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Notice
  
The United States Environmental Protection Agency (EPA) through its Office of Research and 
Development funded and managed the research described here. It has been peer reviewed by the EPA and 
approved for publication. Mention of trade names or commercial products does not constitute 
endorsement or recommendation by the EPA for use. 
 
ProUCL software was developed by Lockheed Martin under a contract with the EPA and is made 
available through the EPA Technical Support Center in Las Vegas, Nevada. 
 
Use of any portion of ProUCL that does not comply with the ProUCL Technical Guide is not 
recommended. 
 
ProUCL contains embedded licensed software. Any modification of the ProUCL source code may violate 
the embedded licensed software agreements and is expressly forbidden.  
 
ProUCL software provided by the EPA was scanned with McAfee VirusScan v4.5.1 SP1 and is certified 
free of viruses. 
 
With respect to ProUCL distributed software and documentation, neither the EPA nor any of their 
employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed. Furthermore, software and documentation are 
supplied “as-is” without guarantee or warranty, expressed or implied, including without limitation, any 
warranty of merchantability or fitness for a specific purpose. 
 

 
Changes from ProUCL 4.0 (Version 4.00.00) to ProUCL 4.00.02 

 
Although extensive changes were made in the code for ProUCL 4.0 (version 4.00.00) to produce ProUCL 
4.00.02, those changes are transparent to the users.  Most of those changes were made so that 
ProUCL 4.00.02 is compatible with our developing statistical software, Scout (e.g., both programs share 
the same statistical libraries).  ProUCL will also reside as a separate module in Scout as a research tool. 
 
There is a very minor correction of a displayed value in one of the hypothesis tests, the two sample t-test.  
The p-value associated with the t-test was computed in two different ways: one way is correct and the 
other way, although it produced subtle differences, is incorrect.  The incorrect method has been removed 
from ProUCL 4.00.02. 
 
Several extra warning messages have been added to ProUCL 4.00.02, mainly in regard to attempting tests 
when a data set is very small (n < 5), when the number of detected values is small (e.g., only zero, one, or 
two), or when all of the values are non-detected values. For an example, some screens depicting those 
warning messages are included in the newly added Section 2.11 (page 40) of this ProUCL 4.00.02 User 
Guide. 
 
The only software files that were changed from ProUCL version 4.0 (4.00.00) to version 4.0.02 were 
updates in the ProUCL.exe file, and updates to the StatsLib.dll file to produce a more advanced 
ScoutLib.dll file.  Very minor changes were made to this ProUCL 4.00.02 User Guide, including: changes 
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to avoid inappropriate user inputs (warnings), changes to the title page, the inclusion of an 
acknowledgement page, and the inclusion of a contact information page. 
 

Changes from ProUCL 4.00.02 to ProUCL 4.00.04 
 
ProUCL 4.00.04 is an upgrade of ProUCL Version 4.00.02 which represents an upgrade of ProUCL 4.0 
(EPA, 2004). ProUCL 4.00.04 contains all statistical methods as available in ProUCL 4.00.02 to address 
various environmental issues for both full data sets without nondetects (NDs) and for data sets with NDs 
(also known as left-censored data sets). In addition to having all methods available in ProUCL 4.00.02, 
ProUCL 4.00.04 has extended version of Shapiro-Wilk (S-W) test that can perform normal and lognormal 
goodness-of-fit tests for data sets of sizes upto 2000. Moreover, ProUCL 4.00.04 can compute upper 
prediction and upper tolerance limits based upon gamma distribution. Some modifications have also been 
made in decision tables and recommendations made by ProUCL to estimate the EPC terms. Specifically, 
based upon recent experience, developers of ProUCL are re-iterating that the use of lognormal 
distribution to estimate EPC terms should be avoided, as the use of lognormal distribution yields 
unrealistic and highly unstable UCLs. In an effort to simplify the EPC estimation process, for highly 
skewed lognormally distributed data sets, developers are recommending the use of appropriate 
nonparametric Chebyshev (mean Sd) UCLs.  These changes have been incorporated in various decision 
tables included in ProUCL 4.0 Technical Guide and ProUCL 4.0 User Guide. Recommendations made by 
ProUCL 4.00.02 have been changed accordingly in ProUCL 4.00.04. Some minor bugs as suggested by 
ProUCL 4.0 and ProUCL 4.00.02 users have also been addressed in this upgraded version of ProUCL 
software package. 
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Executive Summary 

 
Statistical inference, including both estimation and hypotheses testing approaches, is routinely used to:  

 
1. Estimate environmental parameters of interest, such as exposure point concentration 

(EPC) terms, not-to-exceed values, and background level threshold values (BTVs) for 
contaminants of potential concern (COPC),  

 
2. Identify areas of concern (AOC) at a contaminated site, 

 
3. Compare contaminant concentrations found at two or more AOCs of a contaminated site,  

 
4. Compare contaminant concentrations found at an AOC with background or reference 

area contaminant concentrations, and 
 

5. Compare site concentrations with a cleanup standard to verify the attainment of cleanup 
standards. 

 
Several exposure and risk management and cleanup decisions in support of United States Environmental 
Protection Agency (EPA) projects are often made based upon the mean concentrations of the COPCs. A 
95% upper confidence limit (UCL95) of the unknown population (e.g., an AOC) arithmetic mean (AM), 
µ1, can be used to: 

 
• Estimate the EPC term of the AOC under investigation,  
• Determine the attainment of cleanup standards,  
• Compare site mean concentrations with reference area mean concentrations, and 
• Estimate background level mean contaminant concentrations. The background mean 

contaminant concentration level may be used to compare the mean of an area of concern. 
It should be noted that it is not appropriate to compare individual point-by-point site 
observations with the background mean concentration level. 

 
It is important to compute a reliable and stable UCL95 of the population mean using the available data. 
The UCL95 should approximately provide the 95% coverage for the unknown population mean, µ1. Based 
upon the available background data, it is equally important to compute reliable and stable upper 
percentiles, upper prediction limits (UPLs), or upper tolerance limits (UTLs). These upper limits based 
upon background (or reference) data are used as estimates of BTVs, compliance limits (CL), or not-to-
exceed values. These upper limits are often used in site (point-by-point) versus background comparison 
evaluations.  
 
Environmental scientists often encounter trace level concentrations of COPCs when evaluating sample 
analytical results. Those low level analytical results cannot be measured accurately and, therefore, are 
typically reported as less than one or more detection limit (DL) values (also called nondetects). However, 
practitioners need to obtain reliable estimates of the population mean, µ1, and the population standard 
deviation, σ1, and upper limits including the UCL of the population mass or mean, the UPL, and the UTL 
based upon data sets with nondetect (ND) observations. Additionally, they may have to use hypotheses 
testing approaches to verify the attainment of cleanup standards, and compare site and background 
concentrations of COPCs as mentioned above.  
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Background evaluation studies, BTVs, and not-to-exceed values should be estimated based upon 
defensible background data sets. The estimated BTVs or not-to-exceed values are then used to identify the 
COPCs, to identify the site AOCs or hot spots, and to compare the contaminant concentrations at a site 
with background concentrations. The use of appropriate statistical methods and limits for site versus 
background comparisons is based upon the following factors:  
 

1. Objective of the study, 
 
2. Environmental medium (e.g., soil, groundwater, sediment, air) of concern, 

 
3. Quantity and quality of the available data, 
 
4. Estimation of a not-to-exceed value or of a mean contaminant concentration, 

 
5. Pre-established or unknown cleanup standards and BTVs, and 

 
6. Sampling distributions (parametric or nonparametric) of the concentration data sets 

collected from the site and background areas under investigation.  
 

In background versus site comparison evaluations, the environmental population parameters of interest 
may include:  
 

• Preliminary remediation goals (PRGs), 
• Soil screening levels (SSLs), 
• RBC standards, 
• BTVs, not-to-exceed values, and  
• Compliance limit, maximum concentration limit (MCL), or alternative concentration 

limit (ACL), frequently used in groundwater applications. 
 
When the environmental parameters listed above are not known or pre-established, appropriate upper 
statistical limits are used to estimate those parameters. The UPL, UTL, and upper percentiles are used to 
estimate the BTVs and not-to-exceed values. Depending upon the site data availability, point-by-point site 
observations are compared with the estimated (or pre-established) BTVs and not-to-exceed values. If 
enough site and background data are available, two-sample hypotheses testing approaches are used to 
compare site concentrations with background concentrations levels. These statistical methods can also be 
used to compare contaminant concentrations of two site AOCs, surface and subsurface contaminant 
concentrations, or upgradient versus monitoring well contaminant concentrations.  
 
ProUCL 4.00.04 is an upgrade of ProUCL Version 4.00.02 which represents an upgrade of ProUCL 4.0 
(EPA, 2007). ProUCL 4.00.04 contains all statistical methods as available in ProUCL 4.00.02 (described 
below) to address various environmental issues for both full data sets without nondetects (NDs) and for 
data sets with NDs (also known as left-censored data sets).  It should be noted that Tachnical Guide for 
ProUCL 4.0 also applies to its earlier upgrade, ProUCL 4.00.02. ProUCL 4.00.04 has the extended 
version of Shapiro-Wilk (S-W) test that can perform normal and lognormal goodness-of-fit tests for data 
sets of sizes upto 2000. ProUCL 4.00.04 can also compute upper prediction and upper tolerance limits 
based upon gamma distribution. Some modifications have been incorporated in decision tables and 
recommendations made by ProUCL to estimate the EPC terms. Specifically, based upon recent 
experience, developers of ProUCL are re-iterating that the use of lognormal distribution to estimate EPC 
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terms should be avoided, as the use of lognormal distribution yields unrealistic and highly unstable UCLs. 
In an effort to simplify the EPC estimation process and recommending defensible estimates, for highly 
skewed lognormally distributed data sets, developers are recommending the use of other nonparametric 
UCLs such as Chebyshev (mean Sd) UCLs available in ProUCL 4.00.04.  These changes have been 
incorporated in various decision tables included in ProUCL 4.0/ProUCL 4.00.02 Technical Guide and 
ProUCL 4.00.02 User Guide. Recommendations made by ProUCL 4.00.02 have been changed 
accordingly in ProUCL 4.00.04. Some minor requests (e.g., incorporation of maximum likelihood 
estimates based upon a gamma model) and bugs as suggested by ProUCL 4.00.02 users have also been 
addressed in this upgraded version of ProUCL. 
 
ProUCL 4.00.02 contains statistical methods to address various environmental issues for both full data 
sets without nondetects and for data sets with NDs (also known as left-censored data sets).  
 
Specifically, ProUCL 4.0/ ProUCL 4.00.02 contains: 

 
1. Rigorous parametric and nonparametric (including bootstrap methods) statistical methods 

(instead of simple ad hoc or substitution methods) that can be used on full data sets 
without nondetects and on data sets with below detection limit (BDL) or ND 
observations.  

 
2. State-of-the-art parametric and nonparametric UCL, UPL, and UTL computation 

methods. These methods can be used on full-uncensored data sets without nondetects and 
also on data sets with BDL observations. Some of the methods (e.g., Kaplan-Meier 
method, ROS methods) are applicable on left-censored data sets having multiple 
detection limits. The UCL and other upper limit computation methods cover a wide range 
of skewed data sets with and without the BDLs.  

 
3. Single sample (e.g., Student’s t-test, sign test, proportion test, Wilcoxon Singed Rank 

test) and two-sample (Student’s t-test, Wilcoxon-Mann-Whitney test, Gehan test, quantile 
test) parametric and nonparametric hypotheses testing approaches for data sets with and 
without ND observations. These hypothesis testing approaches can be used to: verify the 
attainment of cleanup standards, perform site versus background comparisons, and 
compare two or more AOCs, monitoring wells (MWs).  

 
4. The single sample hypotheses testing approaches are used to compare site mean, site 

median, site proportion, or a site percentile (e.g., 95th) to a compliance limit (action level, 
regularity limit). The hypotheses testing approaches can handle both full-uncensored data 
sets without nondetects, and left-censored data sets with nondetects. Simple two-sample 
hypotheses testing methods to compare two populations are available in ProUCL 4.0, 
such as two-sample t-tests, Wilcoxon-Mann-Whitney (WMW) Rank Sum test, quantile 
test, Gehan’s test, and dispersion test. Variations of hypothesis testing methods (e.g., 
Levene’s method to compare dispersions, generalized WRS test) are easily available in 
most commercial and freely available software packages (e.g., MINITAB, R).  

 
5. ProUCL 4.0 also includes graphical methods (e.g., box plots, multiple Q-Q plots, 

histogram) to compare two or more populations. ProUCL 4.0 can also be used to display 
a box plot of one population (e.g., site data) with compliance limits or upper limits (e.g., 
UPL) of other population (background area) superimposed on the same graph. This kind 
of graph provides a useful visual comparison of site data with a compliance limit or 
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BTVs. Graphical displays of a data set (e.g., Q-Q plot) should be used to gain insight 
knowledge contained in a data set that may not otherwise be clear by looking at simple 
test statistics such as t-test, Dixon test statistic, or Shapiro-Wilk (S-W) test statistic. 

 
6. ProUCL 4.0 can process multiple contaminants (variables) simultaneously and has the 

capability of processing data by groups. A valid group column should be included in the 
data file. 

 
7. ProUCL 4.0 provides GOF test for data sets with nondetects. The user can create 

additional columns to store extrapolated (estimated) values for nondetects based upon 
normal ROS, gamma ROS, and lognormal ROS (robust ROS) methods. 

 
ProUCL 4.00.04 retains all of the capabilities of ProUCL 4.00.02/ProUCL 4.0, including goodness-of-fit 
(GOF) tests for a normal, lognormal, and a gamma distribution and computation of UCLs based upon full 
data sets without nondetects. Graphical displays and GOF tests for data sets with BDL observations have 
also been included in ProUCL 4.0. It is re-emphasized that the computation of appropriate UCLs, UPLs, 
and other limits is based upon the assumption that the data set under study represents a single a single 
population. This means that the data set used to compute the limits should represent a single statistical 
population. For example, a background data set should represent a defensible background data set free of 
outlying observations. ProUCL 4.00.02 includes simple and commonly used classical outlier 
identification procedures, such as the Dixon test and the Rosner test. These procedures are included as an 
aid to identify outliers. These simple classical outlier tests often suffer from masking effects in the 
presence of multiple outliers. Description and use of robust and resistant outlier procedures is beyond the 
scope of ProUCL 4.0.  
 
It is suggested that the classical outlier procedures should always be accompanied by graphical displays 
including box plots and Q-Q plots. The use of a Q-Q plot is useful to identify multiple or mixture samples 
that might be present in a data set. However, the decision regarding the proper disposition of outliers (e.g., 
to include or not to include outliers in statistical analyses; or to collect additional verification samples) 
should be made by members of the project team and experts familiar with site and background conditions. 
Guidance on the disposition of outliers and their accommodation in a data set by using a transformation 
(e.g., lognormal distribution) is discussed in Chapter 1 of this Technical Guide.  
 
ProUCL 4.00.02 has improved graphical methods, which may be used to compare the concentrations of 
two or more populations such as:  

 
1. Site versus background populations,  
2. Surface versus subsurface concentrations,  
3. Concentrations of two or more AOCs, and 
4. Identification of mixture samples and/or potential outliers 

 
These graphical methods include multiple quantile-quantile (Q-Q) plots, side-by-side box plots, and 
histograms. Whenever possible, it is desirable to supplement statistical results with useful visual displays 
of data sets. There is no substitute for graphical displays of a data set. For example, in addition to 
providing information about the data distribution, a normal Q-Q plot can also help identify outliers and 
multiple populations that may be present in a data set. On a Q-Q plot, observations well separated from 
the majority of the data may represent potential outliers, and jumps and breaks of significant magnitude 
may suggest the presence of observations from multiple populations in the data set. It is suggested that 
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analytical outlier tests (e.g., Rosner test) and goodness-of-fit (G.O.F.) tests (e.g., SW test) should always 
be supplemented with the graphical displays such as Q-Q plot and box plot. 
 
ProUCL 4.00.04 (and all its previous versions) serves as a companion software package for the 
Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites 
(EPA, 2002a) and the Guidance for Comparing Background and Chemical Concentrations in Soil for 
CERCLA Sites (EPA, 2002b). ProUCL 4.0 is also useful to verify the attainment of cleanup standards 
(EPA, 1989). ProUCL 4.0 can also be used to perform two-sample hypotheses tests and to compute 
various upper limits often needed in groundwater monitoring applications (EPA, 1992 and EPA, 2004). 
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Acronyms and Abbreviations 
 

ACL alternative concentration limit 

A-D, AD Anderson-Darling test 

AM arithmetic mean  

AOC area(s) of concern 

    

BC Box-Cox transformation 

BCA bias-corrected accelerated bootstrap method  

BD binomial distribution 

BDL below detection limit  

BTV background threshold value  

    

CC confidence coefficient  

CDF, cdf cumulative distribution function  

CERCLA Comprehensive Environmental Recovery, Compensation, and Liability Act 

CL compliance limit 

CLT central limit theorem  

CMLE Cohen’s maximum likelihood estimate 

COPC contaminant(s) of potential concern  

CS cleanup standards 

CV coefficient of variation 

    

DCGL Design Concentration Guideline Level 

Df degrees of freedom 

DL, L detection limit  

DL/2 (t) UCL based upon DL/2 method using Student’s t-distribution cutoff value 

DL/2 Estimates estimates based upon data set with nondetects replaced by half of the respective 
detection limits 

DOE Department of Energy 

DQO data quality objectives  
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EA exposure area 

EDF empirical distribution function  

EM expectation maximization  

EU exposure unit 

EPA Environmental Protection Agency  

EPC exposure point concentration  

    

GOF, G.O.F. goodness-of-fit 

  

H-UCL UCL based upon Land’s H-statistic 

    

IQR interquartile range  

    

KM (%) UCL based upon Kaplan-Meier estimates using the percentile bootstrap method 

KM (Chebyshev) UCL based upon Kaplan-Meier estimates using the Chebyshev inequality 
KM (t) UCL based upon Kaplan-Meier estimates using the Student’s t-distribution cutoff value 
KM (z) UCL based upon Kaplan-Meier estimates using standard normal distribution cutoff 

value 

K-M, KM Kaplan-Meier 

K-S, KS  Kolmogorov-Smirnov  
    

LBGR Lower Bound of the Gray Region 

LN lognormal distribution 

  

MAD  median absolute deviation 

MCL maximum concentration limit, maximum compliance limit 

MDD minimum detectable difference  

ML maximum likelihood  

MLE maximum likelihood estimate 

MLE (t) UCL based upon maximum likelihood estimates using Student’s t-distribution cutoff 
value 

MLE (Tiku) UCL based upon maximum likelihood estimates using the Tiku’s method 
Multi Q-Q multiple quantile-quantile plot 
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MV minimum variance 

MVUE minimum variance unbiased estimate  

MW monitoring well 

    

ND nondetect  

NRC Nuclear Regulatory Commission  

    

OLS ordinary least squares  

ORD Office of Research and Development 

    

PDF, pdf probability density function  

PLE product limit estimate  

PRG preliminary remediation goals 

    

Q-Q quantile-quantile  

  

RBC risk-based cleanup 

RCRA Resource Conservation and Recovery Act 

RL reporting limit 

RMLE restricted maximum likelihood estimate 

ROS regression on order statistics  

RSD relative standard deviation 

RU remediation unit 

RV random variable  

    

S substantial difference  

SD, Sd, sd standard deviation 

SE Standard error  

SND standard normal distribution  

SSL soil screening levels 

S-W, SW Shapiro-Wilk  
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U.S. EPA, USEPA  United States Environmental Protection Agency  

UCL upper confidence limit 

UCL95 a 95% upper confidence limit 

UMLE unbiased maximum likelihood estimate method  

UPL upper prediction limit 

UTL upper tolerance limit 

  

WMW Wilcoxon-Mann-Whitney 

WRS Wilcoxon Rank Sum  

WSR Wilcoxon Signed Rank 
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Glossary 
 

Anderson-Darling (AD) test: The Anderson-Darling test assesses whether known data come from a 
specified distribution. 
 
Background Measurements: The measurements that are not related to the site. Background sources can  
be naturally occurring or anthropogenic (man-made). 
 
Bias: The systematic or persistent distortion of a measured value from its true value (this can occur 
during sampling design, the sampling process, or laboratory analysis). 
 
Bootstrap Method: The bootstrap method is a computer-based method for assigning measures of 
accuracy to sample estimates. This technique allows estimation of the sample distribution of almost any 
statistic using only very simple methods. Bootstrap methods are generally superior to ANOVA for small 
data sets or where sample distributions are non-normal. 
 
Central Limit Theorem (CLT): The central limit theorem states that given a distribution with a mean µ 
and variance σ2, the sampling distribution of the mean approaches a normal distribution with a mean (µ) 
and a variance σ2/N as N, the sample size, increases. 
 
Coefficient of Variation (CV): A dimensionless quantity used to measure the spread of data relative to 
the size of the numbers. For a normal distribution, the coefficient of variation is given by s/xBar. Also 
known as the relative standard deviation (RSD). 
 
Confidence Coefficient: The confidence coefficient (a number in the closed interval [0, 1]) associated 
with a confidence interval for a population parameter is the probability that the random interval 
constructed from a random sample (data set) contains the true value of the parameter. The confidence 
coefficient is related to the significance level of an associated hypothesis test by the equality: level of 
significance = 1 – confidence coefficient. 
 
Confidence Interval: Based upon the sampled data set, a confidence interval for a parameter is a random 
interval within which the unknown population parameter, such as the mean, or a future observation, x0, 
falls. 
 
Confidence Limit: The lower or an upper boundary of a confidence interval. For example, the 95% upper 
confidence limit (UCL) is given by the upper bound of the associated confidence interval. 
 
Coverage, Coverage Probability: The coverage probability (e.g., = 0.95) of an upper confidence limit 
(UCL) of the population mean represents the confidence coefficient associated with the UCL. 
 
Data Quality Objectives (DQOs): Qualitative and quantitative statements derived from the DQO 
process that clarify study technical and quality objectives, define the appropriate type of data, and specify 
tolerable levels of potential decision errors that will be used as the basis for establishing the quality and 
quantity of data needed to support decisions. 
 
Detection Limit: A measure of the capability of an analytical method to distinguish samples that do not 
contain a specific analyte from samples that contain low concentrations of the analyte. The lowest 
concentration or amount of the target analyte that can be determined to be different from zero by a single 
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measurement at a stated level of probability. Detection limits are analyte- and matrix-specific and may be 
laboratory-dependent. 
 
Empirical Distribution Function (EDF): In statistics, an empirical distribution function is a cumulative 
probability distribution function that concentrates probability 1/n at each of the n numbers in a sample. 
 
Estimate: A numerical value computed using a random data set (sample), and is used to guess (estimate) 
the population parameter of interest (e.g., mean). For example, a sample mean represents an estimate of 
the unknown population mean. 
 
Expectation Maximization (EM): The EM algorithm is used to approximate a probability function (p.f. 
or p.d.f.). EM is typically used to compute maximum likelihood estimates given incomplete samples. 
 
Exposure Point Concentration (EPC): The contaminant concentration within an exposure unit to which 
the receptors are exposed. Estimates of the EPC represent the concentration term used in exposure 
assessment. 
 
Extreme Values: The minimum and the maximum values. 
 
Goodness-of-Fit (GOF): In general, the level of agreement between an observed set of values and a set 
wholly or partly derived from a model of the data. 
 
Gray Region: A range of values of the population parameter of interest (such as mean contaminant 
concentration) within which the consequences of making a decision error are relatively minor. The gray 
region is bounded on one side by the action level. The width of the gray region is denoted by the Greek 
letter delta in this guidance. 
 
H-Statistic: The unique symmetric unbiased estimator of the central moment of a distribution. 
 
H-UCL: UCL based on Land’s H-Statistic. 
 
Hypothesis: Hypothesis is a statement about the population parameter(s) that may be supported or 
rejected by examining the data set collected for this purpose. There are two hypotheses: a null hypothesis, 
(H0), representing a testable presumption (often set up to be rejected based upon the sampled data), and an 
alternative hypothesis (HA), representing the logical opposite of the null hypothesis. 
 
Jackknife Method: A statistical procedure in which, in its simplest form, estimates are formed of a 
parameter based on a set of N observations by deleting each observation in turn to obtain, in addition to 
the usual estimate base d on N observations, N estimates each based on N-1 observations. 
 
Kolmogorov-Smirnov (KS) test: The Kolmogorov-Smirnov test is used to decide if a sample comes 
from a population with a specific distribution. The Kolmogorov-Smirnov test is based on the empirical 
distribution function (EDF).  
 
Level of Significance: The error probability (also known as false positive error rate) tolerated of falsely 
rejecting the null hypothesis and accepting the alternative hypothesis. 
 
Lilliefors test: A test of normality for large data sets when the mean and variance are unknown. 
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Maximum Likelihood Estimates (MLE): Maximum likelihood estimation (MLE) is a popular statistical 
method used to make inferences about parameters of the underlying probability distribution of a given 
data set. 
 
Mean: The sum of all the values of a set of measurements divided by the number of values in the set; a 
measure of central tendency. 
 
Median: The middle value for an ordered set of n values. Represented by the central value when n is odd 
or by the average of the two most central values when n is even. The median is the 50th percentile. 
 
Minimum Detectable Difference (MDD): The minimum detectable difference (MDD) is the smallest 
difference in means that the statistical test can resolve. The MDD depends on sample-to-sample 
variability, the number of samples, and the power of the statistical test. 
 
Minimum Variance Unbiased Estimates (MVUE): A minimum variance unbiased estimator (MVUE or 
MVU estimator) is an unbiased estimator of parameters, whose variance is minimized for all values of the 
parameters. If an estimator is unbiased, then its mean squared error is equal to its variance. 
 
Nondetect (ND): Censored data values. 
 
Nonparametric: A term describing statistical methods that do not assume a particular population 
probability distribution, and are therefore valid for data from any population with any probability 
distribution, which can remain unknown. 
 
Optimum: An interval is optimum if it possesses optimal properties as defined in the statistical literature. 
This may mean that it is the shortest interval providing the specified coverage (e.g., 0.95) to the 
population mean. For example, for normally distributed data sets, the UCL of the population mean based 
upon Student’s t distribution is optimum. 
 
Outlier: Measurements (usually larger or smaller than the majority of the data values in a sample) that 
are not representative of the population from which they were drawn. The presence of outliers distorts 
most statistics if used in any calculations. 
 
p-value: In statistical hypothesis testing, the p-value of an observed value tobserved of some random 
variable T used as a test statistic is the probability that, given that the null hypothesis is true, T will 
assume a value as or more unfavorable to the null hypothesis as the observed value tobserved. 
 
Parameter: A parameter is an unknown constant associated with a population. 
 
Parametric: A term describing statistical methods that assume a normal distribution. 
 
Population: The total collection of N objects, media, or people to be studied and from which a sample is 
to be drawn. The totality of items or units under consideration. 
 
Prediction Interval: The interval (based upon historical data, or a background well) within which a 
newly and independently obtained (often labeled as a future observation) site observation (from a 
compliance well) of the predicted variable (lead) falls with a given probability (or confidence coefficient). 
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Probability of Type 2 Error (=β): The probability, referred to as β (beta), that the null hypothesis will 
not be rejected when in fact it is false (false negative). 
 
Probability of Type I Error = Level of Significance (= α): The probability, referred to as α (alpha), that 
the null hypothesis will be rejected when in fact it is true (false positive).  
 
pth Percentile: The specific value, Xp of a distribution that partitions a data set of measurements in such a 
way that the p percent (a number between 0 and 100) of the measurements fall at or below this value, and 
(100-p) percent of the measurements exceed this value, Xp.) 
 
pth Quantile: The specific value of a distribution that divides the set of measurements in such a way that 
the proportion, p, of the measurements falls below (or are equal to) this value, and the proportion (1-p) of 
the measurements exceed this value. 
 
Quality Assurance: An integrated system of management activities involving planning, implementation, 
assessment, reporting, and quality improvement to ensure that a process, item, or service is of the type 
and quality needed and expected by the client. 
 
Quality Assurance Project Plan: A formal document describing, in comprehensive detail, the necessary 
QA, QC, and other technical activities that must be implemented to ensure that the results of the work 
performed will satisfy the stated performance criteria. 
 
Quantile Plot: A graph that displays the entire distribution of a data set, ranging from the lowest to the 
highest value. The vertical axis represents the measured concentrations, and the horizontal axis is used to 
plot the percentiles of the distribution.  
 
Range: The numerical difference between the minimum and maximum of a set of values. 
 
Regression on Order Statistics (ROS): A regression  line is fit to the normal scores of the order 
statistics for the uncensored observations and then to fill in values extrapolated from the straight line for 
the observations below the detection limit. 
 
Resampling: The repeated process of obtaining representative samples and/or measurements of a 
population of interest. 
 
Reliable UCL: This is similar to a stable UCL. 
 
Robustness: Robustness is used to compare statistical tests. A robust test is the one with good 
performance (that is not unduly affected by outliers) for a wide variety of data distributions. 
 
Sample: A sample here represents a random sample (data set) obtained from the population of interest 
(e.g., a site area, a reference area, or a monitoring well). The sample is supposed to be a representative 
sample of the population under study. The sample is used to draw inferences about the population 
parameter(s). 
 
Shapiro-Wilk (SW) test: In statistics, the Shapiro-Wilk test tests the null hypothesis that a sample  
x1, ..., xn came from a normally distributed population. 
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Skewness: A measure of asymmetry of the distribution of the characteristic under study (e.g., lead 
concentrations). It can also be measured in terms of the standard deviation of log-transformed data. The 
higher is the standard deviation, the higher is the skewness. 
 
Stable UCL: The UCL of a population mean is a stable UCL if it represents a number of practical merits, 
which also has some physical meaning. That is, a stable UCL represents a realistic number (e.g., 
contaminant concentration) that can occur in practice. Also, a stable UCL provides the specified (at least 
approximately, as much as possible, as close as possible to the specified value) coverage (e.g., ~0.95) to 
the population mean. 
 
Standard Deviation (sd): A measure of variation (or spread) from an average value of the sample data 
values. 
 
Standard Error (SE): A measure of an estimate's variability (or precision). The greater the standard 
error in relation to the size of the estimate, the less reliable the estimate. Standard errors are needed to 
construct confidence intervals for the parameters of interests such as the population mean and population 
percentiles. 
 
Tolerance Limit: A confidence limit on a percentile of the population rather than a confidence limit on 
the mean. For example, a 95 percent one-sided TL for 95 percent coverage represents the value below 
which 95 percent of the population values are expected to fall with 95 percent confidence. In other words, 
a 95% UTL with coverage coefficient 95% represents a 95% upper confidence limit for the 95th 
percentile. 
 
Unreliable UCL, Unstable UCL, Unrealistic UCL: The UCL of a population mean is unstable, 
unrealistic, or unreliable if it is orders of magnitude higher than the other UCLs of population mean. It 
represents an impractically large value that cannot be achieved in practice. For example, the use of Land’s 
H statistic often results in impractically large inflated UCL value. Some other UCLs, such as the bootstrap 
t UCL and Hall’s UCL, can be inflated by outliers resulting in an impractically large and unstable value. 
All such impractically large UCL values are called unstable, unrealistic, unreliable, or inflated UCLs. 
 
Upper Confidence Limit (UCL): The upper boundary (or limit) of a confidence interval of a parameter 
of interest such as the population mean. 
 
Upper Prediction Limit (UPL): The upper boundary of a prediction interval for an independently 
obtained observation (or an independent future observation). 
 
Upper Tolerance Limit (UTL): The upper boundary of a tolerance interval. 
 
Winsorization method: The Winsorization method is a procedure that replaces the n extreme values with 
the preset cut-off value. This method is sensitive to the number of outliers, but not to their actual values. 
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Introduction 

The Need for ProUCL Software 

Statistical inferences about the sampled populations and their parameters are made based upon defensible 
and representative data sets of appropriate sizes collected from the populations under investigation. 
Statistical inference, including both estimation and hypotheses testing approaches, is routinely used to:  

 
1. Estimate environmental parameters of interest such as exposure point concentration 

(EPC) terms, not-to-exceed values, and background level threshold values (BTVs) for 
contaminants of potential concern (COPC),  

 
2. Identify areas of concern (AOC) at a contaminated site, 
 
3. Compare contaminant concentrations found at two or more AOCs of a contaminated site,  

 
4. Compare contaminant concentrations found at an AOC with background or reference 

area contaminant concentrations,  
 

5. Compare site concentrations with a cleanup standard to verify the attainment of cleanup 
standards. 

 
Statistical inference about the sampled populations and their parameters are made based upon defensible 
and representative data sets of appropriate sizes collected from the populations under investigation. 
Environmental data sets originated from the Superfund and RCRA sites often consist of observations 
below one or more detection limits (DLs). In order to address the statistical issues arising in exposure and 
risk assessment applications; background versus site comparison and evaluation studies; and various other 
environmental applications, several graphical, parametric, and nonparametric statistical methods for data 
sets with nondetects and without nondetects have been incorporated into ProUCL Version 4.0 (ProUCL 
4.0). 
 
Exposure and risk management and cleanup decisions in support of United States Environmental 
Protection Agency (EPA) projects are often made based upon the mean concentrations of the COPCs. A 
95% upper confidence limit (UCL95) of the unknown population (e.g., an AOC) arithmetic mean (AM), 
µ1, can be used to: 

 
• Estimate the EPC term of the AOC under investigation,  
• Determine the attainment of cleanup standards,  
• Compare site mean concentrations with reference area mean concentrations, and 
• Estimate background level mean contaminant concentrations. The background mean 

contaminant concentration level may be used to compare the mean of an AOC. It should 
be noted that it is not appropriate to compare individual point-by-point site observations 
with the background mean concentration level. 

 
It is important to compute a reliable and stable UCL95 of the population mean using the available data. 
The UCL95 should approximately provide the 95% coverage for the unknown population mean, µ1. Based 
upon the available background data, it is equally important to compute reliable and stable upper 
percentiles, upper prediction limits (UPLs), or upper tolerance limits (UTLs). These upper limits based 
upon background (or reference) data are used as estimates of BTVs, compliance limits (CL), or not-to-
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exceed values. These upper limits are often used in site (point-by-point) versus background comparison 
evaluations.  
 
Environmental scientists often encounter trace level concentrations of COPCs when evaluating sample 
analytical results. Those low level analytical results cannot be measured accurately, and therefore are 
typically reported as less than one or more detection limit (DL) values (also called nondetects). However, 
practitioners often need to obtain reliable estimates of the population mean, µ1, the population standard 
deviation, σ1, and upper limits, including the upper confidence limit (UCL) of the population mass or 
mean, the UPL, and the UTL based upon data sets with nondetect (ND) observations. Hypotheses testing 
approaches are often used to verify the attainment of cleanup standards, and compare site and background 
concentrations of COPCs.  
 
Background evaluation studies, BTVs, and not-to-exceed values should be estimated based upon 
defensible background data sets. The estimated BTVs or not-to-exceed values are then used to identify the 
COPCs, to identify the site AOCs or hot spots, and to compare the contaminant concentrations at a site 
with background concentrations. The use of appropriate statistical methods and limits for site versus 
background comparisons is based upon the following factors:  

 
1. Objective of the study, 
 
2. Environmental medium (e.g., soil, groundwater, sediment, air) of concern, 

 
3. Quantity and quality of the available data, 

 
4. Estimation of a not-to-exceed value or of a mean contaminant concentration, 

 
5. Pre-established or unknown cleanup standards and BTVs, and 

 
6. Sampling distributions (parametric or nonparametric) of the concentration data sets 

collected from the site and background areas under investigation.  
 

In background versus site comparison evaluations, the environmental population parameters of interest 
may include:  
 

• Preliminary remediation goals (PRGs), 
• Soil screening levels (SSLs), 
• Risk-based cleanup (RBC) standards, 
• BTVs, not-to-exceed values, and  
• Compliance limit, maximum concentration limit (MCL), or alternative concentration 

limit (ACL), frequently used in groundwater applications. 
 
When the environmental parameters listed above are not known or have not been pre-established, 
appropriate upper statistical limits are used to estimate the parameters. The UPL, UTL, and upper 
percentiles are used to estimate the BTVs and not-to-exceed values. Depending upon the site data 
availability, point-by-point site observations are compared with the estimated (or pre-established) BTVs 
and not-to-exceed values. If enough site and background data are available, two-sample hypotheses 
testing approaches are used to compare site concentrations with background concentrations levels. These 
statistical methods can also be used to compare contaminant concentrations of two site AOCs, surface and 
subsurface contaminant concentrations, or upgradient versus monitoring well contaminant concentrations.  
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ProUCL 4.00.04 Capabilities 

ProUCL 4.00.04 is an upgrade of ProUCL 4.00.02 which represents an upgrade of ProUCL 4.0 (EPA, 
2007). ProUCL 4.00.04 contains all statistical methods as available in ProUCL 4.00.02 (described below) 
to address various environmental issues for both full data sets without nondetects (NDs) and for data sets 
with NDs (also known as left-censored data sets). It should be noted that Technical Guide developed for 
ProUCL 4.0 also applies to its earlier upgrade ProUCL 4.00.02. ProUCL 4.00.04 has the extended version 
of Shapiro-Wilk (S-W) test that can perform normal and lognormal goodness-of-fit tests for data sets of 
sizes upto 2000. ProUCL 4.00.04 can also compute upper prediction and upper tolerance limits based 
upon gamma distribution. Some modifications have been incorporated in decision tables and 
recommendations made by ProUCL to estimate the EPC terms. Specifically, based upon recent 
experience, developers of ProUCL are re-iterating that the use of lognormal distribution to estimate EPC 
terms should be avoided, as the use of lognormal distribution yields unrealistic and highly unstable UCLs. 
In an effort to simplify the EPC estimation process and recommending defensible estimates, for highly 
skewed lognormally distributed data sets, developers are recommending the use of other nonparametric 
UCLs such as Chebyshev (mean Sd) UCLs available in ProUCL 4.00.04.  These changes have been 
incorporated in various decision tables included in ProUCL 4.0 Technical Guide and ProUCL 4.0 User 
Guide. Recommendations made by ProUCL 4.0 have been changed accordingly in ProUCL 4.00.04. 
Some minor requests (e.g., incorporation of maximum likelihood estimates based upon a gamma model) 
and bugs as suggested by ProUCL 4.0/ProUCL 4.00.02 users have also been addressed in this upgraded 
version of ProUCL. 
 
ProUCL 4.0/ProUCL 4.00.02 contains: 

 
1. Rigorous parametric and nonparametric (including bootstrap methods) statistical methods 

(instead of simple ad hoc or substitution methods) that can be used on full data sets 
without nondetects and on data sets with below detection limit (BDL) or nondetect (ND) 
observations.  

 
2. State-of-the-art parametric and nonparametric UCL, UPL, and UTL computation 

methods. These methods can be used on full-uncensored data sets without nondetects and 
also on data sets with BDL observations. Some of the methods (e.g., Kaplan-Meier 
method, ROS methods) are applicable on left-censored data sets having multiple 
detection limits. The UCL and other upper limit computation methods cover a wide range 
of skewed data sets with and without the BDLs.  

 
3. Single sample (e.g., Student’s t-test, sign test, proportion test, Wilcoxon Singed Rank 

test) and two-sample (Student’s t-test, Wilcoxon-Mann-Whitney test, Gehan test, quantile 
test) parametric and nonparametric hypotheses testing approaches for data sets with and 
without ND observations. These hypothesis testing approaches can be used to: verify the 
attainment of cleanup standards, perform site versus background comparisons, and 
compare two or more AOCs, monitoring wells (MWs).  

 
4. The single sample hypotheses testing approaches are used to compare site mean, site 

median, site proportion, or a site percentile (e.g., 95th) to a compliance limit (action level, 
regularity limit). The hypotheses testing approaches can handle both full-uncensored data 
sets without nondetects, and left-censored data sets with nondetects. Simple two-sample 
hypotheses testing methods to compare two populations are available in ProUCL 4.0, 
such as two-sample t-tests, Wilcoxon-Mann-Whitney (WMW) Rank Sum test, quantile 
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test, Gehan’s test, and dispersion test. Variations of hypothesis testing methods (e.g., 
Levene’s method to compare dispersions, generalized WRS test) are easily available in 
most commercial and freely available software packages (e.g., MINITAB, R).  

 
5. ProUCL 4.0 includes graphical methods (e.g., box plots, multiple Q-Q plots, histogram) 

to compare two or more populations. Additionally, ProUCL 4.0 can also be used to 
display a box plot of one population (e.g., site data) with compliance limits or upper 
limits (e.g., UPL) of other population (background area) superimposed on the same 
graph. This kind of graph provides a useful visual comparison of site data with a 
compliance limit or BTVs. Graphical displays of a data set (e.g., Q-Q plot) should be 
used to gain insight knowledge contained in a data set that may not otherwise be clear by 
looking at simple test statistics such as t-test, Dixon test statistic, or Shapiro-Wilk (S-W) 
test statistic. 

 
6. ProUCL 4.0 can process multiple contaminants (variables) simultaneously and has the 

capability of processing data by groups. A valid group column should be included in the 
data file. 

 
7. ProUCL 4.0 provides a GOF test for data sets with nondetects. The user can create 

additional columns to store extrapolated (estimated) values for nondetects based upon 
normal ROS, gamma ROS, and lognormal ROS (robust ROS) methods. 

ProUCL Applications 

The methods incorporated in ProUCL 4.00.04 (and in earlier versions) can be used on data sets with and 
without BDL and ND observations. Methods and recommendations as incorporated in ProUCL 4.0 are 
based upon the results and findings of the extensive simulation studies as summarized in Singh and Singh 
(2003), and Singh, Maichle, and Lee (EPA, 2006). It is anticipated that ProUCL 4.00.04 (and its previous 
versions) will serve as a companion software package for the following EPA documents: 
 

• Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous 
Waste Sites (EPA, 2002a), and  

• Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA 
Sites (EPA, 2002b). 

 
Methods included in ProUCL 4.00.04 can be used in various other environmental applications including 
the verification of cleanup standards (EPA, 1989), and computation of upper limits needed in 
groundwater monitoring applications (EPA, 1992 and EPA, 2004). 
 
In 2002, EPA issued guidance for calculating the UCLs of the unknown population means for 
contaminant concentrations at hazardous waste sites. The ProUCL 3.0 software package (EPA, 2004) has 
served as a companion software package for the EPA (2002a) guidance document for calculating UCLs of 
mean contaminant concentrations at hazardous waste sites. ProUCL 3.0 has several parametric and 
nonparametric statistical methods that can be used to compute appropriate UCLs based upon full-
uncensored data sets without any ND observations. ProUCL 4.0/ProUCL 4.00.02 retains all capabilities 
of ProUCL 3.0, including goodness-of-fit (GOF) and the UCL computation methods for data sets without 
any BDL observations. However, ProUCL 4.0 has the additional capability to perform GOF tests and 
computing UCLs and other upper limits based upon data sets with BDL observations. 
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ProUCL 4.0 defines log-transform (log) as the natural logarithm (ln) to the base e. ProUCL 4.0 also 
computes the maximum likelihood estimates (MLEs) and the minimum variance unbiased estimates 
(MVUEs) of unknown population parameters of normal, lognormal, and gamma distributions. This, of 
course, depends upon the underlying data distribution. ProUCL 4.0 computes the (1 – α)100% UCLs of 
the unknown population mean, µ1, using 5 parametric and 10 nonparametric methods. It should be pointed 
out that ProUCL 4.0 computes the simple summary statistics for detected raw and log-transformed data 
for full data sets without NDs, as well as for data sets with BDL observations. It is noted that estimates of 
mean and sd for data sets with NDs based upon rigorous statistical methods (e.g., MLE, ROS, K-M 
methods) are note provided in the summary statistics. Those estimates and the associated upper limits for 
data sets with NDs are provided under the menu options: Background and UCL.  
 
It is emphasized that throughout this Technical Guide, and in the ProUCL 4.00.04 software, it is assumed 
that one is dealing with a single population. If multiple populations (e.g., background and site data mixed 
together) are present, it is recommended to first separate them out (e.g., using appropriate statistical 
population partitioning techniques), and then compute appropriate respective 95% UCLs separately for 
each of the identified populations. Outliers, if any, should be identified and thoroughly investigated. 
ProUCL 4.0 provides two commonly used simple classical outlier identification procedures: 1) Dixon 
test, and 2) Rosner test. Outliers distort most parametric statistics (e.g., mean, UCLs, upper prediction 
limits (UPLs), test statistics) of interest. Moreover, it should be noted that even though outliers might 
have minimal influence on hypotheses testing statistics based upon ranks (e.g., WMW test), outliers do 
distort those nonparametric statistics (including bootstrap methods), which are based upon higher order 
statistics such as UPLs and UTLs. Decisions about the disposition (exclusion or inclusion) of outliers in a 
data set used to estimate the EPC terms or BTVs should be made by all parties involved (e.g., project 
team, EPA, local agency, potentially responsible party, etc.) in the decision making process.  
 
The presence of outlying observations also distorts statistics based upon bootstrap re-samples. The use of 
higher order values (quantiles) of the distorted statistics for the computation of the UCLs or UPLs based 
upon bootstrap t and Hall’s bootstrap methods may yield unstable and erratic UCL values. This is 
especially true for the upper limits providing higher confidence coefficients such as 95%, 97.5%, or 99%. 
Similar behavior of the bootstrap t UCL is observed for data sets having BDL observations. Therefore, the 
bootstrap t and Hall’s bootstrap methods should be used with caution. It is suggested that the user should 
examine various other UCL results and determine if the UCLs based upon the bootstrap t and Hall’s 
bootstrap methods represent reasonable and reliable UCL values of practical merit. If the results based 
upon these two bootstrap methods are much higher than the rest of methods, then this could be an 
indication of erratic behavior of those bootstrap UCL values, perhaps distorted by outlying observations. 
In case these two bootstrap methods yield erratic and inflated UCLs, the UCL of the mean should be 
computed using the adjusted or the approximate gamma UCL computation method for highly skewed 
gamma distributed data sets of small sizes. Alternatively, one may use a 97.5% or 99% Chebyshev UCL 
to estimate the mean of a highly skewed population. It should be noted that typically, a Chebyshev UCL 
may yield conservative and higher values of the UCLs than other methods available in ProUCL 4.0 This 
is especially true when data are moderately skewed and sample size is large. In such cases, when the 
sample size is large, one may want to use a 95% Chebyshev UCL or a Chebyshev UCL with lower 
confidence coefficient such as 92.5% or 90% as estimate of the population mean.  

ProUCL Methods 

ProUCL 4.0 (and all its upgrades) provides 15 UCL computation methods for full data sets without any 
BDL observations; 5 are parametric and 10 are nonparametric methods. The nonparametric methods do 
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not depend upon any assumptions about the data distributions. The five parametric UCL computation 
methods are:  

 
1. Student’s t-UCL,  
 
2. Approximate gamma UCL using chi-square approximation, 

 
3. Adjusted gamma UCL (adjusted for level significance),  

 
4. Land’s H-UCL, and  

 
5. Chebyshev inequality-based UCL (using MVUEs of parameters of a lognormal       

distribution).  
 
 
The 10 nonparametric methods are: 
 

1. The central limit theorem (CLT)-based UCL,  
 
2. Modified t-statistic (adjusted for skewness)-based UCL,  
 
3. Adjusted-CLT (adjusted for Skewness)-based UCL,  

 
4. Chebyshev inequality based-UCL (using sample mean and sample standard deviation), 
 
5. Jackknife method-based UCL,  

 
6. UCL based upon standard bootstrap,  

 
7. UCL based upon percentile bootstrap,  

 
8. UCL based upon bias-corrected accelerated (BCA) bootstrap,  

 
9. UCL based upon bootstrap t, and  

 
10. UCL based upon Hall’s bootstrap.  

 
Environmental scientists often encounter trace level concentrations of COPCs when evaluating sample 
analytical results. Those low level analytical results cannot be measured accurately, and therefore are 
typically reported as less than one or more DL values. However, the practitioners need to obtain reliable 
estimates of the population mean, µ1, and the population standard deviation, σ1, and upper limits including 
the UCL of the population mass (measure of central tendency) or mean, UPL, and UTL. Several methods 
are available and cited in the environmental literature (Helsel (2005), Singh and Nocerino (2002), Millard 
and Neerchal (2001)) that can be used to estimate the population mean and variance. However, till to date, 
no specific recommendations are available for the use of appropriate methods that can be used to compute 
upper limits (e.g., UCLs, UPLs) based upon data sets with BDL observations. Singh, Maichle, and Lee 
(EPA 2006) extensively studied the performance of several parametric and nonparametric UCL 
computation methods for data sets with BDL observations. Based upon their results and findings, several 
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methods to compute upper limits (UCLs, UPLs, and UTLs) needed to estimate the EPC terms and BTVs 
have been incorporated in ProUCL 4.0. 
 
In 2002, EPA issued another Guidance for Comparing Background and Chemical Concentrations in Soil 
for CERCLA Sites (EPA, 2002b). This EPA (2002b) background guidance document is currently being 
revised to include statistical methods that can be used to estimate the BTVs and not-to-exceed values 
based upon data sets with and without the BDL observations. In background evaluation studies, BTVs, 
compliance limits, or not-to-exceed values often need to be estimated based upon defensible background 
data sets. The estimated BTVs or not-to-exceed values are then used for screening the COPCs, to identify 
the site AOCs or hot spots, and also to determine if the site concentrations (perhaps after a remediation 
activity) are comparable to background concentrations, or are approaching the background level 
concentrations. Individual point-by-point site observations (composite samples preferred) are sometimes 
compared with those not-to-exceed values or BTVs. It should be pointed out that in practice, it is 
preferred to use hypotheses testing approaches to compare site versus background concentrations 
provided enough (e.g., at least 8-10 detected observations from each of the two populations) site and 
background data are available. Chapter 1 provides practical guidance on the minimum sample size 
requirements to estimate and use the BTVs, single and two-sample hypotheses testing approaches to 
perform background evaluations and background versus site comparisons. Chapter 1 also briefly 
discusses the differences in the definitions and uses of the various upper limits as incorporated in ProUCL 
4.0. Detailed discussion of the various methods to estimate the BTVs and other not-to-exceed values for 
full-uncensored data sets (Chapter 5) without any nondetect values and for left-censored data sets 
(Chapter 6) with nondetect values are given in the revised background guidance document. 
 
ProUCL 4.0 includes statistical methods to compute UCLs of the mean, upper limits to estimate the 
BTVs, other not-to-exceed values, and compliance limits based upon data sets with one or more detection 
limits. The use of appropriate statistical methods and limits for exposure and risk assessment, and site 
versus background comparisons, is based upon several factors:  

 
1. Objective of the study;  
 
2. Environmental medium (e.g., soil, groundwater, sediment, air) of concern;  
 
3. Quantity and quality of the available data;  

 
4. Estimation of a not-to-exceed value or of a mean contaminant concentration;  

 
5. Pre-established or unknown cleanup standards and BTVs; and  

 
6. Sampling distributions (parametric or nonparametric) of the concentration data sets 

collected from the site and background areas under investigation.  
 

In background versus site comparison studies, the population parameters of interest are typically 
represented by upper threshold limits (e.g., upper percentiles, upper confidence limits of an upper 
percentile, upper prediction limit) of the background data distribution. It should be noted that the upper 
threshold values are estimated and represented by upper percentiles and other values from the upper tail 
of the background data distribution. These background upper threshold values do not represent measures 
of central tendency such as the mean, the median, or their upper confidence limits. These environmental 
parameters may include:  
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• Preliminary remediation goals (PRGs), compliance limits, 
• Soil screening levels (SSLs), 
• Risk-based cleanup (RBC) standards, 
• BTVs, compliance limits, or not-to-exceed values, and 
• Maximum concentration limit (MCL) or alternative concentration limit (ACL) used in 

Groundwater applications. 
 
When the environmental parameters listed above are not known or pre-established, appropriate upper 
statistical limits are used to estimate those parameters. The UPL, UTL, and upper percentiles are typically 
used to estimate the BTVs, not-to-exceed values, and other parameters listed above. Depending upon the 
availability of site data, point-by-point site observations are compared with the estimated (or pre-
established) BTVs and not-to-exceed values. If enough site and background data are available, two-
sample hypotheses testing approaches (preferred method to compare two populations) are used to 
compare site concentrations with background concentrations levels. The hypotheses testing methods can 
also be used to compare contaminant concentrations of two site AOCs, surface and subsurface 
contaminant concentrations, or upgradient versus monitoring well contaminant concentrations.  

Background versus Site Comparison Evaluations 

The following statistical limits have been incorporated in ProUCL 4.0 to assist in background versus site 
comparison evaluations: 

Parametric Limits for Full-Uncensored Data Sets without Nondetect Observations 

 
• UPL for a single observation (Normal, Lognormal) not belonging to the original data set 
• UPL for next k (k is user specified) or k future observations (Normal, Lognormal) 
• UTL, an upper confidence limit of a percentile (Normal, Lognormal) 
• Upper percentiles (Normal, Lognormal, and Gamma) 

 

Nonparametric Limits for Full-Uncensored Data Sets without Nondetect Observations 

Nonparametric limits are typically based upon order statistics of a data set such as a background or a 
reference data set. Depending upon the size of the data set, higher order statistics (maximum, second 
largest, third largest, and so on) are used as these upper limits (e.g., UPLs, UTLs). The details of these 
methods with sample size requirements can be found in Chapter 5 of the revised Guidance for Comparing 
Background and Chemical Concentrations in Soil for CERCLA Sites (EPA, 2002b). It should be, noted 
that the following statistics might get distorted by the presence of outliers (if any) in the data set under 
study. 

 
• UPL for a single observation not belonging to the original data set 
• UTL, an upper confidence limit of a percentile 
• Upper percentiles  
• Upper limit based upon interquartile range (IQR) 
• Upper limits based upon bootstrap methods 
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For data sets with BDL observations, the following parametric and nonparametric methods to compute 
the upper limits were studied and evaluated by Singh, Maichle, and Lee (EPA, 2006) via Monte Carlo 
Simulation Experiments. Depending upon the performances of those methods, only some of the methods 
have been incorporated in ProUCL 4.0. Methods (e.g., Delta method, DL method, uniform (0, DL) 
generation method) not included in ProUCL 4.0 do not perform well in comparison with other methods.  
 
Note: When the percentage of NDs in a data set is high (e.g., > 40%-50%), especially when multiple 
detection limits might be present, it is hard to reliably perform GOF tests (to determine data distribution) 
on those data sets with many NDs. The uncertainty associated with those GOF tests will be high, 
especially when the data sets are of small sizes (< 10-20). It should also be noted that the parametric 
MLE methods (e.g., for normal and lognormal distributions) often yield unstable estimates of mean and 
sd. This is especially true when the number of nondetects exceeds 40%-50%. In such situations, it is 
preferable to use nonparametric (e.g., KM method) methods to compute statistics of interest such as 
UCLs, UPLs, and UTLs. Nonparametric methods do not require any distributional assumptions about the 
data sets under investigation. Singh, Maichle, and Lee (EPA, 2006) also concluded that the performance 
of the KM estimation method is better (in terms of coverage probabilities) than various other parametric 
estimation (e.g., MLE, EM, ROS) methods.  

 

Parametric Methods to Compute Upper Limits for Data Sets with Nondetect Observations 

• Simple substitution (proxy) methods (0, DL/2, DL) 
• MLE method, often known as Cohen’s MLE method – single detection limit 
• Restricted MLE method – single detection limit – not in ProUCL 4.0 
• Expectation Maximization (EM) method – single detection limit – not in ProUCL 4.0 
• EPA Delta log method – single detection limit  – not in ProUCL 4.0 
• Regression method on detected data and using slope and intercept of the OLS regression 

line as estimates of standard deviation, sd, and mean (not a recommended method)  
• Robust ROS (regression on order statistics) on log-transformed data – nondetects 

extrapolated (estimated) using robust ROS; mean, sd, UCLs, and other statistics 
computed using the detected and extrapolated data in original scale – multiple detection 
limits 

• Normal ROS – nondetects extrapolated (estimated) using normal distribution, mean, sd, 
UCLs, and other statistics computed using the detected and extrapolated data – multiple 
detection limits.  

• It is noted that the estimated NDs often become negative and even larger than the 
detection limits (not a recommended method) 

• Gamma ROS – nondetects extrapolated (estimated) using gamma distribution, mean, sd, 
UCLs, and other statistics computed using the detected and extrapolated data – multiple 
detection limits 

Nonparametric Methods to Compute Upper Limits for Data Sets with Nondetect Observations 

• Bootstrap Methods  
o Percentile Bootstrap on robust ROS 
o Percentile Bootstrap 
o BCA Bootstrap 
o Bootstrap t 
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• Jackknife Method  

o Jackknife on robust ROS 
 
• Kaplan-Meier (KM) Method 

o Bootstrap (percentile, BCA) using KM estimates 
o Jackknife using KM estimates 
o Chebyshev Method using KM estimates 

 
• Winsorization Method 

 
For uncensored full data sets without any NDs, the performance (in terms of coverage for the mean) of 
the various UCL computation methods was evaluated by Singh and Singh (2003). The performance of the 
parametric and nonparametric UCL methods based upon data sets with nondetect observations was 
studied by Singh, Maichle, and Lee (EPA 2006). Several of the methods listed above have been 
incorporated in ProUCL 4.0 to compute the estimates of EPC terms (95% UCL), and of BTVs (UPLs, 
UTLs, upper percentiles). Methods that did not perform well (e.g., poor coverage or unrealistically large 
values, infeasible and biased estimates) are not included in ProUCL 4.0. Methods not incorporated in 
ProUCL 4.0 are: EPA Delta Log method, Restricted MLE method, and EM method, substitution method 
(0, and DL), and Regression method.  
 
Note: It should be noted that for data sets with NDs, the DL/2 substitution method has been incorporated 
in ProUCL 4.0 only for historical reasons and also for its current default use. It is well known that the 
DL/2 method (with NDs replaced by DL/2) does not perform well (e.g., Singh, Maichle, and Lee (EPA 
2006)) even when the percentage of NDs is only 5%-10%. It is strongly suggested to avoid the use of 
DL/2 method for estimation and hypothesis testing approaches used in various environmental 
applications. Also, when the % of NDs becomes high (e.g., > 40%-50%), it is suggested to avoid the use 
of parametric MLE methods. For data sets with high percentage of NDs (e.g., > 40%), the distributional 
assumptions needed to use parametric methods are hard to verify; and those parametric MLE methods 
may yield unstable results. 
 
It should also be noted that even though the lognormal distribution and some statistics based upon 
lognormal assumption (e.g., Robust ROS, DL/2 method) are available in ProUCL 4.0, ProUCL 4.0 does 
not compute MLEs of mean and sd based upon a lognormal distribution. The main reason is that the 
estimates need to be computed in the original scale via back-transformation (Shaarawi, 1989, Singh, 
Maichle, and Lee (EPA 2006)). Those back-transformed estimates often suffer from an unknown amount 
of significant bias. Hence, it is also suggested to avoid the use of a lognormal distribution to compute 
MLEs of mean and sd, and associated upper limits, especially UCLs based upon those MLEs obtained 
using a lognormal distribution. 

 
ProUCL 4.0 recommends the use of an appropriate UCL to estimate the EPC terms. It is desirable that the 
user consults with the project team and experts familiar with the site before using those recommendations. 
Furthermore, there does not seem to be a general agreement about the use of an upper limit (e.g., UPL, 
percentile, or UTL) to estimate not-to-exceed values or BTVs to be used for screening of the COPCs and 
in site versus background comparison studies. ProUCL 4.0 can compute both parametric and 
nonparametric upper percentiles, UPLs, and UTLs for uncensored and censored data sets. However, no 
specific recommendations have been made regarding the use of UPLs, UTLs, or upper percentiles to 
estimate the BTVs, compliance limits, and other related background or reference parameters. However, 
the developers of ProUCL 4.0 prefer the use of UPLs or upper percentiles to estimate the background 
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population parameters (e.g., BTVs, not-to-exceed values) that may be needed to perform point-by-point 
site versus background comparisons. 
 
The standard bootstrap and the percentile bootstrap UCL computation methods do not perform well (do 
not provide adequate coverage to population mean) for skewed data sets. For skewed distributions, the 
bootstrap t and Hall’s bootstrap (meant to adjust for skewness) methods do perform better (in terms of 
coverage for the population mean) than the other bootstrap methods. However, it has been noted (e.g., 
Efron and Tibshirani (1993) and Singh, Singh, and Iaci (2002b)) that these two bootstrap methods 
sometimes yield erratic and inflated UCL values (orders of magnitude higher than the other UCLs). This 
may occur when outliers are present in a data set. Similar behavior of the bootstrap t UCL is observed 
based upon data sets with NDs. Therefore, whenever applicable, ProUCL 4.0 provides cautionary 
statements regarding the use of bootstrap methods.  
 
ProUCL 4.0 provides several state-of-the-art parametric and nonparametric UCL, UPL, and UTL 
computation methods that can be used on uncensored data sets (full data sets) and on data sets with BDL 
observations. Some of the methods (e.g., Kaplan-Meier method, ROS methods) incorporated in ProUCL 
4.0 are applicable on left-censored data sets having multiple detection limits. The UCLs and other upper 
limits computation methods in ProUCL 4.0 cover a wide range of skewed data distributions with and 
without the BDLs arising from the environmental applications.  
 
ProUCL 4.0 also has parametric and nonparametric single and two-sample hypotheses testing approaches 
required to: compare site location (e.g., mean, median) to a specified cleanup standard; perform site 
versus background comparisons; or compare of two or more AOCs. These hypotheses testing methods 
can handle both full (uncensored data sets without NDs) and left-censored (with nondetects) data sets. 
Specifically, two-sample tests such as t-test, Wilcoxon-Mann-Whitney (WMW) Rank Sum test, quantile 
test, and Gehan’s test are available in ProUCL 4.0 to compare concentrations of two populations. 
 
Single sample parametric (Student’s t-test) and nonparametric (sign test, Wilcoxon Signed Rank (WSR) 
test, tests for proportions and percentiles) hypotheses testing approaches are also available in ProUCL 4.0. 
The single sample hypotheses tests are useful when the environmental parameters such as the clean 
standard, action level, or compliance limits are known, and the objective is to compare site concentrations 
with those known threshold values. Specifically, a t-test (or a sign test) may be used to verify the 
attainment of cleanup levels at an AOC after a remediation activity; and a test for proportion may be used 
to verify if the proportion of exceedances of an action level (or a compliance limit) by sample 
concentrations collected from the AOC (or a MW) exceeds a certain specified proportion (e.g., 1%, 5%, 
10%). As mentioned before, ProUCL 4.0 can perform these hypotheses on data sets with and without 
nondetect observations.  
 
Note: It should be noted that as cited in the literature, some of the hypotheses testing approaches (e.g., 
nonparametric two-sample WMW) deal with the single detection limit scenario. If multiple detection 
limits are present, all NDs below the largest detection limit need to be considered as NDs (Gilbert, 1987, 
Helsel, 2005). This in turn may reduce the power and increase uncertainty associated with test. As 
mentioned before, it is always desirable to supplement the test statistics and test conclusions with 
graphical displays such as the multiple Q-Q plots and side-by-side box plots. ProUCL 4.0 can graph box 
plots and Q-Q plots for data sets with nondetect observations. Gehan test as available in ProUCL 4.0 
should be used in case multiple detection limits are present. ProUCL 4.0 can draw Q-Q plots and box 
plots for data sets with and without nondetect observations. 
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It should be pointed out that when using two-sample hypotheses approaches (WMW test, Gehan test, and 
quantile test) on data sets with NDs, both samples and variables (e.g., site-As, Back-As) should be 
specified as having nondetects. This means, a ND column (0= ND, and 1 = detect) should be provided for 
each variable (here D_site-As, and D_Back-As) to be used in this comparison. If a variable (e.g., site-As) 
does not have any nondetects, still a column with label D_site-As should be included in the data set with 
all entries = 1 (detected values). 
 
Moreover, in single sample hypotheses tests (e.g., sign test, proportion test) used to compare site 
mean/median concentration level with a cleanup standard, Cs, or compliance limit (e.g., proportion test), 
all NDs (if any) should lie below the cleanup standard, Cs. 
 
The differences between these tests should be noted and understood. Specifically, a t-test or a Wilcoxon 
Signed Rank (WSR) test are used to compare the measures of location and central tendencies (e.g., mean, 
median) of a site area (e.g., AOC) to a cleanup standard, Cs or action level also representing a measure of 
central tendency (e.g., mean, median); whereas, a proportion test compares if the proportion of site 
observations from an AOC exceeding a compliance limit (CL) exceeds a specified proportion, P0 (e.g., 
5%, 10%). The percentile test compares a specified percentile (e.g., 95th) of the site data to a pre-specified 
upper threshold (e.g., reporting limit, action level). All of these tests have been incorporated in ProUCL 
4.0. Most of the single sample and two-sample hypotheses tests also report associated p-values. For some 
of the hypotheses tests (e.g., WMW test, WSR test, proportion test), large sample approximate p-values 
are computed using continuity correction factors.  

Graphical Capabilities 

ProUCL 4.0 has useful exploratory graphical methods that may be used to visually compare the 
concentrations of:  

 
1. A site area of concern (AOC) with an action level. This can be done using a box plot of 

site data with action level superimposed on that graph, 
 
2. Two or more populations, including site versus background populations, surface versus 

subsurface concentrations, and 
 

3. Two or more AOCs.  
 
The graphical methods include double and multiple quantile-quantile (Q-Q) plots, side-by-side box plots, 
and histograms. Whenever possible, it is desirable to supplement statistical test results and statistics with 
visual graphical displays of data sets. There is no substitute for graphical displays of a data set as the 
visual displays often provide useful information about a data set, which cannot be revealed by simple test 
statistics such as t-test, SW test, Rosner test, WMW test. For example, in addition to providing 
information about the data distribution, a normal Q-Q plot can also help identify outliers and multiple 
populations that might be present in a data set. This kind of information cannot be revealed by simple test 
statistics such as a Shapiro-Wilk (SW) test or Rosner’s outlier test statistic. Specifically, the SW test may 
lead to the conclusion that a mixture data set (representing two or more populations) can be modeled by a 
normal (or lognormal) distribution, whereas the occurrence of obvious breaks and jumps in the associated 
Q-Q plot may suggest the presence of multiple populations in the mixture data set. It is suggested that the 
user should use exploratory tools to gain necessary insight into a data set and the underlying assumptions 
(e.g., distributional, single population) that may not be revealed by simple test statistics. 
 

 12 



Note: On a Q-Q plot, observations well separated from the majority of the data may represent potential 
outliers, and obvious jumps and breaks of significant magnitude may suggest the presence of observations 
from multiple populations in the data set. 
 
The analyses of data categorized by a group ID variable such as: 1) Surface vs. Subsurface; 
2) AOC1 vs. AOC2; 3) Site vs. Background; and 4) Upgradient vs. Downgradient monitoring wells are 
quite common in many environmental applications. ProUCL 4.0 offers this option for data sets with and 
without nondetects. The Group Option provides a powerful tool to perform various statistical tests and 
methods (including graphical displays) separately for each of the group (samples from different 
populations) that may be present in a data set. For an example, the same data set may consist of samples 
from the various groups or populations representing site, background, two or more AOCs, surface, 
subsurface, monitoring wells. The graphical displays (e.g., box plots, Q-Q plots) and statistics 
(computations of background statistics, UCLs, hypotheses testing approaches) of interest can be 
computed separately for each group by using this option.  
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Chapter 1 
 

Guidance on the Use of Statistical Methods as Incorporated in 
ProUCL 4.0 & Associated Minimum Sample Size Requirements 

 
This chapter describes the differences between the various statistical limits (e.g., UCLs, UPLs, UTLs) 
often used to estimate the environmental parameters of interest including exposure point concentration 
(EPC) terms and background threshold values (BTVs). Some suggestions about the minimum sample size 
requirements needed to use statistical inferential methods to estimate the environmental parameters: EPC 
terms, BTVs, and not-to-exceed values, and to compare site data with background data or with some pre-
established reference limits (e.g., preliminary remediation goals (PRGs), action levels, compliance limits) 
have also been provided. It is noted that, several EPA guidance documents (e.g., EPA, 1997, 2002a, 2006) 
discuss in details about data quality objectives (DQOs) and sample size determinations based upon those 
DQOs needed for the various statistical methods used in environmental applications. Also, appropriate 
sample collection methods (e.g., instruments, sample weights, discrete or composite, analytical methods) 
depend upon the medium (e.g., soil, sediment, water) under consideration. For an example, Gerlach and 
Nocerino (EPA, 2003) describe optimal soil sample (based upon Gy theory) collection methods. 
Therefore, the topics of sample size determination based upon DQOs, data validation, and appropriate 
sample collection methods for the various environmental media are not considered in ProUCL 4.0 and the 
associated technical and technical guides. It is assumed that data sets to be used in ProUCL are of good 
quality, and whenever possible have been obtained using the guidance provided in various EPA (2003, 
2006) documents. It is users’ responsibility to assure that adequate amount of good quality data have been 
collected.  
 
Note: Here, emphasis is given on the practical applicability and appropriate use of statistical methods 
needed to address statistical issues arising in risk management, background versus site evaluation 
studies, and various other environmental applications. Specifically, guidance on minimum sample size 
requirements as provided in this chapter is useful when data have already been collected, or it is not 
possible (e.g., due to resource limitations) to collect the number of samples obtained using DQO 
processes as described in EPA (2006).  
 
Decisions based upon statistics obtained using data sets of small sizes (e.g., 4 to 6 detected observations) 
cannot be considered reliable enough to make a remediation decision that affects human health and the 
environment. For an example, a background data set of size 4 to 6 is not large enough to characterize 
background population, to compute BTV values, or to perform background versus site comparisons. In 
order to perform reliable and meaningful statistical inference (estimation and hypothesis testing), one 
should determine the sample sizes that need to be collected from the populations under investigation 
using appropriate DQO processes and decision error rates (EPA, 2006). However, in some cases, it may 
not be possible (e.g., resource constraints) to collect the same number of samples recommended by the 
DQO process. In order to address such cases, some minimum sample size requirements for background 
and site data sets are described in this chapter. 
 
The use of an appropriate statistical method depends upon the environmental parameter(s) being 
estimated or compared. The measures of central tendency (e.g., means, medians, or their upper confidence 
limits (UCLs)) are often used to compare site mean concentrations (e.g., after remediation activity) with a 
cleanup standard, Cs, representing some central tendency measure of a reference area or some other 
known threshold representing a measure of central tendency. The upper threshold values, such as the 
compliance limits (e.g., alternative concentration limit (ACL), maximum concentration limit (MCL)), or 
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not-to-exceed values, are used when individual point-by-point observations are compared with those not-
to-exceed values or some other compliance limit. It should be noted that depending upon whether the 
environmental parameters (e.g., BTVs, not-to-exceed value, EPC term, or cleanup standards) are known 
or unknown, different statistical methods with different data requirements are needed to compare site 
concentrations with pre-established (known) or estimated (unknown) standards and BTVs.  
 
ProUCL 4.0 has been developed to address issues arising in exposure assessment, risk- assessment, and 
background versus site comparison applications. Several upper limits, and single- and two-sample 
hypotheses testing approaches, for both full-uncensored and left-censored data sets, are available in 
ProUCL 4.0. The details of the statistical and graphical methods included in ProUCL 4.0 can be found in 
the ProUCL Technical guidance. In order to make sure that the methods in ProUCL 4.0 are properly used, 
this chapter provides guidance on:  

 
1. analysis of site and background areas and data sets,  
 
2. collection of discrete or composite samples,  

 
3. appropriate use of the various upper limits,  

 
4. guidance regarding minimum sample sizes, 

 
5. point-by-point comparison of site observations with BTVs, 

 
6. use of hypotheses testing approaches,  

 
7. using small data sample sets,  

 
8. use of maximum detected value, and 

 
9. discussion of ProUCL usage for special cases.  

1.1 Background Data Sets 

The project team familiar with the site should identify and chose a background area. Depending upon the 
site activities and the pollutants, the background area can be site-specific or a general reference area. An 
appropriate random sample of independent observations should be collected from the background area. A 
defensible background data set should represent a “single” background population (e.g., representing 
pristine site conditions before any of the industrial site activities) free of contaminating observations such 
as outliers. In a background data set, outliers may represent potentially contaminated observations from 
impacted site areas under study or possibly from other polluted site(s). This scenario is common when 
background samples are obtained from the various onsite areas (e.g., large federal facilities). Outlying 
observations should not be included in the estimation (or hypotheses testing procedures) of the BTVs. 
The presence of outliers in the background data set will yield distorted estimates of the BTVs and 
hypothesis testing statistics. The proper disposition of outliers to include or not include them in the data 
set should be decided by the project team.  
 
Decisions based upon distorted statistics can be incorrect, misleading, and expensive. It should be noted 
that the objective is to compute background statistics based upon the majority of the data set representing 
the dominant background population, and not to accommodate a few low probability outliers that may 
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also be present in the background data set. A couple of simple classical outlier tests (Dixon and Rosner 
tests) are available in ProUCL 4.0. Since these classical tests suffer from masking effects (e.g., some 
extreme outliers may mask the occurrence of other intermediate outliers), it is suggested that these 
classical outlier tests should always be supplemented with graphical displays such as a box plot or a Q-Q 
plot. The use of robust and resistant outlier identification procedures (Singh and Nocerino, 1995, 
Rousseeuw and Leroy, 1987) is recommended when multiple outliers may be present in a data set. Those 
methods are beyond the scope of ProUCL 4.0. However, several robust outlier identification and 
estimation are available in Scout (EPA, 2000), which is currently under revision and upgrade. 
 
An appropriate background data set of a reasonable size (preferably computed using DQO processes) is 
needed to characterize a background area including computation of upper limits (e.g., estimates of BTVs, 
not-to-exceed values) based upon background data sets and also to compare site and background data sets 
using hypotheses testing approaches. As mentioned before, a small background data set of size 4 to 6 is 
not large enough to compute BTVs or to perform background versus site comparisons. At the minimum, a 
background sample should have at least 8 to 10 (more observations are preferable) detected observations 
to estimate BTVs or to use hypotheses testing approaches. 

1.2 Site Data Sets 

A defensible data set from a site population (e.g., AOC, EA, RU, group of monitoring wells) should be 
representative of the site area under investigation. Depending upon the site areas under investigation, 
different soil depths and soil types may be considered as representing different statistical populations. In 
such cases, background versus site comparisons may have to be conducted separately for each of those 
site sub-populations (e.g., surface and sub-surface layers of an AOC, clay and sandy site areas). These 
issues, such as comparing depths and soil types, should also be considered in a planning and sampling 
design before starting to collect samples from the various site areas under investigation. Specifically, the 
availability of an adequate amount of representative site data is required from each of those site sub-
populations defined by sample depths, soil types, and the various other characteristics. For detailed 
guidance on soil sample collections, the reader is referred to Gerlach and Nocerino (EPA (2003)).  
 
The site data collection requirements depend upon the objective of the study. Specifically, in background 
versus site comparisons, site data are needed to perform: 
 

• Individual point-by-point site observation comparisons with pre-established or estimated 
BTVs, PRGs, cleanup standards, and not-to-exceed-values. Typically, this approach is 
used when only a small number (e.g., < 4 to 6) of detected site observations (preferably 
based upon composite samples) are available which need to be compared with BTVs and 
not-to-exceed values. Some applications of the point-by-point site observation 
comparisons are described later in this chapter. 

 
• Single sample hypotheses tests to compare site data with pre-established cleanup 

standards, Cs (e.g., representing a measure of central tendency); or with BTVs and not-to-
exceed values (used for tests for proportions and percentiles). The hypotheses testing 
approaches are used when enough site data are available. Specifically, when at least 8 to 
10 detected (more are desirable) site observations are available, it is preferable to use 
hypotheses testing approaches to compare site observations with specified threshold 
values. The use of hypotheses testing approaches can control the two types (Type 1 and 
Type 2) of error rates more efficiently than the point-by-point individual observation 
comparisons. This is especially true as the number of point-by-point comparisons 
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increases. This issue is illustrated by the following table summarizing the probabilities of 
exceedances (false positive error rate) of the background threshold value (e.g., 95th 
percentile) by site observations, even when the site and background populations have 
comparable distributions. The probabilities of these chance exceedances increase as the 
sample size increases. 

 
                  Sample Size                              Probability of Exceedance 

1     0.05 
2     0.10 
5     0.23 
8     0.34 
10     0.40 
12     0.46 
64     0.96 

 
• Two-sample hypotheses testing to compare site data distribution with background data 

distribution to determine if the site concentrations are comparable to background 
concentrations. Adequate amount of data need to be made available from the site as well 
as the background populations. It is preferable to collect at least 8 to 10 detected 
observations from each of the population under comparison. 

1.3 Discrete Samples or Composite Samples? 

In a data set (background or site), collected samples should be either all discrete or all composite. In 
general, both discrete and composite site samples may be used for individual point-by-point site 
comparisons with a threshold value, and for single and two-sample hypotheses testing applications.  
 

• If possible, the use of composite site samples is preferred when comparing individual 
point-by-point site observations from an area (e.g., area of concern (AOC), remediation 
unit (RU), exposure area (EA)) with some pre-established or estimated BTV, compliance 
limit (CL), or some other not-to-exceed value. This comparison approach is useful when 
few (< 4 to 6) detected site observations are compared with a pre-established or estimated 
BTV or some other not-to-exceed threshold. 

 
• When using a single sample hypothesis testing approach, site data can be obtained by 

collecting all discrete or all composite samples. The hypothesis testing approach is used 
when many (e.g., exceeding 8 to 10) detected site observations are available. Details of 
the single sample hypothesis approaches are widely available in EPA documents (1989, 
1997, and 2006). Some of those single sample hypotheses testing procedures are also 
available in ProUCL 4.0. 

 
• If a two-sample hypotheses testing approach is used to perform site versus background 

comparisons, then samples from both of the populations should be either all discrete 
samples, or all composite samples. The two-sample hypothesis testing approach is used 
when many (e.g., exceeding 8 to 10) site, as well as background, observations are 
available. For better and more accurate results with higher statistical power, the 
availability of more observations (e.g., exceeding 10-15) from each of the two 
populations is desirable, perhaps based upon an appropriate DQO process, as described in 
an EPA guidance document (2006). 
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1.4 Upper Limits and Their Use 

The appropriate computation and use of statistical limits depend upon their applications and the 
parameters (e.g., EPC term, not-to-exceed value) they are supposed to be estimating. Depending upon the 
objective of the study, a pre-specified cleanup standard, Cs, or a risk-based cleanup (RBC) can be viewed 
as to represent: 1) as average contaminant concentration; or 2) a not-to-exceed upper threshold value. 
These two threshold values, an average value, µ0, and a not-to-exceed value, A0, represent two 
significantly different parameters, and different statistical methods and limits are used to compare the site 
data with these two different parameters or threshold values. Statistical limits, such as an upper 
confidence limit (UCL) of the population mean, an upper prediction limit (UPL) for an independently 
obtained “single” observation, or independently obtained k observations (also called future k 
observations, next k observations, or k different observations), upper percentiles, and upper tolerance 
limits (UTLs), are often used to estimate the environmental parameters, including the EPC terms, 
compliance limits (e.g., ACL, MCL), BTVs, and other not-to-exceed values. Here, UTL95%-95% 
represents a 95% confidence limit of the 95th percentile of the distribution of the contaminant under study. 
 
It is important to understand and note the differences between the uses and numerical values of these 
statistical limits so that they can be properly used. Specifically, the differences between UCLs and UPLs 
(or upper percentiles), and UCLs and UTLs should be clearly understood and acknowledged. A UCL with 
a 95% confidence limit (UCL95) of the mean represents an estimate of the population mean (measure of 
the central tendency of a data distribution), whereas a UPL95, a UTL95%-95%, and an upper 95th 
percentile represent estimates of a threshold value in the upper tail of the data distribution. Therefore, a 
UCL95 should represent a smaller number than an upper percentile or an upper prediction limit. Also, 
since a UTL 95%-95% represents a 95% UCL of the upper 95th percentile, a UTL should be ≥ the 
corresponding UPL95 and the 95th upper percentile. Typically, it is expected that the numerical values of 
these limits should follow the order given as follows: 
 
Sample Mean  ≤ UCL95 of Mean  ≤  Upper 95th Percentile  ≤  UPL95 of a Single Observation ≤ 
UTL95%-95%  
 
 It should also be pointed out that as the sample size increases, a UCL95 of the mean approaches 
(converges to) the population mean, and a UPL95 approaches the 95th percentile. The differences among 
the various upper limits are further illustrated in Example 1-1 below. It should be noted that, in some 
cases, these limits might not follow the natural order described above. This is especially true when the 
upper limits are computed based upon a lognormal distribution (Singh, Singh, and Engelhardt, 1997). It is 
well known that a lognormal distribution based H-UCL95 (Land’s UCL95) often yields unstable and 
impractically large UCL values. An H-UCL95 often becomes larger than UPL95 and even larger than a 
UTL 95%-95%. This is especially true when dealing with skewed data sets of smaller sizes. Moreover, it 
should also be noted that in some cases, a H-UCL95 becomes smaller than the sample mean, especially 
when the data are mildly skewed to moderately skewed, and the sample size is large (e.g., > 50, 100). 
Some of these issues, related to a lognormal distribution and H-UCL95 based upon Land’s (1975) statistic 
are discussed in Chapter 3 of the revised background document for CERCLA sites. 

1.4.1 Example 1-1 

Consider a simple site-specific background data set associated with a Superfund site. The data set (given 
in Appendix 5 of the revised Guidance for Comparing Background and Chemical Concentrations in Soil 
for CERCLA Sites (EPA, 2002b)) has several inorganic contaminants of potential concern, including 
aluminum, arsenic, chromium, iron, and lead. It is noted that iron concentrations follow a normal 
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distribution. Some upper limits for the iron data set are summarized as follows. It is noted that the various 
upper limits do follow the order as described above. 
 
Table 1-1. Computation of Upper Limits for Iron (Normally Distributed) 

 

Mean Median Min Max UCL95 
UPL95 for a 

Single 
Observation 

UPL95 for 4 
Observations UTL95/95 95% Upper 

Percentile 
9618 9615 3060 18700 11478 18145 21618 21149 17534 

 
A 95% UCL (UCL95) of the mean is the most commonly used limit in environmental applications. For an 
example, a 95% UCL of mean is used as an estimate of the EPC. A UCL95 should not be used to estimate 
a background threshold value (a value in the upper tail of the background data distribution) to be 
compared with individual site observations. There are many instances in background evaluations and 
background versus site comparison studies, when it is not appropriate to use a 95% UCL. Specifically, 
when point-by-point site observations are to be compared with a BTV, then that BTV should be estimated 
(or represented) by a limit from the upper tail of the reference set (background) data distribution.  
 
A brief discussion about the differences between the applications and uses of the various statistical limits 
is provided below. This will assist a typical user in determining which upper limit (e.g., UCL95 or 
UPL95) to use to estimate the parameter of interest (e.g., EPC or BTV). 

 
• A UCL represents an average value that should be compared with a threshold value also 

representing an average value (pre-established or estimated), such as a mean cleanup 
standard, Cs. For an example, a site 95% UCL exceeding a cleanup value, Cs, may lead to 
the conclusion that the cleanup level, Cs, has not been attained by the site area. It should 
be noted that UCLs of means are typically computed based upon the site data set. 

 
• When site averages (and not individual site observations) are compared with a threshold 

value (pre-determined or estimated), such as a PRG or a RBC, or with some other 
cleanup standard, Cs, then that threshold should represent an average value, and not a not-
to-exceed threshold value for individual observation comparisons.  

 
• A UCL represents a “collective” measure of central tendency, and it is not appropriate to 

compare individual site observations with a UCL. Depending upon data availability, 
single or two-sample hypotheses testing approaches are used to compare site averages: 
with a specified or pre-established cleanup standard (single sample hypothesis), or with 
the background population averages (two-sample hypothesis). 

 
• A UPL, an upper percentile, or an UTL represents an upper limit to be used for point-by-

point individual site observation comparisons. UPLs and UTLs are computed based upon 
background data sets, and individual site observations are compared with those limits. A 
site observation for a contaminant exceeding a background UTL or UPL may lead to the 
conclusion that the contaminant is a contaminant of potential concern (COPC) to be 
included in further risk evaluation and risk management studies.  

 
• When individual point-by-point site observations are compared with a threshold value 

(pre-determined or estimated) of a background population or some other threshold and 
compliance limit value, such as a PRG, MCL, or ACL, then that threshold value should 
represent a not-to-exceed value. Such BTVs or not-to-exceed values are often estimated 
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by a 95% UPL, UTL95%-95%, or by an upper percentile. ProUCL 4.0 can be used to 
compute any of these upper limits based upon uncensored data sets as well as data sets 
with nondetect values.  

 
• As the sample size increases, a UCL approaches the sample mean, and a UPL95 

approaches the corresponding 95th upper percentile. 
 
• It is pointed out that the developers of ProUCL 4.0 prefer the use of a 95% UPL (UPL95) 

as an estimate of BTV or a not-to-exceed value. As mentioned before, the option of 
comparing individual site observations with a BTV (specified or estimated) should be 
used when few (< 4 to 6) detected site observations (preferably composite values) are to 
be compared with a BTV. 

 
• When enough (e.g., > 8 to 10) detected site observations are available, it is preferred to 

use hypotheses testing approaches. Specifically, single sample hypotheses testing 
(comparing site to a specified threshold) approaches should be used to perform site 
versus a known threshold comparison; and two-sample hypotheses testing (provided 
enough background data are also available) approaches should be used to perform site 
versus background comparison. Several parametric and nonparametric single and two-
sample hypotheses testing approaches are available in ProUCL 4.0. 

 
It is re-emphasized that only averages should be compared with the averages or UCLs, and individual site 
observations should be compared with UPLs, upper percentiles, or UTLs. For an example, the comparison 
of a 95% UCL of one population (e.g., site) with a 90% or 95% upper percentile of another population 
(e.g., background) cannot be considered fair and reasonable as these limits (e.g., UCL and UPL) estimate 
and represent different parameters. It is hard to justify comparing a UCL of one population with a UPL of 
the other population. Conclusions (e.g., site dirty or site clean) derived by comparing UCLs and UPLs, or 
UCLs and upper percentiles as suggested in Wyoming DEQ, Fact Sheet #24 (2005), cannot be considered 
fair and reliable. Specifically, the decision error rates associated with such comparisons can be 
significantly different from the specified (e.g., Type I error = 0.1, Type II error = 0.1) decision errors.  

1.5 Point-by-Point Comparison of Site Observations with BTVs, Compliance 
Limits, and Other Threshold Values 

Point-by-point observation comparison method is used when a small number (e.g., 4 to 6 locations) of 
detected site observations are compared with pre-established or estimated BTVs, screening levels, or 
preliminary remediation goals (PRGs). In this case, individual point-by-point site observations (preferably 
based upon composite samples from various site locations) are compared with estimated or pre-
established background (e.g., USGS values) values, PRGs, or some other not-to-exceed value. Typically, 
a single exceedance of the BTV, PRG, or a not-to-exceed value by a site (or from a monitoring well) 
observation may be considered as an indication of contamination at the site area under investigation. The 
conclusion of an exceedance by a site value is Sometimes confirmed by re-sampling (taking a few more 
collocated samples) that site location (or a monitoring well) exhibiting contaminant concentration in 
excess of the BTV or PRG. If all collocated (or collected during the same time period) sample 
observations collected from the same site location (or well) exceed the PRG (or MCL) or a not-to-exceed 
value, then it may be concluded that the location (well) requires further investigation (e.g., continuing 
treatment and monitoring) and cleanup.  
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When BTV contaminant concentrations are not known or pre-established, one has to collect, obtain, or 
extract a data set of an appropriate size that can be considered as representative of the site related 
background. Statistical upper limits are computed using the data set thus obtained, which are used as 
estimates of BTVs and not-to-exceed values. It should be noted that in order to compute reasonably 
reliable and accurate estimates of BTVs and not-to-exceed values based upon a background (or reference) 
data set, enough background observations (minimum of 8 to 10) should be collected, perhaps using an 
appropriate DQO process as described in EPA (2006). Typically, background samples are collected from 
a comparable general reference area or site-specific areas that are known to be free of contamination due 
to any of the site related activities. Several statistical limits can be used to estimate the BTVs based upon 
a defensible data set of an adequate size. A detailed description of the computation and estimation of 
BTVs is given in Chapter 5 (for uncensored data sets) and in Chapter 6 for data sets with nondetects of 
the revised Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites 
(EPA, 2002b). Once again, the use of this point-by-point comparison method is recommended when not 
many (e.g., < 4 to 6) site observations are to be compared with estimated BTVs or PRGs. An exceedance 
of the estimated BTV by a site value may be considered as an indication of the existing or continuing 
contamination at the site.  
 
Note: When BTVs are not known, it is suggested that at least 8 to 10 (more are preferable) detected 
representative background observations be made available to compute reasonably reliable estimates of 
BTVs and other not-to-exceed values.  
 
The point-by-point comparison method is also useful when quick turnaround comparisons are required. 
Specifically, when the decisions have to be made in real time by a sampling or screening crew, or when 
few detected site samples are available, then individual point-by-point site concentrations are compared 
either with pre-established PRGs, cleanup goals and standards, or with estimated BTVs and not-to-exceed 
values. The crew can use these comparisons to make the following informative decisions:  
 

1. screen and identify the COPCs, 
  
2. identify the polluted site AOCs,  

 
3. continue or stop remediation or excavation at a site AOC or a RU, or  

 
4. move the cleanup apparatus and crew to the next AOC or RU. 

 
During the screening phase, an exceedance of a compliance limit, action level, a BTV, or a PRG by site 
values for a contaminant may declare that contaminant as a COPC. Those COPCs are then included in 
future site remediation and risk management studies. During the remediation phase, an exceedance of the 
threshold value such as a compliance limit (CL) or a BTV by sample values collected from a site area (or 
a monitoring well (MW)) may declare that site area as a polluted AOC, or a hot spot requiring further 
sampling and cleanup. This comparison method can also be used to verify if the site concentrations (e.g., 
from the base or side walls of an excavated site area) are approaching or meeting PRG, BTV, or a cleanup 
standard after some excavation has been conducted at that site area. 
 
If a larger number of detected samples (e.g., greater than 8 to10) are available from the site locations 
representing the site area under investigation (e.g., RU, AOC, EA), then the use of hypotheses testing 
approaches (both single sample and a two-sample) is preferred. The use of a hypothesis testing approach 
will control the error rates more tightly and efficiently than the individual point-by-point site observations 
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versus BTV comparisons, especially when many site observations are compared with a BTV or a not-to-
exceed value. 
 
Note: In background versus site comparison evaluations, scientists usually prefer the use of hypotheses 
testing approaches over point-by-point site observation comparisons with BTVs or not-to-exceed values. 
Hypotheses testing approaches require the availability of larger data sets from the populations under 
investigation. Both single sample (used when BTVs, not-to-exceed values, compliance limits, or cleanup 
standards are known and pre-established) and two-sample (used when BTVs and compliance limits are 
unknown) hypotheses testing approaches are available in ProUCL 4.0.  

1.6 Hypothesis Testing Approaches and Their Use 

Both single sample and two-sample hypotheses testing approaches are used to make cleanup decisions at 
polluted sites, and also to compare contaminant concentrations of two (e.g., site versus background) or 
more (several monitoring wells (MWs)) populations. The uses of hypotheses testing approaches in those 
environmental applications are described as follows. 

1.6.1 Single Sample Hypotheses – BTVs and Not-to-Exceed Values are Known (Pre-
established) 

When pre-established BTVs and not-to-exceed values are used, such as the USGS background values 
(Shacklette and Boerngen (1984)), thresholds obtained from similar sites, pre-established threshold and 
not-to-exceed values, PRGs, or RBCs, there is no need to extract, establish, or collect a background or 
reference data set. When the BTVs and cleanup standards are known, one-sample hypotheses are used to 
compare site data (provided enough site data are available) with known and pre-established threshold 
values. It is suggested that the project team determine (e.g., using DQO) or decide (depending upon 
resources) about the number of site observations that should be collected and compared with the “pre-
established” standards before coming to a conclusion about the status (clean or polluted) of the site area 
(e.g., RU, AOC) under investigation. When the number of available detected site samples is less than 4 to 
6, one might perform point-by-point site observation comparisons with a BTV; and when enough detected 
site observations (> 8 to 10, more are preferable) are available, it is desirable to use single sample 
hypothesis testing approaches.  
 
Depending upon the parameter (e.g., the average value, µ0, or a not-to-exceed value, A0), represented by 
the known threshold value, one can use single sample hypothesis tests for population mean (t-test, sign 
test) or single sample tests for proportions and percentiles. The details of the single sample hypotheses 
testing approaches can be found in EPA (2006) and the Technical Guide for ProUCL 4.0. Several single 
sample tests listed as follows are available in ProUCL 4.0.  
 
One-Sample t-Test: This test is used to compare the site mean, µ, with some specified cleanup standard, 
Cs, where the cleanup standard, Cs, represents an average threshold value, µ0. The Student’s t-test (or a 
UCL of mean) is often used (assuming normality of site data or when site sample size is large such as 
larger than 30, 50) to determine the attainment of cleanup levels at a polluted site after some remediation 
activities. 
 
One-Sample Sign Test or Wilcoxon Signed Rank (WSR) Test: These tests are nonparametric tests and can 
also handle nondetect observations provided all nondetects (e.g., associated detection limits) fall below 
the specified threshold value, Cs. These tests are used to compare the site location (e.g., median, mean) 
with some specified cleanup standard, Cs, representing a similar location measure. 
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One-Sample Proportion Test or Percentile Test: When a specified cleanup standard, A0, such as a  
PRG or a BTV represents an upper threshold value of a contaminant concentration distribution  
(e.g., not-to-exceed value, compliance limit) rather than the mean threshold value, µ0, of the contaminant 
concentration distribution, then a test for proportion or a test for percentile (or equivalently a UTL 95%-
95%, UTL 95%-90%) may be used to compare site proportion or site percentile with the specified 
threshold or action level, A0. This test can also handle ND observations provided all NDs are below the 
compliance limit.  
 
In order to obtain reasonably reliable estimates and test statistics, an adequate amount of representative 
site data (8 to 10 detected observations) is needed to perform the hypotheses tests. As mentioned before, 
in case only a few (e.g., < 4 to 6) detected site observations are available, then point-by-point site 
concentrations may be compared with the specified action level, A0. 

1.6.2 Two-Sample Hypotheses – When BTVs and Not-to-Exceed Values are Unknown 

When BTVs, not-to-exceed values, and other cleanup standards are not available, then site data are 
compared directly with the background data. In such cases, a two-sample hypothesis testing approach can 
be used to perform site versus background comparisons. Note that this approach can be used to compare 
concentrations of any two populations including two different site areas or two different monitoring wells 
(MWs). In order to use and perform a two-sample hypothesis testing approach, enough data should be 
available (collected) from each of the two populations under investigation. Site and background data 
requirements (e.g., based upon DQOs) to perform two-sample hypothesis test approaches are described in 
EPA (1989b, 2006), Breckenridge and Crockett (1995), and the VSP (2005) software package. While 
collecting site and background data, for better representation of populations under investigation, one may 
also want to account for the size of the background area (and site area for site samples) into sample size 
determination. That is, a larger number (>10 to 15) of representative background (or site) samples should 
be collected from larger background (or site) areas. As mentioned before, every effort should be made to 
collect as many samples as determined using DQO processes as described in EPA documents (2006). 
 
The two-sample (or more) hypotheses approaches are used when the site parameters (e.g., mean, shape, 
distribution) are being compared with the background parameters (e.g., mean, shape, distribution). The 
two-sample hypotheses testing approach is also used when the cleanup standards or screening levels are 
not known a priori, and they need to be estimated based upon a data set from a background or reference 
population. Specifically, two-sample hypotheses testing approaches are used to compare: 1) the average 
contaminant concentrations of two or more populations such as the background population and the 
potentially contaminated site areas, or 2) the proportions of site and background observations exceeding a 
pre-established compliance limit, A0. In order to derive reliable conclusions with higher statistical power 
based upon hypothesis testing approaches, enough data (e.g., minimum of 8 to 10 samples) should be 
available from all of the populations under investigation. It is also desirable to supplement statistical 
methods with graphical displays, such as the double Q-Q plots, or side-by-side multiple box plots, as 
available in ProUCL 4.0. Two-sample hypotheses testing approaches as incorporated in ProUCL 4.0 are 
listed as follows: 
 

1. Student t-test - with equal dispersions and unequal variances – Parametric test 
 
2. Wilcoxon-Mann-Whitney (WMW) test – Nonparametric test 

 
3. Gehan test – Nonparametric test 
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Some details of these approaches are described later in this Technical Guide. It should be noted that the 
WMW, Gehan, and quantile tests are also available for data sets with NDs. Gehan’s test is specifically 
meant to be used on data sets with multiple detection limits. It is also suggested that for best and reliable 
conclusions, both the WMW and quantile tests should be used on the same data set. The details of these 
two tests with examples are given in EPA (1994, 2006). 
 
The samples collected from the two (or more) populations should all be of the same type obtained using 
similar analytical methods and apparatus. In other words, the collected site and background samples 
should be all discrete or all composite (obtained using the same design and pattern), and be collected from 
the same medium (soil) at similar depths (e.g., all surface samples or all subsurface samples) and time 
(e.g., during the same quarter in groundwater applications) using comparable (preferably same) analytical 
methods. Good sample collection methods and sampling strategies are given in EPA (1996, 2003) 
guidance documents. 

1.7 Minimum Sample Size Requirements  

Due to resource limitations, it may not be possible (nor needed) to sample the entire population (e.g., 
background area, site area, areas of concern, exposure areas) under study. Statistics is used to draw 
inference(s) about the populations (clean, dirty) and their known or unknown parameters (e.g., 
comparability of population means, not-to-exceed values, upper percentiles, and spreads) based upon 
much smaller data sets (samples) collected from those populations under study. In order to determine and 
establish BTVs, not-to-exceed values, or site-specific screening levels, defensible data set(s) of 
appropriate size(s) needs to be collected from background areas (e.g., site-specific, general reference or 
pristine area, or historical data). The project team and site experts should decide what represents a site 
population and what represents a background population. The project team should determine the 
population size and boundaries based upon all current and future objectives for the data collection. The 
size and area of the population (e.g., a remediation unit, area of concern, or an exposure unit) may be 
determined based upon the potential land use, and other exposure and risk management objectives and 
decisions. Moreover, appropriate effort should be made to properly collect soil samples (e.g., methods 
based upon Gy sampling theory), as described in Gerlach and Nocerino (2003). 
 
Using the collected site and background data sets, statistical methods supplemented with graphical 
displays are used to perform site versus background comparisons. The test results and statistics obtained 
by performing such site versus background comparisons are used to determine if the site and background 
level contaminant concentration are comparable; or if the site concentrations exceed the background 
threshold concentration level; or if an adequate amount of cleanup and remediation approaching the BTV 
or some cleanup level have been performed at polluted areas (e.g., AOC, RU) of the site under study.  
 
In order to perform statistical inference (estimation and hypothesis testing), one needs to determine the 
sample sizes that need to be collected from the populations (e.g., site and background) under investigation 
using appropriate DQO processes (EPA 2006). However, in some cases, it may not be possible to collect 
the same number of samples as determined by using a DQO process. For example, the data might have 
already been collected (often is the case in practice) without using a DQO process, or due to resource 
constraints, it may not be possible to collect as many samples as determined by using a DQO based 
sample size formula. It is observed that, in practice, the project team and the decision makers may not 
collect enough background samples, perhaps due to various resource constraints. However, every effort 
should be made to collect at least 8 to 10 (more are desirable) background observations before using 
methods as incorporated in ProUCL 4.0. The minimum sample size recommendations as described here 
are useful when resources are limited (as often is the case), and it may not be possible to collect as many 
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background and site (e.g., AOC, EU) samples as computed using DQOs and the sample size 
determination formulae given in the EPA (2006). Some minimum sample size requirements are also given 
in Fact Sheet #24, prepared by Wyoming Department of Environmental Quality (June 2005). 
 
As mentioned before, the topics of DQO processes and the sample size determination are described in 
detail in the EPA (2006) guidance document. Therefore, the sample size determination formulae based 
upon DQO processes are not included in ProUCL 4.0 and its Technical Guide. However, some guidance 
and suggestions on the minimum number of background and site samples needed to be able to use 
statistical methods for the computation of upper limits, and to perform single sample tests, two-sample 
tests such as t-test and Wilcoxon- Mann-Whitney (WMW) test, and various other tests are provided here. 
The minimum sample size recommendations (requirements) as described here are made so that 
reasonably reliable estimates of EPC terms and BTVs, and defensible values of test statistics for single or 
two-sample hypotheses tests (e.g., t-test, WMW test), can be computed.  
 
Finally, it is also important to note and understand the differences between the following two minimum 
sample size concepts: 
 
Minimum sample needed to compute a statistic based upon theoretical formulae; and 
Minimum sample size needed to compute a reliable and usable decision statistics.   
 
Even though, most of the decision statistics such as upper confidence limits (UCLs), upper prediction 
limits (UPLs), and upper tolerance limits (UTLs) can be computed based upon very small samples of 
sizes 2, 3, and 4, those decision statistics are not reliable and representative enough to make defensible 
and correct cleanup and remediation decisions. Use of such statistics should be avoided. 
Specific recommendations regarding the minimum sample size requirement (when data sets of DQOs 
based sample sizes cannot be collected) needed to compute reliable and usable decision statistics have 
also been described in this chapter. It should be pointed out that those minimum sample size 
recommendation (at least 8-10 observations) should be used only when samples of size determined by a 
DQO process (EPA, 2006) cannot be collected (e.g., due to resource constraints). The intention of the 
developers of ProUCL 4.0 is to provide statistically rigorous and defensible methods and decision 
statistics. Success of the applicability of a statistical method depends upon the quality and quantity of the 
available data set.  It is always desirable to collect appropriate number of samples based upon data quality 
objectives (DQOs) so that reliable decision statistics (e.g., UPLs, UCLs, and hypotheses test statistics) 
can be computed to make appropriate decisions.  
 

1.7.1 Minimum Sample Size Requirements to Compute Decision Statistics for Data without 
NDs  

It was noted by the developers of ProUCL software that some users of earlier versions of ProUCL (e.g., 
ProUCL 3.0 and ProUCL 4.0) were computing decisions statistics (e.g., UCLs, UPLs) based upon small 
data sets of sizes 2, 3 etc.  As a result, in later versions of ProUCL such as ProUCL 4.00.02, the 
developers restricted the use of ProUCL for samples of size at least 5. ProUCL 4.00.02 and higher 
versions will not compute decision statistics (e.g., UCLs, UPLs, UTLs) based upon samples of sizes less 
than 5.  Some users did complain about being not able to compute decision statistics based upon samples 
of size 3 or 4; but that is fine as one should not be computing decision statistics based upon such small 
samples. It is desirable that the ProUCL users follow the sample size requirements as described in this 
chapter.  
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At present, ProUCL 4.00.02 and higher versions will not compute any decision statistics such as UCLs 
and UPLs, UTLs for data sets of size less than 5 (without NDs). It may compute other summary statistics 
and graphs but will not compute decision making statistics. For such small data sets of size less than 5, 
ProUCL 4.00.02 provides warning messages informing the user about the potential deficiencies present in 
his data set submitted to ProUCL. 
 

1.7.2 Minimum Sample Size Requirements for Data Sets with NDs 

ProUCL 4.00.02 and higher versions will not compute any decision statistics based upon data sets of sizes 
less than 5 consisting of NDs.  Moreover, for data sets of size at least 5, no decision statistics will be 
computed when not more than one detected observation is present in the data set. For such extreme data 
situations, ProUCL 4.00.02 provides some warning messages regarding the lack of appropriate amount of 
data.  For data sets of size 5 or larger with only two detected values, ProUCL 4.00.02 will produce only 
Kaplan –Meier method based decision statistics (UCLs, UPLs, UTLs); and for data sets of size 5 or larger 
with 3 detected values, most nonparametric and parametric (except for gamma distribution based ) 
decision statistics  will be computed and printed. For data sets of size 5 or higher with 4 or more detected 
observations, ProUCL 4.00.02 will produce values for all parametric and nonparametric decision 
statistics. 
 
For all small data sets (e.g., size <8-10), ProUCL 4.00.02 informs the user by providing appropriate 
warning messages about the potential deficiencies present in his data set submitted to ProUCL. Some 
recommendations about how to determine a value of a decision statistic based upon data sets consisting of 
all or only a few (1 or 2) detected values are also provided in this chapter. It is suggested that the project 
team and experts associated with the site should come to an agreement about an appropriate value that 
may be used for the decision statistic under consideration.  
 

1.7.3 Minimum Sample Size for Estimation and Point-by-Point Site Observation Comparisons 

• Point-by-point observation comparison method is used when a small number  (e.g., 4 to 6 
locations) of detected site observations are compared with pre-established or estimated 
BTVs, screening levels, or PRGs. In this case, individual point-by-point site observations 
(preferably based upon composite samples from various site locations) are compared with 
estimated or pre-established background (e.g., USGS values) values, PRGs, or some 
other not-to-exceed value.  

 
• When BTV contaminant concentrations are not known or pre-established, one has to 

collect, obtain, or extract a data set of an appropriate size that can be considered as 
representative of the site related background. Statistical upper limits are computed using 
the data set thus obtained; which are used as estimates of BTVs and not-to-exceed values. 
It should be noted that in order to compute reasonably reliable and accurate estimates of 
BTVs and not-to-exceed values based upon a background (or reference) data set, enough 
background observations (minimum of 8 to 10) should be collected perhaps using an 
appropriate DQO process as described in EPA (2006). Typically, background samples are 
collected from a comparable general reference area or a site-specific area. 

 
• When enough (e.g., > 8 to 10) detected site observations are available, it is preferred to 

use hypotheses testing approaches. Specifically, single sample hypotheses testing 
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(comparing site to a specified threshold) approaches should be used to perform site 
versus a known threshold comparison and two-sample hypotheses testing (provided 
enough background data are also available) approaches should be used to perform site 
versus background comparison.  

1.7.4 Minimum Sample Sizes for Hypothesis Testing 

Statistical methods (as in ProUCL 4.0) used to estimate EPC terms, BTVs, PRGs, or to compare the site 
contaminant concentration data distribution with the background data distribution can be computed based 
upon small site and background data sets (e.g., of sizes 3, 4, 5, or 6). However, those statistics cannot be 
considered representative and reliable enough to make important cleanup and remediation decisions. It is 
recommended not to use those statistics to draw cleanup and remediation decisions potentially impacting 
the human health and the environment. It is suggested that the estimation and hypothesis testing methods 
as incorporated in ProUCL 4.0 may not be used on background data sets with fewer than 8 to 10 detected 
observations. Also, when using hypotheses testing approaches, it is suggested that the site and 
background data be obtained using an appropriate DQO process as described in EPA (2006). In case that 
is not possible, it is suggested that the project team at least collect 8 to 10 observations from each of the 
populations (e.g., site area, MWs, background area) under investigation. 
 
Site versus background comparisons and computation of the BTVs depend upon many factors, some of 
which cannot be controlled. These factors include the site conditions, lack of historical information, site 
medium, lack of adequate resources, measurement and analytical errors, and accessibility of the site areas. 
Therefore, whenever possible, it is desirable to use more than one statistical method to perform site versus 
background comparison. The use of statistical methods should always be supplemented with appropriate 
graphical displays.  

1.7.5 Sample Sizes for Bootstrap Methods 

Several parametric and nonparametric (including bootstrap methods) UCL, UPL, and other limits 
computation methods for both full-uncensored data sets (without nondetects) and left-censored data sets 
with nondetects are available in ProUCL 4.0. It should be noted that bootstrap resampling methods are 
useful when not too few (e.g., < 10-15) and not too many (e.g., > 500-1000) detected observations are 
available. For bootstrap methods (e.g., percentile method, BCA bootstrap method, bootstrap t method), a 
large number (e.g., 1000, 2000) of bootstrap resamples (with replacement) are drawn from the same data 
set. Therefore, in order to obtain bootstrap resamples with at least some distinct values (so that statistics 
can be computed from each resample), it is suggested that a bootstrap method should not be used when 
dealing with small data sets of sizes less than 10-15. Also, it is not required to bootstrap a large data set of 
size greater than 500 or 1000; that is when a data set of a large size (e.g., > 1000) is available, there is no 
need to obtain bootstrap resamples to compute statistics of interest (e.g., UCLs). One can simply use a 
statistical method on the original large data set. Moreover, bootstrapping a large data set of size greater 
than 500 or 1000 will be time consuming. 
 

1.8 Statistical Analyses by a Group ID  

The analyses of data categorized by a group ID variable such as: 1) Surface vs. Subsurface; 
2) AOC1 vs. AOC2; 3) Site vs. Background; and 4) Upgradient vs. Downgradient monitoring wells are 
quite common in many environmental applications. ProUCL 4.0 offers this option for data sets with and 
without nondetects. The Group Option provides a powerful tool to perform various statistical tests and 
methods (including graphical displays) separately for each of the group (samples from different 
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populations) that may be present in a data set. For an example, the same data set may consist of samples 
from the various groups or populations representing site, background, two or more AOCs, surface, 
subsurface, monitoring wells. The graphical displays (e.g., box plots, Q-Q plots) and statistics 
(background statistics, UCLs, hypotheses testing approaches) of interest can be computed separately for 
each group by using this option.  
 
It should be pointed out that it is the users’ responsibility to provide adequate amount of detected data to 
perform the group operations. For an example, if the user desires to produce a graphical Q-Q plot (using 
only detected data) with regression lines displayed, then there should be at least two detected points (to 
compute slope, intercept, sd) in the data set. Similarly if the graphs are desired for each of the group 
specified by the group ID variable, there should be at least two detected observations in each group 
specified by the group variable. ProUCL 4.0 generates a warning message (in orange color) in the lower 
panel of the ProUCL 4.0 screen. Specifically, the user should make sure that a variable with nondetects 
and categorized by a group variable should have enough detected data in each group to perform the 
various methods (e.g., GOF tests, Q-Q plots with regression lines) as incorporated in ProUCL 4.0. 

1.9 Use of Maximum Detected Value as Estimates of Upper Limits 

Some practitioners tend to use the maximum detected value as an estimate of the EPC term. This is 
especially true when the sample size is small such as ≤ 5, or when a UCL95 exceeds the maximum 
detected values (EPA, 1992b). Also, many times in practice, the BTVs and not-to-exceed values are 
estimated by the maximum detected value. This section discusses the appropriateness of using the 
maximum detected value as estimates of the EPC term, BTVs, or other nor-to-exceed values.  

1.9.1 Use of Maximum Detected Value to Estimate BTVs and Not-to-Exceed Values 

It is noted that BTVs and not-to-exceed values represent upper threshold values in the upper tail of a data 
distribution; therefore, depending upon the data distribution and sample size, the BTVs and other not-to-
exceed values may be estimated by the maximum detected value. As described earlier, upper limits, such 
as UPLs, UTLs, and upper percentiles, are used to estimate the BTVs and not-to-exceed values. It is noted 
that a nonparametric UPL or UTL is often estimated by higher order statistics such as the maximum value 
or the second largest value (EPA 1992a, RCRA Guidance Addendum). The use of higher order statistics 
to estimate the UTLs depends upon the sample size. For an example: 1) 59 to 92 samples, a 
nonparametric UTL95%-95 is given by the maximum detected value; 2) 93 to 123 samples, a 
nonparametric UTL95%-95 is given by the second largest maximum detected value; and 3) 124 to 152 
samples, a UTL95%-95 is given by the third largest detected value in the sample.  
 
Note: Therefore, when a data set does not follow a discernable distribution, the maximum observed value 
(or other high order statistics such as the second largest, third largest) may be used as an estimate of 
BTV or a not-to-exceed value, provided the maximum value does not represent an outlier or a 
contaminating observation perhaps representing a hot location. The selection of a higher order statistic 
(e.g., largest, second largest, third largest) to estimate BTV depends upon the sample size and confidence 
coefficient.  

1.9.2 Use of Maximum Detected Value to Estimate EPC Terms 

This issue was also discussed in the ProUCL 3.0 Technical Guide (EPA, 2004). Some practitioners tend 
to use the maximum detected value as an estimate of the EPC term. This is especially true when the 
sample size is small such as ≤ 5, or when a UCL95 exceeds the maximum detected values (EPA, 1992b). 
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Specifically, a RAGS document (EPA, 1992) suggests the use of the maximum detected value as a default 
value to estimate the EPC term when a 95% UCL (e.g., the H-UCL) exceeded the maximum value. 
ProUCL 3.0 and ProUCL 4.0 can compute a 95% UCL of mean using several methods based upon 
normal, Gamma, lognormal, and non-discernable distributions. In past (e.g., EPA, 1992b), only two 
methods were used to estimate the EPC term based upon: 1) Student’s t-statistic and a normal 
distribution, and 2) Land’s H-statistic (1975) and a lognormal model. The use of H-statistic often yields 
unstable and impractically large UCL95 of the mean (Singh, Singh, and Iaci, 2002). For skewed data sets 
of smaller sizes (e.g., < 30, < 50), H-UCL often exceeds the maximum detected value. This is especially 
true when some extreme high outliers may be present in the data set. Since the use of a lognormal 
distribution has been quite common (e.g., suggested as a default model in a RAGS document (EPA, 
1992)), the exceedance of the maximum detected value by H-UCL95 is frequent for many skewed data 
sets of smaller sizes (e.g., < 30, < 50). It is also be noted that for highly skewed data sets, the sample 
mean indeed can even exceed the upper 90%, 95%, etc., percentiles, and consequently, a 95% UCL of 
mean can exceed the maximum observed value of a data set.  
 
All of these occurrences result in the possibility of using the maximum detected value as an estimate of 
the EPC term. It should be pointed out that in some cases, the maximum observed value actually might 
represent a highly polluted outlying observation. Obviously, it is not desirable to use a highly polluted 
value as an estimate of average exposure (EPC term) for an exposure area. This is especially true when 
one is dealing with lognormally distributed data sets of small sizes. As mentioned before, for such highly 
skewed data sets that cannot be modeled by a gamma distribution, a 95% UCL of the mean should be 
computed using an appropriate distribution-free nonparametric method.  
  
It should be pointed out that the EPC term represents the average exposure contracted by an individual 
over an exposure area (EA) during a long period of time; therefore, the EPC term should be estimated by 
using an average value (such as an appropriate 95% UCL of the mean) and not by the maximum observed 
concentration. One needs to compute an average exposure and not the maximum exposure. It is unlikely 
that an individual will visit the location (e.g., in an EA) of the maximum detected value all of the time. 
One can argue that the use of this practice results in a conservative (higher) estimate of the EPC term. The 
objective is to compute an accurate estimate of the EPC term. Today, several other methods (instead of H-
UCL) as described in EPA (2002), and included in ProUCL 3.0 (EPA 2004) and ProUCL 4.0 (EPA 
2007), are available which can be used to estimate the EPC terms. It is unlikely (but possible with 
outliers) that the UCLs based upon those methods will exceed the maximum detected value, unless some 
outliers are present in the data set. ProUCL 4.0 displays a warning message when the recommended 95% 
UCL (e.g., Hall’s or bootstrap t UCL with outliers) of the mean exceeds the observed maximum 
concentration. When a 95% UCL does exceed the maximum observed value, ProUCL4.0 recommends the 
use of an alternative UCL computation method based upon the Chebyshev inequality. One may use a 
97.5% or 99% Chebyshev UCL to estimate the mean of a highly skewed population. It should be noted 
that typically, a Chebyshev UCL yield conservative (but stable) and higher values of the UCLs than other 
methods available in ProUCL 4.0. This is especially true when data are moderately skewed and sample 
size is large. In such cases, when the sample size is large (and other UCL methods such as bootstrap t 
method yield unrealistically high values), one may want to use a 95% Chebyshev UCL or a Chebyshev 
UCL with lower confidence coefficient such as 92.5% or 90% as estimate of the population mean, 
especially when the sample size is large (e.g., >100, 150). The detailed recommendations (as functions of 
sample size and skewness) for the use of those UCLs are summarized in ProUCL 3.0 Technical Guide 
(EPA, 2004).  
 
Singh and Singh (2003) studied the performance of the max test (using the maximum observed value as 
an estimate of the EPC term) via Monte Carlo simulation experiments. They noted that for skewed data 

 30 



sets of small sizes (e.g., < 10-20), the max test does not provide the specified 95% coverage to the 
population mean, and for larger data sets, it overestimates the EPC term, which may require unnecessary 
further remediation. This can also be viewed in the graphs presented in ProUCL 3.0 Technical Guide. The 
use of the maximum value as an estimate of the EPC term also ignores most (except for maximum value) 
of the information contained in the data set.  
 
With the availability of so many UCL computation methods (15 of them), the developers of ProUCL  4.0 
do not feel any need to use the maximum observed value as an estimate of the EPC term representing an 
average exposure by an individual over an EA. Also, for the distributions considered, the maximum value 
is not a sufficient statistic for the unknown population mean.  
 
Note: It is recommended that the maximum observed value NOT be used as an estimate of the EPC term 
representing average exposure contracted by an individual over an EA. For the sake of interested users, 
ProUCL displays a warning message when the recommended 95% UCL (e.g., Hall’s bootstrap UCL, etc.) 
of the mean exceeds the observed maximum concentration. For such scenarios (when a 95% UCL does 
exceed the maximum observed value), an alternative 95% UCL computation method is recommended by 
ProUCL 4.0. 

1.10 Samples with Nondetect Observations 

Nondetect observations (or less than obvious values) are inevitable in most environmental data sets. 
Singh, Maichle, and Lee (EPA, 2006) studied the performances (in terms of coverages) of the various 
UCL95 computation methods including the simple substitution methods (such as the DL/2 and DL 
methods) for data sets with nondetect observations. They concluded that the UCLs obtained using the 
substitution methods, including the replacement of nondetects by respective DL/2, do not perform well 
even when the percentage of nondetect observations is low, such as 5%-10%. They recommended 
avoiding the use of substitution methods to compute UCL95 based upon data sets with nondetect 
observations. 

1.10.1 Avoid the Use of DL/2 Method to Compute UCL95 

Based upon the results of the report by Singh, Maichle, and Lee (EPA, 2006), it is strongly recommended 
to avoid the use of the DL/2 method to perform GOF test, and to compute the summary statistics and 
various other limits (e.g., UCL, UPL) often used to estimate the EPC terms and BTVs. Until recently, the 
DL/2 method has been the most commonly used method to compute the various statistics of interest for 
data sets with BDL observations. The main reason of its common use has been the lack of the availability 
of other defensible methods and associated programs that can be used to estimate the various 
environmental parameters of interest. Today, several other methods (e.g., KM method, bootstrap 
methods) with better performances are available that can be used to compute the various upper limits of 
interest. Some of those parametric and nonparametric methods are now available in ProUCL 4.0. Even 
though the DL/2 method (to compute UCLs, UPLs, and for goodness-of-fit test) has also been 
incorporated in ProUCL 4.0, its use is not recommended due to its poor performance. The DL/2 method 
is included in ProUCL 4.0 only for historical reasons as it had been the most commonly used and 
recommended method until recently (EPA, 2006). Some of the reviewers of ProUCL 4.0 suggested and 
requested the inclusion of DL/2 method in ProUCL for comparison purposes. 
 
Note: The DL/2 method has been incorporated in ProUCL 4.0 for historical reasons only. NERL-EPA, 
Las Vegas strongly recommends avoiding the use of DL/2 method even when the percentage (%) of NDs 
is as low as 5%-10%. There are other methods available in ProUCL 4.0 that should be used to compute 
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the various summary statistics and upper limits based upon data sets with single and multiple detection 
limits.  

1.11 Samples with Low Frequency of Detection 

When all of the sampled data values are reported as nondetects, the EPC term should also be reported as a 
nondetect value, perhaps by the maximum reporting limit (RL) or maximum RL/2. Statistics (e.g., 
UCL95) computed based upon only a few detected values (e.g., < 4 to 6) cannot be considered reliable 
enough to estimate the EPC terms having potential impact on the human heath and the environment. 
When the number of detected data is small, it is preferable to use simple ad hoc methods rather than using 
statistical methods to compute the EPC terms and other upper limits. Specifically, it is suggested that in 
cases when the detection frequency is low (e.g., < 4%-5%) and the number of detected observations is 
low, the project team and the decision makers together should make a decision on site-specific basis on 
how to estimate the average exposure (EPC term) for the contaminant and area under consideration. For 
such data sets with low detection frequencies, other measures such as the median or mode represent better 
estimates (with lesser uncertainty) of the population measure of central tendency.  
 
Additionally, it is also suggested that when most (e.g., > %95) of the observations for a contaminant lie 
below the detection limit(s) or reporting limits (RLs), the sample median or the sample mode (rather than 
the sample average which cannot be computed accurately) may be used as an estimate the EPC term. Note 
that when the majority of the data are nondetects, the median and the mode will also be a nondetect. The 
uncertainty associated with such estimates will be high. It is noted that the statistical properties, such as 
the bias, accuracy, and precision of such estimates, would remain unknown. In order to be able to 
compute defensible estimates, it is always desirable to collect more samples.  
 
Note: In case the number of available detected samples is small (< 5), it is suggested that the project 
team decide about the estimation of the EPC term on site-specific basis. For such small data sets with 
very few detected values (< 5), the final decision (“policy decision”) on how to estimate the EPC term 
should be determined by the project team and decision makers. 

1.12 Some Other Applications of Methods in ProUCL 4.0  

In addition to performing background versus site comparisons for CERCLA and RCRA sites, and 
estimating the EPC terms in exposure and risk evaluation studies, the statistical methods as incorporated 
in ProUCL 4.0 can be used to address other issues dealing with environmental investigations that are 
conducted at Superfund or RCRA sites.  

1.12.1 Identification of COPCs 

Risk assessors and RPMs often use screening levels or BTVs to identify the COPCs during the screening 
phase of a cleanup project to be conducted at a contaminated site. The screening for the COPCs is 
performed prior to any characterization and remediation activities that may have to be conducted at the 
site under investigation. This comparison is performed to screen out those contaminants that may be 
present in the site medium of interest at low levels (e.g., at or below the background levels or some pre-
established screening levels) and may not pose any threat and concern to human health and the 
environment. Those contaminants may be eliminated from all future site investigations, and risk 
assessment and risk management studies.  
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In order to identify the COPCs, point-by-point site observations (preferably composite samples) are 
compared with some pre-established screening levels, SSL, or estimated BTVs. This is especially true 
when the comparisons of site concentrations with screening levels or BTVs are conducted in real time by 
the sampling or cleanup crew right there in the site field. The project team should decide about the type of 
site samples (discrete or composite) and the number of detected site observations (not more than 4 to 6) 
that should be collected and compared with the screening levels or the BTVs. In case BTVs, screening 
levels, or not-to-exceed values are not known, the availability of a defensible background or reference 
data set of reasonable size (e.g., > 8 to 10, more are preferable) is required to obtain reliable estimates of 
BTVs and screening levels. When a reasonable number of detected site observations are available, it is 
preferable to use hypotheses testing approaches. The contaminants with concentrations exceeding the 
respective screening values or BTVs may be considered as COPCs, whereas contaminants with 
concentrations (in all collected samples) lower than the screening value, PRG, or an estimated BTV may 
be omitted from all future evaluations including the risk assessment and risk management investigations. 

1.12.2 Identification of Non-Compliance Monitoring Wells  

In monitoring well (MW) compliance assessment applications, individual (often discrete) contaminant 
concentrations from a MW are compared with some pre-established ACL, MCL, or an estimated 
compliance limit (CL) based upon a group of upgradient wells representing the background population. 
An exceedance of the MCL or the BTV by a MW concentration may be considered as an indication of 
contamination in that MW. In such individual concentration comparisons, the presence of contamination 
(determined by an exceedance) may have to be confirmed by re-sampling from that MW. If 
concentrations of contaminants in both the original sample and the re-sample(s) exceed the MCL or BTV, 
then that MW may require closer scrutiny, perhaps triggering the remediation remedies as determined by 
the project team. If the concentration data from a MW for about 4 to 5 continuous quarters (or some other 
designated time period determined by the project team) are below the MCL or BTV level, then that MW 
may be considered as complying with (achieving) the pre-established or estimated standards. Statistical 
methods as described in Chapters 5 and 6 of the revised Guidance for Comparing Background and 
Chemical Concentrations in Soil for CERCLA Sites (EPA, 2002b) can be used to estimate the not-to-
exceed values or BTVs based upon background or upgradient wells in case the ACLs or MCLs are not 
pre-determined. 

1.12.3 Verification of the Attainment of Cleanup Standards, Cs

Hypothesis testing approaches may be used to verify the attainment of the cleanup standard, Cs, at 
polluted site areas of concern after conducting remediation and cleanup at the site AOC (EPA, 2006). In 
order to properly address this scenario, a site data set of adequate size (minimum of 8 to 10 detected site 
observations) needs to be made available from the remediated or excavated areas of the site under 
investigation. The sample size should also account for the size of the remediated site area; meaning that 
larger site areas should be sampled more (with more observations) to obtain a representative sample of the 
site under investigation.  
 
Typically, the null hypothesis of interest is H0: Site Mean, µs >= Cs versus the alternative hypothesis, H1: 
Site Mean, µs < Cs, where the cleanup standard, Cs, is known a priori. The sample size needed to perform 
such single sample hypotheses tests can be obtained using the DQO process-based sample size formula as 
given in the EPA (2006) documents. In any case, in order to use this test, a minimum of 8 to 10 detected 
site samples should be collected. The details of the statistical methods used to perform single sample 
hypothesis as described above can be found in EPA (2006). 
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1.12.4 Using BTVs (Upper Limits) to Identify Hot Spots 

The use of upper limits (e.g., UTLs) to identify hot spot(s) has also been mentioned in the Guidance for 
Comparing Background and Chemical Concentrations in Soil for CERCLA Sites (EPA, 2002b). Point-by-
point site observations (preferably using composite samples representing a site location) are compared 
with a pre-established or estimated BTV. Exceedances of the BTV by site observations may be 
considered as representing locations with elevated concentrations (hot spots). Chapters 5 and 6 of the 
revised Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites 
(EPA, 2002b) describe several methods to estimate the BTVs based upon data sets without nondetects 
(NDs) and left-censored data sets with NDs. 
 
The rest of the chapters of this Technical Guide briefly describe the various statistical methods as 
incorporated in ProUCL 4.0. Those methods are useful to analyze environmental data sets with and 
without the nondetect observations. It should be noted that ProUCL 4.0 is the first software package 
equipped with single sample and two-sample hypotheses testing approaches that can be used on data sets 
with nondetect observations.  
 
Note: It should be pointed out that while developing ProUCL 4.0 and its all subsequent versions, 
emphasis is given to the practical applicability of the estimation and hypotheses testing methods as 
incorporated in ProUCL 4.0. Also, it should be noted that ProUCL 4.0 does provide many graphical and 
statistical methods often used in the various statistical applications. ProUCL 4.0 does not provide 
statistical methods that may be used to compute sample sizes based upon DQO processes (EPA, 2006). 
Those sample size determination methods are available in other freeware packages such as VSP (2005) 
and DataQUEST (EPA, 1997). However, as mentioned before, some practical guidance on the minimum 
sample size requirements to be able to use methods as available in ProUCL 4.0 has been provided in 
Chapter 1. Similar statements and suggestions have been made throughout this Technical Guide.  
 

1.13 Some General Issues and Recommendations made by ProUCL 

Some general issues regarding the handling of multiple detection limits and field duplicates by ProUCL 
and recommendations made about various substitution and ROS methods for data sets with NDs are 
described in the following sections. 
 

1.13.1 Multiple Detection Limits 

ProUCL 4.0 and its later versions do not make distinctions between method detection limits (MDLs), 
adjusted MDLs, sample quantitation limits (SQLs), or detection limits (DLs).  Multiple detection limits in 
ProUCL mean different values of the detection limit. All these nondetect (ND) observations in ProUCL 
are indentified by the value ‘0’ of the indicator variable used in ProUCL 4.0 to distinguish between 
detected and nondetected observations.  It is users’ responsibility to supply correct numerical values 
(should be entered as the reported detection limit value) for ND observations in the data set, and to create 
an indicator variable column associated with each variable/analyte consisting of ND values. It should be 
noted that some of the methods (e.g., Kaplan-Meier - KM Method) included in ProUCL 4.0 can handle 
data sets with detection limits greater than the detected values.  
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1.13.2 Field Duplicates 

Since, collection of analytical data are not cheap, field duplicates collected from the same site area under 
investigation may be used in the statistical analysis to compute various decision statistics of interest. 
Duplicates should be considered just like any other discrete samples collected from the site area under 
study. Alternatively, the project team may come to an agreement regarding the use of duplicates in 
statistical analyses (e.g., computing decision statistics) of data collected from the site. 
 

1.13.3 ProUCL Recommendation about ROS Method and Substitution (DL/2) Method 

In order to estimate EPC (computing UCL95) for data sets with NDs, ProUCL 4.0 and higher versions 
have several methods including substitution methods (e.g., DL/2, DL), ROS methods (normal, lognormal, 
and gamma), and Kaplan-Meier Method.  Extensive simulation study conducted by Singh, Maichle and 
Lee (2006) demonstrated that statistically rigorous K-M method yields more precise and accurate 
estimates of EPC terms than those based upon substitution and ROS methods. Even though several of the 
substitution and ROS methods have been incorporated in ProUCL (for historical reasons and comparison 
purposes), those methods are not recommended by ProUCL to estimate the EPC terms or to compute 
other decision statistics.  
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Chapter 2 
 

Methods for Computing (1 – α)100% UCL of Mean for Data Sets 
without Nondetect Observations as Incorporated in ProUCL 4.0 

Software 

2.1 Introduction 

Exposure assessment and cleanup decisions in support of U.S. EPA projects are often made based upon 
the mean concentrations of the contaminants of potential concern. A 95% upper confidence limit (UCL) 
of the unknown population arithmetic mean (AM), µ1, is often used to: estimate the exposure point 
concentration (EPC) term (EPA, 1992; EPA, 2002), determine the attainment of cleanup standards (EPA, 
1989, and EPA, 1991), estimate background level contaminant concentrations, or compare the soil 
concentrations with site-specific soil screening levels (EPA, 1996). It is, therefore, important to compute a 
reliable, conservative, and stable 95% UCL of the population mean using the available data. The 95% 
UCL should approximately provide the 95% coverage for the unknown population mean, µ1. EPA 
(2002a) has developed a guidance document for calculating upper confidence limits based upon full data 
sets without nondetect observations. Most of those UCL computation methods as described in the EPA 
(2002a) guidance document are available in ProUCL 3.0. ProUCL 3.0 can also compute 95% UCLs of the 
mean based upon the gamma distribution which is better suited to model positively skewed environmental 
data sets. ProUCL 4.0 represents an upgrade of ProUCL 3.0. Specifically, ProUCL 4.0 provides several 
parametric and nonparametric UCL computation methods for data sets with nondetect (ND) observations. 
Therefore, this Technical Guide is an upgrade of the technical guide associated with ProUCL 3.0. The 
capabilities and methods as incorporated in ProUCL 3.0 are also available in ProUCL 4.0. Parametric and 
nonparametric UCL computation methods as incorporated in ProUCL 4.0 for data sets with nondetect 
observations are described in Chapter 4 of this Technical Guide. The details of those UCL computation 
methods can be found in Singh, Maichle, and Lee (EPA, 2006). 
 
Chapter 2 describes the UCL methods for full data sets without ND observations as incorporated in 
ProUCL 3.0 Technical Guide. Computation of a (1 – α)100% UCL of the population mean depends upon 
the data distribution. Typically, environmental data are positively skewed, and a default lognormal 
distribution (EPA, 1992) is often used to model such data distributions. The H-statistic-based Land’s 
(Land, 1971, 1975) H-UCL of the mean is used in these applications. Hardin and Gilbert (1993), Singh, 
Singh, and Engelhardt (1997, 1999), Schultz and Griffin (1999), and Singh, Singh, and Iaci (2002b) 
pointed out several problems associated with the use of the lognormal distribution and the H-UCL of the 
population AM. In practice, for lognormal data sets with high standard deviation (Sd), σ, of the natural 
log-transformed data (e.g., σ exceeding 2.0), the H-UCL can become unacceptably large, exceeding the 
95% and 99% data quantiles, and even the maximum observed concentration, by orders of magnitude 
(Singh, Singh, and Engelhardt, 1997). This is especially true for skewed data sets of sizes smaller than n < 
50-70.  
 
The H-UCL is also very sensitive to a few low or high values. For example, the addition of a sample with 
below detection limit measurement can cause the H-UCL to increase by a large amount (Singh, Singh, 
and Iaci, 2002b). Realizing that the use of H-statistic can result in unreasonably large UCL, it has been 
recommended (EPA, 1992) to use the maximum observed value as an estimate of the UCL (EPC term) in 
cases where the H-UCL exceeds the maximum observed value. The issue of the use of the maximum 
detected value as an estimate of the EPC term has been discussed earlier in Chapter 1. There are 15 UCL 
computation methods available in ProUCL; 5 are parametric and 10 are nonparametric. The 
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nonparametric methods do not depend upon any of the data distributions. For full data sets without any 
nondetect observations, ProUCL 4.0 (and also ProUCL 3.0) makes recommendations on how to compute 
an appropriate UCL95. Those recommendations are made based upon the findings of extensive simulation 
study conducted by Singh and Singh (2003). 
 
It is noted that both lognormal and gamma distributions can be used to model positively skewed data sets. 
It is also noted that it is hard to distinguish between a lognormal and a gamma distribution, especially 
when the sample size is small, such as n < 50 - 70. In practice, many skewed data sets follow a lognormal 
as well as a gamma distribution. Singh, Singh, and Iaci (2002b) observed that the UCL based upon a 
gamma distribution results in reliable and stable values of practical merit. It is, therefore, desirable to test 
if an environmental data set follows a gamma distribution. For data sets (of all sizes) which follow a 
gamma distribution, the EPC should be computed using an adjusted gamma UCL (when 0.1 ≤ k < 0.5) of 
the mean or an approximate gamma UCL (when k ≥ 0.5) of the mean, as these UCLs approximately 
provide the specified 95% coverage to the population mean, µ1 = kθ, gamma distribution. For values of k 
< 0.1, a 95% UCL may be obtained using bootstrap t-method or Hall’s bootstrap method when the sample 
size, n is less than 15, and for larger samples, a UCL of the mean may be computed using the adjusted or 
approximate gamma UCL. Here, k is the shape parameter of a gamma distribution as described in later in 
this chapter.  
 
It should be pointed out that both bootstrap t and Hall’s bootstrap methods sometimes result in erratic, 
inflated, and unstable UCL values, especially in the presence of outliers (Efron and Tibshirani, 1993). 
Therefore, these two methods should be used with caution. The user should examine the various UCL 
results and determine if the UCLs based upon the bootstrap t and Hall’s bootstrap methods represent 
reasonable and reliable UCL values of practical merit. If the results based upon these two methods are 
much higher than the rest of methods (except for the UCLs based upon lognormal distribution), then this 
could be an indication of erratic UCL values. ProUCL prints out a warning message whenever the use of 
these two bootstrap methods is recommended. In case these two bootstrap methods yield erratic, unstable, 
and inflated UCLs, the UCL of the mean may be computed using the adjusted or the approximate gamma 
UCL computation method, or based upon the Chebyshev inequality. 
 
ProUCL 4.0 has goodness-of-fit (GOF) methods to test for normality, lognormality, and a gamma 
distribution of a data set with and without nondetect observations. Depending upon the data distribution, 
ProUCL 4.0 can be used to compute a conservative and stable 95% UCL of the population mean, µ1, and 
various other upper limits (e.g., UPLs, UTLs) for data sets with and without the nondetect observations. 
The critical values of the Anderson-Darling test statistic and the Kolmogorov-Smirnov test statistic to test 
for gamma distribution were generated using Monte Carlo simulation experiments. Those critical values 
are tabulated in Appendix A for various levels of significance. Singh, Singh, and Engelhardt (1997, 
1999); Singh, Singh, and Iaci (2002b); and Singh and Singh (2003) studied several parametric and 
nonparametric UCL computation methods that have been included in ProUCL 4.0. Most of the 
mathematical algorithms and formulae used in ProUCL to compute the various statistics are summarized 
in this chapter. ProUCL computes the various summary statistics for raw, as well as log-transformed data 
sets with and without nondetect observations. In this Technical Guide and in ProUCL, log-transform (log) 
stands for the natural logarithm (ln) to the base e. ProUCL also computes the maximum likelihood 
estimates (MLEs) and the minimum variance unbiased estimates (MVUEs) of various unknown 
population parameters of normal, lognormal, and gamma distributions. For full data sets without 
nondetect observations, ProUCL 4.0 (and also ProUCL 3.0) computes the (1 – α)100% UCLs of the 
unknown population mean, µ1, using five (5) parametric and ten (10) nonparametric methods, which are 
described in section 2.4 of this chapter.  
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For data sets without NDs, comparisons of the performances of the UCL computation methods (in terms 
of coverage probabilities) were performed by Singh and Singh (2003) and Singh et al. (2006). It is also 
well known that the Jackknife method (with sample mean as an estimator) and Student’s t-method yield 
identical UCL values. Moreover, it is noted that the standard bootstrap method and the percentile 
bootstrap method do not perform well (do not provide adequate coverage) for skewed data sets. However, 
for the sake of completeness, all of the parametric as well as nonparametric methods have been included 
in ProUCL 4.0. Also, it was noted that the omission of a method such as the Jackknife method or the bias-
corrected accelerated (BCA) bootstrap method triggers the curiosity of some of the users as they may 
think that the omitted method might perform better than the various other methods already incorporated in 
ProUCL. In order to satisfy all users, ProUCL 4.0 provides most of the bootstrap UCL computation 
methods. 

2.2 Goodness-of-Fit (GOF) Test Procedures to Test for a Data Distribution 

Let x1, x2, ... , xn be a random sample (e.g., representing lead concentrations) from the underlying 
population (e.g., remediated part of a site) with unknown mean, µ1, and variance, σ1

2. Let µ and σ 
represent the population mean and the population standard deviation (Sd) of the log-transformed (natural 
log to the base e) data. Let y  and sy (= ) be the sample mean and sample Sd, respectively, of the log-
transformed data, y

σ̂
i = log (xi); i = 1, 2, ... , n. Specifically, let 
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Similarly, let x  and sx be the sample mean and Sd of the raw data, x1 , x2 , .. , xn, obtained by replacing
by x in equations (2-1) and (2-2), respectively. In this Technical Guide, irrespective of the underlyi
distribution, 2

 y 
ng 

 µ1, and σ1  represent the mean and variance of the random variable X (in original units), 
hereas µ and σ2 represent the mean and variance of its logarithm, given by Y = loge(X) = natural 
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e also available to visually test data distributions. Q-Q plots also provide useful information 
bout the presence of potential outliers and multiple populations. A brief description of these GOF tests 
llows. 

 

w
logarithm.  
 
Three data distributions have been considered in ProUCL 4.0. These include the normal, lognormal, and 
the gamma distributions. Shapiro-Wilk (n ≤ 50) and Lilliefors (n > 50) test statistics are used to test 
normality or lognormality of a data set. It should be noted that even though Shapiro-Wilk (S-W) test has 
been extended up to samples of size 2000 (Royston, 1982), ProUCL 4.0 provides S-W test onl
samples of sizes up to 50. Lilliefors test (along with graphical Q-Q plot) seems to perform fairly wel
samples of size 50 and higher. The empirical distribution function (EDF)-based methods: the 
Kolmogorov-Smirnov (K-S) test and the Anderson-Darling (A-D) test are used to test for a gamma 
distribution. Extensive critical values for these two test statistics have been obtained via Monte Carlo 
simulation experiments. For interested users, these critical values are given in the Appendix for various
levels of significance. In addition to these formal tests, the informal histogram and quantile-quantile (Q-
Q) plot ar
a
fo
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2.2.1 Test Normality and Lognormality of a Data Set   

ProUCL tests for normality or lognormality of a data set using three different methods described below. 
The program tests normality or lognormality at three different levels of significance, namely, 0.01, 0.05, 

in the cited references below. and 0.1. The details of those methods can be found 

2.2.1.1  Normal Quantile-Quantile (Q-Q) Plot  

This represents a simple informal graphical method to test for an approximate normality or lognormality 
of a data distribution (Hoaglin, Mosteller, and Tukey 1983; Singh 1993). A linear pattern displayed by the
bulk of the data suggests approximate normality or lognormality (performed on log-transformed data) of 
the data distribution. For example, a high value (e.g., 0.95 or greater) of the correlation coefficient of the 
linear pattern may suggest approximate normality (or lognormality) of the data set under study. However, 
it should be noted that on this graphical display, observations well separated (sticking out) from the linear 
pattern displayed by the bulk data represent the outlying observations. Also, apparent jumps and
the Q-Q plot suggest the presence of multiple populations. The correlation coefficient of such a Q-Q plot 
can still be high, which does not necessarily imply that the data follow a normal (or lognormal) 
distribution. Therefore, the informal graphical Q-Q plot test should always be accompanied by other
powerful tests, such as the Shapiro-Wilk test or the Lilliefors test. The goodness-of-fit (GOF) test of a 
data set should always be judged based upon the formal as well as informal graphical displays. The 
normal Q-Q plot may be used as an aid to identify outliers or to identify

 

 breaks in 

 more 

 multiple populations. ProUCL 
performs the graphical Q-Q plot test on raw data as well as on standardized data. All relevant statistics, 

t, are also displayed on the Q-Q plot. such as the correlation coefficien

2.2.1.2  Shapiro-Wilk W Test 

This is a powerful test and is often used to test the normality or lognormality of a data set under study 
(Gilbert 1987). ProUCL 4.00.02 performs this test for samples of size upto 50. However, in the revis
version, ProUCL 4.00.04 (an upgrade of ProUCL 4.00.002), S-W test has been extended for samp
size upto 2000 (Royston 1982). Based upon the selected level of significance and the computed test 
statistic, ProUCL also informs the user if the data are normally (or lognormally) distributed. Thi
information should be used to obtain an appropriate UCL of the mean. The program prints the relevant 
statistics (such as the S-W test statistic, slope, and correlation) on the Q-Q plot of the data. For 
convenience, normality, lognormality, or gamma distribution test results for 0.05 level of significance are 
also displayed on the Excel-type output summary sheets. It shou

ed 
les of 

s 

ld be noted that in the revised ProUCL 
4.00.02, for samples of sizes ≤ 50, an approximate p-value assciciated with S-W test is also displayed. For 

 approximate p-values are displayed. samples of size >50, only

2.2.1.3  Lilliefors Test 

This test is useful for data sets of larger size (Dudewicz and Misra, 1988, Conover, 1999). ProUCL 
performs this test for samples of sizes up to 1000. Based upon the selected level of significance and the 
computed test statistic, ProUCL informs the user if the data are normally (or lognormally) distrib
The user should use this information to obtain an appropriate UCL of the mean. The program prints th
relevant statistics on the Q-Q plot of data. For convenience, normality, lognormality, or gamma 
distribution test results

uted. 
e 

 for 0.05 level of significance are also displayed on the UCL output summary 
sheets. It should be pointed out that sometimes, in practice, these two goodness-of-fit tests could lead to 

ifferent conclusions. d
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2.2.2 Gamma Distribution 

Singh, Singh, and Iaci (2002b) studied gamma distributions to model positively skewed environmental 
data sets and to compute a UCL of the mean based upon a gamma distribution. They studied several UC
computation methods using Monte Carlo simulation experiments. A continuous random variable, X (e.g., 
concentrat

L 

ion of a contaminant), is said to follow a gamma distribution, G (k, θ) with parameters k > 0 
hape parameter) and θ > 0 (scale parameter), if its probability density function is given by the following 

equation: 
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The parameter, k, is the shape parameter, and θ is the scale parameter. Many positively skewed data sets 
follow a lognormal as well as a gamma distribution. Gamma distributions can be used to model positiv
skewed environmental data sets. It is observed that the use of a gamma distribution results in reliable and
stable 95% UCL values. It is therefore, desirable to test if an environmental data set follows a gamma
distribution. If a skewed data set does follow a gamma model, then a 95% UCL of the population mean 
should be computed using a gamma distribution. For details of the two gamma goodness-of-fit tests, 
maximum likelihood estimation of gamma parameters, a
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nd the computation of a 95% UCL of the mean 
ased upon a gamma distribution, refer to D’Agostino and Stephens (1986), and Singh, Singh, and Iaci 
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s 

 
 4.0. 

gamma GOF tests, and construction of 
gamma Q-Q plots is not easily available in statistical textbooks. Therefore, the detailed description of 

b
(2002). These methods are briefly described as follows. 
 
For data sets which follow a gamma distribution, the adjusted 95% UCL of the mean based upon a 
gamma distribution is optimal and approximately provides the specified 95% coverage to population 
mean, µ1 = kθ (Singh, Singh, and Iaci (2002)). Moreover, this adjusted gamma UCL yields reasonable 
numbers of practical merit. The two test statistics used for testing for a gamma distribution are based upo
the empirical distribution function (EDF). The two EDF tests included in ProUCL are the Kolmogorov-
Smirnov (K-S) test and Anderson-Darling (A-D) test, which are described in D’Agostino and Stephen
(1986) and Stephens (1970). The graphical Q-Q plot for gamma distribution has also been included in 
ProUCL. The critical values for the two EDF tests are not easily available, especially when the shape 
parameter, k, is small (k < 1). Therefore, the associated critical values have been obtained via extensive 
Monte Carlo simulation experiments. These critical values for the two test statistics are given in Appendix
A. The 1%, 5%, and 10% critical values of these two test statistics have been incorporated in ProUCL
It should be noted that the goodness-of-fit tests for gamma distribution depend upon the MLEs of gamma 
parameters, k and θ, which should be computed first before performing the goodness-of-fit tests. It is 
noted that the information about estimation of gamma parameters, 

these methods for gamma distribution is provided as follows. 

2.2.2.1 Quantile-Quantile (Q-Q) Plot for a Gamma Distribution  

Let x , x , ... , x  be a random sample from the gamma distribution, G(k,θ). Let x  ≤ x ≤ ... ≤ x  
represent the ordered sample. Let k̂ and θ̂  represent the maximum likelihood estimates (MLEs) of k and 
θ, respectively. For details of the computation of the MLEs of k and θ, refer to Singh, Singh, and Iaci 

1 2 n (1) (2)  (n)

(2002). Estimations of the gamma parameters are also briefly described later in this Technical Guide. The 
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Q-Q plot for gamma distribution is obtai  plotting the scatter plot of pairs ),( )(0 ii xx =:i 1, 2, …, n

ere the quantiles, x , are given by the equation, ;2/ˆ
ned by . 

0i 00 θzx ii =  =:i 1, 2, …, n, where the quantiles Z0i 
red r bta quare d ution and ar s follows

H
(already orde ) a e o ined by using the inverse chi-s . istrib e given a
 

                ;/)2/1()( 2
ˆ2

0

2
ˆ2

0

nidf
k

z

k

i

−=∫ χχ    =:i 1, 2, …, n                               (2-4) 

 
In (2-4), 2

ˆ2k
χ  represents a chi-square random variable with k̂2  degrees of freedom (df). The program, 

PCHI2 (Algorithm AS91) as given in Best and Roberts (1975), Applied Statistics (1975, Vol. 24, No. 3) 
n given 

r greater) 
 

 

ssarily 
F 

et. A formal statistical test such as a K-S test or A-D test may lead to conclusion of a 
gamma distribution even for a data set with potential outliers and multiple populations. The final 

 tests. This 
statement is true for all GOF tests (e.g., normal, lognormal, and gamma distributions) as incorporated in 

P
has been used to compute the inverse chi-square percentage points, as given by the above equatio
by (2-4). This represents an informal graphical method to test for a gamma distribution. All relevant 
statistics including the MLE of k are also displayed on the gamma Q-Q plot.  
 
This informal test should always be accompanied by the formal Anderson-Darling (A-D) test or 
Kolmogorov-Smirnov (K-S) test and vice versa. A linear pattern displayed by the scatter plot of bulk of 
the data may suggest an approximate gamma distribution. For example, a high value (e.g., 0.95 o
of the correlation coefficient of the linear pattern may suggest approximate gamma distribution of the data
set under study. However, on this Q-Q plot points well separated from the bulk of data may represent 
outliers. Apparent breaks and jumps in the gamma Q-Q plot suggest the presence of multiple populations.
Thus, Q-Q plots are also useful to identify outliers or the presence of multiple populations. The 
correlation coefficient of such a Q-Q plot (e.g., with outliers) can still be high which does not nece
imply that the data follow a gamma distribution. Therefore, graphical Q-Q plot and other formal ED
tests, such as the Anderson-Darling (A-D) test or the Kolmogorov-Smirnov (K-S) test should be used on 
the same data s

conclusion about the data distribution should be based upon the formal goodness-of-fit

ProUCL 4.0.  

2.2.2.2 Empirical Distribution Function (EDF)-Based Goodness-of-Fit Tests     

Next, the two formal empirical distribution function (EDF)-based test statistics to test for a gamm
distribution are briefly described here. Let F(x) be the cumulative distribution function (CDF) of the 

using the incomplete gamma function

a 

gamma random variable X. Let Z = F(X), then Z represents a uniform U(0,1) random variable. For each xi, 
compute zi by  given by the equation zi = F (xi); 1, 2, …, n. The 
algorithm as given in Numerical Recipes book (Press et al., 1990) has been used to compute the 

i in ascending order as z(1) ≤  z(2)  ≤ ... ≤  z(n). Let  

=:i

incomplete gamma function. Arrange the resulting z

nzz
n ⎞⎛

i
i /

1
⎟⎟
⎠

⎜⎜
⎝

= ∑
=

 be the mean of the zi; =:i 1, 2, …, n.  

ompute the following two test statistics.  

n   (2-5) 

 
C
 
 }/1{max znD −=+ , and /)D =−

)(ii 1({max )( iz ii −− }
 
 

 42 



The Kolmogorov-Smirnov test statistic is given by
The Anderson-Darling test statistic is given by the following equation.  
 

 ∑

),max( −+= DDD . 

=

) 

 
 Clickner 

976). For these two tests, ExpertFit (2001) software and Law and Kelton (2000) use generic critical 

 be 
lues 

test 
 

 

 using the algorithm as given in 
Whittaker (1974). It is observed that the critical values thus obtained are in close agreement with all 

incorporated in ProUCL for three levels of significance, 0.1, 0.05, and 0.01. For each of the two tests, if 
the test statistic exceeds the corresponding critical value, then the hypothesis that the data follow a 

 

, µ1 and σ1
2 are the mean and variance of the random variable, X, and µ 

and σ2 are the mean and variance of the random variable, Y = log(X). Also,  represents the standard 

 to 

−+−+−−−=
n

i
ini zzinnA

1
)1()(

2 )]}1log()[log12{()/1(  (2-6

 
The critical values for these two statistics, D and A2, are not readily available. For the Anderson-Darling 
test, only the asymptotic critical values are available in the statistical literature (D’Agostino and Stephens
(1986)). Some raw critical values for K-S test are given in Schneider (1978), and Schneider and
(1
values for all completely specified distributions as given in D’Agostino and Stephens (1986). It is 
observed that the conclusions derived using these generic critical values for completely specified 
distributions and the simulated critical values for the gamma distribution with unknown parameters can
different. Therefore, to test for a gamma distribution, it is preferred and advised to use the critical va
of these test statistics specifically obtained for gamma distributions with unknown parameters. 
 
In practice, the distributions are not completely specified and exact critical values for these two test 
statistics are needed. It should be noted that the distributions of the K-S test statistic, D, and the A-D 
statistic, A2, do not depend upon the scale parameter, θ; therefore, the scale parameter, θ, has been set
equal to 1 in all of the simulation experiments. The critical values for these two statistics have been 
obtained via extensive Monte Carlo simulation experiments for several small and large values of the
shape parameter, k, and with θ = 1. These critical are included in Appendix A. In order to generate the 
critical values, random samples from gamma distributions were generated

available published critical values. The generated critical values for the two test statistics have been 

gamma distribution is rejected. ProUCL computes these test statistics and prints them on the gamma Q-Q
plot and also on the UCL summary output sheets generated by ProUCL.  

2.3 Estimation of Parameters of the Three Distributions as Incorporated           
in ProUCL 

Throughout this Technical Guide
σ̂

deviation of the log-transformed data. It should be noted that for both lognormal and gamma distributions, 
the associated random variable can take only positive values. This is typical of environmental data sets
consist of only positive values. 

2.3.1 Normal Distribution 

Let X be a continuous random variable (e.g., concentration of COPC), which follows a normal 
distribution, N (µ1, σ1

2) with mean, µ1, and variance, σ1
2. The probability density function of a normal 

distribution is given by the following equation: 
 

                              ∞<<∞−−−= xσµx
πσ

σµxf ];2/)(exp[
2
1),;( 22  (2-7) 
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For normally distributed data sets, it is well known (Hogg and Craig, 1978) that the minimum variance 
unbiased estim 2ates (MVUEs) of the mean, µ1, and the variance, σ1 , are respectively given by the sample 
mean, x , and sample variance, sx

2. It is also well known that for normally distributed data sets, a UCL of 
e upon Student’s t-distribution is optimal. It is observed via Monte Carlo 

 

the unknown mean, µ1, bas
simulation experiments (Singh and Singh (2003) Draft EPA Report) that for normally distributed data 
sets, the modified t-UCL and UCL based upon bootstrap t method also provide the exact 95% coverage to
the population mean. For normally distributed data sets, the UCLs based upon these three methods are 
very similar. 

Lognormal Distribution  

If Y = log(X) is normally distributed with the mean, µ, and variance, σ2, then X is said to be lognormally 
distributed with parameters µ and σ2 and is denoted by LN(µ, σ2). It should be noted that µ and σ2 are not 

gnormal rand
g-transformed random variable, Y, whereas µ1, and σ1

2 represent the mean and variance of X. Some 
a

2  (2-8) 

 
 (2-10)  

the mean and variance of the lo om variable, X, but they are the mean and variance of the 
lo
parameters of interest of a two-p rameter lognormal distribution, LN(µ, σ2), are given as follows: 
 
                                 Mean = 5.0exp(1 σµµ += )
 
                                 Median = )exp(µM =  (2-9) 

                                 Variance = ]1))[exp(2exp( 222
1 −+= σσµσ

 

                                 Coefficient of Variation = 1)exp( 2
11 −== σµσCV   (2-11) 

 
                                 Coefficient of Skewness = CV3+ 3CV (2-12)  

2.3.2.1 MLEs of the Parameters of a Lognormal Distribution 

For lognormal distributions, note that y and sy (= ) are the maximum likelihood estimators (MLEs) of µ 
obtained by simply 

substituting these MLEs in place of the parameters (Hogg and Craig 1978). Therefore, replacing µ and σ 

σ̂
and σ, respectively. The MLE of any function of the parameters µ and σ2 is 

by their MLEs in equations (2-8) through (2-12) will result in the MLEs  (but biased) of the respective 
parameters of the lognormal distribution. The program ProUCL computes all of these MLEs for 
lognormally distributed data sets. These MLEs are printed on the Excel-type output spreadsheet generated 
by ProUCL. 

2.3.2.2 Relationship between Skewness and Standard Deviation, σ 

Note that for a lognormal distribution, the CV (given by equation (2-11) above) and the coefficient of 
skewness (given by equation (2-12)) depend only on σ. Therefore, in this Technical Guide and also in 

roUCL, the standard deviation, σ (Sd of log-transformed variable, Y), or its MLE, s  (= ), has been used 
he 

 
and 

P y

as a measure of the skewness of lognormal and also of other skewed data sets with positive values. T
larger is the Sd, the larger are the CV and the skewness. For example, for a lognormal distribution: with σ
= 0.5, the skewness = 1.75; with σ =1.0, the skewness = 6.185; with σ =1.5, the skewness = 33.468; 
with σ = 2.0, the skewness = 414.36. Thus, the skewness of a lognormal distribution becomes 

σ̂

 44 



unreasonably large as σ starts approaching and exceeding 2.0. Note that for a gamma distribution, the 
 A s, the skewness increases. 

t is observed (Sing t (1997) and Singh, Sing  (2002b)) that for smaller 
sample sizes (such and for values of σ appr kewness approaching 
414), the use of the H-statistic-based UCL re nacceptably large values. For 
simplicity, the various levels of skewness of UCL and in this Technical 
Guide are sum follows: 
 
Table 2-1. Skewness as a Function of σ (or its MLE,

skewness is a function of the shape parameter, k. s k decrease
 
I h, Singh, Engelhard

 as smaller than 50), 
h, and Iaci

oaching 2.0 (and s
sults in impractical and u
a positive data set as used in Pro

marized as 

 s = σ̂ ), sd of log(X) y 

 
Standard Deviation Skewness 

σ < 0.5 Symmetric to mild skewness 

0.5 ≤ σ < 1.0 Mild skewness to moderate skewness 

1.0 ≤ σ < 1.5 Moderate skewness to high skewness 

1.5 ≤ σ < 2.0 High skewness  

 distributions, as used in Tables 2-2 and 2-3. 

2.0 ≤ σ < 3.0 Extremely high skewness 

σ ≤ 3.0 Provides poor coverage 

 
These values of σ (or its estimate, Sd of log-transformed data) are used to define the skewness levels of 
lognormal and skewed non-discernable data

2.3.2.3 MLEs of the Quantiles of a Lognormal Distribution 

For highly skewed (e.g., σ exceeding 1.5), lognormally distributed populations, the population mean, µ , 
often exceeds the higher quantiles (e.g.,

1
 80%, 90%, 95%) of the distribution. Therefore, the computation 

f these quantiles is also of interest. This is especially true when one may want to use the MLEs of the 

ese quantiles are briefly described here.  

e 

 

o
higher order quantiles (e.g., 95%, 97.5%, etc.) as an estimate of the EPC term. The formulae to compute 
th
 
The pth quantile (or 100 pth percentile), xp, of the distribution of a random variable, X, is defined by th
probability statement, P(X ≤ xp) = p. If zp is the pth quantile of the standard normal random variable, Z, 
with P(Z ≤  zp) = p, then the pth quantile of a lognormal distribution is given by  xp = exp(µ + zpσ). Thus
the MLE of the pth quantile is given by 
 
                                                                 )ˆˆexp(ˆ σzµx pp +=  (2-1
 
For example, on the average, 95% of the observations from a lognormal LN(µ, σ

3) 

tribution would lie 
elow exp(µ + 1.65σ). The 0.5th quantile of the standard normal distribution is z0.5 = 0, and the 0.5th 
uantile (or median) of a lognormal distribution is M = exp(µ), which is obviously smaller than the mean, 

ater than xp if and only if σ > 2zp. For 
p 1 0.80 centile if and only if σ > 1.69, and, 

value; that is the background level contaminant concentration. 

2) dis
b
q
µ1, as given by equation (1-8). Also, note that the mean, µ1, is gre
example, when p = 0.80, z  = 0.845, µ  exceeds x , the 80th per
similarly, the mean, µ1, will exceed the 95th percentile if and only if σ > 3.29. ProUCL computes the 
MLEs of the 50% (median), 90%, 95%, and 99% percentiles of lognormally distributed data sets. For 
lognormally distributed background data sets, a 95% or 99% percentile may be used as an estimate of the 

ackground threshold b
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2.3.2.4 MVUEs of Parameters of a Lognormal Distribution 

xEven though the sample AM, , is an unbiased estimator of the population AM, µ1, it does not have th
minimum variance (MV). The MV unbiased estimates (MVUEs) of µ

e 
on 1 and σ1

2 of a lognormal distributi
are given as follows: 
 

)2/()exp(ˆ 2
1 yn sgyµ =                                   (2-14) 

                                ))]1/()2(()2()[2exp(ˆ 222
1 −−−= nsngsgyσ ynyn   (2-15) 

T
rown (1976). Tabulations of this function are also provided by Gilbert (1987). Bradu and Mundlak 

ariance of the estimate

 
he series expansion of the function gn(µ) is given in Bradu and Mundlak (1970), and Aitchison and 

B
, 1µ̂ , (1970) give the MVUE of the v

 
                                  ))]1/()2(())2()[(2exp()ˆ(ˆ 222

1
2 −−−= nsngsgyµσ ynyn  (2-16)

 
 

SE) of the estimate, 
ognormal distribution is given by 

The square root of the variance given by equation (1-16) is called the standard error (
µ̂ , given by equation (2-14). Similarly, a MVUE of the median of a l1

 
                                                ))]1(2/([)exp(ˆ 2 −−= nsgyM yn  (2-1
 
For a lognormally distributed data set, ProUCL also computes these MVUEs given by equations (2-14) 
through (2-17). 

2.3.2 Estimation of the Parameters of a Gamma Distribution 

Next, we consider the estimation of parameters of a gamma distribution. Since the est

7) 

imation of gamma 

on, 

ate (MLE) of k is quite complex 
eq ires the computation of Digamma and Trigamma functions. Several authors (Choi and Wette, 

an and Shenton 1988, Johnson, Kotz, and Balakrishnan, 1994) have studied the estim  

et x1, x2, ... , xn be a random sample (e.g., representing contaminant concentrations) of size n from a 
 k and θ, respectively. The

quation (2-3)) is given a
 

parameters is typically not included in standard statistical textbooks, this has been described in some 
detail in this Technical Guide. The population mean and variance of a two-parameter gamma distributi
G(k, θ), are functions of both parameters, k and θ. In order to estimate the mean, one has to obtain 
estimates of k and θ. The computation of the maximum likelihood estim
and r u
1969, Bowm ation of
the shape and scale parameters of a gamma distribution. The maximum likelihood estimation method to 
estimate the shape and scale parameters of a gamma distribution is described below. 
 
L
gamma distribution, G(k, θ), with unknown shape and scale parameters,  log 
likelihood function (obtained using e s follows: 

∑ ∑−−+−−= θxxkknnkθkxxxLogL iin )log()1()(Γlog)log),;,...,,( 21  (2-18)         θ(

,  respect 
 k and θ, and set the derivatives to zero. This results in the following two equations: 

To find the MLEs of k and θ  we differentiate the log likelihood function as given in (1-18) with
to
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                                             ∑=
′

+ )log(1
)ˆ(Γ
)ˆ(Γ)ˆ( ix

nk
kθLog  , and (2-19) 

                                                                  xxθk == ∑1ˆˆ  
n

 

i (2-20) 

                                        

Solving equation (2-20) for , and substituting the result in (2-19), we get following equation: 
 

θ̂

  ⎟
⎠
⎞

⎜
⎝
⎛−=−

′ k)ˆ(Γ
  ∑∑ ii x

n
x

n
k 1log)log(1)ˆlog(

)ˆ
 (2-21) 

 
here does not exist a closed form solution of equation (2-21). This equation needs to be solved 

ically

                        

k(Γ

T
numer  for k̂ , which requires the use of Digamma and Trigamma functions. This is quite easy to do 
using a personal computer. An estimate of k can be computed iteratively by using the Newton-Raphson 
(Faires and Burden 1993) method, leading to the following iterative equation: 
 

)ˆ(Ψˆ/1
)ˆ(Ψ)ˆlog(ˆˆ
11

11
1

−−

−−
− ′−

−−
−=

ll

ll
ll kk

Mkk
kk                           (2-22) 

he iterative process stops when  starts to converge. In practice, convergence is typically achieved in 
 

ˆ kT
fewer than 10 iterations. In equation (2-22), 
 

( ))(Γlog)(Ψ k
dk
dk = , ( ))(Ψ)(nxxM ∑−= )log()log( , Ψ and i k

dk
dk =′  

ere  is the Digamma function and 
 

 )(Ψ k )(Ψ k′  is the Trigamma function. In order to obtain the MLEs H
of k and θ, one needs to compute the Digamma and Trigamma functions. Good approximate values for 
these two functions (Choi and Wette 1969) can be obtained using the following approximations. For k ≥ 
8, these functions are approximated by 
 
                         [ ]{ } )2()6())21/(110/1(11)log()(Ψ 22 kkkkkk −−+−≈ (2-23) , and 
 
                          [ ]{ }{ } kkkkkk )2()3(/))7/(15/1(111)(Ψ 22−−++≈′  (2-2
 
For k < 8, one can use the following recurrence relation to compute these function

4) 

s: 
 
                                                 kkk /1)1(Ψ)Ψ( −+= , and (2-25) 
 
                                                 2/1)1(Ψ)(Ψ kkk ++′=′  (2-26
 
In ProUCL, equations (2-23) - (2-26) have been used to estimate k. The iterative process requires an 
initial estimate of k. A good starting value for k in this iterative process is given by k

) 

as an estimate of k: 
0 = 1 / (2M). Thom 

1968) suggested the following approximation (
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⎛

++≈ M
M

4111
  

owman and Shenton (1988) suggested using , as given by (2-27), to be a starting value of k for an 

 iteration f

k̂ (2-27) 

k̂B

iterative procedure, calculating lk̂  at the lth rom the following formula: 
 

                                                    
M

kkk
k lll

l
)ˆ(Ψ)ˆ{log(ˆ

ˆ 111 −−− −
=  (2-28) 

  
the 

estimate, , based upon Newton-Raphson method, as given by equation (2-22), is in close agreement 

E of k obtained using either (2-22) or (2-28). Substitution of equation (2-29) in 
 an estimate of the scale parameter, θ, given as follows: 

                   

Both equations (2-22) and (2-28) have been used to compute the MLE of k. It is observed that 
k̂

with that obtained using equation (2-28) with Thom’s approximation as an initial estimate. Choi and 
Wette (1969) further concluded that the MLE of k, k̂ , is biased high. A bias-corrected (Johnson, Kotz, 
and Balakrishnan 1994) estimate of k is given by: 
 
                                                       )3/(2/ˆ)3(ˆ* nnknk +−=  (2-29) 
 
In (2-29), k  is the ML
quation (2-20) yields

ˆ
e
 

                                                 ** ˆ/ˆ kxθ =  (2-30) 
 
ProUCL co putes simple MLEs of k and θ, and also bias-corrected estimates of k and θ. The bias-
corrected es a Ls (as given by 
quations (2-34) and (2-35)) of the mean of a gamma distribution. 

2.4 Methods for Computing a UCL of the Unknown Population Mean   

ProUCL compu e following 5 parametric and 
0 nonparametric methods. Five of the 10 nonparametric methods are based upon the bootstrap method. 

entral limit theorem adjust for skewness for skewed data sets. However, it is 
oted that (Singh, Singh, and Iaci (2002b) and Singh and Singh (2003)) this adjustment is not adequate 

enough for erested users are referred to 
graphical displays of coverage probability comparisons for normal, gamma, and lognormal distributions 
given in Sin

Parametric h
 

1. Student’s t-statistic – assumes normality or approximate normality 

2. gamma UCL – assumes gamma distribution of the data set 
 

 

m
tim te of k as given by (2-29) has been used in the computation of the UC

e

tes a (1 – α)100% UCL of the population mean, µ1, using th
1
Modified t and adjusted c
n

moderately skewed to highly skewed data sets. For details, int

gh and Singh (2003).  
 

Met ods 

 
Approximate 

3. Adjusted gamma UCL – assumes gamma distribution of the data set 
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4. Land’s H-Statistic  – assumes lognormality 

5. Chebyshev Theorem using the MVUE of the parameters of a lognormal distribution 
v (MVUE)) – assumes lognormality 

Nonparame

atistic – modified for skewed distributions  
 

em (CLT) – to be used for large samples 

 to 

mean and Sd (denoted by Chebyshev 
(Mean, Sd))  

e 

8.  Bias-corrected accelerated (BCA) bootstrap 
 

 

ame as Student’s t-UCL), standard bootstrap and percentile bootstrap methods) do not perform well 
 t

ma UCL) of the mean 
r any confidence coefficient (1 – α) value lying in the interval [0.5, 1.0). For the computation of the H-

upported by ProUCL. For adjusted gamma 
CL, three confidence levels, namely: 0.90, 0.95, and 0.99 are supported by ProUCL 4.0. An 

roUCL 4.0 cannot compute a UCL for a specified confidence coefficient (e.g., 0.99 for H-UCL), 

 

(denoted by Chebyshe
 

tric Methods 
 

1. Modified t-st

2. Central limit theor
 

3. Adjusted central limit theorem (adjusted-CLT) – adjusted for skewed distributions and
be used for large samples 

 
4. Chebyshev Theorem using the sample arithmetic 

 
5. Jackknife method – yields the same result as Student’s t-statistic for the UCL of th

population mean 
 

6.  Standard bootstrap  
 

7.  Percentile bootstrap 
 

9.  Bootstrap t 

10.  Hall’s bootstrap 
 
Even though it is well known that some of the methods (e.g., CLT, UCL based upon Jackknife method 
(s
enough o provide the adequate coverage to the population mean of skewed distributions, these methods 
have been included in ProUCL to satisfy the curiosity of all users. 
 
ProUCL can compute a  (1 – α)100% UCL (except for the H-UCL and adjusted gam
fo
UCL, only two confidence levels, namely, 0.90 and 0.95 are s
U
approximate gamma UCL can be computed for any level of significance in the interval [0.5,1). Whenever, 
P
ProUCL 4.0 prints out “N/A.” Based upon sample size, n, skewness, and data distribution, ProUCL 4.0 
also makes recommendations on how to obtain an appropriate 95% UCL of the unknown population 
mean, µ1.  

2.4.1 (1 – α)100% UCL of the Mean Based Upon Student’s t-Statistic 

The widely used well-known Student’s t-statistic is given by, 
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nsx /

 
where 

µxt 1−
=  (2-31) 

x and sx are, respectively, the sample mean and sample standard deviation obtained using th
data. If the data are a random sample from a normal population with mean, µ

e raw 
 σ1, 

 (1 – α)100% UCL of the population mean, µ1, is given by, 

            =

1, and standard deviation,
then the distribution of this statistic is the familiar Student’s t-distribution with (n -1) degrees of freedom 
(df). Let tα,n-1 be the upper αth quantile of the Student’s t-distribution with (n -1) df. 
 
A
 

                                               UCL  nstx xnα /1, −+  (2-32) 
 
For a normally (when the skewness is about ~0) dist ation (2-32) provides the bes
(optimal) way of computing a UCL of the mean. Equation (2-32) may also be used to compute a UCL

ributed population, equ t 
 of 

e mean based upon very mildly skewed (e.g., |skewness|<0.5) data sets, where the skewness is given by 
t  out that even for mildly to moderately skewed data sets (e.g.

, the Sd of log-transformed data, starts approaching and exceeding 0.5), the UCL given by (2-32) might 

sample size is smaller than 20-25 (Singh and Singh (2003)). The situation gets worse (coverage much 
v f the Sd, σ, or its M

xist to compute 
hose methods ha

omputational complexity. Those approximate and adjusted methods depend upon the chi-square 

f 

at 

th
equation (2-43). It should be poin ed , when 
σ
not provide the desired coverage (e.g., = 0.95) to the population mean. This is especially true when the 

smaller than 0.95) for higher alues o LE, sy. 

2.4.2 Computation of the UCL of the Mean of a Gamma, G (k, θ), Distribution 

In the statistical literature, even though methods e a UCL of the mean of a gamma 
distribution (Grice and Bain 1980, Wong 1993), t ve not become popular due to their 
c
distribution and an estimate of the shape parameter, k. As seen above, computation of an MLE of k is 
quite involved, and this works as a deterrent to the use of a gamma distribution-based UCL of the mean. 
However, the computation of a gamma UCL currently should not be a problem due to easy availability o
personal computers. 
 
Given a random sample, x1, x2, ... , xn , of size n from a gamma, G(k, θ), distribution, it can be shown th

θxn /2 follows a chi-square distribution, 2
2nkχ , with 2nk degrees of freedom (df). When the shape 

arameter, k, is known, a uniformly most powe ful test of size of the null hypothesis, H0: µ1 ≥ Cs, against p r
the alternative hypothesis, H1: µ1 < Cs, is to reject H0 if nkαχCx nks 2)(/ 2

2< . The corresponding (1 – α
100% uniformly most accurate UCL for the mean, µ

) 
1, is then given by the probability statement. 

 
                                                     αµαχxnkP nk −=≥ 1))(2( 1

2
2   (2-33)  

 
here, 2

υχW denotes the cumulative percentage point of the chi-square distribution (e.g., α is the area in the 

υ =)) . In practice, k is not known and needs tleft tail). That is, if Y follows 2
υχ , then αχYP ≤ (( 2 o be α

estimated from data. A reasonable method is to replace k by its bias-corrected estimate, *k̂ , as given by 
equation (2-29). This yields the following approximate (1 – α)100% UCL of the mean, µ1. 
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                                         Approximate – UCL = )(ˆ2 2
ˆ2

*
* αχxkn

kn
 (2-34)

 
It should be pointed out that the UCL given by equation (2-34) is an approximate UCL and there is no 
guarantee that the confidence level of (1 – α) will be achieved by this UCL. However, it does provide a 
way of computing a UCL of the mean of a gamma distribution. Simulation studies conducted in Singh, 

ingh, and Iaci (2002b) and in Singh and Singh (2003) suggest tha

 
 

t an approximate gamma UCL thus 
meter, k, approaches 0.5. Therefore, 

hen k ≥ 0.5, one can always use the approximate UCL given by equation (2-34) to estimate the EPC 
. This approxim ood even for smaller (e.g., n = 5) sample sizes as shown in Singh, Singh, 

Iaci (2002b), nd in 003).  
 
Grice and Bain (198 puted an adjusted probability level, β (adjusted level of significance), which 
can be used in (2-34) e specified confidence level of (1 – α). For dence 
coefficient of 0.95), α = 0.01, these probability levels are given below in Table 2-2 for some 
values of the sample  interpolation to obtain an adjusted alues of n not covered 
in the ta . The adj  – α)100% UCL of mean, µ1 = kθ, is given by the following 

S
obtained provides the specified coverage (95%) as the shape para
w
term ation is g

a Singh and Singh (2

0) com
 to achieve th α = 0.05 (confi
α = 0.1, and 
 size n. One can use β for v

ble usted (1  the gamma 
equation.  
 
                                              Adjusted – UCL = )(ˆ2 2

ˆ2
*

* βχxkn
kn

 (2-35) 
 
where β is given in Table 2-1 for α = 0.05, 0.1, and 0.01. Note that as the sample size, n, becomes large, 

aches the specified level of significance, α. Except for the 

ets 

α = 0.01 

the adjusted probability level, β, appro
computation of the MLE of k, equations (2-34) and (2-35) provide simple chi-square-distribution-based 
UCLs of the mean of a gamma distribution. It should also be noted that the UCLs as given by (2-34) and 
(2-35) only depend upon the estimate of the shape parameter, k, and are independent of the scale 
parameter, θ, and its ML estimate. Consequently, as expected, it is observed that coverage probabilities 
for the mean associated with these UCLs do not depend upon the values of the scale parameter, θ. It 
should also be noted that gamma UCLs do not depend upon the standard deviation of data which g
distorted by the presence of outliers. Thus, outliers will have reduced influence on the computation of the 
gamma distribution based upon UCLs of the mean, µ1. 
 
Table 2-2. Adjusted Level of Significance, β 
 

 α = 0.05 α = 0.1 
n probability level, β probability level, β probability level, β 
5 0.0086 0.0432 0.0000 

10 0.0267 0.0724 0.0015 

20 0.0380 0.0866 0.0046 

40 0.0440 0.0934 0.0070 

-- 0.0500 0.1000 0.0100 

2.4.3 (1 – α)100% UCL of the Mean Based Upon H-Statistic (H-UCL) 

The one-sided (1 – α)100% UCL for the mean, µ1, of a lognormal distribution as derived by Land
1975) is given as follows: 

 (1971, 

 
                                                UCL = ( )15.0exp 1

2 −++ − nHssy αyy   (2-36) 
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Tables of H-statistic critical values can be found in Land (1975) and also in Gilbert (1987). Theor
when the population is lognormal, Land (1971) showed that the UCL given by equation (2-36) posse
optimal properties and is the uniformly most accurate unbiased confidence limit. However, it is notic

etically, 
sses 
ed 

at, in practice, the H-statistic-based results can be quite disappointing and misleading, especially when 
i

ngelhardt, 1997, 1999 and Singh, Singh, and Iaci, 2002b). Even a minor increase in the Sd, sy, 
lly ta 

rn inflates the H-UCL. Furthermore, it is observed (Singh, Singh, 
for samples of sizes smaller than 15-25, and for values of σ 

o

 

n. 

.4.4 (1 – α)100% UCL of the Mean Based Upon Modified t-Statistic for Asymmetrical 
Populations 

on (1993) 

   UCL = 

th
the data set consists of outliers, or is a m xture from two or more distributions (Singh, Singh, and 
E
drastica  inflates the MVUE of µ1 and the associated H-UCL. The presence of low as well as high da
values increases the Sd, sy, which in tu

ngelhardt, and Nocerino 2002a) that E
approaching 1.0 and higher (for m derately skewed to highly skewed data sets), the use of H-statistic- 
ased UCL results in impractical and unacceptably large UCL values.  b

 
In practice, many data sets follow a lognormal as well as gamma model. However, the population mean 
based upon a lognormal model can be significantly greater (often unrealistically large) than the population
mean based upon a gamma model. In order to provide the specified 95% coverage for an inflated mean 
based upon a lognormal model, the resulting UCL based upon H-statistic also yield impractical UCL 
values. The use of a gamma model results in practical estimates (e.g., UCL) of the population mean. 
Therefore, for positively skewed data sets, it is recommended to test for a gamma model first. If data 
follow a gamma distribution, then the UCL of the mean should be computed using a gamma distributio
The gamma distribution is better suited to model positively skewed environmental data sets. 

2

Chen (1995), Johnson (1978), Kleijnen, Kloppenburg, and Meeuwsen (1986), and Sutt
suggested the use of the modified t-statistic for testing the mean of a positively skewed distribution 
(including the lognormal distribution). The (1 – α)100% UCL of the mean thus obtained is given by 
 
                                                 nstnsµx xnαx 1,

2
3 )6(ˆ −++   (2-37) 

e
 
Where 3µ̂ , an unbiased moment estimat  (Kleijnen, Kloppenburg, and Meeuwsen 1986) of the third 
central moment, is given as follows,  
 

                                                      )2)(1()(ˆ 3
3 −−−= ∑ nnxxnµ

n

i  
1=i

(2-38) 

 even for 
n σ starts approaching and exceeding 0.75). Specifically, 

 is observed that the UCL given by equation (2-37) may not provide the desired coverage of the 

 especially true when the sample size is smaller than 20-25. This small sample size requirement 
by 

 

 
It should be pointed out that this modification for a skewed distribution does not perform well
mildly to moderately skewed data sets (e.g., whe
it
population mean, µ1, when σ starts approaching and exceeding 0.75 (Singh, Singh, and Iaci, 2002b). This 
is
increases as σ increases. For example, when σ starts approaching and exceeding 1.5, the UCL given 
equation (2-37) does not provide the specified coverage (e.g., 95%), even for samples as large as 100. 
Since this method does not require any distributional assumptions, it is a nonparametric method. 
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2.4.5 (1 – α)100% UCL of the Mean Based Upon the Central Limit Theorem 

The central limit theorem (CLT) states that the asymptotic distribution, as n approaches infinity, of the 
sample mean, nx , is normally distributed with mean, µ1, and variance, σ1

2/n. More precisely, the sequence 
f random variables given by o

 

nσ
µx

z n
n /

1−
=  (2-39) 

mple sizes, n, the sample mean, 

                                                                

 
xhas a standard normal limiting distribution. In practice, for large sa , has 

s noted by Hogg and Craig (1978), if σ1 is replaced by the sample standard deviation, sx, the normal 
pproximation for large n is still valid. This leads to the following approximate large sample 

an approximate normal distribution irrespective of the underlying distribution function. Since the CLT 
method requires no distributional assumptions, this is a nonparametric method. 
 
A
a
nonparametric  (1 – α)100% UCL of the mean, 
 

nzx xα /+  (2-40)                                                            UCL = s

2b). In practice, for skewed data sets, 
ven a sample as large as 100 is not large enough to provide adequate coverage to the mean of skewed 

s an 

 
An often cited and used rule of thumb for a sample size associated with the CLT method is n ≥ 30. 
However, this may not be adequate enough if the population is skewed, specifically when σ (Sd of log-
transformed variable) starts exceeding 0.5 (Singh, Singh, Iaci, 200
e
populations (even for mildly skewed populations). A refinement of the CLT approach, which make
adjustment for skewness by Chen (1995), is given as follows.  

2.4.6 (1 – α)100% UCL of the Mean Based Upon the Adjusted Central Limit Theorem   
(Adjusted-CLT) 

The “adjusted-CLT” UCL is obtained if the standard normal quantile, zα, in the upper limit of equation (2-
40) is replaced by (Chen, 1995) 
 

                                                    )21(
6

ˆ
23

, ααadjα z
n

k
zz ++=   (2-41) 

 
Thus, the adjusted (1 – α)100% UCL for the mean, µ1, is given by 
 

[ ] nsnzkzx xαα )6()21(ˆ 2
3 +++                                           UCL = (2-42) 

                                             Skewness (raw data) 

 
 
 

ere k̂ , the coefficient of skewness (raw data), is given by H 3

 
  3

33 ˆˆ
xsµk =  (2-43) 
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where 3µ̂ , an unbiased estimate of the third moment, is given by equation (2-38 . This is anoth
sample approximation for the UCL of the mean of skewed distributions. This is a nonparametric method, 
as it does not depend upon any of t  assumptions. 
 
As with the modified t-UCL, it is observed that this adjusted-CLT UCL does not provide adequate 
coverage to the population mean when the population is skewed, specifically when σ starts approaching 
and exceeding 0.75 (Singh, Singh, and Iaci, 2002b, and Singh a

) er large 

he distributional

nd Singh, 2003). This is especially true 
hen the sample size is smaller than 20-25. This small sample size requirement increases as σ increases. 

h g and exceeding 1.5, the UCL given by equation (2
rovide the specified coverage (e.g., 95%), even for samples as large as 100. It is noted that UCL as given 

specially when k ≤ 

ewness adjusted method son’s modified t 
hen’s adjusted-CLT, do not provide the specified coverage to the population mean for mildly to 

 conservative but stable estimate of the UCL 

1 1
 

an,

w
For example, when σ starts approac in -42) does not 
p
by (2-42) does not provide adequate coverage to the mean of a gamma distribution, e

.0 and the sample size is small.  1
 
Thus, the UCLs based upon these sk s, such as the John and 
C
moderately skewed (e.g., σ in (0.5, 1.0)) data sets, even for samples as large as 100 (Singh, Singh, and 
Iaci, 2002b). The coverage of the population mean provided by these UCLs becomes worse (much 
smaller than the specified coverage) for highly skewed data sets. 

2.4.7 Chebyshev (1 – α)100% UCL of the Mean Using Sample Mean and Sample sd 

The Chebyshev inequality can be used to obtain a reasonably
of the mean, µ1. The two-sided Chebyshev theorem (Hogg and Craig, 1978) states that given a random 
variable, X, with finite mean and standard deviation, µ  and σ , we have 

                                                   2
111 /11)( kσkµxσkP −≥≤−≤−  (2-44) 

 
This result can be applied on the sample me  x (with mean, µ1 and variance, nσ 2

1 ), to obtain a 
conservative UCL for the population mean, µ . For example, if the right side of equation (2-44) is equated 

 0.95, then k = 4.47, and UCL = 
1

to nσx /47.4 1+  is a conservative 95% upper confidence limit for the 
uld require the user to k

odification would be to replace σ  with the sample standard deviation, s , but since this is estimated 
 be 

population mean, µ1. Of course, this wo now the value of σ1. The obvious 
m 1 x
from data, the result is no longer guaranteed to be conservative. In general, the following equation can
used to obtain a (1 – α)100% UCL of the population mean, µ1: 
 

nsαx 1(+ x)/                (2-45)                                           UCL =   

 
A slight refinement of equation (2-45) is given (suggested by S. Ferson) as follows, 
 
                                            UCL = nsαx x)1)/1(( −+     (2-46) 

 
ProUCL computes the Chebyshev (1 – α)100% UCL of the population mean using equation (2-46). This 
UCL is labeled as Chebyshev (Mean, Sd) on the output sheets generated by ProUCL. Since this 
Chebyshev method requires no distributional assumptions about the data set under study, this is a 
nonparametric method. This UCL may be used as an estimate of the upper confidence limit of the 
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population mean, µ1, when the data are not normal, lognormal, or gamma distributed, especially when Sd
σ (or its estimate, s

, 

.4.8 Chebyshev (1 – α)100% UCL of the Mean of a Lognormal Population Using the MVUE 

1 

y), starts approaching and exceeding 1.5.  

2
of the Mean and its Standard Error  

ProUCL uses equation (2-44) on the MVUEs of the lognormal mean and Sd to compute a UCL (denoted 
by (1 – α)100% Chebyshev (MVUE)) of the population mean of a lognormal population. In general, if µ
is an unknown mean, 1µ̂  is an estimate, and )ˆ(ˆ 11 µσ  is an estimate of the standard error of 1µ̂ , then the 
following equation,  
 
                                                 UCL = )ˆ(ˆ)1)/1((ˆ 111 µσαµ −+  (2-47
 
yields an approximate (1 – α)100% UCL for µ

) 

CL of the mean can be obtained using the following equation,  

1, which should tend to be conservative, but this is not 
assured. For example, for a lognormally distributed data set, a 95% (with α = 0.05) Chebyshev (MVUE) 
U
 
                                                       UCL = )ˆ(ˆ359.4ˆ 111 µσµ +  (
 
Here 1µ̂  and )ˆ(ˆ 11 µσ are given by equations (2-14) and (2-16), respectively. Thus, for lognormally 
distributed data sets, ProUCL also uses equation (2-48) to compute a (1 – α)100% Chebyshev (MVUE) 
UCL of the mean. It should be noted that for lognormally distributed data sets, some recommendations to 
compute a 95% UCL of the population mean are summarized later in this chapter. It is recommended that 
for skewed data sets, one should always perform gamma goodness-of-fit (GOF) test. Many times, a 
skewed data set can be modeled both by a lognormal distribution as well as a gamma distribution. 
However, since, the use of a lognormal distribution often yields inflated and unstable upper limits 
including UCLs (Singh, Singh, and Engelhardt, 1997) and UPLs (Gibbons, 1994), it is suggested that if a
data set follows a gamma distribution (even when data may also be lognormally distributed), then the 
UCL of mean, µ

2-48) 

 

d 

., >50, 100). Some examples illustrating 
A, 2002). 
l data sets.  

 

Singh and Singh 2003) that for moderately skewed to highly skewed lognormally 
istributed d % Chebyshev MVUE UCL does not provide the 

specified co  true when the sample size is less than 10-50. The 

1 (and other upper limits) should be computed using a gamma distribution. This is 
especially true when the data are highly skewed with sd of log-transformed data exceeding 1.5, 2.0, an
the sample size is small such as < 50, < 70, < 100.  
 
On the other hand, it is also noticed that the use of a lognormal distribution based H-UCL (based upon 
Land’s H-statistic) often yields a UCL that is lower than the sample mean. This is especially true for 
mildly skewed to moderately skewed data sets of larger sizes (e.g
this issue are given in Chapter 3 of the revised background document for CERCLA sites (EP
Therefore, it is suggested to avoid the use of a lognormal distribution to model environmenta
 
From the Monte-Carlo results discussed in Singh, Singh, and Iaci (2002b), and in Singh and Singh 
(2003), it is observed that for highly skewed gamma distributed data sets (with k < 0.5), the coverage 
provided by the Chebyshev 95% UCL (given by (2-46)) is smaller than the specified coverage of 0.95. 
This is especially true when the sample size is smaller than 10-20. As expected, for larger samples sizes,
the coverage provided by the 95% Chebyshev UCL is at least 95%. For larger samples, the Chebyshev 
95% UCL will result in a higher (but stable) UCL of the mean of positively skewed gamma distributions.  
 

 is observed (It
d ata sets (e.g., with σ exceeding 1), 95

verage to the population mean. This is
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details and graphical displays can be found in Singh and Singh (2003). For highly skewed (e.g., σ > 2), 
lognormal d s  unstable (impractical values which 
are orders of magnitude higher than other UCLs) unjustifiably large UCL values (Singh et al. 2002a). For 
such highly w -70, one may want to use 97.5% 

r 99% Chebyshev MVUE UCL of the mean as an estimate of the EPC term (Singh and Singh 2003). It 
should also  95% UCL based upon 
Chebyshev equality is higher than those based upon the percentile bootstrap method or the BCA 
bootstrap m
(samples of all s mma distributions) performs better than the 95% UCL 

ased upon the BCA bootstrap method. Also, when data are lognormally distributed, the coverage 
all’s 

 
 with the sample size.  

2.4.9 (1 – α)100% UCL of the Mean Using the Jackknife and Bootstrap Methods  

Bootstrap and jackknife methods as discussed by Efron (1982) are nonparametric statistical resampling 
techniques which can be used to reduce the bias of point estimates and construct approximate confidence 
intervals for parameters, such as the population mean. These two methods require no assumptions 
regarding the statistical distribution (e.g., normal, lognormal, or gamma) of the underlying population, 
and can be applied to a variety of situations no matter how complicated. There exists in the literature of 
statistics an extensive array of different bootstrap methods for constructing confidence intervals for the 
population mean, µ1. In the ProUCL 4.0 software package, five bootstrap methods have been 
incorporated:  
 

1. The standard bootstrap method,  
 
2. Bootstrap t method (Efron, 1982 and Hall, 1988),  
 
3. Hall’s bootstrap method (Hall, 1992 and Manly, 1997),  

 
4. Simple bootstrap percentile method (Manly, 1997), and  
 
5. Bias-corrected accelerated (BCA) percentile bootstrap method (Efron and Tibshirani, 

1993 and Many, 1997).  
 
Let x1, x2, … , xn be a random sample of size n from a population with an unknown parameter, θ 
(e.g., θ = µ1), and let  be an estimate of θ, which is a function of all n observations. For example, the 
parameter, θ, could be the population mean and a reasonable choice for the estimate, , might be the 
sample mean,

ata ets of sizes, n less than 50-70, the H-UCL results in

 ske ed lognormally distributed data sets of sizes less than 50
o

be noted that for skewed data sets, the coverage provided by a
in
ethod. Thus for skewed data sets, the Chebyshev inequality-based 95% UCL of the mean 

izes from both lognormal and ga
b
provided by Chebyshev MVUE UCL (Singh and Singh 2003) is better than the one based upon H
bootstrap or bootstrap t method. This is especially true when the sample size starts exceeding 10-15. 
However, for highly skewed data sets of sizes less than 10-15, it is noted that Hall’s bootstrap method 
provides slightly better coverage than the Chebyshev MVUE UCL method. Just as for the gamma 
distribution, it is observed that for lognormally distributed data sets, the coverage provided by Hall’s and
bootstrap t methods do not increase much

θ̂
θ̂

 x . Another choice for  is the MVUE of the mean of a lognormal population, especially 
when dealing with lognormal data sets.  

θ̂
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2.4.9.1 (1 – α)100% UCL of the Mean Based Upon the Jackknife Method 

In the jackknife approach, n estimates of θ  are computed by deleting one observation at a time 
(Dudewicz and Misra 1988).  Specifically, for each index, i, denote by , the estimate of θ (computed 

similarly as ) when the i

)(̂iθ

θ̂ th observation is omitted from the original sample of size n, and let the 
arithmetic mean of these estimates be given by: 
 

                                                                ∑
=

=
n

i
in 1
)(̂

1~ θθ     (2-49) 

 
A quantity known as the ith "pseudo-value" is defined by 
 
                                                          ˆ)1(ˆ θnθn −−=    )(iiJ  (2-50) 

he jackknife estimator of θ is given by the following equation. 
 

                                                   

 
T

θnθnJ
n

θJ
n

i
i

~)1(ˆ1)ˆ(
1

−−== ∑
=

   (2-51) 

of the ed by the 
ckknife method, an stimate of the SE of the jackknife estimate, , is given by 

 

 
If the original estimate θ̂  is biased, then under certain conditions, part  bias is remov

d an e )ˆ(θJja

( ) ( ) ( )( )2

ˆ
1

1 ˆσ̂
1

n

iJ
i

J J
n nθ

θ
=

= −
− ∑   (2-52) 

              
Next, consider the t-t y 

                                   
ype statistic given b

    

                                                   
)ˆ(θJ

e statistic given above has an approximate Student’s t- distribution with n – 1 degrees o

σ̂
-53)  

The t-ty f 

θJ 4

 

)ˆ( θθJt −
=      (2

p
freedom, which can be used to derive the following approximate (1–α) 100% UCL for θ,   

 
                                        UCL = , ˆ)ˆ( α σθ ntJ −+      (2-5 ) 

 
If the sample size, n, is large, then the upper α

)ˆ(1

th t-quantile in the above equation can be replaced with the
corresponding upper αth standard normal quantile, zα. Observe, also, that when θ̂  is the sample mean, x , 
then the jackknife estimate is also the sample mean, xxJ =)( , and the estimate of the standard error 
given by equation (2-52) simplifies to sx/n1/2, and the UCL in equation (2-54) reduces to the familiar t- 
statistic based UCL given by equation (2-32).  ProUCL uses the jackknife esti ate as the sample mean, m

xxJ =)(that yields , which in turn translates equation (2-54) to Student’s t- UCL given by equation (2
32).  This method has been included in ProUCL to satisfy the curiosity of those users who do not 

-
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recognize that this jackknife method (with sample mean as the estimator) yields a UCL of the popula
mean identical to the UCL based upon the Student’s t- statistic as given by equation (2-32).  
 
Note: It is well known that the Jackknife method (with sample mean as an estimator) and Student’s
method yield identical UCL values.  However, a typical user may be unaware of this fact, and some 
researchers may want to see these issues described and discussed at one place.  It is also noted that it has 
been suggested that a 95% UCL based upon the Jackknife method o

tion 

 t- 

n the full data set obtained using 
robust ROS may provide adequate coverage (e.g., Shumway, Kayhanian, and Azari (2002)) to the 

, Singh, and 
Nocerino, 2003) that Student’s t-UCL (and therefore, Jackknife UCL) fails to provide adequate coverage 

 –

population mean of skewed distributions, which of course is not true.  It is well known (Singh

to the population mean of moderate to highly skewed distributions. 

2.4.9.2 (1  α)100% UCL of the Mean Based Upon the Standard Bootstrap Method 

In bootstrap resampling methods, repeated samples of size n are drawn with replacement from a given s
of observations. The process is repeated

et 
 a large number of times (e.g., 2000 times), and each time an 

e SE of 

e pulation mean, µ1, and the 

estimate, iθ̂ , of θ is computed. The estimates thus obtained are used to compute an estimate of th

θ̂ . A description of the bootstrap method, illustrated by application to th  po
xsample mean, , is given as follows.  

 
Step 1. Let (xi1, xi2, ... , xin) represent the ith sample of size n with replacement from the original   
data set, (x1, x2, ..., xn). Then compute the sample mean and denote it by ix .  
 
Step 2. Repeat Step 1 independently N times (e.g., 1000-2000), each time calculating a new  
estimate. Denote these estimates (KM means, RMLE means) by ,, 21 xx …, Nx . The bootstrap  

estimate of the population mean is the arithmetic mean, Bx , of the N estimates ix : i := 1, 2, …,  
N. The bootstrap estimate of the standard error of the estimate, x , is given by: 
 

∑ −                                              
=

B  (2-55) 

than the mean is of concern with an associated 

arameter and its estimates used in place of µ1 and 

−
=

N

i
iB xx

N 1

2)(
1

1σ̂

 
f some parameter, θ (say, the population median), other I

estimate (e.g., the sample median), then the same steps described above could be applied with the 
x . Specifically, the estimate , would be computed, , iθ̂p

instead of i , for each of the N bootstrap samples. The generax l bootstrap estimate, denoted by Bθ , is the 

rithmetic mean of the N estimates. The difference, θθ ˆ−B , provides an estimate of the bias of the 

s given by

a

estimate, θ̂ , and an estimate of the SE of θ̂  i  
 

                                                 ∑
=

6) 

A (1–α)100% standard bootstrap UCL for θ is given by 

−
−

=
N

i
BiB θθ

N
σ

1

2)ˆ(
1

1ˆ  (2-5
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                                                           UCL = Bz σθ α ˆ  (2-57) 
 
ProUCL computes the standard bootstrap UCL b  using the population AM and sample AM, respectively 
given by µ

ˆ +

y
1 and x . It is observed that th  UCL obtained using the standard bootstrap me

sim ed using the Student’s t-statistic as given by equation (2-32), and, as such, doe
not adequately adjust for skewness. For skewed data sets, the coverage provided by standard bootstrap 
UCL is much lower than the specified co

e thod is quite 
ilar to the UCL obtain s 

verage. 

th ntile Bootstrap Meth2.4.9.3  (1 – α)100% UCL of the Mean Based Upon e Simple Perce od 

Bootstrap resampling of the original data set is used to generate the bootstrap distribution of the unknown 
population mean (Manly 1997). In this method, ix , the sample mean, is computed from the ith resampling 
(i =1,2,..., N) of the original data. These i

as
x ;, i:=1,2,...,N are arranged in ascending order 

)()2()1( Nxxx ≤≤≤ L . The (1 – α)100% UCL of the population mean, µ1, is given by the value th
exceeds the (1 – α)*100% of the generated mean values. The 95% UCL of the mean is the 95

at 
 

 

th percentile
of the generated means and is given by: 

                                         95% Percentile – UCL = 95th% ix ; i: = 1, 2, ..., N (2

 

-58) 

 For example, when N = 1000, a simple bootstrap 95% percentile-UCL is given by the 950th ordered mean
value given by x( )950 . 

Singh and Singh (2003) observed that for skewed data sets, the coverage provided by this simple 
percentile bootstrap method is much lower than the coverage provided by the bootstrap t and Hall’s 
bootstrap methods. It is observed that for skewed (lognormal and gamma) data sets, the BCA bootstrap 
method performs slightly better (in terms of coverage probability) than the simple percentile method.  

2.4.9.4 (1 – α)100% UCL of the Mean Based Upon the Bias-Corrected Accelerated (BCA) 
Percentile Bootstrap Method 

The BCA bootstrap method is also a percentile bootstrap method adjusts for bias in the estimate (Efron 
and Tibshirani 1993 and Manly 1997). The performance of this method for skewed distributions (e.g., 

mal r 
d  and c pared its performance (in 

ethods. For skewed data 
 terms of coverage probability) over the simple 

ercentile method. However, this improvement is not adequate enough and yields UCLs with a coverage 

 – α)100% coverage is given by the following equation: 

lognor  and gamma) is not well studied. It was conjectured that the BCA method would perform bette
than the various other methods. Singh an Singh (2003) investigated om
terms of coverage probabilities) with parametric methods and other bootstrap m
sets, this method does represent a slight improvement (in
p
probability much lower than the specified coverage of 0.95. The BCA upper confidence limit of intended 
(1
 
                                                BCA – UCL = )( 2αx  (2-59) 
 
Here )( 2αx  is the α2100th percentile of the distribution of the ix ; i: = 1, 2, …, N. For example, when N = 

2000, )( 2αx = (α2N)th ordered st  ix ; i: = 1, 2, …, N given by atistic of )( 2Nαx .  

Here α2 is given by the following probability statement: 
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l cumulative distribution

a standard normal distribution. For example, z(0.95) = 1.645, and Φ(1.645) = 0.95. Also in the equation (2-
0),  (bias correction) and 

Here Φ(.) is the standard norma  function and z(1 – α) is the 100(1–α)th percentile of 

 0ẑ α̂6  (acceleration factor) are given by 
 

                                                 ⎥⎦
⎤⎡ <− xx

z i )(#ˆ 1  (2-61) ⎢⎣
=

N
Φ0  

 
Here Φ-1 (.) is the inverse function of a standard normal cumulative distribution function, e.g., Φ-1 (0.95) 
= 1.645. α̂  is the acceleration factor and is given by the following equation. 
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Here the summation in (2-62) is being carried from i = 1 to i = n, the sample size. x is the sample mean 

based upon all n observation and ix−  is the mean of (n-1) observations without the 
2, …, n. 

ith observation, i: = 1, 

ap t and Hall’s bootstrap methods perform better (in terms of coverage probabilities) than the BCA 
 

 
Singh and Singh (2003) observed that for skewed data sets (e.g., gamma and lognormal), the coverage 
provided by this BCA percentile method is much lower than the coverage provided by the bootstrap t and 
Hall’s bootstrap methods. This is especially true when the sample size is small. The BCA method does 
provide an improvement over the simple percentile method and the standard bootstrap method. However, 

ootstrb
method. For skewed data sets, the BCA method also performs better than the modified t-UCL. For gamma
distributions, the coverage provided by BCA 95% UCL approaches 0.95 as the sample size increases. For 
lognormal distributions, the coverage provided by the BCA 95% UCL is much lower than the specified 
coverage of 0.95. 

2.4.9.5 (1 – α)100% UCL of the Mean Based Upon the Bootstrap t Method 

Another variation of the bootstrap method, called the “bootstrap t” by Efron (1982), is a nonparametric 
method that uses the bootstrap methodology to estimate quantiles of the pivotal quantity, t statistic, given 

 quantiles of
pute estimates of the quantiles of the statistic given by equation (2-31) directly from the 

by equation (2-31). Rather than using the  the familiar Student’s t-statistic, Hall (1988) 
proposed to com
data.  
 
Specifically, in Steps 1 and 2 described above in Section 2.4.9.2, if x is the sample mean computed from 
the original data, and ix  and sx,I are the sample mean and sample standard deviation computed from the ith

resampling of the original 

 

data, the N quantities ]/)[( ,ixii sxxnt −=  are computed and sorted, 
ielding ordered quantities, t(1)  ≤ t(2) ≤ … ≤ t(N). The estimate of the lower αth quantile of the pivotal 

quantity in equation (2-31) is tα, B = t(αN). For example, if N = 1000 bootstrap samples are generated, then 
y
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the 50th ordered value, t(50) , would be the bootstrap estimate of the lower 0.05th quantile of the pivotal 
quantity in equation (2-31). Then a (1–α)100% UCL of the mean based upon the bootstrap t-method is 
given as follows. 

                                                    UCL = 
n

s
tx x

N )(α−  (2-63) 

 
Note the “ – ” sign in equation (2-63). ProUCL computes the bootstrap t UCL based upon the quanti
obtained using the sample mean, 

les 
x . It is observed that the UCL based upon the bootstrap t method is 

more conservative than the other UCLs obtained using the Student’s t, modified-t, adjusted-CLT, and the 
standard bootstrap methods. This is especially true for skewed data sets. This method seems to adjust for 
skewness to some extent. 
 
It is observed that for skewed data sets (e.g., gamma, lognormal), the 95% UCL based upon the bootstr
t method performs better than the 95% UCLs based upon the simple percentile and the BCA percentile
methods (Singh and Singh (2003)). For highly skewed (k < 0.1 or σ > 2.5-3.0) data sets of small sizes 
(e.g., n < 10), the bootstrap t method performs better than other (adjusted gamma UCL, or Chebyshev 
inequality UCL) UCL computation methods. It is noted that for the gamma distribution, the performan
(coverages provided by the respective UCLs) of the bootstrap t and Hall’s bootstrap methods are very 
similar. It is also noted that for larger samples, these two methods (bootstrap t and Hall’s bootstrap) 
approximately provide the specified 95% coverage to the mean, kθ, of the gamma distribution. For 
gamma distributed data sets, the coverage provided by a bootstrap t (and Hall’s bootstrap UCL) 95% U
approaches 95% as sample size increases for all values of k considered (k = 0.05-5.0) in Singh and Sin
(2003). However, it is noted that the coverage provided by these two bootstrap methods is slightly lower 

ap 
 

ces 

CL 
gh 

it 

s 
 

e 
these two methods result in erratic and inflated UCL values, then an appropriate Chebyshev 

sed UCL may be used to estimate the EPC term for nonparametric skewed data sets.  

100% 

than 0.95 for samples of smaller sizes. 
 
For lognormally distributed data sets, the coverage provided by the bootstrap t 95% UCL is a little bit 
lower than the coverage provided by the 95% UCL based upon Hall’s bootstrap method. However, 
should be noted that for lognormally distributed data sets, for samples of all sizes, the coverage provided 
by these two methods (bootstrap t and Hall’s bootstrap) is significantly lower than the specified 0.95 
coverage. This is especially true for moderately skewed to highly skewed (e.g., σ >1.0) lognormally 
distributed data sets. It should be pointed out that the bootstrap t and Hall’s bootstrap methods sometime
result in unstable, erratic, and unreasonably inflated UCL values especially in the presence of outliers
(Efron and Tibshirani, 1993). Therefore, these two methods should be used with caution. If this is th
case, and 
inequality ba

2.4.9.6 (1 – α) UCL of the Mean Based Upon Hall’s Bootstrap Method 

Hall (1992) proposed a bootstrap method that adjusts for bias as well as skewness. This method has been
included in UCL guidance document (EPA 2

 
002a). For highly skewed data sets (e.g., LN (5,4)), it 

erforms slightly better (higher coverage) than the bootstrap t method. In this method, ixp  and sx,i , 

an, the sample standard deviation, and the sam
o puted from the ith resampling (i = 1, 2,..., N) of the original data. Let 

and ik3
ˆ , the sample me ple skewness, respectively, are 

m x  be the sample mean, sx be the 

 each of the N bootstrap 

c

sample standard deviation, and 3k̂  be the sample skewness (as given by equation (2-43)) computed from 
the original data. The quantities, Wi and Qi, given as follows are computed for
samples: 
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ion 

 
The quantities, )( ii WQ , given above are arranged in ascending order. For a specified (1 – α) confidence
coefficient, compute the (αN)th ordered value, αq , of the quantities, )( ii WQ . Next, compute 

)( αqW using the inverse function, which is given as follows: 
 

                                    ( ) 3
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33
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In equation (2-64), 3k̂  is computed using equation (2-43). Finally, the (1 – α)100% UCL of the populat

mean based upon Hall’s bootstrap method (Manly 1997) is given as follows: 

 
                                                     UCL = xα sqWx )(−  (2-65) 
 
For gamma distributions, Singh and Singh (2003) observed that the coverage probabilities provided by
the 95% UCLs based upon bootstrap t and Hall’s bootstrap methods are in close agreement. For large
samples, these two methods approximately provide the specified 95% coverage to the population mean,
kθ, of a gamma distribution. For smaller sample sizes (from gamma distribution), the coverage provided
by these two methods is slightly lower than the specified level of 0

 
r 

 
 

.95. For both lognormal and gamma 
distributions, these two methods (bootstrap t and Hall’s bootstrap) perform better than the other bootstrap 

ple percentile, and bootstrap BCA percentile 
methods.  

 specified 
 

.g.,> 2.0) data sets of small sizes (e.g., n < 15), Hall’s 

 

w
recomm h, and Engelhardt (1997, 1999); Singh et al. 

rametric and do not follow 

methods, namely, the standard bootstrap method, sim

 
Just like the gamma distribution, for lognormally distributed data sets, it is noted that Hall’s UCL and 
bootstrap t UCL provide similar coverages. However, for highly skewed lognormal data sets, the 
coverages based upon Hall’s method and bootstrap t method are significantly lower than the
coverage, 0.95 (Singh and Singh, 2003). This is true even in samples of larger sizes (e.g., n = 100). For
lognormal data sets, the coverages provided by Hall’s bootstrap and bootstrap t methods do not increase 
much with the sample size, n. For highly skewed (e
bootstrap method (and also bootstrap t method) performs better than the Chebyshev UCL, and for larger 
samples, the Chebyshev UCL performs better than Hall’s bootstrap method. Similar to the bootstrap t
method, it should be noted that Hall’s bootstrap method sometimes results in unstable, inflated, and 
erratic values, especially in the presence of outliers (Efron and Tibshirani, 1993). Therefore, these two 
methods should be used with caution. If outliers are present in a data set, then a 95% UCL of the mean 
should be computed using alternative UCL computation methods. 

2.5 Recommendations and Summary 

This section describes the recommendations and summary on the computation of a 95% UCL of the 
unkno n population arithmetic mean, µ1, of a contaminant data distribution without censoring. These 

endations are based upon the findings of Singh, Sing
(2002a); Singh, Singh, and Iaci (2002b); Singh and Singh (2003); and Singh et al. (2006).  
Recommendations have been summarized for: 1) normally distributed data sets, 2) gamma distributed 
data sets, 3) lognormally distributed data sets, and 4) data sets which are nonpa
any of the three distributions included in ProUCL. 
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For skewed parametric as well as nonparametric data sets, there is no simple solution to compute a 95
UCL of the population mean, µ

% 

skewed data sets, where the skewness levels 
ave been defined earlier as a function of σ or (standard deviation of log-transformed data). 

2.5.1 Recom sing 
Symme

Interested users may want to consult graphs as given in Singh and Singh (2003) for a better understanding 
of the summ

2.5.1.1 Norma

1. Singh et al. (2002a), Singh, Singh, and Iaci (2002b), and Singh and 
Singh (2003) noted that the UCLs based upon the skewness adjusted methods, such as the Johnson’s 
modified t and Chen’s adjusted-CLT, do not provide the specified coverage  (e.g., 95%) to the population 
mean even for mildly to moderately skewed (e.g., σ̂  in the interval [0.5, 1.0)) data sets for samples of 
sizes as large as 100. The coverage of the population mean by these skewness-adjusted UCL gets poorer 
(much smaller than the specified coverage of 0.95) for highly 

 σ̂h

mendations to Compute a 95% UCL of the Unknown Population Mean, µ1, U
tric and Positively Skewed Data Sets 

ary and recommendations made in this section. 

lly or Approximately Normally Distributed Data Sets 

r a normal distribution, N (µAs expected, fo ified t-statistic, and 
bootstrap t 9 % UCL computation methods result in UCLs which provide coverage probabilities close to 
the nominal e rm 
better than the o  d the 
coverages for th ’s 
bootstrap metho
n is less than 30
 

 UCL based upon the Student’s t-statistic, as given by 
UCL of the population mean. Therefore, for 

 
y

y follows a normal distribution. A data set is approximately normal when 

 
• 

y 

2.5.1.2 Gamma

1, σ1
2), the Student’s t-statistic, mod

5
 lev l, 0.95. Contrary to the general conjecture, the bootstrap BCA method does not perfo

ther bootstrap methods (e.g., bootstrap t). Actually, for normally istributed data sets, 
e population mean, µ1, provided by the UCLs based upon the BCA method and Hall
d are lower than the specified 95% coverage. This is especially true when the sample size, 
. For details refer to Singh and Singh (2003). 

• For normally distributed data sets, a
equation (2-32), provides the optimal 
normally distributed data sets, one should always use a 95% UCL based upon the 
Student’s t-statistic.  

 
• The 95% UCL of the mean given by equation (2-32) based upon Student’s t-statistic may

also be used when the Sd, s  of the log-transformed data is less than 0.5, or when the data 
set approximatel
the normal Q-Q plot displays a linear pattern (without outliers and jumps) and the 
resulting correlation coefficient is high (e.g., 0.95 or higher). 

Student’s t-UCL may also be used when the data set is symmetric (but possibly not 
normally distributed). A measure of symmetry (or skewness) is 3k̂ , which is given by 

equation (2-43). A value of 3k̂  close to zero (e.g., if absolute value of skewness is 
roughly less than 0.2 or 0.3) suggests approximate symmetry. The approximate symmetr
of a data distribution can also be judged by looking at histogram of data sets. 

 Distributed Skewed Data Sets 

y skewed data sets can be modeled both by a lognormal distribution and a gamm
 when the sample size is smaller than 70-

In practice, man a 
istribution, especially 100. As is well known, the 95% H-UCL 

ean based upon a lognormal model often results in unjustifiably large and impractical 95% UCL 
d
of the m
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values. In su  c
unknown popula
 

• 

ited to model positively skewed environmental data sets. 
 

tion. If 
e 

ewed 
lognormally distributed data sets that cannot be modeled by a gamma or an approximate 

 
• on 

f coverage probabilities) of 
bootstrap t and Hall’s bootstrap methods are very similar. Out of the five bootstrap 

 
l (e.g., n < 

 

n the 

 
• 

hat for data sets which follow a gamma distribution, a 95% UCL 
e shape 

mputed 

• For highly skewed gamma distributed data sets with k < 0.1, the bootstrap t UCL or 
Hall’s boo  Singh, 2003) may be ple size is smaller 
than 15, and the adjusted gamma UCL should be used when sample size starts 

proaching an ding 1 quirement increases as skewness 
increases (that is as k decreases, the required sample size, n, increases). 

• The bootstrap t and Hall’s bootstrap methods should be used with caution as sometimes 
ese methods y rratic, u stable UCL values, especially in 

the presence of outliers. In th and bootstrap t methods yield 
inflated and erratic UCL results, the 95% d be computed based 

on the adjusted gamma 95% message associated 

ch ases, a gamma model, G (k, θ), may be used to compute a reliable 95% UCL of the 
tion mean, µ1.  

Many skewed data sets follow a lognormal as well as a gamma distribution. It should be 
noted that the population means based upon the two models could differ significantly. 
Lognormal model based upon a highly skewed (e.g., σ̂  ≥ 2.5) data set will have an 
unjustifiably large and impractical population mean, µ1, and its associated UCL. The 
gamma distribution is better su

One should always first check if a given skewed data set follows a gamma distribu
a data set does follow a gamma distribution or an approximate gamma distribution, on
should compute a 95% UCL based upon a gamma distribution. Use of highly skewed 
(e.g., σ̂  ≥ 2.5-3.0) lognormal distributions should be avoided. For such highly sk

gamma distribution, nonparametric UCL computation methods based upon the 
Chebyshev inequality may be used.  

The five bootstrap methods do not perform better than the two gamma UCL computati
methods. It is noted that the performances (in terms o

k̂

methods, bootstrap t and Hall’s bootstrap methods perform the best (with coverage 
probabilities for population mean closer to the nominal level of 0. 95). This is especially
true when the skewness is quite high (e.g.,     < 0.1) and the sample size is smal
10-15). This can be seen from graphs presented in Appendix A of the Technical Guide 
for ProUCL 3.0 (EPA, 2004). 

• The bootstrap BCA method does not perform better than the Hall’s method or the 
bootstrap t method. The coverage for the population mean, µ1, provided by the BCA 
method is much lower than the specified 95% coverage. This is especially true whe
skewness is high (e.g., k̂ < 1) and sample size is small (Singh and Singh, 2003). 

From the results presented in Singh, Singh, and Iaci (2002b), and in Singh and Singh 
(2003), it is concluded t
of the mean should be computed using the adjusted gamma UCL when th
parameter, k, is: 0.1 ≤ k < 0.5, and for values of k ≥ 0.5, a 95% UCL can be co
using an approximate gamma UCL of the mean, µ1.  

 

tstrap (Singh and  used when the sam

ap d excee 5. The small sample size re

 

th ield e nreasonably inflated, and un
e case Hall’s bootstrap 

UCL of the mean shoul
up  UCL. ProUCL prints out a warning 



with the recommended use of the UCLs based upon the bootstrap t method or Hall’s 

These recommendations for the use of gamma distribution are summarized in Table 2-3. 

Table 2-3. Summary Table for the Computation of a 95% UCL of the Unknown Mean, µ , of a Gamma Distribution

bootstrap method. 
 

 
1  

  

k̂  Sample Size, n Recommendation 

k̂  ≥ 0.5 For all n Approximate gamma 95% UCL 

0.1 ≤ k̂ < 0.5 For all n Adjusted gamma 95% UCL 

k̂  < 0.1 n < 15 95% UCL based upon bootstrap t 
or Hall’s bootstrap method* 

k̂  < 0.1 n ≥ 15 Adjusted gamma 95% UCL if available, 
otherwise use approximate gamma 95% UCL 

 
*In case bootstrap t or Hall’s bootstrap methods yield erratic, inflated, and unstable UCL values, the UCL 

f the mean should be computed using adjusted gamma UCL. o

2.5.1.3 Lognormally Distributed Skewed Data Sets 

For lognormally, LN (µ, σ ), distributed data sets, the H-statistic-based UCL does provide specified 0.95
coverage for the population mean for all values of σ. However, the H-statistic often results in unjustifiably 
large UCL values that do not occur in practice. This is especially true when skewness is high (e.g., σ
2.0). The use of a lognormal model unjustifiably accommodates large and impractical values of the 
concentration and its UCLs. The problem associated with the us

2 , 

 > 
mean 

e of a lognormal distribution is that the 
opulation mean, µ1, of a lognormal model becomes impractically large for larger values of σ, which in 

02a 

L, 
.95 

on mean for samples of all sizes. Just like the gamma distribution, the 
erformances (in terms of coverage probabilities) of bootstrap t and Hall’s bootstrap methods are very 

 (and 

p
turn results in inflated H-UCL of the population mean, µ1. Since the population mean of a lognormal 
model becomes too large, none of the other methods except for the H-UCL provides the specified 95% 
coverage for that inflated population mean, µ1. This is especially true when the sample size is small and 
skewness is high. For extremely highly skewed data sets (with σ > 2.5-3.0) of smaller sizes (e.g., < 70-
100), the use of a lognormal distribution-based H-UCL should be avoided (e.g., see Singh et al., 20
and Singh and Singh, 2003). Therefore, alternative UCL computation methods such as the use of a 
gamma distribution or use of a UCL based upon nonparametric bootstrap methods or Chebyshev 
inequality-based methods are desirable.  
 
As expected for skewed (e.g., with σ (or σ̂ ) ≥ 0.5) lognormally distributed data sets, the Student’s t- UC
modified t-UCL, adjusted-CLT UCL, the standard bootstrap methods all fail to provide the specified 0
coverage for the unknown populati
p
similar (Singh and Singh, 2003). However, it is noted that the coverage provided by Hall’s bootstrap
also by bootstrap t) is much lower than the specified 95% coverage for the population mean, µ1, for 
samples of all sizes of varying skewness. Moreover, the coverages provided by Hall’s bootstrap or 
bootstrap t method do not increase much with the sample size.  
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Also the coverage provided by the BCA method is much lower than the coverage provided by Hall’s 
method or the bootstrap t method. Thus, the BCA bootstrap method cannot be recommended to comput
95% UCL of the mean of a lognormal population. For highly skewed data sets of small sizes (e.g., < 15) 
with σ exceeding 2.5-3.0, even the Chebyshev inequality-based UCLs fail to provide the specified 0.95
coverage for the population. However, as the sample size increases, the coverages provided by the 
Chebyshev inequality-based UCLs also increase. For such highly skewed data sets ( σ̂  > 2.5) of sizes less 
than 10-15, Hall’s bo tstrap or bootstrap t methods provide larger coverage than the coverage provi
the 99% Chebyshev (MVUE) UCL. Therefore, for highly skewed lognormally distributed data sets of
small sizes, one may use Hall’s method (bootstrap t UCL) to compute an estimate of the EP

e a 

 

o ded by 
 

C term. The 
mall sample size requirement increases with σ. This means that as skewness (σ) increases, the sample 

hen σ = 3, skewness ≈ 
29555. In practice, the occurrence of such highly skewed data sets (e.g., σ ≥ 3) is not very common. 

 99% Chebyshev 
VUE) UCL and the nonparametric 99% Chebyshev (Mean, Sd) UCL, may be used as an estimate of the 

ving in a stable manner. 
uted data sets, one can 

ement 

les 
a study for samples of larger sizes. 

 of 

e, n. Here  is an MLE of σ, and is gi y the Sd of log-transformed data given by 
quation (2-2). Note that Table 2-4 is applicable to the computation of a 95% UCL of the population 

Changes i  Recomme bles in ProUCL 4
 
Based upon our recent experience dealing with higly skewed lognormally uted data sets, the 
developers of ProUCL re-iterate that practical applicabililty of lognormal distribution is questionable as 
its use often leads to unrealistic and unstable estimates (UCLs) e of lognormal 
distribution based Chebyshev (M should be avoided unless skewness is mild with sd of 
logtranform 1.5.  U hebyshev (MVUE) UC ctive 

s
size, n needed to provide specified coverage (e.g., ~0.95) by Hall’s bootstrap UCL also increases and 
becomes much larger than 20-30.  
 
It should be noted that even a small increase in the Sd, σ, increases the skewness considerably. For 
example, for a lognormal distribution, when σ = 2.5, skewness ≈ 11825.1; and w
7
Nevertheless, these highly skewed data sets can arise occasionally and, therefore, require separate 
attention. Singh et al. (2002a) observed that when the Sd, σ, starts approaching 2.5 (that is, for lognormal 
data, when CV > 22.74 and skewness > 11825.1), even a 99% Chebyshev (MVUE) UCL fails to provide 
the desired 95% coverage for the population mean, µ1. This is especially true when the sample size, n, is 
smaller than 30. For such extremely skewed data sets, the larger of the two UCLs: the
(M
EPC. It is also noted that, as the sample size increases, the H-UCL starts beha

herefore, depending upon the Sd, σ (actually its MLE σ̂ ), for lognormally distribT
use the H-UCL for samples of larger sizes such as greater than 70-100. This large sample size requir
increases as the Sd, σ̂ , increases, as can be seen in Table 2-4. ProUCL can compute an H-UCL for 
samples of sizes up to 1000. For lognormally distributed data sets of smaller sizes, some alternative 
methods to compute a 95% UCL of the population mean, µ1, are summarized in Table 2-4. 
 
Furthermore, it is noted that for moderately skewed (e.g., σ > 1- 1.25) data sets of larger sizes (e.g., n > 
100-150), the H-UCL becomes even smaller than the sample mean or Student’s t-UCL (and various other 
UCLs). It should be pointed out that the large sample behavior of H-UCL has not been investigated 
rigorously. For confirmation purposes (that is H-UCL does provide the 95% coverage for larger samp
lso), it is desirable to conduct such a

 
Since skewness (as defined earlier) is a function of σ (or σ̂ ), the recommendations for the computation
the UCL of the population mean are also summarized in Table 1-4 for various values of the MLE σ̂  of σ 
and the sample siz σ̂ ven b
e
mean based upon lognormally distributed data sets without nondetect observations.  
 

n ndation Ta .00.04 

 distrib

 of EPC terms. Therefore, us
VUE) UCL 

ed data <1.0 - se of C L has been replaced by respe
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nonpar yshev (Mean, Sd) UCL in all decision table ed in ProUCL 
Technical Gu ecommendations have also been incorporated in 
ProUCL 4.00.04 sofware.  A revised procedure to compute a 9 ibution is 
summarized n the following st
 
Skewed data sets should be first tested for a gamma distribution.  data sets 
(which can not be modeled by a gam  distribution), the method as su 4 may be 
used to compute a 95% UCL of t e discouraged ution to estimate 
the EP  
 
Table 2-4. Summary Table for the Computation of a 95% UCL of the Unknown Mea  a Lognormal Population 
 

Sample Size, n 

ametric Cheb
ide and User Guide. Those revised r

s (e.g., Table 2-4) summariz

5% UCL for lognormal distr
 i eps: 

 For lognormally distributed
ma

he mean.  Users ar
mmarized in Table 2-

 to use lognormal distrib
C terms.    

n, µ1, of

σ̂  Recommendation 

σ̂  < 0.5 For all n Student’s t, modified t, or H-UCL 

0.5 ≤  < 1.0  σ̂ For all n H-UCL 

n < 25 9  5% Chebyshev (Mean, Sd) UCL
1.0 ≤ 5 

n ≥ 25 H-UCL 
 σ̂  < 1.

n < 20 99% Chebyshev (Mean, Sd) UCL 

20 ≤ n < 50 95% Chebyshev (Mean, Sd) UCL 
 

1.5 ≤ σ̂  < 2.0 
n ≥ 50 H-UCL 

n < 20 99% Chebyshev (Mean, Sd) UCL 

20 ≤ n < 50 97.5% Chebyshev (Mean, Sd) UCL 

50 ≤ n < 70 95% Chebyshev (Mean, Sd) UCL 

 
2.0 

n ≥ 70 

1.5 ≤ < 
 

H-UCL 

 σ̂  

n < 30 99% Chebyshev (Mean, Sd) 

30 ≤ n < 70 97.5% Chebyshev (Mean, Sd) UCL 

70 ≤ n < 100 95% Chebyshev (Mean, Sd) UCL 
2.5 ≤ <  σ̂  3.0 

n ≥ 100 H-UCL 

n < 15 Hall’s bootstrap method* 

15 ≤ n < 50 99% Chebyshev(Mean, Sd) 

50 ≤ n < 100 97.5% Chebyshev (Mean, Sd) UCL 

100 ≤ n < 150 95% Chebyshev (Mean, Sd) UCL 

 
3.0 ≤ ≤ 3.5 σ̂

 
 

n ≥ 150 H-UCL 

σ̂ For all n Use nonparametric methods*  > 3.5 

 
*In the case tha

ean may be co d) UCL 

 50-

t Hall’s bootstrap method yields an erratic unrealistically large UCL value, UCL of the 
mputed based upon the Chebyshev inequality: Chebyshev (Mean, Sm

 
• Specifically, for highly skewed (e.g., 1.5 < σ ≤ 2.5) data sets of small sizes (e.g., n ≤

70), the EPC term may be estimated by using a 97.5% or 99% Chebyshev (Mean, Sd) 
UCL of the population mean (or mass). For larger samples (e.g., n > 70), the H-UCL may 
be used to estimate the EPC.  

 
• For extremely highly skewed (e.g., σ > 2.5) lognormally distributed data sets, the 

population mean becomes unrealistically large. Therefore, the use of H-UCL should be 
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avoided especially when the sample size is less than100. For such highly skewed d
sets, Hall’s bootstrap UCL may be used when the sample size is less than 10-15 (Singh 
and Singh 2003). The small sample size requirement increases with σ̂ . For example, n = 
10 is considered small whe

ata 

n  = 3.0, and n = 15 is considered sm when  = 3.5. 

 

e 

developers of ProUCL 4.0 (and its upgrades) strongly suggest avoiding the use of lognormal distribution 
to estimate the EPC term. Computations of various lognormal distribution based statistics are available in 
ProUCL 4.00.04 for historical reasons and for the sake of comparison for interested practitioners. For 
highly skewed (e.g., with Sd exceeding, 1.0 – 1.5) lognormally distributed data sets, the developers re-
iterate to avoid the use of lognormal distribution and UCLs based upon lognormal distribution. Instead, 
the use of nonparametric methods (Efron and Tibshirani, 1993) and Chebyshev (Mean, Sd) UCL is 
recommended to estimate EPC terms. Based upon these observations, the developers have revised 
recommendations incorporated in ProUCL 4.00.04. These changes have been also made in decision tables 
summarized in this revised ProUCL Technical Guide and revised User Guide. A real data set illustrating 
these issues is discussed in the following. 
 
Example: The data set of size = 55, follows a lognormal distribution.  The observations are 0.083, 4.49, 
0.005, 17.4, 0.588, 10.9, 0.004, 1.76, 2.13, 0.144, 0.112, 0.191, 0.236, 4.15, 0.0338, 3.56, 0.0153, 0.154, 
0.004, 17.3, 0.0942, 76.9, 0.555, 34.1, 2.82, 4.63, 0.037, 73.9, 0.006, 0.004, 32.1, 16.3, 0.006, 79, 8.11, 
24, 0.004, 0.0109, 0.916, 6.28, 0.005, 0.004, 8.95, 6.93, 1.55, 0.124, 26.2, 0.0282, 0.005, 1.04, 0.0076, 
0.182, 1.94, 0.151 and 5.15.  Data is highly skewed with Sd of log-transformed data = 3.21. Use of 
lognormal distribution results in unrealistically large estimates of EPC term as can be seen from the 
ProUCL output given in the following. For example, 97.5% Chebyshev (MVUE) UCL = 268.2, which is 
unrealistically higher than the maximum detected observation, 79. The revised recommendation to 
estimate the EPC term is given by the nonparametic 97.5% Chebyshev (Mean, Sd) UCL = 24.15.  

 σ̂ all σ̂
 
• Hall’s bootstrap and bootstrap- t UCL methods should be used with caution as sometimes 

it yields erratic, inflated, and unstable UCL values, especially in the presence of outliers. 
For these highly skewed data sets of size, n (e.g., less than 10-15), in the case that Hall’s
bootstrap method yields an erratic and inflated UCL value, the 99% Chebyshev (Mean, 
Sd) UCL may be used to estimate the EPC term. ProUCL displays a warning messag
associated with the recommended use of Hall’s bootstrap method. 

 
Based upon the results of the research conducted to evaluate the appropriateness of applicability of 
lognormal distribution based estimates of EPC term (Singh, et. al., 1997, 1999, 2002, 2003), the 
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ametric Distribution-Free Skewed Data Sets without a Discernable Distribution 

 

2.5.1.4 Nonpar  

The use of gamma and lognormal distributions as discussed here will cover a wide
of skewed data distributio s. For skewed data sets which are neither gamma nor 
lognormal, one can use a onparametric Chebyshev UCL or Hall’s bootstrap UCL (for 

•  range 
n
n

small samples) of the mean to estimate the EPC term.  
 
• For skewed nonparametric data sets with negative and zero values, use a 95% Chebyshev 

(Mean, Sd) UCL for the population mean, µ1. 
 
For all other nonparametric data sets with only positive values, the following procedure may be used to 
estimate the EPC term. 
 

• For mildly skewed data sets with ≤ 0.5, one can use Student’s t-statistic or modified t- 
statistic to compute a 95% UCL of mean, µ1. 

 

σ̂
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• For nonparametric moderately skewed data sets (e.g., σ or its estimate, σ̂  in the interval 
(0.5, 1]), one may use a 95% Chebyshev (Me n, Sd) UCL of the population ma ean, µ1. 

 
• For no derately to highly skewed n the interval (1.0, 

2.0]), one  a 99% Chebyshe  
UCL of the population mean, µ1, to obtain an estimate of the EPC term. 

• For highly skewed to extremely highly ske nterval (2.0, 3.0], 
ay use Hall’s UCL or the 99% Chebyshev (Mean, Sd) UCL to compute the EPC 

term.  
 

Extremely skewed nonparametric data sets with σ exceeding 3.0 provide poor coverage. 
For such hi kewed data distributions, red provide the 
specified 9 erage for the population mean  provided by the 

eth as σ increases. For such data sets of siz s less than 30, a 95% 
UCL can b on Hall’s b  t method. Hall’s 
bootstrap m provides highest coverage (bu en the sample size is 
small. It is noted that the coverage for the population d by Hall’s method 
(and bootstrap t method) does not increase ncreases. 
However, as the sample size increases, coverage provided by the 99% Chebyshev (Mean, 

nparametric mo  data sets (e.g., σ̂  i
may use v (Mean, Sd) UCL or 97.5% Chebyshev (Mean, Sd)

 
wed data sets with σ̂  in the i

one m

• 
ghly s none of the methods conside
5% cov

ods decrease 
, µ1. The coverages

evarious m
e computed based up ootstrap method or bootstrap
ethod t less than 0.95) wh

 mean provide
much as the sample size, n, i

Sd) UCL method also increases. Therefore, for larger samples, a UCL should be 
computed based upon the 99% Chebyshev (Mean, Sd) method. Large sample size 
requirement increases as σ̂  increases. Recommendations are summarized in Table 2-5. 
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Table 2-5. Summa Set 
(with all Positive V
 

ry Table for the Computation of a 95% UCL of the Unknown Mean, µ1, Based Upon a Skewed Data 
alues) without a Discernable Distribution, Where σ̂  is the sd of Log-transformed Data 

Sample Size, n Recommendation σ̂  

σ̂  For all n 95% UCL based on Student’s t- or Modified-t statistic ≤ 0.5 

0.5 < ≤ 1.0 σ̂  For all n 95% Chebyshev (Mean, Sd) UCL 

n < 50 99% Chebyshev (Mean, Sd) UCL 
1.0 < ≤ 2.0 σ̂  

n ≥ 50 97.5% Chebyshev (Mean, Sd) UCL 

n < 10 Hall’s Bootstrap UCL* 
2.0 < ≤ 3.0 σ̂  

n ≥ 10 99% Chebyshev (Mean, Sd) UCL 

n < 30 Hall’s Bootstrap UCL* 
3.0 < σ̂  ≤ 3.5 

n ≥ 30 99% Chebyshev (Mean, Sd) UCL 

n < 100 Hall’s Bootstrap UCL* 
σ̂  > 3.5 

n ≥ 100 99% Chebyshev (Mean, Sd) UCL 

 
*If Hall’s boots
present), a UCL me
method.  

2.5.2 Sum a an, 
µ1, Based Upo o

1. m 
 data 

 

ks 

ulations.  
 

. It is, therefore, recommended to always use the graphical Q-Q plot as it provides useful 
information about the presence of multiple populations (e.g., site and background data 
mixed together) or outliers. Both graphical Q-Q plot and formal goodness-of-fit tests 

trap method yields an erratic and unstable UCL value (e.g., happens when outliers are 
 of the population an may be computed based upon the 99% Chebyshev (Mean, Sd) 

m ry of the Procedure to Compute a 95% UCL of the Unknown Population Me
n Full Data Sets without Nondetect Observati ns 

The first step in computing a 95% UCL of a population arithmetic mean, µ1, is to perfor
goodness-of-fit tests to test for normality, lognormality, or gamma distribution of the
set under study. ProUCL has three methods to test for normality or lognormality: the 
informal graphical test based upon a Q-Q plot, the Lilliefors test, and the Shapiro-Wilk W
test. ProUCL also has three methods to test for a gamma distribution: the informal 
graphical Q-Q plot based upon gamma quantiles, the Kolmogorov-Smirnov (K-S) EDF 
test, and the Anderson-Darling (A-D) EDF test. 
 
ProUCL generates a quantile-quantile (Q-Q) plot to graphically test the normality, 
lognormality, or gamma distribution of the data. There is no substitute for graphical 
displays of a data set. On this graph, a linear pattern (e.g., with high correlation such as 
0.95 or higher) displayed by bulk of data suggests approximate normality, lognormality, 
or gamma distribution. On this graph, points well separated from the majority of data 
may be potential outliers requiring special attention. Also, any visible jumps and brea
of significant magnitudes on a Q-Q plot suggest that more than one population may be 
present. In that case, each of the populations should be considered separately. That is, a 
separate EPC term should be computed for each of the pop

2
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should be used on the same data set before determining the distribution of the dat
under investigation. A single test statistic such as the Shapiro-Wilk test (A-D test or som
other GOF test) may lead to the incorrect conclusion that the data are normally (or 
gamma) distributed even when there are more than one population present. Only a 
graphical display, such as an appropriate Q-Q, can

a set 
e 

 provide this kind of important 
information. Obviously, when multiple populations are present, those should be separated 

t to 
L 

tical procedures (Shapiro-Wilk test, K-S test) should be used on the 
same data set to determine the most appropriate distribution of the data set under study. 

 
3. After performing the goodness-of-fit test, ProUCL informs the user about the data 

distribution: normal, lognormal, gamma distribution, or a non-discernable distribution. 
 
4. For a normally distributed (or approximately normally distributed) data set, the user is 

advised to use Student’s t-distribution-based UCL of the mean. Student’s t-distribution 
(or modified t-statistic) may also be used to compute the EPC term when the data set is 

symmetric (e.g., 

out and the EPC terms (the UCLs) or other estimates (e.g., BTVs) should be computed 
separately for each of those populations. Therefore, it is strongly recommended no
skip the GOF tests option in ProUCL 4.0. Since the computation of an appropriate UC
depends upon data distribution, it is advisable that the user should take his time (instead 
of blindly using a numerical value of a test statistic in an effort to automate the 
distribution selection process) to determine the data distribution. Both graphical (e.g., Q-
Q plots) and analy

3k̂ is smaller than 0.2-0.3) or mildly skewed; that is, when σ or  is 

less than 0.5. 
 
5. For gamma distributed (or approximately gamma distributed) data sets, the user is 

advised to: use the approximate gamma UCL for ≥ 0.5; use the adjusted gamma UCL 

for 0.1 ≤  < 0.5; use the bootstrap t method (or Hall’s method) when  < 0.1 and the 
sample size, n < 15; and use the adjusted gamma UCL (if available) for  < 0.1 and 
sample size, n ≥ 15. If the adjusted gamma UCL is not available, then use the 
approximate gamma UCL as an estimate of the EPC term. In the case that the bootstrap t 
method or Hall’s bootstrap method yields an erratic inflated UCL (e.g., when outliers are 
present) result, the UCL should be computed using the adjusted gamma UCL (if 
available) or the approximate gamma UCL.  

 
6. For lognormal data sets, ProUCL recommends (as summarized in Table 2-4) a method to 

estimate the EPC term based upon the sample size and standard deviation of the log-
transformed data, . ProUCL can compute an H-UCL of the mean for samples of sizes 
up to 1000. Nonparametric UCL computation methods such as the modified t, CLT 
method, adjusted-CLT method, bootstrap and jackknife methods are also included in 
ProUCL. However, it is noted that nonparametric UCLs based upon most of these 
methods do not provide adequate coverage to the population mean for moderately skewed 
to highly skewed data sets (e.g., Singh and Singh, 2003). 

 
 
 
 
 

σ̂

k̂  

 k̂ k̂
k̂

σ̂
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7. For data sets, which are not normally ognormally, or gamma distributed, a 
nonparametric UCL of the mean based upon the Chebyshev inequality is preferred. The 
Chebyshev (Mean, Sd) UCL does not depend upon any distributional assumptions and 
can be used for moderately to highly skewed data sets which do not follow any of the 
three data distributions incorporated in ProUCL.  

 
8. It should be noted that for extremely skewed data sets (e.g., with  exceeding 3.0), even 

a Chebyshev inequality-based 99% UCL of the mean fails to provide the desired 
coverage (e.g., 0.95) of the population mean. A method to compute the EPC term for 
distribution-free data sets is summarized in Table 2-5. It should be pointed out that in the 
case that Hall’s bootstrap method appears to yield erratic and inflated results (typically 
happens when outliers are present), the 99% Chebyshev UCL may be used as an estimate 
of the EPC term. 

 

, l

σ̂
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Chapter 3 
 

Estimating Background Threshold Values or Establishing Si
Specific Background Concentrations Using Full Data Set

without Nondetect (ND) Observations 

te-
s 

- 

 a 

s 

e to perform point-by-point site 
bservations (preferably composite samples) comparisons with BTVs or with some pre-established 

 
 

sis 

TVs 

me 
 are compared with some BTVs to determine if enough remediation (at the 

pacted areas of the site) has been performed yielding remediated site concentrations which are 

hase) 

riate background data 
et without any nondetect observations. Methods to estimate the BTVs based upon data sets with NDs are 

described in Chapter 5 of this Technical manual.  
 

3.1 Introduction 

Often in environmental applications, site-specific background level contaminant concentrations are 
needed to compare site concentrations (e.g., both before and after some remediation activities) with 
background level contaminant concentrations, also called as background statistics or background 
threshold values (BTVs). These BTVs are computed based upon the sampled data collected from the site
specific background as determined by all interested parties, including the potentially responsible parties, 
local, and federal government agencies. Many times, intermediate or future remediation decisions at
polluted site are made after performing such background versus site comparisons. A site observation 
exceeding a BTV can be viewed as coming from a contaminated area of the site under study. It is, 
therefore, important that these background statistics be computed using appropriate background data set
and defensible statistical methods. Some minimum sample size requirements (e.g., sample size >8-10) to 
estimate the BTVs based upon background data sets have been discussed in Chapter 1 of this guidance 
document. Chapter 1 also discusses situations when it may be appropriat
o
threshold values. Specifically when not more than 4-6 site observations need to be compared individually
with estimated or pre-established BTVs, one may compare point-by-point site observations with BTVs
and other threshold values. If more than 8-10 (preferably more) site observations are available, then it is 
preferable to use single sample hypothesis (in case BTVs are pre-established) or two-sample hypothe
(in case BTVs need to be estimated using background data) testing approaches to perform site versus 
background comparisons. This chapter describes statistical limits that may be used to estimate the B
and other not-to-exceed values for full data sets without any nondetect (ND) observations. Statistical 
limits based upon data sets with nondetect observations are discussed in Chapter 5. Chapter 6 discusses 
the various single sample and two-sample hypotheses testing approaches for data sets with and without 
NDs as incorporated in ProUCL 4.0.  
 
It should be pointed out that the availability of background statistics as discussed in this chapter is 
particularly useful when individual site observations from impacted areas of the site (perhaps after so
remediation activities)
im
comparable to background level concentrations. This method of site versus background comparisons is 
also useful when not enough site data are available to perform two-sample comparisons such as the t-test 
or the nonparametric Wilcoxon Rank Sum (WRS) test. Moreover, in practice, during remediation 
activities, it is desirable to compare each individual site observation (collected during remediation p
with some pre-determined or estimated background level threshold value(s). Sometimes pre-established 
screening levels are used as estimates of background threshold values. However, in practice, these BTVs 
need to be estimated based upon site-specific background (or reference) data sets collected using 
appropriate sampling methods and data quality objectives (DQOs). This chapter describes procedures, 
which can be used to compute relevant background statistics based upon an approp
s
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When enough site and background data are available, it is recommended to use two-sample tests (t-t
WRS test, etc.) to perform background versus site comparisons. Parametric and nonparametric proce
(hypotheses testing) can be used to compare the measures of central tendencies of the two populations 
(background versus site) when enough detected data are available from the two populations under 
consideration. Hypothesis testing approaches to perform site versus background comparisons are 
discussed in Chapter 6 of this Technical guidance document. 

est, 
dures 

 
This chapter (and also Chapter 5) deals with the computation of background statistics (BTVs) when it is 
known/assumed that the underlying data set does represent a sample collected from some site-specific 
background a i that all of the observations (at least most of them) come 
from a single background population. However, since outliers are inevitable in most environmental 
applications, som in a background data set. These outlying observations 

eed to be identified before computing the background statistics as outliers, when present, distort all of 
the statistics ediation 
ecisions for the site under study. The inclusion (or exclusion) of outliers in a background data set needs 

 

d 

 consist of 
amples from the background areas as well as from various areas of the site under study. In this situation, 

h, 

m 

ing the 
sample. Throughout this chapter, it is 

assumed that one is dealing with a sample from a single population representing a valid site-related 

 

om 
iliar 

 next 

 

 are (s). That is, it is assumed a prior

e outliers may also be present 
n

 of interest (such as background statistics), which in turn may lead to incorrect rem
d
to be justified before performing other relevant statistical analyses. All interested parties should be 
involved in such decision making to determine the inclusion or exclusion of outliers in a background data
set. The proper identification of multiple outliers is a complex issue and is beyond the scope of this 
document. A brief description of outlier identification is given in Section 1. A couple of outlier tests as 
incorporated in ProUCL 4.0 are given in Chapter 7 of this Technical document. Some discussions about 
the disposition of outliers are provided in Chapter 3 of the revised Guidance for Comparing Backgroun
and Chemical Concentrations in Soil for CERCLA Sites (EPA, 2002b). 
 
A more complicated problem arises when the data set under study represents a mixture sample, which is 
inevitable in many environmental applications. In these cases, the data set under study may
s
first one has to separate the background observations from other site related observations. After the 
background data set has been properly identified, one can proceed with the computation of background 
statistics as presented later in this chapter. However, separation of background data from a mixture 
sample is not an easy task. Using the population partitioning techniques, statisticians (e.g., see Sing
Singh, and Flatman, 1994) have developed some background separation methods from mixture samples. 
However, the topics of population partitioning and the identification of a valid background data set fro
the mixture sample are beyond the scope of ProUCL 4.0 and this guidance document. It requires 
developing a separate chapter, which will deal with the population partitioning methods includ
identification of a valid background data set from a mixture 

background data set. 

The first step in establishing site-specific background level contaminant concentrations for site-related 
hazardous analytes is to perform background sampling to collect an appropriate number of samples fr
the designated site-specific background areas, perhaps using the input from experts and personnel fam
with the site operations and history. An appropriate DQO process should be followed to collect an 
adequate number of background samples. Once the adequate amount of data has been collected, the
step is to determine the data distribution. This is typically done using exploratory graphical tools as well 
as formal goodness-of-fit tests. These tests are described in several environmental documents (EPA 2006, 
ProUCL 2004, and Navy documents 1999, 2002a, 2002b). In addition to graphical displays, ProUCL 4.0
has goodness-of-fit (GOF) tests for normal, lognormal, and gamma distributions.  
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Once the data distribution of a background data set has been determined, one can use parametric or 
nonparametric statistical methods to compute background statistics. Several upper limits have been 

corporated in ProUCL 4.0 that may be used as estimated of BTVs and other not-to-exceed values. A 

, 

 or 
e 

ed as background threshold values to compare individual site observations with background level 
ontamination. Typically, a site observation (possibly based upon composite samples) in exceedance of a 

ered as 

s 

ersus 

n 

f 

 higher ordered 
atistics such as the largest value or the second largest value. In the case of extreme high observations, 

may be outlying observations representing contaminated observations from 
e site (e.g., a large Federal Facility) under study. Decisions made based upon outliers or distorted 

in
review of the environmental literature reveals that one or more of the following statistical limits are used 
to compute the background statistics; that is, to determine background level contaminant concentrations
BTVs. The BTVs are called upper background cutoff levels. 

 
1. Upper percentiles 
 
2. Upper prediction limits (UPLs) 
 
3. Upper tolerance limits (UTLs) 

 
4. IQR Upper Limit (upper end of the upper whisker in a box and whisker plot) 

 
Depending upon the background data distribution, the background upper limits listed above can be 
computed by using parametric methods based upon probability distributions (e.g., normal, lognormal,
gamma) or by using nonparametric (distribution-free) methods. The background limits listed above ar
often us
c
background threshold value can be considered as coming from a contaminated site area that may have 
been impacted by the site-related activities. In other words, such a site observation may be consid
exhibiting some evidence of contamination at the site due to site-related activities. In case of an 
exceedance of the BTV by a site location, some practitioners like to verify the possibility of contaminated 
site location by re-sampling that location, and comparing the sample value with the BTV. 
 
The background threshold values are used when not enough site data (e.g., < 4-6 observations) are 
available to perform traditional two-sample comparisons (e.g., t-test, Wilcoxon Rank Sum test, Gehan’
test, etc.) as described in Chapter 6 of this document. In the absence of adequate amount of site data, 
individual point-by-point site observations have to be compared with some BTVs to determine the 
presence or absence of contamination due to site related activities. This method of comparing site v
background level contamination is particularly helpful to use after some sort of remediation activities 
have taken place at the site; and the objective is to determine if the remediated site areas have bee
remediated enough to the background level contaminant concentrations. A brief discussion of 
identification and disposition of outliers is considered first. 

3.2 Treatment of Outliers 

While computing reliable background statistics, it is essential that one is dealing with a single population 
representing site background without potentially impacted observations (outliers). Therefore, a brie
discussion on this topic is presented in this section. As well known, outliers, when present, typically 
represent observations from different populations(s), perhaps contaminated observations from the site 
under study. Outliers distort all of the statistics of interest, including the sample mean, the sample 
standard deviation, and, consequently, the parametric percentiles, and various upper limits such as UPLs, 
UTLs, and UCLs. It is noted that nonparametric upper percentiles are often represented by
st
these higher order statistics 
th
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statistics can be incorrect and misleading. Therefore, special attention should be given to such outl
tions.  

ying 
observa
 

ite, then 

 set. 

d robust 
 

entification procedures are beyond the scope of ProUCL 4.0. In environmental 

 
 resistant statistical procedures to identify multiple 

outliers. Several robust outlier identification procedures are available in Scout (EPA, 1999) software 
grade. It is recommended to supplement the use of 

classical and robust procedures with graphical procedures such as box plots, quantile-quantile (Q-Q) 

L 4.0 is restricted to be used only on data sets without outliers. It is not a 
equirement to delete or omit the outliers before using estimation, UCL95, and various other limits 

 
 

. 
he statistics (e.g., upper limits) of interest should be computed using the majority of the data set 

 area). The outlying observation
hould be separately investigated to determine the reasons for their occurrences (e.g., errors or 

he 

ten used as nonparametric estimates of upper percentiles, upper prediction limits (UPLs), 
and upper tolerance limits (UTLs). Also, let yi = ln (xi); i = 1, 2, ... , n, then 

If justified, that is, if some outliers do represent observations from the contaminated areas of the s
those observations should not be included in the computation of BTVs. This decision should be a team 
effort to determine whether or not an identified outlier does represent an observation from the 
contaminated part of the site. Such an outlying observation should not be part of the background data
Specifically, such an observation should not be used in the computation of background statistics. All 
interested parties should be involved in making such decisions. Several classical (EPA, 2006) an
(Singh and Nocerino, 1995) statistical procedures are available to identify multiple outliers. Robust and
resistant outlier id
applications (EPA, 2006 and Navy, 2002a, 2002b), classical procedures are used to identify outliers. A 
couple of those classical outlier tests are available in ProUCL 4.0. As mentioned before, classical outlier 
procedures suffer from masking effects as they get distorted by the same outlying observations that they
are supposed to find! It is suggested to use robust and

package, which is currently under revision and up

plots.  
 
Note: It should be noted that the methods as incorporated in ProUCL 4.0 can be used on any data set 
(with or without nondetects) with or without the potential outliers. Specifically, it should not be 
misunderstood that ProUC
r
computation methods (e.g., KM (BCA) UCL, MLE) as incorporated in ProUCL 4.0. The fact of the matter 
is that the user should be aware of the fact that the inclusion of a few outliers in the computations of these
statistics may yield distorted estimates, UCL95, UPLs, UTLs, and various other statistics. Therefore, for
more accurate and reliable statistics and results, the authors of this Technical Guide recommend that 
whenever justified, the low probability outlying observations (often coming from different population(s)) 
should not be included in the computation of the statistics used in the various decision making processes
T
representing the dominant population (e.g., an AOC, a background s 
s
contaminated locations). It is always a good practice to compute the statistics with and without the 
outliers, and compare the potential impact of outliers on the decision making processes. 
 
Throughout this chapter, x1, x2, ... , xn  represent the background concentrations for a contaminant of 
potential concern (COPC) collected from some site-specific background or reference area. The objective 
is to estimate a BTV based upon this data set. The sample values are arranged in ascending order. T
resulting ordered sample (called ordered statistics) is denoted by x(1) ≤ x(2)  ≤ ... ≤ x(n). The ordered 
statistics are of

y and sy represent the mean 
ransformed data. Some parametric and nonparametric upper limits and standard deviation (sd) of the log-t

often used to estimate BTVs are described throughout the rest of this chapter. 
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3.3 Upper p*100% Percentiles as Estimates of Background Threshold      

nonparametric percentiles are briefly described as follows.  

l e 

computed based upon the sampled data.  

.3.1 Nonparametric p*100%

lue 
95% percentiles may be used when the background data 

(raw or transformed) do not follow a normal or a gamma distribution at some specified (e.g., d = 0.05, 

 
 

en 1 
thus 

us 
ies between 

x(16.15) = x(16) + 0.15 (x(17) - x(16) ). (3-1) 
 

t some other users compute the pth nonparametric percentile by the order statistic given by 
e (pn+0.5) th order statistic, while others compute the pth nonparametric percentile b

given by the (p*(n+1)) th order statistic. As mentioned above, if the number computed in not a whole 
umber, then the percentile is computed using the linear interpolation illustrated above. In any case, if for 

Values (BTVs) 

Some Navy documents (1999, 2002a, 2002b) suggest the use of the 95th upper percentiles of the 
background distribution as estimates of the background level threshold values (e.g., pages 46, 137 Navy 
2002b). However, explicit parametric formulae for the computation of the 95th percentiles are missing 
from the Navy (e.g., 2002a, 2002b) documents, making it difficult for a typical user to use the 95% 
percentiles as estimates of BTVs. Since these percentiles do represent a feasible method to compute 
background threshold values, (one of the objectives of the present document), for clarification, 
computation of both parametric as well as 
  
In most statistical textbooks (e.g., Hogg and Craig, 1995), the pth (e.g., p = 0.95) sample percenti e (of th
measured sample values) is defined as that value, px̂ , such that p100% of the background data set lies at 
or below it. The carat sign over xp, indicates that it represents a statistic (an estimate of the pth population 
percentile) 

3  Percentile 

It is quite simple to compute a nonparametric 95% percentile of a background data set. It should be 
pointed out that such nonparametric sample percentiles (for 0 < p <1) cannot exceed the maximum va
in a background data set. These nonparametric 

0.1) level of significance. 

It is noted that, the practitioners compute these nonparametric pth percentiles (quantiles) in more than one
way. Some users compute the pth using the pnth order statistic, which may be a whole number betwe
and n or a fraction lying between 1 and n. For example, if n = 20, and p = 0.95, then 20*0.95 = 19, 
the 19th ordered statistic represents the 95% percentile. If n = 17, and p = 0.95, then 17*0.95= 16.15, th
the 16.15th ordered value may be used as an estimate of the BTV. The 16.15th ordered value l
the 16th and the 17th order statistics and can be computed by using simple linear interpolation given by:  
 
 

It is noted tha
th y the order statistic 

n
a given value of p, the resulting number, (p*(n+1)) exceeds n, then that pth percentile is estimated by the 
nth order statistic, that is by the maximum value. In ProUCL 4.0, the pth nonparametric percentile is 
estimated by the (p*(n+1)) th order statistic. This formula is used on data sets with and without ND 

bservations. o

3.3.2 Normal p*100% Percentile 

The computation of normal upper percentiles has been considered next. First, compute the sample mean, 
x , and standard deviation (sd), s, using a defensible (e.g., outliers, multiple populations, mixture 
populations are not allowed) background data set without the outliers. For normally distributed data sets, 
the p*100th sample percentile is given by the following statement. 
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 pp szxx +=ˆ  (3-2) 

ere zp is the p*100th percentile of a standard normal, N (0,1), distribution, which means that the area 
nder the standard normal curve) to the left of zp is p. If the distributions of the site data and the 

mparable and similar (meaning no contamination due to the site related activities), 
ing from a population (e.g., site) similar (comparable) to that of the background 

entile, , of a lognormally distributed data set, the sample mean, 

 
H
(u
background data are co
then an observation com
population should lie at or below the p*100% upper percentile, px̂ , with probability p. Thus, the 95% 
percentile given by the above equation (for p = 0.95 or 0.99) may also be used as an estimate of the 
background threshold value when the background data are normally distributed.  

3.3.3 Lognormal p*100% Percentile 

To compute the pth upper perc  px̂ y , and 
standard deviation (sd), sy, of log-transformed data are computed first using a defensible background data 
set without outliers. For lognormally distributed data sets, the p*100th percentile is given by the following 
statement, 
 
 )exp(ˆ pyp zsyx += , (3-3) 
 
where, as before, zp is the upper p*100th percentile of a standard normal, N(0,1), distribution. A 95th 
percentile given by the above equatio C when the 

ackground data are lognormally distributed.  

Gamma p*100% Percentile 

Since the introduction of a gamma distribution, G (k, ), is relatively new in environmental applications 
.g., Singh, Singh, and Iaci 2002), a brief description of the gamma distribution is given first. The 

equations giving the maximum likelihood estimates (MLEs) of the gamma parameters, k (= shape 
ter), can be found in Singh, Singh, and Iaci (2002) and also in the 

ProUCL 3.0 Technical Guide (EPA, 2004). A random variable (RV), X (e.g., Aroclor 1254 

n may be used as an estimate of the BTV for a COP
b

3.3.4 

θ
(e

parameter) and θ (= scale parame

concentrations), follows a gamma distribution, G (k,θ), with parameters k > 0 and θ > 0, if its probability 
density function is given by the following equation: 
 

 
otherwise

xexθkxf θxk ;1),;( 1= −−

kθ
;0

)(Γ
=

k 0>
 (3-4) 

 
The mean, variance, and skewness of a gamma distribution are given by: mean = µ = kθ, variance = σ2 = 
kθ2, and skewness = k/2 . Note that as k increases, the skewness decreases, and, consequently, a 
gamma distribution starts approaching a normal distribution for larger values of k (e.g., k ≥ 6 - 8). 
 
Let  and  represent the maximum likelihood estimates (MLEs) of k and θ respectively. Note the 
relationship between a chi-square and a gamma distribution. Specifically, the relationship between a 
gamma RV, X = G (k, θ), and a chi-square RV, Y, is given by X = Y * θ /2, where Y follows a chi-square 
distribution with 2k degrees of freedom. Thus, the percentiles of a chi-square distribution (as programmed 

k̂ θ̂
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in ProUCL) can be used to determine the percentiles of a gamma distribution. In practice, k is replaced by 
its MLE. Thus, once an α*100% percentile, y(α), of a chi-square distribution with 2k degrees of freedom is 
obtained, the α*100% percentile for a gamma distribution can be obtained by using the equation: 
 
 xα = yα *θ /2 (3-5) 

 

3.3.5 Example 1 

Consider a site-specific background data set associated with a Superfund site. The data set has several 
inorganic contaminants of potential concern, including aluminum, arsenic, chromium, and lead. The 
computation of background statistics obtained using ProUCL 4.0 are summarized in this example. The 
complete data set is given in Appendix 5 of the Guidance for Comparing Background and Chemical 
Concentrations in Soil for CERCLA Sites (EPA, 2002b). 

3.3.5.1 Normal Percentile 

etermined that aluminum follows a normal 
m the Q-Q plot as given in Figure 3-1. 

stribution, a normal 95% upper percentile may be used as an 
of aluminum data set is 7789.1667, the standard deviation, s, is 

 normal 

Using the Shapiro-Wilk test as incorporated in ProUCL, it is d
distribution at 5% significance level. This can also be seen fro
Since the data set follows a normal di
estimate of the BTV. The sample mean 
4263.8969, and z0.95, the upper 95% percentile of a standard normal distribution, is 1.6449. Thus
95% percentile for aluminum is: 
 

95.095.0ˆ szxx += = 7789.1667 + 4263.8969 * 1.6449 = 14802.8507 
 

 
 
Figure 3-1. Shapiro-Wilk Normal Distribution Test for Aluminum 
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3.3.5.2 Lognormal Percentile 

Using ProUCL 4.0, it is determined that chromium concentrations follow a lognormal distribution at 5% 
level of significance. This can also be seen from the chromium Q-Q as given in Figure 3-2. The sample 
mean and standard deviation of the log-transformed data are y = 2.3344, and sy = 0.5678. Thus the 95% 
upper percentile for chromium is given by the following equation: 
 

)exp(ˆ 95.095.0 zsyx y+= =  exp(2.3344 + 0.5678 * 1.6449) = 26.26868 

 

 
 

igure 3-2. Shapiro-Wilk Lognormal Distribution Test for Chromium F

3.3.5.3 Nonparametric Percentile 

Using ProUCL, it is determined that Lead (Pb) concentrations do not follow any of the known 
distributions as incorporated in ProUCL 4.0. Therefore, an upper nonparametric 95  percentile may be 
used as an estimate of the BTV for lead concentrations. A 95% nonparametric upper percentile is given
by the 0.95*n  order statistic for n=24,  
 

th

 

95% Upper Percentile = x(0.95n) = x(22.8) = x(22) + 0.8(x(23)  - x(22)). 

th

 
The value for x(22) is  53.3 and  for  x(23) is 98.5. Thus, a 95% Upper Percentile = 53.3 + 0.8 * (98.5 – 53.3) 
= 89.46.  

3.3.5.4 Gamma Percentile 

Using ProUCL, it is determined that Arsenic (As) concentrations follow a gamma distribution. The 
gamma Q-Q plot displaying Anderson-Darling test statistic is given in Figure 3-3.  
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he bias-corrected MLE for k is 3.6616 and the bias-corrected MLE of θ is 0.5867. The 95% percentile 
 

that arsenic concentrations also follow a lognormal distribution. Therefore, for comparison, 
al s follows in Table 3-1. This also includes the normal percentile 

ormal distribution. 

T
for a chi-square distribution with degrees of freedom (df) k̂2  is yα = 14.5362. Using these values, one can
derive the 95% gamma percentile as follows: 
 

xα = yα * θ / 2 = (14.5362 * 0.5867) / 2 = 4.2643. 
 
It is noted 
sever upper percentiles are tabulated a
even though arsenic does not follow a n
 

 
 

Figure 3-3. Anderson-Darling Gamma Distribution Test 
 
Table 3-1. 95% Percentiles for Arsenic 
 

Distribution 95% Percentile 
Normal 4.0564 

Gamma 4.2643 

Lognormal 4.3877 

Non-discernable 3.7000 

 
 
The 1989 RCRA document is one of the early EPA guidance documents. The RCRA document talks 

 to determine the presence or absence of contamination in 
compliance wells. The UPLs or UTLs are computed based upon the background data sets (e.g., upstream 

n 

 

about the use of both 95% UTLs and 95% UPLs

data, upgradient wells, site-specific background). Compliance well observations (or site data) are the
compared with the background well (or background data) UTL or UPL. An exceedance in compliance 
well may suggest some evidence of contamination in that well. Similar arguments can be made when 
comparing concentrations of soil samples from an impacted site area with some site-specific background
concentrations. 
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In 1992, EPA upgraded the 1989 RCRA do ent and e up with its addendum. This 1992 addendum cum  cam
lso talks about the use of UTLs and UPLs as estimates of background level threshold values. The 1992 

hapter 
 

a
addendum modifies the formula for 95% UTL as given in the 1989 RCRA document (page 51, C
4). The multipliers, k (used to compute a 95% UTL), as given in the 1989 document, are meant to provide
at least 95% coverage. The 1992 addendum states that, in practice, the use of this factor, k, as given in 
Table 2-5 of the 1989 document, provides 98% (and not 95%) coverage. This is especially true when one 
is dealing with samples of small sizes. Thus, the use of factor k (to compute a UTL), as described above, 
may result in more false negatives (larger background statistics), which is not protective of the 
environment and human health. Therefore, a modified multiplier, which is the same as the prediction limit 
multiplier, has been suggested in the 1992 RCRA addendum. In the 1992 addendum, it is stated that this 
modified multiplier will on the average provide the specified coverage (= 95% here).  

rage’s provided by the 95% UTLs and 95% 

 
 
 

ovide appropriate coverage for a proportion, p% (e.g., 80%, 90%, 
5%  that an 

upp o alled the 
ov g th 
ercentile

mple mean, 

 
However, it desirable that these statements about the cove
UPLs be verified by Monte Carlo simulation experiments. As mentioned before, BTVs are often used to 
make remediation decisions at polluted sites. Therefore, these BTVs should be computed using defensible
statistical procedures. This section describes the computation of UTLs as well as UPLs. Both parametric
as well as nonparametric UTL and UPL computation procedures have been summarized in the following
sections.  

.4 Upper Tolerance Limits 3

For many environmental applications, such as the groundwater monitoring applications, an upper 
lerance limit (UTL) is often used to prto

9 , coverage, etc.) of future observations with confidence coefficient, (1 – α). It should be noted
er t lerance limit with confidence coefficient, (1 – α), covering a proportion of p% (p is also c
era e coefficient), observations simply represent a (1 – α)100% upper confidence limit of the pc

p  of the population under study (here the background population). 

3.4.1 Normal Upper Tolerance Limits 

irst, compute the sa xF , and standard deviation (sd), s, using a defensible (e.g., outliers, 
ultiple populations, mixture populations not allowed) background data set without the outliers (e.g., see 

ted data sets, an upper ce 
or coverage coefficient = p (that is providing coverage to at least p100% proportion of observations) is 

m
Example 2 below). For normally distribu (1 – α)100% tolerance limit with toleran

given by the following statement. 
 
 UTL = sKx *+  (3-6) 
 
Here, K = K (n, α, p) is the tolerance factor and depends upon the sample size, n, confidence coefficient = 
(1 – α), and the coverage proportion = p. The UTL given by the above equation represents a (1 – α)100% 

th lying normal distributions. The values of the 
in the various statistical books (e.g., Hahn and 

confidence interval for the p  percentile of the under
tolerance factor, K, have been tabulated extensively 
Meeker 1991). Those K values are based upon non-central t-distributions. Also, some large sample 
approximations (e.g., Natrella, 1963) are available to compute the K values for one-sided tolerance 
intervals (same for both UTLs and lower tolerance limit). The approximate value of K is also a function 
of the sample size, n, coverage coefficient, p, and the confidence coefficient, (1 – α). In the ProUCL 4.0 
software package, the values of K for samples of sizes ≤ 30, as given in Hahn and Meeker, have been 
directly programmed. For sample sizes larger than 30, the large sample approximations, as given in 
Natrella (1963), have been used to compute the K values. The Natrella’s approximation seems to work 
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well for samples of sizes larger than 30 (Hahn and Meeker 1991). The program, ProUCL, seems to w
well to compute these K values for sample of sizes as large as 5000 (and even larger). 

ork 

.4.2 Lognormal Upper Tolerance Limits 

 

3

The procedure to compute UTLs for lognormally distributed data sets is similar to that for normally
distributed data sets. First, the sample mean, y , and standard deviation (sd), sy, of the log-transformed 
data are computed using a defensible unique background data set without outliers. An upper (1 – α)100%
tolerance limit with tolerance or coverage coefficient = p (that is, providing coverage to at least p100% 
proportion of observations) is given by the following statement. 
 
 UTL = 

 

)*exp( ysKy +  (3-7) 
 
Note that, just as for the normal distribution, the UTL given by the above equation represents a  
(1 – α)100% confidence interval for the pth percentile of the lognormal distribution. The K factor used to 
compute the lognormal UTL is the same as the one used to compute the normal UTL. It should be noted 

at just as the upper confidence limits (UCLs) for the mean of lognormally distributed populations, the th
UTLs based upon lognormal distributions are typically higher (sometimes unrealistically higher as shown
in the following example) than other parametric and nonparametric UTLs. The use of a lognormal UTL to
estimate the BTV should be specifically avoided when skewness is high (e.g., sd of logged data > 1, 1.
and sample size is small (e.g., < 30, 50). 

3.4.3 Gamma Distribution Upper Tolerance Limits 

 
 

5) 

et x1, x2, …, xn represent a data set of size n from a gamma distribution with shape parameter, k and 
scale parameter θ.  
 

• According to WH approximation, Y = X1/3   follows an approximate normal distribution. 

Positively skewed environmental data can often be modeled by a gamma distribution.  ProUCL software 
has two goodness-of-fit tests (Anderson-Darling test and Kolmogorov-Smirnov test) to test for gamma 
distribution. UTL obtained using normal approximation to the gamma distribution (Krishnamoorthy et. 
al., 2008) has been incorporated in ProUCL 4.00.04. Those approximations are based upon Wilson-
Hilferty - WH (1931) and Hawkins-Wixley - HW (1986) approximations. A brief description of the 
procedure to compute such UTLs is given as follows. 
 
L

• According to HW approximation, Y = X1/4   follows an approximate normal distribution. 
 

y  and sy are the mean and standard deviation of the observations in the transformed scale (Y) 
 
Using the WH approximation, the gamma UTL based upon a sample of size n (in original scale, X), is 
given by: 
 

    UTL = ( )( )3
max 0, * yy K s+     (3-8) 

Similarly, using the HW approximation, the gamma UTL in original scale is given by: 
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    UTL = ( )4
* yy K s+      (3-9) 

 
Here K is defined earlier in (3.6) while computing UTL based upon normal distrib ution. 

3.4.4 Nonparametric Upper Tolerance Limits 

 
e to 

100% observations with confidence coefficient (CC) (1 – α)100% represents an (1 – α)100% upper 
s (given 
es, 

TLs. One has to be 
C of  

close as 
possible to the specified confidence coefficient, (1 – α). Based upon binomial cumulative probabilities, 

 have been also incorporated in ProUCL 4.0 software. 
 

d largest value for both UPL and UTL. 
owever, the use of the largest value as UPL (or UTL) may result in an overestimate, especially when 

esence of potential outliers in the background data set. Therefore, to be 
 the second largest (or even a 

g., well separated from the ), one 
gher (e.g., largest, second 

largest) order statistics (as estimates of BTVs) also depends upon the sample size of the background data 
ely that the higher order statistics (largest, or the second 

largest) can be chosen to estimate the BTV. As mentioned earlier, in practice, a few high observations 

he BTVs.  

 is also used as an estim cially 
eeds the largest value in a data set. Moreover, when a background 

ely that the maximum 
alue may represent an extreme value (perhaps from some impacted site area). The use of maximum 

rvals for percentiles) now 
llows. For details, the interested readers are referred to David and Nagaraja (2003), Conover (1980), 

and Hahn and Meeker (1991). The binomial distribution is used with the number of trials = the sample 
rtion of observations for which coverage is being 

sought). Using the cumulative binomial probabilities, a number, r: 1 ≤ r ≤ n, is chosen such that the 

The computation of nonparametric UTLs is somewhat messy as it is based upon binomial cumulative
probabilities and order statistics. Just like parametric UTLs, a nonparametric UTL providing coverag
p
confidence limit for the pth percentile of the population under study. Also, the nonparametric UTL

α). In most casby order statistics) cannot exactly achieve the specified confidence coefficient, (1 – 
only an approximate confidence coefficient can be achieved by nonparametric U
satisfied with the achievable confidence coefficient, which is as close as possible to the specified C
(1- α). Thus, an appropriate UTL is chosen which provides coverage for the pth percentile as 

the algorithms to compute nonparametric UTLs

It is noted that for simplicity and based upon professional judgment, the 1992 RCRA addendum 
recommends the use of either the largest value or the secon
H
there is a possibility of the pr
protective of the human health and the environment, it is preferable to use
lower order statistic) data value as a nonparametric UTL or UPL. Whenever, these higher order statistics 
represent potential outliers (e.  majority of the data on a normal Q-Q plot
should avoid their use as estimates of the BTVs. The selection of these hi

set. Specifically, for smaller data sets, it is lik

(outliers) may represent contaminated observations (e.g., well separated from the majority of the data on a 
normal Q-Q plot) and their selection should be avoided as nonparametric estimates of t
 
It is also noted that the largest value ate of the BTV when a 95% UTL (espe
for lognormal skewed data sets) exc
UTL does exceed the maximum value in the background data set, it is quite lik
v
value can be avoided by using appropriate upper percentiles (e.g., 95%) described earlier as estimates of 
background values.  
 
A brief description of the computation of nonparametric UTLs (confidence inte
fo

size, n, and the probability of success = p (the propo

cumulative binomial probability:  
 

∑
=

0
ssible to (1 – α). Then, the r  order statistic, x(r) is picked as  

 
=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ri
ini pp

i
n )()1( becomes as close as po th

i
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the (1 – α)100% UTL providing coverage to p100% of the observations in the sample under study 
(background data set here). This algorithm has been incorporated in ProUCL for samples of sizes up to 
2000. ProUCL 4.0 also prints out the order statistic, the estimate of the UTL, and the associated coverage
provided (achieved) by that order statistic. For larger samples, one can use the following approximation, 
which has also been incorporated in ProUCL. For n > 2000, a large sample normal approximation to th
binomial distribution can be used to obtain an upper confidence limit for the p

 

e 
: th percentile. The number, r

1 ≤ r ≤ n, used to compute the rth order statistics (to estimate the BTV) is obtained using the following 
equation: 
 

5.0)1()1( −α +−+= pnpznpr  (3-10) 

.4.5 Exam mputation of Upper Tolerance Limits  

Using the ed with a S nd site, th e 
various parametric and nonparametric u its h illustrated in this example. To 
illustrate the differences in the values of the UTLs as a functio p%, UTLs 
have been computed for four (4) different coverage coefficients,  = 80%, 90%, 95% .  

3.4.5.1 Normal Upper Tolerance Lim

3 ple 2: Co

background data set used earlier associat uperfu e computation of th
pper tolerance lim ave been 

n of the coverage coefficient, 
p% , and 99%

its 

As noted earlier (Figure 3-1), aluminum concentrations follow a normal distribution. Therefore, the 
various normal UTLs with coverage coefficients of 80%, 90%, 95%, and 99% are listed as follows. 
 

sKx *)80.0,95.0,24(+95% UTL (80% coverage) = = 7789.1667 + 1.331 * 4263.8969 = 13387.663 

95% UTL (90% coverage) = sKx *)90.0,95.0,24(+ = 7789.1667 + 1.853 * 4263.8969 = 15690.168 

95% UTL (95% coverage) = sKx *)95.0,95.0,24(+ = 7789.1667 + 2.309 * 4263.8969 = 17634.505 

95% UTL (99% coverage) = sKx *)99.0,95.0,24(+ = 7789.1667 + 3.181 * 4263.8969 = 21362.623 

3.4.5.2 Lognormal Upper Tolerance Limits 

As noted earlier, chromium background concentrations follow a lognormal distribution. The 95% UTLs 
based upon a lognormal distribution are given as follows. 
 
95% UTL (80% coverage) = )*exp( )80.0,95.0,24( ysKy +  = exp(2.3344 + 1.331 * 5678) = 21.7583 

95% UTL (90% coverage) = )*exp( )90.0,95.0,24( ysKy + = exp(2.3344 + 1.853 * 5678) = 29.5659 

95% UTL (95% coverage) = )*exp( )95.0,95.0,24( ysKy + = exp(2.3344 + 2.309 * 5678) = 38.3039 

95% UTL (99% coverage) = )*exp( )99.0,95.0,24( ysKy + = exp(2.3344 + 3.181 * 5678) = 62.8464 

3.4.5.3 Gamma Upper Tolerance Limits 

As noted earlier, Arsenic background concentrations follow a gamma distribution. The 95% UTLs based 
upon a gamma distribution (using WH and HW approximations) are given as follows. 
 

WH - 95% UTL (90% coverage) = ( )( )3

24,0.95,0.90 * yy K s+  = (1.2549 + 1.853*0.2155)3 = 4.5267 
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WH - 95% UTL (95% coverage) = = ( )( )24,0.95,0.95 * yy K s+  = (1.2549 + 2.309*0.2155)
3

 

3 = 5.3822 

HW - 95% UTL (90% coverage) = = ( )( )24,0.95,0.90 * yy K s+  = (1.1826 + 1.853*0.1518)
4

W - 95% UTL (95% coverage) = = 

4 = 4.5923 

 

( )( )4
+ 24,0.95,0.95 * yy K s  = (1.1826 + 2.309*0.1518)4 = 5.5244 H

 

3.4.5.4 Nonparametric Upper Tolerance Limits 

Earlier, it was determined that the background lead concentrations do not follow any of the known 
distributions as incorporated in ProUCL 4.0. For lead, 95% UTLs based upon binomial cumulative 
probabilities and order statistics are given in Table 3-2. It should be noted that the resulting UTL might 
not achieve the exact specified CC of 0.95.  
 
Following the procedure described earlier, a 95% UTL with coverage coefficient of 80% is represented
the 22  order statistic. The resulting UTL (22  order statistic) covers about 80% of the observations (t
is 80% observations are ≤ x ) with a probabilit

 by 
hat 

y (confidence coefficient) of 0.967 (instead of 0.95). A 
rd

statistics, the actual achieved 
 the user requested confidence coefficient of 95%. ProUCL 4.0 

e confidence coefficient closest to the user specified confidence 

nd nd

(22) 
95% UTL with a coverage coefficient of 90% is represented by the 23  order statistic. The resulting UTL 
(23rd order statistic) covers about 90% of the observations (that is 90% observations are ≤ x(23) ) with a 
probability (confidence coefficient) of 0.922 (instead of 0.95). Using order 
confidence, (1 - α) is often different from
selects the order statistic that achieves th
coefficient. 
 
            Table 3-2. Nonparametric Upper Tolerance Limits for Lead 
 

Coverage  Order Statistic Achieved 
Coefficient  (p%) Order Value Confidence (1 – α) 

80% x(  96.7% 22) 53.3

90% x 98.5 92.2% (23)

95% x(24) 109 100% 

99% 100%x(24) 109  

 
given by order statistics, every effort should be made to make 

sure that the chosen order statistic to estimate the BTV does not represent an outlying observation coming 
Caution: Since nonparametric UTLs are 

from a population other than the background population. 
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3.5 Nonparametric Upper Limit Based Upon Interquartile Range (IQR) – IQR 

 
his limit by the IQR Upper Limit. It is very simple to compute and is 

riefly described below. The simple formula to compute IQR Upper Limit is: 
 

IQR Upper Limit = Q3+ 1.5* IQR. (3-11) 

Here IQR = Q3 – Q1, the interquartile range, the difference between the third (upper) quartile, Q3, and 
d data set. The quartiles of a data set are defined in most 

Tukey, 1983). The three quartiles, Q1, Q2, and Q3 
 represents the 

w Q2 
edian), and 75% of the data li e

ther limits described in this chapter, individual 
 Any site red 
ation to c  been 

corporated in ProUCL 4.0 software package.  

s an estimate of a BTV is not well studied. Therefore, this limit 

it based upon the interquartile range (IQR) of the data 
f the background threshold value. Since le

Q1 = 8.7, Q

An estimate of the BTV based upon IQR is given as follows. 

IQR Upper Limit = Q3 + 1.5 * IQR = 19 + 1.5 * 10.3 = 34.45  

PLs) as estimates of background level threshold values. If the background and site 
ontaminant distributions are comparable, then a typical site observation should lie below a 95% UPL 

based upon a background data se
5% UPL can be considered as providing some evidence of contamination due to site related industrial 

Upper Limit 

Sometimes, an upper limit based upon the IQR of the background data set is used as an estimate of the
BTV. In this chapter, we denote t
b

 
 

the first (lower) quartile, Q1, of the backgroun
applied statistical books (e.g., Hoaglin, Mosteller and 
of a data set divide the data set into four (4) equal parts. Note that the second quartile

edian of the data set. Thus, 25% of the data lie at or below Q1, 50% of the data lie at or belom
(m e at or b low Q3; therefore, 25% of the data lie above Q3. Just like all 

site observations are compared with the IQR Upper o
Limit. concentration exceeding the background level IQR Upper Limit may be conside
justific onsider contamination at the site. The computation of IQR Upper Limit has also
in
 
Note: The behavior of an IQR-based limit a
should be used with caution to estimate the BTVs or not-to-exceed values. 

3.5.1 Example 3: IQR Upper Limit 

Sometimes, in practice, a nonparametric upper lim
set under study is used as an estimate o ad does not follow any 
of the parametric distributions as incorporated in ProUCL, an upper limit based upon the IQR can be used 
as an estimate of the BTV. This will require the use of the first quartile, Q1, and the third quartile, Q3. 
Here 3 = 19, and  
 

IQR = Q3 - Q1 = 10.3 
 

 

3.6 Upper Prediction Limits 

As mentioned before, both the 1989 RCRA document and its 1992 addendum suggest the use of upper 
prediction limits (U
c

t with probability 0.95. A site observation exceeding the background 
9
activities. Since a UPL does represent a plausible way of expressing background level contaminant 
concentration, a brief discussion of both parametric as well as nonparametric UTLs is presented in this 
section. 
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3.6.1 Normal Upper Prediction Limit 

The sample mean, x , and the standard deviation (sd), s, are computed first based upon a defensible 
unique (e.g., outliers, multiple populations, mixture populations not allowed) background data set without 
the outliers. For normally distributed data sets, an upper (1 – α)100% prediction limit is given by t
following well known equation: 
 

UPL = 

he 

)/11(**))1(),1(( nstx n ++ −−α  (3-12) 

Here  is a critical value from Student’s t-distribution with (n–1) degrees of freedom.  

imilarly given by the following equation: 

 
t ))1(),1(( −− nα

3.6.2 Lognormal Upper Prediction Limit 

An upper (1 – α)100% lognormal UPL is s
 

UPL = ))/11(**exp( nsty ++  (3-13))1(),1(( yn−−α ) 

n with (n–1) degrees of freedom. 
 
Here ))1(), −− nt α  is a critical value from Student’s t-distributio1((

 

3.6.3 Gamma Upper Prediction Limit 

Given a sample, x1, x2, …, xn of size n from a gamma, G(k, θ ) distribution, approximate (based upon 
H and HW approximations described earlier W

pr
in Gamma Tolerance Limit Section),  (1 – α)*100%  upper 

ediction limits for a future observation from the same  gamma distribution are given by: 

           Wilson-Hilferty (WH) UPL = ( ) ( )( )( )3

1 , 1
1max 0, * * 1yny t s nα− −

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
 (3-14)   

( ) ( )( )             Hawkins-Wixley (HW) UPL =   ( )4

1 , 1
1* * 1ynt s nα− −+ +  (3-15) 

t UPLs for the next k > 1 (k future observation) can be obtained similarly and have been 
corporated in ProUCL 4.00.04. 

3.6.4 Nonparametric Upper Prediction Limit 

As mentioned before, the background data set under consideration should represent a single population, 
nd should be free of outlying observations, which may represent data from impacted areas of the site. A 
ne-sided nonparametric UPL is simple to compute and is given by the following mth order statistic. One 
an use linear interpolation if the resulting number, m, given below does not represent a whole number (a 

positive integer). 

α). (3-16) 

y

 
Here ))1(),1(( −− nt α  is a critical value from Student’s t-distribution with (n–1) degrees of freedom.  It should 
be noted tha
in

a
o
c

 
UPL = X(m), where m = (n + 1) * (1 – 
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For example, for a nonparametric data set of size 25, a 90% UPL is desired. Then m = (26*0.90) = 23.4. 

UPL = X(23) + 0.4 * (X(24) - X(23) ) 

e BTVs. 

data set used earlier has been used in this example to illustrate various UPL 

Thus, a 90% nonparametric UPL can be obtained by using the 23rd and the 24th ordered statistics and is 
given by the following equation: 
 

 
Similarly, if a nonparametric 95% UPL is desired, then m = 0.95 * (25 + 1) = 24.7, and a 95% UPL can 
be similarly obtained by using linear interpolation between the 24th and 25th order statistics. However, if a 
99% UPL needs to be computed, then m = 0.99 * 26 = 25.74, which exceeds 25, the sample size. 
Therefore, for such cases, the highest order statistic (the largest value) has to be used as the 99% UPL of 
the background data set under study. The largest value(s) should be used with caution (as they may 
epresent outliers) to estimate thr

3.6.4 Example 4  

he same background T
computations available in ProUCL 4.00.04.  

.6.4.1 Normal Upper Prediction Limit3  

As noted earlier, the aluminum concentrations in our example do follow a normal distribution. A 95% 
PL for aluminum is given as follows. 

  
UPL =

U

)/11(**))1(),1(( nstx n ++ −−α  = 7789.17 + 1.7139 * 4.263.90 * 1.02 = 15247.628 
 

3.6.4.2 Lognormal Upper Prediction Limit 

The chrom ple 1 follow a l al distribution 5% UPL for 
chrom y the g equatio
  
UPL =

ium backgroun
ium is given b

d concentrations of Exam
 followin

ognorm . A 9
n. 

))/11(**exp(y ))1 sy(), nn ++ −α 44 + 1. 0.5678* 1.02) = 27.8738 

.6.4.3 Gamma Upper Prediction Limit

1((t − = exp(2.33 7139 * 
 

3  

ma distribution. Compuations for 95% 
below. ProUCL 4.00.04 generated output showing 

e computation of gamma distribution based UPLs and UTLs is also given in Figure 3-7 in the 
llowing. 

  

WH approximate UPL = 

Background arsenic concentrations of Example 1 follow a gam
PLs for arsenic based upon WH and HW are shown U

th
fo

( ) ( )( )( )3

1 , 1
1* * 1yny t s nα− −+ + = (1.2549 + 1.7139 * 0.2155*1.02)3 = 4.3438 

HW approximate UPL = ( ) ( )( )( )4

1 , 1
1* * 1yny t s nα− −+ + = (1.1826 + 1.7139 * 0.0.1518*1.02)4 = 4.3958 
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3.6.4.4 Nonparametric Upper Prediction Limit 

A nonparametric UPL can be computed using the following equation: 
 

UPL = X(m), where m = (n + 1) * (1 – α). (3-17) 
 
For lead concentrations, with n = 24 and (1 -α) = 0.95, the corresponding 95% UPL is given by the mth = 
23.75thorder statistic, which can be computed using simple linear interpolation as follows: 
X(23.75) = X(23) + 0.75(X(24) - X(23) ) = 98.5 + 0.75(10.5) = 106.375. 
 
Note: As mentioned before, nonparametric UPLs (and also UTLs) are typically represented by higher 
order statistics, or by some value in between (based upon linear interpolation) the higher order statistics. 
If those higher order statistics represent contaminated outlying observations, then a value lying between 
the two contaminated observations will also be an outlier. For example for lead, if the two high 
bservations: 98.5 and 109 are considered as outliers, then the 95% UPL = 106.375 as computed above 

herefore, nonparametric UTLs or UPLs should be used with caution to estimate the BTVs. Every effort 
hould be made to identify and separate the outlying observations before computing nonparametric limits 

to estimate the BTVs. 
 
For the comparison sake, the 95% UPLs for aluminum, arsenic, chromium, and lead as produced by 
ProUCL (irrespective of the data distribution) have been summarized in Table 3-3. 
 
 
          Table 3-3. 95% Upper Prediction Limits for Selected Contaminants 
 

 Inorganic Contaminants 

o
will also represent an outlier.  
 
T
s

Distribution Aluminum Arsenic Chromium Lead 

Normal 15247.63 4.1764 24.022 69.418 

Lognormal 19245.46 4.6277 27.874 59.784 

non-discernable  16000.00 5.3500 31.625 106.375 

WH 16987 4.345 25.33 61.21 
Gamma 

HW 17405 4.397 25.78 60.54 
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Figure 3-5. Shapiro-Wilk Normal Distribution Test for Lead 
 
 

 
 
Figure 3-6. Shapiro-Wilk Lognormal Distribution Test for Lead 
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Figure 3-7. All Background Statistics for Lead 
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Chapter 4 

 probabilities) performing UCL computation methods have been incorporated in ProUCL 4.0. 
L 4.0 can be used to compute UCLs of the population means 
le and multiple detection limits) from normal, lognormal, and 

06).  

ds 

ld values (BTVs)), 
e limits 

e 
c “rule-

aximum 
nd standard deviation, which are very different from the 

used in the definition of a typical Student’s t-statistic. This “rule-

s 

) 

 
Computation of Upper Confidence Limit of the Population Mean 

Based Upon Data Sets with Nondetect Observations 

4.1 Introduction 

Nondetects (NDs) or below detection limit (BDL) observations are inevitable in most environmental data 
sets. Singh, Maichle, and Lee (EPA, 2006) studied the performances of the various parametric and 
nonparametric UCL computation methods for data sets with NDs and multiple detection limits. This 
chapter represents a sub-chapter of Singh, Maichle, and Lee (EPA, 2006) summarizing their main 
findings and recommendations. Based upon their findings and results, some of the better (in terms of 
coverage
Specifically, the new UCL module of ProUC
based upon left-censored data sets (with sing
gamma distributions. The details of those methods can be found in Singh, Maichle, and Lee (EPA, 20
 
The estimation of mean and standard deviation (sd) based upon data sets with NDs have been studied by 
many researchers (Cohen, 1991, Gibbons and Coleman, 2001, Schneider 1986, Gilliom and Helsel, 1986, 
Singh and Nocerino, 2002, and Helsel, 2005). However, it is noted that not much guidance is available on 
how to accurately compute the various upper limits (e.g., UCLs, UPLs, UTLs) often used in 
environmental applications. For example, in many exposure and risk assessment applications, one nee
to compute a 95% upper confidence limit (UCL) of the mean based upon data sets with BDL 
observations.  
 
Also, in several background evaluation studies (e.g., estimating background thresho
one needs to compute upper prediction limits (UPLs), upper percentiles, and upper toleranc
(UTLs) using left-censored data sets. Statistical methods to compute upper limits (UPLs, UTLs) based 
upon data sets with BDL observations are described in Chapter 5 of this Technical document. In th
recent environmental literature (e.g., Millard 2000 and USEPA-UGD 2004), the use of some ad ho
of-thumb” type methods, based upon the Student’s t-statistic or Land’s H-statistic has been suggested to 
compute the 95% UCLs, 95% UTLs, and 95% UPLs. For example, it is noted that the Student’s t-statistic 
(on Cohen’s maximum likelihood estimates) is used to compute the upper prediction limit (pages 10-26, 
USEPA-UGD (2004)) without justifying its use. It should be noted that the distribution of the statistic 
used to construct the UPL (pages 10-26, USEPA-UGD (2004)) is unknown as it is based upon m
likelihood estimate (MLE) of the mean a
traditional mean and standard deviation 
of-thumb” method will be even harder to defend for skewed data sets with standard deviation of log-
transformed data exceeding 1.0.  
 
Let x1, x2, ..., xn (including NDs and detected measurement) represent n data values obtained from sample
collected from an area of concern (AOC) or some other population of interest (e.g., reference area). It is 
assumed that k : 1≤k≤n, observations lie below one or more detection limit(s), and the remaining (n - k
observations represent detected observations, which might come from a well-known parametric 
distribution such as a normal, a lognormal, or a gamma distribution, or from a population with a non-
discernable distribution. Since multiple detection limits are allowed, some of the detected data may be 
smaller than the detection limit(s) associated with ND observations.  
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Note: It should be noted that it is not easy to verify the distribution of left-censored data sets, especially 
when a large percentage (> 40% -50%) of observations are being censored (nondetected). In such ca
it is desirable to use nonparametric methods to compute various statistics (upper limits, hypothese
testing statistics) of interest. Several nonparametric methods to compute various upper limits based upo
data sets with ND observations are available in ProUCL 4.0. 
 
ProUCL 4.0 also provides some ad hoc goodness-of-fit (GOF) methods to verify the data distribut
based upon quantile-quantile (Q-Q) plot of the (n - k) detected observations su

ses, 
s 

n 

ion 
pplemented with the 

vailable GOF test (e.g., as in ProUCL 3.0) statistics computed using the detected observations. This 

d in 

gamma distributions, one can extrapolate and estimate the NDs. This process yields a full data set of size 
d k extrapolated nondetects. ProUCL 4.0 has the capability 

to store these data (k estimated and (n-k) original detected) in new columns (e.g., for use in other 
s. 

a
chapter also discusses the construction of graphical displays such as Q-Q plots that may be used to 
determine the distribution of data sets with ND observations. These methods have been incorporate
ProUCL 4.0. Additionally, using regression on order statistics (ROS) methods for normal, lognormal, or 

n with (n-k) original detected observations, an

applications) generated by ProUCL 4.0. This option is available in ProUCL 4.0 for more advanced user
Some important notes and comments that apply to data sets with and without outliers are described as 
follows. 
    
Note on skewness: In ProUCL 3.0 and also in ProUCL 4.0, for skewed distributions such as a lognormal 
distribution (or some non-discernable distribution), skewness is measured as a function of sd, σ (or its 
estimate, σ̂ ) of log-transformed data. Also, it should be noted out that sd, σ, or its estimate, σ̂ of log-

 about the skewness of a data set with ND observations. 
UCL should be used to estimate the EPC term for data sets 

transformed detected data is used to get an idea
This information is useful to decide which 
with and without ND observations. For data sets with ND values, output spreadsheets generated by 
ProUCL 4.0 do exhibit the sd,σ̂ , of log-transformed data based upon detected observations. For gamma
distribution, skewness is a function of the shape parameter, k. Therefore, in order to assess the skewnes
of gamma distributed data sets, the associated output screens exhibit the MLE of the shape parameter, k 
based upon detected observations. 

4.2 Pre-processing a Data Set  

hroughout this ch

 
s 

apter (and in other chapters such as Chapters 2, 3, and 5), it has been implicitly 
ed 
is 

 user has separated out data sets from a potentially mixture sample (if any) into component 
am  
rm ds 

are also

 

n 

(Barnett and Lewis (1994)).  

T
assumed that the data set under consideration represents a “single” population. Specifically, it assum
that the user had pre-processed the data by performing preliminary and exploratory data analyses. Th
means that the
sub-s ples representing single individual population(s). The user may want to consult a statistician to
perfo  this kind of population partitioning on a mixture sample. Some of exploratory graphical metho

 available in ProUCL 4.0 

4.2.1 Handling of Outliers 

The main objective of using a statistical procedure is to model the majority of the data representing the 
main dominant population, and not to accommodate a few outliers that may yield inflated and impractical
results. The background values should be estimated by reliable statistics (and not distorted statistics) 
obtained using data sets representing the dominant background population. High outlying values 
contaminate the underlying left-censored or uncensored full data set from the population under study. I
practice, it is the presence of a few extreme outliers that cause the rejection of normality of a data set 
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4.2.2 Disposition of Outliers  

One can argue against “not using the outliers” while estimating the various environmental parameters 

w to deal with data sets 
at contain naturally occurring unimpacted outlying observations. The entire project team should decide 

 
f 

er 

are 

ative 

 

hat the 

 should also be noted that often in practice, the use of a log-transformation on a data set tends to 

 
ed 

formations

such as the EPC terms and BTVs. An argument can be made that the outlying observations are inevitable 
and can be naturally occurring (not impacted by site activities) in some environmental data sets. For an 
example, in groundwater applications, a few elevated values (occurring in tails of data distribution with 
lower probabilities) are naturally occurring, and as such may not be representing the impacted and 
contaminated monitoring well data values. Those data values originating from the groundwater studies 
may require separate investigation, and all interested parties should decide on ho
th
about the appropriate disposition of such outlying observations. The project team should come to an
agreement whether to treat the outlying observations separately or to include them in the computation o
the various statistics of interest such as the sample mean, standard deviation, and the associated upp
limits.  

4.2.3 Assessing Influence of Outliers 

In order to assess the influence of outliers on the various statistics (e.g., upper limits) of interest, it is 
suggested to compute all relevant statistics using data sets with outliers and without outliers, and comp
the results. This extra step often helps to see the direct potential influence of outlier(s) on the various 
statistics of interest (e.g., mean, UPLs, UTLs). This in turn will help the project team to make inform
decisions about the disposition of outliers. That is, the project team and experts familiar with the site 
should decide which of the computed statistics (with outliers or without outliers) represent better and
more accurate estimate(s) of the population parameters (e.g., mean, EPC, BTV) under consideration. 
Since the treatment and handling of outliers is a controversial and subjective topic, it is suggested t
outliers be treated on a site-specific basis using all existing knowledge about the site and the site 
background (e.g., EA, area of concern (AOC), reference area) under investigation. 

4.2.4 Log-Transformation Tends to Accommodate Outliers (and Contamination) 

It
accommodate outliers and hide contaminated locations instead of revealing them. Specifically, an 
observation that is a potential outlier (representing a contaminated location) in the original raw scale may 
not seem to be an outlier in the log-scale. Once again since the cleanup and remediation decisions have to
be performed using data and statistics in original scale, the use of a log-transformation should be avoid
to achieve symmetry and normality. Instead, the use of nonparametric methods is preferable.  

4.2.4.1 Avoid Data Trans  

 It is suggested to avoid the use of transformations (Singh, Singh, Engelhardt (1997) and Singh, Singh, and
Iaci (2002)) of the raw data to achieve symmetry (approximate normality). In most environmental 
applications, the cleanup decisions have to be made on statistics and results computed in the original 
space/scale as the cleanup goals need to be attained in the original scale. Therefore, statistics and results 
need to be back-transformed in the original scale before making any cleanup decisions. Furthermore, the 
parameter (hypothesis of interest) in the transformed space is not of interest to make remediation and 
cleanup decisions. Often, the back-transformed estimates of the parameters (from transformed space) in 
the original space suffer from a significant amount of transformation bias (e.g., see the results of the back-
tr
Lee, 2006). 

ansformation of ROS estimates or MLE obtained using log-transformed data in Singh, Maichle, and 
Many times the transformation bias can be unacceptably large (for highly skewed data sets) 

d unreasonable, leading to incorrect decisions. Therefore, AVOID the use of transformations. an
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It is recommended to avoid the use of equation (4-2) as given below (Shaarawi, 1989) to back-transform 
estimates from log-scale to original scale. The question now arises – how one should back-transform 

d space. This is especially true when dealing with data sets with nondetect observations.  

results from a log-space (or any other transformed space) to the original space. Unfortunately, no 
defensible guidance or procedure is available in the literature to address this issue. Moreover, the back-
transformation formula will change from transformation to transformation (Box-Cox (BC)-type 
transformations), and the bias introduced by such transformations will remain unknown. This is one of the 
main reasons that ProUCL 4.0 does not compute MLE estimates (or other estimates such as fully 
parametric estimates using ROS on logged data) using log-transformed data.  
 
Therefore, in cases when a data set in the “raw” scale cannot be modeled by a parametric distribution, it is 
desirable to use nonparametric methods rather than testing or estimating some parameter(s) in the 
transforme

4.2.4.2 Do Not Use DL/2 (t) UCL Method 

The DL/2 goodness of fit tests and UCL computation methods are included for historical reasons. It is 
suggested that the use of DL/2 (t) method should be avoided to estimate the EPC term or other threshold 
values. This UCL computation method does not provide adequate coverage (for any distribution and 
sample size) for the population mean, even for censoring levels as low as 10%, 15%. This is contrary to
the conjecture and assertion (e.g., EPA (2006)) often made that 

 
the DL/2 method can be used for lower (≤ 

0%) censoring levels. The coverage provided by the DL/2 (t) method deteriorates fast as the censoring 

., 

f 
um of 10 to 15 detected observations is desirable to compute UCLs and other upper limits 

ased upon re-sampling bootstrap methods. These issues have also been discussed in Chapter 1 of this 

2
intensity increases. 

4.2.5 Minimum Data Requirement 

If the use of appropriate data quality objectives (DQOs) (e.g., USEPA (2006)) is not possible (e.g., data 
might have been already collected), every effort should be made to collect a data set with about 8-10 
detected observations to compute reasonably reliable estimates of EPC terms (UCLs) and BTVs (e.g
UPLs, UTLs). Whenever possible, it is desirable to collect more detected observations, especially when 
the percentage of NDs becomes greater than 40%, 50%, and so on. It should also be noted that the use o
the minim
b
Technical Guide. 
 
Most of  the comments and notes described above apply to all data sets with and without nondetect 
observations. 

4.3 Estimation of Population Mean and Variance Based Upon                         
Left-Censored Data Sets 

For left-censored data sets with NDs, the detailed description of the vari

 

ous methods to estimate the 
population mean, µ, and sd, σ, including the: MLE (Cohen, 1950, 1959) method, restricted MLE (RMLE) 

EM) method (Dempster, Laird, and 
Rubin, 1977, Gleit, 1985), EPA Delta lognormal method (EPA, 1991), Winsorization (Dixon and Tukey 

hod 

thod are 

method (Person and Rootzen, 1977), expectation maximization (

1968, Gilbert, 1987) method, regression method (Newman, Dixon, and Pinder, 1989)), regression on 
order statistics (ROS) method (Gilliom and Helsel 1986, Helsel, 1990), and Kaplan-Meier (KM) met
(1958) can be found in Singh and Nocerino (2001), and Singh, Maichle, and Lee (2006). Only two 
estimation methods, namely the ROS (normal, lognormal, and gamma) methods, and KM me
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described in this section. These e a sets with multiple detectio
mits.  

 
n be 

 
 40%-

For data sets with NDs, ProUCL 4.0 does provide some simple GOF methods based upon the ROS 
 the quantile-quantile 

(Q-Q) plot of the (n - k) detected observations supplemented with the available GOF test statistics 

 NDs and detected measurements) represent a random 
ample of n observations obtained from a population under investigation (e.g., background area, or an 

e 

 3 of this Technical guidance document. Several ROS methods have been cited and used in 
e literature for left-censored data sets (e.g., Helsel (2005)) with ND observations. However, it is pointed 

his 
on of 

e extrapolation 
f the nondetects based upon certain distributional assumptions about the detected as well as nondetected 

. 

r 

ne of the objectives here is to determine the data distributions data sets consisting of detected and 
nondetected observa he quantile - 
quantile (Q-Q) plot of the (n - k) detected observations supplemented with the available goodness-of-fit 
test statistics (e.g., S cted observations. Methods 
described below (and incorporated in ProUCL 4.0) may be used on left-censored data sets with a single 

ch as ROS method can also 
handle cases when some of the detection limits (nondetects) exceed the observed detected values.  

stimation methods can be used on dat n 
li
 
The Q-Q plots and the GOF statistics based upon detected observations, and also based upon the data set
consisting of detected observations and extrapolated (estimated) NDs obtained using ROS methods ca
used to determine the data distribution of the left-censored data set under study. It should be noted that, it
is not easy to verify the distribution of left-censored data sets, especially when a large percentage (>
50%) of observations are being censored (nondetects). Therefore, it is preferable to use nonparametric 
methods to compute statistics of interest using data sets with ND observations.  
 

methods. Those simple ad hoc methods to verify the data distribution based upon

computed using the detected observations are briefly described in the following sections. 

4.3.1 Goodness-of-Fit (GOF) Tests for Data Sets with Nondetect Observations 

Throughout this chapter, let x1, x2, ... , xn (including
s
AOC). Out of the n observations, k: 1≤k≤n, values are reported as nondetects lying below one or more 
detection limits, and the remaining (n-k) observations represent the detected data values. The (n-k) 
detected values are ordered and are denoted by x(i) ; i:=k+1, k+2,...n. The k nondetect observations ar
denoted by x(ndi) ;  i:=1,2,...k. These k nondetect values can be predicted or extrapolated using a ROS 
method. The full data set of size n thus obtained may be used to compute the various summary statistics, 
and to estimate the EPC terms, BTVs, and other not-to-exceed values using methods described in 
Chapters 2 and
th
out that the use of ROS methods often yields infeasible and negative estimates of ND observations. T
is especially true when outliers may be present in a data set (Singh and Nocerino, 2002). A descripti
ROS methods as incorporated in ProUCL 4.0 is given as follows.  
 
It should be noted that the ROS estimation methods are parametric in nature as they involv
o
observations. In this process, nondetects are imputed (extrapolated) based upon the assumed distribution 
(e.g., normal, lognormal, or gamma) of the detected observations. Using the menu option, “ROS Est
NDs”, ProUCL 4.0 can be used to store the extrapolated NDs along with the original detected values in 
additional columns generated by ProUCL 4.0. ProUCL 4.0 assigns suitable and self-explanatory titles fo
those generated columns. 
 
O

tions. An ad hoc method to verify the data distribution is based upon t

-W test, A-D test, and K-S test) computed using the dete

detection limit as well as multiple detection limits. Some of these methods su
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4.3.2 Regression on Order Statistics (ROS) Estimation Methods 

Typically, in a ROS method, an ordinary least squares (OLS) regression model is obtained first by fi
a linear straight line to the (n-k) detected values, x

tting 
table transformation) and the (n-k) 

hypothesized (e.g., normal, gamma) quantiles, q ; i:=k+1, k+2,...,n associated with those (n-k) detected 
zed quantiles are obtained for all of the n data values by 

using a specified distribution such as a normal or a gamma distribution. The (n-k) quantiles associated 
th 

 pairs 

hen there is only a single detection limit (DL) and all values lying below DL represent nondetect 

 

s, x1, x2, 
., x , follow a normal (or lognormal distribution when logged data are used), gamma, or some other 

 

8), 
tiles). 

 few 
e) computation methods as incorporated in ProUCL 4.0 are described in this 

section.  

Once the n plotting positions (empirical probabilities, percentiles) have been computed, the n quantiles, 

quantiles, 
 OLS 

gression often yield extrapolated nondetect values exceeding some of the detected values. Some of 
nd 

 

(i) (perhaps after a sui
(i)

observations. It should be noted that the hypothesi

with (n-k) detected values are denoted by q(i); i:=k+1, k+2,...,n, and the k quantiles associated wi
nondetect observations are denoted by q(ndi); i:= 1, 2, …, k. The fitted linear model based upon (n-k)
is then used to predict or extrapolate the k nondetect observations. Obviously, in order to obtain a reliable 
model (slope and intercept) and extrapolated NDs, enough (at least 8-10) detected values should be 
available. 
 
W
observations, then the quantiles corresponding to those nondetect values typically are lower than the 
quantiles associated with the detected observations. However, a different quantile position (percentile) 
computation method (e.g., see Helsel (2005)) is used to accommodate multiple detection limits and cases
when some of the detected values may be smaller than some of the detection limits. Therefore, when 
multiple detection limits are present, the quantiles associated with some of the nondetect observations 
may exceed the quantiles associated with detected data values. 
 
As mentioned before, in a ROS method, it is assumed that the k censored (nondetect) observation
.. k
distribution. Before computing the n hypothesized quantiles, q(i); i:=k+1, k+2,...,n, and q(ndi); i:= 1, 2, …,
k, the plotting positions (also known as percentiles) need to be computed for all of n observations with k 
nondetects and (n-k) detected values. There are many methods available in the literature (Blom (195
Johnson and Wichern (2002), Helsel (2005)) to compute the appropriate plotting positions (percen
Once the plotting positions (empirical percentiles) have been obtained, the associated quantiles are 
computed based upon the hypothesized distribution (e.g., normal, gamma) that needs to be tested. A
plotting position (percentil

 

q(ndi); i:= 1, 2, …, k, and  q(i); i:=k+1, k+2,...,n  are computed using the specified distribution (e.g., 
normal, gamma) corresponding to those n plotting positions. As mentioned before, when there are 
multiple detection limits, and when some of those detection limits exceed the detected values, then 
quantiles, q(ndi) corresponding to  some of those nondetect values might become greater than the 
q(i) associated with some of the detected values. The resulting quantiles when used to obtain an
re
these issues are illustrated by examples in Chapter 6 of the revised Guidance for Comparing Backgrou
and Chemical Concentrations in Soil for CERCLA Sites (EPA, 2002b). 

4.3.3 OLS Regression Line Based Upon Detected Data 

An ordinary least squares (OLS) regression line is obtained using the (n - k) pairs, (q(i), x(i)); i:= k + 1, k +
2, …, n, where x(i) are the (n-k) detected values arranged in ascending order. The n quantiles, q(i) are 
computed using the hypothesized distribution (e.g., normal, gamma). The OLS regression line fitted to the 
(n - k) pairs (q(i), x(i)); i:= k + 1, k + 2, …, n corresponding to the detected values is given by: 
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x(i) = a + bq(i); i:= k + 1, k + 2, …, n.  (4-1)
 

 

 should be noted that in (4-1) above, the hypothesized quantile q(i) is associated with the detected value 
+2,...n. When ROS is use a

(i) : = k + 1, k + 2, …, n  repres
t 

some 

ed data set or wants to use ROS method on a data set with a single 

r 

 (SNV). The gamma quantiles are computed using the probability statement: P(X ≤ q(i)) = 
m variable. The details of the computation 
nical Guide (EPA, 2004).  

ls 

). 

e regression line to estimate the 
on mean and the standard deviation. Newman, Dixon, and Pinder (1989) followed a similar 

proach (using normal quantiles), and used the intercept and the slope of the OLS line given by (4-1) to 
estimate population mean, µ, and standard deviation, σ, using left-censored data sets. It is noted that these 

It
x(i); i:=k+1, k d on tr nsformed data (e.g., log-transformed data), then ordered 

x  ; i ent ordered detected data in that transformed scale (e.g., log values, 
scale, Box-Cox (BC)-type transformation). Equation (4-1) is used to predict or extrapolate the nondetec
values in original or log-transformed space. Specifically, for quantile, q(ndi) corresponding to the ith 
nondetect, the extrapolated nondetect is given by x(ndi) = a + bq(ndi) ; i:=1,2,...k. As mentioned before, 
of the predicted nondetect values thus obtained may become negative, or may exceed some of the 
detection limits and detected values. 

4.3.4 Computation of the Plotting Positions (Percentiles) and Quantiles 

Before computing the hypothesized (e.g., normal, gamma) quantiles, one has to compute the percentiles 
or plotting positions for the detected as well as nondetect observations. Those plotting positions are then 
used to compute the quantiles based upon the distribution used (e.g., normal, gamma). Several methods 
are available in the literature (e.g., Johnson and Wichern (2002), Helsel (2005)) that can be used to 
compute the n percentiles or n plotting positions.  
 
For a data set of size n, the most commonly used plotting positions for the ith observation (ordered) are 
given by (i – ⅜) / (n + ¼) or (i – ½)/n. Typically, these plotting positions are used when one wants to 
graph a Q-Q plot of full-uncensor
detection limit, DL with all nondetect values lying below the detection limit DL. For the single DL case 
(with all of the nondetect observations below the DL), ProUCL 4.0 uses percentiles, (i – ⅜) / (n + ¼) fo
normal and lognormal distribution, and uses empirical percentiles given by (i – ½)/n for a gamma 
distribution.  
 
Once, the plotting positions have been obtained, the n normal quantiles, q(i) are computed using the 
probability statement: P(Z ≤ q(i)) = (i – ⅜) / (n + ¼), i : = 1, 2, …, n , where Z represents a standard 
normal variable
(i – ½) /n, i : = 1, 2, …, n , where X represents a gamma rando
of the gamma quantiles are also given in the ProUCL 3.0 Tech
 
In case multiple detection limits are present, perhaps with some of the detected values smaller than some 
of the detection limits (or nondetects exceeding some of the detected values), the plotting positions 
(percentiles) are computed using appropriate methods that adjust for multiple detection limits. The detai
of the computation of such plotting positions (percentiles), pi; i: =1, 2, ... ,n, for data sets with multiple 
detection limits or with nondetect observations exceeding the detection limits are given in Helsel (2005
The associated hypothesized quantiles, q(i) are obtained by using the following probability statements: 
 

P (Z ≤ q(i)) = pi; i : = 1, 2, …, n (Normal or Lognormal Distribution)  
 
P (X ≤ q(i)) = pi; i : = 1, 2, …, n  (Gamma Distribution)  

4.3.5 ROS Estimates Obtained Using Only Detected Observations 

For full data sets, Barnett (1976) used the intercept and the slope of th
populati
ap
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estimates ignore all of the information contained in nondetect observations. Singh and Nocerino (2002) 
noted that the use of this method using only (n - k) detected values results in biased estimates of the mean 
and standard deviation. Therefore, this method is not a recommended method to compute summary 
statistics and various upper limits used in environmental applications.  

4.3.5.1 ROS Method for Normal Distribution  

Once the OLS regression model given by (4-1) has been obtained based upon the (n-k) detected 
observations and the associated hypothesized quantiles (e.g., normal, lognormal, or gamma), the k 
nondetect observations can be predicted or extrapolated using the linear model given by (4-1). The use of
this process yields a full data set of n values with k imputed new values, and (n-k) detected original da
values. One may then want to use any of the methods including the bootstrap resampling methods as 
described in Chap

 
ta 

ters 2 and 3 to estimate the EPC terms, BTVs, and other not-to-exceed values.  

 

herefore, the use of ROS method assuming a normal distribution is not recommended.  

 

 
It should be pointed out that the use of ROS methods often results in infeasible estimates of nondetect 
observations. Specifically, the imputed nondetects become negative (e.g., when using ROS on a normal 
distribution), larger than the detection limits, and even larger than the detected values. This is especially
true when some outlying observations may be present in the data set. The occurrence of outliers distorts 
all statistics including the slope and intercept of the linear OLS fit, and all extrapolated nondetect values. 
The use of distorted predicted nondetect observations in turn yields biased estimates of the population 
mean (e.g., reference area), standard deviation, and all other statistics of interest including UPLs and 
UTLs. T
 
In such situations with infeasible estimates of NDs, some subjective checks may be provided to modify 
the regression method: negative estimates of NDs may be replaced by DL/2, and the estimated nondetects
greater than DL may be replaced by DL itself. The mean and variance are then computed using the 
replacement values. Singh and Nocerino (2002) studied this method in their simulation study and 
concluded that the modified regression method yields biased estimates of population mean and variance. 
Therefore, this modified ROS method for normal distribution (or for any other distribution) is not 
available in ProUCL 4.0. 

4.3.5.2 ROS Method for Lognormal Distribution  

For the ROS method on log-transformed data, the OLS model given by (4-1) is obtained using the l
transformed detected data and the corresponding normal quantiles. Let Org stand for the data in the 
original unit and Ln stand for the data in the natural log-transformed unit. Using the OLS linear model on 
log-transformed detected observations, the nondetects in transformed log-units are obtained by 
extrapolation corresponding to the k normal quantiles, q

og-

med data values and the k 
9) estimated  
mputing t e
s as can be se  

in  
avoid 

(ndi) associated with ND observations.  
 
Once the k nondetects have been estimated, the sample mean and sd can be computed using the back-
transformation formula (Shaarawi, 1989) given by equation (4-2) below. This method is also known as 
fully parametric method (Helsel, 2005). The mean, Lnµ̂ , and sd, Lnσ̂ , are computed in log-scale using a 

ll data set obtained by combining the (n  - k) detected log-transforfu
extrapolated nondetect (in log scale) values. Assuming, lognormality, El-Shaarawi (198 µ and
σ by back-transformation using the following equations as one of the several ways of co h se 
estimates. Note that these estimates suffer from significant amount of transformation bia en

 examples discussed in Singh, Maichle, and Lee (2006). The estimates given by equation (4-2) are
neither unbiased nor have the minimum variance (Gilbert (1987)). Therefore, it is recommended to 
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the use of this version of ROS method on log-transformed data (also called the fully parametric ROS 
method, Helsel, 2005) to compute UCL95 and v io
 
                    , and σµσ
 

ote: As mentioned before, it is recommended to avoid the use of equation (4-2) as given in Shaarawi 

ters

 is also noted that the same formula given by equation (4-2) above is used on other parametric estimates 
ack-

ficant amount of back-transformation bias (e.g., Singh, 
aichle, and Lee (EPA, 2006)). The use of such estimates obtained using some kind of back-

trap 
rs 

ansformed data, as those estimates do require back-transformation based upon equations given by (4-2) 

t 

3 Robust ROS Method on Log-Transformed Data 

ar us other statistics. 

)2/ˆˆexp(ˆ 2
LnLnOrg σµµ += )1)ˆ(exp(ˆˆ 222 −= LnOrgOrg  (4-2) 

N
(1989) to back-transform estimates from log-scale to original scale. Often, the back-transformed 
estimates of the parame  (from transformed space) in the original space suffer from a significant 
amount of transformation bias (e.g., see the results of back-transformation of ROS estimates or MLEs 
obtained using log-transformed data in Singh, Maichle, and Lee, 2006). Many times the transformation 
bias can be unacceptably large (for highly skewed data sets) and unreasonable, leading to incorrect 
decisions.  
  
It
(e.g., MLE, EM, RMLE, robust MLE) obtained in log-scale (assuming a lognormal distribution) to b
transform them in the original scale. Therefore, the MLE and all other parametric estimates obtained 
using a lognormal distribution suffer from signi
M
transformation is not recommended. Instead, the use of nonparametric methods (e.g., KM and boots
methods) on data sets in the original scale is preferred to compute estimates of environmental paramete
including BTVs and EPC terms. 
 
This is one of the main reasons that ProUCL 4.0 does not compute MLE estimates (or other estimates 
such as fully parametric estimates using ROS method or EM method on logged data) using log-
tr
above. Therefore, in cases when a data set in the “raw” scale cannot be modeled by a parametric 
distribution, it is desirable to use nonparametric methods rather than testing or estimating some 
parameter(s) in the transformed space. This is especially true when dealing with data sets with nondetec
observations.  

4.3.5.  

pon a 
ntiles. The estimated 

ondetects are transformed back in the original scale by simple exponentiation. It should be noted that, 

 
he methods as described in Chapters 2 and 3 (and available in ProUCL 4.0) can be used 

 compute estimates of EPC terms, BTVs, not-to-exceed, and all other statistics of interest.  

Robust ROS method is also performed on log-transformed data as described above. In this robust ROS 
method (Helsel, 2005), nondetect observations are first extrapolated (predicted) in log scale based u
linear ROS model fitted to the log-transformed detected values and normal qua
n
the process of using the ROS method based upon a lognormal distribution and imputing NDs by 
exponentiation will not yield negative estimates for nondetect values. However, this process still may 
yield some infeasible nondetects with some of the NDs exceeding their respective detection or reporting 
limits, and the estimated NDs exceeding the detected values. In any case, this process yields a full data set
of size n. Any of t
to
 
Using the “ROS Est. with NDs” Option of ProUCL 4.0, one can save and store the extrapolated NDs 
along with the original detected values in additional columns generated by ProUCL 4.0. ProUCL 4.0 
assigns suitable self-explanatory titles for those generated columns.  
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4.3.5  Gamma ROS Method  .4  

 skewed data sets folloMany positively w a lognormal as well as a gamma distribution. Singh, Singh, and 
al 

e 
sform 

 

sed upon estimated value of the shape parameter, k), and 
consequently on the accuracy of the extrapolated NDs. Just like all other distributions, outliers, when 

extrapolated NDs, mean, sd, UCL95, UPLs, 

on 
 

eft-

 
ding 

0, 
mn 

iated with a nondetect) and 1 (associated with a detected value) value is assigned to each such 
contaminant (variable) with ND values. The n plotting positions, pi; i:= 1,2,…,n  are computed for each 

limit and multiple 
used with k, the shape 

 

er 

ad verse 

 

Iaci (2002) noted that gamma distributions are better suited to model positively skewed environment
data sets. For full data sets, it is observed that the use of a gamma distribution results in reliable and stabl
95% UCL values. It is also noted that in order to use a gamma distribution, there is no need to tran
the data and back-transform the resulting statistics. However, one has to estimate the gamma shape and
scale parameters before computing the gamma quantiles and estimating (predicting) the NDs using a 
gamma distribution for detected data values. This process may have some effect on the adequacy and 
accuracy of the estimated gamma quantiles (ba

present, can distort all statistics including slope, intercept, 
and percentiles.  
 
If a left-censored data set follows a gamma distribution (can be verified using goodness-of-fit tests in 
ProUCL using any of the two empirical distribution function (EDF) tests – the K-S test or the A-D test 
detected data); then, those NDs can be extrapolated using the regression model based upon (n - k) pairs
given by: ((n - k) gamma quantiles, ordered (n - k) detected observations). As in normally distributed l
censored data sets, for gamma distributed left-censored data sets, one can fit a linear regression model to 
(n - k) pairs: ((n - k) gamma quantiles, (n - k) ordered detected values) as given by formula (4-1). In these
(n-k) pairs, the gamma quantile, q(i) is associated with the ith  detected observations (arranged in ascen
order).  
 
Specifically, let xnd1, xnd2, …, xndk, xk+1, xk+2, …, xn, be a random sample (with k ND observations and (n-k) 
detected values) of size n from the gamma distribution, G(k,θ). Note that some of the ND values may be 
greater than the detected values. It is pointed out once again that in the data spreadsheet for ProUCL 4.
all NDs, or <DL values are entered as the respective DL value (multiple DLs are allowed); and a colu
of 0 (assoc

observation (detected and nondetected) using the methods (for single detection 
detection limit cases) as described earlier in this chapter. One should not get conf
gamma parameter, which is different from k, the number of NDs as used above.  
 
Let x(k+1) ≤ x(k+2)  ≤ ... ≤ x(n) represent the ordered detected values (some of the DLs may be lying in 
between these (n-k) ordered detected values). In order to compute n gamma quantiles associated with the
n plotting positions (percentiles, empirical probabilities), one needs to estimate the gamma parameters, k 
and θ. For left-censored data sets, these parameters are estimated based upon (n-k) detected values. 
Obviously enough detected data (e.g., at least 8-10) values are needed to compute reliable estimates of k 
and θ. Let k̂ and θ̂  represent the maximum likelihood estimates (MLEs) of k and θ respectively. For 
details of the computation of MLEs of k and θ, refer to Singh, Singh, and Iaci (2002). Just like all other 
ROS methods, in order to be able to compute reliable estimates of the nondetects and the resulting upp
imits, enough detected observations (> 8-10) should be available.  l

 
The Q-Q plot for a gamma distribution is obtained by plotting the scatter plot of   pairs ),( )(0 ii xx  

=:i k+1, 2, …, n, where k=number of nondetects. The n quantiles, x0i, are given by the equation, 
;2/ˆ

00 θii zx =  =:i 1, 2, …, n, where the quantiles z0i (alre y ordered) are obtained by using the in
chi-square distribution given as follows. 

 106 



;/)2/1(ˆ ni
k

−    )( 2
ˆ2

0

2
2

0

df
k

z i

=∫ χχ =:i 1, 2, …, n    (Sin leg  DL Case) (4-3) 

;)( 2
ˆ2

0

2
ˆ2

0

ik

z

k
pdf

i

=∫ χχ  =:i 1, 2, …, n   (M  (4-4) 

 
In the above equation,  represents a chi-square random variable with  degrees of freedom (df), and 
pi are the plotting position scribed in Singh, Maichle, and Lee 

006) and Helsel (2005). The process of computing plotting positions, pi , i:=1,2,...,n, for left-censored 
 been

Using a linear regression model given by equation (4-1) fitted  pairs, (gamma quantile
associated with detected data, detected data), one can extrapolate the 

ill yield a full data set of size n = k + (n - k).  

mating (predicting) the NDs using a gamma 
istribution for detected data value
e estimated gamma quantiles (based upon es

obtain reasonably reliable estimates of 
ould be made available. 

 
Note: On data sets obtained using a ROS method, any of the available methods (including bootstrap 

ethods) for full data sets may be used to compute estimates of BTVs and not-to-exceed values, and all 

ultiple DL Case)

2
ˆ2k

χ k̂2
s (percentiles) obtained using the process de

(2
data sets with multiple detection limits has  incorporated in ProUCL 4.0. The program, PPCHI2 
(Algorithm AS91) from Best and Roberts (1975) has been used to compute the inverse chi-square 

ercentage points, zp
 

0i, as given by the above equation.  

 to the (n - k) s 
k NDs contained in the data set. This 

w
 
It is noted that in order to use gamma ROS method, one has to estimate the gamma shape and scale 
arameters before computing the gamma quantiles and estip

d s. This process may have some effect on the adequacy and accuracy of 
timated value of the shape parameter, k), and consequently th

on the accuracy of the extrapolated NDs. Obviously, in order to 
gamma parameters, enough (e.g., > 8-10, more are desirable) detected data sh

m
other statistics of interest. These ROS methods are specifically useful when the BTVs and not-to-exceed 
values are to be estimated by percentiles. However, when the BTVs need to be estimated using UPLs and 
UTLs for left-censored data sets, one may want to use direct bootstrap methods on left-censored data 
sets.  
 
The fitted OLS linear model as given by (4-1) based upon (n-k) pairs is used to predict or extrapolate 
k nondetect observations. Therefore, in order to obtain a reliable model (slope and intercept) and 
extrapolated NDs, enough (at least 8-10) detected values should be available. 
 

the 

 is important to point out that in practice, it is not reasonable or justifiable to assume or expect that the 
NDs should follow the same dist

ultiple detection limits may be present, and the % of NDs may be quite high (e.g., > 40%). Additionally, 
 

ck-

for detected data values. This process may have some effect on the adequacy and accuracy of the 

the accuracy of the extrapolated NDs. Just like all other distributions, outliers, when present, can distort 
all statistics including slope, intercept, extrapolated NDs, mean, sd, UCL95, UPLs, and percentiles.  

It
ribution as assumed for the detected values. This is especially true when 

m
ROS methods often yield infeasible predicted NDs such as negative values, or greater than the respective
detection limits.  
 
It is also noted that in order to use a gamma distribution, there is no need to transform the data and ba
transform the resulting statistics. However, one has to estimate the gamma shape and scale parameters 
before computing the gamma quantiles and estimating (predicting) the NDs using a gamma distribution 

estimated gamma quantiles (based upon estimated value of the shape parameter, k), and consequently on 
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4.4 Saving Extrapolated Nondetect Values Using ROS Est. with NDs Option of 
ProUCL 4.0 

Using this option, nondetects are imputed (extrapolated) based upon the assumed distribution (e.g., 
normal, lognormal, or gamma) of the detected observations. Using the menu “ROS Est. NDs,” ProUCL 
4.0 can be used to save and store the extrapolated NDs along with the original detected values in 
additional columns generated by ProUCL 4.0. ProUCL 4.0 assigns suitable self-explanatory titles for 
those generated columns. This is available in ProUCL 4.0 for advanced users who want to use full data 
sets consisting of detected and extrapolated nondetect observations for o

f Variance, Principal Component Analysis).  

      

ther applications (e.g., Analysis 

d 

ts 

 and Nocerino (2002) considered this method in their simulation study, and 
mates of population mean and 

variance.  

at 
 

s, 
 

ft-
ensored data sets is described in this section. For details, refer to Kaplan-Meier (1958) and the report by 

 

o

4.5 Influence of Outliers on ROS methods 

This section briefly discusses the influence of potential outliers on the various statistics of interest 
including the UCLs, UPLs, and UTLs. Singh and Nocerino (2002) demonstrated that, the classical MLE 
methods and the various ROS approaches (on raw or log-transformed data) do not perform well in the 
presence of outliers. The estimates obtained using the classical methods in the original scale or in log-
transformed scale get distorted by outliers. This results in distorted estimates of intercept (population 
mean) and slope (sd), which gives rise to infeasible extrapolated nondetects. For example, the estimated 
nondetects can become negative (when dealing with raw data), larger than the detection limit (DL), an
even larger than some of the observed values (e.g., x(k)). The use of such extrapolated NDs results in 
biased estimates of the population mean and sd. Conclusions derived using distorted statistics, UCLs, and 
UPLs can be incorrect and misleading. In these situations, subjective checks may be provided to modify 
the regression method: negative estimates of NDs may be replaced by DL/2, and the estimated nondetec
greater than DL may be replaced by DL itself. The mean and variance are then computed using these 
replacement values. Singh
concluded that the modified regression method also yields biased esti

4.6 Nonparametric Kaplan-Meier (KM) Estimation Method  

The Kaplan-Meier (KM) (1958) estimation method, also known as the product limit estimate (PLE), is 
based upon a statistical distribution function estimate, like the sample distribution function, except th
this method adjusts for censoring. The KM method is quite popular in survival analysis (dealing with
right-censored data such as dealing with terminally ill patients) and various other medical applications. 
Some practitioners (e.g., Helsel 2005) are also recommending the use of KM method when dealing with 
left-censored environmental data sets. For data sets with ND observations with multiple detection limit
the KM estimation method has been incorporated in ProUCL 4.0. A brief description of the KM method 
to estimate the population mean and standard deviation, and standard error (SE) of the mean for le
c
prepared by Bechtel Jacobs Company for DOE (2000). It should be noted that the KM method has an
added advantage as it can be used on data sets with multiple detection limits. 
 
Let x1, x2, ..., xn  (detection limits or actual measurement) represent n data values obtained from samples 
collected from an area of concern (AOC), and let ,21 xx ′<′ …< nx′ denote the n΄ distinct values at which 
detects are observed. That is, n΄ (≤ n) represents distinct observed values in the collected data set of size 
n. For j = 1, …, n΄ , let mj denote the number of detects at jx′  and let nj denote the number of xi  ≤ jx′ . 
Also, let x(1) denote the smallest  xi. Then  
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0)(~ =xF  or undefined,                       0 ≤  x   ≤ x(1) 
 
Note that in the last equality statement of )(~ xF  above, 0)(~ =xF when x(1)  is a detect, and is undefined
when x(1)  is a nondetect. The estimation of the population mean using the KM method is described as 
follows. 
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Usi  the PLE (or KM) method as described above, an estimate of the standard error (SE) of the mean 
can be obtained. This is given by the following equation. 
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As mentioned before, some researchers (e.g., Helsel 2005) have suggested that this method perhaps is the 
most ap l (2005) 
also suggested u  
UCL of the pop
 
Using the KM e m r  
using a normal d ribution-based cut-off 

alue (Bechtel, 2002) to compute a 95% UCL of the mean. Specifically, using a t cut-off value, a 95% 
UCL of the mean based upon the KM estimates is given by the following equation.  
 

UCL95=

+ ′′−′=
i

j
jjji xFxxa

1
1 )(~)( , i: =1, 2, …, n΄-1. (4-7

propriate to compute the sample mean, SE, and a UCL95 for left-censored data sets. Helse
sing the percentile bootstrap method on the KM estimate of the mean to compute a 95%
ulation mean.  

stimates of the mean and the SE of the ean, some investigato s have also suggested
istribution-based cut-off value (Helsel, 2005) or a Student’s t-dist

v

2
)1(,95.0 ˆˆ SEn σtµ −+  (4-8) 

 
ProUCL 4.0 computes a 95% UCL of the mean based upon the PLE method (KM method) using: 1) the 

 

 

normal approximation based upon standard normal critical values, zα; 2) several of the bootstrap methods, 
including the percentile bootstrap method and the bias-corrected accelerated (BCA) bootstrap method,
and 3) the Chebyshev inequality. It is noted that the approximate KM-UCL95 based upon the normal 

 109



approxi ation does no rovide adequate coverage to the mean of non-normal skewed populations
details of the findings and results of the simulation experiments, refer to Singh, Maichle, and Lee (2006).  

4.7 Bootstrap UCL Computation Methods for Left-Censored Data Sets 

m t p . For 

cted in each of the N bootstrap replications) from the given set of 
ge number of times, N (e.g., 1000-

mates thus obtained are 
ta 

ent. 
ed to each 

bservation in a bootstrap sample. This process is described as follows. 
 

ingh, Maichle, and Lee (EPA, 2006) studied the performances (in terms of coverage probabilities) of 
mpute UCL95 for data sets with BDL 

bservations. The four bootstrap methods include standard bootstrap method, bootstrap t method, 
percentile bootstrap method, and the bias-co

ibshirani, 1993, and Many, 1997). These methods are specifically useful when the exact distributions of 

). Some authors (Helsel, 2005) have suggested the use of 
ed NDs based upon ROS methods, especially 
ng methods directly on left-censored data 

ile, 

e 

percentile, , based upon a full data set obtained using one of the ROS me

The bootstrap procedure on a censored data set is similar to the general bootstrap technique used on 
uncensored data sets. The only difference is that an indicator variable, I (taking only two values: 0 and 1), 
is assigned to each observation (detected or nondetected) when dealing with left-censored data sets (e.g., 

The use of bootstrap methods has become popular with easy access to fast personal computers. For full-
uncensored data sets, repeated samples of size n are drawn with replacement (that is each xi has the same 
probability = 1/n of being sele
observations (as described in Chapter 2). The process is repeated a lar
2000), and each time an estimate, θ̂  of θ (the mean, here) is computed. The esti
used to compute an estimate of the standard error of the estimate, θ̂ . Just as for the full-uncensored da
sets without any NDs, for censored data sets also, the bootstrap resamples are obtained with replacem
However, an indicator variable, I (0 = detected value, and 1 = nondetected value), is tagg
o

S
four bootstrap methods (e.g., see Efron and Tibshirani 1993) to co
o

rrected accelerated (BCA) bootstrap method (Efron and 
T
the statistics used or needed (e.g., Cohen’s MLE, RMLE) are not known; or the critical values are not 
available; the test statistics and their distribution depend upon the unknown number of nondetects, k that 
might be present in a data set. For left-censored data sets, the exact (and even approximate) distribution of 
the test statistics and the associated critical values needed to compute the various upper limits (UCL, 
UPL, and UTL) are not known (Kroll, 1996
bootstrap methods on full data sets obtained using extrapolat
the robust ROS method. One can also use bootstrap resampli
sets. Some bootstrap methods (as incorporated in ProUCL 4.0) to compute upper limits based upon left-
censored data sets are briefly discussed in this section. The details can be found in Singh, Maichle, and 
Lee (EPA, 2006).  

.7.1 Bootstrapping Data Sets with Nondetect Observations 4

Formally, let xnd1, xnd2, …, xndk, xk+1, xk+2, …, xn be a random sample of size n from a population (e.g., 
AOC, or background area) with an unknown parameter θ  such as the mean, µ, or the pth  upper percent
xp, that needs to be estimated (e.g., by the corresponding sample percentile, or by a (1 – α)*100% UCL 
for the pth upper percentile = UTL) based upon the sampled data set with ND observations. As before, th
sample is left-censored with k nondetect observations, and (n – k) detected data values. Let θ̂  be an 
estimate ofθ, which is a function of k nondetect and (n – k) detected observations. For example, the 
parameter, θ, could be the population mean, µ, and a reasonable choice for the estimate,θ̂ , might be the 
MLE, robust ROS, gamma ROS, or KM estimate (as discussed earlier) of the population mean. If the 
parameter, θ , represents the pth upper percentile, then the estimate,θ̂ , may represent the pth sample 

p

 
x̂ thod described above.  
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see Efron, 1981 and Barber and Jennison, 1999). The indicator variables, Ij : j:=1,2,...,n is associated with 
the detection status of the sampled observations, xj ; j: = 1, 2,..., n. Just like simple bootstrap samples, a 
large number, N (e.g., 1000, 2000) of two-dimensional bootstrap resamples, (xiJ, IiJ ),j:= j: = 1, 2,..., N, 
and i: = 1, 2,..., n, of size n are drawn with replacement. The indicator variable, I, takes on a value = 1 

hen a detected value is sel a a bootstrap re-sam  
o-dimensional bootstrap process keeps track of the detection status of each observation in a bootstrap 

 
 This is typical of a Type I left-censoring bootstrap process. On each of the N bootstrap 

OS) to compute the 
 Singh, Maichle, and 

 
only a few detected values 

uch as < 4-5. Therefore s at a ples consisting of 
values should not be use

pper limits). Bootstrap procedures as incorporated in ProUCL 4.0 use this convention; that is bootstrap 
p

θ based upon the original left-censored data set of size n. For an example, if the 
onable choice for the estimate, , can be 

ohen’s MLE mean, ROS mean, or Kaplan-Meier (KM) mean. Similarly, calculate the standard deviation 
(sd) using one of these me

e bootstrap methods incorporated in ProUCL 4.0  

the original left-censored data set  (x1, x2, ..., xn). Note that an indicator variable (as 
mentioned above) is tagged along with each data value, taking values 1 (if a detected 
value is chosen) and 0 (if a nondetect is c
the mean (e.g., MLE, KM, and ROS) using the 

 

KM means, and ROS means) by

w ected and I = 0 if a nondetected v lue is selected in ple. The
tw
re-sample. In this setting, the detection limits are fixed, and the number of nondetects may vary from 
bootstrap sample to bootstrap sample. There may be k1 nondetects in the first bootstrap sample, k2 
nondetects in the second sample, ..., and kN nondetects in the Nth bootstrap sample. Since the sampling is 
conducted with replacement, the number of nondetects, ki, i: = 1, 2, ..., N, can take any value from 0 to n
inclusive.
resample, one can use any of the nondetect estimation methods (e.g., KM, MLE, R
statistics of interest (e.g., mean, sd, upper limits) using the methods as described in
Lee (EPA, 2006).  
 
It should be noted there is a positive chance that all (or most) observations in a bootstrap resample are 
equal. This is specifically true, when one is dealing with small data sets. In order to avoid such situations 
(with all values in a bootstrap sample to be the same), it desirable to have at least 10-15 (preferably more) 
detected observations in a left-censored data set. It should also be pointed out that it is not advisable and

esirable to compute statistics based upon a bootstrap resample consisting of d
s , it i  suggested th ll bootstrap resam fewer than 4-5 detected 

d in the computation of the various statistics of interest (e.g., summary statistics, 
u
resam les with less than 4-5 detected values have not been included (in such cases additional resamples 
are drawn) in the estimation process. 
 

etθ̂  be an estimate of L
θ̂parameter, θ, represents the population mean, then a reas

C
thods for left-censored data sets. The following two steps are common to all of 

th
 

Step 1.  Let (xi1, xi2, ... , xin) represent the ith bootstrap resample of size n with replacement from 

hosen in the resample). Compute an estimate of 
ith bootstrap resample, i: = 1, 2, ..., N. 

Step 2.  Repeat Step 1 independently N times (e.g., N = 2000), each time calculating new 
estimates (e.g., KM estimates) of population mean. Denote these estimates (e.g., MLE, 

 ,, 21 xx …, Nx . The bootstrap estimate of the population 

mean is given by the arithmetic mean, Bx N estimates , of the ix  (N MLEs or N  KM 
dard error is given by: means). The bootstrap estimate of the stan

 

∑
=

−
−

=
N

i
BiB xx

N
σ

1

2)(
1

1ˆ . (4-9) 
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In general, a bootstrap estimate of θ may be denoted by Bθ  (instead of Bx ). The estimate, Bθ  is the 

ic mean of the N bootstrap estimates (e.g., KM mean, or MLE mean) given by $arithmet θ It is 

way as the original estimate, 
imate of, 

i , i:=1,2,…N. 

pointed out that the N bootstrap estimates are computed in the similar θ̂  
(e.g., KM or MLE mean) of the parameter, θ. Note that if the estimate, θ̂  represents the KM est
θ, then i  (denoted by $θ xi  in the above paragraph) also represents the KM mean based upon the i

bootstrap resample. The difference,

th 

θθB
ˆ− , provides an estimate of the bias of the estimate, θ̂ . After 

these two steps, a bootstrap procedure (BCA, bootstrap t) is similar to a conventional bootstrap procedure 
de (2004). 

 
 

used on a full data set as described earlier in Chapter 2, and in ProUCL 3.0 Technical Gui

A brief description of the various bootstrap UCL computation methods for left-censored data sets is given
in the following subsections. 

4.7.1.1 UCL of Mean Based Upon Standard Bootstrap Method 

Once the desired number of bootstrap samples, have been obtained following the two steps described 
above, a UCL of mean based up
tandard bootstrap confidence interval is derived from the following pivotal quantity, t: 

on the standard bootstrap method can be computed as follows. The 
s
 

B

t
σ
θθ

ˆ

ˆ −
= . (4-10) 

 
A (1 – α)100% standard bootstrap UCL for θ is given as follows: 

UCL =  (4-11) 

 UCL given by the 
bove equation fails to provide the specified (1–α)100% coverage to the population mean of skewed (e.g., 

lognormal and gamma) data distributions. 

 
z σθ ˆˆ + Bα

 
Here zα is the upper αth critical value (quantile) of the standard normal distribution (SND). It is observed 
that the standard bootstrap method does not adequately adjust for skewness, and the
a

4.7.1.2 UCL of Mean Based Upon Bootstrap t Method 

his main process is similar to the bootstrap t method as describedT
s

 in Chapter 2 for full-uncensored data 
ets without NDs. A (1–α)100%  t UCL of he mean based upon the bootstrap t method is given as follows. 

  

 UCL = 
n

s
tx x

N )(α−  (4-12) 

 
It should be noted that the mean and sd used in the above equation represent estimates (e.g., KM 
estimates, MLE estimates) obtained using data set with ND observations. Similarly, the t-cutoff value 

ates or some other 
e .g., gamma, lognormal), 

trap t 

used in the above equation is used using the pivotal t-values based upon KM estim
estimat s obtained using data sets with NDs. Typically, for skewed data sets (e
the 95% UCL based upon the bootstrap t method performs better than the 95% UCLs based upon the 
simple percentile and the BCA percentile methods. However, it should be pointed out that the boots

 112 



method sometimes results in unstable and erratic UCL values, especially in the presence of outliers (Efron 
and Tibshirani (1993)) or when the data set may appear to look skewed (perhaps due to the presence
contaminated observations). Therefore, the bootstrap t method should be used with cautio

 of 
n. In case this 

ethod results in erratic unstable UCL values, the use of an appropriate Chebyshev inequality-based UCL 

4.7.1.3 Percentile Bootstrap M d

m
is recommended. Additional suggestions on this topic are described in Chapter 2. 

etho  

In Chapter 2, one can find the description of the percentile bootstrap method. For left-censored data sets, 
bootstrap samples using a specified method (e.g., MLE, KM, ROS), 

hich are arranged in ascending order. The 95% UCL of the mean is the 95th percentile and is given by: 
 

95% Percentile – UCL = 95th%

sample means are computed for each 
w

 i

 
For example, when N = 1000, a simple 95% percentile-UCL is given by the 950

x ; i: = 1, 2, ..., N (4-13) 

th ordered mean value 
given by )950(x . It is observed that for skewed (lognormal and gamma) data sets, the BCA bootstrap 

percenti
method performs (described below) slightly better (in terms of coverage probability) than the simple 

le method. 

4.7.1.4 Bias-Corrected Accelerated (BCA) Percentile Bootstrap Procedure 

It is observed (Singh, Maichle, and Lee, 2006) that for skewed data sets, the BCA method does represent 
a slight improvement (in terms of coverage probability) over the simple percentile method. However, fo
moderately skewed to highly skewed data sets with the sd of log-transformed data >1, this improvement 
is not adequate enough and yields UCLs with a coverage probability lower than the specified coverage of
0.95. The BCA upper confidence limit of the intended (1-α) coverage for a selected estimation m

r 

 
ethod 

.g., MLE, KM, Chebyshev, and so on) is given by the following equation: (e
 

(1- α)100% UCLPROC = BCA – UCL= 2α
PROCx  (4-14) 

 
Here 2α

PROCx  is the α2100th percentile of the distribution of statistics given by PROCx ; i: = 1, 2, ..., N, and 

PROC is one of the many (e.g., MLE, KM, DL/2, Chebyshev, and so on) mean estimation methods 
included in this simulation study.  
 
Here α2 is given by the following probability statement: 
 

⎥
⎦

⎤
⎢
⎣

⎡
+−

+
+Φ= −

−

)ˆ(ˆ1
ˆ

ˆ )1(
0

)1(
0

02 α

α

α
α

zz
zz

z  (4-15) 

Φ(Z) is the standard normal cumulative distribution function and z(1 – α) is the 100(1–α)th percentile of a 
standard nor l

 

ma  distribution. Also, 0ẑ  (bias correction) and α̂  (acceleration factor) are given as follows. 
 

⎥
⎦

⎤
⎢
⎣

⎡ <
Φ= −

N
xx

z PROCiPROC )(#
ˆ ,1

0 , i: = 1, 2, ..., N (4-16) 
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Φ-1 (x) is the v
1.645 and #

 in erse function of a standard normal cumulative distribution function, e.g., Φ-1 (0.95) = 
 α̂  is the acceleration factor and is given by the following equation. 

 

5.12
,

3
,

])([6
)(

ˆ
∑
∑

 
Here the su a

−

−

−

−
=

PROCiPROC

PROCiPROC

xx
xx

α  (4-17) 

mm tion in the above equations is being carried from i = 1 to i = n, the sample size. PROCx  

PROCix ,−  and are M mean) based upon all n observations, and PROC 
mean of (n-1) observations without the ith observation, i: = 1, 2, ..., n. 

4.8 Additi

ome other UCL computation methods as incorporated in ProUCL 4.0 are briefly described in this 
section. The t

4.8.1 Ad hoc

Several authors  
the use of Stude
appropriate met
it has been sugg statistic to compute a UCL95. One such UCL95 based upon 
Cohen’s ML ethod is given as follows: 
 

 respectively the PROC mean (e.g., K

onal UCL Computation Methods for Left-Censored Data Sets 

S
 de ails can be found in Singh, Maichle, and Lee (2006).  

 UCL95 Computation Method Based Upon Student’s t-distribution 

(e.g., Helsel 2005 and Millard 2000) and documents (e.g., USEPA-UGD, 2004) suggest
nt’s t-statistic to compute a UCL95 for left-censored data sets. That is, using an 
hod (e.g., Cohen’s MLE (CMLE), unbiased MLE (UMLE)) to estimate the mean and sd, 
ested to use Student’s t-

E m

UCL95 = )/ˆ(ˆ 2
)1(,95.0 nσtµ MLEnMLE −+  (4-18) 

equations have been suggested for the RMLE, UMLE, and EM methods. It is noticed that
tributed left-censored data sets (with low censoring intensities, such as lower than 20

 

Similar UCL95  
for normally dis %), 

ethod does provide about 95% coverage to the 
es slowly as the censoring intensity (percentage of 

NDs) increases.  

The Chebyshev-Type inequality (as used in Chapter 2) can also be used to compute a UCL95 of mean for 
ft-censored data sets. The two-sided Chebyshev theorem (Dudewicz and Misra (1988)) states that given 

 variable, X, with finite mean and standard deviation, µ1 and σ1, we have 

/11) kk −≥≤ σ . 

This inequa . 
A (1 – α)100% U
 

UCL = 

the UCL95 based upon CMLE(t) (or MLE (t)) ad hoc m
population mean. The coverage by this method decreas

4.8.2 (1 – α)100% UCL Based Upon Chebyshev Theorem Using Sample Mean and Sd 

le
a random
 

2
111( XkP −≤− µσ

 
lity can be used to compute a UCL of mean based upon data sets with nondetect observations

CL of population mean, µ1, can be obtained by: 

nsαx x)1)/1(( −+ . (4-20) 
In the above  
estimation meth mple 

 UCL equation, the sample mean and standard deviation are computed using one of the many
ods for data sets with ND observations. To obtain such UCLs, instead of using the sa
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mean and sd (or LE, 
EM, and KM m d above. It is noted that the UCL95 based 
upon Cheby y (with KM estimates) yields a reasonable but conservative UCL of the mean. 
This is espe ll

4.8.3 UCL95

For symmet a
degrees of freed
UMLE). In prac . 
Due to symmetr
(Schneider 1986
 
A (1 – α)100% U
 

CLTk = 

SE of mean), one uses the sample mean and sd (or SE) obtained using the various M
ethods for left-censored data sets as describe

shev inequalit
cia y true for highly skewed data sets from lognormal and gamma distributions. 

 Based Upon Tiku’s Method (for symmetrical censoring) 

ric l Type II censoring, Tiku (1971) suggested the use of a t-distribution with (n - k-1) 
om. This method can be used on any of the MLE methods (e.g., MLE, RMLE, and 
tice, this method is also used for Type 1 censoring. This is just an approximation method
ical censoring, MLE estimates of the mean and standard deviation are independent 
), and Student’s t statistic may be used to construct a UCL of the mean. 

CL of the mean, as proposed by Tiku (1971), is given as follows: 

U )ˆ(ˆ )1(, MLEknαMLE µVtµ −−+  (4-21) 

 
This can als e
 

o b  written as follows:  

UCLTk = )1(ˆˆ 11)1(, +++ −− knGamσtµ MLEknαMLE  (4-22) 
 
Here Gam11 ’s 
approximate me
approximation (

4.9 Co    
Size R

It is noted that e
could be compu
recommended d  when only a 
few (e.g., <4-6) observations are detected, it is not appropriate (due to high uncertainty associated with 
such estima s) to use substitution methods (e.g., DL/2 method), and replace the rest (majority) of the 
nondetect d b
the EPC term or
 
In case, only a s o collect 
more samples an e 
available to com s 
and EPC terms. 
professional jud
rather than using d 
(e.g., DL/2). In such cases, BTVs and EPC terms may be estimated on case-by-case basis perhaps based 
upon the sit n

 

 

is computed using the Fisher’s information matrix (I), (e.g., see Schneider, 1986). Tiku
thod is simple and performs better (in terms of coverage probabilities) than Schneider’s 
Singh, Maichle, and Lee, 2006). 

mments on the Use of Substitution Methods and Minimum Sample             
equirements 

ven though, most of the statistics used to estimate the EPC terms and BTV estimates 
ted based upon data sets even with 3-4 detected values; the use of those statistics is not 
ue to high level of uncertainty associated with them. It is re-emphasized that

te
ata y their respective DL/2 values (or some other proxy value), and compute an estimate of 

 BTV based upon the resulting data set (Singh, Maichle, and Lee (2006)).  

mall number (e.g., < 4-6) of detected observations are available, it is desirable t
d data (from the area under investigation), so that enough detected observations will b
pute reasonably reliable estimates the various environmental parameters including BTV
If it is not possible to collect more samples (as often is the case), it is suggested to use 
gment and available historical information (e.g., from similar sites) to estimate the BTVs 
 statistical methods on the fabricated data sets obtained using some substitution metho

e k owledge and experts’ opinion.  
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4.9.1 Use f 

•  

or 

rted as a nondetect value (or some 
pre-specified action level), perhaps by the maximum RL or maximum RL/2.  

• 

 
• 

 
• s 

 
•  

 estimates would remain 

 
• 

sam
population under study. In order to be able to use defensible statistical methods and 

 
• 

on data sets with less than 4-5 detected values (more are 
desirable). If possible, it is desirable to collect more samples (data) with detected values. 

d 
 

4.10 Summ

The following o rporated in ProUCL 4.0 are based upon the 
results and findings of the study and simulation experiments as summarized in Singh, Maichle, and Lee 
(EPA, 2006

 

 

 o Ad hoc Estimation Methods on Case-by-Case Basis 

For data sets, with high percentage on nondetects (e.g., > 80%, > 90%, ...), the EPC term
or BTV may be estimated using simple ad hoc methods rather than estimating them based 
upon mean and sd statistics obtained using the fabricated (e.g., 0, DL/2, DL) values. F
an example, when all or most of the background data values are reported as nondetects, 
the BTV or a not-to-exceed value should also be repo

 
The median or mode (instead of using mean and sd based upon fabricated data) of the 
data with majority of the ND values may also be used to estimate EPC terms or BTVs. 

Also, when only a few detected values (< 4-6) are available in a data set of larger size 
(e.g., > 15-20), one may again use the maximum RL, or maximum RL/2 as an estimate of 
the BTV or some pre-specified action level.  

When only a few detected values (e.g., < 4-6) are available in data sets of smaller size
(e.g., < 8-10), one may use the maximum detected data value or the second largest 
detected value to estimate the BTV.  

The uncertainty associated with all such estimates listed above will be high; and
statistical properties such as bias, accuracy, and precision of such
unknown.  

Statistics is the science of estimating population values (e.g., EPC, BTV) based upon 
pled data values representing a much smaller but representative fraction of the 

computing reliable estimates, it is desirable to have adequate amount of data. 
Specifically, when a data set associated with a COPC consists of at least 8-10 detected 
(more are desirable) observations, one can use one of the recommended methods as 
incorporated in ProUCL 4.0. The details of those methods are given in Singh, Maichle, 
and Lee (EPA, 2006). 

Thus, it is recommended to avoid using statistical methods (to estimate the BTVs and 
other environmental parameters) 

Statistics computed based upon small data sets or on data sets with only a few detecte
values (e.g., < 4-6) cannot be considered reliable enough to make important remediation
and cleanup decisions potentially affecting the human health and the environment. 

ary and Recommendations 

bservations and recommendations as inco

).  
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4.10.1 Gen a

• ta 
s, 

putation methods.  
 

t there is 
only one detection limit. But in practice, a left-censored data set often has multiple 

as 

 
• sure that the data set under study 

represents a single statistical population (e.g., background reference area, or an AOC) and 
reas). 

 
y. 

ec

outliers (Rousseeuw and Leroy (1987) and Singh and Nocerino (1995)), and to partition a 
x

chapter describing the population partitioning methods has been included in the revised 
Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA 

nter, 
EPA, Las Vegas. 

 
• Avoid the use of transformations (to achieve symmetry) while computing the upper limits 

 results 
com uted in the original scale. Moreover, the results and statistics computed in the 

 
• r to be 

lognormally distributed. Its use often results in incorrect and unrealistic statistics of no 

 
 to make cleanup decisions. 

The cleanup and remediation decision are often made in original raw scale; therefore, the 
formed in 

the original scale. It is not clear to a typical user how to back-transform results in log-
original 

raw scale. Moreover, transformed results suffer from significant amount of 

 
scribed in Shaarawi (1989) to 

back-transform estimates from the log-scale to original scale. The question now arises - 
su  a log-space (or any other transformed space) 

to the original space. Unfortunately, no defensible guidance is available in the 
n 

rm ransformation to transformation (BC-type transformations), 
nd the bias introduced by such transformations will remain unknown. This is one of the 

er l Observations and Comments   

It is not easy to verify (perform goodness-of-fit) the distribution of a left-censored da
set. Therefore, emphasis is given on the use of nonparametric upper limit (e.g., UCL
UPLs, and UTLs) com

• Most of the parametric MLE methods (e.g., MLE, RMLE, and EM) assume tha

detection limits. For such methods, the KM method or one of the ROS methods 
incorporated in ProUCL 4.0 may be used.  

For reliable and accurate results, the user should en

not a mixture population (e.g., clean and polluted site a

• It is recommended to identify all potential outliers and investigate them separatel
D isions about the disposition of outliers should be made by all interested members of 
the project team. Several references are available in the literature to properly identify 

mi ture sample into component sub-samples (Singh, Singh, and Flatman (1994)). A new 

Sites (EPA, 2002b), currently under revision by the NERL, Technical Support Ce

for various environmental applications. It is easier and safer to interpret the
p

original scale do not suffer from transformations bias.  

Specifically, avoid the use of a lognormal model even when the data appea

practical merit (Singh, Singh, and Iaci, 2002).  

• The parameter in the transformed space may not be of interest

statistics (e.g., UCL95) computed in transformed space need to be back-trans

scale or any other scale obtained using a Box-Cox (BC)-type transformation to 

transformation bias.  

• It is recommended to avoid the use of equation (4-2) as de

how one should back-transform re lts from

environmental literature to address this question. Moreover, the back-transformatio
fo ula will change from t
a
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ma n reasons that ProUCL 4.0 does not compute MLE estimates (or other estimates suc
a ully parametric es

i h 
s f timates using ROS on logged data) using log-transformed data.  

 
• 

dist rable to use nonparametric methods rather than testing or estimating 
ome parameter in the transformed space.  

 
• For the various parametric (gamma and lognormal) and nonparametric skewed 

the population mean) 
of Robust ROS method followed by percentile or BCA bootstrap methods is not better 

at, for left-
(both 

percentile bootstrap and BCA bootstrap methods) fail to provide adequate coverage for 
e 

 
• nd 

R.
ing the regression model as 
t) and sd (used as slope) in 

e l
 

his sd 
es 

nd Stedinger, 1996). However, the performance of such a 
ybrid estimation method is not well known. Moreover, for higher censoring levels, the 

 
 It should be noted that the performance of this hybrid method is unknown.  

 The stability of the MLEs obtained using the log-transformed data is doubtful 

o The BCA and (%) UCLs based upon this method will fail to provide the adequate 
 

 
• The

data
esti ecisions about the use of an appropriate method should 
be m de by the risk assessors and regulatory personnel on a site-specific basis. The use of 

f exceedances 
is recommended in such cases (USEPA (2006); Helsel (2005)) with % censoring 

c m
is al

 
• Do 

adequate coverage (for any distribution and sample size) for the population mean, even 
for censoring levels as low as 10%, 15%. This is contrary to the conjecture and assertion 

en  DL/2 (t) method deteriorates fast as the 

Therefore, in cases when a data set in the “raw” scale cannot be modeled by a parametric 
ribution, it is desi

s

distributions, the performance (in terms of coverage percentage for 

than the KM (Chebyshev) and KM (BCA) UCL methods. It is also observed th
censor data sets of all sizes and various censoring levels, the robust ROS UCL 

th population mean of highly skewed distributions. 

On page (78) of Helsel (2005), the use of the robust ROS MLE method (Kroll, C.N. a
J.  Stedinger, 1996) has been suggested to compute summary statistics. In this hybrid 
method, MLEs are computed using log-transformed data. Us
given by equation (4-1), the MLEs of mean (used as intercep
th og-scale are used to extrapolate the NDs in the log-scale. Just like in Helsel’s robust 
ROS method, all of the NDs are transformed back in the original scale by exponentiation.
T  results in a full data set in the original scale. One may then compute the mean and 
using the full data set. The estimates thus obtained are called robust ROS ML estimat
(Helsel (2005), and Kroll a
h
MLE methods sometimes behave in an unstable manner.  

o

o It is not known why this method is called a robust method.  
o

especially for higher censoring levels.  

coverage for the population mean for moderately skewed to highly skewed data sets.

 maximum censoring level considered in the present simulation study is 70%. For 
 sets having a larger % of nondetects (e.g., 80%, 90%, or 99% nondetects), statistical 

mates may not be reliable. D
a

nonparametric methods based upon the hypothesis testing for proportion o

ex eeding 70%-80%. This method, the single sa ple hypothesis testing for proportions, 
so available in ProUCL 4.0. 

Not Use DL/2 (t) UCL method. This UCL computation method does not provide 

(e.g., EPA (2006)) often made that the DL/2 method can be used for lower (≤ 20%) 
c soring levels. The coverage provided by the
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censoring intensity increases. The DL/2 (t) method is not recommended by the authors or 
developers of this text and ProUCL 4.0. 

• 
ethods (KM (BCA), KM (z), KM (%), 

KM (t)) based upon the KM estimates provide good coverages for the population mean. 

• vide 

KM (t), KM (%) and KM (BCA). 
Specific recommendations for the various distributions considered in this report are 
described as follows. 

4.10.2 Recommended UCL95 Methods for Normal (Approximate Normal) Distribution 

• For normal and approximately normal (e.g., symmetric) distributions, the most 
appropriate UCL95 computation methods are the KM (t) or KM (%) methods. For 
symmetric distributions, both of these methods perform equally well on left-censored 
data sets for all censoring levels and sample sizes. 

4.10.3 Recommended UCL95 Methods for Gamma Distribution 

• For highly skewed gamma distributions, G(k, θ), with a shape parameter, k ≤ 1: 
 
o Use the nonparametric KM (Chebyshev) UCL95 method for censoring levels < 30%,  

 
o Use the nonparametric KM (BCA) UCL95 method for censoring levels in the interval 

[30%, 50%),  
 

o Use the nonparametric KM (t) UCL95 method for censoring levels ≥ 50%.  
 

• For moderately skewed gamma distributions, G (k, θ), with shape parameter, 1< k ≤ 2: 
 

o For censoring level ≤ 10%, use the KM (Chebyshev) UCL95 method, 
 

o For higher censoring levels (10%, 25%, ...), use the KM (BCA) UCL95 method, 
 

o For censoring levels in [25%, 40%), use the KM (%) UCL95 method, 
 

o For censoring levels ≥ 40%, use the KM (t) UCL95 method. 
 

• For mildly skewed gamma distributions, G (k, θ), with k > 2: 
 

o Use the KM (BCA) UCL95 method for lower censoring levels (≤ 20%) 
 

o For censoring levels in the interval (20%, 40%), use the KM (%) UCL95,  
 

o For censoring ≥ 40%, use the KM (t) UCL95 computation method. 

 
The KM method is a preferred method as it can handle multiple detection limits. 
Moreover, the various nonparametric UCL95 m

 
For a symmetric distribution (approximate normality), several UCL95 methods pro
good coverage (~95%) for the population mean, including the Winsorization mean, 
Cohen’s MLE (t), Cohen’s MLE (Tiku), KM (z), 
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4.10.4 Recommended UCL95 Methods for Lognormal Distribution 

• For mildly skewed data sets with σ̂  ≤ 1: 
 

o For censoring levels (≤ 20%) and sample of sizes less than 50-70, use the KM 
(Chebyshev) UCL95, 

 
o For censoring levels (≤ 20%) and samples of sizes greater than 50-70, use the KM 

(BCA) UCL95, 
 
o For censoring levels in the interval (20%, 40%) and all sample sizes, use the KM 

(BCA) UCL95, 
 
o For censoring level ≥ 40%, use the KM (%) or KM (t) UCL95 method. 

 
• For data sets with  in the interval (1, 1.5]: 

 
o For censoring levels ≤ 50% and samples of sizes < 40, use 97.5% the KM 

(Chebyshev) UCL, 
 

o For censoring levels ≤ 50%, samples of size ≥ 40, use 95% KM (Chebyshev) UCL,  
 

o For censoring levels > 50%, use the KM (BCA) UCL95 for samples of all sizes. 
 

• For highly skewed data sets with  in the interval (1.5, 2]: 
 
o For sample sizes < 40, and censoring levels <50%, use 99% KM (Chebyshev) UCL, 
 
o For sample sizes ≥ 40 and censoring levels < 50%, use 97.5% KM (Chebyshev) 

UCL, 
 
o For samples of sizes < 40-50 and censoring levels ≥ 50%, use the 97.5% KM 

(Chebyshev) UCL, 
 
o For samples of sizes ≥ 40-50, censoring ≥ 50%, use 95% KM (Chebyshev) UCL.  

 
• Use a similar pattern for more highly skewed data sets with > 2.0, 3.0: 

 
o For extremely highly skewed data sets, an appropriate estimate of the EPC term (in 

terms of adequate coverage) is given by a UCL based upon Chebyshev inequality and 
KM estimates. The confidence coefficient to be used depends upon the skewness. For 
highly skewed data sets, a higher (e.g., > 95%) confidence coefficient may have to be 
used to estimate the EPC.  
 

o As the skewness increases, the confidence coefficient also increases.  
 

σ̂

σ̂

σ̂
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o For such highly skewed > 2.0, 3.0), for lower sample sizes (e.g., 
< 50-60), one may simply use a 99% KM (Chebyshev) UCL to estimate the 

o For samp  (Chebyshev) UCL as an 
f the population mean or mass.  

 

distributions (with σ̂

population mean, EPC term, and other relevant threshold values. For sample sizes 
greater than 60, one may use a 97.5% KM (Chebyshev) UCL as an estimate of the 
population mean or mass.  
 

le sizes greater than 60, one may use a 97.5% KM
estimate o

4.10.5 Recommended UCL95 Methods for Non-Discernable Distributions 

• For symmetric or approximately symmetric nonparametric data distributions, one may 
use the same UCL computation methods as for the data sets coming from a normal or an
approximate normal or symmetric population.  

 
• It is noted that most of the recommended UCL computation methods for a lognormal 

distribution do not assume the lognormality of the data set. Therefore, those UCL 
computation methods can be used on skewed nonparametric data sets that do not follow 
any of the well-known parametric distributions.  
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Chapter 5 
 

Estimating Background Threshold Values and Establishing Site-
Specific Background Concentrations Using Data Sets with 

Nondetect (ND) Observations 

5.1  Introduction 

As discussed in Chapter 4, nondetects (NDs) or below detection limit (BDL) observations are inevitable 
 most environmental data sets. Environmental scientists often encounter trace level concentrations of 

d to 

erval 
lly, 

hapter 4 of this Technical Guide discusses in detail the various GOF tests, methods to estimate 

 and 

t-to-

g UPLs, UTLs, and upper percentiles often used to 
stimate the BTVs based upon data sets with ND observations.  

 sd 

g 

sults 

 More 

 software package, which has several statistical 
methods including the KM and bootstrap methods that can be used to estimate the BTVs and not-to-

n 

 
coverage) of the BTVs and other not-to-exceed values. Therefore, instead of using a 95% UPL based 

in
contaminants of potential concern (COPC) when evaluating sampled analytical results. Those low level 
analytical results cannot be measured accurately, and therefore are typically reported as less than one or 
more detection limit (DL) values. However, the practitioners (e.g., environmental scientists) do nee
obtain reliable estimates (point estimates and interval estimates) of the population parameters such as the 
population mean and population percentiles. Parametric and nonparametric methods to compute int
estimates of population mean (e.g., UCLs) for data sets with NDs are described in Chapter 4. Specifica
C
population mean and sd, and parametric and nonparametric UCL computation methods based upon data 
sets with nondetect observations. All of those GOF tests and methods to estimate the population mean
sd as described in Chapter 4 are also applicable to this Chapter 5. Chapter 3 of the Technical Guide 
discusses various parametric and nonparametric methods to compute upper limits (UPLs, UTLs, and 
upper percentiles) that can be used to estimate the background threshold values (BTVs) and other no
exceed values. This chapter discusses parametric and nonparametric methods as incorporated in ProUCL 
4.0 that can be used to compute upper limits includin
e
 
Even though several methods are available (as described in Chapter 4) to estimate population mean and
based upon data sets with nondetects, it is noted that not much guidance is available in the statistical 
literature on how to compute appropriate UPLs and UTLs based upon left-censored data sets of varyin
degree of skewness. The estimation methods (e.g., MLE, ROS, KM, bootstrap) to estimate the population 
mean and standard deviation as incorporated in ProUCL 4.0 are described in Chapter 4. Using the re
and findings of the study performed by Singh, Maichle, and Lee (2006), both parametric and distribution-
free (nonparametric) methods and limits used to estimate the BTVs and not-to-exceed values (as 
incorporated in ProUCL 4.0) based upon left-censored data sets are briefly described in this chapter.
details of the computations of upper limits can be found in the newly added Chapter 6 of the revised 
Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites (EPA, 
2002b). It is noted that ProUCL 4.0 is perhaps the first

exceed values based upon left-censored data sets with ND observations. 
 
As mentioned in earlier chapters, it is not easy to reliably perform GOF tests on left-censored data sets, 
especially when the percentage of nondetects is quite high (e.g., > 40%) and the number of detected 
observations is small (e.g., < 8-10). Therefore, just as in Chapter 4, in this chapter also emphasis is give
to the computation of upper limits (UPLs, UTLs, upper percentiles) based upon distribution-free 
nonparametric methods such as the Kaplan-Meier (KM) method, Chebyshev inequality, and other 
computer intensive bootstrap resampling methods. It should be noted that, in practice the Chebyshev 
inequality often yields conservative estimates (providing higher coverage than the specified 90% or 95%
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upon Chebyshev inequality, it is suggested to use Chebyshev UPL with a lower confidence coefficient 
(e.g., 85%, 90%) as an estimate of BTV and not-to-exceed value.  
 
Note: Unless, the data are highly skewed, it is preferred to use KM estimates and the associated upper 
limits to estimate the BTVs and not-to-exceed values. Just as in Chapter 3, no specific recommendations 

ave been made regarding the most appropriate upper limit(s) that may be used to estimate the BTVs and h
not-to-exceed values. However, the author of this chapter prefers to use UPLs as estimates BTVs and 
other not-to-exceed values.  
 
Once again, throughout this chapter, it is assumed that the user is dealing with a data set collected from a 
single background population; has pre-processed the data set, and has identified all of the potential 
outliers (if any) and multiple populations. In order to obtain meaningful, reliable, and practical results, the 
procedures described in this chapter should be used on data sets that represent “single” (e.g., a 

ts are made to familiarize the user with 
the underlying assumptions required by the various statistical methods, including the estimation methods 

 are 

 

sts and cites the use of ad hoc “rule-of-thumb” type methods based upon the Student’s t-statistic 
ple, it is noted that the 

t ) is used to compute an upper 

 
an 

mal population partitioning methods (e.g., see Singh, Singh, and 
an (1994)) to identif

d 
and Che trations in Soil for CERCLA Sites (EPA, 2002b). The estimation and upper limits 
computation methods as described in this chapter should be used on data sets coming from a “single” 

background area), and “not mixture” populations. These statemen

based upon left-censored data sets. Some simple classical outlier tests as incorporated in ProUCL 4.0
discussed in Chapter 7 of this Technical guidance document.  
 
Note: It should be noted that the mathematical UPL and UTL computation formulae and methods as 
described in this chapter (and incorporated in ProUCL 4.0) could be used on any left-censored data set 
with or without the outliers. The user should keep this in mind that the estimates of the BTVs based upon 
data sets with potential outliers or mixture populations may not be reliable.  
 
Background evaluation and comparison studies often require the computation of UPLs and UTLs based
upon left-censored data sets. Recent environmental literature (e.g., Millard (2002) and USEPA-UGD 
(2004)) li
or Land’s H-statistic to compute 95% UCLs, 95% UPLs, and 95% UTLs. For exam
Studen ’s t-statistic (e.g., on Cohen’s maximum likelihood estimates
prediction limit (pages 10-26, USEPA-UGD (2004)). However, it is noted that the distribution of the t-
type statistic based upon the MLE or KM estimates of mean and standard deviation used to construct a 
UPL (pages 10-26, USEPA-UGD, 2004) is not known. The MLEs or KM estimates of population mean
and standard deviation (sd) based upon left-censored data sets are very different from the traditional me
and sd used in the definition of a typical Student’s t-statistic. The Student’s t-statistic-based “rule-of-
thumb” methods to compute UCLs, UPLs and UTLs are difficult to defend for moderately skewed to 
highly skewed data sets with standard deviation of the log-transformed data exceeding 0.75-1.0.  

5.2  Underlying Assumptions  

Pre-processing of data to identify potential outliers and multiple populations (if any) should be conducted 
to obtain accurate and reliable estimates of the environmental parameters such as BTVs and exposure 
point concentration (EPC) terms. The user may want use informal graphical displays (e.g., quantile-
quantile plots, histograms) and for
Flatm y multiple populations (if any). A simple iterative population partitioning 
method is presented in the newly added Chapter 7 of the revised Guidance for Comparing Backgroun

mical Concen

statistical population such as a single contaminated or remediated area of the site, an unimpacted clean 
background or reference population. The sampled data set should represent a random sample from the 

 124 



area under study such as a background area (BA). This means that the data set should be representative 
the entire background population of interest under study.  
 
A few outlying observations (e.g., representing contaminated locations) in a full-uncensored data set 
a left-censored data set often distort all statistics including the maximum likelihood estimates (MLEs) of 
mean and standard deviation (sd); Kaplan-Meier (KM) estimates; and regression on order statistics (RO
estimates (e.g., slope and intercept, and extrapolated NDs) both in raw as well as log-scale (Singh and 
Nocerino,

of 

or in 

S) 

 2002). The use of such distorted estimates of mean, sd, and of ND values (e.g., using ROS) will 
ield distorted estimates (e.g., UPLs, UTLs, upper percentiles) of BTVs and not-to-exceed values. 

r 
s 

s 

ng 
a few low probability outliers that may yield 

flated and impractical results. The background thresholds should be estimated by reliable statistics 
 

s mentioned before, statistics (e.g., mean, UCL, UPL) based upon data sets with outliers would yield 

e 
is 

 

disposition of outliers. That is, the project team and experts familiar with the site should decide which of 
rate estimate(s) 

of the population parameters (e.g., mean, EPC, BTV) under consideration. Since the treatment and 
 a 

ing all existing knowledge about the site and the site background (e.g., EA, area of 
concern (AOC), reference area) under investigation.  

5.3 Identification of High (in Upper Tail) Outliers for Left-Censored Data Sets 

ics 
n 

ake a 

is (1994), Singh (1993), and Singh and Nocerino (1995)) 
efore proceeding with the estimation of population mean, standard deviation, UCLs, UPLs, UTLs, and 

y
Therefore, instead of computing distorted estimates for the entire area of interest (e.g., BA, AOC), it is 
desirable to identify potential outliers and study them separately.  
 
Identified environmental outliers perhaps represented by their spatial locations, time period, laboratory, o
analytical methods require further and perhaps separate investigation. Reliable and defensible statistic
can be obtained based upon the majority of a data set representing the main body of the dominant 
population (e.g., reference area, BA) under study. Instead of computing distorted statistics and estimate
by including a few low probability outlying observations, it is desirable that those low probability 
extreme high outliers coming from the upper tail of the data distribution should be treated separately. 
 
Note: The main objective of using a statistical procedure is to model the majority of the data representi
the main dominant population, and not to accommodate 
in
(and not distorted statistics) obtained using data sets representing the dominant background population.
High outlying values contaminate the underlying left-censored or uncensored full data set from the 
population under study. In practice, it is the presence of a few extreme outliers that cause the rejection of 
normality of a data set (Barnett and Lewis (1994)).  
 
A
distorted and inflated estimates for entire population (e.g., mean, upper threshold value, upper limits), 
which in turn may result in incorrect conclusions and decisions. In such cases, it is suggested to comput
all relevant statistics using data sets with outliers and without outliers, and compare the results. Th
extra step often helps to see the direct potential influence of outlier(s) on the various statistics of interest
(e.g., mean, UPLs). This in turn will help the project team to make informative decisions about the 

the computed statistics (with outliers or without outliers) represent better and more accu

handling of outliers is a controversial and subjective topic, it is suggested that the outliers be treated on
site-specific basis us

As well known, outliers when present in uncensored or censored (with NDs) data sets distort all statist
of interest. Decisions based upon distorted (inflated) estimates of the BTVs and not-to-exceed values ca
be hazardous to human health and the environment. It is, therefore important that outliers be identified 
before computing the estimates of BTVs and not-to-exceed values. Therefore, the user should m
sincere effort to identify all potential outliers using effective, robust and resistant statistical methods (e.g., 
Rousseeuw and Leroy (1987), Barnett and Lew
b
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other summary statistics bas  l
r left-censored data sets are given in Singh and Nocerino (1995). The detailed discussion of those robust 

ith 

 
mon in environmental data sets, especially when the data are collected from 

ation of high outliers, one may replace the nondetect values by their 
spective detection limits or half 

umber of detected values is large e
 co

 ND 
 

herefore, 

ct 
f 

nly the detected data values, or based upon full data 
sets obtained using some proxy values (e.g., DL, DL/2) for nondetect observations. ProUCL 4.0 also 

btained using estimated NDs based upon ROS methods 
(e.g., normal, lognormal, gamma). The details of those ROS methods are described in Chapter 4. Thus 

 

.4 Estimating BTVs and Not-to-Exceed Values Based Upon Left-Censored 

Ls, 
ed 

s. As described in Chapter 3, sample statistics such as upper 

ed upon eft-censored data sets. Some robust and resistant estimation methods 
fo
and resistant estimation methods is beyond the scope of ProUCL 4.0. A couple of classical outlier tests 
(e.g., Dixon test and Rosner test) are available in ProUCL 4.0. These tests can be used on data sets w
and without nondetect observation. 
 
Additionally, one can always (it is recommended) use graphical displays such as Q-Q plots and box plots 
to visually identify high outliers in a left-censored data set. It should be pointed out that in many 
environmental applications; it is the identification of high outliers (perhaps representing contaminated 
locations and hot spots) that is important. The occurrence of nondetect (less than values) observations and
other low values is quite com
a background or a reference area.  

5.3.1 Outlier Testing Procedures for Data Sets with NDs 

or the purpose of the identificF
re of the detection limits, or may just ignore them (especially when the 

 such as xceeding 8-10) from any of the outlier test (e.g., Rosner test, n
Dixon test) mputation including the graphical displays such as Q-Q plots. These simple outlier testing 
procedures (ignoring NDs, and replacing them by DL/2) are available in ProUCL for data sets with
values. Except for the identification of high outlying observations, the outlier testing statistics (computed
with NDs or without NDs) are not used in any of the estimation and decision making process. T
for the purpose of testing for high outliers, it does not matter how the nondetect observations are treated. 
After outliers have been determined (this should also be verified using graphical displays), the proje
team and experts familiar with the site should make the final decision about the proper disposition o
outliers. 

5.3.2 Q-Q Plots for Data Sets with Nondetect Observations 

ProUCL 4.0 can be used to obtain Q-Q plots using o

generates Q-Q plots based upon full data sets o

outlier test statistics (e.g., Rosner test) as discussed in Chapter 7, and the visual displays shown by Q-Q 
plots can identify high outlying observations that may be present in an environmental data set. It is 
suggested to use both graphical displays as well outlier test statistics to test and confirm the presence of 
outlier(s) in an environmental data set. Some examples illustrating the influence of outliers on estimates 
of BTVs are also considered in later sections of this chapter. 
 
Note: NERL-EPA, Las Vegas is currently upgrading Scout software package (EPA, 1999) that will 
provide state-of-the-art robust and resistant multiple outlier identification procedures for both univariate
as well as multivariate data sets.  

5
Data Sets 

This section describes some parametric and nonparametric methods to compute upper limits (e.g., UP
UTLs, upper percentiles) that may be used to estimate the BTVs and other not-to-exceed levels bas
upon data sets with nondetect observation
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percentiles, UPLs, and UTLs are often used as estimates of BTVs, compliance limits, or not-to-exceed 
values. It is noted that for left-censored data sets, there are no preferred and recommended methods 

 Student’s t-statistic (assuming Student’s t-distribution without 
theoretical justification) or normal Z-scores have been cited or mentioned in the literature (Helsel (2005), 

UTLs based upon statistics 
(e.g., mean, sd) obtained using MLE method, KM method, or ROS methods (California’s Ocean Plan 

 
elow) does not really follow the Student’s t-distribution as assumed in the references listed above. These 

methods to compute upper limits (e.g., UP
on-central t-distrib tion, or normal Z-scores are described in this chapter for historical reasons; and the 

g-

age 
lts 

mance of 
Student’s t-type upper limits (e.g., UPLs, UTLs) based upon MLE estimates for moderately skewed to 

 

 

 
 data sets obtained using ROS methods on 

on 
 Chapter 4 also 

er Prediction Limits (UPLs) for Left-Censored Data Sets 

 left-

available in the literature that can be used to estimate the BTVs and not-to-exceed values. Some ad hoc 
computation methods based upon the

Millard (2002), USEPA-UGD (2004)) to compute percentiles, UPLs, and 

(2005)).  
 
However, it should be noted that the t-type statistic used to derive such limits (e.g., equation (5-1) given
b

L, UTL, and percentiles) based upon Student’s t-distribution, 
n u
use of such methods in not recommended due to lack of theoretical justification. These methods may 
yield reasonable upper limits (e.g., with proper coverage) for mildly skewed data sets with sd of lo
transformed data less than 0.75-1.0. Singh, Maichle, and Lee (EPA 2006) demonstrated that the use of 
Student’s t-statistic on moderately to highly skewed left-censored data sets yields UCL95 with cover
probabilities much lower than the specified confidence coefficient, 0.95. Moreover, based upon the resu
and conclusions summarized in Singh, Maichle, and Lee (2006), it is anticipated that the perfor

highly skewed data sets would be less than acceptable.  

Therefore, instead of making incorrect assumptions or using parametric methods without theoretical 
justification, the use of nonparametric methods is preferred to estimate BTVs. Several of those methods 
including bootstrap methods for left-censored data sets (Chapter 4) are available in ProUCL 4.0. Methods
as incorporated in ProUCL 4.0 to compute upper limits (UPLs, UTLs, and upper percentiles) based upon 
data sets with ND observations are described in the following sections.  
 
Note: It should also be noted that the BTV estimation methods for full data sets as described in Chapter 3
and available in ProUCL 4.0 may also be used on generated
data sets with nondetect observations. Moreover, all other comments about the use of substituti
methods, disposition of outliers, and minimum sample size requirements as described in
apply to BTV estimation methods for data sets with nondetect observations as described in this chapter. 

5.4.1 Computing Upp

This section describes some parametric and nonparametric methods to compute UPLs based upon
censored data sets.  

5.4.1.1 UPLs Based Upon Student’s t-type Statistic 

As noted before, some documents (e.g., Helsel (2005), Millard (2002), and Unified Guidance Document 
(UGD)-EPA (2004)) list or mention f Student’s t-statist
ompute UCL95, UPL95, and UTLs. Specifically, KM estimates (Helsel (2005)) or Cohen

 MLE 

 the use o ic as one of the potential methods to 
’s MLEs of c

mean and standard deviation are used to compute Student’s t-statistic-based UPL as an estimate of the 
BTV. For an example, a (1 – α)100% UPL for a future (or next, or from a different population) 
observation (observation not belonging to the collected background sample under study) based upon
estimates is given by the following equation.  
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UPL = 2
((1 ),( 1))ˆ ˆ (1 1/ )MLE n MLEt nαµ σ− −

he critical value of Student’s t-distribution with (n–1) degrees of freedom (df). Similar 
and also for the next (or future) k≥1 observations (as 
ther estimation methods including the KM and ROS 

5. 

+ +  (5-1) 
 
Here ))1(),1(( −− nt α  is t
UPL equations for a single future observation 
described in Chapter 3) can be developed for o
methods. If the distributions of the site data and the background data are comparable, then a new (next) 
observation coming from the site population (e.g., site) should lie at or below the UPL95 probability 0.9
It is noted that, just like UCLs, the UPLs based upon Student’s t-distribution might fail to provide the 
specified (e.g., 0.95) coverage, especially when data are moderately skewed to highly skewed with sd of 
log-transformed data > 1.0.  

5.4.1.2 UPL Based Upon the Chebyshev Inequality 

The Chebyshev inequality can also be used to obtain a reasonably conservative but stable estimate of the 

UPL =

BTV, and is given as follows. 
 

 [ ((1/ ) 1)*(1 1/ )] xx n sα+ − +  (5-2) 
 
The mean x and standard deviation, sx used in the above equation are computed using one of the
estimation methods (e.g., KM, MLE, ROS method) on the left-censored data set. Since this Chebyshev 
method does not require any distributional assumptions about the data set under study, this is a 
nonparametric method. It should be noted that just like the Chebyshev UCL, UPL based upon Chebyshev
inequality often yields much higher estimate of not-to-exceed values and BTVs than various other 

ethods as described in this chapter. This is especially true when skewness is mild (e.g., sd of log-

 

 

m
transformed data is low < 0.75-1.0), and the sample size is large (e.g., > 30). The user is advised to use 
professional judgment before using this method to compute a UPL. Specifically, instead of using a 95% 
UPL based upon Chebyshev inequality, it is suggested to use Chebyshev UPL with a lower confidence 
coefficient (e.g., 85%, 90%) as an estimate of BTV and not-to-exceed value. ProUCL 4.0 can compute 
these limits for any level of confidence coefficient. 

5.4.1.3 UPLs Based Upon ROS Methods 

As described earlier, ROS methods first predict k nondetect values using an OLS
(Chapter 4). This results in a full data set of size n. For ROS methods (nor

 linear regression model 
mal, gamma, lognormal), 

 
ProUCL 4.0 generates additional columns consisting of (n-k) detected values, and k predicted values of 
the k nondetect observations for each variable selected by the user. Once, the nondetect observations have
been estimated, an experienced user may use any of the available parametric and nonparametric BTV and 
not-to-exceed value estimation methods for full data sets (without NDs) as described in Chapter 3 and 
incorporated in ProUCL 4.0. Those estimation methods are not repeated here. The user of this method is 
assumed to know the behavior of the various ROS methods as incorporated in ProUCL 4.0. Specifica
it is expected that the user knows how the presence of outliers can yield distorted and infeasible estimates 
of ND observations.  
 
Note: It is noted that a linear model (regression line) can be obtained even when only two (2) detected 
observations are available. Therefore, the methods as discussed here and also incorporated in ProUCL 
4.0 can be used on data sets with 2 or more detected observations. Obviously, in order to be able to 

lly, 
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compute reliable estimates of nondetects and to compute defensible upper limits, enough detected 
observations should be made available.  

per p*100% Percentiles for Left-Censored Data Sets  5.4.2 Computing Up

This section briefly describes some parametric and nonparametric methods to compute upper percentiles 
based upon left-censored data sets.  

5.4.2.1 Upper Percentiles Based Upon Standard Normal Z-Scores 

The use of standard normal Z-scores (e.g., Helsel, 2005) has also been listed as one of the potential 
method to estimate upper percentiles using KM estimates or MLE estimates based upon left-censored data
sets. The p  percentile based upon KM estimates (as incorporated in ProUCL 4.0) is given as follow
 

 
s. th

2ˆ ˆ ˆp KM p KMx zµ σ= +  (5-
 

ere z  is the p*100th percentile of a standard normal, N (0, 1) distribution, which means that the area 

3) 

p
nder the standard normal curve) to the left of zp is p. If the distributions of the site data and the 

ackground data are comparable and similar (meaning o contaminated observations from the site), then 
an observation coming from a population (e.g., site) ilar (comparable) to that of the background 

 percentile, with probability p. The 95th normal percentile 
 0.95) represents one of the many estimates of the BTVs.  

5.4.2.2 Upper Percentiles Based Upon ROS Methods

H
(u
b  n

msi
population should lie at or below the p*100%

iven by the above equation (for p =g

 

As noted in Chapter 4, all ROS methods first predict k nondetect values using an OLS linear regression 
model (Chapter 4) assuming a specified distribution of detected and nondetected observations. This 
process results in a full data set of size n consisting of k extrapolated NDs and (n-k) detected values. For 
ROS methods (normal, gamma, lognormal), ProUCL 4.0 generates additional columns consisting of the 
(n-k) detected values, and k predicted values of the k nondetect observations for each variable selected by 
the user. Once, the nondetect observations have been estimated, an experienced user may use any of the 
parametric or nonparametric percentile computation methods (e.g., gamma percentiles) for full data sets 
as described in Chapter 3 and incorporated in ProUCL 4.0.  

5.4.3 Computing Upper Tolerance Limits (UTLs) for Left-Censored Data Sets 

This section briefly describes some parametric and nonparametric methods to compute UTLs based upon 
left-censored data sets.  

5.4.3.1 UTLs Based Upon K Critical Values Obtained Using a Non-Central t-Distribution 

Just like Student’s t-statistic-based UPL, the use of the following equation has been mentioned to 
compute an upper (1 – α)100% tolerance limit with tolerance or coverage coefficient = p (that is 
providing coverage to at least p*100% of observations): 
 

UTL = 2ˆ ˆ*MLE MLEKµ σ+  (5-4) 
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Here K = K (n, , p) is the tolerance factor and depends upon the sample siz
CC) = (1- α), and the coverage proportion = p. The K critical values are bas

α e, n, confidence coefficient 
ed upon non-central t-

istribution, and have been tabulated extensively in th statistical literature (e.g., Hahn and Meeker 
 It should be pointed out that for left-censored data sets, the distribution of the MLEs (or KM 

timates) based-statistic used to develop a UTL is unknown, and hence the use of non-central t-

 

ods

(
d e 
(1991)).
es
distribution-based K-cut off values has no theoretical backup and justification. The use of similar UTLs 
based upon other estimation methods including the KM and ROS methods has also been suggested. These
UTLs are described here for historical reasons. The use of such UTLs without theoretical justification is 
not recommended. 

5.4.3.2 UTLs Based Upon ROS Meth  

The ROS methods as incorporated in ProUCL 4.0, first predict k nondetect values using an OLS linear 
regression model (Chapter 4). This process yields a full data set of size n with (n-k) original detected 
values, and k new predicted (extrapolated) values. For ROS methods (normal, gamma, lognormal), 
ProUCL 4.0 generates additional columns consisting of (n-k) detected values, and predicted values of the 
k nondetect observations for each variable selected by the user. Once, the nondetect observations have 
been estimated, an experienced user may use any of the UTL computation methods for full data sets as 
described in Chapter 3 and incorporated in ProUCL 4.0. Those estimation methods are not repeated here. 
An example illustrating the use of ROS methods to estimate BTVs is described as follows. 

5.5 Estimating BTVs Using Nonparametric Methods Based Upon Higher      
Order Statistics 

It is noted that for full data sets without any discernable distribution, nonparametric UTLs and UPLs are 
computed using higher order statistics. Therefore, when the data set consists of enough detected 
observations, and if some of those detected data are larger than all of the NDs and the detection limits, the 
UTLs, UPLs, and upper percentiles can be estimated by simple nonparametric methods as described in 
Chapter 3. That is, just as in full data sets, nonparametric UPLs, UTLs, and percentiles for left-censored 
data sets are also estimated by upper ordered statistics such as the largest or the second largest value, and 
so on. This nonparametric approach to compute UTLs and UPLs is also available in ProUCL 4.0.  
 
Since, nonparametric UTLs, UPLs, and upper percentiles are represented by higher order statistics (or by 
some value in between higher order statistic obtained using linear interpolation) in a data set, therefore, 
every effort should be made to make sure that those higher order statistics do not represent contaminating 
outlying observations potentially coming from population(s) other than the background population under 
study. Nonparametric UTLs, UPLs, and percentiles should be used with caution to estimate the BTVs and 
compliance limits. Every effort should be made to identify and separate the outlying observations before 
computing order statistics-based upper limits to estim

5.5.1 Using Ad hoc Estimation Methods on Case-by-Case Basis 

This topic has also been discussed in Chapter 4. In order to be able to compute reasonable and reliable 
estimates using statistical methods, it is desirable to have enough detected values. Statistical methods are 
often based upon certain assumptions such as randomness, independence, and data distributions that are 
hard to verify and justify when dealing with small data sets having only a few (e.g., <4-6) detected values. 
Therefore, instead of using statistical methods on such small data sets, it is desirable to collect more 
samples (preferably using DQOs) from the area under investigation. If collection of more data is not 
feasible (e.g., due to lack of resources), it is desirable to use professional judgment, historical information, 

ate the BTVs.  

 130 



information from similar sites, and all expert site knowledge to estimate the parameters of interest such as 
the EPC term, BTV, or a compliance limit. For an example when the number of detected values is less 
than 4-6, or when the majority of the data are NDs (e.g., > 80%, > 90%), then the compliance limit or the 
BTV based upon such data sets also represents a nondetect. In such cases, the BTVs or compliance limits 
may be determined using information from similar sites or by action levels determined by state or federal 
agencies.  

5.5.2 Example 1 

This data set of size 54 was also considered in Chapter 5 of the revised background guidance document. 
In this example, some data values have been treated as nondetect values with DL= 0.02. The example is 
used here to illustrate how one can identify high outliers in data sets consisting of some ND values in the 
lower tail of the data distribution. Typically, one is interested in identifying outliers in the right tail of the 
data distributions, the same outlier identification procedures (e.g., Rosner test) as used on full data sets 
can be used to identify outliers in data sets with ND values. The outlier procedures for data sets with and 
without outliers (as available in ProUCL 4.0) are described in Chapter 7. In the present example, the data 
set has at least one obvious outlier (= 130,000) as can be seen in Figure 5-1. From Figure 5-2, it is 
observed that 19,000 may also be an outlier, which got masked (in Figure 5-1) by the occurrence of the 
outlier, 130,000. Outlier, 130,000 was removed from the data set, and Rosner test was performed to 
identify more outliers that may be present in the data set. The Rosner test identified at least two more 
(with 2 suspected outliers) outlying observations as described in Table 5-1. 
 
 

 
 

Figure 5-1. Q-Q Plot of Aroclor Data Set 
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Figure 5-2. Q-Q Plot of Aroclor Data Set  without Outlier 130,000 
 
Below are shown the results of the Rosner’s test performed on the data set without using nondetect (ND) 
observations (as one is interested to identify high outlying observations potentially representing hot 
spots). The two suspected outliers are 19,000 and 8,300. The test values (5.27 and 3.59) are considerably 
higher than the critical values at 5% significance level. 
 
Table 5-1. Rosner’s Outlier Test for Aroclor1254 (Excluding Ds and Outlier 130,000) N
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In order to illustrate the influence of the two highest outliers (19,000 and 8,300) on the computation of 
background statistics, the background statistics (for data sets with NDs) as described in this chapter (and 
in ProUCL 4.0) have been computed using data set with outliers (Table 5-2) and without the two outliers 
shown in Table 5-3. 
 
Table 5-2. Background Statistics for Aroclor 
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Table 5-3. Background Statistics for Aroclor Data Set without Outliers 19,000 and 8,300 
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A quick comparison of statistics as summarized in Table 5-2 and Table 5-3 reveals that the inclusion of 
two outliers distorted all parametric and nonparametric estimates. For an example, for data set with 
outliers, a 95% UPL based upon KM estimates is 33,426, where as the corresponding 95% KM UPL 
without the two outliers is 4088. The project team should decide which of the two statistics represents a 
more accurate, reasonable, and realistic estimate of the background threshold value. 
 
Furthermore, in order to illustrate the influence of outliers on various other nonparametric limits based 
upon ranks (e.g., UPLs, UTLs), those nonparametric upper limits (as in ProUCL 4.0) on data sets with 
(Table 5-4) and without (Table 5-5) outliers are summarized in the following two tables. 
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Table 5-4. Nonparametric Background Statistics fo he Outliers r the Data Sets with t
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Table 5-5. Nonparametric Background Statistics for the Data Sets without the Outliers 
 

 

 
 

5.6 Minimum Sample Size Requirements 

These issues have been discussed throughout this guide and included here for convenience. Estimates of 
the various population (e.g., background area) parameters (e.g., not-to-exceed value) are obtained based 
upon sampled data collected from the population of interest. Determination of the adequate sample size 
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needed to obtain reliable estimates is perhaps the most important decision that one has to make when 
dealing with data sets with BDL observations. For data sets with and without NDs, some guidance about 

e minimum sample size requirements has been described in earlier chapters (e.g., Chapter 1, Chapter 4). 

ted 
ose statistics is not recommended due to high level of uncertainty associated with 

em. It is re-emphasized that when only a few (e.g., < 4-6) observations are detected, it is not appropriate 

ill be 
TVs 
 

s 
od 

.g., DL/2). In such cases, BTVs and EPC terms may be estimated on case-by-case basis perhaps based 

ts, the 

e 
V or some pre-specified 

ction level. When only a few detected values (e.g., < 4-6) are available in data sets of smaller sizes (e.g., 

ta sets 
ted values (more are preferred). If possible, it is desirable to collect more samples 

ata) with detected values. Statistics computed based upon small data sets or on data sets with only a 
ion 

so 
L 4.0 can be used on data sets with two or more detected 

observations. Obviously, in order to be able to compute reliable estimates of nondetects 

th
For convenience, some of those recommendations and suggestions for data sets with NDs have been 
summarized below.  
 
It is noted that even though, most of the statistics (including fitting a linear regression line) used to 
estimate the EPC terms and BTV estimates could be computed based upon data sets even with 2 detec
values; the use of th
th
(due to high uncertainty associated with such estimates) to replace the rest (majority) of the nondetect 
data by their respective DL/2 values (or some other proxy value), and compute an estimate of the EPC 
term or BTV based upon the resulting data set (Singh, Maichle, and Lee (2006)).  
 
In case, only a small number (e.g., < 4-6) of detected observations are available, it is desirable to collect 
more samples and data (from the area under investigation), so that enough detected observations w
available to compute reasonably reliable estimates the various environmental parameters including B
and EPC terms. If it is not possible to collect more samples (as often is the case), it is suggested to use
professional judgment and available historical information (e.g., from similar sites) to estimate the BTV
rather than using a statistical method on a fabricated data set obtained using some substitution meth
(e
upon the site knowledge (and information from similar sites) and experts’ opinions.  
 
For data sets consisting of mostly of nondetects, the EPC term or BTV may be estimated using simple ad 
hoc methods. Specifically, when all of the background sample data values are reported as nondetec
BTV or a not-to-exceed value should also be reported as a nondetect value (or some pre-specified action 
level), perhaps by the maximum RL or maximum RL/2.  
 
Also, when only a few detected values (< 4-6) are available in a data set of larger size (e.g., > 15-20), on
may again use the maximum RL, or maximum RL/2 as an estimate of the BT
a
< 8-10), one may use the maximum detected data value or the second largest detected value to estimate 
the BTV.  
 
Note: The uncertainty associated with all such estimates listed above will be high; and statistical 
properties such as bias, accuracy, and precision of such estimates would remain unknown. It is suggested 
to avoid using statistical methods (to estimate the BTVs and other environmental parameters) on da
with less than 4-6 detec
(d
few detected values (e.g., < 4-6) cannot be considered reliable enough to make important remediat
and cleanup decisions potentially affecting the human health and the environment. 

5.7 Additional Suggestions and Comments 

• It is noted that a linear model (regression line) can be obtained even when only two (2) 
detected observations are available. Therefore, the methods as discussed here and al
incorporated in ProUC
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and to compute defensible upper limits, enough detected observations should be made 
available.  

 
• If the use of appropriate data quality objectives (e.g., USEPA (2006)) is not possible to 

collect enough observations, every effort should be made to obtain a sample with about 
 (of mean, 

sd, BTVs) are obtained using data sets with not many detected (e.g., < 8-10) 
st 

ta 
 

h all identical values. 
 

r 

8-10 detected observations. ProUCL 4.0 prints out a message when estimates

observations. For accurate and reliable results and estimates, whenever possible, at lea
8-10 (more are desirable) detected observations should be made available, especially 
when the percentage of NDs becomes greater than 40%, 50%, and so on. This is 
especially true when one wants to compute the upper limits (e.g., UPLs, UTLs, and 
UCLs) based upon bootstrap resampling methods.  

 
• Also, in order to be able to use bootstrap resampling methods, it is desirable that the da

set has at least five unique observations. Otherwise, the bootstrap procedures may result
is resamples wit

• It is important to point out that in practice, it is not reasonable or justifiable to assume o
expect that the NDs should follow the same distribution as assumed for the detected 
values. This is especially true when multiple detection limits may be present, and the % of 
NDs may be quite high (e.g., > 40%). Additionally, ROS methods often yield infeasible 
predicted NDs such as negative values, or greater than the respective detection limits.  
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 Chapter 6 
 

Single and Two-Sample Hypotheses Testing Approaches as 
Incorporated in ProUCL 4.0 

 
Both single sample and two-sample hypotheses testing approaches are used to make cleanup decisions at 

olluted sites, and also to compare contaminant concentrations of two (e.g., site versus background) or 

 of 

roUCL 4.0. ProUCL 4.0 also provides hypotheses testing approaches for data sets with 
nd in EPA (2006).  

roUCL 4.0, emphasis is 
in 

upon DQOs. Consequently, ProUCL 
.0 does not ethods that may be used to compute sample sizes based upon 

performanc Those sample size determination methods have 
been discus i uments (EPA, 1997, EPA 2006). Moreover, some freeware 
ackages su UEST (EPA, 1997) are also available that may be used to 

ions under study. However, as mentioned before, 
me practi g  sample size requirements to be able to use methods as available 

 

en the BTVs and cleanup standards are known, one-sample hypotheses are used to 

 

 

p
more (several monitoring wells (MWs)) populations. This chapter briefly discusses some guidance on 
when to use single sample hypothesis test and when to use two-sample hypotheses approaches. These 
issues were also discussed in Chapter 1 of this Technical Guide. This chapter presents brief description
mathematical formulations of various parametric and nonparametric hypotheses testing approaches as 
available in P
nondetect (ND) observations. The details of those approaches can also be fou
 

ote: As discussed in Chapter 1, it should be pointed out that while developing PN
given to the practical applicability of the estimation and hypotheses testing methods as incorporated 
ProUCL 4.0. It should also be noted that ProUCL 4.0 provides many graphical and statistical methods 
often used in the various statistical applications. ProUCL 4.0 assumes that the user (project team) has 

llected appropriate amount of good quality data, perhaps based co
4  deal with statistical m

measures and DQO processes (EPA, 2006). e 
sed n detail in other EPA doc
ch as VSP (2005) and DataQp

compute DQOs-based sample sizes from the populat
so cal uidance on the minimum
in ProUCL 4.0 has been provided in Chapter 1. Similar statements and suggestions have been made in 
some other chapters (e.g., Chapters 4 and 5) of this Technical Guide.  

6.1 When to Use Single Sample Hypotheses Approaches 

When pre-established BTVs and not-to-exceed values are used, such as the USGS background values 
(Shacklette and Boerngen (1984)), thresholds obtained from similar sites, pre-established thresholds and
not-to-exceed values, PRGs, or RBCs, there is no need to extract, establish, or collect a background or 
eference data set. Whr

compare site data (provided enough site data are available) with known and pre-established threshold 
values. It is suggested that the project team determine (e.g., preferably using appropriate DQOs) or decide
(depending upon resources) about the number of site observations that should be collected and compared 
with the “pre-established” standards before coming to a conclusion about the status (clean or polluted) of 
the site area (e.g., RU, AOC) under investigation. When the number of available detected site samples is
less than 4-6, one might perform point-by-point site observation comparisons with a BTV; and when 
enough detected site observations (> 8 to 10, more are preferable) are available, it is desirable to use 
single sample hypothesis testing approaches. Some of these issues have also been discussed in Chapter 1 
of this Technical Guide. 
 
Depending upon the parameter (e.g., the average value, µ0, or a not-to-exceed value, A0), represented by 
the known threshold value, one can use single sample hypothesis tests for population mean (t-test, sign 
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test) or single sample tests for proportions and percentiles. Several single sample tests listed as follows 
are available in ProUCL 4.0.  

 

 
a 

 

 be 

 

One-Sample t-Test: This test is used to compare the site mean, µ, with some specified cleanup standard, 
Cs (or C ), where the cleanup standard, Cs  or C represents a specified value of the true average threshold 
value, µ. The Student’s t- test (or a UCL of mean) is often used (assuming normality of site data, or when
site sample size is large such as larger than 30, 50, 100) to determine the attainment of cleanup levels at 
polluted site, perhaps after some remediation activities performed at the site. Note that the large sample
size requirement (30, 50, 100, ...) depends upon the data skewness. Specifically, as skewness increases 
(measured in terms of sd of log-transformed data), the large sample size requirement also increases to
able to use central limit theorem (CLT). 
 
One-Sample Sign Test or Wilcoxon Signed Rank (WSR) Test: These tests are nonparametric tests and can 
also handle nondetect observations provided all nondetects (e.g., associated detection limits) fall below
the specified threshold value, Cs(C). These tests are used to compare the site location (e.g., median, mean) 

ith some specified cleanup standard, C or C representing the similar location measure. 

ons (perhaps after some 

ount 

 perform single sample hypotheses tests listed above.  

 4 to 6) detected site observations are available, 
t-by-point site concentrations may be compared with 

t individual point-by-point observations are not 
vel, C or Cs . 

es Testing Approaches 

anup standards are not available, then site data are 
 cases, a two-sample hypothesis testing approach can 
ns provided enough data are available from each of 

ions. Note that this approach can be used to compare concentrations of any two 
opulations including two different site areas or two different monitoring wells (MWs). In order to use 

ach, enough data of good quality should be available 
er investigation. Site and background data requirements 

le hypothesis test approaches are described in EPA (2006), 

w s 
 
One-Sample Proportion Test or Percentile Test: When a specified cleanup standard, A0, such as a PRG, 
BTV, compliance limit, or a not-to-exceed value represents an upper threshold value of a contaminant 
concentration distribution (e.g., not-to-exceed value, compliance limit) rather than the mean threshold 
value, µ, of the contaminant concentration distribution, then: 
 
A test for proportion or a test for percentile (or equivalently a UTL 95%-95%, UTL 95%-90%) might be 
used to compare the site proportion, p of exceedances of the action level, A0 by site observations to some 
pre-specified allowable proportion, P0 of exceedances of A0  by site observati
remediation activity). It is noted that the proportion test can also handle NDs provided all NDs are below 
the action level, A0. A test for single sample proportion has been incorporated in ProUCL 4.0. 
 
As always, it is desirable to use a sampling plan based upon a DQO process to collect appropriate am
of detected data. In any case, in order to obtain reasonably reliable estimates and compute reliable test 
statistics, an adequate amount of representative site data (at least 8 to 10 detected observations) should be 
made available to
 
Note: As mentioned before, in case only a few (e.g., <
instead of using hypotheses testing approaches, poin
the specified action level, A0. It should be noted tha
compared with the average cleanup or threshold le

6.2 When to Use Two-Sample Hypothes

When BTVs, not-to-exceed values, and other cle
compared directly with the background data. In such
be used to perform site versus background compariso
the two populat
p
and perform a two-sample hypothesis testing appro
(collected) from each of the two populations und
(e.g., based upon DQOs) to perform two-samp
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Breckenridge and Crockett (1995), and the VSP (2005) software package. Some minimum sample size
requirements are provided in Chapter 1 of this Technic

 
al guidance document. 

ackground (or site) 
amples should be collected from larger background (or site) areas. As mentioned before, every effort 

ls are 

e 

, 

 is desirable and recommended to always supplement statistical methods and test statistics with 
-side multiple box plots, as available in 

metric two-sample hypotheses testing approaches, including 
 test, Gehan’s test, and the quantile test are 
s are described in this chapter. It should be noted 
ed on data sets with NDs. Gehan’s test is 

ultiple detection limits. It is suggested that for best and 
sts should be used in parallel on the same data set. 

ils of these two tests with examples are given in EPA (1994, 2006). 

populations should all be of the same type obtained using 
imilar analytical methods and apparatus. In other words, the collected site and background samples 

ng the same design and pattern), and be collected from 
e samples or all subsurface samples) and time 
ns) using comparable (preferably same) analytical 

ng strategies are given in EPA (1996, 2003) 

does not deal with DQOs and sample size 
ns. There are other free software packages (e.g., VSP, 

005, and DataQUEST, 1997) available that may be used to compute DQO-based sample sizes for the 
L 4.0, emphasis is given to the practical applicability of 

al  to make sense of data collected from the various 
dies. Specifically, it is assumed that the user has collected adequate 

m (perhaps based upon appropriate DQOs) to be able to use statistical 

 
While collecting site and background data, for better representation of populations under investigation, 
one may also want to account for the size of the background area (and site area for site samples) into 
sample size determinations. That is, a larger number (>10 to 15) of representative b
s
should be made to collect as many samples as determined using DQO processes as described in EPA 
documents (2006). 
 
The two-sample (or more) hypotheses approaches are used when the site parameters (e.g., mean, shape, 
distribution) are being compared with the background parameters (e.g., mean, shape, distribution). The 
two-sample hypotheses testing approach is also used when the cleanup standards or screening leve
not known a priori, and they need to be estimated based upon a data set from a background or reference 
population. Specifically, two-sample hypotheses testing approaches are used to compare: 1) the averag
(also medians or upper tails) contaminant concentrations of two or more populations such as the 
background population and the potentially contaminated site areas, or 2) the proportions of site and 
background observations exceeding a pre-established compliance limit, A0. In order to derive reliable 
conclusions with higher statistical power based upon hypothesis testing approaches, enough data (e.g.
minimum of 8 to 10 samples) should be available from all of the populations under investigation.  
 
It
graphical displays, such as the double Q-Q plots, or side-by
ProUCL 4.0. Several parametric and nonpara
Student’s t-test, the Wilcoxon-Mann-Whitney (WMW)
included in ProUCL 4.0. Some details of those method
that the WMW, Gehan, and quantile tests can also be us
specifically meant to be used on data sets with m
reliable conclusions, both WMW test and quantile te
The deta
 
The samples collected from the two (or more) 
s
should be all discrete or all composite (obtained usi
the same medium (soil) at similar depths (e.g., all surfac
(e.g., during the same quarter in groundwater applicatio
methods. Good sample collection methods and sampli
guidance documents.  
 
Note: As mentioned before, it is noted that ProUCL 4.0 
determinations for the various statistical applicatio
2
populations under investigations. In ProUC
tatistic  and graphical methods that may be useds

environmental applications and stu
ount of data of good quality a

methods as available in ProUCL 4.0.  
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In order to familiarize the users with the statistical terminology used in all hypotheses testing approaches 
as incorporated in ProUCL 4.0, a brief discussion of the various terms used is described next. A brief 

iscussion of the error rates and associated sample sizes is also included in the following. Detailed 

two 

g., t-statistic, WMW test statistic) will evaluate and determine. In this section, 
ese terminologies (e.g., error rates, hypotheses statements, Form 1, Form2, two sided tests) are 

nd 

es, 

 and statistical tests may be used to evaluate hypotheses relating to 
its possible values. The statistical tests are designed to reject or not reject hypotheses about ∆ based on 

 based upon sampled data collected from the background and the impacted site 
area(s). 

ecision maker. In this guidance, the action level for the difference (site mean - 
ackground mean) in means is defined as a substantial difference, S, which may be zero or a positive 

value based  t
cases, the larges S” 
is determined on parison. Some discussion on the selection 
of the substantial difference, S, is given in Appendix A of the Guidance for Comparing Background and 
Chemical C e
applicable, ProU
ypotheses defined below. If the user is not very sure about the selection for a value of the substantial 

 user 

kground areas. For example, one estimate of the mean concentration in 
otentially impacted areas is the simple arithmetic average of measurements from those site areas. An 

e 

 
with its 

estimated value. 

d
descriptions of these terminologies can be found in EPA (2002, 2006).  

6.3 Statistical Terminology Used in Hypotheses Testing Approaches 

The first step in developing a hypothesis test is to transform the problem into statistical terminology by 
developing a null hypothesis, H0, and an alternative hypothesis, HA. These hypotheses tests result in 
alternative decisions (acceptance of the null hypothesis or the rejection of the null hypothesis) that a 
hypothesis test statistic (e.
th
explained in terms of two-sample hypotheses testing approaches often used to compare background a
site parameters and data distributions. Similar terminology applies to all parametric and nonparametric 
hypotheses testing approaches include the single sample and two-sample hypotheses testing approach
as incorporated in ProUCL 4.0. 
 
In two-sample comparisons such as background area versus potentially impacted site area comparisons, 
the parameter of interest is symbolized by the Greek letter, delta (∆), the amount by which the mean of 
the distribution of concentrations in potentially impacted areas exceeds the mean of the background distri-
bution. Delta is an unknown parameter,

test statistics computed

 
The action level for background comparisons is the largest value of the “difference in means” that is 
acceptable to the d
b

 on he risk assessment, an applicable regulation, a screening level, or guidance. In some 
t acceptable value for the difference in means may be S = 0. Typically, the value for “
 a case-by-case basis and the analyte under com

onc ntrations in Soil for CERCLA Sites (EPA, 2002b). It should be noted that whenever 
CL 4.0 provides an option to select a suitable value of S while testing for Form 2 null 

h
difference, S, the user may perform the test for more than one value of S. If deemed necessary, the
may perform sensitivity analyses by using ProUCL 4.0 for several values of S. 
 
Estimates of ∆ are obtained by measuring the differences in contaminant concentrations in potentially 
impacted areas and in bac
p
estimate of the mean background concentration is similarly calculated. An estimate of the difference in 
population means, ∆, is obtained by subtracting the mean background concentration from the mean 
concentration in potentially impacted areas. In most cases of interest, the estimate of ∆ will be a positiv
number. If there is little or no contamination on the site, then the estimate for ∆ may be near zero or 
slightly negative. Note that the estimated value for ∆ calculated by using this simple procedure (or by 
some more complicated procedure) only represents an estimate of the true value of ∆. Hence, decisions
based on any estimated value for ∆ may be incorrect due to uncertainty and variability associate 
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Adopting hypothesis tests and an appropriate data quality objective (DQO) approach (EPA, 2006) can 
control the probability of making decision errors. However, incorrect use of hypothesis tests can lead t
erratic decisions. Each type of hypothesis test is based on a set of assumptions that should be verified to 
confirm proper use of the test. Procedures and assumptions for determining the selection and proper use 
of parametric tests (such as a t-test), and nonparametric test (e.g., WMW test) are provided in (EPA, 
2006). It is pointed

o 

 out that some goodness-of-fit (GOF) tests and graphical procedures are available in 
roUCL 4.0 to verify the distributional assumptions. 

oice 

ary to control the uncertainty in the estimate of ∆. It should be noted 
at the uncertainty typically arises from three sources: 

ariability. 

r 

ise measurement techniques or duplicate measurements 
an reduce m nim

uncertainty is m
extent if more ri
methods and sam ling theory) are given in EPA (1996, 2003) 
guidance do
 
Natural variabil

 Natural variability is measured by the true standard deviation, σ of the concentration 
istribution. A large value of σ indicates that a large number of measurements will be needed to achieve a 

h 

e 
multiplied by the mean to obtain an estimate the standard deviation (sd). If no acceptable historical source 

en it may be necessary to conduct a small-scale pilot survey on site 

o 

P
 
Hypothesis testing is a quantitative method to determine whether or not a specific statement (called the 
null hypothesis) concerning ∆ can be rejected. Decisions concerning the true value of ∆ reduce to a ch
between “yes” or “no.” When viewed in this way, two types of incorrect decisions, or decision errors, 
may occur:  
 
Incorrectly deciding the answer is “yes” when the true answer is “no”; and  
Incorrectly deciding the answer is “no” when the true answer is “yes.”  
 
While the possibility of decision errors can never be completely eliminated, it can be controlled. To 
control decision errors, it is necess
th
 

1. Sampling error; 
 
2. Measurement error; and 

 
3. Natural site v

 
The decision maker has some control of the first two sources of uncertainty. For example, a larger numbe
of samples may lead to fewer decision errors because the probability of a decision error decreases as the 

umber of samples increases. Use of more precn
c easurement error, thus mi izing the likelihood of a decision error. The third source of 

ore difficult to control. However, the site variability may also be controlled to some 
gorous sampling procedures are used to collect samples. Some good sample collection 
pling strategies (e.g., based upon Gy samp 

cuments. 

ity arises from the uneven distribution of chemical concentrations on the site and in back-
ground areas.
d
desired limit on decision errors. Since variability is usually higher in impacted areas of the site than in 
background locations, data collected from the site is used to estimate σ. An estimate for σ frequently is 
obtained from historical data, if available. Estimates of variability reported elsewhere at similar sites wit
similar contamination problems may also be used. If an estimate of the mean concentration in 
contaminated site areas is available, then the coefficient of variation (CV) observed at other sites may b

for an estimate of σ is available, th
using 20 or more random samples to estimate σ. Due to the small sample size of the pilot, it is advisable 
to use an 80 or 90 percent upper confidence limit for the estimate of σ rather than an unbiased estimate t
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avoid underestimating the true variability. A crude estimate of σ is obtained by dividing the anticipated 
range (maximum - minimum) by number, 6.  
 
The hypothesis testing process provides a formal procedure to quantify the decision maker’s acceptable 
limits for decision errors. The decision maker’s limits on decision errors are used to establish performance 

o f making decision errors of both types. The gray region 
is a range of possible values of ∆ where the consequences of making a decision error (of both type) are 

 

pplied to a site with a true mean concentration in the gray region, the test may indicate that 
e site exceeds background, or may indicate that the site does not exceed background, depending on 

random fluc t
 
It is necessary to
uncertainty in the estimate of ∆. This may occur when the difference in means is small compared to the 
minimum d
smallest differen
variability, the n ty 
in the measurement of ∆ is larger than the difference between ∆ and the action level, so it may not be 

 a high probability. One step in the hypothesis test 
rocedure is to assign upper bounds on the decision error rates for values of ∆ above and below the gray 

region. These bounds limit the probability of occurrence of decision errors.  
 
Typically, the g pends upon the hesis test that is aker. 
In general, the gray ∆ is to th ∆ = 0) and bou bove by the 
substantial difference ( e guidance on specify y region ailable in 
Chapter 6 of Gu e Data Quality Objectives Process (EPA,  gray region 

ay also depend on specific regulatory requirements or policy decisions that may not be addressed in the 

ble difference” for the statistical test, indica-
ng that dif n

be detected ia
determine if on
ted areas ex
than S units e

DD for the tes

goals f r data collection that reduce the chance o

relatively minor. Specifically, a reasonable statistical test should have a low probability of reflecting a 
substantial positive (> 0) difference, S, when the site and background distributions are comparable (false
positive), but has a high probability of reflecting a substantial difference when the concentrations in 
potentially impacted areas greatly (significantly) exceed the background concentrations. In the gray 
region between these two extremes, the statistical test has relatively poor performance. When the test 
procedure is a
th

tua ions in the sample.  

 specify a gray region for the test because the decision may be “too close to call” due to 

etectable difference (MDD) for the test. The minimum detectable difference (MDD) is the 
ce in means that the statistical test can resolve. The MDD depends on sample-to-sample 
umber of samples, and the power of the statistical test. In the gray region, the uncertain

possible for the test to yield a correct decision with
p

ray region de type of hypot selected by the decision m
 region for 

∆ = S). Som
e right of the origin (

ing a gra
nded from a

 for the test is av
idance for th 1994). The size of the

m
DQO guidance. 
 
The width of the gray region is called the “minimum 
etecta

Table 6-1. Required Sample Sizes for Selected 
Values of σ (α = β = 0.10 and MDD = 50 mg/kg) 

n N 

d
ti fere ces smaller than the MDD cannot 

rel bly by the test. If a test is used to 
centrations of the potentially impac- c

 

σ         
(mg/kg) MDD/σ 

ceed background concentrations by more 
, th n it is necessary to ensure that the 

t is less than S. In the planning M
st

25 2 3.7 5 

50 1 13.55 16 

age, this requirement is met by designing a samp-
ling plan with sufficient power to detect differences 
as small as S.  
 
Note: If possible, it is suggested that if data were 
collected without the benefit of a sampling plan 
(e.g., with specified decision errors),then the 
practitioners or the project team may want to 

75 0.67 29.97 35 

100 0.5 52.97 62 

125 0.4 82.53 96 

150 0.33 118.66 138 

175 0.29 161.36 188 

200 0.25 210.63 245 
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perform retrospective power calculation of the test before making a decision about the acceptance or 
rejection of the null hypothesis under consideration.  
 
It is also noted that the use of graphical displays (e.g., side-by-side box plots, multiple Q-Q plots) pr
added insight and information about the comparability of data sets that may not be possible to observe 
and assess based upon simple test statistics such as t-test or Gehan’s test statistic. 
 

ovide 

 the planning stage, the absolute size of the MDD is of less importance than the ratio of the MDD to the 
termed 

e σ is an estimate of the standard deviation of the 
distribution of concentrations on the site. The relative difference expresses the power of resolution of the 
statistical te
< 1) are more di ements are available. Relative 
differences of more than three standard deviations (MDD/σ  > 3) are easier to resolve. As a general rule, 
values of MDD/
increase dramat versely, designs with MDD/  larger 

an three may be inefficient. If MDD/σ is greater than three, then additional measurement precision is 
n 

 

 

rease in the sample size 
s the value of MDD/σ is lowered from 1 to 0.25.  

In
natural variability of the contaminant concentrations in the potentially impacted area. This ratio is 
the “relative difference” and defined as MDD/σ, wher

st in units of uncertainty. Relative differences much less than one standard deviation (MDD/σ 
fficult to resolve unless a larger number of measur

σ near 1 will result in acceptable sample sizes. The required number of samples may 
ically when MDD/σ is much smaller than one. Con σ

th
available at a minimal cost by reducing the width of the gray region. The cost of the data collection pla
should be examined quantitatively for a range of possible values of the MDD before selecting a final 
value. A tradeoff exists between cost (number of samples required) and benefit (better power of resolution
of the test). 
 
The number of measurements required to achieve the 
specified decision error rates has an inverse 
relationship with the value of MDD/σ. An example of 
this inverse relationship is demonstrated in Table 6-1 
for hypothetical values of α = β = 0.10 and MDD = 50 
mg/kg. Sample sizes may be obtained using the
approximate formula given in EPA (2006), written 
here as: 
 
n = (0.25) z2

1-α + 2 (z1-α + z1- β )2 σ2 /(MDD)2, 
 
Here zp is the pth percentile of the standard normal 
distribution. Note the inverse-squared dependence of n 
on MDD/σ. The smaller values of α and β (leading to 
larger values for the z terms) magnify the strength of 
this inverse relationship. A recommended sample size 
of N = (1.16)*n is tabulated for a variety of σ values in 
the table. Note the dramatic inc
a
 
Letting α = β, we can solve for z1-α = z1- β: 
 
z2

1-α = n / [0.25 + 8 σ2 / (MDD)2 ]. 
 
For any fixed value of MDD/σ, the decision error rate, α, is
 
α = 1 - Φ[z1-α (n)], 

 

Table 6-2. Achievable Values of α = β for  
Selected Values of N with MDD/ σ = 0.5 

N  n  z1-α    α = β   

10 8.62 0.517 0.303 

15 12.93 0.633 0.263 

7 

24 

 

 

150 129.31 2.002 0.023 

20 17.24 0.731 0.232 

25 21.55 0.817 0.20

30 25.86 0.896 0.185 

40 34.48 1.034 0.151 

50 43.1 1.156 0.1

60 51.72 1.266 0.103

70 60.34 1.368 0.086

100 86.21 1.635 0.051 

200 172.41 2.312 0.01 
 a function of n: 
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Here Φ is the cumulative normal distribution function. Achievable values of α (and β) for selected samp
sizes with a hypothetical value of MDD/σ  = 0.5

le 
 are shown in Table 6-2. 

lso less than one, and a relatively large number of samples will be 
required to make the decision. If S/σ exceeds three, then a reasonably small number of samples are 

ore information about the choice of MDD and S can 
be found in EPA (2002). 

 

othesis in the second form (Form 2) of the test is that the concentrations of 
e impacted site exceed the background concentrations by a substantial difference, S. Both forms of the 

ull hypothesis for background comparisons, “the concentrations in potentially impacted sites areas 
o not exceed  (or are less than equal) background concentrations,” is formulated for the express purpose 

m 

 from 
 the mean in background areas (HA: ∆ > 0).  

When using is
evidence that th
ground mean co able data, 
and the concent
those of the bac
 
Two serious pro hen 
there is a very la  
reject the null hy
mean concentra
probability that 
This case can be avoided by selecting the Background Test Form 2, which incorporates an acceptable 
level for the difference between the site and the background concentrations (see Section 6.3.2). 

 
A tradeoff analysis should begin with the analysis of the choice MDD = S, where S is a substantial 
difference. Note that a choice of MDD > S would lead to a sample size that does not have sufficient 
power to distinguish a difference between the site and background means as small as S. Hence, the 
minimum acceptable number of samples for the decision is obtained when MDD = S. If S/σ is less than 
one, then this indicates that MDD/σ is a

required for this minimally acceptable test design. M

  
Two forms (Form 1 and Form 2) of the statistical hypothesis test are useful for many environmental 
applications. In addition to testing the two forms of hypotheses testing, ProUCL 4.0 can also be used to 
perform two-sided hypotheses tests. In this section, these forms of hypotheses are described for two-
sample hypotheses tests often used to compare site concentrations with background concentrations. The
null hypothesis in the first form (Form 1) of the test states that there is no statistically significant 
difference between the means of the concentration distributions measured at the site and in the selected 
background areas. The null hyp
th
null hypothesis are described next.  

6.3.1 Test Form 1 

The n
d
of being rejected. 
 

• The null hypothesis (H0): The mean contaminant concentration in samples collected fro
potentially impacted areas is less than or equal to the mean concentration in samples 
collected from background areas (H0: ∆  ≤ 0). 

 
• The alternative hypothesis (HA). The mean contaminant concentration in samples

potentially impacted areas is greater than
 

 th  form of hypothesis test, the collected data should provide statistically significant 
e null hypothesis is false leading to the conclusion that the site mean does exceed back-
ncentration. Otherwise, the null hypothesis cannot be rejected based on the avail
rations found in the potentially impacted areas are considered equivalent and comparable 
kground. 

blems arise when using the Background Tests Form 1. One type of problem arises w
rge amount of data. In this case, the MDD for the test will be very small, and the test may
pothesis when there is only a very small difference between the site and background 

tions. If the site exceeds background by only a small amount, then there is a very high 
the null hypothesis will be rejected if a sufficiently large number of samples were taken. 
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A second ty o
available. This m
the design phase
process to deter
be re-estimated, and the power of the analysis should be re-evaluated. If the variance estimate used in the 
planning stage was too low, the statistical test is unlikely to reject the null hypothesis due to the lack of 
sufficient po r
 
Hence, when us urces are available), it is desirable to 
conduct a retrospective power analysis to ensure that the power of the test was adequate to detect a site 
area with a 
perform this is t d 
variance that wa he planning phase. If the actual sample 

ze is greater than this post-calculated size, then it is likely that the test has adequate power. 
 

ber of samples required 

f at least 8-10 observations should be 
site 

ncentration in potentially impac-

0: ∆ ≥ S. 

 The alternative hypothesis (HA): The mean contaminant concentration in potentially 
A: 

 

e background investigation level, S, is 
determined on a case-by-case basis by the project team, EPA, and other stakeholders. ProUCL 4.0 can 

by performing sensitivity analysis to determine a value of S).  

6.3.3 Sel i

The test forms d
Therefore, these Test Form 2 

pe f problem may arise in the use of the Background Test Form 1 when insufficient data are 
ay occur, for example, when the onsite or background variability was underestimated in 

. An estimated value for σ is used during the preliminary phase of the DQO planning 
mine the required number of samples. When the samples are actually collected, σ can then 

we .  

ing the Background Test Form 1, if possible (if reso

mean contamination that exceeds the background by more than the MDD. A procedure to 
o re-compute the required sample size using the sample variance in place of the estimate
s used to determine the required sample size in t

si
Alternatively, if the retrospective analysis indicates that adequate power was not obtained, it may be
necessary to collect more samples. Hence, if large uncertainties exist concerning the variability of the 
contaminant concentration in potentially impacted areas, the Background Test Form 1 may lead to 

conclusive results. Therefore, the sample size should exceed the minimum numin
to give the test sufficient power.  
 
Note: In cases, when it is not possible to collect enough samples, one should also use graphical displays 
to compare site concentrations with background concentrations to gain additional information about the 

opulations under comparison. It should be noted that a minimum op
made available to include and use graphical displays in the decision making processes regarding 
versus background comparisons. 

6.3.2 Test Form 2 

In the Background Test Form 2, the null hypothesis is stated as, “the co
ted areas exceeds background concentration.”  
 

• The null hypothesis (H0): The mean contaminant concentration in potentially impacted 
areas exceeds the background mean concentration by more than S units. Symbolically, 
the null hypothesis is written as H

 
•

impacted areas does not exceed the background mean concentration by more than S (H
∆ < S). 

 
Here, S is the background investigation level. Although there is no explicit use of the quantity S in the
hypothesis statement used in the Background Test Form 1, an estimate of S is important for determining 
an upper limit for the MDD for the Background Test Form 1. Th

also be used to determine a value for S (

ect ng a Test Form 

escribed above are commonly used in background versus site comparison evaluations. 
 test forms are also known as Background Test Form 1 and Background 
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(EPA, 2002 a
burden of proof oncentrations in potentially 
impacted ar  a
requires a stricte laxes the investigation level from 0 to S. 

 
 

decision errors that is acceptable. There are two ways to err when analyzing data 
able 6-3).  

r: Based on the observed data, the test may reject the null hypothesis when in 
fact the null hypothesis is true (a false positive or equivalently a false rejection). This is a 

ing a Type I error is often denoted by α (alpha); and 

ay fail to reject the null hypothesis when the 
s is 

called Type II error. The probability of making a Type II error is denoted by β (beta). 

able 6-3. Hypothesis Testing: Type I and Type II Errors 

Ac

). B ckground Test Form 1 uses a conservative investigation level of ∆ = 0, but relaxes the 
 by selecting the null hypothesis that the contaminant c

eas re not statistically greater than the background concentrations. Background Test Form 2 
r burden of proof, but re

6.3.4 Errors Tests and Confidence Levels 

A key step in developing a sampling and analysis plan is to establish the level of precision required of the
data (EPA (1994)). Whether a null hypothesis is rejected or not depends on the results of the sampling.
Due to the uncertainties that result from sampling variation, decisions made using hypotheses tests will be 
subject to errors, also known as decision errors. Decisions should be made about the width of the gray 
region and the degree of 
(T
 

• Type I Erro

Type I error. The probability of mak
 
• Type II Error: On the other hand, the test m

null hypothesis is in fact false (a false negative or equivalently a false acceptance). Thi

 
T
 

tual Site Condition Decision Based on 
Sample Data H0 is True H0 is not true 

H0 is not rejected Correct Decision: (1 – α) False Negative (β) 
Type II Error: 

H0 is rejected False Positive (α) Correct Decision: (1 – β) Type I Error: 

 
The acceptable level of decision error associated with hypothesis testing is defined by two key 

confidence level and power. These parameters are related to the two error probabilities, α 

onf  

and for precision 
he number of samples and the associated cost (e.g., sampling cost) will generally also increase. 
 sampling is often an important determining factor in selecting the acceptable level of decision 

terms 

parameters – 
and β. 
 

• C idence level 100(1 – α)%: As the confidence level is lowered (or alternatively, as α
is increased), the likelihood of committing a Type I error increases. 

 
• Power 100(1 – β)%: As the power is lowered (or alternatively, as β is increased), the 

likelihood of committing a Type II error increases. 
 

lthough a range of values can be selected for these two parameters, as the demA
increases, t

he cost ofT
errors. However, unwarranted cost reduction at the sampling stage may incur greater costs later in 
of increased threats to human health and the environment, or unnecessary cleanup at a site area under 
investigation. The number of samples, and hence the cost of sampling, can be reduced but at the expense 
of a higher possibility of making decision errors that may result in the need for additional sampling, 
unnecessary remediation, or increased risk to the human health and the environment.  
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The selection of appropriate levels for decision errors and the resulting number of samples is a critical 
component of the DQO process that should concern all stakeholders. Because there is an inherent tradeof
between the pro

f 
babilities of committing Type I or Type II error, a simultaneous reduction in both types of 

errors can only occur by increasing the number of samples. If the probability of committing a false 
e onfidence associated with the test (in other words, by 

decreasing,α), the probability of committing a false negative is increased because the power of the test is 

• For the Background Test Form 1, the confidence level should be at least 80% (α = 0.20) 
 (β = 0.10). 

 
It should be te
serious than a T
environment. To  Test Form 1 

ray region. 

 
 

riate for data that follow a particular distribution. 

 
s the normal 

any 
sults in 

s (e.g., Singh, Singh, and Iaci, 2002, and Singh, 
 statistic used on log-transformed data. Some of these issues will be 

oodness-of-fit tests for data distribution (such as the Shapiro-Wilk test for normality) often fail if there 
re insufficient data, if the data contain multiple populations, or if there is a high proportion of nondetects 

in the collected data set. Tests for normality lack statistical power for small sample sizes. In this context, a 
sample consisting of less than 20 observations (EPA, 2002) may be considered a small sample. However, 
in practice, many times it is not possible and feasible (due to resource constraints) to collect data sets of 
sizes greater than 8-10. This is especially true for background data sets. Furthermore, the decision makers 
often do not want to collect many background samples, and they want to make cleanup decisions based 
upon data sets of sizes even smaller than 8. As discussed in Chapter 1, it again is suggested to avoid 

positiv  error is reduced by increasing the level of c

reduced (increasing β). 
 
Typically, the following values for error probabilities are selected as the minimum recommended 
performance measures (EPA, 1990 and EPA, 2002). 

 

and the power should be at least 90%
 
• For the Background Test Form 2, the confidence level should be at least 90% (α = 0.10) 

and the power should be at least 80% (β = 0.20). 

no  positive) is less 
ype II error (false negative). This approach favors the protection of human health and the 
 ensure that there is a low probability of committing Type II errors, a

d that when using the Background Test Form 1, a Type I error (false

statistical test should have adequate power at the right edge of the g
 
When the Background Test Form 2 is used, a Type II error is preferable to committing a Type I error. 
This approach favors the protection of human health and the environment. The choice of the hypotheses
used in the Background Test Form 2 is designed to be protective of human health and the environment by
requiring that the data contain evidence of no substantial contamination.  

6.4 Parametric Hypotheses Tests 

Parametric statistical tests assume that the data have a known distributional form. They may also assume 
that the data are statistically independent or that there are no spatial trends in the data.  
Many statistical tests and models are only approp
Statistical tests that rely on knowledge of the form of the population distribution for the data are known as 
parametric tests, because the test is usually phrased in terms of the parameters of the distribution assumed
for the data. The most important distribution for tests involving environmental data i
distribution. Till recent past, the use of a lognormal distribution has been quite common in m
environmental applications. It is well known that the use of a lognormal distribution often re
unstable and impractical estimates of the EPC term
Maichle, and Lee, 2006) and t-test
illustrated later in this chapter. 
 
G
a
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deriving cleanup decisions (with potential effect on the human health and the environment) based upon 
ata sets of small sizes such as smaller than 8.  

 
Note: Statistics computed based upon smaller data sets of sizes 4 to 5 cannot be considered reliable 
enough to derive important decisions affecting the human health and the environment. Every effort should 
be made by all parties involved including the project team and the decision makers to provide enough 
resources and budget so that adequate amount of data (perhaps based upon DQOs) can be collected from 
the various areas under investigation. 

.5 Nonparametric Hypotheses Tests 

tatistical tests that do not assume a specific statistical form for the population distribution(s) are called 
a 

o-sample comparisons, if one or 
 come from different 

omparisons. 
everal two-sample nonparametric hypotheses tests (e.g., the WMW test, the Gehan test, the quantile test) 

metimes called the critical level or the significance level of the 

erformance of statistical tests is also compared based on their robustness. Robustness means that the test 
 

 
 

• If a parametric test for comparing means is applied to data from a non-normal population 

as 
d Singh, 2003). For moderately 

skewed (as defined in Chapter 4) data sets, the CLT ensures that parametric tests for the 
mean are robust to deviations from 

normal distributions as long as the sample size is large. Unfortunately, the answer to the 
. 

ch 

 

d

6

S
distribution-free or nonparametric statistical tests. Nonparametric tests have good test performance for 
wide variety of distributions, and their performances are not unduly affected by the outlying observations. 
Nonparametric tests can be used for normal or non-normal data sets. In tw

oth of the data sets fail to meet the test for normality, or if the data sets appear tob
distributions, then nonparametric tests may be used to perform site versus background c
S
are available in ProUCL 4.0.  
 
The relative performances of different testing procedures may be assessed by comparing, p-values 
associated with those tests. The p-value of a statistical test is defined as the smallest value of α (level of 
significance, Type I error) for which the null hypothesis would be rejected for the given set of 
observations. The p-value of a test is so

st.  te
 
P
has good performance for a wide variety of data distributions, and that its performance is not significantly
affected by the occurrence of outliers. It should be pointed out that not all nonparametric methods are 
robust and resistant to outliers. Specifically, nonparametric upper limits used to estimate BTVs and not-
to-exceed values can get affected and misrepresented by outliers. This issue has been discussed in Chapter
3 of this Technical Guide. In addition, nonparametric tests used to compare population means and
medians generally are unaffected by a reasonable number of nondetect values. There are other 
circumstances and situations that should be considered: 
 

and the sample size is large, then the parametric test may work well provided that the 
data sets are not heavily skewed. For heavily skewed data sets, the sample size 
requirement associated with central limit theorem (CLT) can become quite large such 
larger than 100 (Singh, Singh, and Iaci, 2002, Singh an

mean will work because parametric tests for the 

question of how large is large enough depends on the nature of the particular distribution
Unless the population distribution is very peculiar (e.g., highly skewed), one may choose 
a parametric test for comparing means when there are at least 25-30 data points in ea
group.  
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• If a nonparametric test for comparing means is applied to data from a normal population 
and the sample size is large, then the nonparametric test will work well. In this case, the 

 

data from a non-normal population and the sample size is 
small (for example, less than 20 data points), then the p-value may be inaccurate because 

al power with small samples.  

 to graphically compare two or more populations. 

roaches, some 

mean concentration level. Some 
inimum sample size requirements associated with this test have been described in Chapter 1. However, 

should be made to collect adequate amount of data, perhaps using an 
collected sample should represent a random sample properly representing 

e site area or an area of concern (AOC) under investigation.  

nd Robustness

p-values tend to be a little too large, but the discrepancy is small. In other words, non-
parametric tests for comparing means are only slightly less powerful than parametric tests
with large samples.  

 
• If a parametric test is applied to 

the central limit theory does not apply in this case. 
 
• If a nonparametric test is applied to data from a non-normal population and the sample 

size is small, then the p-values tend to be too high. In other words, nonparametric tests 
may lack statistic

 
In conclusion, large data sets do not present any problems. In this case, the nonparametric tests are 
powerful and the parametric tests are robust. However, small data sets are challenging. In this case, the 
nonparametric tests are not powerful, and the parametric tests are not robust.  
 
Note: It is re-stated that there is no substitute for visual graphical displays of data sets. The users should 
always supplement their findings and conclusions by using graphical displays for visual comparisons of 
two or more data sets. ProUCL 4.0 offers both side-by-side box plots and multiple Q-Q plots that can be 
used
 
Having discussed the various terminologies associated with hypotheses testing app
parametric and nonparametric single sample hypotheses testing approaches as incorporated in ProUCL 
4.0 are described in the next section. Some of these approaches can also handle data sets with ND 
observations. 

6.6 Single Sample Hypotheses Testing Approaches 

This section briefly describes the mathematical formulation of parametric and nonparametric single 
sample hypotheses testing approaches as incorporated in ProUCL 4.0. Some details of the single sample 
hypotheses tests can be found in EPA (2006). 

6.6.1 The One-Sample t-Test 

The one-sample t-test is a parametric test used for testing a difference between a population (site area, 
AOC) mean and a fixed pre-established threshold also representing a 
m
it is suggested that every effort 
appropriate DQO process. The 
th

6.6.1.1 Limitations a  

est is not robust in the presence of outliers. 
iable results in the presence of less than values. It is suggested not to use 

this test when dealing with data sets with NDs. Some other nonparametric tests described 
as follows may be used in case NDs are present in the samples data set. 

• This t
• Does not give rel
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• It may yield reliable results when performed on mildly or moderately skewed data sets. 
Note that skewness is discussed in Chapters 3 and 4. 

• Its use should be avoided when data are highly skewed, even when the data set is of a
large size such as

 
 100.  

e One-Sample t-Test6.6.1.2 Directions for th  

 

n mind that the user may be manually 
UCL 4.0 computes all statistics and prints out the conclusion 

 
STEP 1: Sp f  
available in
 

Two Sided: : site 
Form 2 with b  
 

Even though, the user can perform this test using ProUCL4.0, a brief description of the t-test is given in
this section. Let X1, X2, . . . , Xn represent a random sample of size, n, from the site area (an AOC, EA) 
under investigations. The following directions are written keeping i
performing the test. It is pointed out Pro
based upon the data set. 

eci y an average cleanup goal/level, µ0 (or C, Cs), and state the following null hypotheses (as
 ProUCL 4.0): 

Form 1: H0: site µ ≤ µ0 vs. alternative H1: site µ > µ0
Form 2: H0: site µ ≥ µ0 vs. alternative H1: site µ < µ0

H0 µ = µ0 vs. alternative H1: site µ ≠ µ0.  
 su stantial difference, S: H0: site µ ≥ µ0 + S vs. alternative H0: site µ < µ0 + S, here S≥ 0. 

STEP 2: Calculate the test statistic: 
 

0
0

X St sd
n

µ− −
=  (6-1) 

 
Note: In the above equation, S is assumed to be equal to “0”, except for Form 2 with substantial 

ind the critical values of t-statistic. 

> ypothesis that the site population mean is less than the cleanup 

n- ect ull hypothesis that the site population mean exceeds the cleanup 

hat pulation mean is same as the 

, then reject the null h n 

el 
 

difference. 
 
STEP 3: Use a t-table (ProUCL 4.0 computes them) to f
 
Conclusion:  
Form 1: If t0  tn-1, 1-α, then reject the null h
level. 
Form 2: If t0 < -t 1, 1-α, then rej  the n
level. 
Two Sided: If |t0 | > tn-1, 1-α/2, then reject the null hypothesis t  the site po
leanup level. c

Form 2 with substantial difference, S: If t0 < -tn-1, 1-α ypothesis that the site populatio
mean is more than the cleanup level, µ0 + the substantial difference, S. 
 
P-values  
 
A p-value is the smallest value for which the null hypothesis is rejected in favor of the alternative 
ypotheses. Thus, based upon the given data, the null hypothesis is rejected for all values of α (the levh

of significance) greater than or equal to the p-value. The details of computing a p-value for t- test can be
found in any statistical text book such as Daniel (1995). ProUCL 4.0 computes p-values for t-test 
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associated with each form of null hypothesis. If the computed p-value is smaller than the specified value 
, the c ted data set used in the various 

c

ple test for proportions represents a test for a difference between the population proportion, 
 desire ion, 

0

0 his proportion test is equivalent to a sign test (described as follows), when P0 = 

a ns a

of, α onclusion is to reject the null hypothesis based upon the collec
omputations. 

6.6.2 The One-Sample Test for Proportions 

he one-samT
P, and a fixed d threshold proportion, P0. Based upon the sampled data set and sample proport
p, of exceedances of an action level, A0, by the n site observations; the objective is to determine if the 
population proportion (of exceedances of a threshold value, A ) exceeds the pre-specified proportion 

vel, P . It is noted that tle
0.5.  

6.6.2.1 Limit tio nd Robustness 

 • N al approximation is applicable when both (nPorm

pute the critical values 
ailable in 

N

0) and n (1- P0) are at least 5.  
• For smaller data sets, ProUCL 4.0 uses exact binomial distribution (e.g., Conover, 1999) 

to com when the above statement is not true. 
• The proportion test may also be used on data sets with ND observations (also av

s are ProUCL 4.0), provided all D smaller than the action level, A0. 

.6.2.2 Directions for the One-Sample Test for Proportions6  

Let X1, X2, . . . , Xn  represent a random sample of size, n, from the site (AOC, EA) under investigation. 
et A represents a compliance limit or a th0   reshold level to be met by site data (perhaps after some 

). It is hat the proportion of site observations 
liance ied proportion, P0.  

) 

el, 

d value, P0, and state the following null hypotheses: 

L
remediation activity  expected (e.g., after remediation) t
xceeding the comp  limit, Ae 0, is smaller than the specif

 
Let B = # of site values in the sample exceeding the compliance limit, A0. A typical observed sample 
value of B (based upon a data set) is denoted by b. It is noted that B follows a binomial distribution (BD
~ B(n, P) with n as the sample size, and P being the unknown population proportion. Under the null 
hypothesis, the variable B follows ~ B(n, P0 ).  
 
Note: The sample proportion, p, is computed by comparing the n site observations with the action lev
A0. Specifically, sample proportion p =B/n = (# of site values in the sample > A0)/n 
 
STEP 1: Specify a proportion threshol
 
Form 1: H0: P ≤ P0 vs. H1: P > P0
Form 2: H0: P ≥ P0 vs. H1: P < P0
Two Sided: H0: P = P0 vs. H1: P ≠ P0
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STEP 2: Calculate the test statistic: 
 

0
0

0 0(1 )
p c Pz
P P

n

+ −
=  (6-2) 

−

0
0.5 ,if p P
nc

−⎧ >⎪⎪= ⎨  and where 0(#  of site values > A )xp =  

0,if p P
n

⎪ <
⎪⎩

0.5 n

Here c is the
 
Use of Larg a
 
STEP 3: Typica both 

cally computed by ProUCL 4.0) 
d p-values. 

sis that the population proportion, P of exceedances of 
tion, P0. 

the population proportion, P is more than the 

t the population proportion, P is the same as 

s mentioned before, a p-value is the smallest value for which the null hypothesis is rejected in favor of 
s 

nificance) greater than or equal to the p-value. The details of computing a p-value for 
roportion test based upon large sample normal approximation can be found in any statistical text book 

r 
roportion test associated with each form of null hypothesis. If the computed p-value is smaller than the 

 to reject the null hypothesis based upon the collected data set used 
 the various computations. 

on when the 
 use the normal approximation as described above. 

e amount of data, and performs the tests using a 
proximation or the exact binomial distribution accordingly. 

 
Use of the Exact Binomial Distribution for Smaller Samples 
 

ple size is small (e.g., < 30), either (nP0), or n (1 –
erform this test. ProUCL 4.0 automatically perfo n 

, ProUCL 4.0 computes the critical values and p-

 continuity correction factor to be able to use normal approximation. 

e S mple Normal Approximation 

lly, one should use BD (as described above) to perform this test. However, when 
(nP0) and n (1- P0) are at least 5, a normal, z-table (automati
approximation may be used to compute the critical values an
 
STEP 4: Conclusion – Given for approximate test based upon normal approximation:  
 
Form 1: If z0 > z1-α, then reject the null hypothe
ction level, Aa 0 is less than the specified propor

Form 2: If z0 < -z1-α, then reject the null hypothesis that 
specified proportion, P0. 

 |zTwo Sided: If 0 | > z1-α/2, then reject the null hypothesis tha
the specified proportion, P0.  
 
P-Values Based Upon a Normal Approximation 
 
A
the alternative hypotheses. Thus, based upon the given data, the null hypothesis is rejected for all value
of α (the level of sig
p
such as Daniel (1995), and also in EPA (2006). ProUCL 4.0 computes large sample p-values fo
p
specified value of, α, the conclusion is
in
 
Note: ProUCL 4.0 also performs the proportion test based upon the exact binomial distributi
sample size is small, and one may not be able to

roUCL 4.0 checks for the availability of appropriatP
normal ap

STEP 1: When the sam  P0) is less than 5, one should 
use the exact BD to p rms this test based upon BD, whe
the above conditions are not satisfied. In such cases
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values based upon the BD and its cumulative distribution function (CDF). The probability statements 
oncerning the computation of p-values can be found in Conover (1999). 

onclusio

ociated with α) is given by the probability statement: Prob(B≥b) = α, or equivalently, 
s  

ll values of B will cause the rejection of the null hypothesis. Therefore, reject 
e null hypothesis, when B ≤ b. Here b is obtained using the binomial cumulative probabilities based 

rete binomial random variable, the level, α may not be exactly 

ght tail (of area ~ α ) and the other in the left tail (with area ~ α ), so that the combined 
s and 

eject the null hypothesis, 
hen B ≤ b1 or B>b2. Typically α1 and α2 are roughly equal, and in ProUCL 4.0, both are chosen to be 

2 a
 and 

en ll hypothesis is rejected in favor of 
f 

values for proportion test based upon the exact BD. Therefore, the p-

c
  
STEP 2: C n – Based Upon Exact Binomial Distribution:  
 
Form 1: Large values of B cause the rejection of the null hypothesis. Therefore, reject the null hypothesis, 
when B≥ b. Here b is obtained using the binomial cumulative probabilities based upon a BD (n, P0). The 
critical value, b (ass
P(B<b) = (1 – α). As mentioned before, ince B is a discrete binomial random variable, the level, α may
not be exactly achieved by the critical value, b. 
 
Form 2: For this form, sma
th
upon BD (n, P0). The critical value, b (associated with α) is given by the probability statement: P (B≤b) = 
α. As mentioned before, since B is a disc
achieved by the critical value, b. 
 
Two Sided Alternative: Here the critical or the rejection region for the null hypothesis is made of two 
areas, one in the ri 2 1
area of the two tails is approximately, α = α1 + α2. That is for this hypothesis form, both small value
large values of B will cause the rejection of the null hypothesis. Therefore, r
w
equal = α /2. Thus, b1 and b re given by the statements: P(B≤b1) ~ α/2, and  P(B> b2) ~ α/2. Since B is a 
discrete binomial random variable, the level, α may not be exactly achieved by the critical values, b1
b2. 
 
P-Values Based Upon Binomial Distribution as Incorporated in ProUCL 4.0 
 
As m tioned before, a p-value is the smallest value for which the nu
the alternative hypothesis. Thus, based upon the given data, the null hypothesis is rejected for all values o
α (the level of significance) greater than or equal to the p-value. Note, for discrete distributions such a 
BD, the exact level of significance, α cannot be achieved. The probability statements for computing a p-
value for proportion test based upon BD can be found in Conover (1999). Using the BD, ProUCL 4.0 
computes p-values for proportion test associated with each form of null hypothesis. If the computed p-
value is smaller than the specified value of, α, the conclusion is to reject the null hypothesis based upon 
the collected  data set used in the various computations. It is noted that there are some variations in the 

terature about the computation of p-li
value computation procedure as incorporated in ProUCL 4.0 is described as follows. 
 
Let b be the calculated value of the binomial random variable, B under the null hypothesis. ProUCL 4.0 
computes the p-values using the following statements: 
 
Form 1: p-value = Prob (B≥b) 

orm 2: p-value = Prob (B≤b) F
 
Two sided Alternative:  
 For b> (n-b)  
 P-value = 2* Prob (B≤b) 
 For b≤ (n-b) 
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 P-value = 2*Prob (B≥b) 
 

 upon the ranks of the data as incorporated in ProUCL 4.0 
are described as follows. These tests can also be used on data sets with NDs, provided the NDs are 
smaller than e
cleanup goals or

6.6.3 The Sig

The sign tes  
This test ma s 
symmetric and t

6.6.3.1 Limitati

Some single sample distribution-free tests based

 th  cleanup Cs or C. In this Technical Guide, both Cs and C have been used to represent 
 cleanup levels. 

n Test 

t is used to detect a difference between the population median and a fixed cleanup goal, C. 
ke no distributional assumptions like the t-test. The sign test is used when the data are not 

he sample size is small (EPA, 2006). 

ons and Robustness 

This test can handle nondetects, provided all NDs are smaller than the cleanup limit, C. 
Compared to one-sample t-test, and the Wilcoxon Signed Rank (WSR) test described 
below, the sign test has less power. 

• 
• 

6.6.3.2 Sign Test in the Presence of Nondetects 

6.6.3.3 Directions fo

• A principal requirement when applying the sign test is that the cleanup limit/goal, C 
should be greater than the greatest less-than value; all NDs should be smaller than C. 

r the Sign Test 

Let X1, X2, . .  As 
before, let C rep
noted that the su
difference. 
 

STEP 1: Le

. , Xn represent a random sample of size n collected from a site area under investigation.
resent the cleanup level. In the following, the substantial difference, S is ≥ 0. It should be 
bstantial difference, S ≥ 0 is used only with Form 2 hypothesis with substantial 

t
~

Xµ be the site population median.  
ing null and the alternative hypotheses: State the follow

Form 1: H0: 
~

Xµ ≤ C vs. H1: 
~

Xµ > C

Form 2: H0: 
~

Xµ
~

≥ C vs. H : 1 Xµ < C

Two Sided: H0: 

 
~

Xµ = C vs. H1: 
~

Xµ ≠ C 
~ ~

Form 2 with substantial difference, S: Ho Xµ  ≥ C + S vs. H : :  1 Xµ < C + S 
 
STEP 2: Calculate the deviations d x C= − . If some of the 0d = , then reduce the sample size until all 

rom the computation. 
i i i

the remaining 0id > . This means that all observations tied at C are ignored f
Compute the binomial random variable, B representing the number of 0id > ,  
i: = 1,2,...,n. Note that under the null hypothesis, the BD random variable B follows a BD (n, ½).  
Thus, one can use the exact BD to compute the critical values and p-values associated with this test. 
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STEP 3: Use the te 40n ≤st statistic, B with exact binomial distribution (BD) for  (programmed in 

roUCL 4.0).  P
 
For 40n > , one may use the approximate normal test statistic given by, 

                                                                        0
2

4

nB S
z

n

− −
= . (6-3) 

 
Note: As before, the substantial difference, S =0,  except for Form 2 hypotheses with substantial 
difference. 
 
STEP 4: For 40n ≤ , use the BD table as in EPA, 2006 (critical values automatically computed by 
ProUCL 4.0) to calculate the critical values, and for 40n > , use the normal approximation and the 
associated normal z critical values.  
 
STEP 5: Conclusion when 40n ≤  (following EPA 2006): 
 
Form 1: If B ≥  BUPPER (n, 2α), then reject the null hypothesis that the population median is less than the 
leanup level, C. c

Form 2: If B ≤  BUPPER (n, 2α), then reject the null hypothesis that 
leanup level. 

the population median is more than the 

f PER (n, α) or B  BUPPER (n, α) - 1, then reject the null hypothesis that the 
e mparable to the cleanup level, C.  
s l difference, If B 

c
Two Sided: I  B ≥  BUP
population m dian is co

≤

≤Form 2 with ubstantia S:  BUPPER (n, 2α), then reject the null hypothesis that the 
 than the clea p level, C + substantial difference, S. 

ritical values d p-values based upon the BD (n, ½) 
r both small samples and large samples. 

e A

edian is more than the cleanup 
vel, C. 

Two Sided: If |z0 | > z1-α/2, then r j
cleanup level, C. 
Form 2 with substantial difference, S: If z0 <- z1-α, then reject the null h
median is more than the cleanup level, C + substantial d
 
P-Values for One-Sample Sign Test 

data sets as described above. 

population median is more nu
 
Note that ProUCL 4.0 automatically calculates the c  an
fo
 
Conclusion: When 40n >  – Large Sampl pproximation: 
 
Form 1: If z0 > z1-α, then reject the null hypothesis that the population median is less than the cleanup 
level, C. 
Form 2: If z0 <- z1-α, then reject the null hypothesis that the population m
le

e ect the null hypothesis that the population median is comparable to the 

ypothesis that the population 
ifference, S. 

 
ProUCL 4.0 automatically calculates the critical values and p-values based upon: the BD (n, ½) for small 
data sets; and normal approximation for larger 
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6.6.4 The Wilcoxon Signed Rank Test 

st is used for the testing the difference between the location 

concentration.  

ess

The Wilcoxon Signed Rank (WSR) te
parameter (mean or median) of a population and a fixed cleanup threshold level such as C, Cs also 
representing a location value such as mean 

6.6.4.1 Limitations and Robustn  

than the sign test. 
• It may give incorrect results in the presence of many tied values. 

ess powerful. 
• For large samples (n > 50) and the normality assumption of the mean (due to CLT), the 

t in the Presence of Nondetects

• For symmetric distributions, typically, the Wilcoxon Signed Rank test has more power 

• The presence of different detection limits makes this test l

one-sample t-test is more powerful than the Wilcoxon Signed Rank test. 

6.6.4.2 Wilcoxon Signed Rank (WSR) Tes  

he same detection limits, replacement of censored data by a 
surrogate value of DL/2 has been recommended (EPA (2006)).  

6.6.4.3 Directions for the Wilcoxon Signed Rank Test

• When all the data have t

• In the presence of multiple detection limits, all observations at the highest detection limit 
may be censored (just as in WMW test) – this may result in some loss of power. 

 

Let X1, X2, . . . ,  site under investigation, and C represent the Cleanup 
Level. 
 
STEP 1: State t
 

 1: H0: Site location ≤ C vs. H1: Site location > C
orm 2: H0: Site location ≥ C vs. H1: Site location < C 

H0: Site location = C vs. H1: Site location ≠ C 
orm 2 with substantial difference, S: H0: Site location ≥ C + S vs. H1: Site location < C + S, here S ≥ 0. 

Xn represent the n data points from

he following null hypotheses: 

Form
F
Two Sided: 
F
 
STEP 2: Calculate the deviations d x C= − . If 0di i i = , then reduce the sample size until .  

ssign an average rank to the 
ed observations.  

TEP 4: Let Ri be the signed rank of |di|, where the sign of Ri is determined by the sign of di. 

u R , where 

0id >
 
STEP 3: Rank the absolute deviations, |di|, from smallest to the largest. A
ti
 
S
 
STEP 5: Test Statistic Calculations:  
 
For n ≤ 20, comp te T + =

{ : 0}i

i
i R >
∑ T +  is the sum of the positive signed ranks. 

or n > 20, approximate test is given by F
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( )
( )0

1 / 4

var

T n n
z

T

+

+

− +
=  (6-4) 

where ( )var T +  is given by ( ) ( ) ( )21 (2 1) 1var 1
gn n n

T t t+ + +
= − −∑ with g = number of tied 

gr
124 48 j j

j=

oups. 
 
STEP 6: Conclusion when n ≤ 20: 
 

Form 1: If 
( )1

2
n n

T + +
≥ , then reject the null hypothesis that the location parameter is less than the 

cleanup level, C. 
Form 2: IfT wα

+ ≤ , then reject the null hypothesis that the location parameter is more than the cleanup 
level, C. 

Two Sided: If 
( )

/ 2

1
2

n n
T wα

+ +
≥ − orT wα

+ ≤ , then reject the null hypothesis that the location 

arameter is comparable to the action level, C. 
 difference, S: If

p
T wα

+ ≤Form 2 with substantial , then reject the null hypothesis that the location 
arameter is more than the cleanup level, C + the substantial difference, S. 

orm 2: If z0 < - z , then reject the null hypothesis that the location parameter is more than the cleanup 

ct the null hypothesis that the location parameter is comparable to the 
leanup level, C. 

p
 
Conclusion when n > 20: 
 
Form 1: If z0 > z1-α, then reject the null hypothesis that the location parameter is less than the cleanup 
level, C. 
F 1-α
level, C. 
Two Sided: If |z0 | > z1-α/2, then reje
c
Form 2 with substantial difference, S: If z0 < - z1-α, then reject the null hypothesis that the location 
parameter is more than the cleanup level, C + the substantial difference, S. 
 
Note: The critical values, wα  as given in EPA (2006) have been programmed in ProUCL 4.0. The details 

on in 
studies. Several of those 

ations have been incorporated in ProUCL 4.0. 
Q-Q plots) for data sets with and without NDs are 

of computation of p-values for small samples (based upon a BD) and larges samples (based upon a 
normal distribution) as incorporated in ProUCL 4.0 are given in EPA (2006). For small data sets, 
ProUCL 4.0 used tables of critical values as given in EPA (2006). 

6.7 Two-Sample Hypotheses Testing Approaches 

The use of parametric and nonparametric two-sample hypotheses testing approaches is quite comm
many environmental applications including site versus background comparison 
approaches for data sets with and without ND observ
Additionally some graphical methods (box plots and 
also available in ProUCL 4.0 to visually compare two or more populations. Some of the parametric and 
nonparametric methods are described in the following subsections. Additional details can be found in 
EPA (1994, 1997, and 2006).  
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Note: It is suggested to always supplement the conclusions derived using test statistics (e.g., t-test, WMW 

h as 

s about the data distributions, or equality of two data distributions. 
 

o compare the means of the two populations such as the potentially 
impacted site area and a background or reference area. Two cases arise: 1) the variations (dispersion) of 

ns from the assumptions of normality.  

E  

.7.1.1 Assumptions and Their Verificatio

test, Gehan test) with graphical displays such as multiple Q-Q plots and side-by-side box plots. Graphical 
displays of data sets often provide useful information about the behavior of the populations (and their 
parameters) under investigation that may not be obtained and understood by simple test statistics suc
t-test, Gehan test, and even GOF test statistics. Therefore, one should always use graphical displays 
before deriving any conclusion

Student’s two-sample t-test is used t

the two populations are the same, and 2) the dispersions of the two populations are not the same. 
Generally, a t-test is robust and not sensitive to small deviatio

6.7.1 Student’s Two-Sample t-Test ( qual Variances)

6 n 

systematic 
background samples that are drawn at random from those independent populations. The 

 

• X1, X2, …, Xn represent systematic site samples and Y1, Y2, … , Ym represent 

validity of the random sampling and independence assumptions should be confirmed by
reviewing the procedures used to select the sampling points (EPA, 2006). 

 
X Y• The sample means  (site) and  (background) are appr

provided the underlying data distributions are not heavily
oximately normally distributed 

 skewed (Singh, Singh, and Iaci, 
2002). If both m and n are large (and data are mildly to moderately skewed), one may 
make this assumption without further verification. If the data are heavily skewed 
(skewness discussed in Chapters 3 and 4), the use of nonparametric tests such as WMW 
test and quantile test is preferable. Normality or approximate normality of data sets 
should be checked by using GOF tests as incorporated in ProUCL 4.0 and described in 
Chapter 3 of this Technical Guide. 

6.7.1.2 Limitations and Robustness 

• The two-sample t-test with equal variances is robust to violations of the assumption of 

) 

 

normality. However, if the investigator has tested and rejected normality or equality of 
variances, then nonparametric procedures such as the Wilcoxon-Mann-Whitney (WMW
may be applied.  

 
• This test is not robust to outliers because sample means and standard deviations are 

sensitive to outliers. As mentioned before, it is suggested not to use a t-test on log-
transformed data sets. This issue has been discussed in Chapter 3 of the revised Guidance 
for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites 
(EPA, 2002b). 

 
• The test assumes the equality of variances of the background and the potentially impacted

data sets. Therefore, if the two variances are not equal and normality assumptions of the 
means are valid, then Satterthwaite’s t-test (available in ProUCL 4.0) should be applied. 
However, if the variances are not equal and the normality of the means is not applicable 
(due to small samples, or skewed data), then nonparametric WMW test should be applied. 
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• In the presence of less than values, it is suggested to use WMW test or Gehan test. 

Sometimes, users tend to use a t-test on data sets obtained by replacing all less than 
values by surrogate values, such as respective DL/2 values, or DL values.  

 
 
• Note: As mentioned many times before, it is suggested to avoid the use of such proxy and

substitution methods (e.g., DL/2) to compute t-test statistics.  

6.7.1.3 Guidance on Implementing the Student’s Two-Sample t-Test 

The number of site (n) and background (m) measurements required to conduct the two-sample t-test 
hould be calculated based upon appropriate DQO procedures (EPA, 2006). In case, it is not possible to 

ProUCL 4.0 provides a test to verify the equality of two dispersions. ProUCL 4.0 automatically performs 
s incorporated in ProUCL 4.0. If some 

measurements appear to be unusually large compared to the remainder of the measurements in the data 
t 

ted 

 

ess 
he proper disposition (include or exclude from 

the data analyses) of outliers. Many times, the outliers represent contaminated site locations requiring 

s
use DQOs, or to collect as many samples as determined using DQO-based sample size determination 
formulae, one should follow the minimum sample size requirements as described in Chapter 1 of this 
Technical Guide.  
 

this test for dispersions before using one of the two t-test

set, then a test for outliers (Chapter 7) should be conducted. Some of the identified outliers may represen
contaminated locations needing further investigation. Once any identified outliers have been investiga
for being mistakes or errors and, if necessary, discarded, the site and background data sets should be re-
tested for normality using both probability plots and formal GOF tests.  
 
The project team should decide the proper disposition of outliers. In practice, it is advantageous to carry
out the tests on data sets with and without the outliers. This extra step helps the users to assess and 
determine the influence of outliers on the various test statistics and the resulting conclusions. This proc
also helps the users in making appropriate decisions about t

separate and additional investigation. 

6.7.1.4 Directions for the Student’s Two-Sample t-Test 

Let X1, X2, .  
and random bac
 
STEP 1: State the following null and the alternative hypotheses: 
 
For

 . . , Xn represent systematic and random site samples and Y1, Y2, . . . , Ym represent systematic
kground samples drawn from independent populations.  

m 1: H0: 0X Yµ µ− ≤  vs. H1: 0X Yµ µ− >
Form 2: H0: 0X Yµ µ− ≥  vs. H1: 0X Yµ µ− <   

0X Yµ µ− =  vs. H1: 0X Yµ µ− ≠   wo Sided: H0: T  
Form 2 with b su stantial difference, S: H0: X Y Sµ µ− ≥  vs. H1: X Y Sµ µ− <    

ate the sample mean 
 
STEP 2: Calcul X  and the sample variances 2

XS  for the site data and compute the 
Ysample mean  and the sample variance 2

YS  for the background data. 
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STEP 3: Determine if the variances of the two populations are equal. If the variances of the two 
populations  
 

 are not equal, use the Satterthwaite’s t-test. Calculate, 

2( 1) ( 21)x ym s−
( 1) ( 1)ps
m n

=
− + −

 (6-5) 

 

and  

n s− +

( )
t

X Y S
0

1 1
=

− −
 (6-6) 

s
m n

p +

 
STEP 4: Us r
+ n - 2) degrees
 
STEP 5: Conclu
 
Form 1: If t0 > t l 
to the backgroun
Form 2: If t0 < -t α
equal to the background population mean. 
Two Sided:
the backgrou
Form 2 with sub
population mean
S. 

.7.2 The Satterthwaite Two-Sample t-Test (Unequal Variances) 

ulation means when the variances of the two 
populations  
except for th s

6.7.2.1 Lim ti

e P oUCL 4.0 to find the critical value t1-α such that 100(1 – α) % of the t-distribution with (m 
 of freedom (df) is below t1-α.  

sion:  

m+n-2, 1-α, then reject the null hypothesis that the site population mean is less than or equa
d population mean. 
m+n-2, 1- , then reject the null hypothesis that the site population mean is greater than or 

 If |t0 | > tm+n-2, 1-α/2, then reject the null hypothesis that the site population mean comparable to 
nd population mean. 

stantial difference, S: If t0 <- tm+n-2, 1- α, then reject the null hypothesis that the site 
 is greater than or equal to the background population mean + the substantial difference, 

6

Satterthwaite’s t-test should be used to compare two pop
 are not equal. It requires the same assumptions as the two-sample t-test (described above) 
e a sumption of equal variance. 

ita ons and Robustness 

• In the presence of less than values, replacement by a surrogate value such as the detection 
limit or one-half of the detection limit gives biased results. Its use should be avoided. 
Instead the use of nonparametric tests is suggested. 

 
eans are violated, the use of 

and quantile tests are recommended when data sets 
imits (for 

 

 

• In cases where the assumptions of normality of m
nonparametric tests is preferred. 

 
• Wilcoxon-Mann-Whitney (WMW) 

have less than values. Moreover, if the less-than values have multiple detection l
example, < 10, < 15, etc.), then the Gehan test should be used in place of the WMW test. 
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6.7.2.2  Directions for the Satterthwaite Two-Sample t-Test 

Let X1, X2, . . . , Xn represent systematic and random site samples and Y1, Y2, . . . , Ym represent systematic 
and random
 
STEP 1: State t
 
Form 1: H0

 background samples drawn from independent populations.  

he following null and the alternative hypotheses: 

: µ µX Y− ≤ 0   vs. H1: µ µX Y− > 0  
Form 2: H0 X 0Yµ µ− ≥  vs. H1: 0<− YX µµ   

0
: 

X Yµ µ− =  vs. H : 0X Yµ µ− ≠   Two Sided: H0:  1

Form 2 with substantial difference, S: H0: X Y Sµ µ− ≥  vs. H1: X Y Sµ µ− <    
 
STEP 2: Calculate the sample mean X  and the sample variances 2

XS  for the site data and compute the 
sample mean Y  and the sample variance 2

YS  for the background

o 

 

 data. 
 
STEP 3: Use F test as described below (also in ProUCL 4.0) to determine if the variances of the tw
populations are equal.  
  

m
s

n
s

SYXt
YX
220

+

−−
=  (6-7) 

 
pt when use pothesis with substantial difference, S ≥ 0. 

 
tes it) to find the critical v lue t1-α such that 100(1 – α)% of the 

Here S = 0, exce d in Form 2 hy

STEP 4: Use a t-table (ProUCL 4.0 compu a
t-distribution with f degrees of freedom is below t1-α, where the Satterthwaite’s Approximation for df is 
given by:  

22 2
X Ys s⎡ ⎤
+

4 4

2 2( 1) ( 1)
X Ys s

n n m m
+

n m
df

⎢ ⎥
⎣ ⎦=

− −

 (6-8) 

 
STEP 5: Conclusion:  
 
Form 1: If t0 > t
the background 
 
Form 2: If t < -t  population mean is greater than or equal 
to the backg  population mean. 
 
Two Sided: If |t
the background 
 

df, 1-α, then reject the null hypothesis that the site population mean is less than or equal to 
population mean. 

0 df, 1-α, then reject the null hypothesis that the site
round

0 | > tdf, 1-α/2, then reject the null hypothesis that the site population mean is comparable to 
population mean. 
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Form 2 with substantial difference, S: If t0 < -tdf, 1- α, then reject the null hypothesis that the site populat
mean is greater than or equal to the background population mean + the substantial difference, S. 
 
P-Values for Two-Sample t-Test 
 

ion 

 p-value is the smallest value for which the null hypothesis is rejected in favor of the alternative 
evel 

than or equal to the p-value. The details of computing a p-value for two-sample t- 
st for comparing two means are given in EPA (2006). ProUCL 4.0 directly computes (based upon an 

appropriate t-distribution) p-values for two
e computed p-value is smaller than the specified value of, α, the conclusion is to reject the null 

bed 

 two populations are equal. Usually 
s a preliminary test, before conducting the two-sample t-test for the equality of 
tions underlying the F-test are that the two-samples are independent random 

A
hypotheses. Thus, based upon the given data, the null hypothesis is rejected for all values of α (the l
of significance) greater 
te

-sample t-tests associated with each form of null hypothesis. If 
th
hypothesis based upon the collected data set used in the various computations. 

6.8 Tests for Equality of Dispersions  

This section describes a test (also available in ProUCL 4.0) that verifies the assumption of the equality of 
two variances. This assumption is needed to perform a simple two-sample Student’s t-test as descri
above.  

6.8.1 The F-Test for the Equality of Two-Variance 

n F-test may be used to test whether the true underlying variances ofA
the F-test is employed a
wo means. The assumpt

samples from two underlying normal populations. The F-test for equality of variances is highly sensitive 
to departures from normality. 

6.8.1.1 Directions for the F-Test 

Let X1, X2, . . . , Xn represent the n data points from site and Y1, Y2, . . . , Ym represent the m data poin
from background. To perform an F-test, proceed as follows. 

ts 

TEP 1: Calculate the sample variances (for the X’s) and  (for the Y’s) 

s FX = sX /sY and FY = sY /sX . Let F equal the larger of these two 
alues. If F = F , then let k = n - 1 and q = m - 1. If F = F , then let k = m - 1 and q = n – 1. 

TEP 3: Using a table of F distribution (ProUCL 4.0 computes them), find a cutoff, U = f (k, q) 

 hypothesis is rejected for all values 
of α (the level of significance) greater than or equal to the p-value. The details of computing a p-value for 

values for the two-sample F-test based upon an appropriate F-

 
2s 2sS X Y

 
STEP 2: Calculate the variance ratio

2 2 2 2

v x y

S 1-α/2
associated with F distribution with k and q degrees of freedom for some significance level, α. If F 
calculated as above > U, conclude that the variances of the two populations are not the same.  
 
P-Values for Two-Sample Dispersion Test for Equality of Variances 
 
As mentioned before, a p-value is the smallest value for which the null hypothesis is rejected in favor of 
the alternative hypotheses. Thus, based upon the given data, the null

a two-sample F-test to compare equality of two variances (of two normal populations) are given in EPA 
(2006). ProUCL 4.0 computes p-
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distribution. If the computed p-value is smaller than the specified value of, α, the conclusion is to reject 
the null hypothesis based upon the collected data set used in the various computations. 

he statistical tests discussed in the previous section rely on the assumption of normality of the popula-
nd and the data do not follow the assumed distribution, use 

 conclusions. Additionally, if the data sets contain 
itional level of uncertainty is faced when conducting parametric tests. 

vironmental data sets do contain outliers and nondetect values, it is unlikely that the current 
that these tests may be adversely affected by outliers 

ns made for ndetect values. Several nonparametric tests have been 
used on data sets with ND observations with single and multiple 

tion 

 wide 
ot unduly affected by outliers. This is especially true 

hen the statistics and tests are not based upon higher order statistics such as nonparametric UPLs and 
UTLs. An exam
nonparametric b th 
or without ND o
 
Nonparame c tests can be used on normal as well as for non-normal data sets. If one or both of the data 
sets fail to m t s, 
then the use of n
powerful provid
tests compare th
mean. Nonparam f ND observations, 
especially when the percentage of nondetects becomes very high.  
 
Note: Once aga  replacing NDs by respective 
DL/2 values or some other substitution values) to perform hypotheses testing approaches. ProUCL 4.0 
provides alt a  
observations.  

lcoxon-Mann-Whitney) test (Bain and Engelhardt, 1991) is a nonparametric 
ining whether a difference exists between the site and the background population 

distributions. The WMW test tests whether or not measurements (location, central) from one population 
consistently tend to be larger (or smaller) than those from the other po
that the dispersion of the two distributions are roughly the same. This test determines which distribution is 
higher by comparing the relative ranks of the two data sets when the data from both sources are sorted 

to a single list. One assumes that any difference between the background and site concentration distribu-
e 

6.9 Nonparametric Tests 

T
tion (e.g., backgrou  site) distributions. When 
of parametric statistical tests may lead to inaccurate
outliers or nondetect values, an add
Since most en
widespread use of parametric tests is justified, given 
and by assumptio  handling no
incorporated in ProUCL 4.0 that can be 
detection limits. 
 
As mentioned earlier, tests that do not require specific mathematical form for the underlying distribu
are called distribution-free or nonparametric statistical tests. The property of robustness is the main 
advantage of nonparametric statistical tests. Nonparametric tests have good test performances for a
variety of distributions, and those performances are n
w

ple illustrating these issues has been considered in Chapter 5. It was shown that the 
ackground statistics do get distorted by outliers. This statement is true for data sets wi
bservations. 

tri
ee  the normality test, or if the data sets appear to come from different types of population

onparametric tests is preferable. It should be noted that parametric tests are more 
ed the underlying assumptions associated with those tests are satisfied. Nonparametric 
e shape and location of the two distributions instead of a statistical parameter such as 
etric tests are preferred methods whenever data set consists o

in, it is suggested to avoid the use of DL/2 method (e.g.,

ern tive methods (e.g., WMW test, Gehan test) that may be used when data sets consist of ND

6.9.1 The Wilcoxon-Mann-Whitney (WMW) Test 

The Mann-Whitney (or Wi
test used for determ

pulation based upon the assumption 

in
tions is due to a shift in location (mean, median) of the site concentrations to higher values (due to th
presence of contamination in addition to the background). 
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6.9.1.1 Advantages and Disadvantages 

The WMW test has three advantages for background comparisons:  
 

• The two data sets are not required to be from a known type of distribution. The WMW 
test does not assume that the data are normally distributed, although a normal distribution 

.  

does not imply the equality of means in the original raw scale. The cleanup decisions often are made 
l scale.  

 If 

ose 

MW test does not place enough weight on the larger site and background 
eans, a WMW may lead to the conclusion that two populations are 

observations in the right tail of one distribution (e.g., site) are 
d). 

round 

he data indicates that it should be rejected in favor of the 
alternative hypothesis.  

approximation is used to determine the critical value of the test for large sample sizes
 
Note: It is suggested again to avoid the use of t-test on log-transformed data sets to compare the 
mean concentrations of two populations. It should be noted that the equality of means in log-scale 

based upon concentrations in threshold levels in the origina
 

• WMW tests allows for nondetect measurements to be present in both data sets. 
Specifically, the WMW test can handle a moderate number of nondetect values in either 
or both data sets by treating them as ties. In practice, the WMW test may be used with up 
to 40 percent or more nondetect measurements in either the background or the site data.
more than 40 percent of the data from either the background or the site are nondetect 
values, the WMW test should not be used. The use of Gehan test is preferable in th
situations. 

 
• It is robust with respect to outliers because the analysis is conducted in terms of the ranks 

of the data. This limits the influence of outliers because a given data point can be no more 
extreme than the first or the last rank.  

 
• The WMW test should not be used if more than 40% of the site or background data sets 

are less-than values. The measurement laboratories should be instructed to report actual 
measurements for all soil samples, whenever possible, even if the reported measurements 
are negative. Although negative concentrations cannot occur in nature, negative 
measurements can occur, due to measurement uncertainties, when the true concentrations 
are very close to zero. 

 
• The W

measurements. This m
comparable even when the 
significantly larger than the right tail observations of other population (e.g., backgroun
The quantile test (EPA, 1994) is used to compare upper tails of the two distributions. 
WMW test uses and considers all measurements, rather than focusing on larger 
measurements as is done by the quantile test. The quantile test is available in ProUCL 
4.0. It is suggested that both the quantile test and the WMW test be used on the same data 
sets. 

 
• The WMW test may be applied to either null hypothesis in the two forms of backg

tests as discussed throughout this chapter. In all forms, the null hypothesis is assumed to 
be true unless the evidence in t
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6.9.1.2 WMW Test in the Presence of Nondetects 

• If there are t nondetect values, then they are considered as “ties” and are assigned the 

average rank for this group. Their average rank is the average of the first t integers, 
1t

2
+

.  

• Note that if there are no NDs, the process is the same and ranks are assigned individually
to all detected observations. 

If more than one detection limit was in use, then a

 

 
• ll of the observations below the largest 

detection limit should be treated as nondetects. This of course will result in some loss of 
power associated with WMW test. Alternatively, the Gehan test may be performed. 

6.9.1.3 WMW Test Assumptions and Their Verification 

The underlying assumptions of the WMW test are: 
 

• The soil sample measurements obtained from the site and background areas are 
independent (not correlated). This assumption requires: 1) that an appropriate probability-

y) the sampling locations of 
ng locations are spaced far enough 

n of the measurements from a site area is similar to 
(e.g., including shape and spread) the probability distribution of measurements collected 

e 
 shifted to higher concentrations than the distribution for 
ption of equal variances of the two regions (site and 

ound) should also be evaluated using descriptive statistics and graphical displays 
such as side-by-side box plots and histograms. 

6.9.1.4 Directions for the WMW Test when the Number of Site and Background Measurements 

based sampling design strategy be used to determine (identif
the soil samples for collection, and 2) those soil sampli
apart that a spatial correlation among concentrations at different locations is not likely to 
be present. 

 
• The underlying probability distributio

from a background or reference area. Under the alternative hypothesis (Form 2), th
distribution of site data may be
the background area. The assum
backgr

is small n # 20 a ( nd m # 20) 

Let X1, X2, . . . , Xn represent the n data points from the site population and Y1, Y2, . . . , Ym represent the 
 data points from the background population. m

 

STEP 1: Let 
~

Xµ  represent the site population median and 
~

Yµ represent the background population 
edian. State the following null and the alternative hypotheses: m

 

Form 1: H0: 
~ ~

0X Yµ µ− ≤  vs. 
~ ~

H1: 

µ µ− = µ µ

0X Yµ µ− >

Form 2: H0: 
~ ~

0X Yµ µ− ≥  vs. H1: 
~ ~

0X Yµ µ− <   
~ ~

Two Sided: H0: X Y  vs. H0 1: X Y

~ ~
0− ≠

orm 2 with substantial difference, S: H0

~ ~

X Y X YS Sµ µ µ µ

   
~ ~
− ≥ − <  F : 
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STEP 2: List and rank the pooled set o
largest, keeping  track of which measurements came from the site and which came from the background 
area. Assign the rank of 1 to th
smallest value among the pooled data, and so forth. 
 

• , then assign the average of the ranks 
If several measurement values 

en average the ranks separately for each of those measurement values. 
 
• If a few less-than values occur (say, < 10%), and if all such values are less than the 

ed data set, then handle the less-than values as 
tied at an arbitrary value less than the smallest detected measurement. Assign the average 

an values (the same 
procedure as for tied detected measurements). 

 40% of the pooled data set are less-than values, and all are less than 
the smallest detected measurement, then use the approximate WMW test procedure given 

ote: The procedure is for the case where m and n are both of size 20 or larger. That procedure will 

ull hypothesis is rejected should not be made until additional information 
 obtained by taking more samples and using a more sensitive measurement method. It is suggested to 

TEP 3 site measurements. Denote this sum by Ws and then 

f N = n + m site and background measurements from smallest to 

e smallest value among the pooled data, the rank of 2 to the second 

If a few measurements are tied (identical in value)
that would otherwise be assigned to the tied observations. 
have ties, th

smallest detected measurement in the pool

of the ranks that would otherwise be assigned to these tied less-th

 
• If between 10% and

for  large data sets (e.g., n > 20 and m > 20), even if n and m are less than 20.  
 

N
provide only an approximate test if it is used when n and m are both smaller than 20. In that case, 
decisions of whether or not the n
is
use graphical displays before deriving any conclusions about the equality of two data distributions. 
 
S : Calculate the sum of the ranks of the 
calculate T as follows: 
 

( )1
2S

n n
T W S

+
= − −  (6-9) 

 
Note: The test statistic, T is often called the MW test statistic. In this Guide and in ProUCL, this statistic
is called the WMW test statistic (Bain and Engelhardt, 1991). Note the difference between the definitio
of  T and W

 
ns 

 are 
different. However, critical values for one test can be obtained from the critical values of the other test by 

y the above equation. These two tests (WRS test and WMW test) are 
equivalent tests, and conclusions derived by using these test statistics are equivalent.  

e, 

l 

 the site population median is greater than or equal to 

s . Some software packages such as MINITAB uses test statistic Ws (known as Wilcoxon Rank 
Sum (WRS) statistic) to perform this nonparametric test. Obviously the critical values for Ws and T

using the relationship given b

 
STEP 4: For specific values of n, m, and α, find an appropriate Wilcoxon-Mann-Whitney critical valu
wα, from the table  as given in EPA (2006) and also in Daniel (1995). 
 
STEP 5: Conclusion:  
 
Form 1: If T ≥ nm - wα, then reject the null hypothesis that the site population median is less than or equa
to the background population median. 
Form 2: If T ≤ wα, then reject the null hypothesis that
the background population median. 
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Two Sided: n 
(location) is sim e background population median (location). 
Form 2 with b
median is greate ubstantial difference, S.  
 
Note: S tak  ith substantial difference, in all other 
forms of the l
 
P-Values for Two-Sample WMW Test – For Small Sample 
 
A p-value is the sm l hypothesis is rejected in favor of the alternative 

thesis is rejected for all values of α (the level 
of significance) greater than or equal to the p-value. The details of computing a p-value for a two-sample 
nonparamet W
ProUCL 4.0 com W test. If the 
computed p-value is smaller than the specified value of, α, the conclusion is to reject the null hypothesis 

 various computations. 

 If T ≥ nm - wα/2 or T≤ wα/2, then reject the null hypothesis that the site population media
ilar to that of th

 su stantial difference, S: If T ≤ wα, then reject the null hypothesis that the site population 
r than or equal to the background population median + the s

es a positive value only for this form of the hypothesis w
 nu l hypothesis, S = 0. 

allest value for which the nul
hypotheses. Thus, based upon the given data, the null hypo

ric MW test for comparing two means are given in EPA (2006). For small samples, 
putes only approximate (as computed for large samples) p-values for WM

based upon the collected data set used in the

6.9.1.5 Directions for the WMW Test when the Number of Site and Background Measurements 
is Large (n > 20 and m > 20) 

Let X1, X2, . . . , Xn represent the n data points from the site popula
data points from the backg ulation. 

tion and Y1, Y2, . . . , Ym represent the m 
round pop

TEP 1: Let 
~

Xµ  represent the site and 
~

YµS represent the background population medians (means). State 

orm 1: H0  vs. H1

the following null and the alternative hypotheses: 
 

: 
~ ~

0X Yµ µ− ≤ : 
~ ~

0X Yµ µ− >F

Form 2: H0: 0X Yµ µ− ≥  vs. H
~ ~

1: 0X Yµ µ− <   

Two Sided: H

~ ~

0: 
~ ~

0X Yµ µ− =  vs. H1: 
~ ~

0X Yµ µ− ≠    

Form 2 with substantial difference, S: H0: 
~ ~

X Y Sµ µ− ≥  vs. 
~ ~

X Y Sµ µ− <  
 
STEP 2: List and rank the pooled set of n + m site and background measurements from smallest to 
largest, keeping track of which measurements came from the site and which came from the background 
area. Assign the rank of 1 to the smallest value among the pooled data, the rank of 2 to the second 
smallest value among the pooled data, and so forth. 
 

• If < 40% of the measurements in the pooled data is tied (identical in value), then assign 
the average of the ranks that would otherwise be assigned to the tied observations. If 
several measurement values exist for which ties occur, then average the ranks separatel
for each of those measurement values. 

 
• If < 40% of the pooled data is less-than values and if all such values are less than the 

smallest detected
as being tied at an arbitrary value less than 

y 

 measurement in the pooled data set, then handle those less-than values 
the smallest detected measurement. Assign the 
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average of the ranks that would otherwise be assigned to this group of tied values (the 
same procedure as for detected measurements that are tied).  

 NOTE: The total number of tied detected measurements and tied less-than values should 
not exceed 40% of the total number of measurements. 

 
hen the Gehan test should be 

TEP 4: Calculate 

 
•

• If more than 40% of the pooled data are less-than values, t
used.  

 
STEP 3: Calculate the sum of the ranks of the site measurements. Denote this sum by Ws. 
 
S

0

( 1)n n m
2

( 1)
12

s S
Z

nm n m

W + +
− −

+ +
 (6-10) 

le to get the critical values z1-α , where z1-α  is the 100(1 – α) percentile of the 
tandard normal distribution. 

orm 1: If Z >  z1-α, then reject the null hypothesis that the site population mean/median is less than or 
ckground population mean/median. 

Two Sided: If |Z0|  > z1-α/2, then reject the null hypothesis that the site population mean is same as the 
background population mean. 
Form 2 with substantial difference, S: If Z0  < - z1-α, then reject the null hypothesis that the site population 
mean is greater than or equal to the background population location + the substantial difference, S. 
 
P-Values for Two-Sample WMW Test – For Large Sample 
 
A p-value is the smallest value for which the null hypothesis is rejected in favor of the alternative 
hypotheses. Thus, based upon the given data, the null hypothesis is rejected for all values of α (the level 
of significance) greater than or equal to the p-value. The details of computing a large sample p-value for a 
two-sample nonparametric WMW test for comparing two means/medians are given in EPA (2006). 
ProUCL 4.0 directly computes (based upon normal distribution) p-values large samples WMW test for 
each form of null hypothesis. If the computed p-value is smaller than the specified value of, α, the 
conclusion is to reject the null hypothesis based upon the collected data set used in the various 
computations. 
 
Note: As suggested in the literature (EPA, 1994), both the WMW test and the quantile test should be used 
on the same data set to compare the two data distributions. Typically, the WMW test is used to compare 
the measures of locations (central tendencies assuming the equality of dispersions and shape of the 
distributions), whereas a quantile test is useful to determine if the observations in the upper tail of the site 
data set are larger than those found in the upper tail of the background data set. A typical WMW test 
simply compares the measures of location (central tendencies) of the two distributions (populations). A 

=

 
STEP 5: Use the z-tab
s
 
STEP 6: Conclusion for Large Sample Approximations:  
 
F 0  
equal to the ba
Form 2: If Z0  < - z1-α, then reject the null hypothesis that the site population mean is greater than or equal 
to the background population mean. 
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WMW test cannot compare the upper tails of two data distributions. Specifically, a WMW test may lead to 
the conclusion of the similarity/equality of the two data distributions even when the upper tail of one data 
distribution is much larger (shifted to the right) than the upper tail of the other data distribution. In order 
to detect the differences and shifts in the tails of two data distributions, one should use quantile test 
described as follows. 

6.9.2 The Gehan Test 

The Gehan test is one of several nonparametric tests that has been proposed to test for the differences 
between two sites when the data sets have multiple censoring points and detection limits. Among these 
tests, Palachek et al. (1993) indicate they selected the Gehan test primarily because it was the easiest to 
explain, because the several methods generally behave comparably, and because the Gehan test reduces to 
the WRS test, a relatively well-known test to environmental professionals. Palachek et al. (1993) used 
their computer code to conduct Gehan tests on data from the Rocky Flats Environmental Technology Site 
near Denver, CO. They recommend using the Gehan test rather than a more complicated procedure 
involving replacement of nondetects by a value such as one-half of the detection limit, testing for 
distribution shape and variance, and then conducting appropriate t- tests or the WMW test. The Gehan test 
as described here is available in ProUCL 4.0.  

6.9.2.1 Limitations and Robustness 

The Gehan test can be used when the background or site data sets contain multiple less-than values with 
different detection limits. 
 

• The Gehan test is somewhat tedious to compute by hand. The use of a compute program 
is desirable. 

 
• If the censoring mechanisms are different for the site and background data sets, then the 

test results may be an indication of this difference in censoring mechanisms rather than 
an indication that the null hypothesis is rejected. 

 
Note: The Gehan test is used when many ND observations or multiple DLs may be present in the two data 
sets. Therefore, the conclusions derived using this test may not be reliable when dealing with samples of 
sizes smaller than 10. Furthermore, it has been suggested throughout this guide to have a minimum of 8-
10 observations (from each of the population) to use hypotheses testing approaches, as decisions derived 
based upon smaller data sets may not be reliable enough to draw important decisions about the human 
health and the environment. Therefore, this test (as included in ProUCL 4.0) is described here for data 
sets of sizes ≥ 10. The test described as follows is based upon the normal approximation of Gehan’s 
statistic. 

6.9.2.2 Directions for the Gehan Test when m ≥ 10 and n ≥ 10. 

Let X1, X2, . . . , Xn represent data points from the site population Y1, Y2, . . . , Ym represent background data 
from the background population. For data sets of sizes greater than or equal to 10, a test based upon 
normal approximations is described in the following. 
 

STEP 1: Let 
~

Xµ  represent the site and 
~

Yµ represent the background population medians. State the 
following null and the alternative hypotheses: 
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Form 1: H0  vs. H1 X Yµ µ− >

Fo

: 
~ ~

0X Yµ µ− ≤ : 
~ ~

0

rm 2: H0: 0X Yµ µ− ≥  vs. H
~ ~

1: 0X Yµ µ− <   
~ ~ ~ ~

~ ~

Two Sided: H0: 0X Yµ µ− =  vs. H1: 0X Yµ µ− ≠    

Form 2 with substantial difference, S: H0: 
~ ~

X Y Sµ µ− ≥  vs. H1:
~ ~

X Y Sµ µ− <  
 
STEP 2: List the combined m background and n site measurements, including the less-than values, from 
smallest to largest, where the total number of combined samples is N = m + n. The less-than symbol (<) 
is ignored when listing the N data from smallest to largest. 
 
STEP 3: Determine the N ranks, R1, R2, … , Rn, for the N ordered data values using the method described 
in the example given below. 
 
STEP 4: Compute the N scores, a(R1), a(R2),…, a(Rn), using the formula a(Ri) = 2Ri – N -1, where i is
successively set equal to 1, 2, …, N. 
 
STEP 5: Compute the Gehan statistic, G, as follows: 
 

 

1
1

2 2

1

( )

[ ( )]
( 1)

i i
i

N
i

i

h a R
G

a Rmn
N N

=

=

=

N

⎡ ⎤
⎢ ⎥−⎣ ⎦

∑

∑
 (

where 
1
0

i

i

h
h
=⎧

⎨ =⎩
  

 
h

6-11) 

 

i  if the  datum is from the background population 

l 

i =  1 if the ith datum is from the site population 
h  =  0 ith

 N = n + m 
a(Ri) = 2 Ri – N -1, as indicated above. 

 
STEP 6: Use the normal z-table to get the critical values. 
 
STEP 7: Conclusion based upon approximate normal distribution of G statistic: 
 
Form 1: If G ≥ z1-α, then reject the null hypothesis that the site population median is less than or equal to 
the background population median. 
 
Form 2: If G ≤- z1-α, then reject the null hypothesis that the site population median is greater than or equa
to the background population median. 
 
Two Sided: If |G| ≥ z1-α/2, then reject the null hypothesis that the site population median is same as the 
background population median. 
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Form 2 with substantial difference, S: If G ≤ - z1-α, then reject the null hypothesis that the site popu
median is greater than or equal to the background population median and the substantial difference. 
 
P-Values for Two-Sample G

lation 

ehan Test 

 
 

on 

.9.3 The Quantile Test 

The quantile test (EPA, 1994) is a nonparametric test and is useful to detect a shift to the right in the right-
tails of the s a ith WMW test 
rovides the user with stronger evidence to make decisions on whether the site has attained remediation 

(or backgro hat 
e critical v e

quantile test, onl lly, the null 
ypothesis is: Concentration in the cleanup unit (AOC) is comparable to that of the background area. A 

partial form  in EPA, 1994) is described as follows.  

 
A p-value is the smallest value for which the null hypothesis is rejected in favor of the alternative 
hypotheses. Thus, based upon the given data, the null hypothesis is rejected for all values of α, the level of
significance, greater than or equal to the p-value. For Gehan’s test as described above, the p-values are
computed using normal approximation for Gehan’s G statistic. The p-values can be computed using the 
simple procedure as used for computing large sample p-values for a two-sample nonparametric WMW 
test. ProUCL 4.0 directly computes (based upon normal distribution) p-values for Gehan test for each 
form of null hypothesis. If the computed p-value is smaller than the specified value of, α, the conclusi
is to reject the null hypothesis based upon the collected data set used in the various computations. 

6

ite nd background distributions. The quantile test when used in parallel w
p

und) levels or not (or if site and background concentrations are comparable). It is noted t
alu s for the quantile test are available for Background Form 1 hypothesis. Therefore, for th

y Form 1 of hypothesis testing is available in ProUCL 4.0. Specifica
h

ulation of the quantile test (as given

6.9.3.1 Limitations and Robustness 

• It may give unreliable results if less than values are present in the largest detected 
observations. 

• If the quantile test does not declare that the chemical is a COPC, then a Wilcoxon-Mann-
Whitney test should be performed to ascertain the results.  

• Since the test focuses on the right tails, presence of large outliers will bias results. 

ve 
wo-

• It does not require any distributional assumption. 
• As the test focuses on the right tail of the site and background distributions, it can ha

more power to detect differences than the Gehan, Wilcoxon-Mann-Whitney or the t
sample t-tests. 

• Relatively simple to conduct. 

6.9.3.2 Quantile Test in the Presence of Nondetects 

• A principal requirement when applying the quantile test on censored data sets is to 
discard all less-than values present in the largest r detected observations. 

6.9.3.3 Directions for the Quantile Test 

Let X1, X2, . . . , Xn represent the n data points from the site population and Y1, Y2, . . . , Ym represent the 
m data points from the background population. 
 
STEP 1: State the following null and the alternative hypotheses: 
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Form 1: H0: 0X Yµ µ− ≤  vs. H
~ ~

1: 0X Yµ µ− >
~ ~

 
STEP 2: From the tables (EPA (1994)) look up the values of r, k, and α corresponding to m and n. The 
formula for computing the actual α is given below. 
 

r

i k

m n r r
n i i
m n

α =

+ −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠=

+⎛ ⎞

∑
 (6-12) 

n⎜ ⎟
⎝ ⎠

r decrease r or k 

ble 

r and k values to be used will be now 6.  

ultiples of 5, then the closest values of m and n are entered in the table to 

 

 

 
STEP 3: If the actual α and the desired α (0.05, 0.01, etc.) do not agree, then increase o
by 1 unit and again compute the actual α. Use the new r and k value in STEP 3. 
 
Note: As r and k are discrete in nature, getting the same value of α from the formula and from the ta
may not be achievable. 
 
STEP 4: Order the pooled data set from smallest to largest. In the presence of ties, increase r to include 
all ties in the r largest observations; e.g., when r = 4 and k = 4, then counting down from the rth largest 
observation if there are two ties within r = 4 and two ties not in r, increase r by 2 and subsequently 
increase k by 2. The modified 
 
STEP 5: If the m and n are not m
get the values of r, k and α. The formula in Step 1 is then used to find the value of the actual α with the 
original m and n values. If the actual α value is close enough to the desired α value, the quantile test is 
conducted with r and k from the rounded m and n values. For an example, for a required α level of 0.01
and with m = 47 and n = 77, the closest tabled values are m = 45 and n = 75. For m = 45 and n = 75, 
tabled values are r = 9, k = 9, and α = 0.012. To check if the quantile test can be performed, compute the
actual α value as shown below: 
 

Actual Alpha = 

124 9 9
77 9 9

0.012
124
77

α

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Since 0.012 is close enough to 0.01, it is safe to conduct the quantile test. 
 
STEP 6: For r < 20, compute the probability P as shown in Step 1. For r ≥ 20, use the normal 
approximation and calculate Z as shown below: 
 

0.5k Xz
sd

− −
=  (6-13) 

where 
nrX

m n
=

+
 and 

( )
( ) ( )

1
2

2 1
mnr m n r

sd
m n m n

⎡ ⎤+ +
= ⎢ ⎥

+ + −⎢ ⎥⎣ ⎦
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STEP 7: Conclusion: 
 
When r < 20, 

is that the site population 
arameter is less than or equal to the background population parameter. 

 
When r ≥ 20, 
Form 1: If P – value < specified α, then reject the null hypothesis that the site population parameter is less 
than or equal to the background population parameter. The details are given in EPA (1994). 

Form 1: If computed k ≥ # of Site Observations in r, then reject the null hypothes
p
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Chapter 7 
 

Outlier Tests for Data Sets with and without Nondetect Valu
 
Outliers are measurements that are extremely large or small relative to the rest of the data and, therefore, 
are suspecte

es 

d of misrepresenting the main dominant population from which they were collected. Outliers 
re inevitable in most environmental applications. Outliers may result from gross errors, such as 

down. 

m 
of outliers in 

pper 

a
transcription errors, data-coding errors, or measurement system problems such as instrument break
However, outliers may also represent true extreme values of a distribution (for instance, hot spots) and 
indicate more variability in the population than was expected. Typically, outliers represent observations 
coming from population(s) different from the main dominant population (e.g., a background area, a site 
area after cleanup) under study. Typically, outliers represent low probability observations coming fro
the tails of the data distribution under consideration (e.g., data from an AOC). The presence 
a data set distorts the computations of all classical statistics (e.g., sample mean, standard deviation, u
prediction, and upper tolerance limits, test statistics, GOF statistics, and also outlier test statistics) 
interest. Some description (with examples) of the influence of outliers on the computation of various 
statistics, including the sample mean, sample standard deviation and several upper limits, is given i
Chapters 3 and 5 of the revised Guidance for Comparing Background and Chemical Concentrations in 
Soil for CERCLA Sites (EPA, 2002b). The use of such distorted statistics (e.g., two-sample t-test, GOF
test) may lead to incorrect cleanup decisions about the site under consideration.  
 
Statistical tests based on parametric methods generally are more sensitive to the existence of outliers in 
either the site or the background data sets th

of 

n 

 

an are those based on nonparametric distribution-free 
ethods. The use of nonparametric hypotheses tests for background comparisons can reduce (but not 

completely) the sensitivity of test results to the presence of outliers to a certain extent. Specifically, 
nonparametric statistics (e.g., UTLs, UPLs) based upon higher order statistics (e.g., largest, second 
largest) will represent outlying observations. Outliers can also lead to both Type I and Type II errors by 
distorting the test statistics used for hypotheses testing about the population parameters (e.g., means). 
They can lead to inconclusive and potentially incorrect results if the test statistics are sensitive to the 
outliers. This issue is illustrated below by using an example, comparing site versus background lead 
concentrations collected from a Superfund site.  
 
In environmental applications, it is important to identify high outlying observations, as those high outliers 
may represent contaminated (or hot areas) locations of a polluted site. Typically, it is the presence of a 
few high

m

 outlying observations that distort the normality of a data set. That is, in practice, many data sets 
follow a normal distribution after the removal of potential outliers. Unfortunately such data sets with a 
few high outliers (often representing contaminated site areas) can also be modeled by a lognormal 
distribution. It is observed that in practice, the use of a log-transformation tends to hide and accommodate 
outlier(s) as part of the majority of the data set representing the dominant population. Statistical methods 
used on such contaminated data sets will yield distorted statistics and estimates (e.g., site average) for the 
entire site area under investigation. For an example, inclusion of a few high outliers (perhaps representing 
a polluted part of the site) in the computation of a UCL95 will yield a distorted estimate of the EPC for 
the entire site area under investigation. Decisions based upon such distorted statistics can be expensive 
and (or) not protective of the human health and the environment. In environmental applications the 
objective is to expose and identify such outlying observations as those observations often represent hot 
spots and (or) contaminated areas of the site, or observations possibly collected from an area other than 
the site background. These observations need to be identified as those requiring separate and further 
investigation and remediation. The project team and the decision makers involved in the project decision 
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should decide about the proper disposition (include or not include) of high outlying observations. 
ometimes, performing statistical analyses twice on the same data set – once on using the full data set 

with outliers and once on data set without high outlier ypical user in determining the 
disposition of high outliers.  
 
Statistical outlier tests give the analyst probabilistic evidence that an extreme value (potential outlier) 
does not “fit” with the distribution of the remainder of the data and is therefore a statistical outlier. These 
tests should only be used to identify data points that require further investigation. The classical outlier 
tests should be accompanied by graphical displays such as, Q-Q plots and box plots. Graphical displays 
provide additional insight into a data set that cannot be revealed by tests statistics (e.g., Rosner test, Dixon 
test, Shapiro Wilk test) alone. The statistical tests (e.g., Rosner test) alone cannot determine whether a 
statistical outlier should be discarded or corrected within a data set; this decision should be based on 
judgmental or scientific grounds. Typically, there are 5 steps involved in treating extreme values or 
outliers:  
 

1. Identify extreme high values that may be potential outliers,  
 
2. Apply a statistical test and supplement them with graphical displays,  

3. Scientifically review the statistical outliers and decide on their proper disposition,  

 

 
ial 

g 
ctions.  

 
If a data point is found to be an outlier, then the analyst may either: 1) correct the data point;  

oint in all of the analyses. This 
decision should be based on scientific reasoning in addition to the results of the statistical test. For 

hereas data points collected 
hile an instrument was malfunctioning may be discarded. As mentioned before, the disposition of 

outlier(s) should be a team effort. The project team should assess the influence (often undue influence) of 
outliers on the estimates  (e.g., EPC, BTV) and test statistics (e.g., t-test) to be computed. It is noted that 
even the presence of a single outlier can distort all statistics of interest such as averages, standard 
deviations (sd), and various upper limits and test statistics. One simple way to assess the influence of 
outliers on the statistics to be computed is to compute the statistics with and without the high outlying 
observations. In other words, if a high outlier is discarded from the data set, then it is desirable that all of 
the statistical analysis of the data should be applied to both the full (with outliers) and the truncated data 
set (without high outliers) so that the influence of outliers may be assessed. For an example, if the 
difference between a UCL95 based upon a full data set with outliers is significantly higher (as often is the 
case) from the UCL95 based upon the data set without the high outlying observations, then the project 
team should be able to decide which of the two UCL values represents a more realistic estimate of the 
EPC term. 

S
s can help a t

 

 
4. Conduct data analyses with and without the statistical outliers, and  

 
5. Document the entire process.  

 
The final disposition of outliers should be a team effort including the project team, decision makers, and
experts familiar with the site conditions. As mentioned before, potential outliers may be identified 
through the graphical representations. Graphs, such as the box and goodness-of-fit (GOF) Q-Q plot, can
be used to identify observations that are much larger or smaller than the rest of the data. If potent
outliers are identified, then the next step is to apply one of the statistical tests described in the followin
se

2) isolate the data point for further investigation; or 3) use the data p

instance, data points containing transcription errors should be corrected, w
w
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The practitioner should also be clear about the objective of the study. Typically, in such applications, the 
objective is to compute the statistics (e.g., averages, UCLs, UPLs) based upon the majority of the data set 
representing the dominant population. For an example, the average (estimate of population mean) should 
be a representative of the population based upon the majority of the data representing the dominant (main) 
population. A distorted estimate accommodating a few outliers tends to represent that contaminated area 
of the site (and not the entire dominant site area under consideration). Therefore, it is desirable that the 
project team decides to isolate a few high outliers and investigate their locations for the possibility of 
further remediation. A couple of classical outliers tests (Rosner test and Dixon test) often cited in 
environmental literature have been incorporated in ProUCL 4.0. These tests can be used on data sets with 
and without nondetect observations. 

7.1 Outlier Tests for Data Sets without Nondetect Observations 

A couple of classical outlier test procedures often used in environmental applications (EPA, 2006, and 
Gilbert, 1987) are briefly described here. It is noted that these classical tests do suffer from masking 
effects and may fail to identify potential outliers present in a data set. This is especially true when 
multiple outliers or multiple populations may be present in a data set. Such scenarios can be revealed by 
graphical displays, such as a Q-Q plot discussed earlier. More effective robust outlier identification 
procedures (Singh and Nocerino, 1995) are beyond the scope of ProUCL 4.0. Several robust estimation 
and outlier identification procedures are available in Scout software package (EPA, 1999), which is 
currently being upgraded. 

7.1.1 Dixon’s Test 

Dixon’s Extreme Value test (1953) can be used to test for statistical outliers when the sample size is less 
than or equal to 25. It is noted that Dixon’s test considers both extreme values that are much smaller than 
the rest of the data (Case 1) and extreme values that are much larger than the rest of the data (Case 2). 
This test assumes that the data without the suspected outlier are normally distributed; therefore, it is 
necessary to perform a test for normality on the data without the suspected outlier before applying this 
test. This means that the user has to identify (guess) potential outliers that may be present in the data set. 
One simple way to identify and look at outliers is the use of graphical displays such as a Q-Q plot and box 
plot. The Dixon test often suffers from masking effects when more than one outlier may be present in the 
data set. If more than one outlier is suspected, the Dixon test may lead to masking where two or more 
outliers close in value “hide” one another. As mentioned before, the use of robust and resistant outlier 
procedures (Singh and Nocerino, 1995, Rousseeuw and Leroy, 1987, and Scout, 1999) is desirable. 
However, robust and resistant methods are beyond the scope of ProUCL 4.0. Several robust methods are 
available in Scout (EPA, 1999) software package, which is currently under revision and upgrade.  
 
Even though Dixon’s test finds outliers in both tails (low and high outliers) of the data distribution, it is 
the identification of high outlying observations (perhaps representing contamination), which is important 
in environmental applications. The inclusion of high outliers in a data set results in distorted statistics of 
interest, including estimates and test statistics. The low identified outliers (if any) may be retained in a 
data set to compute various statistics of interest. 

7.1.1.1 Directions for the Dixon’s Test 

STEP 1: Let X(1), X(2), . . . , X(n) represent the data ordered from smallest to largest. Check that the data 
without the suspect outlier are normally distributed. If normality fails, then apply a different outlier 
identification method such as a robust outlier identification procedure. It is suggested to avoid the use of a 
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transformation such as a log-transformation to achieve normality to be able to use the Dixon test. All 
leanup and remediation decisions are made based upon the data set in raw scale. Therefore, outliers 

perhaps representing isolated contaminated locations should be identified in the original scale. As 
mentioned before, the use of a log-transformation tends to hide and accommodate outliers (instead of 
identifying them).  
 
STEP 2: X(1) is a potential outlier (Case 1): Compute the test statistic, C, where 
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STEP 3: If C exceeds the critical value for the specified significance level α, then X(1) is an outlier and 
should be further investigated.  
 
STEP 4: X(n) is a potential outlier (Case 2): Compute the test statistic, C, where  
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STEP 5: If C exceeds the critical value for the specified significance level α, then X ) is an outlier and 

be further investigated.  

o be performed without the suspected outliers, which need to be 
entified or determined first. A graphical display (Q-Q plot) can help determine to identify suspected 

outliers.  

7.1.2.1 Directions for the Rosner’s Test

(n
should 

7.1.2 Rosner’s Test 

A parametric test developed by Rosner can be used to detect up to 10 outliers for sample sizes of 25 or 
more. The details of the test can be found in Gilbert (1987). This test also assumes that the data are 
normally distributed without the outliers; therefore, it is necessary to perform a test for normality before 
applying this test. Note that the test assumes that, the data without the outliers are normally distributed; 
therefore, the test for normality has t
id

 

To apply Rosner’s test, first determine an upper limit, r0, on the number of outliers (r0 ≤ 10), then order 
the r0 extreme values from most extreme to least extreme. Rosner’s test statistic is computed using the 
sample mean and sample standard deviation. 
 
STEP 1: Let X1, X2, . . . , Xn represent the ordered data points. By inspection, identify the maximum 

number of possible outliers, r0. Check that the data are normally distributed. 
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STEP 2: Compute the sample mean, x , and the sample standard deviation, s, for all the data. Label these 
values )0(x   and , respectively. Determine the value that is farthest from )0(s )0(x  and label this 
observation . Delete from the data and compute the sample mean, labeled )0(y )0(y   

)1(x , and 
the sample standard deviation, labeled . Then determine the observation farthest from)1(s  )1(x  

and label this observation . Delete and compute )1(y  
)1(y   

)2(x  and . Continue this process 
until r0 extreme values have been eliminated.  

 
After carrying out the above process, the analyst should have 
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[ )0(x , )0(s , )0(y ]; [ )1(x , )1(s , )1(y ]; …, [ )1( 0 −rx , )1( 0 −rs , )1( 0 −ry ] where 
 

∑
−

=
−

=

in

j
j

i x
in

x
1

)( 1
, ∑ −

−
=

−

=

in

j

i
j

i xx
in

s
1

2)()( )(1
, and  is the farthest value )(iy )(ix .  

 
Note: The above formulae for )(ix  and assume that the data have been renumbered after 
each outlying observation is deleted.  

 

STEP 3: To test if there are “r” outliers in the data, compute: 

)(is  

)1(

)1()1( ||
−

−− −
= r

rr

r s
xyR  and compare  to 

the critical value  in the tables from any statistical literature. If , conclude that there 
are r outliers.  

 
First, test if there are r0  outliers (compare  to  ). If not, then test if there are r0 - 1 

outliers (compare to ). If not, then test if there are r0 - 2 outliers, and continue, until 
either it is determined that there are a certain number of outliers or that there are no outliers at 
all.  

7.2 Outlier Tests for Data Sets with Nondetect Observations 

For the purpose of the identification of high outliers, one may replace the nondetect values by their 
respective detection limits or may just ignore them (especially when the number of detected values is 
large such as exceeding 8-10) from any of the outlier test (e.g., Rosner test) computation, including the 
graphical displays such as Q-Q plots. Both of these procedures (ignoring NDs, or replacing them by 
DL/2) for outliers testing are available in ProUCL for data sets with ND values. Note that outlier 
identification procedures represent exploratory tools and are used for pre-processing of a data set to 
identify outliers or multiple populations that may be present in a data set. Except for the identification of 
high outlying observations, the outlier identification statistics (computed with NDs or without NDs) are 
not used in any of the estimation and decision making process. Therefore, for the purpose of the 
identification of high outliers, it does not matter how the nondetect observations are treated. After outliers 
have been identified, the project team and experts familiar with the site should make the final decision 
about the disposition of outliers. 
 
Thus, nondetects and outliers are inevitable in most environmental data sets. Typically, the objective is to 
identify high outlying contaminating observations, the same two classical tests described above may be 

rR

rλ rR ≥ rλ

10 −rR 10 −rλ

20−rR  20 −rλ
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used to identify outliers in data sets with nondetects observations. ProUCL 4.0 offers two options to test 
r outliers that may be present in the upper tail of the ion. The user can use Dixon test or 

Rosner test to test for outliers using the data set exclu ect observations. Alternatively, the 
user may replace all nondetects by their respective DL/2 values, and use Dixon test or Rosner test on the 
resulting data set to test for outliers. This option should be used as an exploratory tool to identify outliers 
(if any). In any case, it is always desirable to use graphical displays to visually look at the outliers. 
ProUCL 4.0 can be used to compute Q-Q plot and box plot for data sets with nondetect observations. An 
example illustrating the improper influence of outliers on test statistic such as t-test statistic is considered 
as follows. 
 
Example. At a Superfund site many inorganic compounds were analyzed to perform site versus 
background comparisons. In this example, background and site lead concentrations are being compared. 
This example is included here to illustrate how outliers influence the tests statistics and in turn leading to 
potentially incorrect inclusions. The background data set has only 6 data points (which are not enough to 
perform two-sample comparisons) and the site data set has 10 data points. This complete data set is 
included in Appendix 3 of the revised Guidance for Comparing Background and Chemical 
Concentrations in Soil for CERCLA Sites (EPA, 2002b). The site data set seems to have a couple of 
outliers. This example illustrates how test statistics get distorted by outliers leading to potentially 
incorrect conclusions. Therefore, as mentioned before, it is desirable to investigate the outliers separately. 
The two-sample t-test results and nonparametric WMW test results for the background versus site 
comparisons are presented in the following tables. The parametric and nonparametric test results for full 
data set (with outliers) are respectively, summarized in Table 7-1 (t-test) and Table 7-2 (WMW test). 
Table 7-3 has outlier test results for site data set based upon Dixon test. The parametric and 
nonparametric tests were performed again using the site data set without the outliers. Those test results 
are summarized in Table 7-4 (t-test) and Table 7-5 (WMW test). All statistics have been obtained using 
ProUCL 4.0 software package.  
 

fo  data distribut
ding all nondet
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Table 7-1. Parametric Site vs. Background Comparison for Lead Data with Outliers  
 

 

 
 
 
From Table 7-1, it is noted that, Student’s t-test statistic got distorted by outliers leading to the incorrect 
conclusion that the mean lead concentrations of site and background populations are comparable. 
However, the nonparametric WMW test statistic (Table 7-2) lead to the correct conclusion that the site 
lead concentration levels are significantly higher than the background lead concentration levels. In order 
to avoid the use of distorted test statistics and deriving incorrect conclusions, it is always desirable to 
supplement the formal tests results with graphical displays. It is noted that a formal test statistic (e.g., t-
test) alone cannot determine if the outliers are present and the conclusions derived are correct or incorrect. 
A quick look at the side-by-side box plot (Figure 7-1) of site and background lead data reveals that the 
site concentrations are significantly higher than the background concentrations. Next, Table 7-3 
summarizes the results of Dixon’s outlier test on site lead data set. One outlier (1940) was identified. 
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Figure 7-1. Side-by-Side Box Plots for Lead from Background and Site Areas 
 

Table 7-2. Nonparametric Site vs. Background Comparison for Lead with Outliers 
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Table 7-3. Dixon Outlier Test Results for Site Lead Data Set 
 

 
 
The parametric test (Table 7-4) and nonparametric test (Table 7-5) were performed again to compare the 
site and background lead concentrations using site data set without the outlier, 1940. The parametric t-test 
(Table 7-4) still leads to the incorrect conclusion that site and background concentrations are comparable. 
However, the nonparametric WMW (Table 7-5) test again leads to the correct conclusion that the site lead 
concentrations are higher than those of the background lead concentrations. This example illustrates that 
when the underlying assumptions are not met (e.g., normality) or outliers are present, the parametric test 
can result in incorrect conclusions.  
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Table 7-4. Parametric Site vs. Background Comparison for Lead Data without Outlier  
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Table 7-5. Nonparametric Site vs. Background Comparison for Lead without Outlier 
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Appendix 
 

son-
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ep 4. Arrange the resulting test statistics in ascending order. Compute the 80%, 90%, 95%, and 99% 
percentiles of the K-S test statistic and the A-D test statistic.  

The resulting raw 20%, 10%, 5%, and 1% critical values for the two EDF tests are summarized in Tables 
1 through 8 of this Appendix. The critical values as summarized in Tables 1-8 are in agreement (up to 3 
significant digits) with all available exact or asymptotic critical values. It is also noted that the critical 
values for the K-S test statistic are more stable than those for the A-D test statistic. This is especially true 
when the shape parameter, k, is small and the sample size, n, is large. It is hoped that the availability of 
the critical values for the GOF tests for the gamma distribution will result in the frequent use of more 
practical and appropriate gamma distributions in environmental and other applications. 
 

Simulated Critical Values for Gamma GOF Tests, the Ander
Darling Test and the Kolmogorov-Smirnov Test, 

And Summary Tables for Recommendations of UCL95
 
Simulation Experiments 
 
The simulation experiments performed are briefly described here. The experiments were carried 
various values of the sample size, n = 5(25)1, 30(50)5, 60(100)10, 200(500)100, and 1000. Rand
deviates of sample size n were generated from a gamma, (k, θ), population. Various values of k h
considered. The considered values of the shape parameter, k, are: 0.01, 0.025, 0.05, 0.1, 0.2, 0.5,
5.0, 10.0, 20.0, and 50.0. These values of k cover a wide range of values of skewness, 2/√k. The 
distributions of the Kolmogorov-Smirnov (K-S) test statistic, D, and the Anderson-Darling (A-D
statistic, A2, do not depend upon the scale parameter, θ , therefore, the scale parameter, θ , has be
equal to 1 in all of the simulation experiments. A typical simulation experiment can be described
following four steps. Some details of the gamma deviate generation methods and the maximum l
estimation methods can be found in Singh, Singh, and Iaci (EPA, 2002). 
 
Step 1. Generate a random sample of the specified size, n, from a gamma, G (k, 1), distribution.

algorithm as outlined in Whittaker (1974) has been used to generate the gamma deviates
 
Step 2. For each generated sample, compute the MLEs of k and θ (Choi and Wette, 1969), and t

and the A-D test statistics (Anderson and Darling, 1954, D’Agostino and Stephens, 1986, and
Schneider and Clickner, 1976) using the incomplete gamma function. 

 
Step 3. Repeat Steps 1 and 2, 20,000 times. 
 
St
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Table 1. Critical Values for A-D Test Statistic for Significance Level = 0.20 
 
 n\k  0.010 0.025 0.050  0.10  0.20  0.50   1.0   2.0   5.0  10.0  20.0  50.0 
 
   5  0.637 0.609 0.580 0.559 0.532 0.505 0.497 0.493 0.492 0.491 0.490 0.490 
   6  0.685 0.636 0.591 0.568 0.543 0.512 0.503 0.498 0.496 0.496 0.495 0.495 
   7  0.735 0.667 0.604 0.575 0.549 0.517 0.506 0.501 0.499 0.498 0.498 0.497 
   8  0.786 0.697 0.615 0.578 0.555 0.521 0.509 0.504 0.502 0.500 0.500 0.499 
   9  0.839 0.729 0.626 0.583 0.559 0.524 0.512 0.507 0.502 0.502 0.502 0.501 
  10  0.892 0.760 0.638 0.585 0.563 0.526 0.513 0.508 0.504 0.503 0.502 0.502 
  15  1.166 0.922 0.693 0.595 0.574 0.533 0.519 0.511 0.507 0.506 0.505 0.505 
  16  1.220 0.954 0.705 0.597 0.574 0.534 0.520 0.513 0.508 0.507 0.506 0.505 
  17  1.275 0.986 0.716 0.597 0.576 0.535 0.520 0.512 0.508 0.507 0.506 0.505 
  18  1.327 1.019 0.726 0.599 0.576 0.536 0.520 0.513 0.509 0.507 0.507 0.506 
  19  1.380 1.050 0.738 0.600 0.578 0.537 0.521 0.513 0.508 0.507 0.507 0.507 
  20  1.432 1.081 0.747 0.602 0.578 0.537 0.521 0.513 0.509 0.508 0.507 0.507 
  21  1.486 1.112 0.757 0.602 0.579 0.539 0.521 0.514 0.509 0.508 0.508 0.507 
  22  1.537 1.143 0.768 0.604 0.579 0.538 0.522 0.513 0.509 0.508 0.507 0.507 
  23  1.588 1.177 0.779 0.604 0.580 0.538 0.521 0.513 0.510 0.508 0.507 0.507 
  24  1.641 1.206 0.789 0.605 0.581 0.539 0.522 0.514 0.509 0.508 0.508 0.507 
  25  1.692 1.238 0.800 0.606 0.581 0.539 0.523 0.514 0.510 0.508 0.507 0.507 
  30  1.943 1.390 0.853 0.611 0.583 0.540 0.523 0.515 0.510 0.509 0.508 0.507 
  35  2.190 1.537 0.906 0.615 0.584 0.541 0.524 0.516 0.510 0.509 0.509 0.508 
  40  2.432 1.683 0.955 0.617 0.585 0.542 0.525 0.515 0.511 0.509 0.508 0.508 
  45  2.673 1.828 1.005 0.621 0.586 0.542 0.524 0.516 0.511 0.509 0.508 0.508 
  50  2.906 1.967 1.054 0.624 0.587 0.541 0.525 0.516 0.511 0.510 0.509 0.509 
  60  3.368 2.246 1.150 0.631 0.588 0.543 0.525 0.516 0.511 0.510 0.508 0.509 
  70  3.826 2.518 1.248 0.636 0.588 0.543 0.525 0.516 0.511 0.510 0.509 0.509 
  80  4.273 2.785 1.343 0.642 0.589 0.544 0.526 0.517 0.511 0.510 0.509 0.509 
  90  4.719 3.053 1.437 0.647 0.588 0.544 0.526 0.517 0.511 0.510 0.509 0.509 
 100  5.166 3.314 1.532 0.652 0.589 0.544 0.526 0.517 0.512 0.510 0.509 0.509 
 200  9.462 5.855 2.420 0.706 0.591 0.545 0.526 0.517 0.511 0.509 0.509 0.509 
 300  13.65 8.320 3.273 0.760 0.591 0.545 0.526 0.517 0.512 0.511 0.509 0.509 
 400  17.78 10.73 4.107 0.812 0.590 0.545 0.527 0.517 0.513 0.511 0.510 0.509 
 500  21.87 13.12 4.923 0.865 0.591 0.545 0.527 0.517 0.512 0.510 0.509 0.509 
1000  42.04 24.87 8.900 1.123 0.592 0.546 0.526 0.517 0.512 0.510 0.510 0.509 
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Table 2. Critical Values for K-S Test Statistic for Significance Level = 0.20 
 
 n\k  0.010 0.025 0.050  0.10  0.20  0.50   1.0   2.0   5.0  10.0  20.0  50.0 
 
   5  0.349 0.341 0.332 0.328 0.323 0.313 0.307 0.304 0.303 0.302 0.301 0.301 
   6  0.335 0.322 0.310 0.305 0.299 0.289 0.284 0.281 0.279 0.279 0.279 0.279 
   7  0.321 0.306 0.292 0.285 0.279 0.270 0.265 0.262 0.261 0.260 0.260 0.260 
   8  0.310 0.293 0.276 0.268 0.264 0.255 0.250 0.247 0.246 0.245 0.245 0.244 
   9  0.301 0.283 0.264 0.255 0.251 0.242 0.237 0.235 0.233 0.232 0.232 0.232 
  10  0.294 0.274 0.253 0.244 0.239 0.231 0.226 0.224 0.222 0.221 0.221 0.221 
  15  0.266 0.243 0.216 0.203 0.199 0.192 0.188 0.185 0.184 0.183 0.183 0.183 
  16  0.262 0.238 0.211 0.197 0.193 0.186 0.182 0.180 0.179 0.178 0.178 0.178 
  17  0.259 0.234 0.206 0.191 0.188 0.181 0.177 0.175 0.174 0.173 0.173 0.173 
  18  0.255 0.230 0.201 0.186 0.183 0.176 0.172 0.170 0.169 0.168 0.168 0.168 
  19  0.252 0.227 0.197 0.182 0.179 0.172 0.168 0.166 0.165 0.164 0.164 0.164 
  20  0.249 0.224 0.194 0.177 0.174 0.168 0.164 0.162 0.161 0.160 0.160 0.160 
  21  0.246 0.220 0.190 0.173 0.170 0.164 0.160 0.158 0.157 0.157 0.157 0.156 
  22  0.244 0.218 0.187 0.170 0.167 0.160 0.157 0.155 0.154 0.153 0.153 0.153 
  23  0.241 0.215 0.184 0.166 0.163 0.157 0.154 0.152 0.150 0.150 0.150 0.150 
  24  0.239 0.212 0.181 0.163 0.160 0.154 0.151 0.149 0.147 0.147 0.147 0.147 
  25  0.237 0.210 0.178 0.160 0.157 0.151 0.148 0.146 0.145 0.144 0.144 0.144 
  30  0.227 0.200 0.167 0.147 0.144 0.138 0.135 0.134 0.133 0.132 0.132 0.132 
  35  0.220 0.192 0.158 0.137 0.134 0.129 0.126 0.124 0.123 0.123 0.123 0.123 
  40  0.214 0.186 0.151 0.128 0.125 0.121 0.118 0.116 0.116 0.115 0.115 0.115 
  45  0.208 0.180 0.145 0.121 0.119 0.114 0.112 0.110 0.109 0.109 0.109 0.109 
  50  0.204 0.176 0.140 0.115 0.113 0.108 0.106 0.105 0.104 0.103 0.103 0.103 
  60  0.197 0.168 0.132 0.106 0.103 0.099 0.097 0.096 0.095 0.095 0.095 0.095 
  70  0.191 0.162 0.126 0.099 0.096 0.092 0.090 0.089 0.088 0.088 0.088 0.088 
  80  0.187 0.158 0.121 0.093 0.090 0.086 0.084 0.083 0.083 0.082 0.082 0.082 
  90  0.183 0.154 0.117 0.088 0.085 0.081 0.080 0.079 0.078 0.078 0.078 0.078 
 100  0.180 0.150 0.113 0.084 0.080 0.077 0.076 0.075 0.074 0.074 0.074 0.074 
 200  0.163 0.132 0.094 0.061 0.057 0.055 0.054 0.053 0.053 0.053 0.053 0.052 
 300  0.155 0.125 0.086 0.051 0.047 0.045 0.044 0.044 0.043 0.043 0.043 0.043 
 400  0.151 0.120 0.081 0.046 0.041 0.039 0.038 0.038 0.037 0.037 0.037 0.037 
 500  0.148 0.117 0.077 0.042 0.036 0.035 0.034 0.034 0.034 0.033 0.033 0.033 
1000  0.141 0.109 0.069 0.032 0.026 0.025 0.024 0.024 0.024 0.024 0.024 0.024 
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Table 3. Critical Values for A-D Test Statistic for Significance Level = 0.10 

\k  0.010 0.025 0.050  0.10  0.20  0.50   1.0   2.0   5.0  10.0  20.0  50.0 

 

 
 n
 
   5  0.761 0.731 0.705 0.691 0.654 0.612 0.599 0.594 0.591 0.589 0.589 0.588 
   6  0.824 0.772 0.726 0.707 0.672 0.625 0.610 0.603 0.599 0.599 0.598 0.598 
   7  0.891 0.813 0.742 0.716 0.684 0.635 0.618 0.609 0.607 0.606 0.604 0.605 
   8  0.957 0.854 0.760 0.725 0.694 0.641 0.624 0.616 0.612 0.610 0.609 0.608 
   9  1.026 0.896 0.777 0.731 0.701 0.648 0.629 0.620 0.614 0.613 0.613 0.612 
  10  1.094 0.938 0.792 0.736 0.707 0.652 0.632 0.623 0.618 0.616 0.615 0.614 
  15  1.431 1.146 0.868 0.752 0.724 0.663 0.642 0.630 0.624 0.622 0.621 0.621 
  16  1.496 1.188 0.885 0.755 0.725 0.665 0.642 0.632 0.626 0.624 0.622 0.621 
  17  1.559 1.226 0.899 0.757 0.727 0.666 0.644 0.632 0.626 0.623 0.623 0.622 
  18  1.622 1.267 0.913 0.760 0.729 0.668 0.643 0.634 0.626 0.623 0.624 0.623 
  19  1.683 1.304 0.928 0.761 0.730 0.670 0.645 0.633 0.626 0.625 0.624 0.624 
  20  1.744 1.344 0.941 0.763 0.732 0.669 0.645 0.633 0.627 0.626 0.624 0.624 
  21  1.808 1.380 0.954 0.765 0.732 0.671 0.646 0.634 0.628 0.626 0.626 0.624 
  22  1.865 1.417 0.968 0.767 0.734 0.670 0.646 0.636 0.628 0.627 0.625 0.625 
  23  1.925 1.459 0.983 0.768 0.735 0.671 0.645 0.635 0.629 0.627 0.625 0.625 
  24  1.985 1.494 0.995 0.770 0.736 0.672 0.647 0.635 0.628 0.627 0.626 0.625 
  25  2.043 1.528 1.009 0.770 0.736 0.673 0.648 0.636 0.629 0.627 0.626 0.625 
  30  2.330 1.709 1.076 0.778 0.738 0.674 0.650 0.637 0.629 0.628 0.627 0.626 
  35  2.606 1.881 1.141 0.783 0.739 0.676 0.650 0.638 0.631 0.629 0.628 0.627 
  40  2.879 2.046 1.202 0.787 0.742 0.677 0.651 0.637 0.631 0.629 0.628 0.628 
  45  3.140 2.209 1.260 0.793 0.743 0.677 0.651 0.639 0.632 0.630 0.628 0.629 
  50  3.398 2.367 1.320 0.797 0.746 0.677 0.652 0.640 0.632 0.630 0.629 0.629 
  60  3.903 2.677 1.435 0.806 0.747 0.679 0.652 0.640 0.632 0.631 0.629 0.629 
  70  4.394 2.979 1.550 0.811 0.747 0.679 0.653 0.641 0.633 0.630 0.630 0.630 
  80  4.882 3.269 1.660 0.820 0.747 0.680 0.654 0.641 0.633 0.631 0.630 0.629 
  90  5.358 3.563 1.766 0.827 0.748 0.680 0.654 0.642 0.634 0.631 0.629 0.630 
 100  5.838 3.848 1.874 0.833 0.749 0.681 0.654 0.642 0.633 0.631 0.630 0.630 
 200  10.37 6.570 2.861 0.902 0.751 0.682 0.654 0.642 0.634 0.631 0.631 0.630 
 300  14.74 9.168 3.786 0.969 0.752 0.682 0.655 0.641 0.634 0.633 0.631 0.630 
 400  19.03 11.69 4.679 1.032 0.751 0.683 0.655 0.641 0.635 0.633 0.631 0.631 
 500  23.26 14.19 5.551 1.095 0.752 0.683 0.655 0.643 0.635 0.632 0.631 0.631 
1000  43.96 26.32 9.737 1.399 0.752 0.684 0.655 0.643 0.635 0.632 0.631 0.630 
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able 4. Critical Values forT  K-S Test Statistic for Significance Level = 0.10 

   5  0.386 0.376 0.368 0.366 0.359 0.346 0.339 0.336 0.334 0.333 0.333 0.333 
   6  0.369 0.357 0.345 0.339 0.332 0.319 0.313 0.310 0.307 0.307 0.307 0.307 
   7  0.356 0.339 0.323 0.318 0.313 0.301 0.294 0.290 0.288 0.288 0.287 0.287 
   8  0.344 0.327 0.308 0.301 0.296 0.284 0.278 0.274 0.272 0.271 0.271 0.271 
   9  0.334 0.315 0.295 0.286 0.281 0.270 0.264 0.260 0.258 0.257 0.257 0.257 
  10  0.326 0.305 0.282 0.273 0.268 0.257 0.251 0.248 0.246 0.245 0.245 0.245 
  15  0.294 0.270 0.241 0.227 0.223 0.214 0.209 0.206 0.204 0.204 0.203 0.203 
  16  0.290 0.265 0.236 0.221 0.217 0.208 0.203 0.200 0.198 0.198 0.197 0.197 
  17  0.285 0.260 0.230 0.214 0.211 0.202 0.197 0.194 0.193 0.192 0.192 0.192 
  18  0.281 0.256 0.225 0.209 0.205 0.197 0.192 0.189 0.188 0.187 0.187 0.187 
  19  0.278 0.252 0.221 0.204 0.200 0.192 0.187 0.184 0.183 0.182 0.182 0.182 
  20  0.274 0.248 0.217 0.199 0.196 0.187 0.183 0.180 0.179 0.178 0.178 0.178 
  21  0.271 0.245 0.212 0.195 0.191 0.183 0.179 0.176 0.175 0.174 0.174 0.174 
  22  0.268 0.241 0.209 0.190 0.187 0.179 0.175 0.172 0.171 0.170 0.170 0.170 
  23  0.265 0.238 0.206 0.186 0.183 0.175 0.171 0.169 0.167 0.167 0.166 0.166 
  24  0.262 0.235 0.202 0.183 0.180 0.172 0.168 0.165 0.164 0.163 0.163 0.163 
  25  0.259 0.232 0.199 0.179 0.176 0.169 0.165 0.162 0.161 0.160 0.160 0.160 
  30  0.248 0.221 0.187 0.165 0.162 0.155 0.151 0.149 0.147 0.147 0.147 0.147 
  35  0.239 0.212 0.177 0.153 0.150 0.144 0.140 0.138 0.137 0.136 0.136 0.136 
  40  0.232 0.204 0.168 0.144 0.141 0.135 0.132 0.130 0.128 0.128 0.128 0.128 
  45  0.226 0.198 0.161 0.136 0.133 0.127 0.124 0.122 0.121 0.121 0.121 0.121 
  50  0.221 0.192 0.156 0.130 0.127 0.121 0.118 0.116 0.115 0.115 0.115 0.115 
  60  0.213 0.184 0.147 0.119 0.116 0.111 0.108 0.107 0.106 0.105 0.105 0.105 
  70  0.206 0.177 0.139 0.111 0.107 0.103 0.100 0.099 0.098 0.098 0.097 0.097 
  80  0.201 0.171 0.134 0.104 0.101 0.096 0.094 0.093 0.092 0.092 0.091 0.091 
  90  0.196 0.166 0.129 0.099 0.095 0.091 0.089 0.088 0.087 0.086 0.086 0.086 
 100  0.193 0.162 0.125 0.094 0.090 0.086 0.084 0.083 0.082 0.082 0.082 0.082 
 200  0.172 0.141 0.102 0.069 0.064 0.062 0.060 0.059 0.059 0.058 0.058 0.058 
 300  0.163 0.132 0.093 0.058 0.053 0.050 0.049 0.048 0.048 0.048 0.048 0.048 
 400  0.157 0.126 0.087 0.051 0.046 0.044 0.043 0.042 0.042 0.042 0.041 0.041 
 500  0.154 0.123 0.083 0.047 0.041 0.039 0.038 0.038 0.037 0.037 0.037 0.037 
1000  0.145 0.113 0.073 0.036 0.029 0.028 0.027 0.027 0.026 0.026 0.026 0.026 
 
 

 
n\k  0.010 0.025 0.050  0.10  0.20  0.50   1.0   2.0   5.0  10.0  20.0  50.0  
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Table 5. Critical Values for A-D Test Statistic for Significance Level = 0.05 
 

 
   5  0.873 0.846 0.830 0.826 0.775 0.711 0.691 0.684 0.681 0.679 0.679 0.678 
   6  0.949 0.897 0.854 0.845 0.803 0.736 0.715 0.704 0.698 0.698 0.697 0.697 
   7  1.030 0.948 0.876 0.860 0.821 0.752 0.728 0.715 0.710 0.708 0.707 0.708 
   8  1.114 1.001 0.899 0.872 0.836 0.762 0.736 0.724 0.719 0.715 0.716 0.715 
   9  1.197 1.054 0.923 0.881 0.845 0.771 0.743 0.730 0.723 0.722 0.721 0.721 
  10  1.279 1.106 0.942 0.888 0.854 0.777 0.748 0.736 0.729 0.725 0.725 0.724 
  15  1.673 1.361 1.041 0.911 0.877 0.793 0.763 0.747 0.739 0.737 0.735 0.734 
  16  1.748 1.409 1.062 0.916 0.878 0.796 0.763 0.750 0.741 0.739 0.737 0.735 
  17  1.819 1.455 1.080 0.920 0.883 0.798 0.766 0.749 0.742 0.739 0.738 0.737 
  18  1.891 1.499 1.097 0.923 0.884 0.800 0.767 0.753 0.743 0.739 0.739 0.738 
  19  1.961 1.545 1.116 0.925 0.888 0.803 0.769 0.752 0.742 0.741 0.740 0.740 
  20  2.028 1.592 1.132 0.929 0.888 0.803 0.768 0.752 0.745 0.742 0.741 0.739 
  21  2.098 1.634 1.148 0.929 0.890 0.805 0.770 0.754 0.745 0.743 0.743 0.741 
  22  2.164 1.675 1.167 0.933 0.892 0.804 0.771 0.756 0.746 0.744 0.740 0.743 
  23  2.233 1.721 1.184 0.934 0.894 0.805 0.769 0.755 0.747 0.744 0.742 0.741 
  24  2.297 1.763 1.201 0.938 0.894 0.806 0.772 0.755 0.746 0.744 0.742 0.742 
  25  2.360 1.803 1.216 0.939 0.895 0.807 0.773 0.756 0.747 0.745 0.743 0.742 
  30  2.678 2.006 1.298 0.948 0.898 0.809 0.775 0.758 0.746 0.745 0.744 0.744 
  35  2.982 2.196 1.374 0.955 0.900 0.812 0.776 0.760 0.750 0.748 0.747 0.745 
  40  3.274 2.381 1.443 0.963 0.903 0.813 0.779 0.759 0.751 0.748 0.747 0.746 
  45  3.559 2.559 1.511 0.969 0.905 0.813 0.777 0.761 0.753 0.748 0.748 0.747 
  50  3.833 2.733 1.579 0.974 0.907 0.814 0.780 0.763 0.754 0.750 0.748 0.748 
  60  4.379 3.066 1.712 0.984 0.910 0.816 0.779 0.763 0.753 0.751 0.749 0.748 
  70  4.901 3.392 1.840 0.992 0.910 0.817 0.780 0.763 0.754 0.751 0.749 0.749 
  80  5.415 3.709 1.962 1.002 0.910 0.819 0.782 0.763 0.754 0.750 0.751 0.748 
  90  5.917 4.019 2.079 1.011 0.911 0.818 0.783 0.765 0.755 0.752 0.750 0.751 
 100  6.426 4.322 2.195 1.019 0.912 0.818 0.783 0.765 0.754 0.752 0.750 0.750 
 200  11.16 7.194 3.268 1.103 0.914 0.821 0.784 0.766 0.756 0.751 0.751 0.750 
 300  15.69 9.909 4.254 1.180 0.917 0.822 0.784 0.766 0.757 0.755 0.751 0.752 
400  20.10 12.53 5.194 1.256 0.917 0. 23 0 785 0.76  0.757 0 754 0.75 0.7 2 
500  24.43 15.11 6.110 1.328 0.918 0.822 0.785 0.767 0.756 0.753 0.752 0.752 
1000  45.58 27.58 10.47 1.671 0.919 0.824 0.785 0.768 0.757 0.753 0.752 0.750 
 
 
 
 

 
 n\k  0.010 0.025 0.050  0.10  0.20  0.50   1.0   2.0   5.0  10.0  20.0  50.0 
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Table 6. Critical Values for K-S Test Statistic for Significance Level = 0.05 
 
 n\k  0.010 0.025 0.050  0.10  0.20  0.50   1.0   2.0   5.0  10.0  20.0  50.0 
 

 
   5  0.419 0.409 0.401 0.398 0.388 0.372 0.364 0.360 0.358 0.358 0.357 0.357 
   6  0.397 0.384 0.373 0.369 0.364 0.349 0.341 0.336 0.333 0.332 0.332 0.332 
   7  0.385 0.369 0.353 0.348 0.342 0.327 0.320 0.315 0.313 0.312 0.311 0.311 
   8  0.372 0.354 0.336 0.329 0.323 0.309 0.301 0.297 0.295 0.294 0.294 0.293 
   9  0.362 0.342 0.321 0.312 0.307 0.294 0.287 0.282 0.280 0.279 0.279 0.279 
  10  0.352 0.331 0.308 0.298 0.294 0.281 0.274 0.270 0.267 0.267 0.266 0.266 
  15  0.318 0.293 0.264 0.249 0.245 0.234 0.228 0.224 0.222 0.222 0.221 0.221 
  16  0.313 0.288 0.258 0.242 0.238 0.227 0.221 0.218 0.216 0.215 0.215 0.214 
  17  0.308 0.283 0.252 0.235 0.231 0.221 0.215 0.212 0.210 0.209 0.209 0.208 
  18  0.303 0.278 0.246 0.229 0.225 0.215 0.209 0.206 0.204 0.203 0.203 0.203 
  19  0.299 0.273 0.242 0.224 0.220 0.210 0.204 0.201 0.199 0.199 0.198 0.198 
  20  0.295 0.269 0.237 0.218 0.214 0.205 0.199 0.196 0.194 0.194 0.193 0.193 
  21  0.291 0.265 0.232 0.213 0.210 0.200 0.195 0.192 0.190 0.189 0.189 0.189 
  22  0.288 0.261 0.228 0.209 0.206 0.196 0.191 0.188 0.186 0.185 0.185 0.185 
  23  0.285 0.258 0.225 0.205 0.201 0.192 0.187 0.184 0.182 0.182 0.181 0.181 
  24  0.281 0.255 0.221 0.201 0.197 0.188 0.183 0.180 0.178 0.178 0.178 0.177 
  25  0.279 0.252 0.218 0.197 0.193 0.184 0.180 0.177 0.175 0.175 0.174 0.174 
  30  0.266 0.239 0.204 0.181 0.177 0.169 0.165 0.162 0.160 0.160 0.160 0.160 
  35  0.256 0.228 0.193 0.168 0.165 0.157 0.153 0.151 0.149 0.149 0.148 0.148 
  40  0.248 0.220 0.183 0.158 0.154 0.148 0.144 0.141 0.140 0.139 0.139 0.139 
  45  0.241 0.212 0.176 0.150 0.146 0.139 0.136 0.133 0.132 0.132 0.132 0.131 
  50  0.235 0.206 0.170 0.143 0.139 0.132 0.129 0.127 0.126 0.125 0.125 0.125 
  60  0.226 0.196 0.159 0.131 0.127 0.121 0.118 0.116 0.115 0.115 0.114 0.114 
  70  0.218 0.189 0.151 0.122 0.118 0.113 0.110 0.108 0.107 0.106 0.106 0.106 
  80  0.212 0.182 0.145 0.114 0.111 0.105 0.103 0.101 0.100 0.100 0.099 0.099 
  90  0.207 0.177 0.139 0.108 0.104 0.100 0.097 0.095 0.094 0.094 0.094 0.094 
 100  0.203 0.173 0.135 0.103 0.099 0.095 0.092 0.091 0.090 0.089 0.089 0.089 
 200  0.179 0.149 0.110 0.075 0.070 0.067 0.065 0.064 0.064 0.064 0.064 0.063 
 300  0.169 0.138 0.099 0.063 0.058 0.055 0.054 0.053 0.052 0.052 0.052 0.052 
 400  0.163 0.132 0.092 0.056 0.050 0.048 0.047 0.046 0.045 0.045 0.045 0.045 
 500  0.159 0.127 0.087 0.051 0.045 0.043 0.042 0.041 0.041 0.040 0.040 0.040 
1000  0.148 0.117 0.076 0.039 0.032 0.030 0.030 0.029 0.029 0.029 0.029 0.029 
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Table 7. Critical Values for A-D Test Statistic for Significance Level = 0.01 
 

 
   5  1.075 1.077 1.105 1.145 1.068 0.945 0.905 0.890 0.883 0.882 0.879 0.879 
   6  1.195 1.156 1.142 1.183 1.121 0.990 0.946 0.928 0.918 0.916 0.911 0.912 
   7  1.314 1.230 1.176 1.207 1.156 1.019 0.979 0.951 0.944 0.938 0.935 0.938 
   8  1.430 1.311 1.209 1.226 1.181 1.044 0.990 0.970 0.961 0.955 0.956 0.953 
   9  1.548 1.385 1.250 1.242 1.196 1.058 1.007 0.984 0.967 0.968 0.969 0.967 
  10  1.658 1.464 1.281 1.249 1.214 1.071 1.018 0.994 0.981 0.977 0.975 0.973 
  15  2.174 1.818 1.434 1.290 1.248 1.100 1.048 1.018 1.002 0.999 0.997 0.999 
  16  2.260 1.879 1.469 1.304 1.253 1.112 1.047 1.019 1.007 1.004 1.000 0.999 
  17  2.353 1.942 1.495 1.307 1.260 1.110 1.053 1.023 1.008 1.004 1.003 1.000 
  18  2.441 2.004 1.521 1.317 1.260 1.116 1.054 1.027 1.015 1.006 1.005 1.003 
  19  2.532 2.069 1.548 1.319 1.267 1.115 1.059 1.026 1.013 1.010 1.006 1.008 
  20  2.611 2.123 1.570 1.329 1.268 1.118 1.056 1.031 1.016 1.012 1.005 1.009 
  21  2.704 2.172 1.595 1.323 1.270 1.126 1.057 1.031 1.017 1.013 1.013 1.008 
  22  2.780 2.226 1.619 1.339 1.279 1.119 1.062 1.036 1.023 1.014 1.011 1.013 
  23  2.862 2.290 1.646 1.334 1.281 1.125 1.059 1.034 1.017 1.020 1.012 1.013 
  24  2.934 2.340 1.667 1.341 1.277 1.126 1.065 1.035 1.020 1.015 1.012 1.013 
  25  3.019 2.383 1.690 1.342 1.281 1.127 1.064 1.038 1.021 1.017 1.014 1.013 
  30  3.393 2.634 1.800 1.365 1.286 1.133 1.072 1.044 1.023 1.023 1.019 1.018 
  35  3.744 2.865 1.904 1.371 1.286 1.136 1.072 1.045 1.027 1.025 1.021 1.018 
  40  4.085 3.088 1.988 1.382 1.294 1.138 1.076 1.046 1.030 1.027 1.023 1.022 
  45  4.408 3.299 2.077 1.388 1.298 1.141 1.074 1.048 1.036 1.030 1.026 1.024 
  50  4.734 3.500 2.162 1.407 1.304 1.142 1.079 1.053 1.034 1.029 1.028 1.025 
  60  5.334 3.889 2.330 1.419 1.308 1.144 1.079 1.054 1.032 1.032 1.029 1.030 
  70  5.915 4.258 2.483 1.430 1.307 1.145 1.079 1.055 1.038 1.031 1.031 1.028 
  80  6.503 4.620 2.622 1.445 1.302 1.150 1.085 1.055 1.036 1.033 1.032 1.029 
  90  7.050 4.960 2.759 1.458 1.312 1.149 1.086 1.056 1.038 1.034 1.031 1.033 
 100  7.609 5.302 2.895 1.471 1.308 1.149 1.085 1.054 1.042 1.035 1.033 1.032 
 200  12.74 8.464 4.130 1.584 1.310 1.156 1.089 1.059 1.041 1.031 1.032 1.033 
 300  17.54 11.39 5.224 1.697 1.314 1.154 1.090 1.058 1.043 1.038 1.033 1.031 
 400  22.18 14.18 6.252 1.793 1.321 1.158 1.093 1.057 1.043 1.039 1.035 1.034 
 500  26.74 16.91 7.253 1.885 1.319 1.155 1.089 1.057 1.047 1.040 1.034 1.034 
1000  48.73 30.00 11.94 2.296 1.325 1.157 1.092 1.060 1.043 1.035 1.036 1.031 
 
 
 

 
 n\k  0.010 0.025 0.050  0.10  0.20  0.50   1.0   2.0   5.0  10.0  20.0  50.0 
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Table 8. Critical Values for K-S Test Statistic for Significance Level = 0.01 
 
 n\k  0.010 0.025 0.050  0.10  0.20  0.50   1.0   2.0   5.0  10.0  20.0  50.0 
 
   5  0.464 0.458 0.454 0.456 0.451 0.431 0.421 0.414 0.410 0.410 0.408 0.408 
   6  0.453 0.441 0.431 0.431 0.423 0.402 0.391 0.385 0.382 0.381 0.380 0.380 
   7  0.437 0.421 0.406 0.404 0.399 0.380 0.369 0.362 0.360 0.358 0.357 0.357 
   8  0.423 0.407 0.388 0.384 0.379 0.360 0.349 0.344 0.340 0.339 0.339 0.338 
   9  0.412 0.393 0.373 0.365 0.360 0.343 0.333 0.327 0.323 0.323 0.322 0.322 
  10  0.402 0.382 0.358 0.350 0.345 0.328 0.318 0.312 0.309 0.308 0.308 0.307 
  15  0.362 0.338 0.308 0.292 0.288 0.274 0.266 0.261 0.258 0.257 0.257 0.256 
  16  0.356 0.331 0.301 0.284 0.280 0.266 0.258 0.253 0.251 0.250 0.249 0.249 
  17  0.350 0.325 0.294 0.277 0.272 0.259 0.251 0.246 0.244 0.243 0.242 0.242 
  18  0.345 0.319 0.288 0.270 0.265 0.252 0.245 0.240 0.237 0.236 0.236 0.236 
  19  0.340 0.314 0.282 0.263 0.259 0.246 0.238 0.234 0.232 0.231 0.230 0.230 
  20  0.335 0.309 0.276 0.257 0.253 0.240 0.233 0.228 0.226 0.225 0.225 0.225 
  21  0.331 0.304 0.271 0.251 0.247 0.235 0.228 0.223 0.221 0.220 0.220 0.219 
  22  0.327 0.300 0.267 0.246 0.242 0.230 0.223 0.219 0.216 0.216 0.215 0.215 
  23  0.323 0.296 0.262 0.241 0.237 0.225 0.218 0.215 0.212 0.211 0.211 0.210 
  24  0.318 0.292 0.258 0.236 0.232 0.221 0.214 0.210 0.208 0.207 0.207 0.206 
  25  0.315 0.288 0.254 0.232 0.228 0.216 0.210 0.206 0.204 0.203 0.203 0.203 
  30  0.300 0.272 0.237 0.213 0.209 0.199 0.193 0.189 0.187 0.186 0.186 0.185 
  35  0.288 0.260 0.224 0.198 0.194 0.185 0.179 0.176 0.174 0.173 0.173 0.172 
  40  0.278 0.249 0.213 0.187 0.182 0.173 0.168 0.165 0.163 0.162 0.162 0.162 
  45  0.270 0.241 0.204 0.176 0.172 0.164 0.158 0.156 0.154 0.154 0.153 0.153 
  50  0.263 0.233 0.196 0.168 0.164 0.156 0.151 0.148 0.146 0.146 0.146 0.145 
  60  0.251 0.221 0.184 0.154 0.150 0.143 0.138 0.136 0.134 0.134 0.133 0.133 
  70  0.242 0.212 0.174 0.144 0.139 0.132 0.128 0.126 0.124 0.124 0.124 0.124 
  80  0.234 0.204 0.166 0.135 0.130 0.124 0.120 0.118 0.117 0.116 0.116 0.116 
  90  0.228 0.198 0.159 0.128 0.123 0.117 0.114 0.111 0.110 0.110 0.109 0.110 
 100  0.223 0.192 0.154 0.122 0.117 0.111 0.108 0.106 0.105 0.104 0.104 0.104 
 200  0.194 0.163 0.124 0.089 0.083 0.079 0.077 0.075 0.074 0.074 0.074 0.074 
 300  0.181 0.150 0.110 0.074 0.068 0.065 0.063 0.062 0.061 0.061 0.061 0.060 
 400  0.173 0.142 0.102 0.066 0.059 0.056 0.054 0.053 0.053 0.053 0.053 0.053 
 500  0.168 0.137 0.096 0.060 0.053 0.050 0.049 0.048 0.047 0.047 0.047 0.047 
1000  0.155 0.123 0.083 0.045 0.037 0.036 0.035 0.034 0.034 0.033 0.033 0.033 
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Summary Tables 

Table 9. Recommended UCL95 Computation Methods for Full-Uncensored Data Sets without Nondetect Observations 
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n < 25        •      
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Table 9. Recommended UCL95 Computation Methods for Full-Uncensored Data Sets without Nondetect Observations-
Continued 
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Table 10. Recommended UCL95 Computation Methods for Left-Censored Data Sets with Nondetect Observations 
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Table 10. Recommended UCL95 Computation Methods for Left-Censored Data Sets with Nondetect Observations – 
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