STATEMENT OF BASIS

PERMITTEE: United States Department of the Interior
Fish and Wildlife Service

FACILITY: Rocky Mountain Arsenal National Wildlife Refuge

PERMIT NO.: CO-0035009

RESPONSIBLE OFFICIAL: David Lucas
Wildlife Refuge Manager
6550 Gateway Road, Building 12
Commerce City, CO 80022
Email: david_lucas@fws.gov

FACILITY CONTACT: David Lucas
Wildlife Refuge Manager
Office Telephone 303-289-0350

OPERATOR INFORMATION: Keith Auer
Water Operations Specialist
Navarro R&E, Rocky. Mtn. Ars.
6550 Gateway Road
Commerce City, CO 80022

PERMIT TYPE Federal Facility, New Permit

Background Information

This statement of basis is for a new proposed discharge of treated domestic wastewater into Lower Derby Lake located within the exterior boundaries of the Rocky Mountain Arsenal National Wildlife Refuge (Refuge). The Refuge is located in Commerce City, Colorado near 64th Avenue and Peoria St. in Adams County. The treated domestic wastewater originates from the Denver Water Recycled Water Treatment Plant located near 58th Avenue and York St. in Denver, Colorado.

The Refuge is a 15,000-acre urban national wildlife refuge administered by the U.S. Fish and Wildlife Service (the Service) to conserve and enhance native fish and wildlife species and their habitats and to provide wildlife-based recreation and interpretation opportunities for refuge visitors. The Refuge includes four surface water lakes or reservoirs, Lake Ladora, Lake Mary, and Upper and Lower Derby Lakes. The Service manages a catch and release fishery on the lakes as part of the public activities at the Refuge. The Refuge encircles a 1,000-acre area under the jurisdiction of the U.S. Army.

The Refuge is located on the Rocky Mountain Arsenal (RMA) site which was established by the U.S. Army as a munitions and chemical warfare agent manufacturing facility in 1942 to support combat operations in World War II. After World War II ended, the Army encouraged private industry to lease portions of the facility for manufacturing. The Julius Hyman Company began pesticide manufacturing on the South end of the RMA in 1946. The Shell Corporation purchased the assets of the pesticide manufacturer in 1952 and continued production of pesticides until 1982.
In 1984, the Army began a systematic investigation under the Comprehensive Environmental Response Compensation and Liability and Act (Superfund) for environmental contamination at the RMA from the chemical warfare and pesticide manufacturing activities. As a result of the investigation under Superfund, The RMA site was listed on the National Priorities List (NPL) in 1987. The Army, Shell and the US EPA entered into a Federal Facilities Agreement (FFA) in the late 1980s and since then, all environmental contamination investigation and remedial activity has been managed under the EPA Superfund program since. The Superfund investigation and FFA led to a Record of Decision (ROD) which identified roles and responsibilities for all parties involved in cleanup efforts. There is a ROD for the On-Site (On-Post) and Off-Site portions of the remedial effort. The Army, EPA, and the Colorado Department of Public Health and Environment (CDPHE) signed both RODs. The U.S. Fish and Wildlife Service (USFWS) and Shell concurred with the On-Post ROD.

The majority of RMA was designated as a National Wildlife Refuge per the Rocky Mountain Arsenal National Wildlife Refuge Act of 1992 (Refuge Act). As components of the remedy have been completed and the certain portions of RMA land deleted from the NPL, those lands have been transferred to the U.S. Fish and Wildlife Service to oversee as part of the Refuge. Refuge property must be managed in accordance the FFA, On-Post ROD and Refuge Act. On-Post land restrictions include prohibitions on the construction of basements (without further study), use of water on the site as a source of potable water, hunting and fishing for consumptive use, and residential, industrial and agricultural use. The FFA institutional controls also require preservation and management of wildlife habitat to protect endangered species, migratory birds and bald eagles.

The RMA site was selected as a Return to Use demonstration project (PDF, 2 pp, 667K, about PDF) in 2010, in recognition of how EPA’s partnership with the Army, the Colorado Department of Public Health and Environment, the Fish and Wildlife Service, and Shell Oil has led to the creation of nearly 14,700 acres of National Wildlife Refuge land just 10 miles from downtown Denver.

More information on the Superfund activities at the RMA can be found on the EPA Region8 web site at www.epa.gov/region8/superfund/co/rkymtnarsenal/. Currently the day to day management of Superfund activities at the RMA is performed by the Colorado Department of Health and Environment Hazardous and Solid Waste Division.

More information on the Refuge can be found on the U.S. Fish and Wildlife Agency Website at www.fws.gov/refuge/rocky-mountain-arsenal/.

A map showing the location of the discharge and surrounding area is depicted as Figure 1.
Receiving Water Classification, Uses and Criteria

Treated domestic wastewater will be sent via pipeline from the Denver Water Recycled Water Plant to Lower Derby Lake in the Refuge. Lower Derby Lake has a surface area of 71 acres and a volume of 500 acre-feet at full pool depth.

All four lakes located within the Refuge are currently classified by the Colorado Water Quality Control Commission (WQCC) as waters of the State of Colorado and all applicable water quality standards are contained within the Upper South Platte River Basin under Regulation #38. The classification and segmentation of the Refuge lakes was recently changed under an emergency WQCC hearing May 13, 2013, which removed the previous Use Classification of Water Supply and the human health based Fish Ingestion Standards and created a new segment 22b for the Refuge lakes. These changes to WQCC Regulation #38 were approved by EPA on June 7, 2013. The current uses are Warm Water Aquatic Life 2, Recreation E and Agriculture. Applicable water quality criteria for Segment 22b are listed in Table 1.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Classification and WQS for Segment 22b Upper South Platte Basin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stream Segment</th>
<th>Segment 22b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
<td>Not designated</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>Classification</td>
<td>Aq Life Warm 2</td>
</tr>
<tr>
<td></td>
<td>Recreation E</td>
</tr>
<tr>
<td></td>
<td>Agriculture</td>
</tr>
<tr>
<td>Physical & Biological</td>
<td>D.O. = 5.0 mg/L minimum</td>
</tr>
<tr>
<td></td>
<td>D.O. (sp) = 7.0 mg/L 5/13/13 addition</td>
</tr>
<tr>
<td></td>
<td>T = TVS (WL) °C</td>
</tr>
<tr>
<td></td>
<td>pH = 6.5-9.0 min.-max</td>
</tr>
<tr>
<td></td>
<td>E. coli = 126/100 mL</td>
</tr>
<tr>
<td>Inorganic, mg/L</td>
<td>NH₃ (ac/ch) = TVS</td>
</tr>
<tr>
<td></td>
<td>CL₂ (ac) = 0.019</td>
</tr>
<tr>
<td></td>
<td>CL₂ (ch) = 0.011</td>
</tr>
<tr>
<td></td>
<td>CN = 0.005</td>
</tr>
<tr>
<td></td>
<td>S = 0.002 Sulfide as H₂S</td>
</tr>
<tr>
<td></td>
<td>B = 0.75 Ag Use</td>
</tr>
<tr>
<td></td>
<td>NO₂ = 0.5</td>
</tr>
<tr>
<td></td>
<td>NO₃ (Ag) = 100 Ag Use</td>
</tr>
<tr>
<td>Metals, µg/L</td>
<td>Ag Use</td>
</tr>
<tr>
<td></td>
<td>Al (ac,ch) = TVS</td>
</tr>
<tr>
<td></td>
<td>As (ac) = 340, (ch) = 150</td>
</tr>
<tr>
<td></td>
<td>As (Ag) = 100 (Trec) (30-day) Ag Use</td>
</tr>
<tr>
<td></td>
<td>Be (Ag) = 100 (Trec) (30-day) Ag Use</td>
</tr>
<tr>
<td></td>
<td>Cd (ac,ch) = TVS</td>
</tr>
<tr>
<td></td>
<td>CrIII (ac,ch) = (TVS)</td>
</tr>
<tr>
<td></td>
<td>CrVI (ac/ch) = TVS</td>
</tr>
<tr>
<td></td>
<td>Cu (ac/ch) = TVS</td>
</tr>
<tr>
<td></td>
<td>Cu (Ag) = 200 (Trec) (30-day) Ag Use</td>
</tr>
<tr>
<td></td>
<td>Fe (ch) = 1000 (Trec)</td>
</tr>
<tr>
<td></td>
<td>Pb (ac/ch) = TVS</td>
</tr>
<tr>
<td></td>
<td>Mn (ac/ch) = TVS</td>
</tr>
<tr>
<td></td>
<td>Mn (ag) = 200 (30-day) μg/Ag Use</td>
</tr>
<tr>
<td></td>
<td>Hg (ch)= FRV(fish)= 0.01(tot)</td>
</tr>
<tr>
<td></td>
<td>Mo (Ag) = 300 (30-day) Ag Use</td>
</tr>
<tr>
<td></td>
<td>Ni (ac/ch) = TVS</td>
</tr>
<tr>
<td></td>
<td>Se (ac/ch) = TVS</td>
</tr>
<tr>
<td></td>
<td>Ag (ac,ch) = TVS</td>
</tr>
<tr>
<td></td>
<td>Zn (ac/ch) = TVS</td>
</tr>
</tbody>
</table>
The quality of Lower Derby Lake has been studied during the remedial actions under Superfund and is known to have received wastewater from the former Shell Chemical Manufacturing Facility. Historic sampling demonstrated that the water column and fish tissues all contained detectable amounts of the organochlorine pesticides aldrin, dieldrin, and endrin and also mercury.

Lake Ladora was listed on the 1998 Colorado Clean Water Act 303(d) Report as Impaired due to aldrin, dieldrin, and mercury. The lake was subsequently removed from the Impaired List to the Monitoring and Evaluation List for the 2002 303(d) Report. Since that time, monitoring has shown the water column concentrations of aldrin and dieldrin have mostly remained below detectable levels but the fish tissues still contain measurable levels of the pesticides.

Surface water quality monitoring conducted on Lower Derby Lake under the Superfund program is summarized in Table 2 Below. The full set of data is available in the permit record.

<table>
<thead>
<tr>
<th>Metals , ug/L</th>
<th>total (t) or dissolved (d)</th>
<th>min</th>
<th>Max</th>
<th># of samples</th>
<th>Antideg. Value (Bkgd.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>t</td>
<td><4.84</td>
<td><17.4</td>
<td>20</td>
<td>ND(0)</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td><4.84</td>
<td><17.4</td>
<td>10</td>
<td>ND(0)</td>
</tr>
<tr>
<td>Aluminum</td>
<td>t</td>
<td>194</td>
<td>3480</td>
<td>20</td>
<td>734</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td><100</td>
<td>1970</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>Arsenic</td>
<td>t</td>
<td><1</td>
<td>7.2</td>
<td>23</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td><1.8</td>
<td>6.14</td>
<td>13</td>
<td>5.53</td>
</tr>
<tr>
<td>Barium</td>
<td>t</td>
<td><10</td>
<td>101</td>
<td>19</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>12.4</td>
<td>66.8</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>Beryllium</td>
<td>t</td>
<td><0.58</td>
<td>0.628</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td><0.58</td>
<td><2</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>Cadmium</td>
<td>t</td>
<td><0.68</td>
<td><8.94</td>
<td>20</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td><0.68</td>
<td><8.94</td>
<td>10</td>
<td>ND(0)</td>
</tr>
<tr>
<td>Cobalt</td>
<td>t</td>
<td><2.02</td>
<td><25</td>
<td>20</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td><2.02</td>
<td><25</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>Chromium</td>
<td>t</td>
<td><3.45</td>
<td><11.5</td>
<td>20</td>
<td>ND(0)</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td><3.45</td>
<td><11.5</td>
<td>10</td>
<td>ND(0)</td>
</tr>
<tr>
<td>Copper</td>
<td>t</td>
<td><6.05</td>
<td><12.5</td>
<td>20</td>
<td>ND(0)</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td><6.05</td>
<td><12.5</td>
<td>10</td>
<td>ND(0)</td>
</tr>
<tr>
<td>Iron</td>
<td>t</td>
<td>83</td>
<td>2720</td>
<td>20</td>
<td>556</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td><100</td>
<td>1720</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>Mercury</td>
<td>t</td>
<td><0.1</td>
<td><0.45</td>
<td>11</td>
<td>ND(0)</td>
</tr>
<tr>
<td>Manganese</td>
<td>t</td>
<td><10</td>
<td>430</td>
<td>20</td>
<td>40 (50%ile)</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>3.5</td>
<td>172</td>
<td>10</td>
<td>124</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>t</td>
<td><11.7</td>
<td>13.2</td>
<td>4</td>
<td>ID u/</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td><11.7</td>
<td><25</td>
<td>4</td>
<td>N/A</td>
</tr>
<tr>
<td>Nickel</td>
<td>t</td>
<td><3.8</td>
<td><32.1</td>
<td>20</td>
<td>ND(0)</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td><3.8</td>
<td><32.1</td>
<td>10</td>
<td>ND(0)</td>
</tr>
<tr>
<td>Lead</td>
<td>t</td>
<td><1.0</td>
<td>18.8</td>
<td>26</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td><1.0</td>
<td>5.2</td>
<td>15</td>
<td>3.4</td>
</tr>
<tr>
<td>Antimony</td>
<td>t</td>
<td><7.24</td>
<td><30</td>
<td>20</td>
<td>ND(0)</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td><7.24</td>
<td><30</td>
<td>10</td>
<td>ND(0)</td>
</tr>
<tr>
<td></td>
<td>Total (t) or Dissolved (d)</td>
<td>Minimum</td>
<td>Maximum</td>
<td># of samples</td>
<td>Antideg. Value (Bkgd.)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------</td>
<td>---------</td>
<td>--------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>General Chemistry and Nutrients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity mg CaCO3/L</td>
<td>t</td>
<td>38.9</td>
<td>127</td>
<td>19</td>
<td>N/A</td>
</tr>
<tr>
<td>Alkalinity - bicarbonate mg CaCO3/L</td>
<td>t</td>
<td>0</td>
<td>146</td>
<td>19</td>
<td>N/A</td>
</tr>
<tr>
<td>Alkalinity - carbonate mg CaCO3/L</td>
<td>t</td>
<td>0</td>
<td>24</td>
<td>19</td>
<td>N/A</td>
</tr>
<tr>
<td>Boron ug/L</td>
<td>t</td>
<td>30.2</td>
<td>132</td>
<td>4</td>
<td>80.9</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>32.4</td>
<td>99.1</td>
<td>4</td>
<td>N/A</td>
</tr>
<tr>
<td>Bromide mg/L</td>
<td>t,d</td>
<td><2</td>
<td><2</td>
<td>9</td>
<td>N/A</td>
</tr>
<tr>
<td>Specific conductivity (μS/cm)</td>
<td></td>
<td>123</td>
<td>984</td>
<td>19</td>
<td>N/A</td>
</tr>
<tr>
<td>Calcium mg/L</td>
<td>t</td>
<td>8.33</td>
<td>77.2</td>
<td>20</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>10.8</td>
<td>73.6</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>Chloride mg/L</td>
<td>t</td>
<td>5.53</td>
<td>211</td>
<td>20</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>13.8</td>
<td>110</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>Cyanide (ug/L)</td>
<td>t</td>
<td><5</td>
<td>6.88</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>Dissolved oxygen mg/L</td>
<td>d</td>
<td>3.5</td>
<td>16.1</td>
<td>19</td>
<td>N/A</td>
</tr>
<tr>
<td>Dissolved organic carbon mg/L</td>
<td></td>
<td>6.1</td>
<td>29.7</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>Fluoride mg/L</td>
<td>t</td>
<td>0.2</td>
<td>0.872</td>
<td>25</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>0.22</td>
<td>1.12</td>
<td>19</td>
<td>N/A</td>
</tr>
<tr>
<td>Potassium mg/L</td>
<td>t</td>
<td>2.86</td>
<td>10.1</td>
<td>20</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td><3</td>
<td>8.77</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>Magnesium mg/L</td>
<td>t</td>
<td>2.43</td>
<td>19.5</td>
<td>20</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>3.5</td>
<td>20.1</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>Sodium mg/L</td>
<td>t</td>
<td>5.29</td>
<td>129</td>
<td>20</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>13.9</td>
<td>95.7</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>Ammonia ug/L</td>
<td>t</td>
<td><30</td>
<td>789</td>
<td>19</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td><30</td>
<td>49.4</td>
<td>3</td>
<td>N/A</td>
</tr>
<tr>
<td>Nitrogen by Kjeldahl Method ug/L</td>
<td>d</td>
<td>332</td>
<td>2300</td>
<td>5</td>
<td>N/A</td>
</tr>
</tbody>
</table>

a/ Insufficient data to perform statistical analysis. Mo-only 4 data points w/ non-detects, Se- 1/20 detects (5.3 ug/L)
1. 50%ile for metals with total recoverable (tr) criterion, 85%ile for metals with dissolved (d) criterion.

Table 2 (con't)

Surface Water Quality Data Lower Derby Lake RMA

<table>
<thead>
<tr>
<th>Volatile Organics and Pesticides, ug/L</th>
<th>min</th>
<th>max</th>
<th># of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><0.2</td>
<td><0.78</td>
<td>14</td>
</tr>
<tr>
<td>1,1-Dichloroethylene / 1,1-Dichloroethene</td>
<td><0.7</td>
<td><1.7</td>
<td>7</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><0.2</td>
<td><0.7</td>
<td>7</td>
</tr>
<tr>
<td>1,2-Dichloroethenes / 1,2-Dichloroethylenes (cis and trans isomers)</td>
<td><0.76</td>
<td><0.76</td>
<td>2</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><0.2</td>
<td><0.2</td>
<td>5</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><0.2</td>
<td><1.1</td>
<td>7</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><0.2</td>
<td><0.2</td>
<td>5</td>
</tr>
<tr>
<td>1,2-Dimethylbenzene / o-Xylene</td>
<td><0.2</td>
<td><0.2</td>
<td>5</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td><0.2</td>
<td><0.2</td>
<td>5</td>
</tr>
<tr>
<td>1,3-Dimethylbenzene / m-Xylene</td>
<td><1.32</td>
<td><1.32</td>
<td>2</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><0.2</td>
<td><0.23</td>
<td>5</td>
</tr>
<tr>
<td>Alpha-Benzene hexachloride / Alpha-Hexachlorocyclohexane</td>
<td><0.024</td>
<td><0.038</td>
<td>5</td>
</tr>
<tr>
<td>Acetone</td>
<td><50.8</td>
<td><76.7</td>
<td>5</td>
</tr>
<tr>
<td>Alpha-Chlordane</td>
<td><0.0124</td>
<td><0.0287</td>
<td>23</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><4.81</td>
<td><4.81</td>
<td>4</td>
</tr>
<tr>
<td>Substance</td>
<td>Lower Limit</td>
<td>Upper Limit</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Alpha-endosulfan / Endosulfan I</td>
<td><0.023</td>
<td><0.0343</td>
<td>21</td>
</tr>
<tr>
<td>Aldrin</td>
<td><0.025</td>
<td><0.0918</td>
<td>23</td>
</tr>
<tr>
<td>Atrazine</td>
<td><0.346</td>
<td><0.512</td>
<td>5</td>
</tr>
<tr>
<td>Beta-Benzene hexachloride / Beta-Hexachlorocyclohexane</td>
<td><0.024</td>
<td><0.027</td>
<td>5</td>
</tr>
<tr>
<td>Bicyclo[2,2,1]hepta-2,5-diene</td>
<td><0.2</td>
<td><5</td>
<td>8</td>
</tr>
<tr>
<td>Beta-Endosulfan / Endosulfan II</td>
<td><0.023</td>
<td><0.04</td>
<td>5</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><0.2</td>
<td><0.206</td>
<td>5</td>
</tr>
<tr>
<td>Benzothiazole</td>
<td><0.64</td>
<td><0.64</td>
<td>3</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene / cis-1,2-Dichloroethylene</td>
<td><0.2</td>
<td><0.22</td>
<td>5</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropylene / cis-1,3-Dichloropropene</td>
<td><0.2</td>
<td><0.39</td>
<td>5</td>
</tr>
<tr>
<td>Chloroethane</td>
<td><0.23</td>
<td><5.23</td>
<td>12</td>
</tr>
<tr>
<td>Benzene</td>
<td><0.2</td>
<td><1.05</td>
<td>7</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td><3.02</td>
<td><5.02</td>
<td>4</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td><0.33</td>
<td><0.873</td>
<td>5</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td><0.25</td>
<td><0.99</td>
<td>7</td>
</tr>
<tr>
<td>Methylene chloride / Dichloromethane</td>
<td><3.28</td>
<td><7.4</td>
<td>7</td>
</tr>
<tr>
<td>Bromoform</td>
<td><0.673</td>
<td><4.95</td>
<td>5</td>
</tr>
<tr>
<td>Chloromethane / Methyl chloride</td>
<td><0.97</td>
<td><1.96</td>
<td>5</td>
</tr>
<tr>
<td>Bromoform</td>
<td><0.239</td>
<td><0.26</td>
<td>5</td>
</tr>
<tr>
<td>Chloroform</td>
<td><0.2</td>
<td><0.5</td>
<td>7</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td><0.032</td>
<td><0.08</td>
<td>22</td>
</tr>
<tr>
<td>Chloroacetic acid</td>
<td><10</td>
<td><50</td>
<td>6</td>
</tr>
<tr>
<td>Chlorobenzene / Monochlorobenzene</td>
<td><0.2</td>
<td><0.82</td>
<td>7</td>
</tr>
<tr>
<td>p-Chlorophenylmethyl sulfide</td>
<td><0.64</td>
<td><0.64</td>
<td>3</td>
</tr>
<tr>
<td>p-Chlorophenylmethyl sulfoxide</td>
<td><0.79</td>
<td><0.79</td>
<td>3</td>
</tr>
<tr>
<td>p-Chlorophenylmethyl sulfone</td>
<td><0.81</td>
<td><0.81</td>
<td>3</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td><0.96</td>
<td><1.43</td>
<td>5</td>
</tr>
<tr>
<td>Dibromochloropropane / Nemagon</td>
<td><0.15</td>
<td><0.885</td>
<td>10</td>
</tr>
<tr>
<td>Delta-Benzene hexachloride / Delta-Hexachlorocyclohexane</td>
<td><0.021</td>
<td><0.029</td>
<td>5</td>
</tr>
<tr>
<td>Dibromochloromethane / Chlorodibromomethane</td>
<td><0.2</td>
<td><0.2</td>
<td>5</td>
</tr>
<tr>
<td>Dicyclpentadiene</td>
<td><0.2</td>
<td><2.71</td>
<td>8</td>
</tr>
<tr>
<td>Vapona / Dichlorophos / Phosphoric acid 2,2-dichloroethenyl dimethyl ester</td>
<td><0.25</td>
<td><0.634</td>
<td>5</td>
</tr>
<tr>
<td>Diisopropyl methylphosphonate</td>
<td><0.2</td>
<td><1</td>
<td>6</td>
</tr>
<tr>
<td>Dithiane</td>
<td><1.3</td>
<td><1.3</td>
<td>3</td>
</tr>
<tr>
<td>Dieldrin</td>
<td><0.024</td>
<td>0.0377</td>
<td>23</td>
</tr>
<tr>
<td>Dimethyl disulfide</td>
<td><0.4</td>
<td><0.92</td>
<td>4</td>
</tr>
<tr>
<td>Dimethyl methylphosphate</td>
<td><0.2</td>
<td><1</td>
<td>5</td>
</tr>
<tr>
<td>Endrin</td>
<td><0.024</td>
<td><0.073</td>
<td>23</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td><0.0179</td>
<td><0.076</td>
<td>21</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td><0.016</td>
<td>0.0269</td>
<td>21</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td><0.038</td>
<td><0.079</td>
<td>5</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><0.2</td>
<td><1.37</td>
<td>7</td>
</tr>
<tr>
<td>Fluoroacetic acid</td>
<td><22.4</td>
<td><50</td>
<td>6</td>
</tr>
<tr>
<td>Substance</td>
<td>Concentration (ppm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gamma-Chlordane</td>
<td><0.012 <0.075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor / 1H-1,4,5,6,7,8,8-Heptachloro-3a,4,7,7a-tetrahydro-4,7-methanoindene</td>
<td><0.0106 <0.0151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td><0.024 <0.0478</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isopropyl methylphosphonic acid / Isopropyl methylphosphonate</td>
<td><13.2 <50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isodrin</td>
<td><0.0245 <0.056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lindane / Gama-Benzene hexachloride / Gamma-Hexachlorocyclohexane</td>
<td><0.021 <0.051</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td><0.2 <1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl ethyl ketone / 2-Butananone</td>
<td><2.34 <8.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methoxychlor / 1,1’-(2,2,2-Trichloroethylidene)-bis[4-methoxybenzene]</td>
<td><0.0129 <0.077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl isobutyl ketone / Isopropylacetone / 4-Methyl-2-pentanone</td>
<td><2.06 <8.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malathion</td>
<td><0.206 <0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl-n-butyl ketone / 2-Hexanone</td>
<td><3 <3.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylphosphonic acid / Methylphosphonate</td>
<td><50 <1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Oxathiane</td>
<td><1.4 <1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloro-2,2-bis(p-chlorophenyl)ethane / Rhothane / TDE / ppDDD</td>
<td><0.023 <0.0389</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-Bis(p-chlorophenyl)-1,1-dichloroethene</td>
<td><0.024 <0.0369</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-Bis(p-chlorophenyl)-1,1,1-trichloroethane</td>
<td><0.0276 <0.055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parathion / Phosphorothioic acid O,O-diethyl O-(4-nitrophenyl) ester / DNTP</td>
<td><0.226 <0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene / Ethenylbenzene / Stryol / Styrolene / Cinnamene / Cinnamol</td>
<td><0.2 <0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supona / 2-Chloro-1-(2,4-dichlorophenyl)vinyl diethyl phosphate</td>
<td><0.25 <0.427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene / trans-1,2-Dichloroethylene</td>
<td><0.33 <1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td><0.2 <0.206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane / Tetrachloroethane / Acetylene tetrachloride</td>
<td><0.2 <0.815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene / Tetrachloroethene</td>
<td><0.2 <0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene / Trichloroethene / Ethinyl trichloride / Tri-Clene</td>
<td><0.202 <0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxaphene / Chlorinated camphene / Camphechlor / Alltox / Genephene / Motox</td>
<td><1.35 <5.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td><0.4 <1.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discharge Characteristics and Application Summary

The EPA received an NPDES permit application on August 17, 2012 from the U.S. Fish and Wildlife Service requesting an NPDES permit be issued to allow the discharge of treated municipal wastewater into Lower Derby Lake on the Refuge. After review of the Application, the EPA requested additional information on the chemical characteristics of the proposed discharge including the last 5 years of analytical testing information from Denver Water. In November 2012, the EPA received the supplemental data. The entire data set is available in the permit record as an electronic file.

A subset of the pollutants analyzed for in the Denver Water Recycled Water Plant Data which have applicable water quality standards set by the Colorado Water Quality Control Commission for Segment 22b are presented below. Included in the table also are aldrin and dieldrin which were pollutants on the 1998 303(d) list for Lake Ladora and phosphorus which may be included as a segment criterion in future rulemaking for the Upper South Platte Basin Regulation No. 38.

Denver Water Recycled Water Plant Data

<table>
<thead>
<tr>
<th>Pollutant, ug/L</th>
<th>min</th>
<th>max</th>
<th># of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldrin</td>
<td><0.01</td>
<td><0.1</td>
<td>8</td>
</tr>
<tr>
<td>Aluminum</td>
<td>20</td>
<td>175</td>
<td>38</td>
</tr>
<tr>
<td>Ammonia as N, mg/L</td>
<td><0.008</td>
<td>0.6</td>
<td>45</td>
</tr>
<tr>
<td>Arsenic</td>
<td><0.1</td>
<td><0.1</td>
<td>46</td>
</tr>
<tr>
<td>Boron</td>
<td>180</td>
<td>290</td>
<td>46</td>
</tr>
<tr>
<td>Cadmium</td>
<td><0.1</td>
<td><0.5</td>
<td>46</td>
</tr>
<tr>
<td>Chloride, mg/L</td>
<td>79.3</td>
<td>140</td>
<td>59</td>
</tr>
<tr>
<td>Chlorine (total), mg/L</td>
<td>1.5</td>
<td>4</td>
<td>NA</td>
</tr>
<tr>
<td>Chromium 6+</td>
<td><0.05</td>
<td>0.068</td>
<td>2</td>
</tr>
<tr>
<td>Chromium (total)</td>
<td><1</td>
<td>2</td>
<td>46</td>
</tr>
<tr>
<td>Copper</td>
<td>6</td>
<td>11</td>
<td>46</td>
</tr>
<tr>
<td>Cyanide</td>
<td><0.02</td>
<td>0.027</td>
<td>15</td>
</tr>
<tr>
<td>Dieldrin</td>
<td><0.01</td>
<td><0.2</td>
<td>8</td>
</tr>
<tr>
<td>Fecal Coliform, #/100mL</td>
<td><1</td>
<td><1</td>
<td>N/A</td>
</tr>
<tr>
<td>Iron, mg/L</td>
<td><0.05</td>
<td>0.08</td>
<td>46</td>
</tr>
<tr>
<td>Lead</td>
<td><1</td>
<td><1</td>
<td>41</td>
</tr>
<tr>
<td>Manganese</td>
<td><2</td>
<td>82</td>
<td>46</td>
</tr>
<tr>
<td>Mercury</td>
<td><0.1</td>
<td><0.1</td>
<td>46</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>3</td>
<td>11</td>
<td>46</td>
</tr>
<tr>
<td>Nickel</td>
<td>2</td>
<td>5</td>
<td>46</td>
</tr>
<tr>
<td>Nitrate as N, mg/L</td>
<td>10</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>Nitrite as N, mg/L</td>
<td><0.01</td>
<td>0.03</td>
<td>19</td>
</tr>
<tr>
<td>Nonylphenol</td>
<td><0.5</td>
<td><0.5</td>
<td>4</td>
</tr>
<tr>
<td>Phosphorous, Total as P</td>
<td>30</td>
<td>400</td>
<td>45</td>
</tr>
<tr>
<td>Selenium</td>
<td>1</td>
<td>3</td>
<td>46</td>
</tr>
<tr>
<td>Silver</td>
<td><0.1</td>
<td><0.5</td>
<td>46</td>
</tr>
<tr>
<td>Zinc</td>
<td>18</td>
<td>43</td>
<td>46</td>
</tr>
</tbody>
</table>
The following table summarizes the pollutants of concern (POCs) identified by the EPA during the evaluation of the Denver Water Recycled Water Plant data. POCs were identified as pollutants present above the reporting levels in the Denver Water Recycled Water Plant water and having applicable water quality standards and/or criteria established by the Colorado Water Quality Control Commission for Segment 22b of the Upper South Platte River Basin.

POCs are further evaluated for reasonable potential to cause or contribute to an excursion of the applicable water quality standard. In accordance with the EPA’s NPDES permitting regulations under 40 CFR Part 122.44(d), permit limits must be included for all pollutants having reasonable potential (RP).

Table 3
Denver Water Recycled Water Plant Pollutants of Concern (POC)

<table>
<thead>
<tr>
<th>Pollutant, ug/L</th>
<th>min</th>
<th>max</th>
<th># of samples</th>
<th>Max. Proj Effl. Conc.) a/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldrin</td>
<td><0.01</td>
<td><0.1</td>
<td>8</td>
<td>N/A</td>
</tr>
<tr>
<td>Aluminum</td>
<td>20</td>
<td>99 (175) b/</td>
<td>37 (38) b/</td>
<td>100</td>
</tr>
<tr>
<td>Ammonia as N, mg/L</td>
<td><0.008</td>
<td>0.6</td>
<td>45</td>
<td>0.63</td>
</tr>
<tr>
<td>Boron</td>
<td>180</td>
<td>290</td>
<td>46</td>
<td>290</td>
</tr>
<tr>
<td>Chloride</td>
<td>79.3</td>
<td>140</td>
<td>59</td>
<td>140</td>
</tr>
<tr>
<td>Chlorine (total), mg/L</td>
<td>1.5</td>
<td>4</td>
<td>NA</td>
<td>>4</td>
</tr>
<tr>
<td>Chromium 6+</td>
<td><0.05</td>
<td>0.068</td>
<td>2</td>
<td>1.9</td>
</tr>
<tr>
<td>Chromium (total)</td>
<td><1</td>
<td>2</td>
<td>46</td>
<td>2</td>
</tr>
<tr>
<td>Copper</td>
<td>6</td>
<td>11</td>
<td>46</td>
<td>11</td>
</tr>
<tr>
<td>Cyanide, total</td>
<td><0.02</td>
<td>0.027</td>
<td>15</td>
<td>g/</td>
</tr>
<tr>
<td>Dieldrin</td>
<td><0.01</td>
<td><0.2</td>
<td>8</td>
<td>N/A</td>
</tr>
<tr>
<td>Fecal Coliform, #/100mL</td>
<td><1</td>
<td><1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Iron, mg/L</td>
<td><0.05</td>
<td>0.08</td>
<td>46</td>
<td>0.081</td>
</tr>
<tr>
<td>Manganese</td>
<td><2</td>
<td>82</td>
<td>46</td>
<td>92</td>
</tr>
<tr>
<td>Mercury</td>
<td><0.1</td>
<td><0.1</td>
<td>46</td>
<td>d/</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>3</td>
<td>11</td>
<td>46</td>
<td>11</td>
</tr>
<tr>
<td>Nickel</td>
<td>2</td>
<td>5</td>
<td>46</td>
<td>5.1</td>
</tr>
<tr>
<td>Nitrate as N, mg/L</td>
<td>10</td>
<td>21</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Nitrite as N, mg/L</td>
<td><0.01</td>
<td>0.03</td>
<td>19</td>
<td>g/</td>
</tr>
<tr>
<td>Phosphorous, Total as P</td>
<td>30</td>
<td>400</td>
<td>45</td>
<td>430</td>
</tr>
<tr>
<td>Selenium</td>
<td>1</td>
<td>3</td>
<td>46</td>
<td>3.1</td>
</tr>
<tr>
<td>Zinc</td>
<td>18</td>
<td>43</td>
<td>46</td>
<td>44</td>
</tr>
</tbody>
</table>

\[a/\] These values are the projected maximum effluent values at the 95%ile and 95%c.i.
\[b/\] Maximum reported value is an outlier (Rosner’s). Removed from data set for POC analysis.
\[c/\] Only 1/15 samples above reporting limit. Analysis was for total cyanide not WAD cyanide.
\[d/\] Mercury monitoring was not done at low levels.
\[e/\] Only 2/19 samples above reporting limit.
Water Quality Considerations

The following tables list the calculated Table Value Standards for hardness dependant criteria and the non-hardness dependant criteria for Lower Derby Lake:

| Table Value Standards for Hardness Dependent Metal POC (at Hardness of 150 mg/L) |
|----------------------------------|-----------------|-----------------|
| Metal | In-Stream Water Quality Standards | Acute Standard | Chronic Standard |
| Aluminum, trc, ug/L | 5960 | 851 |
| Chromium III, d, ug/L | 794 | 103 |
| Copper, d, ug/L | 20 | 13 |
| Manganese, d, ug/L | 3417 | 1888 |
| Nickel, d, ug/L | 660 | 73 |
| Zinc, d, ug/L | 231 | 175 |

<table>
<thead>
<tr>
<th>Water Quality Criterion for Other POC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollutant</td>
</tr>
<tr>
<td>Ammonia as N, t, mg/L</td>
</tr>
<tr>
<td>Boron, trc, ug/L*</td>
</tr>
<tr>
<td>Chloride, mg/L</td>
</tr>
<tr>
<td>Chlorine, Total Residual, ug/L</td>
</tr>
<tr>
<td>Chromium VI, d, ug/L</td>
</tr>
<tr>
<td>Cyanide-Free, mg/L</td>
</tr>
<tr>
<td>Iron, trc, ug/L</td>
</tr>
<tr>
<td>Mercury, t, ug/L</td>
</tr>
<tr>
<td>Molybdenum, d, ug/L*</td>
</tr>
<tr>
<td>Nitrate, t, mg/L*</td>
</tr>
<tr>
<td>Nitrite, t, mg/L</td>
</tr>
<tr>
<td>Selenium, d, ug/L</td>
</tr>
</tbody>
</table>

* Based on Agriculture Use Classification

Colorado’s water quality criteria for ammonia are the same as those of the EPA found in “1999 Update of Ambient Water Quality Criteria for Ammonia”, EPA-822-R-99-014, December 1999. The ammonia criteria were derived using an estimated receiving water pH of 7.1 (85%ile of Denver Recycled Water Plant Water Data) and the maximum observed Lower Derby Lake temperature of 25.8°C.

Antidegradation Analysis

For this permit, an antidegradation analysis is required due to the reviewable status of the receiving water and this is a new discharge to Waters of the State of Colorado. Surface water data for Lower Derby Lake was evaluated and background pollutant concentrations were established for the period of 1997-2001. Colorado’s baseline water quality for antidegradation was established as existing quality as
of September 30, 2000. Since the majority of the RMA surface water for Lower Derby Lake was collected during the years surrounding this date and adding additional data collected in 2001 provides data that is within the range of data collected during 2000, all of the data was used to establish baseline water quality in accordance with Colorado’s Antidegradation Significance Determination for New or Increased Water Quality Impacts Procedural Guidance Version 1.0 December 2001.

Significance Test

Since this is a new discharge, all pollutants identified in the proposed discharge which have corresponding applicable water quality criterion meet the significance threshold.

Table Value Standards (TVS), Baseline Available Increment and Antidegradation Based Average Concentration

The following Table contains the Table Value Standards (TVS), Baseline Water Quality (BWQ), Baseline Available Increment (BAI), Significant Threshold Concentration (SCT), and Antidegradation Based Average Concentration (ADBAC) calculations for Lower Derby Lake Surface Water Data presented above:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Table Value Standard (TVS) or Criterion</th>
<th>Baseline Water Quality (BWQ)</th>
<th>Baseline Available Increment (BAI)</th>
<th>Significant Concentration Threshold (SCT)</th>
<th>Antidegradation Based Average Concentration (ADBAC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum, trec.ug/L</td>
<td>851</td>
<td>734</td>
<td>117</td>
<td>752</td>
<td>752</td>
</tr>
<tr>
<td>Boron, trec. ug/L</td>
<td>750</td>
<td>81</td>
<td>669</td>
<td>181</td>
<td>181</td>
</tr>
<tr>
<td>Chloride, mg/L</td>
<td>250</td>
<td>52</td>
<td>198</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>Chlorine, Total Residual, ug/L</td>
<td>11</td>
<td>0</td>
<td>11</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Chromium 6+, d, ug/L</td>
<td>11</td>
<td>1.6</td>
<td>9.4</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Chromium 3+, d, ug/L</td>
<td>103</td>
<td>0</td>
<td>103</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Copper, d, ug/L</td>
<td>13</td>
<td>0</td>
<td>13</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Iron, trec, mg/L</td>
<td>1000</td>
<td>556</td>
<td>444</td>
<td>623</td>
<td>623</td>
</tr>
<tr>
<td>Manganese, d, ug/L</td>
<td>1888</td>
<td>122 (85%ile)</td>
<td>1766</td>
<td>387</td>
<td>387</td>
</tr>
<tr>
<td>Manganese, trec, ug/L</td>
<td>200</td>
<td>40 (50%ile)</td>
<td>160</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Mercury, total, ug/L</td>
<td>0.01</td>
<td>0</td>
<td>0.01</td>
<td>0.0015</td>
<td>0.0015</td>
</tr>
<tr>
<td>Molybdenum, d, ug/L</td>
<td>300</td>
<td>0 (Insuf. Data)</td>
<td>300</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Nickel, d, ug/L</td>
<td>72</td>
<td>0</td>
<td>72</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Nitrate, trec, mg/L</td>
<td>100</td>
<td>1.4</td>
<td>99</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Selenium, d, ug/L</td>
<td>4.6</td>
<td>0</td>
<td>4.6</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Zinc, d, ug/L</td>
<td>175</td>
<td>20</td>
<td>155</td>
<td>43</td>
<td>43</td>
</tr>
</tbody>
</table>
The Lower Derby Lake TVS were calculated using an estimated hardness of 150 mg/L as CaCO3 based on Denver Recycled Water Plant Water Data.

Ammonia Antidegradation Calculations

The Lower Derby ambient water quality data for ammonia consisted of 19 total samples collected from 1997-2001 of which 15 were for ammonia and 4 were for ammonia nitrogen. For this permit it was assumed all samples were reported as ammonia as N or ammonia nitrogen. The correction for ammonia to ammonia as N does not have a significant impact on the determination of the BAI, SCT, or ADBAC for ammonia N. The data set was used to establish the BWQ for Lower Derby Lake as of September 30, 2000 for use in establishing antidegradation based requirements.

There was insufficient data to use for modeling ammonia nitrogen using AMMTOX to establish the ambient TVS for ammonia nitrogen so alternatively TVS used by the Colorado Water Quality Control Division for general permit COG-0058900 were used to estimate ambient TVS for Lower Derby Lake. BAI, SCT and ADBAC values were calculated using these TVS and the BWQ established from the ambient data set.

Table 6
Ammonia- N Antidegradation Values (ug/L) for Lower Derby Lake

<table>
<thead>
<tr>
<th>Month</th>
<th>Chronic TVS(^1)</th>
<th>Acute TVS(^1)</th>
<th>BWQ(^2)</th>
<th>BAI</th>
<th>SCT</th>
<th>ADBAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>5100</td>
<td>13000</td>
<td>62</td>
<td>5040</td>
<td>820</td>
<td>820</td>
</tr>
<tr>
<td>February</td>
<td>4700</td>
<td>11000</td>
<td>62</td>
<td>4640</td>
<td>760</td>
<td>760</td>
</tr>
<tr>
<td>March</td>
<td>3200</td>
<td>7300</td>
<td>62</td>
<td>3140</td>
<td>530</td>
<td>530</td>
</tr>
<tr>
<td>April</td>
<td>1900</td>
<td>6100</td>
<td>62</td>
<td>1840</td>
<td>340</td>
<td>340</td>
</tr>
<tr>
<td>May</td>
<td>2400</td>
<td>7900</td>
<td>62</td>
<td>2340</td>
<td>410</td>
<td>410</td>
</tr>
<tr>
<td>June</td>
<td>3000</td>
<td>10000</td>
<td>62</td>
<td>2940</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>July</td>
<td>2300</td>
<td>9700</td>
<td>62</td>
<td>2240</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>August</td>
<td>1900</td>
<td>7900</td>
<td>62</td>
<td>1840</td>
<td>340</td>
<td>340</td>
</tr>
<tr>
<td>September</td>
<td>2300</td>
<td>8700</td>
<td>62</td>
<td>2240</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>October</td>
<td>3400</td>
<td>11000</td>
<td>62</td>
<td>3340</td>
<td>560</td>
<td>560</td>
</tr>
<tr>
<td>November</td>
<td>3700</td>
<td>11000</td>
<td>62</td>
<td>3640</td>
<td>610</td>
<td>610</td>
</tr>
<tr>
<td>December</td>
<td>3700</td>
<td>8900</td>
<td>62</td>
<td>3640</td>
<td>610</td>
<td>610</td>
</tr>
</tbody>
</table>

\(^1\) Values from COG-0058900 Table 6d Monthly Chronic Ammonia WQBEL for Warm Water Classified Streams and Table 6e Monthly Acute Total Ammonia WQBEL for Warm Water Classified Streams.

\(^2\) Value is 50\%ile of ambient water quality data from 1997-2001. The TVS used in the BWQ calculation for Ammonia N in Lower Derby Lake was determined using the 85\%ile of pH data (7.1 s.u.) from the Denver Recycled Water Plant Data and the maximum recorded ambient temperature (25.8 °C) from the Lower Derby Lake Water Quality Data 1999-2001 directly in the formula for the criterion.
E.Coli Antidegradation Calculations

There is no ambient or proposed discharge data available for *E.coli* so a similar approach as was used for ammonia nitrogen antidegradation calculations to establish ADBAC values for *E.coli*. The ADBAC value of 20/100 mL is used for this proposed permit and comes from Table 4d of COG-0058900.

Antidegradation Alternatives Analysis

The USFWS has completed a Necessity of Degradation and Alternatives Analysis in accordance with the Colorado’s Antidegradation Significance Determination for New or Increased Water Quality Impacts Procedural Guidance Version 1.0 December 2001 and requested EPA consider antidegradation alternative values other than ADBAC values to establish some antidegradation based effluent limitations for the permit. The USFWS asked for alternatives for chloride, boron, copper, ammonia-N, nitrate, and selenium.

For these pollutants, antidegradation alternative values will be based on historic facility performance (Denver Recycled Water Plant Water Data). ADBAC values are based on a two year rolling average while the average and 95th percentile values are based on 5 years of quarterly performance data. The antidegradation alternative monthly average values will be set at the 95th percentile of the facility performance data. The following table contains Antidegradation Alternative values that will be applied in place of ADBAC values for purposes of evaluating water quality based effluent limitations for the discharge.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>5-yr Average Performance (Denver Recycled Water Plant Water)</th>
<th>ADBAC</th>
<th>Antidegradation Alternative Value (95th%ile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia-N, ug/L</td>
<td>430</td>
<td>340</td>
<td>500</td>
</tr>
<tr>
<td>Boron, mg/L</td>
<td>237</td>
<td>181</td>
<td>263</td>
</tr>
<tr>
<td>Chloride, mg/L</td>
<td>106</td>
<td>82</td>
<td>120</td>
</tr>
<tr>
<td>Copper, ug/L</td>
<td>8.5</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Nitrate, mg/L</td>
<td>15</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Selenium, ug/L</td>
<td>2.1</td>
<td>0.7</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Reasonable Potential Analysis

EPA performs a Reasonable Potential Analysis to determine whether effluent limits for the pollutants of concern are required. The analysis consists of determining a high confidence, high percentile value of the effluent data and comparing the value with the applicable Colorado Water Quality Criterion and the ADBAC or Antidegradation Alternative values determined through the antidegradation analysis. EPA uses a statistical procedure consistent with its 1991 Technical Support Document for Water Quality Based Toxics Control EPA/505/2-90-001 and for this analysis, the projected maximum effluent value is the upper 95th confidence of the 95%ile. The following table shows the summarized results of the Reasonable Potential Analysis done for this proposed discharge:
Table 8
Reasonable Potential Evaluation for Water Quality Based Effluent Limitations

<table>
<thead>
<tr>
<th>Effluent Pollutant</th>
<th>Effluent 95%ile, 95% c.i.</th>
<th>WQC</th>
<th>ADBAC</th>
<th>RP for WQC?</th>
<th>RP for ADBAC?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum, trec, ug/L</td>
<td>acute</td>
<td>100</td>
<td>5960</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>chronic</td>
<td>100</td>
<td>851</td>
<td>752</td>
<td>No</td>
</tr>
<tr>
<td>Ammonia-N, ug/L</td>
<td>acute</td>
<td>630</td>
<td>22000</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>chronic</td>
<td>630</td>
<td>1900(^2)</td>
<td>600(^1)</td>
<td>No</td>
</tr>
<tr>
<td>Boron, trec, ug/L</td>
<td>30-day</td>
<td>290</td>
<td>750</td>
<td>280(^1)</td>
<td>No</td>
</tr>
<tr>
<td>Chloride, mg/L</td>
<td>30-day</td>
<td>140</td>
<td>250</td>
<td>130(^1)</td>
<td>No</td>
</tr>
<tr>
<td>Chlorine, Total Residual, ug/L</td>
<td>chronic</td>
<td>>4000</td>
<td>11</td>
<td>1.7</td>
<td>Yes</td>
</tr>
<tr>
<td>Chromium 6+, d, ug/L</td>
<td>acute</td>
<td>1.9</td>
<td>16</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>chronic</td>
<td>1.9</td>
<td>11</td>
<td>3</td>
<td>No</td>
</tr>
<tr>
<td>Chromium 3+, d, ug/L</td>
<td>acute</td>
<td>2</td>
<td>794</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>chronic</td>
<td>2</td>
<td>103</td>
<td>15</td>
<td>No</td>
</tr>
<tr>
<td>Copper, d, ug/L</td>
<td>acute</td>
<td>11</td>
<td>20</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>chronic</td>
<td>11</td>
<td>13</td>
<td>11(^1)</td>
<td>No</td>
</tr>
<tr>
<td>Iron, trec, ug/L</td>
<td>chronic</td>
<td>81</td>
<td>1000</td>
<td>623</td>
<td>No</td>
</tr>
<tr>
<td>Manganese, d, ug/L</td>
<td>acute</td>
<td>92</td>
<td>3417</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>chronic</td>
<td>92</td>
<td>1888</td>
<td>387</td>
<td>No</td>
</tr>
<tr>
<td>Manganese, trec, ug/L</td>
<td>chronic</td>
<td>92</td>
<td>200</td>
<td>64</td>
<td>No</td>
</tr>
<tr>
<td>Molybdenum, d, ug/L</td>
<td>chronic</td>
<td>11</td>
<td>300</td>
<td>45</td>
<td>No</td>
</tr>
<tr>
<td>Nickel, d, ug/L</td>
<td>acute</td>
<td>5.1</td>
<td>660</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>chronic</td>
<td>5.1</td>
<td>73</td>
<td>11</td>
<td>No</td>
</tr>
<tr>
<td>Nitrate, trec, ug/L</td>
<td>chronic</td>
<td>25</td>
<td>100</td>
<td>20(^1)</td>
<td>No</td>
</tr>
<tr>
<td>Selenium, d, ug/L</td>
<td>acute</td>
<td>3.1</td>
<td>18.4</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>chronic</td>
<td>3.1</td>
<td>4.6</td>
<td>3.0(^1)</td>
<td>No</td>
</tr>
<tr>
<td>Zinc, d, ug/L</td>
<td>acute</td>
<td>44</td>
<td>231</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>chronic</td>
<td>44</td>
<td>175</td>
<td>43</td>
<td>No</td>
</tr>
</tbody>
</table>

\(^1\) Value is Antidegradation Alternative value
\(^2\) Value is lowest monthly WQC/ADBAC calculated for the year.
Qualitative Reasonable Potential

For bacteria, the applicable WQS is expressed as *E. coli* and the facility has only provided data for fecal coliform. The facility does perform chlorination and dechlorination however, *E. coli* may be present if disinfection processes are interrupted or stopped. The reported levels of fecal coliform in the proposed discharge (<1 c.f.u./100 mL) are much lower than the applicable WQS and ADBAC and the fecal coliform test included *E. coli* in the reported data, and therefore the potential to exceed the WQS and ADBAC are very low. However, since there is no specific *E. coli* monitoring provided in the permit application, a limits for *E. coli* will be placed in the permit until the facility provides sufficient effluent *E. coli* data to indicate there is no reasonable potential to exceed the WQS and ADBAC.

For nutrients nitrogen and phosphorous, data collected for Lower Derby Lake showed measurable amounts of total kjeldahl nitrogen (organic-N plus ammonia) ranging from 332 ug/L to 2300 ug/L, inorganic nitrogen (nitrate) ranging from <0.5 ug/L to 1400 ug/L, and total phosphorous ranging from 16 ug/L to 336 ug/L. The proposed discharge also contains measurable amounts of nutrients, nitrate from 10,000 ug/L to 21,000 ug/L, ammonia N from <8 ug/L to 600 ug/L and total phosphorous from 30 ug/L to 400 ug/L. Although the State of Colorado has not established WQS for nutrients that apply directly to lakes in The South Platte River Basin, Regulation No. 31 sets target concentration values for warm larger lakes (>25 acres) for total nitrogen of 910 ug/L and total phosphorous of 83 ug/L. For the proposed permit, no effluent limits on total nitrogen or total phosphorous will be included. However, monitoring requirements for total kjeldahl nitrogen and total phosphorous will be included so that sufficient future monitoring data exists in the event WQS for nutrients are established for these lakes.

Reasonable Potential Discussion

For POCs having sufficient data to analyze projected maximum concentrations in the discharge (95%ile, 95%c.i.) greater than the WQC or ADBAC/Antidegradation Alternative values, there is reasonable potential for the discharge to cause or contribute to an excursion of the applicable water quality standard and therefore a limit must be placed in the permit.

For POCs having sufficient data to analyze projected maximum concentrations in the discharge (95%ile, 95% c.i.) less than the WQC or ADBAC/Antidegradation Alternative values, there is no reasonable potential for the pollutant to cause or contribute to an excursion of the WQS and effluent limitations are not required.

For POCs with insufficient data (chromium 6+, cyanide, nitrite, mercury) to statistically analyze projected maximum concentrations, monitoring will be required to obtain sufficient data to analyze for reasonable potential and the permittee may request reduced monitoring requirements once the data shows there is no reasonable potential. EPA would prefer to have at least 10 valid data points to perform an analysis of the projected maximum concentrations.

For Total Residual Chlorine (TRC), no discharge data representing the proposed discharge which has been de-chlorinated is available. The permit will contain effluent limitations for both acute and chronic TRC to ensure dechlorination is effective at removing TRC from the discharge. Since the discharge travels via pipeline about 1.25 miles from the dechlorination facility and the facility will monitor for chlorine on a regular basis at the treatment facility, an internal monitoring location for TRC at the dechlorination facility will also be placed in the permit. This will be the only effluent parameter that will have an alternate monitoring location. For six months, the permit will require monitoring for TRC at both the internal outfall and Outfall 001. After six months, the permittee can request a reduction in
monitoring to one or the other Outfall if there is no significant statistical difference between the data sets from both locations at a 95% confidence level and there is no change in the process used for chlorination or dechlorination for the remainder of the permit term.

Some of the POCs evaluated for Alternative Antidegradation values have maximum projected concentrations that exceed the values (Boron, Chloride, Copper, Nitrate-N, Ammonia-N, Selenium). For some, average data is below the threshold (Boron, Chloride, Nitrate) and for others, average data equal the values (Ammonia-N, Copper, Selenium). Since all of these pollutants have reasonable potential to exceed the water quality standard (Antidegradation Alternative value), the permit will contain effluent limitations for these pollutants. The permit limitations will be set equal to the Alternative Antidegradation values and will be expressed in the permit as 2-yr rolling averages.

Some of the POCs in the discharge have occurred at projected maximum concentrations that are very close to or exceed the ADBAC values but average data is below the threshold (Manganese, Zinc). These POCs have reasonable potential to exceed the ADBAC and limitations will be placed in the permit. Limits for these pollutants will be set equal to the ADBAC values and will be expressed in the permit as 2-yr. rolling averages.

Although the Antidegradation based limitations are effective immediately, compliance with the limitations will be first calculated and reported starting 2 years from the effective date of the final permit, and monthly thereafter as a rolling average.

For some POCs there was insufficient data available (Chromium 6+, Cyanide, Mercury, Nitrite) in the proposed discharge to adequately estimate reasonable potential. For these pollutants, effluent limits (ADBELs) will not be proposed in the permit however additional monitoring will be required to collect sufficient data to assess reasonable potential for these pollutants in any future permit action.

The WQCD also requires WQBELs in the permit for 30-day averages and daily maximums for all pollutants for which ADBELs/Antidegradation Alternative Limitations are required. 30-day average and daily maximum effluent limits are proposed for ammonia nitrogen, boron, chloride, copper, manganese, selenium, zinc where appropriate.

Since no mercury data is available on either the surface water data or proposed discharge data which is at a method detection limit or practical quantitation level close to either the WQS or ADBAC values, monitoring for mercury using clean sampling and analytical techniques will be required in the proposed permit.

Technology Based Effluent Limitation Evaluation

There are no applicable Federal Effluent Limitations Guidelines and Standards under 40 CFR for this type of discharge.

Colorado’s Effluent Limitations under Regulation 62 will apply to this discharge for pollutants expected to be present at levels approaching the levels in the regulation.
Table 9
Technology Based Effluent Standards Colorado Regulation No. 62

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>30-day avg.</th>
<th>7-day avg.</th>
<th>Daily Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Oxygen Demand (BOD₅), mg/L</td>
<td>30</td>
<td>45</td>
<td>N/A</td>
</tr>
<tr>
<td>Carbonaceous Biological Oxygen Demand (CBOD₅), mg/L</td>
<td>25</td>
<td>40</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS), mg/L</td>
<td>30</td>
<td>45</td>
<td>N/A</td>
</tr>
<tr>
<td>pH, s.u.</td>
<td>N/A</td>
<td>N/A</td>
<td>6-9 (min.- max.)</td>
</tr>
<tr>
<td>Residual Chlorine (TRC), mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td>0.5</td>
</tr>
<tr>
<td>Oil and Grease, mg/L</td>
<td>N/A</td>
<td>N/A</td>
<td>10</td>
</tr>
</tbody>
</table>

Of the pollutants listed, only Biological Oxygen Demand (BOD₅) and Carbonaceous Biological Oxygen Demand (CBOD₅) are not expected to be present at levels close to the regulation levels.

When the above potential Technology Based Effluent Limits (TBELs) are compared with WQE BELs, the WQE BELs for TRC and pH are more stringent and will be placed in the permit as a final limit.

Proposed Effluent Limitations

Table 10
Proposed Effluent Limitations for Outfall 001A

<table>
<thead>
<tr>
<th>Effluent Characteristic</th>
<th>Effluent Limitations a/</th>
<th>Basis c/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30-Day Average</td>
<td>Daily Maximum</td>
</tr>
<tr>
<td>Flow, MGD</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Suspended Solids, mg/L</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>E. coli, no./100 mL</td>
<td>126</td>
<td>252</td>
</tr>
<tr>
<td>Ammonia as N, ug/L</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>January</td>
<td>5100</td>
</tr>
<tr>
<td></td>
<td>February</td>
<td>4700</td>
</tr>
<tr>
<td></td>
<td>March</td>
<td>3200</td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>1900</td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>2300</td>
</tr>
<tr>
<td></td>
<td>August</td>
<td>1900</td>
</tr>
<tr>
<td></td>
<td>September</td>
<td>2300</td>
</tr>
<tr>
<td></td>
<td>October</td>
<td>3400</td>
</tr>
</tbody>
</table>
The pH of the discharge shall not be less than 6.5 or greater than 9.0 at any time.

The concentration of oil and grease in any single sample shall not exceed 10 mg/L or shall there be any visible sheen in the receiving water.

<table>
<thead>
<tr>
<th>November</th>
<th>3700</th>
<th>11000</th>
<th>600</th>
<th>WQS/ADALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>December</td>
<td>3700</td>
<td>8900</td>
<td>600</td>
<td>WQS/ADALT</td>
</tr>
<tr>
<td>Boron, trec, ug/L</td>
<td>750</td>
<td>N/A</td>
<td>180</td>
<td>WQS/ADALT</td>
</tr>
<tr>
<td>Chloride, mg/L</td>
<td>250</td>
<td>N/A</td>
<td>140</td>
<td>WQS/ADALT</td>
</tr>
<tr>
<td>Chlorine, Total Residual, ug/L</td>
<td>11</td>
<td>19</td>
<td>1.7</td>
<td>WQS/ADBAC</td>
</tr>
<tr>
<td>Copper, pd, ug/L</td>
<td>13</td>
<td>20</td>
<td>11</td>
<td>WQS/ADALT</td>
</tr>
<tr>
<td>Manganese, trec, ug/L</td>
<td>200</td>
<td>3417</td>
<td>64</td>
<td>WQS/ADBAC</td>
</tr>
<tr>
<td>Nitrate, total, mg/L</td>
<td>100</td>
<td>N/A</td>
<td>20</td>
<td>WQS/ADALT</td>
</tr>
<tr>
<td>Selenium, pd, ug/L</td>
<td>4.6</td>
<td>18.4</td>
<td>3.0</td>
<td>WQS/ADALT</td>
</tr>
<tr>
<td>Zinc, pd, ug/L</td>
<td>175</td>
<td>231</td>
<td>43</td>
<td>WQS/ADBAC</td>
</tr>
</tbody>
</table>

a/ See Definitions, Part 1.1, for definitions.

b/ 2-Year Rolling Average is first calculated and reported two years from the effective date of the permit as the average of all samples collected in the previous two years. Thereafter, values are calculated and reported as a rolling average of all samples in the previous two years.

c/ Basis of effluent limitations: CR#62 = Colorado Regulation No. 62 – Regulations for Effluent Limitations; AP= Permit Application; WQS = water quality standards; ADBAC= antidegradation based water quality standard; ADALT= Antidegradation Alternative Value.

Self-Monitoring Requirements

The proposed self-monitoring requirements are given in Table 11 below. The table lists the various effluent characteristics to be monitored, the frequency to be monitored, the type of sample to be collected, and for some effluent characteristics, the practical quantitation level (PQL) to be used in the analyses. The PQL values are those used by the Colorado WQCD for permits.

Some additional pollutants including nutrients were added to the monitoring list in order to obtain adequate data to determine if reasonable potential for the applicable WQBELs to be exceeded. The data will also be useful in any future permit WQBEL and antidegradation analysis that may be necessary.

Whole Effluent Toxicity (WET) monitoring has been added to the monitoring requirements to ensure that narrative standards for toxics (CO Regulation 31) and the provisions of the Colorado Water Quality Control Division’s WET Policy (WPC-Permitting-1) are implemented in this permit. The facility will be required to perform chronic WET monitoring on a semi-annual basis using two species, *Pimephales promelas* and *ceriodaphnia dubia*. The facility will not be allowed any dilution and tests must be performed on 100% effluent. In the event chronic toxicity is found in the effluent, a Toxicity Identification/Toxicity Reduction Evaluation (TIE/TRE) will be required. If no chronic toxicity is found in the effluent in any of the first four tests (2 years), the permittee is not required to perform further WET monitoring.
Also added is a provision that after either 10 samples or two and one-half (2.5) years of data have been collected, the permittee may request that the frequency of monitoring for some effluent characteristics be reduced to quarterly or eliminated based on a reasonable potential analysis of the data collected since the permit was issued. The reasonable potential analysis shall be done using a projected maximum effluent value based on a lognormal distribution at a 95%ile at a 95 percent confidence interval. Based on the information submitted, the permit issuing authority may not make any change in the monitoring frequency, reduce the frequency of monitoring to quarterly or delete the monitoring requirement for that effluent characteristic. This change may be made without going back to public notice.

Continuous monitoring for temperature with a recorder is required in order to obtain adequate data to determine if effluent limitations may be necessary in the future. Once per day monitoring of temperature would not be adequate to determine if effluent limitations are necessary to comply with Colorado’s new WQS on temperature.

Table 11
Proposed Self-Monitoring Requirements Outfall 001

<table>
<thead>
<tr>
<th>Effluent Characteristic</th>
<th>Frequency</th>
<th>Sample Type a/</th>
<th>Practical Quantitation Limits e/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Flow, mgd b/</td>
<td>Continuous</td>
<td>Recorder</td>
<td>N/A</td>
</tr>
<tr>
<td>Temperature, ºC</td>
<td>Continuous</td>
<td>Recorder</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Suspended Solids, mg/L</td>
<td>Monthly</td>
<td>Composite</td>
<td>N/A</td>
</tr>
<tr>
<td>E Coli, no./100 mL</td>
<td>Monthly f/</td>
<td>Grab</td>
<td>N/A</td>
</tr>
<tr>
<td>pH, specific units</td>
<td>Continuous</td>
<td>Recorder</td>
<td>N/A</td>
</tr>
<tr>
<td>Oil and grease, visual c/</td>
<td>Daily</td>
<td>Visual c/</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Ammonia as N, mg/L</td>
<td>Monthly</td>
<td>Composite</td>
<td>0.2 mg/L</td>
</tr>
<tr>
<td>Hardness, total as CaCO₃, mg/L</td>
<td>Monthly</td>
<td>Composite</td>
<td>20 mg/L</td>
</tr>
<tr>
<td>Boron, Trec, ug/L</td>
<td>Monthly</td>
<td>Composite</td>
<td>50 ug/L</td>
</tr>
<tr>
<td>Chloride, mg/L</td>
<td>Monthly</td>
<td>Composite</td>
<td>0.5 mg/L</td>
</tr>
<tr>
<td>Chlorine, Total Residual, ug/L</td>
<td>Continuous</td>
<td>Recorder</td>
<td>50 ug/L</td>
</tr>
<tr>
<td>Chromium VI, d, ug/L</td>
<td>Monthly f/</td>
<td>Grab</td>
<td>20 ug/L</td>
</tr>
<tr>
<td>Copper, PD, ug/L</td>
<td>Monthly</td>
<td>Composite</td>
<td>5 ug/L</td>
</tr>
<tr>
<td>Cyanide, WAD, ug/L g/</td>
<td>Monthly f/</td>
<td>Composite</td>
<td>5 ug/L</td>
</tr>
<tr>
<td>Manganese, Trec, ug/L</td>
<td>Monthly</td>
<td>Composite</td>
<td>2 ug/L</td>
</tr>
<tr>
<td>Mercury, Total, ug/L (Low-level)</td>
<td>Monthly f/</td>
<td>Composite</td>
<td>0.003 ug/L</td>
</tr>
<tr>
<td>Nitrate, total, ug/L</td>
<td>Monthly</td>
<td>Composite</td>
<td>50 ug/L</td>
</tr>
<tr>
<td>Nitrite, total, ug/L</td>
<td>Monthly f/</td>
<td>Composite</td>
<td>10 ug/L</td>
</tr>
<tr>
<td>Kjeldahl Nitrogen, total, ug/L</td>
<td>Quarterly</td>
<td>Composite</td>
<td>500 ug/L</td>
</tr>
<tr>
<td>Phosphorous, total, ug/L</td>
<td>Quarterly</td>
<td>Composite</td>
<td>10 ug/L</td>
</tr>
<tr>
<td>Selenium, PD, ug/L</td>
<td>Monthly</td>
<td>Composite</td>
<td>1 ug/L</td>
</tr>
</tbody>
</table>
Zinc, PD, ug/L | Monthly | Composite | 10 ug/L
Whole Effluent Toxicity (WET), chronic h/ | Semi-annual | Composite | 1.0 TUc

a/ See Definitions, Part 1.1, for definition of terms.

b/ Flow measurements of effluent volume shall be made in such a manner that the permittee can affirmatively demonstrate that representative values are being obtained. The average flow rate (in million gallons per day) during the reporting period and the maximum flow rate observed (in mgd) shall be reported.

c/ A daily visual observation is required. If a visible sheen is detected, a grab sample shall be taken immediately and analyzed in accordance with the requirements of 40 CFR Part 136. The concentration of oil and grease shall not exceed 10 mg/L in any sample.

d/ Monitoring for total residual chlorine only required if the effluent is chlorinated. If not chlorinating during the reporting period, report “Not Chlorinating”.

e/ Practical Quantitation Limit (PQL) means the minimum concentration of an analyte (substance) that can be measured with a high degree of confidence that the analyte is present at or above that concentration. The method and procedures used to analyze for an effluent characteristic (e.g., cadmium) shall have a PQL no greater than specified in this table (e.g., PQL for cadmium no greater than 1 ug/L). For purposes of this permit, analytical values less than the PQL shall be considered to be zero for purposes of determining averages. If all analytical results are less than the PQL, then “less than x”, where x is the PQL, shall be reported on the Discharge Monitoring Report form. Otherwise, report the maximum observed value and the calculated average(s).

f/ After two and one-half (2.5) years or a minimum of ten (10) valid data points have been collected, the permittee may request that the frequency of monitoring for this effluent characteristic be reduced to quarterly or eliminated based on a reasonable potential analysis of the data collected since the permit was issued. The reasonable potential analysis shall be done using all of the data collected to calculate a maximum projected effluent value at a 95%ile with a 95 percent confidence interval for a lognormal distribution using the EPA Technical Support Document for Water Quality Based Toxics Control EPA/505/2-90-001 March 1991. Based on the information submitted, the permit issuing authority may not make any change in the monitoring frequency, reduce the frequency of monitoring to quarterly or delete the monitoring requirement for that effluent characteristic. This change may be made without going to public notice.

g/ For cyanide, the acute standard is in the form of "free" cyanide concentrations. However, there is no analytical procedure for measuring the concentration of free cyanide in a complex effluent. Therefore, ASTM (American Society for Testing and Materials) analytical procedure D2036-81, Method C, will be used to measure weak acid dissociable cyanide in the effluent. This analytical procedure will detect free cyanide plus those forms of complex cyanide that are most readily converted to free cyanide.

h/ See Part 1.3.2.2 of the Permit for WET monitoring requirements.
Monitoring Location Study

The permittee has an opportunity to utilize a substitute monitoring location at the Denver Water Recycled Water Plant located near 58th and York St. Since the proposed discharge to Lower Derby Lake will consist of the same recycled water produced here the permittee may be able to establish a statistical correlation between data collected at both the current proposed monitoring location at the Dechlorination Facility and the Denver Water Facility for some of the pollutants which are not expected to significantly change in concentration at the two locations, e.g. metals.

A Monitoring Study provision has been added to the permit which allows the permittee to submit a monitoring study plan (Plan) to EPA demonstrate whether a high confidence statistical correlation exists between the two monitoring locations. The Plan shall identify the pollutant(s), alternate monitoring location(s) proposed, frequency of sampling dates and times, laboratory analytical methods, method detection and reporting levels, quality control measures, and statistical methodology for data analysis and conclusions. The Plan shall follow Clean Water Act Methods under 40 CFR Part 136. Substitution of alternate methods is not permitted under the Plan.

Once completed, the permittee may submit a request to change the compliance monitoring location to the alternate location at the Denver Water Recycled Water Plant. The request must include all laboratory data reports, calculations, and conclusions of the study to EPA for consideration. If the request is granted by EPA, the permit may be changed to include the alternate compliance monitoring location without further public notice.

Endangered Species Act (ESA) Requirements

Section 7(a) of the Endangered Species Act requires federal agencies to insure that any actions authorized, funded, or carried out by an Agency are not likely to jeopardize the continued existence of any federally-listed endangered or threatened species or adversely modify or destroy critical habitat of such species.

This project has already undergone formal consultation with the Fish and Wildlife Service with a final Programmatic Biological Opinion (PBO) issued in 1996 for the U.S. Army and supplemented with a final Biological Opinion in 2013 for the Services.

This permit action will not result in any new construction or change any conditions which may affect any listed or endangered species in a manner not consistent with the issued BOs.

The 2013 Biological Opinion supplement is contained in the Administrative Record for the draft permit.

National Historic Preservation Act (NHPA) Requirements

Section 106 of the National Historic Preservation Act (NHPA), 16 U.S.C. § 470(f) requires that federal agencies consider the effects of federal undertakings on historic properties. The EPA has evaluated its issuance of the NPDES permit for the US Fish and Wildlife Service RMA to assess this action’s potential effects on any listed or eligible historic properties or cultural resources. The EPA does not anticipate any impacts on listed/eligible historic properties or cultural resources because this permit is a renewal and will not be associated with any significant ground disturbance or significant changes to the volume or point of discharge.
Miscellaneous

The permit will be issued for a period of approximately 5 years, but not to exceed 5 years, with the permit effective date and expiration date determined at the time of permit issuance.

Permit drafted by Bruce Kent, 8P-W-WW, EPA Region 8, August 1, 2013.

Permit reviewed by Robert D Shankland, SEE, 8P-W-WW, EPA Region 8 August 6, 2013 and November 25, 2014.

Revised November 21, 2014 and January 5, 2015 Bruce Kent 8P-W-WW

Changes: Antidegradation Alternatives Analysis, Zinc and Manganese Limits, Deleted Monitoring Requirements for Aluminum, Chromium (Trec), Iron; Continuous Monitoring TRC; Monitoring Location Study.

Public Comments and Changes to Permit

No comments received. No changes made to permit or Statement of Basis.

Bruce Kent March 5, 2015