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NOTICE

The United States Environmental Protection Agency (EPA) through its Office of Research and
Development (ORD) funded and managed the research deserithesl PrdaJCL Technical Guidelt has

been peer reviewed by the EPA and approved for publicati@mtion of trade names or commercial
products does not constitute endorsement or recommendation by the EPA for use.

1 ProUCL software was developed by Lockheed Martd&GS - CIVIL under a contract with the
EPA and is made available through the EPA Technical Support Center in Atlanta, Georgia.

1 Use of any portion of ProUCL that does not comply with the ProUCL Technical Guide is not
recommended.

1 ProUCL contains embeddditensed software. Any modification of the ProUCL source code
may violate the embedded licensed software agreements and is expressly forbidden.

1 ProUCL software provided by the EPA was scanned with McAfee VirusScan v4.5.1 SP1 and is
certified free of virges.

With respect to ProUCL distributed software and documentation, neither the EPA nor any of their
employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of

any information, apparatus, product, or proagisslosed. Furthermore, software and documentation are
suppl tiesdb fwag hout guarantee or warranty, expresse
warranty of merchantability or fithess for a specific purpose.



Minimum Hardware Requirements
ProUCL 5.0.00 will function but will run slowly and page a lot.

Intel Pentium 1.0 GHz

45 MB of hard drive space

512 MB of memory (RAM)

CD-ROM drive or internet connection

1  Windows XP(with SP3), Vista (with SP1 or later), and Windows 7.

T
T
T
T

ProUCL 5.0.00 will function but some titles and some Graphical User Interfaces (GUIs) will need to be
scrolled.Definition without color will be marginal.

1 800 by 600 Pixels
9 Basic Color is preferred

Preferred Hardware Requirements

1 1 gigahertz (GHz) or faster Processor.
1 1 gigabyte (GB) of memory (RAM)
9 1024 by 768 Pixels or greater color display

Software Requirements

ProUCL 5.0.00 has been developed in the Microsoft .NET Framework 4.0 using the C# programming
language. To properly run ProUCL 5.0.00 software, the computer tisingogram must have the .NET
Framework 4.0 prinstalled. The downloadable .NET Framework 4.0 files can be obtained from one of
the following websites:

1 http://msdn.microsoft.com/netframework/downloads/updates/default.aspx
http://www.microsoft.com/ems/download/details.aspx?id=17851
Quicker site for 32 Bit Operating systems

1 http://www.microsoft.com/emis/download/details.aspx?id=24872
Use this site if you have a 64 Bit operating system



http://msdn.microsoft.com/netframework/downloads/updates/default.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=17851
http://www.microsoft.com/en-us/download/details.aspx?id=24872

Installation Instructions when Downloading from the EPA Web Site
1 Download the file SETUP.EXE from the EPA Web site and save to a temporary location.

1 Runthe SETUP.EXE program. This will create a ProUCL directory and two folders:
1) The USER GUIDE (this document), and 2) DATA (example data sets).

9 To run the progma, use Windows Explorer to locate the ProUCL application file, and
Double click on it, or use the RUN command from the start menu to locate the
ProUCL.exe file, and run ProUCL.exe.

1 To uninstall the program, use Windows Explorer to locate and deletedd€P folder.

Caution: If you have previous versions of the ProUCL, which were installed on your computer, you
should remove or rename the directory in which earlier ProUCL versions are currently located.

Installation Instructions when Copying from a CD

1 Create a folder namd@roUCL 5.0 on a local hard drive of the machine you wish to
install ProUCL 5.0.

1 Extract the zipped fil®roUCL.zip to the folder you have just created.
7 RunProUCL.exe.

Note: If you have extension turned off, the progrant sliow with the nam@&roUCL in your directory
and have an Icon with the lald@éloUCL.

Creating a Shortcut for ProUCL 5.0 on Desktop

1 To createa shortcut of theProUCL program on your desktop, go t@mur ProUCL
directory and right click on the executableogram and sendt to desktop. A ProUCL
icon will be displayed on your desktop. This shortcut will point to the ProUCL directory
consistingof all files requiredto executeéProUCL 5.0.

Caution: It should be noted that since all files in your ProUCL dogc are needed to execute the
ProUCL software, one needs you generate a shortcut using the process describe8 pawifieally,
simply dragging the ProUCExecutablefile from Window Exploreronto your desktop will not work
successfully(an error messagwill appear)as all files needed to run the software are not available on
your desktop. Your shortcut should point to the direcpathwith all required ProUCL files.



ProUCL 5.0.00

Software ProUCL versios.0.00 (ProUCL 5.Q)its earlier ver®ns: ProUCL versior8.00.01,4.00.02,
4.00.044.00.054.1.00, and 4.1.01, associated Facts Sheet, User Guides and Technical Guides (e.g., EPA
2010a, 2010b) can be downloaded fromftilewing EPA website:

http://www.epa.gov/osp/hstl/tsc/software.htm
http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm

Material for a couple of ProUCL webinars offered in March 2011, and relevaratuiterused in the
development of ProUCL 5.0 can also be downloaded from the above EPA website.

Contact Information for all Versions of ProUCL

The ProUCL software is developed under the direction of the Technical Support Center AESH).
November 2007 the direction of the TSC is transferred from Brian Schumacher to Felicia Barnett.
Therefore, any comments or questions concerning all versions of ProUCL should be addressed to:

Felicia Barnett, Director

ORD Site Characterization and Monitoring Techn&apport Center (SCMTSC)
Superfund and Technology Liaison, Region 4

U.S. Environmental Protection Agency

61 Forsyth Street SW, Atlanta, GA 3038360

barnett.felicia@epa.gov

(404)5628659

Fax: (404) 5628439



http://www.epa.gov/osp/hstl/tsc/software.htm
http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm
mailto:barnett.felicia@epa.gov

EXECUTIVE SUMMARY

The main objective of the ProUCL software fundedthy USEPA is to compute rigorogsatistics to
help decision makerand project teami making correctdecisions at a polluted sitghich arecost
effective, andprotective of huma health and the environmefithe ProUCL software is based upon the
philosophy that rigorous statistical methoctsn be used to compute correct estimates of population
parameters and decision making statistictuding the upper confidence limit (UCLYf the mean,the
upper tolerance limit (UTL)and theupper prediction limit (UPL) to help decision makers and project
teams in making correct decisiodsfew commonly used text book type methods (e.g., CLT, Student's t
UCL) alonecannot address aficenarms andsituationsoccurring in the various environmental studies
Since many environmental decisions are based upon a 95%WCIL95) of the population mean, it is
important to compute correct UCLs of practical merit. The use and applicabilitgtatisical method
(e.g., student's-WCL, Central Limit Theorem (CT)-UCL, adjusted gamm&CL, Chebyshev UCL,
bootstrapt UCL) depend upon data size, data skewness, and data distriButlCL computes decision
statistics using several parametric and nonpatr&cmaethods covering a widange of data variability
distribution,skewnessand sample sizdt is anticipated that the availability of the statistical methods in
the ProUCL software covering a wide range of environmental data sets will help therdetiiers in
making more informative and correct decisions at the various Superfund and RCRA sites.

It is noted that for moderately skewed to highly skewed environmental data sets, UCLs based on the CLT
and the Student'sstatistic fail to provide the d@ed coverage (e.g., 0.95) to the population mean even
when the sample sizes are as large as 100 or more. The sample size requirements associated with the CLT
increases with skewness. It will be naive and incorrect to state that a CLT or Students lstestest

UCLs are adequate to estimate EPC terms based upon skewed data sets. These facts have been described
in the published documents summarizing simulation experiments conducted on positively skewed data
sets to evaluate the performances of the varlidCL computation methods. The use of a parametric
lognormal distribution on a lognormally distributed data set yields unstable impractarajéy UCLs

values, especially when the standard deviatswh @f the logtransformed data becomes greater than 1.

and the data set is of small size less thatd@BOMany environmental data sets can be modeled by a
gamma as well as a lognormal distribution. The use of a gamma distribution on gamma distributed data
sets tends to yield UCL values of practical meriterBfiore, the use of gamma distribution based decision
statistics such as UCLs, UPLs, and UTLs cannot be dismissed by stating that it is easier (than a gamma
model) to use a lognormal model to compute these upper limits.

The suggestions made in ProUCL drased upon the extensive experience of the developers in
environmental statistical methods, published environmental literature, and procedures described in
various EPA guidance documents. The inclusion of outliers in the computation of the variousidecisio
statistics tends to yield inflated values of those decision statistics, which can lead to incorrect decisions.
Often inflated statistics computed using a few outliers tend to represent those outliers rather than
representing the main dominant populat@ninterest (e.g., reference area). It is suggested to identify
outliers, observations coming from population(s) other than the main dominant population, before
computing the decision statistics needed to address project objectives. The project teamntmiay w
perform the statistical evaluations twice, once with outliers and once without outliers. This exercise will
help the project team in computing correct and defensible decision statistics needed to make cleanup and
remediation decisions at pollutedes.

The initial development during 199900 and all subsequent upgrades and enhancements of the ProUCL
software have been funded by EFFA through its Office of Research and Development (ORDitially

Vi



ProUCL was developed as a research toolSBEPA scientists and researcherstioé Technical Support
Center and ORINERL, EPA Las Vegas. Background evaluations, groundwater monitoring, exposure
and risk management and cleanup decisions in supptiiedomprehensive Environmental Recovery,
Compensationand Liability Act (CERCLA) and Resource Conservation and Recovery Act (RGIRA)
projectsof USEPAare oftenderivedbased pon the various test statistics (e ghapiroWilk test, t-test,
Wilcoxon-MannWhitney WMW) test, analysis of varianceANOVA], Mann-Kendall [MK] test) and
decision statistics including UGLof mean, UPEk, and UTls. To address the statistical needs of the
environmental projects of the USEPAjep the years ProUCL software has been upgradeldenhanced

to include many graphical ®s and statistical methods described in the various EPA guidance documents
including: EPA 1989a, 1989b, 1991, 1892992b,2000 (MARSSIM), 2002a, 2002b, 2002c, 2096
2006b,and 2009Several statistically rigorous methods (e.qg., for data sets with MNid®asily available

in the existing guidance documents and in the environmental literature are also available in ProUCL
version 5.0.00 (ProUCL 5.0).

ProUCL 5.0 has graphicatstimation, and hypotheses testing metifodsincensoredull data sets and

for left-censored data sets consisting MDs observations with multiple detection limi{®Ls) or
reporting limits (RLs) In addition to computingeneralstatistics, ProUCL 5.0 hagpodnes®f-fit (GOF)

tests for normal, lognormal and gamma distributiomsametric and nonparametric methods including
bootstrap methodior skewed data sete computevarious decision making statistics such as UCLs of
mean (EPA 2002a), percentiles, UPLs #ocertain number duture observations (e.g., k with k=1, 2,

3,...) UPLs for mean of future  ( dddejvationsand UTLs (e.g., EPA 19922002k and2009) Many
positively skewed environmental data sets can be modeled by a lognormal as well as a gamma model. It is
well-known that for moderately skewed to highly skewethdsets, the use of a lognormal distribution
tends to yield inflated and unrealistically large valuetheflecision statistics especially when the sample

size is small (e.g., <280). For gamma distributed skewed uncensored andtdefiored data sets,
ProUCL software compusedecision statistics ncl udi ng UCLs, percentil es,
observationsUTLs, and upper simultaneous limits (USLSs).

For data sets withNDs, ProUCL has several estimation methods including the Kaykiar (KM)
method, regression on order statistics (ROS) austhand substitution methods (e.g., replacing NDs by
DL, DL/2). ProUCL 5.0 can be used to compute upper limits which adjust for data skewness;
specifically, for skewed data sets, ProUCL 5.0 computes upper limits using KM estimates in gamma
(lognormal) UCLand UTL equations provided the detected observations in theelefored data set
follow a gamma (lognormal) distributio®ome poor performing commonly usadd citedmnethods such

as the DL/2 substitution method andstatistic based UCL computation het have been incorporated

in ProUCL for historical reasons, and research and comparison purposes.

The Sample Sizes module of ProUCL can be used to develop data quality objectives (DQOs) based
sampling designand to perform power evaluationseded to addss statistical issues associated with the
various polluted siteprojects.ProUCL provides user friendly options to enter the desired valugbdor
decision parametersuch asType | and Type Il error ratesnd other DQOs used to determinine
minimum sample sizes needed to address project objectives. The Sam@anSiidde can compute

DQOs based minimum sample sizes neettedstimate the populatianean to performsingle and twe

sample hypothes testing approacheand inacceptance samplirtg acept or reject a batch of discrete

items such as a lot of drums consisting of hazardous w&sith parametric €.g., t-test) and
nonparametric (e.g., Sign teYMW test, test for proportions) sample size determination methods are
available in ProUCL.

ProUCL hasexploratorygraphical methods for both uncensored data sets and faelefbred data sets
congsting of ND observations Graphical methods in ProUCL include histograms, multiple quantile
guantile (QQ) plots, and sidéy-side box plotsThe useof graphical displays provides additional insight
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aboutthe information contained ina data set that may neotherwisebe revealed by the use of estimates
(e.g., 95% upper limitsandtest statisticge.g., twesample ttest, WMW test).In addition to preiding
information about the data distributions (e.g., normal or gamm&),lbts are also useful in identifying
outliersandthe presence of mixtungopulations(e.g., data fronseveralpopulations)potentially present

in a data set. Sidey-side box plts and multiple Q@ plots are useful to visually compare two or more
data sets such as: siteersusbackground constituent concentrations, surfasersussubsurface
concentrations, andonstituentconcentrations aeveralgroundwater monitoring wells (M¥). ProUCL
also has a couple cofassicaloutlier test procedures, such as the Dixon test and the Rosnehiestcan

be used on uncensored data sets as well as aretefored data sets consisting of ND observations

PraUCL has parametric and nonpardnesinglesampleand twaesample hypotheses testing approaches
for uncensored as well as leitnsored data setSinglesamplehypotheses test§t u d etest,9ga t
test, Wilcoxon Signed Rnk test, and thdProportion testare used to compare site memedian
concentrations (or sormaherthreshold such as an upper percentile) with sameeagecleanup standard,
Cs (or anotto-exceedcompliance limit, 4) to verify the attainment of cleanup levels (EP®8%,;
MARSSIM, 2000;EPA 200&) at remediatedit® areas of concerrnSinglesampletestssuch as the Sign
test andProportion testand upper limitsncluding UTLs and UPLs are also us¢o perform intrawell
comparisonsSeveraltwo-samplehypotheses tests as describedEPA guidance documents (e.gPA
2002b, 2006, 2009 are also available ithe ProUCL software The two-sample hypotheses testing
approaches iProUCLIi nc | ud e : -te§tWMiVatasttGéhan tdsand TaronéNare testThe two-
sampletests are usetb compare concentrations of twmpulations such as siteersusbackground
surface versus subsurface soils, and upgradient versus downgradient wells.

The Oneway Analysis of VariancANNOVA) modulein ProUCL has both classical and nonparametric
KruskalWallis (K-W) tests Oneway ANOVAIs used to compare means (or medians) of multiple groups
such as comparing mean concentrations of several areas of concern and to perfomellinter
comparisons. In groundwater (GW) monitoring applicationte ordinary least squares (OLS) of
regressiontrend tests, and time series plots are used to idargifiards odownwardgrends potentially
presenin constituentoncentrationgentified inGW monitoring wells over a certain period of tinfde

Trend Analysis module performs MannKendall trend tesand Theil-Sen trend tesbn data sets with
missing values; and generates trend graphs displaying a parametric OLS regression line and
nonparametric Theiben trend line. The TimeeBesPlots option can be used to compare multiple time
series data sets.

The use of the incremental sampling methodology (ISM) has been recommended (ITRC, 2012) to collect
ISM soil samples needed to compute mean concentrations of the decision units (DUs) and sampling units
(SUs) requiring characterization and remediationvaies. At many polluted sites, a large amount of
discrete onsite and/or offsite background data are already available which cannot be directly compared
with newly collected ISM data. In order to provide a tool to compare the existing discrete background
data with actual field onsite or background ISM dat&Jante CarloBackground Incremental Sample
Simulator (BISS)module has been incorporated in ProUCL Fdurrently blocked from general yse

which may be usedn a large existing discretebackgrounddata set The BISS module simulates
incremental sampling methodologgsedequivalent background incremensamples. The avalbility of

a large discretebackgrounddata set collected from areas with geological conditions aabfe to the

DU(s) of interesis aprerequsite for successful application of this moduléhe BISS module has been
temporarily blocked for use in ProUCL 5.0 as this module is awaiting adeguudence and instructions

for its intended use on discrete background data sets.

ProUCL5.0is a user friendly freeware package providing statistical and graphicahtmled t@ddress
statistical issues described the variousEPA guidance document®roUCL 5.0can process many
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constituens (variables) simultaneoustg: perform variougests (e.g., ANOVA and trend test statistics)
and compute decision statistics including UCLs of mean, UPLs, and Udlcapability not available in
severalcommercial software packages such asitdb 16and NADA for R (Helsel,2013). ProUCL 5.0
also haghe capabilityof processing data by group variabld2roUCL 5.0is easy to usandit does not
requireany programmingskills as needed when usiogher software packages such as Minitab, SAS, and
programs written in R script.

Methods incorporated iRrdJCL 5.0 have been tested and verified extensivslythe developers and the
various researchers, scientists, and users. The results obtained by ProUCL are in agreement with the
results obtained by using other software packages including Minitab, SA®regrdms written in R
Script ProUCL 5.0 computes decision statistics (e.g., UPL, UTL) based upon the KM method in a
straight forward manner without flipping the data andlipping the computed statistics for lefensored

data sets; these operations aret easy for a typical user to understand and perform. This can
unnecessarily become tedious when computing decisioististatfor multiple variables/analytes
Moreover, unlike survival analysis, it is important to compute an accurate estimate sofwiéch is
needed to compute decision making statistics including UPLs and UTLdefFoensoreddata sets
ProUCL computes a KM estimate ofd directly. These issues are elaborated by examples discussed in
this Technical Guide arid the accompanying PraLL 5.0 User Guide.






ACRONYMS and ABBREVIATIONS

ACL alternativecompliance oconcentration limit

A-D, AD AndersonDarling test

AL Action limit

AM arithmetic mean

AOC area(s) of concern

ANOVA analysis of variance

Ao not to exceed compliance libor specified action level

BC Box-Cox transformation

BCA biascorrected accelerated bootstrap method

BD Binomial distribution

BISS Background Incremental Sample Simulator

BTV background threshold value

CC, cc confidence coefficient

CDF, cdf cumulative distribution function

CERCLA Comprehensive Environmental Recovery, Compensation, and Liability Act
CL compliance limit

CLT central limit theorem

cocC contaminanfconstituenof concern

COPC contaminanfconstituenbf potential concern

GCs cleanup standards

CSM conceptual site model

Ccv coefficient of variation

Df degrees of freedom

DL detection limit

DL/2 (t) UCL based upon DL/ 2 -diskillutioo citofvalieng St u
DL/2 Estimates e_:st_imates based upon data set \Wibls replaced byl/2 of the respective detection
DOE :IDrggzsartment of Energy

DQOs data quality bjectives

DU decision unit
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EA exposure area

EDF empirical distribution function

EM expectation maximization

EPA United States Environmental Protectionehgy

EPC exposure point concentration

EU exposure units

GB Gigabyte

GHz Gigahertz

GROS gamma ROS

GOF, G.O.F. goodnessf-fit

GUI graphical user interface

GW Groundwater

Ha alternative hypothesis

Ho null hypothesis

H-UCL UCL based upoh a n d-8tatisti¢d

ii.d. independently and identically distributed

ISM incremental sampling methodology

ITRC Interstate Technology & Regulatory Council

k, K a positive integer representing future or next k observations

K shape paraeter of a gamma distition

K number of nondetects in a data set

k hat MLE of the shape parameter of a gamma distribution

k star biased corrected MLE of the shape parameter of a gamma distribution

KM (%) UCL based upon KaplaMeier estimates using the percentile bootstreghod

KM (Chebyshev)  UCL based upon Kaplalleier estimates using the Chebyshev inequality

KM (t) UCL based upon Kaplame i er est i mat e s-distrbutiongriticalh e
value

KM (2) UCL based upon Kaplakleier estimates usingritical valueof astandard normal
distribution

K-M, KM KaplanMeier

K-S, KS KolmogorowSmirnov

K-W Kruskal Wallis

LCL lower confidence limit
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LN, In

Log

LCL

LPL
LROS
LTL

LSL

M,m

MAD
MARSSIM

MCL
MD
MDC
MDD
MDL
MK, M-K
ML
MLE
MLE (t)
MS
MSE
MSR
MV

n

N
MVUE
MW

ND, nd, Nd
NERL

NRC

OKG

lognormal distribution

refers to log base e, natural logarithm
lower confidence limit of mean

lower prediction limit

logROS; robust ROS

lower tolerance limit

lower simultaneous limit

applied to incremental sampling: number in increments in an ISM sample

median absolute deviation

Multi-Agency Radiation Suey and Site Investigation Manual

maximum concentration limit, maximum compliance limit

Mahalanobis distance

minimum detectable concentration
minimum detectable difference
method detection limit
Mann-Kendall

maximum likelihood

maximum likelihood estimate

UCL baseduporML e st i mat es
mean sum of squares

mean sum of squares error

mean sum of squares regression

minimum variance

u-distribugionSitical dhleen t 0 s

number of obsemtions/measurements in a sample

number of observations/measurements in a population

minimum variance unbiased estimate
monitoring well
nondetect

National Exposure Research Laboratory
Nuclear Regulator€ommission

Orthogonalized Kettenring Gnanadesikan
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OLS
ORD
ou
PCA
PDF, pdf
pdf
PLE
PRG
PROP
QA
QC
Q-Q

RAGS
RCRA
RL

RMLE
ROS
RPM
RSD

RV

S
SCMTSC
SD, Sd, sd
SE

SND
SNV

Sp

SSE

SSL

SST

SSR

Xiv

ordinary least squares

Office of Research and Development
operating unit

principal component analysis

probability density function

files in pdf format

product limit estimad

preliminary remediation goals

proposed influence function

quality assurance

quality

gquantilequantile

applied to incremental sampling: number of replicates of ISM samples
Risk Assessment Guidance for Superfund
Resource Conservation and Recovery Act
reporting limit

restricted maximum likelihood estimate
regression on order statistics

Remedial Project Manager

relative standard deviation

random variable

substantial difference

Site Characterization and Monitoring Technical Support Center
standard deviation

standard error

standard normal deviate

standard normal variate

pooled standard deviation

sum of squares error

soil screening levels

sum of squares total

sum of squares regression



SQL
suU

SW, SW

T-S

TSC

TW, T-W

ucCL

UCL95

UPL

U.S. EPA, USEPA
uTL

UTL95-95

USGS

usL

WMW

WRS

WSR

Xp

<

GU‘C(O\O‘H:[_BO,O‘V

Co

sample guantitation limit

sampling unit

ShapireWilk

Theil-Sen

Technical Support Center

TaroneWare

upper confidence limit

95% upper confidence lirni

upper prediction limit

United States Environmental Protection Agency
upper tolerance limit

95% upper tolerance limit with 95% coverage
U.S. Geological Survey

upper simultaneous limit
Wilcoxon-MannWhitney

Wilcoxon Rank Sum

Wilcoxon Signed Rank

p" percentile of a distribution

less than

greater than

greater than or equal to

less than or equal to

Greek letter denoting the width of the gray region associated with hypothesis test
Greek letter representing the summation of several mathematical quantities, num
Percent

Type | error ate

Type Il error rate

scale parameter of the gamma distribution
standard deviation of the ldgansformed data

carat sign ovea parameterindicates that it represents a statistic/estimate compute:
using the sampled data
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GLOSSARY

Anderson-Darling (A-D) test: The AndersofDarling test assesses whether known data come from a
specified distributionln ProUCL the AD test is used to tetite null hypothesis that a samplata setx,,
..., Xp came from ayamma distribute@opulation.

Background Measurements: Measurements that aret siterelated or impacted by site activities
Backgroundsources can be naturally occurring or anthropogenic-fmete).

Bias: The systematic or persistent distortion of a measured value from its true vatueafhoccur
during sampling design, the sampling process, or laboratory analysis).

Bootstrap Method: The bootstrap method is a compdbased method for assigning measures of
accuracy to sample estimates. This technique allows estimation of the sarmjiiatidis of almost any
statistic using only very simple methods. Bootstrap methods are generally superior to ANOVA for small
data sets or where sample distributions aremmmal.

Central Limit Theorem (CLT): The central limit theorem states that gigedistribution with a mea,
andvarianced®> t he sampling distribution of the mean ap|]
and a viNmadNathecsemplé size, increases.

Coefficient of Variation (CV): A dimensionless quantity used teasure the spread of data relative to
the size of the numbers. For a normal distribution, the coefficient of variation is given by #/x8also
known as the relative standard deviation (RSD).

Confidence Coefficient (CC): The confidence coefficienta(number in the closed interval [0, 1])
associated with a confidence interval for a population parameter is the probability that the random interval
constructed from a random sample (data set) contains the true value of the parameter. The confidence
coefficient is related to the significance level of an associated hypothesis test by the equality: level of
significance = I confidence coefficient.

Confidence Interval: Based upon the sampled data set, a confidence interval for a parameter is a random
interval within which the unknown population parameter, such as the mean, or a future obseryation, x
falls.

Confidence Limit: The lower or an upper boundary of a confidence interval. For example, the 95% upper
confidence limit (UCL) is given by the upper bauof the associated confidence interval.

Coverage, Coverage Probability:The coverage probability (e.g., = 0.95) of an upper confidence limit
(UCL) of the population mean represents the confidence coefficient associated with the UCL.

Critical Value: The critical value for a hypothesis test is a threshold to which the value of the test
statistic is compared to determine whether or not the null hypothesis is rejected. The critical value for any
hypothesis test depends on gB@mple sizethe significance leg e | U at which the test
whether the test is orsded or twesided.

Data Quality Objectives (DQOSs): Qualitative and quantitative statements derived from the DQO
process that clarify study technical and quality objectives, definepftregriatetype of data, and specify
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tolerable levels of potential decision errors that will be used as the basis for establishing the quality and
guantity of data needed to support decisions.

Detection Limit: A measure of the capability of an analyticaéthod to distinguish samples that do not
contain a specific analyte from samples that contain low concentrations of the amas/the lowest
concentration or amount of the target analyte that can be determined to be different from zero by a single
measurement at a stated level of probapilDetection limits are analyt@nd matrixspecific and may be
laboratorydependent.

Empirical Distribution Function (EDF): In statistics, an empirical distribution function is a cumulative
probability distributiorfunction that concentrates probabilitynHt each of the numbers in a sample.

Estimate: A numerical value computed using a random data set (sample), and is used to guess (estimate)
the population parameter of interest (e.g., mean). For example, fesaegn represents an estimate of
the unknown population mean.

Expectation Maximization (EM): The EM algorithm is used to approximate a probability function
(PDP). EM is typically used to compute maximum likelihood estimates given incomplete samples.

Exposure Point Concentration (EPC): The constituentconcentration within an exposure unit to which
the receptors are exposed. Estimates of the EPC represent the concentration term used in exposure
assessment.

Extreme Values Values that are welleparatedrbm the majority of the data sebming from the
far/extreme tails of the data distribution

Goodnessof-Fit (GOF): In general, the level of agreement between an observed set of values and a set
wholly or partly derived from a model of the data.

Gray Regon: A range of values of the population parameter of interest (such as coeatituent
concentration) within which the consequences of making a decision error are relatively minor. The gray
region is bounded on one side by the action level. The widtheofiray region is denoted by the Greek
letter delta  ighis guidance.

H-Statistic: Land's gatistic used to compute UCL of mean of a lognormal population

H-UCL: UCL based -Statistt.andds H

Hypothesis: Hypothesis is a statement about the pdpataparameter(s) that may be supported or
rejected by examining the data set collected for this purpose. There are two hypotheses: a null hypothesis,
(Ho), representing a testable presumption (often set up to be rejected based upon the sampledafata), and
alternative hypothesis (H}i representing the logical opposite of the null hypothesis.

Jackknife Method: A statistical procedure in which, in its simplest form, estimates are formed of a
parameter based on a set of N observations by deleting eackadiosemn turn to obtain, in addition to

the usual estimate based on N observations, N estimates each bastbseX/ations.

Kolmogorov-Smirnov (KS) test: The KolmogorovSmirnov test is used to decide ifdata secomes
from a population with a spdid distribution. The Kolmogorossmirnov test is based on the empirical
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distribution function (EDF)ProUCL uses the KS test to test the null hypothesis if a data set follows a
gamma distribution.

Left-censored Data SetAn observation is leftensored wén it is below a cesin value (detection limit)

but it is unknow by how much left-censored observations are also called nondetect (ND) observations

A data set consisting okft-censoredobservations is called a lefensored data set. In environmental
applicationstrace concentrations of chemicals may indeed be present in an environmental sample (e.g.,
groundwater, sojlsedimentbutcannot be detected and are reported as lesghbadetection limit of the
analytical instrument or laboratory methased

Level of Significance(U): The error probability (also known as false positive error rate) tolerated of
falsely rejecting the null hypothesis and accepting the alternative hypothesis.

Lilliefors test: A goodnesof-fit testthat tests fomormality of large data sets whgvopulation mean
and variance are unknown.

Maximum Likelihood Estimates (MLE): MLE is a popular statistical method used to make inferences
about parameters of the underlying probability distribution of a given data set.

Mean: The sum of all the values of a set of measurements divided by the number of values in the set; a
measure of central tendency.

Median: The middle value for an ordered set of n valles. represented by the central value when n is
odd or by the average tife two most central values when n is even. The median is the 50th percentile.

Minimum Detectable Difference (MDD): The MDD is the smallest difference in means that the
statistical test can resolve. The MDD depends on satogdample variability, the nuber of samples,
and the power of the statistical test.

Minimum Variance Unbiased Estimates (MVUE): A minimum variance unbiased estimator (MVUE or
MVU estimator) is an unbiased estimator of parameters, whose variance is minimized for all values of the
paraneters. If an estimator is unbiased, then its mean squared error is equal to its variance.

Nondetect (ND)values Censored data values.

Nonparametric: A term describing statistical methods that do not assume a particular population
probability distributon, and are therefore valid for data from any population with any probability
distribution, which can remain unknown.

Optimum: An interval is optimum if it possesses optimal properties as defined in the statistical literature.
This may mean that it is thshortest interval providing the specified coverage (e.g., 0.95) to the
population mean. For example, for normally distributed data sets, the UCL of the population mean based
upon Studentdés t distribution is opti mum.

Outlier: Measurements (usually larger smaller than the majority of the data values in a sample) that

are not representative of the population from which they were drawn. The presence of outliers distorts
most statistics if used in any calculations.
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p-value: In statistical hypothesis testinthe pvalueassociated withan observedalue, topserned0f SOME

random variablel used as a test statistic is the probability that, given that the null hypothesis iE true,

will assume a value as or more unfavorable to the null hypothesis as #meeabgalud,pserves The null

hypothesis is rejected for all levelsofi gni fi cance, U grealmd. er than or egq

Parameter: A parameter is an kmownor knownconstant associated with the distribution used to model
the population.

Parametric: A term describing statistical methods that assumgarabability distribution such as a
normal, lognormal, or a gamma distribution

Population: The total collection of N objects, media, or people to be studied and from which a sample is
to be drawnlt is the totality of items or units under consideration.

Prediction Interval: The interval (based upon historical ddtackground dajawithin which a newly
and independently obtained (often labeled as a future observation) site obsereajipnorsite,
compliance well) of the predicted variable.d., lead) falls with a give probability (or confidence
coefficient).

Probability of Type 1 (2) Er r or Th=b )pr obability, referred to as
will not be rejected when in fact it is false (false negative).

Probability of Type | (1) Error = Levelof Si gni f i Thhencer dali)l:i ty, referr
that the null hypothesis will be rejected when in fact it is true (false positive).

p" Percentile or p™ Quantile: The specific valueX, of a distribution that partitions a data set of
measurements in such a way that the p percent (a number between 0 and 100) of the measurements fall at
or below this value, and (198) percent of the measurements exceed this v&jue,

Quality Assurance (QA): An integrated system of management activitiesolving planning,
implementation, assessment, reporting, and quality improvement to ensure that a process, item, or service
is of the type and quality needed and expected by the client.

Quality Assurance Project Plan A formal document describing, in mprehensive detail, the necessary
QA, quality control QC), and other technical activities that must be implemented to ensure that the
results of the work performed will satisfy the stated performance criteria.

Quantile Plot: A graph that displays the émt distribution of a data set, ranging from the lowest to the
highest value. The vertical axis represents the measured concentrations, and the horizontal axis is used to
plot the percentildguantilesof the distribution.

Range: The numerical differencleetween the minimum and maximum of a set of values.

Regression on Order Statistics (ROS)A regression line is fit to the normal scores of the order statistics

for the uncensored observations and then to fill in values imputed from the straight litiee for
observations below the detection limit.

Resampling: The repeated process of obtaining representative samples and/or measurements of a
population of interest.
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Reliable UCL: This is similar to a stable UCL.

Robustness: Robustness is used to comparetistiaal tests. A robust test is the one with good
performance (that is not unduly affected by outli@nsl underlyingassumptionsfor a wide variety of
data distributions.

Resistant Estimate: A test/estimate which is not affected by outliers is cadlegsistantest/estimate

Sample: A sample here represents a random sample (data set) obtained from the population of interest
(e.g., a site area, a reference area, or a monitoring well). The sample is supposed to be a representative
sample of the populan under study. The sample is used to draw inferences about the population
parameter(s).

Shapiro-Wilk (SW) test: ShapireWilk testis a goodnessf-fit testthat testghe null hypothesis that a
sampledata sety, ...,X, came from a normally distribed population.

Skewness:A measure of asymmetry of the distribution of the characteristic under study (e.g., lead
concentrations). It can also be measured in terms of the standard deviatiofrahébgrmed data. The
greater ighe standard deviatiorhegreater ighe skewness.

Stable UCL: The UCL of a population mean is a stable UCL if it represents a number of practical merits,
which also has some physical meaning. That is, a stable UCL represents a realistic nhumber (e.g.,
constituentconcentrationthat can occur in practice. Also, a stable UCL provides the specified (at least
approximately, as much as possible, as close as possible to the specified value) coverage (e.g., ~0.95) to
the population mean.

Standard Deviation (d sd, SD: A measure ofvariation (or spread) from an average value of the
sample data values.

Standard Error (SE): A measure of an estimate's variability (or precision). The gré&athe standard

error in relation to the size of the estimate, the less relialie estimateStandard errors are needed to
construct confidence intervals for the parameters of interests such as the population mean and population
percentiles.

Uncensored Data SetA data set without any censored observations is called an uncensored data set.

Unreliable UCL, Unstable UCL, Unrealistic UCL: The UCL of a population mean is unstable,
unrealistic, or unreliable if it is orders of magnitude higher than the other UCLs of population mean. It
represents an impractically large value that cannot be achiemed pr act i c e . For exampl e
H-statistic often results imn impractically large inflated UCL value. Some other UCLs, such as the
bootstragt UCL and Hal | 6s UucCclL, can be i nfl ated by oul
unstable alue. All such impractically large UCL values are called unstable, unrealistic, unreliable, or
inflated UCLs.

Upper Confidence Limit (UCL): The upper boundary (or limit) of a confidence interval of a parameter
of interest such as the population mean.

Upper Prediction Limit (UPL): The upper boundary of a prediction interval for an independently
obtained observation (or an independent future observation).
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Upper Tolerance Limit (UTL): A confidence limit on a percentile of the population rather than a
confidence limit on the mean. For example, a%%nesidedUTL for 95 % coverage represents the
value below which 9846 of the population values are expected to fall with9®®onfidence. In other
words, a 95% UTL with coverage coefficient 95% represents al96for the 9%' percentile.

Upper Simultaneous Limit (USL): The upper boundary of the largest value

xBar: arithmetic average afomputed using theamplel data values
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INTRODUCTION

OVERVIEW OF ProUCL VERSION 5.0.00 SOFTWARE

The main objective of the ProUCL softwafunded bythe USEPA is to computeigorous decision
statistics to help the decision makers in making correct decisions whichstedfective, andorotective

of human health and the environmehihe ProUCL software is based upon the philosophy thatous
statistical methodsanbe used to computbe correct estimates of population parametersg., site mean,
background percentilesnd decision making statistiogscluding theupper confidence limit of (UCLbhe
mean,the upper tolerance limit (UT), and theupper prediction limit (UPL) to help the decision makers
and project teams in making correct decisioftse use and applicability of statisticalmethod (e.g.,
student's-tJCL, Central Limit Theorem@LT)-UCL, adjusted gamm&CL, Chebyshev UCLbhootstrap

t UCL) depend upon data size, datmiability, dataskewness, and data distributid®roUCL computes
decision statistics using several parametric and nonparametric methods coveringrangédef data
variability, skewnessand sample sizé couple oftext bookmethods described imost ofthe statistical
text books (e.g., Hogg and Craig, 1995) based upon the Stutstattistic and theCLT alonecannot
address alscenarios andituationscommonly occurring in the various environmental gadt is naive
and incorrect tstate orassumehat Student's-$tatistic and/or CL based UCL®f mean will provide the
desired coverage (e.g., 0.95) to the population miegespective of the skewness of the data
set/population under consideratidihese issues haymen discussed in detail in Chapters 2 and 4 of this
Technical guide. Several examples have been disctissatjhoutthis guidance document and also in
the accompanying ProUCL 5.0 User Guidel@borateon thesessues

The use of a pametric lognormal distribution on a lognormally distributed data set tends to yield
unstable impractically large UCLs values, especially when thelatdrdeviation of the legyangormed

data is greater than 1.0 and the data setssallsizesuch adess than 360 (Hardin andGilbert, 1993

Singh, Singh, and Engelhardt, 1997). Many enmvitental data sets can be modeled by a gamma as well

as a lognormal distributiorGenerally, he use of a gamma distribution on gamma distributed data sets
yields UCL \alues of practical merit (Singh, Singh, and laci, 2002). Therefore, the use of gamma
distribution based decision statistics such as UCLs, UPL, and UTLs cannot be dismissed just because it is
easier to use a lognormal model compute these upper limitg incorrectly assuming that the two
distributions behave in a similar mann&he advantages of computing the gamma distribution based
decisionstatistics are discussa@dChapters 5 of this guidance document.

Since many environmental decisions anadebased upon a 95% UCL of the population mean, it is
important to compute correct UCh#id other decision making statistifspractical merit.In an effort to
compute correct UCLs of the population mean and other decision making statistics, in addition to
computing the Student's t statistic and the CLT based statistics (e.g., UCLs, UPLS), significant effort has
been made to incorporate rigorous statistical methodsdbd€d.s (and ther limits) in the ProUCL
software covering a widenge of data skewnessdasample sizes (e.g., Singh, Singh, and Engelhardt,
1997; Singh, Singh, and laci, 2002; and Singh, Singh, 2003). It is anticipated that the availability of the
statistical methods in the ProUCL software covering a wide range of environmental data $etip ik
decision makers in making more informative and correct decisions at the various polluted sites.

It is noted that even for skewed data sets, practitioners tend to use the CLT or Ststistigtictbased
UCLs of mean based upon samples of s&80 (large sample rulef-thumb to use CLT). However,



thisruleoft humb does not apply to moderately skewed t
(standard deviation of the ldgansformeddata) starts exceeding The large sample requirenten
associated with theuse of the CLT depends upon the skewness of the data distribution under
consideration. The large sample requirement for the sample mean to follow an approximate normal
distribution increases witthe dataskewnessandfor skewed dataets, even samples of size gredtan

(>)100 may not be large enough for the sample mean to follow an approximate normal distribation.
moderately skewed to highly skewed environmental data sets, as expg€iksl basednthe CLT and

the Student's- statistic fail to provide the desired coverage to the population mean even when the sample
sizes are as large as 100 or more. These facts have been verified in the published simulation experiments
conducted on positively skewed data sets (e.g., SiBmigh, and Engelhardt, 199%ingh, Singh, and

laci, 2002 and Singh and Singh, 2003).

The initial development and all subsequent upgrades and enhancement of the ProUCL software have been
funded bythe USEPA through its Office of Research and Developm@RD). Initially ProUCL was
developed as a research tool for scientists and researchies Tafchnical Support Center and ORD
NERL, EPA Las VegasDuring 19992001, the initial intent and objectives of developing the ProUCL
software(Version 1.0 and Mision 2.0) were to provide a statistical research tool to EPA scientists which
can be used to compute theoretically sound 95% upper confidence limits (UCL95s) of the mean routinely
used in exposure assessment, risk management and cleanup decisions vasidesaCERCLA and

RCRA sites (EPAL992a,2002a). During 2002, the peesviewed ProUCL version 2.1 (with Chebyshev
inequality based UCLs) was released for public USeveralresearcherhave developed rigorous
parametric and nonparametritatistical meiods (e.g.,Johnson, 1978(Grice and Bain, 1980; Efron
(1981,1982); Efron and Tibshirani, 1993; Hall (1988, 1998&utton, 1993; Chen, 1995jngh, Singh,

and Engelhargtl997 Singh, Singh, and laci, 20p20 compute upper limitée.g., UCLs)which adjus

for data skewnessSince Student'sWCL, CLT-UCL, and percentile bootstrap UCL fail to provide the
desired coverage to the population mean of skewed distributseveral parastric (e.g., gamma
distribution based) and nonparametric (e.g., BCA bogtstnad bootstrapy Chebyshev UC)L UCL
computation methods/hich adjust for data skewnesgere incorporated in ProUCL versions 3.0 and
3.00.02during 20032004.ProUCL version 3.00.02 also ¢hgraphical quantilguantile (QQ) plots and
GOFtests for normallognormal, and gamma distributigreapabilites to statisically anayze multiple
variablessimultaneouslyvere also incorporated ProUCL 3.00.0ZEPA 2004).

It is important to compute decision statistics (e.g., UCLs, UTLs) which areeffestiveand protective

of human health and the environment (balancing between Type | and Type |l errors), therefore, one
cannot dismiss the use of the befteetter than-tJCL, CLT-UCL, ROS and KMpercentile bootstrap
UCL, KM-UCL (t)] performing UCL computationrmethods including gamma UCLs and the various
bootstrap UCLs which adjust for data skewness. During 2004, ProUCL wasipgraded to versions
4.00.02, and 4.00.04. These upgrades incluslqaloratorygraphical €.g., Q-Q plots, box plots) and
statistical(e.g., maximum likelihood estimation [MLEKM, and RO$ methods for lefcensored data
sets consisting of nondetect (NDs) observations with multiple @LRLs For uncensored and left
censored data sets, these upgrades provide statistical methods tbecopmau limits: percentiles, UPLs
and UTLs needed to estimate ssfgecific background levedonstituentconcentrations or background
threshold values (BTVs). To address statistical needs of background evaluation projedtg\3f5|M,
2000; EPA 200d), severalsinglesampleand twesample hypotheses testing approaches were also
included in these ProUCL upgrades.

During 20082010, ProUCL was upgraded to ProUCL 4.00.05. The upgraded ProUCL was enhanced by
includingmethods to computgamma distributiotnased UPLs and UTLK(ishnamoorthy, Mathew, and
Mukherjee, 2008)The Sample Size module to compute DQOs based minimum sampleaeaeto

0



address statistical issues associated with the various environmental peppctHIARSSIM, 2000EPA
[20@2c, 20067, 2006b]was also incorporated in ProUCL 4.00.05.

During 20092011, ProUCL 4.00.05 was upgraded to ProUCL 4.1 and 4.1.01. ProUGR0LQ) and
4.1.01 (2011) retairall capabilities ofthe previous versions of ProUCL software. Two new modules:
Onewy ANOVA and Trend Analysis were included in ProUCL 4.1. The Oneway ANOVA module has
both parametric and nonparametric ANOVA tests to perform-imédrcomparisons. The Trend Analysis
module can be used to determine potentipgivard or downwardtrends presnt in constituent
concentrations identified in GW monitoring wells (MWs). The Trend Analysis module can compute
MannKendall (MK) and TheilSen (T-S) trend statistics to determine upward or downward trends
potentially present iranalyteconcentrations.ProUCL 4.1 also has th@rdinary LeastSquares (OLS)
Regression module. IRProUCL 4.1, some modifications were made in decision tables used to make
recommendations regarding the use of UCL95 to estimate EPC terms. Specifically, basthe rguemt
experence, developers of ProUCL-iteraied that the use o& lognormal distribution to estimate EPC
termsand BTVs should be avoided, as the use of lognormal distribution tends to yield unrealistic and
unstable values of the decision making stassincludirg UCL, UPL, and UTL; this is especially true
when the sample size is <30 and the data set is moderately skewed to highly skewed. During March
2011, a couple of webinars were presented describing the capabilities and use of the methods available in
Proud.4.1.

ProUCL versions.0.00represents an upgrade of ProUCL 4.1.01 (ER#e2011) which represents an
upgrade of ProUCL 4.00(EPA 20L0). For uncensored and lefensored data sets, ProUCL 5.0 consists

of all statistical and graphical methods thatareailable inthe previous versions dhe ProUCL software
package except for a couple of poor performing and restr{eted, can be used only when a single
detection limit is presentgstimation methodsuch as the MLE an#insorization methodsfor left-
censored data sets. ProUCL has GOF tests for normal, lognormal, and gamma distributions for
uncensored and lefiensored data sets with NDs. ProUCL 5.0 has the extended verslonSifapire

Wilk (S-W) test to perform normal and lognormal GOF tests fdadets of sizes up to 20qRoyston

[1982, 1982a]) In addition to normal and lognormal distribution based decision statistics, ProUCL
software computes UCLs, UPLs, and UTLs based tippgamma distribution.

Several enhancements have been madieeiyCLs and BTVs modules of the ProUCLO0 software. A

new statisticanupper simultaneous limit (Singh and Nocerino, 2002ks, 1963 has been incorporated

in the Upper limits/BTVs module of ProUCL 50 for data sets consisting of NDs with multiple §la
two-sample hypothesis test, thiaroneWare {[-W; Tarone and Ware, 1978) test has been incorporated
in ProUCL 5.0. Nonparametric tolerance limits havenbexehancedand for specific values of confidence
coefficiens, coverage probabilifyand samplesize, ProUCL 5.0 outputs the confidence coefficient
actuallyachieved by a UTLThe Trend Analysisand OLS Regressiamodules can handle missing events

to compute trend test statistics and generate trend gr8phse new methods using KM estimates in
gamma(and lognormal) distribution based UCL, UPL, and UTL equations have been incorporated to
compute the decision statistics for data sets consisting of nondetect observRtioleilitate the
computation of UCk from ISM based samplg¢TRC, 2012) the minmum sample size requirement has
been lowered to 3, so thatonecancomphe®) CL 95 based upon | SM data sets

All known bugs typographical errorsanddiscrepanciefound by the developers and the various users of
the ProUCL software package have been addressed in the ProUCL version 53p@6ifically, a
discrepang found in the estimate of mean based uffsm KM method has been fixed in ProUCL 5.0.
Some changes have been made in the decision logiarusdF and UCLmodules. In practice, based
upon a given data set, it is well known that the two statistical esfs TheikSen and OLS trend tests)



can lead to different conclusionBo streamline the decision logic associated withcttraputation of the
various UCLs, the decision tables in ProU&D have been updated. Specifically, for each distribution if

at least one of thewo GOFtests (e.g., Shapifd/ilk or Lilliefors test for normality) determines thtie
hypothesizeddistribution holds, then ProUCL concludes that the data set follows the hypothesized
distribution and decision statistics are compugaaordingly. Additionally, for gamma distributed data
sets, ProUCL 5.0 suggests the use of the: adjusted gai@indors amp |l es of si zes O
suggested in previous versions); and approximate gamma UCL for samples of sizes >50.

Also, for samples of larger siz€s.g., withn > 100 and smallvalues of thegammashape parametek
(e.g.,.k 0Q), significart discrepancies were found in the critical values of the two gamma GOF test
statistics (AndersonDarling and Kolmogorov Smirnov testgptained using the two gamma deviate
generation algorithms: Whitaker (1974) aMidrsaglia and Tsang (2000For values bk @, te.
critical values of thewo gamma GOF test&\ndersonDarling (A-D) and KolmogorovSmirnov (K-S)
testshave been updated using the currently available more acgamai®a deviatgeneration algorithm
due toMarsaglia and Tsang's (2000); mordails about the implementation of their algorithm can be
found in Kroese, Taimre, and Botev (201Epr values of the shape parameter).025, 0.05, 0.1land

0.2 the critical value tables for these two tests have been updated by incorporating theemerdyeg
critical values for thehree significancdevels: 0.05, 0.1, and 0.01. The updated tables are provided in
Appendix A. It should be noted that fk=0.2, the older and the newly generated critical values are in
general agreement.

ProUCL 5.0also has a newBackground Incremental Samp&mulator (BISS) module (temporarily
blocked for general public usgjhich can be used onlarge existing discretédbackgrounddata set to
simulatebackgroundincremental samples (BIST.he availability of a large dcrete data set collected
from areas with geological formations and conditions comparable to tise(ldkground or onsite)f
interestis a requirement for successful application of this module. The simuB&8 datacan be
compared with the actudield ISM (ITRC, 2012) data collected from the various DUs using other
modules of ProUCL 5.0. The values of tB&SS data are not directly available to users; however, the
simulated BISSlata can be accessed by the various modules of ProUCL 5.0 to perforea désiistical
evaluations. For example, tsemulated backgrounBISS data can be merged with the actfield ISM
data after comparing the two data sets using astwople test; the simulate®8ISS or the merged data
can be used to compute a UCL of thean or a UTL.

Note: The ISM methodologysed to develop the BISS moditea relatively newapproach;methods
incorporated in thiBISS modulerequire further investigatioriThe BISS module has been temporarily
blocked for use in ProUCL 5.0 as this miel is awaiting adequate guidanaed instructiondor its
intended use on discrete background data sets.

Software ProUCL version 5.0, its earlier versions: ProUCL ver3i066.02,4.00.02, 4.00.04, 4.1.00, and
4.1.01, associated Facts Sheet, User Guiahel Technical Guides (e.gPA [2004, 2007, 2009a, 2009b,
2010a, 2010p can be downloaded from the EPA website:

http://www.epa.gov/osp/hstl/tsc/software.htm
http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm

ProUCL 5.0 is a usdriendly freeware package providing statistical and graphical tools needed to
address statistical issues described in several EPA guidance documenider@bles effort has been

50

made to provide a detailed technical guide to help practitioners understand statistical methods needed to

address statistical needs of their environmental projects. ProU@trajes detailed outpsheets and


http://www.epa.gov/osp/hstl/tsc/software.htm
http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm

graphical displaydor each method which can be used to educate students leamirgnmental
statistical methodd.ike previous versionsProUCL 5.0 can process many variables simultaneously to
compute various tests (e.g., ANOVA and trend test statistics) and decisioticstaticdluding UCL of

mean, UPLs, and UTL.s@ capability not available in other software packages such as Milttaind

NADA for R (Helsel,2013). Without the availability of this option, the user has to compute decision and
test statistics for one valike at a time which becomes cumbersome when dealifigatarge number of
variables. ProUCL 5.0 also has the capability of processing data by groups. ProUCL 5.0 is easy to use; it
does not requirany programming skills as needed when uginggrams writn in R Script.

The Need for ProUCL Software

EPA guidance documents (e.g., EP¥989a, 1989b, 1992 1992h,1994, 1996, 2000, 2002a, 2002b,
2002c, 2008, 2006b,2009a,and 2009]) describe statistical methods including: DQOs based sample size
determinatio procedures, methods to compute decision statistics: UCL95, UPL, and UTLs, parametric
and nonparametric hypotheses testing approaches, Oneway ANOVA, OLS regression, and trend
determination approaches. Specifically, EPA guidance documentsHeA4y.[200Z, 2006, 2006b; and
MARSSIM, 2000) describe DQOs based parametric and nonparametric minimum sample size
determination procedures needed: to compute decision statistics (e.g., UCL95); to perform site versus
background comparisons (e.g-test, proportion test, WMW test); and to determinthe number of
discrete items (e.g., drums filled with hazardous material) that need to be sampled to meet the DQOs
(e.g., specified proportion,opof defective items allowable error margin in an estimate of mean
Statstical methods are used to compute test statistics @M., test, ttest, WMW test,T-S trend
statistic) and decision statistics (e.g., 95% UCL, 95% UPL, UT3®5needed to address statistical
issues associated with CERCLA and RCRA site projects. Famgbe, exposure and risk management

and cleanup decisions in support of EPA projects are often made based upon the mean concentrations of
the contaminantsonstituentsof potential conern (COPCs). Sitspecific BTVsare used in site versus
background evaltion studies. A UCL95 is used to estimate the EPCstéERA19Pa 2002a); and

upper limits such as upper percentild®Ls, or UTLs are used to estimate BTVs or #iotexceed values

(EPA 1992, 2002b, and 2009). The estimated BTVs are also usecertfidthe COPCs; to identify the

site areas of concern (AOCs); to performanirell comparisons to identify M\not meeting specified
standards; and to compare onsitenstituent concentrations with sitspecific background level
constituentconcentratios. Oneway ANOVA is used to perform intgell comparisons, OLS regression

and trend tests are often used to determpotentialtrendspresenin constituentoncentrations identified

in groundwater monitoring wells (MWdMost of the methods describedthis paragraph are available in

the ProUCL 5.0 software package.

It is noted that not much guidance is available in the guidance documents cited above to compute rigorous
UCLs, UPLs, and UTLs for moderately skewed to highly skewed uncensored aoenbefted data sets
consisting of NDs with multiple DLsa common occurrence in environmental data. seBeveral
parametric and nonparametric methods are available in the statistical literature (Singh, Singh, and
Engelhardt, 1997; Singh, Singh, and laci, 200Bshnamoorthy et al. 200&ingh, Maichle, and Lee,

2006 to compute UCLs and other upper limits which adjust for data skewDessg the years, as new
methods became available to address statistical issised tothe environmental projects, the
methods weréncorporatedn ProUCL software so that environmental scientists and decision makers can
makemore accurate and informatidecisions based updhoserigorous statistical methods. Until 2006,

not much guidance was provided on how to campuCL95 of mean and other upper limits (e.g., UPLs

and UTLs) based upon data sets consisting of NDs with multiple Bbs.data sets with NDs, Singh,
Maichle, and Lee (EPA 2006) conductadextensive simulation study to compare the performances of
the various estimation methodi terms of bias in the mean estimaaey UCL computation methodis



terms of coverage provided by a UCL)hey demonstrated that the nonparametric KM method pesform
well in terms of bias in estimates of meafrhey also cornaded that UCLs computed using the Student's
t-statistic and percentile bootstrap method using the KM estimates do not provide the desired coverage to
the population mean of skewed data sets. They demonstrated tlutptireding upon sample size and

data &ewness|JCLs computed using KM estimates and: B@A bootstrap method (mildly skewed data

sets) the bootstrajp method,and the Chebyshev inequality (moderately to highly skewed data sets)
provide better coverage (closer to the specified 95% coveradbg tpopulation mean than the various
other UCL computation methodBased upon their findings, during 202607, several UCL and other

upper limits computation methods based upon KM and ROS estimates were incorporated in the ProUCL
4.0 softwarelt is naed that since the inclusion of the KM method in ProUCL 4.0 (2007), the use of the
KM methodbased upper limithas become popular in many environmental applications to estimate EPC
terms and background threshold values (BTVs). RiMlemethodis alsodescibedin the latest version of

the unified RCRA guidance document (EPA 2009).

It is not easy to justify distributional assumptions of data sets consistingtiofdetects antiDs with
multiple DLs. Therefore, based upon the published literature and reqeetience, parametrit/CL
computationmethods such as the MLE methods for normal and lognormal distributiorexelteled

from ProUCL 5.0. Additionally, the winsorization method (Gilbert, 1987) has also been excluded from
ProUCL 5.0 due to its poor perfoance.ProUCL software is alswsed for teaching environmental
statistics courses thereforim, addition to statistical and graphical methods routinely used to address
statistical needs of environmental projecise to their popularitgome poor performm methods such as

the substitution DL/2 method aridind's (1975H-statistic based UCL computation method have been
retained in ProUClversion 5.0.0@or research and comparison purposes.

Methods incorporated in ProUCL 5.0 and in its earlier versions haen tested and verified extensively

by the developers and various researchers, scientists, and users. Spedliiealtgults obtained by
ProUCL 5.0 are in agreement with the results obtained by using other software packages including
Minitab, SAS, ad programs available in -Bcript (not all methods are available in these software
packages) Additionally, ProUCL 5.0 outputs several intexdiate results (e.g., khat and biased corrected
kstar estimates of the gamma shape parameter, k) and criticebv@lg., K factor used to compute
UTLs, d2max needed to compute USheeded to compute the various decision statistics of interest
which may help the interested users to verify statistical results computed by the ProUCL software
ProUCL is a user friendy software which can be used: tprocess multiple variables (analytes)
simultaneously (e.g., perform ANOVA on many variall@spcess grouped data@; generate and display
multiple plots (QQ plots) on the same graphical display. No programming skillsneegled to use
ProUCL software. ProUCL providevarning messages and makes suggestions to help a typical user in
selecting the most appropriate decision statistic (e.g., UCL).

Note The availability of intermediate results and critical values can betassmmpute lower limits and
two-sided intervals which are not as yet available in the ProUCL software.

For leftcensored data set®®roUCL 5.0 computes decision statistics (e.g., UCL, UPL, and UTL) based
uponKM estimatescomputedn a straight forward nrner without flipping the data and-figoping the
decision statistics; these operations are not easy for a typical user to understand andapelrfoam
become quite tedious when multiple analytes need to be procdgseedover, in environmental
applicatons it is important to compute accurate estinsaté standarddeviatiors which are needed to
computethe decision making statistics including UPLs and UTLs. Decision statistics (UPL, hiEded
upon a KM estimate of the of standard deviatomputed usig indirect methodsan be different from

the statistics computed usiag estimate ofsd obtained using the KM method directly, especially when



one is dealing withskewed data set or usinglag-transformation.These issues are elaborated by
examples diagssed in this Guide and the accompanying ProUCL 5.0 User Guide.

For uncensored data sets, researchers (e.g., Johnson (1978), Chen (1995), Efron and Tibshirani (1993),
Hall [1988, 1992], more references in Chapters 2 and 3) had developed parametricaterga g
distribution based) and nonparametric (bootstrapd Hall'sbootstrapmethod, modifieet) methods to
compute decision statistics which adjust for data skewf@ssuncensored positively skewed data sets,
Singh, Singh, and laci (2002) and Singh &nagh (2003) performed simulation experiments to compare

the performance(in terms of coverage probabilities) the various UCL computation methodisscribed

in the literature They demonstrated that for skewed data sets, UCLs based upon Studensid stat
central limit theorem (CLT)and percentile bootstrap methiaeshd tounderestimatéhe population mean

(EPC term). It is rea®nable to state and assume fimelings of thesimulation studiesperformed on
uncensored skewed data sets to comparpdHermances of the various UCL computation methuzds

be extended to skewed lefthsored data sets. Based upamfidings of those studies performed on
uncensored data sets and also using the findings summarized in Singh, Maichle, and Ledt {2006)
concluded that-statistic CLT, and the percentilbootstrapmethodbased UCLs computed using KM
estimatesdndalsoROS estimateslunderestimatéhe population meanf moderately skewed to highly
skewed data seténterested users may want to verifyese statementdga simulation experiments or
otherwise. Like uncensored skewed data sets, foicéefsored data sets, ProUCL 5.0 offers several
parametric and nonparametric methods to compute UCLs and other limits which adjust for data skewness.

In ealier versions of the ProUCL software (e.g., ProUCL 4.0Q.0@) left-censored data setE&M
estimates were used in the normal distribution based equations to compute the various upper limits.
However, normal distribution based upper lim{esg., tUCL) using KM estimates (or any other
estimates such as ROS estimates) fail to provide the specified coverage to the parameters (e.g., mean,
percentiles) of populations with skewed distributi¢@mgh, Singh, and lac2002,Johnson, 1978, Chen

1995) Also, the nonparametri¢JCL computation method®.g., percentile bootstrago not providethe

desired coverage to the population ne@ah skewed distributionée.g., Hall[1983, 1992] Efron and
Tibshirani, 1993 For an examplethe use ot-UCL or the percenté bootstrapJCL method on robust
ROSestimateor onKM estimates undestimaes the population mean for moderately skewed to highly
skewed data set€hapters 3and 5 of this document descriparametric and nonparametric KM method
based upper limits cgmutation methods (and available in ProUCL 5.0) which adjust for data skewness.

The KM method yields good estimates of the population mean and standard deviation (Singh, Maichle,
and Lee, 2006); however upper limits computed using the KM or ROS estimatesrial equations or

in the percentile bootstrap method do not account for skewness present in the dgtpreptiate UCL
computation methods which account for data skewness should be used on KM or ROS eBtimiatits.
censored data sets, ProUCL Bdmputes upper limits using KM estimates in gamma (lognormal) UCL,
UPL, and UTL equationge.g.,alsosuggested in EPA 2009rovided the detected observations in the
left-censored data set follow a gamma (lognormal) distribution.

Recently, the use of thiEM methodologyhas been recommendelsi ITRC, 2012) to collect soil
samples needed &stimatemean concentrations of the DUs requiring characterization and remediation
activities.ProUCL can be used to compute UCLs based upon ISM data as deacdbedommendeth

the ITRC ISM Tech Reg Guide (201At many siteslarge amounts of discrete background data are
already available which are not directly comparablthtoactual fieldSM data(onsite or background)

To compare the existing discratackgraind data withfield ISM data, theBISS module (blocked for
general use in ProUCL version 5.0 awaiting guidaarcdinstructionsfor its intendeduse of ProUCL 5.0
canbe used on &arge(e.g., consisting of at least 30 observatiang¥ting discretdaclkgrounddata set.
TheBISS modulesimulatesncremental sampling metldology base@quivalent incrementddackground



samples; and each simulated BISS sample represents an estimate of the mean of the population
represented by the discrete background ddtarke avaidbility of a large discretebackgrounddata set
collected from areas with geological conditions comparable to the DU(s) of intersge DUSs)is a
requirement for successful application of this modilee user cannot see the simulated Bt&$a;

however thesimulatedBISS data can be accessed by the various other modules of ProUCL 5.0 to perform
desired statistical evaluations. For example, the simuBi88 data can be merged with the actfield

ISM backgroundidataafter comparing the tavdata sets using a tveample itest The actual field ISM or

the merged ISM and BISS data can be accessed by the various modules of Prebi@putea UCL of

mean or a UTL

ProUCL 5.0 Capabilities

A summary of statistical methods availablalie ProUCL softwareis provided adollows.

Assumptions:Like most statistical methodstatistical methods to compute upper limits (e.g., UCLs,
UPLs, UTLs) arealsobased upon certain assumptiansluding the availability of aandonhy collected

data set consistg of independently and identically distributéd.d) observationsrepresenting the
population €.g.,site area, reference areander investigationA UCL of the mean (of a population) and

BTV estimates (UPL, UTL) should be computed using a randomlieatetl (simple random or
systematic random) data set representing a single statistical populatgnsite population or
background population). If multiple populations (e.g., background and site data mixed together) are
present in a data set, it is oeomended to separate them out first by using the population partitioning
techniques (e.g., Singh, Singh, and Flatman 1994), and then compute appropriate decision statistics (e.g.,
95% UCLs) separately for each identified populatiohe Topic of populabn partitioning and the
extraction of a valid sitspecific background data set from a broader mixture datgpatentially
consisting of both onsite and offsite data are beyond the scope of ProUCL 5.0 and this guidance
document. Brametric estimation anklypotheses testing methods (e.gedt, UCLs, UTLs) are based

upon distributional (e.g., normal distribution, gamma) assumptions. ProUCL has GOF tests for normal,
gamma, and lognormal distributions.

Multiple Constituents/VariablesEnvironmental scidists need to evaluate mampnstituentsin their
decision making processes (exposure and risk assessment). ProUCL can process multiple
constituents/variablesimultaneously in a user friendly mannan option not available in oth&eeware

or commercihsoftware packages such as NAD# R (Helsel,2013). This option is very useful when

one has to process mavgriables/analyteand compute decision statistics (e.g., UCLs, UPLs, and UTLSs)
and test statistics (e.g., ANOVA test, trend test) for thvasiables/analytes

Analysis by a Group Variable®roUCL also has the capability of processing data by groups. A valid
group column should be included in the data file. The analyses of data categorized by a group ID variable
such as: 1) Surface vs. SubsurfaZe AOC1 vs. AOC2; 3) Site vs. Background; and 4) @pgnt vs.
Downgradient MWs areommon in many environmental applications. ProUCL offers this option for data
sets with and without nondetects. The Group Option providesedul option to perform vadus
statistical tests and methods including graphical displays separately for each of the group (samples from
different populations) that may be present in a data set. For an example, the same data set may consist of
analytical datdrom the various groupsr populations representing site, background, two or more AOCs,
surface, subsurface, monitoring wely using this option,he graphical displays (e.g., box plotsQQ

plots histogramy and statisticancluding computation of background statistics, WIANOVA test,

trend test and OLS regression statistias be easilgomputed separately for eagtoupin the data set.

Exploratory Graphical Displays for Uncensored and LE&#&nsored Data SetgGraphical methods




included in the Graph module of ProU@iclude: Q-Q plots (data in same colummpultiple Q-Q plots
(data in different columns)ox plots, multiple box ploisand histograms. These graphs can also be
generated for data sets consistingN#d observations. Additionally, the OLS Regression amend
Analysis module can be used to generate graphs displaying parametrice@ieSsionlines with
confidence intervals and prediction intervals around the regressionatidesonparametric Thefen
trendlines The Trend Analysis module can generatenal graphs for data sets without a sampling event
variable, and also generate time series graphs for data sets wi#mming event (time) variable.
ProUCL 5.0 accepts only numerical values for the event vari@kphical displays of a data set are
usdul to gain added insight contained in a data set that may not otherwise be clear by looking at test
statistics such astést, Dixontestor T-Stest Unlike test statistics (e.gstést,MK test,AD test) and
decision statistics (e.g., UCL, UTL), graphl displays do not genfluencedby outliers anchondetect
observations. It is suggested that the final decisions be made based upon stasstitsds well as
graphicaldisplays

Sideby-side box plots or multiple @ plots are useful tgraphicaly compare concentrations of two or

more groups (e.g., several monitoring wells). The GOF module of ProUCL generQepldds for

normal, gamma, and lognormal distributions based upon uncensored as wellcasdefed data sets

with NDs. All relevant irfformation such as the test statistics, critical values avalues (when available)

are also displayed on the GOF@yplots.In addition to providing information about the data distribution,

a normal Q-Q plotin the original raw scalalso helps to iderfii outliers and multiple populations that

may be present in a data set. On-@ @lot, observations welleparated from the majority of the data

may represent potentiautlierscoming from a population different from the main dominant population
(e.g., bakground population). In a-Q plot, jumps and breaks of significant magnitude suggest the
presence of observations coming from multiple populations (onsite and offsite areas). ProUCL can also
be used to display box plots with horizontal lines displayegraspecified compliance limits or
computed upper limits (e.g., UPL, UTL) superimposed on the same graph. This kind of graph provides a
visual comparison of site data with compliance lgmandor BTV estimates.

Outlier Tests: ProUCL also has a couptd classical outlier test procedures (EPA 2008009, such as

the Dixon test and the Rosner test. The details of these outlier tests are described in Chaptsr 7.
outlier tests often suffer from masking effects in the presence of multiple outtiésssuggested that the
classical outlier procedures should always be accompanied by graphical displays including box plots and
Q-Q plots. Description and use tife robust and resistant (to masking) outlier proced(iResisseeuw

and Leroy, 1987; Singhnd Nocerino, 1995arebeyond the scope of ProUCL 5.0. Interested users are
encouraged to tryhe Scout 2008 software package (EPA 2009) to theeobust outlier identification
methods especially when dealing withmultivariate data sets consisting afata for several
variableganalytes

Outliers represent observations coming from populations different from the main dominant population
represented by the majority of the data set. Outliers distort most statistics (e.g., mean, UCLs, UPLs, test
statistics)of interest. Therefore, it is desirable to compute decisions statistics based upon data sets
representing the main dominant population and not to compute distorted statistics by accommodating a
few low probability outliers €.9.,by using a lognormal disbution). Moreover, it should beotedthat

even though outliers might have minimal influence on hypotheses testing statistics based upon ranks (e.g.,
WMW test), outliers do distort several nonparametric statistics including bootstrap methods such as
bodstrapt and Hall'sbootstrapUCLs and other nonparametric UPLs and UTdasmputed using the

higher order statistics.



Goodnesof-Fit Tests:In addition to computing simple summary statistics for data sets with and without
NDs, ProUCL 5.0 has GOF tests foormal, lognormal and gamma distributions. To test for normality
(lognormality) of a data set, ProUCL has the Lilliefors test and the exterdéteSt for samples of sizes

up to 2000(Royston, 1982, 1982a)-orthe gamma distribution, two GOF testie AndersonDarling

test (1954) and Kolmogorov Simnov test(Schneider, 1978are available in ProUCLEFor samples of

larger sizes (e.g., witlm > 100 and small values of the gamma shape paramktéz,g., k  0Q1),
significant discrepancies were found the critical values of the two gamma GOF test statistics
(AndersonDarling and Kolmogorov Smirnov tests) obtained using the two gamma deviate generation
algorithms: Whitaker (1974) arMarsaglia and Tsang (2000). For valuekof @, the critical valuesf

the two gamma GOF tests: Anderddarling (A-D) and KolmogorovSmirnov (K-S) tests have been
updated using the currently available more efficient gamma deviate generation algorithm due to
Marsaglia and Tsang's (2000); more details about the implenmentdttheir algorithm can be found in
Kroese, Taimre, and Botev (2011). For values of the shape parak¥€125, 0.05, 0.1and0.2 the

critical value tables for these two GOF tests have been updated by incorporating the newly generated
critical values for three levels o$ignificance 0.05, 0.1, and 0.01. The updated tables are provided in
Appendix A. It should be noted that fi=0.2, the older (generated in 2002) and the newly generated
critical values are in general agreement.

ProUCL also generadeGOF Q-Q plots for normal, lognormal, and gamma distribution displaying all
relevant statistics including GOF test statistics. GOF tests for datavigbtsand without NDs are
described irchaptes 2 and 3 of this guidanadocumentFor data sets consisif of NDs, it is not easy to
verify the distributional assumptions correctly, especially when the data set consists of a large percentage
of NDs with multiple DLs and NDs exceeding the detected values. Typically, decisions about
distributions of data setgith NDs are based upon GOF test statistics computed trsbutataobtained:
without NDs; replacing NDs by 0, DL, or DL/2isingimputed NDs based upon ROS (e.g., lognormal

ROS) method. For data sets with NDs, ProUCL can perform GOF tests using mietteatabove.

Using the "Imputed NDs using ROS Methods" option of the "Stats/Sample Sizes" module of ProUCL 5.0,
additional columns can be generated to store imputed (estimated) valléBddrased upon normal
ROS, gamma ROS, and lognormal R@&¢ knavn asrobust ROS) methods.

Sample Size Determinatioand Power EvaluationrSample Sizes module in ProUCL can be used to
develop DQOs based sampling designs needed to address statistical issues associated with the various
polluted sites projects. ProUCLOBprovides user friendly options to enter the desireipeeified values

for decision parameters (e.g., Type | and Type Il error ratesdthedDQOs used to determine minimum

sample sizes for the selected statistical applications including: estiméatiogan, single and twsample
hypothesis testing approaches, and acceptance sanidithg.parametric (e.g., for-tests) and
nonparametric (e.g., Sign test, WRS test) sample size determination methods as describe@ERA (

2006, 2006h and MARSSIM (2000) guidance documents are available in ProUCL version 5.0. ProUCL

also haghe sample size determinatiaptionfor acceptance sampling of lots of discrete objects such as a

lot (batch, s@tof drums cotaining of hazardous waste (e.g., RCRA applicas, EPA 2002c)When the

sample size for an application (e.g., verification of cleanup level) is not computed using the DQOs based
sampling design process, the Sample Size module can be used to assess the power of the test statistic used
in retrospectThe mathematicatletails of the Sample Sigenodule are given in Chapt8r

Bootstrap Method€Bootstrap methods are computer intensive nonparametric methods which can be used
to compute decision statistics of interest when a data set does not follow i distwtbution, or when it

is difficult to analytically derive the distributions of statistics of interest. It is -Wmdwn that for
moderately skewed to highly skewed data 96l s based upon standard bootstrap and the percentile
bootstrap methods doon perform well (e.g., Efrorf1981, 1987; Efron and Tibshirani,1993; Hall

10



[19881992} Singh, Singh, and laci 2002; Singh and Singh, 2003, Singh, Maichle and Lee 2€@6) as
interval estimates based upon these bootstrap methods fail to provide tfiecdpesierage (e.g., UCL

95 does not provide adequate 95% coverage to population mean) to the population mean. For skewed data
sets, Efron and Tibshirani (1993) and Hall (198892 considered other bootstrap methods such as the
BCA, bootstragt a n ds bddtatiap rdethods. For skewed data sets, bootstramnd Hal | 6s b o«
(meant to adjust for skewness) methods perform better (e.g., in terms of coverage for the population
mean) than the other bootstrap methods. However, it has been noted (e.gand8ffbibshirani,1993

Singh, Singh, and 1a@002) that these two bootstrap methods tend to yield erratic and infl@&kd

values (orders of magnitude higher than oti€Ls) in the presence of outliers. Similar behavior of the
bootstrapt U CL a rbabtstida WAL inathods is observed based upon data sets consisting of NDs
and outliers.Due to the reasons described above, whenever applicable, ProUCL 5.0 provides cautionary
notesandwarningmessageregarding the use of bootstrapnd Halls bootstrapf CL methods.

1 Fornonparametrizincensored and lefiensored data sets with NDs, depending upon data variability
and skewness, ProUCL recommends the use of BCA bootstrap, bottstr&hebyshev inequality
based methods to compute decision statistics.

Hypotheses Testing ApproachédoUCL software has both Singl8a mp |l e ( e . ¢gest,sigift udent
test, proportion testVSRtest) and TweS a mp | e  ( SestWiN&/ riest,6Gehanm test, arfldW test)

parametric and nonparametric hypotheses testingpapipes. Hypotheses testing approaches in ProUCL

can handle both fulincensored data sets without NDs, anddefisored data sets with NDdost of the

hypotheses tests also report associatedlypes. For some hypotheses tests (e.g., WMW test, WSR test
proportion test), large sample-vplues based upon normal approximation are computed useg

continuity correction factors. Thmathematicalletails of the variouSinglesampleand TweSample

hypotheses testing approaslage described in Chaptérof this document

1 Singlesample par amet r i c-tesf) ahdurbrgparamétsc (Sign test, WSR test, tests for
proportions andpercentiles) hypotheses testing approaches are available in ProUClIsirfe
samplehypotheses tests are used when the emwiemtal parameters such as the algestandard,
action level, or compliance limits are known, and the objective is to compare site concentrations with
those known threshold values. Specifically,-#est (or a sign test) may be used to verify the
attainment of cleanup levels at an AOC) after a remediation activity has taken place; and a test for
proportion may be used to verify if the proportion of exceedances of an action level (or a compliance
limit) by sample observationscollected from an AOC (or a MWgxceeds a certain specified
proportion (e.g., 1%, 5%, 10%).

1 The differences between these tests should be noted and understood. Specifictdht, ar ta
Wilcoxon Signed Rank (WSR) test are used to compare the measures of location and central
tendencgs (e.g., mean, median) of a site area (e.g., AOC) to a cleanup stahdardction level
also representing a measure of central tendency (e.g., mean, median); whereas, a proportion test
compares if the proportion of site observations from an AOC ekaged compliance limit CL)
exceeds a specified proportion,(B.g., 5%, 10%). The percentile test compares a specified percentile
(e.g., 98) of the site data to a pspecified upper threshold (e.g., action level).

1 Two-sampleHypotheses tests (Stude &est, MW test, Gehan test-W test) are used to perform
site versus background comparisons, compare concentrations of two or more AOCs, compare
concentrations o6W monitoring wells (MWSs)It should be noted that as cited in the literature, some
of the hypotheses testing approaches (e.g., nonparametrgatwple WMW) deal with the single
detection limit scenario. When using the WMW testa data set with multiple detection limits, all
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observations (detects adDs) below the largest detection lirmmeed to be considered as NDs
(Gilbert, 1987). This in turn tends to reduce the power and increase uncertainty associated with test.
As mentioned before, it is always desirable to supplement the test statistics and conclusions with
graphical displays sicas the multiple €Q plots and sidéy-side box plots. Gehan test or Tarene
Ware (new in ProUCL 5.0) should be used in sagkeeremultiple detection limits are present.

Computation of Upper Limits including UCLs, UPLs, UTLs, and URkrmiUCL softwarehas parametric

and nonparametric methods including bootstrap and Chebyshev inequality based methods tatltempute
various decision making statistics such as UCLs of mean (EPA 2002a), percentiles, UPLs for future k
(O01) observati on sh EPAYZODY and wpegsimultadedus limiksq9S2s) (Singh and
Nocerino,[1995,2007) based upon uncensored full datts and leftensored data sets consisting of

NDs with multiple DLs. Methods incorporated in ProUCL cover a wide range of skewed data
distributionswith and without NDs. In addition to normal and lognormal distributions based upper limits,
ProUCL50cac omput e parametric UCLSs, percentil es, UPLSs
USLs based upon gamma distributed data sets. For data sets with NDs, ProUCL has several estimation
methods including the KM method (1958), ROS methods (Helsel, 2005uasttution methods such as
replacing NDs by DL or DL/2 (Gilbert, 1987, EPA 2@)6 Substitution DL/2 method has been
incorporated in ProUCL for research and comparison purasseguestedby EPA scientists

Computation of UCLs Based Upon UncensobBsta Sets without NDsParametric UCL computation

met hods in ProUCL for unceAIloApprdximdta gammasUEL (sising nc | ud
chrsquare approxi mation), Adjusted gammaUCUG@Gnd (adj u
Chebyshe inequalitybased UCL (using MVUEs of parameters of a lognorndgdtribution).
Nonparametric UCL computation methods for data sets without NDs include:b&idd UCL,
Modified-t-statistic (adjusted for skewnedssed UCL, Adjuste€LT (adjusted for Skemess)based

UCL, Chebyshev inequality bas&tCL (using sample mean and standard deviation), Jackknife method

based UCL, UCL based upon standard bootstrap, UCL based upon percentile bootstrap, UCL based upon
BCA bootstrap, UCL based upon bootsttapnd UC.C. b ased wupon Hal ITlhegletdiso ot st r
of UCL computation methods for uncensored data sets are summarized in Chapter 2

Computations of UPLs, UTLs, and USLs Based Upon Uncensored Data Sets withoutr&Ds:
uncensored data sets without NDspRFCL can compute parametric percen
observations, UPLs for mean of k (O1) future obse
and lognormal distributions. Nonparametric upper limits are typically based upon etddicstof a data

set such as a background or a reference area data set. Depending upon the size of the data set, the higher
order statistics (maximum, second largest, third largest, and so on) are used to compute these upper limits
(e.g., UTLs).Dependig upon the sample size, specified confidence coefficient and coverage probability,
ProUCL 5.0 outputs the actual confidence coefficient achieved by a nonparametricTh&ldetails of

the parametric and nonparametric computation methods for UPLs, UTdld)J@hs are described in

Chapter 3f this document

Computation of UCLs, UPLs, UTLs, and USLs Based Upon-Ceftsored Data Sets with NCFor data

sets with NDs, ProUCL computes UCLs, UPLs, UTLs, and USdsed upommean andsd computed
usinglogROS (ROS,robust ROS), @nmaROS(GROS) KM, and DL/2 methodsFor nonparametric
data sets,a adjust for skewnes®roUCL uses bootstrap methods and Chebyshev inequality to compute
UCLs and other limits using estimates of mean and standard deviation ohigingdmethods listed
above. ProUCL also uses parametric methods on xd ROS)estimates provided detected
observations in the leftensoreddatasetfollow a parametric distribution. For example, if the detected
data follow a gamma distribution, ProUCkas KM estimates in gamma distribution based equations to
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compute UCls, UTLs, and other upper limit&ased upora Monte Carlo study performed by Singh,
Maichle, and Lee (EPA, 2006), ProUCL recommends the use of the Kdpgian (1958) estimatei
bootstap and Chebyshev inequaliiy compute the various decision statistics (e.g.,UCL95, UPL, UTL)
of interest.ProUCL 5.0 suggests the use of Kbhmma upper limits when the detected data follow a
gamma distributionProUCL computes KM estimates directly usiteft-censored data sets without
flipping data and rdlipping decision statistics. The KM method incorporated in ProUCL computes both
sdand standard erro6f) of themean. For historical reasons and for comparison and research purposes
the DL/2 substitition method and HJCL based upon LROS methbdve beemetained in ProUCL 5.0.

The inclusion of the substitution method in ProUCL should not be inferred as an endorsement of those
methods by ProUCL software and its developers. The details of the UCLutaiiop methods for data

sets with NDsaregiven in Chapter 4 and the description of the varmtherupper limits: UPLs, UTLSs,

and USLs for data sets with Nsegiven in Chapter 5

Onavay ANOVA, OLS Regression and Trend AnalySitie Oneway ANOVA modile has both classical

and nonparametri&-W ANOVA tests as described in EPA guidance documents (e.g., 2@,

2009). Oneway ANOVA is used to compare means (or medians) of multiple groups such as comparing
mean concentrations of several areas of aoncend perfornmg inter-well comparisons comparing
concentrations of several MWs. The OLS Regression option computes the classical OLS regression line,
and generates graphs displayitige OLS line, confidence basdand prediction barslaround the
regres®n line. All statistics of interest including slope, intercept, and correlation coefficient are
displayed on the OLS line graph. The Trend Analysis module has two nonparametric trend-t€sts:

trend test and Thelben trend test. Using this option, onencgenerate trend graphs and tisegies

graphs displaying Thelben trend line and all other statistics of interest with associatallips.

In GW monitoring applications, OLS regression, trend tests, and time series plots are often used to
identify trends (e.g., upwards, downwards)danstituentconcentrations ofhe various GW monitoring

wells over a certain period of time (EPA 2009). The details of Oneway ANOVA are given in Chapter
and OLS regression line and Trend tests methods are describleapiteCD.

BISS Module: At many sites, a large amount of discrete onsite and background data are already available
which are not directly comparable &xtual fieldISM data. In order to provide a tool to compare the
existing discrete data with ISM dathe BISS moduleof ProUCL 5.0 may be used @nlarge existing
discrete data seT’he ISM methodology used to develop the BISS module is a relativelyapgnoach;
methods incorporated in this BISS module require further investigation. The BISS moduleehas b
temporarily blocked for use in ProUCL 5.0 as this module is awaiting adequate guidance for its intended
use on discrete background data sets.

Recommendations and SuggestiamsProUCL Not much guidance is available in the environmental
literature ncluding theavailableguidance documents to compute rigorous UCLs, UPLs, and UTLs for
moderately skewed to highly skewed uncensored andetdefiored data sets consisting of NDs with
multiple DLs, a common occurrence in environmental data $ais.uncesored positively skewed data

sets, Singh, Singh, and laci (2002) and Singh and Singh (2003) perf@xteasive simulation
experiments to compare the performances (in terms of coverage probabilitie®veral UCL
computation methods described statistcal and environmentditerature. They noted that the optimal
choice of a decision statistic (e.g., UCL 95) depends upon the sample size, data distribution and data
skewnessUntil 2006, not much guidance was available on how to compute UCL95 of mearnthand o
upper limits (e.g., UPLs and UTLs) basapbn skewedlata sets consisting of NDs with multiple DLs.

For data sets with NDs, Singh, Maichle, and Lee (EPA 2006) conducted a similar simulation study to
compare the performancestb various estimation @thods (in terms of bias in the mean estimas)d
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of some thaJCL computation methods (in terms of coverage provided by a Ul}ey demonstrated

that the KM estimation method performs well in terms of bias in estimate of, medrior skewed data
setst-statistic, CLT, and the percenti@otstrapmethod based UCLs computed using KM estimates (and
ROS estimatgsunderestimatdhe population mearBased upon the findings summarized Singh,
Singh, and laci (2002) arsingh, Maichle, and Lee (20Q8@) is naturalto state and assume tfiedings

of the simulation studiegerformed oruncensored skewed data sets to compare the performances of the
various UCL computation methods can be extended to skewaxthefored data sets.

For data sets with and wibut NDs,ProUCL computes decision statistics including UCLs, UPLs, and
UTLs using several parametric and nonparametric methods covering #awge ofsample sizegata
variability and skewness. Using the results and findings summarized in the liteiggdrabove, based

upon the sample size, data distribution, and data skewness, some modules of ProUCL make suggestions
about using a decision statistic to estimate population parameters of interest (e.g., EPC). The
recommendations made in ProUCL are baspdn the extensive experience of the developers in
environmental statistical methods, published literature (e.g., Efron and Tibshirani, 1993; Hall, 1988;
Singh, Singh, and Engelhardt 1997; Singh, Singh, and laci 2002; and Singh, Maichle, and Lee 2006) and
procedures described in the various EPA guidance documents (EPA [1992a, 1992b 2002a, 2002b, 2006b,
2009,2009a, 2009b]). Based upon the conceptual site model (CSM), expert site and regional knowledge,
the project team should make the final decision reggrdsing or not using thsuggestions ade by

ProUCL. If deemed necessary, the project team may want to consult a statistician.

Even though, ProUCL 5.0 has been developed using limited government funding, for data sets with and
without NDs, ProUCL 5.0 movides many statistical and graphical methods described in the EPA
documents cited above. However, one may not compare the availability of methods in ProUCL 5.0 with
methods available in the commercial software packages such as SAS and Minitab 16mipte, ékend

tests correcting for seasonal/spatial variations are not available in the ProUCL software. For those
methods the user is referred to the commercial software packages. As mentioned earlier, it is
recommended to supplement test results (e.g-sbmaple test) with graphical displays (e.g-Q(lots,
sideby-side box plots); especially when data sets consist of NDs and outliers. With the incluBI8&iS of
module Oneway ANOVA, Regression and Trend tests, and thefueedly DQOs based Sample 8iz
determination modules, ProUCL represents a comprehensive statistical software package equipped with
statistical methods and graphical tools needed to address many environmental sampling and statistical
issues as described in the various CERCLA (EPA 198%®2a, 2002a, 2002b, 2006a, 2006b),
MARSSIM (EPA 2000), and RCRA (EPA 1989b, 1992b, 2002¢, 2009) guidance documents.

Finally, the userand practitionersre cautioned abotihe use oimethodsand suggestiondescribed in

some recent environmental lisgure For examplemany decision statistic¢e.g., UCLs, UPLs, UTLSs,)
computed usinghe methods(e.g., percentile bootstrap, statistics using KM estimates -amitichl
values)described in Helsel (2012yill fail to provide defred coverage to the einonmental parameters

of interest (mean, upper percentile) of moderately skewed to highly skewed popukatidr®nclusions
derived based upon those decisions statistics may lead to incorrect conclusions which may net be cost
effective or protective ofuman health and the environment.

14



ProUCL 5.0 User Guide

In addition to this Technical Guide, a User Guide also accomptm@d@&soUCL 5.0software providing
details of using the statistical and graphical methods incorporated in ProUCL 5.0.00. THeuldiger
provides details about theput andoutputoperations that can be performed using ProUCL 5.0. The User
guide also provides details about savattited input filesputput Exceltype spreadsheets and graphical
displays generated by ProUCL 5.0.
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CHAPTER 1

Guidance on the Use of Statistical Methods in
ProUCL Software

Decisions based upon statistics computed using discrete data sets of small sizes6jecgnnot be
considered reliable enough to make remediation decisions that affect humarahdate environment.

For example a bakground data set of sizess thar6 is not large enough to characterize background
population, to computbackground threshold valueBTV) estimates, or to perform background versus

site comparisons. Several EPAligance documents (e.g., MARSSIM 200BPA [2006a, 2006b)
describedata quality objectivesD(QO9 and minimum sample size computations needed to address
statistical issues associated with the various environmental applications. In order to obtainresisle

using statistical methods, an adequate amount of data should be collected using desired DQOs
(confidence coefficient, decision error rateEhe Sample Sizes module of ProUCL computes DQOs
based minimum sample sizes neededise the statisticahethods describedh the various guidance
documents. In some cases, it may not be possible (e.g., due to resource constraints) to collect DQOs
based number of sampjamder these circumstances one can use the Sample Sizes module to assess the
power of thetest statistic used in retrospectSome suggestions about the minimum sample size
requirements needed to use statistical methods to estimate environmental parameters of interest such as
exposure point concentratioBRQ terms and BTVs, to compare sitatd with background data or with

some preestablished screening levels (e.g., action lejls], compliance limit§CLs]), are provided in

this chapter. lis noted thatsimilar minimum sample size suggestions made by ProlERA 2007,

2009a, 2009bhawe beenmade insome other guidance documents including the RCRA Guidance
Document (EPA 2009).

This chapter also describes the differences between the various statistical upper limits ingpéding
confidence limits JCLs) of the meanupper predictiodimits (UPLs) for future observations, angpper
tolerance intervald{TLs) often used to estimate the environmental parameters of interest including EPC
terms andBTVs. The use of a statistical method depends upon the environmental parameter(s) being
estmated or comparedith. The measures of central tendency (e.g., means, medians, or their UCLS) are
used to compare site mean concentrations with a cleanup stangaatso@epresenting some central
tendency measure of a reference area or some othenkihogshold representing a measure of central
tendency. The upper threshold values, such a€llsealternative concentration limits (ACL), or rAk

exceed values, are used when individual pbyapoint onsite observations are compared with those
threstold values. It should be noted that depending upon whether the environmental parameters (e.g.,
BTVs, notto-exceed valuepr EPC termy are known or unknown, different statistical methods with
different data requirements are needed to compare site cotiomstraith preestablished (known) or
estimated (unknown) standards and BTVs. Several upper limits, and single asdntpi@ hypotheses
testing approaches, for both fulhcensored and lefensored data sets are availablethia ProUCL
software packagetperform the comparisons described above.

1.1  Background Data Sets

Based upon theonceptual site modeCSM), the project team familiar with the site selects background

or reference arsaDepending upon the site activities and the pollutants, the ackdjarea can be site
specific or a general reference area. An appropriate random sample of independent obsén@tions

i.i.d) should be collected from the background area. A defensible background data set represents a
Asingl ed popul atanpoautliers.o in s ibdtkgpundvdata ket, in addition to reporting

16



and/or laboratory errors, statistical outliers may also be present. A few elevated statistical outliers present
in a background data set magtually represent potentially contaminatedctionsbelonging to an
impacted site areas and/or possibly from other polluted site(s); those elevated outliers mayprohdpe

from the main dominant background population under evaluation. Since the presence of outliers in a data
set tends to yieldistorted (incorrect and misleading) values of the decision making statistics (e.g., UCLs,
UPLs and UTLSs), elevated outliers should not be included in background data sets and estimation of
BTVs. The objective here is to compute background statistics hgesdthe majority of the data set
representing thenain dominant background population, and not to accommodate a few low probability
high outliers(e.g., coming fromextremetails of the data distributiorthat may also be present in the
background dataes. The occurrence of elevated outliers is common when background samples are
collectedfrom various onsite areas (e.g., large Federal Facilities). The proper disposition of ,dotliers
include or not include them in statistical computatjem®uld be deided by the project team. The project

team may want to compute decision statistics with and without the outliers to evaluate the influence of
outliers on the decision making statistics.

A couple of classical outlier tests (Dixon and Rosner tests) ait@able in ProUCL. Since both of these
classical tests suffer from masking effects (e.g., some extreme outliers may mask the occurrence of other
intermediate outliers), it is suggested that these classical outlier tests be supplemented with graphical
displays such as a box plahda QQ plot. The use aéxploratorygraphical displays helps in determining

the number of outliers potentially present in a data set. The use of grapisiglalysl also helps in
identifying extreme high outliers as well as intediate and mild outliers. The use of robust and resistant
outlier identification procedures (Singh and Nocerino, 1995, Rousseeuw and Leroy, 1987) is
recommended when multiple outliers are present in a data set. Those methods are beyond the scope of
ProUCL 50. However, several robust outlier identification methods are available in the Scout 2008
version 1.0 software package (EPA 2009).

An appropriate background data set of a reasonable size (preferably computed using DQOs processes) is
needed toepresent background area and to compute upper limits (e.g., estimates of BTVs) based upon
background data sets and also to compare site and background data sets using hypotheses testing
approaches. At the minimum, a background data set should have at least éOolimenvations are
preferable) observations to perform background evaluations

1.2 Site Data Sets

A data set collected from a site population (eagea of concernjOC], exposure aregdA], decision

unit [DU], group of monitoring wells MWs]) should berepresentative of the site area under
investigation. Depending upon the site areas under investigation, different soil depths and soil types may
be considered as representing different statistical populations. In such cases, background versus site
compari®ns may have to be conducted separately for each of those sfiepulbtions (e.g., surface and
subsurface layers of an AOC, clay and sandy site areas). These issues, such as comparing depths and soil
types, should also be considered in planning stayes developing sampling designs to collect samples

from the various sitédAOCs. Specifically, the availability of an adequate amount of representative site
data is required from each of those site-gapulations/strata defined by sample depths, soil tymeds

the various other characteristics. For detailed guidance on soil sample collections, the reader is referred to
Gerlach and Nocerino (ER2R003.

Site data collection requirements depend upon the objés}igéthe study. Specifically, in backgrodin
versus site comparisons, site data are needed to perform:
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1 pointby-point onsite comparisons with pestablished action levels or estimated BTVSs.
Typically, this approach is used whenya small number (e.g., §) of onsite observations are
comparedwith a BTV or some othenotto-exceed value. Imany msite values need to be
compared with a BTV, it is recommended to use UTLupper simultaneous limitUSL) to
control the false pditive error rate (Type | Error Rateflternatively, one can useypothesis
testing approaches provided enowgiservationgat least 10more are preferredyeavailable

1 singlesamplehypotheses tests to compare site data with @gtablished cleanup standards, C
(e.g., representing a measure of central tendepegjortion test to compare site proportion of
exceedances of an AL with a pspecfied allowable proportion, B. These hypotheses testing
approaches are used site datavhen enough sitebservationsre available. Specifically, when
at least 10 (morera desirable) site observations are available; it is preferable to use hypotheses
testing approaches to compare site observations with specified threshold values. The use of
hypotheses testing approaches can coitnth types of error rate§Type 1 and Tge 2) more
efficiently than the poinby-point individual observation comparisons. This is especially true as
the number of poirby-point comparisons increases. This issue is illustrated by the following
table summarizing the probabilities of exceedar(ta@se positive error rate) of theTV (e.g.,
95" percentile) by onsite observations, even when the site and background populations have
comparable distributions. The probabilities of these chance exceedances increase as the site
sample size increases.

Sample Size Probability of Exceedance
1 0.05
2 0.10
5 0.23
8 0.34
10 0.40
12 0.46
64 0.96

1 two-sample hypotheses tests to compare site data distribution with background dataidistribu
to determine if the site concentrations are comparable to backgtonndntrations. An adequate
amount of dat@eeds to benade available from the site as well as the background populations. It
is preferable to collect at 10 observations from eaglulation under comparison.

Notes: From a mathematical point of view, one can perform hypothesis tests on data sets consisting of
only 34 data values; however, the reliability of the tefgtistics (andhe conclusionsderived) thus
obtained is questiohde. In these situations it muggestedo supplement the test statistics decisions by
graphical displays.

1.3  Discrete Samples or Composite Samples?

ProUCL can be used on discrete data sets as well as on composite data sets. However, in a data set
(backgound or site), collected samples should be either all discrete or all composite. In general, both
discrete and composite site samples may be used for individuaibygoaint site comparisons with a
threshold value, and for single and tg@mple hypothes testing applications.

T When using ainglesamplehypothesis testing approach, site data can be obtained by collecting
all discrete or all composite samples. The hypothesis testing approach is used when many (e.g.,
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10) site observations are availalBetails of thesinglesamplehypothesis approaches are widely
available in EPA guidance documents (MARSSIRA00; EPA [1989200@]). Severalsingle
samplehypotheses testing procedures available in Prold€ described in Chapterd@ the
ProUCL 5.0 Teh Guide

 |If a two-sample hypothesis testing approach is used to perform site versus background
comparisons, then samples from both of the populations should be either all discrete samples, or
all composite samples. The tvwgample hypothesis testing apprbas are used when many (e.g.,
at least10) site, as well as background, observations are available. For better results with higher
statistical power, the availability of more observations perhaps based upon an appropriate DQOs
process (EPA 20@) is desiable. Several twesample hypotheses tests available in ProUCL 5.0
are described in Chaptérof the ProUCL 5.0 Tech Guide

14  Upper Limits and Their Use

The computation and use of statistical limits depend upon their applications and the paramgteRGe.g

term, BTVS) they are supposed to be estimating. Depending upon the objective of the study, a pre
specified cleanup standards €an be viewed as to represent: 1) an average (or mechasjituent
concentrationm; or 2) a noto-exceed upper thshold concentration valuéy,. These two threshold

values, an average valueg, and a noto-exceed valueA, represent two significantly different
parameters, and different statistical methods and limits are used to compare the site data with these two
very different threshold values. Statistical limits, such as an UCL gfdpalation mean, an UPL for an
independently obtained fsingled o0bs emnsyasb cabed , or
future k observations, next k observations, alifierent observations), upper percentiles, and UTLs are
often used to estimate the environmental parameters: an EPCrgrand a BTV ). A new upper

limit, USL has been included in ProUCL 5.0 which may be used to estimate a BTV based upon a well
estdlished backgroundata set without any outliers.

It is important to understand and note the differences between the uses and numerical values of these
statistical limits so that they can be properly used. Specifically, the differences between UCIRLand U

(or upper percentiles), and UCLs and UTLs should be clearly understood and acknowledged. A UCL with
a 95% confidence limit (UCL95) of the mean represents an estimate of the population mean (measure of
the central tendency), whereas a UPL95, a UTL®%% (UTL9595), and an upper 95percentile
represent estimates of a threshéiom the upper tail of theopulationdistribution such as the 95
percentile. Here, UPL95 represents a 95% upper prediction limit, and U'B®Bepresents a 95%
confidence linit of the 95" percentile. For mildly skewed to moderately skewed data sets, the numerical
values of these limits tend to follow the order given as follows:

Sample Mean¢ UCL95 of Mean ¢ Upper 98 Percentile¢ UPL95 of a Single ObservatighUTL95-
95

For highly skewed data sethese limitamay not follow the order described above. This is especially true

when the upper limits are computed based upon a lognormal distribution (Singh, Singh, and Engelhardt,
1997). It is well known that a lognormaisttibution based UCL 95 (Landdés UCL95)
unstable and impractically large UCL values. AFUBL95 often becomes larger than UPL95 and even

larger than a UTL 95985% and the largest sample valuEhis is especially true when dealing with
skeweddata sets of smaller sizes. Moreover, it should also be noted that in some cadd€ 85H

becomes smaller than the sample mean, especially when the data are mildly skewed and the sample size is
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large (e.g., > 50, 100). The differences among the varipperdimits discussed above are illustrated by
the following example

Example 1.1. Consider dackground real data set collected frarBuperfund sit€EPA 2002b) The data

set has several inorganic COPC, including aluminum, arseiggmium, iron, and €ad. Iron
concentrations follow a normal distribution. Some upper limits for the iron data set are summarized as
follows. However the various uppdimits do follow the order as described above.

Table 1-1. Computation of Upper Limits for Iron (Normally D istributed)

UPL95 for a UPLOS for 4 95%

Mean | Median | Min | Max | UCL95 Single : UTL95-95 Upper
, Observations .
Observation Percentile

9618 | 9615 3060| 18700| 11478 | 18145 21618 21149 17534

A brief discussion about the differences between the applications and tisessafious statistical limits
is provided below.

1 A UCL represents an average value tisatompared with a threshold value also representing an
average value (prestablished or estimated), such as a m@arror example, a site 95% UCL
exceeding &5 may lead to the conclusion thiie cleanup standardCs has not been attained by the
averagesite areaconcentrationlt should also be noted that UCLs of means are typically computed
based upon the site data set.

T A UCL represent s afcdnttabtendemay,tandvitésonot appragsiater tee compare
individual site observations with a UCL. Depending upon data availability, single esamuple
hypotheses testing approaches are used to compare a site average or a site median with a specified or
pre-established cleanup standarsinglesample hypothesis), or with the background population
average or median (twsample hypothesis).

1 A UPL, an upper percentile, or an UTL represents an upper limit to be used fobyppioint
individual site obsemtion comparisons. UPLs and UTLs are computed based upon background data
sets, and poidby-point onsite observations are compared with those limits. A site observation
exceeding a background UTL may lead to the conclusion thaiotinituentis present athe site at
levels greater than the background concentrations level.

1 When enough (e.gat leasiO) site observations are available, it is preferable to use hypotheses
testing approaches. Specificallginglesample hypotheses testing (comparing site & specified
threshold) approaches should be used to perform site versus a known threshold comparison; and two
sample hypotheses testing (provided enough background data are also available) approaches should
be used to perform site versus background coisgra Several parametric and nonparametric single
and twesample hypotheses testing approaches are available in ProUCL 5.0.

It is reemphasized that only averages should be compared with averages or UCLs, and individual site
observations should be compdrwith UPLS, upper percentile®)TLs, or USLs For example the
comparison of a 95% UCL of one population (e.g., site) with a 90% or 95% upper percentile of another
population (e.g., background) cannot be considered fair and reasonable as these dimitkCle and

UPL) estimate and represent different parameters.
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1.5 Point-by-Point Comparison of Site Observations with BTVs, Compliance Limits,
and Other Threshold Values

The mint-by-point observation comparison method is dusghen a small number (e.g, 6) of site
observations are compared with j@s&tablished or estimated BTVs, screening levels, or preliminary
remediation goals (PRGSs). Typically, a single exceedance of the BTV by an onsite (or a monitoring well)
observation may be considered as ancatitbn of the presence of contamination at the site area under
investigation. The conclusion of an exceedance by a site value is sometimes confirmeshinplieg

(taking a few more collocated samples) that site location (or a monitoring well) exhitotrsgituent
concentration in excess of the BTV. If all collocated (or collected during the same time period) sample
observations collected from the same site location (or well) exceed the BTV or PRG, then it may be
concluded that the location (well) recesr further investigation (e.g., continuing treatment and
monitoring) and cleanup.

When BTV constituentconcentrations are not known or fstablished, one has to collect or extract a
background data set of an appropriate size that can be consideresenéipg the site background.
Statistical upper limits are computed using beekgrounddata set thus obtained, which are used as
estimates of BTVsTo compute reasonably reliable estimates of BTVs, enough background observations
(minimum of 10) should beollected, perhaps using an appropriate DQOs process as described in EPA
(20062) and MARSSIM (2000)Several statistical limits listed above are used to estimate the BTVs based
upon a defensible (free of outliers, representing the background populaitkgréund data set of an
adequate size.

The pointby-point comparison method is also useful when quick turnaround comparisons are required in
real time. Specifically, when decisions have to be made in real time by a sdsgpéaging crew, or
when onlya few site samples are available, then individual goyapoint site concentrations are
compared either with prestablished cleanup goals or with estimated BTVs. The sampling crew can use
these comparisons to: 1) screen and identificti@aminant&ongituentsof potentialconcern COPC3,

2) identify thepotentially polluted siteareas of concermrAQCs), or 3) continue or stop remediation or
excavation at an onsite area of concern.

If a larger number of samples (e.g10) are available from the vats onsite locations representing the

site area under investigation, then the use of hypotheses testing approachsm@iesampleand a
two-sample) is preferred. The use of hypothesis testing approaches control the error rates more tightly and
efficiently than the individual poinby-point site comparisons.

1.6  Hypothesis Testing Approaches and Their Use

Both singlesampleand twesample hypotheses testing approaches are used to make cleanup decisions at
polluted sites, and also to compamnstituentconcentrations of two (e.g., site versus background) or
more populationge.g., MWSs)

1.6.1 Single Sample Hypotheses (Farstablished BTVs and Nui-Exceed Valueare Knowr)

When preestablished BTVs are used such as th8. Geological SurveylSGS baclground values
(Shacklette and Boerngeh984), or thresholds obtained from similar sites, there is no need to extract,
establish, or collect background data set. When the BTVs and cleanup standards are knowangie
hypotheses are used to compare dita (provided enough site data are available) with known and pre
established threshold values. It is suggested that the project team determine (e.g., using DQOSs) or decide
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(depending upon resources) about the number of site observations that shalleicbedcand compared

wi t h tehset aflbplrieshedo st andards before coming to a c
the site AOCsAs mentioned earlier, men the number of availabstte samples is less thapdhe might

perform pointby-point site observation comparisons with a BTV; amoen enough site observations (at

least 10 are available, it is desirable to uwEaglesamplehypothesis testing approachB&pending upon

the parameter (e.g., the average valog,or a notto-exceed valueA.), represented by the known

threshold value, one can usimglesamplehypotheses tests for population mean or mediges{t sign

test), or usesinglesampletests for proportions and percentiles. The details of dinglesample

hypotheses testingpproaches can be found in EPA (2BP§uidance document and in Chapesf this
TechnicalGuide.

OneSample {Test: This test is used to compare the site memnyith some specified cleanup standard,

Cs, where the Crepresents an average thresholdugalg. The S-test beanUCh of mean) is

used (assuming normality of site data set or when sample size is large such as larger than 30, 50) to verify
the attainment of cleanup levels at a polluted site after some remediation activities.

OneSampe Sign Test or Wilcoxon Signed Rank (WSR) Téwstse tests are nonparametric tests and can
also handleND observations, provided all NO§s.g., associated detection limits) fall below the specified
threshold value, C These tests are used to comparesite location (e.g., median, mean) with some

specified Grepresenting a similar location measure.

OneSample Proportion Test or Percentile Tésthen a specified cleanup standakgl,such as a PRG or

a BTV represents an upper threshold value adrasttuentconcentration distribution rather than the mean
threshold valuezg, then a test for proportion or a test for percentile (or equivalently a UT535TL

95-90) may be used to compare site proportion (or site percentile) with the specified thoestodion
level, Aq

1.6.2 Two-Sample Hypotheses (BTVs and-isExceed Values afdnknowr)

When BTVs, noto-exceed values, and other cleanup standards are not available, then site data are
compared directly with the background data. In such casessample hypothesis testing approasare

used to perform site versus background comparisons. Note that this approach can be used to compare
concentrations of any two populations including two different site areas or two different monitoring wells
(MWSs). In order to use and perform a twample hypothesis testing approach, enough data should be
available from each of the two populations. Site and background data requirements (e.g., based upon
DQOs) to perform twesample hypothesis test approaches are itbestin EPA 2002b, 2006a20060),
MARSSIM (2000)and also in Chaptes of the ProUCL 5.0 Technical Guidé/hile collecting site and
background data, for better representation of populations under investigation, one may also want to
account for the size dhe background area (and site area for site samples) in sample size determination.
That is, a larger number (5820) of representative backgroundn( site) samples should be collected

from larger backgrounda(d site) areas; every effort should be madectllect as many samples as
determinedy theDQOsbased sample sizes.

The twesample (or more) hypotheses approaches are used when the site parameters (e.g., mean, shape,
distribution) are being compared with the background parameters (e.g., meands&tepation). The
two-sample hypotheses testing approach is also used when the cleanup standards or screening levels are
not known a priori. Specifically, in environmental applicationstwo-sample hypotheses testing
approaches are used to compare avesageedianconstituentoncentrations of two or more populations

To derive reliable conclusions with higher statistical power based upon hypothesis testing appanaches,
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adequate amount afata (e.g., minimum of0 samples) should mllectedfrom all of the populations
under investigation.

The wo-sample hypotheses testing approaches incorporated in ProUCL 5.0 are listed as follows:

1. Student{test (with equal and unequal variance®arametric test assumes normality

2. Wilcoxon-MannWhitney (WMW) testi Nonparametric test handles datih NDs with
oneDL - assumes two populations have comparable shapes and variability

3. Gehan test Nonparametric test handles data sets with NDs and multiple- B&sumes
comparable shapes and variability

4. TaroneWare (T-W) testi Nonparametric test handles data sets with NDs and multiple
DLs - assumes comparable shapes and variability

The Gehan and TarorRd&/are tests are meant to be used ondeftsored data sets with multigletection

limits (DLs). For best resultshe samples collected from the two (or more) populations should all be of

the same type obtained using similar analytical methods and apparatus; the collected site and background
samples should be all discrete or all composite (obtained using the sage aledipattern), and be
collected from the same medium (soil) at similar depths (e.g., all surface samples or all subsurface
samples) and time (e.g., during the same quarter in groundwater applications) using comparable
(preferably same) analytical metho@ood sample collection methods and sampling strategies are given

in EPA (1996, 2003) guidance documents.

Notes. ProUCL 5.0 (and previous versions) has been developed using limited government funding.
ProUCL 5.0 is equipped with statistical and graphioathods needed to address many environmental
sampling and statistical issues as described in the various CERCLA, MARSSIM, and RCRA documents
cited earlierHowever, one may not compare the availability of methods in ProUCL 5.0 with methods
incorporated ircommercial software packages such as SAS and MihiaNot all methods available in

the statistical literature are available in ProUCL.

1.7  Minimum Sample Size Requirementsand Power Evaluations

Due to resource limitations, it may not be possible freeded) to sample the entire population (e.qg.,
background area, site area, AOCs, EAs) under study. Statistics is used to draw inference(s) about the
populations (clean, dirty) and their known or unknown parameters (e.g., mean, variance, upper threshold
values) based upon much smaller data sets (samples) collected from those popUiatietsrmine and
establish BTVsand site specific screenirigvels, defensiblelata set(s) of appropriate size(s) need to be
collected from background areas (e.g.,-sfiedfic, general reference area, or historical data). frogect

team and site experts should decide what represents a site population and what represents a background
population. The project team should determine the population area and boundaries hasdéidccupent

and futureuses, and thebjectives of data collection. Using the collected site and background data sets,
statistical methods supplemented with graphical displays are used to perform site versus background
comparisons. The test results astatistics obtained by performing such site versus background
comparisons are used to determine if the site and background clensfituentconcentrations are
comparable; or if the site concentrations exceed the background threshold concentratiom iteel; o
adequate amount of remediation approaching the BTV or some cleanup ls\mdmaperformed at
polluted site AOCs.

To performthesestatisticaltests, one needs to determine the appropriate sample sizes that need to be
collected from the populaths (e.g., site and background) under investigation using appropriate DQOs
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processes (EPP2006, 2006b]; MARSSIM, 2000). ProUCL has the Sample Sizes module which can be
used to develop DQOs based sampling designs needed to address statistical isdatedasghcthe

various polluted sites projects. ProUCL provides user friendly options to enter the desspdfified

values of decision parameters (e.g., Type | and Type Il error rates) to determine minimum sample sizes
for the selected statistical djgations including: estimation of mean, single and-sample hypothesis

testing approaches, and acceptance sampling. Sample size determination methods are available for the
sampling of continuous characteristics (e.g., lead or Radium 226), as well adtrioates (e.g.,
proportion of occurrences exceeding a specified threstidid). parametric (e.g.,-tests) and
nonparametric (e.g., Sign test, test for proportions, WRS test) sample size determination methods are
available in ProUCL 5.0. ProUCL 5.0 alshas sample size determination methods for acceptance
sampling of lots of discrete objects such as a lot of drumgaiciimy hazardous waste (e.g., RCRA
applications, EPA 2002c).

However, due to budget constraints, it may not be possible to collesathe number of samples as
determined by using a DQOs process. For example, the data might have already been collected (often is
the casgwithout using a DQOs process, or due to resource constraints, it may not be possible to collect
as many samples as dehined by using a DQOs based sample size forrmularactice, the project team

and the decision makers mdgcidenot to collect enough background sampllss suggested to collect

at least10 background observations before using statistical methpdsfdom background evaluations

based upon data collected using discrete samplesminimum sample size recommendatidescribed

here are useful when resources are limitedyughit may not be possible to collect as many background

and site samples asmputed using DQOs based sample size determination forninlaase data are
collected without using DQOsprocessthe Sample Sizes modutanbe usel to assessthe power of the
teststatisticin retrospect. Specifically, one can use the standardtawviaf the computed test statistic

(EPA 2006b) and compute the sample size (e.g., using Sample Size module of ProUCL) needed to meet
the desired DQOs. If the computed sample size is greater than treff #imedata setised, the project

team may want toollect additional samples to meet the desired DQOs

Notes: From a mathematical point of viewhe statistical methods incorporated in ProUCL and described

in this guidance documento estimate EPC terms and BTVs, and compare site versus background
concentrations can be performed on small site and background data sets (e.g., of sineall as )3
However, those statistiamay notbe considered representative and reliable enough to make important
cleanup and remediation decisions. It is recommendedonose those statistics to draw cleanup and
remediation decisions potentially impacting human health and the environment. The minimum sample
size recommendation (at least dBservations) may be used only whdata set®f size determined by a
DQOs proceséEPA, 2006) cannot be collectésbme of the recent guidance documents (e.g., EPA 2009)
are also suggesting collecting a minimumabbut10 samples irthe circumstancé¢hat datacannot be
collected using a DQOs based process.

1 To allow the users to comfmidecision statistics based upon composite data collected using the
IncrementalSampling Methodology (ITRC, 2012), ProUCL 5.0 will compute decision statistics
(e.g., UCLs, UPLs, UTLs) based upon samples of sizassnall as 3The user is referred to the
ITRC ISM Tech Reg Guide (2012) to determine which UCL (e.g., Studehi@Lt or
Chebyshev UCL) should be used to estimate the EPC term.
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1.71 Sample Sizes for Bootstrap Methods

Several nonparametrinethodsincluding bootstrap methode computeUCL, UTL, and other limits for

both fulluncensored data sets and -lsfhsored data sets witiDs are available in ProUCL 5.0.
Bootstrap resampling methods arefub&hen not too few (e.g., < 180) and not too many (e.g., > 500

1000) observations are alaile. For bootstrap methods (e.g., percentile method, BCA bootstrap method,
bootstragt method), a large number (e.g., 1000, 2000) of bootstrap resamples (with replacement) are
drawnwith replacemenfrom the same data set. Therefore, to obtain bootsasgmples with at least

some distinct values (so that statistics can be computed from each resample), it is suggested that a
bootstrap method should not be used when dealing with small data sets of sizes lesthadsb5it is

not necessaryo bootstap a large data set of size greater than 500 or 1000; that is when a data set of a
large size (e.g., > 500) is available, there is no need to obtain bootstrap resamples to compute statistics of
interest (e.g., UCLs). One can simply use a statistical rdethothe original large data set. Moreover,
bootstrapping a large data set of size greater than 500 or 1000 will be time consuming.

1.8  Statistical Analysesby a Group ID

The analyses of data categorized by a group ID variable such as: 1) Surface wda&er23 AOC1 vs.

AOC2; 3) Site vs. Background; and 4) Upgradient vs. Downgradient monitoring wells are common in
environmentaland various otheapplications. ProUCL 5.0 offers this option for data sets with and
without NDs. The Group Option providesusefultool to perform various statistical testsethodsand
generatgraphical displays separately for each of the group (samples from different populations) that may
be present in a data set. The graphical displays (e.g., box (aemtilequantile) Q-Q plots) and
statistics €.g.,background statistics, UCLs, hypothesess}est interest can be computed separately for
each group by using this option. Moreover, using the Group Option, graphical methods can display
multiple graphs (e.g., @ plots) o the same graph providing graphical comparison of multiple groups.

It should be pointed out that it is the usersoé re
the group operations. For an example, if the user desires to produce a §@pRipot €.9.,using only

detected data) with regression lines displayed, then there should be at least two datactatiiegto

compute slope, interceptandard deviationsfl) in the data set. Similarli§ the graphs are desired for

each group ecified by the group ID variable, there should be at least two observations in each group
specified by the group variable. ProUCL generates a warning messdged oranggin the lowerLog

Panel of the ProUCL 5.0 screen.

1.9 Statistical Analyses for Many Constituents/Variables

ProUCL oftware can process multiple analytesiables simultaneously in a user friendly maninan

option not available in other software packages such as Minit§p01@) NADA for R (Helsel,2013).

This option is very usful when one hato process multiple variableend compute decision statistics

(e.g., UCLs, UPLs, and UTLs) and test statistics (e.g., ANOVA test, trend test) forvtradales It is

theuser 6s responsi bility to msakalegsate@mmount df data seetllat h s e
ProUCL can perform the selected statistical method correctly. ProUCL displays warning messages when

a selected variable does not have enough data needed to perform the selected statistical method.
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1.10 Use of Maximum Detected Value as Estimates of Upper Limits

Some practitioners tend to use the maximum detected value as an estimate of the EPC term. This is
especially true when the sample size is small suck &sor when a UCL95 exceeds the rimaxm

detected valuesEfPA, 1992x Also, many times in practice, the BTVs and-twexceed values are
estimated by the maximum detected vdklg., nonparametric UTLs, USLS)

1.10.1 Use of Maximum Detected Value to Estimate BTVs anddNetceed Values

BTVs and noto-excee values represent upper threshold values from the upper tail of a data distribution;
therefore, depending upon the data distribution and sample size, the BTVs and etb@xneed values

may be estimated by tHargest or the second largekttected vime. A nonparametric UPLUTL, and

USL areoften estimated by higher order statistics such as the maximum value or the second largest value
(EPA 199D, 2009. The use of higher order statistics to estimate the UTLs depends upon the sample size.
For an exarple, for data sets of size: 1) 59 to 92 observations, a nonparametric t9E.85given by the
maximum detected value; 2) 93 to 123 observations, a nonparametric 495Li85given by the second
largest maximum detected value; and 3) 124 to 152 observaidhBEL9595 is given by the third largest
detected value in the sample, and so on.

1.10.2 Use of Maximum Detected Value to Estimate EPC Terms

Some practitioners tend to use the maximum detected value as an estimate of the EPC term. This is
especially tue when the sample size is small saghx 5, or when a UCL95 exceeds the maximum

detected values (EPA, 1992a). Specifically, the EPA (1992a) document suggests the use of the maximum
detected value as a default value to estimate the EPC term when @@5%e.g., theH-UCL) exceeds

the maximum value. ProUCL computes 9%%Ls of mean using several methods based upon normal,
gamma, lognormal, and natiscernible distributions. Ithe past (e.g., EPA 1992)a lognormal

distribution was used as the default disition to model positively skewed environmental data sets; and
only two methods were used to estimate the-EPC te
statistic, and 2) | o g n-statistia (L971d 1985). iTHe luge tibfe H-statisecn d L a n
often yields unstable and impractically large UCL95 of the mean (Singh, Singh, and Engelhardt, 1997
Singh, Singh, and laci, 2002). For skewed data sets of smaller sizes (e.g., < 30),<HBOCL often

exceeds the maximum detected eal&ince the use of a lognormal distribution has been quite common

(e.g., suggested as a default model in a risk assessment guidance for Supggddocumen{EPA,

19923), the exceedance of the maximum value byHaJCL95 is frequent for many skeweldita sets of

smaller sizes (e.g., < 30, <50). These occurrences result in the possibility of using the maximum detected
value as an estimate of the EPC term.

It should be pointed out that in some cases, the maximum observed value actually mighhtreprese
impacted location. Obviously, it is not desirable to use a potential outlier representing an impacted
location to estimate the EPC for an AOC. The EPC term represents the average exposure contracted by
an individual over an EA during a long periofitime; the EPC term should be estimated by using an
average value (such as an appropriate 952t of the mean) and not by the maximum observed
concentration. One needs to compute an average exposure and not the maximum exposure. Singh and
Singh (2003) stuied the performance of the max test (using the maximosereed valu¢o estimate the

EPQ via Monte Carlo simulation experiments. They noted that for skewed data sets of small sizes (e.g.,

< 10-20), even the max test does not provide the specified @& age to the population mean, and for

larger data sets it overestimates the EPC term, which may lead to unnecessary further remediation.
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Today, severamethods, some@f which are described in EPA{02a), areavailablein the various
versions of ProUCl(e.g.,ProUCL 3.@.02[EPA 2004, ProUCL 4.0[EPA 2007, ProUCL 4.00.05£PA

2009 2010])to estimate the EPC termBor data sets with NDs, ProUCL 5.0 has some new UCL (and
other limits) computation methods which were not available in earlier versid®OfCL. It is unlikely

that the UCLs based upon those methods will exceed the maximum detected value, unless some outliers
are present in the data set.

1.10.2.1 Chebyshev Inequality Based UCL95

ProUCL 5.0 (and its earlier versions) displays a warningsaige when thsuggeste®5% UCL (e.g.,

Hal | 6 s otUClbwitlodutietsy oftipe mean exceeds the detected maximum concentration.

When a 95%UCL does exceed the maximum observed value, ProUCL recommends the use of an
alternativeUCL computation mdtod based upon the Chebyshev inequality. One may use a 97.5% or
99% Chebyshev UCL to estimate the mean of a highly skewed popul@hienuse of the Chebyshev
inequality to compute UCLs tends to yield marenservative (but stable) UCLs than other methods
available in ProUCL software. In such cases, when the sample size is large (and other UCL methods such
asthebootstrapt method yield unrealistically high valudsie to presence of outlier{spne may want to

use a 95% Chebyshev UCL or a Chebyshev UCh vawer confidence coefficient such as 90% as an
estimate of the population mean, especially when the sample size is large (e.g., >100, 150). The detailed
recommendations (as functions of sample size and skewness) for the use of those UCLs are summarized
in various versions of ProUCL Technical Guides (EPA, 2004, 2007, 2009, and 2010d

Notes:It is recommended not to use the maximum observed value to estimate the EPC term representing
the average exposure contracted by an individual over an EA. Forkin@fsmterested users, ProUCL

di splays a warning message when the recommended
exceeds the observed maximum concentration. For such scenarios (when a 95% UCL does exceed the
maximum observed value), an attative 95% UCL computation method based upon Chebyshev
inequality is recommended by the ProUCL software.

1.11 Samples with Nondetect Observations

ND observations are inevitable in most environmental data sets. Singh, Maichle, and Lee (EPA, 2006)
studied tle performances (in terms of coverages) of the various UCL95 computation methods including

the simple substitution methods (such as the DL/2 and DL methods) for data sétbwiliservations.

They concluded that the UCLs obtained using the substitutiomoaigtincluding the replacementbs

by respective DL/2; do not perform well even when the percentabfpasbservations is low, such as

less tharb% to 10%. They recommended avoiding the use of substitution methods to compute UCL95

based upon data setith ND observations.

1.11.1 Avoid the Use of DL/2 Method to Compute UCL95

Based upon the results of the report by Singh, Maichle, and Lee (EPA, 2006), it is recommended to avoid
the use of the DL/2 method ferforma GOF test, and to compute the summatgtistics and various

other limits (e.g., UCL, UPL, UTLs) often used to estimate the EPC terms and BTVs. Until recently, the
DL/2 method has been the most commonly used method to compute the various statistics of interest for
data sets with NDs. The maieasonfor this has been the lack of the availability thie other rigorous
methods and associateftware programs that can be used to estimate the various environmental
parameters of interest. Today, several meth@dg., usingKkaplanMeier [KM] estimdes) including
Chebyshev inequality andobtstrap methods with bettperformance aravailable that can be used to
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compute the various upper limits of interest. Several of those parametric and nonparametric methods are
available in ProUCL 4.0 and higheengions. It should be noted that the DL/2 method is included in
ProUCL for historical reasons as it had been the most commonly used and recommended method until
recently (EPA, 2008). EPA scientists and several reviewers of the ProUCL software had subgedte
requested the inclusion of DL/2 method in ProUCL for comparison and research purposes.

Notes. Even though the DL/2 method (to compute UCLs, UPLs, anddodnesof-fit [ GOH tess) has
been incorporated in ProUCL, its use is not recommendeddtsepoor performance. The DL/2 method
has beemetained in PPUCL 5.0for historical and comparison purposes. NERPRA, Las Vegas strongly
recommends avoiding the use of DL/2 method even when the % of NDs is as low@as®%

1.12 Samples with Low Frequency of Detection

When all of the sampled values are reported@s, the EPC termand other statistical limitshould also

be reported as &D value, perhaps by the maximum reporting limit (RL) tbe maximum RL/2.
Statistics (e.g., UCL95) computed bdsupon only a few detected values (e.g., < 4) cannot be considered
reliable enough to estimate the EPC terms having potential impact on human health and the environment.
When the number of detectedluesis small, it is preferable to use ad hoc methadker than using
statistical methods to compute the EPC terms and other upper limits. Specifically, it is suggested that for
data sets consisting of less thamletects and for small data sets (e.g., size < 10) with low detection
frequency (e.g., < 10%}he project team and the decision makers together shdedile on a site-

specific basis on how to estimate the average exposure (EPC term) fam#iguentand area under
consideration. For such data sets with low detection frequencies, other measires the median or

mode represegbetter estimates (with lesser uncertainty) of the population measure of central tendency.

Additionally, it is also suggested that when most (e.g., %)9&f the observations for eonstituentlie

below theDLs, the ample median or the sample mode (rather than the sample average) may be used as
an estimate the EPC term. Note that when the majority of the ddtiDargéhe median and the mode may

also be represented byND value. The uncertainty associated with sustineates will be highThe
statistical properties, such as the bias, accuracy, and precision afstimeates, would remain unknown.

In order to be able to compute defensible estimates, it is always desirable to collect more samples.

1.13 Some Other Appications of Methods in ProUCL 5.0

In addition to performing background versus site comparisons for CERCLA and RCRA sites, and
estimating the EPC terms in exposure and risk evaluation studies, the statistical methods as incorporated
in ProUCL can be used taddress other issues dealing with environmental investigations that are
conducted at Superfund or RCRA sites.

1.13.1 Identification of COPCs

Risk assessors amdmedialprgect managers (RPMs) often use screening levels or BTVs to identify the
COPCs dung the screening phase of a cleanup project to be conducted at a contaminated site. The
screening for the COPCs is performed prior to any characterization and remediation activities that may
have to be conducted at the sifdis comparison is performed screen out thoseonstituerg that may

be present in the site medium of interest at low levels (e.g., at or below the background levels or some
pre-established screening levels) and may not pose any threat and concern to human health and the
environment. Those constituerd may be eliminated from all future site investigations, and risk
assessment and risk management studies.
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To identify the COPCs, poitity-point site observations are compared with someeptablished soil
screening levels (SSL), or esated BTVs. This is especially true when the comparisons of site
concentrations with screening levels or BTVs are conducted in real time by the sampling or cleanup crew
onsite The project team should decide the type of site samples (discrete or cojrppusitee number of

site observations that should be collected and compared with the screening levels or the BTVs. In case
BTVs or screening levels are not known, the availability of a defensiblesptfic background or
reference data set of reasonatilee (e.g.at least 1Pis required to obtain reliable estimates of BTVs and
screening levels. Theonstituers with concentrations exceeding the respective screening values or BTVs
may be considered COPCs, whereasstituers with concentrationse(g.,in all collected samples) lower

than the screening values or BTVs may be omitted from all future evaluations.

1.13.2 Identification of NorCompliance Monitoring Wells

In MW compliance assessment applications, individual (often disaetstituenttonceatrations from a

MW are compared with some pestablished limits such as an ACL or a maximum concentration limit
(MCL). An exceedance of the MCL or the BTV by a MW concentration may be considered an indication
of contamination in that MW. In such individu concentration comparisons, the presence of
contamination (determined by an exceedance) may have to be confirmedamplkng from that MW.

If concentrations otonstituers in the original sample and fsample(s) exceed the MCL or BTV, then

that MW ma require further scrutiny, perhaps triggering remediation remedies as determined by the
project team. If the concentration data from a MW for about 4 to 5 continuous quarters (or some other
designated time period determined by the project team) are tetoMCL or BTV level, then that MW

may be considered as complying with (achieving) theegtablished or estimated standards.

1.13.3 Verification of the Attainment of Cleanup Standards, C

Hypothesis testing approaches are used to verify the attainfém oleanup standardGt polluted

site AOCs after conducting remediation and cleanup at those site AOCs (EPA, 1989) In order to

assess the attainment of cleanup lewelgpresentative data set of adequate size perhaps obtained using
the DQG process (or a minimum of 10 observations should be collected) needs to be made available
from the remediated/excavated areas of the site under investigation. The sample size should also account
for the size of the remediated site aremeaning that lamy site areas should be sampled more (with more
observations) to obtain a representative sample of the remediated site areas under investigation. Typically,
the null hypothesis of interest isHbite Mean/6Cs versus the alternative hypothesis; Bite Mean,m

< G where the cleanup standard, 8 knowna priori.

1.13.4 Using BTVs (Upper Limits) to Identify Hot Spots

The use of upper limits (e.g., UTLS) to identify hot spot(s) has also been mentionedsnidhace for
Comparing Background andh@mical Concentrations in Soil for CERCLA SieRA, 2002b). Poinby-
point site observations are compared with agatablished or estimated BTV. Exceedances of the BTV
by site observations may be considered as representing impacted locations wittd edleaentrations
(hot spots).
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1.14 Some General Issues and Recommendations made by ProUCL

Some general issues regarding the handling of multiple detection limits and field duplicates by ProUCL
and recommendations made about various substitutiomegmelssion on order statistidR@S methods
for data sets with NDs are described in the following sections.

1.14.1 Multiple Detection Limits

ProUCL 5.0 des not make distinctions betweamethod detection limits (MDLs), adjusted MDLs,

sample quantitatiorirhits (SQLS), or DLs. MultipléOLs in ProUCL mean different values of tBd.. An

indicator variable with of O (=nondetect) an@Metect)is assigned to each variable consisting of NDs.

Al l ND observations i n Pr oUCeindeatoevanalmedused inPrbUCed by
to distinguish between detected (=1) and nondetestf@dabservations. Ititheuser sd responsi b
supply correct numerical valuésr NDs (should be entered as the reported detection 6mRL values)

and notas qualifierde.g., J, U, B, UJ, ).for ND observations in the data set

1.142 ProUCL Recommendation about ROS Method and Substitution (DL/2) Method

For data sets with NDs, ProUCL 5dan compute point estimates of population mean and standard
devidion using the KM and ROS metho¢snd also using DL/2 methadyhe DL/2 method has been
retained in ProUCL for historical and research purpoBeslUCL uses Chebyshev inequalibqotstrap
methodsand normalgamma, and lognormal distribution based eignaton KM (or ROS) estimates to
compute the various upper limits (e.g., UCLs, UTLBhe simulation study conducted by Singh, Maichle
and Lee (2006) demonstrated that the KM method yields accurate estimates of the populatidineyean
also demonstratethat for moderately skewed tohighly skewed data set®¥JCLs based upon KM
estimatesand BCA bootstrap(mild skewness) KM estimates and Chebyshev inequalityoderate to
high skewness), and KM estimates and bootdtraethod (moderate to high skewnegi®ld better(in
terms of coverage probabilitgstimates oEPC terms than oth&CL methodsbased uporStudent's-t
statisticon KM estimatespercentile bootsap methodn KM or ROS estimates

1.15 The Unofficial User Guide to ProUCL4 (Helsel and Giloy, 2012)

Several ProUCL users sent indqai about the validity of the comments made abmProUCL software

in the Unofficial User Guide to ProUCL{Helsel and Gilroy, 2012and in the Practical Stats webinar,
"ProUCL v4: The Unofficial User Guidepresented by Dr. Helsel on October 15, 2012 (Helsel 2012a)
Their inquiries led us to reviewomments made about the ProUCL v4 software and its associated
guidance documents (EPA 2007, 2009a, 2009b, 2Gitit2010d) in the Unofficial ProUCL v4 User
Guideand in the webinar, "ProUCL v4: The Unofficial User GuidHiese two documentsllectively

are referred to athe Unofficial ProUCLv4 User Guidein this ProUCL document. Thedf document
describing the material presented in Bractical Stats \@binar(Helsel, 2012ajvas downloaded frorthe
http://www.practicalstats.com website.

In the "ProUCL v4: The Unofficial User Guide", comments have been made about the software and its
guidancedocuments therefore, it is appropriate to address those commentkeirpresent ProUCL
guidance documentt is necessary to provide the detailed response to comments made in the Unofficial
ProUCL v4 User Guide to assure that: 1) rigorous statistical methods are used to compute the decision
making statistics; and 2) the theds incorporated in ProUCL software are not misrepresented and
misinterpreted.Some generakesponses ancbmmentsabout the material presentedtire Practical Stats
webinarand in the Unofficial User Guid® ProUCLv4are described as follows. Speciiomments and
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responses aralso considereth the respective chapters BfoUCL 5.0Technicaland User Guides. The
detailed responses to the comments made about the ProUCL software in the Unofficial ProUCL v4 User
Guide are provided elsewhere.

ProUCL i a freeware software package which has been developed under limited governmenttéunding
address statistical issues associated with various environmental site prdjettll statisticaimethods
(e.g., Levene testjescribed in the statistical litetme have been incorporated in ProUCL. One may not
compareProUCL withthe commercial software packages which are expensive and not as easy to use as
the ProUCL softwareto address environmental statistical issuHse existing and someew statistical
metlods based upon the research conducted by-8RRL, EPA Las Vegasluring the last couple of
decades have been incorporated in ProUCL to address the statistidal of the various environmental
site projects and researstudies Some of those new method®gy not be available itext booksin the
library of programs written in Rcript, and in commercial software packagdswever, hose methods

are described in detail in the cited published literature and ald® iRroUCL Tecmical Guides (e.qg.,

EPA [2007, 2009a, 20092010c and 2010d])Even though for uncensored data sets, programs to
compute gamma distribution based UCLs and UPLs are availableSicrif, programsto computea

95% UCL of mean based upon a gamma distribution on KM estinaseesot easily available in
commercial software packagasd in R script

1 Inthe UnofficialProUCL v4User Guide, several statements have been made abouttjpescaimere
are several ways to compute percentiléstcentiles computed by ProUCL may or may not be
identical (don't have to be) to percentiles computed by NADA for R (Helsel, 2013) or described in
Helsel and Gilroy (2012). To address users' requests, ProUCL 4.1 (2010) and its higher versions
compute percentiles that are comparabldahi percentiles coputed by Excel 2003 and higher
versions.

1 Theliterature search suggests that there are a totalnaf (9) knowntypes of percentiles, i.e., 9
different methods of calculating percentiles in statistics literature (Hyndman and Fan, 1996). The R
programmiig language (R Core Team, 2012) has all of these 9 types which can be computed using
the following statement in R

quantile(x, p, type=k) where p = percentile, k = integer betweef: 1

ProUCL computes percentiles using Type 7; Minitab 16 and SPSS copgpaémtiles using Type 6.
It is simply a matter of choice, as there is no 'best' type to use. Many software packages use one type
for calculating a percentile, and another for a box plot (Hyndman and Fan, 1996).

1 An incorrect statementBY definition, tle sample mean has a 50% chance of being below the true
population meanhas been made in Helsel and Gilroy (2048}l also in Helsel (2012ayhe above
statement is notorrectfor means of skewed distributions (e.g., lognormal or gansoa)monly
occurringin environmental applicationsSinceHelsel (2012) prefers to use a lognormal distribytion
the incorrectness of the above statement has been illustrated using a lognormal distriftigon.
mean and median of a lognormal distribution (details in Se2t@2 of Chapter)2are given by:

mean =, = exp(e +0.50%); and median ¥ =exp(e)

From the above equations, it is clear that the mean of a lognormal distribution is always greater than
the median for all positive values G (sd of log-transformed variable). Actually the mean is greater
than thep™ percentile wheni >.Far example, wherp = 0.80, g = 0.845 and mean of a
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lognormal distributiong; exceeds« g, the 80" percentilewhenl > . In otBe® words, whed >
1.69the lgnormal mean will exceed the'8percentile of a lognormal distribution.

To demonstrate the incorrectness of the above statement, a small simulation study was conducted.
The distribution of sample means based upon samples of size 100 were generatledrfoomal
distributions withp =4, and varying skewness. The experiment was performed 10,000 times to
generate the distributions of sample means. The probabilities of sample means less than the
population means were computed. The following results arel hote

Table 1-2. Probabilities p(x < s77) Computed for Lognormal Distributions with u=4 and VaryingVal ues o f G
Results are based upon 10000 Simulation Runs for Each Lognormal Distribution Considered

u=4,0=0.5 p=4,0=1 p=4, G =1 p=4, 0 =2 u=4,0=2.5
11;=61.86 11;=90.017 1;=168.17 1;=403.43 1;=1242.65,
Parameter 8,=32.97 0,=117.997 0,=489.95 0,=2953.53 0,=28255.23
p(xX<m) 0.519 0.537 0.571 0.651 0.729
Mean 61.835 89.847 168.70 405.657 1193.67
Median 61.723 89.003 160.81 344.44 832.189

The probabilities summarized in the above table demonstrate that the statement about the mean
made in Helsel and Gilroy (2012) is incorrect.

1 Graphical MethodsGraphical methods are available in ProUCL as exploratory telish can be
generatedor both uncensoredand left-censored data setsThe Unofficial ProUCL Guide makes
severalcomments about Box plots and@plots incorporated in ProUCIThe Unofficial ProUCL
Guide states that all graphs wittNDs are incorrect. These statements areeathgandincorrect
The intent of the graptal methodsin ProUCL is exploratory to gain information (e.goutliers,
multiple populationsdata distribution, patterns, and skewngsgsent inra data setBased upon the
data displayed (ProUCL displaysneessage [e.g., as a stitte] in this regard) on those graphs, all
statisticsshownon thosegraphsgenerated by ProUCére correct.

1 Box Plots:In statistical literature, one can find several ways to generate box plots. The practitioners
may have theiown preferences to use one method over the o#lehox plot methods including the
one in ProUCL convey the same information about the data set (outliers, mean, median, symmetry,
skewness).ProUCL uses a couple of development tools sudfaaBoint spead (for Excel type input
and output operations) and ChartFx (for graphical displays)ProUCL generates box plots using
the builtin box plot feature in ChartFx. Fall practical and exploratory purposes, box plots in
ProUCL areequallygood(if not better)asavailable in the various commercial software packaiges
get an dea about the data distributigskewedor symmetric), to identify outliers, and to compare
multiple graips(main objectives of box plots in ProUCL)

o As mentioned earlier, it ia matter of choice of using percentiles/quartiles to construct a box
plot. There is no 'bestnethod to construct a box pldilany software packages use one
method (e.g., out of 9 described above} calculating a percentile, and another for
constructinga box plot (Hyndman and Fan, 1996).

T Q-Q plots: All Q-Q plots incorporated in ProUCL are correct and of high quality. In addition to

identify outliers, QQ plots are also used to assess daaibutions. Multiple QQ plots are useful to
perform pointby-point comparisons of grouped data sets unlike box plots basedhgfive point
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summarystatistics ProUCL has € plots fornormal, lognormal, and gamma distributionsot all

of these graphical capabilities are direclsailable inothersoftwarepackagesuch as NADAfor R
(Helsel,2013). ProUCL offers several exploratory options to generat® Qlots for data sets with
NDs. Only detected outlying observations may require additional investigatteerefore, froman
exploratory point of view, RPIUCL can generat€-Q plots excluding all NDgand other options)
Under this scenario there is no need to retain place holdensp(tingplotting positions used to
impute NDs) as the objective is not to impute NDs. To impute NDs, ProUCL uses ROS methods
(Gamma ROS and log ROS) requiring place holders; and ProUCL computes plotitigns for all
detects andNDs to generate a proper regression mogeich is usedto impute NDs. Also for
comparison purposes, ProUCL can be used to gener@@IQts on d&a setsobtained by replacing
NDs by their respective DLs or DL42In these cases also, no NDs inputed, and there is no need
to retain placeholders for ND<n these €Q plots, ProUCL displays some relevant statistics which
are computed based uporm tthata displayed on those graphs.

Helsel (2012a) states that the Summary Statistics module does not display KM estimates and that
statistics based upon logged data are uselggscally, estimates computed after processing the data

do not represersummary statistics. Therefore, KM and ROS estimates aredisglayedn Summary
Statisticsmodule These statistics are available in several other modules inclimitiCL and BTV
modules At the request of several users, summary statistics are compuesiupas logged daté.

is believed thatmean, medianogr standard deviation of logged data do provide useful information
about data skewness and data variability.

To test forthe equality of variancethe F-test as incorporated in ProUClperforms fairy well and

the inclusion of the Levene's (1960) test will not add any new capability tBrii¢CL software.
Therefore, taking budget constraints into consideration, Levene's test has not been incorporated in the
ProUCL software.

o However, #hough it malks sense to first determine if the two variarare equal or unequal,
this is not a requirement to perform-gest. The ddistribution based confidence interval or
test for m - m based on the pooled sample variance does not perform better than the
appioximate confidence intervals based upon Satterthwaite's test. Hence testing for the
equality of variances is naokquiredto perform a twesample ttest. The use of Welch
Satterthwaite's or Cochran's method is recommended in all situations (see, foregkampl
Hayeg[2009).

Helsel(2012a)suggested that imputed NDs should not be made available to theTimedevelopers
of ProUCL and other researchers like to have access to imputeddslRgesearchefor exploratory
purposesone may want to haveceess to imputed NDs to be udadexploratory advanced methods
such agmultivariate method#ncluding data miningclusterand principal component analysés is
noted that one cannot easily perform exploratory methods on multivariate data sets witfhBDs.
availability of imputed NDs makes it possible for researchers to usenilditeg exploratory methods
on multivariate data sets with ND&dditional discussion on this topic is considered in Chagpter

o The statements summarized above should not bmteipreted. One may not use parametric
hypothesis testsuch as a-test or a classical ANOVA on data sets consisting of imputed
NDs. These methods require further investigation as the decision errors associated with such
methods remain un@utified. Thee are other methods such as Gehan and Takare tests
in ProUCL5.0 which are better suited for data sets with multiple detection limits.
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Outliers: Helsel (2012a) and Helsel and Gilrg2012) make several comments abauttliers. The
philosophy (with input from EPA scientistspf the developer®f ProUCL about the outliers in
environmental applications is that those outliers (unless they represent typographicalnegors)
potentially represent impactgsite related or otherwisé)cations or monitoringvells; andtherefore
mayrequire further investigation.

o Thepresence of outliers in a data set tends to destroy the normality of the data set. In other
words, a data set with outliers caeldom(may be when outliers are mild lying around the
border ofthe central and tail part of a hormal distributiéml)ow a normal distributionThere
are modern robust and resistant outlier identification methods (e.g., Rousseeuw and Leroy,
1987 Singh and Nocerino, 1995) which are better suited to identify ougiresent in a data
set; several of those robust outlier identification methods are availalhe Bcout 2008
version 1.0 (EPA 2009) software package.

o For both Rosner and Dixon tests, it is the data set (also called the main body of the data set)
obtaired after removing the outliers (and not the data set with outliers) that needs to follow a
normal distribution. Outliers are not known in advance. ProUCL has nors@aplQts which
can be used to get an idea about potential outliers (or mixture populgiiessnt in a data
set. However, since a lognormal model tends to accommodate outliers, a data set with outliers
can follow a lognormal distribution; this does not imply that the outlier potentially
representing an impactethusuallocation does not existin environmental applications,
outlier tests should be performed on raw dats as the cleanup decisions need to be made
based upon values in the raw scale and not irstade or some other transformed space.
More discussion about outliers can berfdun Chapter 7

In Helsel (2012a), it is stated, "Mathematically, the lognormal is simpler and easier to interpret than
the gamma (opinion)." We do agree with the opinion that the lognormal is simpler and easier to use
but the logtransformation is oftemmisunderstood and hence incorrectly uset interpreted
Numerous examples (e.g., Exampld and2-2, Chapter Pare provided in the ProUCL guidance
documents illustrating the advantages of the using a gamma distribution.

It is further stated in Hel$g2012 a) that ProUCL prefers the gamma distribution because it
downplays outliers as compared to the lognoriais argument can be turned arourid other

words, one can say that the lognormainsferred by practitioners who want to inflate theeff

of the outlier. Setting thisargument aside, we prefer the gamma distribution as it does not transform
the variable so the results are in the same scale as the collected data set. As mentioned earlier, log
transformationdoes appear to be simpler ubblems arise when practitioners are not aware of the
pitfalls (e.g.,Singhand Ananda2002 Singh, Singh, and laci, 2002).

Helsel (2012a) and Helsel and Gilroy (2012) state that "lognormal and gamma are similar, so usually
if one is considered poss#&)lso is the other." This is an incorrect and misleading statement. There
are significant differences in the two distributions and in their mathematical properties. Based upon
the extensive experience in environmental statistics and published litefatigieewed data setbat

follow both lognormal and gamma distributiorthe developers do favor these ofthe gamma
distribution over thelognormal distribution The use of the gamma distribution based decision
statistics is preferred to estimate theissnmental parameters (mean, upper percentile). A lognormal
model tends to hide contamination by accommodating outliers and multiple populations whereas a
gamma distribution tends not to accommodate contamination (elevated values) as can be seen in
Exampks 21and 22 of Chapter 2. The use tfe lognormal distribution on a data set with outliers



tends to yield inflated and distorted estimates which may not be protective of human health and the
environment; this is especially true for skewed data setsialf sf sizes <2€B0.

o Inthe context of computing a UCL95 of mean, Helsel and Gilroy (2012) and Helsel (2012a) state
that GROS and LROS are probably never better than KM. It should be noted that these three
estimation methods compute estimates of meahstendard deviation and not the upper limits
used to estimate EP€rms and BTVs. The use of KM method dgiedd good estimates of mean
and standard deviation as noted by Singh, Maichle, and Lee (2008)puting good estimates
of mean andd based upoteft-censored data sets addresses only half of the problem. The main
issue is to compute decision statistics (UCL, UPL, UTL) which account for uncertainty and data
skewness inherently present in environmental data sets.

o Realizing that for skewed datatseStudent's-tUCL, CLT-UCL, and standard angbercentile
bootstrapUCLs do not provide the specified coverage to the population meanntcensored
data setsesearchers (e.g., Johnson (1978), Chen (1995), Efron and Tibshirani (1993), Hall [1988,
1992] Grice andBain (198), Singh, Singh, and Engelhardt (1997), Singh, Singh, and laci
(2002)) havedeveloped parametric (e.g., gamma) and nonparametggkiootstrapt and Hall's
bootstrap method, modifieet, and Chebyshev inequalitynethods to computeonfidence
intervals and upper limitehich adjust for data skewness.

o Analytically, it isnot feasibleio compare the various estimation and UCL computation methods
for skewed data sets consisting of nondetect observations. Instead, researcherslagensim
experiments to learn about the distributions and performances of the various statistics (e.g., KM
t-UCL, KM-percentile bootstrap UCL, KMootstragt UCL, KM-Gamma UCL)Based upon the
suggestionsnade in published literaterand findings summarizkin Singh, Maichle, and Lee
(2006), t is reasonable to state and assunagttie findings of the simulation studies performed
on uncensored skewed data sets to compare the performances of the various UCL computation
methods can be extended to skewetidefisored data sets.

o Like uncensored skewed data sets, fordefisored data sets, ProUCL Bd&kseveral parametric
and nonparametric methods to compute UCLs and other limits which adjust for data skewness.
Specifically, ProUCL use&M estimates in gama equationsin bootstrapt method,and in
Chebyshev inequality to compute upper linfiitsleft-censored skewed data sets

Helsel (2012aktatesthat ProUCL 4 is based upgmesuppositionslt is emphasized that ProUCL
does not make any suppositionsaitvance.Due to the poor performance of a lognormal mddsl|
demonstrated in the literature aitidstrated via examples throughdhis ProUCL Techical Guide)
the use of gamma distribution is preferred whardata set can be modeled by a lognormatel
and a gamma model. To provide the desired covdigelose as possibl&r the population mean,
in earlier versions of ProUCkversion 3.0) in lieu of HUCL, the use of Chebyshev UCL was
suggested fomoderately andhighly skewed data sets. latér (3.00.2 and higher)versions of
ProUCL, depending upon data skewnessl data distributignfor gamma distributed data setise
use of Gammadistribution was suggested to computetlgl. of mean.

Upper limits (e.g., UCLs, UPLs, UTLs) computesihg the Student's t statistic and percentile bootstrap
method (Helsel, 2012, NADA for R, 2013) often fail to provide the desired coverage (e.g., 95% confidence
coefficient) to the parameters (mean, percentile) of most of the skewed environmental peputato
suggested that the practitioners compute the decision making statistics (e.g., UCLs, UTLS) by taking: data
distribution; data set size; and data skewness into consideration. For uncensored -aethdefied data
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sets, several such upper limitsngoutation methods have been incorporated in ProUCL 5.0 and its
earlier versions.

Contrary to the statements made in Helsel and Gilroy (202)JCL softwaredoes not favor statistics
which yield higher (e.g., nonparametric Chebyshev UCL) or lower (@eferring the use of a gamma
distribution to using a lognormal distribution) estimates oféhgironmental parameterge.g.,EPCand
BTV9. The main objectives of the ProUCL softwarefunded byUSEPA is to computegorous decision
statistics to help th decision makerand project team making correct decisions which are protective
of human health and the environment.

Page 75 (Helsel [2012]00ne of the reviewers of the ProUCL 5.0 software drew our attention to the
following incorrectstatement n@e on page 75 of Helsel (2012):

"If there is only 1 reporting limit, the result is that the mean is identical to a substitution of the reporting
limit for censored observations."

An example leficensored data sebnsisting of nondetect (NDs) obsereatswith one reporting lintiof
20 illustrating this issue is described as follows.

Y Dy
20
20
20
7
58
92
100
72
11
27

o

P PR RPRRPRERLRRPLROO

The mean and standard deviation based upon the KM and two substitution methods: DL/2 and DL are
summarzed as follows

KaplanMeier (KM) Statistics
Mean 39.4
SD 35.56

DL Substitution method (replacing censored values by the reporting limit)

Mean 42.7

SD 34.77

DL/2 Substitution method (replacing NDs by the reporting limit)
Mean 39.7

SD 37.19
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The above example illustrates that the KM mean (when only 1 detection limit is present) is not actually
identical to the mean estimate obtained using the substitution, DL méthedstatement made in

Helsel's text hals when all observations reported as detects are greater than the single reporting limit
which is seldom true in environmental data sets consisting of analytical concentrations.
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CHAPTER 2

Goodness-of-Fit Tests and Methods to Compute Upper
Confidence Limit of Mean for Uncensored Data Sets without
Nondetect Observations

2.1 Introduction

Many environmental decisions includingp®sureand riskassessmerdnd cleanup decisiorese made
based upon the mean concentrations of the contamicamsituentf potential concerfCOPCs) To
address thencertaintyassociated with the sample mea®586 upper confidence limityCL95) is used

to estimatehe unknown population meap; A UCL95 is routinely used toestimate the exposure point
concentration (EPClerm (EPA 1992 EPA, 20023). A UCL95 of mean represents that limit such that
one can be 95% confident that the population mgamwill be less than that limit with 95% confidence.
Fromarisk point of view, a 95% UCL of mean represents a number thagish protective when used to
compute risk and health hazarttsis therefore important to compute a reliable, defensible (from human
health point of view) and cosfffective estimate of thexposure point concentratioBERQ term. To
compute reliable estimates of practical meritProJCL software provides several parametric and
nonparametricUCL computation methodsovering a widaange of skewed distributions (e.qg.,
symmetri¢ mildly skewed to highly skew@dor data sets of various sizes.

Recently, t h e use of -U&LI5Sdand CCleehyshévs ineduality based UCL95 has been
recommended (ITRC, 2012) to estimate EPC s$eusing incremental sampling methodology (ISM)
based soil samples collected from the various decision units (DUs). In order tatiatig computation

of ISM data based estimatestbe EPC term, ProUCL5.0 can compu®5% UCL ofthe mean based

upon data sets of sizes as small as 3. Additionally, the UCL module of ProUCL can be used on datasets
with NDs collected using the ISM appaba However, it is advised that the usels not compute the
decision making statistics (e.g., UCLgyper prediction limits JPLg, upper tolerance limitsUTLs])

based upon discrete data sets consisting of less th@roBservations.

For uncensored datsetswithout nondetec{ND) observationstheoreticaldetails ofthe variousUCL
computation methodbased uporStudent's 4t and percentile bootstrap as wells as more complicated
bootstrapt and gamma distributiorare described in this chapteOne shailld not ignore the use of
gamma distribution based W& (and other upper limitsjust becausadt is easier to use a lognormal
distribution. Typically, environmental datasets are positively skewed, and a default lognormal
distribution (EPA 19929) is usedo model such data distributigrend & H-statistcb ased Landoés (L
1971, 1975)H-UCL is usedto estimatethe EPC termHardin and Gilbert (1993), Singh, Singh, and
Engelhardt (19971999), Schultz and Griffin (1999), and Singh, Singh, &aw (2002) pointed out
several problems associated with the use of the lognormal distribution adetatestic to compute UCL

of the meanFor lognormal data sets with high standard deviatsa, (i, of the natural logransformed

data (e.g.0l exceedingl.0 to 1.5), theH-UCL becoms unacceptably large, exceeding the 95% and 99%
dataquantiles, and even the maximum observed concentration, by orders of magnitude (Singh, Singh, and
Engelhardt1997) TheH-UCL is also very sensitive to a few low arfewhigh valuesFor example, the
addition of asinglelow measurement can cause théJCL (by increasing variability}o increase by a

large amount (Singh, Singh, ahaki, 2003. Realizing that the usef the H-statistic can result imn
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unreasonably larg&CL, it has been recommended (EP®923) to use the maximunvalue as an
estimateof EPC termin cases whethe H-UCL exceeds the largegaluein the data set~oruncensored
data sets without anyDs, ProUCL makes recommendations on how to compute an appropl@ite5.
Those recommendatiorare based upon the findings of simulation sasdsummarized irBingh and
Singh(2003) and Singh, Singh, and laci (2p0

It is noted thatn practice, many skewledata sets follow a lognormal as well as a gamma distribution
Singh, Singh, andaci (2002)observed thaUCLs based pon a gamma distribution yieleliable and
stable values of practical merlt is, therefore, desirable to test if an environmentdhdzet follows a
gamma distributionFor data set$ollowing a gamma distributionthe EPC term should beestimated

using an adjustedamma(when n<50) or approximatgamma(whennO 5ULC)95 of the meanA
gamma distribution based UCL@% the mearapproxmately provida the specified 95% coverage to the
population meang; =  lofda gamma distributionG(kk, d) Wwiathd d r ersppeseating thee | vy
shape and scale parametdfsr highly skewed gammalistributed data sets withialues ofthe shape
paraneter, k < 0.1, a 95%UCL may becomputedusing the bootstragt-me t hod or Hal | 6s
method when the sample sizg,is lesssmall such as 45 to 20, and for larger samplesgith n> 20, a

UCL of the mean may be computed using the adjusted or apptexgaenmaJCL (Singh, Singh, and

laci, 2002)computatiormethod

It is noted thatunlike the percentile bootstrap artlascorrected accelerated bootstr&CA) methods

bootstragt and Hall 6s bootstrap met hods afaEBKewnessandnd Ti
their use is recommended on skewed datatsetsmpute UCL®f the meanHowever, it should beoted
thatbootstrapgand Hall 6s bootstrap methods sometWUCLmes r es

values especially in the presencé outliers (Efron and Tibshirani, 1993Jherefore, these two methods

should be used with cautionhe user should examine the varidSL results and determine if théCLs

based upon theootstrapgand Hal | 6s boot strap mediableUCksvalueslpr esent
the results based upon these two methods are much higher than thehre&i©F computatiomethods,

then this could be an indication of erratiehavior ofthese twobootstrapUCL computation methods.

PraJCL prints out a warningnessage whenever the use of these two bootstrap methods is recommended

In case these two bootstrap methods yield erratic and infla@ds, the UCL of the mean may be

computed using the Chebyshev inequality.

ProUCL 5.0hasgraphical (e.g.quantilequantle [Q-Q] plots) and formagoodnesf-fit (GOF) testsfor

normal, lognormal and a gamma distributions. These GOF tests are available for data sets with and
without NDs. The critical values othe AndersonDarling (A-D) test statistic andhe Kolmogorow
Smirnov(K-S) test statistic to test for gamma distribution were generated using Monte Carlo simulation
experiments(Singh, Singh, and laci 2002 hose critical valuehave beerincorporated in ProUCL
software and art@abulated in Appendix A for variousVels of significanceSingh, Sigh, and Engelhardt
(1997, 1999); Singh, Singh, atakti (2002) and Singh and Singh (2008yaluated the performances of
severalparametric nonparametri@and bootstrapyCL computation methogdsome of those methodsat

have been included ithe ProUCL software.

ProUCL computes various summary statistics for raw, as welogdransformed data sets with and
without nondetect observations. In this Technical Guide and in Proéd@®lvare logtransfornation

(log) stands fo the natural logarithmirf) or logto the basee. For uncensored data setaathematical
algorithms and formulae used in BYOL to compute the varioudCLs are summarized in this chapter
PraUCL also computes the maximum likelihood estimatdsEs) and tke minimum variance unbiased
estimatesNIVUES) of thevarious population parameters of normal, lognormal, and gamma distributions
Nonparametric UCL computation methodsProUCL include:Jackknife,central limit theorem (CLT),
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adjustedCLT, Chebyshev inedality, and bootstrap methodk.is well known that the Jackknife method
(with sample meama s an est i mat -onethod yaeld ddenclUCH \aloes Blaeover, it is
noted that UCLs based upon tstandard bootstrap and the percentile bootstrapadedo not perform
well (e.g.,do not providehe specifiedcoveragdor the meahfor skewed data sets

Note on Computing Lower Confidence LisifLCLs) of Mean:In several environmental applications,
one needs to computeLCL of the unknown populath mean. At present, ProUCL does not directly
compute LCLs of mean. However, it should be pointed ouffthatata sets with and without nondetects,
except forthe bootstrap methodgamma distributionand Hstatistic based LCL of mean, tlsame
critical value(e.g., normal z value, Chebyshev critical value -anitical value) can be used to compate
LCL of mean as used in the computation of the UCL of mieeorporated in ProUCLSpecifically, to
compute a LCL, the '+' sign used in the computatiothe corresponding UCL needs to be replaced by
the *' sign in the equation used to compute that U€kcluding gamma, lognormal -statistic, and
bootstrap methodslror specific details, the user may want to consult a statistician. For dateitbets
nondetectobservations, the user may want to tise Scout 2008 software packagePA 200¢) to
directly computethe variougparametric and nonparametti€Ls of mean.

2.2  Goodnessof-Fit (GOF) Tests

Let xq, X, ... , X, be arepresentativeandom samplée.g., representing lead concentrations) from the
underlying populatiorfe.g., site areas under investigatianth unknownmean,s,, and variance,”. Let

u andd represent the population mean and the population standard devigiarf the logtransfamed
(natural log to the base e) datat y ands, (= i) be the sample mean and sansalerespectively, of the

log-transformed dataj;, = log (x); i = 1, 2, ... h. Specifically, let

I
o
'QJ:D

'u‘

y Y (21)

10 .
rlfz(y‘ -y (2-2)

i =s;
Similarly, let X ands, be the sample mean aadlof the raw datax; , %, .. , X%, obtained by replacing
by x in equations (2) and (22), respectivelyln this chaptey irrespective of the underlying distribution,
U1, andd,® represent the mean and variance of the random variable X (in original units), whareh®
represent the mean and variance of Y (g

Three data distributions have been considerderatJCL 5.0 These inalde the normalognormal and
the gamma distributica ShapireWilk (for n up to2000)and Lilliefors test statistics are usexdtest for
normality or lognormality of a data setilliefors test (along with graphical @ plot) seems to perform
fairly well for samples of size 50 and high&he empircal distribution function (EDFbased methods:
the K-S test and the A test areused to test for a gamma distributid&xtensive critical values for these
two test statistics have been obtained via Monte Carlo simulation experi(Bamgs, Singhand laci
2002) For interested users, th® critical values are given iAppendix A for various levels of
significance In addition to these formal tests, the informal histogram gurahtilequantile (Q-Q) plots
are also available to visuallgispectdata distributionsQ-Q plots also provide useful information about
the presence of potentialitliers and multiple populations a data setA brief description othe GOF
tests follows.
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2.2.1 Test Normality and Lognormality of a Data Set

PraUCL tests for normalityandlognormality of a data set using three different methods described.below
The program tests normality or lognormality at three different levels of significance, namely, 0.01, 0.05,
and 0.1 (or confidence levels0.99, 0.95, and 0.90)For normal distributions, ProUCL outputs
approximate pralues for the Shapir@/ilk (SW) GOFtest. Thedetails of those methods can be found in

the cited references

22.1.1 Normal QuantileQuantile(Q-Q) Plot

A normal QQ representa graphical method to test for approximate normality or lognormality of a data
set(Hoaglin, Mosteller, and Tukeyd3; Singh 1993) A linear patterrdisplayed by thenajority of the

data suggests approximate normality or lognormalithieh performed on logransformed data) of the
data setFor example, a high value (e.g., 0.95 or greater) of the correlation cemtffadithe linear pattern
may suggest approximate normality (or lognormality) of the data set under Kimggver, it should be
noted that on this graphical display, observatiaefi-separatedrom the linear pattern displayed by the
majority of data repesent the outlying observatiom®t belonging to the main dominant population
(whose distriltion one is assessing based upon a dataasdlapparent jumps and breaks in theQQ
plot suggest the presence of multiple populatiding correlation of the @ plot based upon such a data
set may still be higbutthat does nosignify that the data set follows a nornekstribution

Notes. Graphical displays provide added insight into a data set which might not be possible to
comprelend based upon statisticuch asshapireWilk (S-W) statistic ora correlation coefficientThe
correlation coefficient ofa QQ plot with curves, jumps and breaksn be high, which does not
necessarily imply that the data follow a normal (or lognormal) distribufibe goodnssof-fit (GOF)

test of a data set should always be judged based upon the fergialSW statistic)as well as informal
graphical displays. The normalQ plot may be used as an aid to identify outliers or to identify multiple
populationsOn all QQ plots, PraJCL displaysrelevant statisticgcluding: mean,sd, GOF teststatistic,
associatedrdtical value,p-value (when availableandthe correlation coefficient

There is no substitute for graphical displays of data sets as graphical displagie pistdéd insight about

the data set and graphical displays do not get distortedittigrsand/or mixture populations. Therefore
the final conclusion about the data distribution should be based upon the formal gaddiidsests as
wells as QQ plots. This statement is true for all GOF tests (e.g., normal, lognormal, and gamma
distributions).

2.2.1.2 ShapireWilk (SW) Test

The S'W test isa powerful test used to test the normality or lognormality ddita setProUCL performs

this test for samplesf@izeup to2000(Royston, [1982 19823). For s amp |l es alfitorsi z e s
to atest statistic and critical value, an approximatejue assciated with SW test is also displayed. For
samples of size >50, only approximatevglues are displayedBased upon the selected level of
significance and the computed test statistic, J&&a informs the user if the datsetis normally (or
lognormally) distributedThis information should be useddomputean appropriat&)CL of the mean

2.2.13 Lilliefors Test

This test is useful for data setslafger size (Dudewicz and Misra, 19€8onover, 1999)Based upon the
selected level of significance and the computed test statistidCRranforms the user if the datet is
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normally (or lognormally) distributedThe user should use this informationdomputean appropriate
UCL of the meanThe program prints the relevant statistics on tH@ @Qlot of data

1 For convenience, normality, lognormality, or gamma distribution test refeult8.05 level of
significance(built-in) are displayed on thgCL (and background statisticeutput sheetsThis
helps the user in selecting the most appropriate UCL to estimate the EPGttehould be
pointed out that sometimes, the tW&OF tests may lead to different conclusiondn such
situations, ProUCL displaya message that data are approximately nornfaiylognormally)
distributed. The user should make a decision based uponirfuemation provided by the
associate®@-Q plot and the values of the GOF test statistics.

New in ProUCL 5.0 To streamlinehe decision process used to compute upper limits (e.g., UCL95),
ProUCL 5.0 makes a decision about the data distribliasedupon bothof the GOF test statistics:
Lilliefors and Shapiré/Nilk GOF statistics for normal and lognormal distributions; and Aand K-S
GOFtest statistics for gamma distributidBpecifically,when only one of the two GOF statistic ledd

the conclusion that data are normal (lognormal or gamBv@)JCL outputsthe conclusiorthat the data
set follows a approximatenormal (lognormalgamma distribution all suggestions to use parametric or
nonparametric decision statistics (e.g., UCL95) have beste basedpon this conclusion.

2.2.2 Gamma Distribution

A continuous random variable, X (e.gconcentration of an analyfeis said tofollow a gamma
distribution, Gk, d) with parameterk > 0 (shape parameter) add 0 (scale parameter), if its probability
density function is given by the following equation:

1 1.
f(xk,d) = G0 xktg e x>0 23)

=0 otherwise

Many positively skewed data sets follow a lognormal as well as a gamma distrilliuisonbserved that
the use of a gamma distributitends to yieldeliable and stable 95WCL valuesof practical meritlt is
therefore, desirable tedt if an environmental data set follows a gamma distribufienskewed data set
does follow a gamma model, then a 98GL of the population mean should be computed using a
gamma distributionFor data sets which follow a gamma distribution, the adjuds8oUCL of the mean
based upon a gamma distribution is optifigdin andEngelhardt1991)and approximately provides the
specified 95% coverags thepopulation mearg, =  KkSihgh, Singh, and lag2003).

The GOFtest statistickor agamma disttution are based upon the EOme two EDF testicorporated

in ProUCLaretheK-S test andheA-D t est |, which are described in DO6A
Stephens (1970T he graphical @ plot foragamma distribution has also beenarporatedn PrdJCL.

The critical values for the two EDF tests are not available, especially when the shape pakatiseter,

small k < 1). Therefore, the associated critical values have lseemputedvia extensive Monte Carlo

simulation experiment€Singh, Singhand laci, 2002)These critical values for the two test statistics are

given in Appendix A The 1%, 5%, and 10% critical values of these two test statistics have been
incorporated inProUCL 5.0 The GOF testsfor a gamma distribution depend upon thH.Es of the

gamma parameterk,andd, which should be computed first before performing the gooelnfefiistests.

Information about estimation of gamma parameters, gamma GOF tests, and construction of g@mma Q
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plots is notreadilyavailable in statistical textbooks. Therefaaeletailed @scription of these methods for
agamma distribution is provided as follows.

2.2.2.1 QuantileQuantile(Q-Q) Plot for a Gamma Distribution

Let X3, Xz, ... , X, be a random sample from the gamma distributiork, gi(and t Xy ¢ Xz) ¢ ... ¢ X

represent the ordered samplest IEand cﬁ represent the maximum likelihood estimatiei Es) of k and

g, respectively details of the computation ¢fie MLEs of k and g can be found inSingh, Singh, and
laci (2002) The QQ plot for gamma distribution is obtained by plotting the scatter plot of,pairs

(%o » %) =1, 2,» , n. Thegammaquantiles, x;, are given by the equation, = intflz; i=12,»,

n, whee thequantiles z, (already ordered) are obtained by using the inverseqgtrare distribution and
are given as follows

Zoi
Af (c2)deZ=(i- 1/2)/n; i=1,2» .n (2-4)
0

In (2-4), czzlg represents a cliquare random variable witBIE degrees of freedondf). The program,

PPCHI2 (Algorithm AS91Yescribedn Bestand RobertgApplied Statistic§1975, Vol. 24, No. B has
been used to compute the inverse-xtjuare percentage poinggven by equation (2). All relevant
statistics including th#LE of k are also displayed angamma QQ plot.

Like a normal QQ plot, alinear pattern displayed e majority of the data on a gamr@aQ plot
sugged that the ata set followsan approximate gamma distributioRor example, a high value (e.g.,
0.95 or greater) of the correlation coefficient of the linear pattern may sumgapproximate gamma
distribution of the data set under stuthpwever, on this € plot pintswell-separatedrom the bulk of
data may represent outliers. Apparent breaks and jumps in the gar@rald suggest the presence of
multiple populations. The correlation coefficient of such- @lot (e.g., with outliersnd jump3} can
still be hich which does nosignify that the data follow a gamma distribution. Therefore, graphie@l Q
plot and other formaBOF teststhe A-D testor K-S test should be used on the same dati® sktermine
the distribution of a data set

2.2.2.2 Empirical Distribution Function (EDF)Based Goodness-Fit Tests

Let F(X) bethe cumulative distribution function (CDF) afgammadistributed radom variableX. Let Z
= F(X), then Z represents a uniform U(0,1) random varightegg and Craigl995. For eachx;, compute
z by using the incomplete gamma function given by the equatienFz (x); i:=1, 2,» , n. The
algorithm (Algorithm AS 239, Shea[1988]@As given inthe bookNumerical Recipes in C, the Art of
Scientific ComputingPresset al, 1990) has been used to compute the incomplete gamnwidn

Arrange the resulting in ascendingrder aszy ¢ 7 ¢... ¢ 7. Let Z :%5 z, gln be the mean of the
n,zi;i::1, 2,» ,N. e
Compute the following twotatistics

D" =max{l/n- z;,},andD" =max{z; - (i- 1)/n} (2-5)
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TheK-Stest statistic is given iy = max(D*,D" ) ; and theA-D test statistic is giveas follows:

n
A2 =-n- (/A {(2 - Dllog Z;, +10g(L- Zpu.i))]} (2:6)
i=1
As mentioned beforehe critical values for #se two statisticD andA?, are not readily availabléor
the A-D test, onlythea sy mpt ot i ¢ criti cal values are availabl e

Stephen$198€). Some raw critical values for-& test are given in Schneider (197&)d Schneider and
Clickner (1976) Critical values of these test statistics are computed via Monte Carlo experiments (Singh,
Singh, and laci 2002).1t is noted that the distributions of the-K test statisticD, and the A-D test
statistic, A%, do not @épend upon the scale parametértherefore, the scale parametdy,has been set
equal to 1 in all simulation experimenbs order to generate critical values, random samples from gamma
distributions were generated using the algorithm as given in Whittaker (1974). It is observéz that
simulatedcritical values are in close agreement with all available published critical values.

The critical valuessimulated by Singh, Singh, and laci (20G8) the two test statistics have been
incorporated in PIdCL 4.1.001 and its previous verawfor three levels of significance, 0.1, 0.05, and
0.01 For each of the two tests, if the test statistic exceeds the corresponding critical value, then the
hypothesis that the datetfollows a gamma distribution is rejecteBroaJCL computesthe GOF ted
statistics and displaythem on the gamma-Q plot and also on thdCL and background statisticsitput

sheets generated by RIGL. Like all other tests, in practice these two GOF test may lead to different
conclusions. In such situations, ProUCL outpaitsiessage that the data follow an approximate gamma
distribution. The user should make a decision based upomftirenation provide by the associated
gammaQ-Q plot and the values of the GOF test statistics.

Computation of the gammdistribution basedecision statistics anctitical values While computing the
variousdecigion statistics (e.g., UClnad BTVs), ProUCL usebiased corrected estimatéstar, IE and

theta star c? (described in Section 23. of the shapek and scalge ¢ parameters of the gamma
distribution. It is noted thathe critical valuedor the two gamma GOF testsported in the literature
(e. g., D6Agostino and Stephen$and Schngidet [197pferea nei der

computed using the MLE estlma,telg and LF of the two gamma parameteisandg . Therefore, the
critical values of AD and KS tests incorporated in ®JCL havealsobeen computed using tiMLE

estimates: khaﬂg and theta hatf of the two gamma parameteksandg .

Updated Critical Values of Gamma GOF T8&satistics(New in ProUCL 5.0):For values of the gamma
distribution shape parametér(0.1, critical values of the two gamma GOF tests: AndefBarling and
Kolmogorov Smirnov test incorporated in ProUCL 4.Q1 and earlier versions have been updated in
ProUCL 5.0. Citical values incorporated in ProUCL 4.1 were simulated using the gamma deviate
generatioralgorithm (Whittaker[1974) available at the time andith the source coddescribedn the

book Numerical Recipes in C, the Art of Scientific Computirgesset al, 1990). It is noted thathe

gamma deviate generati@lgorithmavailable at the time was not very efficient especially for smaller
values ofthe shape parametek,(e.g.,00.1). For values of the shagmrameterk .1, significant
discrepancies were found in the critical values of the two gamma GOF test statistics obtained using the
two gamma deviate generation algorithms: Whitaker (1974Mamrdaglia and Tsang (2000).

Therefore, 6r values ok @, citical values for the two gamma GOF tests have begemeratecnd

tables of critical values of thevo gamma GOF tests have been updatekpjpendix A. Specifically, for
valuesof the shape parametér (e.g.,k 00.1), critical values of the two gamma GOF tests have been
generated using the more efficient gamma deviate generation algorithm as described in Marsaglia and
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Tsang's (2000) and Best (198Bktailed description about the implementatiorMafrsaglia andl'sang's
algorithmto generate gamma deviatesn be found in Kroese, Taimre, and Botev (2011). It should be
pointed out thatrom practical point of viewfor values ofk greater than 0.1, tr@mulatedcritical values
obtainedusing Marsaglia and Tsangifgorithm (20@) are in general agreement with the critical values

of the two GOF test statistics incorporated in ProUCL 4.1 for the various values of the sample size
consideredTherefore, those critical values for valueskof 0.1 do not have to be upigd. However, for
comparison purposes, fr0.2 both older and newly generated critical values of the two GOF have been
included in tables presented in AppendixMore details on this subject are provided in Appendix A.

2.3  Estimation of Parameters ofthe Three Distributions Incorporated in ProUCL

Let e, and,” representhe mean and variance of the random variaXlende and{? representhe mean

and variance of the random variab¥e= log(X). Also, & represents the standard deviation of the log
transformed data-or both logormal and gamma distributions, the associated random variable can take
only positive valuedt is typical of environmental data sets to consist of only positiveentratios.

2.3.1 Normal Distribution

Let X be a continuous random variabid., leactoncentration in surface soils of a s)tewhich follows
a normal distribution, Ngg, (;%) with mean.g;, and variancel,>. The probability density function of a
normal distribution is given by the following equation:

f(xm, g)=exp[{x - M2 23/( J& ); p ©X< (2-7)

For normally distributed data sets, it is well knowto@gg and Craig1999 that theMVUESs of themean,

&,, andthevariance (i,, are respectively given by the sample meanand sample variancs?. It is also
well known that for normally distributed datets, aUCL of the unknown mearg,;, base uponthe

St u d edistrilfuton is optimal. lwasobserved via Monte Carlo simulation experiments (Singh and
Singh 2003 Draft EPA InternalRepor) that for normally distributed data setise modifiedt-UCL ard

UCL based uporihe bootstrapt method provide the exact 95% coverage to the population.rfrean
normally distributed data sets, th€Lsbased upon these three methodsratoseagreement.

2.3.1 Logmormal Distribution

If Y = log(X) is normally distibuted with the meare, and varianced?, thenX is said to be lognormally
distributed with parameteesand(’ and is denoted by LN( &). It should be noted thatand&® are not
the mean and variance of the lognormal random variahleut they are the mean and variantehe
log-transformed random variabl¥, wherease;, and(,* represent the mean and variance ofS¢me
parameters of interest of a typarameter lognormal distribution, LN(&), are given as follows:

Mean =&, = exp(e + 0.50°) (2-8)
Median =M =exp(g) (2-9)
Variance =07 = exp(2e +0°)[expl*) - 1 (2-10)
Coefficient of Variation =CV =0, /g, =,/exp@?) - 1 (2-11)
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Skewness €VP+ 3CV (2-12)
2.3.2.1 MLEs of the Parameters of a Lognormal Distribution

For lognormdly distribued data sefsiote thaty ands, (= ITE) are theMLEsof £ and(, respectivelyThe

MLE of any function of the parametegsand & is obtained by substituting theML_Esin place of the
parameters (Hogg and Crai$j995) Therefore, replacing and 0 by their MLEs in equations (:B)
through (212) will result in the MLEs (but biased) of the respective parameters of the lognormal
distribution The program PidCL computes all of thes®LESs for lognormally distributed data sets
TheseMLEsarealsoprinted onthe Exceltype output spreatheet generatieby PrdJCL.

2.3.2.2 Rel ationship between Skewness and Stand

Note that for a lognormal distribution, ti@&V (given by equation (21) above) and the skewness (given
by equation (212)) depend only oi. Therefore, in thisTechnical Guideand also in PraCL software
the standard deviation} (sd of log-transformed variableY), or its MLE, s, (= i), has been used as a
measure othe kewness of lognormbl distributed data setand also of other data sets with positive
values The larger isthe sd, the larger are th€V and the skewnes$or example, for a lognormal
distribution: withd = ti@e.skewness = 1.75; with =1.0, the skewness = 6.185; wilh=1.5, the
skewness = 33.468; and witi= 2.0, the skewness = 414.3khe skewness of lagnormal distribution
becomes unreasonably large @sstarts approaching andexceedingl5. Note that for a gamma
distribution,the skewness is a function of the shape paramktds k decreaseghe skewness increases.
It is observed (Singh, Singh, Eglpardt 1997 Singh, Singh, and lac2002) that for smaller sample sizes
(such as smaller than 50), and for value8 (dr t) approachingind exceeding 5to 1.75 the use of the
H-statisticbasedH-UCL results in impractical and anceptably large values

For positivelyskewed data setshe various levels of skewnesan be defined in terms$ or its MLE

estimate s, These levels are described as follows in Taéble PraJCL software useshe sample sizes
andskewness levels defd below to make recommendations.

Table 2-1. Skewness as a Function af (or its MLE, §,=E), sdof log(X)

Standard Deviation

of Logged Data Skewness

0<0.5 Symmetric to mild skewness

0. W<DO Mild skewness to moderatkesvness

1. <05 Moderateskewness to highkewness

1. B<D0 High skewness

> Gi<®0 Very high skewnes_$moderate probability 0
outliers and/or multiple populations)

6 03.0 Extremely high skewness (high probability

outliers and/or mitiple populations)
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2.3.2.3 MLEs of theQuantiles of a Lognormal Distribution

For highly skewed (e.g(j exceeding 1.5), lognormally distributed populations, the population regan,
often exceeds the highguantiles (e.g., 80%, 90%, 95%) of the dibtition Therefore, the estimaticwf
thesequantiles is also of interesfThis is especially true when one may want to Médes of the higher
order quantiles (e.g., 95%, 97.5%gtc.) as estimaseof the EPC termThe formulae to compute these
guantiles arebriefly described here.

The p" quantile (or 100p™ percentile) x,, of the distribution of a random variabl, is defined by the
probability statemenP(X  ©) =xy. If z,is thep” quantileof the standard normal random variatde,
with PZ  g) =p, then thep™ quantileof a lognormal distribution is given by, = expg + zl). Thus
the MLE of thep™ quantileis given ly:

X, = exp(E+z, 1 (2-13)

It is expected tha®5% of the observatiormingfrom a lognormal LN§, &%) distribution would lieat or
below exp¢ + 1.65)). The 0.8' quantile of the $andard normal distribution i&s = 0, and the 0%
guantile(or median) of a lognormal distributionli$ = expg), which is obviously smaller than the mean,
€1, as given by equation-@.

Notes: The meang;, is greater thaw, if and only ifG  >,. FBrzxample, whep = 0.80, 3= 0.845 ¢,
exceedsq g, the 80" percentile if and only ifi > , &nd,Ginilarly, the meam,, will exceed the 95
percentile if and only ifi > (@xtreé@ly highly skewedproUCL computes theMLEs of the 50%
(median), 90%, 95%, and 99% percentiles of lognormally distributed data sets.

2.3.24 MVUEs of Parameters of a Lognormal Distribution

Even though the sampieean X is an unbiased estimator of the populatioean €,, it does nopossss
the minimum varianceMV). TheMVUEsof £, and(,® of a lognormal distribution are given as follows:

& =exp(y)9,(s2/2) (2-14)
£ = expY)[9,(2s2) - 9,((n- 2)s /(n- 1)] (2-15)

The series expansiorf the functiong,(X) is given in Bradu and Mundlak (1970), and Aitchison and
Brown (1976) Tabulations of this function are also provided by Gilbert (198fadu and Mundlak

(1970)computedhe MVUE of the variance of the estimatE,

0 (£) = expY)[(9,(2s))* - 9,((n- 2)s] /(n- 1)] (2-16)

The square root of the variance given by equat®i6) is called the standard errdBH of the
estimategs, given by equation (24). TheMVUE of the median of a lagprmal distribution is given by

NF = exp(©)g,[- s: /(2n- D)] (2-17)

For a lognormally distributed data set, RIGL also computes theddVUEsgiven by equations (24)
through (217).
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2.33 Estimation of the Pamaeters of a Gamma Distribution

The population mean and variance dfv@-parametegamma distribution, &( d), are functions of both
parametersk and d. In order to estimate the mean, one has to obtain estimatksantl d. The
computation of theMLE of k is quite complex and requires the computation of Digamma and Trigamma
functions Severalresearcherg¢Choi and Wette 1969 Bowman and Shenton 1988chnson, Kotz, and
Balakrishnan 1994) have studied the estimation tbfe shape and scale parameters of a gamma
distribution The MLE method to estimatéhe shape and scale parameters of a gamma distribution is
described below.

Let x;, X, ... , X, be a random sample (e.g., representingstituentconcentrations) of siza from a
gamma distribution, &( d), with unknown shape and scale parameteendd, respectively The log
likelihood function (obtained using equationr3} is given as follows:

LogL(X;, X,,...X,; K, o) = - nklog(d) - nlogi(k) + (k- D@ log(x)- & x /d (2-18)

To find the MLEs ok andd, onedifferentiate the loglikelihood function as given ir2¢18) with respect
to k andd, and set the derivatives to zefdis results in the following two equations:

ait§ _ 1

Log(d?)+ a6 4 log(x) , and (2-19)

= ~& % =% (2-20)

Solving equation (20) forcf, and substitutlng the result in-1®), we get following equation:
0 ~
|(l§ 8

log( == a log(x,) - Iogge ax (2-21)

There does not exist a closed form solution of equatieB1j2This equation needs to be solved

numerically forlg, which requires the use digamma andrigamma functions. An estimatd k can be
computed iteratively by using the Newt®aphson methofPresset al, 1990) leading to the following
iterative equation:

E_E . loglk,)- aek,)- M
| - 1”%-1 - ql(igu)

The iterative process stops whinstarts to convergén practice, convergence is typically achieved in
fewer than 10 iteration#n equation (22),

(2-22)

=log(x) - & log(x)/n, A(K) = (g (k). and itk = = (A(K)
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Here (k) is thedigamma function andi(k) is thetrigamma function. Good approximate values for
these two functions (Choi and Wette 1969) can be obtained using the follwvaragproximationsFor
k 8(xhese functions are approximatsd
Q(k) ° log(k) - {1+ [1- (1/10- 1/(21?))/K?]/(6K)}/(2K) , and (2-23)
Qi(k) © {L+{L+[1- @5- 1K) 1K2]/@K)}/ (2K)}/K (2-24)
Fork < 8, one can use the following recurrence relattorcompute these functions:
ak)=q(k+DH-1/k, and (2-25)
qi(k) =qQi(k +1) +1/k? (2-26)

In PrdJCL, equations (23) through(2-26) have been used to estimit& he iterative process requires
an initial estimate ok. A goodstarting value fok in this iterative process is given ky= 1/ (2V)). Thom
(1968) suggested the following approximation agéral estimate ok:

Eo L%, helm 2-27
4M§;% 3 ¢ (=20

OO

Bowman and Shenton (1988) suggest us@]g}iven by (227) asa starting value ok for theiterative

procedure, calculatin@I at thel™ iterationusingthe following formula

= _ IE flog(E ) - q(E,)
' M

(2-28)

Both equations (22) and (228) have been used to compute MeE of k. It is observed that the

estimate,lg, based upomMNewtonRaphson methqdas given by equation {22), is in close agreement
with the oneobtained using equation28 ) wi t h Thomdés approxi mation as

Wette (1969) further concluded that thi.E of k, IE, is Hased high. A biasorrected (Johnson, Kotz,
and Balakrishnan 1994) estimateka$ given by:
€ = (n- 3 n+2/(3n) (2-29)

In (2-29), IE is the MLE of k obtained using either {22) or (228). Substitution of equation {9) in
equation (220) yields an estimate of the scale paramefegiven as follows:

& =x/E (2-30)

PraUCL computes simpl®LEs of k andd, and also biasorrected estimategiven by (229) and (230)
of k andd. The biascorrected estimatéalledk starandtheta starin ProUCL graphs anautputsheety
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of k as given by (29) has been used in the computation ofUls (as given by equations) and
(2-35) below) of the mean of a gamma distribution.

Note on Bias Caected Estimateslg and c?: As mentioned aboveZhoi and Wette (1969) concluded

that theMLE, Ig, of k is biased highThey suggested these of thebiascorrected (Johnson, Kotz, and
Balakrishnan 1994) estimate kfgiven by (229) above However, recently the developers performed a
simulation sudy to evaluate bias iIMLE mean estimatef the mean of a gamma distributitor various
values of the shape parametegrid sample size. It is notedthatfor smalker values ofk (e.g., <0.2)the

bias in the mean estimate (in absolutdue) and mean square error (MSE) based upon the biased

corrected MLE estimatig are higherthanthosecomputed using the MLE estate, IE; and br higher
values ofk (e.g., >0.2), the bias in the mean estimate aS& bbmputed using the biased corrected MLE

estimatg,lg arejower thanthosecomputed using the MLE estimaﬂg, For values ok around 0.2, the
use of IE and IE yields comparable results for all values of the sample Sike. bias in mean estimate

obtained using the MLE estimat@, increases ak increases, and as expected bias and M&Eeasas
the sample size increasdse results of this study will be published elsewhere.

2.4  Methods for Computing aUCL of the Unknown Population Mean

ProUCL computes a(1 i U*100 UCL of the population meany,, using several parametric and
nonparametric methodBroUCL can compute @ 7 U*100 UCL (except foradjusted gamma UCL and

L a n d-&GL) dfithe mean for any user selected confidence coeffigieintl) Jying in the interval0.5,
1.0]. For the computation of the adjusted gamud@l, three confidence levels, namely: 0.90, 0.95, and
0.99 are supported hifie ProUCL software an approximate gammaCL can be computed for any level
of significance in the intervg0.5, 1.0]

PaametricUCL ComputatiorMethodsin ProUCL include

St u d esmtistickasstimes normality or approximate normaliigsed UCI.

Approximate gmmaUCL (assumegpproximategamma distributio)

AdjustedgammaUCL (assumegpproximategamma distributio))

L a n #-&tatisticUCL (assumes lognormalityand

Chebyshevinequality based UCL Chebyshev NIVUE) UCL obtained usingMVUE of the
parametes @ssumes lognormality

=A =4 =8 -8 =9

NonparametridJCL ComputatiorMethodsin ProUCLinclude

Modified-t-statistic(modified for skewness)UCL,

CentralLimit Theorem CLT) UCL to be used for large samples

AdjustedCentral Limit TheoremUCL: adjustedCLT UCL (adjusted for skeness)
ChebyshevUCL: Chebyshev (Meansd) obtained using classical sample mean and standard
deviatim,

JackknifeUCL (yield s t he s ame r statistitUCL)as Studentds t
Standard bootstragCL,

Percentile bootstrapCL,

BCA bootstragJCL,

Bootstrapt UCL, and

Hal | 6s WChot strap

=A =4 =4 =4

=A =4 =48 -8 -8 =9
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For skewed data sets, Modifitcand adjusted CLTethodsadjust br skewness. However, it is noted
that (Singh, Singh, and 1ac2002) this adjustment is not adequate for moderately skewed to highly
skewed data sets (levels of skewness described in Zdble

Even though some UCL meth®(k.g.,CLT, UCL based upon g&knife method, standard bootstrap, and
percentile bootstrap methods) do not perform well enough to providepéefied coverage to the
population mean of skewed distributions, these methods have been included in ProUCL for comparison,
academic, and reaech purposes. Additionally, the inclusion of these methods also helps the user to make
correct decisions. Based uptime 1) sample sizen, 2) dataskewness, &, 3) and data distribution,
ProUCL makes suggestions about using onmane 95% UCLmethodgo estimate the EPC term. These
suggestions are based upon the simulation results summarized in Singh, Singh, and laci (20G#)d Singh
Singh (2003)and professional experience of tevelopers of ProUCL software. When in doubg th
users may want to consult a statisticiasetectthe most appropriate UCL95 to estimate an EPC term.

It is noted thatn the environmental literatureecommendations about the use of UCLs have been made
without accounting for the skewness and sanspte of the data seEpecifically Helsel 005,2012)
suggestshe use-statistic andpercentile bootstramethodon robustregression on order statistidR@9

and KM estimates to compute UCL9%ithout considering data skewness and sample sipe.
mocerately skewed to highly skewed data séis,use of such UCLenderestimatethe populatiormean
These issues aiktustrated by examplediscussed in the following sectioasd also irChapters 4 and 5.

2.4.1 (17 U*100 UCLof the Mean BasegponSt u d eSmtistics t

Thew del y us e-gtatishcisugivendoyt 6 st

X E
s, /+/n

Where X ands, are, respectivg, the sample mean and sample standard deviation obtained using the raw

data For normally distfuted data setshe test statistiagiven by equation (31) followsSt u dsént 0
distribution with(n-1) df. Lettg,. b €t h e™ quaptipeef the Siue nsttdistribution with(n -1) df.

(2-31)

A (17 U*100 UCL of the population meas,, is given by
UCL= X+tg,,S,//n (2-32)

For a normally (when the skewness is about ~0) distribdéd sets equation (232) provides the best
(optimal) way of computing &CL of the meanEquation (232) may also be used to compute@L of

the mean based upsymmetric omildly skewed (e.g., |[skewness|<0.5) data sets, whegkewness is
defined in Tble 2-1. Even for mildly to moderately skewed data sets (eapends, the sd of log-
transformed datastarts approaching and exceeding 0.5), W@l given by (232) fails to provide the
desired coverage (e.g.,3:95) to the popaltion meanThis is especially true when the sample size is
smaller than 2@5 (Singh and Singt{2003) The situation gets worse (coverage much smaller than 0.95)
for higher values of thsd, &, or itsMLE, S,

Notes. To streamlne the decision process used to compute upper limits (e.g., UCL95), ProUCL 5.0

makes a decision about the data distribution based upon both of the GOF test statistics: Lilliefors and
ShapireWilk GOF statistics for normal and lognormal distributions; AsD and K-S GOF test statistics
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for gamma distribution. Specifically, when only one of the two GOF statistic lead to the conclusion that
data are normal (lognormal or gamma), ProUCL outputs the conclusion that the data set follows an
approximate normaldgnormal, gamma) distribution; alécisionstatistics (parametric or nonparametric)

are computed based upon this conclusion.

2.4.2 Computation otheUCLof t he Mean of,Diatrib@anmma , G ( k, d)

It is well-known that the use of a lognormal distribution often yields unstable and unrealistic vathees of
decision statistics including UCLs and UTLs for moderately skewed to highly skewed lognormally
distributed data sets; especially when the data set is of a small size (e.g50<30,Even tlough
methods exist to compute BBUCL of the mearandUPLsandUTLs based upon gamma distributed data
sets (e.g.Grice and Bain198Q Wong 1993 Krishnamoorty et al, 2008, those methods have not
become popular due to their computational compleaitgtor thelack of their availability in commercial
software packages (e.d4initab 16). Despite the better performee (in termsof coverage and stability)
of thedecision making statistics based ugogamma distributionsomepractitionergend to dismiss the
use of gamma distribution based decision statiftjcaot acknowledginghem(e.g., EPA 2009 Helsel,
2012 andor stating that the use of a lognormadtdbution is easierto computehe various upper limits.
Throughouthis document, several examples have been used to illustrate these issues.

For gamma distributias) ProUCL software has botlpproximate(used for n>50)nd adjsted (when

nO 5 QWL computation methods Critical values othe chi-square distribution and an estimate of the
gamma shape paramet&ralong with the sample mean are used to compute gamma URLiseen
above, computation of aWiLE of k is quite involved, and thigorks as a deterrent to the use of a gamma
distributionbasedJCL of the mean. However, the computation of a gartl@& currently should not be

a problem due tthe easy availability of statistical software to compute these estinatissnoted that
someof the gamma distributiohasedmethods incorporated in ProUGe.g., prediction limits, tolerance
limits) are also available ithe R Script library.

Update in ProUCL 5.0For gamma distributed data sets, all versions of ProUCL compute both adjusted

and approximategammaUCLs. However, in earlier versions of ProUCL, an adjusted gamma UCL was
recommended for data s easisPraJCL 50), ane an agpfofimaleigamsna e a d
UCL was recommended for data sets of sizesxereas ProUCL 5.0uggests using approximate

gamma UCL for sample sizes >50.

Given a random samplg, X, ... ,X,, Of sizen from a gamma, &( d), distribution, it can be shown that
2nx/ g follows a dti-square distribution,ngk, with 2nk df. When the shape parametkr,is known, a

uniformly most powerful test of size of the null hypothesig,dd OC,, against the alternative hypothesis,
Ha: €1 < G, is to reject Hif x/C_ < &2, (0)/2nk. The correspondingl i U) 100% uniformlymost
accuratdJCL for the meang,, is then given by the probability statement.

P(2nkx/ 62, () 2 &,) =1- U (2-33)
Where cj( Jd denotes the cumulative percegggpoint of thehi-s quar e di stri bution (e

in the left tail) That is, ifY follows GS, thenP(Y ¢ GS(CJ)) =U. In practicek is not known and needs to

be estimated from data. A reasonable method is to reblag#s biascorrected estimatlf—', asgiven by
equation (229). This yields the following approximatei U)*100 UCL of the meang;.
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Approximateé UCL = ZHIE)_(/ Gjng () (2-34)

It shouldbe pointed out that theCL given by equation (34) is an approximatgdCL without guarantee
that the confidence level ¢1 i U will be achieved by thi&/CL. Simulation studies conducted in Singh,
Singh, and laci (2002) and in Singh and Singh (2003)esighat an approximate gamtd€L given by
(2-34) doesprovide the specified coverage (95%) values ofk > 0.5. Thereforefor values ofk> 0.5,
oneshouldusethe approximatgammaJCL given by equation (34) to estimate the EPC term

For smaller saple sizesGrice and Bain (1980) computed an adjusted probability |év@ldjusted level
of significance), which can be used in32) to achieve the specified confidence leve(lof U. ForU =
0.05 (confidence coefficient of 0.95))= 0.1, andU= 0.01, these probability levels are given below in
Table 2-2 for some value of the sample size. One can use interpolation to obtain an adjuétéar
values ofn not covered imable2-2. The adjustedl i U*100 UCL of the gamma meas; = k s given
by the following equation

Adjusted’ UCL = 2nIE>‘</ G, & (D) (2-35)

Whereb is given in2-2 for U= 0.05, 0.1, and 0.01. Note that as the sample sjzsecomes large, the
adjusted probability leveh, approaches the specified level of significat¢dxcept for the compation
of the MLE of k, equations (34) and (235) provide simple li-squaredistributionbasedUCLs of the
mean of a gamma distributioft should also be noted that thECLs given by (234) and (235) only
depend upon the estimate of the shape paranketard are independent of the scale paramdtemd its
ML estimate Consequentlycoverage probabilities for the mean associated with thies do not
depend upon the values of the scale parandéter,

Table22.Adj usted Level of Significance, b

U = 0.05 U = 0.1 U = 0.01
probabil it yprobabil ity | evprobabilit
5 0.0086 0.0432 0.0000
10 0.0267 0.0724 0.0015
20 0.0380 0.0866 0.0046
40 0.0440 0.0934 0.0070
-- 0.0500 0.1000 0.0100

For gamma distributed data sets, Singh, Singh, and laci (2002) noted that tregeomebabilities

provided by the 95%JCLsbased upon bootstrap and Hal | 6s boot betow)arpin met hod
close agreement. For larger samples, these two bootstrap methods approximately provide the specified
95% coverage and for smalldatasets(from a gamma distribution), the coverage provided by these two
methods is slightly lower than the specified level of 0.95.

Notes:GammaUCLs do not depend upon the standard deviation of the data set which gets distorted by
the presence of outlier$hus, unlikethe lognornal distribution, outliers have reduced influence on the
computation of the gamma distribution based upon decision statistics including the UCL of theamean
fact generally not known to a typical user.

53



For all gamma distributedata setsor all values of k and,rall versions of ProUCL compute the various
upper limits based upon the mean and standard deviation obtained using-teereicted estimatelg.
As noted earlier, the estimaté does yield better estimat¢reduced biadpr all values of k >0.2. For

values of k <0.2, the differensébetween the various limitsobtained usinglg andlg are not that
significant. However fom theoretical point of vieswhen k<0.2,it is (jesirable tacompute thamean

standard deviatigrand the various upper limits using the MLE estimﬁe,

2.4.3 (17 U*100 UCL of the Mean Based Upon-Statistic (HUCL)

The onesided(1 i 0)*100 UCL for the meang,, of a lognormal distribution as derived by Land (1971,
1975) is given as follows:

ucL= exply+05s2 +s,H, y/n- 1) (2-36)

Tables of Hstatistic critical values can be found in Land (1979)eoretically, when the population is
lognormal, Land (1971) showed that tHEL given by equation (36) possesses optimal properties and
is the uniformly most accurate unb& confidence limitHowever,in practice, the FbtatistichasedJCL

can be quite disappointing and misleadirgpecially when the data sstskewed and/oconsists of
outliers, orrepresentsa mixture data setcoming from two or morepopulations(Singh Singh, and
Engelhardt[1997, 1999 Singh, Singh, andhaci, 2003. Even a minor increase in tisd, s,, drastically
inflates theMVUE of ¢, and the associated-UCL. The presence of low as well as high data values
increases thesd, s, which in turn infates theH-UCL. Furthermore, it is observed (Singh, Singh,
Engelhardt1997, 1999 that for samples of sizes smaller tha®30 (sample sizeequirementalso
depends upon skewrssand for values ofi approaching andxceeding 1.@e.g.,moderately skewetb
highly skewedlatg, the use othe H-statistic results in impractical and unacceptably 1&g& values.

Notes. In practice, many skewed data sets can be modeled by both gamma and lognormal distribution
howeverthere are differences in the propestand behavior of tsetwo distributions. Decision statistics
computed using the two distributions can differ significaifdyg., Example2-2 below) It is noted that
some recent documen(s.g., Helseland Gilroy, 2012 incorrectly state that the twdistributions are
similar. Helsel (2012 20123 likes to usea lognormal distribution due its computational eadowever,
one should not compromigbe accuracy and defensibility of estimatasd decision statistidsy using
easier methods which may undstimate (e.g., using percentile bootstrap UChased upora skeved
data set) or overestimate (e.g-\ML) the population mearit is recommended toomputecorrectand
defensible estimateand decision statistics takirige sample size andataskewnessnto consideration.
For complicated and skewed data sets, several UCL computation methods (e.g., kodistelyshev
inequality, and Gamma UCL) are available in ProUCL domputecorrect decision statistic3JCLS,
UTLSs) covering a widerange of data skvness and sample sizes.

For lognormally distributed data sets, the coverage provided by the bodt8&#@UCL is a little lower

than the coverage provided by the 9%%6L based upon Hall 6s bootstrap
2003). However, it is noteithat for lognormally distributed data sets, the coverage provided by these two
bootstrap methods is significantly lower than the specified 0.95 coverage for samples of all sizes. This is
especially true for moderately skewed to highly skewed (&.51.0) lognormally distributed data sets.

For such data seta,Chebyshev inequality based UCL can be used to estimate the populatiorHnean.
statistic often results in unstable values of UCL95 as shown in Exapldsough2-3.
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Example 2-1. Consider the siler data set of size 5@rom NADA for R packageHelsel,2013). The
normal GOF test graph ishown in Figure2-1, it is noted that data set has an extrevndier (an
observation significantly different from the main body of the dafa $bé data setansistsof NDs, and
thereforeis considered in Chapter 4 and 5 agaitere this data set is considered assuming that all
observations represent detectadlies. The data setloes not follow a gamma distributigRigure2-3) but

can be modeled by a lognorhastribution as shown in Figur22 accommodating the outlier 560he
histogram shown in Figure-2 suggests that data are highly skewHuke sd of logged data 4.74.The
various UCLs computed using ProUCL 5.0 are displayeddhle 2-3 (with outlier) and Table2-4
(without outlie) following the QQ plots.

Normal Q-Q Plot for Silver
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Figure2-1. Normal QQ Plot of Raw Data inOriginal Scale
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Figure 22. Lognormal QQ plot with GOFTestStatistics
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Gamma Q-Q Plot for Silver
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Figure2-4. Histogramof Silver Data Seincluding outlier 560
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Table2-3. Lognormal and Nonparamertic UCLs for Silver Data including the outlier 560.

Silver

General Statistics
Total Number of Chservations 56 MNumber of Distinct Observations 22

MNumber of Missing Observations 0

Minimum 01 Mean 15.45
Madmum 560 Median 13
sD 75.19 Std. Emor of Mean 10.05

Coefficient of Variation 4868 Skewness 7174
Lognomal GOF Test
Shapiro Willke Test Statistic 0.951
5% Shapira Wilk P Valus 0.0464

Shapire Wilk Legnormal GOF Test
Data Mot Lognomal at 5% Significance Level
Liliefors Test Statistic 0117 Lilliefors Lognomal GOF Test
5% Lilliefors Critical Value 0118 Data appear Lognomal at 5% Significance Level
Data appear Approximate Lognomal at 5% Significance Level

Lognomal Statistics
Minimum of Logged Data = -2.303 Mean of logged Data 06
Mazimum of Logged Data 6.328 5D of logged Data 1.746
Assuming Lognormal Distribution
95% H-UCL 1854 90°% Chebyshev (MVUE)UCL 1561
95% Chebyshev (MVUE)UCL 1812 97 5% Chebyshev (MVUE) UCL = 24
99°% Chebyshev (MVUE)UCL  33.59
Nonparametric Distribution Free UCLs
5% CLTUCL 3158 95% Jackknife UCL 3226
55% Standard Bootstrap LICL 1223 55% Bootstrapt UCL = 180.4
55% Hall's Bootstrap UCL 54.1 55% Percertile Bootstrap UCL 65
95% BCA Bootstrap UCL 5245
90% Chebyshev(Mean, Sd)UCL 4559 95% Chebyshev(Mean, Sd)UCL 5525
§7.5% Chebyshev(Mean, Sdp UCL 782 §9% Chebyshev(Mean, Sd)UCL 1154

Suggested UCL to Use

35% H-UCL

18.54

The sample mean is 15.4mnd all lognormal distribution basetdCL95s (e.g9., HUCL=18.54) are
unrealisticallylow. In this casethe use of a lognormal distribution appearsutalerestimatéhe EPC
term.The BCA bootstrap UCL95 is 52.45 and other nonparametric UCLs (e.g., percentile bootstrap UCL,
Student's 4JCL) range from 31.98 to 35.9f one insists that theoutlier 560 representa valid
observation and comes from the same populatioe, may want to use monparametricChebyshev
UCL95 (Table 211) or BCA UCL95t0 estimatehe EPC term.

Histogram without the outlier is shown in Figur® 2the data is pasvely skewed with skewness = 5.45.
UCLs based upon the data set without the outliersaramarized inTable 2-4 as follows.A quick
comparison of the results presented ables2-3 and2-4 reveals how the presence of an outlier distort
the various decisn making statistics.
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Histogram for Silver without Outlier 560 Silver
Number of Values 55

Mirimum 010
Masimum 90,00
sD 12,95
Skewness 5.45)
Kuatosis 3451
Mean 556
1.20

Figure2-5. Histogramof Silver Data Set including outlier 560

Example 2-2: The positively skewed data set consisting of 25 observatvtis values rangingrom

0.35 to 170follows a lognormal as well as a gamma distributibne data set is: 0.3489, 0.8526, 2.5445,
2.5602, 3.3706, 4.8911, 5.0930, 5.6408, 7.0407, 14.1715, 15.2608, 17.6214, 18.7690, 23.6804, 25.0461,
31.7720, 60.7066, 67.0926, 72.6243, 78.8357, 80.0867, 113.0230, 117.0360, 164.3302, and 169.8303.

The mean othe data set is 44.09. The data set is positively skewedsdith log-transformed data =
1.68. The normal GOF results are shown in tlg@Q plot of Figure 26, it is noted that the data do not
follow a normal distribution.The data set follows a lognoaas well as a gamma distribution as shown
in Figures 2-6a and 26b and also in Table2-5 and 2-6. The various lognormal and nonparametric
UCL95s (Table2-5) and Gamma UCL95s (Tahke6) are summarizeih the following.

9 The lognormal distribution basédiCL95 is 229.2which is unacceptably higher than all other UCLs
and an order of magnitudéigher than the sample mean of 44.09. A more reasonable Gamma
distribution based UCL96f themean is 74.27 (recommended by ProUCL).

1 The data set is highly skeweHigure 2-6) with sd of the log-transformed data = 1.68;%tudent's-t
UCL of 61.66 and anonparametric percentile bootstrap UCL95 of 60.82y represent
underestimateof the population mean.

1 The intent of the ProUCL software is to provide users with austlwhich can be used to compute
correct decision statistics needed to make decisions which areffeadive and protective of human
health and the environment.
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Table2-4. Lognormal and Nonparamertic UCN®t Includingthe Outlier Observatiorb60.

Silver

General Statistics

Tatal Number of Observations 55 Mumber of Distinct Observations A
Mumber of Mizsing Observations 0
Minimum 01 Mean 5547
Maimum 90 Median 12
= 12.95 Std. Emor of Mean 1.746
Coefficient of Variation 2334 Skewness 545
Lognommal GOF Test
Shapiro Wille Test Statistic 0.959 Shapiro Wilk Lognommal GOF Test
% Shapiro Wilke P Value 0114 Data appear Lognomal at 5% Significance Level
Lilliefors Test Statistic D22 Lilliefors Lognomal GOF Test
5% Lilliefors Critical Valus 0.119 Data Mot Lognomnal at 5% Significance Level

Data appear Approximate Lognomal at 5% Significance Level

Lognomal Statistics
Minimum of Logged Data = -2.303 Mean of logged Data 0.456
Maximum of Logged Data 45 5D of logged Data 1577

Aszsuming Lognomal Distribution
5% HUCL 1111 50% Chebyshev (MVUE) UCL = 1013
55% Chebyshev (MWVUE) UCL =~ 12.26 57.5% Chebyshev (MVUE) UCL =~ 1522
59% Chebyshev (MWVUE) UCL =~ 21.04
Nonparametric Distribution Free UCLs

95% CLT UCL 2419 95% Jackknife UCL 2469
55% Standard Bootstrap JCL 837 95% Bootstrap4 UCL 1212
35% Hall's Bootstrap UCL 18.2 35% Percentile Bootstrap UCL 2642

95% BCA Bootstrap UCL 10.47
90% Chebyshewv{Mean, 5d) UCL 10.78 95% Chebyshev(Mean, 5d) UCL 1316
97 5% Chebyshev{Mean, 5d) UCL 16.45 99% Chebyshew(Mean, 5d) UCL = 2292

Suggested UCL to Use
5% H-UCL  11.11
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Lognormal Q-Q Plot for X
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Figure2-6b. LognormalQ-Q Plot of X
Table2-5. Nonparametric and Lognormal UCL95
X
General Statistics
Total Number of Observations 25 Number of Distinct Observations 25
Mumber of Missing Observations 0
Minimum 0.345 Mean 4409
Madmum =~ 169.8 Median 1877
sD 51.34 Std. Emor of Mean 10.27
Coefficient of Variation 1.164 Skewness 1.254
Lognormal GOF Test
Shapira Wille Test Statistic 0.548 Shapiro Wilk Lognormal GOF Test
% Shapiro Wilke Critical Value 0918 Data appear Lognomal at 5% Significance Level
Lilliefors Test Statistic 0135 Lilliefors Lognomal GOF Test
5% Lilliefors Critical Value 077 Data appear Lognomal at 5% Significance Level
Data appear Lognormal at 5% Significance Level
Lognormal Statistics
Minimum of Logged Data = -1.053 Mean of logged Data 2835
Maximum of Logged Data 5135 5D of logged Data 168
Assuming Lognormal Distribution
95% H-UCL | 22592 50% Chebyshev (MVUE) UCL = 1406
95% Chebyshev (MVUE) UCL 1763 57 5% Chebyshev (MVUE) UCL = 2258
59% Chebyshev (MVUE) UCL 323
Nonparametric Distribution Free UCLs
95% CLTUCL 6058 95% Jackknife UCL ~ 61.66
55% Standard Bootstrap UCL 60.57 55% Bootstrap4 UCL 65.58
35% Hall's Bootstrap UCL 62.55 55% Percentile Bootstrap UCL 60.32
95% BCA Bootstrap UCL =~ 64.8
0% Chebyshev(Mean, 5d) UCL ~ 74.89 95% Chebyshev(Mean, 5d) UCL ~ 88.85
§7.5% Chebyshev(Mean, Sd) UCL = 1082 99% Chebyshev(Mean, Sd) UCL | 146.3
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Table2-6. Gamma UCL95

Notes: The use ofH-UCL is not recommendedor moderatelyskewed to highly skewed data sets of
smaller sizes (e.g., 30, 510,...);ProUCL computes and outputsdthtistic based UCLs for historical and
academicreasons.This example further illustrates thatere are significant differences betwean
lognormal &ad a gamma modefor positively skewed data sets, it is recommended to test for a gamma
model first. If data follow a gamma distribution, thitre UCL of the mearshould be computed using a
gamma distribution. The use of nonparametric methods is prefereanpute UCL95 for skewed data
sets which do not follow a gamma distribution.

2.4.4 (17 U*100 UCL of the Mean Based UpoModifiedt-Statistic for Asymmetrical
Populations

It is well known that percentile bootstragtandard bootstrap, n d St wsttistic badesl UCbf the
meando not provide the desired coveragfea population mea (e.g., Johnson 1978, Sutton 1993, Chen
1995, Efron and Tibshirani, 1993) of skewed data distributions. Several researchers in€nding:
(1995), Johnson (1978), Kleijnen, Kloppenburg, and Meeuwsen (1&&bxutton (1993) suggested the
use of themodified-t-statisticand skewness adjusted Cldr testing the mean of a positively skewed
distribution The UCLs based upon thmodified tstatistic and adjusted CLmethods were included in
earlier versions of ProUC(e.g., versions 1.0 and 2.9y researh andcomparisorpurposesrior to the
availability of Gamma distribution based UCLs in ProUCL 3.0 (2004). Singh, Singh, and laci (2002)
noted that these two skewness adjusted UCL computatietmods workonly for mildly skewed
distributions These methodkave been retained in later versions of ProUCL for acaderagons.The

(17 U*100 UCL of the mearbased upola modified tstatistic is given by:
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