) when the sample size is small.  It is 

noted that the coverage for the population mean provided by Hall’s method (and bootstrap-t 

method) does not increase much as the sample size, n increases.  However, as the sample size 

increases, coverage provided by 99% Chebyshev (Mean, Sd) UCL  method also increases. 

Therefore, for larger samples, a UCL should be computed based upon  99% Chebyshev 

(Mean, Sd) method.  This large sample size requirement increases as σ increases. These$

recommendations are summarized in Table A3. 
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Table A3. 

Summary Table for the Computation of a 95% UCL of the Unknown Mean,µ of a1 

Skewed Non-parametric Distribution with all Positive Values, 

Where σ $  is the Sd of Log-transformed Data 

$σ Sample Size, n Recommendation 

$ .σ ≤ 05  For all n 95% UCL based on Student’s-t or Modified-t statistic 

05  10  . $ .< σ ≤ For all n 95% Chebyshev (Mean, Sd) UCL 

10 2 0 . $ .< σ ≤
n < 50 99% Chebyshev (Mean, Sd) UCL 

n $ 50 97.5% Chebyshev (Mean, Sd) UCL 

2 0  3  0  . $ .< σ ≤
n <10 Hall’s Bootstrap UCL * 

n $ 10 99% Chebyshev (Mean, Sd) UCL 

30  35  . $ .< σ ≤
n < 30 Hall’s Bootstrap UCL * 

n $ 30 99% Chebyshev (Mean, Sd) UCL 

$ .σ > 35 
n < 100 Hall’s Bootstrap UCL * 

n $ 100 99% Chebyshev (Mean, Sd) UCL 

* If Hall’s bootstrap method yields an erratic and unstable UCL value (e.g., happens when outliers are present), a 

UCL of the population mean may be computed based upon the 99% Chebyshev (Mean, Sd) method. 

5.2 	 Summary of the Procedure to Compute a 95% UCL of the Unknown Population 

Mean, :1 Based Upon Data Sets Without Non-detect Observations 

•	 The first step in computing a 95% UCL of a population arithmetic mean, :1 is to perform 

goodness-of-fit tests to test for normality, lognormality, or gamma distribution of the data set 

under study. ProUCL has three methods to test for normality or lognormality: the informal 

graphical test based upon a Q-Q plot, the Lilliefors test, and the Shapiro-Wilk W test. 

ProUCL also has three methods to test for a gamma distribution: the informal graphical Q-Q 

plot based upon gamma quantiles, the Kolmogorov-Smirnov (K-S)  EDF test, and the 
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Anderson-Darling (A-D) EDF test. 

•	 ProUCL generates a  quantile-quantile (Q-Q) plot to graphically test the normality, 

lognormality, or gamma distribution of the data.  There is no substitute for graphical displays 

of a data set. On this graph, a linear pattern (e.g., with high correlation such as 0.95 or 

higher) displayed by bulk of data suggests approximate  normality, lognormality, or gamma 

distribution. On this graph, points well-separated from the majority of data may be potential 

outliers requiring special attention. Also, any visible jumps and breaks of significant 

magnitudes on a Q-Q plot suggest that more than one population may be present. In that 

case, each of the populations should be considered separately. That is a separate EPC term 

should be computed for each of the populations.  It is, therefore, recommended to always use 

the graphical Q-Q plot as it provides useful information about the presence of multiple 

populations (e.g., site and background data mixed together) and/or outliers. Both graphical 

Q-Q plot and formal goodness-of-fit tests should be used on the same data set. 

•	 A single test statistic such as the Shapiro-Wilk test (or the A-D test etc.)  may lead to the 

incorrect conclusion that the data are normally (or gamma) distributed even when there are 

more than one population present. Only a graphical display such as an appropriate Q-Q can 

provide this information. Obviously, when multiple populations are present, those should be 

separated out and the EPC terms (the UCLs) should be computed separately for each of those 

populations. Therefore, it is strongly recommended not to skip the Goodness-of-Fit Tests 

Option in ProUCL.  Since the computation of an appropriate UCL depends upon data 

distribution, it is advisable that the user should take his time (instead of blindly using a 

numerical value of a test statistic in an effort to automate the distribution selection process) 

to determine the data distribution. Both graphical (e.g., Q-Q plots)  and analytical procedures 

(Shapiro-Wilk test, K-S test etc.) should be used on the same data set to determine the most 

appropriate distribution of the data set under study. 
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•	 After performing the Goodness-of-Fit test,  ProUCL informs the  user about the data 

distribution: normal, lognormal, gamma distribution, or non-parametric. 

•	 For a  normally distributed (or approximately normally distributed)  data set, the user is 

advised to use Student’s-t distribution based UCL of the mean. Student’s-t distribution (or 

modified-t statistic) may also be used to compute the EPC term when the data set is 
$	 $symmetric (e.g., |k3 |  is smaller than 0.2-0.3) or mildly skewed, that is when σ or σ is less 

than 0.5. 

•	 For gamma distributed (or approximately gamma distributed) data sets, the user is advised to: 

use the approximate gamma UCL for k$ $ 0.5; use the adjusted gamma UCL for 0.1 # k$ < 

0.5; use bootstrap-t method (or Hall’s method) when k$ < 0.1 and the sample size, n < 15; 

and use the adjusted gamma UCL (if available) for k$ < 0.1 and sample size, n $ 15. If the 

adjusted gamma UCL is not available then use the approximate gamma UCL as an estimate 

of the EPC term.  In case bootstrap-t method or Hall’s bootstrap method yields an erratic 

inflated UCL (e.g., when outliers are present) result, the UCL should be computed using the 

adjusted gamma UCL (if available) or the approximate gamma UCL. Some graphs from 

Singh and Singh (2003) showing coverage comparisons for normal, gamma, and lognormal 

distributions for the various methods considered are given in Appendix C. 

•	 For lognormal data sets, ProUCL recommends (as summarized in Table A2, Section 5.1.3) a 

method to estimate the EPC term based upon the sample size and standard deviation of the 

log-transformed data, . ProUCL can compute a H-UCL of the mean for samples of size up 

to 1000. 

•	 Non-parametric UCL computation methods such as the modified-t, CLT method, adjusted-

CLT method,  bootstrap and jackknife methods are also included in ProUCL.  However, it is 
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noted that non-parametric UCLs  based upon most of these methods do not provide adequate 

coverage to the population mean for  moderately skewed to highly skewed  data sets (e.g., 

see Singh et al. (2002a), and Singh and Singh (2003)). 

•	 For data sets which are not normally, lognormally, or gamma distributed,  a non-parametric 

UCL of the mean based upon the Chebyshev inequality is preferred. The Chebyshev (Mean, 

Sd) UCL does not depend upon any distributional assumptions  and can be used for 

moderately to highly skewed data sets which  do not follow any of the three data 

distributions incorporated in ProUCL. 

•	 It should be noted that for extremely skewed data sets (e.g., with exceeding 3.0), even a 

Chebyshev inequality based 99% UCL of the mean fails to provide the desired coverage 

(e.g., 0.95) of the population mean.  A method to compute the EPC term for non-parametric 

distributions is summarized in Table A3 of Section 5.1.4.  It should be pointed out that in 

case Hall’s bootstrap method appears to yield erratic and inflated results (typically happens 

when outliers are present), the 99% Chebyshev UCL may be used as an estimate of the EPC 

term. 

5.3 	Should the Maximum Observed Concentration be Used as an Estimate of the EPC 

Term? 

•	 Singh and Singh (2003) also included the Max Test (using the maximum observed value as 

an estimate of the EPC term) in their simulation study.  Previous (e.g., EPA 1992 RAGS 

Document) use of the maximum observed value has been recommended as a default value to 

estimate the EPC term when a 95% UCL (e.g., the H-UCL) exceeded the maximum value. 

However, in past (e.g., EPA 1992), only two 95% UCL computation methods, namely: the 

Student’s- t UCL and Land’s H-UCL were used to estimate the EPC term. ProUCL, Version 
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3.0 can compute a 95% UCL of mean using several methods based upon normal, Gamma, 

lognormal, and  non-parametric distributions. Thus, ProUCL, Version 3.0 has about fifteen 

(15) 95% UCL computation methods, one of which (depending upon skewness and data 

distribution) can be used to compute an appropriate estimate of the EPC term. Furthermore, 

since the EPC term represents the average exposure contracted by an individual over an 

exposure area (EA) during a long period of time, therefore, the EPC term should be estimated 

by using an average value (such as an appropriate 95% UCL of the mean) and not by the 

maximum observed concentration. 

•	 With the availability of so many UCL computation methods (15 of them), the developers of 

ProUCL Version 3.0 do not feel any need to use the maximum observed value as an estimate 

of the EPC term. Singh and Singh (2003) also noted that for skewed data sets of small sizes 

(e.g., <10-20), the Max Test does not provide the specified 95% coverage to the population 

mean, and for larger data sets, it overestimates the EPC term.  This can also viewed in the 

graphs presented in Appendix C. Also, for the distributions considered, the maximum value 

is not a sufficient statistic for the unknown population mean.  The use of the maximum value 

as an estimate of the EPC term ignores most (except for the maximum value) of the 

information contained in a data set.  It is not desirable to use the maximum observed value as 

estimate of the EPC term representing average exposure over an EA. 

•	 It should also be noted that for highly skewed data sets, the sample mean indeed can even 

exceed the upper 90%, 95 % etc. percentiles, and consequently, a 95% UCL of mean can 

exceed the maximum observed value of a data set. This is especially true when one is dealing 

with lognormally distributed data sets of small sizes.  As mentioned before, for such highly 

skewed data sets which can not be modeled by a gamma distribution, a 95% UCL of the 

mean should be computed using an appropriate non-parametric method.  These observations 

are summarized in Tables A1-A3 of this Appendix A. 
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•	 Alternatively, for such highly skewed data sets, other measures of central tendency such as 

the median (or some other upper percentile such as 70% percentile) and its upper confidence 

limit may be considered.  The EPA and all other interested agencies and parties need to come 

to an agreement upon the use of the median and its UCL to estimate the EPC term for a 

contaminant of concern at a polluted site. It should be mentioned that the use of the sample 

median and/or its UCL as estimates of the EPC term needs further research and investigation. 

•	 It is recommended that the maximum observed value NOT be used as an estimate of 

the EPC term.  For the sake of interested users, ProUCL displays a warning message when 

the recommended 95% UCL (e.g., Hall’s bootstrap UCL etc.) of the mean exceeds the 

observed maximum concentration. For such cases (when a 95% UCL does exceed the 

maximum observed value), if applicable, an alternative 95% UCL computation method is 

recommended by ProUCL. 
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APPENDIX B 

CRITICAL VALUES 

OF

 ANDERSON-DARLING TEST STATISTIC 

AND 

KOLMOGOROV-SMIRNOV TEST STATISTIC 

FOR 

GAMMA DISTRIBUTION

 WITH UNKNOWN PARAMETERS 



Critical Values for Anderson Darling Test - Significance Level of 0.20


 n\k 0.010 0.025 0.050 0.100 0.200 0.300 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000 10.000 20.000  50.000 100.000 

4 0.6012 0.5867 0.5709 0.5498 0.5169 0.5017 0.4900 0.4854 0.4839 0.4819 0.4810 0.4805 0.4802 0.4803 0.4795 0.4795  0.4791 0.4790

 5 0.6366 0.6085 0.5796 0.5590 0.5322 0.5166 0.5049 0.4996 0.4969 0.4949 0.4930 0.4926 0.4914 0.4919 0.4908 0.4903 0.4899 0.4901

 6 0.6851 0.6362 0.5915 0.5682 0.5431 0.5264 0.5117 0.5055 0.5026 0.4996 0.4981 0.4969 0.4964 0.4960 0.4955 0.4950 0.4948 0.4951

 7 0.7349 0.6671 0.6037 0.5745 0.5491 0.5318 0.5172 0.5102 0.5064 0.5036 0.5007 0.5002 0.4988 0.4991 0.4984 0.4975 0.4973 0.4973

 8 0.7856 0.6966 0.6150 0.5784 0.5545 0.5372 0.5210 0.5134 0.5092 0.5058 0.5039 0.5025 0.5016 0.5017 0.4998 0.5000 0.4992 0.4990

 9 0.8385 0.7291 0.6265 0.5827 0.5593 0.5407 0.5239 0.5162 0.5122 0.5082 0.5068 0.5045 0.5035 0.5024 0.5015 0.5015 0.5010 0.5014

 10 0.8923 0.7600 0.6384 0.5849 0.5626 0.5436 0.5263 0.5170 0.5135 0.5097 0.5079 0.5063 0.5050 0.5041 0.5029 0.5023 0.5020 0.5020

 11 0.9469 0.7926 0.6496 0.5881 0.5662 0.5463 0.5287 0.5198 0.5147 0.5110 0.5088 0.5061 0.5049 0.5048 0.5041 0.5035 0.5030 0.5024

 12 1.0021 0.8247 0.6600 0.5900 0.5680 0.5485 0.5299 0.5213 0.5166 0.5113 0.5098 0.5080 0.5058 0.5050 0.5042 0.5048 0.5036 0.5041

 13 1.0571 0.8571 0.6731 0.5910 0.5697 0.5499 0.5317 0.5224 0.5169 0.5134 0.5101 0.5080 0.5073 0.5064 0.5053 0.5049 0.5050 0.5047

 14 1.1106 0.8897 0.6828 0.5928 0.5716 0.5508 0.5330 0.5229 0.5184 0.5131 0.5111 0.5090 0.5080 0.5072 0.5054 0.5051 0.5040 0.5045

 15 1.1656 0.9221 0.6926 0.5951 0.5735 0.5525 0.5331 0.5238 0.5188 0.5134 0.5115 0.5095 0.5078 0.5073 0.5058 0.5051 0.5054 0.5051

 16 1.2201 0.9542 0.7047 0.5967 0.5744 0.5535 0.5345 0.5242 0.5197 0.5143 0.5127 0.5095 0.5081 0.5082 0.5068 0.5057 0.5052 0.5054

 17 1.2747 0.9856 0.7157 0.5975 0.5764 0.5553 0.5354 0.5249 0.5200 0.5152 0.5122 0.5099 0.5086 0.5085 0.5066 0.5063 0.5053 0.5055

 18 1.3270 1.0187 0.7261 0.5994 0.5761 0.5556 0.5357 0.5247 0.5203 0.5151 0.5132 0.5107 0.5097 0.5090 0.5067 0.5066 0.5058 0.5063

 19 1.3799 1.0502 0.7376 0.6000 0.5775 0.5563 0.5367 0.5257 0.5208 0.5155 0.5127 0.5107 0.5090 0.5080 0.5074 0.5069 0.5067 0.5057

 20 1.4316 1.0812 0.7470 0.6016 0.5779 0.5567 0.5369 0.5264 0.5210 0.5159 0.5135 0.5103 0.5091 0.5090 0.5082 0.5066 0.5069 0.5069

 21 1.4859 1.1119 0.7574 0.6022 0.5788 0.5569 0.5386 0.5271 0.5209 0.5160 0.5137 0.5112 0.5098 0.5092 0.5081 0.5077 0.5071 0.5071

 22 1.5373 1.1433 0.7681 0.6037 0.5793 0.5584 0.5377 0.5277 0.5220 0.5160 0.5135 0.5116 0.5101 0.5093 0.5083 0.5069 0.5072 0.5064

 23 1.5882 1.1774 0.7794 0.6042 0.5803 0.5589 0.5380 0.5275 0.5213 0.5166 0.5134 0.5110 0.5108 0.5097 0.5081 0.5069 0.5069 0.5070

 24 1.6410 1.2064 0.7890 0.6046 0.5807 0.5595 0.5386 0.5272 0.5225 0.5173 0.5139 0.5117 0.5097 0.5093 0.5082 0.5076 0.5074 0.5072

 25 1.6915 1.2376 0.8002 0.6057 0.5806 0.5601 0.5391 0.5278 0.5229 0.5169 0.5144 0.5119 0.5104 0.5095 0.5082 0.5074 0.5070 0.5071

 26 1.7433 1.2691 0.8100 0.6069 0.5809 0.5601 0.5395 0.5279 0.5223 0.5170 0.5140 0.5113 0.5099 0.5098 0.5082 0.5073 0.5072 0.5076

 27 1.7932 1.2981 0.8228 0.6081 0.5816 0.5608 0.5390 0.5287 0.5233 0.5171 0.5150 0.5120 0.5106 0.5097 0.5077 0.5080 0.5077 0.5073

 28 1.8431 1.3284 0.8319 0.6088 0.5818 0.5610 0.5397 0.5283 0.5228 0.5170 0.5153 0.5118 0.5112 0.5100 0.5081 0.5085 0.5078 0.5073

 29 1.8948 1.3600 0.8424 0.6099 0.5818 0.5613 0.5402 0.5287 0.5235 0.5175 0.5149 0.5124 0.5110 0.5097 0.5082 0.5076 0.5075 0.5074

 30 1.9433 1.3895 0.8532 0.6110 0.5825 0.5617 0.5397 0.5292 0.5230 0.5176 0.5151 0.5126 0.5099 0.5097 0.5089 0.5079 0.5072 0.5081

 35 2.1902 1.5371 0.9057 0.6147 0.5843 0.5626 0.5414 0.5300 0.5237 0.5178 0.5156 0.5126 0.5123 0.5105 0.5090 0.5087 0.5082 0.5074

 40 2.4320 1.6829 0.9551 0.6174 0.5848 0.5630 0.5418 0.5299 0.5246 0.5183 0.5153 0.5128 0.5110 0.5108 0.5094 0.5083 0.5075 0.5083

 45 2.6734 1.8275 1.0046 0.6211 0.5857 0.5646 0.5418 0.5301 0.5244 0.5191 0.5160 0.5130 0.5111 0.5110 0.5094 0.5085 0.5084 0.5083

 50 2.9056 1.9669 1.0536 0.6238 0.5872 0.5651 0.5413 0.5313 0.5251 0.5192 0.5162 0.5132 0.5116 0.5111 0.5095 0.5088 0.5087 0.5089

 60 3.3680 2.2458 1.1502 0.6309 0.5878 0.5655 0.5430 0.5311 0.5248 0.5189 0.5165 0.5141 0.5113 0.5112 0.5099 0.5084 0.5089 0.5089

 70 3.8261 2.5178 1.2478 0.6361 0.5882 0.5667 0.5433 0.5310 0.5252 0.5194 0.5165 0.5132 0.5122 0.5112 0.5098 0.5091 0.5090 0.5081

 80 4.2729 2.7850 1.3430 0.6424 0.5889 0.5669 0.5439 0.5314 0.5258 0.5201 0.5173 0.5130 0.5131 0.5110 0.5100 0.5087 0.5089 0.5086

 90 4.7189 3.0528 1.4370 0.6474 0.5883 0.5670 0.5438 0.5321 0.5256 0.5203 0.5174 0.5139 0.5124 0.5109 0.5101 0.5088 0.5087 0.5091

 100 5.1658 3.3136 1.5320 0.6516 0.5886 0.5681 0.5438 0.5318 0.5260 0.5200 0.5174 0.5140 0.5117 0.5115 0.5101 0.5090 0.5092 0.5089

 200 9.4620 5.8551 2.4199 0.7059 0.5910 0.5675 0.5452 0.5325 0.5264 0.5199 0.5172 0.5140 0.5122 0.5115 0.5095 0.5095 0.5090 0.5093

 300 13.6454 8.3200 3.2731 0.7595 0.5915 0.5688 0.5448 0.5328 0.5260 0.5205 0.5174 0.5134 0.5126 0.5120 0.5107 0.5091 0.5092 0.5092

 400 17.7759 10.7341 4.1071 0.8119 0.5902 0.5688 0.5448 0.5331 0.5266 0.5200 0.5168 0.5143 0.5127 0.5125 0.5107 0.5095 0.5090 0.5093

 500 21.8687 13.1245 4.9232 0.8646 0.5910 0.5685 0.5450 0.5332 0.5267 0.5203 0.5173 0.5145 0.5129 0.5123 0.5102 0.5092 0.5094 0.5097 

1000 42.0423 24.8700 8.9004 1.1234 0.5917 0.5687 0.5457 0.5327 0.5265 0.5204 0.5174 0.5143 0.5126 0.5118 0.5098 0.5098 0.5091 0.5096 

2500 101.548 59.3470 20.4324 1.8628 0.5930 0.5698 0.5460 0.5336 0.5268 0.5206 0.5178 0.5143 0.5155 0.5129 0.5102 0.5093 0.5087 0.5095 

B-1 



Critical Values for Kolmogorov Smirnov Test - Significance Level of 0.20


 n\k 0.010 0.025 0.050 0.100 0.200 0.300 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000 10.000 20.000  50.000 100.000 

4 0.3745 0.3681 0.3610 0.3538 0.3419 0.3360 0.3314 0.3293 0.3285 0.3275 0.3270 0.3266 0.3263 0.3263 0.3258 0.3258 0.3257 0.3256

 5 0.3495 0.3407 0.3315 0.3276 0.3228 0.3179 0.3128 0.3093 0.3074 0.3055 0.3043 0.3036 0.3029 0.3026 0.3019 0.3015 0.3014 0.3014

 6 0.3350 0.3220 0.3102 0.3048 0.2990 0.2942 0.2889 0.2856 0.2839 0.2822 0.2812 0.2804 0.2800 0.2795 0.2792 0.2788 0.2788 0.2787

 7 0.3207 0.3062 0.2918 0.2848 0.2792 0.2745 0.2695 0.2666 0.2649 0.2631 0.2620 0.2613 0.2608 0.2606 0.2601 0.2598 0.2597 0.2596

 8 0.3105 0.2932 0.2759 0.2683 0.2641 0.2598 0.2547 0.2516 0.2498 0.2480 0.2471 0.2462 0.2458 0.2456 0.2449 0.2446 0.2444 0.2444

 9 0.3014 0.2831 0.2641 0.2553 0.2510 0.2468 0.2419 0.2389 0.2372 0.2354 0.2346 0.2336 0.2332 0.2327 0.2323 0.2321 0.2319 0.2319

 10 0.2937 0.2738 0.2533 0.2436 0.2394 0.2352 0.2307 0.2276 0.2262 0.2244 0.2236 0.2228 0.2223 0.2220 0.2214 0.2211 0.2211 0.2209

 11 0.2869 0.2660 0.2440 0.2333 0.2296 0.2255 0.2209 0.2182 0.2165 0.2149 0.2141 0.2132 0.2126 0.2124 0.2120 0.2117 0.2115 0.2115

 12 0.2811 0.2592 0.2355 0.2243 0.2206 0.2168 0.2123 0.2097 0.2082 0.2064 0.2057 0.2048 0.2042 0.2040 0.2036 0.2035 0.2032 0.2033

 13 0.2757 0.2531 0.2285 0.2162 0.2127 0.2091 0.2047 0.2022 0.2006 0.1991 0.1981 0.1973 0.1970 0.1967 0.1961 0.1960 0.1959 0.1958

 14 0.2710 0.2478 0.2220 0.2091 0.2056 0.2020 0.1980 0.1954 0.1940 0.1922 0.1915 0.1907 0.1903 0.1900 0.1895 0.1893 0.1891 0.1891

 15 0.2665 0.2427 0.2159 0.2026 0.1993 0.1958 0.1916 0.1893 0.1877 0.1862 0.1854 0.1847 0.1842 0.1840 0.1834 0.1832 0.1832 0.1831

 16 0.2625 0.2383 0.2107 0.1966 0.1933 0.1900 0.1862 0.1836 0.1822 0.1807 0.1800 0.1792 0.1787 0.1785 0.1782 0.1779 0.1777 0.1777

 17 0.2587 0.2341 0.2059 0.1912 0.1881 0.1850 0.1810 0.1785 0.1772 0.1756 0.1749 0.1741 0.1738 0.1736 0.1731 0.1729 0.1727 0.1727

 18 0.2553 0.2304 0.2014 0.1863 0.1831 0.1799 0.1762 0.1737 0.1724 0.1710 0.1704 0.1696 0.1692 0.1690 0.1684 0.1683 0.1681 0.1681

 19 0.2519 0.2267 0.1975 0.1816 0.1786 0.1754 0.1719 0.1694 0.1681 0.1668 0.1659 0.1653 0.1649 0.1646 0.1643 0.1641 0.1640 0.1639

 20 0.2489 0.2236 0.1935 0.1774 0.1743 0.1713 0.1677 0.1654 0.1641 0.1628 0.1621 0.1613 0.1609 0.1608 0.1603 0.1601 0.1600 0.1600

 21 0.2463 0.2205 0.1899 0.1734 0.1704 0.1673 0.1639 0.1617 0.1604 0.1590 0.1584 0.1576 0.1573 0.1571 0.1568 0.1565 0.1564 0.1564

 22 0.2437 0.2176 0.1867 0.1697 0.1667 0.1639 0.1604 0.1582 0.1569 0.1555 0.1550 0.1543 0.1539 0.1537 0.1532 0.1531 0.1530 0.1529

 23 0.2412 0.2151 0.1837 0.1661 0.1634 0.1604 0.1570 0.1549 0.1536 0.1524 0.1517 0.1509 0.1507 0.1505 0.1502 0.1498 0.1498 0.1498

 24 0.2389 0.2124 0.1808 0.1629 0.1600 0.1573 0.1539 0.1518 0.1506 0.1494 0.1487 0.1480 0.1477 0.1475 0.1470 0.1469 0.1468 0.1467

 25 0.2366 0.2101 0.1782 0.1598 0.1570 0.1542 0.1510 0.1488 0.1478 0.1465 0.1459 0.1452 0.1449 0.1446 0.1443 0.1441 0.1440 0.1439

 26 0.2346 0.2080 0.1756 0.1569 0.1541 0.1513 0.1482 0.1462 0.1449 0.1437 0.1432 0.1424 0.1422 0.1419 0.1416 0.1414 0.1413 0.1412

 27 0.2325 0.2058 0.1735 0.1542 0.1513 0.1487 0.1455 0.1436 0.1425 0.1412 0.1406 0.1400 0.1395 0.1394 0.1390 0.1389 0.1388 0.1388

 28 0.2308 0.2038 0.1710 0.1515 0.1488 0.1462 0.1431 0.1411 0.1399 0.1388 0.1382 0.1376 0.1373 0.1371 0.1367 0.1366 0.1365 0.1364

 29 0.2289 0.2018 0.1689 0.1491 0.1462 0.1439 0.1407 0.1388 0.1377 0.1365 0.1359 0.1353 0.1349 0.1347 0.1343 0.1342 0.1341 0.1341

 30 0.2272 0.2000 0.1669 0.1468 0.1439 0.1414 0.1384 0.1364 0.1355 0.1343 0.1337 0.1331 0.1328 0.1325 0.1323 0.1321 0.1320 0.1320

 35 0.2197 0.1921 0.1581 0.1366 0.1337 0.1314 0.1286 0.1268 0.1258 0.1248 0.1243 0.1236 0.1234 0.1231 0.1228 0.1228 0.1226 0.1226

 40 0.2136 0.1857 0.1509 0.1282 0.1255 0.1232 0.1206 0.1190 0.1181 0.1170 0.1165 0.1160 0.1156 0.1155 0.1152 0.1151 0.1150 0.1150

 45 0.2084 0.1803 0.1449 0.1214 0.1185 0.1166 0.1140 0.1125 0.1116 0.1106 0.1101 0.1096 0.1093 0.1091 0.1089 0.1087 0.1087 0.1086

 50 0.2040 0.1756 0.1400 0.1155 0.1128 0.1108 0.1083 0.1070 0.1060 0.1051 0.1047 0.1042 0.1039 0.1038 0.1035 0.1033 0.1032 0.1033

 60 0.1970 0.1682 0.1319 0.1060 0.1032 0.1014 0.0992 0.0979 0.0971 0.0962 0.0958 0.0954 0.0951 0.0950 0.0948 0.0946 0.0945 0.0945

 70 0.1915 0.1623 0.1257 0.0987 0.0958 0.0942 0.0921 0.0908 0.0901 0.0893 0.0889 0.0885 0.0883 0.0882 0.0879 0.0878 0.0877 0.0877

 80 0.1870 0.1576 0.1207 0.0927 0.0898 0.0882 0.0863 0.0851 0.0844 0.0837 0.0833 0.0829 0.0827 0.0826 0.0824 0.0822 0.0822 0.0822

 90 0.1832 0.1538 0.1166 0.0877 0.0847 0.0833 0.0815 0.0804 0.0797 0.0790 0.0787 0.0783 0.0781 0.0780 0.0778 0.0777 0.0776 0.0776

 100 0.1801 0.1504 0.1131 0.0835 0.0805 0.0792 0.0774 0.0763 0.0758 0.0751 0.0748 0.0744 0.0741 0.0741 0.0739 0.0738 0.0737 0.0737

 200 0.1630 0.1325 0.0940 0.0611 0.0573 0.0563 0.0551 0.0544 0.0539 0.0534 0.0532 0.0529 0.0528 0.0527 0.0526 0.0525 0.0525 0.0525

 300 0.1554 0.1247 0.0857 0.0513 0.0469 0.0461 0.0451 0.0445 0.0442 0.0438 0.0435 0.0433 0.0433 0.0432 0.0431 0.0430 0.0430 0.0430

 400 0.1510 0.1200 0.0807 0.0455 0.0407 0.0400 0.0392 0.0386 0.0383 0.0379 0.0378 0.0376 0.0375 0.0375 0.0374 0.0373 0.0373 0.0373

 500 0.1480 0.1169 0.0773 0.0416 0.0364 0.0358 0.0351 0.0346 0.0343 0.0340 0.0338 0.0337 0.0336 0.0336 0.0335 0.0334 0.0334 0.0334 

1000 0.1407 0.1093 0.0692 0.0323 0.0258 0.0254 0.0249 0.0245 0.0243 0.0241 0.0240 0.0239 0.0238 0.0238 0.0237 0.0237 0.0237 0.0237 

2500 0.1344 0.1027 0.0621 0.0242 0.0164 0.0161 0.0158 0.0156 0.0154 0.0153 0.0152 0.0151 0.0151 0.0151 0.0151 0.0150 0.0150 0.0150 

B-2 



Critical Values for Anderson Darling Test - Significance Level of 0.15


 n\k 0.010 0.025 0.050 0.100 0.200 0.300 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000 10.000 20.000  50.000 100.000 

4 0.6495 0.6354 0.6212 0.5995 0.5626 0.5456 0.5321 0.5268 0.5252 0.5226 0.5217 0.5206 0.5203 0.5208 0.5202 0.5197 0.5193 0.5190

 5 0.6893 0.6597 0.6317 0.6137 0.5836 0.5649 0.5505 0.5436 0.5404 0.5377 0.5357 0.5352 0.5339 0.5341 0.5328 0.5321 0.5319 0.5320

 6 0.7453 0.6944 0.6484 0.6262 0.5967 0.5765 0.5591 0.5509 0.5476 0.5441 0.5419 0.5406 0.5401 0.5394 0.5391 0.5382 0.5380 0.5382

 7 0.8015 0.7290 0.6625 0.6337 0.6049 0.5838 0.5667 0.5581 0.5530 0.5496 0.5460 0.5460 0.5441 0.5443 0.5436 0.5427 0.5422 0.5421

 8 0.8594 0.7632 0.6757 0.6393 0.6124 0.5912 0.5711 0.5622 0.5574 0.5532 0.5504 0.5490 0.5477 0.5480 0.5460 0.5456 0.5450 0.5452

 9 0.9189 0.8002 0.6896 0.6442 0.6176 0.5950 0.5754 0.5658 0.5608 0.5561 0.5542 0.5517 0.5505 0.5493 0.5478 0.5480 0.5473 0.5480

 10 0.9786 0.8354 0.7026 0.6475 0.6222 0.5995 0.5786 0.5673 0.5629 0.5578 0.5559 0.5538 0.5524 0.5517 0.5498 0.5492 0.5486 0.5489

 11 1.0392 0.8719 0.7163 0.6508 0.6266 0.6025 0.5813 0.5709 0.5644 0.5597 0.5574 0.5544 0.5530 0.5525 0.5515 0.5511 0.5505 0.5498

 12 1.0998 0.9079 0.7288 0.6534 0.6290 0.6050 0.5826 0.5726 0.5673 0.5605 0.5587 0.5568 0.5545 0.5531 0.5523 0.5527 0.5515 0.5520

 13 1.1601 0.9445 0.7437 0.6556 0.6309 0.6077 0.5850 0.5742 0.5674 0.5631 0.5590 0.5564 0.5559 0.5548 0.5534 0.5531 0.5529 0.5526

 14 1.2198 0.9815 0.7543 0.6579 0.6332 0.6084 0.5870 0.5746 0.5693 0.5630 0.5602 0.5580 0.5565 0.5558 0.5535 0.5533 0.5521 0.5526

 15 1.2789 1.0165 0.7658 0.6600 0.6354 0.6105 0.5870 0.5759 0.5699 0.5637 0.5609 0.5586 0.5567 0.5562 0.5547 0.5540 0.5540 0.5534

 16 1.3374 1.0527 0.7796 0.6618 0.6364 0.6118 0.5892 0.5762 0.5707 0.5642 0.5625 0.5584 0.5571 0.5573 0.5557 0.5545 0.5535 0.5539

 17 1.3967 1.0875 0.7922 0.6631 0.6388 0.6140 0.5898 0.5770 0.5712 0.5658 0.5621 0.5592 0.5578 0.5576 0.5554 0.5550 0.5540 0.5542

 18 1.4533 1.1240 0.8037 0.6659 0.6392 0.6142 0.5905 0.5773 0.5715 0.5657 0.5635 0.5599 0.5588 0.5578 0.5555 0.5554 0.5547 0.5549

 19 1.5098 1.1576 0.8169 0.6665 0.6405 0.6155 0.5919 0.5783 0.5726 0.5660 0.5626 0.5605 0.5584 0.5573 0.5567 0.5562 0.5555 0.5546

 20 1.5661 1.1928 0.8279 0.6685 0.6413 0.6161 0.5921 0.5790 0.5732 0.5668 0.5635 0.5604 0.5588 0.5585 0.5570 0.5559 0.5556 0.5557

 21 1.6235 1.2257 0.8396 0.6691 0.6420 0.6160 0.5937 0.5804 0.5728 0.5668 0.5641 0.5611 0.5594 0.5584 0.5573 0.5570 0.5560 0.5560

 22 1.6779 1.2584 0.8514 0.6704 0.6431 0.6175 0.5932 0.5806 0.5735 0.5669 0.5646 0.5614 0.5598 0.5594 0.5577 0.5561 0.5565 0.5557

 23 1.7323 1.2970 0.8644 0.6716 0.6440 0.6186 0.5935 0.5807 0.5731 0.5676 0.5637 0.5611 0.5608 0.5592 0.5575 0.5562 0.5561 0.5560

 24 1.7885 1.3279 0.8745 0.6727 0.6444 0.6192 0.5944 0.5806 0.5739 0.5683 0.5643 0.5618 0.5596 0.5590 0.5582 0.5569 0.5562 0.5565

 25 1.8422 1.3607 0.8871 0.6737 0.6453 0.6196 0.5948 0.5813 0.5751 0.5677 0.5652 0.5619 0.5605 0.5595 0.5581 0.5568 0.5565 0.5565

 26 1.8963 1.3958 0.8982 0.6745 0.6449 0.6193 0.5950 0.5817 0.5744 0.5681 0.5649 0.5614 0.5598 0.5596 0.5575 0.5568 0.5567 0.5567

 27 1.9503 1.4261 0.9129 0.6765 0.6455 0.6208 0.5944 0.5816 0.5756 0.5684 0.5656 0.5623 0.5602 0.5591 0.5575 0.5574 0.5564 0.5568

 28 2.0036 1.4603 0.9224 0.6766 0.6461 0.6213 0.5955 0.5817 0.5751 0.5681 0.5663 0.5623 0.5613 0.5601 0.5579 0.5576 0.5570 0.5563

 29 2.0588 1.4943 0.9338 0.6782 0.6457 0.6217 0.5965 0.5818 0.5755 0.5690 0.5653 0.5629 0.5607 0.5597 0.5575 0.5569 0.5566 0.5569

 30 2.1110 1.5255 0.9463 0.6801 0.6465 0.6216 0.5955 0.5826 0.5758 0.5689 0.5661 0.5629 0.5599 0.5593 0.5584 0.5578 0.5566 0.5574

 35 2.3678 1.6835 1.0038 0.6836 0.6483 0.6230 0.5974 0.5835 0.5764 0.5696 0.5667 0.5633 0.5625 0.5606 0.5591 0.5584 0.5576 0.5576

 40 2.6243 1.8376 1.0582 0.6870 0.6498 0.6232 0.5979 0.5837 0.5773 0.5701 0.5662 0.5636 0.5612 0.5608 0.5593 0.5579 0.5575 0.5580

 45 2.8741 1.9901 1.1118 0.6917 0.6505 0.6253 0.5979 0.5839 0.5768 0.5706 0.5669 0.5637 0.5621 0.5612 0.5599 0.5586 0.5585 0.5584

 50 3.1177 2.1386 1.1654 0.6950 0.6527 0.6258 0.5976 0.5860 0.5778 0.5710 0.5676 0.5641 0.5619 0.5616 0.5599 0.5588 0.5588 0.5586

 60 3.5997 2.4304 1.2695 0.7029 0.6530 0.6262 0.5995 0.5851 0.5780 0.5709 0.5673 0.5645 0.5618 0.5616 0.5605 0.5589 0.5589 0.5589

 70 4.0720 2.7155 1.3751 0.7081 0.6538 0.6281 0.5996 0.5850 0.5781 0.5716 0.5684 0.5643 0.5629 0.5615 0.5600 0.5592 0.5593 0.5588

 80 4.5375 2.9941 1.4768 0.7162 0.6539 0.6273 0.6005 0.5858 0.5786 0.5726 0.5690 0.5641 0.5637 0.5616 0.5602 0.5589 0.5588 0.5589

 90 4.9957 3.2729 1.5758 0.7212 0.6536 0.6283 0.6001 0.5863 0.5789 0.5724 0.5691 0.5651 0.5631 0.5618 0.5602 0.5590 0.5594 0.5593

 100 5.4567 3.5445 1.6772 0.7269 0.6549 0.6299 0.6005 0.5865 0.5793 0.5723 0.5693 0.5651 0.5628 0.5622 0.5608 0.5595 0.5590 0.5592

 200 9.8591 6.1657 2.6088 0.7864 0.6568 0.6291 0.6020 0.5870 0.5796 0.5720 0.5690 0.5656 0.5634 0.5622 0.5600 0.5598 0.5591 0.5597

 300 14.1248 8.6896 3.4931 0.8459 0.6577 0.6301 0.6019 0.5873 0.5795 0.5729 0.5685 0.5646 0.5637 0.5632 0.5616 0.5593 0.5599 0.5602

 400 18.3207 11.1508 4.3546 0.9029 0.6562 0.6306 0.6017 0.5880 0.5798 0.5725 0.5684 0.5657 0.5638 0.5636 0.5615 0.5601 0.5596 0.5602

 500 22.4788 13.5882 5.1945 0.9597 0.6575 0.6301 0.6021 0.5878 0.5804 0.5729 0.5698 0.5660 0.5642 0.5632 0.5611 0.5601 0.5600 0.5602 

1000 42.8884 25.5062 9.2649 1.2387 0.6576 0.6303 0.6032 0.5874 0.5798 0.5726 0.5696 0.5652 0.5642 0.5631 0.5607 0.5604 0.5597 0.5603 

2500 102.850 60.3279 20.9754 2.0188 0.6594 0.6314 0.6028 0.5884 0.5806 0.5726 0.5697 0.5658 0.5674 0.5643 0.5613 0.5597 0.5593 0.5605 

B-3 



Critical Values for Kolmogorov Smirnov Test - Significance Level of 0.15


 n\k 0.010 0.025 0.050 0.100 0.200 0.300 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000 10.000 20.000  50.000 100.000 

4 0.3901 0.3832 0.3761 0.3698 0.3599 0.3533 0.3462 0.3417 0.3401 0.3385 0.3379 0.3373 0.3369 0.3369 0.3364 0.3363 0.3362 0.3362

 5 0.3646 0.3559 0.3475 0.3445 0.3389 0.3336 0.3279 0.3240 0.3220 0.3200 0.3188 0.3180 0.3172 0.3171 0.3163 0.3159 0.3158 0.3156

 6 0.3507 0.3378 0.3254 0.3199 0.3133 0.3078 0.3018 0.2983 0.2964 0.2948 0.2936 0.2928 0.2922 0.2917 0.2914 0.2910 0.2909 0.2909

 7 0.3358 0.3203 0.3055 0.2988 0.2934 0.2884 0.2828 0.2794 0.2773 0.2753 0.2742 0.2733 0.2728 0.2726 0.2719 0.2716 0.2715 0.2713

 8 0.3254 0.3078 0.2899 0.2825 0.2781 0.2732 0.2673 0.2639 0.2620 0.2599 0.2588 0.2579 0.2574 0.2571 0.2564 0.2560 0.2557 0.2558

 9 0.3158 0.2969 0.2773 0.2686 0.2639 0.2592 0.2539 0.2504 0.2486 0.2467 0.2458 0.2447 0.2442 0.2436 0.2432 0.2429 0.2428 0.2428

 10 0.3077 0.2873 0.2659 0.2561 0.2518 0.2472 0.2421 0.2386 0.2371 0.2351 0.2343 0.2334 0.2329 0.2325 0.2318 0.2315 0.2314 0.2313

 11 0.3006 0.2792 0.2564 0.2453 0.2415 0.2371 0.2320 0.2290 0.2270 0.2251 0.2244 0.2234 0.2227 0.2225 0.2220 0.2218 0.2215 0.2215

 12 0.2944 0.2721 0.2475 0.2360 0.2322 0.2280 0.2229 0.2201 0.2183 0.2163 0.2155 0.2147 0.2140 0.2137 0.2131 0.2132 0.2128 0.2129

 13 0.2887 0.2657 0.2402 0.2276 0.2239 0.2198 0.2151 0.2121 0.2104 0.2087 0.2077 0.2067 0.2064 0.2061 0.2054 0.2052 0.2052 0.2050

 14 0.2835 0.2600 0.2333 0.2200 0.2163 0.2124 0.2080 0.2050 0.2034 0.2015 0.2006 0.1998 0.1994 0.1991 0.1985 0.1983 0.1981 0.1980

 15 0.2787 0.2547 0.2270 0.2132 0.2097 0.2058 0.2013 0.1987 0.1969 0.1951 0.1943 0.1936 0.1930 0.1928 0.1922 0.1919 0.1919 0.1918

 16 0.2745 0.2501 0.2216 0.2070 0.2035 0.1998 0.1955 0.1926 0.1912 0.1895 0.1887 0.1877 0.1873 0.1871 0.1867 0.1863 0.1861 0.1861

 17 0.2704 0.2455 0.2165 0.2012 0.1980 0.1945 0.1901 0.1874 0.1859 0.1841 0.1834 0.1825 0.1821 0.1820 0.1814 0.1811 0.1809 0.1809

 18 0.2667 0.2416 0.2118 0.1961 0.1926 0.1892 0.1850 0.1824 0.1809 0.1793 0.1786 0.1778 0.1774 0.1771 0.1764 0.1763 0.1762 0.1762

 19 0.2632 0.2376 0.2077 0.1912 0.1880 0.1844 0.1806 0.1778 0.1764 0.1748 0.1739 0.1733 0.1728 0.1725 0.1721 0.1719 0.1718 0.1717

 20 0.2599 0.2344 0.2036 0.1868 0.1834 0.1802 0.1761 0.1736 0.1722 0.1707 0.1699 0.1691 0.1686 0.1685 0.1680 0.1678 0.1678 0.1677

 21 0.2570 0.2309 0.1998 0.1825 0.1794 0.1759 0.1723 0.1698 0.1683 0.1668 0.1661 0.1653 0.1649 0.1646 0.1643 0.1640 0.1638 0.1639

 22 0.2542 0.2279 0.1964 0.1786 0.1756 0.1724 0.1685 0.1661 0.1647 0.1631 0.1625 0.1618 0.1613 0.1611 0.1605 0.1604 0.1603 0.1601

 23 0.2516 0.2253 0.1933 0.1749 0.1719 0.1687 0.1650 0.1626 0.1612 0.1598 0.1591 0.1583 0.1580 0.1577 0.1574 0.1570 0.1569 0.1569

 24 0.2491 0.2225 0.1901 0.1715 0.1685 0.1654 0.1617 0.1593 0.1580 0.1566 0.1559 0.1552 0.1548 0.1545 0.1541 0.1539 0.1538 0.1537

 25 0.2466 0.2200 0.1873 0.1683 0.1652 0.1623 0.1586 0.1563 0.1551 0.1537 0.1529 0.1522 0.1518 0.1516 0.1512 0.1510 0.1509 0.1509

 26 0.2445 0.2177 0.1846 0.1652 0.1622 0.1591 0.1557 0.1534 0.1521 0.1507 0.1501 0.1493 0.1490 0.1487 0.1484 0.1482 0.1480 0.1480

 27 0.2423 0.2152 0.1824 0.1624 0.1593 0.1565 0.1528 0.1507 0.1495 0.1482 0.1474 0.1467 0.1462 0.1462 0.1457 0.1455 0.1454 0.1454

 28 0.2404 0.2132 0.1798 0.1596 0.1566 0.1538 0.1504 0.1481 0.1469 0.1455 0.1449 0.1442 0.1439 0.1436 0.1432 0.1431 0.1430 0.1429

 29 0.2383 0.2111 0.1776 0.1570 0.1539 0.1514 0.1479 0.1456 0.1446 0.1431 0.1425 0.1418 0.1414 0.1412 0.1407 0.1407 0.1406 0.1405

 30 0.2365 0.2092 0.1755 0.1545 0.1515 0.1488 0.1454 0.1433 0.1421 0.1408 0.1402 0.1396 0.1391 0.1389 0.1386 0.1384 0.1383 0.1383

 35 0.2284 0.2007 0.1661 0.1438 0.1408 0.1382 0.1352 0.1332 0.1321 0.1309 0.1303 0.1295 0.1294 0.1291 0.1287 0.1286 0.1285 0.1284

 40 0.2219 0.1936 0.1585 0.1350 0.1321 0.1296 0.1268 0.1249 0.1240 0.1227 0.1221 0.1216 0.1212 0.1211 0.1208 0.1206 0.1205 0.1205

 45 0.2163 0.1879 0.1521 0.1278 0.1248 0.1226 0.1197 0.1180 0.1171 0.1159 0.1154 0.1148 0.1146 0.1144 0.1141 0.1139 0.1139 0.1138

 50 0.2115 0.1829 0.1469 0.1216 0.1187 0.1165 0.1138 0.1123 0.1113 0.1102 0.1098 0.1092 0.1089 0.1088 0.1085 0.1083 0.1082 0.1082

 60 0.2039 0.1749 0.1383 0.1117 0.1087 0.1067 0.1043 0.1027 0.1019 0.1009 0.1005 0.1000 0.0997 0.0996 0.0993 0.0991 0.0990 0.0990

 70 0.1978 0.1686 0.1317 0.1039 0.1008 0.0991 0.0967 0.0953 0.0945 0.0937 0.0932 0.0927 0.0925 0.0924 0.0922 0.0920 0.0919 0.0919

 80 0.1930 0.1635 0.1263 0.0977 0.0945 0.0928 0.0906 0.0893 0.0886 0.0878 0.0874 0.0869 0.0867 0.0865 0.0863 0.0862 0.0862 0.0861

 90 0.1889 0.1593 0.1219 0.0924 0.0891 0.0876 0.0856 0.0844 0.0836 0.0829 0.0825 0.0821 0.0818 0.0817 0.0815 0.0814 0.0813 0.0813

 100 0.1855 0.1557 0.1182 0.0880 0.0847 0.0832 0.0813 0.0801 0.0795 0.0788 0.0784 0.0780 0.0777 0.0776 0.0774 0.0773 0.0773 0.0772

 200 0.1669 0.1364 0.0977 0.0643 0.0603 0.0592 0.0579 0.0571 0.0565 0.0560 0.0558 0.0555 0.0553 0.0552 0.0551 0.0550 0.0550 0.0550

 300 0.1587 0.1279 0.0887 0.0540 0.0494 0.0485 0.0474 0.0467 0.0463 0.0459 0.0456 0.0454 0.0453 0.0452 0.0451 0.0450 0.0450 0.0450

 400 0.1538 0.1228 0.0834 0.0479 0.0428 0.0421 0.0411 0.0405 0.0402 0.0398 0.0396 0.0394 0.0393 0.0393 0.0392 0.0391 0.0391 0.0391

 500 0.1506 0.1194 0.0797 0.0438 0.0384 0.0376 0.0368 0.0363 0.0360 0.0357 0.0355 0.0353 0.0352 0.0352 0.0350 0.0350 0.0350 0.0350 

1000 0.1425 0.1111 0.0709 0.0338 0.0272 0.0267 0.0261 0.0257 0.0255 0.0253 0.0252 0.0250 0.0250 0.0249 0.0249 0.0248 0.0248 0.0248 

2500 0.1356 0.1039 0.0632 0.0252 0.0173 0.0169 0.0165 0.0163 0.0162 0.0160 0.0159 0.0159 0.0159 0.0158 0.0158 0.0157 0.0157 0.0157 

B-4 



Critical Values for Anderson Darling Test - Significance Level of 0.10


 n\k 0.010 0.025 0.050 0.100 0.200 0.300 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000 10.000 20.000  50.000 100.000 

4 0.7088 0.6976 0.6855 0.6661 0.6259 0.6057 0.5899 0.5829 0.5809 0.5777 0.5764 0.5748 0.5747 0.5750 0.5744 0.5738 0.5733 0.5733

 5 0.7611 0.7307 0.7050 0.6915 0.6540 0.6303 0.6122 0.6035 0.5988 0.5957 0.5937 0.5926 0.5907 0.5913 0.5895 0.5891 0.5883 0.5882

 6 0.8243 0.7721 0.7260 0.7074 0.6719 0.6466 0.6246 0.6138 0.6099 0.6056 0.6031 0.6009 0.6001 0.5995 0.5987 0.5977 0.5979 0.5978

 7 0.8907 0.8132 0.7424 0.7162 0.6838 0.6573 0.6353 0.6245 0.6180 0.6138 0.6092 0.6085 0.6065 0.6066 0.6057 0.6041 0.6045 0.6041

 8 0.9573 0.8541 0.7599 0.7250 0.6944 0.6670 0.6415 0.6303 0.6236 0.6185 0.6155 0.6133 0.6120 0.6120 0.6099 0.6091 0.6081 0.6087

 9 1.0261 0.8963 0.7772 0.7312 0.7009 0.6724 0.6478 0.6346 0.6289 0.6227 0.6198 0.6174 0.6158 0.6140 0.6125 0.6125 0.6118 0.6128

 10 1.0941 0.9378 0.7920 0.7359 0.7070 0.6776 0.6516 0.6375 0.6315 0.6252 0.6229 0.6199 0.6186 0.6176 0.6157 0.6148 0.6138 0.6138

 11 1.1631 0.9805 0.8091 0.7407 0.7121 0.6823 0.6552 0.6420 0.6339 0.6275 0.6250 0.6217 0.6195 0.6189 0.6178 0.6170 0.6164 0.6156

 12 1.2308 1.0222 0.8239 0.7436 0.7156 0.6855 0.6573 0.6445 0.6378 0.6291 0.6267 0.6244 0.6214 0.6198 0.6187 0.6196 0.6178 0.6183

 13 1.2985 1.0649 0.8408 0.7479 0.7175 0.6887 0.6603 0.6466 0.6376 0.6330 0.6276 0.6237 0.6230 0.6222 0.6208 0.6197 0.6195 0.6194

 14 1.3637 1.1060 0.8544 0.7493 0.7210 0.6903 0.6627 0.6473 0.6399 0.6326 0.6291 0.6264 0.6243 0.6237 0.6212 0.6203 0.6189 0.6197

 15 1.4305 1.1465 0.8679 0.7521 0.7238 0.6927 0.6629 0.6497 0.6416 0.6342 0.6299 0.6277 0.6242 0.6237 0.6222 0.6215 0.6210 0.6204

 16 1.4956 1.1879 0.8847 0.7551 0.7246 0.6943 0.6655 0.6493 0.6424 0.6343 0.6319 0.6272 0.6259 0.6255 0.6236 0.6220 0.6209 0.6218

 17 1.5594 1.2263 0.8989 0.7571 0.7272 0.6971 0.6664 0.6506 0.6438 0.6362 0.6318 0.6281 0.6265 0.6264 0.6234 0.6226 0.6217 0.6217

 18 1.6219 1.2670 0.9131 0.7597 0.7286 0.6976 0.6675 0.6512 0.6433 0.6361 0.6337 0.6292 0.6279 0.6264 0.6234 0.6237 0.6229 0.6229

 19 1.6831 1.3041 0.9283 0.7613 0.7302 0.6989 0.6699 0.6516 0.6453 0.6372 0.6333 0.6300 0.6271 0.6259 0.6251 0.6244 0.6239 0.6230

 20 1.7445 1.3440 0.9407 0.7629 0.7316 0.7004 0.6688 0.6527 0.6451 0.6377 0.6333 0.6299 0.6282 0.6274 0.6258 0.6244 0.6244 0.6243

 21 1.8079 1.3798 0.9536 0.7648 0.7323 0.6994 0.6713 0.6549 0.6458 0.6374 0.6341 0.6308 0.6288 0.6278 0.6264 0.6257 0.6243 0.6240

 22 1.8649 1.4173 0.9679 0.7666 0.7337 0.7020 0.6705 0.6552 0.6462 0.6377 0.6355 0.6315 0.6295 0.6284 0.6266 0.6249 0.6254 0.6243

 23 1.9250 1.4589 0.9827 0.7679 0.7349 0.7032 0.6711 0.6551 0.6451 0.6388 0.6346 0.6307 0.6306 0.6287 0.6269 0.6249 0.6247 0.6244

 24 1.9846 1.4938 0.9951 0.7700 0.7356 0.7039 0.6719 0.6543 0.6468 0.6397 0.6347 0.6318 0.6298 0.6281 0.6271 0.6256 0.6254 0.6254

 25 2.0426 1.5281 1.0090 0.7703 0.7364 0.7044 0.6727 0.6560 0.6484 0.6393 0.6355 0.6322 0.6299 0.6294 0.6274 0.6257 0.6251 0.6248

 26 2.1022 1.5681 1.0213 0.7705 0.7353 0.7044 0.6729 0.6564 0.6484 0.6397 0.6355 0.6314 0.6294 0.6291 0.6268 0.6265 0.6260 0.6256

 27 2.1572 1.6005 1.0378 0.7732 0.7370 0.7063 0.6730 0.6562 0.6486 0.6404 0.6360 0.6323 0.6297 0.6288 0.6271 0.6268 0.6260 0.6262

 28 2.2173 1.6381 1.0486 0.7741 0.7372 0.7061 0.6742 0.6563 0.6486 0.6401 0.6374 0.6330 0.6311 0.6299 0.6272 0.6274 0.6261 0.6255

 29 2.2750 1.6749 1.0620 0.7755 0.7369 0.7073 0.6753 0.6561 0.6488 0.6407 0.6371 0.6330 0.6311 0.6296 0.6270 0.6262 0.6260 0.6255

 30 2.3305 1.7089 1.0763 0.7781 0.7378 0.7064 0.6744 0.6581 0.6496 0.6408 0.6374 0.6334 0.6307 0.6289 0.6279 0.6269 0.6261 0.6267

 35 2.6059 1.8806 1.1413 0.7832 0.7395 0.7082 0.6765 0.6588 0.6502 0.6424 0.6382 0.6334 0.6332 0.6306 0.6293 0.6280 0.6270 0.6273

 40 2.8792 2.0456 1.2022 0.7872 0.7421 0.7090 0.6768 0.6597 0.6514 0.6426 0.6370 0.6343 0.6320 0.6309 0.6287 0.6277 0.6276 0.6279

 45 3.1396 2.2085 1.2601 0.7927 0.7430 0.7115 0.6768 0.6605 0.6507 0.6433 0.6387 0.6342 0.6321 0.6319 0.6304 0.6281 0.6289 0.6286

 50 3.3978 2.3668 1.3201 0.7966 0.7457 0.7124 0.6772 0.6622 0.6518 0.6429 0.6398 0.6354 0.6326 0.6322 0.6302 0.6286 0.6285 0.6287

 60 3.9028 2.6768 1.4351 0.8062 0.7470 0.7129 0.6785 0.6609 0.6518 0.6441 0.6395 0.6360 0.6333 0.6324 0.6313 0.6290 0.6291 0.6292

 70 4.3942 2.9790 1.5495 0.8114 0.7472 0.7152 0.6789 0.6615 0.6531 0.6454 0.6408 0.6357 0.6339 0.6327 0.6302 0.6296 0.6295 0.6293

 80 4.8817 3.2693 1.6602 0.8202 0.7471 0.7141 0.6801 0.6625 0.6535 0.6458 0.6412 0.6362 0.6352 0.6326 0.6312 0.6299 0.6291 0.6288

 90 5.3579 3.5630 1.7658 0.8266 0.7481 0.7155 0.6801 0.6633 0.6537 0.6457 0.6417 0.6366 0.6339 0.6337 0.6310 0.6289 0.6303 0.6298

 100 5.8377 3.8476 1.8740 0.8334 0.7487 0.7170 0.6807 0.6634 0.6538 0.6457 0.6422 0.6370 0.6341 0.6335 0.6315 0.6300 0.6296 0.6291

 200 10.3750 6.5699 2.8606 0.9021 0.7513 0.7163 0.6820 0.6641 0.6545 0.6458 0.6418 0.6380 0.6351 0.6339 0.6311 0.6305 0.6302 0.6307

 300 14.7424 9.1683 3.7864 0.9692 0.7517 0.7178 0.6822 0.6641 0.6549 0.6466 0.6411 0.6363 0.6359 0.6341 0.6334 0.6305 0.6302 0.6311

 400 19.0253 11.6939 4.6787 1.0324 0.7510 0.7180 0.6826 0.6649 0.6554 0.6460 0.6413 0.6372 0.6358 0.6349 0.6329 0.6312 0.6306 0.6313

 500 23.2588 14.1892 5.5513 1.0949 0.7520 0.7179 0.6825 0.6644 0.6554 0.6465 0.6426 0.6382 0.6356 0.6349 0.6320 0.6308 0.6305 0.6315 

1000 43.9612 26.3237 9.7366 1.3989 0.7522 0.7183 0.6844 0.6645 0.6549 0.6460 0.6429 0.6373 0.6363 0.6348 0.6321 0.6310 0.6300 0.6311 

2500 104.511 61.5654 21.6770 2.2303 0.7537 0.7193 0.6835 0.6645 0.6563 0.6462 0.6424 0.6375 0.6403 0.6357 0.6322 0.6302 0.6307 0.6316 

B-5 



Critical Values for Kolmogorov Smirnov Test - Significance Level of 0.10


 n\k 0.010 0.025 0.050 0.100 0.200 0.300 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000 10.000 20.000  50.000 100.000 

4 0.4102 0.4026 0.3956 0.3925 0.3872 0.3817 0.3746 0.3699 0.3677 0.3647 0.3633 0.3622 0.3615 0.3616 0.3605 0.3601 0.3599 0.3596

 5 0.3856 0.3761 0.3680 0.3655 0.3586 0.3524 0.3459 0.3416 0.3395 0.3373 0.3361 0.3351 0.3344 0.3343 0.3334 0.3331 0.3330 0.3328

 6 0.3694 0.3570 0.3448 0.3393 0.3324 0.3261 0.3192 0.3151 0.3130 0.3110 0.3096 0.3087 0.3080 0.3075 0.3073 0.3068 0.3066 0.3066

 7 0.3558 0.3394 0.3234 0.3175 0.3128 0.3071 0.3006 0.2968 0.2941 0.2919 0.2903 0.2893 0.2886 0.2885 0.2877 0.2872 0.2871 0.2870

 8 0.3441 0.3265 0.3083 0.3010 0.2959 0.2903 0.2837 0.2799 0.2776 0.2754 0.2741 0.2731 0.2725 0.2722 0.2714 0.2710 0.2707 0.2709

 9 0.3343 0.3148 0.2947 0.2856 0.2808 0.2754 0.2695 0.2656 0.2635 0.2612 0.2602 0.2590 0.2585 0.2578 0.2574 0.2571 0.2569 0.2570

 10 0.3255 0.3048 0.2824 0.2726 0.2682 0.2630 0.2572 0.2533 0.2514 0.2492 0.2483 0.2471 0.2465 0.2463 0.2454 0.2451 0.2448 0.2448

 11 0.3182 0.2962 0.2726 0.2613 0.2574 0.2523 0.2465 0.2430 0.2408 0.2386 0.2378 0.2365 0.2360 0.2356 0.2351 0.2348 0.2346 0.2345

 12 0.3113 0.2887 0.2633 0.2515 0.2473 0.2425 0.2368 0.2337 0.2316 0.2293 0.2284 0.2274 0.2267 0.2263 0.2256 0.2257 0.2255 0.2254

 13 0.3051 0.2817 0.2554 0.2425 0.2385 0.2340 0.2287 0.2253 0.2232 0.2214 0.2202 0.2191 0.2187 0.2183 0.2177 0.2174 0.2173 0.2172

 14 0.2995 0.2758 0.2482 0.2344 0.2306 0.2262 0.2211 0.2177 0.2158 0.2137 0.2127 0.2119 0.2113 0.2111 0.2104 0.2101 0.2098 0.2096

 15 0.2943 0.2702 0.2414 0.2271 0.2235 0.2192 0.2139 0.2110 0.2091 0.2070 0.2061 0.2052 0.2046 0.2043 0.2037 0.2034 0.2034 0.2032

 16 0.2898 0.2651 0.2358 0.2207 0.2168 0.2127 0.2078 0.2047 0.2028 0.2009 0.2001 0.1990 0.1985 0.1983 0.1978 0.1974 0.1972 0.1973

 17 0.2854 0.2602 0.2304 0.2145 0.2110 0.2071 0.2021 0.1990 0.1973 0.1954 0.1944 0.1935 0.1930 0.1928 0.1921 0.1919 0.1917 0.1917

 18 0.2814 0.2559 0.2253 0.2091 0.2054 0.2014 0.1967 0.1938 0.1920 0.1903 0.1894 0.1884 0.1880 0.1876 0.1870 0.1868 0.1867 0.1867

 19 0.2776 0.2518 0.2210 0.2038 0.2004 0.1965 0.1920 0.1888 0.1873 0.1854 0.1845 0.1838 0.1832 0.1828 0.1824 0.1822 0.1820 0.1820

 20 0.2740 0.2480 0.2166 0.1991 0.1956 0.1919 0.1873 0.1844 0.1828 0.1812 0.1801 0.1793 0.1788 0.1786 0.1781 0.1779 0.1778 0.1777

 21 0.2708 0.2445 0.2125 0.1945 0.1912 0.1873 0.1832 0.1804 0.1787 0.1770 0.1761 0.1753 0.1747 0.1745 0.1741 0.1738 0.1737 0.1736

 22 0.2677 0.2412 0.2090 0.1904 0.1872 0.1835 0.1792 0.1764 0.1749 0.1730 0.1724 0.1715 0.1710 0.1708 0.1701 0.1700 0.1699 0.1698

 23 0.2648 0.2383 0.2056 0.1865 0.1834 0.1797 0.1755 0.1728 0.1712 0.1696 0.1686 0.1678 0.1674 0.1673 0.1668 0.1663 0.1663 0.1662

 24 0.2620 0.2354 0.2023 0.1829 0.1797 0.1762 0.1720 0.1693 0.1678 0.1662 0.1654 0.1646 0.1641 0.1639 0.1633 0.1631 0.1630 0.1629

 25 0.2595 0.2325 0.1993 0.1794 0.1762 0.1729 0.1686 0.1660 0.1647 0.1630 0.1622 0.1614 0.1611 0.1608 0.1603 0.1601 0.1599 0.1599

 26 0.2570 0.2299 0.1964 0.1762 0.1729 0.1695 0.1657 0.1630 0.1616 0.1599 0.1592 0.1583 0.1579 0.1576 0.1573 0.1570 0.1569 0.1569

 27 0.2547 0.2274 0.1941 0.1731 0.1699 0.1667 0.1626 0.1602 0.1588 0.1572 0.1564 0.1556 0.1551 0.1549 0.1544 0.1543 0.1541 0.1541

 28 0.2526 0.2253 0.1912 0.1701 0.1669 0.1638 0.1599 0.1573 0.1560 0.1544 0.1537 0.1529 0.1526 0.1523 0.1518 0.1517 0.1515 0.1515

 29 0.2503 0.2230 0.1888 0.1674 0.1641 0.1612 0.1573 0.1547 0.1535 0.1518 0.1512 0.1505 0.1501 0.1497 0.1492 0.1491 0.1490 0.1489

 30 0.2484 0.2208 0.1866 0.1648 0.1615 0.1585 0.1547 0.1523 0.1509 0.1495 0.1488 0.1480 0.1475 0.1473 0.1469 0.1467 0.1466 0.1466

 35 0.2395 0.2115 0.1766 0.1534 0.1500 0.1472 0.1437 0.1415 0.1402 0.1389 0.1383 0.1374 0.1372 0.1368 0.1365 0.1363 0.1361 0.1361

 40 0.2324 0.2039 0.1684 0.1441 0.1407 0.1381 0.1348 0.1327 0.1316 0.1302 0.1295 0.1290 0.1286 0.1284 0.1280 0.1278 0.1277 0.1278

 45 0.2262 0.1976 0.1614 0.1363 0.1331 0.1306 0.1273 0.1255 0.1243 0.1230 0.1224 0.1218 0.1215 0.1213 0.1210 0.1208 0.1207 0.1206

 50 0.2210 0.1922 0.1558 0.1297 0.1265 0.1241 0.1210 0.1193 0.1182 0.1170 0.1165 0.1158 0.1155 0.1153 0.1150 0.1147 0.1147 0.1147

 60 0.2126 0.1835 0.1466 0.1191 0.1159 0.1136 0.1109 0.1091 0.1082 0.1071 0.1066 0.1061 0.1057 0.1056 0.1053 0.1051 0.1049 0.1050

 70 0.2060 0.1766 0.1394 0.1108 0.1075 0.1056 0.1028 0.1013 0.1004 0.0994 0.0989 0.0983 0.0981 0.0979 0.0977 0.0975 0.0974 0.0974

 80 0.2007 0.1710 0.1336 0.1042 0.1008 0.0988 0.0964 0.0949 0.0941 0.0932 0.0927 0.0922 0.0920 0.0918 0.0916 0.0913 0.0913 0.0913

 90 0.1962 0.1665 0.1288 0.0985 0.0950 0.0933 0.0910 0.0896 0.0888 0.0880 0.0876 0.0870 0.0868 0.0866 0.0864 0.0863 0.0862 0.0861

 100 0.1925 0.1625 0.1248 0.0938 0.0902 0.0886 0.0865 0.0851 0.0844 0.0835 0.0831 0.0826 0.0824 0.0823 0.0820 0.0819 0.0819 0.0819

 200 0.1719 0.1413 0.1024 0.0686 0.0643 0.0631 0.0616 0.0606 0.0600 0.0594 0.0592 0.0588 0.0587 0.0586 0.0583 0.0583 0.0583 0.0583

 300 0.1629 0.1320 0.0926 0.0576 0.0526 0.0516 0.0504 0.0496 0.0492 0.0487 0.0484 0.0482 0.0481 0.0480 0.0478 0.0477 0.0477 0.0477

 400 0.1575 0.1263 0.0868 0.0510 0.0456 0.0448 0.0437 0.0430 0.0426 0.0422 0.0420 0.0418 0.0417 0.0416 0.0415 0.0414 0.0414 0.0414

 500 0.1538 0.1226 0.0828 0.0466 0.0409 0.0401 0.0391 0.0385 0.0382 0.0378 0.0376 0.0374 0.0373 0.0373 0.0372 0.0371 0.0371 0.0371 

1000 0.1449 0.1134 0.0731 0.0359 0.0290 0.0284 0.0278 0.0273 0.0271 0.0268 0.0267 0.0265 0.0265 0.0264 0.0263 0.0263 0.0263 0.0263 

2500 0.1371 0.1054 0.0647 0.0266 0.0184 0.0180 0.0176 0.0173 0.0172 0.0170 0.0169 0.0168 0.0168 0.0168 0.0167 0.0167 0.0167 0.0167 
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Critical Values for Anderson Darling Test - Significance Level of 0.05


 n\k 0.010 0.025 0.050 0.100 0.200 0.300 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000 10.000 20.000  50.000 100.000 

4 0.7933 0.7883 0.7863 0.7785 0.7325 0.7041 0.6809 0.6703 0.6666 0.6624 0.6605 0.6594 0.6589 0.6590 0.6571 0.6571 0.6559 0.6565

 5 0.8730 0.8462 0.8304 0.8264 0.7753 0.7392 0.7110 0.6983 0.6913 0.6864 0.6845 0.6826 0.6812 0.6807 0.6789 0.6787 0.6783 0.6781

 6 0.9490 0.8965 0.8535 0.8446 0.8025 0.7667 0.7359 0.7210 0.7151 0.7078 0.7042 0.7013 0.7000 0.6980 0.6983 0.6971 0.6969 0.6962

 7 1.0305 0.9476 0.8762 0.8598 0.8211 0.7841 0.7515 0.7361 0.7275 0.7212 0.7149 0.7122 0.7097 0.7099 0.7085 0.7067 0.7077 0.7077

 8 1.1136 1.0006 0.8986 0.8720 0.8359 0.7973 0.7624 0.7451 0.7355 0.7284 0.7240 0.7215 0.7186 0.7191 0.7150 0.7162 0.7148 0.7147

 9 1.1971 1.0535 0.9227 0.8810 0.8451 0.8073 0.7707 0.7515 0.7435 0.7344 0.7298 0.7268 0.7250 0.7228 0.7218 0.7210 0.7205 0.7200

 10 1.2792 1.1063 0.9420 0.8881 0.8539 0.8136 0.7770 0.7570 0.7483 0.7392 0.7356 0.7322 0.7294 0.7295 0.7251 0.7246 0.7244 0.7238

 11 1.3623 1.1586 0.9637 0.8950 0.8601 0.8201 0.7811 0.7625 0.7516 0.7422 0.7389 0.7335 0.7326 0.7314 0.7294 0.7287 0.7284 0.7257

 12 1.4414 1.2089 0.9834 0.8989 0.8656 0.8239 0.7849 0.7656 0.7567 0.7455 0.7415 0.7390 0.7358 0.7320 0.7303 0.7319 0.7296 0.7312

 13 1.5200 1.2605 1.0039 0.9049 0.8682 0.8298 0.7900 0.7703 0.7574 0.7503 0.7431 0.7392 0.7372 0.7359 0.7337 0.7333 0.7325 0.7323

 14 1.5958 1.3106 1.0234 0.9072 0.8735 0.8320 0.7933 0.7706 0.7600 0.7507 0.7459 0.7425 0.7401 0.7380 0.7345 0.7340 0.7330 0.7334

 15 1.6732 1.3605 1.0405 0.9113 0.8768 0.8355 0.7930 0.7751 0.7630 0.7538 0.7468 0.7445 0.7400 0.7386 0.7374 0.7347 0.7345 0.7341

 16 1.7482 1.4088 1.0618 0.9164 0.8783 0.8378 0.7963 0.7745 0.7633 0.7547 0.7503 0.7443 0.7419 0.7413 0.7390 0.7365 0.7354 0.7360

 17 1.8194 1.4552 1.0796 0.9205 0.8827 0.8418 0.7979 0.7764 0.7660 0.7557 0.7494 0.7454 0.7428 0.7416 0.7388 0.7378 0.7367 0.7362

 18 1.8905 1.4995 1.0965 0.9229 0.8842 0.8421 0.8001 0.7780 0.7666 0.7562 0.7526 0.7458 0.7426 0.7430 0.7392 0.7395 0.7383 0.7372

 19 1.9614 1.5452 1.1162 0.9250 0.8877 0.8428 0.8028 0.7788 0.7692 0.7569 0.7518 0.7481 0.7451 0.7424 0.7412 0.7403 0.7404 0.7379

 20 2.0284 1.5917 1.1322 0.9289 0.8880 0.8447 0.8025 0.7795 0.7679 0.7578 0.7524 0.7475 0.7455 0.7452 0.7418 0.7407 0.7394 0.7405

 21 2.0984 1.6336 1.1480 0.9288 0.8903 0.8458 0.8053 0.7828 0.7696 0.7582 0.7538 0.7494 0.7473 0.7453 0.7426 0.7425 0.7412 0.7395

 22 2.1639 1.6751 1.1669 0.9334 0.8918 0.8476 0.8043 0.7830 0.7708 0.7587 0.7561 0.7494 0.7466 0.7464 0.7436 0.7403 0.7429 0.7406

 23 2.2329 1.7214 1.1839 0.9338 0.8939 0.8488 0.8051 0.7822 0.7693 0.7601 0.7547 0.7503 0.7491 0.7465 0.7441 0.7419 0.7414 0.7404

 24 2.2974 1.7630 1.2009 0.9377 0.8938 0.8512 0.8063 0.7825 0.7719 0.7615 0.7551 0.7511 0.7487 0.7462 0.7443 0.7423 0.7421 0.7418

 25 2.3601 1.8028 1.2161 0.9394 0.8955 0.8518 0.8069 0.7835 0.7731 0.7615 0.7565 0.7513 0.7487 0.7470 0.7448 0.7432 0.7423 0.7418

 26 2.4252 1.8483 1.2315 0.9393 0.8936 0.8516 0.8085 0.7842 0.7734 0.7616 0.7573 0.7505 0.7478 0.7463 0.7441 0.7438 0.7428 0.7422

 27 2.4909 1.8820 1.2531 0.9437 0.8957 0.8531 0.8074 0.7839 0.7733 0.7630 0.7566 0.7517 0.7490 0.7474 0.7436 0.7440 0.7433 0.7439

 28 2.5562 1.9280 1.2634 0.9432 0.8971 0.8543 0.8103 0.7847 0.7738 0.7627 0.7580 0.7537 0.7497 0.7485 0.7453 0.7446 0.7431 0.7431

 29 2.6160 1.9685 1.2809 0.9478 0.8976 0.8562 0.8115 0.7837 0.7742 0.7627 0.7573 0.7527 0.7503 0.7475 0.7457 0.7442 0.7439 0.7423

 30 2.6778 2.0063 1.2983 0.9482 0.8976 0.8538 0.8092 0.7878 0.7755 0.7630 0.7585 0.7524 0.7495 0.7465 0.7455 0.7443 0.7441 0.7451

 35 2.9819 2.1959 1.3736 0.9546 0.8995 0.8565 0.8122 0.7877 0.7757 0.7666 0.7597 0.7537 0.7526 0.7497 0.7483 0.7467 0.7447 0.7459

 40 3.2742 2.3805 1.4435 0.9625 0.9028 0.8577 0.8131 0.7891 0.7787 0.7658 0.7590 0.7547 0.7525 0.7515 0.7480 0.7467 0.7458 0.7468

 45 3.5595 2.5587 1.5106 0.9690 0.9054 0.8619 0.8134 0.7897 0.7769 0.7679 0.7605 0.7556 0.7529 0.7532 0.7484 0.7482 0.7473 0.7471

 50 3.8334 2.7329 1.5791 0.9737 0.9074 0.8624 0.8143 0.7934 0.7800 0.7672 0.7629 0.7569 0.7535 0.7537 0.7496 0.7482 0.7476 0.7481

 60 4.3789 3.0659 1.7118 0.9844 0.9099 0.8633 0.8160 0.7921 0.7791 0.7689 0.7629 0.7580 0.7536 0.7533 0.7512 0.7489 0.7476 0.7484

 70 4.9012 3.3923 1.8398 0.9917 0.9096 0.8657 0.8167 0.7926 0.7805 0.7689 0.7634 0.7575 0.7557 0.7542 0.7507 0.7492 0.7486 0.7490

 80 5.4154 3.7091 1.9620 1.0021 0.9104 0.8649 0.8189 0.7931 0.7820 0.7703 0.7631 0.7589 0.7563 0.7545 0.7505 0.7508 0.7484 0.7488

 90 5.9167 4.0188 2.0787 1.0111 0.9113 0.8679 0.8184 0.7936 0.7828 0.7715 0.7651 0.7592 0.7554 0.7548 0.7521 0.7495 0.7513 0.7502

 100 6.4255 4.3222 2.1954 1.0194 0.9123 0.8676 0.8184 0.7950 0.7830 0.7698 0.7650 0.7585 0.7564 0.7543 0.7522 0.7495 0.7504 0.7500

 200 11.1598 7.1943 3.2677 1.1031 0.9142 0.8692 0.8209 0.7962 0.7839 0.7713 0.7664 0.7604 0.7564 0.7561 0.7512 0.7513 0.7503 0.7506

 300 15.6877 9.9089 4.2544 1.1798 0.9166 0.8707 0.8217 0.7969 0.7840 0.7720 0.7659 0.7594 0.7588 0.7568 0.7552 0.7509 0.7516 0.7523

 400 20.0982 12.5299 5.1940 1.2564 0.9170 0.8713 0.8230 0.7977 0.7846 0.7728 0.7660 0.7602 0.7586 0.7572 0.7542 0.7515 0.7523 0.7511

 500 24.4270 15.1069 6.1097 1.3280 0.9178 0.8716 0.8223 0.7971 0.7851 0.7721 0.7671 0.7615 0.7590 0.7563 0.7534 0.7522 0.7515 0.7530 

1000 45.5811 27.5755 10.4679 1.6707 0.9188 0.8707 0.8244 0.7966 0.7846 0.7713 0.7679 0.7603 0.7597 0.7573 0.7527 0.7519 0.7497 0.7520 

2500 107.018 63.4597 22.7439 2.5739 0.9200 0.8732 0.8223 0.7969 0.7860 0.7722 0.7666 0.7603 0.7641 0.7572 0.7527 0.7513 0.7522 0.7525 
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Critical Values for Kolmogorov Smirnov Test - Significance Level of 0.05


 n\k 0.010 0.025 0.050 0.100 0.200 0.300 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000 10.000 20.000  50.000 100.000 

4 0.4371 0.4323 0.4289 0.4296 0.4244 0.4181 0.4103 0.4050 0.4024 0.3995 0.3979 0.3966 0.3962 0.3959 0.3949 0.3942 0.3938 0.3940

 5 0.4191 0.4093 0.4009 0.3982 0.3885 0.3799 0.3716 0.3667 0.3644 0.3617 0.3605 0.3594 0.3584 0.3583 0.3576 0.3572 0.3569 0.3568

 6 0.3971 0.3844 0.3726 0.3688 0.3637 0.3568 0.3486 0.3434 0.3408 0.3375 0.3358 0.3346 0.3335 0.3328 0.3325 0.3317 0.3318 0.3315

 7 0.3849 0.3688 0.3528 0.3478 0.3419 0.3351 0.3272 0.3227 0.3196 0.3170 0.3151 0.3137 0.3129 0.3130 0.3119 0.3115 0.3114 0.3113

 8 0.3724 0.3541 0.3356 0.3287 0.3233 0.3170 0.3090 0.3041 0.3015 0.2989 0.2975 0.2963 0.2953 0.2952 0.2943 0.2939 0.2934 0.2936

 9 0.3617 0.3418 0.3208 0.3123 0.3075 0.3015 0.2941 0.2893 0.2869 0.2840 0.2825 0.2813 0.2804 0.2798 0.2793 0.2788 0.2787 0.2788

 10 0.3523 0.3314 0.3081 0.2984 0.2941 0.2878 0.2808 0.2760 0.2737 0.2711 0.2698 0.2685 0.2678 0.2674 0.2666 0.2662 0.2659 0.2658

 11 0.3440 0.3221 0.2976 0.2862 0.2819 0.2759 0.2691 0.2649 0.2624 0.2597 0.2585 0.2570 0.2565 0.2560 0.2554 0.2550 0.2546 0.2544

 12 0.3368 0.3137 0.2873 0.2753 0.2710 0.2653 0.2587 0.2548 0.2524 0.2495 0.2485 0.2474 0.2464 0.2459 0.2454 0.2452 0.2450 0.2450

 13 0.3297 0.3064 0.2789 0.2659 0.2613 0.2563 0.2498 0.2459 0.2430 0.2409 0.2394 0.2382 0.2377 0.2374 0.2367 0.2361 0.2362 0.2360

 14 0.3234 0.2996 0.2711 0.2568 0.2530 0.2478 0.2416 0.2376 0.2351 0.2327 0.2316 0.2305 0.2298 0.2293 0.2287 0.2283 0.2280 0.2279

 15 0.3178 0.2934 0.2638 0.2489 0.2451 0.2400 0.2338 0.2302 0.2279 0.2255 0.2244 0.2233 0.2226 0.2221 0.2215 0.2212 0.2210 0.2209

 16 0.3127 0.2878 0.2577 0.2419 0.2376 0.2329 0.2272 0.2232 0.2212 0.2189 0.2179 0.2167 0.2161 0.2158 0.2152 0.2146 0.2144 0.2144

 17 0.3078 0.2826 0.2519 0.2352 0.2315 0.2268 0.2209 0.2173 0.2151 0.2129 0.2117 0.2106 0.2100 0.2097 0.2089 0.2087 0.2085 0.2084

 18 0.3033 0.2776 0.2464 0.2292 0.2253 0.2208 0.2151 0.2114 0.2094 0.2072 0.2063 0.2050 0.2046 0.2041 0.2034 0.2033 0.2031 0.2031

 19 0.2990 0.2731 0.2415 0.2236 0.2198 0.2151 0.2100 0.2061 0.2043 0.2021 0.2008 0.2000 0.1992 0.1990 0.1986 0.1981 0.1981 0.1979

 20 0.2949 0.2691 0.2366 0.2185 0.2145 0.2101 0.2049 0.2014 0.1994 0.1974 0.1961 0.1950 0.1946 0.1945 0.1938 0.1935 0.1934 0.1934

 21 0.2915 0.2649 0.2323 0.2132 0.2097 0.2054 0.2004 0.1969 0.1949 0.1928 0.1918 0.1909 0.1903 0.1900 0.1894 0.1892 0.1889 0.1889

 22 0.2879 0.2612 0.2283 0.2090 0.2055 0.2011 0.1959 0.1927 0.1908 0.1885 0.1879 0.1867 0.1862 0.1859 0.1853 0.1849 0.1851 0.1848

 23 0.2847 0.2580 0.2247 0.2046 0.2013 0.1969 0.1919 0.1886 0.1867 0.1849 0.1838 0.1827 0.1824 0.1821 0.1815 0.1810 0.1809 0.1809

 24 0.2813 0.2546 0.2211 0.2007 0.1971 0.1932 0.1881 0.1849 0.1830 0.1812 0.1802 0.1792 0.1787 0.1783 0.1777 0.1775 0.1774 0.1772

 25 0.2786 0.2516 0.2179 0.1969 0.1933 0.1895 0.1845 0.1813 0.1796 0.1777 0.1767 0.1759 0.1753 0.1749 0.1745 0.1742 0.1739 0.1739

 26 0.2759 0.2486 0.2146 0.1933 0.1896 0.1858 0.1812 0.1780 0.1764 0.1742 0.1734 0.1724 0.1719 0.1716 0.1712 0.1708 0.1707 0.1707

 27 0.2732 0.2459 0.2118 0.1899 0.1863 0.1827 0.1779 0.1750 0.1730 0.1714 0.1705 0.1694 0.1689 0.1686 0.1681 0.1678 0.1676 0.1677

 28 0.2709 0.2434 0.2088 0.1867 0.1832 0.1795 0.1749 0.1719 0.1702 0.1684 0.1676 0.1666 0.1661 0.1659 0.1652 0.1652 0.1649 0.1648

 29 0.2683 0.2409 0.2062 0.1837 0.1802 0.1767 0.1721 0.1690 0.1675 0.1655 0.1647 0.1639 0.1634 0.1630 0.1625 0.1623 0.1622 0.1620

 30 0.2663 0.2386 0.2037 0.1809 0.1772 0.1736 0.1692 0.1663 0.1648 0.1629 0.1621 0.1611 0.1607 0.1603 0.1600 0.1597 0.1595 0.1596

 35 0.2561 0.2281 0.1927 0.1683 0.1647 0.1613 0.1571 0.1545 0.1530 0.1515 0.1507 0.1497 0.1494 0.1490 0.1486 0.1484 0.1482 0.1481

 40 0.2482 0.2196 0.1835 0.1581 0.1544 0.1514 0.1476 0.1449 0.1437 0.1420 0.1412 0.1404 0.1401 0.1399 0.1394 0.1391 0.1390 0.1390

 45 0.2412 0.2124 0.1759 0.1496 0.1461 0.1432 0.1393 0.1370 0.1356 0.1342 0.1334 0.1327 0.1323 0.1322 0.1317 0.1315 0.1314 0.1313

 50 0.2353 0.2063 0.1695 0.1425 0.1389 0.1361 0.1324 0.1304 0.1289 0.1275 0.1269 0.1262 0.1257 0.1256 0.1252 0.1249 0.1249 0.1249

 60 0.2258 0.1963 0.1592 0.1308 0.1272 0.1245 0.1214 0.1192 0.1180 0.1168 0.1161 0.1156 0.1151 0.1150 0.1147 0.1144 0.1143 0.1143

 70 0.2183 0.1886 0.1513 0.1216 0.1179 0.1157 0.1126 0.1107 0.1095 0.1084 0.1078 0.1071 0.1069 0.1067 0.1064 0.1061 0.1061 0.1061

 80 0.2122 0.1823 0.1447 0.1143 0.1105 0.1083 0.1055 0.1037 0.1027 0.1016 0.1011 0.1005 0.1002 0.0999 0.0997 0.0995 0.0993 0.0994

 90 0.2071 0.1771 0.1392 0.1082 0.1044 0.1023 0.0996 0.0979 0.0970 0.0959 0.0954 0.0949 0.0945 0.0944 0.0941 0.0939 0.0939 0.0938

 100 0.2029 0.1727 0.1347 0.1031 0.0991 0.0971 0.0946 0.0929 0.0921 0.0911 0.0906 0.0901 0.0898 0.0896 0.0894 0.0892 0.0892 0.0892

 200 0.1794 0.1487 0.1096 0.0753 0.0705 0.0691 0.0673 0.0662 0.0655 0.0648 0.0645 0.0641 0.0639 0.0638 0.0635 0.0635 0.0635 0.0634

 300 0.1691 0.1380 0.0985 0.0631 0.0577 0.0566 0.0551 0.0542 0.0537 0.0531 0.0528 0.0524 0.0523 0.0522 0.0521 0.0520 0.0519 0.0520

 400 0.1629 0.1316 0.0919 0.0559 0.0501 0.0491 0.0478 0.0470 0.0465 0.0460 0.0457 0.0455 0.0454 0.0453 0.0452 0.0451 0.0451 0.0451

 500 0.1587 0.1274 0.0874 0.0510 0.0448 0.0439 0.0428 0.0421 0.0417 0.0412 0.0410 0.0408 0.0406 0.0406 0.0404 0.0404 0.0403 0.0404 

1000 0.1484 0.1168 0.0764 0.0390 0.0318 0.0311 0.0303 0.0298 0.0295 0.0292 0.0291 0.0289 0.0288 0.0288 0.0286 0.0286 0.0286 0.0286 

2500 0.1394 0.1076 0.0668 0.0286 0.0202 0.0197 0.0192 0.0189 0.0187 0.0185 0.0184 0.0183 0.0183 0.0182 0.0182 0.0181 0.0181 0.0181 
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Critical Values for Anderson Darling Test - Significance Level of 0.025


 n\k 0.010 0.025 0.050 0.100 0.200 0.300 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000 10.000 20.000  50.000 100.000 

4 0.8615 0.8677 0.8863 0.9039 0.8378 0.7984 0.7665 0.7511 0.7460 0.7399 0.7369 0.7355 0.7346 0.7346 0.7325 0.7317 0.7305 0.7311

 5 0.9689 0.9509 0.9503 0.9609 0.8987 0.8497 0.8119 0.7925 0.7854 0.7759 0.7730 0.7718 0.7693 0.7693 0.7678 0.7662 0.7659 0.7643

 6 1.0630 1.0130 0.9765 0.9863 0.9370 0.8879 0.8446 0.8255 0.8160 0.8059 0.8026 0.7993 0.7961 0.7948 0.7943 0.7932 0.7922 0.7918

 7 1.1594 1.0729 1.0070 1.0066 0.9620 0.9114 0.8676 0.8467 0.8348 0.8258 0.8170 0.8144 0.8106 0.8106 0.8089 0.8067 0.8072 0.8070

 8 1.2574 1.1392 1.0345 1.0216 0.9817 0.9290 0.8842 0.8577 0.8457 0.8353 0.8304 0.8278 0.8236 0.8235 0.8187 0.8195 0.8182 0.8185

 9 1.3550 1.2024 1.0646 1.0334 0.9943 0.9451 0.8930 0.8689 0.8564 0.8441 0.8394 0.8360 0.8325 0.8298 0.8294 0.8278 0.8270 0.8273

 10 1.4495 1.2659 1.0902 1.0433 1.0063 0.9536 0.9025 0.8758 0.8651 0.8524 0.8468 0.8419 0.8389 0.8396 0.8344 0.8330 0.8324 0.8317

 11 1.5453 1.3293 1.1162 1.0521 1.0135 0.9598 0.9087 0.8832 0.8700 0.8571 0.8514 0.8445 0.8443 0.8416 0.8400 0.8385 0.8389 0.8349

 12 1.6379 1.3875 1.1414 1.0568 1.0220 0.9648 0.9143 0.8900 0.8752 0.8611 0.8557 0.8507 0.8475 0.8447 0.8405 0.8420 0.8406 0.8430

 13 1.7256 1.4490 1.1649 1.0652 1.0232 0.9720 0.9209 0.8944 0.8772 0.8665 0.8592 0.8539 0.8501 0.8486 0.8458 0.8445 0.8426 0.8433

 14 1.8117 1.5045 1.1897 1.0698 1.0315 0.9777 0.9247 0.8944 0.8811 0.8688 0.8634 0.8573 0.8538 0.8515 0.8473 0.8463 0.8456 0.8454

 15 1.8988 1.5637 1.2102 1.0738 1.0342 0.9816 0.9236 0.8986 0.8847 0.8708 0.8649 0.8601 0.8556 0.8527 0.8497 0.8478 0.8481 0.8481

 16 1.9814 1.6174 1.2393 1.0815 1.0363 0.9840 0.9318 0.9015 0.8852 0.8745 0.8678 0.8610 0.8572 0.8564 0.8521 0.8506 0.8489 0.8507

 17 2.0598 1.6722 1.2611 1.0865 1.0428 0.9892 0.9315 0.9020 0.8879 0.8750 0.8685 0.8619 0.8596 0.8565 0.8536 0.8520 0.8505 0.8503

 18 2.1409 1.7231 1.2808 1.0905 1.0435 0.9902 0.9336 0.9056 0.8892 0.8751 0.8701 0.8626 0.8581 0.8589 0.8551 0.8555 0.8532 0.8519

 19 2.2162 1.7764 1.3033 1.0927 1.0480 0.9919 0.9357 0.9069 0.8932 0.8776 0.8713 0.8662 0.8630 0.8583 0.8566 0.8552 0.8555 0.8534

 20 2.2915 1.8258 1.3244 1.0978 1.0493 0.9941 0.9375 0.9060 0.8917 0.8789 0.8712 0.8637 0.8626 0.8621 0.8580 0.8561 0.8538 0.8559

 21 2.3715 1.8738 1.3396 1.0962 1.0515 0.9951 0.9410 0.9105 0.8939 0.8793 0.8727 0.8681 0.8644 0.8614 0.8589 0.8591 0.8572 0.8552

 22 2.4415 1.9185 1.3632 1.1035 1.0557 0.9968 0.9391 0.9107 0.8948 0.8791 0.8763 0.8668 0.8644 0.8644 0.8612 0.8572 0.8609 0.8568

 23 2.5164 1.9742 1.3839 1.1023 1.0576 0.9990 0.9418 0.9103 0.8927 0.8811 0.8757 0.8706 0.8680 0.8627 0.8620 0.8566 0.8586 0.8569

 24 2.5831 2.0197 1.4035 1.1105 1.0566 1.0019 0.9417 0.9126 0.8978 0.8822 0.8761 0.8710 0.8658 0.8640 0.8615 0.8595 0.8569 0.8577

 25 2.6565 2.0644 1.4219 1.1114 1.0614 1.0024 0.9430 0.9131 0.8991 0.8836 0.8768 0.8705 0.8671 0.8651 0.8643 0.8602 0.8585 0.8579

 26 2.7258 2.1088 1.4384 1.1131 1.0567 1.0018 0.9462 0.9143 0.8994 0.8838 0.8765 0.8708 0.8666 0.8637 0.8619 0.8617 0.8609 0.8594

 27 2.7952 2.1511 1.4646 1.1156 1.0600 1.0060 0.9440 0.9154 0.8986 0.8861 0.8779 0.8717 0.8674 0.8649 0.8604 0.8612 0.8603 0.8599

 28 2.8692 2.1998 1.4766 1.1174 1.0627 1.0042 0.9485 0.9158 0.8990 0.8850 0.8797 0.8739 0.8680 0.8672 0.8644 0.8627 0.8613 0.8602

 29 2.9301 2.2438 1.4940 1.1235 1.0606 1.0077 0.9508 0.9147 0.9008 0.8857 0.8789 0.8743 0.8698 0.8665 0.8637 0.8625 0.8609 0.8588

 30 3.0015 2.2866 1.5156 1.1243 1.0611 1.0049 0.9456 0.9170 0.9021 0.8860 0.8795 0.8727 0.8688 0.8650 0.8647 0.8625 0.8611 0.8624

 35 3.3266 2.4946 1.6032 1.1307 1.0635 1.0088 0.9494 0.9187 0.9017 0.8905 0.8828 0.8730 0.8718 0.8686 0.8671 0.8647 0.8611 0.8643

 40 3.6396 2.6943 1.6803 1.1409 1.0679 1.0105 0.9513 0.9198 0.9068 0.8895 0.8814 0.8759 0.8730 0.8689 0.8677 0.8658 0.8635 0.8665

 45 3.9425 2.8877 1.7545 1.1477 1.0716 1.0157 0.9507 0.9215 0.9049 0.8916 0.8834 0.8760 0.8734 0.8741 0.8687 0.8689 0.8664 0.8653

 50 4.2378 3.0745 1.8299 1.1563 1.0756 1.0154 0.9541 0.9252 0.9081 0.8919 0.8869 0.8786 0.8753 0.8741 0.8690 0.8668 0.8677 0.8687

 60 4.8100 3.4320 1.9809 1.1694 1.0776 1.0157 0.9548 0.9248 0.9065 0.8932 0.8870 0.8805 0.8760 0.8744 0.8718 0.8699 0.8685 0.8670

 70 5.3566 3.7754 2.1204 1.1781 1.0761 1.0204 0.9572 0.9257 0.9083 0.8935 0.8881 0.8801 0.8774 0.8766 0.8704 0.8702 0.8686 0.8694

 80 5.9031 4.1163 2.2521 1.1918 1.0787 1.0207 0.9602 0.9257 0.9116 0.8949 0.8880 0.8805 0.8771 0.8753 0.8713 0.8702 0.8689 0.8687

 90 6.4293 4.4397 2.3772 1.2011 1.0823 1.0220 0.9579 0.9271 0.9135 0.8981 0.8894 0.8815 0.8766 0.8763 0.8731 0.8688 0.8728 0.8708

 100 6.9592 4.7648 2.5055 1.2102 1.0801 1.0215 0.9593 0.9267 0.9118 0.8948 0.8885 0.8808 0.8782 0.8778 0.8727 0.8702 0.8719 0.8705

 200 11.8779 7.7654 3.6516 1.3093 1.0827 1.0257 0.9641 0.9305 0.9142 0.8985 0.8923 0.8845 0.8789 0.8789 0.8719 0.8727 0.8714 0.8716

 300 16.5240 10.5806 4.6843 1.3997 1.0856 1.0260 0.9631 0.9310 0.9155 0.8988 0.8914 0.8824 0.8824 0.8801 0.8772 0.8727 0.8721 0.8732

 400 21.0493 13.2831 5.6639 1.4844 1.0867 1.0286 0.9643 0.9331 0.9148 0.8989 0.8918 0.8843 0.8815 0.8801 0.8761 0.8729 0.8733 0.8725

 500 25.4819 15.9306 6.6237 1.5670 1.0880 1.0277 0.9645 0.9305 0.9155 0.8992 0.8921 0.8843 0.8820 0.8790 0.8774 0.8738 0.8721 0.8751 

1000 47.0169 28.6841 11.1336 1.9413 1.0900 1.0281 0.9665 0.9295 0.9142 0.8976 0.8946 0.8845 0.8834 0.8791 0.8744 0.8742 0.8703 0.8719 

2500 109.217 65.1297 23.6988 2.9078 1.0895 1.0304 0.9647 0.9295 0.9171 0.8991 0.8932 0.8854 0.8877 0.8812 0.8755 0.8720 0.8748 0.8732 
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Critical Values for Kolmogorov Smirnov Test - Significance Level of 0.025


 n\k 0.010 0.025 0.050 0.100 0.200 0.300 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000 10.000 20.000  50.000 100.000 

4 0.4542 0.4526 0.4535 0.4577 0.4505 0.4430 0.4343 0.4287 0.4258 0.4229 0.4211 0.4198 0.4192 0.4190 0.4176 0.4174 0.4167 0.4169

 5 0.4429 0.4346 0.4277 0.4258 0.4171 0.4075 0.3974 0.3908 0.3877 0.3838 0.3823 0.3810 0.3798 0.3796 0.3786 0.3783 0.3779 0.3777

 6 0.4240 0.4103 0.3981 0.3971 0.3912 0.3830 0.3737 0.3681 0.3651 0.3612 0.3596 0.3579 0.3570 0.3563 0.3556 0.3550 0.3550 0.3549

 7 0.4086 0.3933 0.3784 0.3743 0.3680 0.3600 0.3509 0.3454 0.3419 0.3389 0.3365 0.3348 0.3339 0.3342 0.3329 0.3325 0.3323 0.3324

 8 0.3968 0.3786 0.3595 0.3537 0.3484 0.3414 0.3324 0.3267 0.3233 0.3204 0.3185 0.3173 0.3161 0.3160 0.3146 0.3144 0.3138 0.3140

 9 0.3852 0.3655 0.3447 0.3366 0.3315 0.3251 0.3160 0.3108 0.3080 0.3044 0.3027 0.3014 0.3006 0.2998 0.2993 0.2986 0.2986 0.2985

 10 0.3752 0.3547 0.3310 0.3217 0.3172 0.3103 0.3020 0.2964 0.2941 0.2910 0.2893 0.2878 0.2868 0.2866 0.2854 0.2852 0.2848 0.2848

 11 0.3665 0.3448 0.3199 0.3088 0.3043 0.2977 0.2897 0.2847 0.2819 0.2787 0.2773 0.2755 0.2749 0.2744 0.2737 0.2733 0.2730 0.2726

 12 0.3588 0.3358 0.3090 0.2972 0.2926 0.2861 0.2785 0.2740 0.2712 0.2678 0.2666 0.2655 0.2642 0.2637 0.2630 0.2629 0.2626 0.2626

 13 0.3513 0.3278 0.2999 0.2871 0.2820 0.2763 0.2692 0.2645 0.2613 0.2588 0.2570 0.2558 0.2550 0.2547 0.2537 0.2532 0.2532 0.2530

 14 0.3441 0.3205 0.2915 0.2773 0.2732 0.2674 0.2604 0.2553 0.2528 0.2500 0.2488 0.2473 0.2466 0.2460 0.2452 0.2448 0.2445 0.2445

 15 0.3383 0.3138 0.2839 0.2686 0.2647 0.2591 0.2519 0.2478 0.2451 0.2423 0.2408 0.2397 0.2389 0.2383 0.2375 0.2372 0.2370 0.2371

 16 0.3324 0.3077 0.2774 0.2614 0.2567 0.2514 0.2448 0.2403 0.2376 0.2351 0.2341 0.2327 0.2319 0.2317 0.2309 0.2303 0.2302 0.2301

 17 0.3272 0.3022 0.2712 0.2539 0.2502 0.2449 0.2381 0.2339 0.2312 0.2289 0.2275 0.2261 0.2256 0.2251 0.2242 0.2238 0.2238 0.2236

 18 0.3227 0.2968 0.2653 0.2475 0.2435 0.2384 0.2319 0.2278 0.2253 0.2228 0.2217 0.2203 0.2196 0.2191 0.2182 0.2183 0.2178 0.2179

 19 0.3180 0.2919 0.2599 0.2415 0.2377 0.2325 0.2265 0.2220 0.2198 0.2171 0.2158 0.2147 0.2142 0.2136 0.2132 0.2128 0.2126 0.2125

 20 0.3135 0.2875 0.2548 0.2360 0.2318 0.2270 0.2207 0.2167 0.2144 0.2123 0.2107 0.2094 0.2090 0.2088 0.2081 0.2077 0.2076 0.2077

 21 0.3096 0.2829 0.2500 0.2303 0.2266 0.2219 0.2162 0.2120 0.2099 0.2072 0.2061 0.2053 0.2044 0.2042 0.2033 0.2031 0.2027 0.2028

 22 0.3055 0.2789 0.2457 0.2260 0.2221 0.2172 0.2113 0.2075 0.2054 0.2026 0.2020 0.2008 0.1998 0.1997 0.1989 0.1986 0.1987 0.1984

 23 0.3022 0.2754 0.2417 0.2211 0.2175 0.2126 0.2069 0.2032 0.2008 0.1988 0.1977 0.1964 0.1960 0.1956 0.1949 0.1944 0.1942 0.1942

 24 0.2984 0.2718 0.2378 0.2169 0.2131 0.2087 0.2029 0.1991 0.1971 0.1948 0.1937 0.1926 0.1919 0.1916 0.1909 0.1906 0.1904 0.1904

 25 0.2954 0.2684 0.2345 0.2128 0.2091 0.2046 0.1988 0.1954 0.1932 0.1910 0.1901 0.1890 0.1883 0.1880 0.1874 0.1871 0.1867 0.1867

 26 0.2927 0.2654 0.2308 0.2089 0.2050 0.2005 0.1954 0.1918 0.1900 0.1874 0.1862 0.1853 0.1847 0.1844 0.1839 0.1835 0.1834 0.1834

 27 0.2895 0.2622 0.2278 0.2054 0.2015 0.1974 0.1919 0.1884 0.1863 0.1842 0.1832 0.1820 0.1816 0.1811 0.1805 0.1802 0.1802 0.1801

 28 0.2870 0.2593 0.2246 0.2018 0.1980 0.1940 0.1888 0.1851 0.1832 0.1811 0.1803 0.1790 0.1785 0.1782 0.1774 0.1775 0.1772 0.1769

 29 0.2841 0.2566 0.2218 0.1986 0.1948 0.1908 0.1857 0.1820 0.1801 0.1781 0.1771 0.1761 0.1756 0.1752 0.1746 0.1742 0.1742 0.1741

 30 0.2819 0.2540 0.2191 0.1955 0.1916 0.1875 0.1826 0.1791 0.1775 0.1752 0.1743 0.1733 0.1726 0.1722 0.1719 0.1715 0.1714 0.1714

 35 0.2708 0.2426 0.2072 0.1819 0.1779 0.1743 0.1696 0.1666 0.1647 0.1629 0.1620 0.1609 0.1605 0.1602 0.1596 0.1594 0.1592 0.1591

 40 0.2618 0.2333 0.1969 0.1710 0.1669 0.1635 0.1591 0.1563 0.1548 0.1528 0.1519 0.1510 0.1505 0.1503 0.1497 0.1495 0.1493 0.1495

 45 0.2543 0.2254 0.1887 0.1619 0.1579 0.1548 0.1503 0.1476 0.1459 0.1444 0.1435 0.1426 0.1421 0.1420 0.1416 0.1413 0.1412 0.1411

 50 0.2479 0.2187 0.1818 0.1542 0.1502 0.1470 0.1428 0.1405 0.1388 0.1372 0.1365 0.1357 0.1352 0.1350 0.1346 0.1343 0.1341 0.1343

 60 0.2373 0.2078 0.1706 0.1414 0.1374 0.1345 0.1309 0.1286 0.1270 0.1257 0.1249 0.1242 0.1237 0.1236 0.1232 0.1229 0.1228 0.1229

 70 0.2290 0.1992 0.1618 0.1316 0.1276 0.1250 0.1214 0.1193 0.1178 0.1167 0.1159 0.1152 0.1148 0.1147 0.1143 0.1141 0.1140 0.1140

 80 0.2223 0.1924 0.1546 0.1237 0.1195 0.1170 0.1138 0.1118 0.1107 0.1093 0.1087 0.1080 0.1076 0.1074 0.1071 0.1069 0.1068 0.1068

 90 0.2165 0.1866 0.1486 0.1170 0.1129 0.1105 0.1075 0.1055 0.1045 0.1033 0.1027 0.1020 0.1015 0.1015 0.1011 0.1009 0.1009 0.1008

 100 0.2120 0.1817 0.1436 0.1114 0.1072 0.1048 0.1021 0.1002 0.0992 0.0980 0.0974 0.0968 0.0966 0.0964 0.0960 0.0959 0.0958 0.0958

 200 0.1860 0.1552 0.1159 0.0814 0.0762 0.0747 0.0726 0.0714 0.0705 0.0698 0.0694 0.0689 0.0687 0.0686 0.0682 0.0682 0.0682 0.0682

 300 0.1745 0.1434 0.1037 0.0682 0.0624 0.0611 0.0595 0.0584 0.0578 0.0571 0.0567 0.0564 0.0563 0.0561 0.0560 0.0558 0.0557 0.0558

 400 0.1676 0.1363 0.0964 0.0603 0.0541 0.0531 0.0515 0.0507 0.0501 0.0495 0.0492 0.0489 0.0488 0.0487 0.0486 0.0485 0.0484 0.0484

 500 0.1630 0.1316 0.0915 0.0550 0.0485 0.0474 0.0462 0.0453 0.0449 0.0444 0.0441 0.0438 0.0437 0.0436 0.0434 0.0433 0.0433 0.0434 

1000 0.1514 0.1198 0.0792 0.0419 0.0343 0.0336 0.0327 0.0321 0.0318 0.0314 0.0313 0.0310 0.0310 0.0309 0.0308 0.0308 0.0307 0.0307 

2500 0.1413 0.1095 0.0686 0.0304 0.0218 0.0213 0.0207 0.0203 0.0202 0.0199 0.0198 0.0197 0.0197 0.0196 0.0195 0.0195 0.0195 0.0195 
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Critical Values for Anderson Darling Test - Significance Level of 0.01


 n\k 0.010 0.025 0.050 0.100 0.200 0.300 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000 10.000 20.000  50.000 100.000 

4 0.9603 1.0073 1.0852 1.1154 0.9876 0.9047 0.8544 0.8345 0.8262 0.8197 0.8164 0.8153 0.8135 0.8137 0.8112 0.8106 0.8099 0.8097

 5 1.0754 1.0772 1.1053 1.1446 1.0682 1.0000 0.9453 0.9167 0.9054 0.8930 0.8897 0.8878 0.8822 0.8831 0.8817 0.8791 0.8791 0.8767

 6 1.1951 1.1556 1.1420 1.1831 1.1214 1.0533 0.9896 0.9580 0.9461 0.9314 0.9275 0.9211 0.9173 0.9182 0.9159 0.9113 0.9119 0.9153

 7 1.3145 1.2298 1.1755 1.2066 1.1562 1.0841 1.0186 0.9924 0.9785 0.9630 0.9510 0.9460 0.9414 0.9438 0.9383 0.9354 0.9377 0.9389

 8 1.4299 1.3111 1.2089 1.2256 1.1807 1.1087 1.0439 1.0086 0.9905 0.9787 0.9699 0.9646 0.9602 0.9612 0.9553 0.9558 0.9527 0.9550

 9 1.5478 1.3855 1.2502 1.2415 1.1959 1.1293 1.0584 1.0232 1.0075 0.9908 0.9844 0.9778 0.9739 0.9674 0.9685 0.9685 0.9669 0.9655

 10 1.6581 1.4643 1.2809 1.2490 1.2139 1.1420 1.0707 1.0339 1.0181 1.0012 0.9944 0.9873 0.9829 0.9812 0.9769 0.9755 0.9732 0.9721

 11 1.7667 1.5444 1.3164 1.2615 1.2233 1.1525 1.0789 1.0445 1.0271 1.0098 1.0031 0.9895 0.9878 0.9864 0.9840 0.9827 0.9812 0.9762

 12 1.8736 1.6117 1.3464 1.2700 1.2310 1.1546 1.0876 1.0515 1.0327 1.0140 1.0061 1.0013 0.9955 0.9940 0.9883 0.9894 0.9860 0.9879

 13 1.9804 1.6847 1.3763 1.2796 1.2370 1.1672 1.0983 1.0603 1.0358 1.0233 1.0115 1.0065 0.9999 0.9984 0.9939 0.9917 0.9891 0.9902

 14 2.0727 1.7510 1.4057 1.2913 1.2452 1.1756 1.1010 1.0607 1.0403 1.0245 1.0157 1.0084 1.0054 1.0010 0.9959 0.9939 0.9918 0.9932

 15 2.1736 1.8182 1.4338 1.2899 1.2476 1.1814 1.0996 1.0655 1.0480 1.0281 1.0184 1.0119 1.0065 1.0024 0.9990 0.9967 0.9986 0.9984

 16 2.2603 1.8791 1.4693 1.3039 1.2534 1.1827 1.1117 1.0683 1.0470 1.0316 1.0186 1.0171 1.0104 1.0070 1.0043 0.9996 0.9986 1.0004

 17 2.3532 1.9419 1.4945 1.3074 1.2604 1.1911 1.1104 1.0710 1.0526 1.0331 1.0230 1.0158 1.0109 1.0078 1.0045 1.0032 1.0005 1.0001

 18 2.4406 2.0044 1.5210 1.3165 1.2604 1.1921 1.1158 1.0729 1.0536 1.0341 1.0270 1.0146 1.0150 1.0152 1.0061 1.0050 1.0033 1.0057

 19 2.5322 2.0686 1.5482 1.3187 1.2670 1.1909 1.1153 1.0762 1.0592 1.0379 1.0259 1.0216 1.0180 1.0130 1.0096 1.0064 1.0080 1.0063

 20 2.6114 2.1235 1.5704 1.3288 1.2680 1.1960 1.1178 1.0770 1.0563 1.0416 1.0311 1.0181 1.0193 1.0163 1.0121 1.0049 1.0091 1.0113

 21 2.7041 2.1723 1.5955 1.3235 1.2697 1.1993 1.1264 1.0811 1.0572 1.0410 1.0310 1.0271 1.0200 1.0166 1.0127 1.0130 1.0081 1.0100

 22 2.7796 2.2262 1.6194 1.3388 1.2791 1.2002 1.1191 1.0822 1.0621 1.0404 1.0359 1.0244 1.0199 1.0227 1.0141 1.0111 1.0125 1.0107

 23 2.8617 2.2902 1.6460 1.3343 1.2809 1.2001 1.1249 1.0831 1.0589 1.0430 1.0342 1.0286 1.0243 1.0171 1.0196 1.0117 1.0127 1.0100

 24 2.9336 2.3402 1.6668 1.3413 1.2767 1.2057 1.1257 1.0856 1.0648 1.0453 1.0346 1.0291 1.0194 1.0200 1.0155 1.0122 1.0127 1.0132

 25 3.0189 2.3833 1.6899 1.3424 1.2808 1.2078 1.1272 1.0862 1.0643 1.0451 1.0376 1.0294 1.0256 1.0212 1.0171 1.0140 1.0127 1.0118

 26 3.1002 2.4393 1.7106 1.3444 1.2777 1.2050 1.1302 1.0887 1.0669 1.0460 1.0369 1.0306 1.0248 1.0196 1.0152 1.0168 1.0158 1.0129

 27 3.1672 2.4875 1.7364 1.3482 1.2853 1.2104 1.1299 1.0878 1.0661 1.0475 1.0393 1.0310 1.0257 1.0214 1.0160 1.0169 1.0125 1.0153

 28 3.2487 2.5418 1.7524 1.3541 1.2839 1.2107 1.1342 1.0886 1.0667 1.0512 1.0406 1.0345 1.0266 1.0251 1.0200 1.0208 1.0194 1.0149

 29 3.3187 2.5865 1.7783 1.3557 1.2859 1.2176 1.1353 1.0878 1.0670 1.0498 1.0410 1.0336 1.0267 1.0268 1.0194 1.0180 1.0171 1.0171

 30 3.3926 2.6336 1.8001 1.3651 1.2861 1.2121 1.1326 1.0908 1.0724 1.0500 1.0438 1.0336 1.0261 1.0227 1.0231 1.0192 1.0179 1.0183

 35 3.7444 2.8654 1.9035 1.3711 1.2858 1.2174 1.1360 1.0951 1.0715 1.0529 1.0450 1.0302 1.0290 1.0267 1.0246 1.0211 1.0180 1.0199

 40 4.0854 3.0880 1.9882 1.3819 1.2938 1.2179 1.1375 1.0964 1.0760 1.0551 1.0457 1.0352 1.0324 1.0295 1.0272 1.0229 1.0221 1.0241

 45 4.4084 3.2993 2.0772 1.3883 1.2976 1.2210 1.1413 1.0994 1.0744 1.0590 1.0476 1.0368 1.0340 1.0361 1.0300 1.0263 1.0245 1.0212

 50 4.7335 3.4996 2.1620 1.4067 1.3038 1.2232 1.1419 1.1011 1.0786 1.0595 1.0526 1.0403 1.0381 1.0338 1.0295 1.0277 1.0248 1.0252

 60 5.3343 3.8894 2.3298 1.4187 1.3079 1.2229 1.1435 1.1034 1.0790 1.0619 1.0540 1.0426 1.0381 1.0323 1.0317 1.0291 1.0302 1.0244

 70 5.9151 4.2582 2.4835 1.4298 1.3071 1.2296 1.1446 1.1041 1.0785 1.0604 1.0549 1.0438 1.0382 1.0376 1.0311 1.0311 1.0280 1.0276

 80 6.5032 4.6205 2.6216 1.4453 1.3016 1.2303 1.1499 1.1044 1.0849 1.0641 1.0550 1.0452 1.0372 1.0360 1.0328 1.0316 1.0294 1.0287

 90 7.0504 4.9602 2.7593 1.4575 1.3124 1.2311 1.1486 1.1077 1.0861 1.0660 1.0558 1.0455 1.0374 1.0381 1.0345 1.0311 1.0326 1.0310

 100 7.6095 5.3024 2.8954 1.4713 1.3083 1.2288 1.1492 1.1072 1.0851 1.0648 1.0542 1.0464 1.0417 1.0421 1.0353 1.0330 1.0325 1.0316

 200 12.7383 8.4639 4.1296 1.5840 1.3097 1.2364 1.1565 1.1103 1.0885 1.0668 1.0587 1.0507 1.0450 1.0412 1.0314 1.0322 1.0329 1.0323

 300 17.5414 11.3900 5.2242 1.6967 1.3138 1.2409 1.1535 1.1113 1.0898 1.0679 1.0582 1.0489 1.0468 1.0431 1.0376 1.0328 1.0313 1.0352

 400 22.1764 14.1813 6.2523 1.7932 1.3205 1.2404 1.1579 1.1151 1.0928 1.0677 1.0573 1.0480 1.0424 1.0433 1.0390 1.0350 1.0336 1.0329

 500 26.7379 16.9148 7.2528 1.8846 1.3188 1.2395 1.1552 1.1139 1.0886 1.0695 1.0570 1.0498 1.0484 1.0466 1.0402 1.0339 1.0337 1.0382 

1000 48.7347 30.0039 11.9358 2.2962 1.3248 1.2438 1.1570 1.1103 1.0923 1.0676 1.0601 1.0480 1.0496 1.0430 1.0347 1.0358 1.0309 1.0329 

2500 111.798 67.1014 24.8571 3.3313 1.3247 1.2420 1.1559 1.1102 1.0900 1.0683 1.0606 1.0495 1.0552 1.0476 1.0351 1.0345 1.0383 1.0364 
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Critical Values for Kolmogorov Smirnov Test - Significance Level of 0.01


 n\k 0.010 0.025 0.050 0.100 0.200 0.300 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000 10.000 20.000  50.000 100.000 

4 0.4698 0.4724 0.4853 0.4961 0.4783 0.4662 0.4552 0.4491 0.4458 0.4426 0.4409 0.4394 0.4387 0.4384 0.4373 0.4368 0.4365 0.4365

 5 0.4641 0.4581 0.4536 0.4559 0.4509 0.4415 0.4314 0.4244 0.4207 0.4157 0.4139 0.4121 0.4103 0.4104 0.4097 0.4083 0.4080 0.4077

 6 0.4528 0.4411 0.4306 0.4314 0.4234 0.4137 0.4022 0.3947 0.3912 0.3873 0.3852 0.3833 0.3821 0.3819 0.3808 0.3801 0.3797 0.3805

 7 0.4367 0.4207 0.4065 0.4041 0.3989 0.3902 0.3800 0.3738 0.3694 0.3651 0.3624 0.3604 0.3593 0.3599 0.3576 0.3568 0.3571 0.3575

 8 0.4235 0.4066 0.3879 0.3843 0.3789 0.3700 0.3604 0.3535 0.3493 0.3456 0.3436 0.3420 0.3408 0.3403 0.3393 0.3388 0.3383 0.3385

 9 0.4122 0.3928 0.3726 0.3655 0.3603 0.3530 0.3427 0.3362 0.3330 0.3289 0.3269 0.3253 0.3240 0.3233 0.3227 0.3222 0.3219 0.3218

 10 0.4019 0.3816 0.3580 0.3497 0.3450 0.3378 0.3279 0.3212 0.3184 0.3143 0.3125 0.3107 0.3101 0.3095 0.3081 0.3076 0.3074 0.3071

 11 0.3925 0.3713 0.3461 0.3355 0.3314 0.3238 0.3144 0.3085 0.3053 0.3018 0.2999 0.2976 0.2971 0.2965 0.2954 0.2949 0.2953 0.2942

 12 0.3844 0.3613 0.3348 0.3231 0.3186 0.3110 0.3024 0.2974 0.2936 0.2898 0.2880 0.2871 0.2857 0.2853 0.2843 0.2841 0.2837 0.2835

 13 0.3762 0.3530 0.3248 0.3121 0.3071 0.3008 0.2927 0.2868 0.2833 0.2803 0.2783 0.2764 0.2758 0.2755 0.2740 0.2738 0.2737 0.2736

 14 0.3685 0.3447 0.3160 0.3019 0.2976 0.2910 0.2833 0.2768 0.2741 0.2709 0.2694 0.2674 0.2670 0.2662 0.2651 0.2645 0.2643 0.2646

 15 0.3622 0.3379 0.3076 0.2921 0.2884 0.2820 0.2736 0.2689 0.2657 0.2626 0.2606 0.2596 0.2585 0.2577 0.2572 0.2566 0.2563 0.2564

 16 0.3556 0.3310 0.3009 0.2845 0.2798 0.2738 0.2663 0.2609 0.2578 0.2547 0.2535 0.2520 0.2510 0.2507 0.2499 0.2491 0.2486 0.2489

 17 0.3502 0.3250 0.2939 0.2767 0.2725 0.2669 0.2592 0.2538 0.2508 0.2480 0.2463 0.2448 0.2442 0.2436 0.2428 0.2424 0.2422 0.2419

 18 0.3448 0.3192 0.2879 0.2696 0.2655 0.2597 0.2524 0.2472 0.2445 0.2415 0.2403 0.2383 0.2376 0.2374 0.2363 0.2362 0.2359 0.2357

 19 0.3399 0.3139 0.2819 0.2632 0.2592 0.2534 0.2461 0.2410 0.2383 0.2353 0.2337 0.2325 0.2322 0.2315 0.2307 0.2302 0.2301 0.2299

 20 0.3350 0.3093 0.2764 0.2572 0.2529 0.2475 0.2403 0.2356 0.2328 0.2301 0.2285 0.2267 0.2265 0.2262 0.2254 0.2247 0.2248 0.2247

 21 0.3308 0.3041 0.2709 0.2510 0.2474 0.2416 0.2352 0.2303 0.2277 0.2248 0.2235 0.2223 0.2214 0.2211 0.2204 0.2199 0.2195 0.2195

 22 0.3265 0.2998 0.2666 0.2460 0.2423 0.2363 0.2297 0.2256 0.2229 0.2198 0.2190 0.2175 0.2163 0.2161 0.2156 0.2150 0.2152 0.2148

 23 0.3226 0.2960 0.2621 0.2411 0.2372 0.2313 0.2250 0.2208 0.2180 0.2155 0.2145 0.2130 0.2124 0.2117 0.2112 0.2105 0.2103 0.2103

 24 0.3183 0.2923 0.2580 0.2365 0.2323 0.2271 0.2208 0.2161 0.2140 0.2114 0.2098 0.2087 0.2077 0.2076 0.2067 0.2065 0.2062 0.2064

 25 0.3153 0.2880 0.2540 0.2317 0.2284 0.2229 0.2164 0.2121 0.2099 0.2073 0.2059 0.2047 0.2039 0.2035 0.2031 0.2027 0.2025 0.2023

 26 0.3120 0.2848 0.2501 0.2279 0.2235 0.2188 0.2126 0.2085 0.2061 0.2033 0.2022 0.2009 0.2002 0.1997 0.1990 0.1988 0.1987 0.1986

 27 0.3087 0.2813 0.2471 0.2241 0.2199 0.2150 0.2088 0.2048 0.2022 0.1997 0.1986 0.1972 0.1967 0.1964 0.1955 0.1952 0.1952 0.1950

 28 0.3058 0.2783 0.2434 0.2203 0.2158 0.2115 0.2055 0.2012 0.1989 0.1966 0.1955 0.1941 0.1934 0.1930 0.1924 0.1925 0.1921 0.1917

 29 0.3027 0.2749 0.2404 0.2166 0.2125 0.2082 0.2021 0.1976 0.1955 0.1931 0.1923 0.1909 0.1904 0.1899 0.1892 0.1887 0.1889 0.1886

 30 0.3000 0.2723 0.2374 0.2132 0.2092 0.2047 0.1987 0.1946 0.1926 0.1902 0.1890 0.1878 0.1870 0.1865 0.1862 0.1860 0.1854 0.1856

 35 0.2878 0.2597 0.2242 0.1984 0.1941 0.1901 0.1847 0.1812 0.1788 0.1769 0.1757 0.1742 0.1741 0.1737 0.1730 0.1728 0.1724 0.1724

 40 0.2780 0.2495 0.2128 0.1865 0.1822 0.1782 0.1733 0.1699 0.1682 0.1661 0.1649 0.1638 0.1635 0.1628 0.1622 0.1620 0.1620 0.1620

 45 0.2695 0.2408 0.2041 0.1765 0.1721 0.1688 0.1637 0.1605 0.1584 0.1570 0.1559 0.1547 0.1542 0.1541 0.1536 0.1533 0.1531 0.1529

 50 0.2626 0.2332 0.1964 0.1683 0.1641 0.1604 0.1557 0.1528 0.1511 0.1490 0.1483 0.1471 0.1470 0.1463 0.1460 0.1456 0.1455 0.1455

 60 0.2509 0.2213 0.1840 0.1544 0.1501 0.1466 0.1425 0.1399 0.1380 0.1364 0.1357 0.1349 0.1343 0.1340 0.1336 0.1333 0.1333 0.1331

 70 0.2416 0.2118 0.1743 0.1435 0.1395 0.1362 0.1322 0.1298 0.1281 0.1268 0.1259 0.1250 0.1248 0.1244 0.1240 0.1238 0.1236 0.1235

 80 0.2343 0.2043 0.1662 0.1350 0.1303 0.1276 0.1240 0.1216 0.1203 0.1189 0.1180 0.1172 0.1167 0.1166 0.1162 0.1161 0.1157 0.1158

 90 0.2277 0.1978 0.1594 0.1278 0.1232 0.1207 0.1170 0.1148 0.1135 0.1122 0.1114 0.1107 0.1102 0.1101 0.1098 0.1094 0.1096 0.1093

 100 0.2228 0.1923 0.1541 0.1216 0.1169 0.1143 0.1112 0.1090 0.1078 0.1065 0.1058 0.1052 0.1049 0.1046 0.1043 0.1041 0.1038 0.1039

 200 0.1938 0.1628 0.1235 0.0888 0.0831 0.0815 0.0791 0.0776 0.0767 0.0758 0.0753 0.0748 0.0746 0.0744 0.0741 0.0740 0.0739 0.0739

 300 0.1808 0.1496 0.1101 0.0742 0.0680 0.0667 0.0648 0.0635 0.0628 0.0621 0.0616 0.0612 0.0611 0.0609 0.0607 0.0606 0.0604 0.0606

 400 0.1731 0.1418 0.1019 0.0657 0.0591 0.0579 0.0562 0.0551 0.0545 0.0537 0.0534 0.0531 0.0529 0.0528 0.0526 0.0526 0.0525 0.0525

 500 0.1680 0.1365 0.0963 0.0598 0.0529 0.0517 0.0503 0.0493 0.0487 0.0482 0.0478 0.0476 0.0474 0.0473 0.0471 0.0470 0.0470 0.0471 

1000 0.1549 0.1234 0.0827 0.0452 0.0375 0.0367 0.0356 0.0349 0.0345 0.0341 0.0340 0.0337 0.0336 0.0336 0.0333 0.0333 0.0333 0.0333 

2500 0.1436 0.1118 0.0708 0.0325 0.0238 0.0233 0.0226 0.0221 0.0219 0.0216 0.0215 0.0213 0.0213 0.0213 0.0211 0.0211 0.0211 0.0211 
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APPENDIX C

 GRAPHS 

OF 

COVERAGE COMPARISONS 

FOR THE VARIOUS METHODS 

FOR 

NORMAL, GAMMA, AND LOGNORMAL 

DISTRIBUTIONS 



Figure 2. Graphs of Coverage Probabilities by 95% UCLs of Mean of G(k=0.05,2=50) 

:=50,F=20)Figure 1. Graphs of Coverage Probabilities by 95% UCLs of the Mean of N(
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Figure 4. Graphs of Coverage Probabilities by 95% UCLs of Mean of G(k=0.15,2=50) 

Figure 3. Graphs of Coverage Probabilities by 95% UCLs of the Mean of G(k=0.10,2=50) 
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Figure 6. Graphs of Coverage Probabilities by 95% UCLs of Mean of G(k=0.50,2=50) 

Figure 5. Graphs of Coverage Probabilities by 95% UCLs of the Mean of G(k=0.20,2=50) 
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Figure 8. Graphs of Coverage Probabilities by 95% UCLs of the Mean of G(k=2.00,2=50) 

Figure 7. Graphs of Coverage Probabilities by 95% UCLs of the Mean of G(k=1.00,2=50) 
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Figure 10. Graphs of Coverage Probabilities by UCLs of the Mean of LN(:=5,F=0.5) 

Figure 9. Graphs of Coverage Probabilities by 95% UCLs of the Mean of G(k=5.00,2=50) 

C-5




Figure 12. Graphs of Coverage Probabilities by UCLs of the Mean of LN(:=5,F=1.5) 

Figure 11. Graphs of Coverage Probabilities by UCLs of the Mean of LN(:=5,F=1.0) 
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Figure 14. Graphs of Coverage Probabilities by UCLs of the Mean of LN(:=5,F=2.5) 

Figure 13. Graphs of Coverage Probabilities by UCLs of the Mean of LN(:=5,F=2.0) 
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Figure 15. Graphs of Coverage Probabilities by UCLs of the Mean of LN(:=5,F=3.0) 
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