CO₂ SPARGING PHASE 1 FULL-SCALE IMPLEMENTATION AND MONITORING REPORT

Revision 1

LCP CHEMICALS SITE, BRUNSWICK, GA

Prepared for Honeywell

Prepared by:

Mutch Associates, LLC

360 Darlington Avenue

Ramsey, NJ 07446

In collaboration with:

Parsons

3577 Parkway Lane, Suite 100

Norcross, GA 30309

June 20, 2014

EXECUTIVE SUMMARY

In-situ carbon dioxide (CO₂) sparging was designed and implemented to treat a subsurface caustic brine pool (CBP) formed by historical production of industrial chemicals at the LCP Chemicals Site, Brunswick, GA (Site). Phase 1 of CO₂ sparging was conducted in accordance with the "CO₂ Sparging Work Plan, LCP Chemicals Site, Brunswick, GA" dated April 24, 2013 (Sparging Work Plan) and approved by the U.S. Environmental Protection Agency (EPA). The CBP is being addressed under an Administrative Settlement Agreement and Order on Consent (AOC), which was entered into between Honeywell and EPA on April 18, 2007. The remedial action objectives (RAOs) that are defined in the AOC and include: 1) reducing the pH of the CBP to between 10 and 10.5 and 2) reducing the density of the CBP.

As set forth in the EPA-approved Sparging Work Plan, the technical objectives of Phase 1 of full-scale sparging include:

- Reduce pH as determined by measured pH in deep Satilla monitoring wells;
- Determine the average radius of influence (ROI) of sparging to develop a technical approach for Phase 2 of CO₂ sparging;
- Determine the optimal sparging regimen to maximize CO₂ utilization efficiency; and
- Reduce mercury (Hg) concentrations as determined by comparison of pre- and post-sparging concentrations in mid and deep Satilla monitoring wells.

All of these objectives were met during Phase 1.

Well Network and Sparge Protocol

Sixty four (64) sparge wells were installed at an initial coarse grid spacing of 80 ft as described in the Work Plan. In addition, 15 shallow piezometers were installed to supplement the existing shallow Satilla monitoring wells to measure water depth during sparging.

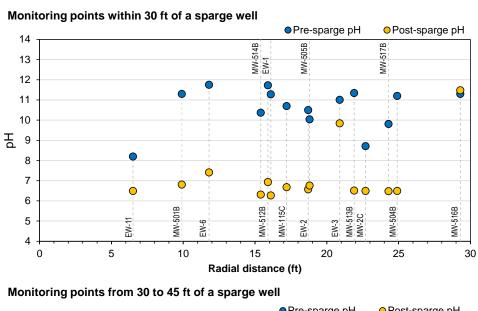
The position of the 80-ft grid relative to the Site was adjusted to maximize the number of deep Satilla monitoring points within 15 to 30 ft of a sparge well. The final radial distances had three monitoring points within 15 ft of a sparge well, twelve monitoring points between 15 and 30 ft of a sparge well, and thirteen monitoring points between 30 and 40 ft of a sparge well. These monitoring points were critical in evaluating treatment effectiveness and determining the sparging ROI.

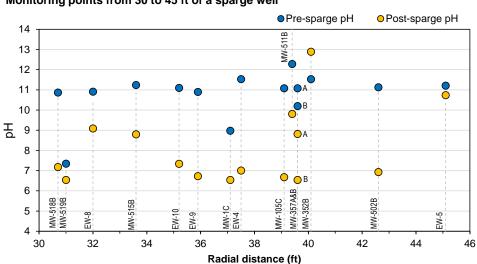
Prior to and following CO₂ sparging, all deep, mid, and shallow Satilla wells within the treatment area and seven deep Satilla wells outside the treatment area were sampled to provide baseline and post-

sparge groundwater quality data. Pre-sparge pH in the deep Satilla within the 8-acre treatment footprint varied from 7.35 to as high as 12.28 (MW-511B). The majority of pH values in the deep Satilla were pH > 10.5, consistent with historical data. The lower pH values were the result of sparging during the Proof of Concept Test. Pre-sparge pH in the mid Satilla varied from 6.09 to 11.56, with many values above pH 9.0. The mid Satilla depth interval represents a transition from dense, high pH water in the deep Satilla to neutral pH water in the shallow Satilla.

Sparging Activity

Sparging was initiated on November 8, 2013 with the use of a portable system to commission individual sparge wells; the portable system was used for this purpose though November 21, 2013. Sparging with the primary system was initiated on November 18 and continued through February 13, 2014. The Work Plan proposed the use of three regimens to evaluate treatment effectiveness and efficiency of CO₂ use. These regimens are reported in the work plan as A, B and C. However, in an effort to more rapidly assess treatment effectiveness, a fourth regimen, Regimen D, was also employed whereby wells were sparged twice per week.


All 64 sparge wells were used to inject CO_2 . The average flow rate per well varied from 10.6 standard cubic feet per minute (scfm) (SW-53) to 51.1 scfm (SW-65). The average flow rate for all sparge wells was 28.3 scfm.


Changes in pH

The pH of groundwater was measured throughout the sparging program in all monitoring points (monitoring wells and extraction wells) within the sparging footprint. In many deep Satilla monitoring points, pH changes were evident within the first few sparge events. In others, a gradual pH decrease was observed after each successive event, with the well eventually reaching pH ≤ 7.5 . A few deep Satilla monitoring points showed a temporary increase in pH during sparging to above pre-sparge values, followed by a decrease in pH upon continued sparging. Only two deep Satilla monitoring points showed relatively little influence from sparging.

A summary of the pre-and post-sparge pH results are shown in the figure below. The post-sparge measurements were made 12 days after the end of sparging. The top panel shows pH in deep Satilla monitoring points over the radial distances ranging from 6.5 ft (EW-11) to 29.3 ft (MW-516B). Within 30 ft, 14 out of 15 points had a post-sparge pH of less than 10.0. The only monitoring point to not reach at least pH 10 was MW-516B, which is 29.6 ft from its nearest sparge well. A large majority of wells within 30 ft (13 out of 15, 87%) reached a pH less than 7.5. The notable exception is EW-3 at 20.9 ft.

The pH in EW-3 declined from a pre-sparge value of 11.01 to as low as 6.61 during sparging, but rebounded to a final post-sparge pH of 9.84. The historic pH in EW-3 has consistently been approximately 11.4 since 2007. The bottom panel shows pH over distances from 30.7 ft (MW-518B) to 45.1 ft (EW-5). The majority of monitoring points within the 30 to 40 ft range also had post-sparge pH values of less than 10, and many had pH values less than 7.5. Most notable was MW-502B, which had a post-sparge pH of 6.93 at a radial distance of 42.6 ft.

Above: Pre-sparge and post-sparge pH for deep Satilla monitoring wells and extraction wells.

Evaluation of Radius of Influence and Sparge Regimens

The Phase 1 post-sparge monitoring results indicated that CO₂ sparging was effective at lowering pH in monitoring points at radial distances varying from 6.5 to 42.6 ft. The ability to influence pH at a

given distance away from a sparge well is affected by the density of gas channels which is a function of the permeability and heterogeneity of the aquifer. A site-specific average ROI, estimated from the Phase 1 sparging data, is critical to the design and implementation of subsequent CO_2 sparging phases. For the purpose of ROI estimation, beneficial effect of sparging was defined as a decrease from pre-sparge pH (i.e. pH = 10.5 to 12) to pH \leq 7.5. Using Maximum Likelihood Estimation (MLE) methods, an average ROI of 32.9 ft was estimated from the post-sparge data for pH and the radial distances from sparge wells to monitoring points. This is considerably larger than the 20 to 24 ft ROI observed during the Proof of Concept Test.

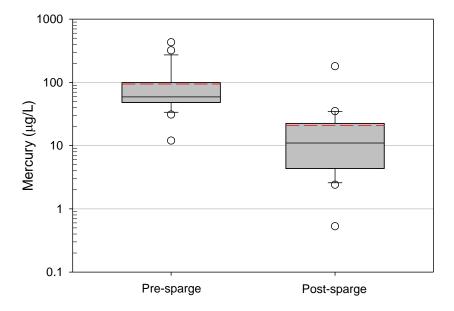
As described above, four separate sparge regimens (Regimen A through D) were evaluated as part of Phase 1 sparging. Conclusions drawn from this analysis include the following:

- Sparging once per week has similar efficiency to once per two weeks and is optimal for scheduling.
- Wells can be sparged multiple times per week, but efficiency decreases slightly.
- Sparging for short bursts (e.g. 1 hour) is not practical because of the loss of well yield over time and the prolonged ramp-up period required for some wells to start taking CO₂.

Based on this evaluation, the optimal sparging regimen was Regimen A (once per week), although a longer break between successive sparge events is acceptable if necessary due to scheduling. Some sparge wells required longer sparge durations of 8 to 24 hours to provide adequate flow.

Evaluation of Efficiency

The efficiency of CO₂ sparging was evaluated by comparing the theoretical CO₂ demand of the CBP with the actual CO₂ mass required to lower the pH to less than 7.5. The CO₂ demand of the CBP was evaluated using the geochemical model PHREEQC v3.0.2 using a typical pre-sparge and post-sparge CBP water chemistry. The CO₂ sparging efficiency was estimated by dividing the modeled CO₂ demand (obtained from the pre-sparge water quality data) by the median mass of CO₂ injected into each sparge well after Phase 1 sparging was complete (9,800 lb):


Sparging efficiency,
$$\eta = \frac{2,800 \text{ lb}}{9,800 \text{ lb}} \times 100\% = 29\%$$

The 29% efficiency is approximately 3-times larger than the efficiency estimated from the Proof of Concept Test (9.7%). The primary reason for this increase is the larger ROI achieved in Phase 1 of sparging. An ROI of 20 ft was assumed in the Proof of Concept Test efficiency estimate. The increase in ROI from 20.0 to 32.9 ft, increases the volume of water treated by 2.7-times compared to the Proof of

Concept Test. Sparging once to twice per week (as compared to sparging day after day as was done in the Proof of Concept Test) allows the residual saturation of CO₂ gas to dissolve into the water. When sparging is stopped, partial collapse of induces local mixing within the ROI as water is forced into spaces once occupied by CO₂. All of these processes increase efficiency of CO₂ sparging with respect to lowering pH by increasing mass transfer of CO₂ into the groundwater.

Changes in Hg Concentrations

Approximately two weeks after Phase 1 sparging, groundwater samples collected from deep Satilla monitoring wells indicated that Hg concentrations were considerably lower within the sparging footprint; 28 out of 30 monitoring points in the deep Satilla showed decreases in Hg after sparging. Many deep Satilla monitoring points (12 out of 30) showed Hg concentrations less than 10 μ g/L. An additional 7 deep Satilla monitoring points (19 out of 30) showed Hg concentrations less than 20 μ g/L. The effect of sparging on Hg is best examined in wells where sparging lowered the pH to less than 7.5 because of the known effect of pH on Hg. In these wells, the average Hg concentration decreased from 94 μ g/L to 21 μ g/L (n = 22), resulting in a decrease of 78%. The median Hg decreased from 59 to 11 μ g/L. This decrease is shown graphically in the figure below as a box plot.

Above: Pre- and post-sparge Hg concentrations in deep Satilla monitoring points where post-sparge pH was less than 7.5. The boundary of the box closest to zero indicates the 25th percentile, a line within the box marks the median, and the boundary of the box farthest from zero indicates the 75th percentile. The error bars above and below the box indicate the 90th and 10th percentiles values. The mean value in each box is indicated by the dashed red line.

Conclusions

A summary of the key results is presented below:

- All of the technical objectives of Phase 1 of CO₂ sparging were met.
- Sparging was effective in reducing the pH of the CBP groundwater. Following Phase 1 of sparging, 14 out of 15 deep Satilla monitoring points within a radial distance of 30 ft from a sparge well had a post-sparge pH < 10.0, and 13 out of 15 monitoring points had a post-sparge pH < 7.5. Many points at distances greater than 30 ft showed significant decreases in pH.</p>
- An average ROI of 32.9 ft was estimated from the pH versus distance data. This is considerably larger than the 20 to 24 ft ROI measured in the Proof of Concept Test.
- The optimal sparging regimen was Regimen A (once per week), although a longer break between successive sparge events is acceptable if scheduling requires it. Some sparge wells required longer sparge durations of 8 to 24 hours to provide adequate flow.
- The efficiency of CO₂ sparging was evaluated by comparing the CO₂ demand of the CBP with the amount of CO₂ mass required to lower the pH to circumneutral and found to be 29%. This efficiency is approximately three times larger than the efficiency estimated from the Proof of Concept Test (9.7%). The presence of residual CO₂ saturation within the aquifer has potential for continued reduction in pH and mercury long after sparging has ceased.
- CO₂ sparging resulted in a significant decline in aqueous-phase Hg concentrations. In monitoring points where post-sparge pH was less than 7.5, the average Hg concentration decreased from 94 μ g/L to 21 μ g/L (n = 22), a decrease of 78%.
- The pre-and post-sparging aquifer testing showed no sharp loss of aquifer transmissivity. The mean of six pre-sparge specific capacities was 0.011 gpm/ft. The mean of ten post-sparge specific capacities measured approximately two weeks after sparging was 0.035 gpm/ft.
- The pre-sparge aquifer testing indicated that the basal Satilla varies in hydraulic conductivity within the CBP from 2 to 17 ft/d, with a mean value of 9.9 ft/d. The Proof of Concept pre-sparging aquifer test had previously measured a hydraulic conductivity of 8.9 ft/d in that area of the CBP.
- A significant fraction of the injected CO₂ remained in the formation as residual CO₂ saturation and was not vented to the atmosphere. The emplacement of CO₂ residual saturation into the Satilla provides a long-term source of pH-neutralization and mercury precipitation for water flowing from upgradient locations. This may also serve as protection against pH rebound.
- As the CO₂ residual saturation dissolves into the surrounding groundwater, a process that could take months or years, aquifer properties such as hydraulic conductivity and storativity should

concomitantly approach pre-sparge levels, except for whatever impact the minimal reduction in porosity may have on these properties. Our experience to date, specifically the Proof of Concept test and these recent post-sparge aquifer tests, does not suggest that these latter impacts are of particular concern.

Recommendations

Based on the above results, the following recommendations are provided for Phase 2:

- Given that the actual average ROI achieved in the Phase 1 full-scale implementation was 32.9 ft, further evaluation of well layout and spacing is warranted. Also, additional pH monitoring scheduled for 5-months post-sparging (refer to the Technical memo *Post-sparge pH monitoring and Geoprobe transects, dated June 20, 2014*) may provide useful information for Phase 2 sparge well placement and implementation within the Phase 1 sparging footprint, and in the area southwest of SW-7.
- A formal sampling round should be conducted approximately 7 months after cessation of Phase 1 sparging to serve as post-sparge monitoring and pre-Phase 2 baseline monitoring.
- The recommended sparging regimen for the next phase of sparging is once per week (Regimen A), however sparging at longer intervals is also acceptable if required.
- Sparge wells should be scheduled for durations longer than 4 hours where necessary to provide adequate mass flows of CO₂.
- An overall mass of at least 8,000 to 9,000 lb of CO₂ per sparge well is required in moderate alkalinity areas, and 1.5 to 2.0 times this amount in high alkalinity area is estimated to be required to meet treatment objectives.

Table of Contents

1	Introduction	on	1-1
	1.1	Site Description	1-1
	1.2	Summary of Proof of Concept Test	
	1.3	Technical Objectives of Phase 1 of Full-scale Sparging	
2	System Con	nstruction	2-1
	2.1	Sparge Well Construction	2-1
	2.1.1	Sparge Well Installation and Development	
	2.1.2	Piezometer Installation	
	2.1.3	Monitoring Well Completions	
	2.2	CO ₂ Storage, Vaporization, and Distribution System	2-3
	2.2.1	Primary System	
	2.2.2	Portable System	2-7
3	Procedures	s and Protocols	3-1
	3.1	Groundwater Sampling	3-1
	3.2	Short-Term Aquifer Testing	
	3.3	Sparge Operations	
	3.3.1	Sequence of Operations	
	3.3.2	Sparge Regimens	
	3.3.3	Maximum Wellhead Pressures	
	3.3.4	Sparge Well Maintenance	3-6
	3.4	Field Measurements During Sparging	
	3.5	Measurement and Calculation of Flowrates and CO ₂ Mass	
	3.6	Monitoring During Sparging	3-9
	3.7	Piezometric Surface and Groundwater Table	3-10
	3.8	Air Monitoring	3-11
4	Results of l	Phase 1 Sparging	4-1
	4.1	Sparge Flow Rates	4-1
	4.2	Effect of Sparging on pH	4-1
	4.2.1	Pre-sparge pH	
	4.2.2	pH Monitoring Results During Sparging	4-2
	4.2.3	pH Results After Four Weeks of Sparging	4-4
	4.2.4	Treatment of High Alkalinity Areas	4-4
	4.2.5	Post-sparge pH Results	4-5
	4.2.6	Effect of Sparging on Coosawhatchie pH	4-7
	4.3	Evaluation of Sparging Radius of Influence	4-7
	4.4	Sparge Well Total Mass	4-9
	4.5	CO ₂ Mass Balance	4-9
	4.6	Evaluation of Sparging Regimens	4-10
	4.7	Efficiency of CO ₂ Sparging	4-11
	4.8	Effect of Sparging on Hg	
	4.8.1	Pre-sparge Hg Results	4-13
	4.8.2	Preliminary Hg Sampling Results	
	4.8.3	Post-sparge Hg Concentrations	
	4.9	Effect of Sparging on Additional Geochemical Parameters	
	4.9.1	Effect of Sparging on Silica	4-17

	4.9.2	Effect of Sparging on Total Dissolved Solids (TDS)	4-18				
4.9.3		Effect of Sparging on Specific Gravity	4-19				
	4.9.4						
	4.10	Effect of Sparging on Monitoring Wells West of Sparging Footprint	4-21				
	4.11						
4.12		Analysis of Pre- and Post-Short-Term Aquifer Tests	4-24				
	4.12.						
	4.12.2						
	4.12.3						
	4.12.4						
	4.12.5						
	4.12.0						
	4.12.7						
	4.12.8						
	4.12.9						
	4.12.						
	4.12.	Summary of Pre- and Post-Sparging Aquifer Testing Results	4-33				
5	Conclusi	ons and Recommendations	5-1				
	5.1	Conclusions	5-1				
	5.2	Recommendations	5-2				
6	Reference	QC	6-1				
U	Reference	Effect of Sparging on Arsenic and Chromium	U-1				
Δn	pendix A.	Raring Lags/Well Construction Diagrams					
Дþ	pendix A.	Bornig Logs/ Wen Construction Diagrams					
Ap	pendix B.	Well Development Logs					
	11 G	n:					
Ap	pendix C.	Plezometer Construction Diagrams					
Appendix D.		Purge Logs					
Appendix E. S		Sparging Flow Rates and Masses					
۸n	pendix F.	in Quality Data					
љр	penuix r.	All Quality Data					
Ap	pendix G.	Laboratory Analytical Data					
Ap	pendix H.	Hydrographs for Monitoring Wells During Aquifer Testing					

LIST OF TABLES

Table 3-1	Monitoring Points for Phase 1 CO ₂ Sparging
Table 3-2	Water Quality Analytes and Associates Laboratory Methods
Table 3-3	Summary of Treatment Regimens
Table 3-4	Calculated Minimum Pneumatic Fracture Initiation Pressure for Phase 1 Sparge Wells
Table 3-5	Summary of Air Monitoring Results
Table 4-1	Summary of Pre- and Post-sparge pH in deep Satilla Monitoring Points Within the Sparging Footprint
Table 4-2:	Summary of pH Data Collected in Monitoring Wells Screened in the Coosawhatchie
Table 4-3	Summary of Intervals Used for the Maximum Likelihood of Estimation of Average Radius of Influence
Table 4-4	Prototypical Pre- and Post-Sparge CBP Water Chemistries
Table 4-5	Summary of Preliminary Mercury Sampling Results After Three Weeks of Sparging
Table 4-6	Summary of Pre- and Post-sparge pH in Deep Satilla Monitoring Points Within the Sparging Footprint
Table 4-7	Summary Statistics for Constituents in Deep Satilla Monitoring Points Where pH was Lowered to Less Than 7.5
Table 4-8	Pre- and Post-Sparge Specific Gravity
Table 4-9	Difference in Water Levels in Selected Well Pairs
Table 4-10	Pre- and Post-Sparge Aquifer Test Summary for SW-4
Table 4-11	Pre- and Post-Sparge Aquifer Test Summary for SW-11
Table 4-12	Pre- and Post-Sparge Aquifer Test Summary for SW-22
Table 4-13	Pre- and Post-Sparge Aquifer Test Summary for SW-30
Table 4-14	Pre- and Post-Sparge Aquifer Test Summary for SW-33
Table 4-15	Pre- and Post-Sparge Aquifer Test Summary for SW-43
Table 4-16	Pre- and Post-Sparge Aquifer Test Summary for SW-46
Table 4-17	Pre- and Post-Sparge Aquifer Test Summary for SW-59
Table 4-18	Pre- and Post-Sparge Aquifer Test Summary for SW-61
Table 4-19	Pre- and Post-Sparge Aquifer Test Summary for SW-63

LIST OF FIGURES

Figure 1-1	Site location map.
Figure 1-2	Contours of pH showing the location of the CBP in 2012.
Figure 1-3	Conceptual model of CO ₂ sparging.
Figure 2-1	Location of 64 sparge wells installed as part of phase 1 of CO ₂ sparging.
Figure 2-2	Monitoring well network used to evaluate performance of phase 1 of CO ₂ sparging.
Figure 2-3	Sparge well distances to nearest monitoring points (monitoring wells and extraction wells).
Figure 2-4	Locations of piezometers installed as part of Phase 1 CO ₂ sparging.
Figure 2-5	Locations of mid and shallow Satilla monitoring wells.
Figure 2-6	Typical monitoring well completion (shown for MW-1C).
Figure 2-7	Site operations plan.
Figure 2-8	Process & instrumentation diagram.
Figure 4-1	Average flow rates for the 64 Phase 1 sparge wells.
Figure 4-2	Pre-sparge pH in deep Satilla monitoring wells and extraction wells (data from Aug/Sept 2013).
Figure 4-3	Pre-sparge pH in mid Satilla monitoring wells (data from Aug/Sept 2013).
Figure 4-4	Pre-sparge pH in sparge wells (data from August 2013).
Figure 4-5	CO_2 flow, mass and pH as a function of time for EW-11 (6.5 ft from SW-26) and MW-501B (9.9 ft from SW-63).
Figure 4-6	CO_2 flow, mass and pH as a function of time for EW-6 (11.8 ft from SW-58) and MW-514B (15.4 ft from SW-61).
Figure 4-7	CO_2 flow, mass and pH as a function of time for MW-512B (15.9 ft from SW-30) and EW-1 (16.1 ft from SW-62).
Figure 4-8	CO_2 flow, mass and pH as a function of time for MW-115C (17.2 ft from SW-37) and EW-2 (18.7 ft from SW-35).
Figure 4-9	CO_2 flow, mass and pH as a function of time for MW-505B (18.8 ft from SW-33) and EW-3 (20.9 ft from SW-44).
Figure 4-10	CO ₂ flow, mass and pH as a function of time for MW-513B (21.9 ft from SW-59) and MW-2C (22.7 ft from SW-37).

- Figure 4-11 CO₂ flow, mass and pH as a function of time for MW-517B (24.3 ft from SW-27) and MW-504B (24.9 ft from SW-43).
- Figure 4-12 CO₂ flow, mass and pH as a function of time for MW-516B (29.3 ft from SW-11) and MW-518B (30.7 ft from SW-4).
- Figure 4-13 CO₂ flow, mass and pH as a function of time for MW-519B (31.0 ft from SW-26) and EW-8 (32.0 ft from SW-30).
- Figure 4-14 CO₂ flow, mass and pH as a function of time for EW-10 (35.2 ft from SW-19) and MW-515B (33.6 ft from SW-28).
- Figure 4-15 CO₂ flow, mass and pH as a function of time for EW-9 (35.9 ft from SW-5) and MW-1C (37.1 ft from SW-372).
- Figure 4-16 CO₂ flow, mass and pH as a function of time for EW-4 (37.5 ft from SW-53) and MW-105C (39.1 ft from SW-46).
- Figure 4-17 CO₂ flow, mass and pH as a function of time for MW-511B (39.4 ft from SW-228) and MW-357A (39.6 ft from SW-13).
- Figure 4-18 CO₂ flow, mass and pH as a function of time for MW-357B (39.6 ft from SW-5) and MW-352B (40.1 ft from SW-62).
- Figure 4-19 CO₂ flow, mass and pH as a function of time for MW-502B (42.6 ft from SW-45) and EW-5 (45.1 ft from SW-23).
- Figure 4-20 Bubble plot of monitoring well pH after 4 weeks of sparging versus distance. Size of bubbles indicate the mass of CO₂ injected at nearest sparge well.
- Figure 4-21 Pre-sparge alkalinity data for deep Satilla monitoring points (data from Aug/Sept 2013).
- Figure 4-22 Probability distribution of pre-sparge alkalinity in deep Satilla monitoring wells and extraction wells (data from Aug/Sept 2013).
- Figure 4-23 Pre-sparge and post-sparge pH for deep Satilla monitoring wells and extraction wells.
- Figure 4-24 Post-sparge pH in deep Satilla monitoring wells (data from Feb/March 2014).
- Figure 4-25 Post-sparge pH in mid Satilla monitoring wells (data from Feb/March 2014).
- Figure 4-26 Post-sparge pH in sparge wells (data from Feb 2014).
- Figure 4-27 Fit of radius of influence intervals to a normal cumulative distribution function (CDF).
- Figure 4-28 CO₂ mass per well for the 64 Phase 1 sparge wells.
- Figure 4-29 Pre-sparge mercury in deep Satilla monitoring points (data from Aug/Sept 2013).
- Figure 4-30 Pre-sparge mercury in mid Satilla monitoring points (data from Aug/Sept 2013).
- Figure 4-31 Post-sparge mercury in deep Satilla monitoring points (data from Feb/Mar 2014).

- Figure 4-32 Pre-and post-sparge mercury concentrations in deep Satilla monitoring points where post-sparge pH was less than 7.5.
- Figure 4-33 Post-sparge mercury in mid Satilla monitoring points (data from Feb/Mar 2014).
- Figure 4-34 Mercury versus pH relationship for deep Satilla monitoring points.
- Figure 4-35 Pre-sparge silica in deep Satilla monitoring points (data from Aug/Sept 2013).
- Figure 4-36 Post-sparge silica in deep Satilla monitoring points (data from Feb/Mar 2014).
- Figure 4-37 Silica versus pH for deep Satilla monitoring points.
- Figure 4-38 Pre-sparge TDS in deep Satilla monitoring points (data from Aug/Sept 2013).
- Figure 4-39 Post-sparge TDS in deep Satilla monitoring points (data from Feb/Mar 2014).
- Figure 4-40 Comparison of historical and Phase 1 pH results for MW-503B, MW-510B and MW-508B.
- Figure 4-41 Comparison of historical and Phase 1 pH results for MW-112C, MW-113C and MW-538B.
- Figure 4-42 Water elevation in PZ-63 in response to SW-63, 3.4 feet away, on January 15, 2014.
- Figure 4-43 Piezometric surface elevation in MW-2C in response to SW-37 on January 28, 2014.
- Figure 4-44 Piezometric surface elevation in MW-2C on December 5, 2013 with sparge wells operating within 105 feet.
- Figure 4-45 MW-501B and MW-503B well pair hydrograph.
- Figure 4-46 MW-508B and MW-513B well pair hydrograph.
- Figure 4-47 MW-516B and MW-112C well pair hydrograph.
- Figure 4-48 SW-4 pre- and post-sparge aquifer test monitoring well transducer drawdown plot.
- Figure 4-49 SW-11 pre- and post-sparge aquifer test monitoring well transducer drawdown plot.
- Figure 4-50 SW-22 pre- and post-sparge aquifer test monitoring well transducer drawdown plot.
- Figure 4-51 SW-22 pre-sparge aquifer test Theis match point analysis.
- Figure 4-52 SW-30 pre- and post- sparge aquifer test monitoring well transducer drawdown plot
- Figure 4-53 SW-30 pre-sparge aquifer test Theis match point analysis.
- Figure 4-54 SW-33 pre- and post- sparge aquifer test monitoring well transducer drawdown plot.
- Figure 4-55 SW-43 pre- and post- sparge aquifer test monitoring well transducer drawdown plot.
- Figure 4-56 SW-43 pre-sparge aquifer test Theis match point analysis.
- Figure 4-57 SW-46 pre- and post- sparge aquifer test monitoring well transducer drawdown plot.

Figure 4-58	SW-59 pre- and post- sparge aquifer test monitoring well transducer drawdown plot.
Figure 4-59	SW-61 pre- and post- sparge aquifer test monitoring well transducer drawdown plot.
Figure 4-60	SW-63 pre- and post- sparge aquifer test monitoring well transducer drawdown plot.
Figure 4-61	SW-63 pre-sparge aquifer test Theis match point analysis.

LIST OF ACRONYMS

Alk Alkalinity

AOC Agreement and Order of Consent **Atlantic Refining Company** ARCO Below ground surface bgs Below top of casing btoc Caustic brine pool **CBP** CO_2 Carbon dioxide CO_3^{2-} Carbonate ion Cr(III) Trivalent chromium Cr(VI) Hexavalent chromium DOC Dissolved organic carbon **DOM** Dissolved organic matter

EPA Environmental Protection Agency

EW Extraction Well

ft Feet

ft/d Feet per day gpm Gallons per minute

Hg Mercury

HDPE High-density polyethylene

lb Pounds

LCP Linden Chemicals and Plastics
MLE Maximum Likelihood Estimation

MW Monitoring Well

NTU Nepholometric Turbidity Unit ORP Oxidation Reduction Potential PID Photoionization Detector psi Pounds per square inch

psia Pounds per square inch – absolute psig Pounds per square inch – gauge

PVC Poly vinyl chloride

PZ Piezometer

RAO Remedial Action Objective
RI Remedial Investigation
ROI Radius of influence
SC Specific conductivity

scfm Standard cubic feet per minute

SW Sparge Well

TDS Total dissolved solids
TSS Total suspended solids

µg/L Microgram per Liter

VFD Variable frequency drive

1 INTRODUCTION

Mutch Associates, LLC, in collaboration with Parsons Corporation (Parsons), have prepared this report of Phase 1 of CO₂ sparging at the LCP Chemicals Site in Brunswick, Georgia. (Site) Phase 1 of CO₂ sparging was conducted in accordance with the "CO₂ Sparging Work Plan, LCP Chemicals Site, Brunswick, GA" dated April 24, 2013 (Sparging Work Plan) (Mutch Associates and Parsons, 2013a). Formal approval of the Sparging Work Plan was granted by the U.S. Environmental Protection Agency (EPA) on May 1, 2013. Sparging was designed to remediate a subsurface caustic brine pool (CBP) formed by historical production of industrial chemicals on the site. The CBP is being addressed under an Administrative Settlement Agreement and Order of Consent (AOC) entered into between EPA and Honeywell on April 18, 2007. The remedial action objectives (RAO) were defined in the AOC and included reducing the pH of the CBP to between 10 and 10.5 and reducing the density of the CBP.

This report is organized in the following manner:

- Section 2 Describes the sparge well installation and sparge system construction;
- Section 3 Describes the specific procedures and protocols employed during sparging;
- Section 4 Presents the results of sparging on pH, total dissolved solids and mercury (Hg), along with an analysis of radius of influence, sparging effectiveness and efficiency and groundwater levels; and
- Section 5 Conclusions and recommendations.

1.1 Site Description

The Site is located at 4125 Ross Road,¹ in the City of Brunswick, in Glynn County, Georgia, and is bordered by the Turtle River marshes to the west and south and the urban populations of Brunswick to the north and east. The Site encompasses approximately 813 acres, of which 684 acres are tidally influenced salt marsh. A Site location map is provided in Figure 1-1.

Industrial operations were conducted by multiple parties from approximately 1919 until 1994. The site was originally owned and operated by the Atlantic Refining Company (ARCO) who operated a petroleum refinery from 1919 until 1930 and a petroleum storage facility until approximately 1955. Portions of the site were also owned by Georgia Power Company and the Dixie O'Brien Paint Company.

¹ We understand that a site address was developed as part of the County's upgrade to its 911-emergency system.

In 1955, the property was purchased by Allied Chemical, Inc. (Allied). From 1956 to 1979, chlorine, hydrochloric acid, and sodium hydroxide were produced by Allied by the electrolysis of sodium chloride using Hg cells (the chlor-alkali chemical manufacturing process). In 1979, LCP Chemicals purchased the property and continued to operate the chlor-alkali process until they ceased operations in 1994. Honeywell (formerly Allied) repurchased most of the property that constitutes the Site in 1998 and currently still owns most of the property (a portion of the uplands was sold to the County several years ago for site redevelopment into a jail complex).

During chemical production activities at the Site, a portion of the shallow aquifer was contaminated by residuals of chlor-alkali-manufacturing operations. A subsurface CBP formed. The CBP is characterized by elevated pH, total dissolved solids, and concentrations of dissolved metals. This CBP is defined in the AOC as groundwater with a pH above 10.5. Figure 1-2 shows the location and extent of the CBP based on pH data collected in 2012.²

1.2 Summary of Proof of Concept Test

Full-scale CO₂ sparging was preceded by a Proof of Concept Test. The Proof of Concept Test was conducted from October 29, 2012 to November 17, 2012 in accordance with the "Final Work Plan for CO₂ Sparging Proof of Concept Test, LCP Chemicals Site, Brunswick, GA" dated September 11, 2012 (Proof of Concept Test Work Plan) (Mutch Associates, 2012). Formal approval of the Proof of Concept Test Work Plan was granted in a letter from EPA on September 10, 2012. The Proof of Concept Test was designed to evaluate the feasibility of CO₂ sparging to remediate the CBP in order to meet the objectives of the AOC.

Key observations from the Proof of Concept Test that are relevant to the design and implementation of full-scale sparging, as described in the Proof of Concept report (Mutch Associates and Parsons, 2013b) are:

1. Significant pH reductions from pH 11-12 in the deep Satilla were achievable in 5 to 7 days sparging at circa 50 standard cubic feet per minute (scfm).

² The mapping of the CBP (Figure 1-2) was created by kriging pH data from deep Satilla monitoring wells (MW series) from the May/June 2012 monitoring event, supplemented with data from September 2011 for extraction wells (EW series). For most wells, field pH values were used for the mapping. The only exceptions were MW-357A, MW-357B, MW-512B and MW-516B, where laboratory pH was conservatively used because field pH was considerably lower than historic values. Well MW-113C was not included in kriging because of poor resolution in this area of the site.

- 2. A radius of influence (ROI) of at least 20 ft was achieved in the deep Satilla and greater than 60 ft at the water table surface.
- 3. Hg levels in the high pH CBP waters fully-impacted by the sparging declined from 110-120 μ g/L to 11-33 μ g/L (70 to 90% reductions).
- 4. During sparging, significant mounding of the potentiometric surface was observed. Shallow Satilla wells within the 20-ft radius of sparge wells increased to within 1 foot of the ground surface.
- 5. Significant rebound of pH or Hg was not observed based on results from groundwater monitoring conducted 3 months after completion of sparging.

The Proof of Concept Test indicated that CO₂ sparging is an effective, innovative technology, suitable for full-scale implementation at the Site (Figure 1-3). Observations made during testing further indicated that full-scale implementation of CO₂ sparging should be conducted over a multiple-year, sequential effort. The principal drivers for this sequential implementation would be:

- Management of groundwater mounding caused by superposition of multiple, closely-spaced sparge wells; and
- Maximization of sparging efficiency.

The Proof of Concept Test indicated that managing groundwater mounding during full-scale implementation would be critical as mounding during the test was substantial. The groundwater table rose to within 1 foot of the ground surface during the testing. This potential for mounding could be exacerbated by superposition of mounding from multiple nearby sparging wells and by seasonal rises of the groundwater table. Moreover, in some areas of the CBP, the water table is even closer to the surface than at the test site. These factors could impose a practical limit on the spacing of wells and the number of wells that could be sparged simultaneously. Conducting the implementation over multiple years would allow active sparge wells to be further apart, thereby reducing the superposition of groundwater mounding. The optimal time for sparging would be when the groundwater table is at its lowest, during the drier summer and early fall months.

The Proof of Concept Test suggested that CO₂ sparge efficiency could be enhanced by a sparge regimen that emphasizes short bursts of sparging (anywhere from ½ to 4 hrs.) followed by rest periods. The rest periods would allow CO₂ gas residual saturation remaining in the formation to both dissolve and diffuse into the surrounding CBP waters. The Proof of Concept Report concluded that during the first year of sparging, different sparge regimens should be tested in an effort to optimize sparge efficiency.

The Proof of Concept results also showed that the pH reached target levels in the deep Satilla at least 20 ft away from sparge well MW-1C (Mutch Associates and Parsons, 2013b). This indicated an effective ROI of at least 20 ft in the deep Satilla. Modest decreases in pH in deep Satilla wells were observed at radial distances greater than 20 ft, indicating some consumption of CO₂ demand. The ROI in the intermediate and shallow Satilla was significantly larger than 20 ft. For example, gas channels extended all the way from MW-1C to MW-517A, which is a distance of approximately 100 ft away. Therefore, there was some uncertainty regarding the ROI that would be achieved during full-scale implementation. The Proof of Concept report indicated that further evaluation of ROI could be achieved by using an initial coarse grid spacing for sparge wells during the first year of sparging, followed by filling in with a denser well spacing for Years 2+ based on observed results.

1.3 Technical Objectives of Phase 1 of Full-scale Sparging

As described in the EPA-approved Sparging Work Plan (Mutch Associates and Parsons, 2013a), the technical objectives of Phase 1 of full-scale sparging include:

- Reduce pH as determined by measured pH in deep Satilla monitoring wells;
- Determine the average ROI of sparging to develop a technical approach for Phase 2 of CO₂ sparging;
- Determine the optimal sparging regimen to maximize CO₂ utilization efficiency; and
- Reduce Hg concentrations as determined by comparison of pre- and post-sparging concentrations in mid and deep Satilla monitoring wells.

Data collected during Phase 1 sparging is compiled and evaluated in this report. Specifically, this report contains the following information on Phase 1 of CO₂ sparging:

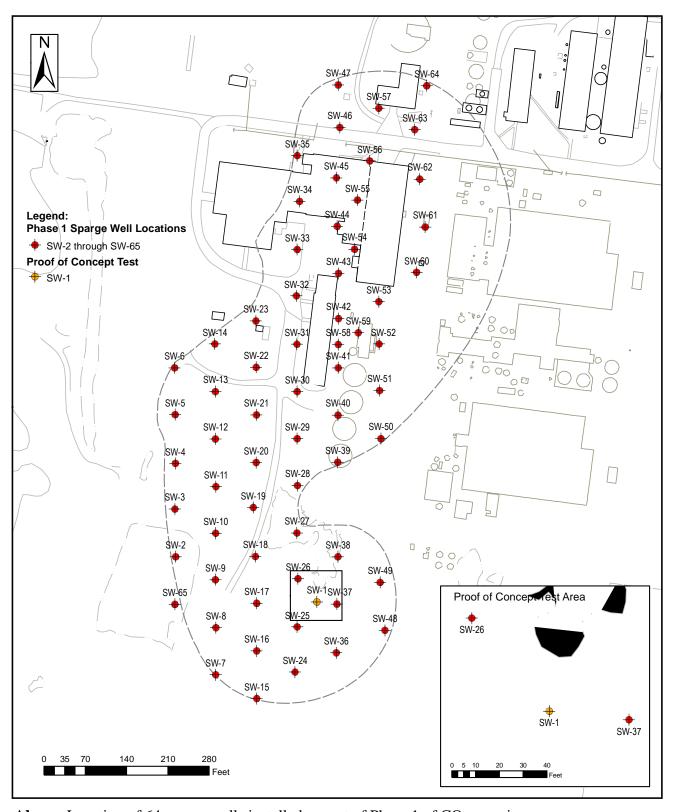
- A description of the installed CO₂ injection and distribution system, including boring / well construction logs;
- A tabular summary of injection activities at each well, including mass of CO₂ injected per event;
- Changes in pH observed in the monitoring well network;
- Pre- and post-sparge groundwater monitoring results of other constituents;
- An assessment of the overall effectiveness of the Phase 1 sparging effort, including evaluation of ROI and CO₂ efficiency of use;
- An assessment of the relative effectiveness of the four sparging regimens; and
- Recommendations regarding the next phase of sparging activities.

2 SYSTEM CONSTRUCTION

2.1 Sparge Well Construction

2.1.1 Sparge Well Installation and Development

As shown below and on Figure 2-1, 64 sparge wells were installed at an initial coarse grid spacing of 80 ft for the first phase of full-scale implementation. The initial 80-ft coarse grid spacing was selected to provide flexibility for well placement in the following years because it can accommodate a final spacing of either 40 or 46 ft (Mutch Associates and Parsons, 2013a).


One of the technical objectives of Phase 1 of sparging was to determine sparging ROI. Therefore, the position of the 80-ft grid relative to the site was adjusted to maximize the number of deep Satilla monitoring points within 15 to 30 ft of a sparge well³. The resulting location of sparge wells relative to deep Satilla monitoring points is shown in Figure 2-2; the final radial distances between sparge wells and monitoring points is shown in Figure 2-3. A summary of this distribution is provided below:

- Three monitoring points are within 15 ft of a sparge well;
- Twelve monitoring points are between 15 and 30 ft of a sparge well;
- Thirteen monitoring points are between 30 and 40 ft of a sparge well; and
- Two monitoring points are at radial distances greater than 40 ft.

The sparge wells were installed between July 23 and August 13, 2013. During installation, several wells had to be relocated due to physical impediments to installing wells at the regular grid spacing (Figure 2-1). Notable relocations included:

- Sparge wells SW-54, SW-55, and SW-56 were moved west of the originally anticipated locations, away from an elevated pad;
- Sparge well SW-65 was moved to the southwest corner of the site, based on subsurface obstructions at the originally anticipated location between SW-62 and SW-63; and
- Sparge wells SW-58 and SW-59 were moved to the EW-6 area, away from the groundwater treatment plant infiltration galleries.

³ Throughout this report the term "radial distance" is used to describe the distance from sparge well to the nearest monitoring point. A monitoring point refers to monitoring wells (MW) and extraction wells (EW) in the Satilla aquifer.

Above: Location of 64 sparge wells installed as part of Phase 1 of CO₂ sparging.

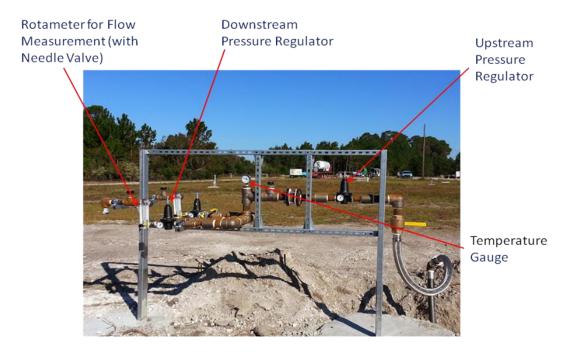
Sparge wells were constructed with 2 ft of 2-inch diameter, 0.010-inch slotted Schedule 40 PVC screen with a 2-inch Schedule 40 PVC riser. In general, the well screen was set at the top of the variably cemented sandstone which forms the base of the Satilla, except where a clay stratum was encountered directly above the variably cemented sandstone, in which case the boring was grouted (95% Type 2 Portland / 5% bentonite) to the top of clay, with the screen being set just above the clay. Well construction was completed with a 20/30 sand pack to 2 ft above the top of screen, followed by a 2-ft bentonite seal, and cement grout to the surface. Boring logs / well construction diagrams are included in Appendix A.

Following installation, the sparge wells were developed by removing an average 70 gallons of water with the goal of achieving a turbidity of 50 Nephelometric Turbidity Units (NTU). During well development, yields less than 0.5 gallons per minute (gpm) were observed in a number of sparge wells; these wells were surged with a surge block to improve yield. Final yields and water quality data obtained during well development are included in the summary table provided in Appendix B.

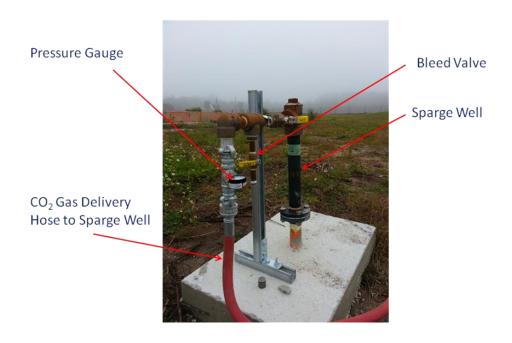
2.1.2 Piezometer Installation

Consistent with the EPA-approved Sparging Work Plan, 15 shallow piezometers were installed at the locations shown on Figure 2-4 to supplement the existing shallow Satilla monitoring wells (Figure 2-5) to measure water depth during sparging. Piezometers were constructed with 5 ft of 2-inch diameter, 0.010-inch slotted Schedule 40 PVC screen with a 2-ft PVC riser. Piezometer construction was completed with a 20/30 sand pack to 0.5 ft above the top of screen, followed by a 0.5-ft bentonite seal, and cement grout to the surface. Piezometer construction diagrams are included in Appendix C.

2.1.3 Monitoring Well Completions


To reduce the potential for groundwater surfacing, threaded plugs were installed on all monitoring wells within the sparge zone to contain the rise of water. Mid and shallow Satilla monitoring wells are shown in Figure 2-5. The monitoring wells were outfitted with fittings and ports to allow for instrumentation cables and manual pressure measurements (Figure 2-6).

2.2 CO₂ Storage, Vaporization, and Distribution System


2.2.1 Primary System

Consistent with the EPA-approved Sparging Work Plan, equipment to store, vaporize, and distribute CO₂ to each of the 64 sparge wells was installed at the site between October 7, 2013 and

November 22, 2013. A Site Operations Plan is provided as Figure 2-7; a system P&ID is provided as Figure 2-8; various system components are illustrated below.

Above: Photo showing a typical distribution panel. **Below:** Photo showing typical sparge wellhead installation.

Storage and vaporization equipment was installed by the vendor (Airgas Carbonic) on an existing elevated pad, including two 50-ton refrigerated bulk tanks for liquid CO₂ storage, two 105-kw process vaporizers to convert liquid CO₂ to gaseous form, pressure regulators to reduce CO₂ line pressures from 300 psi to a field delivery pressure of approximately 50 psi, a trim heater to compensate for temperature drop through the pressure regulator and to adjust the final temperature of the gaseous CO₂, a flow meter, a low temperature shut-off valve, and other instrumentation and controls. The bulk storage tanks were equipped with a telemetry system to transmit tank level data to the vendor to schedule CO₂ deliveries. Following installation of the CO₂ system, a performance test was conducted that confirmed a CO₂ gas generation capacity of greater than 550 scfm.

Equipment installed for the distribution system included distribution piping, distribution panels, portable hoses, and instrumentation. As shown on Figure 2-7 and Figure 2-8, the distribution piping consisted of a 4-inch main line with eight 2-inch lateral lines. Distribution piping in the northern portion of the site, where there are former building slabs, was on-grade carbon steel. Distribution piping in the southern portion of the site was buried high-density polyethylene (HDPE). The 2-inch lateral lines were connected to distribution panels using flexible braided steel hoses.

Figure 2-8 (system P&ID) and the picture above illustrate a typical distribution panel. Each distribution panel included an upstream pressure regulator to reduce field delivery pressure (approximately 50 psi) to panel pressure (approximately 35 psig). This upstream pressure regulator, with the downstream pressure regulators, provided redundant pressure reduction to the sparge wells to reduce the likelihood of the subsurface being exposed to excessive pressures that could cause fracturing (see Section 3.3.3 for further discussion regarding regulation of applied pressure).


The distribution panels included three 1-inch branch lines following the upstream pressure regulator; each branch line included a downstream pressure regulator and a flow meter (rotameter). The downstream regulators were provided to regulate discharge pressure into the sparge wells; pressure gauges were provided downstream of these regulators to record discharge pressures. A rotameter with a needle valve was provided to measure and regulate CO₂ flow to the sparge wells. A temperature gauge also was provided at each distribution panel. Temperature measurements, together with the flow and pressure measurements, were used to estimate CO₂ mass sparged into each sparge well. Approximately 200-foot long rubber hoses were used to connect the distribution panels to the sparge wells; the hoses were moved from well to well during operations.

Top left: Typical sparge well. **Top right:** 105-kw process vaporizers. **Middle left:** Distribution panel with hose connections. **Middle Right:** Portable CO₂ sparging system. **Bottom left:** 50-ton CO₂ storage tanks.

A typical sparge well is shown in the figure above. Each sparge well was equipped with a pressure gauge to record well head pressure during injection, a bleed valve to bleed pressure following a sparge, and a shut-off valve.

2.2.2 Portable System

In an effort to accelerate overall project schedule while construction of the primary system was being completed, a 26-ton, 500 lb/hr potable system (see photo above) provided by Airgas Carbonic was used to initiate sparging at individual wells from November 8 through November 22, 2013.

3 PROCEDURES AND PROTOCOLS

3.1 Groundwater Sampling

Prior to and following CO₂ sparging, specific monitoring and extraction wells were sampled to provide baseline and post-sparge groundwater quality data. Post-sparge sampling of Satilla monitoring wells occurred approximately 2 weeks after the end of Phase 1 sparging. The monitoring wells and extraction wells that were sampled are presented on Table 3-1.

Table 3-1: Monitoring Points for Phase 1 CO₂ Sparging

Deep Satilla					
MW-105C ^b	MW-502B ^b	MW-514B ^b	EW-3		
MW-112C ^a	MW-503B ^{a,b}	MW-515B	EW-4		
MW-113C ^a	MW-504B ^b	MW-516B ^b	EW-5		
MW-115C ^b	MW-505B	MW-517B	EW-6		
MW-352B	MW-507B ^a	MW-518B ^b	EW-8		
MW-353B ^a	MW-508B ^a	MW-519B	EW-9		
MW-357A	MW-510B ^a	MW-1C	EW-10		
MW-357B	MW-511B ^b	MW-2C	EW-11		
MW-358B ^a	MW-512B ^b	EW-1			
MW-501B ^b	MW-513B ^b	EW-2			
Mid Satilla					
MW-105B	MW-504A	MW-514A	MW-1B		
MW-115B	MW-505A	MW-516A	MW-2B		
MW-352A	MW-511A	MW-517A			
MW-501A	MW-512A	MW-518A			
MW-502A	MW-513A	MW-519A			
Shallow Satilla					
MW-105A	MW-1A	MW-3A			
MW-115A	MW-2A				

⁽a) Indicates a well outside of the sparging area which served as a background monitoring well.

The wells were purged and sampled using the low flow "Tubing-in-Screened-Interval" method, pursuant to US EPA Region IV Environmental Investigations Standard Operating Procedure (SOP) – March 2013 (USEPA, 2013). The guidance document *Groundwater Sampling Guidelines for Superfund and RCRA Project Managers* (Yeskis and Zavala, 2002) was also referenced for additional technical support. Per the method, the tubing intake was lowered to the middle of the screened interval of the well, and a peristaltic pump was used to purge the groundwater at a very low flow rate. Throughout the purge process, depth-to-water measurements were collected to assess and maintain stable drawdown. A minimum one equipment volume was purged prior to stabilization parameters (pH, specific conductivity,

⁽b) Indicates well was selected for measurement of specific gravity in the field pre-and post-sparging.

dissolved oxygen, and turbidity) being collected. Although not considered stabilization parameters, temperature and oxidation reduction potential were also recorded. Once the required parameters were stable for three consecutive readings, and goals for turbidity had been reached⁴, groundwater samples were collected for laboratory analysis as described in Table 3-2.

Table 3-2: Water Quality Analytes and Associated Laboratory Methods

Analyte	Method ^(c)	Description
рН	EPA SW-846 9040B	Ion selective electrode
Alkalinity	SM 2320B	Potentiometric titration
Total Hg	EPA SW-846 7470A	Cold-vapor atomic absorption
Filtered Hg ^(a)		spectrophotometry
Total dissolved solids	SM 2540C	Gravimetric
Chloride and sulfate	EPA SW-846 9056	Ion chromatography
Sulfide	SM 4500 S2 F	Iodometric titration
Total metals & silica ^(b)	EPA SW-846 6010B	Inductively Coupled Plasma – Atomic
		Emission Spectroscopy
Dissolved and total organic	SM 5310B	Combustion / Infrared
carbon		Spectrophotometry
Ferrous iron	SM 3500-Fe-D	Spectrophotometry

⁽a) If after 2 hours of purging or 5 well volumes had been purged, and turbidity was still greater than 50 NTUs, a filtered sample for Hg was also collected.

The groundwater samples were preserved on ice and submitted to TestAmerica Laboratories in Savannah, GA for analysis. Once the groundwater samples had been collected, approximately 900 mL of groundwater were pumped into a graduated cylinder and the specific gravity was determined using a hydrometer for those wells indicated on Table 3-1. Purge logs, including a summary of stabilization parameters and specific gravity measurements, are provided in Appendix D.

3.2 Short-Term Aquifer Testing

Short term aquifer tests were conducted on ten (10) sparge wells prior to and following sparging. Monitoring wells were outfitted with a pressure transducer that took water level readings every second. The sparge wells were pumped using a Grundfos Redi-Flo2[©] 1.8 inch diameter pump and accompanying variable frequency drive (VFD). The sparge wells were pumped for 10 to 60 minutes at pumping rates

⁽b) Total metals included aluminum, barium, beryllium, calcium, cobalt, chromium, iron, potassium, magnesium, manganese, sodium, nickel, selenium, vanadium, zinc.

^(c) After consultation with the laboratory, the chloride and sulfate methods were changed to SW-846 9038 and SW-846 9251 respectively for a subset of samples to help minimize matrix interferences.

⁴ Goals for turbidity were: less than 10 NTUs; a minimum 1 hour purge with turbidity less than 50 NTUs and with turbidity measurements within 10%; or a minimum 5-well volume purge or 2-hour purge, whichever occurred first.

ranging from 0.3 gpm to 1.8 gpm depending on the yield of each sparge well. Tests results are presented and discussed in Section 4.12.

3.3 Sparge Operations

3.3.1 Sequence of Operations

Sparging was initiated on November 8, 2013 with the use of the portable system to commission individual sparge wells; the portable system was used for this purpose though November 21, 2013. Sparging with the primary system was initiated on November 18, 2013 and continued through February 13, 2014.

The sparge well commissioning process entailed gradually applying pressure to individual wells to understand well-specific pressure / flow relationships, while at the same time making observations and collecting shallow groundwater elevations to understand the potential for groundwater mounding and surfacing. Based on commissioning activities, initial guidelines for sparge well sequencing included the following:

- Two sparge wells per distribution panel would be sparged simultaneously, initially for approximately 4 hour periods.
- Extended duration sparging would be applied to areas with high alkalinity.
- When possible, sparging would occur from adjacent distribution panels, and focus on contiguous portions of the site, to reduce operator travel time between distribution panels.
- Sparging operations were initiated at the northern portion of the site and cycled southward through the balance of the site. This approach favored treatment in the northern portion of the site, where there was a preponderance of monitoring wells, the data from which could be used to guide operations going forward. Initially, sparge wells were scheduled such that there was a 160 ft separation between adjacent operating sparge wells. This was done to manage shallow groundwater rise and prevent groundwater surfacing. During sparging, the piezometers were monitored for groundwater levels. Superposition of mounding was not significant at this 160 ft spacing; groundwater levels never rose to within 1 ft of the ground surface. Therefore, sparging into adjacent sparge wells (approximately 80 ft apart) was tested with close monitoring of nearby piezometers. This closer spacing did not result in significant superposition of mounding and therefore sparging into adjacent sparge wells was incorporated into the schedule.

Early in the program, it was determined that a 4 hour sparging duration was inadequate for a number of wells, due to the required time to establish flow. As a result, for these wells, the planned sparging duration was increased to approximately 8 hours, or approximately 24 hours via overnight sparging.

Sparge operations were suspended over the 2-week holiday period between December 21, 2013 and January 6, 2014. During this period of time, collected data was evaluated in detail and the following guidelines were established for the balance of the program:

- The general target mass for individual sparge wells would be 8,000 to 9,000 lb;
- High alkalinity wells would be sparged at 1.5 to 2 times the general target; and
- ROIs in excess of 24 ft were being observed, and additional focus on sparge wells with paired monitoring wells at greater than 24 ft was warranted.

Sparging was conducted pursuant to these guidelines for the remainder of the Phase 1 sparging from January 6, 2014 through February 13, 2014.

3.3.2 Sparge Regimens

The CO₂ Sparging Work Plan (April 2013) proposed the use of three regimens to evaluate treatment effectiveness and efficiency of CO₂ use. These regimens are reported in the work plan as A, B and C. However, in an effort to more rapidly assess treatment effectiveness, a fourth regimen, Regimen D, was also employed. The four treatment regimens, and assigned sparge wells, are shown on Table 3-3. Evaluation and further discussion of the sparge regimens are discussed in Section 4.6.

Table 3-3: Summary of Treatment Regimens

Regimen	Description	Number of wells	Assigned Sparge Wells
A	4-hr sparge, once per week	41	All sparge wells unless otherwise indicated
В	4-hr sparge, once every two weeks	14	The following sparge wells associated with DP-5, alternating by week: • Week 1: SW-31, SW-30, SW-29, SW-21, SW-12, SW-20, SW-11, SW-4 • Week 2: SW-23, SW-22, SW-14, SW-6, SW-13, SW-5
С	One, 1-hr sparge per day, 4 days per week	3	The following wells associated with DP-3: SW-33, SW-44, SW-54
D	4-hr sparge, twice per week	6	The following wells associated with DP-2: SW-56, SW-62, SW-61, SW-60; The following wells associated with DP-4: SW-41 and SW-58

3.3.3 Maximum Wellhead Pressures

Fractures can be generated in geologic formations if air or any other gas is injected at a pressure that exceeds the sum of the natural strength of the formation and the in-situ stresses present (Suthersan, 1997). The pressure required to fracture a consolidated geologic formation is a function of the cohesive or tensile strength of the formation and the pressure exerted by the weight of soil and water. Because the Satilla Aquifer is primarily composed of non-cohesive sands, cohesive strength was conservatively assumed to be zero. Therefore, considering only the weight of the water and soil, the minimum pneumatic fracture initiation pressure, P_i is:

$$P_{i} > d_{w}(\gamma_{w}\phi + \gamma_{soil}(1-\phi)) + (d_{tot} - d_{w})\gamma_{soil}(1-\phi)$$
(3-1)

where d_w is the depth of water (saturated thickness), d_{tot} is the total depth of soil, ϕ is the soil porosity, γ_w is the specific weight of water (62.4 lb/ft³) and γ_{soil} is the specific weight of soil.

Sparge wells (SWs) at the Site were screened at different intervals and therefore would have their own unique minimum pneumatic fracture initiation pressures. Table 3-4 provides calculated minimum pneumatic fracture initiation pressures for all sparge wells.

The calculations of P_i presented in Table 3-4 assumed a 5-ft unsaturated zone, porosity of 0.30, and a specific gravity of soil equal to 2.65 (specific weight of soil equal to 116 lb/ft³). The 5 ft of unsaturated zone provides a conservative estimate of P_i (the actual depth of the unsaturated zone varies from approximately 3 to 4 ft). There is also additional head loss from the well head to the base of the sparge well screen, resulting in lower effective pressures at the well screen. Therefore, actual field conditions at a particular sparge well would yield a slightly larger value of P_i, which could allow for slightly higher sparging pressures at the well head. During sparging implementation, pressure applied to individual sparge wells was gradually increased until a satisfactory flow was achieved or until pressures were no more than 2 psi of P_i (Table 3-4).

Table 3-4: Calculated Minimum Pneumatic Fracture Initiation Pressure for Phase 1 Sparge Wells

	Top of	Depth of			Top of		
Sparge	Screen, d _{tot}	water, d _w		Sparge	Screen, d _{tot}	Depth of	
Well	(ft bgs)	(ft)	P _i (psi)	Well	(ft bgs)	water, d _w (ft)	P _i (psi)
SW-2	47.5	42.5	32.3	SW-34	42.0	37.0	28.4
SW-3	46.0	41.0	31.2	SW-35	42.0	37.0	28.4
SW-4	48.5	43.5	32.9	SW-36	47.0	42.0	31.9
SW-5	48.5	43.5	32.9	SW-37	49.0	44.0	33.3
SW-6	48.5	43.5	32.9	SW-38	49.5	44.5	33.6
SW-7	48.0	43.0	32.6	SW-39	49.5	44.5	33.6
SW-8	48.0	43.0	32.6	SW-40	50.0	45.0	34.0
SW-9	47.5	42.5	32.3	SW-41	48.5	43.5	32.9
SW-10	47.5	42.5	32.3	SW-42	49.5	44.5	33.6
SW-11	49.5	44.5	33.6	SW-43	46.0	41.0	31.2
SW-12	49.0	44.0	33.3	SW-44	47.0	42.0	31.9
SW-13	49.5	44.5	33.6	SW-45	42.0	37.0	28.4
SW-14	47.0	42.0	31.9	SW-46	42.0	37.0	28.4
SW-15	47.0	42.0	31.9	SW-47	44.0	39.0	29.8
SW-16	49.0	44.0	33.3	SW-48	45.0	40.0	30.5
SW-17	48.5	43.5	32.9	SW-49	50.5	45.5	34.3
SW-18	50.5	45.5	34.3	SW-50	49.0	44.0	33.3
SW-19	44.0	39.0	29.8	SW-51	50.0	45.0	34.0
SW-20	49.0	44.0	33.3	SW-52	49.5	44.5	33.6
SW-21	44.0	39.0	29.8	SW-53	46.5	41.5	31.6
SW-22	48.0	43.0	32.6	SW-54	42.0	37.0	28.4
SW-23	48.0	43.0	32.6	SW-55	40.5	35.5	27.4
SW-24	48.5	43.5	32.9	SW-56	45.5	40.5	30.9
SW-25	51.0	46.0	34.7	SW-57	46.0	41.0	31.2
SW-26	50.0	45.0	34.0	SW-58	49.0	44.0	33.3
SW-27	49.5	44.5	33.6	SW-59	49.5	44.5	33.6
SW-28	49.5	44.5	33.6	SW-60	45.5	40.5	30.9
SW-29	50.0	45.0	34.0	SW-61	47.0	42.0	31.9
SW-30	50.0	45.0	34.0	SW-62	45.0	40.0	30.5
SW-31	47.0	42.0	31.9	SW-63	47.6	42.6	32.3
SW-32	47.5	42.5	32.3	SW-64	50.5	45.5	34.3
SW-33	46.0	41.0	31.2	SW-65	48.0	43.0	32.6

3.3.4 Sparge Well Maintenance

Well maintenance activities occurred December 11-12, 2013. Eight sparge wells (SW-6, SW-16, SW-23, SW-24, SW-42, SW-43, SW-53, and SW-56) were selected for well maintenance. These eight SWs were selected based on having low flow (< 5 scfm) or delayed flow (flow taking longer than 1 hour to begin) characteristics as shown in the operational data collected up through December 10, 2013. The maintenance program, performed by the well installation contractor (Groundwater Protection), consisted

of jetting water into the well screen interval to flush fines from the well bore and the well screen. Once relatively clear water was produced by the well, approximately 100 gallons of clean water was pumped into the well to provide a zone of clean water around the well screen to reduce any precipitation in that region. The jetting of these wells resulted in improved flow characteristics. All eight sparge wells were more efficient in reaching CO₂ mass injection targets post-jetting. Surge-blocking was also conducted in several wells to further enhance well yields.

SW-59 had visual evidence of CO₂ gas coming from underneath the concrete pad shortly after initiation of flow to the well. This "short-circuiting" of flow caused some erosion of soil around the pad. This was addressed by placing coarse gravel around the concrete pad. The flow caused by short circuiting was not detrimental to sparging since a nearby monitoring point (MW-513B) showed a decrease in pH as a result of sparging into SW-59.

3.4 Field Measurements During Sparging

During sparging, flow rates were measured on the rotameters, temperature was measured at a gauge on each distribution panel, and pressure was measured at a pressure gauge just downstream of the rotameter. These measurements were collected at periodic intervals, typically every half-hour during normal sparging operations. These measurements were recorded on daily sparge log sheets, and transcribed to a master spreadsheet for calculation of total mass sparged (see Section 3.5). A summary of these measurements for each sparge well is provided in Appendix E.

3.5 Measurement and Calculation of Flowrates and CO₂ Mass

A flow rate of approximately 50 scfm per well was initially targeted for Phase 1 of full-scale implementation. This was based upon (i) the success of the Proof of Concept Test results in lowering pH and (ii) the observation that in general, higher flow rates achieved larger pH decreases in deep Satilla wells during sparging.

The flow rate of gas to the sparge well was read from a distribution panel rotameter upstream of the well head. Rotameters report accurate flow rates only when the operating conditions (temperature and pressure) are the same as the conditions under which the rotameter was calibrated. When operating and calibration conditions differ, flow readings from a rotameter must be corrected. The rotameter correction equation for gases is:

$$Q*(scfm) = Q_{rotameter} \sqrt{\left(\frac{T_{std}}{T_{act}}\right) \left(\frac{P_{act}}{P_{std}}\right)}$$
(3-2)

where $Q_{rotameter}$ is the flow reading from the rotameter, Q^* is the gas volumetric flow rate (in scfm), P_{act} is the actual pressure (in psia), T_{act} is the actual temperature (in °R), P_{std} is the standard pressure (in psia), T_{std} is the standard temperature (530 °R) of the rotameter correction. Rotameters installed on the permanent system were calibrated for carbon dioxide, so an additional specific gravity correction was not required. For CO_2 sparging, Equation 3-2 becomes:

$$Q*(scfm CO_{2}) = Q_{rotameter} \sqrt{\frac{530^{\circ} R}{T_{act} + 460}} \sqrt{\frac{P_{act} + 14.7}{14.7 \text{ psi}}}$$
(3-3)

The rotameter used for the portable system was not calibrated for CO₂. Therefore, a specific gravity correction was also required:

$$Q*(scfm CO_{2}) = Q_{rotameter} \sqrt{\frac{530^{\circ} R}{T_{act} + 460}} \sqrt{\frac{P_{act} + 14.7}{14.7 \text{ psi}}} \sqrt{\frac{1}{SG}}$$
 (3-4)

The mass of CO₂ injected into sparge wells was calculated by numerically integrating the flow versus time data for each sparge well (Appendix E). The trapezoidal method of integration was employed and the equation used to calculate the mass for each well is shown below:

$$M_{\text{sparged}} = \rho_{\text{gas}}^* \int Q^* dt \approx \rho_{\text{gas}}^* \sum \overline{Q}^* \Delta t$$
 (3-5)

where ρ^*_{gas} represents the density of carbon dioxide equal to 0.1144 lb/ft³ at standard temperature and pressure (70 °F and 14.7 psi). A 24 hour mass balance check on the system was conducted on February 12 – 13, 2014, that indicated that the mass released from the tank for sparging was larger than the mass accounted for by Equation 3-5. The mass balance difference from this test was +13.6%. As a result, a correction factor (C_F) of 1.136 was used to modify Equation 3-3 to more accurately account for the mass to each sparge well.

$$Q*(scfm CO_{2}) = C_{F}Q_{rotameter} \sqrt{\frac{530^{\circ}R}{T_{act} + 460}} \sqrt{\frac{P_{act} + 14.7}{14.7 \text{ psi}}}$$
(3-6)

A system-wide CO₂ mass balance was also conducted to confirm overall mass of CO₂ sparged. This system-wide mass balance is discussed in Section 4.5.

3.6 Monitoring During Sparging

Groundwater pH and conductivity were measured throughout the sparging program in all monitoring points within the sparging footprint. A portable peristaltic pump was used to pump water to the surface. Tubing was lowered to the mid-point of the screen and water was pumped with a flow rate that ranged from 0.25 to 2.50 L/min. The water passed through a flow cell equipped with a YSI Professional Plus multi-parameter probe that measured pH, specific conductance, barometric pressure, and temperature. The probe was set to take readings every 30 seconds. The well was pumped until all parameters were stabilized over three consecutive readings. The final stabilized reading was used as the data point of record. The data was recorded on the internal memory of the meter and was reported out at the end the day. The frequency of pH measurements during CO₂ sparging varied for the various wells at the site. Therefore, monitoring points at the Site were divided into six categories:

- Priority deep (12 monitoring wells, 5 extraction wells)
 - o These are deep Satilla wells within a 10 to 32 foot distance of a sparge well;
 - o These wells are the highest priority with respect to pH sampling; and
 - o The sampling frequency was approximately one to three times per week.
- Deep (8 monitoring wells, 5 extraction wells)
 - These are deep Satilla wells at distances less than 10 ft or greater than 32 ft from a sparge well
 - o The sampling frequency was approximately one to three times per week.
- Outside deep (8 monitoring wells)
 - These are deep Satilla wells west of the sparging footprint, located between sparging area and marsh;
 - o The purpose of monitoring these wells was to assess lateral CBP movement;
 - MW-113C and MW-358B were included on this list because of historic elevated pH (location is indicated on Figure 1-2); and
 - The sampling frequency was approximately every four weeks.
- Mid (17 monitoring wells)
 - o These are mid Satilla wells within the sparging footprint;
 - \circ Some of these wells have pH > 10.5 and are considered to be within the CBP;
 - o Changes in pH in these wells provide an indication of extent of CO₂ channel formation;
 - O Some of these wells are expected to intercept gas channels/pressurize; and
 - o The sampling frequency was approximately every two weeks.
- Shallow (5 monitoring wells)

- These are shallow Satilla wells within the sparging footprint;
- o Some of these wells are expected to intercept gas channels/pressurize; and
- o The sampling frequency was approximately every two weeks.

In addition, wells screened in the Coosawhatchie A/B formation (HWEast2, HWEast3, HWEast5, MW-352D, MW-115, and MW-360D) were sampled to assess effect of sparging on pH.

All pH electrodes were calibrated daily to ensure accuracy of results. A three point standard curve using pH 4.01, 7.00, and 10.01 was used. A valid pH calibration curve was obtained only when the slope was within 5% of the theoretical value of -59 mV/pH. Specific conductance was also calibrated daily. A calibration check was performed at least once per day to ensure electrode stability.

3.7 Piezometric Surface and Groundwater Table

Groundwater levels of shallow Satilla wells were monitored via a combination of automatic data loggers and manual water level readings. Solinst Level Loggers were employed for automatic data logging. The data logger was set to a designated depth within the well and securely affixed to prevent any movement. The automatic data loggers were synchronized for time and programmed to record water levels at five minute intervals during the CO₂ sparging period.

A total of 15 new shallow piezometers were placed within the sparging footprint. These piezometers, along with shallow Satilla wells, were monitored for water level rise via manual measurement with an electronic water level meter.

A total of 10 pressure transducers (Solinst, Levelogger) were used throughout the sparging program. The transducers in these monitoring wells were used to obtain information on piezometric surface rise in the deep Satilla and shallow groundwater level rise throughout the sparging program. The locations of the transducers were in the north, central, and south ends of the sparging footprint as well as along the western edge. Specific details are provided below.

For a portion of the "break-in" period (November 13 - 26, 2013) five transducers were installed in monitoring wells within the sparging footprint: MW-510B, MW-511B, MW-513B, MW-512B, and MW-504B. Starting on November 26, 2013, five transducers were relocated and placed to the west of the sparging footprint: MW-112C, MW-353B, MW-503B, MW-507B and MW-508B. Beginning on December 3, 2013, five transducers were once again relocated and placed within the sparging footprint: PZ-63, MW-501B, MW-513B, MW-516B and MW-2C. The five transducers placed in the wells to the

west of the sparging footprint have been left in place at the end of sparging to observe seasonal groundwater level trends.

3.8 Air Monitoring

Ambient air monitoring during sparging consisted of grab sample monitoring for carbon dioxide, oxygen, and hydrogen sulfide using a MultiRae Model PGM-50-5P multi-gas meter, and for Hg using a Jerome Model 431X meter. Representative sparge wells were selected over the course of the program for sampling, with samples collected at each sparge well at least once. Typically, measurements were collected at the sparge wells and approximately 10 ft north, south, east, and west of the sparge wells (i.e., five locations per sparge well).

Approximately 300 sampling events (five locations each) were conducted over the course of the program; sample results are reported on the forms provided in Appendix F; a summary of the results is provided below (Table 3-5). No exceedances of action levels for the four air constituents monitored were observed.

Table 3-5: Summary of Air Monitoring Results

Air Constituent	Units	Action Level	Minimum Observed Level	Maximum Observed Level	Notes
CO_2	ppmv	2500	340	1320	-
O_2	% by volume	> 19.5% and < 22.0%	20.5	21.6	-
H_2S	ppmv	10	0	0	-
Hg	mg/m ³	0.05	0.000	0.003	7 samples 0.003; all others 0.000

4 RESULTS OF PHASE 1 SPARGING

4.1 Sparge Flow Rates

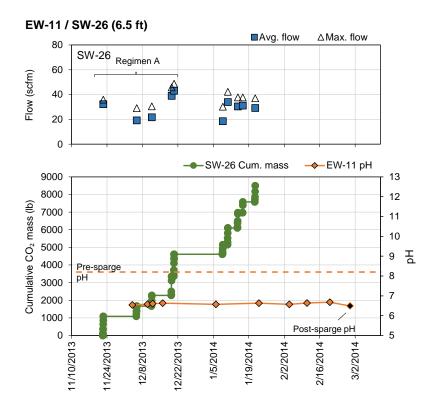
The first two weeks of sparging operations involved a "break-in" period where CO₂ was injected into each sparge well for the first time. These first injections were important because they provided critical information on injection pressures required to achieve flow. All wells took flow on the first attempt. The average flow rates for each sparge well over the entire duration of sparging are presented in Figure 4-1. The average flow rate varied from 10.6 scfm (SW-53) to 51.1 scfm (SW-65). The average flow rate for all sparge wells was 28.3 scfm.

4.2 Effect of Sparging on pH

4.2.1 Pre-sparge pH

Pre-sparge pH is shown in plan view for deep Satilla wells in Figure 4-2 and for mid Satilla wells in Figure 4-3⁵. Pre-sparge pH in the deep Satilla within the treatment area (dashed lines) varies from pH 7.35 (MW-519B) to as high as 12.28 (MW-511B). The majority of pH values in the deep Satilla were pH > 10.5, consistent with historical data. The lower pH values near MW-519B are the result of sparging during the Proof of Concept Test (shown in the inset map on Figure 4-2 and Figure 4-3). Pre-sparge pH in the mid Satilla varied from 6.09 (MW-1B) to 11.56 (MW-514A), with many values above pH 9.0. The mid Satilla depth interval represents a transition from dense, high pH water in the deep Satilla to neutral pH water in the shallow Satilla.

The pre-sparge pH in sparge wells is shown in plan view on Figure 4-4. In general, a large majority (52 out of 64 or 81%) of sparge wells had pH \geq 10.5. Notable exceptions included the low pH area in the vicinity of the Proof of Concept test. SW-1 was used as a sparge well during the test, so its low pH is expected. However, the pH in nearby SW-26 and SW-27 were also both below 7.0, suggesting that water in these locations was neutralized as a result of sparging during the Proof of Concept Test. Note that SW-26 and SW-27 are 44 and 113 ft away from the Proof of Concept test sparge, respectively. The low pre-sparge pH in SW-27 could also be influenced by upgradient neutral pH water. However, this


⁵ Field pH measurements were reported as the pre-sparge pH for nearly all monitoring points. In some cases, field pH were anomalously low compared to laboratory-measured pH and historical values for the site. In these instances, laboratory pH was used in place of field pH.

is somewhat unlikely since MW-515B (approximately 50 ft NNE from SW-27) had a pre-sparge a pH of 11.24.

Phase 1 of CO_2 sparging was designed to treat the main body of the CBP as mapped using the 2012 pH dataset (Mutch Associates and Parsons, 2013a). There is some uncertainty as to the extent of the CBP at its southern boundary because of decreasing monitoring well density in this area. Sparge wells along the southern edge of the CBP (e.g. SW-3, SW-2, SW-65, SW-7 and SW-15) all had pH > 10.5, suggesting that the CBP may extend outside the Phase 1 sparging footprint.

4.2.2 pH Monitoring Results During Sparging

Pre-sparge and continuous monitoring results for all 30 deep Satilla monitoring points are shown in Figures 4-5 through 4-19. As illustrated below for EW-11, each figure shows pH versus time data for the monitoring point along with the identity of its nearest sparge well, the distance to the sparge well, the sparge well average and maximum flow rates, and the cumulative CO₂ mass injected.

Above: CO₂ flow, mass and pH as a function of time for EW-11.

The dashed line represents the pre-sparge pH measured in late August/early September 2013 as part of pre-sparge sampling. The last data point (indicated by a black diamond with orange outline) represents the field pH recorded as part of the post-sparge sampling round. The cumulative mass of CO₂ injected into SW-26 is shown as green circles. SW-26 is 6.5 ft from EW-11, which is the shortest distance between EW-11 and any sparge well. The upper portion of the figure shows the timing of the sparge events, the average and maximum flow rates, and sparge regimen that was assigned to SW-26. Note that Figures 4-5 through 4-19 are sorted from smallest to largest distance from monitoring point to sparge well.

The trends in pH over time in individual monitoring points are unique and it is not practical to describe all of the day-to-day changes. However, there are several general observations that are of note which shed light on the effectiveness of treatment with CO₂:

- In three monitoring points, the pH decreased to ≤ 7.5 after only one or two sparge events. Examples include EW-11 (Figure 4-5) which is 6.5 ft from its nearest sparge well (SW-26), MW-504B (Figure 4-11) which is 24.9 ft from its nearest sparge well (SW-43), and MW-518B (Figure 4-12) which is 30.7 ft from its nearest sparge well (SW-4).
- Many monitoring points showed a gradual pH decrease after each successive event, with the point eventually reaching pH ≤ 7.5. Examples include EW-6 (Figure 4-6), MW-512B (Figure 4-7), EW-1 (Figure 4-7), MW-115C (Figure 4-8), and EW-9 (Figure 4-15).
- Many monitoring points showed a general decline in pH with each successive event, but showed evidence of short-lived rebound before finally reaching neutral pH ≤ 7.5. Examples include MW-501B (Figure 4-5), MW-512B (Figure 4-7), MW-505B (Figure 4-9), and MW-517B (Figure 4-11).
- A few monitoring points showed a temporary increase in pH during sparging to above pre-sparge values, only to be followed by a decrease in pH upon continued sparging. Examples include MW-2C (Figure 4-10), MW-519B (Figure 4-13), and MW-357A (Figure 4-17).
- A few monitoring points temporarily reached pH ≤ 7.5, only to rebound to higher pH during continued sparging or shortly after the end of sparging. However, the post-sparge pH in these points (monitored one to two weeks after sparging had ended) was generally less than pH 10. Examples include EW-3 (Figure 4-9) and EW-8 (Figure 4-13).
- Only two monitoring points showed relatively no influence from sparging. These monitoring points were MW-516B (29.3 ft from SW-11, Figure 4-12), MW-352B (40.1 ft from SW-62, Figure 4-18).

4.2.3 pH Results After Four Weeks of Sparging

An analysis of pH in monitoring points was undertaken after 4 weeks of sparging as an interim evaluation of effectiveness and to better identify required CO_2 mass. This 4-week time frame was significant because many monitoring wells had already seen decreases in pH to approximately 7.0. The pH values in monitoring points is plotted versus radial distance as a bubble plot in Figure 4-20. The size of the data point represents the mass of CO_2 required to decrease the pH to 7.0. After 4 weeks of sparging, nine monitoring points (EW-11, MW-501B, EW-6, MW-514B, EW-1, MW-505B, MW-504B, MW-518B, and MW-502B) had pH values ≤ 7.5 . The mass required to achieve this decrease in pH varied from 1,100 to 8,800 lb of CO_2 . With the exception of two monitoring points at approximately 40 ft, monitoring points that had not yet achieved a lower pH after 4 weeks had not received 8,000 lb of CO_2 . Therefore, 8,000 to 9,000 lb became a preliminary target mass for all sparge wells. As sparging progressed, monitoring points within 40 ft generally achieved a pH less than 7.5 when their nearest sparge received a mass of approximately 8,000 lb, further confirming that this was the appropriate mass of CO_2 per sparge well. Exceptions to this mass target were high alkalinity areas where additional CO_2 was required (discussed in more detail in Section 4.2.4).

4.2.4 Treatment of High Alkalinity Areas

Prior to the start of sparging, the pre-sparge groundwater alkalinity data for the deep Satilla (Figure 4-21) were examined to determine high alkalinity areas that would exhibit a higher demand for CO₂. Monitoring points with high alkalinity appear in four areas at the Site:

- EW-6 and areas to the west. This includes a large spatial area that includes MW-511B, EW-5, MW-510B, MW-508B and MW-353B.
- Proof of Concept Test area. This includes EW-11, MW-519B, MW-1C, MW-2C and MW-115C.
 Many of these wells had lower pH before Year 1 sparging as a result of activity related to the Proof of Concept Test.
- Area near MW-352B.
- Area near MW-516B.

The alkalinity in the deep Satilla monitoring wells and extraction wells follows a lognormal probability distribution with median of 2,800 mg/L as CaCO₃ (Figure 4-22). The only well that sits off the distribution is MW-352B, which has an extremely high alkalinity of 17,000 mg/L. There are no sparge wells within 30 ft of MW-352B. EW-6 has the second highest alkalinity (8,400 mg/L) of deep

Satilla wells within the sparging footprint. Note this has decreased significantly from a high of 15,970 mg/L in June 2010.

Wells that sit on the upper 33% of the alkalinity distribution include MW-2C, MW-508B, MW-516B, MW-510B, MW-115C, EW-11, EW-5, MW-519B, MW-1C, EW-6, and MW-352B. These wells have values for alkalinity greater than 4,300 mg/L. As a result of these high-alkalinity areas, the total mass of CO₂ was increased to 1.5 to 2.0 times the general target of 8,000 to 9,000 lb in the following sparge wells:

- EW-6 and areas west: SW-4, SW-6, SW-14, SW-22, SW-23, SW-31, SW-32, SW-41, SW-42, SW-52, SW-58, SW-59.
- Proof of Concept area: SW-37.
- MW-516B and area west: SW-11, SW-19, SW-20.

4.2.5 Post-sparge pH Results

A summary of the changes in pH after sparging is provided in Table 4-1. The relationship between post-sparge pH and radial distance is shown in Figure 4-23. The top panel shows pH in monitoring points over the distances ranging from 6.5 ft (EW-11) to 29.3 ft (MW-516B). Within 30 ft, 14 out of 15 wells had a post-sparge pH of less than 10.0. The only monitoring point to not reach at least pH 10 was MW-516B, which is 29.6 ft from its nearest sparge well. As discussed earlier, the pH in this well was unchanged through the entire sparging period. A large majority of wells within 30 ft (13 out of 15, 87%) reached a pH less than 7.5. The notable exception is EW-3 at 20.9 ft. The pH in EW-3 declined to as low as 6.61 during sparging, but rebounded back to a final post-sparge pH of 9.84.

The bottom panel shows pH over distances from 30.7 ft (MW-518B) to 45.1 ft (EW-5). The majority of monitoring points within the 30 to 40 ft range had post-sparge pH values of less than 10, and many had pH values less than 7.5. Most notable was MW-502B, which had a post-sparge pH of 6.93 at a radial distance of 42.6 ft.

Post-sparge pH results are shown in plan view for deep Satilla monitoring points in Figure 4-24. The only monitoring points within the sparging footprint of the deep Satilla that remained above pH 10.0 were MW-516B, MW-352B and EW-5. MW-352B and EW-5 are at considerable distances (< 40 ft) from their nearest respective sparge wells (Figure 4-23).

Results for post-sparge pH in mid Satilla monitoring points are shown in Figure 4-25. The pH in the mid Satilla after sparging ranged from 5.71 to 8.59. All three wells that had pH > 10 prior to the start

of sparging (MW-352A, MW-514A and MW-518A, see Figure 4-3) were lowered to a pH of approximately 7.0.

Post-sparge pH values in sparge wells (shown in Figure 4-26) were all circumneutral with the exception of SW-7 (pH 8.37) which is on the outer-edge of the sparging footprint. Presumably, some water from outside the sparging footprint travelled in towards SW-7 as the piezometric surface in the deep Satilla relaxed back to normal levels (Section 4.11). The circumneutral pH in the large majority of sparge wells was to be expected since these wells all received considerable masses of CO₂ during sparging.

Table 4-1: Summary of Pre- and Post-Sparge pH in Deep Satilla Monitoring Points within the Sparging Footprint

Monitoring Point	Sparge Well	Radial Distance (ft)	Pre-sparge pH	Post-sparge pH	ΔρΗ
EW-11	SW-26	6.5	8.62	6.49	-2.13
MW-501B	SW-63	9.9	11.3	6.81	-4.49
EW-6	SW-58	11.8	11.75	7.41	-4.34
MW-514B	SW-61	15.4	10.37	6.31	-4.06
MW-512B	SW-30	15.9	11.73	6.93	-4.80
EW-1	SW-62	16.1	11.28	6.27	-5.01
MW-115C	SW-37	17.2	10.7	6.68	-4.02
EW-2	SW-35	18.7	10.5	6.57	-3.93
MW-505B	SW-33	18.8	10.04	6.76	-3.28
EW-3	SW-44	20.9	11.01	9.84	-1.17
MW-513B	SW-59	21.9	11.34	6.51	-4.83
MW-2C	SW-37	22.7	8.71	6.49	-2.22
MW-517B	SW-27	24.3	9.81	6.48	-3.33
MW-504B	SW-43	24.9	11.2	6.49	-4.71
MW-516B	SW-11	29.3	11.3	11.48	0.18
MW-518B	SW-4	30.7	10.87	7.18	-3.69
MW-519B	SW-26	31.0	7.35	6.54	-0.81
EW-8	SW-30	32.0	10.5	9.09	-1.41
MW-515B	SW-28	33.6	11.24	8.8	-2.44
EW-10	SW-19	35.2	11.1	7.34	-3.76
EW-9	SW-5	35.9	10.9	6.73	-4.17
MW-1C	SW-37	37.1	8.98	6.54	-2.44
EW-4	SW-53	37.5	11.2	7.01	-4.19
MW-105C	SW-46	39.1	11.08	6.68	-4.4
MW-511B	SW-22	39.4	12.28	9.81	-2.47
MW-357A	SW-13	39.6	10.2	6.54	-3.66
MW-357B	SW-5	39.6	11.08	8.82	-2.26
MW-352B	SW-62	40.1	11.53	12.89	1.36
MW-502B	SW-45	42.6	11.13	6.93	-4.20
EW-5	SW-23	45.1	10.5	10.74	0.24

4.2.6 Effect of Sparging on Coosawhatchie pH

The effect of sparging in the Satilla on pH in the Coosawhatchie A/B aquifer was assessed by monitoring six wells screened in the Coosawhatchie. MW-352D, MW-115, and MW-360D were sampled five weeks into the sparging effort on July 15, 2014 and immediately at the conclusion of sparging on February 21, 2014. HWEast2, HWEast3, HWEast5 were sampled immediately at the conclusion of sparging on February 22, 2014. This data, along with measurements made on May 31, 2012 which serve as a pre-sparge baseline, is summarized in Table 4-1. Values for pH for MW-352D, MW-115, and MW-360D during and after sparging were almost identical to each other (within 0.06 units). The post-sparge values for five out of six wells were within 0.5 units of the 2012 values. The only large difference in pH was observed in HW-East5 where the pH decreased from 9.00 to 7.13. The relatively small changes in pH in Coosawhatchie wells indicate that sparging in the deep Satilla has not had a significant effect on water quality. This is an expected result given the separation of these units by the variably-cemented sandstone and the short time period from the end of sparging.

Table 4-2: Summary of pH Data Collected in Monitoring Wells Screened in the Coosawhatchie A/B

Monitoring Point	May 31, 2012	January 15, 2014	February 21-22, 2014
MW-115D	10.22	10.10	10.14
MW-352D	6.35	6.80	6.84
MW-360D	9.92	10.09	10.15
HW-East2	6.58	-	6.38
HW-East3	6.63	-	6.32
HW-East5	9.00	-	7.13

4.3 Evaluation of Sparging Radius of Influence

An average ROI for achieving pH \leq 7.5 was estimated using specialized statistical methods for handling censored data. Consider a single monitoring point situated x ft from its associated sparge well. If sparging results in a pH \leq 7.5 in the monitoring point, the ROI for that specific sparge well must be greater than or equal to x. Conversely, if the monitoring point post-sparge pH \geq 7.5, the ROI must be less than x. This type of data, therefore, can be described as being either right- or left-censored. Evaluation of summary statistics for censored data requires specialized statistical techniques. Common practices such as substitution of one-half the upper bound of a left-censored data point are not appropriate for this application (Helsel, 2012). Right-censored data are thought of as extending from the lower boundary value to infinity. Since this is not realistic for a sparge well ROI, a finite upper bound of 45 ft was used, which is only slightly larger than the maximum observed ROI of 42.6 ft (SW-45 / MW-502B). A natural

lower bound on left censored data is zero. Therefore, the data can actually be described as *interval censored*. Table 4-3 indicates the ROI intervals associated with each sparge well / monitoring well pair. A lower bound of zero was selected for left-censored data, which is a very conservative estimate.

Table 4-3: Summary of Intervals Used for the Maximum Likelihood Estimation of Average Radius of Influence

Sparge well	Monitoring point	Radial Distance (ft)	Lower Interval (ft)	Upper Interval (ft)
SW-26	EW-11	6.5	6.5	45.0
SW-63	MW-501B	9.9	9.9	45.0
SW-58	EW-6	11.8	11.8	45.0
SW-61	MW-514B	15.4	15.4	45.0
SW-30	MW-512B	15.9	15.9	45.0
SW-62	EW-1	16.1	16.1	45.0
SW-37	MW-115C	17.2	17.2	45.0
SW-35	EW-2	18.7	18.7	45.0
SW-33	MW-505B	18.8	18.8	45.0
SW-44	EW-3	20.9	0	45.0
SW-59	MW-513B	21.9	21.9	45.0
SW-37	MW-2C	22.7	22.7	45.0
SW-27	MW-517B	24.3	24.3	45.0
SW-43	MW-504B	24.9	24.9	45.0
SW-52	MW-513B	29.1	0	29.1
SW-11	MW-516B	29.3	0	29.3
SW-4	MW-518B	30.7	30.7	45.0
SW-26	MW-519B	31.0	31.0	45.0
SW-30	EW-8	32.0	0	32.0
SW-28	MW-515B	33.6	0	33.6
SW-19	EW-10	35.2	35.2	45.0
SW-5	EW-9	35.9	35.9	45.0
SW-37	MW-1C	37.1	37.1	45.0
SW-53	EW-4	37.5	37.5	45.0
SW-46	MW-105C	39.1	39.1	45.0
SW-22	MW-511B	39.4	0	39.4
SW-5	MW-357B	39.6	39.6	45.0
SW-13	MW-357A	39.6	0	40.1
SW-62	MW-352B	40.1	42.6	45.0
SW-45	MW-502B	42.6	0	44.4
SW-23	EW-5	45.1	0	45.1

One available method to describe the statistics of interval censored data is Maximum Likelihood Estimation (MLE). This is a parametric method which requires selection of an underlying probability distribution for the data. For the site-specific average ROI analysis, both normal and log-normal distributions were considered since these two distributions are commonly used to describe environmental

data (Helsel, 2012). The statistical software package *R* (R Core Team, 2013) was used with the *fitdistrplus* package (Delignette-Muller et al., 2014) to implement the MLE method. The MLE output is shown in Figure 4-27. This figure shows the ROI intervals for each well pair as well as normal (solid line) and log-normal (dashed line) distributions fit to the ROI data intervals. The two fitted distributions are very similar. The key summary statistics from the normal regression are shown and support an average ROI of 33.5 ft. Using a log-normal regression results in a slightly smaller average of 32.3 ft. Since there is no way of knowing which underlying distribution is the most appropriate, an average ROI of 32.9 ft was selected, the midpoint of these two values.

4.4 Sparge Well Total Mass

The total CO₂ mass sparged into each sparge well is shown in Figure 4-28. The median mass of CO₂ injected was 9,800 lb. The target minimum mass for all wells was 8,000 to 9,000 lb based upon an analysis of pH results after four weeks (Section 4.2.3). High alkalinity areas at the site were determined to require more CO₂ because of the increased acid demand (discussed in Section 4.2.4). The target mass for high alkalinity areas was 1.5 to 2.0 times the general target of 8,000 to 9,000 lb. As shown on Figure 4-28, all of the sparge wells received the minimum required CO₂ dosage.

4.5 CO₂ Mass Balance

A system-wide mass balance was performed to determine the total mass of CO₂ injected and to verify the masses injected into each sparge well. The total mass delivered to the site must be equal to the sum of the CO₂ mass sparged, the CO₂ left in inventory and any major losses during start-up:

$$M_{\text{delivered}} = M_{\text{sparged}} + M_{\text{inventory}} + M_{\text{major losses}}$$
 (4-1)

The total mass delivered to the site by Airgas was 860,000 lb (430 tons). The storage tanks, initially empty, had 32,000 lb (16 tons) remaining in inventory at conclusion of sparging. Also, the portable system had approximately 4,000 lb (2 tons) remaining when it was returned to Airgas. Therefore, the total mass in inventory, $M_{inventory}$, is equal to 36,000 lb (18 tons). During system start-up, the tank telemetry system indicated that 16,000 lb (8 tons) were used, effectively setting $M_{major\ losses}$. The mass of CO_2 sparged, calculated using numerical integration of the flow versus time data (Equation 3-5), was 783,000 lb (391.5 tons). The mass balance error was calculated according to:

Error % =
$$\frac{(M_{\text{sp arg ed}} + M_{\text{inventory}} + M_{\text{major losses}}) - M_{\text{delivered}}}{M_{\text{delivered}}} \times 100\%$$
 (4-2)

The mass balance error calculated using this approach was -3.4%:

Error % =
$$\frac{(783,000+32,000+16,000)-860,000}{860,000} \times 100\% = -3.4\%$$
 (4-3)

This is an acceptable level of error for this type of system mass balance.

4.6 Evaluation of Sparging Regimens

Four sparging regimens were tested as part of Phase 1 sparging to increase efficiency of CO₂ usage. A summary of the sparge regimens is provided in Table 3-3. These regimens were evaluated by examining monitoring points that were within 40 ft of a sparge well on the specific regimen. This evaluation occurred after 4 weeks of sparging so that regimens could be altered or changed to ensure overall treatment effectiveness. A discussion of the effectiveness of the various regimens is presented below.

- Regimen A (4-hr sparge, once per week): Fourteen monitoring points had nearest-neighbor sparge wells on this regimen. This was the largest number of monitoring points of all regimens. All monitoring points associated with sparge wells on this regimen within 31 ft reached a pH of ≤ 7.5 by the end of sparging. For wells with good CO₂ yields (flow rates greater than 20 scfm), this regimen achieved pH targets quickly. For wells with low yields, longer sparging durations (up to 24 hr) were eventually required to inject enough mass to eventually reach pH targets. This regimen was relatively easy to schedule since wells on this regimen were sparged regularly at a once per week interval. This regimen also allowed sufficient time for subsidence of the mound in piezometric surface.
- Regimen B (4-hr sparge, once every two weeks): Eight (8) monitoring points had nearest-neighbor sparge wells on this regimen. Since regimens were tested for approximately 4 weeks, wells on Regimen B had three sparge events before evaluation of effectiveness. The pH results suggest that Regimen B was no more efficient than Regimen A.
- Regimen C (one, 1-hr sparge per day, 4 days per week): Two monitoring points had nearest-neighbor sparge wells on this regimen: (MW-505B / SW-33 and EW-3 / SW-44, Figure 4-9). SW-33 was effective at lowering pH in MW-505B after three weeks of sparging, and although SW-44 was initially effective at lowering pH in EW-3, ultimately the pH rebounded. Flow rates

in all sparge wells on this regimen decreased over time (e.g. see top panels of Figure 4-9), and eventually very small masses of CO₂ were injected over a 1 hr sparge event. This decreasing sparge yield over time made this regimen impractical. This regimen was not continued after 4 weeks.

• Regimen D (4-hr sparge, twice per week): There were two monitoring points that had nearest-neighbor sparge wells on this regimen: (MW-514B / SW-61, EW-1 / SW-62). Both monitoring points are in the 15 to 16 ft radial distance range. This sparge regimen was effective at lowering the pH in both monitoring points, however, the pH decline was gradual in both cases. Also, the total mass of CO₂ required to achieve the pH decrease was approximately 8,000 lb. This was similar or even higher than the mass required for wells on Regimen A and B at larger radial distances. This regimen, while effective, was less efficient than Regimens A and B.

Conclusions from the sparge regimen evaluation:

- Sparging once per week has similar efficiency to once per two weeks and is optimal for scheduling.
- Waiting two weeks to re-sparge a well was not beneficial enough to warrant prolonging time in the field.
- Wells can be sparged multiple times per week, but is less efficient.
- Sparging for short bursts (e.g. 1 hour) is not practical because of the loss of well yield over time and the prolonged ramp-up period required for some wells to start taking CO₂.

The optimal sparging regimen was Regimen A (once per week), although a longer break between successive sparge events is acceptable if scheduling requires it. Some sparge wells required longer sparge durations of 8 to 24 hours to provide adequate flow.

4.7 Efficiency of CO₂ Sparging

The efficiency of CO₂ sparging was evaluated by comparing the CO₂ demand of the CBP with the amount of CO₂ mass required to lower the pH to circumneutral. The CO₂ demand of the CBP was evaluated using the geochemical model PHREEQC v3.0.2 (Parkhurst and Appelo, 2013). A typical presparge and post-sparge CBP water chemistry was constructed using median values from the pre- and post-sparge sampling rounds (Table 4-4). PHREEQC was used to model the titration of this water (initial pH 11.05) with CO₂ until the median pH of the post-sparge CBP was obtained (pH 6.63). A total of 0.057 mol/L of CO₂ was required to lower the pH of the prototypical CBP water to 6.63.

Table 4-4. Prototypical Pre- and Post-Sparge Deep Satilla Water Chemistries (a)

Species	Units	Pre-Sparge Value	Post-Sparge Value
Sodium	mg/L	4,250	4,350
Potassium	mg/L	8.05	14.0
Calcium	mg/L	12.0	24.0
Magnesium	mg/L	0.13	6.45
Chloride	mg/L	5,200	4,900
Alkalinity	mg/L as CaCO ₃	2,750	4,500
Sulfate	mg/L	130	38.5
Silica	mg/L as SiO ₂	550	79.5
Sulfide	mg/L	14.2 ^(b)	^(c)
DOC	mg/L	275	230
Hg	μg/L	59.0	12.0
pH (d)	std units	11.05	6.63
Total Dissolved Solids	mg/L	11,500	11,000

⁽a) Water chemistries based on median values of values from deep wells (except where noted)

The average radius of influence to lower the pH to circumneutral was determined to be 32.9 ft using MLE methods. Assuming a porosity, ϕ , of 0.35, and assuming that most of the CO₂ demand is present in the lower 15 ft of the Satilla, the volume of water within this 32.9 ft was calculated as 17,850 ft³ (or 5.1×10⁵ L):

$$V = \pi \phi r^2 h = \pi (0.35)(32.9 \text{ ft})^2 (15 \text{ ft}) = 17,850 \text{ ft}^3$$
(4-4)

The demand of CO_2 is the product of this volume and the model result for the amount of CO_2 required to lower the pH of a prototypical water to pH 6.63:

$$CO_2 \text{ Demand} = (5.1 \times 10^5 \text{ L})(0.057 \text{ mol} / \text{ L}) \left(\frac{44 \text{ g}}{\text{mol}}\right) \left(\frac{2.2 \text{ lb}}{1000 \text{ g}}\right) = 2,800 \text{ lb}$$
 (4-5)

The CO₂ sparging efficiency was estimated by dividing this demand by the median mass of CO₂ injected into each sparge well (9,800 lb):

Sparging efficiency,
$$\eta = \frac{2,800 \text{ lb}}{9.800 \text{ lb}} \times 100\% = 29\%$$
 (4-6)

⁽b) Maximum likelihood estimation (MLE) used to estimate median sulfide concentration because of presence of left-censored concentration data

⁽c) Sample matrix issues elevated method detection limits and prevented reliable determination of post-sparge sulfide concentrations

⁽d) pH values are averages not medians

The median was used because it is not affected by the additional mass sparged into the high alkalinity areas. The 29% efficiency is approximately 3-times larger than the efficiency estimated from the Proof of Concept Test (9.7%). The primary reason for this increase is the larger ROI achieved in Phase 1 of sparging. A conservative ROI of 20 ft was assumed in the Proof of Concept Test efficiency estimate. During the Proof of Concept Test, the ROI was at least 19.9 ft but was less than 24.6 ft, based on results in the two furthest monitoring wells (MW-519B and MW-115C) from the sparge well MW-1C. The increase in ROI from 20.0 to 32.9 ft, increases the volume of water treated by 2.7-times compared to the Proof of Concept Test⁶. This large increase in efficiency is most likely due to the change in operations in Phase 1 of sparging. Sparging once to twice per week (as compared to sparging day after day as was done in the Proof of Concept Test) allows the residual saturation of CO₂ gas to dissolve into the water. Partial collapse of channels when sparging is stopped induces local mixing within the ROI as water is forced into spaces once occupied by CO₂. All of these processes increase efficiency of CO₂ sparging with respect to lowering pH.

4.8 Effect of Sparging on Hg

4.8.1 Pre-sparge Hg Results

Pre-sparge results for Hg in deep Satilla wells are shown in Figure 4-29. Pre-sparge deep Satilla wells within the sparging footprint ranged from 7.2 to 690 μ g/L. The highest concentration measured was 690 μ g/L in MW-352B. Concentrations of Hg in deep Satilla wells west of the sparging footprint generally had lower Hg concentrations than within the sparging footprint. Concentrations of Hg in the Proof of Concept test area varied between 31 and 62 μ g/L. These relatively low Hg concentrations reflect sparging into MW-1C and SW-1 as part of the test. Concentrations of Hg in the deep Satilla in this area prior to the Proof of Concept test were approximately 110 μ g/L.

Pre-sparge results for Hg in mid Satilla (Figure 4-30) were generally lower than in the deep Satilla, consistent with historical data. The two wells with the highest concentrations were MW-352A (300 μ g/L) and MW-514A (350 μ g/L). These wells are in the same area as MW-352B which had the highest concentration in the deep Satilla (discussed above). The lowest concentrations within the sparging footprint were in the Proof of Concept Test area, the result of prior sparging with CO₂.

⁶ This was determined by dividing the ratios of the square of the radii: $(32.9 \text{ ft})^2 / (20.0 \text{ ft})^2 = 2.7$

4.8.2 Preliminary Hg Sampling Results

Samples from select monitoring points were sampled on December, 11-12, 2013 after approximately three weeks of sparging. The purpose of this sampling event was to determine preliminary effects of pH decline on Hg concentrations. A summary of these results is presented in Table 4-5.

Table 4-5: Summary of Preliminary Hg Sampling Results After Three Weeks of Sparging

Monitoring Point	Screen Designation	Pre-Sparge Hg / Hg at time of sample collection (µg/L)	Pre-Sparge pH / pH at time of sample collection
MW-517A	Mid Satilla	7.3 / 3.4	9.31 / 6.20
MW-518B	Deep Satilla	53 / 73	10.87 / 6.63
MW-504B	Deep Satilla	320 / 61	11.20 / 6.46
MW-514A	Mid Satilla	350 / 120	11.56 / 6.52
MW-502B	Deep Satilla	120 / 32	11.13 / 6.84
EW-11	Deep Satilla	48 / 23	8.62 / 6.61

These results generally show that Hg was lowered significantly once the pH was lowered to below pH 7.0. This observation is consistent with results from the Proof of Concept Test (Mutch Associates and Parsons, 2013b). The only exception is MW-518B where Hg increased from 53 to 73 μ g/L. This increase was short-lived as the Hg concentration in MW-518B was 4.8 μ g/L in the post-sparge sampling round (discussed in Section 4.8.3 below).

4.8.3 Post-sparge Hg Concentrations

Post-sparge Hg concentrations are shown in plan view for the deep Satilla in Figure 4-31. After sparging, Hg concentrations were considerably lower within the sparging footprint, with a range of 0.53 to 260 μg/L. Many monitoring points (12 out of 30) showed Hg concentrations less than 10 μg/L. An additional 7 monitoring points (19 out of 30) showed Hg concentrations less than 20 μg/L. The changes in Hg concentrations for all 30 monitoring points within the sparging footprint are summarized in Table 4-5. 28 out of 30 monitoring points showed decrease in Hg after sparging. The only two deep Satilla monitoring points which increased in Hg were EW-3 and MW-516B. The large increase in Hg in EW-3 is probably due to water of different quality moving into the EW-3 area after sparging. This is supported by the large increases in TDS (5,800 to 11,000 mg/L) and silica (29 mg/L to 330 mg/L) from pre-sparge to post-sparge.

Table 4-6: Summary of Pre- and Post-Sparge pH in Deep Satilla Monitoring Points Within the Sparging Footprint

Monitoring	Pre-	Post-	Pre-sparge	Post-sparge	Hg Change	Hg %
Point	sparge pH	sparge pH	Hg (µg/L)	Hg (µg/L)	(µg/L)	Change
EW-11	8.62	6.49	48	3	-45	-94%
MW-501B	11.3	6.81	48	13	-35	-73%
EW-6	11.75	7.41	430	180	-250	-58%
MW-514B	10.37	6.31	40	4.1	-35.9	-90%
MW-512B	11.73	6.93	85	30	-55	-65%
EW-1	11.28	6.27	50	0.53	-49.47	-99%
MW-115C	10.7	6.68	62	19	-43	-69%
EW-2	10.5	6.57	60	6.7	-53.3	-89%
MW-505B	10.04	6.76	53	32	-21	-40%
EW-3	11.01	9.84	7.2	71	63.8	+886%
MW-513B	11.34	6.51	12	11	-1	-8%
MW-2C	8.71	6.49	49	34	-15	-31%
MW-517B	9.81	6.48	92	14	-78	-85%
MW-504B	11.2	6.49	320	7.7	-312.3	-98%
MW-516B	11.3	11.48	34	37	3	+9%
MW-518B	10.87	7.18	53	4.8	-48.2	-91%
MW-519B	7.35	6.54	31	15	-16	-52%
EW-8	10.5	9.09	48	2.7	-45.3	-94%
MW-515B	11.24	8.8	30	10	-20	-67%
EW-10	11.1	7.34	68	35	-33	-49%
EW-9	10.9	6.73	120	4.6	-115.4	-96%
MW-1C	8.98	6.54	43	11	-32	-74%
EW-4	11.2	7.01	160	20	-140	-88%
MW-105C	11.08	6.68	58	2.4	-55.6	-96%
MW-511B	12.28	9.81	160	82	-78	-49%
MW-357A	10.2	6.54	71	4.1	-66.9	-94%
MW-357B	11.08	8.82	180	5.7	-174.3	-97%
MW-352B	11.53	12.89	690	260	-430	-62%
MW-502B	11.13	6.93	120	4.4	-115.6	-96%
EW-5	10.5	10.74	300	180	-120	-40%

The effect of sparging on Hg is best examined in wells where sparging lowered the pH to circumneutral because of the known effect of pH on Hg in deep Satilla wells (Mutch Associates, 2013). Therefore, summary statistics are presented in Table 4-7 for monitoring points that were lowered to pH less than 7.5. The average Hg concentration decreased from 94 μ g/L to 21 μ g/L (n = 22), resulting in a decrease of 78%. The median Hg decreased from 59 to 11 μ g/L. This decrease is shown graphically in Figure 4-32 in the form of box plot. The boundary of the box closest to zero indicates the 25th percentile,

a line within the box marks the median, and the boundary of the box farthest from zero indicates the 75th percentile. The error bars above and below the box indicate the 90th and 10th percentiles values. The mean value in each box is indicated by the dashed red line.

Table 4-7: Summary Statistics for Constituents in Deep Satilla Monitoring Points Where pH was Lowered to Less Than 7.5

Chemical Constituent		Average	Standard Deviation	Median	Difference	Percent Change
На (па/Г)	Pre	94	96	59	-73	-78%
Hg (µg/L)	Post	21	36	11		
Alkalinity (mg/L as	Pre	2,655	2,181	2,050	+2,513	+95%
CaCO ₃)	Post	5,168	2,668	4,350		
TDS (mg/L)	Pre	14,714	11,624	10,350	-2268	-15%
TDS (Ilig/L)	Post	12,445	8,440	10,050		
Ferrous Iron (µg/L)	Pre	2,932	1,939	2,300	+5,295	+181%
Terrous from (µg/L)	Post	8,227	6,117	7,000		
Dissolved Organic	Pre	280	170	265	-75.6	-27%
Carbon (mg/L)	Post	205	121	205		
Total Organic Carbon	Pre	282	228	25	-80.14	-28%
(mg/L)	Post	202	139	197		
Arsenic (µg/L)	Pre	71	97	48	-45.27	-64%
Arsenic (µg/L)	Post	26	27	20		
Chromium (µg/L)	Pre	242	161	205	+3.09	1%
Cironnum (µg/L)	Post	245	191	235		
Sulfide (mg/L)	Pre	18.9	13.2	19	-7.5	-40%
Sumue (mg/L)	Post	11.4	14.5	5.0		
Silica (mg/L as SiO ₂)	Pre	730	1,308	325	-612	-84%
Sinca (ilig/L as SiO ₂)	Post	118	179	67.5		

Post-sparge Hg concentrations are shown in plan view for the mid Satilla in Figure 4-33. After sparging, concentrations in the mid Satilla generally decreased. MW-352A and MW-514A, the two mid Satilla monitoring wells with the highest Hg concentrations (both were $\geq 300~\mu g/L$), showed large decreases in Hg to 11 and 47 $\mu g/L$, respectively. Most of the monitoring points in the mid Satilla (10 out of 17, 59%) were less than 10 $\mu g/L$. The only well in the mid Satilla to increase significantly after sparging was MW-516A which increased from 16 to 84 $\mu g/L$. The average decrease in Hg of 78% in deep Satilla wells is slightly better than results obtained from the Proof of Concept Test where the average percent decrease within the 20-ft sparging ROI was 67% (n = 4).

The relationship between Hg and pH in deep Satilla wells is shown in Figure 4-34. As discussed earlier, Hg concentrations decreased with decreasing pH. The Proof of Concept test showed a curvilinear dependence where Hg concentrations decreased sharply when the pH was lowered below pH 8 (Mutch Associates and Parsons, 2013b). A similar dependence is present in the Phase 1 data except that there is inherently more variability because the entire CBP is represented. Several wells are called-out on the figure to highlight the strong pH dependence. Interestingly, MW-515B, MW-357B and EW-8 showed large decreases in Hg without reaching a neutral post-sparge pH. These wells did, however, reach pH \leq 7.0 for various periods during sparging only to rebound to a final post-sparge pH of approximately 9.0 (Section 4.2.5). This suggests that slight pH rebound does not result in re-release of Hg to groundwater.

The CBP is generally a sulfide-rich, reducing environment. Dissolved Hg speciation in the presence of sulfide is dominated by: complexes with sulfide such as $HgHS^-$, HgS_2^{2-} ; complexes with polysulfides such as $Hg(S_x)_2^{2-}$ and HgS_xOH^- ; complexes with thiol groups present on dissolved organic matter (DOM); and HgS(s) precipitated as metacinnabar or cinnabar (Skyllberg, 2008). The geochemical conceptual model for Hg within the CBP is discussed in the RI (GeoSyntec Consultants, 1997) and in the CO_2 Sparging Proof of Concept Final Report (Mutch Associates and Parsons, 2013b). Solubility of Hg in the presence of sulfide generally decreases with decreasing pH as a result of precipitation of Hg sulfide, HgS(s) (Jay et al., 2000).

4.9 Effect of Sparging on Additional Geochemical Parameters

4.9.1 Effect of Sparging on Silica

Since the Proof of Concept test, we have suspected that amorphous silica precipitated once the pH decreased as a result of CO_2 sparging. The concern over silica precipitation is that it may significantly lower the aquifer hydraulic conductivity. Therefore, pre-and post-sparge silica are shown in plan view in Figure 4-35 and Figure 4-36, respectively. Pre-sparge silica values within the sparging footprint ranged from 29 mg/L to 17,000 mg/L (Figure 4-35). High silica areas generally are west of the EW-6 area and in an isolated areas near MW-352B. A low silica area exists near the Proof of Concept test, as a result of prior sparging in this area. Post-sparge silica values were typically much lower, ranging from 41 mg/L to 14,000 mg/L (Figure 4-36). Limiting the data to deep Satilla monitoring points that were lowered to pH \leq 7.5 (n = 22) results in average pre-and post-sparge silica values of 730 and 118 mg/L, respectively. The average percent decrease in silica in these wells was 84%. This is almost identical to the average 88% percent decrease observed after the Proof of Concept Test (n = 4) (Mutch Associates and Parsons, 2013b).

The effect of sparging on silica concentrations was examined with the assistance of geochemical modeling. Visual MINTEQ (Gustafsson, 2011) was used to model silica solubility using pre-sparge and post-sparge prototypical CBP water quality (Table 4-4). Measured and modeled silica concentrations are shown versus pH are shown in Figure 4-37. Two model lines are shown, corresponding to solubility of silica with respect to quartz (solid line) and amorphous silica (dashed line). The pre-sparge data tends to be elevated in pH and silica, and tend to fall on or close to the quartz solubility line. The post-sparge data tends to be lower in pH, and lies on or close to the amorphous silica line. Several wells are highlighted on Figure 4-37 to illustrate the effect of aquifer geochemistry on silica concentrations. Monitoring points where the pH was lowered due to sparging (e.g. MW-512B, EW-6 and EW-10) shifted from being in equilibrium or in slight super-saturation with respect to quartz to being in equilibrium with amorphous silica. Monitoring points that were not affected by sparging (e.g. MW-358B and MW-353B) show little change in silica concentration and are in equilibrium with quartz. A well that was previously affected by sparging (EW-11) moved along the amorphous silica line after the pH was lowered during Phase 1 sparging. This indicates that silica solubility is controlled by quartz or is slightly supersaturated with respect to quartz within the CBP prior to CO₂ sparging, which is consistent with dissolution of silica sand after release of caustic brine. After the pH is lowered via CO₂ sparging, the solubility is controlled by amorphous silica, consistent with precipitation of this phase.

These analytical data and geochemical modeling results support the hypothesis that amorphous silica precipitates once the pH has decreased as a result of CO₂ sparging. The degree to which silica may reduce hydraulic conductivity of the aquifer depends upon the reduction in porosity that results when silica precipitates. Loss of hydraulic conductivity is not something that can be easily determined from the chemical data presented in this section and is best determined through aquifer testing. This is further discussed in Section 4.11.

4.9.2 Effect of Sparging on Total Dissolved Solids (TDS)

Pre- and post-sparge TDS are shown in plan view in Figure 4-38 and Figure 4-39, respectively. Pre-sparge TDS values within the sparging footprint ranged from 4,900 mg/L to 56,000 mg/L (Figure 4-38). High TDS areas generally are in the Proof of Concept area and in isolated areas near EW-6 and MW-352B. Post-sparge TDS values were slightly lower than pre-sparge values, ranging from 4,200 mg/L to 42,000 mg/L (Figure 4-39). The average pre-sparge TDS for all deep Satilla monitoring wells (n = 30) was 15,700 mg/L. Post-sparging, the average TDS in these wells was 12,800 mg/L. Limiting the data to deep Satilla monitoring points that were lowered to pH 7.5 (n = 22), results in pre- and post-sparge

TDS values of 14,700 and 12,400 mg/L, respectively. The percent decrease of TDS in wells that were lowered to pH 7.5 or lower was 16%.

There are numerous geochemical reactions occurring during CO₂ sparging which can affect TDS. However, CO₂ sparging is not expected to have a large effect on TDS since sodium and chloride are the major components of TDS within the CBP, and these ions generally behave conservatively (i.e. do not precipitate or adsorb). The most important process that may lower TDS is silica precipitation (Section 4.9.1). Conversely, increases in bicarbonate ion concentration as a result of CO₂ sparging is expected to increase TDS. The net result was a modest decrease in TDS of 16%.

4.9.3 Effect of Sparging on Specific Gravity

Specific gravity was monitored because it is one of the criteria identified in the removal AOC. Specific gravity of groundwater is a manifestation of the presence of dissolved solids. Pre- and post-sparge specific gravity data is summarized in Table 4-8. The majority of specific gravity measurements were between 1.01 and 1.02. A total of five monitoring points increased, three stayed the same and two decreased. The mean specific gravity increased slightly from 1.018 to 1.020. Specific gravity also increased slightly from pre- to post- sparging in a few of the deep Satilla wells after the Proof of Concept Test.

Specific gravity was monitored because it is one of the criteria identified in the AOC. The specific gravity of any water is dictated by the concentrations of dissolved solids. Similar to TDS (Section 4.9.2), a large change in specific gravity was not expected after CO₂ sparging. Also, like TDS, the specific gravity of the CBP is largely a function of sodium and chloride ions, which generally behave conservatively. The lack of change in the CBP specific gravity upon CO₂ sparging is inconsequential with respect to mercury since the density of the water does not affect mercury immobilization which is driven by the change in pH. Furthermore, there is no significant harm is expected of the specific gravity, which in many cases only slightly exceeds that of fresh water.

Table 4-8: Pre- and Post-Sparge Specific Gravity^(a)

Monitoring Point	Pre-Sparge Specific	Post-Sparge Specific	ΔSG
	Gravity	Gravity	
MW-105C	NM	(1.01)	-
MW-115C	1.03	1.045	+0.015
MW-501B	NM	(1.02)	-
MW-502B	1.02	1.023	+0.003
MW-503B	1.00	1.01	+0.01
MW-504B	1.02	1.02	0
MW-511B	1.02	1.02	0
MW-512B	1.025	1.01	-0.015
MW-513B	1.01	1.02	+0.01
MW-514B	1.00	1.01	+0.01
MW-516B	1.02	1.02	0
MW-518B	1.03	1.02	-0.01
Mean ^(b) :	1.018	1.020	0.002

⁽a)MW-105C and MW-501B were inadvertently not measured (NM) in the field

4.9.4 Effect of Sparging on Arsenic and Chromium

Pre-sparge arsenic concentrations in deep Satilla monitoring points (Appendix G) ranged from 20 to 790 $\mu g/L$ with an average of 100 $\mu g/L$ (n = 30). The percent change in arsenic in the deep Satilla was evaluated by computing summary statistics for monitoring points within the sparging footprint where the pH decreased to ≤ 7.5 (Table 4-7). Arsenic decreased from an average of 71 to 26 $\mu g/L$ for a percent decrease of 64%. This is almost identical to the 67% decrease (n = 4) in deep Satilla wells observed immediately after the Proof of Concept Test. Concentrations of arsenic in mid Satilla monitoring points were generally much lower than the deep Satilla. The average pre-sparge concentration in the mid Satilla ranged from 7.7 to 55 $\mu g/L$ (n = 17) with an average of 20 $\mu g/L$. Post-sparge concentrations were slightly lower, ranging from 5.5 to 40 $\mu g/L$ (n = 17) with an average of 18 $\mu g/L$.

Pre-sparge chromium concentrations in deep Satilla monitoring points (Appendix G) ranged from 30 to 720 μ g/L with an average of 235 μ g/L (n = 30). The percent change in chromium in the deep Satilla was evaluated by computing summary statistics for monitoring points within the sparging footprint where the pH was decreased to ≤ 7.5 (Table 4-7). Average chromium concentrations were essentially unchanged from pre-sparging (242 μ g/L) to post-sparging (245 μ g/L). Chromium showed only a slight decrease (22%) after the Proof of Concept Test (n = 4). Concentrations of chromium in the mid Satilla monitoring points were generally slightly lower than the deep Satilla. The average pre-sparge concentration of chromium in the mid Satilla ranged from 12 to 560 μ g/L (n = 17) with an average of 133

⁽b) Means were calculated from 10 monitoring wells for which pre- and post-sparge measurements were made

 μ g/L. Post-sparge concentrations were slightly lower, ranging from 8.8 to 160 μ g/L (n = 17) with an average of 138 μ g/L. Chromium speciation in the CBP is most likely trivalent (as opposed to hexavalent) because of the large concentrations of ferrous iron and dissolved sulfide which are both known to reduce Cr(VI) to Cr(III) (Pettine et al., 1998; Pettine et al., 1994).

4.10 Effect of Sparging on Monitoring Wells West of Sparging Footprint

Eight monitoring wells to the west of the sparging footprint (MW-353B, MW-358B, MW-503B, MW-507B, MW-510B, MW-112C, and MW-113C, see Figure 1-2) were sampled as part of the presparge and post-sparge sampling rounds and as part of monitoring during Phase 1 of sparging. The purpose of monitoring these wells was to determine if sparging influenced water quality outside of the sparging footprint. The pH of MW-358B, MW-353B, MW-305B, MW-507B and MW-508B were generally unaffected by CO₂ sparging. A comparison of historical and Phase 1 pH results for MW-503B, MW-358B and MW-508B are provided in Figure 4-40. Conversely, MW-112C, MW-113C and MW-510B showed some change in pH during sparging (Figure 4-41). MW-112C increased from a pre-sparge value of 8.11 to a post-sparge pH of 11.29. The pH in MW-112C has been as high as 10.5 as recently as October 2008 (Figure 4-41), suggesting that water quality near MW-112C is somewhat variable. The increase in pH in MW-112C is probably due to a small amount of movement of groundwater in this area during sparging. The pH in MW-113C decreased from a pre-sparge pH of 12.92 to a post-sparge pH of 9.08. This change in pH occurred shortly after the start of sparging, but it is highly unlikely that CO₂ gas reached as far out as MW-113C which is 462 ft from its nearest sparge well (SW-7). The historical pH in MW-113C has been as low as 9.78 in December 1995 and as high as 12.92 in September 2013, once again showing a rather large historic variation in water quality in this well. The pH of MW-510B changed quite a bit during CO₂ sparging. The pre-sparge pH of 11.33 decreased to 9.55 after three weeks of sparging, only to increase mid-way through sparging to pH 11.94, and then finally decrease to pH 10.20 after sparging was completed. MW-510B was only 57 ft from SW-23. Some effect of CO₂ sparging on the pH of this well is expected given that the average ROI was to achieve pH ≤ 7.5 was 32.9 ft.

Hg in the monitoring wells west of the sparging footprint stayed relatively the same in some wells and decreased in others. MW-112C, MW-507B, and MW-510B Hg levels were relatively unchanged. Hg in the remaining monitoring wells all decreased. In general, decreases in Hg in the wells to the west of the sparging footprint were associated with small decreases in pH. Most notable was the decrease in Hg in MW-113C from 45 to $3.1 \mu g/L$. This decrease in Hg is associated with a decrease in pH from 12.92 to

a post-sparge pH of 9.08, consistent with the known pH dependence on Hg concentrations in the deep Satilla. The only exception was MW-508B which showed a decrease in Hg from 92 to 40 μ g/L with an increase in pH from 6.98 to 10.07.

4.11 Effect of Sparging on Piezometric Surfaces

As in the Proof of Concept Test, the piezometric surface in the deep Satilla Aquifer, and to a lesser extent the groundwater table in the Satilla Aquifer, were influenced during sparging.

We begin with a discussion of mounding of the groundwater table. Figure 4-42 shows the changes in water level in PZ-63 during a single sparge event in SW-63 (the locations of piezometers can be found on Figure 2-4). SW-63 is 3.4 feet from PZ-63. The water level in PZ-63 began to rise nearly instantaneously after sparging began. SW-63 was run for eight hours. The water level in PZ-63 increased until it peaked four hours into sparging at 1.5 feet higher than the pre-sparge water elevation of 6.33 feet (NAVD 88). The water level in PZ-63 remained steady at its peak for three hours before the water level began to slowly decline during the final hour of sparging. PZ-63 water levels decreased for seven hours until reaching the pre-sparge level. The elevation of the ground water table in PZ-63 was a function of both radial distance and flow rate of the nearby sparge wells. The higher the flow rate was in SW-63, the higher the water elevation peaked in PZ-63. SW-61, at a radial distance of 167 feet, increased the water level in PZ-63 by 0.1 feet on December 6, 2013. The further away the sparge well was from PZ-63, the smaller the rise in water level. However, when multiple sparge wells were operating in the same region or for long durations, the superposition of mounding was more noticeable. The water level in PZ-63 experienced its largest increase in water level elevation on January 14, 2014 of two feet, or about 1 foot below ground surface, when nearby SW-63 and SW-64 were sparging simultaneously for greater than 18 hours.

The 15 shallow piezometers were checked periodically while sparging into accompanying sparge wells. There was not a single instance during sparging that resulted in the ground water table reaching the surface in these piezometers. There were, however, several instances when shallow groundwater surfaced in low-lying areas of the site within the sparging footprint. These instances were often preceded by periods of precipitation and resulted in localized standing water that either evaporated or percolated back into the ground within the sparge footprint. The long-term effect of sparging on the groundwater table was an increase in water level elevation during sparging, followed by a gradual return to pre-sparge levels.

The piezometric surface in the deep Satilla monitoring wells within the sparge footprint was strongly influenced by sparging. The piezometric surface changed as a function of sparge well flow rates and radial distance from the sparge well. Monitoring well, MW-2C, located in the deep Satilla, was outfitted with a transducer that recorded the piezometric surface throughout the sparging program. Figure 4-43 shows the effect of sparging on the piezometric surface within MW-2C for a single sparging event. SW-37 is 22.7 feet from MW-2C. The piezometric surface in MW-2C began to increase approximately 50 minutes after sparging began in SW-37, which was run for nine hours. The piezometric elevation in MW-2C increased steadily with increases in the sparge flow rate throughout the sparging event. Near the end of the sparge period, the piezometric surface reached its maximum value. The piezometric surface began to decline immediately after sparging ended. The water level in MW-2C returned to pre-sparge conditions approximately seven hours after sparging ended. Further, the water level receded for an additional five hours until it reached 3.1 feet (NAVD 88), approximately one foot below the pre-sparge water level of 4.1 feet (NAVD 88). The water level in MW-2C then began to slowly increase and approach its pre-sparge value. As in the Proof of Concept test, the rise in piezometric surface in deep Satilla wells extended outward from sparge wells for considerable distances. For example, Figure 4-44 shows two sparging events occurring at radial distances of 64 feet (SW-26) and 104 feet (SW-49). SW-49, at a radial distance of 104 feet from MW-2C, caused the piezometric surface to increase by approximately 10 feet.

As discussed in Section 2.1.3, prior to sparging, monitoring wells and piezometers within the sparging footprint were fitted with threaded caps. These threaded caps were largely effective in containing the rising waters in monitoring wells and piezometers. There were, however, several instances where an open sample port or loose fitting resulted in deep Satilla groundwater surfacing as foam or as localized standing water within the sparging footprint. In most cases, the pH of the water that came to surface had been neutralized by the sparging effort. In all cases, the standing water evaporated or percolated into the ground within the sparging footprint. There were no apparent long term effects of sparging on the piezometric surface in the deep Satilla. The piezometric surface elevation rose and fell during sparge operations but gradually returned to pre-sparge levels during rest periods. The long term hydrographs for all deep Satilla monitoring wells can be found in Appendix H.

The water levels in three pairs of monitoring wells were measured with transducers to evaluate change in head differences during Phase 1 sparging efforts to assess migration of deep Satilla water outside the sparging footprint. One well within each pair is located within the sparging footprint and one well is located west of the sparging footprint, adjacent to the marsh. The selected well pairs were MW-

501B and MW-503B, MW-513B and MW-508B, and MW-516B and MW-112C. Available groundwater levels from July 2007 and October 2009 (provided by EPS Planning Specialists, Inc.) were used to calculate the historical averages of pre-sparge head differences in each monitoring well pair, as shown in Table 4-9. Hydrographs of these paired water levels (in ft NAVD 88) are shown in Figures 4-45 through Figure 4-47. A least squares regression, linear trendline was fit to water levels obtained from monitoring well transducer data and the difference between the trendlines was taken at three points during the sparging period and then averaged. For each monitoring pair, the average head difference during sparging was insignificantly different from the historical average as shown in Table 4-8. Therefore, the data indicate that the Phase 1 sparging had an insignificant impact on sparging footprint migration as the average westerly hydraulic gradient did not appreciably change during the sparging activities.

Table 4-9: Difference in Water Levels in Selected Well Pairs

	North End of Site MW-501B to MW-503B (347 feet apart)	Center of Site MW-513B to MW-508B (366 feet apart)	South End of Site MW-516B to MW-112C (346 feet apart)
Historical Period			
July 2007	1.4	2.3	1.4
October 2009	1.4	4.3	1.2
Historical Average	1.4	3.3	1.3
Sparging Period			
Beginning of Sparging	1.3	2.5	1.9
Winter Rest Period	1.3	3.1	1.6
End of Sparging	1.3	3.9	1.2
Average During Sparging	1.3	3.1	1.5

Notes:

4.12 Analysis of Pre- and Post-Short-Term Aquifer Tests

Short-term, pre- and post- sparging aquifer testing was conducted in ten of the sparge wells as set forth in the EPA-approved Sparging Work Plan. These ten sparge wells were selected because there was an existing deep Satilla monitoring well within a reasonable distance of the sparge well that could be used for monitoring drawdown. In each case, a pressure transducer was deployed in a monitoring well to measure any drawdown induced by the pumping of the sparge well. In the pre-sparging aquifer testing,

^{1.} All values in units of feet (ft)

^{2.} A positive number indicates the well within the sparging footprint had a higher water level than the well west of the sparging footprint

^{3.} The first well in each pair is the well within the sparging footprint and the second well is located west of the sparging footprint. i.e. MW-501B is within the sparging footprint

sufficient drawdown was observed in several wells, which permitted analysis of aquifer properties. In cases where insufficient drawdown was observed or where the sparge well dewatered, flow rates or specific capacities were used to evaluate changes in aquifer properties.

In the post-sparging aquifer tests, the presence of residual saturation of CO₂ gas in the aquifer profoundly affected aquifer properties, as was previously observed in the comprehensive Proof of Concept aquifer test (Mutch Associates, 2013). In the Proof of Concept aquifer test, CO₂ residual saturation in the aquifer was shown to decrease aquifer hydraulic conductivity by about 75% and substantially increase aquifer storativity. The decrease in hydraulic conductivity was primarily attributable to CO₂ gas occupying a fraction of the aquifer's pore spaces. Precipitation of silica was believed to be a secondary mechanism of hydraulic conductivity reduction. The increase in storativity is also attributable to CO₂ residual saturation.

The intrusion of CO₂ gas into pore spaces forces water out of those pore spaces and reduces groundwater saturation and groundwater relative permeability. The observed increase in aquifer storativity is attributable to the higher compressibility of entrapped CO₂ gas relative to groundwater⁷. The presence of residual saturation of CO₂ gas in the aquifer precludes aquifer test analysis using conventional methodologies. Consequently, for post-sparging aquifer testing, the Theis curve matching methodology used in the pre-sparge aquifer test analysis are not used for aquifer test analysis because they yield erroneous aquifer properties. Instead, we rely on observed pumping rates and specific capacities to evaluate the extent of any changes in aquifer properties. The increase in storativity actually *increases* the yield of some wells during early-time aquifer test pumping. This is a transient phenomenon that only manifests itself during early-time pumping of the aquifer. During long-term pumping, the influence of storativity will diminish and aquifer transmissivity would control the pumping rate. Since aquifer transmissivity is reduced by the CO₂ residual saturation (and any accompanying silica precipitation), long-term well yields would be expected to be less than pre-sparge well yields, at least until the CO₂ gas fully dissolves into the surrounding water. How long CO2 dissolution takes is a function of a number of variables, but could vary from months to years. The pre-sparging aquifer tests yield a number of useful estimates of hydraulic conductivity of the basal Satilla formation. This data allow us to better understand the spatial variations in hydraulic conductivity within the basal Satilla formation and will be helpful in design of future sparge events.

 $^{^{7}}$ Under a unit decline in total hydraulic head, entrapped CO_2 gas expands substantially more than groundwater and consequently forces more water out of the pore spaces of the aquifer, thereby increasing aquifer storativity.

The results of the pre- and post-sparge aquifer testing of each of the ten sparge wells are presented in the following subsections.

4.12.1 Pre- and Post-Sparge Aquifer Testing of SW-4

SW-4 has an accompanying monitoring well, MW-518B, at a radial distance of 30.7 ft. A summary of pre- and post-sparge aquifer test data is in Table 4-10 below. The pre-sparge aquifer test pumped SW-4 at 0.5 gpm, which induced approximately 0.07 ft of drawdown in MW-518B at 14 minutes. The drawdown is shown in Figure 4-48. SW-4 dewatered after 14 minutes. The pre-sparge aquifer test pumped a total of 6.7 gallons, which is approximately equal to the amount of well casing storage. The pre-sparge yield of this well was therefore close to zero. In contrast, the post-sparge aquifer test pumped SW-4 at 0.5 gpm for 33 minutes, which induced 0.07 ft of drawdown in MW-518B. SW-4 did not dewater during the post-sparge aquifer test and a total of 30 gallons was pumped to the surface, with approximately 23 gallons coming from the formation. The specific capacity increased 4.4 times from the pre-sparge test value of 0.01 gpm/ft to the post-sparge test value of 0.044 gpm/ft. The increase in specific capacity is believed to be attributable to CO₂ residual saturation in the aquifer, which increases the storativity of the aquifer. The increase in storativity translates to an increase in well yield at least in the short term, when drawdown is rapidly increasing.

Table 4-10: Pre- and Post-Sparge Aquifer Test Summary for SW-4

	Pre-Sparge	Post-Sparge
Date tested:	8/22/13	3/1/14
Nearby monitoring well:	MW-518B	MW-518B
Radial distance to monitoring wells(s) (ft):	30.7	30.7
Test duration (min):	14	60
Average flow (gpm):	0.5	0.5
Total volume pumped (gal):	6.7	30.0
Well bore storage (gal):	7.5	7.0
Gallons pumped from aquifer (gal):	0.0	23.0
Specific capacity (gpm/ft):	0.010	0.044
Hydraulic conductivity (ft/d):	Not determined	Not determined
Notes:	Dewatered	Completed Test

4.12.2 Pre- and Post-Sparge Aquifer Testing of SW-11

SW-11 has an accompanying monitoring well, MW-516B, at a radial distance of 29.3 ft. A summary of pre- and post-sparge aquifer test data is in Table 4-11 below. The pre-sparge aquifer test pumped SW-11 at 0.4 gpm for 20 minutes. Approximately 0.14 ft of drawdown was observed in MW-516B as shown in Figure 4-49. SW-11 dewatered during the pre-sparge aquifer test after 20 minutes. The pre-sparge aquifer test pumped a total 8.8 gallons, with approximately 1.2 gallons coming from the formation. Well bore storage was calculated to be 7.6 gallons. Subsequently, the post-sparge aquifer test pumped SW-11 at 0.5 gpm, which induced negligible drawdown in MW-516B at 30 minutes. SW-11 did not dewater during the post-sparge aquifer test and pumped a total of 14 gallons, with approximately 7.1 gallons coming from the formation. The specific capacity increased four times from the pre-sparge test value of 0.009 gpm/ft to the post-sparge test value of 0.036 gpm/ft.

Table 4-11: Pre- and Post-Sparge Aquifer Test Summary for SW-11

	Pre-Sparge	Post-Sparge
Date tested:	8/22/13	3/2/14
Nearby monitoring well:	MW-516B	MW-516B
Radial distance to monitoring wells(s) (ft):	29.3	29.3
Test duration (min):	20	30
Average flow (gpm):	0.4	0.5
Total volume pumped (gal):	8.8	14.3
Well bore storage (gal):	7.6	7.3
Gallons pumped from aquifer (gal):	1.2	7.1
Specific capacity (gpm/ft):	0.009	0.036
Hydraulic conductivity (ft/d):	Not determined	Not determined
Notes:	Dewatered	Completed Test

4.12.3 Pre- and Post-Sparge Aquifer Testing of SW-22

SW-22 has an accompanying monitoring well, MW-511B, at a radial distance of 39.4 ft. A summary of pre- and post-sparge aquifer test data is in Table 4-12 below. The pre-sparge aquifer test pumped SW-22 at 1.7 gpm, which induced approximately 0.13 ft of drawdown in MW-511B at 60 minutes. The drawdown is shown Figure 4-50. The pre-sparge aquifer test pumped a total 101.4 gallons, with approximately 94.6 gallons coming from the formation. Well bore storage was calculated to be 6.8 gallons. Subsequently, the post-sparge aquifer test pumped SW-22 at 1.5 gpm which induced 0.05 ft of drawdown in MW-511B at 60 minutes. The post-sparge aquifer test pumped a total of 89.4 gallons, with approximately 82.2 gallons coming from the formation. The pre-sparge aquifer test yielded a hydraulic conductivity of 14 ft/d using the Theis method. The calculations and fit are shown in Figure 4-51. The specific capacity for the post-sparge aquifer test was 0.046 gpm/ft.

Table 4-12: Pre- and Post-Sparge Aquifer Test Summary for SW-22

	Pre-Sparge	Post-Sparge
Date tested:	8/23/13	3/1/14
Nearby monitoring well:	MW-511B	MW- 511B
Radial distance to monitoring wells(s) (ft):	39.4	39.4
Test duration (min):	60	60
Average flow (gpm):	1.7	1.5
Total volume pumped (gal):	101.4	89.3
Well bore storage (gal):	6.8	7.0
Gallons pumped from aquifer (gal):	94.6	82.2
Specific capacity (gpm/ft):	Not determined	0.046
Hydraulic conductivity (ft/d):	14	Not determined
Notes:	Completed Test	Completed Test

4.12.4 Pre- and Post-Sparge Aquifer Testing of SW-30

SW-30 has an accompanying monitoring well, MW-512B, at a radial distance of 15.9 ft. A summary of pre- and post-sparge aquifer test data is in Table 4-13 below. The pre-sparge aquifer test pumped SW-30 at 0.5 gpm which induced approximately 0.13 ft of drawdown in MW-512B at 60 minutes, as shown Figure 4-52. The pre-sparge aquifer test pumped a total 31.7 gallons, with approximately 24.8 gallons from the formation. Well bore storage was calculated to be 7.0 gallons. Subsequently, the post-sparge aquifer test pumped SW-30 at 0.6 gpm which induced 0.18 ft of drawdown in MW-512B at 60 minutes. The post-sparge aquifer test pumped a total of 35.4 gallons, with approximately 28.2 gallons coming from the formation. The pre-sparge aquifer test yielded a hydraulic conductivity of 2.0 ft/day using the Theis method. The calculations and fit are shown in Figure 4-53. The specific capacity for the post-sparge aquifer test was 0.042 gpm/ft.

Table 4-13: Pre- and Post-Sparge Aquifer Test Summary for SW-30

	Pre-Sparge	Post-Sparge
Date tested:	8/22/13	3/2/14
Nearby monitoring well:	MW-512B	MW-512B
Radial distance to monitoring wells(s) (ft):	15.9	15.9
Test duration (min):	61	60
Average flow (gpm):	0.5	0.6
Total volume pumped (gal):	31.7	35.4
Well bore storage (gal):	7.0	7.2
Gallons pumped from aquifer (gal):	24.8	28.2
Specific capacity (gpm/ft):	Not determined	0.042
Hydraulic conductivity (ft/d):	2.0	Not determined
Notes:	Completed Test	Completed Test

4.12.5 Pre- and Post-Sparge Aquifer Testing of SW-33

SW-33 has an accompanying monitoring well, MW-505B, at a radial distance of 18.8 ft. A summary of pre- and post-sparge aquifer test data is in Table 4-14 below. The pre-sparge aquifer test pumped SW-33 at 0.6 gpm which induced negligible drawdown in MW-505B at 19 minutes, as shown Figure 4-54. SW-33 was dewatered during the pre-sparge aquifer test in 19 minutes. The pre-sparge aquifer test pumped a total 10.5 gallons, with approximately 3.7 gallons from the formation. Well bore storage was calculated to be 6.7 gallons. In contrast, the post-sparge aquifer test pumped SW-33 at 0.7 gpm which induced 0.09 ft of drawdown in MW-505B at 34 minutes. SW-33 dewatered during the post-sparge aquifer test at 34 minutes. A total of 25.5 gallons were pumped, with approximately 18.6 gallons coming from the formation. The specific capacity increased 1.45 times from the pre-sparge test value of 0.011 gpm/ft to the post-sparge test value of 0.016 gpm/ft.

Table 4-14: Pre- and Post-Sparge Aquifer Test Summary for SW-33

	Pre-Sparge	Post-Sparge
Date tested:	8/23/13	2/28/14
Nearby monitoring well:	MW-505B	MW-505B
Radial distance to monitoring wells(s) (ft):	18.8	18.8
Test duration (min):	19	34
Average flow (gpm):	0.6	0.7
Total volume pumped (gal):	10.5	25.5
Well bore storage (gal):	6.7	6.9
Gallons pumped from aquifer (gal):	3.7	18.6
Specific capacity (gpm/ft):	0.011	0.016
Hydraulic conductivity (ft/d):	Not determined	Not determined
Notes:	Dewatered	Dewatered

4.12.6 Pre- and Post-Sparge Aquifer Testing of SW-43

SW-43 has an accompanying monitoring well, MW-504B, at a radial distance of 24.9 ft. A summary of pre- and post-sparge aquifer test data is in Table 4-15 below. The pre-sparge aquifer test pumped SW-43 at 0.4 gpm which induced approximately 0.09 ft of drawdown in MW-504B at 60 minutes, as shown Figure 4-55. The pre-sparge aquifer test pumped a total 21.6 gallons, with approximately 14.6 gallons from the formation. Well bore storage was calculated to be 6.7 gallons. Subsequently, the post-sparge aquifer test pumped SW-43 at 0.8 gpm which induced 0.07 ft of drawdown in MW-504B at 60 minutes. The post-sparge aquifer test pumped a total of 45.0 gallons, with approximately 38.3 gallons coming from the formation. The pre-sparge aquifer test yielded a hydraulic conductivity of 6.7 ft/d using the Theis method. The calculations and fit are shown in Figure 4-56. The specific capacity for the post-sparge aquifer test was 0.055 gpm/ft.

Table 4-15: Pre- and Post-Sparge Aquifer Test Summary for SW-43

	Pre-Sparge	Post-Sparge
Date tested:	8/22/13	2/28/14
Nearby monitoring well:	MW-504B	MW-504B
Radial distance to monitoring wells(s) (ft):	24.9	24.9
Test duration (min):	60	60
Average flow (gpm):	0.4	0.8
Total volume pumped (gal):	21.6	45.0
Well bore storage (gal):	7.0	6.7
Gallons pumped from aquifer (gal):	14.6	38.3
Specific capacity (gpm/ft):	Not determined	0.055
Hydraulic conductivity (ft/d):	6.7	Not determined
Notes:	Completed Test	Completed Test

4.12.7 Pre- and Post-Sparge Aquifer Testing of SW-46

SW-46 has an accompanying monitoring well, MW-502B, at a radial distance of 38 ft. A summary of pre- and post-sparge aquifer test data is in Table 4-16 below. The pre-sparge aquifer test pumped SW-46 at 0.5 gpm which induced approximately 0.02 ft of drawdown in MW-502B at 28 minutes, as shown Figure 4-57. SW-46 was dewatered during the pre-sparge aquifer test in 28 minutes. The pre-sparge aquifer test pumped a total 14.0 gallons, with approximately 7.8 gallons from the formation. Well bore storage was calculated to be 6.2 gallons. In contrast, the post-sparge aquifer test pumped SW-46 at 0.7 gpm which induced negligible drawdown in MW-502B at 65 minutes. SW-46 did not dewater during the post-sparge aquifer test and a total of 46.0 gallons were pumped, with approximately 39.8 gallons coming from the formation. The specific capacity increased 1.54 times from the pre-sparge test value of 0.011 gpm/ft to the post-sparge test value of 0.017 gpm/ft.

Table 4-16: Pre- and Post-Sparge Aquifer Test Summary for SW-46

	Pre-Sparge	Post-Sparge
Date tested:	8/22/13	3/1/14
Nearby monitoring well:	MW-502B	MW-502B
Radial distance to monitoring wells(s) (ft):	38	38
Test duration (min):	28	65
Average flow (gpm):	0.5	0.7
Total volume pumped (gal):	14.0	46.0
Well bore storage (gal):	6.2	6.2
Gallons pumped from aquifer (gal):	7.8	39.8
Specific capacity (gpm/ft):	0.011	0.017
Hydraulic conductivity (ft/d):	Not determined	Not determined
Notes:	Dewatered	Completed Test

4.12.8 Pre- and Post-Sparge Aquifer Testing of SW-59

SW-59 has an accompanying monitoring well, MW-513B, at a radial distance of 21 ft. A summary of pre- and post-sparge aquifer test data is in Table 4-17 below. The pre-sparge aquifer test pumped SW-59 at 0.6 gpm which induced approximately 0.01 ft of drawdown in MW-513B at 20 minutes, as shown Figure 4-58. SW-59 was dewatered during the pre-sparge aquifer test in 20 minutes. The pre-sparge aquifer test pumped a total 12.4 gallons, with approximately 5.5 gallons from the formation. Well bore storage was calculated to be 6.9 gallons. In contrast, the post-sparge aquifer test pumped SW-59 at 0.4 gpm which induced 0.08 ft of drawdown in MW-513B at 30 minutes. SW-59 did not dewater during the post-sparge aquifer test and a total of 13.5 gallons were pumped, with approximately 6.8 gallons coming from the formation. The specific capacity increased 2-times from the pre-sparge test value of 0.01 gpm/ft to the post-sparge test value of 0.02 gpm/ft.

Table 4-17: Pre- and Post-Sparge Aquifer Test Summary for SW-59

	Pre-Sparge	Post-Sparge
Date tested:	8/22/13	3/2/14
Nearby monitoring well:	MW-513B	MW-513B
Radial distance to monitoring wells(s) (ft):	21	21
Test duration (min):	20	30
Average flow (gpm):	0.6	0.4
Total volume pumped (gal):	12.4	13.5
Well bore storage (gal):	6.9	6.6
Gallons pumped from aquifer (gal):	5.5	6.8
Specific capacity (gpm/ft):	0.010	0.020
Hydraulic conductivity (ft/d):	Not determined	Not determined
Notes:	Dewatered	Completed Test

4.12.9 Pre- and Post-Sparge Aquifer Testing of SW-61

SW-61 has an accompanying monitoring well, MW-514B, at a radial distance of 17 ft. A summary of pre- and post-sparge aquifer test data is in Table 4-18 below. The pre-sparge aquifer test pumped SW-61 at 0.7 gpm which induced negligible drawdown in MW-514B at 16 minutes, as shown Figure 4-59. SW-61 was dewatered during the pre-sparge aquifer test in 16 minutes. The pre-sparge aquifer test pumped a total 10.4 gallons, with approximately 3.6 gallons from the formation. Well bore storage was calculated to be 6.8 gallons. In contrast, the post-sparge aquifer test pumped SW-61 at 0.5 gpm which induced 0.06 ft of drawdown in MW-514B at 60 minutes. SW-61 did not dewater during the post-sparge aquifer test and a total of 32.6 gallons were pumped, with approximately 26.0 gallons coming

from the formation. The specific capacity increased 2.5-times from the pre-sparge test value of 0.013 gpm/ft to the post-sparge test value of 0.033 gpm/ft.

Table 4-18: Pre- and Post-Sparge Aquifer Test Summary for SW-61

	Pre-Sparge	Post-Sparge
Date tested:	8/22/13	3/1/14
Nearby monitoring well:	MW-514B	MW-514B
Radial distance to monitoring wells(s) (ft):	17	17
Test duration (min):	16	60
Average flow (gpm):	0.7	0.5
Total volume pumped (gal):	10.4	32.6
Well bore storage (gal):	6.8	6.7
Gallons pumped from aquifer (gal):	3.6	26.0
Specific capacity (gpm/ft):	0.013	0.033
Hydraulic conductivity (ft/d):	Not determined	Not determined
Notes:	Dewatered	Completed Test

Table 4-19: Pre- and Post-Sparge Aquifer Test Summary for SW-63

	Pre-Sparge	Post-Sparge
Date tested:	8/22/13	3/1/14
Nearby monitoring well:	MW-501B	MW-501B
Radial distance to monitoring wells(s) (ft):	9.9	9.9
Test duration (min):	61	60
Average flow (gpm):	0.6	0.6
Total volume pumped (gal):	37.2	37.8
Well bore storage (gal):	7.1	6.8
Gallons pumped from aquifer (gal):	30.1	31.0
Specific capacity (gpm/ft):	Not determined	0.038
Hydraulic conductivity (ft/d):	17	Not determined
Notes:	Completed Test	Completed Test

4.12.10 Pre- and Post-Sparge Aquifer Testing of SW-63

SW-63 has an accompanying monitoring well, MW-501B, at a radial distance of 9.9 ft. A summary of pre- and post-sparge aquifer test data is in Table 4-19 above. The pre-sparge aquifer test pumped SW-63 at 0.6 gpm which induced approximately 0.08 ft of drawdown in MW-501B at 61 minutes, as shown Figure 4-60. The pre-sparge aquifer test pumped a total 37.2 gallons, with approximately 30.1 gallons from the formation. Well bore storage was calculated to be 7.1 gallons. Subsequently, the post-sparge aquifer test pumped SW-63 at 0.6 gpm which induced 0.07 ft of drawdown in MW-501B at 60 minutes. The post-sparge aquifer test pumped a total of 37.8 gallons, with

approximately 31.0 gallons coming from the formation. The pre-sparge aquifer test yielded a hydraulic conductivity of 17 ft/d using the Theis method. The calculations and fit are shown in Figure 4-61. The specific capacity for the post-sparge aquifer test was 0.038 gpm/ft.

4.12.11 Summary of Pre- and Post-Sparging Aquifer Testing Results

The following conclusions can be drawn from the pre-and post-sparging aquifer testing:

- 1. No sharp loss of aquifer transmissivity was observed. Although, the presence of CO₂ residual saturation in the aquifer precludes direct analysis of aquifer properties by conventional methods in the post-sparging tests, the yields and specific capacities of the sparge wells were only moderately different. In fact, the residual saturation of CO₂ actually increased short-term yields and specific capacities of many of the wells for reasons described above. The mean of six presparge specific capacities was 0.011 gpm/ft. The mean of ten post-sparge specific capacities was 0.035 gpm/ft.
- 2. The 2013 pre-sparge aquifer testing indicated that the basal Satilla varies in hydraulic conductivity within the CBP from 2 to 17 ft/d, with a mean value of 9.9 ft/d. The Proof of Concept pre-sparging aquifer test had previously measured a hydraulic conductivity of 8.9 ft/d in that area of the CBP. The 2012 Proof of Concept Test indicated that pre-sparge transmissivity was reduced by 75% principally due to CO₂ residual saturation. The results of the Phase 1 pre-and post-sparge aquifer testing, while not as definitive as the more highly instrumented Proof of Concept Test aquifer testing, do not suggest that any substantially different behavior occurred during the Year 1 sparging. Sparge wells maintained both their CO₂ gas injection rates and their groundwater pumping yields.

As the CO₂ residual saturation dissolves into the surrounding groundwater, a process that could take months or years, aquifer properties should concomitantly approach pre-sparge levels, except for whatever impact silica or other precipitates have had on those properties. Our experience to date, specifically the Proof of Concept test and these recent post-sparge aquifer tests, does not suggest that these latter impacts are of concern.

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

A summary of the key results is presented below:

- All of the technical objectives of Phase 1 of CO₂ sparging were met.
- Sparging was effective in reducing the pH of the CBP groundwater. Following Phase 1 of sparging, 14 out of 15 deep Satilla monitoring points within a radial distance of 30 ft from a sparge well had a post-sparge pH < 10.0, and 13 out of 15 monitoring points had a post-sparge pH < 7.5. Many points at distances greater than 30 ft showed significant decreases in pH.
- An average ROI of 32.9 ft was estimated from the pH versus distance data. This is considerably larger than the 20 to 24 ft ROI measured in the Proof of Concept Test.
- The optimal sparging regimen was Regimen A (once per week), although a longer break between successive sparge events is acceptable if scheduling requires it. Some sparge wells required longer sparge durations of 8 to 24 hours to provide adequate flow.
- The efficiency of CO₂ sparging was evaluated by comparing the CO₂ demand of the CBP with the amount of CO₂ mass required to lower the pH to circumneutral and found to be 29%. This efficiency is approximately three times larger than the efficiency estimated from the Proof of Concept Test (9.7%). The presence of residual CO₂ saturation within the aquifer has potential for continued reduction in pH and mercury long after sparging has ceased.
- CO₂ sparging resulted in a significant decline in aqueous-phase Hg concentrations. In monitoring points where post-sparge pH was less than 7.5, the average Hg concentration decreased from 94 μ g/L to 21 μ g/L (n = 22), a decrease of 78%.
- The pre-and post-sparging aquifer testing showed no sharp loss of aquifer transmissivity. The mean of six pre-sparge specific capacities was 0.011 gpm/ft. The mean of ten post-sparge specific capacities measured approximately two weeks after sparging was 0.035 gpm/ft.
- The pre-sparge aquifer testing indicated that the basal Satilla varies in hydraulic conductivity within the CBP from 2 to 17 ft/d, with a mean value of 9.9 ft/d. The Proof of Concept presparging aquifer test had previously measured a hydraulic conductivity of 8.9 ft/d in that area of the CBP.
- A significant fraction of the injected CO₂ remained in the formation as residual CO₂ saturation and was not vented to the atmosphere. The emplacement of CO₂ residual saturation into the Satilla provides a long-term source of pH-neutralization and mercury precipitation for water flowing from upgradient locations. This may also serve as protection against pH rebound.

• As the CO₂ residual saturation dissolves into the surrounding groundwater, a process that could take months or years, aquifer properties such as hydraulic conductivity and storativity should concomitantly approach pre-sparge levels, except for whatever impact the minimal reduction in porosity may have on these properties. Our experience to date, specifically the Proof of Concept test and these recent post-sparge aquifer tests, does not suggest that these latter impacts are of particular concern.

5.2 Recommendations

The following are recommended for the Phase 2 sparging:

- Given that the actual average ROI achieved in the Phase 1 full-scale implementation was 32.9 ft, further evaluation of well layout and spacing is warranted. Also, additional pH monitoring scheduled for 5-months post-sparging (refer to the Technical memo *Post-sparge pH monitoring and Geoprobe transects, dated June 20, 2014*) may provide useful information for Phase 2 sparge well placement and implementation within the Phase 1 sparging footprint, and in the area southwest of SW-7.
- A formal sampling round should be conducted approximately 7 months after cessation of Phase 1 sparging to serve as post-sparge monitoring and pre-Phase 2 baseline monitoring.
- The recommended sparging regimen for the next phase of sparging is once per week (Regimen A), however sparging at longer intervals is also acceptable if required.
- Sparge wells should be scheduled for durations longer than 4 hours where necessary to provide adequate mass flows of CO₂.
- An overall mass of at least 8,000 to 9,000 lb of CO₂ per sparge well is required in moderate alkalinity areas, and 1.5 to 2.0 times this amount in high alkalinity area is estimated to be required to meet treatment objectives.

6 REFERENCES

Delignette-Muller, M.L., Pouillot, R., Denis, J.-B., Dutang, C. (2014). fitdistribus: help to fit of a parametric distribution to non-censored or censored data.

GeoSyntec Consultants (1997). Remedial Investigation Report Ground Water Operable Unit Volume I LCP Chemicals Brunswick, Georgia.

Gustafsson, J.P. (2011). Visual MINTEQ ver. 3.0. KTH, Department of Land and Water Resources Engineering.

Helsel, D.R. (2012). Statistics for censored environmental data using Minitab and R. Wiley-Blackwell, Oxford.

Jay, J.A., Morel, F.M.M., Hemond, H.F. (2000). Mercury speciation in the presence of polysulfides. *Environ. Sci. Technol.* 34, 2196-2200.

Mutch Associates (2012). Final Work Plan for CO₂ Sparging Proof of Concept Test.

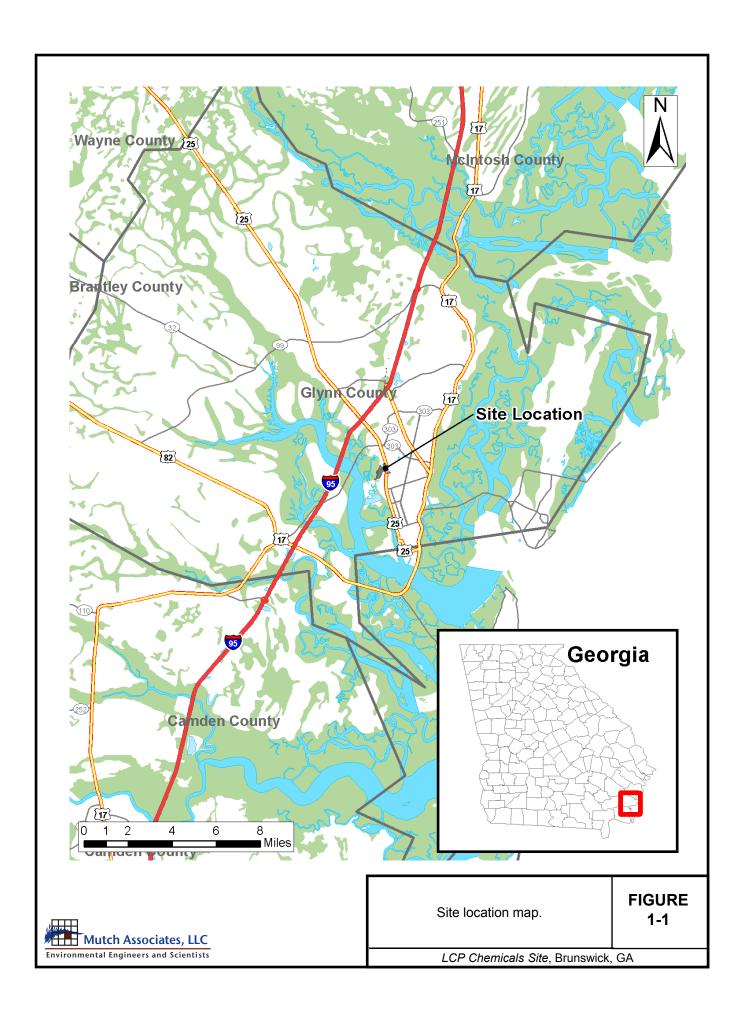
Mutch Associates, Parsons (2013a). CO₂ Sparging Work Plan, LCP Chemicals Site, Brunswick, GA.

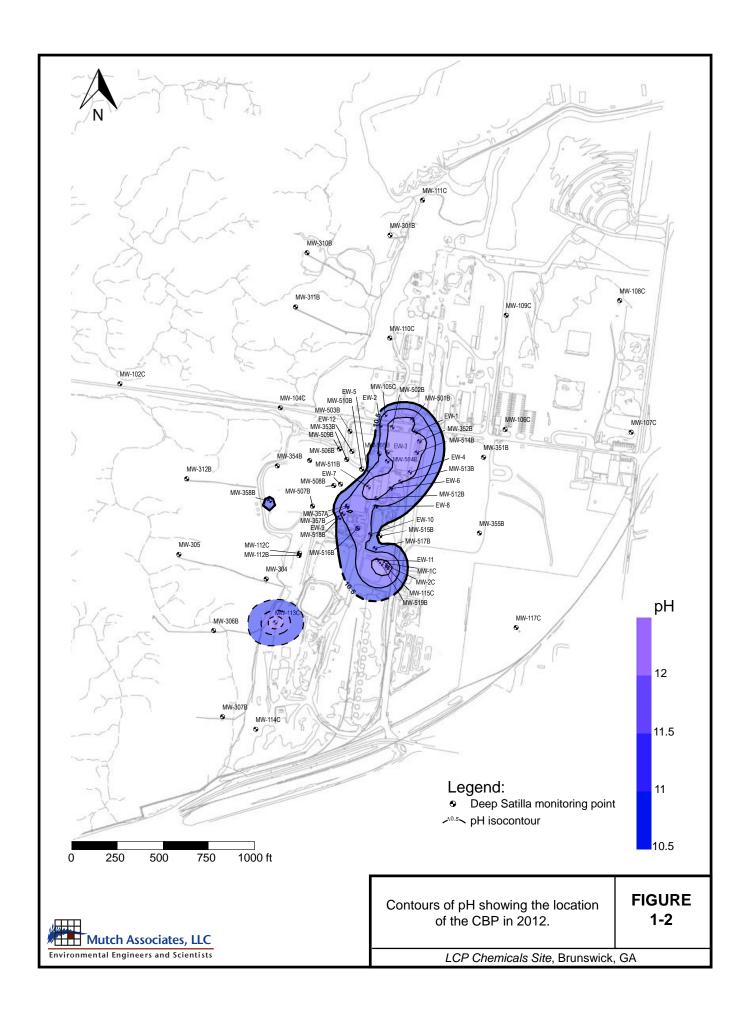
Mutch Associates, Parsons (2013b). CO₂ Sparging: Proof Of Concept Test Report.

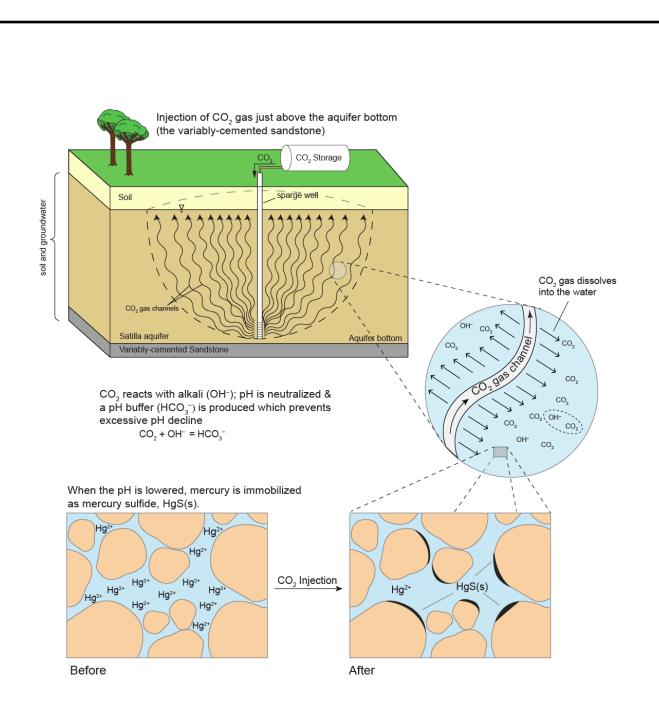
Parkhurst, D.L., Appelo, C.A.J. (2013). Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, Chapter 43 of Section A, Groundwater Book 6, Modeling Techniques. USGS.

Pettine, M., D'Ottone, L., Campanella, L., Millero, F.J., Passino, R. (1998). The reduction of chromium(VI) by iron(II) in aqueous solutions. *Geochim. Cosmochim. Acta* 62, 1509-1519.

Pettine, M., Millero, F.J., Passino, R. (1994). Reduction of chromium(VI) with hydrogen-sulfide in NaCl media. *Marine Chem.* 46, 335-344.

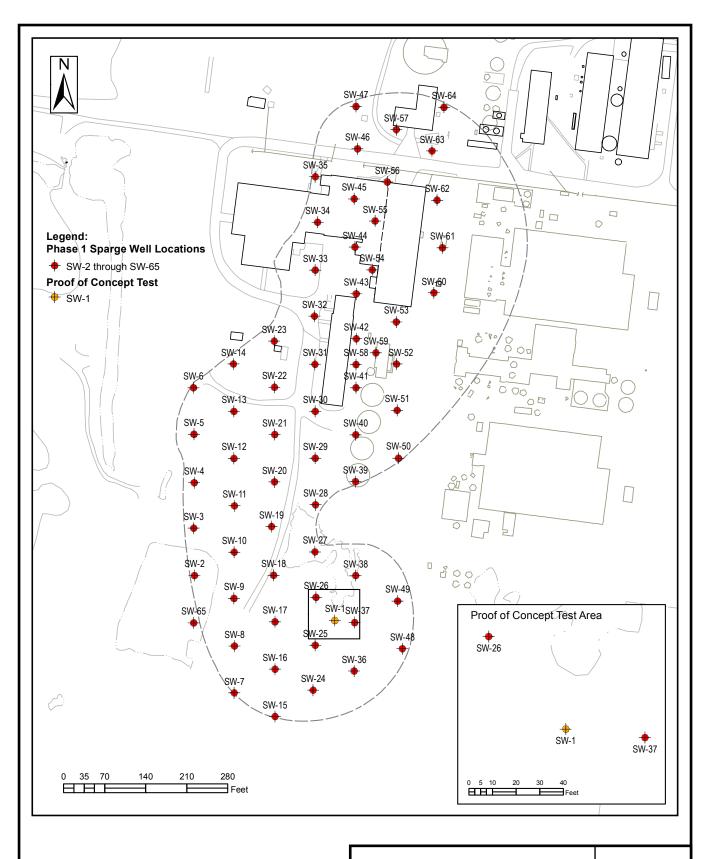

R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.


Skyllberg, U. (2008). Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: Illumination of controversies and implications for MeHg net production. *J. Geophys. Res.* 113, G00C03.


Suthersan, S.S. (1997). Remediation Engineering: Design Concepts. CRC Press.

USEPA (2013). SESD Operating Procedure Groundwater Sampling.

Yeskis, D., Zavala, B. (2002). Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers. USEPA.



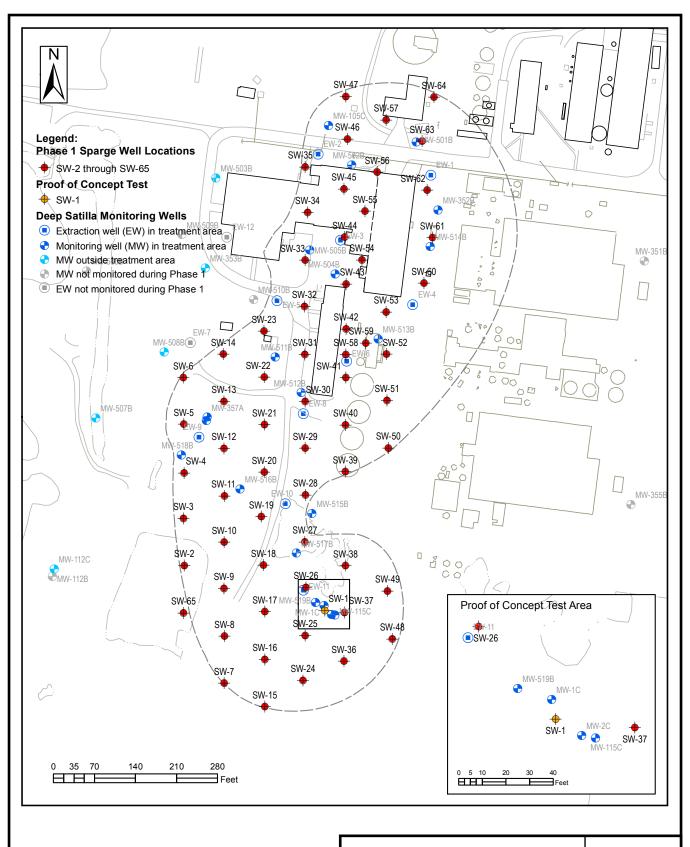

Conceptual model of CO₂ sparging.

FIGURE 1-3

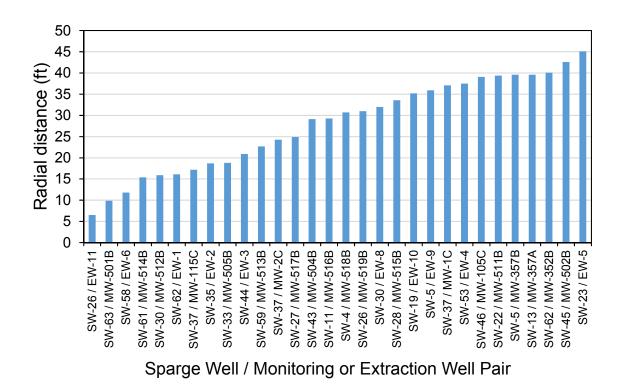
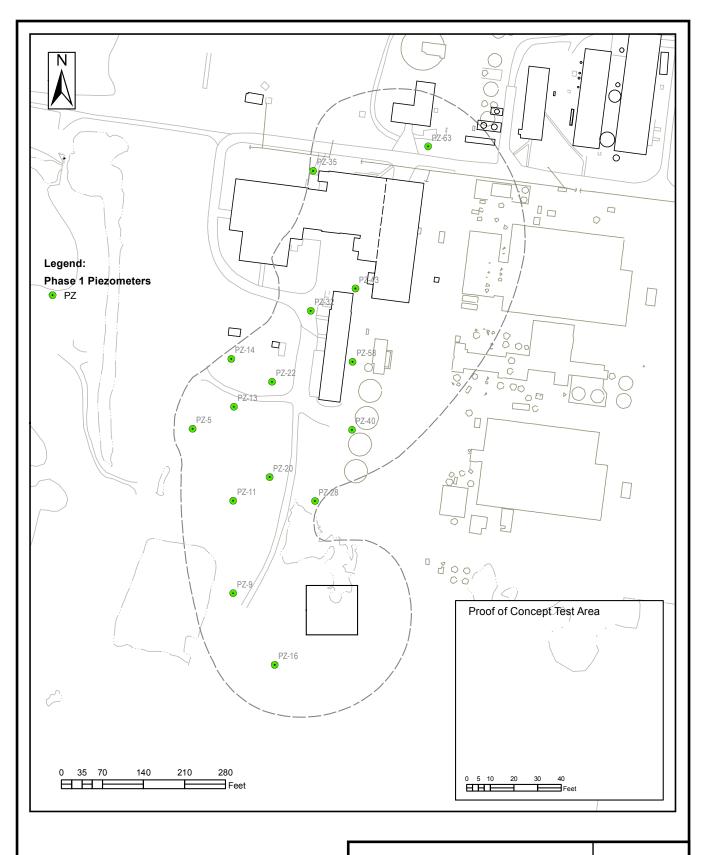
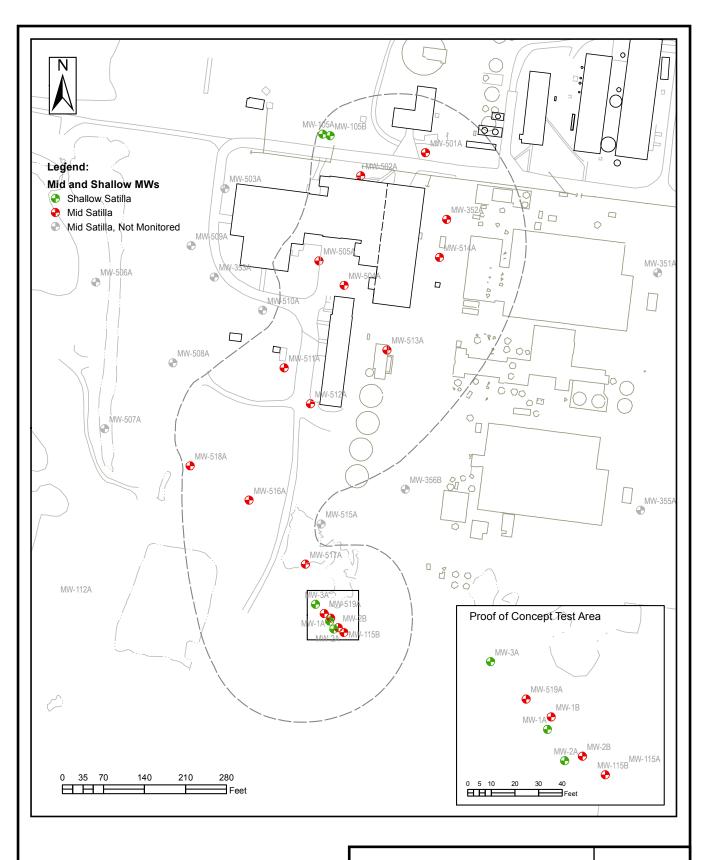

Location of 64 sparge wells installed as part of Phase 1 of CO₂ sparging.

FIGURE 2-1

Monitoring well network used to evaluate performance of Phase 1 of CO_2 sparging.


FIGURE 2-2

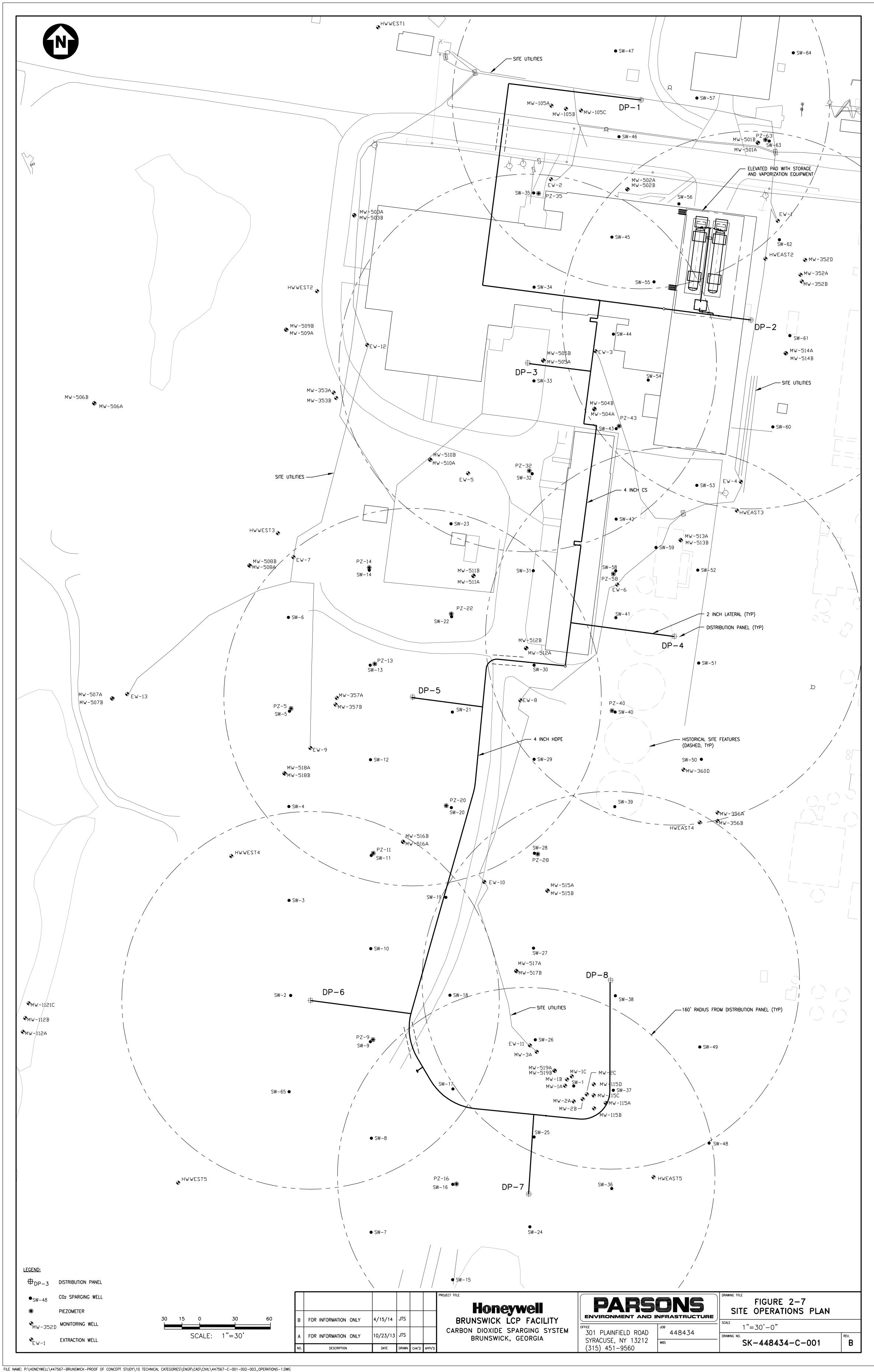
Sparge well distances to nearest monitoring points (monitoring wells and extraction wells).

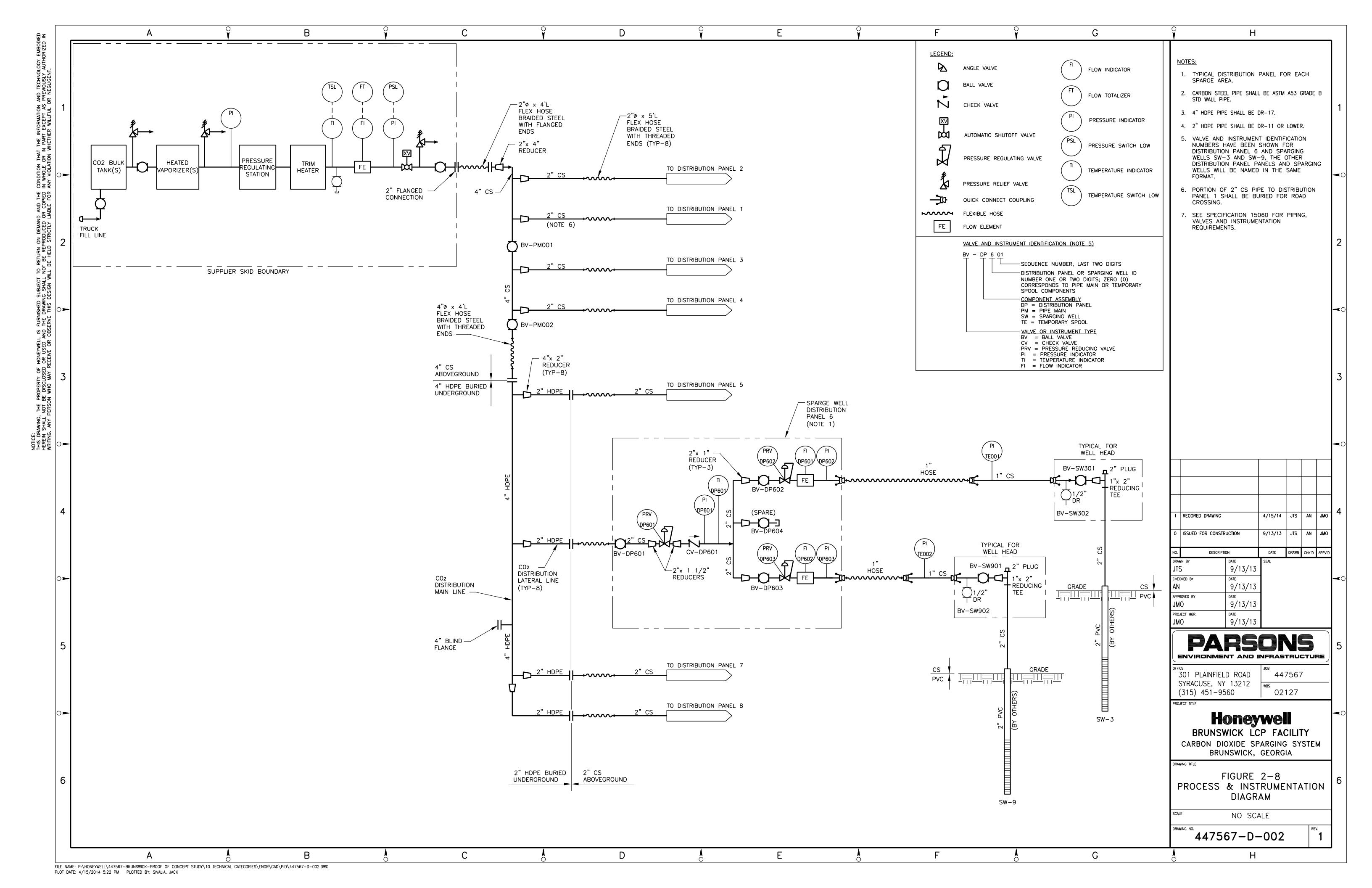

FIGURE 2-3

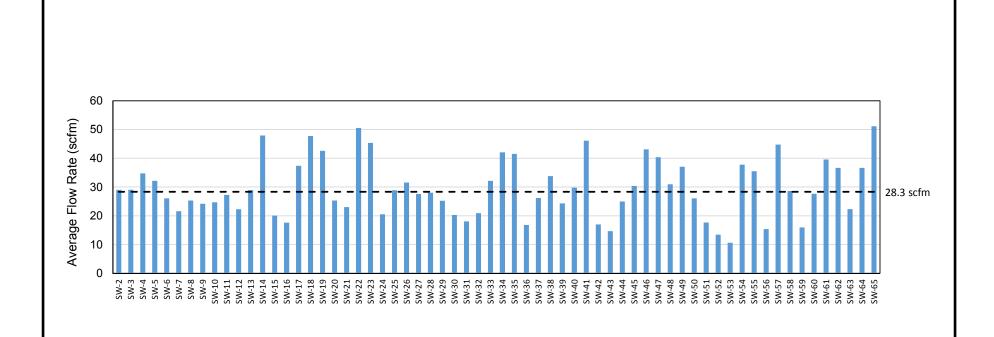
Locations of piezometers installed as part of Phase 1 CO₂ sparging.

FIGURE 2-4

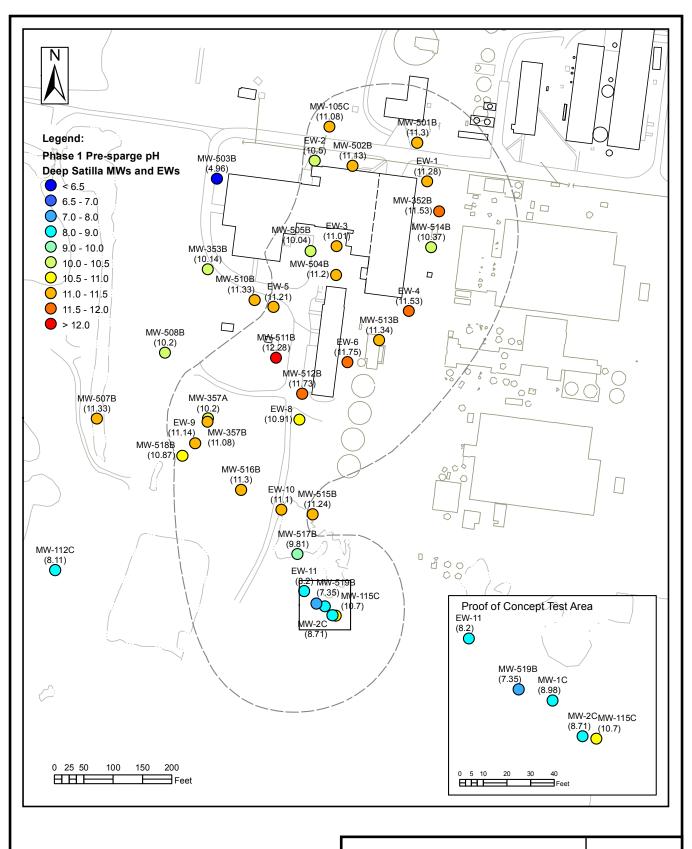
Locations of mid and shallow Satilla monitoring wells.

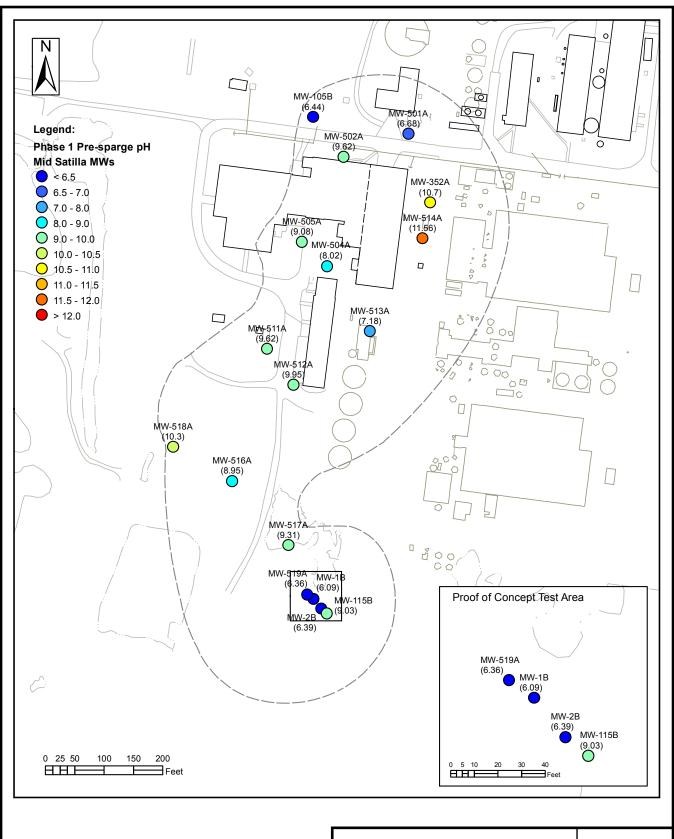

FIGURE 2-5





Typical monitoring well completion (shown for MW-1C).


FIGURE 2-6



Average flow rates for the 64 Phase 1 sparge wells.

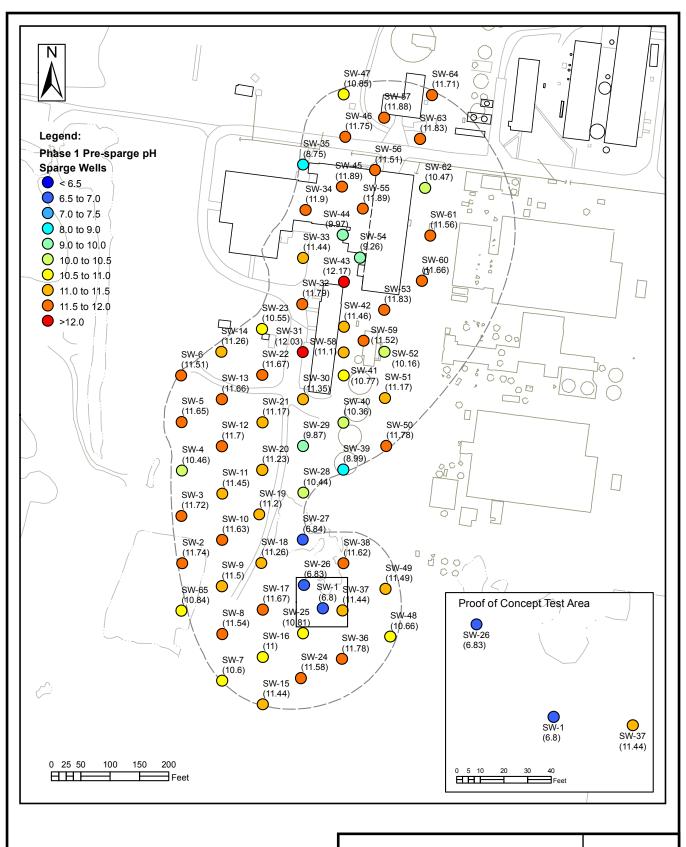
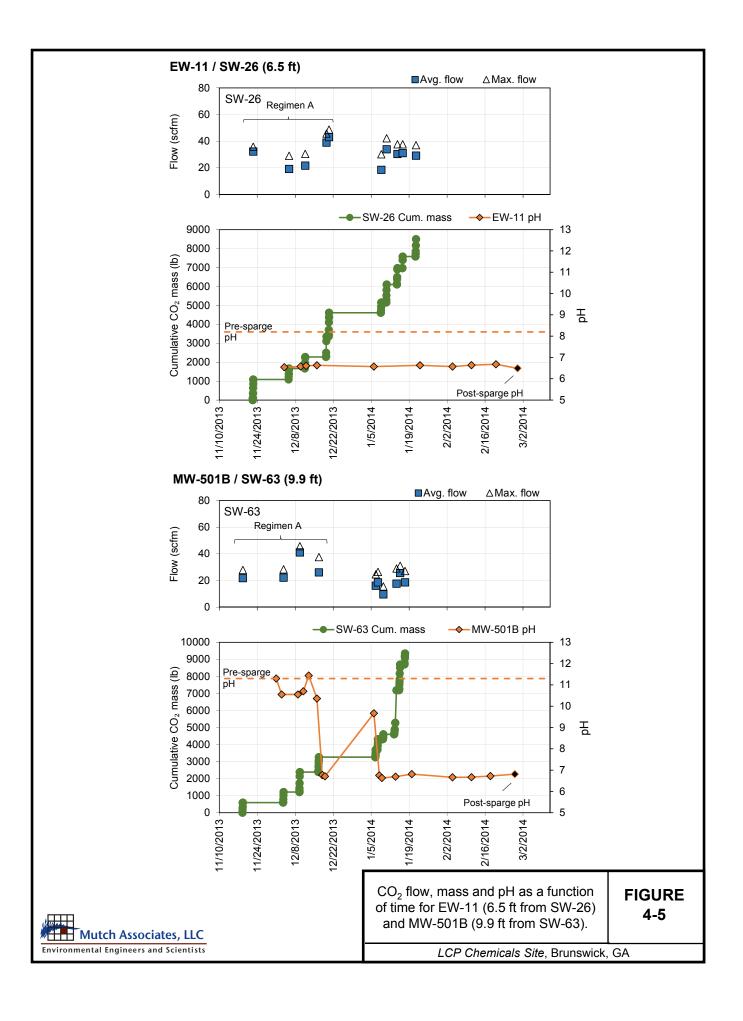
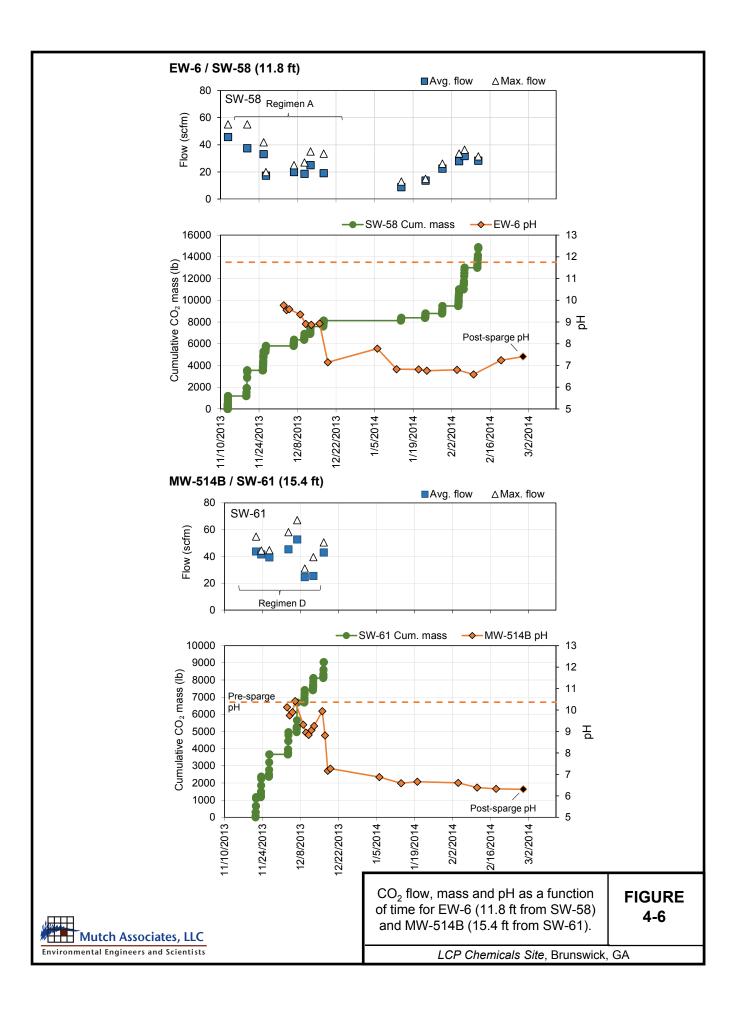
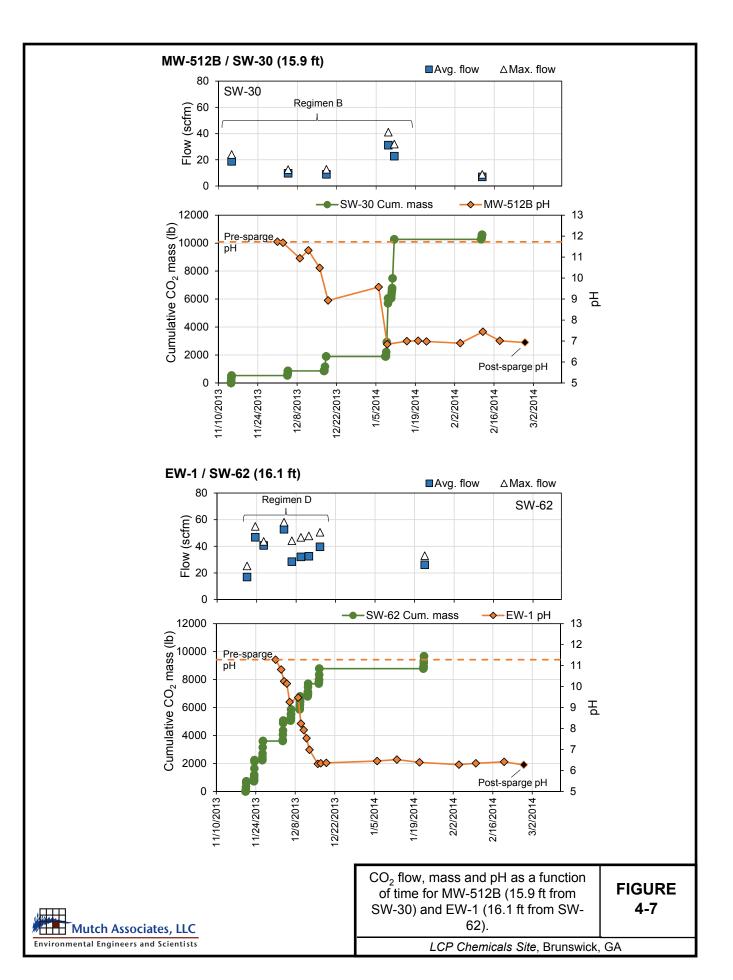
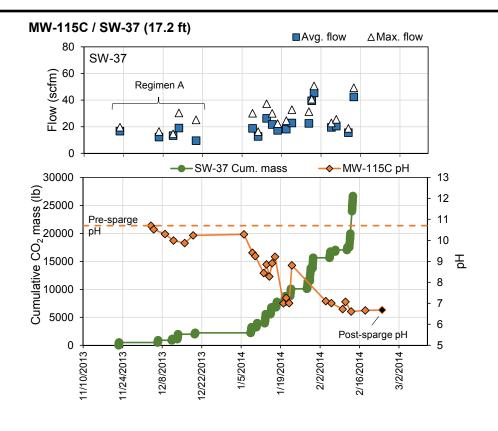

Pre-sparge pH in deep Satilla monitoring wells and extraction wells (data from Aug/Sept 2013).

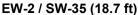
FIGURE 4-2


Pre-sparge pH in mid Satilla monitoring wells (data from Aug/Sept 2013).

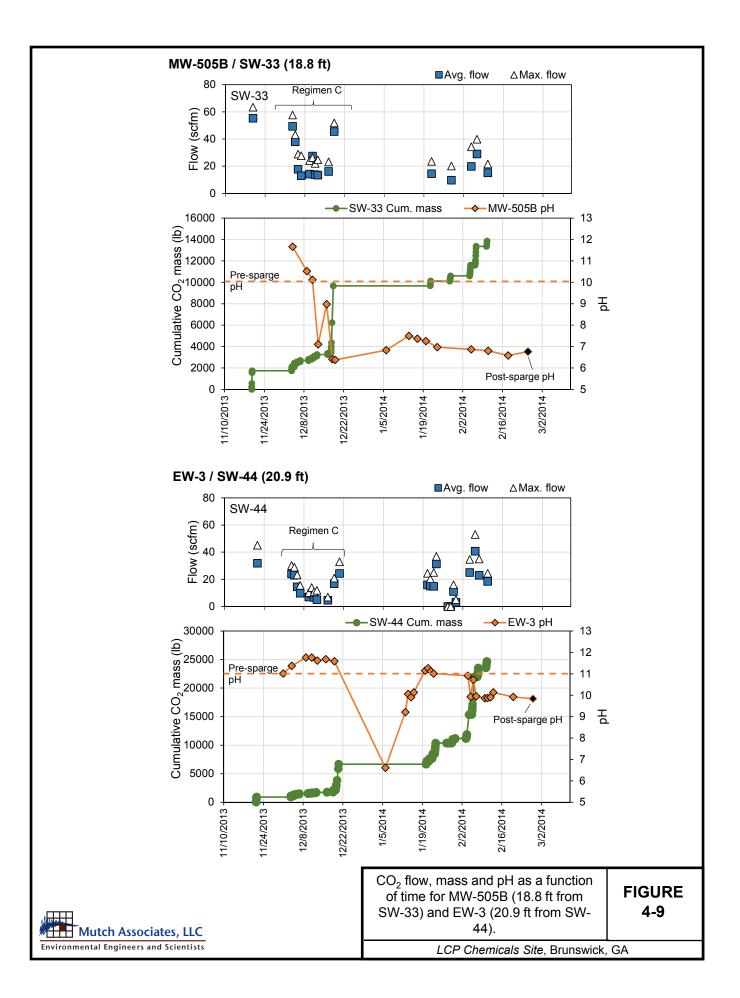

FIGURE 4-3

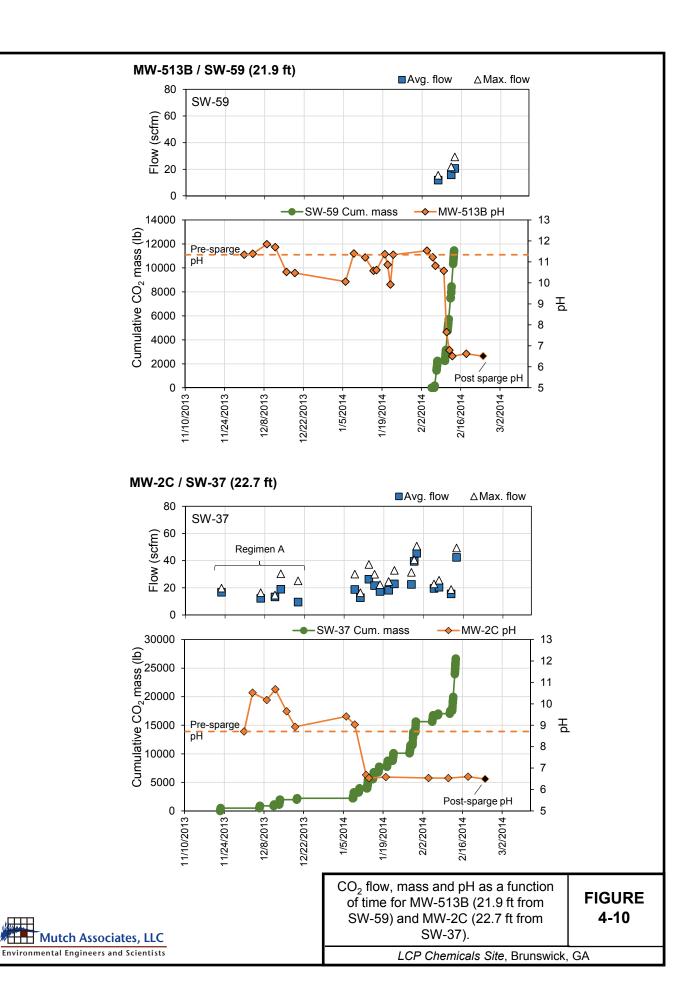


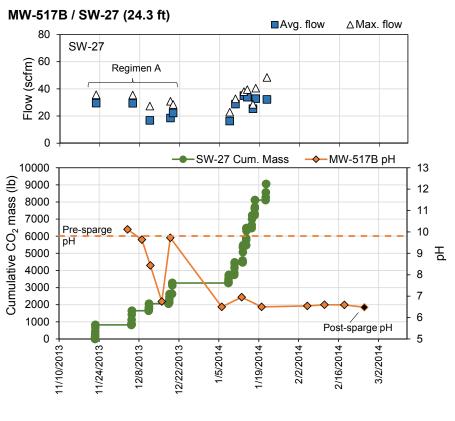

Pre-sparge pH in sparge wells (data from August 2013).


FIGURE 4-4

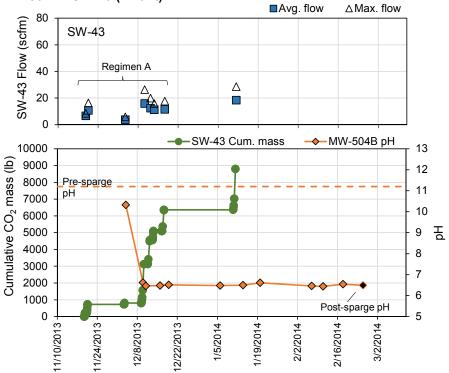


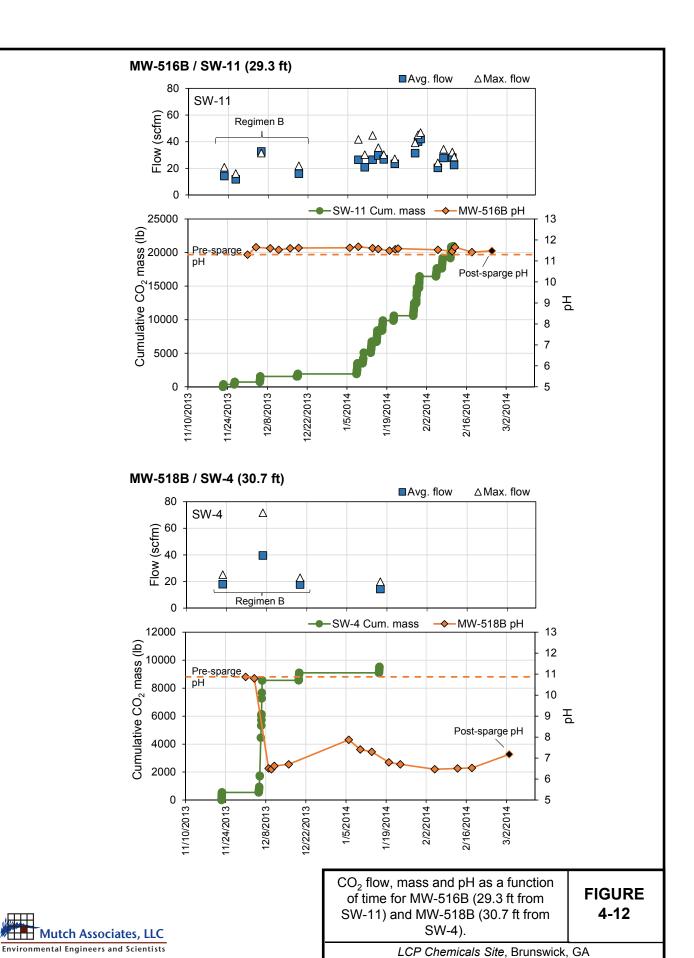


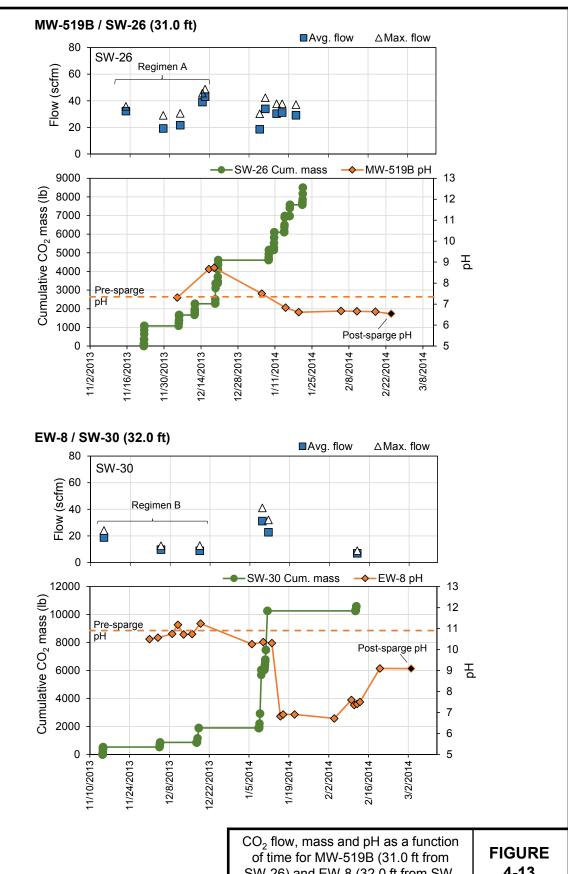

 ${\rm CO_2}$ flow, mass and pH as a function of time for MW-115C (17.2 ft from SW-37) and EW-2 (18.7 ft from SW-35).


FIGURE 4-8

LCP Chemicals Site, Brunswick, GA

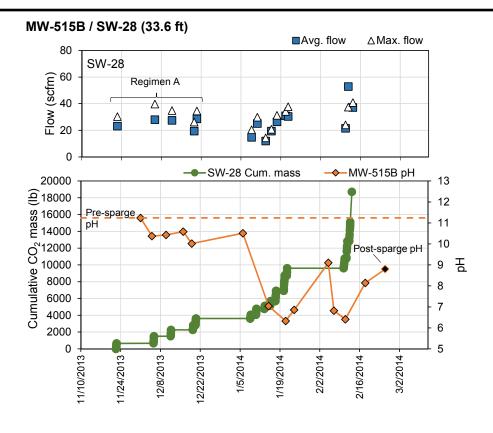

Mutch Associates, LLC
Environmental Engineers and Scientists

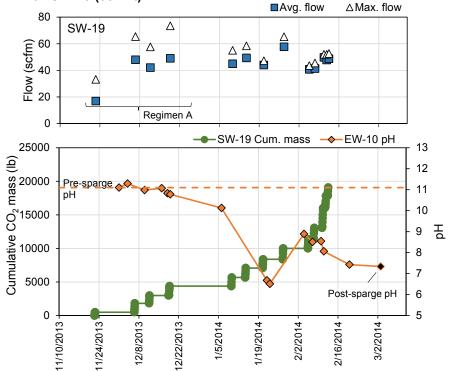




CO₂ flow, mass and pH as a function of time for MW-517B (24.3 ft from SW-27) and MW-504B (24.9 ft from SW-43).

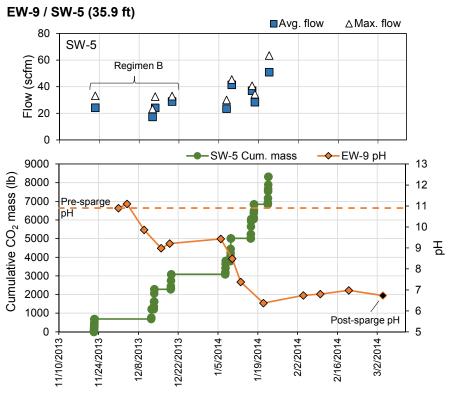
FIGURE 4-11

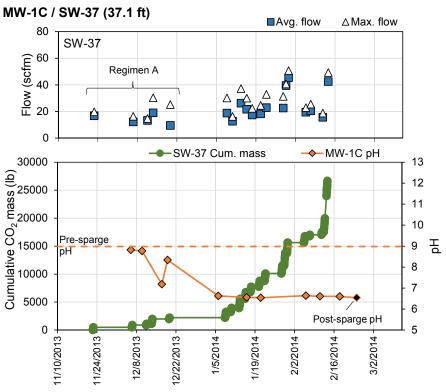




SW-26) and EW-8 (32.0 ft from SW-30).

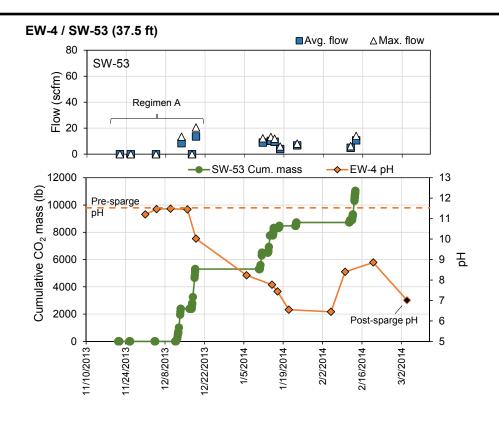
4-13

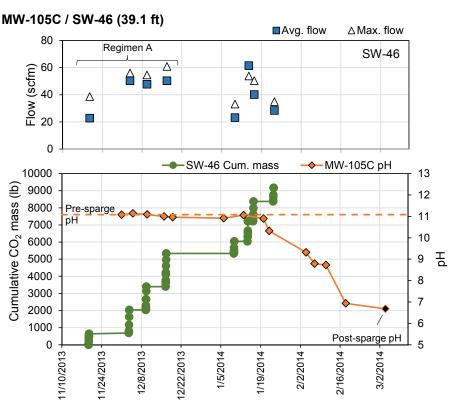

EW-10 / SW-19 (35.2 ft)



CO₂ flow, mass and pH as a function of time for EW-10 (35.2 ft from SW-19) and MW-515B (33.6 ft from SW-28).

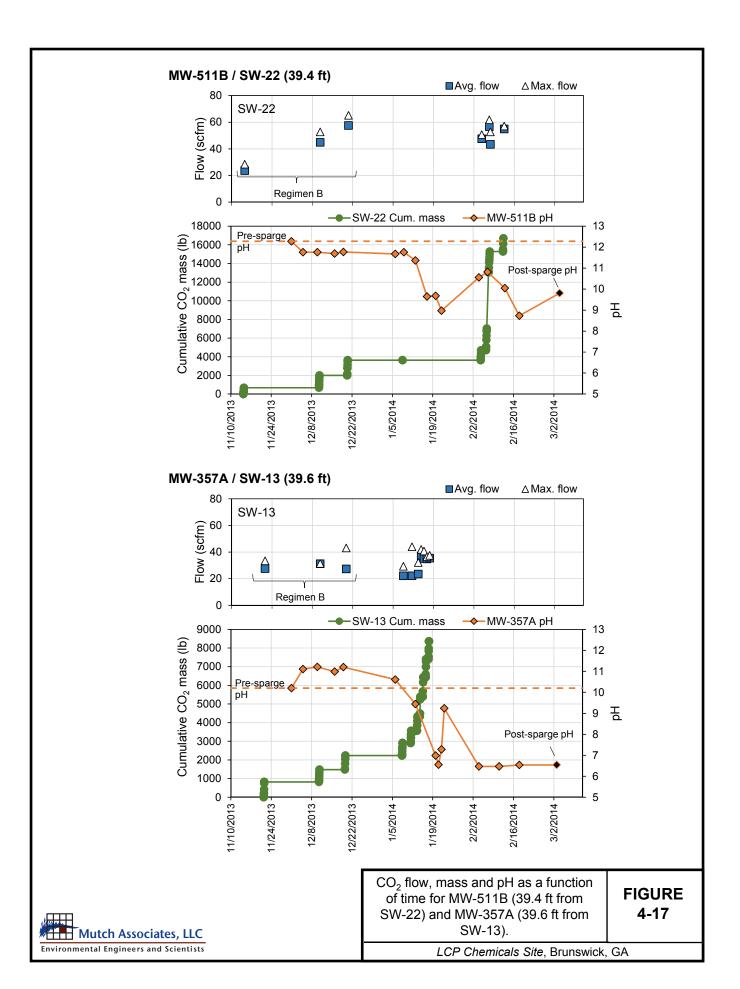
FIGURE 4-14

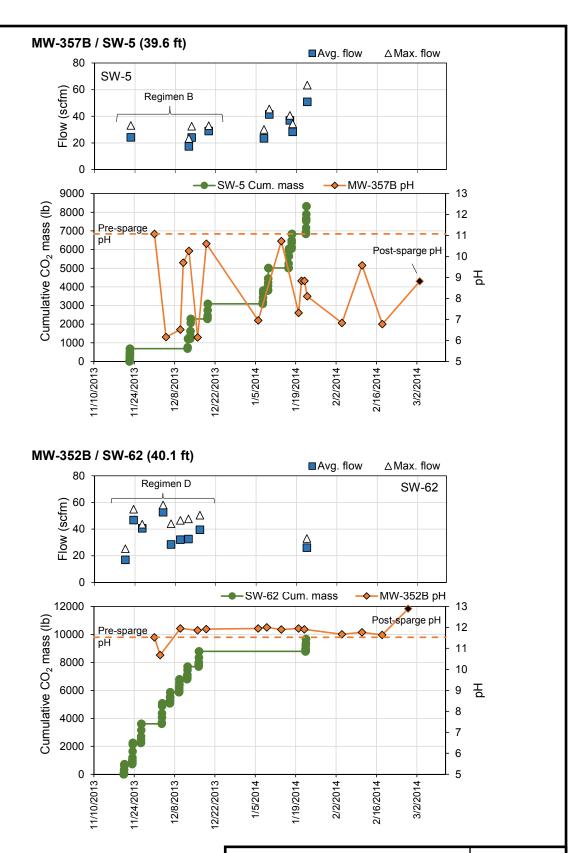




CO₂ flow, mass and pH as a function of time for EW-9 (35.9 ft from SW-5) and MW-1C (37.1 ft from SW-37).

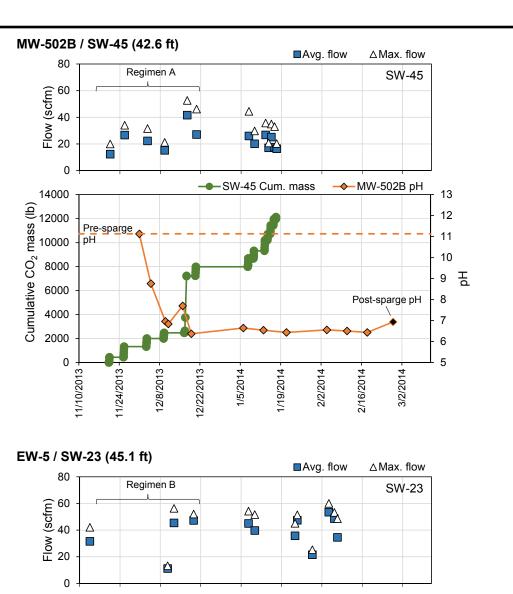
FIGURE 4-15

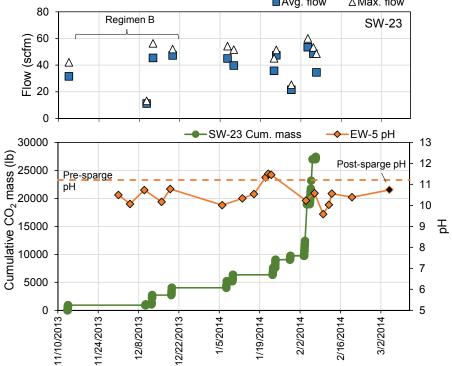




CO₂ flow, mass and pH as a function of time for EW-4 (37.5 ft from SW-53) and MW-105C (39.1 ft from SW-46).

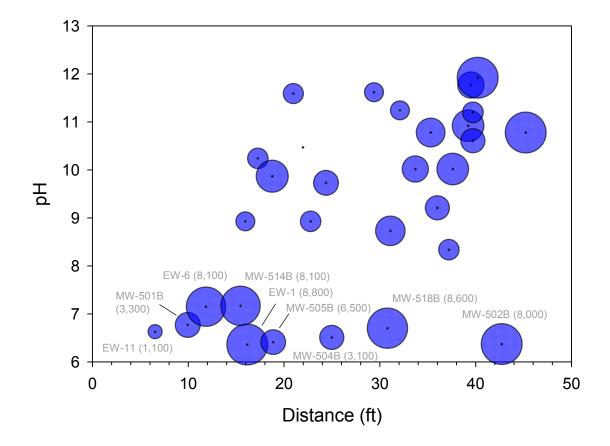
FIGURE 4-16





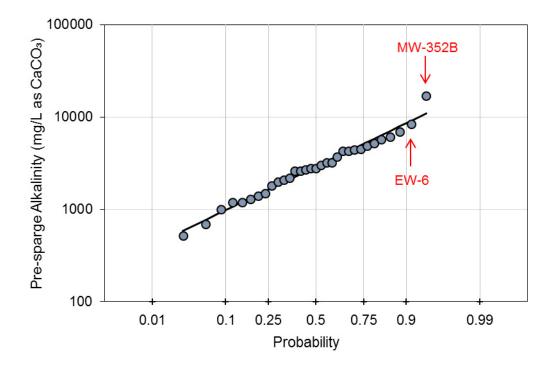
CO₂ flow, mass and pH as a function of time for MW-357B (39.6 ft from SW-5) and MW-352B (40.1 ft from SW-62).

FIGURE 4-18

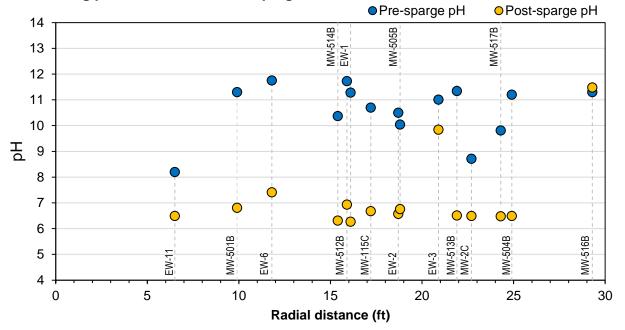


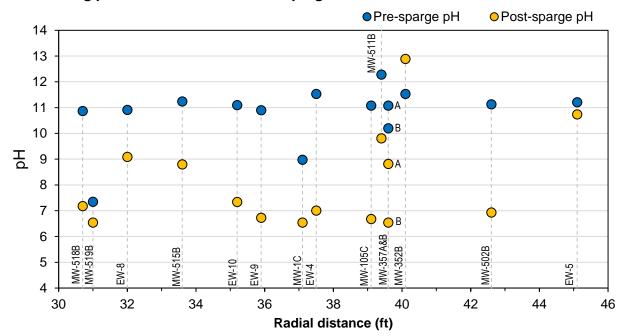
CO₂ flow, mass and pH as a function of time for MW-502B (42.6 ft from SW-45) and EW- (45.1 ft from SW-22).

FIGURE 4-19

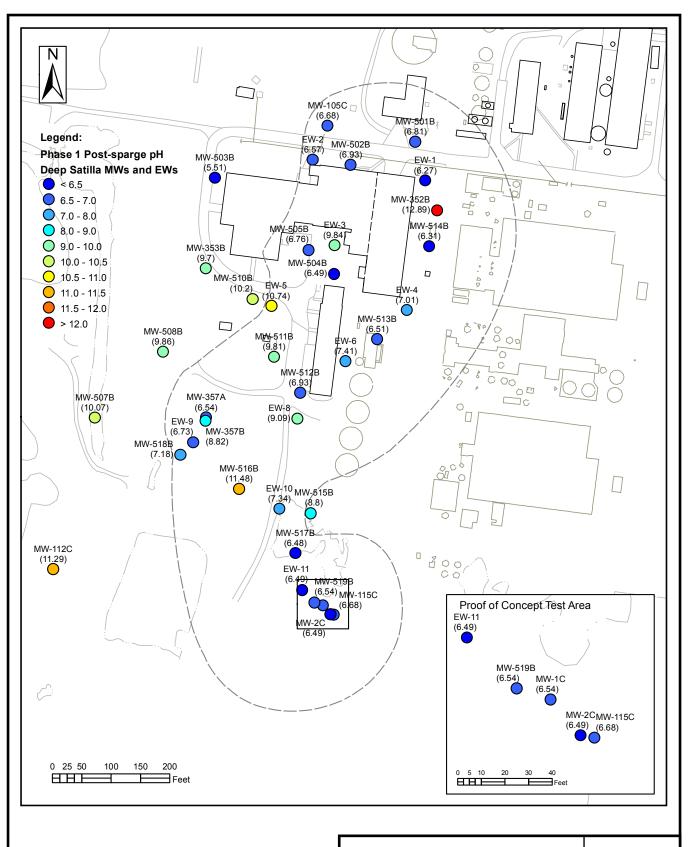

Note: Values in parenthesis indicate mass of ${\rm CO_2}$ injected in pounds

Bubble plot of monitoring well pH after 4 weeks of sparging versus distance. Size of bubbles indicate the mass of CO₂ injected at nearest sparge well.

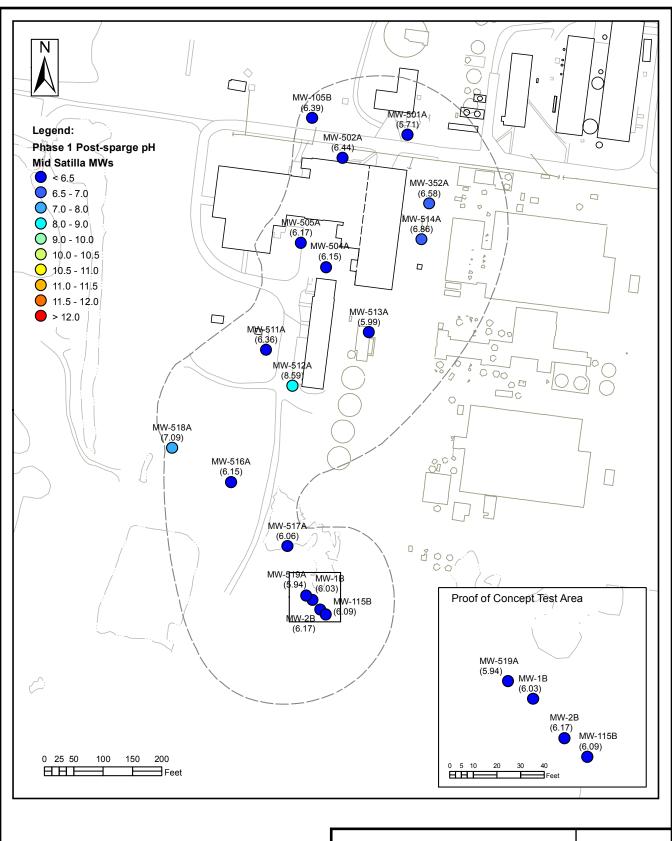

Pre-sparge alkalinity data for deep Satilla monitoring points (data from Aug/Sept 2013).


Probability distribution of pre-sparge alkalinity in deep Satilla monitoring wells and extraction wells (data from Aug/Sept 2013).

Monitoring points within 30 ft of a sparge well


Monitoring points from 30 to 45 ft of a sparge well

Pre-sparge and post-sparge pH for deep Satilla monitoring wells and extraction wells.


FIGURE 4-23

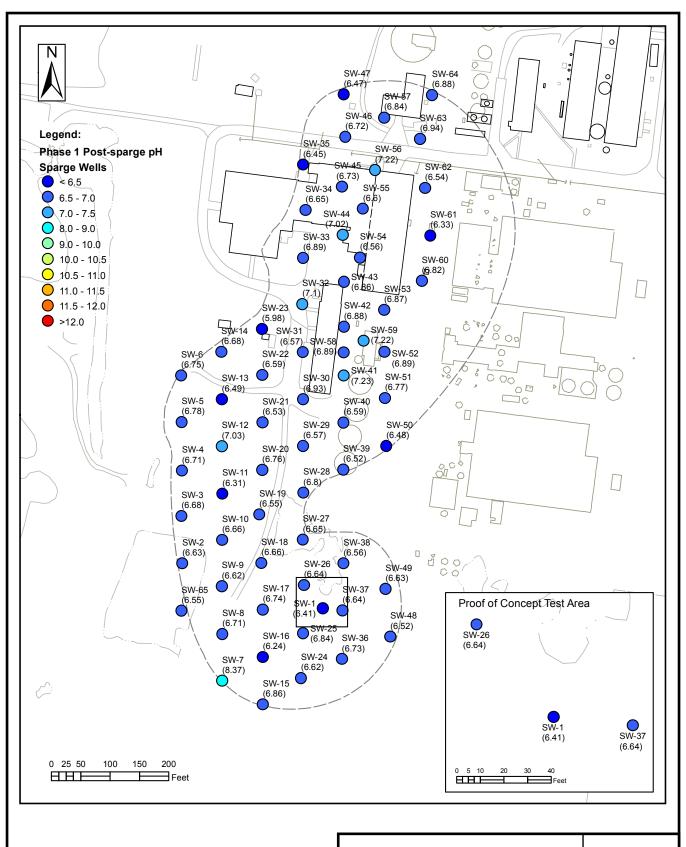
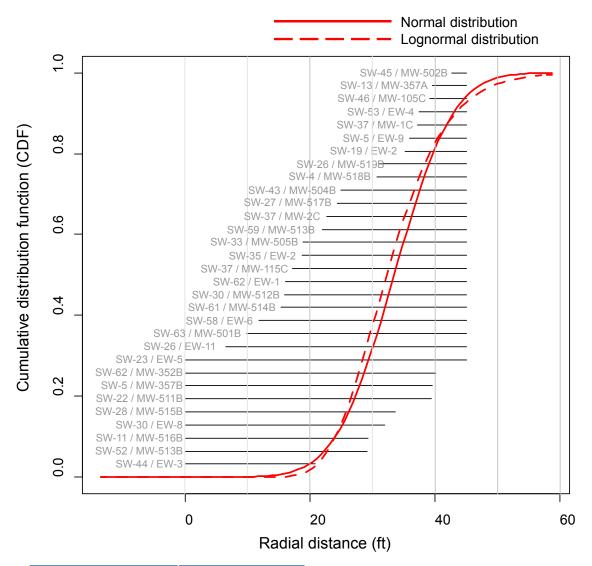
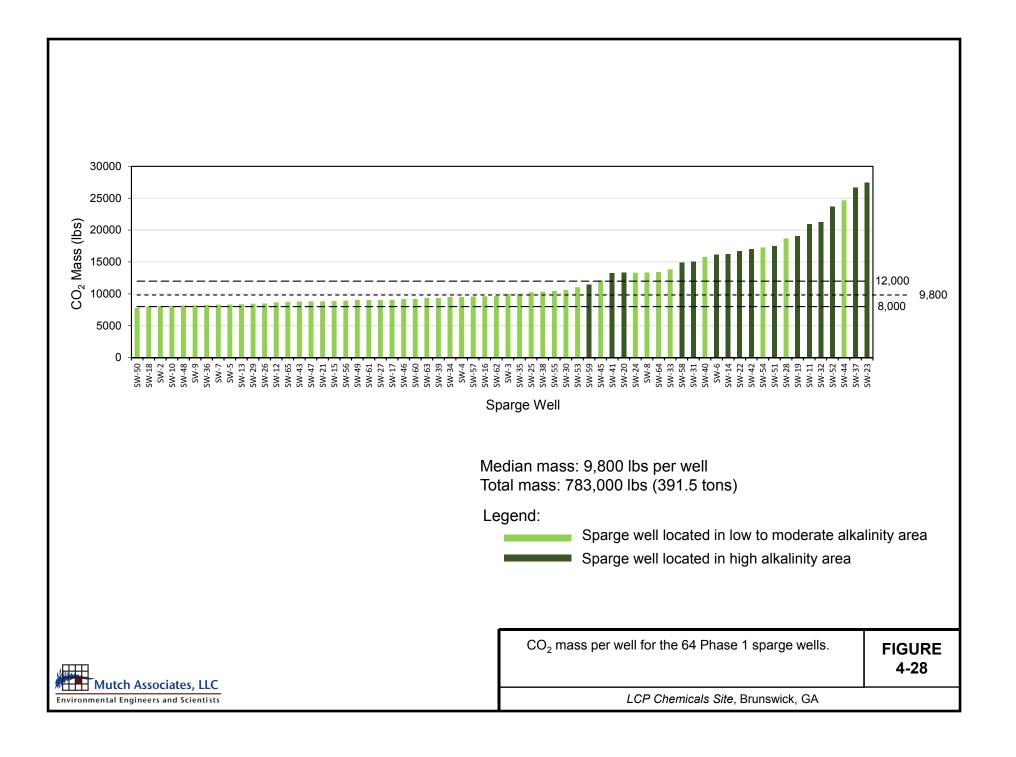

Post-sparge pH in deep Satilla monitoring wells (data from Feb/March 2014).

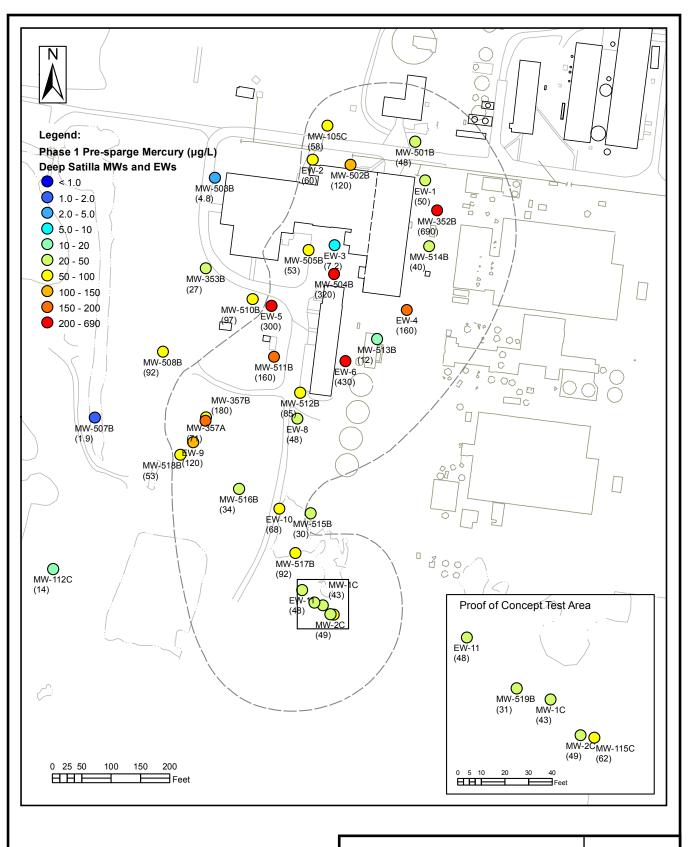
FIGURE 4-24



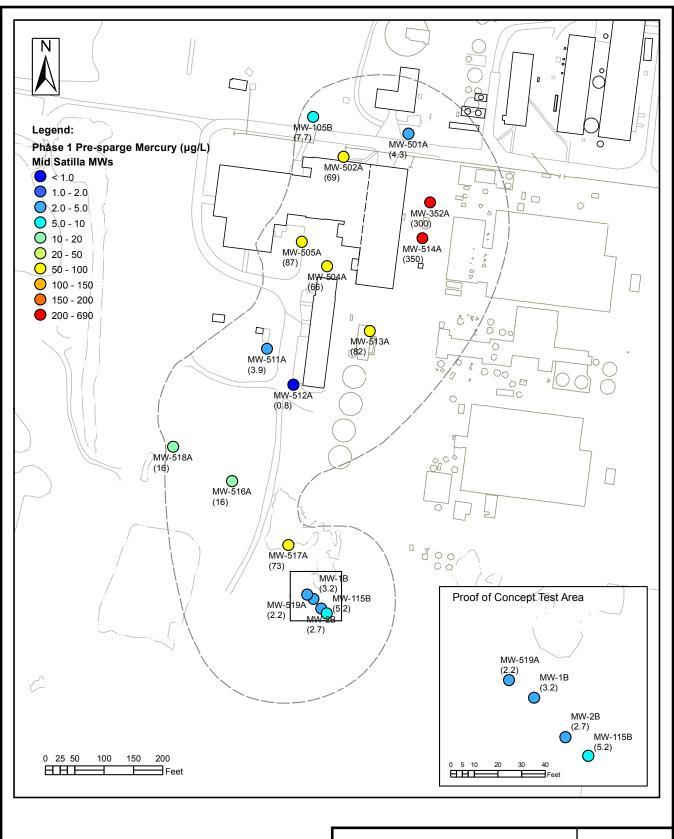
Post-sparge pH in mid Satilla monitoring wells (data from Feb/March 2014).

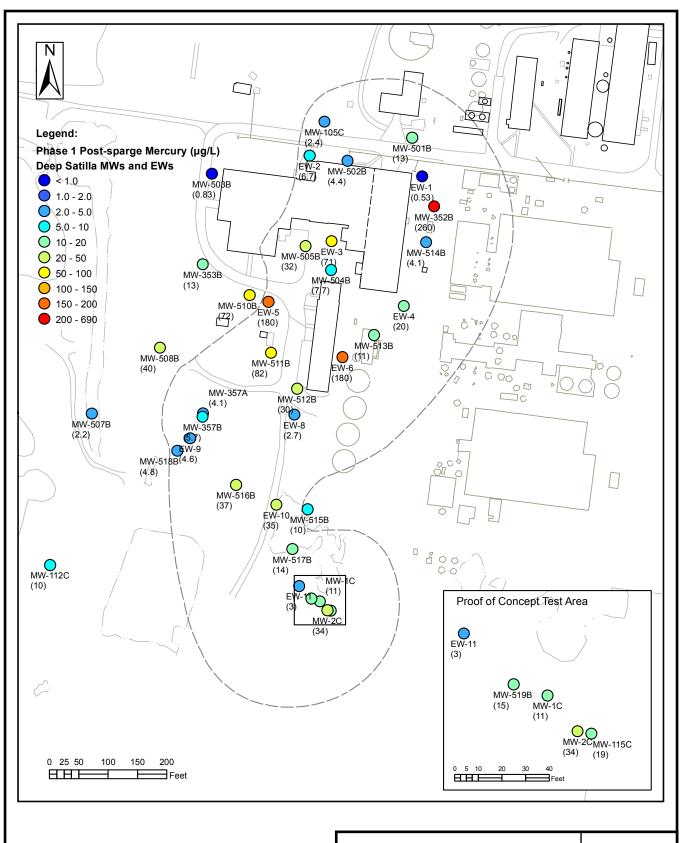
FIGURE 4-25


Post-sparge pH in sparge wells (data from Feb 2014).

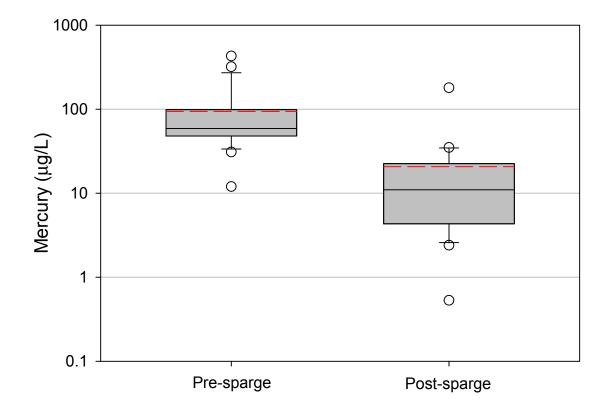


Statistic	Distance (ft)
Mean	33.5
Standard deviation	7.4
5th percentile	21.3
25th percentile	28.5
50th percentile	33.5
75th percentile	38.4
95th percentile	45.6

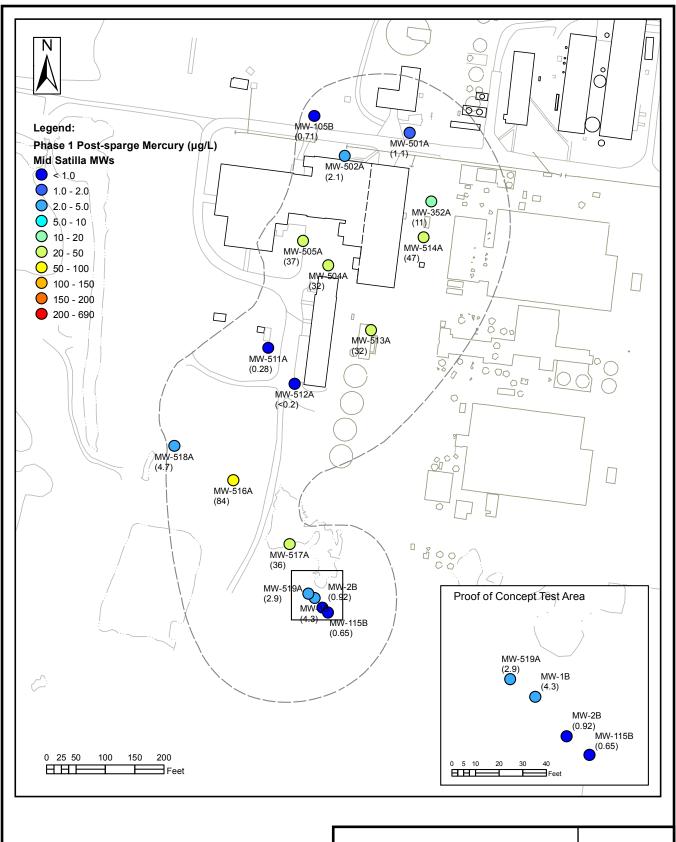

Fit of radius of influence intervals to a normal cumulative distribution function (CDF).

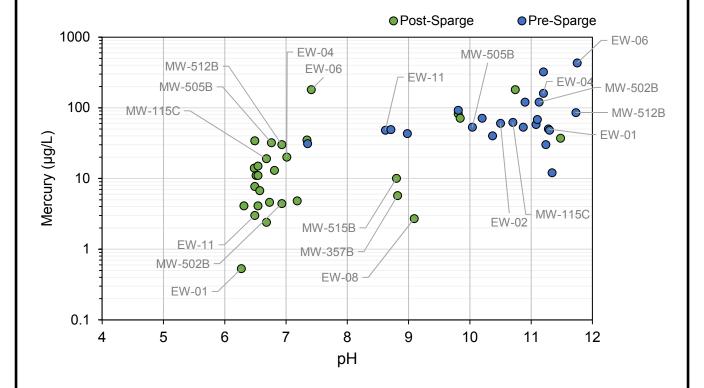


Pre-sparge mercury in deep Satilla monitoring points (data from Aug/Sept 2013).

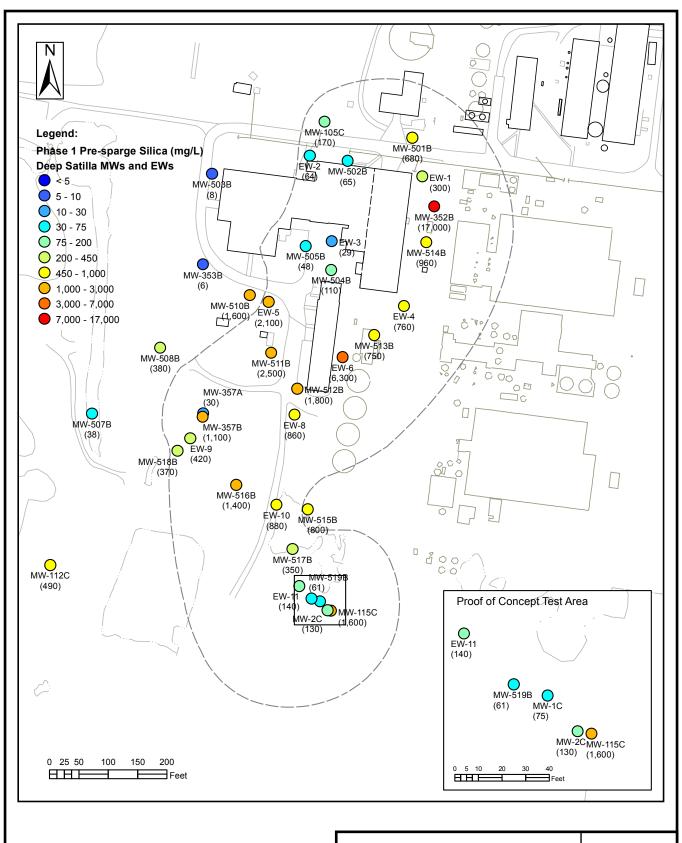


Pre-sparge mercury in mid Satilla monitoring points (data from Aug/Sept 2013).

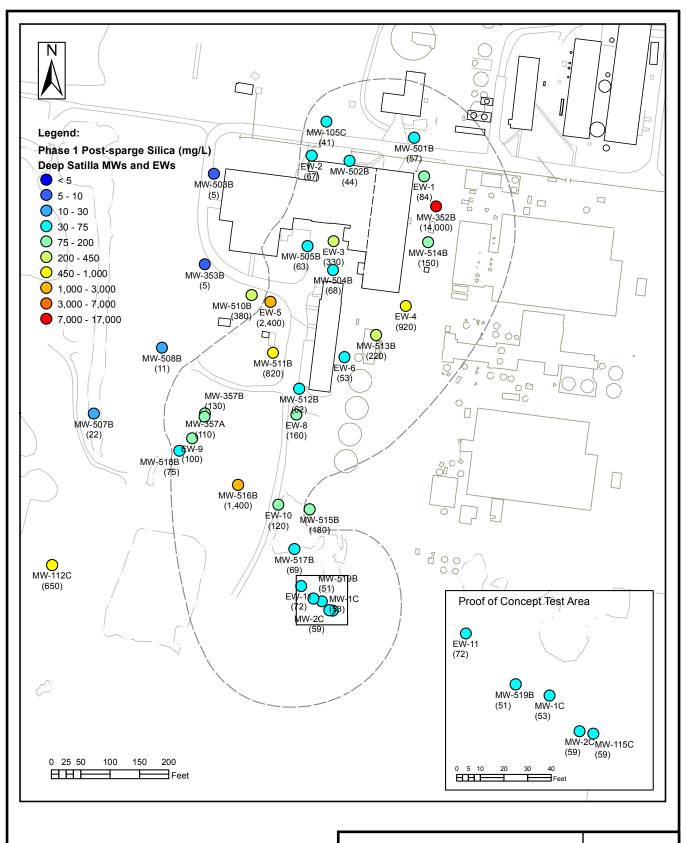

FIGURE 4-30

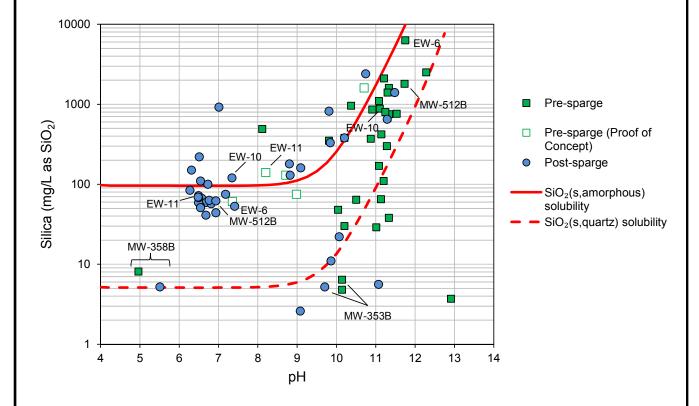

Post-sparge mercury in deep Satilla monitoring points (data from Feb/Mar 2014).

Pre and post-sparge mercury concentrations in deep Satilla monitoring points where post-sparge pH was less than 7.5.

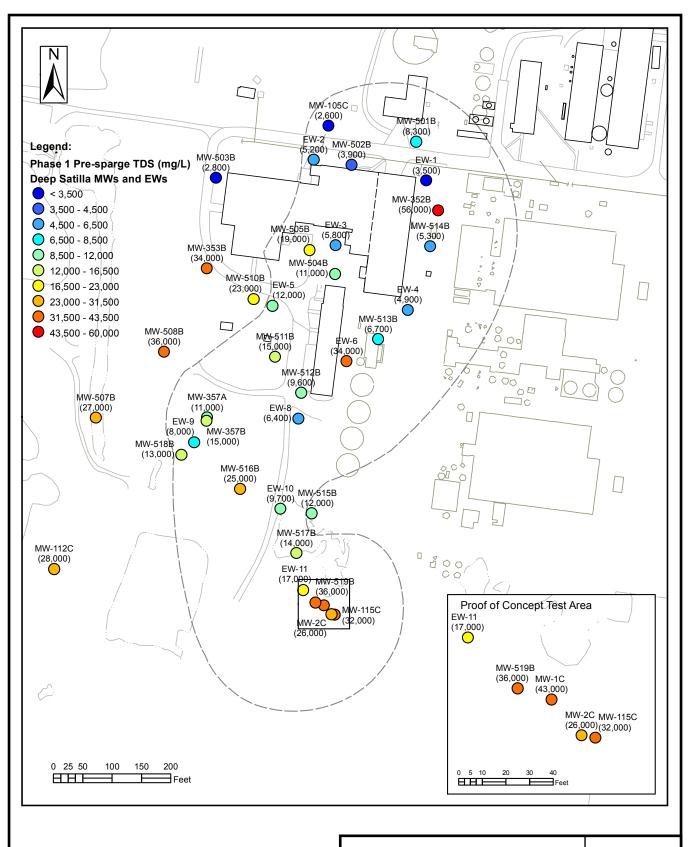


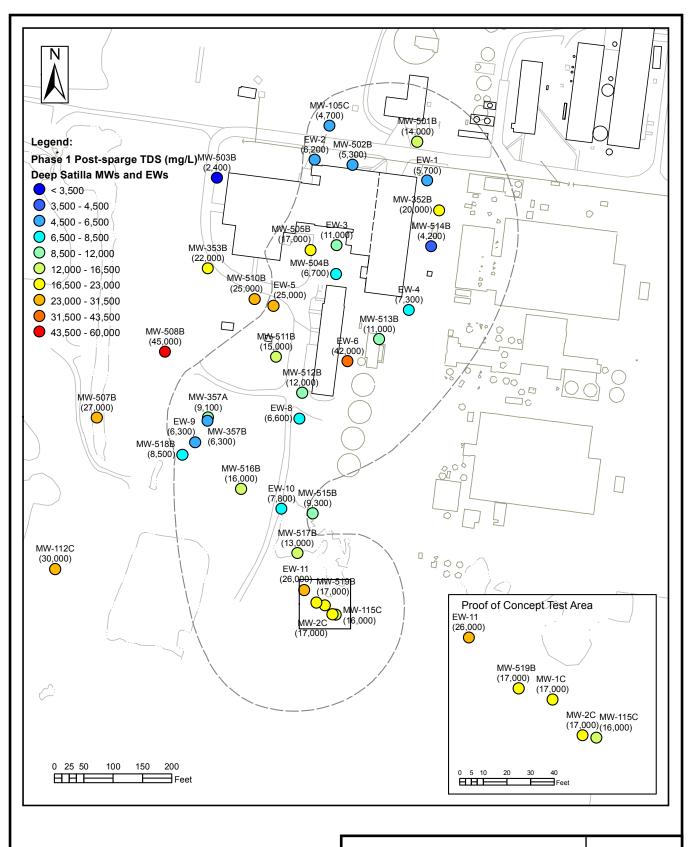
Post-sparge mercury in mid Satilla monitoring points (data from Feb/Mar 2014).

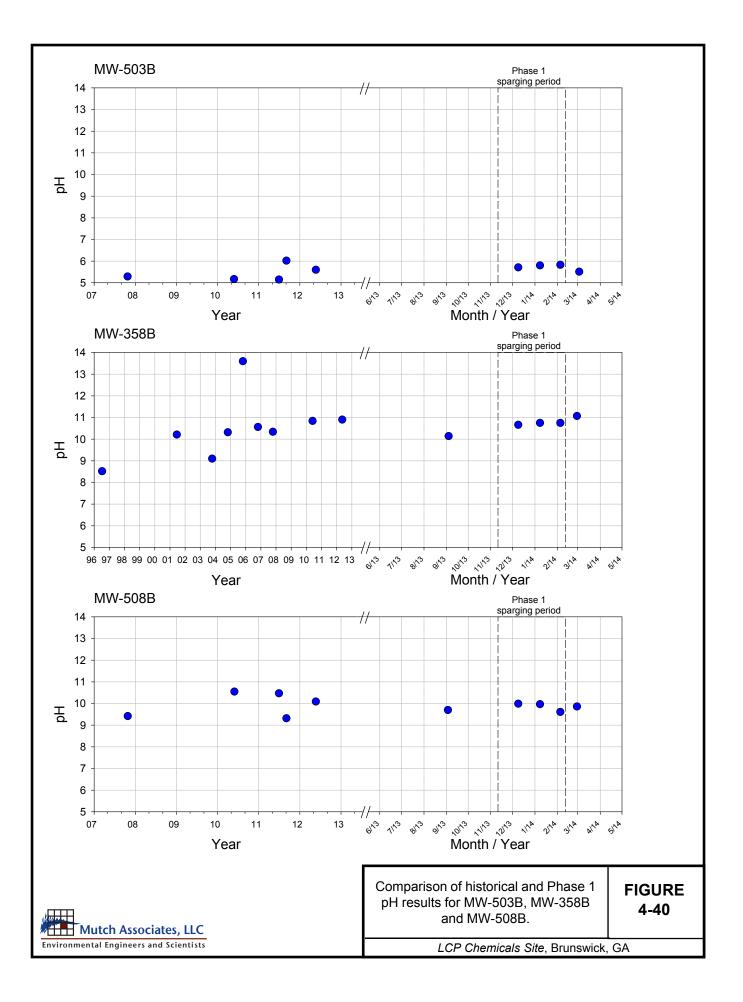


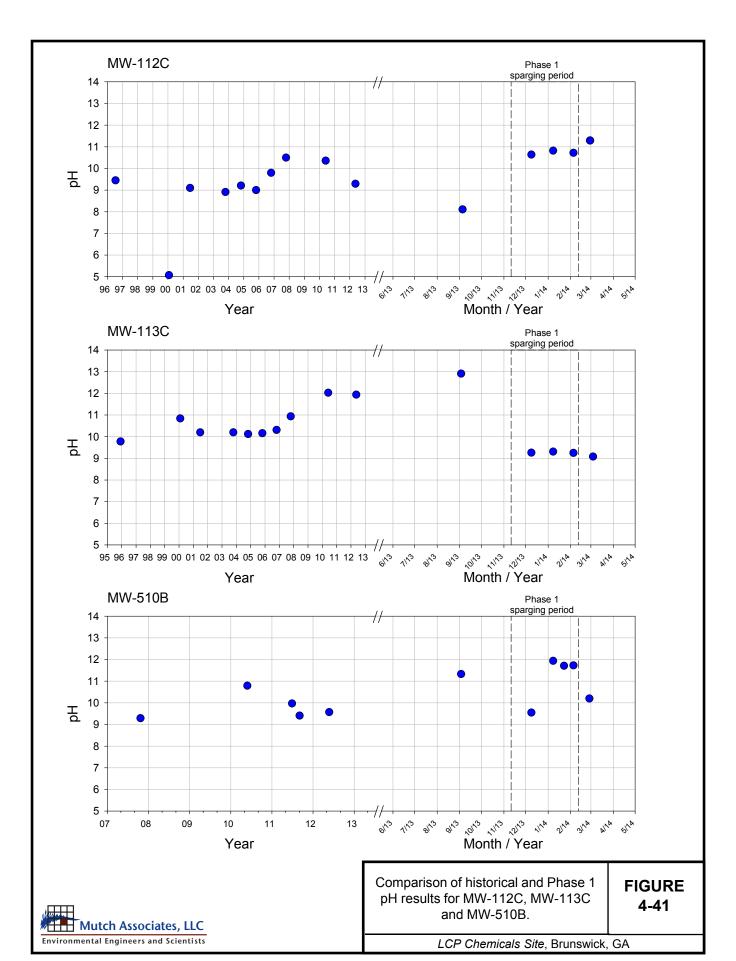

Mercury versus pH relationship for deep Satilla monitoring points.

Pre-sparge silica in deep Satilla monitoring points (data from Aug/Sept 2013).

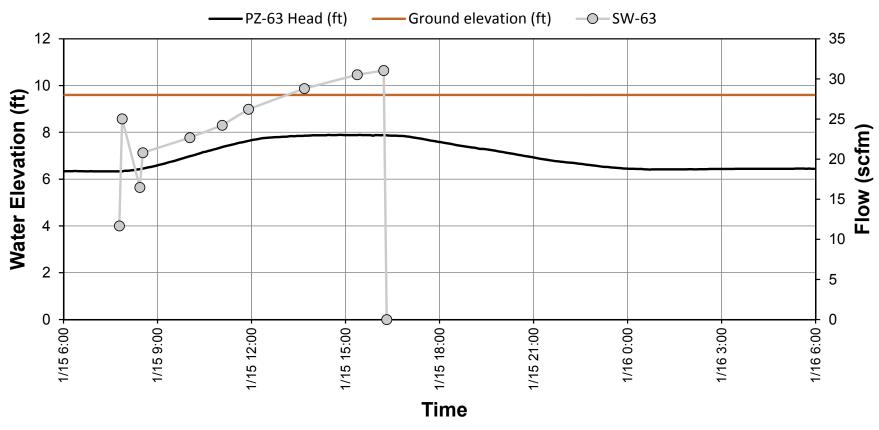

Post-sparge silica in deep Satilla monitoring points (data from Feb/Mar 2014).


Note: Solid lines represent model calculated silica solubility.

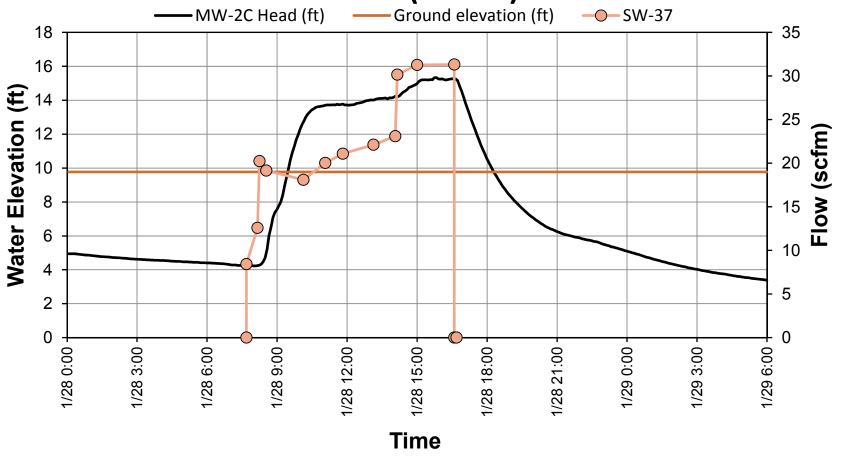

Silica versus pH for deep Satilla monitoring points.



Pre-sparge TDS in deep Satilla monitoring points (data from Aug/Sept 2013).

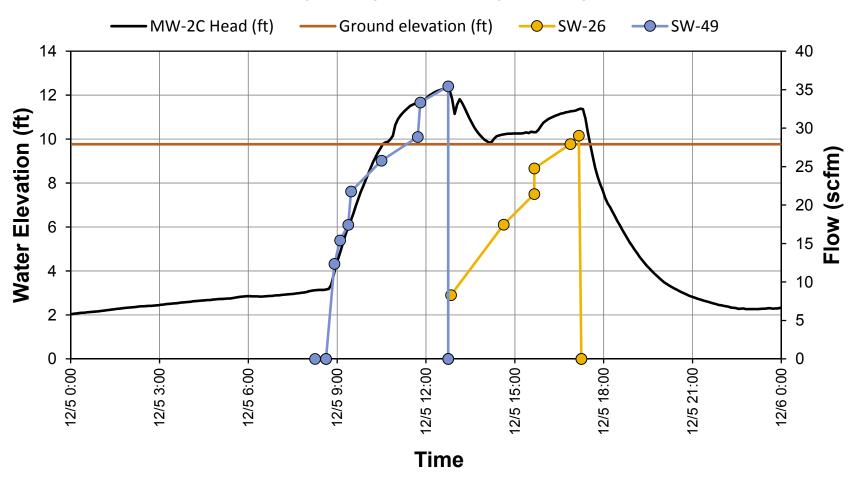


Post-sparge TDS in deep Satilla monitoring points (data from Feb/Mar 2014).

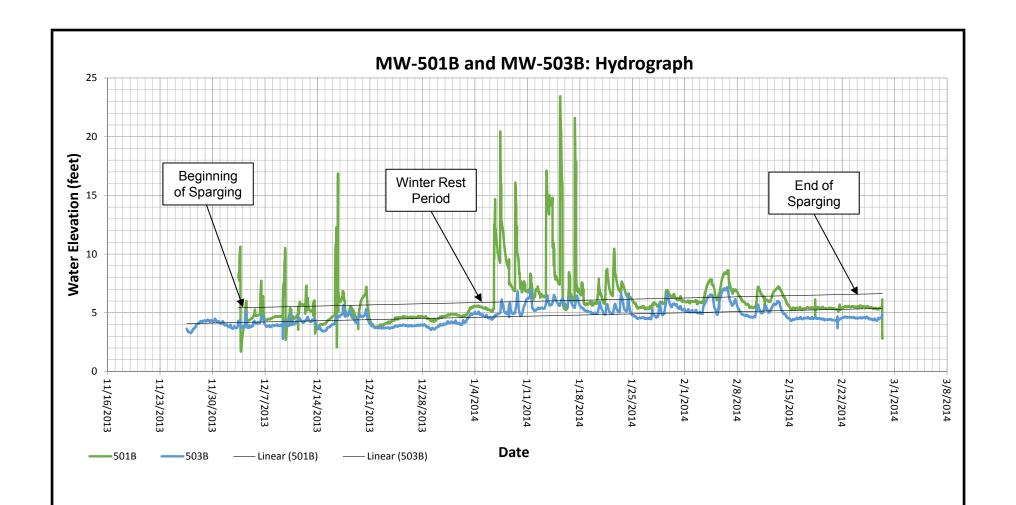


Water elevation in PZ-63 in response to SW-63, 3.4 feet away, on January 15, 2014.

FIGURE 4-42

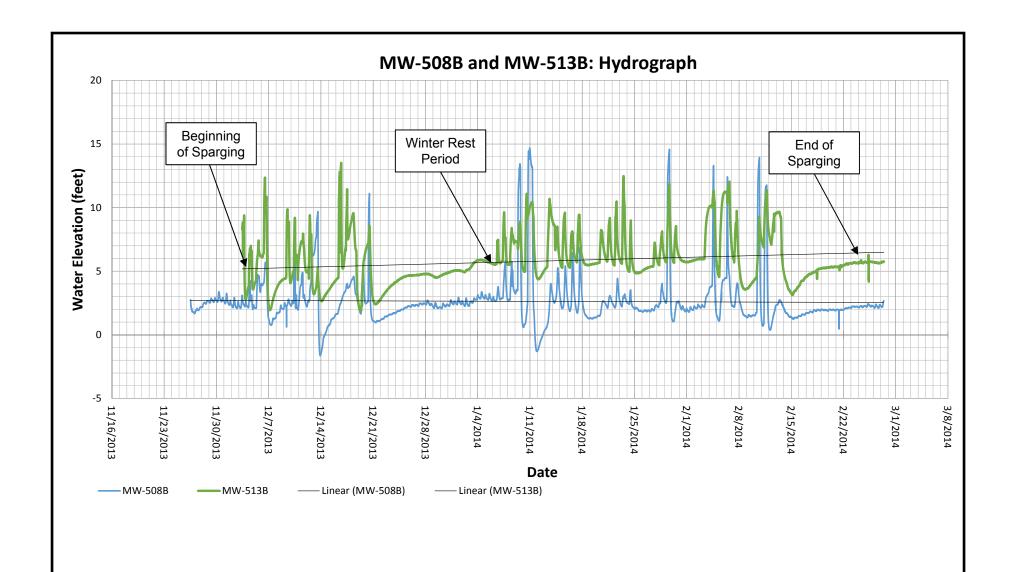

MW-2C piezometric surface in response to CO₂ injection in SW-37 (22.7 ft)

Piezometric surface elevation in MW-2C in response to SW-37 on January 28, 2014.

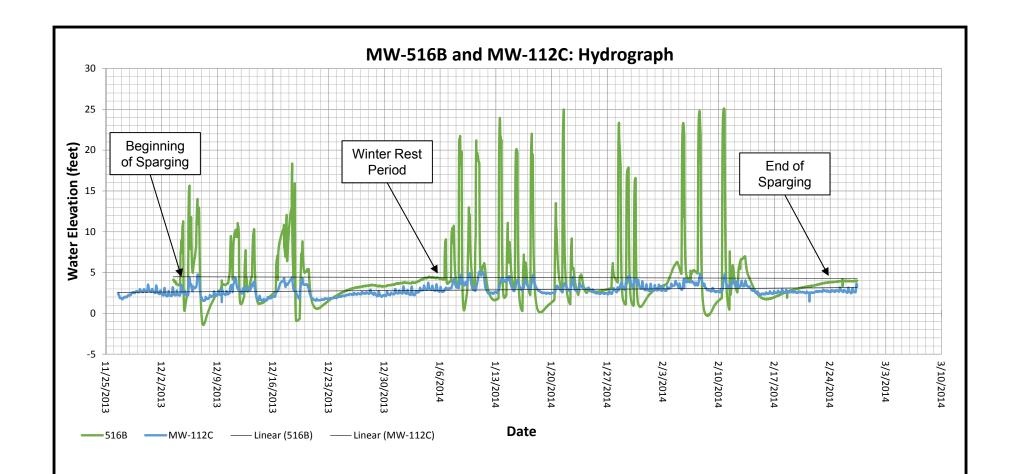

MW-2C piezometric surface in response to CO₂ injection in SW-26 (64 ft), SW-49 (104 ft)

Piezometric surface elevation in MW-2C on December 5, 2013 with sparge wells operating within 105 feet.

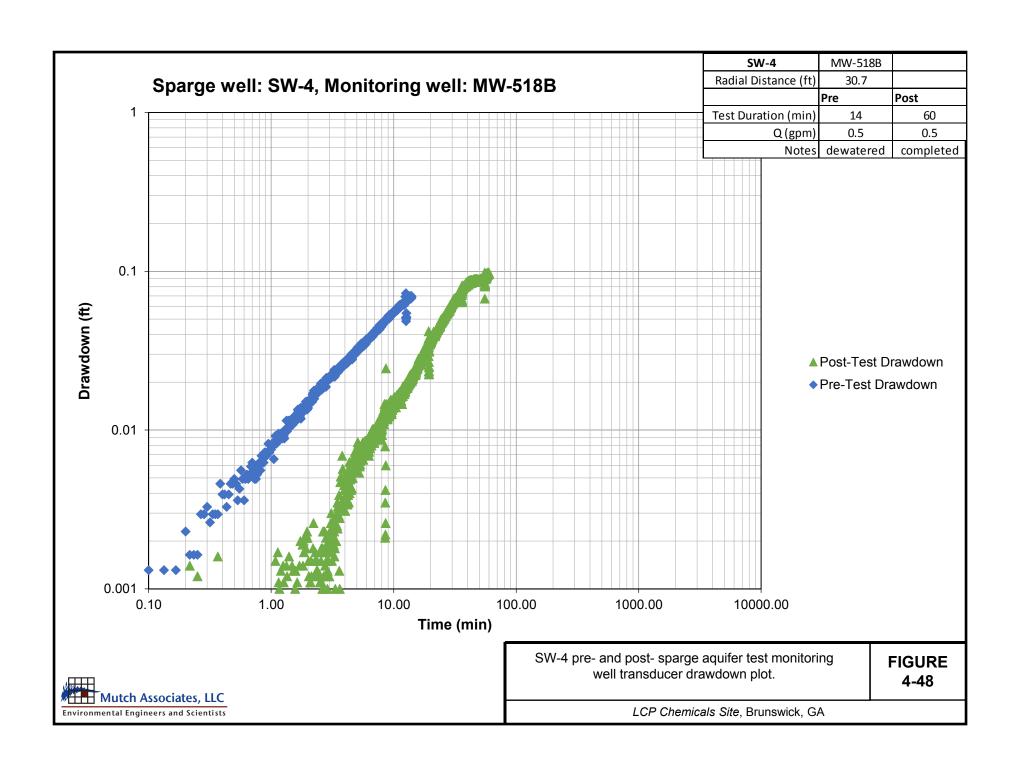
FIGURE 4-44

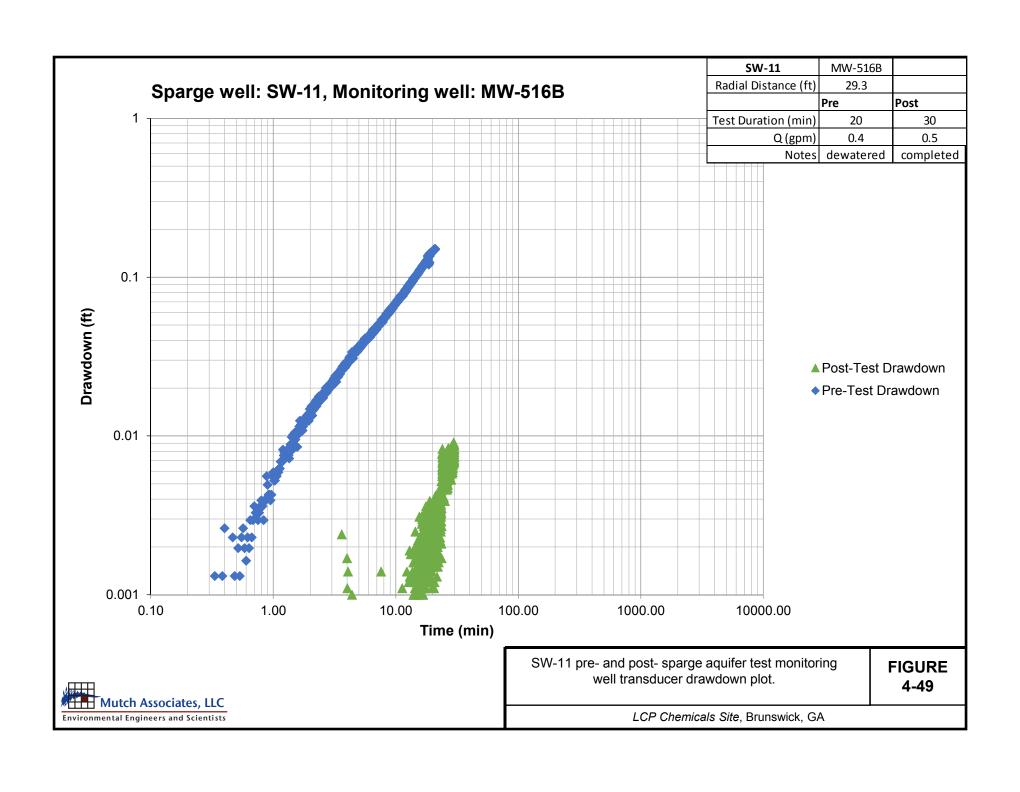


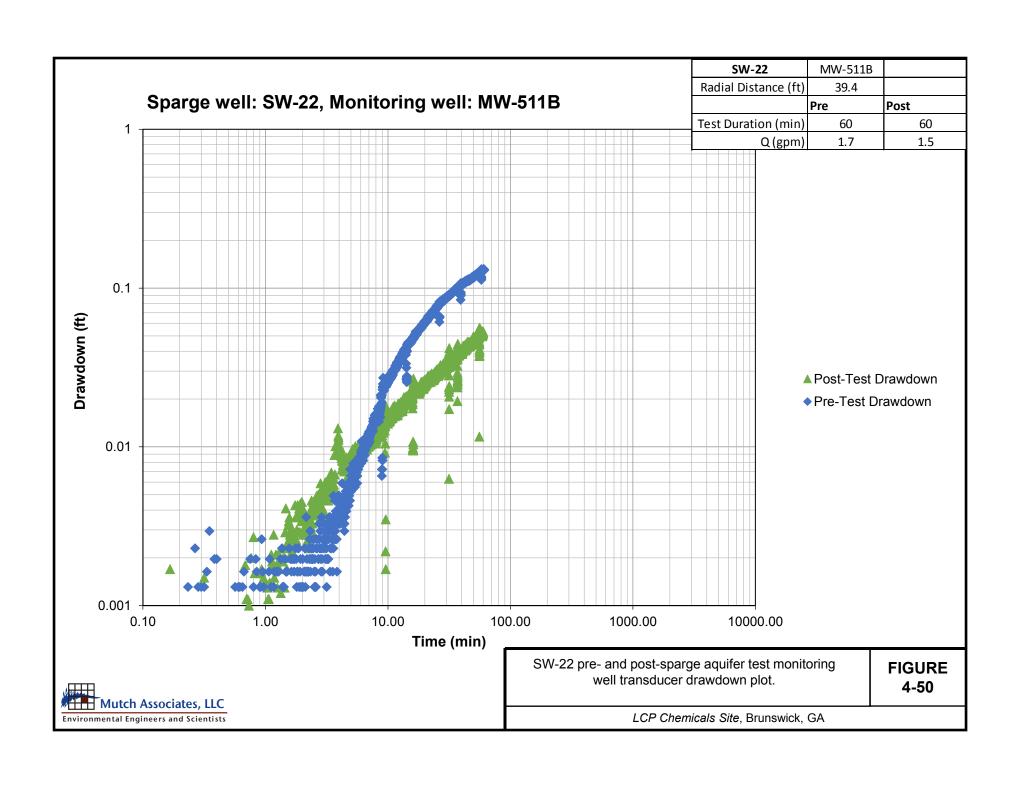
MW-501B and MW-503B well pair hydrograph.

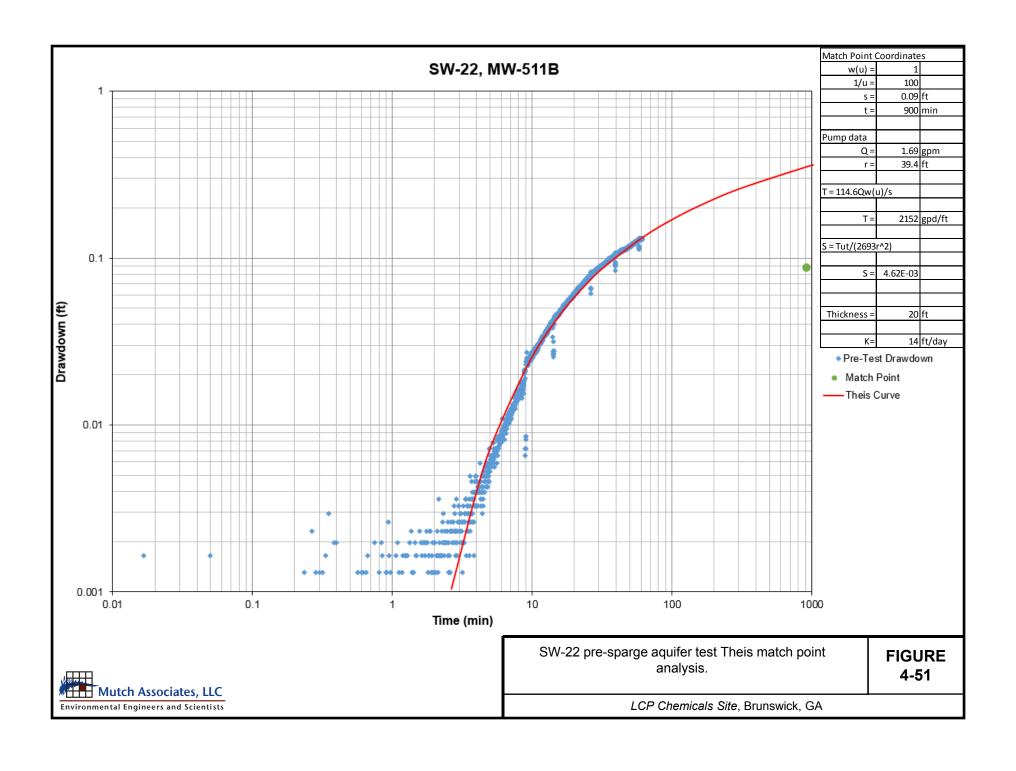

FIGURE
4-45

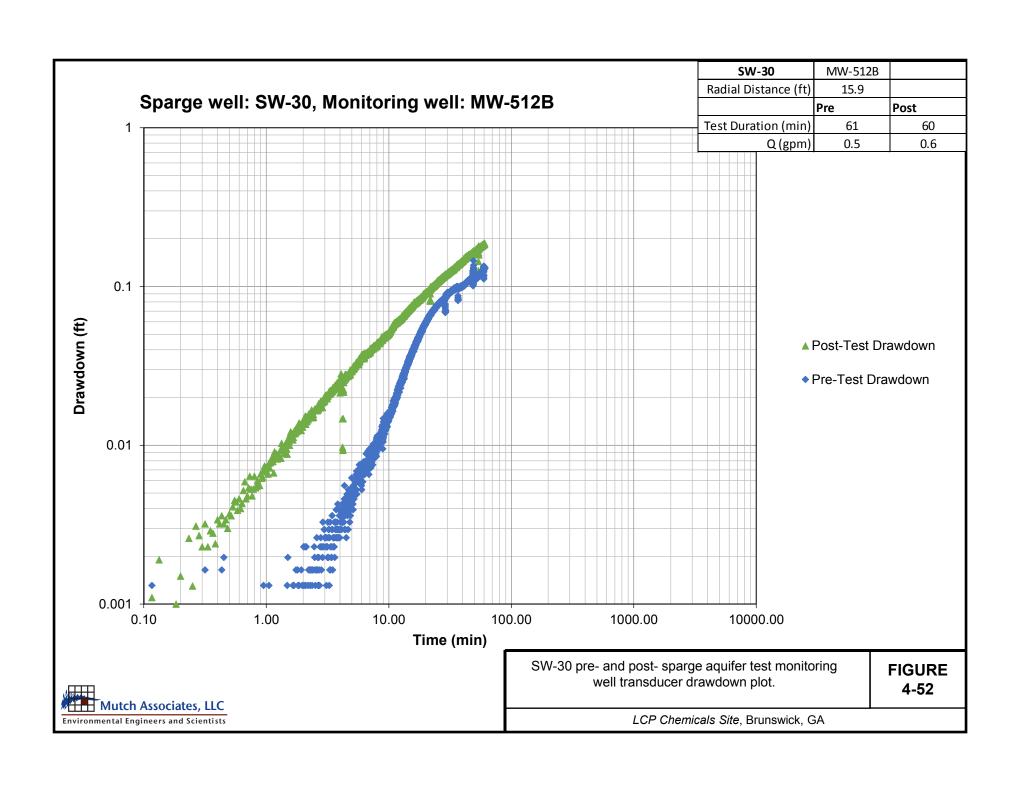
LCP Chemicals Site, Brunswick, GA

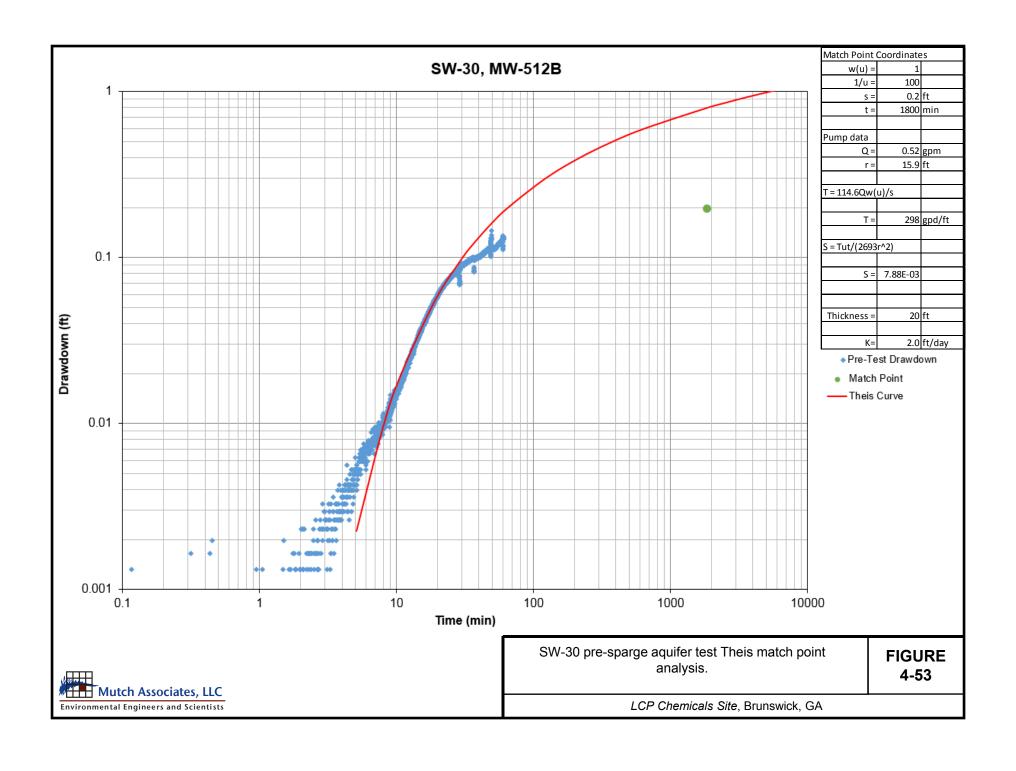

MW-508B and MW-513B well pair hydrograph	FIGURE 4-46
LCP Chemicals Site, Brunswick, GA	

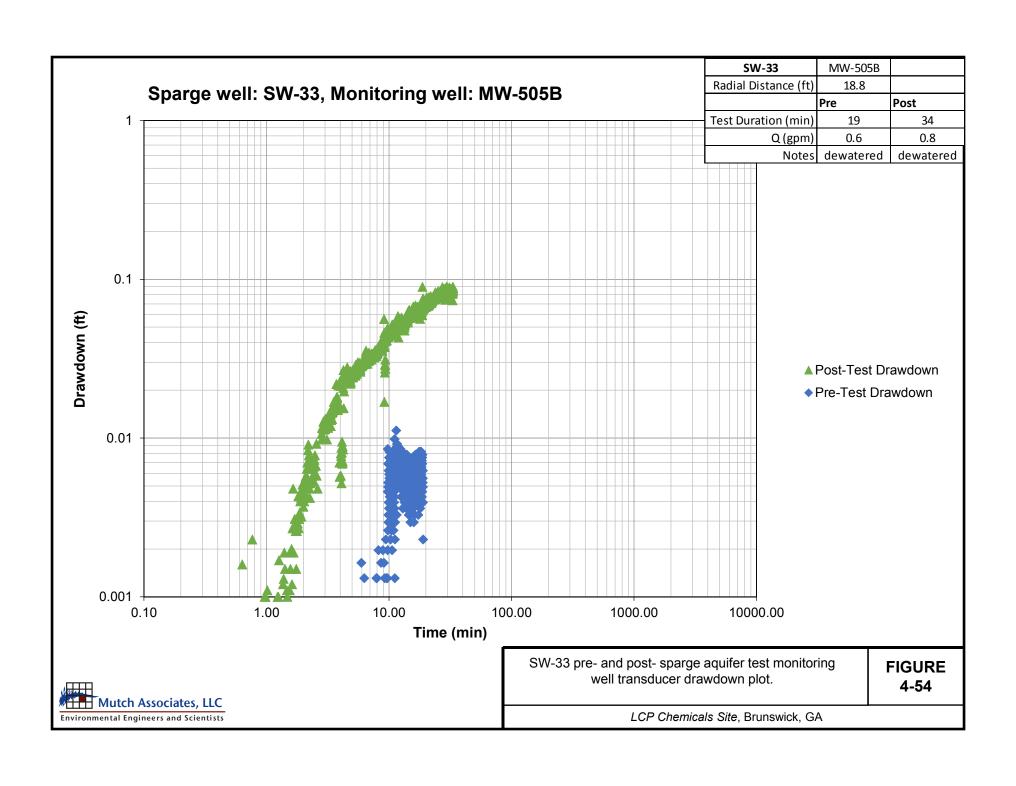


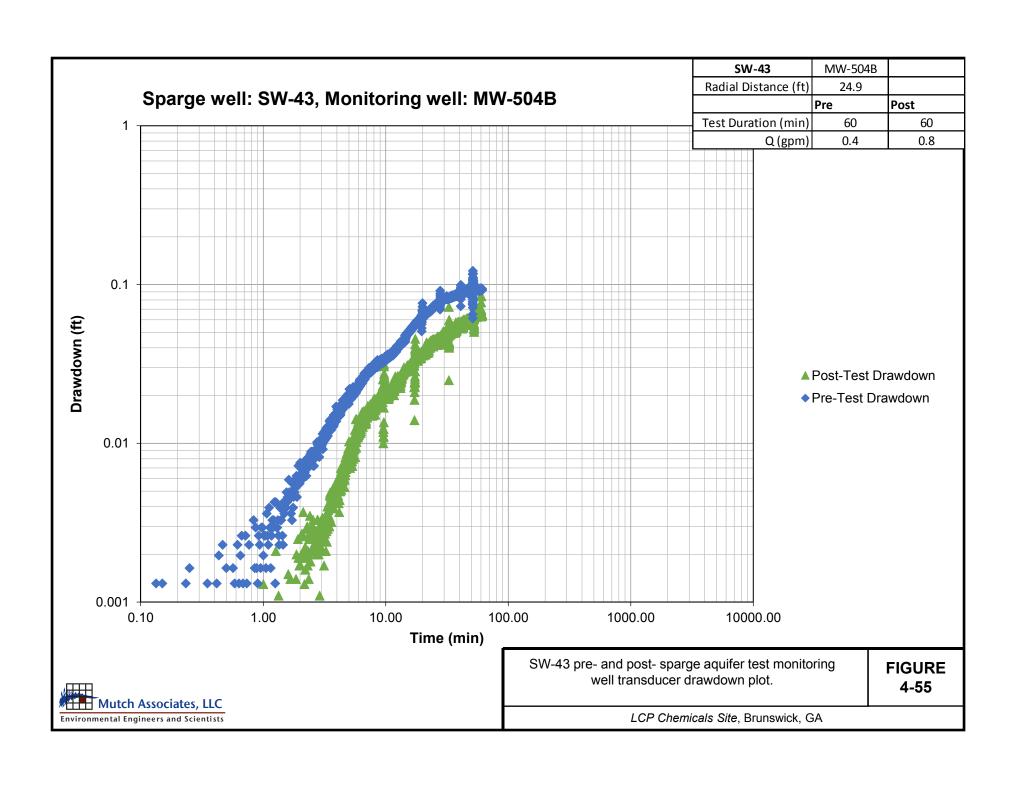


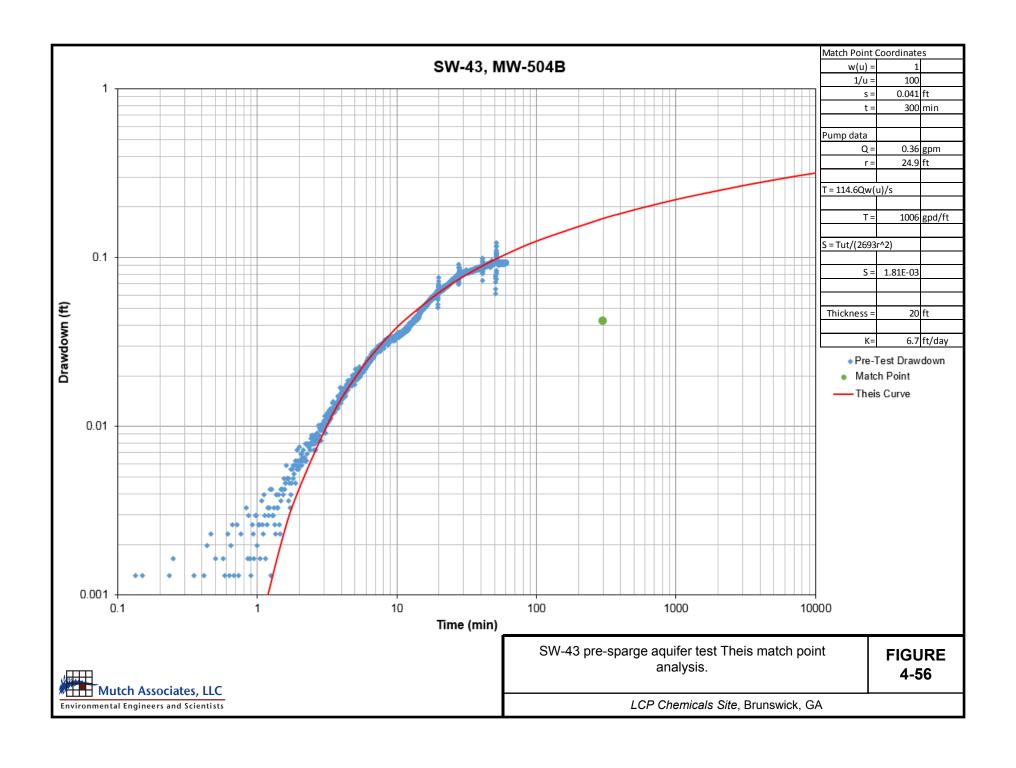

MW-516B and MW-112C well pair hydrograph

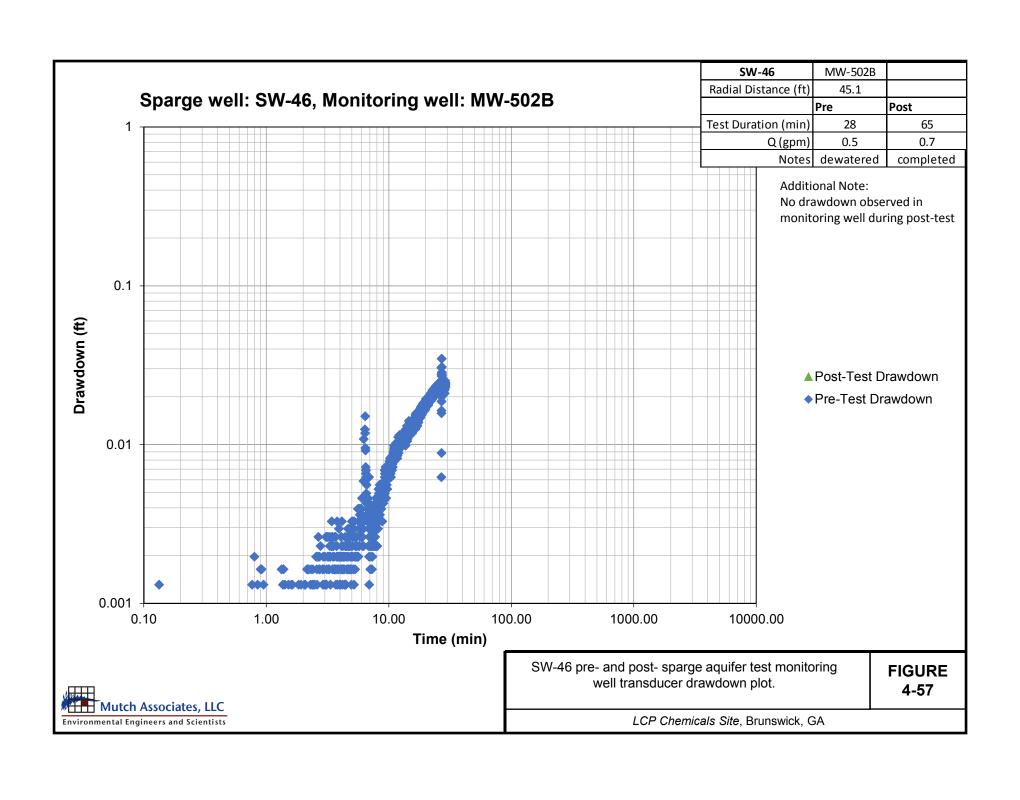

FIGURE 4-47

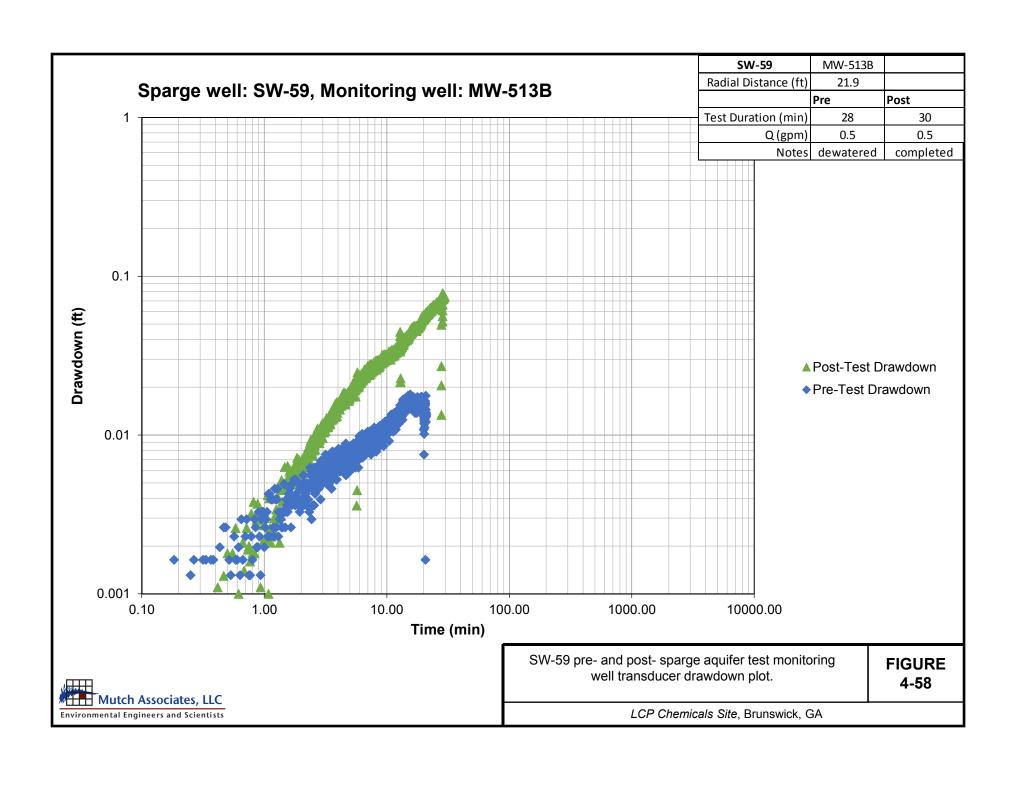


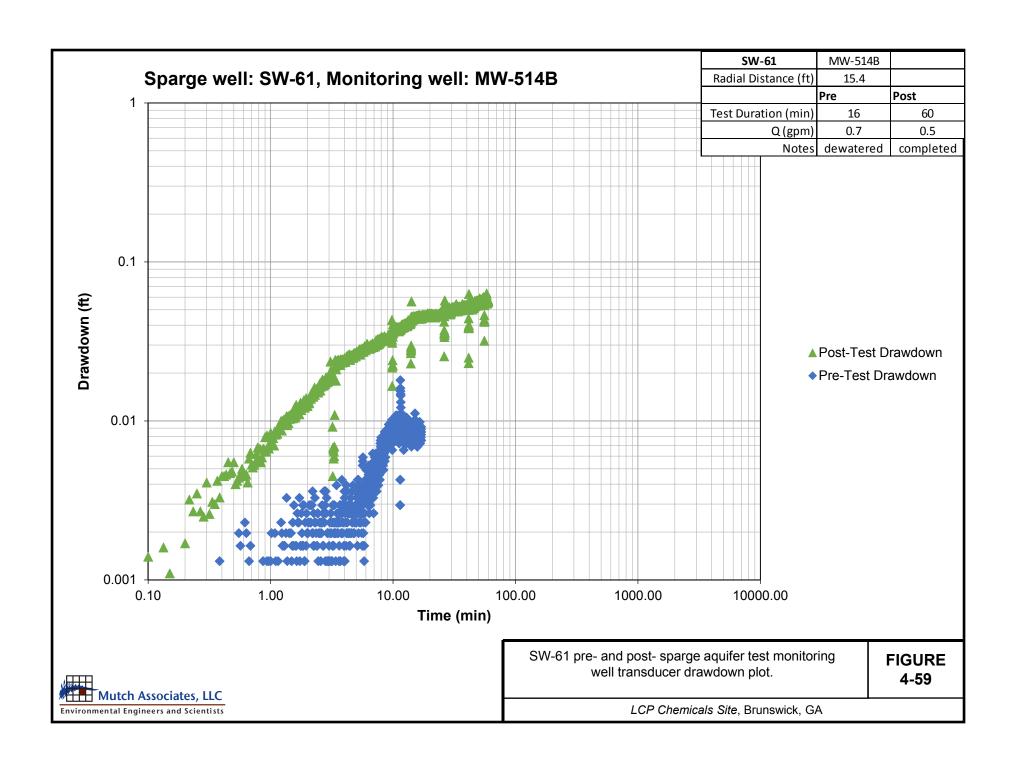


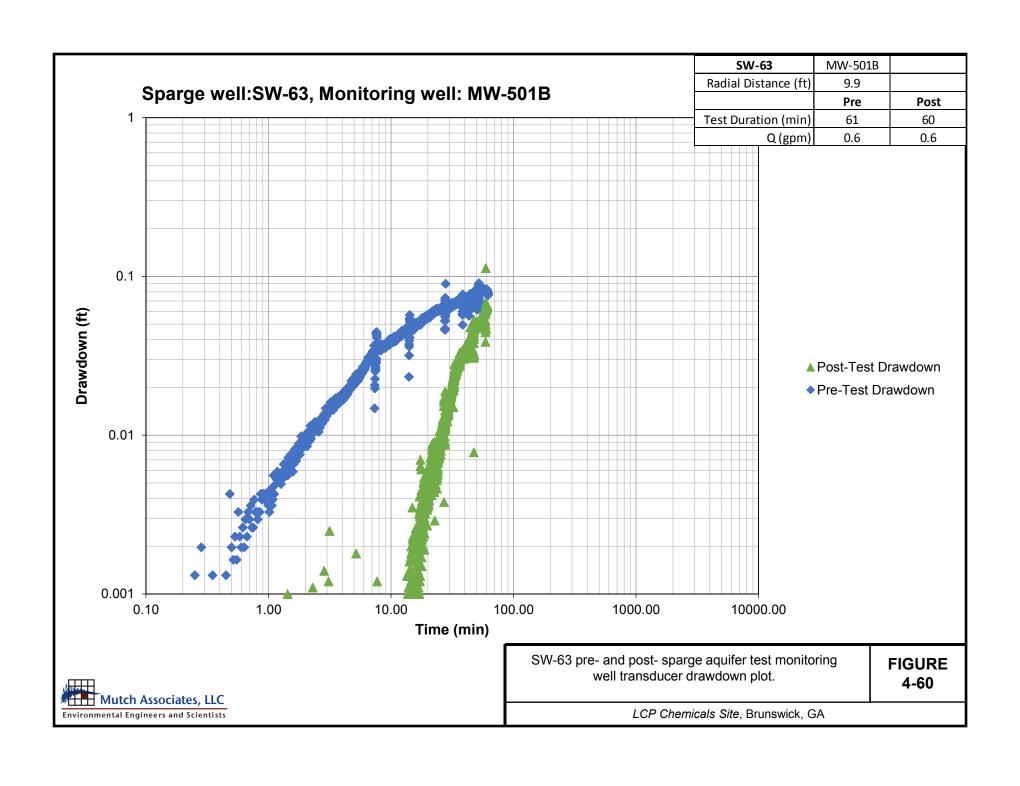


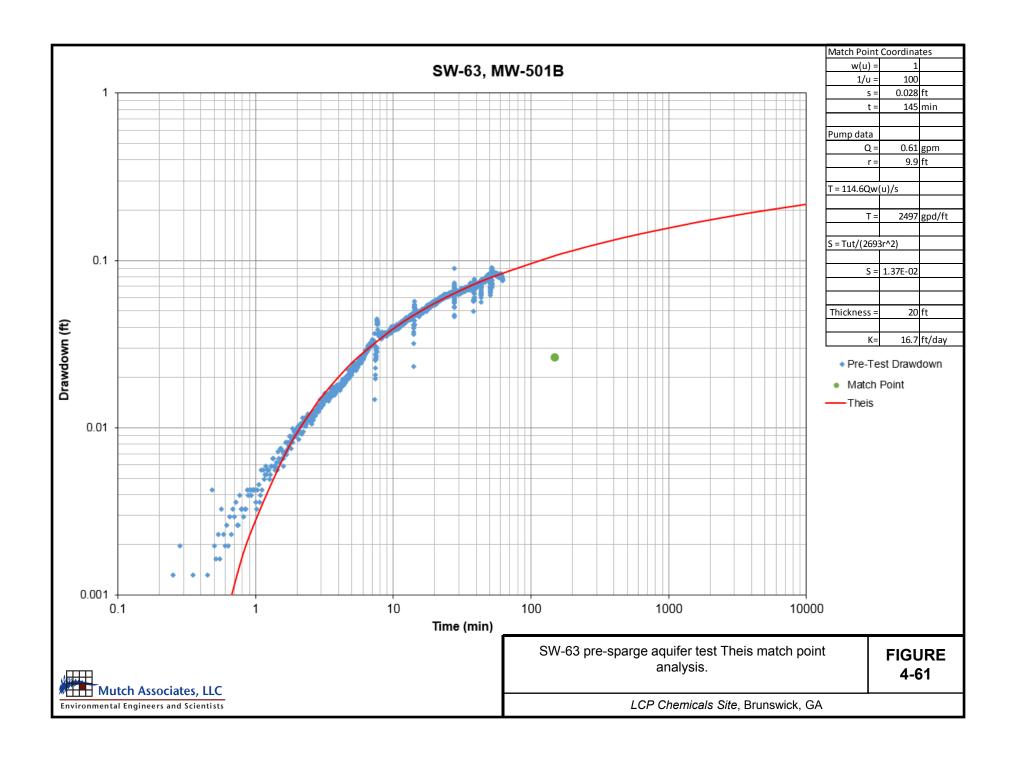












Appendix A:

Boring Logs/Well Construction Diagrams

Page 1 of 3

Site: LCP Brunswick **Boring No: SW-2**

Diameter: 8 in Date: 08/08/2013

Northing: 431594.89

Easting: 861479.17

Elevation: 9.75

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 49.5 Ft GW Depth: 0.0 Ft

Datum:	Datum: Unknown				ct No:		Field Book No:	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Rec	ID	Count	(ppm)	(mg/m3)		Soil Description	
0 +						SM	Hand cleared to 5 feet. Installed with a stick up above ground surface. Gray brown fine to medium SAND, trace silt.	
5 +							Brown gray drilling MUD, pH 7 to 8.	
+								
10 +				1.6	0			
15 —								
20 丄		L l		L	L l	L	L	' -

Page 2 of 3

Site: LCP Brunswick Boring No: SW-2 Diameter: 8 in

Date: 08/08/2013

Northing: 431594.89

Easting: 861479.17

Elevation: 9.75

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 49.5 Ft GW Depth: 0.0 Ft

Page 3 of 3

Site: LCP Brunswick Boring No: SW-2 Diameter: 8 in

Date: 08/08/2013

Northing: 431594.89

Easting: 861479.17

Elevation: 9.75

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Total Depth: 49.5 Ft GW Depth: 0.0 Ft

	• • • • • • • • • • • • • • • • • • • •						riold Book riol	1
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			9 12	0	0	SM	Gray fine to coarse SAND, trace silt.	
			13 14			SM/ML	Gray fine to coarse SAND, trace silt, layer 2 inch clay and silt.	
			11 10	0	0	SM	Gray fine to coarse SAND, trace silt.	
+			11 12			CL	Gray CLAY and silt, little sand, some white shell fragments.	
†			12 19	0	0	SM	Gray fine to coarse SAND, trace silt, trace white shell fragmen	ts.
45			19 23			SM	Gray fine to medium SAND, little silt, little white shell fragment	s.
†			14	0	0	SM	Gray fine to medium SAND, trace silt, trace white shell fragme	nts.
†			20			SM	Gray fine to medium SAND, trace silt, trace white shell fragme	nts.
†			10	0	0	SM	Gray fine to medium SAND, trace silt.	
49.6			50			SM/R	4 in Gray fine to coarse SAND, little silt, 2 in weakly cemented sandstone.	
10.0			V	Vell Set at 49	9.5 ft.			

Well Set at 49.5 ft.

Page 1 of 3

Site: LCP Brunswick **Boring No: SW-3** Diameter: 8 in

Date: 08/08/2013

Northing: 431675.46

Easting: 861477.79

Elevation: 9.10

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 49.0 Ft GW Depth: 0.0 Ft

Datum: Unknown			Proje	ct No:		Field Book No:	
Depth S	Sample ID	Blow Count	PID (ppm)	Mercury (mg/m3)		Soil Description	Well Construction Diagram
0 -	2		(FF)	(SM	Hand cleared to 5 feet. Installed with a stick up above ground surface. Gray brown fine to medium SAND, trace silt.	
5 +						Brown gray drilling MUD, pH 7 to 8.	
10 +			7.7	0			
15 —							
20							

Page 2 of 3

Site: LCP Brunswick Boring No: SW-3 Diameter: 8 in

Date: 08/08/2013

Northing: 431675.46

Easting: 861477.79

Elevation: 9.10

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Total Depth: 49.0 Ft
GW Depth: 0.0 Ft

Datum:	Unk	nown		Proje	ct No:		Field Book No:	
Depth Ft	Recov	Sample ID	Blow Count	PID (ppm)	Mercury (mg/m3)		Soil Description	Well Construction Diagram
20	ш.	טו	Count	(ррііі)	(ilig/ilio)	Code	Brown gray drilling MUD, pH 7 to 8.	
†								
+								
+								
5 十								
1								
+								
†								
o +				7.7	0			
+								
+								
+								
「十								
+								
†								
o 丄 l								

Page 3 of 3

Site: LCP Brunswick **Boring No: SW-3**

Diameter: 8 in Date: 08/08/2013

Northing: 431675.46

Easting: 861477.79

Elevation: 9.10

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Field Book No: Project No:

Total Depth: 49.0 Ft GW Depth: 0.0 Ft

\/\all

Depth S	Sample	Blow	PID	Mercury	USCS		VVeII Construction
Ft 🛱	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40		11 10	0	0	sc	Gray fine to medium SAND, and silt and clay.	
		10 13			sc	Gray fine to medium SAND, and silt and clay.	
		12 13	0	0	SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
		19 25			SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
		13 17	0	0	SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
45 —		24 30			SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
		17 26	0	0	SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
		37 42			SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
		14 32	0	0	SM/R	Gray fine to medium SAND, some silt, trace white shell fragments, cemented sandstone in tip.	
49.0		V	Vall Set at 48			•	•

Well Set at 48 ft.

Page 1 of 3

Site: LCP Brunswick Boring No: SW-4

Diameter: 8 in Date: 07/31/2013

Northing: 431752.69

Easting: 861478.76

Elevation: 9.01

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Total Depth: 50.42 Ft

Datum:	Unk	nown		Proje	ct No:		Field Book No:	
Depth Ft	Recov	Sample	Blow Count	PID (ppm)	Mercury (mg/m3)		Soil Description	Well Construction Diagram
0			Gount	(ррш)	(mg/mo)	SM	Hand cleared to 5 feet. Installed with a stick up above ground surface. Gray brown fine to medium SAND, trace silt.	
5 +							Brown gray drilling MUD, pH is 7.	
10 +				0.5	0			
15 +								
20 十		L		L	L l		L	!

Page 2 of 3

Site: LCP Brunswick Boring No: SW-4

Diameter: 8 in

Date: 07/31/2013

Northing: 431752.69

Easting: 861478.76

Elevation: 9.01

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Total Depth: 50.42 Ft

Datum: Unk	nown		Proje	ct No:	Field Book No:	
Depth S	Sample	Blow Count	PID (ppm)	Mercury (mg/m3)	Soil Description	Well Construction Diagram
20					Brown gray drilling MUD, pH is 7.	
30 +			0.5	0		
35 +						

Page 3 of 3

Site: LCP Brunswick Boring No: SW-4

Diameter: 8 in Date: 07/31/2013

Total Depth: 50.42 Ft

GW Depth: 0.0 Ft

Northing: 431752.69

Easting: 861478.76

Elevation: 9.01

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Field Book No:

Datum: Unknown			Proje	ct No:		Field Book No:		
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Rec	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			17	0	0	CL	Gray CLAY, medium plasticity.	
			15	-				
			11			SM	Gray fine to coarse SAND, trace silt.	_
1			11					
			11	0	0	SM	Gray fine to coarse SAND, trace silt, trace gravel, trace white shell fragments.	_
			17					
			25			SM	Gray fine to coarse SAND, trace silt, trace gravel, trace white shell fragments.	_
ļ .			22				Constitution of the second CANID to a self-to a south to a bell for successive	
			15	0	0	SM	Gray fine to coarse SAND, trace silt, trace white shell fragments.	_
45 🕂			21				Constant and CAND to a silf to a silf to be life and the	
10			27			SM	Gray fine to coarse SAND, trace silt, trace white shell fragments.	
			29				I CAND I WAS A STATE OF THE STA	<u> </u>
			13	0	o	SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
			22				lo f	
			28			SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
1			31					
			15	0	0	SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
			22	-			O C C C C C C C C C C C C C C C C C C C	
			14			SM	Gray fine to medium SAND, trace silt, trace white shell fragments, pH 10.	
50 $+$			14					
			50	0	0	SM	Gray fine to coarse SAND, trace gravel, weakly cemented sandstone.	
51.0								
31.0			W	ell Set at 50).5 ft.			

Well Set at 50.5 ft.

Page 1 of 3

Site: LCP Brunswick Boring No: SW-5

Diameter: 8 in Date: 07/30/2013

Northing: 431835.72 Easting: 861478.13

Elevation: 9.00

2 Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (Parsons)

Total Depth: 50.9 Ft GW Depth: 0.0 Ft

Datum: Unknown **Project No:** Field Book No: 2 Well Construction Diagram PID Mercury **USCS** Depth Sample **Blow** Soil Description Ft ID Count (mg/m3) Code (ppm) Hand cleared to 5 feet. Installed with a stick up above ground surface. pH is 7 to 7.5. 5 0.0 0.000 10 15 20

Page 2 of 3

Site: LCP Brunswick **Boring No: SW-5** Diameter: 8 in

Date: 07/30/2013

Northing: 431835.72

Driller: Jeff Zeigler (Groundwater Protection Inc)

Easting: 861478.13

Method: Mud Rotary

Elevation: 9.00

40

Consultant: S. Dillman (Parsons)

Datum: Unknown

Field Book No: 2

Total Depth: 50.9 Ft

GW Depth: 0.0 Ft

Project No: Well Construction Diagram PID Mercury **USCS** Depth Sample **Blow** Soil Description Ft ID Count (mg/m3) Code (ppm) 20 25 0.0 0.000 30 35

Page 3 of 3

Site: LCP Brunswick **Boring No: SW-5** Diameter: 8 in

Date: 07/30/2013

Northing: 431835.72

Easting: 861478.13

Elevation: 9.00

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (Parsons)

Project No: Field Book No: 2 Total Depth: 50.9 Ft GW Depth: 0.0 Ft

Donth		Comple	Plow	DID	Moroum	LICCO		Well
Depth	Recov	Sample	Blow	PID	Mercury	USCS	Call Decemention	Construction Diagram
Ft	~	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			6	0.0	0.000		Medium to coarse SAND, trace fine sand, fine medium sand at bottom of sample, little silt, trace shells, wet.	
			7			SM	at bottom of sample, fittle silt, trace shells, wet.	
T			8			SIVI		
			5					
I			3	0.0	0.000		Gray fine to medium SAND, soft, wet.	
			3			SM		
T			6			SIVI		
			6					
T			3	0.0	0.000		Coarse SAND over greenish gray fine to medium sand, little silt, trace clay in lenses, soft, wet.	
45 丄			4			SM	Sili, lade day iii lelises, seli, wet.	
45 🕇			4			SIVI		
			5					
			3	0.0	0.000		Fine to medium SAND, trace silt, soft, wet.	
			17			SM		
			8			Oivi		
			14					
			22	0.0	0.000	SM	Trace white carbonate rocks in shoe.	
			32	0.0	0.000	SM	Gray fine to medium SAND, trace shells, trace silt, soft, wet.	
			50	0.0	0.000	SM	Same as above, noted slight sheen on mud.	
I ₅₀			25	0.0	0.000	SM	Same as above.	
50 🕇			20	0.0	0.000	SM	Gray fine SAND, some silt, trace shells, wet.	
I ₅₄ ↓			50	0.0	0.000	SM	Same as above over trace sandstone, poor recovery in top, hard	
51.0								

Page 1 of 3

Site: LCP Brunswick **Boring No: SW-6** Diameter: 8 in

Total Depth: 51.0 Ft

GW Depth: 0.0 Ft

Date: 07/30/2013

Northing: 431915.23

Driller: Jeff Zeigler (Groundwater Protection Inc)

Easting: 861477.25

Method: Mud Rotary

Elevation: 7.95

Consultant: S. Dillman (PARSONS)

Datum:	Unk	nown		Project No:			Field Book No: 2	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	
0							Hand cleared to 5 feet. Installed with a stick up above ground surface. pH is 7.	
5 +				0.0	0.000			
10 —							Mud rotary 5-40 feet, no samples. pH is 7.	
15 +				0.0	0.000			

Page 2 of 3

Site: LCP Brunswick Boring No: SW-6 Diameter: 8 in

Date: 07/30/2013

Total Depth: 51.0 Ft

GW Depth: 0.0 Ft

Northing: 431915.23

Easting: 861477.25

Elevation: 7.95

40

g. 001117.20

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Well Construction Diagram PID Mercury **USCS** Depth Sample **Blow** Soil Description Ft ID Count (mg/m3) Code (ppm) Mud rotary 5-40 feet, no samples. pH is 7. 20 0.0 0.000 25 30 pH is 7. 0.0 0.000 35

Page 3 of 3

Site: LCP Brunswick **Boring No: SW-6** Diameter: 8 in

Total Depth: 51.0 Ft

GW Depth: 0.0 Ft

Date: 07/30/2013

Northing: 431915.23

Easting: 861477.25

Elevation: 7.95

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			9	0.0	0.000		Gray medium to coarse SAND, bottom 3 inches fine to medium sand, little silt, little clay, wet.	
			11			SM	Sand, fille Sill, fille Clay, Wel.	
			12			SIVI		
			12					
Ī			8	0.0	0.000		Gray medium to coarse SAND, over medium gray SAND, thin lenses of silty clay, wet.	
			8			SM	of only day, wot	
			9			Civi		
. ↓			12					
			9	0.0	0.000		Gray fine to medium SAND, wet.	
45 +			8			SM		
~			10					
			9				O C C C C C C C C C C C C C C C C C C C	<u> </u>
			8	0.0	0.000		Gray fine to medium SAND, little silt, trace shells, trace carbonate rock pebble, wet.	
+			9			SM		
	$ \angle $		12					
+			11				Gray fine to medium SAND, little silt, trace shells, trace	
			20	0.0	0.000	014	carbonate rock pebble, wet.	
l +			15	0.0	0.000	SM		
			18	0.0	0.000	CM	Same as above, trace bedrock pebbles in bottom of sample sandstone	
50 +			40	0.0	0.000	SM	Same as above, trace bedrock pebbles in bottom of sample sandstone	
			18	0.0	0.000	SM	Sample same of the	
51.0			50/2	0.0	0.000			

Page 1 of 3

Site: LCP Brunswick Boring No: SW-7 Diameter: 8 in

Date: 08/09/2013

Northing: 431394.30

Easting: 861547.34

Elevation: 9.64

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 50.5 Ft GW Depth: 0.0 Ft

Datum: l	Jnkı	nown		Proje	ct No:		Field Book No:	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
0						SM	Hand cleared to 5 feet. Installed with a stick up above ground surface. Gray brown fine to medium SAND, trace silt.	
5 +							Brown gray drilling MUD, pH 7 to 8.	
†								
10 +								
+				80	0			
15 +								
+								
†								
₂₀ \(\preceq\)		l		L	L l			

Page 2 of 3

Site: LCP Brunswick Boring No: SW-7

Diameter: 8 in Date: 08/09/2013

Northing: 431394.30

Easting: 861547.34

Elevation: 9.64

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Driller: Jared Link (Groundwater Protection Inc)

Total Depth: 50.5 Ft GW Depth: 0.0 Ft

Datum: Unk	nown		Proje	ct No:		Field Book No:	
Depth S	Sample	Blow	PID	Mercury		Cail Decemention	Well Construction Diagram
	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
20						Brown gray drilling MUD, pH 7 to 8.	
30			80	0			
40							

Page 3 of 3

Site: LCP Brunswick Boring No: SW-7

Diameter: 8 in Date: 08/09/2013

Northing: 431394.30

Easting: 861547.34

Elevation: 9.64

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Total Depth: 50.5 Ft GW Depth: 0.0 Ft

Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Se	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			5	0	0	SM	Gray fine to coarse SAND, trace silt.	
			7				Gray fine to coarse SAND, trace silt.	
			6			SM	Cray line to coarse on the trace sint.	
+			4				Gray fine to coarse SAND, trace silt.	-
			6	0	0	SM		
Ī			10			CL	Gray CLAY and silt, little sand.	1
1 +			12				Gray fine to coarse SAND, trace silt.	
			7 8	0	0	SM	Gray line to Coarse SAND, trace sitt.	
45 🕂			11				Gray fine to coarse SAND, trace silt.	
			17			SM		
Ī			3	0	0	SM	Gray brown fine to medium SAND, trace silt, trace white shell fragments.	
			4				Gray brown fine to medium SAND, trace silt, trace white shell	
			7 11			SM	fragments.	
l †			8	_			Gray brown fine to medium SAND, trace silt.	
			15	0	0	SM		
Ī			13			SM	Gray brown fine to medium SAND, trace silt.	
50 $+$			10			-	3 in Gray brown fine to medium SAND, little silt, 3 in weakly	
50.5			50 V	Vell Set at 50	<u> </u>	SM	comented sandstone.	J

Page 1 of 3

Site: LCP Brunswick Boring No: SW-8

Diameter: 8 in Date: 08/05/2013

Northing: 431473.97 Easting: 861547.59

Elevation: 9.53

431473.97 Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Datum: Unknown Project No: Field Book No:

Total Depth: 50.25 Ft

Datum: Unk	nown		Proje	ct No:	Field Book No:	
Depth S	Sample	Blow	PID	Mercury	Soil Description	Well Construction Diagram
Ft &	ID	Count	(ppm)	(mg/m3)	Hand cleared to 5 feet. Installed with a stick up above ground surface. 0 ft to 3 ft White packed road GRAVEL, 3 ft to 5 ft Bro fine to medium SAND, trace silt.	
5 +					Brown gray drilling MUD, pH 7.	
10 +						
15 —			0	0		
20						

Page 2 of 3

Site: LCP Brunswick **Boring No: SW-8**

Diameter: 8 in Date: 08/05/2013

Northing: 431473.97

Easting: 861547.59

Elevation: 9.53

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No: Total Depth: 50.25 Ft GW Depth: 0.0 Ft

Well Construction Diagram PID Mercury **USCS** Depth Sample **Blow** Soil Description Ft ID Count (mg/m3) Code (ppm) Brown gray drilling MUD, pH 7. 20 25 0 0 30 35 40

Page 3 of 3

Site: LCP Brunswick **Boring No: SW-8**

Total Depth: 50.25 Ft

GW Depth: 0.0 Ft

Diameter: 8 in Date: 08/05/2013

Northing: 431473.97

Easting: 861547.59

Elevation: 9.53

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Datum:	Unkr	nown		Proje	ct No:		Field Book No:		
Depth	8	Sample	Blow	PID	Mercury	USCS		Well Construc	tion
Ft	Recov	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagrar	m
40			8	0	0	SM	Gray fine to coarse SAND, trace silt.		
			8			_	Gray fine to medium SAND, little silt.		
			12			SM	Gray fine to medium SAND, little slit.		
+			13				Gray fine to medium SAND, little silt.		
			4	0	0	SM	Gray line to medium GAND, little silt.		
+			5				Gray fine to medium SAND, little silt.		
			7			SM			
+			9				Gray fine to medium SAND, little silt, little layers of shells,		
			12	0	0	SM	occasional lens clay.		.
45 🕂			15				Gray fine to medium SAND, little silt, little layers of shells,		.
			50			SC	occasional lens clay.		.
†			18	•		014	Gray fine to medium SAND, trace silt, trace white shell fragments.		
			18	0	0	SM			
†			20			SM	Gray fine to medium SAND, trace silt, trace white shell fragments.		
			22			SIVI			
Ī			12	0	0	SM	Gray fine to medium SAND, trace silt, trace white shell fragments.		
			18	U	"	Sivi			
			11			SM	49 ft to 49 ft 6 in Gray fine to medium SAND, trace silt, trace white shell fragments, 49 ft 6 in to 50 ft Gray fine to coarse SAND,		
			٥			CIVI	White shell raginority, 40 it our to do it Gray line to coarse crayb,		

little silt, trace gravel.

Grav weakly cemented SANDSTONE, some fine to coarse sand

Well Set at 50 ft.

Page 1 of 3

Site: LCP Brunswick Boring No: SW-9

Diameter: 8 in Date: 08/06/2013

Northing: 431555.73

Easting: 861546.71

Elevation: 9.27

Datum: Haknowa

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Total Depth: 49.75 Ft

Depth 8 Sample Blow (ppm) (mg/m3) Code Soil Description Construction Diagram O Soil Description Construction Diagram SM Sample ID Count (ppm) (mg/m3) Code Hand cleared to 5 feet. Installed with a stick up above ground surface. Brown fine to medium SAND, trace silt. SM Brown gray drilling MUD, pH is 7.
SIM Hand cleared to 5 feet, Installed with a stick up above ground surface. Brown fine to medium SAND, trace slit. SIM Brown gray drilling MUD, pH is 7.

Page 2 of 3

Site: LCP Brunswick **Boring No: SW-9**

Diameter: 8 in Date: 08/06/2013

Northing: 431555.73

Easting: 861546.71

Elevation: 9.27

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 49.75 Ft

Depth Ft & Sample ID Count (ppm) (mg/m3) Code Soil Description Construction Diagram 20
20 Brown gray drilling MUD, pH is 7.
35 —

Page 3 of 3

Site: LCP Brunswick Boring No: SW-9

Diameter: 8 in Date: 08/06/2013

Northing: 431555.73

Easting: 861546.71

Elevation: 9.27

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Total Depth: 49.75 Ft

Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			8 7	0	0	SM	Gray fine to coarse SAND, trace silt.	
		1	8 15			SM	Gray fine to coarse SAND, trace silt.	
†			11 15	0	0	SM	Gray fine to coarse SAND, trace silt.	
†			16 17			SM	Gray fine to medium SAND, little silt, little white shell fragments.	
†			15 17	0	0	SM	Gray fine to medium SAND, trace silt, trace layers of shells.	-
45			20			SM	Gray fine to medium SAND, trace silt, trace layers of shells.	·
†			11 15	0	0	SM	Gray fine to medium SAND, trace silt, trace white shell fragments, pH 10.	
†			17 15				Gray fine to medium SAND, trace silt, trace white shell fragments, pH 10.	
†			8	0	0	SM	Gray fine to coarse SAND, trace silt.	
40.75			18 50			SM/R	49 ft to 49 ft 6 in Gray fine to coarse SAND, trace silt, 49 ft 6 in to 9 in 2 in fine to coarse SAND, trace silt, 1 in weakly	
49.7 5	·		W	Vell Set at 49	9.5 ft.		cemented sandstone.	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-10

Diameter: 8 in Date: 08/06/2013

Northing: 431634.58

Easting: 861547.06

Elevation: 9.27

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Driller: Jared Link (Groundwater Protection Inc)

Total Depth: 49.67 Ft

Datum: \	Unki	nown		Proje	ct No:		Field Book No:	
Depth Ft	Recov	Sample ID	Blow Count	PID (ppm)	Mercury (mg/m3)		Soil Description	Well Construction Diagram
						SM	Hand cleared to 5 feet. Installed with a stick up above ground surface. Brown fine to medium SAND, trace silt.	
+							Brown gray drilling MUD, pH 7.	
0 +				0	0			
5 —				-				

Page 2 of 3

Site: LCP Brunswick Boring No: SW-10

Diameter: 8 in Date: 08/06/2013

Northing: 431634.58

Easting: 861547.06

Elevation: 9.27

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No: Total Depth: 49.67 Ft GW Depth: 0.0 Ft

Datum: Unknown Well Construction Diagram PID Mercury **USCS** Depth Sample **Blow** Soil Description Ft ID Count (mg/m3) Code (ppm) Brown gray drilling MUD, pH 7. 20 25 0 0 30 35 40

Page 3 of 3

Site: LCP Brunswick Boring No: SW-10

Diameter: 8 in Date: 08/06/2013

Northing: 431634.58

Easting: 861547.06

Elevation: 9.27

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No: GW Depth: 0.0 Ft

Total Depth: 49.67 Ft

Depth	<u></u>	Sample	Blow	PID	Mercury	USCS		Well
Ft	Recov	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Construction Diagram
40			5 6	0	0	sc	Gray fine to coarse SAND, trace silt, 2 in layer of Gray clay.	
†			18 24			sc	Gray fine to coarse SAND, some silty clay, trace white shell fragments.	
+ 1			11 11	0	0	sc	Gray fine to coarse SAND, little clayey silt, trace white shell fragments.	
Ť			15 17			sc	Gray fine to coarse SAND, little clayey silt, trace white shell fragments.	1
†			10 19	0	0	SM	Gray brown fine to medium SAND, trace silt, little white shell fragments.	-
45 +			26 31			SM	Gray brown fine to medium SAND, trace silt, little white shell fragments.	<u> </u>
†			13 21	0	0	SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
Ť			20 19			SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
†			8	0	0	SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
49.75			8 50			SM/R	49 ft to 49 ft 6 in Gray fine to coarse SAND, little silt, pH over 10, 49 ft 6 in to 49 ft 8 in weakly cemented SANDSTONE.	
+3.75			V	Vell Set at 49	9.5 ft.			

Page 1 of 3

Site: LCP Brunswick Boring No: SW-11

Diameter: 8 in

Date: 07/31/2013 - 08/05/2013

Total Depth: 51.5 Ft

GW Depth: 0.0 Ft

Northing: 431713.54

Easting: 861547.45

Elevation: 8.80

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Depth	Recov	Sample	Blow	PID	Mercury		Soil Description	Well Construction Diagram
Ft	~	ID	Count	(ppm)	(mg/m3)	Code	Hand cleared to 5 feet. Installed with a stick up above ground	Blagram
0							surface. Gray brown fine to coarse SAND, trace silt.	
+						SM		
₅								
^							Brown gray drilling MUD, pH is 7.	
†								
+								
+								
+								
0 +								
+								
+				0	0			
+								
+								
5 +								
+								
+								
+								
					i l			

Page 2 of 3

Site: LCP Brunswick Boring No: SW-11

Diameter: 8 in

Date: 07/31/2013 - 08/05/2013

Northing: 431713.54

Easting: 861547.45

Elevation: 8.80

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No: Total Depth: 51.5 Ft GW Depth: 0.0 Ft

20 Brown grey drilling MUD, pH is 7.	Datum: Un	known	Proje	ct No:	Field Book No:	
20	Depth S	Sample			Soil Description	Well Construction Diagram
	20				Brown gray drilling MUD, pH is 7.	
35 +	30 +		0	0		
	35 +					

Page 3 of 3

Site: LCP Brunswick Boring No: SW-11

Diameter: 8 in

Date: 07/31/2013 - 08/05/2013

Total Depth: 51.5 Ft

GW Depth: 0.0 Ft

Northing: 431713.54

Easting: 861547.45

Elevation: 8.80

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

	_							T
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			9	0	0	SM	Gray fine to coarse SAND, trace silt.	
			5	U		Sivi		
			7			sc	Gray fine to coarse SAND, little clayey silt, layer 2 in gray clay.	
]	10					
			11	0	0	SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
			13	J		O.V.		
			15			SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
			20					_
			9	0	0	SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
45 +			15				Cross fire to modition SAND trace silk trace white shall fragments	
			17 23			SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
							Gray fine to medium SAND, trace silt, trace white shell fragments.	-
			10	0	0	SM	oray line to medicin owns, trace sit, trace write shell hagments.	
+			17 19				Gray fine to medium SAND, trace silt, trace white shell fragments.	┥ ▮ ┃
			20			SM		
+			12				Gray fine to medium SAND, trace silt, trace white shell fragments.	
			17	0	0	SM		
+			7				Gray fine to medium SAND, trace silt, trace white shell fragments.	
			14			SM		
50 十			14				Gray fine to medium SAND, trace silt, trace white shell fragments,	-
			13	0	0	SM	note 50 ft 6 in to 51 ft little silt.	
†			50			SM/R	Gray fine to coarse SAND, little silt, trace white shell fragments,	-
51.6 Pieces weakly comented stone in tip. Well Set at 51.5 ft.								∃
i			•	. J JUL 41 U				

Page 1 of 3

Site: LCP Brunswick Boring No: SW-12

Diameter: 8 in Date: 07/27/2013

Northing: 431794.62

Easting: 861546.84

Elevation: 9.18

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Total Depth: 51.25 Ft

Datum. Onknown			1 10,6	Ct NO.		Tield Book No.	
Depth	Sample		PID	Mercury		Call Decarintion	Well Construction Diagram
Ft	ıD ⊠	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
0					OL/SM	Hand cleared to 5 ft. Installed with a stick up above ground surface. 0 ft to 2 ft Brown TOP SOIL organic, little Gray coarse gravel, 2 ft to 5 ft Brown fine to medium SAND, trace silt.	
5						Brown drilling MUD, pH 7 to 8.	
10 —			28.5	0			
15 —							
20	Ш						

Page 2 of 3

Site: LCP Brunswick Boring No: SW-12

Diameter: 8 in Date: 07/27/2013

Northing: 431794.62

Easting: 861546.84

Elevation: 9.18

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Total Depth: 51.25 Ft

GW Depth: 0.0 Ft

Well Construction Diagram PID Mercury **USCS** Depth Sample **Blow** Soil Description Ft ID Count (mg/m3) Code (ppm) Brown drilling MUD, pH 7 to 8. 20 25 28.5 0 30 35 40

Page 3 of 3

Site: LCP Brunswick Boring No: SW-12

Diameter: 8 in Date: 07/27/2013

Northing: 431794.62

Easting: 861546.84

Elevation: 9.18

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Datuiii	i. Olik	IIOWII		1 10,0	Ct NO.		i leid book ivo.	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			6 10	0	0	sc	Gray brown fine to coarse SAND, trace silt, occasional lens clay.	
			12 14			sc	41 ft to 41 ft 6 in Gray brown fine to coarse SAND, trace silt, occasional lens clay, 41 ft 6 in to 42 ft graduated fine to mediu SAND, some clay and silt.	m
			5 9	0	0	SM	Gray brown fine coarse SAND, trace silt.	
			11 10			SM	43 ft to 43 ft 6 in Gray brown fine to coarse SAND, trace silt, 43 ft 6 in to 44 ft Gray fine to medium SAND, trace silt and cla	y.
			4	0	0	SM	44 ft 6 in to 45 ft Gray fine to medium SAND, trace silt, trace white shell fragments.	
45 —			30 50			SM	Gray fine to medium SAND, trace silt, trace white shell fragme	ints.
			34 50	0	0	SM	Fine to medium SAND, trace silt, trace white shell fragments.	
						SM	Fine to medium SAND, trace silt, trace white shell fragments, pH 10.	
			33 21	0	0	sc	48 ft to 48 ft 6 in Gray fine to medium SAND, some silty clay, 48 ft 6 in to 49 ft Gray CLAY, some sand.	
			20 15			SM	Fine to medium SAND, trace silt, trace white shell fragments.	
50 +			15 14	0	0	SM	Fine to medium SAND, trace silt, trace white shell fragments, sandstone in tip of spoon.	
51.25			50 V	Vell Set at 5°	 1 ft.	SM/R	Fine to medium SAND, Gray sandstones weakly cemented.	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-13

Diameter: 8 in Date: 07/27/2013

Northing: 431874.76

Easting: 861546.56

Elevation: 8.69

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Datum: Unk	known		Proje	ct No:		Field Book No:	
Depth So	Sample	Blow		Mercury		Soil Description	Well Construction Diagram
Ft & & OT	ID	Count	(ppm)	(mg/m3)	Code OL/SM	Hand cleared to 5 ft. Installed with a stick up above ground surface. 0 ft to 2 ft Brown TOP SOIL organic, 2 ft to 5 ft Brown fine to medium SAND, trace silt.	
5						Brown drilling MUD, pH 7 to 8.	
10 —			0.5	0			
15 —							
20							

Page 2 of 3

Site: LCP Brunswick Boring No: SW-13

Diameter: 8 in Date: 07/27/2013

Northing: 431874.76

Easting: 861546.56

Elevation: 8.69

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Datum: Unk	nown		Proje	ct No:	Field Book No:	
Depth S	Sample	Blow Count	PID (ppm)	Mercury (mg/m3)	Soil Description	Well Construction Diagram
25 —					Brown drilling MUD, pH 7 to 8.	
30 +			0.5	0		
35 +						

Page 3 of 3

Site: LCP Brunswick Boring No: SW-13 Diameter: 8 in

Date: 07/27/2013

Northing: 431874.76

Easting: 861546.56

Elevation: 8.69

Lievation. 0.09

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Depth	Ş	Sample	Blow	PID	Mercury	USCS		Well
Ft	Recov	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Construction Diagram
40			6	0	0	SC	Gray brown fine to coarse SAND, trace silt, occasional lens clay.	
			13					
			13			SC	Gray brown fine to coarse SAND, trace silt, occasional lens clay.	
Ī			6	0	0	SC	Gray brown fine to coarse SAND, trace silt, occasional lens clay.	1
			6					
			8			sc	Gray brown fine to coarse SAND, trace silt, occasional lens clay.	
			7				Constitute to readilize CANID trace sit	
			4	0	0	SM	Gray fine to medium SAND, trace silt.	
45 +	.		4				Gray fine to medium SAND, trace silt.	
			8			SM	oray into to modalin orays, adde onc	
+			5				Gray fine to medium SAND, trace silt.	-
			13	0	0	SM	,	
+			13				Gray fine to medium SAND, trace silt.	-
			50			SM		
†			6				Gray fine to medium SAND, trace silt, trace white shell fragments.	-
			34	0	0	SM		
†			16				49 ft to 49 ft 6 in Gray fine to medium SAND, little clayey silt,	-
			13			SM	trace white shell fragments, 49 ft 6 in to 50 ft Gray fine to medium SAND, little silt, 1/8 inch layers of white shell fragments	
50 🕇			50	0	0	SM	Gray fine to coarse SAND, trace silt, sandstone fragments in	
50.6			v	l Vell Set at 50).5 ft.		tip of speen.	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-14 Diameter: 8 in

Date: 07/27/2013

Northing: 431955.20

Easting: 861545.79

Elevation: 8.25

..g. 00.0.0.

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Total Depth: 48.9 Ft

Datum. Onk			i ioje	ot 140.	I leid BOOK NO. 2	
Depth 8	Sample		PID	Mercury	Soil Description	Well Construction Diagram
Ft & & & & & & & & & & & & & & & & & & &	ID	Count	(ppm) 0.4	0.0	Hand cleared to 5 ft. Installed with a stick up above ground surface. pH is 7.	
10 —			0.5	0.0	pH is 7.	

Page 2 of 3

Site: LCP Brunswick Boring No: SW-14 Diameter: 8 in

Date: 07/27/2013

Northing: 431955.20

Easting: 861545.79

Elevation: 8.25

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No. 2

Datum: Unl	known		Proje	ct No:	Field Book No: 2	
Depth So	Sample	Blow Count	PID (ppm)	Mercury (mg/m3)	Soil Description	Well Construction Diagram
20						
30 +					Drilled to 40 ft with mud rotary, no sampling to 40 ft. pH is 7.	
35 —			0.4	0.0		
40						

Page 3 of 3

Site: LCP Brunswick Boring No: SW-14

Diameter: 8 in Date: 07/27/2013

Northing: 431955.20

Easting: 861545.79

Elevation: 8.25

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			10	0.0	0.00		Light medium gray medium to coarse SAND, little fine sand, 1 inch lense of fine to medium sand, little clay, wet, swampy odo	
			14			SM	no stain or sheen.	
			13			Oivi		
			8					
			7				Light gray and gray medium to coarse SAND, 2 inch lense of clay, little silt, bottom 5 inches gray fine sand, little silt,	
			6	0.0	0.000	SM	trace clay, wet.	
			4			0		
			4					
			8				Gray medium SAND, some fine sand, bottom 7 inches has trace broken shells, wet.	
45 +			21	0.0	0.00	SM	·	
			18					
			20					
			23				Gray medium SAND, some fine sand, trace shells broken, wet, swampy odor, still no stain or odor.	
			18	0.0	0.00	SM		
			19					
			24					
			11	0.2	0.00	SM	Gray fine SAND, little shells, some silt, little trace clay,	
49.0			50/5	0.0	0.00	SM	Gräy fine to medium SAND, trace sandstone gravel, bottom cem sand sandstone, wet. Refusal, step drilling and set well.	ented
73.0							•	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-15

Diameter: 8 in

Date: 08/11/2013 - 08/12/2013

Total Depth: 48.83 Ft

GW Depth: 0.0 Ft

Northing: 431354.05

Easting: 861616.43

Elevation: 9.16

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Datum: Onk	HOWH		Projec	CLINO:		FIEID BOOK NO:	
Depth So	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft &	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
0 -					SM	Hand cleared to 5 feet. Installed with a stick up above ground surface. Brown fine to medium SAND, trace silt.	
5 +						Brown gray drilling MUD, pH 7. While over drilling the initial pilot hole, hard debris (cement footer?) was encountered by th 8 in. bit around 7 ft bgs. The pipe walked slightly east but got down.	e
10 —							
15 —			25	0			
-							
20							

Page 2 of 3

Site: LCP Brunswick Boring No: SW-15

Diameter: 8 in

Date: 08/11/2013 - 08/12/2013

Total Depth: 48.83 Ft

GW Depth: 0.0 Ft

Northing: 431354.05

Easting: 861616.43

Elevation: 9.16

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

			1,			T IOIG BOOK TO	
Depth 3	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft o		Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
20		Count	(PPIII)	(iiig/iiio)		Brown gray drilling MUD, pH 7. While over drilling the initial pilot hole, hard debris (cement footer?) was encountered by the 8 in. bit around 7 ft bgs. The pipe walked slightly east but got down.	
30 +			25	0			
35 —							
40							

Page 3 of 3

Site: LCP Brunswick Boring No: SW-15

Diameter: 8 in

Date: 08/11/2013 - 08/12/2013

Total Depth: 48.83 Ft

GW Depth: 0.0 Ft

Northing: 431354.05

Easting: 861616.43

Elevation: 9.16

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

				' ' '				
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	8	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			3	0	0	SM	Gray fine to medium SAND, trace silt.	
			7 12			SM	Gray fine to medium SAND, trace silt.	
			7 12	0	0	SM	Gray fine to medium SAND, trace silt.	
			12 20			sc	Gray fine to medium SAND, trace silt, layers of 1/4 inch clayey silt.	
			8 16	0	0	sc	Gray fine to medium SAND, trace silt, occasional lens clayey silt.	
45			17 18			CL	Gray CLAY, stiff, layers of 1/4 inch fine to medium sand, trace silt.	
			13 17	0	0	SM	Gray fine to coarse SAND, trace silt.	
			20 20			SM	Gray fine to coarse SAND, trace silt, trace white shell fragment	ts.
			9 50	0	0	SM/R	Gray fine to coarse SAND, trace silt, trace travel, cemented sandstone in tip of spoon.	
49.0 ^{_1}		1	V	L Vell Set at 49	9 ft.			

Page 1 of 3

Site: LCP Brunswick Boring No: SW-16

Diameter: 8 in Date: 08/07/2013

Northing: 431434.89

Easting: 861616.53

Elevation: 9.84

ing. 60 10 10.55

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Datum: Unl	known		Proje	ct No:		Field Book No:	
Depth So	Sample	Blow Count	PID	Mercury (mg/m3)		Soil Description	Well Construction Diagram
0	טו	Count	(ppm)	(mg/ms)	GW	Hand cleared to 5 ft. Installed with a stick up above ground surface. 0 ft to 4 ft Coarse compacted GRAVEL road bed mater 4 ft to 5 ft Brown fine to medium SAND, trace silt.	
5 -						Brown gray drilling MUD, pH 7.	
10 -			2.3	0			
15 —							
20							

Page 2 of 3

Site: LCP Brunswick Boring No: SW-16

Diameter: 8 in Date: 08/07/2013

Northing: 431434.89

Easting: 861616.53

Elevation: 9.84

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

	IIOWII		1 10,6				
Depth 8	Sample ID			Mercury		Soil Description	Well Construction Diagram
20	טו	Count	(ppm)	(mg/m3)	Code	Brown gray drilling MUD, pH 7.	
25 —							
30 +			2.3	0			
35 +							

Page 3 of 3

Site: LCP Brunswick Boring No: SW-16

Diameter: 8 in Date: 08/07/2013

Northing: 431434.89

Easting: 861616.53

Elevation: 9.84

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

	TIKITOWIT		' ''	, ot 140.		TICIA BOOK NO.	
Depth	Sample ID	Blow	PID	Mercury	USCS		Well Construction
	ଛ ।D	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40		8	0	0	SM	Gray fine to medium SAND, trace silt.	
		9			SM	Gray fine to medium SAND, trace silt.	
		6 8	0	0	SM	Gray fine to medium SAND, trace silt, occasional piece of 1/2 inch white jagged rock.	
		9			SM	Gray fine to medium SAND, trace silt, occasional piece of 1/2 inch white jagged rock.	
		9	0	0	SM	Gray brown fine to coarse SAND, little silt, occasional piece of 1/2 inch white rock.	
45 —		15 17			sc	Gray fine SAND, little silt, layer 2 inch Gray silty clay, stiff.	
		5 4	o	0	sc	Gray brown fine to coarse SAND, little silt, trace white shell fragments, layer 2 inch Gray silty clay.	
		9 20			SM	Gray brown fine to coarse SAND, little silt, trace white shell fragments.	
		17 20	0	0	SM	Gray brown fine to coarse SAND, trace silt, trace white shell fragments.	
		24 24			SM	Gray brown fine to medium SAND, trace silt, trace white shell fragments.	
50 —		8	0	0	SM	Gray fine to coarse SAND, little silt.	
		50			SM/R	3 in Gray fine to coarse SAND, little silt, 3 in weakly cemented Sandstone.	
51.5		M	Vell Set at 5	1 ft.			

Page 1 of 3

Site: LCP Brunswick Boring No: SW-17

Diameter: 8 in

Date: 08/06/2013 - 08/07/2013

Total Depth: 50.75 Ft

GW Depth: 0.0 Ft

Northing: 431515.71

Easting: 861616.70

Elevation: 9.85

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Datum. O	IIIIIOWII		1 10,6	ot 140.		i leid book ivo.	
Depth	Sample ID	Blow	PID	Mercury		Soil Description	Well Construction Diagram
Ft (포 ID	Count	(ppm)	(mg/m3)	Code	Hand cleared to 5 ft. Installed with a stick up above ground surface. Brown fine to medium SAND, trace silt, 10 pieces of 2 diameter stones or coarse gravel.	
5 +						Brown gray drilling MUD, pH 7.	
10 —							
15 — - - -			0.2	0			
20							

Page 2 of 3

Site: LCP Brunswick Boring No: SW-17

Diameter: 8 in

Date: 08/06/2013 - 08/07/2013

Northing: 431515.71

Easting: 861616.70

Elevation: 9.85

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 50.75 Ft

GW Depth: 0.0 Ft

Datum:	Unkno	wn		Proje	ct No:		Field Book No:	
Depth	Recov	ample	Blow	PID	Mercury	USCS	0.11.5	Well Construction Diagram
Ft	& L	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
20							Brown gray drilling MUD, pH 7.	
+ + + + + + + + + + + + + + + + + + + +								
30 -				0.2	0			
35 +								

Page 3 of 3

Site: LCP Brunswick Boring No: SW-17

Diameter: 8 in

Date: 08/06/2013 - 08/07/2013

Northing: 431515.71

Easting: 861616.70

Elevation: 9.85

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No: Total Depth: 50.75 Ft

GW Depth: 0.0 Ft

Datam	•				011101		Tiola Book Hol	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	A A	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Construction Diagram
40			6	0	0	SM	Gray fine to coarse SAND, trace silt.	
			10 11			SM	Gray fine to coarse SAND, trace silt.	
			4	0	0	SM	Gray fine to coarse SAND, trace silt.	
			6 8			SM	Gray fine to coarse SAND, trace silt.	
			10	0	0	sc	Gray fine to coarse SAND, trace silt, occasional lens clay and silt.	
45 —			6			sc	Gray fine to coarse SAND, trace silt, occasional lens clay and silt.	
			4	0	0	SM	Gray fine to coarse SAND, trace silt.	
			8 11			SM	Gray fine to medium SAND, trace silt.	
			7	0	0	SM	Gray fine to medium SAND, trace silt.	
			17 18			SM	Gray fine to medium SAND, trace silt.	
50 —			9 50	0	0	SM/R	50 ft to 50 ft 6 in Gray fine to medium SAND, little silt, 50 ft 6 in to 50 ft 8 in Gray cemented sandstone.	
51.0			V	Vell Set at 50	0.5 ft.		l	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-18

Diameter: 8 in Date: 07/24/2013

Northing: 431595.13

Easting: 861614.16

Elevation: 10.04

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Project No: Field Book No: 1

nown		Proje	ct No:		Field Book No: 1	
Sample	Blow	PID (ppm)			Soil Description	Well Construction Diagram
	Count	0.0	0.000	SM	Hand cleared to 5 ft. Installed with a stick up above ground surface. Brown black fine to very fine SAND, and silt, trace rock fragments, dry.	
					Mud rotary drilling, mud ph 7.	
	Sample		ID Count (ppm)	ID Count (ppm) (mg/m3)	ID Count (ppm) (mg/m3) Code 0.0 0.000 SM	ID Count (ppm) (mg/m3) Code Soil Description Hand cleared to 5 ft. Installed with a stick up above ground surface. Brown black fine to very fine SAND, and silt, trace rock fragments, dry.

Page 2 of 3

Site: LCP Brunswick Boring No: SW-18 Diameter: 8 in

Date: 07/24/2013

Northing: 431595.13

Easting: 861614.16

Elevation: 10.04

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Depth Ft 20	Recov	Sample		Project No: PID Mercury USCS				
	οil	-	Blow	PID	Mercury	USCS		Well Construction
20	<u>~</u>	ID	Count	(ppm)	(mg/m3)	Code		Diagram
25 —	R					Code	Mud rotary drilling, mud ph 7.	Vell Construction Diagram
35 +								
40								
40 — _					<u> </u>			

Page 3 of 3

Honeywell

Site: LCP Brunswick **Boring No: SW-18**

Diameter: 8 in Date: 07/24/2013

Northing: 431595.13

Easting: 861614.16

Elevation: 10.04

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Project No: Field Book No: 1 Total Depth: 53.0 Ft GW Depth: 0.0 Ft

	. • • • • • • • • • • • • • • • • • • •						i ioid Book itoi i	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			11 11	0.0	0.000	SM	Gray medium to coarse SAND.	
			9 13	0.0	0.000	CL/SM	Black CLAY and fine SAND lense, then gray medium to coarse sand.	
†			8 7	0.0	0.000	SM	Gray medium to coarse SAND, trace silt, wet.	
†			8	0.0	0.000	SM	Gray medium to coarse SAND, trace silt, wet.	
†			6 7	0.0	0.000	SM	Gray medium to coarse SAND, trace silt, trace gravel, wet.	
45 +		•	9	0.0	0.000	SM	Gray medium to coarse SAND, trace silt, trace gravel, wet.	
†			2	0.0	0.000	SM	Gray to black fine to medium SAND, little silt, wet.	- - -
†			10	0.0	0.000	SM	Gray to black fine to medium SAND, little silt, wet.	-
†			8	0.0	0.000	SM	Gray fine to medium SAND, little silt, wet.	<u> </u>
†			9	0.0	0.000	SM	Gray fine to medium SAND, little silt, wet.	-
50 +			7	0.0	0.000	SM	Gray fine to medium SAND, trace silt, wet.	-
			4	0.0	0.000	SM	Gray fine to medium SAND, trace silt, wet.	—
†		[5	0.0	0.000	SM	Gray fine to medium SAND, trace silt, wet.	T
			6	0.0	0.000	SM	Gray fine to medium SAND, trace silt, trace gravel, wet.	7 ···· -
			6	0.0	0.000	SM	Gray fine to medium SAND, trace silt, trace gravel, cemented	
			50/1	0.0	0.000	CL	material in speen tip. Gray CLAY and sandstone, dry to moist.	
53.0			V	Vell set at 52	2.5 ft, ground	elevation 9.	59 ft.	

Well set at 52.5 ft, ground elevation 9.59 ft.

Page 1 of 3

Site: LCP Brunswick Boring No: SW-19 Diameter: 8 in

Date: 07/24/2013

Northing: 431678.01

Easting: 861610.69

Elevation: 9.74

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Datum:	Unk	nown		Proje	ct No:		Field Book No: 1	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
0 -				0.0	0.000		Hand cleared to 5 ft. Installed with a stick up above ground surface. Limerock road base material to 2 feet then black very to fine sand, some silt, dry.	fine
5 +							Mud rotary drilling, mud ph 7.	
l +								
10 🕂								
l								
I ↓								
1 +								
†								
15 +								
13								
1 +								
l †								
Ī								
20 丄		L l		L	L l		L	'

Page 2 of 3

Site: LCP Brunswick Boring No: SW-19

Diameter: 8 in Date: 07/24/2013

Northing: 431678.01

Easting: 861610.69

Elevation: 9.74

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Project No: Field Book No: 1

			1 10,6				
Depth S	Sample	Blow		Mercury		Soil Description	Well Construction Diagram
Ft 🛱	ID	Count	(ppm)	(mg/m3)	Code	Mud rotary drilling, mud ph 7.	2 lagram
						, , , ,	
25 —							
30 +							
35 +							
40							

Page 3 of 3

Site: LCP Brunswick Boring No: SW-19

Diameter: 8 in Date: 07/24/2013

Northing: 431678.01

Easting: 861610.69

Elevation: 9.74

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Project No: Field Book No: 1

Depth	ò	Sample	Blow	PID	Mercury	USCS	<u>'</u>	Well Construction
Ft	Recov	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			8	0.0	0.000	SM	Black and gray medium to coarse SAND, trace silt, wet.	
l †			16 14	0.0	0.000	SM	Black and gray medium to coarse SAND, trace silt, wet.	i
			12	0.0	0.000	SM	Black and gray medium to coarse SAND, trace silt, wet.	
	/		9	0.0	0.000	SM	Black and gray medium to coarse SAND, trace silt, wet.	
			8 8	0.0	0.000	SM	Black and gray medium to coarse SAND, trace silt, wet.	
45 +			9	0.0	0.000	sc	Gray fine SAND, trace clay, wet.	
46.5			50/1	0.0	0.000	GM	Gray coarse to very coarse SAND, and shells at 46.2 feet, mudstone and sand.	
46.5			L		0.000 6 ft, ground ele		land sand.] ——

Page 1 of 3

Site: LCP Brunswick Boring No: SW-20 Diameter: 8 in

Date: 07/25/2013

Northing: 431754.07

Driller: Jeff Zeigler (Groundwater Protection Inc)

Easting: 861615.36

Method: Mud Rotary

Project No:

Elevation: 8.98

Consultant: T. Murphy (PARSONS)

Datum: Unknown

Field Book No: 1

Total Depth: 51.5 Ft

GW Depth: 0.0 Ft

Datum: Onk	IIOWII		Proje	CL INO.		FIEID BOOK NO. 1	
Depth So	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft &	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
0						Hand cleared to 5 ft. Installed with a stick up above ground surface. Limerock road base material, rock debris, brick to 2 fee then brown fine sand and silt, dry.	et,
5 +						Mud rotary drilling, mud pH 7.	
10 -							
15 —							
20							

Page 2 of 3

Site: LCP Brunswick Boring No: SW-20

Diameter: 8 in Date: 07/25/2013

Northing: 431754.07 Easting: 861615.36

Elevation: 8.98

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Depth Sex Sample Blow PID Mercury USCS Soil Description Construction Diagram	Datu	ım:	Unkı	nown		Proje	ct No:		Field Book No: 1	
20	Dept	th	COV	Sample	Blow	PID	Mercury	USCS		Well Construction
25 30 35 35 35 36 3			Re	ID	Count	(ppm)	(mg/m3)	Code		Diagram
30 35 35 36 3	20								Mud rotary drilling, mud pH 7.	
30 35 35 36 3	-	-								
30 35 35 36 3										
30 35 35 36 3	-	t								
30 35 35 36 3	-									
30 35 35 36 3										
30 35 35 36 3	-	ł								
30 35 35 36 3	05 -									
35 —	25									
35 —	=	-								
35 —										
35 —		Ť								
35 —	-	-								
35 —										
35 —	-	ŀ								
35 —	30 -	L								
	-	ł								
	_									
	-	ł								
	35 -	\vdash								
		Ť								
40	-	-								
	-	†								
40	-									
40										
	40	_					1		<u> </u>	

Page 3 of 3

Site: LCP Brunswick Boring No: SW-20 Diameter: 8 in

Date: 07/25/2013

Northing: 431754.07

Easting: 861615.36

Elevation: 8.98

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Project No: Field Book No: 1

Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			11	0.0	0.000	sw	Gray coarse to very coarse SAND, wet.	
			12		0.000		Communication of the Communica	
			11	0.0	0.000	sw	Gray coarse to very coarse SAND, wet.	
+			11				Gray coarse to very coarse SAND, wet.	
			8 7	0.0	0.000	sw	0.00, 0.00.00 10 10.0, 0.00.00 10.00, 0.00.	
+			7				Black medium to coarse SAND, trace silt.	-
			8	0.0	0.000	SM		
			10	0.0	0.000	00	Gray fine SAND, some clay, moist.	
L ₄₅ ⊥			13	0.0	0.000	SC		
45 🕇			15	0.0	0.000	SC	Gray fine SAND, some clay, moist.	
1			50	0.0	0.000			_
			27	0.0	0.000	sc	Gray fine SAND, some shells, trace clay, moist.	
+			30				Gray fine SAND, some shells, trace clay, moist.	_
			37 30	0.0	0.000	SC	Stay into 3 at 5, come choic, adde day, mole.	
+			24	0.0	0.000	SC	Gray fine SAND, some shells, trace clay, moist.	
			16	0.0	0.000	SC	Gray fine SAND, some shells, trace clay, moist.	
†			18	0.0	0.000	SC	Gray fine SAND, trace shells, trace clay, moist.	
			16	0.0	0.000	SC	Gray fine SAND, trace shells, trace clay, moist.	
50 十			24	0.0	0.000	SC	Gray fine SAND, trace shells, trace clay, moist.	
			20	0.0	0.000	SM	Gray fine SAND, some shells, laminated, moist.	
51.5			44	0.0	0.000	SM	Gray fine sand, some shells, laminated, moist, cemented sandstone at 51.3 feet.	
1 51.5			W	/ell set at 51	ft, ground el	evation 8.42	2 ft.	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-21 Diameter: 8 in

Date: 07/25/2013

Northing: 431835.20

Easting: 861616.10

Elevation: 9.25

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Datum: Unk	nown	Proj	ect No:	Field Book No: 1	
Depth 8		Blow PID	Mercury	Soil Description	Well Construction Diagram
Ft & & & & & & & & & & & & & & & & & & &	ID Co	ount (ppm)	(mg/m3) 0.000	Hand cleared to 5 ft. Installed with a stick up above ground surface. Limerock road base material, debris, gravel to 2 feet, then brown fine to medium sand and silt, dry.	
5 +				Mud rotary drilling, mud ph 7.	
10 +					
15 +					
20					

Page 2 of 3

Site: LCP Brunswick Boring No: SW-21 Diameter: 8 in

Date: 07/25/2013

Northing: 431835.20

Easting: 861616.10

Elevation: 9.25

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Project No: Field Book No: 1

Datum. Om	a lowi i		110,6	Ct INO.		I leid Book No. I	
Depth S	Sample		PID (ppm)	Mercury (mg/m3)		Soil Description	Well Construction Diagram
25 —	Sample	Blow Count	PID (ppm)	Mercury (mg/m3)	Code	Soil Description Mud rotary drilling, mud ph 7.	Construction Diagram
35 +							

Page 3 of 3

Site: LCP Brunswick Boring No: SW-21 Diameter: 8 in

Date: 07/25/2013

Northing: 431835.20

Easting: 861616.10

Elevation: 9.25

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Project No: Field Book No: 1

Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			6	0.0	0.000	sw	Gray medium to coarse SAND, trace gravel, wet.	
1 +		1	9	1		-	Gray medium to coarse SAND, trace gravel, wet.	
1		1	12 12	0.0	0.000	sw	Stay moduli to coalist of 215, 2255 g.2.5, 1151	
†		1	8		0.000	CVA	Gray medium to coarse SAND, trace gravel, wet.	
		1	10	0.0	0.000	SW		
		1	10	0.0	0.000	SM	Gray fine to medium SAND, trace clay.	
1 +		1	12	1		-	Gray fine to medium SAND, trace silt, wet.	
1		'	5	0.0	0.000	SM	Gray life to modulin Gray, accessit, wor.	
45 +		1	7	1			Gray fine to medium SAND, trace silt, wet.	-
			13	0.0	0.000	SM		
105		1	50	0.0	0.000	SM	SAND as above to 46.2 feet, then tan cemented sandstone.	1
46.5 			V	Vell set at 46	6 ft. around ele	evation 8.58	3 ft.	-

Page 1 of 3

Site: LCP Brunswick Boring No: SW-22

Diameter: 8 in Date: 07/27/2013

Total Depth: 50.25 Ft

GW Depth: 0.0 Ft

Northing: 431915.78

Driller: Jeff Zeigler (Groundwater Protection Inc)

Easting: 861615.57

Method: Mud Rotary

Elevation: 8.95

Consultant: S. Dillman (PARSONS)

Datum: Unknown

Project No: Field Book No: 2

Datum: Unk	nown	Proje	ct No:	Field Book No: 2	
Depth So	Sample Blo		Mercury (mg/m3)	Soil Description	Well Construction Diagram
5 -		0.0	0.000	Hand cleared to 5 ft. Installed with a stick up above ground surface, pH is 7.5.	
15 +		0.0	0.000	pH is 7.0.	

Page 2 of 3

Site: LCP Brunswick Boring No: SW-22

Diameter: 8 in Date: 07/27/2013

Northing: 431915.78

Easting: 861615.57

Elevation: 8.95

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Driller: Jeff Zeigler (Groundwater Protection Inc)

Total Depth: 50.25 Ft

GW Depth: 0.0 Ft

Datum: Unk	nown		Proje	ct No:		Field Book No: 2	
Depth 8	Sample	Blow	PID	Mercury		Call Description	Well Construction Diagram
	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
20						Drilled to 40 ft with mud rotary. No sampling to 40 ft. pH is 7.5	
30 +			0.0	0.000			
35 +							

Page 3 of 3

Method: Mud Rotary

Site: LCP Brunswick Boring No: SW-22 Diameter: 8 in

Date: 07/27/2013

Northing: 431915.78 Easting: 861615.57

ing: 431915.78 Driller: Jeff Zeigler (Groundwater Protection Inc)

Elevation: 8.95

Consultant: S. Dillman (PARSONS)

Datum: Unknown

Project No: Field Book No: 2

Dataii	•				011101		1 101d B00K 1101 Z	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re B	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			7	0.0	0.000		Light gray coarse SAND, 1/4 inch silty clay layers, wet upper 6 inches. Bottom 6 inches, gray medium coarse SAND, little fi	ine
			14			SM	sand and silt, wet, no stain or sheen. pH is 7.0 to 7.5.	
Ī			11			SIVI		
		1	10					
l Ť			7	0.0	0.000		Same as above, lense of gray clay, little silt, swampy odor.	
			8					
†			12			SM		
		1	11					
1 †			8	0.0	0.000		Gray medium to coarse SAND over fine to medium SAND, ov	er gray
			9				brown silt, fine sand, trace shells broken, wet.	
45 十			11			SP		
			18					
1 †			8	0.0	0.000		Brown gray fine to medium SAND, little shells broken, trace	
			8	0.0	0.000		clay, wet.	
+			21			SM		
		1						
l +			31	0.0	0.000	SM	Gray fine to medium SAND, trace shells, wet.	
			21	0.0	0.000	SM	Gray brown fine to medium SAND, little shells, trace clay,	
+			22	0.0	0.000	SM	wet Gray brown fine to medium SAND, little shells, trace clay,	
							wet. Gray brown fine to medium SAND, little shells, trace clay,	
50 +			50/3	0.0	0.000	SM SM	with little mudstone clasts, wet. I Sandstone with mudstone clasts in upper, very dense, refusal	
50.2 5			00/0	0.0	0.000	<u> </u>	TOSTIGOTORIE WITH THURSTOFFE GISSON HIT UPPER, VETY GETISE, TERUSAL	<u></u>
4								

Page 1 of 3

Site: LCP Brunswick Boring No: SW-23

Diameter: 8 in Date: 07/29/2013

Northing: 431994.55

Elevation: 8.94

Driller: Jeff Zeigler (Groundwater Protection Inc)

Easting: 861615.07 Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Datum: Unknown

Total Depth: 50.0 Ft GW Depth: 0.0 Ft

Datum: Unk	nown		Proje	ct No:	Field Book No: 2	
Depth So	Sample	Blow Count	PID (ppm)	Mercury (mg/m3)	Soil Description	Well Construction Diagram
5 -			0.0	0.000	Hand cleared to 5 ft. Installed with a stick up above ground surface. pH is 7.	
10 			2.0	0.000	Volatile organic compounds from rig exhaust. Mud rotary drilling to 40 ft. No sampling to 40 ft. pH is 7.	

Page 2 of 3

Site: LCP Brunswick Boring No: SW-23

Diameter: 8 in Date: 07/29/2013

Driller: Jeff Zeigler (Groundwater Protection Inc)

Northing: 431994.55

Easting: 861615.07

Elevation: 8.94

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Total Depth: 50.0 Ft

GW Depth: 0.0 Ft

Datum: Unk	nown		Proje	ct No:	Field Book No: 2	
Depth So	Sample	Blow Count	PID (ppm)	Mercury (mg/m3)	Soil Description	Well Construction Diagram
25 —					Volatile organic compounds from rig exhaust. Mud rotary drilling to 40 ft. No sampling to 40 ft. pH is 7.	
30 —			2.0	0.000		
35 +						

Page 3 of 3

Site: LCP Brunswick Boring No: SW-23

Total Depth: 50.0 Ft

GW Depth: 0.0 Ft

Diameter: 8 in Date: 07/29/2013

Northing: 431994.55

Easting: 861615.07

Elevation: 8.94

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Donth	,	Sample	Blow	PID	Morouny	USCS		Well
Depth	Recov	Sample			Mercury		Soil Description	Construction Diagram
Ft	<u> ~</u>	ID	Count	(ppm)	(mg/m3)	Code	·	Diagram
40			8	0.0	0.000		Gray medium to coarse SAND, little fine sand, wet. pH is 7.	
			12			SM		
l		1	11			Sivi		
		1	13					
l Ť			7	0.0	0.000		Gray medium to coarse SAND, thin lense of fine sand and silt, little clay, wet.	
			8			CM	illue day, wet.	_
1 1			10	1		SM		_
		1	12	1				
1 1			8	0.0	0.000		Gray medium to coarse SAND, bottom 3 inches fine to medium	
			7			014	sand, darker gray, wet.	
45	_		6			SM		
		1	7					
l †			6	0.0	0.000		Same as above, darker gray SAND, bottom 8 inches gray fine	
			8			014	SAND and SILT, clay lenses 1/4 inch, trace shells bottom 3 inches.	
1 †			12			SM		
			11					
1 †		1	12	0.0	0.000		Fine SAND, little silt, trace shells, soft, wet. Bottom inch	
			17	0.0	0.000		top of rock, sandstone lighter gray, cemented.	
1 †			10	0.0	0.000	SM		
			50/5	0.0	0.000			
50.0							<u> </u>	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-24

Diameter: 8 in

Date: 08/10/2013 - 08/11/2013

Total Depth: 50.5 Ft

GW Depth: 0.0 Ft

Northing: 431398.89

Easting: 861681.89

Elevation: 9.75

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

	_							
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
0							Hand cleared to 5 ft. Installed with a stick up above ground surface. 0 ft to 4 ft road GRAVEL, railroad ballast, black sand, 4 ft to 5 ft Brown fine to medium SAND, trace silt.	
						GP/SM		
5 +							Brown gray drilling mud, pH 7.	
10 +								
- - -				19.6	0			
15 +								

Page 2 of 3

Site: LCP Brunswick Boring No: SW-24

Diameter: 8 in

Date: 08/10/2013 - 08/11/2013

Northing: 431398.89

Easting: 861681.89

Elevation: 9.75

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Driller: Jared Link (Groundwater Protection Inc)

Datum	: Unk				ct No:		Field Book No:	
Depth	ò	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Recov	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
20							Brown gray drilling mud, pH 7.	
+								
†								
<u> </u>								
†								
25 +								
23								
+								
+								
Ī								
30 +				19.6	0			
1								
+								
Ť								
ļ								
35 +								
ļ								
†								
ļ								
†								
40 _								
+∪								

Page 3 of 3

Site: LCP Brunswick Boring No: SW-24

Diameter: 8 in

Date: 08/10/2013 - 08/11/2013

Total Depth: 50.5 Ft

GW Depth: 0.0 Ft

Northing: 431398.89

Easting: 861681.89

Elevation: 9.75

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Dept	h 800	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	۵	Z ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			7	0	0	SM	Gray fine to coarse SAND, trace silt.	
-	-		11			014	41 ft to 41 ft 4 in Gray fine to coarse SAND, trace silt, 41	
_	-		18			SM	ft 4 in to 42 ft Gray fine to medium SAND, some silt.	
			12 16	0	0	SM	Gray fine to coarse SAND, trace silt.	
-	-		16			SM	Gray fine to coarse SAND, trace silt.	
-	-		19 9			Oivi	Gray fine to medium SAND, trace silt.	
			9	0	0	SM		
45 -			13			SM	45 ft to 45 ft 8 in Gray fine to medium SAND, little silt, 45 ft 8 in to 46 ft Gray CLAY and silt, little sand.	
-			16 12				Gray fine to medium SAND, trace silt.	
	_		14	0	0	SM		
			22 19			sc	47 ft to 47 ft 4 in Gray fine to medium SAND, trace silt, 47 ft 4 in to 47 ft 10 in Gray CLAY, stiff, 47 ft 10 in to 48 ft Gray	
-			5	0	0	SM	fine to coarse SAND, trace silt. Gray fine to medium SAND, little silt.	
-	-		7	"		SIVI	49 ft to 49 ft 6 in Gray fine to medium SAND, little silt, 49	
			9 15			SM	ft 6 in to 50 ft Gray fine to coarse SAND, trace silt.	
50 -			50			SM/R	Gray fine to coarse SAND, trace silt, cemented sandstone in tip of spoon.	
50.6			V	Vell Set at 50	0.5 ft. While o	ver drilling	the initial pilot hole, a void (likely pipe	

Well Set at 50.5 ft. While over drilling the initial pilot hole, a void (likely pipe or tank) was encountered by the 8 in. bit and drained the neck of the mud tub down to 7 ft. bgs. The rig was moved 5 ft. W to avoid the void.

Page 1 of 3

Site: LCP Brunswick Boring No: SW-25

Diameter: 9 in

Date: 08/07/2013 - 08/08/2013

Northing: 431475.35

Easting: 861685.55

Elevation: 9.85

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

roject No: Field Book No:

Total Depth: 51.0 Ft

Datum: Unk	nown		Proje	ct No:		Field Book No:	
Depth S	Sample	Blow Count	PID (ppm)	Mercury (mg/m3)		Soil Description	Well Construction Diagram
0 -			(PP)	(g)	SM	Hand cleared to 5 ft. Installed with a stick up above ground surface. Gray brown fine to medium SAND, trace silt, 2 in layer of organic top soil.	
5 +						Brown gray drilling mud, pH 7.	
10 —							
15 —			0	0			
20	Ll			Ll			

Page 2 of 3

Site: LCP Brunswick Boring No: SW-25

Diameter: 9 in

Date: 08/07/2013 - 08/08/2013

Northing: 431475.35

Easting: 861685.55

Elevation: 9.85

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Page 3 of 3

Site: LCP Brunswick Boring No: SW-25

Diameter: 9 in

Date: 08/07/2013 - 08/08/2013

Northing: 431475.35

Easting: 861685.55

Elevation: 9.85

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

	•							
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Construction Diagram
40			11 12	0	0	SM	Gray fine to coarse SAND, trace silt.	
		,	12 13			SM	Gray fine to coarse SAND, trace silt.	
+			10	0	0	SM	Gray fine to coarse SAND, trace silt.	
			16			SM	Gray fine to coarse SAND, trace silt.	
			11	0	0	SM	Gray fine to medium SAND, little silt.	
45 —			17 17			SM	Gray fine to medium SAND, little silt.	
+			7	0	0	SM	Gray fine to medium SAND, trace silt.	
			9			sc	Gray fine to medium SAND, some silt and clay.	
			4 6	0	0	SM	Gray fine to medium SAND, little silt.	
			8 12			SM	Gray fine to medium SAND, little silt.	
50 —			7 45	0	0	SM/R	Gray fine to coarse SAND, little silt, 2 in of weakly cemented sandstone in tip of spoon.	
51.0			V	Vell Set at 5	1 ft.			

Page 1 of 3

Site: LCP Brunswick Boring No: SW-26

Diameter: 8 in Date: 07/23/2013

Northing: 431557.34

Elevation: 10.65

Driller: Jeff Zeigler (Groundwater Protection Inc)

Easting: 861686.52 Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Total Depth: 52.5 Ft

GW Depth: 0.0 Ft

Datum: Unk	nown		Project No:			Field Book No:	
Depth So	Sample ID	Blow Count	PID (ppm)	Mercury (mg/m3)		Soil Description	Well Construction Diagram
0 -			0.0	0.000		Hand cleared to 5 ft. Installed with a stick up above ground surface. Brown fine to medium SAND, dry.	
5 +						Mud rotary drilling, mud ph 7.	
10 +							
15 —							
20	L			L l		L	

Page 2 of 3

Site: LCP Brunswick Boring No: SW-26

Diameter: 8 in Date: 07/23/2013

Northing: 431557.34

Elevation: 10.65

Driller: Jeff Zeigler (Groundwater Protection Inc)

Easting: 861686.52 Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Datum:	Unk	nown		Proje	ct No:		Field Book No:	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
20							Mud rotary drilling, mud ph 7.	
25 +								
† †								
_								
+								
30 +								
+								
35 +								
+								
│ ₄₀								

Page 3 of 3

Site: LCP Brunswick Boring No: SW-26

Diameter: 8 in Date: 07/23/2013

Northing: 431557.34

Easting: 861686.52

Elevation: 10.65

40.05

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Project No: Field Book No:

Depth	Ţ §	Sample	Blow	 PID	Mercury	USCS		Well
- Ft	Recov	ID .	Count	(ppm)	(mg/m3)	Code	Soil Description	Construction Diagram
40			9		, , ,	SM	Gray fine to medium SAND, trace silt, wet.	
			11			SIVI		
T]	8			SM	Gray fine to medium SAND, trace silt, wet.	
1]	11			Olvi		
			4			CL/SW	Gray CLAY to 42.5 feet, then gray medium to coarse SAND, wet.	
1			11					
			9			sw	Gray medium to coarse SAND, wet.	
 			3					
		,	7					
45 +	$ \angle $	<u></u>	5					
	$ \angle $,	6					
1			8				Gray medium to coarse SAND.	- IIII
			10	0.0	0.000	sw	Gray medium to coarse SAND.	
			4				Gray CLAY, soft to 47.4 feet then gray SAND, some clay.	-
			5 5	0.0	0.000	CL/SC	oray ob tr, conta 17 11 lost alon gray of a b, como day.	
+			1				Gray CLAY and shells, very soft.	
			2	0.0	0.000	CL		
+		1	2				Gray fine to medium SAND, little silt.	
		1	3	0.0	0.000	SM		
50 +			3	0.0	0.000	SM	Gray fine to medium SAND, little to some silt, trace shell	
			5	0.0	0.000	<u> </u>	fragments, trace gravel. No Recovery in split spoon.	1
†			1	0.0	0.000	SM	Gray fine to coarse SAND, trace silt, trace gravel, wet.	1
			1	0.0	0.000	SM	Gray fine to coarse SAND, trace silt, trace gravel, wet.	1
†			50/1	0.0	0.000	SM	Partially lithified fine to coarse SAND, trace gravel,	1
52.5			S	et well at 52	ft, ground el	evation 10.	I trace silt, dry. 10 ft.	_

Page 1 of 3

Site: LCP Brunswick Boring No: SW-27

Diameter: 8 in

Date: 07/22/2013 - 07/23/2013

Northing: 431635.01

Easting: 861685.01

Elevation: 10.57

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Datum:	Unk	nown			ct No:	. , ,	Field Book No: 1	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re	ID	Count	(ppm)	(mg/m3)		Soil Description	Diagram
0				0.0	0.000	SM	Hand cleared to 5 ft. Installed with a stick up above ground surface. Brown fine to medium SAND, little silt, dry.	
5 +							Mud rotary drilling, mud pH 7-8.	
-								
10 +								
15 —								
20		L		L	Ll		L	

Page 2 of 3

Site: LCP Brunswick Boring No: SW-27

Diameter: 8 in

Date: 07/22/2013 - 07/23/2013

Northing: 431635.01

Easting: 861685.01

Elevation: 10.57

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Project No: Field Book No: 1

Datum: On	CHOWH		Projec	CLINO.		FIEID BOOK NO. 1	
Depth ලි	Sample	Blow	PID	Mercury		Soil Description	Well Construction Diagram
	ID	Count	(ppm)	(mg/m3)	Code	Mud rotary drilling, mud pH 7-8.	Blagiani
20 - - -						Muu rotary uriiling, muu pri 7-6.	
25 +							
30 +		4 8 11	0.0	0.000	sw	Gray coarse to very coarse SAND, trace gravel, wet. Black very fine to fine SAND, trace silt, wet.	
+		11 9 10	0.0 0.0	0.000	SM	Gray coarse to very coarse SAND, trace gravel.	_
+		12 14	0.0	0.000	SM	Black fine to medium SAND, trace silt.	
		10 10	0.0	0.000	SW	Gray very coarse to coarse SAND, trace gravel, wet.	
35 +		12 13	0.0	0.000	SM	Gray very fine to medium SAND, wet.	
		16 14	0.0	0.000	SW	Gray very coarse SAND, trace silt, wet. Gray fine SAND, wet.	
+		14 15	0.0	0.000	SM	Gray fine SAND, wet.	
		14 14	0.0	0.000	SM	Gray fine SAND, little black clay, laminated.	
	1	11 12	0.0	0.000	sc	S. ay iino or tro, itao siaok day, lamiliated.	

Page 3 of 3

Site: LCP Brunswick Boring No: SW-27

Diameter: 8 in

Date: 07/22/2013 - 07/23/2013

Northing: 431635.01

Easting: 861685.01

Elevation: 10.57

40.57

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Project No: Field Book No: 1

Donth	T ≥	Sample	Blow	PID	Moroury	USCS	T	Well
Depth	Recov	Sample			Mercury		Soil Description	Construction Diagram
Ft	Ř	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			8	0.0	0.000	sc	Gray coarse SAND, with 3 inch clay lense, wet.	
			7	0.0	0.000			
			10	0.0	0.000	SM	Gray fine to coarse SAND, wet.	
			14	0.0	0.000			
			4	0.0	0.000	SM	Gray fine to coarse SAND, wet.	
			4	0.0	0.000			
			4	0.0	0.000	sw	Gray medium to coarse SAND, wet.	
			7	0.0	0.000			
			10	0.0	0.000	sw	Gray coarse to very coarse SAND, wet.	
45 +			10	0.0	0.000			
"			7	0.0	0.000	SP	Black very coarse SAND, trace silt.	
<u> </u>			10					<u> </u>
			9	0.3	0.000	SW	Gray coarse to very coarse SAND.	
			9				DI LG (B OAND (B)	<u> </u>
			15	0.3	0.000	SM	Black fine to medium SAND, trace silt, wet.	
			24				CAND and any of	
			5	0.0	0.000	SW	Gray coarse to very coarse SAND and gravel, wet.	
1			8				Black fine to medium SAND, little silt.	
			9	0.0	0.000	SM	black line to medium SAND, little slit.	
50 +			13				Gray fine to medium SAND, little silt, wet.	
			9	0.0	0.000	SM		
			4	0.0	0.000		No Recovery in split spoon.	
			5	0.0	0.000	SM	Gray fine to medium SAND, trace clay.	
			22	0.0	0.000	CL	Clay lenses and shell fragments, dry to moist.	
52.5			40	0.0	0.000	SW	Gray coarse SAND and gravel.	
1			W	vell set at 51	l.5 ft, gound e	elevation 9.8	33 π.	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-28

Diameter: 8 in

Date: 07/22/2013 - 07/23/2013

Total Depth: 52.5 Ft

GW Depth: 0.0 Ft

Northing: 431715.38

Easting: 861685.72

Elevation: 10.27

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Datum: Unk	nown		Proje	ct No:		Field Book No:	
Depth S	Sample	Blow Count	PID (ppm)	Mercury (mg/m3)		Soil Description	Well Construction Diagram
0 -		Osunk	(PP)	(iiig,iiio)	SM	Hand cleared to 5 ft. Installed with a stick up above ground surface. Brown medium to coarse SAND, trace silt.	
5 +						Brown drilling MUD, pH 7 to 8.	
10 —							
15 —							
20	L					L	

Page 2 of 3

Site: LCP Brunswick Boring No: SW-28

Diameter: 8 in

Date: 07/22/2013 - 07/23/2013

Total Depth: 52.5 Ft

GW Depth: 0.0 Ft

Northing: 431715.38

Easting: 861685.72

Elevation: 10.27

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Depth 3	Sample	Blow	PID	Mercury		Oall Danawinston	Well Construction Diagram
	Ž ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
20						Brown drilling MUD, pH 7 to 8.	
25 +							
30 +		7 7 7	0	0	SM	Brown fine to medium SAND, some silt. Gray fine to coarse SAND, little silt, pH 7.	
		9			SM		
		5 7	0	0	SM	Gray fine to coarse SAND, little silt.	
		6			SM	Gray fine to coarse SAND, little silt.	
, I		9	0.0	0	SM	Gray fine to medium SAND, trace silt.	
35 —		13 14			SM	Gray fine to medium SAND, some silt.	
		7	0.0	0	SM	Gray fine to medium SAND, trace silt.	
		7 6			SM	Brown fine SAND, trace silt.	
		6 12	0	0		38 ft to 38 ft 6 in Brown fine SAND, trace silt, 38 ft 6 in to 38 ft 9 in Gray CLAY, some sand, 38 ft 9 in to 40 ft Gray fine to coarse SAND, trace silt.	
40 1		7 6			SM	Gray fine to coarse SAND, trace silt.	

Page 3 of 3

Site: LCP Brunswick Boring No: SW-28

Diameter: 8 in

Date: 07/22/2013 - 07/23/2013

Northing: 431715.38

Easting: 861685.72

Elevation: 10.27

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No: GW Depth: 0.0 Ft

Total Depth: 52.5 Ft

Depth	<u>></u>	Sample	Blow	PID	Mercury	USCS	I	Well
-	Recov				1 1		Soil Description	Construction Diagram
Ft	<u> </u>	ID	Count	(ppm)	(mg/m3)	Code	•	Diagram
40			15	0	0	SM	Gray medium to coarse SAND, trace silt.	
]			12				CAND WILL W	
			14			SM	Gray fine to coarse SAND, little silt.	
l			15				C "	
			14	0		SM	Gray medium to coarse SAND, trace silt, occasionally 1/2 inch beds medium to coarse sand, little silt.	
<u> </u>			12				Committee of the control of the cont	
			14			SM	Gray medium to coarse SAND, trace silt, occasionally 1/2 inch beds medium to coarse sand, little silt.	
<u> </u>			15				· ·	
			5	0		SM	Gray medium to coarse SAND, trace silt.	
45 🕂			6					
~~ '			6			sc	45 ft to 45 ft 3 in Gray CLAY stiff, 45 ft 3 in to 46 ft fine to medium SAND, little silt.	
<u> </u>			5					
			5	0	0	SM	Gray brown fine to coarse SAND, trace silt.	
<u> </u>			6					<u> </u>
			7			SM	Gray brown fine to coarse SAND, trace silt.	
<u> </u>			33			<u> </u>		
			18			SM	Gray fine to medium SAND, little silt, 1/4 inch white shell layers.	
<u> </u>			24			<u> </u>		
			25			SM	Gray fine to medium SAND, little silt, 1/4 inch white shell layers.	
50 $+$			18			0.0.		
50			16			SM	Gray fine to medium SAND, little silt, 1/4 inch white shell layers.	
<u> </u>			27			Civi	•	
]	16			SM	51 ft to 51 ft 6 in no recovery, 51 ft 6 in to 52 ft Gray fine to medium SAND, some silt, 1/4 inch white shell layers.	
			13			Sivi	,	
_{50.5} _			50			SM/R	52 ft to 52 ft 4 in Gray fine to medium SAND, some silt, 1/4	
52.5 \			W	Vell Set at 5°	1.5 ft.		mon white enemy, so it o in reduced.	_

Page 1 of 3

Site: LCP Brunswick Boring No: SW-29

Diameter: 8 in Date: 07/24/2013

Northing: 431794.84

Easting: 861685.51

Elevation: 10.02

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 52.75 Ft

GW Depth: 0.0 Ft

Datum: Unknown **Project No:** Field Book No: Well Construction Diagram Mercury **USCS** Depth Sample **Blow** PID Soil Description Ft ID Count (mg/m3) Code (ppm) Hand cleared to 5 ft. Installed with a stick up above ground surface. Brown medium to coarse SAND, trace silt. SM 5 Brown drilling MUD, pH 7 to 8. 10 15 20

Page 2 of 3

Site: LCP Brunswick Boring No: SW-29

Diameter: 8 in Date: 07/24/2013

Northing: 431794.84

Easting: 861685.51

Elevation: 10.02

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Datum. Onknown			1 10,6	CL INO.	Tield Book No.			
Depth	Recov	Sample		PID	Mercury		Soil Description	Well Construction Diagram
Ft	<u>~</u>	ID	Count	(ppm)	(mg/m3)	Code		Diagram
20							Brown drilling MUD, pH 7 to 8.	
25 —								
30 —								
35 —								
40								

Page 3 of 3

Site: LCP Brunswick Boring No: SW-29

Diameter: 8 in Date: 07/24/2013

Total Depth: 52.75 Ft

GW Depth: 0.0 Ft

Northing: 431794.84

Easting: 861685.51

Elevation: 10.02

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Eleva	ation	: 10.02		Cons	sultant: Da	vid Chan	ga-Moon (Mutch Associates)		
Datu	Datum: Unknown			Proje	ct No:		Field Book No:		
Dept	h	Sample ID	Blow	PID	Mercury	USCS		l Const	/ell ruction
Ft		& ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Dia	gram
40			12	0	0	SM	Brown medium to coarse SAND, trace silt.		
			15						
			22			SM	Brown medium to coarse SAND, trace silt.		
			23			O.V.			
			11	0	0	SM	Brown medium to coarse SAND, trace silt.		
			15			Olvi			
			16			SM	43 ft to 43 ft 3 in Gray CLAY dense, 43 ft 3 in to 44 ft Gray medium to coarse SAND, trace silt, pH 10.		
			18			SIVI	inedian to coarse SAND, trace sitt, pri 10.		
	-		10	0.0	0	SM	Gray medium to coarse SAND, trace silt, trace gravel, pH 10.		
			12	0.0		SIVI			
45 -			13			SM	Gray medium to coarse SAND, trace silt, trace gravel, pH 10.		
		7	20			Sivi			
			5	0.0	0	SM	Gray fine to medium SAND, trace silt.		
			6	0.0		SIVI			
			11			SM	Gray fine to medium SAND, trace silt.		
			13			5			
			8			00/014	48 ft to 48 ft 6 in Gray fine to medium SAND, trace silt, clay		
			12			SC/SM	lenses, 48 ft 6 in to 49 ft Gray fine to medium SAND, trace silt.		
			15			CM	Gray fine to medium SAND, trace silt.		
			16			SM			
50			1				Gray fine to medium SAND, trace silt, thin clay lenses.		
			1			SC			
							1		

SM

SM/R

Gray fine to medium SAND, trace silt.

52 ft to 52 ft 6 in Gray fine to medium SAND, little silt, trace

SAND, little slit, weakly cemented sandstone, refusal.

white shell fragments, 52 ft 6 in to 52 ft 9 in Gray fine to medium

Well Set at 52 ft.

7

16

35

50

Page 1 of 3

Site: LCP Brunswick Boring No: SW-30

Diameter: 8 in Date: 07/25/2013

Northing: 431874.71

Easting: 861685.50

Elevation: 9.57

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 52.33 Ft

GW Depth: 0.0 Ft

Datum:	Unk			Proje			Field Book No:	
Depth		Sample	Blow	PID	Mercury	USCS		Well
Ft	Recov	ID	Count	(ppm)	(mg/m3)		Soil Description	Well Construction Diagram
0 -				(PP)	(iiigiiiio)		Hand cleared to 5 ft. Installed with a stick up above ground surface. 0 ft to 2 ft Brown TOP SOIL organic, little gravel, 2 ft to 4 ft ASPHALT, little coarse gravel, 4 steel flanges, 4 ft to 5 ft Gray SAND.	
5								
5 +							Brown drilling MUD, pH 7.	
10 +				0.5				
15								
20 —		L l					L	'

Page 2 of 3

Site: LCP Brunswick Boring No: SW-30

Diameter: 8 in Date: 07/25/2013

Northing: 431874.71

Easting: 861685.50

Elevation: 9.57

Liovation. 0.07

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 52.33 Ft

GW Depth: 0.0 Ft

Datum:		nown		Proje	ct No:		Field Book No:	
Depth	I X I I		PID	Mercury	USCS		Well Construction Diagram	
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
20							Brown drilling MUD, pH 7.	
25 —								
30 —				0.5				
35 +								

Page 3 of 3

Site: LCP Brunswick Boring No: SW-30

Diameter: 8 in Date: 07/25/2013

Northing: 431874.71

Easting: 861685.50

Elevation: 9.57

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Datum	: Unk	nown		Proje	Ct NO:		FIEID BOOK NO:	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			6	0	0	SM	Brown coarse SAND, trace silt.	
ļ <u>ļ</u>			12				Gray fine to medium SAND, trace silt.	
			16 18			SM	and the state of t	
†			6				42 ft 6 in to 43 ft Gray fine to medium SAND, trace silt.	
			11	0	0	SM		
†						CL/SC	43 ft to 43 ft 6 in Gray CLAY, stiff, 43 ft 6 in to 44 ft Gray fine to medium SAND, little silt and clay.	
_						CDSC	· ·	
			27	0	0	SM	Gray fine to medium SAND, trace silt, little white shell fragments.	
45 +			50				Note Due to refusal of spoon to layer white shells this was	
	\vdash						drilled through.	
†			11			_	Gray fine to medium SAND, trace silt, little white shell fragments.	
			17	0	0	SM		
†			27			SM	Gray fine to medium SAND, trace silt, little white shell fragments.	⊣
			50			Sivi		
			21	0	0	SM	Gray fine to medium SAND, trace silt, little white shell fragments.	
			34				Gray fine to medium SAND, trace silt, little white shell fragments.	
			41			SM	Gray fine to medium SAND, trace sit, little write shell fragments.	
50 +			50 13				Gray fine to medium SAND, trace silt, little white shell fragments.	
			19	0	0	SM		
†			16				Gray fine to medium SAND, trace silt, little white shell fragments.	
			20			SM		
52.3 3			50	0	0	SM/R	Black SANDSTONE weakly cemented, some Gray fine to medium	
32.00			W	ell Set at 52	2 ft.		sand, trace silt.	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-31 Diameter: 8 in

Date: 07/29/2013

Northing: 431954.74

Easting: 861684.83

Elevation: 9.27

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Depth Rt & Sample ID Count (ppm) (ppm) (mg/m3) Code Soil Description Diagram 0	Datum. Onk	Jatum. Onknown		i roject No.			Tield Dook 140. 2	
5 - 0.00 0.000	Depth 8						Soil Description	Well Construction Diagram
20 — — — —	0		Count				Hand cleared to 5 ft. Installed with a stick up above ground	

Page 2 of 3

Site: LCP Brunswick Boring No: SW-31 Diameter: 8 in

Date: 07/29/2013

Northing: 431954.74 Easting: 861684.83

Elevation: 9.27

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Page 3 of 3

Site: LCP Brunswick Boring No: SW-31 Diameter: 8 in

Total Depth: 48.8 Ft

GW Depth: 0.0 Ft

Date: 07/29/2013

Northing: 431954.74

Easting: 861684.83

Elevation: 9.27

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

0.000

SM

SM

0.0

50/4

Consultant: S. Dillman (PARSONS)

Project No: Field Book No. 2

Datui	m. On	KHOWH		Proje	CLINO.		FIEID BOOK NO. 2	
Dept	Recov	Sample	Blow	PID	Mercury	uscs		Well Construction
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40				0.0	0.000		Gray medium to coarse SAND, little fine sand, wet.	
 	. 🔚					SM		
†				0.0	0.000		Gray medium to coarse SAND, little fine sand, wet.	
						CM CM		
1						SM		
+	-						Gray medium to coarse SAND, little fine sand, wet.	
				0.0	0.000		Gray medium to coarse SAND, little line sand, wet.	
45	- 🔣					SM		
 				0.0	0.000		Gray medium to coarse SAND, little fine sand, wet with thin silty clay lenses at bottom of sample.	
 						SM	only day londes at bottom of sample.	
	1	1	I				1	I I —

Gray fine to medium SAND, trace coarse sand over gray fine

sand, trace shells, wet. Gray fine to medium SAND, trace coarse sand over gray fine

Page 1 of 3

Site: LCP Brunswick Boring No: SW-32

Diameter: 8 in Date: 07/26/2013

Northing: 432036.94

Easting: 861683.88

Elevation: 8.78

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Datu	Datum: Unknown				Proje	ct No:		Field Book No: 2	
Deptl	1 🔉 1			Blow	PID	Mercury	USCS		Well Construction Diagram
Ft		Rec		Count	(ppm)	(mg/m3)		Soil Description	Diagram
5 - 10		Re Re	ID .	Count	(ppm)	(mg/m3)		Drilled from 5 to 40 feet with mud rotary, no sampling. pH is 7.	
20	-								

Page 2 of 3

Site: LCP Brunswick Boring No: SW-32

Diameter: 8 in Date: 07/26/2013

Northing: 432036.94

Easting: 861683.88

Elevation: 8.78

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No. 2

Datum:	Unk	nown		Proje	ct No:		Field Book No: 2	
Depth	Recov	Sample		PID	Mercury		Soil Description	Well Construction Diagram
Ft	R	ID	Count	(ppm)	(mg/m3)	Code	Drilled from 5 to 40 feet with mud rotary, no sampling.	Diagram
20 -							pH is 7.	
+								
+								
+								
5 +								
†								
†								
†								
†								
+				0.0	0.00			
†								
†								
†								
†								
5 +								
†								
†								
†								
†								
ا ــــ ه				L	L l			

Page 3 of 3

Site: LCP Brunswick Boring No: SW-32

Diameter: 8 in Date: 07/26/2013

Total Depth: 49.5 Ft

GW Depth: 0.0 Ft

Northing: 432036.94

Easting: 861683.88

Elevation: 8.78

Datum: Unknown Project No:

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Field Book No: 2

Dataiii	. • • • • • • • • • • • • • • • • • • •	1101111		1	01110.		1 lold Book 110. 2	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			10	0.0	0.00		Light gray to gray coarse to medium SAND, little fine sand, little silt, wet, swampy odor, no stain or sheen.	
			9			SM	inde sit, wet, swampy odor, no stain or sneem.	
			9			Olvi		
			12					
			6	0.0	0.00		Same as above.	
			7			SM		
			7			0		
			6					
			4	0.0	0.000		Top 18 inches same as above, bottom 6 inches dark gray fine to medium SAND, some coarse sand, silty sand, trace clay in end	
45 +			6			SM	of sample, wet.	
45			7			O.		
			9					
			6	0.0	0.000		Gray medium to coarse SAND as above top 4 inches wet, over dark gray medium to coarse SAND, bottom 8 inches dark gray CLAY	
			6			ML	stiff, little silt, fine to medium sand lenses	
			8					
			13					
			5	0.0	0.00	SM	Brown fine to medium SAND, little shells fragments, wet.	
			3	0.0	0.00	SM	Brown fine to medium SAND, more shells, wet.	
49.5			50/5	0.0	0.00	SM	Brown fine to medium SAND, little shells, trace silt and clay,	
45.5								

Page 1 of 3

Site: LCP Brunswick Boring No: SW-33

Diameter: 8 in

Date: 08/08/2013 - 08/09/2013

Northing: 432115.61

Driller: Jeff Zeigler (Groundwater Protection Inc)

Easting: 861685.36 Method: Mud Rotary Elevation: 8.90

Consultant: S. Dillman (PARSONS)

Datum: Unknown Project No: Field Book No. 2

Datum: Unl	known		Proje	ct No:	Field Book No: 2	
Depth So	Sample	Blow Count		Mercury (mg/m3)	Soil Description	Well Construction Diagram
5 -	į		0.0	0.000	Hand cleared to 5 ft. Installed with a stick up above ground surface. pH is 7.	
15 —			U.U	0.000		

Page 2 of 3

Site: LCP Brunswick Boring No: SW-33

Diameter: 8 in

Date: 08/08/2013 - 08/09/2013

Northing: 432115.61

- 1: 004005.00

Elevation: 8.90

Easting: 861685.36 Me

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

	CITOWIT		1 10,6			i leid book ivo. 2	
Depth So	Sample ID	Blow Count		Mercury (mg/m3)		Soil Description	Well Construction Diagram
20	טו	Count	(ppm)	(mg/ma)	Code	pH is 7.5.	
25 —							
30 +			0.0	0.000			
+ - - - - - - - - -							
35 +							
+							

Page 3 of 3

Site: LCP Brunswick Boring No: SW-33

Diameter: 8 in

Date: 08/08/2013 - 08/09/2013

Northing: 432115.61

Easting: 861685.36

Elevation: 8.90

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

GW Depth: 0.0 Ft

Total Depth: 49.4 Ft

Depth	8	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Recov	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			8	0.0	0.000		Dark gray medium to coarse SAND, trace clay in thin lenses,	
		1 '	14	1		014	wet.	
l † r	_	1	13	1		SM		
		1	21	1		1		
1 † f		1 '	16	0.0	0.000		Medium gray medium SAND, trace clay in lenses, wet.	
I [<i>l</i> '	15	1		0.4		
1 † !		<i>l</i> '	18	1		SM		│
I [1	24	1		1		
1 1		<i>l</i> '	9	0.0	0.000		Sand as above over dark gray medium SAND, trace clay in lenses,	
1 [1 '	16	1	!	l cu	wet.	
45 +		1	19	1		SM		
		1	21	1		1		
1 † f		1 '	14	0.0	0.000		Medium gray fine to medium SAND 7 inches over darker gray	
		<i>l</i> '	16	1		0.4	fine to medium SAND, trace to little clay in lenses, bottom 2 inches stiff silt and clay, wet.	
1 † !		4 '	19	1		SM		
l [1	20	1		1		
1 † f		<i>l</i> '	5	0.0	0.000	SM	Gray fine SAND, wet.	
		<i>l</i> '	6	0.0	0.000	CL	Gray CLAY, trace to little silt, stiff, wet.	
49.4		<u> </u>	50/5	0.0	0.000	CL	Clay as above over weathered sandstone, wet.	j

Page 1 of 3

Site: LCP Brunswick Boring No: SW-34 Diameter: 8 in

Date: 08/12/2013

Total Depth: 50.8 Ft

GW Depth: 0.0 Ft

Northing: 432197.50

Easting: 861689.45

Elevation: 9.48

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Datum:	Unk	nown		Proje	ct No:		Field Book No: 2	
Depth	Recov	Sample			Mercury		Soil Description	Well Construction Diagram
Ft	<u> </u>	ID	Count	(ppm)	(mg/m3)	Code	Hand cleared to 5 ft. Installed with a stick up above ground	Biagrain
0							surface. pH is 7.	
+								
†								
†								
5								
+								
+								
†								
10								
10 +								
+								
+								
†								
15								
-								
+								
+								
†								
20								

Page 2 of 3

Site: LCP Brunswick Boring No: SW-34

Diameter: 8 in Date: 08/12/2013

Northing: 432197.50

Easting: 861689.45

Elevation: 9.48

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Datum:	Unk	nown		Proje	ct No:		Field Book No: 2	
Depth	Recov	Sample		PID (nnm)	Mercury		Soil Description	Well Construction Diagram
Ft 20	<u> </u>	ID	Count	(ppm)	(mg/m3)	Code	pH is 7.5.	
+								
†								
+								
5 +								
+								
†								
o								
~								
+								
+								
5 +								
†								
+								
								
ю — г								

Page 3 of 3

Site: LCP Brunswick Boring No: SW-34

Diameter: 8 in Date: 08/12/2013

Northing: 432197.50

Easting: 861689.45

Elevation: 9.48

Datum: Unknown

50 Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Total Depth: 50.8 Ft

GW Depth: 0.0 Ft

		1						Well
Depti	າ ອູ	Sample	Blow	PID	Mercury	USCS		Construction
Ft	Recov	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Construction Diagram
40			11	0.0	0.000		Tan and gray medium to coarse SAND, wet.	
			17			SM		
1 1			17			SIVI		
		1	19					
1 1			10	0.0	0.000		Tan medium SAND over 4 inches gray coarse medium SAND, we	
			13			014		
†			15			SM		
			18					
†			3	0.0	0.000		Greenish gray CLAY, semi stiff over 4 inches fine medium	
			3				sand, some clay.	
45	_		5			CL		
			7					
†			7	0.0	0.000		Clay as above 4 inches over fine to medium SAND, little clay	
			12				in lenses 4 inches over more clay, thin lenses of fine sand scattere	ed.
†			13			CL		
			12					
†			12	0.0	0.000		Fine medium SAND, trace shells, some clay upper 4 inches, wet.	
			15				Greenish gray clay with thin lenses of fine sand bottom 4 inches.	
†			12			SM		
			8					
50	_		11	0.0	0.000		Same as bottom of last sample, trace weathered sandstone in	
ا ہے ا			50/4	0.0	0.000		bettem. Gray weathered sandstone, trace quartz, pebbles, broken sandsto	ne.
50.8				-0.0	0.000			

Page 1 of 3

Site: LCP Brunswick Boring No: SW-35

Diameter: 8 in

Date: 08/09/2013 - 08/11/2013

Total Depth: 51.5 Ft

GW Depth: 0.0 Ft

Northing: 432274.82

Easting: 861685.16

Elevation: 9.00

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Datum:	Unk	nown		Proje	ct No:		Field Book No: 2	
Depth	Recov	Sample			Mercury		Soil Description	Well Construction Diagram
Ft	<u> </u>	ID	Count	(ppm)	(mg/m3)	Code	Hand cleared to 5 ft. Installed with a stick up above ground	Biagrain
0							surface. pH is 7.	
+								
†								
†								
5								
+								
+								
†								
10								
10 +								
+								
+								
†								
15								
-								
+								
+								
†								
20								

Page 2 of 3

Site: LCP Brunswick Boring No: SW-35

Diameter: 8 in

Date: 08/09/2013 - 08/11/2013

Northing: 432274.82

Easting: 861685.16

Elevation: 9.00

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Datum: Unknown Project No:

Total Depth: 51.5 Ft
GW Depth: 0.0 Ft

Project No: Field Book No: 2

Driller: Jeff Zeigler (Groundwater Protection Inc)

Datum:	OHK	IIOWII		Floje	ct No:		Field Book No: 2	
Depth	Recov	Sample			Mercury		Soil Description	Well Construction Diagram
Ft 20	<u> </u>	ID	Count	(ppm)	(mg/m3)	Code	pH is 7.	Biagram
20							F	
+								
+								
_								
25 +								
+								
11								
<u> </u>								
io +								
T I								
+								
+								
5 +								
+								
1								
+								
40 ^{— L}								

Page 3 of 3

Site: LCP Brunswick Boring No: SW-35

Diameter: 8 in

Date: 08/09/2013 - 08/11/2013

Northing: 432274.82

Easting: 861685.16

Elevation: 9.00

Datum: Unknown

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Driller: Jeff Zeigler (Groundwater Protection Inc)

Depth		Sample	Blow	PID	Mercury	USCS		Well
Ft	Recov	ID			_	Code	Soil Description	Construction Diagram
	<u> </u>	טו	Count	(ppm)	(mg/m3)	Code	·	
40			10	0.0	0.000		Medium gray medium to coarse SAND, trace clay in thin lenses scattered, wet.	, []
			15				Scattered, wet.	
†			20			SM		
	\vdash							
1			22					
			5	0.0	0.000		Tan medium to coarse SAND, wet.	
			6					
†			25			SM		
			11					
			8				Greenish gray CLAY, trace sand in thin lenses, semi stiff,	
			10				wet, bottom 4 inches fine medium sand, trace clay in thin lense.	•
45 十			14			CL		
1			12					
			5	0.0	0.000		Clay 7 inches over fine to medium SAND 10 inches, over gray	
			14				clay, trace sand in lenses 7 inches, semi stiff, wet.	
†			10			CL/SM		
			10					
│							Greenish gray CLAY, trace sand 3 inch lense, over more	
			5	0.0	0.000		clay, bottom 2 inches fine medium sand, trace shells, wet.	
			10			CL		
			11					
			10					
50 十			1				Weathered sandstone, hard.	
			1					
<u>_,</u> _			50/3					
51.5		-			-			

Page 1 of 3

Site: LCP Brunswick Boring No: SW-36

Diameter: 8 in Date: 08/10/2013

Northing: 431431.32

Easting: 861751.31

Elevation: 9.74

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Datum:	Unk	nown		Proje	ct No:		Field Book No:	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	%	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	
0 -						GP/SM	Hand cleared to 5 feet. Installed with a stick up above ground surface. 0 ft to 3 ft Road GRAVEL, railroad ballast, Black sand 3 ft to 5 ft Brown fine to medium SAND, trace silt.	
5							Drown grov drilling MLID, p.L. 7	
5							Brown gray drilling MUD, pH 7.	
10 +								
+								
†				0	0			
15 —								
20		L l		L	L	L	L	🔲 🔲

Page 2 of 3

Site: LCP Brunswick Boring No: SW-36

Diameter: 8 in Date: 08/10/2013

Northing: 431431.32

Easting: 861751.31

Elevation: 9.74

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Depth R 2 ID Count (ppm) (mg/m3) Code Soil Description Construction Diagram 20	Datum: Unknown	Project No:	Field Book No:	
20	Depth Sample Blow Ft D Count			Well Construction Diagram
	25 — 35 — 35 —			

Page 3 of 3

Blow

Count

5

8

11

15

11

12

11

11

15

13

12 16

3

9

13

13

11

10

13

20

50

PID

(ppm)

0

0

0

0

Site: LCP Brunswick Boring No: SW-36

Gray fine to coarse SAND, trace silt, occasional lens silt

Gray fine to coarse SAND, trace silt, occasional lens silt

Gray fine to medium SAND, some clayey silt, trace white shell

50 ft to 50 ft 6 in Gray fine to coarse SAND, little silt, cemented

SAND, trace silt.

ndstone in tip of spec

and clay.

and clay.

Diameter: 8 in Date: 08/10/2013

Northing: 431431.32

Easting: 861751.31

Elevation: 9.74

Depth

Ft

40

45

50.5

Datum: Unknown

Sample

ID

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Mercury

(mg/m3)

0

0

0

0

0

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

USCS

Code

SC

SM

SM

SM

SC

SC

SC

SC

SM/R

	GW [Depth: 0.0	Ft	
ga-Moon (Mutch Associates)				
Field Book No:				
Soil Description		We Constr Diag	uction	
Gray fine to coarse SAND, trace silt, two 1 inch layers of silty clay.				
Gray fine to coarse SAND, trace silt.				
Gray fine to coarse SAND, trace silt.				
Gray fine to coarse SAND, trace silt.				
No recovery, rock blocked front of spoon.				
No recovery, rock blocked front of spoon.				
46 ft to 46 ft 2 in Gray fine to medium SAND, 46 ft 2 in to 46 ft 8 in Gray silty CLAY, 46 ft 8 in to 47 ft Gray fine to coarse				

Total Depth: 50.5 Ft

Well Set at 49 ft.

Page 1 of 3

Site: LCP Brunswick Boring No: SW-37

Diameter: 8 in Date: 08/09/2013

Northing: 431514.59

Easting: 861752.65

Elevation: 10.05

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No: Total Depth: 51.25 Ft

GW Depth: 0.0 Ft

Datum: Unknown Well Construction Diagram Mercury **USCS** Depth Sample **Blow** PID Soil Description Ft ID Count (mg/m3) Code (ppm) Hand cleared to 5 ft. Installed with a stick up above ground surface. Gray brown fine to medium SAND, trace silt. SM 5 Brown gray drilling MUD, pH 7 to 8. 10 0 0 15 20

Page 2 of 3

Site: LCP Brunswick Boring No: SW-37 Diameter: 8 in

Date: 08/09/2013

Northing: 431514.59

Easting: 861752.65

Elevation: 10.05

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 51.25 Ft

Datum:	Unk	nown		Proje	ct No:		Field Book No:	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	<u>%</u>	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
20							Brown gray drilling MUD, pH 7 to 8.	
25 —								
30 -				0	0			
35 +								

Page 3 of 3

Site: LCP Brunswick Boring No: SW-37

Diameter: 8 in Date: 08/09/2013

Northing: 431514.59

Easting: 861752.65

Elevation: 10.05

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Total Depth: 51.25 Ft
GW Depth: 0.0 Ft

Depth	Ğ	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Recov	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			4	0	0	sc	Gray fine to coarse SAND, trace silt, occasional lens clay and silt.	
			5	-			Gray fine to coarse SAND, trace silt, occasional lens clay	
			8			SC	and silt.	
			8				Gray fine to coarse SAND, trace silt.	
			5 6	0	0	SM	Stay mile to source of u.e., u.e.	
+			9				Gray fine to coarse SAND, trace silt, 2 inch layer of silty	-
			12			SC	clay.	
†			6				Gray fine to coarse SAND, trace silt.	
			13	0	0	SM		
45 十			12			SM	Gray fine to coarse SAND, trace silt.	
			14			SIVI		
			8	0	0	SM	Gray fine to medium SAND, trace silt.	
			12	· ·		O		_
			9			SM	Gray fine to medium SAND, trace silt.	
+			11				Gray fine to medium SAND, trace silt.	
			5 5	0	0	SM	oray into to modulii o are, adde one	
+			11				Gray fine to medium SAND, trace silt.	
			15			SM		
50 +			5				50 ft to 50 ft 6 in Gray fine to medium SAND, trace silt, 50	
			5			SM	ft 6 in to 51 ft Gray, fine to coarse SAND, little silt.	
51.2 5			50	/ell Set at 5		SM/R	Gray fine to medium SAND, little silt, cemented sandstone in tip of spoon.	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-38

Diameter: 8 in Date: 08/10/2013

Northing: 431594.67

Easting: 861754.38

Elevation: 10.26

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 51.5 Ft GW Depth: 0.0 Ft

Depth Rt S ID Count (ppm) Mercury (uscs Soil Description Construction Diagram Well Construction Diagram SM Solid Description Construction Diagram Brown gray drilling MUD, pH 7.	Datum:	Datum: Unknown		Proje	ct No:		Field Book No:		
SM SM strategied with a stick up above ground aurface. Gray brown fine to medium SAND, trace allt. SM Brown gray drilling MUD, pH 7.	Depth	8	Sample	Blow	PID	Mercury	USCS		Well Construction
SM Brown gray drilling MUD, pH 7.		Re	ID	Count	(ppm)	(mg/m3)	Code		Diagram
	-						SM	Hand cleared to 5 ft. Installed with a stick up above ground surface. Gray brown fine to medium SAND, trace silt.	
	5 +							Brown gray drilling MUD, pH 7.	
	†								
	†								
	†								
	+								
	10 +								
	+								
	†								
15 —	+				0	0			
	ļ								
	15								
	Ī								
	†								
	†								
20	20		L		L	Ll	L	L	

Page 2 of 3

Site: LCP Brunswick Boring No: SW-38

Diameter: 8 in Date: 08/10/2013

Northing: 431594.67

Easting: 861754.38

Elevation: 10.26

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 51.5 Ft GW Depth: 0.0 Ft

Datum:	Unk	nown		Proje	ct No:		Field Book No:	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
20							Brown gray drilling MUD, pH 7.	
l +								
1 1								
l								
l †								
25 +								
l †								
l								
1 1								
l +								
				0	0			
30 +				0				
l +								
1 +								
35 +								
1 +								
+								
40								
'								

Page 3 of 3

Site: LCP Brunswick Boring No: SW-38

Total Depth: 51.5 Ft

GW Depth: 0.0 Ft

Diameter: 8 in Date: 08/10/2013

Northing: 431594.67

Easting: 861754.38

Datum: Unknown

Elevation: 10.26

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

				_				
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Construction Diagram
40			11	0	0	SM	Gray fine to coarse SAND, trace silt.	
			15				0.5.4	_
			17			SM	Gray fine to coarse SAND, trace silt.	
↓			17				Gray fine to coarse SAND, trace silt.	
			9	0	0	SM	Gray line to coarse SAND, trace sit.	_
↓			11				Considera to coope CAND troop sit	
			14			SM	Gray fine to coarse SAND, trace silt.	
			16			-	0.000	
			9	0	0	SM	Gray fine to coarse SAND, trace silt.	
45 🕂			13				Court of the court	
"			26			SM	Gray fine to coarse SAND, trace silt.	
			22				O. C. L. C. C. CAND L. C. C.	_
			7	0	0	SM	Gray fine to medium SAND, trace silt.	<u> </u>
			7				0.5.4.1.04319.4.111	
			9			SM	Gray fine to medium SAND, trace silt.	
↓			13					
			9	0	0	SM	Gray fine to medium SAND, trace silt.	
↓			12	J				
			16			SM	Gray fine to medium SAND, trace silt.	
50 \perp			18			Oivi		
50			7			SM	50 ft to 50 ft 6 in Gray fine to medium SAND, trace silt, 50 ft 6 in to 51 ft Gray, fine to coarse SAND, little silt.	
			7			Oivi		
			50			SM/R	Gray fine to medium SAND, some silt, cemented sandstone in tip of speen.	
51.5		<u> </u>	W	/ell Set at 50	D.5 ft.		up or oppositi	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-39

Diameter: 8 in Date: 07/24/2013

Northing: 431754.86

Easting: 861753.89

Datum: Unknown

Elevation: 10.43

Project No:

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Field Book No:

Total Depth: 52.92 Ft

Depth	Sample ID	Blow	PID	Mercury	LICCC		Well
Ft 1	Å ID	Count	(ppm)	(mg/m3)	USCS Code	Soil Description	Well Construction Diagram
0			(FF)	(gy		Hand cleared to 5 ft. Installed with a stick up above ground surface. Gray brown fine to coarse SAND, trace silt, dense.	
5 +							
						Brown drilling MUD, pH 7 to 8.	
10 +							
			0.5				
			0.5				
15 +							

Page 2 of 3

Site: LCP Brunswick Boring No: SW-39

Diameter: 8 in Date: 07/24/2013

Northing: 431754.86

Easting: 861753.89

Elevation: 10.43

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 52.92 Ft

Datum: Unknown Project No: Field Book No:								
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
20							Brown drilling MUD, pH 7 to 8.	
25 —								
30 —				0.5				
35 +								

Page 3 of 3

Site: LCP Brunswick Boring No: SW-39

Diameter: 8 in Date: 07/24/2013

Total Depth: 52.92 Ft

GW Depth: 0.0 Ft

Northing: 431754.86

Easting: 861753.89

Elevation: 10.43

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Datum: Unknown		Proje	ct No:		Field Book No:					
Depth	Recov	Sample	Blow	PID	Mercury	USCS		V Cons	Vell tructio	on
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Dia	gram	
40			12	0	0	SM	Gray medium to coarse SAND, trace silt.			
1			14			-	Dark Gray fine to medium SAND, trace silt.			
			18			SM	Dark Gray line to medium SAND, trace sit.			
+			16				Dark Gray fine to medium SAND, trace silt.			
			12 11	0	0	SM	Dank Gray into to modalin 5, 112, 1125 Silli			
+			19				Dark Gray fine to medium SAND, trace silt.			
			19			SM				
+			7				44 ft to 44 ft 5 in Gray fine to medium SAND, trace silt, 44			
			7	0	0	SM	ft 5 in to 44 ft 8 in Gray fine to medium SAND, trace silt, lenses clay, 44 ft 8 in to 45 ft Gray silty CLAY.			
45 🕇			8			SC	Gray fine to medium SAND, little silt, occasional lens clay.			
			13			SC			Ш	Ī
Ī			1	0	0	SM	Gray fine to medium SAND, some silt.			
			2	Ū		OIVI				
			4			SM	Gray fine to medium SAND, trace silt.			
1			8				48 ft to 48 ft 6 in Gray fine GRAVEL, trace sand, trace silt,			
			5	0	0	GM	48 ft 6 in to 49 ft Gray fine to medium SAND, trace salt.			
+			7				Gray fine to medium SAND, trace silt.			
			14			SM	Stay mile to modular of the factor of the			
50 +			4				Gray fine to medium SAND, trace silt.		= ::::	
			8	0	0	SM				
1								 L		

SM

SM

Gray fine to medium SAND, trace silt, trace white shell fragments,

52 ft to 52 ft 6 in Gray fine to medium SAND, little silt, 1/4

inch white shell fragments, 52 ft 6 in to 52 ft 11 in Gray fine

to medium SAND, little silt, occasional medium gravel, refusal

note from 51 ft 6 in to 52 ft trace silt.

Well Set at 51.5 ft.

9

11

12

50

Page 1 of 3

Site: LCP Brunswick Boring No: SW-40

Diameter: 8 in Date: 07/25/2013

Northing: 431835.00

Easting: 861754.21

Elevation: 10.50

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 52.33 Ft GW Depth: 0.0 Ft

Datum:	Unk	nown		Proje	ct No:		Field Book No:	
Depth Ft	Recov	Sample ID	Blow Count	PID (ppm)	Mercury (mg/m3)		Soil Description	Well Construction Diagram
0 -				W.F. /	(0)	SM	Hand cleared to 5 ft. Installed with a stick up above ground surface. Gray brown medium to coarse SAND, trace silt.	
5 +							Brown drilling MUD, pH 7 to 8.	
10 —				0.5				
15 —								
20								

Page 2 of 3

Site: LCP Brunswick Boring No: SW-40

Diameter: 8 in Date: 07/25/2013

Northing: 431835.00

Easting: 861754.21

Elevation: 10.50

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

roject No: Field Book No:

Total Depth: 52.33 Ft

	known	Project No:	Field Book No:	
Depth 3	Sample Blow ID Count	PID Mercury (ppm) (mg/m3		Well Construction Diagram
25 —		0.5	Brown drilling MUD, pH 7 to 8.	

Page 3 of 3

Site: LCP Brunswick Boring No: SW-40

Diameter: 8 in Date: 07/25/2013

Northing: 431835.00

Easting: 861754.21

Elevation: 10.50

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

GW Depth: 0.0 Ft
Total Depth: 52.33 Ft

Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			12 15	0	0	SM	Gray fine to coarse SAND, trace silt.	
			22 20			SM	Dark Gray medium to fine SAND, trace silt.	
			14	0	0	SM	Gray brown medium to coarse SAND, trace silt.	
			27			SM	Gray fine to coarse SAND, trace silt.	
		,	12	0	0	sc	44 ft to 44 ft 6 in Gray brown medium coarse SAND, trace silt, 44 ft 6 in to 45 ft Gray fine to coarse SAND, trace silt, occasional lens clay.	
45 +			17 18			SC	45 ft to 45 ft 4 in Gray fine to coarse SAND, trace silt, occasional lens clay, 45 ft 4 in to 45 ft 8 in Gray CLAY, stiff, 45 ft 8 in to 46 ft Gray fine to medium SAND, some clayey silt.	
			13 19	0	0	SM	46 ft to 46 ft 6 in Gray medium to coarse SAND, trace silt, 46 ft 6 in to 47 ft Gray fine to coarse SAND, trace silt.	
			22 23			SM	Gray brown fine to medium SAND, little silt.	
†			6	0	0	SM	Gray fine to coarse SAND, little silt.	
			13 27			SM	49 ft to 49 ft 4 in Gray fine to medium SAND, trace silt, pH 10, 49 ft 4 in to 50 ft Gray fine to medium SAND, trace silt, trace white shell fragments.	
50 +			33	0	0	SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
†			17			SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
F2 29			50	0	0	SM/R	Black SANDSTONE weakly cemented, some Gray fine to medium	
52.3 3			W	/ell Set at 52	2 ft.		sand, trace silt.	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-41

Diameter: 8 in Date: 07/28/2013

Northing: 431915.25

Easting: 861754.85

Elevation: 9.99

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Driller: Jeff Zeigler (Groundwater Protection Inc)

Total Depth: 51.4 Ft GW Depth: 0.0 Ft

Datum: Unknown	Project No:		Field Book No: 2	
Depth g Sample Blow	PID Mercur	USCS		Well Construction
	(ppm) (mg/m) Code		Diagram
			Soil Description Hand cleared to 5 ft. Installed with a stick up above ground surface. Drilled to 40 feet with mud rotary, no sampling to 40 ft pH is 7.5.	eet. Well Construction Diagram
20				

Page 2 of 3

Site: LCP Brunswick Boring No: SW-41 Diameter: 8 in

Date: 07/28/2013

Northing: 431915.25

Elevation: 9.99

Driller: Jeff Zeigler (Groundwater Protection Inc)

Easting: 861754.85 Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Datum: Unknown Project No: Field Book No: 2

Total Depth: 51.4 Ft GW Depth: 0.0 Ft

Datum: Ur	iknown		Proje	ct No:	Field Book No: 2	
Depth 8	Sample ID	Blow Count	PID (ppm)	Mercury (mg/m3)	Soil Description	Well Construction Diagram
25 —		Count	(рріп)	(ing/ins)	Hand cleared to 5 ft. Installed with a stick up above ground surface. Drilled to 40 feet with mud rotary, no sampling to 40 fe pH is 7.5.	
30 -			0.0	0.000		
35 +						

Page 3 of 3

Site: LCP Brunswick Boring No: SW-41 Diameter: 8 in

Date: 07/28/2013

Northing: 431915.25

Easting: 861754.85

Elevation: 9.99

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Total Depth: 51.4 Ft
GW Depth: 0.0 Ft

		1			1		<u> </u>	Well
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Construction Diagram
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			10	0.0	0.000		Gray medium to coarse SAND, little fine to medium sand, wet, swampy odor.	
			18			SM	onampy such	
			25			O.V.		
			19					
			9	0.0	0.000		Gray medium to coarse SAND, little fine to medium sand, wet, swampy odor, clay lenses at 43.2-43.8 feet, little silt, soft, can	
			11			SM	roll in fingers, wet.	
			16					
			20 5	0.0	0,000		Greenish gray CLAY, lenses of fine to medium sand 1/2-1	
			4	0.0	0.000		inch, little silt in clay, soft, wet.	
45 🕂			7			CL		
			8					
†			3	0.0	0.000		Fine to medium SAND, trace silt over fine sand, little clay,	
			7				trace shells, low yield, wet.	
			12			SM		
			10					
1 1			9	0.0	0.000		Fine to medium SAND, trace silt, trace shells, no clay, wet, mud pH 7.5-8.	
			8			SM	mad pri 7.5-0.	
			8			Oivi		
50 $+$			14					
"			15	0.0	0.000	SM	Fine to medium SAND, trace silt, trace shells, no clay, wet, mud.	
			14	0.0	0.007		Fine to medium SAND, trace cilt trace challe, no clay wat	
			50/5	0.0	0.000	SM	Fine to medium SAND, trace silt, trace shells, no clay, wet, mud, sandstone pebbles in sample, hard, refusal on bottom.	
52.0								

Page 1 of 3

Site: LCP Brunswick Boring No: SW-42 Diameter: 8 in

Date: 07/26/2013

Northing: 431998.47

Easting: 861755.04

Elevation: 9.87

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 51.75 Ft

Datum: Unknown				Proje	ct No:		Field Book No:	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re	ID	Count	(ppm)	(mg/m3)		Soil Description	Diagram
0 -						GM/SM	Hand cleared to 5 ft. Installed with a stick up above ground surface. 0 ft to 2 ft Gray coarse GRAVEL, little sand, trace silt, 2 ft to 5 ft Brown fine to coarse SAND, little silt.	
5 +							Brown drilling MUD, pH 7 to 8.	_
-								
10 +								
15				542	0			
20								

Page 2 of 3

Site: LCP Brunswick Boring No: SW-42 Diameter: 8 in

Date: 07/26/2013

Northing: 431998.47

Easting: 861755.04

Elevation: 9.87

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No: Total Depth: 51.75 Ft

Datum: Unk	nown		Proje	ct No:	Field Book No:	
Depth So	Sample	Blow Count		Mercury (mg/m3)	Soil Description	Well Construction Diagram
25 —					Brown drilling MUD, pH 7 to 8.	
30 -			542	0		
35 —						

Page 3 of 3

Site: LCP Brunswick Boring No: SW-42

Total Depth: 51.75 Ft

GW Depth: 0.0 Ft

Diameter: 8 in Date: 07/26/2013

Northing: 431998.47

Easting: 861755.04

Elevation: 9.87

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			14	0	0	SM	40 ft 6 in to 41 ft Gray fine to coarse SAND, trace silt.	
			14	1				
			16	1		SM	Gray fine to coarse SAND, trace silt.	
↓			16	I				
			8	0	0	sc	Gray fine to coarse SAND, trace silt, occasional layer fine to medium sand, occasional lens clay, pH 10 to 11.	
			12	ı		0		
			14	1		sc	Gray fine to coarse SAND, trace silt, occasional layer fine to medium sand, occasional lens clay, pH 10 to 11.	
			16	1		30	to medium sand, occasional lens day, pri 10 to 11.	
1 1			6			00	44 ft to 44 ft 6 in Gray fine to coarse SAND, trace silt, 44	7
			9	0	0	SC	ft 6 in to 45 ft Gray CLAY and silt, occasional layer clay and sand.	
45 十			12	1		01	Gray CLAY and silt, medium plasticity, occasional layer clay	
			13	1		CL	and sand.	
†			16	1 _			Gray fine to medium SAND, trace silt.	⊣
			20	0	0	SM		
†			48	1			Gray clayey SILT, trace sand, trace white shell fragments.	┥ ▮
			23	1		ML		
†			12	1			Gray fine to coarse SAND, some silty clay, little white shell	
			17	0	0	SC	fragments, brown sheen.	
+			20	1			Gray fine to coarse SAND, some silty clay, little white shell	
			19	1		SC	fragments, brown sheen.	
50 +			8	1			50 ft to 50 ft 6 in Gray clayey SILT, trace sand, trace white	
				0	0	SC	shell fragments, wet, 50 ft 6 in to 51 ft fine to medium SAND, little	
			27	1			silt, trace white shell fragments. 51 ft to 51 ft 6 in fine to medium SAND, little silt, mudstone	-
			17	l		SM/R	in tip, 51 ft 6 in to 51 ft 8 in bouncing spoon mudstone in tip.	
51.7 5			١	Vall Set at 51	158		<u> </u>	_

Well Set at 51.5 ft.

Page 1 of 3

Site: LCP Brunswick Boring No: SW-43

Diameter: 8 in Date: 07/29/2013

Northing: 432075.11

Easting: 861755.08

Elevation: 9.18

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Total Depth: 50.33 Ft

Datum:	Unk	nown		Proje	ct No:		Field Book No:	
Depth Ft	Recov	Sample ID	Blow Count	PID (ppm)	Mercury (mg/m3)	USCS Code	Soil Description	Well Construction Diagram
0		נים	Journ	(ррш)	(mg/mo)	SM	Hand cleared to 5 ft. Installed with a stick up above ground surface. 0 ft to 1 ft CONCRETE (saw and augur used), 1 ft to 5 Brown fine to medium SAND, trace silt, little asphalt.	
5 +							Brown drilling MUD, pH 8 to 9.	
10 +				17	0			
15 —								
20								

Page 2 of 3

Site: LCP Brunswick Boring No: SW-43

Diameter: 8 in Date: 07/29/2013

Northing: 432075.11

Easting: 861755.08

Elevation: 9.18

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Field Book No:

Total Depth: 50.33 Ft

Datum:	Unk	nown		Proje	ct No:	Field Book No:	
Depth Ft	Recov	Sample ID	Blow Count	PID (ppm)	Mercury (mg/m3)	Soil Description	Well Construction Diagram
25 —						Brown drilling MUD, pH 8 to 9.	
30 —				17	0		
35 +							
40 _							

Page 3 of 3

Site: LCP Brunswick Boring No: SW-43

Diameter: 8 in Date: 07/29/2013

Northing: 432075.11

Easting: 861755.08

Elevation: 9.18

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 50.33 Ft

Datum:	Unk	nown		Proje	ect No:		Field Book No:	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			9	0	0	sc	Gray brown fine to coarse SAND, trace silt, occasional lens clay.	
			11 14			sc	Gray brown fine to coarse SAND, trace silt, occasional lens clay.	
			8 10	0	0	sc	Gray brown fine to coarse SAND, trace silt, occasional lens clay.	
			11 13			SM	Gray fine to coarse SAND, trace silt.	
†			7	0	0	SM	Gray brown fine to medium SAND, trace silt, occasional lens clay.	
45 —			9			SM/SC	Gray fine to coarse SAND, trace silt, 2 inch layer of Gray clay.	
†			8 12	0	0	SM	Gray fine to coarse SAND, trace silt.	
†			27 28			sc	Gray fine to medium SAND, lenses Gray clay, odor sulfur like.	
†			6 5	0	0	CL	Gray CLAY and silt, stiff, 3 layers 1/4 inch Gray fine to coarse sand.	
†			8 7			CL	Gray CLAY and silt, stiff, 3 layers 1/4 inch Gray fine to coarse sand.	
50 50.3 3			50	0	0	CL	Gray CLAY, drove 3 inches on 15 blows, then over 35 blows for	
00.00			W	Vell Set at 48	8 ft.		1 inch, refusal.	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-44

Diameter: 8 in Date: 07/31/2013

Northing: 432155.21

Driller: Jeff Zeigler (Groundwater Protection Inc)

Easting: 861752.75

Method: Mud Rotary

Elevation: 9.48

Consultant: S. Dillman (PARSONS)

Total Depth: 52.0 Ft

Datum:	Unk	nown		Proje	ct No:	`	Field Book No: 2	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	
				75			Hand cleared to 5 feet, up to 75 ppm on PID in hole. Installed with a stick up above ground surface. Fluctuating in breathing 0.5 to 3.	zone
5 +				3	0.000		Mud rotary 5-40 feet, no samples. pH is 7.	
10 —								
15 —				3	0.000			
20		Ll						

Page 2 of 3

Method: Mud Rotary

Site: LCP Brunswick Boring No: SW-44

Diameter: 8 in Date: 07/31/2013

Northing: 432155.21 Easting: 861752.75

orthing: 432155.21 Driller: Jeff Zeigler (Groundwater Protection Inc)

Elevation: 9.48

Consultant: S. Dillman (PARSONS)

Total Depth: 52.0 Ft GW Depth: 0.0 Ft

Datum: Unknown					ct No:	(Field Book No: 2	
				PID	Mercury	USCS		Well
Ft	Recov	ID	Count	(ppm)	(mg/m3)		Soil Description	Well Construction Diagram
20				(11 /	, ,		Mud rotary 5-40 feet, no samples. pH is 7.	
†								
+								
25 —								
30 +				3	0.000			
†								
+								
35 +								
40 —								

Page 3 of 3

Site: LCP Brunswick Boring No: SW-44

Total Depth: 52.0 Ft

GW Depth: 0.0 Ft

Diameter: 8 in Date: 07/31/2013

Northing: 432155.21

Easting: 861752.75

Elevation: 9.48

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Dataii	i. Oiik	1101111		1 10,0	ot 140.		Ticia Book 140. 2	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			8	0.5	0.000		Gray medium coarse SAND, trace fine sand, wet.	
			9			SM		
T			13			SIVI		
			11					
			5	0.0	0.000		Gray dark gray medium to coarse SAND, fine to medium bottom 8 inches, trace silt and clay at bottom in lense, wet.	
			7			SM	o mores, ados on and sidy at beaton in londs, well	
			11			OW		
			12					
			4	0.0	0.000		Greenish gray fine to medium SAND, 1 inch clay lense over dense fine sand, little silt, trace shells, wet.	
45 🕂			5			SM		
43			5			C		
1			10					
			6	0.0	0.000		SAND as above upper 10 inches over greenish gray CLAY, some to little silt, trace shells in lenses, trace fine sand in lenses.	e
1 1			9			SM/CL	, ,	
			16					
↓			12					
			6	0.0	0.000		Gray SILT and fine SAND, little clay, clay lenses, wet.	
1			8			ML		
	\angle		7					
50 $+$			9				Occasion was OLAV 1999 alle france abolic alle in	
			3	0.0	0.000		Greenish gray CLAY, little silt, trace shells, silt in thin lenses, bottom 6 inches all clay, med stiff.	
			3	0.0	0.000	CL		
			4	0.0	0.000		Constitute CAND come all little constitute of	
52.0			50/6	0.0	0.000		Gray fine to medium SAND, some silt, little coarse sand, gravel, bedrock pebbles, wet. Hard refusal at 52 feet.	
J=.U								

Page 1 of 3

Site: LCP Brunswick Boring No: SW-45

Diameter: 8 in

Date: 08/09/2013 - 08/11/2013

Northing: 432237.41 Easting: 861751.45

Elevation: 9.12

Method: Mud Rotary

Datum: Unknown

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Driller: Jeff Zeigler (Groundwater Protection Inc)

Total Depth: 50.4 Ft GW Depth: 0.0 Ft

Dataiiii Oi				011101	1 lold Book Hol 2	
Depth	Sample ID			Mercury	Soil Description	Well Construction Diagram
Ft 6	ž ID	Count	(ppm)	(mg/m3)	Hand cleared to 5 feet. Installed with a stick up above ground surface. pH is 7.	
+ + + + + + + + + +						
0 +			0.0	0.000		
5 +						

Page 2 of 3

Site: LCP Brunswick Boring No: SW-45

Diameter: 8 in

Date: 08/09/2013 - 08/11/2013

Northing: 432237.41

Easting: 861751.45

Elevation: 9.12

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Total Depth: 50.4 Ft GW Depth: 0.0 Ft

Page 3 of 3

Site: LCP Brunswick Boring No: SW-45

Diameter: 8 in

Date: 08/09/2013 - 08/11/2013

Northing: 432237.41

Easting: 861751.45

Elevation: 9.12

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Total Depth: 50.4 Ft GW Depth: 0.0 Ft

Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			10	0.0	0.000		Light gray medium SAND, over coarse sand, over medium sand,	
			16			014	wet.	
l †			21			SM		
			23					
†			6	0.0	0.000		SAND as above, trace clay in thin lense near bottom of sample,	
			13				greenish gray clay in shoe, wet.	
†			15			SM		
			19					
1 †			5	0.0	0.000		Greenish gray CLAY, some silt in bottom 4 inches, stiff,	
			7			01	moist.	
45 🕇			7			CL		
			10					
†			10	0.0	0.000		CLAY 2 inches as above over fine coarse SAND 10 inches, trace	
			19			014/01	small shells, over dark gray silt and clay with thin interbedded sand layers.	
†			18			SM/CL	·	
			13					
†			3	0.0	0.000		Greenish gray CLAY, trace sand in thin layers, scattered.	
			3					
†			5			CL		
			10					
50 +			50/5	0.0	0.000		Gray weathered sandstone bedrock, wet. Hard refusal, pieces	
50.4	_						of broken rock in lower sample.	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-46

Diameter: 8 in

Date: 08/06/2013 - 08/07/2013

Northing: 432322.48 Easting: 861757.45

Elevation: 8.65

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Datum: Unknown Project No: Field Book No: 2

Total Depth: 52.0 Ft GW Depth: 0.0 Ft

Datum: Unk	nown	Project No:	Field Book No: 2	
Depth S	Sample Blow			Well Construction Diagram
Ft	ID Coul	nt (ppm) (mg/m3)	Hand cleared to 5 ft. Installed with a stick up above ground surface. pH is 7.	

Page 2 of 3

Method: Mud Rotary

Site: LCP Brunswick Boring No: SW-46

Diameter: 8 in

Date: 08/06/2013 - 08/07/2013

Northing: 432322.48 Easting: 861757.45

Driller: Jeff Zeigler (Groundwater Protection Inc)

Elevation: 8.65

Consultant: S. Dillman (PARSONS)

Total Depth: 52.0 Ft GW Depth: 0.0 Ft

Depth S Sample Blow PID Mercury USCS Soil Description Construction Construction PH is 7.			Field Book No: 2		ct No:	Proje		nown	Unkı	Datum
20 PH is 7.	ell uction	Well Construc	Out Description						SCOV	
25 —	am	Diagrar		Code	(mg/m3)	(ppm)	Count	ID	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
35 —				Code			Count	ID	Re	25 -
40										40

Page 3 of 3

21 15

Site: LCP Brunswick Boring No: SW-46

Diameter: 8 in

Date: 08/06/2013 - 08/07/2013

Total Depth: 52.0 Ft

GW Depth: 0.0 Ft

Northing: 432322.48

Easting: 861757.45

Elevation: 8.65

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Depth	>	Sample	Blow	PID	Moround	USCS		Well
	Recov	_		PID	Mercury		Sail Decemention	Construction
Ft	æ	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			12	0.0	0.000		Gray medium to coarse SAND, trace clay in lense at bottom of	
			15				sample, wet.	
†			11			SM		
1 1	$\overline{}$		12					
+ 6			4	0.0	0.000		Gray SAND as above grading to fine to medium sand, layer of	
				0.0	0.000		silty clay near bottom 5 inches, bottom fine sand, wet.	
+			9			SM/CL		
			19					
			16					
T			18	0.0	0.000		Tan gray SAND, over 8 inches of greenish gray CLAY, semi stiff,	
			18				wet.	
45 ┼ ▮			17			SM/CL		
	$\overline{}$		15					
† 🕯			12	0.0	0.000		Same as above, fine SAND over greenish gray CLAY 8 inches,	
			9	0.0	0.000		very thin sand layers in clay, thin clay layers in upper sand.	
+						SM/CL		
			11					
1 4			10				Greenish gray CLAY, scattered thin sand lenses, semi stiff,	
			7	0.0	0.000		moist.	
			8			CL		
			14			OL		
			13					
50 +			10	0.0	0.000		Light gray fine SAND, over 10 inches of semi stiff gray CLAY,	
			12				thin sand lenses scattered in clay.	
+			21			SM/CL		

Page 1 of 3

Site: LCP Brunswick Boring No: SW-47

Diameter: 8 in Date: 08/05/2013

Northing: 432395.12

Driller: Jeff Zeigler (Groundwater Protection Inc)

Easting: 861754.60 Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Datum: Unknown

Elevation: 9.82

Project No: Field Book No. 2 Total Depth: 53.3 Ft GW Depth: 0.0 Ft

Datum: Unk	nown		Proje	ct No:	Field Book No: 2	
Depth S	Sample	Blow Count		Mercury (mg/m3)	Soil Description	Well Construction Diagram
5 -	נ		(PPIII)	(ing/ino)	Hand cleared to 5 ft. Installed with a stick up above ground surface.	
15 —			0.0	0.000	pH is 7.5.	

Page 2 of 3

Site: LCP Brunswick Boring No: SW-47 Diameter: 8 in

Date: 08/05/2013

Northing: 432395.12

Easting: 861754.60

Elevation: 9.82

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Total Depth: 53.3 Ft GW Depth: 0.0 Ft

Datum	: Unk	nown		Proje	ct No:	`	Field Book No: 2	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
25 -				0.0	0.000		pH is 7.	
35 -				0.0	0.000		pH is 7.	
40 —					1			

Page 3 of 3

Site: LCP Brunswick Boring No: SW-47 Diameter: 8 in

Total Depth: 53.3 Ft

GW Depth: 0.0 Ft

Date: 08/05/2013

Northing: 432395.12

Easting: 861754.60

Elevation: 9.82

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Datum:	Unkr	nown		Proje	ct No:		Field Book No: 2	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			17	0.0	0.000		Gray medium to coarse SAND, lenses of fine to medium sand and silty clay lenses, thin layers sparse, wet. pH is 7 to 7.5.	
			22			SM	Silty day letises, tilli layers sparse, wet. pri is 7 to 7.5.	
T			21			OIVI		
			20					
			7	0.0	0.000		Gray medium to coarse SAND, bottom 3 inches greenish gray fine to medium sand, little silt, trace clay, trace pebbles, wet.	
			12			SM	to moduli odna, mao on, adoo ody, adoo possios, wot	
			13			Olvi		
			20					
			12	0.0	0.000		Gray medium to coarse SAND, fine to medium sand bottom 1/2, wet.	
↓ ↓ ↓			24			SM	1100	
45 🕇 🛚			20			Olvi		
			23					
			7	0.0	0.000		Gray CLAY, trace silt, thin sand lenses, semi stiff, moist to wet.	
			11			CL		
			10			OL		
			7					
			4	0.0	0.000		Gray CLAY, thin fine sand lenses 1/2 inch at bottom of sample, wet.	
			5			CL		
			8			OL.		
50 +			6					
30			4	0.0	0.000		Gray CLAY, thin fine sand lenses, thin and scattered, wet.	
│			4			CL		
			3			-		
↓ ↓								
			12	0.0	0.000	CL	Gray CLAY, thin fine sand lenses, thin and scattered, wet.	
			8	0.0	0.000	CL	Clay as above, alternating with fine to medium SAND 1-1.5 inch	
53.3			54/4	0.0	L 0.000 L	SM	Gray fine to medium SAND, trace silt, sandstone at bottom of sample, wet.	J

Page 1 of 3

Site: LCP Brunswick Boring No: SW-48

Diameter: 8 in

Date: 08/12/2013 - 08/13/2013

Northing: 431469.81

Easting: 861833.84

Elevation: 10.29

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Field Book No:

Total Depth: 50.33 Ft

Datum: Unk	nown		Proje	ct No:		Field Book No:	
Depth So	Sample	Blow Count	PID (ppm)	Mercury (mg/m3)		Soil Description	Well Construction Diagram
0	į	Odunk	(pp)	(mg/me/	SM	Hand cleared to 5 ft. Installed with a stick up above ground surface. Brown fine to medium SAND, trace silt.	
5 +						Brown gray drilling MUD, pH is 7 to 8.	
10 —			0.5	0			
15 +							

Page 2 of 3

Site: LCP Brunswick Boring No: SW-48

Diameter: 8 in

Date: 08/12/2013 - 08/13/2013

Northing: 431469.81

Easting: 861833.84

Elevation: 10.29

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Field Book No:

Total Depth: 50.33 Ft

Datum: U	Jnkr	nown		Proje	ct No:	Field Book No:		
Depth Ft	Recov	Sample ID	Blow Count	PID (ppm)	Mercury (mg/m3)	Soil Description	Con Di	Well struction agram
20						Brown gray drilling MUD, pH is 7 to 8.		
30 -				0.5	0			
35 -								

Page 3 of 3

Site: LCP Brunswick Boring No: SW-48

Diameter: 8 in

Date: 08/12/2013 - 08/13/2013

Northing: 431469.81

Easting: 861833.84

Elevation: 10.29

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No: Total Depth: 50.33 Ft

				' ' ' '				
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			6	0	0	SM	Gray fine to coarse SAND, trace silt.	
1 +			9	4			Gray fine to coarse SAND, trace silt.	-
			12 12	1		SM	and the bodies of the first since	
†			13				Gray fine to coarse SAND, trace silt, occasional lens clay	┤ ▮ ▮
			5	0	0	SC		
			7	1		sc	Gray fine to coarse SAND, trace silt, occasional lens clay .	
1 +			9	4			Gray fine to coarse SAND, trace silt.	
			7	0	0	SM	Gray fine to coarse SAND, trace sitt.	
45 🕂	-		11	1			Gray fine to medium SAND, trace silt, 3 inch layer clay, stiff.	
			15			sc		
1 1			7	0	0	SM	Gray fine to coarse SAND, trace silt.	
1 1			13]				
			17	4		sc	Gray fine to medium SAND, some clayey silt.	
1 +			22	4			48 ft to 48 ft 6 in Gray fine to coarse SAND, trace silt, 48	_
			12 18	0	0	SM/SC	ft 6 in to 49 ft Gray fine to medium SAND and clayey silt.	
1 +			20	1			49 ft to 49 ft 6 in Gray fine to medium SAND, and clayey silt,	\dashv
			20	1		SM/SC	49 ft 6 in to 50 ft fine to coarse SAND, little silt.	
50 50.33			50			SM/R	Gray fine to coarse SAND, little silt, 2 inch weakly cemented	╛
50.33			V	Well Set at 47	7 ft.		sandstone.	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-49

Diameter: 8 in Date: 08/13/2013

Northing: 431551.26

Easting: 861825.95

Elevation: 13.30

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 54.33 Ft

Datum: Unl	known		Proje	ct No:		Field Book No:	
Depth S	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
	ID	Count	(ppm)	(mg/m3)		Soil Description	Diagram
0 -					SM	Hand cleared to 5 ft. Installed with a stick up above ground surface. Brown fine to medium SAND, trace silt.	
5 +						Brown gray drilling MUD, pH 7 to 8.	
10 +			0.5	0			
15 +							

Page 2 of 3

Site: LCP Brunswick Boring No: SW-49

Diameter: 8 in Date: 08/13/2013

Northing: 431551.26

Easting: 861825.95

Elevation: 13.30

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 54.33 Ft

Depth R R Sample Blow Double PID Mercury USCS Soil Description Construction Diagram	Datum: Unknown	Project No:	Field Book No:	
20	Depth Sample Blow Ft D Count		Soil Description	Well Construction Diagram
	20			

Page 3 of 3

Site: LCP Brunswick Boring No: SW-49

Diameter: 8 in Date: 08/13/2013

Northing: 431551.26

Easting: 861825.95

Elevation: 13.30

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Total Depth: 54.33 Ft

GW Depth: 0.0 Ft

Datum:	Unk	nown		Proje	CL INO.		FIEID BOOK NO:	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			12 17	0	0	SM	Gray fine to medium SAND, trace silt.	
† [17			SM	Gray fine to medium SAND, trace silt.	1
			12				Constitution to seeding CAND to see site	
			5 5	0	0	SM	Gray fine to medium SAND, trace silt.	
+			8				Gray fine to medium SAND, trace silt.	-
			8			SM		
			5	0	0	SM	Gray fine to medium SAND, trace silt.	
45 +			10 15				Gray fine to coarse SAND, trace silt, occasional piece of coarse	
			16			SM	gravel.	
1 † 1			8	0	0	SM	Gray fine to coarse SAND, trace silt.	
<u> </u>			13	U		OIVI	Gray fine to coarse SAND, trace silt.	
			13 19			SM	Gray line to coarse SAND, trace sitt.	
+			7	_			Gray fine to coarse SAND, trace silt.	┥
			11	0	0	SM		
			13			SM	Gray fine to coarse SAND, trace silt.	
50 +			17 4				Gray fine to coarse SAND, trace silt.	
			8			SM		
†			11			SM	Gray fine to coarse SAND, trace silt.	
_			20			SIVI	50 % (50 % O)	
			25 26			SM	52 ft to 52 ft 6 in Gray fine to medium SAND, 52 ft 6 in to 53 ft Gray fine to coarse SAND, trace white shell fragments, little	
+			8				clayey silt. Gray fine to medium SAND, little silt.	-
			12			SM		
			50			SM/R	54 ft to 54 ft 4 in fine to medium SAND, some silt, 1/4 inch layer Gray cemented stone.	
54.7				Vell Set at 52	2.5 ft. Well mo	oved 5 ft. Si	E because of incline of hill and proximity to	_

Well Set at 52.5 ft. Well moved 5 ft. SE because of incline of hill and proximity to infiltration galleries.

Page 1 of 3

Site: LCP Brunswick Boring No: SW-50

Diameter: 8 in

Date: 07/31/2013 - 08/05/2013

Northing: 431794.98

Easting: 861827.26

Elevation: 10.19

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

	nown		Proje	ct No:		Field Book No: 2	
Depth 8	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Depth S	ID	Count	(ppm)	(mg/m3)		Soil Description	Diagram
5 +	טו	Count		(IIIg/III3)	Code	Hand cleared to 5 ft. Installed with a stick up above ground surface. pH is 7.0.	
10 —			0.0	0.000			

Page 2 of 3

Site: LCP Brunswick Boring No: SW-50

Diameter: 8 in

Date: 07/31/2013 - 08/05/2013

Northing: 431794.98

Easting: 861827.26

Elevation: 10.19

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Driller: Jeff Zeigler (Groundwater Protection Inc)

Total Depth: 52.0 Ft

Datum: Un	ıknown		Proje	ct No:	Field Book No: 2	
Depth 3	Sample	Blow Count	PID (ppm)	Mercury (mg/m3)	Soil Description	Well Construction Diagram
25 —					pH is 7.5 to 8.	
30			0.0	0.000		
35 +						

Page 3 of 3

Site: LCP Brunswick Boring No: SW-50

Diameter: 8 in

Date: 07/31/2013 - 08/05/2013

Total Depth: 52.0 Ft

GW Depth: 0.0 Ft

Northing: 431794.98

Easting: 861827.26

Elevation: 10.19

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

_ 0.00				,				
Depth	Recov	Sample	Blow	PID	Mercury	USCS	_ u	Well Construction Diagram
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			11	0.0	0.000		Gray medium to coarse SAND, fine to medium sand, darker gray at bottom, wet. pH is 7.0 to 8.	
_			14			SM		_
			18			O.V.		_
1			28					_
			20	0.0	0.000		Gray medium to coarse SAND, bottom 2 inches silt and clay lense, semi stiff, wet.	_
↓			25			SM		_
			20					_
+			19	0.0	0.000		Gray medium to coarse SAND, thin silt and clay lense 1/4 inch,	_
			12 13	0.0	0.000		wet.	_
45 +			11			SM		
	+		13					
+			3	0.0	0.000		Same as above, grading to fine to medium SAND.	
			4	0.0	0.000			
†			9			SM		
			16					
†			9	0.0	0.000		Same as above, grading to fine SAND, trace silt, trace shells,	
			36			SM	trace thin lenses of silt and clay, upper sample.	
1 1			50/5			SIVI		
L 50 L								
50 十			29	0.0	0.000	SM	Gray fine SAND, some silt, trace clay, wet.	
			50/6	0.0	0.000			• • • • • • • • • • • • • • • • • • • •
			35	0.0	0.000	SM	Gray fine SAND, some silt, trace shells, more dense, trace	
52.0			50/5				Same as above over dark gray hard sandstone, hard refusal.	
UZ.U								

Page 1 of 3

Method: Mud Rotary

Site: LCP Brunswick Boring No: SW-51

Diameter: 8 in Date: 07/28/2013

Northing: 431876.55

Easting: 861825.02

Driller: Jeff Zeigler (Groundwater Protection Inc)

Elevation: 10.16

Consultant: S. Dillman (PARSONS)

Datum:	Unk	nown		Proje	ct No:		Field Book No: 2	
Depth	Recov	Sample	Blow	PID	Mercury	USCS	2 11 2 1 11	Well Construction Diagram
Ft	8	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
0 -							Hand cleared to 5 ft. Installed with a stick up above ground surface. pH is 7.	
5 —				0.0	0.000			
10 +							pH is 7.	
15 —				0.0	0.000			

Page 2 of 3

Site: LCP Brunswick Boring No: SW-51 Diameter: 8 in

Date: 07/28/2013

Northing: 431876.55

Easting: 861825.02

Elevation: 10.16

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Datum: Unk	nown		Proje	ct No:	Field Book No: 2	
Depth So	Sample ID	Blow Count	PID (ppm)	Mercury (mg/m3)	Soil Description	Well Construction Diagram
25 —			1.0	0.000	pH is 7. PID fluctuating.	
35 —			0.5	0.000	pH is 7.	

Page 3 of 3

Site: LCP Brunswick Boring No: SW-51 Diameter: 8 in

Total Depth: 53.0 Ft

GW Depth: 0.0 Ft

Date: 07/28/2013

Northing: 431876.55

Easting: 861825.02

Elevation: 10.16

Method: Mud Rotary

Datum: Unknown Project No:

Consultant: S. Dillman (PARSONS)

Field Book No: 2

Driller: Jeff Zeigler (Groundwater Protection Inc)

Datum	. Onk	1104411		1 10,0	Ct 140.		Tield Book No. 2	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Construction Diagram
40			15	0.0	0.000		Gray medium to coarse SAND, trace fine sand, thin lense silty	
			24			OM	clay at base of sample, wet, swampy odor, no stain or sheen.	
l Ť		1	21			SM		
		1	24					
T			10	0.0	0.000		Gray medium to coarse SAND, bottom 6 inches fine to medium	
			15			CM	sand, little silt, little clay, wet, swampy odor, no stain or sheen.	
Ī			21			SM		
		1	19					
†			8	0.0	0.000		Gray medium to coarse SAND, little fine sand, trace silt, wet,	
			10			N.A.I	swampy odor, no stain or sheen.	
45 🕇			10			ML		
		1	7					
Ī			6	0.1	0.008		Same as above top 14 inches, bottom 6 inches fine SAND, some silt, lenses of gray clay, little silt.	
			10			SM	Silt, letises of gray day, itue silt.	
I			13			SIVI		
			12					
Ī			7	0.1	0.000		Gray medium to coarse SAND, lenses of fine to medium sand, bottom 6 inches gray silt, fine SAND, trace clay, trace shells broken,	
			21			SM	wet.	
I			25			SIVI		
			21					
50 十			20	0.00	0.004	SM	Brown fine SAND, little silt, trace broken shells, wet.	
			20	0.2	0.009	SM	Brown fine SAND, little silt, trace broken shells, wet.	
l T			18	0.1	0.000	JIVI		
			18	0.1	0.003	SM	Same as above, trace mudstone, rock clast in bottom.	
Ţ			50/4	0.1	0.005		Brown SILT, some fine sand, trace shells, wet.	
				0.0	0.000			
53.0								

Page 1 of 3

Site: LCP Brunswick Boring No: SW-52

Diameter: 8 in Date: 07/29/2013

Northing: 431955.28

Easting: 861824.23

Elevation: 10.12

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Datum: Onk	A I I O WI I		Proje	CL INO.		FIEID BOOK NO:	
Depth So	Sample	Blow		Mercury		Soil Description	Well Construction Diagram
Ft &	ID	Count	(ppm)	(mg/m3)	Code OL/SM	Hand cleared to 5 ft. Installed with a stick up above ground surface. 0 ft to 1 ft Brown TOP SOIL, roots, 1 ft to 5 ft Brown fine to medium SAND, trace silt.	
5 +						Brown drilling MUD, pH 8 to 9.	
10							
- - -			328	0			
15 +							
20							

Page 2 of 3

Site: LCP Brunswick Boring No: SW-52

Diameter: 8 in Date: 07/29/2013

Northing: 431955.28

Easting: 861824.23

Elevation: 10.12

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Datum:	OHK	IIOWIII		Proje	ot 140.		Field Book No:	
Depth	Recov	Sample	Blow		Mercury		Soil Description	Well Construction Diagram
Ft	<u> </u>	ID	Count	(ppm)	(mg/m3)	Code	Brown drilling MUD, pH 8 to 9.	Blagiam
20							Brown drilling Mob, pri 6 to 9.	
+ 1								
+								
†								
†								
25 +								
.5								
<u> </u>								
+ 1								
+								
†								
				328	0			
10 +				320				
1								
+ 1								
+								
†								
_								
5 +								
1								
+								
+								
40 L			I					

Page 3 of 3

Site: LCP Brunswick Boring No: SW-52

Diameter: 8 in Date: 07/29/2013

Northing: 431955.28

Easting: 861824.23

Elevation: 10.12 Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

				' ' '					
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Cor	Well nstruction
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description		Diagram
40			12	0	0	SM	Gray fine to coarse SAND, trace silt.		
		ļ	15			-	Gray fine to coarse SAND, trace silt.		
	\vdash	-	15 16			SM	Stay into to coarse SAND, trace since		
†			8				Gray fine to coarse SAND, trace silt, occasional lens clay.	\dashv	
			11	0	0	SC			
I			13			sc	Gray fine to coarse SAND, trace silt, occasional lens clay.		
			11				Gray fine to coarse SAND, trace silt.		
			4	0	0	SM	oray line to coarse on the, trace site.		
45 🕂			6				Gray CLAY, little sand.	\dashv	
		1	7			CL			
I			5	0	0	SM/SC	46 ft to 46 ft 6 in Gray fine to coarse SAND, trace silt, 46 ft 6 in to 47 ft Gray brown fine to medium SAND, trace silt, occas	ional	
			12				lens clay, a 1 inch layer clay, odor sulfur like.		
			28 35			sc	Gray brown fine to medium SAND, occasional lens clay, odor sulfur like.		Щ
+			7				Gray SAND, some clay and silt, 3 inch layer of clay, stiff,		
			5	0	0	SC	odor sulfur like.		
l †			8			SC	Gray SAND, some clay and silt, trace white shell fragments.		
50 +			12						<u>-⊟</u>
"			14	0	0	sc	Gray brown fine to medium SAND, occasional lens clay, little silt, trace white shell fragments, odor sulfur like.		
			7 50			SM/R	Gray brown fine to medium SAND, some silt, first 4 inches 7		
51.5				 Vell Set at 5 [,]	 1.5.ft	SIVI/R	blows, last 2 inches over 43, refusal.		
			•	Ton Oot at 0	1.0 16.				

Page 1 of 3

Site: LCP Brunswick Boring No: SW-53

Diameter: NA Date: 07/28/2013

Northing: 432027.09

Easting: 861823.43

Elevation: 9.36

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

roiect No: Field Book No:

Datam. Om	atum: Unknown		Project No:			Field Book No:	
Depth 8	Sample ID	Blow Count	PID (ppm)	Mercury (mg/m3)	USCS Code	Soil Description	Well Construction Diagram
	12	Oddin	(ррш)	(mg/mo)		Hand cleared to 5 ft. Installed with a stick up above ground surface. 0 ft to 1 ft Brown TOP SOIL, roots, 1 ft to 5 ft Brown fine to medium SAND, trace silt.	
+ +						Brown drilling MUD, pH 7 to 8.	
+							Ш
0 +							Ш
			147	0			Ш
5 +							

Page 2 of 3

Site: LCP Brunswick Boring No: SW-53

Diameter: NA Date: 07/28/2013

Northing: 432027.09

Easting: 861823.43

Elevation: 9.36

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Datum: Unknown	Project No:	Field Book No:	
Depth Sample Blow Ft D ID Count	PID Mercury (ppm) (mg/m3)		Well Construction Diagram
25 — 35 — 35 —	147 O	Brown drilling MUD, pH 7 to 8.	
40			

Page 3 of 3

Site: LCP Brunswick Boring No: SW-53

Diameter: NA

Date: 07/28/2013

Northing: 432027.09

Easting: 861823.43

Elevation: 9.36

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

GW Depth: 0.0 Ft

Total Depth: 51.0 Ft

Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			9	0	0	SM	Gray brown fine to coarse SAND, trace silt.	
			15 20			SM	Gray brown fine to coarse SAND, trace silt.	
†			11	0	0	SM	Gray brown fine to coarse SAND, trace silt.	
			17 22			SM	Gray brown fine to coarse SAND, trace silt.	
†			10 12	0	0	SM	Gray brown fine to coarse SAND, trace silt.	
45 —			16 19			SM/CL	45 ft to 45 ft 6 in Gray fine to coarse SAND, trace silt, 45 ft 6 in to 46 ft Gray CLAY, stiff, occasional 1/2 inch layers of clayey sand, trace silt.	
			12 14	0	0	SM	Gray fine to coarse SAND, trace silt.	
†			18 28			SM	47 ft to 47 ft 6 in Gray fine to coarse SAND, trace silt, 47 ft 6 in to 48 ft Gray brown fine to medium SAND, trace silt, brown liquid, sulfur like odor.	
			30 13	0	0	sc	48 ft to 48 ft 10 in Gray brown fine to medium SAND, trace silt, occasional lens clay, 48 ft 10 in to 49 ft Gray CLAY, stiff.	
			15 18			SC/SM	49 ft to 49 ft 6 in Gray fine to medium SAND, little clayey silt, trace white shell fragments, 49 ft 6 in to 50 ft Gray fine to medium SAND, little silt, 1/8 inch layers of white shell fragments.	
50 —			11 14	0	0	sc	Gray SILT, little fine to medium sand, occasional lens clay.	
			6 50			SC/R	51 ft to 51 ft 6 in Gray fine to medium SAND, some silt, occasional lens of clay, 51 ft 6 in to 52 ft Gray CLAY, stiff, dry, piece of stone in tip of spoon.	
52.0	·		W	/ell Set at 48	3.5 ft.			J

Page 1 of 3

Site: LCP Brunswick Boring No: SW-54

Diameter: 8 in

Date: 08/10/2013 - 08/11/2013

Northing: 432116.27 Easting: 861782.23

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

GW Depth: 0.0 Ft

Total Depth: 51.5 Ft

Elevation: 9.24

Consultant: S. Dillman (PARSONS)

Datum: Unknown

Project No: Field Book No: 2

Datum:	JIIKI	IOWII		Proje	GUINO.		FIEID BOOK NO. 2	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
0							Hand cleared to 5 feet. Installed with a stick up above ground surface. pH is 7.	
5 +								
10 —								
15 —								
- - - -								
₂₀ ⊥ L								

Page 2 of 3

Site: LCP Brunswick Boring No: SW-54

Diameter: 8 in

Date: 08/10/2013 - 08/11/2013

Northing: 432116.27

Easting: 861782.23

Elevation: 9.24

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Driller: Jeff Zeigler (Groundwater Protection Inc)

Total Depth: 51.5 Ft

Datum: Unk	nown		Proje	ct No:	Field Book No: 2	
Depth S	Sample ID	Blow Count	PID (ppm)	Mercury (mg/m3)	Soil Description	Well Construction Diagram
25 —						
30 -						
35 +						

Page 3 of 3

Site: LCP Brunswick Boring No: SW-54

Diameter: 8 in

Date: 08/10/2013 - 08/11/2013

Total Depth: 51.5 Ft

GW Depth: 0.0 Ft

Northing: 432116.27

Easting: 861782.23

Elevation: 9.24

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

					1			Well
Depth	8	Sample	Blow	PID	Mercury	USCS		Construction
Ft	Recov	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			11	0.5	0.000		Gray medium to coarse SAND, trace clay in thin lenses, wet, slight odor.	
			13			014	Slight odor.	
1 †			16			SM		
		1	17					
+			6	0.0	0.000		Gray coarse SAND, grading to medium sand, trace gravel in upper,	
			10	0.0	0.000		wet.	
1 +						SM		
			13					
1 1			12					
			5	0.0	0.000		Greenish gray CLAY, interbedded with thin fine sand lenses, coarse sand, fine gravel in top, wet.	
L ₄₅ ⊥			10			CL	grand and grand an top, non	
45 🕇			13			GL		
			7					
Ī			9				Medium to coarse SAND, mixed with silt and clay over greenish	
			7				gray CLAY, little silt, wet.	
l †			8			SM/CL		
			9					
1 †			5	0.0	0.000		Greenish gray CLAY, little silt, moist.	
			8	0.0	0.000	CL		
+			3	0.0	0,000		Greenish gray CLAY, little silt, moist.	
				0.0	0.000	CL		
50 +	_		3	0.0	0.000		Union E inches come as above hattern array weathered conditions	_
			5	0.0	0.000		Upper 5 inches same as above, bottom gray weathered sandstone, chunks of sandstone in sample. Weathered SANDSTONE, fine to medium sand, little silt	
			4	0.0	0.000			
			50/1				and clay, chunks of sandstone in sample. Weathered sandstone, dense, hard refusal.	
52.0 		•			•			

Page 1 of 3

Site: LCP Brunswick Boring No: SW-55

Diameter: 8 in Date: 08/12/2013

Total Depth: 52.25 Ft

GW Depth: 0.0 Ft

Northing: 432199.50

Easting: 861787.16

Elevation: 9.10

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Page 2 of 3

Site: LCP Brunswick Boring No: SW-55

Diameter: 8 in Date: 08/12/2013

Northing: 432199.50

Easting: 861787.16

Elevation: 9.10

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Total Depth: 52.25 Ft
GW Depth: 0.0 Ft

Datum: Unknown Project No: Field Book No: 2 Well Construction Diagram PID Mercury **USCS** Depth Sample **Blow** Soil Description Ft ID Count (mg/m3) Code (ppm) 20 25 0.0 0.000 30 35 40

Page 3 of 3

Site: LCP Brunswick Boring No: SW-55

Diameter: 8 in Date: 08/12/2013

Northing: 432199.50

Easting: 861787.16

Elevation: 9.10

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Total Depth: 52.25 Ft

Depth 3	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft o		Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40							
-		5 11 15 11	0.00	0.000	SM/CL	Gray fine to medium SAND, trace silt and clay at bottom of sand, greenish gray CLAY semi stiff, wet.	
45 —		6 8 7 6	0.0	0.000	CL	Greenish gray CLAY, semi stiff, wet.	
		4 7 15 16	0.0	0.000	SM/CL	Tan fine to medium SAND 6 inches over clay as above 5 inches, over fine medium SAND, little clay in thin lenses, wet.	
		4 6 8	0.0	0.000	SM/CL	Sand as above 3 inches over greenish gray CLAY.	
50 +		7 14 14 17	0.0	0.000	CL	Clay as above 4 inches over gray fine to medium SAND, grading to weathered sandstone.	
52.25		50/3				Drove 3 inches, weathered sandstone as above, hard refusal.	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-56

Diameter: 8 in

Date: 08/08/2013 - 08/09/2013

Northing: 432265.58 Easting: 861808.22

Elevation: 8.70

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

			 		riola Book Hol 2	
Depth So	Sample	Blow	Mercury		Soil Description	Well Construction Diagram
Depth 3092 10 10 10 10 10 10 10 1	ID ID	Blow	Mercury (mg/m3)	Code	Soil Description Hand cleared to 5 ft. Installed with a stick up above ground surface. pH is 7.5.	Well Construction Diagram
15 —						

Page 2 of 3

Site: LCP Brunswick Boring No: SW-56

Diameter: 8 in

Date: 08/08/2013 - 08/09/2013

Northing: 432265.58

Easting: 861808.22

Elevation: 8.70

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Driller: Jeff Zeigler (Groundwater Protection Inc)

Total Depth: 52.5 Ft

Datum:	Unk	nown		Proje	ct No:		Field Book No: 2	
Depth Ft	Recov	Sample ID	Blow Count	PID (ppm)	Mercury (mg/m3)		Soil Description	Well Construction Diagram
20		טו	Count	(ррш)	(шулпо)	Code	pH is 7.	
25 —								
30 +				0.0	0.000			
35 +								
40 _								

Page 3 of 3

Site: LCP Brunswick Boring No: SW-56

Diameter: 8 in

Date: 08/08/2013 - 08/09/2013

Total Depth: 52.5 Ft

GW Depth: 0.0 Ft

Northing: 432265.58

Easting: 861808.22

Elevation: 8.70

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Dataiii.				1	Ot 110.		Tiold Book 140. 2	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			11	0.0	0.000		Gray medium to coarse SAND, trace clay at bottom, trace fine sand, wet.	
+			20			SM	,	
	$ \mathrel{\hspace{1pt} \mathrel{\hspace{1pt} \hspace{1pt} \hspace{1pt} \hspace{1pt} \hspace{1pt} \hspace{1pt} }} $		15					
+			13 11	0.0	0.000		Light gray coarse SAND, over medium gray medium sand botto	<u> </u>
			19	0.0	0.000		8 inches, trace clay bottom 2 inches, wet.	
l †			16			SM		
			17					
l †			10	0.0	0.000		Gray medium SAND 2 inches, trace clay over 20 inches greeningray CLAY, some silt grading to clay, 2 inches sand, little clay	
45 +			14			CL	at bottom, wet.	
45			9			OL.		
I ↓			11				Gray GRAVEL, little sand, trace clay 10 inches, over greenish	
			5 6	0.0	0.000		gray CLAY, bottom 2 inches trace silt, wet.	
l +			6			GM/CL		
			11					
†			4	0.0	0.000		Greenish gray CLAY, trace silt in lenses, semi stiff, wet.	
			6					
I	$ \mathbb{Z} $		6			CL		
50 $+$			11					
30			4	0.0	0.000		Greenish gray SILT and CLAY, wet.	
I ↓			5	0.0	0.000	ML/CL	Light gray fine SAND, heavily weathered, wet.	
			10 4	0.0 0.0	0.000 0.000		Light gray line OAND, fleavily weathered, wet.	
l +			50/3	0.0	0.000		Same as above, stiffening to sandstone, hard refusal.	_
			30/3	0.0	0.000		-	
53.0 ¹					<u> </u>		<u> </u>	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-57 Diameter: 8 in

Date: 08/06/2013

Northing: 432355.26

Driller: Jeff Zeigler (Groundwater Protection Inc)

Easting: 861823.47

Method: Mud Rotary

Elevation: 10.20

Consultant: S. Dillman (PARSONS)

Total Depth: 53.6 Ft

Datum:	Unk	nown		Proje	ct No:	`	Field Book No: 2	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re	ID	Count	(ppm)	(mg/m3)		Soil Description	Diagram
0 -							Hand cleared to 5 ft. Installed with a stick up above ground surface. pH is 7.	
5				0.0	0.000			
10 —							pH is 7.	
15 —				0.0	0.000			

Page 2 of 3

Site: LCP Brunswick Boring No: SW-57

Diameter: 8 in Date: 08/06/2013

Northing: 432355.26

Easting: 861823.47

Elevation: 10.20

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Depth Ref. Sample Blow PID Mercury USCS Soil Description Construction Diagram PID PID Mercury USCS Code PID PID	Vell struction agram
20 pH is 7.	agram
35 —	

Page 3 of 3

Site: LCP Brunswick Boring No: SW-57 Diameter: 8 in

Total Depth: 53.6 Ft

GW Depth: 0.0 Ft

Date: 08/06/2013

Northing: 432355.26

Easting: 861823.47

Elevation: 10.20

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Dataiii					0. 1.01		. 1014 2001 1101 2	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			12	0.0	0.000		Gray medium to coarse SAND, wet.	
			14			SM		
T			18			SIVI		
			19					
Ī			9	0.0	0.000		Same as above, trace silt and clay in thin lenses.	
			17			SM		
			16			Oivi		
			11					
			6	0.0	0.000		Gray medium to coarse SAND, some silt and clay throughout, wet.	
45 +			10			SM		
			13					
			16				Crowfine to come CAND little silt and alow in lances wat	
			7	0.0	0.000		Gray fine to coarse SAND, little silt and clay in lenses, wet.	
+			8			SM		
	\vdash		10					
+			12	0.0	0.000		Greenish gray CLAY, bottom 5 inches fine to coarse sand,	
			2	0.0	0.000		some silt and clay, medium stiff.	
+			3			CL		
			4					
50 +			8	0.0	0.000		Greenish gray CLAY, lense of fine to medium sand 5 inches	
			7	0.0	0.000		thick, thinner lenses of similar sand below, medium stiff.	
+			12			CL		
			19					
†			13	0.0	0.000	CL	CLAY as above in shoe, fine to medium sand above, looks like	
			11	0.0	0.000	SM	Gray fine SAND, wet.	
†			8	0.0	0.000	SM	Gray fine SAND, some silt, little clay.	
53.6			50/1					

Page 1 of 3

Site: LCP Brunswick Boring No: SW-58

Diameter: 8 in Date: 07/26/2013

Northing: 431954.66

Easting: 861754.70

Elevation: 10.11

31954.66 Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Datum: Unknown Project No: Field Book No: 1

Datum:	Unk	nown		Proje	ct No:		Field Book No: 1	
Depth	Recov	Sample		PID	Mercury		Soil Description	Well Construction Diagram
Ft 0	<u> </u>	ID	Count	(ppm)	(mg/m3)	Code	Hand cleared to 5 ft. Installed with a stick up above ground	Jiagiaiii
							surface. Black fine to medium SAND, and silt, clay.	
+				0.0	0.000	00		
1				0.0	0.000	SC		
Ť								
5 +							Mud rotary drilling, mud pH is 7.	_
†								
+								
10 +								
+								
+								
15 🕇								
+								
†								
+								
_								
20 —								

Page 2 of 3

Site: LCP Brunswick Boring No: SW-58

Diameter: 8 in Date: 07/26/2013

Northing: 431954.66

Easting: 861754.70

Elevation: 10.11

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Datum:					ct No:	viaipily (Field Book No: 1	
							l leid Book No. 1	l Wall
Depth	Recov	Sample	Blow	PID	Mercury		Soil Description	Well Construction Diagram
Ft	r	ID	Count	(ppm)	(mg/m3)	Code		Diagram
20							Mud rotary drilling, mud pH is 7.	
+								
†								
25 +								
l †								
l T								
30 +								
l t								
l Ť								
+								
+								
35 +								
 								
†								
40 								

Page 3 of 3

Site: LCP Brunswick Boring No: SW-58

Diameter: 8 in Date: 07/26/2013

Northing: 431954.66

Easting: 861754.70

Datum: Unknown

Elevation: 10.11

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: T. Murphy (PARSONS)

Project No: Field Book No: 1 Total Depth: 51.5 Ft GW Depth: 0.0 Ft

Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			9	0.0	0.000	SM	Gray medium to coarse SAND, trace silt, wet.	
!		ļ	23				Gray medium to coarse SAND, trace silt, wet.	
	\vdash	-	26 24	0.0	0.000	SM	Stay median to sealed 5745, takes sin, wet.	
†			15	0.0	0.000	CM	Gray medium to coarse SAND, trace silt, wet.	
			20	0.0	0.000	SM		
l			22	0.0	0.000	SM	Black fine to medium SAND, little silt, trace clay laminations.	
l			20			-	Gray CLAY, dense, dry.	
			18 20	0.0	0.000	CL	Glay CLAT, delise, dry.	
45 十			21	0.0	0.000	sc	Gray fine SAND, and clay, dry.	
]	20	0.0	0.000	8		
l			14	0.0	0.000	SM	Gray fine to medium SAND, moist.	
l +			36 20				Gray CLAY, trace sand, dense, dry.	
			20	0.0	0.000	CL	,,,,,,,,	
1 †			5	0.0	0.000		Gray fine SAND, some shells, laminated, trace clay, moist.	
			12	0.0	0.000	SC		
			21	0.0	0.000	sc	Gray fine SAND, some shells, laminated, trace clay, moist.	
50 +			29					
			20	0.0	0.000	SM	Gray fine to medium SAND, some shells, laminated, trace silt,	
I 1			15	0.0	0.000	SM	moiet Gray fine to medium SAND, little shells, laminated, trace silt,	
│			50	0.0	0.000	SM	Gray fine to medium SAND, sandstone fragments in top of spoon.	
51.5			V	ell set at 51	ft, ground el	evation 9.36	6 ft.	

well set at 51 ft, ground elevation 9.36 ft.

Page 1 of 3

Site: LCP Brunswick Boring No: SW-59

Diameter: 8 in Date: 07/28/2013

Northing: 431974.44

Easting: 861788.85

Datum: Unknown

Elevation: 10.47

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Dalum: Onk	known		Projec	CL INO:		FIEID BOOK NO.	
Depth S	Sample	Blow		Mercury		Soil Description	Well Construction Diagram
Ft <u>&</u> 0	ID	Count	(ppm)	(mg/m3)		Soil Description Hand cleared to 5 ft. Installed with a stick up above ground surface. 0 ft to 1 ft Brown TOP SOIL, roots, 1 ft to 5 ft Brown fine to medium SAND, trace silt.	Diagram
					OL/SM		
5 +						Brown drilling MUD, pH 9 to 11, at 8 ft hit brick and other fill material, use different cutter head.	- 111
†							
10 +							
- - -			30	0			
15 +							
+							
†							

Page 2 of 3

Site: LCP Brunswick Boring No: SW-59

Diameter: 8 in Date: 07/28/2013

Northing: 431974.44

Easting: 861788.85

Elevation: 10.47

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No: Total Depth: 50.75 Ft

		IIOWII		1 10,6	ot 140.		i leid book iyo.	
Depth	Recov	Sample		PID	Mercury		Soil Description	Well Construction Diagram
Ft	<u> </u>	ID	Count	(ppm)	(mg/m3)	Code		Diagram
20				30	0		Brown drilling MUD, pH 9 to 11, at 8 ft hit brick and other fill material, use different cutter head.	
40 —								

Page 3 of 3

Site: LCP Brunswick Boring No: SW-59

Total Depth: 50.75 Ft

GW Depth: 0.0 Ft

Diameter: 8 in Date: 07/28/2013

Northing: 431974.44

Easting: 861788.85

Elevation: 10.47

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			10	0	0	SM	Gray brown fine to coarse SAND, trace silt.	
			11				Gray brown fine to coarse SAND, trace silt.	_
]	11			SM	oray brown line to coarse oray, trace sitt.	
1 +			15				Gray brown fine to coarse SAND, trace silt.	
			9	0	0	SM	John Mile to source of the first small	
+			10				43 ft to 43 ft 6 in Gray brown fine to coarse SAND, trace silt,	
			11			SC	43 ft 6 in to 44 ft Gray fine to medium SAND, trace silt, occasional	
l +			4				lens clay. 44 ft to 44 ft 6 in Gray fine to coarse SAND, trace silt, occasional	
			4	0	0	SC/CL	lens clay, 44 ft 6 in to 45 ft Gray CLAY and silt, occasional layer	
45 🕂	-		6				of 1/2 inch Brown fine to coarse SAND, trace silt, wet. Gray CLAY and silt, occasional layer 0.5 inch Brown fine to	─
			9			CL	coarse sand, trace silt, wet.	
+			6				Gray brown fine to medium SAND, trace silt, occasional lens	─
			15	0	0	SC	clay.	
1 †			14				47 ft to 47 ft 4 in Gray fine to medium SAND, trace silt, occasional	-
			15			SC	lens clay, 47 ft 4 in to 48 ft Gray fine to medium SAND, trace silt, trace white shell fragments, 4 inch layer Gray silt and clay.	
1 †			10				Gray clayey SILT, trace fine to medium sand, trace white shell	
			15	0	0	ML	fragments.	
†			17				49 ft to 49 ft 6 in Gray clayey SILT, trace fine to medium sand,	
			17			ML/SM	trace white shell fragments, 49 ft 6 in to 50 ft Gray brown fine to medium SAND, little silt, trace white shell fragments.	
50 🕂	-		27	0	0	SM/R	Gray brown fine to medium SAND, little silt, trace white shell	
50. 75			50			SIVI/R	fragments, refusal.	
00.70			1/4	Vall Sat at 50) 5 f f			

Well Set at 50.5 ft.

Page 1 of 3

Blow

Count

Site: LCP Brunswick Boring No: SW-60

Diameter: 8 in Date: 07/26/2013

Soil Description

Hand cleared to 5 ft. Installed with a stick up above ground

5 ft Brown red fine to medium SAND, trace silt .

Brown drilling MUD, pH 7 to 8.

Northing: 432076.62

Easting: 861887.87

Sample

ID

Elevation: 11.53

Datum: Unknown

Depth

Ft

5

10

15

20

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Mercury

(mg/m3)

PID

(ppm)

30

0

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

USCS

Code

OL/SM

Total Depth: 52.83 Ft GW Depth: 0.0 Ft Well Construction Diagram surface. 0 ft to 2 ft Brown TOP SOIL organic, Gray silt, 2 ft to

Page 2 of 3

Site: LCP Brunswick Boring No: SW-60

Diameter: 8 in Date: 07/26/2013

Northing: 432076.62

Easting: 861887.87

Elevation: 11.53

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No: Total Depth: 52.83 Ft

Datum: Unk	IIOWII		Proje	ct No:		Field Book No:	
Depth So	Sample ID	Blow Count	PID (ppm)	Mercury (mg/m3)		Soil Description	Well Construction Diagram
25 — 35 — 40	ID	Count	(ppm)	(mg/m3)	Code	Brown drilling MUD, pH 7 to 8.	

Page 3 of 3

Site: LCP Brunswick Boring No: SW-60 Diameter: 8 in

Date: 07/26/2013

Northing: 432076.62

Easting: 861887.87

Elevation: 11.53

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Total Depth: 52.83 Ft
GW Depth: 0.0 Ft

<u> </u>							
Depth So	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40		12	0	0			
		18	1			CAND 4	
		18	1		SM	Gray brown fine to coarse SAND, trace silt.	
		19	1			CAND Hall all acceptant lane	<u> </u>
		11	0	0	sc	Gray brown fine to coarse SAND, little silt, occasional lens clay.	
		14	1			LO S S A LA COMPANIO AND	
		14	1		SM	Gray fine to coarse SAND, trace silt.	
		14	1		-	Constitution of CAND Association	
		9	0	0	SM	Gray fine to coarse SAND, trace silt.	
45		13	1		_	Constitution of the consti	
		15	1		SM	Gray fine to coarse SAND, trace silt.	
		14	1			Gray fine to coarse SAND, trace silt.	
		10	0	0	SM	Gray fine to coarse SAND, trace silt.	
		14	4			47 ft to 47 ft 8 in Gray fine to coarse SAND, trace silt, 47	
		16	1		SM/CL	ft 8 in to 48 ft silty CLAY, trace sand.	
		21	1			10 % to 10 % 6 in Crew SANID, some silby clay, 19 % 6 in to	_
		7	0	0	sc	48 ft to 48 ft 6 in Gray SAND, some silty clay, 48 ft 6 in to 49 ft Gray silty clay.	
		9	4			Gray silty CLAY.	_
		8	4		CL	Gray Sitty CLAY.	
50 +		11	4			Gray CLAY, stiff, occasional layer fine to medium sand, some	_
		8	0	0	CL	silt.	
		6	4			Gray coarse SAND, some silt and clay, wet.	_
	7	7	4		SC	Gray Coarse SAND, Some sin and day, wel.	
		9	4			Gray fine to coarse SAND, trace shell fragments, dark Gray	_
		7 50	4		SM/R	pieces of weakly cemented sandstone in tip of spoon.	
52.8 33			<u>I</u> Vell Set at 47	 7			

Well Set at 47.5 ft.

Page 1 of 3

Site: LCP Brunswick **Boring No: SW-61**

Diameter: 8 in Date: 07/30/2013

Northing: 432153.94

Easting: 861902.30

Elevation: 11.86

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 53.33 Ft GW Depth: 0.0 Ft

Datum: Unknown **Project No:** Field Book No: Well Construction Diagram Mercury **USCS** Depth Sample **Blow** PID Soil Description Ft ID Count (mg/m3) Code (ppm) Hand cleared to 5 ft. Installed with a stick up above ground surface. Gray brown fine to medium SAND, trace silt. SM 5 Brown gray drilling MUD, pH 11 to 12, at 8 ft bgs hit concrete and dense fill used 8 inch drill bit for 2 1/2 hours, moved hole 5 ft East. 10 0.5 0 15 20

Page 2 of 3

Site: LCP Brunswick Boring No: SW-61

Diameter: 8 in Date: 07/30/2013

Northing: 432153.94

Easting: 861902.30

Elevation: 11.86

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Driller: Jared Link (Groundwater Protection Inc)

Total Depth: 53.33 Ft

GW Depth: 0.0 Ft

Datum:	Unk	nown		Proje	ct No:		Field Book No:	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
20							Brown gray drilling MUD, pH 11 to 12, at 8 ft bgs hit concrete and dense fill used 8 inch drill bit for 2 1/2 hours, moved hole 5 ft East.	
25 +								
30 +				0.5	0			
35 +								
40 _								

Page 3 of 3

Site: LCP Brunswick Boring No: SW-61 Diameter: 8 in

Date: 07/30/2013

Northing: 432153.94

Easting: 861902.30

Elevation: 11.86

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No: Total Depth: 53.33 Ft

GW Depth: 0.0 Ft

Depth	Sample ID	e Blow	PID	Mercury	USCS		Well Construction
Ft	rg ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40		14	0	0	SM	Gray brown fine to coarse SAND, trace silt.	
		16					
		17			SM	Gray brown fine to coarse SAND, trace silt.	
		17				Gray brown fine to coarse SAND, trace silt.	
		8	0	0	SM	Gray brown line to coarse SAND, trace sitt.	
+		14				Gray brown fine to coarse SAND, trace silt.	
▋		18 21			SM	John Mile & Sacist of the Cartes and	
+		12				Gray brown fine to medium SAND, trace silt.	-
		11	0	0	SM		
45 🕂		14				Gray CLAY, stiff, 1/2 inch layer fine to coarse sand, dry.	
		21			CL		
†		7				Gray brown fine to medium SAND, lens clay.	
		10	0	0	SC		
Ī		10			sc	Gray fine to coarse SAND, trace silt, 2 inch layer of Gray clay and silt.	
		11				,	
		9	0	0	SM	Gray fine to coarse SAND, trace silt.	
1		8				10 0 1 10 0 1 1 10 10 10 10 10 10 10 10	
		9			SM/SC	49 ft to 49 ft 4 in Gray fine to coarse SAND, trace silt, 49 ft 4 in to 50 ft SILT and clay.	
50 +		9	0	0		Gray fine to coarse SAND, trace silt.	4
		15 18	U		SM	oray into to coarse orans, trace site.	
+		18				51 ft to 51 ft 6 in Gray fine to coarse SAND, trace silt, occasional	-
		22			SC	lens of clay, 51 ft 6 in to 52 ft Gray CLAY, little sand.	
†		4				Gray fine to medium SAND, some silt, trace white shell fragments,	1
		14			SM	2 inch layer of clay.	
53.3 3		47			SM/R	Gray fine to medium SAND, little silt, layers of white shells,]
55.55		V	Vell Set at 49	9 ft.		layers of weakly cemented stone, moved 3 inches then started bounci	ng.

Page 1 of 3

Site: LCP Brunswick Boring No: SW-62

Diameter: 8 in

Date: 08/10/2013 - 08/11/2013

Northing: 432235.20

Easting: 861893.45

Elevation: 10.58

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Total Depth: 53.25 Ft GW Depth: 0.0 Ft

Depth S Sample Blow ID Count (ppm) Mercury USCS Code Soil Description Hand clear to 5 feet. Installed with stick up above ground surface. pH is 7.
O Hand clear to 5 feet. Installed with stick up above ground
5 -

Page 2 of 3

Site: LCP Brunswick Boring No: SW-62

Diameter: 8 in

Date: 08/10/2013 - 08/11/2013

Northing: 432235.20 Easting: 861893.45

Elevation: 10.58

Consultant: S. Dillman (PARSONS)

Method: Mud Rotary

Driller: Jeff Zeigler (Groundwater Protection Inc)

Total Depth: 53.25 Ft

GW Depth: 0.0 Ft

Datum: Unk	nown		Proje	ct No:		Field Book No: 2	
Depth 8	Sample	Blow	PID	Mercury		Soil Description	Well Construction Diagram
	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
25							
30			0.0	0.000			
35 +							

Page 3 of 3

Site: LCP Brunswick Boring No: SW-62

Diameter: 8 in

Date: 08/10/2013 - 08/11/2013

Northing: 432235.20

Easting: 861893.45

Elevation: 10.58

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Total Depth: 53.25 Ft

GW Depth: 0.0 Ft

Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			9	0.0	0.000		Gray medium to coarse SAND, wet.	
			17			SM		
	\angle		15			O.V.		
			13				CAND to the land t	-
			6	0.0	0.000		Gray medium to coarse SAND, trace clay in upper lenses, wet.	
↓			7			SM		<u> </u>
			13					
+ 1			18 4	0.0	0.000		Gray fine to medium SAND, trace clay in thin lenses upper sample,	
			8	0.0	0.000		wet.	
45 🕂 🛘			13			SM		
			11					
† 1			4	0.0	0.000		SAND as above over 7 inches greenish gray CLAY, little silt,	
			9			014/01	semi stiff.	
†			13			SM/CL		
			13					
Īſ			5				Fine to medium SAND, trace rounded pebbles, coarse sand over 6 inches greenish gray clay, trace fine sand in lenses, wet.	
- ↓			7			SM/CL	,, ,, ,, ,	
			7					
50 $+$			10				Same as above 6 inches.	4
			3 1/2	0.0 0.0	0.000 0.000	CL	Carro de aborto o mones.	
+			1/2	0.0	0.000	CL		
			3	0.0	0.000	CL	Greenish gray CLAY, trace fine sand in thin lenses, semi	-
+			19	0.0	0.000	CL	cliay as above, bottom inch fine SAND.	-
			5	0.0	0.000	SM	Gray fine SAND, wet.	+
53.25			50/3	0.0	0.000	SIVI		_

Page 1 of 3

Site: LCP Brunswick Boring No: SW-63

Diameter: 8 in Date: 08/07/2013

Northing: 432318.74

Easting: 861884.81

Elevation: 9.86

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Total Depth: 53.0 Ft GW Depth: 0.0 Ft

Dataiii.	OHK	nown		Proje	ct No:		Field Book No: 2	
Depth	Recov	Sample		PID	Mercury		Soil Description	Well Construction Diagram
Ft	<u> </u>	ID	Count	(ppm)	(mg/m3)	Code	Hand cleared to 5 ft. Installed with a stick up above ground	Diagram.
'							surface. pH is 7.	
†								
11								
+								
·								
+								
+								
TI								
+								
• 十								
+								
†								
5 +								
†								
+								
†								
₂₀								

Page 2 of 3

Site: LCP Brunswick Boring No: SW-63

Diameter: 8 in Date: 08/07/2013

Northing: 432318.74

Easting: 861884.81

Elevation: 9.86

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No. 2 Total Depth: 53.0 Ft GW Depth: 0.0 Ft

Datum: Ur	nknown		Proje	ct No:		Field Book No: 2	
Depth S	Sample ID	Blow Count		Mercury (mg/m3)	Code	Soil Description	Well Construction Diagram
25 — 30 — 30 — 30 — 30 — 30 — 30 — 30 — 3	D ID			(mg/m3)	Code	PH is 7.	Diagram
35 +							

Page 3 of 3

Site: LCP Brunswick Boring No: SW-63

Total Depth: 53.0 Ft

GW Depth: 0.0 Ft

Diameter: 8 in Date: 08/07/2013

Northing: 432318.74

Easting: 861884.81

Elevation: 9.86

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Dataiii	. 01110	1104411		1 10,0	ot 140.		1 Iold Book 140. 2	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	&	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	
40			10	0.0	0.000		Gray medium to coarse SAND, over darker gray medium sand, w	/et.
			15			SM		
			19			Oivi		
1			16					
			13	0.0	0.000		Gray fine to medium SAND, little clay in 2 inch lense, wet.	
1			16			SM		
			14					
+			10				Same as above, trace silt near bottom.	
			8	0.0	0.000		odine as above, trace sit fledi bottom.	
45 +			9			SM		
			13					
+			7	0.0	0.000		Same as above, thin clay lenses in lower sand, bottom 6 inches	_
			9	0.0	0.000		greenish gray CLAY, stiff, moist to wet.	
†			14			SM/CL		
		1	8					
†			7	0.0	0.000		Same as in the bottom of last spoon.	
			6			CL		<u> </u>
†			2	0.0	0.000		Fine SAND 12 inches, over 12 inches of greenish gray CLAY, very thin sand lenses scattered, semi stiff, wet.	
I			3			SM/CL	yery unit sailu ietises scattereu, settii suit, wet.	
50 十			4			SIVI/CL		
1			6					
			5	0.0	0.000		Upper 3 inches fine SAND, some clay over 14 inches fine tan SAND, little medium sand, over 6 inches semi stiff greenish gray	
			8			SM/CL	clay. Shoe had gray weathered sandstone, dense, trace coarse s	
			11				pebbles, hard refusal.	
53.0			50/4					

Page 1 of 3

Site: LCP Brunswick Boring No: SW-64

Diameter: 8 in

Date: 08/07/2013 - 08/08/2013

Northing: 432393.53

Easting: 861905.21

Elevation: 10.42

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Total Depth: 53.5 Ft GW Depth: 0.0 Ft

Datum: Unk	nown	Project No:	Field Book No: 2	
Depth S	Sample Blow ID Count	PID Mercury (ppm) (mg/m3)		Well Construction Diagram
Ft 0 4 10 + 15 + 15 + 15 + 15 + 15 + 15 + 15 +	ID Count	(ppm) (mg/m3)		Diagram
20				

Page 2 of 3

Site: LCP Brunswick Boring No: SW-64

Diameter: 8 in

Date: 08/07/2013 - 08/08/2013

Northing: 432393.53

Easting: 861905.21

Elevation: 10.42

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Total Depth: 53.5 Ft
GW Depth: 0.0 Ft

Sample	Blow Count	PID (ppm)	Mercury (mg/m3)	Code	Soil Descrip	ption	Cor	Well nstruction iagram
					pH is 7.			

Page 3 of 3

Site: LCP Brunswick Boring No: SW-64

Diameter: 8 in

Date: 08/07/2013 - 08/08/2013

Total Depth: 53.5 Ft

GW Depth: 0.0 Ft

Northing: 432393.53

Easting: 861905.21

Elevation: 10.42

Datum: Unknown

Driller: Jeff Zeigler (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: S. Dillman (PARSONS)

Project No: Field Book No: 2

Datum	ı. Olik	IIOWIII		1 10,0	Ct 140.		Tield Book No. 2	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	A A	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			15	0.0	0.000		Gray medium to coarse SAND, trace silt and clay in thin lenses at top, wet.	
			15			SM		
	$ \angle $		16					
+			20	0.0	0.000		Gray medium to coarse SAND, grading to medium sand botton	n 1/2
			16 17	0.0	0.000		of sample, wet.	
+			19			SM		
			24					
l †			7	0.0	0.000		Gray fine to medium SAND, wet.	
			4			SM		
45 🕇			6			Sivi		
			14					
			13	0.0	0.000		Greenish gray fine to medium SAND, little clay, cohesive, wet.	
+			15 14			SM/CL		
			24					
l †			6	0.0	0.000		Light gray fine to medium SAND, no clay, wet.	
			16			014		
l †			21			SM		
50 $+$			23					
50			7	0.0	0.000		Greenish gray CLAY interbedded with tan brown fine SAND, fishy odor bottom 6 inches over tan fine to medium sand, wet.	
			6			SM/CL		
			9 7					
+			15	0.0	0.000		Light gray fine SAND, over 8 inches of gray SAND and CLAY,	
			16	0.0	0.000	SM/CL	and gray weathered sandstone in tip, wet.	
 			50/5			0,02		
53.5							<u> </u>	

Page 1 of 3

Site: LCP Brunswick Boring No: SW-65

Diameter: 8 in Date: 08/12/2013

Total Depth: 50.08 Ft

GW Depth: 0.0 Ft

Northing: 431513.80

Easting: 861477.74

Elevation: 10.15

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Datum:	Unk	nown		Proje	ct No:		Field Book No:	
Depth	Recov	Sample	Blow	PID	Mercury	USCS		Well Construction Diagram
Ft	Re	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
0 -						SM	Hand cleared to 5 ft. Installed with a stick up above ground surface. Brown fine to medium SAND, trace silt.	
5 -							Brown gray drilling MUD, pH 7 to 8.	
10 —				7.8	0.000			
20								

Page 2 of 3

Site: LCP Brunswick Boring No: SW-65

Diameter: 8 in Date: 08/12/2013

Northing: 431513.80

Easting: 861477.74

Elevation: 10.15

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Total Depth: 50.08 Ft

GW Depth: 0.0 Ft

Datum: l	Unknown		Proje	ct No:		Field Book No:	
Depth	Samp ID	ole Blow	PID	Mercury		0.115	Well Construction Diagram
Ft	ıD	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
20						Brown gray drilling MUD, pH 7 to 8.	
- - -							
30 +			7.8	0			
35 +							

Page 3 of 3

Site: LCP Brunswick Boring No: SW-65

Diameter: 8 in Date: 08/12/2013

Northing: 431513.80

Easting: 861477.74

Elevation: 10.15

Datum: Unknown

Driller: Jared Link (Groundwater Protection Inc)

Method: Mud Rotary

Consultant: David Changa-Moon (Mutch Associates)

Project No: Field Book No:

Total Depth: 50.08 Ft GW Depth: 0.0 Ft

Depth	ò	Sample	Blow	PID	Mercury	USCS		Well Construction
Ft	Recov	ID	Count	(ppm)	(mg/m3)	Code	Soil Description	Diagram
40			6 7	0	0	SM	Gray fine to coarse SAND, trace silt.	
†			9			SM	Gray fine to coarse SAND, trace silt.	
			2 9	0	0	SM	Gray fine to coarse SAND, trace silt.	
			22			SM	Gray fine to coarse SAND, trace silt, layer 7 inch fine to medium sand, trace silt.	
			16 17	0	0	sc	Gray fine to coarse SAND, little clayey silt, trace white shell fragments.	
45 —			20 28			SM	Gray fine to coarse SAND, trace silt, trace white shell fragments.	
			9 20	0	0	SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
			26 28			SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
			10 13	0	0	SM	Gray fine to medium SAND, trace silt, trace white shell fragments.	
			15 50			SM/R	49 ft to 49 ft 6 in Gray fine to medium SAND, trace silt, 49 ft 6 in to 50 ft Gray fine to coarse SAND, little silt, 1/4 inch cemented sandstone in tip of spoon.	
5 9.0 8				Vell Set at 50) ft.		No recovery, spoon bouncing on formation.	<u> </u>

Appendix B:

Well Development Logs

Sparge Well Drilling Summary Sheet, LCP Chemicals Site, Brunswick, GA

Sparge We	Well Developme	nt		Tota	al Number of We		64
Sparge Well #	Total Purge Volume (gal)	Sustained Flow Rate (gpm)	Flow-rate after Surge Block (gpm)	Final pH	Final Conductivity (mS/cm)	Final Turbidity (NTU)	Date Developed
2	70	0.5		11.74	55.97	2.85	8/10/2013
3	80	1		11.72	52.53	1.96	8/10/2013
4	82.5	1.5		10.46	22.65	318	8/5/2013
5	71.25	1.5		11.65	29.23	53.8	8/6/2013
6	75	1.5		11.51	42.34	8.73	8/6/2013
7	112.5	1		10.6	61.24	4.25	8/11/2013
8	75	1.5		11.54	54.93	11.9	8/5/2013
9	75	1.5		11.5	50.51	10.8	8/7/2013
10	75	1.5		11.63	40.99	2.63	8/7/2013
11	82.5	1.5		11.45	38.9	14.1	8/5/2013
12	85	1.25		11.7	37.88	9.06	7/28/2013
13	82.5	1.5		11.66	26.04	32.3	7/28/2013
14	31	< 0.5	0.47	11.26	35.89	45.2	7/28/2013
15	87.5	1		11.44	78.5	12.6	8/12/2013
16	75	1.5		11	42.27	138	8/8/2013
17	82.5	1.5		11.67	68.1	4.25	8/7/2013
18	82.5	1.5		11.26	>20.00	low	7/26/2013
19	71.25	1.25		11.2	19.35	2.6	7/26/2013
20	78.5	1.5		11.23	>20.00	2.48	7/26/2013
21	52	< 0.5	0.45	11.17	12.93	44	7/27/2013
22	76.5	1.5		11.67	32.13	9.55	7/29/2013
23	77	< 0.5	0.3	10.55	34.47	113	7/29/2013

Sparge Well Drilling Summary Sheet, LCP Chemicals Site, Brunswick, GA

-	Well Developme	nt			al Number of We		64
Sparge Well #	Total Purge Volume (gal)	Sustained Flow Rate (gpm)	Flow-rate after Surge Block (gpm)	Final pH	Final Conductivity (mS/cm)	Final Turbidity (NTU)	Date Developed
24	62	< 0.5	0.57	11.58	88.29	34.8	8/12/2013
25	11	< 0.5	0.34	10.81	46.07	391	8/9/2013
26	80	1		6.83	>20.00	3.08	7/25/2013
27	76.6	0.46		6.84	>20.00	-	7/25/2013
28	-	< 0.5	< 0.5	10.44	23.04	58.9	7/27/2013
29	87	1		9.87	29.54	36	7/28/2013
30	65	< 0.5	1	11.35	21.22	172	7/29/2013
31	80	0.5		12.03	67.36	4.14	8/8/2013
32	29	< 0.5	0.5	11.79	41.75	73.9	8/8/2013
33	80	1		11.44	37.46	over range	8/10/2013
34	37	< 0.5		11.9	40.76	25.3	8/13/2013
35	67.5	1		8.75	12.68	97	8/13/2013
36	72.5	1		11.78	68.19	29.1	8/12/2013
37	90	1		11.44	61.06	48.2	8/10/2013
38	80	1		11.62	51.5	150	8/12/2013
39	79.5	1.5		8.99	44.91	2.99	7/27/2013
40	85.5	1.5		10.36	40.36	32.1	7/29/2013
41	81	1.5		10.77	65.29	9.66	7/30/2013
42	52	< 0.5	0.38	11.46	65.09	1.24	7/31/2013
43	70	0.4	0.38	12.17	64.62	4.05	8/8/2013
44	75	0.5		9.97	33.09	over range	8/9/2013
45	72	0.5		11.89	22.18	65.5	8/13/2013

Sparge Well Drilling Summary Sheet, LCP Chemicals Site, Brunswick, GA

	Well Developme	ent			al Number of We	•	64
Sparge Well #	Total Purge Volume (gal)	Sustained Flow Rate (gpm)	Flow-rate after Surge Block (gpm)	Final pH	Final Conductivity (mS/cm)	Final Turbidity (NTU)	Date Developed
46	67.5	1.5		11.75	39.66	63.8	8/8/2013
47	80	1		10.85	18	70.2	8/9/2013
48	77.5	1		10.66	11.83	309	8/14/2013
49	102.5	1		11.49	47.54	15.5	8/14/2013
50	70	0.5		11.78	55.95	4.6	8/9/2013
51	79.5	1.5		11.17	86.31	19.3	7/30/2013
52	27	< 0.5		10.16	17.06	40.55	7/30/2013
53	84	1.5		11.83	59.19	43.6	8/5/2013
54	15	< 0.5		9.26	1.069	907	8/13/2013
55	65	1		11.89	21.91	60.2	8/13/2013
56	72.5	1		11.51	36.95	over range	8/10/2013
57	60	1		11.88	53.34	6.85	8/8/2013
58	76.5	1.5		11.1	80.59	4.74	7/31/2013
59	37	< 0.5		11.52	28.19	492	7/30/2013
60	82.5	1.5		11.66	32.43	over range	8/8/2013
61	83	1.25		11.56	22.06	over range	8/5/2013
62	67.5	1		10.47	7.214	389	8/13/2013
63	87.5	1		11.83	47.43	56.6	8/9/2013
64	67.5	1		11.71	56.55	59.1	8/9/2013
65	26	< 0.5		10.84	33.68	89.2	8/14/2013

Appendix C:

Piezometer Construction Diagrams

Water Mgmt. Dist.: Permit Number:

Work Order:

Type of Well:

713041 Piezometer

Well Number: PZ 5 Method Used: HSA

Borehole Diaz. 8"

Site Information:

Name:

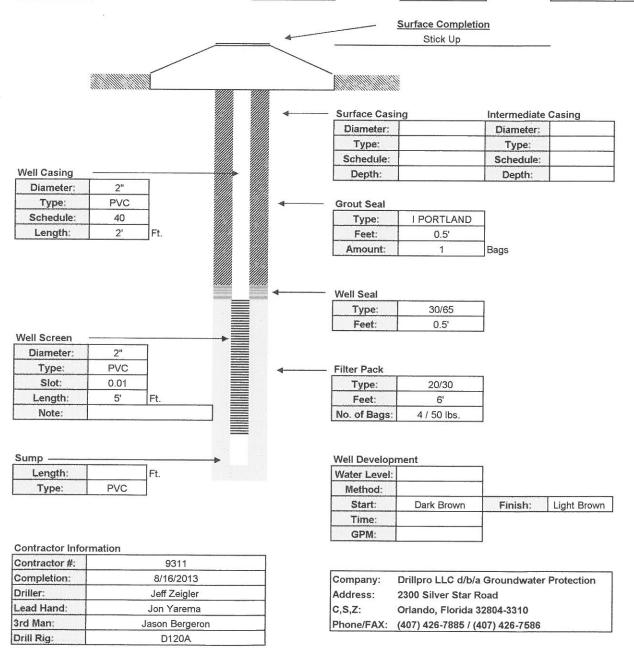
Honeywell

Address: C,S,Z:

4125 ross Rd. Brunswick, GA

S/T/R:

Client / Consultant Information


Consultant:

Parsons

Field Rep:

David Changa-Moon

Well Diameter	Well Type	Well Depth	Screen Length	Casing Length	Bags Grout	Sand Bags/Weight	Filter Type	Well Seal
2"	PVC	7'	5'	2'	1	4 / 50 lbs.	20/30	30/65
40 ◀	Schedule	Slot Size:	0.01		0.5'	Feet →	6'	0.5'

Water Mgmt. Dist.: Permit Number:

713041

Work Order: Type of Well: Well Number:

Piezometer

Well Number: PZ 11
Method Used: HSA

Borehole Diaz. 8"

Site Information:

Name:

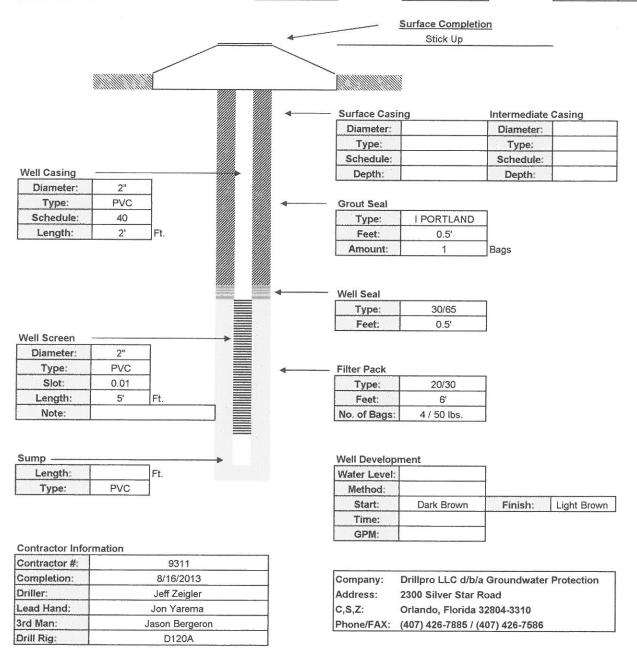
<u>Honeywell</u>

Address:

4125 ross Rd. Brunswick, GA

C,S,Z: S/T/R:

Client / Consultant Information


Consultant:

Parsons

Field Rep:

David Changa-Moon

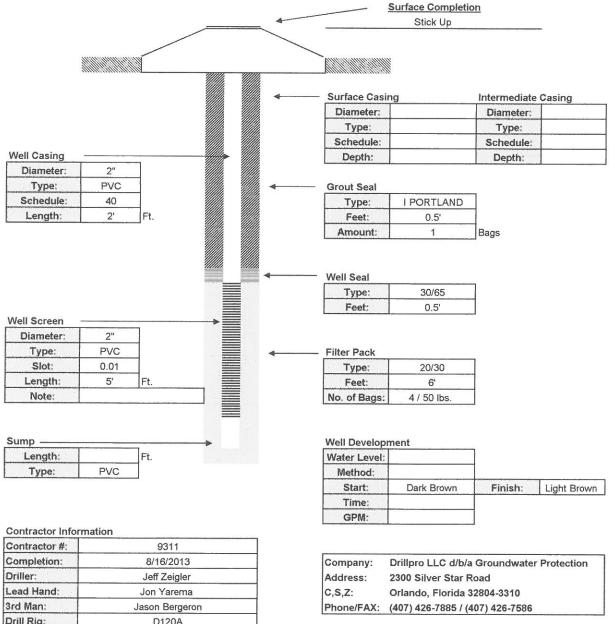
Well Diameter	Well Type	Well Depth	Screen Length	Casing Length	Bags Grout	Sand Bags/Weight	Filter Type	Well Seal
2"	PVC	7'	5'	2'	1	4 / 50 lbs.	20/30	30/65
40 ◀─	Schedule	Slot Size:	0.01		0.5'	← Feet →	6'	0.5'

Water Mgmt. Dist.: Permit Number:

Borehole Diaz. 8"

Work Order: 713041 Type of Well: Piezometer Well Number: PZ 13 Method Used: HSA

Site Information:


Name: Honeywell Address: 4125 ross Rd. C,S,Z: Brunswick, GA

S/T/R:

Client / Consultant Information

Consultant: <u>Parsons</u>

Well Diameter	Well Type	Well Depth	Screen Length	Casing Length	Bags Grout	Sand Bags/Weight	Filter Type	Well Seal
2"	PVC	7'	5'	2'	1	4 / 50 lbs.	20/30	30/65
40 ◀─	Schedule	Slot Size:	0.01		0.5'	Feet →	6'	0.5'

Contractor #:	9311	
Completion:	8/16/2013	
Driller:	Jeff Zeigler	
Lead Hand:	Jon Yarema	
3rd Man:	Jason Bergeron	
Drill Rig:	D120A	

Water Mgmt. Dist.: Permit Number:

transian (n. 1965). Talah salah s

Work Order: <u>713041</u>

Type of Well: <u>Piezometer</u>
Well Number: <u>PZ</u> <u>14</u>

Method Used: HSA

Borehole Diaz. 8"

Site Information:

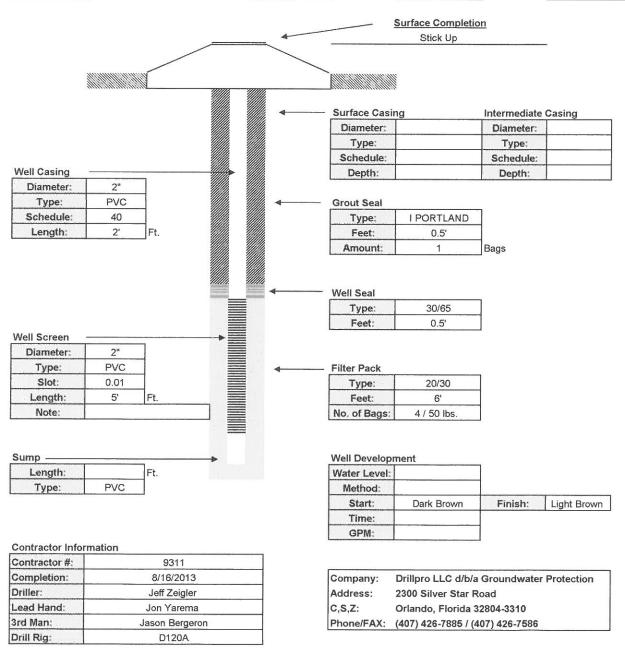
Name: H

Honeywell

Address: C,S,Z: 4125 ross Rd. Brunswick, GA

S/T/R:

Client / Consultant Information


Consultant:

Parsons

Field Rep:

David Changa-Moon

Well Diameter	Well Type	Well Depth	Screen Length	Casing Length	Bags Grout	Sand Bags/Weight	Filter Type	Well Seal
2"	PVC	7'	5'	2'	1	4 / 50 lbs.	20/30	30/65
40 ◀	Schedule	Slot Size:	▶ 0.01		0.5'	Feet →	6'	0.5'

Water Mgmt. Dist.: Permit Number:

Work Order: 713041

Type of Well: Piezometei

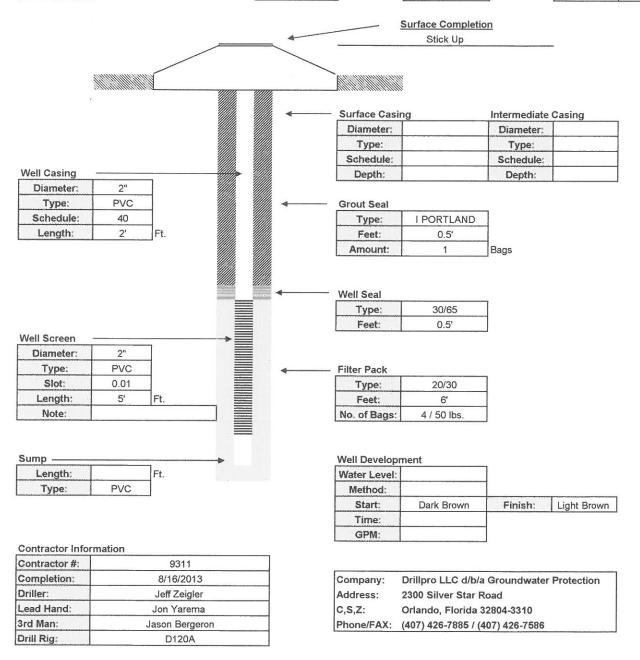
Type of Well: Piezometer
Well Number: PZ 16
Method Used: H S A

Method Used: H S A
Borehole Diaz. 8"

Site Information:

 Name:
 Honeywell

 Address:
 4125 ross Rd.


 C,S,Z:
 Brunswick, GA

S/T/R:

Client / Consultant Information

Consultant: Parsons

Well Diameter	Well Type	Well Depth	Screen Length	Casing Length	Bags Grout	Sand Bags/Weight	Filter Type	Well Seal
2"	PVC	7'	5'	2'	1	4 / 50 lbs.	20/30	30/65
40 ◀	Schedule	Slot Size:	▶ 0.01		0.5'	Feet →	6'	0.5

Water Mgmt. Dist.: Permit Number:

Borehole Diaz. 8"

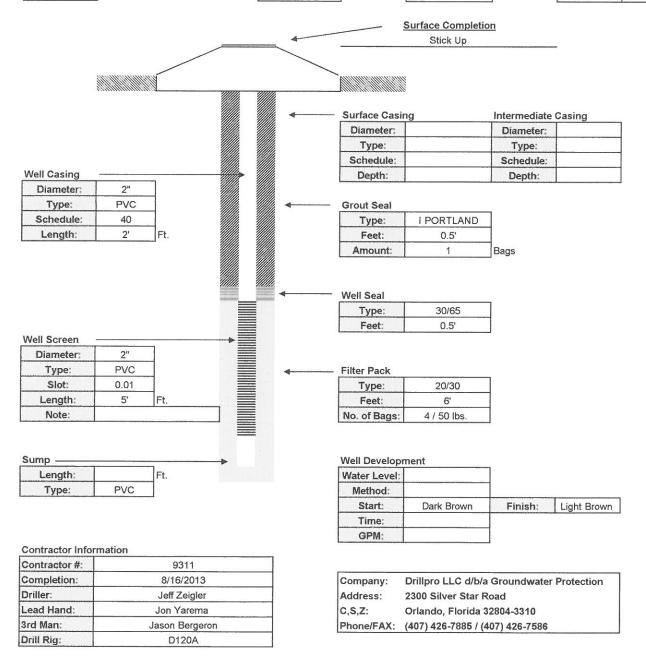
Work Order: 713041

Type of Well: Piezometer
Well Number: PZ 20
Method Used: H S A

Site Information:

 Name:
 Honeywell

 Address:
 4125 ross Rd.


 C,S,Z:
 Brunswick, GA

S/T/R:

Client / Consultant Information

Consultant: Parsons

Well Diameter	Well Type	Well Depth	Screen Length	Casing Length	Bags Grout	Sand Bags/Weight	Filter Type	Well Seal
2"	PVC	7'	5'	2'	1	4 / 50 lbs.	20/30	30/65
40 ◀─	Schedule	Slot Size:	0.01		0.5	← Feet →	6'	0.5'

Water Mgmt. Dist.:

Permit Number:

Work Order: 713041

Type of Well: Piezometer

Well Number: PZ 22

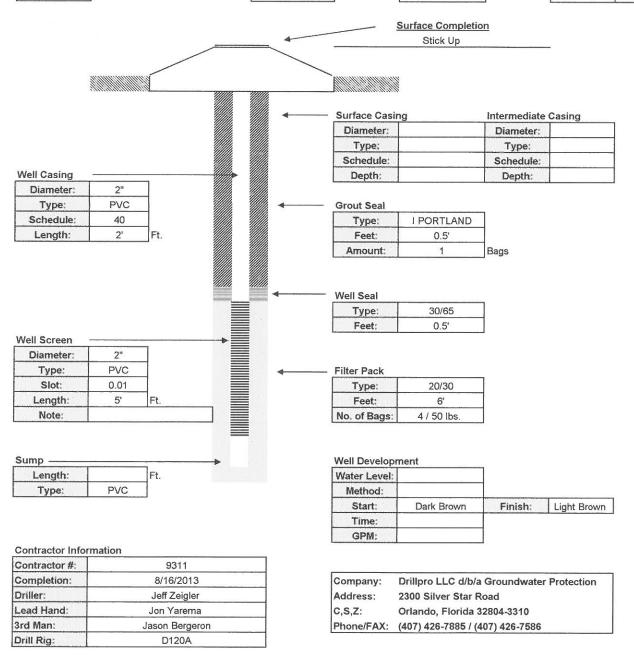
Method Used: H S A

Borehole Diaz. 8"

Site Information:

 Name:
 Honeywell

 Address:
 4125 ross Rd.


 C,S,Z:
 Brunswick, GA

S/T/R:

Client / Consultant Information

Consultant: Parsons

Well Diameter	Well Type	Well Depth	Screen Length	Casing Length	Bags Grout	Sand Bags/Weight	Filter Type	Well Seal
2"	PVC	7'	5'	2'	1	4 / 50 lbs.	20/30	30/65
40 ◀	Schedule	Slot Size:	0.01		0.5	← Feet-	6'	0.5

Water Mgmt. Dist.:

Permit Number:

Work Order:

Type of Well:

713041 Piezometer

Well Number: PZ 28
Method Used: HSA

Borehole Diaz. 8"

Site Information:

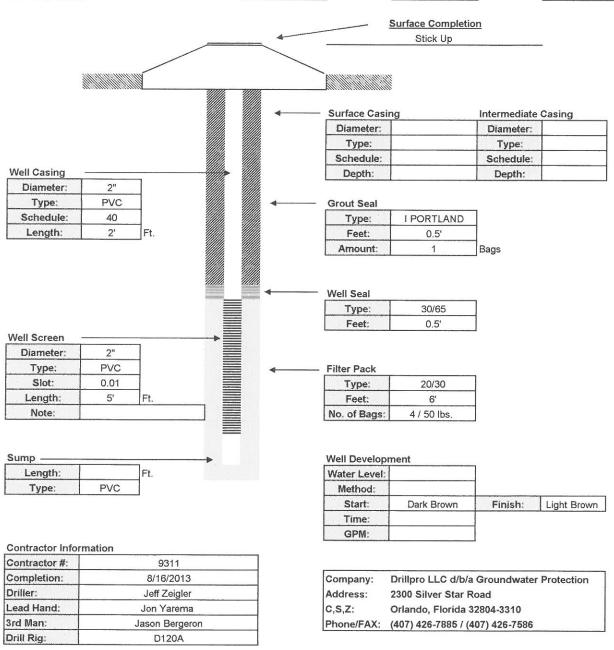
Name: <u>Honeywell</u>

Address:

4125 ross Rd.

C,S,Z:

Brunswick, GA


S/T/R:

Client / Consultant Information

Consultant:

Parsons

Well Diameter	Well Type	Well Depth	Screen Length	Casing Length	Bags Grout	Sand Bags/Weight	Filter Type	Well Seal
2"	PVC	7'	5'	2'	1	4 / 50 lbs.	20/30	30/65
40 ◀	Schedule	Slot Size:	0.01		0.5	Feet →	6'	0.5'

Water Mgmt. Dist.:

Permit Number:

Work Order: Type of Well: 713041 Piezometer

Well Number: PZ 32
Method Used: HSA

Borehole Diaz. 8"

Site Information:

Name:

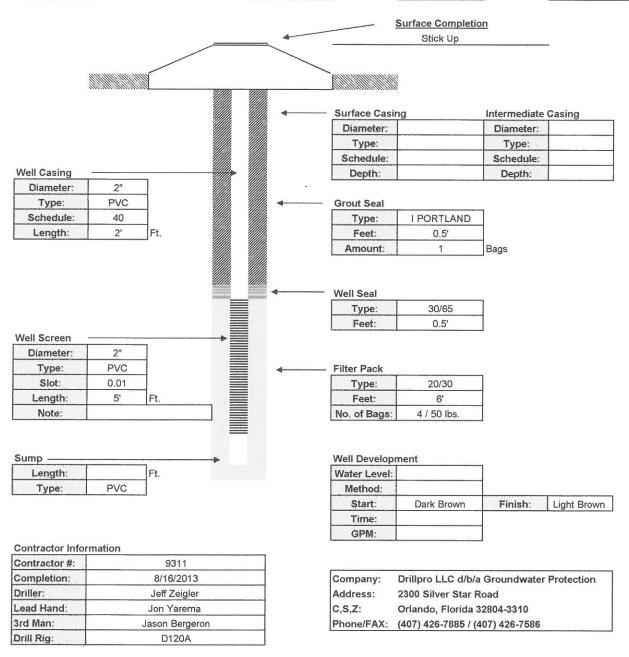
Honeywell

Address:

4125 ross Rd. Brunswick, GA

C,S,Z: S/T/R:

Client / Consultant Information


Consultant:

<u>Parsons</u>

Field Rep:

David Changa-Moon

Well Diameter	Well Type	Well Depth	Screen Length	Casing Length	Bags Grout	Sand Bags/Weight	Filter Type	Well Seal
2"	PVC	7'	5'	2'	1	4 / 50 lbs.	20/30	30/65
40 ◀	Schedule	Slot Size:	▶ 0.01		0.5'	Feet →	6'	0.5'

Water Mgmt, Dist.:

Permit Number:

Work Order: Type of Well: 713041 Piezometer

 Well Number:
 PZ
 35

 Method Used:
 H S A

Borehole Diaz. 8"

Site Information:

Name: <u>Honeywell</u>

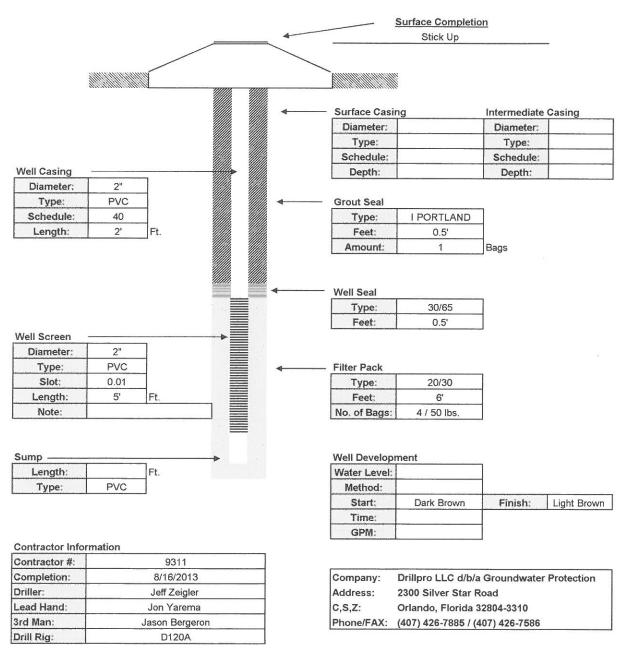
Address:

4125 ross Rd. Brunswick, GA

C,S,Z:

S/T/R:

Client / Consultant Information


Consultant:

Parsons

Field Rep:

David Changa-Moon

Well Diameter	Well Type	Well Depth	Screen Length	Casing Length	Bags Grout	Sand Bags/Weight	Filter Type	Well Seal
2"	PVC	7'	5'	2'	1	4 / 50 lbs.	20/30	30/65
40 ◀	Schedule	Slot Size:	0.01		0.5'	Feet →	6'	0.5'

Water Mgmt. Dist.: Permit Number:

Work Order: 713041

 Work Order:
 713041

 Type of Well:
 Piezometer

 Well Number:
 PZ 40

 Method Used:
 H S A

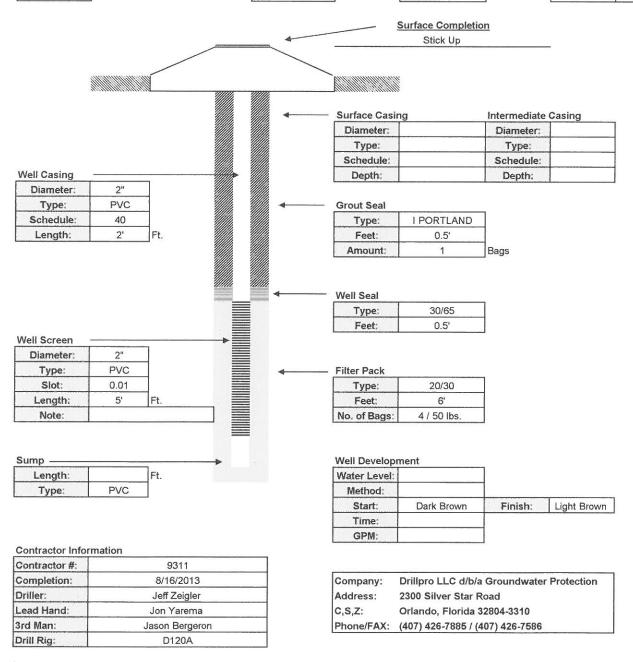
Borehole Diaz. 8"

Site Information:

Name: <u>Honeywell</u>

Address:

4125 ross Rd. Brunswick, GA


C,S,Z: S/T/R:

Client / Consultant Information

Consultant: Parsons

Field Rep: <u>David Changa-Moon</u>

Well Diameter	Well Type	Well Depth	Screen Length	Casing Length	Bags Grout	Sand Bags/Weight	Filter Type	Well Seal
2"	PVC	7'	5'	2'	1	4 / 50 lbs.	20/30	30/65
40 ◀─	Schedule	Slot Size:	▶ 0.01		0.5	← Feet →	6'	0.5'

Water Mgmt. Dist.: Permit Number:

Work Order: 713041

Type of Well: Piezometer Well Number: PZ 43 Method Used: HSA

Borehole Diaz. 8"

Site Information:

Name:

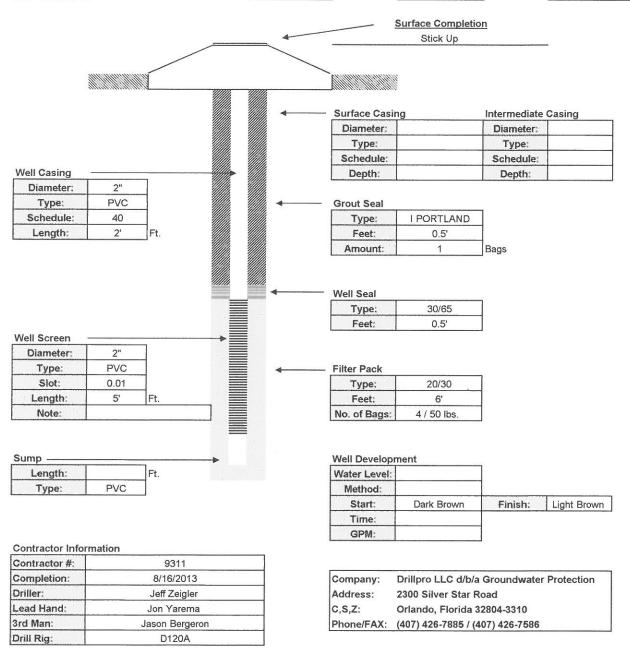
Honeywell

Address: C,S,Z:

4125 ross Rd. Brunswick, GA

S/T/R:

Client / Consultant Information


Consultant:

Parsons

Field Rep:

David Changa-Moon

Well Diameter	Well Type	Well Depth	Screen Length	Casing Length	Bags Grout	Sand Bags/Weight	Filter Type	Well Seal
2"	PVC	7'	5'	2'	1	4 / 50 lbs.	20/30	30/65
40 ◀─	Schedule	Slot Size:	0.01		0.5'	Feet →	6'	0.5'

Water Mgmt. Dist.:

Permit Number:

Work Order: 713041

Type of Well: Piezometer

Well Number: PZ 58

Method Used: H S A

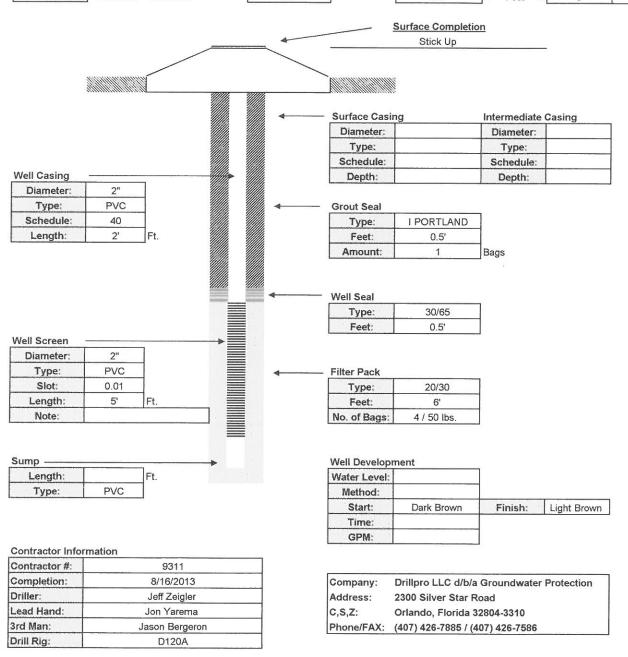
Borehole Diaz. 8"

Site Information:

 Name:
 Honeywell

 Address:
 4125 ross Rd.

 C,S,Z:
 Brunswick, GA


C,S,Z: S/T/R:

Client / Consultant Information

Consultant: Parsons

Field Rep: <u>David Changa-Moon</u>

Well Diameter	Well Type	Well Depth	Screen Length	Casing Length	Bags Grout	Sand Bags/Weight	Filter Type	Well Seal
2"	PVC	7'	5'	2'	1	4 / 50 lbs.	20/30	30/65
40 ◀─	Schedule	Slot Size:	0.01		0.5'	Feet →	6'	0.5

Water Mgmt. Dist.: Permit Number:

 Work Order:
 713041

 Type of Well:
 Piezometer

 Well Number:
 PZ
 63

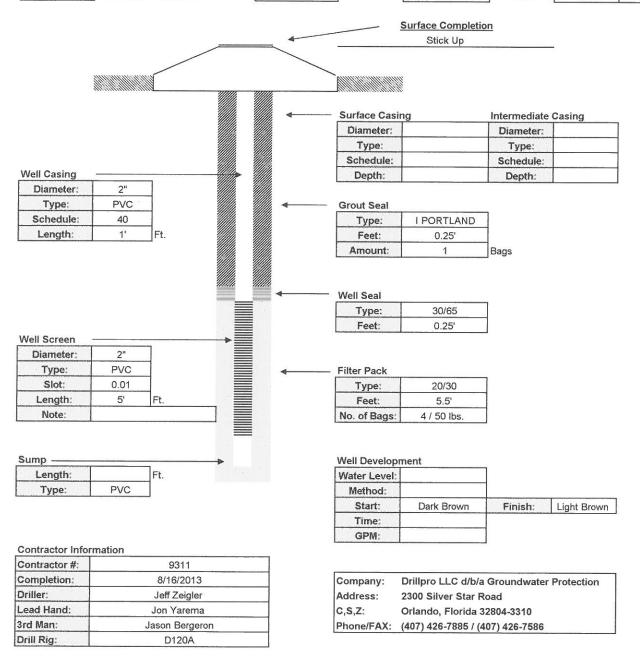
Method Used: HSA
Borehole Diaz. 8"

Site Information:

 Name:
 Honeywell

 Address:
 4125 ross Rd.

 C,S,Z:
 Brunswick, GA


S/T/R:

Client / Consultant Information

Consultant: Parsons

Field Rep: <u>David Changa-Moon</u>

Well Diameter	Well Type	Well Depth	Screen Length	Casing Length	Bags Grout	Sand Bags/Weight	Filter Type	Well Seal
2"	PVC	6'	5'	1'	1	4 / 50 lbs.	20/30	30/65
40 ◀─	Schedule	Slot Size:	0.01		0.25	Feet →	5.5'	0.25'

Appendix D:

Purge Logs

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: EW-1	SAMPLE ID: EW	1	DATE: 9/4/2013

PURGING DATA

					1 0110	ING DA						
WELL		TUBING			ELL SCREEN IN			-	DEPTH	_	RGE PUMP TYPE	
DIAMETER	(inches): n/a	DIAMETE	ER (inches): 1/	4 DE	EPTH (feet btoc)	: 44 to 49		TO WA	TER (feet btoc): n	/a OR	BAILER: PP	
Tubing-in-	Screen Interva	al Purge: 1 EQ			IG CAPACITY 44 feet) + 0.13) + FLOW CELL V s	OLUME		
INITIAL PUMP OR TUBING DEPTH IN WELL (feet btoc): ~25 FINAL PUMP DEPTH IN W						PURGING INITIATED AT: 1140		PURGING ENDED AT:	1253	TOTAL VOLUME PURGED (gallons): 3.46		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	рН	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	ORP (mV)	SP Gravity (sg)
1143	0.21	0.21	0.02	n/a	11.00	31.39	5.	.290	105.0	177	-74.7	
1148	0.25	0.46	0.03	n/a	11.10	31.23	5.	.279	83.1	61.7	-90.2	
1153	0.25	0.71	0.03	n/a	11.18	31.68	5.	.284	70.0	34.4	-102.0	
1158	0.25	0.96	0.03	n/a	11.21	32.30	5.	.289	62.9	28.9	-106.0	
1203	0.25	1.21	0.03	n/a	11.23	32.49	5.	.295	52.3	25.5	-110.3	
1208	0.25	1.46	0.03	n/a	11.24	32.29	5.	.308	44.8	24.6	-115.7	
1213	0.25	1.51	0.03	n/a	11.24	31.96	5.	.288	38.2	25.8	-116.9	
1218	0.25	1.71	0.03	n/a	11.26	31.94	5.	.297	33.2	24.9	-116.9	
1223	0.25	1.96	0.03	n/a	11.25	31.33	5.	.284	29.1	24.3	-120.8	
1228	0.25	2.01	0.03	n/a	11.26	31.23	5.	.295	25.7	25.0	-121.1	
1233	0.25	2.21	0.03	n/a	11.26	30.55	5.	.283	21.7	25.0	-122.5	
1238	0.25	2.71	0.03	n/a	11.26	29.71	5.	.273	19.2	24.7	-120.6	
1243	0.25	2.96	0.03	n/a	11.26	28.37	5.	.259	17.6	25.6	-118.7	
1248	0.25	3.21	0.03	n/a	11.26	28.67	5.	.257	62.2	24.6	-119.8	
1253 0.25 3.46 0.03 n/a 11.28 29.27 5.267 56.0 25.0 -121.1												
TUBING IN	SIDE DÌA. CAF	s Per Foot): 0. PACITY (Gal./Ft sing – feet belo	.): 1/8" = 0.00			1/4" = 0.002		" = 0.37; 5/16" = 0.				= 5.88 = 0.016
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)												

SAMPLING DATA

	PLED BY (PRINT) / AFFILIATION: Nya Chuprikova SAMPLER(S) SIGNATURE(S):						SAMPLING INITIATED AT: 1300	_	AMPLIN	G ENDED AT:
PUMP OR DEPTH IN	R TUBING I WELL (feet): ~	25					TILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 µm a Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repla	iced)	DUPLICATE: No			
SAMPLE CONTAINER SPECIFICATION			CATION	SAM	IPLE PRESERVATION		INTENDED	SAMPL		Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPN COD		Comments
EW-1	1	PE	250mL	HNO3		1	6010B TAL Metals/7470A Hg	AP	Р	
EW-1	1	PE	125mL				3500 FE/ 9040B pH	AP	Р	
EW-1	1	PE	250mL				6010B Dissolved Silica	AP	Р	
EW-1	1	PE	125mL				9056A_28D Chloride & Sulfate	AP	Р	
EW-1	1	AG	125mL			-	SM 5310 DOC	AP	Р	
EW-1	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	AP	Р	Field-Filtered
EW-1	1	PE	500mL				2540C TDS	AP	Р	
EW-1	1	PE	250mL				2320B Alkalinity	AP	Р	
EW-1	1	AG	125mL	HCI			SM5310 TOC	AP	Р	
REMARKS: Per SOP, parameters stable prior to sample collection. Depth of water cannot be recorded with recovery wells. Tubing can only go down about 25 feet.										

 $\textbf{MATERIAL CODES}: \qquad \textbf{AG} = \textbf{Amber Glass}; \qquad \textbf{CG} = \textbf{Clear Glass}; \qquad \textbf{PE} = \textbf{Polyethylene}; \qquad \textbf{PP} = \textbf{Polypropylene}; \qquad \textbf{S} = \textbf{Silicone}; \qquad \textbf{T} = \textbf{Teflon}; \qquad \textbf{O} = \textbf{Other (Specify)}$

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

			Oiv	COND			III LING	LOG				
SITE NAME: LC	P Chemical Sit	e			_	ITE OCATION: Bru i	nswick, GA					
WELL NO	: EW-2			SAMPLE	ID: EW-2				DATE:	9/5/201	3	
					PUR	GING DAT	ГА	ı				
WELL	R (inches): 2	TUBIN	G TER (inches): 1/		WELL SCREEN INTERVAL STATIC DEPTH PURGE PUMP TYPI DEPTH(ft btoc): 32 to 56 TO WATER (ft btoc): n/a OR BAILER: PP					/PE		
	. ,	al purge: 1 E	QUIPMENT VOL s (0.0026 ga	. = (TUBING (CAPACITY	X TUE	ING LENGTH)	+ FLOW CELL				
	JMP OR TUBIN			OR TUBING ELL (ft btoc):		PURGINO INITIATE	G AT: 0848	PURGING ENDED AT	: 0916		TOTAL VOL PURGED (g	UME pallons): 1.5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	(N	BIDITY TUs)	ORP (mV)	
0851	0.25	0.25	120	n/a	10.02	24.19	7.066	1.5	4	6.1	-167.0	6
0856	0.25	0.5	120	n/a	10.38	23.72	7.074	0.3	4	8.0	-220.9	9
0901	0.25	0.75	120	n/a	10.46	23.82	7.063	0.3	40.1		-205.9	9
0906	0.25	1.00	120	n/a	10.50	24.10	7.086	0.3	29.8		-230.	7
0911	0.25	1.25	120	n/a	10.49	24.21	7.091	0.4	39.1 -151		-151.	1
0916	0.25	1.50	120	n/a	10.50	24.27	7.091	0.5	3	8.6	-161.0	0
									<u></u>			
TUBING II		PACITY (Gal.	0.75 " = 0.02; Ft.): 1/8" = 0.00; slow top of casing	006; 3/16"		1/4" = 0.0026			5 " = 1.0 0.006;		' = 1.47; : 0.010;	12 " = 5.88 5/8 " = 0.016
PURGING	EQUIPMENT C	ODES: E	B = Bailer; B	P = Bladder P	ump; E	ESP = Electric S	Submersible Pu	mp; PP = F	Peristaltic	Pump;	O = O	ther (Specify)
					_	PLING DA	TA	1		1		
Matt So	BY (PRINT) / A cheuer	FFILIATION:		SAMPLER(S)	SIGNATUR	E(S):		SAMPLING INITIATED A	AT: 0927		SAMPLIN ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet): 4	4		UBING MATERIAL CO	DE: Teflo r	n-lined PE		-FILTERED: Yon Equipment T				R SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PUN	MP Y No		TUBING	Yes N	o (replaced)	DUPLICATE	:	N	lo	
SAMPLE # MATERIAL PRESERVATIVE				VE	RESERVATION TOTAL VOL	FINAL	INTEND ANALYSIS A METHO	AND/OR	EQU	MPLING JIPMENT CODE	Additional Comments	
ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDI	ED IN FIELD (m	nL) pH	6010B				
EW-2	1	PE	250mL	HNO3				Metals/ 747		,	APP	

PUMP OR DEPTH IN	R TUBING N WELL (feet): 4	4		TUBING MATERIAL CODE:	Teflon-lined PE			FILTERED: Yes SM 4500 Sulfide FILTER SIZE: <u>0.45 </u> µm n Equipment Type: In-line filter		
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Yes N	o (repl	laced)	DUPLICATE:	No	
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAMPLE PRESERVATION		INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (n	nL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
EW-2	1	PE	250mL	HNO3				6010B TAL Metals/ 7470A Hg	APP	
EW-2	1	PE	125mL					3500 FE/ 9040B pH	APP	
EW-2	1	PE	250mL					6010B Dissolved Silica	APP	
EW-2	1	PE	125mL					9056A_28D Chloride & Sulfate	APP	
EW-2	1	AG	125mL					SM 5310 DOC	APP	
EW-2	2	PE	250mL	NaOH Zinc Acetate				SM4500 Sulfide	APP	Field-Filtered
EW-2	1	PE	500mL					2540C TDS	APP	
EW-2	1	PE	250mL					2320B Alkalinity	APP	
EW-2 1 AG 125mL HCI SM5310 TOC APP										
REMARK	REMARKS: Per SOP, parameters stable prior to sample collection. Depth of water cannot be recorded with recovery wells.									
MATERIA	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)									

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

			GR	OUNE	DWATE	ER SAI	MPLIN	IG	LOG				
SITE NAME: LC	P Chemical Si	te			SI'	TE OCATION: Br	unswick, G/	4					
WELL NO:	EW-3			SAMPLE	ID: EW-3		-			DATE: 9	9/5/20	13	
				_	PURG	ING DA	TA						
WELL	R (inches): 2	TUBING	FER (inches): 1/4		LL SCREEN PTH(ft btoc): \$		_	IC DE	PTH R (ft btoc): n/a		-	GE PUMP T' AILER: PP	YPE
	,	al purge: 1 EQ	UIPMENT VOL. s (0.0026 gal	= (TUBING	CAPACITY	X TU	IBING LENG	TH) +	FLOW CELL V	/OLUME		AILLIN. I I	
	IMP OR TUBIN	G	FINAL PUMP DEPTH IN W	OR TUBING		PURGIN			PURGING ENDED AT:	0907		TOTAL VOL	LUME gallons): 1.25
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP CONE (mS/cm)	١ .	DISSOLVED OXYGEN (% saturation)	TURE (NT	1		SP Gravity
0842	0.25	0.25	0.03	n/a	10.82	25.77	8.017		6.4	25	5.1	-116.	8
0847	0.20	0.45	0.02	n/a	10.91	25.76	7.817		2.6	23	3.9	-206.	7
0852	0.10	0.55	0.01	n/a	10.96	25.93	7.837		2.0	26	5.9	-220.	9
0857	0.20	0.75	0.02	n/a	10.97	25.86	7.853		1.7	24	4.1	-236.	1
0902	0.25	1.00	0.03	n/a	10.99	25.92	7.881		1.6	26	5.4	-242.	1
0907	0.25	1.25	0.03	n/a	11.01	25.98	7.923		1.5	22	2.6	-260.	3
TUBING IN		PACITY (Gal./F	1.75" = 0.02; -t.): 1/8" = 0.00 ow top of casing			1/4" = 0.002		.37; = 0.00		5 " = 1.02 0.006;		5" = 1.47; = 0.010;	12" = 5.88 5/8" = 0.016
	EQUIPMENT (P = Bladder I		SP = Electric	Submersible	e Pum	p; PP = Pe	eristaltic	Pump;	; 0 = 0	ther (Specify)
						LING DA	ATA						
SAMPLED BY (PRINT) / AFFILIATION: Tanya Chuprikova SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: 0913 SAMPLING ENDED AT: 0934													
PUMP OR DEPTH IN	TUBING WELL (feet): 4	1.2	1 -	UBING IATERIAL C	ODE: Teflon	-lined PE			ILTERED: Ye Equipment Ty				R SIZE: <u>0.45</u> μm
FIELD DEC	CONTAMINATIO	ON: PUM	P Y No		TUBING	Yes	No (replace	d)	DUPLICATE:		l	No	
SAMI	PLE CONTAINE	ER SPECIFICA	TION		SAMPLE PR	RESERVATIO	DN		INTENDE			MPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME P	RESERVAT		OTAL VOL	FIN.		ANALYSIS AND/OR EQUIPMENT CODE		Comments		

	о ву (PRINT) / A Chuprikova	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 0913	SAMPLIN ENDED A	
PUMP OR DEPTH IN	R TUBING I WELL (feet): 4	1.2		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 45 n Equipment Type: In-l i		ER SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	N: PU	MP Y	No TUBING Yes No (replaced)			DUPLICATE:	No	
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAMPLE PRESERVATION			INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
EW-3	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP	
EW-3	1	PE	125mL				3500 FE/ 9040B pH	APP	
EW-3	1	PE	250mL				6010B Dissolved Silica	APP	
EW-3	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
EW-3	1	AG	125mL				SM 5310 DOC	APP	
EW-3	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
EW-3	1	PE	500mL				2540C TDS	APP	
EW-3	1	PE	250mL				2320B Alkalinity	APP	
EW-3	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS: Per SOP, parameters stable prior to sample collection. Depth of water cannot be recorded with recovery wells.									
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP =	= Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)
SAMPLIN	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)								

RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: \pm 0.1 unit Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L Turbidity: all readings \leq 10 NTU; or \pm 10%

NAME: LCP Chemical Site		LOCATION: Brunswick, GA	
WELL NO: EW-4 SAMPL	MPLE ID: EW -	,	DATE: 11/21/2013

					PURG	ING DA	TA					
WELL DIAMETER	(inches): 2	TUBING WELL SCREEN DIAMETER (inches): 1/4 DEPTH(ft btoc): 3								PURGE PUMP TYPE OR BAILER: PP		
Tubing-in-	Tubing-in-Screen Interval purge: 1 EQUIPMENT VOL. = (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME = s (0.0026 gallons/foot X 47 feet) + 0.13 gallons = 0.24 gallons											
INITIAL PUMP OR TUBING FINAL PUMP OR TUBING PURGING PURGING DEPTH IN WELL (ft btoc): 35.85 PURGING INITIATED AT: 0816 ENDED AT:0850					856	TOTAL VOLUM PURGED (gallo						
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	ORP (mV)	SP Gravity (sg)	
0821	0.24	0.24	0.03	n/a	11.48	21.62	15.63	1.3	27.6	-234.6		
0826	0.52	0.75	0.05	n/a	11.50	21.61	15.86	1.1	26.9	-275.9		
0831	0.25	1.00	0.03	n/a	11.52	21.41	16.15	1.0	24.7	-316.9		
0836	0.25	1.25	0.03	n/a	11.53	21.33	16.27	0.9	27.0	-337.9		
0841	0.25	1.5	0.03	n/a	11.53	21.38	16.23	0.8	25.3	-236.3		
0846	0.25	1.75	0.03	n/a	11.53	21.39	16.20	0.7	24.3	-247.8		
0851	0.25	2.0	0.03	n/a	11.53	21.43	16.18	0.8	24.4	-244.1		
0856	0.25	2.25	0.03	n/a	11.53	21.53	16.18	0.6	24.3	-213.1		

WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; BTOC = Below top of casing – feet below top of casing which includes above grade riser **3**" = 0.37; **4**" = 0.65; **5**" = 1.02; **6**" = 1.47; **12**" = 5.88 **5/16"** = 0.004; **3/8"** = 0.006; **1/2"** = 0.010; **5/8"** = 0.016

BP = Bladder Pump; PURGING EQUIPMENT CODES: **B** = Bailer;

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

SAMPLING DATA

					AMII LING DATA	1				
Matt So	BY (PRINT) / A cheuer	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 0901	SAMPLIN ENDED	NG AT: 0932	
PUMP OR DEPTH IN	TUBING WELL (feet): 3	9.85		TUBING MATERIAL CODE:	Teflon-lined PE		ILTERED: Yes SM 4500 Sulfide FILTER SIZE: <u>0.45 µm</u> n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Yes No (r	eplaced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
EW-4	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP		
EW-4	1	PE	125mL				3500 FE/ 9040B pH	APP		
EW-4	1	PE	250mL				6010B Dissolved Silica	APP		
EW-4	1	PE	125mL				9056A_28D Chloride & Sulfate	APP		
EW-4	1	AG	125mL				SM 5310 DOC	APP		
EW-4	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
EW-4	1	PE	500mL				2540C TDS	APP		
EW-4	1	PE	250mL				2320B Alkalinity	APP		
EW-4	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Depth of water cannot be recorded with recovery wells.									

REMARKS: Per SOP, parameters stable prior to sample collection. Depth of water cannot be recorded with recovery wells.

Purge water is brown, sulfur-like odor.

MATERIAL CODES: **AG** = Amber Glass; **CG** = Clear Glass; **PE** = Polyethylene; **PP** = Polypropylene; **S** = Silicone; **T** = Teflon; O = Other (Specify)

APP = After Peristaltic Pump; ESP = Electric Submersible Pump; SAMPLING EQUIPMENT CODES: **B** = Bailer; **BP** = Bladder Pump; **RFPP** = Reverse Flow Peristaltic Pump; **SM** = Straw Method (Tubing Gravity Drain); O = Other (Specify)

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: EW-5	SAMPLE ID: EW	-5	DATE: 11/20/2013

PURGING DATA

WELL DIAMETER (inches): 2	TUBING DIAMETER (inches): 1/4	WELL SCREEN INTERVAL DEPTH(ft btoc): 46.1 to 51.1	STATIC DEPTH TO WATER (ft btoc): n/a	PURGE PUMP TYPE OR BAILER: PP
Tubing_in_Scroon Interval nu	,	(, , , , , , , , , , , , , , , , , , ,	STENGTH) + ELOW CELL VOLUM	1 -

Tubing-in-Screen Interval purge: 1 EQUIPMENT VOL. = (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME = s (0.0026 gallons/foot X 47 feet) + 0.13 gallons = 0.23 gallons

INUTIAL DIL	ITIAL PUMP OR TUBING EPTH IN WELL (ft btoc): 39.1		EINIAI DUM	OD TUDING	`	DUDOIN	10	DUDOINO		TOTAL VOLUM	_
_		_	_	P OR TUBINO /ELL (ft btoc):		PURGIN	ED AT: 1449	PURGING ENDED AT: 1	1540	TOTAL VOLUME PURGED (gallor	
DEI IIIIN	VELL (II DIOC)	. 33.1	T TITLE V	DEPTH	. 33.1	INITIATE	-DAI. 1449	LINDED AT.	1340	T ONOLD (gallor	13). 2.73
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	Y ORP (mV)	SP Gravity (sg)
1455	0.23	0.23	0.02	n/a	11.19	21.71	60.22	1.0	7.19	-420.9	
1500	0.52	0.75	0.05	n/a	11.76	21.74	80.82	0.8	6.74	-484.6	
1505	0.25	1.0	0.03	n/a	11.79	21.73	83.44	0.6	4.83	-504.4	
1510	0.25	1.25	0.03	n/a	11.74	21.64	79.66	0.7	5.20	-518.4	
1515	0.25	1.5	0.03	n/a	11.54	21.63	70.57	0.6	6.54	-483.1	
1520	0.25	1.75	0.03	n/a	11.40	21.59	65.32	0.8	5.95	-478.8	
1525	0.25	2.0	0.03	n/a	11.33	21.61	63.67	0.6	6.64	-510.8	
1530	0.25	2.25	0.03	n/a	11.29	21.58	61.80	0.7	6.67	-484.7	
1535	0.25	2.5	0.03	n/a	11.22	21.48	60.05	0.6	6.42	-519.0	
1540	0.25	2.75	0.03	n/a	11.21	21.37	59.27	0.7	6.51	-518.0	
I WELL OAD	A OITY (O - II - II	a Dar Facth. A	7E" 0 00.	4" 004.	4 3E" 0 00	. 2" 04	c. 3 " 0.27.	4" O CE. I	" 400.	C" 4 47. 49"	E 00

WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88

TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016

BTOC = Below top of casing – feet below top of casing which includes above grade riser

PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = El

p; **ESP** = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

SAMPLING DATA

SAMPLED Matt So	DBY (PRINT) / A cheuer	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1542	SAMPLIN ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet): 3	9.1		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 45 n Equipment Type: In-li		ER SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Yes No (re	eplaced)	DUPLICATE:	No	
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
EW-5	1	PE	250mL	HNO3	HNO3 I			APP	
EW-5	1	PE	125mL				3500 FE/ 9040B pH	APP	
EW-5	1	PE	250mL				6010B Dissolved Silica	APP	
EW-5	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
EW-5	1	AG	125mL				SM 5310 DOC	APP	
EW-5	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
EW-5	1	PE	500mL				2540C TDS	APP	
EW-5	1	PE	250mL				2320B Alkalinity	APP	
EW-5	1	AG	125mL	HCI			SM5310 TOC	APP	

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

			GR	OUNL)WAIE	EK SAI	WPLING	LOG					
SITE NAME: LCF	Chemical Sit	e			SI ^T		unswick, GA						
WELL NO:	EW-6			SAMPLE	ID: EW-6				DATE: 9/4/ 2	2013			
					PURG	ING DA	TA	I					
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/4		LL SCREEN I PTH(ft btoc): 4		STATIC I	DEPTH ER (ft btoc): n/a	_	RGE PUMP TYPE BAILER: PP			
Tubing-in-	Fubing-in-Screen Interval purge: 1 EQUIPMENT VOL. = (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME = s (0.0026 gallons/foot X 47 feet) + 0.13 gallons = 0.27 gallons NITIAL PLIMP OF TUBING PURGING PURGING TOTAL VOLUME												
_	INITIAL PUMP OR TUBING FINAL PUMP OR TUBING PURGING PURGING ENDED AT: 0905 TOTAL VOLUME PURGED (gallons): CUMUL. DEPTH IN WELL (ft btoc): 42.5 INITIATED AT: 0832 ENDED AT: 0905 PURGED (gallons):												
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)		SP Gravity (sg)		
0835	0.27	0.27	0.03	n/a	11.95	23.59	39.05	21.5	3.30	-286.6			
0840	0.33	0.6	0.03	n/a	11.47	24.03	39.4	5.3	3.64	-334.0			
0845	0.15	0.75	0.02	n/a	11.55	24.08	39.19	3.5	3.83	-348.6			
0850	0.35	1.1	0.04	n/a	11.61	24.07	39.21	3.0	3.56	-353.7			
0855	0.3	1.4	0.03	n/a	11.72	24.09	39.19	2.3	4.10	-357.4			
0900	0.2	1.6	0.02	n/a	11.77	24.10	39.16	2.0	4.08	-364.3			
0905	0.2	1.8	0.02	n/a	11.75	24.17	38.86	1.9	3.89	-385.6			
TUBING IN	SIDE DÌA. CAI	s Per Foot): 0. PACITY (Gal./Fising – feet belo	t.): 1/8" = 0.00	06; 3/16	1.25 " = 0.06 ' = 0.0014; des above gra	1/4" = 0.002			5" = 1.02; 0.006; 1/2		= 5.88 = 0.016		
	EQUIPMENT C			e Bladder			Submersible Pu	mp; PP = P	eristaltic Pun	np; O = Other	(Specify)		
					SAMP	LING DA	ATA						

SAMPLED Ken Stu	DBY (PRINT) / A uart	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 0905	SAMPLIN ENDED			
PUMP OR DEPTH IN	R TUBING I WELL (feet): 4:	2.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 45 n Equipment Type: In-Ii		ER SIZE: <u>0.45</u> μm		
FIELD DE	CONTAMINATIO	ON: PUI	MP Y I	No T	UBING Yes No (r	eplaced)	DUPLICATE:	No			
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
EW-6	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP			
EW-6	1	PE	125mL				3500 FE/ 9040B pH	APP			
EW-6	1	PE	250mL			6010B Dissolved Silica	APP				
EW-6	1	PE	125mL				9056A_28D Chloride & Sulfate	APP			
EW-6	1	AG	125mL				SM 5310 DOC	APP			
EW-6	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
EW-6	1	PE	500mL				2540C TDS	APP			
EW-6	1	PE	250mL				2320B Alkalinity	APP			
EW-6	EW-6 1 AG 125mL HCI SM5310 TOC APP										
REMARKS: Per SOP, parameters stable prior to sample collection. Depth of water cannot be recorded with recovery wells.											
MATERIA	L CODES:	AG = Ambei	Glass; CG	= Clear Glass; PI	E = Polyethylene; PP =	= Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)		
SAMPLIN	AMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)										

RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: \pm 0.1 unit Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L Turbidity: all readings \leq 10 NTU; or \pm 10%

			Gr	KOUNDW	AIC	ER SAIVI	IFL	.IIVG	LUG				
SITE NAME: LO	P Chemical Sit	te			SIT LO	ΓΕ CATION: Brun :	swick	, GA					
WELL NO	: EW-8			SAMPLE ID:	EW-8					DATE:	11/21/2	2013	
				ı	PURG	ING DAT	Ά		l.				
WELL		TUBIN				NTERVAL		TATIC D				E PUMP T	/PE
	R (inches): 2		ETER (inches): 1	,		16.6 to 51.6			R (ft btoc): n/a			AILER: PP	
Tubing–ir	n-Screen Interva			L. = (TUBING CAP allons/foot X 47 fe					+ FLOW CELL	VOLUM	E		
	UMP OR TUBIN I WELL (ft btoc)	-	_	P OR TUBING VELL (ft btoc): 44.	2	PURGING INITIATED		1611	PURGING ENDED AT:	: 1638		TOTAL VOL PURGED (g	UME jallons): 1.5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)			pH andard units)	TEMP. (°C)	SP C	OND. /cm)	DISSOLVED OXYGEN (% saturation)	O TURBIDITY		ORP (mV)	SP Gravity (sg)
1618	0.26	0.26	0.03	n/a 1	22.37	24.	.42	0.6	7	7.97	-282.	4	
1623	0.49	0.75	0.05	n/a 1	88.0	22.36	25.	.10	0.6	5	5.17	-323.	7
1628	0.25	1.0	0.03	n/a 1	88.0	22.35	25.	.36	0.6 4.6		1.66	-357.	7
1633	0.25	1.25	0.03	n/a 1	0.90	22.31	25.	5.44 0.5		4	1.38	-331.:	2
1638	0.25	1.50	0.03	n/a 1	0.91	22.30	25.	.53	0.5	4	1.22	-298.	7
WELLCA	PACITY (Gallon	s Per Foot):	0.75 " – 0.02:	1" = 0.04: 1.2	5 " – 0.06	6: 2 " = 0.16:	3"	= 0.37;	4 " = 0.65:	5 " = 1.0	12· 6	" = 1.47:	12 " = 5.88
TUBING I	NSIDE DÌA. CAI	PACITY (Gal.	/Ft.): 1/8" = 0.0		0014;	1/4" = 0.0026;		/16" = 0.0					5/8 " = 0.016
PURGING	EQUIPMENT (ODES: I	B = Bailer; E	P = Bladder Pump		SP = Electric Su		sible Pun	np; PP = P	Peristaltio	Pump;	O = O	ther (Specify)
CAMPLE	NOV (DDINIT) / A	EEU IATION		SAMPLER(S) SIG		LING DAT	ГА					1	
Matt So	BY (PRINT) / A cheuer	AFFILIA I ION:		SAMPLER(S) SIG	NATURE	:(5):			SAMPLING INITIATED A	T: 1642		SAMPLIN ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet): 4	4.2		TUBING MATERIAL CODE	: Teflon-	lined PE			FILTERED: Y				R SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATION	MP Y No	TUBING	Yes No	(repl	aced)	DUPLICATE	:	ı	No			
SAM	IPLE CONTAINE	SAN	IPLE PR	ESERVATION			INTEND			MPLING	Additional		
SAMPLE ID CODE						OTAL VOL D IN FIELD (mL		FINAL pH	ANALYSIS A METHO			JIPMENT CODE	Comments
EW-8	1	PE	250mL	HNO3				6010B T Metals/ 747			APP		
						-			3500 FE/	9040B			-

PUMP OR DEPTH IN	TUBING WELL (feet): 4	4.2		TUBING MATERIAL CODE:	Teflon-lined PE		I FILTERED: Yes SM 45 n Equipment Type: In-l i		ER SIZE: <u>0.45</u> μm		
FIELD DE	CONTAMINATIO	ON: PUI	MP Y	No T	UBING Yes No (r e	eplaced)	DUPLICATE:	No			
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
EW-8	1	PE	250mL	HNO3		-	6010B TAL Metals/ 7470A Hg	APP			
EW-8	1	PE	125mL				3500 FE/ 9040B pH	APP			
EW-8	1	PE	250mL				6010B Dissolved Silica	APP			
EW-8	1	PE	125mL				9056A_28D Chloride & Sulfate	APP			
EW-8	1	AG	125mL				SM 5310 DOC	APP			
EW-8	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
EW-8	1	PE	500mL				2540C TDS	APP			
EW-8	1	PE	250mL				2320B Alkalinity	APP			
EW-8	1	AG	125mL	HCI			SM5310 TOC	APP			
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Depth of water cannot be recorded with recovery wells.										

APP = After Peristaltic Pump; **B** = Ba **RFPP** = Reverse Flow Peristaltic Pump; ler; **BP** = Bladder Pump; **ESP** = Electric Submersible Pump; **SM** = Straw Method (Tubing Gravity Drain); **O** = Other (Specify) **NOTES:** Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: **pH**: \pm 0.1 unit **Specific Conductance**: \pm 5% **Dissolved Oxygen**: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L **Turbidity**: all readings \leq 10 NTU; or \pm 10%

PE = Polyethylene;

B = Bailer;

PP = Polypropylene;

T = Teflon;

O = Other (Specify)

S = Silicone;

MATERIAL CODES:

SAMPLING EQUIPMENT CODES:

AG = Amber Glass;

CG = Clear Glass;

			G	RO	UNDV	VATE	ER SAM	MPL	_ING	LOG					
SITE NAME: LC	P Chemical Si	te				_	TE DCATION: Br u	ınswic	k, GA						
WELL NO				5	SAMPLE ID				, -		DATE:	11/21/	/2013		
				<u> </u>		PURC	SING DA	TA		I					
WELL DIAMETE	R (inches): 2	TUBIN DIAMI	IG ETER (inches):	1/4		SCREEN I(ft btoc):	INTERVAL 47 to 52		STATIC D TO WATE	EPTH R (ft btoc): n/a	ı		GE PUMP T BAILER: PP	YPE	
Tubing-ir	n-Screen Interv		QUIPMENT VO = s (0.0026)							+ FLOW CELL	VOLUME				
	UMP OR TUBIN I WELL (ft btoc)	-	FINAL PUN DEPTH IN		-	4.15	PURGINI INITIATE		1045	PURGING ENDED AT	:1111		TOTAL VOI PURGED (-	s): 1.50
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)		W	EPTH TO 'ATER ((feet otoc)	pH standard units)	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	/NI	BIDITY TUs)	Y ORP (mV)		SP Gravity (sg)
1051	0.27	0.27	0.03		n/a	11.17	22.08	39	9.75	0.7	8	3.74	-345.	7	
1056	0.48	0.75	0.05		n/a	11.17	22.15	39	9.37	0.5	8	3.47	-359.	0	
1101	0.25	1.00	0.03		n/a	11.18	22.29	39	9.34	0.4	8	.76	-353.	7	
1106	0.25	1.25	0.03		n/a	11.15	22.29	39	9.23	0.4	8	.81	-355.	7	
1111	0.25	1.50	0.03		n/a	11.14	22.23	39	9.08	0.4	8	3.91	-342.	7	
TUBING II BTOC = E	PACITY (Gallor NSIDE DIA. CA Below top of ca EQUIPMENT (PACITY (Gal sing – feet b	/Ft.): 1/8" = 0. elow top of casi	0006; ng whi	3/16" =	above gra	1/4" = 0.002	6;	" = 0.37; 5/16" = 0.0		5 " = 1.0 0.006; Peristaltic	1/2"	6 " = 1.47; = 0.010; 0 ; 0 = 0		5.88 0.016 Specify)
						SAMP	LING DA	ATA		·					
SAMPLED Matt So	BY (PRINT) / A cheuer	AFFILIATION:		SAMF	PLER(S) SI	GNATURI	E(S):			SAMPLING INITIATED A			SAMPLIN ENDED A	T: 11	
PUMP OR DEPTH IN	TUBING I WELL (feet): 4	14.15		TUBII MATE	NG ERIAL COD	E: Teflon	-lined PE			FILTERED: \ on Equipment T				R SIZ	E: <u>0.45</u> μm
FIELD DE	CONTAMINATION	ON: PU	MP Y N	0		TUBING	Yes N	lo (rep	laced)	DUPLICATE	<u>:</u>		No		
	IPLE CONTAINE		ATION				RESERVATIO	N		INTEND			AMPLING	А	dditional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME		SERVATIVE USED		TOTAL VOL ED IN FIELD (r	nL)	FINAL pH	ANALYSIS A	DD	EG	CODE	С	omments
EW-9	1	PE	250mL	ı	HNO3					6010B Metals/ 74			APP		

Matt So	cheuer	a i illiya i iota.		SAMPLING SAMPLING INITIATED AT: 1119 ENDED AT: 1139					
PUMP OR DEPTH IN	TUBING WELL (feet): 4	4.15		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 45 n Equipment Type: In-l i		ER SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PUI	MP Y	No T	UBING Yes No (r	eplaced)	DUPLICATE:	No	
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
EW-9	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP	
EW-9	1	PE	125mL				3500 FE/ 9040B pH	APP	
EW-9	1	PE	250mL				6010B Dissolved Silica	APP	
EW-9	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
EW-9	1	AG	125mL				SM 5310 DOC	APP	
EW-9	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
EW-9	1	PE	500mL				2540C TDS	APP	
EW-9	1	PE	250mL				2320B Alkalinity	APP	
EW-9	1	AG	125mL	HCI			SM5310 TOC	APP	

REMARKS: Per SOP, parameters stable prior to sample collection. Depth of water cannot be recorded with recovery wells. Purge water is brown, sulfur-like odor.

MATERIAL CODES:AG = Amber Glass;CG = Clear Glass;PE = Polyethylene;PP = Polypropylene;S = Silicone;T = Teflon;O = Other (Specify)

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

			Oit	COIL	DVAIL		WII LIIVO	LOG				
SITE NAME: LCF	Chemical Site	e			_	TE DCATION: Br	unswick, GA					
WELL NO:	EW-10			SAMPI	LE ID: EW-10				DATE: 11/2	21/2013		
					PURC	SING DA	TA	•				
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/4		EPTH(ft btoc):		STATIC I TO WAT	DEPTH ER (ft btoc): n/a	-	JRGE PUMF R BAILER: P		
Tubing-in-	Screen Interva	al purge: 1 EQU	UIPMENT VOL. s (0.0026 gal				BING LENGTH) = 0.26 gallon	+ FLOW CELL	VOLUME			
	MP OR TUBINO WELL (ft btoc):	-	FINAL PUMP DEPTH IN W			PURGIN INITIATI	IG ED AT: 1250	PURGING ENDED AT:	1314	TOTAL \		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pН	TEMP.	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs		RP iV)	SP Gravity (sg)
1254	0.26	0.26	0.03	n/a	11.38	22.40	53.03	0.05	13.3	-36	3.7	
1259	0.49	0.75	0.05	n/a	11.40	22.35	52.92	0.04	8.99	-39	93.3	
1304	0.25	1.00	0.03	n/a	11.42	22.34	52.51	0.03	7.63	-37	73.5	
1309	0.25	1.25	0.03	n/a	11.42	22.27	52.20	0.04	6.85	-40)1.5	
1314	0.25	1.50	0.03	n/a	11.42	22.27	52.19	0.04	6.66	-44	16.2	
WELL OAD	A OLTY (O. II		75" 0.00	4" 0.04	4.05"	0.00	2" 227	4" 0.05	5 11 4 00	0" 4 47	40"	5.00
TUBING IN	SIDE DÌA. CAF	s Per Foot): 0. PACITY (Gal./Ft sing – feet belo	t.): 1/8" = 0.00	006; 3/1	6" = 0.0014;	1/4" = 0.002			5 " = 1.02; 0.006; 1/ 3	6 " = 1.47; 2 " = 0.010;		= 5.88 = 0.016

SAMPLING DATA

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

PURGING EQUIPMENT CODES:

B = Bailer;

BP = Bladder Pump;

	AMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING										
Matt Sc		FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1321	SAMPLIN ENDED A			
PUMP OR DEPTH IN	TUBING WELL (feet): 4:	2.95		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 45 n Equipment Type: In-li		ER SIZE: <u>0.45</u> μm		
FIELD DE	CONTAMINATIO	DN: PUI	MP Y I	No T	UBING Yes No (r	eplaced)	DUPLICATE:	No			
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
EW-10	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP			
EW-10	1	PE	125mL				3500 FE/ 9040B pH	APP			
EW-10	1	PE	250mL			6010B Dissolved Silica	APP				
EW-10	1	PE	125mL				9056A_28D Chloride & Sulfate	APP			
EW-10	1	AG	125mL				SM 5310 DOC	APP			
EW-10	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
EW-10	1	PE	500mL				2540C TDS	APP			
EW-10	1	PE	250mL				2320B Alkalinity	APP			
EW-10	1	AG	125mL	HCI			SM5310 TOC	APP			
REMARKS: Per SOP, parameters stable prior to sample collection. Depth of water cannot be recorded with recovery wells.											
MATERIA	L CODES:	AG = Ambei	Glass; CG	= Clear Glass; PI	E = Polyethylene; PP =	= Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)		
SAMPLING	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)										

SITE NAME: LCP	Chemical Site	e				SITE LOCA	TION: Br ı	ınswick, GA					
WELL NO:	EW-11			SAMPL	E ID: EW-1 1	I				DATE: 1	1/21/2	2013	
					PUR	GIN	NG DA	TA					
WELL DIAMETER	(inches): 2	TUBING DIAMETI	ER (inches): 1/4		ELL SCREEN PTH(ft btoc)			STATIO TO WA	EPTH R (ft btoc): n/a			GE PUMP TYPE AILER: PP	
Tubing-in-	Screen Interva		JIPMENT VOL. s (0.0026 galle					BING LENGT = 0.26 gall e	FLOW CELL V	OLUME			
	MP OR TUBING VELL (ft btoc):	-	FINAL PUMP DEPTH IN WE				PURGIN INITIATE	G ED AT: 1420	PURGING ENDED AT:1	1452		TOTAL VOLUMI PURGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)		TEMP. (^O C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBI (NTL		ORP (mV)	SP Gravity (sg)
1427	0.26	0.26	0.03	n/a	8.23		22.80	83.97	1.1	9.8	37	-281.7	
1432	0.49	0.75	0.05	n/a	8.27		22.74	83.90	1.0	7.8	36	-310.5	
1437	0.25	1.00	0.03	n/a	8.24		22.74	83.81	1.0	7.2	22	-321.5	
1442	0.25	1.25	0.03	n/a	8.17		22.71	83.45	0.8	6.6	66	-326.8	
1447	0.25	1.50	0.03	n/a	8.15		22.67	83.22	0.7	6.7	76	-263.8	
1452	0.25	1.75	0.03	n/a	8.20		22.64	83.38	0.6	6.5	51	-329.4	

WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; BTOC = Below top of casing – feet below top of casing which includes above grade riser **3**" = 0.37; **4**" = 0.65; **5**" = 1.02; **6**" = 1.47; **12**" = 5.88 **5/16"** = 0.004; **3/8"** = 0.006; **1/2"** = 0.010; **5/8"** = 0.016

MATERIAL CODES:

SAMPLING EQUIPMENT CODES:

AG = Amber Glass;

CG = Clear Glass;

APP = After Peristaltic Pump;

BP = Bladder Pump; **ESP** = Electric Submersible Pump; **PURGING EQUIPMENT CODES: B** = Bailer; **PP =** Peristaltic Pump; O = Other (Specify)

SAMPLING DATA

SAMPLED Matt So	BY (PRINT) / A	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):	<u> </u>	SAMPLING	SAMPLIN				
Mall St	neuer						INITIATED AT: 1458	ENDED A	AT: 1522			
PUMP OR DEPTH IN	TUBING WELL (feet): 4	0.6		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 45 n Equipment Type: In-Ii		ER SIZE: <u>0.45</u> μm			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Yes No (re	eplaced)	DUPLICATE:	No				
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	IVE TOTAL VOL FINAL ADDED IN FIELD (mL) pH		ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments			
EW-11	1	PE	250mL	HNO3		6010B TAL Metals/ 7470A Hg	APP					
EW-11	1	PE	125mL			3500 FE/ 9040B pH	APP					
EW-11	1	PE	250mL				6010B Dissolved Silica	APP				
EW-11	1	PE	125mL				9056A_28D Chloride & Sulfate	APP				
EW-11	1	AG	125mL				SM 5310 DOC	APP				
EW-11	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered			
EW-11	1	PE	500mL				2540C TDS	APP				
EW-11	1	PE	250mL				2320B Alkalinity	APP				
EW-11	1	AG	125mL	HCI			SM5310 TOC	APP				
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Depth of water cannot be recorded with recovery wells.											

RFPP = Reverse Flow Peristaltic Pump; **SM** = Straw Method (Tubing Gravity Drain); NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: + 0.1 unit Specific Conductance: +5% Dissolved Oxygen: all readings ≤ 10% saturation; optionally, ± 0.2 mg/L Turbidity: all readings ≤ 10 NTU; or ± 10%

PE = Polyethylene;

B = Bailer;

PP = Polypropylene;

BP = Bladder Pump;

S = Silicone;

ESP = Electric Submersible Pump;

T = Teflon;

O = Other (Specify)

SITE NAME: LC	P Chemical Si	te				TE OCATION: B ru	ınswick	k, GA					
WELL NO	: MW-1A			SAMPLE II	D: MW-1A					DATE: 9	9/6/201	3	
				•	PURG	SING DA	TA						
WELL DIAMETE	R (inches): 2	TUBIN DIAME	G TER (inches): 1 /		SCREEN H(ft btoc):	INTERVAL 18 to 23	_	STATIC D O WATE	DEPTH ER (ft btoc): 7.7			E PUMP T' AILER: PP	YPE
Tubing-ir	n-Screen Interv		QUIPMENT VOL s (0.0026 ga						+ FLOW CELL \ s	VOLUME			
	JMP OR TUBIN WELL (ft btoc)	-		OR TUBING /ELL (ft btoc): 2	20.5	PURGIN INITIATE	-	0802	PURGING ENDED AT:	0838		TOTAL VOI PURGED (¢	LUME gallons): 1.5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)		OND. 5/cm)	DISSOLVED OXYGEN (% saturation)	(NIT	BIDITY 'Us)	ORP (mV)	
8080	0.18	0.18	0.02	7.84	5.95	24.45	13	.61	22.2	9.	28	-124.	6
0813	0.32	0.5	0.03	7.85	5.93	24.48	13	.58	10.2	11	1.5	-155.	4
0813	0.25	0.75	0.03	7.89	5.89	24.45	13	.65	5.9	14	1.4	-174.	5
0823	0.25	1.00	0.03	7.89	5.86	24.48	13	.77	4.5	13	3.0	-188.	6
0828	0.25	1.25	0.03	7.89	5.86	24.53	13	.86	4.3	13	3.5	-196.	1
0833	0.25	1.5	0.03	7.89	5.84	24.54	13	.93	3.8	12	2.8	-201.	7
TUBING II		PACITY (Gal./	0.75 " = 0.02; (Ft.): 1/8 " = 0.0 slow top of casing	006; 3/16" =		1/4" = 0.002	6; 3 "	' = 0.37; /16" = 0.		5 " = 1.02 0.006;		" = 1.47; : 0.010;	12 " = 5.88 5/8 " = 0.016
	EQUIPMENT (P = Bladder Pu		SP = Electric	Submei	rsible Pu	mp; PP = P	eristaltic	Pump;	O = O	ther (Specify)
					_	LING DA	ATA						
Matt So	BY (PRINT) / A cheuer	AFFILIATION:	\$	SAMPLER(S) S	IGNATURI	E(S):			SAMPLING INITIATED A	T: 0842		SAMPLIN ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet): 2	0.5		TUBING MATERIAL COI	DE: Teflon	-lined PE			-FILTERED: Yon Equipment Ty				R SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATION	ON: PUN	MP Y N o		TUBING	Yes N	lo (repl	aced)	DUPLICATE:		N	lo	
SAM	PLE CONTAINE	ER SPECIFICA	ATION	S	AMPLE PF	RESERVATIO	N		INTEND			MPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		ΓΟΤΑL VOL ED IN FIELD (r	nL)	FINAL pH	ANALYSIS A	DD		JIPMENT CODE	Comments
									6010B T	ΓAL			

Matt Sc	cheuer						INITIATED AT: 0842	ENDED /	AT: 0901		
PUMP OR DEPTH IN	TUBING WELL (feet): 20	0.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 45 n Equipment Type: In-li		ER SIZE: <u>0.45</u> μm		
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Yes No (re	eplaced)	DUPLICATE:	No			
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
MW-1A	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP			
MW-1A 1 PE 125mL 3500 FE/ 9040B pH APP											
MW-1A 1 PE 250mL G010B Dissolved Silica APP											
MW-1A	1	PE	125mL				9056A_28D Chloride & Sulfate	APP			
MW-1A	1	AG	125mL				SM 5310 DOC	APP			
MW-1A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
MW-1A	1	PE	500mL				2540C TDS	APP			
MW-1A	1	PE	250mL				2320B Alkalinity	APP			
MW-1A	1	AG	125mL	HCI			SM5310 TOC	APP			
REMARKS	s: Per SOP, p	arameters	s stable pric	or to sample colle	ection.						
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP =	: Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)		
SAMPLING	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)										

PURGING DATA

					PURG	ING DA	IA						
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		ELL SCREEN II EPTH (feet btoc			-	DEPTH FER (feet btoc): 7			PUMP TYPE .ER: PP	
	Screen Interva	l Purge: 1 EQ	UIPMENT VO	L. = (TUBIN	,	X TL		LENGTH)	+ FLOW CELL V				
	MP OR TUBING	-	FINAL PUMP DEPTH IN W			PURGIN INITIATE	-	1010	PURGING ENDED AT:	1046		TAL VOLUM IRGED (gallor	_
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pН	TEMP.		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs		ORP (mV)	SP Gravity (sg)
1011	0.23	0.23	0.03	7.65	6.14	28.0	8.	.742	17.9	12.5		-229.7	
1016	0.25	0.48						Skippe	ed				
1021	1.25	1.73		7.53	6.04	24.61	8.	.953	3.1	13.9		-189.2	
1026	0.50	2.23	0.05	7.81	6.08	24.93	6.	.801	2.5	12.0		-181.7	
1031	0.50	2.73	0.05	7.5	6.10	24.95	6.	.644	2.0	13.4		-165.6	
1036	0.23	2.96	0.03	7.45	6.11	25.62	6.	.557	1.6	12.8		-155.1	
1041	0.52	3.48	0.05	7.5	6.10	25.90	6.	.539	1.4	12.6		-153.5	
1046	0.25	3.73	0.03	7.5	6.09	25.93	6.	.507	1.1	11.6		-145.3	
TUBING IN	SIDE DIA. CAP	PACITY (Gal./F	t.): 1/8" = 0.0	006; 3/1	1.25" = 0.06 6" = 0.0014; udes above gra	1/4" = 0.002		5" = 0.37; 5/16" = 0.		5 " = 1.02; .006; 1/ 2	6 " = 2 " = 0.		= 5.88 = 0.016
PURGING E	QUIPMENT C	ODES: B =	Bailer; B	P = Bladde	r Pump; ES	SP = Electric	Subme	ersible Pu	mp; PP = Pe	ristaltic Pur	mp;	O = Other	(Specify)

SAMPLING DATA

	BY (PRINT) / A Chuprikova			SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1050	SA 110	MPLING ENDED AT: 08	
PUMP OR DEPTH IN	TUBING WELL (feet): 3	5.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-li		LTER SIZE: <u>0.45</u> μm	
FIELD DE	CONTAMINATION	ON: PU	MP Y	No T	UBING Y No (repla	ced)	DUPLICATE:	No		
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION INTENDED SAMPLING										
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE TOTAL VOL USED ADDED IN FIELD (mL)		FINAL pH	ANALYSIS AND/OR EQUIF			
MW-1B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW-1B	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW-1B	1	PE	250mL				6010B Dissolved Silica	APP		
MW-1B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP		
MW-1B	1	AG	125mL				SM 5310 DOC	APP		
MW-1B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW-1B	1	PE	500mL				2540C TDS	APP		
MW-1B	1	PE	250mL				2320B Alkalinity	APP		
MW-1B	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameter	s	

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: $pH: \pm 0.1$ unit **Specific Conductance**: $\pm 5\%$ **Dissolved Oxygen**: all readings $\leq 10\%$ saturation; optionally, ± 0.2 mg/L **Turbidity**: all readings ≤ 10 NTU; or $\pm 10\%$

PE = Polyethylene;

PP = Polypropylene;

B = Bailer; BP = Bladder Pump; ESP = Electromp; SM = Straw Method (Tubing Gravity Drain);

S = Silicone;

ESP = Electric Submersible Pump;

T = Teflon;

O = Other (Specify)

MATERIAL CODES:

SAMPLING EQUIPMENT CODES:

AG = Amber Glass;

CG = Clear Glass;

RFPP = Reverse Flow Peristaltic Pump;

APP = After Peristaltic Pump;

O = Other (Specify)

SITE LOCATION: Brunswick, GA SITE NAME: LCP Chemical Site SAMPLE ID: MW-1C WELL NO: MW-1C DATE: 8/30/2013

PURGING DATA

					FUNG	ING DA	17						
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		VELL SCREEN IN DEPTH (feet btoc)				DEPTH FER (feet btoc): 8	_	-	PUMP TYPE .ER: PP	
Tubing-in-	Screen Interva				NG CAPACITY 44 feet) + 0.13			,	+ FLOW CELL V	OLUME			
	MP OR TUBINO VELL (feet btoo	-	FINAL PUMF DEPTH IN W			PURGIN INITIATE	-	0924	PURGING ENDED AT:	1001		TAL VOLUME IRGED (gallor	_
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pН	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs		ORP (mV)	SP Gravity (sg)
0926	0.27	0.27	0.03	9.5	8.51	24.21	4	9.78	6.1	15.5		-117.0	
0931	0.23	0.50	0.02	9.45	8.44	24.74	5	0.24	5.2	5.31		-167.5	
0936	0.25	0.75	0.03	9.45	8.46	24.86	5	1.37	4.1	4.85		-185.0	
0941	0.25	1.0	0.03	9.45	8.62	24.82	5	2.17	2.7	3.33		-184.3	
0946	0.25	1.25	0.03	9.45	8.88	24.91	5	2.51	1.8	3.63		-195.5	
0951	0.25	1.5	0.03	9.45	8.94	24.96	5	2.74	1.3	3.18		-206.1	
0956	0.25	1.75	0.03	9.45	8.98	24.95	5	2.90	1.0	2.98		-245.9	
1001	0.25	2.0	0.03	9.45	8.98	25.00	5	2.94	0.8	3.49		-260.0	
					1.25 " = 0.06			,		5" = 1.02;			= 5.88
					16" = 0.0014; cludes above grad		26;	5/16" = 0.	004; 3/8" = 0.	006; 1/ 2	2" = 0.	.010; 5/8 "	= 0.016

SAMPLING DATA

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

PURGING EQUIPMENT CODES:

B = Bailer;

BP = Bladder Pump;

	BY (PRINT) / A Chuprikova			SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1007	SAMPLIN 1030	IG ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 5	0.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 n Equipment Type: In-li		SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	DN: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No	
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAMPLE PRESERVATION			INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 1C	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 1C	1	PE	125mL				3500 FE/ 9040B pH APF		
MW- 1C	1	PE	250mL				6010B Dissolved Silica		
MW- 1C	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
MW- 1C	1	AG	125mL				SM 5310 DOC	APP	
MW- 1C	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 1C	1	PE	500mL				2540C TDS	APP	
MW- 1C	1	PE	250mL				2320B Alkalinity	APP	
MW- 1C	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS	s: Per SOP, _I	oarameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.	
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP = I	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)
SAMPLIN	G EQUIPMENT			Peristaltic Pump; rse Flow Peristaltic Pu	B = Bailer; BP = Bladdump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)	

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-2A	SAMPLE ID: MW	-2A	DATE: 9/6/2013

PURGING DATA

					FUNG	IING DA	1 🖰					
WELL DIAMETER	(inches): 2	TUBING DIAMETI	ER (inches): 1/		VELL SCREEN I DEPTH (feet btoo				DEPTH ΓER (feet btoc): r	_	RGE PUMP TYPE BAILER: PP	
Tubing-in-	Screen Interva				NG CAPACITY 37 feet) + 0.13				+ FLOW CELL \	OLUME		
	MP OR TUBING	_	FINAL PUMF DEPTH IN W			PURGIN INITIATE	-	0815	PURGING ENDED AT:	0854	TOTAL VOLUM PURGED (gallor	_
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATEI (feet btoc)	pН	TEMP.		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	ORP (mV)	SP Gravity (sg)
0819	0.2	0.2	0.02	7.79	7.07	23.75	7	.157	43.1	8.35	-81.9	
0824	0.2	0.4	0.02	7.81	7.07	23.43	7.	.334	34.5	7.11	-119.7	
0829	0.3	0.7	0.03	7.81	7.09	23.22	7.	.468	31.5	8.54	-131.5	
0834	0.5	1.2	0.05			Skippe	ed			9.54		
0839	0.4	1.6	0.04	7.81	6.73	23.94	8	.123	14.4	8.79	-205.4	
0844	0.3	1.9	0.03	7.80	6.77	23.94	7.	.892	2.0	9.53	-221.3	
0849	0.25	2.15	0.03	7.81	6.82	23.99	7.	.885	0.8	8.76	-217.8	
0854	0.35	2.5	0.04	7.80	6.84	20.04	7.	.887	0.8	9.07	-221.0	
		s Per Foot): 0.			; 1.25 " = 0.06 16 " = 0.0014;	6; 2 " = 0.1 1/4 " = 0.002		3 " = 0.37; 5/16 " = 0.	,	,	- ,	= 5.88 = 0.016
BTOC = Be	low top of cas	sing – feet belo	w top of casing	which in	cludes above gra	de riser					,	
PURGING E	QUIPMENT C	ODES: B =	Bailer; B l	P = Bladd	er Pump; ES	SP = Electric	Subme	ersible Pu	mp; $PP = Pe$	ristaltic Pum	p; $\mathbf{O} = \text{Other}$	(Specify)

SAMPLING DATA

SAMPLED Ken Stu	BY (PRINT) / A	FFILIATION:	:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 0854	SAMPLI 0915	NG ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 2	3		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 n Equipment Type: In-l i		R SIZE: <u>0.45</u> µm
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repla	ced)	DUPLICATE:	No	
SAM	PLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW-2A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW-2A	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW-2A	1	PE	250mL				6010B Dissolved Silica	APP	
MW-2A	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
MW-2A	1	AG	125mL				SM 5310 DOC	APP	
MW-2A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW-2A	1	PE	500mL				2540C TDS	APP	
MW-2A	1	PE	250mL				2320B Alkalinity	APP	
MW-2A	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.	

MATERIAL CODES: AG = Amber Glass; **CG** = Clear Glass; **PE** = Polyethylene; **PP** = Polypropylene; **S** = Silicone; **T** = Teflon; O = Other (Specify)

B = Bailer; BP = Bladder Pump; ESP = Elect tump; SM = Straw Method (Tubing Gravity Drain); **APP** = After Peristaltic Pump; **B** = B **RFPP** = Reverse Flow Peristaltic Pump; **ESP** = Electric Submersible Pump; avity Drain); **O** = Other (Specify) SAMPLING EQUIPMENT CODES:

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-2B	SAMPLE ID: MW	′-2B	DATE: 8/30/2013

PURGING DATA

WELL	<i></i>	TUBING			ELL SCREEN IN			STATIC		_	JRGE PUMP TYPE	
DIAMETER	(inches): 2	DIAMET	ER (inches): 1/	4 DI	EPTH (feet btoc)	: 33 to 38		TO WAT	TER (feet btoc): 7	. 7 OF	R BAILER: PP	
Tubing-in-S	Gcreen Interva	Il Purge: 1 EQ =			IG CAPACITY 44 feet) + 0.13	X TU gallons =			+ FLOW CELL V s	OLUME		
_	MP OR TUBING /ELL (feet btoo		FINAL PUMP DEPTH IN W	-		PURGIN INITIATE		1203	PURGING ENDED AT:	1157	TOTAL VOLUMI PURGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs	_	SP Gravity (sg)
1127	0.23	0.23	0.02	7.2	6.2	24.00	6.	.572	14.9	5.21	-75.0	
1132	0.27	0.50	0.03	7.16	6.18	24.01	6.	.856	3.1	4.46	-103.8	
1137	0.25	0.75	0.03	7.16	6.22	23.93	6.	.666	0.8	5.69	-122.5	
1142	0.25	1.0	0.03	7.16	6.29	23.94	6.	.525	0.4	5.67	-134.6	
1147	0.25	1.25	0.03	7.16	6.34	24.07	6.	.441	0.4	6.62	-140.7	
1152	0.25	1.5	0.03	7.16	6.38	24.24	6.	.395	0.4	6.47	-145.4	
1157	0.25	1.75	0.03	7.16	6.39	24.19	6.	.367	0.2	6.57	-150.3	
TUBING INS	SIDE DÌA. CAF	PACITY (Gal./F	i.): 1/8" = 0.0	006; 3/1	1.25" = 0.06 6" = 0.0014; udes above grad	1/4" = 0.002		b" = 0.37; 5/16" = 0.		[5" = 1.02; 006; 1/ 2	,	= 5.88 = 0.016
PURGING E	QUIPMENT C	ODES: B	Bailer; B	P = Bladde	r Pump; ES	P = Electric	Subme	ersible Pu	mp; PP = Pe	ristaltic Pur	mp; $\mathbf{O} = \text{Other}$	(Specify)

SAMPLING DATA

	BY (PRINT) / A cheauer	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1203	SAMPLII 1219	NG ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 2	5.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 n Equipment Type: In-l i		SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No	
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW-2B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW-2B	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW-2B	1	PE	250mL				6010B Dissolved Silica	APP	
MW-2B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
MW-2B	1	AG	125mL				SM 5310 DOC	APP	
MW-2B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW-2B	1	PE	500mL				2540C TDS	APP	
MW-2B	1	PE	250mL				2320B Alkalinity	APP	
MW-2B	1	AG	125mL	HCI			SM5310 TOC	APP	
	<u> </u>				l ection. Water level st				1

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; **PP** = Polypropylene; **S** = Silicone; **T** = Teflon; O = Other (Specify)

B = Bailer; BP = Bladder Pump; ESP = Elect tump; SM = Straw Method (Tubing Gravity Drain); **APP** = After Peristaltic Pump; **B** = B **RFPP** = Reverse Flow Peristaltic Pump; **ESP** = Electric Submersible Pump; avity Drain); **O** = Other (Specify) SAMPLING EQUIPMENT CODES:

PURGING DATA

WELL DIAMETER (inches): 2 Tubing-in-Screen Int		TUBING DIAMETE	ER (inches): 1/		ELL SCREEN IN			STATIC I	DEPTH	PU	RGE PUMP TYPE		
Tubing-in-Screen Int	METER (inches): 2 DIAMETER (inches): 1/4					DEPTH (feet btoc) 48 to 53 TO WATE				.1 OR	PURGE PUMP TYPE OR BAILER: PP		
	erval Pur				NG CAPACITY 44 feet) + 0.13	X TU gallons =			+ FLOW CELL V	OLUME			
INITIAL PUMP OR TU DEPTH IN WELL (feet	-	0.5	FINAL PUMP DEPTH IN W	-		PURGIN INITIATI	IG ED AT: 1	529	PURGING ENDED AT:	1559	TOTAL VOLUM PURGED (galle		
TIME VOLUM PURGE (gallons	E VC	UMUL. DLUME JRGED allons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP CC (mS/c		DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)		SP Gravity (sg)	
1535 0.27	(0.27	0.03	8.9	8.89	25.33	40.8	35	1.8	27.4	-241.3		
1539 0.25	(0.52	0.03	9.9	8.74	27.67	41.	11	0.4	9.64	-304.2		
1544 0.25	(0.77	0.03	10.38	8.70	27.92	41.3	33	0.4	8.0	-323.8		
1549 0.25		1.02	0.03	10.8	8.69	27.15	41.3	37	0.5	8.36	-337.4		
1554 0.25		1.27	0.03	11.1	8.69	28.06	41.3	31	0.5	9.2	-344.5		
1559 0.25	,	1.52	0.03	11.35	8.71	28.15	41.4	47	0.5	8.53	-352.6		
									_				

PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)

SAMPLING DATA

) ву (PRINT) / A Chuprikova			SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1604		SAMPLIN 1647	G ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 5	0.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 0 n Equipment Type: In-li			SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No)	
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED		PLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH			PMENT ODE	Comments
MW- 2C	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	А	.PP	
MW- 2C	1	PE	125mL				3500 FE/ 9040B pH	А	.PP	
MW- 2C	1	PE	250mL				6010B Dissolved Silica	А	.PP	
MW- 2C	1	PE	125mL				9056A_28D Chloride & Sulfate	А	.PP	
MW- 2C	1	AG	125mL				SM 5310 DOC	А	.PP	
MW- 2C	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	А	.PP	Field-Filtered
MW- 2C	1	PE	500mL				2540C TDS	А	.PP	
MW- 2C	1	PE	250mL				2320B Alkalinity	А	.PP	
MW- 2C	1	AG	125mL	HCI			SM5310 TOC	А	.PP	
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level co	ould not s	stabilize, pump was	at low	vest sett	ing.
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP = I	Polypropyle	ene; S = Silicone; T	= Teflon	n; O = C	Other (Specify)

APP = After Peristaltic Pump; **B** = Barrer RFPP = Reverse Flow Peristaltic Pump;

SAMPLING EQUIPMENT CODES:

B = Bailer; BP = Bladder Pump; ESP = Electromp; SM = Straw Method (Tubing Gravity Drain);

ESP = Electric Submersible Pump;

SITE NAME: LCP Chemical Site LOCATION: Brunswick, GA WELL NO: MW-3A SAMPLE ID: MW-3A DATE: 9/6/2013

					PURG	ING DA	IA				
WELL		TUBING	<i>.</i>		LL SCREEN IN			DEPTH		GE PUMP TYPE	
DIAMETER (inc	ches): 2	DIAMET	ER (inches): 1/	4 DE	PTH (feet btoc)	: 18 to 23	TOWA	TER (feet btoc): 8	3.00 OR E	BAILER: PP	
Tubing–in-Scr	reen Interval				G CAPACITY 4 feet) + 0.13		JBING LENGTH • 0.20 gallon) + FLOW CELL \ I s	OLUME		
NITIAL PUMP DEPTH IN WEL			FINAL PUMP DEPTH IN W			PURGIN INITIATE	IG ED AT: 0802	PURGING ENDED AT:	0905	TOTAL VOLUMI PURGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP.	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	Y ORP (mV)	SP Gravity
805	0.20	0.20	0.02	9.05	7.16	24.53	35.06	25.1	64.0	-118.9	
810	0.25	0.45	0.03	9.4	7.20	24.54	35.27	4.2	39.8	-203.1	
815	0.25	0.70	0.03	9.37	7.21	24.64	35.28	2.3	39.4	-217.5	
820	0.25	0.95	0.03	9.35	6.57	24.63	35.21	1.9	33.1	-240.0	
825	0.25	1.20	0.03	9.32	6.64	24.68	35.0	3.8	29.2	-249.2	
830	0.25	1.45	0.03	9.35	6.68	24.70	34.57	4.5	23.9	-256.7	
835	0.25	1.75	0.03	9.3	6.69	24.70	34.22	6.7	21.6	-266.5	
840	0.25	1.95	0.03	9.28	6.70	24.71	33.94	6.8	21.7	-272.6	
845	0.25	2.20	0.03	9.27	7.22	24.76	33.56	8.4	19.9	-280.8	
850	0.25	2.45	0.03	9.26	7.19	24.78	33.12	7.7	19.0	-283.2	
855	0.25	2.70	0.03	9.26	7.16	24.81	32.80	7.9	17.0	-288.5	
900	0.25	2.95	0.03	9.26	7.14	24.87	32.32	7.4	16.9	-291.1	
905	0.25	3.20	0.03	9.26	7.14	24.93	31.82	8.7	n/a	-291.7	

PURGING EQUIPMENT CODES: **ESP** = Electric Submersible Pump; **B** = Bailer; **BP** = Bladder Pump; PP = Peristaltic Pump; O = Other (Specify)

SAMPLING DATA

0.11451.55				SAMPLER(S) SIGN	IATUDE(C):				
) by (print) / A Chuprikova			SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 910	SAMPLIN n/a	NG ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 2	0.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-li		SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repla	ced)	DUPLICATE:	No	
SAM	PLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW-3A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW-3A	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW-3A	1	PE	250mL				6010B Dissolved Silica	APP	
MW-3A	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
MW-3A	1	AG	125mL				SM 5310 DOC	APP	
MW-3A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW-3A	1	PE	500mL				2540C TDS	APP	
MW-3A	1	PE	250mL				2320B Alkalinity	APP	
	4	AG	125mL	HCI			SM5310 TOC	APP	

MATERIAL CODES: **AG** = Amber Glass; **CG** = Clear Glass; **PE** = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)

 APP = After Peristaltic Pump;
 B = Bailer;
 BP = Bladder Pump;
 ESP = Electr

 RFPP = Reverse Flow Peristaltic Pump;
 SM = Straw Method (Tubing Gravity Drain);

 SAMPLING EQUIPMENT CODES: **ESP** = Electric Submersible Pump; O = Other (Specify)

SITE NAME: LCP Chemical Site	SITE LOCATION: Brunsw i	irk GA	
WELL NO: MW-105C	SAMPLE ID: MW-105C	DATE: 8/30/2013	

PURGING DATA

					. 0.00	אם טוווי	17.					
WELL		TUBING			LL SCREEN I				DEPTH		RGE PUMP TYPE	
DIAMETER	(inches): 2	DIAMET	ER (inches): 1/	4 DE	PTH (feet btoo	:): 40.0 to 42.	.5	TO WAT	TER (feet btoc): 5	5.96 OR	BAILER: PP	
Tubing-in-	Screen Interva	l Purge: 1 EQ =	UIPMENT VOI (0.0026 gallo) + FLOW CELL V s	OLUME		
	MP OR TUBING	-	FINAL PUMP DEPTH IN W		-	PURGIN INITIATE	-	1041	PURGING ENDED AT:	1145	TOTAL VOLUM PURGED (gallor	_
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)	_	SP Gravity (sg)
1045	0.25	0.25	0.03	6.21	6.37	27.60	3.	.360	49.0	69.5	-136.9	
1050	0.05	0.3	0.01	6.21	7.74	27.04	3.	.209	9.0	84.8	-131.7	
1055	0.15	0.45	0.02	6.21	10.83	26.60	3.	.155	3.4	94.8	-132.7	
1100	0.35	0.8	0.04	6.21	10.91	26.87	3.	.102	0.9	101.0	-152.5	
1105	0.25	1.05	0.03	6.21	10.95 27.09 3.097 0.6			0.6	100.0	-155.8		
1110	0.2	1.25	0.02	6.21	10.96	27.13	3.	.105	0.4	98.3	-165.4	
1115	0.3	1.55	0.03	6.21	11.0	27.16	3.	.142	0.3	99.2	-167.9	
1120	0.2	1.75	0.02	6.21	11.02	27.05	3.	.144	0.3	101.0	-170.9	
1125	0.25	2.00	0.03	6.21	11.03	27.16	3.	.149	0.4	98.7	-176.6	
1130	0.20	2.20	0.02	6.21	11.04	27.06	3.	.163	0.3	96.6	-176.6	
1135	0.15	2.35	0.02	6.21	11.05	27.31	3.	.169	0.3	95.0	-181.0	
1140	0.15	2.50	0.02	6.21	11.06	27.38	3.	.178	0.3	96.9	-183.5	
1145	0.3	2.90	0.03	6.21	11.08	27.20	3.	.193	0.4	95.4	-189.2	
TUBING INS	SIDE DÌA. CAF	s Per Foot): 0. PACITY (Gal./Fi sing – feet belo	i.): 1/8" = 0.0			1/4" = 0.002	-,	'' = 0.37; 5/16 " = 0.		5" = 1.02; 006; 1/ 2	- ,	= 5.88 = 0.016
PURGING E	QUIPMENT C	ODES: B =	Bailer; B	P = Bladder	Pump; ES	SP = Electric	Subme	ersible Pu	mp; PP = Pe	ristaltic Pur	np; O = Other	(Specify)

SAMPLING DATA

SAMPLET Michae	DBY (PRINT) / A el Epps	FFILIATION:	:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1147	SAMPLIN 1215	IG ENDED AT:
PUMP OR DEPTH IN	R TUBING I WELL (feet): 4	1.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-li		SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repl a	ced)	DUPLICATE:	No	
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 105C	1	PE	250mL	HNO3	-		6010B TAL Metals/7470A Hg	APP	
MW- 105C	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 105C	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 105C	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
MW- 105C	1	AG	125mL		-		SM 5310 DOC	APP	
MW- 105C	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 105C	1	PE	500mL				2540C TDS	APP	
MW- 105C	1	PE	250mL				2320B Alkalinity	APP	
MW- 105C	1	AG	125mL	HCI			SM5310 TOC	APP	

REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters. 7470 Mercury (field filtered) sample collected due to high turbidity (above 50 NTU).

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

SITE LOCATION: Brunswick, GA SITE NAME: LCP Chemical Site DATE: 9/4/2013 WELL NO: MW-105A SAMPLE ID: MW-105A

PURGING DATA

						1110 07					
WELL		TUBING			LL SCREEN I			DEPTH	_	GE PUMP TYPE	
DIAMETER	(inches): 2	DIAMET	ER (inches): 1	/4 DEI	PTH (feet btoo): 9.4 to 19. 4	TO WA	TER (feet btoc): 6	.3 OR E	BAILER: PP	
Tubing–in-	Screen Interva		UIPMENT VO (0.0026 gall				JBING LENGTH : 0.18 gallor	l) + FLOW CELL V 1 s	OLUME		
_	MP OR TUBING			P OR TUBING	-	PURGIN INITIATE	IG ED AT: 0912	PURGING ENDED AT: (0959	TOTAL VOLUM PURGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT' (NTUs)	Y ORP (mV)	SP Gravity (sg)
0914	0.32	0.18	0.03	6.37	5.20	26.00	0.543	19.4	1.85	-131.4	
0919	0.25	0.5	0.03	6.37	5.19	26.13	0.541	11.8	1.57	-157.6	
0924	0.25	0.75	0.03	6.37	5.29	26.24	0.536	8.0	0.68	-186.5	
0929	0.24	1.0	0.03	6.37	5.28	26.20	0.530	7.5	0.71	-200.1	
0934	0.25	1.25	0.03	6.37	5.29	26.37	0.527	6.2	0.66	-208.7	
0939	0.25	1.5	0.03	6.37	5.31	26.41	0.522	5.6	0.65	-216.6	
0944	0.25	1.75	0.03	6.37	5.30	26.43	0.521	5.6	0.63	-221.3	
0949	0.25	2.0	0.03	6.37	5.31	26.43	0.518	5.3	0.61	-224.2	
0954	0.25	2.25	0.03	6.37	5.28	26.45	0.515	5.4	0.69	-228.2	
0959	0.25	2.50	0.03	6.37	5.30	26.53	0.514	5.3	0.68	-231.0	

PURGING EQUIPMENT CODES: ESP = Electric Submersible Pump; O = Other (Specify) B = Bailer; **BP** = Bladder Pump; PP = Peristaltic Pump;

SAMPLING DATA

	BY (PRINT) / A cheauer	FFILIATION:		SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1007	SAMPI 1027	ING ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 1	4.4		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-li		R SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repl a	ced)	DUPLICATE:	No	
SAM	PLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 105A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 105A	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 105A	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 105A	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
MW- 105A	1	AG	125mL				SM 5310 DOC	APP	
MW- 105A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 105A	1	PE	500mL				2540C TDS	APP	
MW- 105A	1	PE	250mL				2320B Alkalinity	APP	
MW- 105A	1	AG	125mL	L HCI			SM5310 TOC	APP	
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.	
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP = I	Polypropyle	ene; S = Silicone; T	= Teflon; O :	Other (Specify)

er; **BP** = Bladder Pump; **ESP** = Elect **SM** = Straw Method (Tubing Gravity Drain); **APP** = After Peristaltic Pump; **B** = B **RFPP** = Reverse Flow Peristaltic Pump; **ESP** = Electric Submersible Pump; SAMPLING EQUIPMENT CODES: B = Bailer; **O** = Other (Specify)

SITE LOCATION: Brunswick, GA NAME: LCP Chemical Site WELL NO: MW-105B SAMPLE ID: MW-105B DATE: 9/4/2013

PURGING DATA

						ING DA						
WELL	(inches): 2	TUBING	ER (inches): 1/		LL SCREEN II PTH (feet btoc			STATIC	DEPTH ER (feet btoc): 6	_	RGE PUMP TYPE R BAILER: PP	
DIAIVIETER	(inches): Z	DIAMET	ER (inches): 1	4 DEF	TH (leet bloc): 20.9 to 26	.4	TO WAT	ER (leet bloc): 6	.13	BAILER: PP	
Tubing–in-	Screen Interva		UIPMENT VO (0.0026 gallo					,	+ FLOW CELL V s	OLUME		
_	MP OR TUBING WELL (feet btoo		-	OR TUBING		PURGIN INITIATI		110	PURGING ENDED AT:	1158	TOTAL VOLUM PURGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP.	SP CO (mS/	-	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)		SP Gravity
1112	0.21	0.21	0.02	6.19	5.37	25.55	0.7	'92	25.7	3.58	-174.4	
1117	0.29	0.5	0.03	6.18	5.66	26.03	0.9	966	9.1	2.47	-200.0	
1122	0.25	0.75	0.03	6.18	5.62	26.17	1.0)17	5.8	3.33	-210.7	
1127	0.25	1.0	0.03	6.18	6.44	26.01	1.0	38	5.5	2.65	-215.3	
1132	0.25	1.25	0.03	6.18	6.43	26.04	1.0)40	5.3	2.66	-224.4	
1137	0.25	1.5	0.03	6.18	6.42	26.10	1.0	38	4.7	2.83	-230.3	
1142	0.25	1.75	0.03	6.18	6.44	25.88	1.0	31	2.0	2.71	-230.9	
1147	0.25	2.0	0.03	6.18	6.44	26.09	1.0)27	2.7	3.02	-230.9	
1152	0.25	2.25	0.03	6.18	6.43	26.03	1.0)24	1.8	3.26	-235.9	
1157	0.25	2.50	0.03	6.18	6.44	26.13	1.0)25	2.3	2.97	-234.0	

BTOC = Below top of casing – feet below top of casing which includes above grade riser

O = Other (Specify) **PURGING EQUIPMENT CODES:** B = Bailer; **BP** = Bladder Pump; **ESP** = Electric Submersible Pump; PP = Peristaltic Pump;

SAMPLING DATA

					Title Bitte				
SAMPLED Matt So	DBY (PRINT) / A	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1205	SAMPLI 1225	NG ENDED AT:
PUMP OR DEPTH IN	R TUBING I WELL (feet): 2	7.65		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 n Equipment Type: In-li		R SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATION	ON: PU	MP Y	No T	UBING Y No (repla		DUPLICATE:	No	
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 105B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 105B	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 105B	1	PE	250mL				6010B Dissolved Silica		
MW- 105B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
MW- 105B	1	AG	125mL				SM 5310 DOC	APP	
MW- 105B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 105B	1	PE	500mL				2540C TDS	APP	
MW- 105B	1	PE	250mL				2320B Alkalinity	APP	
MW- 105B	1	AG	125mL	nL HCl			SM5310 TOC	APP	
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized _l	prior to collecting pa	arameters. F	urge water is

brown, sulfur-like odor.

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; O = Other (Specify) **PE** = Polyethylene; **PP** = Polypropylene; **S** = Silicone; **T** = Teflon;

 $\begin{array}{lll} \textbf{APP} = \text{After Peristaltic Pump}; & \textbf{B} = \text{Bailler}; & \textbf{BP} = \text{Bladder Pump}; & \textbf{ESP} = \text{Elect} \\ \textbf{RFPP} = \text{Reverse Flow Peristaltic Pump}; & \textbf{SM} = \text{Straw Method (Tubing Gravity Drain)}; \\ \end{array}$ **ESP** = Electric Submersible Pump; SAMPLING EQUIPMENT CODES: O = Other (Specify)

PURGING DATA

					PUNG	ING DA	1 🖰					
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		VELL SCREEN IN DEPTH (feet btoc)		5	STATIC TO WAT	DEPTH TER (feet btoc): n	_	RGE PUMP TYPE BAILER: PP	
Tubing-in-	Screen Interva	•		NG CAPACITY 37 feet) + 0.13			LENGTH) 6 gallon:	+ FLOW CELL V	OLUME			
	MP OR TUBINO	-	FINAL PUMP DEPTH IN W			PURGIN INITIATE		0832	PURGING ENDED AT:	0905	TOTAL VOLUM PURGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pН	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)	_	SP Gravity (sg)
1028	0.26	0.26	0.03	5.92	9.28	22.83	35.58		5.0	8.98	-373.2	
1033	0.24	0.5	0.02	5.93	8.51	22.83	3	8.23	4.0	10.3	-408.1	
1038	0.3	0.8	0.03	5.94	7.63	22.81	3	8.46	3.2	11.0	-428.7	
1043	0.45	1.25	0.05	5.94	5.94 7.69 22.85 38.25		2.5	11.8	-445.0			
1048	0.45	1.7	0.05	5.99	7.75	22.78	3	7.63	3.2	12.6	-472.5	
1053	0.4	2.1	0.04	5.98	7.85	22.81	3	7.17	2.3	12.4	-483.0	
1058	0.5	2.6	0.05	6.02	7.90	22.76	3	6.75	2.0	13.6	-472.1	
1106	0.5	3.1	0.05	6.03	7.91	22.70	3	6.16	2.6	11.9	-469.0	
1111	0.5 3.5 0.05 5.92 8.11 22					22.90	3	5.77	2.7	12.1	-438.9	
TUBING IN		ACITY (Gal./F	i.): 1/8" = 0.00	006; 3/		1/4" = 0.002	-,	3 " = 0.37; 5/16 " = 0.	,	5 " = 1.02; 006; 1/2	- ,	= 5.88 = 0.016

SAMPLING DATA

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

BP = Bladder Pump;

B = Bailer;

PURGING EQUIPMENT CODES:

SAMPLED Ken Stu	BY (PRINT) / A uart	FFILIATION:		SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 0905	SAMPLIN 0929	NG ENDED AT:			
PUMP OR DEPTH IN	TUBING WELL (feet): 4	7.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-li		SIZE: <u>0.45</u> μm			
FIELD DE	CONTAMINATIO	N: PU	MP Y I	No T	UBING Y No (repl a	aced)	DUPLICATE:	No				
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments			
MW- 112C	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP				
MW- 112C	112C 1 PE 125mL pH APP											
MW- 112C	MW- 1 PE 250ml 6010B Dissolved APP											
MW- 112C	1	PE	125mL				9056A_28D Chloride & Sulfate	APP				
MW- 112C	1	AG	125mL				SM 5310 DOC	APP				
MW- 112C	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered			
MW- 112C	1	PE	500mL				2540C TDS	APP				
MW- 112C	1	PE	250mL				2320B Alkalinity	APP				
MW- 112C	1	AG	125mL	HCI			SM5310 TOC	APP				
REMARKS	s: Per SOP, p	oarameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.				
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)			
SAMPLIN	G EQUIPMENT			eristaltic Pump; rse Flow Peristaltic Pu	B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)				

SITE LOCATION: Brunswick, GA SITE NAME: LCP Chemical Site DATE: 9/3/2013 WELL NO: MW-113C SAMPLE ID: MW-113C

PURGING DATA

	VELL TUBING WELL SCREEN INTERVAL STATIC DEPTH PURGE PUMP TYPE																				
WELL								-													
DIAMETER (i	inches): 2	DIAMETI	ER (inches): 1/	4	DEPTH (feet btoc)	: 46.7 to 48.	.2	TO WAT	ER (feet btoc): n	/a OR	BAILER: PP										
Tubing-in-So	creen Interva			, -	ING CAPACITY 37 feet) + 0.13			LENGTH) 6 gallons	+ FLOW CELL V s	OLUME											
	P OR TUBING		FINAL PUMF DEPTH IN W			PURGIN INITIATE	_	1355	PURGING ENDED AT:	1425	TOTAL VOLUMI PURGED (gallor	_									
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet btoc)	PH (standard units)	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	_	SP Gravity (sg)									
1356	1356 0.25 0.26 0.03 5.52 10.21 27.20 2.057 20.6 121 -118.0																				
1401	1401Skipped																				
1406		1.26	0.03	6.29	11.62	25.26	3	0.77	19.4	10.0	-130.6										
1411	0.25	1.51	0.03	8.99	12.03	25.90	3	1.12	3.1	6.72	-136.2										
1416	0.25	1.76	0.03	9.55	12.88	26.95	3	1.14	2.8	3.31	-155.0										
1421	0.24	2.0	0.03	10.3	12.88	27.41	3	1.33	3.0	4.26	-149.9										
1426	0.26	2.26	0.03	10.57	7 12.91	22.10	3	1.26	2.8	7.10	-163.0										
1431	0.25	2.51	0.03	10.77	7 12.91	27.57	3	1.37	2.3	3.18	-166.8										
WELLOAD	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88																				
TUBING INSI	IDE DÍA. CAP	ACITY (Gal./Ft	.): 1/8" = 0.00	006; 3	4;	1/4" = 0.002		3" = 0.37; 5/16" = 0.0	,	5" = 1.02; 006; 1/2	- ,	= 5.88 = 0.016									
PURGING E	QUIPMENT CO	ODES: B =	Bailer; B	P = Blado	der Pump; ES	P = Electric	Subme	ersible Pur	mp; PP = Pe	ristaltic Pun	JRGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)										

SAMPLING DATA

SAMPLED Ken Stu	BY (PRINT) / A uart	FFILIATION:	:	SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1435	SAMPLII n/a	NG ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 4	6		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 0 n Equipment Type: In-Ii		SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	N: PU	MP Y	No T	UBING Y No (repla	ced)	DUPLICATE:	No	
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 113C	1	PE	250mL				6010B TAL Metals/7470A Hg	APP	
MW- 113C	1	3500 FE/ 9040B pH	APP						
MW- 113C	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 113C	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
MW- 113C	1	AG	125mL				SM 5310 DOC	APP	
MW- 113C	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 113C	1	PE	500mL				2540C TDS	APP	
MW- 113C	1	PE	250mL				2320B Alkalinity	APP	
MW- 113C	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS	s: Per SOP, p	oarameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.	
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP = f	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)
SAMPLIN	G EQUIPMENT				B = Bailer; BP = Bladdoump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)	

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: **pH**: \pm 0.1 unit **Specific Conductance**: \pm 5% **Dissolved Oxygen**: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L **Turbidity**: all readings \leq 10 NTU; or \pm 10%

SITE LOCATION: Brunswick, GA SITE NAME: LCP Chemical Site DATE: 9/6/2013 WELL NO: MW-115A SAMPLE ID: MW-115A

PURGING DATA

					FUNG	ING DA	17						
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		WELL SCREEN INDEPTH (feet btoc)		4	STATIC TO WAT	DEPTH FER (feet btoc): r		-	E PUMP TYPE ILER: PP	
	,	I Purge: 1 EQ	UIPMENT VOI	= (TUB	ING CAPACITY 37 feet) + 0.13		JBING		+ FLOW CELL V	l .			
	MP OR TUBINO	-	FINAL PUMP DEPTH IN W			PURGIN INITIATE		1243	PURGING ENDED AT:	1318		OTAL VOLUME PURGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTI TO WATE (feet btoc)	pН	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBID (NTUs		ORP (mV)	SP Gravity (sg)
1245	0.19	0.19	0.02	6.92	7.13	24.83	5	.739	50.0	5.06	6	-186.5	
1250	0.41	0.6	0.04	6.86	5.84	24.14	5	.160	4.7	5.06	3	-214.6	
1255	0.4	1.0	0.04	6.89	5.47	23.59	5	.226	2.9	4.14	1	-225.4	
1300	0.4	1.4	0.04	6.91	5.37	23.41	5	.228	2.3	7.34	1	-233.9	
1305	0.3	1.7	0.03	6.87	5.28	23.54	5	.254	2.4	6.37	7	-235.6	
1310	0.4	2.1	0.04	6.86	5.25	23.50	5	.285	2.3	8.16	3	-239.3	
1315	0.4	2.5	0.04	6.86	5.23	23.68	5	.335	1.9	5.67	7	-236.8	
TUBING IN		ACITY (Gal./F	t.): 1/8" = 0.00	006; 3		1/4" = 0.002	-,	3" = 0.37; 5/16" = 0.	,	5 " = 1.02; 006; 1		,	= 5.88 = 0.016

SAMPLING DATA

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

BP = Bladder Pump;

B = Bailer;

PURGING EQUIPMENT CODES:

CAMPLED	AMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING SAMPLING ENDED AT:											
Ken Stu	,	FFILIATION:		SAMPLEN(S) SIGN	NATURE(3).		SAMPLING INITIATED AT: 1320	SAMPLIN n/a	IG ENDED AT:			
PUMP OR	TUBING			TUBING		FIELD-I	I FILTERED: Yes/SM 450	0 Sulfide FILTER	SIZE: 0.45 μm			
DEPTH IN	WELL (feet): 1	9.4		MATERIAL CODE:	Teflon-lined PE	Filtratio	n Equipment Type: In-li	ne filter				
FIELD DE	CONTAMINATIO	DN: PU	MP Y I	No T	UBING Y No (repla	iced)	DUPLICATE:	Yes				
SAM	PLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments			
MW- 115A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP				
MW- 115A	115A 1 PE 125mL PH APP											
MW- 115A	MW- 115A 1 PE 250mL 6010B Dissolved Silica APP											
MW- 115A	1	PE	125mL				9056A_28D Chloride & Sulfate	APP				
MW- 115A	1	AG	125mL				SM 5310 DOC	APP				
MW- 115A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered			
MW- 115A	1	PE	500mL				2540C TDS	APP				
MW- 115A	1	PE	250mL				2320B Alkalinity	APP				
MW- 115A	1	AG	125mL	HCI			SM5310 TOC	APP				
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.											
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)			
SAMPLIN	MPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)											

			Ŭ			, .	-11 0/11	··· ·	0					
SITE NAME: LC	P Chemical Sit	e				SI7 LO	TE CATION: Br u	ınswi	ck, GA					
WELL NO	: MW-115B			SA	MPLE ID:	MW-115	БВ				DATE:	9/5/201	3	
				I	F	PURG	ING DA	TA						
WELL	_ , , , , .	TUBIN					INTERVAL		STATIC D				E PUMP TY	/PE
	R (inches): 2		TER (inches):		,		30.5 to 32			R (ft btoc): 6.16			ILER: PP	
Tubing-ir	n-Screen Interva		QUIPMENT V (s (0.0026							+ FLOW CELL \	/OLUMI	Ī		
	UMP OR TUBIN I WELL (ft btoc)	-	FINAL PUI DEPTH IN		UBING btoc): 31.	25	PURGIN INITIATE		: 1427	PURGING ENDED AT:	1451		TOTAL VOL PURGED (g	UME pallons): 1.25
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEF T(WA) (fe	D TER (sta	pH andard inits)	TEMP.		COND. iS/cm)	DISSOLVED OXYGEN (% saturation)	_	BIDITY TUs)	ORP (mV)	
1430	0.27	0.22	0.03	6.2	22	9.0	24.30	4	.134	18.0	5	5.47	-90.6	i
1435	0.28	0.5	0.03	6.2	22 8	3.98	23.48	4	.528	0.7	4	1.88	-147.8	3
1440	0.25	0.75	0.03	6.2	22 9	9.02	23.24	4	.581	0.2	4	1.81	-136.0	0
1445	0.25	1.00	0.03	6.2	22 9	9.03	23.29	4	.617	0.2	4	1.82	-136.0	0
1450	0.25	1.25	0.03	6.2	22 9	9.03	23.35	4	.633	0.2	4	1.84	-137.3	3
WELLCA	PACITY (Gallon	o Dor Footh	0.75" - 0.02:	1" – 0	.04; 1.2 5	=" - 0.06	6; 2 " = 0.10	e. :	3 " = 0.37:	4 " = 0.65:	5 " = 1.0)	' = 1.47:	12 " = 5.88
TUBING II	NSIDE DIA. CAI Below top of ca	PACITY (Gal.	/Ft.): 1/8" = 0	.0006;	3/16" = 0.0	0014;	1/4" = 0.002		5/16" = 0.0					5/8 " = 0.016
PURGING	EQUIPMENT C	ODES: I	3 = Bailer;	BP = Bla	dder Pump	<u> </u>	SP = Electric		ersible Pun	np; PP = P	eristaltio	Pump;	O = Ot	ther (Specify)
			n e		_		LING DA	<u>ATA</u>		_				
Matt So	BY (PRINT) / A cheuer	AFFILIATION:		SAMPL	ER(S) SIGI	NATURE	E(S):			SAMPLING INITIATED A	T: 1457		SAMPLIN ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet): 3	1.25		TUBING MATER	: IAL CODE:	Teflon-	-lined PE	FIELD-FILTERED: Yes SM 4500 Sulfide FILTER SIZE: 0.45 µr ed PE Filtration Equipment Type: In-line filter						R SIZE: <u>0.45 μ</u> m
FIELD DE	ECONTAMINATION: PUMP Y No TUBING Yes No (replaced) DUPLICATE: No													
SAM	IPLE CONTAINE	R SPECIFIC	ATION		SAM	IPLE PR	RESERVATIO	N		INTEND			MPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	_	RVATIVE SED		TOTAL VOL D IN FIELD (r	nL)	FINAL pH	ANALYSIS A METHO	D		IIPMENT ODE	Comments
MW- 115B	1	PE	250mL	ΙH	NO3					6010B T Metals/ 747	'0A Hg	,	APP	
MW-		חר	4051							3500 FE/ 9	9040B		4 DD	

	I WELL (feet): 3			MATERIAL CODE:		Filtratio	n Equipment Type: In-li	ine filter	- 		
FIELD DE	CONTAMINATION	ON: PU	MP Y	No T	UBING Yes No (r e	eplaced)	DUPLICATE:	No			
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
MW- 115B	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP			
MW- 115B	1	PE	125mL				3500 FE/ 9040B pH	APP			
MW- 115B 1 PE 250mL G010B Dissolved Silica APP											
MW- 115B 1 PE 125mL Sulfate APP											
MW- 115B	1	AG	125mL				SM 5310 DOC	APP			
MW- 115B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
MW- 115B	1	PE	500mL				2540C TDS	APP			
MW- 115B	1	PE	250mL				2320B Alkalinity	APP			
MW- 115B	1	AG	125mL	HCI			SM5310 TOC	APP			
REMARKS	s: Per SOP, p	parameters	s stable prid	or to sample colle	ection.						
MATERIA	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)										

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) **NOTES:** Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: **pH**: \pm 0.1 unit **Specific Conductance**: \pm 5% **Dissolved Oxygen**: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L **Turbidity**: all readings \leq 10 NTU; or \pm 10%

O = Other (Specify)

PURGING DATA

WELL		TUBING			WELL SCREEN IN			STATIC		1 -		E PUMP TYPE	
DIAMETER	(inches): 2	DIAMET	ER (inches): 1/	4 i	DEPTH (feet btoc)	: 42.7 to 44.	.2	TO WAT	TER (feet btoc): 6	. 69 C	R BA	AILER: PP	
Tubing-in-	Screen Interva				ING CAPACITY 44 feet) + 0.13			LENGTH) 5 gallon	+ FLOW CELL V s	OLUME			
	MP OR TUBINO	-	FINAL PUME DEPTH IN W			PURGIN INITIATE	-	1531	PURGING ENDED AT:	1605		FOTAL VOLUMI PURGED (gallor	_
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTI TO WATE (feet btoc)	pН	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBII (NTU		ORP (mV)	SP Gravity (sg)
1535	0.25	0.25	0.03	7.35	8.59	24.81	4	9.05	2.5	10.7	7	-157.8	
1540	0.25	0.5	0.03	7.32	8.59	24.87	4	8.58	1.8	8.7	5	-180.0	
1545	0.25	0.75	0.03	7.31	8.77	24.27	4	8.67	1.5	7.42	2	-244.9	
1550	0.25	1.0	0.03	7.31	8.89	24.21	4	8.41	1.8	6.19	9	-203.0	
1555	0.25	1.25	0.03	7.30	9.02	24.02	4	8.33	1.5	5.53	3	-192.7	
1600	0.15	1.4	0.02	7.30	9.08	24.59	4	8.51	1.6	4.83	3	-270.0	
1605	0.10	1.5	0.01	7.30	9.07	24.25	4	8.30	1.0	4.38	8	-298.1	1.030
TUBING IN		ACITY (Gal./F	i.): 1/8" = 0.00	006; 3/	,	1/4" = 0.002	-,	5" = 0.37; 5/16" = 0.	,	5 " = 1.02; 006; 1		,	= 5.88 = 0.016

SAMPLING DATA

ESP = Electric Submersible Pump;

O = Other (Specify)

PP = Peristaltic Pump;

BP = Bladder Pump;

B = Bailer;

PURGING EQUIPMENT CODES:

SAMPLED Michae	BY (PRINT) / A	FFILIATION:		SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1606	SAMPLIN 1636	NG ENDED AT:							
PUMP OR DEPTH IN	TUBING WELL (feet): 4	3.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 n Equipment Type: In-l i		SIZE: <u>0.45</u> μm							
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repl a	iced)	DUPLICATE:	No								
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional							
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments							
MW- 115C	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP								
MW- 115C	115C 1 PE 125mL pH APP															
MW- 115C	MW- 115C 1 PE 250mL G010B Dissolved Silica APP															
MW- 115C	1	PE	125mL				9056A_28D Chloride & Sulfate	APP								
MW- 115C	1	AG	125mL				SM 5310 DOC	APP								
MW- 115C	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered							
MW- 115C	1	PE	500mL				2540C TDS	APP								
MW- 115C	1	PE	250mL				2320B Alkalinity	APP								
MW- 115C	1	AG	125mL	HCI			SM5310 TOC	APP								
REMARKS	s: Per SOP, _I	parameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.								
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)							
SAMPLIN	G EQUIPMENT							MPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)								

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-352A	SAMPLE ID: MW	-352A	DATE: 9/5/2013

PURGING DATA

					PURG	ING DA	IA						
WELL DIAMETER	(inches): 2	TUBING DIAMETI	ER (inches): 1/		ELL SCREEN I EPTH (feet btoo		.9	_	DEPTH TER (feet btoc): 6		RGE PUMP TYPE BAILER: PP		
Tubing-in-	Screen Interva	Il Purge: 1 EQ			IG CAPACITY 44 feet) + 0.13) + FLOW CELL V	OLUME			
_	MP OR TUBING WELL (feet btoo	-	FINAL PUMP DEPTH IN W	-		PURGIN INITIATE		1052	PURGING ENDED AT:	1154	TOTAL VOLUM PURGED (gallo		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)	_	SP Gravity (sg)	
1054	0.22	0.22	0.03	6.51	9.66	26.27	3.	.701	14.3	9.28	-52.6		
1059	0.25	0.47	0.03	6.53	11.09	25.80	3.	.585	2.1	72.8	-119.8		
1104													
1109	0.25	0.97	0.03	6.5	12.48	26.90	3.	.584	1.4	77.1	-181.9		
1114	0.25	1.22	0.03	6.51	12.47	27.40	3.	.567	1.2	74.9	-188.6		
1119	0.25	1.47	0.03	6.5	12.44	27.64	3.	.547	1.2	74.7	-216.6		
1124	0.25	1.72	0.03	6.5	12.40	27.46	3.	.534	1.1	69.8	-238.1		
1129	0.25	1.97	0.03	6.5	12.38	27.44	3.	.507	1.0	75.4	-255.8		
1134	0.25	2.22	0.03	6.5	12.35	27.33	3.	.506	0.9	75.3	-266.6		
1139	0.25	2.47	0.03	6.51	12.33	26.99	3.	.478	0.8	76.2	-274.8		
1144	0.25	2.72	0.03	6.5	12.30	27.16	3.	.457	0.7	74.4	-280.0		
1149	0.25	2.97	0.03	6.5	12.28	27.54	3.	.465	0.7	78.4	-284.8		
1154	0.25	3.22	0.03	6.5	12.26	28.14	3.	.457	0.7	78.2	-285.6		
TUBING IN BTOC = B	SIDE DIA. CAR	PACITY (Gal./Ft	a.): 1/8" = 0.0 w top of casing	g which incl	6" = 0.0014; udes above gra	1/4" = 0.002 de riser	26;	5" = 0.37; 5/16" = 0.	.004; 3/8" = 0.		2" = 0.010; 5/8	' = 5.88 " = 0.016	
PUKGING I	EQUIPMENT C	ODES: B=	Bailer; B	P = Bladde	rPump; E	SP = Electric	Subme	ersible Pu	mp; PP = Pe	ristaltic Pun	np; U = Othei	(Specify)	

SAMPLING DATA

	BY (PRINT) / A Chuprikova			SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1154	SAMPLIN 1255	NG ENDED AT:
PUMP OR DEPTH IN	R TUBING I WELL (feet): 3	1.15		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-li		SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repla	iced)	DUPLICATE:	No	
SAM	IPLE CONTAINE	ER SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 352A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 352A	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 352A	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 352A	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
MW- 352A	1	AG	125mL				SM 5310 DOC	APP	
MW- 352A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 352A	1	PE	500mL				2540C TDS	APP	
MW- 352A	1	PE	250mL				2320B Alkalinity	APP	
MW- 352A	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.	•
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP = f	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)

 APP = After Peristaltic Pump;
 B = Bailer;
 BP = Bladder Pump;
 ESP = Electron Branch

 RFPP = Reverse Flow Peristaltic Pump;
 SM = Straw Method (Tubing Gravity Drain);

 SAMPLING EQUIPMENT CODES: **ESP** = Electric Submersible Pump;

O = Other (Specify)

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-352B	SAMPLE ID: MW	¹ -352B	DATE: 9/3/2013

PURGING DATA

					I UNG	NG DA	17						
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		'ELL SCREEN IN EPTH (feet btoc)		8	STATIC TO WA	DEPTH FER (feet btoc): 7			PUMP TYPE LER: PP	
Tubing-in-	Screen Interva				NG CAPACITY 44 feet) + 0.13	X TU gallons =			+ FLOW CELL V	OLUME			
_	MP OR TUBING		FINAL PUMP DEPTH IN W	-		PURGIN INITIATE	-	1453	PURGING ENDED AT:	1515		OTAL VOLUMI JRGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	рН	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBID (NTU:		ORP (mV)	SP Gravit (sg)
1455	0.26	0.26	0.03	7.35	9.51	26.19	18	8.73	44.0	51.6	6	-129.4	
1500	0.24	0.5	0.02	7.37	9.16	27.09	42	2.94	1.0	26.5	5	-245.5	
1505	0.5	1.0	0.05	7.35	11.50	26.90	52	2.32	0.1	7.39)	-286.6	
1510	0.25	1.25	0.03	7.35	11.58	26.97	5	2.41	0.1	6.87	7	-296.8	
1515	0.25	1.5	0.03	7.34	11.53	26.94	52	2.44	0.1	6.01		-309.5	
	ACITY (Gallons				1.25 " = 0.06; 6 " = 0.0014;	2 " = 0.1 1/4 " = 0.002	-, -	5" = 0.37; 5/16" = 0.	,	5" = 1.02; 006; 1	6 " = 0	,	= 5.88 = 0.016

SAMPLING DATA

	BY (PRINT) / A Chuprikova			SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1520	SAMPL 1543		
PUMP OR DEPTH IN	TUBING WELL (feet): 4	8.1		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 µm Pequipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repla	ced)	DUPLICATE:	No		
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 352B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 352B	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 352B	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 352B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP		
MW- 352B	1	AG	125mL				SM 5310 DOC	APP		
MW- 352B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 352B	1	PE	500mL				2540C TDS	APP		
MW- 352B	1	PE	250mL				2320B Alkalinity	APP		
MW- 352B	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.	Purge water is	

REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters. Purge water is brown, sulfur-like odor.

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

SITE LOCATION: Brunswick, GA SITE NAME: LCP Chemical Site DATE: 9/3/2013 WELL NO: MW-353B SAMPLE ID: MW-353B

DURGING DATA

						PURG	ING DA	IA						
WELL		TUBING				SCREEN II		_	STATIC				GE PUMP TYPE	
DIAMETER	(inches): 2	DIAMET	ER (inches): 1/	4	DEPT	H (feet btoc): 42.2 to 43 .	7	TO WAT	TER (feet btoc): 6	5.77	OR B	AILER: PP	
Tubing-in-	Screen Interva		UIPMENT VOI (0.0026 gallo						LENGTH) 5 gallon	+ FLOW CELL V s	OLUME			
	MP OR TUBING VELL (feet btoo	-	FINAL PUMF DEPTH IN W	ELL (fee	et btoc)	: 42.95	PURGIN INITIATE	-	1115	PURGING ENDED AT:	1143		TOTAL VOLUMI PURGED (gallor	_
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet btoc	≣R t	pH (standard units)	TEMP. (°C)	-	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURE (NT		ORP (mV)	SP Gravity (sg)
1117	0.25	0.25	0.03	6.93	3	8.0	25.83	2	2.17	58.1	7.	24	-29.7	
1122	0.25	0.50	0.03	7.0)	9.90	23.71	4	5.21	0.2	7.3	33	-373.2	
1127	0.25	0.75	0.03	7.0)	10.05	23.73	4	6.34	0.0	6.	55	-418.8	
1132	0.25	1.0	0.03	7.03	3	10.09	23.73	4	6.77	0.0	6.	82	-426.2	
1137	0.25	1.25	0.03	7.03	3	10.12	23.77	4	7.03	0.0	6.	74	-434.6	
1142	0.25	1.5	0.03	7.03	3	10.14	23.78	4	7.16	0.0	6.	81	-438.1	
TUBING IN	ACITY (Gallons SIDE DIA. CAP	ACITY (Gal./Fi	i.): 1/8" = 0.00	006; 3	3/16" =		1/4" = 0.002	-, -	3" = 0.37; 5/16" = 0.	,	5" = 1.02 006;		,	= 5.88 = 0.016

SAMPLING DATA

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

BP = Bladder Pump;

B = Bailer;

PURGING EQUIPMENT CODES:

	BY (PRINT) / A cheauer	FFILIATION:	:	SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1147	SAMPLIN 1203	NG ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 4:	2.95		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 0 n Equipment Type: In-Ii		SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No	
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 353B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 353B	1	PE	125mL				3500 FE/ 9040B APP		
MW- 353B	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 353B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
MW- 353B	1	AG	125mL			SM 5310 DOC		APP	
MW- 353B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 353B	1	PE	500mL				2540C TDS	APP	
MW- 353B	1	PE	250mL				2320B Alkalinity	APP	
MW- 353B	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS	s: Per SOP, _I	parameter	s stable pri	or to sample colle	ection. Water level st	abilized	prior to collecting pa	arameters.	
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP = I	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)
SAMPLIN	G EQUIPMENT				B = Bailer; BP = Bladdump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)	

SITE NAME: LCP Chemical Site	SITE LOCATION: Brunswick, GA	
WELL NO: MW-357A	SAMPLE ID: MW-357A	DATE: 8/28/2013

PURGING DATA

					FUNG	ING DA	17					
WELL	(in all and) . O	TUBING	ED (:b). 4		ELL SCREEN IN			-	DEPTH	_	RGE PUMP TYPE	
DIAMETER	(inches): 2	DIAMET	ER (inches): 1/	4 Di	EPTH (feet btoc)	40.4 to 41.	9	TO WA	TER (feet btoc): 5	.85 OR	BAILER: PP	
Tubing-in-	Screen Interva	l Purge: 1 EQ =			IG CAPACITY 44 feet) + 0.13) + FLOW CELL V s	OLUME		
	MP OR TUBING	-	FINAL PUMI DEPTH IN W			PURGIN INITIATE	-	1454	PURGING ENDED AT:	1603	TOTAL VOLUM PURGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	ry ORP	SP Gravit
1458	0.24	0.24	0.02	6.75	7.24	27.42	1	1.66	58.2	17.8	-237.9	
1503	0.1	0.34	0.01	7.39	15.48	26.32	10	6.31	5.7	19.5	-330.9	
1508	0.15	0.49	0.02	8.40	15.94	26.60	1	5.57	4.1	16.4	-339.7	
1513	0.05	0.54	0.01	8.85	14.16	26.46	1	5.00	3.7	16.7	-344.9	
1518	0.1	0.64	0.01	9.31	13.69	27.11	14	4.69	3.4	16.0	-350.0	
1523	0.1	0.74	0.01	9.85	13.83	28.69	14	4.23	2.8	14.5	-349.4	
1528	0.1	0.84	0.01	10.16	13.42	29.51	14	4.09	2.6	14.7	-349.1	
1533	0.1	0.94	0.01	10.67	13.72	30.28	1:	3.86	2.1	13.3	-351.0	
1538	0.15	1.09	0.02	10.98	13.51	30.10	1:	3.85	2.0	13.0	-351.8	
1543	0.2	1.29	0.02	11.28	13.56	29.89	1:	3.81	1.9	15.3	-357.9	
1548	0.15	1.44	0.02	11.46	13.30	31.26	1:	3.55	1.6	14.6	-362.7	
1553	0.1	1.54	0.01	11.63	14.55	31.80	14	4.53	1.4	13.5	-368.9	
1558	0.1	1.64	0.01	11.71	14.23	32.86	14	4.42	1.3	12.8	-358.4	
1603	0.1	1.74	0.01	11.83	14.01	33.09	14	4.43	1.4	13.1	-358.2	
TUBING INS BTOC = Be	SIDE DÌA. CAP		t.): 1/8" = 0.0 w top of casing		6" = 0.0014; udes above grad	1/4" = 0.002	6;	5" = 0.37; 5/16" = 0.	.004; 3/8" = 0.	5" = 1.02; 006; 1/2 ristaltic Pum	" = 0.010; 5/8 "	= 5.88 = 0.016

SAMPLING DATA

SAMPLED Michae	BY (PRINT) / A	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1605	SAMPLII 1657	NG ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 4	1.15		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 n Equipment Type: In-l i		R SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PUI	MP Y	No T	UBING Y No (repla	aced)	DUPLICATE:	No	
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 357A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 357A	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 357A	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 357A	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
MW- 357A	1	AG	125mL				SM 5310 DOC	APP	
MW- 357A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 357A	1	PE	500mL				2540C TDS	APP	
MW- 357A	1	PE	250mL				2320B Alkalinity	APP	
MW- 357A	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS	s: Per SOP, ¡	parameter	s stable pri	or to sample coll	ection. Water level co	uld not s	tabilize and pump p	ourged as low	as it can go.
MATERIA	L CODES:	AG = Amber	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP =	Polypropyle	ne; S = Silicone; T	= Teflon; O =	Other (Specify)
SAMPLIN	G EQUIPMENT				B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)	

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: ± 0.1 unit Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 10% saturation; optionally, ± 0.2 mg/L Turbidity: all readings ≤ 10 NTU; or ± 10%

PURGING DATA

					FUNG	ING DA	1 🗛					
WELL		TUBING			ELL SCREEN IN		_	STATIC			JRGE PUMP TYPE	:
DIAMETER	(inches): 2	DIAMET	ER (inches): 1/	4 DI	EPTH (feet btoc)	: 46.8 to 48.	3	TOWA	TER (feet btoc): 6	.59 OF	R BAILER: PP	
Tubing-in-	Screen Interva	•		`	IG CAPACITY 44 feet) + 0.13			,	+ FLOW CELL V s	OLUME		
_	MP OR TUBINO WELL (feet btoo		FINAL PUMP DEPTH IN W	-		PURGIN INITIATE	-	1147	PURGING ENDED AT:	1231	TOTAL VOLUM PURGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBID (NTUs		SP Gravity (sg)
1151	0.26	0.26	0.03	7.08	14.10	25.77	4	.410	58.1	24.4	-200.6	
1156	0.26	0.52	0.03	7.11	13.34	25.18	2	0.95	2.5	10.5	-358.4	
1201	0.24	0.76	0.03	7.08	13.18	24.42	2	1.34	2.3	7.58	-384.6	
1206	0.25	1.01	0.03	7.08	13.10	24.50	2	1.50	2.0	6.70	-360.1	
1211	0.25	1.26	0.03	7.08	12.17	25.19	2	1.32	2.0	7.05	-353.8	
1216	0.25	1.51	0.03	7.08	12.18	25.19	2	1.36	2.1	5.62	-372.9	
1221	0.25	1.76	0.03	7.08	11.49	25.02	2	1.37	1.4	6.26	-379.9	
1226	0.25	2.01	0.03	7.08	11.43	24.59	2	1.40	1.4	5.64	-402.2	
1231	0.25	2.26	0.03	7.08	11.08	24.71	2	1.40	1.3	5.47	-372.9	
TUBING IN	SIDE DÌA. CAF	ACITY (Gal./F	t.): 1/8" = 0.0	006; 3/1	1.25 " = 0.06 6 " = 0.0014; udes above grad	1/4" = 0.002	-, -	5" = 0.37; 5/16" = 0.	,	5" = 1.02; 006; 1/	- ,	" = 5.88 " = 0.016

SAMPLING DATA

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

BP = Bladder Pump;

B = Bailer;

PURGING EQUIPMENT CODES:

SAMPLED Michae	BY (PRINT) / A	FFILIATION:	:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1233	SAMPLIN 1309	IG ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 4	7.55		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 n Equipment Type: In-li		SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repl a	aced)	DUPLICATE:	No	
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 357B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 357B	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 357B	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 357B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
MW- 357B	1	AG	125mL				SM 5310 DOC	APP	
MW- 357B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 357B	1	PE	500mL				2540C TDS	APP	
MW- 357B	1	PE	250mL				2320B Alkalinity	APP	
MW- 357B	1	AG	125mL	HCI			SM5310 TOC	APP	_
REMARKS	s: Per SOP, p	parameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.	
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)
SAMPLIN	G EQUIPMENT			eristaltic Pump; rse Flow Peristaltic Pu	B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)	

SITE		SITE	
NAME: LCP Chemical Site		LOCATION: Brunswick, GA	
WELL NO: MW-358B	SAMPLE ID: MW	'-358B	DATE: 9/4/2013

PURGING DATA

WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		WELL SCREEN II DEPTH (feet btoc)			STATIC TO WAT	DEPTH TER (feet btoc): r	_	PURGE PUMP TYPE OR BAILER: PP		
Tubing-in-	Screen Interva				SING CAPACITY (37 feet) + 0.13				+ FLOW CELL V s	/OLUME			
-	MP OR TUBINO		FINAL PUMP DEPTH IN W			PURGIN INITIATE	-	1050	PURGING ENDED AT:	1130	TOTAL VOLUM PURGED (gallo	_	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet btoc)	pH (standard units)	TEMP.		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)		SP Gravity (sg)	
1100	0.24	0.24	0.02	6.82	10.05	23.54	33	3.72	1.3	4.56	-329.0		
1105	0.36	0.6	0.04	6.82	12.58	22.71	34	4.09	1.1	6.42	-414.0		
1110	0.2	0.9	0.02	6.81	12.55	22.65	34	4.37	1.0	8.85	-430.7		
1115	0.5	1.4	0.05	6.81	12.47	22.60	34	4.55	1.0	8.16	-443.0		
1120	0.2	1.8	0.02	6.81	12.43	22.58	34	4.63	1.1	8.48	-455.7		
TUBING IN	SIDE DÍA. CAF	PACITY (Gal./Fi	t.): 1/8" = 0.0	006; 3	4; 1.25 " = 0.06 / 16" = 0.0014; ncludes above gra	1/4" = 0.002		3 " = 0.37; 5/16" = 0.		5 " = 1.02; .006; 1 / 2	- ,	' = 5.88 ' = 0.016	
PURGING	EQUIPMENT C	ODES: B	Bailer; B	P = Blade	der Pump; ES	P = Electric	Subme	ersible Pu	mp: PP = Pe	ristaltic Pum	np: O = Other	(Specify)	

SAMPLING DATA

SAMPLED Ken Stu	BY (PRINT) / A uart	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1130	SAMP 1140	SAMPLING ENDED AT: 1140		
PUMP OR DEPTH IN	TUBING WELL (feet): 4	0.1		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45 </u>				
FIELD DE	CONTAMINATIO	ON: PUI	MP Y I	No T	UBING Y No (repla	DUPLICATE:	No				
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION	INTENDED	SAMPLING	Δdditional			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMEN CODE	Comments		
MW- 358B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP			
MW- 358B	1	PE	125mL				3500 FE/ 9040B pH	APP			
MW- 358B	1	PE	250mL				6010B Dissolved Silica APP				
MW- 358B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP			
MW- 358B	1	AG	125mL				SM 5310 DOC	APP			
MW- 358B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
MW- 358B	1	PE	500mL				2540C TDS	APP			
MW- 358B	1	PE	250mL				2320B Alkalinity	APP			
MW- 358B 1 AG 125mL HCl SM5310 TOC APP											
	REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters. Purge water is brown, sulfur-like odor.										

ESP = Electric Submersible Pump; Gravity Drain); **O** = Other (Specify) **RFPP** = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: ± 0.1 unit Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 10% saturation; optionally, ± 0.2 mg/L Turbidity: all readings ≤ 10 NTU; or ± 10%

B = Bailer; **BP** = Bladder Pump;

PE = Polyethylene;

PP = Polypropylene; **S** = Silicone; **T** = Teflon; **O** = Other (Specify)

MATERIAL CODES:

SAMPLING EQUIPMENT CODES:

AG = Amber Glass;

CG = Clear Glass;

APP = After Peristaltic Pump;

PURGING DATA

FURGING DATA													
WELL		TUBING			WELL SCREE	N INTERVAL			DEPTH		RGE PUMP	TYPE	
DIAMETER	(inches): 2	DIAMETI	ER (inches): 1/	4	DEPTH (feet b	toc) 28.7 to 33	.7	TO WAT	ΓER (feet btoc): 4	. 57 OR	BAILER: PF	•	
Tubing-in-	Screen Interva	I Purge: 1 EQ) + FLOW CELL \	OLUME			
			`		X 44 feet) + 0			2 gallon					
_	MP OR TUBING	-	FINAL PUMF		-		PURGING		PURGING		-	TOTAL VOLUME	
DEPTH IN WELL (feet btoc): 31.2 DEPTH IN			DEPTHINW	,	et btoc): 31.2	INITIAT	ED AT:	1342	ENDED AT:	1516	PURGED	(gallor	ns): 4.5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (fee btoo	pH ER (standar t units)	(*C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)			SP Gravity (sg)
1346	0.22	0.22	0.02	4.62	2 6.72	27.24	0	.771	24.5	n/a	-192	2.5	
1351	0.28	0.5	0.03	4.62	2 6.47	25.42	0	.744	2.6	777	-180	0.0	
1356	0.25	0.75	0.03	4.62	2 6.55	25.27	0	.756	4.0	160	-17	1.6	
1401	0.25	1.0	0.03	4.64	4 6.60	25.42	0	.768	1.4	108	-159	9.8	
1406	0.25	1.25	0.03	4.63	6.62	25.36	0	.777	1.0	129	-152	2.8	
1411	0.25	1.5	0.03	4.63	6.62	25.23	0	.781	1.0	151	-152	2.7	
1416	0.25	1.75	0.03	4.63	6.64	25.35	0	.786	0.7	95.8	-154	4.5	
1421	0.25	2.0	0.03	4.63	6.65	25.12	0	.789	0.4	51.1	-154	4.2	
1426	0.25	2.25	0.03	4.63	6.66	25.21	0	.792	0.3	24.4	-153	3.6	
1431	0.25	2.5	0.03	4.63	6.67	25.06	0	.794	0.3	42.3	-15	5.5	
1436	0.25	2.75	0.03	4.63	6.68	25.20	0	.797	0.0	17.8	-15	5.0	
1441	0.25	3.0	0.03	4.63	6.69	25.26	0	.797	0.4	14.4	-156	6.6	
1446	0.25	3.25	0.03	4.63	3 6.71	25.02	0	.798	0.4	25.5	-159	9.9	
1451	0.25	3.5	0.03	4.62	2 6.68	25.54	0	.791	0.6	745	-158	3.6	
1456	0.25	3.75	0.03	4.62	2 6.70	25.38	0	.799	0.4	25.8	-162	2.5	
1501	0.25	4.0	0.03	4.62	2 6.72	25.51	0	.805	0.4	26.9	-16	5.3	
1506	0.25	4.25	0.03	4.62	2 6.71	25.55	0	.805	0.4	17.2	-157	7.1	
1511	0.25	1.5	0.03	4.6		25.59	_	.805	0.3	12.8	-150	-	
TUBING IN	SIDE DÌA. CAF	s Per Foot): 0. PACITY (Gal./Ft sing – feet belo	.): 1/8" = 0.00	006;	04; 1.25 " = 0 3/16 " = 0.0014; ncludes above	1/4" = 0.00		3" = 0.37; 5/16" = 0.		5" = 1.02; 006; 1/2	6 " = 1.47; 2 " = 0.010;		= 5.88 = 0.016
PURGING E	PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)												
	PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)												

SAMPLING DATA

					HATURE (O)		1				
) by (print) / A Chuprikova,			SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1520	SAMPLIN 1540	IG ENDED AT:		
PUMP OR				TUBING MATERIAL CODE:	Teflon-lined PE		-FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> μm on Equipment Type: In-line filter				
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repl a	iced)	DUPLICATE:	No			
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional		
SAMPLE ID CODE				PRESERVATIVE TOTAL VOL USED ADDED IN FIELD (mL)		FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
MW- 501A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP			
MW- 501A	1	PE	125mL				3500 FE/ 9040B pH	APP			
MW- 501A	1	PE	250mL				6010B Dissolved Silica	APP			
MW- 501A	1	PE	125mL				9056A_28D Chloride & Sulfate	APP			
MW- 501A	1	AG	125mL				SM 5310 DOC	APP			
MW- 501A	2	PE	250mL	NaOH Zinc Acetate		-	SM4500 Sulfide	APP	Field-Filtered		
MW- 501A	1	PE	500mL				2540C TDS	APP			
MW- 501A	1	PE	250mL		-		2320B Alkalinity	APP			
MW- 501A	1	AG	125mL	HCI			SM5310 TOC	APP			
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample colle	ection. Water level st	abilized	orior to collecting pa	arameters.			
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)											
SAMPLIN	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; B = Bladder Pump; B = Bladder Pump; B = Bladder Pump; B = Straw Method (Tubing Gravity Drain); O = Other (Specify)										

SITE NAME: LCP Chemical Site	_	SITE LOCATION: Brunswick, GA	
WELL NO: MW-501B	SAMPLE ID: MW-5	501B	DATE: 8/29/2013

PURGING DATA

WELL DIAMETER	(inches): 2	TUBING DIAMETI	ER (inches): 1/		/ELL SCREEN II EPTH (feet btoc			STATIC TO WAT	DEPTH ΓER (feet btoc): 4	_	RGE PUMP TYPE BAILER: PP		
Tubing-in-	Screen Interva				NG CAPACITY 44 feet) + 0.13) + FLOW CELL V	OLUME			
_	MP OR TUBING VELL (feet btoo	_	FINAL PUMF DEPTH IN W	ELL (feet	btoc): 43		PURGING INITIATED AT: 1437		PURGING ENDED AT:	1545	TOTAL VOLUME PURGED (gallons): ~4.75		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	рН	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	Y ORP (mV)	SP Gravity (sg)	
1438	0.24	0.24	0.03	4.85	13.66	27.13	6.	152	40.5	17.4	-71.3		
1443	0.26	0.50	0.03	4.82	9.77	25.16	6.	092	10.3	17.7	-27.2		
1448	0.25	0.75	0.03	4.81	8.50	24.39	6.	118	6.9	20.1	-24.2		
1453	0.45	1.2	0.05	4.82	12.30	25.12	6.	488	3.5	25.7	-57.3		
1458	0.55	1.75	0.05	4.81	12.00	25.35	7.	672	2.9	25.8	-81.2		
1503	0.50	2.25	0.05	4.81	10.54	25.48	8.	540	2.9	24.0	-67.7		
1508	0.50	2.75	0.05	4.81	12.19	25.41	8.	882	2.9	23.5	-95.5		
1513	0.25	3.00	0.03	4.81	10.14	25.31	9	.15	2.5	22.7	-94.2		
1518	0.25	3.25	0.03	4.81	7.48	25.39	9.	336	2.3	23.0	-91.5		
					Skipped re	adings to c	all lab						
1530	0.5	3.75	0.05	4.81	4.20	25.21	9.	610	2.2	22.1	-88.7		
1535	0.25	4.0	0.03	4.81	4.63	25.16	9.	675	1.7	22.3	-87.5		
1540	0.25	4.25	0.03	4.81	7.69	25.05	9.	797	1.7	22.2	-90.9		
1545	0.5	4.5	0.05	4.81	7.71	24.97	9.	799	1.5	22.1	-97.9		
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 BTOC = Below top of casing – feet below top of casing which includes above grade riser													
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)													

SAMPLING DATA

	BY (PRINT) / A Chuprikova		:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1547	SAMI n/a	SAMPLING ENDED AT: n/a	
PUMP OR DEPTH IN	R TUBING I WELL (feet): 4	3		TUBING MATERIAL CODE:	Teflon-lined PE	FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 µm n Equipment Type: In-line filter				
FIELD DE	CONTAMINATION	ON: PU	MP Y	No T	UBING Y No (repl a	DUPLICATE:	No			
SAM	IPLE CONTAINE	ER SPECIFIC	CATION	SAM	IPLE PRESERVATION	INTENDED	SAMPLING			
SAMPLE ID CODE				PRESERVATIVE USED	TOTAL VOL FIN		ANALYSIS AND/OR METHOD	EQUIPMEN CODE	Comments	
MW- 501B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 501B	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 501B	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 501B	1	PE	125mL			1	9056A_28D Chloride & Sulfate	APP		
MW- 501B	1	AG	125mL				SM 5310 DOC	APP		
MW- 501B	2	PE	250mL	NaOH Zinc Acetate		-	SM4500 Sulfide	APP	Field-Filtered	
MW- 501B	1	PE	500mL				2540C TDS	APP		
MW- 501B	1	PE	250mL			-	2320B Alkalinity	APP		
MW- 501B	1	AG	125mL	HCI			SM5310 TOC	APP		
DEMARKS	PEMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters. Purge water is									

REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters. Purge water is brown, sulfur-like odor. 7470 Mercury (field filtered) sample collected due to high turbidity (above 50 NTU).

 $\textbf{MATERIAL CODES}; \qquad \textbf{AG} = \textbf{Amber Glass}; \qquad \textbf{CG} = \textbf{Clear Glass}; \qquad \textbf{PE} = \textbf{Polyethylene}; \qquad \textbf{PP} = \textbf{Polypropylene}; \qquad \textbf{S} = \textbf{Silicone}; \qquad \textbf{T} = \textbf{Teflon}; \qquad \textbf{O} = \textbf{Other (Specify)}$

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

 SITE
 SITE

 NAME: LCP Chemical Site
 LOCATION: Brunswick, GA

 WELL NO: MW-502A
 SAMPLE ID: MW-502A
 DATE: 8/29/2013

PURGING DATA

WELL		TUBING		WE	LL SCREEN I	NTERVAL	-	ATIC DI	EPTH	PLIR	RGE PUMP TYPE	
DIAMETER	(inches): 2		ER (inches): 1/		PTH (feet btoo		_		R (feet btoc): 4	_	BAILER: PP	
Tubing-in-S	Screen Interval		UIPMENT VOI (0.0026 gallo				JBING LEN		FLOW CELL V	OLUME		
INITIAL PUMP OR TUBING DEPTH IN WELL (feet btoc): 27 FINAL PUMP OF DEPTH IN WELL							PURGING INITIATED AT: 1341		PURGING ENDED AT:	1445	TOTAL VOLUME PURGED (gallons): ~3.0	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP.	SP CON (mS/cm	D.	DISSOLVED OXYGEN % saturation)	TURBIDIT (NTUs)	Y ORP (mV)	SP Gravity (sg)
1345	0.21	0.21	0.02	4.19	7.49	32.10	3.023		0.18	56.8	-226.4	
1350	0.2	0.51	0.02	4.19	5.64	30.53	2.705		0.06	59.0	-246.9	
1355	0.25	0.76	0.03	4.19	9.49	28.69	2.562		0.06	58.3	-261.0	
1400	0.25	1.01	0.03	4.19	9.53	29.94	2.566		0.04	59.9	-261.3	
1405	0.2	1.21	0.02	4.19	9.56	29.74	2.577		0.04	59.8	-277.8	
1410	0.2	1.41	0.02	4.19	9.57	30.00	2.601		0.03	60.0	-284.7	
1415	0.25	1.66	0.03	4.19	9.58	28.94	2.606		0.03	59.7	-296.3	
1420	0.15	1.81	0.03	4.19	9.61	30.25	2.609		0.03	62.9	-298.5	
1425	0.25	2.06	0.02	4.19	9.62	30.83	2.596		0.03	61.0	-297.4	
1430	0.15	2.21	0.02	4.19	9.61	30.73	2.576		0.02	60.9	-309.0	
1435	0.25	2.46	0.03	4.19	9.62	30.24	2.546		0.01	59.7	-315.9	
1440	0.2	2.66	0.02	4.19	9.62	30.26	2.542		0.01	60.1	-317.8	
1445	0.25	2.91	0.03	4.19	9.62	30.62	2.525		0.01	62.4	-321.0	
TUBING INS	ACITY (Gallons SIDE DIA. CAP Llow top of cas	ACITY (Gal./F	i.): 1/8" = 0.0			1/4" = 0.002).37; " = 0.00		- ,	- ,	= 5.88 = 0.016
PURGING E	QUIPMENT C	DDES: B	Bailer; B	P = Bladder	Pump; Es	SP = Electric	Submersib	le Pump	o; PP = Pe	ristaltic Pum	p; O = Other	(Specify)

SAMPLING DATA

				3.	AMPLING DATA					
SAMPLED Michae	BY (PRINT) / A	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1447	SAMPLII n/a	NG ENDED AT:	
PUMP OR DEPTH IN	TUBING WELL (feet): 2	7		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 µm on Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION	INTENDED	SAMPLING	Additional		
SAMPLE ID CODE				PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 502A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 502A	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 502A	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 502A	1	PE	125mL			1	9056A_28D Chloride & Sulfate	APP		
MW- 502A	1	AG	125mL			1	SM 5310 DOC	APP		
MW- 502A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 502A	1	PE	500mL				2540C TDS	APP		
MW- 502A	1	PE	250mL				2320B Alkalinity	APP		
MW- 502A	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	s: Per SOP.	parameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters. 7	470 Mercury	

REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters. 7470 Mercury (field filtered) sample collected due to high turbidity (above 50 NTU).

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-502B	SAMPLE ID: MW	′-502B	DATE: 8/30/2013

PURGING DATA

				- 1								
WELL		TUBING			WELL SCREEN IN			STATIC			RGE PUMP TYPE	
DIAMETER	(inches): 2	DIAMET	ER (inches): 1/	4	DEPTH (feet btoc)	: 36.4 to 41.	.4	TO WAT	TER (feet btoc): 4	.03 OR	R BAILER: PP	
Tubing-in-S	Screen Interva			, -	BING CAPACITY X 53 feet) + 0.13				+ FLOW CELL V s	OLUME		
				NAL PUMP OR TUBING PTH IN WELL (feet btoc): 38.9			PURGING INITIATED AT: 0903		PURGING ENDED AT: (PURGING ENDED AT: 0936		E ns): ~1.85
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (fee	pH (standard t units)	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)	-	SP Gravity (sg)
0906	0.24	0.24	0.02	4.1	1 5.55	25.70	2	.900	39.2	35.2	11.4	
0911	0.2	0.54	0.02	4.1	1 11.10	25.11	3	.715	2.3	40.8	-101.6	
0916	0.25	0.79	0.03	4.1	1 11.13	24.96	3	.729	2.0	41.0	-116.9	
0921	0.35	1.14	0.04	4.1	1 11.13	24.87	3	.742	1.2	39.6	-134.1	
0926	0.25	1.39	0.03	4.1	1 11.14	24.92	3	.750	1.3	40.3	-153.6	
0931	0.2	1.59	0.02	4.1	1 11.13	24.99	3	.750	1.1	41.7	-164.8	
0936	0.25	1.84	0.03	4.1	1 11.13	25.08	3	.751	1.1	39.1	-171.9	1.02
TUBING INS BTOC = Be	SIDE DIA. CAP low top of cas	ACITY (Gal./Fi sing – feet belo	.): 1/8" = 0.00 w top of casing	006; 3 which i	1.25" = 0.06; 3/16" = 0.0014; ncludes above grad	1/4" = 0.002 de riser	26;	5/16" = 0.	004; 3/8" = 0.		2" = 0.010; 5/8"	= 5.88 = 0.016
PURGING E	QUIPMENT C	ODES: B =	Bailer; B	P = Blad	der Pump; ES	P = Electric	Subme	ersible Pui	mp; PP = Pe	ristaltic Pur	np; $\mathbf{O} = \text{Other}$	(Specify)

SAMPLING DATA

SAMPLED Michae	BY (PRINT) / A I Epps	FFILIATION:		SAMPLER(S) SIGN	SAMPLING INITIATED AT: 0938		SAMPLING ENDED AT: 1009				
PUMP OR DEPTH IN	TUBING WELL (feet): 3	8.9		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 µm p Equipment Type: In-line filter				
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	N	•		
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAMPLE PRESERVATION			INTENDED	SAMPLING		Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE TOTAL VOL FIN USED ADDED IN FIELD (mL) pt			ANALYSIS AND/OR METHOD		IPMENT ODE	Comments	
MW- 502B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	P	\PP		
MW- 502B	1	PE	125mL				3500 FE/ 9040B pH	P	\PP		
MW- 502B	1	PE	250mL				6010B Dissolved Silica	P	\PP		
MW- 502B	1	PE	125mL				9056A_28D Chloride & Sulfate	F	\PP		
MW- 502B	1	AG	125mL			1	SM 5310 DOC	P	\PP		
MW- 502B	2	PE	250mL	NaOH Zinc Acetate		1	SM4500 Sulfide	P	\PP	Field-Filtered	
MW- 502B	1	PE	500mL				2540C TDS	P	\PP		
MW- 502B	1	PE	250mL				2320B Alkalinity	P	\PP		
MW- 502B	1	AG	125mL	HCI			SM5310 TOC	P	\PP		
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.										
MATERIA	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)										
SAMPLIN	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)										

PURGING DATA

					PUNG	ING DA	1 🖰						
WELL	<i>"</i>	TUBING			WELL SCREEN IN			STATIC			-	SE PUMP TYPE	
DIAMETER	(inches): 2	DIAMET	ER (inches): 1/	4 L	DEPTH (feet btoc)	: 42.1 to 47.	1	TO WA	TER (feet btoc): 5	.42	JR BA	AILER: PP	
Tubing-in-	Screen Interva	•			NG CAPACITY 53 feet) + 0.13	X TL gallons =		,	+ FLOW CELL V s	OLUME			
INITIAL PUMP OR TUBING DEPTH IN WELL (feet btoc): 44.6 FINAL PUMP OF DEPTH IN WELL						PURGIN INITIATE	-	0847	PURGING ENDED AT:	0948	TOTAL VOLUME PURGED (gallons): 5.		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pН	TEMP. (°C)	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBII (NTU		ORP (mV)	SP Gravity (sg)
0907	0.25	0.25	0.03	6.08	5.91	25.09	4	.430	5.1	11.	4	11.3	
0912	0.5	0.75	0.05	6.47	5.36	23.00	4	.117	1.9	10.	7	36.5	
0917	0.5	1.25	0.05	6.3	5.18	23.08	4	.160	1.5	5.2	:6	42.0	
0922	0.75	2.0	0.08	6.29	5.03	23.08	4	.398	1.4	4.7	2	45.2	
0927	0.75	2.75	0.08	6.29	4.98	23.09	4	.466	1.4	3.2	:4	45.5	
0932	0.75	3.5	0.08	6.29	4.98	23.04	4	.609	1.3	3.5	5	43.7	
0937	0.75	4.25	0.08	6.29	4.96	23.12	4	.770	1.2	3.2	:6	42.6	
0942	0.75	5.0	0.08	6.29	4.95	23.12	4	.850	1.2	2.9	8	42.9	
0947	0.5	5.5	0.05	6.29	4.96	23.14	4	.923	1.2	3.2	24	41.8	1.00
TUBING IN	SIDE DÌA. CAP	ACITY (Gal./F	t.): 1/8" = 0.00	006; 3/	; 1.25 " = 0.06; 16 " = 0.0014; cludes above grad	1/4" = 0.002	-,	5" = 0.37; 5/16" = 0.	,	5" = 1.02; 006; 1		,	= 5.88 = 0.016

SAMPLING DATA

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

BP = Bladder Pump;

B = Bailer;

PURGING EQUIPMENT CODES:

SAMPLED Matt So	D BY (PRINT) / A cheuer	FFILIATION:	:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 0952	SAMPLIN 1007	NG ENDED AT:
PUMP OR DEPTH IN	R TUBING I WELL (feet): 4-	4.6		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45 µm</u> n Equipment Type: In-line filter		
FIELD DE	CONTAMINATIO	N: PU	MP Y I	No T	UBING Y No (repl a	aced)	DUPLICATE:	No	
SAM	IPLE CONTAINE	R SPECIFIC	CATION		INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 503B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 503B	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 502B	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 503B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
MW- 503B	1	AG	125mL				SM 5310 DOC	APP	
MW- 503B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 503B	1	PE	500mL				2540C TDS	APP	
MW- 503B	1	PE	250mL				2320B Alkalinity	APP	
MW- 503B	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS	s: Per SOP, p	oarameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.	
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)
SAMPLIN	G EQUIPMENT			reristaltic Pump; rse Flow Peristaltic Pu	B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)	

SITE NAME: LCP Chemical Site	SITE LOCATION: Brunswick, GA		
WELL NO: MW-504A	SAMPLE ID: MW-504A	DATE	E: 8/29/2013

PURGING DATA

TIME						PURG	ING DA	IA					
Tubing-in-Screen Interval Purge: 1 EQUIPMENT VOL. = (TUBING CAPACITY (0.0026 gallons/foot X 44 feet) + 0.13 gallons = 0.22 gallons INITIAL PUMP OR TUBING DEPTH IN WELL (feet bloc): 31.3 FINAL PUMP OR TUBING D		(inches): 2		ED (inches): 1							_	-	
INITIAL PUMP OR TUBING DEPTH IN WELL (feet btoc): 31.3 FINAL PUMP OR TUBING DEPTH IN WELL (feet btoc): 31.3 FINAL PUMP OR TUBING DEPTH IN WELL (feet btoc): 31.3 DEPTH IN WELL (feet btoc): 31.3 PURGING ENDED AT: 1113 TOTAL VOLUME PURGED (gallons): 4	DIAMETER	(IIICHES). Z	DIAME	ER (IIICHES). II	/4 L	EFIH (leet bloc)	20.0 10 33.0	•	TO WAT	TER (leet bloc). 4	.63 OR	DAILER. PP	
DEPTH IN WELL (feet bloc): 31.3 DEPTH IN WELL (feet bloc): 31.3 INITIATED AT: 1005 ENDED AT: 1113 PURGED (gallons): 4	Tubing-in-	Screen Interva									OLUME		
TIME VOLUME PURGED (gallons) VOLUME PURGED (gallons) PURGED (gallons) VOLUME PURGED (gallons) PURGED (gallon					-	-		-	1005		1113	TOTAL VOLUME PURGED (gallons): 4.75	
1013 0.33 0.5 0.03 4.92 7.50 26.05 6.303 1.1 11.3 -159.9 1018 0.25 0.75 0.03 4.91 7.32 25.95 6.302 1.0 12.2 -194.3 1023 0.5 1.25 0.05 4.91 7.29 25.94 6.288 3.7 13.2 -211.4 1028 0.5 1.75 0.05 4.91 7.39 25.98 6.286 2.2 13.4 -224.4 1033 0.5 2.25 0.05 4.91 7.49 25.96 6.309 1.1 13.0 -231.1 1038 0.25 2.5 0.03 4.92 7.64 25.91 6.322 0.5 13.1 -238.6 1043 0.5 3.0 0.05 4.94 7.72 25.72 6.332 0.5 13.1 -241.1 1048 0.5 3.5 0.05 4.94 7.80 25.64 6.349 0.3 <td>TIME</td> <td>PURGED</td> <td>VOLUME PURGED</td> <td>RATE</td> <td>TO WATER (feet</td> <td>pH (standard</td> <td></td> <td>_</td> <td></td> <td>OXYGEN</td> <td>-</td> <td>_</td> <td>SP Gravity (sg)</td>	TIME	PURGED	VOLUME PURGED	RATE	TO WATER (feet	pH (standard		_		OXYGEN	-	_	SP Gravity (sg)
1018 0.25 0.75 0.03 4.91 7.32 25.95 6.302 1.0 12.2 -194.3 1023 0.5 1.25 0.05 4.91 7.29 25.94 6.288 3.7 13.2 -211.4 1028 0.5 1.75 0.05 4.91 7.39 25.98 6.286 2.2 13.4 -224.4 1033 0.5 2.25 0.05 4.91 7.49 25.96 6.309 1.1 13.0 -231.1 1038 0.25 2.5 0.03 4.92 7.64 25.91 6.322 0.5 13.1 -238.6 1043 0.5 3.0 0.05 4.94 7.72 25.72 6.332 0.5 13.1 -241.1 1048 0.5 3.5 0.05 4.94 7.80 25.64 6.349 0.3 13.6 -247.0 1053 0.25 3.75 0.03 4.94 8.11 25.87 6.376 0.3 </td <td>1008</td> <td>0.22</td> <td>0.22</td> <td>0.02</td> <td>4.92</td> <td>7.92</td> <td>26.46</td> <td>6.</td> <td>.071</td> <td>17.1</td> <td>11.1</td> <td>-107.71</td> <td></td>	1008	0.22	0.22	0.02	4.92	7.92	26.46	6.	.071	17.1	11.1	-107.71	
1023 0.5 1.25 0.05 4.91 7.29 25.94 6.288 3.7 13.2 -211.4 1028 0.5 1.75 0.05 4.91 7.39 25.98 6.286 2.2 13.4 -224.4 1033 0.5 2.25 0.05 4.91 7.49 25.96 6.309 1.1 13.0 -231.1 1038 0.25 2.5 0.03 4.92 7.64 25.91 6.322 0.5 13.1 -238.6 1043 0.5 3.0 0.05 4.94 7.72 25.72 6.332 0.5 13.1 -241.1 1048 0.5 3.5 0.05 4.94 7.80 25.64 6.349 0.3 13.6 -247.0 1053 0.25 3.75 0.03 4.94 8.11 25.87 6.376 0.3 15.7 -250.4 1058 0.25 4.0 0.03 4.90 8.11 25.99 6.398 0.4 <td>1013</td> <td>0.33</td> <td>0.5</td> <td>0.03</td> <td>4.92</td> <td>7.50</td> <td>26.05</td> <td>6.</td> <td>.303</td> <td>1.1</td> <td>11.3</td> <td>-159.9</td> <td></td>	1013	0.33	0.5	0.03	4.92	7.50	26.05	6.	.303	1.1	11.3	-159.9	
1028 0.5 1.75 0.05 4.91 7.39 25.98 6.286 2.2 13.4 -224.4 1033 0.5 2.25 0.05 4.91 7.49 25.96 6.309 1.1 13.0 -231.1 1038 0.25 2.5 0.03 4.92 7.64 25.91 6.322 0.5 13.1 -238.6 1043 0.5 3.0 0.05 4.94 7.72 25.72 6.332 0.5 13.1 -241.1 1048 0.5 3.5 0.05 4.94 7.80 25.64 6.349 0.3 13.6 -247.0 1053 0.25 3.75 0.03 4.94 8.11 25.87 6.376 0.3 15.7 -250.4 1058 0.25 4.0 0.03 4.90 8.11 25.99 6.398 0.4 15.8 -255.4 1103 0.25 4.25 0.03 4.91 8.08 26.13 6.449 0.2 </td <td>1018</td> <td>0.25</td> <td>0.75</td> <td>0.03</td> <td>4.91</td> <td>7.32</td> <td>25.95</td> <td>6.</td> <td>.302</td> <td>1.0</td> <td>12.2</td> <td>-194.3</td> <td></td>	1018	0.25	0.75	0.03	4.91	7.32	25.95	6.	.302	1.0	12.2	-194.3	
1033 0.5 2.25 0.05 4.91 7.49 25.96 6.309 1.1 13.0 -231.1 1038 0.25 2.5 0.03 4.92 7.64 25.91 6.322 0.5 13.1 -238.6 1043 0.5 3.0 0.05 4.94 7.72 25.72 6.332 0.5 13.1 -241.1 1048 0.5 3.5 0.05 4.94 7.80 25.64 6.349 0.3 13.6 -247.0 1053 0.25 3.75 0.03 4.94 8.11 25.87 6.376 0.3 15.7 -250.4 1058 0.25 4.0 0.03 4.90 8.11 25.99 6.398 0.4 15.8 -255.4 1103 0.25 4.25 0.03 4.91 8.08 26.13 6.449 0.2 16.8 -260.7 1108 0.25 4.5 0.03 4.85 8.04 26.31 6.495 0.1 </td <td>1023</td> <td>0.5</td> <td>1.25</td> <td>0.05</td> <td>4.91</td> <td>7.29</td> <td>25.94</td> <td>6.</td> <td>.288</td> <td>3.7</td> <td>13.2</td> <td>-211.4</td> <td></td>	1023	0.5	1.25	0.05	4.91	7.29	25.94	6.	.288	3.7	13.2	-211.4	
1038 0.25 2.5 0.03 4.92 7.64 25.91 6.322 0.5 13.1 -238.6 1043 0.5 3.0 0.05 4.94 7.72 25.72 6.332 0.5 13.1 -241.1 1048 0.5 3.5 0.05 4.94 7.80 25.64 6.349 0.3 13.6 -247.0 1053 0.25 3.75 0.03 4.94 8.11 25.87 6.376 0.3 15.7 -250.4 1058 0.25 4.0 0.03 4.90 8.11 25.99 6.398 0.4 15.8 -255.4 1103 0.25 4.25 0.03 4.91 8.08 26.13 6.449 0.2 16.8 -260.7 1108 0.25 4.5 0.03 4.85 8.04 26.31 6.495 0.1 15.5 -262.3 1113 0.25 4.75 0.03 4.86 8.02 26.37 6.542 0.1<	1028	0.5	1.75	0.05	4.91	7.39	25.98	6.	.286	2.2	13.4	-224.4	
1043 0.5 3.0 0.05 4.94 7.72 25.72 6.332 0.5 13.1 -241.1 1048 0.5 3.5 0.05 4.94 7.80 25.64 6.349 0.3 13.6 -247.0 1053 0.25 3.75 0.03 4.94 8.11 25.87 6.376 0.3 15.7 -250.4 1058 0.25 4.0 0.03 4.90 8.11 25.99 6.398 0.4 15.8 -255.4 1103 0.25 4.25 0.03 4.91 8.08 26.13 6.449 0.2 16.8 -260.7 1108 0.25 4.5 0.03 4.85 8.04 26.31 6.495 0.1 15.5 -262.3 1113 0.25 4.75 0.03 4.86 8.02 26.37 6.542 0.1 16.2 -264.6	1033	0.5	2.25	0.05	4.91	7.49	25.96	6.	.309	1.1	13.0	-231.1	
1048 0.5 3.5 0.05 4.94 7.80 25.64 6.349 0.3 13.6 -247.0 1053 0.25 3.75 0.03 4.94 8.11 25.87 6.376 0.3 15.7 -250.4 1058 0.25 4.0 0.03 4.90 8.11 25.99 6.398 0.4 15.8 -255.4 1103 0.25 4.25 0.03 4.91 8.08 26.13 6.449 0.2 16.8 -260.7 1108 0.25 4.5 0.03 4.85 8.04 26.31 6.495 0.1 15.5 -262.3 1113 0.25 4.75 0.03 4.86 8.02 26.37 6.542 0.1 16.2 -264.6	1038	0.25	2.5	0.03	4.92	7.64	25.91	6.	.322	0.5	13.1	-238.6	
1053 0.25 3.75 0.03 4.94 8.11 25.87 6.376 0.3 15.7 -250.4 1058 0.25 4.0 0.03 4.90 8.11 25.99 6.398 0.4 15.8 -255.4 1103 0.25 4.25 0.03 4.91 8.08 26.13 6.449 0.2 16.8 -260.7 1108 0.25 4.5 0.03 4.85 8.04 26.31 6.495 0.1 15.5 -262.3 1113 0.25 4.75 0.03 4.86 8.02 26.37 6.542 0.1 16.2 -264.6	1043	0.5	3.0	0.05	4.94	7.72	25.72	6.	.332	0.5	13.1	-241.1	
1058 0.25 4.0 0.03 4.90 8.11 25.99 6.398 0.4 15.8 -255.4 1103 0.25 4.25 0.03 4.91 8.08 26.13 6.449 0.2 16.8 -260.7 1108 0.25 4.5 0.03 4.85 8.04 26.31 6.495 0.1 15.5 -262.3 1113 0.25 4.75 0.03 4.86 8.02 26.37 6.542 0.1 16.2 -264.6	1048	0.5	3.5	0.05	4.94	7.80	25.64	6.	.349	0.3	13.6	-247.0	
1103 0.25 4.25 0.03 4.91 8.08 26.13 6.449 0.2 16.8 -260.7 1108 0.25 4.5 0.03 4.85 8.04 26.31 6.495 0.1 15.5 -262.3 1113 0.25 4.75 0.03 4.86 8.02 26.37 6.542 0.1 16.2 -264.6	1053	0.25	3.75	0.03	4.94	8.11	25.87	6.	.376	0.3	15.7	-250.4	
1108 0.25 4.5 0.03 4.85 8.04 26.31 6.495 0.1 15.5 -262.3 1113 0.25 4.75 0.03 4.86 8.02 26.37 6.542 0.1 16.2 -264.6	1058	0.25	4.0	0.03	4.90	8.11	25.99	6.	.398	0.4	15.8	-255.4	
1113 0.25 4.75 0.03 4.86 8.02 26.37 6.542 0.1 16.2 -264.6	1103	0.25	4.25	0.03	4.91	8.08	26.13	6.	.449	0.2	16.8	-260.7	
11.10 1.10 1.10 1.10 1.10 1.10 1.10 1.1	1108	0.25	4.5	0.03	4.85	8.04	26.31	6.	.495	0.1	15.5	-262.3	
	1113	0.25	4.75	0.03	4.86	8.02	26.37	6.	.542	0.1	16.2	-264.6	
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.80 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.00 BTOC = Below top of casing – feet below top of casing which includes above grade riser PURGING EQUIPMENT CODES: B = Bailer: BP = Bladder Pump: ESP = Electric Submersible Pump: PP = Peristaltic Pump: O = Other (Spec	TUBING IN BTOC = B	SIDE DIA. CAF elow top of cas	PACITY (Gal./Fi sing – feet belo	t.): 1/8" = 0.0 bw top of casing	006; 3/ g which inc	16" = 0.0014; cludes above grad	1/4" = 0.002 de riser	26;	5/16" = 0.	.004; 3/8" = 0.	.006; 1/2'	" = 0.010; 5/8 '	' = 0.016

SAMDI ING DATA

					AMPLING DATA					
) вү (PRINT) / A Chuprikova			SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1118	SAMPLIN 1134	IG ENDED AT:	
PUMP OR DEPTH IN	TUBING WELL (feet): 3	1.3		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45 µ</u> n n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repla	ced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 504A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 504A	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 504A	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 504A	1	PE	125mL				9056A_28D Chloride & Sulfate	APP		
MW- 504A	1	AG	125mL				SM 5310 DOC	APP		
MW- 504A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 504A	1	PE	500mL				2540C TDS	APP		
MW- 504A	1	PE	250mL				2320B Alkalinity	APP		
MW- 504A	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level sta	abilized _l	orior to collecting pa	arameters.		
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP = F	Polypropyle	ne; S = Silicone; T	= Teflon; O = 0	Other (Specify)	
SAMPLIN	G EQUIPMENT			Peristaltic Pump; rse Flow Peristaltic P	B = Bailer; BP = Bladde ump; SM = Straw Method		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)		

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: ± 0.1 unit Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 10% saturation; optionally, ± 0.2 mg/L Turbidity: all readings ≤ 10 NTU; or ± 10%

PURGING DATA

					FUNG	ING DA	17						
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		WELL SCREEN INDEPTH (feet btoc)		8		DEPTH ΓER (feet btoc): 4	_	PURGE PUMP TYPE OR BAILER: PP		
Tubing-in-Screen Interval Purge: 1 EQUIPMENT VOL. = (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME = (0.0026 gallons/foot X 44 feet) + 0.13 gallons = 0.24 gallons													
INITIAL PUMP OR TUBING DEPTH IN WELL (feet btoc): 41.3 FINAL PUMP O DEPTH IN WELL						PURGIN INITIATE	-	0848	PURGING ENDED AT:	0921	TOTAL VOLUM PURGED (gallo		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet btoc)	pH R (standard units)	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)	_	SP Gravity (sg)	
0851	0.24	0.24	0.02	4.86	11.10	25.66	9	.960	7.0	19.7	-117.6		
0856	0.26	0.50	0.03	4.9	11.41	25.98	1	1.04	1.8	20.5	-238.3		
0901	0.25	0.75	0.03	4.85	11.22	26.07	1	1.16	1.5	19.4	-279.0		
0906	0.25	1.0	0.03	4.85	11.10	26.35	1	1.25	1.6	19.9	-300.6		
0911	0.25	1.25	0.03	4.85	11.21	26.50	1	1.41	1.9	18.6	-326.8		
0916	0.25	1.5	0.03	4.87	11.17	26.52	1	1.53	2.2	19.5	-339.6		
0921	0.25	2.0	0.03	4.87	11.20	26.66	1	1.62	2.3	19.5	-346.7	1.02	
TUBING IN		ACITY (Gal./F	i.): 1/8" = 0.00	006; 3		1/4" = 0.002	-, -	5" = 0.37; 5/16" = 0.		5" = 1.02; 006; 1/2		" = 5.88 " = 0.016	

SAMPLING DATA

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

PURGING EQUIPMENT CODES:

B = Bailer;

BP = Bladder Pump;

	BY (PRINT) / A Chuprikova/			SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 0927	SAMPLIN 0950	IG ENDED AT:	
PUMP OR DEPTH IN	TUBING WELL (feet): 4	1.3		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 µm on Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	N: PU	MP Y I	No T	UBING Y No (repl a	iced)	DUPLICATE: No			
SAM	IPLE CONTAINE	R SPECIFIC	ATION		INTENDED	SAMPLING	Additional			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 504B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 504B	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 504B	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 504B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP		
MW- 504B 1 AG 125mL SM 5310 DOC APP										
MW- 504B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 504B	1	PE	500mL	-			2540C TDS	APP		
MW- 504B	1	PE	250mL				2320B Alkalinity	APP		
MW- 504B 1 AG 125mL HCI SM5310 TOC APP										
REMARKS	s: Per SOP, p	oarameter	s stable pri	or to sample colle	ection. Water level st	abilized	prior to collecting pa	arameters.		
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	= Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)	
SAMPLIN	G EQUIPMENT			eristaltic Pump; se Flow Peristaltic Pu	B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)		

SITE LOCATION: Brunswick, GA SITE NAME: LCP Chemical Site DATE: 8/29/2013 WELL NO: MW-505A SAMPLE ID: MW-505A

PURGING DATA

WELL DIAMETER (inches): 2 Tubing-in-Screen Interva		ER (inches): 1/			NTERVAL		STATIC	DEDTH	DUE	RGE PUMP TYPE	
Tubing-in-Screen Interva	I Purge: 1 EQ						WELL SCREEN INTERVAL DEPTH (feet btoc): 28.1 to 33.1 STATIC DEPTH TO WATER (feet btoc): 4.28 OR BAILE				
Tubing-in-Screen Interval Purge: 1 EQUIPMENT VOL. = (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME = (0.0026 gallons/foot X 44 feet) + 0.13 gallons = 0.22 gallons											
INITIAL PUMP OR TUBING DEPTH IN WELL (feet btoo	OR TUBIN ELL (feet b		PURGIN INITIATE		0858	PURGING ENDED AT:	1002	TOTAL VOLUME PURGED (gallons): ~2.0			
TIME VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	ORP (mV)	SP Gravity (sg)
0902 0.22	0.22	0.02	4.33	8.80	27.01	5.	.299	27.6	8.80	-44.9	
0907 0.15	0.37	0.02	4.33	9.15	28.87	5.	.737	1.9	8.89	-150.9	
0912 0.2	0.57	0.02	4.33	9.22	26.88	6.	.090	1.0	8.51	-206.3	
0917 0.15	0.72	0.02	4.33	9.23	27.20	6.	.148	1.0	8.47	-214.7	
0922 0.2	0.92	0.02	4.33	9.20	27.16	6.	.302	0.7	12.9	-250.9	
0927 0.2	1.12	0.02	4.33	9.18	27.25	6.	.341	0.7	13.1	-257.7	
0932 0.1	1.22	0.01	4.33	9.17	27.31	6.	.535	0.7	14.7	-269.5	
0937 0.15	1.37	0.02	4.33	9.14	27.66	6.	.392	0.6	14.5	-283.7	
0942 0.25	1.62	0.03	4.33	9.13	27.68	6.	.412	0.5	15.6	-291.2	
0947 0.1	1.72	0.01	4.33	9.11	27.81	6.	.416	0.5	15.3	-299.2	
0952 0.1	1.82	0.01	4.33	9.10	28.05	6.	.411	0.4	16.9	-288.4	
0957 0.1	1.92	0.01	4.33	9.08	28.39	6.	.417	0.6	16.6	-292.7	
1002 0.1	2.02	0.01	4.33	9.08	28.54	6.	.429	0.4	16.8	-302.1	
WELL CAPACITY (Gallon TUBING INSIDE DIA. CAP BTOC = Below top of car PURGING EQUIPMENT C	PACITY (Gal./Ft sing – feet belo	.): 1/8" = 0.00 w top of casing		6" = 0.0014; udes above gra	1/4" = 0.002	26;	5'' = 0.37; 5/16" = 0.	004; 3/8" = 0.	5" = 1.02; 006; 1/2	" = 0.010; 5/8 "	= 5.88 = 0.016

SAMPLING DATA

					Tuni Linto Bittiit					
	BY (PRINT) / A	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1004	SAMPLIN 1038	IG ENDED AT:	
Michae										
PUMP OR DEPTH IN	TUBING I WELL (feet): 3	0.6		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 µm n Equipment Type: In-line filter			
FIELD DECONTAMINATION: PUMP Y No TUBING Y No (replaced)							DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 505A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 505A	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 505A	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 505A	1	PE	125mL				9056A_28D Chloride & Sulfate	APP		
MW- 505A	1	AG	125mL				SM 5310 DOC	APP		
MW- 505A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 505A	1	PE	500mL				2540C TDS	APP		
MW- 505A	1	PE	250mL				2320B Alkalinity	APP		
MW- 505A	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.		
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)										

 APP = After Peristaltic Pump;
 B = Bailer;
 BP = Bladder Pump;
 ESP = Elect

 RFPP = Reverse Flow Peristaltic Pump;
 SM = Straw Method (Tubing Gravity Drain);

 NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: ± 0.1 unit Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 10% saturation; optionally, ± 0.2 mg/L Turbidity: all readings ≤ 10 NTU; or ± 10%

ESP = Electric Submersible Pump;

O = Other (Specify)

SAMPLING EQUIPMENT CODES:

SITE LOCATION: Brunswick, GA SITE NAME: LCP Chemical Site WELL NO: MW-505B SAMPLE ID: MW-505B DATE: 8/29/2013

DUDCING DATA

					PURGI	NG DA	IA						
WELL DIAMETER (inches):	2	TUBING	ER (inches): 1/		ELL SCREEN IN		_	TATIC E	DEPTH ER (feet btoc): 4	PURGE PUMP TYPE 4.87 OR BAILER: PP			
Tubing-in-Screen In		urge: 1 EQ	UIPMENT VO	L. = (TUBIN	,	X TU		NGTH) -	+ FLOW CELL V				
NITIAL PUMP OR TI DEPTH IN WELL (fee		41.1	FINAL PUMP DEPTH IN W			PURGIN INITIATI	IG ED AT: 10	48	PURGING ENDED AT:	1122		TOTAL VOLUM PURGED (gallo	
TIME VOLUM PURGI (gallor	ED E	CUMUL. /OLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP.	SP CON	m)	DISSOLVED OXYGEN (% saturation)	TURB (NT		ORP (mV)	SP Gravit
1052 0.24	4	0.24	0.02	5.18	5.97	28.12	13.40	0	37.2	28	3.2	-267.8	
1057 0.30)	0.59	0.03	5.18	9.92	27.66	17.63	3	1.3	31.	.40	-346.8	
1102 0.2		0.79	0.02	5.18	10.02	27.70	17.70	6	0.7	27	'.9	-374.8	
1107 0.15	5	0.94	0.02	5.18	10.02	27.81	17.7	7	0.7	26	5.7	-377.8	
1112 0.24	1	1.19	0.02	5.18	10.03	27.86	17.80	0	0.6	29	.2	-399.9	
1117 0.2		1.39	0.02	5.18	10.04	27.85	17.78	8	0.6	27	'.8	-408.4	
1122 0.15	5	1.54	0.02	5.18	10.04	27.71	17.70	6	0.6	28	3.5	-410.3	

SAMPLING DATA

ESP = Electric Submersible Pump;

O = Other (Specify)

PP = Peristaltic Pump;

ESP = Electric Submersible Pump;

O = Other (Specify)

BP = Bladder Pump;

B = Bailer;

PURGING EQUIPMENT CODES:

SAMPLING EQUIPMENT CODES:

SAMPLED Michae	BY (PRINT) / A I Epps	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1124	SAMPLII 1159	SAMPLING ENDED AT: 1159	
PUMP OR DEPTH IN	TUBING WELL (feet): 4	1.1		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> μn on Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repla	ced)	DUPLICATE:	No		
SAM	PLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 505B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 505B	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 505B	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 505B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP		
MW- 505B	1	AG	125mL				SM 5310 DOC	APP		
MW- 505B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 505B	1	PE	500mL				2540C TDS	APP		
MW- 505B	1	PE	250mL				2320B Alkalinity	APP		
MW- 505B	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.	•	
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP = I	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)	

BP = Bladder Pump;

B = Bailer;

APP = After Peristaltic Pump;

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-507B	SAMPLE ID: MW	/-507B	DATE: 9/4/2013

PURGING DATA

						UIVO	ING DA	17						
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/	' 4			NTERVAL): 46.3 to 51 .	3	STATIC TO WAT	DEPTH FER (feet btoc): I		-	GE PUMP TYPE AILER: PP	
	Screen Interva	l Purge: 1 EQ	, ,	L. = (TU	BING CA	PACITY	X TL	JBING	LENGTH)	+ FLOW CELL			, ,,==, ,, ,	
_	MP OR TUBING		FINAL PUMP DEPTH IN W		_	51.3	PURGIN INITIATE	_	0907	PURGING ENDED AT:	1002		TOTAL VOLUMI PURGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (fee	ER (st	pH andard units)	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURB (NT		ORP (mV)	SP Gravit (sg)
			First 7	First 7 readings would not read through flow cell										
0942	1.6	1.6		9.88	3 1	1.32	26.15	4	3.24	1.4	2.0	08	-195.2	
0947	0.2	1.8	0.02	9.88	3 1	1.35	25.94	4	3.28	2.1	2.0	00	-239.5	
0952	0.2	2.0	0.02	9.8	7 1	1.34	25.82	4	3.26	1.3	1.3	32	-276.0	
0957	0.2	2.2	0.02	9.88	3 1	1.34	25.78	4	3.35	1.2	1.	71	-297.7	
1002	0.5	2.5	0.05	9.88	3 1	1.33	25.93	4	3.37	1.0	1.4	40	-311.7	
TUBING INS BTOC = Be	ACITY (Gallons SIDE DIA. CAP Blow top of cas	PACITY (Gal./Fi sing – feet belo	t.): 1/8" = 0.0 w top of casing	006; ; g which i	3/16" = 0.	0014; bove gra	1/4" = 0.002	26;	3" = 0.37; 5/16" = 0.	.004; 3/8 " = 0	5" = 1.02 0.006; eristaltic l	1/2" :	= 0.010; 5/8 "	= 5.88 = 0.016

SAMPLING DATA

				0.	AMII LINO DATA					
SAMPLED Ken Stu	BY (PRINT) / A uart	AFFILIATION:		SAMPLER(S) SIGN	NATURE(S):	SAMPLING INITIATED AT: 1002	SAMPLII n/a	NG ENDED AT:		
PUMP OR DEPTH IN	TUBING WELL (feet): 5	1.3		TUBING MATERIAL CODE:	Teflon-lined PE		ILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> μm n Equipment Type: In-line filter			
FIELD DE	CONTAMINATI	ON: PU	MP Y	No T	UBING Y No (repla	aced)	DUPLICATE:	No		
SAM	PLE CONTAIN	ER SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 507B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 507B	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 507B	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 507B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP		
MW- 507B	1	AG	125mL				SM 5310 DOC	APP		
MW- 507B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 507B	1	PE	500mL				2540C TDS	APP		
MW- 507B	1	PE	250mL				2320B Alkalinity	APP		
MW- 507B	1	AG	125mL	HCI			SM5310 TOC	APP		
DEMARKS	s: Per SOP	narameter	s stahle nri	or to sample coll	ection Water level st	tahilized	prior to collecting p	arameters F	urge water is	

REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters. Purge water is brown, sulfur-like odor.

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; T = Teflon; **PE** = Polyethylene; **PP** = Polypropylene; **S** = Silicone; O = Other (Specify) SAMPLING EQUIPMENT CODES:

iller; **BP** = Bladder Pump; **ESP** = Elector **SM** = Straw Method (Tubing Gravity Drain); **APP** = After Peristaltic Pump; **B** = Bailer; **ESP** = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; O = Other (Specify)

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick , GA	
WELL NO: MW-508B	SAMPLE ID: MW	/-508B	DATE: 9/3/2013

PURGING DATA

					PURG	ING DA	IA					
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/						_	RGE PUMP TYPE BAILER: PP		
Tubing-in-Screen Interval Purge: 1 EQUIPMENT VOL. = (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME = (0.0026 gallons/foot X 58 feet) + 0.13 gallons = 0.28 gallons												
			FINAL PUMP DEPTH IN W		-	PURGIN INITIATE	-	1053	PURGING ENDED AT:	1201	TOTAL VOLUM PURGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	ORP (mV)	SP Gravity (sg)
1056	0.26	0.26	0.03	7.2	4.29	24.19	4	3.99	22.6	3.81	-240.0	
1101	0.25	0.51	0.03	7.1	4.91	25.27	5	2.05	0.4	5.43	-339.2	
1106	0.25	0.76	0.03	7.08	6.09	25.7	5	2.20	0.1	5.16	-368.3	
1111	0.25	1.01	0.03	7.0	6.28	25.74	5	2.33	0.2	4.84	-392.0	
1116	0.25	1.26	0.03	7.1	6.35	25.14	5	2.42	0.6	4.58	-405.6	
1121	0.25	1.51	0.03	7.14	6.49	25.12	5	2.32	0.5	4.47	-408.9	
1126	0.25	1.76	0.03	7.1	6.55	25.21	5	2.29	0.5	4.61	-404.3	
1131	0.25	2.01	0.03	7.08	6.63	25.43	5	2.23	0.4	4.33	-403.0	
1136	0.25	2.26	0.03	7.05	6.69	25.48	5	2.23	0.2	4.42	-442.4	
1141	0.25	2.51	0.03	7.1	6.73	25.14	5	2.22	0.4	5.0	-442.0	
1146	0.25	2.76	0.03	7.18	6.82	25.29	5	2.06	0.4	5.54	-420.4	
1151	0.25	3.01	0.03	7.15	6.89	25.25	5	2.07	0.4	5.13	-424.3	_
1156	0.25	3.26	0.03	7.11	6.94	25.43	5	2.00	0.4	5.01	-427.8	
1201	0.25	3.51	0.03	7.14	6.98	25.43	5	2.04	0.4	5.06	-439.8	
TUBING IN: BTOC = Be	SIDE DIA. CAR slow top of car	s Per Foot): 0. PACITY (Gal./Fi sing – feet belo	t.): 1/8" = 0.00 w top of casing	g which inclu	udes above gra	1/4" = 0.002 de riser	26;	3" = 0.37; 5/16" = 0.	.004; 3/8 " = 0.		" = 0.010; 5/8 "	= 5.88 = 0.016
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)												

SAMPLING DATA

					AMPLING DATA				
) by (print) / a Chuprikova	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):	SAMPLING INITIATED AT: 1447	SAMPL n/a	ING ENDED AT:	
PUMP OR DEPTH IN	TUBING WELL (feet): 4	8.7		TUBING MATERIAL CODE:	Teflon-lined PE	FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> μm n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repla	DUPLICATE:	No		
SAM	SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION						INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 508B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 508B	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 508B	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 508B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
MW- 508B	1	AG	125mL				SM 5310 DOC	APP	
MW- 508B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 508B	1	PE	500mL				2540C TDS	APP	
MW- 508B	1	PE	250mL				2320B Alkalinity	APP	
MW- 508B	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.									
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP = I	Polypropyle	ne; S = Silicone; T =	= Teflon; O =	Other (Specify)
SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)									

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-510B	SAMPLE ID: MW	′-510B	DATE: 9/3/2013

PURGING DATA

WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		WELL SCREEN IN DEPTH (feet btoc):			STATIC TO WAT	DEPTH ER (feet btoc): r	_	PURGE PUMP TYPE OR BAILER: PP		
	(/	Purge: 1 EQ	UIPMENT VOI	= (TUB	ING CAPACITY 37 feet) + 0.13			LENGTH)	+ FLOW CELL V				
	MP OR TUBING WELL (feet btoc		FINAL PUMF DEPTH IN W			PURGIN INITIATE		1108	PURGING ENDED AT:	1129		AL VOLUM GED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATE (feet btoc)	pH R (standard	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs		ORP (mV)	SP Gravit
1109	0.25	0.25	0.03	5.70	10.31	24.63	20	6.15	3.9	10.7		-288.7	
1114	0.65	0.90	0.07	5.72	10.72	24.92	2	7.43	1.7	8.81		-358.6	
1119	0.35	1.25	0.04	5.69	10.91	24.85	28	8.00	1.5	5.31		-395.7	
1124	0.5	1.75	0.05	5.67	11.11	24.94	28	8.60	1.4	5.77		-420.5	
1129	0.2	1.95	0.02	5.69	11.33	24.75	29	9.33	1.4	4.81		-435.3	
					1; 1.25" = 0.06;			,	,	5 " = 1.02;	6 " = 1	,	' = 5.88
					/ 16" = 0.0014; 1 cludes above grad		ь;	5/16'' = 0.	004; 3/8'' = 0.	.006; 1/2	2'' = 0.01	U; 5/8 "	' = 0.016

SAMPLING DATA

					MATURE (C):		1	1	
Ken Stu) BY (PRINT) / A uart	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1130	SAMPLIN 1150	IG ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 4	3		TUBING MATERIAL CODE:	Teflon-lined PE	FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45 </u>			
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repla	DUPLICATE: No			
SAM	PLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 510B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 510B	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 510B	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 510B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
MW- 510B	1	AG	125mL				SM 5310 DOC	APP	
MW- 510B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 510B	1	PE	500mL				2540C TDS	APP	
MW- 510B	1	PE	250mL				2320B Alkalinity	APP	
MW- 510B 1 AG 125mL HCI SM5310 TOC APP								_	
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.								
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)									
SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)									

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-511A	SAMPLE ID: MW	′-511A	DATE: 9/4/2013

PURGING DATA

					PURG	ING DA	IA					
WELL	(inches): 2	TUBING	ER (inches): 1/		ELL SCREEN IN			STATIC	DEPTH FER (feet btoc): 5	_	RGE PUMP TYPE BAILER: PP	
	,		,		, ,	<u> </u>			,		DAILER. FF	
Tubing-in-	Screen Interva	•		,	NG CAPACITY 53 feet) + 0.13				+ FLOW CELL V s	OLUME		
_	MP OR TUBING	-	FINAL PUMP DEPTH IN W	-	-	PURGIN INITIATE	_	0900	PURGING ENDED AT: (950	TOTAL VOLUMI PURGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	ORP (mV)	SP Gravity (sg)
0905	0.5	0.5	0.05	5.38	9.53	24.17	2	.267	0.5	538	-258.1	
0910	0.25	0.75	0.03	5.37	9.59	24.37	2	.290	0.6	170	-260.8	
0915	0.25	1.0	0.03	5.36	9.60	24.49	2	.308	0.6	97.7	-261.9	
0920	0.25	1.25	0.03	5.36	9.61	24.58	2	.350	0.6	69.7	-264.5	
0925	0.25	1.5	0.03	5.36	9.60	24.72	2	.377	0.6	59.1	-263.3	
0930	0.25	1.75	0.03	5.37	9.60	24.81	2	.393	0.6	53.5	-267.1	
0935	0.25	2.0	0.03	5.36	9.60	24.84	2	.413	0.6	52.43	-269.0	
0940	0.25	2.25	0.03	5.38	9.57	24.80	2	.437	0.6	45.4	-269.5	
0945	0.25	2.5	0.03	5.37	9.59	25.10	2	.458	0.6	43.5	-272.5	
0950	0.25	2.75	0.03	5.37	9.57	25.10	2	.468	0.6	43.1	-272.5	
TUBING IN	PACITY (Gallon: SIDE DIA. CAF elow top of ca	PACITY (Gal./F	i.): 1/8" = 0.0			1/4" = 0.002	-,	5" = 0.37; 5/16" = 0.			- ,	= 5.88 = 0.016
PURGING	EQUIPMENT C	ODES: B =	Bailer; B	P = Bladde	r Pump; ES	SP = Electric	Submo	ersible Pu	mp; PP = Pe	ristaltic Pum	p; O = Other	(Specify)

SAMPLING DATA

) by (print) / A Chuprikova		:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 0955	ED AT: 0955 1030		
PUMP OR DEPTH IN	TUBING WELL (feet): 3	4.1		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> µm n Equipment Type: In-line filter			
FIELD DE	CONTAMINATION	ON: PU	MP Y	No T	UBING Y No (repl a	DUPLICATE:	No			
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION	INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 511A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 511A	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 511A	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 511A	1	PE	125mL			1	9056A_28D Chloride & Sulfate	APP		
MW- 511A	1	AG	125mL				SM 5310 DOC	APP		
MW- 511A	2	PE	250mL	NaOH Zinc Acetate		-	SM4500 Sulfide	APP	Field-Filtered	
MW- 511A	1	PE	500mL			1	2540C TDS	APP		
MW- 511A	1	PE	250mL			-	2320B Alkalinity	APP		
MW- 511A	1	AG	125mL	HCI			SM5310 TOC	APP	1440 M	

REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters. 7410 Mercury (field filtered) sample collected due to high turbidity.

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-511B	SAMPLE ID: MW	′-511B	DATE: 9/3/2013

PURGING DATA

					FUNG	ING DA	IA						
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		WELL SCREEN I		.7		DEPTH FER (feet btoc): 5		RGE PI	UMP TYPE R: PP	
	,	I Purge: 1 EQ	UIPMENT VO	L. = (TUB	ING CAPACITY 53 feet) + 0.13	X TL	JBING	LENGTH;	+ FLOW CELL V				
_	MP OR TUBINO		FINAL PUMI DEPTH IN V			PURGIN INITIATI	-	0940	PURGING ENDED AT: 9	932		AL VOLUM RGED (gallor	_
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTI TO WATE (feet btoc)	pН	TEMP.		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)		ORP (mV)	SP Gravity (sg)
0853	0.25	0.25	0.03	5.73	12.16	23.92	1	7.82	2.4	9.67		-73.4	
0858					Dandinan akina			_					
0903					Readings skipp	ea aue to t	rainin	g					
0908	0.75	1.0		5.75	12.29	23.77	1	9.56	2.0	10.0		-187.4	
0913	0.25	1.25	0.03	5.74	12.27	23.81	2	1.07	1.9	9.43		-215.8	
0918	0.15	1.4	0.02	5.74	12.25	23.89	2	1.67	2.0	8.12		-227.5	
0923	0.4	1.80	0.04	5.75	12.20	23.88	2	1.08	1.6	8.05		-220.3	1.02
					i; 1.25 " = 0.06		-,	3 " = 0.37;	,	5" = 1.02;	6 " = 1	,	2 = 5.88
					' 16" = 0.0014; cludes above gra	1/4" = 0.002 ide riser	26;	5/16" = 0	.004; 3/8" = 0.	006; 1/2	2" = 0.0	10; 5/8 "	= 0.016
	EQUIPMENT C			P = Bladd		SP = Electric	Subme	ersible Pu	mp; PP = Pe	ristaltic Pun	np;	O = Other	(Specify)

SAMPLING DATA

	BY (PRINT) / A Chuprikova/			SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 0932	SAMPLIN 1000	IG ENDED AT:		
PUMP OR DEPTH IN	TUBING WELL (feet): 4	6.2		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-li		SIZE: <u>0.45</u> μm		
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repl a	aced)	DUPLICATE:	Yes			
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
MW- 511B	511B 1 PE 250mL HNO3 Metals/7470A Hg APP										
MW- 511B	MW- 1 DE 125ml 3500 FE/ 9040B ADD										
MW- 511B	MW- 1 PE 250ml 6010B Dissolved APP										
MW- 511B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP			
MW- 511B	1	AG	125mL				SM 5310 DOC	APP			
MW- 511B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
MW- 511B	1	PE	500mL				2540C TDS	APP			
MW- 511B	1	PE	250mL				2320B Alkalinity	APP			
MW- 511B	1 1 1 AG 1 125ml 1 HCl										
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.										
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)		
SAMPLIN	G EQUIPMENT			eristaltic Pump; rse Flow Peristaltic Pu	B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)			

SITE	SITE	
NAME: LCP Chemical Site	LOCATION: Brunsv	vick, GA
WELL NO: MW-512A	SAMPLE ID: MW-512A	DATE: 8/27/2013

PURGING DATA

WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		ELL SCREEN I PTH (feet btoo		4	STATIC TO WAT	DEPTH 「ER (feet btoc): 4	_	JRGE PUMP TYPE R BAILER: PP	
Tubing-in-	Screen Interva				G CAPACITY 44 feet) + 0.13				+ FLOW CELL \ s	OLUME		
_	MP OR TUBINO WELL (feet btoo		FINAL PUME DEPTH IN W	-	-	PURGIN INITIATE	-	1122	PURGING ENDED AT:	1238	TOTAL VOLUM PURGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs		SP Gravity (sg)
1128	0.22	0.22	0.02	4.75	9.92	25.79	2.	.113	17.8	67.8	7.5	
1133	0.25	0.47	0.03	4.76	9.83	24.87	2.	.092	2.4	70.9	-7.3	
1138	0.15	0.62	0.02	4.75	9.84	24.97	2.	.077	2.4	74.9	-22.1	
1143	0.4	1.02	0.04	4.75	9.86	24.41	2.	.070	2.0	75.0	-23.7	
1148	0.35	1.37	0.04	4.75	9.87	24.21	2.	.072	1.9	69.4	-21.9	
1153	0.35	1.72	0.04	4.75	9.91	24.63	2.	.071	1.8	75.0	-22.7	
1158	0.25	1.97	0.03	4.75	9.92	24.40	2.	.082	1.6	75.5	-19.3	
1203	0.25	2.22	0.03	4.75	9.88	24.29	2.	.078	1.5	73.8	-17.9	
1208	0.25	2.47	0.03	4.75	9.91	24.25	2.	.095	1.4	72.5	-28.7	
1213	0.25	2.72	0.03	4.75	9.88	23.67	2.	.097	1.4	74.5	-58.4	
1218	0.25	2.97	0.03	4.75	9.90	23.71	2.	.101	1.8	74.5	-30.9	
1223	0.25	3.22	0.03	4.75	9.90	23.57	2.	.107	1.6	74.0	-52.5	
1228	0.25	3.47	0.03	4.75	9.92	23.53	2.	.118	1.2	75.5	-81.8	
1233	0.25	3.72	0.03	4.75	9.94	23.90	2.	.128	0.8	75.0	-88.0	
1238	0.25	3.97	0.03	4.75	9.95	24.12	2.	.133	1.4	70.0	-66.5	
TUBING IN	ACITY (Gallons SIDE DIA. CAP elow top of cas	ACITY (Gal./Fi	i.): 1/8" = 0.0	,	,	1/4" = 0.002		3" = 0.37; 5/16" = 0.		5" = 1.02; 006; 1/ 2		= 5.88 = 0.016

SAMPLING DATA

							1		
SAMPLED Michae) BY (PRINT) / A e <mark>l Epps</mark>	AFFILIATION:	:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1240	SAMPLIN 1306	NG ENDED AT:
PUMP OR DEPTH IN	R TUBING I WELL (feet): 3	3.9		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 n Equipment Type: In-l i		SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATION	ON: PU	MP Y	No T	UBING Y No (repla	aced)	DUPLICATE:	No	
SAM	IPLE CONTAINI	ER SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 512A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 512A	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 512A	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 512A	1	PE	125mL				9056A_28D Chloride & Sulfate	APP	
MW- 512A	1	AG	125mL				SM 5310 DOC	APP	
MW- 512A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 512A	1	PE	500mL				2540C TDS	APP	
MW- 512A	1	PE	250mL				2320B Alkalinity	APP	
MW- 512A	1	AG	125mL	HCI			SM5310 TOC	APP	
DEMARK	e. Dar SOD	narameter	e etable nri	or to cample coll	ection Water level et	habilizad	prior to collecting p	arameters 7	170 Marcury

REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters. 7470 Mercury (field filtered) sample collected due to high turbidity (above 50 NTU).

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

PURGING DATA

					PURG	INO DA	17						
WELL DIAMETER (inc	ches): 2	TUBING	ER (inches): 1/		LL SCREEN IN PTH (feet btoc)			STATIC	DEPTH ER (feet btoc): 4		-	PUMP TYPE	
Fubing–in-Scre	•	Purge: 1 EQ	UIPMENT VO	L. = (TUBING	, ,		JBING LE	ENGTH)	+ FLOW CELL V		TC D/ (II	LLIX.TT	
NITIAL PUMP (DEPTH IN WEL			FINAL PUMP DEPTH IN W		-	PURGIN INITIATE	IG ED AT: 1	1129	PURGING ENDED AT:	1201		OTAL VOLUM URGED (gallo	_
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP CC (mS/	-	DISSOLVED OXYGEN (% saturation)	TURBID (NTUs		ORP (mV)	SP Gravity (sg)
1131	0.27	0.27	0.03	5.5	11.98	26.51	4.5	21	40.3	3.73	3	136.0	
1136	0.25	0.52	0.03	5.47	11.93	27.41	4.5	17	4.517	1.09	9	174.6	
1141	0.25	0.77	0.03	5.25	11.98	27.36	6.1	24	6.124	4.19	9	49.3	
1146	0.25	1.02	0.03	5.45	11.74	25.88	14.	30	14.30	15.5	5	-76.9	
1151	0.25	1.27	0.03	5.8	11.77	26.11	13.	99	13.99	13.3	3	-151.2	
1156	0.25	1.52	0.03	5.6	11.72	27.27	14.	86	14.86	15.3	3	-212.2	
1201	0.25	1.77	0.03	5.6	11.73	26.94	15.	43	15.43	16.6	6	-252.2	1.025

SAMPLING DATA

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

O = Other (Specify)

B = Bailer;

BP = Bladder Pump;

PURGING EQUIPMENT CODES:

	BY (PRINT) / A Chuprikova	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1205	SAMPLI 1239	NG ENDED AT:		
PUMP OR DEPTH IN	TUBING WELL (feet): 4	9.3		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-Ii		R SIZE: <u>0.45</u> µm		
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repl a	iced)	DUPLICATE:	No			
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
MW- 512B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP			
MW- 512B	512B 1 PE 125mL pH APP										
MW- 512B	MW- 1 PE 250ml 6010B Dissolved ΔPP										
MW- 512B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP			
MW- 512B	1	AG	125mL				SM 5310 DOC	APP			
MW- 512B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
MW- 512B	1	PE	500mL				2540C TDS	APP			
MW- 512B	1	PE	250mL				2320B Alkalinity	APP			
MW- 512B	1 1 1 Δ(- 1 125m) HCl SM5310 1OC ΔPP										
REMARKS	s: Per SOP, j	parameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.			
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)		
SAMPLIN	AMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;										

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: $pH: \pm 0.1$ unit Specific Conductance: $\pm 5\%$ Dissolved Oxygen: all readings $\leq 10\%$ saturation; optionally, ± 0.2 mg/L Turbidity: all readings ≤ 10 NTU; or $\pm 10\%$

SM = Straw Method (Tubing Gravity Drain);

RFPP = Reverse Flow Peristaltic Pump;

PURGING DATA

					FUNG	ING DA	IA					
WELL DIAMETER	(inches): 2	TUBING	ER (inches): 1/		VELL SCREEN IN DEPTH (feet btoc)			-	DEPTH FER (feet btoc): 5	_	JRGE PUMP TYPE R BAILER: PP	
	, ,	al Purge: 1 EQ	UIPMENT VO	L. = (TUBI	ING CAPACITY 43 feet) + 0.13	X TL		LENGTH	+ FLOW CELL V		C B/IILLIN. I I	
	MP OR TUBINO	-	FINAL PUMP DEPTH IN W	-		PURGIN INITIATE		0900	PURGING ENDED AT:	0938	TOTAL VOLUM PURGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pН	TEMP. (°C)	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs	-	SP Gravit (sg)
0903	0.22	0.22	0.02	5.60	7.17	23.10	2	.729	16.0	26.9	-15.5	
0908	0.4	0.62	0.04	5.60	7.15	22.57	2	.797	2.7	28.9	-67.4	
0913	0.2	0.72	0.02	5.60	7.15	22.63	2	.850	3.0	27.9	-70.9	
0918	0.3	1.12	0.03	5.60	7.18	22.70	3	.021	4.7	28.1	-88.8	
0923	0.3	1.42	0.03	5.60	7.18	22.71	3.	.040	3.0	28.0	-78.4	
0928	0.3	1.72	0.03	5.60	7.18	22.64	3	.077	2.7	29.6	-97.9	
0933	0.3	2.02	0.03	5.60	7.18	22.73	3	.128	2.4	30.0	-104.3	
0938	0.3	2.32	0.03	5.60	7.18	22.71	3.	.148	2.4	30.1	-106.9	
TUBING IN	SIDE DÌA. CAF	PACITY (Gal./F	t.): 1/8" = 0.0	006; 3/	; 1.25" = 0.06; 16" = 0.0014; cludes above grad	1/4" = 0.002	-, -	3" = 0.37; 5/16" = 0	,		,	' = 5.88 " = 0.016

SAMPLING DATA

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

PURGING EQUIPMENT CODES:

B = Bailer;

BP = Bladder Pump;

SAMPLED Michae	BY (PRINT) / A	FFILIATION:	:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 0943	SAMPLIN 1016	NG ENDED AT:		
PUMP OR DEPTH IN	TUBING WELL (feet): 3-	4.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-Ii		SIZE: <u>0.45</u> μm		
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repl a	aced)	DUPLICATE:	No			
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
MW- 513A	513A 1 PE 250mL HNO3 Metals/7470A Hg APP										
MW- 513A	MW- 513A 1 PE 125mL 3500 FE/ 9040B APP										
MW- 513A	MW- 1 PE 250ml 6010B Dissolved APP										
MW- 513A	1	PE	125mL				9056A_28D Chloride & Sulfate	APP			
MW- 513A	1	AG	125mL				SM 5310 DOC	APP			
MW- 513A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
MW- 513A	1	PE	500mL				2540C TDS	APP			
MW- 513A	1	PE	250mL				2320B Alkalinity	APP			
MW- 513A	1	AG	125mL	HCI			SM5310 TOC	APP			
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.										
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)		
SAMPLIN	G EQUIPMENT			eristaltic Pump; rse Flow Peristaltic Pu	B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)			

			Gi	COND	, , , , , , , , , , , , , , , , , , ,	LIN SAI	AII. FI	140	LUG					
SITE NAME: LC	P Chemical Si	te				TE DCATION: Br i	unswick,	GA						
WELL NO:	MW-513B			SAMPLE	ID: MW-51	3B	,			DATE: 8	8/27/20	13		
l .					PURG	SING DA	TA							
WELL		TUBIN	_		L SCREEN		_	ATIC DI				E PUMP T	YPE	
DIAMETER	R (inches): 2	DIAME	TER (inches): 1	DEP	TH(ft btoc):	41.2 to 46.2	ТО	WATE	R (ft btoc): 5.7		OR BA	ILER: PP		
Tubing-in	-Screen Interv		QUIPMENT VOI s (0.0026 ga						FLOW CELL V s	OLUME				
	JMP OR TUBIN WELL (ft btoc)			OR TUBING /ELL (ft btoc):		PURGIN INITIATE	IG ED AT: 0 8	359	PURGING ENDED AT:	0936		OTAL VOI PURGED (
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP.	SP CO (mS/c		DISSOLVED OXYGEN (% saturation)	_	BIDITY 'Us)	ORP (mV)		SP Gravity (sg)
0902	0.25	0.25	0.03	6.11	11.31	24.55	7.60	7	1,6	25	5.1	-91.5	5	
0907	0.25	0.5	0.03	6.05	11.30	24.53	7.57	'9	8.0	25	5.5	-148.	2	
0912	0.25	0.75	0.03	6.1 11.3		24.50	7.60)1	8.0	26	6.6	-180.	3	
0917	0.25	1.00	0.03	6.07	11.33	24.44	7.62	20	0.7	7 29.		-220.	7	
0922	0.25	1.25	0.03	6.03	11.34	24.51	7.61	2	0.8	30).7	-250.	0	
0927	0.25	1.5	0.03	6.03	11.35	24.48	7.63	31	0.5	32	2.1	-272.	2	
0932	0.25	1.75	0.03	6.03	11.34	24.65	7.66	8	0.5	33	3.8	-295.	5	1.01
				411					411 0.05				1011	
TUBING IN	NSIDE DÌA. CA	PACITY (Gal.	0.75 " = 0.02; /Ft.): 1/8 " = 0.0 elow top of casin	006; 3/16"	= 0.0014;	1/4" = 0.002		: 0.37; 6" = 0.0		5 " = 1.02 .006;		' = 1.47; 0.010;		= 5.88 = 0.016
PURGING	EQUIPMENT (CODES: I	B = Bailer; B	P = Bladder P	- 17	SP = Electric		ble Pun	np; PP = Pe	eristaltic l	Pump;	O = 0	ther (Specify)
						LING DA	ATA		1		-			
	BY (PRINT) / A ohnson	AFFILIATION:	SAMPLER(S)	SIGNATUR	E(S):			SAMPLING INITIATED A	Г: 0939		SAMPLIN ENDED A		015	
PUMP OR DEPTH IN	TUBING WELL (feet): 4	TUBING FIELD-FILTEREI MATERIAL CODE: Teflon-lined PE Filtration Equipm								R SIZ	ΖΕ: <u>0.45</u> μm			
FIELD DE	CONTAMINATION	ı	TUBING	Yes I	No (repla	ced)	DUPLICATE:		N	0				
SAM	PLE CONTAINE	ER SPECIFIC	ATION								MPLING		Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	USED ADDED IN FIELD (mL) PH MI			METHO	HOD		ODE		Comments		
MW- 513B	1	PE	250mL	HNO3					6010B T Metals/ 747		,	APP		

Iviaria J	PUMP OR TUBING TUBING TUBING FIELD-FILTERED: Yes SM 4500 Sulfide FILTER SIZE: 0.45 μm											
	TUBING I WELL (feet): 4 3	3.7		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 45 n Equipment Type: In-l i		ER SIZE: <u>0.45</u> μm			
FIELD DE	CONTAMINATIO	DN: PU	MP Y	No T	UBING Yes No (replaced)	DUPLICATE:	No				
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments			
MW- 513B	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP				
MW- 513B	1	PE	125mL				3500 FE/ 9040B pH	APP				
MW- 513B	MW- 513B 1 PE 250mL G010B Dissolved Silica APP											
MW- 513B	MW- 9056A_28D Chloride &											
MW- 513B	1	AG	125mL				SM 5310 DOC	APP				
MW- 513B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered			
MW- 513B	1	PE	500mL				2540C TDS	APP				
MW- 513B	1	PE	250mL				2320B Alkalinity	APP				
MW- 513B	1	AG	125mL	HCI			SM5310 TOC	APP				
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Purge water clear brown, sulfur-like odor.											
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP	= Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)			
	G EQUIPMENT		RFPP = Reve	rse Flow Peristaltic P	B = Bailer; BP = Blac ump; SM = Straw Met	, ,	, ,,	Other (Specify)				

SITE LOCATION: Brunswick, GA NAME: LCP Chemical Site SAMPLE ID: MW-514A DATE: 9/5/2013 WELL NO: MW-514A **PURGING DATA** WELL **TUBING** WELL SCREEN INTERVAL STATIC DEPTH PURGE PUMP TYPE DIAMETER (inches): 1/4 DEPTH(ft btoc): 30.7 to 35.7 TO WATER (ft btoc): 4.3 DIAMETER (inches): 2 OR BAILER: PP Tubing-in-Screen Interval purge: 1 EQUIPMENT VOL. = (TUBING CAPACITY TUBING LENGTH) + FLOW CELL VOLUME = s (0.0026 gallons/foot X 47 feet) + 0.13 gallons = 0.22 gallons INITIAL PUMP OR TUBING FINAL PUMP OR TUBING TOTAL VOLUME **PURGING PURGING** DEPTH IN WELL (ft btoc): 33.2 DEPTH IN WELL (ft btoc): 33.2 INITIATED AT: 1350 **ENDED AT: 1430** PURGED (gallons): 2.22 DEPTH CUMUI TO рΗ DISSOLVED VOLUME **PURGE** SP COND. **TURBIDITY** VOLUME TEMP. ORP SP Gravity TIME WATER (standard OXYGEN **PURGED RATE PURGED** (°C) (mS/cm) (NTUs) (mV) (sg) (% saturation) (feet units) (gallons) (gallons) (gpm) btoc) 1355 0.22 0.22 0.02 5.53 11.61 26.80 4.026 18.8 12.9 -18.21400 0.25 0.47 0.03 5.5 11.50 25.37 4.057 3.0 11.9 9.6 1405 --skipped readings to call lab--11.54 1410 0.5 0.97 0.05 25.47 3.0 12.4 29.7 5.5 4 094 0.25 1415 1.22 0.03 5.5 11.55 25.54 4.067 12.8 26.4 1.1 1420 0.45 1.67 0.05 5.55 11.55 25.48 4.074 0.5 12.8 17.4 1425 0.30 1.97 0.03 5.55 11.55 25.40 4.077 0.4 12.1 -5.2

1" = 0.04; **1.25**" = 0.06; WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; **2**" = 0.16: 3" = 0.37; 4" = 0.65; **5**" = 1.02; **6**" = 1.47; **12**" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; **1/4"** = 0.0026; **3/16"** = 0.0014; **1/2"** = 0.010; **5/16"** = 0.004: 3/8" = 0.006;5/8" = 0.016BTOC = Below top of casing - feet below top of casing which includes above grade riser

11.56

0.25

2.22

0.03

5.5

1430

PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)

SAMPLING DATA

25.61

4.077

0.3

13.4

-29.2

	BY (PRINT) / A Chuprikova	FFILIATION	:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1435	SAMP ENDE	PLING ED AT: 1454			
PUMP OR DEPTH IN	TUBING WELL (feet): 3	3.2		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 45 n Equipment Type: In-li		LTER SIZE: <u>0.45 </u> μm			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Yes No (re	eplaced)	DUPLICATE:	No				
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING				
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMEN CODE	Comments			
MW- 514A	514A 1 PE 250mL HNO3 Metals/ 7470A Hg APP											
MW- 514A 1 PE 125mL 3500 FE/ 9040B PH APP												
MW- 514A	MW- 6010B Dissolved											
MW- 514A	1	PE	125mL				9056A_28D Chloride & Sulfate	APP				
MW- 514A	1	AG	125mL		-	ł	SM 5310 DOC	APP				
MW- 514A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered			
MW- 514A	1	PE	500mL				2540C TDS	APP				
MW- 514A	1	PE	250mL				2320B Alkalinity	APP				
514A	MW- 514A 1 AG 125mL HCI SM5310 TOC APP											
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Purge water clear brown, sulfur-like odor.											
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP =	: Polypropyle	ene; S = Silicone; T	= Teflon; O	= Other (Specify)			
SAMPLIN	G EQUIPMENT			Peristaltic Pump; rse Flow Peristaltic P		der Pump; nod (Tubing (ESP = Electric Subme Gravity Drain); O = C	ersible Pump; other (Specify)				

			Gi	COND	VV A	LIN SAIN		.IIVG	LUG						
SITE NAME: LC	P Chemical Sit	e				ITE OCATION: Bru i	nswick	k, GA							
WELL NO:	MW-514B			SAMPLE I	D: MW-51	4B				DATE:	8/28/20	13			
					PURC	GING DAT	ГА								
WELL		TUBIN	-			INTERVAL	_	TATIC D				E PUMP T	YPE		
	R (inches): 2	I	TER (inches): 1	l		41.5 to 46.5			R (ft btoc): 5.28						
Tubing-in-Screen Interval purge: 1 EQUIPMENT VOL. = (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME = s (0.0026 gallons/foot X 47 feet) + 0.13 gallons = 0.25 gallons															
	JMP OR TUBIN WELL (ft btoc)	-	_	P OR TUBING VELL (ft btoc):	46.5	PURGINO INITIATEI	-	1348	PURGING ENDED AT:	1414		OTAL VOL PURGED (g	LUME gallons): 1.5		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)		OND. /cm)	DISSOLVED OXYGEN (% saturation)	_	BIDITY TUs)	ORP (mV)			
1351	0.25	0.25	0.03	5.4	7.24	25.38	8.1	33	19.1	1	6.5	-50.0)		
1356	0.45	0.7	0.05	5.38	10.32	25.19	7.3	319	2.4	3	9.8	-84.1			
1401	0.25	0.95	0.03	5.5	10.33	25.41	7.4	186	1.2	3	5.6	-90.7	,		
1406	0.3	1.25	0.03	5.35	10.35	25.20	7.4	180	0.9	3	4.1	-94.9)		
1411	0.25	1.5	0.03	5.35	10.37	25.73	7.5	573	0.8	3	2.9	-96.4	1.00		
												1			
WELLOA	PACITY (Gallon	o Dor Footh	0.75" 0.00:	1 " = 0.04;	4.2F" 0.0	06; 2 " = 0.16	. 2"	= 0.37;	4 " = 0.65;	5 " = 1.0	۱۵. 6 "	= 1.47:	12 " = 5.88		
TUBING II	NSIDE DIA. CAI Below top of ca	PACITY (Gal.	/Ft.): 1/8" = 0.0	0006; 3/16 " =	= 0.0014;	1/4" = 0.0026		= 0.37, /16" = 0.0					5/8 " = 0.016		
PURGING	EQUIPMENT C	ODES: I	B = Bailer;	3P = Bladder Ρι		ESP = Electric S		sible Pun	mp; PP = P	eristaltic	Pump;	O = O	ther (Specify)		
	B) ((BBINET) (A			0.1.101 = 0.(0)		LING DA	TA		1		-				
	BY (PRINT) / A ohnson	AFFILIATION:		SAMPLER(S) S	SIGNATUR	E(S):			SAMPLING INITIATED A	T: 1415		SAMPLIN ENDED A			
PUMP OR DEPTH IN	TUBING WELL (feet): 4	6.5		TUBING MATERIAL CO	DE: Teflo n	ı-lined PE			FILTERED: Yon Equipment Ty				R SIZE: <u>0.45</u> μm		
FIELD DE	CONTAMINATIO	ON: PUI	MP Y N)	TUBING	Yes N	o (repl	aced)	DUPLICATE:		N	0			
	PLE CONTAINE		ATION			RESERVATION			INTEND ANALYSIS A			IPLING IPMENT	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI\ USED		TOTAL VOL ED IN FIELD (m		FINAL pH	METHO	DD		ODE	Comments		
MW- 514B	1	PE	250mL	HNO3					6010B T Metals/ 747		,	\PP			
MW-									3500 FE/ 9						

PUMP OR DEPTH IN	R TUBING I WELL (feet): 4	6.5		TUBING MATERIAL CODE:	Teflon-lined PE			ED: Yes SM 4500 Sulfide FILTER SIZE: <u>0.4</u> 9 ment Type: In-line filter				
FIELD DE	CONTAMINATIO	ON: PUI	MP Y	No T	UBING Yes No (r e	eplaced)	DUPLICATE:	No				
SAM	SAMPLE CONTAINER SPECIFICATION			SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments			
MW- 514B	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP				
MW- 514B	1	PE	125mL				3500 FE/ 9040B pH	APP				
MW- 514B	1	PE	250mL				6010B Dissolved Silica	APP				
MW- 514B	1	PE	125mL		-		9056A_28D Chloride & Sulfate	APP				
MW- 514B	1	AG	125mL				SM 5310 DOC	APP				
MW- 514B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered			
MW- 514B	1	PE	500mL				2540C TDS	APP				
MW- 514B	1	PE	250mL				2320B Alkalinity	APP				
MW- 514B	1	AG	125mL	HCI			SM5310 TOC	APP				
	s Per SOP r				ection Purge water	clear brow		L	L.			

REMARKS: Per SOP, parameters stable prior to sample collection. Purge water clear brown, sulfur-like odor.

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

PURGING DATA

					1 0110	ING DA	17					
WELL DIAMETER	(inches): 2	TUBING	ER (inches): 1/		ELL SCREEN II		5		DEPTH FER (feet btoc): 6		IRGE PUMP TYPI R BAILER: PP	≣
	, ,	1	, ,		,				, ,		DAILLIN. FF	
Tubing-in-	Screen Interva	Il Purge: 1 EQ =			NG CAPACITY 44 feet) + 0.13				+ FLOW CELL V s	OLUME		
_	MP OR TUBING	-	FINAL PUMF DEPTH IN W	PURGIN INITIATE		1432	PURGING ENDED AT:	1510	TOTAL VOLUME PURGED (gallons): 3.			
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pН	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)	_	SP Gravity (sg)
1434	0.27	0.27	0.03	7.24	11.24	25.94	1	7.15	5.6	5.63	-227.9	
1439	0.48	0.75	0.05	7.24	11.63	25.45	1	7.91	0.0	6.57	-247.7	
1444	0.5	1.25	0.05	7.24	11.51	25.45	1	8.03	-0.1	6.66	-280.8	
1449	0.5	1.75	0.05	7.21	11.40	25.46	1	8.46	0.1	6.82	-238.9	
1454	0.5	2.25	0.05	7.21	11.33	25.38	1	8.52	0.0	6.61	-262.2	
1449	0.5	2.75	0.05	7.21	11.28	25.45	1	8.66	0.0	6.98	-263.0	
1504	0.5	3.25	0.05	7.21	11.26	25.55	1	8.71	0.0	6.65	-259.9	
1509	0.5	3.75	0.05	7.21	11.24	25.18	1	8.77	0.0	6.73	-257.6	
TUBING IN	SIDE DIA. CAF	s Per Foot): 0. PACITY (Gal./Fr	i.): 1/8" = 0.00			1/4" = 0.002	-, -	3" = 0.37; 5/16" = 0.	,	b" = 1.02; 006; 1/2	- ,	" = 5.88 " = 0.016

SAMPLING DATA

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

PURGING EQUIPMENT CODES:

B = Bailer;

BP = Bladder Pump;

	BY (PRINT) / A cheauer	FFILIATION:	:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1515	SAMPLIN 1537	IG ENDED AT:	
PUMP OR DEPTH IN	TUBING WELL (feet): 49	9		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 n Equipment Type: In-li		SIZE: <u>0.45</u> μm	
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repl a	aced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE TOTAL VOL USED ADDED IN FIELD (mL)			ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 515B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 515B	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 515B	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 515B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP		
MW- 515B	1	AG	125mL				SM 5310 DOC	APP		
MW- 515B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 515B	1	PE	500mL				2540C TDS	APP		
MW- 515B	1	PE	250mL				2320B Alkalinity	APP		
MW- 515B	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.									
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)	
SAMPLIN	G EQUIPMENT			eristaltic Pump; rse Flow Peristaltic Pu	B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)		

<u> </u>			
SITE		SITE	
NAME: LCP Chemical Site		LOCATION: Brunswick, GA	
WELL NO: MW-516A	SAMPLE ID: MW	/-516A	DATE: 8/28/2013

PURGING DATA

WELL DIAMETER	(inches): 2	TUBING	ER (inches): 1/		ELL SCREEN IN		4	STATIC	DEPTH TER (feet btoc): 4		-	E PUMP TYPE ILER: PP	
	Screen Interva	Purge: 1 EQ	UIPMENT VOI	L. = (TUBIN	(/		IBING	LENGTH)	+ FLOW CELL V		K DA	ILEK: PP	
_	MP OR TUBING		FINAL PUMP DEPTH IN W			PURGIN INITIATE	-	1056	PURGING ENDED AT:	1118		OTAL VOLUM PURGED (gallor	_
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	рН	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBID (NTU:		ORP (mV)	SP Gravit (sg)
1058	0.23	0.23	0.2	5.0	7.70	27.50	10	0.85	4.0	6.38	}	-2397	
1103	0.27	0.50	0.3	5.0	8.63	24.05	10	0.35	3.5	5.96	6	-257.1	
1108	0.25	0.75	0.3	5.0	8.94	23.75	10	0.41	3.0	5.58	3	-257.9	
1113	0.65	1.4	0.06	5.0	8.95	23.65	10	0.47	2.6	5.38	3	-221.0	
1118	0.2	1.6	0.02	5.0	8.95	23.65	10	0.47	2.2	6.22	2	-206.1	
					1.25 " = 0.06; 6 " = 0.0014;			5" = 0.37; 5/16" = 0.	,	5" = 1.02; .006: 1	-	,	= 5.88 = 0.016

SAMPLING DATA

	BY (PRINT) / A ohnson	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1120	SAMPLIN 1139	NG ENDED AT:
PUMP OR TUBING DEPTH IN WELL (feet): 34.9 TUBING MATERIAL CODE: Teflon-lined PE FIELD-FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0 Filtration Equipment Type: In-line filter								SIZE: <u>0.45</u> μm	
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repl a	iced)	DUPLICATE:	No	
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL FINAL ADDED IN FIELD (mL) pH		ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 516A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 516A	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 516A	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 516A	1	PE	125mL			1	9056A_28D Chloride & Sulfate	APP	
MW- 516A	1	AG	125mL			1	SM 5310 DOC	APP	
MW- 516A	2	PE	250mL	NaOH Zinc Acetate		1	SM4500 Sulfide	APP	Field-Filtered
MW- 516A	1	PE	500mL			1	2540C TDS	APP	
MW- 516A	1	PE	250mL			1	2320B Alkalinity	APP	
MW- 516A 1 AG 125mL HCI SM5310 TOC APP									

REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters. Purge water is brown, sulfur-like odor.

 $\textbf{MATERIAL CODES}: \qquad \textbf{AG} = \textbf{Amber Glass}; \qquad \textbf{CG} = \textbf{Clear Glass}; \qquad \textbf{PE} = \textbf{Polyethylene}; \qquad \textbf{PP} = \textbf{Polypropylene}; \qquad \textbf{S} = \textbf{Silicone}; \qquad \textbf{T} = \textbf{Teflon}; \qquad \textbf{O} = \textbf{Other (Specify)}$

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-516B	SAMPLE ID: MW	-516B	DATE: 8/28/2013

PURGING DATA

					PURG	ING DA	IΑ										
WELL	(in al. a a \ 0	TUBING			ELL SCREEN IN		•		DEPTH			SE PUMP TYPE					
DIAMETER	,		ER (inches): 1/		EPTH (feet btoc)				TER (feet btoc): 6			AILER: PP					
Tubing-in-	Screen Interval	•		,	NG CAPACITY 54 feet) + 0.13) + FLOW CELL V s	OLUME							
_	MP OR TUBING VELL (feet btoc		FINAL PUMP DEPTH IN W	-		PURGIN INITIATE		0853	PURGING ENDED AT:	0915		TOTAL VOLUMI PURGED (gallor	_				
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pН	TEMP.		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURB (NT		ORP (mV)	SP Gravit				
0855	0.27	0.27	.03	6.02	7.67	23.64	39	9.80	9.8	10.3		10.3		10.3		-96.0	
0900	0.28	0.55	.03	6.07	7.81	23.72	4	4.94	2.9		91	-182.4					
0905	0.45	1.0	.05	6.05	7.73	23.75	4	1.07	1.9	3.5	53	-244.2					
0910	0.45	1.45	.05	6.05	7.74	23.78	40	0.25	1.7	3.3	37	-279.3					
0915	0.40	1.65	.04	6.05	7.74	23.79	40	0.23	1.6	3.4	44	-264.6	1.02				
TUBING IN	SIDE DÍA. CAP	ACITY (Gal./Fi	t.): 1/8" = 0.00	006; 3/1	1.25 " = 0.06; 6 " = 0.0014; ludes above grad	1/4" = 0.002	-,	5 " = 0.37; 5/16 " = 0.	,	5" = 1.02 006;	, -	,	= 5.88 = 0.016				

SAMPLING DATA

	BY (PRINT) / A Iohnson	FFILIATION:	:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 0918	SAMPLIN 0932	NG ENDED AT:	
PUMP OR DEPTH IN	TUBING WELL (feet): 50	0.7		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-Ii		SIZE: <u>0.45</u> μm	
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repl a	aced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE TOTAL VOL USED ADDED IN FIELD (mL)		FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 516B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 516B	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 516B	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 516B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP		
MW- 516B	1	AG	125mL				SM 5310 DOC	APP		
MW- 516B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 516B	1	PE	500mL				2540C TDS	APP		
MW- 516B	1	PE	250mL				2320B Alkalinity	APP		
MW- 516B	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.									
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)	
SAMPLIN	G EQUIPMENT			eristaltic Pump; rse Flow Peristaltic Pu	B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)		

CDOLINDWATED SAMPLING LOG

			G	NOU		~ I L	.IN SAIV	II L	LING	LUG				
SITE NAME: LC	P Chemical Sit	e				SIT	E CATION: Bru r	nswick	k, GA					
WELL NO	: MW-517A			SA	MPLE ID: I	MW-517	A				DATE:	9/5/201	3	
				<u> </u>	F	URG	ING DAT	Ά						
WELL	_ , , , , _	TUBIN					NTERVAL		STATIC DE				E PUMP TY	/PE
	R (inches): 2		TER (inches):		`		7.4 to 52.4			R (ft btoc): 6.48			AILER: PP	
Tubing-ir	-Screen Interva		QUIPMENT VC s (0.0026 g							FLOW CELL	/OLUMI	E		
	JMP OR TUBIN WELL (ft btoc)	-	FINAL PUN DEPTH IN		-		PURGING INITIATED		1058	PURGING ENDED AT:	1121		TOTAL VOL PURGED (g	UME pallons): 1.25
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEF T(WA) (fe	Ο ΓER (sta et u	pH indard nits)	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)		BIDITY	ORP (mV)	
1100	0.27	0.27	0.03	6.5	56 9	.51	24.96	7.′	135	8.3	1	12.0	-122.3	3
1105	0.23	0.5	0.02	6.5	57 9	.45	24.38	7.3	361	0.2	1	8.01	-133.8	3
1110	0.25	0.75	0.03	6.5	57 9	.37	24.22	7.3	398	0.2	1	11.0	-133.8	3
1115	0.25	1.00	0.03	6.5	57 9	.33	24.18	7.4	436	0.3	1	10.4	-137.2	2
1120	0.25	1.25	0.03	6.5	57 9	.31	24.19	7.4	445	0.3	1	10.5	-145.4	4
											1			
WELLCA	PACITY (Gallon	o Dor Footh	0.75" - 0.02:	1" – 0	.04; 1.25	" – 0.06	6; 2 " = 0.16;	2,1	" = 0.37;	4 " = 0.65;	5 " = 1.0	12. 6 '	' = 1.47:	12 " = 5.88
TUBING II	NSIDE DIA. CAI Below top of ca	PACITY (Gal.	/Ft.): 1/8" = 0.	.0006;	3/16" = 0.0	014;	1/4" = 0.0026	; 5	= 0.37, 5/16 " = 0.0					5/8 " = 0.016
PURGING	EQUIPMENT C	ODES: I	3 = Bailer;	BP = Bla	dder Pump		SP = Electric S		rsible Pum	np; PP = P	eristaltio	: Pump;	O = O	ther (Specify)
CAMPLED	DV (DDINIT) / A	EEU LATION		CANADI			LING DA	TA		T				
Matt So	BY (PRINT) / A cheuer	FFILIATION:		SAMPL	ER(S) SIGN	NATURE	(5):			SAMPLING INITIATED A	T: 1127		SAMPLIN ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet): 5	0		TUBING MATER	EIAL CODE:	Teflon-	lined PE			FILTERED: Y n Equipment Ty				R SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PUI	MP Y N	/ No TUBING Yes No (replaced) DUPLICATE: No										
	PLE CONTAINE		ATION				ESERVATION			INTEND ANALYSIS A			MPLING JIPMENT	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	_	RVATIVE SED		OTAL VOL D IN FIELD (m	L)	FINAL pH	METHO	D		CODE	Comments
MW- 517A	1	PE	250mL	Η	NO3					6010B 7 Metals/ 747		,	APP	
MW-										3500 FE/ 9	9040B			

PUMP OR TUBING DEPTH IN WELL (feet): 50 TUBING MATERIAL CODE: Teflon-lined PE FIELD-FILTERED: Yes SM 4500 Sulfide FILTER SIZE: 0.45 µm Filtration Equipment Type: In-line filter							ER SIZE: <u>0.45</u> μm			
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Yes No	(replace	ed)	DUPLICATE:	No	
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION			INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL	FIN) pl		ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 517A	1	PE	250mL	HNO3			i	6010B TAL Metals/ 7470A Hg	APP	
MW- 517A	1	PE	125mL					3500 FE/ 9040B pH	APP	
MW- 517A	1	PE	250mL					6010B Dissolved Silica	APP	
MW- 517A	1	PE	125mL					9056A_28D Chloride & Sulfate	APP	
MW- 517A	1	AG	125mL					SM 5310 DOC	APP	
MW- 517A	2	PE	250mL	NaOH Zinc Acetate			-	SM4500 Sulfide	APP	Field-Filtered
MW- 517A	1	PE	500mL				-	2540C TDS	APP	
MW- 517A	1	PE	250mL					2320B Alkalinity	APP	
MW- 517A	1	AG	125mL	HCI			-	SM5310 TOC	APP	
REMARK	REMARKS: Per SOP, parameters stable prior to sample collection. Purge water clear brown, sulfur-like odor.									

ESP = Electric Submersible Pump; avity Drain); **O** = Other (Specify)

 APP = After Peristaltic Pump;
 B = Bailer;
 BP = Bladder Pump;
 ESP = Elect

 RFPP = Reverse Flow Peristaltic Pump;
 SM = Straw Method (Tubing Gravity Drain);

 NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: **pH**: \pm 0.1 unit **Specific Conductance**: \pm 5% **Dissolved Oxygen**: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L **Turbidity**: all readings \leq 10 NTU; or \pm 10%

PE = Polyethylene;

PP = Polypropylene; **S** = Silicone;

T = Teflon;

O = Other (Specify)

AG = Amber Glass; **CG** = Clear Glass;

MATERIAL CODES:

SAMPLING EQUIPMENT CODES:

			G	KOUNI	UVVAII	EK SAI	VI F L	JING.	LUG				
SITE NAME: LC	P Chemical Si	te			_	ITE OCATION: Bru	ınswick	c GA					
	: MW-517B			SAMPL	E ID: MW-51		mowior	ι, ολ		DATE:	8/26/20	013	
					PUR	GING DA	TA						
WELL DIAMETER	R (inches): 2	TUBIN DIAME	G TER (inches):		ELL SCREEN		S	STATIC C	DEPTH ER (ft btoc): 6.63	3		GE PUMP T	YPE
Tubing-in	-Screen Interv		QUIPMENT VO						+ FLOW CELL \	VOLUME			
	JMP OR TUBIN WELL (ft btoc)	-	_	IP OR TUBIN		PURGINI INITIATE	-	1514	PURGING ENDED AT:	1548		TOTAL VOI PURGED (LUME gallons): 2.0
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP.		OND. S/cm)	DISSOLVED OXYGEN (% saturation)	(NI	BIDITY TUs)	ORP (mV)	
1518	.27	.27	.03	6.89	9.77	27.50	18	.23	1.15	7	.01	-152.	8
1523	.18	0.45	.02	6.89	9.66	25.58	22	.28	0.36	7	.07	-246.	4
1528	.35	0.8	.04	6.89	9.69	25.38	22	.40	0.11	6	.63	-277.	1
1533	.4	1.2	.04	6.89	9.67	25.48	22	.49	0.12	6	.79	-296.	8
1538	.3	1.5	.03	6.89	9.75	25.60	22	.58	0.07	7	.38	-313.	2
1543	.25	1.75	.03	6.89	9.79	25.23	22	.67	0.05	7	.46	-325.	8
1548	.25	2.0	.03	6.89	9.81	25.07	22	.68	0.04	7	.46	-341.	5
TUBING IN BTOC = E	I PACITY (Gallor NSIDE DIA. CA Below top of ca	PACITY (Gal., sing – feet be	/Ft.): 1/8" = 0.		ıdes above gı	1/4" = 0.0020	6; 5	' = 0.37; /16" = 0.	004; 3/8" = 0	5" = 1.0 0.006;	1/2" =	" = 1.47; = 0.010; O = O	12" = 5.88 5/8" = 0.016 ther (Specify)
					SAMF	LING DA	TA						
	OBY (PRINT) / A ohnson	AFFILIATION:		SAMPLER(S	S) SIGNATUR	E(S):			SAMPLING INITIATED A	T: 1555		SAMPLIN ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet): 4	9.9		TUBING MATERIAL (CODE: Teflor	n-lined PE			-FILTERED: Y				ER SIZE: <u>0.45</u> μm
	CONTAMINATION		MP Y N	0	TUBING	Yes N	lo (repl		DUPLICATE			⁄es	
SAM	PLE CONTAINE	ER SPECIFIC	ATION		SAMPLE P	RESERVATIO	N		INTEND			MPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA USED		TOTAL VOL ED IN FIELD (r	nL)	FINAL pH	ANALYSIS A METHO	DD		JIPMENT CODE	Comments
MW-									6010B	ΓAL			

IVIAIIA J	1011115011						INITIATED AT: 1555	ENDED /	AT: 1616	
PUMP OR DEPTH IN	R TUBING I WELL (feet): 4	9.9		TUBING MATERIAL CODE:	Teflon-lined PE		-FILTERED: Yes SM 4500 Sulfide FILTER SIZE: <u>0.45 </u>			
FIELD DE	CONTAMINATIO	ON: PUI	MP Y	No T	UBING Yes No (re	placed)	DUPLICATE:	Yes		
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 517B	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP		
MW- 517B	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 517B	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 517B	1	PE	125mL				9056A_28D Chloride & Sulfate	APP		
MW- 517B	1	AG	125mL				SM 5310 DOC	APP		
MW- 517B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 517B	1	PE	500mL				2540C TDS	APP		
MW- 517B	1W-						2320B Alkalinity	APP		
MW- 517B	1	AG	125mL	HCI			SM5310 TOC	APP		
	s: Per SOP, p	arameters	s stable pric	or to sample colle	ection. Purge water of	clear brow	n, sulfur-like odor.			

APP = After Peristaltic Pump; **B** = Bail **RFPP** = Reverse Flow Peristaltic Pump; ller; BP = Bladder Pump; ESP = Electric Submersible Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) **NOTES:** Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: **pH**: \pm 0.1 unit **Specific Conductance**: \pm 5% **Dissolved Oxygen**: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L **Turbidity**: all readings \leq 10 NTU; or \pm 10%

PE = Polyethylene;

B = Bailer;

PP = Polypropylene;

S = Silicone;

T = Teflon;

O = Other (Specify)

MATERIAL CODES:

SAMPLING EQUIPMENT CODES:

AG = Amber Glass;

CG = Clear Glass;

SITE LOCATION: Brunswick, GA SITE NAME: LCP Chemical Site DATE: 8/28/2013 WELL NO: MW-518A SAMPLE ID: MW-518A

DURGING DATA

					PURG	ING DA	IA					
WELL DIAMETER (inches): 2	TUBING	ER (inches): 1/		VELL SCREEN IN DEPTH (feet btoc)		1	STATIC TO WAT	DEPTH TER (feet btoc): 5	_	RGE PUMP TYPE BAILER: PP	
	,	I Purge: 1 EQ	JIPMENT VOL	= (TUBI	NG CAPACITY 44 feet) + 0.13		IBING	LENGTH)	+ FLOW CELL V			
	IP OR TUBINO	3	FINAL PUMF DEPTH IN W	OR TUB	ING	PURGIN INITIATE	G		PURGING ENDED AT:	1001	TOTAL VOLUME PURGED (gallons): ~3	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pН	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI' (NTUs)	_	SP Gravity (sg)
0901	0.23	0.23	0.02	6.25	11.29	22.10	9.	.866	6.3	8.61	-173.5	
0906	0.25	0.48	0.03	6.20	9.41	22.10	9.	.709	3.7	8.15	-248.8	
0911	0.35	0.83	0.04	6.65	8.93	22.58	9.	.971	3.3	7.45	-244.5	
0916	0.40	1.23	0.04	6.05	8.77	22.81	10	0.29	3.3	6.8	-271.4	
0921	0.25	1.48	0.03	6.15	8.40	22.35	10	0.45	3.3	6.99	-307.9	
0926	0.35	1.83	0.04	6.15	8.00	22.28	10	0.53	3.2	5.88	-299.9	
0931	0.40	2.23	0.04	6.2	7.67	21.84	10	0.58	2.9	6.11	-277.0	
0936	0.25	2.48	0.03	6.05	7.64	22.52	10	0.67	2.9	6.78	-304.7	
0941	0.25	2.73	0.03	6.25	7.43	22.24	10	0.78	2.8	6.31	-346.4	
0946	0.25	2.98	0.03	6.21	7.28	22.33	10	0.79	2.8	7.22	-359.5	
0951	0.25	3.23	0.03	6.0	7.32	22.73	10	0.83	2.7	7.37	-326.1	
0956	0.25	3.48	0.03	6.0	7.34	23.04	10	0.89	2.5	6.31	-324.7	
1001	0.25	3.73	0.03	6.0	7.40	23.15	10	0.92	2.4	5.97	-318.7	
TUBING INS	IDE DÌA. CAP	PACITY (Gal./Ft sing – feet belo	.): 1/8" = 0.00			1/4" = 0.002		5" = 0.37; 5/16" = 0.		5" = 1.02; 006; 1/2	,	= 5.88 = 0.016
PURGING E	PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)											

SAMPLING DATA

SAMIFLING DATA												
	BY (PRINT) / A Chuprikova			SAMPLER(S) SIGN	NATURE(S):	SAMPLING INITIATED AT: 1000	SAMPL 1040	ING ENDED AT:				
PUMP OR DEPTH IN	TUBING WELL (feet): 3	6		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> µm n Equipment Type: In-line filter					
FIELD DEC	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repla	ced)	DUPLICATE:	No				
SAMF	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments			
MW- 518A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP				
MW- 518A 1 PE 125mL 3500 FE/ 9040B PH APP												
MW- 518A	1	PE	250mL				6010B Dissolved Silica	APP				
MW- 518A	1	PE	125mL				9056A_28D Chloride & Sulfate	APP				
MW- 518A	1	AG	125mL				SM 5310 DOC	APP				
MW- 518A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered			
MW- 518A	1	PE	500mL				2540C TDS	APP				
MW- 518A	1	PE	250mL				2320B Alkalinity	APP				
MW- 518A	1 1 1 ΔG 1 125ml 1 HCl 1 1 SM5310 IOC 1 ΔPP 1											
REMARKS	: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized	orior to collecting pa	arameters.				
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)												

RFPP = Reverse Flow Peristaltic Pump; **SM** = Straw Method (Tubing Gravity Drain); O = Other (Specify) NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: pH: ± 0.1 unit Specific Conductance: ± 5% Dissolved

B = Bailer;

APP = After Peristaltic Pump;

SAMPLING EQUIPMENT CODES:

Oxygen: all readings ≤ 10% saturation; optionally, ± 0.2 mg/L Turbidity: all readings ≤ 10 NTU; or ± 10%

BP = Bladder Pump;

ESP = Electric Submersible Pump;

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-518B	SAMPLE ID: MW	′-518B	DATE: 8/28/2013

PURGING DATA

WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/					STATIC TO WAT	DEPTH ΓER (feet btoc): 6	URGE PUMP TYPE R BAILER: PP		
Tubing-in-S	creen Interva				BING CAPACITY (44 feet) + 0.13			,	+ FLOW CELL V s	OLUME		
	IP OR TUBINO /ELL (feet btoo	-	FINAL PUMF DEPTH IN W				PURGING INITIATED AT: 0859			0933	TOTAL VOLUME PURGED (gallons): ~1.6	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet btoc)	pH (standard units)	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)		SP Gravity (sg)
903	0.26	0.26	0.03	6.68	10.80	24.93	2	1.19	13.2	5.13	-229.2	
908	0.26	0.52	0.03	6.68	10.86	24.99	2	3.14	2.6	6.51	-310.7	
913	0.29	0.81	0.03	6.68	10.87	24.90	2	3.33	2.4	5.81	-342.0	
918	0.20	1.01	0.03	6.68	10.87	24.82	2	3.36	3.8	5.61	-354.9	
923	0.25	1.26	0.03	6.68	10.86	23.34	2	3.35	1.9	n/a	-368.3	
928	0.20	1.46	0.02	6.68	10.87	23.66	2	3.46	1.6	n/a	-381.7	
933	0.15	1.61	0.01	6.68	10.87	24.55	2:	3.33	1.8	n/a	-388.7	1.030
TUBING INS BTOC = Be	SIDE DIA. CAP	PACITY (Gal./Fi sing – feet belo	.): 1/8" = 0.00 w top of casing	006; 3 which in	4; 1.25" = 0.06; 1/16" = 0.0014; includes above grad	1/4" = 0.002 de riser	26;	5/16" = 0.	004; 3/8" = 0.		2" = 0.010; 5/8"	= 5.88 = 0.016
PURGING E	URGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)											

SAMPLING DATA

SAMPLED Michae	BY (PRINT) / A	FFILIATION:	:	SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 0935	SAMPLII 1013	SAMPLING ENDED AT: 1013	
PUMP OR DEPTH IN	TUBING WELL (feet): 4	7.8		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45 µm</u> in Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAMPLE PRESERVATION			INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME			FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 518B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 518B-	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 518B-	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 518B-	1	PE	125mL				9056A_28D Chloride & Sulfate	APP		
MW- 518B-	1	AG	125mL				SM 5310 DOC	APP		
MW- 518B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 518B-	1	PE	500mL				2540C TDS	APP		
MW- 518B-	1	PE	250mL				2320B Alkalinity	APP		
MW- 518B-	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	EMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.									
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP = I	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)	
SAMPLIN	G EQUIPMENT				B = Bailer; BP = Bladdomp; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)		

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick , GA	
WELL NO: MW-519A	SAMPLE ID: MW	/-519A	DATE: 8/27/2013

PURGING DATA

					PURG	ING DA	IA						
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		WELL SCREEN IN DEPTH (feet btoc)		5	-	DEPTH TER (feet btoc): 6	_	PURGE PUMP TYPE OR BAILER: PP		
Tubing-in-	Screen Interva				ING CAPACITY 37 feet) + 0.13) + FLOW CELL \ s	OLUME			
_	MP OR TUBINO		FINAL PUMP DEPTH IN W	-		PURGIN INITIATE	-	1531	PURGING ENDED AT:	1554	TOTAL PURGE		E ns): 1.7
TIME VOLUME CUMUL. PURGE TO PH TEMP. SP CO								COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs		ORP mV)	SP Gravity (sg)
1535	0.22	0.22	0.02	5.9	6.26	25.48	8.	.958	20.8	10.1	-7	34.3	
1539	0.48	0.7	0.05	5.95	6.36	25.46	9.	.028	6.2	8.48	-	55.9	
1544	0.3	1.0	0.03	5.95	6.35	25.08	9.	.061	4.1	5.97	-(66.0	
1549	0.45	1.45	0.05	6.0	6.36	25.01	9.	.063	3.3	4.39	-	73.0	
1554	0.25	1.7	0.03	6.0	6.36	25.27	9.	.069	2.8	6.63		30.0	
TUBING IN	ACITY (Gallons SIDE DIA. CAF elow top of cas	ACITY (Gal./F	i.): 1/8" = 0.00			1/4" = 0.002		3" = 0.37; 5/16" = 0.	,	5" = 1.02; .006; 1/2	6 " = 1.47 2 " = 0.010;	,	' = 5.88 ' = 0.016
PURGING I	EQUIPMENT C	ODES: B =	Bailer; B	P = Bladd	er Pump; ES	P = Electric	Subme	ersible Pu	mp; PP = Pe	ristaltic Pur	mp; O	= Other	(Specify)

SAMPLING DATA

	BY (PRINT) / A lohnson	FFILIATION:	:	SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1555	SAMPLII n/a	SAMPLING ENDED AT: n/a	
PUMP OR DEPTH IN	TUBING WELL (feet): 3	5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 µm n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION	INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE TOTAL VOL F USED ADDED IN FIELD (mL)		FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 519A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 519A	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 519A	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 519A	1	PE	125mL				9056A_28D Chloride & Sulfate	APP		
MW- 519B-	1	AG	125mL				SM 5310 DOC	APP		
MW- 519A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 519A	1	PE	500mL				2540C TDS	APP		
MW- 519A	1	PE	250mL				2320B Alkalinity	APP		
MW- 519A	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	s: Per SOP, _I	parameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.		
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP = I	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)	
SAMPLIN	G EQUIPMENT				B = Bailer; BP = Bladdump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)		

SITE
NAME: LCP Chemical Site

WELL NO: MW-519B

SAMPLE ID: MW-519B

SITE
LOCATION: Brunswick, GA

DATE: 8/27/2013

PURGING DATA

					1 0110	IIIG DA	17					
WELL	h\· 0	TUBING	TD (in the table 44		ELL SCREEN I			STATIC		_	RGE PUMP TYPE	
DIAMETER (inch	nes): Z	DIAMETE	ER (inches): 1/	4 DE	PTH (feet btoc): 47.4 to 52.	4	TO WA	TER (feet btoc): 7	. 0 OR	BAILER: PP	
Tubing-in-Scree	en Interval				G CAPACITY 53 feet) + 0.13			,	+ FLOW CELL V s	OLUME		
INITIAL PUMP C DEPTH IN WELL		: 49.9	FINAL PUMP OR TUBING DEPTH IN WELL (feet btoc): 49.9			PURGIN INITIATE		1408	PURGING ENDED AT:	1453	TOTAL VOLUMI PURGED (gallor	
TIME	OLUME URGED gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	-	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)		SP Gravity (sg)
1412	0.27	0.27	0.03	9.00	6.82	30.58	50	6.04	2.4	n/a	-119.1	
1417	0.5	0.5	0.04	9.93	6.84	27.55	50	6.07	4.9	70.2	-171.8	
1422	0.2	0.7	0.02	9.90	7.21	28.33	50	6.29	1.8	41.3	-185.5	
1427	0.2	0.9	0.02	9.80	7.24	28.71	5	7.95	1.0	22.4	-193.5	
1432	0.2	1.1	0.02	9.85	7.24	28.80	58	8.81	0.9	10.8	-199.1	
1437	0.35	1.45	0.04	9.85	7.29	28.45	58	8.80	0.6	11.1	-210.0	
1442	0.3	1.75	0.03	9.85	7.30	28.33	5	8.80	0.6	4.54	-217.9	
1447	.25	2.0	0.02	9.85	7.35	26.96	60	0.25	0.5	3.51	-225.5	
1452	.25	2.25	0.02	9.85	7.35	26.67	60	0.36	0.6	3.40	-226.2	
WELL CAPACIT TUBING INSIDE BTOC = Below	E DÍA. CAPA	CITY (Gal./Ft	.): 1/8" = 0.00	006; 3/1 6		1/4" = 0.002	,	" = 0.37; 5/16 " = 0.	,	5" = 1.02; 006; 1/2	- ,	= 5.88 = 0.016

SAMPLING DATA

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

PURGING EQUIPMENT CODES:

B = Bailer;

BP = Bladder Pump;

	BY (PRINT) / A lohnson	FFILIATION:	:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1453	SAMPL 1511	ING ENDED AT:	
PUMP OR DEPTH IN	TUBING WELL (feet): 4	9.9		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 µm n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repl a	DUPLICATE:	No			
	IPLE CONTAINE		ATION	SAMPLE PRESERVATION			INTENDED ANALYSIS AND/OR	SAMPLING EQUIPMENT	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	METHOD	CODE	Comments	
MW- 519B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 519B-	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 519B-	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 519B-	1	PE	125mL				9056A_28D Chloride & Sulfate	APP		
MW- 519B-	1	AG	125mL				SM 5310 DOC	APP		
MW- 519B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 519B-	1	PE	500mL				2540C TDS	APP		
MW- 519B-	1	PE	250mL				2320B Alkalinity	APP		
MW- 519B-	1	AG	125mL	HCI	Water level at		SM5310 TOC	APP		

REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters. Purge water is brown, sulfur-like odor.

 $\textbf{MATERIAL CODES}: \qquad \textbf{AG} = \textbf{Amber Glass}; \qquad \textbf{CG} = \textbf{Clear Glass}; \qquad \textbf{PE} = \textbf{Polyethylene}; \qquad \textbf{PP} = \textbf{Polypropylene}; \qquad \textbf{S} = \textbf{Silicone}; \qquad \textbf{T} = \textbf{Teflon}; \qquad \textbf{O} = \textbf{Other (Specify)}$

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: EW1	SAMPLE ID: EW	1	DATE: 2/27/2014

PURGING DATA

WELL DIAMETER (inches): n/a Tubing–in-Screen Interval Pi	l .	ER (inches): 1/		ELL SCREEN IN	NIEKVAL	STATIC	DELIH	I PUR	GE PUMP TYPE		
, ,	l .	-11 (IIICHES). 11	- DL	DEPTH (feet btoc): 44 to 49 TO WATER (feet btoc): n/a OR BAILER: PP							
rubing in coroon into run i	u.go – •	JIPMENT VOI	= (TURIN	, ,			+ FLOW CELL VO		DAILLIN. I I		
	= (45 feet) + 0.13		0.25 gallon		JEO!!!E			
INITIAL PUMP OR TUBING DEPTH IN WELL (feet btoc):	41.7	FINAL PUME DEPTH IN W	ELL (feet b		PURGIN INITIATE	G ED AT: 1507	PURGING ENDED AT: 1	534	TOTAL VOLUM PURGED (gallo	_	
TIME VOLUME PURGED	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDITY (NTUs)	Y ORP (mV)	SP Gravity (sg)	
1512 0.25	0.25	200	n/a	6.28	20.25	9.023	13.5	9.05	9.05 -50.7		
1517 0.25	0.50	200	n/a	6.28	20.22	9.482	5.1	8.40	-64.9		
1522 0.25	0.75	200	n/a	6.28	20.24	9.437	4.5	7.35	-67.2		
1527 0.25	1.00	200	n/a	6.27	20.10	9.272	3.9	6.90	-68.5		
1532 0.25	1.25	200	n/a	6.27	20.04	9.218	3.6	5.30	-69.2		
WELL CAPACITY (Gallons Pour Tubing Inside Dia. CAPAC	CITY (Gal./Ft.	.): 1/8" = 0.00	006; 3/1 6	6" = 0.0014;	1/4" = 0.002					= 5.88 = 0.016	
PURGING EQUIPMENT COD			P = Bladder			Submersible Pu	mp; PP = Per	istaltic Pump	o; O = Other	(Specify)	

SAMPLING DATA

					AMII EIIIO DATA					
SAMPLED Matt So	BY (PRINT) / A cheuer	AFFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1540	SAMPLIN 1611	NG ENDED AT:	
PUMP OR DEPTH IN	TUBING WELL (feet): 4	1.7		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> µm on Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repla	iced)	d) DUPLICATE: No			
SAM	PLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
EW-1	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
EW-1	1	PE	125mL				3500 FE/ 9040B pH	APP		
EW-1	1	PE	250mL				6010B Dissolved Silica	APP		
EW-1	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
EW-1	1	AG	125mL				SM 5310 DOC	APP		
EW-1	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
EW-1	1	PE	500mL				2540C TDS	APP		
EW-1	1	PE	250mL				2320B Alkalinity	APP		
EW-1	1	AG	125mL	HCI		1	SM5310 TOC	APP		
REMARKS: Per SOP, parameters stable prior to sample collection. Depth of water cannot be recorded with recovery wells.										
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)										
SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)										

SITE NAME: LC	CP Chemical Sit	e			_	ITE OCATION: Br	unswic	k, GA					
WELL NO	: EW-2			SAMPLE	ID: EW-2					DATE: 2	2/27/20	014	
				•	PUR	GING DA	TA		•				
WELL	R (inches): 2	TUBIN	IG ETER (inches): 1/		L SCREEN TH(ft btoc):	INTERVAL		STATIC D	DEPTH ER (ft btoc): n/a			GE PUMP T'	YPE
	, ,		QUIPMENT VOL	1	, ,		i		+ FLOW CELL \	1	0		
Tubing-ii	1-3creen milerv		s (0.0026 ga							OLUME			
INITIAL PL	UMP OR TUBIN	G		P OR TUBING	PURGIN	NG		PURGING	TOTAL VOI			UME	
DEPTH IN	WELL (ft btoc)	: 42	DEPTH IN V	/ELL (ft btoc):	42	INITIAT	ED AT:	1313	ENDED AT:	1351		PURGED (gallons): ~2
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURB (NT		ORP (mV)	
1319	0.24	0.24	200	n/a	6.70	20.42	9.	412	11.1	11	1.1	-61.9)
1324	0.24	0.48	200	n/a	6.72	20.44	9.	535	2.9	9.9	94	-75.5	;
1329	0.24	0.72	200	n/a	6.67	20.36	9.	374	2.1	9.	18	-45.1	
1334	0.24	0.96	200	n/a	6.61	20.23	9.	196	1.8	9.2	24	-54.2	?
1339	0.24	1.20	200	n/a	6.63	20.29	8.	994	1.6	9.8	83	-74.0)
1344	0.24	1.44	200	n/a	6.58	20.21	8.	906	1.5	9.8	87	-69.5	5
1349	0.24	1.68	200	n/a	6.57	20.12	8.	874	1.6	9.8	82	-69.4	
TUBING II		PACITY (Gal.	0.75 " = 0.02; /Ft.): 1/8 " = 0.0 elow top of casing	006; 3/16 "	= 0.0014;			" = 0.37; 5/16" = 0.		5 " = 1.02 0.006;	,	" = 1.47; = 0.010;	12 " = 5.88 5/8 " = 0.016
	EQUIPMENT C			P = Bladder P		ESP = Electric	Subme	rsible Pu	mp; PP = P	eristaltic F	Pump;	O = O	ther (Specify)
						LING D	ATA						
Matt Sc	BY (PRINT) / A cheuer	AFFILIATION:	;	SAMPLER(S)	SIGNATUR	E(S):			SAMPLING INITIATED A	T: 1355		SAMPLIN ENDED A	
PUMP OR			-	TUBING				FIELD			00 Su		R SIZE: 0.45 μm
	I WELL (feet): 4			MATERIAL CO					on Equipment Ty				,
	CONTAMINATIO				TUBING		No (rep	laced)	DUPLICATE:		1	10	
	IPLE CONTAINE					RESERVATIO	DN	FINIAL	INTEND ANALYSIS A		_	MPLING JIPMENT	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		TOTAL VOL ED IN FIELD ((mL)	FINAL pH	METHO			CODE	Comments
EW-2	1	PE	250mL	HNO3					6010B T Metals/ 747			APP	
EW-2	1	PE	125mL						3500 FE/ 9 pH	0040B		APP	
									6010B Diss				
EW-2	1	PE	250mL						Silica			APP	
EW-2	1	PE	125mL						9051 Chlor 9038 Sul			APP	
EW-2	1	AG	125mL						SM 5310			APP	
EW-2	2	PE	250mL	NaOH				<u></u>	SM4500 S			APP APP	Field-Filtered
			ZJUIIL	Zinc Acetat	e								i iciu-i-iitei eu
EW-2	1	PE	500mL						2540C T	DS		APP	

REMARKS: Per SOP, parameters stable prior to sample collection. Depth of water cannot be recorded with recovery wells. **PE** = Polyethylene;

2320B Alkalinity

SM5310 TOC

S = Silicone;

APP

APP

O = Other (Specify)

T = Teflon;

PP = Polypropylene; **APP** = After Peristaltic Pump; **B** = Bail **RFPP** = Reverse Flow Peristaltic Pump; iler; **BP** = Bladder Pump; **ESP** = Elect **SM** = Straw Method (Tubing Gravity Drain); **SAMPLING EQUIPMENT CODES:** B = Bailer; **ESP** = Electric Submersible Pump; O = Other (Specify)

HCI

250mL

125mL

AG = Amber Glass; **CG** = Clear Glass;

AG

EW-2

EW-2

MATERIAL CODES:

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick , GA	
WELL NO: EW-3	SAMPLE ID: EW-	3	DATE: 2/27/2014

PURGING DATA

	PURGING DATA												
WELL		TUBING	3	WE	LL SCREEN I	NTERVAL	STATIC	DEPTH	PUI	PURGE PUMP TYPE			
DIAMETER	(inches): 2	DIAME	TER (inches): 1/	4 DEF	PTH(ft btoc): 3	9.2 to 42.2	TO WAT	ER (ft btoc): n/a	OR	BAILER: PP			
Tubing-in-	Screen Interv		S (0.0026 ga			_	BING LENGTH = 0.20 gallons) + FLOW CELL V s	OLUME				
_	MP OR TUBIN	-	FINAL PUMP DEPTH IN W			PURGIN INITIATI	IG ED AT: 1000	PURGING ENDED AT:	1118	TOTAL VOLUME PURGED (gallons): ~3.5			
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT Y (NTUs)		SP Gravity (sg)		
1003	0.20	0.20	200	n/a	9.40	18.42	22.22	10.1	18.5	-142.2			
1008	0.20	0.40	200	n/a	8.20	18.42	22.30	7.7	14.4	-168.8			
1013	0.20	0.60	200	n/a	5.90	19.34	22.15	5.9	17.7	-135.6			
1018	0.20	0.80	200	n/a	<mark>5.10</mark>	20.33	22.19	5.0	16.2	-179.7			
1023	0.20	1.0	200	n/a	9.88	20.31	22.25	4.5	14.0	-195.7			
1028	0.20	1.2	200	n/a	9.87	20.26	22.25	4.2	14.7	-177.7			
1033	0.20	1.4	200	n/a	9.86	20.28	22.24	3.8	14.3	-149.0			
1038	0.20	1.6	200	n/a	9.87	20.18	22.25	3.0	13.6	-191.2			
1043	0.20	1.8	200	n/a	9.85	20.31	22.22	2.9	14.4	-128.5			
1048	0.20	2.0	200	n/a	9.85	20.42	22.21	2.3	15.7	-84.2			
1053	0.20	2.2	200	n/a	9.85	20.60	22.23	2.1	16.1	-84.4			
1058	0.20	2.4	200	n/a	9.85	20.34	22.26	2.0	17.2	-171.7			
1103	0.20	2.6	200	n/a	9.86	20.42	22.22	1.8	18.2	-198.9			
1108	0.20	2.8	200	n/a	9.84	20.37	22.23	1.7	17.4	-63.2			
1113	0.20	3.0	200	n/a	9.85	20.28	22.23	1.5	17.6	-103.2			
1118	0.20	3.2	200	n/a	9.84	20.25	22.24	1.5	19.0	-132.7			
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 BTOC = Below top of casing – feet below top of casing which includes above grade riser													
PURGING	EQUIPMENT	CODES: B	= Bailer; B	P = Bladder f	Pump; E	SP = Electric	Submersible P	ump; $PP = Pe$	ristaltic Pum	\mathbf{p} ; $\mathbf{O} = \mathbf{O}$	ther (Specify)		

SAMPLING DATA

SAMPLED Matt So	D BY (PRINT) / cheuer	AFFILIATION	N:	SAMPLER(S) SIGNATUR	RE(S):		SAMPLING INITIATED AT: 1522		SAMPLING ENDED AT: 1539		
PUMP OR DEPTH IN	R TUBING I WELL (feet):	21.6		TUBING MATERIAL CODE: Teflo i	n-lined PE			D-FILTERED: Yes SM 4500 Sulfide FILTER SIZE: <u>0.45 µm</u> tion Equipment Type: In-line filter			
FIELD DE	CONTAMINAT	ION: PL	JMP Y	No TUBIN	NG Yes No (re	placed)	DUPLICATE:	DUPLICATE: No			
SAMPLE CONTAINER SPECIFICATION				SAMPLE PRESERVATION				SAMPLING			
SAMPLE ID CODE	# CONTAINER S	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	INTENDED ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Additional Comments		
EW-3	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg Mercury	APP			
EW-3	1	PE	125mL				3500 FE/ 9040B pH	APP			
EW-3	1	PE	250mL				6010B Dissolved Silica	APP			
EW-3	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP			
EW-3	1	AG	125mL				SM 5310 DOC	APP			
EW-3	2	PE	250mL	NaOH, Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
EW-3	1 1	PE	500mL				2540C TDS	APP			
EW-3	1	PE	250mL				2320B Alkalinity	APP			
	EW-3 1 AG 125mL HCl SM5310 TOC APP										
REMARKS: Per SOP, parameters stable prior to sample collection. Depth of water cannot be recorded with recovery wells.											
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)											
SAMPLIN	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump: B = Bailer: BP = Bladder Pump: ESP = Electric Submersible Pump:										

O = Other (Specify)

SITE NAME: LCP Chemical Site LOCATION: Brunswick, GA WELL NO: EW-4 SAMPLE ID: EW-4 DATE: 2/4/2013

PURGING DATA

WELL TUBING WELL SCREEN INTERVAL STATIC DEPTH PURGE PUMP TYPE											
DIAMETER	(inches): 2	DIAMET	ER (inches):	1/4 DE	PTH(ft btoc): 3	8.2 to 43.2	TO WAT	ER (ft btoc): n/a	OR I	BAILER: PP	
Tubing–in-	Screen Interva						BING LENGTH = 0.23 gallo) + FLOW CELL V ns	OLUME		
_	MP OR TUBINO WELL (ft btoc):		_	MP OR TUBIN	-	PURGIN INITIATE	IG ED AT: 1142	PURGING ENDED AT:1	349	TOTAL VOLUMI PURGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	Y ORP (mV)	SP Gravity (sg)
1148	0.23	0.23	200	n/a	8.73	18.55	8.661	1.8	30.3	-104.6	
1153	0.23	0.46	200	n/a	8.72	19.09	8.671	1.4	29.1	-241.7	
1158	0.23	0.69	200	n/a	8.71	19.12	8.660	1.1	26.6	-245.5	
1203	0.23	0.92	200	n/a	8.66	19.13	8.631	0.9	26.1	-280.6	
1208	0.23	1.15	200	n/a	8.54	19.19	8.557	0.7	26.2	-266.4	
1213	0.23	1.38	200	n/a	8.47	19.30	8.484	0.8	25.5	-263.3	
1218	0.23	1.61	200	n/a	8.34	19.30	8.441	0.7	25.2	-302.3	
1223	0.23	1.84	200	n/a	8.06	19.24	8.333	0.8	25.2	-286.4	
1228	0.23	2.07	200	n/a	7.86	19.29	8.294	0.8	24.3	-268.8	
1233	0.23	2.30	200	n/a	7.65	19.37	8.234	1.0	24.0	-285.5	
1238	0.23	2.53	200	n/a	7.52	19.40	8.192	0.9	23.6	-287.3	
1243	0.23	2.76	200	n/a	7.39	19.43	8.147	0.7	24.0	-280.7	
1248	0.23	2.99	200	n/a	7.26	19.24	8.100	0.7	24.2	-294.2	
1253	0.23	3.22	200	n/a	7.22	19.22	8.050	0.8	23.0	-287.5	
1258	0.23	3.45	200	n/a	7.15	19.20	7.975	0.8	22.2	-306.5	
1303	0.23	3.68	200	n/a	7.11	19.25	7.943	0.8	22.5	-296.5	
1308	0.23	3.91	200	n/a	7.09	19.31	7.925	0.9	21.5	-316.3	
1313	0.23	4.14	200	n/a	7.07	19.18	7.887	0.9	21.6	-297.7	
1318	0.23	4.37	200	n/a	7.06	19.22	7.875	0.9	22.3	-297.3	
1323	0.23	4.60	200	n/a	7.04	19.16	7.807	0.8	21.8	-290.3	
1328	0.23	4.83	200	n/a	7.02	19.15	7.786	1.0	21.8	-327.4	
1333	0.23	5.06	200	n/a	7.01	19.17	7.756	0.9	20.8	-335.8	
1338	0.23	5.29	200	n/a	7.01	19.20	7.740	1.0	21.4	-308.3	
1343	0.23	5.52	200	n/a	7.00	19.26	7.714	0.9	21.5	-316.3	
1348	0.23	5.75	200	n/a	7.01	19.32	7.725	0.9	20.7	-337.3	
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 BTOC = Below top of casing – feet below top of casing which includes above grade riser											

PURGING EQUIPMENT CODES: **B** = Bailer; **BP** = Bladder Pump; **ESP** = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)

SAMPLING DATA

Matt So	BY (PRINT) / A cheuer	FFILIATION:		SAMPLER(S) SIGN	ATURE(S):		SAMPLING INITIATED AT: 1352	- · · · · · · · ·	SAMPLING ENDED AT: 1428	
PUMP OR DEPTH IN	TUBING WELL (feet): 3	5.17		TUBING MATERIAL CODE:	Teflon-lined PE		D-FILTERED: Yes SM 4500 Sulfide FILTER SIZE: <u>0.45</u> µm tion Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PUI	MP Y	No TU	JBING Yes No (re	placed)	DUPLICATE:	DUPLICATE: No		
SAMI	PLE CONTAINE	R SPECIFICA	ATION	SAMP	LE PRESERVATION		INTENDED ANALYSIS	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	AND/OR METHOD	EQUIPMEN T CODE	Comments	
EW-4	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg Mercury	APP		
EW-4	1	PE	125mL				3500 FE/ 9040B pH	APP		
EW-4	1	PE	250mL				6010B Dissolved Silica	APP		
EW-4	1	PE	125mL			1	9251 Chloride & 9038 Sulfate	APP		
EW-4	1	AG	125mL				SM 5310 DOC	APP		
EW-4	2	PE	250mL	NaOH			SM4500 Sulfide	APP	Field-Filtered	
EW-4	1	PE	500mL				2540C TDS	APP		
EW-4	1	PE	250mL				2320B Alkalinity	APP		
EW-4	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	s: Per SOP, p	arameters	stable pri	or to sample colle	ection. Depth of wat	er canno	ot be recorded with rec	overy wells.		
MATERIA	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)									
SAMPLIN	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)									

SITE		SITE	
NAME: LCP Chemical Site		LOCATION: Brunswick, GA	
WELL NO: EW-5	SAMPLE ID: EW	-5	DATE: 3/5/2014

DURGING DATA

					PURG	ING DA	IA				
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		LL SCREEN PTH(ft btoc): 4		STATIC I TO WAT	DEPTH ER (ft btoc): n/a	_	RGE PUMP TYPE BAILER: PP	
Tubing-in-	Screen Interva		UIPMENT VOL s (0.0026 ga				BING LENGTH) = 0.24 gallo n	+ FLOW CELL V	OLUME		
INITIAL PUMP OR TUBING DEPTH IN WELL (ft btoc): 41.02 FINAL PUMP OR TUBING DEPTH IN WELL (ft btoc): 41.02 PURGING ENDED AT: 0923 FURGED (gallons): 2.0											
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	ORP (mV)	SP Gravity (sg)
0845	0.24	0.24	200	n/a	10.74	18.31	35.05	11.2	183	-449.4	
0850	0.24	0.48	200	n/a	10.76	18.27	35.55	6.2	122	-509.4	
0855	0.24	0.72	200	n/a	10.76	18.53	35.31	4.9	42.8	-445.7	
0900	0.24	0.96	200	n/a	10.75	18.64	35.32	4.0	18.7	-497.8	
0905	0.24	1.20	200	n/a	10.74	18.70	35.32	3.4	12.4	-513.6	
0910	0.24	1.44	200	n/a	10.74	18.60	35.37	3.2	9.18	-472.0	
0915	0.24	1.68	200	n/a	10.74	18.52	35.45	3.0	9.06	-520.2	
0920	0.24	1.92	200	n/a	10.74	18.52	35.45	2.7	9.04	-477.7	

WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1 **2**" = 0.16; **3**" = 0.37; **4**" = 0.65; **5**" = 1.02; **6**" = 1.47; **12**" = 5.88 **1/4"** = 0.0026; **5/16"** = 0.004; **3/8"** = 0.006; **1/2"** = 0.010; **5/8"** = 0.016 BTOC = Below top of casing - feet below top of casing which includes above grade riser

PURGING EQUIPMENT CODES: B = Bailer; **BP** = Bladder Pump;

SAMPLING EQUIPMENT CODES:

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

ESP = Electric Submersible Pump;

O = Other (Specify)

O = Other (Specify)

SAMPLING DATA

				3	AMPLING DATA						
Matt So	BY (PRINT) / A cheuer	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 0929	SAMPLIN ENDED A			
PUMP OR DEPTH IN	TUBING WELL (feet): 4	1.02		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 4500 Sulfide FILTER SIZE: <u>0.45 µ</u> m n Equipment Type: In-line filter				
FIELD DE	CONTAMINATIO	ON: PUI	MP Y I	No T	UBING Yes No (re	eplaced)	DUPLICATE: No				
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
EW-5	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP			
EW-5	1	PE	125mL				3500 FE/ 9040B pH	APP			
EW-5	1	PE	250mL				6010B Dissolved Silica	APP			
EW-5	1	PE	125mL				9251 Chloride & 9038Sulfate	APP			
EW-5	1	AG	125mL				SM 5310 DOC	APP			
EW-5	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
EW-5	1	PE	500mL				2540C TDS	APP			
EW-5	1	PE	250mL				2320B Alkalinity	APP			
EW-5	1	AG	125mL	HCI			SM5310 TOC	APP			
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Depth of water cannot be recorded with recovery wells.										
MATERIA	L CODES:	AG = Ambei	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)		

 APP = After Peristaltic Pump;
 B = Bailer;
 BP = Bladder Pump;
 ESP = Elect

 RFPP = Reverse Flow Peristaltic Pump;
 SM = Straw Method (Tubing Gravity Drain);

BP = Bladder Pump;

SITE					0	ITE								
-	P Chemical Sit	:e				OCATION: Bru	nswic	ck, GA						
WELL NO	: EW-6			SAMPLE ID:	EW-6					DATE:	2/28/20	114		
				•	PUR	GING DAT	ГΑ							
WELL DIAMETE	R (inches): 2	TUBIN DIAME	IG ETER (inches): 1			INTERVAL 46.2 to 51.2		STATIC DI	EPTH R (ft btoc): n/a			RGE PUMP TYPE BAILER: PP		
Tubing-ir	-Screen Interva			VOL. = (TUBING CAPACITY X TUBING LENGTH) + FLOW CEL gallons/foot X 35 feet) + 0.13 gallons = 0.22 gallons					+ FLOW CELL	VOLUME				
	JMP OR TUBING WELL (ft btoc):	-	_	P OR TUBING VELL (ft btoc): 3 1	PURGINO INITIATE		0931	PURGING ENDED AT:	: 1000		TOTAL VOL PURGED (g	UME allons): ~1.5		
TIME	VOLUME PURGED (gallons)	\ -	pH tandard units)	TEMP.		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	(NI	BIDITY TUs)	ORP (mV)	SP Gravity (sg)			
0937	0.22	0.22	200	n/a	7.42	19.54	5	7.21	13.5	3	.47	-94.3		
0942	0.22	0.44	200	n/a	7.43	20.12	5	7.23	6.7	3	.34	-94.2		
0947	0.22	0.66	200	n/a	7.42	20.16	5	7.31	4.7	3	.75	-96.0		
0952	0.22	0.88	200	n/a 7.42 20.44 57.36 3.2 3.60 -						-104.8	3			
0957	0.22	1.10	200	n/a	20.50	5	7.25	2.8	3	.40	-136.6	6		
TUBING II	PACITY (Gallon: NSIDE DIA. CAF Below top of ca:	PACITY (Gal.	./Ft.): 1/8" = 0.0			1/4" = 0.0026		3" = 0.37; 5/16" = 0.0	4" = 0.65; 004; 3/8" =	5 " = 1.0 0.006;			12 " = 5.88 5/8 " = 0.016	
	EQUIPMENT C		<u> </u>	BP = Bladder Pum		ESP = Electric S	Subme	ersible Pun	np; PP = F	Peristaltic	Pump;	O = Ot	her (Specify)	
	,		,			LING DA	ΤA							
Matt So	BY (PRINT) / A cheuer	FFILIATION:		SAMPLER(S) SIG	SNATUR	E(S):			SAMPLING INITIATED A	T: 1005		SAMPLING ENDED A		
PUMP OR DEPTH IN	TUBING WELL (feet): 3	1.75		TUBING MATERIAL CODI	E: Teflon	n-lined PE			FILTERED: Y				R SIZE: <u>0.45</u> μm	
FIELD DECONTAMINATION: PUMP Y No TUBING Yes No							o (rep	placed)	DUPLICATE	:	N	lo		
SAM	PLE CONTAINE	R SPECIFIC	ATION	SA	MPLE PI	RESERVATION	1		INTEND			MPLING	Additional	
SAMPLE # MATERIAL PRESERVATIVE ID CODE CONTAINERS CODE VOLUME USED AI					TOTAL VOL ED IN FIELD (m	nL)	FINAL pH	METHO	METHOD (JIPMENT CODE	Comments		
EW-6	1	PE	250mL	HNO3 6010B TAL HNO3 Metals/ 7470A Hg APP										
								3500 FE/ 9040B						

PUMP OR DEPTH IN	TUBING WELL (feet): 3	1.75		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 4500 Sulfide FILTER SIZE: <u>0.45 µm</u> n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PUI	MP Y I	No T	UBING Yes No (r e	eplaced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
EW-6	1	PE	250mL	HNO3		1	6010B TAL Metals/ 7470A Hg	APP		
EW-6	1	PE	125mL				3500 FE/ 9040B pH	APP		
EW-6	1	PE	250mL				6010B Dissolved Silica	APP		
EW-6	1	PE	125mL			-	9251 Chloride & 9038 Sulfate	APP		
EW-6	1	AG	125mL				SM 5310 DOC	APP		
EW-6	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
EW-6	1	PE	500mL				2540C TDS	APP		
EW-6	1	PE	250mL				2320B Alkalinity	APP		
EW-6	1	AG	AG 125mL HCI SM5310 TOC APP							
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Depth of water cannot be recorded with recovery wells.									

MATERIAL CODES:AG = Amber Glass;CG = Clear Glass;PE = Polyethylene;PP = Polypropylene;S = Silicone;T = Teflon;O = Other (Specify)SAMPLING EQUIPMENT CODES:APP = After Peristaltic Pump;B = Bailer;BP = Bladder Pump;ESP = Electric Submersible Pump;RFPP = Reverse Flow Peristaltic Pump;SM = Straw Method (Tubing Gravity Drain);O = Other (Specify)

SITE NAME: LCP Chemical Site LOCATION: Brunswick, GA WELL NO: EW-8 SAMPLE ID: EW-8 DATE: 3/3/2014

					PURG	ING DA	<u>TA</u>				
WELL DIAMETER	(inches): 2	TUBING DIAMETI	ER (inches): 1/		LL SCREEN I PTH(ft btoc): 4		STATIC TO WAT	DEPTH ER (ft btoc): n/a		GE PUMP TYPE BAILER: PP	
Tubing-in-	Screen Interva	al purge: 1 EQU = 9	JIPMENT VOL s (0.0026 ga				BING LENGTH = 0.25 gallon) + FLOW CELL V is	OLUME		
_	MP OR TUBING VELL (ft btoc):	-	FINAL PUMF DEPTH IN W	/ELL (ft btoc	TUBING PURGING (ft btoc): 43.13 PURGING INITIATED AT: 1345			PURGING ENDED AT:	1525	TOTAL VOLUME PURGED (gallons): 4.75	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT' (NTUs)	Y ORP (mV)	SP Gravity (sg)
1353	0.25	0.25	200	n/a	9.11	21.94	9.225	1.4	15.4	-219.2	
1357	0.25	0.50	200	n/a	9.11	21.84	9.222	1.4	14.5	-242.0	
1403	0.25	0.75	200	n/a	9.10	22.00	9.209	1.3	14.3	-227.9	
1408	0.25	1.00	200	n/a	9.10	22.06	9.202	1.2	14.4	-219.5	
1413	0.25	1.25	200	n/a	9.10	22.25	9.181	1.3	13.9	-221.9	
1418	0.25	1.50	200	n/a	9.10	22.25	9.177	1.2	13.9	-225.4	
1423	0.25	1.75	200	n/a	9.11	22.02	9.182	1.2	13.1	-242.7	
1428	0.25	2.00	200	n/a	9.10	21.99	9.175	1.1	12.9	-261.9	
1433	0.25	2.25	200	n/a	9.10	22.15	9.182	1.0	12.9	-259.2	
1438	0.25	2.50	200	n/a	9.10	22.25	9.206	0.9	12.9	-270.7	
1443	0.25	2.75	200	n/a	9.09	22.11	9.264	1.0	12.6	-318.7	
1448	0.25	3.00	200	n/a	9.09	22.04	9.281	1.0	12.1	-326.0	
1453	0.25	3.25	200	n/a	9.10	22.07	9.325	0.7	11.1	-334.7	
1458	0.25	3.50	200	n/a	9.09	22.30	9.350	0.8	10.7	-296.7	
1503	0.25	3.75	200	n/a	9.10	22.23	9.420	0.8	10.5	-335.7	
1508	0.25	4.00	200	n/a	9.09	21.88	9.480	0.7	10.3	-361.5	
1513	0.25	4.25	200	n/a	9.09	21.76	9.503	0.7	9.88	-356.7	
1518	0.25	4.50	200	n/a	9.09	21.82	9.512	0.7	9.71	-286.4	
1523	0.25	4.75	200	n/a	9.09	22.00	9.549	0.6	9.69	-265.2	
TUBING INS	SIDE DÌA. CAF	s Per Foot): 0. PACITY (Gal./Ft sing – feet belo	.): 1/8" = 0.00	006; 3/16		1/4" = 0.002					= 5.88 = 0.016

SAMPLING DATA

PURGING EQUIPMENT CODES: B = Bailer; **BP** = Bladder Pump;

APP = After Peristaltic Pump;

RFPP = Reverse Flow Peristaltic Pump;

SAMPLING EQUIPMENT CODES:

ESP = Electric Submersible Pump;

PP = Peristaltic Pump; O = Other (Specify)

ESP = Electric Submersible Pump;

O = Other (Specify)

Matt So	D BY (PRINT) / A cheuer	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1527	SAMPLII ENDED	NG AT: 1549		
PUMP OR DEPTH IN	R TUBING I WELL (feet): 4	3.13		TUBING MATERIAL CODE:	Teflon-lined PE			D-FILTERED: Yes SM 4500 Sulfide FILTER SIZE: <u>0.45 µm</u> tion Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Yes No (re	placed)	DUPLICATE:	No			
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAMPLE PRESERVATION			INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
EW-8	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg Mercury	APP			
EW-8	1	PE	125mL				3500 FE/ 9040B pH	APP			
EW-8	1	PE	250mL				6010B Dissolved Silica	APP			
EW-8	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP			
EW-8	1	AG	125mL				SM 5310 DOC	APP			
EW-8	2	PE	250mL	NaOH		-	SM4500 Sulfide	APP	Field-Filtered		
EW-8	1	PE	500mL			1	2540C TDS	APP			
EW-8	1	PE	250mL				2320B Alkalinity	APP			
EW-8	1	AG	125mL	HCI			SM5310 TOC	APP			
REMARKS	s: Per SOP, p	parameters	s stable pric	or to sample colle	ection. Depth of wat	er canno	ot be recorded with re	ecovery wells.			
MATERIA	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)										

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: pH: ± 0.1 unit Specific Conductance: ± 5% Dissolved Oxygen: all readings \leq 10% saturation, optionally, \pm 0.2 mg/L Turbidity: all readings \leq 10 NTU; or \pm 10%

B = Bailer;

BP = Bladder Pump;

SM = Straw Method (Tubing Gravity Drain);

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: EW-9	SAMPLE ID: EW	-9	DATE: 2/04/2014

PURGING DATA

WELL	TUBING	WELL SCREEN INTERVAL	STATIC DEPTH	PURGE PUMP TYPE
DIAMETER (inches): 2	DIAMETER (inches): 1/4	DEPTH(ft btoc): 47 to 52	TO WATER (ft btoc): n/a	OR BAILER: PP
T. 1	4 FOURDMENT VOL. (TI	IDINIO OADAOITY Y TUDINIO	LENGTH, FLOW OF LL VOLUM	_

Tubing-in-Screen Interval purge: 1 EQUIPMENT VOL. = (TUBING CAPACITY **EQUIPMENT VOL.** = (TUBING CAPACITY X TUBING LENGTH) + s (0.0026 gallons/foot X 47 feet) + 0.13 gallons = **0.25 gallons** TUBING LENGTH) + FLOW CELL VOLUME

_	MP OR TUBIN WELL (ft btoc)	-	_	OR TUBINO ELL (ft btoc)		PURGIN INITIATE	IG ED AT: 1045	PURGING ENDED AT: 1	1111	TOTAL VOLUME PURGED (gallons): 1.50	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	Y ORP (mV)	SP Gravity (sg)
0942	0.25	0.25	200	n/a	7.08	18.68	5.723	3.6	8.66	-177.6	
0947	0.25	0.50	200	n/a	7.06	18.57	5.353	2.5	9.04	-198.2	
0952	0.25	0.75	200	n/a	7.06	18.58	5.277	1.8	28.7	-214.7	
0957	0.25	1.00	200	n/a	7.05	18.68	5.370	1.2	36.5	-239.7	
1002	0.25	1.25	200	n/a	7.03	18.78	5.328	0.9	23.0	-248.7	
1007	0.25	1.50	200	n/a	6.98	19.12	5.414	0.6	20.2	-254.4	
1012	0.25	1.75	200	n/a	6.89	19.06	6.006	0.8	11.7	-266.1	
1017	0.25	2.00	200	n/a	6.85	19.01	6.273	0.8	12.4	-265.9	
1022	0.25	2.25	200	n/a	6.75	19.00	6.934	0.9	9.3	-265.6	
1027	0.25	2.50	200	n/a	6.74	19.05	7.051	0.9	8.71	-266.2	
1032	0.25	2.75	200	n/a	6.73	19.13	7.260	1.1	8.7	-268.5	
I MITTELL OAD	A OITY (O - II	- D F4\. A	7F" 0 00.	422 0 0 4 .	4 05" 0 00	. 0" 04	0. 0.07.	422 0 05.	-11 4 00.	011 4 47. 4011	E 00

WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/4" = 0.0026; 1/4" = 0.004; 1/4" = 0.00**12**" = 5.88 **6**" = 1.47; **1/2"** = 0.010; 5/8" = 0.016BTOC = Below top of casing - feet below top of casing which includes above grade riser

PURGING EQUIPMENT CODES: BP = Bladder Pump; **B** = Bailer;

ESP = Electric Submersible Pump; O = Other (Specify) **PP** = Peristaltic Pump;

SAMPLING DATA

SAMPLED Matt So	O BY (PRINT) / A cheuer	FFILIATION:	:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1035	SAMPLIN ENDED	NG AT: 1057	
PUMP OR DEPTH IN	R TUBING N WELL (feet): 4	4.1		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 4500 Sulfide FILTER SIZE: <u>0.45 µm</u> n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Yes No (re	eplaced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
EW-9	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP		
EW-9	1	PE	125mL				3500 FE/ 9040B pH	APP		
EW-9	1	PE	250mL				6010B Dissolved Silica	APP		
EW-9	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
EW-9	1	AG	125mL				SM 5310 DOC	APP		
EW-9	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
EW-9	1	PE	500mL				2540C TDS	APP		
EW-9	1	PE	250mL				2320B Alkalinity	APP		
EW-9	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARK	s: Per SOP, p	oarameters	s stable pric	or to sample colle	ection. Depth of water	er cannot	be recorded with re	covery wells.		
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP =	: Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)	

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; **BP** = Bladder Pump; **ESP** = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; **SM** = Straw Method (Tubing Gravity Drain); O = Other (Specify)

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: EW-10	SAMPLE ID: EW-	-10	DATE: 3/03/2014

WELL		TUBING		WE	L SCREEN I	ING DA	STATIC I	DEPTH	PUR	GE PUMP TYPE	
DIAMETER	(inches): 2		ER (inches): 1/		DEPTH(ft btoc): 45.3 to 50.3 TO WATER (ft btoc): n/a OR BAILER: PP						
Tubing-in-	Screen Interva	al purge: 1 EQI = 3	JIPMENT VOL s (0.0026 ga				BING LENGTH) = 0.25 gallon	+ FLOW CELL V	OLUME		
_	MP OR TUBING WELL (ft btoc):	-	FINAL PUMP DEPTH IN W	/ELL (ft btoc)	-		PURGING INITIATED AT: 1250		314	TOTAL VOLUME PURGED (gallons): 4.75	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT' (NTUs)	Y ORP (mV)	SP Gravit (sg)
1018	0.25	0.25	200	n/a	7.33	20.84	11.58	7.7	12.2	-121.9	
1023	0.25	0.50	200	n/a	7.35	20.81	11.59	3.1	11.1	-131.7	
1228	0.25	0.75	200	n/a	7.37	20.84	11.55	2.0	11.4	-139.5	
1033	0.25	1.00	200	n/a	7.38	20.88	11.52	1.6	11.2	-156.8	
1038	0.25	1.25	200	n/a	7.38	20.89	11.51	1.5	11.5	-164.9	
1043	0.25	1.50	200	n/a	7.38	20.88	11.51	1.3	12.0	-177.1	
1048	0.25	1.75	200	n/a	7.37	20.97	11.50	1.3	11.6	-168.6	
1053	0.25	2.00	200	n/a	7.37	20.99	11.51	1.2	10.4	-181.8	
1058	0.25	2.25	200	n/a	7.37	20.94	11.51	1.2	10.6	-195.7	
1103	0.25	2.50	200	n/a	7.37	20.94	11.51	1.2	10.4	-192.2	
1108	0.25	2.75	200	n/a	7.37	20.96	11.51	1.1	10.9	-207.3	
1113	0.25	3.00	200	n/a	7.36	21.02	11.52	1.1	10.9	-213.8	
1118	0.25	3.25	200	n/a	7.36	21.10	11.53	0.9	10.6	-216.8	
1123	0.25	3.50	200	n/a	7.36	21.15	11.54	1.1	10.6	-216.9	
1128	0.25	3.75	200	n/a	7.36	21.17	11.55	1.1	10.1	-223.3	
1133	0.25	4.00	200	n/a	7.35	21.21	11.55	1.1	9.98	-227.4	
1138	0.25	4.25	200	n/a	7.35	21.20	11.56	1.1	10.1	-230.0	
1143	0.25	4.50	200	n/a	7.34	21.24	11.56	1.1	10.1	-234.8	
1148	0.25	4.75	200	n/a	7.34	21.28	11.56	1.0	9.95	-238.5	
TUBING IN	SIDE DÌA. CAF	s Per Foot): 0. PACITY (Gal./Fi sing – feet belo	i.): 1/8" = 0.0			1/4" = 0.002					= 5.88 = 0.016

PURGING EQUIPMENT CODES: **B** = Bailer; **BP** = Bladder Pump;

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

SAMPLING DATA

SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): CAMPLING CAMPLING										
Matt Sc	,	AFFILIATION:		SAMPLER(S) SIGN	NATUKE(S):		SAMPLING INITIATED AT: 1152	SAMPLIN ENDED A		
PUMP OR DEPTH IN	TUBING WELL (feet): 4	2.25		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 4500 Sulfide FILTER SIZE: <u>0.45 µm</u> on Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Yes No (re	eplaced)	DUPLICATE:	No		
SAM	PLE CONTAINE	R SPECIFIC	CATION	SAMPLE PRESERVATION			INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
EW-10	1	PE	250mL	HNO3		1	6010B TAL Metals/ 7470A Hg	APP		
EW-10	1	PE	125mL				3500 FE/ 9040B pH	APP		
EW-10	1	PE	250mL				6010B Dissolved Silica	APP		
EW-10	1	PE	125mL			-	9251 Chloride & 9038 Sulfate	APP		
EW-10	1	AG	125mL				SM 5310 DOC	APP		
EW-10	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
EW-10	1	PE	500mL				2540C TDS	APP		
EW-10	1	PE	250mL				2320B Alkalinity	APP		
EW-10	1 2 2 2 2	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	s: Per SOP, p	parameters	s stable pric	or to sample colle	ection. Depth of water	er cannot	be recorded with re	covery wells.		
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP =	 Polypropyle 	ene; S = Silicone; T	= Teflon; $\mathbf{O} = 0$	Other (Specify)	
SAMPLIN	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)									

SITE NAME: LCP Chemical Site SITE LOCATION: Brunswick, GA WELL NO: EW-11 SAMPLE ID: EW-11 DATE: 2/28/2014 PURGING DATA	
WELL NO: EW-11 SAMPLE ID: EW-11 DATE: 2/28/2014	
WELL TUBING WELL SCREEN INTERVAL STATIC DEPTH PURGE PUMP TYPE	
DIAMETER (inches): 2 DIAMETER (inches): 1/4 DEPTH(ft btoc): 45.5 to 50.5 TO WATER (ft btoc): n/a OR BAILER: PP	
Tubing-in-Screen Interval purge: 1 EQUIPMENT VOL. = (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME = s (0.0026 gallons/foot X 46 feet) + 0.13 gallons = 0.25 gallons	
INITIAL PUMP OR TUBING DEPTH IN WELL (ft btoc): 42.6 FINAL PUMP OR TUBING DEPTH IN WELL (ft btoc): 42.6 PURGING PURGING ENDED AT:1200 PURGED (gallon	
TIME VOLUME PURGED (gallons) CUMUL. VOLUME PURGE RATE (gpm) PURGE (feet btoc) TURBIDITY (mV) PH (standard units) PURGE (feet btoc) PH (standard units) PH (standard units) PH (standard units) PH (standard units) PH (mV) PH	SP Gravity (sg)
1138 0.25 0.25 200 n/a 6.55 20.70 35.85 7.6 8.76 -44.7	
1143 0.25 0.50 200 n/a 6.52 21.02 35.66 2.8 4.28 -76.4	
1148 0.25 0.75 200 n/a 6.51 21.13 35.49 2.9 1.71 -89.7	
1153 0.25 1.00 200 n/a 6.50 21.16 35.39 2.6 1.32 -93.9	
1158 0.25 1.25 200 n/a 6.49 21.25 35.44 2.7 1.29 -96.9	
	= 5.88 = 0.016
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)
SAMPLING DATA	
SAMPLED BY (PRINT) / AFFILIATION: Matt Scheuer SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: 1212 SAMPLING ENDED AT: 12	242
PUMP OR TUBING DEPTH IN WELL (feet): 42.6 TUBING MATERIAL CODE: Teflon-lined PE TUBING FIELD-FILTERED: Yes SM 4500 Sulfide FILTER SIZE Filtration Equipment Type: In-line filter	ΖΕ: <u>0.45 μ</u> m
FIELD DECONTAMINATION: PUMP Y No TUBING Yes No (replaced) DUPLICATE: Yes	
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION INTENDED SAMPLING ANALYSIS AND/OR EQUIPMENT	Additional

SAMPLED BY (PRINT) / AFFILIATION: Matt Scheuer				SAMPLER(S) SIGNATURE(S):			SAMPLING INITIATED AT: 1212	SAMPLIN ENDED A	
PUMP OR TUBING DEPTH IN WELL (feet): 42.6							FILTERED: Yes SM 4500 Sulfide FILTER SIZE: <u>0.45 µm</u> In Equipment Type: In-line filter		
FIELD DECONTAMINATION: PUMP Y I				No TUBING Yes No (replaced)			DUPLICATE: Yes		
SAMPLE CONTAINER SPECIFICATION				SAMPLE PRESERVATION			INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
EW-11	1	PE	250mL	HNO3		1	6010B TAL Metals/ 7470A Hg	APP	
EW-11	1	PE	125mL				3500 FE/ 9040B pH	APP	
EW-11	1	PE	250mL				6010B Dissolved Silica	APP	
EW-11	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP	
EW-11	1	AG	125mL				SM 5310 DOC	APP	
EW-11	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
EW-11	1	PE	500mL				2540C TDS	APP	
EW-11	1	PE	250mL				2320B Alkalinity	APP	
EW-11	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS: Per SOP, parameters stable prior to sample collection. Depth of water cannot be recorded with recovery wells.									
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)									

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: \pm 0.1 unit **Specific Conductance**: \pm 5% **Dissolved Oxygen**: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L **Turbidity**: all readings \leq 10 NTU; or \pm 10%

SAMPLING EQUIPMENT CODES:

SITE					SIT	_							
NAME: LCP	Chemical Sit	e		1	LO	CATION: Bru	unswick	k, GA					
WELL NO:	MW-1A			SAMPLI	E ID: MW-1A					DATE:	2/24/20	014	
					PURG	ING DA	TA						
WELL		TUBING		WE	LL SCREEN I	NTERVAL	8	STATIC D	EPTH		PURG	GE PUMP TYPE	
DIAMETER	(inches): 2	DIAMET	ER (inches): 1/4	DE	PTH(ft btoc): 1	9 to 24.4	Т	TO WATE	ER (ft btoc): 8.1	4	OR B	AILER: PP	
Tubing-in-S	Screen Interva		JIPMENT VOL. s (0.0026 gall						+ FLOW CELL	VOLUM	E		
	MP OR TUBING VELL (ft btoc):	-	FINAL PUMP DEPTH IN WI	-		PURGIN INITIATE	-	1521	PURGING ENDED AT	1552		TOTAL VOLUME PURGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	/N	RBIDITY ITUs)		SP Gravity (sg)
1526	0.25	0.25	350	8.38	6.27	20.79	16	6.60	6.3	4	4.91	-147.7	
1531	0.50	0.75	350	8.38	6.27	20.66	16	5.70	2.9	3	3.17	-156.3	
1536	0.50	1.25	350	8.40	6.27	20.66	16	5.71	2.2	2	2.74	-166.2	
1541	0.5	1.75	350	8.42	6.27	20.67	16	5.74	1.8	2	2.56	-166.7	
1546	0.5	2.25	350	8.43	6.27	20.65	16	5.75	1.7	2	2.18	-165.7	
1551	0.5	2.75	350	8.43	6.27	20.59	16	5.82	1.6	2	2.24	-170.3	
TUBING INS	/ELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 UBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 TOC = Below top of casing – feet below top of casing which includes above grade riser												
PURGING E	QUIPMENT C	ODES: B =	Bailer; BP	= Bladder	Pump; E	SP = Electric	Submei	rsible Pu	mp; PP = F	eristalti	c Pump;	O = Other	(Specify)
			· · · · · · · · · · · · · · · · · · ·			I INIO D							,,

SAMPLING DATA SAMPLER(S) SIGNATURE(S):

CAMPLED DV (DDINT) / AFFILIATION.

Matt Ve) BY (PRINT) / A eter	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1555	SAMPLIN ENDED	NG AT: 1610		
PUMP OR DEPTH IN	TUBING WELL (feet): 20	0.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 45 n Equipment Type: In-Ii		ER SIZE: <u>0.45</u> μm		
FIELD DE	CONTAMINATIO	N: PU	MP Y I	No T	UBING Yes No (r	eplaced)	DUPLICATE:	No			
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
MW-1A	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP			
MW-1A	1	PE	125mL				3500 FE/ 9040B pH	APP			
MW-1A	1	PE	250mL				6010B Dissolved Silica	APP			
MW-1A	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP			
MW-1A	1	AG	125mL				SM 5310 DOC	APP			
MW-1A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
MW-1A	1	PE	500mL				2540C TDS	APP			
MW-1A	1	PE	250mL				2320B Alkalinity	APP			
MW-1A	1	AG	125mL	HCI			SM5310 TOC	APP			
	REMARKS: Per SOP, parameters stable prior to sample collection. Purge water brown, sulfur-like odor. MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)										
SAMPLIN	AMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)										

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: \pm 0.1 unit **Specific Conductance**: \pm 5% **Dissolved Oxygen**: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L **Turbidity**: all readings \leq 10 NTU; or \pm 10%

SITE LOCATION: Brunswick, GA NAME: LCP Chemical Site WELL NO: MW-1B SAMPLE ID: MW-1B DATE: 2/24/2014

PURGING DATA

					i Oive	IIING DA	17					
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		LL SCREEN I PTH (feet btoo		5	STATIC TO WAT	DEPTH FER (feet btoc): 8	_	RGE PUMP TYPE BAILER: PP	
Tubing-in-	Screen Interva		UIPMENT VO (0.0026 gallo						+ FLOW CELL V	OLUME		
_	MP OR TUBINO		FINAL PUMI DEPTH IN V			PURGIN INITIATE	-	1526	PURGING ENDED AT:	1556	TOTAL VOLUM PURGED (gallo	_
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)		SP Gravity (sg)
1530	0.1	0.1	200	8.56	6.78	21.95	7	.091	163.4	18.9	-45.1	
1535	0.5	0.6	250	8.5	6.12	21.78	6	.588	25.6	17.4	-73.4	
1540	0.9	1.5	300	8.5	6.07	21.64	6	.524	19.4	13.2	-72.0	
1545					sk	ipped due t	o trair	ning				
1550	1.0	2.5	300	8.5	6.05	22.03	6	.095	14.3	13.5	-60.7	
1555	1.0	3.5	300	8.5	6.03	21.52	6	.311	13.1	15.2	-65	
TUBING IN	ACITY (Gallons SIDE DIA. CAP Blow top of cas	ACITY (Gal./F	t.): 1/8" = 0.0	006; 3/16	" = 0.0014;	1/4" = 0.002		3" = 0.37; 5/16" = 0.		5" = 1.02; 006; 1/2	- ,	= 5.88 = 0.016
PURGING E	QUIPMENT C	ODES: B =	= Bailer; B	P = Bladder	Pump; E	SP = Electric	Submo	ersible Pu	mp; PP = Pe	ristaltic Pum	np; $\mathbf{O} = \text{Other}$	(Specify)

SAMPLING DATA

				3	AMIFLING DATA				
	BY (PRINT) / A Chuprikova			SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1600	SAMPLII n/a	NG ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 3	5.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 n Equipment Type: In-li		R SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repl	aced)	DUPLICATE:	No	
SAM	PLE CONTAINE	R SPECIFIC	CATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW-1B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW-1B	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW-1B	1	PE	250mL				6010B Dissolved Silica	APP	
MW-1B	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP	
MW-1B	1	AG	125mL				SM 5310 DOC	APP	
MW-1B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW-1B	1	PE	500mL				2540C TDS	APP	
MW-1B	1	PE	250mL				2320B Alkalinity	APP	
MW-1B	1	AG	125mL	HCI			SM5310 TOC	APP	
	s: Per SOP,			-	ection. Water level s	tabilized			I

MATERIAL CODES: O = Other (Specify) AG = Amber Glass; CG = Clear Glass; **PE** = Polyethylene; **PP** = Polypropylene; **S** = Silicone; **T** = Teflon;

ler; BP = Bladder Pump; ESP = Electric SM = Straw Method (Tubing Gravity Drain); **APP** = After Peristaltic Pump; **B** = Barren Bereitaltic Pump; **B** = Barren Bereitaltic Pump; **ESP** = Electric Submersible Pump; avity Drain); **O** = Other (Specify) SAMPLING EQUIPMENT CODES: **B** = Bailer;

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: pH: ± 0.1 unit Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 10% saturation, optionally, ± 0.2 mg/L Turbidity: all readings ≤ 10 NTU; or ± 10%

<u> </u>			
SITE		SITE	
NAME: LCP Chemical Site		LOCATION: Brunswick, GA	
WELL NO: MW-1C	SAMPLE ID: MW	<i>I-</i> 1C	DATE: 2/24/2014

PURGING DATA

WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		VELL SCREEN IN DEPTH (feet btoc)				DEPTH FER (feet btoc): 9	_	PURGE PUMP TYPE OR BAILER: PP		
Tubing-in-	Screen Interva				NG CAPACITY 55 feet) + 0.13	X TU		,	+ FLOW CELL \	OLUME			
_	MP OR TUBINO		FINAL PUMP DEPTH IN W			PURGIN INITIATE	-	1343	PURGING ENDED AT:	1410	TOTAL VOLUM PURGED (gallo		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pН	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	_	SP Gravit	
1345	0.2	0.2	150	9.82	7.09	22.40	4	7.99	28.2	3.64	-138.9		
1350	0.2	0.4	150	9.83	6.66	22.09	4	9.93	10.7	10.7	-161.2		
1355	0.6	1.0	200	9.85	6.65	21.92	5	0.77	7.9	7.9	-171.8		
1400	0.4	1.0	200	9.83	6.59	21.96	5	1.04	6.0	6.0	-170.6		
1405	0.5	1.5	200	9.85	6.55	21.90	5	1.12	5.2	5.2	-194.2		
1410	0.5	2.0	200	9.85	6.64	21.91	5	1.14	4.8	4.8	-197.6		
TUBING IN BTOC = B	SIDE DÌA. CAP	ACITY (Gal./Fi sing – feet belo	t.): 1/8" = 0.00 w top of casing	006; 3/	; 1.25 " = 0.06; 16 " = 0.0014; cludes above grad	1/4" = 0.002	6;	5" = 0.37; 5/16" = 0.	004; 3/8" = 0.	5" = 1.02; .006; 1/2	5/8 " = 0.010; 5/8 "	= 5.88 = 0.016	

	BY (PRINT) / A Chuprikova	FFILIATION:		SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1412	SAMPL 1447	SAMPLING ENDED AT: 1447		
PUMP OR DEPTH IN	TUBING WELL (feet): 50	0.5		TUBING MATERIAL CODE:	Teflon-lined PE			TILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 µm n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	DN: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	Yes			
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
MW- 1C	1	PE	250mL	HNO3	HNO3		6010B TAL Metals/7470A Hg	APP			
MW- 1C	1	PE	125mL				3500 FE/ 9040B pH	APP			
MW- 1C	1	PE	250mL				6010B Dissolved Silica	APP			
MW- 1C	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP			
MW- 1C	1	AG	125mL				SM 5310 DOC	APP			
MW- 1C	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
MW- 1C	1	PE	500mL				2540C TDS	APP			
MW- 1C	1	PE	250mL				2320B Alkalinity	APP			
MW- 1C	1	AG	125mL	HCI			SM5310 TOC	APP			
REMARKS	s: Per SOP, p	oarameter	s stable pri	or to sample colle	ection. Water level st	abilized	prior to collecting pa	arameters.			
MATERIA	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)										
SAMPLIN	AMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)										

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-2A	SAMPLE ID: MW	′-2A	DATE: 3/5/2014

PURGING DATA

						i UNU	ING DA	17						
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/	' 4		L SCREEN IN TH (feet btoc)			STATIC TO WAT	DEPTH FER (feet btoc): r		PURGE PUMP TYPE OR BAILER: PP		
Tubing-in-S	Creen Interva	l Purge: 1 EQ =	UIPMENT VOI (0.0026 gallo						LENGTH) O gallon	+ FLOW CELL V s	OLUME			
	MP OR TUBINO /ELL (feet btoo		FINAL PUMP DEPTH IN W				PURGIN INITIATE	_	0848	PURGING ENDED AT:	0919		TOTAL VOLUME PURGED (gallor	_
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATI (fee	ER et	pH (standard units)	TEMP. (°C)	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBII (NTU		ORP (mV)	SP Gravity (sg)
0854	0.2	0.2	230	8.2	5	7.17	14.16	7	.617	27.9	7.5	8	-164.6	
0859	0.2	0.4	230	8.2	4	7.18	14.81	7	.705	17.3	6.9	9	-188.5	
0904	0.3	0.7	230	8.2	4	7.19	14.82	7	.743	13.2	n/a	а	-199.3	
0909	0.3	1.0	230	8.2	4	7.20	14.91	7	.766	9.4	7.1	4	-210.2	
0914	0.3	1.3	230	8.2	4	7.21	15.21	7	.806	8.0	7.6	64	-215.6	
0919	0.3	1.6	230	8.2	4	7.21	14.85	7	.828	6.7	7.5	54	-218.6	
TUBING INS BTOC = Be	SIDE DÌA. CAP	Per Foot): 0. ACITY (Gal./Fi	t.): 1/8" = 0.00 w top of casing	006;	3/16" : include	= 0.0014; es above grad	1/4" = 0.002	26;	5/16" = 0.	004; 3/8 " = 0.	5" = 1.02; 006; eristaltic P	1/2" =	= 0.010; 5/8"	= 5.88 = 0.016

SAMPLING DATA

SAMPLED Ken Stu	BY (PRINT) / A	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 0919	SAMPLIN 0945	NG ENDED AT:		
PUMP OR DEPTH IN	TUBING WELL (feet): 2	1.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> µm in Equipment Type: In-line filter				
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repl a	aced)	DUPLICATE:	No			
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
MW- 2A-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg APP				
MW- 2A-	1	PE	125mL				3500 FE/ 9040B pH	APP			
MW- 2A-	1	PE	250mL				6010B Dissolved Silica	APP			
MW- 2A-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP			
MW- 2A-	1	AG	125mL				SM 5310 DOC	APP			
MW- 2A-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
MW- 2A-	1	PE	500mL				2540C TDS	APP			
MW- 2A-	1	PE	250mL				2320B Alkalinity	APP			
MW- 2A-	1	AG	125mL	HCI			SM5310 TOC	APP			
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level s	tabilized	prior to collecting pa	arameters.	•		
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)											
SAMPLIN	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)										

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: ± 0.1 unit Specific Conductance: $\pm 5\%$ Dissolved Oxygen: all readings $\pm 10\%$ saturation; optionally, ± 0.2 mg/L Turbidity: all readings $\pm 10\%$ NTU; or $\pm 10\%$

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-2B	SAMPLE ID: MW	/-2B	DATE: 3/04/2014

PURGING DATA

					1 01/0	ING DA	17					
WELL		TUBING		W	ELL SCREEN I	NTERVAL		STATIC	DEPTH	PUI	RGE PUMP TYPE	
DIAMETER	(inches): 2	DIAMETI	ER (inches): 1/	4 DE	PTH (feet btoo	c): 34.5 to 39 .	.5	TO WAT	ΓER (feet btoc): 7	.94 OR	BAILER: PP	
Tubing-in-	Screen Interva	I Purge: 1 EQ			G CAPACITY 44 feet) + 0.13) + FLOW CELL V s	OLUME		
_	MP OR TUBING WELL (feet btoo	-	FINAL PUMF DEPTH IN W	-		PURGIN INITIATE		1537	PURGING ENDED AT:	1644	TOTAL VOLUMI PURGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)		SP Gravity (sg)
1544	0.3	0.3	350	8.04	6.25	19.04	6.	.281	11.7	11.2	-44.1	
1549	0.45	0.75	275	8.01	6.17	18.81	6.	.227	9.2	6.56	-45.0	
1554	0.5	1.25	275	8.01	6.15	18.41	6.	.216	8.8	6.42	-40.8	
1559	0.5	1.75	275	8.03	6.16	18.35	6.	.197	8.1	7.61	-41.4	
1604	0.5	2.25	275	8.03	6.16	18.49	6.	.200	7.4	4.90	-42.5	
1609	0.5	2.75	275	8.03	6.16	18.54	6.	.189	7.0	5.75	-42.0	
1614	0.5	3.25	275	8.03	6.17	18.54	6.	.190	6.4	6.26	-42.3	
1619	0.5	3.75	275	8.03	6.16	18.39	6.	.179	6.4	5.37	-42.3	
1624	0.5	4.25	275	8.03	6.16	18.57	6.	.184	5.7	4.66	-42.9	
1629	0.5	4.75	275	8.03	6.16	18.73	6.	.187	5.9	4.37	-43.5	
1634	0.5	5.25	275	8.03	6.17	18.42	6.	.184	5.1	4.47	-41.8	
1639	0.5	5.75	275	8.03	6.17	18.61	6.	.181	5.3	4.95	-43.0	
1644	0.5	6.25	275	8.03	6.17	18.55	6.	.171	5.1	4.19	-42.7	
TUBING IN	WELL CAPACITY (Gallons Per Foot): $0.75" = 0.02$; $1" = 0.04$; $1.25" = 0.06$; $2" = 0.16$; $3" = 0.37$; $4" = 0.65$; $5" = 1.02$; $6" = 1.47$; $12" = 5.88$ TUBING INSIDE DIA. CAPACITY (Gal./Ft.): $1/8" = 0.0006$; $3/16" = 0.0014$; $1/4" = 0.0026$; $5/16" = 0.004$; $3/8" = 0.006$; $1/2" = 0.010$; $5/8" = 0.016$ BTOC = Below top of casing – feet below top of casing which includes above grade riser											
PURGING I	EQUIPMENT C	ODES: B =	Bailer; B	P = Bladdei	Pump; E	SP = Electric	Subme	ersible Pu	mp; PP = Pe	ristaltic Pum	np; O = Other	(Specify)

SAMPLING DATA

SAMPLED Ken Stu	BY (PRINT) / A uart	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1644	SAMPLIN 1700	IG ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 3	5.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 0 n Equipment Type: In-li		SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repl a	iced)	DUPLICATE:	No	
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW-2B	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 2B-	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 2B-	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 2B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP	
MW- 2B-	1	AG	125mL				SM 5310 DOC	APP	
MW- 2B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 2B-	1	PE	500mL			1	2540C TDS	APP	
MW- 2B-	1	PE	250mL				2320B Alkalinity	APP	
MW- 2B-	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized _l	prior to collecting pa	arameters.	
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;

RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

NOTES: Stabilization Criteria for Pange of Variation of Last Three Consecutive Pendings: pH: + 0.1 upit Specific Conductance: + 5%

SITE NAME: LCP Chemical Site SITE LOCATION: Brunswick, GA
WELL NO: MW-2C SAMPLE ID: MW-2C DATE: 2/24/2014

PURGING DATA

					FUNG	IING DA	117						
WELL DIAMETER	(inches): 2	TUBING	ER (inches): 1/		ELL SCREEN II EPTH (feet btoc		2 75		DEPTH FER (feet btoc): \$			PUMP TYPE LER: PP	
	,		, ,		,	,	l l		,		IN DAI	LLIX. I I	
Tubing-in-S	Screen Interva		-	, -	IG CAPACITY 56 feet) + 0.13) + FLOW CELL \ s	/OLUME			
	MP OR TUBINO		FINAL PUMP DEPTH IN W			PURGIN INITIATE		1342	PURGING ENDED AT:	1403		OTAL VOLUM URGED (gallo	_
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBID (NTUs		ORP (mV)	SP Gravity (sg)
1346	0.1	0.1	120	10.35	6.53	23.04	50	0.53	5.1	54.2	2	-43.3	
1351	0.25	0.26	120	10.35	6.52	22.52	50	0.66	2.2	21.5	5	-132.3	
1356	0.20	0.46	120	10.35	6.49	22.62	50	0.95	2.0	21.7	7	-135.9	
1402	0.20	0.66	120	10.35	6.49	23.02	5′	1.34	1.8	19.9)	-138.0	
TUBING INS	SIDE DÌA. CAP	ACITY (Gal./F	t.): 1/8" = 0.0	006; 3/1	1.25 " = 0.06 6 " = 0.0014;	1/4" = 0.002		5" = 0.37; 5/16" = 0.	,	5" = 1.02; .006; 1/		,	7 = 5.88 7 = 0.016
	-				udes above gra		0 1	"" "	DD 2			• 0::	(0 '()
UKGING E	QUIPMENT C	DDE2: B	Bailer; B	P = Bladde	rPump; E	SP = Electric	Subme	ersible Pu	mp; PP = Pe	eristaltic Pu	ımp;	O = Other	(Specify)

SAMPLING DATA

Rick Bu						1	SAMPLING INITIATED AT: 1405	SAMPLIN 1438	1	
	R TUBING I WELL (feet): 5	1		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Equipment Type: In-li		. SIZE: <u>0.45</u> μm	
FIELD DE	CONTAMINATION	ON: PU	MP Y	No T	UBING Y No (repla	iced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 2C	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 2C	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 2C	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 2C	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
MW- 2C	1	AG	125mL				SM 5310 DOC	APP		
MW- 2C	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtere	
MW- 2C	1	PE	500mL				2540C TDS	APP		
MW- 2C	1	PE	250mL				2320B Alkalinity	APP		
MW- 2C	1	AG	125mL	HCI			SM5310 TOC	APP		

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

CG = Clear Glass;

MATERIAL CODES:

AG = Amber Glass;

PE = Polyethylene;

PP = Polypropylene;

S = Silicone;

T = Teflon;

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick , GA	
WELL NO: MW-3A	SAMPLE ID: MW	/-3A	DATE: 3/5/2014

PURGING DATA

PURGING DATA							1		
TUBING WELL SCREEN INTERVAL STATIC DEPTH PURGE PUMP TYPE	-	_				ED (in ab a a): 41		h\· 0	LL
DIAMETER (inches): 1/4 DEPTH (feet btoc): 18 to 23 TO WATER (feet btoc): 8.00 OR BAILER: PP	, ,	I		, ,				,	METER (in
ge: 1 EQUIPMENT VOL. = (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME = (0.0026 gallons/foot X 26 feet) + 0.13 gallons = 0.20 gallons	,						•	en Interval Pu	oing-in-Sc
FINAL PUMP OR TUBING DEPTH IN WELL (feet btoc): 21.5 PURGING INITIATED AT: 1018 PURGING ENDED AT: 1108 TOTAL VOLUME PURGED (gallons): 1.5						_	21.5	OR TUBING L (feet btoc): 2	_
DLUME PURGE TO PH (standard Indicated Indicate	OXYGEN TURI			(standard	TO WATER (feet	RATE	CUMUL. /OLUME PURGED (gallons)	OLUME VURGED P	
0.2 210 9.86 6.61 15.24 38.87 20.0 8.60 -191.3	87 20.0 8	38.8	15.24	6.61	9.86	210	0.2	0.2	023
0.3 110 9.99 6.61 15.12 39.19 11.4 14.1 -214.8	19 11.4 1	39.1	15.12	6.61	9.99	110	0.3	0.1	028
0.45 110 9.96 6.61 14.57 39.20 9.2 13.2 -220.8	20 9.2 1	39.2	14.57	6.61	9.96	110	0.45	0.15	033
0.6 110 9.98 6.60 14.20 39.18 7.8 16.3 -223.8	18 7.8 1	39.1	14.20	6.60	9.98	110	0.6	0.15	038
0.75 110 10.00 6.60 14.31 39.15 6.7 13.5 -227.6	15 6.7 1	39.1	14.31	6.60	10.00	110	0.75	0.15	043
0.9 110 10.04 6.60 14.07 39.03 6.1 12.9 -229.0	03 6.1 1	39.0	14.07	6.60	10.04	110	0.9	0.15	048
1.05 110 10.05 6.59 13.98 38.93 5.7 10.1 -230.0	93 5.7 1	38.9	13.98	6.59	10.05	110	1.05	0.15	053
1.2 110 10.07 6.59 14.15 38.71 5.1 9.65 -232.7	71 5.1 9	38.7	14.15	6.59	10.07	110	1.2	0.15	058
1.35 110 10.10 6.59 14.24 38.44 4.8 9.71 -234.2	44 4.8 9	38.4	14.24	6.59	10.10	110	1.35	0.15	103
1.5 110 10.09 6.58 14.19 38.16 4.3 8.34 -234.4	16 4.3 8	38.1	14.19	6.58	10.09	110	1.5	0.15	108
	16 4.3 8 = 0.37; 4 " = 0.65; 5 " = 1.0	38.1 6; 3 " =	14.19 2 " = 0.1 1/4 " = 0.002	6.58 1.25 " = 0.06; = 0.0014;	10.09 1" = 0.04; 06; 3/16 "	110 75" = 0.02; i.): 1/8" = 0.00	1.5 r Foot): 0. ITY (Gal./Ft	0.15 TY (Gallons Pe	108 LL CAPAC

Ken Stu	BY (PRINT) / A uart	FFILIATION:		SAMPLER(S) SIGN	SAMPLING INITIATED AT:1108		SAMPLING ENDED AT: 1150			
PUMP OR DEPTH IN	TUBING WELL (feet): 2	1.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45 µm</u> n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	N: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No		
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING EQUIPMENT CODE		Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD			Comments
MW- 3A-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	Al	PP	
MW- 3A-	3A- 1 PE 125mL pH APP									
MW- 3A-	MW- 1 PE 250ml 6010B Dissolved APP									
MW- 3A-	MW- 1 PE 125ml - 9251 Chloride & APP						PP			
MW- 3A-	1	AG	125mL				SM 5310 DOC	Al	PP	
MW- 3A-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	Al	PP	Field-Filtered
MW- 3A-	1	PE	500mL				2540C TDS	Al	PP	
MW- 3A-	1	PE	250mL				2320B Alkalinity	Al	PP	
MW- 3A-	1	AG	125mL	HCI		-	SM5310 TOC	Al	PP	
REMARKS	s: Per SOP,	oarameter	s stable pri	or to sample colle	ection. Water level st	abilized	prior to collecting pa	aramet	ers.	
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon;	0 = 0	Other (Specify)
SAMPLIN	G EQUIPMENT			eristaltic Pump; rse Flow Peristaltic Pu	B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Po Other (Sp		

SITE LOCATION: Brunswick, GA SITE NAME: LCP Chemical Site WELL NO: MW-105A SAMPLE ID: MW-105A DATE: 3/5/2014

PURGING DATA

				PURG	ING DA	IA						
WELL DIAMETER (inches): 2	TUBING DIAMET	ER (inches): 1/	well screen interval DEPTH (feet btoc): 1/4 DEPTH (feet btoc): 10.7 to 20.7				STATIC TO WAT	DEPTH ER (feet btoc): 7	_	PURGE PUMP TYPE OR BAILER: PP		
Tubing-in-Screen Interval		UIPMENT VOI (0.0026 gallo						+ FLOW CELL V	OLUME			
INITIAL PUMP OR TUBING DEPTH IN WELL (feet btoc)	: 15.5	FINAL PUMF DEPTH IN W	-		PURGIN INITIATE	_	0940	PURGING ENDED AT:	1010	TOTAL VOLUM PURGED (gallor	_	
TIME VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP.		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)	_	SP Gravity (sg)	
0945 0.2	0.2	170	7.46	6.03	16.63	0.	.483	n/a	5.87	-38.2		
0950 0.3	0.5	170	7.46	6.08	16.83	0.	.465	26.3	4.35	-33.8		
0955 0.3	0.8	170	7.46	5.95	16.69	0.	.457	12.2	3.60	-25.5		
1000 0.3	1.1	170	7.46	5.97	17.00	0.	.455	8.3	3.60	-34.3		
1005 0.3	1.4	170	7.46	5.99	17.11	0.	.454	7.1	4.52	-34.5		
1010 0.3	1.7	170	7.46	5.99	17.21	0.	.455	5.8	4.30	-43.9		
WELL CAPACITY (Gallons							3 " = 0.37;		5 " = 1.02;		= 5.88	
TUBING INSIDE DIA. CAPA BTOC = Below top of casi						26;	5/16" = 0.	004; 3/8" = 0.	006; 1/2	2" = 0.010; 5/8"	= 0.016	
PURGING EQUIPMENT CO	DES: B =	Bailer; B	P = Bladder	Pump; ES	P = Electric	Subme	ersible Pu	mp; PP = Pe	ristaltic Pun	np; O = Other	(Specify)	

SAMPLING DATA

					AMPLING DATA				
	BY (PRINT) / A Chuprikova			SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1015	SAMPL ~1050	ING ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 1	5.5		TUBING MATERIAL CODE:	Teflon-lined PE		ILTERED: Yes/SM 4500 n Equipment Type: In-li		R SIZE: <u>0.45</u> μ m
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repla	ced)	DUPLICATE:	No	
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 105A-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 105A-	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 105A-	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 105A-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP	
MW- 105A-	1	AG	125mL				SM 5310 DOC	APP	
MW- 105A-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 105A-	1	PE	500mL				2540C TDS	APP	
MW- 105A-	1	PE	250mL				2320B Alkalinity	APP	
MW- 105A-	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized _l	orior to collecting pa	arameters.	•
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP = F	Polypropyle	ne; S = Silicone; T	= Teflon; O =	Other (Specify)
SAMPLIN	G EQUIPMENT	CODES:			B = Bailer; BP = Bladde		ESP = Electric Subme	ersible Pump;	

SITE LOCATION: **Brunswick, GA** SITE NAME: LCP Chemical Site WELL NO: MW-105B SAMPLE ID: MW-105B DATE: 3/5/2014

PURGING DATA

					PURG	ING DA	IA					
WELL		TUBING			LL SCREEN IN				DEPTH		RGE PUMP TYPE	
DIAMETER	(inches): 2	DIAMET	ER (inches): 1	4 DE	PTH (feet btoc)	: 26.5 to 31	.5	TO WA	TER (feet btoc): 7	.53 OR	BAILER: PP	
Tubing-in-	Screen Interva				G CAPACITY 4 feet) + 0.13				+ FLOW CELL V s	OLUME		
	MP OR TUBING		FINAL PUMI DEPTH IN V			PURGIN INITIATI	-	0816	PURGING ENDED AT:	0855	TOTAL VOLUM PURGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)		SP Gravity (sg)
0820	0.2	0.2	150	7.61	6.62	17.01	1.	.090	42.3	7.73	-42.9	
0825	0.2	0.4	150	7.61	6.56	16.82	1.	.199	23.3	4.76	-67.4	
0830	0.2	0.6	150	7.61	6.53	17.48	1.	.173	13.6	3.95	-66.3	
0835	0.2	0.8	150	7.61	6.42	17.48	1.	.159	11.9	4.03	-60.4	
0840	0.2	1.0	150	7.61	6.45	17.66	1.	.160	10.4	3.94	-59.3	
0845	0.3	1.3	150	7.61	6.42	17.71	1.	.163	9.4	3.84	-53.7	
0850	0.2	1.5	150	7.61	6.42	17.79	1.	.167	8.8	3.37	-50.5	
0855	0.3	1.8	150	7.61	6.39	17.87	1.	.168	8.1	3.17	-50.6	
TUBING IN	PACITY (Gallons SIDE DIA. CAF elow top of cas	PACITY (Gal./F	t.): 1/8" = 0.0	006; 3/16	" = 0.0014;	1/4" = 0.002		5" = 0.37; 5/16" = 0.		<u> </u> 5" = 1.02; 006; 1/2		' = 5.88 ' = 0.016

PURGING EQUIPMENT CODES: O = Other (Specify) **B** = Bailer; **BP** = Bladder Pump; **ESP** = Electric Submersible Pump; PP = Peristaltic Pump;

CAMDLED(C) CICNATUDE(C)

SAMPLING DATA

	BY (PRINT) / A Chuprikova			SAMPLER(S) SIGN	NATURE(S):	SAMPLING INITIATED AT: 0900		SAMPLING ENDED AT: 0940		
PUMP OR DEPTH IN	TUBING WELL (feet): 2	7.65		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> µm n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repl a	aced)	DUPLICATE:	No		
SAM	PLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED		PLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD		PMENT DDE	Comments
MW- 105B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	AF	PP	
MW- 105B-	1	PE	125mL				3500 FE/ 9040B pH	AF	PP	
MW- 105B-	1	PE	250mL				6010B Dissolved Silica	AF	PP	
MW- 105B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	AF	PP	
MW- 105B-	1	AG	125mL				SM 5310 DOC	AF	PP	
MW- 105B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	AF	PP	Field-Filtered
MW- 105B-	1	PE	500mL				2540C TDS	AF	PP	
MW- 105B-	1	PE	250mL				2320B Alkalinity		PP	
MW- 105B-	1	AG	125mL	HCI			SM5310 TOC	AF	PP	
REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.										
MATERIA	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)									

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: **pH**: \pm 0.1 unit **Specific Conductance**: \pm 5% **Dissolved Oxygen**: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L **Turbidity**: all readings \leq 10 NTU; or \pm 10%

BP = Bladder Pump;

SM = Straw Method (Tubing Gravity Drain);

B = Bailer;

APP = After Peristaltic Pump;

RFPP = Reverse Flow Peristaltic Pump;

ESP = Electric Submersible Pump;

O = Other (Specify)

SAMPLING EQUIPMENT CODES:

SITE
NAME: LCP Chemical Site

WELL NO: MW-105C

SAMPLE ID: MW-105C

SITE
LOCATION: Brunswick, GA

DATE: 3/4/2014

PURGING DATA

	L. = (TUBING	9 feet) + 0.13	X TU gallons =	JBING LENGTH) 0.26 gallons	FER (feet btoc): 7 + FLOW CELL V S PURGING ENDED AT: DISSOLVED OXYGEN	OLUME 0942 TURBIDITY	TOTAL VOLUMI PURGED (gallor Y ORP	ns): ~2.5
= (0.0026 gall FINAL PUM DEPTH IN V MUL. LUME RGED RATE (gpm) 0.2 200	P OR TUBING VELL (feet bto DEPTH TO WATER (feet btoc)	9 feet) + 0.13 G oc): 44.8 PH (standard	gallons = PURGIN INITIATE TEMP.	: 0.26 gallons IG ED AT: 0907 SP COND.	PURGING ENDED AT:	0942 TURBIDIT	PURGED (gallor	ns): ~2.5
MUL. LUME PURGE RATE (lons) (gpm)	VELL (feet bto DEPTH TO WATER (feet btoc)	pH (standard	INITIATE	ED AT: 0907 SP COND.	ENDED AT:	TURBIDIT	PURGED (gallor	_
LUME PURGE RATE (gpm) 0.2 200	TO WATER (feet btoc)	(standard				_	Y ORP	SD Crossite
	7.98			, ,	(% saturation)	(NTUs)	(mV)	(sg)
0.6 200		7.51	19.89	5.796	41.1	27.8	67.9	
	n/a	6.71	20.42	6.558	27.2	35.3	-51.1	
1.0 200	7.95	6.62	20.42	6.703	13.4	5.55	-66.8	
.4 200	7.98	6.64	20.42	6.814	10.7	2.28	-64.3	
1.8 200	7.98	6.65	20.25	6.922	9.2	2.24	-54.4	
2.2 200	7.98	6.67	20.40	6.993	8.0	2.71	-46.9	
2.2 200	7.98	6.68	20.54	7.080	7.2	5.14	-48.4	1.01
	.8 200 .2 200 .2 200 .2 200 .2 100 .2 200 .2 200 .2 100 .2 100	.8 200 7.98 .2 200 7.98 .2 200 7.98 .2 200 7.98 .2 100 7.98 .2 200 7.98 .2 200 7.98 .2 200 7.98	.8 200 7.98 6.65 .2 200 7.98 6.67 .2 200 7.98 6.68 .2 200 7.98 6.68 .2 200 7.98 6.08 .2 200 7.98 6.08	.8 200 7.98 6.65 20.25 .2 200 7.98 6.67 20.40 .2 200 7.98 6.68 20.54 .2 200 7.98 6.68 20.54 .2 200 7.98 6.68 20.54 .2 200 7.98 6.68 20.054	.8 200 7.98 6.65 20.25 6.922 .2 200 7.98 6.67 20.40 6.993 .2 200 7.98 6.68 20.54 7.080 .2 200 7.98 6.68 20.54 7.080 .2 200 7.98 6.68 20.54 7.080 .2 200 7.98 6.68 20.54 7.080 .2 200 7.98 6.68 20.54 7.080 .2 500): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16"	.8 200 7.98 6.65 20.25 6.922 9.2 .2 200 7.98 6.67 20.40 6.993 8.0 .2 200 7.98 6.68 20.54 7.080 7.2 bot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5 (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.00006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.00006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.00006; 3/16" = 0.0014; 1/4" = 0.0026; 3/16" = 0.0014; 3/18"	.8 200 7.98 6.65 20.25 6.922 9.2 2.24 .2 200 7.98 6.67 20.40 6.993 8.0 2.71 .2 200 7.98 6.68 20.54 7.080 7.2 5.14 .2 200 7.98 6.68 20.54 7.080 7.2 5.14 .2 200 7.98 6.68 20.54 7.080 7.2 5.14 .2 200 7.98 6.68 20.54 7.080 7.2 5.14 .2 200 7.98 6.68 20.54 7.080 7.2 5.14	.8 200 7.98 6.65 20.25 6.922 9.2 2.24 -54.4 .2 200 7.98 6.67 20.40 6.993 8.0 2.71 -46.9 .2 200 7.98 6.68 20.54 7.080 7.2 5.14 -48.4 .2 200 7.98 6.68 20.54 7.080 7.2 5.14 -48.4 .2 200 7.98 6.68 20.54 7.080 7.2 5.14 -48.4 .2 200 7.98 6.68 20.54 7.080 7.2 5.14 -48.4 .2 200 7.98 6.68 20.54 7.080 7.2 5.14 -48.4

SAMPLING DATA

	D BY (PRINT) / A Chuprikova			SAMPLER(S) SIGN	IATURE(S):	SAMPLING INITIATED AT: 0945	SAM 0955	PLING ENDED AT:			
PUMP OR DEPTH IN	R TUBING I WELL (feet): 4	4.8		TUBING MATERIAL CODE:	Teflon-lined PE		-FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> μm on Equipment Type: In-line filter				
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repla	ced)	DUPLICATE:	No			
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLIN			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMEI CODE	Comments		
MW- 105C-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP			
MW- 105C-	1	PE	125mL				3500 FE/ 9040B pH	APP			
MW- 105C-	1	PE	250mL				6010B Dissolved Silica	APP			
MW- 105C-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP			
MW- 105C-	1	AG	125mL				SM 5310 DOC	APP			
MW- 105C-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
MW- 105C-	1	PE	500mL				2540C TDS	APP			
MW- 105C-	1	PE	250mL				2320B Alkalinity	APP			
MW- 105C-	1	AG	125mL	HCI			SM5310 TOC	APP			
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.										

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)

SAMPLING EQUIPMENT CODES:APP = After Peristaltic Pump;
B = Bailer;
BP = Bladder Pump;
BP = Bladder Pump;
BP = Bladder Pump;
BP = Electric Submersible Pump;
CP = Control of the Control

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: \pm 0.1 unit Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L Turbidity: all readings \leq 10 NTU; or \pm 10%

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-112C	SAMPLE ID: MW	'-112C	DATE: 2/28/2014

PURGING DATA

					1 01/0	ING DA	17					
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		WELL SCREEN II DEPTH (feet btoc)		.6	STATIC TO WAT	DEPTH TER (feet btoc): r	_	RGE PUMP TYPE BAILER: PP	
Tubing-in-	Screen Interva				ING CAPACITY 51 feet) + 0.13			LENGTH) 7 gallon	+ FLOW CELL V s	OLUME		
_	MP OR TUBING	-	FINAL PUMP DEPTH IN W	-		PURGIN INITIATE	-	1025	PURGING ENDED AT:	1110	TOTAL VOLUM PURGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTI TO WATE (feet btoc)	pН	TEMP.		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	ORP (mV)	SP Gravity (sg)
1037	0.5	0.5	200	6.42	11.23	18.07	3	9.69	n/a	10.9	-435.7	
1042	0.25	0.75	200	6.43	11.37	18.20	3	9.65	14.6	10.9	-473.2	
1047	0.25	1.0	200	6.44	11.37	18.15	3	9.58	8.3	11.1	-484.8	
1052	0.25	1.25	200	6.45	11.36	18.17	3	9.14	5.9	12.1	-488.2	
1057	0.25	1.5	200	6.46	11.35	18.35	3	9.22	4.8	12.9	-491.5	
1102	0.25	1.75	200	6.47	11.32	18.36	3	9.00	4.2	13.6	-494.0	
1107	0.25	2.0	200	6.48	11.29	18.50	3	8.75	3.7	14.1	-497.3	
TUBING IN	SIDE DÌA. CAF	PACITY (Gal./F	i.): 1/8" = 0.0	006; 3/	1.25" = 0.06 16" = 0.0014; cludes above grad	1/4" = 0.002	-,	3" = 0.37; 5/16" = 0.	,	,	- ,	= 5.88 = 0.016
PURGING E	QUIPMENT C	ODES: B =	Bailer; B	P = Bladd	er Pump; ES	P = Electric	Subme	ersible Pu	mp; PP = Pe	ristaltic Pum	p; $\mathbf{O} = \text{Other}$	(Specify)

SAMPLED Matt Ve	BY (PRINT) / A etter	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1110	SAMPL 1132	ING ENDED AT:	
PUMP OR DEPTH IN	TUBING WELL (feet): 4	9.6		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 n Equipment Type: In-li		R SIZE: <u>0.45</u> μm	
FIELD DE	CONTAMINATIO	ON: PUI	MP Y	No T	UBING Y No (repl a	aced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED			ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 112C-	1	PE	250mL	HNO3		6010B TAL Metals/7470A Hg	APP			
MW- 112C-	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 112C-	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 112C-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
MW- 112C-	1	AG	125mL				SM 5310 DOC	APP		
MW- 112C-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 112C-	1	PE	500mL				2540C TDS	APP		
MW- 112C-	1	PE	250mL				2320B Alkalinity	APP		
MW- 112C-	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	s: Per SOP, _I	parameter	s stable pri	or to sample coll	ection. Water level st	tabilized	prior to collecting pa	arameters.		
MATERIA	L CODES:	AG = Amber	Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)	
SAMPLIN	AMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)									

PURGING DATA

					PURG	ING DA	IA						
WELL DIAMETER	(inches): 2	TUBING DIAMETI	ER (inches): 1/		LL SCREEN IN PTH (feet btoc)		.2	STATIC TO WAT	DEPTH FER (feet btoc): n	/a		GE PUMP TYPE AILER: PP	
Tubing-in-	Screen Interva	Il Purge: 1 EQ =			G CAPACITY 9 feet) + 0.13				+ FLOW CELL V s	OLUME			
	MP OR TUBINO WELL (feet btoo	-	FINAL PUMP DEPTH IN W		-	PURGIN INITIATE	_	0903	PURGING ENDED AT:	0943		TOTAL VOLUME PURGED (gallor	_
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)		BIDITY 'Us)	ORP (mV)	SP Gravity (sg)
0908	0.25	0.25	250	8.75	9.09	18.71	51	1.06	9.1	23	3.6	-180.5	
0913	0.75	1.00	210	9.07	9.11	18.83	51	1.68	5.3	17	7.3	-222.8	1
0918	0.5	1.50	210	8.89	9.10	18.54	51	1.70	4.6	13	3.9	-229.6	
0923	0.5	2.00	210	8.76	9.10	18.28	51	1.70	3.5	10).5	-167.2	
0928	0.5	2.5	210	8.69	9.09	18.28	51	1.65	3.2	7.	51	-166.8	
0933	0.25	2.75	210	8.62	9.09	18.24	51	1.64	2.4	6.	30	-237.3	
0938	0.35	3.10	210	8.59	9.08	18.29	51	1.63	2.5	6.	80	-246.0	1
0943	0.25	3.35	210	8.57	9.08	18.30	51	1.62	2.5	5.	46	-247.1	
TUBING IN	SIDE DIA. CAF	s Per Foot): 0. PACITY (Gal./Ft sing – feet belo	.): 1/8" = 0.0	006; 3/16	" = 0.0014;	1/4" = 0.002		" = 0.37; 5/16" = 0.		5" = 1.02 006;		,	= 5.88 = 0.016

SAMPLING DATA

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

PURGING EQUIPMENT CODES:

B = Bailer;

BP = Bladder Pump;

SAMPLED Ken Stu	BY (PRINT) / A uart	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 0943	SAMPLI 1032	SAMPLING ENDED AT: 1032	
PUMP OR DEPTH IN	TUBING WELL (feet): 4	5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-li		R SIZE: <u>0.45</u> µm	
FIELD DE	CONTAMINATIO	DN: PUI	MP Y I	No T	UBING Y No (repl a	aced)	DUPLICATE:	Yes		
SAM	PLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 113C-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 113C-	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 113C-	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 113C-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
MW- 113C-	1	AG	125mL				SM 5310 DOC	APP		
MW- 113C-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 113C-	1	PE	500mL				2540C TDS	APP		
MW- 113C-	1	PE	250mL				2320B Alkalinity	APP		
MW- 113C-	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	s: Per SOP, p	oarameter	s stable pri	or to sample coll	ection. Water level st	tabilized	prior to collecting pa	arameters.		
MATERIA	L CODES:	AG = Amber	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)	
SAMPLIN	G EQUIPMENT			eristaltic Pump; rse Flow Peristaltic Pu	B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)		

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: -pH: ± 0.1 unit **Specific Conductance**: $\pm 5\%$ **Dissolved Oxygen**: all readings $\leq 10\%$ saturation; optionally, ± 0.2 mg/L **Turbidity**: all readings ≤ 10 NTU; or $\pm 10\%$

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick , GA	
WELL NO: MW-115A	SAMPLE ID: MW	/-115A	DATE: 3/4/2014

PURGING DATA

					FUNG	IING DA	1 🖰					
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/	4	WELL SCREEN I DEPTH (feet btoo		.5	_	DEPTH FER (feet btoc): 7	_	RGE PUMP TYPI BAILER: PP	≣
Tubing-in-S	Screen Interva				BING CAPACITY X 25 feet) + 0.13			LENGTH) O gallon	+ FLOW CELL \ s	OLUME		
	MP OR TUBINO	-	FINAL PUMP DEPTH IN W			PURGIN INITIATE	_	1219	PURGING ENDED AT:	1252	TOTAL VOLUM PURGED (galle	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (fee btoc	pH (standard t units)	TEMP.		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)		SP Gravity (sg)
1222	0.2	0.2	170	8.26	8.53	16.83	5	.877	134.0	6.71	-146.7	
1227	0.3	0.5	170	8.3	7.88	17.53	5	.357	22.9	7.24	-184.9	
1232	0.2	0.7	150	8.23	7.55	17.49	5	.067	10.7	6.30	-200.4	
1237	0.3	1.0	170	8.28	7.44	17.70	4	.914	7.4	6.48	-222.9	
1242	0.3	1.3	170	8.28	7.40	17.83	4	.851	5.5	6.70	-197.3	
1247	0.3	1.6	170	8.3	7.38	17.90	4	.843	4.5	7.50	-213.7	
1252	0.4	2.0	170	8.3	7.36	17.64	4	.828	4.1	7.34	-200.6	
TUBING INS BTOC = Be	SIDE DIA. CAF	PACITY (Gal./Fi sing – feet belo	.): 1/8" = 0.00 w top of casing	006; 3 which i	ncludes above gra	1/4" = 0.002 de riser	26;	5/16" = 0.	004; 3/8" = 0.		2" = 0.010; 5/8	" = 5.88 " = 0.016
PURGING E	QUIPMENT C	ODES: B =	Bailer; B l	P = Blad	der Pump; ES	SP = Electric	Submo	ersible Pu	mp; PP = Pe	ristaltic Pum	np; $\mathbf{O} = Othe$	r (Specify)

	,		:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1300	SAMPLIN 1307	IG ENDED AT:
		0		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-li		SIZE: <u>0.45</u> μ m
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No	
SAM	PLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	CODE CONTAINERS CODE VC		VOLUME	E PRESERVATIVE TOTAL VOL ADDED IN FIELD (mL)		FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 115A-	1	PE	250mL	HNO3		-	6010B TAL Metals/7470A Hg	APP	
MW- 115A-	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 115A-	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 115A-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP	
MW- 115A-	1	AG	125mL				SM 5310 DOC	APP	
MW- 115A-	2	PE	250mL	NaOH Zinc Acetate		-	SM4500 Sulfide	APP	Field-Filtered
MW- 115A-	1	PE	500mL			1	2540C TDS	APP	
MW- 115A-	1	PE	250mL		-	1	2320B Alkalinity	APP	
MW- 115A-	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS	s: Per SOP, _I	parameter	s stable pri	or to sample coll	ection. Water level st	abilized _l	prior to collecting pa	arameters.	
MATERIA	L CODES:	AG = Ambe	r Glass; CG	CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = C					Other (Specify)
SAMPLIN	G EQUIPMENT			After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)					

SITE					SI	ГЕ						
NAME: LC	P Chemical Sit	е		1	LO	CATION: Br	unswick, GA					
WELL NO:	MW-115B			SAMPLE	ID: MW-115	В			DATE: 3	3/4/201	4	
				•	PURG	ING DA	TA					
WELL		TUBING			L SCREEN I		STATIC				E PUMP TY	PE
DIAMETER	R (inches): 2	DIAMET	ER (inches): 1/4	4 DEF	TH(ft btoc): 3	33.2 to 35.2	TO WAT	ER (ft btoc): 7.4	5	OR BA	AILER: PP	
Tubing-in-	-Screen Interva	al purge: 1 EQI = \$	UIPMENT VOL. s (0.0026 gal) + FLOW CELL ns	VOLUME			
	IMP OR TUBIN WELL (ft btoc)	-	FINAL PUMP DEPTH IN W			PURGIN INITIATE	IG ED AT: 1343	PURGING ENDED AT	: 1413		FOTAL VOL PURGED (g	UME allons): ~2.0
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	(NIT	BIDITY 'Us)	ORP (mV)	SP Gravity (sg)
1348	0.2	0.2	200	7.53	6.74	18.22	4.365	27.7	8.	49	-107.5	5
1353	0.4	0.6	200	7.51	6.25	18.45	4.816	14.7	5.	45	-123.2	2
1358	0.4	1.0	180	7.51	6.16	18.09	4.840	7.4	6.	51	-141.3	3
1403	0.3	1.3	180	7.51	6.12	18.09	4.823	6.0	4.	69	-146.1	1
1408	0.3	1.6	180	7.52	6.11	18.29	4.793	5.3	4.	01	-153.4	1
1413	0.3	2.0	180	7.52	6.08	18.17	4.779	5.2	3.	83	-150.7	7
TUBING IN	ISIDE DÌA. CAI	s Per Foot): 0. PACITY (Gal./Fi sing – feet belo	t.): 1/8" = 0.00		= 0.0014;				5 " = 1.02 0.006;			12 " = 5.88 5/8 " = 0.016
PURGING	EQUIPMENT C	ODES: B	= Bailer; BF	P = Bladder F	Pump; E	SP = Electric	Submersible Po	ump; PP = F	Peristaltic	Pump;	O = Ot	her (Specify)
						LING DA	ATA					
	BY (PRINT) / A Chuprikova		S	AMPLER(S)	SIGNATURE	E(S):		SAMPLING INITIATED A	AT: 1415		SAMPLING ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet): 3	4.7	-	UBING IATERIAL C	ODE: Teflon -	-lined PE		D-FILTERED: \tion Equipment T				R SIZE: <u>0.45 μ</u> m
FIELD DEC	CONTAMINATIO	ON: PUMF	Y No		TUBING	Yes I	No (replaced)	DUPLICATE	<u>:</u>	N	lo	
SAMPLE ID CODE	PLE CONTAINE	ER SPECIFICAT		RESERVAT	IVE T	ESERVATION OTAL VOL	FINAL	INTENE ANALYSIS A METH	AND/OR	EQU	MPLING JIPMENT CODE	Additional Comments

	Chuprikova			SAMPLEN(S) SIGI	VATORE(S).		SAMPLING INITIATED AT: 1415	SAMPLIN ENDED	
PUMP OR DEPTH IN	TUBING WELL (feet): 3	4.7		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 45 n Equipment Type: In-li		ER SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PUI	MP Y	No T	UBING Yes No (r	eplaced)	DUPLICATE:	No	
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 115B	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP	
MW- 115B	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 115B	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 115B	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP	
MW- 115B	1	AG	125mL				SM 5310 DOC	APP	
MW- 115B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 115B	1	PE	500mL				2540C TDS	APP	
MW- 115B	1	PE	250mL			-	2320B Alkalinity	APP	
MW- 115B	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS	s: Per SOP, p	arameters	s stable pric	or to sample colle	ection.				
MATERIA	L CODES:	AG = Ambei	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP =	= Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)
SAMPLIN	G EQUIPMENT			After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)					

	~ -						
SITE NAME: LCP Chemical Sit	te		SITE LOCATION: Brunsv	vick, GA			
WELL NO: MW-115C		SAMPLE ID: MW	V-115C		DATE:	2/24/2014	
		PU	JRGING DATA	1			
WELL	TUBING	WELL SCRE	EEN INTERVAL	STATIC DEPTH		PURGE PUMP TYPE	

WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		WELL SCREEN IN DEPTH (feet btoc):		.9	STATIC TO WAT	DEPTH FER (feet btoc): 8		RGE PUMP TYPE BAILER: PP	
Tubing-in-	Screen Interva				SING CAPACITY (50 feet) + 0.13	X TU		,	+ FLOW CELL \	OLUME		
_	MP OR TUBING VELL (feet btoo		FINAL PUMP DEPTH IN W	-		PURGIN INITIATE		1504	PURGING ENDED AT:	1522	TOTAL VOLUM PURGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet btoc)	R pH (standard units)	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)		SP Gravity (sg)
1506	0.2	0.2	120	9.91	6.75	21.83	4	8.56	7.9	25.4	-141.4	
1511	0.25	0.27	120	9.91	6.65	21.84	4	9.02	3.6	18.6	-141.7	
1516	0.23	0.50	120	9.92	6.69	21.75	4	8.92	2.5	20.0	-139.8	
1521	0.23	0.73	120	9.91	6.68	21.78	4	8.69	1.8	20.4	-146.2	1.045
TUBING INS	SIDE DIA. CAP	PACITY (Gal./F	t.): 1/8" = 0.00	006; 3	4; 1.25 " = 0.06; /16 " = 0.0014; 1 ocludes above grad	1/4" = 0.002		3" = 0.37; 5/16" = 0.	,	5" = 1.02; .006; 1/2	- ,	= 5.88 = 0.016
	low top of cas					le riser P = Electric	Subme	ersible Pu	mp: PP = Pe	ristaltic Pum	np; O = Other	(Specify)

SAMPLING DATA

SAMPLED Rick Bu	BY (PRINT) / A utler	FFILIATION:		SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1525	SAMPLIN 1542	NG ENDED AT:			
PUMP OR DEPTH IN	TUBING WELL (feet): 4	5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 0 n Equipment Type: In-Ii		SIZE: <u>0.45</u> μm			
FIELD DE	CONTAMINATIO	DN: PUI	MP Y	No T	UBING Y No (repl a	aced)	DUPLICATE:	No				
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments			
MW- 115C-	APP											
MW- 115C-	MW- 115C- 1 PE 125mL 3500 FE/ 9040B APP											
MW- 115C-	MW- 1 DE 350ml 6010B Dissolved ADD											
MW- 115C-	1	PE	125mL			9251 Chloride & 9038 Sulfate	APP					
MW- 115C-	1	AG	125mL				SM 5310 DOC	APP				
MW- 115C-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered			
MW- 115C-	1	PE	500mL				2540C TDS	APP				
MW- 115C-	1	PE	250mL				2320B Alkalinity	APP				
MW- 115C-	1	AG	125mL	HCI			SM5310 TOC	APP				
REMARKS	s: Per SOP,	oarameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.				
MATERIA	L CODES:	AG = Ambei	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)			
SAMPLIN	G EQUIPMENT			eristaltic Pump; rse Flow Peristaltic Pu	B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)				

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-352A	SAMPLE ID: MW	-352A	DATE: 2/27/2014

PURGING DATA

					PURG	ING DA	IA						
WELL DIAMETER	(inches): 2	TUBING DIAMETI	ER (inches): 1/		ELL SCREEN I PTH (feet btoo		.8	-	DEPTH FER (feet btoc): 9		-	PUMP TYPE _ER: PP	
Tubing-in-	Screen Interva	Il Purge: 1 EQ		`	G CAPACITY 41 feet) + 0.13			,) + FLOW CELL V	OLUME			
	MP OR TUBING	-	FINAL PUMF DEPTH IN W	/ELL (feet b	-	PURGIN INITIATE	-	1228	PURGING ENDED AT:	1335		OTAL VOLUMI JRGED (gallor	_
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBID (NTUs		ORP (mV)	SP Gravity (sg)
1235	0.25	0.25	250	9.55	6.74	19.86	5.	.555	12.6	805		-84.4	
1240	0.25	0.5	250	9.60	6.75	20.34	5.	.714	11.2	580	ı	-114.9	
1245	0.25	0.75	250	9.60	6.63	20.92	5.	.318	9.5	101		-187.7	
1250	0.25	1.0	250	9.60	6.61	20.96	5.	.374	7.9	44.8	3	-187.1	
1255	0.25	1.25	250	9.60	6.59	21.03	5.	.586	7.0	28.1		-172.3	
1300	0.25	1.5	250	9.60	6.59	21.10	5.	.631	6.1	26.0)	-150.2	
1305	0.25	1.75	250	9.60	6.59	21.13	5.	709	5.8	22.3	3	-132.2	
1310	0.25	2.0	250	9.60	6.59	21.20	5.	.731	5.3	17.7	7	-125.2	
1315	0.25	2.25	250	9.60	6.59	21.17	5.	.742	5.1	29.0)	-129.0	
1320	0.25	2.50	250	9.60	6.59	21.17	5.	.741	4.8	22.6	6	-132.3	
1325	0.25	2.75	250	9.60	6.59	21.22	5.	.737	4.7	22.1		-131.9	
1330	0.25	3.0	250	9.60	6.59	21.22	5.	.725	4.2	16.1		-130.5	
1335	0.25	3.25	250	9.60	6.58	21.75	5.	.720	4.2	16.8	3	-128.3	
TUBING IN BTOC = B	SIDE DIA. CAR	s Per Foot): 0. PACITY (Gal./Ft sing – feet belo	.): 1/8" = 0.00 w top of casing	g which inclu	6" = 0.0014; udes above gra	1/4" = 0.002 ide riser	26;	" = 0.37; 5/16" = 0.	.004; 3/8" = 0.		/2" = 0).010; 5/8"	= 5.88 = 0.016
PURGING	EQUIPMENT C	ODES: B=	Bailer; B	P = Bladder	rump; E	SP = Electric	Subme	ersible Pu	mp; PP = Pe	ristaltic Pu	ımp;	O = Other	(Specity)

SAMPLING DATA

OMBIERO DATA												
Matt Ve) BY (PRINT) / A etter	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1338	SAMPLII 1400	NG ENDED AT:			
PUMP OR DEPTH IN	TUBING WELL (feet): 3	6		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-Ii		SIZE: <u>0.45</u> μm			
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repla	ced)	DUPLICATE:	No				
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments			
MW- 352A-	1 DE 250ml HNO3 300 ADD											
MW- 352A-	MW- 1 PE 125ml 3500 FE/ 9040B APP											
MW- 352A-	1	PE	250mL				6010B Dissolved Silica					
MW- 352A-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP				
MW- 352A-	1	AG	125mL				SM 5310 DOC	APP				
MW- 352A-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered			
MW- 352A-	1	PE	500mL	-			2540C TDS	APP				
MW- 352A-	1	PE	250mL	1			2320B Alkalinity	APP				
MW- 352A-	1	AG	125mL	HCI			SM5310 TOC	APP				
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized _l	prior to collecting pa	arameters.				
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP = F	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)			

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: **pH**: \pm 0.1 unit **Specific Conductance**: \pm 5% **Dissolved Oxygen**: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L **Turbidity**: all readings \leq 10 NTU; or \pm 10%

BP = Bladder Pump;

SM = Straw Method (Tubing Gravity Drain);

ESP = Electric Submersible Pump;

O = Other (Specify)

B = Bailer;

APP = After Peristaltic Pump;

RFPP = Reverse Flow Peristaltic Pump;

SAMPLING EQUIPMENT CODES:

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-352B	SAMPLE ID: MW	′-352B	DATE: 2/27/2014

PURGING DATA

IIME PURGED (gallons) PURGED (gallons) RATE (gpm) WATER (feet bloc) (standard units) (°C) (mS/cm) OXYGEN (% saturation) (NTUs) (mV) 1053 0.5 0.5 230 10.54 12.82 18.95 38.72 8.6 6.88 -280.0 1058 0.25 0.75 230 10.54 12.87 19.01 40.82 5.8 4.58 -302.2 1103 0.25 1.00 230 10.54 12.87 19.55 41.67 5.6 4.44 -316.6 1108 0.25 1.25 230 10.54 12.88 19.66 42.00 5.8 3.64 -326.3 1113 0.25 1.75 230 10.54 12.89 19.47 42.16 5.6 3.33 -329.6						PURG	ING DA	IA					
NITIAL PUMP OR TUBING DEPTH IN WELL (feet bloc): 52.5 FINAL PUMP OR TUBING DEPTH IN WELL (feet bloc): 52.5 DEPTH IN WELL (feet bloc)		(inches): 2			/4			.5				 	
DEPTH IN WELL (feet bloc): 52.5 DEPTH IN WELL (feet bloc): 52.5 INITIATED AT: 1044 ENDED AT: 1113 PURGED (gallons)	Tubing-in-	Screen Interva									OLUME		
TIME VOLUME PURGED (gallons)			-					-	1044		1113	 	_
1058 0.25 0.75 230 10.54 12.87 19.01 40.82 5.8 4.58 -302.2 1103 0.25 1.00 230 10.54 12.87 19.55 41.67 5.6 4.44 -316.6 1108 0.25 1.25 230 10.54 12.88 19.66 42.00 5.8 3.64 -326.3 1113 0.25 1.75 230 10.54 12.89 19.47 42.16 5.6 3.33 -329.6	TIME	PURGED	VOLUME PURGED	RATE	TO WATE (fee	pH (standard units)		_		OXYGEN		 	SP Gravity (sg)
1103 0.25 1.00 230 10.54 12.87 19.55 41.67 5.6 4.44 -316.6 1108 0.25 1.25 230 10.54 12.88 19.66 42.00 5.8 3.64 -326.3 1113 0.25 1.75 230 10.54 12.89 19.47 42.16 5.6 3.33 -329.6	1053	0.5	0.5	230	10.5	4 12.82	18.95	3	8.72	8.6	6.88	-280.0	
1108 0.25 1.25 230 10.54 12.88 19.66 42.00 5.8 3.64 -326.3 1113 0.25 1.75 230 10.54 12.89 19.47 42.16 5.6 3.33 -329.6	1058	0.25	0.75	230	10.5	4 12.87	19.01	4	0.82	5.8	4.58	-302.2	
1113 0.25 1.75 230 10.54 12.89 19.47 42.16 5.6 3.33 -329.6	1103	0.25	1.00	230	10.5	4 12.87	19.55	4	1.67	5.6	4.44	-316.6	
	1108	0.25	1.25	230	10.5	4 12.88	19.66	4	2.00	5.8	3.64	-326.3	
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02: 1" = 0.04: 1.25" = 0.06: 2" = 0.16: 3" = 0.37: 4" = 0.65: 5" = 1.02: 6" = 1.47: 12" = 0.06: 2" = 0.16: 3" = 0.37: 4" = 0.65: 5" = 1.02: 6" = 1.47: 12" = 0.06: 2"	1113	0.25	1.75	230	10.5	4 12.89	19.47	4	2.16	5.6	3.33	-329.6	
WELL CAPACITY (Gallons Per Foot): 0.75" - 0.02: 1" - 0.04: 1.25" - 0.06: 2" - 0.16: 3" - 0.37: 4" - 0.65: 5" - 1.02: 6" - 1.47: 12" -													
	TUBING IN	SIDE DÍA. CAF	PACITY (Gal./F	t.): 1/8" = 0.0	006; 3	3/16" = 0.0014;	1/4" = 0.002		,	,	5" = 1.02; 006; 1/2	,	= 5.88 = 0.016

SAMPLED Matt Ve	BY (PRINT) / A etter	FFILIATION:		SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1115	SAMPLIN 1135	SAMPLING ENDED AT: 1135			
PUMP OR DEPTH IN	TUBING WELL (feet): 5	2.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-li		SIZE: <u>0.45</u> μm			
FIELD DE	CONTAMINATIO	ON: PUI	MP Y	No T	UBING Y No (repl a	aced)	DUPLICATE:	No				
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments			
MW- 352B-	1	PE	250mL	HNO3 Meta		6010B TAL Metals/7470A Hg	APP					
MW- 352B-	MW- 1 DE 125ml 3500 FE/ 9040B ADD											
MW- 352B- 1 PE 250mL G010B Dissolved APP												
MW- 352B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP				
MW- 352B-	1	AG	125mL				SM 5310 DOC	APP				
MW- 352B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered			
MW- 352B-	1	PE	500mL				2540C TDS	APP				
MW- 352B-	1	PE	250mL		1		2320B Alkalinity	APP				
MW- 352B-	1	AG	125mL	HCI			SM5310 TOC	APP				
REMARKS	EMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.											
MATERIA	L CODES:	AG = Amber	Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)			
SAMPLIN	G EQUIPMENT			reristaltic Pump; rse Flow Peristaltic Pu	B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)				

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-353B	SAMPLE ID: MW	'-353B	DATE: 3/4/2014

PURGING DATA

					1 01/0	ING DA	חו						
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/	l l	VELL SCREEN IN DEPTH (feet btoc)		.5	STATIC TO WAT	DEPTH TER (feet btoc): 7		-	PUMP TYPE ILER: PP	
Tubing-in-S	Screen Interva				NG CAPACITY 48 feet) + 0.13			LENGTH) 5 gallon	+ FLOW CELL \	OLUME			
_	MP OR TUBINO	-	FINAL PUMP DEPTH IN W	-		PURGIN INITIATE	_	1021	PURGING ENDED AT:	1049		OTAL VOLUMI URGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	рН	TEMP.		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBID (NTUs		ORP (mV)	SP Gravity (sg)
1023	0.2	0.2	180	7.25	8.98	19.45	3	4.07	33.9	7.67	•	-330.3	
1028	0.4	0.6	200	7.3	9.61	19.52	3	7.88	10.0	7.54		-389.1	
1033	0.4	1.0	200	7.3	9.67	19.65	3	7.59	6.5	6.82		-409.2	
1038	0.4	1.4	200	7.3	9.69	19.77	3	7.45	4.8	7.76		-402.2	
1043	0.4	1.8	200	7.3	9.70	19.77	3	7.44	4.1	7.72	!	-377.0	
1048	0.4	2.2	200	7.3	9.70	19.75	3	7.44	3.4	7.72	!	-436.2	
TUBING INS	SIDE DÌA. CAF	PACITY (Gal./F	i.): 1/8" = 0.0	006; 3/	; 1.25 " = 0.06 16 " = 0.0014; cludes above grad	1/4" = 0.002	-,	3" = 0.37; 5/16" = 0.	,	5" = 1.02; .006; 1/		,	= 5.88 = 0.016
PURGING E	QUIPMENT C	ODES: B =	Bailer; B	P = Bladd	er Pump; ES	P = Electric	Subme	ersible Pu	mp; PP = Pe	ristaltic Pu	mp;	O = Other	(Specify)

	BY (PRINT) / A Chuprikova	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1050	SAMPLII 1120	SAMPLING ENDED AT: 1120			
PUMP OR DEPTH IN	TUBING WELL (feet): 4	3		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 n Equipment Type: In-l i		R SIZE: <u>0.45</u> μm			
FIELD DE	CONTAMINATIO	DN: PUI	MP Y	No T	UBING Y No (repl a	aced)	DUPLICATE:	No				
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments			
MW- 353B-	353B- 1 PE 250mL HNO3 Metals/7470A Hg APP											
MW- 353B-	353B- 1 PE 125ML PH APP											
MW- 353B-	MW- 1 PE 250ml 6010B Dissolved APP											
MW- 353B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP				
MW- 353B-	1	AG	125mL				SM 5310 DOC	APP				
MW- 353B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered			
MW- 353B-	1	PE	500mL				2540C TDS	APP				
MW- 353B-	1	PE	250mL				2320B Alkalinity	APP				
MW- 353B-	1	AG	125mL	HCI			SM5310 TOC	APP				
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.											
MATERIA	L CODES:	AG = Ambei	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)			
SAMPLIN	G EQUIPMENT			eristaltic Pump; rse Flow Peristaltic Pu	B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)				

GROUNDWATER SAMPLING LOG SITE LOCATION: Brunswick, GA NAME: LCP Chemical Site SAMPLE ID: MW-357A DATE: 3/3/2014 WELL NO: MW-357A **PURGING DATA TUBING** WELL SCREEN INTERVAL STATIC DEPTH PURGE PUMP TYPE WELL DIAMETER (inches): 2 DIAMETER (inches): 1/4 DEPTH (feet btoc) 41.3 to 42.8 TO WATER (feet btoc): 6.84 OR BAILER: PP Tubing-in-Screen Interval Purge: 1 EQUIPMENT VOL. = (TUBING CAPACITY TUBING LENGTH) + FLOW CELL VOLUME = (0.0026 gallons/foot X 47 feet) + 0.13 gallons = 0.25 gallons INITIAL PUMP OR TUBING FINAL PUMP OR TUBING TOTAL VOLUME PURGING PURGING DEPTH IN WELL (feet btoc): 41.5 DEPTH IN WELL (feet btoc): 41.5 INITIATED AT: 1151 ENDED AT: 1528 PURGED (gallons): DEPTH CUMUL. TO рΗ DISSOLVED VOLUME **PURGE** SP COND. **TURBIDITY** SP Gravity VOLUME TEMP. ORP WATER TIME (standard OXYGEN **PURGED PURGED RATE** (°C) (mS/cm) (NTUs) (mV) (sq) (feet units) (% saturation) (gallons) (gpm) (gallons) btoc) 125 9.98 6.45 22.30 11.53 20.7 12.6 -177.1 1156 0.2 0.2 11.7 1201 0.2 0.4 125 11.29 6.45 22.47 11.52 20.9 -194.9 1206 0.3 0.7 125 11.77 6.45 22.55 11.51 21.0 12.2 -199.3 20.9 1211 0.3 1.0 125 12.70 6.48 22.58 11.53 13.0 -210.9Drawdown exceeds 3 feet. Start Contingent Purge Method, purge to 1 foot above the top of the saturated screen interval (about 5 well volumes = 25.7 gallons). Do not want to purge the well dry so sample was collected although parameters were not stable. 1 Well Volume = (Total Depth - Water Level) * 0.16 $5.14 \text{ gallons} = 39 \text{ feet} - 6.84 \times 0.16$ 5.14 gallons x 5 = 25.7 gallons 1528 n/a n/a 180 17.4 6.54 22.93 11.29 12.2 18.8 -40.5**WELL CAPACITY** (Gallons Per Foot): **0.75**" = 0.02; 1" = 0.04;**1.25**" = 0.06; **2**" = 0.16; 3" = 0.37: 4" = 0.65; **5**" = 1.02; **6**" = 1.47; **12**" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; **1/4"** = 0.0026; **5/16"** = 0.004: 3/8" = 0.006: **1/2"** = 0.010: 5/8" = 0.016BTOC = Below top of casing - feet below top of casing which includes above grade riser **PURGING EQUIPMENT CODES: B** = Bailer: **BP** = Bladder Pump: **ESP** = Electric Submersible Pump; **PP** = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLER(S) SIGNATURE(S): SAMPLED BY (PRINT) / AFFILIATION: SAMPLING SAMPLING ENDED AT: Ken Stuart INITIATED AT: 1530 PUMP OR TUBING TURING FIELD-FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 µm DEPTH IN WELL (feet): 41.5 MATERIAL CODE: Teflon-lined PE Filtration Equipment Type: In-line filter FIELD DECONTAMINATION: **PUMP TUBING** No (replaced) DUPLICATE: No No SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION INTENDED SAMPLING Additional ANALYSIS AND/OR **EQUIPMENT PRESERVATIVE** SAMPLE MATERIAL TOTAL VOL FINAL Comments **VOLUME METHOD** CODE ID CODE CONTAINERS ADDED IN FIELD (mL) CODE USED nΗ MW-6010B TAL PF HNO3 APP 1 250mL --Metals/7470A Hg 357A-MW-3500 FE/ 9040B 1 PF 125mL APP 357A-Hq 6010B Dissolved MW-1 PF 250mL APP 357A-Silica MW-9251 Chloride & 1 PF 125mL APP 357A-9038 Sulfate MW-1 AG 125mL SM 5310 DOC APP 357A MW-NaOH 2 PΕ SM4500 Sulfide Field-Filtered 250mL APP 357A-Zinc Acetate MW-APP ΡF 2540C TDS 1 500ml __ --357A-MW-ΡF 250mL APP 1 --__ --2320B Alkalinity 357A-MW-1 AG 125mL HCI **SM5310 TOC** APP 357A-REMARKS: Per SOP, parameters stable prior to sample collection. Water level could not stabilize and pump purged as low as it can go. MATERIAL CODES AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; **PP** = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) **APP** = After Peristaltic Pump; SAMPLING EQUIPMENT CODES: **B** = Bailer; **BP** = Bladder Pump; **ESP** = Electric Submersible Pump: **RFPP** = Reverse Flow Peristaltic Pump; **SM** = Straw Method (Tubing Gravity Drain); O = Other (Specify)

SITE NAME: LCP Chemical Site LOCATION: Brunswick, GA WELL NO: MW-357B SAMPLE ID: MW-357B DATE: 3/03/2014

PURGING DATA

	FORGING DATA											
WELL		TUBING		١	WELL SCREEN I	NTERVAL		STATIC	DEPTH	PUF	RGE PUMP TYPE	
DIAMETER	(inches): 2	DIAMETI	ER (inches): 1/	4 1	DEPTH (feet btoo): 48.7 to 50	.7	TO WAT	ΓER (feet btoc): 6	. 15 OR	BAILER: PP	
Tubing-in-	Screen Interva				ING CAPACITY		_	- /	+ FLOW CELL V	OLUME		
					50 feet) + 0.13			gallon			T = = = = : : : : : : : : : : : : : : :	_
	MP OR TUBIN	-	FINAL PUMF DEPTH IN W			PURGIN INITIATI		1401	PURGING ENDED AT:	1522	TOTAL VOLUM PURGED (gallo	
DEFININ	VELL (leet bloc	,	JEFININ W	DEPTI		IINITIATI	ED AT.	1401	ENDED AT.	1333	PURGED (gallo	115). 2.3
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATE (feet btoc)	pН	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)		SP Gravity (sg)
1406	n/a	n/a	275	8.99	8.62	22.05	1.	.775	14.0	7.71	-171.6	
1413	n/a	n/a	275	11.15	6.98	21.78	0	.572	8.4	n/a	-122.9	
1418	n/a	n/a	125	11.53	7.08	22.00	1.	.085	7.6	3.88	-109.2	
1423	n/a	n/a	125	11.76	7.35	22.01	1.	.793	7.1	2.35	-139.2	
1428	n/a	n/a	125	11.85	7.53	22.04	2	.316	6.7	2.37	-152.4	
1433	n/a	n/a	125	11.97	7.83	21.94	3	.081	5.7	1.88	-167.9	
1438	n/a	n/a	125	12.02	8.16	22.06	4	.183	4.3	1.99	-180.9	
1443	n/a	n/a	125	12.06	8.27	22.07	4	.697	3.6	2.25	-188.3	
1448	n/a	n/a	125	12.20	8.42	22.13	5	.963	2.9	2.51	-202.7	
1453	n/a	n/a	125	12.22	8.52	22.11	5	.956	2.8	2.73	-214.7	
1458	n/a	n/a	125	12.23	8.61	22.08	6	.338	2.6	3.28	-223.5	
1503	n/a	n/a	125	12.28	8.68	22.16	6	.839	2.5	3.75	-236.8	
1508	n/a	n/a	125	12.32	8.72	22.19	7.	.287	2.3	3.68	-247.6	
1513	n/a	n/a	125	12.31	8.76	22.19	7.	.524	2.3	4.09	-253.6	
1518	n/a	n/a	125	12.31	8.79	22.04	7.	.778	2.3	n/a	-262.0	
1523	n/a	n/a	125	12.29	8.80	21.98	8	.042	2.3	4.32	-268.7	
1528	n/a	n/a	125	12.20	8.81	22.07	8	.240	2.3	4.01	-273.1	
1533	1533 n/a n/a 125 12.11 8.82 22.14 8.439 2.2 4.04 -275.4											
TUBING IN	SIDE DÌA. CAF		i.): 1/8" = 0.0		4; 1.25 " = 0.06 /16" = 0.0014; cludes above gra	1/4" = 0.002		3" = 0.37; 5/16" = 0.				' = 5.88 ' = 0.016
PURGING I	PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)											
					CVMD	ING DA	ΛΤΛ					

EAMPLING DATA

SAMPLED Ken Stu	BY (PRINT) / A	FFILIATION	:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1533	SAMPLIN n/a	NG ENDED AT:
PUMP OR		0		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 n Equipment Type: In-l i	0 Sulfide FILTER	SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repla	iced)	DUPLICATE:	Yes	
SAM	PLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 357B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 357B-	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 357B-	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 357B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP	
MW- 357B-	1	AG	125mL				SM 5310 DOC	APP	
MW- 357B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 357B-	1	PE	500mL				2540C TDS	APP	
MW- 357B-	1	PE	250mL				2320B Alkalinity	APP	
MW- 357B-	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS	e: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized _l	orior to collecting pa	arameters.	
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP = I	Polypropyle	ne; S = Silicone; T	= Teflon; O = 0	Other (Specify)

RFPP = Reverse Flow Peristaltic Pump; NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: pH: ± 0.1 unit Specific Conductance: ± 5% Dissolved Oxygen: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L Turbidity: all readings \leq 10 NTU; or \pm 10%

B = Bailer;

APP = After Peristaltic Pump;

SAMPLING EQUIPMENT CODES:

BP = Bladder Pump;

SM = Straw Method (Tubing Gravity Drain);

ESP = Electric Submersible Pump;

SITE		SITE	
NAME: LCP Chemical Site		LOCATION: Brunswick, GA	
WELL NO: MW-358B	SAMPLE ID: MW	-358B	DATE: 2/28/2014

PURGING DATA

WELL		TUBING		١ ١	WELL SCREEN I	NTERVAL	IA	STATIC	DEPTH	PL	JRGE	PUMP TYPE	
DIAMETER	(inches): 2	DIAMET	ER (inches): 1/	4 [DEPTH (feet btoc): 39.5 to 41 .	.5	TO WA	ΓER (feet btoc): 5	5.93 OF	R BAIL	ER: PP	
Tubing-in-	Screen Interva				ING CAPACITY 45.7 feet) + 0.1			LENGTH 25 gall) + FLOW CELL \ ons	OLUME			
				OR TUE	BING btoc): 40.7	PURGIN INITIATE	_	0854	PURGING ENDED AT:	0934		TAL VOLUM JRGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATE (feet btoc)	pН	TEMP. (^O C)	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs		ORP (mV)	SP Gravit (sg)
0905	0.3	0.3	200	6.15	11.20	17.40	3	1.24	11.6	109		-406.2	
0910	0.25	0.55	200	6.16	11.21	17.51	3	1.42	8.4	45		-440.4	
0915	0.25	0.8	200	6.18	11.15	17.44	3	1.56	6.9	37.6		-434.6	
0920	0.25	1.05	200	6.21	11.12	17.54	3	1.63	6.1	14.7		-438.9	
0925	0.25	1.3	200	6.23	11.10	17.30	3	1.66	5.5	7.93		-441.9	
0930	0.25	1.55	200	6.27	11.07	17.31	3	1.71	5.1	7.56		-443.3	
TUBING IN BTOC = Be	SIDE DÌA. CAP	PACITY (Gal./Fi sing – feet belo	t.): 1/8" = 0.00 w top of casing	006; 3/	1.25" = 0.06 16" = 0.0014; cludes above gra	1/4" = 0.002	26;	5/16" = 0	.004; 3/8" = 0.	5" = 1.02; 006; 1/3	2" = 0	,	= 5.88 = 0.016

SAMPLED Matt Ve	D BY (PRINT) / A etter	FFILIATION:	:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 0934	SAMPLIN 0958	IG ENDED AT:	
PUMP OR DEPTH IN	R TUBING I WELL (feet): 4	0.7		TUBING MATERIAL CODE:	Teflon-lined PE		- D-FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> μm ion Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repl a	DUPLICATE:	No			
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE TOTAL VOL FIN USED ADDED IN FIELD (mL) p			ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 358B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 358B-	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 358B-	1	PE	250mL				6010B Dissolved APP			
MW- 358B-	1	PE	125mL				9251 Chloride & APP 9038 Sulfate			
MW- 358B-	1	AG	125mL			1	SM 5310 DOC	APP		
MW- 358B-	2	PE	250mL	NaOH Zinc Acetate	-	1	SM4500 Sulfide	APP	Field-Filtered	
MW- 358B-	1	PE	500mL			1	2540C TDS	APP		
MW- 358B-	1	PE	250mL				2320B Alkalinity	APP		
MW- 358B-	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARK	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized _l	prior to collecting pa	arameters.		
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)										
SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;										

PURGING DATA

NUMBETER (inches): 2					
Tubing-in-Screen Interval Purge: 1 EQUIPMENT VOL. = (TUBING CAPACITY = (0.0026 gallons/foot X 35 feet) + 0.13 gallons = 0.23 gallons INITIAL PUMP OR TUBING DEPTH IN WELL (feet bloc): 30 FINAL PUMP OR TUBING DE		R (inches): 2			
DEPTH IN WELL (feet bloc): 30 DEPTH IN WELL (feet bloc): 30 INITIATED AT: 0936 ENDED AT: 1007 PURGED (gallons): 1.3 TIME VOLUME PURGED (gallons) CUMUL. VOLUME PURGED (gallons) PURGE RATE (feet bloc): 10 WATER (feet bloc): 10		,			
TIME VOLUME PURGED (gallons) VOLUME PURGED (gallons) PURGE (feet bloc) TO WATER (feet bloc) PH (standard units) TEMP. (°C) SP COND. (mS/cm) DISSOLVED OXYGEN (% saturation) TURBIDITY (NTUs) ORP (mV) SP COND. (mS/cm) 0943 0.5 0.5 230 7.11 5.84 18.72 0.821 21.3 4.47 -20.7 0948 0.25 0.75 230 7.11 5.77 19.31 0.831 13.6 8.96 -32.6 0953 0.25 1.0 230 7.11 5.75 19.51 0.837 10.4 3.0 -38.9 0958 0.25 1.25 230 7.11 5.73 19.52 0.844 8.9 3.51 -40.0					
0948 0.25 0.75 230 7.11 5.77 19.31 0.831 13.6 8.96 -32.6 0953 0.25 1.0 230 7.11 5.75 19.51 0.837 10.4 3.0 -38.9 0958 0.25 1.25 230 7.11 5.73 19.52 0.844 8.9 3.51 -40.0	TIME VOLUME VOLUME PURGED PURGE				
0953 0.25 1.0 230 7.11 5.75 19.51 0.837 10.4 3.0 -38.9 0958 0.25 1.25 230 7.11 5.73 19.52 0.844 8.9 3.51 -40.0	0943	0.5			
0958 0.25 1.25 230 7.11 5.73 19.52 0.844 8.9 3.51 -40.0	0948	0.25			
	0953	0.25			
1003 0.25 1.5 230 7.11 5.71 19.33 0.845 8.1 5.05 -43.8	0958	0.25			
1000 0.20 1.0 200 7.11 0.71 10.00 0.040 0.1 0.00 40.0	1003	0.25			
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.01 BTOC = Below top of casing – feet below top of casing which includes above grade riser	TUBING IN	ISIDE DÍA. CAP			
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Special					

SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING ENDED AT:											
Matt Ve	,	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1007	SAMPLIN 1021	IG ENDED AT:		
PUMP OR DEPTH IN	TUBING WELL (feet): 3	0		TUBING MATERIAL CODE:	Teflon-lined PE	FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 µm in Equipment Type: In-line filter					
FIELD DE	CONTAMINATIO	DN: PU	MP Y I	No T	UBING Y No (repla	DUPLICATE:	No				
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION	INTENDED	SAMPLING	Additional			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE TOTAL VOL FINAL USED ADDED IN FIELD (mL) pH		ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments			
MW- 501A-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP			
MW- 501A-	1	PE	125mL				3500 FE/ 9040B pH	APP			
MW- 501A-	1	PE	250mL				6010B Dissolved Silica	APP			
MW- 501A-	1	PE	125mL				9251Chloride & 9038 Sulfate	APP			
MW- 501A-	1	AG	125mL				SM 5310 DOC	APP			
MW- 501A-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
MW- 501A-	1	PE	500mL				2540C TDS	APP			
MW- 501A-	1	PE	250mL				2320B Alkalinity	APP			
MW- 501A-	1	AG	125mL	HCI			SM5310 TOC	APP			
REMARKS	s: Per SOP, _I	oarameter	s stable pri	or to sample coll	ection. Water level st	tabilized	prior to collecting pa	arameters.			
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)											
SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)											

SITE
NAME: LCP Chemical Site

WELL NO: MW-501B

SAMPLE ID: MW-501B

SITE
LOCATION: Brunswick, GA

DATE: 2/27/2014

PURGING DATA

					PURGI	NO DA	117					
WELL DIAMETER (inches): 2		TUBING DIAMETI	ER (inches): 1/		/ELL SCREEN IN EPTH (feet btoc)			DEPTH TER (feet btoc): 4		PURGE PUMP TYPE OR BAILER: PP		
Tubing-in-Screen Inte	rval Purg			`	NG CAPACITY 55 feet) + 0.13		JBING LENGTH • 0.25 gallons	H) + FLOW CELL \	/OLUME			
INITIAL PUMP OR TUE DEPTH IN WELL (feet			FINAL PUMP DEPTH IN W	/ELL (feet	btoc): 40	PURGIN INITIATE	IG ED AT: 0810	PURGING ENDED AT:	0845	TOTAL VOLUM PURGED (gallo	_	
TIME VOLUME PURGET (gallons)	VOI PUI	MUL. LUME RGED llons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	рН	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	ORP (mV)	SP Gravit (sg)	
815 0.25	0	.25	200	9.15	6.68	17.94	21.02	21.1	14.8	-180.0		
820 0.25	(0.5	150	9.78	6.69	18.28	21.08	13.1	14.1	-188.3		
825 0.25	0	.75	150	10.15	6.69	18.20	21.21	10.2	13.4	-192.6		
830 0.25	(0.9	100	10.02	6.75	17.12	22.19	8.7	10.9	188.0		
835 0.25		1.1	120	9.95	6.77	16.90	22.34	8.5	12.0	-184.3		
840 0.25	-	1.3	130	10.0	6.79	16.96	22.30	8.0	98.2	-183.7		
845 0.25	,	1.5	130	10.1	6.81	17.33	21.25	7.2	14.5	-185.1	1.02	

mp; **ESP** = Electric Submersible Pump; **PP** = Peristaltic Pump; **O** = Oth

SAMPLING DATA

SAMPLED Matt Ve	BY (PRINT) / A etter	AFFILIATION:		SAMPLER(S) SIGN	NATURE(S):	SAMPLING SAMPLIN 0927		IG ENDED AT:	
PUMP OR DEPTH IN	TUBING WELL (feet): 4	0		TUBING MATERIAL CODE:	Teflon-lined PE	FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> μm in Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No	
SAM	PLE CONTAINE	ER SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 501B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 501B-	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 501B-	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 501B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP	
MW- 501B-	1	AG	125mL				SM 5310 DOC	APP	
MW- 501B-	2	PE	250mL	NaOH Zinc Acetate		-	SM4500 Sulfide	APP	Field-Filtered
MW- 501B-	1	PE	500mL				2540C TDS	APP	
MW- 501B-	1	PE	250mL				2320B Alkalinity	APP	
MW- 501B-	1	AG	125mL	HCI			SM5310 TOC	APP	

REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)

SAMPLING EQUIPMENT CODES:APP = After Peristaltic Pump;
B = Bailer;
BP = Bladder Pump;
BP = Bladder Pump;
BP = Bladder Pump;
BP = Electric Submersible Pump;
CP = Control of the Control

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: ± 0.1 unit Specific Conductance: $\pm 5\%$ Dissolved Oxygen: all readings $\leq 10\%$ saturation; optionally, ± 0.2 mg/L Turbidity: all readings ≤ 10 NTU; or $\pm 10\%$

SITE LOCATION: Brunswick, GA SITE NAME: LCP Chemical Site DATE: 2/27/2014 WELL NO: MW-502A SAMPLE ID: MW-502A

DURGING DATA

					FUNG	ING DA	IA						
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/						DEPTH ER (feet btoc): 6	_	PURGE PUMP TYPE OR BAILER: PP		
Tubing-in-S	Screen Interval		UIPMENT VOI (0.0026 gallo						+ FLOW CELL V	OLUME			
INITIAL PUMP OR TUBING DEPTH IN WELL (feet btoc): 29 FINAL PUMP OR DEPTH IN WELL						PURGIN INITIATE		1005	PURGING ENDED AT:	1040	TOTAL VOLUM PURGED (gallo		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP.	-	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBID (NTUs		SP Gravity (sg)	
1008	0.2	0.2	200	6.32	6.41	17.67	6.	987	59.0	26.5	-120.9		
1013	0.4	0.6	200	6.3	6.45	20.23	7.	171	27.8	18.7	-168.6		
1018	0.5	1.1	200	6.3	6.45	20.25	7.	182	18.9	19.0	-173.6		
1023	0.5	1.6	200	6.3	6.44	20.22	7.	151	14.5	14.3	-179.3		
1028	0.5	2.1	200	6.3	6.44	20.09	7.	095	12.5	11.4	-187.2		
1033	0.5	2.6	200	6.3	6.44	20.12	7.	021	11.0	11.5	-189.9		
1038	0.5	3.1	200	6.3	6.44	20.52	6.	954	9.9	10.3	-190.1		
TUBING INS	ACITY (Gallons SIDE DIA. CAP	ACITY (Gal./F	t.): 1/8" = 0.0	006; 3/16 "	= 0.0014;	1/4" = 0.002		" = 0.37; 5/16" = 0.0	, -	5" = 1.02; 006; 1/	,	" = 5.88 " = 0.016	

SAMPLING DATA

) by (PRINT) / A Chuprikova		:	SAMPLER(S) SIGN	IATURE(S):	SAMPLING INITIATED AT: 1040			
PUMP OR DEPTH IN	TUBING WELL (feet): 2	9		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-Ii		SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repla	ced)	DUPLICATE:	No	
SAM	PLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED			ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 502A-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 502A-	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 502A-	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 502A-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP	
MW- 502A-	1	AG	125mL				SM 5310 DOC	APP	
MW- 502A-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 502A-	1	PE	500mL				2540C TDS	APP	
MW- 502A-	1	PE	250mL				2320B Alkalinity	APP	
MW- 502A-	1	AG	125mL	HCI		==.	SM5310 TOC	APP	
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized _l	orior to collecting pa	arameters.	
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP = I	Polypropyle	ne; S = Silicone; T	= Teflon; O =	Other (Specify)

SAMPLING EQUIPMENT CODES:

ESP = Electric Submersible Pump;

SITE		SITE					
NAME: LCP Chemical Site		LOCATION: Brunswick, GA					
WELL NO: MW-502B	SAMPLE ID: MW	/-502B	DATE: 2/27/2014				

PURGING DATA

				1 0110								
WELL DIAMETER (inches): 2	TUBING DIAMET	ER (inches): 1/		/ELL SCREEN IN EPTH (feet btoc)					_	PURGE PUMP TYPE OR BAILER: PP		
Tubing–in-Screen Interva	l Purge: 1 EQ	UIPMENT VO	L. = (TUBII	, ,	X TL	JBING	LENGTH)	+ FLOW CELL V				
INITIAL PUMP OR TUBING DEPTH IN WELL (feet bloc	-	FINAL PUMI DEPTH IN V			PURGIN INITIATE	_	0827	PURGING ENDED AT: (0853	TOTAL VOLUM PURGED (gallo	_	
TIME VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pН	TEMP.		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)		SP Gravit (sg)	
0830 0.2	0.2	150	6.25	6.29	17.77	4.	.930	70.4	10.8	8.3		
0835 0.2	0.4	150	6.23	6.45	18.71	7.	.011	13.6	3.14	-48.1		
0840 0.35	0.75	180	6.25	6.45	19.09	7.	.263	7.2	1.36	-49.9		
0845 0.35	1.1	180	6.25	6.45	19.37	7.	.321	5.8	1.18	-56.2		
0850 0.40	1.5	180	6.25	6.45	19.32	7.	.406	5.0	1.14	-58.4	1.023	
WELL CAPACITY (Gallons TUBING INSIDE DIA. CAP BTOC = Below top of cas	ACITY (Gal./F	t.): 1/8" = 0.0	006; 3/1	6" = 0.0014;	1/4" = 0.002		5" = 0.37; 5/16" = 0.		5 " = 1.02; 006; 1/2	- ,	' = 5.88 ' = 0.016	

	BY (PRINT) / A Chuprikova	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 0855	SAMPL ~930	SAMPLING ENDED AT: ~930	
PUMP OR DEPTH IN	TUBING WELL (feet): 4	0		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> μm n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	N: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:			
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAMPLE PRESERVATION			INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 502B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 502B-	- 1 DE 125ml						3500 FE/ 9040B pH	APP		
MW- 502B-	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 502B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
MW- 502B-	1	AG	125mL				SM 5310 DOC	APP		
MW- 502B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 502B-	1	PE	500mL				2540C TDS	APP		
MW- 502B-	1	PE	250mL				2320B Alkalinity	APP		
MW- 502B-	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	s: Per SOP, p	oarameter	s stable pri	or to sample colle	ection. Water level st	abilized	prior to collecting pa	arameters.		
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)										
SAMPLIN	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)									

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-503B	SAMPLE ID: MW	′-503B	DATE: 3/03/2014

PURGING DATA

					PURG	ING DA	IA					
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/	l l	WELL SCREEN INTERVAL STATIC DEPTH DEPTH (feet btoc): 38.8 to 43.8 TO WATER (feet btoc): 7.06				_	PURGE PUMP TYPE OR BAILER: PP		
Tubing-in-	Screen Interva				NG CAPACITY 47 feet) + 0.13) + FLOW CELL \ s	OLUME		
INITIAL PUMP OR TUBING DEPTH IN WELL (feet btoc): 41.7		-	FINAL PUMP OR TUBING DEPTH IN WELL (feet btoc): 41.7				PURGING INITIATED AT: 1349		PURGING ENDED AT:	1418	TOTAL VOLUM PURGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	рН	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)		SP Gravity (sg)
1353	0.2	0.2	200	7.5	6.24	22.62	2	.772	26.5	11.1	6.0	
1358	0.2	0.4	180	7.45	5.90	22.49	2	.667	10.3	5.11	11.0	
1403	0.3	0.7	200	7.63	5.66	22.29	2	.645	6.2	3.39	9.4	
1408	0.3	1.0	180	7.5	5.59	22.45	2	.777	4.7	4.04	4.3	
1413	0.3	1.3	180	7.5	5.51	22.33	2	.889	4.2	3.04	8.9	
1418	0.3	1.6	180	7.5	5.51	22.48	2	.955	3.7	2.25	9.8	1.01
TUBING IN BTOC = Be	ACITY (Gallon: SIDE DIA. CAF elow top of case	PACITY (Gal./Fi sing – feet belo	t.): 1/8" = 0.00 w top of casing		16" = 0.0014; cludes above grad	1/4" = 0.002	26;	3" = 0.37; 5/16" = 0	.004; 3/8" = 0.	 5" = 1.02; 006;	2" = 0.010; 5/8	" = 5.88 " = 0.016
I ONGING I	Lacii MENI C	ODLO. B	- Daliel, D	- Diauu	errump, EG		Gubille	CISIDIE FU	шр, гг = ге	instanto Ful	$\mathbf{O} = \mathbf{O} \mathbf{U} \mathbf{E}$	(Opecity)

SAMPLING DATA

) ву (PRINT) / A Chuprikova			SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1420	SAMPLII ~ 1450	NG ENDED AT:	
PUMP OR DEPTH IN	R TUBING I WELL (feet): 4	1.7		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 µm n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PUI	MP Y I	No T	UBING Y No (repl a	iced)	DUPLICATE: No			
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 503B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 503B-	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 503B-	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 503B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
MW- 503B-	1	AG	125mL				SM 5310 DOC	APP		
MW- 503B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 503B-	1	PE	500mL			1	2540C TDS	APP		
MW- 503B-	1	PE	250mL			1	2320B Alkalinity	APP		
MW- 503B- 1 AG 125mL HCI SM5310 TOC APP										
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.									
MATERIA	L CODES:	AG = Amber	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP = I	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)	
SAMPLIN	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PERP Property Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PERP Property Peristaltic Pump; BP = Bladder Pump; BP									

RFPP = Reverse Flow Peristaltic Pump; **SM** = Straw Method (Tubing Gravity Drain); **NOTES:** Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: **pH**: \pm 0.1 unit **Specific Conductance**: \pm 5% **Dissolved Oxygen**: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L **Turbidity**: all readings \leq 10 NTU; or \pm 10%

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-504A	SAMPLE ID: MW	′-504A	DATE: 2/25/2014

PURGING DATA

					PURG	ING DA	IA						
WELL DIAMETER (inches): 2		TUBING WELL SCR DIAMETER (inches): 1/4 DEPTH (fe				STATIC DEPTH TO WATER (feet btoc): n/a			_	PURGE PUMP TYPE OR BAILER: PP			
Tubing-in-Screen Int	erval Pu				NG CAPACITY 40 feet) + 0.13	X TL gallons =			+ FLOW CELL V	OLUME			
INITIAL PUMP OR TU DEPTH IN WELL (feet		34	FINAL PUMF DEPTH IN W	/ELL (feet	btoc): 34	PURGIN INITIATE		1002	PURGING ENDED AT:	1021	TOTAL Y		E ns): 2.25
TIME VOLUM PURGE (gallons	E V	CUMUL. /OLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pН	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs		RP nV)	SP Gravity (sg)
1005 0.25		0.25	220	7.32	6.16	22.49	6.	891	3.2	27.7	-19	56.8	
1010 0.5		0.75	220	7.4	6.15	22.85	6.	809	1.1	27.3	-19	93.2	
1015 0.5		1.25	220	7.3	6.15	22.91	6.	751	1.1	29.6	-20	02.1	
1020 1.0		2.25	220	7.3	6.15	22.85	6.	708	1.1	29.3	-20	03.0	
WELL CAPACITY (Ga TUBING INSIDE DIA. BTOC = Below top of	CAPACI	ITY (Gal./Ft	.): 1/8" = 0.00	006; 3/	16" = 0.0014;	1/4" = 0.002		" = 0.37; 5/16" = 0.0		5" = 1.02; 006; 1/ 2	6 " = 1.47 2 " = 0.010;		= 5.88 = 0.016
PURGING EQUIPMEN	IT CODE	ES: B =	Bailer; B	P = Bladd	er Pump; ES	P = Electric	Subme	rsible Pur	np; PP = Pe	ristaltic Pur	mp; O :	= Other	(Specify)

SAMPLING DATA

					AMIF LING DATA				
	BY (PRINT) / A Chuprikova		!	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1025	SAMPLIN 1050	IG ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 3	4		TUBING MATERIAL CODE:	Teflon-lined PE	FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> μm on Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repl a	aced)	DUPLICATE:	No	
SAM	PLE CONTAINE	ER SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 504A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 504A	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 504A	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 504A	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP	
MW- 504A	1	AG	125mL				SM 5310 DOC	APP	
MW- 504A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 504A	1	PE	500mL				2540C TDS	APP	
MW- 504A	1	PE	250mL				2320B Alkalinity	APP	
MW- 504A	1	AG	125mL	HCI			SM5310 TOC	APP	
	S: Per SOP,	•		·	ection. Water level st	tabilized			Other (Specify)

RFPP = Reverse Flow Peristaltic Pump; **SM** = Straw Method (Tubing Gravity Drain); NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: ± 0.1 unit Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 10% saturation; optionally, ± 0.2 mg/L Turbidity: all readings ≤ 10 NTU; or ± 10%

B = Bailer;

BP = Bladder Pump;

ESP = Electric Submersible Pump;

O = Other (Specify)

APP = After Peristaltic Pump;

SAMPLING EQUIPMENT CODES:

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-504B	SAMPLE ID: MW	-504B	DATE: 2/25/2014

PURGING DATA

					PURG	ING DA	IA						
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		WELL SCREEN IN DEPTH (feet btoc)			STATIC TO WAT	DEPTH TER (feet btoc): 7	_	PURGE PUMP TYPE OR BAILER: PP		
Tubing-in-	Screen Interva				ING CAPACITY 48 feet) + 0.13	X TU		,	+ FLOW CELL \	/OLUME			
	MP OR TUBINO		FINAL PUMP DEPTH IN W			PURGIN INITIATE	_	0901	PURGING ENDED AT:	0923	TOTAL VOLUM PURGED (gallo		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTI TO WATE (feet btoc)	pН	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI ^T (NTUs)		SP Gravity (sg)	
0903	0.1	0.1	120	7.18	6.55	22.44	10	6.60	24.0	13.0	-68.9		
0908	0.2	0.3	120	7.18	6.58	22.19	10	6.54	3.9	5.81	-152.6		
0913	0.5	0.5	120	7.18	6.53	22.35	1:	5.61	2.2	3.68	-152.6		
0918	0.55	1.2	120	7.19	6.52	22.47	1:	5.57	1.9	3.73	-149.0		
0923	0.55	1.75	120	7.19	6.49	22.46	1	5.34	1.8	3.43	-174.4	1.02	
TUBING IN	SIDE DIA. CAF	PACITY (Gal./F	t.): 1/8" = 0.0	006; 3	1.25" = 0.06; 16" = 0.0014; cludes above grad	1/4" = 0.002	-,	5" = 0.37; 5/16" = 0.		5" = 1.02; .006; 1/2		= 5.88 = 0.016	
	EQUIPMENT C			•		P = Electric	Subme	ersible Pu	mp; PP = Pe	eristaltic Pum	np; O = Other	(Specify)	

SAMPLING DATA

	D BY (PRINT) / A Chuprikova			SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 0925	SAMPLII 0940	NG ENDED AT:	
PUMP OR DEPTH IN	R TUBING I WELL (feet): 4	3.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 µm n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PUI	MP Y I	No TUBING Y No (replaced)			DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 504B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 504B-	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 504B-	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 504B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
MW- 504B-	1	AG	125mL		1		SM 5310 DOC	APP		
MW- 504B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 504B-	1	PE	500mL				2540C TDS	APP		
MW- 504B-	1	PE	250mL		-		2320B Alkalinity	APP		
MW- 504B- 1 AG 125mL HCI SM5310 TOC APP										
REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.										
MATERIA	L CODES:	AG = Ambei	Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)	
SAMPLIN	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;									

 SITE
 SITE

 NAME: LCP Chemical Site
 LOCATION: Brunswick, GA

 WELL NO: MW-505A
 SAMPLE ID: MW-505A
 DATE: 2/25/2014

PURGING DATA

					PUKG	ING DA	IA					
WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1		LL SCREEN II PTH (feet btoc		.8	-	TIC DEPTH VATER (feet btoc): 7.01		PURGE PUMP TYPE OR BAILER: PP	
Tubing-in-	Screen Interva	al Purge: 1 EQ =	UIPMENT VO (0.0026 gallo						+ FLOW CELL V s	OLUME		
INITIAL PUMP OR TUBING DEPTH IN WELL (feet btoc): 35 DEPTH IN W			-			PURGING INITIATED AT: 0835		PURGING ENDED AT:	0910	TOTAL VOLUME PURGED (gallons): ~3.2		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBID (NTUs		SP Gravity (sg)
845	0.5	0.5	400	7.1	6.23	22.91	8.	.054	4.1	25.4	-156.0	
850	0.5	1.0	400	7.12	6.21	23.24	7	.24	2.8	22.3	-152.2	
855	0.75	1.75	400	7.12	6.18	23.26	7	'.13	2.2	19.5	-152.0	
900	0.75	2.5	400	7.11	6.17	23.01	7	'.12	1.9	20.4	-155.1	
905	0.75	3.25	400	7.11	6.17	23.08	7	'.08	2.0	21.5	-156.5	
TUBING IN	SIDE DIA. CAF	s Per Foot): 0.	t.): 1/8" = 0.0	006; 3/16'	' = 0.0014;	1/4" = 0.002		" = 0.37; 5/16" = 0.		5" = 1.02; 006; 1/	- ,	2 = 5.88 2 = 0.016
	•	sing – feet belo									- 0.1	(0 (1)
PURGING E	EQUIPMENT C	ODES: B	= Bailer; B	P = Bladder I	oump; ES	SP = Electric	Subme	ersible Pu	mp; PP = Pe	ristaltic Pu	mp; $\mathbf{O} = \text{Other}$	(Specify)

SAMPLING DATA

sampled Matt V e	BY (PRINT) / A etter	FFILIATION:	:	SAMPLER(S) SIGN	NATURE(S):	SAMPLING INITIATED AT: 0910	SAMPLIN 0925	NG ENDED AT:	
PUMP OR DEPTH IN	TUBING WELL (feet): 3	5		TUBING MATERIAL CODE:	Teflon-lined PE	FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 μm n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repla	DUPLICATE:	No		
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 505A	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 505A	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 505A	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 505A	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP	
MW- 505A	1	AG	125mL				SM 5310 DOC	APP	
MW- 505A	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 505A	1	PE	500mL				2540C TDS	APP	
MW- 505A	1	PE	250mL				2320B Alkalinity	APP	
MW- 505A	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS	e: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized _l	prior to collecting pa	arameters.	

BP = Bladder Pump;

SM = Straw Method (Tubing Gravity Drain);

ESP = Electric Submersible Pump;

O = Other (Specify)

B = Bailer;

APP = After Peristaltic Pump;

RFPP = Reverse Flow Peristaltic Pump;

SAMPLING EQUIPMENT CODES:

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick , GA	
WELL NO: MW-505B	SAMPLE ID: MW	/-505B	DATE: 2/25/2014

PURGING DATA

				1 01(0	ING DA	17					
WELL DIAMETER (inches): 2	TUBING DIAMET	ER (inches): 1/		ELL SCREEN IN EPTH (feet btoc)		.3		DEPTH TER (feet btoc): 9	_	RGE PUMP TYPE BAILER: PP	
Tubing-in-Screen Interval				IG CAPACITY 48 feet) + 0.13	X TL gallons =		LENGTH)) + FLOW CELL V	I		
INITIAL PUMP OR TUBING DEPTH IN WELL (feet btoc)	: 43	FINAL PUMP DEPTH IN W			PURGIN INITIATE	_	0951	PURGING ENDED AT:	1100	TOTAL VOLUME PURGED (gallor	_
TIME VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pН	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)		SP Gravit
1040 0.5	0.5	200	9.60	6.81	23.65	34	4.93	16.2	22.5	-175.6	
1045 0.25	0.75	200	9.73	6.81	23.70	3	5.40	12.7	10.7	-177	
1050 0.25	1.0	200	9.75	6.80	23.71	3	3.19	11.2	9.06	-175	
1055 0.25	1.25	200	9.88	6.77	23.85	32	2.19	10.2	7.71	-174.9	
1100 0.25	1.5	200	9.97	6.76	23.83	3	1.69	9.1	7.58	-176.9	
WELL CAPACITY (Gallons TUBING INSIDE DIA. CAPA BTOC = Below top of casi	CITY (Gal./F	i.): 1/8" = 0.00	006; 3/1	6" = 0.0014;	1/4" = 0.002		5 " = 0.37; 5/16 " = 0.	,	- ,	- ,	= 5.88 = 0.016

SAMPLING DATA

SAMPLED Matt Ve	BY (PRINT) / A etter	FFILIATION:	:	SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1105	SAMPLIN 1122	NG ENDED AT:	
PUMP OR DEPTH IN	TUBING WELL (feet): 4	3		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45 µ</u> m n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repla	ced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 505B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 505B-	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 505B-	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 505B-	1	PE	125mL			==.	9251 Chloride & 9038 Sulfate	APP		
MW- 505B-	1	AG	125mL				SM 5310 DOC	APP		
MW- 505B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 505B-	1	PE	500mL				2540C TDS	APP		
MW- 505B-	1	PE	250mL				2320B Alkalinity	APP		
MW- 505B-	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized _l	orior to collecting pa	arameters.		
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP = F	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)	

SAMPLING EQUIPMENT CODES:APP = After Peristaltic Pump;B = Bailer;BP = Bladder Pump;ESP = ElectrRFPP = Reverse Flow Peristaltic Pump;SM = Straw Method (Tubing Gravity Drain); NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: pH: ± 0.1 unit Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 10% saturation; optionally, ± 0.2 mg/L Turbidity: all readings ≤ 10 NTU; or ± 10%

ESP = Electric Submersible Pump;

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-507B	SAMPLE ID: MW	/-507B	DATE: 2/28/2014

PURGING DATA

WELL DIAMETER	(inches): 2	TUBING DIAMET	ER (inches): 1/		ELL SCREEN IN		1	STATIC TO WAT	DEPTH ER (feet btoc): n	_	PURGE PUMP TYPE OR BAILER: PP		
	,	I Purge: 1 EQ	UIPMENT VOL	= (TUBIN	, ,	X TL	JBING	LENGTH)	+ FLOW CELL V				
_	MP OR TUBINO		FINAL PUMP DEPTH IN W	-	-	PURGIN INITIATE	_	1210	PURGING ENDED AT:1:	240	TOTAL VOLUMI PURGED (gallor		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)		SP Gravity (sg)	
1220	0.5	0.5	200	9.58	10.05	20.36	3	7.70	10.4	1.97	-297.3		
1225	0.25	0.75	200	9.62	10.08	20.49	3	8.27	7.2	1.38	-317.1		
1230	0.25	1.0	200	9.62	10.08	20.54	3	8.38	5.5	1.68	-326.2		
1235	0.25	1.25	200	9.62	10.08	20.69	3	8.20	4.4	1.65	-330.3		
1240	0.25	1.5	200	9.62	10.07	20.65	3	7.95	3.7	1.36	-334.8		
TUBING IN: BTOC = Be	SIDE DIA. CAP	PACITY (Gal./F sing – feet belo	t.): 1/8" = 0.00 w top of casing	006; 3/1 which incl	1.25 " = 0.06 6 " = 0.0014; ludes above grad	1/4" = 0.002 de riser	26;	5/16" = 0.		006; 1/2	2" = 0.010; 5/8"	= 5.88 = 0.016	
PURGING E	QUIPMENT C	ODES: B =	Bailer; BI	P = Bladde	r Pump; ES	SP = Electric	Subme	ersible Pu	mp; PP = Pe	ristaltic Pum	np; $\mathbf{O} = \text{Other}$	(Specify)	

SAMPLING DATA

SAMPLED Matt Ve	BY (PRINT) / A etter	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1243	SAMPLII 1310	NG ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 5	1.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-li		! SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repla	iced)	DUPLICATE:	No	
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 507B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 507B-	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 507B-	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 507B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP	
MW- 507B-	1	AG	125mL				SM 5310 DOC	APP	
MW- 507B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 507B-	1	PE	500mL				2540C TDS	APP	
MW- 507B-	1	PE	250mL				2320B Alkalinity	APP	
MW- 507B-	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.	
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP = I	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)
SAMPLIN	G EQUIPMENT	CODES:			B = Bailer; BP = Bladd		ESP = Electric Subme		

RFPP = Reverse Flow Peristaltic Pump; **SM** = Straw Method (Tubing Gravity Drain); **NOTES:** Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: \pm 0.1 unit **Specific Conductance**: \pm 5% **Dissolved Oxygen**: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L **Turbidity**: all readings \leq 10 NTU; or \pm 10%

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-508B	SAMPLE ID: MW	′-508B	DATE: 2/28/2014

PURGING DATA

					PURG	ING DA	IA						
WELL DIAMETER	(inches): 2	TUBING	ER (inches): 1/		WELL SCREEN IN DEPTH (feet btoc)		7	STATIC TO WAT	DEPTH TER (feet btoc): 8			SE PUMP TYPE AILER: PP	
	,	I Purge: 1 EQ	UIPMENT VOI	= (TUB	ING CAPACITY 58 feet) + 0.13	X TL	IBING	LENGTH)	+ FLOW CELL V				
_	MP OR TUBINO	-	FINAL PUMF DEPTH IN W			PURGIN INITIATE		0923	PURGING ENDED AT:	1001		TOTAL VOLUME PURGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTI TO WATE (feet btoc)	pН	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBI (NTL		ORP (mV)	SP Gravity (sg)
0925	0.25	0.25	180	9.54	9.79	20.02	5	1.14	6.6	23.	.1	-389.0	
0930	0.3	0.55	180	9.45	9.87	20.20	5	1.62	4.0	7.6	67	-431.4	
0935	0.3	0.85	180	9.42	9.88	20.24	5	1.78	2.9	5.0)2	-446.4	
0940	0.3	1.15	180	9.42	9.87	20.34	5	1.73	2.5	5.5	53	-454.5	
0945	0.3	1.45	180	9.42	9.84	20.42	5	1.63	2.0	14.	.4	-457.7	
0950	0.3	1.75	180	9.41	9.84	20.31	5	1.70	1.7	8.2	23	-462.3	
0955	0.3	2.05	180	9.41	9.85	20.45	5	1.64	1.7	5.5	50	-465.1	
1000	0.3	2.35	180	9.41	9.86	20.42	5	1.58	1.4	4.1	11	-467.9	
TUBING IN BTOC = B	SIDE DÍA. CAF	PACITY (Gal./Fi sing – feet belo	t.): 1/8" = 0.00 w top of casing	006; 3/ g which in	cludes above grad	1/4" = 0.002	6;	5/16" = 0.	004; 3/8" = 0.	,	1/2" =	= 0.010; 5/8"	= 5.88 = 0.016 (Specify)

SAMPLING DATA

					AMIT LING DATA				
SAMPLED BY Tanya Ch	,	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1005	SAMPL 1040	NG ENDED AT:
PUMP OR TU DEPTH IN WE		3.2		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 0 n Equipment Type: In-li		R SIZE: <u>0.45</u> μm
FIELD DECON	NTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repla	ced)	DUPLICATE:	Yes	
SAMPLE	E CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE CO	# ONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 508B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW- 508B-	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 508B-	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 508B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP	
MW- 508B-	1	AG	125mL				SM 5310 DOC	APP	
MW- 508B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 508B-	1	PE	500mL				2540C TDS	APP	
MW- 508B-	1	PE	250mL				2320B Alkalinity	APP	
MW- 508B-	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS: F	Per SOP, p	parameter	s stable pri	or to sample coll	ection. Water level st	abilized	prior to collecting pa	arameters.	
MATERIAL C	ODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP = i	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: ± 0.1 unit Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 10% saturation; optionally, ± 0.2 mg/L Turbidity: all readings ≤ 10 NTU; or ± 10%

BP = Bladder Pump;

SM = Straw Method (Tubing Gravity Drain);

B = Bailer;

APP = After Peristaltic Pump;

RFPP = Reverse Flow Peristaltic Pump;

ESP = Electric Submersible Pump;

O = Other (Specify)

SAMPLING EQUIPMENT CODES:

SITE LOCATION: **Brunswick, GA** SITE NAME: LCP Chemical Site DATE: 2/27/2014 WELL NO: MW-510B SAMPLE ID: MW-510B

PURGING DATA

					1 0110	אם טוווי	17				
WELL		TUBING		WE	LL SCREEN I	NTERVAL	STATIC	DEPTH	PUR	GE PUMP TYPE	
DIAMETER	(inches): 2	DIAMETI	ER (inches): 1	/4 DE	PTH (feet btoo): 40 to 45	TO WA	TER (feet btoc): r	/a OR E	BAILER: PP	
Tubing-in-S	Screen Interva	I Purge: 1 EQ =			G CAPACITY 195 feet) + 0.1		JBING LENGTH = 0.27 gall o) + FLOW CELL V ns	OLUME		
	MP OR TUBING	_	FINAL PUMI DEPTH IN V	-		PURGIN INITIATE	IG ED AT: 1440	PURGING ENDED AT:	1542	TOTAL VOLUM PURGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	Y ORP (mV)	SP Gravity (sg)
1441	0.5	0.5	250	7.55	10.85	19.61	26.73	8.3	9.23	-396.1	
1446	0.25	0.75	250	7.54	10.74	19.76	26.32	6.3	6.81	-406.1	
1451	0.25	1.0	250	7.54	10.52	19.86	25.67	4.7	5.99	-407.2	
1456							l .		I.	- 1	
1505				Equipme	nt malfunction	n. Restart	with new pum	p			
1515											
1522	0.5	1.5	250	7.71	10.46	20.14	25.74	6.2	5.77	-406.1	
1527	0.25	1.75	250	7.72	10.30	20.44	25.24	4.8	4.81	-402.2	
1532	0.25	2.0	250	7.72	10.20	20.39	25.09	3.8	4.16	-430.1	
1537	0.25	2.25	250	7.73	10.20	20.53	25.22	3.2	4.22	-436.7	
1542	0.25	2.5	250	7.75	10.20	20.65	25.35	3.0	4.22	-442.2	
TUBING INS	SIDE DIA. CAF	s Per Foot): 0. PACITY (Gal./Ft sing – feet belo	i.): 1/8" = 0.0		,	1/4" = 0.002					= 5.88 = 0.016
PURGING E	QUIPMENT C	ODES: B =	Bailer; B	P = Bladder	Pump; E	SP = Electric	Submersible Pu	mp; PP = Pe	ristaltic Pump	p; O = Other	(Specify)

SAMPLING DATA

SAMPLED Matt Ve	BY (PRINT) / A etter	AFFILIATION:	:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1545	SAMPL 1606	NG ENDED AT:	
PUMP OR DEPTH IN	R TUBING I WELL (feet): 4	4.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45 µm</u> on Equipment Type: In-line filter			
FIELD DE	CONTAMINATION	ON: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	ER SPECIFIC	CATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 510B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 510B-	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 510B-	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 510B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
MW- 510B-	1	AG	125mL				SM 5310 DOC	APP		
MW- 510B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 510B-	1	PE	500mL				2540C TDS	APP		
MW- 510B-	1	PE	250mL				2320B Alkalinity	APP		
MW- 510B-	1	AG	125mL	HCI			SM5310 TOC	APP		
MW- 510B- MW- 510B- REMARKS	1 1 S: Per SOP,	AG parameter	125mL		 ection. Water level st		SM5310 TOC	APP	Purg	

brown, sulfur-like odor.

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; **PE** = Polyethylene; **PP** = Polypropylene; O = Other (Specify) S = Silicone; T = Teflon;

B = Bailer; BP = Bladder Pump; ESP = Elect Pump; SM = Straw Method (Tubing Gravity Drain); **ESP** = Electric Submersible Pump; avity Drain); **O** = Other (Specify) **SAMPLING EQUIPMENT CODES: APP** = After Peristaltic Pump; **RFPP** = Reverse Flow Peristaltic Pump;

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: ± 0.1 unit Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 10% saturation; optionally, ± 0.2 mg/L Turbidity: all readings ≤ 10 NTU; or ± 10%

SITE LOCATION: **Brunswick**, **GA** SITE NAME: LCP Chemical Site SAMPLE ID: MW-511A WELL NO: MW-511A DATE: 3/4/2014

PURGING DATA

WELL		TUBING		\^/⊏	LL SCREEN I	INITEDVAL		STATIC I	DEDTU	ייים	RGE PUMP TYPE	
DIAMETER (inches): 2	DIAMETER	(inches): 1/4		PTH (feet btoo				DEPTH ER (feet btoc): 7	_	BAILER: PP	
· ·	creen Interval F	I .	, ,		•				+ FLOW CELL V		DAILLIN. I I	
rubing-in-s	creen interval r				7 feet) + 0.13					OLUME		
INITIAL PUM	IP OR TUBING			MP OR TUBI		PURGIN	G		PURGING		TOTAL VOLUME	
DEPTH IN W	/ELL (feet btoc):	32.5	DEPTH IN	WELL (feet	btoc): 32.5	INITIATE	D AT: 11	112	ENDED AT: 1	308	PURGED (gallon	s): 5.35
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP CO (mS/c		DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)		SP Gravity (sg)
1116	0.25	0.25	210	7.26	6.58	17.99	4.56	64	34.2	28.7	-60.7	
1121	0.15	0.40	210	7.26	6.46	17.93	4.71	17	23.5	21.3	-63.3	
1126	0.20	0.60	210	7.26	6.41	17.99	4.83	30	18.4	22.1	-61.5	
1131	0.40	0.80	210	7.26	6.36	17.99	4.90	09	16.9	17.0	-58.7	
1138	0.20	1.25	210	7.26	6.37	18.13	5.06	30	15.9	17.3	-57.5	
1143	0.20	1.45	210	7.26	6.36	17.77	5.14	14	16.1	15.6	-55.0	
1148	0.20	1.65	210	7.26	6.36	17.81	5.24	14	15.3	14.9	-54.0	
1153	0.20	1.85	210	7.26	6.35	17.74	5.29	99	15.3	12.3	-53.3	
1158	0.20	2.05	210	7.26	6.35	18.03	5.37	76	14.9	13.3	-52.8	
1203	0.20	2.25	210	7.26	6.36	18.15	5.41	19	15.1	11.1	-52.9	
1208	0.20	2.45	210	7.26	6.37	17.87	5.46	36	14.7	10.7	-51.6	
1213	0.20	2.65	210	7.26	6.35	17.64	5.50	04	14.6	10.4	-50.2	
1218	0.20	2.85	210	7.26	6.36	17.78	5.54	43	14.4	10.4	-50.2	
1223	0.25	3.10	210	7.26	6.37	17.98	5.57	74	14.1	10.5	-50.7	
1228	0.25	3.35	210	7.26	6.36	17.52	5.59		16.1	10.4	-50.8	
1233	0.25	3.60	210	7.26	6.35	17.68	5.64		14.3	10.3	-48.7	
1238	0.25	3.85	210	7.26	6.37	17.94	5.67		14.2	10.6	-49.6	
1243	0.25	4.10	210	7.26	6.35	18.08	5.69	98	13.5	10.4	-49.1	
1248	0.25	4.35	210	7.26	6.34	17.58	5.71	15	13.3	10.2	-47.6	
1253	0.25	4.60	210	7.26	6.34	17.80	5.72	21	13.5	9.72	-42.6	
1258	0.25	4.85	210	7.26	6.36	17.94	5.73		13.0	10.0	-48.5	
1303	0.25	5.10	210	7.26	6.35	18.09	5.75		13.1	10.1	-48.8	
1308	0.25	5.35	210	7.26	6.36	18.22	5.76		13.0	10.1	-49.0	
TUBING INS	ACITY (Gallons F IDE DIA. CAPA low top of casin	CITY (Gal./Ft.):	1/8" = 0.00	006; 3/16 '	1.25 " = 0.06 ' = 0.0014; des above gra	1/4" = 0.002		= 0.37; 16" = 0.0		3" = 1.02; 006; 1/2		= 5.88 = 0.016
PURGING E	QUIPMENT COL	DES: B = E	Bailer; B	P = Bladder I	Pump; E	SP = Electric	Submers	ible Pun	np; PP = Pe	ristaltic Pun	np; $\mathbf{O} = \text{Other}$	Specify)
·	· · · · · · · · · · · · · · · · · · ·				_							

SAMPLING DATA

			OAII	IF LING DATA				
SAMPLED BY (PRINT) . Ken Stuart	/ AFFILIATION:		SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1308	SAMPLIN 1335	NG ENDED AT:
PUMP OR TUBING DEPTH IN WELL (feet):	32.5		TUBING MATERIAL CODE:	Teflon-lined PE		-FILTERED: Yes/SM 4500 on Equipment Type: In-Ii		SIZE: <u>0.45</u> μm
FIELD DECONTAMINA	TION: PUMP	Y No	TUBI	NG Y No (repla	aced)	DUPLICATE:	No	
SAMPLE CONTA	AINER SPECIFICA	TION	SAMPL	E PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID # CODE CONTAIN	MATERIAL ERS CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW-511A 1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP	
MW-511A 1	PE	125mL				3500 FE/ 9040B pH	APP	
MW-511A 1	PE	250mL	-		1	6010B Dissolved Silica	APP	
MW-511A 1	PE	125mL			-	9251 Chloride & 9038 Sulfate	APP	
MW-511A 1	AG	125mL				SM 5310 DOC	APP	
MW-511A 2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW-511A 1	PE	500mL				2540C TDS	APP	
MW-511A 1	PE	250mL				2320B Alkalinity	APP	
MW-511A 1	AG	125mL	HCI			SM5310 TOC	APP	
REMARKS: Per SOP	, parameters s	table prior	to sample collect	ion. Water level st	abilized	prior to collecting pa	arameters.	
MATERIAL CODES:	AG = Amber Gl	ass; CG = 0	Clear Glass; PE =	Polyethylene; PP =	Polypropy	lene; S = Silicone; T =	= Teflon; O = 0	Other (Specify)
SAMPLING EQUIPMEN	IT CODES: AP	P = After Peris	staltic Pump; B =	Bailer; BP = Bladd	er Pump;	ESP = Electric Subme	rsible Pump;	

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-511B	SAMPLE ID: MW	′-511B	DATE: 3/4/2014

DUDOING DATA

					PURG	ING DA	TA						
WELL TUBING				VELL SCREEN IN			STATIC			-	GE PUMP TYPE		
DIAMETER (inches): 2 DIAMETER (inches): 1/4			4 [DEPTH (feet btoc): 43.7 to 48.7			TO WATER (feet btoc): 5.44			OR BAILER: PP			
Tubing-in-	Screen Interva				NG CAPACITY 49 feet) + 0.13				+ FLOW CELL V s	OLUME			
_	MP OR TUBING		FINAL PUMP DEPTH IN W			PURGIN INITIATE	_	1424	PURGING ENDED AT: 1	459		TOTAL VOLUMI PURGED (gallor	_
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pН	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURB (NT		ORP (mV)	SP Gravit (sg)
1429	0.25	0.25	210	7.52	9.86	17.79	2	5.42	8.6	7.0	02	-142.2	
1434	0.20	0.45	210	7.53	9.68	18.14	2	6.82	7.2	5.2	21	-166.4	
1439	0.20	0.65	210	7.52	9.79	18.16	2	7.56	6.9	3.5	54	-177.4	
1444	0.25	0.85	210	7.53	9.81	18.38	2	7.88	6.5	3.′	10	-185.3	
1449	0.25	1.10	210	7.53	9.82	18.40	2	7.98	5.7	2.8	87	-188.4	
1454	0.25	1.35	210	7.53	9.82	18.64	2	7.97	5.5	3.′	13	-191.7	
1459	0.25	1.60	210	7.53	9.81	18.84	2	7.96	5.5	2.7	75	-192.3	1.02
					; 1.25 " = 0.06;			3 " = 0.37;		5" = 1.02		,	= 5.88
					16" = 0.0014;		26;	5/16" = 0.	004; 3/8" = 0.	006;	1/2" =	= 0.010; 5/8"	= 0.016
URGING	EQUIPMENT C	ODES: B =	= Bailer: B	P = Bladde	er Pump: ES	P = Electric	Submo	ersible Pu	mp; PP = Pe	ristaltic F	Pump;	O = Other	(Specify)

SAMPLING DATA

SAMPLED Ken St	BY (PRINT) / A	FFILIATION:		SAMPLER(S) SIGNATURE(S):			SAMPLING INITIATED AT: 1459	SAMPLIN 1525	IG ENDED AT:	
PUMP OR DEPTH IN	R TUBING I WELL (feet): 4	4.5					FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 µm n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No TUBING Y No (replaced)			DUPLICATE: No			
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAMPLE PRESERVATION			INTENDED	SAMPLING	Additional	
SAMPLE ID CODE			VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 511B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 511B-	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 511B-	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 511B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
MW- 511B-	1	AG	125mL				SM 5310 DOC	APP		
MW- 511B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 511B-	1	PE	500mL				2540C TDS	APP		
MW- 511B-	1	PE	250mL				2320B Alkalinity	APP		
MW- 511B-	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.									
MATERIA	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)									

SAMPLING EQUIPMENT CODES:

APP = After Peristaltic Pump;B = Bailer;BP = Bladder Pump;ESP = Electric Submersible Pump;RFPP = Reverse Flow Peristaltic Pump;SM = Straw Method (Tubing Gravity Drain);O = Other (Specify)

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA				
WELL NO: MW-512A	SAMPLE ID: MW	/-512A	DATE: 2/27/2014			

PURGING DATA

Tubing-in-Screen Interval Purge: 1 E	TER (inches): 1/ QUIPMENT VOI (0.0026 gallo	L. = (TUBING	LL SCREEN II PTH (feet btoc CAPACITY	33.2 to 38.2		C DEPTH ATER (feet btoc): 6		GE PUMP TYPE BAILER: PP	
Tubing-in-Screen Interval Purge: 1 E	QUIPMENT VOI (0.0026 gallo	L. = (TUBING			2 TO WA	ATER (feet btoc): 6	.63 OR I	BAILER: PP	
	(0.0026 gallo		CAPACITY						
	ED. 141 B. 184	7113/10017				H) + FLOW CELL V ns	OLUME		
INITIAL PUMP OR TUBING DEPTH IN WELL (feet btoc): 36	OR TUBING		PURGIN INITIATE	G ED AT: 1417	PURGING ENDED AT: 1625		TOTAL VOLUME PURGED (gallons): ~7.0		
TIME VOLUME PURGED (gallons) (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	Y ORP (mV)	SP Gravity (sg)
1425 0.2 0.2	150	6.95	8.79	19.61	3.372	32.1	416	-172.7	
1430 0.3 0.5	150	6.95	7.66	20.46	3.205	9.9	338	-222.7	
1435 0.3 0.8	150	6.95	7.5	20.58	3.190	7.3	153	-242.7	
1440 0.4 1.0	180	6.95	7.71	20.54	3.167	6.1	203	-255.9	
1445 0.4 1.4	150	6.93	7.73	20.56	3.136	4.8	105	-259.3	
1450 0.3 1.7	150	6.93	7.82	20.64	3.111	3.8	77.8	-274.6	
1455 0.4 2.1	150	6.92	7.84	20.50	3.070	3.5	65.9	-271.9	
1500 0.5 2.6	150	6.92	8.04	20.74	3.010	3.0	61.9	-283.7	
1505 0.2 2.8	120	6.82	8.11	20.51	2.992	2.5	59.9	-294.5	
1510 0.2 3.1	120	6.81	8.10	20.25	2.979	2.2	64.4	-301.1	
1515 0.2 3.3	120	6.81	8.10	20.24	2.980	2.1	69.4	-306.8	
1520 0.2 3.5	100	6.79	8.17	20.00	2.981	2.0	66.7	-313.5	
1525 0.2 3.7	100	6.77	8.28	19.79	2.976	2.7	60.9	-317.7	
1530 0.2 3.9	100	6.77	8.37	19.61	2.976	1.7	67.9	-319.4	
1535 0.2 4.1	100	6.78	8.29	19.70	2.971	1.5	65.8	-322.8	
1540 0.2 4.3	100	6.77	8.25	19.72	2.971	1.5	60.3	-324.5	
1545 0.2 4.5	100	6.77	8.23	19.69	2.975	1.4	53.6	-319.4	
1550 0.2 4.7	100	6.77	8.23	19.70	2.977	1.3	54.0	-324.7	
1555 0.2 4.9	100	6.77	8.35	19.65	2.984	1.4	61.9	-327.7	
1600 0.2 5.1	100	6.77	8.37	19.60	2.983	1.3	56.4	-332.7	
1605 0.2 5.5	120	6.8	8.53	19.76	2.984	1.2	63.4	-333.7	
1610 0.2 5.7	120	6.8	8.52	19.69	2.992	1.1	55.5	-335.8	
1615 0.3 6.0	120	6.8	8.56	19.67	2993	1.2	66.1	-265.0	
1620 0.3 6.3	120	6.8	8.58	19.91	2.995	1.2	76.4	-265.8	
1625 0.3 6.6	120	6.8	8.59	20.00	3.005	1.2	69.9	-277.1	
WELL CAPACITY (Gallons Per Foot): TUBING INSIDE DIA. CAPACITY (Gal. BTOC = Below top of casing – feet be	Ft.): 1/8" = 0.0		' = 0.0014;	1/4" = 0.002			5" = 1.02; 006; 1/2 "		= 5.88 = 0.016
		P = Bladder F			Submersible P	umn: PP = Pe	ristaltic Pum	p; O = Other	(Specify)

SAMPLING DATA

SAMPLED BY (PRINT		:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING	SAMPLIN	SAMPLING ENDED AT:	
Tanya Chupriko	va					INITIATED AT: 1625	1650		
PUMP OR TUBING						-FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: 0.45 μm			
DEPTH IN WELL (feet			MATERIAL CODE: Teflon-lined PE Filtration			on Equipment Type: In-line filter			
FIELD DECONTAMINA	ATION: PL	JMP Y	No TUBING Y No (replaced)			DUPLICATE: No			
SAMPLE CONTA	INER SPECIFIC	CATION	SAMPLE PRESERVATION			INTENDED ANALYSIS	SAMPLING	Additional	
SAMPLE # ID CODE CONTAINER	MATERIAL CODE	VOLUME	PRESERVATIVE USED			AND/OR METHOD	EQUIPMEN T CODE	Comments	
MW- 512B-	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 512B-	PE	250mL				6010B Dissolved Silica	APP		
MW- 512B-	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
MW- 1	AG	125mL				SM 5310 DOC	APP		
MW- 512B-	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 1	PE	500mL				2540C TDS	APP		
MW- 1	PE	250mL				2320B Alkalinity	APP		
MW- 1	AG	125mL	HCI			SM5310 TOC	APP		

REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters. 7470 Mercury (field filtered) sample collected due to high turbidity (above 50 NTU).

 $\textbf{MATERIAL CODES}; \qquad \textbf{AG} = \textbf{Amber Glass}; \qquad \textbf{CG} = \textbf{Clear Glass}; \qquad \textbf{PE} = \textbf{Polyethylene}; \qquad \textbf{PP} = \textbf{Polypropylene}; \qquad \textbf{S} = \textbf{Silicone}; \qquad \textbf{T} = \textbf{Teflon}; \qquad \textbf{O} = \textbf{Other (Specify)}$

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

PURGING DATA

					PURGI	NG DA	IA				
WELL	_	TUBING			ELL SCREEN IN		_	C DEPTH	_	RGE PUMP TYPE	
DIAMETER (inches):		1	ER (inches): 1/	l l	PTH (feet btoc)		1	TER (feet btoc): 7	l .	BAILER: PP	
Гubing–in-Screen I	nterval Pu				G CAPACITY 55 feet) + 0.13		JBING LENGTH • 0.27 gallo	l) + FLOW CELL V ns	OLUME		
					TOTAL VOLUM PURGED (gallo						
TIME VOLU PURG (gallo	IME \	CUMUL. /OLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP.	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)	Y ORP (mV)	SP Gravity (sg)
1300 0.2	5	0.25	180	9.3	6.97	18.66	26.25	28.1	22.2	-158.9	
1305 0.2	5	0.5	180	10.0	6.95	20.33	26.45	13.0	14.6	-188.1	
1310 0.2	5	0.75	120	10.27	6.95	19.55	26.72	11.4	11.7	-208.6	
1315 1.0)	1.75	200	10.27	6.94	19.33	26.50	11.0	9.39	-212.0	
1320 0.2	5	2.0	140	10.4	6.94	19.58	26.33	10.6	14.3	-218.4	
1325 0.2	5	2.25	120	10.35	6.94	19.43	26.14	10.5	8.13	-213.2	
1330 0.2	5	2.5	120	10.3	6.93	19.41	25.63	10.0	8.23	-210.2	1.01

SAMPLING DATA

ESP = Electric Submersible Pump;

PP = Peristaltic Pump;

O = Other (Specify)

BP = Bladder Pump;

B = Bailer;

PURGING EQUIPMENT CODES:

	BY (PRINT) / A Chuprikova	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1335		SAMPLIN n/a	IG ENDED AT:
PUMP OR DEPTH IN	TUBING WELL (feet): 49	9		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 0 n Equipment Type: In-li			SIZE: <u>0.45</u> µm
FIELD DE	CONTAMINATIO	DN: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No		
SAM	PLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING		Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	ANALYSIS AND/OR METHOD	EQUIPMENT CODE		Comments		
MW- 512B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	А	PP	
MW- 512B-	1	PE	125mL				3500 FE/ 9040B pH	А	PP	
MW- 512B-	1	PE	250mL				6010B Dissolved Silica	А	PP	
MW- 512B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	А	PP	
MW- 512B-	1	AG	125mL				SM 5310 DOC	А	PP	
MW- 512B-	2	PE	250mL	NaOH Zinc Acetate		-	SM4500 Sulfide	А	PP	Field-Filtered
MW- 512B-	1	PE	500mL		-	1	2540C TDS	А	PP	
MW- 512B-	1	PE	250mL			1	2320B Alkalinity	А	PP	
MW- 512B- 1 AG 125mL HCI SM5310 TOC APP										
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.									
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon	; 0 = 0	Other (Specify)
SAMPLIN	G EQUIPMENT			eristaltic Pump; rse Flow Peristaltic Pu	B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible P Other (Sp		

SITE		SITE									
NAME: LCP Chemical Site		LOCATION: Brunswick, GA									
WELL NO: MW-513A	SAMPLE ID: MW	/-513A	DATE: 2/25/2014								

PURGING DATA

WELL DIAMETER (inches): 2	TUBING												
, ,	DIAMET	ER (inches): 1/	1 -	WELL SCREEN INTERVAL DEPTH (feet btoc): 34.5 to 39.5 STATIC DEPTH TO WATER (feet btoc): 7.						PURGE PUMP TYPE OR BAILER: PP			
Гubing–in-Screen Interva				NG CAPACITY 43 feet) + 0.13				+ FLOW CELL V s	OLUME				
NITIAL PUMP OR TUBING	-	FINAL PUMP OR TUBING DEPTH IN WELL (feet btoc): 38.5			PURGIN INITIATE	_	0949	PURGING ENDED AT:	1018	TOTAL VOLUME PURGED (gallons): 1.0			
TIME VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pН	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)		SP Gravit (sg)		
0954 0.1	0.1	300	8.05	6.23	20.54	4.	.635	14.0	30.0	-100.8			
1000 0.25	0.26	200	8.05	6.03	20.86	4.	.402	7.0	30.9	-114.3			
1006 0.25	0.47	220	8.05	6.00	20.89	4.	.386	5.7	31.8	-120.1			
1012 0.25	0.72	225	8.05	5.99	20.98	4.	.391	4.6	32.6	-123.0			
1015 0.25	0.97	225	8.05	5.99	21.06	4.	.401	4.2	31.2	-127.5			
WELL CAPACITY (Gallon TUBING INSIDE DIA. CAF BTOC = Below top of car	PACITY (Gal./F sing – feet belo	t.): 1/8" = 0.00 w top of casing	006; 3/	16" = 0.0014; cludes above grad	1/4" = 0.002	26;	3 " = 0.37; 5/16 " = 0.	004; 3/8" = 0.	5" = 1.02; .006; 1/2	2" = 0.010; 5/8	" = 5.88 " = 0.016		

SAMPLED Rick Bu	BY (PRINT) / A utler	FFILIATION:		SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1020	SAMPLI 1050	NG ENDED AT:		
PUMP OR DEPTH IN	TUBING WELL (feet): 3	8.5		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-li		R SIZE: <u>0.45</u> μm		
FIELD DE	CONTAMINATIO	ON: PUI	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No			
SAM	IPLE CONTAINE	R SPECIFIC	INTENDED	SAMPLING	Additional						
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
MW- 513A-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP			
MW- 513A-	1	PE	125mL				3500 FE/ 9040B pH	APP			
MW- 513A-	1	PE	250mL	G010B Dissolved APP Silica							
MW- 513A-	1	PE	125mL	9251 Chloride & APP 9038 Sulfate							
MW- 513A-	1	AG	125mL				SM 5310 DOC	APP			
MW- 513A-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered		
MW- 513A-	1	PE	500mL				2540C TDS	APP			
MW- 513A-	1	PE	250mL				2320B Alkalinity	APP			
MW- 513A-	1	AG	125mL	HCI			SM5310 TOC	APP			
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.										
MATERIA	L CODES:	AG = Amber	Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O =	Other (Specify)		
SAMPLIN	G EQUIPMENT			reristaltic Pump; rse Flow Peristaltic Pu	B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)			

CDOLINDWATED SAMPLING LOG

			O.	COUL	, , , , , , , , , , , , , , , , , , ,	LI SAN	/II L I	140	LUU				
SITE NAME: LC	P Chemical Sit	e			-	SITE .OCATION: Bru	nswick,	GA					
WELL NO:	MW-513B			SAMPLE	ID: MW-5 1	13B				DATE:	2/25/20 ⁻	14	
					PUR	GING DAT	ГА						
WELL	_ , , , , _	TUBIN	-			EN INTERVAL STATIC DEPTH PURGE PUMP TYPE						YPE	
	R (inches): 2	1	TER (inches):		, ,	: 43.8 to 48.8			R (ft btoc): 7.53			ILER: PP	
Tubing-in	-Screen Interva					X TUE 0.13 gallons			FLOW CELL V s	/OLUME			
	JMP OR TUBIN WELL (ft btoc)	-	_	IP OR TUBINO WELL (ft btoc):		PURGINO INITIATE	-	27	PURGING ENDED AT:	0900		OTAL VOI PURGED (g	_UME gallons): ~1.0
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP CO (mS/c		DISSOLVED OXYGEN (% saturation)	_	BIDITY TUs)	ORP (mV)	
0834	0.1	0.1	100	9.48	6.52	20.40	13.4	6	13.2	3	8.3	-158.	2
0841	0.26	0.27	300	9.48	6.44	20.58	12.9	1	7.2	3	6.5	-204.	7
0847	0.26	0.53	300	9.48 6.47 20.63 11.86 6.3 21.3						1.3	-197.	7	
0852	0.26	0.79	300	9.48	6.50	20.59	11.0	5	6.5	1:	5.7	-200.	5
0857	0.26	1.05	300	9.48	6.51	20.65	5 10.63 6.53 15.1 -					-185.	0 1.02
												1	
WELLOA	PACITY (Gallon	o Dor Footh	0.75" 0.00:	1 " = 0.04;	4.2F" 0.4	06; 2 " = 0.16	. 2"	0.37;	4 " = 0.65;	5 " = 1.0	o. c "	= 1.47:	12 " = 5.88
TUBING II	NSIDE DIA. CAI Below top of ca	PACITY (Gal.	/Ft.): 1/8" = 0.0	0006; 3/16 "	= 0.0014;	1/4" = 0.0026		6" = 0.0					5/8 " = 0.016
PURGING	EQUIPMENT C	ODES: I	B = Bailer;	3P = Bladder F		ESP = Electric S		ble Pum	np; PP = Pe	eristaltic	Pump;	O = O	ther (Specify)
			T			PLING DA	TA						
Rick Bu	BY (PRINT) / A utler	FFILIATION:		SAMPLER(S)	SIGNATUR	RE(S):			SAMPLING INITIATED A	T: 0905		SAMPLIN ENDED A	
PUMP OR DEPTH IN		TUBING TUBING FIELD-FIL WELL (feet): 45.8 MATERIAL CODE: Teflon-lined PE Filtration B											R SIZE: <u>0.45</u> μ m
FIELD DE	CONTAMINATIO	ON: PUI	MP Y N	0	TUBING	G Yes N	o (replac	ed)	DUPLICATE:		No		
	PLE CONTAINE		ATION			PRESERVATION			INTENDE		_	/PLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	USED ADDED IN FIELD (mL) PH METHO					THOD		IPMENT ODE	Comments	
MW- 513B	1	PE	250mL	HNO3					6010B T Metals/ 747		1	APP	
MW-					3500 FE/ 9								

PUMP OR DEPTH IN	R TUBING I WELL (feet): 4:	5.8		TUBING MATERIAL CODE:	Teflon-lined PE		-FILTERED: Yes SM 4500 Sulfide FILTER SIZE: <u>0.45</u> μm on Equipment Type: In-line filter		
FIELD DE	CONTAMINATIO	DN: PUI	MP Y	No T	UBING Yes No (r	eplaced)	DUPLICATE:	No	
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 513B	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP	
MW- 513B	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 513B	1	PE	250mL			ŀ	6010B Dissolved Silica	APP	
MW- 513B	1	PE	125mL			-1	9251 Chloride & 9038 Sulfate	APP	
MW- 513B	1	AG	125mL			I	SM 5310 DOC	APP	
MW- 513B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 513B	1	PE	500mL				2540C TDS	APP	
MW- 513B	1	PE	250mL				2320B Alkalinity	APP	
MW- 513B	1	AG	125mL	HCI		ŀ	SM5310 TOC	APP	
REMARKS: Per SOP, parameters stable prior to sample collection.									

APP = After Peristaltic Pump; **B** = Bail **RFPP** = Reverse Flow Peristaltic Pump; ller; **BP** = Bladder Pump; **ESP** = Electric Submersible Pump; **SM** = Straw Method (Tubing Gravity Drain); **O** = Other (Specify) **NOTES:** Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: **pH**: \pm 0.1 unit **Specific Conductance**: \pm 5% **Dissolved Oxygen**: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L **Turbidity**: all readings \leq 10 NTU; or \pm 10%

PE = Polyethylene;

B = Bailer;

PP = Polypropylene;

T = Teflon;

O = Other (Specify)

S = Silicone;

MATERIAL CODES:

SAMPLING EQUIPMENT CODES:

AG = Amber Glass;

CG = Clear Glass;

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA							
WELL NO: MW-514A	SAMPLE ID: MW	I-514A	DATE: 2/28/2014						
PLIPCING DATA									

						,,,,,						
WELL	(inches): 2	TUBING	ER (inches): 1		LL SCREEN I		STATIC I	DEPTH ER (ft btoc): 8.84	_	PURGE PUMP TYPE OR BAILER: PP		
DIAMETER	(IIICHES). Z	DIAMET	ER (IIICHES). I	7 4 DEI	TH(II bloc).	94.0 10 39.0	10 WAT	ER (II DIOC). 6.64	UK	DAILER. PP		
Tubing-in-Screen Interval purge: 1 EQUIPMENT VOL. = (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME = s (0.0026 gallons/foot X 42 feet) + 0.13 gallons = 0.24 gallons												
				P OR TUBINO VELL (ft btoc)		PURGIN INITIATI	IG ED AT: 1237	PURGING ENDED AT:	1310	TOTAL VOLUM PURGED (gallo		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)	SP COND. (mS/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDIT (NTUs)		SP Gravity (sg)	
1240	0.2	0.2	180	9.25	6.83	20.68	6.031	n/a	5.27	-68.3		
1245	0.3	0.5	180	9.25	6.79	21.39	6.011	23.6	3.98	-78.6		
1250	0.3	0.8	180	9.25	6.83	21.49	5.974	15.4	3.73	-86.5		
1255	0.3	1.1	180	9.25	6.84	21.50	5.942	12.2	4.05	-92.6		
1300	0.3	1.4	180	9.25	6.85	21.44	5.919	10.8	3.92	-97.6		
1305	0.3	1.7	180	9.25	6.86	21.50	5.910	9.8	4.56	-87.6		
1310	0.3	2.0	180	9.25	6.86	21.49	5.903	9.2	4.63	-81.2		

veell Capacity (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1

BTOC = Below top of casing - feet b **2**" = 0.16; **6**" = 1.47; **3**" = 0.37: **4**" = 0.65: **5**" = 1.02; **12**" = 5.88 **1/4"** = 0.0026; **5/16"** = 0.004; 3/8" = 0.006;**1/2"** = 0.010; **5/8"** = 0.016 BTOC = Below top of casing - feet below top of casing which includes above grade riser

PURGING EQUIPMENT CODES: B = Bailer: **BP** = Bladder Pump; **ESP** = Electric Submersible Pump;

MATERIAL CODES:

SAMPLING EQUIPMENT CODES:

AG = Amber Glass;

CG = Clear Glass;

APP = After Peristaltic Pump:

SAMPLING DATA

PP = Peristaltic Pump;

O = Other (Specify)

SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING Tanya Chuprikova ENDED AT: 11324 INITIATED AT: 1315 PUMP OR TUBING FIELD-FILTERED: Yes SM 4500 Sulfide FILTER SIZE: 0.45 μm **TUBING** DEPTH IN WELL (feet): 36 MATERIAL CODE: Teflon-lined PE Filtration Equipment Type: In-line filter FIELD DECONTAMINATION: PUMP Nο TUBING No (replaced) DUPLICATE: Nο Yes SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION INTENDED SAMPLING Additional **EQUIPMENT** ANALYSIS AND/OR **PRESERVATIVE** TOTAL VOL SAMPLE MATERIAL FINAL Comments CODE **METHOD** CONTAINERS VOLUME ADDED IN FIELD (mL ID CODE CODE USED рΗ 6010B TAL MW-PΕ HNO3 APP 250mL Metals/7470A Hg 514A 1 MW-3500 FE/ 9040B 514A PΕ 125mL рΗ APP 1 MW-6010B Dissolved 1 PΕ 250mL APP 514A Silica 9251 Chloride & MW-514A PΕ 125mL 9038 Sulfate APP MW-514A AG 125mL SM 5310 DOC APP MW-NaOH 2 PΕ APP Field-Filtered 250mL SM4500 Sulfide 514A Zinc Acetate MW-514A PΕ 500mL 2540C TDS APP MW-PΕ 250mL 2320B Alkalinity APP 514A MW-AG 125mL HCI **SM5310 TOC** APP 514A REMARKS: Per SOP, parameters stable prior to sample collection.

PE = Polyethylene;

B = Bailer;

PP = Polypropylene;

BP = Bladder Pump;

S = Silicone;

ESP = Electric Submersible Pump:

T = Teflon;

O = Other (Specify)

O = Other (Specify)

			· ·		11011	~ · · ·	-11 0/11	•••						
SITE NAME: LC	P Chemical Sit	e				SIT	ΓΕ CATION: Br ι	ınswid	ck, GA					
WELL NO:	MW-514B			SA	MPLE ID: I	/IW-514	В				DATE:	2/28/20	14	
				I	F	URG	ING DA	TA						
WELL		TUBIN	G TER (inches):				NTERVAL		STATIC D				E PUMP T	YPE
	R (inches): 2	DEPTH(ft					R (ft btoc): 8.91		l	ILER: PP				
Tubing-in-Screen Interval purge: 1 EQUIPMENT VOL. = (TUBING = s (0.0026 gallons/foot X 5										+ FLOW CELL \ S	VOLUM!	E		
	JMP OR TUBIN WELL (ft btoc)	-	FINAL PUI DEPTH IN				PURGIN INITIATE		1118	PURGING ENDED AT:	1142		TOTAL VOLUME PURGED (gallons): 1.5	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEP TO WAT (fe bto	ER (sta	oH ndard nits)	TEMP.		COND. S/cm)	DISSOLVED OXYGEN (% saturation)		RBIDITY ITUs)	ORP (mV)	
1122	0.2	0.2	200	9.	4 6	.73	19.86	6	.031	20.9	•	16.7	-143.	2
1127	0.2	0.4	180	9.3	36 6	.32	20.56	5	.000	11.3	6	6.95	-118.	5
1132	0.35	0.75	200	9.52 6.28 21.38 5.056 10.3 4,86							-114.:	2		
1137	0.35	1.20	200	9.5	52 6	.28	21.39	5	.362	9.5	9.5 3.88			8
1142	0.35	1.55	200	9.5	9.52 6.31 21.52 5.911 8.9 4.3				1.39	-120.	6 1.01			
WELLOA	DACITY (Caller	- D F4\-	0.75" 0.00:	4" 0	04: 4.05	" 0.00	6: 2 " = 0.1	o. •	3 " = 0.37:	4" 0.05	5 " 4	00. 6"	' = 1.47:	40" 5.00
TUBING IN	PACITY (Gallon NSIDE DIA. CAI Below top of ca	PACITY (Gal.	/Ft.): 1/8" = 0	.0006;	04; 1.25 3/16" = 0.0 includes at	014;	1/4" = 0.002		5/16" = 0.37; 5/16" = 0.0		5 " = 1.0 0.006;			12 " = 5.88 5/8 " = 0.016
PURGING	EQUIPMENT C	ODES: I	3 = Bailer;	BP = Bla	dder Pump		SP = Electric		ersible Pur	mp; PP = P	eristalti	c Pump;	O = O	ther (Specify)
							LING DA	ATA		T				
	BY (PRINT) / A Chuprikova	FFILIATION:		SAMPL	ER(S) SIGN	IATURE	E(S):			SAMPLING INITIATED A	T: 1145	,	SAMPLIN ENDED A	
PUMP OR TUBING DEPTH IN WELL (feet): 47 TUBING MATERIAL CODE: Teflon-lined							lined PE			FILTERED: Yon Equipment Ty				R SIZE: <u>0.45</u> μm
FIELD DECONTAMINATION: PUMP Y No TUBI						UBING	Yes N	lo (rep	placed)	DUPLICATE:		N	lo	
SAMPLE CONTAINER SPECIFICATION SAMPL SAMPLE # MATERIAL PRESERVATIVE					ANIA		INTEND ANALYSIS A	ND/OR	EQU	MPLING JIPMENT	Additional Comments			
ID CODE MW-	CONTAINERS	CODE	VOLUME											
514B	1	PE	250mL	H	NO3					Metals/ 747	'0A Hg	,	APP	
M\//-										3500 FF/ 9	0040R	1		

PUMP OR DEPTH IN	R TUBING I WELL (feet): 4	7		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 4500 Sulfide FILTER SIZE: <u>0.45</u> µm n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Yes No (r e	eplaced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
MW- 514B	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP		
MW- 514B	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 514B	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 514B	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
MW- 514B	1	AG	125mL				SM 5310 DOC	APP		
MW- 514B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 514B	1	PE	500mL				2540C TDS	APP		
MW- 514B	1	PE	250mL				2320B Alkalinity	APP		
MW- 514B	1	AG	125mL	HCI			SM5310 TOC	APP		
PEMARKS: Per SOP, parameters stable prior to sample collection										

REMARKS: Per SOP, parameters stable prior to sample collection.

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: **pH**: \pm 0.1 unit **Specific Conductance**: \pm 5% **Dissolved Oxygen**: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L **Turbidity**: all readings \leq 10 NTU; or \pm 10%

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick , GA	
WELL NO: MW-515B	SAMPLE ID: MW	/-515B	DATE: 2/25/2014

PURGING DATA

						PURG	ING DA	TA						
WELL		TUBING				SCREEN II			_	DEPTH		-	GE PUMP TYPE	
DIAMETER	(inches): 2	DIAMET	ER (inches): 1/	4	DEPT	H (feet btoc): 49.2 to 54.	2	TO WAT	TER (feet btoc): 9	0.0	OR B	AILER: PP	
Tubing-in-	Screen Interva		UIPMENT VOL (0.0026 gallo						,	+ FLOW CELL \ s	OLUME			
	MP OR TUBINO WELL (feet btoo		FINAL PUMF DEPTH IN W	ELL (fee	et btoc): 52	PURGIN INITIATE	-	1418	PURGING ENDED AT:	1445		TOTAL VOLUME PURGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (fee btoo	ER et	pH (standard units)	TEMP. (°C)	-	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURB (NT		ORP (mV)	SP Gravity (sg)
1424	0.25	0.25	230	9.2	2	8.75	22.90	1	5.72	4.6	11	.4	-316.2	
1429	0.5	0.75	230	9.2	1	8.59	22.84	1	5.71	2.5	9.	.0	-335.4	
1434	0.5	1.25	230	9.2	1	8.70	22.75	1	5.74	1.7	1.	.7	-360.8	
1439	0.5	1.75	230	9.2	1	8.73	22.83	1	5.74	1.5	1.	.5	-376.0	
1444	0.5	2.25	230	9.24	4	8.80	22.76	1	5.33	1.1	1.	.1	-390.0	
	ACITY (Gallons								3 " = 0.37;	4 " = 0.65;	5 " = 1.02	2; 6	5 " = 1.47; 12 "	= 5.88
	SIDE DIA. CAP						1/4" = 0.002 de riser	6;	5/16" = 0.	004; 3/8" = 0.	.006;	1/2" :	= 0.010; 5/8"	= 0.016
	EQUIPMENT C			P = Blad			SP = Electric	Subme	ersible Pu	mp; PP = Pe	ristaltic F	Pump:	; O = Other	(Specify)

SAMPLING DATA

	BY (PRINT) / A Chuprikova		•	SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1445	SAMPLI n/a	NG ENDED AT:	
PUMP OR DEPTH IN	TUBING WELL (feet): 5	2		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> µm in Equipment Type: In-line filter			
FIELD DE	CONTAMINATION	ON: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	ER SPECIFIC	CATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE TOTAL VOL FINAL USED ADDED IN FIELD (mL) PH		ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments		
MW- 515B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 515B-	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 515B-	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 515B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
MW- 515B-	1	AG	125mL				SM 5310 DOC	APP		
MW- 515B-	2	PE	250mL	NaOH Zinc Acetate		-	SM4500 Sulfide	APP	Field-Filtered	
MW- 515B-	1	PE	500mL			1	2540C TDS	APP		
MW- 515B-	1	PE	250mL			1	2320B Alkalinity	APP		
MW- 515B- 1 AG 125mL HCI SM5310 TOC APP										
REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters. Purge water brown, sulfur-like odor.										
MATERIA	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)									

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: $pH: \pm 0.1$ unit Specific Conductance: $\pm 5\%$ Dissolved Oxygen: all readings $\leq 10\%$ saturation; optionally, ± 0.2 mg/L Turbidity: all readings ≤ 10 NTU; or $\pm 10\%$

SITE		SITE	
NAME: LCP Chemical Site		LOCATION: Brunswick, GA	
WELL NO: MW-516A	SAMPLE ID: MW	'-516A	DATE: 2/25/2014

PURGING DATA

WELL DIAMETER	(inches): 2	TUBING	ER (inches): 1/		WELL SCREEN IN				DEPTH FER (feet btoc): 7	_	IRGE PUMP TYP	E
	(/	l Purge: 1 EQ	UIPMENT VOI	= (TUB	ING CAPACITY 45 feet) + 0.13	X TL	JBING	LENGTH)	+ FLOW CELL V	I	C DY NILLIN. I I	
_	MP OR TUBINO		FINAL PUMP DEPTH IN W			PURGIN INITIATE	-	n/a	PURGING ENDED AT:	1505	TOTAL VOLU PURGED (gal	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTI TO WATE (feet btoc)	pН	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	TURBIDI (NTUs)	-	SP Gravit (sg)
1440	0.75	0.75	300	7.13	6.25	22.36	9	.641	10.0	12.6	-125.7	
1445	0.5	1.25	300	7.15	6.21	22.22	9	.731	11.1	14.3	-126	
1450	0.5	1.75	300	7.17	6.19	22.17	9	.703	11.2	11.9	-125.6	
1455	0.5	2.25	300	7.17	6.19	22.20	9	.816	11.6	16.7	-126.3	
1500	0.5	2.75	300	7.17	6.16	22.18	9	.808	11.8	13.6	-126.7	
1505	0.5	3.25	300	7.18	6.15	22.19	9	.815	11.8	12.2	-127.1	
TUBING IN BTOC = Be	SIDE DÌA. CAP	PACITY (Gal./Fi sing – feet belo	t.): 1/8" = 0.00 w top of casing	006; 3/ g which in	1.25" = 0.06; 16" = 0.0014; cludes above gradeler Pump: ES	1/4" = 0.002	26;	3" = 0.37; 5/16" = 0.	004; 3/8" = 0.	5" = 1.02; 006; 1/2 eristaltic Pun	2" = 0.010; 5/	2" = 5.88 3" = 0.016 er (Specify)

SAMPLED Matt Ve	BY (PRINT) / A etter	FFILIATION:		SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1510	SAMPLIN 1525	SAMPLING ENDED AT: 1525	
PUMP OR DEPTH IN	TUBING WELL (feet): 3	7		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 n Equipment Type: In-li		SIZE: <u>0.45</u> μm	
FIELD DE	CONTAMINATIO	ON: PUI	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE TOTAL VOL FINAL USED ADDED IN FIELD (mL) pH			ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 516A-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 516A-	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 516A-	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 516A-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
MW- 516A-	1	AG	125mL				SM 5310 DOC	APP		
MW- 516A-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 516A-	1	PE	500mL				2540C TDS	APP		
MW- 516A-	1	PE	250mL				2320B Alkalinity	APP		
MW- 516A-	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.									
MATERIA	L CODES:	AG = Ambei	Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)	
SAMPLIN	G EQUIPMENT			Peristaltic Pump; rse Flow Peristaltic Pu	B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)		

SITE		SITE	
NAME: LCP Chemical Site		LOCATION: Brunswick, GA	
WELL NO: MW-516B	SAMPLE ID: MW	'-516B	DATE: 2/25/2014

PURGING DATA

				- 1			110 57				-			
WELL		TUBING			WELL SCR				STATIC			-	GE PUMP TYPE	
DIAMETER	(inches): 2	DIAMET	ER (inches): 1/	4	DEPTH (fee	et btoc):	50.6 to 55.	6	TO WAT	ER (feet btoc): 7	7.78	OR B	AILER: PP	
Tubing-in-S	Screen Interva		UIPMENT VOI (0.0026 gallo				X TL gallons =			+ FLOW CELL \ s	/OLUME	Ī		
					MP OR TUBING WELL (feet btoc): 52.7			PURGING INITIATED AT: 1308		PURGING ENDED AT:	1346		TOTAL VOLUME PURGED (gallons): 2.0	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEP TC WAT (fee	pl ER (stand et unit	dard	TEMP.	_	COND. S/cm)	DISSOLVED OXYGEN (% saturation)	_	BIDITY TUs)	ORP (mV)	SP Gravity (sg)
1316	0.5	0.5	250	8.3	0 11.	50	22.28	3	6.52	9.4	5	5.4	-260.3	
1321	0.25	0.75	250	8.3	1 11.	50	21.91	3	6.38	7.2	4.	.04	-288.8	
1326	0.25	1.0	250	8.3	2 11.	49	22.20	3	6.64	5.7	3.	.67	-309.4	
1331	0.25	1.25	250	8.3	5 11.	47	22.30	3	6.77	4.3	3.	.86	-322.7	
1336	0.25	1.5	250	8.3	6 11.	46	22.34	3	7.28	3.8	3.	.40	-331.8	
1341	0.25	1.75	250	8.3	7 11.	48	22.39	3	7.24	3.3	3.	.50	-337.2	1.02
TUBING INS BTOC = Be	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 BTOC = Below top of casing – feet below top of casing which includes above grade riser													
PURGING E	QUIPMENT C	ODES: B =	Bailer; B	P = Blac	dder Pump;	ESI	P = Electric	Submo	ersible Pui	mp; $PP = Pe$	eristaltic	Pump;	; O = Other	(Specify)

SAMPLED Matt Ve	BY (PRINT) / Aetter	FFILIATION:		SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1348	SAMPLIN 1405	IG ENDED AT:	
PUMP OR DEPTH IN	TUBING WELL (feet): 52	2.7		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> µm n Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	N: PUI	MP Y I	No T	UBING Y No (repl a	iced)	DUPLICATE:	No		
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE TOTAL VOL FINAL USED ADDED IN FIELD (mL) pH			ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 516B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 516B-	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 516B-	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 516B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
MW- 516B-	1	AG	125mL				SM 5310 DOC	APP		
MW- 516B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 516B-	1	PE	500mL				2540C TDS	APP		
MW- 516B-	1	PE	250mL				2320B Alkalinity	APP		
MW- 516B-	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	REMARKS: Per SOP, parameters stable prior to sample collection. Water level stabilized prior to collecting parameters.									
MATERIA	L CODES:	AG = Ambei	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)	
SAMPLIN	G EQUIPMENT				B = Bailer; BP = Bladd ump; SM = Straw Metho		ESP = Electric Subme Gravity Drain); O = C	ersible Pump; Other (Specify)		

			GI	KOUND	WAIL	ER SAN	MPL	ING	LOG				
SITE NAME: LC	P Chemical Sit	e				TE DCATION: Br u	ınswick	k. GA					
WELL NO:	MW-517A			SAMPLE II	D: MW-51 7	7A		•		DATE:	2/25/20 ²	14	
					PURG	SING DA	TA						
WELL DIAMETER	R (inches): 2	TUBIN DIAME	IG ETER (inches): 1		SCREEN H(ft btoc):	INTERVAL 30 - 35	_	STATIC DI	EPTH R (ft btoc): 8.25			E PUMP TY ILER: PP	/PE
Tubing-in	-Screen Interva			L. = (TUBING C allons/foot X 38		X TUI 13 gallons :	BING LE = 0.23	ENGTH) + 3 gallons	+ FLOW CELL V	OLUME			
	JMP OR TUBIN WELL (ft btoc)			IP OR TUBING WELL (ft btoc):	33	PURGINI INITIATE		1402	PURGING ENDED AT:			TOTAL VOLUME PURGED (gallons): ~1	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)		DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP. (°C)		COND. S/cm)	DISSOLVED OXYGEN (% saturation)		BIDITY TUs)	ORP (mV)	
1406	0.1	0.1	250	8.29	6.29	22.02	9.4	489	12.2	1	2.1	-75.4	ļ.
1410	0.25	0.26	250	8.29	6.08	21.82	9.3	373	4.9	7	.08	-94.2	!
1415	0.25	0.51	250	8.29	8.29 6.05 21.81				3.6		.19	-72.5	
1420	0.25	0.75	250	8.29	6.06	21.81 9.277		3.4	8.5		-71.5	i	
TUBING IN		PACITY (Gal.	/Ft.): 1/8" = 0.0		1.25" = 0.00 : 0.0014; s above gra	1/4" = 0.002		" = 0.37; 5/16" = 0.0		5 " = 1.0)2; 6" 1/2" =	= 1.47; 0.010;	12 " = 5.88 5/8 " = 0.016
PURGING	EQUIPMENT C	ODES: I	B = Bailer; E	3P = Bladder Pu		SP = Electric		rsible Pun	np; PP = Pe	eristaltic	Pump;	O = O	ther (Specify)
						LING DA	TA		T				
Rick Bu	BY (PRINT) / A I tler	FFILIATION:		SAMPLER(S) S	SIGNATURI	Ξ(S):			SAMPLING INITIATED AT	Г: 1425		SAMPLIN ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet): 3	3		TUBING MATERIAL COI	DE: Teflon	-lined PE			FILTERED: Yen Equipment Ty				R SIZE: <u>0.45</u> μm
FIELD DEC	CONTAMINATIO	MP Y N	TUBING	Yes N	lo (repl	laced)	DUPLICATE:		N	0			
	PLE CONTAINE		ATION		RESERVATIO			INTENDE ANALYSIS A			IPLING IPMENT	Additional	
SAMPLE ID CODE MW-	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED	RESERVATIVE TOTAL VOI USED ADDED IN FIELD			FINAL pH	METHO 6010B T	D		ODE	Comments
517A	1	PE	250mL	HNO3					Metals/ 747		P	\PP	
MW- 517A	1	PE	125mL						3500 FE/ 9 pH		F	\PP	
MW- 517A	1	PE	250mL						6010B Dissolved Silica		A	\PP	

APP = After Peristaltic Pump; **B** = BarkerPP = Reverse Flow Peristaltic Pump; ler; **BP** = Bladder Pump; **ESP** = Elector SM = Straw Method (Tubing Gravity Drain); NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: ± 0.1 unit Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 10% saturation; optionally, ± 0.2 mg/L Turbidity: all readings ≤ 10 NTU; or ± 10%

PE = Polyethylene;

B = Bailer;

9251 Chloride &

9038 Sulfate

SM 5310 DOC

SM4500 Sulfide

2540C TDS

2320B Alkalinity

S = Silicone;

ESP = Electric Submersible Pump;

PP = Polypropylene;

APP

APP

APP

APP

APP

APP

T = Teflon;

O = Other (Specify)

Field-Filtered

O = Other (Specify)

MW-

517A

MW-517A

MW-

517A

MW-517A

MW-

517A

517A

MATERIAL CODES:

2

SAMPLING EQUIPMENT CODES:

PΕ

AG

PΕ

PΕ

PΕ

AG

AG = Amber Glass;

125mL

125mL

250mL

500mL

250mL

125mL

NaOH

Zinc Acetate

HCI

CG = Clear Glass;

REMARKS: Per SOP, parameters stable prior to sample collection. Purge water clear brown, sulfur-like odor.

CDOLINDWATED SAMPLING LOG

			O.	COND	WAI	LIN SAII	VII L	.1140	LUU				
SITE NAME: LC	P Chemical Sit	e			-	ITE OCATION: Bru	ınswicl	k, GA					
WELL NO:	MW-517B			SAMPLE	ID: MW-51	7B				DATE:	2/25/20	14	
					PUR	GING DA	TA		L				
WELL DIAMETER	R (inches): 2	TUBIN DIAME	G TER (inches): 1	WELL SCREEN INTERVAL STATIC DEPTH 14 DEPTH(ft btoc): 49.7 to 54.7 TO WATER (ft btoc): 9.						PURGE PUMP TYPE OR BAILER: PP			
Tubing-in	-Screen Interva		QUIPMENT VOI						+ FLOW CELL \	VOLUME			
	JMP OR TUBIN WELL (ft btoc)	-	-	OR TUBING		PURGING INITIATED A		1304	PURGING ENDED AT:	PURGING ENDED AT: 1335		TOTAL VOL PURGED (g	UME gallons): ~ 1.25
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet btoc)	pH (standard units)	TEMP.		COND. G/cm)	DISSOLVED OXYGEN (% saturation)		BIDITY TUs)	ORP (mV)	
1309	0.1	0.1	250	10.15	6.48	22.31	30).56	12.9	5	3.0	-82.1	
1315	0.25	0.26	250	10.25	6.46	22.01	30).64	6.1	5	7.7	-89.3	3
1320	0.25	0.51	250	10.25	6.47	22.43	30).64	4.6	4	5.9	-96.0)
1325	0.25	0.76	250	10.25	6.49	22.17	30).61	4.2	4	6.2	-96.0)
1330	0.25	1.01	250	10.25	6.47	22.14	30).58	4.2	4	6.8	-96.9)
1335	0.25	1.26	250	10.25	6.48	22.16	30).57	4.2	4	7.8	-96.0)
TUBING IN	PACITY (Gallon NSIDE DIA. CAI Below top of ca	PACITY (Gal.	/Ft.): 1/8" = 0.0	006; 3/16 "	= 0.0014;	1/4" = 0.0026		" = 0.37; 5/16" = 0.				' = 1.47; : 0.010;	12 " = 5.88 5/8 " = 0.016
PURGING	EQUIPMENT C	ODES: E	B = Bailer; B	P = Bladder P	ump; I	ESP = Electric S	Subme	rsible Pur	mp; PP = P	eristaltic	Pump;	O = O	ther (Specify)
						PLING DA	ATA						
Rick Bu	BY (PRINT) / A Itler	FFILIATION:		SAMPLER(S)	SIGNATUR	RE(S):			SAMPLING INITIATED A	T: 1340		SAMPLIN ENDED A	
	PUMP OR TUBING DEPTH IN WELL (feet): 53 TUBING MATERIAL CODE					n-lined PE			-FILTERED: Y				R SIZE: <u>0.45</u> μm
FIELD DECONTAMINATION: PUMP Y No T					TUBING	S Yes N	lo (rep	laced)	DUPLICATE:		N	lo	
SAMPLE CONTAINER SPECIFICATION SAM					SAMPLE P	RESERVATIO	N		INTEND			MPLING	Additional
							DD		JIPMENT CODE	Comments			
MW- 517B	1	PE	250mL	60					6010B T Metals/ 747			APP	

KICK DO	ullei						INITIATED AT: 1340	ENDED A	AI: 1400
PUMP OR DEPTH IN	R TUBING N WELL (feet): 5	3		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes SM 45 n Equipment Type: In-li		ER SIZE: <u>0.45</u> μm
FIELD DE	CONTAMINATIO	ON: PUI	MP Y	No T	UBING Yes No (re	placed)	DUPLICATE:	No	
SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	Additional
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments
MW- 517B	1	PE	250mL	HNO3			6010B TAL Metals/ 7470A Hg	APP	
MW- 517B	1	PE	125mL				3500 FE/ 9040B pH	APP	
MW- 517B	1	PE	250mL				6010B Dissolved Silica	APP	
MW- 517B	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP	
MW- 517B	1	AG	125mL				SM 5310 DOC	APP	
MW- 517B	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered
MW- 517B	1	PE	500mL				2540C TDS	APP	
MW- 517B	1	PE	250mL				2320B Alkalinity	APP	
MW- 517B	1	AG	125mL	HCI			SM5310 TOC	APP	
REMARK	REMARKS: Per SOP, parameters stable prior to sample collection. Purge water clear brown, sulfur-like odor.								

APP = After Peristaltic Pump; **B** = Bail **RFPP** = Reverse Flow Peristaltic Pump; ller; BP = Bladder Pump; ESP = Electric Submersible Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) **NOTES:** Stabilization Criteria for Range of Variation of Last Three Consecutive Readings: **pH**: \pm 0.1 unit **Specific Conductance**: \pm 5% **Dissolved Oxygen**: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L **Turbidity**: all readings \leq 10 NTU; or \pm 10%

PE = Polyethylene;

B = Bailer;

PP = Polypropylene;

T = Teflon;

O = Other (Specify)

S = Silicone;

MATERIAL CODES:

SAMPLING EQUIPMENT CODES:

AG = Amber Glass;

CG = Clear Glass;

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-518A	SAMPLE ID: MW	-518A	DATE: 3/3/2014

DUDGING DATA

					PURG	ING DA	IA																
WELL DIAMETER	(inches): 2	TUBING	ER (inches): 1/		WELL SCREEN IN DEPTH (feet btoc)		1	STATIC	DEPTH ER (feet btoc): 7		-	E PUMP TYPE AILER: PP											
	,		, ,		BING CAPACITY				+ FLOW CELL V		אט אוכ	NILLIX. I I											
rubing-in-	Screen mierva				(41 feet) + 0.13	gallons =				OLUME													
	MP OR TUBING VELL (feet btoo	_	FINAL PUMF DEPTH IN W	'ELL (fee	t btoc): 36	PURGING INITIATED AT: 1128		PURGING ENDED AT:	1206	TOTAL VOLUME PURGED (gallons): ~3													
TIME	VOLUME VOLUME PURGE PURGED PURGED RATE (gallons) (gallons) (gpm) (gpm)		DEPT TO WATE (feet btoc)	PH (standard units)	TEMP. (°C)	(mS/cm)		DISSOLVED OXYGEN (% saturation)	TURBII (NTU		ORP (mV)	SP Gravity (sg)											
1131	0.2	0.2	200	8.61 8.76		21.49	7.	.583	15.4	12.	5	-98.6											
1136	0.3	0.5	200	8.75	8.81	21.43	7	.368	5.4	10.2		10.2		10.2		10.2		10.2		10.2		-95.4	
1141	0.3	0.8	170	8.48	8.84	21.36	7.656		3.7	8.96		-171.4											
1146	0.2	1.0	180	8.51	7.66	21.44	7	.845	3.4	7.9	2	-171.3											
1151	0.3	1.3	180	8.5	7.29	21.48	8	.038	3.0	7.5	7	-172.9											
1156	0.3	1.6	180	8.46	7.16	21.52	8	.181	2.4	7.0	8	-176.3											
1201	0.4	2.0	200	8.46	7.12	21.57	8	.276	1.8	6.8	3	-172.8											
1206	0.4	2.4	200	8.46	7.09	21.61	8	.370	1.8	6.5	4	-166.9											
		s Per Foot): 0.				2 " = 0.1 1/4 " = 0.002		3" = 0.37; 5/16" = 0.		5" = 1.02;			= 5.88 = 0.016										
					ncludes above grad		.0,	3,10 = 0.	 		.,	. 0.010, 3/0	_ 0.010										
PURGING E	QUIPMENT C	ODES: B =	Bailer; BI	P = Blade	der Pump; ES	P = Electric	Subme	ersible Pur	mp; PP = Pe	ristaltic P	ump;	O = Other	(Specify)										

SAMPLING DATA

	BY (PRINT) / A		:	SAMPLER(S) SIGN	NATURE(S):		SAMPLING	_	NG ENDED AT:	
	Chuprikova						INITIATED AT: 1210	1228		
PUMP OR DEPTH IN	TUBING WELL (feet): 3	6		TUBING MATERIAL CODE:	Teflon-lined PE		-FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> ա on Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y I	No T	UBING Y No (repl a	aced)	DUPLICATE: No			
SAM	PLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 518A-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg			
MW- 518A-	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 518A-	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 518A-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
MW- 518A-	1	AG	125mL				SM 5310 DOC	APP		
MW- 518A-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 518A-	1	PE	500mL				2540C TDS	APP		
MW- 518A-	1	PE	250mL				2320B Alkalinity	APP		
MW- 518A-	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	s: Per SOP,	parameter	s stable pri	or to sample coll	ection. Water level st	abilized	orior to collecting pa	arameters.		
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PI	E = Polyethylene; PP =	Polypropyle	ne; S = Silicone; T	= Teflon; O = 0	Other (Specify)	

RFPP = Reverse Flow Peristaltic Pump; **SM** = Straw Method (Tubing Gravity Drain); O = Other (Specify) NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: \pm 0.1 unit Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L Turbidity: all readings \leq 10 NTU; or \pm 10%

B = Bailer;

APP = After Peristaltic Pump;

SAMPLING EQUIPMENT CODES:

BP = Bladder Pump;

ESP = Electric Submersible Pump;

SITE		SITE	
NAME: LCP Chemical Site		LOCATION: Brunswick, GA	
WELL NO: MW-518B	SAMPLE ID: MW	/-518B	DATE: 3/03/2014

PURGING DATA

					. 0.10	1110 07							
WELL DIAMETER	(inches): 2	TUBING	ER (inches): 1/		WELL SCREEN II DEPTH (feet btoc		2	STATIC	DEPTH FER (feet btoc): 8			SE PUMP TYPE AILER: PP	
	, ,		,		,			l .	, ,			AILLIX. I I	
Tubing-in-	Screen Interva				ING CAPACITY 55 feet) + 0.13			LENGTH) 7 gallon) + FLOW CELL \ s	OLUME			
	MP OR TUBING	-	FINAL PUMI DEPTH IN V			PURGIN INITIATE	-	0931	PURGING ENDED AT:	0956		TOTAL VOLUM PURGED (gallo	_
TIME	VOLUME VOLUME PURGE PURGED (gallons) (gallons) (gpm)		DEPTI TO WATE (feet btoc)	pН	TEMP. (°C)	SP COND. (mS/cm)		DISSOLVED OXYGEN (% saturation)	TURBI (NTI		ORP (mV)	SP Gravit (sg)	
0936	0.2	0.2	180	7.15	6.54	19.76	1	3.49	103.4	9.14		-74.7	
0941	0.3	0.5	180	7.15	6.43	20.09	14.09		14.6	5.6	86	-75.3	
0946	0.4	0.7	180	7.18	6.40	20.37	1	4.30	8.1	4.2	27	-76.9	
0951	0.4	1.2	180	7.18	6.41	20.41	1	4.38	6.8	4.7	76	-80.2	
0956	0.4	1.6	180	7.18	6.39	20.50	1-	4.38	6.7	4.7	72	-82.9	1.02
WELL CAP	PACITY (Gallon:	s Per Foot): 0.	75 " = 0.02;	1 " = 0.04	1.25" = 0.06	; 2 " = 0.1	6; 3	3 " = 0.37;	4 " = 0.65;	5 " = 1.02	; 6	" = 1.47; 12 "	= 5.88
					/16" = 0.0014; cludes above gra	1/4" = 0.002 de riser	26;	5/16" = 0.	.004; 3/8" = 0.	006;	1/2" =	= 0.010; 5/8 "	= 0.016
	EQUIPMENT C				· ·	P = Electric	Suhmi	ersible Pu	mn· PP = Pe	ristaltic F	Dumn.	O = Other	(Specify)

	BY (PRINT) / A Chuprikova	FFILIATION:		SAMPLER(S) SIGN	NATURE(S):		SAMPLING INITIATED AT: 1000		SAMPLING ENDED AT: ~1030		
PUMP OR DEPTH IN	TUBING WELL (feet): 5 0	0		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 450 0 n Equipment Type: In-Ii		FILTER	SIZE: <u>0.45</u> μm	
FIELD DE	CONTAMINATIO	N: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No			
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMF		Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIP CO		Comments	
MW- 518B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	AF	P		
MW- 518B-	1	PE	125mL				3500 FE/ 9040B pH	AF	PP		
MW- 518B-	1	PE	250mL				6010B Dissolved Silica	AF	PP		
MW- 518B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	AF	PP		
MW- 518B-	1	AG	125mL				SM 5310 DOC	AF	PP		
MW- 518B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP		Field-Filtered	
MW- 518B-	1	PE	500mL				2540C TDS	AF	PP		
MW- 518B-	1	PE	250mL		1	-	2320B Alkalinity	AF	PP		
MW- 518B-	1	AG	125mL	HCI		-	SM5310 TOC	AF	PP		
REMARKS	s: Per SOP,	oarameter	s stable pri	or to sample colle	ection. Water level st	abilized	prior to collecting pa	aramet	ers.		
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon;	0 = 0	Other (Specify)	
SAMPLIN	G EQUIPMENT			eristaltic Pump; rse Flow Peristaltic Pu	ESP = Electric Subme Gravity Drain); O = C	ersible Pu Other (Spe					

SITE NAME: LCP Chemical Site		SITE LOCATION: Brunswick, GA	
WELL NO: MW-519A	SAMPLE ID: MW	′-519A	DATE: 2/24/2014

PURGING DATA

					1 0110		117						
WELL	(in ah aa). 2	TUBING			VELL SCREEN II		75		DEPTH		-	E PUMP TYPE NLER: PP	
DIAMETER	(inches): 2	DIAMET	ER (inches): 1	/4 L	DEPTH (feet btoc): 34.75 – 39	1.75	TO WA	TER (feet btoc): 8	5.37	K BA	AILER: PP	
Tubing-in-	Screen Interva				NG CAPACITY 37 feet) + 0.13			LENGTH) 3 gallon	+ FLOW CELL \ s	OLUME			
	MP OR TUBING WELL (feet btoo	-	FINAL PUMI DEPTH IN V			PURGIN INITIATI		1340	PURGING ENDED AT:	1410		FOTAL VOLUM PURGED (gallor	_
TIME	VOLUME VOLUME PURGE PURGED PURGED (gallons) (gallons) (gpm)		DEPTH TO WATER (feet btoc)	pН	TEMP. (^O C)	TEMP. SP C		DISSOLVED OXYGEN (% saturation)	TURBID (NTU:		ORP (mV)	SP Gravity (sg)	
1342	0.25	0.25	400	8.45	5.94	21.88	7.	.441	4.7	9.11		-97.2	
1347	0.75	1.0	400	8.45	5.92	21.81	21.81 7		2.6	5.94		-109	
1352	1.25	2.0	400	8.45	5.93	21.79	7	.496	2.6	5.18	3	-117	
1357	0.75	2.75	400	8.45	5.94	21.78	7.	.513	2.7	4.72	2	-119.5	
1402	0.75	3.5	400	8.45	5.94	21.78	7.	.506	2.8	4.12	2	-122.5	
1405	0.75	4.0	400	8.45	5.94	21.75	7.	.546	2.7	3.94	4	-123.7	
TUBING IN	SIDE DIA. CAP	PACITY (Gal./F	t.): 1/8" = 0.0	006; 3/		1/4" = 0.002		3" = 0.37; 5/16" = 0.		5" = 1.02; 006; 1		,	= 5.88 = 0.016
BTOC = B		sing – feet belo	w top of casing		cludes above gra					one; 1		0.010; 5/8 " O = Other	

SAMPLED Matt Ve	BY (PRINT) / A etter	FFILIATION:		SAMPLER(S) SIGN	IATURE(S):		SAMPLING INITIATED AT: 1410	SAMPLIN 1433	NG ENDED AT:	
PUMP OR DEPTH IN	TUBING WELL (feet): 3	5		TUBING MATERIAL CODE:	Teflon-lined PE		p-FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> μm on Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	DN: PUI	MP Y I	No T	UBING Y No (repl a	aced)	DUPLICATE:	No		
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 519A-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg	APP		
MW- 519A-	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 519A-	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 519A-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
MW- 519A-	1	AG	125mL				SM 5310 DOC	APP		
MW- 519A-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 519A-	1	PE	500mL				2540C TDS	APP		
MW- 519A-	1	PE	250mL				2320B Alkalinity	APP		
MW- 519A-	1	AG	125mL	HCI			SM5310 TOC	APP		
REMARKS	s: Per SOP, _I	oarameter	s stable pri	or to sample colle	ection. Water level st	abilized	prior to collecting pa	arameters.		
MATERIA	L CODES:	AG = Ambei	Glass; CG	= Clear Glass; PE	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)	
SAMPLIN	G EQUIPMENT			fter Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)						

SITE LOCATION: **Brunswick, GA** SITE NAME: LCP Chemical Site DATE: 2/24/2014 WELL NO: MW-519B SAMPLE ID: MW-519B

PURGING DATA

WELL TUBING WELL SCREEN INTERVAL STATIC DEPTH	DLID	RGE PUMP TYPE					
Tubing-in-Screen Interval Purge: 1 EQUIPMENT VOL. = (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VO = (0.0026 gallons/foot X 55 feet) + 0.13 gallons = 0.27 gallons	LUME						
INITIAL PUMP OR TUBING DEPTH IN WELL (feet btoc): 50 FINAL PUMP OR TUBING DEPTH IN WELL (feet btoc): 50 PURGING INITIATED AT: 950 ENDED AT: 10	15	TOTAL VOLUME PURGED (gallon	_				
TIME VOLUME PURGED (gallons) CUMUL. VOLUME PURGE RATE (gpm) PURGE (feet btoc) PURGE (gpm) PURGED (gallons) (gpm) PURGE (feet btoc) PURGE (TURBIDIT (NTUs)	ORP (mV)	SP Gravity (sg)				
955 0.25 0.25 220 11.86 6.52 21.47 51.23 6.5	7.15	-170.4					
1000 0.25 0.5 220 12.68 6.53 21.41 52.88 6.8	5.7	-188.7					
1005 0.25 1.0 220 12.7 6.54 21.3 53.48 7.1	3.81	-191.8					
1010 0.25 1.5 220 12.7 6.54 21.2 53.15 7.1	3.74	-195.6					
1015 0.25 1.75 220 12.77 6.54 21.29 53.42 7.3	2.64	-190.3					
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.00 BTOC = Below top of casing – feet below top of casing which includes above grade riser	,	,	= 5.88 = 0.016				
	staltic Pump	p; O = Other ((Specify)				

SAMPLING DATA

SAMPLED	BY (PRINT) / A	FFILIATION:	<u> </u>	SAMPLER(S) SIGN	NATURE(S):		SAMPLING	SAMDLIN	IG ENDED AT:	
	Chuprikova			, ,	, ,		INITIATED AT: 1020	~1150	IG ENDED AT.	
PUMP OR DEPTH IN	TUBING WELL (feet): 5	0		TUBING MATERIAL CODE:	Teflon-lined PE		FILTERED: Yes/SM 4500 Sulfide FILTER SIZE: <u>0.45</u> μm on Equipment Type: In-line filter			
FIELD DE	CONTAMINATIO	ON: PU	MP Y	No T	UBING Y No (repl a	iced)	DUPLICATE:	No		
SAM	IPLE CONTAINE	R SPECIFIC	CATION	SAM	PLE PRESERVATION		INTENDED	SAMPLING	Additional	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED			ANALYSIS AND/OR METHOD	EQUIPMENT CODE	Comments	
MW- 519B-	1	PE	250mL	HNO3			6010B TAL Metals/7470A Hg			
MW- 519B-	1	PE	125mL				3500 FE/ 9040B pH	APP		
MW- 519B-	1	PE	250mL				6010B Dissolved Silica	APP		
MW- 519B-	1	PE	125mL				9251 Chloride & 9038 Sulfate	APP		
MW- 519B-	1	AG	125mL				SM 5310 DOC	APP		
MW- 519B-	2	PE	250mL	NaOH Zinc Acetate			SM4500 Sulfide	APP	Field-Filtered	
MW- 519B-	1	PE	500mL			1	2540C TDS	APP		
MW- 519B-	1	PE	250mL				2320B Alkalinity	APP		
MW- 519B-	1	AG	125mL	HCI			SM5310 TOC	APP		
	s: Per SOP, sulfur-like o	•	s stable pri	or to sample coll	ection. Water level st	abilized _l	prior to collecting pa	arameters. P	urge water	
MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; PE	E = Polyethylene; PP = I	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)	

er; **BP** = Bladder Pump; **ESP** = Elect **SM** = Straw Method (Tubing Gravity Drain); **ESP** = Electric Submersible Pump; avity Drain); **O** = Other (Specify) NOTES: Stabilization Criteria for Range of Variation of Last Three Consecutive Readings:-pH: ± 0.1 unit Specific Conductance: ± 5% Dissolved Oxygen: all readings \leq 10% saturation; optionally, \pm 0.2 mg/L Turbidity: all readings \leq 10 NTU; or \pm 10%

B = Bailer;

APP = After Peristaltic Pump; **B** = B **RFPP** = Reverse Flow Peristaltic Pump;

SAMPLING EQUIPMENT CODES:

Appendix E:

Sparging Flow Rates and Masses

				P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)		CO ₂ (scf)	(lb)	Mass (lb)
SW-2 Event 1	11/25/2013	9:10	11/25/2013 9:10	57	29			56	0.0				
	11/25/2013	9:12	11/25/2013 9:12	59	32	33	<2	56	0.0		0.0	0.00	0.00
	11/25/2013	9:24	11/25/2013 9:24		31	31.5	3.5	58	7.1		42.7	4.88	4.88
	11/25/2013	9:25	11/25/2013 9:25		32	33	5	58	10.3		8.7	0.99	5.88
	11/25/2013	10:25	11/25/2013 10:25		31	32	8	64	16.2		793.0	90.72	96.60
	11/25/2013	10:28	11/25/2013 10:28		33	34	10.5	64	21.7		56.8	6.49	103.09
	11/25/2013	11:23	11/25/2013 11:23		33	33.5	12	62	23.8		1250.3	143.04	246.13
	11/25/2013	12:08	11/25/2013 12:08		33	33.5	12	65	24.7		1092.1	124.94	371.07
	11/25/2013	12:45	11/25/2013 12:45		33	33	13	65	26.8		953.9	109.13	480.20
	11/25/2013	13:53	11/25/2013 13:53		33	33	14	64	28.9		1894.3	216.71	696.91
	11/25/2013	14:17	11/25/2013 14:17							Valve shut	693.7	79.36	776.27
	11/25/2013	14:18	11/25/2013 14:18			28				varve strat	033.7	73.30	776.27
SW-2 Event 2	12/5/2013	8:30	12/5/2013 8:30										776.27
OTT E ETCHEE	12/5/2013	8:31	12/5/2013 8:31	56	29	28	<2	68	0.0				776.27
	12/5/2013	8:34	12/5/2013 8:34	56	32	32	3	68	6.1		9.2	1.05	777.31
	12/5/2013	8:46	12/5/2013 8:34	55	32	32	5	69	10.2		97.6	11.16	788.48
	• •												
	12/5/2013	9:32	12/5/2013 9:32	53	32	32	8.5	76 70	17.2		628.4	71.88	860.36
	12/5/2013	10:24	12/5/2013 10:24	52	32	31.5	9.5	79	19.1		943.3	107.91	968.27
	12/5/2013	10:37	12/5/2013 10:37	51	32	31	11	81	22.1		267.9	30.65	998.93
	12/5/2013	11:38	12/5/2013 11:38	51	34	32.5	13.5	81	27.7		1519.0	173.77	1172.69
	12/5/2013	13:00	12/5/2013 13:00	54	34	32	14	81	28.7		2313.8	264.69	1437.39
	12/5/2013	13:01	12/5/2013 13:01							Valve shut	28.7	3.29	1440.68
	12/5/2013	13:02	12/5/2013 13:02			26							1440.68
SW-2 Event 3	12/10/2013	13:17	12/10/2013 13:17	53	34	34	<2	81	0.0				1440.68
	12/10/2013	13:43	12/10/2013 13:43	53	32	33	6.2	76	12.5		162.7	18.61	1459.29
	12/10/2013	14:09	12/10/2013 14:09	53	32	32	6.5	72	13.2		333.9	38.20	1497.49
	12/10/2013	15:04	12/10/2013 15:04	52	32	32	8	74	16.2		807.2	92.34	1589.83
	12/10/2013	15:49	12/10/2013 15:49	50	32	31	9	72	18.2		774.4	88.59	1678.43
	12/10/2013	16:26	12/10/2013 16:26	50	32	31	10	76	20.2		710.8	81.32	1759.75
	12/10/2013	17:10	12/10/2013 17:10	50	32	30	11	68	22.4		936.4	107.13	1866.87
	12/10/2013	22:37	12/10/2013 22:37	55	31	29	15	59	30.5		8637.9	988.17	2855.04
	12/10/2013	22:38	12/10/2013 22:38	55	35	32	20	59	42.4		36.4	4.17	2859.21
	12/11/2013	7:49	12/11/2013 7:49	51	34	30	22.5	60	47.1	Valve shut	24658.5	2820.93	5680.14
SW-2 Event 4	12/19/2013	12:09	12/19/2013 12:09	44	32	32	<2	69	0.0				5680.14
<u> </u>	12/19/2013	12:21	12/19/2013 12:21	44	30	30	6	72	11.9		71.4	8.16	5688.31
	12/19/2013	13:24	12/19/2013 13:24	50	30	29	7	74	13.8		810.8	92.75	5781.06
	12/19/2013	13:34	12/19/2013 13:24	50	32	31	12	74	24.3		190.6	21.80	5802.86
	12/19/2013	13:35	12/19/2013 13:34	49	34	32.5	14	74 74	28.9		26.6	3.04	5805.90
				45									
	12/19/2013	15:52	12/19/2013 15:52		34	32	17	68	35.3		4401.4	503.52	6309.42
	12/19/2013	16:38	12/19/2013 16:38	45	34	31	17.5	64	36.5	Value dest	1652.4	189.03	6498.45
	12/19/2013	16:39	12/19/2013 16:39			26				Valve shut	36.5	4.18	6502.63
CM 2.5 5	12/19/2013	16:40	12/19/2013 16:40	5.0	27	26	.2	42	0.0		0.0	0.00	6502.63
SW-2 Event 5	1/22/2014	8:15	1/22/2014 8:15	56	27	27	<2	42	0.0		0.0	0.00	6502.63
	1/22/2014	8:16	1/22/2014 8:16	56	31	33	<2	42	0.0		0.0	0.00	6502.63
	1/22/2014	8:18	1/22/2014 8:18	56	31	32	3.5	42	7.2		7.2	0.83	6503.45
	1/22/2014	8:49	1/22/2014 8:49	54	30.5	31	6	47	12.3		302.1	34.56	6538.01
	1/22/2014	8:50	1/22/2014 8:50	54	32	32	8	47	16.6		14.4	1.65	6539.67
	1/22/2014	9:48	1/22/2014 9:48	50	32	32	9	52	18.6		1021.6	116.87	6656.53
	1/22/2014	10:55	1/22/2014 10:55	47	32	32	11.2	57	23.0		1394.9	159.58	6816.11
	1/22/2014	12:00	1/22/2014 12:00	45	31.5	31	12.5	59	25.5		1578.0	180.52	6996.64
	1/22/2014	12:46	1/22/2014 12:46	49	31	30.5	13.8	60	28.0		1230.6	140.79	7137.42
	1/22/2014	13:59	1/22/2014 13:59	47	30.5	30	14.5	61	29.2		2087.9	238.86	7376.28
	-,,												

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)		Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
	1/22/2014	15:07	1/22/2014 15:07	53	32	31	19.7	62	40.3		2585.8	295.82	7675.88
	1/22/2014	16:00	1/22/2014 16:00	53	32	31	19.8	61	40.6		2143.2	245.19	7921.07
	1/22/2014	16:30	1/22/2014 16:30	52	32	30.5	19.9	58	40.9		1221.7	139.77	8060.84
	1/22/2014	16:31	1/22/2014 16:31			25				Valve shut	40.9	4.68	8065.51

Total CO₂ Mass (lbs):

8065.51

Back to Master	Date 1	Time	Date + Time	P at Reducer (psig)	P at Pane (psig)	l Pat We (psi)		Rotameter Reading (scfm)	Temp (°F)	F	·low (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
SW-3 Event 1	11/20/2013	10:00	11/20/2013 10:00	5.5	5	27				66	0.0			
	11/20/2013	10:02	11/20/2013 10:02			31	32	<	2	66	0.0	0.0	0.00	0.00
	11/20/2013	11:07	11/20/2013 11:07			29	29		5	66	9.9	320.3	36.64	36.64
	11/20/2013	11:09	11/20/2013 11:09			32	31.5		8	66	16.3	26.2	2.99	39.63
	11/20/2013	13:12	11/20/2013 13:12			32	31.5	8.	5	66	17.3	2068.5	236.63	276.26
	11/20/2013	14:58	11/20/2013 14:58			32	31.5		9	65	18.4	1891.6	216.40	492.66
	11/20/2013	15:04	11/20/2013 15:04								Valve shut	110.2	12.60	505.27
	11/20/2013	15:05	11/20/2013 15:05			24	24							505.27
SW-3 Event 2	12/5/2013	13:07	12/5/2013 13:07	55	5	32	31.5	<	2	82	0.0			505.27
	12/5/2013	14:26	12/5/2013 14:26	54	1	31	30.5	4.	5	86	8.9	351.5	40.21	545.48
	12/5/2013	14:27	12/5/2013 14:27	54	1	33	32		8	86	16.2	12.5	1.43	546.91
	12/5/2013	15:32	12/5/2013 15:32	50)	33	32		9	80	18.3	1120.0	128.13	675.04
	12/5/2013	16:42	12/5/2013 16:42	50)	32	31.5	10.	5	73	21.3	1384.3	158.36	833.40
	12/5/2013	17:26	12/5/2013 17:26	55	5	32	31.5	1	1	70	22.3	959.0	109.71	943.11
	12/5/2013	17:27	12/5/2013 17:27								Valve shut	22.3	2.56	945.67
	12/5/2013	17:28	12/5/2013 17:28											945.67
SW-3 Event 3	12/11/2013	9:10	12/11/2013 9:10	5!	5	34	33	<	2	66	0.0			945.67
	12/11/2013	9:43	12/11/2013 9:43	52.5	5	32	31		3	68	6.1	100.7	11.52	957.19
	12/11/2013	10:16	12/11/2013 10:16	50		32	31		4	68	8.1	235.0	26.88	984.07
	12/11/2013	10:56	12/11/2013 10:56	50		32	31	5.	5	70	11.2	386.1	44.17	1028.24
	12/11/2013	11:40	12/11/2013 11:40	50	32	2.5	31	8.	5	70	17.4	627.4	71.78	1100.01
	12/11/2013	11:41	12/11/2013 11:41	50		35	32	1	1	70	23.1	20.2	2.31	1102.33
	12/11/2013	12:34	12/11/2013 12:34	50		34	32	1	1	68	22.9	1216.7	139.19	1241.51
	12/11/2013	13:15	12/11/2013 13:15	50		34	32	1	1	66	22.9	938.2	107.33	1348.84
	12/11/2013	13:21	12/11/2013 13:21								Valve shut	137.4	15.72	1364.56
	12/11/2013	13:22	12/11/2013 13:22				25							1364.56
SW-3 Event 4	12/17/2013	8:47	12/17/2013 8:47	46		36	30	<	2	62	0.0	0.0	0.00	1364.56
	12/17/2013	9:52	12/17/2013 9:52	45		35	23	<	2	66	0.0	0.0	0.00	1364.56
	12/17/2013	9:53	12/17/2013 9:53	45		36	23	<	2	66	0.0	0.0	0.00	1364.56
	12/17/2013	10:58	12/17/2013 10:58	42		39	23	<	2	72	0.0	0.0	0.00	1364.56
	12/17/2013	11:02	12/17/2013 11:02	42		39	23	<	2	72	0.0	0.0	0.00	1364.56
	12/17/2013	13:45	12/17/2013 13:45	45		40	34	2	1	74	46.0	3751.1	429.12	1793.68
	12/17/2013	14:52	12/17/2013 14:52	45		40	36	1	7	70	37.4	2794.9	319.74	2113.42
	12/17/2013	14:53	12/17/2013 14:53	45		36	33		8	70	16.9	27.2	3.11	2116.53
	12/17/2013	15:45	12/17/2013 15:45	45	32	2.5	31	1	4	68	28.6	1184.9	135.55	2252.08
	12/17/2013	22:20	12/17/2013 22:20	46		32	30	1	8	60	36.9	12945.4	1480.95	3733.03
	12/18/2013	8:44	12/18/2013 8:44	45		32	28	20.	5	62	42.0	24605.4	2814.86	6547.89
	12/18/2013	8:45	12/18/2013 8:45								Valve shut	42.0	4.80	6552.69
SW-3 Event 5	12/19/2013	15:50	12/19/2013 15:50	45	32	2.5	32	<	2	74	0.0			6552.69
	12/19/2013	16:28	12/19/2013 16:28	40	32	2.5	31		7	70	14.3	271.5	31.06	6583.75
	12/19/2013	17:07	12/19/2013 17:07	52		32	29.5	5.	5	65	11.2	497.5	56.91	6640.66
	12/19/2013	17:14	12/19/2013 17:14	31		33	30.5		8	65	16.5	97.0	11.10	6651.76
	12/19/2013	22:18	12/19/2013 22:18	50		34	29	1	3	58	27.3	6655.5	761.39	7413.15
	12/20/2013	7:33	12/20/2013 7:33	48		32	27	16.	3	56	33.6	16884.5	1931.59	9344.74
	12/20/2013	7:34	12/20/2013 7:34				22				Valve shut	33.6	3.84	9348.58
SW-3 Event 6	1/14/2014	12:06	1/14/2014 12:06	43		30	26	<	2	65	0.0	0.0	0.00	9348.58
	1/14/2014	12:08	1/14/2014 12:08	43		37	34		5	65	10.7	10.7	1.23	9349.81
	1/14/2014	13:08	1/14/2014 13:08	45		37	33.5		8	65	17.2	838.0	95.87	9445.67
	1/14/2014	15:53	1/14/2014 15:53	46		36	32	1	1	65	23.4	3348.8	383.10	9828.77
	1/14/2014	16:24	1/14/2014 16:24	46		36	32	11.	2	65	23.8	732.0	83.75	9912.52
	1/14/2014	16:25	1/14/2014 16:25	49		36	32	11.	2	65	23.8	23.8	2.73	9915.24
	1/14/2014	16:43	1/14/2014 16:43				25				Valve shut	428.9	49.07	9964.31

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO₂	Cumulative
Back to Mas	<u>ster</u> Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
Nata: a sad.			:	as field data		-	·	·	<u> </u>	=	1	

Note: a red value, i.e. 75 °F, indicates that value was interpolated from field data

Total CO₂ Mass (lbs): 9964.31

Back to Master	Date Tim	e D	Pate + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flo	ow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
SW-4 Event 1	11/22/2013	12:52	11/22/2013 12:52							0.0			
	11/22/2013	12:53	11/22/2013 12:53	5	6 3	4 34	1	<2	84	0.0	0.0	0.00	0.00
	11/22/2013	13:34	11/22/2013 13:34	5	5 34	4 33	3	4	88	8.2	167.2	19.12	19.12
	11/22/2013	14:00	11/22/2013 14:00	5-	4 3	5 34.5	5	8	87	16.5	320.4	36.65	55.78
	11/22/2013	14:31	11/22/2013 14:31	5	2 3	5 34.5	5	9	80	18.7	545.2	62.37	7 118.14
	11/22/2013	15:01	11/22/2013 15:01	5	0 3	5 34.5	5	10	77	20.8	592.4	67.77	7 185.91
	11/22/2013	15:46	11/22/2013 15:46	50	0 3	5 34	1	11	80	22.8	982.0	112.34	1 298.25
	11/22/2013	16:42	11/22/2013 16:42	5	0 3	5 34	1	12	76	25.0	1339.2	153.21	L 451.46
	11/22/2013	17:14	11/22/2013 17:14	50	0 3	5 34	1	12	72	25.1	801.6	91.70	543.16
	11/22/2013	17:15	11/22/2013 17:15							Valve shut	25.1	2.87	546.03
	11/22/2013	17:16	11/22/2013 17:16										546.03
SW-4 Event 2	12/5/2013	12:22	12/5/2013 12:22	5	2 3	4 33	3	<2	84	0.0			546.03
	12/5/2013	14:19	12/5/2013 14:19	5	2 3:	2 31	1	3	87	6.0	350.6	40.10	586.14
	12/5/2013	14:20	12/5/2013 14:20	5	2 3	5 34	1	6	87	12.5	9.2	1.06	587.19
	12/5/2013	15:24	12/5/2013 15:24	4	9 3	5 34	1 6	5.5	83	13.6	834.7	95.48	682.68
	12/5/2013	16:37	12/5/2013 16:37	4	9 3	5 34	1	8	78	16.6	1103.1	126.20	808.88
	12/5/2013	17:42	12/5/2013 17:42	5	5 3	5 34	1	10	72	20.9	1220.4	139.61	L 948.49
	12/5/2013	21:55	12/5/2013 21:55	5	5 34	4 3:	1	15	69	31.1	6585.3	753.36	5 1701.85
	12/5/2013	22:06	12/5/2013 22:06	5-	4 3	5 33	3	19	69	40.3	392.7	44.93	3 1746.77
	12/6/2013	6:58	12/6/2013 6:58	5-	4 3	5 33	1	23	67	48.8	23699.5	2711.22	4457.99
	12/6/2013	9:34	12/6/2013 9:34	4	4 3	5 33	1	23	76	47.9	7546.7	863.34	5321.33
	12/6/2013	9:36	12/6/2013 9:36	4	2 3	7 32	2	26	76	55.3	103.2	11.80	5333.14
	12/6/2013	10:39	12/6/2013 10:39	4	0 3	7 32	2 24	l.5	80	51.9	3374.9	386.09	5719.23
	12/6/2013	11:34	12/6/2013 11:34	4	0 3	7 32	2 24	l.5	82	51.8	2850.4	326.09	6045.32
	12/6/2013	11:50	12/6/2013 11:50	4.	5 40	33	3	28	82	60.9	901.3	103.11	6148.43
	12/6/2013	14:31	12/6/2013 14:31	4.	5 40	33	3	28	80	61.0	9813.2	1122.63	3 7271.06
	12/6/2013	15:29	12/6/2013 15:29	4.	5 39	9 32	2	28	77	60.6	3527.2	403.51	L 7674.57
	12/6/2013	17:25	12/6/2013 17:25	4.	5 42	2 33	3	32	70	71.7	7674.9	878.00	8552.57
	12/6/2013	17:26	12/6/2013 17:26							Valve shut	71.7	8.20	8560.77
SW-4 Event 3	12/19/2013	12:20	12/19/2013 12:20	44	4.	4 17	2	10	72.0	18.5			8560.77
	12/19/2013	12:27	12/19/2013 12:27	45	3.	5 34	1 6	5.5	74.0	11.0	103.1	. 11.79	8572.56
	12/19/2013	13:22	12/19/2013 13:22	50	3.	5 33.5	5	9	74.0	15.2	721.2	82.51	l 8655.07
	12/19/2013	15:47	12/19/2013 15:47	45	3	4 32	2	13 (0.86	21.9	2691.7	307.93	8963.01
	12/19/2013	16:37	12/19/2013 16:37	43	3	4 31	1 13	3.5	64.0	22.8	1118.2	127.93	9090.93
	12/19/2013	16:38	12/19/2013 16:38							Valve shut	22.8	2.61	9093.55
	12/19/2013	16:39	12/19/2013 16:39			27	7						9093.55
SW-4 Event 4	1/16/2014	12:32	1/16/2014 12:32	46	3	3 31.5	5	<2 (64.0	0.0	0.0	0.00	9093.55
	1/16/2014	12:33	1/16/2014 12:33	46	3.	5 32.5	5	5	64.0	8.5	4.3	0.49	9094.03
	1/16/2014	14:37	1/16/2014 14:37	50	3:	3 31.5	5	9	64.0	15.1	1463.5	167.42	9261.46
	1/16/2014	15:39	1/16/2014 15:39	52	. 3	2 31.5	5	10	64.0	16.6	980.1	112.13	9373.58
	1/16/2014	16:51	1/16/2014 16:51	58	3	2 34.5	5 11	9	57.0	19.8	1310.2	149.89	9523.47
	1/16/2014	16:52	1/16/2014 16:52							Valve shut	19.8	2.27	9525.74
Note: a red value,	, i.e. <mark>75</mark> °F, indicates that v	value was i	nterpolated from field d	ata							Total CO ₂ Mass (lbs)		9525.74

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	F	·low (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂	Cumulative Mass (lb)
SW-5 Event 1	11/22/2013	8:35	5 11/22/2013 8:35							0.0			
	11/22/2013	8:36	5 11/22/2013 8:36	55	5 28	8 2	8	<2	70	0.0	0.0	0.0	0.00
	11/22/2013	8:40	11/22/2013 8:40	55	5 3	2 3	0	3.5	70	7.1	14.2	2 1.6	3 1.63
	11/22/2013	8:46	5 11/22/2013 8:46	55	5 30	0 3	0	5.8	70	13.5	61.8	3 7.0	7 8.70
	11/22/2013	9:04	11/22/2013 9:04	55	5 30	0 2	9	10	74	19.8	299.6	34.2	7 42.97
	11/22/2013	9:06	5 11/22/2013 9:06	55	5 30	0 3	0 1	1.5	74	22.7	42.5	5 4.8	7 47.83
	11/22/2013	10:00	11/22/2013 10:00	53	3 30	0 3	0 1	2.0	76	23.7	1253.9	9 143.4	4 191.28
	11/22/2013	10:34	11/22/2013 10:34	53	3	0 3	0 11	75	77	23.2	796.7	7 91.1	5 282.43
	11/22/2013	11:04	11/22/2013 11:04	51	1 3:	1 3	0 11	75	77	23.4	699.2	79.9	9 362.41
	11/22/2013	11:34	11/22/2013 11:34	53	3 3:	1 3	0	12	77	23.9	710.6	81.2	9 443.71
	11/22/2013	11:56	5 11/22/2013 11:56	53	3 3	5 33.	5	16	81	33.2	628.2	71.8	7 515.57
	11/22/2013	12:40	11/22/2013 12:40	52	2 3	5 33.	5	16	81	33.2	1459.7	7 166.9	9 682.56
	11/22/2013	12:42	2 11/22/2013 12:42							Valve shut	66.3	3 7.5	9 690.15
	11/22/2013	12:44	11/22/2013 12:44										690.15
SW-5 Event 2	12/12/2013	11:50) 3	4 3	2	<2	70	0.0			690.15
	12/12/2013	13:04			5 3			9	70	18.3	676.3	1 77.3	
	12/12/2013	16:08	• •					1.5	70	23.3	3829.4		
	12/12/2013	16:14								Valve shut	140.1		
	12/12/2013	16:15				2	0						1221.60
SW-5 Event 3	12/13/2013	8:54			34			<2	60	0.0			1221.60
	12/13/2013	8:55			2			<2	60	0.0		0.0	
	12/13/2013	8:56						<2	60	0.0		0.0	
	12/13/2013	8:59						<2	60	0.0		0.0	
	12/13/2013	9:24						5.8	62	11.6	145.1		
	12/13/2013	9:27	• •					8	62	16.4	42.0		
	12/13/2013	10:27						10	66	20.4	1102.7		
	12/13/2013	12:10	• •					1.5	70	23.3	2252.3		
	12/13/2013	12:10						14	70	28.7	26.0		
	12/13/2013	14:19	• •					15		30.8	3813.2		
	12/13/2013							16	68 68	32.6	1870.2		
		15:18			3.	2 3	2	10	00				
	12/13/2013	15:19	• •			22	C			Valve shut	32.0	5 3.7	
CVA/ E Event 4	12/13/2013	15:20	• •		2.	23.		رم	Γ1	0.0			2283.68
SW-5 Event 4	12/19/2013	9:00						<2	54	0.0	250.0	. 40.4	2283.68
	12/19/2013	9:26						3.8	62	27.0	350.8		
	12/19/2013	9:28						4.5	62	28.7	55.7		
	12/19/2013	10:05						5.5	66	30.5	1095.9		
	12/19/2013	11:28						16	70	31.4	2571.3		
	12/19/2013	12:54			28	8 27.	2	17	72	32.9	2766.2		
	12/19/2013	13:00								Valve shut	197.5	5 22.6	
	12/19/2013	13:01				2	0						3088.77
SW-5 Event 5	1/7/2014	12:48				2 24		2		6.0			3088.77
	1/7/2014	12:49						3	50	6.3	6.3		
	1/7/2014	13:57						9.5	52	19.4	874.0		
	1/7/2014	13:59						12	52	25.1	44.5		
	1/7/2014	15:18						13	52	27.2	2063.4		
	1/7/2014	16:26						14	50	29.0	1909.6		
	1/7/2014	17:11			2 3	2 32.	6 1	4.5	47	30.1	1330.3		
	1/7/2014	17:12								Valve shut	30.2	1 3.4	
	1/7/2014	17:13	3 1/7/2014 17:13			24.	8						3804.71
SW-5 Event 6	1/9/2014	8:37	7 1/9/2014 8:37							0.0	0.0	0.0	0 3804.71
	1/9/2014	8:38	3 1/9/2014 8:38	53	3	6 3	3	<2	53	0.0	0.0	0.0	0 3804.71
	1/9/2014	8:42	2 1/9/2014 8:42	53	3	4 3	0	7	53	14.8	29.5	3.3	8 3808.09
	1/9/2014	8:44	1/9/2014 8:44	51	1 3	6 30.	5 1	4.5	53	31.2	46.0	5.2	6 3813.35

Back to Master	Date	Time			P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)		Volume of CO ₂ (scf)	Mass of CO ₂	Cumulative Mass (lb)
Dack to Master	1/9/2014			50	39					5	38.3		
	1/9/2014			50	40						500.8		
	1/9/2014			49	40						1682.5		
	1/9/2014			47	40						1465.0		
	1/9/2014			40	38						1848.8		
	1/9/2014			40	39						43.8		
	1/9/2014			38	36						4848.5		
	1/9/2014									Valve shut	43.8		
	1/9/2014					23.5							5011.29
SW-5 Event 7	1/16/2014			43	26			2 6	0 0.	0	0.0	0.00	
	1/16/2014		1/16/2014 12:10	43	33	30)	5 6	0 12.	4	6.2	0.71	5012.00
	1/16/2014		1/16/2014 12:11	43	35	30	15			7	22.1	2.53	
	1/16/2014			43	37.5	33	18	3 6	0 39.	1	70.8		5022.63
	1/16/2014		1/16/2014 13:05	45	39	33.5	16	5 6	0 35.	2	1931.4	220.96	5243.59
	1/16/2014		1/16/2014 14:41	46	39	33	17.2			8	3506.6	401.15	
	1/16/2014		1/16/2014 15:45	48	39					8	2484.4	284.21	5928.95
	1/16/2014			49	39					7	1006.2	115.11	
	1/16/2014	16:11	1/16/2014 16:11			25	;			Valve shut	40.7	4.65	6048.72
SW-5 Event 8	1/17/2014	12:06	1/17/2014 12:06	45	30	27.5	į	5 6	8 9.	9			6048.72
	1/17/2014	12:07	1/17/2014 12:07	45	35	31.8	;	5 6	8 12.	6	11.3	1.29	6050.01
	1/17/2014	12:49	1/17/2014 12:49	42	34	30.5	8.5	5 6	8 17.	7	635.5	72.70	6122.71
	1/17/2014	12:52	1/17/2014 12:52	42	37	33.2	13.2	2 6	8 28.	3	68.9	7.88	6130.60
	1/17/2014	14:02	1/17/2014 14:02	42	37	33	14.8	3 6	7 31.	7	2100.5	240.30	6370.90
	1/17/2014	14:37	1/17/2014 14:37	45	37	32.5	15	5 6	7 32.	2	1118.3	127.93	6498.83
	1/17/2014	16:05	1/17/2014 16:05	53	37	32	. 16	5 6	6 34.	3	2926.5	334.79	6833.62
	1/17/2014	16:07	1/17/2014 16:07							Valve shut	68.7	7.86	6841.48
	1/17/2014	16:08	1/17/2014 16:08			25							6841.48
SW-5 Event 9	1/22/2014	12:41	1/22/2014 12:41	48	34	32.3	<2	2 5	7 0.	0			6841.48
	1/22/2014	12:53	1/22/2014 12:53	47	32	. 27	11	1 5	7 22.	6	135.7	15.53	6857.01
	1/22/2014	12:54	1/22/2014 12:54	47	37	30.5	20.5	5 5	7 44.	4	33.5	3.83	6860.84
	1/22/2014	13:09	1/22/2014 13:09	45	37	30.5	20.8	3 5	8 45.	0	670.6	76.71	6937.56
	1/22/2014	13:53	1/22/2014 13:53	45	36	29.5	22	2 5	9 47.	1	2026.0	231.78	7169.33
	1/22/2014			51	35.5	28.5	23.7			5	3219.2	368.28	
	1/22/2014		1/22/2014 15:20	50	38						1169.4		
	1/22/2014	15:52	1/22/2014 15:52	49	38	30.5	28			1	1952.3	223.34	7894.73
	1/22/2014			55	38	30.2	29			4	3674.1	420.32	
	1/22/2014									Valve shut	63.4	7.26	
	1/22/2014					22							8322.31
Note: a red value	i e 75 °E indicates	that value wa	s interpolated from field data	1							Total CO ₂ Mass (lbs):		8322.31

Total CO₂ Mass (lbs):

8322.31

Back to Master	Date T	ime	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at We (psi)		Rotameter Reading (scfm)	Temp (°F)	F	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-6 Event 1	11/20/2013	9:08	11/20/2013 9:08	5.	5	27				64	0.0	<u> </u>		
	11/20/2013	9:11	11/20/2013 9:11			30	30	<	2	64	0.0	0.0	0.00	0.00
	11/20/2013	9:23	11/20/2013 9:23			30	30	<	2	64	0.0	0.0	0.00	0.00
	11/20/2013	10:13	11/20/2013 10:13			29	29	<	2	66	0.0	0.0	0.00	0.00
	11/20/2013	10:15	11/20/2013 10:15			36	35		5	66	10.6	10.6	5 1.22	1.22
	11/20/2013	11:00	11/20/2013 11:00)		35	34		7	66	14.7	570.5	65.26	66.48
	11/20/2013	12:47	11/20/2013 12:47	,		35	34	8.	0	66	16.8	1688.4	193.15	259.63
	11/20/2013	14:42	11/20/2013 14:42			35	33.5	9.	5	65	20.0	2118.2	242.32	501.95
	11/20/2013	15:21	11/20/2013 15:21			35	33	1	0	65	21.1	8.008	91.61	593.56
	11/20/2013	15:22	11/20/2013 15:22				24				Valve shut	21.1	2.41	595.97
SW-6 Event 2	12/10/2013	8:51	12/10/2013 8:51			35	33.5	<	2	72	0.0			595.97
	12/10/2013	8:55	12/10/2013 8:55			35	33.5	<	2	73	0.0			595.97
	12/10/2013	9:29	12/10/2013 9:29	50)	34	32	<	2	72	0.0			595.97
	12/10/2013	10:02	12/10/2013 10:02	. 50)	34	31		4	73	8.3	136.5	15.61	611.59
	12/10/2013	10:50	12/10/2013 10:50	47.	5	34	31	4.	5	75	9.3	421.4	48.21	659.80
	12/10/2013	10:56	12/10/2013 10:56	40	5	34	32	5.	5	74	11.4	62.0	7.09	666.89
	12/10/2013	11:42	12/10/2013 11:42	4!	5	34	32		6	74	12.4	546.5	62.52	729.40
	12/10/2013	12:36	12/10/2013 12:36	5	1 .	35	31.5	6.	5	78	13.5	699.6	80.04	809.44
	12/10/2013	13:03	12/10/2013 13:03	50		34	32		7	76	14.4	377.3	3 43.17	852.61
	12/10/2013	13:04	12/10/2013 13:04	ļ							Valve shut	14.4	1.65	854.26
	12/10/2013	13:05	12/10/2013 13:05				22.5							854.26
SW-6 Event 3	12/12/2013	15:19	12/12/2013 15:19	45		36	33	<	2	68	0.0			854.26
	12/12/2013	16:38	12/12/2013 16:38	45		35	32.5		2	66	4.2	166.2	19.01	873.27
	12/12/2013	17:39	12/12/2013 17:39	55		35	32.5		4	60	8.5	386.6	44.22	917.49
	12/12/2013	22:27	12/12/2013 22:27	52		34	31		8	52	16.9	3651.8	3 417.77	1335.26
	12/13/2013	9:28	12/13/2013 9:28	;		32	30	1	2	62	24.6	13699.8	1567.26	2902.52
	12/13/2013	10:30	12/13/2013 10:30	45		32	30	1	2	66	24.5	1519.6	5 173.84	3076.36
	12/13/2013	12:12	12/13/2013 12:12	45		32	29	1	2	70	24.4	2490.1	284.87	3361.23
	12/13/2013	14:20	12/13/2013 14:20	40		32	29	1	2	68	24.4	3121.8	357.13	3718.36
	12/13/2013	14:24									Valve shut	97.7		3729.53
	12/13/2013	14:25	12/13/2013 14:25				22							3729.53
SW-6 Event 4	12/20/2013	7:40	12/20/2013 7:40	50		30	32.4	<	2	56	0.0			3729.53
	12/20/2013	7:49					31.2		2	56	0.0			3729.53
	12/20/2013	7:52	12/20/2013 7:52	. 48		33	32	4.	3	56	8.9	13.4	1.54	3731.07
	12/20/2013	8:12	12/20/2013 8:12	45		32	31.6		6	60	12.3	212.5	5 24.31	3755.38
	12/20/2013	9:50		40		33	32	6.	5	68	13.4	1257.8	3 143.90	3899.28
	12/20/2013	10:37	12/20/2013 10:37	39		32	32		7	72	14.2	647.5	74.07	3973.35
	12/20/2013	11:30				32	31.6	7.	5	74	15.2	777.9	88.99	
	12/20/2013	11:47	12/20/2013 11:47	42		31	31		8	74	16.0	265.0	30.31	4092.65
	12/20/2013	11:48	12/20/2013 11:48								Valve shut	16.0	1.83	4094.48
	12/20/2013	11:49	12/20/2013 11:49	1										4094.48
SW-6 Event 5	1/9/2014	8:39	1/9/2014 8:39)										4094.48
	1/9/2014	8:40	1/9/2014 8:40	52	2	34	35.2	<	2	53	0.0			4094.48
	1/9/2014	8:47				33	34		3	53	6.3	21.9	2.51	
	1/9/2014	8:59					33.6		4	54	8.3	87.4		
	1/9/2014	9:42					33.6	4.	5	54	9.3	379.1		
	1/9/2014	10:16					33.4		5	57	10.3	334.4		
	1/9/2014	11:00					32.8		5	60	10.3	453.0		
	1/9/2014	12:55					32.4		6	60	12.3	1297.0		
	1/9/2014	12:56					35.2	1	0	60	21.2	16.7		
	1/9/2014	14:15					34.4		0	60	20.9	1663.4		
	1/9/2014	15:55					34.6		2	58	25.4	2319.8		
	1/9/2014	17:24				34	34	12.		58	26.2	2300.0		
	_, _,	=7	_, _,	3.							- · -			

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	F	·low (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
	1/9/2014	17:25	1/9/2014 17:25							Valve shut	26.2	3.00	5112.53
	1/9/2014	17:26	1/9/2014 17:26			26.4							5112.53
SW-6 Event 6	1/10/2014	16:16	1/10/2014 16:16										5112.53
	1/10/2014		1/10/2014 16:18	46	3	7 34		2	68	4.3	8.6	0.98	
	1/10/2014	16:36	1/10/2014 16:36	45	3.	5 32		3.5	70	17.8	198.9	22.75	5 5136.27
	1/10/2014		1/10/2014 16:37					12	70	25.7	21.7		
	1/10/2014		1/10/2014 17:52	45	3			2.5	65	26.9	1969.3		
	1/10/2014		1/10/2014 17:53	45	3	8 33.5		14	65	30.4	28.6	3.27	7 5367.32
	1/10/2014	21:45	1/10/2014 21:45	44	3.	7 32.5		16	63	34.4	7519.5	860.23	6227.55
	1/10/2014	21:47	1/10/2014 21:47	44	3	8 34		20	63	43.5	77.9	8.92	1 6236.46
	1/11/2014		1/11/2014 7:59) 3.	7 30		24	64	51.6	29100.7		
	1/11/2014	8:00	1/11/2014 8:00							Valve shut	51.6	5.92	1 9571.49
	1/11/2014	8:01	1/11/2014 8:01										9571.49
SW-6 Event 7	1/29/2014	8:00	1/29/2014 8:00	51	4	0 34	12	2.5	40	28.4			9571.49
	1/29/2014	9:00	1/29/2014 9:00	51	4	0 34	12	2.5	40	28.4	1701.5	194.65	5 9766.14
	1/29/2014	9:30	1/29/2014 9:30	48	3	9 34	16	5.5	40	37.1	981.6	112.29	9 9878.43
	1/29/2014	10:30	1/29/2014 10:30	49	3	8 34		18	40	40.1	2314.4	264.77	7 10143.20
	1/29/2014	11:50	1/29/2014 11:50	49	3	8 34		18	40	40.1	3205.3	366.68	8 10509.88
	1/29/2014	13:00	1/29/2014 13:00	48	3	8 34		18	40	40.1	2804.6	320.85	5 10830.73
	1/29/2014	14:00	1/29/2014 14:00	46	3	8 34		18	40	40.1	2404.0	275.01	1 11105.75
	1/29/2014	15:00	1/29/2014 15:00	47	3	8 34.5		18	40	40.1	2404.0	275.02	1 11380.76
	1/29/2014	16:30	1/29/2014 16:30	50) 3!	9 34.5		18	40	40.5 Valve shut	3623.3	414.51	1 11795.27
	1/29/2014	16:31	1/29/2014 16:31			24							11795.27
SW-6 Event 8	2/4/2014	9:40	2/4/2014 9:40	55	3.	5 33		<2	60	0.0			11795.27
	2/4/2014	9:44	2/4/2014 9:44	55	3.	5 33	1	2.5	60	5.3	10.6	1.21	1 11796.48
	2/4/2014	10:00	2/4/2014 10:00	53	3	4 32		5.8	60	12.1	139.5	15.96	5 11812.44
	2/4/2014	10:05	2/4/2014 10:05	53	3.	5 31	. 8	3.3	60	17.6	74.3	8.50	11820.94
	2/4/2014	11:42	2/4/2014 11:42	50	3.	5 32		10	64	21.1	1874.4	214.43	3 12035.37
	2/4/2014	11:44	2/4/2014 11:44	50) 30	6 32		12	64	25.6	46.6	5.34	4 12040.71
	2/4/2014	12:39	2/4/2014 12:39	49	3.	5 32	1:	L.9	64	25.1	1392.6	159.32	2 12200.03
	2/4/2014	13:22	2/4/2014 13:22	49	3.	5 32	11	L.9	64	25.1	1078.7	123.40	12323.43
	2/4/2014	14:15	2/4/2014 14:15	48	3	8 32		12	62	26.1	1356.8	155.22	2 12478.65
	2/4/2014	14:16	2/4/2014 14:16			25				Valve shut	26.1	2.99	9 12481.64
SW-6 Event 9	2/6/2014	8:07	2/6/2014 8:07	54	3	3 33.4		<2	50	0.0			12481.64
	2/6/2014	8:12	2/6/2014 8:12	52	2 3	3 33		4	50	8.4	20.9	2.40	12484.03
	2/6/2014	8:41	2/6/2014 8:41	50	3:	1 32		7	54	14.3	328.5	37.59	9 12521.62
	2/6/2014	8:44	2/6/2014 8:44	50	3	2 32.8	1	8	54	16.5	46.2	5.28	8 12526.90
	2/6/2014	10:36	2/6/2014 10:36	48	3	2 32.2		9.2	60	18.9	1980.7	226.59	9 12753.49
	2/6/2014	10:40	2/6/2014 10:40			27	,			Valve shut	75.5	8.63	3 12762.12
SW-6 Event 10	2/10/2014	8:57	2/10/2014 8:57	54	3	3 33		<2	53	0.0			12762.12
	2/10/2014	9:53	2/10/2014 9:53	47	3	0 30		9	53	18.2	508.9	58.22	2 12820.35
	2/10/2014	9:54	2/10/2014 9:54	49	3	3 32		11	65	22.7	20.4	2.34	4 12822.68
	2/10/2014	11:40	2/10/2014 11:40	47	3	2 31	. 12	2.8	75	25.9	2573.2	294.37	7 13117.05
	2/10/2014	11:42	2/10/2014 11:42	47	3.	4 32.5	15	5.8	75	32.6	58.5	6.69	9 13123.74
	2/10/2014				3	4 32.5	15	5.5	77	31.9	3162.6		
	2/10/2014							16	78	32.9	3080.8		
	2/10/2014							7.2	71	35.6	3634.1		
	2/10/2014								65	36.9	2103.9		
	2/10/2014									Valve shut	110.7		
SW-6 Event 11	2/11/2014				3:	3 32.2		<2	54	0.0			14507.08
	2/11/2014).5	60	19.1	1095.5	125.33	
	2/11/2014		2/11/2014 10:04					3.5	60	28.0	23.5		
	2/11/2014							3.5	66	27.8	864.9		
	_,, ;	_0.00	_,,;	3.	J.			-		=0	00113	50.5	5 6 .

			1	P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date Ti	me D	ate + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	F	low (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	2/11/2014	11:53	2/11/2014 11:53	5(0 3	3 3	2 13.	5	62	27.9	2174.0	248.70	14982.74
	2/11/2014	12:48	2/11/2014 12:48	4.	5 3	3 3	2 13.	9	63	28.7	1557.9	178.23	15160.97
	2/11/2014	14:08	2/11/2014 14:08	4.	5 3	3 3	2 14.	2	60	29.4	2326.4	266.14	15427.10
	2/11/2014	17:00	2/11/2014 17:00	4.	5 3	3 3	2 15.	5	55	32.3	5308.2	607.26	16034.36
	2/11/2014	17:22	2/11/2014 17:22	5	2 3	3 3	2 15.	5	54	32.3	710.7	81.31	16115.67
	2/11/2014	17:23	2/11/2014 17:23			2	6			Valve shut	32.3	3.70	16119.36
Note: a red value	i		_				·				tal CO Mass (lbs).		16110.36

Note: a red value, i Total CO₂ Mass (lbs): 16119.36

Rock to Moster	Dato T	ime	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-7 Event 1	Date T 11/23/2013	8:19				8 8	reading (seilin)		0 0.0	CO ₂ (SCI)	(.~)	
SW-7 EVENT 1	11/23/2013		11/23/2013 8:19						0 0.0	0	0 0.00	0.00
	11/23/2013	8:21 8:35	· ·					2 7 2 72 .		0.		
	11/23/2013	8:37	11/23/2013 8:35		3					9.		
	11/23/2013	9:24	11/23/2013 8.37		3				5 9.3 0 12.3	507.		
	11/23/2013	10:24	11/23/2013 9.24		3				4 13.2	764.		
	11/23/2013	10:24			3				4 17.8	15.		
	11/23/2013	11:27	11/23/2013 10:23		3					1063		
	11/23/2013	11:30			3				3 21.1	56.		
	11/23/2013	12:40							2 21.1	1477.		
	11/23/2013	12:40	• •) 3	/ 30) 1	0 6		alve shut 1477		
	11/23/2013	12:47							Vo	aive shut 147.	9 16.92	
SW-7 Event 2	12/6/2013	12:48			L 3	5 33.5	-	2 8	5 0.0			462.53 462.53
SVV-7 EVERT Z			• •									
	12/6/2013	13:40	• •						3 0.0	176	0 20.22	462.53
	12/6/2013	14:38							0 6.1	176.		
	12/6/2013	15:58	• •						3 8.2	571.		
	12/6/2013	16:27							2 8.2	237.		
	12/6/2013	16:48			5 3	3 32	2	4 7	1 8.2	172.		
	12/6/2013	16:49				21			Vā	alve shut 8.	2 0.94	
CM 7.5	12/6/2013	16:50	12/6/2013 16:50		2	25		2	0 00			595.92
SW-7 Event 3	12/11/2013	13:53							9 0.0			595.92
	12/11/2013	13:55	• •						9 0.0			595.92
	12/11/2013	14:22	• •						8 0.0			595.92
	12/11/2013	14:24	12/11/2013 14:24						8 0.0			595.92
	12/11/2013	15:16	• •						8 0.0			595.92
	12/11/2013	16:36							5 8.2	328.		
	12/11/2013	17:26							4 10.3	461		
	12/11/2013	22:15			3				2 16.4	3849.		
	12/12/2013	8:05			3	2 30) 1	2 5	8 24.7	12103.		
	12/12/2013	9:02							Vā	alve shut 1405.	4 160.78	
	12/12/2013	9:03										2672.07
SW-7 Event 4	12/18/2013	8:03							8 0.0			2672.07
	12/18/2013	9:04	12/18/2013 9:04						2 14.0	427.		
	12/18/2013	9:10							2 20.5	103.		
	12/18/2013	9:54	12/18/2013 9:54		3	4 33	3 1	0 6	4 20.9	909.		
	12/18/2013	10:05	12/18/2013 10:05							alve shut 229.	5 26.26	
SW-7 Event 5	12/19/2013	8:45	· ·			2 33			5 0.0			2863.06
	12/19/2013	8:49							8 13.9	27.		
	12/19/2013	8:51							8 20.8	34.		
	12/19/2013	9:16							4 23.0	546		
	12/19/2013	9:49							8 22.4	747.		
	12/19/2013	11:37	12/19/2013 11:37						2 22.5	2425		
	12/19/2013	12:42			3	3 32	2 11.	5 7	2 23.6	1497.		
	12/19/2013	12:43							Va	alve shut 23	6 2.69	
	12/19/2013	12:44	12/19/2013 12:44									3469.78
SW-7 Event 6	1/9/2014	8:18							6 0.0			3469.78
	1/9/2014	8:24	1/9/2014 8:24						6 8.4	25.	1 2.87	3472.65
	1/9/2014	8:53			3			5 5	6 13.5	317.		
	1/9/2014	9:33	1/9/2014 9:33	52	3	3 32.5	5	7 5	6 14.6	561	9 64.28	3573.26
	1/9/2014	10:06	1/9/2014 10:06	52	3	3 31.5	5 7.	5 5	9 15.6	497.	1 56.87	3630.13
	1/9/2014	10:07	1/9/2014 10:07	50	3	4 33	3 1	1 5	9 23.1	19.	3 2.21	3632.34
	1/9/2014	11:07	1/9/2014 11:07	42	3	4 33	3 1	1 6	1 23.0	1382	5 158.16	3790.50
	1/9/2014	12:32	1/9/2014 12:32	41	33.	5 32	2 11.	5 6	2 23.9	1994.	7 228.20	4018.70

Back to Master	Date	Time	e Da	ite + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flo	ow (scfm)	Volume of CO₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
Duck to Waster		1/9/2014	12:33	1/9/2014 12:33	41	35			14	62	29.6	26.7		
		1/9/2014	14:20	1/9/2014 14:20		33.5				60	30.2	3198.6		
		1/9/2014	16:03	1/9/2014 16:03	45	37			16	60	34.6	3335.4		
		1/9/2014	17:08	1/9/2014 17:08		38			17	60	37.1	2327.7		
		1/9/2014	17:09	1/9/2014 17:09							Valve shut	37.1		
		 1/9/2014	17:10	1/9/2014 17:10			27							5039.78
SW-7 Event 7		/10/2014	17:24	1/10/2014 17:24										5039.78
	1/	10/2014	17:25	1/10/2014 17:25	46	32.5	34	<	:2	66	0.0			5039.78
	1/	10/2014	17:39	1/10/2014 17:39	46	31	31.5		5	66	10.1	70.6	8.07	5047.85
	1/	10/2014	17:40	1/10/2014 17:40	46	34	33.5		8	66	16.7	13.4	1.53	5049.38
	1/	10/2014	21:55	1/10/2014 21:55	46	33	32.5	1	10	64	20.6	4756.2	544.11	5593.49
	1/	10/2014	21:57	1/10/2014 21:57	45	33.5	33	11.	.5	64	23.9	44.5	5.09	5598.58
	1/	11/2014	8:24	1/11/2014 8:24	45	32.5	32	1	15	64	30.8	17139.3	1960.74	7559.32
	1/	11/2014	8:25	1/11/2014 8:25							Valve shut	30.8	3.52	7562.85
	1/	11/2014	8:26	1/11/2014 8:26			26							7562.85
SW-7 Event 8	1/	/21/2014	13:06	1/21/2014 13:06	49	31.5	31.5	<	:2	70	0.0			7562.85
	1/	/21/2014	13:07	1/21/2014 13:07	49	33	32	3.	.5	70	7.2	3.6	0.41	7563.26
	1/	/21/2014	14:15	1/21/2014 14:15	50	31.5	30	1	1	68	22.3	1001.0	114.51	7677.77
	1/	/21/2014	14:17	1/21/2014 14:17	49	33.5	31.8	15.	.2	68	31.4	53.7	6.14	7683.91
	1/	/21/2014	16:00	1/21/2014 16:00	50	33.5	31.5	15.	.2	66	31.5	3239.8	370.63	8054.54
	1/	/21/2014	17:09	1/21/2014 17:09	53	33	31	15.	.5	64	32.0	2190.3	250.56	8305.10
	1/	/21/2014	17:10	1/21/2014 17:10			26				Valve shut	32.0	3.66	8308.77
Note: a red value,	, i.e. <mark>75</mark> °F, in	ndicates that v	value was in	terpolated from field d	ata						To	otal CO ₂ Mass (lbs)		8308.77

Back to Master	Date	Time		P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flov	w (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-8 Event 1	11/22/2013	8:26	11/22/2013 8:26							0.0			
	11/22/2013	8:27	11/22/2013 8:27	57.5	30) 30)	<2	70	0.0	0.0	0.00	0.00
	11/22/2013	8:28	11/22/2013 8:28		32	2		<2	70	0.0	0.0	0.00	0.00
	11/22/2013	8:56	11/22/2013 8:56		35	3.	5	4	72	8.4	117.1	13.40	13.40
	11/22/2013	8:58	11/22/2013 8:58	57.5	34	1 3:	3	3.5	74	7.2	15.6	1.78	15.18
	11/22/2013	10:08	11/22/2013 10:08	53	34	33.	2	4	76	8.2	541.8	61.98	77.16
	11/22/2013	10:42	11/22/2013 10:42	55	34	33.	5 4	1.0	77	8.2	280.3	32.07	109.23
	11/22/2013	11:11	11/22/2013 11:11	55	34	33.	5 4.	50	76	9.3	254.0	29.06	138.29
	11/22/2013	11:42	11/22/2013 11:42	55	34	33.	5 4	l.5	78	9.3	287.4	32.88	3 171.17
	11/22/2013	12:05	11/22/2013 12:05	55	35	3	5 6	5.6	82	13.7	263.7	7 30.17	201.34
	11/22/2013	13:10	11/22/2013 13:10	60) 35	3.	5 6	5.5	80	13.5	882.7	7 100.99	302.32
	11/22/2013	13:42	11/22/2013 13:42	56	5 35	3	5	7	82	14.5	447.8	51.23	353.55
	11/22/2013	14:04	11/22/2013 14:04	55	35	3.	5	8	81	16.6	342.0	39.12	392.67
	11/22/2013	14:35	11/22/2013 14:35	53	35	3.	5	8	76	16.7	515.4	58.97	451.64
	11/22/2013	15:05	11/22/2013 15:05	51	L 35	3.	5	8	74	16.7	500.5	57.26	508.90
	11/22/2013	15:49	11/22/2013 15:49	50) 35	3	5	8	76	16.7	734.1	83.98	592.88
	11/22/2013		11/22/2013 16:44	50) 35	3	5	8	71	16.7	918.9		
	11/22/2013	17:18	11/22/2013 17:18	55	35	3	5	8	70	16.8	569.7	65.18	763.18
	11/22/2013		11/22/2013 17:20							Valve shut	33.5		
	11/22/2013		11/22/2013 17:21			20	5						767.02
SW-8 Event 2	12/6/2013		12/6/2013 8:32	54	33	3	2	<2	73	0.0			767.02
	12/6/2013		12/6/2013 9:06	48				<2	75	0.0			767.02
	12/6/2013		12/6/2013 9:07	47				3	75	6.3	3.1	0.36	
	12/6/2013		12/6/2013 10:25	42				3	78	6.2	487.3		
	12/6/2013		12/6/2013 11:20					3	80	6.2	342.8		
	12/6/2013		12/6/2013 12:31	50				4	82	8.3	515.2		
	12/6/2013		12/6/2013 12:32		33	,		•	02	Valve shut	8.3		
	12/6/2013		12/6/2013 12:33			2	5			10.100.1.00	5.0		922.21
SW-8 Event 3	12/12/2013		12/12/2013 13:27	50) 33			<2	72	0.0			922.21
<u> </u>	12/12/2013		12/12/2013 14:44	46				<2	70	0.0			922.21
	12/12/2013		12/12/2013 14:45	45				3.5	70	7.1	3.6	0.41	
	12/12/2013		12/12/2013 15:26					4	70	8.1	313.0		
	12/12/2013		12/12/2013 16:33	45				5.5	70	11.2	648.2		
	12/12/2013		12/12/2013 17:27	57				6	60	12.4	637.1		
	12/12/2013		12/12/2013 22:18					11	54	22.7	5101.7		
	12/13/2013		12/13/2013 9:39					15	64	30.3	18044.6		
	12/13/2013		12/13/2013 10:34	47.5				15	67	30.2	1664.1		
	12/13/2013		12/13/2013 10:35					17	67	34.6	32.4		
	12/13/2013		12/13/2013 10:33					5.5	70	33.5	3985.1		
	12/13/2013		12/13/2013 15:09	50				 17	68	34.6	5344.8		
	12/13/2013		12/13/2013 15:10		, 32	_ 31	,	1/	UU	Valve shut	344.6		
	12/13/2013		12/13/2013 15:10			2	=			vaive silut	34.0	3.90	5018.78
SW-8 Event 4	12/18/2013		12/18/2013 13:11	50) 32			<2	75	0.0	0.0	0.00	
3VV-8 LVEIIL 4	12/18/2013		12/18/2013 12:43					3	76	6.1	75.7		
	12/18/2013		12/18/2013 13:09	55				6		12.2	9.1		
	12/18/2013							6	76 70	12.2	769.4		
			12/18/2013 14:12	49				_	70 64				
	12/18/2013		12/18/2013 15:59	40).5 11	64	19.5	1699.0		
	12/18/2013		12/18/2013 16:57	45				11	60	22.6	1219.9		
	12/18/2013		12/18/2013 17:17	42				14	60	29.3	518.8		
	12/18/2013		12/18/2013 17:58	50) 35	3	3	14	55	29.8	1211.7		
	12/18/2013		12/18/2013 17:59							Valve shut	29.8	3.41	
C) 44 C =	12/18/2013		12/18/2013 18:00			2	0						5651.80
SW-8 Event 5	1/11/2013	8:40	1/11/2013 8:40										5651.80

Back to Master	Date	1	Гime		P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	F	·low (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
		1/11/2013	8:42	1/11/2013 8:42	4	5 34	3	5	<2	66	0.0			5651.80
		1/11/2013	8:54	1/11/2013 8:54	4	5 34	3	1	3	66	6.2	37.5	4.29	5656.08
		1/11/2013	10:50	1/11/2013 10:50	4	1 33.5	3	4	5.5	70	11.3	1020.5	116.75	5 5772.83
		1/11/2013	11:12	1/11/2013 11:12	4	1 33	3	1	6.5	70	13.3	271.6	31.07	5803.90
		1/11/2013	11:37	1/11/2013 11:37	4	8 33	3	1	8	72	16.4	371.6	42.51	5846.41
		1/11/2013	11:38	1/11/2013 11:38							Valve shut	16.4	1.87	5848.28
		1/11/2013	11:39	1/11/2013 11:39			2	3						5848.28
SW-8 Event 6		1/13/2014	12:01	1/13/2014 12:01							0.0	0.0	0.00	5848.28
		1/13/2014	12:02	1/13/2014 12:02	5	0 34	3	3	3	72	6.2	3.1	0.36	5848.64
		1/13/2014	12:12	1/13/2014 12:12	5	0 33	3	2	7	72	14.3	102.7	11.75	5860.39
		1/13/2014	12:13	1/13/2014 12:13	5	0 35	3	1	10	72	20.9	17.6	2.02	5862.41
		1/13/2014	12:40	1/13/2014 12:40	4	9 35	3	4 1	10.5	70	22.0	579.4	66.28	5928.69
		1/13/2014	13:53	1/13/2014 13:53	4	4 35	3	4 1	11.5	68	24.1	1684.5	192.71	6121.40
		1/13/2014	14:42	1/13/2014 14:42	4	2 35	33.	5 1	11.5	68	24.1	1183.2	135.36	6256.76
		1/13/2014	16:01	1/13/2014 16:01	4	1 34	3	3	12	66	25.0	1940.8	222.03	6478.79
		1/13/2014	17:02	1/13/2014 17:02	4	2 34	33.	5 1	13.5	64	28.2	1621.2	185.47	6664.26
		1/13/2014	21:39	1/13/2014 21:39	5	2 34	3	2	16	62	33.4	8533.8	976.26	7640.52
		1/13/2014	21:42	1/13/2014 21:42	5	2 35	3	3 1	18.5	62	39.1	108.8	12.45	7652.97
		1/14/2014	8:30	1/14/2014 8:30	4	7 35	3	2	22	64	46.4	27687.5	3167.45	10820.41
		1/14/2014	8:31	1/14/2014 8:31							Valve shut	46.4	5.31	10825.72
		1/14/2014	8:32	1/14/2014 8:32			2	5						10825.72
SW-8 Event 7		1/15/2014	9:15	1/15/2014 9:15	5	2 31	. 3	1	4.8	62	9.7	0.0	0.00	10825.72
		1/15/2014	9:17	1/15/2014 9:17	5	2 32.5	31.	5	9.5	62	19.5	29.3	3.35	10829.07
		1/15/2014	9:31	1/15/2014 9:31	4	6 31	. 3)	14	64	28.3	334.8	38.30	10867.37
		1/15/2014	10:17	1/15/2014 10:17	4	3 31	. 3)	15	66	30.2	1346.0	153.99	11021.35
		1/15/2014	11:24	1/15/2014 11:24	4	1 30	29.	3	15	69	29.8	2012.0	230.17	11251.52
		1/15/2014	12:38	1/15/2014 12:38	4	5 33	3)	15	67	30.9	2245.6	256.90	11508.42
		1/15/2014	12:40	1/15/2014 12:40			2	5			Valve shut	61.8	7.06	11515.49
SW-8 Event 8		1/17/2014	7:35	1/17/2014 7:35	5	5 32	. 3	2	6	40	12.6			11515.49
		1/17/2014	7:37	1/17/2014 7:37	5	5 32	. 3	2	8.2	40	17.2	29.7	3.40	11518.88
		1/17/2014	8:53	1/17/2014 8:53	5	0 30	30.	5	11	60	22.1	1490.4	170.50	11689.39
		1/17/2014	8:54	1/17/2014 8:54	5	0 32	2 31.	5	14	60	28.7	25.4	2.90	11692.29
		1/17/2014	10:30	1/17/2014 10:30	4	7 32	. 31.	5 1	15.2	66	31.0	2865.2	327.78	3 12020.07
		1/17/2014	11:38	1/17/2014 11:38	4	5 32	. 3)	16	67	32.6	2161.2	247.25	12267.32
		1/17/2014	11:40	1/17/2014 11:40	4	5 33	31.	5	19	67	39.1	71.7	8.20	12275.52
		1/17/2014	12:36	1/17/2014 12:36	4	6 33	31.	5 1	18.5	68	38.0	2160.3	247.14	12522.66
		1/17/2014	13:02	1/17/2014 13:02	4	5 33	3	1 1	18.5	68	38.0	989.1	113.16	12635.82
		1/17/2014	14:14	1/17/2014 14:14	4	5 33	3	1	19	68	39.1	2776.1	317.59	12953.41
		1/17/2014	15:35	1/17/2014 15:35	5	0 33	3	1 2	20.5	66	42.2	3293.1	376.73	3 13330.14
		1/17/2014	15:36	1/17/2014 15:36							Valve shut	42.2	4.83	
		1/17/2014	15:37	1/17/2014 15:37			2	5						13334.97
Note: a red value	e, i.e. <mark>75</mark> °		nat value was	interpolated from field d	ata						1	otal CO ₂ Mass (lbs):		13334.97

Total CO₂ Mass (lbs):

13334.97

Pack to Master	Doto T	ima	Data I Time	P at Reducer (psig)	P at Pane (psig)	el Pat (psi	t Well	Rotameter Reading (scfm)	Ton	np (°F)	Flow (scfm)		Volume of	Mass of CO ₂	Cumulative Mass (lb)
Back to Master		<u>0.09</u>	Date + Time				'/	neading (sciiii)	1 611				CO ₂ (scf)	(16)	141033 (10)
SW-9 Event 1	11/25/2013	9:08	• •			29	22.2		٠,	56	0.0		0.0	0.00	0.00
	11/25/2013	9:10			9	33	32.3		<2	56	0.0		0.0		
	11/25/2013	9:22	• •			33	31.5		<2	58 50	0.0		0.0		
	11/25/2013	9:23	11/25/2013 9:23			35	33		2	58	4.2		2.1		
	11/25/2013	10:26	• •			33	32		5.5	64	11.4		491.3		
	11/25/2013	10:27	11/25/2013 10:27			35	34 34		7.5 8	63	15.8		13.6		
	11/25/2013	11:24	11/25/2013 11:24			35			9	62	16.9		932.7		
	11/25/2013	12:09	• •			35	34		,	65 65	19.0		806.7		
	11/25/2013	12:46				35	34		8	65	16.8		662.3		
	11/25/2013	13:54	11/25/2013 13:54			35	34		9	64	19.0		1217.9		
	11/25/2013	14:15	• •				2-				V	alve shut	398.4	45.58	
614/ 0.5	11/25/2013	14:16					27								517.66
SW-9 Event 2	12/5/2013	8:26			_		•••								517.66
	12/5/2013	8:28				29	28.5		<2	68.0	0.0				517.66
	12/5/2013	8:32				33	32.5		<2	68	0.0				517.66
	12/5/2013	8:35				37	32.5		<2	68	0.0				517.66
	12/5/2013	8:44	12/5/2013 8:44			34	32.5		<2	69.0	0.0				517.66
	12/5/2013	9:33				34	33		2	76.0	4.1		101.0		
	12/5/2013	10:25				34	33		3	79	6.2		267.6		
	12/5/2013	11:40	• •			34	32.5		4	81	8.2		539.1		
	12/5/2013	11:42	• •			35	34		7	81	14.5		22.7		
	12/5/2013	13:10			5	35	34		7	82	14.5		1276.6		
	12/5/2013	13:11									V	alve shut	14.5	1.66	
	12/5/2013	13:12													771.81
SW-9 Event 3	12/11/2013	9:03	• •			34	33		<2	66	0.0				771.81
	12/11/2013	9:41	12/11/2013 9:41			34	33		<2	68	0.0				771.81
	12/11/2013	10:14	12/11/2013 10:14			32	32		<2	68	0.0				771.81
	12/11/2013	10:55	· ·			32	32	•	<2	70	0.0				771.81
	12/11/2013	11:38				34	33		5.5	70	13.5		289.9		
	12/11/2013	12:32	• •			34	33		7.5	68	15.6		784.8		
	12/11/2013	13:12				34	33		8	66	16.7		644.9		
	12/11/2013	13:13	• •								V	alve shut	16.7	1.91	
	12/11/2013	13:14	12/11/2013 13:14	l			25								970.43
SW-9 Event 4	12/13/2013	8:20				30	31		<2	60	0.0				970.43
	12/13/2013	8:21	12/13/2013 8:21	55		32	30	•	<2	60	0.0				970.43
	12/13/2013	9:07	12/13/2013 9:07	7 52		30	29	•	<2	62	0.0				970.43
	12/13/2013	9:08	12/13/2013 9:08	52	•	32	31.5	•	<2	62	0.0				970.43
	12/13/2013	9:09	12/13/2013 9:09	52	•	35	33		4	62	8.4		4.2	0.48	970.92
	12/13/2013	9:37	12/13/2013 9:37	7 50		35	34		3	64	6.3		206.8	23.66	994.58
	12/13/2013	10:32	12/13/2013 10:32	2 48		35	34		4	67	8.4		405.1	. 46.35	1040.92
	12/13/2013	12:30	12/13/2013 12:30) 45		35	33		6	70	12.6		1237.9	141.61	1182.54
	12/13/2013	13:52	12/13/2013 13:52	2 45		35	33		8	70	16.8		1202.9	137.61	1320.15
	12/13/2013	15:10	12/13/2013 15:10	50		35	32.5	9	9.5	68	19.9		1431.8	163.80	1483.95
	12/13/2013	15:11	12/13/2013 15:11	L							V	alve shut	19.9	2.28	1486.23
	12/13/2013	15:12	12/13/2013 15:12	2			26								1486.23
SW-9 Event 5	12/16/2013	8:32	12/16/2013 8:32	2			35				0.0		0.0	0.00	1486.23
	12/16/2013	8:32	12/16/2013 8:32	2 50	0	32	32		<2	50	0.0		0.0	0.00	1486.23
	12/16/2013	8:36	12/16/2013 8:36	5			39				0.0		0.0	0.00	1486.23
	12/16/2013	9:07			0	32	31	. 3	3.5	50	7.2		112.4		
	12/16/2013	10:12				32	31		4	58	8.2		502.7	57.51	1556.60
	12/16/2013	10:13				32	31		4	64	8.2		8.2		
	12/16/2013	11:14	12/16/2013 11:14			34	33		6	64	12.5		631.0		
	12/16/2013	13:18				34	33		5.5	70	13.5		1612.0		
	,,	_30	-,,			- '			-	. •			_5		

				P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date		Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)		w (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	12/16/2013	13:19	12/16/2013 13:19	55	5 34	32	10		70	20.7	17.1	1.96	1816.09
	12/16/2013	13:20	12/16/2013 13:20			25				0.0 Valve Shut	10.4	1.19	1817.28
	12/16/2013	14:48	12/16/2013 14:48	45	32	2 39	16.5		74	33.4 Restart	1468.4	167.98	1985.26
	12/16/2013	15:28	12/16/2013 15:28	45	32	2 31	13		68	26.4	1196.4	136.87	2122.12
	12/16/2013	16:24	12/16/2013 16:24	45	34	31	. 12		62	25.1	1443.0	165.07	2287.20
	12/16/2013	16:25	12/16/2013 16:25	44	1 34	1 32	14		62	29.3	27.2	3.11	2290.31
	12/16/2013	22:22	12/16/2013 22:22	47	37	30.5	17.5		58	37.9	11983.4	1370.91	3661.21
	12/17/2013	8:34	12/17/2013 8:34	45	36	30	20		62	42.7	24645.9	2819.49	6480.70
	12/17/2013	8:35	12/17/2013 8:35							Valve shut	42.7	4.88	6485.58
	12/17/2013	8:36	12/17/2013 8:36			25	1						6485.58
SW-9 Event 6	1/21/2014	12:51	1/21/2014 12:51	49	26	5 25.5	<2		71	0.0	0.0	0.00	6485.58
	1/21/2014	12:52	1/21/2014 12:52	49	32.5	32.2	<2		71	0.0	0.0	0.00	6485.58
	1/21/2014	14:12	1/21/2014 14:12	52	2 31	32	4.2		72	8.4	336.7	38.52	6524.10
	1/21/2014	15:53	1/21/2014 15:53	55	30	30.5	6.8		68	13.5	1108.4	126.80	6650.90
	1/21/2014	15:54	1/21/2014 15:54	55	32	31.5	12		68	24.4	19.0	2.17	6653.07
	1/21/2014	16:58	1/21/2014 16:58	57	32.5	31.5	11.6		64	23.8	1543.5	176.57	6829.64
	1/21/2014	17:00	1/21/2014 17:00							Valve shut	47.6	5.45	6835.09
SW-9 Event 7	1/23/2014	13:07	1/23/2014 13:07	52	2 30) 27	<2		58	0.0			6835.09
	1/23/2014	13:08	1/23/2014 13:08	52	2 35	32	<2		58	0.0	0.0	0.00	6835.09
	1/23/2014	13:12	1/23/2014 13:12	52	2 33	30.5	5		58	10.4	20.8	2.38	6837.47
	1/23/2014	13:12	1/23/2014 13:12	52	34.5	32	6.5		58	13.7	0.0	0.00	6837.47
	1/23/2014	14:24	1/23/2014 14:24	53	34	1 30	8.8		57	18.5	1159.3	132.63	6970.10
	1/23/2014	14:26	1/23/2014 14:26	53	35	32.2	12		57	25.5	44.0	5.03	6975.13
	1/23/2014	15:59	1/23/2014 15:59	53	35	32	13		57	27.6	2467.9	282.33	7257.45
	1/23/2014	17:08	1/23/2014 17:08	59	35	31	14.3		54	30.4	2002.6	229.10	7486.56
	1/23/2014	17:09	1/23/2014 17:09			27				Valve shut	30.4	3.48	7490.04
SW-9 Event 8	1/27/2014	12:35	1/27/2014 12:35										7490.04
	1/27/2014	12:37	1/27/2014 12:37	56	35	33	5		86	10.3	20.6	2.36	7492.40
	1/27/2014	13:05	1/27/2014 13:05	50	34.5	31.5	9.5		75	19.7	420.4	48.09	7540.49
	1/27/2014	13:06	1/27/2014 13:06	49	36	5 33	12.5		74	26.4	23.0	2.64	7543.13
	1/27/2014	13:19	1/27/2014 13:19	49	36	33	12.5		72	26.4	343.0	39.24	7582.37
	1/27/2014	14:54	1/27/2014 14:54	48	36	33	13		68	27.6	2564.3	293.35	7875.72
	1/27/2014	15:52	1/27/2014 15:52	47	36	32.5	14		67	29.7	1661.7	190.10	8065.82
	1/27/2014	16:38	1/27/2014 16:38	52	2 36	32.5	14		65	29.8	1368.7	156.58	8222.40
	1/27/2014	16:39	1/27/2014 16:39							Valve shut	29.8	3.41	8225.80
	1/27/2014	16:40	1/27/2014 16:40			25							8225.80
Note: a red value,	, i.e. <mark>75</mark> °F, indicates t	that value was	interpolated from field d	ata							Total CO ₂ Mass (lbs):		8225.80

Back to Master	Date T	ime	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)		ameter	Temp (°F)	F	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-10 Event 1	11/21/2013	9:29		5.	5	28				66	0.0			
	11/21/2013	9:30	11/21/2013 9:30)		33	34	<	2	66	0.0	0.0	0.00	0.00
	11/21/2013	10:20	11/21/2013 10:20)		31	32		4	66	8.1	201.6	23.06	23.06
	11/21/2013	10:21	11/21/2013 10:21	L		34	34		6	68	12.5	10.3	1.17	24.24
	11/21/2013	10:57	11/21/2013 10:57	,		34	34	6.	5	70	13.5	467.1	53.44	77.68
	11/21/2013	11:59	11/21/2013 11:59)		34	34		7	72	14.5	867.1	99.20	176.88
	11/21/2013	13:23	11/21/2013 13:23	3 4.	5	33 33	3.5		7	74	14.3	1209.6	138.38	315.26
	11/21/2013	13:40	11/21/2013 13:40)	33	.5	34		8	74	16.4	261.4	29.90	345.16
	11/21/2013	13:41	11/21/2013 13:41	L							Valve shut	16.4	1.88	347.05
	11/21/2013	13:42	11/21/2013 13:42	2			28							347.05
SW-10 Event 2	11/26/2013	8:02	11/26/2013 8:02	2 5	2	25				68				347.05
	11/26/2013	8:05	11/26/2013 8:05	5 5!	5	33	33	<	2	68	0.0			347.05
	11/26/2013	8:25	11/26/2013 8:25	5 5!	5	33	32	<	2	68	0.0			347.05
	11/26/2013	8:27	11/26/2013 8:27	5.	5	35	31		4	68	8.4	8.4	0.96	348.01
	11/26/2013	9:10	11/26/2013 9:10			34	34		4	68	8.3	359.3	41.10	389.11
	11/26/2013	11:10			4	33	34		8	68	16.5	1485.8	169.98	559.09
	11/26/2013	12:35	• •			34	34	1	0	68	20.8	1582.4		
	11/26/2013	12:36									Valve shut	20.8		
	11/26/2013	12:38					26							742.49
SW-10 Event 3	12/12/2013	9:20					29	<	2	62	0.0			742.49
	12/12/2013	9:21	• •			35 32	2.5	<	2	62	0.0			742.49
	12/12/2013	9:59					32		2	66	0.0			742.49
	12/12/2013	10:00	• •				33		4	66	8.4	4.2	0.48	
	12/12/2013	10:36	• •				3.5		4	67	8.4	302.8		
	12/12/2013	11:33	• •				3.5		6	68	12.6	598.7		
	12/12/2013	13:28	• •				32		9	70	18.3	1775.2		
	12/12/2013	13:29	• •								Valve shut	18.3		
	12/12/2013	13:30	• •				19							1051.27
SW-10 Event 4	12/16/2013	8:34					33	<	2	50.0	0.0	0.0	0.00	
	12/16/2013	8:34					32			50.0	0.0	0.0		
	12/16/2013	9:06					1.5	3.		58.0	7.2	115.1		
	12/16/2013	9:08					33			58.0	12.6	19.8		
	12/16/2013	10:11					33			64.0	12.5	791.0		
	12/16/2013	11:12					33			70.0	16.6	887.9		
	12/16/2013	13:20					1.5			70.0	22.3	2491.4		
	12/16/2013	13:21									0.0 Valve shut	11.2		
	12/16/2013	13:22					25				0.0	0.0		
	12/16/2013	14:46					28	2	0	74.0	39.6 Restart	1661.6		
	12/16/2013	15:30					31			68.0	27.9	1483.2		
	12/16/2013	16:26					31			62.0	28.7	1582.2		
	12/16/2013	22:20					30			58.0	37.0	11617.4		
	12/17/2013	8:35					28			62.0	40.9	23958.6		
	12/17/2013	8:36						_	•	02.0	Valve shut	40.9		
	12/17/2013	8:37					24				raive sinae	10.5		6160.41
SW-10 Event 5	1/20/2014	10:54					26		2	66.0	0.0	0.0	0.00	
St. 10 Events	1/20/2014	10:57					0.2		4	66.0	8.2	12.3		
	1/20/2014	11:01					1.2	5.	•	66.0	11.5	39.4		
	1/20/2014	11:30					1.5	5. 5.		68.0	11.5	333.5		
	1/20/2014	12:51					31	7.		69.0	14.9	1070.7		
	1/20/2014	13:54	• •				31	7. 9.		68.0	19.1	1073.1		
	1/20/2014	15:10					0.5		0	68.0	20.7 Valve shut	1512.1		
	1/20/2014	15:10			33		0.3 27	1	J	00.0	20.7 valve sllut	1312.1	. 1/2.33	6622.72
SW-10 Event 6	1/20/2014	8:11					28		2	54.0	0.0	0.0	0.00	
3VV-10 EVEIII 0	1/21/2014	0.11	1/21/2014 8:11	. 33		30	20		_	34.0	0.0	0.0	0.00	0022.72

Back to Master	Date	Time	ſ		P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
	1/21/20)14	8:12	1/21/2014 8:12	55	33	31	3.8	54.0	7.9	4.0	0.45	6623.17
	1/21/20	014	8:13	1/21/2014 8:13	55	34	31.5	7	54.0	14.8	11.3	1.30	6624.47
	1/21/20	014	8:19	1/21/2014 8:19	54	33	31.5	g	56.0	18.7	100.4	11.49	6635.96
	1/21/20	014	8:54	1/21/2014 8:54	50	33	31.5	10	60.0	20.7	690.5	78.99	6714.96
	1/21/20	014	8:58	1/21/2014 8:58	50	34	31.5	12	60.0	25.1	91.7	10.49	6725.45
	1/21/20	014	9:59	1/21/2014 9:59	40	34	31.5	10.5	64.0	21.9	1434.9	164.15	6889.60
	1/21/20	014	11:20	1/21/2014 11:20	39	34	31	. 11	68.0	22.9	1813.1	207.42	7097.01
	1/21/20	014	12:44	1/21/2014 12:44	45	34	30.5	12.5	68.0	26.0	2051.2	234.65	7331.67
	1/21/20)14	12:45	1/21/2014 12:45			27	,		Valve shut	26.0	2.97	7334.64
SW-10 Event 7	1/23/20)14	8:22	1/23/2014 8:22	53	33	31	<2	41.0	0.0	0.0	0.00	7334.64
	1/23/20)14	9:03	1/23/2014 9:03	52	30.5	29.5	6.3	50.0	12.8	263.1	30.10	7364.74
	1/23/20)14	9:04	1/23/2014 9:04	52	33.5	31	. 11	50.0	23.2	18.0	2.06	7366.80
	1/23/20	014	9:49	1/23/2014 9:49	48	33.5	30.5	10	52.0	21.0	993.6	113.67	7480.47
	1/23/20)14	9:50	1/23/2014 9:50	48	35	32	. 12	52.0	25.6	23.3	2.67	7483.13
	1/23/20	014	10:54	1/23/2014 10:54	45	35	32	12.8	54.0	27.3	1691.5	193.51	7676.65
	1/23/20	014	11:47	1/23/2014 11:47	44	35	31.5	13.5	54.0	28.7	1484.1	169.78	7846.42
	1/23/20)14	13:04	1/23/2014 13:04	50	35	31.5	15.5	58.0	32.9	2372.3	271.39	8117.81
	1/23/20	014	13:05	1/23/2014 13:05			26	<u> </u>		Valve shut	32.9	3.76	8121.57
Note: a red value,	i.e. <mark>75</mark> °F, indicat	es that val	ue was	interpolated from field d	ata						Total CO ₂ Mass (lbs):		8121.57

Back to Master	Date 1	ime	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	F	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-11 Event 1	11/22/2013	8:29	11/22/2013 8:29)						0.0			
	11/22/2013	8:30			5 24	4 24	1	<2	70	0.0	0.0	0.00	0.00
	11/22/2013	8:44						<2	70	0.0	0.0		
	11/22/2013	8:48	11/22/2013 8:48	55	32	2 33	}	<2	70	0.0	0.0		0.00
	11/22/2013	9:08			32	2 33	}	<2	74	0.0	0.0		0.00
	11/22/2013	9:09						3.8	74	7.9	3.9		
	11/22/2013	10:02	• •					5.0	76	12.2	530.7		
	11/22/2013	10:37	• •					5.0	77	12.4	429.4		
	11/22/2013	11:06	• •					7	77	14.4	388.3		
	11/22/2013	11:36						7	77	14.4	432.6		
	11/22/2013	11:59	• •					10	81	20.7	404.3		
	11/22/2013	12:43						10	81	20.7	912.3		
	11/22/2013	12:44	• •		- 3.				-	Valve shut	20.7		
	11/22/2013	12:45								valve shac	2017	2.37	357.19
SW-11 Event 2	11/26/2013	7:55	· ·		1 28	3			68				357.19
<u> </u>	11/26/2013	7:58						<2	68	0.0	0.0	0.00	
	11/26/2013	8:22	• •					4	68	8.0	96.6		
	11/26/2013	9:07						5	68	10.2	410.0		
	11/26/2013	11:03						7	68	14.1	1406.9		
	11/26/2013	12:30						8	68	16.1	1312.9		
	11/26/2013	12:32			, 5.	. J <u>.</u>	•	Ü	00	Valve shut	32.2		
	11/26/2013	12:33	• •			24	l			valve shut	32.2	3.00	729.97
SW-11 Event 3	12/5/2013	8:09			5 35			7	66	14.7			729.97
3VV-11 LVEIIL 3	12/5/2013	8:43						13	69	27.5	718.7	7 82.22	
	12/5/2013	9:19						14	72	29.6	1028.3		
	12/5/2013	10:19	• •					14	72 78	29.4	1769.6		
	12/5/2013	11:34						14 4.5	80	30.4	2242.7		
	12/5/2013	12:18						+.5 15	82	31.4	1359.3		
) 50	5 55	1	15	02				
	12/5/2013 12/5/2013	12:19				2.7	1			Valve shut	31.4	1 3.59	1547.93 1547.93
CM/ 11 Fyont /		12:20	• •))	23		رم	T.C. O.	0.0			
SW-11 Event 4	12/18/2013	8:33							56.0	0.0	105.3	21.10	1547.93
	12/18/2013	9:34							62.0	6.1	185.2		
	12/18/2013	9:35			5 33	34.5		7.5	62.0	15.5	10.8		
	12/18/2013	9:38			2/	25.0		-2	75.0	0.0 Valve shut	23.3		
	12/18/2013	13:59							75.0	0.0 Restart	0.0		
	12/18/2013	14:00							75.0	0.0	0.0		
	12/18/2013	14:45							72.0	0.0	0.0		
	12/18/2013	14:47							72.0	10.4	10.4		
	12/18/2013	15:31							70.0	12.4	501.5		
	12/18/2013	16:52							65.0	18.6	1255.8		
	12/18/2013	17:50			33	3 33.4	. 10	0.5	56.0	21.9	1172.0		
	12/18/2013	17:55								Valve shut	109.3	3 12.50	
	12/18/2013	17:56				26							1921.81
SW-11 Event 4	1/8/2014	8:17							40.0				1921.81
	1/8/2014	8:18							40.0	0.0	0.0		
	1/8/2014	8:34							45.0	6.5	52.1		
	1/8/2014	8:52							48.0	7.6	126.8		
	1/8/2014	8:53							48.0	13.1	10.3		
	1/8/2014	9:50	· ·		37				50.0	15.3	809.0		
	1/8/2014	10:41			5 36	34.5			54.0	18.3	855.6		
	1/8/2014	11:20	1/8/2014 11:20) 45	36	5 34	!	9.5	56.0	20.4	754.2	2 86.28	3 2220.17
	1/8/2014	12:54	1/8/2014 12:54	49	36	33.5	i	12	56.0	25.8	2169.2	2 248.16	2468.34
	1/8/2014	12:55	1/8/2014 12:55	49	38	3 35	i	16	56.0	35.0	30.4	3.48	3 2471.81

Back to Master	Date	-	Гime	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)		meter ing (scfm)	Temp (°F)	F	·low (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂	Cumulative Mass (lb)
back to iviaster	Date	1/8/2014	13:02					35			56.0	35.0	245.2		
		1/8/2014	14:00					35			56.0	35.0	2031.8		
		1/8/2014	15:09	• •				4.5			58.0	39.3	2565.4		
		1/8/2014	16:30	• •				34			54.0	39.5	3192.2		
		1/8/2014	16:52					34			53.0	41.7	893.4		
		1/8/2014	16:53	• •		,	30	34	L	9	33.0	Valve shut	41.7		
		1/8/2014	16:54	• •				26				valve strut	41.7	4.7	3497.95
SW-11 Event 5		1/10/2014	11:10			37		2.5		2	72.0	0.0			3497.95
3W-II LVEIIL 3		1/10/2014	11:13					3.5			72.0	0.0	(0.0	
		1/10/2014	12:50					32	4.		72.0	9.1	442.3		
		1/10/2014	12:54					3.5			72.0 72.0	16.7	51.7		
		1/10/2014	14:35					33	8.		72.0 70.0	17.8	1744.5		
		1/10/2014	16:32					33	1		70.0	23.1	2390.6		
		1/10/2014	17:55					33	12.		66.0	25.7	2021.9		
		1/10/2014	22:10				34	31	14.	5	64.0	30.3	7129.9		
		1/10/2014	22:14					26				Valve shut	121.0) 13.8	
		1/10/2014	22:16					26							5088.32
SW-11 Event 6		1/13/2014	8:05									0.0	0.0		
		1/13/2014	8:07					36		3	50	6.7	6.7		
		1/13/2014	8:22	• •				34		0	52	22.2	216.5		
		1/13/2014	10:09	· ·				34		0	67	21.9	2357.1		
		1/13/2014	11:18	· ·				34		0	70	21.8	1506.3		
		1/13/2014	12:10	• •				34	10		72	22.8	1160.6		
		1/13/2014	12:39	• •				34	10.	5	70	22.9	663.1		
		1/13/2014	13:50	· ·		5	37	33	1	2	68	25.7	1725.1		5 5961.81
		1/13/2014	13:51	1/13/2014 13:51	. 45	5	39	34	1	5	68	32.8	29.2	2 3.3	4 5965.15
		1/13/2014	14:41	1/13/2014 14:41	. 42	2	39	34	1	5	68	32.8	1638.0	187.3	9 6152.54
		1/13/2014	15:59	1/13/2014 15:59	41		39	33	1	5	66	32.8	2557.9	292.6	2 6445.17
		1/13/2014	16:00	1/13/2014 16:00) 41		39	34	1	6	66	35.0	33.9	3.8	8 6449.05
		1/13/2014	17:00	1/13/2014 17:00) 46	6	41	35	2	0	64	44.7	2390.8	3 273.5	1 6722.56
		1/13/2014	17:01	1/13/2014 17:01	-							Valve shut	44.7	5.1	1 6727.67
		1/13/2014	17:02	1/13/2014 17:02				27							6727.67
SW-11 Event 6		1/15/2014	9:09	1/15/2014 9:09	52	2	34	32 <2			62	0.0	0.0	0.0	0 6727.67
		1/15/2014	9:12	1/15/2014 9:12	. 52	2	34	32		4	62	8.4	12.5	5 1.4	3 6729.10
		1/15/2014	9:13	1/15/2014 9:13	52	2	35	33		6	62	12.7	10.5	1.2	0 6730.31
		1/15/2014	9:18	1/15/2014 9:18	52	2	35	33		8	62	16.9	73.9	8.4	6 6738.76
		1/15/2014	9:32	1/15/2014 9:32	. 46	5	34	32	10.	2	64	21.3	267.3	30.5	7 6769.34
		1/15/2014	9:33	1/15/2014 9:33	46	5	35	33	12.	2	64	25.7	23.5	2.6	9 6772.03
		1/15/2014	10:18	1/15/2014 10:18	43	3	35 33	2.5	1	3	66	27.4	1194.1	136.6	0 6908.63
		1/15/2014	11:26	1/15/2014 11:26	41	L :	35 33	2.5	13.	5	69	28.3	1892.8	3 216.5	3 7125.16
		1/15/2014	12:35					2.5	14.	2	67	29.8	2006.7		
		1/15/2014	13:58					2.5		5	66	31.6	2548.3		
		1/15/2014	15:40					32		6	69	33.2	3303.6		
		1/15/2014	17:11					1.5		7	62	35.5	3128.5		
		1/15/2014	17:13									Valve shut	71.1		
		1/15/2014	17:16					24				3.1.2.5.1.4.	, 1.1	0.1	8390.21
SW-11 Event 7		1/17/2014	7:32			5		30	<	2	40	0.0			8390.21
JII II LVCIIC /		1/17/2014	7:32					30		2	40	4.3	2.1	0.2	
		1/17/2014	7:34					30	3.		40	8.1	6.2		
		1/17/2014	7:34					2.5		8	40	17.1	25.2		
		1/17/2014	7.50 8:50					31	11.	_	60	23.8	25.2 1514.8		
		1/17/2014	8:51					2.5		4	60	29.3	26.6		
		1/17/2014	10:28	1/17/2014 10:28	9 47		34	32	1	3	66	27.1	2735.2	312.9	1 8883.30

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	1/17/201	4 11:36	1/17/2014 11:36	45	34	1 37	2 13	67	27.0	1839.8	3 210.48	8 9093.78
	1/17/201	4 12:28	1/17/2014 12:28	46	34	1 37	2 13.5	68	28.1	1432.6	163.89	9 9257.66
	1/17/201	4 13:00	1/17/2014 13:00	45	34	1 32	2 13.8	68	28.7	907.8	3 103.8	5 9361.51
	1/17/201	4 14:11	1/17/2014 14:11	45	34	4 32	2 14	68	29.1	2051.0	234.63	3 9596.14
	1/17/201	4 15:30	1/17/2014 15:30	47	34	4 31.	14.5	66	30.2	2341.9	267.9	1 9864.05
	1/17/201	4 15:32	1/17/2014 15:32						Valve shut	60.4	1 6.93	1 9870.95
	1/17/201	4 15:41	1/17/2014 15:41			20	5					9870.95
SW-11 Event 8	1/21/201				30) 30	<2	54				9870.95
	1/21/201		1/21/2014 8:17	55	33	3	3 4	54	8.3	8.3	0.9	5 9871.91
	1/21/201) 31	1 3:	10	60	20.3	558.3		
	1/21/201							60		23.7		
	1/21/201							64	24.9	1584.3		
	1/21/201) 33			68		1981.0		
	1/21/201				33			69		2132.2		
	1/21/201					28	3		Valve shut	53.4	6.1	
SW-11 Event 9	1/28/201											10596.37
	1/28/201							58		7.4		
	1/28/201				33	3	10.5	58		438.		
	1/28/201							58		49.4		
	1/28/201							58		477.		
	1/28/201		• •					58		2719.9		
	1/28/201							58		1574.7		
	1/28/201		• •					54		1423.4		
	1/28/201		• •					54	34.1	2475.4		
	1/28/201		• •					54		2207.6		
	1/28/201		• •		34.5			54	38.1	1927.8		
	1/28/201) 34	1 3	18.5	52		2933.6		
	1/28/201		• •						Valve shut	39.3	L 4.4	
	1/28/201					2.	j					12458.15
<u>SW-11 Event 10</u>	1/29/201											12458.15
	1/29/201							42		15.3		
	1/29/201							44		1236.8		
	1/29/201							44		35.0		
	1/29/201							46		3062.3		
	1/29/201							46		5681.7		
	1/29/2014							46		3349.3		
	1/29/2014							45		2362.8		
	1/29/2014) 35	5 33.	5 21	45		3965.3		
	1/29/2014								Valve shut	45.1	L 5.10	
6)1// 44 5 44	1/29/2014					2.)					14717.98
SW-11 Event 11	1/30/2014								24.0	**		14717.98
	1/30/201							42		43.8		
	1/30/2014							42		183.3		
	1/30/2014							46		2753.5		
	1/30/201							48		2258.3		
	1/30/201							48		2810.9		
	1/30/201		• •					50		3675.8		
	1/30/201		• •		34.5	5 33.	5 22	50		3377.3		
	1/30/2014					= -			Valve shut	46.8	5.3	
CIM 44 F	1/30/2014					2.			2.2			16451.09
<u>SW-11 Event 12</u>	2/5/201							62				16451.09
	2/5/2014							62		244.8		
	2/5/201	4 8:51	2/5/2014 8:51	51	. 32	2 37	2 10	66	20.4	1039.3	l 118.8	7 16597.97

Back to Master	Date	Time		P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
Dack to Waster	2/5/2014			(18)	32				66 20.8	535.3		
	2/5/2014			45					68 20.8	1557.8		
	2/5/2014			45					70 20.6	1240.4		
	2/5/2014			45					71 20.6	1461.7		
	2/5/2014		• •	45					73 20.7	1198.2		
	2/5/2014		• •	48					80 22.6	1538.5		
	2/5/2014			48					74 24.1	1238.5		
	2/5/2014		• •	48					76 24.1	434.1		
	2/5/2014			40	31.5	27		-		alve shut 24.1		
SW-11 Event 13	2/7/2014			51	30)	56 0.0	24.1	2.70	17653.72
5VV-II EVERT IS	2/7/2014		• •	49					56 6.3	6.3	3 0.72	
	2/7/2014			49					57 14.5	41.5		
	2/7/2014		• •	46					57 21.5	880.9		
	2/7/2014		• •	46					57 28.4	49.9		
	2/7/2014		• •	44					60 28.5	3760.2		
	2/7/2014			44					61 28.5	2625.1		
	2/7/2014			49					61 29.6	2236.1		
	2/7/2014		• •	50					60 31.3	2219.8		
	2/7/2014			50					59 33.0	1220.7		
	2/7/2014		• •	57					58 34.3	369.9		
	2/7/2014			37	3.	27		,		alve shut 34.3		
SW-11 Event 14	2/10/2014			54	29)	60 0.0	0.0		
5W II LVCIIC 14	2/10/2014			53					60 7.9	11.8		
	2/10/2014			48					66 24.5	711.4		
	2/10/2014			47					66 30.0	27.2		
	2/10/2014			48					70 29.3	3233.7		
	2/10/2014			48					71 29.3	2928.4		
	2/10/2014			45					71 29.3	2692.8		
	2/10/2014		• •	45					67 30.0	3260.1		
	2/10/2014			48					63 32.2	1617.4		
	2/10/2014			40	33.3	26		,		alve shut 32.2		
SW-11 Event 15	2/11/2014			51	30.5			<u> </u>	56 7.1	32.2	3.00	20852.32
244 II LACIIL IZ	2/11/2014			48					56 18.8	64.8	3 7.42	
	2/11/2014			49					59 28.5	733.3		
	2/11/2014		• •	43	32.5	22		,		ilve shut 113.9		
Notar a rad valua			as interpolated from field da				•		v a	Total CO ₂ Mass (lbs)		20956.65

Back to Master	Date 1	Time	Date + Time	P at Reducer (psig)	P at Pane (psig)	l Pat W (psi)		Rotameter Reading (scfm)	Temp (°F	F) F	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
SW-12 Event 1	11/25/2013	8:53		3 5!	5	28				52	0.0			
	11/25/2013	8:54	11/25/2013 8:54	Į.		34	33	•	<2	52	0.0	0.0	0.00	0.00
	11/25/2013	9:14	11/25/2013 9:14	Į.		33	30		4	54	8.3	83.4	9.54	9.54
	11/25/2013	9:15	11/25/2013 9:15	,		35	32.5		6	54	12.8	10.6	1.21	10.75
	11/25/2013	9:16	11/25/2013 9:16	5		36	34		7	54	15.1	13.9	1.59	12.34
	11/25/2013	10:24	11/25/2013 10:24	Į.		35	33		11	62	23.2	1301.9	148.94	161.29
	11/25/2013	11:30	11/25/2013 11:30)		36	33		12	62	25.6	1611.7	184.38	345.67
	11/25/2013	12:38	11/25/2013 12:38	3		36	32		12	64	25.6	1739.4	198.99	544.66
	11/25/2013	13:58	11/25/2013 13:58	3 50	0	36	31		12	64	25.6	2044.4	233.88	778.54
	11/25/2013	14:10	11/25/2013 14:10)							Valve shut	306.7	35.08	813.62
	11/25/2013	14:11	11/25/2013 14:11	L			23							813.62
SW-12 Event 2	12/4/2013	8:05	12/4/2013 8:05							63				813.62
	12/4/2013	8:07	12/4/2013 8:07	7 54	4	36	33.5		<2	63	0.0			813.62
	12/4/2013	8:37	12/4/2013 8:37	7 4	7	34	31.5		6	68	12.5	187.0	21.40	835.01
	12/4/2013	8:39			7	36	33	7	'.5	68	15.9	28.4		
	12/4/2013	9:09			6	35	33	8	8.5	70	17.8	505.8	57.87	896.13
	12/4/2013	9:59	• •			35	32		10	70	21.0	969.2		
	12/4/2013	11:00				37	33.5		14	74	29.8	1548.6		
	12/4/2013	12:06	• •			36	33		15	76	31.6	2025.7		
	12/4/2013	12:07									Valve shut	31.6		
	12/4/2013	12:08	• •				24							1419.51
SW-12 Event 3	12/17/2013	8:29			5	28	32		<2	50	0.0	0.0	0.00	
	12/17/2013	9:58				28	27.4		<2	66	0.0	0.0		
	12/17/2013	9:59				31	32		6	66.0	12.1	6.0		
	12/17/2013	11:05				30	32		7	68.0	13.9	858.8		
	12/17/2013	11:06				32	33.6		10	68	20.3	17.1		
	12/17/2013	12:38				32	33	12		72	25.3	2101.0		
	12/17/2013	12:39				J L	33	12		, _	Valve shut	25.3		
	12/17/2013	12:40					23				valve shac	23.5		1763.67
SW-12 Event 4	1/6/2014	13:04												1763.67
<u> </u>	1/6/2014	13:06			6	32	32.4		<2	60	0.0	0.0	0.00	
	1/6/2014	13:26				0.5	31.6		<2	60	0.0	0.0		
	1/6/2014	13:28				3.5 3.5	34.4		1.5	60	9.4	9.4		
	1/6/2014	13:58				3.5	34.4	·	5	58	10.4	297.3		
	1/6/2014	15:06				33	34	7	'.5	58	15.6	884.6		
	1/6/2014	16:04				33	33.6	,	9	55	18.7	995.5		
	1/6/2014	17:04				33	33.2	10		52	21.9	1220.7		
	1/6/2014	17:18				33	33.2		 11	52	23.0	314.5		
	1/6/2014	17:19			,	33	33.2		11	32	Valve shut	23.0		
	1/6/2014	17:13									valve shut	25.0	2.03	2192.07
SW-12 Event 5	1/7/2014	7:34								27				2192.07
3W-12 EVEILE 3	1/7/2014	7:34 7:36			n	19	21.2		<2	27	0.0			2192.07
	1/7/2014	7:51				19 17	19.2		<2	27	0.0	0.0	0.00	
	1/7/2014	9:04				35	36.4	/	'.5	42	16.2	590.2		
	1/7/2014	9:05				3.5	34.8	-	6	42 47	12.7	14.5		
	1/7/2014	10:23				3.5	34.4		'.5 · F	47 50	15.8	1114.2		
	1/7/2014	11:23				33	34).5	50 50	19.9	1071.8		
	1/7/2014	12:42			9 32	2.5	33.6	10	1.5	50	21.9	1649.5		
	1/7/2014	12:43	• •				27.0				Valve shut	21.9	2.50	
CW 42 F C	1/7/2014	12:44	· ·				27.6				0.0			2702.53
SW-12 Event 6	1/9/2014	12:51			_	20			•		0.0	0.0		
	1/9/2014	12:52	• •			38	34.5		<2	60	0.0	0.0		
	1/9/2014	12:58	1/9/2014 12:58	3 43	3	36	33		2	60	4.3	12.8	3 1.47	2704.00

Deal to Marity	Data	- •		D. J 	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of	Mass of CO₂ (lb)	Cumulative Mass (lb)
Back to Master	Date	Tin /2014	12:59	Date + Time 1/9/2014 12:59					4 60		CO ₂ (scf)		
		/2014 /2014	14:16	1/9/2014 12:39							870.9		
		/2014 /2014	15:56	1/9/2014 15:56					0 58		1766.1		
		/2014 /2014	15:57	1/9/2014 15:57							25.5		
		/2014	17:29	1/9/2014 17:29					6 58		2965.0		
		/2014	17:30	1/9/2014 17:30		, 30	, ,,	•	.0 30	Valve shu			
		/2014	17:31	1/9/2014 17:31			24	1		vaive silu	33.0	4.00	3352.51
SW-12 Event 7	1/13/		8:07	1/13/2014 8:07) 3(2 40	5 0.0	0.0	0.00	
SVV 12 EVENT	1/13/		8:08	1/13/2014 8:08					2 4		0.0		
	1/13/		8:09	1/13/2014 8:09					2 4		0.0		
	1/13/		8:12	1/13/2014 8:12							11.4		
	1/13/		8:26	1/13/2014 8:26					6 40		144.2		
	1/13/		8:27	1/13/2014 8:27							13.7		
	1/13/		8:47	1/13/2014 8:47					7 54		293.7		
	1/13/		9:55	1/13/2014 9:55					9 67		1164.9		
	1/13/		9:56	1/13/2014 9:56					0 62		20.4		
	1/13/		11:08	1/13/2014 11:08					1 69		1615.0		
	1/13/		12:16	1/13/2014 12:16					2 70		1656.2		
	1/13/		12:17	1/13/2014 12:17			25			Valve shu			
SW-12 Event 8	1/14/		7:45	1/14/2014 7:45) 34			2 62		0.0		
	1/14/		7:47	1/14/2014 7:47	49	3!	5 32.5	5 <	2 63	2 0.0	0.0	0.00	3918.20
	1/14/		7:55	1/14/2014 7:55	50	3!	5 32.5	5	4 62		33.8		3922.07
	1/14/	2014	8:42	1/14/2014 8:42	46	3!	5 33	L 6	8 63	2 14.4	536.1	61.33	3983.40
	1/14/	2014	8:45	1/14/2014 8:45	46	3	7 33	3 1	0 63	2 21.6	53.9	6.16	3989.56
	1/14/	2014	10:07	1/14/2014 10:07	44	37	7 32.5	5 11	2 63	3 24.1	1872.2	214.18	4203.74
	1/14/	2014	11:30	1/14/2014 11:30	38	36	5 31.5	5 12	5 63	3 26.6	2106.5	240.98	4444.73
	1/14/	2014	11:53	1/14/2014 11:53	38	36	5 31	12	8 63	3 27.3 Valve shu	t 620.2	70.95	4515.68
	1/14/	2014	11:55	1/14/2014 11:55			25	5					4515.68
SW-12 Event 9	1/15/	/2014	8:15	1/15/2014 8:15	54	37	7 30) <	2 40	5 0.0	0.0	0.00	4515.68
	1/15/	2014	8:16	1/15/2014 8:16	54	37	7 33	}	2 40	5 0.0	0.0	0.00	4515.68
	1/15/	2014	8:22	1/15/2014 8:22	54	37	7 33	3 4	2 40	9.2	27.6	3.16	4518.84
	1/15/	2 014	8:25	1/15/2014 8:25	54	37	7 33	3	5 40	5 11.0	30.2	3.46	4522.29
	1/15/	2014	9:02	1/15/2014 9:02	50) 3!	5 31	L 7	2 58	3 15.3	485.1	55.50	4577.79
	1/15/		9:03	1/15/2014 9:03							8.8		
	1/15/		9:40	1/15/2014 9:40	42	2 37.5	5 33.8				504.1	57.67	4636.47
	1/15/		10:52	1/15/2014 10:52		37	7 33	3 12	5 68		1858.8		
	1/15/		11:22	1/15/2014 11:22				3 1	3 68		819.4		
	1/15/		12:14	1/15/2014 12:14		3			4 6		1504.7		
	1/15/		12:15	1/15/2014 12:15			2.5			Valve shu			
SW-12 Event 10	1/16/		7:58	1/16/2014 7:58					2 40		0.0		
	1/16/		8:00	1/16/2014 8:00					2 40		4.4		
	1/16/		8:04	1/16/2014 8:04					3 40		22.0		
	1/16/		8:58	1/16/2014 8:58							627.0		
	1/16/		8:59	1/16/2014 8:59							20.8		
	1/16/		10:24	1/16/2014 10:24					2 5		2166.5		
	1/16/		11:18	1/16/2014 11:18							1472.9		
	1/16/		12:05	1/16/2014 12:05		37			4 59		1382.4		
C) 1/ 42 5	1/16/		12:06	1/16/2014 12:06			2!		2	Valve shu			
<u>SW-12 Event 11</u>	1/17/		7:24	1/17/2014 7:24					2 3		0.0		
	1/17/		7:27	1/17/2014 7:27					4 3		13.1		
	1/17/		8:21	1/17/2014 8:21							667.6		
	1/17/		8:22	1/17/2014 8:22							19.9		
	1/17/	2014	10:15	1/17/2014 10:15	45	37	7 33	3 12	5 59	9 27.0	2876.9	329.12	6182.79

					P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Tim	е	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
		1/17/2014	11:19	1/17/2014 11:19	45	37	32.5	1	1 6	55 30.1	1827.2	209.04	4 6391.83
		1/17/2014	12:04	1/17/2014 12:04	44	37		14.	3 6	31.8	1391.6	5 159.20	6551.03
		1/17/2014	12:05	1/17/2014 12:05						\	/alve shut 31.8	3.63	6554.67
SW-12 Event 12		1/20/2014	8:43	1/20/2014 8:43	50) 27	25	<	2 4	19 0.0	0.0	0.00	6554.67
		1/20/2014	8:44	1/20/2014 8:44	50	37.5	34	<	2 4	19 0.0	0.0	0.00	6554.67
		1/20/2014	8:47	1/20/2014 8:47	50	37.5	33	;	1 4	19 8.8	13.2	2 1.5	1 6556.17
		1/20/2014	9:15	1/20/2014 9:15	49	36	32.5	,	7 5	58 15.0	332.8	38.08	6594.25
		1/20/2014	9:16	1/20/2014 9:16	49	37.5	33	9.	5 5	58 20.7	17.8	3 2.04	4 6596.29
		1/20/2014	10:28	1/20/2014 10:28	47	7 37.5	33	9.	3 6	54 21.2	1506.2	172.3	1 6768.60
		1/20/2014	11:24	1/20/2014 11:24	44	1 37	33	1	1 6	57 23.6	1253.0	143.4	1 6912.00
		1/20/2014	13:01	1/20/2014 13:01	48	36	32	. 1	2 6	59 25.4	2377.3	271.9	7 7183.97
		1/20/2014	13:02	1/20/2014 13:02						١	/alve shut 25.4	2.9	7186.88
		1/20/2014	13:04	1/20/2014 13:04			27						7186.88
SW-12 Event 13		1/21/2014	8:00	1/21/2014 8:00	55	32.5	30	<	2 5	0.0	0.0	0.00	7186.88
		1/21/2014	8:01	1/21/2014 8:01	55	37.5	34.2	. <	2 5	0.0	0.0	0.00	7186.88
		1/21/2014	8:03	1/21/2014 8:03	55	37	33.33	;	3 5	6.5	6.5	0.7	7187.63
		1/21/2014	8:06	1/21/2014 8:06	55	37	33.3	;	1 5	52 8.7	22.9	2.62	7190.24
		1/21/2014	8:47	1/21/2014 8:47	50	35	31.5	8.5	3 5	56 18.7	561.9	64.28	7254.52
		1/21/2014	8:48	1/21/2014 8:48	50	37.5	33.5	13.	2 5	56 28.8	23.	2.7	1 7257.24
		1/21/2014	9:53	1/21/2014 9:53	39	37.5	33	12.	2 6	52 26.4	1793.4	205.1	7 7462.40
		1/21/2014	11:15	1/21/2014 11:15	38	3 37	32.5	12.	2 6	56 26.2	2157.0	246.70	7709.16
		1/21/2014	12:18	1/21/2014 12:18	39	37	33	13.	3 6	57 29.6	1757.3	201.0	1 7910.17
		1/21/2014	12:19	1/21/2014 12:19			26	j		١	/alve shut 29.0	3.39	7913.56
SW-12 Event 14		1/22/2014	8:33	1/22/2014 8:33	53	35	32	. <	2 4	0.0	0.0	0.00	7913.56
		1/22/2014	8:34	1/22/2014 8:34	53	37	33.8	<	2 4	0.0	0.0	0.00	7913.56
		1/22/2014	9:02	1/22/2014 9:02	51	L 36	31		3 4	17.4	242.9	27.79	7941.35
		1/22/2014	9:03	1/22/2014 9:03	51	l 37.5	33	1	1 4	16 24.2	20.8	2.38	3 7943.72
		1/22/2014	9:54	1/22/2014 9:54	46	37	32	11.	2 5	50 24.4	1240.5	141.9	1 8085.63
		1/22/2014	9:55	1/22/2014 9:55	46	38	33.2	. 1	1 5	30.8	27.0	3.10	8088.80
		1/22/2014	11:02	1/22/2014 11:02	44	37.5	33	1	1 5	55 30.5	2056.0	235.2	1 8324.01
		1/22/2014	12:08	1/22/2014 12:08		37	32.5	14.	3 5	32.1	2066.6	236.4	1 8560.42
		1/22/2014	12:36	1/22/2014 12:36		37.5	32.5	14.	3 5	57 32.2 \	/alve shut 900.2	102.99	8663.41
Note: a red value,	, i.e. <mark>75</mark> °F	, indicates that v	value was	interpolated from field d	ata						Total CO ₂ Mass (lbs)	:	8663.41

				P at Reducer	P at Panel	P at Wel	l Ro	tameter			Volume of	Mass of CO₂	Cumulative
Back to Master	Date T	ime	Date + Time	(psig)	(psig)	(psi)	Rea	eading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-13 Event 1	11/21/2013	9:12	11/21/2013 9:12	57	7 :	28			64	0.0			
	11/21/2013	9:14	11/21/2013 9:14	. 59	9 :	32 3	34.5	<2	64	0.0	(0.00	0.00
	11/21/2013	9:20	11/21/2013 9:20)	3	31 3	31.5	4	65.5	8.1	24	1.2 2.7	7 2.77
	11/21/2013	9:21	11/21/2013 9:21		3	35	35	6	65.5	12.6	10	0.3 1.18	3.95
	11/21/2013	9:41	11/21/2013 9:41		:	35 3	34.5	9	67	18.9	31!	5.5 36.09	9 40.04
	11/21/2013	10:14	11/21/2013 10:14		:	34	34	11	. 68	22.9	689	9.3 78.86	5 118.90
	11/21/2013	10:47	11/21/2013 10:47	50) :	34 3	32.5	13.0	70	27.0	822	2.1 94.05	5 212.95
	11/21/2013	10:48	11/21/2013 10:48		3	36	34	14.0	70	29.6	28	3.2	4 216.18
	11/21/2013	11:46	11/21/2013 11:46	i	3	36 3	33.5	15.5	70.0	32.8	1813	1 207.18	423.37
	11/21/2013	13:11	11/21/2013 13:11	45	5	35	33	16	72.0	33.5	2816	5.8 322.24	745.61
	11/21/2013	13:30	11/21/2013 13:30	1	:	35	33	16	72	33.5	635	5.8 72.74	4 818.35
	11/21/2013	13:31	11/21/2013 13:31							Va	alve shut 33	3.83	822.18
	11/21/2013	13:33	11/21/2013 13:33			2	21.5						822.18
SW-13 Event 2	12/10/2013	13:09	12/10/2013 13:09	50) :	30	34	5	76	9.9			822.18
	12/10/2013	14:02	12/10/2013 14:02	50) :	30 3	30.5	9	70	17.9	73!	5.2 84.12	1 906.28
	12/10/2013	14:04	12/10/2013 14:04	. 50) :	35	32	11	. 70	23.1	40).9 4.68	910.97
	12/10/2013	14:32	12/10/2013 14:32	49)	35	32	11.5	72	24.1	659	9.5 75.44	986.41
	12/10/2013	15:18	12/10/2013 15:18	47.5	5	35	31	13	72	27.2	1178	3.6 134.83	3 1121.24
	12/10/2013	15:43	12/10/2013 15:43	48	;	34 3	30.5	14	72	29.0	702	2.1 80.32	2 1201.56
	12/10/2013	16:22	12/10/2013 16:22	45	:	35	30	14.5	70	30.4	115	7.7 132.44	1334.00
	12/10/2013	17:02	12/10/2013 17:02	45	;	35	30	15	68	31.5	1237	7.7 141.59	9 1475.59
	12/10/2013	17:03	12/10/2013 17:03							Va	alve shut 3:	1.5 3.60	1479.19
	12/10/2013	17:04	12/10/2013 17:04										1479.19
SW-13 Event 3	12/19/2013	13:08	12/19/2013 13:08	50	;	34	34	3	73	6.2			1479.19
	12/19/2013	13:42	12/19/2013 13:42	45	;	32	32	11	. 74	22.2	483	3.7 55.33	3 1534.52
	12/19/2013	15:15	12/19/2013 15:15	40	;	31	32	14	71	28.1	2340	0.6 267.77	7 1802.29
	12/19/2013	16:27	12/19/2013 16:27	42		30 2	29.6	16	70	31.8	215	5.0 246.53	3 2048.82
	12/19/2013	16:28	12/19/2013 16:28	40	;	34	32	20	70	41.5	36	5.6 4.19	2053.01
	12/19/2013	17:04	12/19/2013 17:04	50	;	35 3	33.2	20.5	66	43.1	1523	3.0 174.23	3 2227.24
	12/19/2013	17:06										5.3 9.85	7 2237.11
	12/19/2013	17:07	12/19/2013 17:07										2237.11
SW-13 Event 4	1/8/2014	7:52	1/8/2014 7:52						34				2237.11
	1/8/2014	7:53			31	5 3	33.4	3				0.00	2237.11
	1/8/2014	8:07	1/8/2014 8:07	59	;	32 3	33.4	4.5	36	9.5 Sy	rstem reset 110).2 12.63	1 2249.72
	1/8/2014	8:29	1/8/2014 8:29	52	;	32 3	33.2	8			283	7.8 32.93	3 2282.64
	1/8/2014	8:42	1/8/2014 8:42	49	;	32 3	33.2	9	42	18.8	230).8 26.40	2309.04
	1/8/2014	8:43	1/8/2014 8:43	49	;	33	34	10	42	21.1	20	0.0 2.28	3 2311.33
	1/8/2014	9:45	1/8/2014 9:45	46	;	33 3	33.2	11	. 50	23.0	1368	3.5 156.5	5 2467.88
	1/8/2014	10:36			;	33 3	33.2	11	. 52	23.0	1173	3.4 134.24	4 2602.12
	1/8/2014	11:12	1/8/2014 11:12	45	;	33 3	32.8	12	56	25.0	863	3.3 98.76	5 2700.88
	1/8/2014	11:13				34 3	33.6	14			27	7.2 3.13	
	1/8/2014	12:14	1/8/2014 12:14	43	33	.5 3	33.2	14	58	29.2	1789	0.6 204.73	3 2908.72
	1/8/2014	12:15	1/8/2014 12:15							Va	alve shut 29	9.2 3.34	4 2912.07
	1/8/2014	12:16	1/8/2014 12:16			2	27.2						2912.07
SW-13 Event 5	1/11/2014	8:06	1/11/2014 8:06										2912.07
	1/11/2014	8:07			9 :	36 3	33.5	<2	. 64	0.0	(0.00	
	1/11/2014	8:12				36	33	<2				0.00	
	1/11/2014	8:13	1/11/2014 8:13			38	34	3.5				3.8 0.43	
	1/11/2014	9:02					33.5	6	66		498		
	1/11/2014	9:03	• •			38	34	8				5.0 1.72	
	1/11/2014	10:40				36	33	10			1868		
	1/11/2014	10:41	• •				33.5	12			23		
	1/11/2014	11:37				37	33	13			149		
	, ,		, , -							_			-

Built and a	D. L.		Data a Tara	P at Reducer	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm	N.	Volume of	Mass of CO ₂	Cumulative Mass (lb)
Back to Master			Date + Time	(psig)					•	-	CO ₂ (scf)		
	1/11/2014	11:38				7 3				29.9	28.9		
	1/11/2014	12:25	1/11/2014 12:25		5 4	0 34	2	J	70	44.0	1737.6		
	1/11/2014 1/11/2014	12:26 12:27	1/11/2014 12:26 1/11/2014 12:27			28	•			Valve shut	44.0	5.03	3 3566.15 3566.15
SW-13 Event 6	1/13/2014	12:20	1/13/2014 12:20		3 3			2	70	0.0	0.0	0.00	
SVV-13 EVEIIL 0	1/13/2014	12:21	1/13/2014 12:21						70	7.2	3.6		
	1/13/2014	12:22								14.7	10.9		
	1/13/2014	12:24	1/13/2014 12:24							18.3	32.9		
	1/13/2014	14:26	1/13/2014 14:26							21.2	2405.4		
	1/13/2014	14:28	1/13/2014 14:28							26.1	47.3		
	1/13/2014	15:46								26.2	2038.6		
	1/13/2014	16:44	1/13/2014 16:44							30.1	1630.9		
	1/13/2014	17:00	1/13/2014 17:00							32.2	498.0		
	1/13/2014	17:02	1/13/2014 17:02		-	, 5	_			valve shut	64.4		
	1/13/2014	17:04	1/13/2014 17:04			20				varve snae	0	, , , ,	4336.29
SW-13 Event 7	1/14/2014	12:17	1/14/2014 12:17		3 2	7 29.2		2	63	0.0			4336.29
	1/14/2014	12:19	1/14/2014 12:19							16.2	16.2	1.8	
	1/14/2014	12:21	1/14/2014 12:21							24.5	40.7		
	1/14/2014	13:03	1/14/2014 13:03							32.2	1190.9		
	1/14/2014	13:04	1/14/2014 13:04							37.1	34.6		
	1/14/2014	13:06	1/14/2014 13:06		5 3			2		42.0	79.1		
	1/14/2014	15:50	• •							38.1	6570.3		
	1/14/2014	16:22								40.2	1253.2		
	1/14/2014	16:23	1/14/2014 16:23			27.0				Valve shut	40.2		
SW-13 Event 8	1/15/2014	12:18	1/15/2014 12:18		5 27.			2	69	0.0	0.0		
	1/15/2014	12:19	1/15/2014 12:19) 4!	5 3	4 30	8.	5	69	17.6	8.8	3 1.03	1 5392.67
	1/15/2014	12:21	1/15/2014 12:21	4.	5 3	6 32	. 1	2	69	25.4	43.1	4.93	3 5397.60
	1/15/2014	13:45	1/15/2014 13:45	4	7 3	5 30.	15	2	64	32.0	2413.8	276.1	4 5673.74
	1/15/2014	13:46	1/15/2014 13:46	5 4	7 37.	5 32	18.	2	64	39.3	35.7	4.08	8 5677.82
	1/15/2014	15:34	1/15/2014 15:34	4!	5 37.	5 32	18.	2	67	39.2	4242.1	485.29	9 6163.11
	1/15/2014	16:31	1/15/2014 16:31	. 48	3	7 31.2	. 1	9	65	40.8	2281.3	260.98	8 6424.09
	1/15/2014	16:32	1/15/2014 16:32	!						Valve shut	40.8	4.6	7 6428.76
	1/15/2014	16:33	1/15/2014 16:33	}		2.	;						6428.76
SW-13 Event 9	1/16/2014	12:21	1/16/2014 12:21	4.	5 2	8 29.0	S	2	60	0.0	0.0	0.00	0 6428.76
	1/16/2014	12:22	1/16/2014 12:22	2 4:	5 3	1 32.2	9.5	3	60	19.9	9.9	1.14	4 6429.90
	1/16/2014	12:24	1/16/2014 12:24	4.	5 3	2 32.4	1	2	60	24.6	44.5	5.09	9 6434.98
	1/16/2014	12:25	1/16/2014 12:25		5 3			5		31.4	28.0		0 6438.19
	1/16/2014	13:07	1/16/2014 13:07		5 3					35.6	1407.7		
	1/16/2014	14:43	1/16/2014 14:43		5 3			5		36.6	3467.1	396.6	4 6995.87
	1/16/2014	15:47	1/16/2014 15:47							35.6	2310.3		
	1/16/2014	16:22			3			7	61	35.6	1245.1		
	1/16/2014	16:23	1/16/2014 16:23			28				Valve shut	35.6	4.0	
SW-13 Event 10	1/17/2014	12:18	1/17/2014 12:18							11.4			7406.68
	1/17/2014	12:19	1/17/2014 12:19							24.8	18.1		
	1/17/2014	12:20	1/17/2014 12:20							32.2	28.5		
	1/17/2014	12:51	1/17/2014 12:51							33.9	1025.4		
	1/17/2014	12:53	1/17/2014 12:53							37.6	71.5		
	1/17/2014	14:07	1/17/2014 14:07							35.7	2713.3		
	1/17/2014	14:39	1/17/2014 14:39							36.1	1149.2		
	1/17/2014	16:09	1/17/2014 16:09		5 3	5 33.0	5 17.8	3	67	37.4	3307.8		
	1/17/2014	16:10								Valve shut	37.4	4.28	
	1/17/2014	16:11	1/17/2014 16:11			29.7							8362.06

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
Made a seed of a	' - 7 E 0E ' - 1' 1 -	a tha tail a	and the constitution of the constitution of the later	1-1-								

Back to Master	Date T	ime	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-14 Event 1	11/21/2013	9:15				8	<u> </u>		65 0.0			
SVV 14 LVCIIL 1	11/21/2013	9:19	• •			2 32) <		64 0.0		0.00	0.00
	11/21/2013	9:37				0 30			66 13.0			
	11/21/2013	9:38				4 33			67 20.8			
	11/21/2013	10:07				4 32			68 31.2			
	11/21/2013	10:43	• •			2 31			70 32.5			
	11/21/2013	11:48	• •			4 30			71 35.2			
	11/21/2013	11:53	• •			9 33			71 45.7 71 45.7			
	11/21/2013	13:06	• •			8 33			72 47.4			
	11/21/2013	13:29				8 33			72 47.4			
	11/21/2013		• •		3	0 33	2	.2	72 47.4			
	11/21/2013	13:30 13:32	· ·							Valve shut 47.	4 5.42	
SW-14 Event 2		9:19			1 32.	5 33	3 4	_	62 9.3	1		1026.53 1026.53
SVV-14 EVEIL Z	12/11/2013										2 40.77	
	12/11/2013	9:48							67 20.1			
	12/11/2013	9:50				1 30.4			67 23.2			
	12/11/2013	10:25				1 30			67 24.2			
	12/11/2013	11:01				1 29.6			70 27.3			
	12/11/2013	11:32				1 30			71 28.3			
	12/11/2013	11:33				1 30.4			71 32.3			
	12/11/2013	12:17	·			1 30.4			70 32.3			
	12/11/2013	13:53			3	6 30.4	1 1	.6	66 34.0			
	12/11/2013	13:54								Valve shut 34.	0 3.89	
	12/11/2013	13:55	• •		_			-				1910.65
SW-14 Event 3	12/19/2013	13:04	· ·			4 31.5			72 0.0			1910.65
	12/19/2013	13:40	• •			0 26			74 26.7			
	12/19/2013	13:41	• •						74 34.6			
	12/19/2013	13:43	• •			5 30			74 40.7			
	12/19/2013	15:17	· ·		3	3 30.4	1 24	.3	71 49.8			
	12/19/2013	15:19								Valve shut 99.	6 11.40	
SW-14 Event 4	1/8/2014	12:18	• •						8.0			2475.92
	1/8/2014	12:19			29.				3.0 22.0			
	1/8/2014	12:21	• •		3				8.0 41.5			
	1/8/2014	12:36			32.				8.0 53.7			
	1/8/2014	12:37	• •		3				8.0 58.8			
	1/8/2014	13:18							6.0 62.4			
	1/8/2014	14:04			32.				5.0 64.2			
	1/8/2014	15:20	1/8/2014 15:20	48	32.	5 26.6	5 3		4.0 66.4	4963	1 567.78	3756.66
	1/8/2014	16:33	1/8/2014 16:33	46	3	2 26	5 3	52 53	3.0 66.3	1 4834.	6 553.08	4309.74
	1/8/2014	16:44	1/8/2014 16:44	46	3	2 26	5 3	52 52	2.0 66.3	1 727.	3 83.20	4392.94
	1/8/2014	16:45	1/8/2014 16:45							Valve shut 66	1 7.57	4400.51
	1/8/2014	16:46	1/8/2014 16:46			19.6	5					4400.51
SW-14 Event 5	1/11/2014	8:09	1/11/2014 8:09)								4400.51
	1/11/2014	8:10	1/11/2014 8:10) 48	31.	5 30.4	1 1	.4	64 28.4	4 28.	4 3.25	4403.76
	1/11/2014	8:14	1/11/2014 8:14	45	32.	5 30.4	1 21	.5	64 44.2	2 145.	2 16.61	4420.37
	1/11/2014	9:05	1/11/2014 9:05	42	2 3	1 27.6	5 24	.5	66 49.4	4 2385.	4 272.89	4693.26
	1/11/2014	9:06	1/11/2014 9:06	40) 3	4 29.2	2 2	.8	66 58.3	3 53.	8 6.16	4699.42
	1/11/2014	10:42	1/11/2014 10:42	39	31.	5 27	7 2	.8	69 56.6	5 5515.	3 630.95	5330.37
	1/11/2014	11:40	1/11/2014 11:40	37	7 3	1 26.2	2 2	18	70 56.2	3272	0 374.32	5704.68
	1/11/2014	12:28				6 28.4			70 61.4			
	1/11/2014	12:29								Valve shut 61		
	1/11/2014	12:30				19)					6034.65
SW-14 Event 6	1/23/2014	7:58			32.			8	34 16.9	9		6034.65
	1/23/2014	8:02							34 38.8		4 12.74	
	, ,											

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	1/23/2014	8:1	7 1/23/2014 8:17	52	2 30	30	20.3	44	41.4	601.0	68.75	6116.14
	1/23/2014	8:5!	5 1/23/2014 8:55	49	30	22.5	21.2	50	42.9	1602.1	183.29	6299.43
	1/23/2014	9:3!	5 1/23/2014 9:35	46	5 29.5	22	21.2	50	42.7	1713.0	195.96	6495.39
	1/23/2014	9:30	5 1/23/2014 9:36	46	30	23.5	24.8	50	50.2	46.5	5.32	6500.71
	1/23/2014	10:0	5 1/23/2014 10:05	45	30	23	24.8	50	50.2	1456.9	166.67	6667.38
	1/23/2014	11:1	5 1/23/2014 11:15	42	2 30	22.5	25.8	52	52.2	3583.9	410.00	7077.38
	1/23/2014	12:03	3 1/23/2014 12:03	41	L 30	22.2	25.9	54	52.3	2506.0	286.68	7364.07
	1/23/2014		5 1/23/2014 12:06	5					Valve shut	156.8	17.93	7382.00
	1/23/2014	12:0	7 1/23/2014 12:07	1		17						7382.00
SW-14 Event 7	1/24/2014				2 32		10	39	21.0			7382.00
	1/24/2014						16	39	32.4	26.7		
	1/24/2014						23.7	39	49.7	41.0		
	1/24/2014		• •		32		24.5	40	51.3	151.4		
	1/24/2014				l 31		25.8	45	53.1	783.0		
	1/24/2014) 31		25.9	46	53.3	1117.3		
	1/24/2014		• •				25.9	46	53.3	1385.3		
	1/24/2014						26	48	53.1	2393.0		
	1/24/2014		7 1/24/2014 10:47	49			26.5	51	53.8	3365.1		8441.66
	1/24/2014				30.2			55	54.5	3357.1		
	1/24/2014					20				218.2	24.96	
SW-14 Event 8	1/28/2014											8850.67
	1/28/2014						9.5	54	19.8	19.8		
	1/28/2014						20	53	42.6	62.4		
	1/28/2014						24	53	50.6	699.5		
	1/28/2014						26.5	53	56.5	53.6		
	1/28/2014						28	51	61.6	5550.8		
	1/28/2014						28	51	61.6	3697.0		
	1/28/2014						29.5	51	64.9	5377.7		
	1/28/2014				L 37.5		30	51		3592.0		
	1/28/2014					18			Valve shut	131.4	15.03	
SW-14 Event 9	2/4/2014		• •					60				11045.34
	2/4/2014		• •				6	60	12.1	115.0		
	2/4/2014						10	60	20.5	65.2		
	2/4/2014		• •				16.8	64	33.6	2649.2		
	2/4/2014		• •				19.9	64	40.9	74.4		
	2/4/2014						20.8	64	42.7	2298.4		
	2/4/2014		• •				21.9	64	45.5	176.3		
	2/4/2014						21.9	60	45.6	1776.2		
	2/4/2014		• •				22.5	60	46.6	2860.4		
	2/4/2014		• •					62	47.6	1036.4		
	2/4/2014						23	62	47.6	2378.9		
	2/4/2014		• •				24	60	49.7 51.3	2676.4		
	2/4/2014				32		25	60		3686.9		
CM 14 Fromt 10	2/4/2014					21	42	Γ0.	Valve shut	102.5	11.73	
<u>SW-14 Event 10</u>	2/6/2014						<2	50		0.0	0.00	13321.48
	2/6/2014							54	0.0	0.0		
	2/6/2014						15.5	54	32.5	48.7		
	2/6/2014						23.2	60	47.3	4549.1		
	2/6/2014						23.8	61	48.2	1528.6		
	2/6/2014						25	62	50.0	3046.0		
	2/6/2014						26	63	52.0 52.7	6121.5		
	2/6/2014						26.3	60	52.7	3718.0		
	2/6/2014	16:3	7 2/6/2014 16:37	43	3 29.5	23.5	27	58	53.9	4000.9	457.71	15954.16

					P at Reducer	P at Pane	l Pat We	ell R	Rotameter				Volume o	f Ma	ss of CO ₂	Cumulative
Back to Master	Date	Time	Date +	Time	(psig)	(psig)	(psi)	R	Reading (scfm)	Temp (°F)	Flo	ow (scfm)	CO ₂ (scf)	(lb)	1	Mass (lb)
		2/6/2014	17:20	2/6/2014 17:20) 4	7 2	9.5	23.5	2	7	58	53.9	23	319.7	265.38	3 16219.53
		2/6/2014	17:21	2/6/2014 17:21	1			19				Valve shut		53.9	6.17	7 16225.71
Noto: a rod valuo	i o 75 °E	indicator that va	luo was intorn	olated from field	data								Total CO Mass	(lbc).		16225 74

Mail Name 1107/1001 10-27 1107/10015 10-27 1107/10015 10-28 10-28 1107/10015 10-28 1107/10015 10-28 1107/10015 10-28 1107/10015 10-28 1107/10015 10-28	Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Par (psig)		at Well psi)	Rotameter Reading (scfm)	Ten	np (°F)	Flow (scfm)		Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
11/2/2013 10-20 11/21/20131029 30-5 30-5 32 70 0.0								· ·						3-2 (5-1)	· ,	
11/12/2013 20.00 11/11/2013 10.90 11/11/2013 10.90 11/11/2013 10.90 11/11/2013 10.90 11/11/2013 10.91 11/11/2013 10.91 11/11/2013 10.91 11/11/2013 10.91 11/11/2013 10.91 11/11/2013 10.91 11/11/2013 11.91 11/11/2	SVV 13 EVENT 1					,		30.5		<2				0.0	0.00	0.00
11/21/2013 10:50		• •		• •												
11/17/10/18 10:51 11/17/10/18 13:64 13:64 13				• •												
11/12/2013 11:58 11/12/2013 12:5 34 33.5 3 76 6.2 33.5 38.28 38.61 11/12/2013 12:21 11/12/2013 17:23 11/12/2013 17:23 11/12/2013 17:23 11/12/2013 17:25																
11/12/031 1321 11/12/0313121 34 31.5 4.0 77 8.2 61.11 70.34 39.5		• •		• •												
11/11/2013 1723 11/11/20131725 391 92.5 6.0 77 12.4 2002				• •												
11/11/2013 17/25 11/11/2013 17/25 11/11/2013 17/25 17/21/2013 17/25 17/21/2013 17/25 17/21/2013 19/25 17/21/2				• •												
11/11/10/13 17.6 11/11/10/13 17.6 11/11/10/13 17.6 17.11/10/13 17.6 17.11/10/13 17.5 17.11/10/13 17.5 17.11/10/13 17.5 17.11/10/13 17.11/1				• •			J 1	32.3	`	0.0	,,,		ve shut			
12/12/2013 99.5 12/12/2013 99.5 12/12/2013 99.5 12/12/2013 99.5 12/12/2013 99.5 12/12/2013 99.5 12/12/2013 99.5 12/12/2013 99.5 12/12/2013 99.5 12/12/2013 99.5 12/12/2013 19.6 12/12/2013 19.6 12/12/2013 19.6 12/12/2013 19.6 12/12/2013 19.6 12/12/2013 11.6 12/1												Vai	ve snat	27.7	2.03	
12/12/2013 952 12/12/2013952 50 30 30 <2 67 00 395/14 12/12/2013952 12/12/2013952 50 32 32 4 67 81 41 41 47 439/14 45 32 31 55 68 10.2 485.4 55.53 452.74 12/12/2013 1144 12/12/2013 1144 45 32 31 65 70 13.2 631.0 72.18 52.74 12/12/2013 1144 12/12/2013 1144 45 32.5 32.5 9.5 70 19.4 168.72 19.10 19.10 12/12/2013 13.09 12/13/2013 13.09 12/13/2013	SW-15 Event 2	· · ·		·		:	30	30		<i>-</i> 2	62	0.0				
1717/70113 9:53 1717/10119:03 5:0 32 32 4 67 8.1 4.1 0.47 397211	SVV-13 LVEIIL Z															
12/12/2013 11:44 12/12/2013 11:41 12/12/2013 11:41 45 32 32 32 5 58 10.2 631.0 72.18 72.49 72.12 72.00 72.00														<i>1</i> .1	0.47	
12/12/2013 11-40 12/12/2013 13-40 12/12/2013 13-40 45 32 31 65 70 13-2 631.0 72-18 52-67 12/12/2013 13-80 12/12/2013 13-80 12/12/2013 13-90 12/12/2013 13-90 12/12/2013 13-90 12/12/2013 13-90 12/12/2013 13-90 12/12/2013 13-90 12/12/2013 13-90 12/12/2013 13-90 12/12/2013 13-90 12/12/2013 13-90 12/12/2013 13-90 12/12/2013 13-90 12/12/2013 13-90 12/12/2013 13-90 12/12/2013 10-42 12/12/2013 10-42 12/12/2013 10-42 12/12/2013 10-42 12/12/2013 10-43 12/12/2013 10-43 12/12/2013 10-43 12/12/2013 10-43 12/12/2013 10-43 12/12/2013 10-43 12/12/2013 10-43 12/12/2013 10-43 12/12/2013 10-43 12/12/2013 10-43 12/12/2013 12-30 12/12/2013										•						
12/17/003 13:08 17/17/003 13:09 17/17/003 13:00 17/17/003 14:00 17/17/003 14:00 17/17/003 14:00 17/17/003 14:00 17/17/003 16:00 17/1										_						
12/12/0013 13:08 12/12/0013 13:09 12/12/0013 13:09 12/12/0013 13:00 12/12/0																
1/1/2/2013 13:09 1/2/1/2013 13:09 1/2/1/2013 13:09 1/2/1/2013 13:09 1/2/1/2013 13:09 1/2/1/2013 13:09 1/2/1/2013 13:09 1/2/1/2013 13:09 1/2/1/2013 13:09 1/2/1/2013 13:09 1/2/1/2013 13:09 1/2/1/2013 13:09 1/2/1/2013 13:09 1/2/1/2013 13:09 1/2/1/2013 10:04 1/2/1/2013 10:04 1/2/1/2013 10:04 1/2/1/2013 10:04 1/2/1/2013 10:04 1/2/1/2013 10:04 1/2/1/2013 10:04 1/2/1/2013 10:04 1/2/1/2013 10:04 1/2/1/2013 10:04 1/2/1/2013 10:04 1/2/1/2013 10:04 1/2/1/2013 12:09 1/2/1/2				• •												
12/12/2013 13:10 12/12/2013 13:10 12/12/2013 13:10 12/12/2013 13:10 12/13/2013 13:10 12/13/2013 14:10 12/13/2013 14:10 12/13/2013 14:10 12/13/2013 14:10 12/13/2013 14:10 12/13/2013 10:42 12/13/2013 10:43 12/13/2013 10:43 12/13/2013 10:43 12/13/2013 10:43 12/13/2013 10:43 12/13/2013 10:43 12/13/2013 10:43 12/13/2013 10:43 12/13/2013 13:45 12/13/2013 13:45 12/13/2013 14:53 12/13/2013 14:53 12/13/2013 14:54 12/13/2013 14:54 12/13/2013 14:55 12/13/2						,	32.3	32.3	•	5.3	70		vo chut			
\$\frac{12 \text{15 Event 2}{\text{15 Event 2}} \text{12 \text{13 \text{2013}} \text{8:57}{\text{7}} \text{12 \text{13 \text{2013}} \text{8:6} \text{3:1}{\text{3.7}} \text{3:2} \text{3:2} \text{3:2} \text{5:5} \text{7.0} \text{0.00} \text{5:1} \text{0.8} \text{7.22.00} \text{3.7} \												Vai	ve silut	15.4	2.22	
12/13/2013 9-46 12/13/2013 9-46 48 32 31 <2 68 0.0 72.00	SW 15 Event 2					<u> </u>	20	21		<u> </u>	66	0.0				
12/13/2013 10-42 12/13/2013 10-42 48 30 30.5 <2 70 0.0 77.202	344-13 EVEIIT 3	• •		• •												
12/13/2013 10:48 11/13/2013 10:48 45 32 32 32 5 70 10:2 1176 134 / 2 857.3 12/13/2013 13:45 12/13/2013 13:45 45 32 32 25 5 70 10:2 670.0 76.65 933.98 12/13/2013 14:53 12/13/2013 13:45 45 32 32 25 5 70 10:2 670.0 76.65 933.98 12/13/2013 14:54 12/13/2013 13:45 2 2 2 2 5 70 10:2 72.49 82.92 1016.90 12/13/2013 14:55 12/13/2013 13:45 2 2 2 2 2 2 2 2 12/13/2013 14:55 12/13/2013 13:45 2 2 2 33 42 5 0 0.0 0.0 0.0 0.0 12/13/2013 14:55 12/13/2013 13:45 45 32 33 42 5 0 0.0 0.0 0.0 0.0 100.818 12/16/2013 9:25 12/16/2013 8:41 45 32 33 42 5 0 0.0 0.0 0.0 100.818 12/16/2013 9:25 12/16/2013 9:25 48 30 32 3 58.0 6.0 12:6 15:17 1033.35 12/16/2013 11:20 12/16/2013 10:17 48 30 31 4 56.0 8.1 366.1 41:99 107:24 12/16/2013 11:20 12/16/2013 13:25 2 2 33 5 70 9.8 562.9 64.40 113:64 12/16/2013 13:25 12/16/2013 13:25 2 2 35 30 8 69 15.5 50.6 64.40 113:64 12/16/2013 13:25 12/16/2013 13:25 2 2 8 28 30 8 69 15.5 50.6 57.96 153:95 12/16/2013 13:26 12/16/2013 13:25 45 28 28 30 8 69 15.5 50.6 57.96 153:95 12/16/2013 15:20 12/16/2013 15:20 45 28 28 30 8 69 15.5 50.6 6 57.96 153:95 12/16/2013 15:20 12/16/2013 15:20 45 28 28 30 8 69 15.5 50.6 6 57.96 153:95 12/16/2013 15:20 12/16/2013 15:20 45 28 28 30 8 69 15.5 50.6 6 57.96 153:95 12/16/2013 15:20 12/16/2013 15:20 45 28 28 30 8 69 15.5 50.6 6 57.96 153:95 12/16/2013 15:20 12/16/2013 15:20 45 32 32 35 10 58 24.4 27.97.6 32.005 44.67.7 12/17/2013 15:50 12/16/2013 15:50 45 31 31 31 31 32 64 24.2 33.96 64.40 27.97.6 32.005 44.67.3 12/17/2				• •												
12/13/2013 12:49 12/13/2013 13:45 45 32 32 5 70 10.2 1177.6 13.472 857.33 12/13/2013 14:53 12/13/2013 14:53 12/13/2013 14:54 Valve shut 11.2 1.28 1016.18 12/13/2013 14:55 12/13/2013 14:55 Valve shut 11.2 1.28 1016.18 12/13/2013 14:55 12/13/2013 14:55 Valve shut 11.2 1.28 1016.18 12/13/2013 8:41 12/16/2013 8:41 45 32 33 42 50 0.0 0.0 0.0 1018.18 12/13/2013 10:17 12/16/2013 8:41 45 32 33 32 3 38.0 6.0 0.0 12.5 15.17 1033.35 12/16/2013 10:17 12/16/2013 10:17 48 30 31 4 56.0 8.1 366.1 41.89 1075.24 12/16/2013 11:20 12/16/2013 11:20 45 29 31 5 70 9.8 56.2 64.0 1139.6 12/16/2013 13:24 12/16/2013 13:25 Valve shut 11.7 13.3 1293.24 12/16/2013 13:25 12/16/2013 13:26 12/16/2013 1		• •		• •										Г 1	0.50	
12/13/2013 13-45 12/13/2013 14-53 45 32 32 32 55 70 10.2 67.00 76.65 933.88 12/13/2013 14-55 12/13/2013 14-55 26 Valve shut 11.2 1.28 1018.18 12/13/2013 14-55 12/13/2013 14-55 26 Valve shut 11.2 1.28 1018.18 12/13/2013 14-55 12/13/2013 14-55 26 Valve shut 11.2 1.28 1018.18 12/13/2013 14-55 12/13/2013 14-55 26 Valve shut 11.2 1.28 1018.18 12/13/2013 14-55 12/13/2013 14-55 26 Valve shut 11.2 1.28 1018.18 12/13/2013 9.25 12/13/2013 18-15 48 30 31 4 56.0 8.1 36.1 41.89 1075.24 12/13/2013 11:20 12/15/2013 18-12 45 29 31 5 70 9.8 56.9 64.40 1139.64 12/13/2013 11:20 12/15/2013 18-25 28 30 6 68 11.7 1331.8 15.2 35 12/15/2013 18-25 12/13/2013 13:25 12/15/2013 18-25 25 25 Valve shut 11.7 1.33 1293.23 12/13/2013 13:25 12/15/2013 18-25 25 25 Valve shut 11.7 1.33 1293.23 12/13/2013 13:25 12/15/2013 18-25 45 28 30 8 69 15.5 506.6 57.96 1593.95 12/13/2013 15:20 12/15/2013 18-20 45 28 30 8 69 15.5 506.6 57.96 1593.95 12/13/2013 15:20 12/15/2013 18-20 45 32 33 9 68 18.3 896.7 10.25 154.75 12/13/2013 15:10 12/13/2013 18-13 45 32 33 9 68 18.3 896.7 10.25 154.75 12/13/2013 15:10 12/13/2013 18-13 45 32 33 9 68 18.3 896.7 10.25 154.75 12/13/2013 15:10 12/13/2013 18-13 45 32 33 9 68 18.3 896.7 10.25 1650.28 12/13/2013 15:10 12/13/2013 18-13 45 31 31 11 2 64 24.2 1433.2 163.9 60.9 1650.28 12/13/2013 15:50 12/13/2013 18-13 45 31 31 11 2 64 24.2 1433.2 163.9 60.9 60.9 12/13/2013 15:50 12/13/2013 18-13 45 31 31 11 2 64 24.2 1433.2 163.9 60.9 60.9 12/13/2013 15:50 12/13/2013 18-13 45 31 31 11.5 50.9 77.1 1437.6 164.6 50.6 50.9 50.9 12/1																
12/13/2013				• •						•						
12/13/2013		• •		• •						9						
12/13/2013				• •)	32	32	;	5.5	70					
39W-15 Event 4 12/16/2013 8.41 12/16/2013 8:41 45 32 33 <2 50 0.0 0.0 0.0 0.00 1018.18 12/16/2013 10:17 12/16/2013 9:25 48 30 32 3 58.0 6.0 132.6 15.17 1033.35 12/16/2013 10:17 12/16/2013 10:17 48 30 31 4 56.0 8.1 366.1 41.89 1075.24 12/16/2013 11:20 12/16/2013 11:20 45 29 31 5 70 9.8 56.2 64.40 1139.64 12/16/2013 13:24 12/16/2013 13:24 50 28 30 6 68 11.7 1331.8 152.35 12/16/2013 13:25 12/16/2013 13:25 Valve shut 11.7 1.33 1293.32 12/16/2013 13:26 12/16/2013 13:25 25 Valve shut 11.7 1.33 1293.32 12/16/2013 13:26 12/16/2013 13:26 25 Valve shut 11.7 1.33 1293.32 12/16/2013 15:20 12/16/2013 13:26 45 28 28 10 70 19.4 Start 1649.2 188.67 1492.00 12/16/2013 15:20 12/16/2013 15:20 45 28 30 8 69 15.5 506.6 57.96 1539.95 12/16/2013 15:24 12/16/2013 15:24 45 32 32 9 69 18.3 67.7 7.74 1547.69 12/16/2013 16:13 12/16/2013 15:24 45 32 33 9 68 18.3 89.6 10.5 12/16/2013 21:6 12/16/2013 22:16 50 32 32.5 10 58 20.5 7052.4 806.80 2457.08 12/16/2013 21:6 12/17/2013 8:56 45 31 31 12 64 24.2 1433.2 1639.60 495.68 12/17/2013 16:3 12/17/2013 13:39 45 31 31 13.5 69 27.1 433.0 495.38 491.21 12/17/2013 14:32 12/17/2013 13:56 45 30 31 14 69 27.8 230.5 263.97 530.5 12/17/2013 14:32 12/17/2013 15:56 45 30 31 14 69 27.8 230.5 263.97 530.5 12/17/2013 15:56 12/17/2013 15:16 50 30 32 <2 71 0.0 588.51 12/17/2013 15:56 12/17/2013 15:16 50 30 32 <2 71 0.0 588.51 12/17/2013 15:56 12/17/2013 15:56 50 30 32 <2 71 0.0 588.51 12/17/2013 15:56 12/17/2013 15:56 50 30 32 <2 71 0.0 588.51 12/19/2013 15:56 12/19/2013 15:59 45 32 32 32 30 71 20				• •				20				vai	ve snut	11.2	1.28	
12/16/2013 9:25 12/16/2013 9:25 48 30 32 3 58.0 6.0 132.6 15.17 1033.35 12/16/2013 11:20 12/16/2013 11:20 45 29 31 5 70 9.8 56.2 64.0 113.6 12/16/2013 13:24 12/16/2013 13:25 2 2 2 3 5 70 9.8 56.2 64.0 113.6 12/16/2013 13:25 12/16/2013 13:25 2 2 2 2 3 2 2 12/16/2013 13:25 12/16/2013 13:26 2 2 2 2 2 12/16/2013 13:26 12/16/2013 13:26 2 2 2 2 12/16/2013 13:26 12/16/2013 13:26 2 2 2 2 12/16/2013 13:26 12/16/2013 13:26 2 2 2 12/16/2013 14:51 12/16/2013 13:26 2 2 2 2 2 12/16/2013 15:20 12/16/2013 15:20 45 28 28 30 8 69 15.5 506.6 57.96 1539.95 12/16/2013 15:24 12/16/2013 15:24 45 32 32 2 9 69 18.3 67.7 7.7 1547.69 12/16/2013 15:24 12/16/2013 15:24 45 32 33 9 68 18.3 67.7 7.7 1547.69 12/16/2013 15:24 12/16/2013 15:24 45 32 33 9 68 18.3 69.7 102.59 1650.28 12/16/2013 15:24 12/16/2013 16:13 45 32 33 9 68 18.3 89.6 102.59 1650.28 12/16/2013 22:16 12/16/2013 16:13 45 32 33 9 68 18.3 89.6 102.59 1650.28 12/16/2013 16:13 12/16/2013 16:14 45 32 32.5 10 58 20.5 7052.4 806.80 2457.8 12/17/2013 8:56 12/17/2013 8:56 45 31 31 12 64 24.2 1433.2 1433.2 1639.60 4096.68 12/17/2013 15:34 12/17/2013 15:39 45 31 31 13.5 69 27.1 430.0 496.68 12/17/2013 14:32 12/17/2013 15:10 2 2 2 2 2 2 2 2 2	CM 15 Front 1					-	22			-12	F0	0.0		0.0	0.00	
12/16/2013 10:17 12/16/2013 10:17 12/16/2013 11:20 12/16/2013 11:20 12/16/2013 11:20 12/16/2013 11:20 12/16/2013 11:20 12/16/2013 13:24 12/16/2013 13:25 12/16/2013 13:25 12/16/2013 13:25 12/16/2013 13:25 12/16/2013 13:25 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 15:20 12/16/2013 15:20 12/16/2013 15:20 12/16/2013 15:20 12/16/2013 15:20 12/16/2013 15:20 12/16/2013 15:20 45 28 28 30 8 69 15.5 506.6 57.96 1539.95 12/16/2013 15:24 12/16/2013 15:24 45 32 33 9 68 18.3 89.67 77.74 1547.69 12/16/2013 15:24 12/16/2013 15:24 32 33 9 68 18.3 89.67 70.524 806.80 2457.08 12/16/2013 22:16 12/16/2013 22:16 50 32 32.5 10 58 20.5 7052.4 806.80 2457.08 12/17/2013 8:56 12/17/2013 8:56 12/17/2013 8:56 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 13:55 12/17/2013 13:55 12/17/2013 13:55 12/17/2013 13:55 12/17/2013 13:15 12/17/2013 15:56	SW-15 Event 4															
12/16/2013 11:20 12/16/2013 11:20 45 29 31 5 70 9.8 562.9 64.40 1139.64 112/16/2013 13:24 12/16/2013 13:24 50 28 30 6 68 11.7 1331.8 152.35 1291.92 12/16/2013 13:25 12/16/2013 13:25 Valve shut 11.7 1.33 1293.32 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 45 28 30 8 69 15.5 50.66 67.9 67.0 1539.95 12/16/2013 15:24 12/16/2013 15:24 45 32 32 32 9 69 18.3 67.7 7.74 1547.69 12/16/2013 15:24 12/16/2013 15:24 45 32 33 9 68 18.3 896.7 102.59 1655.8 12/16/2013 22:16 12/16/2013 22:16 12/16/2013 22:16 12/16/2013 22:16 12/16/2013 22:16 12/16/2013 22:16 12/16/2013 22:16 12/16/2013 22:16 12/16/2013 22:16 12/16/2013 22:16 12/16/2013 22:16 12/16/2013 22:16 12/16/2013 22:16 12/16/2013 22:16 12/16/2013 13:19 12/16/2013 13:19 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 14:32 12/17/2013 14:32 12/17/2013 14:32 12/17/2013 14:32 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:11 12/17/2013 16:10 12/1										3						
12/16/2013 13:24 12/16/2013 13:25 12/16/2013 13:25 12/16/2013 13:25 12/16/2013 13:25 12/16/2013 13:25 12/16/2013 13:25 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 14:51 12/16/2013 15:20 12/16/2013 15:20 45 28 30 8 69 15.5 506.6 57.96 159.95 12/16/2013 15:24 12/16/2013 15:24 12/16/2013 15:24 12/16/2013 15:24 12/16/2013 16:13 45 32 32 9 69 18.3 67.7 7.74 1547.69 12/16/2013 16:13 12/16/2013 16:13 45 32 33 9 68 18.3 896.7 102.59 1650.28 12/16/2013 22:16 12/16/2013 22:16 50 32 32.5 10 58 20.5 7052.4 806.80 2457.08 12/17/2013 10:51 12/17/2013 10:51 12/17/2013 10:51 12/17/2013 10:51 12/17/2013 10:51 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 15:56 45 31 31 13.5 69 27.1 4330.2 495.38 4912.11 12/17/2013 15:56 12/17/2013 15:56 45 30 31 14 69 27.8 2307.5 26.39.7 5340.54 12/17/2013 15:16 12/17/2013 15:16 50 30 32 <2 71 0.0 SW-15 Event 5 12/19/2013 13:14 12/19/2013 13:15 49 32 33 8.5 72 17.2 14.6 16.5 19.05 5405.40 12/19/2013 13:15 12/19/2013 13:15 49 32 33 8.5 72 17.2 14.6 1.67 5405.20 12/19/2013 15:56 12/19/2013 13:15 49 32 33 8.5 72 17.2 14.6 1.67 5405.20 12/19/2013 15:56 12/19/2013 15:56 44 32 32 31 10 67 22.4 1216.5 139.17 5896.86										4						
12/16/2013 13:25 12/16/2013 13:25 12/16/2013 13:25 25 Valve shut 11.7 1.33 1293.32 12/16/2013 13:26 12/16/2013 13:26 25 12/16/2013 14:51 12/16/2013 14:51 45 28 28 10 70 19.4 Start 1649.2 188.67 1482.00 12/16/2013 15:20 12/16/2013 15:20 45 28 30 8 69 15.5 506.6 57.96 1539.95 12/16/2013 15:24 12/16/2013 15:24 45 32 32 39 69 18.3 67.7 7.74 1547.69 12/16/2013 16:13 12/16/2013 16:13 12/16/2013 45 32 32 39 68 18.3 896.7 102.59 1650.28 12/16/2013 22:16 12/16/2013 22:16 50 32 32.5 10 58 20.5 7052.4 806.80 2457.08 12/17/2013 8:56 12/17/2013 8:56 12/17/2013 8:56 45 31 31 12 64 24.2 1433.2 1639.60 4096.68 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 13:39 12/17/2013 14:32 45 31 31 13.5 69 27.1 4330.2 495.38 4912.11 12/17/2013 14:32 12/17/2013 15:56 12/17/2013 15:56 45 30 31 14 69 27.8 2307.5 263.97 5340.54 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:11 12/17/2013 16:10 12/17/2013 16:11 12/17/2013 16:10 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:10 12/17/2013 16:11 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:11 12/17/2013 16:10 12/17/2013 16:11 12/17/2013 16:10 12/1										•						
12/16/2013 13:26 12/16/2013 13:26 25 12/16/2013 13:26 12/16/2013 13:26 12/16/2013 13:20 45 28 28 28 10 70 19.4 Start 1649.2 188.67 1482.00 12/16/2013 15:20 12/16/2013 15:20 45 28 28 30 8 69 15.5 506.6 57.96 1539.95 12/16/2013 15:24 12/16/2013 15:24 45 32 32 9 69 18.3 67.7 7.74 1547.69 12/16/2013 16:13 12/16/2013 16:13 45 32 33 9 68 18.3 896.7 102.59 1650.28 12/16/2013 22:16 12/16/2013 22:16 50 32 32.5 10 58 20.5 7052.4 806.80 2457.08 12/17/2013 8:56 12/17/2013 8:56 45 31 31 12 64 24.2 14332.2 1639.60 4996.68 12/17/2013 13:39 12/17/2013 10:51 41 32 30.5 12 68 24.4 2797.6 320.05 4416.73 12/17/2013 14:32 12/17/2013 14:32 45 31 31 13.5 69 27.1 4330.2 495.38 4912.11 12/17/2013 14:32 12/17/2013 15:56 45 30 31 14 69 27.8 2307.5 263.97 5340.54 12/17/2013 16:10 12/17/2013 16:10 25 12/17/2013 16:10 12/17/2013							28	30		6	68					
12/16/2013 14:51 12/16/2013 14:51 45 28 28 10 70 19.4 Start 1649.2 188.67 1482.00 12/16/2013 15:20 12/16/2013 15:20 45 28 30 8 69 15.5 506.6 57.96 1539.95 12/16/2013 15:24 12/16/2013 15:24 45 32 32 9 69 18.3 67.7 7.74 1547.69 12/16/2013 16:13 12/16/2013 16:13 45 32 33 9 68 18.3 896.7 102.59 12/16/2013 22:16 12/16/2013 22:16 50 32 32.5 10 58 20.5 7052.4 806.80 2457.08 12/17/2013 8:56 12/17/2013 8:56 45 31 31 12 64 24.2 14332.2 1639.60 4096.68 12/17/2013 13:39 12/17/2013 13:39 45 31 31 13.5 69 27.1 4330.2 495.38 4912.11 12/17/2013 14:32 12/17/2013 14:32 45 31 31 13.5 69 27.1 437.6 164.46 5076.57 12/17/2013 15:56 12/17/2013 15:56 45 30 31 14 69 27.8 2307.5 263.97 5340.54 12/17/2013 16:10 12/17/2013 16:10 588.11 12/17/2013 16:11 12/17/2013 16:11 2/17/2013 16:11 2/17/2013 16:11 2/17/2013 16:11 2/17/2013 16:11 2/17/2013 16:11 2/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:10 588.11 12/19/2013 15:59 12/19/2013 15:55 49 32 33 8.5 72 71.2 14.6 1.67 5405.86 12/19/2013 15:59 12/19/2013 15:55 45 32 32 10 71 20.3 3075.8 351.87 5757.69 12/19/2013 16:56 12/19/2013 16:56 44 32 32 11 67 22.4 1216.5 139.17 5896.86 12/19/2013 16:56 12/19/2013 16:56 44 32 32 11 67 22.4 1216.5 139.17 5896.86 12/19/2013 16:56 12/19/2013 16:56 44 32 32 11 67 22.4 1216.5 139.17 5896.86 12/19/2013 16:56 12/19/2013 16:56 44 32 32 11 67 22.4 1216.5 139.17 5896.86 12/19/2013 16:56 12/19/2013 16:56 44 32 32 11 67 22.4 1216.5 139.17 5896.86 12/19/2013 16:56 12/19/2013 16:56 44 32 32 11 167 22.4 1216.5 1216.5 139.17 5896.86 12/19/2								25				Val	ve shut	11.7	1.33	
12/16/2013 15:20 12/16/2013 15:20 45 28 30 8 69 15.5 506.6 57.96 1539.95 12/16/2013 15:24 12/16/2013 15:24 45 32 32 9 69 18.3 67.7 7.74 1547.69 12/16/2013 16:13 12/16/2013 16:13 45 32 33 9 68 18.3 896.7 102.59 1650.28 12/16/2013 22:16 12/16/2013 22:16 50 32 32.5 10 58 20.5 7052.4 806.80 2457.08 12/17/2013 8:56 12/17/2013 8:56 45 31 31 12 64 24.2 14332.2 1633.60 4096.68 12/17/2013 10:51 12/17/2013 10:51 41 32 30.5 12 68 24.4 2797.6 320.05 4416.73 12/17/2013 13:39 12/17/2013 13:39 45 31 31 13.5 69 27.1 4330.2 495.38 4912.11 12/17/2013 14:32 12/17/2013 14:32 45 31 31 13.5 70 27.1 1437.6 164.46 5076.57 12/17/2013 16:10 12/17/2013 15:56 45 30 31 14 69 27.8 2307.5 263.97 5340.54 12/17/2013 16:10 12/17/2013 16:10 22/1												40.40		4640.0	400.0=	
12/16/2013 15:24 12/16/2013 15:24 45 32 32 9 69 18.3 67.7 7.74 1547.69 12/16/2013 16:13 12/16/2013 16:13 45 32 33 9 68 18.3 896.7 102.59 1650.28 12/16/2013 22:16 12/16/2013 22:16 50 32 32.5 10 58 20.5 705.4 806.80 2457.08 12/17/2013 8:56 12/17/2013 8:56 45 31 31 12 64 24.2 14332.2 1639.60 4096.68 12/17/2013 10:51 12/17/2013 10:51 41 32 30.5 12 68 24.4 2797.6 320.05 4416.73 12/17/2013 13:39 12/17/2013 13:39 45 31 31 13.5 69 27.1 4330.2 495.38 4912.11 12/17/2013 14:32 12/17/2013 14:32 45 31 31 13.5 69 27.1 1437.6 164.46 5076.57 12/17/2013 15:56 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:11 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 1													rt			
12/16/2013 16:13 12/16/2013 16:13 45 32 33 9 68 18.3 896.7 102.59 1650.28 12/16/2013 22:16 12/16/2013 22:16 50 32 32.5 10 58 20.5 7052.4 806.80 2457.08 12/17/2013 8:56 12/17/2013 8:56 45 31 31 12 64 24.2 14332.2 1639.60 4096.68 12/17/2013 10:51 12/17/2013 10:51 41 32 30.5 12 68 24.4 2797.6 320.05 4416.73 12/17/2013 13:39 12/17/2013 13:39 45 31 31 13.5 69 27.1 4330.2 495.38 4912.11 12/17/2013 14:32 12/17/2013 14:32 45 31 31 13.5 70 27.1 1437.6 164.46 5076.57 12/17/2013 15:56 12/17/2013 15:56 45 30 31 14 69 27.8 2307.5 263.97 5340.54 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:11 22/17/2013 16:11 22/17/2013 16:11 22/17/2013 16:11 22/17/2013 16:11 22/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:10 12/17/2013 1																
12/16/2013 22:16 12/16/2013 22:16 50 32 32.5 10 58 20.5 7052.4 806.80 2457.08 12/17/2013 8:56 12/17/2013 8:56 45 31 31 12 64 24.2 14332.2 1639.60 4096.68 12/17/2013 10:51 12/17/2013 10:51 41 32 30.5 12 68 24.4 2797.6 320.05 4416.73 12/17/2013 13:39 12/17/2013 13:39 45 31 31 13.5 69 27.1 4330.2 495.38 4912.11 12/17/2013 14:32 12/17/2013 14:32 12/17/2013 14:32 12/17/2013 14:32 12/17/2013 15:56 45 31 31 31 13.5 70 27.1 1437.6 164.46 5076.57 12/17/2013 15:56 12/17/2013 15:56 45 30 31 14 69 27.8 2307.5 263.97 5340.54 12/17/2013 16:10 12/17/2013 16:11 12/17/2013 16:10 12/17/2013 16:11 12/17/2013 16:10 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:10 12/17/2013 16:1										_						
12/17/2013 8:56 12/17/2013 8:56 45 31 31 12 64 24.2 14332.2 1639.60 4096.68 12/17/2013 10:51 12/17/2013 10:51 41 32 30.5 12 68 24.4 2797.6 320.05 4416.73 12/17/2013 13:39 12/17/2013 13:39 45 31 31 13.5 69 27.1 4330.2 495.38 4912.11 12/17/2013 14:32 12/17/2013 14:32 45 31 31 13.5 70 27.1 1437.6 164.46 5076.57 12/17/2013 15:56 12/17/2013 15:56 45 30 31 14 69 27.8 2307.5 263.97 5340.54 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:11 12/19/2013 13:14 50 30 31 6 72 11.9 166.5 19.05 5404.16 12/19/2013 13:14 12/19/2013 13:15 12/19/2013 13:15 49 32 33 8.5 72 17.2 14.6 1.67 5405.82 12/19/2013 15:59 12/19/2013 15:59 45 32 32 10 71 20.3 3075.8 351.87 5757.69 12/19/2013 16:56 12/19/2013 16:56 44 32 32 11 67 22.4 1216.5 139.17 5896.86										_						
12/17/2013 10:51 12/17/2013 10:51 41 32 30.5 12 68 24.4 2797.6 320.05 4416.73 12/17/2013 13:39 12/17/2013 13:39 45 31 31 13.5 69 27.1 4330.2 495.38 4912.11 12/17/2013 14:32 12/17/2013 14:32 45 31 31 13.5 70 27.1 1437.6 164.46 5076.57 12/17/2013 15:56 12/17/2013 15:56 45 30 31 14 69 27.8 2307.5 263.97 5340.54 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:11 12																
12/17/2013 13:39 12/17/2013 13:39 45 31 31 13.5 69 27.1 4330.2 495.38 4912.11 12/17/2013 14:32 12/17/2013 14:32 45 31 31 13.5 70 27.1 1437.6 164.46 5076.57 12/17/2013 15:56 12/17/2013 15:56 45 30 31 14 69 27.8 2307.5 263.97 5340.54 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/19/2013 16:11 12/19/2013 16:14 12/19/2013 16:14 12/19/2013 16:15 12/19/2013 16:15 49 32 33 8.5 72 11.9 166.5 19.05 5404.16 12/19/2013 15:59 12/19/2013 15:59 45 32 32 10 71 20.3 3075.8 351.87 5757.69 12/19/2013 16:56 12/19/2013 16:56 44 32 32 11 67 22.4 1216.5 139.17 5896.86																
12/17/2013 14:32 12/17/2013 14:32 45 31 31 13.5 70 27.1 1437.6 164.46 5076.57 12/17/2013 15:56 12/17/2013 15:56 45 30 31 14 69 27.8 2307.5 263.97 5340.54 12/17/2013 16:10 12/17/2013 16:10 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/19/2013 12:46 50 30 32 <2 71 0.0 5385.11 12/19/2013 13:14 12/19/2013 13:14 50 30 31 6 72 11.9 166.5 19.05 5404.16 12/19/2013 13:15 12/19/2013 13:15 49 32 33 8.5 72 17.2 14.6 1.67 5405.82 12/19/2013 15:59 12/19/2013 15:59 45 32 32 32 10 71 20.3 3075.8 351.87 5757.69 12/19/2013 16:56 12/19/2013 16:56 44 32 32 31 16 67 22.4 1216.5 139.17 5896.86																
12/17/2013 15:56 12/17/2013 15:56 45 30 31 14 69 27.8 2307.5 263.97 5340.54 12/17/2013 16:10 12/17/2013 16:10 Valve shut 389.6 44.57 5385.11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/19/2013 12:46 50 30 32 <2 71 0.0							31									
12/17/2013 16:10 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 12/17/2013 16:11 25 5385.11																
SW-15 Event 5 12/17/2013 16:11 12/17/2013 16:11 25 5385.11 SW-15 Event 5 12/19/2013 12:46 12/19/2013 12:46 50 30 32 <2							30	31		14	69					
SW-15 Event 5 12/19/2013 12:46 12/19/2013 12:46 50 30 32 <2 71 0.0 5385.11 12/19/2013 13:14 12/19/2013 13:14 50 30 31 6 72 11.9 166.5 19.05 5404.16 12/19/2013 13:15 12/19/2013 13:15 49 32 33 8.5 72 17.2 14.6 1.67 5405.82 12/19/2013 15:59 12/19/2013 15:59 45 32 32 32 10 71 20.3 3075.8 351.87 5757.69 12/19/2013 16:56 12/19/2013 16:56 44 32 32 11 67 22.4 1216.5 139.17 5896.86												Val	ve shut	389.6	44.57	
12/19/2013 13:14 12/19/2013 13:14 50 30 31 6 72 11.9 166.5 19.05 5404.16 12/19/2013 13:15 12/19/2013 13:15 49 32 33 8.5 72 17.2 14.6 1.67 5405.82 12/19/2013 15:59 12/19/2013 15:59 45 32 32 32 10 71 20.3 3075.8 351.87 5757.69 12/19/2013 16:56 12/19/2013 16:56 44 32 32 11 67 22.4 1216.5 139.17 5896.86																5385.11
12/19/2013 13:15 12/19/2013 13:15 49 32 33 8.5 72 17.2 14.6 1.67 5405.82 12/19/2013 15:59 12/19/2013 15:59 45 32 32 10 71 20.3 3075.8 351.87 5757.69 12/19/2013 16:56 12/19/2013 16:56 44 32 32 11 67 22.4 1216.5 139.17 5896.86	SW-15 Event 5									<2						5385.11
12/19/2013 15:59 12/19/2013 15:59 45 32 32 10 71 20.3 3075.8 351.87 5757.69 12/19/2013 16:56 12/19/2013 16:56 44 32 32 11 67 22.4 1216.5 139.17 5896.86				• •						-						
12/19/2013 16:56 12/19/2013 16:56 44 32 32 11 67 22.4 1216.5 139.17 5896.86			13:15				32	33	8	8.5	72					
		12/19/2013	15:59	12/19/2013 15:59	45		32	32		10	71	20.3		3075.8	351.87	5757.69
12/19/2013 22:22 12/19/2013 22:22 50 40 31 12 60 26.7 7998.2 914.99 6811.85		12/19/2013	16:56	12/19/2013 16:56	5 44		32	32		11	67	22.4		1216.5	139.17	5896.86
		12/19/2013	22:22	12/19/2013 22:22	2 50		40	31		12	60	26.7		7998.2	914.99	6811.85

				P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)) Temp (°F)	Fl	ow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	12/20/2013	7:3	38 12/20/2013 7:3	8 50) 3	30	30	14	59	28.1	15226.9	1741.96	8553.81
	12/20/2013	8:3	38 12/20/2013 8:3	8 44	1 3	30	30	14	64	28.0	1682.1	192.43	8746.25
	12/20/2013	9::	12 12/20/2013 9:1	2						Valve shut	950.8	108.78	8855.02
	12/20/2013	9::	13 12/20/2013 9:1	3									8855.02
Note: a red value,	, i.e. <mark>75</mark> °F, indicates th	nat value v	vas interpolated from field	data						•	Total CO ₂ Mass (lbs):		8855.02

				P at Reducer	P at Panel	P at Wel	l Rot	tameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date T	ime	Date + Time	(psig)	(psig)	(psi)	Rea	ading (scfm)	Temp (°F)	Flow (scfm)		CO ₂ (scf)	(lb)	Mass (lb)
SW-16 Event 1	11/23/2013	8:16	11/23/2013 8:16	5 50) 2	28			70	0.0				
	11/23/2013	8:18	11/23/2013 8:18	3 54	4 3	30	33	<2	70	0.0		0.0	0.00	0.00
	11/23/2013	8:22	11/23/2013 8:22	. 54	1 3	31	33	<2	70	0.0		0.0	0.00	0.00
	11/23/2013	8:35	11/23/2013 8:35	;	3	31	32	<2	72.5	0.0		0.0	0.00	0.00
	11/23/2013	8:38	11/23/2013 8:38	3	3	33	35	<2	75	0.0		0.0	0.00	0.00
	11/23/2013	9:23	11/23/2013 9:23	3	3	33 3	34.5	3	80	6.1		137.2	2 15.70	15.70
	11/23/2013	10:21	11/23/2013 10:21	Ĺ	3	32	34	4.0	84	4 8.0		409.2	46.81	62.51
	11/23/2013	10:22	11/23/2013 10:22	!	3	34	36	6.0	84	12.3		10.1	1.16	63.67
	11/23/2013	11:26	11/23/2013 11:26	j	3	34	36	6	83	3 12.3		786.1	89.93	153.60
	11/23/2013	11:29	11/23/2013 11:29)	3	36 3	37.5	6.5	83	3 13.6		38.8	3 4.44	158.04
	11/23/2013	12:38	11/23/2013 12:38	3 50) 3	36 3	37.5	6.5	82	2 13.6		938.0	107.31	265.35
	11/23/2013	12:55	11/23/2013 12:55	;	3	36 3	37.5	6.5	82	2 13.6		231.2	26.45	291.80
	11/23/2013	12:57	11/23/2013 12:57	,							Valve shut	27.2	3.11	294.92
	11/23/2013	12:58	11/23/2013 12:58	3			31							294.92
SW-16 Event 2	11/25/2013	10:35	11/25/2013 10:35	5 48	3 2	24			66	5				294.92
	11/25/2013	10:40	11/25/2013 10:40) 5!	5 2	28 2	28.4	<2	68	3 0.0		0.0	0.00	294.92
	11/25/2013	10:43	11/25/2013 10:43	5.5	5 3	32 3	32.8	<2	68	3 0.0		0.0	0.00	294.92
	11/25/2013	11:03	11/25/2013 11:03	}	3	35 3	37.2	4	64	4 8.4		84.3	9.65	304.56
	11/25/2013	11:30	11/25/2013 11:30) 54	1 3	35 3	37.2	3.5	63	7.4		213.5	24.43	328.99
	11/25/2013	12:12	11/25/2013 12:12	2	3	35 3	36.8	4	68	8.4		331.5	37.92	366.91
	11/25/2013	12:48	11/25/2013 12:48	3 54	1 3	35 3	36.4	5	67	7 10.5		340.3	38.94	405.85
	11/25/2013	13:56	11/25/2013 13:56	5 54	1 3	35	36	5.5	68	3 11.5		750.0	85.80	491.64
	11/25/2013	15:12	11/25/2013 15:12	. 54	1 3	36	36	6	67	7 12.7		922.9	105.58	597.23
	11/25/2013	16:02			3	37	36	7.5	64	16.1		721.8	82.57	679.80
	11/25/2013	16:03									Valve shut	16.1		681.64
	11/25/2013	16:04	11/25/2013 16:04	l		2	28.4							681.64
SW-16 Event 3	12/6/2013	8:42	, ,		1 3		33.5	<2	76	5 0.0				681.64
	12/6/2013	9:20			7 3	34	33	<2	82	0.0				681.64
	12/6/2013	9:21			7 3	34 3	34.5	3				3.1	0.35	682.00
	12/6/2013	10:31			5 3		34.5	3	84			430.1		
	12/6/2013	11:25			1 3	34 3	34.5	3	85			331.3	37.90	769.11
	12/6/2013	13:11					34.5	4	82			759.7		
	12/6/2013	13:12									Valve shut	8.2		
	12/6/2013	13:13				2	28.5							856.95
SW-16 Event 4	12/11/2013	9:04			3	32	31	<2	66	5 0.0				856.95
	12/11/2013	9:34			3	31	31	<2						856.95
	12/11/2013	9:36				32	32	<2						856.95
	12/11/2013	10:05				32	32	<2						856.95
	12/11/2013	11:09				32	32	<2						856.95
	12/11/2013	11:16					32.5	3.5				24.8	3 2.83	
	12/11/2013	11:17				34	34	4	74			7.7		
	12/11/2013	11:48				34	34	4	72			256.4		
	12/11/2013	12:37				34	34	4.5				431.5		
	12/11/2013	13:36									Valve shut	550.7		
	12/11/2013	13:37					28							1002.37
SW-16 Event 5	12/11/2013	17:36			3	32	34	<2	62	2				1002.37
	12/11/2013	22:14				32	34	<2						1002.37
	12/12/2013	8:06					32.5	4	58			2432.7	7 278.31	
	12/12/2013	9:05				_	25		3.		Valve shut	484.9		
	12/12/2013	9:07									-			1336.14
SW-16 Event 6	12/19/2013	9:14			5 3	37	34	<2	64	1 0.0				1336.14
	12/19/2013	9:50				34	32	4	68			149.6	5 17.12	
	12/19/2013	9:52				34	34	7				22.9		
	,,,		,,											

12/19/2013				P at Reducer	P at Panel	P at Well	Rotameter	- (0-)	(Volume of	Mass of CO₂	Cumulative
12/15/2013 113-0	Back to Master				(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
17/19/013 18.12 12/19/01313-12 49 37.5 35.5 10 72 11.4 19004 21.741 175.39 12/19/02013 18.13 12/19/02013 18.13 12/19/02013 18.5 12/19/02013 15.5 15												
17/9/9/018 13:18 17/9/9/0181-18:18 49 35 34 55 72 11:5 16:5 12:48/58 2039-48 17/19/2013 16:55 17/9/2013 16:55 44 34 33 9 77 18:6 24:475 28:455 2039-48 17/19/2013 16:55 17/9/2013 16:55 17/9/2013 16:55 17/9/2013 16:55 17/9/2013 16:55 17/9/2013 16:55 17/9/2013 16:55 17/9/2013 16:55 17/9/2013 17:37 50 34 30 14 59 29.4 15:76 17:72.1 81:16.17 87:12.18 17:16.18 17:72.11 87:16.18 17:72.11 87:16.18 17:72.11 87:16.18 17:72.11 87:16.18 17:72.11 87:16.18 17:72.11 87:16.18 17:72.11 87:16.18 17:72.18 17:7												
12/19/2013 15.58 12/19/2013 15.58 12/19/2013 15.58 12/19/2013 15.59 15.59 15												
12/19/2013 16:55 12/19/2013 16:55 12/19/2013 16:55 14 31 33 9 67 18.7 10:561 122.88 11:51.26 12/19/2013 17:37 12/19/2013 17:37 12/20/2013 17:38 12/20/2013 17:38 12/20/2013 17:38 12/20/2013 17:38 12/20/2013 17:38 12/20/2013 17:38 12/20/2013 17:38 12/20/2013 17:38 12/20/2013 17:38 12/20/2013 17:38 12/20/2013 17:38 12/20/2013 17:38 12/20/2013 17:38 12/20/2013 17:38 12/20/2013 17:38 12/20/2013 17:38 12/20/2013 17:38 12/20/2013 17:28 17:28												
12/19/2013 22:20 12/19/2013 22:20 50 34 32 12 60 25:1 717/11 815:34 2976:61 12/20/2013 738 12/20/2013 738 12/20/2013 738 12/20/2013 738 12/20/2013 738 12/20/2013 738 73/20/2013 738 73/20/2013 738 73/20/2013 738 73/20/2013 738 73/20/2013 738 73/20/2013 738 73/20/2013 738 73/20/2013 738 73/20/2013 738 73/20/2013 738 73/20/2013 738 73/20/2013 738 73/20/2013 738 73/20/2013 73/20/20												
1/2 1/2												
12/20/2013 7-38 12/20/20137-39 24 24 2716.148												
1/17/1014 917 17/72014 917 17/72014 917 17/72014 917 17/72014 917 17/72014 918 918				50) 34	30	14	5				
300-16 17770014 9:17 177700149:17 177700149:17 177700149:17 17770014 19:35 177700149:17 177700149:17 177700149:17 177700149:17 177700149:17 177700149:17 177700149:17 177700149:17 177700149:17 177700149:17 177700149:17 177700149:17 1777001416:5 51 32 33 4 46 8.3 400.0 45.76 4798.29 17770014 13:19 1777001411:46 50 32 33 4 46 8.3 400.0 45.76 4798.29 17770014 13:19 177700141:19 177700141:19 50 31.5 33 4 50 8.2 7799.2 88.00 4864.29 17770014 13:19 17770014:10.9 50 31.5 33 4 50 8.2 7799.2 88.00 4864.29 17770014 15:23 17770014:15:24 17770014:15:2										Valve shut 29.4	3.36	
1/7/2014 9:18 1/7/2014 9:25 53 31.5 32.5 32.5 30.0 45.5 40.0 0.0						24			_			
1/7/2014 9.25 1/7/2014 9.25 1/7/2014 9.25 5/8 32.5 30 4.5 4.0 9.5 33.1 3.79 4719.93	<u>SW-16 Event 7</u>						_					
1/7/2014 9-57 1/7/2014 9-57 53 32 33 4 43 8.3 28.5 32.6 4752.24												
1/7/2014			• •				4.5					
1/7/2014 11-66							2					
1/7/2014 13:19 1/7/2014 13:19 50 31.5 33 4 50 8.2 769.2 88.00 494.429 17/2014 14:09 17/2014 14:09 50 31.5 33 4.5 50 93 43.78 50.08 499.43 17/2014 15:23 1/7/2014 15:23 50 31.5 32.5 5 53 10.3 10.3 72.30 82.71 507.08 17/2014 15:24 1/7/2014 15:24 1/7/2014 15:24 1/7/2014 15:24 1/7/2014 15:24 1/7/2014 17:22 1/7/2014 17:22 50 34 34 8 48 17.0 1316.3 15:05 507.68 17/2014 17:22 1/7/2014 17:22 50 34 34 8 48 17.0 1316.3 15:05 507.68 17/2014 17:23 1/7/2014 17:23 1/7/2014 17:23 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 12:05 1/7/2							2					
1/7/2014 14-09 1/7/2014 14-09 50 31.5 33.8 4.5 50 9.3 437.8 50.08 4994.37							2					
1/7/2014 15:23 1/7/2014 15:24 50 31.5 32.5 5 53 10.3 72.30 82.71 5077.08 1/7/2014 15:24 1/7/2014 15:24 50 33.5 34 8 8 8 17.0 1316.3 15.5 5078.62 1/7/2014 17:22 1/7/2014 17:22 50 34 34 8 48 17.0 679.6 77.74 1/7/2014 17:23 1/7/2014 17:22 50 34 34 8 48 17.0 679.6 77.74 1/7/2014 17:23 1/7/2014 17:24 7/7/2014 72.2 7/7/2014 72.2 7/7/2014 72.2 7/7/2014 72.2 7/7/2014 72.2 7/7/2014 72.2 7/7/2014 72.2 7/7/2014 72.2 7/7/2014 72.2 7/7/2014 72.2 7/7/2014							2					
1//2014 15:24 1/7/2014 15:24 49 34 34 8 53 16.8 13.5 1.55 5078.62			• •									
1/7/2014												
1/7/2014 17:22 1/7/2014 17:22 1/7/2014 17:23 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:24 1/7/2014 17:25 1/13/2014 17:26 1/												
1/7/2014 17-23 1/7/2014 17-23 1/7/2014 17-24 1/7/2014 17-25 2-9												
1/7/2014				50) 34	. 34	8	3 4				
1/13/2014 12:04 1/13/2014 12:05 1/13/2014 12:05 50 34.5 34 9 72 18.7 9.4 1.07 5309.97 1/13/2014 12:15 1/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:14 4/13/2014 12:15 4/13/2014 12:14 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 12:15 4/13/2014 4/13/2										Valve shut 17.0	1.95	
1/13/2014 12:05						29						
1/13/2014 12:15	<u>SW-16 Event 8</u>											
1/13/2014 12:44 1/13/2014 12:45 1/13/2014 12:45 1/13/2014 12:45 1/13/2014 12:45 1/13/2014 12:45 46 34.5 34.5 10 70 20.8 18.6 2.13 5377.78 1/13/2014 13:48 1/13/2014 13:48 45 34 34.5 10 68 20.8 1311 4 50.0 5527.80 1/13/2014 14:44 1/13/2014 14:44 44 34 34 34 10.5 68 21.8 1192.9 136.47 5664.27 1/13/2014 16:03 1/13/2014 16:03 42 34 34 10.5 67 21.8 1724.7 197.31 5861.58 1/13/2014 17:08 1/13/2014 15:05 34.5 34.5 11.5 66 24.2 1496.2 1711.7 6032.74 1/13/2014 17:08 1/13/2014 14:45 50 33. 34.5 11.5 66 24.2 1496.2 1711.7 6032.74 1/13/2014 17:08 1/13/2014 17:08 51 33.5 34.5 11.5 66 24.2 1496.2 1711.7 6032.74 1/14/2014 7:45 1/14/2014 17:45 50 33 32.5 15.5 63 32.0 1715.98 1963.08 8777.94 1/14/2014 7:46 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:48 1/15/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:47 1/14/2014 17:48 1/15/2014 17:47 1/14/2014 17:47 1/1												
1/13/2014 12:45												
1/13/2014												
1/13/2014												
1/13/2014												
1/13/2014 17:08												
1/13/2014 21:45 1/13/2014 21:45 50 34.5 34 12 64 25.2 6836.7 782.12 6814.86 1/14/2014 7:45 1/14/2014 7:45 50 33 32.5 15.5 63 32.0 17159.8 1963.08 8777.94 1/14/2014 7:46 1/14/2014 7:46												
1/14/2014												
1/14/2014												
1/14/2014				50) 33	32.5	15.5	6				
SW-16 Event 9 1/15/2014 9:22 1/15/2014 9:23 49 25 25 6 62 11.3 0.0 0.00 8781.60 1/15/2014 9:23 1/15/2014 9:23 49 33 31 12 62 24.8 18.1 2.07 8783.67 1/15/2014 9:29 1/15/2014 9:29 46 32 30 14 62 28.7 160.4 18.35 8802.02 1/15/2014 9:30 1/15/2014 9:30 46 34 31.5 16.5 62 34.5 31.6 3.61 8805.64 1/15/2014 10:12 1/15/2014 10:12 44 33 31 16.5 68 33.9 1436.9 164.38 8970.02 1/15/2014 11:31 1/15/2014 11:31 42 33 30.5 17 68 35.0 2721.1 311.30 9281.32 1/15/2014 11:32 1/15/2014 11:32 42 34.5 33.5 17.8 68 37.2 36.1										Valve shut 32.0	3.66	
1/15/2014 9:23 1/15/2014 9:23 49 33 31 12 62 24.8 18.1 2.07 8783.67 1/15/2014 9:29 1/15/2014 9:29 46 32 30 14 62 28.7 160.4 18.35 8802.02 1/15/2014 9:30 1/15/2014 9:30 46 34 31.5 16.5 62 34.5 31.6 3.61 8805.64 1/15/2014 10:12 1/15/2014 10:12 44 33 31 16.5 68 33.9 1436.9 164.38 8970.02 1/15/2014 11:31 1/15/2014 11:31 42 33 30.5 17 68 35.0 2721.1 311.30 9281.32 1/15/2014 11:32 1/15/2014 11:32 42 34.5 33.5 17.8 68 37.2 36.1 4.13 9285.44 1/15/2014 12:42 1/15/2014 12:42 43 37 33.2 20.2 66 43.4 2819.0 322.50 9607.94 1/15/2014 12:51 1/15/2014 12:51 24 24												
1/15/2014 9:29 1/15/2014 9:29 46 32 30 14 62 28.7 160.4 18.35 8802.02 1/15/2014 9:30 1/15/2014 9:30 46 34 31.5 16.5 62 34.5 31.6 3.61 8805.64 1/15/2014 10:12 1/15/2014 10:12 44 33 31 16.5 68 33.9 1436.9 164.38 8970.02 1/15/2014 11:31 1/15/2014 11:31 42 33 30.5 17 68 35.0 2721.1 311.30 9281.32 1/15/2014 11:32 1/15/2014 11:32 42 34.5 33.5 17.8 68 37.2 36.1 4.13 9285.44 1/15/2014 12:42 1/15/2014 12:42 43 37 33.2 20.2 66 43.4 2819.0 322.50 9607.94 1/15/2014 12:51 1/15/2014 12:51 24 24 24 24 24 86 37.2 50 40 40 40 40 40 40 40 40 40 <td><u>SW-16 Event 9</u></td> <td></td>	<u>SW-16 Event 9</u>											
1/15/2014 9:30 1/15/2014 9:30 46 34 31.5 16.5 62 34.5 31.6 3.61 8805.64 1/15/2014 10:12 1/15/2014 10:12 44 33 31 16.5 68 33.9 1436.9 164.38 8970.02 1/15/2014 11:31 1/15/2014 11:31 42 33 30.5 17 68 35.0 2721.1 311.30 9281.32 1/15/2014 11:32 1/15/2014 11:32 42 34.5 33.5 17.8 68 37.2 36.1 4.13 9285.44 1/15/2014 12:42 1/15/2014 12:42 43 37 33.2 20.2 66 43.4 2819.0 322.50 9607.94 1/15/2014 12:44 1/15/2014 12:44 1/15/2014 12:51 24 24 24 24 24 24 24 24 24 24 36.1 36.1 4.13 9285.44 37 37 37 37 37 37 37 37 38 37 37 37 37 37 37 3												
1/15/2014 10:12 1/15/2014 10:12 44 33 31 16.5 68 33.9 1436.9 164.38 8970.02 1/15/2014 11:31 1/15/2014 11:31 42 33 30.5 17 68 35.0 2721.1 311.30 9281.32 1/15/2014 11:32 1/15/2014 11:32 42 34.5 33.5 17.8 68 37.2 36.1 4.13 9285.44 1/15/2014 12:42 1/15/2014 12:42 43 37 33.2 20.2 66 43.4 2819.0 322.50 9607.94 1/15/2014 12:44 1/15/2014 12:44 1/15/2014 12:44 Yalve shut 86.7 9.92 9617.86 1/15/2014 12:51 1/15/2014 12:51 24 24 24 54 54 56 43.4 2819.0 322.50 9617.86												
1/15/2014 11:31 1/15/2014 11:31 42 33 30.5 17 68 35.0 2721.1 311.30 9281.32 1/15/2014 11:32 1/15/2014 11:32 42 34.5 33.5 17.8 68 37.2 36.1 4.13 9285.44 1/15/2014 12:42 1/15/2014 12:42 43 37 33.2 20.2 66 43.4 2819.0 322.50 9607.94 1/15/2014 12:44 1/15/2014 12:44 1/15/2014 12:44 1/15/2014 12:45 24 Valve shut 86.7 9.92 9617.86 1/15/2014 12:51 1/15/2014 12:51 24												
1/15/2014 11:32 1/15/2014 11:32 42 34.5 33.5 17.8 68 37.2 36.1 4.13 9285.44 1/15/2014 12:42 1/15/2014 12:42 43 37 33.2 20.2 66 43.4 2819.0 322.50 9607.94 1/15/2014 12:44 1/15/2014 12:44 1/15/2014 12:51 24 Valve shut 86.7 9.92 9617.86 9617.86												
1/15/2014 12:42 1/15/2014 12:42 43 37 33.2 20.2 66 43.4 2819.0 322.50 9607.94 1/15/2014 12:44 1/15/2014 12:51 1/15/2014 12:51 24 Valve shut 86.7 9.92 9617.86 9617.86												
1/15/2014 12:44 1/15/2014 12:44 Valve shut 86.7 9.92 9617.86 1/15/2014 12:51 1/15/2014 12:51 24 9617.86												
1/15/2014 12:51 1/15/2014 12:51 24				43	37	33.2	20.2	2 6				
										Valve shut 86.7	9.92	
						24				Total CO ₂ Mass (lbs):		9617.86

Back to Master	Date T	ime D		P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow	v (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
SW-17 Event 1	11/20/2013	9:49	11/20/2013 9:49	55	5 2	8			66	0.0			
	11/20/2013	9:51	11/20/2013 9:51		3	2 3	2 .	<2	66	0.0	0.0	0.00	0.00
	11/20/2013	10:05	11/20/2013 10:05		3	0 3	0	3	66	6.0	41.9	4.79	4.79
	11/20/2013	10:06	11/20/2013 10:06		3	4 32.	5	5	66	10.4	8.2	0.94	5.73
	11/20/2013	11:05	11/20/2013 11:05	55	5 3	3 32.	5	7	66	14.4	732.6	83.81	89.54
	11/20/2013	11:10	11/20/2013 11:10		3	5 33.	5	9	66	18.9	83.4	9.54	99.08
	11/20/2013	13:09	11/20/2013 13:09		3	4 3	3	10	66	20.8	2365.6	270.63	369.70
	11/20/2013	14:56	11/20/2013 14:56		3	4 3	3 10	.5	65	21.9	2284.9	261.39	631.10
	11/20/2013	15:00	11/20/2013 15:00							Valve shut	87.5	10.01	641.11
	11/20/2013	15:01	11/20/2013 15:01		2	5 2	5						641.11
SW-17 Event 2	12/5/2013	14:02	12/5/2013 14:02	53	3	6 3	4 .	<2	88	0.0			641.11
	12/5/2013	14:29	12/5/2013 14:29	53	3	5 33.	5	3	86.0	6.2	83.6	9.56	650.67
	12/5/2013	15:33	12/5/2013 15:33	50) 3	4 3:	3	5	80.0	10.3	526.8	60.26	710.93
	12/5/2013	15:35	12/5/2013 15:35	50) 3	6 3	5	9	80.0	18.9	29.1	3.33	714.27
	12/5/2013	16:45	12/5/2013 16:45	50) 3	6 3	5 :	LO	73.0	21.1	1399.2	160.06	874.33
	12/5/2013	17:30	12/5/2013 17:30	56	5 3	6 33.	5 :	L2	70.0	25.4	1046.5	119.72	994.05
	12/5/2013	17:32	12/5/2013 17:32							Valve shut	50.8	5.81	999.86
	12/5/2013	17:33	12/5/2013 17:33			27.	5						999.86
SW-17 Event 3	12/11/2013	13:30	12/11/2013 13:30	50	3	4 3:	2	<2	67	0.0			999.86
	12/11/2013	14:01	12/11/2013 14:01	50	3	2 3:	1	<2	67	0.0			999.86
	12/11/2013	14:03	12/11/2013 14:03	50	3	5 33.	5 3	.5	66	7.4	7.4	0.84	1000.70
	12/11/2013	14:30	12/11/2013 14:30	50	3	5 33.	5 3	.5	67	7.4	198.7	22.73	1023.44
	12/11/2013	15:09	12/11/2013 15:09	50	3	4 33.	5	5	66	10.4	346.5	39.64	1063.07
	12/11/2013	15:35	12/11/2013 15:35	45	3	5 3	3	6	65	12.6	299.6	34.28	1097.35
	12/11/2013	16:32	12/11/2013 16:32	48	3	4 3	3	8	64	16.7	835.8	95.62	1192.97
	12/11/2013	17:08	12/11/2013 17:08	50	3	4 3	2 9	.5	64	19.8	657.2	75.19	1268.16
	12/11/2013	17:57	12/11/2013 17:57	55	3	4 31.	5 :	12	60	25.1	1101.5	126.01	1394.16
	12/11/2013	17:58	12/11/2013 17:58							Valve shut	25.1	2.88	1397.04
	12/11/2013	17:59	12/11/2013 17:59			2							1397.04
SW-17 Event 4	12/17/2013	8:50	12/17/2013 8:50	45	3	5 3	3		65.0	0.0	0.0		
	12/17/2013	9:50	12/17/2013 9:50	45	3	4 3	3	4	66.0	8.3	249.9		1425.62
	12/17/2013	10:56	12/17/2013 10:56	42	3	5 3	2		72.0	14.6	758.0		
	12/17/2013	13:47	12/17/2013 13:47	45			9 :	L3	74.0	27.1	3572.0		
	12/17/2013	13:48	12/17/2013 13:48	45			1 :		74.0	32.5	29.8		
	12/17/2013	14:54	12/17/2013 14:54	45	32.	5 3:	1 :	16	70.0	32.7	2151.5		2170.53
	12/17/2013	14:55	12/17/2013 14:55	45	3	5 3:	1 :	19	70.0	39.8	36.2	4.15	2174.67
	12/17/2013	15:47	12/17/2013 15:47	45	3				68.0	39.9	2072.5		
	12/17/2013	22:22	12/17/2013 22:22	46					60.0	46.1	16981.0		
	12/17/2013	22:24	12/17/2013 22:24	43					60.0	61.1	107.1		
	12/18/2013	8:45	12/18/2013 8:45	45	3	9 3	1 3	32	61.0	70.4	40810.8		
	12/18/2013	8:49	12/18/2013 8:49							Valve shut	281.5	32.21	
	12/18/2013	8:50	12/18/2013 8:50			2.	5						9067.62
Note: a red value	e, i.e. <mark>75</mark> °F, indicates tha	at value was i	nterpolated from field d	ata							Total CO ₂ Mass (lbs)		9067.62

Total CO₂ Mass (lbs):

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flo	ow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-18 Event 1	11/22/2013	13:14	11/22/2013 13:14		0,	31.5		F 1 - 7	82	0.0	-52 (00.)	• •	,
ovv 10 Event 1	11/22/2013	13:15	11/22/2013 13:15		30			<2	82	0.0	0.0	0.00	0.00
	11/22/2013	13:18	11/22/2013 13:18					<2	82	0.0	0.0		
	11/22/2013	13:44	11/22/2013 13:44					13	82	25.5	331.7		
	11/22/2013	14:06						14	80	27.5	583.6		
	11/22/2013	14:37	11/22/2013 14:37					16	76	31.6	916.4		
	11/22/2013	15:07	11/22/2013 15:07					22	74	45.5	1155.6		
	11/22/2013	15:51	11/22/2013 15:51					23	76	47.4	2043.3		
	11/22/2013	16:46	• •					24	71	49.7	2671.8		
	11/22/2013	17:22						24	70	49.8	1791.2		
	11/22/2013	17:23	11/22/2013 17:23		_					Valve shut	49.8		
	11/22/2013	17:24	11/22/2013 17:24			25							1091.77
SW-18 Event 2	12/6/2013	12:39	12/6/2013 12:39) 34			.5	84	11.3			1091.77
	12/6/2013	13:36							83	27.7	1108.8	126.85	
	12/6/2013	13:38	12/6/2013 13:38					20	83	41.4	69.0		
	12/6/2013	14:37	12/6/2013 14:37						80	44.6	2537.3		
	12/6/2013	15:56	• •					23	74	48.5	3678.3		
	12/6/2013	15:57	12/6/2013 15:57					24	74	50.6	49.6		
	12/6/2013	16:25	12/6/2013 16:25					24	72	50.7	1418.4		
	12/6/2013	16:45	12/6/2013 16:45					24	71	50.8	1014.6		
	12/6/2013	16:47	12/6/2013 16:47			_				Valve shut	101.5		
	12/6/2013	16:48	12/6/2013 16:48			25							2233.20
SW-18 Event 3	12/12/2013	9:15	12/12/2013 9:15) 35			14	62	29.6			2233.20
	12/12/2013	9:57	12/12/2013 9:57					22	66	45.8	1583.0	181.10	
	12/12/2013	9:58	12/12/2013 9:58					24	66	50.0	47.9		
	12/12/2013	10:02	12/12/2013 10:02					26	66	54.7	209.4		
	12/12/2013	10:35	12/12/2013 10:35						67	57.4	1849.4		
	12/12/2013	11:31	12/12/2013 11:31					.5 27	68	56.7	3194.2		
	12/12/2013	11:32						28	68	59.4	58.0		
	12/12/2013	13:17	12/12/2013 13:17					30	70	63.5	6452.3		
	12/12/2013	13:18								Valve shut	63.5		
	12/12/2013	13:19	12/12/2013 13:19			20)						3772.75
SW-18 Event 4	12/19/2013	8:10			35			7	50	15.0			3772.75
<u> </u>	12/19/2013	8:37	12/19/2013 8:37						60	32.5	640.4	73.26	
	12/19/2013	8:44	12/19/2013 8:44						60	44.5	269.3		
	12/19/2013	8:45						22	60	48.4	46.5		
	12/19/2013	9:32	12/19/2013 9:32						63	45.8	2215.2		
	12/19/2013	11:31	12/19/2013 11:31					22	67	46.2	5478.2		
	12/19/2013	12:06							69	51.9	1717.7		
	12/19/2013	12:10								Valve shut	207.7		
	12/19/2013	12:11	12/19/2013 12:11			22	2						4982.53
SW-18 Event 5	1/9/2014	10:41	1/9/2014 10:41							0.0			4982.53
	1/9/2014	10:42			33	3.	5 16	.5	64	34.1	17.0	1.95	
	1/9/2014	10:50						20	64	40.8	299.7		
	1/9/2014	10:51	1/9/2014 10:51						64	51.6	46.2		
	1/9/2014	11:12						.5 24	60	50.8	1075.7		
	1/9/2014	12:42						24	60	50.3	4548.2		
	1/9/2014	14:25	1/9/2014 14:25						60	48.2	5070.8		
	1/9/2014	14:46						.5 24	60	49.2	1022.7		
	1/9/2014	14:47	1/9/2014 14:47		. 52					Valve shut	49.2		
	1/9/2014	14:48				2:				valve silut	73.2	5.03	6370.15
SW-18 Event 6	1/13/2014	7:52	1/13/2014 7:52			۷.				0.0			6370.15
ZII ZO ZICIICO	1/13/2014	7:54			30.5	3!		16	48	32.7	32.7	3.74	
	1/13/2014	7.54	1/13/2014 /.34		, 50.5	, 3.			70	52.7	32.7	3.74	0373.03

				P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flo	w (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	1/13/201	4 7:5	9 1/13/2014 7:59) 5(30	33.5	1	8	50	36.5	172.8	19.77	6393.66
	1/13/201	4 8:0	0 1/13/2014 8:00) 50	33	29	2	2	50	46.1	41.3	4.72	6398.38
	1/13/201	4 8:0	2 1/13/2014 8:02	2 49	36	31	. 2	6	52	56.0	102.1	11.68	6410.06
	1/13/201	4 8:2	0 1/13/2014 8:20) 45	35	30.5	2	8	56	59.5	1039.9	118.96	6529.02
	1/13/201	4 10:1	5 1/13/2014 10:15	5 42	2 34	29	2	8	64	58.4	6780.5	775.68	7304.71
	1/13/201	4 11:2	4 1/13/2014 11:24	40	33.5	29	2	6	64	54.0	3877.2	443.55	7748.26
	1/13/201	4 11:5	7 1/13/2014 11:57	7 44	1 34	29	2	8	66	58.3	1852.4	211.92	7960.17
	1/13/201	4 11:5	8 1/13/2014 11:58	3						Valve shut	58.3	6.67	7966.84
	1/13/201	4 11:5	9 1/13/2014 11:59)	22								7966.84
Note: a red value,	, i.e. <mark>75</mark> °F, indicates	that value w	as interpolated from field	data						To	otal CO ₂ Mass (lbs):		7966.84

Back to Master	Date T	ime	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Fl	ow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-19 Event 1	11/22/2013	8:30	11/22/2013 8:30)						0.0			
	11/22/2013	8:32				25	;	:2	70	0.0	0.0	0.00	0.00
	11/22/2013	8:51	11/22/2013 8:51	-	2:	2 25	;	:2	71	0.0	0.0	0.00	0.00
	11/22/2013	8:52	11/22/2013 8:52	. 56	6 28	8	3	.5	72	6.8	3.4	0.39	0.39
	11/22/2013	10:05	11/22/2013 10:05	63	3	28.5	5 7	.5	76	8.5	555.9	63.59	63.98
	11/22/2013	10:44	11/22/2013 10:44	55	5 28	8 28.5	;	8	77	15.4	465.5	53.25	117.23
	11/22/2013	11:14	11/22/2013 11:14	55	5 2	8 28.5	5 8	.5	76	16.4	477.2	54.59	171.82
	11/22/2013	11:44	11/22/2013 11:44	55	5 2	8 28.5		9	79	17.3	505.6	5 57.84	229.67
	11/22/2013	12:07	11/22/2013 12:07	54	4 30	0 31	14	.5	82	28.5	526.4	1 60.22	289.89
	11/22/2013	13:04	11/22/2013 13:04	59	9 3!	5 30)	16	80	33.2	1757.6	201.07	490.95
	11/22/2013	13:08	11/22/2013 13:08	}						Valve shut	132.8	3 15.20	506.15
	11/22/2013	13:09	11/22/2013 13:09)		32	2						506.15
SW-19 Event 2	12/6/2013	8:28	12/6/2013 8:28	5.5	5 30	0 29)	5	73	9.9			506.15
	12/6/2013	9:00	12/6/2013 9:00) 49	9 29	9 27	,	4	75	27.4	596.0	68.19	574.34
	12/6/2013	9:02	12/6/2013 9:02	49	9 3:	3 30.2	2	20	75	40.8	68.2	7.80	582.14
	12/6/2013	10:19	12/6/2013 10:19	43	3 3	2 27.5	2 3	.5	78	47.3	3395.5	388.44	970.58
	12/6/2013	10:22	12/6/2013 10:22	. 42	2 3	4 29)	27	78	55.6	154.4	17.66	988.24
	12/6/2013	11:19	12/6/2013 11:19	41	1 3	4 28	3	28	80	57.5	3222.8	368.69	1356.93
	12/6/2013	12:25	12/6/2013 12:25	45	5 3.	5 28	31	.5	80	65.4	4055.3	3 463.93	1820.86
	12/6/2013	12:26	12/6/2013 12:26	;						Valve shut	65.4	7.48	1828.34
	12/6/2013	12:27	12/6/2013 12:27	•		21	L						1828.34
SW-19 Event 3	12/11/2013	13:19	12/11/2013 13:19	49	30	0 28	3	:2	66	0.0			1828.34
	12/11/2013	13:57	12/11/2013 13:57	50	2	8 25	5 13	.5	67	26.3	499.1	57.10	1885.44
	12/11/2013	13:58	12/11/2013 13:58	50	2	8 26	5	16	67	31.1	28.7	3.28	1888.72
	12/11/2013	14:32	12/11/2013 14:32	50	24	4 25		17	67	31.5	1064.3	3 121.76	2010.48
	12/11/2013	14:35	12/11/2013 14:35	50	34	4 26	5	20	67	41.6	109.6	5 12.54	2023.02
	12/11/2013	15:04	12/11/2013 15:04	50	30	0 26	5	21	66	41.9	1210.3	3 138.46	2161.49
	12/11/2013	15:05	12/11/2013 15:05	50	3:	1 27	,	25	66	50.4	46.1	5.28	2166.76
	12/11/2013	15:26	12/11/2013 15:26	45	3:	1 27	,	26	65	52.5	1080.2	2 123.57	2290.34
	12/11/2013	16:30	12/11/2013 16:30	48	3:	1 26		27	64	54.5	3424.4	391.76	2682.09
	12/11/2013	17:06	12/11/2013 17:06	50	3:	1 25	5 28	.5	64	57.6	2018.1	230.87	2912.96
	12/11/2013	17:19	12/11/2013 17:19)						Valve shut	748.5	85.62	2998.58
	12/11/2013	17:20	12/11/2013 17:20)		21	L						2998.58
SW-19 Event 4	12/18/2013	8:54	12/18/2013 8:54	50	31	0 30)	4	62	8.0			2998.58
	12/18/2013	9:42	12/18/2013 9:42			27	7			Valve shut	384.3	3 43.96	3042.55
	12/18/2013	9:43	12/18/2013 9:43			27	,						3042.55
	12/18/2013	14:00	12/18/2013 14:00	50	2	8 26	5	16	74	30.9 Restart			3042.55
	12/18/2013	14:01	12/18/2013 14:01	. 50	3	2 28	3 20	.5	74	41.5	36.2	2 4.14	3046.69
	12/18/2013	15:57	12/18/2013 15:57	40	3:	2 25	;	23	64	47.0	5129.4	586.80	3633.49
	12/18/2013	16:59	12/18/2013 16:59	45	3	2 24	1 :	24	60	49.2	2981.9	341.13	3974.62
	12/18/2013	17:19	12/18/2013 17:19	41	. 3!	5 26	5	28	60	59.3	1084.8	3 124.10	4098.71
	12/18/2013	17:22	12/18/2013 17:22	41	. 3!	5 26	5	29	60	61.4	181.0	20.70	4119.42
	12/18/2013	17:56	12/18/2013 17:56	50	4	0 29)	33	58	73.5	2292.7	7 262.29	4381.70
	12/18/2013	17:57	12/18/2013 17:57	•						Valve shut	73.5	8.41	4390.11
	12/18/2013	17:58	12/18/2013 17:58	}		19)						4390.11
SW-19 Event 5	1/9/2014	10:46	1/9/2014 10:46	j									4390.11
	1/9/2014	10:47	1/9/2014 10:47	45	5 34	4 30.5		6	64	12.5	12.5	1.43	4391.54
	1/9/2014	10:53						12	64	25.0	112.7		
	1/9/2014	10:54			2 3	5 30.5		18	64	37.9	31.5		
	1/9/2014	11:14	1/9/2014 11:14	40	0 3	5 29)	20	60	42.3	802.8	91.84	4499.87
	1/9/2014	12:44			9 3!	5 36.5	5 22	.5	60	47.6	4047.8		
	1/9/2014	14:27	1/9/2014 14:27	36	6 3	2 25		23	60	47.2	4881.4	558.43	5521.37
	1/9/2014	14:51	1/9/2014 14:51	. 40	3.	5 26	5	26	60	55.0	1226.3	3 140.29	5661.66

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flo	ow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
	1/9/201	14:5	2 1/9/2014 14:52							Valve shut	55.0	6.30	5667.96
	1/9/201	L4 14:53	3 1/9/2014 14:53	1		22							5667.96
SW-19 Event 6	1/14/201	14 8:10	0 1/14/2014 8:10)									5667.96
	1/14/201				5 27	7 29		10	60	19.4	19.4		
	1/14/201	14 8:2	5 1/14/2014 8:25	44	1 27	7 27		14	60	27.1	325.3		1 5707.38
	1/14/201							20	60	40.3	33.7		
	1/14/201							24	62	47.5	4215.6		
	1/14/201							28	62	57.6	105.1		
	1/14/201							28	62	56.4	3305.2		
	1/14/201				30.5	5 26		29	62	58.4	4302.4		
	1/14/201									Valve shut	58.4	6.68	
	1/14/201					22							7082.52
SW-19 Event 7	1/20/201		• •					12	64	23.4			7082.52
	1/20/201							18	64	36.0	59.4		
	1/20/201							19	64	38.0	147.8		
	1/20/201		• •					21	68	41.3	1030.4		
	1/20/201							2.5	69	44.0	3581.1		
	1/20/201		• •					3.8	69	46.8	136.1		
	1/20/201		• •					24	68	47.2	2960.3		
	1/20/201) 29	9 25		24	68	47.2	3304.6		
	1/20/201									Valve shut	141.6	16.20	
	1/20/201		<u> </u>			21							8382.24
SW-19 Event 8	1/27/201												8382.24
	1/27/201							15	84	29.4	58.8		
	1/27/201							20	76	38.6	679.7		
	1/27/201							28	75	57.8	48.2		
	1/27/201							28	72	58.0	868.2		
	1/27/201							30	68	61.7	5683.5		
	1/27/201							30	67	61.4	3570.3		
	1/27/201				2 32	2 25		32	65	65.3	3231.3		
	1/27/201									Valve shut	65.3	7.47	
	1/27/201					20							10007.32
SW-19 Event 9	2/5/201							12	66	23.7			10007.32
	2/5/201				28			13	66	25.3	73.5		
	2/5/201							16	66	30.8	420.9		
	2/5/201				30			20	66	39.9	106.0		
	2/5/201		• •		30			1.9	68	43.6	3004.1		
	2/5/201				29.5			22	70	43.4	2653.9		
	2/5/201		• •					21	71	41.4	3140.0		
	2/5/201		• •		29.5			1.2	74	41.7	2244.3		
S111 40 F 1 40	2/5/201					21			5 .0	Valve shut	125.1	14.32	
<u>SW-19 Event 10</u>	2/7/201							4	56	7.5	20.0	2.45	11353.55
	2/7/201							1.2	56	22.4	29.9		
	2/7/201							5.8	57	32.0	54.4		
	2/7/201							3.2	57	36.6	1680.0		
	2/7/201).8	57	42.5	197.9		
	2/7/201							1.2	60	43.2	5661.6		
	2/7/201							1.8	61	44.2	3889.5		
	2/7/201				5 31			2.5	61	45.6	3455.7		
CIM 40 F	2/7/201					21		_	CO	Valve shut	45.6	5.22	
SW-19 Event 11	2/10/201				25			5	60	9.4	66.6		13071.21
	2/10/201							16	60	32.1	62.3		
	2/10/201	10:00	0 2/10/2014 10:00) 49	38	3 23	2.	2.1	66	47.9	1639.8	187.59	9 13265.93

Back to Master	Date	Time [P at Date + Time (psi		P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
	2/10/2014	10:02	2/10/2014 10:02	48	30	23.5	25.5		66 50.8	98.	7 11.30	13277.23
	2/10/2014	11:51	2/10/2014 11:51	48	30	23	26	i	70 51.6	5584.	638.8	7 13916.10
	2/10/2014	13:30	2/10/2014 13:30	48	30	24.5	26	i	71 51.6	5 5109.	584.4	7 14500.57
	2/10/2014	15:02	2/10/2014 15:02	45	30	23.5	26	i	71 51.6	4745.	4 542.88	3 15043.45
	2/10/2014	16:53	2/10/2014 16:53	45	30	23.5	26	i	67 51.8	5736.	7 656.28	15699.73
	2/10/2014	17:45	2/10/2014 17:45	48	30	23.5	26	i	63 52.0	2698.	308.60	5 16008.38
	2/10/2014	17:48	2/10/2014 17:48			20)			Valve shut 156.	17.84	16026.23
SW-19 Event 12	2/11/2014	8:32	2/11/2014 8:32		23	22.2	. 5		9.8	3		16026.23
	2/11/2014	8:34	2/11/2014 8:34	49	29.5	24	18.2		56 36.4	46.	2 5.29	9 16031.51
	2/11/2014	9:08	2/11/2014 9:08		28	22.5	23		59 45.1	. 1386.	3 158.60	16190.11
	2/11/2014	9:10	2/11/2014 9:10			17	•			Valve shut 90.	2 10.32	2 16200.43
	2/11/2014	12:22	2/11/2014 12:22			29			66 0.0	0.	0.00	16200.43
	2/11/2014	12:23	2/11/2014 12:23	49	29	25	20.3		66 40.0	20.	2.29	9 16202.72
	2/11/2014	12:25	2/11/2014 12:25	49	29	24	21.8		66 43.0	83.	9.49	9 16212.21
	2/11/2014	13:50	2/11/2014 13:50	48	28	23	23.9		62 46.7	3812.	4 436.13	3 16648.35
	2/11/2014	13:51	2/11/2014 13:51	48	29	24	26	i	62 51.4	49.	1 5.62	16653.96
	2/11/2014	15:00	2/11/2014 15:00	47	29	23.5	26		59 51.6	3555.	406.69	9 17060.66
	2/11/2014	17:08	2/11/2014 17:08	49	29.5	23	26	;	56 52.1	. 6633.	7 758.90	17819.56
	2/11/2014	17:10	2/11/2014 17:10			20				Valve shut 104.	1 11.9	1 17831.47
SW-19 Event 13	2/12/2014	8:19	2/12/2014 8:19	53	25	24	3.8		49 7.3	;		17831.47
	2/12/2014	8:20	2/12/2014 8:20	53	30	25	14		49 28.4	17.	3 2.04	4 17833.50
	2/12/2014	8:52	2/12/2014 8:52	48	28	22.5	21		51 41.5	1118.	5 127.9	7 17961.47
	2/12/2014	8:53	2/12/2014 8:53	48	29.5	24	25.2		51 50.7	46.	1 5.28	3 17966.74
	2/12/2014	10:29	2/12/2014 10:29	48	29.5	24	26.2		54 52.6	4956.	3 567.00	5 18533.80
	2/12/2014	11:59	2/12/2014 11:59	49	29.5	24	26.2		53 52.6	4732.	541.43	3 19075.23
	2/12/2014	12:00	2/12/2014 12:00			18	<u> </u>			Valve shut 52.	6.02	2 19081.25
Note: a red value,	i.e. 75 °F, indicates t	hat value was	interpolated from field data							Total CO ₂ Mass (lbs	:	19081.25

Back to Master	Date Ti	ime	Date + Time	P at Reducer (psig)	P at Pane (psig)	el Pa (ps	at Well si)	Rotameter Reading (scfm)	Tem	p (°F)	Flow (scfm)		Volume of CO ₂ (scf)	Mass of CO ₂	Cumulative Mass (lb)
SW-20 Event 1	11/20/2013	9:20	11/20/2013 9:20) 5!	5	28				64	0.0		<u> </u>		
	11/20/2013	9:23	11/20/2013 9:23			32	33		<2	66	0.0		0.0	0.00	0.00
	11/20/2013	10:09	11/20/2013 10:09)		30	31		2	66	4.0		91.7	10.49	10.49
	11/20/2013	10:11	11/20/2013 10:11	L		36	36		7	66	14.9		18.9	2.16	12.65
	11/20/2013	10:59	11/20/2013 10:59)		36	35.5		8	66	17.0		765.1	87.53	100.18
	11/20/2013	12:46	11/20/2013 12:46	j		36	35	:	10	66	21.3		2046.7	234.14	334.32
	11/20/2013	14:40	11/20/2013 14:40)		36	34.5	10).5	65	22.3		2484.7	284.25	618.57
	11/20/2013	15:17	11/20/2013 15:17	,		36	34.5	10).5	65	22.3		826.5	94.55	713.12
	11/20/2013	15:18	11/20/2013 15:18	3							V	alve shut	22.3	2.56	715.68
	11/20/2013	15:19	11/20/2013 15:19)			28.5								715.68
SW-20 Event 2	12/4/2013	12:12	12/4/2013 12:12	. 50)	36	35		<2	76					715.68
	12/4/2013	13:04	12/4/2013 13:04	5!	5	35	33.5		6	85	12.4		644.4	73.72	789.40
	12/4/2013	13:42	12/4/2013 13:42	. 52	2	34	33		7	84	14.3		507.6	58.07	847.47
	12/4/2013	13:43	12/4/2013 13:43	5	2	36	35.5	10).5	84	21.9		18.1	2.07	849.55
	12/4/2013	14:42	12/4/2013 14:42	. 50	0	36	35	:	11	74	23.2		1331.2	152.29	1001.83
	12/4/2013	15:48	12/4/2013 15:48	5	2	36	35		12	78	25.2		1597.3	182.73	1184.56
	12/4/2013	17:13	12/4/2013 17:13	5	2	36	34.5		14	70	29.6		2330.9	266.65	1451.21
	12/4/2013	17:14	12/4/2013 17:14	ļ							٧	alve shut	29.6	3.39	1454.60
	12/4/2013	17:15	12/4/2013 17:15	;											1454.60
SW-20 Event 3	12/17/2013	12:43	12/17/2013 12:43	48		35	35		<2	74	0.0		0.0	0.00	1454.60
	12/17/2013	13:24	12/17/2013 13:24	48		34	33.6		5	76	10.3		211.4	24.18	1478.78
	12/17/2013	14:25	12/17/2013 14:25	45		33	32.8	7	' .5	76	15.3		781.2	89.37	1568.15
	12/17/2013	15:40	12/17/2013 15:40) 45		32	32.4	8	3.5	74	17.2		1218.5	139.40	1707.55
	12/17/2013	15:41	12/17/2013 15:41	. 45	3	4.5	34	:	12	74.0	24.9		21.1	2.41	1709.96
	12/17/2013	17:02	12/17/2013 17:02	. 45	3	4.5	34.4	12	2.5	66.0	26.2		2069.0	236.69	1946.65
	12/17/2013	17:03	12/17/2013 17:03	}							V	alve shut	26.2	2.99	1949.64
	12/17/2013	17:04	12/17/2013 17:04	ļ			28.4								1949.64
SW-20 Event 4	1/8/2014	7:57	1/8/2014 7:57	1						34	0.0		0.0	0.00	1949.64
	1/8/2014	7:58	1/8/2014 7:58	3 25		26	23	•	<2	34.0	0.0		0.0	0.00	1949.64
	1/8/2014	8:13	1/8/2014 8:13	55		34	32		6	38.0	12.9		96.4	11.03	1960.67
	1/8/2014	8:30	1/8/2014 8:30	52		35	32		6	42	12.9		219.2	25.08	1985.75
	1/8/2014	8:44	1/8/2014 8:44	49		35	32		6	42.0	12.9		181.1	20.72	2006.46
	1/8/2014	8:45	1/8/2014 8:45	48		38	34	9).5	42.0	21.1		17.0	1.95	2008.41
	1/8/2014	9:46	1/8/2014 9:46	46		37	34	:	10	50.0	21.8		1308.9	149.74	2158.15
	1/8/2014	10:37	1/8/2014 10:37	45		36	33	:	11	50.0	23.8		1162.1	132.95	2291.10
	1/8/2014	11:15	1/8/2014 11:15	45		36	32.5	:	12	56.0	25.8		940.9	107.63	2398.73
	1/8/2014	11:16	1/8/2014 11:16	5 45		37	34	:	14	56.0	30.4		28.1	3.21	2401.94
	1/8/2014	12:25	1/8/2014 12:25	40		37	33.5	:	14	58.0	30.3		2092.3	239.36	2641.31
	1/8/2014	12:26	1/8/2014 12:26	;							V	alve shut	30.3	3.47	2644.77
	1/8/2014	12:27	1/8/2014 12:27	,			26								2644.77
SW-20 Event 5	1/10/2014	8:50	1/10/2014 8:50)											2644.77
	1/10/2014	8:51	1/10/2014 8:51	. 53	3	34	33		3	67	6.2		6.2	0.71	2645.49
	1/10/2014	8:55	1/10/2014 8:55	5 53	3	31	29	:	10	67	20.1		52.8	6.04	2651.52
	1/10/2014	8:59	1/10/2014 8:59) 50	0	40	34.5		19	67	41.9		124.1	14.20	2665.72
	1/10/2014	10:05	1/10/2014 10:05	5 42	2	36	32	:	21	65	44.7		2858.0	326.96	2992.68
	1/10/2014	10:06	1/10/2014 10:06	5 42	2	40	33.5	:	22	65	48.6		46.7	5.34	2998.02
	1/10/2014	11:44	1/10/2014 11:44	4:	1	39	33		22	67	48.1		4740.5	542.31	3540.33
	1/10/2014	13:00				38	31		22	66			3639.8		
	1/10/2014	13:01										alve shut	47.7		
	1/10/2014	13:02					23								3962.17
SW-20 Event 6	1/14/2014	7:50			0	28	29.2		<2	62	0.0		0.0	0.00	3962.17
	1/14/2014	7:51	1/14/2014 7:51	. 50	0 3	3.5	34		5	62	10.4		5.2	0.59	3962.77
	1/14/2014	7:53	1/14/2014 7:53	5	0	33	33.6		7	62	14.5		24.9	2.85	3965.61

				P at Reducer	P at Panel	P at Well	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of	Mass of CO ₂	Cumulative Mass (lb)
Back to Master			Date + Time	(psig)	(psig)	(psi)				CO ₂ (scf)		
	1/14/2014	8:44	• •					62	18.4	838.9		
	1/14/2014 1/14/2014	10:05 10:09	1/14/2014 10:05 1/14/2014 10:09					63	21.5 28.8	1615.4 100.6		
	1/14/2014	11:32						63 63	27.2	2322.8		
	1/14/2014	11:56						63	29.0	674.2		
	1/14/2014	11:57	1/14/2014 11:57) 3 4	29		03	Valve shut	29.0		
SW-20 Event 7	1/16/2014	8:03			30			40		0.0		
OVV ZO EVERTO	1/16/2014	8:05						42	12.1	16.2		
	1/16/2014	8:06	• •					42	25.1	18.6		
	1/16/2014	9:00						54	32.6	1558.1		
	1/16/2014	9:02						54	38.6	71.2		
	1/16/2014	10:25	• •					57	41.2	3309.3		
	1/16/2014	11:19	1/16/2014 11:19					58	41.3	2227.0		
	1/16/2014	11:20						58	46.2	43.7		
	1/16/2014	12:16	1/16/2014 12:16	43	34	32.4	23.8	58	50.0	2691.7	307.93	5740.73
	1/16/2014	12:18	1/16/2014 12:18			28			Valve shut	99.9	11.43	5752.16
SW-20 Event 8	1/17/2014	8:33	1/17/2014 8:33	48	3 26	29	29	5	54.0			5752.16
	1/17/2014	8:34	1/17/2014 8:34	. 48	31	32.4	32.4	7.5	54.0	54.0	6.18	5758.34
	1/17/2014	8:35	1/17/2014 8:35	48	32	33	33	7.8	54.0	54.0	6.18	5764.52
	1/17/2014	10:17	1/17/2014 10:17	45	31.5	32.4	32.4	8.5	59.0	5763.0	659.29	6423.80
	1/17/2014	11:21	1/17/2014 11:21	. 45	31			9.2	65.0	3968.0		
	1/17/2014	11:22	1/17/2014 11:22	45	33			14.2	65.0	65.0	7.44	6885.18
	1/17/2014	12:13	1/17/2014 12:13		33	32.6	32.6	12.8	65.0	3315.0		
	1/17/2014	12:14	1/17/2014 12:14						Valve shut	65.0	7.44	
SW-20 Event 9	1/20/2014	8:39	• •					47	0.0			7271.85
	1/20/2014	8:44	1/20/2014 8:44					49	12.4	31.1		
	1/20/2014	8:48						49	13.5	51.8		
	1/20/2014	8:49	• •					51	21.0	17.3		
	1/20/2014 1/20/2014	9:13 10:27	1/20/2014 9:13					58	20.9	502.9		
	1/20/2014	11:26	1/20/2014 10:27 1/20/2014 11:26					64 67	21.2 21.7	1555.8 1263.5		
	1/20/2014	13:05			32.5			69	22.1	2164.6		
	1/20/2014	13:06			32.3	26		03	Valve shut	22.1		
SW-20 Event 10	1/21/2014	7:54			5 27.5			50		0.0		
<u> </u>	1/21/2014	7:55						50	16.8	8.4		
	1/21/2014	8:01	1/21/2014 8:01					50	20.9	113.1		
	1/21/2014	8:45						56	21.6	936.2		
	1/21/2014	9:54	1/21/2014 9:54			32.8	10.5	62	21.5	1487.1	170.13	8204.65
	1/21/2014	11:16	1/21/2014 11:16	38	32	32.8	10.5	66	21.4	1758.5	201.18	8405.83
	1/21/2014	12:20	1/21/2014 12:20	41	. 32	32.4	10.5	71	21.3	1366.5	156.32	8562.15
	1/21/2014	12:21	1/21/2014 12:21			27.6			Valve shut	21.3	2.44	8564.59
SW-20 Event 11	1/22/2014	8:27	1/22/2014 8:27	54	27	29.6	<2	37	0.0	0.0	0.00	8564.59
	1/22/2014	8:29	1/22/2014 8:29	54	33	34.2	7	37	14.9	14.9	1.70	8566.29
	1/22/2014	8:34	1/22/2014 8:34	53	33	33.8	9.5	40	20.1	87.4	10.00	8576.28
	1/22/2014	9:00						46	21.7	542.8		
	1/22/2014	9:03						50	20.7	63.6		
	1/22/2014	11:00						55	21.6	2477.7		
	1/22/2014	12:07						56	22.6	1483.6		
	1/22/2014	12:34	1/22/2014 12:34		32			57	23.0	616.7		
	1/22/2014	12:35				25			Valve shut	23.0	2.64	
<u>SW-20 Event 12</u>	1/28/2014	7:20										9172.00
	1/28/2014	7:22						56	0.0	0.0		
	1/28/2014	7:27	1/28/2014 7:27	56	36	32	4	56	8.6	21.5	2.46	9174.46

Back to Master	Date Tin	ne D		P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flo	ow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
	1/28/2014	7:28	1/28/2014 7:28	5	5 3	3	1	6.5	56	14.2	11.4	1.31	1 9175.76
	1/28/2014	8:05	1/28/2014 8:05	5	4 3	3	1	8	56	17.5	587.3	67.19	9242.95
	1/28/2014	8:27	1/28/2014 8:27	5	4 3	3	1	8	56	17.5	385.3	44.08	9287.04
	1/28/2014	10:00	1/28/2014 10:00	5	4 3	7 33.	5	9	56	19.5	1721.8	196.98	9484.01
	1/28/2014	11:18	1/28/2014 11:18	5	1 3	7 33.	5	10	54	21.7	1608.3	183.99	9668.01
	1/28/2014	11:23	1/28/2014 11:23							Valve shut	108.6	12.43	9680.43
	1/28/2014	11:24	1/28/2014 11:24			2	5						9680.43
SW-20 Event 13	2/5/2013	7:54	2/5/2013 7:54	5	5 3	3 3	5	3.2	62	6.6			9680.43
	2/5/2013	8:45	2/5/2013 8:45	4	9 3	2 31.	5	9.8	65	20.0	678.7	77.64	9758.08
	2/5/2013	10:26	2/5/2013 10:26	4	5 3	2 31.	5	9.8	68	19.9	2016.6	230.70	9988.78
	2/5/2013	11:28	2/5/2013 11:28	4	5 3	2 31.	5	9.8	70	19.9	1234.9	141.27	7 10130.05
	2/5/2013	12:40	2/5/2013 12:40	4	5 3	2 31.	5	9.8	72	19.9	1431.3	163.74	10293.79
	2/5/2013	13:33	2/5/2013 13:33	4	5 3	2 31.	5	9.8	74	19.8	1051.5	120.29	9 10414.08
	2/5/2013	13:36	2/5/2013 13:36	4	5 3	3 32.	5	13	74	26.6	69.6	7.96	5 10422.04
	2/5/2013	14:47	2/5/2013 14:47	4	6 3	3 32.	5	13	74	26.6	1887.0	215.87	7 10637.91
	2/5/2013	15:40	2/5/2013 15:40	4	6 3	3 32.	5	13	70	26.7	1411.3	161.46	5 10799.37
	2/5/2013	15:58	2/5/2013 15:58	4	6 3	3 32.	5	13	73	26.6 Valve shut	479.6	54.86	5 10854.23
	2/5/2013	16:00	2/5/2013 16:00			2	5						10854.23
SW-20 Event 14	2/7/2014	8:25	2/7/2014 8:25	5	0 3) 3	1	3.2	48	6.5			10854.23
	2/7/2014	8:27	2/7/2014 8:27	5	0 33.	2 3	3	7	48	14.7	21.2	2.43	3 10856.66
	2/7/2014	9:21	2/7/2014 9:21	4	5 3	3	3	9.3	55	19.4	920.5	105.30	10961.96
	2/7/2014	11:40	2/7/2014 11:40	4	5 3	3	3	9.3	62	19.2	2683.6	307.00	11268.96
	2/7/2014	13:10	2/7/2014 13:10	4	4 3	3	3	9.8	64	20.2	1776.2	203.20	11472.15
	2/7/2014	14:26	2/7/2014 14:26	4	6 3:	3 3	3	10	64	20.6	1553.4	177.70	11649.86
	2/7/2014	15:42	2/7/2014 15:42	4	9 3	2 3	3 1	0.8	62	22.1	1624.4	185.83	3 11835.69
	2/7/2014	16:20	2/7/2014 16:20	4	9 3	2 3	3 1	0.8	60	22.1	840.7	96.18	3 11931.87
	2/7/2014	16:31	2/7/2014 16:31	4	9 3	2 3	3 1	0.9	57	22.4	245.1	28.04	11959.91
	2/7/2014	16:32	2/7/2014 16:32			2	5			Valve shut	22.4	2.56	5 11962.47
SW-20 Event 15	2/10/2014	9:30	2/10/2014 9:30	5	2 2	7 27.	5	<2	60	0.0			11962.47
	2/10/2014	9:33	2/10/2014 9:33	5	1 3	3 3	3	5	60	10.4	15.5	1.78	3 11964.25
	2/10/2014	10:11	2/10/2014 10:11	4	9 32.	5 32.	5	8.5	67	17.4	527.6	60.35	12024.60
	2/10/2014	10:16	2/10/2014 10:16	4	8 33.	5 32.	5	11	67	22.8	100.4	11.49	12036.09
	2/10/2014	11:40	2/10/2014 11:40	4	8 33.	5 32.	5	9.8	71	20.2	1804.5	206.43	3 12242.52
	2/10/2014	13:25	2/10/2014 13:25	4	8 33.	5 32.	5	9.8	71	20.2	2121.0	242.65	12485.17
	2/10/2014	14:58	2/10/2014 14:58	4	7 3	3 32.	5	10	73	20.5	1890.9	216.32	2 12701.48
	2/10/2014	16:45	2/10/2014 16:45	4	6 3	3 32.	5 1	0.5	69	21.6	2248.9	257.27	7 12958.75
	2/10/2014	17:52	2/10/2014 17:52	5	4 3	3 32.	5 1	0.8	63	22.3	1470.3	168.20	13126.96
	2/10/2014	17:53	2/10/2014 17:53			2				Valve shut	22.3		
SW-20 Event 16	2/11/2014	8:19	2/11/2014 8:19		3			0.2	55	20.6			13129.51
	2/11/2014	8:22	2/11/2014 8:22	5	0 33.			16	55	33.5	81.1	9.28	
	2/11/2014	9:02	2/11/2014 9:02	4				6.8	58	35.1	1371.7		
	2/11/2014	9:03	2/11/2014 9:03			2				Valve shut	35.1		

Back to Master	Date .	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Fl	low (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-21 Event 1	11/22/2013	13:01											
	11/22/2013	13:02	• •		28				84	0.0	0.0		
	11/22/2013	13:32	• •					<2	88	0.0	0.0		
	11/22/2013	13:58	• •					5	87	10.1	131.2		
	11/22/2013	14:20	• •					6	80	12.3	246.6		
	11/22/2013	15:00	• •					7	77	14.4	534.9		
	11/22/2013	15:44	• •					8	80	16.4	678.8		
	11/22/2013	16:40	• •					9	76	18.6	979.7		
	11/22/2013	17:11) 34	1 32	2	9	72	18.6	576.4		
	11/22/2013	17:12	• •							Valve shut	18.6	5 2.13	
	11/22/2013	17:13				25	5						362.23
SW-21 Event 2	11/25/2013	10:54	·						62				362.23
	11/25/2013	10:58	·					<2	64	0.0	0.0		
	11/25/2013	11:25						5	62	10.5	141.1		
	11/25/2013	12:35	·					8	64	16.7	950.0		
	11/25/2013	13:55						10	65	20.6	1492.6		
	11/25/2013	15:05						12	64	24.5	1579.7		838.53
	11/25/2013	16:05	11/25/2013 16:05	5.5	5 32	2 31	L	12	61	24.6	1472.7	168.48	1007.01
	11/25/2013	16:07	11/25/2013 16:07	•						Valve shut	49.2	5.62	1012.64
	11/25/2013	16:08	11/25/2013 16:08			25							1012.64
SW-21 Event 3	12/5/2013	12:12	12/5/2013 12:12	50) 32	2 32	2	<2	81	0.0			1012.64
	12/5/2013	14:18	12/5/2013 14:18	52	2 31	1 31	L	6	87	11.9	746.8	85.44	1098.08
	12/5/2013	15:22	12/5/2013 15:22	49	9 31	1 30) 7	7.5	83	14.9	855.3	97.85	1195.92
	12/5/2013	16:35	12/5/2013 16:35	49	9 31	1 30		9	78	17.9	1197.5	137.00	1332.92
	12/5/2013	16:54	12/5/2013 16:54	. 49	9 31	1 30) 9	9.5	75	19.0	350.7	40.13	1373.04
	12/5/2013	16:55	12/5/2013 16:55							Valve shut	19.0	2.17	1375.22
	12/5/2013	16:56	12/5/2013 16:56			25							1375.22
SW-21 Event 4	12/19/2013	8:58	12/19/2013 8:58	47	7 34	1 31	L	<2	52	0.0			1375.22
	12/19/2013	9:29			33	3 30) 3	3.5	62	7.2	112.2		
	12/19/2013	10:03	12/19/2013 10:03	40)	4	66	8.2	263.2		
	12/19/2013	11:26	12/19/2013 11:26	40	32.5	5 30)	6	70	12.2	850.3	97.28	1515.44
	12/19/2013	12:50	12/19/2013 12:50	45	31	1 29)	7	72	14.0	1103.7	126.26	1641.71
	12/19/2013	12:58	12/19/2013 12:58							Valve shut	112.2	2 12.84	1654.55
	12/19/2013	12:59				25	5						1654.55
SW-21 Event 5	1/6/2014	13:00	1/6/2014 13:00										1654.55
	1/6/2014	13:01	1/6/2014 13:01	. 57	32	2 29.5	5	<2	60	0.0			1654.55
	1/6/2014	13:25	1/6/2014 13:25	55	31	1 29)	2	60	4.1	48.7	5.57	1660.12
	1/6/2014	13:56	1/6/2014 13:56	5.5	5 31	1 29)	2	58	4.1	125.9	14.40	1674.52
	1/6/2014	15:02	1/6/2014 15:02	. 55	31	1 28.5	5	3.5	58	7.1	368.8	42.20	1716.71
	1/6/2014	15:04	1/6/2014 15:04	55	32	2 29.5	5	6	58	12.3	19.4	2.22	1718.94
	1/6/2014	16:02	1/6/2014 16:02	. 54	33	3 29.5	5	6	55	12.5	720.0	82.37	1801.30
	1/6/2014	17:03	1/6/2014 17:03	54	33	3 29.5	5	7	52	14.6	827.3	94.65	1895.95
	1/6/2014	17:15	1/6/2014 17:15	54	33	3 29.5	5 7	7.5	52	15.7	181.8	3 20.80	1916.75
	1/6/2014	17:16	1/6/2014 17:16	i						Valve shut	15.7	1.79	1918.54
	1/6/2014	17:17	1/6/2014 17:17	•		29)						1918.54
SW-21 Event 6	1/7/2014	7:29	1/7/2014 7:29						27				1918.54
	1/7/2014	7:30	1/7/2014 7:30	26	5 25	5 22	2	4	27	7.8	7.8	0.89	1919.44
	1/7/2014	7:49	1/7/2014 7:49	15	5 20	16.5	5	2	27	3.6	108.9	12.46	1931.89
	1/7/2014	9:02	1/7/2014 9:02	55	5 33	3 30) 11	1.5	42	24.3	1019.3	116.61	2048.51
	1/7/2014	10:22	1/7/2014 10:22	. 50) 34	4 30)	10	47	21.2	1820.2	208.23	2256.73
	1/7/2014	11:21	1/7/2014 11:21	. 48	3 34	4 30)	11	50	23.3	1312.8	150.19	2406.92
	1/7/2014	13:56	1/7/2014 13:56	52	2 34	1 29.5	5 13	3.5	52	28.5	4013.3	459.13	2866.04
	1/7/2014	15:16	1/7/2014 15:16	5 50) 34	1 29.5	5	14	55	29.5	2319.3	265.33	3131.37

				at Reducer	P at Panel	P at Well	Rotameter				Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time (psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	1/7/2014	16:25	1/7/2014 16:25	47	34	1 29.5	14	50	29.6	2038.9	233.25	3364.62
	1/7/2014	17:08	1/7/2014 17:08	50	34	1 29	15	47	31.8	1321.5	151.18	3515.80
	1/7/2014	17:09	1/7/2014 17:09						Valve shut	31.8	3.64	3519.44
	1/7/2014	17:10	1/7/2014 17:10									3519.44
SW-21 Event 7	1/10/2014	8:41	1/10/2014 8:41									3519.44
	1/10/2014	8:42	1/10/2014 8:42	55	30.5	31.2	3	67	6.0	6.0	0.69	3520.13
	1/10/2014	9:02	1/10/2014 9:02	50	30	30.4	6	67	11.9	179.6	20.54	3540.67
	1/10/2014	10:04	1/10/2014 10:04	42	30	30.4	6	65	12.0	741.6	84.84	3625.52
	1/10/2014	11:42	1/10/2014 11:42	41	30	30	6.5	67	12.9	1221.0	139.69	3765.20
	1/10/2014	13:05	1/10/2014 13:05	45	30	29.8	7	66	14.0	1116.4	127.72	3892.92
	1/10/2014	14:08	1/10/2014 14:08	49	29.5	5 29.2	8	69	15.8	937.7	107.27	4000.19
	1/10/2014	14:09	1/10/2014 14:09	49	31	L 30.6	12.5	69	25.1	20.5	2.34	4002.53
	1/10/2014	15:12	1/10/2014 15:12	49	31	20.6	13	69	26.1	1614.7	184.72	4187.25
	1/10/2014	16:19	1/10/2014 16:19	47	31	30.2	13.5	68	27.2	1785.4	204.25	4391.50
	1/10/2014	17:48	1/10/2014 17:48	45	31	L 29.6	14	65	28.3	2466.1	282.12	4673.63
	1/10/2014	17:49	1/10/2014 17:49	45	32	30.8	16	65	32.6	30.5	3.48	4677.11
	1/10/2014	1 21:51	1/10/2014 21:51	44	. 32	30.6	17.5	63	35.8	8279.4	947.16	5624.27
	1/11/2014	7:55	1/11/2014 7:55	40	31	28.8	20	64	40.4	23006.4	2631.94	8256.21
	1/11/2014	7:56	1/11/2014 7:56						Valve shut	40.4	4.62	8260.83
	1/11/2014	7:57	1/11/2014 7:57									8260.83
SW-21 Event 8	1/23/2014	12:10	1/23/2014 12:10		27	7 24	<2	. 56	0.0	0.0	0.00	8260.83
	1/23/2014	12:11	1/23/2014 12:11	46	32.5	31	2	56	4.1	2.1	0.24	8261.06
	1/23/2014	12:13	1/23/2014 12:13	46	32.5	29.5	3	56	6.2	10.3	1.18	8262.25
	1/23/2014	12:53	1/23/2014 12:53	46	32.5	29.5	5.2	58	10.7	339.0	38.79	8301.04
	1/23/2014	14:16	1/23/2014 14:16	50	32.5	5 28	7	55	14.5	1047.7	119.86	8420.90
	1/23/2014	14:17	1/23/2014 14:17	50	33	30	12.2	54.5	25.4	20.0	2.28	8423.18
	1/23/2014	15:06	1/23/2014 15:06	50	33	30	12.2	54	25.4	1246.3	142.58	8565.76
	1/23/2014	16:38	1/23/2014 16:38	55	34	1 29.8	13	54	27.4	2430.5	278.05	8843.81
	1/23/2014	16:39	1/23/2014 16:39			25			Valve shut	27.4	3.13	8846.95
Note: a red value	i o 75 °F indicator	that value was	interpolated from field da	+						Total CO Mass (lbs).		0046.05

Total CO₂ Mass (lbs):

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date Ti	ime	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-22 Event 1	11/14/2013	7:53	11/14/2013 7:53	30) 1:	l			0.0			
	11/14/2013	7:56	11/14/2013 7:56	39	30	5 32	2 <2	34.5	0.0	0.0	0.00	0.00
	11/14/2013	8:00	11/14/2013 8:00	30	31.	5 29	<2	36.6	0.0	0.0	0.00	0.00
	11/14/2013	8:04	11/14/2013 8:04	32	2 32.5	5 29	9 4.5	40.4	7.7	15.3	3 1.76	1.76
	11/14/2013	8:08	11/14/2013 8:08	33	3	3 29	9 4.5	41.5	7.7	30.8	3.52	5.27
	11/14/2013	8:10	11/14/2013 8:10	36	5 3!	5 31	6.25	41.3	10.9	18.0	5 2.13	7.41
	11/14/2013	8:14	11/14/2013 8:14	38	3	7 33	3	38.6	14.3	50.5	5.78	3 13.18
	11/14/2013	8:36	11/14/2013 8:36	38	3	32.5	9.75	28.1	17.5	349.0	39.99	53.18
	11/14/2013	9:01	11/14/2013 9:01	38	3.	30.5	5 10.5	27.5	18.6	451.2	51.62	2 104.80
	11/14/2013	9:02	11/14/2013 9:02	42	2 38	3 32.5	5 13.5	27.8	24.7	21.7	7 2.48	3 107.27
	11/14/2013	9:03	11/14/2013 9:03	43	38.5	5 34	13.25	27.3	24.3	24.5	2.80	110.08
	11/14/2013	9:07	11/14/2013 9:07	43	38.5	5 34	13.25	26	24.4	97.5	11.15	121.23
	11/14/2013	9:40	11/14/2013 9:40	42	2 38	3 33	3 14	26.7	25.6	825.3	94.39	215.62
	11/14/2013	10:03	11/14/2013 10:03	42	2 3	7 33	3 14.5	28.7	26.2	596.2	68.20	283.82
	11/14/2013	10:43	11/14/2013 10:43	42	2 3	7 32	15.25	31.7	27.5	1074.2	122.88	3 406.70
	11/14/2013	11:50	11/14/2013 11:50	42	2 30	5 31	16	34.7	28.5	1874.3	3 214.42	621.13
	11/14/2013	12:07	11/14/2013 12:07						Valve shut	483.9	55.35	676.48
	11/14/2013	12:08	11/14/2013 12:08	26	5 20	5 2 1	L	37.2				676.48
SW-22 Event 2	12/10/2013	12:43	12/10/2013 12:43	52.5	32.	5 32.2	2 <2	. 80	0.0			676.48
	12/10/2013	13:07	12/10/2013 13:07	52.5	28	3 25.2	2 20	76	38.6	463.0	52.96	729.44
	12/10/2013	13:59	12/10/2013 13:59	50.0	28	3 25.2	2 21.5	70	41.7	2087.	7 238.83	968.28
	12/10/2013	14:01	12/10/2013 14:01		30					89.3		
	12/10/2013	14:30	12/10/2013 14:30							1393.8		
	12/10/2013	15:10	12/10/2013 15:10		30) 27				1942.3		
	12/10/2013	15:16	12/10/2013 15:16		32					303.		
	12/10/2013	15:43	12/10/2013 15:43		3:					1414.8		
	12/10/2013	16:21	12/10/2013 16:21		3:					1982.2		
	12/10/2013	16:55	12/10/2013 16:55		3:					1775.3		
	12/10/2013	16:58	12/10/2013 16:58						Valve shut	156.0		
	12/10/2013	16:59	12/10/2013 16:59			15						2004.52
SW-22 Event 3	12/20/2013	7:47	12/20/2013 7:47		30			5 56	32.2			2004.52
	12/20/2013	7:49	12/20/2013 7:49				19			70.9	8.11	
	12/20/2013	8:10	12/20/2013 8:10		3:					874.		
	12/20/2013	8:14	12/20/2013 8:14		3!					203.		
	12/20/2013	8:16	12/20/2013 8:16							120.:		
	12/20/2013	9:48	12/20/2013 9:48							5626.8		
	12/20/2013	9:49	12/20/2013 9:49							59.4		
	12/20/2013	10:35	12/20/2013 10:35		3(2726.		
	12/20/2013	11:29	12/20/2013 11:29		34					3187.		
	12/20/2013	11:49	12/20/2013 11:49							1240.2		
	12/20/2013	11:50	12/20/2013 11:49		3.	20.5	, 30	, , , , ,	Valve shut	65.:		
	12/20/2013	11:51	12/20/2013 11:51			16	;		valve shat	05	7.45	3626.09
SW-22 Event 4	1/8/2014	12:30	1/8/2014 12:30)		0.0			3626.09
SW ZZ LVCIIL 4	1/8/2014	12:31	1/8/2014 12:31		5 34	1 24	16	5 58		16.8	3 1.92	
	1/8/2014	12:33	1/8/2014 12:33		, 3.	+ 2-	, 10	, 36	valve shut	67.2		
SW-22 Event 5	2/4/2014	14:20	2/4/2014 14:20		3 28	3 25	5 <2	. 62		07.	7.00	3635.69
JVV-ZZ LVCIIL J	2/4/2014	14.20	2/4/2014 14:21							14.	5 1.66	
	2/4/2014	14.21	2/4/2014 14:21							65.4		
	2/4/2014	14:45	2/4/2014 14:45							890.0		
	2/4/2014	15:36	2/4/2014 15:36							2425.9		
	2/4/2014	16:30	2/4/2014 16:30							2730.8		
	2/4/2014	17:30	• •		3		25.2	. 60		3032.3		
	2/4/2014	17:32	2/4/2014 17:32			g)		Valve shut	101.3	l 11.56	4695.10

				P at Reducer	P at Panel	P at Well	Rotameter	T (05)	et. Autol	Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-22 Event 6	•	/2014 10:4	• •		29							4695.10
	2/6	/2014 10:4	9 2/6/2014 10:49	47	28	3 27.6	16.5	60	32.3	56.1	6.42	4701.52
		/2014 11:0								683.8		
	2/6	/2014 12:1	0 2/6/2014 12:10	45	26.5	23.4	21.8	3 62	41.9	2526.9	289.08	5068.83
	2/6	/2014 12:1	3 2/6/2014 12:13	45	30	26.2	27	7 62.5	54.0	143.8	16.45	5085.28
	2/6	/2014 14:0	9 2/6/2014 14:09	42	2 30) 26	27.8	3 63	55.6	6356.8	727.22	5812.51
	2/6	/2014 15:2	1 2/6/2014 15:21	43	30) 26	28	3 60	56.2	4022.7	460.19	6272.70
	2/6	/2014 16:3	5 2/6/2014 16:35	43	30) 26	28	58	56.3	4159.5	475.85	6748.55
	2/6	/2014 17:1	8 2/6/2014 17:18	47	' 30) 26	28.5	5 58	57.3	2441.0	279.25	7027.80
	2/7	/2014 8:0	2 2/7/2014 8:02	49	29	24.4	31	L 54	61.8	52642.7	6022.33	13050.13
	2/7	/2014 8:0	4 2/7/2014 8:04			12			Valve shut	123.7	14.15	13064.28
SW-22 Event 7	2/7	/2014 10:0	7 2/7/2014 10:07	45	25	26.5	(5 57	11.4			13064.28
	2/7	/2014 10:0	9 2/7/2014 10:09	43	32	2 28	20	57	41.1	52.5	6.01	13070.28
	2/7	/2014 10:1	6 2/7/2014 10:16	43	3 29.5	5 25	25.9	58	51.7	325.1	37.19	13107.47
	2/7	/2014 11:3	0 2/7/2014 11:30	42	2 29	24.5	26.5	60	52.5	3858.7	441.43	13548.90
	2/7	/2014 13:0	4 2/7/2014 13:04	42	29	24	26.5	60	52.5	4938.6	564.98	14113.88
	2/7	/2014 14:2	2 2/7/2014 14:22	45	29	24	2.5	60	5.0	2242.3	256.52	14370.40
	2/7	/2014 15:3	9 2/7/2014 15:39	46	29	24	26.5	60	52.5	2213.6	253.23	14623.63
	2/7	/2014 16:3	9 2/7/2014 16:39	46	5 29) 24	26.5	5 58	52.6	3155.5	360.98	14984.62
	2/7	/2014 17:2	8 2/7/2014 17:28	49	29	24	26.5	5 57	52.7	2580.8	295.25	15279.86
	2/7	/2014 17:2	9 2/7/2014 17:29			16			Valve shut	52.7	6.03	15285.89
SW-22 Event 8	2/12	/2014 8:1	0 2/12/2014 8:10	55	31	30.5	<2	2 46	0.0			15285.89
	2/12	/2014 8:1	1 2/12/2014 8:11	51	32.5	5 27	23.5	5 46	49.1	24.6	2.81	15288.70
	2/12	/2014 8:5	0 2/12/2014 8:50	45	31	26	27	7 50	55.3	2036.9	233.02	15521.73
	2/12	/2014 10:2	5 2/12/2014 10:25	45	30) 25	28.2	2 51	57.1	5338.2	610.69	16132.42
	2/12	/2014 11:5	2 2/12/2014 11:52	44	30) 24	28.2	2 51	57.1	4965.0	568.00	16700.42
	2/12	/2014 11:5	3 2/12/2014 11:53			17			Valve shut	57.1	6.53	16706.95
	: - 7F 0F :		:									

Total CO₂ Mass (lbs):

11/15/2013 854 11/15/2015 855 11/15/2015 856 11/15/2015 857 11/15/2015 857 11/15/2015 859 11/15/2015 968 979 11/15/2015 968 979 11/15/2015 968 979 11/15/2015 969 11/15/2015 969 11/15/2015 969 11/15/2015 969 11/15/2015 969 11/15/2015 969 11/15/2015 969 11/15/2015 969 11/15/2015 969 11/15/2015 969 11/15/2015 969	Back to Master	Date T	ime	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
11/13/2013 8-94 11/13/2013 85-9 11/13/2013 85-9 22 33 30 <2 32 3 0.0 0.0 0.0 0.0 0.0									-				
1111/19/2013 859 1111/19/2013 159 28 28 245 3.5 3.66 5.7 114 3 1.5 1.5						2 3	3 30) <	2 32.3	0.0	0.0	0.00	0.00
11/14/2013 9.03 11/14/2013 633 34 32.5 28.5 3.5 3.68 13.8 44.6 5.10 7.5		11/13/2013							34.6		14.3	3 1.63	1.63
11/14/2013 906		11/13/2013	9:00	11/13/2013 9:00	34	1 3	4 30)	36.8	13.9	9.8	3 1.12	2.75
11/15/2013 9-07		11/13/2013	9:03	11/13/2013 9:03	34	1 32.	5 28.5	9.2	36.8	15.8	44.6	5.10	7.86
11/13/2013 9.36 11/13/2013 9.36 40 35 31 15 10 27 77 79.9 8.88 193.55 11/13/2013 1013 11/13/2013 1018 44 36 31 18 20 22 31 30 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 34 30 30		11/13/2013	9:06	11/13/2013 9:06	37	7 3	4 30	11.7	35.2	20.5	54.4	4 6.23	14.09
11/13/7013 1018 11/13/7013 40 34 30 16 20.6 28.8 108.9 118.02 222.17 11/13/7013 1018 11/13/7013 1018 11/13/7013 104.5 44 36 31.5 18.25 17.7 31.0 101.3 17.73 238.70 11/13/7013 12.26 11/13/7013 12.26 11/13/7013 12.26 11/13/7013 12.28 11/13/7013 12.28 11/13/7013 12.28 11/13/7013 12.28 11/13/7013 12.28 11/13/7013 12.28 11/13/7013 12.28 11/13/7013 12.28 11/13/7013 12.28 11/13/7013 12.29		11/13/2013			42	1 3	6 31.5	13.7	27.9		22.6	5 2.58	16.67
11/13/2013 1018 11/13/20131018 44 36 315 31.5 31.5 19.7 33.0 15.3 17.3 239.70		11/13/2013	9:36	11/13/2013 9:36	40	3.	5 31	15.	5 19.7	27.7	759.5	86.88	103.55
11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 12.00 11/13/2013 13.00 13/13/2013 13.00 13/13/2013 13.00 13/13/2013 13.00 13/13/2013 13.00 13/13/2013 13		11/13/2013	10:13	11/13/2013 10:13	40) 3	4 30) 1	5 20.6	28.3	1036.9	118.62	222.17
11/13/2013 12.90		11/13/2013	10:18	11/13/2013 10:18	44	1 3	6 31.5	18.2	5 19.7	33.0	153.3	3 17.53	239.70
11/13/2013 12-24		11/13/2013	10:45	11/13/2013 10:45	44	1 3	6 31	18.7	5 17.4	34.0	904.2	2 103.44	343.15
11/13/2013 12-29		11/13/2013	12:20	11/13/2013 12:20	44	1 34.	5 30	19.7	5 17.2	35.3	3289.1	1 376.27	719.42
11/13/0013 13:00 11/13/1013 13:00		11/13/2013	12:24	11/13/2013 12:24	. 48	3	6 31	21.	5 21.7	38.8	148.1	16.94	736.36
11/13/0013 13:00 11/13/001315:00 25 21 Valve shut 294.8 33.7 998.54 11/13/0013 13:00 11/13/001315:02 24 25 21 2 998.54 12/10/0013 8:38 12/10/2013 8:38 52 33 36 <2 72.0 0.0 0.0 0.0 0.00 998.54 12/10/2013 8:38 52 33 33 24 <2 72.0 0.0 0.0 0.0 0.00 998.54 12/10/2013 8:38 52 33 33.2 <2 72.0 0.0 0.0 0.0 0.0 998.54 12/10/2013 9:27 12/10/2013 9:27 50 32 32 <2 72.0 0.0 0.0 0.0 0.0 998.54 12/10/2013 0.00 12/10/2013 9:27 50 32 32 <2 73.0 0.0 0.0 0.0 0.0 998.54 12/10/2013 10:30 12/10/2013 10:48 47.5 31.3 32 <2 75.0 0.0 0.0 0.0 0.0 998.54 12/10/2013 10:31 12/10/2013 10:48 47.5 31.3 31.6 <2 75.0 0.0 0.0 0.0 0.0 998.54 12/10/2013 11:41 47.5 32.5 32.4 5.5 75.0 11.2 0.0 0.0 0.0 998.54 12/10/2013 11:41 47.5 32.5 32.4 5.5 75.0 11.2 0.0 0.0 0.0 998.54 12/10/2013 11:41 12/10/2013 11:41 47.5 32.5 32.4 5.5 75.0 11.2 0.0 0.0 0.0 998.54 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 47.5 32.5 32.4 5.5 78.0 13.2 66.6 73.98 106.64 12/10/2013 12:37 12/10/2013 12:37 12/10/2013 12:37 12/10/2013 12:37 12/10/2013 12:37 12/10/2013 12:37 12/10/2013 12:37 12/10/2013 12:37 12/10/2013 12:38 12/10/2013 12:38 12/10/2013 12:38 12/10/2013 12:38 12/10/2013 12:38 12/10/2013 12:38 12/10/2013 12:38 12/10/2013 12:38 12/10/2013 12:39 12/10/2013 12		11/13/2013	12:29	11/13/2013 12:29	51	L 37	5 32.5	5 22.7	5 15.9	41.9	201.8	3 23.08	759.45
11/13/2013 13/02 11/13/2013 12/02 24 25 21 988.55 12/13/2013 837 12/13/2013 838 12/10/2013 839 12/10/2013 849 12		11/13/2013	12:53	11/13/2013 12:53	52	2 3	8 33	3 2	3 26.2	42.1	1008.5	5 115.37	874.81
1710/2013 8:37 1211/201318:37 52 36 36 <2 72.0 0.0 0.0 0.0 0.00 0.00		11/13/2013	13:00	11/13/2013 13:00)	2	5 2 1	L		Valve shu	ıt 294.8	33.72	908.54
1/10/2013 8.38 11/10/2018 8.89 52 33 36 <2 72.0 0.0 0.0 0.0 0.00 908.54 1/10/2013 8.20 11/10/2018 8.20 52 33 32.4 <2 72.0 0.0 0.0 0.0 0.0 0.0 908.54 1/10/2013 10.20 11/10/2013 10.00 50 31 32 <2 73.0 0.0 0.0 0.0 0.0 908.54 1/10/2013 10.51 11/10/2013 10.51 47.5 32.5 32.4 5.5 75.0 0.0 0.0 0.0 0.0 908.54 1/10/2013 10.51 11/10/2013 10.51 47.5 32.5 32.4 5.5 75.0 0.0 0.0 0.0 0.0 908.54 1/10/2013 11.41 11/10/2013 11.51 47.5 32.5 32.4 5.5 75.0 11.2 0.0 0.0 908.54 1/10/2013 11.41 11/10/2013 11.34 45 32.5 32.4 5.5 75.0 11.2 0.0 0.0 1/10/2013 12.34 11/10/2013 12.34 51 32.5 32.4 5.5 78.0 13.2 646.6 73.38 108.63 1/10/2013 12.34 11/10/2013 12.34 51 32.5 32.4 5.5 78.0 13.2 646.6 73.38 108.63 1/10/2013 12.35 12/10/2013 12.37 21/10/2013 12.37 21/10/2013 12.38 21/10/2013 12.38 21/10/2013 12.38 21/10/2013 11.33 28 33.2 14 72 27.1 21/10/2013 1/10/2013 12.35 12/11/2013 11.51 21/11		11/13/2013	13:02	11/13/2013 13:02	24	1 2	5 2 1	L					908.54
12/10/2013 8:50 12/10/2018 8:50 52 33 32.4 <2 72.0 0.0 0.0 0.0 0.00 908.54 12/10/2013 10:00 12/10/2013 10:00 50 31 32 <2 73.0 0.0 0.0 0.0 0.0 908.54 12/10/2013 10:05 12/10/2013 10:08 47.5 31.5 32.5 32.4 6.7 75.0 0.0 0.0 0.0 908.54 12/10/2013 10:15 12/10/2013 10:15 47.5 32.5 32.4 6.5 75.0 0.0 0.0 0.0 908.54 12/10/2013 11:41 12/10/2013 10:15 47.5 32.5 32.4 6.5 76.0 11.2 0.0 0.0 0.0 12/10/2013 11:41 12/10/2013 11:34 51 32.5 32.4 6.5 78.0 13.2 5.5 5.6 6.3 97.2 12/10/2013 12:34 12/10/2013 12:34 51 32.5 32.4 6.5 78.0 13.2 5.5 5.6 6.5 78.0 13.2 12/10/2013 12:37 12/10/2013 12:38 2.8 2.8 2.5 2.1 4.5 7.5 2.1 2.1 2.1 2.1 2.1 2.1 12/10/2013 12:38 12/10/2013 12:38 2.8 32.2 14 72 7.1 1.0 105.05 12/11/2013 11:41 12/11/2013 11:51 2.8 2.9 2.1 6.1 7.2 31.2 2.3 2.2 2.6 7.0 7.0 2.0 12/11/2013 12:56 12/11/2013 12:98 2.8 2.5 1.9 7.2 3.6 2.2 2.2 2.2 2.0 0.0 9.8 3.4 3	SW-23 Event 2	12/10/2013	8:37	12/10/2013 8:37	52	2 3	6 36	5 <	2 72.0	0.0			908.54
12/10/0013 10:00 12/10/2013 10:00 12/10/2013 10:00 12/10/2013 10:00 12/10/2013 10:01 12/10/2013 10:48 12/10/2013 10:51 12/10/2013 10:51 12/10/2013 10:51 12/10/2013 10:51 12/10/2013 10:51 12/10/2013 10:51 12/10/2013 10:51 12/10/2013 10:51 12/10/2013 10:51 12/10/2013 10:51 12/10/2013 10:51 12/10/2013 10:51 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 12:34 12/10/2013 12:34 12/10/2013 12:34 12/10/2013 12:35 12/10/2013 12:35 12/10/2013 12:35 12/10/2013 12:38 12/10/2013 13:00 12/10/2		12/10/2013	8:38	12/10/2013 8:38	52	2 3	3 36	5 <	2 72.0	0.0	0.0	0.00	908.54
1/10/0013 10-00 12/10/0013 10-00 12/10/0013 10-00 12/10/0013 10-00 12/10/0013 10-01 12/10/0013 10-01 12/10/0013 10-01 12/10/0013 10-01 12/10/0013 10-01 12/10/0013 10-01 12/10/0013 10-01 12/10/0013 10-01 12/10/0013 10-01 12/10/0013 10-01 12/10/0013 12-01 12/10/00		12/10/2013	8:50	12/10/2013 8:50	52	2 3	3 32.4	۱ <	2 72.0	0.0	0.0	0.00	908.54
12/10/2013 10:48 12/10/2013 10:51 12/10/2013 10:51 12/10/2013 10:51 12/10/2013 10:51 12/10/2013 10:51 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:37 12/10/2013 11:37 12/10/2013 11:37 12/10/2013 11:38 12/10/2013 11:38 12/10/2013 11:38 12/10/2013 11:38 12/10/2013 11:38 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:41 12/10/2013 11:51 12/10/2		12/10/2013	9:27	12/10/2013 9:27	50	3	2 32	2 <	2 72.0	0.0	0.0	0.00	908.54
1/2/10/2013 10:51 12/10/2013 11:41 12/10/2013 11:41 45 32.5 32.4 6.5 75.0 11:2 0.0 0.00 908.54		12/10/2013	10:00	12/10/2013 10:00	50) 3	1 32	2 <	73.0	0.0	0.0	0.00	908.54
12/10/2013 11-41 12/10/2013 12-34 25 32-5		12/10/2013	10:48	12/10/2013 10:48	47.5	3	1 31.6	5 <	2 75.0	0.0	0.0	0.00	908.54
12/10/2013 12:34 12/10/2013 12:37 12/10/2013 12:37 12/10/2013 12:37 12/10/2013 12:38 12/10/2013 12:49 12/10/201		12/10/2013	10:51	12/10/2013 10:51	47.5	32.	5 32.4	5.	75.0	11.2	0.0	0.00	908.54
12/10/2013 12:37 12/10/2013 12:38 12/10/2013 12:38 12/10/2013 12:38 12/10/2013 12:38 12/10/2013 12:38 12/10/2013 11:43 12/10/2013 11:43 12/10/2013 11:51 12/10/2013 11:51 12/10/2013 11:51 12/10/2013 11:51 12/10/2013 11:51 12/10/2013 11:51 12/10/2013 11:51 12/10/2013 12:58 12/10/2013 12:58 12/10/2013 12:58 12/10/2013 12:58 12/10/2013 12:58 12/10/2013 12:58 12/10/2013 12:58 12/10/2013 12:58 12/10/2013 12:40 12/10/2		12/10/2013	11:41	12/10/2013 11:41	. 45	32.	5 32.4	1	5 74.0	12.2	558.7	7 63.91	972.45
12/19/2013 12:38 12/19/2013 12:38 12/19/2013 12:38 24 72 27.1 1050.95		12/10/2013	12:34	12/10/2013 12:34	51	1 32.	5 32	2 6.	78.0	13.2	646.6	73.98	1046.43
39-23 Event 3 12/12/2013 11-43 12/12/2013 11-43 228 33.2 14 72 27.1 1050.95		12/10/2013	12:37	12/10/2013 12:37	,					Valve shu	ıt 39.5	5 4.52	1050.95
12/12/2013		12/10/2013	12:38	12/10/2013 12:38			24	1					1050.95
12/12/2013 12:58 12/12/2013 12:58 12/12/2013 13:00 12/12/2013 13:00 32 28.6 23 72 46.6 83.4 9.54 1347.65 12/12/2013 15:43 12/12/2013 15:43 45 32 28 24 70 48.7 777.01 88.90 2236.5 12/12/2013 15:44 12/12/2013 15:44 45 34 29 26 70 53.9 51.3 5.87 2242.42 12/12/2013 16:40 12/12/2013 16:40 45 34 29 26 66 55.2 3055.0 349.49 2591.91 12/12/2013 17:00 12/12/2013 17:00 45 34 29 27 64 56.3 1115.1 127.57 2719.48 12/12/2013 17:01 12/12/2013 17:01 12/12/2013 17:01 12/12/2013 17:01 12/12/2013 17:01 12/12/2013 17:02 18 18 18 SW-23 Event 4 12/19/2013 9:20 12/19/2013 9:20 43 30 26 23 61 46.1 120.3 137.66 2863.59 12/19/2013 9:21 12/19/2013 9:21 43 32 27.5 24 61 49.2 47.6 5.45 12/19/2013 11:10 12/19/2013 9:21 40 31 26 25 66 50.4 253.90 290.46 3159.49 12/19/2013 12:39 12/19/2013 11:10 40 31 26 25 70 50.2 2917.7 333.78 3493.27 12/19/2013 12:39 12/19/2013 12:41 12/19/2013 12:42 12/19/2013 12:41 12/19/2013 12:41 12/19/2013 12:41 12/19/2013 12:41 12/19/2013 12:42	SW-23 Event 3	12/12/2013	11:43	12/12/2013 11:43		2	8 33.2	2 1	1 72	27.1			1050.95
12/12/2013 13:00 12/12/2013 13:00 32 28.6 23 72 46.6 83.4 9.54 1347.65 12/12/2013 15:43 12/12/2013 15:43 45 32 28 24 70 48.7 777.01 888.90 2236.55 12/12/2013 15:44 12/12/2013 15:44 45 34 29 26.5 66 55.2 3055.0 349.49 2591.91 12/12/2013 17:00 12/12/2013 17:00 45 34 29 26.5 66 55.2 3055.0 349.49 2591.91 12/12/2013 17:00 12/12/2013 17:00 45 34 29 27 64 56.3 1115.1 127.57 2719.48 12/12/2013 17:01 12/12/2013 17:02 12/12/2013 17:03 12/12/		12/12/2013	11:51	12/12/2013 11:51		2	8 29.2	2 16.	1 72	31.2	233.2	2 26.67	1077.62
12/12/2013 15:43 12/12/2013 15:44 12/12/2013 15:44 45 32 28 24 70 48.7 7770.1 88.890 2236.55 12/12/2013 15:44 12/12/2013 15:44 45 34 29 26.5 70 53.9 51.3 51.3 5.87 2242.42 12/12/2013 16:40 12/12/2013 16:40 45 34 29 26.5 66 55.2 3055.0 349.49 2591.91 12/12/2013 17:00 12/12/2013 17:00 45 34 29 27 64 56.3 1115.1 127.57 2719.48 12/12/2013 17:01 12/12/2013 17:02 12/12/2013 17:02 12/12/2013 17:02 12/12/2013 17:02 12/12/2013 17:02 12/12/2013 17:02 12/12/2013 17:02 12/12/2013 17:02 12/12/2013 17:02 12/12/2013 17:02 12/12/2013 17:02 12/12/2013 17:02 12/12/2013 17:02 12/12/2013 17:02 12/12/2013 17:02 12/12/2013 17:02 12/12/2013 17:02 12/12/2013 12/12/2013 12/12/2013 12/12/2013 12/12/2013 12/12/12/2013 12/12/2013		12/12/2013	12:58	12/12/2013 12:58		2	8 25.2	2 1	72	36.8	2277.0	260.49	1338.11
12/12/2013 15:44 12/12/2013 15:44 45 34 29 26 70 53.9 51.3 5.87 2242.42 12/12/2013 16:40 12/12/2013 16:40 45 34 29 26.5 66 55.2 305.0 349.49 2591.91 12/12/2013 17:00 12/12/2013 17:00 45 34 29 26.5 66 55.2 305.0 349.49 2591.91 12/12/2013 17:00 12/12/2013 17:00 51.12/12/201		12/12/2013	13:00	12/12/2013 13:00)	3	2 28.6	5 2	3 72	46.6	83.4	9.54	1347.65
12/12/2013 16:40 12/12/2013 16:40 45 34 29 26.5 66 55.2 3055.0 349.49 2591.91 12/12/2013 17:00 12/12/2013 17:00 45 34 29 27 64 56.3 1115.1 12/12/2013 17:01 12/12/2013 17:02 12/12/2013 17:02 18 Valve shut 56.3 6.44 2725.93 12/12/2013 17:02 12/12/2013 17:02 18 Valve shut 12/19/2013 17:02 12/19/2013 18:44 48 33 34 10 58 20.8 2725.93 12/19/2013 9:20 12/19/2013 9:20 43 30 26 23 61 46.1 1203.3 137.66 2863.59 12/19/2013 9:21 12/19/2013 9:21 43 32 27.5 24 61 49.2 47.6 5.45 2869.03 12/19/2013 10:12 12/19/2013 10:12 40 31 26 25 66 50.4 2539.0 290.46 3159.49 12/19/2013 11:30 12/19/2013 11:10 40 31 26 25 70 50.2 291.7 333.78 3493.27 12/19/2013 12:31 12/19/2013 12:41 12/19/2013 12:41 Valve shut 104.0 11.90 4025.54 12/19/2013 12:41 12/19/2013 12:42 17 40 31 26 25 70 50.2 291.7 333.78 3493.27 12/19/2013 12:41 12/19/2013 12:41 40 31 26 25 70 50.2 291.7 333.78 3493.27 12/19/2013 12:41 12/19/2013 12:41 40 31 26 25 70 50.2 291.7 333.78 3493.27 12/19/2013 12:41 12/19/2013 12:41 40 31 26 25 70 50.2 291.7 333.78 3493.27 12/19/2013 12:41 12/19/2013 12:42 47 47 47 47 47 47 47		12/12/2013	15:43	12/12/2013 15:43	45	3	2 28	3 2	1 70	48.7	7770.1	L 888.90	2236.55
12/12/2013 17:00 12/12/2013 17:00 45 34 29 27 64 56.3 1115.1 127.57 2719.48 12/12/2013 17:01 12/12/2013 17:01 12/12/2013 17:02 18 Valve shut 56.3 6.44 2725.93 2725.		12/12/2013	15:44	12/12/2013 15:44	45	5 3	4 29) 2	5 70	53.9	51.3	5.87	2242.42
12/12/2013 17:01 12/12/2013 17:02 12/12/2013 17:02 18 Valve shut 56.3 6.44 2725.93		12/12/2013	16:40	12/12/2013 16:40	45	5 3	4 29	26.	5 66	55.2	3055.0	349.49	2591.91
12/12/2013 17:02 12/12/2013 17:02 18 2725.93		12/12/2013	17:00	12/12/2013 17:00	45	5 3	4 29) 2	7 64	56.3	1115.1	l 127.57	2719.48
SW-23 Event 4 12/19/2013 8:44 12/19/2013 9:20 43 30 26 23 61 46.1 12/33 137.66 2863.59 12/19/2013 9:20 12/19/2013 9:21 43 30 26 23 61 46.1 1203.3 137.66 2863.59 12/19/2013 9:21 12/19/2013 9:21 43 32 27.5 24 61 49.2 47.6 5.45 2869.03 12/19/2013 10:12 12/19/2013 0:12 40 31 26 25 66 50.4 2539.0 290.46 3159.49 12/19/2013 11:10 12/19/2013 11:10 40 31 26 25 70 50.2 2917.7 333.78 3493.27 12/19/2013 12:41 12/19/2013 12:39 45 31 26 26 74 52.0 4548.7 520.37 401.64 12/19/2013 12:41 12/19/2013 12:41 12/19/2013 12:42 17 Valve shut 104.0 11.90		12/12/2013	17:01	12/12/2013 17:01						Valve shu	ıt 56.3	6.44	2725.93
12/19/2013 9:20 12/19/2013 9:21 43 30 26 23 61 46.1 1203.3 137.66 2863.59 12/19/2013 9:21 12/19/2013 9:21 43 32 27.5 24 61 49.2 47.6 5.45 2869.03 12/19/2013 10:12 12/19/2013 10:12 40 31 26 25 66 50.4 2539.0 290.46 3159.49 12/19/2013 11:10 12/19/2013 11:10 40 31 26 25 70 50.2 2917.7 333.78 3493.27 12/19/2013 12:39 12/19/2013 11:39 45 31 26 26 74 52.0 4548.7 520.37 4013.64 12/19/2013 12:41 12/19/2013 12:41 Valve shut 104.0 11.90 4025.54 12/19/2013 12:42 12/19/2013 12:42 17 Valve shut 104.0 11.90 4025.54 12/19/2013 12:42 12/19/2013 12:42 17 40 14.3 28.7 3.28 4025.54 12/19/2014 9:46 1/7/2014 9:46 54 30 33 7 40 14.3 28.7 3.28 4028.82 12/19/2014 10:34 1/7/2014 10:34 50 28 27 17 42 33.9 1158.0 132.48 4161.29 12/19/2014 10:36 1/7/2014 10:36 49 33.5 30.5 23 42 48.8 82.7 9.47 4170.76 12/19/2014 11:39 1/7/2014 11:39 46 33 30 24 44 50.6 3130.4 358.12 4528.88 12/19/2014 13:30 1/7/2014 11:39 46 33 30 24 44 50.6 3130.4 358.12 4528.88 12/19/2014 13:30 1/7/2014 11:39 46 33 30 24 44 50.6 3130.4 358.12 4528.88 12/19/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 54.3 581.6 665.53 5194.41 12/19/2013 12/19/2013 12/19/2013 12/19/2013 12/19/2013 12/19/2014 13:30 47 32.5 28.5 26 48 54.3 54.3 581.6 665.53 5194.41 12/19/2013 12/19/2013 12/19/20		12/12/2013	17:02	12/12/2013 17:02			18	3					2725.93
12/19/2013 9:21 12/19/2013 9:21 43 32 27.5 24 61 49.2 47.6 5.45 2869.03 12/19/2013 10:12 12/19/2013 10:12 40 31 26 25 66 50.4 2539.0 290.46 3159.49 12/19/2013 11:10 12/19/2013 11:10 40 31 26 25 70 50.2 2917.7 333.78 3493.27 12/19/2013 12:39 12/19/2013 12:39 45 31 26 26 74 52.0 4548.7 520.37 4013.64 12/19/2013 12:41 12/19/2013 12:41 12/19/2013 12:42 12/19/2013 12:42 12/19/2013 12:42 12/19/2013 12:42 12/19/2013 12:42 17 SW-23 Event 5 1/7/2014 9:44 1/7/2014 9:46 54 30 33 7 40 14.3 28.7 3.28 4028.82 1/7/2014 10:34 1/7/2014 10:34 50 28 27 17 42 33.9 1158.0 132.48 4161.29 1/7/2014 10:36 1/7/2014 10:36 49 33.5 30.5 23 42 48.8 82.7 9.47 4170.76 1/7/2014 11:39 1/7/2014 11:39 46 33 30 24 44 50.6 3130.4 358.12 4528.88 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 5817.6 665.53 5194.41 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 5817.6 665.53 5194.41 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 5817.6 665.53 5194.41 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 5817.6 665.53 5194.41 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 5817.6 665.53 5194.41 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 5817.6 665.53 5194.41 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 5817.6 665.53 5194.41 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 5817.6 665.53 5194.41 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 5817.6 665.53 5194.41 1/7/2014 13:40 12/19/2013 12:41 12/19/2013 12:41 12/19/2013 12:41 12/19/2013 12:41 12/19/2013 12:41 12/19/2013 12:41 12/19/2013 12:41 12/19/2013 12:41 12/19/20	SW-23 Event 4	12/19/2013	8:44	12/19/2013 8:44	48	3	3 34	1	58	20.8			2725.93
12/19/2013 10:12 12/19/2013 10:12 40 31 26 25 66 50.4 2539.0 290.46 3159.49 12/19/2013 11:10 12/19/2013 11:10 40 31 26 25 70 50.2 2917.7 333.78 3493.27 12/19/2013 12:39 12/19/2013 12:39 45 31 26 26 74 52.0 4548.7 520.37 4013.64 12/19/2013 12:41 12/19/2013 12:41 52/19/2013 12:42 12/19/2013 12:42 12/19/2013 12:42 12/19/2013 12:42 12/19/2013 12:42 12/19/2013 12:42 12/19/2013 12:42 517 Valve shut 104.0 11.90 4025.54 SW-23 Event 5 1/7/2014 9:46 1/7/2014 9:46 54 30 33 7 40 14.3 28.7 3.28 4028.82 1/7/2014 10:34 1/7/2014 10:34 50 28 27 17 42 33.9 1158.0 132.48 4161.29 1/7/2014 10:36 1/7/2014 10:36 49 33.5 30.5 23 42 48.8 82.7 9.47 4170.76 1/7/2014 11:39 1/7/2014 11:39 46 33 30 24 44 50.6 3130.4 358.12 4528.88 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 581.6 665.53 5194.41		12/19/2013	9:20	12/19/2013 9:20	43	3	0 26	5 2	3 61	46.1	1203.3	3 137.66	2863.59
12/19/2013 11:10 12/19/2013 11:10 40 31 26 25 70 50.2 2917.7 333.78 3493.27 12/19/2013 12:39 12/19/2013 12:39 45 31 26 26 74 52.0 4548.7 520.37 4013.64 12/19/2013 12:41 12/19/2013 12:41 12/19/2013 12:42 12/19/2013 12:42 12/19/2013 12:42 12/19/2013 12:42 12/19/2013 12:42 12/19/2013 12:42 12/19/2014 12:42 12/19/2014 12:42 12/19/2014 12:42 12/19/2014 12:42 12/19/2014 12:42 12/19/2013 12:42 12/19/2014 12:30 12/19/2014 12:42 12/19/2014 12:42 12/19/2014 12:42 12/19/2014 12:30 12/19/2014 12:42 12/19/2014 12:30 12/19/2		12/19/2013	9:21	12/19/2013 9:21	43	3	2 27.5	5 2	1 61	49.2	47.6	5.45	2869.03
12/19/2013 12:39 12/19/2013 12:39 45 31 26 26 74 52.0 4548.7 520.37 4013.64 12/19/2013 12:41 12/19/2013 12:41 12/19/2013 12:42 12/19/2013 12:42 12/19/2013 12:42 12/19/2013 12:42 12/19/2013 12:42 12/19/2014 9:44 1/7/2014 9:46 54 30 33 7 40 14.3 28.7 3.28 4028.82 1/7/2014 10:34 1/7/2014 10:34 50 28 27 17 42 33.9 1158.0 132.48 4161.29 1/7/2014 10:36 1/7/2014 10:36 49 33.5 30.5 23 42 48.8 82.7 9.47 4170.76 1/7/2014 11:39 1/7/2014 11:39 46 33 30 24 44 50.6 3130.4 358.12 4528.88 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 581.6 665.53 5194.41		12/19/2013	10:12	12/19/2013 10:12	40	3	1 26	5 2	5 66	50.4	2539.0	290.46	3159.49
12/19/2013 12:41 12/19/2013 12:42 12/19/2013 12:42 12/19/2013 12:42 17 4025.54		12/19/2013	11:10	12/19/2013 11:10	40	3	1 26	5 2	5 70	50.2	2917.7	7 333.78	3493.27
12/19/2013 12:42 12/19/2013 12:42 17 SW-23 Event 5 1/7/2014 9:44 1/7/2014 9:46 54 30 33 7 40 14.3 28.7 3.28 4028.82 1/7/2014 10:34 1/7/2014 10:34 50 28 27 17 42 33.9 1158.0 132.48 4161.29 1/7/2014 10:36 1/7/2014 10:36 49 33.5 30.5 23 42 48.8 82.7 9.47 4170.76 1/7/2014 11:39 1/7/2014 11:39 46 33 30 24 44 50.6 3130.4 358.12 4528.88 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 5817.6 665.53 5194.41		12/19/2013	12:39	12/19/2013 12:39	45	3	1 26	5 2	5 74	52.0	4548.7	7 520.37	4013.64
SW-23 Event 5 1/7/2014 9:44 1/7/2014 9:44 40 4025.54 1/7/2014 9:46 1/7/2014 9:46 54 30 33 7 40 14.3 28.7 3.28 4028.82 1/7/2014 10:34 1/7/2014 10:34 50 28 27 17 42 33.9 1158.0 132.48 4161.29 1/7/2014 10:36 1/7/2014 10:36 49 33.5 30.5 23 42 48.8 82.7 9.47 4170.76 1/7/2014 11:39 1/7/2014 11:39 46 33 30 24 44 50.6 3130.4 358.12 4528.88 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 5817.6 665.53 5194.41		12/19/2013	12:41	12/19/2013 12:41						Valve shu	ıt 104.0	11.90	4025.54
1/7/2014 9:46 1/7/2014 9:46 54 30 33 7 40 14.3 28.7 3.28 4028.82 1/7/2014 10:34 1/7/2014 10:34 50 28 27 17 42 33.9 1158.0 132.48 4161.29 1/7/2014 10:36 1/7/2014 10:36 49 33.5 30.5 23 42 48.8 82.7 9.47 4170.76 1/7/2014 11:39 1/7/2014 11:39 46 33 30 24 44 50.6 3130.4 358.12 4528.88 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 5817.6 665.53 5194.41		12/19/2013	12:42	12/19/2013 12:42			17	7					4025.54
1/7/2014 10:34 1/7/2014 10:34 50 28 27 17 42 33.9 1158.0 132.48 4161.29 1/7/2014 10:36 1/7/2014 10:36 49 33.5 30.5 23 42 48.8 82.7 9.47 4170.76 1/7/2014 11:39 1/7/2014 11:39 46 33 30 24 44 50.6 3130.4 358.12 4528.88 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 5817.6 665.53 5194.41	SW-23 Event 5	1/7/2014	9:44	1/7/2014 9:44					40				4025.54
1/7/2014 10:36 1/7/2014 10:36 49 33.5 30.5 23 42 48.8 82.7 9.47 4170.76 1/7/2014 11:39 1/7/2014 11:39 46 33 30 24 44 50.6 3130.4 358.12 4528.88 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 5817.6 665.53 5194.41		1/7/2014	9:46	1/7/2014 9:46	54	1 3	0 33	3	7 40	14.3	28.7	7 3.28	4028.82
1/7/2014 11:39 1/7/2014 11:39 46 33 30 24 44 50.6 3130.4 358.12 4528.88 1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 5817.6 665.53 5194.41		1/7/2014	10:34	1/7/2014 10:34	. 50) 2	8 27	7 1	7 42	33.9	1158.0	132.48	4161.29
1/7/2014 13:30 1/7/2014 13:30 47 32.5 28.5 26 48 54.3 5817.6 665.53 5194.41		1/7/2014	10:36	1/7/2014 10:36	49	33.	5 30.5	5 2	3 42	48.8	82.7	7 9.47	4170.76
		1/7/2014	11:39	1/7/2014 11:39	46	5 3	3 30) 2	1 44	50.6	3130.4	358.12	4528.88
1/7/2014 13:31 1/7/2014 13:31 Valve shut 54.3 6.21 5200.62		1/7/2014	13:30	1/7/2014 13:30	47	7 32.	5 28.5	5 2	5 48	54.3	5817.6	665.53	5194.41
		1/7/2014	13:31	1/7/2014 13:31						Valve shu	ıt 54.3	6.21	5200.62

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
	1/7/201		<u> </u>			20						5200.62
SW-23 Event 6	1/9/201									0.0		
	1/9/201		• •							136.4		
	1/9/201									3075.1		
	1/9/201									192.4		
	1/9/201									216.3		
	1/9/201									1392.2		
	1/9/201				. 37			60		5047.6	577.45	
0144.00.5	1/9/201					25			Valve shut			6351.49
SW-23 Event 7	1/23/201									0.0		
	1/23/201							50		7.3		
	1/23/201									1904.0		
	1/23/201		• •							33.6		
	1/23/201									3361.9		
	1/23/201									3849.4		
	1/23/201		· ·		32			56		1529.5		
	1/23/201					21			Valve shut	360.7	41.26	
SW-23 Event 8	1/24/201											7615.20
	1/24/201									11.3		
	1/24/201									83.3		
	1/24/201									112.2		
	1/24/201									505.8		
	1/24/201									1158.2		
	1/24/201									1083.2		
	1/24/201									92.4		
	1/24/201									2332.0		
	1/24/201		• •							3117.3		
	1/24/201				33	3 29			51.5	3159.4		
	1/24/201				33			54		669.6		
	1/24/201					21			Valve shut	154.5	17.68	
SW-23 Event 9	1/29/201											9042.83
	1/29/201		· ·							80.5		
	1/29/201									1283.7		
	1/29/201		· ·							1229.4		
	1/29/201									1364.6		
	1/29/201				29			40		2011.5		
	1/29/201					20			Valve shut			
<u>SW-23 Event 10</u>	2/3/201									0.0		
	2/3/201							00		14.4		
	2/3/201				33					18.5		
	2/3/201									51.1		
	2/3/201									65.1		
	2/3/201									37.8		
	2/3/201				32.5					838.9		
	2/3/201									2592.1		
	2/3/201									4293.3		
	2/3/201									93.7		
	2/3/201				34					4207.1		
	2/3/201				34	27				3100.5	354.70	
	2/3/201				34	26				3451.5		
	2/3/201				34	26				4664.6		
	2/4/201	.4 9:30	0 2/4/2014 9:30	48	34	24	28.7	61	60.1	56914.4	6511.01	18931.47
	2/4/201	.4 9:3	3 2/4/2014 9:33			19			Valve shut	180.2	20.61	18952.09

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-23 Event 11	2/5/2014	8:12	2/5/2014 8:12	54	4 32.5	35	6.5	3	64 13.3			18952.09
	2/5/2014	8:37	2/5/2014 8:37	48	8 29	30	18	3	64 35.5	611.2	69.92	19022.00
	2/5/2014	9:23	2/5/2014 9:23	4.	5 29	29	19)	66 37.4	1678.8	192.06	19214.06
	2/5/2014	9:25	2/5/2014 9:25	4.	5 32	29	23	3	66 46.9	84.3	9.65	19223.71
	2/5/2014	10:23	2/5/2014 10:23	4.	4 32	29	23.2		68 47.2	2728.4	312.12	19535.83
	2/5/2014	11:24	2/5/2014 11:24	4.	4 32	28.8	23.2		70 47.1	2876.3	329.04	19864.88
	2/5/2014	12:36	2/5/2014 12:36	4	4 32	28.8	22.2		72 45.0	3315.3	379.28	3 20244.15
	2/5/2014	13:30	2/5/2014 13:30	4:	3 32	28.2	23	3	76 46.4	2468.2	282.36	20526.51
	2/5/2014	14:44	2/5/2014 14:44	4.	5 32	27.8	24	ļ ·	76 48.4	3510.4	401.59	20928.10
	2/5/2014	15:38	2/5/2014 15:38	4.	5 32	27.6	24.3	•	71 49.3	2638.9	301.89	21229.99
	2/5/2014	17:10	2/5/2014 17:10	48	8 32	27.6	24	1	72 48.6	4504.6	515.32	2 21745.32
	2/5/2014	21:19	2/5/2014 21:19	48	8 32	28	25	5	62 51.2	12424.8	1421.39	23166.71
	2/6/2014	7:58	2/6/2014 7:58	48	8 31.5	28.2	26	5	56 53.2	33355.6	3815.88	3 26982.59
	2/6/2014	8:00	2/6/2014 8:00			22				Valve shut 106.5	12.18	3 26994.77
SW-23 Event 12	2/7/2014	8:15	2/7/2014 8:15	5	3 31	. 33.4	<2		0.0			26994.77
	2/7/2014	8:48	2/7/2014 8:48	4	6 2 8	27.6	14.5	;	56 28.5	470.7	53.84	27048.62
	2/7/2014	8:51	2/7/2014 8:51	4	4 31	. 29.2	20.5	,	56 41.7	105.4	12.06	27060.67
	2/7/2014	9:38	2/7/2014 9:38	4:	3 30.5	28.6	22.5	;	56 45.6	2051.7	234.71	27295.38
	2/7/2014	10:00	2/7/2014 10:00	4:	3 30.5	28.2	24		57 48.5	1035.2	118.43	3 27413.81
	2/7/2014	10:01	2/7/2014 10:01			22				Valve shut 48.5	5.55	5 27419.37

Total CO₂ Mass (lbs):

				P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO₂	Cumulative
Back to Master	Date T	ime	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	F	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-24 Event 1	11/22/2013	8:21	11/22/2013 8:21	. 50) 2	8			72	0.0			
	11/22/2013	8:23	11/22/2013 8:23	5.5	5 3	2 32		:2	72	0.0	0.0	0.00	0.00
	11/22/2013	8:47	11/22/2013 8:47	,	3:	1 31		:2	74	0.0	0.0	0.00	0.00
	11/22/2013	8:48	11/22/2013 8:48	3 54	4 3	4 34		2	78	4.1	2.1	0.24	0.24
	11/22/2013	9:56	11/22/2013 9:56	j	3.	5 34		2	78	4.2	281.3	32.19	32.42
	11/22/2013	9:57	11/22/2013 9:57	, 50	3	7 36.5		4	82	8.5	6.3	0.72	33.14
	11/22/2013	11:06	11/22/2013 11:06	j	38	36.5		4	80	8.6	586.7	67.12	100.26
	11/22/2013	12:01	11/22/2013 12:01	Ĺ	38	36.5	4	.5	84	9.6	498.8	57.06	157.32
	11/22/2013	13:17	11/22/2013 13:17	•	3	7 36.5)	5	84	10.5	765.0	87.51	244.83
	11/22/2013	14:13	11/22/2013 14:13	3	3	7 36.5	5	.5	80	11.6	621.4	71.09	315.92
	11/22/2013	15:27	11/22/2013 15:27	, 50	3	7 36	i	6	76	12.8	902.8	3 103.28	419.19
	11/22/2013	16:40	11/22/2013 16:40)	3	7 36	i	6	75	12.8	931.5	106.56	525.75
	11/22/2013	17:29	11/22/2013 17:29) 54	4 3	7 36	i	6	72	12.8	626.4	71.67	597.42
	11/22/2013	17:30	11/22/2013 17:30)						Valve shut	12.8	3 1.46	598.88
	11/22/2013	17:31	11/22/2013 17:31	L									598.88
SW-24 Event 2	12/6/2013	13:31	12/6/2013 13:31	. 50) 3:	3 33	<	:2	86	0.0			598.88
	12/6/2013	13:44	12/6/2013 13:44	49	9 3:	2 32.5	<	:2	88	0.0			598.88
	12/6/2013	14:45	12/6/2013 14:45	5 49	3:	2 32		:2	86	0.0			598.88
	12/6/2013	14:46			7 34			4	86	8.2	4.1	0.47	599.35
	12/6/2013	16:00						4	78	8.2	606.9		
	12/6/2013	16:30			5 34	4 34.5))	4	77	8.2	247.1	28.27	697.04
	12/6/2013	17:32	• •					.5	71	11.4	608.7		
	12/6/2013	17:34				28				Valve shut	22.8		
SW-24 Event 3	12/10/2013	13:22			1 3:			:2	82	0.0			769.29
	12/10/2013	13:41						:2	80	0.0			769.29
	12/10/2013	14:14	• •					:2	75	0.0			769.29
	12/10/2013	14:37	• •					:2	74	0.0			769.29
	12/10/2013	15:26	• •					2	76	0.0			769.29
	12/10/2013	15:52	· . · .					:2	76	0.0			769.29
	12/10/2013	16:30						2	72	0.0			769.29
	12/10/2013	17:13						2	68	0.0			769.29
	12/10/2013	22:36	• •					8	58	16.1	2596.3	3 297.01	
	12/11/2013	7:53	• •					.5	58	13.1 Valve shut	8114.9		
SW-24 Event 4	12/12/2013	15:40						:2	70	0.0	0111.5	, 320.31	1994.64
SVV Z I EVERTE I	12/12/2013	16:24							70	7.3	159.7	7 18.27	
	12/12/2013	17:29						.5	63	7.3	473.5		
	12/12/2013	22:16						5	58	10.3	2531.2		
	12/13/2013	9:44						.5	68	19.5	10273.5		
	12/13/2013	9:45						.3	68	28.0	23.8		
	12/13/2013	10:47						.2	70	24.4	1622.9		
	12/13/2013	12:40							70	25.4	2810.6		
	12/13/2013	13:47						.2	70	24.4	1666.5		
	12/13/2013	13:48						.6	70	32.5	28.4		
	12/13/2013	14:56							70	32.5	2208.9		
	12/13/2013	14:57	·		Э.	33.2	13	.5	70	Valve shut	32.5		
	12/13/2013	14:58								valve struct	32.3	3.72	4492.16
SW-24 Event 5	12/18/2013	12:34) 3:	2 33		:2	66	0.0	0.0	0.00	
SVV-24 EVEIIL S								^ <u>~</u>					
	12/18/2013	13:16						4	68 60	8.0	169.0		
	12/18/2013	13:17	• •					7	68	14.5	11.3		
	12/18/2013	14:37	• •					/ 7	69 60	14.5	1163.2		
	12/18/2013	16:10						,	68 64	14.4	1345.1		
	12/18/2013	17:06						.5	64	15.5	836.6		
	12/18/2013	17:50	12/18/2013 17:50) 48	3	3 34	-	8	58	16.6	706.2	2 80.79	4976.24

Back to Master	Date Tir	me Da	P at ate + Time (psig				nmeter ding (scfm)	(°F) Flow	v (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
	12/18/2013	17:51	12/18/2013 17:51						Valve shut	16.0	5 1.90	4978.1
	12/18/2013	17:52	12/18/2013 17:52			28						4978.1
SW-24 Event 6	1/8/2014	8:28	1/8/2014 8:28	51	33	35	<2	40	0.0			4978.1
	1/8/2014	8:29	1/8/2014 8:29	51	32	35	<2	40	0.0	0.0	0.00	4978.1
	1/8/2014	8:44	1/8/2014 8:44	51	32	34	<2	42	0.0	0.0	0.00	4978.1
	1/8/2014	9:13	1/8/2014 9:13	50	32	33	3.5	46	7.3	105.6	5 12.08	4990.2
	1/8/2014	9:58	1/8/2014 9:58	49	32	33	3.5	50	7.2	326.9	37.40	5027.6
	1/8/2014	11:01	1/8/2014 11:01	47	31	32.5	3.8	48	7.8	474.1	1 54.24	5081.8
	1/8/2014	11:02	1/8/2014 11:02	47	32	33.5	5	48	10.4	9.1	1.04	5082.89
	1/8/2014	12:24	1/8/2014 12:24	47	32	33.5	5	60	10.3	845.9	96.77	5179.6
	1/8/2014	12:35	1/8/2014 12:35	47	32	33.5	5	60	10.3	112.8	3 12.90	5192.50
	1/8/2014	12:36	1/8/2014 12:36						Valve shut	10.3	3 1.17	5193.7
	1/8/2014	13:24	1/8/2014 13:24	50	32	32.5	8	59	16.4 Restart	788.2	2 90.17	5283.9
	1/8/2014	13:55	1/8/2014 13:55	50	32	33	6	58	12.3	445.6		
	1/8/2014	15:03	1/8/2014 15:03	50	32.5	33	6	60	12.4	839.7		
	1/8/2014	16:25	1/8/2014 16:25	50	32	33	6	55	12.4	1014.2		
	1/8/2014	17:14	1/8/2014 17:14	54	32	33	6	53	12.4	606.5		
	1/8/2014	21:19	1/8/2014 21:19	53	33	32.5	7	50	14.7	3313.3		
	1/8/2014	21:21	1/8/2014 21:21	53	32	34	8.5	50	17.6	32.3		
	1/9/2014	7:14	1/9/2014 7:14	52	32	32	11.5	54	23.7	12254.6		
	1/9/2014	8:16	1/9/2014 8:16	52	32	32	11.5	55	23.7	1470.2		
	1/9/2014	8:17	1/9/2014 8:17						Valve shut	23.7		
	1/9/2014	8:18	1/9/2014 8:18			27						7571.9
SW-24 Event 7	1/10/2014	9:18	1/10/2014 9:18									7571.9
	1/10/2014	9:19	1/10/2014 9:19	50	33	29	6	67	12.4	12.4	1.41	
	1/10/2014	9:25	1/10/2014 9:25	49	36	34	16	67	34.0	139.0		
	1/10/2014	10:13	1/10/2014 10:13	45	35	33	18	68	37.8	1722.4		
	1/10/2014	11:52	1/10/2014 11:52	45	35	33	18	69	37.8	3739.9		
	1/10/2014	12:49	1/10/2014 12:49	44	35	33	17.5	68	36.7	2123.4		
	1/10/2014	14:18	1/10/2014 14:18	48	35	33	18	67	37.8	3318.8		
	1/10/2014	15:16	1/10/2014 15:16	47	35	33	18	67	37.8	2194.3		
	1/10/2014	16:23	1/10/2014 16:23	46	35	33	18	68	37.8	2533.6		
	1/10/2014	17:14	1/10/2014 17:14	45	35	33	18	66	37.9	1929.5		
	1/10/2014	17:42	1/10/2014 17:14	46	35	33	18	66	37.9	1060.4		
	1/10/2014	22:01	1/10/2014 17:42	45	35	33	16	64	33.7	9272.2		
	1/11/2014	8:21	1/11/2014 8:21	45	34.5	32.5	18	64	37.8	22158.9		
	1/11/2014	8:21	1/11/2014 8:21	43	34.3	32.3	10	04	37.8 Valve shut	37.8		
						20			valve Stiut	37.8	5 4.32	
	1/11/2014 , i.e. 75 °F, indicates that	8:23	1/11/2014 8:23			28				Total CO ₂ Mass (lbs)		13319.63 13319.63

Back to Master	Date Ti	ime	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flo	ow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂	Cumulative Mass (lb)
SW-25 Event 1	11/23/2013	8:05				0	3,10		60	0.0	002 (00.7	(-)	
3W-23 LVent 1	11/23/2013	8:06				9 38	8	<2	60	0.0	0.0	0.00	0.00
	11/23/2013	8:13	11/23/2013 8:13			7 37		Δ	63	8.6	30.1		
	11/23/2013	8:24	11/23/2013 8:24			, 3, 7 37		5	65	10.7	106.5		
	11/23/2013	8:41	11/23/2013 8:41			7 36		6	66	12.9	200.8		
	11/23/2013	9:17	11/23/2013 9:17			6 35		6	76	12.6	459.1		
	11/23/2013	10:16				6 32		7.0	80	14.7	805.4		
	11/23/2013	10:19	11/23/2013 10:10			0 38		11	80	24.0	58.0		
	11/23/2013	11:22	• •			0 38		12	80	26.1	1578.6		
	11/23/2013	12:33	11/23/2013 12:33					12	78	26.2	1858.2		
	11/23/2013	12:43	11/23/2013 12:43					2.5	78	27.0	266.2		
	11/23/2013	12:45			3		.0	5	70	Valve shut	54.1		
	11/23/2013	12:46	• •			31	2			valve slide	31.2	0.13	619.71
SW-25 Event 2	12/12/2013	13:13	12/12/2013 13:13			31			70				619.71
SVV 23 EVERTEZ	12/12/2013	13:18	12/12/2013 13:18		3	3 :	35	<2	70	0.0			619.71
	12/12/2013	14:49	12/12/2013 14:49				33	4	70	8.1	369.5	42.27	
	12/12/2013	14:50	12/12/2013 14:50			3 34		5	70	10.3	9.2		
	12/12/2013	15:35	12/12/2013 15:35				34	6	70	12.4	510.9		
	12/12/2013	16:28	12/12/2013 16:28					5.5	70	13.3	683.3		
	12/12/2013	16:29	12/12/2013 16:29				.5 85	9	70	18.7	16.0		
	12/12/2013	17:30	12/12/2013 17:30				35	9	70	19.1	1150.4		
	12/12/2013	22:17	12/12/2013 22:17					12	58	25.2	6348.4		
	12/13/2013	8:50	12/13/2013 8:50					 4.5	58	30.4	17604.5		
	12/13/2013	8:51	12/13/2013 8:51		J		, - -		30	Valve shut	30.4		
	12/13/2013	8:52	12/13/2013 8:52							varie snae	30.	. 3.10	3676.79
SW-25 Event 3	12/18/2013	12:32			3	4 :	33	<2	66	0.0	0.0	0.00	
	12/18/2013	13:14	12/18/2013 13:14					3.5	68	7.3	152.7		
	12/18/2013	13:15	12/18/2013 13:15				34	7	68	14.5	10.9		
	12/18/2013	14:25	12/18/2013 14:25		_			5.5	69.0	13.5	981.5		
	12/18/2013	16:08					33		68.0	16.6	1551.2		
	12/18/2013	17:04	12/18/2013 17:04				33		64.0	18.8	991.3		
	12/18/2013	17:45							58.0	21.2	819.7		
	12/18/2013	17:47	12/18/2013 17:47							Valve shut	42.4		
	12/18/2013	17:50				;	28						4197.28
SW-25 Event 4	1/9/2014	8:29											4197.28
	1/9/2014	8:30	1/9/2014 8:30		3	6 35	.5	<2	53	0.0			4197.28
	1/9/2014	8:33	1/9/2014 8:33				35	3	53	6.4	9.6	5 1.10	
	1/9/2014	8:55	1/9/2014 8:55			5 34		5.5	54	13.8	222.9		
	1/9/2014	9:35				4 34		7.5	54	15.8	592.9		
	1/9/2014	10:03	1/9/2014 10:03				34	8	56	16.8	456.8		
	1/9/2014	10:04	1/9/2014 10:04					12	56	25.6	21.2		
	1/9/2014	11:05	1/9/2014 11:05					12	61	25.5	1559.6		
	1/9/2014	12:25	1/9/2014 12:25					12	62	25.2	2028.8		
	1/9/2014	12:27	1/9/2014 12:27					3.5	62	28.8	54.0		
	1/9/2014	14:18	1/9/2014 14:18		35.			14	60	29.8	3251.7		
	1/9/2014	16:02						18	48	39.7	3614.8		
	1/9/2014	17:14	1/9/2014 17:14			2 36		22	56	50.0	3230.3		
	1/9/2014	17:15	1/9/2014 17:15							Valve shut	50.0		
	1/9/2014	17:16					28						5923.89
SW-25 Event 5	1/10/2014	17:32											5923.89
	1/10/2014	17:35			38.	5 35	5	18	64	39.3	117.8	3 13.48	
								-0	0 1	33.3			
	1/10/2014	17:44	1/10/2014 17:44					18	64	39.5	354.4		5977.91

Back to Master	Date	Tim	ie	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at W (psi)		Rotameter Reading (scfm)	Temp (°F)	Flow	(scfm)	Volume of CO ₂ (scf)	Mass (_	Cumulative Mass (lb)
-		1/11/2014	8:45	1/11/2014 8:45	5 4	2 3	35	32.5	21.5	5	63	45.4	26992.4	4	3087.93	10237.07
		1/11/2014	8:46	5 1/11/2014 8:46	õ							Valve shut	45.4	4	5.19	10242.26
		1/11/2014	8:47	1/11/2014 8:47	7			28								10242.26
Note: a red value,	, i.e. <mark>75</mark> °l	F, indicates that	value wa	s interpolated from field	data								Total CO ₂ Mass (lbs)	:		10242.26

				P at Reducer	P at Pan		Well	Rotameter					Volume of	Mass of CO ₂	Cumulative
Back to Master	Date Ti	ime	Date + Time	(psig)	(psig)	(psi)		Reading (scfm)	Ter	mp (°F)	Flow (scfm)		CO ₂ (scf)	(lb)	Mass (lb)
SW-26 Event 1	11/22/2013	8:00	11/22/2013 8:00	52	2	30				67	0.0				
	11/22/2013	8:02	11/22/2013 8:02			28			<2	66.5	0.0		0.0	0.00	0.00
	11/22/2013	8:03	11/22/2013 8:03			27	33.2		4	66	7.7		3.8	0.44	0.44
	11/22/2013	8:04	11/22/2013 8:04			34	34		8	69	16.6		12.2	1.39	1.83
	11/22/2013	8:12	11/22/2013 8:12			34	32.8		11	69	22.8		157.8	18.05	19.88
	11/22/2013	8:13	11/22/2013 8:13			35	33.2		12	69	25.2		24.0	2.75	22.63
	11/22/2013	8:44	11/22/2013 8:44			34	32.8		13	68	3 27.0		808.9	92.54	115.17
	11/22/2013	8:45	11/22/2013 8:45			34	33.6		15	7:	31.1		29.0	3.32	118.49
	11/22/2013	9:52	11/22/2013 9:52			34	33.6		15	74	31.0		2079.4	237.88	356.37
	11/22/2013	9:54	11/22/2013 9:54			36	34.4		16	74	33.7		64.7	7.41	363.78
	11/22/2013	11:03	11/22/2013 11:03			36	34.8		17	74	35.8		2400.7	274.64	638.42
	11/22/2013	11:56	11/22/2013 11:56			36	34.4		17	7.	35.8		1899.0	217.25	855.67
	11/22/2013	12:51	11/22/2013 12:51			36	34.4		17	76	35.8		1968.8	225.23	1080.90
	11/22/2013	12:52	11/22/2013 12:52								\	/alve shut	35.8	4.09	1084.99
	11/22/2013	12:53	11/22/2013 12:53												1084.99
SW-26 Event 2	12/5/2013	12:51	12/5/2013 12:51	53	3	35	37		4	80	8.3				1084.99
	12/5/2013	14:35	12/5/2013 14:35	50	0	34	35		8.5	80	17.5		1339.6	153.25	1238.24
	12/5/2013	15:40	12/5/2013 15:40	4	7	33	34	10	0.5	75	21.4		1264.4	144.65	1382.89
	12/5/2013	15:42	12/5/2013 15:42	49	9	34	34.5		12	7!	5 24.8		46.2	5.29	1388.17
	12/5/2013	16:50	12/5/2013 16:50	4	7	34	34	13	3.5	72	27.9		1792.3	3 205.04	1593.21
	12/5/2013	17:12	12/5/2013 17:12	53	3	34	34		14	70	29.0		626.8	3 71.71	1664.92
	12/5/2013	17:13	12/5/2013 17:13								\	/alve shut	29.0	3.32	1668.24
	12/5/2013	17:14	12/5/2013 17:14				30								1668.24
SW-26 Event 3	12/11/2013	12:55	12/11/2013 12:55	50	0	34	35		<2	66	0.0				1668.24
	12/11/2013	14:06	12/11/2013 14:06	50	0	32	32	. 7	7.5	68	15.3		541.7	61.97	7 1730.21
	12/11/2013	14:07	12/11/2013 14:07	49	9 3	32.5	34		11	68	22.5		18.9	2.16	1732.36
	12/11/2013	14:48	12/11/2013 14:48	50	3	32.5	33	11	1.5	66	23.6		944.4	108.04	1840.40
	12/11/2013	14:54	12/11/2013 14:54	45		35	34.5		14	66	29.5		159.1	18.20	1858.60
	12/11/2013	15:26	12/11/2013 15:26	45		35	34	. 14	4.5	66	30.5		959.4	109.75	1968.36
	12/11/2013	16:44	12/11/2013 16:44	35		31	32	14	4.5	62	29.3		2334.4	267.06	2235.41
	12/11/2013	16:55	12/11/2013 16:55								\	/alve shut	322.8	36.93	2272.34
	12/11/2013	16:56	12/11/2013 16:56												2272.34
SW-26 Event 4	12/19/2013	8:35	12/19/2013 8:35	52		34	33		<2	45	0.0				2272.34
	12/19/2013	8:54	12/19/2013 8:54	45		32	29		12	53	3 24.8		235.4	26.93	2299.28
	12/19/2013	8:58	12/19/2013 8:58	45		35	33		20	53	42.6		134.8	15.42	2 2314.70
	12/19/2013	9:38	12/19/2013 9:38	41		35	32	19	9.5	64	41.1		1674.8	191.59	2506.29
	12/19/2013	11:46	12/19/2013 11:46	40		34	30		20	68	41.6		5291.0	605.29	3111.58
	12/19/2013	12:34	12/19/2013 12:34	45		34	31		22	68	3 45.7		2094.8	239.65	3351.22
	12/19/2013	12:35	12/19/2013 12:35								١	/alve shut	45.7	5.23	3356.46
	12/19/2013	12:36	12/19/2013 12:36				24								3356.46
SW-26 Event 5	12/20/2013	7:26	12/20/2013 7:26	50		33	32.5		<2	60)				3356.46
	12/20/2013	7:35	12/20/2013 7:35	49		31	34		10	60	20.3		182.5	20.88	3377.34
	12/20/2013	7:56	12/20/2013 7:56	45		31	28		12	56			469.5	53.71	3431.05
	12/20/2013	8:02	12/20/2013 8:02	45		35	32		21	56			207.2	23.70	3454.75
	12/20/2013	8:04	12/20/2013 8:04			37	34	. 22	2.5	56			93.4	10.69	3465.44
	12/20/2013	8:49				37	34		22	60			2166.5		
	12/20/2013	10:02				36	32		22	66			3440.7		
	12/20/2013	10:48				36	31		22	68			2148.7		
	12/20/2013	10:54	12/20/2013 10:54			35	31		22	68			278.6		
	12/20/2013	11:36				35	31		22	70			1938.3		
	12/20/2013	11:37	12/20/2013 11:37									/alve shut	46.1		
	12/20/2013	11:38					24								4611.60
SW-26 Event 6	1/8/2014	13:07									0.0		0.0	0.00	

NR/2014 13:51	Back to Master	Date	Tim	ne		P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
18/2014 1352 18/2014 1501 18/2014 1501 18/2014 1501 18/2014 1501 18/2014 1501 18/2014 1501 18/2014 1501 18/2014 1502 18/2014 1502 18/2014 1502 18/2014 1502 18/2014 1502 18/2014 1502 18/2014 1502 18/2014 1502 18/2014 1502 18/2014 1502 18/2014 1502 18/2014 1502 18/2014 1702 18/2014 18		1/8/	/2014	13:14	1/8/2014 13:14	54	33	34	<2	58	0.0	0.0	0.00	4611.60
1/8/2014 15:01 1/8/2014 15:01 1/8/2014 15:01 50 35 34.5 8 60 16.9 1133:5 129.67		1/8/	/2014	13:51	1/8/2014 13:51	52	33	33	4	57	8.3	153.8	17.60	4629.20
1/8/2014 16:22 1/8/2014 16:22 1/8/2014 16:22 1/8/2014 17:20 1/8/2014		1/8/	/2014	13:52	1/8/2014 13:52	52	35	34.5	7.5	57	15.9	12.1	1.39	4630.58
18/2014 16:22 18/2014 16:22 50 36 35 14 53 30.1 25.7 2.94		1/8/	/2014	15:01	1/8/2014 15:01	50	35	34.5	8	60	16.9	1133.5	129.67	4760.25
1/8/2014 17-22 1/8/2014 37-22 55 36 34.5 14 52 30.2 1800-7 207.02 34.5 1/8/2014 17-23 1/8/2014 37-24 1/8/2014 37-25 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1/8/	/2014	16:21	1/8/2014 16:21	50	35	33.5	10	53	21.3	1529.9	175.02	4935.27
18/2014 17:23 18/2014 17:24 18/2014 17:24 18/2014 17:24 18/2014 17:24 18/2014 17:24 18/2014 17:24 18/2014 17:25 11/10/2014 13:28 11/10/2014 13:28 11/10/2014 14:23 11/10/2014 14:24 11/10/2014 14:24 11/10/2014 14:24 11/10/2014 14:24 11/10/2014 14:24 11/10/2014 14:24 11/10/2014 14:24 11/10/2014 14:24 11/10/2014 14:24 11/10/2014 16:28 11/10/2014 16:28 11/10/2014 16:28 11/10/2014 16:28 11/10/2014 17:30 11/10/2014 17:30 11/10/2014 17:30 11/10/2014 17:31 11/10/2014 17:30 11/10/2014		1/8/	/2014	16:22	1/8/2014 16:22	50	36	35	14	53	30.1	25.7	2.94	4938.21
NA		1/8/	/2014	17:22	1/8/2014 17:22	55	36	34.5	14	52	30.2	1809.7	207.02	5145.24
\$\frac{\text{5PM-16 Feert 1}}{\text{1/10/2014}}		1/8/	/2014	17:23	1/8/2014 17:23						Valve shut	30.2	3.45	5148.69
1/10/2014 13-28		1/8/	/2014	17:24	1/8/2014 17:24			29						5148.69
1/10/2014 14:23	SW-26 Event 7	1/10/	/2014	13:25	1/10/2014 13:25									5148.69
1/10/2014 14:24		1/10/	/2014	13:28	1/10/2014 13:28	50	35	34	7	66	14.7	44.2	5.05	5153.75
1/10/2014 15:21		1/10/	/2014	14:23	1/10/2014 14:23	48	34.5	33.5	13	65	27.2	1154.0	132.02	5285.77
1/10/2014 16:28 1/10/2014 16:28 45 36 34 18 66 33 3 23.00 289.43 5		1/10/	/2014	14:24	1/10/2014 14:24	48	36	35	16.5	65	35.1	31.2	3.57	5289.33
1/10/2014 17:30 1/10/2014 17:31 1/10/2014 17:32 27		1/10/	/2014	15:21	1/10/2014 15:21	46	36	35	17.5	64	37.3	2062.5	235.95	5525.29
1/10/2014 17:31 1/10/2014 17:32 27 1/10/2014 17:32 27 1/10/2014 17:32 1/10/2014 17:32 27 1/10/2014 17:32 1/10/2014 17:32 27 1/10/2014 17:32 1/10/2014 17:33 1/10/2014 17:34 1/10/2		1/10/	/2014	16:28	1/10/2014 16:28	45	36	34	18	66	38.3	2530.0	289.43	5814.72
1/10/2014 17:32 1/10/2014 12:10 1/14/2014 12:10 1/14/2014 12:12 1/14/2014 12:12 1/14/2014 12:12 1/14/2014 12:12 1/14/2014 12:12 1/14/2014 12:12 1/14/2014 12:12 1/14/2014 12:29 1/14/2014 12:29 1/14/2014 12:29 1/14/2014 12:29 1/14/2014 12:29 1/14/2014 12:29 1/14/2014 12:29 1/14/2014 12:29 1/14/2014 12:29 1/14/2014 12:40 1/14/2014 12:40 1/14/2014 12:40 1/14/2014 12:42 1/14/2014 12:42 1/14/2014 12:42 1/14/2014 12:42 1/14/2014 12:42 1/14/2014 12:42 1/14/2014 12:42 1/14/2014 12:42 1/14/2014 12:42 1/14/2014 12:42 1/14/2014 12:42 1/14/2014 12:42 1/14/2014 12:42 1/14/2014 12:45 1/14		1/10/	/2014	17:30	1/10/2014 17:30	46	35	34	20	62	42.2	2495.5	285.49	6100.21
SW-26 Event 8 1/14/2014 1/14/20		1/10/	/2014	17:31	1/10/2014 17:31						Valve shut	42.2	4.83	6105.04
1/14/2014 12:12 1/14/2014 12:29 45 32.5 32 8.5 66 17.4 237.6 27.18 6 1/14/2014 12:29 1/14/2014 12:20 45 32.5 32 8.5 66 17.4 237.6 27.18 6 1/14/2014 12:30 1/14/2014 12:30 45 32.5 32 8.5 66 17.4 237.6 27.18 6 1/14/2014 12:30 1/14/2014 12:30 45 36 34.5 13.5 66 28.7 23.1 2.64 6 1/14/2014 13:42 1/14/2014 13:42 48 36 34 14.5 69 30.7 10140 116.00 6 1/14/2014 14:15 1/14/2014 14:15 48 36 34 14.5 69 30.7 10140 116.00 6 1/14/2014 16:16 1/14/2014 16:10 46 35 32.5 17 70 35.6 3483.5 398.51 6 1/14/2014 16:17 1/14/2014 16:17 1/14/2014 16:17 1/14/2014 16:18 1/14/2014 1		1/10/	/2014	17:32	1/10/2014 17:32			27						6105.04
1/14/2014 12:29	SW-26 Event 8	1/14/	/2014	12:10	1/14/2014 12:10									6105.04
1/14/2014		1/14/	/2014	12:12	1/14/2014 12:12	46	35	35	5	65	10.5	21.1	2.41	6107.45
1/14/2014 13:42 1/14/2014 13:42 48 36 34 14:5 69 30.7 2139.0 244.71 64 1/14/2014 14:15 1/14/2014 14:15 48 36 34 14:5 69 30.7 1014.0 116:00 61 1/14/2014 16:10 1/14/2014 16:00 46 35 32.5 17 70 35.6 3483.5 398.51 1/14/2014 16:16 1/14/2014 16:16 46 35 32.5 18 70 37.7 586.8 67.13 67 1/14/2014 16:17 1/14/2014 16:18 70 37.7 586.8 67.13 67 1/14/2014 16:18 1/14/2014 16:18 70 77.7 586.8 67.13 67 1/14/2014 16:18 1/14/2014 16:18 70 77.7 586.8 67.13 67 1/16/2014 12:46 1/16/2014 12:46 47 34 35 <2 58 0.0 0.0 0.0 0.0 0.0 1/16/2014 12:48 1/16/2014 12:48 47 34 35 6 58 12.6 6.6 6.3 0.72 67 1/16/2014 12:49 1/16/2014 12:49 47 34 33 13 58 27.3 22.0 2.51 67 1/16/2014 14:54 1/16/2014 12:49 47 34 33 13 58 27.3 22.0 2.51 67 1/16/2014 14:54 1/16/2014 14:54 47 34 32.5 18 60 37.7 35.1 4.01 7 1/16/2014 15:34 1/16/2014 15:34 50 34 32 18 60 37.7 35.1 4.01 7 1/16/2014 8:28 1/21/2014 15:35 50 32 33 28 58 58 26 6 1/16/2014 8:34 1/16/2014 15:35 50 32 33 33 8 56 16.6 33.3 3.81 7 1/16/2014 8:34 1/16/2014 15:35 50 32 33 32 8 56 16.6 33.3 3.81 7 2W-26 Event 10 1/21/2014 8:38 1/21/2014 8:28 50 33 33 8 56 16.6 33.3 3.81 7 1/21/2014 8:34 1/21/2014 8:34 50 33 33 32 9.8 58 20.4 74.0 8.47 34.0 32.7 37.7 38.6 38.6 37.7 38.6 38.6 38.6 38.6 38.6 38.6 38.6 38.6 38.6 38.6 38.6 38.6 38.6 38.6		1/14/	/2014	12:29	1/14/2014 12:29	45	32.5	32	8.5	66	17.4	237.6	27.18	6134.63
1/14/2014		1/14/	/2014	12:30	1/14/2014 12:30	45	36	34.5	13.5	66	28.7	23.1	2.64	6137.27
1/14/2014 16:00		1/14/	/2014	13:42	1/14/2014 13:42	48	36	34	14.5	69	30.7	2139.0	244.71	6381.98
1/14/2014 16:16		1/14/	/2014	14:15	1/14/2014 14:15	48	36	34	14.5	69	30.7	1014.0	116.00	6497.97
1/14/2014 16:17		1/14/	/2014	16:00	1/14/2014 16:00	46	35	32.5	17	70	35.6	3483.5	398.51	6896.48
1/14/2014 16:18		1/14/	/2014	16:16	1/14/2014 16:16	46	35	32.5	18	70	37.7	586.8	67.13	6963.61
SW-26 Event 9 1/16/2014 12:46 1/16/2014 12:46 47 34 35 <2 58 0.0 0.0 0.00 0.00 6.0 1/16/2014 12:47 1/16/2014 12:47 47 34 35 6 58 12.6 6.3 0.72 6 1/16/2014 12:48 1/16/2014 12:49 47 34 33 13 58 27.3 22.0 2.51 6 1/16/2014 12:49 1/16/2014 12:49 47 34 33 13 58 27.3 22.0 2.51 6 1/16/2014 14:53 1/16/2014 14:53 47 32 31.5 15.8 60 32.4 3700.5 423.34 7 1/16/2014 15:34 1/16/2014 15:35 47 34 32.5 18 60 37.7 35.1 4.01 7 1/16/2014 15:35 1/16/2014 15:35 26 Valve shut 37.7 4.31 7 SW-26 Event 10		1/14/	/2014	16:17	1/14/2014 16:17						Valve shut	37.7	4.32	6967.93
1/16/2014 12:47		1/14/	/2014	16:18	1/14/2014 16:18			27						6967.93
1/16/2014 12:47 1/16/2014 12:47 47 34 35 6 58 12.6 6.3 0.72 6 1/16/2014 12:48 1/16/2014 12:48 47 33 32.5 8 58 16.6 14.6 1.67 6 1/16/2014 12:49 1/16/2014 12:49 47 34 33 13 58 27.3 22.0 2.51 6 1/16/2014 14:53 1/16/2014 14:53 47 32 31.5 15.8 60 32.4 3700.5 423.34 7 1/16/2014 14:54 1/16/2014 14:54 47 34 32.5 18 60 37.7 35.1 4.01 7 1/16/2014 15:34 1/16/2014 15:34 50 34 32 18 60 37.7 1508.2 172.54 7 1/16/2014 15:35 1/16/2014 15:35 1/16/2014 15:35 1/16/2014 15:35 1/16/2014 15:35 1/16/2014 15:35 26 Valve shut 37.7 4.31 7 35.1 3.81 1/16/2014 3.83 1/21/2014 3.83 1/21/2014 3.83 1/21/2014 3.83 1/21/2014 3.33 3.	SW-26 Event 9	1/16/	/2014	12:46	1/16/2014 12:46	47	34	35	<2	58	0.0	0.0	0.00	6967.93
1/16/2014 12:49				12:47	1/16/2014 12:47	47	34	35	6	58	12.6	6.3	0.72	6968.65
1/16/2014 14:53 1/16/2014 14:53 47 32 31.5 15.8 60 32.4 370.5 423.34 7 1/16/2014 14:54 1/16/2014 14:54 47 34 32.5 18 60 37.7 35.1 4.01 7 1/16/2014 15:34 1/16/2014 15:34 50 34 32 18 60 37.7 1508.2 172.54 7 1/16/2014 15:35 1/16/2014 15:35 1/16/2014 15:35 1/16/2014 15:35 1/16/2014 15:35 1/16/2014 15:35 1/16/2014 15:35 1/16/2014 15:35 1/16/2014 15:35 1/16/2014 15:35 1/16/2014 15:35 50 32 33 42 56 Valve shut 37.7 4.31 7 1/12/2014 8:30 1/12/2014 8:30 1/12/2014 8:30 50 33 33 8 56 16.6 33.3 3.81 7 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:34 1/12/2014 8:36 1/12/2		1/16/	/2014	12:48	1/16/2014 12:48	47	33	32.5	8	58	16.6	14.6	1.67	6970.32
1/16/2014 14:54 1/16/2014 15:34 1/16/2014 15:34 50 34 32 18 60 37.7 35.1 4.01 7 1/16/2014 15:35 1/16/2014 15:3		1/16/	/2014	12:49	1/16/2014 12:49	47	34	33	13	58	27.3	22.0	2.51	6972.83
1/16/2014 15:34 1/16/2014 15:35 50 34 32 18 60 37.7 1508.2 172.54 72.54 73.55 73.5		1/16/	/2014	14:53	1/16/2014 14:53	47	32	31.5	15.8	60	32.4	3700.5	423.34	7396.16
1/16/2014 15:35 1/16/2014 15:35 26 Valve shut 37.7 4.31 7 SW-26 Event 10 1/21/2014 8:28 1/21/2014 8:30 50 32 33 <2 56 0.0 0.00 0.00 7 1/21/2014 8:30 1/21/2014 8:30 50 33 33 8 56 16.6 33.3 3.81 7 1/21/2014 8:34 1/21/2014 8:34 50 33 32 9.8 58 20.4 74.0 8.47 7 1/21/2014 9:26 1/21/2014 9:26 46 32 31 11 64 22.5 1113.3 127.37 7 1/21/2014 9:27 1/21/2014 9:27 46 34 32.5 15.7 64 32.8 27.6 3.16 7 1/21/2014 10:08 1/21/2014 10:08 42 33 32 14.5 64 29.9 1285.2 147.03 7 1/21/2014 11:35 1/2		1/16/	/2014	14:54	1/16/2014 14:54	47	34	32.5	18	60	37.7	35.1	4.01	7400.17
SW-26 Event 10 1/21/2014 8:28 1/21/2014 8:30 50 32 33 <2 56 0.0 0.00 70 70 70 70 70 70 70 70 8.47 70 70 8.47 70 70 8.47 70 8.48 8 8 8 9.8 8 8 9.8 8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 <		1/16/	/2014	15:34	1/16/2014 15:34	50	34	32	18	60	37.7	1508.2	172.54	7572.71
1/21/2014 8:30 1/21/2014 8:30 50 33 33 8 56 16.6 33.3 3.81 7 1/21/2014 8:34 1/21/2014 8:34 50 33 32 9.8 58 20.4 74.0 8.47 7 1/21/2014 9:26 1/21/2014 9:26 46 32 31 11 64 22.5 1113.3 127.37 7 1/21/2014 9:27 1/21/2014 9:27 46 34 32.5 15.7 64 32.8 27.6 3.16 7 1/21/2014 10:08 1/21/2014 10:08 42 33 32 14.5 64 29.9 1285.2 147.03 7 1/21/2014 11:35 1/21/2014 11:35 40 32 30.5 15 67 30.5 2631.0 300.98 8 1/21/2014 12:58 1/21/2014 12:58 46 34 31 17.8 66 37.1 2805.8 320.99 8 1/21/2014 13:00 1/21/2014 13:00 74.1 8.48 8 8 66 <td></td> <td>1/16/</td> <td>/2014</td> <td>15:35</td> <td>1/16/2014 15:35</td> <td></td> <td></td> <td>26</td> <td></td> <td></td> <td>Valve shut</td> <td>37.7</td> <td>4.31</td> <td>7577.03</td>		1/16/	/2014	15:35	1/16/2014 15:35			26			Valve shut	37.7	4.31	7577.03
1/21/2014 8:34 1/21/2014 8:34 50 33 32 9.8 58 20.4 74.0 8.47 74.0 17.0	SW-26 Event 10	1/21/	/2014	8:28	1/21/2014 8:28	50	32	33	<2	56		0.0	0.00	7577.03
1/21/2014 9:26 1/21/2014 9:26 46 32 31 11 64 22.5 1113.3 127.37 73 1/21/2014 9:27 1/21/2014 9:27 46 34 32.5 15.7 64 32.8 27.6 3.16 73 1/21/2014 10:08 1/21/2014 10:08 42 33 32 14.5 64 29.9 1285.2 147.03 73 1/21/2014 11:35 1/21/2014 11:35 40 32 30.5 15 67 30.5 2631.0 300.98 8 1/21/2014 12:58 1/21/2014 12:58 46 34 31 17.8 66 37.1 2805.8 320.99 8 1/21/2014 13:00 1/21/2014 13:00 Valve shut 74.1 8.48 8		1/21/	/2014	8:30	1/21/2014 8:30	50	33	33	8	56	16.6	33.3	3.81	7580.84
1/21/2014 9:27 1/21/2014 9:27 46 34 32.5 15.7 64 32.8 27.6 3.16 7 1/21/2014 10:08 1/21/2014 10:08 42 33 32 14.5 64 29.9 1285.2 147.03 7 1/21/2014 11:35 1/21/2014 11:35 40 32 30.5 15 67 30.5 2631.0 300.98 8 1/21/2014 12:58 1/21/2014 12:58 46 34 31 17.8 66 37.1 2805.8 320.99 8 1/21/2014 13:00 1/21/2014 13:00 Valve shut 74.1 8.48 8		1/21/	/2014	8:34	1/21/2014 8:34	50	33	32	9.8	58	20.4	74.0	8.47	7589.30
1/21/2014 9:27 1/21/2014 9:27 46 34 32.5 15.7 64 32.8 27.6 3.16 7 1/21/2014 10:08 1/21/2014 10:08 42 33 32 14.5 64 29.9 1285.2 147.03 7 1/21/2014 11:35 1/21/2014 11:35 40 32 30.5 15 67 30.5 2631.0 300.98 8 1/21/2014 12:58 1/21/2014 12:58 46 34 31 17.8 66 37.1 2805.8 320.99 8 1/21/2014 13:00 1/21/2014 13:00 Valve shut 74.1 8.48 8		1/21/	/2014	9:26	1/21/2014 9:26	46	32	31	11	64	22.5	1113.3	127.37	7716.67
1/21/2014 10:08 1/21/2014 10:08 42 33 32 14.5 64 29.9 1285.2 147.03 7 1/21/2014 11:35 1/21/2014 11:35 40 32 30.5 15 67 30.5 2631.0 300.98 8 1/21/2014 12:58 1/21/2014 12:58 46 34 31 17.8 66 37.1 2805.8 320.99 8 1/21/2014 13:00 1/21/2014 13:00 Valve shut 74.1 8.48 8								32.5	15.7	64				
1/21/2014 11:35 1/21/2014 11:35 40 32 30.5 15 67 30.5 2631.0 300.98 8 1/21/2014 12:58 1/21/2014 12:58 46 34 31 17.8 66 37.1 2805.8 320.99 8 1/21/2014 13:00 1/21/2014 13:00 Valve shut 74.1 8.48 8		1/21/	/2014	10:08	1/21/2014 10:08	42	33	32	14.5	64	29.9	1285.2	147.03	7866.85
1/21/2014 12:58 1/21/2014 12:58 46 34 31 17.8 66 37.1 2805.8 320.99 8 1/21/2014 13:00 1/21/2014 13:00 Valve shut 74.1 8.48 8						40	32	30.5						
1/21/2014 13:00 1/21/2014 13:00 Valve shut 74.1 8.48 8														8488.82
Note: a red value, i.e. 75 1, illulcates that value was lifter polated from field data	Note: a red value	e, i.e. <mark>75</mark> °F, indic	cates that	value was	interpolated from field d	ata						Total CO ₂ Mass (lbs):		8497.30

Back to Master	Date 1	Гime	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-27 Event 1	11/22/2013	13:24	11/22/2013 13:24									
	11/22/2013	13:25	11/22/2013 13:25	5 55	31	1 31	└ <	2 81.5	0.0	0.0	0.00	0.00
	11/22/2013	13:26	11/22/2013 13:26	5 55	33	3 33	}	2 81.5	0.0	0.0	0.00	0.00
	11/22/2013	13:47	11/22/2013 13:47	55	34	4 30.5	5	6 83	12.3	129.0	14.76	5 14.76
	11/22/2013	14:11	11/22/2013 14:11	. 54	37	7 33	3 1	13 84	27.4	476.5	5 54.51	L 69.28
	11/22/2013	14:39	11/22/2013 14:39	51	. 36	5 33	3 1	L4 80	29.4	794.8	90.92	160.20
	11/22/2013	15:11	11/22/2013 15:11	. 50	38	33.5	5 16	.0 79	34.2	1017.5	5 116.40	276.60
	11/22/2013	15:53	11/22/2013 15:53	50	38	33.5	5 16	.5 82	35.2	1458.5	166.85	443.45
	11/22/2013	16:48	11/22/2013 16:48	50) 38	33.5	5 16	.5 76	35.4	1942.2	2 222.19	665.64
	11/22/2013	17:25	11/22/2013 17:25	5 57	' 38	33.5	5 16	.5 71	35.6	1313.6	5 150.27	815.91
	11/22/2013	17:26	11/22/2013 17:26	;					Valve	shut 35.6	5 4.07	7 819.99
	11/22/2013	17:28	11/22/2013 17:28	}								819.99
SW-27 Event 2	12/5/2013	8:10	12/5/2013 8:10									819.99
	12/5/2013	8:12	12/5/2013 8:12	. 56	5 26	5 27	'	<2 64	0.0			819.99
	12/5/2013	8:13	12/5/2013 8:13	}	34	4 34.5	;	<2 64	0.0			819.99
	12/5/2013	8:38	12/5/2013 8:38	53	}	33.5	;	· 2 64	0.0			819.99
	12/5/2013	8:48	12/5/2013 8:48	52	. 34	1 32	2 5	.5 66	5 11.5	57.3	6.55	826.54
	12/5/2013	8:51	12/5/2013 8:51		34.5	33.5	5 7	.5 66	5 15.7	40.7	7 4.66	831.20
	12/5/2013	9:05	12/5/2013 9:05					.5 68		232.2	2 26.57	
	12/5/2013	9:06	12/5/2013 9:06					11 68		20.2		
	12/5/2013	9:23	12/5/2013 9:23					12 70		409.1		
	12/5/2013	10:27	12/5/2013 10:27		35					1904.8		
	12/5/2013	11:44	12/5/2013 11:44		35			16 76		2606.9		
	12/5/2013	12:40	12/5/2013 12:40		35			17 75		1926.0		
	12/5/2013	12:41	12/5/2013 12:41						Valve			
	12/5/2013	12:42	12/5/2013 12:42			26						1647.40
SW-27 Event 3	12/11/2013	8:58	12/11/2013 8:58		37.5			<2 62	2 0.0			1647.40
	12/11/2013	9:27	12/11/2013 9:27					<2 68				1647.40
	12/11/2013	9:28	12/11/2013 9:28					4 68		4.1	1 0.47	
	12/11/2013	9:59	12/11/2013 9:59					4 67		253.8		
	12/11/2013	11:24	12/11/2013 11:24					.5 72		919.9		
	12/11/2013	11:25	12/11/2013 11:25					10 72		17.1		
	12/11/2013	11:57	12/11/2013 11:57							749.9		
	12/11/2013	12:50	12/11/2013 12:50					13 68		1416.9		
	12/11/2013	12:58	12/11/2013 12:58		. 33				Valve			
	12/11/2013	12:59	12/11/2013 12:59						Tuite	210.	. 230	2056.95
SW-27 Event 4	12/18/2013	8:38	12/18/2013 12:39		29	32) (<2 53	0.0	0.0	0.00	
SVV 27 EVEITE I	12/18/2013	9:14	12/18/2013 9:14					<2 60		0.0		
	12/18/2013	9:16	12/18/2013 9:16					6 60		12.3		
	12/18/2013	10:00	12/18/2013 10:00		32			0	Valve			
	12/18/2013	14:02	12/18/2013 14:02		31	1 33	l .	<2 68				
	12/18/2013	14:40	12/18/2013 14:40		31			6 70		228.9		
	12/18/2013	14:42	12/18/2013 14:40		32			8 70		28.3		
	12/18/2013	16:13	12/18/2013 14:42					.5 69		1617.6		
	12/18/2013				32							
	12/18/2013	17:08 17:09	12/18/2013 17:08 12/18/2013 17:09		34					1121.9 24.9		
	12/18/2013	17:53	12/18/2013 17:53		35	5 34	14	.5 56		1298.8		
	12/18/2013	17:54	12/18/2013 17:54			20			Valve	shut 30.8	3.53	
CM 27 Francis F	12/18/2013	17:55	12/18/2013 17:55		2/	29		.2	0.0			2618.06
SW-27 Event 5	12/19/2013	12:36	12/19/2013 12:36					2 68		405	43.00	2618.06
	12/19/2013	13:03	12/19/2013 13:03					4 74		105.6		
	12/19/2013	13:04	12/19/2013 13:04					9 74		13.0		
	12/19/2013	13:08	12/19/2013 13:08	50	34	1 34	1	10 74	20.7	77.7	7 8.89	2640.53

				P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master			Date + Time	(psig)	(psig)	(psi)	Reading (scfm)		Fl	ow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	12/19/2013	16:04	12/19/2013 16:04	45				3.5	70	27.7	4256.3		3127.45
	12/19/2013	16:47	12/19/2013 16:47		32	2 31	-	14	66	28.5	1209.3		
	12/19/2013	16:48	12/19/2013 16:48							Valve shut	28.5	3.26	
	12/19/2013	16:49	12/19/2013 16:49			25							3269.05
SW-27 Event 6	1/8/2014	8:33	1/8/2014 8:33			34.5		<2		0.0	0.0		
	1/8/2014	8:33	1/8/2014 8:33					<2	36	0.0	0.0		
	1/8/2014	8:35	1/8/2014 8:35					5.5	37	11.7	145.9		
	1/8/2014	9:00	1/8/2014 9:00					7	45	14.7	13.2		
	1/8/2014	9:01	1/8/2014 9:01					8	45	17.0	809.6		
	1/8/2014	9:52	1/8/2014 9:52					8	50	16.9	984.4		
	1/8/2014	10:50	1/8/2014 10:50					9.5	56	19.8	1614.8		
	1/8/2014	12:18	1/8/2014 12:18					11	58	22.8	490.1		
	1/8/2014	12:41	1/8/2014 12:41		1 32			11	57	22.6	22.7		
	1/8/2014	12:42	1/8/2014 12:42			28				Valve shut	22.6	5 2.59	
	1/8/2014	12:43	1/8/2014 12:43										3738.46
SW-27 Event 7	1/10/2014	9:37	1/10/2014 9:37										3738.46
	1/10/2014	9:38	1/10/2014 9:38					6	64	12.5	12.5		
	1/10/2014	9:45	1/10/2014 9:45					13	64	27.7	140.7		
	1/10/2014	10:17	1/10/2014 10:17					3.5	64	28.5	898.3		
	1/10/2014	11:47	1/10/2014 11:47					14	65	29.2	2593.8		
	1/10/2014	12:54	1/10/2014 12:54					15	64	30.8	2009.4		
	1/10/2014	13:15	1/10/2014 13:15) 32	2 32	!	16	64	32.7	666.6		
	1/10/2014	13:16	1/10/2014 13:16							Valve shut	32.7	3.74	
	1/10/2014	13:17	1/10/2014 13:17			24							4465.36
SW-27 Event 8	1/13/2014	7:45	1/13/2014 7:45										4465.36
	1/13/2014	7:47	1/13/2014 7:47					7	44	14.9	29.8		
	1/13/2014	7:56	1/13/2014 7:56					3.5	50	28.4	194.9		
	1/13/2014	7:57	1/13/2014 7:57			_		17	50	37.1	32.8		
	1/13/2014	8:19	1/13/2014 8:19					17	56	36.5	809.4		
	1/13/2014	10:14	1/13/2014 10:14					17	64	35.8	4159.1		
	1/13/2014	11:22	1/13/2014 11:22					17	64	35.5	2424.4		
	1/13/2014	11:23	1/13/2014 11:23					18	64	37.9	36.7		
	1/13/2014	11:50	1/13/2014 11:50) 34	1 32		18	64	37.6	1019.3		
	1/13/2014	11:51	1/13/2014 11:51							Valve shut	37.6	4.30	
6144 27 5	1/13/2014	11:52	1/13/2014 11:52			27							5465.66
SW-27 Event 9	1/14/2014	12:20	1/14/2014 12:20						64	0.2	4.5.5	4.05	5465.66
	1/14/2014	12:22	1/14/2014 12:22					4	64	8.2	16.3		
	1/14/2014	12:32	1/14/2014 12:32					6.5	63	12.9	105.5		
	1/14/2014	12:33	1/14/2014 12:33					16	63	33.9	23.4		
	1/14/2014	13:47	1/14/2014 13:47					16	69 60	33.9	2510.1		
	1/14/2014	14:18	1/14/2014 14:18					16	69	33.9	1051.0		
	1/14/2014	16:02	1/14/2014 16:02					8.4	70 70	38.2	3747.5		
	1/14/2014	16:37	1/14/2014 16:37		34	32	4	19	70	39.4	1357.5		
	1/14/2014	16:38	1/14/2014 16:38			2-	,			Valve shut	39.4	4.51	
CM/ 27 Fyort 10	1/14/2014	16:39	1/14/2014 16:39		30	27		ري	r.c	0.0	0.0)	6478.19
<u>SW-27 Event 10</u>	1/16/2014	11:53	1/16/2014 11:53					<2	56 56	0.0	0.0		
	1/16/2014	11:54	1/16/2014 11:54					<2	56	0.0	0.0		
	1/16/2014	11:55	1/16/2014 11:55					10	56 56	20.9	10.5		
	1/16/2014	13:02	1/16/2014 13:02					12	56 60	24.8	1533.0		
	1/16/2014	14:58	1/16/2014 14:58					3.5	60 60	27.5 28.6	3037.6		
	1/16/2014	16:04	1/16/2014 16:04		31.5			14	60		1850.7		
CM 27 From 44	1/16/2014	16:05	1/16/2014 16:05		1 22	26		2 E	CC.	Valve shut	28.6	3.27	
SW-27 Event 11	1/17/2014	11:53	1/17/2014 11:53	44	1 32	33.8		3.5	66	7.1			7217.26

					P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	e Da	te + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (s	scfm)	CO ₂ (scf)	(lb)	Mass (lb)
		1/17/2014	12:41	1/17/2014 12:41	45	30	28	12	2	63	24.0	747.1	85.47	7302.72
		1/17/2014	12:42	1/17/2014 12:42	45	33.5	32.2	17.5	;	63	36.4	30.2	3.45	7306.17
		1/17/2014	13:57	1/17/2014 13:57	43	33.5	32.2	17.8	3	64	36.9	2748.8	314.46	7620.64
		1/17/2014	14:17	1/17/2014 14:17	43	33.5	32.2	18	3	64	37.4	743.0	85.00	7705.64
		1/17/2014	15:47	1/17/2014 15:47	52	33.5	32.2	19.5	;	64	40.5	3502.4	400.68	8106.32
		1/17/2014	15:48	1/17/2014 15:48							Valve shut	40.5	4.63	8110.95
		1/17/2014	15:49	1/17/2014 15:49			27							8110.95
<u>SW-27 Event 12</u>		1/21/2014	9:02	1/21/2014 9:02	49	29	29	<2	2	52	0.0			8110.95
		1/21/2014	9:03	1/21/2014 9:03	48	34	33	Ç)	52	19.0	9.5	1.09	8112.03
		1/21/2014	10:02	1/21/2014 10:02	40	33	31.5	15	5	60	31.1	1477.9	169.07	8281.10
		1/21/2014	11:24	1/21/2014 11:24	36	32	31	13.8	3	64	28.2	2430.4	278.03	8559.13
		1/21/2014	11:25	1/21/2014 11:25	35	33	31.8	14.5	5	64	29.9	29.1	3.32	8562.46
		1/21/2014	13:13	1/21/2014 13:13	45	36	35	22.7	,	62	48.4	4232.1	484.16	9046.62
		1/21/2014	13:14	1/21/2014 13:14			30				Valve shut	48.4	5.54	9052.16
Note: a red value,	i.e. <mark>75</mark> °	F, indicates that v	alue was int	terpolated from field d	ata							Total CO ₂ Mass (lbs):		9052.16

Back to Master	Date T	ime	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-28 Event 1	11/22/2013	8:36						7(207 (22.)		. ,
SVV 20 EVERT	11/22/2013	8:38				4 32) (2 70		0.	0 0.00	0.00
	11/22/2013	8:51				2 3:		2 7		26.		
	11/22/2013	8:52	· ·			5 34		5 74		7.		
	11/22/2013	9:47				5 37		0 80		857.		
	11/22/2013	9:49				7 33.		1 79		44.		
	11/22/2013	10:57	· ·			7 33.		2 79		1657.		
	11/22/2013	10:58	• •			9 34		4 78		27.		
	11/22/2013	11:46	• •			7 3		4 82		1436.		
	11/22/2013	12:40				8 34		4 8		1601.		
	11/22/2013	12:41			J	3				Valve shut 29.		
	11/22/2013	12:42			2	6 24.	5			varve strat	, 3.10	650.80
SW-28 Event 2	12/5/2013	12:47	<u> </u>			4 3		4 79.0	0 8.2	41.	1 4.70	
SVV 20 EVERTE 2	12/5/2013	14:32				3 31.		2 80.0		1712.		
	12/5/2013	14:33				5 34				29.		
	12/5/2013	15:38				5 3		8 75.0		2332.		
	12/5/2013	16:48	• •			5 33.		9 72.0		2704.		
	12/5/2013	17:08				5 33.				596.		
	12/5/2013	17:09			, 3	J JJ	,	70.0		Valve shut 19.		
	12/5/2013	17:10	• •						•	valve struct	2.20	1501.56
SW-28 Event 3	12/11/2013	13:04			3	5 34	1	3 68	8 6.3			1501.56
300-28 EVEIIL 3	12/11/2013	14:10	• •					1 68		950.	4 108.72	
	12/11/2013	14:12								49.		
	12/11/2013 12/11/2013	14:50 14:53	• •			5 3: 5 3:				1030. 93.		
	• •											
	12/11/2013	15:28	• •			5 3				1215.		
	12/11/2013	16:46	• •		3	5 30	0 16	5 67		2713.		
	12/11/2013	17:04	• •			2	4		· ·	Valve shut 627.	3 71.77	
CM/ 20 Frant 4	12/11/2013	17:05			1	24		2 4	1 00			2265.68
SW-28 Event 4	12/19/2013	8:33				2 33		2 4		00	0 40.20	2265.68
	12/19/2013	8:55						4 53		89.		
	12/19/2013	9:00				3 34		8 5		62.		
	12/19/2013	9:40				3 33.5		9 64		705.		
	12/19/2013	11:44				1 37		2 68		2649.		
	12/19/2013	12:31			3	1 37	2]	3 68		1182.		
	12/19/2013	12:32							·	Valve shut 26.	2 2.99	
SIAV 20 F F	12/19/2013	12:33					- ^		20.4			2805.08
SW-28 Event 5	12/20/2013	7:28				5 3!					- 0	2805.08
	12/20/2013	7:58				4 33		3 50		711.		
	12/20/2013	8:47	• •			2 3:				1348.		
	12/20/2013	10:00				2 3:				2089.		
	12/20/2013	10:46	• •			2 30				1358.		
	12/20/2013	10:47				2 3:		6 68		31.		
	12/20/2013	11:34	• •		3	2 30	D 1	7 70		1576.		
	12/20/2013	11:35	• •				_		,	Valve shut 34.	5 3.95	
	12/20/2013	11:36				24						3622.92
SW-28 Event 6	1/8/2014	13:00				4 34		2 58		0.		
	1/8/2014	13:03						2 58		0.		
	1/8/2014	13:10	• •			4 34		3 58		22.		
	1/8/2014	13:15				4 3		3 58		31.		
	1/8/2014	13:50				3 34		5 5		292.		
	1/8/2014	15:00								905.		
	1/8/2014	16:20	1/8/2014 16:20	50	31.	5 34	4 9	5 5	3 19.5	1399.	0 160.04	3926.04

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)		olume of O ₂ (scf)	Mass of CO ₂	Cumulative Mass (lb)
	1/8/201	4 17:19	9 1/8/2014 17:19	55	31	L 34	1 :	10	52 20.4		1178.7	134.84	4060.88
	1/8/201	4 17:20	0 1/8/2014 17:20)						Valve shut	20.4	2.34	4063.22
	1/8/201	4 17:23	1 1/8/2014 17:21			26	5						4063.22
SW-28 Event 7	1/10/201	4 13:24	4 1/10/2014 13:24										4063.22
	1/10/201	4 13:27	7 1/10/2014 13:27	5	35	5 34	1	7	66 14.7	,	44.2	5.05	4068.27
	1/10/201	4 14:22	2 1/10/2014 14:22	4	34.5	34	10	.5	65 22.0		1010.0	115.54	4183.82
	1/10/201	4 15:19	9 1/10/2014 15:19	4	5 33	34	1	13	64 26.8	}	1391.9	159.23	3 4343.05
	1/10/201		7 1/10/2014 16:27	4.				14	66 28.8		1893.3	216.59	9 4559.64
	1/10/201		· ·		5 32.5	5 34	14	.5	62 29.8		1760.4		
	1/10/201									Valve shut	29.8	3.42	
	1/10/201		· ·			27	7						4764.45
SW-28 Event 8	1/13/201								0.0		0.0		
	1/13/201							2	66 4.2		2.1		
	1/13/201							.5	69 9.3		88.1		
	1/13/201							.5	70 9.3		261.5		
	1/13/201							6	71 12.4		748.7		
	1/13/201							7	71 14.4		13.4		
	1/13/201				32.5	33	3 6	.5	70 13.3		1919.7		
	1/13/201									Valve shut	13.3	1.52	
	1/13/201		• •			27							5112.99
SW-28 Event 9	1/15/201							<2	70 0.0		0.0		
	1/15/201							.2	68 12.6		283.8		
	1/15/201		· ·					8	68 16.5		14.5		
	1/15/201							.9	67 16.3		376.2		
	1/15/201		• •					.5	65 17.5		996.9		
	1/15/201							10	70 20.4		2200.8		
	1/15/201				4 32.2	2 32	2 10	.2	68 20.8		1133.3		
	1/15/201		• •							Valve shut	41.6	4.76	
	1/15/201					27							5690.38
<u>SW-28 Event 10</u>	1/17/201							3	46 5.9		0.0		
	1/17/201							9	46 18.8		24.7		
	1/17/201								46 22.2		20.5		
	1/17/201								55 22.3		2046.2		
	1/17/201							12	66 24.6		1617.5		
	1/17/201								66 28.9		26.8		
	1/17/201							14	62 29.3		1309.8		
	1/17/201							14	64 29.2		760.2		
	1/17/201								64 29.6		2382.9		
	1/17/201				34	32.2	<u>'</u>	15	64 31.3		2497.9		
	1/17/201					-	_			Valve shut	31.3	3.58	
CVV 20 F 44	1/17/201				- 20	27		-	40 7.0				6916.49
<u>SW-28 Event 11</u>	1/20/201							.5	40 7.0		44.0	4.01	6916.49
	1/20/201							8	40 16.6		11.8		
	1/20/201							11	40 23.4		20.0		
	1/20/201							13	48 27.3		810.7		
	1/20/201							14	48 29.7		28.5		
	1/20/201								54 30.6		1174.7		
	1/20/201							15	64 31.3		371.1		
	1/20/201							15	65 31.1		3494.3		
	1/20/201								65 31.5		2880.4		
	1/20/201								66 31.5		724.5		
	1/20/201		· ·						68 32.7		1828.2		
	1/20/201	4 15:18	8 1/20/2014 15:18	5	2 33.5	32.2	2 15	.9	70 32.8		2324.2	265.88	8480.17

Back to Master	Date		Time D		P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
		1/20/2014	16:25	1/20/2014 16:25	57	2 33.	5 32.2	16.5	68	34.1	2241.7	256.45	8736.62
		1/20/2014	16:26	1/20/2014 16:26						Valve shut	34.1	3.90	8740.52
		1/20/2014	16:35	1/20/2014 16:35			23						8740.52
W-28 Event 12		1/21/2014	9:08	1/21/2014 9:08	4	7 28				10.9			8740.52
		1/21/2014	9:09	1/21/2014 9:09	4	7 3			52	24.8	17.8		
		1/21/2014	9:10	1/21/2014 9:10	4				52	33.8	29.3		
		1/21/2014	10:04	1/21/2014 10:04	3!	9 3	3 32	13	61	26.9	1639.1	187.51	L 8933.42
		1/21/2014	11:00	1/21/2014 11:00	3	6 3	3 31.5	13.8	64	28.5	1551.5		
		1/21/2014	11:28	1/21/2014 11:28	3	6 33.	5 31.8	13.8	64	28.6	799.9	91.50	9202.43
		1/21/2014	13:15	1/21/2014 13:15	4	7 3	6 34	17.7	62	37.8	3552.9	406.46	9608.8
		1/21/2014	13:16	1/21/2014 13:16			27			Valve shut	37.8	4.32	
W-28 Event 13		2/10/2014	9:27	2/10/2014 9:27	5:	1 3	2 32.5	<2	60	0.0			9613.19
		2/10/2014	9:29	2/10/2014 9:29		3:	3 32.5	2.5	63.5	5.2	5.2	0.59	9613.78
		2/10/2014	10:10	2/10/2014 10:10	48	8 31.	5 31	6	67	12.2	355.0	40.61	L 9654.39
		2/10/2014	10:15	2/10/2014 10:15	48	8 33.	5 33.5	9.7	69	20.0	80.5	9.20	9663.60
		2/10/2014	11:42	2/10/2014 11:42	4	7 33.	5 32.5	9	71	18.6	1678.4	192.01	l 9855.6
		2/10/2014	13:27	2/10/2014 13:27	4	7 33.	5 32.5	9.9	71	20.4	2045.3	233.98	10089.59
		2/10/2014	14:59	2/10/2014 14:59	4	6 33.	5 32.5	10.5	73	21.6	1932.3	221.06	10310.6
		2/10/2014	16:46	2/10/2014 16:46	4.	5 32.	5 31.5	11.5	69	23.5	2412.9	276.03	10586.6
		2/10/2014	17:50	2/10/2014 17:50	54	4 32.	5 31.5	11.7	63	24.0	1521.6	174.07	7 10760.75
		2/10/2014	17:51	2/10/2014 17:51			26			Valve shut	24.0	2.75	10763.50
W-28 Event 14		2/11/2014	8:14	2/11/2014 8:14	54	4 25.	5 26	4.5	54	8.6			10763.50
		2/11/2014	8:16	2/11/2014 8:16	54	4 33.	5 31.5	13	54	27.3	35.9	4.10	10767.60
		2/11/2014	8:20	2/11/2014 8:20	50	0 32.	5 30.5	14.5	55	30.0	114.6	13.11	10780.7
		2/11/2014	9:00	2/11/2014 9:00	4	6 32.	5 30.5	15	58	31.0	1220.7	139.64	10920.3
		2/11/2014	9:01	2/11/2014 9:01			23			Valve shut	31.0	3.54	10923.9
		2/11/2014	12:16	2/11/2014 12:16	50	0 3:	2 31	15.7	69	31.9 Restart	6222.2	711.82	11635.7
		2/11/2014	12:18	2/11/2014 12:18	50	0 33.	5 31	16.7	69	34.5	66.4	7.60	11643.3
		2/11/2014	13:45	2/11/2014 13:45	4	7 34.:	3 32.5	17	63	35.6	3049.6	348.87	7 11992.1
		2/11/2014	14:53	2/11/2014 14:53	4	7 34.	3 32.5	17.8	60	37.4	2482.6	284.01	12276.20
		2/11/2014	17:04	2/11/2014 17:04	4	6 34.:	3 32	16.8	56	35.4	4771.5	545.86	12822.0
		2/11/2014	17:06	2/11/2014 17:06			27			Valve shut	70.9	8.11	12830.1
SW-28 Event 15		2/12/2014	8:31	2/12/2014 8:31	4.	5 2	7 27.5	9	47	17.7			12830.1
		2/12/2014	8:33	2/12/2014 8:33	4.	5 33.	5 31	17	48	35.9	53.5	6.12	12836.29
		2/12/2014	8:54	2/12/2014 8:54	4.	5 33.	5 30.2	17	53	35.7	751.1	85.93	3 12922.2
		2/12/2014	10:33	2/12/2014 10:33	4	6 33.	5 31	16.5	55	34.6	3476.4	397.70	13319.9
		2/12/2014	11:55	2/12/2014 11:55	4					34.6	2835.0	324.33	
		2/12/2014	13:59	2/12/2014 13:59	4					35.6	4349.3		
		2/12/2014	14:55	2/12/2014 14:55	48					36.0	2003.0		
		2/12/2014	15:55	2/12/2014 15:55	48					37.7	2208.8		
		2/12/2014	16:54	2/12/2014 16:54	4					37.4	2215.4		
		2/12/2014	17:55	2/12/2014 17:55	48					37.4	2283.2		
		2/13/2014	7:12	2/13/2014 7:12	4					40.8	31161.9		
		2/13/2014	7:14	2/13/2014 7:14		33		_0	.5	Valve shut	32232.3	23031	18703.20
				nterpolated from field d						Taite silat	Total CO ₂ Mass (lbs)		18703.20

Back to Master	Date 1	īme	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO₂ (scf)	Mass of CO ₂	Cumulative Mass (lb)
SW-29 Event 1	11/21/2013	9:52					<u> </u>		6 0.0	2. ,		· · · · ·
	11/21/2013	9:54	• •		34		<	2 6		0.0	0.00	0.00
	11/21/2013	10:02	• •		33			2 6		0.0		
	11/21/2013	10:25	• •							81.		
	11/21/2013	10:28								28.		
	11/21/2013	11:37	• •							961.		
	11/21/2013	11:41	• •							65.		
	11/21/2013	13:27	• •							1887.		
	11/21/2013	17:15	• •						6 25.0	4990.:		
	11/21/2013	17:20						_		ve shut 124.		
	11/21/2013	17:22				25						931.32
SW-29 Event 2	12/5/2013	8:04			37			3 6	5 6.4			931.32
<u> </u>	12/5/2013	8:42						7 6		401.	5 45.93	
	12/5/2013	9:18							2 16.7	565.		
	12/5/2013	10:18							8 16.6	1001.		
	12/5/2013	11:32	• •						0 18.7	1306.		
	12/5/2013	12:08	• •						0 19.7	691.		
	12/5/2013	12:09			, 33	, 3.	J.			ve shut 19.		
	12/5/2013	12:10	• •			29			Vai	ve silat 15.	, 2.20	1387.25
SW-29 Event 3	12/13/2013	8:44			32			2 5	8 0.0			1387.25
SVV 25 EVENTS	12/13/2013	8:45						3 5		3	2 0.36	
	12/13/2013	9:32						8 6		546.		
	12/13/2013	10:19	• •		34			8 6		788.		
	12/13/2013	10:13			35			1 6		19.		
	12/13/2013	12:01	• •		35					2385.		
	12/13/2013	14:28			35			4 6		3932.		
	12/13/2013	15:23							0 31.8	1681.		
	12/13/2013	15:24			30) 51		5 /		ve shut 31.		
									Valv	ve shut 51.	5.03	
SW-29 Event 4	12/13/2013 12/18/2013	15:25 8:25			36	5 34		2 54.	0.0	0.	0.00	2461.31 2461.31
3VV-29 EVEIIL 4										0.		
	12/18/2013	8:35			36							
	12/18/2013	9:31			36			. 01.		239.i 15.i		
	12/18/2013	9:32			38	35	1	0 61.				
	12/18/2013	9:40			20	່າ		2 76.		ve shut 174.		
	12/18/2013	13:55										
	12/18/2013	13:57						6 76.		12.		
	12/18/2013	14:50			35			0 72.		885.		
	12/18/2013	14:52			36					47.		
	12/18/2013	15:37						3 70.		1219.		
	12/18/2013	16:50			37			4 65.		2112.		
	12/18/2013	17:53			36			5 56.		1961.		
0144 00 5 4 5	12/18/2013	17:54				27		_		ve shut 32.	2 3.68	
SW-29 Event 5	1/7/2014	12:58							6	_		3227.82
	1/7/2014	12:59	• •						6 6.4	6.		
	1/7/2014	14:02	• •		35				6 9.7	507.		
	1/7/2014	14:04							6 17.4	27.		
	1/7/2014	15:19	· ·		36			8 4		1299.		
	1/7/2014	16:28								1234.		
	1/7/2014	17:16	• •		36	34	9.	5 4	0 20.7	941.		
	1/7/2014	17:17	• •						Valv	ve shut 20.	7 2.37	
	1/7/2014	17:18				27						3689.62
SW-29 Event 6	1/9/2014	13:00						4 6		0.0		
	1/9/2014	13:06	1/9/2014 13:06	42	36	35	6	5 6	2 13.9	67.	2 7.69	3697.31

Back to Master	Date Tir	me l		P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)		Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
	1/9/2014	13:10	1/9/2014 13:10	41	35	33		7	64 14.	8	57.3	6.55	3703.86
	1/9/2014	14:48	1/9/2014 14:48	39	35	32.5	8.	3	62 17.	5	1582.1	181.00	3884.86
	1/9/2014	15:33	1/9/2014 15:33	40	35	32.5	8.	3	61 17.	5	789.3	90.30	3975.16
	1/9/2014	17:11	1/9/2014 17:11	49	35	32.5	10.	5	60 22.	2	1948.9	222.95	4198.11
	1/9/2014	17:13	1/9/2014 17:13			27.8				Valve shut	44.4	5.08	4203.19
SW-29 Event 7	1/13/2014	8:18	1/13/2014 8:18	48	34	33.2	2	5	48 5.	3	0.0	0.00	4203.19
	1/13/2014	8:22	1/13/2014 8:22	48	30	30.4	ļ :	3	48 16.	2	43.1	4.93	4208.12
	1/13/2014	8:23	1/13/2014 8:23	48	33	34	!)	48 18.	9	17.6	2.01	4210.13
	1/13/2014	8:44	1/13/2014 8:44	45	32	32.8	10.	5	54 21.	7	425.7	48.70	4258.83
	1/13/2014	8:45	1/13/2014 8:45	45	33	33.6	12.	5	54 26.	1	23.9	2.73	4261.56
	1/13/2014	9:53	1/13/2014 9:53	45	33	33	1	3	64 26.	8	1798.8	205.78	4467.34
	1/13/2014	11:06	1/13/2014 11:06	43	33	32.8	12.	5	69 25.	7	1916.9	219.30	4686.64
	1/13/2014	12:18	1/13/2014 12:18	44	33	32.6	12.	5	70 25.	7	1848.0	211.42	4898.05
	1/13/2014	13:00	1/13/2014 13:00	44	33	32.6	1	3	70 26.	7	1099.0	125.73	5023.78
	1/13/2014	13:02	1/13/2014 13:02	44	35	33	1	5	70 33.	5	60.2	6.89	5030.67
	1/13/2014	14:30	1/13/2014 14:30	40	34.5	33	1	7	70 35.	4	3034.8	347.18	5377.86
	1/13/2014	15:47	1/13/2014 15:47	38	33.5	32.8	1	5	66 31.	1	2560.8	292.96	5670.81
	1/13/2014	16:41	1/13/2014 16:41	38	33.5	32.6	1	5	66 33.	1	1733.8	198.34	5869.15
	1/13/2014	17:03	1/13/2014 17:03	45	33.5	32.6	5 1	7	66 35.	2	751.9	86.02	5955.17
	1/13/2014	17:04	1/13/2014 17:04			28	}			Valve shut	35.2	4.03	5959.20
SW-29 Event 8	1/15/2014	8:21	1/15/2014 8:21	54	31	L 32	. <	2	46 0.	0			5959.20
	1/15/2014	8:22	1/15/2014 8:22	54	31	L 32	!	5	46 10.	3	5.1	0.59	5959.79
	1/15/2014	8:24	1/15/2014 8:24	54	32	2 33	9.	3	46 20.	4	30.7	3.51	5963.30
	1/15/2014	8:58	1/15/2014 8:58	50	31	31.2	13.	2	58 26.	8	802.5	91.81	6055.11
	1/15/2014	8:59	1/15/2014 8:59	50	35	34	19.	2	58 40.	7	33.8	3.86	6058.97
	1/15/2014	9:38	1/15/2014 9:38	43	35	34	18.	2	64 38.	4	1542.2	176.42	6235.40
	1/15/2014	10:50	1/15/2014 10:50	40	34	33.6	17.	3	68 37.	0	2712.9	310.36	6545.75
	1/15/2014	11:20	1/15/2014 11:20	39	34	32.8	17.	2	68 35.	7	1091.0	124.82	6670.57
	1/15/2014	12:30	1/15/2014 12:30	42	35	32.8	1)	67 39.	9	2648.8	303.02	6973.59
	1/15/2014	12:31	1/15/2014 12:31	42	36	33.6	2	L	67 44.	6	42.3	4.83	6978.43
	1/15/2014	13:48	1/15/2014 13:48	48	37.5	34.8	2	2	64 47.	6	3547.3	405.81	7384.24
	1/15/2014	15:36	1/15/2014 15:36	45	37.5	34.4	2	2	67 47.	4	5127.8	586.62	7970.85
	1/15/2014	16:33	1/15/2014 16:33	48	37.5	34.2	. 2	3	65 49.	7	2766.5	316.49	8287.34
	1/15/2014	16:34	1/15/2014 16:34							Valve shut	49.7	5.68	8293.02
	1/15/2014	16:37	1/15/2014 16:37			28	}						8293.02
SW-29 Event 9	1/17/2014	7:25	1/17/2014 7:25	55	32			;	37 5.	2			8293.02
	1/17/2014	7:27	1/17/2014 7:27	55		34.8			37 12.	7	17.9	2.05	
	1/17/2014	7:28	1/17/2014 7:28	55					37 22.		17.5		
	1/17/2014	8:19	1/17/2014 8:19	48					53 31.		1358.1		
	1/17/2014	8:20	1/17/2014 8:20							Valve shut	31.0		
Note: a red value,			interpolated from field d	ata							Total CO ₂ Mass (lbs):		8455.99

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master			Date + Time	(psig)	(psig)	(psi)	Reading (scfm)		Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-30 Event 1	11/14/2013	12:20	• •				0					
	11/14/2013	12:22	• •					53	0.0	0.0		
	11/14/2013	12:25	• •					54.5	0.0	0.0		
	11/14/2013	12:28						56.8		0.0		
	11/14/2013	12:32	• •					60.6		12.0		
	11/14/2013	12:36	• •					70.7	7.2	26.4		
	11/14/2013	12:41	• •					74.4		39.2		
	11/14/2013	12:42	• •					73.9	11.1	9.8		
	11/14/2013	12:50						73.4	12.0	92.3		
	11/14/2013	13:40	• •					70.3	15.8	694.3		
	11/14/2013	13:47	• •					7	21.1	129.1		
	11/14/2013	15:00	• •					64.2		1557.1		
	11/14/2013	15:51	• •					52.7	22.3	1117.7		
	11/14/2013	15:55						52.7	23.6	91.7		
	11/14/2013	16:30	• •		2 37	33	13.5	41	24.1	834.1		
	11/14/2013	16:32	• •						Valve shut	48.2	2 5.51	
	11/14/2013	16:33										532.18
SW-30 Event 2	12/4/2013	12:25						80				532.18
	12/4/2013	13:05	12/4/2013 13:05	55	36	35.6		85	6.3	125.2		546.51
	12/4/2013	13:45	12/4/2013 13:45	52	36	35	4.5	85	9.4	313.0	35.80	582.31
	12/4/2013	14:43	12/4/2013 14:43	50	36	35.2	5	74	10.5	578.0	66.13	648.44
	12/4/2013	15:50	12/4/2013 15:50	52	36	35.2	6	78	12.6	775.4	88.71	737.14
	12/4/2013	17:18	12/4/2013 17:18	54	35	35.2	6	69	12.6	1108.3	126.79	863.94
	12/4/2013	17:20	12/4/2013 17:20						Valve shut	25.2	2.88	866.82
	12/4/2013	17:21	12/4/2013 17:21			26						866.82
SW-30 Event 3	12/17/2013	12:34	12/17/2013 12:34	48	37	37	<2	71	0.0	0.0	0.00	866.82
	12/17/2013	12:34	12/17/2013 12:34	48	30	31	<2	71	0.0	0.0	0.00	866.82
	12/17/2013	12:36	12/17/2013 12:36	48	36	5	<2	71	0.0	0.0	0.00	866.82
	12/17/2013	13:25	12/17/2013 13:25	48	35	33	<2	76	0.0	0.0	0.00	866.82
	12/17/2013	14:24	12/17/2013 14:24	45	35	32.5	<2	75	0.0	0.0	0.00	866.82
	12/17/2013	15:38	12/17/2013 15:38	45	36	33	<2	74	0.0	0.0	0.00	866.82
	12/17/2013	17:01	12/17/2013 17:01	. 45	36	32	3	66	6.4	264.6	30.27	897.09
	12/17/2013	22:16	12/17/2013 22:16	45	35	32	4	56	8.5	2343.0	268.04	1165.13
	12/18/2013	8:15	12/18/2013 8:15	48	35	31	6	54	12.8	6372.3	728.99	1894.11
	12/18/2013	8:18	12/18/2013 8:18	}					Valve shut	38.3	4.38	1898.50
	12/18/2013	8:19	12/18/2013 8:19)		26						1898.50
SW-30 Event 4	1/8/2014	8:22	1/8/2014 8:22	56	35	33	<2	39	0.0	0.0	0.00	1898.50
	1/8/2014	9:00	1/8/2014 9:00	50	35	31.5	<2	40	0.0	0.0	0.00	1898.50
	1/8/2014	9:55	1/8/2014 9:55	47	34	32.5	<2	48	0.0	0.0	0.00	1898.50
	1/8/2014	10:49	1/8/2014 10:49	46	35	34.5	<2	52	0.0	0.0	0.00	1898.50
	1/8/2014	12:05	1/8/2014 12:05	45	34	33	<2	60	0.0	0.0	0.00	1898.50
	1/8/2014	13:18	1/8/2014 13:18	52	35	31.5	<2	58	0.0	0.0	0.00	1898.50
	1/8/2014	13:20	1/8/2014 13:20	52	36	33	5.5	58	11.8	11.8	3 1.35	1899.85
	1/8/2014	14:20	1/8/2014 14:20	50	35.5	33	6	56	12.8	738.0	84.42	1984.27
	1/8/2014	16:27				32.5	9	53	19.3	2038.2	2 233.17	2217.44
	1/8/2014	21:15			35			50	23.5	6163.3		
	1/8/2014	21:16			41			50	40.8	32.2		
	1/9/2014	7:10						54	40.6	24178.1		
	1/9/2014	8:26						54	41.1	3104.3		
	1/9/2014	8:27				3.		3.	Valve shut			
SW-30 Event 5	1/10/2014	9:06			35	34.5	<2	66				6052.00
	1/10/2014	9:09						66	0.0			6052.00
	1/10/2014	9:55						66		191.6	5 21.92	
	1, 10, 2014	5.55	1, 10, 2017 3.33	73	J-	. 55	7	30	0.5	131.0	21.72	00/3.51

					P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	C	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Fl	ow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
		1/10/2014	9:57	1/10/2014 9:57	45	35	34.5	5	5	66	10.5	18.8	2.10	6076.07
		1/10/2014	10:51	1/10/2014 10:51	45	35	34.5	;	5	72	10.5	566.4	64.79	6140.86
		1/10/2014	12:42	1/10/2014 12:42	42	35	34.5	;	6	72	12.5	1276.9	146.08	6286.94
		1/10/2014	14:29	1/10/2014 14:29	50	35	34.5	6	.5	70	13.6	1400.1	160.18	6447.11
		1/10/2014	16:25	1/10/2014 16:25	46	35	5 34	1 7	.5	71	15.7	1700.8	194.5	7 6641.68
		1/10/2014	17:42	1/10/2014 17:42	47	34	33	3	8	68	16.6	1244.6	142.38	6784.06
		1/10/2014	17:43	1/10/2014 17:43	47	35	5 34	1	11	68	23.1	19.9	2.27	7 6786.34
		1/10/2014	22:02	1/10/2014 22:02	45	35	33	3	11	66	23.1	5988.1	685.04	7471.38
		1/10/2014	22:06	1/10/2014 22:06	45	36	5 34	1	13	66	27.6	101.5	11.62	7482.99
		1/11/2014	11:41	1/11/2014 11:41	40	34	1 32	2 15	.5	74	32.0	24308.4	2780.89	10263.88
		1/11/2014	11:42	1/11/2014 11:42							Valve shut	32.0	3.66	10267.54
		1/11/2014	11:48	1/11/2014 11:48			26	5						10267.54
SW-30 Event 6	:	2/11/2014	10:01	2/11/2014 10:01	52	36	34.5	5	<2	60	0.0			10267.54
	:	2/11/2014	10:03	2/11/2014 10:03	52	34	1 34	ļ <	<2	60	0.0	0.0	0.00	10267.54
		2/11/2014	10:31	2/11/2014 10:31	51	32.5	32.5	5	<2	62	0.0	0.0	0.00	10267.54
	:	2/11/2014	10:34	2/11/2014 10:34	51	34	33.5	5	2	62	4.2	6.3	0.72	10268.26
	:	2/11/2014	11:51	2/11/2014 11:51	51	34	33.5	5 2	.5	63	5.2	362.0	41.43	10309.67
		2/11/2014	12:46	2/11/2014 12:46	45	34	33.5	5	3	63	6.3	315.9	36.14	10345.81
		2/11/2014	14:10	2/11/2014 14:10	45	34	33.5	5 3	.8	60	8.0	597.5	68.35	10414.16
		2/11/2014	16:59	2/11/2014 16:59	45	33	33.5	5 4	.3	55	9.0	1429.6	163.54	10577.70
		2/11/2014	17:20	2/11/2014 17:20	45	33	33.5	5 4	.3	54	9.0	188.2	21.53	10599.23
		2/11/2014	17:21	2/11/2014 17:21			29)			Valve shut	9.0	1.03	3 10600.26
Note: a red value,	i										To	otal CO ₂ Mass (lbs)		10600.26

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO₂	Cumulative
Back to Master	Date 1	Гime	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-31 Event 1	11/13/2013	13:08	11/13/2013 13:08	3 28	3 12	2	0)	0.0			
	11/13/2013	13:09	11/13/2013 13:09	32	2 32	2 31	<2	49.8	0.0	0.0	0.00	0.00
	11/13/2013	13:11	11/13/2013 13:11	. 34	1 34	1 32	<2	53.2	0.0	0.0	0.00	0.00
	11/13/2013	13:12	11/13/2013 13:12	2 30) 28	3 25	4.5	55	7.2	3.6	0.41	L 0.41
	11/13/2013	13:14	11/13/2013 13:14	36	5 33	3 25	12	. 55	20.3	27.4	3.14	3.55
	11/13/2013	13:16	11/13/2013 13:16	5 34	1 27.	5 27	14.75	56.3	23.4	43.6	5 4.99	8.54
	11/13/2013	13:17	11/13/2013 13:17	38	3	2 26.5	15.25	55.2	25.5	24.4	1 2.79	9 11.34
	11/13/2013	13:18	11/13/2013 13:18	3 42	2 34	1 28	18.5	53.6	31.6	28.5	3.27	7 14.60
	11/13/2013	13:50	11/13/2013 13:50) 42	2 3:	1 24	21.5	38.7	36.1	1083.8	3 123.99	138.59
	11/13/2013	13:51	11/13/2013 13:51	. 46	5 33	3 25	22.5	37.5	38.7	37.4	4.28	3 142.87
	11/13/2013	13:52	11/13/2013 13:52	. 53	3	5 27.5	25	34.8	44.5	41.6	5 4.76	147.62
	11/13/2013	13:54	11/13/2013 13:54	57	7 38	3 28	26	34.5	47.2	91.7	7 10.48	3 158.11
	11/13/2013	13:56	11/13/2013 13:56	60) 40	30	27	33.6	50.0	97.2	2 11.12	169.22
	11/13/2013	14:30	11/13/2013 14:30) 62	39.	5 28.5	28.75	29.7	53.2	1754.2	2 200.69	369.91
	11/13/2013	15:10	11/13/2013 15:10) 62	2 39	28	27.75	27.5	51.2	2088.6	5 238.94	608.85
	11/13/2013	15:16	11/13/2013 15:16	66	5 40	28.5	28.75	24.8	53.7	314.9	36.02	644.88
	11/13/2013	15:24	11/13/2013 15:24	. 70) 43	3 30	30	24.2	57.7	445.6	5 50.98	695.85
	11/13/2013	16:08	11/13/2013 16:08	3 72	2 43	30.5	30	19.5	58.0	2544.0	291.03	986.89
	11/13/2013	16:59	11/13/2013 16:59	72	2 43.	5 29.5	30.75	-4	61.3	3041.6	347.95	1334.84
	11/13/2013	17:11	11/13/2013 17:11		22				Valve shut	735.7		7 1419.01
SW-31 Event 2	12/4/2013	8:10	12/4/2013 8:10									1419.01
	12/4/2013	8:13	12/4/2013 8:13		30	24	. 32	. 64	63.9	191.8	3 21.94	
	12/4/2013	8:42							68.4	1918.9		
	12/4/2013	8:45	12/4/2013 8:45						61.5	194.8		
	12/4/2013	9:10	12/4/2013 9:10						61.3	1535.2		
	12/4/2013	10:01	12/4/2013 10:01						53.7	2933.2		
	12/4/2013	11:02							55.4	3326.5		
	12/4/2013	12:17	12/4/2013 12:17							4174.8		
	12/4/2013	12:18	12/4/2013 12:18						Valve shut	55.9		
	12/4/2013	12:19	12/4/2013 12:19			16			74.70 5.140	55		3058.48
SW-31 Event 3	12/17/2013	8:27	12/17/2013 8:27		33			48.0	15.7			3058.48
	12/17/2013	9:56							35.1	2256.7	7 258.17	
	12/17/2013	10:03	12/17/2013 10:03						46.9	286.8		
	12/17/2013	11:07	12/17/2013 11:07		32				47.8	3030.2		
	12/17/2013	12:25	12/17/2013 12:25		33				49.3	3785.5		
	12/17/2013	12:28	12/17/2013 12:28			18		7 0.10	Valve shut	147.8		
SW-31 Event 4	1/9/2014	8:43			34			2 54.0				4146.08
<u> </u>	1/9/2014	8:48			34					0.0	0.00	
	1/9/2014	10:20			31				13.2	607.0		
	1/9/2014	10:22			31					31.5		
	1/9/2014	11:36							23.9	1560.3		
	1/9/2014	11:38	1/9/2014 11:38		31				25.2	49.2		
	1/9/2014	12:50	1/9/2014 12:50							1889.1		
	1/9/2014	12:51	1/9/2014 12:51		31	20		03.0	Valve shut	27.3		
SW-31 Event 5	1/14/2014	8:09			32			. 62.0	0.0	0.0		
JAN DI LACIIL D	1/14/2014	8:11	1/14/2014 8:03						0.0	0.0		
	1/14/2014	8:51	1/14/2014 8:51		31				10.1	202.4		
	1/14/2014	8:55			33			62.0	14.5	49.2		
	1/14/2014	10:00			33				14.5	1017.9		
	1/14/2014	11:26							20.0	1584.8		
	1/14/2014				32				20.0	2245.7		
	1/14/2014	13:12			31				22.4 25.1	3508.4		
		15:40										
	1/14/2014	16:28	1/14/2014 16:28	53	31	30	13	72.0	26.1 Valve shut	1226.6	5 140.33	3 5747.60

				P at Reducer	P at Panel	P at Well	Rotameter	T (95)	Flore (outre)	Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time		(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
CIAL 24 Frank C	1/14/201				20	24		40.0	0.0	0.0	0.00	5747.60
SW-31 Event 6	1/16/201			55						0.0		
	1/16/201 1/16/201			55 49		32 31	<2			0.0 165.9		
	1/16/201			49			Δ			7.2		
	1/16/201			45			5.5			676.9		
	1/16/201			43			6.5			765.8		
	1/16/201			49		30.5	7.5			1530.7		
	1/16/201			49		30.5	8.2			1563.4		
	1/16/201			50		30.5				1069.0		
	1/16/201			54		30				527.4		
	1/16/201		• •	56						393.4		
	1/16/201			30	31	30	0.0	30.0	Valve shut	17.9		
SW-31 Event 7	1/21/201		• •	45	33	34	<2	71.0		17.5	2.00	6516.10
<u>•••••••</u>	1/21/201			51						0.0	0.00	
	1/21/201		• •	50		33.2				140.3		
	1/21/201			50			3			5.0		
	1/21/201		• •	54			3.7			447.7		
	1/21/201			55		33.2				504.5		
	1/21/201					24			Valve shut			6641.65
SW-31 Event 8	1/23/201			55	27	28.8	<2	40.0	0.0			6641.65
	1/23/201			55		32.4	<2	40.0	0.0	0.0	0.00	6641.65
	1/23/201	4 8:16	1/23/2014 8:16	52	30	32.2	<2	44.0	0.0	0.0	0.00	6641.65
	1/23/201	4 8:53	1/23/2014 8:53	49	29	31.6	<2	50.0	0.0	0.0	0.00	6641.65
	1/23/201	4 9:32	1/23/2014 9:32	46	29	31.4	<2	50.0	0.0	0.0	0.00	6641.65
	1/23/201	4 9:34	1/23/2014 9:34	46	32	33.4	2	50.0	4.1	4.1	0.47	6642.13
	1/23/201	4 10:07	1/23/2014 10:07	45	32	33.4	2.5	50.0	5.2	153.8	17.59	6659.72
	1/23/201	4 11:13	1/23/2014 11:13	42	32	33.2	3.5	52.0	7.2	409.6	46.86	6706.58
	1/23/201	4 12:02	1/23/2014 12:02	41	31	32.6	3.8	54.0	7.8	367.2	42.01	6748.59
	1/23/201	4 12:54	1/23/2014 12:54	46	31	32.4	3.9	58.0	7.9	407.7	46.64	6795.23
	1/23/201	4 14:17	1/23/2014 14:17	50	30	31.6	4	55.0	8.1	663.5	75.90	6871.13
	1/23/201	4 15:55	1/23/2014 15:55	50	30	31.4	4.2	54.0		810.3	92.69	6963.83
	1/23/201			55	30	31.4	4.2	54.0	8.5	339.0		
	1/23/201		• •						Valve shut	16.9	1.94	
	1/23/201					22						7004.54
SW-31 Event 9	1/28/201											7004.54
	1/28/201			56						0.0		
	1/28/201			55						0.0		
	1/28/201									0.0		
	1/28/201									0.0		
	1/28/201									340.5		
	1/28/201			5:				54		567.3		
	1/28/201			50						255.8		
	1/28/201								9.3	895.4		
	1/28/201			48						601.9		
	1/28/201							50		696.2		
	1/28/201				L 31		4	50		450.7		
SW/ 21 Event 10	1/28/201				1 32	22.4 2 34.8		40	Valve shut	16.4	1.87	7442.04 7442.04
SW-31 Event 10	1/29/201 1/29/201									0.0	0.00	
	1/29/201			51 48						0.0		
	1/29/201			40						157.0		
	1/29/201									366.2		
	1/29/201	- 11.40	1/23/2014 11.40	45	, 32	. 54	2.5	40	J.2	300.2	41.90	, /301.09

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time		(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	1/29/201			48.5				40		544.1		
	1/29/201			46				40	8.4	502.3		
	1/29/201		• •					40	8.4	502.3		
	1/29/201			50	32			40	9.4 Valve shut	800.5	91.58	
	1/29/201					26						7770.64
SW-31 Event 11	1/30/201											7770.64
	1/30/201								4.3	107.1		
	1/30/201								5.3	95.6		
	1/30/201		• •		32.5	34	2.5	40	5.3	210.6		
	1/30/201			50				42	6.3	461.0		
	1/30/201		• •	50					7.3	474.6		
	1/30/201			50	32			44	8.8	722.2		
	1/30/201		• •			23			Valve shut	8.8		8008.58
<u>SW-31 Event 12</u>	2/3/201	4 8:36			32	34	<2	68	0.0	0.0	0.00	8008.58
	2/3/201	4 8:42	2/3/2014 8:42	54	32	34	<2	68	0.0	0.0	0.00	8008.58
	2/3/201	4 8:52	2/3/2014 8:52	53	32	33.4	<2	68	0.0	0.0	0.00	8008.58
	2/3/201	4 9:14	2/3/2014 9:14	53	32	33	<2	70	0.0	0.0	0.00	8008.58
	2/3/201	4 10:17	2/3/2014 10:17	52	32	32.6	3	74	6.1	191.1	. 21.87	8030.45
	2/3/201	4 11:56	2/3/2014 11:56	51	32	32	3.9	77	7.9	689.7	78.90	8109.35
	2/3/201	4 12:02	2/3/2014 12:02	50	33	32.6	4.5	77	9.2	51.1	5.85	8115.19
	2/3/201	4 13:20	2/3/2014 13:20	50	33	32.6	5.2	74	10.6	772.3	88.36	8203.55
	2/3/201	4 14:20	2/3/2014 14:20	50	33	32.6	5.8	73	11.9	675.0	77.22	8280.77
	2/3/201	4 15:30	2/3/2014 15:30	50	33	32.6	6	70	12.3	846.4	96.83	8377.60
	2/3/201	4 16:57	2/3/2014 16:57	50	33	32.6	6.5	70	13.3	1116.0	127.67	8505.27
	2/4/201	4 9:32	2/4/2014 9:32		32	31	13.2	70	26.8	19970.6	2284.63	10789.90
	2/4/201	4 9:33	2/4/2014 9:33			22			Valve shut	26.8	3.07	10792.97
SW-31 Event 13	2/5/201	4 8:04	2/5/2014 8:04	55	25	24		63	0.0			10792.97
	2/5/201	4 8:06	2/5/2014 8:06	55	32.5	31	<2	63	0.0	0.0	0.00	10792.97
	2/5/201	4 8:15	2/5/2014 8:15	54	32.5	31	<2	64	0.0	0.0	0.00	10792.97
	2/5/201	4 8:16	2/5/2014 8:16	54	35	32	<2	64	0.0	0.0	0.00	10792.97
	2/5/201	4 8:38	2/5/2014 8:38	48	35	32	3.7	64	7.8	85.8	9.82	10802.78
	2/5/201	4 9:22	2/5/2014 9:22	45	35	32	4.5	66	9.5	379.9	43.46	10846.24
	2/5/201	4 10:21	2/5/2014 10:21	44	35	32	5	68	10.5	589.0	67.38	10913.62
	2/5/201	4 11:23	2/5/2014 11:23	44	35	32	5.5	70	11.5	682.8	78.11	10991.73
	2/5/201	4 12:35	2/5/2014 12:35	44	35	32	5.8	72	12.1	851.6	97.43	11089.16
	2/5/201	4 13:29	2/5/2014 13:29	43	35	32	5.9	76	12.3	659.4	75.44	11164.60
	2/5/201	4 14:43	2/5/2014 14:43	45	35	32	5.9	76	12.3	909.6	104.06	11268.66
	2/5/201	4 15:36	2/5/2014 15:36	45	35	31.5	6	71	12.6	658.6	75.35	11344.00
	2/5/201				35	31.5	6	66.5	12.6	1170.8	133.94	11477.94
	2/5/201				35	31.5	7	62	14.8	3439.1	393.43	11871.38
	2/6/201									12180.2		
	2/6/201					20			Valve shut	70.5		
SW-31 Event 14	2/7/201				32			52				13272.87
	2/7/201								0.0	0.0	0.00	
	2/7/201			46				56		92.6		
	2/7/201							56		16.3		
	2/7/201									548.5		
	2/7/201			42				60		1475.9		
	2/7/201								19.1	33.3		
	2/7/201									1830.7		
	2/7/201									1480.8		
	2/7/201								20.7	1543.8		
	2/7/201									1230.3		
	2///201	- 10.30	2///2014 10.30	40	33	30.3	10.1	38	21.0	1230.3	140.74	14210.90

					P at Reducer		P at Well	Rotameter	_	,		Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Tir	me [Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)		CO ₂ (scf)	(lb)	Mass (lb)
		2/7/2014	17:27	2/7/2014 17:27	4	5 33	30.5	10.3	3	57 21.4	1	1081.0	123.60	5 14340.57
		2/7/2014	17:28	2/7/2014 17:28							Valve shut	21.4	2.4	5 14343.02
SW-31 Event 15		2/11/2014	7:54	2/11/2014 7:54	5	7 31	32.5	<2	!	55 0.0)			14343.02
		2/11/2014	7:55	2/11/2014 7:55	5	5 32	33.2	<2	!	55 0.0)	0.0	0.00	14343.02
		2/11/2014	9:16	2/11/2014 9:16	54	4 30.5	32.5	3.8	3	60 7.	7	310.4	35.5	1 14378.52
		2/11/2014	9:18	2/11/2014 9:18	54	4 32	33.5	4.7	,	60 9.0	5	17.3	1.98	3 14380.50
		2/11/2014	10:29	2/11/2014 10:29	5	3 32	33.5	5.7	,	66 11.0	5	754.6	86.33	3 14466.83
		2/11/2014	11:49	2/11/2014 11:49	5:	3 32	33.5	6	j	66 12.2	2	954.0	109.13	3 14575.97
		2/11/2014	12:44	2/11/2014 12:44	4	7 32	33.5	6.2	!	66 12.0	5	683.9	78.2	14654.20
		2/11/2014	14:00	2/11/2014 14:00	4	7 31.8	33.5	6.5	;	63 13.3	3	984.1	112.5	3 14766.79
		2/11/2014	16:48	2/11/2014 16:48	4	7 31.8	33.5	7.2	!	56 14.8	3	2356.3	269.50	5 15036.35
		2/11/2014	17:25	2/11/2014 17:25	5	31.5	33.5	7.2	!	54 14.8	3	546.9	62.5	7 15098.92
		2/11/2014	17:26	2/11/2014 17:26			26				Valve shut	14.8	1.69	9 15100.61
Notes a red value	: ~ 7 0	C indiantantha	مميير مينامير	internalated from field d	a+a						T. 1. 1	CO Mars (IIss)		45400.64

Total CO₂ Mass (lbs):

				P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date T	ime	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp	(°F) Flo	ow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-32 Event 1	11/11/2013	12:45	11/11/2013 12:45				8	0	72	0.0			
	11/11/2013	12:46	11/11/2013 12:46				1	0	72	0.0	0.0	0.00	0.00
	11/11/2013	12:47	11/11/2013 12:47				6	<2	72	0.0	0.0		
	11/11/2013	12:48	11/11/2013 12:48	}	3	1 2	9	<2	72	0.0	0.0		0.00
	11/11/2013	12:49	11/11/2013 12:49)	3	2 3	0	<2	72	0.0	0.0	0.00	0.00
	11/11/2013	12:59	11/11/2013 12:59)	2	8 2	6	<2	72	0.0	0.0	0.00	0.00
	11/11/2013	13:00	11/11/2013 13:00)	3	1 2	9	5.5	72	11.0	5.5	0.63	0.63
	11/11/2013	13:22	11/11/2013 13:22	. 33	3	0 2	8	8	72	15.9	295.7	33.83	34.46
	11/11/2013	13:35	11/11/2013 13:35	32	2 3	0 2	8	8	72	15.9	206.1	23.58	58.04
	11/11/2013	13:50	11/11/2013 13:50	32	2 2	9 2	7	8.5	72	16.7	243.8	27.89	85.93
	11/11/2013	14:07	11/11/2013 14:07	32	2 2	9 2	7	9	72	17.6	291.5	33.34	119.27
	11/11/2013	14:44	11/11/2013 14:44	32	2 2	9 2	7	9.5	72	18.6	670.6	76.72	195.99
	11/11/2013	14:54	11/11/2013 14:54	30	5 3	1 2	9	11	75.5	17.8	182.1	20.83	216.82
	11/11/2013	14:58	11/11/2013 14:58	3 40	3	3 3	1 1	12.5	73	20.7	77.1	8.82	225.64
	11/11/2013	15:03	11/11/2013 15:03	40	3	3 3	1 12	2.75	73	21.1	104.7	11.98	237.62
	11/11/2013	15:09	11/11/2013 15:09	42	2 3	5 3	3	14	70.5	23.8	134.8	15.42	253.04
	11/11/2013	15:13	11/11/2013 15:13	1						0.0	47.5	5.44	258.47
	11/11/2013	15:16	11/11/2013 15:16	5 42	2 3	5 3	3 1	14.5	66.2	24.7	37.1	4.24	262.72
	11/11/2013	15:19	11/11/2013 15:19	40	3	3 3	1	14	68.1	23.3	72.1	8.25	270.96
	11/11/2013	15:23	11/11/2013 15:23	38	3	2 3	0 1	13.5	69.9	22.2	91.1	10.42	281.39
	11/11/2013	15:26	11/11/2013 15:26	36	3	0 2	8 1	12.5	69.5	20.1	63.5	7.27	288.65
	11/11/2013	15:43	11/11/2013 15:43	36	3	0 2	8 1	12.5	62.6	20.3	343.4	39.28	327.94
	11/11/2013	16:15	11/11/2013 16:15	36	3	0 2	8 1	12.5	56.3	20.4	650.6	74.43	402.37
	11/11/2013	16:24	11/11/2013 16:24	34	2	9 2	7	12	56.3	19.4	178.9	20.46	422.83
	11/11/2013	16:26	11/11/2013 16:26	32	2	8 2	6	11	56.3	17.5	36.9	4.22	427.05
	11/11/2013	16:34	11/11/2013 16:34	30	2	6 2	4 1	10.5	56.2	16.3	135.5	15.50	442.55
	11/11/2013	16:43	11/11/2013 16:43	28	2	.5 2	3	9	54.8	13.8	135.8	15.54	458.09
	11/11/2013	17:06	11/11/2013 17:06	28	2	2 2	0	9	45.6	13.4	313.7	35.89	493.98
	11/11/2013	17:08	11/11/2013 17:08	30	2	4 2	2 1	10.5	48	16.1	29.5	3.37	497.35
	11/11/2013	17:11	11/11/2013 17:11	. 32	2	6 2	4 1	11.5	48	18.0	51.2	5.85	503.20
	11/11/2013	17:15	11/11/2013 17:15	34	2	7 2	5 1	12.5	48	19.9	75.8	8.67	511.87
	11/11/2013	17:17	11/11/2013 17:17	36	2	8 2	6 1	13.5	50.3	21.7	41.5	4.75	516.62
	11/11/2013	17:20	11/11/2013 17:20	40	3	1 2	9	15	48	25.0	69.9	8.00	524.62
	11/11/2013	17:24	11/11/2013 17:24			2 3	0 1	15.5	42.5	26.2	102.4		
	11/11/2013	17:25	11/11/2013 17:25	38	3	0 2	8	14	44.5	23.1	24.7		
	11/11/2013	17:39	11/11/2013 17:39)						Valve Shut	323.7	37.03	576.18
	11/11/2013	17:40	11/11/2013 17:40			.8							576.18
SW-32 Event 2	12/6/2013	8:20	12/6/2013 8:20				7	<2	71	0.0			576.18
	12/6/2013	8:22	12/6/2013 8:22			2 3		<2	71	0.0			576.18
	12/6/2013	8:48	12/6/2013 8:48			0 30.		8	76	15.8	205.3		
	12/6/2013	8:51	12/6/2013 8:51			0 30.		10	76	19.7	53.3		
	12/6/2013	9:00	12/6/2013 9:00			9 30.		10	76	19.5	176.7		
	12/6/2013	9:01	12/6/2013 9:01			2 3		12	76	24.2	21.9		
	12/6/2013	10:13	12/6/2013 10:13			2 3		15	79	30.2	1958.9		
	12/6/2013	10:56	12/6/2013 10:56			1 31.		15	82	29.8	1289.3		
	12/6/2013	10:58	12/6/2013 10:58			2 3		5.25	82	32.6	62.4		
	12/6/2013	12:40	12/6/2013 12:40			2 3		18	84	36.1	3502.3		
	12/6/2013	12:42	12/6/2013 12:42		3	2 3		19	84	38.1 Valve Shut	74.1	8.48	
	12/6/2013	12:43	12/6/2013 12:43			19.							1416.36
SW-32 Event 3	12/12/2013	8:40				5 3		<2	58	0.0			1416.36
	12/12/2013	9:38	12/12/2013 9:38			5 3		8	64	16.9	489.1		
	12/12/2013	9:39	12/12/2013 9:39			0 32.		10	64	20.0	18.4		
	12/12/2013	10:27	12/12/2013 10:27	50	3	0 3	2	12	67	23.9	1053.0	120.46	1594.88

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)		Volume of CO ₂ (scf)	Mass of CC	-	Cumulative Mass (lb)
	12/12/2013	11:15	12/12/2013 11:15	45	30	31.	13.	5 68	8 26.9		1218.3	139	9.37	1734.25
	12/12/2013	11:16	5 12/12/2013 11:16	43	31	1 32.	5 1	5 68	8 30.2		28.5	3	3.26	1737.51
	12/12/2013	12:32	12/12/2013 12:32	45	31	1 32	2 10	6 70	0 32.1		2367.9	270	0.89	2008.41
	12/12/2013	12:40	12/12/2013 12:40)						Valve Shut	257.1	. 29	9.41	2037.81
	12/12/2013	12:41	12/12/2013 12:41	-		19.	;							2037.81
SW-32 Event 4	12/18/2013	8:09	12/18/2013 8:09	45	31	1 30) <	2 54	4 0.0		0.0	(0.00	2037.81
	12/18/2013	8:12	12/18/2013 8:12	45	33	3 3	2 <	2 54	4 0.0		0.0	(0.00	2037.81
	12/18/2013	9:21	12/18/2013 9:21	. 48	32	2 3:	6.	5 60	0 13.3		459.8	52	2.61	2090.42
	12/18/2013	9:22	12/18/2013 9:22	48	35	33.	5	9 60	0 19.0		16.2	1	1.85	2092.27
	12/18/2013	10:21	12/18/2013 10:21	. 50	35	5 33	3 1:	1 63	3 23.2		1246.7	142	2.62	2234.89
	12/18/2013	11:34	12/18/2013 11:34	50	35	5 33	3 11.	5 60	6 24.2		1730.4	197	7.95	2432.84
	12/18/2013	12:09	12/18/2013 12:09	50	35	5 33	3 11.	5 68	8 24.1		846.0	96	6.78	2529.63
	12/18/2013	13:01	12/18/2013 13:01	. 55	34	1 32	2 1	2 68	8 24.9		1276.2	146	6.00	2675.62
	12/18/2013	14:18	12/18/2013 14:18	47	34	4 32.	1	3 68	8 27.0		2000.3	228	8.83	2904.45
	12/18/2013	15:53	12/18/2013 15:53	40	34	4 32.	1	3 6!	5 27.1		2570.4	. 294	4.05	3198.50
	12/18/2013	16:18	12/18/2013 16:18	3 40	34	1 33	3 1	3 6!	5 27.1		677.4	. 77	7.50	3276.00
	12/18/2013	16:19	12/18/2013 16:19)						Valve Shut	27.1	. 3	3.10	3279.10
	12/18/2013	16:20	12/18/2013 16:20)		18	3							3279.10
SW-32 Event 5	12/19/2013	12:44	12/19/2013 12:44	50	27	7 20	5 <	2 74	4 0.0					3279.10
	12/19/2013	12:45	12/19/2013 12:45	50	35	5 34	· <	2 74	4 0.0					3279.10
	12/19/2013	12:47	12/19/2013 12:47	50	32	2 32	2 <	2 74	4 0.0		0	(0.00	3279.10
	12/19/2013	13:49	12/19/2013 13:49	50	31	1 30)	9 74	4 18.0		558.1	. 63	3.85	3342.95
	12/19/2013	13:58			33.5	5 32	2 1	3 74	4 26.7		201.2	23	3.02	3365.97
	12/19/2013	15:05									1871.8		4.13	3580.10
	12/19/2013	15:07									64.0		7.32	3587.43
	12/19/2013	16:20									2594.5		6.81	3884.23
	12/19/2013	16:48	• •								1015.3		6.15	4000.39
	12/19/2013	16:50						-		Valve Shut	72.6		8.30	4008.69
SW-32 Event 6	1/7/2014	13:35	<u> </u>					48						4008.69
	1/7/2014				31	1 33.	; <:							4008.69
	1/7/2014							5 48			694.3	79	9.42	4088.12
	1/7/2014							8 48			14.2		1.62	4089.73
	1/7/2014										1110.0		6.98	4216.71
	1/7/2014										1098.4		5.65	4342.37
	1/7/2014	17:31					_			Valve Shut	20.5		2.34	4344.71
	1/7/2014	17:32				2:)							4344.71
SW-32 Event 7	1/11/2014				30			2 6:	5 0.0					4344.71
<u> </u>	1/11/2014													4344.71
	1/11/2014										87.1	(9.97	4354.67
	1/11/2014	9:02									269.0		0.77	4385.45
	1/11/2014	9:04						6 6			22.4		2.57	4388.01
	1/11/2014	10:36	• •					9 7:			1385.7		8.52	4546.54
	1/11/2014										1166.9		3.50	4680.03
	1/11/2014										647.2		4.04	4754.08
	1/11/2014				30.3	, 30	, 10	, , , ,		Valve Shut	41.7		4.77	4758.85
	1/11/2014	12:12				2:	l			valve Shut	41.7	-	+.//	4758.85
SW-32 Event 8	1/13/2014				33			2 4	7 0.0		0.0		0.00	4758.85
3VV-3Z EVEIIL 6	1/13/2014	7:32											0.00	4758.85
	1/13/2014	7:38 7:39									0.0		0.00	4758.85
											0.0		0.00	
	1/13/2014	7:44 9:21									432.9			4758.85 4808.37
	1/13/2014	8:31											9.52	4808.37
	1/13/2014	8:33									39.5		4.52	4812.89
	1/13/2014	9:37	1/13/2014 9:37	45	32	2 31.	5 17	2 59	9 24.6		1463.6	167	7.44	4980.33

Back to Master	Date		Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
		1/13/2014	9:38	1/13/2014 9:38	45	32.5	32.2	13.8	59	28.5	26.6	3.04	4983.36
		1/13/2014	10:54	1/13/2014 10:54	45	32.5	31.5	15	70	30.6	2245.8	256.92	5240.29
		1/13/2014	10:55		45				70		31.9		
		1/13/2014	11:57		44				70		2112.3		
		1/13/2014	12:56			33.5			72	36.0	2092.3	239.36	5724.95
		1/13/2014	14:22			34			71		2886.1		6055.12
		1/13/2014	15:42						70		2433.6		
		1/13/2014	16:25		40				70		1279.7		
		1/13/2014	16:47		39	33	33	14.5	68		655.3		
		1/13/2014	16:49							Valve Sh	nut 59.6	6.82	
		1/13/2014	16:51				21						6561.71
SW-32 Event 9		1/15/2014	7:58	• •					46		0.0		
		1/15/2014	8:39						55		0.0		
		1/15/2014	8:41	- ·	52				55		10.3		
		1/15/2014	9:48						64		873.1		
		1/15/2014	9:49	• •					64		17.1		
		1/15/2014	10:56	1/15/2014 10:56	40	32.5			69		1303.7		6813.87
		1/15/2014	12:00	1/15/2014 12:00	41	L 32.5	32	11	69	22.5	1373.2	157.09	6970.96
		1/15/2014	13:43	1/15/2014 13:43	49	32	2 31.5	11.2	67		2332.2	266.80	7237.76
		1/15/2014	15:25		48	31.5			70		2450.5		7518.10
		1/15/2014	16:22	• •	46	5 31	l 31	13	68	26.2	1464.9	167.58	7685.69
		1/15/2014	16:23	<u>-</u>			21			Valve sh	nut 26.2	2.99	
<u>SW-32 Event 10</u>		1/17/2014	7:08	1/17/2014 7:08	57	7 30) 31	<2	40	0.0			7688.68
		1/17/2014	7:09			7 32			40				7688.68
		1/17/2014	7:59		51	L 31			44		103.1		7700.47
		1/17/2014	8:46		50) 31			54		264.7		
		1/17/2014	10:22	1/17/2014 10:22	45	31			60		751.7	85.99	7816.74
		1/17/2014	11:27	1/17/2014 11:27	46	5 30) 32	5	69	9.9	599.9	68.62	7885.37
		1/17/2014	12:33		46	5 30			72		687.7		
		1/17/2014	13:07	1/17/2014 13:07	45	30) 32		72		377.4		
		1/17/2014	14:22	1/17/2014 14:22	44	1 30) 32	5.8	70		855.6	97.88	8105.09
		1/17/2014	15:51	1/17/2014 15:51	55	5 30) 31	6	70	11.9	1042.8		8224.38
		1/17/2014	15:52							Valve sh	nut 11.9	1.36	8225.74
		1/17/2014	15:53				23						8225.74
SW-32 Event 11		1/30/2014	7:30	1/30/2014 7:30	50) 30) 32	<2	46				8225.74
		1/30/2014	8:30) 28	32	2	40		120.0		
		1/30/2014	9:30						40		240.0		
		1/30/2014	10:50) 28	31	2	42		319.6		
		1/30/2014	12:00	• •) 29	31		42		281.0	32.15	8335.63
		1/30/2014	13:32) 29	30	2.5	44		417.5		
		1/30/2014	13:35				21			Valve sh			
SW-32 Event 12		2/3/2014	8:10						68		0.0		
		2/3/2014	8:16						68		0.0		
		2/3/2014	8:31			5 32	2 32	<2	70		0.0	0.00	8385.12
		2/3/2014	8:59						75		0.0		
		2/3/2014	10:10	• •	54				82		0.0		
		2/3/2014	10:14	2/3/2014 10:14	54	1 33.5	33	<2	82		0.0		8385.12
		2/3/2014	11:50	2/3/2014 11:50	53	33.5	33	<2	86	0.0	0.0	0.00	8385.12
		2/3/2014	11:54	2/3/2014 11:54	54	1 34.5			86		0.0	0.00	
		2/3/2014	13:18	2/3/2014 13:18	52	34.5	33.5		85	4.1	172.6		8404.86
		2/3/2014	14:28	2/3/2014 14:28	51	L 34.5	33.2	2.5	84		323.8	37.05	8441.91
		2/3/2014	15:23	2/3/2014 15:23	51	L 34.5	33.2	3	82	6.2	311.4	35.63	8477.54
		2/3/2014	16:49	2/3/2014 16:49	50	34.5	33	3.8	82	7.8	602.6	68.94	8546.47

					P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO₂	Cumulative
Back to Master	Date	Ti	ime	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
		2/4/2014	9:20	2/4/2014 9:20	48	33.	5 32.5	6.3	62	13.1	10372.2	1186.58	9733.05
		2/4/2014	9:22	2/4/2014 9:22			24			Valve shut	26.2	3.00	9736.05
SW-32 Event 13		2/5/2014	8:19	2/5/2014 8:19	53	3 2	7 25.5	3.5	65	6.7			9736.05
		2/5/2014	8:21	2/5/2014 8:21		3	3 33	6.3	66	13.0	19.7	2.26	9738.30
		2/5/2014	9:06	• •		7 3	3 33	5.9	68		565.1		
		2/5/2014	10:17	• •			3 33		70		860.6		
		2/5/2014	11:18	• •			3 33		72		744.2		
		2/5/2014	12:30	• •			3 33		78		897.0		
		2/5/2014	13:25	• •			3 33		80		710.5		
		2/5/2014	14:39	· ·			3 32.5		80		977.7		
		2/5/2014	15:32	• •			3	6.8	77		717.4		
		2/5/2014	17:05	· ·			3 32		79		1306.8		
		2/5/2014	20:12	• •		3			64		2740.8		
		2/6/2014	7:35			5 32.			47		11995.5		
C) 1/ 22 F 1 4 4		2/6/2014	7:44			2 20	2/			Valve shut	180.5	20.65	
<u>SW-32 Event 14</u>		2/7/2014	7:38	• •					40	0.0	0.5	0.07	12220.32
		2/7/2014	7:39				3 31		49		8.5		
		2/7/2014	7:42				3 31		49		50.9		
		2/7/2014	8:57				3 31		58		1259.7 744.5		
		2/7/2014	9:42				3 31		54				
		2/7/2014 2/7/2014	11:48 13:31				3 31 3 31		61 64		2107.6 1778.2		
		2/7/2014	14:41	• •					62		1226.3		
		2/7/2014	15:52	• •					60		1243.0		
		2/7/2014	16:32						59		722.0		
		2/7/2014	17:22	• •					58		929.2		
		2/7/2014	17:22	• •		5 32.	5 51	. 9	36	Valve shut	18.6		
SW-32 Event 15		2/11/2014	7:40			5 32.	5 32.2	<2	55		10.0	2.13	13374.45
<u> </u>		2/11/2014	8:48	· . · .		_	5 25	_	56		0.0	0.00	
		2/11/2014	8:49						56		0.0		
		2/11/2014	9:31				2 32		61		0.0		
		2/11/2014	9:32				3 33.2		61		0.0		
		2/11/2014	9:51						63		0.0		
		2/11/2014	10:21			3 33.	2 33.2	<2	66		0.0		
		2/11/2014	11:43	2/11/2014 11:43	53	3 34.	5 33.2	<2	66	0.0	0.0	0.00	13374.45
		2/11/2014	11:44	2/11/2014 11:44	53	34.	5 34	<2	66	0.0	0.0	0.00	13374.45
		2/11/2014	12:38	2/11/2014 12:38	40	5 34.	5 34	. 2	66	4.2	113.0	12.93	13387.38
		2/11/2014	13:57	2/11/2014 13:57	40	5 34.	5 34	. 2	64	4.2	331.0	37.87	13425.25
		2/11/2014	16:37	2/11/2014 16:37	40	34.	5 34	3.5	56	7.4	927.5	106.11	13531.36
		2/11/2014	17:35	2/11/2014 17:35	5	7 34.	5 34	3.6	54	7.6	435.7	49.85	13581.21
		2/11/2014	17:36	2/11/2014 17:36			26	i		Valve shut	7.6	0.87	13582.08
<u>SW-32 Event 16</u>		2/12/2014	8:07	2/12/2014 8:07	5!	5 3	3 32	<2	49	0.0			13582.08
		2/12/2014	8:42	2/12/2014 8:42	4	7 2	7 27	<2	49	0.0	0.0	0.00	13582.08
		2/12/2014	8:43	2/12/2014 8:43	47	7 32.	5 32	6	49	12.5	6.3	0.72	13582.80
		2/12/2014	10:20				2 30.5		51		1630.3		
		2/12/2014	11:49						50		2112.7		
		2/12/2014	13:54						49		3432.5		
		2/12/2014	13:55						49		32.0		
		2/12/2014	14:40						49		1594.8		
		2/12/2014	15:50						47		2520.0		
		2/12/2014	16:50						47		2218.6		
		2/12/2014	17:50						48		2255.0		
		2/13/2014	7:08	2/13/2014 7:08	49	3	2 27	19.8	45	41.2	31519.7	3605.86	18995.69

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	2/13/2014	7:50	5 2/13/2014 7:56	5	0 3	2 2	7 19.	1	44 40.4	1959.8	224.20	19219.89
	2/13/2014	9:02	2 2/13/2014 9:02	. 5	0 3	2 2	7 19.	1	45 40.4	2667.2	305.13	19525.02
	2/13/2014	9:50	2/13/2014 9:50	5	0 3	2 2	7 19.	5	45 40.8	1948.8	222.94	19747.96
	2/13/2014	10:30	2/13/2014 10:30	5	0 3	2 2	7 19.	7	46 41.0	1635.6	187.12	19935.07
	2/13/2014	11:00	2/13/2014 11:00	5	0 3	2 2	7 19.	7	46 41.0	1229.2	140.62	2 20075.69
	2/13/2014	11:30	2/13/2014 11:30	5	0 3	2 2	7 19.	7	47 40.9	1228.6	140.55	20216.24
	2/13/2014	12:00	2/13/2014 12:00	5	0 3	2 2	7 19.	7	50 40.8	1226.1	140.26	20356.51
	2/13/2014	12:30	2/13/2014 12:30	5	0 3	2 2	7 19.	7	53 40.7	1222.3	139.83	3 20496.34
	2/13/2014	13:00	2/13/2014 13:00	5	0 3	2 26.	5 19.	2	55 39.6	1203.8	137.71	20634.05
	2/13/2014	14:0	1 2/13/2014 14:01	. 5	0 3	2 26.	5 19.	2	56 39.5	2412.5	275.99	20910.04
	2/13/2014	15:00	2/13/2014 15:00	5	0 3	2 26.	5 19.	2	58 39.4	2329.9	266.54	21176.58
	2/13/2014	15:18	8 2/13/2014 15:18			2)			Valve shut 710.1	81.24	21257.81

Total CO₂ Mass (lbs):

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO₂	Cumulative
Back to Master	Date 1	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-33 Event 1	11/19/2013	13:12	11/19/2013 13:12	. 5!	5 2	6		7	70 0.0			
	11/19/2013	13:14	11/19/2013 13:14	1	2	9 30	<	2 7	0.0	0.	0.00	0.00
	11/19/2013	13:26	11/19/2013 13:26	;	2	7 22	. 2	1 7	70 40.3	241.	6 27.63	3 27.63
	11/19/2013	13:28	11/19/2013 13:28	3	3	4 26	. 2	6 7	70 53.9	94.	2 10.77	38.41
	11/19/2013	13:57	11/19/2013 13:57	5!	5 3	4 24	. 2	8 7	70 58.1	1624.	0 185.79	224.20
	11/19/2013	13:58	11/19/2013 13:58	}	3	6 25	3	0 7	63.5	60.	8 6.95	231.15
	11/19/2013	14:45	11/19/2013 14:45	5 52	2 3	5 25	2	9 7	70 60.8	2920.	6 334.12	2 565.27
	11/19/2013	17:09	11/19/2013 17:09	50	34.	5 25	2	9 6	60.9	8763.	5 1002.55	1567.82
	11/19/2013	17:11	11/19/2013 17:11							Turned off	0.00	1567.82
	11/19/2013	17:12	11/19/2013 17:12								0.00	1567.82
	11/19/2013	17:15	11/19/2013 17:15	;		30)			Turned on	0.00	1567.82
	11/19/2013	17:16	11/19/2013 17:16	5 52	2 3	4 29	2	4 62	.0 50.2	1304.	5 149.24	1717.05
	11/19/2013	17:42	11/19/2013 17:42	!	3	5 28.5	2	5 60	.0 52.9	103.	1 11.79	1728.85
	11/19/2013	17:44	11/19/2013 17:44	ļ						Valve shut 52.	9 6.05	1734.90
	11/19/2013	17:45	11/19/2013 17:45	i	2	0 20)					1734.90
SW-33 Event 2	12/3/2013	15:47	12/3/2013 15:47									1734.90
	12/3/2013	15:48	12/3/2013 15:48	48	3 2	8 31.5		6 7	73 11.6	11.	6 1.33	3 1736.23
	12/3/2013	15:49	12/3/2013 15:49	48	3 2	8 27	12.	5 7	73 24.2	17.	9 2.05	5 1738.28
	12/3/2013	15:50					1		73 31.0	27.		
	12/3/2013	15:53							73 32.9	95.		
	12/3/2013	15:54				5 29.5	1		73 35.8	34.	4 3.93	3 1756.32
	12/3/2013	16:05							72 49.2	467.		
	12/3/2013	16:18							70 50.8	649.		
	12/3/2013	16:20	• •						70 54.5	105.		
	12/3/2013	16:33							54.0	705.		
	12/3/2013	16:34	• •						58 57.7	55.		
	12/3/2013	16:50	• •						57 57.8	924.		
	12/3/2013	16:51								Valve shut 57.		
	12/3/2013	16:52								57.	0.0.	2095.59
SW-33 Event 3	12/4/2013	13:24										2095.59
<u> </u>	12/4/2013	13:25			3	2 31		6 8	34 12.0	48.	1 5.50	
	12/4/2013	13:29							31.2	21.		
	12/4/2013	13:30	· ·						36.9	476.		
	12/4/2013	13:44							39.7	38.		
	12/4/2013	13:45							34 42.1	2250.		
	12/4/2013	14:40	· ·						79 43.3	170.		
	12/4/2013	14:44			,	20	22.	,		Valve shut 43.		
	12/4/2013	14:45					1	8		valve shut 45.	3 4.55	2444.43
SW-33 Event 4	12/5/2013	13:14						0				2444.43
3W-33 EVEIL 4	12/5/2013	13:15			1 3	1 35		2 8	35 0.0			2444.43
	12/5/2013	13:13							35 0.0 35 9.9	19.	8 2.26	
	12/5/2013	13:18							34 15.5	76.		
	12/5/2013	13:28							34 19.4	627.		
	12/5/2013	14:04							35 26.1 25 27.7	22.		
	12/5/2013	14:05							35 27.7	134.		
	12/5/2013	14:10							35 28.1	223.		
	12/5/2013	14:18) 2	9 30.5	1	5 8	35 29.0			
	12/5/2013	14:19				22				Valve shut 29.	0 3.32	
CM 22 5 5	12/5/2013	14:20				22		2 -	20 00			2577.32
SW-33 Event 5	12/6/2013	15:52							79 0.0		0 000	2577.32
	12/6/2013	16:12	· ·						78 14.1	7.		
	12/6/2013	16:13							78 21.4	923.		
	12/6/2013	17:05	12/6/2013 17:05	42.	5 27.	5 30	14.	5 7	76 27.8	24.	6 2.82	2 2686.60

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Fle	ow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
	12/6/2013	17:06	12/6/2013 17:06							Valve shut	27.8	3.18	3 2689.78
	12/6/2013	17:07	12/6/2013 17:07			20.5							2689.78
SW-33 Event 6	12/9/2013	13:43	12/9/2013 13:43										2689.78
	12/9/2013	13:46	12/9/2013 13:46	50) 32	2 30		<2	84	0.0	0.0	0.00	2689.78
	12/9/2013	13:56	12/9/2013 13:56	50	30	30		4	84	7.8	39.2	2 4.48	3 2694.26
	12/9/2013	14:11						7	84	13.7	161.6		
	12/9/2013	14:30						9	84	17.6	297.8		
	12/9/2013	14:55						10	82	19.6	465.8		
	12/9/2013	14:56						12	82	24.1	21.9		
	12/9/2013	14:59			32			12	82	24.1 Valve shut	72.3	8.27	
	12/9/2013	15:00				20							2810.88
SW-33 Event 7	12/10/2013	16:38						3	70	6.0	0.0		
	12/10/2013	16:40						9	70	17.5	23.4		
	12/10/2013	16:42	• •					10	70	19.4	36.9		
	12/10/2013	16:56						11	68	21.4	285.5		
	12/10/2013	17:24						13	63	25.4	654.9		
614, 22 5	12/10/2013	17:35						3.5	62	26.4 Valve shut	284.9	32.59	
SW-33 Event 8	12/11/2013	14:18						<2	68	0.0	426		2957.95
	12/11/2013	14:38			28			8	68	12.6	126.3		
	12/11/2013	15:33			26			1.5	64	17.8	835.0		
	12/11/2013	15:35						14	64	22.1	39.9		
	12/11/2013	15:44			5 28	3 30		14	64	22.1	199.3		
	12/11/2013	15:45				22				Valve shut	22.3	L 2.53	
CM 22 Frent 0	12/11/2013	15:46			. 20	22		-2	70	0.0			3097.79
SW-33 Event 9	12/12/2013	12:42						<2	70 70	0.0	700 (00.10	3097.79
	12/12/2013 12/12/2013	13:50 13:55).5).5	70 70	20.6 20.6	700.8 103.2		
	12/12/2013	14:03	• •).5).5	70 70	20.6	164.9		
			· . · .										
	12/12/2013 12/12/2013	14:04 14:15						2.5 2.5	70 70	24.5 24.8	22.6 271.5		
	12/12/2013	14:15			, 30	, 30	12	5	70	Valve shut	24.8		
	12/12/2013	14:17				20				valve slidt	24.0	2.0-	3245.11
SW-33 Event 10	12/16/2013	8:12	· · ·) 26			<2	48	0.0	0.0	0.00	
344 33 EVENT 10	12/16/2013	8:15						<2	48	0.0	0.0		
	12/16/2013	8:17	• •					3.5	48	7.1	7.1		
	12/16/2013	8:22						6	49	12.2	48.2		
	12/16/2013	8:57						9	50	18.2	532.0		
	12/16/2013	9:01						1.5	50	23.3	83.1		
	12/16/2013	9:13						L.5	52	23.2	279.3		
	12/16/2013	9:14								Valve shut	23.2		
	12/16/2013	9:15				22							3356.40
SW-33 Event 11	12/17/2013	12:11			33			<2	72	0.0	0.0	0.00	
	12/17/2013	13:07			31			10	72	20.0	561.2		3420.60
	12/17/2013	13:08	• •					3.5	72	27.4	23.7		
	12/17/2013	13:09	12/17/2013 13:09	50	35	32	14	1.5	72	30.3	28.8	3.30	3426.61
	12/17/2013	14:10	12/17/2013 14:10	45	33	30.5		18	73	36.8	2048.4	234.34	3660.96
	12/17/2013	15:20	12/17/2013 15:20	45	33	3 29		20	72	41.0	2723.2	311.52	3972.47
	12/17/2013	15:21	12/17/2013 15:21	45	35	30		23	72	48.1	44.5	5.09	3977.57
	12/17/2013	16:32	12/17/2013 16:32	45	35	31		23	70	48.2	3418.8	391.11	4368.68
	12/17/2013	22:08	12/17/2013 22:08	45	29	9 29	24	1.5	56	48.8	16290.5	1863.64	6232.32
	12/18/2013	8:02	12/18/2013 8:02	42	32.5	5 28		25	52	52.0	29916.3	3422.40	9654.72
	12/18/2013	8:03	12/18/2013 8:03							Valve shut	52.0	5.94	9660.66
	12/18/2013	8:04	12/18/2013 8:04			20							9660.66

Back to Master	Date		Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO₂ (scf)	Mass of CO ₂	Cumulative Mass (lb)
SW-33 Event 12	Date	1/21/2014	12:13								0.0		
<u> </u>		1/21/2014	13:25								352.0		
		1/21/2014	13:26								11.2		
		1/21/2014	14:38								1065.8		
		1/21/2014	15:46	1/21/2014 15:46	52	2 30	0 30.	5 10.5	68	20.9	1288.4	147.40	9971.54
		1/21/2014	16:41	1/21/2014 16:41	. 53	3	0 30.:	2 11.9	68	3 23.7	1225.7	140.22	10111.76
		1/21/2014	16:42	1/21/2014 16:42						Valve shut	23.7	2.71	10114.47
		1/21/2014	16:44	1/21/2014 16:44			2:	2					10114.47
SW-33 Event 13		1/28/2014	9:45	1/28/2014 9:45									10114.47
		1/28/2014	9:46	1/28/2014 9:46	52	2 33	3 32.	5 <2	56	0.0	0.0	0.00	10114.47
		1/28/2014	10:13	1/28/2014 10:13	52	2 33	3 3	2 2	56	4.2	56.2	6.43	10120.90
		1/28/2014	10:56	1/28/2014 10:56	52	2 33	3 3	2 3.5	56	7.3	246.1	28.15	10149.05
		1/28/2014	11:37	1/28/2014 11:37	52	2 37	2 3	2 4.5	54	9.3	339.6	38.85	10187.90
		1/28/2014	13:15	1/28/2014 13:15	50	3:	1 3	L 5	51	10.2	956.3	109.40	10297.30
		1/28/2014	14:20	1/28/2014 14:20	50	3:	1 30.	5 4.5	51	9.2	631.9	72.29	10369.59
		1/28/2014	15:40	1/28/2014 15:40	50) 30	0 30) 6	50	12.2	854.6	97.76	10467.36
		1/28/2014	16:45	1/28/2014 16:45	5 58	3	0 29.	5 10	50	20.3	1053.4	120.51	10587.87
		1/28/2014	16:46	1/28/2014 16:46	j		2:	L		Valve shut	20.3	2.32	10590.18
SW-33 Event 14		2/4/2014	9:24	2/4/2014 9:24	47	7 33	3 3	2 <2	62	0.0			10590.18
		2/4/2014	10:10	2/4/2014 10:10	53	31.	5 31.	5 2	. 62	4.1	93.6	10.71	10600.89
		2/4/2014	10:11	2/4/2014 10:11	. 53	32.	5 3:	2 3.7	62	7.6	5.8	0.67	10601.56
		2/4/2014	10:32	2/4/2014 10:32	53	32.	5 3:	2 4	63	8.2	166.3	19.02	10620.58
		2/4/2014	11:33	2/4/2014 11:33	52	2 37	2 31.	5 6	65	12.2	624.2	71.41	10691.99
		2/4/2014	12:34	2/4/2014 12:34	50	32	2 3:	L 6.8	66	13.9	796.2	91.08	10783.07
		2/4/2014	13:15	2/4/2014 13:15	48	3	2 30.	5 7.2	67	14.7	584.7	66.89	10849.96
		2/4/2014	14:10	2/4/2014 14:10	48	3	1 30	9.2	64	18.6	914.3	104.60	10954.56
		2/4/2014	14:41	2/4/2014 14:41	. 48	32.	5 30.	5 12	64	24.6	670.0	76.65	11031.21
		2/4/2014	15:08	2/4/2014 15:08	50	32.	5 30) 13	62	26.7	693.8	79.37	11110.58
		2/4/2014	16:21	2/4/2014 16:21	. 50) 32	2 3!	9 14	60	28.7	2024.2		11342.14
		2/4/2014	16:22	2/4/2014 16:22	50	33.	5 30.	16.5	60		31.5	3.61	. 11345.75
		2/4/2014	17:26	2/4/2014 17:26	48	33.5	5 30) 16.5	59	34.4	2201.6	251.86	11597.61
		2/4/2014	17:27				2.			Valve shut	34.4	3.94	
SW-33 Event 15		2/6/2014	7:46			2 30	0 3	2 <2	47				11601.55
		2/6/2014	8:33								0.0		
		2/6/2014	8:34						. 53		2.1		
		2/6/2014	9:10						33		298.7		
		2/6/2014	10:24	• •							1112.4		
		2/6/2014	10:27								63.8		
		2/6/2014	11:04	• •							938.5		
		2/6/2014	12:06	• •							1715.0		
		2/6/2014	14:02								3624.8		
		2/6/2014	14:04	• •		34					72.7		
		2/6/2014	15:16								2858.5		
		2/6/2014	16:30	• •							2946.7		
		2/6/2014	17:12			1 34			57		1675.8		
CIA 22 5		2/6/2014	17:13			,	2:			Valve shut	39.9	4.57	
<u>SW-33 Event 16</u>		2/10/2014	8:30										13357.46
		2/10/2014	8:40								0.0		
		2/10/2014	8:41								0.0		
		2/10/2014	9:00								81.9		
		2/10/2014	9:49								510.9		
		2/10/2014	11:05						Ĭ		1199.2		
		2/10/2014	13:05	2/10/2014 13:05	47	7 30	0 29.	5 11	7 9	21.7	2459.0	281.31	13843.77

					P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO	₂ Cu	ımulative
Back to Master	Date	Time	Date	+ Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)		CO ₂ (scf)	(lb)	M	ass (lb)
		2/10/2014	13:06	2/10/2014 13:0	6		2	2			Valve shut	21.	7 2	.48	13846.25
Note: a red value,	, i.e. <mark>75</mark> °	F, indicates that va	alue was inte	rpolated from field	data							Total CO ₂ Mass (lbs)	:		13846.25

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂	Cumulative Mass (lb)
SW-34 Event 1	11/19/2013	10:09	11/19/2013 10:09	5:	5 2	6		72	2 0.0			
	11/19/2013		11/19/2013 10:13		2	7 28.	5 <	2 71.	5 0.0	O	0.0	0.00
	11/19/2013	10:20	11/19/2013 10:20		2	6 22.	5 15	.5 71.	5 29.3	102	2.6 11.7	11.74
	11/19/2013	10:21	11/19/2013 10:21			9 2	4 2	.0 7:	1 39.2	34	3.9	2 15.66
	11/19/2013	10:23	11/19/2013 10:23		3	4 2	5 2	.5 70.5	5 51.8	91	1 10.4	2 26.07
	11/19/2013	10:25	11/19/2013 10:25		3	7 2	5 3	30 70.3	64.1	116	5.0 13.2	7 39.34
	11/19/2013	11:47	11/19/2013 11:47	54	4 3	6 22.	5 3	33 70	0 69.9	5493	628.4	667.79
	11/19/2013	11:50	11/19/2013 11:50						,	Valve shut 209	0.6 23.98	691.76
	11/19/2013		11/19/2013 11:51			1	3					691.76
SW-34 Event 2	12/4/2013		12/4/2013 7:48									691.76
	12/4/2013		12/4/2013 7:49		5 2	8 2	8	6 64	4 11.7	11	7 1.3	
	12/4/2013	7:57	12/4/2013 7:57			6 22.		.7 64		176		
	12/4/2013	8:04	12/4/2013 8:04			6 2		.8 64		233		
	12/4/2013	8:05	12/4/2013 8:05			8 2		.2 64		38		
	12/4/2013		12/4/2013 8:09			8 22.		22 66		171		
	12/4/2013		12/4/2013 8:10			0 2				44		
	12/4/2013		12/4/2013 8:34			9 22.		24 70		1127		
	12/4/2013	9:26	12/4/2013 9:26			9 22.		.5 73		2497		
	12/4/2013	9:59	12/4/2013 9:59			9 2		.5 7!		1613		
	12/4/2013	11:10	12/4/2013 11:10			8 2		.5 80		3439		
	12/4/2013		12/4/2013 12:09			8 2		24 82		2775		
	12/4/2013		12/4/2013 12:11		2		•	0		Valve shut 92		
	12/4/2013	12:12	12/4/2013 12:12							valve shat		2089.88
SW-34 Event 3	12/10/2013		12/10/2013 7:55		2	8 3	n	:2 70	0.0			2089.88
5VV 54 EVEILES	12/10/2013		12/10/2013 7:53			6 2		8 70		53	3.0 6.0°	
	12/10/2013		12/10/2013 8:20			6 2		.2 70		340		
	12/10/2013		12/10/2013 8:32			6 2				289		
	12/10/2013		12/10/2013 8:32			6 2		.6 72		975		
	12/10/2013		12/10/2013 9:40		_		_					
	12/10/2013		12/10/2013 9:40			6 2 6 2		.7 72 .8 74		1029 1222		
	12/10/2013		12/10/2013 10:17			5 23.		.o 7. .7 7.		1804		
	12/10/2013		12/10/2013 11:12							35		
	• •		• •			6 2		21 74				
	12/10/2013		12/10/2013 11:15			6 2		23 74		83		
	12/10/2013		12/10/2013 12:02		27.	5 2	5	.2 76		2010		
	12/10/2013		12/10/2013 12:03			2	0			Valve shut 42	2.2 4.83	
CM/ 24 Frant 4	12/10/2013	12:04	12/10/2013 12:04		1	2		·2	2 0.0		0.00	2992.15
SW-34 Event 4	12/17/2013		12/17/2013 8:09			0 2		2 52			0.0	
	12/17/2013		12/17/2013 8:25			7 2		.0 56		155		
	12/17/2013		12/17/2013 8:33			7 2				167		
	12/17/2013		12/17/2013 8:53			6 2				477		
	12/17/2013	10:16	12/17/2013 10:16			5 2		.6 60		2302		
	12/17/2013	10:18	12/17/2013 10:18			9 2		22 60		73		
	12/17/2013		12/17/2013 11:15			9 2				2494		
	12/17/2013		12/17/2013 11:16			1 2		26 70		48		
	12/17/2013		12/17/2013 12:00		3	2 25.	5 26	.5 7:		2331		
	12/17/2013		12/17/2013 12:09							Valve shut 483	55.3	
	12/17/2013	12:10	12/17/2013 12:10			1	9		_			3968.35
SW-34 Event 5	1/7/2014		1/7/2014 9:41			_	_	4(3968.35
	1/7/2014		1/7/2014 9:42			0 2		2 40				3968.35
	1/7/2014		1/7/2014 10:30			7 25.				544		
	1/7/2014		1/7/2014 10:32					.6 42		55		
	1/7/2014		1/7/2014 11:33							2004		
	1/7/2014	11:34	1/7/2014 11:34	4	5 30.	5 2	7 21	.5 44	4 44.1	38	3.5 4.40	4270.68

Back to Master	Date Tin	ne Da		P at Reducer (psig)	P at Pa (psig)	anel Pat ((psi)	Well	Rotameter Reading (scfm)	Temp (°F)	F	low (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
-	1/7/2014	13:38	1/7/2014 13:38	ŗ	51	28	24.5	22	2.5	50	44.5	5493.4	628.4	5 4899.13
	1/7/2014	13:39	1/7/2014 13:39								Valve shut	44.5	5.0	9 4904.22
	1/7/2014	13:40	1/7/2014 13:40											4904.22
SW-34 Event 6	1/9/2014	12:05	1/9/2014 12:05	2	10	28.5	28		<2	64	0.0	0.0	0.0	0 4904.22
	1/9/2014	12:06	1/9/2014 12:06	4	10	29.5	27.5		9	64	17.9	8.9	1.0	2 4905.24
	1/9/2014	13:18	1/9/2014 13:18	3	39	26.5	25		15	62	28.8	1680.5	192.2	5 5097.50
	1/9/2014	13:20	1/9/2014 13:20	3	39	30	26.5		20	62	40.0	68.8	7.8	7 5105.37
	1/9/2014	14:35	1/9/2014 14:35	3	36	30	25.5	20	0.5	62	41.0	3039.8	347.7	5 5453.12
	1/9/2014	14:36	1/9/2014 14:36	3	36	30.5	28	22	2.5	62	45.3	43.2	4.9	4 5458.06
	1/9/2014	15:23	1/9/2014 15:23	4	10	33	28		26	60	53.9	2330.8	266.6	4 5724.70
	1/9/2014	16:47	1/9/2014 16:47	4	12	32.5	27	20	5.5	60	54.6	4558.1	521.4	5 6246.15
	1/9/2014	16:48	1/9/2014 16:48								Valve shut	54.6	6.2	5 6252.40
	1/9/2014	16:57	1/9/2014 16:57				20							6252.40
SW-34 Event 7	1/17/2014	8:43	1/17/2014 8:43		50	28.5	28.5		<2	52	0.0	0.0	0.0	0 6252.40
	1/17/2014	10:20	1/17/2014 10:20	4	15	26	27		10	60	19.1	927.5	106.1	0 6358.50
	1/17/2014	11:29	1/17/2014 11:29	4	15	25	23	15	5.5	69	29.0	1660.7	189.9	8 6548.49
	1/17/2014	12:34	1/17/2014 12:34	4	16	25	23		16	72	29.9	1913.4	218.8	9 6767.38
	1/17/2014	12:35	1/17/2014 12:35	4	16	28	24	2:	1.7	72	42.0	35.9	4.1	1 6771.49
	1/17/2014	13:05	1/17/2014 13:05		15	28	24		1.7	72	42.0	1260.7		
	1/17/2014	14:24	1/17/2014 14:24		14	28	24		1.9	70	42.5	3338.3		
	1/17/2014	14:25	1/17/2014 14:25				20				Valve shut	42.5		
SW-34 Event 8	1/20/2014	12:37	1/20/2014 12:37		16	29	29.5		<2	71	0.0	0.0		
	1/20/2014	13:53	1/20/2014 13:53		50	26	24.5		14	73	26.4	1004.5		
	1/20/2014	13:54	1/20/2014 13:54		50	29	26		20	73	39.1	32.8		
	1/20/2014	14:24	1/20/2014 14:24		50	29	26		20	74	39.1	1173.9		
	1/20/2014	15:03	1/20/2014 15:03		19	29	26		20	74	39.1	1525.3		
	1/20/2014	16:13	1/20/2014 16:13		53	29	26		21	73	41.1	2807.6		
	1/20/2014	16:50	1/20/2014 16:50		56	29	25		1.7	72	42.5	1547.0		
	1/20/2014	16:51	1/20/2014 16:51	~	,0	23	20		.,	, _	Valve shut	42.5		
SW-34 Event 9	1/27/2014	12:13	1/27/2014 12:13				20				vaive silut	72.3	4.0	8232.97
SW STEVENCS	1/27/2014	12:14	1/27/2014 12:14		58	31	29		3	80	6.0	6.0	0.6	
	1/27/2014	12:21	1/27/2014 12:14		55	29	28		10	80	19.4	88.9		
	1/27/2014	12:49	1/27/2014 12:49		53	27.5	26		14	80	26.7	646.6		
	1/27/2014	12:51	1/27/2014 12:43		51	31	28.5		18	80	35.8	62.5		
	1/27/2014	13:11	1/27/2014 12:31		50	30.5	26.3		19	80	37.6	733.8		
			• •											
	1/27/2014	13:12	1/27/2014 13:12		19 17	33.5	29		22	80	45.0	41.3		
	1/27/2014	14:44	1/27/2014 14:44		17 17	32.5	27		4.5 20	80	49.5	4346.4		
	1/27/2014	14:45	1/27/2014 14:45		17 16	35 25	29		28	80	58.1	53.8		
	1/27/2014	15:42	1/27/2014 15:42		16 16	35	28.5		28	77	58.3	3317.1		
	1/27/2014	16:15	1/27/2014 16:15	2	16	34.5	28	28	3.5	77	59.0	1935.4		
	1/27/2014	16:16	1/27/2014 16:16								valve shut	59.0	6.7	
	1/27/2014 , i.e. 75 °F, indicates that	16:18	1/27/2014 16:18				20					Total CO ₂ Mass (lbs):		9524.64 9524.64

Total CO₂ Mass (lbs):

Back to Master	Date 1	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm	ı)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-35 Event 1	11/19/2013	13:20					nedding (senii)	теть (т /	80	0.0	(301)		
3VV-33 EVEIIL I	11/19/2013	13:22	• •		2			2	80	0.0	0.0		
	11/19/2013	13:41	11/19/2013 13:41		2			9		16.9	160.4		
	11/19/2013	13:43			2			2		23.3	40.2		
	11/19/2013	15:00						9		36.7	2309.4		
	11/19/2013	15:05						2		44.4	202.7		
	11/19/2013	15:12	• •		3					48.8	326.4		
	11/19/2013	17:20						5		52.6	6494.6		
	11/19/2013	17:49						6		54.5	1553.0		
	11/19/2013	17:55	• •					6		54.5	326.8		
	11/19/2013	17:57	11/19/2013 17:57		, ,	7 20.7	_	O	00	Valve shut	108.9		
	11/19/2013	17:59				15.6				valve shat	100.5	, 12.40	1318.15
SW-35 Event 2	12/4/2013	7:43	<u> </u>			15.0							1318.15
SW-SS EVERT 2	12/4/2013	7:45			3 3	1 31		2	64	0.0	0.0	0.00	
	12/4/2013	7:51	12/4/2013 7:51		3			6		12.1	36.4		
	12/4/2013	7:55						7		33.0	90.2		
	12/4/2013	8:16	• •					6		31.0	671.6		
	12/4/2013	8:18						2		46.7	77.7		
	12/4/2013	9:03	12/4/2013 9:03					4		47.7	2123.4		
	12/4/2013	10:05	12/4/2013 10:05					5		49.4	3009.0		
	12/4/2013	11:09	• •			0 23		4		47.1	3088.5		
	12/4/2013	12:27	• •					4		47.1 47.1	3674.7		
	12/4/2013	12:36	• •			0 23		4		47.1 47.1	424.0		
	12/4/2013	12:37	12/4/2013 12:37) 3	0 23	2	4	02		424.0		
	12/4/2013	12:37	12/4/2013 12:37			17	,			Valve shut	47.]	5.39	2833.11
SW-35 Event 3	12/10/2013	7:32				17							2833.11
3W-33 EVEILL 3	12/10/2013	7:32			2	9 30		2		0.0	0.0	0.00	
	12/10/2013	7.33 7:38						5	70	29.4	73.6		
			• •										
	12/10/2013 12/10/2013	7:41	12/10/2013 7:41 12/10/2013 8:25							37.6 39.2	100.6 1690.3		
	12/10/2013	8:25 9:04								41.1	1567.1		
	12/10/2013	9:04	12/10/2013 9:04							42.1			
	12/10/2013		• •					2			1456.6		
		10:12						2		42.1	1389.1		
	12/10/2013	10:13						4		45.4 46.1	43.7		
	12/10/2013	11:05						4		46.1	2378.2		
	12/10/2013	11:50								49.0	2139.8		
	12/10/2013	12:02			27.			5	74	49.0 Valve shut	587.9	67.26	
CM 25 Front 4	12/10/2013	12:03			7 7	16		0	Γ4	17.7			4140.35
SW-35 Event 4	12/17/2013	8:40						0		17.7	20.0	2.00	4140.35
	12/17/2013	8:41				6 22		8		34.6	26.2		
	12/17/2013	8:42						3		44.8	39.7		
	12/17/2013	8:47	12/17/2013 8:47					4		46.7	228.7		
	12/17/2013	9:35								47.4	2259.1		
	12/17/2013	10:40								45.9	3033.4		
	12/17/2013	11:33						4 -		45.4	2418.5		
	12/17/2013	12:48) 2	5 20	24.	5	78	45.5	3405.8		
	12/17/2013	12:49								Valve shut	45.5	5.20	
CM 25 5 : 5	12/17/2013	12:50				16		0	CF	10.5			5451.02
SW-35 Event 5	1/11/2014	8:14	1/11/2014 8:14					0		19.5	<u>.</u>		5451.02
	1/11/2014	8:17	1/11/2014 8:17					9		37.0	84.8		
	1/11/2014	8:31	1/11/2014 8:31					2		41.8	552.1		
	1/11/2014	9:06								43.3	1489.7		
	1/11/2014	10:32	1/11/2014 10:32	. 38	3 2	6 21	. 2	3	72	43.5	3731.2	426.85	6121.15

				P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date Ti	ime [Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flo	w (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	1/11/2014	11:36	1/11/2014 11:36	38	3 26	5 21	. 23.5	,	74	44.3	2809.6	321.4	1 6442.56
	1/11/2014	12:19	1/11/2014 12:19	43	3 26	2 1	23.8	}	77	44.8	1915.5	219.1	4 6661.70
	1/11/2014	12:20	1/11/2014 12:20							Valve shut	44.8	5.13	2 6666.82
SW-35 Event 6	1/13/2014	12:34	1/13/2014 12:34	47	7 29.5	5 29	<2		72	0.0	0.0	0.0	0 6666.82
	1/13/2014	12:39	1/13/2014 12:39	47	7 28.5	5 27	, <u> </u>)	72	17.5	43.8	5.0	1 6671.84
	1/13/2014	13:14	1/13/2014 13:14	45	26.5	5 24	14	ļ	72	26.6	772.7	88.4	0 6760.24
	1/13/2014	13:17	1/13/2014 13:17	44	1 29.5	26.5	20)	72	39.4	99.1	11.3	3 6771.57
	1/13/2014	14:19	1/13/2014 14:19	40) 29.5	5 25	22	_	71	43.4	2567.1	293.6	8 7065.25
	1/13/2014	15:44	1/13/2014 15:44	39) 28	3 23.5	22.8	}	70	44.2	3724.5	426.0	8 7491.33
	1/13/2014	16:23	1/13/2014 16:23	40) 28	3 23.5	23	}	70	44.6	1732.8	198.2	4 7689.57
	1/13/2014	16:50	1/13/2014 16:50	40) 28	3 23.5	23.8	}	68	46.3	1227.1	140.3	8 7829.95
	1/13/2014	16:51	1/13/2014 16:51							Valve shut	46.3	5.2	9 7835.24
	1/13/2014	16:55	1/13/2014 16:55			17							7835.24
SW-35 Event 7	1/23/2014	7:51	1/23/2014 7:51	55	23	3 27	14.5	•	38	27.3			7835.24
	1/23/2014	7:52	1/23/2014 7:52		25	5 25	17.5	,	38	33.8	30.5	3.49	9 7838.73
	1/23/2014	8:10	1/23/2014 8:10	52	2 23.5	22.5	18.5	,	38	35.0	619.4	70.8	6 7909.59
	1/23/2014	8:43	1/23/2014 8:43	50) 23	3 22	19.2	<u>.</u>	44	35.9	1170.2	133.8	7 8043.46
	1/23/2014	9:22	1/23/2014 9:22	47	7 23	3 21.5	19.5	,	46	36.4	1409.3	161.2	2 8204.68
	1/23/2014	10:12	1/23/2014 10:12	45	23	3 21.5	19.5	,	48	36.3	1817.1	207.8	7 8412.56
	1/23/2014	11:22	1/23/2014 11:22	43	3 23	3 21.5	19)	50	35.3	2506.2	286.7	1 8699.27
	1/23/2014	12:16	1/23/2014 12:16	45	5 23	3 21.5	19.2		54	35.5	1912.5	218.7	9 8918.06
	1/23/2014	12:17	1/23/2014 12:17			17	•			Valve shut	35.5	4.0	6 8922.12
SW-35 Event 8	1/24/2014	7:38	1/24/2014 7:38	5!	5 27	26	<2		40	0.0			8922.12
	1/24/2014	7:39	1/24/2014 7:39	55	29.5	27.5	<2	_	40	0.0	0.0	0.0	0 8922.12
	1/24/2014	7:47	1/24/2014 7:47	55	5 29	27.5	, 4	ļ	40	8.1	32.4	3.70	0 8925.83
	1/24/2014	8:02	1/24/2014 8:02	53	3 27.5	5 26	8.5	•	41	16.9	187.3	21.4	3 8947.25
	1/24/2014	8:24	1/24/2014 8:24	50	26.5	5 25	11.9)	44	23.3	441.6	50.5	2 8997.77
	1/24/2014	8:25	1/24/2014 8:25	50) 29	27	15	;	44	30.2	26.7	3.0	6 9000.83
	1/24/2014	8:26	1/24/2014 8:26	50) 30	27.5	16.8	}	44	34.2	32.2	3.69	9 9004.52
	1/24/2014	8:50	1/24/2014 8:50	49	9 30) 27	18	}	45	36.7	850.7	97.3	2 9101.85
	1/24/2014	9:39	1/24/2014 9:39	47	7 29.8	3 26	19.8	}	49	40.1	1879.4	215.0	1 9316.85
	1/24/2014	10:40	1/24/2014 10:40	46	5 29.5	5 25.2	20.5	•	51	41.2	2479.9	283.7	1 9600.56
	1/24/2014	11:43	1/24/2014 11:43	45	5 29.2	2. 25	21		54	42.0	2621.8	299.9	4 9900.49
	1/24/2014	11:59	1/24/2014 11:59	45	29.2	2 25	21		54	42.0	671.7	76.8	4 9977.34
	1/24/2014	12:00	1/24/2014 12:00			12				Valve shut	42.0	4.80	0 9982.14
Note: a red value,	, i.e. 75 °F, indicates tha	at value was	interpolated from field d	ata							Total CO ₂ Mass (lbs):		9982.14

				P at Reducer	P at Panel	P at Well	Rotameter	_ (0=)	_		Volume of	Mass of CO ₂	Cumulative
Back to Master		ime	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)		low (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-36 Event 1	11/23/2013	8:09	• •						63	0.0			
	11/23/2013	8:11						:2	63	0.0	0.0		
	11/23/2013	8:24	• •					:2	65	0.0	0.0		
	11/23/2013	8:29			3			:2	65	0.0	0.0		
	11/23/2013	8:42						2	66	4.2	27.1		
	11/23/2013	9:18			3			2	76	4.1	149.2		
	11/23/2013	9:20	• •		3			5	78	10.5	14.6		
	11/23/2013	10:17	• •		3			8	80	16.8	777.3		
	11/23/2013	11:23	11/23/2013 11:23		3	6 35.5		9	80	18.9	1176.1	134.55	245.31
	11/23/2013	12:34	11/23/2013 12:34	47	7 3	6 35	1	.0	78	21.0	1415.5		407.25
	11/23/2013	12:51	11/23/2013 12:51		3	6 35	1	.0	80	21.0	356.7	7 40.81	448.06
	11/23/2013	12:52	11/23/2013 12:52							Valve shut	21.0	2.40	450.46
	11/23/2013	12:53	11/23/2013 12:53										450.46
SW-36 Event 2	12/12/2013	9:09	12/12/2013 9:09	50) 3	4 33	<	:2	62	0.0			450.46
	12/12/2013	9:51	12/12/2013 9:51	. 50) 3	4 32.5	<	:2	67	0.0			450.46
	12/12/2013	10:47	12/12/2013 10:47	49	32.	5 32		4	68	8.2	229.1	26.21	476.66
	12/12/2013	11:42	12/12/2013 11:42	45	5 3	2 31		5	70	10.2	504.2	57.68	534.34
	12/12/2013	13:10	12/12/2013 13:10	50) 3	6 32		6	70	12.7	1005.6	115.04	649.38
	12/12/2013	13:11	12/12/2013 13:11							Valve shut	12.7	7 1.45	650.83
	12/12/2013	13:12	12/12/2013 13:12			26	j						650.83
SW-36 Event 3	12/13/2013	8:35	12/13/2013 8:35	50) 3	5 35	<	:2	50	0.0			650.83
	12/13/2013	8:36	12/13/2013 8:36	5 50	3	0 28	<	:2	50	0.0			650.83
	12/13/2013	8:58	12/13/2013 8:58	5 50) 3	2 33	<	:2	50	0.0			650.83
	12/13/2013	9:52	12/13/2013 9:52	. 48	3	2 33	<	:2	68	0.0			650.83
	12/13/2013	10:54	12/13/2013 10:54	45	3	2 33		3	70	6.1	188.8	3 21.60	672.43
	12/13/2013	12:42	12/13/2013 12:42	45	3	2 32	. 3	.5	72	7.1	711.9	81.44	753.88
	12/13/2013	13:35	12/13/2013 13:35	45	5 3	1 32		4	73	8.0	400.2	45.78	799.66
	12/13/2013	15:01	12/13/2013 15:01	. 45	5 3	1 32		4	73	8.0	688.8	78.80	878.46
	12/13/2013	15:02	12/13/2013 15:02							Valve shut	8.0	0.92	879.38
	12/13/2013	15:03				26	;						879.38
SW-36 Event 4	12/16/2013	8:45	12/16/2013 8:45	48	3	2 32	. <	:2	50	0.0	0.0	0.00	879.38
	12/16/2013	9:26			3 32.			:2	58	0.0	0.0		
	12/16/2013	9:28						4	58	8.2	8.2		
	12/16/2013	10:16			5 3			4	56	8.2	394.9		
	12/16/2013	11:18						5	70	10.2	570.0		
	12/16/2013	13:26						6	68	11.9	1413.8		
	12/16/2013	13:27								Valve shut	11.9		
	12/16/2013	13:28				24							1153.81
	12/16/2013	14:53			5 3			.5	70	22.8 Restart	1941.1	222.07	
	12/16/2013	15:22						8	69	16.3	566.9		
	12/16/2013	16:10						8	68	16.3	780.8		
	12/16/2013	22:14						_	58	19.5	6514.6		
	12/17/2013	8:54						.2	64	24.5	14089.2		
	12/17/2013	10:53						.2	68	24.4	2910.9		
	12/17/2013	13:37						.2	69	24.1	3979.9		
	12/17/2013	13:38						.6	69	32.5	28.3		
	12/17/2013	14:35						.5	70	30.5	26.3 1794.8		
	12/17/2013	15:58						.5 .5	69	30.5			
	12/17/2013	16:00			, 3	ر 3 ا		J	09		2529.1 61.0		
						2/				Valve shut	01.0	0.98	
SIM 26 Fuert F	12/17/2013	16:01				24			40				5180.29
SW-36 Event 5	1/7/2014	9:19				n 34		'n	40	0.0			5180.29
	1/7/2014	9:21						:2	40	0.0			5180.29
	1/7/2014	9:22	1/7/2014 9:22	53	3	4 32	<	:2	40	0.0			5180.29

					P at Reducer	P at Panel	P at Well	Rotameter	T (0=1	et. Aut. S	Volume of	Mass of CO ₂	Cumulative
Back to Master	Date		ime	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
		1/7/2014	9:53				3 30.5				98.1		
		1/7/2014	9:55				3 32.5		•		16.9		
		1/7/2014	10:44	• •			3 32.5				541.7		
		1/7/2014	11:44	• •			3 32.5				756.0		
		1/7/2014	13:18	• •			3 32		3		1329.8		
		1/7/2014	14:08	• •			3 32				759.0		
		1/7/2014	15:26	• •			3 31.5				1263.7		
		1/7/2014	16:40	• •			3 31.5				1277.7		
		1/7/2014	17:24	• •		1 3	3 31	. 8.!	5 4.		785.9		
		1/7/2014	17:25	1/7/2014 17:25						Valve shut	17.9	9 2.05	
		1/7/2014	17:26				25						5963.56
SW-36 Event 6		1/14/2014	7:55										5963.56
		1/14/2014	7:56	1/14/2014 7:56	50) 3	4 34.5	<	2 6	2 0.0	0.0	0.00	
		1/14/2014	8:20	1/14/2014 8:20	45	32.	5 33	4	1 6	2 8.2	98.8	3 11.30	5974.86
		1/14/2014	9:50	1/14/2014 9:50	45	31.	5 32	5.!	6	4 11.2	873.1	1 99.88	3 6074.74
		1/14/2014	10:58	1/14/2014 10:58	43	3	2 32.5	,	6	5 12.2	796.1	1 91.07	7 6165.82
		1/14/2014	12:28	1/14/2014 12:28	45	5 3	2 32	!	6	6 12.2	1101.3	3 125.99	6291.80
		1/14/2014	13:45	1/14/2014 13:45	48	3	1 32	7.	6	9 15.1	1051.3	3 120.27	7 6412.07
		1/14/2014	14:14	1/14/2014 14:14	48	3	1 32	7.	6	9 15.1	437.2	2 50.02	2 6462.09
		1/14/2014	15:58	1/14/2014 15:58	46	5 3	0 33	. 8.2	2 7	16.3	1630.7	7 186.56	6648.65
		1/14/2014	16:15	1/14/2014 16:15	46	5 3	0 31	. 8.2	2 7	16.3 Valve shut	276.8	31.67	7 6680.32
		1/14/2014	16:16	1/14/2014 16:16			25						6680.32
SW-36 Event 7		1/16/2014	8:32	1/16/2014 8:32	51	2	6 20	< >	2 4	8 0.0	0.0	0.00	6680.32
		1/16/2014	8:33	1/16/2014 8:33	51	. 3	0 31.5	<	2 4	8 0.0	0.0	0.00	6680.32
		1/16/2014	9:26	1/16/2014 9:26	48	3 28.	5 30	5.2	2 4	5 10.4	275.5	31.51	1 6711.83
		1/16/2014	9:27	1/16/2014 9:27	48	3	2 32	!	7 4	5 14.6	12.5	5 1.43	6713.26
		1/16/2014	10:32	1/16/2014 10:32	45	5 3	2 32	7.2	2 4	8 14.9	958.9	109.69	6822.95
		1/16/2014	11:33	1/16/2014 11:33	43	3	1 31.5	7.8	3 4	9 16.0	943.7	7 107.96	6930.91
		1/16/2014	12:59	1/16/2014 12:59	47	7 3	1 31.5	;	3 4	8 16.4	1394.0	159.48	3 7090.39
		1/16/2014	14:52			7 3	1 31.5	;			1959.2		
		1/16/2014	15:35	1/16/2014 15:35	50) 3	1 31.5	9.3	2 6	0 18.7	793.6	90.79	7405.31
		1/16/2014	16:32			2 3	1 31.5			0 19.9	1098.2	2 125.64	7530.95
		1/16/2014	16:33							Valve shut	19.9		
		1/16/2014	16:34	1/16/2014 16:34			25	;					7533.22
SW-36 Event 8		1/21/2014	8:24			3 2	6 27		2 5	6 0.0	0.0	0.00	
		1/21/2014	8:25				2 33				0.0		
		1/21/2014	8:29				1 33				12.2		
		1/21/2014	8:35				1 33				41.5		
		1/21/2014	9:28								472.7		
		1/21/2014	10:10								455.4		
		1/21/2014	11:33				0 31.8				976.2		
		1/21/2014	13:00				0 32				1109.0		
		1/21/2014	14:14				0 31.5				1016.9		
		1/21/2014	15:59								1484.8		
		1/21/2014	17:07				0 31.5				997.4		
		1/21/2014	17:08			, 3	J1	7		Valve shut	15.0		
		1/21/2014	17:09				26			vaive silut	15.0	1.71	8286.12
Note: a red value	2 i o 7E ºI			s interpolated from field d			20				Total CO ₂ Mass (lbs)		8286 12

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	FI	ow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-37 Event 1	11/22/2013	13:02				8			80	0.0	202 (301)	·/	
3W-37 LVEIIL I	11/22/2013	13:05	• •			6 36.	1	<2	80	0.0	0.0	0.00	0.00
	11/22/2013	13:20	• •			5 34.		5.5	81	11.4	85.5		
	11/22/2013	14:06				4 33.		8	82	16.4	639.5		
	11/22/2013	15:22				4 33.		9	75	18.6	1329.1		
	11/22/2013	16:56	• •			4 33.		9.5	74	19.6	1795.6		
	11/22/2013	17:19	• •			4 33.		9.5	70	19.7	452.3		
	11/22/2013	17:20	• •		, ,	- 33.	-	<i>.</i>	70	Valve shut	19.7		
	11/22/2013	17:21	• •							valve shat	13.7	2.23	494.41
SW-37 Event 2	12/6/2013	8:37			1 3	2 32.	5	<2	75	0.0			494.41
SVV 37 EVENTEZ	12/6/2013	9:18				1 31.		3	82	6.0	122.1	13.97	
	12/6/2013	9:19	• •			4 3		6	82	12.3	9.1		
	12/6/2013	10:29				4 33.		6	84	12.3	860.2		
	12/6/2013	11:23				4 33.		7	85	14.3	717.9		
	12/6/2013	13:15	• •			4 33.		8	83	16.4	1719.0		
	12/6/2013	13:16			, ,	4 33.	3	0	03	Valve shut	16.4		
	12/6/2013	13:18	• •			2	6			valve struct	10.4	1.07	888.48
SW-37 Event 3	12/11/2013	9:08) 2		3	<2	68	0.0			888.48
3W-37 EVEIL 3	12/11/2013	9:33					2	<2 <2	70	0.0			888.48
	12/11/2013	9.33 10:04	· ·				2	<2 <2	70 70	0.0			888.48
	12/11/2013							<2 <2		0.0			
	12/11/2013	11:10	• •					5.5	74 74		44.7	, г 13	888.48 893.60
	• •	11:18	• •						74 72	11.2			
	12/11/2013	11:49						5.5	72 72	11.4	349.8		
	12/11/2013	11:50	• •			5 3		7 7	72 70	14.6	13.0		
	12/11/2013	12:38			3	5 3	4	/	70	14.7	703.4		
	12/11/2013	13:38	• •			-	0			Valve shut	880.2	2 100.69	
CM/ 27 Frant 4	12/11/2013	13:39	·		า		8	رم	ГΩ	0.0			1116.27
SW-37 Event 4	12/13/2013	8:37	i. i.		_	_	3	<2	50	0.0	22.4	2.53	1116.27
	12/13/2013	8:44					2	3	50	6.4	22.4		
	12/13/2013	8:45					6	6	50	13.0	9.7		
	12/13/2013	8:46					4	4	50	8.6	10.8		
	12/13/2013	9:54				6 3		5.5	68	11.7	687.4		
	12/13/2013	10:56						7.5	70	15.7	848.9		
	12/13/2013	12:44).5	72	22.0	2034.6		
	12/13/2013	13:37				5 3		11	73	23.0	1191.1		
	12/13/2013	13:38				5 33.		1.5	73	30.3	26.6		
	12/13/2013	15:04			3	5 33.	5 1	1.5	73	30.3	2605.6		
	12/13/2013	15:05				_	_			Valve shut	30.3	3.47	
	12/13/2013	15:06			_		7	-					1970.55
SW-37 Event 5	12/19/2013	12:38				5 34.		<2	68	0.0			1970.55
	12/19/2013	13:05				5 3		<2	74	0.0			1970.55
	12/19/2013	16:05	• •			4 3		6	70	12.4	1120.0		
	12/19/2013	16:06	• •			5 33.		12	70	25.1	18.8		
	12/19/2013	16:48	• •		3	5 33.	5 1).5	66	22.1	992.0		
	12/19/2013	16:49	• •							Valve shut	22.1	2.53	
	12/19/2013	16:50											2216.84
SW-37 Event 6	1/8/2014	8:23								0.0	0.0		
	1/8/2014	8:25						<2	40	0.0	0.0		
	1/8/2014	8:26						<2	40	0.0	0.0		
	1/8/2014	8:31			35.			2.5	40	5.4	13.6		
	1/8/2014	8:44			35.		4	3	42	6.5	77.5		2227.26
	1/8/2014	9:08	3 1/8/2014 9:08	3 50) 3	3 3	2	3	44	6.3	153.9	17.60	2244.86
	1/8/2014	9:09	1/8/2014 9:09	50) 3	3 33.	5	4	44	8.4	7.4	0.84	2245.71

					P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO₂	Cumulative
Back to Master	Date	Ti	ime	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow ((scfm)	CO ₂ (scf)	(lb)	Mass (lb)
		1/8/2014	9:11	1/8/2014 9:11	50	34	33.5		5	45	10.6	19.1	2.18	2247.89
		1/8/2014	9:56	1/8/2014 9:56	49	33	33.5	5	.5	50	11.5	498.4	57.02	2304.90
		1/8/2014	10:58	1/8/2014 10:58	48	33	33.5	5	.8	58	12.0	730.4	83.56	2388.46
		1/8/2014	12:22	1/8/2014 12:22	47	32.5	33	5	.5	60	11.3	982.2	112.36	2500.83
		1/8/2014	12:34	1/8/2014 12:34	47	32.5	33	5	.5	60	11.3	136.1	15.57	2516.39
		1/8/2014	12:35	1/8/2014 12:35							Valve shut	11.3	1.30	2517.69
		1/8/2014	12:36	1/8/2014 12:36			29							2517.69
		1/8/2014	13:28	1/8/2014 13:28	49	35	30.5	:	13	59	27.5 Restart	1432.2	163.84	2681.53
		1/8/2014	13:56	1/8/2014 13:56	50	34	32.5	9	.5	58	19.9	664.8	76.05	2757.58
		1/8/2014	15:04	1/8/2014 15:04	50	34	32.5	9	.5	60	19.9	1354.6	154.96	2912.54
		1/8/2014	16:26	1/8/2014 16:26	50	33.5			.5	55	19.9	1631.6		
		1/8/2014	16:27	1/8/2014 16:27	59	36	33.5	:	14	55	30.1	25.0	2.86	3102.06
		1/8/2014	17:04	1/8/2014 17:04	50	36	34	. :	14	55	30.1	1113.1	127.34	3229.40
		1/8/2014	17:05	1/8/2014 17:05							Valve shut	30.1	3.44	3232.84
		1/8/2014	17:06				28							3232.84
SW-37 Event 7		1/10/2014	9:14	1/10/2014 9:14										3232.84
		1/10/2014	9:15	1/10/2014 9:15					4	67	8.1	8.1		
		1/10/2014	9:27	1/10/2014 9:27					6	67	12.5	123.8		
		1/10/2014	10:14	1/10/2014 10:14					6	68	12.5	586.3		
		1/10/2014	11:51	1/10/2014 11:51					6	69	12.3	1202.6		
		1/10/2014	12:50						6	68	12.3	727.6		
		1/10/2014	14:19	• •					6	67	12.3	1095.7		
		1/10/2014	15:17	• •					.5	67	13.3	742.2		
		1/10/2014	16:24	1/10/2014 16:24					7	68	14.2	922.9		
		1/10/2014	17:15	1/10/2014 17:15		32	34	_	8	66	16.3	779.0		
		1/10/2014	17:16								Valve shut	16.3	1.87	
0.44.0= 5		1/10/2014	17:17	1/10/2014 17:17			29							3942.64
SW-37 Event 8		1/13/2014	8:14							40	0.0			3942.64
		1/13/2014	8:15	1/13/2014 8:15					4	48	8.4	4.2		
		1/13/2014	8:16						8	48	17.1	12.8		
		1/13/2014	8:25						.5	52	20.3	168.3		
		1/13/2014	10:11	1/13/2014 10:11					.5	68	19.9	2131.5		
		1/13/2014	11:19						.5	70	19.9	1355.1		
		1/13/2014	11:20						13	70	27.5	23.7		
		1/13/2014	12:14	1/13/2014 12:14					10	71	20.7	1302.5		
		1/13/2014	12:42						10	70	20.7	580.5		
		1/13/2014 1/13/2014	12:43						15	70	31.9	26.3		
		1/13/2014	13:47 14:45						15 15	68 68	31.8 31.7	2039.4 1840.7		
		1/13/2014	16:03						15	67	31.4	2457.9		
		1/13/2014	17:07							66	37.2	2193.9		
		1/13/2014	17:07			, 30	, 33.3	17	.5	00	Valve shut	37.2		
		1/13/2014	17:08	1/13/2014 17:09			27	,			valve struc	37.2	4.23	5564.15
SW-37 Event 9		1/15/2014	9:28			' 33			<2	62	0.0	0.0	0.00	
SVV 37 EVENTS		1/15/2014	10:13	1/15/2014 10:13					7	68	14.1	316.9		
		1/15/2014	11:27						7	68	14.1	1042.3		
		1/15/2014	11:28						10	68	20.7	17.4		
		1/15/2014	12:45						14	67	30.0	1951.8		
		1/15/2014	12:47						10	67	20.8	50.8		
		1/15/2014	13:57	1/15/2014 13:57						67	23.8	1561.0		
		1/15/2014	15:50						13	70	26.8	2860.0		
		1/15/2014	17:25						14	65	29.0	2652.9		
		1/15/2014	17:26			22.3	02.0	•			Valve shut	29.0		
		_,,	17.20	1, 10, 201 : 17 : 20							14.10 3/140	25.0	3.32	0,00.01

Back to Master	Date	7	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (se	cfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
		1/15/2014	17:27	1/15/2014 17:27	,		28	3						6763.31
<u>SW-37 Event 10</u>		1/17/2014	7:40			32				40	8.0			6763.31
		1/17/2014	9:07							62	13.8	944.7		
		1/17/2014	9:08						8	62	16.4	15.1		
		1/17/2014	10:36							65	16.7	1456.5		
		1/17/2014	11:47						9	69	18.3	1243.3		
		1/17/2014	12:46							67	19.3	1110.3		
		1/17/2014	13:58			32				70	20.9	1449.3		
		1/17/2014	14:19	1/17/2014 14:19	47	32			3	70	20.9	439.2		
		1/17/2014	15:44	1/17/2014 15:44	49	32	2 32.2	! 1	1	70	22.3	1838.0		
		1/17/2014	15:45								Valve shut	22.3	2.5	
		1/17/2014	15:46				28							7737.86
SW-37 Event 11		1/20/2014	8:05						3	42	6.4			7737.86
		1/20/2014	8:14							46	15.3	97.6		
		1/20/2014	8:54	• •						59	14.9	604.7		
		1/20/2014	10:05	• •						64	15.4	1077.1		
		1/20/2014	11:07	• •						66	16.0	973.0		
		1/20/2014	12:42						5	64	17.5	1588.4		
		1/20/2014	13:08	· ·					9	68	18.4	466.2		
		1/20/2014	14:03	• •					9	71	18.3	1008.3		
		1/20/2014	14:04	1/20/2014 14:04	50	33	3 33	3 1	1	71	22.6	20.4	2.3	3 8405.48
		1/20/2014	15:14	1/20/2014 15:14	50	33	3 33	3 11	9	71	24.4	1643.4	188.0	0 8593.48
		1/20/2014	16:16	1/20/2014 16:16	50	33	3 33	3 1	2	72	24.6	1518.4	173.7	0 8767.18
		1/20/2014	16:22	1/20/2014 16:22	50	33			2	72	24.6 Valve shut	147.5	16.8	7 8784.05
		1/20/2014	16:23				29							8784.05
<u>SW-37 Event 12</u>		1/22/2014	8:21		. 54	32	2 34		2	41	0.0	0.0		
		1/22/2014	8:23	1/22/2014 8:23	54	. 32	2 34	3	8	41	7.9	7.9	0.9	1 8784.96
		1/22/2014	8:53							46	13.9	327.8		
		1/22/2014	8:55			33.5			8	46	20.7	34.6	3.9	6 8826.42
		1/22/2014	9:50	1/22/2014 9:50	50	33.5	33.5	5 1	0	50	21.0	1148.5	131.3	9 8957.81
		1/22/2014	10:58	1/22/2014 10:58	47	33.5	33.5	5 1	0	54	21.0	1428.5	163.4	2 9121.23
		1/22/2014	12:03	1/22/2014 12:03	45	33.2	2 33.2	10	2	54	21.3	1374.1	157.2	0 9278.42
		1/22/2014	12:49	1/22/2014 12:49	48	33.2	2 33.2	! 11	5	54	24.0	1043.0	119.3	2 9397.74
		1/22/2014	14:03	1/22/2014 14:03	48	33.2	2 33	3 1	2	56	25.0	1815.2	207.6	6 9605.40
		1/22/2014	15:10	1/22/2014 15:10	49	33	32.5	5 1	3	58	27.0	1742.9	199.3	9 9804.79
		1/22/2014	16:04	1/22/2014 16:04	50	32.5	5 32	! 13	5	59	27.9	1481.2	169.4	5 9974.24
		1/22/2014	16:05	1/22/2014 16:05	50	33.5	5 33	3 1	5	59	31.3	29.6	3.3	8 9977.62
		1/22/2014	16:36	1/22/2014 16:36	49	33.5	5 33	15	7	58	32.8	993.1	113.6	1 10091.23
		1/22/2014	16:38	1/22/2014 16:38			28	3			Valve shut	65.6	7.5	0 10098.73
SW-37 Event 13		1/28/2014	7:40	1/28/2014 7:40										10098.73
		1/28/2014	7:42	1/28/2014 7:42	55	34	4 33	}	4	54	8.4	16.9	1.9	3 10100.66
		1/28/2014	8:12	1/28/2014 8:12	55	33.5	32.5	;	6	54	12.6	315.1	36.0	5 10136.71
		1/28/2014	8:13	1/28/2014 8:13	55	35	5 34	. 9	5	54	20.2	16.4	1.8	8 10138.59
		1/28/2014	8:33	1/28/2014 8:33	55	35	5 34	ļ.	9	54	19.2	393.9	45.0	7 10183.65
		1/28/2014	10:06	1/28/2014 10:06	53	35	5 34	8	5	54	18.1	1732.8	198.2	3 10381.88
		1/28/2014	11:06	1/28/2014 11:06	53	34	33.5	9	5	54	20.0	1143.6	130.8	3 10512.71
		1/28/2014	11:50	1/28/2014 11:50	51	34	33.5	5 1	0	54	21.1	904.1	103.4	3 10616.14
		1/28/2014	13:05	1/28/2014 13:05	50	34	4 33	3 10	5	54	22.1	1620.1	185.3	4 10801.48
		1/28/2014	14:05	1/28/2014 14:05	50	33.5	32.5	5 1	1	53	23.1	1356.4	155.1	7 10956.65
		1/28/2014	14:07	1/28/2014 14:07	59	36	33.5	5 1	4	53	30.1	53.2	6.0	9 10962.74
		1/28/2014	15:00	1/28/2014 15:00	59	36	33.5	5 14	5	52	31.3	1627.1	186.1	4 11148.87
		1/28/2014	16:37	1/28/2014 16:37	51	. 36	33.5	5 14	5	50	31.3	3034.7	347.1	7 11496.05
		1/28/2014	16:38	1/28/2014 16:38							valve shut	31.3	3.5	8 11499.63

1/26/2014 16.38 1/26/2014 16.39 1/26/2014 16.39 1/26/2014 16.30 1/26/2014 16.30 1/26/2014 16.30 1/26/2014 16.30 1/26/2014 16.30 1/26/2014 16.30 1/26/2014 16.30 1/26/2014 16.30 1/26/2014 12.40 1/26	Back to Master	Date	т	ime I	Date + Time	P at Reducer (psig)	P at Pane (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flo	ow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
1/29/2014 816			1/28/2014	16:39	1/28/2014 16:39	9			28						11499.63
1/19/2014 9.00	SW-37 Event 14		1/29/2014	8:15	1/29/2014 8:15	5									11499.63
14,18,100.4 10.26			1/29/2014	8:16	1/29/2014 8:16	5 5	0	35	33 1	8	40	38.9	38.9	4.45	11504.08
1/18/2014 12-40 1/18/2014 12-50 13-7 14-8 18-8 45 38-5 12-17 12-17 12-17 12-17 13-			1/29/2014	9:09	1/29/2014 9:09	9 5	0	37	18	5	44	40.6	2106.6	240.99	11745.07
1/29/2014 15.77 1/29/2014 15.77 1/29/2014 15.79 1/29			1/29/2014	10:26	1/29/2014 10:26	5 5	0	37	34 1	8	44	39.5	3084.6	352.88	12097.95
1/29/2014 14-57 1/29/2014 14-57 1/29/2014 16-30 1/29			1/29/2014	12:40	1/29/2014 12:40	5	0	37	34 1	8	45	39.5	5291.7	605.37	7 12703.32
1/29/2014 16-29 1/29/2014 16-39 1/29/2014 16-39 1/29/2014 16-39 1/29/2014 16-39 1/29/2014 16-39 1/29/2014 16-39 1/29/2014 16-39 1/29/2014 16-39 1/29/2014 16-39 1/29/2014 16-39 1/29/2014 16-39 1/29/2014 16-39 1/29/2014 17-39 1/29			1/29/2014	13:57	1/29/2014 13:57	7 4	8	37 33	.5 18	5	45	40.6	3081.4	352.53	1 13055.83
1/29/2014 16-30 1/29/2014 16-30 1/29/2014 16-30 1/29/2014 16-30 1/29/2014 16-30 1/29/2014 16-30 1/29/2014 16-30 1/29/2014 16-30 1/29/2014 17-37 1/30/2014 17-38 1/30/201				14:57	1/29/2014 14:57	7 4	8				44				
1/20/2004							8	37 33	.5 18	5	43				
1988/1981 1988												Valve shut	40.7	4.65	
1/38/1014 7-38					• •				27						
1/30/2014 746	<u>SW-37 Event 15</u>														
1/30/2014 9.02															
130/2014 9:58 1/30/2014 10:58 50 36 34 20.5 47 44.4 2506 266.18 30.18 128/2014 130/2014 12:24 130/2014 12:24 130/2014 13:31 50 37 34 21 50 45.8 387.7 44.8 387.7 44.8 15/20.2 130/2014 13:31 1/30/2014 13:33 1/30/2014 1/30 1/30/2014 1/30 1/30/2014 1/30 1/30/2014															
1/30/2014 10-58 1/30/2014 12-24 50 37 34 21 50 45 84 89 3105 35.31 1562.523 1562.523 1/30/2014 13:34 1/30/2014 13:34 1/30/2014 13:34 1/30/2014 13:34 1/30/2014 13:34 1/30/2014 13:34 1/30/2014 13:34 1/30/2014 13:34 1/30/2014 13:34 1/30/2014 13:34 1/30/2014 13:34 1/30/2014 13:34 1/30/2014 13:34 1/30/2014 1/3															
130/2014 12-21 130/2014 13-31 130/2014 13-31 50 37 34 21 50 45.8 389.7 43.83 1269.92					• •										
1/30/2014 13:31 1/30/2014 13:32 1/30/2014 13:32 1/30/2014 13:33 1/30/2014 13:34 1/30															
1/30/2014 13:32					· ·										
1/30/2014 13:33							0	37	34 21	5	50				
2/5/2014									_			Valve shut	46.9	5.3	
2/5/2014															
2/5/2014	<u>SW-37 Event 16</u>						5			3					
2/5/2014			2/5/2014	7:44	2/5/2014 7:44	1		33 32	.5	4	61	8.3	7.2	0.83	3 15631.42
2/5/2014 8:48 2/5/2014 8:48 34 33.5 8.1 66 16.9 861.9 98.60 15754.23			2/5/2014	7:46	2/5/2014 7:46	5		34 33	.5 8	1	61	17.0	25.2	2.89	9 15634.30
2/5/2014 10:28			2/5/2014	7:57	2/5/2014 7:57	7 5	5	34 33	.5 8	1	62	16.9	186.4	21.32	2 15655.62
2/5/2014 11:29 2/5/2014 11:29 2/5/2014 11:29 33.5 33.5 33.5 33.5 33.5 30.0 72 20.6 1144.70 105.53 16295.687 2/5/2014 13:35 2/5/2014 13:35 3/5/2014 13:35 3/5/2014 13:35 3/5/2014 13:35 3/5/2014 13:35 3/5/2014 13:35 3/5/2014 13:35 3/5/2014 13:49 33.3 32.5 11 74 22.5 1607.7 183.92 16569.15 2/5/2014 15:42 2/5/2014 15:42 32.5 32.5 32.5 11.2 70 22.9 1201.8 137.49 16706.64 2/5/2014 16:01 2/5/2014 16:01 2/5/2014 16:01 2/5/2014 16:02			2/5/2014	8:48	2/5/2014 8:48	3		34 33	.5 8	1	66	16.9	861.9	98.60	15754.23
2/5/2014 12-41 2/5/2014 12-41 45 33.5 33.5 10 72 20.6 1447.0 165.53 16256.87 2/5/2014 13:35 2/5/2014 13:35 2/5/2014 13:35 3/5/2014 13:35 3/5/2014 13:35 3/5/2014 14:49 33 32.5 11 74 22.5 1607.7 183.92 16569.15 2/5/2014 15:42 2/5/2014 15:42 2/5/2014 15:42 2/5/2014 15:01 47 32.5 32.5 11.2 70 22.9 1201.8 137.49 16706.64 2/5/2014 16:01 2/5/2014 16:01 47 32.5 32.5 11.2 73 22.8 433.8 49.62 16756.27 2/5/2014 16:02 2/5/2014 16:			2/5/2014	10:28	2/5/2014 10:28	3		34 33	.5	9	68	18.7	1778.5	203.46	5 15957.69
2/5/2014 12-41 2/5/2014 12-41 45 33.5 33.5 10 72 20.6 1447.0 165.53 16256.87 2/5/2014 13:35 2/5/2014 13:35 2/5/2014 13:35 3/5/2014 13:35 3/5/2014 13:35 3/5/2014 14:49 33 32.5 11 74 22.5 1607.7 183.92 16569.15 2/5/2014 15:42 2/5/2014 15:42 2/5/2014 15:42 2/5/2014 15:01 47 32.5 32.5 11.2 70 22.9 1201.8 137.49 16706.64 2/5/2014 16:01 2/5/2014 16:01 47 32.5 32.5 11.2 73 22.8 433.8 49.62 16756.27 2/5/2014 16:02 2/5/2014 16:			2/5/2014	11:29	2/5/2014 11:29	9	3	3.5 33	.5 9	5	70	19.6	1168.3	133.65	5 16091.34
2/5/2014				12:41			5 3	3.5 33	.5 1	0	72	20.6	1447.0	165.53	3 16256.87
2/5/2014															
2/5/2014 15:42 2/5/2014 16:01 2/5/2014 16:01 47 32.5 32.5 32.5 11.2 70 22.9 1201.8 137.49 16706.64							_								
2/5/2014 16:01 2/5/2014 16:02 2/5/2014 16:02 2/5/2014 16:02 2/5/2014 16:02 2/5/2014 16:02 2/5/2014 16:02 2/5/2014 16:02 2/5/2014 16:02 2/5/2014 16:02 2/5/2014 16:02 2/5/2014 16:02 2/5/2014 16:02 2/5/2014 16:02 2/7/2014 16:02 2/7/2014 16:02 2/7/2014 16:02 2/7/2014 16:02 2/7/2014 16:02 2/7/2014 16:02 2/7/2014 16:02 2/7/2014 16:02 2/7/2014 16:02 2/7/2014 16:02 2/7/2014 16:02 2/7/2014 16:03 2/7/2014							2								
No. No.															
SW-37 Event 17 2/7/2014 8:20 2/7/2014 8:20 50 33 32 4 46 8.4 16758.87							, 5			2	73				
2/7/2014 8:22 2/7/2014 8:22 50 33.5 33 8.2 46 17.3 25.7 2.94 16761.82	SM 27 Event 17						<u> </u>			1	16		22.8	2.0.	
2/7/2014 9:24 2/7/2014 9:25 9:25	3W-37 EVERT 17									•			25.7	2.0	
2/7/2014 9:25 2/7/2014 9:25 45 33.5 33.3 12.2 55 25.6 21.9 2.50 16890.45															
2/7/2014 10:13 2/7/2014 10:14 2/7/2014 10:14 2/7/2014 10:14 2/7/2014 10:14 2/7/2014 10:14 2/7/2014 10:14 2/7/2014 10:14 2/7/2014 10:14 2/7/2014 10:14 2/7/2014 10:14 2/7/2014 10:14 2/7/2014 10:14 2/7/2014 10:12 2/11/2014 10:13 2/11/2014 10:13															
2/7/2014 10:14 2/7/2014 10:14 29 Valve shut 24.0 2.74 17029.21 SW-37 Event 18 2/11/2014 12:32 2/11/2014 12:32 50 32.5 33.5 <2															
SW-37 Event 18 2/11/2014 12:32 2/11/2014 12:32 50 32.5 33.5 <2 69 0.0 17029.21 2/11/2014 12:34 2/11/2014 12:34 49 33.3 34 6.1 69 12.6 12.6 1.44 17030.65 2/11/2014 13:52 2/11/2014 13:52 49 33.2 34 7.3 66 15.1 1078.2 123.34 17153.99 2/11/2014 14:57 2/11/2014 14:57 49 33.2 34 7.5 62 15.5 995.2 113.85 17267.84 2/11/2014 17:12 2/11/2014 17:12 51 33.2 34 9 56 18.8 2316.4 265.00 17532.84 2/11/2014 17:13 2/11/2014 17:13 30 Valve shut 18.8 2.15 17534.99 5W-37 Event 19 2/12/2014 8:25 2/12/2014 8:25 50 25 4 47 7.7 17534.99 2/12/2014 8:27 2/12/2014 8:27 50 33.5 19 47 40.1 47.8 5.46							+ 3			5	39				
2/11/2014 12:34 2/11/2014 12:34 49 33.3 34 6.1 69 12.6 12.6 12.6 1.44 17030.65	SW-37 Event 18						ი ვ			2	69		24.0	2.,,-	
2/11/2014 13:52 2/11/2014 13:52 49 33.2 34 7.3 66 15.1 1078.2 123.34 17153.99 2/11/2014 14:57 2/11/2014 14:57 49 33.2 34 7.5 62 15.5 995.2 113.85 17267.84 2/11/2014 17:12 2/11/2014 17:13 51 33.2 34 9 56 18.8 2316.4 265.00 17532.84 2/11/2014 17:13 2/11/2014 17:13 30 Valve shut 18.8 2.15 17534.99 SW-37 Event 19 2/12/2014 8:25 2/12/2014 8:25 50 25 4 47 7.7 47.8 5.46 17540.45 2/12/2014 8:27 2/12/2014 8:27 50 33.5 19 47 40.1 47.8 5.46 17540.45 2/12/2014 8:58 2/12/2014 8:58 45 34 17.8 53 37.6 1203.9 137.72 17678.17 2/12/2014 10:31 2/12/2014 10:31 46 34 17 55 35.8 3410.4 390.14	SW 37 EVERT 10												12.6	1 44	
2/11/2014 14:57 2/11/2014 14:57 49 33.2 34 7.5 62 15.5 995.2 113.85 17267.84 2/11/2014 17:12 2/11/2014 17:12 51 33.2 34 9 56 18.8 2316.4 265.00 17532.84 2/11/2014 17:13 2/11/2014 17:13 30 Valve shut 18.8 2.15 17534.99 SW-37 Event 19 2/12/2014 8:25 2/12/2014 8:25 50 25 4 47 7.7 17534.99 SW-37 Event 19 2/12/2014 8:27 2/12/2014 8:27 50 33.5 19 47 40.1 47.8 5.46 17540.45 2/12/2014 8:58 2/12/2014 8:58 45 34 17.8 53 37.6 1203.9 137.72 17678.17 2/12/2014 10:31 2/12/2014 10:31 46 34 17 55 35.8 3410.4 390.14 18068.32															
2/11/2014 17:12 2/11/2014 17:12 51 33.2 34 9 56 18.8 2316.4 265.00 17532.84 2/11/2014 17:13 2/11/2014 17:13 30 Valve shut 18.8 2.15 17534.99 SW-37 Event 19 2/12/2014 8:25 2/12/2014 8:25 50 25 4 47 7.7 17534.99 2/12/2014 8:27 2/12/2014 8:27 50 33.5 19 47 40.1 47.8 5.46 17540.45 2/12/2014 8:58 2/12/2014 8:58 45 34 17.8 53 37.6 1203.9 137.72 17678.17 2/12/2014 10:31 2/12/2014 10:31 46 34 17 55 35.8 3410.4 390.14 18068.32															
2/11/2014 17:13 2/11/2014 17:13 30 Valve shut 18.8 2.15 17534.99 SW-37 Event 19 2/12/2014 8:25 2/12/2014 8:25 50 25 4 47 7.7 17534.99 2/12/2014 8:27 2/12/2014 8:27 50 33.5 19 47 40.1 47.8 5.46 17540.45 2/12/2014 8:58 2/12/2014 8:58 45 34 17.8 53 37.6 1203.9 137.72 17678.17 2/12/2014 10:31 2/12/2014 10:31 46 34 17 55 35.8 3410.4 390.14 18068.32															
SW-37 Event 19 2/12/2014 8:25 2/12/2014 8:25 50 25 4 47 7.7 7.7 17534.99 2/12/2014 8:27 2/12/2014 8:27 50 33.5 19 47 40.1 47.8 5.46 17540.45 2/12/2014 8:58 2/12/2014 8:58 45 34 17.8 53 37.6 1203.9 137.72 17678.17 2/12/2014 10:31 2/12/2014 10:31 46 34 17 55 35.8 3410.4 390.14 18068.32															
2/12/2014 8:27 2/12/2014 8:27 50 33.5 19 47 40.1 47.8 5.46 17540.45 2/12/2014 8:58 2/12/2014 8:58 45 34 17.8 53 37.6 1203.9 137.72 17678.17 2/12/2014 10:31 2/12/2014 10:31 46 34 17 55 35.8 3410.4 390.14 18068.32	SW-37 Event 19						0			4	47				
2/12/2014 8:58 2/12/2014 8:58 45 34 17.8 53 37.6 1203.9 137.72 17678.17 2/12/2014 10:31 2/12/2014 10:31 46 34 17 55 35.8 3410.4 390.14 18068.32										_			47.8	5.46	
2/12/2014 10:31 2/12/2014 10:31 46 34 17 55 35.8 3410.4 390.14 18068.32															

				P at Reducer		P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Fl	ow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	2/12/2014	13:58	2/12/2014 13:58	. 4	9 34.2	<u>.</u>	17.2	2	51	36.4	4484.8	513.07	18921.75
	2/12/2014	14:54	2/12/2014 14:54	. 4	8 34.2	2	17.8	3	51	37.7	2075.9	237.49	19159.23
	2/12/2014	15:54	2/12/2014 15:54	. 4	8 34.2	2	18.5	5	51	39.2	2306.8	263.90	19423.14
	2/12/2014	16:53	2/12/2014 16:53	4	8 34.2	2	19)	51	40.2	2343.4	268.08	19691.22
	2/12/2014	17:54	2/12/2014 17:54	. 4	8 34.2	2	19.5	5	52	41.3	2486.1	284.41	19975.63
	2/13/2014	7:11	2/13/2014 7:11	. 4	7 32	2	22.2	<u>)</u>	49	46.0	34787.6	3979.70	23955.33
	2/13/2014	7:59	2/13/2014 7:59	5	32.5	; •	22.8	3	47	47.6	2247.9	257.16	24212.49
	2/13/2014	9:05	2/13/2014 9:05	5	32.5	j	22.8	3	48	47.6	3142.0	359.44	24571.93
	2/13/2014	9:54	2/13/2014 9:54	. 5	32.5	; •	23	3	47	48.0	2342.9	268.03	24839.96
	2/13/2014	10:34	2/13/2014 10:34	. 5	32.5	; •	23	3	47	48.0	1921.9	219.87	25059.82
	2/13/2014	11:03	2/13/2014 11:03	5	32.5	j	23.2	<u>)</u>	48	48.4	1398.7	160.01	25219.84
	2/13/2014	11:35	2/13/2014 11:35	5	32.5	; •	23.3	3	49	48.6	1551.9	177.53	25397.37
	2/13/2014	12:04	2/13/2014 12:04	. 5	32.2	2	23.5	5	51	48.7	1411.0	161.42	25558.78
	2/13/2014	12:34	2/13/2014 12:34	. 5	32.2	2	23.7	7	51	49.1	1468.2	167.97	25726.75
	2/13/2014	13:04	2/13/2014 13:04	. 5	32.2	2	23.8	3	53	49.3	1476.1	168.86	25895.61
	2/13/2014	14:08	2/13/2014 14:08	5	32	2	23.8	3	56	49.0	3144.2	359.69	26255.30
	2/13/2014	15:05	2/13/2014 15:05	5	32	2	23.8	3	58	48.9	2790.2	319.20	26574.50
	2/13/2014	15:24	2/13/2014 15:24							Valve shut	929.1	106.29	26680.79

Total CO₂ Mass (lbs):

Back to Master	Date Ti	me D		P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	F	low (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
SW-38 Event 1	11/22/2013	12:58	11/22/2013 12:58	50) 26	5			78	0.0			
	11/22/2013	13:00	11/22/2013 13:00		27	7 27		<2	80	0.0	0.0	0.00	0.00
	11/22/2013	13:01	11/22/2013 13:01		34	1 34		<2	80	0.0	0.0	0.00	0.00
	11/22/2013	13:22	11/22/2013 13:22		35	33		<2	82	0.0	0.0	0.00	0.00
	11/22/2013	13:23	11/22/2013 13:23		37	7 36.5		4	82	8.5	4.2	0.48	0.48
	11/22/2013	14:08	11/22/2013 14:08		36	5 35		10	82	20.9	661.0	75.62	76.10
	11/22/2013	15:24	11/22/2013 15:24	48	3 36	34.5		12	75	25.3	1755.8	200.86	276.96
	11/22/2013	16:37	11/22/2013 16:37		36	5 34		12	74	25.3	1846.3	211.22	488.18
	11/22/2013	17:17	11/22/2013 17:17	50	36	34		12	70	25.4	1014.2	116.02	604.20
	11/22/2013	17:18	11/22/2013 17:18							Valve shut	25.4	2.91	607.10
	11/22/2013	17:19	11/22/2013 17:19										607.10
SW-38 Event 2	12/4/2013	13:20	12/4/2013 13:20	55	38	38		<2	85	0.0			607.10
	12/4/2013	13:22	12/4/2013 13:22	55	35	35		2	85	4.1	4.1	0.47	607.58
	12/4/2013	13:54	12/4/2013 13:54	50	35	36	7	7.5	84	15.5	314.2	35.94	643.52
	12/4/2013	14:51	12/4/2013 14:51	50	36	35.5		3.5	74	17.9	952.7	108.99	752.51
	12/4/2013	15:58	12/4/2013 15:58	50	35	34.5		11	75	22.9	1368.9	156.61	909.12
	12/4/2013	17:42	12/4/2013 17:42	50	35	33		14	75	29.2	2711.1	310.15	1219.27
	12/4/2013	17:43	12/4/2013 17:43							Valve shut	29.2	3.34	1222.61
	12/4/2013	17:44	12/4/2013 17:44			25							1222.61
SW-38 Event 3	12/10/2013	13:38	12/10/2013 13:38	50	34	1 34		<2	78	0.0			1222.61
	12/10/2013	13:40	12/10/2013 13:40	50	30	30		<2	78	0.0			1222.61
	12/10/2013	14:20	12/10/2013 14:20	50	27.5	30		<2	72	0.0			1222.61
	12/10/2013	14:52	12/10/2013 14:52	50	28	30		<2	72	0.0			1222.61
	12/10/2013	14:53	12/10/2013 14:53	50	30) 32	ţ	5.5	72	10.9	5.5	0.62	1223.23
	12/10/2013	15:28	12/10/2013 15:28	50	30) 32	į	5.5	72	10.9	381.5	43.65	1266.88
	12/10/2013	15:29	12/10/2013 15:29	50	32.5	33.5		7.5	72	15.3	13.1	1.50	1268.37
	12/10/2013	15:55	12/10/2013 15:55	45	32	33.5		7.5	70	15.2	396.6	45.37	1313.75
	12/10/2013	16:34	12/10/2013 16:34	45	32.5	33.5		8	68	16.4	616.0	70.47	1384.22
	12/10/2013	17:16	12/10/2013 17:16	50	32	2 33		9	66	18.3	728.9	83.38	1467.61
	12/10/2013	22:32	12/10/2013 22:32	52	32	31.5	13	3.5	60	27.7	7272.5	831.97	2299.58
	12/11/2013	7:56	12/11/2013 7:56	49	30) 29	15	5.5	60	31.1 Valve shut	16572.5	1895.90	4195.48
SW-38 Event 4	12/17/2013	12:37	12/17/2013 12:37	48	34	1 34		<2	69	0.0			4195.48
	12/17/2013	13:32	12/17/2013 13:32	49	32	2 30		5	70	10.2	279.2	31.94	4227.41
	12/17/2013	13:33	12/17/2013 13:33	47	36	34	13	3.5	70	28.6	19.4	2.22	4229.63
	12/17/2013	14:47	12/17/2013 14:47	45	36	34	13	3.5	70	28.6	2114.8	241.94	4471.57
	12/17/2013	16:10	12/17/2013 16:10	45	36	33.5		16	68	33.9	2594.5	296.81	4768.37
	12/17/2013	22:30	12/17/2013 22:30	45	35	30		21	58	44.5	14910.1	1705.71	6474.09
	12/17/2013	22:32	12/17/2013 22:32	43	36	31		26	58	55.7	100.2	11.47	6485.55
	12/18/2013	8:13	12/18/2013 8:13	41	37	7 30		28	57	60.6	33799.3	3866.64	10352.20
	12/18/2013	8:14	12/18/2013 8:14							Valve shut	60.6	6.94	10359.13
	12/18/2013	8:15	12/18/2013 8:15			25							10359.13
Note: a red value,	, i.e. 75 °F, indicates tha	t value was i	interpolated from field d	ata							Total CO ₂ Mass (lbs):		10359.13

Total CO₂ Mass (lbs):

Back to Master	Date 1	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	F	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-39 Event 1	11/20/2013	8:42	2 11/20/2013 8:42	59.5		16	5			0.0	() 0	0
	11/20/2013	8:48	3 11/20/2013 8:48	}		8	3		64	0.0	0.0	0.00	0.00
	11/20/2013	8:49	11/20/2013 8:49	57.5	5 34	1 34	· <:	2	64	0.0	0.0	0.00	0.00
	11/20/2013	8:50	11/20/2013 8:50	57.5	35	5 36	S <	2	64	0.0	0.0	0.00	0.00
	11/20/2013	9:40	11/20/2013 9:40	57.5	34	4 32	2	7	64	14.6	365.1	41.77	41.77
	11/20/2013	11:10	11/20/2013 11:10	55	34	4 31.5	5	9	66	18.7	1500.5	171.66	213.43
	11/20/2013	11:12	11/20/2013 11:12	. 55	36	32.5	5 1:	1	66	23.4	42.1	4.82	218.25
	11/20/2013	11:15	11/20/2013 11:15	5 55	37	7 33	3 11.	5	66	24.7	72.1	8.25	226.50
	11/20/2013	12:55	11/20/2013 12:55	52.5	36	5 33	3 12.2	5	64	26.1	2538.6	290.42	516.92
	11/20/2013	14:30	11/20/2013 14:30	52.5	36	5 32	2 12.	5	64	26.6	2503.5	286.41	803.32
	11/20/2013	14:49	11/20/2013 14:49	52	2 35	32.5	5 14	1	63	29.5	533.5	61.04	864.36
	11/20/2013	14:53	3 11/20/2013 14:53	52	2 40	33.5	5 14.	5	63	32.1	123.3	3 14.11	878.47
	11/20/2013	15:09	11/20/2013 15:09	55	5 40	33.5	5 1	5	63	33.2	522.9	59.82	938.29
	11/20/2013	15:12			5 40	33.5	5 1	5	63	33.2 Valve shut	99.7	7 11.41	949.69
	11/20/2013	15:13	11/20/2013 15:13	}		29)						949.69
SW-39 Event 2	12/4/2013	13:23	3 12/4/2013 13:23	52	2 33	31.5	;	1	85	8.1			988.91
	12/4/2013	13:54	12/4/2013 13:54	50) 32	2 31	1	7	84	14.0	342.8	39.21	993.14
	12/4/2013	13:56	5 12/4/2013 13:56	5 50	36	35.5	5 1:	l	84	23.0	37.0	4.23	1134.27
	12/4/2013	14:52)	74	21.1	1233.7		
	12/4/2013	16:00		50	36	35.5	5 1:	l	75	23.2	1504.8		
	12/4/2013	17:45			36	33.5	5 14	1	64	29.8	2781.8	318.24	1628.07
	12/4/2013	17:46	• •							Valve shut	29.8		
	12/4/2013	17:47	• •										1628.07
SW-39 Event 3	12/10/2013	13:36			35	5 24	ļ <:	2	78	0.0			1628.07
	12/10/2013	13:37	• •						78	12.5	6.2	0.71	
	12/10/2013	13:40	• •		35			5	78	13.5	39.0		
	12/10/2013	14:20	• •						70	14.7	563.7		
	12/10/2013	14:56	• •					7	72	14.6	527.6		
	12/10/2013	15:30						7	72	14.6	497.8		
	12/10/2013	15:57			35			5	70	15.7	409.8		
	12/10/2013	16:35	• •		35				68	16.8	617.8		
	12/10/2013	17:17	• •		35				66	17.9	728.3		
	12/10/2013	22:30	• •						60	35.6	8371.8		
	12/11/2013	7:58							60	35.6 Valve shut	20226.9		
SW-39 Event 4	12/17/2013	12:36							69	11.4	2022013	2313130	5287.61
<u> </u>	12/17/2013	13:30			32.5				70	12.2	639.0	73.10	
	12/17/2013	14:45			32.5				70	13.3	956.9		
	12/17/2013	16:12			32				68	14.2	1196.7		
	12/17/2013	22:16			32)	58	20.5	6331.3		
	12/18/2013	8:12			30				57	25.1	13615.8		
	12/18/2013	8:13			30	, ,,,	, 12		3,	Valve shut	25.1		
	12/18/2013	8:14				26				valve shat	23.2		7891.92
SW-39 Event 5	1/21/2014	9:19			28)	62	0.0			7891.92
<u> </u>	1/21/2014	9:21			34				62	11.5	11.5	5 1.32	
	1/21/2014	10:12							66	18.5	766.1		
	1/21/2014	11:39							70	18.5	1610.2		
	1/21/2014	12:27							71	19.8	918.1		
	1/21/2014	12:29			32.5	29		,	, 1	Valve shut	39.6		
SW-39 Event 6	1/22/2014	8:00			28			3	40	6.0	33.0	, 4.33	8274.63
3VV 33 LVEIIL O	1/22/2014	8:01			32.5				40	21.0	13.5	5 1.55	
	1/22/2014	8:39			31.5				44	31.1	990.5		
	1/22/2014	8:42							44	40.2	107.0		
	1/22/2014								44	38.2			
	1/22/2014	9:40	1/22/2014 9:40	47	34	+ 31.5	5 18)	47	30.2	2275.0	200.20	0002.00

				P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date Tir	me	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flo	w (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	1/22/2014	10:49	1/22/2014 10:49	45	34	1 31	. 18		50	38.1	2632.2	301.12	8963.12
	1/22/2014	11:52	1/22/2014 11:52	43	33	30.5	18.3		54	38.2	2401.9	274.78	9237.89
	1/22/2014	12:23	1/22/2014 12:23	42	33	30.5	18.3		55	38.1	1182.4	135.27	9373.16
	1/22/2014	12:24	1/22/2014 12:24							Valve shut	38.1	4.36	9377.52
	1/22/2014	12:26	1/22/2014 12:26			26	i						9377.52
Note: a red value,	i.e. 75 °F, indicates that	t value was	interpolated from field da	ata						-	Total CO ₂ Mass (lbs):		9377.52

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO₂	Cumulative
Back to Master	Date Ti	ime	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-40 Event 1	11/15/2013	7:43	11/15/2013 7:43	28	3 11.	5		63.3	0.0			
	11/15/2013	7:45	11/15/2013 7:45	33	33.	5	<2	57	0.0	0.0	0.00	0.00
	11/15/2013	7:46	11/15/2013 7:46	i	3	9 36	<2	57	0.0	0.0	0.00	0.00
	11/15/2013	7:46	11/15/2013 7:46	;	3	8 35	<2	50.7	0.0	0.0	0.00	0.00
	11/15/2013	7:47	11/15/2013 7:47	33	3	3 33	<2	50.7	0.0	0.0	0.00	0.00
	11/15/2013	7:51	11/15/2013 7:51	. 37	7 3	5 32.5	4.5	50.7	7.8	15.6	1.78	1.78
	11/15/2013	7:52	11/15/2013 7:52	. 38	3	6 33.5	5.5	49.6	9.6	8.7	1.00	2.78
	11/15/2013	7:57	11/15/2013 7:57	' 38	3	6 33.5	6.3	49.6	11.0	51.7	5.91	8.69
	11/15/2013	8:02	11/15/2013 8:02	. 37	7 3	6 33	6.3	49.6	11.0	55.2	6.31	15.00
	11/15/2013	8:03	11/15/2013 8:03	39	37.	5 34	7.75	48.5	13.8	12.4	1.42	16.42
	11/15/2013	8:35	11/15/2013 8:35	38	3	7 33	9.25	45.3	16.4	483.7	55.33	3 71.75
	11/15/2013	8:41	11/15/2013 8:41	. 40	37.	5 34	10.5	37.9	18.9	106.0	12.13	83.88
	11/15/2013	9:19	11/15/2013 9:19	40	37.	5 34	11.5	30.5	20.9	755.3	86.40	170.28
	11/15/2013	10:11	11/15/2013 10:11	. 40) 3	7 33.5	12	41	21.4	1099.2	125.74	296.03
	11/15/2013	10:14	11/15/2013 10:14	42	2 3	8 34	13	40.4	23.4	67.3	7.70	303.72
	11/15/2013	11:12	11/15/2013 11:12	. 42	2 3	8 34	13.5	32.1	24.6	1392.2	159.27	462.99
	11/15/2013	11:50							Valve shut	933.4	106.78	569.77
	11/15/2013	11:51	11/15/2013 11:51	. 27	7							569.77
SW-40 Event 2	12/5/2013	7:58	12/5/2013 7:58	56	5 3	6 36	<2	. 66	0.0			569.77
	12/5/2013	8:20				6 35.5				93.3	10.68	
	12/5/2013	8:31							Valve shut			580.45
	12/5/2013	8:34	• •						Restart			580.45
	12/5/2013	8:36			5 3	5 35	6	70		25.1	2.88	
	12/5/2013	9:11				5 35				439.2		
	12/5/2013	10:13				5 35				806.5		
	12/5/2013	11:20				5 35				936.3		
	12/5/2013	12:00				5 35				578.3		
	12/5/2013	14:13	• •			4 34				2318.4		
	12/5/2013	15:20			_	4 34				1367.7		
	12/5/2013	16:29				4 33.5				1447.3		
	12/5/2013	16:30				5 35.5				24.7		
	12/5/2013	17:52				5 35.5				2349.4		
	12/5/2013	22:01	• •			5 34.5				8096.8		
	12/6/2013	7:04				4 32.2				20998.3		
	12/6/2013	9:29				4 32.2				5857.0		
	12/6/2013	9:30				6 33.2				43.7		
	12/6/2013	10:37				6 33.5				3087.7		
	12/6/2013	11:33				6 33.5				2424.5		
	12/6/2013	13:47				9 35				6307.6		
	12/6/2013	14:28				9 35				2109.9		
	12/6/2013	15:27				9 34.5				2984.1		
	12/6/2013	17:15				8 35				5526.2		
	12/6/2013	17:13) 3	o 55 29		74	Valve shut	105.4		
SM 40 Event 2					: 2			70		103.4	12.00	
SW-40 Event 3	12/10/2013 12/10/2013	12:26	• •							8.2	2 0.94	8340.67 8341.61
	12/10/2013	12:28				4 35 4 34		78				
		12:48								236.4		
	12/10/2013	12:58				4 34				159.2		
	12/10/2013	13:56				3 34				982.0		
	12/10/2013	14:23	• •			4 34				458.8		
	12/10/2013	15:00				4 34				612.7		
	12/10/2013	15:34				4 34				580.1		
	12/10/2013	16:13				4 34				705.7		
	12/10/2013	16:45	12/10/2013 16:45	47.5	3	4 34	. 9	68	18.7	597.3	68.34	8837.22

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)			Mass of CO ₂ (lb)	Cumulative Mass (lb)
Dack to Waster	12/10/2013	17:21							66 20		703.6		
	12/10/2013	22:26							54 27.		7286.6		
	• •												
	12/11/2013	7:44								5 Valve shut	15023.4	1718.68	
<u>SW-40 Event 4</u>	12/17/2013	12:21	12/17/2013 12:21	50	0 37	3	4 <2	2	72 0.	0			11469.98
	12/17/2013	13:13	12/17/2013 13:13	50	0 35	3	2	3	73 16	7	434.6	49.72	11519.70
	12/17/2013	13:17	12/17/2013 13:17	50	0 35	3	3 12	2	73 25	1	83.6	9.56	11529.26
	12/17/2013	14:21	12/17/2013 14:21	4	6 35	3	3 12	2	74 25	0	1604.0	183.49	11712.75
	12/17/2013	15:30	12/17/2013 15:30	4.	5 35	3	3 12.5	5	72 26	1	1766.2	202.05	11914.80
	12/17/2013	16:45	12/17/2013 16:45	4.	5 35	3	2 13	3	69 27.	3	2003.0	229.15	12143.95
	12/17/2013	22:14	12/17/2013 22:14	4.	5 36	3	2 14.5	5	54 31	2	9616.7	1100.16	13244.10
	12/18/2013	9:02	12/18/2013 9:02	4	8 35	3	17.3	3	58 36	7	21993.0	2516.00	15760.11
	12/18/2013	9:04	12/18/2013 9:04							Valve shut	73.4	8.39	15768.50
	12/18/2013	9:05	12/18/2013 9:05			2	7						15768.50

Total CO₂ Mass (lbs):

Back to Master				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO₂	Cumulative
Duck to Master	Date Ti	me	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-41 Event 1	11/18/2013	7:36	11/18/2013 7:36	26	5 1	2		65.1	0.0			
	11/18/2013	7:38	11/18/2013 7:38	30) 2	9 29	<2	61.8	0.0	0.0	0.00	0.00
	11/18/2013	7:42	11/18/2013 7:42	36	5 3	6 30	<2	61.8	0.0	0.0	0.00	0.00
	11/18/2013	7:47	11/18/2013 7:47	34	1 3	1 30) 8	61.8	13.1	32.8	3.75	3.75
	11/18/2013	7:48	11/18/2013 7:48	36	5 3	3 29	9 10.5	58.4	17.7	15.4	1.76	5.52
	11/18/2013	7:51	11/18/2013 7:51	36	5 3	3 29) 11	55.2	18.6	54.4	6.22	11.74
	11/18/2013	7:53	11/18/2013 7:53	41	. 3	5 30	13.75	48	23.9	42.4	4.86	16.59
	11/18/2013	7:55	11/18/2013 7:55	45	38.	5 32	2 15.5	47.4	27.9	51.8	5.92	22.51
	11/18/2013	7:57	11/18/2013 7:57	48	3 4	0 33.5	5 17	38.3	31.3	59.2	2 6.77	29.29
	11/18/2013	8:17	11/18/2013 8:17	48	3	9 32	18.25	20.6	33.9	652.6	74.66	103.95
	11/18/2013	8:18	11/18/2013 8:18	51	4	1 33	3 19.5	19.9	37.0	35.5	4.06	108.01
	11/18/2013	9:00	11/18/2013 9:00	51	4	0 31	20.5	-5.3	39.6	1609.3	184.11	292.11
	11/18/2013	9:01	11/18/2013 9:01	54	41.	5 31.5	21.5	-6.4	42.2	40.9	4.68	296.79
	11/18/2013	9:12	11/18/2013 9:12	58	3 4	3 32.5	5 23	-16.1	46.3	487.0	55.71	352.50
	11/18/2013	10:00	11/18/2013 10:00	58	3 4	3 32	2 23.25	-19	47.0	2239.5	256.19	608.70
	11/18/2013	10:03	11/18/2013 10:03						Valve sh	nut 141.0	16.13	624.82
	11/18/2013	10:04	11/18/2013 10:04		2	3 18.5	5					624.82
SW-41 Event 2	11/20/2013	8:07	11/20/2013 8:07									624.82
	11/20/2013	8:20	11/20/2013 8:20	28	1	1		59.7	0.0	0.0	0.00	624.82
	11/20/2013	8:23	11/20/2013 8:23	28	2	7 28	5.5	52.5	8.7	13.0	1.49	626.32
	11/20/2013	8:26	11/20/2013 8:26	34	3	1	10.5	52.8	17.4	39.1	4.48	630.79
	11/20/2013	8:27	11/20/2013 8:27	37	32.	5	12.5	52.9	21.0	19.2	2.20	632.99
	11/20/2013	8:28	11/20/2013 8:28	44	3	6 30.5	5 16	53	27.9	24.5	2.80	635.79
	11/20/2013	10:18	11/20/2013 10:18	42	32.	5 26.5	19.25	57.7	32.2	3309.3	378.59	1014.38
	11/20/2013	10:21	11/20/2013 10:21	48	3	5 28	3 21.5	45.6	37.4	104.5	11.96	1026.34
	11/20/2013	12:38	11/20/2013 12:38	48	3	5 27.5	22.25	33.4	39.2	5251.6	600.78	1627.12
	11/20/2013	12:39	11/20/2013 12:39	58	3	9 30	25.5	33.4	46.8	43.0	4.92	1632.04
	11/20/2013	15:37	11/20/2013 15:37	59	4	0 30) 26	21.7	48.8	8503.2	972.76	2604.80
	11/20/2013	17:13	11/20/2013 17:13	59	3	9 28	3 26.5	17.7	49.5	4714.3	539.31	3144.12
	11/20/2013	17:16	11/20/2013 17:16						Valve sh	nut 148.4	16.97	3161.09
	11/20/2013	17:21	11/20/2013 17:21		1	9						3161.09
SW-41 Event 3	11/21/2013	7:04	11/21/2013 7:04					56.4	0.0			3161.09
	11/21/2013	7:11	11/21/2013 7:11		2	8	13.5	31.4	22.1	77.3	8.84	3169.93
	11/21/2013	7:14	11/21/2013 7:14		3	1	15.5	82.3	24.9	70.5	8.07	3178.00
	11/21/2013	7:17	11/21/2013 7:17		3	0 25	17.5	32.5	29.3	81.3	9.30	3187.30
	11/21/2013	7:19	11/21/2013 7:19		33.	5 28	3 20	29.6	34.9	64.1	7.34	3194.63
	11/21/2013	10:21	11/21/2013 10:21		3	3 27	20.5	38.3	35.2	6377.1	729.54	3924.18
	11/21/2013	10:40	11/21/2013 10:40		35.	8 26.5	23	38.3	40.7	721.0	82.49	4006.66
	11/21/2013	13:23	11/21/2013 13:23		3	5 26.5	23	46.9	40.0	6574.3	752.10	4758.76
	11/21/2013	14:36	11/21/2013 14:36		3	4 26.5	23	51	39.4	2898.0	331.53	5090.30
	11/21/2013	17:11	11/21/2013 17:11		3	4 26	5 24.3	32	42.5	6345.7	7 725.94	5816.24
	11/21/2013	17:26	11/21/2013 17:26		3	4 26	5 24.3	29.1	42.6	638.0	72.99	5889.23
	11/21/2013	17:27	11/21/2013 17:27						Valve sh	nut 42.6	4.87	5894.10
	11/21/2013	17:29	11/21/2013 17:29									5894.10
SW-41 Event 4	12/6/2013	8:53	12/6/2013 8:53	50) 3	2 31	L 8	76	16.1			5894.10
	12/6/2013	8:55	12/6/2013 8:55	50) 3	5 28	3 15	76	31.3	47.4	5.42	5899.53
	12/6/2013	9:02	12/6/2013 9:02	45	3	3 28	3 19.5			248.6	5 28.44	5927.97
	12/6/2013	9:03	12/6/2013 9:03			4 28				41.5		
	12/6/2013	10:15	12/6/2013 10:15			3 27			43.7	3133.6		
	12/6/2013	10:29	12/6/2013 10:29) 3	4 27.5	5 22.5		46.2	629.7		
	12/6/2013	10:55	12/6/2013 10:55			4 26.5			46.1	1200.5		
						F 27.				234.4		
	12/6/2013	11:00	12/6/2013 11:00	40) 3	5 27.5	5 23	82	47.6	234.4	20.02	. 0527.40

Back to Master	Date Ti	me Da	P at ate + Time (psig		P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm) Te	emp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
	12/6/2013	13:04	12/6/2013 13:04	44	37.5	24.5	25	82	53.1	2818.0	322.38	8 7220.05
	12/6/2013	13:08	12/6/2013 13:08			20			Valve shut	212.4	24.29	9 7244.34
SW-41 Event 5	12/9/2013	8:36	12/9/2013 8:36	55	34	32	6.5	64	13.6			7244.34
	12/9/2013	8:40	12/9/2013 8:40	55	30.5	27.5	14	64	28.1	83.4	9.54	4 7253.88
	12/9/2013	8:42	12/9/2013 8:42	55	32	28	17	64	34.7	62.8	7.19	9 7261.07
	12/9/2013	9:18	12/9/2013 9:18	50	32	27	19	64	38.8	1323.5	151.42	1 7412.48
	12/9/2013	9:54	12/9/2013 9:54	50	31	27.5	18	70	36.1	1349.2	154.35	5 7566.83
	12/9/2013	11:07	12/9/2013 11:07	50	31	27.5	18	77	35.9	2629.9	300.86	6 7867.69
	12/9/2013	11:36	12/9/2013 11:36	50	31	27	18	82	35.7	1038.7	118.83	3 7986.52
	12/9/2013	12:34	12/9/2013 12:34	50	31	27	18	86	35.6	2068.5	236.64	4 8223.16
	12/9/2013	12:55	12/9/2013 12:55						Valve shut	747.5	85.52	2 8308.67
	12/9/2013	12:56	12/9/2013 12:56			20						8308.67
SW-41 Event 6	12/12/2013	8:58	12/12/2013 8:58	55	34	31	<2	58	0.0			8308.67
	12/12/2013	9:45	12/12/2013 9:45	50	28	24	20	62	39.1	919.1	105.15	5 8413.82
	12/12/2013	9:46	12/12/2013 9:46	50	31	26	23.5	62		43.3	4.96	6 8418.78
	12/12/2013	9:47	12/12/2013 9:47	49	32.5	28	25	62	51.4	49.5	5.66	6 8424.44
	12/12/2013	10:30	12/12/2013 10:30	45	32.5	27	25	66	51.2	2207.5	5 252.54	4 8676.98
	12/12/2013	10:31	12/12/2013 10:31	45	36	29	28	66		55.4		3 8683.32
	12/12/2013	10:32	12/12/2013 10:32	45	38	30		66		61.7		
	12/12/2013	11:25	12/12/2013 11:25	45	38	29.5		68		3385.6		
	12/12/2013	13:35	12/12/2013 13:35	45	36	29.5		70		8413.7		
	12/12/2013	13:36	12/12/2013 13:36						Valve shut	65.6		
	12/12/2013	13:37	12/12/2013 13:37			18						10047.73
SW-41 Event 7	12/16/2013	8:24	12/16/2013 8:24	50	31	31		48	3 14.4	0.0	0.00	
	12/16/2013	8:50	12/16/2013 8:50	45	29	26		50		590.3		
	12/16/2013	8:51	12/16/2013 8:51	45	30	29		50		35.8		
	12/16/2013	10:07	12/16/2013 10:07	45	30	28		48		3082.3		
	12/16/2013	11:04	12/16/2013 11:04	40	31	28		66		2306.2		
	12/16/2013	11:05	12/16/2013 11:05	40	32	30		66		43.6		
	12/16/2013	11:06	12/16/2013 11:06	40	34	31		66		50.5		
	12/16/2013	13:12	12/16/2013 13:12	45	40	33		67		7025.6		
	12/16/2013	13:13	12/16/2013 13:13					•	Valve shut	57.4		
	12/16/2013	13:14	12/16/2013 13:14			22			valve shar	57.	0.5	11556.87
	12/16/2013	14:42	12/16/2013 14:42	50	40	31.5		68	65.0 Restart	5723.3	654.75	
	12/16/2013	15:36	12/16/2013 15:36	45	37.5	32		68		3296.3		
	12/16/2013	16:33	12/16/2013 16:33	40	37.3	30.5		64		3189.0		
	12/16/2013	16:35	12/16/2013 16:35	40	37	31		64		110.8		
	12/16/2013	17:18	12/16/2013 17:18	40	37	30		60		2363.0		
	12/16/2013	17:19	12/16/2013 17:19	70	37	30	23	00	Valve shut	54.0		
	12/16/2013	17:19	12/16/2013 17:19			22			vaive silut	54.0	, 0.10	13242.72
Notor a rad value			terpolated from field data							Total CO ₂ Mass (lbs)		13242.72

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO₂	Cumulative
Back to Master	Date Ti	ime	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-42 Event 1	11/12/2013	8:28	11/12/2013 8:28	3 24					0.0			
	11/12/2013	8:31	11/12/2013 8:31	. 31	. 31	1 28	<	2 54.8	0.0	0.0	0.00	0.00
	11/12/2013	8:33	11/12/2013 8:33	30) 30	28	<	2 54.1	0.0	0.0	0.00	0.00
	11/12/2013	8:35	11/12/2013 8:35	33	33	3 30	<	2 54.5	0.0	0.0	0.00	0.00
	11/12/2013	8:39	11/12/2013 8:39	36	35	33.5	<	2 58.4	0.0	0.0	0.00	0.00
	11/12/2013	8:42	11/12/2013 8:42	2 35	36	33.5	<	2 58.6	0.0	0.0	0.00	0.00
	11/12/2013	8:44	11/12/2013 8:44	35	5 34	4 32.5	<	2 59.5	0.0	0.0	0.00	0.00
	11/12/2013	8:59	11/12/2013 8:59)	33	3 31		2 60	0.0	0.0	0.00	0.00
	11/12/2013	9:04	11/12/2013 9:04	33	33	3	<	2 60	0.0	0.0	0.00	0.00
	11/12/2013	9:05	11/12/2013 9:05	35	34.5	5 32	<	2 60	0.0	0.0	0.00	0.00
	11/12/2013	9:10	• •		34.5	5	<	2 59.3		0.0		
	11/12/2013	9:14	11/12/2013 9:14	35	5 34	1 32	<	2 59.0	0.0	0.0	0.00	
	11/12/2013	9:15	11/12/2013 9:15	36	31	5 34	3	.5 58.6	6.0	3.0	0.34	0.34
	11/12/2013	9:25	11/12/2013 9:25	37	36	5 34	3	.5 58.2	6.1	60.4	6.92	7.26
	11/12/2013	9:40	11/12/2013 9:40) 37	36	5 33.5		4 58.1	6.9	97.7	7 11.17	18.43
	11/12/2013	10:05	• •							183.5		
	11/12/2013	10:36	11/12/2013 10:36	38	3	7 34	5.2	25 60.9	9.2	262.2	29.99	69.42
	11/12/2013	10:53	11/12/2013 10:53	38	37	7 34.5	5	.5 60.6	9.6	159.8	18.28	87.70
	11/12/2013	11:00	11/12/2013 11:00) 40) 38	3 36	6	.5 60.8	11.5	73.9	8.45	96.15
	11/12/2013	11:20	11/12/2013 11:20) 40) 38	36	6	.5 60.4	11.5	229.6	26.27	122.42
	11/12/2013	11:45	11/12/2013 11:45	5 40) 38	35.5		7 61.7	12.4	297.9	34.09	156.51
	11/12/2013	12:20	11/12/2013 12:20) 40	37.5	5 35.5	7.	.5 63.5	13.1	446.2	2 51.05	207.55
	11/12/2013	12:36	11/12/2013 12:36	5 40) 37	7 35	7.	.5 66.7	13.0	209.5	23.97	231.52
	11/12/2013	12:38	11/12/2013 12:38	3 41	39	36.5	8	.5 67.4	15.1	28.1	3.21	234.73
	11/12/2013	13:07	11/12/2013 13:07	42	2 39	36.5	8.7	'5 67.6	15.5	443.0	50.68	285.42
	11/12/2013	13:17	11/12/2013 13:17	,					Valve sh	ut 155.0	17.73	303.14
	11/12/2013	13:19	11/12/2013 13:19)								303.14
SW-42 Event 2	11/26/2013	7:45	11/26/2013 7:45	5 54	25	5		68	0.0			303.14
	11/26/2013	7:48			5 34	1 34		2 68		(
	11/26/2013	8:10) 55	33	3 33	<	2 68		(0.00	
	11/26/2013	8:12	11/26/2013 8:12	. 52	2 37	7 38	<	2 68	0.0	(0.00	303.14
	11/26/2013	8:15			2 35	5 36	<	2 68		(0.00	303.14
	11/26/2013	9:12	11/26/2013 9:12	. 52	2 36	5 35.5	<	2 68	0.0	(0.00	303.14
	11/26/2013	11:17						2 68		(
	11/26/2013	12:20	11/26/2013 12:20) 50) 37	7 36	<	2 68	0.0	(
	11/26/2013	12:21							Valve sh	ut (0.00	
	11/26/2013	12:23				30						303.14
SW-42 Event 3	12/4/2013	8:01	12/4/2013 8:01	_								303.14
	12/4/2013	8:02	12/4/2013 8:02	2 53	3 28	3 30	<	2 6	4 0.0	(0.00	303.14
	12/4/2013	8:06	12/4/2013 8:06	5 53	3 28	3 30	<	2 6	4 0.0	(0.00	303.14
	12/4/2013	8:07			32	2 34	. <	2 6		(0.00	
	12/4/2013	8:35			32			2 7		(0.00	303.14
	12/4/2013	8:38	12/4/2013 8:38	3 48	34	4 37.5	<	2 7	0.0	(0.00	303.14
	12/4/2013	9:28	12/4/2013 9:28	3 47	34	4 37.5	<	2 7		(0.00	303.14
	12/4/2013	9:58	12/4/2013 9:58	3 47	34	4 37.5	<	2 7	4 0.0	(0.00	303.14
	12/4/2013	11:12			5 34			2 8		152.0		
	12/4/2013	12:09	12/4/2013 12:09	50) 34	4 36.5	3	.5 8	2 7.2	321.6	36.79	357.32
	12/4/2013	12:14	12/4/2013 12:14	Į.					Valve sh	ut		357.32
	12/4/2013	12:15	12/4/2013 12:15	j		28						357.32
SW-42 Event 4	12/10/2013	8:00	12/10/2013 8:00	51	35	5 34	. <	2 7				357.32
	12/10/2013	8:20						2 7				357.32
	12/10/2013	8:34	12/10/2013 8:34	52	2 36	5 34		2 7	2 0.0			357.32
	12/10/2013	9:08	12/10/2013 9:08	50) 36	5 34	. <	2 7	2 0.0			357.32

Dock to Moston	Date Ti	ime	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂	Cumulative Mass (lb)
Back to Master		9:42								CO ₂ (SCI)	(15)	357.32
	12/10/2013		12/10/2013 9:42									
	12/10/2013 12/10/2013	10:19 11:17	12/10/2013 10:19 12/10/2013 11:17									357.32 357.32
	12/10/2013	12:00	12/10/2013 11:17				<2 <2					357.32
	12/10/2013	13:54	12/10/2013 12:00							356.3	40.76	
	12/10/2013	15:06	12/10/2013 15:06					72		526.2		
	12/10/2013	16:00	12/10/2013 13:00					1 72		451.8		
	12/10/2013	17:25	12/10/2013 10:00				_			713.2		
	12/10/2013	20:14	12/10/2013 17:23		33	33	•		Valve shut	1422.2		
	12/10/2013	20:17	12/10/2013 20:17						Restart	1422.2	102.70	754.26
	12/10/2013	22:20	12/10/2013 20:17		36	35	11.5	5 54		3042.7	348.08	
	12/11/2013	7:38	12/11/2013 7:38							12700.2		
SW-42 Event 5	12/17/2013	8:30	12/17/2013 7:38				<2			12700.2	1432.30	2555.24
3W-42 EVENT 3	12/17/2013	8:56	12/17/2013 8:56				<2			0.0	0.00	
	12/17/2013	10:14	12/17/2013 10:14				<2			0.0		
	12/17/2013	11:17	12/17/2013 10:14				<2			0.0		
	12/17/2013	12:02	12/17/2013 11:17				<2			0.0		
	12/17/2013	14:12	12/17/2013 12:02				<2			0.0		
	12/17/2013	15:22	12/17/2013 15:22							0.0		
	12/17/2013	16:30	12/17/2013 16:30							0.0		
	12/17/2013	22:09	12/17/2013 10:50				3			1035.5		
	12/18/2013	8:04	12/18/2013 8:04				2			4250.4		
	12/18/2013	12:15	12/18/2013 12:15		31	32.3		. 32	Valve shut	2052.7		
SW-42 Event 6	1/8/2014	8:00	1/8/2014 8:00		33	34	<2	2 38		0.0		
<u> </u>	1/8/2014	8:25	1/8/2014 8:25				<2			0.0		
	1/8/2014	9:02	1/8/2014 9:02							0.0		
	1/8/2014	10:01	1/8/2014 10:01				<2			0.0		
	1/8/2014	10:42	1/8/2014 10:42				<2			0.0		
	1/8/2014	12:05	1/8/2014 12:05				<2			0.0		
	1/8/2014	13:25	1/8/2014 13:25				<2			0.0		
	1/8/2014	14:29	1/8/2014 14:29							0.0		
	1/8/2014	17:00	1/8/2014 17:00				<2			0.0		
	1/8/2014	21:05	1/8/2014 21:05							752.9		
	1/8/2014	21:07	1/8/2014 21:07							16.7		
	1/9/2014	7:02	1/9/2014 7:02				é			6837.3		
	1/9/2014	8:50	1/9/2014 8:50				6.5			1400.0		
	1/9/2014	10:30	1/9/2014 10:30							1445.8		
	1/9/2014	11:48	1/9/2014 11:48							1233.9		
	1/9/2014	14:40	1/9/2014 14:40							2888.4		
	1/9/2014	15:25	1/9/2014 15:25							806.2		
	1/9/2014	16:49	1/9/2014 16:49							1549.5		
	1/9/2014	16:50	1/9/2014 16:50						Valve shut	18.5		
	1/9/2014	16:51	1/9/2014 16:51			28						5333.74
SW-42 Event 7	1/10/2014	8:57	1/10/2014 8:57		28) 66	5 19.5			5333.74
	1/10/2014	8:59	1/10/2014 8:59		32	32	11.5	5 66	5 23.4	42.9	4.91	5338.65
	1/10/2014	9:50	1/10/2014 9:50				12			1234.9		
	1/10/2014	10:46	1/10/2014 10:46				11			1338.5		
	1/10/2014	12:34	1/10/2014 12:34							2356.8		
	1/10/2014	14:18	1/10/2014 14:18				10			2172.8		
	1/10/2014	16:14	1/10/2014 16:14		35		10.2			2455.2	280.88	6432.12
	1/10/2014	17:49	1/10/2014 17:49	48	35	34.5	10.2	2 68	3 21.4	2032.7	232.54	6664.65
	1/10/2014	21:53	1/10/2014 21:53	45	35	35	11	L 65	3 23.2	5439.2	622.24	7286.90
	1/11/2014	8:00	1/11/2014 8:00	40	35	34	11	L 65	3 23.2	14061.7	1608.66	8895.56

					P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO₂	Cumulative
Back to Master	Date	Ti	me	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
		1/11/2014	8:02	1/11/2014 8:02			29)		Va	lve shut		8895.56
SW-42 Event 8		1/23/2014	7:43	1/23/2014 7:43	58	3	2 34.2	2 <	2 38	3 0.0			8895.56
		1/23/2014	8:25	1/23/2014 8:25		7 3			2 40		0.0		
		1/23/2014	8:49	1/23/2014 8:49	51	L 3			2 44		0.0	0.00	8895.56
		1/23/2014	9:28								0.0		
		1/23/2014	9:31	1/23/2014 9:31							6.2		
		1/23/2014	10:01	1/23/2014 10:01							124.7		
		1/23/2014	11:07	1/23/2014 11:07							273.7		
		1/23/2014	11:56								202.7		
		1/23/2014	11:57	1/23/2014 11:57					3 53		5.2		
		1/23/2014	12:49								299.0		
		1/23/2014	14:10								530.7		
		1/23/2014	15:46	•							797.9		
		1/23/2014	16:14	1/23/2014 16:14		1 32.			3 56		247.1		
014/ 40 5 4 0		1/23/2014	16:16				30				lve shut 17.9	9 2.04	
SW-42 Event 9		1/30/2014	7:28										9182.13
		1/30/2014	7:29								0.6		9182.13
		1/30/2014	7:52								0.0		
		1/30/2014	8:53	1/30/2014 8:53							232.5		
		1/30/2014	10:00								510.7		
		1/30/2014	10:55	• •							433.7		
		1/30/2014	12:28	• •					48		781.5		
		1/30/2014	13:42	• •		5 3	6 35)	48		640.6		
		1/30/2014 1/30/2014	13:43 13:44	1/30/2014 13:43 1/30/2014 13:44			20	•		Va	lve shut 8.7	0.99	9480.46 9480.46
SW-42 Event 10		2/3/2014	8:21	2/3/2014 13.44		3 33.	28 5 34		2 68	3 0.0	0.0	0.00	
3VV-42 EVEIIL 10		2/3/2014	8:27	2/3/2014 8:27							0.0		
		2/3/2014	8:57	2/3/2014 8:57							0.0		
		2/3/2014	9:19			_					0.0		
		2/3/2014	10:21	2/3/2014 10:21							0.0		
		2/3/2014	10:25						4 83		16.4		
		2/3/2014	12:06								774.7		
		2/3/2014	13:24	• •					4 84		598.0		
		2/3/2014	14:25						4 83		499.5		
		2/3/2014	15:34	2/3/2014 15:34							586.8		
		2/3/2014	17:00								838.4		
		2/4/2014	9:48								13168.8		
		2/4/2014	9:53				2				lve shut 77.2		
SW-42 Event 11		2/5/2014	8:32			3 28.			5 66				11374.90
		2/5/2014	8:34	2/5/2014 8:34							70.2	2 8.03	
		2/5/2014	9:03			3					1068.6		
		2/5/2014	10:37	2/5/2014 10:37	44	3.	5 33	3 13.9	9 70	29.1	2915.5	333.53	11838.71
		2/5/2014	11:36	2/5/2014 11:36	5 44	1 3	5 33	3 13.5	5 75	5 28.2	1689.8	193.32	12032.03
		2/5/2014	12:48	2/5/2014 12:48	3 44	3	5 33	3 13	3 70	27.2	1994.3	3 228.15	12260.18
		2/5/2014	13:46	2/5/2014 13:46	5 46	3	5 33	3 12.3	82	2 26.5	1559.0	178.35	12438.52
		2/5/2014	14:57	2/5/2014 14:57	46	35.	5 3.5	12.5	83	3 26.6	1886.4	215.80	12654.33
		2/5/2014	15:50	2/5/2014 15:50	46	35.	5 33.5	12.3	2 78	3 25.5	1381.2	158.01	12812.34
		2/5/2014	17:15	2/5/2014 17:15	5 50	35.	5 33.5	5 12	2 80	25.0	2147.5	245.67	13058.01
		2/5/2014	21:28	2/5/2014 21:28	49	35.	5 33.5	5 1	2 80	25.0	6333.0	724.49	13782.50
		2/6/2014	8:19	2/6/2014 8:19	52	2 35.	5 33.5	13.3	3 48	3 28.6	17470.2	1998.59	15781.09
		2/6/2014	8:20	2/6/2014 8:20)		28	3		Va	lve shut 28.6	3.28	15784.36
SW-42 Event 12		2/7/2014	7:45	2/7/2014 7:45	50) 2	5 24	7.8	3 48	3 14.9			15784.36
		2/7/2014	7:47	2/7/2014 7:47	' 50	33.	5 32	2 20.	5 49	9 43.2	58.1	6.65	15791.01

Back to Master	Date	Time		Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flo	w (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
		2/7/2014	7:55	2/7/2014 7:55	48	3 35	32	18	3	49	38.5	326.9	37.40	15828.41
		2/7/2014	9:17	2/7/2014 9:17	44	1 35	32.2	15.6	5	56	33.2	2938.7	336.19	16164.59
		2/7/2014	11:33	2/7/2014 11:33	42	2 35	33.5	14.5	5	60	30.7	4341.1	496.63	16661.22
		2/7/2014	13:21	2/7/2014 13:21	. 42	2 35.5	33.5	14	1	63	29.7	3260.7	373.02	17034.24
		2/7/2014	13:22	2/7/2014 13:22			29				Valve shut	29.7	3.40	17037.64
Note: a red value,	, i											Total CO ₂ Mass (lbs):		17037.64

Back to Master	Date 1	Гime	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-43 Event 1	11/19/2013	10:14				18	0 ()	r 1 - 7	0.0			
3VV 43 EVERT	11/19/2013	10:14	• •			30 30)	<2	71 0.0		.0 0.00	0.00
	11/19/2013	10:18	• •			32 3:		<2	71 0.0		.0 0.00	
	11/19/2013	10:27	• •			32 3:		<2	71 0.0		.0 0.00	
	11/19/2013	10:51				2 3:		<2	71 0.0		.0 0.00	
	11/19/2013	10:52	• •			6 3			0.5		.0 0.00	
	11/19/2013	11:42	• •			6 3		<2	70 0.0		.0 0.00	
	11/19/2013	13:05	• •			6 3		<2	70 0.0		.0 0.00	
	11/19/2013	13:26	• •			6 3!			9.8 4.2			
	11/19/2013	13:56				6 3			9.8 6.4			
	11/19/2013	14:55	• •			6 3			9.5 6.4			
	11/19/2013	17:13				6 3!			4.8 8.5			
	11/19/2013	17:48	• •			6 3		4	60 8.6			
	11/19/2013	17:50				3!			0.0	Valve shut 17		
	11/19/2013	17:52	• •		2	3 20				Turve small	1.30	219.60
SW-43 Event 2	11/20/2013	8:14	<u> </u>			37						219.60
<u> </u>	11/20/2013	8:15				37 30	5	<2	64 0.0)		219.60
	11/20/2013	9:18				6 3!		4	64 8.5		.3 30.70	
	11/20/2013	9:51				34 3!		1.5	64 9.4			
	11/20/2013	11:04				34.		5.5	65 11.5			
	11/20/2013	12:40				34 34		5.5	65 11.5			
	11/20/2013	14:24				33.		25	64 15.3			
	11/20/2013	15:03				33.5 35			3.5 16.3			
	11/20/2013	15:04			Ī	33.				Valve shut 16		
	11/20/2013	15:05				20						728.62
SW-43 Event 3	12/3/2013	8:53										728.62
	12/3/2013	8:54			2	28 28	3	<2	67 0.0)		728.62
	12/3/2013	8:58										728.62
	12/3/2013	8:59	· . · .		2	.8 29.5		<2	67 0.0)		728.62
	12/3/2013	9:17				28		<2	0.0			728.62
	12/3/2013	9:18			3	32 32		<2	70 0.0			728.62
	12/3/2013	10:15	• •			.9 32		<2	67 0.0			728.62
	12/3/2013	11:36				9 31.		2	69 3.9		.2 18.21	
	12/3/2013	12:27				.9 3:		3	76 5.9			
	12/3/2013	13:14				.9 3:		3	78 5.8			
	12/3/2013	13:15								Valve shut 5		
	12/3/2013	13:16				2:	l					807.49
SW-43 Event 4	12/9/2013	8:26			3	34 32		<2	64 0.0	0	.0 0.00	
	12/9/2013	8:48				34 32		<2	64 0.0		.0 0.00	
	12/9/2013	9:12				34 32		<2	64 0.0		.0 0.00	
	12/9/2013	9:50				34 3:		<2	70 0.0		.0 0.00	
	12/9/2013	10:10				34 30		<2	70 0.0		.0 0.00	
	12/9/2013	11:00						<2	76 0.0		.0 0.00	
	12/9/2013	11:40						3.5	81 7.1			
	12/9/2013	12:38						4	85 8.0			
	12/9/2013	13:41						4	84 8.1			
	12/9/2013	14:09						4	84 8.1			
	12/9/2013	14:36				3		4	82 8.1			
	12/9/2013	14:52				32 3:		4	80 8.0			
	12/9/2013	16:50						4	74 8.1			
	12/9/2013	17:40				30.		5	73 10.1			
	12/9/2013	22:08				2 30		8	68 16.3			
	12/9/2013	22:09				30.5		10	68 20.3			
	==, 0, =0=0		, -, _0_0			- 551						

				P at Reducer	P at Panel	P at Well	Rotameter	_ (0-)			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date Tin			(psig)	(psig)	(psi)	Reading (scfm)			ow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	12/10/2013	7:50	12/10/2013 7:50	50	3		30	13	70	26.4	13577.8		
	12/10/2013	7:52	12/10/2013 7:52				20			Valve shut	52.8	6.04	
SW-43 Event 5	12/11/2013	15:50	12/11/2013 15:50					<2	64	0.0			3124.93
	12/11/2013	17:14	12/11/2013 17:14	50			32	2	62	4.0	168.1		
	12/11/2013	22:06	12/11/2013 22:06	55	3			6	60	12.0	2341.2		3412.00
	12/12/2013	7:53	12/12/2013 7:53	52	3	0 :	30	10	60	20.1	9417.8		
	12/12/2013	8:20	12/12/2013 8:20							Valve shut	541.5	61.95	5 4551.34
	12/12/2013	8:21	12/12/2013 8:21				20						4551.34
SW-43 Event 6	12/13/2013	8:32	12/13/2013 8:32	50	3	2	32	<2	58	0.0			4551.34
	12/13/2013	9:20	12/13/2013 9:20	50	3:	2	31	3.5	62	7.2	171.9	19.67	7 4571.00
	12/13/2013	10:14	12/13/2013 10:14	48	3	2 30	.5	5	66	10.2	468.6	53.61	1 4624.61
	12/13/2013	11:58	12/13/2013 11:58	45	3	1	30	6	70	12.0	1156.6	132.31	4756.92
	12/13/2013	14:36	12/13/2013 14:36	45	3	0 :	30	7.5	68	14.9	2130.8	243.76	5 5000.68
	12/13/2013	15:28	12/13/2013 15:28	55	3	0 :	29	8	68	15.9	801.9	91.73	5092.41
	12/13/2013	15:29	12/13/2013 15:29							Valve shut	15.9	1.82	5094.24
	12/13/2013	15:30	12/13/2013 15:30				20						5094.24
SW-43 Event 7	12/16/2013	12:31	12/16/2013 12:31	47	3	2	32	<2	67	0.0	0.0	0.00	5094.24
	12/16/2013	13:05	12/16/2013 13:05	47	3	0 :	32	<2	68	0.0	0.0	0.00	5094.24
	12/16/2013	13:11	12/16/2013 13:11							0.0 Valve shut	0.0	0.00	5094.24
	12/16/2013	13:12	12/16/2013 13:12			;	23			0.0	0.0	0.00	5094.24
	12/16/2013	15:40	12/16/2013 15:40	4.	5 3	1	32	<2	68	0.0 Restart	0.0	0.00	5094.24
	12/16/2013	16:39	12/16/2013 16:39	42	2 3	0 31	.5	<2	66	0.0	0.0	0.00	5094.24
	12/16/2013	17:12	12/16/2013 17:12	40) 3	0 :	32	3	60	6.0	99.3	11.36	5 5105.59
	12/16/2013	22:07	12/16/2013 22:07	50) 2	8 :	30	5	48	9.9	2350.1	268.85	5 5374.44
	12/17/2013	8:09	12/17/2013 8:09	4	7 2	8 29	.5	9	52	17.8	8335.6	953.59	6328.03
	12/17/2013	8:24	12/17/2013 8:24							Valve shut	266.7	30.51	1 6358.54
	12/17/2013	8:25	12/17/2013 8:25				21						6358.54
SW-43 Event 8	1/10/2014	13:05	1/10/2014 13:05	4:	32.	5 32	.5	<2	70	0.0			6358.54
	1/10/2014	14:20	1/10/2014 14:20	50	3	2 31	.5	3.5	70	7.1	266.5	30.49	6389.03
	1/10/2014	16:15	1/10/2014 16:15	48	3	1 31	.5	5	70	10.0	986.0	112.80	6501.82
	1/10/2014	17:51	1/10/2014 17:51	48	3	1 :	32	6	68	12.1	1061.5	121.43	6623.26
	1/10/2014	21:54	1/10/2014 21:54	4.	3	1	29	8	65	16.1	3428.5		
	1/10/2014	21:57	1/10/2014 21:57	4:	32.	5 :	31	11	65	22.6	58.1	6.64	
	1/11/2014	8:02	1/11/2014 8:02	4(30	14	65	28.6	15467.5		
	1/11/2014	8:03	1/11/2014 8:03				21			Valve shut	28.6		
Note: a red value			interpolated from field d	ata							Total CO ₂ Mass (lbs):		8794.86

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂	Cumulative Mass (lb)
SW-44 Event 1	11/21/2013	10:10	11/21/2013 10:10		0/		<u> </u>	, , ,	0.0	 	,	
	11/21/2013	10:11	11/21/2013 10:11		30	32	<2	68	0.0	0.0	0.00	0.00
	11/21/2013	10:53	11/21/2013 10:53						24.1	506.6	57.95	57.95
	11/21/2013	10:55	11/21/2013 10:55	50	30	30	14.1	71	28.0	52.1	5.96	63.91
	11/21/2013	11:30	11/21/2013 11:30	49	30	29.5	15.5	70.5	30.8	1027.9	117.59	181.51
	11/21/2013	11:33	11/21/2013 11:33	49	31	31	. 17	70.5	34.1	97.3	11.13	192.64
	11/21/2013	13:15	11/21/2013 13:15	46	31	30	18.0	72	36.1	3580.3	409.58	602.22
	11/21/2013	13:18	11/21/2013 13:18	45	33	32	19.8	73	40.5	114.9	13.14	615.37
	11/21/2013	14:16	11/21/2013 14:16	52	38	31.5	21	74	45.2	2484.7	284.25	899.62
	11/21/2013	14:19	11/21/2013 14:19						Valve shut	135.5	15.50	915.12
	11/21/2013	14:20	11/21/2013 14:20			15						915.12
SW-44 Event 2	12/3/2013	14:37	12/3/2013 14:37	50	31	. 34	. 4	76.0	8.0			915.12
	12/3/2013	14:50	12/3/2013 14:50	50	29	30.5	11.5	76.0	22.4	197.8	22.63	937.75
	12/3/2013	15:22	12/3/2013 15:22	48	29	29.5	13.5	74.0	26.4	781.5	89.41	1027.15
	12/3/2013	15:24	12/3/2013 15:24	. 48	30	31	15	74.0	29.7	56.1	6.41	1033.57
	12/3/2013	15:41	12/3/2013 15:41	42.5	30	31	15.25	73.0	30.2	508.9	58.21	1091.78
	12/3/2013	15:42	12/3/2013 15:42						Valve shut	30.2	3.45	1095.24
	12/3/2013	15:43	12/3/2013 15:43									1095.24
SW-44 Event 3	12/4/2013	13:21	12/4/2013 13:21									1095.24
	12/4/2013	13:22	12/4/2013 13:22	53	32	32	6	84.0	12.0	12.0	1.37	1096.61
	12/4/2013	13:26	12/4/2013 13:26	53	32	30.5	6.5	84.0	13.0	50.1	5.73	1102.34
	12/4/2013	13:43	12/4/2013 13:43	52	32	29	11	83	22.1	298.2	34.11	1136.45
	12/4/2013	14:43	12/4/2013 14:43	50	31	28	14.5	79.0	28.9	1527.7	174.77	1311.22
	12/4/2013	14:44	12/4/2013 14:44						Valve shut	28.9	3.30	1314.52
	12/4/2013	14:45	12/4/2013 14:45				17					1314.52
SW-44 Event 4	12/5/2013	13:09	12/5/2013 13:09	1								1314.52
	12/5/2013	13:10	12/5/2013 13:10	54	31	31.5	<2	86	0.0			1314.52
	12/5/2013	13:16	12/5/2013 13:16	54	31	29.5	3.5	86	6.9	20.8	2.38	1316.90
	12/5/2013	13:19	12/5/2013 13:19	54	31	29	4	86	7.9	22.2	2.55	1319.44
	12/5/2013	13:25	12/5/2013 13:25	52	31	29	5	85	9.9	53.4	6.11	1325.55
	12/5/2013	13:27	12/5/2013 13:27	52	32.5	31.5	7	84	14.1	24.0	2.75	1328.30
	12/5/2013	14:06	12/5/2013 14:06	50	32.5	30.5	10	85	20.1	667.3	76.34	1404.64
	12/5/2013	14:07	12/5/2013 14:07	50	33	31	11.5	85	23.3	21.7	2.48	1407.12
	12/5/2013	14:10	12/5/2013 14:10	50	33	31	11.5	85	23.3 Valve shut	69.8	7.98	1415.10
	12/5/2013	14:11	12/5/2013 14:11			18						1415.10
SW-44 Event 5	12/6/2013	14:08	12/6/2013 14:08									1415.10
	12/6/2013	14:09	12/6/2013 14:09	47	31	. 33	<2	83	0.0			1415.10
	12/6/2013	14:13	12/6/2013 14:13	47	31	. 33	<2	83	0.0			1415.10
	12/6/2013	14:33	12/6/2013 14:33	45	29	32	. 4	84	7.7	77.5	8.86	1423.96
	12/6/2013	15:05	12/6/2013 15:05	45	29	31.5	5.5	80	10.7	295.1	33.76	1457.72
	12/6/2013	15:45	12/6/2013 15:45	45	29	30.5	8	80	15.6	525.0	60.06	1517.78
	12/6/2013	15:47	12/6/2013 15:47						Valve shut	31.1	3.56	1521.33
	12/6/2013	15:48	12/6/2013 15:48			20)					1521.33
SW-44 Event 6	12/9/2013	16:24	12/9/2013 16:24	48	35	33	<2	76	0.0	0.0	0.00	1521.33
	12/9/2013	16:34	12/9/2013 16:34	46	34	32	<2	74	0.0	0.0	0.00	1521.33
	12/9/2013	16:53	12/9/2013 16:53	46	34	31	<2	72	0.0	0.0	0.00	1521.33
	12/9/2013	17:20	12/9/2013 17:20	50	32.5	31	. 5	71	10.2	137.7	15.75	1537.08
	12/9/2013	17:36	12/9/2013 17:36	55	32	30	5	71	10.1	162.7	18.61	1555.70
	12/9/2013	17:37	12/9/2013 17:37						Valve shut	10.1	1.16	1556.86
	12/9/2013	17:38	12/9/2013 17:38			19						1556.86
SW-44 Event 7	12/10/2013	16:10	12/10/2013 16:10	50	30	33	<2	72	0.0	0.0	0.00	1556.86
	12/10/2013	16:15	12/10/2013 16:15	50	30	33	3	70	6.0	14.9	1.70	1558.56
	12/10/2013	16:46	12/10/2013 16:46	50	30	33	5	70	9.9	246.2	28.17	1586.73

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flo	w (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
Data to maste.	12/10/2013							7	67	13.9	393.9		
	12/10/2013		12/10/2013 17:21			, J <u>.</u>		,	0,	Valve shut	27.9		
	12/10/2013		12/10/2013 17:22			2)			varie silae		3.1.	1634.98
SW-44 Event 8	12/11/2013		<u> </u>		32			<2	67	0.0			1634.98
<u> 344 11 Event o</u>	12/11/2013							<2	67	0.0			1634.98
	12/11/2013		•					1.5	67	5.0	57.3	3 6.5	
	12/11/2013		12/11/2013 13:34					3.5	67	7.1	6.:		
	12/11/2013		12/11/2013 13:41					4	67	8.1	53.		
	12/11/2013		12/11/2013 14:14					5.3	66	10.8	312.		
	12/11/2013				32		,		00	Valve shut	312.	, 33.7	1684.11
SW-44 Event 9	12/11/2013				34	1 3	2	<2	70	0.0			1684.11
300-44 EVEIIE 3	12/12/2013		12/12/2013 12:36					5	70	5.1	118.0) 13.50	
	12/12/2013							5	70	10.3	61.0		
	12/12/2013		• •							11.9	155.		
	12/12/2013		• •		33	3 3		5.8	70		11.9		
CVA/ AA Frant 10	· · ·		12/12/2013 14:07		20			٠٦	ГЛ	Valve shut			
<u>SW-44 Event 10</u>	12/16/2013		12/16/2013 9:21					<2	54	0.0	0.0		
	12/16/2013		12/16/2013 9:54					3	58	6.0	99.		
	12/16/2013		12/16/2013 10:24		29	3	2 3	3.5	63	6.9	194.:		
	12/16/2013		12/16/2013 10:25			24	_			Valve shut	6.9	9 0.79	
C) 1/4 1/4 5 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	12/16/2013				2.0	21.		-					1758.15
<u>SW-44 Event 11</u>	12/18/2013		• •					<2	68	0.0			1758.15
	12/18/2013		• •					<2	68	0.0			1758.15
	12/18/2013		12/18/2013 13:04					4	68	8.0	4.0		
	12/18/2013		• •					9	68	18.1	994.0		
	12/18/2013		• •).5	68	20.7	1841.		
	12/18/2013		• •		30) 3) 10).5	68	20.9	519.3		
	12/18/2013		12/18/2013 16:21							Valve shut	20.9	9 2.39	
	12/18/2013												2144.76
<u>SW-44 Event 12</u>	12/19/2013							<2	54	0.0			2144.76
	12/19/2013							<2	54	0.0			2144.76
	12/19/2013							<2	54	0.0			2144.76
	12/19/2013							<2	63	0.0			2144.76
	12/19/2013		12/19/2013 9:37	42	31.5	5 3	3	4	63	8.1	8.3		
	12/19/2013	10:14	12/19/2013 10:14	40	31	1 3	3	5	66	10.1	337.0	38.5	5 2184.24
	12/19/2013	11:08	12/19/2013 11:08	40	31	1 3	3 6	5.6	70	13.3	630.0	72.0	8 2256.32
	12/19/2013	15:00	12/19/2013 15:00	42	30	30.	5	12	74	23.7	4291.0	490.89	9 2747.21
	12/19/2013	15:03	12/19/2013 15:03	42	31	L 3	2	14	74	28.0	77.0	5 8.88	8 2756.09
	12/19/2013	16:14	12/19/2013 16:14	42	32	2 32.	5	10	72	20.3	1713.0	5 196.04	4 2952.13
	12/19/2013	17:05	12/19/2013 17:05	50	32	2 3	3	10	67	20.4	1036.0	118.5	2 3070.65
	12/19/2013	22:12	12/19/2013 22:12	50	31	1 3	2	12	56	24.4	6876.	7 786.70	3857.35
	12/20/2013	8:22	12/20/2013 8:22	45	32	2 31.	5	16	58	32.9	17479.	7 1999.6	7 5857.02
	12/20/2013	12:22	12/20/2013 12:22	. 55	31	I 30.	5 13	3.5	82	26.8	7160.9	819.20	6676.23
	12/20/2013	12:23	12/20/2013 12:23							Valve shut	26.	3.0	7 6679.29
SW-44 Event 13	1/20/2014	7:39	1/20/2014 7:39	60	26	5 2	3	<2	40	0.0			6679.29
	1/20/2014	7:40	1/20/2014 7:40	60	32.5	3	3	<2	40	0.0	0.0	0.00	6679.29
	1/20/2014							<2	40	0.0	0.0		
	1/20/2014							4	50	8.2	143.4	16.4	1 6695.70
	1/20/2014							5.5	56	11.1	406.0		
	1/20/2014		1/20/2014 10:11					'.5	66	15.0	900.:		
	1/20/2014							10	66	20.4	88.3		
	1/20/2014							12	69	24.4	1388.0		
	1/20/2014		• •).5	71	21.3	1690.4		
	1/20/2014				J2		_ 10			Valve shut	42.		
	1,20,2014	12.34	1/20/2014 12.34							vaive silut	42.0	7.0	, , , , , , , , , , , , , , , , , , , ,

					P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date		Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	1	1/20/2014	12:35				25						7212.26
<u>SW-44 Event 14</u>	1	1/21/2014	7:49	1/21/2014 7:49	58	28			2 5	1 0.0			7212.26
		1/21/2014	7:50							1 0.0	0.0		
		1/21/2014	8:37			32				7 12.3	290.0		
		1/21/2014	9:35	1/21/2014 9:35	44	31.5	32			2 15.3	800.6		3 7337.02
		1/21/2014	10:18			31				7 18.5	726.6		
		1/21/2014	11:44			30.5				0 20.4	1672.7		
		1/21/2014	11:59			30.5			2 7	0 20.4	305.5		
		1/21/2014	12:00				23				/alve shut 20.4	2.33	
SW-44 Event 15		1/22/2014	8:06							0.0			7648.78
		1/22/2014	8:08							0.0	0.0		
		1/22/2014	8:10	• •						0.0	0.0		
		1/22/2014	8:46							4 0.0	0.0		
		1/22/2014	8:47	• •						4 0.0	0.0		
		1/22/2014	9:45	• •		3.5				8 3.9	112.3		
		1/22/2014	10:53	• •		33.5				2 10.5	488.6		
	1	1/22/2014	11:57	1/22/2014 11:57	43	32	31.5	,	7 5	4 14.4	798.2	91.32	7808.82
	1	1/22/2014	12:30	1/22/2014 12:30	44	32	31.5	7.	7 5	5 15.9	500.2	L 57.21	7866.03
	1	1/22/2014	13:56	1/22/2014 13:56	45	31.5	31	. 8.	5 5	5 17.4	1431.5	163.76	8029.80
	1	1/22/2014	15:02	1/22/2014 15:02	52	30.5	5 29	8.	3 5	6 17.8	1163.0	133.04	8162.84
	1	1/22/2014	15:03	1/22/2014 15:03	52	33.5	32	. 1	2 5	6 25.1	21.5	2.46	8165.30
	1	1/22/2014	15:57	1/22/2014 15:57	51	33.5	32	11.	9 5	6 24.9	1350.2	154.45	8319.75
	1	1/22/2014	16:58	1/22/2014 16:58	56	33.5	32	11.	9 5	6 24.9	1518.7	7 173.74	8493.49
	1	1/22/2014	16:59	1/22/2014 16:59			23	1		١	/alve shut		8493.49
<u>SW-44 Event 16</u>	1	1/23/2014	7:47	1/23/2014 7:47	56	31	30	<	2 3	7 0.0	0.0	0.00	8493.49
	1	1/23/2014	7:48	1/23/2014 7:48	56	33	32	. <	2 3	7 0.0	0.0	0.00	8493.49
	1	1/23/2014	7:50	1/23/2014 7:50	56	33	32		7 3	7 14.9	14.9	1.70	8495.19
	1	1/23/2014	8:13	1/23/2014 8:13	52	32	2 31		9 3	8 18.9	387.9	9 44.38	8539.56
	1	1/23/2014	8:44	1/23/2014 8:44	50	29	27.5	9.	7 4	4 19.5	595.5	68.13	8607.69
	1	1/23/2014	8:46	1/23/2014 8:46	50	32	30.5	1	3 4	4 27.1	46.0	5.34	8613.02
	1	1/23/2014	9:24	1/23/2014 9:24	47	31	30	12.	2 4	6 25.1	991.6	113.44	8726.47
	1	1/23/2014	9:25	1/23/2014 9:25	47	33	31.5	1	5 4	6 31.5	28.3	3.24	8729.71
	1	1/23/2014	10:10	1/23/2014 10:10	45	33	31.5	15.	2 4	8 31.9	1427.3	163.26	8892.97
	1	1/23/2014	11:19	1/23/2014 11:19	43	33	3 31	. 1	5 5	0 33.5	2256.0	258.09	9151.06
	1	1/23/2014	12:18	1/23/2014 12:18	45	33	3 31	16.	2 5	4 33.8	1984.9	227.07	9378.13
	1	1/23/2014	12:58	1/23/2014 12:58	45	33	3 31	. 16.	2 5	8 33.6	1348.6	5 154.28	9532.40
	1	1/23/2014	14:19	1/23/2014 14:19	48	32.2	2 30	1	7 5	6 35.1	2783.2	318.40	9850.81
	1	1/23/2014	15:53	1/23/2014 15:53	48	32.2	2 30	17.	9 5	6 36.9	3384.4	387.18	10237.98
	1	1/23/2014	16:22	1/23/2014 16:22	48	32	29.5	17.	9 5	5 36.9	1070.4	122.46	10360.44
	1	1/23/2014	16:25	1/23/2014 16:25			22			١	/alve shut 110.7	7 12.66	10373.10
SW-44 Event 17	1	1/27/2014	12:16	1/27/2014 12:16									10373.10
	1	1/27/2014	12:18	1/27/2014 12:18	55	33	33.5	<	2 8	0.0	0.0	0.00	10373.10
	1	1/27/2014	12:47	1/27/2014 12:47	53	32.5	33	<	2 8	0.0	0.0	0.00	10373.10
	1	1/27/2014	13:10	1/27/2014 13:10	50	32.5	33	<	2 8	0.0	0.0	0.00	10373.10
	1	1/27/2014	14:42	1/27/2014 14:42	47	32.5	33.5	<	2 8	0.0	0.0	0.00	10373.10
		1/27/2014	15:40	• •		32.5				7 0.0	0.0		
		1/27/2014	16:19							7 0.0	0.0		
		1/27/2014	16:20	• •							/alve shut 0.0		
		1/27/2014	16:21	• •			25	;					10373.10
SW-44 Event 18		1/28/2014	9:41										10373.10
		1/28/2014	9:42			. 35	34.5	<	2 5	6 0.0	0.0	0.00	
		1/28/2014	10:12							6 0.0	0.0		
		1/28/2014	10:55							6 0.0	0.0		
		, -,===:		-, -=, -== : 25.55								3.00	

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	1/28/2014	11:34	1/28/2014 11:34	52	33.5	34	<2	54	0.0	0.0	0.00	10373.10
	1/28/2014	13:15	1/28/2014 13:15	50	33.5	34	<2	51	0.0	0.0	0.00	10373.10
	1/28/2014	14:20	1/28/2014 14:20	50	33.5	33.5	<2	51	0.0	0.0	0.00	10373.10
	1/28/2014	15:40	1/28/2014 15:40	50	33.5	33.5	<2	50	0.0	0.0	0.00	10373.10
	1/28/2014	16:42	1/28/2014 16:42	58	33	33.5	<2	50	0.0	0.0	0.00	10373.10
	1/28/2014		1/28/2014 16:44						Valve shu	it 0.0	0.00	
SW-44 Event 19	1/29/2014							40				10373.10
	1/29/2014							40	0.0	13.1		
	1/29/2014							40	4.0	20.1		
	1/29/2014							40	4.0	363.1		
	1/29/2014		· ·					40	7.8	355.6		
	1/29/2014							40	12.0	693.1		
	1/29/2014							40	15.8	1112.1		
	1/29/2014		· ·					40	15.8	948.3		
	1/29/2014							40	15.8	948.3		
	1/29/2014		· ·		5 28			40	16.0	1272.1		
CVV 44 Frant 20	1/29/2014		· · ·		22	21		40	Valve shu	it 80.0	9.15	
<u>SW-44 Event 20</u>	1/30/2014							40		0.0	0.00	11037.30
	1/30/2014 1/30/2014							40	0.0 4.0	0.0 119.9		
	1/30/2014		1/30/2014 9:30 1/30/2014 10:49					41 42	4.0	321.0		
	1/30/2014							42	4.1	293.0		
	1/30/2014							44	5.1	424.0		
	1/30/2014				, 30	21		44	Valve shu			
SW-44 Event 21	2/3/2014		2/3/2014 13:33		30			68	0.0	0.0		
JVV 44 LVCIII ZI	2/3/2014		2/3/2014 8:15					68	0.0	0.0		
	2/3/2014		• •					70	0.0	0.0		
	2/3/2014		2/3/2014 9:01					75	0.0	0.0		
	2/3/2014		• •					82		0.0		
	2/3/2014							82		4.5		
	2/3/2014							87	12.0	1056.5		
	2/3/2014							85	14.4	1151.0		
	2/3/2014							84	19.6	1208.4		
	2/3/2014				. 32	32	10.3	82	20.7	1108.4	126.80	
	2/3/2014		2/3/2014 16:51		29.5			82		1879.3		
	2/4/2014	10:13	2/4/2014 10:13		32.9		16.8	62	34.7	30086.6	3441.90	15346.50
	2/4/2014	10:14	2/4/2014 10:14			23			Valve shu	it 34.7	3.97	7 15350.47
SW-44 Event 22	2/5/2014	8:23	2/5/2014 8:23	52	31	32	<2	66	0.0			15350.47
	2/5/2014	9:07	2/5/2014 9:07	47	' 30	30.5	6	68	11.9	262.6	30.05	15380.52
	2/5/2014	9:08	2/5/2014 9:08	47	32	32.5	8	68	16.3	14.1	1.61	15382.13
	2/5/2014	10:18	2/5/2014 10:18	45	32	32	11.8	70	24.0	1408.2	161.10	15543.23
	2/5/2014	11:19	2/5/2014 11:19	45	32.5	30.5	13.8	72	28.1	1588.3	181.70	15724.93
	2/5/2014	12:31	2/5/2014 12:31	45	31	30	15	78	29.9	2088.3	238.90	15963.83
	2/5/2014	12:32	2/5/2014 12:32	45	33	32	17.5	78	35.6	32.8	3.75	15967.58
	2/5/2014				33			80		1944.6		
	2/5/2014							80		2775.1		
	2/5/2014							77	39.1	2060.4		
	2/5/2014							79	40.1	3682.9		
	2/5/2014							63	42.1	10070.5		
	2/5/2014		2/5/2014 21:13					63	48.0	90.2		
	2/6/2014				34			47	53.1	31492.5		
	2/6/2014		2/6/2014 7:41			21			Valve shu	it 265.3	30.35	
SW-44 Event 23	2/7/2014	7:32	2/7/2014 7:32	54	30	30.5	<2	49	0.0			21960.01

					P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	7	Гime	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
		2/7/2014	7:33	2/7/2014 7:33	54	32.5	;	<	2 49	0.0	0.0	0.00	21960.01
		2/7/2014	7:40	2/7/2014 7:40	53	33	32.5	2.	5 49	5.2	18.3	2.10	21962.11
		2/7/2014	8:59	2/7/2014 8:59	46	31.5	31.5	7.	2 58	14.7	788.1	90.16	5 22052.27
		2/7/2014	9:44	2/7/2014 9:44	44	31	. 31	7.5	9 54	16.1	693.7	79.36	5 22131.63
		2/7/2014	11:50	2/7/2014 11:50	44	30.5	29.5	1.	3 61	3.6	1244.0	142.33	1 22273.95
		2/7/2014	11:51	2/7/2014 11:51	44	32.2	31.2	1	4 61	28.7	16.2	1.85	5 22275.80
		2/7/2014	13:32	2/7/2014 13:32	45	32	30.2	15.	7 64	32.1	3070.8	351.30	22627.10
		2/7/2014	14:42	2/7/2014 14:42	48	32	2 30	16.	5 62	33.8	2304.2	263.60	22890.70
		2/7/2014	15:53	2/7/2014 15:53	48	32	2 30	16.	3 60	34.4	2421.7	277.04	4 23167.74
		2/7/2014	16:33	2/7/2014 16:33	48	32	29.5	1	7 59	34.9	1386.9	158.66	23326.40
		2/7/2014	17:24	2/7/2014 17:24	48	32	29.5	1	7 58	34.9	1780.5	203.69	23530.09
		2/7/2014	17:25	2/7/2014 17:25			21			Valve shut	34.9	4.00	23534.08
<u>SW-44 Event 24</u>		2/10/2014	8:35	2/10/2014 8:35	56	28	3 28.5	<	2 54	0.0			23534.08
		2/10/2014	8:36	2/10/2014 8:36	56	32	2 33	<	2 54	0.0	0.0	0.00	23534.08
		2/10/2014	9:01	2/10/2014 9:01	56	30	30.5	4.	4 54	8.9	111.0	12.69	23546.78
		2/10/2014	9:50	2/10/2014 9:50	50	30	30.5	5.	3 66	11.6	500.8	57.29	23604.07
		2/10/2014	9:51	2/10/2014 9:51	49	32	32.5		7 66	14.3	12.9	1.48	3 23605.55
		2/10/2014	11:06	2/10/2014 11:06	47	32	32.5	8.	2 76	16.6	1155.8	132.22	2 23737.77
		2/10/2014	13:07	2/10/2014 13:07	45	31	. 31	9.	79	19.7	2193.8	250.97	7 23988.75
		2/10/2014	14:45	2/10/2014 14:45	45	31	. 31	11.	7 79	23.3	2107.1	241.05	5 24229.80
		2/10/2014	16:35	2/10/2014 16:35	45	31	. 30.5	12.:	2 74	24.4	2623.4	300.12	2 24529.91
		2/10/2014	17:25	2/10/2014 17:25	45	31	30.5	1	2 70	24.1	1212.6	138.72	2 24668.63
		2/10/2014	17:27	2/10/2014 17:27			23			Valve shut	48.2	5.51	24674.15

Total CO₂ Mass (lbs):

Back to Master	Date T	īme	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂	Cumulative Mass (lb)
SW-45 Event 1	11/20/2013	9:30			(b ₂ ,8)	(þ31)	ricading (3cm)	Temp (1)	0.0	332 (33.)	(10)	111033 (10)
300 13 EVEILE 1	11/20/2013	9:31	11/20/2013 9:31		2	7 28.	5 .	<2 6		(0.0 0.0	0.00
	11/20/2013	9:53	11/20/2013 9:53					<2 6			0.0	
	11/20/2013	11:02						.5 6		238		
	11/20/2013	11:04	11/20/2013 11:04					.5 6			5.8 1.8	
	11/20/2013	12:39						.5 6		1132		
	11/20/2013	14:22	• •					.3 6		1722		
	11/20/2013	15:00								730		
	11/20/2013	15:01	11/20/2013 15:01		, 3,	20.		.0 03.			0.0 2.2	
	11/20/2013	15:02				1	2		·	Zuive Sinat		441.56
SW-45 Event 2	11/25/2013	11:08			3 24		-	6	0			441.56
SVV 43 EVEILE 2	11/25/2013	11:12					ς .	<2 60.				441.56
	11/25/2013	11:35						8 60.		188	3.7 21.5	
	11/25/2013	12:30						12 65.		1124		
	11/25/2013	13:50						LS 65.		2190		
	11/25/2013	15:00						15 62.		2250		
	11/25/2013	15:58))(J 2		17 02.		/alve shut 1973		
	11/25/2013	16:00				1	0		·	valve strut 1375	.5 225.7	1325.56
SW-45 Event 3	12/3/2013	8:51	12/3/2013 8:51			1	9	6	<u> </u>			1325.56
3VV-43 EVEIIL 3	12/3/2013	8:52	• •			7 3	n .	<2 6				1325.56
										_	7.0 0.0	
	12/3/2013	8:56	• •								7.9 0.9	
	12/3/2013	9:19			29			.5 6		214		
	12/3/2013	10:13	12/3/2013 10:13					10 6		942		
	12/3/2013	11:33	• •							1799		
	12/3/2013	11:35					13				1.5 5.8	
	12/3/2013	12:25			30			15 7		1406		
	12/3/2013	13:12			30) 2	/	16 7		1436		
	12/3/2013	13:13	12/3/2013 13:13						'	/alve shut 31	1.5 3.6	
CMA AF F A	12/3/2013	13:15						L7	0.0			1999.44
SW-45 Event 4	12/9/2013	8:18			2.		2	.2	0.0			1999.44
	12/9/2013	8:19						<2 6			0.0	
	12/9/2013	8:48						5 6		140		
	12/9/2013	9:10			28			.5 6		246		
	12/9/2013	9:48			2				0 14.4	514		
	12/9/2013	10:15							0 15.5	403		
	12/9/2013	11:05			2				6 17.2	816		
	12/9/2013	11:43								695		
	12/9/2013	12:40	• •		2!	5 2	5 11	.5 8		1157		
	12/9/2013	12:49							'	Valve Shut 190).8 21.8	
	12/9/2013	12:50	• •			1						2475.96
SW-45 Event 5	12/16/2013	12:38						<2 6			0.0	
	12/16/2013	13:00	• •					<2 6			0.0	
	12/16/2013	13:01			30) 2	8	5 6			5.0 0.5	
	12/16/2013	13:12							\	/alve shut 109	9.4 12.5	
	12/16/2013	13:13	• •			1						2489.05
	12/16/2013	15:42						<2 6			0.0	
	12/16/2013	16:41	• •							676		
	12/16/2013	16:43	12/16/2013 16:43	42	3:	1 2	9 :	13 6	6 26.2	49	9.1 5.6	52 2572.04
	12/16/2013	17:10	12/16/2013 17:10	40	30) 2	8 12	.5 6	0 25.1	692	2.3 79.1	.9 2651.24
	12/16/2013	22:05	12/16/2013 22:05	50	29	9 25.	5	20 4	8 40.1	9617	7.4 1100.2	23 3751.47
	12/16/2013	22:06	12/16/2013 22:06	50	30	26.	5	24 4	8 48.7	44	1.4 5.0	3756.55
	12/17/2013	8:00	12/17/2013 8:00	45	30) 2	4	26 5	0 52.7	30112	2.3 3444.8	7201.40
	12/17/2013	8:05	12/17/2013 8:05						\	/alve shut 263	30.1	13 7231.53

Back to Master	Date Ti	ime	Date + Time	P at Reducer (psig)	P at Panel (psig)		Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-45 Event 6	12/20/2013	9:08	12/20/2013 9:08	(p3ig) 41						202 (32.)	(ID)	7231.53
SVV 43 EVEILEO	12/20/2013	9:09	12/20/2013 9:09	42	34		3			3.1	0.36	
	12/20/2013	11:15	12/20/2013 11:15	40	30		16			2373.4		
	12/20/2013	12:24	12/20/2013 12:24	55	28		17			2210.6		
	12/20/2013	12:25	12/20/2013 12:25	54	32		22			38.4		
	12/20/2013	12:58	12/20/2013 12:58	51	32		23			1490.9		
	12/20/2013	13:08	12/20/2013 13:08	31	32		20	. 02		/alve shut 461.6		
	12/20/2013	13:09	12/20/2013 13:09			18			·	74.10 5.140	32.02	7984.05
SW-45 Event 7	1/7/2014	13:41	1/7/2014 13:41									7984.05
	1/7/2014	13:42	1/7/2014 13:42	55	29.5	29	<2	48	3 0.0			7984.05
	1/7/2014	15:30	1/7/2014 15:30							1262.0	144.37	
	1/7/2014	15:31	1/7/2014 15:31	50						28.0		
	1/7/2014	16:33	1/7/2014 16:33	49			18			2149.9		
	1/7/2014	16:34	1/7/2014 16:34	49			20.5			39.9		
	1/7/2014	17:33	1/7/2014 17:33				21.5			2586.9		
	1/7/2014	17:34	1/7/2014 17:34							/alve shut 44.5		
	1/7/2014	17:35	1/7/2014 17:35			19.5						8683.18
SW-45 Event 8	1/9/2014	12:13	1/9/2014 12:13		3 27		<2	64	1 0.0	0.0	0.00	
	1/9/2014	12:14	1/9/2014 12:14	38			<2			0.0		
	1/9/2014	12:15	1/9/2014 12:15	38			<2			0.0		
	1/9/2014	13:25	1/9/2014 13:25	37.5			6			400.4		
	1/9/2014	13:26	1/9/2014 13:26			28	g			14.6		
	1/9/2014	14:30	1/9/2014 14:30	35	28	27	11	. 61	L 21.5	1255.0	143.57	8874.23
	1/9/2014	14:31	1/9/2014 14:31	35			13.5			24.1		
	1/9/2014	15:20	1/9/2014 15:20	40			14			1335.1		
	1/9/2014	16:45	1/9/2014 16:45	40) 29	28	15	59	29.8	2444.8	279.68	9309.41
	1/9/2014	16:46	1/9/2014 16:46			20			١	/alve shut 29.8	3.41	9312.82
SW-45 Event 9	1/13/2014	7:42	1/13/2014 7:42	57	' 31	. 29	<2	. 48	3 0.0	0.0	0.00	
	1/13/2014	8:34	1/13/2014 8:34	47	31	28.5	11	. 51	22.5	585.3	66.96	9379.78
	1/13/2014	9:35	1/13/2014 9:35	45	5 29	28	13.8	59	27.4	1521.9	174.11	9553.89
	1/13/2014	10:50	1/13/2014 10:50	45	28	26.5	15.9	70	30.9	2183.9	249.84	9803.73
	1/13/2014	10:53	1/13/2014 10:53	45	29	26.5	18	70	35.3	99.3	11.36	9815.08
	1/13/2014	11:52	1/13/2014 11:52	45	29	26.5	18	70	35.3	2084.9	238.51	10053.59
	1/13/2014	12:27	1/13/2014 12:27	45	29	26.5	18.2	. 71	L 35.7	1243.1	142.21	10195.80
	1/13/2014	12:29	1/13/2014 12:29			16			\	/alve shut 71.4	8.17	10203.97
SW-45 Event 10	1/14/2014	8:20	1/14/2014 8:20	46	5 24	22	<2	63	0.0	0.0	0.00	10203.97
	1/14/2014	8:22	1/14/2014 8:22	45	30	28	<2	63	0.0	0.0	0.00	10203.97
	1/14/2014	9:00	1/14/2014 9:00	47	28	27	7	63	3 13.7	259.8	29.72	10233.69
	1/14/2014	10:14	1/14/2014 10:14	44	27.5	26.5	10	64	19.4	1223.8	140.00	10373.70
	1/14/2014	11:22	1/14/2014 11:22	39	27	26	10.8	64	1 20.8	1367.7	156.47	10530.16
	1/14/2014	12:38	1/14/2014 12:38	44	26.5	25	10.8	66	5 20.7	1576.4	180.35	10710.51
	1/14/2014	12:41	1/14/2014 12:41			21			\	/alve shut 62.0	7.09	10717.60
SW-45 Event 11	1/15/2014	8:01	1/15/2014 8:01	55	29	29		46	0.0	0.0		
	1/15/2014	8:42	1/15/2014 8:42		27.5	28				301.0		
	1/15/2014	8:43	1/15/2014 8:43							16.6		
	1/15/2014	9:50	1/15/2014 9:50	44						1465.7		
	1/15/2014	9:51	1/15/2014 9:51	44			15			27.4		
	1/15/2014	10:58	1/15/2014 10:58				17			2112.5		
	1/15/2014	12:03	1/15/2014 12:03		. 28.5	26	17.9	69		2223.3		
	1/15/2014	12:06	1/15/2014 12:06						\	/alve shut 104.9	12.00	
	1/15/2014	12:07	1/15/2014 12:07			18						11432.76
<u>SW-45 Event 12</u>	1/16/2014	10:12	1/16/2014 10:12				<2			0.0		
	1/16/2014	11:16	1/16/2014 11:16	42	28	27.5	6	56	5 11.8	377.7	43.21	. 11475.97

					P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO₂	Cumulative
Back to Master	Date		Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
		1/16/2014	13:2	0 1/16/2014 13:20) 4	5 2	6 2	5 11	. !	58 21.1	2038.6	233.22	2 11709.19
		1/16/2014	13:2	2 1/16/2014 13:22	2 4	5 28.	5 26.	5 15	;	58 29.6	50.7	5.80	11714.99
		1/16/2014	14:3	0 1/16/2014 14:30) 4	6 2	8 2	5 17	•	33.0	2130.9	243.77	7 11958.76
		1/16/2014	14:3	1 1/16/2014 14:33	L		1	7		Va	lve shut 33.0	3.78	11962.54
SW-45 Event 13		1/17/2014	7:1	0 1/17/2014 7:10) 5	7 2	9 2	3	,	10 6.1	0.0	0.00	11962.54
		1/17/2014	7:1	3 1/17/2014 7:13	3 5	7 2	8 27.	5 4.2		10 8.4	21.7	2.48	11965.03
		1/17/2014	7:5	7 1/17/2014 7:57	7 5	1 26.	5 2	5 10)	14 19.6	615.0	70.35	12035.38
		1/17/2014	8:3	9 1/17/2014 8:39	9 5	0 2	6 2	5 10.5	:	52 20.2	835.7	95.61	1 12130.99
		1/17/2014	8:4	0 1/17/2014 8:40)					Va	lve shut 20.2	2.32	2 12133.30
Natara andrialis	: - 75 0	r indiants	بين منيامين عماله	aa intawaalatad fuana fiald	data	-	-			-	T . 100 M (II)		

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Pand (psig)	el Pa (ps	nt Well	Rotameter Reading (scfm)	Temp (°F)		low (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-46 Event 1	11/19/2013	8:30				25	··/	Reading (Senin)	0	•	0.0	002 (00.7	(ID)	111033 (16)
3VV 40 EVEILE 1	11/19/2013	8:32			•	28	29.6		<2	68	0.0	0.0	0.00	0.00
	11/19/2013	8:38				27	28		<2	72	0.0	0.0		
	11/19/2013	8:42				27	27.6		4	72	7.7	15.3		
	11/19/2013	8:43				29	29.2		5	72	9.8	8.7		
	11/19/2013	9:05	• •			29	28		8	72	15.7	280.2		
	11/19/2013	10:30				28	26.4		12	76	23.1	1650.0		
	11/19/2013	10:31	• •			31	28		15	76	29.9	26.5		
	11/19/2013	11:25	• •		5	31		15.		77	17.2	1272.2		
	11/19/2013	12:00	• •			31	27.2		16	76	31.9	859.5		
	11/19/2013	12:07	• •			32	27.6		-3 17	77	34.3	231.8		
	11/19/2013	12:08	• •			33	28.4		18	77	36.7	35.5		
	11/19/2013	12:39	• •		5	33	28.4		19	78	38.7	1168.5		
	11/19/2013	12:40	• •			43					Valve shut	38.7		
	11/19/2013	12:41	• •			43	17.2				70.75 5.10	33.7		639.15
SW-46 Event 2	12/3/2013	13:07			 5	30	29		9	84	17.6	458.5	52.45	
	12/3/2013	13:38				29	24		20	85	38.7	873.2		
	12/3/2013	13:39				33	27			85	47.5	43.1		
	12/3/2013	14:45				32	24.5			80	51.3	3260.9		
	12/3/2013	16:02				32	24			74	53.6	4037.6		
	12/3/2013	17:05			4	32	24		' .5	67	56.0	3452.3	394.95	2026.32
	12/3/2013	17:07	• •								Valve shut	112.0		
	12/3/2013	17:08	12/3/2013 17:08											2039.13
SW-46 Event 3	12/9/2013	13:21	12/9/2013 13:21								0.0	0.0	0.00	2039.13
	12/9/2013	13:22	12/9/2013 13:22	55		29	31		<2		0.0	0.0	0.00	2039.13
	12/9/2013	13:24	12/9/2013 13:24	55		29	29		11	92	21.1	21.1	2.42	2041.55
	12/9/2013	13:25	12/9/2013 13:25	55		29	24		14	92	26.9	24.0	2.75	2044.30
	12/9/2013	13:28	12/9/2013 13:28			29	24		17	92	32.7	89.4	10.23	2054.53
	12/9/2013	13:32	12/9/2013 13:32	55		29	24		20	92.0	38.4	142.3	16.27	2070.80
	12/9/2013	13:58	12/9/2013 13:58	50		28	22.5		21	90.0	40.0	1019.5	116.63	2187.43
	12/9/2013	13:59	12/9/2013 13:59	50		29	23.5	22	2.5	90.0	43.3	41.7	4.77	2192.20
	12/9/2013	14:22	12/9/2013 14:22	50		29	23		24	90.0	46.2	1029.9	117.83	2310.03
	12/9/2013	15:26	12/9/2013 15:26	48		29	22		25	82.0	48.5	3031.7	346.82	2656.85
	12/9/2013	15:27	12/9/2013 15:27	48		30	22	26	5.5	82.0	52.0	50.3	5.75	2662.60
	12/9/2013	16:45	12/9/2013 16:45	45		31	20		27	75.0	54.0	4133.2	472.83	3135.43
	12/9/2013	17:26	12/9/2013 17:26	50		32	21		27	74.0	54.6	2225.6	254.61	3390.05
	12/9/2013	17:27	12/9/2013 17:27								Valve Shut	54.6	6.25	3396.29
	12/9/2013	17:28	12/9/2013 17:28				16.5							3396.29
<u>SW-46 Event 4</u>	12/16/2013	12:10	12/16/2013 12:10			25	23		19	70	35.5	0.0	0.00	3396.29
	12/16/2013	12:12	12/16/2013 12:12			28	23		23	70	44.6	80.2	9.17	3405.46
	12/16/2013	12:54	12/16/2013 12:54	50)	25	20	25	5.5	72	47.6	1936.6	221.54	3627.01
	12/16/2013	12:55	12/16/2013 12:55	50)	30	22		30	72	59.5	53.5	6.12	3633.13
	12/16/2013	13:15	12/16/2013 13:15			29			31	70	60.9	1203.2	2 137.64	3770.77
	12/16/2013	13:16	12/16/2013 13:16								Valve Shut	60.9	6.96	3777.73
	12/16/2013	14:36	12/16/2013 14:36			26	23		20	76	37.7 Restart	3012.4	344.61	4122.35
	12/16/2013	14:37	12/16/2013 14:37			26	23		22	76	41.4	39.5	4.52	4126.87
	12/16/2013	14:40	12/16/2013 14:40	52	2	30	24.5	26	5.5	76	52.3	140.6	16.09	4142.96
	12/16/2013	14:43			2	30	24		7.3	76	53.9	159.3		
	12/16/2013	14:44			2	31	24.5		29	76	57.9	55.9		
	12/16/2013	14:56				30	23.5		24	74	47.5	632.3		
	12/16/2013	15:56	12/16/2013 15:56	45	5	30	23		30	70	59.6	3211.5	367.39	4607.30
	12/16/2013	16:49	12/16/2013 16:49	45	5	29	22		30	66	59.1	3145.6		4967.15
	12/16/2013	17:42	12/16/2013 17:42	45	5	30	22		30	54	60.5	3170.8	362.74	5329.90

				P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date Ti	me	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Fl	ow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	12/16/2013	17:43	12/16/2013 17:43							Valve shut	60.5	6.92	5336.82
	12/16/2013	17:44	12/16/2013 17:44			18							5336.82
SW-46 Event 5	1/9/2014	12:36	1/9/2014 12:36	43	3 29.5	5 25		<2	64	0.0	0.0	0.00	5336.82
	1/9/2014	12:37	1/9/2014 12:37	43	31	30		<2	64	0.0	0.0	0.00	5336.82
	1/9/2014	12:38	1/9/2014 12:38	43	3 29.5	28		<2	64	0.0	0.0	0.00	5336.82
	1/9/2014	13:35	1/9/2014 13:35	42	2 26.5	26	i	7	65	13.4	382.0	43.70	5380.52
	1/9/2014	13:37	1/9/2014 13:37	42	2 28	3 27	9	9.5	65	18.5	31.9	3.65	5 5384.17
	1/9/2014	13:38	1/9/2014 13:38	42	2 29.5	28	:	10	65	19.8	19.2	2.19	5386.37
	1/9/2014	14:24	1/9/2014 14:24	40	29	27.5		12	64	23.7	1001.4	114.56	5500.93
	1/9/2014	14:25	1/9/2014 14:25	40	30	28	:	14	64	28.0	25.8	2.96	5503.88
	1/9/2014	15:15	1/9/2014 15:15	45	30	27.5	14	1.5	63	29.0	1424.0	162.90	5666.78
	1/9/2014	17:00	1/9/2014 17:00	50	30) 27	16	5.5	60	33.1 Valve shut	3259.4	372.87	6039.66
	1/9/2014	17:01	1/9/2014 17:01			26	i						6039.66
SW-46 Event 6	1/14/2014	8:35	1/14/2014 8:35			23							6039.66
	1/14/2014	8:37	1/14/2014 8:37										6039.66
	1/14/2014	10:32	1/14/2014 10:32	45	5 25	23		11	64	20.7	2379.4	272.20	6311.86
	1/14/2014	10:34	1/14/2014 10:34	45	5 29	26	17	7.8	64	35.2	55.8	6.39	6318.25
	1/14/2014	10:35	1/14/2014 10:35	45	30.5	5 27	,	20	64	40.2	37.7	4.31	6322.56
	1/14/2014	11:17	1/14/2014 11:17	45	5 29.5	5 25		22	65	43.7	1760.4	201.39	6523.95
	1/14/2014	11:19	1/14/2014 11:19	45	30.5	5 26	2 3	3.2	65	46.6	90.2	10.32	6534.27
	1/14/2014	11:44	1/14/2014 11:44	43	30.5	5 26	24	1.2	65	48.6	1189.1	136.03	6670.30
	1/14/2014	13:16	1/14/2014 13:16	49				5.5	70	53.8	4709.1		7209.02
	1/14/2014	13:17	1/14/2014 13:17							Valve shut	53.8	6.16	7215.18
	1/14/2014	13:18	1/14/2014 13:18										7215.18
SW-46 Event 7	1/16/2014	7:39	1/16/2014 7:39	60) 20) 20	,	<2	38	0.0	0.0	0.00	
	1/16/2014	7:40	1/16/2014 7:40		28.5	28.5		5	38	10.1	5.0	0.58	7215.76
	1/16/2014	7:42	1/16/2014 7:42	60	28.5	28.5	8	3.2	38	16.5	26.6	3.04	7218.80
	1/16/2014	8:45	1/16/2014 8:45	53		5 24.5			50	27.6	1390.7		7377.90
	1/16/2014	8:46	1/16/2014 8:46	53	3 30) 27		21	50	42.5	35.1	4.01	7381.91
	1/16/2014	9:34	1/16/2014 9:34	49	9 30) 26	;	22	56	44.3	2084.1		
	1/16/2014	9:35	1/16/2014 9:35	49				24	56	48.9	46.6		
	1/16/2014	10:39	1/16/2014 10:39	46				25	60	50.4	3177.4		
	1/16/2014	11:45	1/16/2014 11:45	45				25	62	50.3	3324.5		
	1/16/2014	11:47	1/16/2014 11:47			19				Valve shut			8369.48
SW-46 Event 8	1/23/2014	9:18	1/23/2014 9:18	52	2 29.2			3.5	48	7.0			8369.48
	1/23/2014	9:42	1/23/2014 9:42	50				3.5	48	14.5	258.4	29.56	
	1/23/2014	9:43	1/23/2014 9:43	50					48	22.3	18.4		
	1/23/2014	9:54	1/23/2014 9:54	50					48	20.6	236.2		
	1/23/2014	10:58	1/23/2014 10:58	48					50	31.7	1672.9		
	1/23/2014	11:36	1/23/2014 11:36	48				17	52	33.2	1232.3		
	1/23/2014	13:21	1/23/2014 13:21	53					62	34.9	3575.4		
	1/23/2014	13:22	1/23/2014 13:22						_	Valve shut	34.9		
	1/23/2014	13:23	1/23/2014 13:23			19)				33	.100	9173.55
	1/23/2014	14:10	1/23/2014 14:10										9173.55
Note: a red value			interpolated from field d	ata						-	Total CO₂ Mass (lbs):		9173.55

Total CO₂ Mass (lbs):

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master			Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-47 Event 1	11/18/2013	10:59	• •						0.0			
	11/18/2013	11:01	11/18/2013 11:01						0.0	0.		
	11/18/2013	11:13	11/18/2013 11:13						30 11.5	69.		
	11/18/2013	11:15	11/18/2013 11:15						30 13.8	25.		
	11/18/2013	11:26							30 15.7	162.		
	11/18/2013	11:52	• •						34 23.5	510.		
	11/18/2013	11:54	11/18/2013 11:54		32			5 8	30.1	53.		
	11/18/2013	12:53	11/18/2013 12:53		32				33 28.1	1744.		
	11/18/2013	12:54	11/18/2013 12:54	58	34			5 8	32.8	2007.	3 229.69	523.12
	11/18/2013	14:00	11/18/2013 14:00	56					34.9	2538.		
	11/18/2013	15:15	11/18/2013 15:15	52.5	32.5	5 29.2	17.	5 7	78 35.4	527.		873.89
	11/18/2013	15:30							Va	alve shut 70.5	9 8.11	l 882.00
	11/18/2013	15:32	11/18/2013 15:32			20.8	3					882.00
SW-47 Event 2	12/3/2013	8:30	12/3/2013 8:30	60	24	1						882.00
	12/3/2013	8:31	12/3/2013 8:31	60	25	5 28	}	6	54 11.3	11.	3 1.29	883.29
	12/3/2013	9:05	12/3/2013 9:05	55	28	3 25.6	5 17.	5 6	34.0	770.	2 88.11	l 971.41
	12/3/2013	9:07	12/3/2013 9:07	55	30	26.4	1	8 67	.5 35.8	69.	7.99	979.40
	12/3/2013	10:08	12/3/2013 10:08	54	30	25.2	! 1	9 6	37.8	2247.0	257.06	1236.46
	12/3/2013	10:10	12/3/2013 10:10	54	32	2 27.6	5 2	2 6	57 44.8	82.	9.45	1245.91
	12/3/2013	11:17	12/3/2013 11:17	53	32.5	5 26.8	3 2	3 6	69 47.0	3075	351.81	L 1597.73
	12/3/2013	12:17	12/3/2013 12:17	51	. 34	1 26	5 2	4 7	⁷ 6 49.5	2894.	331.14	1928.87
	12/3/2013	12:53	12/3/2013 12:53	55	34	1 26	5 2	4 8	32 49.2 Va	alve shut 1776.	203.23	3 2132.10
	12/3/2013	12:56	12/3/2013 12:56			16	j					2132.10
SW-47 Event 3	12/9/2013	8:57	12/9/2013 8:57	55	33	30.5	· <	2 64	.0 0.0	0.0	0.00	2132.10
	12/9/2013	8:58	12/9/2013 8:58	55	28	3 24	1	64	.0 31.2	15.	5 1.79	2133.88
	12/9/2013	9:00	12/9/2013 9:00	53	28	30) 2	2 6	64 42.9	74.:	2 8.48	3 2142.37
	12/9/2013	9:24	12/9/2013 9:24	51	28	3 21	. 2	5 6	57 48.6	1099.	125.73	3 2268.10
	12/9/2013	10:03	12/9/2013 10:03	50	29	9 20	2	5 7	⁷ 2 50.9	1942.	222.17	7 2490.27
	12/9/2013	10:50	12/9/2013 10:50	50	28	3 20	2	5 74	.0 50.3	2378.	1 272.05	2762.32
	12/9/2013	11:28	12/9/2013 11:28	50	28	3 18	3 2	6 82	.0 49.9	1902.	3 217.62	2979.94
	12/9/2013	12:42	12/9/2013 12:42	50	28	3 18	3 2	90	.0 49.5	3676.	420.58	3400.51
	12/9/2013	13:15	12/9/2013 13:15	52	28	3 14	26.	5 90	.0 50.4 Va	alve shut 1649.	188.64	3589.16
	12/9/2013	13:17	12/9/2013 13:17			12	!					3589.16
SW-47 Event 4	12/16/2013	7:59	12/16/2013 7:59	55	24	1 29) <	2 43	.0 0.0	0.0	0.00	3589.16
	12/16/2013	8:01	12/16/2013 8:01	55	22	2 20	<	2 43	.0 0.0	0.0	0.00	3589.16
	12/16/2013	8:48	12/16/2013 8:48		38	3 30) 2	4 50	.0 52.9	1242.	142.13	3731.29
	12/16/2013	9:50	12/16/2013 9:50	45	37	7 29) 2	4 58	.0 51.9	3248.	371.66	4102.95
	12/16/2013	10:40			36	5 29) 2	4 65		2574.		
	12/16/2013	11:40			3!	5 27	2	4 68		3043.	348.19	
	12/16/2013	11:52			3!	5 27	2	4 68	.0 50.4	604.		
	12/16/2013	11:53	12/16/2013 11:53							alve shut 50.		
	12/16/2013	11:54	12/16/2013 11:54			19)					4820.63
SW-47 Event 5	1/9/2014	8:04	1/9/2014 8:04		26			0 54	.0 19.2			4820.63
	1/9/2014	8:06			26					48.	1 5.50	
	1/9/2014	8:07	1/9/2014 8:07		26					32.		
	1/9/2014	8:09	1/9/2014 8:09		26					73.		
	1/9/2014	8:17	1/9/2014 8:17		25.5					295.:		
	1/9/2014	8:18	1/9/2014 8:18		29.5					42.		
	1/9/2014	8:54	1/9/2014 8:54		28					1712.		
	1/9/2014	10:10			27.5					3761.		
	1/9/2014	11:33	1/9/2014 10:10		27.5					4178.		
	1/9/2014	12:31	1/9/2014 11:33		26					2884.		
					20	۷ کا	, 2	04				
	1/9/2014	12:32	1/9/2014 12:32						Va	alve shut 49.	5.67	7 6316.69

					P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	e	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
		1/9/2014	12:34	1/9/2014 12:34				1	4				6316.69
SW-47 Event 6		1/21/2014	9:44	1/21/2014 9:44	46	29.5	30.5		8 67.	0 15.8			6316.69
		1/21/2014	9:48	1/21/2014 9:48	46	27	26.5	1	2 67.	0 23.1	77.8	8.90	6325.60
		1/21/2014	9:49	1/21/2014 9:49	43	29.5	28	1	67.	0 31.7	27.4	4 3.13	6328.73
		1/21/2014	10:22	1/21/2014 10:22	42	28.5	26	1	9 68.	0 37.2	1135.9	9 129.94	4 6458.67
		1/21/2014	11:50	1/21/2014 11:50	40	27	23.5	20.	5 70.	0 39.3	3364.3	1 384.85	6843.52
		1/21/2014	13:22	1/21/2014 13:22	52	27	23.5	22.	2 75.	0 42.4	3756.3	1 429.70	7273.22
		1/21/2014	14:28	1/21/2014 14:28	50	28	3 23	22.	5 74.	0 43.5	2832.8	324.07	7597.29
		1/21/2014	15:37	1/21/2014 15:37	49	28	3 22.5	2	68.	0 44.7	3042.9	348.11	7945.39
		1/21/2014	15:39	1/21/2014 15:39	1						Valve shut 89.4	4 10.23	3 7955.63
		1/21/2014	15:40	1/21/2014 15:40)		18						7955.63
SW-47 Event 7		1/22/2014	9:07	1/22/2014 9:07	54	30	30	<	2 50.	0.0	0.0	0.00	7955.63
		1/22/2014	9:34	1/22/2014 9:34	53	28	28.5		3 50.	0 5.9	80.2	9.17	7 7964.80
		1/22/2014	9:35	1/22/2014 9:35	52	30	30		5 50.	0 10.1	8.0	0.92	2 7965.71
		1/22/2014	10:09	1/22/2014 10:09	48	30	29.5	6.	54.	0 13.7	405.4	46.38	8012.09
		1/22/2014	11:13	1/22/2014 11:13	46	29	28	9.	3 56.	0 18.5	1031.4	4 117.99	8130.09
		1/22/2014	11:13	1/22/2014 11:13	46	31	. 30	13.	5 56.	0 27.5	0.0	0.00	8130.09
		1/22/2014	12:19	1/22/2014 12:19	45	31	29.5	1	4 57.	0 28.5	1847.0	211.30	8341.38
		1/22/2014	13:05	1/22/2014 13:05	46	30.5	19.5	15.	2 60.	0 30.7	1360.3	1 155.60	8496.98
		1/22/2014	14:29	1/22/2014 14:29	47	30	18.5	16.	2 60.	0 32.5	2652.3	1 303.40	8800.38
		1/22/2014	14:31	1/22/2014 14:31							Valve shut 65.0	7.43	8807.81
		1/22/2014	14:32	1/22/2014 14:32			21						8807.81

Total CO₂ Mass (lbs):

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-48 Event 1	11/22/2013					25	nedding (Jenn)		34 0.0		(12)	111000 (127)
011 10 210.112	11/22/2013					29 29	5		34 0.0	0.	0 0.00	0.00
	11/22/2013	13:30	• •			28 28			0.0	0.		
	11/22/2013	13:32	• •				1		30 5.9	5.		
	11/22/2013	14:10	• •						30 10.7	315.		
	11/22/2013	14:11	• •						30 14.8	12.		
	11/22/2013	15:26	• •				1		76 17.8	1219.		
	11/22/2013	16:39	• •			30 30			75 19.8	1369.		
	11/22/2013	17:26	• •			30			72 20.8	953.		
	11/22/2013	17:27								'alve shut 20.		
	11/22/2013	17:29	• •			2	1					445.88
SW-48 Event 2	12/6/2013		···		0 3	31 30		<2 8	36 0.0			445.88
	12/6/2013	13:42				30			38 9.9	74.	0 8.47	
	12/6/2013	14:42				30 29			36 13.7	706.		
	12/6/2013	14:44				31			36 19.8	33.		
	12/6/2013	16:05				31 30			77 21.4	1669.		
	12/6/2013	16:32							77 21.9	585.		
	12/6/2013	17:34				32 29			71 27.4	1529.		
	12/6/2013	17:37				32 29			71 27.4	82.		
	12/6/2013	17:38			`		2	,,		'alve shut 27.		
SW-48 Event 3	12/11/2013							<2 6	58 0.0	27.	3.13	984.46
<u>JW 10 EVENUS</u>	12/11/2013	14:18	• •						58 0.0	0.	0 0.00	
	12/11/2013	14:19	• •						58 14.9	7.		
	12/11/2013	15:12	• •				8		58 17.9	870.		
	12/11/2013	15:14	• •						58 25.6	43.		
	12/11/2013	16:38	• •						55 32.8	2452.		
	12/11/2013	17:32	• •						54 38.8	1934.		
	12/11/2013	17:41	• •		•	, ,	O	15		'alve shut 349.		
	12/11/2013		• •						·	aive shat 545.	33.33	1631.58
SW-48 Event 4	12/18/2013					30 3	0	<2 5	50 0.0			1631.58
SW 40 EVEIL 4	12/18/2013	9:06					7		52 14.0	427.	3 48.89	
	12/18/2013	9:08							52 24.6	38.		
	12/18/2013	9:56							52 24.0 54 27.0	1236.		
	12/18/2013	11:23							57 35.8	2732.		
	12/18/2013	11:24							57 42.3	39.		
	12/18/2013	12:22							55 43.9	2499.		
	12/18/2013	12:23			•					'alve shut 43.		
	12/18/2013	12:24				2	0		·	13.	5.02	2434.41
SW-48 Event 5	12/20/2013						9	4 6	50 7.5			2434.41
SW 40 EVENTS	12/20/2013						5		54 16.9	646.	2 73.93	
	12/20/2013					30 29			54 32.0	48.		
	12/20/2013	10:08							72 35.7	2908.		
	12/20/2013	11:06							72 36.1	2080.		
	12/20/2013	12:02	• •						72 39.6	2120.		
	12/20/2013				`	2	.,	20 /		'alve shut 39.		
	12/20/2013		• •			7	1		V	aive silut 35.	4.33	3331.76
SW-48 Event 6	1/9/2014		· · ·				<u> </u>		0.0	0.	0 0.00	
SVV 40 LVEIIL U	1/9/2014				n	30 3	1	4 6	53 8.0	4.		
	1/9/2014								53 8.0 53 14.8	4. 68.		
	1/9/2014						1		53 18.1	32.		
	1/9/2014								51 23.9	672.		
	1/9/2014											
										2331.		
	1/9/2014	12:36	5 1/9/2014 12:36	4:	ı .	31 3	0 19		39.5	69.	8 7.98	3695.38

te Tir	me Da		P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
1/9/2014	14:22	1/9/2014 14:22	39			20	60	39.7	4193.	5 479.7	3 4175.12
1/9/2014	14:40	1/9/2014 14:40	39	29	27.5	20	60	39.7	713.	7 81.6	5 4256.7
1/9/2014	14:41	1/9/2014 14:41						Valve sh	ut 39.	7 4.5	4 4261.3
1/9/2014	14:42	1/9/2014 14:42			22						4261.30
1/11/2014	8:34	1/11/2014 8:34						0.0			4261.30
1/11/2014	8:35	1/11/2014 8:35	46	30	30	3	66	6.0	3.0	0.3	4 4261.64
1/11/2014	8:37	1/11/2014 8:37	46	32	31	. 5	66	5 10.2	16.2	1.8	5 4263.49
1/11/2014	8:51	1/11/2014 8:51	46	31	. 30	10	66	5 20.2	212.	5 24.3	1 4287.80
1/11/2014	8:52	1/11/2014 8:52	45	33	31	14	66	5 28.8	24.5	5 2.8	9 4290.60
1/11/2014	10:47	1/11/2014 10:47	42	31	27.5	18.5	70	37.2	3794.9	9 434.1	4724.74
1/11/2014	10:49	1/11/2014 10:49	41	. 33	29	21	70	3.1	80.3	9.1	8 4733.92
1/11/2014	11:13	1/11/2014 11:13	41	33.5	29	24	. 70	9.5	1111.4	127.1	5 4861.07
1/11/2014	11:33	1/11/2014 11:33	48	38	31	28	72	2 60.3	1098.5	5 125.6	7 4986.74
1/11/2014	11:35	1/11/2014 11:35						Valve sh	ut 120.	7 13.8	5000.55
1/11/2014	11:36	1/11/2014 11:36			21						5000.55
1/14/2014	7:52	1/14/2014 7:52						0.0	0.0	0.0	5000.55
1/14/2014	7:53	1/14/2014 7:53	50	31.5	31.5	7	62	2 14.2	7.:	1 0.8	1 5001.36
1/14/2014	8:16	1/14/2014 8:16	42	31.5	29	12.5	64	4 25.4	455.8	52.1	5 5053.53
1/14/2014	8:18	1/14/2014 8:18	45	33	31	. 16	64	33.0	58.4	4 6.6	5060.19
1/14/2014	9:48	1/14/2014 9:48	45	33	30.5	18	64	4 37.2	3158.7	7 361.3	5421.5
1/14/2014	10:52	1/14/2014 10:52	43	31.5	28	18	65	36.5	2358.0	269.7	5691.32
1/14/2014	10:54	1/14/2014 10:54	43	33.5	29	21	65	5 43.5	80.:	9.1	5700.47
1/14/2014	12:00	1/14/2014 12:00	42	34	29	23.5	65	5 49.0	3053.3	349.3	0 6049.77
1/14/2014	12:02	1/14/2014 12:02						Valve sh	ut 98.0	11.2	1 6060.98
1/14/2014	12:03	1/14/2014 12:03			22						6060.98
1/16/2014	8:26	1/16/2014 8:26	53	27.5	27.5	<2	47	7 0.0			6060.98
1/16/2014	8:28	1/16/2014 8:28		30	29	6	47	7 12.2	12.3	2 1.3	9 6062.37
1/16/2014	8:30	1/16/2014 8:30	53	31	29.5	8.2	47	7 16.9	29.0	3.3	2 6065.70
1/16/2014	9:23	1/16/2014 9:23	48	30	28	12.8	56	5 25.8	1129.	5 129.2	2 6194.92
1/16/2014	9:24	1/16/2014 9:24	48	32	30	16	56	32.9			
1/16/2014	10:31	1/16/2014 10:31	45	32	29.5	18	58	37.0	2342.5	5 267.9	8 6466.26
1/16/2014	10:33	1/16/2014 10:33							74.4	4 8.5	1 6474.76
1/16/2014	11:31	1/16/2014 11:31	43	32	. 29	19	59	39.0	2215.2		
1/16/2014	11:34	1/16/2014 11:34	43	33	29.5	20.5	59	9 42.5	122.3	3 13.9	9 6742.17
	12:39	1/16/2014 12:39	45	33			58				
			52	30			46				
1/20/2014		1/20/2014 8:56									
1/20/2014	12:43	1/20/2014 12:43	45						4336.		
1/20/2014											
	1/9/2014 1/9/2014 1/9/2014 1/9/2014 1/11/2014 1/11/2014 1/11/2014 1/11/2014 1/11/2014 1/11/2014 1/11/2014 1/11/2014 1/11/2014 1/11/2014 1/11/2014 1/14/2014 1/14/2014 1/14/2014 1/14/2014 1/14/2014 1/14/2014 1/14/2014 1/14/2014 1/14/2014 1/16/2014	1/9/2014 14:40 1/9/2014 14:41 1/9/2014 14:41 1/9/2014 14:42 1/11/2014 8:34 1/11/2014 8:35 1/11/2014 8:51 1/11/2014 10:47 1/11/2014 10:49 1/11/2014 11:33 1/11/2014 11:33 1/11/2014 11:35 1/11/2014 11:35 1/11/2014 11:36 1/14/2014 7:52 1/14/2014 7:53 1/14/2014 8:18 1/14/2014 10:54 1/14/2014 10:54 1/14/2014 10:54 1/14/2014 10:54 1/14/2014 12:00 1/14/2014 12:03 1/16/2014 12:03 1/16/2014 8:28 1/16/2014 12:03 1/16/2014 10:31 1/16/2014 10:31 1/16/2014 10:31 1/16/2014 10:33 1/16/2014 10:38 1/16/2014 10:38 1/16/2014 10:38 1/16/2014 10:08 1/20/2014 8:56	Inte Time Date + Time 1/9/2014 14:22 1/9/2014 14:40 1/9/2014 14:40 1/9/2014 14:40 1/9/2014 14:41 1/9/2014 14:42 1/11/2014 8:34 1/11/2014 8:34 1/11/2014 8:35 1/11/2014 8:35 1/11/2014 8:37 1/11/2014 8:51 1/11/2014 8:51 1/11/2014 8:52 1/11/2014 10:47 1/11/2014 10:47 1/11/2014 10:47 1/11/2014 10:49 1/11/2014 11:33 1/11/2014 11:33 1/11/2014 11:33 1/11/2014 11:33 1/11/2014 11:35 1/11/2014 11:35 1/11/2014 11:35 1/11/2014 11:36 1/11/2014 11:36 1/11/2014 11:36 1/11/2014 11:36 1/11/2014 11:36 1/11/2014 11:35 1/11/2014 11:36 1/14/2014 7:52 1/14/2014 7:52 1/14/2014 7:53 1/14/2014 7:52 1/14/2014 7:53 1/14/2014 8:18 1/14/2014 <td> Time</td> <td> Time</td> <td>Re Time Date + Time (psig) (psig) (psig) 1/9/2014 14:22 1/9/2014 14:40 39 29 27.5 1/9/2014 14:40 1/9/2014 14:41 39 29 27.5 1/9/2014 14:41 1/9/2014 14:42 22 27.5 1/11/2014 8:34 1/11/2014 8:35 46 30 30 1/11/2014 8:35 1/11/2014 8:37 46 32 31 1/11/2014 8:51 1/11/2014 8:51 46 31 30 1/11/2014 8:52 1/11/2014 8:52 45 33 31 1/11/2014 8:52 1/11/2014 10:47 42 31 27.5 1/11/2014 10:47 1/11/2014 10:49 41 33 29 1/11/2014 11:33 1/11/2014 11:33 48 38 31 1/11/2014 11:35 1/11/2014 11:35 41/12/2014 11:36 21 1/14/2014 7:52 1/14/2014 7:53 50 31.5</td> <td> </td> <td> 19</td> <td> </td> <td> The Date Time Date Time Date D</td> <td> </td>	Time	Time	Re Time Date + Time (psig) (psig) (psig) 1/9/2014 14:22 1/9/2014 14:40 39 29 27.5 1/9/2014 14:40 1/9/2014 14:41 39 29 27.5 1/9/2014 14:41 1/9/2014 14:42 22 27.5 1/11/2014 8:34 1/11/2014 8:35 46 30 30 1/11/2014 8:35 1/11/2014 8:37 46 32 31 1/11/2014 8:51 1/11/2014 8:51 46 31 30 1/11/2014 8:52 1/11/2014 8:52 45 33 31 1/11/2014 8:52 1/11/2014 10:47 42 31 27.5 1/11/2014 10:47 1/11/2014 10:49 41 33 29 1/11/2014 11:33 1/11/2014 11:33 48 38 31 1/11/2014 11:35 1/11/2014 11:35 41/12/2014 11:36 21 1/14/2014 7:52 1/14/2014 7:53 50 31.5		19		The Date Time Date Time Date D	

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	EI	low (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-49 Event 1	11/22/2013	8:06					neading (semi)	remp (r)	66	0.0	552 (55.7	(10)	111035 (10)
3W 13 EVENC I	11/22/2013	8:08			3)	<2	66	0.0	0.0	0.00	0.00
	11/22/2013	8:09			3			<2	66	0.0	0.0		
	11/22/2013	8:41	11/22/2013 8:41					9	68	18.9	302.4		
	11/22/2013	8:42			3			12	71	25.6	22.3		
	11/22/2013	9:51	11/22/2013 9:51		3			14	74	29.8	1912.9		
	11/22/2013	11:01	11/22/2013 11:01		3			15	74	31.9	2161.7		
	11/22/2013	11:54	11/22/2013 11:54		3			16	76	33.7	1738.9		
	11/22/2013	12:45	• •		3			18	76	37.9	1824.7		
	11/22/2013	12:46								Valve shut	37.9		
	11/22/2013	12:47	11/22/2013 12:47			2	1						915.28
SW-49 Event 2	12/5/2013	8:15											915.28
	12/5/2013	8:39			3 3	0 2	3	<2	64	0.0			915.28
	12/5/2013	8:40						<2	64	0.0			915.28
	12/5/2013	8:52						6	66	12.4	74.2	8.49	
	12/5/2013	9:07	12/5/2013 9:07					7.5	68	15.4	208.4		
	12/5/2013	9:25	12/5/2013 9:25					3.5	70	17.4	295.8		
	12/5/2013	9:27	12/5/2013 9:27					0.5	70	21.8	39.2		
	12/5/2013	10:30						2.5	76	25.8	1497.9		
	12/5/2013	11:45						14	76	28.9	2049.1		
	12/5/2013	11:47						16	76	33.3	62.2		
	12/5/2013	12:43						17	75	35.5	1926.0		
	12/5/2013	12:44	12/5/2013 12:44							Valve shut	35.5		
	12/5/2013	12:45											1623.23
SW-49 Event 3	12/11/2013	8:52			3.	5 3	5	<2	60	0.0			1623.23
	12/11/2013	9:31	12/11/2013 9:31					9	68	18.7	364.7	41.72	
	12/11/2013	10:01	12/11/2013 10:01).5	67	21.5	603.0		
	12/11/2013	11:21	12/11/2013 11:21					13	72	26.3	1913.7		
	12/11/2013	11:22						15	72	30.4	28.4		
	12/11/2013	11:53						15	71	30.4	942.8		
	12/11/2013	11:54	12/11/2013 11:54					5.5	71	33.8	32.1		
	12/11/2013	11:56						18	71	37.7	71.5		
	12/11/2013	12:52						9.5	70	40.9	2199.4		
	12/11/2013	12:53								Valve shut	40.9		
	12/11/2013	12:54	12/11/2013 12:54										2332.10
SW-49 Event 4	12/18/2013	8:36			3	2 3)	<2	52	0.0	0.0	0.00	
	12/18/2013	8:40			3:			6	53	12.4	24.8		
	12/18/2013	8:42			3.			11	53	23.4	35.8		
	12/18/2013	9:16	12/18/2013 9:16	50	3	6 3	1	14	60	29.9	907.5	5 103.81	2442.85
	12/18/2013	11:20	12/18/2013 11:20	50	3.	5 3	L	19	64	40.1	4339.2	496.40	2939.25
	12/18/2013	11:22	12/18/2013 11:22	50	37.	5 3	3 24	1.5	64	53.0	93.0	10.64	2949.89
	12/18/2013	12:50	12/18/2013 12:50	50	3	6 3	2	26	64	55.4	4766.2	545.25	3495.14
	12/18/2013	12:51	12/18/2013 12:51							Valve shut	55.4		
	12/18/2013	12:52	12/18/2013 12:52			2.	2						3501.48
SW-49 Event 5	12/20/2013	9:10			3			<2	72				3501.48
	12/20/2013	10:10						9	72	18.2	1094.3	125.19	
	12/20/2013	10:12	12/20/2013 10:12	40	3	3 3)	10	72	20.5	38.7	4.43	3631.09
	12/20/2013	11:07	• •					11	72	22.5	1182.9		
	12/20/2013	12:04	12/20/2013 12:04					14	72	29.0	1468.1		
	12/20/2013	13:15						16	75	32.7	2188.9		
	12/20/2013	13:16								Valve shut	32.7		
	12/20/2013	13:17				2	3						4188.52
SW-49 Event 6	1/8/2014	8:36			3			6	38	12.9			4188.52

Back to Master	Date	Time	a	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flo	w (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
Duck to Muster		/8/2014	8:38	1/8/2014 8:38	(60.8)	35.			12	38	26.1	39.0		
		/8/2014	8:40	1/8/2014 8:40	50					40	32.0	58.1	6.64	
		/8/2014	9:03	1/8/2014 9:03	57	7 3	6 32.	5	16	45	34.7	767.0	87.75	4287.37
		/8/2014	9:04	1/8/2014 9:04	57	7 3	7 33.	5	18	45	39.5	37.1	4.24	4291.61
	1/	/8/2014	9:54	1/8/2014 9:54	46	5 3	6 32.	5 19	.8	50	42.8	2055.9	235.19	4526.80
	1/	/8/2014	10:52	1/8/2014 10:52	45	5 3	6 31.	5 20	1.2	46	43.8	2510.7	287.22	4814.03
	1/	/8/2014	10:54	1/8/2014 10:54	44	1 37.	5 3	3 2 3	.8	46	52.4	96.2	11.01	4825.03
	1/	/8/2014	12:20	1/8/2014 12:20	45	5 3	6 32.	5 24	.2	58	51.8	4482.1	512.76	5 5337.79
	1/	/8/2014	12:39	1/8/2014 12:39	44	1 3	6 3	2 24	.2	57	51.9	985.6	112.75	5450.53
	1/	/8/2014	12:40	1/8/2014 12:40							Valve shut	51.9	5.94	5456.47
	1/	/8/2014	12:42	1/8/2014 12:42			2	5						5456.47
SW-49 Event 7	1/1	10/2014	9:41	1/10/2014 9:41										5456.47
	1/1	10/2014	9:42	1/10/2014 9:42	45	3	4 3	2	6	64	12.5	12.5	1.43	5457.90
	1/1	10/2014	9:48	1/10/2014 9:48	42	2 3	8 3	5	21	64	45.6	174.4	19.95	5477.85
	1/1	10/2014	10:18	1/10/2014 10:18	42	2 36.	5 3	4	22	64	47.1	1390.4	159.06	5636.91
	1/1	10/2014	11:48	1/10/2014 11:48	41	L 3	6 3	3	22	65	46.8	4225.0	483.33	6120.25
	1/1	10/2014	12:53	1/10/2014 12:53	40) 3	4 3	1	23	64	48.0	3080.7	352.43	6472.68
	1/1	10/2014	13:18	1/10/2014 13:18	40) 3	4 3	1	24	64	50.1	1225.8	140.23	6612.91
	1/1	10/2014	13:19	1/10/2014 13:19							Valve shut	50.1	5.73	6618.64
	1/1	10/2014	13:20	1/10/2014 13:20			2	4						6618.64
SW-49 Event 8	1/1	14/2014	8:03	1/14/2014 8:03										6618.64
	1/1	14/2014	8:04	1/14/2014 8:04	50) 3	4 3	5	6	60	12.6	12.6	1.44	6620.08
	1/1	14/2014	8:21	1/14/2014 8:21	45	3	4 3	1	12	60	25.1	320.5	36.66	6656.74
	1/1	14/2014	8:23	1/14/2014 8:23	44	1 3	5 32.	5	16	60	33.9	59.0	6.75	6663.49
	1/1	14/2014	10:00	1/14/2014 10:00	44	1 3	5 3	3	18	62	38.0	3486.4	398.85	7062.34
	1/1	14/2014	11:01	1/14/2014 11:01	38	3 32.	5 3	1 17	'.5	62	36.0	2257.9	258.30	7320.64
	1/1	14/2014	12:35	1/14/2014 12:35	42	2 33.	5 3	0	20	63	41.6	3645.3	417.02	7737.66
	1/1	14/2014	12:36	1/14/2014 12:36							Valve shut	41.6	4.75	7742.42
	1/1	14/2014	12:37	1/14/2014 12:37			2	4						7742.42
SW-49 Event 9	1/1	16/2014	8:40	1/16/2014 8:40	50) 3	2 34.	5	7	40	14.6	0.0	0.00	7742.42
	1/1	16/2014	9:15	1/16/2014 9:15	47	7 29.	5 2	8 15	.2	50	30.6	792.2	90.62	7833.04
	1/1	16/2014	9:17	1/16/2014 9:17	47	7 34.	5 3	2	22	50	46.8	77.4	8.86	7841.90
	1/1	16/2014	10:28	1/16/2014 10:28	43	3	4 3	1 22	2	55	46.7	3320.4	379.86	8221.75
	1/1	16/2014	11:30	1/16/2014 11:30	42	2 3	3 3	0	23	56	47.9	2932.7	335.50	8557.26
	1/1	16/2014	12:53	1/16/2014 12:53	45	5 3	3 29.	5 24	.5	56	51.0	4102.4	469.31	9026.57
	1/1	16/2014	12:56	1/16/2014 12:56			2	4			Valve shut	153.0	17.50	9044.07
Note: a red value,	, i.e. <mark>75</mark> °F, inc	dicates that v	alue was	interpolated from field d	ata							Total CO ₂ Mass (lbs):		9044.07

				P at Reducer	P at Pane	P at Well	Rotame	ter			Volume of		
Back to Master		Time	Date + Time	(psig)	(psig)	(psi)	Reading	g (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-50 Event 1	11/15/2013	12:00	11/15/2013 12:00							0.0			
	11/15/2013	12:01	11/15/2013 12:01	. 33	3	35	30	<2	2	0.0		0.0	0.00
	11/15/2013	12:02	11/15/2013 12:02			33	30	Ţ	5 39	9.5 8.6	i	4.3 0.4	49 0.49
	11/15/2013	12:03	11/15/2013 12:03			34	30	g	39	9.5 15.6	:	12.1 1.3	38 1.87
	11/15/2013	12:04	11/15/2013 12:04			35		11	1 39	9.5 19.3	:	17.4 2.0	00 3.87
	11/15/2013	12:06	11/15/2013 12:06			35	31	11.25	5 41	L.6 19.7	'	38.9 4.4	45 8.32
	11/15/2013	12:07	11/15/2013 12:07			38 3	2.5	13.5	5 43	3.7 24.3	:	22.0 2.5	51 10.84
	11/15/2013	12:08	11/15/2013 12:08			39 3	3.5	14.5	5 4	44 26.3	:	25.3 2.8	89 13.73
	11/15/2013	12:18	11/15/2013 12:18			39	33	15.5	5 36	5.1 28.4	2	73.3 31.2	26 44.99
	11/15/2013	12:38	11/15/2013 12:38			37 3	0.5	17	7 35	30.5	5	88.7 67.3	35 112.34
	11/15/2013	12:42	11/15/2013 12:42			39	32	19.25	5 34	1.8 35.3	13	31.6 15.0	05 127.39
	11/15/2013	12:48	11/15/2013 12:48			41 3	2.5	20.5	5 31	L.5 38.4	. 22	21.0 25.2	28 152.67
	11/15/2013	12:52	11/15/2013 12:52		43	3.5	34	22	2 28	3.2 42.3	10	51.4 18.4	46 171.13
	11/15/2013	13:21	11/15/2013 13:21			43 3	2.5	22.75	5 27	7.3 43.6	124	45.2 142.4	45 313.58
	11/15/2013	13:24	11/15/2013 13:24		44	1.5 3	3.5	24	4 27	7.6 46.6	1:	35.2 15.4	47 329.05
	11/15/2013	14:00	11/15/2013 14:00			45	33	24.25	5 25	5.1 47.4	. 169	91.3 193.4	49 522.54
	11/15/2013	14:02	11/15/2013 14:02								Valve shut	94.8 10.8	84 533.38
	11/15/2013	14:04	11/15/2013 14:04		24	1.5							533.38
SW-50 Event 2	12/4/2013	12:50	12/4/2013 12:50	55		36 3	7.5	-	7	87 14.6			533.38
	12/4/2013	13:11	12/4/2013 13:11			35	34	12	2	85 24.8	4:	13.3 47.2	28 580.66
	12/4/2013	13:49	12/4/2013 13:49	51		35 3	3.5	13	3	86 26.8	98	30.6 112.3	18 692.85
	12/4/2013	14:47				35 3	2.5	14		80 29.1		20.6 185.3	39 878.24
	12/4/2013	15:54				35	32	15		81 31.1		15.2 230.5	54 1108.78
	12/4/2013	17:36				35	32	16		69 33.6		97.9 377.2	
	12/4/2013	17:37	12/4/2013 17:37									33.6 3.8	
	12/4/2013	17:38					25						1489.90
SW-50 Event 3	12/10/2013	8:12				34 3	3.5	<2	2	70 0.0			1489.90
	12/10/2013	8:17	12/10/2013 8:17			34	33	5.5		70 11.4		28.5 3.2	26 1493.16
	12/10/2013	8:39				34	32			72 16.6		07.6 35.3	
	12/10/2013	9:18				2.5	31	10		72 20.4		20.2 82.3	
	12/10/2013	9:53					0.5	11		72 22.3		46.6 85.4	
	12/10/2013	10:26				32	30	11		74 22.2		34.9 84.0	
	12/10/2013	10:27				32	31	13.5		74 27.3			83 1783.07
	12/10/2013	10:30	• •				2.5	15.5		74 32.0		39.0 10.1	
	12/10/2013	11:32					2.5	17		74 34.6		54.4 236.1	
	12/10/2013	12:16	• •			32	32	17.5		74 35.4		39.2 176.0	
	12/10/2013	12:18				32	J2	17.0		74 33.4			10 2213.60
	12/10/2013	12:19					22				valve strat	0.0	2213.60
SW-50 Event 4	12/17/2013	8:08				34	33	<2	2	48 0.0		0.0 0.0	00 2213.60
SVV 30 EVEIL 4	12/17/2013	9:09				2.5	30	-		58 14.5		41.1 50.4	
	12/17/2013	9:10				32	31	10		58 20.5			00 2266.06
	12/17/2013	9:11	12/17/2013 9:11			35	33	11.5		58 24.4		22.5 2.5	
	12/17/2013	10:24	12/17/2013 3:11			35	32	13		63 27.4		91.5 216.3	
	12/17/2013	10:24				36	33			63 34.1		51.5 210.5 51.5 7.0	
								16					
	12/17/2013	11:24				38 37	32 32	16				90.9 227.	
	12/17/2013	12:10				5/	32	18	•	71 38.4		78.8 192.0	
	12/17/2013	12:11					21				Valve shut	38.4 4.4	40 2916.26
CIM FO Frant F	12/17/2013	12:12					21						2916.26
SW-50 Event 5	1/6/2014	13:11			7	25	22		,	F7 00		0.0	2916.26
	1/6/2014	13:13	1/6/2014 13:13			35 24	33	<2		57 0.0			00 2916.26
	1/6/2014	13:32					1.5	4.5		57 9.5		89.8 10.2	
	1/6/2014	13:34	1/6/2014 13:34				3.5	(57 12.7			54 2929.07
	1/6/2014	14:02	1/6/2014 14:02	55)	35	33	7.5		56 15.9	40	01.5 45.9	93 2975.00

					P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date		Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfn	n)	CO ₂ (scf)	(lb)	Mass (lb)
		1/6/2014	15:08	1/6/2014 15:08	55	3.	5 32.	5 9	.5	55	20.2	1192.8	136.	46 3111.46
		1/6/2014	16:07	1/6/2014 16:07	55	3.	5 3	1 10	.5	53	22.4	1256.4	143.	73 3255.19
		1/6/2014	16:09	1/6/2014 16:09	55	3.	5 3	3 :	.3	53	27.7	50.1	L 5.	73 3260.92
		1/6/2014	17:07	1/6/2014 17:07	54	3.	5 3	2 :	.4	49	30.0	1672.5	5 191.	34 3452.26
		1/6/2014	17:24	1/6/2014 17:24	56	3.	5 3	2 14	.5	48	31.1	518.7	7 59.	34 3511.60
		1/6/2014	17:26	1/6/2014 17:26	i						Valve shut	62.1	L 7.	11 3518.71
		1/6/2014	17:27	1/6/2014 17:27	,									3518.71
SW-50 Event 6		1/7/2014	7:40	1/7/2014 7:40						28				3518.71
		1/7/2014	7:42	1/7/2014 7:42	16	1	5 1	4	:2	28	0.0	(0.	00 3518.71
		1/7/2014	7:53	1/7/2014 7:53	16	1	5 1	5	:2	28	0.0	(0.	00 3518.71
		1/7/2014	9:28	1/7/2014 9:28	55	3	3	4 :	.6	40	35.6	1691.7	7 193.	53 3712.24
		1/7/2014	10:27	1/7/2014 10:27	50	3	3	3 :	.7	42	37.8	2164.6	5 247.	63 3959.87
		1/7/2014	11:28	1/7/2014 11:28	49	3	6 3	2 :	.8	44	39.1	2344.8	3 268.	25 4228.11
		1/7/2014	11:29	1/7/2014 11:29	49	3	33.	5 2	2	44	48.8	43.9	5.	03 4233.14
		1/7/2014	12:54	1/7/2014 12:54	48	3	33.	5 2	2	46	48.7	4140.7	473.	70 4706.84
		1/7/2014	12:55	1/7/2014 12:55							Valve shut	48.7	7 5.	57 4712.41
		1/7/2014	12:56	1/7/2014 12:56	i									4712.41
SW-50 Event 7		1/9/2014	8:40	1/9/2014 8:40	54	3.	5 33.	5 .	:2	54	0.0	0.0	0.	00 4712.41
		1/9/2014	8:55	1/9/2014 8:55	52	. 3	4 3	2 3	.5	55	7.4	55.3	6.	32 4718.73
		1/9/2014	8:58	1/9/2014 8:58	52	. 3			5	55	10.6	27.0) 3.	09 4721.82
		1/9/2014	10:19			3.	4 32.	5 6	.5		13.6	983.3	3 112.	49 4834.31
		1/9/2014	11:42	• •							16.6	1256.8		
		1/9/2014	11:44	• •							19.5	36.2		14 4982.23
		1/9/2014	12:52	• •							22.2	1417.9		
		1/9/2014	12:53				-		-		Valve shut	22.2		53 5146.98
		1/9/2014	12:54	• •			2	5						5146.98
SW-50 Event 8		1/13/2014	7:58			3			:2	48	0.0	0.0	0.	00 5146.98
		1/13/2014	7:59							48	0.0	0.0		00 5146.98
		1/13/2014	8:39								14.5	289.4		
		1/13/2014	8:40								17.9	16.2		85 5181.94
		1/13/2014	9:44								11.7	949.4		
		1/13/2014	9:46								23.2	34.9		99 5294.54
		1/13/2014	9:48								24.3	47.5		43 5299.98
		1/13/2014	11:02								25.0	1825.4		
		1/13/2014	12:02								27.0	1560.6		
		1/13/2014	12:04			3	2			.5	Valve shut	54.0		18 5693.51
SW-50 Event 9		1/15/2014	8:10			3			:2	50	0.0	0.0		00 5693.51
SVV 30 EVENUS		1/15/2014	8:12							50	0.0	0.0		00 5693.51
		1/15/2014	8:50								10.4	197.6		
		1/15/2014	8:52								14.7	25.1		87 5718.99
		1/15/2014	9:43								14.5	743.8		
		1/15/2014	11:14								16.8	1420.0		
		1/15/2014	11:15								22.8	19.8		26 5968.79
			12:11								22.8	1277.7		
		1/15/2014 1/15/2014	12:11			· 5	, 52.		.1	, 1	Valve shut	22.8		61 6117.56
		1/15/2014	12:12	• •			7	6			vaive Silut	22.0	, Δ.	6117.56
SW-50 Event 10		1/17/2014	7:20			5 27.			:2	40	0.0	0.0)	00 6117.56
344-30 EVEIL 10											0.0	0.0		00 6117.56
		1/17/2014	7:21							40		316.9		
		1/17/2014	8:02 8:03								15.5	18.8		
		1/17/2014									22.1			
		1/17/2014	9:12								22.9	1552.2		
		1/17/2014	9:13								27.3	25.1		87 6336.40
		1/17/2014	10:24	1/17/2014 10:24	. 47	' 3 [,]	4 32.	5	.3	62	27.2	1934.4	221.	30 6557.70

					P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	1	Time D	ate + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
		1/17/2014	11:31	1/17/2014 11:31	45	34	32	13.2	2 68	27.4	1829.4	209.29	6766.99
		1/17/2014	12:23	1/17/2014 12:23	45	34	32	13.9	70	28.8	1462.8	167.35	6934.33
		1/17/2014	12:55	1/17/2014 12:55	44	1 34	32	. 14	1 70	29.0	925.9	105.92	7040.26
		1/17/2014	12:56	1/17/2014 12:56						,	Valve shut 29.0	3.32	7043.58
SW-50 Event 11		1/21/2014	9:16	1/21/2014 9:16	47	7 32.5	34.5	<	2 62	0.0	0.0	0.00	7043.58
		1/21/2014	10:14	1/21/2014 10:14	40	30.5	33	4	1 66	8.0	232.6	26.61	7070.18
		1/21/2014	11:41	1/21/2014 11:41	38	30	32.5	4.5	5 70	8.9	737.6	84.38	7154.56
		1/21/2014	12:26	1/21/2014 12:26	44	1 30	32.5	4.8	3 70	9.5	415.5	47.54	7202.10
		1/21/2014	12:28	1/21/2014 12:28			26	i		,	Valve shut 19.1	2.18	7204.28
SW-50 Event 12		1/27/2014	12:27	1/27/2014 12:27									7204.28
		1/27/2014	12:30	1/27/2014 12:30	55	33	33.5	!	5 78	3 10.2	30.5	3.49	7207.77
		1/27/2014	12:55	1/27/2014 12:55	52	2 33	31.5	;	7 78	3 14.3	305.5	34.95	7242.72
		1/27/2014	12:57	1/27/2014 12:57	52	2 36	34	10) 78	3 21.0	35.3	4.03	7246.75
		1/27/2014	13:15	1/27/2014 13:15	50	36	34	10) 78	3 21.0	378.1	43.25	7290.01
		1/27/2014	14:48	1/27/2014 14:48	50	35.5	34	1:	L 79	23.0	2044.7	233.92	7523.93
		1/27/2014	15:44	1/27/2014 15:44	49	9 35	33.5	12	2 77	25.0	1342.4	153.58	7677.50
		1/27/2014	16:30	1/27/2014 16:30	52	2 35	33	12	2 77	25.0	1148.9	131.44	7808.94
		1/27/2014	16:31	1/27/2014 16:31							Valve shut 25.0	2.86	7811.80
		1/27/2014	16:32	1/27/2014 16:32			25						7811.80

Total CO₂ Mass (lbs):

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-51 Event 1	11/15/2013	14:16	11/15/2013 14:16	26	13	}		48.9	0.0			0
	11/15/2013	14:20	11/15/2013 14:20	30	30) 27	<2	2 48.5	0.0	0.0	0.00	0.00
	11/15/2013	14:22	11/15/2013 14:22	36	35	30	<	2 50	0.0	0.0	0.00	0.00
	11/15/2013	14:27	11/15/2013 14:27	34	33	30) 4.5	55.0	7.6	19.0	2.17	7 2.17
	11/15/2013	14:28	11/15/2013 14:28	39	37	34		59.9	10.5	9.1	1.04	3.21
	11/15/2013	14:44	11/15/2013 14:44	39	36.5	33.5	;	59.1	12.2	181.7	20.78	3 23.99
	11/15/2013	14:46	11/15/2013 14:46	41	. 38.5	35	5.8	5 59.1	15.1	27.3	3.12	2 27.11
	11/15/2013	15:16	11/15/2013 15:16	41	. 38.5	35	5	50.7	16.1	468.7	53.62	80.73
	11/15/2013	15:38	11/15/2013 15:38	41	. 38	34	9.5	50.2	17.0	364.1	41.65	122.38
	11/15/2013	15:53	11/15/2013 15:53	43	39	35	10.5	49.6	18.9	269.2	30.80	153.18
	11/15/2013	16:26	11/15/2013 16:26	42	39	35	10.75	48.5	19.4	632.7	7 72.38	3 225.57
	11/15/2013	16:57	11/15/2013 16:57	42	39	35	11	47.6	19.9	609.0	69.67	7 295.24
	11/15/2013	17:19	11/15/2013 17:19	42	39	35	11.25	47.4	20.3	442.4	50.61	L 345.84
	11/15/2013	17:25	11/15/2013 17:25						Valve shut	122.0	13.96	359.80
	11/15/2013	17:26	11/15/2013 17:26	28	28	3 22	1					359.80
SW-51 Event 2	12/4/2013	8:24	12/4/2013 8:24									359.80
	12/4/2013	8:25	12/4/2013 8:25	50	36	37	<	2 70	0.0	0.0	0.00	359.80
	12/4/2013	8:50	12/4/2013 8:50	50	36	36	; <2	2 74	0.0	0.0	0.00	359.80
	12/4/2013	9:14	12/4/2013 9:14	50	36	36	; <2	2 76	0.0	0.0	0.00	359.80
	12/4/2013	10:05	12/4/2013 10:05	49	36	35.5	;	78	8.4	214.3	3 24.51	l 384.31
	12/4/2013	10:10	12/4/2013 10:10	49	36	37	,	78	12.6	52.5	6.01	1 390.32
	12/4/2013	11:10			36	37	,	7 83	14.6	817.1	93.48	3 483.79
	12/4/2013	12:42			36	37	,		16.7	1439.5	164.68	648.47
	12/4/2013	12:43							Valve shut	16.7		
	12/4/2013	12:44	12/4/2013 12:44									650.38
SW-51 Event 3	12/9/2013	8:40			35	35.5	· <2	2 62	0.0	0.0	0.00	
	12/9/2013	9:20			35				0.0	0.0		
	12/9/2013	9:58			35					0.0		
	12/9/2013				35				0.0	0.0		
	12/9/2013				35					105.1		
	12/9/2013				34				8.2	447.2		
	12/9/2013	13:55			35				11.4	771.8		
	12/9/2013	14:20			35				11.4	284.3		
	12/9/2013				34				11.9	582.1		
	12/9/2013				34				12.3	278.7		
	12/9/2013		• •		34				12.3	197.2		
	12/9/2013	16:34	12/9/2013 16:34		34					556.2		
	12/9/2013	16:55			34			5 72	12.4	260.6		
	12/9/2013	17:37			33				12.9	531.8		
	12/9/2013		12/9/2013 22:13		35					3954.1		
	12/10/2013		12/10/2013 8:04		34					10476.1		
	12/10/2013	8:05			3 1	. 3	3	, , , , ,	Valve shut	19.7		
	12/10/2013	8:06				28	2		valve shat	13.7	2.20	2762.77
SW-51 Event 4	12/16/2013	8:22			37			2 48	0.0	0.0	0.00	
3VV-31 LVEIIL 4	12/16/2013	8:48			36				7.6	98.3		
	12/16/2013	8:49			37			5 50 I 50	8.7	8.1		
	12/16/2013	10:06			38			i 50 I 48	8.8	675.9		
					37				8.8 8.6	487.6		
	12/16/2013	11:02			37			1 66 5 67	8.6 10.7			
	12/16/2013	13:10			37	34		, 6/		1235.7		
	12/16/2013	13:11				20			Valve shut	10.7	1.23	
	12/16/2013	13:12			25	29		60	22.1 Dootout	2055	7 225.45	3050.65
	12/16/2013	14:41	12/16/2013 14:41		35					2055.7		
	12/16/2013	15:34	12/16/2013 15:34	45	35	5 34		8 68	16.8	1057.2	2 120.95	3406.76

Dool to Moston	Data	Time	Data : Time	P at Reducer	P at Panel	P at Well	Rotameter Reading (scfm)	Town (°F)	-	low (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
Back to Master	Date 12/16/2013	16:31	Date + Time 12/16/2013 16:31	(psig) 40	(psig) 35	(psi)		Temp (°F)	64	15.8	929.3		
	12/16/2013	17:20	12/16/2013 17:20					.5 .5	60	16.0	780.2		
	12/16/2013	22:12	12/16/2013 17:20		38			.0	46	22.1	5570.7		
-	12/17/2013	7:52	12/17/2013 7:52		36			12	46	26.0	13962.1		
	12/17/2013	7:54	12/17/2013 7:54		30	3.	•	12	40	Valve shut	52.1		
	12/17/2013	7:55	12/17/2013 7:55			26				valve strut	32.1	5.93	5842.85
SW-51 Event 5	1/10/2014	12:44	1/10/2014 12:44		34			<2	72	0.0			5842.85
3W-31 EVEILES	1/10/2014	14:30	1/10/2014 12:44					<2	70	0.0			5842.85
	1/10/2014	16:27	1/10/2014 14:30					2	71	4.1	237.3	3 27.15	
	1/10/2014	16:28	1/10/2014 16:28					1	71	8.2	6.2		
	1/10/2014	17:46	1/10/2014 10:28		33.5			.5	68	7.2	603.7		
	1/10/2014	22:06	1/10/2014 17:46		33.5			.5 .2		8.7	2071.6		
	1/11/2014	11:44	1/11/2014 11:44					.z 7	66 74	14.3	9411.3		
			1/11/2014 11:44		33	30)	/	/4				
	1/11/2014 1/11/2014	11:45 11:47	1/11/2014 11:45			30	1			Valve shut	14.3	3 1.64	7255.06 7255.06
SW-51 Event 6			1/11/2014 11.4/		34			<2	62	0.0	0.0	0.00	
200-21 EVEIII 0	1/14/2014 1/14/2014	8:04 8:56	1/14/2014 8:56		33			<2	62 62	0.0	0.0		
								.5		7.2			
	1/14/2014	10:02	1/14/2014 10:02		33				64		238.5		
	1/14/2014	11:28	1/14/2014 11:28					.9	64	8.0	655.1		
	1/14/2014	13:13	1/14/2014 13:13		32			5	69	10.2	954.0		
	1/14/2014	15:43	1/14/2014 15:43		31.5			6	72	12.1	1669.1		
	1/14/2014	16:30	1/14/2014 16:30		31.5			.2	72	12.5	577.8		
C)A/ E4 E	1/14/2014	16:31	1/14/2014 16:31		22	29		.2	4.0	Valve shut	12.5		
SW-51 Event 7	1/16/2014	8:12	1/16/2014 8:12					<2	46	0.0	0.0		
	1/16/2014	8:16	1/16/2014 8:16		33			<2	48	0.0	0.0		
	1/16/2014	9:08	1/16/2014 9:08					2	50	4.1	106.5		
	1/16/2014	9:09	1/16/2014 9:09		33			4	50	8.4	6.2		
	1/16/2014	10:22	1/16/2014 10:22		33			5	55	10.4	685.9		
	1/16/2014	11:23	1/16/2014 11:23		33			5	57	10.4	634.7		
	1/16/2014	13:11	1/16/2014 13:11		32			.9	58	12.1	1216.0		
	1/16/2014	14:50	1/16/2014 14:50					7	58	14.3	1308.1		
	1/16/2014	15:52	1/16/2014 15:52		31.5			.2	58	14.7	899.5		
	1/16/2014	16:13	1/16/2014 16:13		31	33	,	.5	58	15.2	314.5		
CM F4 F I O	1/16/2014	16:15	1/16/2014 16:15							Valve shut	30.5	3.49	
SW-51 Event 8	1/28/2014	7:31	1/28/2014 7:31		26	24.5		.2		0.0	0.0	0.00	8320.00
	1/28/2014	7:32	1/28/2014 7:32					<2	57	0.0	0.0		
	1/28/2014	7:36	1/28/2014 7:36		36			<2	57	0.0	0.0		
	1/28/2014	8:09	1/28/2014 8:09		35			<2	57	0.0	0.0		
	1/28/2014	8:31	1/28/2014 8:31		35			<2	57	0.0	0.0		
	1/28/2014	10:05	1/28/2014 10:05		35			2	57	4.2	199.6		
	1/28/2014	11:10	1/28/2014 11:10		34			3	55	6.3	343.3		
	1/28/2014	11:11	1/28/2014 11:11		36			4	55	8.6	7.5		
	1/28/2014	11:42	1/28/2014 11:42		36			4	54	8.6	266.6		
	1/28/2014	13:02	1/28/2014 13:02		36			4	54	8.6	688.3		
	1/28/2014	14:03	1/28/2014 14:03					.5	53	9.7	558.0		
	1/28/2014	14:58	1/28/2014 14:58		36			5	52	10.8	562.8		
	1/28/2014	15:36	1/28/2014 15:36		36	35		5	50	10.8	410.0		
	1/28/2014	15:37	1/28/2014 15:37							Valve shut	10.8	3 1.24	
	1/28/2014	15:38	1/28/2014 15:38			28	3						8668.55
SW-51 Event 9	1/29/2014	7:50	1/29/2014 7:50										8668.55
	1/29/2014	8:01	1/29/2014 8:01										8668.55
	1/29/2014	8:02	1/29/2014 8:02			35.5	;	<2	42	0.0	0.0		
	1/29/2014	8:57	1/29/2014 8:57	50	36	35	5	4	42	8.7	239.6	5 27.41	1 8695.95

Back to Master	Date	т:	ime	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)		_	Cumulative Mass (lb)
Back to Master	Date	1/29/2014	10:22	1/29/2014 10:22							780.4	89.28	
		1/29/2014	11:49	1/29/2014 11:49							839.7	96.06	
		1/29/2014	12:12	1/29/2014 12:12							222.0	25.39	
		1/29/2014	12:13	1/29/2014 12:13		31.3				Valve shut	9.7	1.10	
		1/29/2014	12:14	1/29/2014 12:14			25.5			varve strate	3.7	1.10	8907.79
SW-51 Event 10		2/3/2014	8:25	2/3/2014 8:25		. 34			2 6	8 0.0	0.0	0.00	
<u> </u>		2/3/2014	8:56	2/3/2014 8:56							0.0	0.00	
		2/3/2014	9:20	2/3/2014 9:20							0.0	0.00	
		2/3/2014	10:23	2/3/2014 10:23							0.0	0.00	
		2/3/2014	10:27	2/3/2014 10:27					2 8		8.2	0.94	
		2/3/2014	12:09	2/3/2014 12:09					3 8		521.4	59.65	
		2/3/2014	13:26	2/3/2014 13:26							535.3	61.23	
		2/3/2014	14:26	2/3/2014 14:26							491.3	56.21	
		2/3/2014	15:32	2/3/2014 15:32							608.6	69.63	
		2/3/2014	17:01	2/3/2014 17:01					5 8		986.4	112.84	
		2/4/2014	9:50	2/4/2014 9:50		32.5	35		9 6		15569.5	1781.16	11049.44
		2/4/2014	9:53	2/4/2014 9:53			30			Valve shut	55.6		
SW-51 Event 11		2/5/2014	8:28	2/5/2014 8:28	50	30.5	29.5	15.	5 6	6 31.1			11055.80
		2/5/2014	8:29	2/5/2014 8:29	50	33	33	17.	2 6	6 35.4	33.3	3.80	11059.60
		2/5/2014	8:30	2/5/2014 8:30	50	34	33.5	1	3 6	6 37.5	36.5	4.17	11063.77
		2/5/2014	9:01	2/5/2014 9:01	46	35	35	16.	2 6	7 34.0	1108.7	126.84	11190.61
		2/5/2014	10:35	2/5/2014 10:35	44	. 35	35	14.	5 7	0 30.4	3028.5	346.46	11537.07
		2/5/2014	11:37	2/5/2014 11:37	44	. 36	35.5	14.	2 7	5 29.9	1869.3	213.85	11750.92
		2/5/2014	12:47	2/5/2014 12:47	44	. 36	35.5	1	1 7	7 29.4	2077.3	237.64	11988.56
		2/5/2014	13:45	2/5/2014 13:45	46	36	35.5	13.	3 8	2 28.9	1691.0	193.45	12182.02
		2/5/2014	14:56	2/5/2014 14:56	46	36	35.5	13.	3 8	3 28.8	2049.2	234.43	12416.45
		2/5/2014	15:49	2/5/2014 15:49	46	36	35.5	13.	3 7	8 29.0	1532.6	175.33	12591.78
		2/5/2014	17:14	2/5/2014 17:14	50	36	35.5	13.	5 8	0 28.3	2434.8	278.54	12870.32
		2/5/2014	21:26	2/5/2014 21:26	49	36	35.5	1	1 6	3 29.8	7326.4	838.14	13708.46
		2/6/2014	8:17	2/6/2014 8:17	52	36	35.5	15.	3 4	8 34.2	20844.8	2384.65	16093.11
		2/6/2014	8:19	2/6/2014 8:19			32			Valve shut	68.4	7.82	16100.93
SW-51 Event 12		2/7/2014	7:52	2/7/2014 7:52	48	29	28	17.	3 4	9 35.7			16100.93
		2/7/2014	7:54	2/7/2014 7:54	48	33	32.5	2	2 4	9 46.1	81.8	9.36	16110.29
		2/7/2014	9:15	2/7/2014 9:15	44	. 34	33.5	1	3 5	6 37.9	3400.7	389.04	16499.33
		2/7/2014	11:32	2/7/2014 11:32	42	34.5	34	16.	3 6	0 34.3	4944.3	565.63	17064.96
		2/7/2014	13:19	2/7/2014 13:19	42	34.5	34.5	15.	3 6	3 32.1	3554.7	406.65	17471.61
		2/7/2014	13:20	2/7/2014 13:20			34.5			Valve shut	32.1	3.67	17475.29
Note: a red value	. i.e. 75 °	F. indicates tha	at value was	interpolated from field o	lata						Total CO ₂ Mass (lbs):		17475.29

Total CO₂ Mass (lbs):

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master			Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	• • •	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-52 Event 1	11/18/2013	10:20						37.4				
	11/18/2013	10:23	11/18/2013 10:23						0.0	0.0		
	11/18/2013	10:25	11/18/2013 10:25							0.0		
	11/18/2013	10:31	11/18/2013 10:31						0.0	0.0		
	11/18/2013	10:39	11/18/2013 10:39					. 32.3	6.9	27.7		
	11/18/2013	11:34	11/18/2013 11:34						9.1	440.3		
	11/18/2013	11:35	11/18/2013 11:35						11.5	10.3		
	11/18/2013	12:07	11/18/2013 12:07							367.7		
	11/18/2013	12:57	11/18/2013 12:57							586.0		
	11/18/2013	13:21	11/18/2013 13:21					33	12.4	292.6		
	11/18/2013	13:23	11/18/2013 13:23						14.9	27.3		
	11/18/2013	14:36			3 40) 37	8.25	51.6		1090.7		
	11/18/2013	14:38							Valve shut	30.0	3.43	
	11/18/2013	14:39	• •		3 29	9 24						328.61
	11/18/2013	14:40										328.61
SW-52 Event 2	12/4/2013	12:39	12/4/2013 12:39						0.0			328.61
	12/4/2013	13:09	12/4/2013 13:09						0.0	0.0		
	12/4/2013	13:48								0.0		
	12/4/2013	14:46							5.2	152.0		
	12/4/2013	15:53	12/4/2013 15:53						7.3	421.2		
	12/4/2013	17:32	• •		1 35	34.5	4	1 69	8.4	778.2		
	12/4/2013	17:34	12/4/2013 17:34						Valve shut	16.8	1.92	
	12/4/2013	17:35	12/4/2013 17:35			27.5						485.13
SW-52 Event 3	12/5/2013	7:54	12/5/2013 7:54									485.13
	12/5/2013	8:19	12/5/2013 8:19		36	35.5	<2	2 68	0.0			485.13
	12/5/2013	8:25	12/5/2013 8:25						Valve shut			485.13
	12/5/2013	8:27	12/5/2013 8:27						Restart			485.13
	12/5/2013	8:30										485.13
	12/5/2013	9:08										485.13
	12/5/2013	10:12	12/5/2013 10:12						0.0			485.13
	12/5/2013	11:27	12/5/2013 11:27						4.2	156.5		
	12/5/2013	14:13	12/5/2013 14:13						7.3	951.3		
	12/5/2013	15:18						1 86	8.3	505.1		
	12/5/2013	16:28	· ·					82	8.3	578.9		
	12/5/2013	17:50						1 70	8.4	683.4		
	12/5/2013	21:59						68	10.5	2350.7		
	12/6/2013	7:03	12/6/2013 7:03					66	12.6	6289.2		
	12/6/2013	9:26							12.5	1795.5		
	12/6/2013	9:27	12/6/2013 9:27						17.9	15.2		
	12/6/2013	10:36							15.7	1157.0		
	12/6/2013	11:31	12/6/2013 11:31						15.6	860.7		
	12/6/2013	13:46						88	16.6	2178.8		
	12/6/2013	14:27	12/6/2013 14:27					86		683.1		
	12/6/2013	15:25						80	16.8	970.0		
	12/6/2013	17:17	12/6/2013 17:17		38	35		3 74		1902.7		
	12/6/2013	17:19				e =			Valve shut	34.4	3.94	
014/ 52 5	12/6/2013	17:20				29						2900.39
SW-52 Event 4	12/10/2013	13:01	12/10/2013 13:01									2900.39
	12/10/2013	13:57	12/10/2013 13:57									2900.39
	12/10/2013	14:25	12/10/2013 14:25									2900.39
	12/10/2013	15:01	12/10/2013 15:01						0.0			2900.39
	12/10/2013	15:02										2900.39
	12/10/2013	15:36	12/10/2013 15:36	50	35	33.5	<2	2 74	0.0			2900.39

12/17/2013 13:15 12/17/2013 13:15 50 30 28 <2 73 0.0 0.0 12/17/2013 13:16 12/17/2013 13:16 50 31 33 <2 74 0.0 0.0 12/17/2013 14:28 12/17/2013 14:18 45 31 33 <2 74 0.0 0.0 12/17/2013 14:20 12/17/2013 14:20 45 33 34 <2 74 0.0 0.0 12/17/2013 14:20 12/17/2013 16:20 45 33 34 <2 74 0.0 0.0 12/17/2013 16:43 12/17/2013 16:43 45 34 34 <2 69 0.0 0.0 12/17/2013 26:46 12/17/2013 22:16 45 34 34 <2 54 0.0 0.0 12/17/2013 9:05 12/18/2013 9:05 50 32 34 3 59 6.2 1998.2 22 12/18/2013 14:28 12/18/2013 12:28 50 32 34 4 59 8.2 16:03 3 18 12/18/2013 14:28 12/18/2013 12:28 50 32 33 5 68 10.2 99.9 91 12/18/2013 16:84 12/18/2013 18:01 55 32 33 5 68 10.2 99.9 91 12/18/2013 18:01 12/18/2013 18:01 55 32 33 5 55 64 11.2 1498.4 17 12/18/2013 18:02 12/18/2013 18:02 72/18/2013 18:02 72/18/2013 18:02 72/18/2013 18:02 72/18/2013 18:02 72/18/2013 18:02 72/18/2013 18:02 72/18/2013 18:02 72/18/2013 18:02 72/18/2013 18:03 72/18/201	Cumulative
12/10/2003	Mass (lb) 2900.39
12/10/2013	2900.39
1711/2013	
12/11/2013 12/25 12/11/2013 12/25 12/11/2013 12/25 12/11/2013 12/25 12/11/2013 12/25 12/11/2013 12/25	
12/11/2013 14:40 12/11/201314:40 50 34 32 55 66 10.6 1332.8 15	
12/11/2013 17/47 12/11/2013 17/47 15/5 34 32 7 60 11-5 11-5 15/5 34 32 7 60 14-7 34-312 39 12/11/2013 7-45 12/11/2013 7-45 12/11/2013 7-45 12/11/2013 7-45 12/11/2013 7-45 12/11/2013 7-45 12/11/2013 7-45 12/11/2013 7-45 12/11/2013 7-45 12/11/2013 7-45 12/11/2013 7-45 12/11/2013 7-45 12/11/2013 12-23 12/11/2013 12-23 12/11/2013 12-23 12/11/2013 12-23 12/11/2013 12-23 12/11/2013 12-15 50 30 28 -2 73 0.0 0.0 0.0 12/11/2013 13-15 12/11/2013 13-15 50 30 28 -2 73 0.0 0.0 0.0 12/11/2013 13-15 12/11/2013 13-16 50 31 33 -2 7-4 0.0 0.0 0.0 12/11/2013 14-18 12/11/2013 14-16 45 31 33 -2 7-4 0.0 0.0 0.0 12/11/2013 14-18 12/11/2013 14-20 4-5 33 34 -2 7-4 0.0 0.0 0.0 12/11/2013 14-20 12/11/2013 13-22 45 32 34 -2 7-2 0.0 0.0 0.0 12/11/2013 14-20 12/11/2013 13-23 4-5 34 34 -2 69 0.0 0.0 0.0 12/11/2013 12-22 12/11/2013 15-23 12/11/2013 15-23 34 34 -2 69 0.0 0.0 0.0 12/11/2013 12-24 12/11/2013 12-25 12/11/2	
12/11/2013 22:10 12/11/2013 22:10 55 34 32 7 60 14.7 3443.2 33 12/11/2013 22:10 12/11/2013 22:10 12/11/2013 22:10 12/11/2013 22:10 12/11/2013 22:10 12/11/2013 22:10 12/11/2013 22:10 12/11/2013 22:10 12/11/2013 22:10 12/11/2013 22:10 12/11/2013 23:15 12/11/2013 23:15 12/11/2013 23:15 12/11/2013 23:15 12/11/2013 23:15 12/11/2013 23:15 12/11/2013 23:15 12/11/2013 23:15 12/11/2013 23:15 12/11/2013 23:15 12/11/2013 23:15 12/11/2013 23:15 12/11/2013 24:12 45 33 34 -2 74 0.0 0.0 0.0 12/11/2013 14:20 12/11/2013 24:20 45 33 34 -2 74 0.0 0.0 0.0 12/11/2013 14:20 12/11/2013 15:32 45 32 34 -2 72 0.0 0.0 0.0 12/11/2013 24:20 12/11/2013 24:20 45 34 34 -2 54 0.0 0.0 0.0 12/11/2013 24:20 12/11/2013 24:20 45 34 34 -2 54 0.0 0.0 0.0 12/11/2013 24:20 12/11/2013 24:20 50 32 34 3 59 6.2 1998.2 21/11/2013 12:49 12/11/2013 14:28 12/11/2013 14:28 12/11/2013 14:28 12/11/2013 14:28 12/11/2013 14:28 12/11/2013 14:28 12/11/2013 14:28 12/11/2013 14:28 12/11/2013 14:28 12/11/2013 14:28 12/11/2013 14:28 12/11/2013 14:28 12/11/2013 14:28 12/11/2013 14:28 12/11/2013 18:01 12	
1/11/2013 7-45 12/11/2013 8-56 24	
12/12/2013 8.56 12/12/2013 8:56 2/1 Valve shut 1338.0 15 20 20 20 20 20 20 20 2	
SW-52 Event 5 12/17/2013 12:23 12/17/2013 12:23 48 32 33.5 <2 71 0.0 0.0 12/17/2013 13:15 12/17/2013 13:15 50 30 28 <2 73 0.0 0.0 12/17/2013 13:16 12/17/2013 13:16 50 31 33 <2 74 0.0 0.0 12/17/2013 14:18 12/17/2013 14:18 45 31 33 <2 74 0.0 0.0 12/17/2013 14:18 12/17/2013 14:20 12/17/2013 14:20 12/17/2013 14:20 12/17/2013 14:20 12/17/2013 14:20 12/17/2013 15:32 45 32 34 <2 72 0.0 0.0 12/17/2013 15:32 12/17/2013 15:32 45 32 34 <2 72 0.0 0.0 12/17/2013 15:32 12/17/2013 15:32 45 32 34 <2 69 0.0 0.0 12/17/2013 12:49 12/18/2013 12:49 52 32 34 3 59 6.2 1998.2 22 12/18/2013 12:49 12/18/2013 12:49 52 32 34 4 59 8.2 1609.3 18 12/18/2013 14:28 12/18/2013 12:49 52 32 33 5 68 10.2 90.99 10 12/18/2013 14:28 12/18/2013 16:48 88 32 33.5 5 56 10.2 90.99 10 12/18/2013 18:01 12/18/2013 18:01 55 32 33 6 53 12.4 862.3 9 12/18/2013 18:01 12/18/2013 18:05 28	
12/17/2013	
12/17/2013	00 6063.87
12/17/2013	00 6063.87
12/17/2013 14:20 12/17/2013 14:20 45 33 34 4 2 74 0.0 0.0 12/17/2013 15:32 12/17/2013 15:32 45 32 34 4 2 72 0.0 0.0 0.0 12/17/2013 15:43 12/17/2013 16:43 12/17/2013 16:43 45 34 34 4 2 69 0.0 0.0 0.0 12/17/2013 12:16 12/117/2013 12:16 45 34 34 4 2 54 0.0 0.0 0.0 12/17/2013 12:16 12/117/2013 12:16 45 34 34 4 59 6.2 1998.2 22 12/18/2013 12:49 12/18/2013 12:49 52 32 34 4 59 8.2 16:09.3 18 12/18/2013 12:48 12/18/2013 12:48 50 32 33 5 68 10.2 90.99 10 12/18/2013 16:48 12/18/2013 16:48 48 32 33.5 5.5 64 11.2 1498.4 17 12/18/2013 18:01 12/18/2013 18:02 12	00 6063.87
12/17/2013 15:32 12/17/2013 15:32 45 32 34 <2 72 0.0 0.0 1.0	00 6063.87
12/17/2013 16:43 12/17/2013 16:43 45 34 34 <2 69 0.0 0.0 1.0	00 6063.87
12/17/2013 22:16 12/17/2013 22:16 45 34 34 4 4 5 5 4 0.0 0.0 12/18/2013 9:05 12/18/2013 9:05 50 32 34 3 59 6:2 1998.2 22 12/18/2013 12:49 12/18/2013 12:49 12/18/2013 12:49 12/18/2013 14:28 12/18/2013 14:28 12/18/2013 14:28 12/18/2013 16:48 12/18/2013 16:48 12/18/2013 16:48 12/18/2013 16:48 12/18/2013 16:48 12/18/2013 16:49 12/18/2013 16:49 12/18/2013 16:49 12/18/2013 16:49 12/18/2013 18:01 12/18/2013 18:01 12/18/2013 18:01 12/18/2013 18:02 18/12/14 18:03 18/12/14	00 6063.87
12/18/2013 9:05 12/18/2013 9:05 50 32 34 3 59 6.2 1998.2 22 22 12/18/2013 12:49 12/18/2013 12:49 52 32 34 4 59 8.2 1609.3 18 12/18/2013 14:28 12/18/2013 14:28 50 32 33 5 68 10.2 909.9 10 12/18/2013 16:48 12/18/2013 16:48 48 32 33.5 5.5 64 11.2 1498.4 17 12/18/2013 18:01 12/18/2013 18:02 5 32 33 5 5 64 11.2 1498.4 17 12/18/2013 18:01 12/18/2013 18:02 28 Valve shut 12.4 12/18/2013 18:02 12/18/2013 18:02 12/18/2013 18:02 12/18/2013 18:02 12/18/2013 18:02 12/18/2013 18:02 12/18/2013 18:02 12/18/2013 18:02 12/18/2013 18:02 12/18/2013 18:02 12/18/2013 18:02 12/18/2013 18:02 12/18/2013 18:02 12/18/2013 18:02 12/18/2013 18:02 12/18/2014 18:03 13/18/2014 19:00 51 35 34 42 39 0.0 0.0 0.0 18/2014 9:05 1/18/2014 9:00 51 35 34 42 39 0.0 0.0 0.0 18/2014 9:05 1/18/2014 10:48 46 35 33.5 42 39 0.0 0.0 0.0 0.0 18/2014 12:03 18/2014 10:48 46 35 33.5 42 52 0.0	00 6063.87
12/18/2013 12:49 12/18/2013 12:49 52 32 34 4 59 8.2 1609.3 18 12/18/2013 14:28 12/18/2013 14:28 50 32 33 5 56 10.2 909.9 10 12/18/2013 16:48 12/18/2013 16:48 48 32 33.5 5.5 64 11.2 1498.4 11.2 1498.4 17.2 12/18/2013 18:01 12/18/2013 18:01 12/18/2013 18:02 18/2014 19:00 51 35 34 <2 39 0.0 0	00 6063.87
12/18/2013	
12/18/2013 16:48 12/18/2013 16:48 48 32 33.5 5.5 64 11.2 1498.4 17 12/18/2013 18:01 12/18/2013 18:01 12/18/2013 18:02 28 Valve shut 12.4	
12/18/2013 18:01 12/18/2013 18:01 55 32 33 6 53 12.4 862.3 9	
12/18/2013 18:02 12/18/2013 18:02 28	
SW-52 Event 6	64 6850.72
1/8/2014 9:00 1/8/2014 9:00 51 35 34 <2 39 0.0 0.0 1/8/2014 9:55 1/8/2014 9:55 47 35 34 <2 48 0.0 0.0 1/8/2014 10:48 1/8/2014 10:48 46 35 33.5 <2 52 0.0 0.0 1/8/2014 12:03 1/8/2014 12:03 45 34 33 <2 60 0.0 0.0 1/8/2014 13:20 1/8/2014 13:20 52 34 33 <2 58 0.0 0.0 1/8/2014 14:25 1/8/2014 14:25 50 34 33 <2 56 0.0 0.0 1/8/2014 16:25 1/8/2014 16:25 50 34 33 <2 56 0.0 0.0 1/8/2014 16:25 1/8/2014 16:25 50 34 33 <2 53 0.0 0.0 1/8/2014 21:10 1/8/2014 21:10 55 32.5 32 <2 50 0.0 0.0 1/8/2014 21:11 1/8/2014 21:11 55 34 33.5 4.5 50 9.5 4.8 1/9/2014 7:09 1/9/2014 8:24 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:27 1/9/2014 8:27 1/9/2014 8:27 SW-52 Event 7 1/13/2014 7:50 1/13/2014 7:50 55 31 32.5 4.5 48 9.2 0.0 1/13/2014 7:51 1/13/2014 7:52 55 32 34 5 48 12.2 10.7 1/13/2014 8:42 1/13/2014 7:55 55 32 34 5 48 10.4 11.3 1/13/2014 8:42 1/13/2014 8:42 47 32 34.2 5 52 10.3 517.8 5 1/13/2014 9:43 1/13/2014 9:43 45 32 34.2 5 50 10.3 628.0 7	42 6852.14
1/8/2014 9:55 1/8/2014 9:55 47 35 34 <2 48 0.0 0.0 1.0 1/8/2014 10:48 1/8/2014 10:48 46 35 33.5 <2 52 0.0 0.0 0.0 1/8/2014 12:03 1/8/2014 12:03 45 34 33 <2 60 0.0 0.0 1.8/2014 12:03 1/8/2014 13:20 52 34 33 <2 58 0.0 0.0 1.8/2014 14:25 1/8/2014 14:25 50 34 33 <2 58 0.0 0.0 1/8/2014 14:25 1/8/2014 14:25 50 34 33 <2 56 0.0 0.0 1/8/2014 16:25 1/8/2014 16:25 50 34 33 <2 56 0.0 0.0 0.0 1/8/2014 16:25 1/8/2014 16:25 50 34 33 <2 50 0.0 0.0 0.0 1/8/2014 16:25 1/8/2014 16:25 50 34 33 <2 50 0.0 0.0 0.0 1/8/2014 16:25 1/8/2014 16:25 50 34 33 <2 50 0.0 0.0 0.0 1/8/2014 11 1/8/2014 21:10 55 32.5 32 <2 50 0.0 0.0 0.0 1/8/2014 11 1/8/2014 21:11 55 34 33.5 4.5 50 9.5 4.8 1/9/2014 16:24 1/9/2014 16:25 34 33.5 55 54 10.5 5997.8 68 1/9/2014 8:24 1/9/2014 8:24 52 33 34.5 5 5 54 10.4 786.1 8 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:27 1/9/2	00 6852.14
1/8/2014 10:48 1/8/2014 10:48 46 35 33.5 <2 52 0.0 0.0 1/8/2014 12:03 1/8/2014 12:03 45 34 33 <2 60 0.0 0.0 1/8/2014 13:20 1/8/2014 13:20 52 34 33 <2 58 0.0 0.0 1/8/2014 14:25 1/8/2014 14:25 50 34 33 <2 56 0.0 0.0 1/8/2014 14:25 1/8/2014 16:25 50 34 33 <2 53 0.0 0.0 1/8/2014 21:10 1/8/2014 16:25 50 34 33 <2 53 0.0 0.0 1/8/2014 21:11 1/8/2014 21:10 55 32.5 32 <2 50 0.0 0.0 1/8/2014 21:11 1/8/2014 21:11 55 34 33.5 4.5 50 9.5 4.8 1/9/2014 7:09 1/9/2014 7:09 54 34 34 5 54 10.5 5997.8 68 1/9/2014 8:24 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:27 1/9/2014 8:27 29.5 SW-52 Event 7 1/13/2014 7:50 1/13/2014 7:50 55 31 32.5 4.5 48 9.2 0.0 1/13/2014 7:52 1/13/2014 7:55 55 32 34 5 48 12.2 10.7 1/13/2014 7:52 1/13/2014 7:52 55 32 34 5 48 10.4 11.3 1/13/2014 8:42 1/13/2014 8:42 47 32 34.2 5 52 10.3 517.8 5 1/13/2014 9:43 1/13/2014 9:43 45 32 34.2 5 50 10.3 628.0 7	00 6852.14
1/8/2014 12:03 1/8/2014 12:03 45 34 33 <2 60 0.0 0.0 0.0 1/8/2014 13:20 52 34 33 <2 58 0.0 0.0 1.0 1/8/2014 13:20 52 34 33 <2 58 0.0 0.0 0.0 1/8/2014 14:25 1/8/2014 14:25 50 34 33 42 56 0.0 0.0 1.0 1/8/2014 16:25 1/8/2014 16:25 50 34 33 42 56 0.0 0.0 1.0 1/8/2014 21:10 1/8/2014 21:10 55 32.5 32 42 50 0.0 0.0 1.0 1/8/2014 21:11 1/8/2014 21:11 55 34 33.5 4.5 50 9.5 4.8 1/9/2014 7:09 1/9/2014 7:09 54 34 34 34 5 54 10.5 5997.8 68 1/9/2014 8:24 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:27 1/9/2014 8:29 1/9/20	00 6852.14
1/8/2014 13:20 1/8/2014 13:20 52 34 33 <2 58 0.0 0.0 0.0 1/8/2014 14:25 1/8/2014 14:25 50 34 33 <2 56 0.0 0.0 1/8/2014 16:25 1/8/2014 16:25 50 34 33 <2 56 0.0 0.0 0.0 1/8/2014 16:25 1/8/2014 21:10 55 32.5 32 <2 50 0.0 0.0 0.0 1/8/2014 21:11 1/8/2014 21:11 55 34 33.5 4.5 50 9.5 4.8 1/9/2014 7:09 1/9/2014 7:09 54 34 34 5 54 10.5 5997.8 68 1/9/2014 8:24 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:27	00 6852.14
1/8/2014 14:25 1/8/2014 14:25 50 34 33 <2 56 0.0 0.0 1.8/2014 14:25 1/8/2014 16:25 50 34 33 <2 53 0.0 0.0 1.8/2014 16:25 1/8/2014 16:25 50 34 33 <2 53 0.0 0.0 0.0 1.8/2014 21:10 1/8/2014 21:10 55 32.5 32 <2 50 0.0 0.0 0.0 1/8/2014 21:11 1/8/2014 21:11 55 34 33.5 4.5 50 9.5 4.8 1/9/2014 7:09 1/9/2014 7:09 54 34 34 34 5 54 10.5 5997.8 68 1/9/2014 8:24 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:27 1/9/2014 7:50 55 31 32.5 4.5 48 9.2 0.0 1/13/2014 7:51 1/13/2014 7:51 55 33 32 5.8 48 12.2 10.7 1/13/2014 7:52 1/13/2014 7:52 55 32 34 5 48 10.4 11.3 1/13/2014 8:42 1/13/2014 8:42 1/13/2014 8:42 1/13/2014 8:42 1/13/2014 8:42 1/13/2014 8:42 1/13/2014 8:42 1/13/2014 8:42 1/13/2014 8:42 1/13/2014 8:42 1/13/2014 8:42 1/13/2014 8:42 1/13/2014 8:42 1/13/2014 8:42 1/13/2014 8:42 1/13/2014 8:42 1/13/2014 8:45 32 34.2 5 60 10.3 628.0 7	00 6852.14
1/8/2014 16:25 1/8/2014 16:25 50 34 33 <2 53 0.0 0.0 0.0 1/8/2014 21:10 1/8/2014 21:10 55 32.5 32 <2 50 0.0 0.0 0.0 1/8/2014 21:11 1/8/2014 21:11 55 34 33.5 4.5 50 9.5 4.8 1/9/2014 7:09 1/9/2014 7:09 54 34 34 34 5 54 10.5 5997.8 68 1/9/2014 8:24 1/9/2014 8:25 51/9/2014 8:25 51/9/2014 8:25 51/9/2014 8:25 51/9/2014 8:27 51/9/2014 8:27 51/9/2014 8:27 51/9/2014 8:27 51/9/2014 8:27 55 31 32.5 4.5 48 9.2 0.0 55 31 32.5 4.5 48 9.2 0.0 55 31 32.5 4.5 48 9.2 10.7 1/13/2014 7:51 1/13/2014 7:52 1/13/2014 7:52 55 32 34 5 48 12.2 10.7 1/13/2014 7:52 1/13/2014 7:52 55 32 34 5 48 10.4 11.3 1/13/2014 8:42 1/13/2014 8:42 47 32 34.2 5 55 52 10.3 517.8 5 1/13/2014 9:43 1/13/2014 9:43 45 32 34.2 5 60 10.3 628.0 7	00 6852.14
1/8/2014 21:10 1/8/2014 21:10 55 32.5 32 <2 50 0.0 0.0 0.0 1/8/2014 21:11 1/8/2014 21:11 55 34 33.5 4.5 50 9.5 4.8 1/9/2014 7:09 1/9/2014 7:09 54 34 34 5 54 10.5 5997.8 68 1/9/2014 8:24 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:25 1/9/2014 8:27 1/9/2014 8:29 1/9/2014 8:2	00 6852.14
1/8/2014 21:11 1/8/2014 21:11 55 34 33.5 4.5 50 9.5 4.8 1/9/2014 7:09 1/9/2014 7:09 54 34 34 5 54 10.5 5997.8 68 1/9/2014 8:24 1/9/2014 8:24 52 33 34.5 5 54 10.4 786.1 8 1/9/2014 8:25 1/9/2014 8:25 Valve shut 10.4 786.1 8 1/9/2014 8:27 1/9/2014 8:27 29.5 Valve shut 10.4 SW-52 Event 7 1/13/2014 7:50 1/13/2014 7:50 55 31 32.5 4.5 48 9.2 0.0 1/13/2014 7:51 1/13/2014 7:51 55 33 32 5.8 48 12.2 10.7 1/13/2014 7:52 1/13/2014 7:52 55 32 34 5 48 10.4 11.3 1/13/2014 8:42 1/13/2014 8:42 47 32 34.2 5 52 10.3 517.8 5 1/13/2014 9:43	00 6852.14
1/9/2014 7:09 1/9/2014 7:09 54 34 34 35 5 54 10.5 5997.8 68 1/9/2014 8:24 1/9/2014 8:25 52 33 34.5 5 54 10.4 786.1 8 1/9/2014 8:25 1/9/2014 8:25	00 6852.14
1/9/2014 8:24 1/9/2014 8:24 52 33 34.5 5 54 10.4 786.1 8 1/9/2014 8:25 1/9/2014 8:25 29.5 SW-52 Event 7 1/13/2014 7:50 1/13/2014 7:50 55 31 32.5 4.5 48 9.2 0.0 1/13/2014 7:51 1/13/2014 7:51 55 33 32 5.8 48 12.2 10.7 1/13/2014 7:52 1/13/2014 7:52 55 32 34 5 48 10.4 11.3 1/13/2014 8:42 1/13/2014 8:42 47 32 34.2 5 52 10.3 517.8 5 1/13/2014 9:43 1/13/2014 9:43 45 32 34.2 5 60 10.3 628.0 7	54 6852.68
1/9/2014 8:25 1/9/2014 8:25 Valve shut 10.4 SW-52 Event 7 1/13/2014 7:50 1/13/2014 7:50 55 31 32.5 4.5 48 9.2 0.0 1/13/2014 7:51 1/13/2014 7:51 55 33 32 5.8 48 12.2 10.7 1/13/2014 7:52 1/13/2014 7:52 55 32 34 5 48 10.4 11.3 1/13/2014 8:42 1/13/2014 8:42 47 32 34.2 5 52 10.3 517.8 5 1/13/2014 9:43 1/13/2014 9:43 45 32 34.2 5 60 10.3 628.0 7	
1/9/2014 8:27 1/9/2014 8:27 29.5 SW-52 Event 7 1/13/2014 7:50 1/13/2014 7:50 55 31 32.5 4.5 48 9.2 0.0 1/13/2014 7:51 1/13/2014 7:51 55 33 32 5.8 48 12.2 10.7 1/13/2014 7:52 1/13/2014 7:52 55 32 34 5 48 10.4 11.3 1/13/2014 8:42 1/13/2014 8:42 47 32 34.2 5 52 10.3 517.8 5 1/13/2014 9:43 1/13/2014 9:43 45 32 34.2 5 60 10.3 628.0 7	93 7628.76
SW-52 Event 7 1/13/2014 7:50 1/13/2014 7:50 55 31 32.5 4.5 48 9.2 0.0 1/13/2014 7:51 1/13/2014 7:51 55 33 32 5.8 48 12.2 10.7 1/13/2014 7:52 1/13/2014 7:52 55 32 34 5 48 10.4 11.3 1/13/2014 8:42 1/13/2014 8:42 47 32 34.2 5 52 10.3 517.8 5 1/13/2014 9:43 1/13/2014 9:43 45 32 34.2 5 60 10.3 628.0 7	19 7629.95
1/13/2014 7:51 1/13/2014 7:51 55 33 32 5.8 48 12.2 10.7 1/13/2014 7:52 1/13/2014 7:52 55 32 34 5 48 10.4 11.3 1/13/2014 8:42 1/13/2014 8:42 47 32 34.2 5 52 10.3 517.8 5 1/13/2014 9:43 1/13/2014 9:43 45 32 34.2 5 60 10.3 628.0 7	7629.95
1/13/2014 7:52 1/13/2014 7:52 55 32 34 5 48 10.4 11.3 1/13/2014 8:42 1/13/2014 8:42 47 32 34.2 5 52 10.3 517.8 5 1/13/2014 9:43 1/13/2014 9:43 45 32 34.2 5 60 10.3 628.0 7	00 7629.95
1/13/2014 8:42 1/13/2014 8:42 47 32 34.2 5 52 10.3 517.8 5 1/13/2014 9:43 1/13/2014 9:43 45 32 34.2 5 60 10.3 628.0 7	22 7631.18
1/13/2014 9:43 1/13/2014 9:43 45 32 34.2 5 60 10.3 628.0 7	29 7632.47
	24 7691.71
1/13/2014 11·04 1/13/2014 11·04 45 32 34.2 5 71 10.1 926.0 Q	84 7763.55
1/10/2017 11:07 1/10/2017 11:07 70 020.0 5	49 7858.04
1/13/2014 12:05 1/13/2014 12:05 48 32 34.2 5 72 10.1 618.4 7	74 7928.78
1/13/2014 13:07 1/13/2014 13:07 45 32 34 5 74 10.1 627.6 7	80 8000.58
1/13/2014 14:34 1/13/2014 14:34 42 32.5 34 5 72 10.2 883.0 10	02 8101.60
1/13/2014 15:51 1/13/2014 15:51 40 32 34 5 70 10.2 783.1 8	58 8191.18
1/13/2014 16:37 1/13/2014 16:37 40 32 33.8 5 70 10.2 467.0 5	42 8244.61
1/13/2014 17:08 1/13/2014 17:08 50 32 33.5 5.2 70 10.6 321.0 3	72 8281.33
1/13/2014 21:47 1/13/2014 21:47 50 32 33.5 5.9 63 12.1 3155.6 36	00 8642.32
1/14/2014 7:58 1/14/2014 7:58 50 33 33.5 6.5 62 13.4 Valve shut 7792.8 89	
1/14/2014 8:01 1/14/2014 8:01 28	9533.83

					P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Т	ime	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)		CO ₂ (scf)	(lb)	Mass (lb)
SW-52 Event 8		1/20/2014	7:51	1/20/2014 7:51	55	32	34	<	2	40 0	0.0	0.0	0.00	9533.83
		1/20/2014	8:25	1/20/2014 8:25	52	30	32.5	<	2		0.0	0.0	0.00	9533.83
		1/20/2014	8:26	1/20/2014 8:26							5.2	3.1		
		1/20/2014	9:08	1/20/2014 9:08	50			3.			'.2	281.2		
		1/20/2014	10:20	1/20/2014 10:20	49	32		3.			'.1	515.2	58.94	9625.29
		1/20/2014	11:22	1/20/2014 11:22	49	32		3.			'.1	441.5		
		1/20/2014	13:05	1/20/2014 13:05	50	32		3.			'.1	731.3		9759.45
		1/20/2014	14:10	1/20/2014 14:10	51			3.			'. 5	472.9		
		1/20/2014	15:21	1/20/2014 15:21	53			3.			'.7	536.3		
		1/20/2014	16:40	1/20/2014 16:40	55	31.5		3.	9	74 7	'.8 Valve shut	612.1	70.02	
		1/20/2014	16:41	1/20/2014 16:41			28							9944.93
SW-52 Event 9		1/22/2014	7:57	1/22/2014 7:57	58			5.		38 11				9944.93
		1/22/2014	8:41	1/22/2014 8:41	53			5.		44 11		504.6		
		1/22/2014	9:42	1/22/2014 9:42				4.			0.3	631.3		
		1/22/2014	10:50	1/22/2014 10:50				4.			0.3	631.3		
		1/22/2014	11:53	1/22/2014 11:53	43			4.			.2	582.8		
		1/22/2014	12:25	1/22/2014 12:25	42	31.5	33.2	4.	5	55 9	.2	295.3		
		1/22/2014	12:26	1/22/2014 12:26							Valve shut	9.2	1.06	
		1/22/2014	12:27	1/22/2014 12:27			29							10248.61
		1/22/2014	12:27	1/22/2014 12:27							.2 Restart	0.0		
		1/22/2014	13:11	1/22/2014 13:11	47			4.			0.2	405.8		
		1/22/2014	14:06	1/22/2014 14:06				4.			.2	507.5		
		1/22/2014	15:13	1/22/2014 15:13	53			4.			.2	618.3		
		1/22/2014	16:10	1/22/2014 16:10	51	31.5	33.2	4.	5	56 9	0.2	525.5		
S		1/22/2014	16:11	1/22/2014 16:11							Valve shut	9.2	1.05	
<u>SW-52 Event 10</u>		1/28/2014	7:34	1/28/2014 7:34		2.4	25		2			0.0	0.00	10485.00
		1/28/2014	7:35	1/28/2014 7:35	55						0.0	0.0		
		1/28/2014	7:37	1/28/2014 7:37	55						0.0	0.0		
		1/28/2014	8:08	1/28/2014 8:08	55						0.0	0.0		
		1/28/2014	8:30	1/28/2014 8:30	55						5.2	68.2		
		1/28/2014	10:04	1/28/2014 10:04	53						5.2	583.2		
		1/28/2014	11:09	1/28/2014 11:09 1/28/2014 11:40	53						5.2 5.2	403.6		
		1/28/2014 1/28/2014	11:40 13:00	1/28/2014 11:40							5.2	192.8 497.8		
		1/28/2014	14:02	1/28/2014 14:02	50 50						5.2	386.0		
		1/28/2014	14:57	1/28/2014 14:57	50						5.2	342.8		
		1/28/2014	16:48	1/28/2014 14:37	55						5.2	692.8		
		1/28/2014	16:49	1/28/2014 16:49		32.3	34.3		3	50	Valve shut	6.2		
		1/28/2014	16:50	1/28/2014 16:50			29				valve shat	0.2	0.71	10848.05
SW-52 Event 11		1/29/2014	8:03	1/29/2014 8:03										10848.05
SVV 32 EVERT II		1/29/2014	8:04	1/29/2014 8:04	55	5 32	32		6	42 12	.5	12.5	1.43	
		1/29/2014	8:59	1/29/2014 8:59						42 11		660.5		
		1/29/2014	9:00	1/29/2014 9:00	5(42 16		13.8		
		1/29/2014	10:24	1/29/2014 10:24	5(42 12		1219.5		
		1/29/2014	11:50	1/29/2014 11:50						42 12		1109.5		
		1/29/2014	12:22	1/29/2014 12:22						42 12		413.9		
		1/29/2014	13:50	1/29/2014 13:50						42 12		1138.3		
		1/29/2014	14:59	1/29/2014 14:59						42 12		892.5		
		1/29/2014	16:34	1/29/2014 16:34	56					42 12		1228.8		
		1/29/2014	16:35	1/29/2014 16:35		33	22.0				Valve shut	12.9		
		1/29/2014	16:36	1/29/2014 16:36			29.5							11614.80
SW-52 Event 12		1/30/2014	7:32	1/30/2014 7:32		5 34			0	40 21	.4			11614.80
		1/30/2014	7:33	1/30/2014 7:33						40 21		21.4	2.45	

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
	1/30/2014							42		408.9	· ·	
	1/30/2014							42		1188.4		
	1/30/2014		1/30/2014 10:02		35			44		1208.2		
	1/30/2014							48		956.5		
	1/30/2014	12:59	1/30/2014 12:59	55	35	35	8	48	3 17.1	2108.2	241.18	12288.79
	1/30/2014	13:38	1/30/2014 13:38	1					Valve shut	668.4	76.47	12365.26
	1/30/2014	13:40	1/30/2014 13:40	1		27	,					12365.26
SW-52 Event 13	2/4/2014	9:54	2/4/2014 9:54	. 55	34	35	<2	61	0.0			12365.26
	2/4/2014	9:58	2/4/2014 9:58	55	34	35	<2	61	0.0	0.0	0.00	12365.26
	2/4/2014	10:23	2/4/2014 10:23	54	33.2	35	<2	63	0.0	0.0	0.00	12365.26
	2/4/2014	11:39	2/4/2014 11:39	52	33	35	<2	66	0.0	0.0	0.00	12365.26
	2/4/2014	12:46	2/4/2014 12:46	50	32.5	34.2	<2	67	0.0	0.0	0.00	12365.26
	2/4/2014	12:48	2/4/2014 12:48	50	33.5	35.2	. 2	67	4.1	4.1	0.47	12365.74
	2/4/2014	13:26	2/4/2014 13:26	50	33.5	35.2	. 2	67	4.1	157.3	17.99	12383.73
	2/4/2014	14:33	2/4/2014 14:33	48	33.5	35.2	2.8	64	5.8	333.3	38.13	12421.86
	2/4/2014	15:32	2/4/2014 15:32	50	33.5	35.2	3	62	6.2	355.5	40.67	12462.53
	2/4/2014	16:27	2/4/2014 16:27	50	33.5	35.2	3.5	60	7.3	372.1	42.57	12505.10
	2/4/2014	17:51	2/4/2014 17:51	. 55	33.5	35.2	3.8	59	7.9	639.2	73.13	12578.23
	2/4/2014					28			Valve shut	7.9	0.91	
SW-52 Event 14	2/6/2014							50				12579.14
	2/6/2014		2/6/2014 8:21					50		0.0		
	2/6/2014		2/6/2014 8:50					55		0.0		
	2/6/2014		• •		32			62		0.0		
	2/6/2014				33			62		5.2		
	2/6/2014		• •		33			64		119.3		
	2/6/2014		2/6/2014 12:17		33			66		421.4		
	2/6/2014		2/6/2014 14:14					65		928.6		
	2/6/2014							60		601.9		
	2/6/2014		• •					56		695.7		
	2/6/2014							55		402.9		
	2/7/2014				32			48		11056.5		
CVALES From the	2/7/2014				22	28		FC	Valve shut	48.6	5.56	
<u>SW-52 Event 15</u>	2/7/2014							58		27.7	4.24	14212.79
	2/7/2014		2/7/2014 10:37 2/7/2014 11:35		35 35.5			58		37.7		
	2/7/2014							62		1169.1		
	2/7/2014 2/7/2014		2/7/2014 13:24 2/7/2014 14:35					64		1791.7		
	2/7/2014				35.5 35.5			62 60		1167.1 1273.9		
	2/7/2014				35.5 35.5			58		1049.9		
	2/7/2014							56		987.5		
	2/7/2014				33.3	27		50	Valve shut	57.7		
SW-52 Event 16	2/10/2014				28			53		37.7	0.00	15074.74
SVV 32 EVERT 10	2/10/2014							53		34.8	3.98	
	2/10/2014							63		1046.1		
	2/10/2014							78		1515.8		
	2/10/2014							84		2579.6		
	2/10/2014							84		1498.2		
	2/10/2014				33.5			73		1800.8		
	2/10/2014							70		566.0		
	2/10/2014								Valve shut	47.7		
SW-52 Event 17	2/11/2014				34	34	<2	54				16114.52
	2/11/2014							54		21.1	2.41	
	2/11/2014							56		740.1		

				P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flo	ow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	2/1	.1/2014 9:	28 2/11/2014 9:2	8 49	34.	2 34	!	8	61	16.8	831.7	95.14	16296.74
	2/1	.1/2014 10:	45 2/11/2014 10:4	5 50	34.	2 34	7.	2	67	15.0	1223.7	139.99	16436.74
	2/1	.1/2014 11:	57 2/11/2014 11:5	7 50	34.	2 34	7.	2	66	15.0	1081.2	123.69	16560.42
	2/1	.1/2014 12:	58 2/11/2014 12:5	8 4!	34.	2 34	6.	8	65	14.2	891.4	101.98	16662.40
	2/1	.1/2014 14:	02 2/11/2014 14:0	2 4!	34.	2 34	6.	8	63	14.2	909.9	104.09	16766.49
	2/1	.1/2014 16:	55 2/11/2014 16:5	5 4	1 34.	2 34	6.	8	53	14.4	2474.5	283.08	17049.57
	2/1	.1/2014 17:	44 2/11/2014 17:4	4 5!	34.	2 34	6.	8	51	14.4	705.1	80.66	17130.24
	2/1	.2/2014 8:	37 2/12/2014 8:3	7 4!	5 3	4 33	3 1	0	47	21.2	15908.9	1819.98	18950.21
	2/1	.2/2014 11:	42 2/12/2014 11:4	2 4	33.	5 32.5	5 1	1	48	23.2	4109.6	470.13	19420.35
	2/1	.2/2014 14:	03 2/12/2014 14:0	3 48	33.	5 32.5	5 1	1	49	23.2	3269.8	374.07	19794.41
	2/1	.2/2014 14:	58 2/12/2014 14:5	8 48	33.	5 32.5	10.	5	46	22.2	1247.7	142.74	19937.15
	2/1	.2/2014 15:	58 2/12/2014 15:5	8 48	33.	5 32.5	10.	2	45	21.6	1313.2	150.23	20087.39
	2/1	.2/2014 16:	57 2/12/2014 16:5	7 48	33.	5 32.5	10.	2	45	21.6	1273.3	145.66	20233.05
	2/1	.2/2014 17:	57 2/12/2014 17:5	7 48	33.	5 32.5	10.	4	47	22.0	1306.2	149.43	20382.48
	2/1	.3/2014 7:	16 2/13/2014 7:1	6 50) 3	4 32.5	10.	4	43	22.2	17628.1	2016.65	22399.13
	2/1	.3/2014 8:	03 2/13/2014 8:0	3 4	7 33.	8 32.5	10.	4	43	22.1	1040.7	119.06	22518.19
	2/1	.3/2014 9:	08 2/13/2014 9:0	8 49	33.	8 32.5	10.	6	44	22.5	1450.9	165.98	22684.17
	2/1	.3/2014 9:	57 2/13/2014 9:5	7 49	33.	8 32.5	10.	8	44	22.9	1114.0	127.44	22811.61
	2/1	.3/2014 10:	37 2/13/2014 10:3	7 49	33.	8 32.5	10.	9	44	23.2	922.1	105.49	22917.10
	2/1	.3/2014 11:	07 2/13/2014 11:0	7 49	33.	8 32.5	10.	9	45	23.1	694.4	79.44	22996.54
	2/1	.3/2014 11:	38 2/13/2014 11:3	8 49	33.	8 32.5	5 1	1	46	23.3	720.1	82.38	23078.92
	2/1	.3/2014 12:	08 2/13/2014 12:0	8 49	33.	8 32.5	5 1	1	50	23.2	698.3	79.88	23158.80
	2/1	.3/2014 12:	38 2/13/2014 12:3	8 49	33.	8 32.5	5 1	1	51	23.2	696.5	79.68	23238.48
	2/1	.3/2014 13:	08 2/13/2014 13:0	8 49	33.	8 32.5	5 1	1	52	23.2	695.8	79.60	23318.07
	2/1	.3/2014 14:	10 2/13/2014 14:1	0 49	33.	5 32.5	5 1	1	58	23.0	1430.6	163.66	23481.73
	2/1	.3/2014 15:	08 2/13/2014 15:0	8 49	33.	5 32.5	5 1	1	60	22.9	1330.8	152.24	23633.98
	2/1	.3/2014 15:	21 2/13/2014 15:2	1 49	33.	5 32.5	5 1	1	60	22.9 Valve shut	298.0	34.09	23668.07
	2/1	.3/2014 15:	22 2/13/2014 15:2	2		26	j						23668.07

11/2/2013 9-00 11/2/2013 1002 11/2/2013 1002 11/2/2013 1004 1004					P at Reducer	P at Panel	P at Well	Rotameter	_ (0=)	_		Volume of	Mass of CO ₂	Cumulative
11/12/2013 948 11/12/2013 +969 31 30 +2 00 00 00 00 00 00 11/12/2013 959 11/12/2013 959 12/12/2013 959 12/12/2013 959 12/12/2013 959 12/12/2013 959 12/12/2013 959 12/12/2013 959 12/12/2013 959 12/12/2013 959 12/12/2013 959 12/12/2013 959 12/12/2013 959								Reading (scfm)	Temp (°F)			CO ₂ (SCI)	(Ib)	Mass (ID)
11/12/2013 950	SW-53 Event 1								-2	66		0	0 00	0 00
11/12/2013 1002 11/21/2013 1002 55 34 33 42 68 0.0 0.0 0.0														
11/17/09/13 10-54 11/17/09/13 13-50										co				
11/17/2013 13-30 11/27/2013 13-30 50 32.5 32.5 32.5 42 74 0.0 0 0.0 0.0 0.0 11/27/2013 13-31 11/27/2013 13-31 51 35.5 35 32 42 0.0 0.0 0.0 0.0 0.0 11/27/2013 17-17 11/27/2013 17-18 37 35.5 42 0.0 0.0 0.0 0.0 0.0 0.0 11/27/2013 17-18 11/27/2013 17-18 37 35.5 42 0.0 0.0 0.0 0.0 0.0 0.0 11/27/2013 17-18 11/27/2013 17-18 17/27/2013 17-18 17/27/2013 17-18 17/27/2013 17-18 17/27/2013 17-18 17/27/2013 17-18 17/27/2013 17-18 17/27/2013 17-18 17/27/2013 17-18 17/27/2013 17-18 17/27/2013 17-18 17/27/2013 18-18 17/27/2013 18-18 17/27/2013 18-18 17/27/2013 18-18 17/27/2013 18-18 17/27/2013 18-18 17/27/2013 18-18 17/27/2013 18-18 17/27/2013 18-18 17/27/2013 18-18 17/27/2013 18-18 17/27/2013 18-18 17/27/2013 18-18 18-1		• •		• •										
11/17/013 13-31 17/17/01313-31 51 35 35 42 74 0.0 0.0 0.0 0.0 1/17/17/013 17-18 11/17/1013 17-18 11/17/1013 17-19 17-19 17-17/1013 17-19 17-1				• •										
11/17/093 17:17 11/17/09371:17 36 -2 0.0 0.0 0.0 0.0 0.0 11/17/093 17:18 37 35.5 -2 0.0 0.0 0.0 0.0 0.0 11/17/093 17:19 11/17/093 17:19 11/17/093 17:19 11/17/093 17:19 11/17/093 17:19 11/17/093 17:20 11/17/09312:19 18.5 11/17/09313:19 11/17/093 8:12 11/17/09313:19 11/17/093 8:19 11/17/09313:19 11/17/093 8:19 11/17/09313				• •										
11/21/2013 17:18 11/12/201317-28 37 35.5 <2 0.0 0.0 0.0 0.0 11/21/2013 17:20 11/21/201317-29 18)		/4				
11/12/003				· ·										
11/12/2013 12-20 11/12/2013 12-20 11/12/2013 84-3 11/12/2013 84-3 11/12/2013 84-3 11/12/2013 84-5 11/12/2013 84-5 11/12/2013 84-5 11/12/2013 84-5 11/12/2013 84-5 11/12/2013 84-5 11/12/2013 84-5 11/12/2013 84-5 11/12/2013 84-5 11/12/2013 84-5 11/12/2013 84-5 11/12/2013 10-18 11/12/2013 10-18 11/12/2013 10-18 11/12/2013 10-18 11/12/2013 10-18 11/12/2013 10-18 11/12/2013 10-19 11/12/2013 10-19 11/12/2013 10-19 11/12/2013 10-19 11/12/2013 10-19 11/12/2013 10-19 11/12/2013 11-19 11/12/2013 11-19 11/12/2013 12-19 12-19 11/12/2013 12-19 12		• •				3/	35.5)	<2			0.	0.0	
11/25/2013 84/2 11/25/2018 84/2 11/25/2018 84/5 11/25/2018 84/5 11/25/2018 84/5 11/25/2018 84/5 11/25/2018 84/5 11/25/2018 84/5 11/25/2018 18/18 35 36 42 52 0.0 0 0.0 0.0 0.0 0.0 11/25/2013 10.18 11/25/2013 10.18 11/25/2013 10.19 36 36 42 63 0.0 0.0 0.0 0.0 0.0 11/25/2013 11.19 11/25/2013 10.19 36 36 42 63 0.0 0.0 0.0 0.0 0.0 11/25/2013 11.19 11/25/2013 11.19 55 36 36 42 60 0.0 0.0 0.0 0.0 0.0 11/25/2013 12.20 11/25/2013 11.20 4				• •			4.6				valve snut			0.00
11/25/2013 8.43 11/25/20138-93 32 32 -2 52 0.0	CW 52 5							3		F2				0.00
11/25/2013 848 11/25/20139:18 35 35 42 56 0.0 0.0 0.0 0.0 11/25/2013 11:18 11/25/2013 10:19 11/25/2013 10:19 11/25/2013 10:19 11/25/2013 10:19 11/25/2013 10:19 11/25/2013 10:19 11/25/2013 11:19 11/25/2013 11:19 11/25/2013 11:19 11/25/2013 11:19 11/25/2013 11:19 11/25/2013 11:19 11/25/2013 11:19 11/25/2013 11:19 11/25/2013 11:19 11/25/2013 11:19 11/25/2013 11:19 11/25/2013 11:19 11/25/2013 11:19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	SW-53 Event 2													0.00
11/25/2013 9-18 11/25/2013 10-18 35 31.5 -2 66 0.0 0.0 0.0 0.0 0.0 11/25/2013 10-18 11/25/2013 10-18 35 31.5 -2 63 0.0 0.0 0.0 0.0 0.0 11/25/2013 11-19 11/25/2013 11-19 11/25/2013 11-19 11/25/2013 11-19 11/25/2013 11-19 11/25/2013 12-02 11/25/2013 12-03 11/25/2013 12-03 11/25/2013 12-04 11/25/2013 12-03 11/25/2013 12-04 11/25/2013 12-04 11/25/2013 12-03 11/25/2013 12-03 11/25/2013 12-03 11/25/2013 12-03 11/25/2013 12-03 11/25/2013 12-03 11/25/2013 12-03 11/25/2013 12-03 11/25/2013 12-03 11/25/2013 12-03 11/25/2013 12-03 11/25/2013 12-03 11/25/2013 13-0														0.00
11/25/2013 101:8 11/25/2013 1019 36 36 <2 63 0.0 0.0 0.0 0.0 11/25/2013 1019 11/25/2013 1019 55 36 36 <2 63 0.0 0.0 0.0 0.0 0.0 0.0 11/25/2013 1220 36 36 <2 62 0.0 0.0 0.0 0.0 0.0 0.0 11/25/2013 1220 36 36 <2 62 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11/25/2013 1220 11/25/2013 1220 24.5 0.0														
11/25/2013 11:19 11/25/2013 11:19 55 36 36 <2 63 0.0														
11/25/2013 11:10 11/25/2013 12:10 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 12:00 17/25/2013 13:00 17/25/2013 17/25/201														
11/25/2013 12:02 11/25/2013 12:03 36 36 <2 62 0.0 0.0 0.0 0.0 11/25/2013 12:04 11/25/2013 12:04 24.5 0.0 0.0 0.0 11/25/2013 12:04 11/25/2013 12:08 48 30 64 0.0 0.0 0.0 11/25/2013 12:39 11/25/2013 12:39 34 35 <2 64 0.0 0.0 0.0 11/25/2013 13:51 11/25/2013 13:51 0.0 0.0 0.0 11/25/2013 13:51 11/25/2013 13:51 0.0 0.0 11/25/2013 13:51 11/25/2013 13:51 0.0 0.0 11/25/2013 13:52 11/25/2013 13:51 0.0 0.0 11/25/2013 13:52 11/25/2013 13:51 0.0 0.0 11/25/2013 13:52 11/25/2013 13:51 0.0 0.0 11/25/2013 8:28 12/4/2013 8:7 0.0 0.0 0.0 12/4/2013 8:28 12/4/2013 8:30 50 35 34 <2 71 0.0 0.0 0.0 12/4/2013 8:51 12/4/2013 8:51 50 35 33:5 <2 74 0.0 0.0 0.0 12/4/2013 9:15 12/4/2013 9:15 50 35 33:5 <2 76 0.0 0.0 0.0 12/4/2013 10:07 12/4/2013 10:08 49 36 35 <2 78 0.0 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 0.0 0.0 12/4/2013 12:45 0.0 0.0 0.0 12/4/2013 12:45 0.0 0.0 0.0 12/4/2013 12:45 0.0														
11/25/2013 12-03 11/25/2013 12-04 11/25/2013 12-04 11/25/2013 12-04 11/25/2013 12-04 11/25/2013 12-04 11/25/2013 12-05 11/25/2013 12-05 11/25/2013 12-05 11/25/2013 12-05 11/25/2013 12-05 11/25/2013 13-05 11/25/2														
11/25/2013 12:04						36	36	5	<2	62				
11/25/2013 12:38 11/25/2013 12:38 48 30 64 0.0 0.00 0.00 11/25/2013 12:39 11/25/2013 12:39 34 35 <2 64 0.0 0.00 0.00 0.00 0.00 11/25/2013 13:48 11/25/2013 13:51 11/25/2013 13:51 11/25/2013 13:52 29 Valve shut											Valve shut			
11/25/2013 12:99 11/25/2013 13:48 34 35 <2 64 0.0 Restart 0.0 0.00 11/25/2013 13:48 11/25/2013 13:51 11/25/2013 13:51 11/25/2013 13:51 11/25/2013 13:51 11/25/2013 13:51 11/25/2013 13:52 29 SW-53 Event 3 12/4/2013 8:27 12/4/2013 8:27 12/4/2013 8:28 12/4/2013 8:28 50 36 36 <2 71 0.0 0.0 0.0 0.0 12/4/2013 8:38 12/4/2013 8:28 50 35 35 34 <2 71 0.0 0.0 0.0 0.0 0.0 12/4/2013 8:31 12/4/2013 8:51 50 35 33.5 <2 74 0.0 0.0 0.0 0.0 0.0 12/4/2013 8:15 12/4/2013 8:51 50 35 33.5 <2 74 0.0 0.0 0.0 0.0 0.0 12/4/2013 8:15 12/4/2013 8:51 50 35 33.5 <2 74 0.0 0.0 0.0 0.0 0.0 12/4/2013 10:00 12/4/2								5						
11/25/2013 13:48 11/25/2013 13:51 11/25/2013 13:52 11/25/2013 13:51 11/25/2013 13:52 11/25/2013 13:52 11/25/2013 13:52 11/25/2013 13:52 11/25/2013 13:52 12/4/2013 8:27														
11/25/2013 13:51 11/25/2013 13:52 29 Valve shut 0.0 0.00 11/25/2013 13:52 29 Valve shut 0.0 0.00 11/25/2013 13:52 11/25/2013 13:52 29 Valve shut 0.0 0.00 11/25/2013 13:52 11/25/2013 13:52 29 Valve shut 0.0 0.00 0.00 12/4/2013 8:28 12/4/2013 8:28 12/4/2013 8:51 12/4/2013 8:51 50 35 34 <2 71 0.0 0.0 0.0 0.0 0.0 12/4/2013 8:51 12/4/2013 8:51 50 35 33.5 <2 74 0.0 0.0 0.0 0.0 0.0 0.0 12/4/2013 9:15 12/4/2013 9:15 50 35 33.5 <2 76 0.0 0.0 0.0 0.0 0.00 12/4/2013 10:07 12/4/2013 10:08 49 34 32.5 <2 78 0.0 0.0 0.0 0.0 0.0 12/4/2013 10:08 12/4/2013 10:08 49 36 35 <2 78 0.0 0.0 0.0 0.0 0.0 12/4/2013 10:08 12/4/2013 10:08 49 36 35 <2 83 0.0 0.0 0.0 0.0 0.0 12/4/2013 10:08 12/4/2013 10:08 49 36 35 <2 83 0.0 0.0 0.0 0.0 0.0 12/4/2013 12:34 12/4/2013 12:34 52 36 35 <2 87 0.0 0.0 0.0 0.0 0.0 0.0 12/4/2013 12:34 12/4/2013 12:36 55 42 87 0.0 0.0 0.0 0.0 0.0 0.0 12/4/2013 12:35 12/4/2013 12:36 52 36 35 <2 87 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12/4/2013 12:36 52 12/4/2013 12:36 52 42 87 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														
11/25/2013 13:52 11/25/2013 13:52 29						34	. 34	!	<2	64				
SW-53 Event 3 12/4/2013 8:27 12/4/2013 8:28 12/4/2013 8:28 12/4/2013 8:28 12/4/2013 8:30 50 35 34 <2 71 0.0 0.0 0.0 0.0 0.0 12/4/2013 8:51 12/4/2013 8:51 50 35 33 <2 76 0.0 0.0 0.0 0.0 0.0 12/4/2013 10:07 12/4/2013 10:07 49 34 32.5 <2 78 0.0 0.0 0.0 0.0 0.0 12/4/2013 10:07 12/4/2013 10:07 49 34 32.5 <2 78 0.0 0.0 0.0 0.0 0.0 12/4/2013 10:08 12/4/2013 10:08 47 36 35 <2 83 0.0 0.0 0.0 0.0 0.0 12/4/2013 11:08 12/4/2013 11:08 47 36 35 <2 83 0.0 0.0 0.0 0.0 0.0 12/4/2013 11:28 12/4/2013 12:34 52 36 35 <2 87 0.0											Valve shut	0.	0.0	
12/4/2013 8.28 12/4/2013 8:28 50 36 36 <2 71 0.0 0.0 0.0 0.0 12/4/2013 8:30 12/4/2013 8:30 50 35 34 <2 71 0.0 0.0 0.0 0.0 12/4/2013 8:51 12/4/2013 8:51 50 35 33.5 <2 74 0.0 0.0 0.0 0.0 12/4/2013 9:15 12/4/2013 9:15 50 35 33.5 <2 76 0.0 0.0 0.0 0.0 12/4/2013 10:07 12/4/2013 10:08 49 34 32.5 <2 78 0.0 0.0 0.0 0.0 12/4/2013 10:08 12/4/2013 10:08 49 36 35 <2 78 0.0 0.0 0.0 0.0 12/4/2013 11:08 12/4/2013 12:34 52 36 35 <2 83 0.0 0.0 0.0 0.0 12/4/2013 12:34 12/4/2013 12:35							29)						0.00
12/4/2013	SW-53 Event 3													0.00
12/4/2013 8:51 12/4/2013 8:51 50 35 33.5 <2 74 0.0 0.0 0.0 0.0 12/4/2013 10:07 12/4/2013 10:07 49 34 32.5 <2 78 0.0 0.0 0.0 0.0 0.0 12/4/2013 10:08 12/4/2013 10:08 49 36 35 <2 78 0.0 0.0 0.0 0.0 0.0 12/4/2013 11:08 12/4/2013 11:08 47 36 35 <2 83 0.0 0.0 0.0 0.0 0.0 12/4/2013 11:34 12/4/2013 12:34 52 36 35 <2 87 0.0 0.0 0.0 0.0 0.0 12/4/2013 12:34 12/4/2013 12:35 52 86 35 <2 87 0.0 0.0 0.0 0.0 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 52 86 35 <2 87 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 52 86 35 <2 87 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.									<2					
12/4/2013 9:15 12/4/2013 9:15 50 35 33 <2 76 0.0 0.0 0.0 0.0 12/4/2013 10:07 12/4/2013 10:08 49 34 32.5 <2 78 0.0 0.0 0.0 0.0 0.0 12/4/2013 10:08 12/4/2013 10:08 49 36 35 <2 78 0.0 0.0 0.0 0.0 0.0 12/4/2013 11:08 12/4/2013 11:08 47 36 35 <2 83 0.0 0.0 0.0 0.0 0.0 12/4/2013 12:34 12/4/2013 12:34 52 36 35 <2 87 0.0 0.0 0.0 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:36 12/4/2013 12:26 12/									<2					
12/4/2013 10:07 12/4/2013 10:08 49 34 32.5 <2 78 0.0 0.0 0.0 0.00 12/4/2013 10:08 12/4/2013 11:08 49 36 35 <2 78 0.0 0.0 0.0 12/4/2013 11:08 12/4/2013 11:08 47 36 35 <2 83 0.0 0.0 0.0 12/4/2013 12:34 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:36 12/4/2013 12:36 SW-53 Event 4 12/11/2013 14:49 12/11/2013 14:49 34 <2 66 0.0 12/11/2013 22:12 12/11/2013 12:12 55 34 <2 60 0.0 12/11/2013 12:26 12/12/2013 12:36 <2 60 0.0 12/11/2013 12:26 12/12/2013 12:36 <2 60 0.0 12/11/2013 12:26 12/12/2013 12:36 34 34 3 50 6.3 1834.6 209.88 20 200.8 12/11/2013 12:26 12/12/2013 12:26 45 34 34 3.5 68 7.3 1471.2 168.30 37 12/12/2013 14:40 12/12/2013 14:40 48 35 34 4 70 8.4 1518.6 173.73 55 12/12/2013 15:14 12/12/2013 15:14 45 34 34 4 70 8.4 1518.6 173.73 55 12/12/2013 15:34 12/12/2013 15:34 46 34 34 4 66 8.3 665.0 76.08 66 12/12/2013 17:38 12/12/2013 17:38 55 34 34 4 66 8.3 665.0 76.08 66 12/12/2013 17:38 12/12/2013 17:38 55 34 34 4 56 8.4 535.7 61.29 72 12/12/2013 17:38 12/12/2013 17:38 55 34 34 4 56 8.4 535.7 61.29 72 12/12/2013 12:00 12/13/2013 12:00 45 32 33 6.5 68 13.2 189.8 216.53 238 12/13/2013 14:20 12/13/2013 14:30 12/13/2013 1														
12/4/2013 10:08 12/4/2013 10:08 49 36 35 <2 78 0.0 0.0 0.0 0.0 0.0 12/4/2013 11:08 12/4/2013 11:08 47 36 35 <2 83 0.0		12/4/2013	9:15	12/4/2013 9:15	50	35	33	3	<2	76	0.0	0.	0.0	0.00
12/4/2013 11:08 12/4/2013 11:08 47 36 35 <2 83 0.0 0.0 0.0 0.0 0.0 12/4/2013 12:34 12/4/2013 12:34 52 36 35 <2 87 0.0 0.0 0.0 0.0 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:36 12/4/2013 12:4 12/4/2013 12:4 145 12/4/2013 12:4 145 12/4/2013 12:4 15 14 12/4/2/2013 12:4 15 14 12/4/2/2013 12:4 15 14 12/4/2/2013 12:4 15 14 12/4/2/2013 12:4 15 14 12/4/2/2013 12:4 15 14 12/4/2/2013 12:36 12/4 12/4/2013 12:36 12/4 12/4/2/2013 12:36 12/4 12/4/2/2013 12:36 12/4 12/4/2/2013 12:36 12/4 12/4/2/2013 12:36 12/4 12/4/2/2013 12:36 12/4 12/4/2/2013 12:36 12/4 12/4/2/2013 12:36 12/4 12/4/2/2013 12:36 12/4 12/4/2/2013 12:36 12/4 12/4/2/2013 12:36 12/4 12/4/2/2013 12:36 12/4 12/4/2/2013 12:36 12/4 12/4/2/2013 12:36 12/4 12/4/2/2013 12:36 12/4 12/4/2/2013 12:36 12/4 12/4/2/2013 12:36 12/4/2/2013 12:36 12/4/2/2013 12:36 12/4/2/2013 12:36 12/4/2/2013 12:36 12/4/2/2013 12:36 12/4/2/2013 12:36 12/4/2/2/2013 12:36 12/4/2/2/2013 12:36 12/4/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2				• •		34	32.5	5	<2	78				
12/4/2013 12:34 12/4/2013 12:35 12/4/2013 12:35 2 36 35 <2 87 0.0 0.0 0.0 0.0 0.0 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 13:49 34 <2 66 0.0 12/11/2013 14:49 12/11/2013 14:49 35 <2 0.0 12/11/2013 12:11 12/11/2013 12:12 12/11/2013 12:12 55 34 34 3 50 6.3 1834.6 209.88 20 12/12/2013 11:26 12/12/2013 11:26 45 34 34 3.5 68 7.3 1471.2 168.30 37 12/12/2013 15:14 12/12/2013 15:14 45 34 34 3.5 68 7.3 1471.2 168.30 37 12/12/2013 15:14 12/12/2013 15:14 45 34 34 4 70 8.4 1518.6 173.73 55 12/12/2013 15:14 12/12/2013 15:34 46 34 34 4 70 8.3 28.3 28.3 32.4 58 12/12/2013 16:34 12/12/2013 15:34 46 34 34 4 66 8.3 665.0 76.08 66 12/12/2013 22:12 12/12/2013 12:24 34 34 4 56 8.4 535.7 61.29 72 12/12/2013 9:33 12/13/2013 12:30 45 32 33 6.5 63 13.4 8191.3 937.8 195 12/13/2013 12:00 12/13/2013 12:00 45 32 33 6.5 68 13.2 189.8 216.53 238 12/13/2013 14:30 12/13/2013 14:30 12/13/2013 14:31		12/4/2013	10:08	12/4/2013 10:08	49	36	35	5	<2	78	0.0	0.	0.0	0.00
12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/4/2013 12:35 12/14/2013 12:35 12/14/2013 12:35 12/14/2013 12:35 12/14/2013 12:35 12/14/2013 12:35 12/14/2013 12:35 12/14/2013 12:37 35		12/4/2013	11:08	12/4/2013 11:08	47	36	35	5	<2	83		0.	0.0	0.00
12/4/2013 12:36 12/4/2013 12:36 12/4/2013 12:36 2 2 66 0.0 2 2 2 2 2 2 2 2		12/4/2013	12:34	12/4/2013 12:34	52	36	35	5	<2	87	0.0	0.	0.0	0.00
SW-53 Event 4 12/11/2013 12/11/2013 12/11/2013 12/11/2013 12/11/2013 12/11/2013 12/11/2013 12/11/2013 12/11/2013 12/12/2013 12/		12/4/2013	12:35	12/4/2013 12:35							Valve shut	0.	0.0	0.00
12/11/2013 17:17 12/11/2013 17:17 35 <2 0.0 12/11/2013 22:12 12/11/2013 22:12 55 34 <2 60 0.0 12/12/2013 7:50 12/12/2013 7:50 52 34 34 34 3.5 68 7.3 1834.6 209.88 20 12/12/2013 11:26 12/12/2013 11:26 45 34 34 3.5 68 7.3 1471.2 168.30 37 12/12/2013 14:40 12/12/2013 14:40 48 35 34 4 70 8.4 1518.6 173.73 55 12/12/2013 15:14 12/12/2013 15:14 45 34 34 4 70 8.3 283.5 32.44 58 12/12/2013 16:34 12/12/2013 16:34 46 34 34 4 70 8.3 283.5 32.44 58 12/12/2013 17:38 12/12/2013 16:34 46 34 34 4 66 8.3 665.0 76.08 66 12/12/2013 17:38 12/12/2013 17:38 55 34 34 4 56 8.4 535.7 61.29 72 12/12/2013 22:12 12/12/2013 22:12 34 34 34 5 66 10.6 2608.0 298.36 102 12/13/2013 9:33 12/13/2013 9:33 33 33 35 6.5 68 13.4 8191.3 937.08 195 12/13/2013 14:30 12/13/2013 14:30		12/4/2013	12:36	12/4/2013 12:36	<u> </u>									0.00
12/11/2013 22:12 12/11/2013 22:12 55 34 <2	SW-53 Event 4	12/11/2013	14:49	12/11/2013 14:49	1	34			<2	66	0.0			0.00
12/12/2013 7:50 12/12/2013 7:50 52 34 34 3 50 6.3 1834.6 209.88 20 12/12/2013 11:26 12/12/2013 11:26 45 34 34 3.5 68 7.3 1471.2 168.30 37 12/12/2013 14:40 12/12/2013 14:40 48 35 34 4 70 8.4 1518.6 173.73 55 12/12/2013 15:14 12/12/2013 15:14 45 34 34 4 70 8.4 1518.6 173.73 55 12/12/2013 16:34 12/12/2013 16:34 46 34 34 4 70 8.3 283.5 32.44 58 12/12/2013 17:38 12/12/2013 17:38 55 34 34 4 56 8.4 535.7 61.29 72 12/13/2013 2:12 12/12/2013 22:12 34 34 5 46 10.6 2608.0 298.36 102 12/13/2013 9:33 12/13/2013 12:00 45 32 33 6.5 63		12/11/2013	17:17	12/11/2013 17:17	,		35	5	<2		0.0			0.00
12/12/2013 11:26 12/12/2013 11:26 45 34 34 34 3.5 68 7.3 1471.2 168.30 37 12/12/2013 14:40 12/12/2013 14:40 48 35 34 4 70 8.4 1518.6 173.73 55 12/12/2013 15:14 12/12/2013 15:14 45 34 34 4 70 8.3 283.5 32.44 58 12/12/2013 16:34 12/12/2013 16:34 46 34 34 4 66 8.3 665.0 76.08 66 12/12/2013 17:38 12/12/2013 17:38 55 34 34 4 56 8.4 535.7 61.29 72 12/12/2013 22:12 12/12/2013 22:12 34 34 34 5 66 10.6 2608.0 298.36 102 12/13/2013 9:33 12/13/2013 9:33 33 33 6.5 63 13.4 8191.3 937.08 195 12/13/2013 12:00 12/13/2013 12:00 45 32 33 6.5 68 13.2 1892.8 216.53 238 12/13/2013 14:30 12/13/2013 14:30 12/13/2013 14:31 25 Valve shut 13.2 1.51 239 12/13/2013 14:31 12/13/2013 14:31 25		12/11/2013	22:12	12/11/2013 22:12	55	34	-		<2	60	0.0			0.00
12/12/2013 14:40 12/12/2013 14:40 48 35 34 4 70 8.4 1518.6 173.73 55 12/12/2013 15:14 12/12/2013 15:14 45 34 34 4 70 8.3 283.5 32.44 58 12/12/2013 16:34 12/12/2013 16:34 46 34 34 4 66 8.3 665.0 76.08 66 12/12/2013 17:38 12/12/2013 17:38 55 34 34 4 56 8.4 535.7 61.29 72 12/12/2013 22:12 12/12/2013 22:12 34 34 4 56 8.4 535.7 61.29 72 12/13/2013 9:33 12/13/2013 9:33 33 33 33 6.5 63 13.4 8191.3 937.08 195 12/13/2013 12:00 12/13/2013 12:00 45 32 33 6.5 68 13.2 1892.8 216.53 238 12/13/2013 14:30 12/13/2013 14:30 12/13/2013 14:31 25 Valve shut 13.2		12/12/2013	7:50	12/12/2013 7:50	52	2 34	. 34	l .	3	50	6.3	1834.	6 209.8	8 209.88
12/12/2013 15:14 12/12/2013 15:14 45 34 34 4 70 8.3 283.5 32.44 58 12/12/2013 16:34 12/12/2013 16:34 46 34 34 4 66 8.3 665.0 76.08 66 12/12/2013 17:38 12/12/2013 17:38 55 34 34 4 56 8.4 535.7 61.29 72 12/12/2013 22:12 12/12/2013 22:12 34 34 5 46 10.6 2608.0 298.36 102 12/13/2013 9:33 12/13/2013 9:33 33 33 33 6.5 63 13.4 8191.3 937.08 195 12/13/2013 12:00 12/13/2013 12:00 45 32 33 6.5 63 13.4 8191.3 937.08 195 12/13/2013 14:29 12/13/2013 14:29 45 32 33 6.5 68 13.2 1892.8 216.53 238 12/13/2013 14:30 12/13/2013 14:30 25 Valve shut 13.2 1.51 <td></td> <td>12/12/2013</td> <td>11:26</td> <td>12/12/2013 11:26</td> <td>45</td> <td>34</td> <td>. 34</td> <td>1 :</td> <td>3.5</td> <td>68</td> <td>7.3</td> <td>1471.</td> <td>2 168.3</td> <td>0 378.18</td>		12/12/2013	11:26	12/12/2013 11:26	45	34	. 34	1 :	3.5	68	7.3	1471.	2 168.3	0 378.18
12/12/2013 16:34 12/12/2013 16:34 46 34 34 4 66 8.3 665.0 76.08 66 12/12/2013 17:38 12/12/2013 17:38 55 34 34 4 56 8.4 535.7 61.29 72 12/12/2013 22:12 12/12/2013 22:12 34 34 5 46 10.6 2608.0 298.36 102 12/13/2013 9:33 12/13/2013 9:33 33 33 6.5 63 13.4 8191.3 937.08 195 12/13/2013 12:00 12/13/2013 12:00 45 32 33 6.5 63 13.4 8191.3 937.08 195 12/13/2013 14:29 12/13/2013 14:29 45 32 33 6.5 68 13.2 1892.8 216.53 238 12/13/2013 14:30 12/13/2013 14:30 12/13/2013 14:31 25 Valve shut 13.2 1.51 239		12/12/2013	14:40	12/12/2013 14:40	48	35	34	l .	4	70	8.4	1518.	6 173.7	3 551.91
12/12/2013 17:38 12/12/2013 17:38 55 34 34 4 56 8.4 535.7 61.29 72 12/12/2013 22:12 12/12/2013 22:12 34 34 5 46 10.6 2608.0 298.36 102 12/13/2013 9:33 12/13/2013 9:33 33 33 6.5 63 13.4 8191.3 937.08 195 12/13/2013 12:00 12/13/2013 12:00 45 32 33 6 70 12.2 1882.7 215.38 217 12/13/2013 14:29 12/13/2013 14:29 45 32 33 6.5 68 13.2 1892.8 216.53 238 12/13/2013 14:30 12/13/2013 14:30 25 Valve shut 13.2 1.51 239 12/13/2013 14:31 12/13/2013 14:31 25 25 239		12/12/2013	15:14	12/12/2013 15:14	. 45	34	. 34	ļ	4	70	8.3	283.	5 32.4	4 584.35
12/12/2013 22:12 12/12/2013 22:12 34 34 5 46 10.6 2608.0 298.36 102 12/13/2013 9:33 12/13/2013 9:33 33 33 6.5 63 13.4 8191.3 937.08 195 12/13/2013 12:00 12/13/2013 12:00 45 32 33 6 70 12.2 1882.7 215.38 217 12/13/2013 14:29 12/13/2013 14:29 45 32 33 6.5 68 13.2 1892.8 216.53 238 12/13/2013 14:30 12/13/2013 14:30 25 Valve shut 13.2 1.51 239 12/13/2013 14:31 12/13/2013 14:31 25 25 239		12/12/2013	16:34	12/12/2013 16:34	. 46	34	. 34	ļ	4	66	8.3	665.	0 76.0	8 660.43
12/13/2013 9:33 12/13/2013 9:33 33 33 6.5 63 13.4 8191.3 937.08 195 12/13/2013 12:00 12/13/2013 12:00 45 32 33 6 70 12.2 1882.7 215.38 217 12/13/2013 14:29 12/13/2013 14:29 45 32 33 6.5 68 13.2 1892.8 216.53 238 12/13/2013 14:30 12/13/2013 14:30 25 Valve shut 13.2 1.51 239 12/13/2013 14:31 12/13/2013 14:31 25 25 239		12/12/2013	17:38	12/12/2013 17:38	55	34	. 34	l	4	56	8.4	535.	7 61.2	9 721.72
12/13/2013 12:00 12/13/2013 12:00 45 32 33 6 70 12.2 1882.7 215.38 217 12/13/2013 14:29 12/13/2013 14:29 45 32 33 6.5 68 13.2 1892.8 216.53 238 12/13/2013 14:30 12/13/2013 14:30 Valve shut 13.2 1.51 239 12/13/2013 14:31 12/13/2013 14:31 25		12/12/2013	22:12	12/12/2013 22:12		34	. 34	l	5	46	10.6	2608.	0 298.3	6 1020.07
12/13/2013 12:00 12/13/2013 12:00 45 32 33 6 70 12.2 1882.7 215.38 217 12/13/2013 14:29 12/13/2013 14:29 45 32 33 6.5 68 13.2 1892.8 216.53 238 12/13/2013 14:30 12/13/2013 14:30 Valve shut 13.2 1.51 239 12/13/2013 14:31 12/13/2013 14:31 25 239						33	33	3	6.5	63				
12/13/2013 14:29 12/13/2013 14:29 45 32 33 6.5 68 13.2 1892.8 216.53 238 12/13/2013 14:30 12/13/2013 14:30 Valve shut 13.2 1.51 239 12/13/2013 14:31 12/13/2013 14:31 25														
12/13/2013 14:30 12/13/2013 14:30 Valve shut 13.2 1.51 239 12/13/2013 14:31 12/13/2013 14:31 25 239									6.5					
12/13/2013 14:31 12/13/2013 14:31 25														
							25	5						2390.58
	SW-53 Event 5	12/16/2013	17:27			34			<2	58	0.0	0.	0.0	

				P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO₂	
Back to Master			Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Fl	low (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	12/16/2013	17:46			34			<2	54	0.0	0.0	0.	00 2390.58
	12/16/2013	22:10	12/16/2013 22:10	50	32	30.5	5	<2	44	0.0	0.0	0.	00 2390.58
	12/17/2013	7:54	12/17/2013 7:54		32	33	L ·	<2	46	0.0	0.0		00 2390.58
	12/17/2013	7:56	• •							Valve shut	0.0	0.	00 2390.58
	12/17/2013	7:57	12/17/2013 7:57			24							2390.58
SW-53 Event 6	12/17/2013	11:33	12/17/2013 11:33		35			6	73	12.5			2390.58
	12/17/2013	13:01	12/17/2013 13:01		34			10	75	20.6	1459.8		
	12/17/2013	13:02	12/17/2013 13:02					8	75	16.2	18.4		
	12/17/2013	14:15	12/17/2013 14:15	42	35	34.5	5	4	76	8.3	894.2	2 102.	29 2661.98
	12/17/2013	15:08	12/17/2013 15:08	45	34	34	1	5	75	10.3	494.3	56.	55 2718.53
	12/17/2013	16:22	12/17/2013 16:22	45	34	34	1	5	74	10.3	764.1	L 87.	41 2805.94
	12/17/2013	22:05	12/17/2013 22:05	45	34	3!	5	6	54	12.6	3940.2	2 450.	76 3256.70
	12/18/2013	12:35	12/18/2013 12:35	50	34	33.5	5 7	.5	69	15.6	12273.9	9 1404.	13 4660.83
	12/18/2013	14:25	12/18/2013 14:25	47	34	33.5	5	8	76	16.5	1763.7	7 201.	77 4862.60
	12/18/2013	16:42	12/18/2013 16:42	45	34	33	3	8	70	16.6	2266.6	259.	30 5121.89
	12/18/2013	18:08	12/18/2013 18:08	55	33	33	3	9	30	19.2	1540.9	176.	28 5298.17
	12/18/2013	18:09	12/18/2013 18:09			24	1			Valve shut	19.2	2 2.	20 5300.38
SW-53 Event 7	1/10/2014	9:35	1/10/2014 9:35		30	30) .	<2	66	0.0			5300.38
	1/10/2014	9:37	1/10/2014 9:37		32.5	32.5	5	<2	66	0.0			5300.38
	1/10/2014	9:45	1/10/2014 9:45	45	32.5	32.5	5	<2	66	0.0			5300.38
	1/10/2014	10:40	1/10/2014 10:40	42	32	32.5	5	<2	70	0.0			5300.38
	1/10/2014	12:20	1/10/2014 12:20	40	30.5	33	L ·	<2	72	0.0			5300.38
	1/10/2014	13:15	1/10/2014 13:15	45	30	33	L ·	<2	69	0.0			5300.38
	1/10/2014	14:13	1/10/2014 14:13	42.5	30	30)	<2	70	0.0			5300.38
	1/10/2014	16:10	1/10/2014 16:10	45	30	30)	<2	70	0.0			5300.38
	1/10/2014	16:17	1/10/2014 16:17	45	33	32.5	5	4	70	8.2	28.7	3.	29 5303.66
	1/10/2014	17:47	1/10/2014 17:47	45	33	33	3	.5	67	7.2	693.6	5 79.	35 5383.01
	1/10/2014	21:50	1/10/2014 21:50	44	33	33	3	4	66	8.2	1876.7	214.	70 5597.71
	1/11/2014	8:50	1/11/2014 8:50	42	33	33	3	5	66	10.3	6119.6	700.	08 6297.79
	1/11/2014	10:50	1/11/2014 10:50	38	33	33	3 5	.8	73	11.9	1330.3	3 152.	18 6449.97
	1/11/2014	11:30	1/11/2014 11:30	38	33	33	3	6	75	12.3	482.5	5 55.	19 6505.16
	1/11/2014	11:32	1/11/2014 11:32							Valve shut	24.5	5 2.	80 6507.97
	1/11/2014	11:46	1/11/2014 11:46			22	2						6507.97
SW-53 Event 8	1/13/2014	12:10	1/13/2014 12:10	48	26	26	5	<2	73	0.0	0.0	0.	00 6507.97
	1/13/2014	12:11	1/13/2014 12:11	48	32	31.5	5	<2	73	0.0	0.0	0.	00 6507.97
	1/13/2014	13:08	1/13/2014 13:08	45	30.5	30.5	5	<2	74	0.0	0.0	0.	00 6507.97
	1/13/2014	13:09	1/13/2014 13:09	45	32.5	32	2	<2	74	0.0	0.0	0.	00 6507.97
	1/13/2014	14:33	1/13/2014 14:33	42	32.5	32	<u>2</u> .	<2	72	0.0	0.0	0.	00 6507.97
	1/13/2014	14:36	1/13/2014 14:36	42	35	33.5	5	3	72	6.3	9.4	1.	08 6509.05
	1/13/2014	15:52						.5	70	7.3	517.2		
	1/13/2014	16:38	1/13/2014 16:38					.7	70	7.7	346.1		
	1/13/2014	17:09	1/13/2014 17:09					.7	70	7.7	239.1		
	1/13/2014	21:49	1/13/2014 21:49			33		5	63	10.4	2541.9		
	1/14/2014	8:00	1/14/2014 8:00					.5	62	13.3	7254.0		
	1/14/2014	8:02				24				Valve shut	26.6		
SW-53 Event 9	1/15/2014	8:06			32.5			5	48	10.4	0.0		00 7758.86
	1/15/2014	8:48						4	56	8.3	393.0		
	1/15/2014	9:45						.8	64	7.8	459.6		
	1/15/2014	11:12						.5	69	9.2	743.4		
	1/15/2014	11:58						.5	70	9.1	422.8		
	1/15/2014	14:00						5	69	10.2	1177.2		
	1/15/2014	14:28						.5	70	11.2	298.6		
	1/15/2014	16:25						.9	68	12.0	1355.5		
	1/13/2014	10.23	1/13/2014 10.23	30	32	3.			50	12.0	1333.	, 100.	00 0010.70

				P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flov	w (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	1/15/201	14 16:26	5 1/15/2014 16:26			26				Valve shut	12.	0 1.	37 8315.08
<u>SW-53 Event 10</u>	1/17/201	14 7:18	3 1/17/2014 7:18	57	' 31	L 33	•	<2	40	0.0			8315.08
	1/17/201							<2	44	0.0			8315.08
	1/17/201	14 9:14	1/17/2014 9:14	47	' 30	32.5	•	<2	57	0.0			8315.08
	1/17/201	14 10:25	5 1/17/2014 10:25	47	' 30	32.5	•	<2	62	0.0		0.	00 8315.08
	1/17/201		3 1/17/2014 11:33	45	30			2	68	4.0	135.		48 8330.56
	1/17/201	14 12:24	1/17/2014 12:24	45	30	32.5		2.5	70	5.0	228.	1 26.	09 8356.65
	1/17/201		• •	45	30			2.5	70	5.0	163.		
	1/17/201		9 1/17/2014 14:09	45	30	32.5		3	70	6.0	393.	2 44.	98 8420.37
	1/17/201			47	' 30	32.5		3	70	6.0 Valve shut	417.	0 47.	71 8468.08
	1/17/201					22							8468.08
SW-53 Event 11	1/23/201				31.5			<2	33	0.0			8468.08
	1/23/201				31			<2	37	0.0	0.		00 8468.08
	1/23/201			48	31			<2	45	0.0	0.		00 8468.08
	1/23/201			48	33	33	•	<2	45	0.0	0.	0.	00 8468.08
	1/23/201		• •					<2	48	0.0	0.		00 8468.08
	1/23/201			42.5	33			<2	52	0.0	0.	0.	00 8468.08
	1/23/201			42.5	34			3	52	6.3	3.		36 8468.44
	1/23/201	14 11:52	2 1/23/2014 11:52	40	34			3	54	6.3	316.	4 36.	20 8504.64
	1/23/201	14 12:38	3 1/23/2014 12:38	44	34	33.8	1	3	60	6.3	290.	0 33.	17 8537.81
	1/23/201		2 1/23/2014 14:12	50	33.5	33.8		3.2	58	6.7	609.	4 69.	71 8607.52
	1/23/201		1/23/2014 15:44	49	33.5	33.5	3	3.8	57	7.9	672.		
	1/23/201	14 16:19	9 1/23/2014 16:19	50	33.5	33.2	. 3	3.9	56	8.2	281.	32.	24 8716.72
	1/23/201	14 16:20	1/23/2014 16:20							Valve shut	8.	2 0.	93 8717.65
<u>SW-53 Event 12</u>	2/11/201				33	33.5	•	<2	63	0.0			8717.65
	2/11/201	14 10:20	2/11/2014 10:20	53	32.2	2 33	•	<2	66	0.0	0.	0.	00 8717.65
	2/11/201		• •	53	31.5	33	•	<2	66	0.0	0.	0.	00 8717.65
	2/11/201				32	2 33	•	<2	66	0.0	0.	0.	00 8717.65
	2/11/201				33	34		2	66	4.1			8717.65
	2/11/201				33	34		2	64	4.1	321.		
	2/11/201				33	34		3	56	6.2	850.	5 97.	30 8851.76
	2/11/201		• •		33	34		3	54	6.3 Valve shut	343.	7 39.	
	2/11/201					26							8891.08
SW-53 Event 13	2/12/201							<2	49	0.0			8891.08
	2/12/201							<2	49	0.0	0.		00 8891.08
	2/12/201				' 32	2 33	•	<2	49	0.0	0.		00 8891.08
	2/12/201							<2	51	0.0	0.		00 8891.08
	2/12/202							2.5	51	5.3	2.		30 8891.38
	2/12/202							3.7	50	7.8	574.		
	2/12/202							4	49	8.4	1021.		
	2/12/202							4	49	8.4	463.		
	2/12/202							.2	47	8.9	518.		
	2/12/201							.2	47	8.9	532.		
	2/12/201			50				.3	48	9.1	538.		
	2/13/202		• •					6	45	12.7	8684.		
	2/13/202			51				6	44	12.7	609.		
	2/13/202							6	45	12.7	838.		
	2/13/202							5.1	45	12.9	614.		
	2/13/201							5.1	46	12.9	516.		
	2/13/202			51				5.2	46	13.1	390.		
	2/13/202							5.2	47	13.1	392.		
	2/13/202		• •	51				5.2	50	13.1	392.		
	2/13/202	14 12:31	1 2/13/2014 12:31	51	. 33.5	5 34	. 6	5.3	53	13.2	394.	1 45.	08 10776.69

				P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	2/13/20	13:0	2/13/2014 13:0	1 5	1 33.5	5 34	1 6	5.3	55 :	13.2	396.2	45.33	3 10822.02
	2/13/20	14:0	2/13/2014 14:03	2 5	2 33.5	5 34	1 6	5.5	56	13.6	817.2	93.49	9 10915.50
	2/13/20	15:0	2/13/2014 15:0	1 5	1 33.5	5 34	1 6	5.8	58	14.2	820.0	93.8	11009.31
	2/13/20	15:1	.8 2/13/2014 15:18	3		23	3			Valve shut	241.4	27.6	11036.93
Notes a red value	: a 7F 0F ::ad:aa+		on internal ated from field	data			-	•		T. 1.	1.60 . 1.4 (11)	·	

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-54 Event 1	11/18/2013		11/18/2013 14:24					79				
	11/18/2013		• •							0.0		
	11/18/2013							4 80		27.5		
	11/18/2013		• •		29.5			7 79.5		64.7		
	11/18/2013									29.4		
	11/18/2013		• •							199.7		
	11/18/2013		• •							253.6		
	11/18/2013		11/18/2013 15:54							965.5		
	11/18/2013		• •							22.8		
	11/18/2013		11/18/2013 17:13		31	. 28	13.	5 71		1991.6		
	11/18/2013		11/18/2013 17:15						Valve shut	54.2	6.20	
	11/18/2013		• •		. 22	15						412.87
SW-54 Event 2	12/3/2013											412.87
	12/3/2013		• •							0.0		
	12/3/2013		• •		27	28	<	2 77		0.0	0.00	
	12/3/2013		12/3/2013 13:36	50	25	24	. 1	5 77		111.4	12.75	425.62
	12/3/2013	13:41	12/3/2013 13:41		27.5	25	1	7 77	32.6	151.1	17.28	3 442.90
	12/3/2013	14:02	12/3/2013 14:02	49	26	25.5	1	9 77	35.7	717.2	82.05	5 524.95
	12/3/2013	14:05	12/3/2013 14:05	48	25	25	2	78	37.1	109.3	12.50	537.45
	12/3/2013	14:26	12/3/2013 14:26	48	29	26.5	2	2 78	3 42.9	839.7	96.06	633.51
	12/3/2013	14:30	12/3/2013 14:30	47	29	25.5	22.	5 76	43.9 Valve shut	173.5	19.85	653.36
	12/3/2013	14:31	12/3/2013 14:31									653.36
SW-54 Event 3	12/4/2013	12:20	12/4/2013 12:20									653.36
	12/4/2013	12:21	12/4/2013 12:21	50	25	30	1	0 84	18.5	18.5	5 2.11	1 655.47
	12/4/2013	12:23	12/4/2013 12:23	50	25	30	1	3 84	24.0	42.4	4.85	660.33
	12/4/2013	12:24	12/4/2013 12:24	50	25	25	1	5 84	27.7	25.8	3 2.96	663.28
	12/4/2013	12:45	12/4/2013 12:45	55	25	23	1	84	33.2	639.3	3 73.14	736.42
	12/4/2013	12:46	12/4/2013 12:46	55	25	25.5	20.	5 84	37.8	35.5	4.06	5 740.48
	12/4/2013	13:16	12/4/2013 13:16	54	25	23	2	2 84	40.6	1176.2	134.56	875.04
	12/4/2013		12/4/2013 13:20	54	25	23	22.	5 84	41.5	164.2	18.79	893.83
	12/4/2013		12/4/2013 13:21						Valve shut	41.5	4.75	898.58
	12/4/2013					15	,)					898.58
SW-54 Event 4	12/5/2013											898.58
	12/5/2013			50	28	27	·	2 85	0.0			898.58
	12/5/2013		12/5/2013 14:21					2 85		9.4	1.08	899.66
	12/5/2013							5 85		6.7		
	12/5/2013		12/5/2013 14:24			28.5		3 85		25.2		
	12/5/2013									287.7		
	12/5/2013									53.2		
	12/5/2013									57.7		
	12/5/2013									1987.1		
	12/5/2013											
	12/5/2013		12/5/2013 15:41			17.5		, <u> </u>				1180.78
SW-54 Event 5	12/6/2013				26			5 84	15.9			1180.78
<u> </u>	12/6/2013									22.4	1 2.57	
	12/6/2013									30.4		
	12/6/2013		• •							33.6		
	12/6/2013									675.5		
	12/6/2013									85.0 85.0		
	12/6/2013									483.0		
	12/6/2013											
			• •		38			5 83		2109.6		
CIM Ed Front C	12/6/2013				22	18			Valve shut			
SW-54 Event 6	12/9/2013	15:13	12/9/2013 15:13	50	33	32	<	2 80	0.0	0.0	0.00	1586.70

				P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flo	ow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	12/9/2013	15:31	12/9/2013 15:31	47	' 32	. 2:	9 7	7.5	80	15.1	135.7	7 15.5	53 1602.23
	12/9/2013	15:50	12/9/2013 15:50	45	30) 2	7	10	80	19.7	330.1	L 37.7	76 1639.99
	12/9/2013	16:19	12/9/2013 16:19	45	32	2	7	12	75	24.2	636.8	72.8	1712.84
	12/9/2013	16:22	12/9/2013 16:22							Valve shut	72.7	7 8.3	32 1721.16
	12/9/2013	16:23	12/9/2013 16:23			2)						1721.16
SW-54 Event 7	12/10/2013	16:25	12/10/2013 16:25	50	30	3	2	<2	73	0.0	0.0	0.0	00 1721.16
	12/10/2013	16:28	12/10/2013 16:28	50	30) 3) 5	5.5	73	10.9	16.3	3 1.8	37 1723.03
	12/10/2013	16:42	12/10/2013 16:42	50	30	2	3 5	5.5	70	10.9	152.7	7 17.4	1740.50
	12/10/2013	16:55	12/10/2013 16:55	50	30	2	3	9	68	17.9	187.4	1 21.4	1761.93
	12/10/2013	17:23	12/10/2013 17:23	50	30	26.	5 12	2.5	63	25.0	600.6	68.7	71 1830.64
	12/10/2013	17:27	12/10/2013 17:27		30	26.	5 12	2.5	63	25.0	100.0) 11.4	1842.08
	12/10/2013	17:28	12/10/2013 17:28			2	5			Valve shut	25.0	2.8	86 1844.94
SW-54 Event 8	12/11/2013	13:15	12/11/2013 13:15	48	30	3	2	8	67	15.9			1844.94
	12/11/2013	13:16	12/11/2013 13:16	48	28	3 2	7	11	67	21.4	18.7	7 2.1	14 1847.08
	12/11/2013	13:36	12/11/2013 13:36	48	3 28	3 2	5 14	4.3	66	27.9	492.6	56.3	1903.43
	12/11/2013	13:38	12/11/2013 13:38	48	28	3 27.	5	17	66	33.1	61.0	6.9	97 1910.41
	12/11/2013	14:40	12/11/2013 14:40	48	27.5	25.	5	18	65	34.9	2108.0	241.1	16 2151.56
	12/11/2013	14:43	12/11/2013 14:43							Valve shut	104.7	7 11.9	2163.54
SW-54 Event 9	12/12/2013	14:11	12/12/2013 14:11	50	28	3 2	5	14	70	27.2			2163.54
	12/12/2013	14:17	12/12/2013 14:17	45	28	3 2	1 16	5.5	70	32.0	177.5	20.3	2183.85
	12/12/2013	14:18	12/12/2013 14:18	45	28	3 2	5	20	70	38.8	35.4	4.0	05 2187.90
	12/12/2013	14:56	12/12/2013 14:56	47	28	3 2	1	22	70	42.7	1548.3	3 177.1	13 2365.02
	12/12/2013	14:57	12/12/2013 14:57	45	30) 2	5 24	4.5	70	48.7	45.7	7 5.2	22 2370.25
	12/12/2013	15:17	12/12/2013 15:17	45	30) 2	4 25	5.5	69	50.7	993.4	113.6	55 2483.89
	12/12/2013	15:18	12/12/2013 15:18							Valve shut	50.7	7 5.8	30 2489.69
	12/12/2013	15:19	12/12/2013 15:19			2)						2489.69
SW-54 Event 10	12/16/2013	10:32	12/16/2013 10:32	42.5	30) 3)	<2	64	0.0	0.0	0.0	00 2489.69
	12/16/2013	10:55	12/16/2013 10:55	42	25	2	5	<2	66	0.0	0.0	0.0	2489.69
	12/16/2013	10:56	12/16/2013 10:56	40) 25	2	Ð	3	66	5.6	2.8	0.3	32 2490.02
	12/16/2013	11:27	12/16/2013 11:27	40	25	2	€	4	67	7.5	203.6	5 23.2	29 2513.30
	12/16/2013	11:32	12/16/2013 11:32							Valve shut	37.5	5 4.2	29 2517.59
	12/16/2013	11:33	12/16/2013 11:33			2	2						2517.59
SW-54 Event 11	12/19/2013	9:16	12/19/2013 9:16	42	29	3	1 11	1.5	66	22.7			2517.59
	12/19/2013	9:17	12/19/2013 9:17	42	28	3 2	5	12	66	23.4	23.0	2.6	53 2520.23
	12/19/2013	9:51	12/19/2013 9:51	40	26	5 2	1	17	68	32.3	945.7	7 108.1	19 2628.42
	12/19/2013	11:06	12/19/2013 11:06	40	26	5 2	1	17	73	32.1	2413.3	3 276.0	2904.49
	12/19/2013	15:00	12/19/2013 15:00	41	. 26	5 2	4	17	78	31.9	7493.1	L 857.2	22 3761.71
	12/19/2013	16:15	12/19/2013 16:15	41	. 26	5 2	1	17	74	32.1	2400.5	274.6	62 4036.33
	12/19/2013	16:50	12/19/2013 16:50	49	27	23.	5	16	69	30.7	1098.5	125.6	67 4161.99
	12/19/2013	16:53	12/19/2013 16:53	49	28	3 2	5 20	0.5	69	39.8	105.8	3 12.1	10 4174.09
	12/19/2013	22:10	12/19/2013 22:10	50	28	3 2	5	22	55	43.3	13177.3	3 1507.4	48 5681.58
	12/20/2013	8:19	12/20/2013 8:19	41	. 28	3 2	4 23	3.5	62	46.0	27185.4	3110.0	01 8791.58
	12/20/2013	8:22	12/20/2013 8:22	40	35	27.	5	31	62	65.5	167.2	2 19.1	12 8810.71
	12/20/2013	10:26	12/20/2013 10:26	39	34	2	7	30	76	61.9	7895.2	903.2	21 9713.92
	12/20/2013	12:18	12/20/2013 12:18	45	38	3)	33	80	70.6	7415.4	848.3	32 10562.23
	12/20/2013	12:19	12/20/2013 12:19							Valve shut	70.6	8.0	07 10570.30
	12/20/2013	12:20	12/20/2013 12:20										10570.30
SW-54 Event 12	1/21/2014	12:10	1/21/2014 12:10		. 29.5	5 2:	9	<2	71	0.0	0.0	0.0	
	1/21/2014	12:14	1/21/2014 12:14					6	71	11.8	23.5		
	1/21/2014	13:24	1/21/2014 13:24					13	74	24.5	1270.2		
	1/21/2014	13:27	1/21/2014 13:27					18	74	35.2	89.6		
	1/21/2014	14:37	1/21/2014 14:37					3.1	74	35.4	2470.8		
	1/21/2014	15:45						3.2	68	35.8	2420.6		
	•												

nck to Master [Date 1	Time Da	P a ate + Time (ps	it Reducer P at P sig) (psig)		: Well Rotar) Readi	neter ing (scfm) Temp (°F	F) Flov	v (scfm)		Mass of CO ₂ (lb)	Cumulative Mass (lb)
	1/21/2014	16:40	1/21/2014 16:40	51	29	26	19.2	68	37.8	2023.1	231.44	11519
	1/21/2014	16:41	1/21/2014 16:41						Valve shut	37.8	4.32	11523
	1/21/2014	16:46	1/21/2014 16:46			20						11523
V-54 Event 13	1/29/2014	7:45	1/29/2014 7:45	45	31	31.5	10	40	20.7			11523
	1/29/2014	7:50	1/29/2014 7:50	38	27.5	25	10	40	19.9	101.4	11.60	11535
	1/29/2014	7:58	1/29/2014 7:58			25				159.0	18.19	1155
	1/29/2014	8:00	1/29/2014 8:00	55	27	25	12	40	23.7	47.4	5.42	1155
	1/29/2014	9:30	1/29/2014 9:30	50	28	26	14.5	40	29.0	2371.6	271.31	1183
	1/29/2014	10:30	1/29/2014 10:30	49	26	25	16	40	31.2	1806.5	206.67	1203
	1/29/2014	11:40	1/29/2014 11:40	43	26	25	18.5	40	36.1	2356.4	269.57	1230
	1/29/2014	11:42	1/29/2014 11:42			20			Valve shut	72.2	8.26	1231
/-54 Event 14	2/4/2014	10:16	2/4/2014 10:16	55	30	30.5	<2	62	0.0			1231
	2/4/2014	10:20	2/4/2014 10:20	55	28.9	30.5	3.5	62	6.9	13.8	1.58	1231
	2/4/2014	10:30	2/4/2014 10:30	53	27.8	28.5	7.7	63	15.0	109.6	12.54	1232
	2/4/2014	11:34	2/4/2014 11:34	52	26	26	13.3	65	25.3	1290.1	147.59	1247
	2/4/2014	11:35	2/4/2014 11:35	52	28	27.5	16.2	65	31.6	28.4	3.25	1247
	2/4/2014	12:35	2/4/2014 12:35	50	27.5	26.3	18	66	34.9	1993.2	228.02	1270
	2/4/2014	13:17	2/4/2014 13:17	48	27	25.5	19.2	67	36.9	1507.1	172.42	1288
	2/4/2014	13:19	2/4/2014 13:19	48	28.5	26.8	21.8	67	42.7	79.6	9.10	1288
	2/4/2014	14:43	2/4/2014 14:43	48	28.5	26.8	21.8	64	42.8	3589.8	410.67	1330
	2/4/2014	14:44	2/4/2014 14:44			21			Valve shut	42.8	4.90	
-54 Event 15	2/6/2014	7:49	2/6/2014 7:49	52	25.5	26.5	<2	47	0.0			1330
	2/6/2014	7:51	2/6/2014 7:51	51	28	28	7.8	47	15.5	15.5	1.77	1330
	2/6/2014	8:35	2/6/2014 8:35	55	26	26	14	53	27.0	933.8	106.83	
	2/6/2014	8:37	2/6/2014 8:37	55	28.5	27.5	18	53	35.7	62.7	7.17	
	2/6/2014	9:09	2/6/2014 9:09	50	28	26.5	19	56	37.4	1169.7	133.81	
	2/6/2014	9:12	2/6/2014 9:12	50	29	27.5	20.8	56	41.4	118.2	13.52	
	2/6/2014	10:25	2/6/2014 10:25	47	28.2	26	21.9	60	43.0	3081.2	352.49	
	2/6/2014	10:28	2/6/2014 10:28	47	30	27	24.5	60	49.1	138.2	15.81	139
	2/6/2014	11:05	2/6/2014 11:05	46	30	27	25	62	50.0	1834.7	209.89	
	2/6/2014	12:07	2/6/2014 12:07	45	30	26.5	25.5	66	50.8	3127.1	357.74	
	2/6/2014	14:04	2/6/2014 14:04	45	30	26.5	25.8	64	51.5	5988.9	685.13	
	2/6/2014	15:17	2/6/2014 15:17	44	30	26.5	25.7	61	51.5	3760.5	430.20	
	2/6/2014	16:32	2/6/2014 16:32	44	30	26.5	25.8	58	51.8	3875.1	443.31	
	2/6/2014	17:14	2/6/2014 17:14	44	30	26.5	25.8	57	51.9 Valve shut	2178.6	249.23	
	2/6/2014	17:15	2/6/2014 17:15		30	20.3	23.0	3,	32.3 varie sitat	217010	2 13123	163
54 Event 16	2/10/2014	13:10	2/10/2014 17:13	45	28.5	27.5	7.9	79	15.3			163
O I EVEITE TO	2/10/2014	13:15	2/10/2014 13:15	45	30	27.5	11.7	79	23.0	95.8	10.96	
	2/10/2014	14:47	2/10/2014 13:13	45	29	25	15.8	79	30.7	2474.0	283.02	
	2/10/2014	14:49	2/10/2014 14:49	45	30	25.5	19	79 79	37.4	68.2	7.80	
	2/10/2014	16:36	2/10/2014 14:49	45 45	30.5	25.5 25.5	18.7	79 74	37.4	3991.3	456.60	
					30.5			74 70	37.2 37.9			
	2/10/2014	17:26	2/10/2014 17:26	45	30.3	25.5	19	70		1878.6	214.91	
	2/10/2014	17:27	2/10/2014 17:27			20			Valve shut	37.9	4.34	172

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master		Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-55 Event 1	11/19/2013	13:32						74				
	11/19/2013	13:35						2 74		0.0		
	11/19/2013	13:50	· ·		24			4 74		55.2		
	11/19/2013	13:52								24.3		
	11/19/2013	17:52	• •		29			.8 60		6313.9		
	11/19/2013	17:54	• •					21 60		80.1		
	11/19/2013	17:57			34	4 2	/ 2	21 60		132.7		
	11/19/2013	17:58	· ·			_	_		Valve shut	44.0	5.03	
0111 == =	11/19/2013	17:59			18	8 1	/					760.77
SW-55 Event 2	12/3/2013	13:30				_						760.77
	12/3/2013	13:31	• •							10.4		
	12/3/2013	13:37						.0 77		90.2		
	12/3/2013	13:42	• •					.2 77		108.5		
	12/3/2013	14:42	• •					.6 76		1646.9		
	12/3/2013	15:18						.6 74		1118.7		
	12/3/2013	15:20	• •					.9 74		68.5		
	12/3/2013	16:52	• •					21 67		3652.8		
	12/3/2013	17:29	• •		5 29	9 23.	5 21	.5 66		1557.7		
	12/3/2013	17:30	• •						Valve shut	42.4	4.85	
	12/3/2013	17:31				1						1709.85
SW-55 Event 3	12/9/2013	13:12	• •					2 84				1709.85
	12/9/2013	13:38								131.9		
	12/9/2013	14:07	• •					7 84		332.0		
	12/9/2013	14:34	• •							359.3		
	12/9/2013	14:47	• •					.3 81.0		246.5		
	12/9/2013	15:08	• •					.3 80		505.4		
	12/9/2013	15:56	• •					.5 77		1246.5		
	12/9/2013	16:48	• •					.6 74		1499.3		
	12/9/2013	17:14			2.	5 2	5 1	.6 72.0		775.6		
	12/9/2013	17:15							Valve shut	29.9	3.42	
	12/9/2013	17:16	· ·			2						2296.30
SW-55 Event 4	12/16/2013	8:14						:2	0.0			2296.30
	12/16/2013	8:16						6 48		11.8		
	12/16/2013	8:18								26.4		
	12/16/2013	8:20								39.8		
	12/16/2013	8:58								1110.3		
	12/16/2013	9:14								542.4		
	12/16/2013	9:53			28	8 2	4 1	.8 58		1363.2		
	12/16/2013	9:54							Valve shut	35.3	4.04	
	12/16/2013	9:55				1						2654.28
	12/16/2013	10:31						21 64		1475.5		
	12/16/2013	10:56								987.1		
	12/16/2013	11:25						20 67		1115.1		
	12/16/2013	11:26								42.9		
	12/16/2013	12:33			30) 2	4 2	25 67		3235.9		
	12/16/2013	12:34							Valve shut	49.8	5.70	
	12/16/2013	12:35				2	0					3444.36
SW-55 Event 5	1/8/2014	7:53							0.0			3444.36
	1/8/2014	7:57						.0 38		0.0		
	1/8/2014	8:09	• •					.6 37		314.4		
	1/8/2014	8:25						.6 38		516.3		
	1/8/2014	9:05								1277.1		
	1/8/2014	9:08	1/8/2014 9:08	48	3 2	7 24.	5 2	20 40	39.5	107.0	12.24	3697.72

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	1/8/2014	10:02	1/8/2014 10:02	. 46	5 2	6 23.	5 20	48	38.7	2112.0	241.6	3939.34
	1/8/2014	10:44	1/8/2014 10:44	45	5 2	6 23.	5 20.5	52	39.5	1642.8	187.9	3 4127.27
	1/8/2014	12:05	1/8/2014 12:05	43	3 2	6 23.	5 20.5	60	39.2	3188.2	364.7	3 4492.00
	1/8/2014	12:07	1/8/2014 12:07	43	3 2	7 23.	5 22.5	60	43.6	82.8	9.4	7 4501.47
	1/8/2014	13:07	1/8/2014 13:07	' 50	27.	5 2	3 23	60	44.8 Valve shut	2650.8	303.2	5 4804.72
	1/8/2014	13:09	1/8/2014 13:09)		1	8					4804.72
SW-55 Event 6	1/10/2014	8:48	1/10/2014 8:48		3	0 3	0 11	. 66	21.9			4804.72
	1/10/2014	8:49	1/10/2014 8:49	55	5 2	8 2	8 12	. 66	23.4	22.7	2.5	9 4807.31
	1/10/2014	9:47	1/10/2014 9:47	45	5 2	6 2	3 16	66	30.4	1559.9	178.4	6 4985.77
	1/10/2014	10:44	1/10/2014 10:44	45	5 2	6 2	3 18	3 70	34.1	1838.3	3 210.3	5196.07
	1/10/2014	10:46	1/10/2014 10:46	45	5 2	8 2	4 22	. 70	42.7	76.8	8.7	8 5204.85
	1/10/2014	12:30	1/10/2014 12:30) 42	2 2	8 2	3 22	. 71	42.6	4437.2	507.6	5712.46
	1/10/2014	13:00	1/10/2014 13:00) 40) 2	8 2	3 22	. 70	42.7	1279.9	146.4	3 5858.89
	1/10/2014	13:01	1/10/2014 13:01						Valve shut	42.7	7 4.8	8 5863.77
	1/10/2014	13:03	1/10/2014 13:03			1	9					5863.77
SW-55 Event 7	1/14/2014	8:17	1/14/2014 8:17	' 46	5 2	7 2	9 6	63	11.6			5863.77
	1/14/2014	8:22	1/14/2014 8:22	45	5 2	7 2	8 9	63	17.4	72.4	8.2	8 5872.05
	1/14/2014	9:02	1/14/2014 9:02	47	7 2	5 2	5 12.2	. 63	23.0	806.8	92.3	0 5964.36
	1/14/2014	9:07	1/14/2014 9:07	47	7 2	7 2	7 16.2	. 63	31.3	135.6	5 15.5	5979.87
	1/14/2014	10:12	1/14/2014 10:12	. 44	1 2	7 2	5 18.5	64	35.7	2175.7	7 248.9	0 6228.77
	1/14/2014	11:24) 2	6 2	5 19.5	64	37.1	2621.5	299.9	0 6528.67
	1/14/2014	12:40	1/14/2014 12:40) 44	1 2			66	37.1 Valve shut	2820.1	322.6	6851.29
	1/14/2014	12:41				2	7					6851.29
SW-55 Event 8	1/16/2014	7:54			5 2	7 2	7	42	13.8			6851.29
	1/16/2014	7:55								20.0) 2.2	
	1/16/2014	8:51								1726.5		
	1/16/2014	8:56								178.1		
	1/16/2014	10:10								2627.1		
	1/16/2014	10:12								78.5		
	1/16/2014	11:15								2728.0		
	1/16/2014	12:00							43.4	1951.0		
	1/16/2014	12:01							Valve shut	43.4		
SW-55 Event 9	1/20/2014	7:43) 23.	5 2	4 5	5 40				7921.24
	1/20/2014	7:44	• •							14.9	1.7	
	1/20/2014	7:45								23.2		
	1/20/2014	8:21								1038.1		
	1/20/2014	8:23								71.7		
	1/20/2014	9:03								1637.1		
	1/20/2014	10:13	• •							2962.9		
	1/20/2014	10:15								90.5		
	1/20/2014	11:19	• •						48.2	3069.9		
	1/20/2014	12:30	• •							3418.3		
	1/20/2014	12:33	• •		_	_		, , _	Valve shut	144.2		
	1/20/2014	12:35				2	n		valve shae	111.2	. 10. 1	9347.90
SW-55 Event 10	1/21/2014	7:52			7 2			7 52	13.8			9347.90
511 JJ LVCIIC 10	1/21/2014	8:38							29.4	993.2	2 113.6	
	1/21/2014	8:40								70.6		
	1/21/2014	9:36								2348.1		
	1/21/2014	10:19							42.8	1837.0		
	1/21/2014	11:45								3690.3		
	1/21/2014	12:01								688.2		
	1/21/2014	12:01			۷1.	2		, , , , ,	45.0 valve shul	000.2	. 76.7	10449.28
	1/21/2014	12.02	1/21/2014 12:02			Z						10443.28

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	0			1 .								

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-56 Event 1	11/21/2013	10:06			(10)	(1-2-7		(1)	0.0		()	
	11/21/2013	10:07	11/21/2013 10:07		30	29.5	<2	. 68		0.0	0.00	0.00
	11/21/2013	10:09			32					0.0		
	11/21/2013	10:53								265.3		
	11/21/2013	10:55								26.4		
	11/21/2013	11:29	• •							555.3		
	11/21/2013	13:10								2007.7		
	11/21/2013	13:12	• •		32.5					43.8		
	11/21/2013	14:19								1500.1		
	11/21/2013	14:23	11/21/2013 14:23		32.5		11			89.5		
	11/21/2013	14:24	11/21/2013 14:24			16						513.43
SW-56 Event 2	11/23/2013	7:52) 25			66	0.0	0.0	0.00	
	11/23/2013	7:56					<2			0.0		
	11/23/2013	8:31	11/23/2013 8:31							237.2		
	11/23/2013	8:33								39.7		
	11/23/2013	9:08								962.7		
	11/23/2013	9:42								1014.6		
	11/23/2013	9:45	• •							111.0		
	11/23/2013	10:56								3170.7		
	11/23/2013	12:20								3913.6		
	11/23/2013	12:33								611.5		
	11/23/2013	12:35			, 33	, 32		. 30	Valve shut	94.1		
	11/23/2013	12:36							valve shat	34.1	10.70	1675.17
SW-56 Event 3	11/26/2013	7:28			27	,		68				1675.17
300-30 EVEIR 3	11/26/2013	7:30			33		<2					1675.17
	11/26/2013	7:30 7:48										1675.17
	11/26/2013	7:48 7:49	• •		35					3.1	0.36	
	11/26/2013	8:27	• •		36					361.5		
			• •									
	11/26/2013	9:18 10:52						68		699.3 1551.4		
	11/26/2013 11/26/2013				32 32					1654.3		
		12:20	11/26/2013 12:20 11/26/2013 12:21		52	. 51.0	9.5	, , , ,		1054.5		
	11/26/2013 11/26/2013	12:21	11/26/2013 12:24			10			Valve shut	19.5	2.21	
SW-56 Event 4	12/3/2013	12:24			26	. 18	•	66				2165.83 2165.83
3VV-30 EVEIIL 4		8:43					-ر	66				
	12/3/2013	8:44	12/3/2013 8:44		28							2165.83
	12/3/2013	8:47	12/3/2013 8:47		31					116.6	12.24	2165.83
	12/3/2013	9:13	12/3/2013 9:13		30					116.6		
	12/3/2013	9:14	12/3/2013 9:14							9.6		
	12/3/2013	9:58			32					515.7		
	12/3/2013	11:23	12/3/2013 11:23		31					1332.8		
	12/3/2013	11:25			32					38.5		
	12/3/2013	12:23	• •		34					1219.7		
	12/3/2013	13:16			34			82	20.5 Valve shut	1118.7	127.98	
	12/3/2013	13:18				19						2663.65
SW-56 Event 5	12/6/2013	13:00								(
	12/6/2013	13:55	• •		32					C	0.00	
	12/6/2013	14:20	• •		32					C	0.00	
	12/6/2013	15:20	• •		32					C	0.00	
	12/6/2013	17:46			32	31.5	<2	. 69	0.0 Valve shut			
SW-56 Event 6	12/9/2013	8:07								C		
	12/9/2013	8:08								C		
	12/9/2013	8:28								C		
	12/9/2013	9:07	12/9/2013 9:07	50	32.5	31	<2	. 64	0.0	(0.00	2663.65

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	12/9/2013	9:30	12/9/2013 9:30	48	32.5	3	1 <	2 6	7 0.0	0	0.00	2663.65
	12/9/2013	10:00	12/9/2013 10:00	48	32.5	3	1 <	2 70	0.0	0	0.00	2663.65
	12/9/2013	10:57	12/9/2013 10:57	48	32.0	3	1 <	2 74	1 0.0	0	0.00	2663.65
	12/9/2013	11:31	12/9/2013 11:31	48	32.0	3	1 <	2 80	0.0	0	0.00	2663.65
	12/9/2013	12:21	12/9/2013 12:21	48	32.0) 3	1 <	2 83	3 0.0	0	0.00	
	12/9/2013	13:30	12/9/2013 13:30	48	32.0	3	1 <	2 8		0	0.00	2663.65
	12/9/2013	22:03	3 12/9/2013 22:03	55	30	3	1 <	2 68	3 0.0	0	0.00	2663.65
	12/10/2013	7:48	3 12/10/2013 7:48	50	30	3	1	5 70	9.9	2904.3	332.25	5 2995.89
	12/10/2013	7:51	·						Valve shut	29.8	3.41	
SW-56 Event 7	12/11/2013	12:15		45	34		<	2 7:				2999.30
	12/11/2013		- ·	45			<					2999.30
	12/11/2013		5 12/11/2013 17:05	50			2.	5 60		251.3		
	12/11/2013			55	35	•	,	5 58		2360.4		
	12/12/2013			50	35	•	7.	5 58		8138.4		
	12/12/2013								Valve shut	15.9	1.82	
SW-56 Event 8	12/12/2013			45								4230.95
	12/12/2013			47	33							4230.95
	12/12/2013			45								4230.95
	12/12/2013			45								4230.95
	12/12/2013			45	35	3	2 3.	5 74		29.2		
	12/12/2013			45	36			4 73		354.5		
	12/12/2013			45						583.7		
	12/13/2013		12/13/2013 11:50	42						19194.4		
	12/13/2013			42	36	3	2 1	2 7:		4323.8		
	12/13/2013								Valve shut	25.4	2.90	
	12/13/2013											7035.00
SW-56 Event 9	12/16/2013			45						0.0		
	12/16/2013			48						0.0		
	12/16/2013				34	ļ	<	2 70		0.0		
	12/16/2013								Valve Shut	0.0		
	12/16/2013	14:44	12/16/2013 14:44	45				2 7:	5 0.0 Restart	0.0	0.00	7035.00
	12/16/2013			42	2 34	31.	5 <	2 69		0.0	0.00	7035.00
	12/16/2013			40) 34			3 64		175.3	20.05	
	12/16/2013			50) 34	30.	5	6 42		3030.7		1 7401.76
	12/17/2013	7:45	12/17/2013 7:45	46	34	3	0	8 42	2 17.1	8677.3	992.68	8394.44
	12/17/2013	7:48		46	34	3	1 1	0 43	2 21.3	57.6	6.59	8401.03
	12/17/2013	11:30	12/17/2013 11:30	46	34	3	1 1	0 73	3 20.7 Valve shut	4663.8	533.54	4 8934.57
Note: a red value	i e 75 °F indicates t	hat value wa	s interpolated from field d	ata						Total CO. Mass (lhs).		202/157

Total CO₂ Mass (lbs):

1119/2021 124 11/19/2013 124 11/19/2013 124 11/19/2013 124 11/19/2013 124 11/19/2013 128 22 21 2 80 24 12 25 42 29 23 23 11/19/2013 128 11/19/2013 128 11/19/2013 128 11/19/2013 129 11/19/2013 129 11/19/2013 129 11/19/2013 129 11/19/2013 129 11/19/2013 129 11/19/2013 124 11/19/2013 122 11/19/2013 122 11/19/2013 122 11/19/2013 122 11/19/2013 122 11/19/2013 122 11/19/2013 122 11/19/2013 128 11/19/2013 12					P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
111/19/2013 13-28 111/19/2013 13-22 11/19/2013 13-22 13-22 13-22 13-22 13-22 13-22 13-22 13-22 13-22 13-22 13-22 13-22 13-22 13-22 13-22 13-22	Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
11/19/2013 13-24 11/19/2013 12-24 11/19/2013 12-24 11/19/2013 13-24 11/19/2013 13-24 11/19/2013 13-24 11/19/2013 13-24 11/19/2013 13-24 11/19/2013 13-24 11/19/2013 13-25 11/19/2	SW-57 Event 1	11/19/2013	13:17	11/19/2013 13:17	57	7 2	6		80	0.0			
1119/2003 1324 11/19/20113124 32 31.5 6 80.0 121		11/19/2013	13:18	11/19/2013 13:18		3	0 30) <2	80.0	0.0	0.0	0.00	0.00
11/19/0018 13-88 11/19/0018 13-88 11/19/0018 13-88 12-89 12-89 12-89 12-89 13-89 13-89 13-89 13-89 11/19/0018 13-89 11/19/0018 13-89 11/19/0018 13-89 11/19/0018 13-89 11/19/0018 13-89 11/19/0018 13-89 11/19/0018 13-89 11/19/0018 13-89 11/19/0018 13-89 11/19/0018 13-89 11/19/0018 13-19 11/19/		11/19/2013	13:23	11/19/2013 13:23		2	8 28	3 4	80.0	7.7	19.2	2.20	2.20
11/4/2013 13-39 11/4/2013139 77 34 30 14 78-0 28.8 26.5 3.03 35.34 34.6 11/4/201313150 35 31 15 78-0 31.2 30.0 3.4 38.7 34.1		11/19/2013	13:24	11/19/2013 13:24		3	2 31.5	5 6	80.0	12.1	9.9	1.13	3.33
11/4/0713 13-30 11/4/071313-50 35 31 15 78.0 31.2 30.0 3.44 38.77		11/19/2013	13:38	11/19/2013 13:38		3	2 29	9 12	80.0		253.4	28.99	32.31
11/19/7013 15-19 11/19/7013 15-19 10 34 27-5 15-5 76 40.2 334.3 44.33 44.34 14.86 11/19/7013 15-25 11		11/19/2013	13:39	11/19/2013 13:39	57	7 3	4 30) 14	78.0	28.8	26.5	3.03	35.34
11/19/0013 15:22 11/19/001315:22 50 36 28 21 76:0 44.2 12:6 14:8 47:58 12:14 12:14 12:5 12:14 12:14 12:14		11/19/2013	13:40	11/19/2013 13:40		3	5 3:	15	78.0	31.2	30.0	3.43	38.77
11/15/2013 15/25 11/16/201317/25 50 40 30 22 75.0 48.2 138.5 15.85 475.45 11/15/2013 17.28 11/16/201317/25 49 40 27 25 68.0 55.1 62.68 16.11 1375.70 11/15/2013 17.59 11/16/201317/25 13.5 13		11/19/2013	15:19	• •) 3	4 27.5	19.5	76	40.2	3534.3	3 404.33	3 443.10
11/19/2013 17.58 11/19/2013 17.28 49		11/19/2013	15:22	11/19/2013 15:22	50) 3	6 28	3 21	76.0	44.2	126.6	5 14.48	3 457.58
11/19/2013		11/19/2013	15:25	11/19/2013 15:25	50) 4	0 30) 22	75.0	48.2	138.5	15.85	473.43
11/19/0013 18-01 11/19/2013 11/19/2013		11/19/2013	17:28	11/19/2013 17:28	49	9 4	0 27	7 24	60	53.3	6242.6	714.16	1187.59
11/9/2013 7-42 11/4/2013 7-51 7-51 7-		11/19/2013	17:58	11/19/2013 17:58		4	0 27	7 25	68.0	55.1	1626.8	186.11	1373.70
1986-1971 1986-1972 1986		11/19/2013	17:59	11/19/2013 17:59						Valve shut	55.1	6.31	1380.00
121/1/2013 7-51 121/1/2013/54 57 27.5 24 15 64 20.1 131.0 14.98 1391.08 121/1/2013 7-54 121/1/2013/54 57 28 25 17 64 33.2 93.4 10.69 1405.55 121/1/2013 8.13 121/1/2013/814 53 28 24 20 66 37.5 67.1 4 76.81 1482.48 121/1/2013 901 121/1/2013/905 50 28 23 21 70 40.7 1873.0 214.27 1701.3 121/1/2013 903 121/1/2013/905 50 28 23 21 70 40.7 1873.0 214.27 1701.3 121/1/2013 10.03 121/1/2013/905 48 28 23.5 22.5 75 43.4 2583.9 29.560 20.65.2 121/1/2013 10.04 121/1/2013/905 48 30 24 24 75 47.4 45.4 2583.9 29.560 20.65.2 121/1/2013 10.04 121/1/2013/905 55 30 23 24.25 88 47.3 2275.0 34.06.9 2352.15 121/1/2013 12.40 121/1/2013/1249 55 30 23 24.25 88 47.3 434.4 497.01 2244.6 121/1/2013 124.0 121/1/2013/1249 55 30 23 24.25 88 47.3 434.4 497.01 2244.6 121/1/2013 12.41 121/1/2013/1249 56 30 14 70 27.5 27.7 Feet 3 121/1/2013 7-36 121/1/2013/1249 56 29 30 14 70 27.5 27.7 Feet 3 121/1/2013 7-36 121/1/2013/1249 28 22 21 70 40.7 19.1 10.20 265.57 121/1/2013 7-36 121/1/2013/1249 50 28 22 21 70 40.7 19.1 10.20 265.57 121/1/2013 7-36 121/1/2013/1249 50 28 22 21 70 40.7 19.1 10.20 265.57 121/1/2013 7-36 121/1/2013/1249 50 36 25 27.5 72 43.5 19.07 19.1 10.20 265.57 121/1/2013 7-36 121/1/2013/1249 50 36 25 25 25 72 43.5 19.07 19.1 10.20 265.57 121/1/2013 10.09 121/1/2013/13100 50 36 25.5 25.5 72 50.5 47.5 19.0 10.0 121/1/2013/13100 50 36 25.5 25.5 72 50.5 47.5 30.0 25.5 27.5 47.5 30.0 27.0 27.5 27.0 27.5 201/1/2013 10.0 121/1/2013/13100 50 36 25.5 25.5 72 50.5 47.5 50.5 47.6 50.0 27.5 50.5 27.5 47.5 50.4 27.0 27.		11/19/2013	18:01	11/19/2013 18:01			13.5	5					1380.00
12/4/7013	SW-57 Event 2	12/4/2013	7:42	12/4/2013 7:42	60) 2	9 29	<2	64	0.0			1380.00
12/4/2013 8:13 12/4/2018 13 12/4/2018 13 53 28 23 5 19.25 66 37.5 67.14 76.81 1482.48 12/4/2013 9:01 12/4/2019 9:03 50 28 23 21 70 40.7 1873.0 214.27 170.13 12/4/2013 9:03 12/4/2019 9:03 50 28 23 21 70 40.7 40.7 40.7 12/4/2013 10:03 12/4/2013 10:04 48 30 24 24 75 47.4 45.4 25.83 12/4/2013 10:03 12/4/2013 10:04 48 30 24 24 75 47.4 45.4 5.20 2011.47 12/4/2013 11:07 12/4/2013 11:07 47.5 30 23.5 24 82 47.1 2978.0 340.66 2352.15 12/4/2013 12:04 12/4/2013 12:39 55 30 23 24.25 88 47.3 434.4 47.01 2486.6 255.5 12/4/2013 12:04 12/4/2013 12:41 14 14 14 14 14 14 12/4/2013 12:04 12/4/2013 12:41		12/4/2013	7:51	. 12/4/2013 7:51	. 57	7 27.	5 24	15	64	29.1	131.0	14.98	1394.98
1/4/2013 8:14 1/4/2018 16:14 53 28 24 20 66 39.0 38.2 4.37 148.68 1/4/2013 9:03 1/4/2019 19:05 05 28 24 22 70 40.7 83.4 9.54 171.67 1/4/2013 1:03 12/4/2013 10:03 48 28 23.5 22.5 75 43.4 2583.9 295.60 200.60 1/4/2013 1:09 1/4/2013 10:05 48 28 23.5 22.5 75 43.4 2583.9 205.60 200.60 1/4/2013 1:09 1/4/2013 10:05 48 28 23.5 24.2 75 43.4 45.4 5.20 2011.47 1/4/2013 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/4/2013 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/4/2013 1/2 1/2 1/2 1/2 1/2 1/2 1/2 2/4/2013 1/2 1/2 1/2 1/2 1/2 1/2 2/4/2013 1/2 1/2 1/2 1/2 1/2 1/2 1/2 2/4/2013 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 2/4/2013 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 2/4/2013 1/2 1/		12/4/2013	7:54	12/4/2013 7:54	57	7 2	8 2!	5 17	64	33.2	93.4	10.69	1405.67
12/4/2013 9.01 12/4/2013 9:03 50 28 23 21 70 40.7 81.4 9.54 170.67		12/4/2013	8:13	12/4/2013 8:13	53	3 2	8 23.5	19.25	66	37.5	671.4	76.81	1482.48
1/4/2013 10:30 12/4/2013 10:03 12/4/2013 10:03 48 28 23.5 22.5 75 43.4 258.89 256.0 2006.27		12/4/2013	8:14	12/4/2013 8:14	53	3 2	8 24	20	66	39.0	38.2	2 4.37	1486.85
1/4/2013 10.03 12/4/2013 10.04 48 28 23.5 22.5 75 43.4 258.49 295.60 2006.27		12/4/2013	9:01	12/4/2013 9:01	. 50) 2	8 23	3 21	. 70	40.7	1873.0	214.27	7 1701.13
12/4/2013 10:04 12/4/2013 10:07 41/4/2013 10:07 47.5 30 23.5 24 24 75 47.4 45.4 5.20 2011.47		12/4/2013	9:03	12/4/2013 9:03	50) 2	8 24	1 22	70	42.7	83.4	9.54	1710.67
12/4/2013 11:07 12/4/2013 12:39 12/4/2013 12:39 12/4/2013 12:39 12/4/2013 12:39 12/4/2013 12:30 12/4/2013 12:30 12/4/2013 12:40 12/4/201		12/4/2013	10:03	12/4/2013 10:03	48	3 2	8 23.5	22.5	75	43.4	2583.9	295.60	2006.27
12/4/2013 12:99 12/4/2013 12:40 12/4/2013 12:40 12/4/2013 12:40 12/4/2013 12:41 14 12/4/2013 12:41 14 12/4/2013 12:41 14 12/4/2013 12:41 14 12/4/2013 12:41 14 12/4/2013 12:41 14 12/4/2013 12:41 14 12/4/2013 12:41 14 12/4/2013 12:41 15/4/2013 12:41 15/4/2013 12:41 16/4		12/4/2013	10:04	12/4/2013 10:04	48	3	0 24	1 24	75	47.4	45.4	5.20	2011.47
12/4/2013 12:40 12/4/2013 12:41 12/4/2013 12:41 14 14 14 15 15 15 15		12/4/2013	11:07	12/4/2013 11:07	47.5	5 3	0 23.5	5 24	82	47.1	2978.0	340.69	2352.15
12/4/2013 12/4/2013 12/4/2013 12/4/2013 12/41 14 14 70 27.5 2854.57		12/4/2013	12:39	12/4/2013 12:39	55	5 3	0 23	3 24.25	88	47.3	4344.4	497.01	L 2849.16
SW-57 Event 3 12/10/2013 7:30 12/10/2013 7:30 56 29 30 14 70 27.5 27.5 2854.57		12/4/2013	12:40	12/4/2013 12:40						Valve shut	47.3	5.41	L 2854.57
12/10/2013 7.36 12/10/2013 7:40 12/10/2013 7:40 12/10/2013 7:40 12/10/2013 7:40 12/10/2013 7:40 12/10/2013 7:40 12/10/2013 7:40 12/10/2013 7:40 12/10/2013 7:40 12/10/2013 8:26 12/10/2013 8:26 12/10/2013 9:03 12/10/20		12/4/2013	12:41	. 12/4/2013 12:41			14	1					2854.57
12/10/2013	SW-57 Event 3	12/10/2013	7:30	12/10/2013 7:30	56	2	9 30) 14	70	27.5			2854.57
12/10/2013 8:26 12/10/2013 8:26 51 27 20 22.5 72 43.1 1927.3 220.49 3116.01 12/10/2013 9:03 12/10/2013 9:37 50 26 20 23 72 43.5 1600.6 183.11 3299.12 12/10/2013 10:09 12/10/2013 10:09 50 26 19.5 23 72 43.5 147.0 1478.0 169.08 12/10/2013 10:09 12/10/2013 10:09 50 26 19.5 23 72 43.5 1391.0 159.13 3627.34 12/10/2013 10:10 12/10/2013 10:10 50 30 22.5 25.5 72 50.5 47.0 53.8 3632.72 12/10/2013 11:01 12/10/2013 11:01 48 30 22 25.5 74 50.4 2575.0 294.58 3927.30 12/10/2013 11:08 12/10/2013 11:08 45 30 22.5 25.5 74 50.4 366.9 41.98 3969.28 12/10/2013 11:47 12/10/2013 11:48 12/10/2013 11:49 12/10/20		12/10/2013	7:36	12/10/2013 7:36	53	2	8 24	1 20	70	38.8	198.9	22.75	2877.33
12/10/2013 9:03 12/10/2013 9:03 12/10/2013 9:03 51 26 20 23 72 43.5 160.6 183.11 3299.12 12/10/2013 9:37 12/10/2013 9:37 50 26 20 23 72 43.5 1478.0 169.08 3468.20 12/10/2013 10:09 12/10/2013 10:00 50 26 19.5 23 72 43.5 1391.0 1591.3 12/10/2013 10:10 12/10/2013 10:10 50 30 23.5 25.5 72 50.5 47.0 5.38 3632.72 12/10/2013 11:01 12/10/2013 11:08 45 30 22.5 25.5 74 50.4 2575.0 294.58 3927.30 12/10/2013 11:47 12/10/2013 11:48 45 30 22.5 25.5 74 54.4 36.6.9 41.98 3969.28 12/10/2013 11:48 12/10/2013 11:49 12/10/2013 11:55 12/10/2013 11:35 12/10		12/10/2013	7:40	12/10/2013 7:40		2	8 22	2 21	. 70	40.7	159.1	18.20	2895.53
12/10/2013 9:37 12/10/2013 9:37 50 26 20 23 72 43.5 1478.0 169.08 3468.20 12/10/2013 10:09 12/10/2013 10:09 50 26 19.5 23 72 43.5 1391.0 159.13 3627.34 367.34 3		12/10/2013	8:26	12/10/2013 8:26	51	2	7 20	22.5	72	43.1	1927.3	3 220.49	3116.01
12/10/2013 10:09 12/10/2013 10:09 50 26 19.5 23 72 43.5 1391.0 159.13 3627.34 12/10/2013 10:10 12/10/2013 10:10 50 30 23.5 25.5 72 50.5 47.0 5.38 3632.72 12/10/2013 11:01 12/10/2013 11:01 48 30 22 25.5 74 50.4 2575.0 294.58 3927.30 12/10/2013 11:08 12/10/2013 11:08 45 30 22.5 27.5 74 54.4 366.9 41.98 3969.28 12/10/2013 11:48 12/10/2013 11:48 12/10/2013 11:49 52.4 2083.0 238.29 4207.57 12/10/2013 11:49 12/10/2013 11:49 52.4 52.4 2083.0 238.29 4207.57 12/10/2013 11:49 12/10/2013 11:49 52.4 52.4 52.4 12/10/2013 11:49 12/10/2013 11:49 52.4 52.4 52.4 12/10/2013 11:49 12/10/2013 11:49 52.4 52.4 52.4 12/10/2013 11:49 12/10/2013 11:49 52.4 52.4 52.4 12/10/2013 11:49 12/10/2013 11:49 52.4 52.4 52.4 12/10/2013 11:49 12/10/2013 11:49 52.4 52.4 52.4 12/10/2013 11:49 12/10/2013 11:49 52.4 52.4 52.4 12/10/2013 11:49 12/10/2013 11:49 52.4 52.4 52.4 12/10/2013 11:49 12/10/2013 11:49 52.4 52.4 12/10/2013 11:49 12/10/2013 11:49 52.4 52.4 12/10/2013 11:49 12/10/2013 11:49 52.4 52.4 12/10/2013 11:49 12/10/2013 17:55 50 29 30 10 44 20.1 12/10/2013 7:55 12/10/2013 7:55 50 29 30 10 44 20.1 12/10/2013 7:55 12/10/2013 7:55 50 25 26 13 44 24.9 22.5 22.5 25.8 4216.15 12/10/2013 8:50 12/10/2013 8:39 47 28 22 23 55 45.3 1871.4 214.09 443.41 12/10/2013 8:50 12/10/2013 8:39 47 28 22 23 55 45.3 1871.4 214.09 443.41 12/10/2013 9:33 12/10/2013 8:39 47 28 22 23 55 45.3 1871.4 214.09 443.41 12/10/2013 11:35 12/10/2013 8:30 47 29 23 24 55 47.8 46.1 3062.5 350.35 5079.11 12/10/2013 11:35 12/10/2013 11:35 39 28 20 24.5 72 47.4 2666.0 304.99 5384.11 12/10/2013 11:56		12/10/2013	9:03	12/10/2013 9:03	51	2	6 20) 23	72	43.5	1600.6	5 183.11	3299.12
12/10/2013 10:10 12/10/2013 10:10 50 30 23.5 25.5 72 50.5 47.0 5.38 3632.72		12/10/2013	9:37	12/10/2013 9:37	50	2	6 20) 23	72	43.5	1478.0	169.08	3468.20
12/10/2013 11:01 12/10/2013 11:01 12/10/2013 11:01 48 30 22 25.5 74 50.4 2575.0 294.58 3927.30 12/10/2013 11:08 12/10/2013 11:08 45 30 22.5 27.5 74 54.4 366.9 41.98 3969.28 12/10/2013 11:48 12/10/2013 11:48 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 15 15 SW-57 Event 4		12/10/2013	10:09	12/10/2013 10:09	50	2	6 19.5	5 23	72	43.5	1391.0	159.13	3627.34
12/10/2013		12/10/2013	10:10	12/10/2013 10:10	50	3	0 23.5	25.5	72	50.5	47.0	5.38	3632.72
12/10/2013 11:47 12/10/2013 11:47 12/10/2013 11:48 12/10/2013 11:48 12/10/2013 11:48 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:49 12/10/2013 11:59 12/10/2		12/10/2013	11:01	12/10/2013 11:01	48	3	0 22	2 25.5	74	50.4	2575.0	294.58	3927.30
12/10/2013 11:48 12/10/2013 11:49 12/10/2013 11:49 15 15 20 20 20 20 20 20 20 2		12/10/2013	11:08	12/10/2013 11:08	45	3	0 22.5	27.5	74	54.4	366.9	41.98	3969.28
12/10/2013 11:49 12/10/2013 11:49 15		12/10/2013	11:47	12/10/2013 11:47	45	3	0 22.5	26.5	74	52.4	2083.0	238.29	4207.57
SW-57 Event 4 12/17/2013 7:55 12/17/2013 7:56 50 29 30 10 44 20.1 4213.57 12/17/2013 7:56 12/17/2013 7:56 50 25 26 13 44 24.9 22.5 2.58 4216.15 12/17/2013 7:57 12/17/2013 7:57 50 30 25 21.5 44 43.8 34.4 3.93 4220.08 12/17/2013 8:39 12/17/2013 8:39 47 28 22 23 55 45.3 1871.4 214.09 4434.17 12/17/2013 8:50 12/17/2013 8:50 47 29 23 24 55 47.8 512.1 58.59 4492.76 12/17/2013 9:33 12/17/2013 9:33 45 30 22 24 60 48.1 2063.0 236.00 276.00 277.21 24 68 46.1 3062.5 350.35 5079.11 27/17/2013 11:55 12/17/2013 11:55 2 424 68		12/10/2013	11:48	3 12/10/2013 11:48						Valve shut	52.4	6.00	4213.57
12/17/2013 7:56 12/17/20137:56 50 25 26 13 44 24.9 22.5 2.58 4216.15 12/17/2013 7:57 12/17/20137:57 50 30 25 21.5 44 43.8 34.4 3.93 4220.08 12/17/2013 8:39 12/17/20138:39 47 28 22 23 55 45.3 1871.4 214.09 4434.17 12/17/2013 8:50 12/17/20138:50 47 29 23 24 55 47.8 512.1 58.59 4492.76 12/17/2013 9:33 12/17/20139:33 45 30 22 24 60 48.1 2063.0 236.00 4728.76 12/17/2013 10:38 12/17/201310:38 40 27 21 24 68 46.1 3062.5 350.35 5079.11 12/17/2013 11:35 12/17/201311:35 39 28 20 24.5 72 47.4 2666.0 304.99 5384.11 12/17/2013 11:55 12/17/201311:55		12/10/2013	11:49	12/10/2013 11:49			15	5					4213.57
12/17/2013 7:57 12/17/2013 7:57 50 30 25 21.5 44 43.8 34.4 3.93 4220.08 12/17/2013 8:39 12/17/2013 8:39 47 28 22 23 55 45.3 1871.4 214.09 4434.17 12/17/2013 8:50 12/17/2013 8:50 47 29 23 24 55 47.8 512.1 58.59 4492.76 12/17/2013 9:33 12/17/2013 9:33 45 30 22 24 60 48.1 2063.0 236.00 4728.76 12/17/2013 10:38 12/17/2013 10:38 40 27 21 24 68 46.1 3062.5 350.35 5079.11 12/17/2013 11:35 12/17/2013 11:35 39 28 20 24.5 72 47.4 2666.0 304.99 5384.11 12/17/2013 11:55 12/17/2013 11:55 12/17/2013 11:55 12/17/2013 11:56 14 5492.66 SW-57 Event 5 1/11/2014 7:52 1/11/2014 7:52 46 28 32 7 66 13.6 5492.66 1/11/2014 7:53 1/11/2014 7:53 46 28 28 8 9 66 17.5 15.6 1.78 5494.44	SW-57 Event 4	12/17/2013	7:55	12/17/2013 7:55	50	2	9 30) 10	44	20.1			4213.57
12/17/2013 8:39 12/17/2013 8:39 47 28 22 23 55 45.3 1871.4 214.09 4434.17 12/17/2013 8:50 12/17/2013 8:50 47 29 23 24 55 47.8 512.1 58.59 4492.76 12/17/2013 9:33 12/17/2013 9:33 45 30 22 24 60 48.1 2063.0 236.00 4728.76 12/17/2013 10:38 12/17/2013 10:38 40 27 21 24 68 46.1 3062.5 350.35 5079.11 12/17/2013 11:35 12/17/2013 11:35 39 28 20 24.5 72 47.4 2666.0 304.99 5384.11 12/17/2013 11:55 12/17/2013 11:55 12/17/2013 11:55 12/17/2013 11:56 12/17/		12/17/2013	7:56	12/17/2013 7:56	50	2	5 26	5 13	44	24.9	22.5	2.58	4216.15
12/17/2013 8:50 12/17/2013 8:50 47 29 23 24 55 47.8 512.1 58.59 4492.76		12/17/2013	7:57	12/17/2013 7:57	50	3	0 25	21.5	44	43.8	34.4	3.93	4220.08
12/17/2013 9:33 12/17/2013 9:33 45 30 22 24 60 48.1 2063.0 236.00 4728.76 12/17/2013 10:38 12/17/2013 10:38 40 27 21 24 68 46.1 3062.5 350.35 5079.11 12/17/2013 11:35 12/17/2013 11:35 39 28 20 24.5 72 47.4 2666.0 304.99 5384.11 12/17/2013 11:55 12/17/2013 11:55		12/17/2013	8:39	12/17/2013 8:39	47	2	8 22	2 23	55	45.3	1871.4	214.09	9 4434.17
12/17/2013 10:38 12/17/2013 10:38 40 27 21 24 68 46.1 3062.5 350.35 5079.11 12/17/2013 11:35 12/17/2013 11:35 39 28 20 24.5 72 47.4 2666.0 304.99 5384.11 12/17/2013 11:55 12/17/2013 11:55 12/17/2013 11:55 12/17/2013 11:56 12/17/2013 11:56 14 5492.66 SW-57 Event 5 1/11/2014 7:52 1/11/2014 7:53 46 28 32 7 66 13.6 5492.66 17.5 15.6 1.78 5494.44		12/17/2013	8:50	12/17/2013 8:50	47	2	9 23	3 24	55	47.8	512.1	58.59	4492.76
12/17/2013 11:35 12/17/2013 11:35 39 28 20 24.5 72 47.4 2666.0 304.99 5384.11 12/17/2013 11:55 12/17/2013 11:55 12/17/2013 11:56 14 Valve shut 948.9 108.55 5492.66 5W-57 Event 5 1/11/2014 7:52 1/11/2014 7:52 46 28 32 7 66 13.6 5492.66 1/11/2014 7:53 1/11/2014 7:53 46 28 28 9 66 17.5 15.6 1.78 5494.44		12/17/2013	9:33	12/17/2013 9:33	45	3	0 22	2 24	60	48.1	2063.0	236.00	4728.76
12/17/2013 11:55 12/17/2013 11:55 Valve shut 948.9 108.55 5492.66 12/17/2013 11:56 12/17/2013 11:56 14 5492.66 SW-57 Event 5 1/11/2014 7:52 1/11/2014 7:52 46 28 32 7 66 13.6 13.6 5492.66 1/11/2014 7:53 1/11/2014 7:53 46 28 28 9 66 17.5 15.6 1.78 5494.44		12/17/2013	10:38	12/17/2013 10:38	40	2	7 2:	L 24	68	46.1	3062.5	350.35	5079.11
12/17/2013 11:56 12/17/2013 11:56 14 SW-57 Event 5 1/11/2014 7:52 1/11/2014 7:52 46 28 32 7 66 13.6 5492.66 1/11/2014 7:53 1/11/2014 7:53 46 28 28 9 66 17.5 15.6 1.78 5494.44		12/17/2013	11:35	12/17/2013 11:35	39	2	8 20	24.5	72	47.4	2666.0	304.99	5384.11
SW-57 Event 5 1/11/2014 7:52 1/11/2014 7:52 46 28 32 7 66 13.6 5492.66 1/11/2014 7:53 1/11/2014 7:53 46 28 28 9 66 17.5 15.6 1.78 5494.44		12/17/2013	11:55	12/17/2013 11:55						Valve shut	948.9	108.55	5492.66
1/11/2014 7:53 1/11/2014 7:53 46 28 28 9 66 17.5 15.6 1.78 5494.44		12/17/2013	11:56	12/17/2013 11:56	i		14	1					5492.66
	SW-57 Event 5	1/11/2014	7:52	1/11/2014 7:52	46	2	8 32	2 7	66	13.6			5492.66
1/11/2014 7:55 1/11/2014 7:55 45 31.5 30 15 66 30.4 47.9 5.48 5499.92		1/11/2014	7:53	1/11/2014 7:53	46	2	8 28	3 9	66	17.5	15.6	5 1.78	5494.44
		1/11/2014	7:55	1/11/2014 7:55	45	31.	5 30) 15	66	30.4	47.9	5.48	5499.92

					P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date			Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flov	w (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
		1/11/2014	8:39	1/11/2014 8:39	46	3	0 25	19		66	37.9	1502.3	171.87	7 5671.79
		1/11/2014	8:40	1/11/2014 8:40	46	3	1 27	20)	66	40.3	39.1	4.47	5676.27
		1/11/2014	8:42	1/11/2014 8:42	46	3	2 27.5	20.2		66	41.2	81.5	9.32	5685.59
		1/11/2014	9:18	1/11/2014 9:18	45	31.	5 27	' 21		69	42.4	1505.2	172.20	5857.79
		1/11/2014	9:19	1/11/2014 9:19	45	3	2 27	21.5		69	43.7	43.1	4.93	5862.71
		1/11/2014	10:29	1/11/2014 10:29	43	3	1 26	22		72	44.1	3072.7	351.52	6214.23
		1/11/2014	11:25	1/11/2014 11:25	41	3	0 25.5	22		74	43.5	2453.2	280.64	4 6494.88
		1/11/2014	12:05	1/11/2014 12:05	44	3	1 26	23		76	45.9	1788.8	204.64	4 6699.51
		1/11/2014	12:06	1/11/2014 12:06							Valve shut	45.9	5.25	6704.77
		1/11/2014	12:07	1/11/2014 12:07			17	•						6704.77
SW-57 Event 6		1/21/2014	9:47	1/21/2014 9:47	46	32.	5 31.8	<2		66	0.0			6704.77
		1/21/2014	9:49	1/21/2014 9:49	43	3	0 28.5	6		66	12.0	12.0	1.37	7 6706.14
		1/21/2014	9:50	1/21/2014 9:50	43	31.	5 30.5	9.8		66	19.9	15.9	1.82	6707.96
		1/21/2014	10:21	1/21/2014 10:21	42	3	0 29	13		68	25.9	708.9	81.09	6789.05
		1/21/2014	10:51	1/21/2014 10:51	40	2	9 27	14.8		70	29.1	823.8	94.24	4 6883.30
		1/21/2014	13:20	1/21/2014 13:20	52	28.	5 26.5	16		75	31.1	4479.8	512.49	7395.79
		1/21/2014	14:29	1/21/2014 14:29	50	28.	5 26	16.5		74	32.1	2178.9	249.26	7645.05
		1/21/2014	14:31	1/21/2014 14:31	49	31.	5 28.2	20		74	40.2	72.3	8.27	7 7653.32
		1/21/2014	15:36	1/21/2014 15:36	49	31.	5 28.2	. 20		68	40.5	2622.6	300.03	3 7953.35
		1/21/2014	15:37	1/21/2014 15:37							Valve shut	40.5	4.63	3 7957.98
		1/21/2014	15:40	1/21/2014 15:40			17							7957.98
SW-57 Event 7		1/22/2014	9:10	1/22/2014 9:10	55	3	1 33	. <2		50	0.0			7957.98
		1/22/2014	9:33	1/22/2014 9:33	53	2	6 24	16		50	30.9	355.4	40.66	7998.64
		1/22/2014	9:36	1/22/2014 9:36	50	3	1 26.5	22		50	45.1	114.0	13.04	4 8011.68
		1/22/2014	10:08	1/22/2014 10:08	48	30.	5 26	22.1		54	44.8	1438.6	164.58	8176.25
		1/22/2014	11:12	1/22/2014 11:12	16	2	9 24	23.2		56	46.2	2912.7	333.21	1 8509.47
		1/22/2014	12:17	1/22/2014 12:17	45	28.	5 23.5	23.5		57	46.5	3010.8	344.43	8853.90
		1/22/2014	13:03	1/22/2014 13:03	46	28.	5 23.5	24	-	60	47.3	2156.6	246.71	9100.61
		1/22/2014	14:28	1/22/2014 14:28	47	28.	5 23.5	24		60	47.3	4020.9	459.99	9560.60
		1/22/2014	14:31	1/22/2014 14:31							Valve shut	141.9	16.24	9576.83
		1/22/2014	14:32	1/22/2014 14:32			17	,						9576.83
Note: a red value,	, i.e. <mark>75</mark> °	F, indicates the	at value was	interpolated from field d	ata							Total CO ₂ Mass (lbs):		9576.83

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-58 Event 1	11/12/2013	13:47	11/12/2013 13:47	' 30) 1	0		69.6				
	11/12/2013	13:49	11/12/2013 13:49	36	5 3	4 32	2 <	2 69.6	0.0	0.0	0.00	0.00
	11/12/2013	13:51	11/12/2013 13:51	. 32	2 3	1 33	L <	2 65.8	0.0	0.0	0.00	0.00
	11/12/2013	13:52	2 11/12/2013 13:52	30) 2	8 26	5	5 66.7	7.9	3.9	0.45	0.45
	11/12/2013	13:54	11/12/2013 13:54	30) 2	6 29	8.	5 67.1	13.1	21.0	2.40	2.85
	11/12/2013	13:55	5 11/12/2013 13:55	34	1 2	8 25	5 14.7	5 67.4	23.3	18.2	2.08	3 4.93
	11/12/2013	13:57	11/12/2013 13:57	34	1 2	6 23	3 1	5 64.9	23.1	46.4	5.31	10.24
	11/12/2013	14:00	11/12/2013 14:00	34	1 2	6 22.5	5 15.	5 60.2	24.0	70.7	8.09	9 18.33
	11/12/2013	14:02	2 11/12/2013 14:02	. 38	3 2	9 25	5 17.	5 58.6	28.2	52.2	5.97	7 24.30
	11/12/2013	14:04	11/12/2013 14:04	42	2 3	1 26	5 19.	5 56.8	32.2	60.3	6.90	31.20
	11/12/2013	14:06	5 11/12/2013 14:06	45	5 3	2 28	3 20.	5 53.0	34.3	66.5	7.60	38.81
	11/12/2013	14:07	11/12/2013 14:07	46	5 3	2 26	5 2	1 47.3	35.4	34.8	3.99	9 42.79
	11/12/2013	14:11	11/12/2013 14:11	. 48	3	3 20	5 22.	5 45.8	38.4	147.4	16.86	5 59.65
	11/12/2013	14:15	11/12/2013 14:15	48	32.	5 25.5	5 22.7	5 43.8	38.7	154.0	17.62	2 77.27
	11/12/2013	14:19	11/12/2013 14:19	48	3	2 2	5 2	3 42.2	38.9	155.2	2 17.75	95.02
	11/12/2013	14:30	11/12/2013 14:30	48	31.	5 24	1 23.	5 39.3	39.7	432.3	3 49.46	5 144.48
	11/12/2013	14:40	11/12/2013 14:40) 48	3	1 24	1 23.	5 37.9	39.5	396.0	45.30	189.78
	11/12/2013	15:06	5 11/12/2013 15:06	5 48	3	0 23	3 2	4 36.5	40.0	1033.2	118.20	307.98
	11/12/2013	15:23	3 11/12/2013 15:23	49	3	1 22.5	5 2	5 39.5	42.0	696.4	79.67	7 387.65
	11/12/2013	15:25	5 11/12/2013 15:25	5 52	2 3	2 23.5	5 25.	5 33.9	43.5	85.5	9.78	397.43
	11/12/2013	15:27	11/12/2013 15:27	, 54	1 3	3 24	1 26.	5 32.9	45.8	89.3	3 10.22	407.65
	11/12/2013	15:30			5 3	4 24.25	5 2	7 33.4	47.1	139.4	15.94	423.59
	11/12/2013	15:32			3	5 24.75	5 27.	5 33.1	48.5	95.6		
	11/12/2013	15:34	• •					5 32.7	51.1	99.6		
	11/12/2013	15:36	• •						52.1	103.2		
	11/12/2013	16:18							53.3	2213.8		
	11/12/2013	16:52	• •							1817.7		
	11/12/2013	17:35								2335.6		
	11/12/2013	17:36	• •						Valve shut	55.0		
	11/12/2013	17:38										1192.42
SW-58 Event 2	11/19/2013	8:21	<u>-</u>) 1	4		55.9		0.0	0.00	
	11/19/2013	8:24					L <			0.0		
	11/19/2013	8:49						7 49.6		138.8		
	11/19/2013	8:51								28.5		
	11/19/2013	8:56								103.1		
	11/19/2013	10:37								2517.9		
	11/19/2013	10:39								60.8		
	11/19/2013	12:17								3380.4		
	11/19/2013	12:21					2			148.3		
	11/19/2013	12:22								41.3		
	11/19/2013	15:30								8292.0		
	11/19/2013	15:37								331.4		
	11/19/2013	17:00								4156.7		
	11/19/2013	17:28					25.			1428.5		
	11/19/2013	17:29			, ,	O	25.	<i>J</i> 11.5	Valve shut	51.0		
	11/19/2013	17:29			2 2	3			vaive silut	51.0	5.84	3558.05
	11/19/2013	17.32				5 18	2					3558.05
SW-58 Event 3	11/25/2013	7:59			2 2	7		50	1	(0.00	
3VV-30 EVEIIL 3	11/25/2013	7:59 8:01				<i>7</i> 2	<			(
		8:05			_ 3	۷.	<	ے 50	0.0			
	11/25/2013		• •		, ,	0		Fa	1	(
	11/25/2013	8:40						52				
	11/25/2013	8:41			3					40.4		
	11/25/2013	8:47	11/25/2013 8:47		3	2 32	<u> </u>	8 52	16.5	49.6	5.68	3563.73

				P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO ₂	Cumulative
Back to Master	Date T	ime	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	11/25/2013	8:48	11/25/2013 8:48		3	4 3	1 10) 52	2 21.1	18.8	3 2.15	5 3565.88
	11/25/2013	9:18	11/25/2013 9:18		3	4 3	3 13.5	5 56	5 28.4	742.7	7 84.90	6 3650.84
	11/25/2013	10:19	11/25/2013 10:19		3	4 31.	5 15	63	31.3	1821.	208.3	8 3859.22
	11/25/2013	10:21	11/25/2013 10:21		3	5 32.				65.3	L 7.45	5 3866.67
	11/25/2013	11:18	11/25/2013 11:18	5!	5 3	5 3	2 16.5	5 60	34.9	1957.	223.9	4 4090.61
	11/25/2013	12:01	• •		3			7 62		1522.9		2 4264.83
	11/25/2013	12:43	• •		3	3 31.	5 18	3 64		1534.	175.5	4 4440.37
	11/25/2013	13:49	• •		3	3 3	1 18	3 64	1 37.2	2452.7		
	11/25/2013	14:22	11/25/2013 14:22						Valve shut	1226.3	3 140.29	9 4861.25
	11/25/2013	14:23	11/25/2013 14:23			2	1					4861.25
	11/25/2013	14:33	11/25/2013 14:33		2	9						4861.25
	11/25/2013	14:34	11/25/2013 14:34		3	1 2	7 18	3 62		36.4		
	11/25/2013	14:35	11/25/2013 14:35		3	4 2	9 20) 62	41.8	39.3	L 4.48	8 4869.89
	11/25/2013	15:20	11/25/2013 15:20	5.	5 3	3 3) 18	3 60		1780.2	2 203.60	6 5073.55
	11/25/2013	16:10	11/25/2013 16:10	5	7 3	4 3) 16	5 60	33.5	1770.6	5 202.50	6 5276.11
	11/25/2013	16:11	11/25/2013 16:11						Valve shut	33.5	3.83	3 5279.95
	11/25/2013	16:12	11/25/2013 16:12			2	5					5279.95
SW-58 Event 4	11/26/2013	8:01	11/26/2013 8:01	48	8 2	9		68	3			5279.95
	11/26/2013	8:02	11/26/2013 8:02		3	3 34.	5 <2	2 68	3 0.0			5279.95
	11/26/2013	8:08	11/26/2013 8:08	5!	5 3	2 32.	5 (5 68	3 12.2	36.0	5 4.19	9 5284.13
	11/26/2013	9:15	11/26/2013 9:15	5.	2 3	2 3	2 8	3 68	3 16.3	954.3	109.1	5 5393.29
	11/26/2013	11:00	11/26/2013 11:00	50	0 3	0 3	2 10) 68	3 19.9	1899.0	217.2	5 5610.54
	11/26/2013	12:25	11/26/2013 12:25	50	0 3	0 3	1 10) 68	3 19.9	1691.2	193.48	8 5804.02
	11/26/2013	12:26	11/26/2013 12:26						Valve shut	19.9	2.28	8 5806.29
	11/26/2013	12:27	11/26/2013 12:27									5806.29
SW-58 Event 5	12/6/2013	13:18	12/6/2013 13:18	4	7 37.	5 3	5 <2	2 84	1 0.0			5806.29
	12/6/2013	14:04	12/6/2013 14:04	4	7 3	4 3	3	9 83	3 18.4	424.0	48.50	0 5854.80
	12/6/2013	14:35	12/6/2013 14:35	4.	5 3	4 3	2 10) 84	1 20.5	602.9	68.9	7 5923.77
	12/6/2013	15:05	12/6/2013 15:05	4.	5 3	4 32.	5 11	L 80	22.6	645.9	73.89	9 5997.65
	12/6/2013	15:53	12/6/2013 15:53	4.	5 3	4 3	3 11	L 79	22.6	1085.3	124.13	3 6121.79
	12/6/2013	16:10	12/6/2013 16:10	4:	3 3	4 32.	5 11.5	5 78	3 23.7	393.4	45.0	1 6166.79
	12/6/2013	17:07	12/6/2013 17:07	4:	3 3	5 32.	5 12	2 76	5 25.0	1387.3	158.68	8 6325.47
	12/6/2013	17:22	12/6/2013 17:22	40	0 3	4 3	2 12	2 79	9 24.7	372.0	42.62	2 6368.09
	12/6/2013	17:23	12/6/2013 17:23						Valve shut	24.7	7 2.82	2 6370.91
SW-58 Event 6	12/10/2013	8:54	12/10/2013 8:54	50	0 3	4 3	2 <2	2 72	2 0.0			6370.91
	12/10/2013	9:20	12/10/2013 9:20	50	0 3	2 3	5.5	5 72	2 11.1	144.9	16.58	8 6387.49
	12/10/2013	9:55	12/10/2013 9:55	50	0 3	2 3) 6.5	5 72	2 13.2	425.0	48.68	8 6436.17
	12/10/2013	10:35	12/10/2013 10:35	49	9 3	2 2	9 7	7 74	14.2	546.0	62.5	3 6498.70
	12/10/2013	10:36	12/10/2013 10:36	47.	4 3	4 3	1 10) 74	1 20.7	17.4	1.99	9 6500.69
	12/10/2013	10:38	12/10/2013 10:38	4	6 3	5 3	3 12.5	5 74	1 26.1	46.8	5.3!	5 6506.04
	12/10/2013	11:34	12/10/2013 11:34	4.	5 3	5 3	3 12	2 74	1 25.0	1432.0	163.82	2 6669.86
	12/10/2013	12:50	12/10/2013 12:50	50	0 3	5 3	2 13	3 80	27.0	1977.3	226.18	8 6896.05
	12/10/2013	12:54	12/10/2013 12:54						Valve shut	107.9	12.3	5 6908.39
	12/10/2013	12:55	12/10/2013 12:55			22.	5					6908.39
SW-58 Event 7	12/12/2013	13:40	12/12/2013 13:40	5:	1 3	4 33.	5 <2	2 70				6908.39
	12/12/2013	14:34	12/12/2013 14:34	4	7 3	4 3) 9	70	18.7	504.0	57.60	6 6966.05
	12/12/2013	14:35	12/12/2013 14:35	48	8 3	4 3	2 11.5	5 70	23.9	21.3	3 2.43	3 6968.48
	12/12/2013	15:12	12/12/2013 15:12	4.	5 3	4 3	11.5	5 70	23.9	882.5	100.90	6 7069.45
	12/12/2013	15:13	12/12/2013 15:13	4.	5 3	5 32.	5 13.5	5 70	28.3	26.3	L 2.98	8 7072.43
	12/12/2013	16:30	12/12/2013 16:30	4	7 3	5 3	2 14.5	5 66	30.5	2263.7	7 258.9	7 7331.40
	12/12/2013	16:32	12/12/2013 16:32	4	7 3	6 3	3 16.5	5 66	35.1	65.0	7.50	0 7338.90
	12/12/2013	17:30	12/12/2013 17:30	50	0 3	6 32.	5 16.5	5 66	35.1	2033.9	232.68	8 7571.58
	12/12/2013	17:35	12/12/2013 17:35						Valve shut	175.3	3 20.00	6 7591.64

				P at Reducer	P at Panel	P at Well	Rotameter	_ (0-)		Volume of	Mass of CO ₂	Cumulative
Back to Master				(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
C) W FO F O	12/12/2013	17:36	12/12/2013 17:36	40	2.5	22		40	0.0	0.0	0.00	7591.64
SW-58 Event 8	12/17/2013	8:12	12/17/2013 8:12	49						0.0		
	12/17/2013	9:10	12/17/2013 9:10	45						522.8	59.80	
	12/17/2013	10:26	12/17/2013 10:26	40						1446.8	165.51	
	12/17/2013	11:26	12/17/2013 11:26	40						1230.1	140.72	
	12/17/2013	11:27	12/17/2013 11:27	40						25.1	2.88	
	12/17/2013	12:12	12/17/2013 12:12	42	. 38	3 34	15.5	71		1412.3	161.57	
	12/17/2013	12:13	12/17/2013 12:13			2-			Valve sh	ut 33.4	3.82	
CM/ FO Front O	12/17/2013	12:14	12/17/2013 12:14	47	. 21	27			0.0			8125.95
SW-58 Event 9	1/14/2014	12:55	1/14/2014 12:55	47						270 5	42.00	8125.95
	1/14/2014	14:10	1/14/2014 14:10	47				70		376.5		
	1/14/2014	15:47	1/14/2014 15:47	47				73		969.9	110.95	
	1/14/2014	17:07	1/14/2014 17:07	55	30.5			75		915.0	104.67	
CM FO Frank 10	1/14/2014	17:08	1/14/2014 17:08	F.3	22	25		40	Valve sh		0.00	8384.65
<u>SW-58 Event 10</u>	1/23/2014	8:27	1/23/2014 8:27	52						0.0		
	1/23/2014	8:28	1/23/2014 8:28	52				40		3.1	0.36	
	1/23/2014	8:31	1/23/2014 8:31	52						21.0		
	1/23/2014	8:32	1/23/2014 8:32	52				40		9.2	1.05	
	1/23/2014	8:50	1/23/2014 8:50	51						193.8	22.17	
	1/23/2014	8:51	1/23/2014 8:51	51				44		12.9	1.48	
	1/23/2014	9:30	1/23/2014 9:30	48						572.4	65.48	
	1/23/2014	10:03	1/23/2014 10:03	47						465.8		
	1/23/2014	11:09	1/23/2014 11:09	45						906.3	103.69	
	1/23/2014	11:59	1/23/2014 11:59	44						698.4	79.90	
	1/23/2014	12:45	1/23/2014 12:45	47	33.5			58		664.0		
	1/23/2014	12:46	1/23/2014 12:46			29			Valve sh	ut 14.6	1.67	
SW-58 Event 11	1/29/2014	12:18	1/29/2014 12:18									8792.11
	1/29/2014	12:19	1/29/2014 12:19	50						7.5		
	1/29/2014	12:20	1/29/2014 12:20	50						10.2		
	1/29/2014	13:52	1/29/2014 13:52	50						1527.4		
	1/29/2014	13:54	1/29/2014 13:54	50						46.4		
	1/29/2014	15:00	1/29/2014 15:00	49						1724.8		
	1/29/2014	16:40	1/29/2014 16:40	56	36	5 34	. 12	42		2613.4		
	1/29/2014	16:41	1/29/2014 16:41						Valve sh	ut 26.1	2.99	
	1/29/2014	16:42	1/29/2014 16:42			27						9473.45
SW-58 Event 12	2/4/2014	9:57	2/4/2014 9:57	55								9473.45
	2/4/2014	10:24	2/4/2014 10:24	54						173.9		
	2/4/2014	10:25	2/4/2014 10:25	54						16.6		
	2/4/2014	11:38	2/4/2014 11:38	52	33.5	31.5				1631.6		
	2/4/2014	12:47	2/4/2014 12:47	50	33					1752.3		
	2/4/2014	12:50	2/4/2014 12:50	50	34			67		86.3		
	2/4/2014	13:28	2/4/2014 13:28	50						1185.7	135.65	
	2/4/2014	14:32	2/4/2014 14:32	48	34	1 32	15	64		2000.0	228.80	10256.67
	2/4/2014	15:34	2/4/2014 15:34	50	34	1 31.5				1987.7		
	2/4/2014	16:28	2/4/2014 16:28	50						1785.5		
	2/4/2014	17:53	2/4/2014 17:53	56	34	1 31	. 16	59		2841.4	325.05	
	2/4/2014	17:54	2/4/2014 17:54			24			Valve sh	ut 33.5	3.84	
SW-58 Event 13	2/6/2014	8:24	2/6/2014 8:24	55	29) 24	<2	50	0.0			11017.21
	2/6/2014	8:25	2/6/2014 8:25	55	33	32	6.2	50	13.0	6.5	0.74	11017.96
	2/6/2014	8:49	2/6/2014 8:49	52	32.5	31.5	9	55	18.6	379.6	43.42	11061.38
	2/6/2014	8:52	2/6/2014 8:52	52	33.5	32.5	11.7	55	24.5	64.7	7.40	11068.78
	2/6/2014	10:52	2/6/2014 10:52	49	33.5	5 31	13.9	62	28.9	3204.6	366.61	11435.39
	2/6/2014	10:56	2/6/2014 10:56	49	34.5	32.5	16.3	62	34.3	126.3	14.45	11449.84

					P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Ti	ime	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)		CO ₂ (scf)	(lb)	Mass (lb)
		2/6/2014	11:15	2/6/2014 11:15	4	8 34.5	32	2 16.3	2	64 34	4.0	648.2	74.15	11523.99
		2/6/2014	12:16	2/6/2014 12:16	4	7 34.5	32	16.3	2	66 33	3.9	2070.5	236.86	11760.85
		2/6/2014	14:14	2/6/2014 14:14	4	6 34.5	32	2 16.	7	65 35	5.0	4065.0	465.04	12225.89
		2/6/2014	15:24	2/6/2014 15:24	4	7 34	31.8	3 1	7	60 35	5.6	2471.0	282.68	3 12508.58
		2/6/2014	16:41	2/6/2014 16:41	4	6 34	31.5	5 1	7	56 35	5.8	2747.5	314.32	2 12822.90
		2/6/2014	17:23	2/6/2014 17:23	5	3 34	31.5	17.3	3	55 36	5.4	1515.7	173.40	12996.29
		2/6/2014	17:24	2/6/2014 17:24			24	ļ			Valve shut	36.4	4.17	7 13000.46
SW-58 Event 14		2/11/2014	7:52	2/11/2014 7:52	5	7 28	3 27	< >	2	56 (0.0			13000.46
		2/11/2014	7:53	2/11/2014 7:53	5	7 3.5	32	2 10)	56 12	2.8	6.4	0.73	3 13001.19
		2/11/2014	9:17	2/11/2014 9:17	5	4 32	2 31	12.	3	60 25	5.2	1596.4	182.63	3 13183.82
		2/11/2014	9:20	2/11/2014 9:20	5	4 33.5	32	2 14.	5	60 30	0.2	83.2	9.51	1 13193.33
		2/11/2014	10:30	2/11/2014 10:30	5	3 33.5	32	14.3	2	66 29	9.4	2087.0	238.75	13432.09
		2/11/2014	11:50	2/11/2014 11:50	5	3 33.5	32	14.	3	66 29	9.6	2361.4	270.14	13702.23
		2/11/2014	12:45	2/11/2014 12:45	4	7 33.5	32	14.	3	66 29	9.6	1629.2	186.38	3 13888.61
		2/11/2014	14:02	2/11/2014 14:02	4	7 33.5	32	14.8	3	64 30	0.7	2323.0	265.75	5 14154.36
		2/11/2014	16:50	2/11/2014 16:50	4	7 33.5	32	2 1	5	54 31	1.4	5221.7	597.37	7 14751.73
		2/11/2014	17:27	2/11/2014 17:27	5	4 33.5	32	14.3	3	54 31	1.0	1155.8	132.22	14883.95
		2/11/2014	17:28	2/11/2014 17:28			28	3			Valve shut	31.0	3.55	14887.50
Note: a red value,	i.e. <mark>75</mark> °I	, indicates tha	at value was	s interpolated from field o	lata						7	Total CO ₂ Mass (lbs):		14887.50

					P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date		Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp	(°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-59 Event 1		2/5/2014	16:17	2/5/2014 16:17	' 50) 27	27	•	<2	86.0				
		2/5/2014	16:18	2/5/2014 16:18	50	33.5	33.5	;	<2	86.0	0.0	0.0	0.00	0.00
		2/5/2014	16:23	2/5/2014 16:23	50	33.5	33.5	;	<2	86.0	0.0	0.0	0.00	0.00
		2/5/2014	17:03	2/5/2014 17:03	50	33.5	34		<2	84.0	0.0	0.0	0.00	0.00
		2/5/2014	17:14	2/5/2014 17:14	50	33.5	34		<2	82.0	0.0	0.0	0.00	0.00
		2/5/2014	21:27	2/5/2014 21:27	, 50	33.5	34		<2	62.0	0.0	0.0	0.00	0.00
		2/6/2014	7:30	2/6/2014 7:30) 47	33.5	32.5	;	<2	41.0	0.0	0.0	0.00	0.00
		2/6/2014	8:58	2/6/2014 8:58	3 50	32.5	32.5	;	<2	58.0	0.0	0.0	0.00	0.00
		2/6/2014	9:00	2/6/2014 9:00	50	34	34		<2	58.0	0.0	0.0	0.00	0.00
		2/6/2014	10:20	2/6/2014 10:20) 48	34	34		<2	64.0	0.0	0.0	0.00	0.00
		2/6/2014	11:00	2/6/2014 11:00) 48	34	34		<2	65.0	0.0	0.0	0.00	0.00
		2/6/2014	11:10	2/6/2014 11:10) 48	34	34		<2	66.0	0.0	0.0	0.00	0.00
		2/6/2014	12:20	2/6/2014 12:20) 46	34	34		<2	66.0	0.0	0.0	0.00	0.00
		2/6/2014	14:18	2/6/2014 14:18	3 46	34	34	,	<2	65.0	0.0	0.0	0.00	0.00
		2/6/2014	14:20	2/6/2014 14:20) 46	35	35.5	;	4	66.0	8.4	8.4	1 0.96	0.96
		2/6/2014	15:28	2/6/2014 15:28	3 45	35.5	36	3	3.9	59.0	8.3	568.5	65.04	1 66.00
		2/6/2014	16:45	2/6/2014 16:45	5 45	35	36	3	3.9	54.0	8.3	639.5	73.15	5 139.15
		2/6/2014	17:29	2/6/2014 17:29	52	35	36	;	4	53.0	8.5	370.3	3 42.36	5 181.51
		2/7/2014	9:08	2/7/2014 9:08	3 44	35	34		7	60.0	14.8	10958.9	1253.70	1435.21
		2/7/2014	9:46		5 43	36	34	. 7	⁷ .2	54.0	15.5	575.8	65.87	7 1501.08
		2/7/2014	10:39	2/7/2014 10:39)	36	35	;	7	58.0	15.0	807.8	92.42	2 1593.50
		2/7/2014	11:34	• •		36			5.2	62.0	13.2	776.2		
		2/7/2014	13:25			36	36	5 5	5.8	62.0	12.4	1421.1	162.57	7 1844.87
		2/7/2014	14:36						5.1	62.0	13.0	901.4		
		2/7/2014	15:48						5.3	60.0	13.5	953.5		
		2/7/2014	16:48	• •		36			5.5	58.0	13.9	821.9		
		2/7/2014	17:40			36			7	56.0	15.0	752.8		
		2/7/2014	17:43				30				Valve shut	45.1		
SW-59 Event 2		2/10/2014		· ·		3 27			4	53.0	7.8			2242.37
		2/10/2014	8:52).4	53.0	21.7	73.8	8.44	
		2/10/2014	9:38						9	63.0	18.7	929.4		
		2/10/2014	11:01						'.7	78.0	15.8	1430.2		
		2/10/2014	13:37						7	84.0	14.2	2341.0		
		2/10/2014	15:09						5.8	84.0	13.8	1292.2		
		2/10/2014	17:00						5.8	73.0	14.0	1544.6		
		2/10/2014	17:34						5.5	70		467.0		
		2/11/2014	7:35	·).3	53.0	19.5	13875.7		
		2/11/2014	8:42						3.2	56.0	17.2	1228.5		
		2/11/2014	9:27						'.7	61.0	16.0	746.7		
		2/11/2014	10:44						5.8	67.0	14.1	1158.9		
		2/11/2014	11:55						5.2	66.0	12.9	957.9		
		2/11/2014	12:56						5.1	65.0	12.7	781.6		
		2/11/2014	14:00						5.1	63.0	12.7	814.5		
		2/11/2014	16:54						6	53.0	12.7	2215.3		
		2/11/2014	17:43						6	51.0	12.7	624.1		
		2/11/2014	8:38						10	47.0	21.0	15104.1		
		2/12/2014	9:00						10	47.0	21.0 Valve shut	462.1		
SW-59 Event 3		2/12/2014	11:44						14	48.0	29.2	402.1	52.80	7510.19
JVV JJ LVCIIL J		2/12/2014	14:02	• •					14 10	49.0	20.8	3454.4	395.19	
		2/12/2014	14:57						10	46.0	20.8	1145.3		
		2/12/2014	16:56	• •					9.8	45.0	20.4	2451.6		
		2/12/2014	17:56).8	45.0	20.4	1224.2		
).8).7					
		2/13/2014	7:17	2/13/2014 7:17	' 50	, 33	33	, 9	7. /	47.0	20.4	16331.0	1868.26	5 10325.17

				P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)) 7	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
	2/13/201	4 8:02	2/13/2014 8:02	2 4	9 3	3 3	3	9.7	43.0	20.5	918.7	105.10	10430.26
	2/13/201	4 9:07	2/13/2014 9:07	7 4	9 3	3 3	3	9.7	43.0	20.5	1329.7	152.12	10582.38
	2/13/201	9:58	2/13/2014 9:58	3 4	9 3	3 3	3	9.7	44.0	20.4	1042.8	119.29	10701.67
	2/13/201	4 10:36	2/13/2014 10:36	5 4	9 3	3 3	3	9.7	44.0	20.4	776.6	88.84	10790.51
	2/13/201	4 11:06	2/13/2014 11:06	5 4	9 3	3 3	3	9.7	45.0	20.4	612.8	70.10	10860.61
	2/13/201	4 11:37	2/13/2014 11:37	7 4	9 3	3 3	3	9.7	46.0	20.4	632.5	72.36	10932.97
	2/13/201	4 12:07	2/13/2014 12:07	7 4	9 3	3 3	3	9.8	50.0	20.5	613.7	70.22	11003.18
	2/13/201	4 12:37	2/13/2014 12:37	7 4	9 3	3 3	3	9.8	51.0	20.5	615.3	70.39	11073.56
	2/13/201	4 13:07	2/13/2014 13:07	7 4	9 3	3 3	3	9.8	52.0	20.5	614.6	70.32	11143.88
	2/13/201	4 14:11	2/13/2014 14:11	4	9 3	3 3	3	9.8	58.0	20.4	1306.6	149.48	11293.36
	2/13/201	4 15:09	2/13/2014 15:09	9 4	9 3	3 3	3	9.8	60.0	20.3	1179.3	134.92	11428.27
	2/13/201	4 15:21	2/13/2014 15:21	L		2	7			Valve shut	243.8	27.89	11456.16

Total CO₂ Mass (lbs):

Back to Master	Date 1	Гime	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-60 Event 1	11/20/2013	9:10				1		, , ,	0.0	-		
	11/20/2013	9:11			5 32	2 3	0 .	<2 6	0.0	0	0.00	0.00
	11/20/2013	9:16	11/20/2013 9:16						0.0	0	0.00	0.00
	11/20/2013	9:45	11/20/2013 9:45	55	5 32	2 3) .	<2 6	0.0	0	0.00	0.00
	11/20/2013	10:48	3 11/20/2013 10:48	53	3 33	3 29.	5	<2 6	0.0	0	0.00	0.00
	11/20/2013	10:51	11/20/2013 10:51	. 53	3 34	4 31.	5	<2 6	0.0	0	0.00	0.00
	11/20/2013	12:36	5 11/20/2013 12:36	52	2 34	1 3	1	4 6	55 8.3	437	7 50.07	50.07
	11/20/2013	14:37	11/20/2013 14:37	50	33	30.	5 6	.5 6	13.4	1316	3 150.58	200.66
	11/20/2013	14:41	11/20/2013 14:41	. 50) 34	4 31.	5 7	25 63.	.0 15.1	57	1 6.53	207.19
	11/20/2013	15:23	3 11/20/2013 15:23	57.5	5 34	1 3	1	9 62.	.0 18.8	713	1 81.58	3 288.77
	11/20/2013	15:24	11/20/2013 15:24						,	Valve shut 18	8 2.15	290.92
	11/20/2013	15:24	11/20/2013 15:24			1	7					290.92
SW-60 Event 2	11/23/2013	8:10	11/23/2013 8:10	54	4 27	7		7	0.0	0	0.00	290.92
	11/23/2013	8:13	3 11/23/2013 8:13	55	5 31	1 3	0 .	<2 7	0.0	0	0.00	290.92
	11/23/2013	8:43	3 11/23/2013 8:43	52	2 30) 2	9 .	<2 7	76 0.0	0	0.00	290.92
	11/23/2013	8:45	11/23/2013 8:45	52	2 33	31.	5	4 7	76 8.2	8	2 0.93	3 291.86
	11/23/2013	9:18	3 11/23/2013 9:18	50	33	31.	5 5	.5 7	78 11.2	319	5 36.55	328.40
	11/23/2013	9:20	11/23/2013 9:20	50	36	5 3	5	8 7	78 16.8	28	0 3.20	331.61
	11/23/2013	9:49	11/23/2013 9:49	49	9 36	5 3	4	10 8	30 21.0	547	6 62.65	394.26
	11/23/2013	11:07	11/23/2013 11:07	46	5 36	5 32.	5	14 8	32 29.3	1960	1 224.24	618.50
	11/23/2013	12:27	11/23/2013 12:27	4.	5 34	1 3	1 :	17 8	34.9	2565	9 293.54	912.03
	11/23/2013	12:49	11/23/2013 12:49	53	3 34	1 3	0	18 8	36.8	788		1002.24
	11/23/2013	12:50	11/23/2013 12:50						,	Valve shut 36	8 4.21	1006.46
	11/23/2013	12:51	11/23/2013 12:51									1006.46
SW-60 Event 3	11/26/2013	7:42	11/26/2013 7:42	50	27	7		6	58			1006.46
	11/26/2013	7:44			31	1 3	0	<2 6	0.0			1006.46
	11/26/2013	7:55	11/26/2013 7:55		31	1 2			8.0	44	3 5.06	
	11/26/2013	7:56	5 11/26/2013 7:56		36	5 3	3 6	.5 6	58 13.8	10	9 1.25	1012.77
	11/26/2013	8:19							18.9	375		
	11/26/2013	9:23			35				58 27.3	1478		
	11/26/2013	10:55							32.9	2769		
	11/26/2013	12:28			33	3 2	9 :	18 6	37.0	3251		
	11/26/2013	12:29							,	Valve shut 37	0 4.23	
	11/26/2013	12:30				2						1917.84
SW-60 Event 4	12/3/2013	13:25							0.0			1917.84
	12/3/2013	13:42							32 13.0	110		
	12/3/2013	14:47							77 24.9	1234		
	12/3/2013	15:28							² 3 27.5	1075		
	12/3/2013	15:30							32.6	60		
	12/3/2013	15:33							36.6	103		
	12/3/2013	16:56							66 42.1	3263		
	12/3/2013	17:21			35	5 2	9 :	20 6	55 42.1	1052		
	12/3/2013	17:23					_		,	Valve shut 84	2 9.64	
	12/3/2013	17:24				1						2716.92
SW-60 Event 5	12/6/2013	8:08							0.0			2716.92
	12/6/2013	8:09			33				0.0			2716.92
	12/6/2013	9:10							76 24.2	738		
	12/6/2013	9:12							76 28.4	52		
	12/6/2013	10:00							78 32.4	1459		
	12/6/2013	10:02							78 35.0	67		
	12/6/2013	11:06							37.6	2322		
	12/6/2013	11:08							30 41.1	78		
	12/6/2013	12:15	5 12/6/2013 12:15	40) 35	5 30.	5 22	.5 7	9 46.7	2942	1 336.57	3593.48

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂	Cumulative Mass (lb)
	12/6/2013	12:16	12/6/2013 12:16						<u>`</u>	46.7		
	12/6/2013	12:17	12/6/2013 12:17			20)					3598.83
SW-60 Event 6	12/9/2013	12:30	12/9/2013 12:30	50) 3	2 33	<2	84	0.0	0.0	0.0	3598.83
	12/9/2013	12:58	12/9/2013 12:58	50	3	2 30) 6	88	12.0	167.6	19.1	3618.01
	12/9/2013	13:29	12/9/2013 13:29	57.5	3	0 30	10.5	87	20.5	503.6	57.6	1 3675.61
	12/9/2013	14:00	12/9/2013 14:00	45	3	0 30) 12	85	23.5	682.0	78.0	3753.64
	12/9/2013	14:27	12/9/2013 14:27	45	3	0 29	13	82	25.5	661.6	75.69	9 3829.33
	12/9/2013	15:15	12/9/2013 15:15	46	5 2	9 29.5	13.5	77	26.3	1244.2	142.3	4 3971.67
	12/9/2013	15:17	12/9/2013 15:17	46	5 3	2 30.5	15.5	77	31.3	57.6	6.59	9 3978.25
	12/9/2013	16:04	12/9/2013 16:04	42	2 3	2 30	15.5	72	31.4	1472.7	168.4	8 4146.73
	12/9/2013	16:05	12/9/2013 16:05	42	2 3	4 31	. 15.5	72	32.1	31.7	3.63	3 4150.36
	12/9/2013	16:40	12/9/2013 16:40	44	1 3	4 32	! 15.5	70	32.1	1124.1	128.6	0 4278.96
	12/9/2013	17:21	12/9/2013 17:21	45	32.	5 32	! 16	68	32.7	1329.9	152.1	5 4431.11
	12/9/2013	17:22	12/9/2013 17:22						Valve shut	32.7	3.7	4434.85
	12/9/2013	17:23	12/9/2013 17:23			19						4434.85
SW-60 Event 7	12/12/2013	8:19	12/12/2013 8:19									4434.85
	12/12/2013	9:31	12/12/2013 9:31) 3	4 29	10	67		1321.5		
	12/12/2013	9:32	12/12/2013 9:32) 3.	5 30				23.0		
	12/12/2013	10:20	12/12/2013 10:20	45	5 3			68		1250.0		4731.66
	12/12/2013	11:07	12/12/2013 11:07		L 3					1261.2		
	12/12/2013	11:08	12/12/2013 11:08							29.3		
	12/12/2013	12:10	12/12/2013 12:10) 3	0 30.5	15.5	70	30.8	1939.2		
	12/12/2013	12:19	12/12/2013 12:19						Valve shut	277.0	31.69	
	12/12/2013	12:20	12/12/2013 12:20			19						5132.83
SW-60 Event 8	12/16/2013	12:13	12/16/2013 12:13							0.0		
	12/16/2013	12:45	12/16/2013 12:45							0.0		
	12/16/2013	12:47	12/16/2013 12:47							8.9		
	12/16/2013	13:19	12/16/2013 13:19		2	9	8	70		392.9		
	12/16/2013	13:20					_		Valve Shut			
	12/16/2013	14:51	12/16/2013 14:51							909.3		
	12/16/2013	15:48	12/16/2013 15:48							1201.9		
	12/16/2013	15:50	12/16/2013 15:50							69.9		
	12/16/2013	16:48	12/16/2013 16:48							2108.8		
	12/16/2013	17:35	12/16/2013 17:35		2 3	0 28	3 18	56		1673.2		
	12/16/2013	17:36	12/16/2013 17:36						Valve Shut	36.2	4.1	
6)44 60 5 4 0	12/16/2013	17:37	12/16/2013 17:37		2							5866.91
SW-60 Event 9	1/10/2014	8:40										5866.91
	1/10/2014	8:41	1/10/2014 8:41							205.2	45.3	5866.91
	1/10/2014	9:30	1/10/2014 9:30							395.2		
	1/10/2014	9:41	1/10/2014 9:41							213.4		
	1/10/2014	10:35	1/10/2014 10:35							1276.9		
	1/10/2014	12:24	1/10/2014 12:24							2793.5		
	1/10/2014	13:12	1/10/2014 13:12		1 3	2 30) 14	68		1322.6		
	1/10/2014	13:14	1/10/2014 13:14			4.0			Valve shut	57.0	6.5	
SIM 60 Front 10	1/10/2014	13:16	1/10/2014 13:16) 3	19 8 27		40	0.0			6560.02
SW-60 Event 10	1/22/2014	9:20	1/22/2014 9:20							0.0	0.00	6560.02
	1/22/2014	9:21	1/22/2014 9:21							0.0		
	1/22/2014	9:27	1/22/2014 9:27							12.6		
	1/22/2014	9:30	1/22/2014 9:30							17.3		
	1/22/2014	10:00	1/22/2014 10:00							333.6		
	1/22/2014 1/22/2014	11:09 12:14	1/22/2014 11:09 1/22/2014 12:14							1506.8 1882.2		
	1/22/2014	13:00	1/22/2014 13:00	43	3	3 30) 14	59	29.0	1338.2	153.0	9 7142.40

		_			P at Reducer	P at Panel	P at Well	Rotameter	T /05\	El .	(c.f.)	Volume of	Mass of CO ₂	Cumulative
Back to Master	Date		Γime	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)		ow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
		1/22/2014	14:20			1 31				60	35.1	2565.4		
		1/22/2014	14:21				20				Valve shut	35.1		
SW-60 Event 11		1/23/2014	8:36	• •						39	0.0	0.0		
		1/23/2014	8:38	• •						39	0.0	0.0		
		1/23/2014	9:08	• •					i	45	9.4	140.5		
		1/23/2014	9:09	• •					,	45	14.9	12.1		
		1/23/2014	9:56	1/23/2014 9:56	4	7 34	3) 11.5		48	24.4	922.9	105.58	3 7562.94
		1/23/2014	11:00	1/23/2014 11:00	42.	5 33	2	9 14	ļ	52	29.3	1716.4	196.36	7759.30
		1/23/2014	11:04	1/23/2014 11:04	42.	5 35	31.	2 16.5	•	52	35.2	128.9	14.75	7774.05
		1/23/2014	11:51	1/23/2014 11:51	4	0 35	3:	l 17.7	,	54	37.7	1713.0	195.97	7 7970.02
		1/23/2014	12:39	1/23/2014 12:39	4	4 35	31.	5 17.2		60	36.4	1778.2	203.43	8173.45
		1/23/2014	13:18	1/23/2014 13:18	4	7 35	31.	5 17.2		60	36.4	1419.8	162.42	8335.87
		1/23/2014	13:19	1/23/2014 13:19			20)			Valve shut	36.4	4.16	8340.04
SW-60 Event 12		1/24/2014	7:32	1/24/2014 7:32	6	0 30	2	7 <2		37	0.0			8340.04
		1/24/2014	7:33	1/24/2014 7:33	6	0 33	3	L <2		37	0.0	0.0	0.00	8340.04
		1/24/2014	8:04	1/24/2014 8:04	5	0 31	. 28.	2 4.5		40	9.3	144.4	16.52	8356.55
		1/24/2014	8:05	1/24/2014 8:05	5	0 32	30.8	3	•	40	14.6	12.0	1.37	7 8357.92
		1/24/2014	8:21	1/24/2014 8:21	5	0 32	30.	9.5		42	19.8	275.9	31.57	7 8389.49
		1/24/2014	8:39	1/24/2014 8:39	4	9 32	29.	5 11.2		45	23.3	388.4	44.44	4 8433.93
		1/24/2014	8:41	1/24/2014 8:41	4	9 34.0	3:	13.5	•	45	28.7	52.0	5.95	8439.88
		1/24/2014	9:03	1/24/2014 9:03	4	8 33.5	30.	5 14.2	!	47	30.0	645.7	73.86	8513.74
		1/24/2014	9:37	1/24/2014 9:37	4	9 33.5	3) 16	;	48	33.7	1083.4	123.94	4 8637.69
		1/24/2014	10:36	1/24/2014 10:36	4	8 33.5	3) 15.5	;	54	32.5	1954.2	223.56	8861.24
		1/24/2014	11:41	1/24/2014 11:41	4	8 33.5	3) 15.8	1	57	33.0	2129.3	243.59	9104.84
		1/24/2014	12:05			5 32.5	29.			58	33.1	792.9		
		1/24/2014	12:06				18				Valve shut	33.1	3.78	
Note: a red value.	i.e. <mark>75</mark> °			s interpolated from field of								Total CO ₂ Mass (lbs):		9199.33
,				•								2		2 2 3 3 . 3 3

Back to Master	Date	Time	Date + Time	P at Reducer	P at Panel (psig)	P at Well	Rotameter Reading (scfm)	Tomn (°E)	Ele	ow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-61 Event 1	11/21/2013	9:58		(psig) 50		(psi)	Reduing (SCIIII)	Temp (°F)	FIU	0.0	CO ₂ (3CI)	(ID)	iviass (ID)
3W-01 LVEIIL I	11/21/2013	10:00					2 <)	72	0.0	0.0	0.00	0.00
	11/21/2013	10:45							72	25.2	566.4		
	11/21/2013	10:45							72 72	31.7	28.4		
	11/21/2013	11:45	• •						72 72	35.5	1982.1		
	11/21/2013	11:43								38.9	111.6		
		13:05							72 74	40.5	3055.3		
	11/21/2013		• •										
	11/21/2013	13:06							74	47.5	44.0		
	11/21/2013	14:25							74	49.6	3835.6		
	11/21/2013	14:28	• •		36				74	54.4	156.0		
	11/21/2013	14:38			36		2	•	74	54.8 Valve shut	546.2	2 62.48	
CIV. 64 F	11/21/2013	14:39				19.0)		70		2.7		1181.24
SW-61 Event 2	11/23/2013	8:16							70		0.0		
	11/23/2013	8:17	11/23/2013 8:17						70	0.0	0.0		
	11/23/2013	8:47							77	27.0	404.7		
	11/23/2013	8:48							77	35.9	31.4		
	11/23/2013	9:22							78	38.4	1263.6		
	11/23/2013	9:50	11/23/2013 9:50						80	39.3	1088.6		
	11/23/2013	11:08							82	41.2	3141.7		
	11/23/2013	12:29							82	42.7	3398.6		
	11/23/2013	12:53			29	9 20	5 2	3	85	44.5	1046.4		
	11/23/2013	12:54	11/23/2013 12:54							Valve shut	44.5	5.09	
	11/23/2013	12:55											2373.24
SW-61 Event 3	11/26/2013	7:40	11/26/2013 7:40	54	28	8			68				2373.24
	11/26/2013	7:43	11/26/2013 7:43	55	33	1 37	2 4.0)	68	8.0	24.1	2.76	2376.00
	11/26/2013	7:45	11/26/2013 7:45		30	0 28.	5 12.0)	68	23.9	31.9	3.65	2379.66
	11/26/2013	7:46	11/26/2013 7:46	i	33)	68	30.2	27.0	3.09	2382.75
	11/26/2013	7:54	11/26/2013 7:54	L	30	0 29.	16.)	68	31.8	248.1	28.38	2411.13
	11/26/2013	8:22	11/26/2013 8:22		30	0 28.	18.0)	68	35.8	947.1	108.35	2519.48
	11/26/2013	9:21	11/26/2013 9:21		32	2 27.	5 19.	5	68	39.7	2226.8	3 254.75	2774.22
	11/26/2013	10:54	11/26/2013 10:54		32	2 2	7 20.	5	68	41.7	3784.0	432.89	3207.11
	11/26/2013	12:27	11/26/2013 12:27	,	32	2 20	5 22.0)	70	44.7	4016.4	459.48	3666.59
	11/26/2013	12:28	11/26/2013 12:28	;						Valve shut	44.7	7 5.11	3671.70
	11/26/2013	12:29	11/26/2013 12:29)									3671.70
SW-61 Event 4	12/3/2013	8:37	12/3/2013 8:37	,									3671.70
	12/3/2013	8:38	12/3/2013 8:38	55	26	6 2	7 <	2	64	0.0			3671.70
	12/3/2013	8:40	12/3/2013 8:40	55	30	0 28	3	5	64	12.0	12.0	1.37	3673.07
	12/3/2013	8:45	12/3/2013 8:45	54	28	8 2	7 1	2	65	23.4	88.5	5 10.12	3683.19
	12/3/2013	9:10	12/3/2013 9:10	50	28	8 20	5 1	1	68	27.2	632.7	7 72.38	3755.57
	12/3/2013	9:12	12/3/2013 9:12	50	32	2 28.	5 1	3	68	36.6	63.8	7.30	3762.87
	12/3/2013	9:56	12/3/2013 9:56	50	32	2 27.	5 2)	66	40.8	1702.5	194.77	3957.64
	12/3/2013	9:57	12/3/2013 9:57	50	34	4 28.	21.	5	66	44.8	42.8	3 4.89	3962.53
	12/3/2013	11:25	12/3/2013 11:25	48	32	2 20	5 2	5	68	50.9	4207.7	481.36	4443.89
	12/3/2013	11:27	12/3/2013 11:27	48	32.5	5 2	7 26.2	5	68	53.7	104.6	5 11.96	4455.85
	12/3/2013	12:19	12/3/2013 12:19	46	33	3 20	5 2	3	73	57.3	2885.8	330.13	4785.98
	12/3/2013	12:45			33				76	58.2	1500.9		
	12/3/2013	12:46	12/3/2013 12:46	i		18	3			Valve shut	58.2	6.65	4964.33
SW-61 Event 5	12/6/2013	13:02			3:			1	88	20.7			4964.33
	12/6/2013	13:57	12/6/2013 13:57		30				88	35.1	1536.1	175.73	
	12/6/2013	13:58			33				88	42.4	38.7		
	12/6/2013	14:22			32				83	46.1	1061.7		
	12/6/2013	14:23	• •		3!				83	53.8	50.0		
	12/6/2013	15:22	• •		34				78	59.7	3347.9		
	12, 0, 2013	13.22	12, 0, 2013 13.22	. 7 2	J-	. 20		-	. 3	55.7	3347.3	. 505.00	3034.00

Book to March	D. I.	 -	D. 1 T	P at Reducer	P at Panel	P at Well	Rotameter	T (05)	Flour (onfur)		Volume of	Mass of CO ₂	Cumulative
Back to Master	Date 12/6/2013	Time 17:44	Date + Time 12/6/2013 17:44	(psig) 1 50	(psig) 35	(psi) 27		Temp (°F)	Flow (scfm) 69 67	1	CO ₂ (scf) 9003.5	(lb) 1030.00	Mass (lb) 6684.67
	12/6/2013	17:44	12/6/2013 17:45		33	2.	32		09 07	.1 Valve shut	9003.5 67.1		
	12/6/2013	17:45	12/6/2013 17:46			10	1			valve silut	07.1	7.00	6692.35
SW-61 Event 6	12/9/2013	8:04	12/9/2013 17.46			19	,		0	0	0.0	0.00	
3W-01 EVEIL 0	12/9/2013	8:05	12/9/2013 8:05		32.5	34	l <2		62 0		0.0		
	12/9/2013	8:11	12/9/2013 8:03						62 10		30.9		
	12/9/2013	8:30	12/9/2013 8:30						62 16		253.3		
	12/9/2013	9:05	12/9/2013 9:05						64 20		643.9		
	12/9/2013	9:35	12/9/2013 9:35						67 22		638.7		
	12/9/2013	9:59	12/9/2013 9:59						70 26		587.6		
	12/9/2013	10:55	12/9/2013 10:55						74 28		1544.6		
	12/9/2013	11:33	12/9/2013 10:33						80 29		1092.9		
	12/9/2013	12:22	12/9/2013 12:22						83 31		1474.5		
	12/9/2013	12:23	12/9/2013 12:23		23	20	, 10		05 51	Valve shut	31.0		
	12/9/2013	12:24	12/9/2013 12:24			20	1			valve shut	31.0	3.50	7412.77
SW-61 Event 7	12/12/2013	12:25	12/12/2013 12:25		30				68 0	.0			7412.77
SW OI LVCIIL 7	12/12/2013	12:47	12/12/2013 12:47						70 0				7412.77
	12/12/2013	12:48	12/12/2013 12:48						70 7		4.0	0.45	
	12/12/2013	13:55	12/12/2013 12:40						74 16		816.1		
	12/12/2013	13:57	12/12/2013 13:57						74 22		38.4		
	12/12/2013	14:28	12/12/2013 14:28						72 23		709.7		
	12/12/2013	15:04	12/12/2013 15:04						74 26		908.8		
	12/12/2013	15:05	12/12/2013 15:05						74 32		29.5		
	12/12/2013	15:56	12/12/2013 15:56						72 36		1754.8		
	12/12/2013	16:44	12/12/2013 16:44						72 39		1823.3		
	12/12/2013	16:45	12/12/2013 16:45							Valve shut	39.5		
	12/12/2013	16:46	12/12/2013 16:46			20)						8113.37
SW-61 Event 8	12/16/2013	8:10	12/16/2013 8:10		34				46 0	.0	0.0	0.00	
	12/16/2013	8:59	12/16/2013 8:59		30	30) 10		56 20	.1	493.3		
	12/16/2013	9:00	12/16/2013 9:00		32				52 24		22.5		
	12/16/2013	9:01	12/16/2013 9:01		5 33				52 27		26.0		
	12/16/2013	9:43	12/16/2013 9:43						62 32		1258.1		
	12/16/2013	9:45	12/16/2013 9:45						62 37		70.0		
	12/16/2013	10:40	12/16/2013 10:40						66 40		2145.1		
	12/16/2013	10:48	12/16/2013 10:48						66 46		348.2		
	12/16/2013	12:05	12/16/2013 12:05						66 50		3726.0		
	12/16/2013	12:06	12/16/2013 12:06							Valve shut	50.5		
	12/16/2013	12:07	12/16/2013 12:07			22	2						9044.54
	Note: a red value, i.	e. <mark>75</mark> °F, indic	ates that value was inte	rpolated from fi	eld data					T	otal CO ₂ Mass (lbs):		9044.54

Deal to Market	Data		Polos Time	P at Reducer	P at Panel	P at Well	Rotameter	Tamas (95)	Flour (onfin)	Volume of	Mass of CO₂	Cumulative
Back to Master		Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
SW-62 Event 1	11/20/2013	8:56			25.5	6		2 (4	0.0	0.4	0.00	0.00
	11/20/2013 11/20/2013	8:57 8:58			25.5					0.0 0.1		
	11/20/2013	9:07	• •		29 28.5					0.0		
	11/20/2013	9:07	· ·							24.		
	11/20/2013	9:14 9:47	• •							274.		
	11/20/2013	9.47 10:47						5 64 6 66		641.		
	11/20/2013	10:47	· ·					9 66		88.		
	11/20/2013	12:35	• •					9 65.0		00. 1841.		
	11/20/2013	14:35	· ·							2423.		
	11/20/2013	14:43	· ·							188.		
	11/20/2013	15:16	· ·							828.0		
	11/20/2013	15:18	· ·) 51	30	12.	5 05.0		ve shut 50.0		
	11/20/2013	15:16				17.2			Valv	ve silut 50.0) 5.76	727.66
SW-62 Event 2	11/23/2013	7:59	···) 26			66		0.0	0.00	
3VV-02 EVEIIL Z	11/23/2013	8:02					9.			56.		
	11/23/2013	8:35								624.		
	11/23/2013	8:38								87.:		
	11/23/2013	8:41								120.:		
	11/23/2013	9:12								1410.4		
		9:12								1410.7		
	11/23/2013 11/23/2013	9:15								1633.4		
	11/23/2013	11:03								3902.8		
	11/23/2013	12:24								4301.3		
	11/23/2013	12:39			34	25.5	2	7 90		824.0		
	11/23/2013	12:42				10 5			Valv	ve shut 164.8	3 18.85	
SW-62 Event 3	11/23/2013	12:43 7:31			27	18.5		68)			2245.44 2245.44
SVV-62 EVEIIL 3	11/26/2013		• •									
	11/26/2013	7:33			32					11.9	1 2-	2245.44 7 2246.81
	11/26/2013 11/26/2013	7:34 7:35			30					28.0		
	11/26/2013	7.33 7:48			31 30					455.		
	11/26/2013	7.46 8:26	• •		30					455.\ 1474.		
	11/26/2013	9:17								2054.9		
	11/26/2013	10:50	• •		30					3885.		
	11/26/2013	12:19			30					3847.		
	11/26/2013	12:13	· ·		30	23	2	2 /0		ve shut 174.		
	11/26/2013	12:26	· ·			17.5			Val	ve shut 174.) 19.99	3610.53
SW-62 Event 4	12/3/2013	13:28	<u> </u>) 30			9 84	37.2			3610.53
3VV-02 LVEIIL 4	12/3/2013	13:44								674.	7 77.19	
	12/3/2013	14:49								3294.		
	12/3/2013	15:36								2555.		
	12/3/2013	16:58								4578.0		
	12/3/2013	17:25								4576.t 1556.t		
	12/3/2013	17:26			2 29	16		3 00		ve shut 58.		
	12/3/2013	17:27				10			Val	ve silut 36.	. 0.03	5065.34
SW-62 Event 5	12/6/2013	8:04										5065.34
SVV-UZ EVEIIL S	12/6/2013	8:04 8:06			2 29	31	<	2 70	0.0			5065.34
	12/6/2013	8:10			2 29 29							5065.34
	12/6/2013	9:07								562.	7 64.37	
	12/6/2013	9:07								562. 1112.:		
	12/6/2013	9.55 9:58								88.:		
	12/6/2013	11:03	12/6/2013 11:03	37.5	5 31	29.5	18.	5 80	36.8	2243.	5 256.66	5 5523.70

Back to Master	Date 1	Гime		P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
	12/6/2013	11:05	12/6/2013 11:05	37.5	32.5	30	20.	5 80	41.4	78.2	8.95	5 5532.65
	12/6/2013	12:11	12/6/2013 12:11	37.5	32.5	30	21.3	3 79	44.1	2823.6	323.01	1 5855.67
	12/6/2013	12:13	12/6/2013 12:13						Valve shut	88.2	10.09	5865.76
	12/6/2013	12:14	12/6/2013 12:14			20)					5865.76
SW-62 Event 6	12/9/2013	13:09	12/9/2013 13:09						0.0	0.0	0.00	5865.76
	12/9/2013	13:10	12/9/2013 13:10	50	30) 30) <	2 88	0.0	0.0	0.00	5865.76
	12/9/2013	13:34	12/9/2013 13:34	48	3 28	3 2	7 1:	1 88	21.0	251.7	28.80	5894.56
	12/9/2013	14:05	12/9/2013 14:05	45	5 28	3 20	5 1	85	24.9	710.6	81.29	9 5975.85
	12/9/2013	14:25	12/9/2013 14:25	45	5 28	3 2!	5 14	1 82	26.9	517.2	59.16	6035.01
	12/9/2013	15:18	12/9/2013 15:18	45	5 27	7 25.	5 1	78	28.5	1467.8	167.91	1 6202.92
	12/9/2013	15:19	12/9/2013 15:19	45	30) 27.	5 20	78	39.4	34.0	3.89	6206.81
	12/9/2013	16:00	12/9/2013 16:00	43	3 31	L 20	5 2:	1 72	42.1	1670.8	3 191.14	4 6397.94
	12/9/2013	16:09	12/9/2013 16:09	43	3 32	2 2	7 2	3 72	46.6	399.1	45.66	6443.61
	12/9/2013	16:41	12/9/2013 16:41	44	1 32.5	5 29	20.	5 70	41.8	1415.3	161.91	1 6605.52
	12/9/2013	17:19	12/9/2013 17:19	45	32.5	5 29	2:	1 68	43.0	1611.3	184.33	6789.85
	12/9/2013	17:20	12/9/2013 17:20						Valve shut	43.0	4.91	1 6794.76
	12/9/2013	17:21	12/9/2013 17:21			2:	l					6794.76
SW-62 Event 7	12/12/2013	8:53	12/12/2013 8:53	52	2 32.5	5 32	2 <	2 64	0.0			6794.76
	12/12/2013	9:30	12/12/2013 9:30	50					16.4	303.0	34.67	7 6829.43
	12/12/2013	10:22	12/12/2013 10:22	45					26.2	1106.0		
	12/12/2013	10:23	12/12/2013 10:23	45					30.5	28.3		
	12/12/2013	11:04	12/12/2013 11:04	42.5					36.5	1374.8		
	12/12/2013	11:05	12/12/2013 11:05	4:					44.6	40.6		
	12/12/2013	12:08	12/12/2013 12:08	40					47.7	2907.4		
	12/12/2013	12:53	12/12/2013 12:53						Valve shut	2146.7		
	12/12/2013	12:54	12/12/2013 12:54			19)					7699.30
SW-62 Event 8	12/16/2013	8:08	12/16/2013 8:08	5() 35			2 46	0.0			7699.30
<u> </u>	12/16/2013	8:57	12/16/2013 8:57	48.5					30.6	749.1	. 85.70	
	12/16/2013	8:58	12/16/2013 8:58	47.5					35.0	32.8		
	12/16/2013	9:03	12/16/2013 9:03	4(40.0	187.5		
	12/16/2013	9:42	12/16/2013 9:42	4(41.8	1594.6		
	12/16/2013	9:44	12/16/2013 9:44	4(46.5	88.3		
	12/16/2013	10:47	12/16/2013 10:47	4(48.4	2988.1		
	12/16/2013	12:03	12/16/2013 12:03	42					50.5	3757.6		
	12/16/2013	12:05	12/16/2013 12:05	7.		, 2.	, 2	, 00	Valve shut	101.0		
	12/16/2013	12:06	12/16/2013 12:06			20)		varve strat	101.0	, 11.30	8785.97
SW-62 Event 9	1/22/2014	9:24	1/22/2014 9:24	48	3 26			2 48	0.0	0.0	0.00	
JVV OZ LVCIIC J	1/22/2014	9:25	1/22/2014 9:25	48					0.0	0.0		
	1/22/2014	9:30	1/22/2014 9:30	48					0.0	0.0		
	1/22/2014	9:59	1/22/2014 9:59	4:					12.1	175.1		
	1/22/2014	10:01	1/22/2014 9.39	4: 4:					21.1	33.2		
	1/22/2014	11:06	1/22/2014 10:01	43					19.7	33.2 1327.7		
	1/22/2014								29.3	49.0		
		11:08	1/22/2014 11:08	43								
	1/22/2014	12:12	1/22/2014 12:12	39					32.4	1972.7		
	1/22/2014	12:58	1/22/2014 12:58	43					32.9	1500.5		
	1/22/2014	14:22	1/22/2014 14:22	4.	5 33			5 59	30.1	2644.9		
	1/22/2014	14:23	1/22/2014 14:23 interpolated from field d			20	J		Valve shut	Total CO ₂ Mass (lbs):		9670.64 9670.64

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-63 Event 1	11/18/2013		11/18/2013 13:14				nedding (senin)	remp (1)	0.0	302 (63.7	(10)	Triass (III)
SVV 03 EVENT I	11/18/2013	13:17	11/18/2013 13:17				<2	, ,	80 0.0	0.0	0.00	0.00
	11/18/2013	13:28							80 9.7	53.		
	11/18/2013	13:29	• •						80 12.1	10.9		
	11/18/2013	13:59	• •						80 18.1	452.4		
	11/18/2013	14:02			33				80 20.3	57.		
	11/18/2013	15:12	• •						78 23.2	1522.3		
	11/18/2013	15:15	• •						78 25.4	970.		
	11/18/2013	15:52			34				76 26.8	2034.		
	11/18/2013	17:10	• •		34				74 27.9	27.:		
	11/18/2013	17:11								shut 27.9		
	11/18/2013	17:12	11/18/2013 17:12			22						590.03
SW-63 Event 2	12/3/2013	13:00										590.03
	12/3/2013	13:01	12/3/2013 13:01		34	32	<2	2	83 0.0			590.03
	12/3/2013	13:34	12/3/2013 13:34						85 12.0	198.:	1 22.67	
	12/3/2013	13:36							85 18.6	30.		
	12/3/2013	14:44	12/3/2013 14:44						80 24.9	1478.		
	12/3/2013	16:00	12/3/2013 16:00	49	35	32	13	3	74 27.1	1977.0	5 226.24	1011.60
	12/3/2013	17:01	12/3/2013 17:01		35	30.5	13.5	5	67 28.4	1693.:		1205.29
	12/3/2013	17:03							Valve	shut 56.	7 6.49	1211.79
	12/3/2013	17:04	12/3/2013 17:04			21						1211.79
SW-63 Event 3	12/9/2013	13:22							0.0	0.0	0.00	1211.79
	12/9/2013	13:24	12/9/2013 13:24		30	31		1 9	92 7.8	7.:	0.89	1212.68
	12/9/2013	13:25	12/9/2013 13:25	55	30) 28	9	92	2.0 17.5	12.0	5 1.45	1214.12
	12/9/2013	13:27	12/9/2013 13:27	55	30) 26	12	92	2.0 23.3	40.	8 4.67	1218.79
	12/9/2013	13:30	12/9/2013 13:30	55	30) 27	16	5	92 31.1	81.	7 9.34	1228.14
	12/9/2013	13:55	12/9/2013 13:55	50	30) 27	18.5	5	90 36.0	839.4	4 96.03	1324.17
	12/9/2013	13:56	12/9/2013 13:56	50	31	L	20) 9	90 39.4	37.	7 4.32	1328.48
	12/9/2013	14:23	12/9/2013 14:23	50	31	27	20	90	0.0 39.4	1063.9	9 121.71	1450.19
	12/9/2013		12/9/2013 15:22	48	32	2 27	21	82	2.0 42.1	2405.	7 275.22	1725.41
	12/9/2013	15:23	12/9/2013 15:23	48	33	3 28.5	22	2 82	2.0 44.6	43.4	4.96	1730.37
	12/9/2013	16:43	12/9/2013 16:43	45	32.5	5 28	22	2 75	5.0 44.7	3573.0	0 408.75	2139.12
	12/9/2013	17:30	12/9/2013 17:30	55	32.4	1 28	22.5	73	3.0 45.7	2125.4	4 243.14	2382.27
	12/9/2013	17:31	12/9/2013 17:31		34	l .			Valve	Shut 45.	7 5.23	2387.50
	12/9/2013	17:32	12/9/2013 17:32			18	}					2387.50
SW-63 Event 4	12/16/2013	12:01	12/16/2013 12:01	. 50	32	2 33	<2	2	70 0.0	0.0	0.00	2387.50
	12/16/2013	12:53	12/16/2013 12:53	50	30) 29		5 7	72 9.9	257.	7 29.48	2416.98
	12/16/2013	12:54	12/16/2013 12:54	50	32	2 31)	72 18.2	14.:	1.61	2418.59
	12/16/2013	13:16	12/16/2013 13:16		32	2	Ç)	70 18.3	401.0	6 45.95	2464.53
	12/16/2013	13:17	12/16/2013 13:17						Valve	Shut 18.3	3 2.09	2466.62
	12/16/2013	14:41	12/16/2013 14:41	. 52	33.5	30.5	12	2	76 24.6 Resta	art 2067.	7 236.54	2703.16
	12/16/2013	14:52	12/16/2013 14:52	46	34	32	. 11	L 7	74 22.7	260.4	4 29.79	2732.95
	12/16/2013	15:58	12/16/2013 15:58	45	32	2 31	. 12	2	70 24.4	1554.0	177.78	3 2910.73
	12/16/2013	16:51	12/16/2013 16:51	45	31	1 30	12.5	5 (66 25.2	1313.		
	12/16/2013	16:52							66 28.5	26.9		
	12/16/2013	16:54			34				66 32.3	60.3		
	12/16/2013	17:40			36	33	17.5	5	54 37.6	1608.3		
	12/16/2013	17:41	12/16/2013 17:41						Valve	Shut 37.0	6 4.31	
	12/16/2013	17:42				22						3259.30
SW-63 Event 5	1/6/2014								66			3259.30
	1/6/2014		1/6/2014 12:54						66 0.0			3259.30
	1/6/2014								68 0.0			3259.30
	1/6/2014	13:20	1/6/2014 13:20	59) 34	32.5	3.5	5 (68 7.3	7.3	3 0.83	3260.14

					P at Reducer	P at Panel	P at Well	Rotameter			Volume of	Mass of CO₂	Cumulative
Back to Master	Date		Time	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
		1/6/2014	13:52	1/6/2014 13:52	59	34	32.5	5 4.5	63	9.4	266.7	7 30.52	2 3290.65
		1/6/2014	14:57	1/6/2014 14:57	59	33.5	31.	6.5	60	13.5	745.6	5 85.30	0 3375.95
		1/6/2014	14:59	1/6/2014 14:59	59	35	3	8.5	60	18.0	31.5	3.61	1 3379.56
		1/6/2014	15:58	1/6/2014 15:58	59	35	32.	9.5	56	20.2	1126.3	3 128.84	4 3508.41
		1/6/2014	16:58	1/6/2014 16:58	57	35	31.	5 11	49	23.5	1311.9	150.08	8 3658.49
		1/6/2014	17:10	1/6/2014 17:10	57	35	31.	5 11.5	48	24.6	289.3	1 33.07	7 3691.56
		1/6/2014	17:11	1/6/2014 17:11						Valve shu	t 24.6	5 2.82	2 3694.38
_		1/6/2014	17:12	1/6/2014 17:12			22.	5					3694.38
SW-63 Event 6		1/7/2014	7:20	1/7/2014 7:20					27				3694.38
		1/7/2014	7:22	1/7/2014 7:22	39	33.5	31.	5 <2	27	0.0			3694.38
		1/7/2014	7:46	1/7/2014 7:46	20	17	7 16.	< < 2	27	0.0	0.0	0.00	0 3694.38
		1/7/2014	8:42	1/7/2014 8:42	59	36	5 3!	6.5	38	14.2	398.0	45.53	3 3739.91
		1/7/2014	10:16	1/7/2014 10:16	55	35.5	3.	5 10	50	21.5	1678.3	1 191.98	8 3931.89
		1/7/2014	11:18	1/7/2014 11:18	53	35	32.	5 11.5	53	24.5	1426.3	1 163.14	4 4095.04
		1/7/2014	12:30	1/7/2014 12:30	51	34.5	31.	12.5	54	26.5	1835.7	7 210.01	1 4305.05
		1/7/2014	12:32	1/7/2014 12:32						Valve shu	t 53.0	6.06	6 4311.10
		1/7/2014	12:33	1/7/2014 12:33			22	2					4311.10
SW-63 Event 7		1/9/2014	8:15	1/9/2014 8:15	55	34	1 34	1 <2	54	0.0	0.0	0.00	0 4311.10
		1/9/2014	8:55	1/9/2014 8:55	52	. 32	2 32.	5 2	55	4.1	82.4	9.43	3 4320.53
		1/9/2014	10:12	1/9/2014 10:12	50	32			59	9.2	514.3	3 58.84	4 4379.37
		1/9/2014	10:14						59		21.7		
		1/9/2014	11:30	• •					68		981.0		
		1/9/2014	12:33						64		908.8		
		1/9/2014	12:34							Valve shu			
		1/9/2014	12:38	• •			2:	1					4599.82
SW-63 Event 8		1/13/2014	11:17			31.8			74	0.0	0.0	0.00	
		1/13/2014	11:19						74		0.0		
		1/13/2014	12:42						76		168.5		
		1/13/2014	14:12						76		546.0		
		1/13/2014	15:29						74		700.2		
		1/13/2014	16:30						71		628.4		
		1/13/2014	17:19						67		526.9		
		1/13/2014	21:38						63		3301.5		
		1/13/2014	21:39						63		18.5		
		1/13/2014	8:25						64		16671.2		
		1/14/2014	8:29			. 32	2:		0-1	Valve shu			
SW-63 Event 9		1/15/2014	7:49			26			44		110.0	15.2	7194.09
SW-03 EVERTS		1/15/2014	7:50						44		18.3	3 2.10	
		1/15/2014	8:27						57		767.2		
		1/15/2014	8:30						57		55.9		
		1/15/2014	10:00						66		1955.		
		1/15/2014	11:02								1453.4		
		1/15/2014							70		1286.1		
			11:53						72				
		1/15/2014	13:40						68		2943.0		
		1/15/2014	15:20						74		2964.6		
		1/15/2014	16:14			32.5			70		1661.4		
CM 62 F 142		1/15/2014	16:16				2:			Valve shu	t 62.3	1 7.10	
<u>SW-63 Event 10</u>		1/17/2014	7:02						40				8700.42
		1/17/2014	7:04						40		21.7		
		1/17/2014	7:55	• •					42		746.3		
		1/17/2014	10:10						62		2364.8		
		1/17/2014	11:03			32.5	31.	5 10	70		1045.3		
		1/17/2014	11:07	1/17/2014 11:07						Valve shu	t 81.7	7 9.34	4 9187.71

						P at Reducer	P at Panel	P at Well	Ro	otameter				Volume of	Mass of CO	₂ Cumulative
Back to N	<u> Master</u>	Date	Time		Date + Time	(psig)	(psig)	(psi)	Re	eading (scfm)	Temp (°F)	F	low (scfm)	CO ₂ (scf)	(lb)	Mass (lb)
			1/17/2014	11:09	1/17/2014 11:09	5	50 3	33	32	13.2		70	27.1 Restart			9187.71
			1/17/2014	12:00	1/17/2014 12:00	4	18 3	33	32	12.8	1	74	26.2	1358.1	. 155	9343.08
			1/17/2014	12:01	1/17/2014 12:01								Valve shut	26.2	. 2	9346.07

Total CO₂ Mass (lbs):

Back to Master	Date	Time	Date + Time	P at Reducer (psig)	P at Pane (psig)		at Well osi)	Rotameter Reading (scfm)	Ter	mp (°F)	Flow (scfm)	Volume of CO ₂ (scf)	Mass of CO₂ (lb)	Cumulative Mass (lb)
SW-64 Event 1	11/19/2013	8:39				26		incuraning (coming			0.0	2()	(10)	
	11/19/2013	8:40				30	31.5		<2	69.0	0.0	0.0	0.00	0.00
	11/19/2013	8:41				34	34.5		<2	70.5	0.0	0.0		
	11/19/2013	8:45				34	33.5		<2	72.0	0.0	0.0		
	11/19/2013	9:02				33	32.5		4	74.0	8.2	69.1		
	11/19/2013	9:04				35	34.5	;	5	76.0	10.4	18.0	5 2.13	3 10.08
	11/19/2013	10:32	• •			35	33.5		7	76.5	14.6	1099.		
	11/19/2013	10:35	11/19/2013 10:35	;		36	35	;	8	77	16.8	47.:	1 5.39	141.28
	11/19/2013	11:21	11/19/2013 11:21	. 57.	5	37	34.5	;	9	77	19.1	826.4	4 94.54	235.82
	11/19/2013	12:12	11/19/2013 12:12	!		36	34.5	;	9	77	18.9	969.9	9 110.95	346.78
	11/19/2013	12:44	11/19/2013 12:44	ļ		36	34	ļ	9	77	18.9	605.	5 69.27	416.05
	11/19/2013	12:45	11/19/2013 12:45	i							Valve sh	nut 18.9	9 2.16	418.21
	11/19/2013	12:47	11/19/2013 12:47	,			17	,						418.21
SW-64 Event 2	12/3/2013	8:24	12/3/2013 8:24											418.21
	12/3/2013	8:26	12/3/2013 8:26	60)	20	22	1	<2	63	0.0	0.0	0.00	418.21
	12/3/2013	8:28	12/3/2013 8:28	60)	28			3	65.5	5.8	5.8	0.67	418.88
	12/3/2013	9:01	12/3/2013 9:01	. 5	7	24	28	3	3.5	68	6.5	203.	3 23.25	442.14
	12/3/2013	9:04	12/3/2013 9:04	5!	5	28		3	3.5	68	6.8	19.9	9 2.28	3 444.42
	12/3/2013	10:02	12/3/2013 10:02	. 5!	5	32	29)	4	67	8.1	433.	5 49.60	494.01
	12/3/2013	10:05	12/3/2013 10:05	5.	5	36	33.5	j	6	67	12.7	31.3	3.58	497.60
	12/3/2013	11:15	12/3/2013 11:15	5	3	35	33.5	j	7	69	14.7	959.8	3 109.80	607.40
	12/3/2013	11:21	12/3/2013 11:21	. 53	3	36	34	1 7	7.5	69	15.9	91.	7 10.49	617.89
	12/3/2013	12:14	12/3/2013 12:14	5:	L	36	33.5	;	8	76	16.8	867.	3 99.22	2 717.12
	12/3/2013	12:49	12/3/2013 12:49	5!	5	36	33.5	;	8	82	16.7	587.	67.22	784.34
	12/3/2013	12:51	12/3/2013 12:51				20.5				Valve sh	nut 33.	5 3.83	788.17
SW-64 Event 3	12/9/2013	8:54	12/9/2013 8:54	5!	5	36	34.5	;	<2	64	0.0	0.0	0.00	788.17
	12/9/2013	8:58	12/9/2013 8:58	55		34	30.2	!	10	64	20.9	41.	7 4.77	7 792.94
	12/9/2013	9:28	12/9/2013 9:28	51		32	30)	12	67	24.4	679.	5 77.74	870.68
	12/9/2013	10:05	12/9/2013 10:05	50		32	39) 12	2.5	72	25.3	920.	7 105.33	976.00
	12/9/2013	10:53	12/9/2013 10:53	50		32	28.5	5 12	2.5	74	25.3	1214.		
	12/9/2013	11:26				32	28	3	13	82	26.1	847.	7 96.97	1211.94
	12/9/2013	12:44				30	28		13	90	25.3	2005.3		
	12/9/2013	13:14				30	28		3.5	90	26.3 Valve sh	nut 774.	4 88.59	
	12/9/2013	13:15	· ·				12							1529.93
SW-64 Event 4	12/13/2013	9:13				31	34.5		12	66				1529.93
	12/13/2013	9:15				31			14	66	28.2	52.4		
	12/13/2013	9:16				31			18	66	36.3	32.3		
	12/13/2013	9:18				31	27		19	66	38.3	74.		
	12/13/2013	10:08				28	25		20	68	38.9	1929.		
	12/13/2013	11:47				28	24		21	76		3929.8		
	12/13/2013	11:48				31	26		22	76		42.3		
	12/13/2013	14:40				30	25		22	74	43.5	7520.:		
	12/13/2013	15:32				30	25	5 23	3.5	76		2337.8		
	12/13/2013	15:33									Valve sh	nut 46.4	4 5.31	
0144 64 5 4 5	12/13/2013	15:34					13		10	•••				3356.36
SW-64 Event 5	12/16/2013	7:52	• •			32	29		10	42	20.9		<u> </u>	3356.36
	12/16/2013	7:54				35	30		9.5	42	42.0	62.9		
	12/16/2013	7:58				26	30		20	42	38.9	162.0		
	12/16/2013	8:50				34	36.5		26	50	55.0	2443.1		
	12/16/2013	8:52				32	35		24	50	49.7	104.		
	12/16/2013	9:48				35	25		24	58	50.9	2817.:		
	12/16/2013	10:39				34	24		24	65	50.0	2573.5		
	12/16/2013	11:38	12/16/2013 11:38	3 40		28	24	!	24	68	46.7	2852.:	1 326.28	3 4616.54

Back to Master	Date Ti	me D	Date + Time	P at Reducer (psig)	P at Panel (psig)	P at Well (psi)	Rotameter Reading (scfm)	Temp (°F)	Flov	v (scfm)	Volume of CO ₂ (scf)	Mass of CO ₂ (lb)	Cumulative Mass (lb)
	12/16/2013	11:53	12/16/2013 11:53	40) 2	28 2	4	24	68	46.7	699.9	80.06	4696.60
	12/16/2013	11:54	12/16/2013 11:54							Valve shut	46.7	5.34	4701.9
	12/16/2013	11:55	12/16/2013 11:55			1	.5						4701.9
SW-64 Event 6	1/7/2014	12:37	1/7/2014 12:37						53				4701.9
	1/7/2014	12:38	1/7/2014 12:38	5	3 36.	.5 3	5	<2	53	0.0			4701.9
	1/7/2014	13:50	1/7/2014 13:50	5	6 33.	.5 31.	.5	8	54	16.8	603.8	69.07	4771.0
	1/7/2014	13:53	1/7/2014 13:53	5	6 3	37 3	34	12	54	26.1	64.3	7.35	4778.3
	1/7/2014	15:09	1/7/2014 15:09	5-	4 3	3 3	1 1	6.5	55	35.1	2324.4	265.92	5044.2
	1/7/2014	15:12	1/7/2014 15:12	5	4 3	32.	.5	18	55	39.1	111.2	12.73	5057.0
	1/7/2014	15:13	1/7/2014 15:13	5-	4 4	10 3	5	20	55	44.7	41.9	4.79	5061.79
	1/7/2014	16:20	1/7/2014 16:20	5	1 37.	.5 3	32	22	48	48.3	3115.5	356.42	5418.2
	1/7/2014	17:03	1/7/2014 17:03	5	1 3	31.	.5 2	2.5	42	49.5	2103.1	240.60	5658.80
	1/7/2014	17:04	1/7/2014 17:04							Valve shut	49.5	5.66	5664.47
	1/7/2014	17:05	1/7/2014 17:05			1	.9						5664.47
SW-64 Event 7	1/9/2014	12:42	1/9/2014 12:42	4	2 3	37 3	6	<2	64	0.0	0.0	0.00	5664.47
	1/9/2014	12:43	1/9/2014 12:43	4	2 3	33.	.5	<2	64	0.0	0.0	0.00	5664.47
	1/9/2014	13:30	1/9/2014 13:30	4	2 3	30	1	<2	65	0.0	0.0	0.00	5664.47
	1/9/2014	13:32	1/9/2014 13:32	4	2 33.	.5 3	34	3.5	65	7.3	7.3	0.83	5665.30
	1/9/2014	14:21	1/9/2014 14:21	4	0 33.	.5 33.	.5	5	64	10.4	432.0	49.43	5714.72
	1/9/2014	14:23	1/9/2014 14:23	4	0 34.	.5 34.	.4	6.3	64	13.2	23.6	2.70	5717.42
	1/9/2014	15:17	1/9/2014 15:17	4.	5 3	34.	.5	8	62	16.9	813.0	93.01	5810.43
	1/9/2014	16:58	1/9/2014 16:58	4	4 3	35	34	9.3	60	19.7	1847.4	211.34	6021.77
	1/9/2014	16:59	1/9/2014 16:59							Valve shut	19.7	2.25	6024.02
	1/9/2014	17:04	1/9/2014 17:04			1	.9						6024.02
SW-64 Event 8	1/13/2014	11:22	1/13/2014 11:22	4	7 3	34.	.2	<2	73	0.0	0.0	0.00	6024.02
	1/13/2014	12:43	1/13/2014 12:43	5	0 3	30.	.5	11	76	22.2	899.3	102.88	6126.9
	1/13/2014	12:46	1/13/2014 12:46	4	8 3	34 32.	.5 1	3.8	76	28.5	76.0	8.69	6135.59
	1/13/2014	12:48	1/13/2014 12:48	4	8 34.	.5 33.	.5	14	76	29.0	57.5	6.58	6142.1
	1/13/2014	14:11	1/13/2014 14:11	4.	5 33.	.5 3	1	17	76	34.9	2651.4	303.32	6445.49
	1/13/2014	14:13	1/13/2014 14:13	4.	5 3	34 31.	.5	18	76	37.1	72.0		
	1/13/2014	15:30	1/13/2014 15:30	4	2 3	3 29.	.5	19	74	38.8	2924.4	334.56	6788.28
	1/13/2014	15:34	1/13/2014 15:34			30.	.5	20	74	41.3	160.3		
	1/13/2014	16:32	1/13/2014 16:32			3 29.	.5 2	0.2	71	41.4	2399.4		
	1/13/2014	17:11	1/13/2014 17:11	4	4 3	8 3	4	24	67	52.0	1821.1	208.33	7289.44
	1/13/2014	21:42	1/13/2014 21:42	5	1 3	33.	.5	25	63	52.8	14190.2	1623.35	
	1/14/2014	8:26	1/14/2014 8:26		5 3	36 32.	.8 2	1.5	64	45.8	31729.8	3629.89	12542.69
	1/14/2014	8:30	1/14/2014 8:30							Valve shut	183.1		
SW-64 Event 9	1/15/2014	7:53	1/15/2014 7:53		0 3	35 3	35	<2	44	0.0	0.0		
	1/15/2014	8:28	1/15/2014 8:28					11	51	22.5	394.0		
	1/15/2014	8:33	1/15/2014 8:33					14	51	29.7	130.7		
	1/15/2014	10:02	1/15/2014 10:02					6.2	66	33.2	2801.3		
	1/15/2014	10:04	1/15/2014 10:04			30.		18	66	37.1	70.3		
	1/15/2014	11:03	1/15/2014 11:03			3 28.		19	70	39.0	2244.5		
	1/15/2014	11:50	1/15/2014 11:50					9.5	72	38.9	1829.8		
	1/15/2014	11:51	1/15/2014 11:51			_,,	_			Valve shut	38.9		
	1/15/2014	11:52	1/15/2014 11:52							2 2.2 2 2.1 2 2 1 2 2 2 1 2 2 2 2 2 2 2	20.3		13422.70
			interpolated from field d								Total CO ₂ Mass (lbs):		13422.70

note and	5			P at Reducer	P at Panel			meter	T (0-1)		and factor)	Volume of	Mass of CO ₂	Cumulative
SW 65 Event 1	Date 11/21/2013	Time 0:24	Date + Time 11/21/2013 9:24	(psig)	(psig)	(psi) 28	кеад	ling (scfm)	Temp (°F)		ow (scfm) 0.0	CO ₂ (scf)	(lb)	Mass (lb)
SW-65 Event 1		9:24					21 5	,	n	64		0.0	0.00	0.00
	11/21/2013	9:26					31.5	<		66	0.0	0.0		
	11/21/2013	9:31 9:37				29	28	1		66 67	19.7	49.3		
	11/21/2013					35	32	1			29.4	147.4		
	11/21/2013	10:16	• •			34	30	1		68	39.5	1343.8 87.5		
	11/21/2013	10:18	• •			39	33	2		69	48.0 48.0			
	11/21/2013	10:55					32.5	2		70 72		1775.2		
	11/21/2013 11/21/2013	12:00	• •			38	32	2		72 72	49.6 52.7	3169.2 51.1		
	• •	12:01	• •			40 40	33							
	11/21/2013	13:18	• •				32.5	29.		73	64.7	4520.7		
	11/21/2013	13:35	• •		4	41	33	2	D	73	57.6	1039.4		
	11/21/2013	13:38	• •				22				Valve shut	172.7	19.76	
CM CE E	11/21/2013	13:39	• •		2	25	22		2	70	0.0			1413.56
SW-65 Event 2	12/12/2013	13:31				35	33	<		70	0.0	4502	474.04	1413.56
	12/12/2013	14:40				26	22	2		70	43.6	1502.6		
	12/12/2013	14:41				25	25	2		70	48.6	46.1		
	12/12/2013	15:28					24.5	26.		70	52.6	2379.2		
	12/12/2013	15:29				34	27	2		70	60.1	56.4		
	12/12/2013	16:34				34	27	2		70	60.1	3909.7		
	12/12/2013	17:07			0 :	35	28	28.	5	62	60.2	1985.8		
	12/12/2013	17:20									Valve shut	782.6	89.53	
	12/12/2013	17:21					17							2633.34
SW-65 Event 3	12/18/2013	8:49				33	33	<		62	0.0	0.0		
	12/18/2013	9:47				29	24	2		64	43.4	1259.9		
	12/18/2013	9:48)	34	27	27.	5	64	57.4	50.4		
	12/18/2013	9:55									Valve shut	401.6	45.95	
SW-65 Event 4	12/19/2013	8:07				30	23	1		48	28.4			2829.18
	12/19/2013	8:38				30	26	1		60	38.1	1031.1		
	12/19/2013	8:40)	34	29	25.		60	53.4	91.5		
	12/19/2013	8:41	12/19/2013 8:41	50)	38	31.5	2	8	60	61.1	57.2	2 6.55	2964.16
	12/19/2013	9:34	12/19/2013 9:34	41		34	28	2	7	63	56.4	3112.3	356.05	3320.21
	12/19/2013	11:33	12/19/2013 11:33	40)	33	26	2	6	67	53.5	6539.5	748.12	4068.33
	12/19/2013	12:01	12/19/2013 12:01	39	•	32	27	2	6	68	52.9	1489.8	3 170.43	3 4238.76
	12/19/2013	12:07	12/19/2013 12:07								Valve shut	317.4	36.31	1 4275.07
	12/19/2013	12:08	12/19/2013 12:08											4275.07
SW-65 Event 5	1/8/2014	8:22	1/8/2014 8:22							40	0.0	0.0	0.00	4275.07
	1/8/2014	8:23	1/8/2014 8:23	50	6 :	30	22	2	8	40	57.3	28.7	3.28	4278.35
	1/8/2014	8:35	1/8/2014 8:35	50	0 :	30	20	31.	5	45	64.1	728.7	83.36	4361.71
	1/8/2014	8:55	1/8/2014 8:55	50	0 :	29	20	3	2	48	64.2	1283.5	146.84	4508.54
	1/8/2014	9:51	1/8/2014 9:51	4	7 :	29	20	3	2	50	64.1	3592.4	410.97	7 4919.51
	1/8/2014	10:42	1/8/2014 10:42	40	6 7	28	20	3	2	54	63.1	3242.7	370.96	5 5290.47
	1/8/2014	11:21	1/8/2014 11:21	4.	5 :	28	20	3	2	56	63.0	2457.6	281.15	5 5571.62
	1/8/2014	12:58	1/8/2014 12:58	48	8 :	28	20	31.	5	56	62.0	6058.7	693.12	6264.74
	1/8/2014	12:59								56	Valve shut	62.0		
	1/8/2014	13:00					14			56				6271.83
SW-65 Event 6	1/11/2014	8:20			5 :	27	27	<	2	65	0.0			6271.83
	1/11/2014	8:22				33	30	<		65	0.0			6271.83
	1/11/2014	8:24				30	30	1		65	23.9	23.9	2.74	
	1/11/2014	8:25				32	30	1		65	36.7	30.3		
	1/11/2014	8:57				31	27	2		65	48.4	1362.6		
	1/11/2014	10:41				30	25	2		70	51.6	5203.4		
	1/11/2014	11:50				30	27	24.		70	48.7	3459.8		
	1/11/2014	12:24				30	25	2		70	55.6	1772.3		
	1, 11, 2017	16,67	±, ±±, ±0±+ ±2.2+	70		-				. •	33.0	1//2.5	202.7	,027.75

					P at Reducer	P at Panel	P at Well	Rotameter				Volume of	Mass of CO ₂	Cumulative
Back to Master	Date	Time	e D	Date + Time	(psig)	(psig)	(psi)	Reading (scfm)	Temp (°F)	Flow ((scfm)	CO ₂ (scf)	(lb)	Mass (lb)
		1/11/2014	12:25	1/11/2014 12:25							Valve shut	55.6	6.36	7634.11
		1/11/2014	12:26	1/11/2014 12:26			20							7634.11
SW-65 Event 7		1/23/2014	8:20	1/23/2014 8:20	54	4 32.5	32.3	<	2	41	0.0			7634.11
		1/23/2014	9:00	1/23/2014 9:00	52	2 30) 29.5		9	50	18.2	364.6	41.71	1 7675.82
		1/23/2014	9:01	1/23/2014 9:01	52	2 33	32	1	3	50	27.2	22.7	2.60	7678.42
		1/23/2014	9:47	1/23/2014 9:47	48	33	31.5	1	5	52	31.3	1347.0	154.09	7832.51
		1/23/2014	10:52	1/23/2014 10:52	45	5 32	2 30	16.	7	54	34.5	2138.3	244.63	8077.14
		1/23/2014	10:53	1/23/2014 10:53	45	33.5	31	2	0	54	41.9	38.2	4.37	7 8081.51
		1/23/2014	11:45	1/23/2014 11:45	44	4 33.5	31	20.	3	54	42.6	2196.6	251.29	8332.80
		1/23/2014	13:01	1/23/2014 13:01	46	33.5	30.5	22.	1	58	46.1	3370.6	385.60	8718.40
		1/23/2014	13:02	1/23/2014 13:02			22				Valve shut	46.1	5.28	8723.68
Newscale	. 75	1/23/2014	13:01 13:02	1/23/2014 13:01						58		3370.6	385.60	8718.4

Total CO₂ Mass (lbs):

Appendix F:

Air Quality Data

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
3-Dec-13	47	S	Start	8:31					
				0.22	0.000	20.0	420		
			N S	9:32 9:32	0.000	20.9	430 430	0	
			E	9:35	0.000	20.9	430	0	
			W	9:34	0.000	20.9	430	0	
			Well Head						
			N	12:41	0.000	20.9	900	0	
			S	12:41	0.000	20.9	930	0	
			E	12:43	0.000	20.9	790	0	
			W	12:41	0.000	20.9	770	0	
			Well Head						
			Finish	12:53					
			1 1111511	12.55					
3-Dec-13	64	S	Start	8:26					
			N	9:28	0.000	20.9	410	0	
			S	9:29	0.000	20.9	410	0	upwind
			E	9:30	0.000	20.9	410	0	
			W	9:31	0.000	20.9	410	0	
			Well Head						
			N	12:22	0.000	20.7	830	0	
			S	12:22	0.000	20.7	800	0	
			E	12:21	0.000	20.7	800	0	
			W	12:23	0.000	20.9	790	0	
			Well Head						
			Finish	12:51					
3-Doc 13	EC	c	Ctort	8:44			1		
3-Dec-13	56	S	Start						
			N	9:39	0.000	20.9	450	0	
			S E	9:37 9:40	0.000	20.9	430 450	0	upwind
			W	9:38	0.000	20.9	460	0	
			Well Head						
			N	12:25	0.000	20.9	790	0	
			S	12:36	0.000	20.9	770	0	
			E	12:38	0.000	20.9	740	0	
			W	12:37	0.000	20.9	750	0	
			Well Head						
			Finish	13:18					
3-Dec-13	61	S	Start	8:38					
			N	9:52	0.000	20.9	480	0	
			S	9:51	0.000	20.9	530	0	
		-	E	9:53	0.000	20.9	480	0	<u> </u>
			W Well Head	9:54	0.000	20.9	480	0	
			vven nedu						
			N	12:46	0.000	20.9	740	0	
			S	12:49	0.000	20.9	740	0	
			E W	12:48 12:47	0.000	20.9	750 750	0	
			Well Head	12:4/	0.000	20.9	/50	U	
		_	Finish	12:46					
3-Dec-13	45	S	Start	8:52					
			N	9:42	0.000	20.9	450	0	
			S	9:43	0.000	20.9	450	0	
			E	9:44	0.000	20.9	450	0	
			W Well Head	9:45	0.000	20.9	450	0	
			**Cirricau						
			N	12:34	0.000	20.9	750	0	
			S	12:32	0.000	20.9	750	0	
			E W	12:33 12:35	0.000	20.9	790 790	0	
			Well Head	16.33	5.500	20.3	, 30	3	
			Finish	13:13					
	l		l		I		1		Page 1 of 3

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
3-Dec-13	43	S	Start	8:54					
			N.	0:46	0.000	20.0	450	0	
			N S	9:46 9:47	0.000	20.9	450 450	0	
			E	9:47	0.000	20.9	460	0	
			W	9:49	0.000	20.9	450	0	
			Well Head	3.13	0.000	20.5	.50	Ü	
			N	12:28	0.000	20.9	770	0	
			S	12:27	0.000	20.9	770	0	
			E W	12:30 12:29	0.000	20.9	750 770	0	
			Well Head	12.23	0.000	20.5	770		
			Finish	13:15					
3-Dec-13	46	S	Start	13:07					
			N	14:55	0.000	20.9	900	0	
			S	14:56	0.000	20.9	740	0	
			E W	14:57 14:58	0.000	20.9	750 740	0	
			Well Head	14.30	0.000	20.3	,40	3	
			N c						
			S E				 		
			W				†		
			Well Head						
			Finish	17:07					
3-Dec-13	63	Е	Start	13:01					
			N	15:00	0.000	20.9	740	0	
			N S	15:02	0.000	20.9	720	0	
			E	15:01	0.000	20.9	740	0	
			W	14:59	0.000	20.9	720	0	
			Well Head						
			N						
			S						
			E						
			W						
			Well Head						
			Finish	17:03					
			1 1111311	17.03					
3-Dec-13	62	SE	Start	13:28					
			N	15.02	0.000	20.9	740	0	
			N S	15:03 15:06	0.000	20.9	740	0	
			E	15:04	0.000	20.9	740	0	
			W	15:05	0.000	20.9	740	0	
-			Well Head						
		-	N.	17:40	0.000	20.0	600		
		S	N S	17:10 17:11	0.000	20.9	690 690	0	
			E E	17:11	0.000	20.9	690	0	
			W	17:13	0.000	20.9	670	0	
			Well Head						
			Finish	17:36			<u> </u>		
			Finish	17:26					
3-Dec-13	55	E	Start	13:31					
			N	14:52	0.000	20.9	800	0	
			S	14:52	0.000	20.9	720	0	
			E	14:51	0.000	20.9	720	0	
•			W	14:53	0.000	20.9	750	0	-
			Well Head						
			N				-		
			S						
			E						
			W						
			Well Head			-			
			Einich	17.20			 		
			Finish	17:30	 		 		
PARSONS							1		Page 2 of 3

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
3-Dec-13	60		Start	13:42					
		C.F.	NI.	15.00	0.000	20.0	720	0	
		SE	N S	15:08 15:09	0.000	20.9	720 720	0	
			E	15:10	0.000	20.9	720	0	
			W	15:11	0.000	20.9	720	0	
			Well Head						
		S	N	17:14	0.000	20.9	690	0	
			S	17:15	0.000	20.9	690	0	
			E	17:16	0.000	20.9	690	0	
			W Well Head	17:17	0.000	20.9	690	0	
			Finish	17:23					
			Start						
			Start						
			Well Head						
		-							
			N S						
			E						
			W						
			Well Head						
			Finish						
			Start						
			N						
			N S						
			E						
			W						
			Well Head						
			N						
			S						
			E W						
			Well Head						
			Finish						
			Start						
		-	N						
			S E						
			W						
			Well Head						
			N						
			S						
			E						
			Woll Hood						
			Well Head						
			Finish						
			Start						
			N						
			S						
			E VA/						
			W Well Head						
			N						
			S E						
			W						
			Well Head						
			Fig. 1						
			Finish						
PARSONS			l				l		Page 3 of 3

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
4-Dec-13	35	S	Start	7:45					
			N	9:14	0.000	20.9	540	0	
			S	9:13	0.000	20.9	540	0	
			E W	9:16 9:15	0.000	20.9	590 590	0	
			Well Head	3.13	0.000	20.5	580	-	
		SW	N S	11:33	0.000	20.9	620	0	
			E	11:34 11:34	0.000	20.9	590 610	0	
			w	11:36	0.000	20.9	590	0	
			Well Head				600		
			Finish	12:37					
			FIIIISII	12.57					
4-Dec-13	57	S	Start	7:42					
				0.07	0.000	20.0	540		
			N S	9:07 9:06	0.000	20.9	640 590	0	
			E	9:08	0.000	20.9	590	0	
			W	9:09	0.000	20.9	540	0	
-			Well Head		\Box		590		
		SW	N	11:25	0.000	20.9	440	0	
		344	S	11:25	0.000	20.9	440	0	
			E	11:24	0.000	20.9	610	0	
			W	11:26	0.000	20.9	690	0	
			Well Head		 		640		
			Finish	12:40			t		
4-Dec-13	34	S	Start	7:49					
			N	9:19	0.000	20.9	560	0	
			S	9:20	0.000	20.9	590	0	
			E	9:21	0.000	20.9	580	0	
			W	9:22	0.000	20.9	560	0	
			Well Head		-				
		SW	N	11:38	0.000	20.9	660	0	
			Š	11:40	0.000	20.9	690	0	
			E	11:41	0.000	20.9	640	0	
			W Well Head	11:39	0.000	20.9	660 600	0	
			Well fiedd				000		
			Finish	12:11					
4 D 42	42	c	Chart						
4-Dec-13	42	S	Start						
			N	9:43	0.000	20.9	690	0	No CO2 Flow to well
			S						
			E						
			W Well Head		+		 		
					<u> </u>		<u> </u>		
			N	11:45	0.000	20.9	690	0	No CO2 Flow to well
			S E		 		 		
			W						
			Well Head						
			- · · ·			-			
			Finish				-		
4-Dec-13	53	S	Start	8:28			†		
					<u> </u>		<u> </u>		
			N	9:41	0.000	20.9	660	0	
			S E	9:39 9:42	0.000	20.9	670 660	0	
			W	9:42	0.000	20.9	690	0	
			Well Head		0.000		640		
-									
			N S		 		 		
			E E				-		
			W						
			Well Head			-			
			Finish	12:35			-		
			1 1111511	12.33					
PARSONS	•						•		Page 1 of 3

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
4-Dec-13	51	S	Start	8:25					
			N.	0:46	0.000	20.0	640	0	
			N S	9:46 9:47	0.000	20.9	640 640	0	
			E	9:48	0.000	20.9	660	0	
			W	9:49	0.000	20.9	620	0	
			Well Head						
			NI NI	11.55	0.000	20.0	740	0	
			N S	11:55 11:56	0.000	20.9	740 720	0	
			E	11:57	0.000	20.9	740	0	
			W	11:58	0.000	20.9	720	0	
			Well Head				680		
			Finish	12.42					
			Finish	12:43					
4-Dec-13	31		Start	8:13					
			N c	9:53 9:52	0.000	20.9	640 660	0	
			S E	9:54	0.000	20.9	690	0	
			W	9:53	0.000	20.9	640	0	
			Well Head				620		
			N c	11:52	0.000	20.9	640	0	
			S E	11:54 11:53	0.000	20.9	750 750	0	
			W	11:55	0.000	20.9	790	0	
		_	Well Head	_		_	740		
			Finish	12:18					
4-Dec-13	12	S	Start	8:07					
			N	9:34	0.000	20.9	660	0	
			S E	9:35 9:36	0.000	20.9	660 640	0	
			W	9:33	0.000	20.9	640	0	
			Well Head				610		
		6144		44.54	0.000	20.0	500		
		SW	N S	11:51 11:49	0.000	20.9	690 690	0	
			E	11:50	0.000	20.9	670	0	
			W	11:48	0.000	20.9	650	0	
			Well Head				670		
			Finish	12:07					
			FIIIISII	12.07					
4-Dec-13	52	E	Start	9:54					
			N	15:44	0.000	20.0	640	0	
			N S	15:44	0.000	20.9	640 660	0	
			E	15:43	0.000	20.9	690	0	
			W	15:45	0.000	20.9	670	0	
		E	Well Head				640		
			N	17:07	0.000	20.9	610	0	
			S	17:07	0.000	20.9	540	0	
			E	17:06	0.000	20.9	670	0	
			W	17:08	0.000	20.9	560	0	
			Well Head						
			Finish	17:51					
4-Dec-13	50	E	Start	13:11			1		
			N	15:47	0.000	20.9	660	0	
			S	15:48	0.000	20.9	660	0	
			E	15:49	0.000	20.9	660	0	
			W Well Head	15:50	0.000	20.9	640 670	0	
			**CII I leau				0,0		
		E	N	17:00	0.000	20.9	560	0	
			S	17:01	0.000	20.9	590	0	
			E W	17:02 17:03	0.000	20.9	610 580	0	
			Well Head	17:03	0.000	20.9	580	U	
			Finish	17:37					
									Page 2 of 3

4-Dec-13 30 E Start 12:25	
S 15:36 0.000 20.9 660 0 E 15:37 0.000 20.9 610 0 Well Head	
S 15:36 0.000 20.9 660 0 E 15:37 0.000 20.9 610 0 Well Head	
E 15:37 0.000 20.9 610 0 W 15:35 0.000 20.9 660 0 Well Head 610 E N 16:57 0.000 20.9 610 0 S 16:50 0.000 20.9 530 0 E 16:52 0.000 20.9 560 0 Well Head 540 540 540 540 540 540 540 540 540 540	
Well Head Well	
E N 16:57 0.000 20.9 610 0 S 16:50 0.000 20.9 530 0 E 16:52 0.000 20.9 560 0 W 16:53 0.000 20.9 530 0 Well Head	
S 16:50 0.000 20.9 530 0 E 16:52 0.000 20.9 560 0 Well Head	
S 16:50 0.000 20.9 530 0 E 16:52 0.000 20.9 560 0 Well Head	
E 16:52 0.000 20.9 560 0 W 16:53 0.000 20.9 530 0 Well Head 540 540 540 540 540 540 540 540 540 540	
Well Head Finish 17:20 Finish 17:21 Finish 17:31 0.000 20.9 620 0	
Finish 17:20 4-Dec-13 20 S Start 12:12 N 15:31 0.000 20.9 620 0 S 15:30 0.000 20.9 660 0 E 15:32 0.000 20.9 640 0 Well Head	
4-Dec-13 20 S Start 12:12	
4-Dec-13 20 S Start 12:12	
N 15:31 0.000 20.9 620 0 S 15:30 0.000 20.9 660 0 E 15:32 0.000 20.9 640 0 Well Head	
N 15:31 0.000 20.9 620 0 S 15:30 0.000 20.9 660 0 E 15:32 0.000 20.9 640 0 W 15:33 0.000 20.5 620 0 Well Head	
S 15:30 0.000 20.9 660 0 E 15:32 0.000 20.9 640 0 W 15:33 0.000 20.5 620 0 Well Head	
E 15:32 0.000 20.9 640 0 W 15:33 0.000 20.5 620 0 Well Head 640 S N 17:22 0.000 20.9 590 0 S 17:25 0.000 20.9 560 0 E 17:24 0.000 20.9 530 0 Well Head 550 Well Head 550 Finish 17:14 4-Dec-13 39 S Start 13:23	
Well Head S N 17:22 0.000 20.9 590 0	
Well Head	
S N 17:22 0.000 20.9 590 0 S 17:25 0.000 20.9 560 0 E 17:23 0.000 20.9 660 0 W 17:24 0.000 20.9 530 0 Well Head 5550 Finish 17:14 550 4-Dec-13 39 S Start 13:23 550 N 15:22 0.000 20.9 660 0 S 15:20 0.000 20.9 660 0	
S 17:25 0.000 20.9 560 0 E 17:23 0.000 20.9 610 0 W W 17:24 0.000 20.9 530 0 Well Head 5550 Finish 17:14 550 4-Dec-13 39 S Start 13:23 550 N 15:22 0.000 20.9 620 0 S 15:20 0.000 20.9 660 0 E 15:21 0.000 20.9 590 0	
E 17:23 0.000 20.9 610 0 W 17:24 0.000 20.9 530 0 Well Head 550 Finish 17:14 4-Dec-13 39 S Start 13:23 N 15:22 0.000 20.9 620 0 S 15:20 0.000 20.9 660 0 E 15:21 0.000 20.9 590 0	
Well Head	
Well Head 550 550 550 550 550 550 550 550 550 55	
Finish 17:14	
4-Dec-13 39 S Start 13:23	
N 15:22 0.000 20.9 620 0 S 15:20 0.000 20.9 660 0 E 15:21 0.000 20.9 590 0	
N 15:22 0.000 20.9 620 0 S 15:20 0.000 20.9 660 0 E 15:21 0.000 20.9 590 0	
S 15:20 0.000 20.9 660 0 E 15:21 0.000 20.9 590 0	
E 15:21 0.000 20.9 590 0	
Well Head 740	
Well flead 740	
S N 17:17 0.000 20.9 670 0	
S 17:15 0.000 20.9 770 0	
E 17:16 0.000 20.9 830 0 W 17:18 0.000 20.9 670 0	
W 17:18 0.000 20.9 670 0 Well Head 850	Fitting loose
Finish 17:46	
4 Dec 42 20 5 Chart 4222	
4-Dec-13 38 S Start 13:22	
N 15:24 0.000 20.9 610 0	
S 15:25 0.000 20.9 610 0	
E 15:27 0.000 20.9 620 0	
W 15:26 0.000 20.9 610 0 Well Head 670	
Weithead 070	
S N 17:12 0.000 20.9 670 0	
S 17:16 0.000 20.9 580 0	
E 17:11 0.000 20.9 590 0 W 17:13 0.000 20.9 740 0	
Well Head 640	
Finish 17:43	
40042	
4-Dec-13 Start	
N N	
S	
E E	
W Malliland	
Well Head	
N N N N N N N N N N N N N N N N N N N	
S	
E	
Well-lood	
Well Head	
Finish	

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
5-Dec-13	52	SW	Start	7:54					
			N	11.20	0.000	20.0	600	0	
			N S	11:29 11:31	0.000	20.9	690 720	0	
			E	11:30	0.000	20.9	690	0	
			W	11:32	0.000	20.9	690	0	
			Well Head	11:33	0.000	20.9	690	0	
			N						
			S						
			E						
			W Well Head						
			well nead		 				
			Finish	17:19	+				
5-Dec-13	40	SW	Start	7:58					
			N	11:25	0.000	20.9	690	0	
			S	11:23	0.000	20.9	690	0	
			E	11:24	0.000	20.9	690	0	
	1		Wall Haad	11:20	0.000	20.9	690	0	
			Well Head	11:27	0.000	20.9	670	0	
			N		 		 		
	 		S				†		
			E						
			W						
			Well Head						
			Finish	17:17			ļ		
5-Dec-13	29	SW	Start	8:04	.				
			N	11.10	0.000	20.0	690	0	
			N S	11:18 11:16	0.000	20.9	670	0	
			E	11:17	0.000	20.9	670	0	
			W	11:19	0.000	20.9	670	0	
			Well Head	11:20	0.000	20.9	690	0	
			N						
			S						
			E						
			W		.				
			Well Head		+				
			Finish	12:09	+				
			1 1111511	12.03	†				
5-Dec-13	11	SW	Start	8:09					
			N	11:38	0.000	20.9	720	0	-
			S	11:37	0.000	20.9	720	0	
			E	11:36	0.000	20.9	700	0	
	ļ		Wall Head	11:37	0.000	20.9	700	0	
	 		Well Head		 		 		
	 		N				1		
			S						
			E						
			W						
			Well Head						
			Finish	12:19	$oxed{oxed}$		ļ		
F.B. :-		G1.1:	6.	0.15					
5-Dec-13	27	SW	Start	8:12	 		-		
			N	10:53	0.003	20.9	610	0	
	 		S	10:53	0.003	20.9	610	0	
			E	10:51	0.003	20.9	610	0	
			W	10:50	0.003	20.9	610	0	
			Well Head	10:54	0.000	20.9	610	0	
			N						
			S		$oxed{oxed}$		ļ		
			E						
			Wall Head				ļ		
			Well Head		 		-		
	 		Finish	12:41	 		 		
			11311	16,71					
PARSONS	1				1		1		Page 1 of 3

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
F.D 42	40			0.20					
5-Dec-13	49	S	Start	8:39					
			N	10:59	0.000	20.9	640	0	
			S	10:57	0.000	20.9	740 620	0	
			E W	10:58 10:50	0.000	20.9	640	0	
			Well Head	10:56	0.000	20.9	620		
			N						
			S						
			E						
			W Well Head						
			well neau						
			Finish	12:44					
5-Dec-13	2	S	Start	8:31					
3-Det-13	2	3	Start	0.31					
			N	11:12	0.000	20.9	660	0	
			S E	11:10 11:09	0.000	20.9	640 640	0	
			W	11:09	0.000	20.9	660	0	
			Well Head	11:13	0.000	20.9	670	0	
			N						
			S						
			E	_					
			W Well Head						
			aven nead						
			Finish	13:01					
5-Dec-13	9	S	Ctart	8:28					
3-Det-13	9	3	Start	0.20					
			N	11:05	0.000	20.9	640	0	
			S E	11:04	0.000	20.9	700 670	0	
			W	11:03 11:06	0.000	20.9	670	0	
			Well Head	11:07	0.000	20.9	670	0	
			N						
			S						
			E						
			W Well Head						
			Well fiedd						
			Finish	13:10					
5-Dec-13	21	SW	Start	12:12					
3 500 13		3	Start	12.12					
			N	16:44	0.000	20.9	530	0	
			S E	16:41 16:40	0.000	20.9	560 530	0	
			W	16:42	0.000	20.9	510	0	
		_	Well Head	16:43	0.000	20.9	530	0	-
			N						
			S						
			E			· · · · · ·			
			W Well Head						
			Finish	16:54		· · · · · ·			
5-Dec-13	4	S	Start	12:22					
2 300 13			5.0.1						
		-	N	17:00	0.000	20.9	590	0	
			S E	16:58 17:01	0.000	20.9	640 590	0	
			W	16:59	0.000	20.9	590	0	
			Well Head	17:02	0.000	20.9	590	0	
			N						
			S						
			E			-			
			W Well Head						
			Finish	17:26					
					I		1		Page 2 of 3

Data	Canaga Wall	Wind	Test	Time	Ha (nnm)	02 (%)	CO2 (nam)	1135 (222)	Comments
Date	Sparge Well	Direction	Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
5-Dec-13	28	S	Start	12:47					
			N	16:54	0.000	20.9	560	0	
			S	16:52	0.000	20.9	590	0	
			E W	16:55 16:53	0.000	20.9	580 580	0	
			Well Head	16:55	0.000	20.9	690	0	
			NI NI						
			N S						
			E						
	-		W Well Head				-		
			vveii riedu						
			Finish	17:09					
5-Dec-13	26	S	Start	12:51					
			N S	16:51 16:48	0.000	20.9	540 580	0	
			E	16:47	0.000	20.9	560	0	
			W	16:49	0.000	20.9	560	0	
	 		Well Head	16:50	 		540		
			N						
	 		S E				 		
	<u> </u>		W				<u> </u>		
			Well Head	· ·		-			
			Finish	17:13	 				
5-Dec-13	3	S	Start	13:07					
			N	17:04	0.000	20.9	600	0	
			S	17:06	0.000	20.9	670	0	
			E W	17:08 17:05	0.000	20.9	610 590	0	
			Well Head	17:07	0.000	20.9	620	0	
			N						
			S						
	-		E W				-		
			Well Head						
			Finish	17:27					
			1 1111311	17.27					
5-Dec-13	17	S	Start	14:02					
			N	17:12	0.000	20.9	640	0	
			S	17:10	0.000	20.9	590	0	
			E W	17:11 17:13	0.000	20.9	610 590	0	
			Well Head	17:14	0.000	20.9	640	0	
	 		N				 		
			S						
			E	· · · · ·				· · ·	
	-		W Well Head						
	-		Finish	17:32	 		-		
			Start						
			N						
	<u> </u>		S				<u> </u>		
			E W						
	<u> </u>		Well Head						
	-		N S				-		
			E						
			Wall Haad					-	
			Well Head						
			Finish						
PARSONS									Page 3 of 3

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
6-Dec-12	62	S	Start	8:06					
			N S	10:04 10:05	0.000	20.9	580 580	0	
			E	10:06	0.000	20.9	590	0	
			W	10:07	0.000	20.9	580	0	
			Well Head	10:08	0.000	20.9	590	0	
		S	N	11:56	0.000	20.9	590	0	
			S	11:52	0.000	20.9	610	0	
			E	11:53	0.000	20.9	590	0	
			W Well Head	11:54 11:55	0.000	20.9	590 590	0	
			well flead	11.55	0.000	20.3	330	0	
			Finish	12:13					
6-Dec-13	60	S	Start	8:08					
			N	10:10	0.000	20.9	590	0	
			S	10:12	0.000	20.9	580	0	
			E	10:13	0.000	20.9	580	0	
			W Well Head	10:11 10:14	0.000	20.9	590 570	0	
			**CII I IEdu	10.14	5.000	20.3	370		
		S	N	11:57	0.000	20.9	560	0	
			S	11:59	0.000	20.9	580	0	
			E W	12:00 11:58	0.000	20.9	610 580	0	
			Well Head	12:01	0.000	20.9	590	0	
			Finish	12:16					
6-Dec-13	32	S	Start	8:20					
0-Dec-13	32	3	Start	8.20					
			N	10:17	0.000	20.9	640	0	
			S	10:19	0.000	20.9	620	0	
			E W	10:20 10:18	0.000	20.9	620 620	0	
			Well Head	10:13	0.000	20.9	610	0	
		S	N	12:06	0.000	20.9	620	0	
			S E	12:04 12:05	0.000	20.9	620 620	0	
			W	12:03	0.000	20.9	610	0	
			Well Head	12:07	0.000	20.9	620	0	
			Finish	12.42					
			Finish	12:43					
6-Dec-13	41	S	Start	8:53					
			N S	10:25 10:23	0.000	20.9	700 660	0	
			E E	10:23	0.000	20.9	660 640	0	
			W	10:26	0.000	20.9	670	0	
			Well Head	10:27	0.000	20.9	640	0	
		S	N	12:32	0.000	20.9	670	0	
		3	S	12:32	0.000	20.9	690	0	
			Е	12:31	0.000	20.9	690	0	
			W	12:32	0.000	20.9	690	0	
			Well Head	12:33	0.000	20.9	690	0	
			Finish	13:08					
6-Dec-13	7	S	Start	12:42					
			i l			20.9	690	0	
			N	1/1-17	0.000		. U7U		
			N S	14:47 14:46	0.000		690	0	
			S E	14:46 14:46	0.000 0.000	20.9 20.9	690 700	0	
			S E W	14:46 14:46 14:47	0.000 0.000 0.000	20.9 20.9 20.9	690 700 690	0 0 0	
			S E	14:46 14:46	0.000 0.000	20.9 20.9	690 700	0	
			S E W Well Head	14:46 14:46 14:47	0.000 0.000 0.000	20.9 20.9 20.9	690 700 690	0 0 0	
			S E W	14:46 14:46 14:47	0.000 0.000 0.000	20.9 20.9 20.9	690 700 690	0 0 0	
			S E W Well Head N S E	14:46 14:46 14:47	0.000 0.000 0.000	20.9 20.9 20.9	690 700 690	0 0 0	
			S E W Well Head N S E W	14:46 14:46 14:47	0.000 0.000 0.000	20.9 20.9 20.9	690 700 690	0 0 0	
			S E W Well Head N S E	14:46 14:46 14:47	0.000 0.000 0.000	20.9 20.9 20.9	690 700 690	0 0 0	
			S E W Well Head N S E W	14:46 14:46 14:47	0.000 0.000 0.000	20.9 20.9 20.9	690 700 690	0 0 0	

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
6-Dec-13	48	S	Start	13:27					
0-Dec-13	48	3	Start	13:27					
			N	14:57	0.000	20.9	690	0	
			S E	14:50 14:50	0.000	20.9 20.9	690 700	0	
			W	14:51	0.000	20.9	700	0	
			Well Head	14:52	0.000	20.9	700	0	
			N	16:59		20.9	610		
			S	16:58	0.000	20.9	590		
			E	16:59		20.9	670		
			W Well Head	16:59 17:00		20.9 20.9	670 610		
			Finish	17:37			-		
6-Dec-13	24	SE	Start	13:31					
			N.	44.40	0.000	20.0	600		
			N S	14:49 14:50	0.000	20.9 20.9	690 700	0	
			Е	14:49	0.000	20.9	700	0	
-			W	14:50	0.000	20.9	700	0	
			Well Head	14:51	0.000	20.9	750	0	
			N	16:55	0.000	20.9	620	0	
			S	16:54	0.000	20.9	590	0	
			E W	16:55 16:54	0.000	20.9 20.9	610 590	0	
			Well Head	16:56	0.000	20.9	610	0	
			Finish	17:34			 		
			FIIIISII	17.54					
6-Dec-13	56	S	Start	13:00					
			N	14:24	0.000	20.9	660	0	
			S	14:25	0.000	20.9	690	0	
			E	14:25	0.000	20.9	670	0	
			W Well Head	14:24 14:26	0.000	20.9 20.9	660 670	0	
			**Cii iicaa	14.20	0.000	20.5	070	Ů	
			N						
			S E						
			W						
			Well Head						
			Finish	17:46					
6-Dec-13	61	S	Start	13:02					
			N	14:19	0.000	20.9	660	0	
			S	14:20	0.000	20.9	670	0	
			E W	14:20 14:19	0.000	20.9 20.9	660 660	0	
			Well Head	14:21	0.000	20.9	670	0	
			N						
			S						
			Е						
			W Well Head				1		
			Finish	17:45					
6-Dec-13	58	S	Start	8:24			-		
2 2 3 0 2 3									
			N c	14:36	0.000	20.9	690	0	
			S E	14:37 14:36	0.000	20.9	690 720	0	
			W	14:37	0.000	20.9	720	0	
			Well Head	14:38	0.000	20.9	740	0	
		S	N	17:10	0.000	20.9	620	0	
			S	17:09	0.000	20.9	640	0	
			E W	17:09 17:09	0.000	20.9 20.9	610 610	0	
			Well Head	17:09	0.000	20.9	660	0	
			Finish	17:24					
PARSONS	ı				1				Page 2 of 3

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
6-Dec-13	18	S	Start	12:39					
			N c	14:41	0.000	20.9	700	0	
			S E	14:42 14:42	0.000	20.9 20.9	700 700	0	
			W	14:41	0.000	20.9	700	0	
			Well Head	14:43	0.000	20.9	720	0	
		S	N	16:35	0.000	20.9	560	0	
		3	S	16:36	0.000	20.9	560	0	
			E	16:35	0.000	20.9	560	0	
			W	16:36	0.000	20.9	540	0	
			Well Head	16:37	0.000	20.9	560	0	
			Finish	16:47					
6-Dec-13	19	S	Start	8:28					
			N	10:48	0.000	20.9	670	0	
			S	10:50	0.000	20.9	660	0	
			E	10:51	0.000	20.9	670	0	
			W Well Head	10:49	0.000	20.9	670 660	0	
			vvен пеа0	10:52	0.000	20.7	000	U	
		S	N	12:21	0.000	20.9	670	0	
			S	12:22	0.000	20.9	690	0	
			E W	12:22 12:21	0.000	20.9 20.9	660 670	0	
			Well Head	12:21	0.000	20.9	670	0	
						.,			
			Finish	12:26					
6-Dec-13	8	S	Start	8:32					
0-Dec-13		3	Start	0.32					
			N	10:34	0.000	20.9	660	0	
			S	10:31	0.000	20.9	670	0	
			E W	10:32 10:33	0.000	20.9 20.9	670 660	0	
			Well Head	10:35	0.000	20.9	640	0	
		S	N S	12:28 12:27	0.000	20.9	690 700	0	
			E	12:27	0.000	20.9	690	0	
			W	12:28	0.000	20.9	690	0	
			Well Head	12:29	0.000	20.9	700	0	
			Finish	12:32					
			1 1111311	12.02					
6-Dec-13	37	S	Start	8:37					
			NI.	10.46	0.000	20.0	cco	0	
			N S	10:46 10:44	0.000	20.9	660 660	0	
			E	10:45	0.000	20.9	640	0	
			W	10:43	0.000	20.9	670	0	
			Well Head	10:47	0.000	20.9	670	0	
		S	N	13:00	0.000	20.9	690	0	
			S	12:59	0.000	20.9	690	0	
			E	13:00	0.000	20.9	700	0	
			W Well Head	12:59 13:01	0.000	20.9 20.9	670 690	0	
					2.300				
			Finish	13:16					
6 Dec 43	10		Chart	0.43					
6-Dec-13	16	S	Start	8:42					
			N	10:40	0.000	20.9	640	0	
			S	10:39	0.000	20.9	640	0	
			E W	10:39 10:37	0.000	20.9 20.9	640 640	0	
			Well Head	10:37	0.000	20.9	640	0	

		S	N	12:57	0.000	20.9	700	0	
			S E	12:56 12:56	0.000	20.9	690 690	0	
			W	12:56	0.000	20.9	700	0	
			Well Head	12:58	0.000	20.9	690	0	
			Finish	13:12					
PARSONS			l .]		

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
0.0. 40	16			40.00					
9-Dec-13	46	SE	Start	13:22					
			N	13:41	0.000	20.9	770	0	
			S E	13:40 13:40	0.000	20.9	670 690	0	
			W	13:20	0.000	20.9	770	0	
			Well Head	13:20	0.000	20.9	660	0	
		SE	N	14:46	0.000	20.9	620	0	
		,	S	14:45	0.000	20.9	590	0	
			E	14:45	0.000	20.9	590	0	
			W Well Head	14:46 14:47	0.000	20.9	640 610	0	
			Finish	17:27					
9-Dec-13	63	SE	Start	13:24					
			N.	42.44	0.000	20.0	600		
			N S	13:44 13:43	0.000	20.9	690 700	0	
			Е	13:43	0.000	20.9	690	0	
		·	Wall Haad	13:42	0.000	20.9	830	0	
			Well Head	13:44	0.000	20.9	690	0	
		SE	N	14:48	0.000	20.9	660	0	
			S E	14:49 14:48	0.000	20.9	670 690	0	
			W	14:48	0.000	20.9	790	0	
			Well Head	14:50	0.000	20.9	620	0	
			Finish	17:31					
				1,.51					
9-Dec-13	62	SE	Start	8:06					
			N	13:45	0.000	20.9	670	0	
			S	13:45	0.000	20.9	690	0	
			E W	13:45 13:46	0.000	20.9	670 690	0	
			Well Head	13:46	0.000	20.9	690	0	
		SE	N S	14:52 14:53	0.000	20.9	580 620	0	
			E	14:53	0.000	20.9	610	0	
			W	14:52	0.000	20.9	610	0	
			Well Head	14:54	0.000	20.9	610	0	
			Finish	12:13					
0 Doc 12	60	CE	Ctart	0.00					
9-Dec-13	60	SE	Start	8:08					
			N	13:48	0.000	20.9	660	0	
			S E	13:49 13:48	0.000	20.9	670 670	0	
			W	13:49	0.000	20.9	690	0	
			Well Head	13:49	0.000	20.9	670	0	
		SE	N	14:54	0.000	20.9	670	0	
			S	14:54	0.000	20.9	590	0	
			E	14:55	0.000	20.9	620	0	
			W Well Head	14:55 14:52	0.000	20.9	620 620	0	
					2.300				
			Finish	12:16					
9-Dec-13	47	S	Start	8:57					
			N S	9:44 9:43	0.000	20.9	450 430	0	
			E	9:43	0.000	20.9	500	0	
			W	9:44	0.000	20.9	460	0	
			Well Head	9:45	0.000	20.9	500	0	
		S	N	11:38	0.000	20.9	610	0	
			S	11:37	0.003	20.9	460	0	
			E W	11:37 11:39	0.000	20.9	460 500	0	
			Well Head	11:39	0.000	20.9	480	0	
			Einich	12.15					
			Finish	13:15					
PARSONS			•						Page 1 of 3

Date	Sparge Well	Wind	Test	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
Dute	Sparge Well	Direction	Location	Time	rig (ppili)	02 (70)	COZ (ppiii)	1123 (ppi11)	Comments
9-Dec-13	64	S	Start	8:54					
			N	9:48	0.000	20.9	620	0	
			S	9:47	0.000	20.9	500	0	
			E W	9:47 9:49	0.000	20.9 20.9	480 510	0	
			Well Head	9:48	0.000	20.9	610	0	
		c	NI.	11.42	0.000	20.0	610	0	
		S	N S	11:42 11:41	0.000	20.9	610 540	0	
			E	11:42	0.000	20.9	480	0	
			W Well Head	11:43 11:44	0.000	20.9 20.9	560 510	0	
			vveii i ieau	11.44	0.000	20.3	310	- 0	
			Finish	13:14					
9-Dec-13	61	S	Start	8:04					
3 DCC 13	01	,	Start	0.04					
			N	9:57	0.000	20.9	480	0	
			S E	9:58 9:57	0.000	20.9	460 480	0	
			W	9:58	0.000	20.9	460	0	
			Well Head	9:59	0.000	20.9	480	0	
		S	N	11:46	0.000	20.9	460	0	
			S	11:47	0.000	20.9	460	0	
			E W	11:47 11:48	0.000	20.9 20.9	480 500	0	
			Well Head	11:48	0.000	20.9	480	0	
			e:	40.00					
			Finish	12:23					
9-Dec-13	45	S	Start	8:19					
			NI.	0.51	0.000	20.0	450	0	
			N S	9:51 9:52	0.000	20.9	450 450	0	
			E	9:52	0.000	20.9	450	0	
			W Well Head	9:51 9:53	0.000	20.9 20.9	450 450	0	
			vveii i ieau	9.55	0.000	20.9	450	0	
		S	N	12:01	0.000	20.9	560	0	
			S E	12:01 12:01	0.000	20.9 20.9	610 560	0	
			W	12:02	0.000	20.9	580	0	
			Well Head	12:03	0.000	20.9	580	0	
			Finish	12:49					
0.0 12	42		Chart	0.26					
9-Dec-13	43		Start	8:26					
			N	10:08	0.000	20.9	480	0	
			S E	10:07 10:07	0.000	20.9 20.9	460 500	0	
			W	10:08	0.000	20.9	480	0	
			Well Head	10:09	0.000	20.9	480	0	
			N	11:59	0.000	20.9	540	0	
			S	11:58	0.000	20.9	560	0	
			E W	11:58 11:59	0.000	20.9	560 540	0	
			Well Head	12:00	0.000	20.9	530	0	
				7.50 /					
			Finish	7:50 (12/10/	13)				
9-Dec-13	41		Start	8:36					
				40.00	0.000	20.0	F40	-	
			N S	10:00 10:01	0.000	20.9 20.9	510 460	0	
			Е	10:01	0.000	20.9	460	0	
			W Well Head	10:00 10:02	0.000	20.9	460 480	0	
			well nead	10.02	0.000	20.3	400	U	
			N	11:57	0.000	20.9	570	0	
			S E	11:52 11:52	0.000	20.9	500 530	0	
			W	11:53	0.000	20.9	510	0	
			Well Head	11:54	0.000	20.9	510	0	
			Finish	12:55					
PARSONS									Page 2 of 3

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
9-Dec-13	51		Start	8:40					
				40.05	0.000	20.0	=00		
			N	10:06 10:05	0.000	20.9	500	0	
			S E	10:05	0.000	20.9	460 480	0	
			W	10:04	0.000	20.9	460	0	
			Well Head	10:06	0.000	20.9	480	0	
			N	11:55	0.000	20.9	540	0	
			S	11:55	0.000	20.9	560	0	
			E W	11:55 11:54	0.000	20.9	540 510	0	
			Well Head	11:56	0.000	20.9	530	0	
			Finish	8:05 (12/10/	13)				
9-Dec-13	55		Start	13:12					
3-Dec-13	33		Start	13.12					
			N	15:55	0.000	20.9	670	0	
			S	15:54	0.000	20.9	670	0	
			E	15:55	0.000	20.9	690	0	
			Wall Haad	15:56	0.000	20.9	670	0	
			Well Head		0.000	20.9	660	0	
			N	17:07	0.000	20.9	670	0	
			S	17:07	0.000	20.9	660	0	
			E	17:07	0.000	20.9	640	0	
			W	17:07	0.000	20.9	690	0	
			Well Head	17:08	0.000	20.9	590	0	
			Finish	17:15					
0.0. 40			G	0.07					
9-Dec-13	56		Start	8:07					
			N	15:46	0.000	20.9	650	0	
			S	15:46	0.000	20.9	690	0	
			E	15:46	0.000	20.9	670	0	
			W Well Head	15:47 15:47	0.000	20.9	670 670	0	
			Wellineau	13.17	0.000	20.5	0.0	-	
			N	17:02	0.000	20.9	610	0	
			S	17:01	0.000	20.9	610	0	
			E W	17:02 17:01	0.000	20.9	590 610	0	
			Well Head	17:01	0.000	20.9	590	0	
								-	
			Finish	7:51 (12/10/	13)				
0.0. 40	40			0.00					
9-Dec-13	43		Start	8:26					
			N	15:51	0.000	20.9	690	0	
			S	15:52	0.000	20.9	690	0	
			E	15:51	0.000	20.9	690	0	
			W	15:52	0.000	20.9	670	0	
			Well Head	15:52	0.000	20.9	670	0	
			N	17:04	0.000	20.9	620	0	
			S	17:04	0.000	20.9	620	0	
			E	17:05	0.000	20.9	610	0	
			W	17:04	0.000	20.9	620	0	
			Well Head	17:05	0.000	20.9	620	0	
			Finish	7:50 (12/10/	13)				
9-Dec-13			Start				<u> </u>		
3-Def-13			Jidit						
		-	N			-			
			S E						
			W						
		_	Well Head			_			
		_							<u> </u>
			N						
			S E				—		
			W						
			Well Head						
			Finish						

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
10.0	25			7.00					
10-Dec-13	35	S	Start	7:33					
			N	10:15	0.000	20.9	850	0	
			S E	10:15 10:14	0.000	20.9	850 850	0	
			W	10:15	0.000	20.9	850	0	
			Well Head	10:16	0.000	20.9	850	0	
			N	11:45	0.000	20.9	800	0	
			S	11:46	0.000	20.9	800	0	
			E	11:46	0.000	20.9	820	0	
			W Well Head	11:45 11:47	0.000	20.9	800 800	0	
			**CII TICGG	11.17	0.000	20.3		ū	
			Finish	12:02					
10-Dec-13	57	S	Start	7:30					
	-	-							
			N	10:13	0.000	20.9	870	0	
			S E	10:12 10:12	0.000	20.9	880 880	0	
			W	10:13	0.000	20.9	870	0	
			Well Head	10:14	0.000	20.9	870	0	
		S	N	11:42	0.000	20.9	790	0	
			S	11:42	0.000	20.9	790	0	
			E W	11:42 11:43	0.000	20.9	880 880	0	
			Well Head	11:43	0.000	20.9	790	0	
			Finish	11:48					
10-Dec-13	42		Start	8:00					
			N S	10:19 10:19	0.000	20.9	870 850	0	
			E	10:19	0.000	20.9	870	0	
			W	10:18	0.000	20.9	870	0	
			Well Head	10:20	0.000	20.9	850	0	
			N	12:23	0.000	20.9	790	0	
			S E	12:22 12:23	0.000	20.9	820 800	0	
			W	12:24	0.000	20.9	800	0	
			Well Head	12:25	0.000	20.9	800	0	
			Finish	7:38 (12/11/	13)				
			1 1111311	7.50 (12/11/	13)				
10-Dec-13	58	S	Start	8:54					
			N	10:24	0.000	20.9	850	0	
			S	10:23	0.000	20.9	850	0	
			E	10:23	0.000	20.9	870	0	
			W Well Head	10:22 10:23	0.000	20.9	830 850	0	
			N S	12:20 12:19	0.000	20.9	790 820	0	
			E	12:19	0.000	20.9	800	0	
		· · · ·	W	12:20	0.000	20.9	790	0	
			Well Head	12:21	0.000	20.9	800	0	
			Finish	12:54					
10 Dec 13	E0.		Ctout	0.13					
10-Dec-13	50	S	Start	8:12					
			N	10:27	0.000	20.9	870	0	
			S E	10:26 10:26	0.000	20.9	870 870	0	
			W	10:25	0.000	20.9	830	0	
			Well Head	10:27	0.000	20.9	850	0	
			N						
			S						
			E						
			W Well Head						
			eau						
			Finish	12:18					
PARSONS									Page 1 of 3

Date	Sparge Well	Wind	Test	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
Date	Sparge Wen	Direction	Location	Time	пв (ррпп)	02 (70)	COZ (ppiii)	1123 (ppi11)	Comments
10-Dec-13	23	S	Start	8:37					
			N	10:30	0.000	20.9	830	0	
			S	10:31	0.000	20.9	820	0	
			E W	10:31 10:30	0.000	20.9	850 870	0	
			Well Head	10:32	0.000	20.9	870	0	
		S	N	12:27	0.000	20.9	820	0	
			S	12:28	0.000	20.9	830	0	
			E	12:29	0.000	20.9	820	0	
			W Well Head	12:28 12:29	0.000	20.9	820 820	0	
			Finish	12:37					
10-Dec-13	6	S	Start	8:57					
				40.25	0.000	20.0	020		
			N S	10:35 10:36	0.000	20.9	830 820	0	
			E	10:37	0.000	20.9	850	0	
-			W Well Head	10:36 10:37	0.000	20.9	870 870	0	
			***en riead	10.37	5.000	20.3	670	U	
			N	12:36	0.000	20.9	820	0	
			S E	12:37 12:36	0.000	20.9	830 820	0	
			W	12:37	0.000	20.9	820	0	
			Well Head	12:38	0.000	20.9	820	0	
			Finish	17:42					
10 D 42	F2		C4	12:04				-	
10-Dec-13	52		Start	13:01					
			N	15:32	0.000	20.9	830	0	
			S E	15:31 15:31	0.000	20.9	820 800	0	
			W	15:32	0.000	20.9	830	0	
			Well Head	15:33	0.000	20.9	850	0	
			N						
			S						
			E W						
			Well Head						
			Finish	8:56 (12/11)					
10-Dec-13	40		Start	12:26					
			N	15:28	0.000	20.9	830	0	
			S	15:27	0.000	20.9	830	0	
			E W	15:27 15:28	0.000	20.9	830 830	0	
			Well Head	15:29	0.000	20.9	830	0	
			N						
			S						
-			E W						
			Well Head						
				7.44 (42 (4 : 1	12)				
			Finish	7:44 (12/11/	13)				
10-Dec-13	22		Start	12:43					
			N	15:41	0.000	20.9	870	0	
			S	15:40	0.000	20.9	850	0	
			E W	15:41 15:40	0.000	20.9	840 930	0	
			Well Head	15:40	0.000	20.9	960	0	
						-			
			N S						
			E						
			W Well Head						
ļ			Finish	16:58					
PARSONS	<u> </u>		<u> </u>	i			l		Page 2 of 3

10 Dec-13 13 18	Date	Sparge Well	Wind	Test	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
N 15-43 0.000 20-9 880 0			Direction	Location						
S 15-44 0.000 20.9 850 0	10-Dec-13	13		Start	13:09					
F 15-44 0.000 209 850 0				N	15:43	0.000	20.9	880	0	
Well Head 15-45 0,000 20.9 870 0 0										
Well Head 15:45 0.000 20:9 870 0										
S E										
S E				NI.						
Finish										
Well Head				E						
Finish 17/03										
10-Dec-13 39 NW Start 13:36				**Cii i i caa						
N				Finish	17:03					
N	10-Dec-13	39	NW	Start	13:36					
S 15:15 0.000 20.9 790 0	10 Dec 15	33	1444	Start	13.30					
E 15:15 0.000 20.9 790 0										
Well Head 15:16										
N S S S S S S S S S S S S S S S S S S S	_		_	W	15:16	0.000	20.9	790	0	
S W Well Head				Well Head	15:16	0.000	20.9	790	0	
S W Well Head				N						
Well Head Well										
Well Head										
10-Dec-13 38										
10-Dec-13 38				e:	7 50 (40 (44)	4.0)				
N 15:24 0.000 20.9 820 0				Finish	7:58 (12/11/	13)				
S 15:23 0.000 20.9 820 0	10-Dec-13	38	NW	Start	13:38					
S 15:23 0.000 20.9 820 0				N	15.24	0.000	20.0	920	0	
Well Head 15:24 0.000 20.9 830 0										
Well Head 15:25 0.000 20:9 830 0										
N										
S E				vveii i ieau	13.23	0.000	20.9	830	0	
E										
Well Head										
Finish 7:56 (12/11/13)										
10-Dec-13 2 NW Start 13:17				Well Head						
N				Finish	7:56 (12/11/	13)				
N	10 0 12	2	AD4/	Chart	42.47					
S 15:49 0.000 20.9 820 0 E 15:48 0.000 20.9 820 0 Well Head 15:50 0.000 20.9 830 0 Well Head 15:50 0.000 20.9 830 0 N	10-Dec-13	2	NW	Start	13:1/					
E 15:48 0.000 20.9 820 0 Well Head 15:50 0.000 20.9 830 0 N Well Head 15:50 0.000 20.9 830 0 N S S S S S S S S S S S S S S S S S S										
W 15:49 0.000 20.9 850 0 Well Head 15:50 0.000 20.9 830 0 N										
Well Head 15:50 0.000 20.9 830 0										
S E WW Well Head Well Head Work Tinish Tinis				Well Head					0	
S E WW Well Head Well Head Work Tinish Tinis				N						
W Well Head Finish 7:49 (12/11/13) 10-Dec-13 24 NW Start 13:22 N 15:18 0.000 20.9 830 0 S 15:19 0.000 20.9 820 0 E 15:19 0.000 20.9 820 0 W 15:18 0.000 20.9 850 0 Well Head 15:20 0.000 20.9 850 0 Well Head 15:20 0.000 20.9 800 0 N Well Head 15:20 0.000 20.9 800 0 N Well Head 15:20 0.000 20.9 800 0 Finish 7:53 (12/11/13)				S						
Well Head Finish 7:49 (12/11/13)										
Finish 7:49 (12/11/13)										
10-Dec-13 24 NW Start 13:22						4.0)				
N 15:18 0.000 20.9 830 0 S 15:19 0.000 20.9 820 0 E E 15:19 0.000 20.9 820 0 W 15:18 0.000 20.9 850 0 Well Head 15:20 0.000 20.9 800 0 N S S S S S S S S S S S S S S S S S S				Finish	/:49 (12/11/	13)				
S 15:19 0.000 20.9 820 0 E 15:19 0.000 20.9 820 0 W 15:18 0.000 20.9 850 0 Well Head 15:20 0.000 20.9 800 0 N S S S S S S S S S S S S S S S S S S	10-Dec-13	24	NW	Start	13:22					
S 15:19 0.000 20.9 820 0 E 15:19 0.000 20.9 820 0 W 15:18 0.000 20.9 850 0 Well Head 15:20 0.000 20.9 800 0 N S S S S S S S S S S S S S S S S S S	·		·	N1	15.10	0.000	20.0	930	-	
E 15:19 0.000 20.9 820 0 W 15:18 0.000 20.9 850 0 Well Head 15:20 0.000 20.9 800 0 N N S S S S S S S S S S S S S S S S S										
Well Head 15:20 0.000 20.9 800 0 N S S E W Well Head Finish 7:53 (12/11/13)				E	15:19	0.000	20.9	820	0	
N S S S S S S S S S S S S S S S S S S S										
S E W Well Head Finish 7:53 (12/11/13)				**Cirricau	15.20	0.000	20.3	550	<u> </u>	
E W Well Head Finish 7:53 (12/11/13)										-
W Well Head Finish 7:53 (12/11/13)										
Finish 7:53 (12/11/13)				W						
				Well Head						
				Finish	7:53 (12/11/	13)				

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
11-Dec-13	14	N	Start	19:19					
			N	10:20 10:21	0.000	20.9	610	0	
			S E	10:21	0.000	20.9 20.9	610 620	0	
			W	10:21	0.000	20.9	620	0	
			Well Head	10:22	0.000	20.9	610	0	
			N	12:30	0.000	20.9	700	0	
			S	12:31	0.000	20.9	700	0	
			E W	12:30 12:31	0.000	20.9 20.9	700 700	0	
			Well Head	12:32	0.000	20.9	720	0	
			Finish	13:54					
11-Dec-13	56		Start	12:15					
			N	15:56	0.000	20.9	850	0	
			S	15:57	0.000	20.9	850	0	
			E W	15:58 15:56	0.000	21.6 20.9	780 780	0	
			Well Head	15:56	0.000	20.9	800	0	
					2.300	_3.3	-20		
·			N c			·			
			S E						
			W						
		-	Well Head						
			Finish	8:17 (12/12/	12\				
			FIIIISII	0.17 (12/12/	13)				
11-Dec-13	27		Start	8:58					
			N	11:01	0.000	20.9	670	0	
			S	11:01	0.000	20.9	670	0	
			E	11:02	0.000	20.9	670	0	
			W	11:02	0.000	20.9	670	0	
			Well Head	11:02	0.000	20.9	670	0	
			N	12:58	0.000	20.9	750	0	
			S	12:58	0.000	20.9	740	0	
			E	12:59	0.000	20.9	740	0	
			W	12:59	0.000	20.9	750	0	
			Well Head	12:59	0.000	20.9	750	0	
			Finish	12:59					
11-Dec-13	49		Start	8:52					
			N	10:59	0.000	20.9	660	0	
			S	10:59	0.000	20.9	670	0	
			E	10:59	0.000	20.9	660	0	
			Wall Hand	11:00	0.000	20.9	660	0	
			Well Head	11:00	0.000	20.9	660	0	
			N						
		-	S						
			E VA/						
			W Well Head						
-			Finish	12:54		-			
11-Dec-13	9		Start	9:03					
200 13									
		-	N	10:36	0.000	20.9	720	0	
			S E	10:36 10:37	0.000	20.9	750 740	0	
			W	10:37	0.000	20.9	740	0	
			Well Head	10:37	0.000	20.9	740	0	
				43.20	0.000	30.0	555	•	
			N S	12:39 12:40	0.000	20.9 20.9	660 640	0	
			E	12:39	0.000	20.9	660	0	
			W	12:40	0.000	20.9	660	0	
			Well Head	12:41	0.000	20.9	640	0	
			Einich	13:14			1		
			Finish	15:14					
PARSONS									Page 1 of 3

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
11-Dec-13	3	N	Start	9:10					
11 Dec 15			Start						
			N	10:40	0.000	20.9	640	0	
			S E	10:41 10:40	0.000	20.9	640 660	0	
			W	10:40	0.000	20.9	640	0	
			Well Head	10:41	0.000	20.9	640	0	
		N	N	12:43	0.000	20.9	750	0	
			S	12:42	0.000	20.9	740	0	
			E	12:42	0.000	20.9	740	0	
			W Well Head	12:43 12:44	0.000	20.9	740 740	0	
			weiiTieau	12.44	0.000	20.5	740	0	
			Finish	13:22					
11-Dec-13	37	N	Start	9:08					
11-Dec-13	37	IN	Start	3.06					
			N		0.000	20.9	640	0	
			S E		0.000	20.9	640 660	0	
			W		0.000	20.9	640	0	
			Well Head		0.000	20.9	640	0	
			p.		0.000	20.0	750		
		N	N S		0.000	20.9	750 740	0	
			E		0.000	20.9	740	0	
			W		0.000	20.9	740	0	
			Well Head		0.000	20.9	740	0	
			Finish	13:39					
44.5	4.0		· ·	6.0:					
11-Dec-13	16		Start	9:04					
			N	10:49	0.000	20.9	670	0	
			S	10:49	0.000	20.9	680	0	
			E W	10:49 10:50	0.000	20.9	690 670	0	
			Well Head	10:50	0.000	20.9	660	0	
			N S	12:42 12:46	0.000	20.9	740 740	0	
			E	12:46	0.000	20.9	740	0	
			W	12:47	0.000	20.9	740	0	
			Well Head	12:48	0.000	20.9	740	0	
			Finish	13:37					
11-Dec-13	26		Start	12:55					
			N	14:36	0.000	20.9	700	0	
			S	14:37	0.000	20.9	700	0	
			E W	14:38 14:39	0.000	20.9	740 700	0	
			Well Head	14:40	0.000	20.9	670	0	
				46					
			N S	16:36 16:37	0.000	20.9	660 660	0	
			E	16:38	0.000	20.9	850	0	
			W	16:39	0.000	20.9	690	0	
			Well Head	16:40	0.000	20.9	660	0	
			Finish	16:56					
						-			
11-Dec-13	28		Start	13:04					
			N	14:44	0.000	20.9	690	0	
			S	14:45	0.000	20.9	690	0	
			E W	14:46 14:47	0.000	20.9	670 670	0	
			Well Head	14:48	0.000	20.9	670	0	
			N S	16:42 16:43	0.000	20.9	660 640	0	
			E E	16:43	0.000	20.9	640	0	
			W	16:45	0.000	20.9	640	0	
			Well Head	16:46	0.000	20.9	640	0	
			Finish	17:05					
PARSONS									Page 2 of 3

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
11-Dec-13	19		Start	13:19					
			N	14:07	0.000	20.9	690	0	
			S E	14:08 14:08	0.000	20.9	670 700	0	
			W	14:07	0.000	20.9	690	0	
			Well Head	14:09	0.000	20.9	690	0	
				45.05	0.000	20.0	520		
			N S	16:05 16:06	0.000	20.9	620 610	0	
			E	16:07	0.000	20.9	610	0	
			W	16:08	0.000	20.9	610	0	
			Well Head	16:09	0.000	20.9	610	0	
			Finish	17:20					
			FIIIISII	17.20					
11-Dec-13	17		Start	13:30					
			N	14:15	0.000	20.9	670	0	
			S E	14:16 14:17	0.000	20.9	690 670	0	
			W	14:18	0.000	20.9	690	0	
			Well Head	14:19	0.000	20.9	670	0	
				45.41	0.00-	20.5		•	
			N S	16:11 16:12	0.000	20.9	660 640	0	
			E	16:12	0.000	20.9	610	0	
			W	16:14	0.000	20.9	620	0	
			Well Head	16:05	0.000	20.9	620	0	
			Finish	17:59					
			FIIIISII	17.39					
11-Dec-13	48		Start	13:41					
				44.00	0.000	20.0	==0		
			N S	14:30 14:31	0.000	20.9	770 690	0	
			E	14:32	0.000	20.9	690	0	
			W	14:33	0.000	20.9	700	0	
			Well Head	14:34	0.000	20.9	690	0	
			N	16:25	0.000	20.9	670	0	
			S	16:26	0.000	20.9	660	0	
			E	16:27	0.000	20.9	660	0	
			W	16:28	0.000	20.9	660	0	
			Well Head	16:29	0.000	20.9	640	0	
			Finish	17:42					
11-Dec-13	7		Start	13:53					
			N	14:22	0.000	20.9	700	0	
			S	14:23	0.000	20.9	690	0	
			Е	14:24	0.000	20.9	690	0	
			W	14:25	0.000	20.9	720	0	
			Well Head	14:27	0.000	20.9	700	0	
			N	16:19	0.000	20.9	670	0	
			S	16:20	0.000	20.9	610	0	
			E	16:21	0.000	20.9	610	0	
			W Well Head	16:22 16:23	0.000	20.9	620 620	0	
			vvен пеа0	10:25	0.000	20.9	020	U	
			Finish	9:03 (12/12/	13)				
-		-				-			
PARSONS									Page 3 of 3

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
12-Dec-13	10		Start	9:20					
12-Dec-13	10		Start	9.20					
			N	10:53	0.000	20.9	830	0	
			S E	10:54 10:55	0.000	20.9 20.9	830 800	0	
			W	10:56	0.000	20.9	800	0	
			Well Head	10:57	0.000	20.9	800	0	
		NIVA/	N	12.26	0.000	20.0	900	0	
		NW	N S	12:36 12:37	0.000	20.9	800 800	0	
			E	12:36	0.000	20.9	800	0	
			W	12:37	0.000	20.9	800	0	
			Well Head	12:38	0.000	20.9	800	0	
			Finish	13:30					
12-Dec-13	36		Start	9:09					
			N	11:05	0.000	20.9	920	0	
			S	11:06	0.000	20.9	900	0	
			E	11:07	0.000	20.9	830	0	
			Wall Haad	11:08	0.000	20.9	920	0	
			Well Head	11:09	0.000	20.9	900	0	
			N	12:46	0.000	20.9	830	0	
			S	12:45	0.000	20.9	830	0	
			E W	12:45	0.000	20.9	830	0	
			W Well Head	12:47 12:48	0.000	20.9 20.9	850	0	
					2.300				
			Finish	13:12					
12-Dec 12	15		Start	9:05					
12-Dec-13	15		Start	9:05					
			N	10:59	0.000	20.9	850	0	
			S	11:00	0.000	20.9	800	0	
			E W	11:01 11:02	0.000	20.9 20.9	850 830	0	
			Well Head	11:03	0.000	20.9	830	0	
			N	12:41	0.000	20.9	850	0	
			S E	12:42 12:43	0.000	20.9 20.9	830 830	0	
			W	12:41	0.000	20.9	900	0	
			Well Head	12:43	0.000	20.9	850	0	
			Finish	13:10					
			FIIIISII	13.10					
12-Dec-13	62		Start	8:53					
			N S	10:22 10:23	0.000	20.9	880 880	0	
			E	10:23	0.000	20.9	850	0	
			W	10:25	0.000	20.9	850	0	
			Well Head	10:26	0.000	20.9	850	0	
		NW	N	12:14	0.000	20.9	760	0	
			S	12:15	0.000	20.9	880	0	
			E	12:15	0.000	20.9	760	0	
			W Well Head	12:14 12:16	0.000	20.9 20.9	730 760	0	
			vvен пеа0	12:10	0.000	20.9	700	U	
			Finish	12:54					
12-Dec-13	60		Start	8:19					
			N	10:28	0.000	20.9	850	0	
			S	10:29	0.000	20.9	830	0	
			E	10:30	0.000	20.9	830	0	
			W Well Head	10:31 10:32	0.000	20.9 20.9	800 800	0	
			vven nead	10.32	5.000	20.3	500	U	
			N	12:17	0.000	20.9	760	0	
			S	12:18	0.000	20.9	780	0	
			E W	12:17 12:18	0.000	20.9 20.9	760 730	0	
			Well Head	12:19	0.000	20.9	760	0	
			Finish	12:20					
PARSONS									Page 1 of 3

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
12-Dec-13	32		Start	8:07					
			N	10:35	0.000	20.9	800	0	
			S	10:36	0.000	20.9	800	0	
			E	10:37	0.000	20.9	830	0	
			W Well Head	10:38 10:39	0.000	20.9	830 780	0	
			well neau	10.33	0.000	20.9	760	U	
			N	12:24	0.000	20.9	780	0	
			S	12:23	0.000	20.9	780	0	
			E	12:24	0.000	20.9	780	0	
			W	12:25	0.000	20.9	780	0	
			Well Head	12:26	0.000	20.9	780	0	
			Finish	15:18 (12/13	/12)				
12-Dec-13	41		Start	8:58					
12-Dec-13	41		Start	8.36					
			N	10:41	0.000	20.9	880	0	
			S	10:42	0.000	20.9	830	0	
			E	10:43	0.000	20.9	850	0	
			W	10:44	0.000	20.9	1080	0	
			Well Head	10:45	0.000	20.9	880	0	
			N	12:28	0.000	20.9	780	0	
			S	12:27	0.000	20.9	780	0	
			E	12:28	0.000	20.9	780	0	
			W	12:27	0.000	20.9	780	0	
			Well Head	12:29	0.000	20.9	780	0	
			Finish	13:37					
12-Dec-13	5		Start	11:50					
			NI NI	10.24	0.000	30.0	F00		
			N S	10:24 10:23	0.000	20.9	590 590	0	
			E E	10:23	0.000	20.9	610	0	
			W	10:24	0.000	20.9	610	0	
			Well Head	10:25	0.000	20.9	610	0	
			N	12:34	0.000	20.9	720 720	0	
			S E	12:35 12:34	0.000	20.9	700	0	
			W	12:35	0.000	20.9	700	0	
			Well Head	12:36	0.000	20.9	700	0	
			Finish	16:14					
42 D 42	C4		Chart	42.25					
12-Dec-13	61	N	Start	12:25					
			N	15:53	0.000	20.9	780	0	
			S	15:54	0.000	20.9	780	0	
			E	15:54	0.000	20.9	760	0	
			W	15:53	0.000	20.9	800	0	
			Well Head	15:55	0.000	20.9	760	0	
			N						
			S						
			E						
			Wall Head						
			Well Head						
			Finish	16:45					
12-Dec-13	58	N	Start	13:40					
			N	16:00	0.000	20.9	800	0	
			S	15:59	0.000	20.9	780	0	•
			E	15:59	0.000	20.9	800	0	
			W	16:00	0.000	20.9	800	0	
			Well Head	16:01	0.000	20.9	800	0	
			N						
			S						
			E						
			W Well Head						
			vven nead						
			Finish	17:36					

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
12-Dec-13	8	N	Start	13:27					
			N	16:04	0.000	20.9	850	0	
			S E	16:05	0.000	20.9	800 780	0	
			W	16:06 16:04	0.000	20.9	830	0	
			Well Head	16:06	0.000	20.9	800	0	
			Well fiedd	10.00	0.000	20.5	000	0	
			N						
			S						
			E						
			W						
			Well Head						
			Finish	15:11 (12/12	/13)				
12-Dec-13	65		Start	13:31					
12-Dec-13	03		Start	13.31					
			N	16:13	0.000	20.9	830	0	
			S	16:12	0.000	20.9	830	0	
			E	16:14	0.000	20.9	840	0	
			W	16:12	0.000	20.9	1040	0	-
			Well Head	16:13	0.000	20.9	890	0	
							ļ		
			N				—		
			S				 		
			E W						
			Well Head						
			,						
			Finish	17:21					
12-Dec-13	25	N	Start	13:13					
			N	16:20	0.000	20.9	800	0	
			S	16:19	0.000	20.9	850	0	
			E W	16:19 16:18	0.000	20.9	780 880	0	
			Well Head	16:20	0.000	20.9	800	0	
			Well Head	10.20	0.000	20.5	800	0	
			N						
			S						
			E						
			W						
			Well Head						
			Platek.	0.54 /42 /42 /	12)				
			Finish	8:51 (12/13/	13)				
12-Dec-13	18		Start	9:15					
12 DCC 15	10		Start	3.13					
			N	10:48	0.000	20.9	900	0	
			S	10:49	0.000	20.9	1000	0	
			E	10:50	0.000	20.9	920	0	
			W	10:51	0.000	20.9	880	0	
			Well Head	10:52	0.000	20.9	900	0	
		Ama.	K1	43.22	0.000	20.0	050		
		NW	N c	12:32	0.000	20.9	850	0	
			S E	12:33 12:34	0.000	20.9	830 850	0	
			W	12:34	0.000	20.9	880	0	
			Well Head	12:35	0.000	20.9	760	0	
			Finish	13:19					
12-Dec-13			Start			<u></u>			
			N c				1		
			S E						
			W						
			Well Head						
			,						
			N						
			S						
			E			-			
			W						
			Well Head						
			F11.1						
			Finish						
							1		

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
		Direction							
16-Dec-13	47		Start	7:59					
			N	10:06	0.000	20.9	780	0	
			S	10:05	0.000	20.9	570	0	
			E W	10:06 10:07	0.000	20.9 20.9	610 800	0	
			Well Head	10:08	0.000	20.9	610	0	
			N S	11:17 11:16	0.000	20.9	680 760	0	
			E	11:17	0.000	20.9	700	0	
			W	11:18	0.000	20.9	610	0	
			Well Head	11:19	0.000	20.9	680	0	
			Finish	11:53					
46.0 40			6	0.40					
16-Dec-13	64		Start	9:13					
			N	9:50	0.000	20.9	630	0	
			S	9:49	0.000	20.9	630	0	
			E W	9:49 9:50	0.000	20.9	1030 1150	0	
			Well Head	9:51	0.000	20.9	1350	0	
				44.00	0.000	20.0			
			N S	11:03 11:02	0.000	20.9 20.9	680 670	0	
			E	11:02	0.000	20.9	870	0	
			W	11:03	0.000	20.9	760	0	
			Well Head	11:04	0.000	20.9	1500	0	
			Finish	15:34					
16 Dec 42	- 63	NI) A /	Chorit	0.00					
16-Dec-13	62	NW	Start	8:08					
			N	9:42	0.000	20.9	480	0	
			S	9:43	0.000	20.9	480	0	
			E W	9:43 9:42	0.000	20.9 20.9	530 480	0	
			Well Head	9:44	0.000	20.9	480	0	
			NI NI	11.00	0.000	20.0	C10	0	
			N S	11:06 11:07	0.000	20.9	610 650	0	
			E	11:08	0.000	20.9	650	0	
			W Well Head	11:07	0.000	20.9 20.9	610 630	0	
			well nead	11:09	0.000	20.9	030	U	
			Finish	12:05					
16-Dec-13	61		Start	8:10					
10-Dec-13	01		Start	8.10					
			N	9:45	0.000	20.9	510	0	
			S E	9:44 9:46	0.000	20.9 20.9	570 480	0	
			W	9:45	0.000	20.9	510	0	
			Well Head	9:47	0.000	20.9	570	0	
		NW	N	11:10	0.000	20.9	590	0	
			S	11:11	0.000	20.9	590	0	
			E	11:11	0.000	20.9	610	0	
			W Well Head	11:12 11:13	0.000	20.9 20.9	630 630	0	
				11.15	3.300	25.5	550		
			Finish	12:06					
16-Dec-13	55	NW	Start	8:14					
10 200 13	33		Start	5.17					
			N	10:03	0.000	20.9	630	0	
			S E	10:04 10:03	0.000	20.9	630 630	0	
			W	10:02	0.000	20.9	630	0	
			Well Head	10:00	0.000	20.9	910	0	
		NW	N	11:27	0.000	20.9	630	0	
			S	11:25	0.000	20.9	610	0	
			E W	11:26	0.000	20.9	630 630	0	
			Well Head	11:27 11:28	0.000	20.9 20.9	800	0	
								-	
			Finish	12:35					
	l		l		l		l		Page 1 of 4

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
16-Dec-13	10	NW	Start	8:34					
			N S	11:42 11:44	0.000	20.9 20.9	780 570	0	
			E	11:42	0.000	20.9	610	0	
			W	11:43	0.000	20.9	800	0	
			Well Head	11:44	0.000	20.9	610	0	
			N						
			S						
			E W						
			Well Head						
			Finish	8:37 (12/17/	13)				
16-Dec-13	41		Start	8:24					
			N	10:11	0.000	20.9	570	0	
			S	10:10	0.000	20.9	590	0	
			E	10:11	0.000	20.9	550	0	
			W Well Head	10:12 10:13	0.000	20.9 20.9	570 560	0	
			even nead	10.13	0.000	20.3	300	J	
			N	11:32	0.000	20.9	630	0	
			S E	11:31 11:31	0.000	20.9 20.9	630 650	0	
			W	11:31	0.000	20.9	650	0	
			Well Head	11:34	0.000	20.9	680	0	
			Finish	17:19					
			1 1111311	17.13					
16-Dec-13	51		Start	8:22					
			N	10:19	0.000	20.9	600	0	
			S	10:18	0.000	20.9	610	0	
			E	10:19	0.000	20.9	590	0	
			W Well Head	10:18 10:20	0.000	20.9 20.9	590 590	0	
			N C	11:37	0.000	20.9	650	0	
			S E	11:36 11:37	0.000	20.9	650 630	0	
			W	11:39	0.000	20.9	630	0	
			Well Head	11:39	0.000	20.9	650	0	
			Finish	7:55 (12/17/	13)				
16-Dec-13	46		Start	12:10					
			N	16:32	0.000	20.9	650	0	
			S	16:33	0.000	20.9	680	0	
			E W	16:31 16:32	0.000	20.9 20.9	700 650	0	
			Well Head	16:34	0.000	20.9	890	0	
			N S		1				
			Е						
			Wall Haad						
			Well Head		I .				
			Finish	17:44					
16-Dec-13	63		Start	12:01					
					0.555	25.7			
			N S	16:28 16:27	0.000	20.9 20.9	650 680	0	
			E	16:28	0.000	20.9	680	0	
			Wall Haad	16:29	0.000	20.9	700	0	
			Well Head	16:30	0.000	20.9	760	0	
			N						
			S				1		
			E W						
			Well Head						
			Finish	17.42			1		
			FIIIISII	17:42					
PARSONS									Page 2 of 4

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
46 D 42	F.C.			12:20					
16-Dec-13	56		Start	12:20					
			N	16:36	0.000	20.9	680	0	
			S	16:37	0.000	20.9	650	0	
			E W	16:38 16:38	0.000	20.9	650 680	0	
			Well Head	16:39	0.000	20.9	650	0	
			N						
			S						
			E						
			W Well Head						
			well neau						
			Finish	7:45 (12/17/	13)				
16-Dec-13	60		Start	12:13					
10-Dec-13	00		Start	12.13					
			N	16:45	0.000	20.9	610	0	
			S E	16:44 16:43	0.000	20.9	630 650	0	
			W	16:43	0.000	20.9	630	0	
			Well Head	16:45	0.000	20.9	610	0	
			N						
			S						
			E						
			W Well Head						
			well nead						
			Finish	17:37					
16-Dec-13	45		Ctart	12:38					
10-DEC-13	45		Start	12:38					
			N	16:35	0.000	20.9	630	0	
			S E	16:36 16:37	0.000	20.9	680 680	0	
			W	16:36	0.000	20.9	650	0	
			Well Head	16:37	0.000	20.9	630	0	
			N						
			S						
			E						
			W Well Head						
			**CII TICUU						
			Finish	8:00 (12	2/17/13)				
16-Dec-13	10		Start	8:34					
10 Dec 15	10		Start	0.54					
			N	16:51	0.000	20.9	630	0	
			S E	16:50 16:51	0.000	20.9	650 650	0	
			W	16:52	0.000	20.9	650	0	
			Well Head	16:53	0.000	20.9	630	0	
			N				1		
			S						
			E			· · · · ·			
			W Well Head				1		
			Finish	8:36 (12/17/	13)	· · · · ·			
16-Dec-13	9		Start	8:20			1		
			Junt						
			N	16:54	0.000	20.9	650	0	
			S E	16:55 16:56	0.000	20.9	650 630	0	
			W	16:55	0.000	20.9	630	0	
			Well Head	16:57	0.000	20.9	630	0	
			N						
			S						
			E			-			
			W Well Head						
			Finish	15:12					
PARSONS					I				Page 3 of 4

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
16-Dec-13	15		Start	8:41					
				47.00	0.000	20.0	500		
			N	17:00	0.000	20.9	680	0	
			S	17:02	0.000	20.9	630	0	
			E	17:03	0.000	20.9	630	0	
			W	17:01	0.000	20.9	700	0	
			Well Head	17:04	0.000	20.9	650	0	
			N						
			S						
			E						
			W						
			Well Head						
				45 44 (40 (40	(4.2)				
			Finish	16:11 (12/17	/13)				
16-Dec-13			Start						
			N						
			S						
			E						
			W						
			Well Head						
			N						
			S						
			E W						
			W Well Head						
			vveii Head						
			Einich						
			Finish	-	-				
16 D 12			Cht						
16-Dec-13			Start						
			NI.						
			N						
			S						
			E W						
			Well Head						
			well nead						
			N						
			S						
			E						
			W						
			Well Head						
			Well fiedd						
			Finish						
			1 1111311						
16-Dec-13			Start						
10-Dec-13			Start						
			N						
			S						
			E						
			W						
			Well Head						
			···c ricau						
			N	1					
			S						
			E						
			W	1					
			Well Head						
			Finish						
16-Dec-13			Start	1					
500 15			Start						
			N	1					
			S						
			E						
			W						
			Well Head						
			N						
			S						
			E						
			W						
			Well Head						
				•				i l	
			Finish						

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
19-Dec-13	23	NE	Start	8:44					
19-Dec-13	23	INE	Start	0.44					
			N	11:46	0.000	20.9	760	0	
			S E	11:46 11:46	0.000	20.9	740 740	0	
			W	11:47	0.000	20.9	760	0	
			Well Head	11:47	0.000	20.9	760	0	
			N						
			S						
			E W						
			Well Head						
			Finish	12:41					
19-Dec-13	21	NE	Start	8:58					
			N S	11:42 11:43	0.000	20.9	760 760	0	
			E	11:44	0.000	20.9	760	0	
			W	11:43	0.000	20.9	760	0	
			Well Head	11:44	0.000	20.9	780	0	
			N						
			S						
			E W						
			Well Head						
			Plutab	42.50					
			Finish	12:59					
19-Dec-13	5	NE	Start	9:00					
			N.	11.20	0.000	20.0	920	0	
			N S	11:38 11:39	0.000	20.9	820 780	0	
			E	11:39	0.000	20.9	780	0	
			W Well Head	11:38 11:40	0.000	20.9	820 800	0	
			weiiTieau	11.40	0.000	20.5	800	0	
			N						
			S E						
			W						
			Well Head						
			Finish	13:00					
19-Dec-13	26	E	Start	8:35					
			N	12:09	0.000	20.9	650	0	
			S	12:10	0.000	20.9	630	0	
			E W	12:08 12:09	0.000	20.9	650 650	0	
			Well Head	12:11	0.000	20.9	650	0	
			NI NI						
			N S						
			E						
			W Well Head				1		
			Finish	12:35					
19-Dec-13	18	NE	Start	8:10			-		
			2.3.0						
			N c	11:57	0.000	20.9 20.9	720 740	0	
			S E	11:56 11:56	0.000	20.9	740	0	
			W	11:56	0.000	20.9	740	0	
			Well Head	11:57	0.000	20.9	740	0	
			N				<u> </u>		
			S						
			E W				1		
			Well Head				<u> </u>		
			Finish	12:10			-		
PARSONS					1		1		Page 1 of 4

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
19-Dec-13	65	NE	Start	8:07					
				12.00	0.000	20.0	720	0	
			N S	12:00 11:59	0.000	20.9	720 720	0	
			E	11:59	0.000	20.9	720	0	
			W	11:59	0.000	20.9	700	0	
			Well Head	12:00	0.000	20.9	720	0	
			N						
			S						
			E						
			W Well Head						
			Wellineau						
			Finish	12:08					
19-Dec-13	16	NE	Start	9:14					
			N	12:13	0.000	20.9	650	0	
			S	12:14	0.000	20.9	650 650	0	
			E W	12:13 12:19	0.000	20.9	650 630	0	
			Well Head	12:15	0.000	20.9	630	0	
			N						
			S			<u></u>			
			E						
			W Well Head				 		
			vveii Head						
			Finish	7:38 (12/20)	I				
				, , ,					
19-Dec-13	7	NE	Start	8:45					
			N	12:02	0.000	20.9	700	0	
			S E	12:03	0.000	20.9	650	0	
			W	12:04 12:03	0.000	20.9	680 700	0	
			Well Head	12:04	0.000	20.9	700	0	
			N						
			S						
			E						
			W Well Head						
			well neau						
			Finish	12:43					
19-Dec-13	32	NE	Start	12:44					
			N	13:13	0.000	20.9	440	0	
			S E	13:12 12:12	0.000	20.9	440 440	0	
			W	13:14	0.000	20.9	420	0	
			Well Head	13:14	0.000	20.9	440	0	
			N						·
			S	l	i l				
Į.			-		1				
+			E W						
			W						
			W	16:50					
			W Well Head Finish						
19-Dec-13	14		W Well Head	16:50					
19-Dec-13	14		W Well Head Finish Start	13:04	0.000	20.0			
19-Dec-13	14		W Well Head Finish Start	13:04 15:25	0.000	20.9	550	0	
19-Dec-13	14		W Well Head Finish Start N S	13:04 15:25 15:26	0.000	20.9	570	0	
19-Dec-13	14		W Well Head Finish Start	13:04 15:25					
19-Dec-13	14		W Well Head Finish Start N S E	13:04 15:25 15:26 15:24	0.000 0.000	20.9 20.9	570 530	0	
19-Dec-13	14		W Well Head Finish Start N S E W Well Head	13:04 15:25 15:26 15:24 15:24	0.000 0.000 0.000	20.9 20.9 20.9	570 530 540	0 0 0	
19-Dec-13	14		W Well Head Finish Start N S E W Well Head	13:04 15:25 15:26 15:24 15:24	0.000 0.000 0.000	20.9 20.9 20.9	570 530 540	0 0 0	
19-Dec-13	14		W Well Head Finish Start N S E W Well Head	13:04 15:25 15:26 15:24 15:24	0.000 0.000 0.000	20.9 20.9 20.9	570 530 540	0 0 0	
19-Dec-13	14		W Well Head Finish Start N S E W Well Head	13:04 15:25 15:26 15:24 15:24	0.000 0.000 0.000	20.9 20.9 20.9	570 530 540	0 0 0	
19-Dec-13	14		W Well Head Finish Start N S E W Well Head	13:04 15:25 15:26 15:24 15:24	0.000 0.000 0.000	20.9 20.9 20.9	570 530 540	0 0 0	
19-Dec-13	14		W Well Head Finish Start N S E W Well Head	13:04 15:25 15:26 15:24 15:24	0.000 0.000 0.000	20.9 20.9 20.9	570 530 540	0 0 0	
19-Dec-13	14		W Well Head Finish Start N S E W Well Head	13:04 15:25 15:26 15:24 15:24	0.000 0.000 0.000	20.9 20.9 20.9	570 530 540	0 0 0	

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
		Direction.							
19-Dec-13	13		Start	13:08					
			N	15:19	0.000	20.9	480	0	
			S	15:18	0.000	20.9	480	0	
			E W	15:18 15:19	0.000	20.9	460 480	0	
			Well Head	15:20	0.000	20.9	480	0	
			N						
			S						
			E						
			W Well Head						
			Well fiedd						
			Finish	17:06					
19-Dec-13	27		Start	12:36					
15 Dec 15	27		Start	12.50					
			N	15:42	0.000	20.9	550	0	
			S E	15:41 15:41	0.000	20.9	550 550	0	
			W	15:40	0.000	20.9	550	0	
			Well Head	15:43	0.000	20.9	550	0	
			N						
			S						
			E						
			W Well Head						
			Finish	16:49					
19-Dec-13	4	E	Start	12:20					
			N S	16:20 16:19	0.000	20.9	650 530	0	
			E	16:19	0.000	20.9	510	0	
			W	16:20	0.000	20.9	550	0	
			Well Head	16:21	0.000	20.9	530	0	
			N						
			S E						
			W						
			Well Head						
			Finish	16:38					
			1 1111311	10.50					
19-Dec-13	37	E	Start	12:38					
			N	16:00	0.000	20.9	610	0	
			S	16:01	0.000	20.9	670	0	
		<u> </u>	E	16:02	0.000	20.9	630	0	
			W Well Head	16:01 16:02	0.000	20.9	590 590	0	
			N S						
			E						
			W						
			Well Head				1		
			Finish	16:49					
10 Dec 13	2	NE	Chowk	12.00					
19-Dec-13	2	NE	Start	12:09					
			N	16:12	0.000	20.9	550	0	
			S E	16:11 16:12	0.000	20.9	550 550	0	
			W	16:12	0.000	20.9	530	0	
			Well Head	16:13	0.000	20.9	590	0	
			N						
			S						
-			E						
			W Well Head				1		
			iicad						
		·	Finish	16:39					
PARSONS					i l				Page 3 of 4

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
19-Dec-13	7	NE	Start	8:45					
				46.06	0.000	20.0	500	0	
			N	16:06	0.000	20.9	590	0	
			S	16:07	0.000	20.9	550	0	
			E	16:08	0.000	20.9	550	0	
			W	16:07	0.000	20.9	570	0	
			Well Head	16:08	0.000			0	
			N						
			S						
			E						
			W						
			Well Head						
			Et alab	42.42					
			Finish	12:43					
10 D 12			Chart						
19-Dec-13			Start						
			NI.						
			N s						
			S						
			E W						
			Well Head						
			N						
			S						
			E						
			W						
			Well Head						
			· · c ricud						
			Finish						
19-Dec-13			Start						
13-Dec-13			Start						
			N						
			S						
			E						
			W						
			Well Head						
			Well fiedd						
			N						
			S						
			E						
			W						
			Well Head						
			Finish						
19-Dec-13			Start						
			N						
			S						
			E						
			W						
			Well Head						
			N						
			S						
			E						
			W						
			Well Head						
			Finish						
19-Dec-13			Start						
			N						
			S						
			E						
			W						
			Well Head						
			N						
			S						
			E						
			W						
			Well Head						
			Finish						
	1		ı		i		Ī		

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
20-Dec-13	22	SE	Start	7:47					
				44.44	0.000	20.0	200	0	
			N	11:44	0.000	20.9	380	0	
			S E	11:42 11:43	0.000	20.9	440 420	0	
			W	11:44	0.000	20.9	400	0	
			Well Head	11	0.000	20.5	.00	-	
			N						
			S						
			E						
			W Well Head						
			well flead						
			Finish	11:50					
20-Dec-13	6	SE	Start	7:40					
			N	11:38	0.000	20.9	400	0	
			S	11:37	0.000	20.9	470	0	
			E W	11:38 11:39	0.000	20.9	480 480	0	
			Well Head	11:39	0.000	20.9	400	0	
				11.55	5.500	20.5	.50	<u> </u>	
			N						
			S						
			E						
			W						
			Well Head		 				
			Finish	11:48					
			11111111	11.40			 		
20-Dec-13	28	SE	Start	8:33					
			N	11:26	0.000	20.9	340	0	
			S	11:25	0.000	20.9	340	0	
			E	11:26	0.000	20.9	340	0	
			W	11:27	0.000	20.9	340	0	
			Well Head	11:28	0.000	20.9	340	0	
			N						
			S						
			E						
			W						
			Well Head						
			Et. Lib	42.22					
			Finish	12:32					
20-Dec-13	26		Start	8:35					
20 DCC 13	20		Start	0.55					
			N	11:31	0.000	20.9	390	0	
			S	11:33	0.000	20.9	400	0	
			E	11:33	0.000	20.9	400	0	
			W	11:32	0.000	20.9	420	0	
			Well Head	11:34	0.000	20.9	440	0	
			N						
			S						
			E						
			W						•
			Well Head						
			<u></u>	42.2-	 				
			Finish	12:35	 				
20-Dec-13	48	SE	Start	7:47					
-0 DCC-13	70	JL	Start	7.47					
			N	11:52	0.000	20.9	550	0	
			S	11:50	0.000	20.9	550	0	
			E	11:51	0.000	20.9	510	0	
			W	11:52	0.000	20.9	530	0	·-
			Well Head	11:53	0.000	20.9	530	0	
			NI NI		 				
			N S		 				
			E E						
			W						
			Well Head						
			Finish	12:03					
			1		1		1		

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
20-Dec-13	49	SE	Start	9:10					
				44.50	0.000	20.0	400		
			N S	11:59 11:58	0.000	20.9	480 550	0	
			E	11:59	0.000	20.9	550	0	
			W	12:00	0.000	20.9	510	0	
			Well Head	12:01	0.000	20.9	510	0	
			N						
			S						
			E W						
			Well Head						
			Finish	12.10					
			FIIIISII	13:16					
20-Dec-13			Start						
			NI NI						
			N S						
			Е						
			Well Head						
			Well Head						
			N						
			S						
			E W						
			Well Head						
			Einich						
			Finish						
20-Dec-13			Start						
			N S						
			E						
			W						
			Well Head						
			N						
			S E						
			W						
			Well Head						
			Finish						
			FIIIISII						
20-Dec-13			Start						
			N						
			N S						
			E						
			W Well Head						
			weii nead						
			N						
			S E						
			W						
			Well Head						
			Einich						
			Finish						
20-Dec-13			Start						
			NI NI						
			N S						
			E						
			W W W Hood						
			Well Head		<u> </u>				
			N						
			S						
			E W		1				
			Well Head						
			Finish						
PARSONS			ı		i		ı		Page 2 of 2

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
16 lon 14	21		Chout	0.15					
16-Jan-14	31		Start	8:15					
			N	15:40	0.000	20.9	740	0	
			S E	15:43 15:42	0.000	20.9	740 740	0	
			W	15:44	0.000	20.9	760	0	
			Well Head	15:44	0.000	20.9	760	0	
			N						
			S						
			E						
			W Well Head						
			Finish	16:42					
16-Jan-14	51		Start	8:12					
			N S	15:33 15:35	0.000	20.9	740 760	0	
			E	15:36	0.000	20.9	760	0	
			W	15:37	0.000	20.9	740	0	
			Well Head	15:39	0.000	20.9	740	0	
			N						
			S						
			E W						
			Well Head						
				46					
			Finish	16:15					
16-Jan-14	13		Start	12:21					
			N S	15:46 15:47	0.000	20.9	760 740	0	
			E	15:48	0.000	20.9	790	0	
			W	15:49	0.000	20.9	740	0	
			Well Head	15:50	0.000	20.9	760	0	
			N						
			S E						
			W						
			Well Head						
			Finish	16:23					
			1 1111311	10.25					
16-Jan-14	5		Start	12:09					
			N	15:52	0.000	20.9	840	0	
			S	15:53	0.000	20.9	790	0	
			E W	15:54 15:55	0.000	20.9	790 740	0	
			Well Head	12:22	0.000	20.9	740	U	
			N S						
			E						
_		· · ·	W	· · ·					
			Well Head						
			Finish	16:11					
10 le : 11	27		Christ	11:53					
16-Jan-14	27		Start	11:53					
			N	15:59	0.000	20.9	710	0	
			S E	16:00	0.000	20.9	710 740	0	
			W	16:01 16:02	0.000	20.9	710	0	
			Well Head	16:03	0.000	20.9	760	0	
			N						
			S						
			E						
			W Well Head						
			vveli nedu						
			Finish	16:05					
PARSONS									Page 1 of 1

221-lan-14	Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
N 15:15 0.000 20:9 66:0 0	21-Jan-14	33			12:13					
S 1516 0.000 209 640 0	21-3411-14	33		Start	12.13					
F 15-18 0.0000 20.9 640 0										
New 15-17 0.000 20.9 840 0 0 0 0 0 0 0 0 0										
Well Head 15:19										
S										
S										
Finish 16-42										
Well Head Well										
Finish										
Start 12:10				Well Head						
Start 12:10				Finish	16:42					
N 15:21 0.000 20.9 610 0				1 1111511	10.12					
S 1522 0.000 20.9 610 0 E 1523 0.000 20.9 610 0 Well Head 15:25 0.000 20.9 610 0 Well Head 2	21-Jan-14	54		Start	12:10					
S 1522 0.000 20.9 610 0 E 1523 0.000 20.9 610 0 Well Head 15:25 0.000 20.9 610 0 Well Head 2					45.24	0.000	20.0	610	0	
E 15:24 0.000 20.9 610 0										
Well Head 15:25 0.000 20.9 610 0										
N S N N N N N N N N				W	15:24	0.000	20.9	610	0	
S W Well Head				Well Head	15:25	0.000	20.9	610	0	
S W Well Head		 		N				 		
Well Head										
Well Head										
Finish 16.41		-						-		
21-Jan-14 31		 		vveii Head				 		
N				Finish	16:41					
N							-			
S 15:28 0.000 20.9 580 0	21-Jan-14	31		Start	12:36					
S 15:28 0.000 20.9 580 0				N	15:27	0.000	20.9	610	0	
Well Head 15:31 0.000 20.9 580 0										
Well Head 15:31 0.000 20.9 610 0										
N										
S W Well Head S S S S S S S S S				well nead	15:51	0.000	20.9	010	U	
E WW Well Head W				N						
Well Head										
Well Head										
21-Jan-14 9 Start 12:51										
21-Jan-14 9 Start 12:51										
N 15:34 0.000 20.9 610 0				Finish	16:51					
N 15:34 0.000 20.9 610 0	21-Jan-14	9		Start	12:51					
S 15:35 0.000 20.9 610 0 E 15:36 0.000 20.9 610 0 WW 15:37 0.000 20.9 610 0 Well Head 15:38 0.000 20.9 610 0 N Well Head 15:38 0.000 20.9 610 0 N S S S S S S S S S S S S S S S S S S				-						
E 15:36 0.000 20.9 610 0 Well Head 15:38 0.000 20.9 610 0 N Well Head 15:38 0.000 20.9 610 0 N S S S S S S S S S S S S S S S S S S										
Well Head 15:37 0.000 20.9 610 0		-								
Well Head 15:38 0.000 20.9 610 0		 								
S E W Well Head										
S E W Well Head										
E W Well Head		1						1		
Well Head Finish 17:00 Start 13:06 N 15:40 0.000 20.9 610 0 S 15:41 0.000 20.9 610 0 E 15:42 0.000 20.9 610 0 Well Head 15:43 0.000 20.9 640 0 Well Head 15:44 0.000 20.9 640 0 N Well Head 15:44 0.000 20.9 640 0 Well Head 15:44 0.000 20.9 640 0 Finish 17:10		†						t		
Finish 17:00 21-Jan-14 7 Start 13:06 N 15:40 0.000 20.9 610 0 S 15:41 0.000 20.9 610 0 E 15:42 0.000 20.9 610 0 W 15:43 0.000 20.9 640 0 Well Head 15:44 0.000 20.9 640 0 N N S S S S S S S S S S S S S S S S S				W						
21-Jan-14 7 Start 13:06		<u> </u>		Well Head				<u> </u>		
21-Jan-14 7 Start 13:06		-		Finish	17:00			-		
N 15:40 0.000 20.9 610 0 S 15:41 0.000 20.9 610 0 E 15:42 0.000 20.9 610 0 W 15:43 0.000 20.9 640 0 Well Head 15:44 0.000 20.9 640 0 N S S S S S S S S S S S S S S S S S S				511						
S 15:41 0.000 20.9 610 0 E 15:42 0.000 20.9 610 0 W 15:43 0.000 20.9 640 0 Well Head 15:44 0.000 20.9 640 0 N S E W W W W W W W W W W W W	21-Jan-14	7		Start	13:06					
S 15:41 0.000 20.9 610 0 E 15:42 0.000 20.9 610 0 W 15:43 0.000 20.9 640 0 Well Head 15:44 0.000 20.9 640 0 N S E W W W W W W W W W W W W				NI NI	15.40	0.000	20.0	610	0	
E 15:42 0.000 20.9 610 0 W 15:43 0.000 20.9 640 0 Well Head 15:44 0.000 20.9 640 0 N S S E W Well Head Finish 17:10		 								
W 15:43 0.000 20.9 640 0 Well Head 15:44 0.000 20.9 640 0 N S E W Well Head W Well Head Finish 17:10										
N S S S S S S S S S S S S S S S S S S S		Ĺ		W	15:43	0.000	20.9	640	0	
S E W Well Head Finish 17:10				Well Head	15:44	0.000	20.9	640	0	
S E W Well Head Finish 17:10		 		N				 		
E W Well Head Finish 17:10										
Well Head Finish 17:10										
Finish 17:10										
		 		vveii nead				 		
		<u> </u>		Finish	17:10					
										-

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
21-Jan-14	36		Start	8:24					
			N S	15:46 15:47	0.000	20.9	640 660	0	
			E	15:48	0.000	20.9	610	0	
			W	15:49	0.000	20.9	640	0	
			Well Head	15:50	0.000	20.9	640	0	
			N						
			S E						
			W						
			Well Head						
			Finish	17:08					
21-Jan-14			Start						
			N						
			S						
			E W						
			Well Head						
			N						
			S						
			E W						
			Well Head						
			Finish						
21-Jan-14			Start						
			N						
			S						
			E						
			W Well Head						
			N S						
			E						
			W Well Head						
			Finish						
21-Jan-14			Start						
			N S						
			E						
			W Well Head						
			N S					-	
			5 E						
			W						
			Well Head						
			Finish						
21-Jan-14			Start						
-1 Jun-14									
			N S						
			S E						
			W						-
			Well Head						
			N						
			S E						
			W						
			Well Head						
			Finish						
PARSONS									Page 2 of 2

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
22-Jan-14	44		Start	8:06					
			N	15:03	0.000	20.9	E90	0	
			N S	15:04	0.000	20.9	580 580	0	
			E	15:05	0.000	20.9	580	0	
			W	15:06	0.000	20.9	580	0	
			Well Head	15:07	0.000	20.9	580	0	
			NI NI						
			N S						
			E						
			W						
			Well Head						
			Finish	16:59					
22-Jan-14	52		Start	7:57					
22 3011 21	- 52		Start	7.57					
			N	15:10	0.000	20.9	580	0	
			S	15:11	0.000	20.9	580	0	
			E	15:12	0.000	20.9	560	0	
			Well Head	15:13	0.000	20.9	610 580	0	
			Well Head	15:14	0.000	20.9	580	0	
			N						
			S						
			E						
			W						
			Well Head		+				
			Finish	16:11	 				
22-Jan-14	5		Start	12:41					
			N	15:16	0.000	20.9	640	0	
			S E	15:17 15:18	0.000	20.9	560 580	0	
			W	15:19	0.000	20.9	580	0	
			Well Head	15:20	0.000	20.9	610	0	
			N						
			S E						
			W						
			Well Head						
			Finish	16:52					
22.1 44			6	0.45					
22-Jan-14	2		Start	8:15					
			N	15:23	0.000	20.9	660	0	
			S	15:24	0.000	20.9	610	0	
			E	15:25	0.000	20.9	640	0	
			W	15:26	0.000	20.9	640	0	
			Well Head	15:27	0.000	20.9	640	0	
			N						
			S						
			E						
			W			-			
			Well Head				<u> </u>		
			Finish	16:31					
			ı ııııslı	10.31			 		
22-Jan-14	37		Start	8:21					
			N	15:31	0.000	20.9	610	0	-
			S	15:32	0.000	20.9	640	0	
			E W	15:33 15:34	0.000	20.9	610 610	0	
			Well Head	15:34	0.000	20.9	660	0	
				15.55	5.500	20.5	300	,	
			N						
			S						
			E						
			1						
			Well Head						
			W Well Head						
				16:38					

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
		Direction							
23-Jan-14	53		Start	7:39					
			N	15:33	0.000	20.9	510	0	
			S	15:34	0.000	20.9	530	0	
			E W	15:35 15:36	0.000	20.9	560 610	0	
			Well Head	15:37	0.000	20.9	580	0	
			N S						
			E						
			W						
			Well Head						
			Finish	16:19					
22 Ion 14	44		Chout	7.47					
23-Jan-14	44		Start	7:47					
			N	15:25	0.000	20.9	510	0	
			S	15:26	0.000	20.9	480	0	
			E W	15:27 15:28	0.000	20.9	510 480	0	
			Well Head	15:29	0.000	20.9	510	0	
			N				1		
			S				<u> </u>		
		_	E			_			
			W Well Head						
			**CII I IEdu						
			Finish	16:25					
23-Jan-14	23		Start	11:27					
25 Juli 14	23		Start	11.27					
			N	15:46	0.000	20.9	560	0	
			S E	15:47 15:48	0.000	20.9	560 560	0	
			W	15:49	0.000	20.9	580	0	
			Well Head	15:50	0.000	20.9	580	0	
			N						
			S						
			E W						
			Well Head						
			Flatab.	46.22					
			Finish	16:32					
23-Jan-14	42		Start	7:43					
			N.	45.40	0.000	20.0	F.CO.		
			N S	15:40 15:41	0.000	20.9	560 610	0	
			E	15:42	0.000	20.9	580	0	
			W Well Head	15:43 15:44	0.000	20.9	560 580	0	
			vveli nedu	13.44	0.000	20.3	360	U	
			N						
			S E				-		
			W						
		·	Well Head	-		·			
			Finish	16:14			 		
23-Jan-14	21		Start	12:10					
			N	15:52	0.000	20.9	580	0	
			S	15:53	0.000	20.9	580	0	
			E W	15:54 15:55	0.000	20.9	640 610	0	
			Well Head	15:55	0.000	20.9	610	0	
			N S				<u> </u>		
			E				<u> </u>		
			W						
			Well Head						
				16:39					

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
23-Jan-14	9		Start	11:27					
				45.50	0.000	20.0	F00	0	
			N	15:58	0.000	20.9	580	0	
			S E	15:59 16:00	0.000	20.9 20.9	580 580	0	
			W	16:01	0.000	20.9	580	0	
			Well Head	16:02	0.000	20.9	640	0	
			Wellineau	10.02	0.000	20.5	0.0		
			N						
			S						
			E						
			W						
			Well Head						
			Finish	16:32					
22 Ion 14			Chout						
23-Jan-14			Start						
			N						
			S						
			E		t		†		
			W						
			Well Head						
			N						-
			S						
			E						
			W						
			Well Head		 		-		
			Finish		1		1		
			FIIIISII						
23-Jan-14			Start						
25 3011 14			Start						
			N						
			S						
			E						
			W						
			Well Head						
			N						
			S E						
			W						
			Well Head						
			Finish						
23-Jan-14			Start						
			N						
			S						
			E		-		-		
			W Well Head		-		-		
			vven nedú		 		 		
			N		 	 	 		
			S						
			E						
			W						
			Well Head						
									-
			Finish						
			-						
23-Jan-14			Start						
			NI NI		1		1		
			N S		1		1		
			E		<u> </u>				
			W		 	 	 		
			Well Head						
			N						
			S						
			E						
			W		_				
			Well Head						
			Fig.1-1.		1		1		
			Finish				-		
			l		1	l	1		Page 2 of 2

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
		Direction	LOCATION						
3-Feb-14	32		Start	8:10					
			N	14:25	0.000	20.9	1130	0	
			S	14:26	0.000	20.9	1320	0	
			E W	14:27 14:28	0.000	20.9	1130 1130	0	
			Well Head	14:29	0.000	20.9	1230	0	
			NI.						
			N S						
			E						
			W Well Head						
			**Cii i i caa						
			Finish	9:22 (2/4/14)					
3-Feb-14	44		Start	8:14					
310014			Start	0.14					
			N	14:31	0.000	20.9	1090	0	
			S E	14:32 14:33	0.000	20.9	1090 1180	0	
			W	14:34	0.000	20.9	1090	0	
			Well Head	14:35	0.000	20.9	1180	0	
			N						1
			S						
			E W				-		
			Well Head						
			e:	10.11.10.11.11					
			Finish	10:14 (2/4/14	+)		 		
3-Feb-14	23		Start	8:44					
			NI.	14:53	0.000	20.9	1040	0	
			N S	14:53	0.000	20.9	1040	0	
			E	14:55	0.000	20.9	970	0	
			W Well Head	14:56 14:57	0.000	20.9	1090 970	0	
			vveii i ieau	14.37	0.000	20.9	370	0	
			N						
			S E						
			W						
			Well Head						
			Finish	9:33 (2/4/14)					
2 5-1-44	24		Chart	0.26					
3-Feb-14	31		Start	8:36					
			N	14:48	0.000	20.9	1090	0	
			S E	14:49 14:50	0.000	20.9	1000 1000	0	
			W	14:50	0.000	20.9	1000	0	
			Well Head	14:52	0.000	20.9	970	0	
			N				-		
			S						
			E W						-
			Well Head				-		
			Finish	9:33 (2/4/14)					
3-Feb-14	42		Start	8:21					
				44.27	0.000	20.0	4400	-	
			N S	14:37 14:38	0.000	20.9	1180 1090	0	
			E	14:39	0.000	20.9	1040	0	
			W Well Head	14:40 14:41	0.000	20.9	1040 1090	0	
			well nead	14:41	0.000	20.9	1090	U	1
			N						
			S E				-		
			W						
			Well Head						
			Finish	9:53 (2/4/14)			-		
PARSONS									Page 1 of 2

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
3-Feb-14	51		Start	8:25					
			N	14:42	0.000	20.9	1040	0	
			S	14:43	0.000	20.9	1040	0	
			E	14:44	0.000	20.9	1000	0	
			W Well Head	14:45 14:46	0.000	20.9 20.9	1000 1040	0	
			**Cii i i caa	14.40	0.000	20.5	1040		
			N						
			S E						
			W						
			Well Head						
			Finish	9:53 (2/4/14)					
			-	, , ,					
3-Feb-14			Start						
			N						
			S						
			E						
			W Well Head						
			N						
			S E						
			W						
		· <u></u>	Well Head			-			
			Finish						
3-Feb-14			Start						
			N						
			S						
			E						
			W Well Head						
			Wellinead						
			N						
			S E						
			W						
			Well Head						
			Finish						
3-Feb-14			Start						
			N						
			S						
			E						
			W Well Head						
			N						
			S E						
			W						
			Well Head						
			Finish						
3-Feb-14			Start						
			N						
			S						
			E						
			W Well Head						
			wen nead						
			N						
			S						
			E W						
			Well Head						
			Einich						
			Finish						

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
		Direction							
5-Feb-14	32		Start	8:19					
			N	14:38	0.000	20.9	660	0	
			S	14:39	0.000	20.9	610	0	
			E W	14:40 14:41	0.000	20.9	580 610	0	
			Well Head	14:42	0.000	20.9	610	0	
			N S						
			E						
			W						
			Well Head						
			Finish	7:44 (2/6/14)					
F Fab 14	44		Chout	0.22					
5-Feb-14	44		Start	8:23					
			N	14:43	0.000	20.9	610	0	
			S	14:44	0.000	20.9	610	0	
			E W	14:45 14:46	0.000	20.9	610 610	0	
			Well Head	14:47	0.000	20.9	640	0	
			N						
			S						
			E			_			
			W Well Head						
			**eii iieau						
			Finish	7:41 (2/6/14))				
5-Feb-14	51		Start	8:28					
316814	31		Start	0.20					
			N	14:49	0.000	20.9	580	0	
			S E	14:50 14:51	0.000	20.9	580 610	0	
			W	14:52	0.000	20.9	580	0	
			Well Head	14:53	0.000	20.9	610	0	
			N						
			S						
			E W						
			Well Head						
			Finish	0.40 (2/6/44)					
			Finish	8:19 (2/6/14)	1				
5-Feb-14	42		Start	8:32					
				44.54	0.000	20.0	F00		
			N S	14:54 14:55	0.000	20.9	580 610	0	
			E	14:56	0.000	20.9	580	0	
			W Well Head	14:57 14:58	0.000	20.9	640 610	0	
			vven nead	14.38	0.000	20.3	010	U	
			N			_			
			S E						
			W						
		-	Well Head						
			Finish	8:20 (2/6/14)					
5-Feb-14	31		Start	8:04					
			N	15:02	0.000	20.9	1130	0	
			S	15:03	0.000	20.9	1320	0	
			E W	15:04 15:05	0.000	20.9	1130 1130	0	
			Well Head	15:05	0.000	20.9	1230	0	
			N S						
			E						
			W						
			Well Head						
			1				.		
			Finish	7:59 (2/6/14)	<u> </u>				

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
5-Feb-14	23		Start	8:12					
			N	15:07	0.000	20.9	640	0	
			S E	15:08 15:09	0.000	20.9 20.9	640 710	0	
			W	15:10	0.000	20.9	660	0	
			Well Head	15:11	0.000	20.9	710	0	
			N						
			S						
			E						
			W						
			Well Head						
			Finish	8:00 (2/6/14)					
				, , , ,					
5-Feb-14	20		Start	7:54					
			N	15:18	0.000	20.9	690	0	
			S	15:19	0.000	20.9	690	0	
			E W	15:20 15:21	0.000	20.9 20.9	690 690	0	
			Well Head	15:21	0.000	20.9	690	0	
			c ricud	10.22	5.500	20.0	550	,	
			N						
			S						
			E						
			W						
			Well Head				 		
			Finish	15:58					
			. 1111311	15.50					
5-Feb-14	11		Start	7:32					
			N	15:13	0.000	20.9	640	0	
			S	15:14	0.000	20.9	660	0	
			E W	15:15	0.000	20.9	660	0	
			Well Head	15:16 15:17	0.000	20.9 20.9	660 710	0	
			well neau	13.17	0.000	20.9	710	0	
			N						
			S						
			E						
			W						
			Well Head						
			Finish	16:04					
			1 1111311	10.01					
5-Feb-14			Start						
			N						
			S						
			E W				 		
			Well Head						
			N						
			S						
			E						
			W Well Head				-		
			vveii Head						
			Finish						
5-Feb-14			Start						
-									-
			N						
			S				 		
			E W						
			Well Head						
			N						
-			S						
			E						
			Wall Haad						
			Well Head				<u> </u>		
			Finish						
PARSONS									Page 2 of 2

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
6-Feb-14	33		Start	7:46					
			NI.	12.25	0.000	20.0	640	0	
			N S	13:25 13:26	0.000	20.9	640 640	0	
			E	13:27	0.000	20.9	610	0	
			W	13:28	0.000	20.9	580	0	
			Well Head	13:29	0.000	20.9	580	0	
			N						
			S						
			E						
			W Well Head						
			Wellinead						
			Finish	17:13					
6-Feb-14	52		Start	8:20					
			N	13:31	0.000	20.9	580	0	
			S	13:32	0.000	20.9	530	0	
			E W	13:33 13:34	0.000	20.9	530 560	0	
			Well Head	13:35	0.000	20.9	560	0	
			N						
			S						·
			E VA/						
			W Well Head						
			vven nead						
			Finish	7:53 (2/7/14)					
				, , , ,					
6-Feb-14	58		Start	8:24					
			N	13:36	0.000	20.9	580	0	
			S E	13:37 13:38	0.000	20.9	560 580	0	
			W	13:39	0.000	20.9	560	0	
			Well Head	13:40	0.000	20.9	560	0	
			N						
			S						
			E						
			W Well Head						
			**CIITICUU						
			Finish	17:24					
6-Feb-14	14		Start	8:10					
				42.42	0.000	20.0	F00	0	
			N S	13:42 13:43	0.000	20.9	580 530	0	
			E	13:44	0.000	20.9	530	0	
			w	13:45	0.000	20.9	530	0	
			Well Head	13:46	0.000	20.9	530	0	
			N						
			S E				-		
			W				<u> </u>		
			Well Head						
			Finish	17:21					•
6-Feb-14	22		Start	10:47					
			N	13:50	0.000	20.9	610	0	
			S	13:50	0.000	20.9	640	0	
			E	13:52	0.000	20.9	580	0	
			W	13:53	0.000	20.9	560	0	
			Well Head	13:54	0.000	20.9	560	0	·
									·-
			N c						
			S E						
			W						
			Well Head						
_	_		Finish	8:04 (2/7/14)					
			11111311	0.04 (2/1/14)					

Date	Sparge Well	Wind	Test	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
		Direction	Location						
6-Feb-14	59		Start	16:17 (2/5/1	4)				
			N	14:00	0.000	20.9	560	0	
			S	14:01	0.000	20.9	530	0	
			E	14:02	0.000	20.9	530	0	
			W	14:03	0.000	20.9	560	0	
			Well Head	14:04	0.000	20.9	560	0	
			N						
			S						
			E						
			W						
			Well Head						
			Finish	17:43 (2/7/1	4)				
6-Feb-14			Start						
			N						
			S						
			E						
			W						
			Well Head						
			N						
			S						
			E						
-			Well Head]]		1		
			Well Head						
			Finish						
6-Feb-14			Start						
			N						
			S						
			E						
			W Well Head						
			vveii i ieau						
			N						
			S						
			E W						
			Well Head						
			Finish						
6-Feb-14			Start						
			N						
			S E						
			W						
			Well Head						
			N1						
			N S						
			E						
			W						
-			Well Head]]		1		
			Finish						
6-Feb-14			Start						
			N						
			S						
			E						
			Wall Haad						
			Well Head						
			N						
			S						
			E VA/						
			W Well Head						
			Finish						
DARSONS									Page 2 of 2

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
		Direction							
10-Feb-14	44		Start	8:35					
			N	15:05	0.000	20.9	610	0	
			S	15:06 15:07	0.000	20.9	640	0	
			E W	15:07	0.000	20.9	580 560	0	
			Well Head	15:09	0.000	20.9	560	0	
			N						
			S						
			E						
			W Well Head						
			Finish	17:27					
10-Feb-14	54		Start	13:10					
				45.40	0.000	20.0	540		
			N S	15:10 15:11	0.000	20.9	610 640	0	
			E	15:12	0.000	20.9	580	0	
			Well Head	15:13	0.000	20.9	560 560	0	
			Well Head	15:14	0.000	20.9	560	0	
			N						
			S E						
			W						
			Well Head						
			Finish	17:27					
10-Feb-14	52		Start	8:46					
			N	15:21	0.000	20.9	610	0	
			S	15:22	0.000	20.9	640	0	
			E W	15:23 15:24	0.000	20.9	580 560	0	
			Well Head	15:25	0.000	20.9	560	0	
			N						
			S						
			E W						
			Well Head						
			Finish	17:36					
10-Feb-14	59		Start	8:47					
			NI.	15.16	0.000	20.9	C10	0	
			N S	15:16 15:17	0.000	20.9	610 640	0	
			Е	15:18	0.000	20.9	580	0	
			W Well Head	15:19 15:20	0.000	20.9	560 560	0	
								-	
			N S						
			E	<u> </u>					
		·	Wall Haad			·			
			Well Head						
			Finish	9:00 (2/12/1	4)				
10-Feb-14	6		Start	8:57					
10.0014			Start						
			N S	15:50 15:51	0.000	20.9 20.9	610 640	0	
			E E	15:51	0.000	20.9	580	0	
			W	15:53	0.000	20.9	560	0	
			Well Head	15:54	0.000	20.9	560	0	
			N						
			S						
			E W						
			Well Head						
			Finish	17:42					
			1 1111311	17.44					
PARSONS						_		_	Page 1 of 2

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
10-Feb-14	19		Start	9:16					
			N S	15:39 15:40	0.000	20.9	610 640	0	
			E	15:41	0.000	20.9	580	0	
			W	15:42	0.000	20.9	560	0	
			Well Head	15:43	0.000	20.9	560	0	
			N						
			S						
			E W						
			Well Head						
				47.40					
			Finish	17:48					
10-Feb-14	28		Start	9:27					
			N.	45.24	0.000	20.0	610	0	
			N S	15:34 15:35	0.000	20.9 20.9	610 640	0	
			E	15:36	0.000	20.9	580	0	
			W	15:37	0.000	20.9	560	0	
			Well Head	15:38	0.000	20.9	560	0	
			N						
			S						
			E W						
			Well Head						
			Plutab	47.54					
			Finish	17:51			 		
10-Feb-14	20		Start	9:30					
				45.07	0.000	20.0	540		
			N S	15:27 15:28	0.000	20.9 20.9	610 640	0	
			E	15:29	0.000	20.9	580	0	
			W	15:30	0.000	20.9	560	0	
			Well Head	15:30	0.000	20.9	560	0	
			N						
			S						
			E W						
			Well Head						
			Finish	17.52					
			Finish	17:53					
10-Feb-14	11		Start	9:15					
			N.	45:44	0.000	20.0	610	0	
			N S	15:44 15:45	0.000	20.9	610 640	0	
			E	15:46	0.000	20.9	580	0	
			Wall Haad	15:47	0.000	20.9	560	0	
			Well Head	15:48	0.000	20.9	560	0	
			N						
			S E						
			W				<u> </u>		
			Well Head						
			Finish	17:47					
			FIIIISII	17:47			<u> </u>		
10-Feb-14			Start						
			N1						
			N S				 		
			E						
			Wall Haad						
			Well Head				 		
			N						
			S				ļ		
			E W				 		
			Well Head						
			Einia!-				ļ		
			Finish				-		
PARSONS									Page 2 of 2

Date	Sparge Well	Wind	Test	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
	.,. 0.	Direction	Location		0 (11)	- (,	7	- 11-17	
11-Feb-14	32		Start	7:40					
			N	14:15	0.000	20.9	970	0	
			S	14:16	0.000	20.9	920	0	
			E	14:17	0.000	20.9	920	0	
			W Well Head	14:18 14:19	0.000	20.9	920 920	0	
			N S						
			E						
			W Well Head				-		
			vveii i ieau						
			Finish	17:36					
11-Feb-14	58		Start	7:52					
			N S	14:25 14:26	0.000	20.9	890 870	0	
			E	14:27	0.000	20.9	840	0	
			W	14:28	0.000	20.9	870	0	
			Well Head	14:29	0.000	20.9	870	0	
			N						
			S E				 		
			W						
			Well Head						
			Finish	17:28					
11 Feb 14	21		Chart	7.54					
11-Feb-14	31		Start	7:54					
			N	14:20	0.000	20.9	920	0	
			S E	14:21 14:22	0.000	20.9	940 920	0	
			W	14:23	0.000	20.9	890	0	
			Well Head	14:24	0.000	20.9	890	0	
			N						
			S E						
			W						
			Well Head						
			Finish	17:26					
11-Feb-14	6		Start	8:08					
			N	14:41	0.000	20.9	740	0	
			S E	14:42 14:43	0.000	20.9	740 710	0	
			W	14:44	0.000	20.9	710	0	
			Well Head	14:45	0.000	21.1	690	0	
			N						
			S						
			E W						
			Well Head						
			Finish	17:23			-		
11-Feb-14	52		Start	8:00					
			N	14:30	0.000	20.9	870	0	
		-	S	14:31	0.000	20.9	840	0	
			E W	14:32 14:33	0.000	20.9	820 820	0	
			Well Head	14:34	0.000	20.9	790	0	
			N						
			S						
			E W						
			Well Head						
				45.22 (2/4-1	1.4)				
			Finish	15:22 (2/13/	14)		 		
PARSONS									Page 1 of 2

Date	Sparge Well	Wind Direction	Test Location	Time	Hg (ppm)	O2 (%)	CO2 (ppm)	H2S (ppm)	Comments
11 Feb 14	F0			0.47 /2/10/1	4)				
11-Feb-14	59		Start	8:47 (2/10/1	4)				
			N	14:35	0.000	20.9	820	0	
			S E	14:36 14:37	0.000	20.9	790 790	0	
			W	14:38	0.000	20.9	760	0	
			Well Head	14:39	0.000	20.9	760	0	
			N						
			S						
			E						
			W Well Head						
			weiiTieau						
			Finish	9:00 (2/12/1	4)				
11-Feb-14	19		Start	8:32					
11-760-14	19		Start	0.32					
			N	14:52	0.000	21.1	580	0	
			S E	14:53 15:54	0.000	21.1	610 610	0	
			W	14:55	0.000	21.1	610	0	
			Well Head	14:56	0.000	21.1	660	0	
ļ			N						
}			S						
			E						
			W Well Head						
			even nead						
			Finish	17:10					
11-Feb-14	28		Start	8:31					
11-760-14	20		Start	0.51					
			N	14:47	0.000	21.1	740	0	
			S E	14:48 14:49	0.000	21.1 21.1	690 690	0	
			W	14:50	0.000	21.1	640	0	
			Well Head	14:51	0.000	21.1	660	0	
			N						
			S						
			E						
			W Well Head						
			Finish	7:14 (2/13/1	3)				
11-Feb-14	37		Start	12:32					
			N	14:57	0.000	21.1	580	0	
			S E	14:58 14:59	0.000	21.1	540 560	0	
			W	15:00	0.000	21.1	560	0	
			Well Head	15:01	0.000	21.1	560	0	
			N	<u> </u>					
			S						
-			E W						
			Well Head						
-			Finish	17:13					
11-Feb-14			Start						
			N S						
			E E						
			W						
			Well Head						
			N						
			S						
			E						
			W Well Head						
			Finish						
PARSONS				l			l		Page 2 of 2

Appendix G:

Laboratory Analytical Data

			Location	Equipment Blank		Equipment Blank	Equipment Blank	EW-1	EW-1	FW-2	EW-2
			Field Sample ID	EQB-082613		EQB-082813	EQB-0903B-090313	EW-01-090413	EW-1-022714	EW-02-090513	EW-022-090513
			Sample Date	8/26/2013		8/28/2013	9/3/2013	9/4/2013	2/27/2014	9/5/2013	9/5/2013
			SDG	680-93690-1		680-93690-1	680-93870-1	680-93870-1	680-99043-1	680-93954-1	680-93954-1
			Matrix	WATER		WATER	WATER	WATER	WATER	WATER	WATER
			Sample Purpose	Equipment blank		Equipment blank	Equipment blank	Regular sample	Regular sample	Regular sample	Field duplicate
			Sample Type	Blank water (field)		Blank water (field)	Blank water (field)	Ground water	Ground water	Ground water	Ground water
Method	Parameter Name	Units	Filtered	biarik water (neiu)		biank water (neid)	biank water (neiu)	Ground water	Ground water	Ground water	Ground water
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/L		-	U	5 U	5 U	350	2500	510	530
SM2320B	ALKALINITY, CARBONATE (AS CACOS)	mg/L	N		U	5 U	5 U	290	25 U	460	470
SM2320B	ALKALINITY, CARBONATE (AS CACOS)		N N		U	5 U	5 U	690	2500	1000	1100
	, -		N N	12	-	5 U	10	3500	5700		4300
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	87 =				25 U,HF				5200	
	FERROUS IRON	. 0,	N 		U,HF	- '	25 U,HF	2900 HI			1700 HF
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Y	0.5		0.5 U	0.5 U	72	32	260	250
SM5310B	TOTAL ORGANIC CARBON	mg/L	N	0.5		0.5 U	0.5 U	74	37	230	230
SW6010	ALUMINUM	mg/L	N	0.1		0.1 U	0.1 U	2.1	0.55	12	12
SW6010	ANTIMONY	ug/L	N	5.3		5.3 U	5.3 U	5.3 U		5.3 U	5.3 U
SW6010	ARSENIC	mg/L		0.0046		0.0046 U	0.0046 U	0.038	0.0069 J	0.024	0.022
SW6010	BARIUM	mg/L		0.0023	_	0.0023 U	0.0023 U	0.2	0.051	0.28	0.27
SW6010	BERYLLIUM	mg/L		0.0002		0.0002 U	0.0002 U	0.0038 J	0.0042	0.011	0.011
SW6010	CADMIUM			0.002		0.002 U	0.002 U	0.002 U	0.005 U	0.002 U	0.002 U
SW6010	CALCIUM	mg/L		0.096		0.096 U	0.096 U	14	18	21	21
SW6010	CHROMIUM	mg/L		0.0012		0.0012 U	0.0012 U	0.07	0.069	0.12	0.11
SW6010	COBALT	mg/L		0.00095	U	0.00095 U	0.00095 U	0.002 J	0.01 U	0.00095 U	0.00095 U
SW6010	COPPER	mg/L		0.0019	U	0.0019 U	0.0019 U	0.0087 J	0.02 U	0.0019 U	0.0019 U
SW6010	IRON			0.05	U	0.05 U	0.05 U	5.8	30	1.1	0.99
SW6010	LEAD	mg/L	N	0.004	U	0.004 U	0.004 U	0.041	0.0045 J	0.0042 J	0.004 U
SW6010	MAGNESIUM	mg/L	N	0.0099	U	0.0099 U	0.017 J	0.64	5.7	1	1.1
SW6010	MANGANESE	mg/L	N	0.002	U	0.002 U	0.002 U	0.046	0.6	0.032	0.033
SW6010	NICKEL	mg/L	N	0.0023	U	0.0023 U	0.0023 U	0.014 J	0.04 U	0.016 J	0.014 J
SW6010	POTASSIUM	mg/L	N	0.022	U	0.022 U	0.022 U	12	13	5.1	5.2
SW6010	RESPIRABLE QUARTZ	ug/L	Υ	50	U	50 U	130 J	300000	84000	64000	66000
SW6010	SELENIUM	mg/L	N	0.0064	U	0.0064 U	0.0064 U	0.0064 U	0.02 U	0.0064 U	0.0064 U
SW6010	SILVER	mg/L	N	0.00089	U	0.00089 U	0.00089 U	0.00089 U	0.01 U	0.00089 U	0.00089 U
SW6010	SODIUM	mg/L	N	1.4		2.4	0.5 U	1100	2400	1600	1600
SW6010	THALLIUM	mg/L	N	0.0088	U	0.0088 U	0.0088 U	0.0088 U	0.025 U	0.0088 U	0.0088 U
SW6010	VANADIUM	ug/L	N	2.4	U	2.4 U	2.4 U	110	21	370	380
SW6010	ZINC	ug/L	N	8.7	U	8.7 U	8.7 U	43	9.6 J	15 J	14 J
SW7470	MERCURY	_	N	0.091	U	0.091 U	0.091 U	50	0.53	60	71
SW7470	MERCURY	ug/L	Υ								
SW9034	SULFIDE	_	N	10	U	10 U	10 U	10 U	10 U	10 U	10 U
SW9038	SULFATE		N	10			5 U	25 U		100 U	100 U
SW9056	SULFATE	mg/L		0.25	U	0.25 U		25 0	13	230 0	
SW9040	pH	S.U.	N	6.57		7.48 H	7.47 H	10.3	6.83 H	10.2 H	10.2 H
SW9056	CHLORIDE	mg/L		0.25		0.25 U		23.0	5.00 11		
SW9251	CHLORIDE	mg/L		0.25			0.31 J	1400	2000	1900	1900
		₆ / L					5.51	1.00	2000	1550	1550

		I	511.0	514.0	5111.0		5147.4	514.4	5147.5	514.5	514.6
		Location	EW-2	EW-3	EW-3	-	EW-4	EW-4	EW-5	EW-5	EW-6
		Field Sample ID	EW-2-022714	EW-03-090513	EW-3-022714		EW-4-112113	EW-4-030414	EW-5-112013	EW-5-030514	EW-06-090513
		Sample Date	2/27/2014	9/5/2013	2/27/2014		11/21/2013	3/4/2014	11/20/2013	3/5/2014	9/5/2013
		SDG	680-99043-1	680-93954-1	680-99043-1		680-96469-1	680-99155-1	680-96469-1	680-99155-1	680-93954-1
		Matrix	WATER	WATER	WATER	+ +	WATER	WATER	WATER	WATER	WATER
		Sample Purpose	Regular sample	Regular sample	Regular sample		Regular sample				
		Sample Type	Ground water	Ground water	Ground water		Ground water				
Method	Parameter Name	Units Filtered									
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/L N	2700	520	3100		110	3500	1500 I		940
SM2320B	ALKALINITY, CARBONATE (AS CACO3)	mg/L N	50		3100	-	1300	50 U	4000 I		7100
SM2320B	ALKALINITY, TOTAL	mg/L N	2700	1200	6300	_	1400	3500	5700 I		8400
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L N	6200	5800	11000		4900	7300	12000	25000	34000
SM3500-FeD	FERROUS IRON	ug/L N	4200	HF 1000 HI	2200	HF	1900 HF	13000 HF	3600 I	HF 13000 HI	2700 HF
SM5310B	DISSOLVED ORGANIC CARBON	mg/L Y	190	350	240		230	170	800	750	390
SM5310B	TOTAL ORGANIC CARBON	mg/L N	140	320	250		160	140	340	750	300
SW6010	ALUMINUM	mg/L N	7.4	4.2	0.62		2.2	1.3	1.6	0.56	0.54 J
SW6010	ANTIMONY	ug/L N	20	U 5.3 U	14	J	20 U	20 U	20	U 20 U	27 U
SW6010	ARSENIC	mg/L N	0.022	0.025	0.064		0.068	0.062	0.21	0.73	0.5
SW6010	BARIUM	mg/L N	0.23	0.22	0.093		0.33	0.14	0.23	0.087	0.057
SW6010	BERYLLIUM	mg/L N	0.0094	0.0081	0.0011	J	0.004	0.0053	0.01	0.0029 J	0.0018 J
SW6010	CADMIUM	mg/L N	0.005	U 0.002 U	0.005	U	0.005 U	0.005 U	0.005	U 0.002 J	0.01 U
SW6010	CALCIUM	mg/L N	25	8.6	13		27	31	12	15	5.1
SW6010	CHROMIUM	mg/L N	0.15	0.13	0.22		0.22	0.21	0.72	1.1	0.38
SW6010	COBALT	mg/L N	0.001	J 0.00095 U	0.003	J	0.0081 J	0.0017 J	0.004	0.006 J	0.0048 U
SW6010	COPPER	mg/L N	0.0072	J 0.0019 U	0.19		0.028	0.01 J	0.048	0.064	0.053 J
SW6010	IRON	mg/L N	3.5	1	2.3		3.7	14	4.3	6.1	5.9
SW6010	LEAD	mg/L N	0.0099	J 0.0049 J	0.067		0.043	0.01	0.0064	0.01 U	0.032 J
SW6010	MAGNESIUM	mg/L N	11	0.12 J	0.17	J	0.21 J	4.6	0.13	0.15 J	0.1 J
SW6010	MANGANESE	mg/L N	0.16	0.015	0.0083	j	0.024	0.21	0.025	0.0066 J	0.013 J
SW6010	NICKEL	mg/L N	0.019	J 0.017 J	0.062		0.046	0.031 J	0.13	0.23	0.15 J
SW6010	POTASSIUM	mg/L N	6.5	1.4	44		13	12	22	25	18
SW6010	RESPIRABLE QUARTZ	ug/L Y	67000	29000	330000		760000	920000	2100000	2400000	6300000
SW6010	SELENIUM	mg/L N	0.013		0.026		0.02 U	0.021 B	0.028	0.063 B	0.1
SW6010	SILVER	mg/L N	0.01		0.01	_	0.01 U	0.01 U	0.01		0.0045 U
SW6010	SODIUM	mg/L N	1800	1900	3900	-	1600	2500	6900	13000	11000
SW6010	THALLIUM	mg/L N	0.025		0.025	_	0.025 U	0.025 U	0.025		0.044 U
SW6010	VANADIUM	ug/L N	240	460	540	_	460	360	1700	3500	1400
SW6010	ZINC	ug/L N	20		66		110	27	32	52	44 U
SW7470	MERCURY	ug/L N	6.7	7.2	71	_	160	20	300	180	430
SW7470	MERCURY	ug/L Y	0.7	7.2	/1		100	20	300	100	-30
SW9034	SULFIDE	mg/L N	10	U 10 U	10	lu l	12	10 U	42	36	10 U
SW9034 SW9038	SULFATE	mg/L N	12	100 U	25	-	25 U	160	25 (25 U
SW9056	SULFATE	mg/L N	12	100 0	23		25 0	100	23 (130	23 0
SW9036 SW9040	pH	S.U. N	7	H 10.5 H	9.82		11.2 H	7.47 H	10.8	H 10.5 H	11.5 H
SW9040 SW9056	CHLORIDE	mg/L N	'	10.5 n	9.82	п	11.2 П	7.47 П	10.8	10.3 П	11.5 П
SW9056	CHLORIDE	mg/L N	2100	2400	5900		1600	1500	7200	13000	12000
2003721	CULOKIDE	IIIIg/L IN	2100	2400	5900		1600	1500	/200	13000	12000

		I						T		
		Location	EW-6	EW-8	EW-8	EW-9	EW-9	EW-10	EW-10	EW-11
		Field Sample ID	EW-6-022814	EW-8-112113	EW-8-030314	EW-9-112113	EW-9-030414	EW-10-112113	EW-10-030314	EW-11-112113
		Sample Date	2/28/2014	11/21/2013	3/3/2014	11/21/2013	3/4/2014	11/21/2013	3/3/2014	11/21/2013
		SDG	680-99043-1	680-96469-1	680-99155-1	680-96469-1	680-99155-1	680-96469-1	680-99155-1	680-96469-1
		Matrix	WATER							
		Sample Purpose	Regular sample							
		Sample Type	Ground water							
	Parameter Name	Units Filtered								
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/L N	13000	420	2500	300	2900	550 H	2600	4800 H
SM2320B	ALKALINITY, CARBONATE (AS CACO3)	mg/L N	150	1800	330	2400	25 U	2000 H	50 U	390 H
SM2320B	ALKALINITY, TOTAL	mg/L N	14000	2200	2800	2700	2900	2800 H	2700	5200 H
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L N	42000	6400	6600	8000	6300	9700	7800	17000
SM3500-FeD	FERROUS IRON	ug/L N	1700 HF	1500 H	1200 H	F 2600 HF	5700 HF	1400 HF	2800 HF	2600 HF
SM5310B	DISSOLVED ORGANIC CARBON	mg/L Y	260	270	250	400	200	310	210	260
SM5310B	TOTAL ORGANIC CARBON	mg/L N	270	230	230	310	190	250	200	150
SW6010	ALUMINUM	mg/L N	0.2 U	0.37	0.92	0.36	0.19 J	0.26	1.1	0.13 J
SW6010	ANTIMONY	ug/L N	20 U							
SW6010	ARSENIC	mg/L N	0.057	0.032	0.032	0.059	0.018 J	0.042	0.036	0.051
SW6010	BARIUM	mg/L N	0.096	0.11	0.14	0.15	0.13	0.13	0.074	0.13
SW6010	BERYLLIUM	mg/L N	0.0016 J	0.0016 J	0.0044	0.017	0.011	0.01	0.015	0.0029 J
SW6010	CADMIUM	mg/L N	0.0022 J	0.005 U						
SW6010	CALCIUM	mg/L N	31	18	24	19	96	12	35	19
SW6010	CHROMIUM	mg/L N	0.26	0.13	0.16	0.27	0.17	0.18	0.17	0.48
SW6010	COBALT	mg/L N	0.0013 J	0.0016 J	0.01 U	0.002 J	0.01 U	0.01 U	0.01 U	0.0026 J
SW6010	COPPER	mg/L N	0.014 J	0.0098 J	0.0068 J	0.014 J	0.0037 J	0.013 J	0.019 J	0.02
SW6010	IRON	mg/L N	1.3	0.87	1.2	1.7	5.8	1.2	2.8	3.1
SW6010	LEAD	mg/L N	0.01 U	0.0093 J	0.01 U	0.011	0.01 U	0.011	0.014	0.01 U
SW6010	MAGNESIUM	mg/L N	20	0.036 J	2.5	0.041 J	19	0.026 J	4.3	13
SW6010	MANGANESE	mg/L N	0.048	0.0055 J	0.029	0.046	1.3	0.018	0.26	0.26
SW6010	NICKEL	mg/L N	0.043	0.031 J	0.018 J	0.046	0.016 J	0.038 J	0.023 J	0.051
SW6010	POTASSIUM	mg/L N	48	8.4	11	4.6	14	19	14	20
SW6010	RESPIRABLE QUARTZ	ug/L Y	53000	860000	160000	420000	100000	880000	120000	140000
SW6010	SELENIUM	mg/L N	0.029	0.015 J	0.021 B		0.015 J,B		0.017 J,B	0.023
	SILVER	mg/L N	0.01 U	0.01 U	0.01 U		0.01 U	0.01 U	0.01 U	0.01 U
SW6010	SODIUM	mg/L N	13000	2800	3000	4100	2400	5600	3100	9900
SW6010	THALLIUM	mg/L N	0.025 U	0.025 U	0.025 U		0.025 U	0.025 U	0.025 U	0.025 U
SW6010	VANADIUM	ug/L N	590	260	200	590	210	560	330	960
SW6010	ZINC	ug/L N	15 J	16 J	15 J	15 J	20 U	12 J	24	11 J
SW7470	MERCURY	ug/L N	180	48	2.7	120	4.6	68	35	48
SW7470	MERCURY	ug/L Y	100	46	2.7	120	4.0	08	33	40
	SULFIDE	mg/L N	20 U	12	10 U	31	10 U	28	10 U	10 U
	SULFATE	mg/L N	500 U	56	250 U		27	25 U	120	500 U
			300 0	56	250 0	29	27	25 0	120	500 0
SW9056	SULFATE	mg/L N	7.63.11	10.6.11	0.00	10.0	6.05 !!	11 11	7.57 H	9.63.11
SW9040	pH	S.U. N	7.63 H	10.6 H	9.09 H	10.9 H	6.96 H	11.1 H	7.57 H	8.62 H
SW9056	CHLORIDE	mg/L N	42005	2022	2555	1000	2222	7000	2225	42055
SW9251	CHLORIDE	mg/L N	13000	2800	2200	4800	2300	7000	3300	12000

Field Sample Do			Г	1 41	FW 44	- 1	F)4/ 44	FW 44		2424/44	1014/44		MANA/ 4D		1414/40	141446
Sample Date 12/12/2018 12			-	Location	EW-11		EW-11	EW-11	$\vdash\vdash$	MW-1A	MW-1A		MW-1B		MW-1B	MW-1C
SOC 980-97/103-1 880-99/103-1				· ·										_		MW-1C-083013
Martin M											- ' '			-		8/30/2013
Sample Purpose Regular sample Regu									\square					_		680-93799-1
Sample Type Ground water Groun			-	-					\sqcup					_		WATER
Method Parameter Name														_		Regular sample
502220B ALALINITY, GRADONATE (AS CACO3) mg/L N					Ground water		Ground water	Ground water		Ground water	Ground water		Ground water	•	Ground water	Ground water
SAMZ210B ALEALINITY, CRABONATE (AS CACO3) mg/L N 4500 4500 4500 1500 1500 1300 1200 1500 1500 1300 1200 1500 1300 1200 1500 1300 1200 1500 1300 1200 1500 1300 1200 1500 1300 1200 1500 1300 1200 1500 1300 1200 1500 1300 1200			_													
5M22028 ALALAINITY, TOTAL Mg/L N 26000 24000 3500 3500 3130 31200 34200 34005 3400 340		, , ,	0,											_		6300
SMZ-SAC TOTAL DISSOLVED SQUIDS (RESDULF, FLTERABLE) mg/L N 26000 24000 8900 8900 8900 6200 4		, , , , , , , , , , , , , , , , , , , ,							U			U		_		600
SM\$500-PD FERROUS IRON		, -												_		6900
SMS510B DISSOLVED DIRGANIC CABBON mg/L N 160 150 130 170 200		, , , ,														43000
SMS010 TOTAL ORGANIC CARBON mg/L N	SM3500-FeD	FERROUS IRON	ug/L	N				7000	HF	48 J,HF	77	J,HF	4800	HF	3600 HF	1800 HI
SW6010 ALUMINUM		DISSOLVED ORGANIC CARBON												_		300
SWE010 ANTIMONY	SM5310B	TOTAL ORGANIC CARBON					170	130		160	150		180)	150	1100
SW0010 ARSENIC mg/L N	SW6010	ALUMINUM					0.2 U	0.2	U	2.1	3		3.5	;	5.1	0.5 U
SW6010 BARIUM mg/L N	SW6010	ANTIMONY	ug/L	N			5.3 J	20	U	5.3 U	5.3	J	5.3	U	20 U	27 U
SW6010 BERYLLIUM mg/L N 0.0018 0.0018 0.0018 0.0011 0.0011 0.0011 0.016 0.016 0.005 0.005 0.0005	SW6010	ARSENIC	mg/L	N			0.02 U	0.0054	J	0.0046 U	0.0067	J	0.011	J	0.0056 J	0.023 U
SW6010 CADMIUM	SW6010	BARIUM	mg/L	N			0.15	0.16		0.025	0.041		0.027	,	0.031	0.067
SW6010 CALCIUM	SW6010	BERYLLIUM	mg/L	N			0.0018 J	0.0018	J	0.001 J	0.0011	J	0.014	l .	0.016	0.0047 J
SW6010 CHROMIUM	SW6010	CADMIUM	mg/L	N			0.005 U	0.005	U	0.002 U	0.005	U	0.002	U	0.005 U	0.01 U
SW6010 COBALT Mg/L N 0.01 U 0.01 U 0.00095 U 0.01 U 0.001 U 0.00095 U 0.01 U 0.00095 U 0.01 U 0.001 U 0.00095 U 0.01 U 0.001 U 0.00095 U 0.01 U 0.00095 U	SW6010	CALCIUM	mg/L	N			30	31		25	31		9.8	3	9	6
SW6010 COPPER	SW6010	CHROMIUM	mg/L	N			0.16	0.2		0.018	0.026		0.098	3	0.086	0.53
SW6010 IRON IRON	SW6010	COBALT	mg/L	N			0.01 U	0.01	U	0.00095 U	0.01	U	0.00095	U	0.01 U	0.0048 U
SW6010 LEAD Mg/L N	SW6010	COPPER	mg/L	N			0.0021 J	0.0025	J	0.0019 U	0.02	C	0.0047	J J	0.0019 J	0.016 J
SW6010 MAGNESIUM Magnesi	SW6010	IRON	mg/L	N			7.3	7.6		0.083 J	0.055	J	4.8	3	4.6	1.3
SW6010 MANGANESE mg/L N	SW6010	LEAD	mg/L	N			0.01 U	0.01	U	0.004 U	0.01	С	0.011		0.019	0.02 U
SW6010 NICKEL mg/L N	SW6010	MAGNESIUM	mg/L	N			21	21		19	27		7.7	'	6.7	2 J
SW6010 POTASSIUM mg/L N 22 22 37 46 2.6 2.1 SW6010 RESPIRABLE QUARTZ ug/L Y 72000 72000 22000 17000 66000 57000 SW6010 SELENIUM mg/L N 0.019 J 0.03 0.018 J 0.029 0.012 J 0.011 J SW6010 SILVER mg/L N 0.01 U 0.01 U 0.0088 U 0.01 U 0.0013 J 0.01 U SW6010 SODIUM mg/L N 0.025 U 0.025 U 0.0088 U 0.025 U 0.0081 U 0.025 U 0.0088 U	SW6010	MANGANESE	mg/L	N			0.28	0.28		0.089	0.14		0.14	ı	0.11	0.014 J
SW6010 RESPIRABLE QUARTZ	SW6010	NICKEL	mg/L	N	ĺ		0.0071 J	0.0073	J	0.0032 J	0.0051	J	0.0052	. J	0.0057 J	0.045 J
SW6010 SILVER Mg/L N 0.019 J 0.03 0.018 J 0.029 0.012 J 0.011 J SW6010 SILVER Mg/L N 0.01 U 0.01 U 0.00089 U 0.01 U 0.0013 J 0.01 U SW6010 SODIUM Mg/L N S4400 S600 3400 3700 1500 1300 SW6010 THALLIUM Mg/L N 0.025 U 0.025 U 0.0088 U 0.025 U 0.025 U 0.0088 U 0.025 U	SW6010	POTASSIUM	mg/L	N			22	22		37	46		2.6	5	2.1	26
SW6010 SILVER mg/L N	SW6010	RESPIRABLE QUARTZ	ug/L	Υ			72000	72000		22000	17000		66000)	57000	75000
SW6010 SODIUM mg/L N 8400 8600 3400 3700 1500 1300 SW6010 THALLIUM mg/L N 0.025 U 0.025 U 0.0088 U 0.025 U 0.008 U 0.008 U 0.008 U 0.008 U	SW6010	SELENIUM	mg/L	N	ĺ		0.019 J	0.03		0.018 J	0.029		0.012	. J	0.011 J	0.073 J
SW6010 THALLIUM mg/L N 0.025 U 0.025 U 0.0088 U 0.025 U 0.0025 U 0.0088 U 0.025 U 0.0025 U 0	SW6010	SILVER	mg/L	N			0.01 U	0.01	U	0.00089 U	0.01	U	0.0013	J	0.01 U	0.0045 U
SW6010 VANADIUM ug/L N 140 160 79 96 110 120 SW6010 ZINC ug/L N 20 U 20 U 8.7 U 20 U 8.7 U 9.9 J SW7470 MERCURY ug/L N 23 3 3.9 0.41 0.46 3.2 4.3 SW7470 MERCURY ug/L Y 3.2 4.3 <	SW6010	SODIUM	mg/L	N			8400	8600		3400	3700		1500)	1300	15000
SW6010 ZINC ug/L N 20 U 20 U 8.7 U 9.9 J 9.9 J 9.9 J 9.0 4.3 3.2 4.3 3.2 4.3 3.2 4.3 5.0	SW6010	THALLIUM	mg/L	N			0.025 U	0.025	U	0.0088 U	0.025	U	0.0088	U	0.025 U	0.044 U
SW7470 MERCURY ug/L N 23 3 3.9 0.41 0.46 3.2 4.3 SW7470 MERCURY ug/L Y 3.2 4.3 <t< td=""><td>SW6010</td><td>VANADIUM</td><td>ug/L</td><td>N</td><td></td><td></td><td>140</td><td>160</td><td></td><td>79</td><td>96</td><td></td><td>110</td><td>)</td><td>120</td><td>1000</td></t<>	SW6010	VANADIUM	ug/L	N			140	160		79	96		110)	120	1000
SW7470 MERCURY Ug/L Y I	SW6010	ZINC	ug/L	N			20 U	20	U	8.7 U	20	U	8.7	' U	9.9 J	44 U
SW9034 SULFIDE mg/L N 10 U 10 U 10 U 10 U 10 U 31 U 40 U SW9038 SULFATE mg/L N 5 U 5 U 10 U 5 U 5 U 31 U 29 U SW9056 SULFATE mg/L N 0 <td>SW7470</td> <td>MERCURY</td> <td>ug/L</td> <td>N</td> <td>23</td> <td></td> <td>3</td> <td>3.9</td> <td></td> <td>0.41</td> <td>0.46</td> <td></td> <td>3.2</td> <td>!</td> <td>4.3</td> <td>43</td>	SW7470	MERCURY	ug/L	N	23		3	3.9		0.41	0.46		3.2	!	4.3	43
SW9034 SULFIDE mg/L N 10 U 10 U 10 U 10 U 10 U 31 U 40 U SW9038 SULFATE mg/L N 5 U 5 U 10 U 5 U 5 U 31 U 29 U SW9056 SULFATE mg/L N 0 <td></td> <td></td> <td></td> <td>Υ</td> <td></td>				Υ												
SW9038 SULFATE mg/L N 5 U 5 U 10 U 5 U 31 29 SW9056 SULFATE mg/L N U 0	SW9034	SULFIDE		N	1		10 U	10	U	10 U	10	U	31		40 U	35
SW9056 SULFATE mg/L N					1				-							500 U
													-			
SW9040 pH S.U. N 6.8 H 6.83 H 6.83 6.96 H 6.63 6.59 H	SW9040	pH	S.U.	N			6.8 H	6.83	н	6.83	6.96	Н	6.63		6.59 H	8.62
SW9056 CHLORIDE Mg/L N							2.0	0.03	Ħ		3.30		0.03		2.23 11	5.52
SW9251 CHLORIDE mg/L N 10000 9700 4700 5100 1600 1500							10000	9700	H	4700	5100		1600		1500	17000

		Location	MW-1C	MW-1C	MW-2A	MW-2A	MW-2B	MW-2B	П	MW-2C	MW-2C
		Field Sample ID	MW 1C (Duplicate)-022414	MW-1C-022414	MW-2A-090613	MW-2A-030514	MW-2B-083013	MW-2B-030414	_	MW-2C-082713	MW-2C-022414
		Sample Date	2/24/2014	2/24/2014	9/6/2013	3/5/2014	8/30/2013	3/4/2014	_	8/27/2013	2/24/2014
		SDG	680-98941-1	680-98941-1	680-93954-1	680-99155-1	680-93799-1	680-99155-1	-	680-93690-1	680-98941-1
		Matrix	WATER	WATER	WATER	WATER	WATER	WATER	_	WATER	WATER
		Sample Purpose	Field duplicate	Regular sample	-	Regular sample	Regular sample				
			· · · · · · · · · · · · · · · · · · ·						-		
		Sample Type	Ground water	Ground water	Ground water	Ground water	Ground water	Ground water	\vdash	Ground water	Ground water
Method	Parameter Name	Units Filtered	7400	7200	4400	1700	4.400	1200	\vdash	2000	5500
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/L N	7400	7300	1400	1700	1400	1300		3800	5600
SM2320B	ALKALINITY, CARBONATE (AS CACO3)	mg/L N	50 U	50 U	50 U	25 U	25 U	25		510	50 U
SM2320B	ALKALINITY, TOTAL	mg/L N	7400	7300	1500	1700	1400	1300	-	4300	5700
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L N	28000	17000	5200	4700	5500	3500		26000	17000
SM3500-FeD	FERROUS IRON	ug/L N	6800 HF	6700 HF	630 HF		3200 HI			1300 HF	2300 HF
SM5310B	DISSOLVED ORGANIC CARBON	mg/L Y	270	280	210	210	200	230		250 B	340
SM5310B	TOTAL ORGANIC CARBON	mg/L N	290	270	240	180	200	200	-	340	320
SW6010	ALUMINUM	mg/L N	0.14 J	0.13 J	13	9.3	2.8	3.7		0.1 U	0.13 J
SW6010	ANTIMONY	ug/L N	20 U	20 U	5.3 U	20 U	5.3 U	20	-	89	210
SW6010	ARSENIC	mg/L N	0.02 U	0.1 U	0.0046 U	0.0091 J	0.011 J	0.017		0.028	0.067
SW6010	BARIUM	mg/L N	0.25	0.25	0.086	0.069	0.048	0.046	,	0.079	0.11
SW6010	BERYLLIUM	mg/L N	0.0031 J	0.003 J	0.0032 J	0.0026 J	0.0093	0.011		0.0031 J	0.0024 J
SW6010	CADMIUM	mg/L N	0.0034 J	0.0032 J	0.002 U	0.005 U	0.002 U	0.005	U	0.002 U	0.0028 J
SW6010	CALCIUM	mg/L N	33	33	18	14	12	10		12	28
SW6010	CHROMIUM	mg/L N	0.26	0.27	0.044	0.058	0.08	0.098		0.34	0.4
SW6010	COBALT	mg/L N	0.01 U	0.01 U	0.00095 U	0.0013 J	0.00095 U	0.01	U	0.0011 J	0.01 U
SW6010	COPPER	mg/L N	0.0092 J	0.0088 J	0.0019 U	0.02 U	0.0019 U	0.0029	J	0.014 J	0.024
SW6010	IRON	mg/L N	7.7	7.8	0.34	0.42	2.8	3.7		0.83	3.2
SW6010	LEAD	mg/L N	0.01 U	0.01 U	0.004 U	0.01 U	0.011	0.015		0.004 U	0.01 U
SW6010	MAGNESIUM	mg/L N	15	15	3.5	3.4	3.8	3.2		3.3	4.6
SW6010	MANGANESE	mg/L N	0.12	0.1	0.32	0.21	0.074	0.05		0.038	0.21
SW6010	NICKEL	mg/L N	0.013 J	0.01 J	0.0041 J	0.0062 J	0.0053 J	0.0068	J	0.044	0.058
SW6010	POTASSIUM	mg/L N	42	42	15	11	3	1.9		18	50
SW6010	RESPIRABLE QUARTZ	ug/L Y	58000	53000	21000	16000	42000	46000		130000	59000
SW6010	SELENIUM	mg/L N	0.02 U	0.1 U	0.0064 U	0.02 B	0.011 J	0.013		0.021	0.011 J
SW6010	SILVER	mg/L N	0.01 U	0.01 U	0.00089 U	0.01 U	0.0015 J	0.01	-	0.027	0.01 U
SW6010	SODIUM	mg/L N	13000	13000	1900	1900	1500	1300		10000	13000
SW6010	THALLIUM	mg/L N	0.025 U	0.025 U	0.0088 U	0.025 U	0.0088 U	0.025	_	0.0088 U	0.025 U
SW6010	VANADIUM	ug/L N	360	360	93	89	120	140	-	870	950
SW6010	ZINC	ug/L N	20 U	20 U	8.7 U	20 U	8.7 U	20	_	17 J	23
SW7470	MERCURY	ug/L N	10	11	3.3	0.63	2.7	0.92		49	34
SW7470	MERCURY	ug/L Y	10	- 11	5.5	0.03	2.7	0.92	\vdash	43	54
SW9034	SULFIDE	mg/L N	40 U	40 U	10 U	10 U	15	10	1,,	13	40 U
SW9034 SW9038	SULFATE	mg/L N	1100	1100	26	16	30	100		13	1200
SW9056	SULFATE	mg/L N	1100	1100	20	10	30	100	10	750	1200
SW9056 SW9040	pH	S.U. N	7.04 H	7 H	7.61	7.59 H	7.01	6.73		8.87 H	6.72 H
SW9040 SW9056	CHLORIDE	mg/L N	7.04 H	/ H	7.01	7.59 H	7.01	6.73	1	13000	0.72 H
			15000	15000	2200	1900	1500	1300	+	15000	15000
SW9251	CHLORIDE	mg/L N	15000	15000	2200	1900	1500	1300	וי		15000

			Location	MW-3A		MW-3A	
			Field Sample ID	MW-3A-090613		MW-3A-030514	
			Sample Date	9/6/2013		3/5/2014	
			SDG	680-93954-1		680-99155-1	
			Matrix	WATER		WATER	
			Sample Purpose	Regular sample		Regular sample	
			Sample Type	Ground water		Ground water	
Method	Parameter Name	Units	Filtered				
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/L	N	5000		5700	
SM2320B	ALKALINITY, CARBONATE (AS CACO3)	mg/L	N	50	U	50	U
SM2320B	ALKALINITY, TOTAL	mg/L	N	5000		5800	
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L	N	20000		18000	
SM3500-FeD	FERROUS IRON	ug/L	N	2800	HF	1000	HF
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	390		270	
SM5310B	TOTAL ORGANIC CARBON	mg/L	N	320		220	
SW6010	ALUMINUM	mg/L	N	20		8.5	
SW6010	ANTIMONY	ug/L	N	5.3	U	5.4	J
SW6010	ARSENIC	mg/L	N	0.016	J	0.014	J
SW6010	BARIUM	mg/L	N	0.14		0.094	
SW6010	BERYLLIUM	mg/L	N	0.0023	J	0.0015	J
SW6010	CADMIUM	mg/L	N	0.002	U	0.005	U
SW6010	CALCIUM	mg/L	N	40		63	
SW6010	CHROMIUM	mg/L	N	0.054		0.071	
SW6010	COBALT	mg/L	N	0.00095	U	0.01	U
SW6010	COPPER	mg/L	N	0.0019	U	0.02	U
SW6010	IRON	mg/L	N	5.7		3.2	
SW6010	LEAD	mg/L	N	0.004	U	0.01	U
SW6010	MAGNESIUM	mg/L	N	19		32	
SW6010	MANGANESE	mg/L	N	0.49		0.47	
SW6010	NICKEL	mg/L	N	0.018	J	0.018	J
SW6010	POTASSIUM	mg/L	N	82		72	
SW6010	RESPIRABLE QUARTZ	ug/L	Υ	18000		13000	
SW6010	SELENIUM	mg/L	N	0.024		0.037	В
SW6010	SILVER	mg/L	N	0.00089	U	0.01	U
SW6010	SODIUM	mg/L	N	8700		10000	
SW6010	THALLIUM	mg/L	N	0.0088	U	0.025	U
SW6010	VANADIUM	ug/L	N	160		120	
SW6010	ZINC	ug/L	N	17	J	11	J
SW7470	MERCURY	ug/L	N	1.5		0.96	
SW7470	MERCURY	ug/L	Υ				
SW9034	SULFIDE	mg/L	N	10	U	10	U
SW9038	SULFATE	mg/L	N	220		50	U
SW9056	SULFATE	mg/L	N				
SW9040	pH	S.U.	N	7.35		6.93	Н
SW9056	CHLORIDE	mg/L	N				
SW9251	CHLORIDE	mg/L	N	9700		11000	

			Location	MW-105A		MW-105A		MW-105B		MW-105B
			Field Sample ID	MW-105A-090413		MW-105A-030514		MW-105B-090413		MW-105B-030514
			Sample Date	9/4/2013		3/5/2014		9/4/2013		3/5/2014
			SDG	680-93870-1		680-99155-1		680-93870-1		680-99155-1
			Matrix	WATER		WATER		WATER		WATER
			Sample Purpose	Regular sample		Regular sample		Regular sample		Regular sample
			Sample Type	Ground water		Ground water		Ground water		Ground water
Method	Parameter Name	Units	Filtered							
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/L	N	130		130		320		310
SM2320B	ALKALINITY, CARBONATE (AS CACO3)	mg/L	N	5	U	5	U	50	U	25 U
SM2320B	ALKALINITY, TOTAL	mg/L	N	130		130		320		310
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L	N	370		340		980		940
SM3500-FeD	FERROUS IRON	ug/L	N	3600	HF	950	HF	240	HF	190 HF
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	34		26		130		99
SM5310B	TOTAL ORGANIC CARBON	mg/L	N	33		25		130		85
SW6010	ALUMINUM	mg/L	N	0.1	U	0.2	U	12		5.4
SW6010	ANTIMONY	ug/L	N	5.3	U	20	U	5.3	U	20 U
SW6010	ARSENIC	mg/L	N	0.0046	U	0.02	U	0.0077	J	0.0086 J
SW6010	BARIUM	mg/L	N	0.014		0.015		0.036		0.019
SW6010	BERYLLIUM	mg/L	N	0.0002	U	0.004	U	0.00048	J	0.004 U
SW6010	CADMIUM	mg/L	N	0.002	U	0.005	U	0.002	U	0.005 U
SW6010	CALCIUM	mg/L	N	74		72		2.9		7.2
SW6010	CHROMIUM	mg/L	N	0.0012	U	0.01	U	0.037		0.019
SW6010	COBALT	mg/L	N	0.00095	U	0.01	U	0.00095	U	0.01 U
SW6010	COPPER	mg/L	N	0.0019	U	0.02	U	0.0068	J	0.0031 J
SW6010	IRON	mg/L	N	3.8		0.88		1		0.52
SW6010	LEAD	mg/L	N	0.004	U	0.01	U	0.053		0.025
SW6010	MAGNESIUM	mg/L	N	14		13		0.84		1.7
SW6010	MANGANESE	mg/L	N	0.27		0.23		0.0078	J	0.012
SW6010	NICKEL	mg/L	N	0.0023	U	0.04	U	0.0065	J	0.0032 J
SW6010	POTASSIUM	mg/L	N	6.1		5.5		1.6		1.9
SW6010	RESPIRABLE QUARTZ	ug/L	Υ	2800		1900		7100		2900
SW6010	SELENIUM	mg/L	N	0.0064	U	0.02	U	0.0064	U	0.01 J
SW6010	SILVER	mg/L	N	0.00089	U	0.01	U	0.00089	U	0.01 U
SW6010	SODIUM	mg/L	N	7.7		13		250		310
SW6010	THALLIUM	mg/L	N	0.0088	U	0.025	U	0.0088	U	0.025 U
SW6010	VANADIUM	ug/L	N	2.4	U	10	U	64		38
SW6010	ZINC	ug/L	N	8.7	U	20		12	J	9.1 J
SW7470	MERCURY	ug/L	N	0.091	U	0.2	U	7.7		0.71
SW7470	MERCURY	ug/L	Υ							
SW9034	SULFIDE	mg/L	N	10	U	10	U	10	U	10 U
SW9038	SULFATE	mg/L	N	160		150		13		13
SW9056	SULFATE	mg/L	N						Т	
SW9040	pH	S.U.	N	6.03	Н	6.53	Н	5.69	н	6.85 H
SW9056	CHLORIDE	mg/L	N	0.00	Ħ	0.55	÷	5.03	Ë	5.00 11
SW9251	CHLORIDE		N	7.5	H	9.8		160	H	200

			Location	MW-105C	MW-105C	MW-112C		NN/ 112C	MW-113C	MW-113C	MW-113C
			Field Sample ID	MW-105C-083013	MW-105C-030414	MW-112C	MW-1120	1W-112C	MW-113C MW-113C-090313	MW-113C-030414	MW-113CDUPLICATE-030414
			Sample Date SDG	8/30/2013 680-93799-1	3/4/2014 680-99155-1	9/5/2013 680-93954-1		/28/2014 -99043-1	9/3/2013	3/4/2014 680-99155-1	3/4/2014 680-99155-1
		_					680		680-93870-1		
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular sample	Regular sample	Regular sample		r sample	Regular sample	Regular sample	Field duplicate
			Sample Type	Ground water	Ground water	Ground water	Groui	nd water	Ground water	Ground water	Ground water
Method	Parameter Name		Filtered								
	ALKALINITY, BICARBONATE (AS CACO3)	mg/L		170	4200	1400		960	850	2200	2200
	ALKALINITY, CARBONATE (AS CACO3)	mg/L		300	25 U	2300		2600	(140)	610	620
SM2320B	ALKALINITY, TOTAL	mg/L		520	4200	3800		3700	1000	2800	2800
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L	N	2600	4700	28000		30000	27000	23000	22000
SM3500-FeD	FERROUS IRON	ug/L	N	6800 HF	3800 HF	4300	HF	9500 I	HF 320	HF 2400 HF	2700 H
SM5310B	DISSOLVED ORGANIC CARBON	mg/L		86	37	740		680	690	1000	1100
SM5310B	TOTAL ORGANIC CARBON	mg/L	N	86	34	580		1200	710	970	940
SW6010	ALUMINUM	mg/L	N	6.6	0.95	1.5		0.3	2.9	6.8	6.5
SW6010	ANTIMONY	ug/L	N	27 U	20 U	5.3	U	20	J 5.3	U 20 U	20 U
SW6010	ARSENIC	mg/L	N	0.059 J	0.0075 J	0.026		0.021	0.0069	J 0.026	0.019 J
SW6010	BARIUM	mg/L	N	0.36	0.13	0.02		0.0065	1.5	0.12	0.11
SW6010	BERYLLIUM	mg/L	N	0.012 J	0.0039 J	0.0088		0.0015	0.0083	0.018	0.018
SW6010	CADMIUM	mg/L	N	0.01 U	0.005 U	0.002	U	0.005	0.002	U 0.0023 J	0.0022 J
SW6010	CALCIUM	mg/L		7.3	2.8	31		7.4	820	20	18
SW6010	CHROMIUM	mg/L		0.09	0.049	0.83		1.1	0.26	0.75	0.72
SW6010	COBALT	mg/L		0.0048 U	0.01 U	0.0012	j	0.0032	0.00095	U 0.0036 J	0.0034 J
SW6010	COPPER	mg/L		0.0095 U	0.02 U	0.054		0.11	0.019	J 0.063	0.058
SW6010	IRON	mg/L		14	6.4	4.5		3.1	0.45	1.2	1.2
SW6010	LEAD	mg/L		0.039 J	0.01 U	0.0049	J	0.01	J 0.004	U 0.01 U	0.01 U
SW6010	MAGNESIUM	mg/L		0.38 J	0.73	0.098	j l	0.04	0.073	J 0.12 J	0.11 J
SW6010	MANGANESE	mg/L		0.036 J	0.032	0.056		0.0072	0.002		0.0095 J
SW6010	NICKEL	mg/L		0.012 U	0.04 U	0.069		0.14	0.036	J 0.11	0.11
SW6010	POTASSIUM	mg/L		0.68 J	3	27		18	65	83	82
SW6010	RESPIRABLE QUARTZ	ug/L		170000	41000	490000		650000	3700	2600	2600
SW6010	SELENIUM	mg/L		0.032 U	0.011 J,B	0.027		0.04	0.039	0.064 B	0.065 B
SW6010	SILVER	mg/L		0.0045 U	0.011 J,B	0.00089		0.04		J 0.01 U	0.003 B
SW6010	SODIUM	mg/L		720	2200	13000	0	5200	8500	12000	12000
SW6010	THALLIUM			0.044 U	0.025 U	0.0088					0.025 U
SW6010	VANADIUM	mg/L		73	16	4400	0	0.025 I	0.0088 1300	U 0.025 U	2600
SW6010 SW6010	ZINC	ug/L	N N	73 70 J							
		ug/L	IN .	70 J 58	13 J	22		25	11		17 J
SW7470	MERCURY	ug/L	IN .		2.4	14		10	45	3.1	3
SW7470	MERCURY	ug/L	Y	21	, , , ,						
SW9034	SULFIDE	mg/L		22	10 U	35	l l	15	10		10 U
SW9038	SULFATE	mg/L		29	10 U	50	U	500	400 <u>400</u>	250 U	250 U
SW9056	SULFATE	mg/L	N								
SW9040	рН	S.U.	N	11	7.24 H	10.2	Н	10.5 I	H 8.94	H 9.13 H	9.14 H
SW9056	CHLORIDE	mg/L									
SW9251	CHLORIDE	mg/L	N	630	560	13000		14000	14000	15000	14000

		I	100,4454	100,4454	10114454	1.01/.4450	10004450	10114450	10004450	
		Location	MW-115A	MW-115A	MW-115A	MW-115B	MW-115B	MW-115C	MW-115C	MW-352A
		Field Sample ID	MW-115A-090513	MW-115A2-090513	MW-115A-030414	MW-115B-090513	MW-115B-030414	MW-115C-082713	MW-115C-022414	MW-352A-090513
		Sample Date	9/5/2013	9/5/2013	3/4/2014	9/5/2013	3/4/2014	8/27/2013	2/24/2014	9/5/2013
		SDG	680-93954-1	680-93954-1	680-99155-1	680-93954-1	680-99155-1	680-93690-1	680-98941-1	680-93954-2
		Matrix	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
		Sample Purpose	Regular sample	Field duplicate	Regular sample					
		Sample Type	Ground water	Ground water	Ground water	Ground water	Ground water	Ground water	Ground water	Ground water
Method	Parameter Name	Units Filtered								
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/L N	860	840	800	700	1300	1100	6200	430
SM2320B	ALKALINITY, CARBONATE (AS CACO3)	mg/L N	50 U	50 U	50 U		50 L	3700	55	580
SM2320B	ALKALINITY, TOTAL	mg/L N	870	850	800	730	1300	4900	6200	1100
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L N	4300	4200	3800	3600	3600	32000	16000	3800
SM3500-FeD	FERROUS IRON	ug/L N	630 H	F 660 HF	480 H	IF 1400 HF	2800 H	F 1600 HF	3000	HF 13000
SM5310B	DISSOLVED ORGANIC CARBON	mg/L Y	210	220	260	230	230	320	300	360
SM5310B	TOTAL ORGANIC CARBON	mg/L N	220	230	230	230	220	290	310	2600
SW6010	ALUMINUM	mg/L N	20	20	23	4	5.4	0.1 U	0.13	J 4.7
SW6010	ANTIMONY	ug/L N	5.6 J	5.3 U	20 U	5.3 U	20 L	36	11	J 5.3
SW6010	ARSENIC	mg/L N	0.0046 U	0.0051 J	0.014 J	0.012 J	0.019 J	0.092	0.02	U 0.055
SW6010	BARIUM	mg/L N	0.053	0.054	0.074	0.06	0.04	0.021	0.19	0.28
SW6010	BERYLLIUM	mg/L N	0.0031 J	0.003 J	0.0035 J	0.012	0.012	0.0017 J	0.0028	J 0.0051
SW6010	CADMIUM	mg/L N	0.002 U	0.002 U	0.005 U	0.002 U	0.005 L	0.002 U	0.0025	0.0022
SW6010	CALCIUM	mg/L N	20	19	18	15	9.1	0.87	13	9.4
SW6010	CHROMIUM	mg/L N	0.045	0.045	0.089	0.076	0.089	0.16	0.27	0.56
SW6010	COBALT	mg/L N	0.00095 U	0.00095 U	0.0019 J	0.00095 U	0.01 L	0.00095 U	0.01	
SW6010	COPPER	mg/L N	0.0019 U	0.0019 U	0.0069 J	0.004 J	0.0032 J	0.0026 J	0.013	J 0.064
SW6010	IRON	mg/L N	0.38	0.36	1.1	0.91	2.4	0.91	4.4	12
SW6010	LEAD	mg/L N	0.0042 J	0,0044 J	0.032	0.02	0.014	0.004 U	0.01	U 0.098
SW6010	MAGNESIUM	mg/L N	4.1	4	3.6	2.6	4.8	0.052 J	10	0.14
SW6010	MANGANESE	mg/L N	0.39	0.39	0.34	0.013	0.056	0.002 U	0.13	0.024
SW6010	NICKEL	mg/L N	0.0065 J	0.0076 J	0.014 J	0.0094 J	0.0076 J	0.023 J	0.027	J 0.084
SW6010	POTASSIUM	mg/L N	8.6	8.4	6.6	0.69 J	1	13	30	1.4
SW6010	RESPIRABLE QUARTZ	ug/L Y	17000	17000	17000	22000	59000	1600000	59000	260000
SW6010	SELENIUM	mg/L N	0.0075 J	0.0089 J	0.009 J	0.0064 U	0.01 J	0.034	0.02	
SW6010	SILVER	mg/L N	0.00089 U	0.00089 U	0.01 U		0.01 U		0.0014	0.00089
SW6010	SODIUM	mg/L N	1300	1300	1300	1000	1300	13000	12000	930
SW6010	THALLIUM	mg/L N	0.0088 U	0.0088 U	0.025 U		0.025 L	0.0088 U	0.025	U 0.0088
SW6010	VANADIUM	ug/L N	110	120	150	130	140	1400	510	350
SW6010	ZINC	ug/L N	9.2 J	8.7 U	10 J	15 J	20 U	38	11	
SW7470	MERCURY	ug/L N	5.3	4.1	0.57	5.2	0.65	62	19	300
SW7470	MERCURY	ug/L Y	5.5	4.1	0.37	3.2	3.03	02	15	300
SW9034	SULFIDE	mg/L N	10 U	10 U	10 U	J 10 U	10 U	11	40	
SW9034 SW9038	SULFATE	mg/L N	120	130	110	30	100 U	11	1100	250
SW9056	SULFATE	mg/L N	120	130	110	30	100 0	950	1100	230
SW9056 SW9040	pH	S.U. N	7 - 1 11	7.48 H	7.59 H	8.91 H	6.52 H		7.56	H 10.
SW9040 SW9056	CHLORIDE	mg/L N	7.51 H	7.48 H	7.59 H	8.91 H	6.52 F	10.7 H	7.56	п 10
			4500	4500	4500	4200	4200	15000	4.000	
SW9251	CHLORIDE	mg/L N	1600	1600	1500	1300	1200		14000	610

		Location		MW-352A	MW-352B		MW-352B	MW-353B	MW-353B	MW-357A	MW-357A	$\overline{}$
		Field Sample ID	\vdash	MW-352A-022714	MW-352B-09032013		MW-352B-022714	MW-353B-090313	MW-353B-030414	MW-357A-082813	MW-357A-030314	_
		Sample Date		2/27/2014	9/3/2013		2/27/2014	9/3/2013	3/4/2014	8/28/2013	3/3/2014	_
		SDG	\vdash	680-99043-1	680-93870-1		680-99043-1	680-93870-1	680-99155-1	680-93799-1	680-99155-1	-
		Matrix		WATER	WATER		WATER	WATER	WATER	WATER	WATER	_
		Sample Purpose	\vdash	Regular sample	Regular sample		Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	_
		Sample Type		Ground water	Ground water		Ground water	Ground water	Ground water	Ground water	Ground water	_
Method	Parameter Name	Units Filtered		Ground water	Ground water		Ground water	Ground water	Giodila water	Ground water	Ground water	+
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/L N		2900	1400		1500	2600	2700	850	3700	+
SM2320B	ALKALINITY, CARBONATE (AS CACOS)	mg/L N		25 U			15000	1300	1300	1100	50	_
SM2320B	ALKALINITY, CARBONATE (AS CACOS)	mg/L N	\vdash	2900	17000		17000	4000	4000	2000	3700	_
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L N		5400	56000		20000	34000	22000	11000	9100	_
SM3500-FeD	FERROUS IRON	ug/L N	HF	27000 HF		ше	4300 HF	13000 HF	2900 H		7300	_
SM5310B	DISSOLVED ORGANIC CARBON	mg/L Y	пг	150	450	пг	240 HF	3600 HF	1300 H	270	260	_
SM5310B	TOTAL ORGANIC CARBON	mg/L N	\vdash	91	340		280	4400	1100	230	210	_
SW6010	ALUMINUM	mg/L N	-	16	1.9	-	1.8	27	24	7.7	1.6	_
SW6010 SW6010	ANTIMONY	ug/L N	U	20 U		_	1.8 100 U	5.3 U	24 20 U		20	_
	ARSENIC		U		0.79	-	0.84	0.087	0.09	0.033	0.036	_
SW6010	BARIUM	mg/L N	\vdash	0.0055 J 0.078	0.79		0.84				0.036	_
SW6010	-	mg/L N	\vdash	0.078			0.25 0.0014 J	1.1 0.046	1.1 0.049	0.053 0.019	0.11	_
SW6010	BERYLLIUM	mg/L N	 		0.0015							_
SW6010	CADMIUM	mg/L N	J	0.005 U		-	0.025 U	0.002 U	0.002 J	0.002 U	0.005	-
SW6010	CALCIUM	mg/L N		5	3.6		5.5	22	25	11	26	_
SW6010	CHROMIUM	mg/L N	-	0.24	0.053		0.087	2	1.9	0.17	0.34	_
SW6010	COBALT	mg/L N		0.0033 J	0.00095	_	0.05 U	0.0085 J	0.0087 J	0.0018 J	0.01	-
SW6010	COPPER	mg/L N		0.018 J	0.0089		0.012 J	0.14	0.096	0.0058 J	0.0054	_
SW6010	IRON	mg/L N		17	19		29	2	1.9	0.84	6.7	_
SW6010	LEAD	mg/L N		0.031	0.0068		0.034 J	0.016	0.014	0.0077 J	0.0056	_
SW6010	MAGNESIUM	mg/L N	J	0.61	0.053	$\overline{}$	2.5 U	0.68	1	0.46 J	13	_
SW6010	MANGANESE	mg/L N		0.087	0.0045	_	0.05 U	0.1	0.069	0.04	0.079	_
SW6010	NICKEL	mg/L N		0.021 J	0.039	J	0.07 J	0.3	0.28	0.022 J	0.022	
SW6010	POTASSIUM	mg/L N		2.4	34		55	18	21	3.2	3.7	_
SW6010	RESPIRABLE QUARTZ	ug/L Y		85000	17000000		14000000	6400	5200	30000	110000	_
SW6010	SELENIUM	mg/L N		0.015 J	0.04		0.1	0.035	0.056 B		0.011	- '
SW6010	SILVER	mg/L N	U	0.01 U		_	0.05 U	0.00089 U	0.01 U		0.01	-
SW6010	SODIUM	mg/L N		1000	13000	-	16000	11000	11000	2200	3900	-
SW6010	THALLIUM	mg/L N	U	0.025 U		U	0.13 U	0.0088 U	0.025 U		0.025	_
SW6010	VANADIUM	ug/L N		100	200		280	3700	3900	320	290	_
SW6010	ZINC	ug/L N		36	54		59 J	46	45	64	20	_
SW7470	MERCURY	ug/L N		11	690		260	27	13	71	4.1	_
SW7470	MERCURY	ug/L Y										
SW9034	SULFIDE	mg/L N	U	10 U			10 U	91	71	19	10	-
SW9038	SULFATE	mg/L N	U	140	80		89	510	500 U	160	83	
SW9056	SULFATE	mg/L N										L
SW9040	рН	S.U. N	Н	6.81 H	11.5	Н	11.6 H	9.36 H	9.42 H	10.2 H	6.75	Н
SW9056	CHLORIDE	mg/L N										
SW9251	CHLORIDE	mg/L N		460	15000		14000	14000	12000	3200	3600	ı

		1	MM/ 257D	MM/ 2570	MM4/ 257D		1414/ 2F0D	MAN 2500	NAME 504 A	MM 504 A
		Location	MW-357B	MW-357B	MW-357B	-	MW-358B	MW-358B	MW-501A	MW-501A
		Field Sample ID	MW-357B-082813	MW-357B-030314	MW-357BDUPLICATE-030314		1W-358B-090413	MW-358B-022814	MW-501A-082913	MW-501A-022714
		Sample Date	8/28/2013	3/3/2014	3/3/2014		9/4/2013	2/28/2014	8/29/2013	2/27/2014
		SDG	680-93690-1	680-99155-1	680-99155-1		680-93870-1	680-99043-1	680-93799-1	680-99043-1
		Matrix	WATER	WATER	WATER	-	WATER	WATER	WATER	WATER
		Sample Purpose	Regular sample	Regular sample	Field duplicate	_	Regular sample	Regular sample	Regular sample	Regular sample
		Sample Type	Ground water	Ground water	Ground water		Ground water	Ground water	Ground water	Ground water
Method	Parameter Name	Units Filtered								
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/L N	630	2400	2300		1100	780	220	540
SM2320B	ALKALINITY, CARBONATE (AS CACO3)	mg/L N	2500	110	120		1800	1700	25 U	25 U
SM2320B	ALKALINITY, TOTAL	mg/L N	3200	2500	2400		2900	2600	220	540
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L N	15000	6300	6200	1	23000	21000	840	740
SM3500-FeD	FERROUS IRON	ug/L N	2100 HF	440 H	F 410	HF	620	HF 1500 HI	F 740 HF	250 HF
SM5310B	DISSOLVED ORGANIC CARBON	mg/L Y	280	100	100		530	540	110	42
SM5310B	TOTAL ORGANIC CARBON	mg/L N	290	89	91		470	500	100	42
SW6010	ALUMINUM	mg/L N	0.13 J	0.14 J	0.15	J	11	7.4	1.2	2.6
SW6010	ANTIMONY	ug/L N	5.3 U	20 U	20	U	5.3	U 20 U	5.3 U	20 U
SW6010	ARSENIC	mg/L N	0.047	0.0095 J	0.0052	J	0.037	0.028	0.049	0.02 U
SW6010	BARIUM	mg/L N	0.069	0.11	0.11		0.046	0.036	0.28	0.015
SW6010	BERYLLIUM	mg/L N	0.0047	0.0028 J	0.0029	J	0.03	0.025	0.0028 J	0.004 U
SW6010	CADMIUM	mg/L N	0.002 U	0.005 U	0.005	U	0.002	U 0.005 U	0.002 U	0.005 U
SW6010	CALCIUM	mg/L N	12	40	41		15	12	9.2	1.6
SW6010	CHROMIUM	mg/L N	0.19	0.067	0.07		1.1	0.82	0.046	0.0088 J
SW6010	COBALT	mg/L N	0.0016 J	0.01 U	0.01	U	0.0026	J 0.0023 J	0.0018 J	0.01 U
SW6010	COPPER	mg/L N	0.015 J	0.0033 J	0.0032	i i	0.046	0.03	0.0047 J	0.02 U
SW6010	IRON	mg/L N	1.1	0.65	0.67		1.1	0.91	11	0.5
SW6010	LEAD	mg/L N	0.004 J	0.01 U	0.01	_	0.0092		0.036	0.0068 J
SW6010	MAGNESIUM	mg/L N	0.062 J	4.5	4.6	_	0.34		0.087 J	0.75
SW6010	MANGANESE	mg/L N	0.021	0.12	0.12		0.086	0.066	0.12	0.0091 J
SW6010	NICKEL	mg/L N	0.047	0.013 J	0.012		0.11	0.081	0.013 J	0.04 U
SW6010	POTASSIUM	mg/L N	4.8	8.6	9		9.1	6	4.3	2.5
SW6010	RESPIRABLE QUARTZ	ug/L Y	1100000	130000	130000		4800	5600	9800	6400
SW6010	SELENIUM	mg/L N	0.019 J	0.029 B	0.031		0.027	0.027	0.009 J	0.02 U
SW6010	SILVER	mg/L N	0.0058 J	0.029 B	0.031		0.00089		0.00089 U	0.01 U
SW6010	SODIUM	mg/L N	4400	2500	2600	-	8400	6300	2200	260
SW6010	THALLIUM		0.0088 U	0.025 U	0.025		0.0088		0.0088 U	0.025 U
	-	mg/L N	480		120	-	1800	1400	70	
SW6010 SW6010	VANADIUM ZINC	-0/- 11	16 J	120 20 U	8.9	-	21	1400 16 J	45	33 20 U
		ug/L N								
SW7470	MERCURY	ug/L N	180	5.7	5.6	+ -	7.1	3	4.3	1.1
SW7470	MERCURY	ug/L Y			+	 			1.5	
SW9034	SULFIDE	mg/L N	12	16	14		23	10 U	22	10 U
SW9038	SULFATE	mg/L N		23	25		100	U 250 U	13	10 U
SW9056	SULFATE	mg/L N	300 J			$\perp \perp$				
SW9040	рН	S.U. N	11.2 H	8.6 H	8.61	H	5.61	H 10.4 H	6.94 H	6.15 H
SW9056	CHLORIDE	mg/L N	5500							
SW9251	CHLORIDE	mg/L N		2600	2700		12000	12000	57	41

			Location	MW-501B		MW-501B		MW-502A	١L
			Field Sample ID	MW-501B-082913		MW-501B-022714		MW-502A-082913	3
			Sample Date	8/29/2013		2/27/2014		8/29/2013	3
			SDG	680-93799-1		680-99043-1		680-93799-1	ıΤ
			Matrix	WATER		WATER		WATER	₹
			Sample Purpose	Regular sample		Regular sample		Regular sample	3
			Sample Type	Ground water		Ground water		Ground water	r
Method	Parameter Name	Units	Filtered						Ι
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/L	N	200		7800		650)
SM2320B	ALKALINITY, CARBONATE (AS CACO3)	mg/L	N	940		37		160)
SM2320B	ALKALINITY, TOTAL	mg/L	N	1300		7900		820)
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L	N	8300		14000		3200)
SM3500-FeD	FERROUS IRON	ug/L	N	8100	HF	4900	HF	2100	ЭН
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	50		34		270)
SM5310B	TOTAL ORGANIC CARBON	mg/L	N	44		34		220	ī
SW6010	ALUMINUM	mg/L	N	8.1		0.2	U	56	5
SW6010	ANTIMONY	ug/L	N	5.3	U	7.5	J	5.3	3 U
SW6010	ARSENIC	mg/L	N	0.0046	U	0.015	J	0.015	5 J
SW6010	BARIUM	mg/L	N	0.037		0.44		0.36	5
SW6010	BERYLLIUM	mg/L	N	0.00039	J	0.00062	J	0.0048	3
SW6010	CADMIUM	mg/L	N	0.002	U	0.005	U	0.002	2 U
SW6010	CALCIUM	mg/L	N	1.6		26		9.9)
SW6010	CHROMIUM	mg/L	N	0.03		0.02		0.14	ı
SW6010	COBALT	mg/L	N	0.0017	J	0.01	U	0.0031	IJ
SW6010	COPPER	mg/L	N	0.0028	J	0.02	U	0.0032	2]
SW6010	IRON	mg/L	N	1.8		23		3.7	7
SW6010	LEAD	mg/L	N	0.017		0.01	U	0.038	3
SW6010	MAGNESIUM	mg/L	N	0.39	J	22		0.76	5
SW6010	MANGANESE	mg/L	N	0.015		0.39		0.04	ı
SW6010	NICKEL	mg/L	N	0.0036	J	0.0038	J	0.019) J
SW6010	POTASSIUM	mg/L	N	1.3		21		1.6	5
SW6010	RESPIRABLE QUARTZ	ug/L	Υ	680000		57000		85000	υT
SW6010	SELENIUM	mg/L	N	0.0064	U	0.022		0.0064	įτ
SW6010	SILVER	mg/L	N	0.00089	U	0.01	U	0.00089	įι
SW6010	SODIUM	mg/L	N	230		6700		730)
SW6010	THALLIUM	mg/L	N	0.0088	U	0.025	U	0.0088	3 L
SW6010	VANADIUM	ug/L	N	66		25		260)
SW6010	ZINC	ug/L	N	10	J	20	U	31	ıΤ
SW7470	MERCURY	ug/L	N	48		13		69	•
SW7470	MERCURY	ug/L	Υ					88	3
SW9034	SULFIDE	mg/L	N	19		40	U	22	2
SW9038	SULFATE	mg/L	N	19		6.8		100) (
SW9056	SULFATE	mg/L	N						Ť
SW9040	рН	S.U.	N	11.3	Н	7.06	Н	9.7	7 1
SW9056	CHLORIDE	mg/L	N						Ť
SW9251	CHLORIDE	mg/L	N	2700		5800		400	ī

		Location	MW-502A	MW-502B	MW-502B	MW-502B	MW-502B	MW-503B	MW-503B
		Field Sample ID	MW-502A-022714	MW-502B-083013	MW 502B-121113	MW-502B-022714	MW-502BDUP-022714	MW-503B-090313	MW-503B-030314
		Sample Date	2/27/2014	8/30/2013	12/11/2013	2/27/2014	2/27/2014	9/3/2013	3/3/2014
		SDG	680-99043-1	680-93799-1	680-97103-1	680-99043-1	680-99043-1	680-93870-1	680-99155-1
		Matrix	WATER	WATER	WATER	WATER	WATER	WATER	WATER
		Sample Purpose	Regular sample	Regular sample	Regular sample	Regular sample	Field duplicate	Regular sample	Regular sample
		Sample Type	Ground water	Ground water	Ground water				
Method	Parameter Name	Units Filtered							
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/L N	2600	420		3900	4100	95	81
SM2320B	ALKALINITY, CARBONATE (AS CACO3)	mg/L N	25 U	670		50 U	50 U	50 U	25 U
SM2320B	ALKALINITY, TOTAL	mg/L N	2600	1200		3900	4100	95	81
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L N	3800	3900		5300	4800	2800	2400
SM3500-FeD	FERROUS IRON	ug/L N	1700 HF	4900 HF		4800 HF	3400 HF	7100 HF	4400 HF
SM5310B	DISSOLVED ORGANIC CARBON	mg/L Y	73	320		58	66	100	84
SM5310B	TOTAL ORGANIC CARBON	mg/L N	70	170		70	69	120	84
SW6010	ALUMINUM	mg/L N	1.9	2.5		1.4	1.4	7.5	5.1
SW6010	ANTIMONY	ug/L N	7.5 J	5.3 U		8 1	7 J	5.3 U	20 U
SW6010	ARSENIC	mg/L N	0.02 U	0.022		0.02 U	0.02 U	0.0046 U	0.0049 J
SW6010	BARIUM	mg/L N	0.097	0.22		0.026	0.027	0.042	0.033
SW6010	BERYLLIUM	mg/L N	0.00043 J	0.015		0.0028 J	0.0029 J	0.0015 J	0.0011 J
SW6010	CADMIUM	mg/L N	0.005 U	0.002 U		0.005 U	0.005 U	0.002 U	0.005 U
SW6010	CALCIUM	mg/L N	28	8.9		8.2	8.3	9.2	6.7
SW6010	CHROMIUM	mg/L N	0.032	0.19		0.034	0.036	0.048	0.038
SW6010	COBALT	mg/L N	0.01 U	0.0045 J		0.01 U	0.01 U	0.00095 U	0.01 U
SW6010	COPPER	mg/L N	0.02 U	0.0056 J		0.02 U	0.02 U	0.0023 J	0.02 U
SW6010	IRON	mg/L N	1.9	3.5		4.7	4.8	7.7	4.9
SW6010	LEAD	mg/L N	0.01 U	0.022		0.01 U	0.01 U	0.004 U	0.0048 J
SW6010	MAGNESIUM	mg/L N	5.7	0.097 J		1.7	1.8	1.8	1.2
SW6010	MANGANESE	mg/L N	0.12	0.0096 J		0.06	0.062	0.11	0.072
SW6010	NICKEL	mg/L N	0.003 J	0.024 J		0.04 U	0.04 U	0.0052 J	0.0041 J
SW6010	POTASSIUM	mg/L N	6.5	0.98 J		5.4	5.7	9.5	6.5
SW6010	RESPIRABLE QUARTZ	ug/L Y	22000	65000		44000	44000	8100	5200
SW6010	SELENIUM	mg/L N	0.02 U	0.01 J		0.017 J	0.01 J	0.016 J	0.013 J
SW6010	SILVER	mg/L N	0.01 U	0.00089 U		0.01 U	0.01 U	0.00089 U	0.01 U
SW6010	SODIUM	mg/L N	1500	940		1900	2000	990	840
SW6010	THALLIUM	mg/L N	0.025 U	0.0088 U		0.025 U	0.025 U	0.0088 U	0.025 U
SW6010	VANADIUM	ug/L N	46	270		50	52	89	71
SW6010	ZINC	ug/L N	20 U	60		10 J	20 U	8.7 U	20 U
SW7470	MERCURY	ug/L N	2.1	120	32	4.4	4.7	4.8	0.83
SW7470	MERCURY	ug/L Y							
SW9034	SULFIDE	mg/L N	40 U	18		10 U	10 U	10 U	10 U
SW9038	SULFATE	mg/L N	5 U	370		5 U	5 U	530	420
SW9056	SULFATE	mg/L N							
SW9040	рН	S.U. N	6.75 H	10.9		6.82 H	6.85 H	5.86 H	5.76 H
SW9056	CHLORIDE	mg/L N							
SW9251	CHLORIDE	mg/L N	550	660		650	650	1400	1100

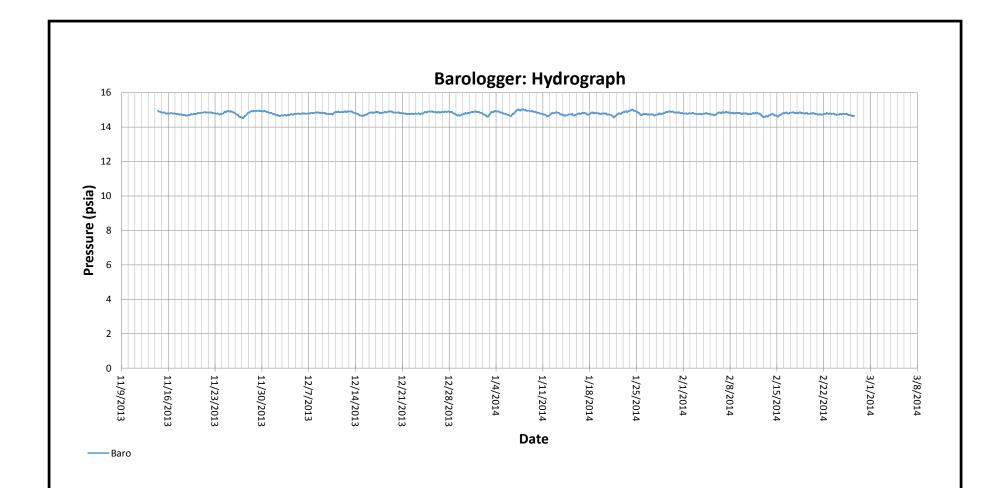
		Location	MW-504A		MW-504A		MW-504B		MW-504B	MW-504E	3
		Field Sample ID	MW-504A-082913		MW 504 A-022514	-	MW-504B-082913		MW 504B-121113	MW 504 B-022514	_
		Sample Date	8/29/2013		2/25/2014	_	8/29/2013	- "	12/11/2013	2/25/2014	_
		SDG	680-93799-1		680-98941-1	-	680-93799-1		680-97103-1	680-98941-1	
		Matrix	WATER		WATER	_	WATER		WATER	WATER	
		Sample Purpose	Regular sample	_	Regular sample	-	Regular sample		Regular sample	Regular sample	
		Sample Type	Ground water	1	Ground water		Ground water		Ground water	Ground water	_
Method	Parameter Name	Units Filtered	Ground water		Ground water	1	Ground water		Ground water	Ground water	+
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/L N	1200	1	1800		490	+		3700	0
SM2320B	ALKALINITY, CARBONATE (AS CACOS)	mg/L N		U		U	1200	-			0 U
SM2320B	ALKALINITY, CARBONATE (AS CACOS)	mg/L N	1200	_	1800	_	1800	+		3700	
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L N	7700		7000	_	11000			6700	-
	FERROUS IRON	ug/L N	16000	_	8600	+	4500 H	IF.		11000	_
SM5310B	DISSOLVED ORGANIC CARBON	mg/L Y	700	_	610	_	4500 F	11		11000	
SM5310B	TOTAL ORGANIC CARBON	mg/L N	650		620	_	340	-		200	
			46	_	620					0.78	_
SW6010	ALUMINUM	mg/L N		_		_	1.5				_
SW6010	ANTIMONY	ug/L N	5.3	_	20	_	27 L	,			0 U
SW6010	ARSENIC	mg/L N	0.011	-	0.029	_	0.14			0.0066	
SW6010	BARIUM	mg/L N	0.1	_	0.48	-	0.88	_		0.22	_
SW6010	BERYLLIUM	mg/L N	0.0025	_	0.0043	_	0.013 J			0.011	
SW6010	CADMIUM	mg/L N	0.002	-	0.005	-	0.01 L	١		0.005	
SW6010	CALCIUM	mg/L N	16		19		19			11	_
SW6010	CHROMIUM	mg/L N	0.25	_	0.61		0.67			0.35	-
SW6010	COBALT	mg/L N	0.00095	-	0.0036	-	0.0085 J			0.01	_
SW6010	COPPER	mg/L N	0.0019	-	0.026	_	0.031 J			0.0096	_
SW6010	IRON	mg/L N	6.9	_	7.7	_	3.9			11	
SW6010	LEAD	mg/L N	0.0041	_	0.043	_	0.034 J			0.0076	
SW6010	MAGNESIUM	mg/L N	4.4		3.8		0.11 J			7.6	õ
SW6010	MANGANESE	mg/L N	0.084		0.14	_	0.02 J			0.078	_
SW6010	NICKEL	mg/L N	0.012	_	0.051		0.14 J			0.028	3 J
SW6010	POTASSIUM	mg/L N	5.5		5.6		0.92 J			4	4
SW6010	RESPIRABLE QUARTZ	ug/L Y	49000		61000		110000			68000	
SW6010	SELENIUM	mg/L N	0.012	J	0.029		0.032 U	J		0.02	2 U
SW6010	SILVER	mg/L N	0.0031	J	0.01	U	0.0045 L	J		0.01	I U
SW6010	SODIUM	mg/L N	1700		1800		2800			4100	5
SW6010	THALLIUM	mg/L N	0.0088	U	0.025	U	0.044 L	J		0.025	5 U
SW6010	VANADIUM	ug/L N	590	1	1000		1600			300)
SW6010	ZINC	ug/L N	13	J	28		88 J			9	9 J
SW7470	MERCURY	ug/L N	66		32		320		61	7.7	7
SW7470	MERCURY	ug/L Y									
SW9034	SULFIDE	mg/L N	10	U	10	U	35			40	0 U
SW9038	SULFATE	mg/L N	250		130		250 L	J			5 U
SW9056	SULFATE	mg/L N									\dagger
SW9040	рН	S.U. N	7.55	Н	6.31	Н	11 H	1		6.64	4 H
SW9056	CHLORIDE	mg/L N					<u> </u>				\top
SW9251	CHLORIDE	mg/L N	1700	1	1500		3300			4000	5

		_	Location	MW-505A	MW-505A	MW-505B	MW-505B	MW-507B	MW-507B	MW-508B
		-	Field Sample ID	MW-505A-082913	MW-505A-022514	MW-505B-082913	MW-505B-022514	MW-507B-090413	MW-507B-022814	MW-508B-090313
				8/29/2013	2/25/2014	8/29/2013	2/25/2014	9/4/2013	2/28/2014	9/3/2013
		-	Sample Date SDG	680-93799-1	680-98941-1	680-93799-1	680-98941-1	680-93870-1	680-99043-1	680-93870-1
		_	Matrix	WATER						
		_	Sample Purpose	Regular sample						
			Sample Type	Ground water						
Method	Parameter Name	Units	Filtered							
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/L		1200	1900	1400	7700	1200	1500	1400
SM2320B	ALKALINITY, CARBONATE (AS CACO3)	mg/L		92	50 U	1200	50 U	1100	900	2900
SM2320B	ALKALINITY, TOTAL	mg/L		1200	1900	2600	7700	2300	2400	4300
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L		6900	4700	19000	17000	27000	27000	36000
SM3500-FeD	FERROUS IRON	ug/L	N	16000 HF	5100 HF	1200		470		8700 HF
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	510	260	870	550	500	540	880
SM5310B	TOTAL ORGANIC CARBON	mg/L		650	220	710	660	480	530	690
SW6010	ALUMINUM	mg/L		46	19	34	7.7	0.53	0.71	2.6
SW6010	ANTIMONY	ug/L	N	5.3 U	20 U	5.3		5.3		7.2 J
SW6010	ARSENIC	mg/L		0.015 J	0.017 J	0.052	0.022	0.0054	J 0.02 U	0.053
SW6010	BARIUM	mg/L		0.17	0.25	0.82	0.65	0.019	0.025	0.086
SW6010	BERYLLIUM	mg/L		0.0025 J	0.0027 J	0.013	0.0095	0.012	0.018	0.022
SW6010	CADMIUM	mg/L	N	0.002 U	0.005 U	0.002	U 0.0027 J	0.002	U 0.005 U	0.003 J
SW6010	CALCIUM	mg/L	N	16	16	12	27	3.7	4.9	6.7
SW6010	CHROMIUM	mg/L		0.27	0.32	0.32	0.91	0.23	0.27	1.4
SW6010	COBALT	mg/L	N	0.00095 U	0.00095 J	0.0014	J 0.0017 J	0.00095	U 0.0012 J	0.0044 J
SW6010	COPPER	mg/L	N	0.0031 J	0.0098 J	0.0042	J 0.028	0.0089	J 0.0088 J	0.12
SW6010	IRON	mg/L	N	6.9	5.1	0.97	17	0.55	0.64	2.8
SW6010	LEAD	mg/L	N	0.0052 J	0.012	0.009	J 0.0085 J	0.004	U 0.01 U	0.004 U
SW6010	MAGNESIUM	mg/L	N	4.4	2.1	0.26	J 12	0.19	J 0.36 J	0.27 J
SW6010	MANGANESE	mg/L	N	0.084	0.14	0.015	0.28	0.0059	J 0.0088 J	0.021
SW6010	NICKEL	mg/L	N	0.014 J	0.024 J	0.033	J 0.086	0.023	J 0.025 J	0.19
SW6010	POTASSIUM	mg/L	N	5.5	7.6	3	11	9.2	9.4	30
SW6010	RESPIRABLE QUARTZ	ug/L	Υ	49000	53000	48000	63000	38000	22000	380000
SW6010	SELENIUM	mg/L	N	0.012 J	0.014 J	0.007	J 0.02 U	0.027	0.043	0.039
SW6010	SILVER	mg/L	N	0.0031 J	0.01 U	0.00089	U 0.01 U	0.00089	U 0.01 U	0.00089 U
SW6010	SODIUM)	mg/L	N	1700	1700	4600	8600	11000	11000	13000
SW6010	THALLIUM	mg/L		0.0088 U	0.025 U	0.0088	U 0.025 U	0.0088	U 0.025 U	0.0088 U
SW6010	VANADIUM	ug/L	N	590	460	1500	1100	560	640	3800
SW6010	ZINC	ug/L	N	13 J	20 U	23	19 J	10	J 20 U	41
SW7470	MERCURY	ug/L	N	87	37	53	32	1.9	2.2	92
SW7470	MERCURY	ug/L	Υ							
SW9034	SULFIDE	mg/L	N	21	10 U	67	40 U	14	10 U	18
SW9038	SULFATE	mg/L		55	43	370	50 U	150	12	100 U
SW9056	SULFATE	mg/L		- 33		3.0	300	150		_550
SW9040	pH P	S.U.	N	9.05 H	6.43 H	9.97	Н 6.85 Н	9.7	H 9.59 H	10.2 H
SW9056	CHLORIDE	mg/L		5.35	5.1511	3.37	2.00 11	3.7	2.55	
SW9251	CHLORIDE	mg/L		1700	1400	6200	7900	15000	14000	19000
JJLJ1	0.1201.102	11118/ L	1	1,00	1400	0200	, 500	13000	14000	15000

		Location	MW-508B	MW-508B	MW-510B	MW-510B	MW-511A	MW-511A	MW-511B
		Field Sample ID	MW-508B-022814	MW-508BDUP-022814	MW-510B-090313	MW-510B-022714	MW-511A-090413	MW-511A-030414	MW-511B-090313
		Sample Date	2/28/2014	2/28/2014	9/3/2013	2/27/2014	9/4/2013	3/4/2014	9/3/2013
		SDG	680-99043-1	680-99043-1	680-93870-1	680-99043-1	680-93870-1	680-99155-1	680-93870-1
		Matrix	WATER	WATER	WATER	WATER	WATER	WATER	WATER
		Sample Purpose	Regular sample	Field duplicate	Regular sample				
		Sample Type	Ground water	Ground water	Ground water	Ground water	Ground water	Ground water	Ground water
Method	Parameter Name	Units Filtered							
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/L N	2000	2000	1900	2600	720	2600	430
SM2320B	ALKALINITY, CARBONATE (AS CACO3)	mg/L N	1600	1700	2500	2100	50 U	25 U	3000
SM2320B	ALKALINITY, TOTAL	mg/L N	3600	3800	4500	4700	750	2700	3700
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L N	45000	42000	23000	25000	2400	3900	15000
	FERROUS IRON	ug/L N	4100 HF	8100 HF	5500 H	F 3200 HF	2500 HF	2300 HF	1200 HF
SM5310B	DISSOLVED ORGANIC CARBON	mg/L Y	1100	1100	970	1100	320	160	120
SM5310B	TOTAL ORGANIC CARBON	mg/L N	1100	1100	780	1100	240	140	120
	ALUMINUM	mg/L N	3.7	7.8	9.2	1.7	8.8	9.5	0.15 J
	ANTIMONY	ug/L N	5.9 J	20 U	5.3 U		5.3 U	20 U	5.3 U
SW6010	ARSENIC	mg/L N	0.021	0.052	0.14	0.074	0.014 J	0.01 J	0.11
	BARIUM	mg/L N	0.11	0.21	0.32	0.2	0.025	0.018	0.092
	BERYLLIUM	mg/L N	0.031	0.057	0.043	0.014	0.016	0.0097	0.0016 J
	CADMIUM	mg/L N	0.005 U	0.0021 J	0.002 U	0.005 U	0.002 U	0.005 U	0.002 U
	CALCIUM	mg/L N	5.4	10	25	21	4.3	3.3	5.4
SW6010	CHROMIUM	mg/L N	1.2	2.2	0.71	1	0.1	0.053	0.07
SW6010	COBALT	mg/L N	0.0043 J	0.0075 J	0.0023 J	0.0037 J	0.0021 J	0.01 U	0.0036 J
SW6010	COPPER	mg/L N	0.064	0.13	0.038	0.053	0.0057 J	0.0031 J	0.014 J
	IRON	mg/L N	1.3	2.4	6.1	2	4	3.1	1.4
SW6010	LEAD	mg/L N	0.01 U	0.0055 J	0.014	0.0045 J	0.029	0.011	0.0066 J
SW6010	MAGNESIUM	mg/L N	0.27 J	0.49 J	2.9	6.4	1.8	1.8	0.03 J
SW6010	MANGANESE	mg/L N	0.017	0.035	0.2	0.038	0.013	0.022	0.0085 J
SW6010	NICKEL	mg/L N	0.16	0.3	0.091	0.15	0.01 J	0.003 J	0.037 J
SW6010	POTASSIUM	mg/L N	17	43	32	17	3.4	9.7	7.7
	RESPIRABLE QUARTZ	ug/L Y	11000	11000	1600000	380000	64000	61000	2500000
SW6010	SELENIUM	mg/L N	0.029	0.066	0.033	0.036	0.0064 U	0.0088 J,B	0.016 J
SW6010	SILVER	mg/L N	0.01 U	0.01 U	0.00089 U	0.01 U	0.00089 U	0.01 U	0.00089 U
SW6010	SODIUM	mg/L N	6100	13000	9000	5500	740	1400	4400
SW6010	THALLIUM	mg/L N	0.025 U	0.025 U	0.0088 U	0.025 U	0.0088 U	0.025 U	0.0088 U
SW6010	VANADIUM	ug/L N	2400	4500	2100	2100	100	80	230
SW6010	ZINC	ug/L N	19 J	36	30	29	22	12 J	21
	MERCURY	ug/L N	40	35	97	72	3.9	0.28	160
	MERCURY	ug/L Y			-		3.5	1	
	SULFIDE	mg/L N	59	61	10 U				
	SULFATE	mg/L N	1300	1300	50 U		260	50 U	18
	SULFATE	mg/L N		,					
SW9040	Hq	S.U. N	9.69 H	9.7 H	10.3 H	9.74 H	5.69 H	6.95 H	11.5 H
	CHLORIDE	mg/L N						1	
SW9251	CHLORIDE	mg/L N	16000	18000	9500	9000	410	320	6400

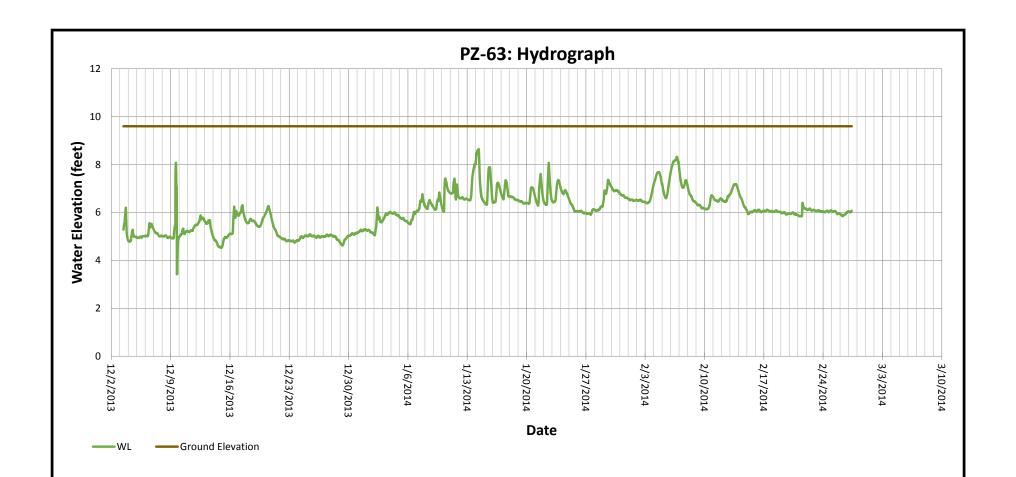
		T	Location	MW-511B	Т	MW-511B	MW-512A	MW-512A		MW-512B	MW-512B	MW-513A		MW-513A
			Field Sample ID	MW-511B2-090313		MW-511B-030414	MW-512A-082713	MW-512A-022714		MW-512B-082713	MW-512B-022714	MW-513A-082713		MW-513A-022514
			Sample Date	9/3/2013		3/4/2014	8/27/2013	2/27/2014	_	8/27/2013	2/27/2014	8/27/2013		2/25/2014
		+	SDG	680-93870-1		680-99155-1	680-93690-1	680-99043-1	_	680-93690-1	680-99043-1	680-93690-1		680-98941-1
		-							_					
			Matrix	WATER		WATER	WATER	WATER	_	WATER	WATER	WATER		WATER
		-	Sample Purpose	Field duplicate		Regular sample	Regular sample	Regular sample	_	Regular sample	Regular sample	Regular sample		Regular sample
			Sample Type	Ground water		Ground water	Ground water	Ground water	r	Ground water	Ground water	Ground water		Ground water
Method	Parameter Name		Filtered											
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/L		410		3400	390	1500	_	300	7400	750		1200
SM2320B	ALKALINITY, CARBONATE (AS CACO3)	mg/L		2900		2800	370		U	2300	59	25		50
SM2320B	ALKALINITY, TOTAL	mg/L		3700		6200	780	1500	_	2800	7500	760		1200
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L		14000		15000	1800	2400		9600	12000	3600		3600
SM3500-FeD	FERROUS IRON	ug/L		980	HF	410 H			_	1300 HF	1400 HF	20000		22000
SM5310B	DISSOLVED ORGANIC CARBON	mg/L		120		110	82	65		130	150	340		300
SM5310B	TOTAL ORGANIC CARBON	mg/L		120		83	86	66	_	140	91	410		270
SW6010	ALUMINUM	mg/L		0.16	J	0.2 U		17		0.25	0.2 U	56		45
SW6010	ANTIMONY	46/-	N	5.3	U	20 U	5.3 U		U	5.3 U	6.5 J	5.3	_	20
SW6010	ARSENIC	mg/L		0.11		0.038	0.011 J	0.015		0.043	0.015 J	0.038		0.04
SW6010	BARIUM	mg/L		0.093		0.062	0.02	0.043		0.12	0.12	0.23		0.19
SW6010	BERYLLIUM	mg/L	N	0.0016	J	0.00068 J	0.0053	0.0053	3	0.0018 J	0.0024 J	0.0021	J	0.003
SW6010	CADMIUM	mg/L	N	0.002	U	0.005 U	0.002 U	0.005	5 U	0.002 U	0.005 U	0.002	U	0.005
SW6010	CALCIUM	mg/L	N	5.4		4.7	4.9	6.9	9	8.2	46	4		3.9
SW6010	CHROMIUM	mg/L	N	0.069		0.063	0.055	0.093	3	0.071	0.12	0.15		0.17
SW6010	COBALT	mg/L	N	0.0033	J	0.01 U	0.0011 J	0.0021	l J	0.0045 J	0.01 U	0.0023	J	0.0035
SW6010	COPPER	mg/L	N	0.016	J	0.0058 J	0.0019 U	0.0037	7 J	0.011 J	0.0079 J	0.0098	J	0.021
SW6010	IRON	mg/L	N	1.4		0.61	5.6	9.5	5	1.2	1.6	32		25
SW6010	LEAD	mg/L	N	0.0074	J	0.01 U	0.0065 J	0.019	9	0.014	0.01 U	0.12		0.14
SW6010	MAGNESIUM	mg/L	N	0.027	J	0.56	1.5	3	3	0.014 J	23	0.42	J	0.72
SW6010	MANGANESE	mg/L	N	0.0089	J	0.0029 J	0.03	0.049	9	0.01	0.028	0.024		0.048
SW6010	NICKEL	mg/L	N	0.037	J	0.029 J	0.006 J	0.0097	7 J	0.03 J	0.025 J	0.012	J	0.017
SW6010	POTASSIUM	mg/L	N	9		15	2.1	3.9	9	3.2	26	1.4		2.4
SW6010	RESPIRABLE QUARTZ	ug/L	Υ	2500000		820000	160000	100000)	1800000	62000	55000		40000
SW6010	SELENIUM	mg/L	N	0.012	J	0.024 B	0.0064 U	0.0081	l J	0.0064 U	0.026	0.0087	J	0.014
SW6010	SILVER	mg/L	N	0.00089	U	0.01 U	0.00089 U	0.01	ιU	0.00089 U	0.01 U	0.00089	U	0.01
SW6010	SODIUM	mg/L	N	4600		7100	500	840)	2000	6200	760		960
SW6010	THALLIUM	mg/L	N	0.0088	U	0.025 U	0.0088 U	0.025	5 U	0.0088 U	0.025 U	0.0088	U	0.025
SW6010	VANADIUM	ug/L	N	230		240	71	85	5	160	200	350		300
SW6010	ZINC		N	21		10 J	29	42	2	17 J	13 J	50		42
SW7470	MERCURY		N	160		82	0.8	0.2	2 U	85	30	82		32
SW7470	MERCURY	ug/L	Υ	100			0.63	0.095		33	30			32
SW9034	SULFIDE	mg/L	N	10	U	10 U			υ	10 U	40 U	11		10
SW9038	SULFATE	mg/L		19	Ħ	100	1	22	_		6.9			47
SW9056	SULFATE	mg/L		13			44		+	160	2.0	39	\vdash	.,
SW9040	pH		N	11.5	н	9.84 H		8.62	2 н	11.4 H	7.21 H	7.54		6.31
SW9056	CHLORIDE	mg/L		11.5	H	3.04 11	120	0.02	Ť.	3400	7.21	510	-	0.51
SW9251	CHLORIDE	mg/L		6300		6200	120	110		3.50	5100	310		640
J V V J Z J I	CHECKIDE	Img/L	[14	0300		0200		110	_		2100	1		040

		Location	П	MW-513B	MW-513B	\neg	MW-513B	MW-514A	MW-514A	MW-514A	MW-514B
		Field Sample ID	\vdash	MW-513B-082713	MW-513B2-082713	+	MW-513B-022514	MW-514A-082813	MW 514A-121113	MW-514A-022814	MW-514B-082813
		Sample Date	\vdash	8/27/2013	8/27/2013	+	2/25/2014	8/28/2013	12/11/2013	2/28/2014	8/28/2013
		SDG SDG	\vdash	680-93690-1	680-93690-1	+	680-98941-1	680-93690-1	680-97103-1	680-99043-1	680-93690-1
		Matrix	\vdash	WATER	WATER	+	WATER	WATER	WATER	080-99043-1 WATER	WATER
			\vdash			+					
		Sample Purpose	\vdash	Regular sample	Field duplicate	_	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample
		Sample Type	H	Ground water	Ground water	_	Ground water	Ground water	Ground water	Ground water	Ground water
Method	Parameter Name	Units Filtered	\vdash			_					
	ALKALINITY, BICARBONATE (AS CACO3)	mg/L N		380	380		4900	250		2700	240
	ALKALINITY, CARBONATE (AS CACO3)	mg/L N	U	1600	1600	_	50 U	990		25 L	
	ALKALINITY, TOTAL	mg/L N		2100	2100		4900	1300		2700	1500
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L N		6700	6900	_	11000	2500		3700	5300
	FERROUS IRON	ug/L N	HF	6600 HF	6700 H	lF	17000 HF			2800 H	
SM5310B	DISSOLVED ORGANIC CARBON	mg/L Y		250	250		220	49		33	35
SM5310B	TOTAL ORGANIC CARBON	mg/L N		250	250		210	50		33	35
SW6010	ALUMINUM	mg/L N		9.1	11		3.1	1.1		0.4	4.4
SW6010	ANTIMONY	ug/L N	U	5.3 U	5.3 U	J	20 U	5.3 U		20 L	J 5.3 U
SW6010	ARSENIC	mg/L N		0.082	0.086		0.019 J	0.013 J		0.0065 J	0.042
SW6010	BARIUM	mg/L N		0.36	0.38		0.22	0.058		0.025	0.23
SW6010	BERYLLIUM	mg/L N	J	0.012	0.013	П	0.017	0.00064 J		0.00049 J	0.0023 J
SW6010	CADMIUM	mg/L N	U	0.002 U	0.002 U	J	0.005 U	0.002 U		0.005 L	J 0.002 U
SW6010	CALCIUM	mg/L N		16	17	T	22	2.7		8.8	7.4
SW6010	CHROMIUM	mg/L N		0.25	0.28		0.27	0.012		0.017	0.045
SW6010	COBALT	mg/L N	J	0.012	0.014	1	0.0021 J	0.00095 U		0.01 L	J 0.0064 J
SW6010	COPPER	mg/L N	Ħ	0.029	0.036	\top	0.019 J	0.0035 J		0.0027 J	0.011 J
SW6010	IRON	mg/L N	H	10	12	\top	19	1.2		5.9	5.1
SW6010	LEAD	mg/L N	\Box	0.057	0.059	_	0.017	0.012		0.0049 J	0.042
SW6010	MAGNESIUM	mg/L N	H	0.99	1.1	1	7.2	0.14 J		2.2	0.61
SW6010	MANGANESE	mg/L N	\Box	0.13	0.13	\top	0.35	0.0087 J		0.094	0.039
SW6010	NICKEL	mg/L N		0.064	0.069	\dashv	0.041	0.0063 J		0.04 L	
SW6010	POTASSIUM	mg/L N		4.2	4.6	\dashv	10	1.2		1.8	7.6
SW6010	RESPIRABLE QUARTZ	ug/L Y	\vdash	750000	810000	+	220000	610000		100000	960000
SW6010	SELENIUM	mg/L N	,	0.0083 J	0.0067 J	+	0.02 U	0.0082 J		0.011 J	0.0064 U
SW6010	SILVER	mg/L N	U	0.0089 U	0.0007 J		0.02 U	0.0082 J		0.011	
SW6010	SODIUM	mg/L N	0	1900	2000	+	2500	860		1700	1600
			U			. +					
SW6010	THALLIUM	mg/L N	U	0.0088 U 530	0.0088 U 560	+	0.025 U	0.0088 U		0.025 (
SW6010	VANADIUM ZINC	ug/L N	\vdash			+	450	44		23	84
SW6010		ug/L N	\vdash	64	71	+	23	10 J	400		
SW7470	MERCURY	ug/L N	\vdash	12	14	+	11	350	120	47	40
-	MERCURY	ug/L Y				4					
SW9034	SULFIDE	mg/L N	U	11	19	4	10 U	10 U		10 (J 10 U
	SULFATE	mg/L N	\sqcup			4	5 U			7.5	
SW9056	SULFATE	mg/L N	Ш	42	42	4		250 U			250 U
SW9040	рН	S.U. N	Н	11.1 H	11.1 H	1	6.94 H	11.4 H		7.18 F	
SW9056	CHLORIDE	mg/L N	Ш	1500	1500	_		310 J			1600
SW9251	CHLORIDE	mg/L N					1900			320	

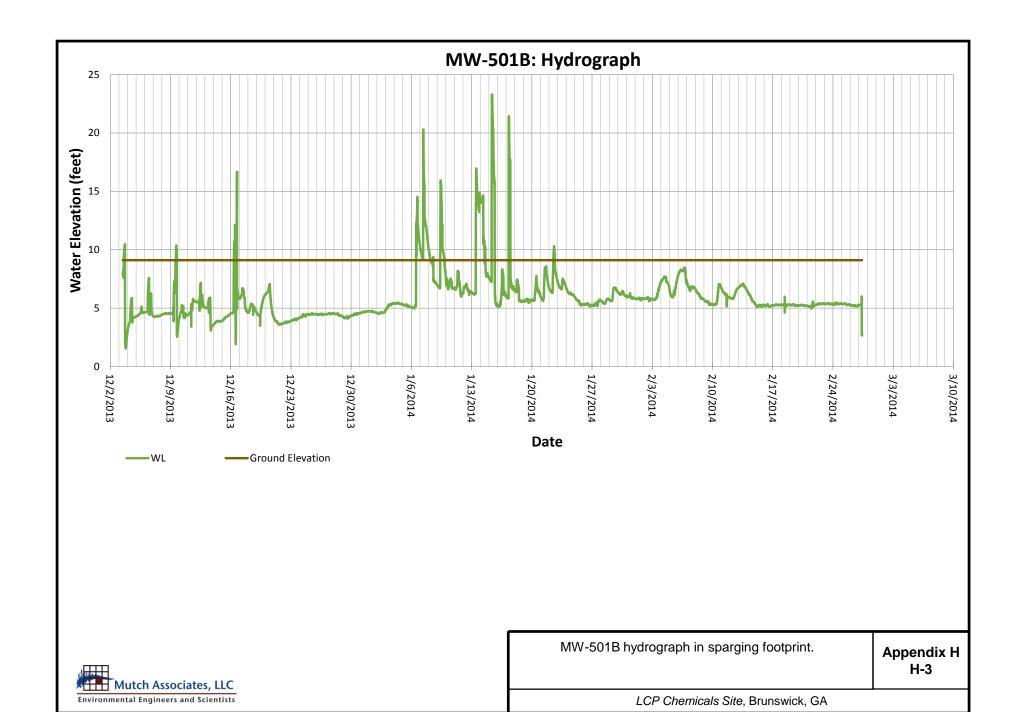

			Location	MW-514B	MW-515B	MW-515B	MW-516A	MW-516A	MW-516B	MW-516B	MW-517A
			Field Sample ID	MW-514B-022814	MW-515B-090313	MW-515B-022514	MW-516A-082813	MW 516 A-022514	MW-516B-082813	MW 516 B-022514	MW-517A-090513
			Sample Date	2/28/2014	9/3/2013	2/25/2014	8/28/2013	2/25/2014	8/28/2013	2/25/2014	9/5/2013
			SDG	680-99043-1	680-93870-1	680-98941-1	680-93690-1	680-98941-1	680-93690-1	680-98941-1	680-93954-1
			Matrix	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
			Sample Purpose	Regular sample	Regular sample	Regular sample	Regular sample				
			Sample Type	Ground water	Ground water	Ground water	Ground water				
Method	Parameter Name	Units	Filtered	Ground water	Ground water	Ground water	Ground water				
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)		riitereu	1800	950	3300	740	2400	520	960	930
	, , ,	mg/L	N N	25 U		280					
SM2320B	ALKALINITY, CARBONATE (AS CACO3)	mg/L	N N		1600	3600	910 1700	50 U	3700	3300	100
SM2320B	ALKALINITY, TOTAL	mg/L	N	1800	2600			2400	4400	4500	1000
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L	N	4200	12000	9300	6700	6100	25000	16000	3900
SM3500-FeD	FERROUS IRON	ug/L	N	27000 HF	1800 HF	4500 HF	1900 HF	3000 HF			
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	29	290	360	210	190	230	240	200
SM5310B	TOTAL ORGANIC CARBON	mg/L	N	29	360	310	230	170	240	200	200
SW6010	ALUMINUM	mg/L	N	0.36	0.47	0.56	0.91	3.1	0.1 U		0.6
SW6010	ANTIMONY	ug/L	N	5.6 J	5.3 U	20 U	5.3 U	20 U	5.3 U		
SW6010	ARSENIC	mg/L	N	0.02 U	0.048	0.039	0.027	0.034	0.056	0.019 J	0.019 J
SW6010	BARIUM	mg/L	N	0.02	0.067	0.042	0.087	0.13	0.0043 J	0.01 U	0.18
SW6010	BERYLLIUM	mg/L	N	0.00081 J	0.0089	0.017	0.024	0.02	0.0011 J	0.0011 J	0.02
SW6010	CADMIUM	mg/L	N	0.005 U	0.002 U	0.005 U	0.002 U	0.005 U	0.002 U	0.0022 J	0.002 U
SW6010	CALCIUM	mg/L	N	12	13	17	5.6	20	2.8	2.9	12
SW6010	CHROMIUM	mg/L	N	0.032	0.27	0.31	0.062	0.15	0.19	0.18	0.048
SW6010	COBALT	mg/L	N	0.01 U	0.0023 J	0.01 U	0.00095 U	0.01 U	0.0011 J	0.01 U	0.00095 U
SW6010	COPPER	mg/L	N	0.02 U	0.018 J	0.018 J	0.0019 U	0.0038 J	0.046	0.044	0.0019 U
SW6010	IRON	mg/L	N	36	1.7	3.3	0.67	2.9	1.2	1.1	2.4
SW6010	LEAD	mg/L	N	0.01 U	0.014	0.014	0.0076 J	0.017	0.004 U	0.0059 J	0.004 U
SW6010	MAGNESIUM	mg/L	N	3.7	0.029 J	2	0.22 J	6.5	0.026 J	0.02 J	2
SW6010	MANGANESE	mg/L	N	0.78	0.02	0.11	0.013	0.064	0.002 U	0.01 U	0.03
SW6010	NICKEL	mg/L	N	0.04 U	0.054	0.049	0.011 J	0.014 J	0.055	0.053	0.0065 J
SW6010	POTASSIUM	mg/L	N	5.5	8.4	11	1.4	2.3	40	32	1.3
SW6010	RESPIRABLE QUARTZ	ug/L	Υ	150000	800000	180000	16000	51000	1400000	1400000	27000
SW6010	SELENIUM	mg/L	N	0.02 U	0.0099 J	0.02 U	0.0081 J	0.013 J	0.022	0.01 J	0,0064 U
SW6010	SILVER	mg/L	N	0.01 U	0.00089 U	0.01 U	0.00089 U	0.01 U	0.026	0.001 J	0.00089 U
SW6010	SODIUM	mg/L	N	1300	3800	4200	2400	2300	9000	8400	1700
SW6010	THALLIUM	mg/L	N	0.025 U	0.0088 U	0.025 U	0.0088 U	0.025 U	0.0088 U		
SW6010	VANADIUM	ug/L	N.	23	420	420	370	290	900	870	270
SW6010	ZINC	ug/L	N.	20 U	18 J	12 J	12 J	12 J	19 J	26	8.7 U
SW7470	MERCURY	ug/L ug/L	N N	4.1	30	10	16	84	34	37	73
SW7470	MERCURY	ug/L ug/L	V	4.1	30	10	10	64	34	37	/3
SW9034	SULFIDE	mg/L	NI NI	10 U	16	10 U	11	10 U	16	10 U	10 U
SW9034 SW9038	SULFATE		N N	10 0	65	25 U	11	42	16	430	64
		mg/L	IN .	18	65	25 0		42		430	64
SW9056	SULFATE	mg/L	N 		40.5	0.01	52		790		1
SW9040	pH	S.U.	N .	6.75 H	10.3 H	8.81 H	10.2 H	6.44 H	11.3 H	11.2 H	9.11 H
SW9056	CHLORIDE	mg/L	N				2300		13000		+
SW9251	CHLORIDE	mg/L	N	1100	4900	4400		2300		11000	2200

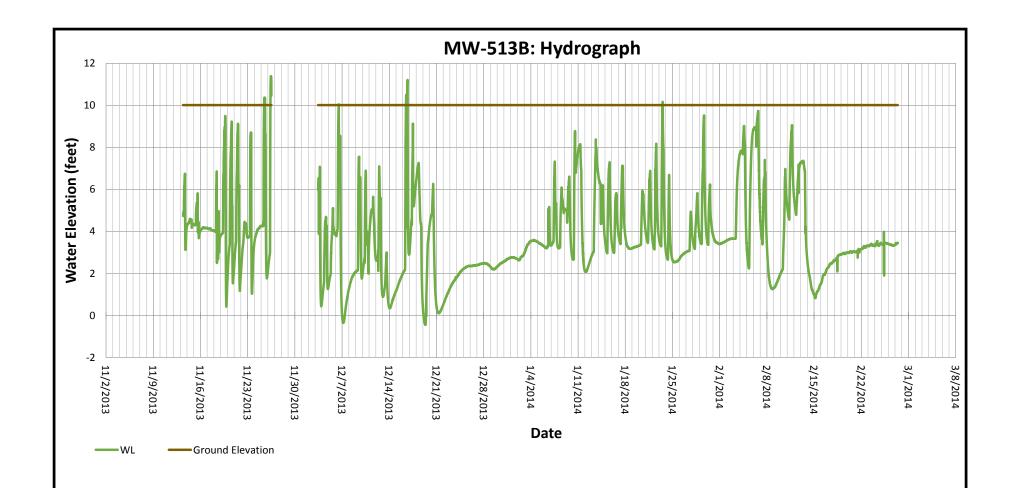
		_	Location	MW-517A	MW-517A	MW-517B	MW-517B	MW-517B	MW-518A	MW-518A
		_	Field Sample ID	MW 517A-121213	MW-517-A-022514	MW-517B-082613	MW-517B2-082613	MW-517-B-022514	MW-518A-082813	MW-518A2-082813
			Sample Date SDG	12/12/2013 680-97103-1	2/25/2014 680-98941-1	8/26/2013 680-93690-1	8/26/2013 680-93690-1	2/25/2014 680-98941-1	8/28/2013 680-93690-1	8/28/2013 680-93690-1
			Matrix	WATER	WATER	WATER	WATER	WATER	WATER	WATER
			Sample Purpose	Regular sample	Regular sample	Regular sample	Field duplicate	Regular sample	Regular sample	Field duplicate
			Sample Type	Ground water	Ground water	Ground water	Ground water	Ground water	Ground water	Ground water
	Parameter Name	Units								
	ALKALINITY, BICARBONATE (AS CACO3)	mg/L			1900	1600	1400	5000	4400	4400
	ALKALINITY, CARBONATE (AS CACO3)	mg/L			50 U	1500	1800	50 U	7000	6900
	ALKALINITY, TOTAL	mg/L			1900	3200	3300	5100	11000	11000
	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L	N		4800	14000	13000	13000	5900	7200
SM3500-FeD	FERROUS IRON	ug/L	N		6300 HF	2300 H	HF 2600 H	F 7900 HF	690 HF	860 HF
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ		160	250 E		240	230	230
SM5310B	TOTAL ORGANIC CARBON	mg/L	N		140	260	260	330	240	230
SW6010	ALUMINUM	mg/L	N		2	0.1 \	J 0.11 J	0.16 J	11	12
SW6010	ANTIMONY	ug/L	N		20 U	5.3 L	J 5.3 U	20 U	5.3 U	5.3 U
SW6010	ARSENIC	mg/L	N		0.018 J	0.038	0.045	0.02 U	0.025	0.03
SW6010	BARIUM	mg/L	N		0.13	0.043	0.042	0.026	0.046	0.046
SW6010	BERYLLIUM	mg/L	N		0.0098	0.0047	0.0051	0.0047	0.017	0.017
SW6010	CADMIUM	mg/L	N		0.005 U	0.002 L	J 0.002 U	0.0023 J	0.002 U	0.002 U
SW6010	CALCIUM	mg/L	N		16	13	13	24	7	7.1
SW6010	CHROMIUM	mg/L	N		0.12	0.16	0.36	0.42	0.22	0.22
	COBALT	mg/L			0.01 U	0.00095 L		0.01 U	0.0043 J	0.0039 J
SW6010	COPPER	mg/L			0.0019 J	0.0019 L	J 0.02	0.017 J	0.011 J	0.011 J
	IRON	mg/L			6.7	1.3	1.6	9.4	0.69	0.64
	LEAD	mg/L			0.02	0.0069 J	0.011	0.01 U	0.024	0.024
	MAGNESIUM	mg/L			5	1	1	28	0.16 J	0.16 J
	MANGANESE	mg/L			0.075	0.03	0.03	0.2	0.025	0.025
	NICKEL	mg/L			0.0078 J	0.025 J	0.064	0.035 J	0.032 J	0.032 J
	POTASSIUM	mg/L			2	11	11	34	2.8	2.8
	RESPIRABLE QUARTZ	ug/L	v		59000	350000	370000	69000	15000	15000
	SELENIUM	mg/L	NI NI		0.015 J	0.01 J	0.02	0.02 U	0.018 J	0.018 J
	SILVER	mg/L			0.013 J	0.0035 J	0.0032 J	0.02 U	0.0014 J	0.0014 J
	SODIUM	mg/L			2000	5700	5500	6900	2500	2600
	THALLIUM	mg/L			0.025 U	0.0088 L		0.025 U	0.0088 U	0.0088 U
			N					620	0.0088 U	
	VANADIUM ZINC	ug/L	1	-	170	680	790			270
	-	ug/L	N	2.1	20 U	15 J	20	9.1 J	8.7 U	9.6 J
	MERCURY	ug/L	N	3.4	36	92	35	14	16	17
	MERCURY	ug/L	Y							
	SULFIDE	mg/L			10 U	26	26	40 U	17	17
	SULFATE	mg/L			26			5 U		
	SULFATE	mg/L				370	330		49	25
	рН	S.U.	N		6.38 H	9.96 H		6.72 H	10.3 H	10.3 H
	CHLORIDE	mg/L				6100	6000		2400	2300
SW9251	CHLORIDE	mg/L	N		1900			6900		

_					, ,		1	,		
		Location	MW-518A	MW-518B	MW-518B	MW-518B	MW-519A	MW-519A	MW-519B	MW-519B
		Field Sample ID	MW-518A-030314	MW-518B-082813	MW 518B-121113	MW-518B-030314	MW-519A-082713	MW-519A-022414	MW-519B-082713	MW-519B-022414
		Sample Date	3/3/2014	8/28/2013	12/11/2013	3/3/2014	8/27/2013	2/24/2014	8/27/2013	2/24/2014
		SDG	680-99155-1	680-93690-1	680-97103-1	680-99155-1	680-93690-1	680-98941-1	680-93690-1	680-98941-1
		Matrix	WATER							
		Sample Purpose	Regular sample							
		Sample Type	Ground water							
Method	Parameter Name	Units Filtered								
SM2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/L N	2500	800		3800	1900	1700	6000	7500
SM2320B	ALKALINITY, CARBONATE (AS CACO3)	mg/L N	50 U	2100		50 U	25 U	50 L	J 78	50 U
SM2320B	ALKALINITY, TOTAL	mg/L N	2500	3000		3800	1900	1700	6100	7500
SM2540C	TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	mg/L N	6500	13000		8500	5000	3700	36000	17000
SM3500-FeD	FERROUS IRON	ug/L N	1100 HF	2300 HF		10000 HF	2800 HF	4100 H	HF 2800	HF 8000 HF
SM5310B	DISSOLVED ORGANIC CARBON	mg/L Y	230	360		280	170	180	310	310
SM5310B	TOTAL ORGANIC CARBON	mg/L N	200	380		210	180	220	350	320
SW6010	ALUMINUM	mg/L N	9.1	0.28		0.38	1.4	1.8	0.5	J 0.15 J
SW6010	ANTIMONY	ug/L N	20 U	5.3 U		20 U	5.3 U	20 L	J 27	U 20 U
SW6010	ARSENIC	mg/L N	0.022	0.044		0.031	0.011 J	0.014 J	0.023	U 0.1 U
SW6010	BARIUM	mg/L N	0.061	0.086		0.15	0.031	0.049	0.12	0.2
SW6010	BERYLLIUM	mg/L N	0.014	0.013		0.021	0.0073	0.01	0.0033	
SW6010	CADMIUM	mg/L N	0.005 U	0.002 U		0.005 U	0.002 U	0.005 L		
SW6010	CALCIUM	mg/L N	12	15		35	12	11	9.6	23
SW6010	CHROMIUM	mg/L N	0.16	0.31		0.38	0.065	0.085	0.26	0.33
SW6010	COBALT	mg/L N	0.0019 J	0.0015 J		0.01 U	0.00095 U	0.01 L		
SW6010	COPPER	mg/L N	0.0061 J	0.016 J		0.0062 J	0.0019 U	0.02 L		
SW6010	IRON	mg/L N	0.84	1.3		9.9	2.5	4.4	2.9	9.3
SW6010	LEAD	mg/L N	0.014	0.0077 J		0.01 U	0.004 J	0.0082 J	0.02	
SW6010	MAGNESIUM	mg/L N	2.6	0.033 J		15	3.2	4.3	6.7	13
SW6010	MANGANESE	mg/L N	0.23	0.021		0.14	0.033	0.042	0.082	0.23
SW6010	NICKEL	mg/L N	0.021 J	0.05		0.025 J	0.0032 J	0.0043 J	0.015	0.014 J
SW6010	POTASSIUM	mg/L N	3.7	5.6		6.6	1.6	1.5	44	44
SW6010	RESPIRABLE QUARTZ	ug/L Y	25000	370000		75000	41000	45000	61000	51000
SW6010	SELENIUM	mg/L N	0.021 B	0.012 J		0.015 J,B	0.0091 J	0.015 J	0.11	0.02 U
SW6010	SILVER	mg/L N	0.01 U	0.0012 J		0.013 J,B	0.0031 J	0.013		
SW6010	SODIUM	mg/L N	2800	5400		4500	2000	1700	17000	14000
SW6010	THALLIUM	mg/L N	0.025 U	0.0088 U		0.025 U	0.0088 U	0.025 L		
SW6010	VANADIUM	ug/L N	240	670		370	150	150	540	420
SW6010	ZINC	ug/L N	240 U	12 J		20 U	8.7 U	20 L		
SW7470	MERCURY	ug/L N	4.7	53	73	4.8	2.2	2.9	31	15
			4.7	53	/3	4.8	2.2	2.9	31	15
SW7470	MERCURY	ug/L Y	10	20		40	4-	40.		40.11
SW9034	SULFIDE	mg/L N	18	28		10 U	17	10 L	J 20	
SW9038	SULFATE	mg/L N	100 U			76		15		1200
SW9056	SULFATE	mg/L N		390		-	25 U		1300	
SW9040	pH	S.U. N	7.32 H	10.7 H		6.64 H	6.72 H	6.72 H		H 6.87 H
SW9056	CHLORIDE	mg/L N		5800			2200		19000	
SW9251	CHLORIDE	mg/L N	2700			4700		1700		16000

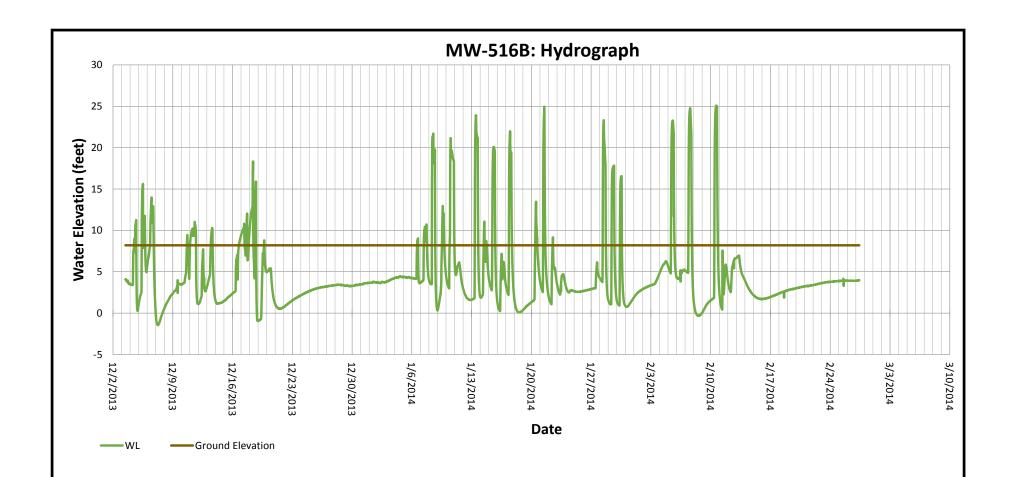

Appendix H:

Hydrographs for Observation Wells During Aquifer Testing

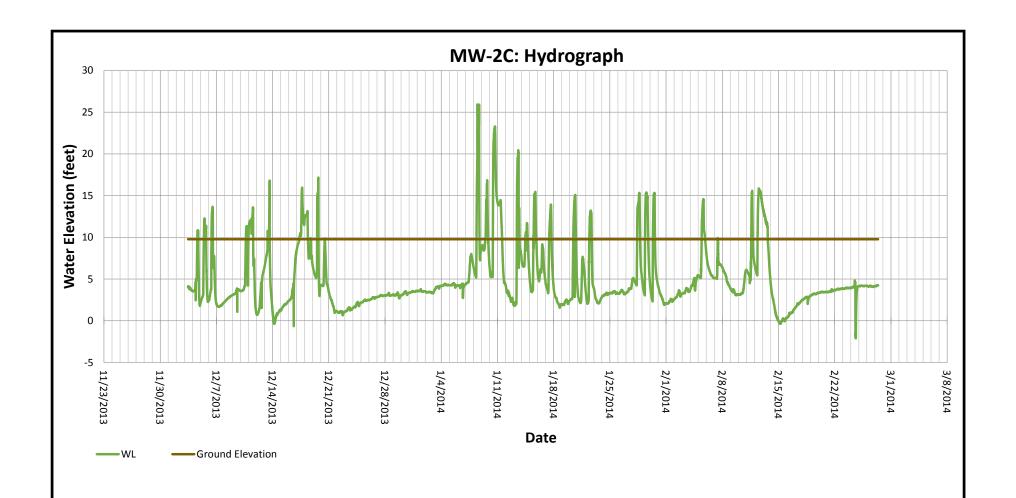



Barologger hydrograph.	Appendix H H-1
LCP Chemicals Site, Brunswick, GA	

PZ-63 hydrograph in sparging footprint.	Appendix H H-2
LCP Chemicals Site, Brunswick, GA	

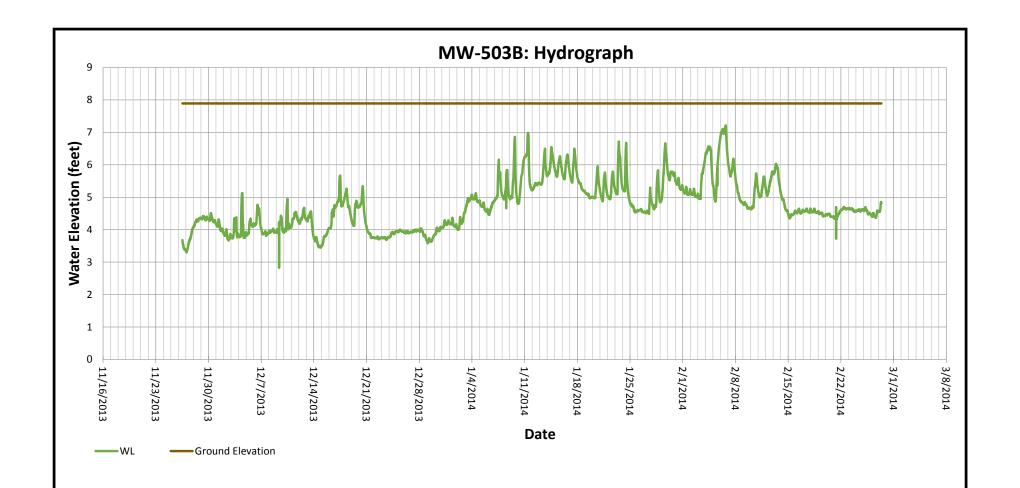


MW-513B hydrograph in sparging footprint.

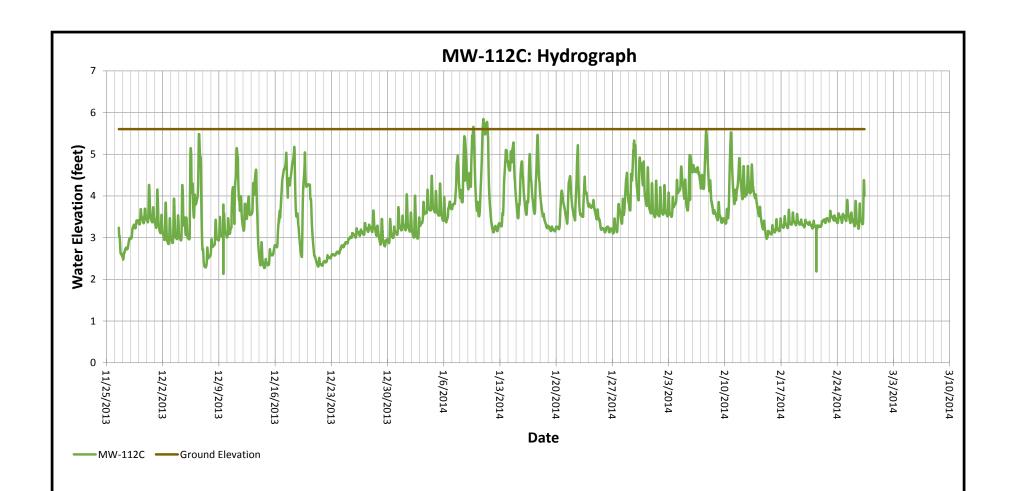

Appendix H
H-4

LCP Chemicals Site, Brunswick, GA

MW-516B hydrograph in sparging footprint.	Appendix H H-5
LCP Chemicals Site. Brunswick, GA	_

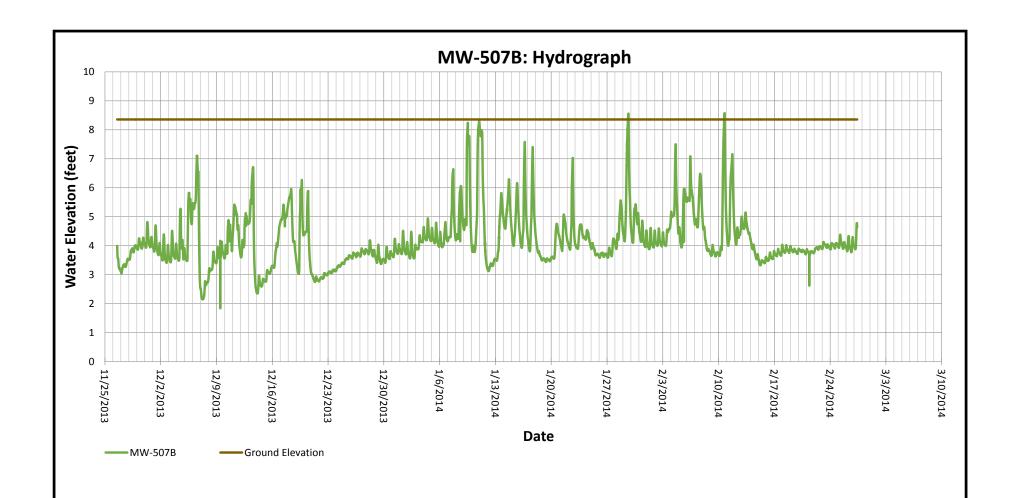


MW-2C hydrograph in sparging footprint.


Appendix H
H-6

LCP Chemicals Site, Brunswick, GA

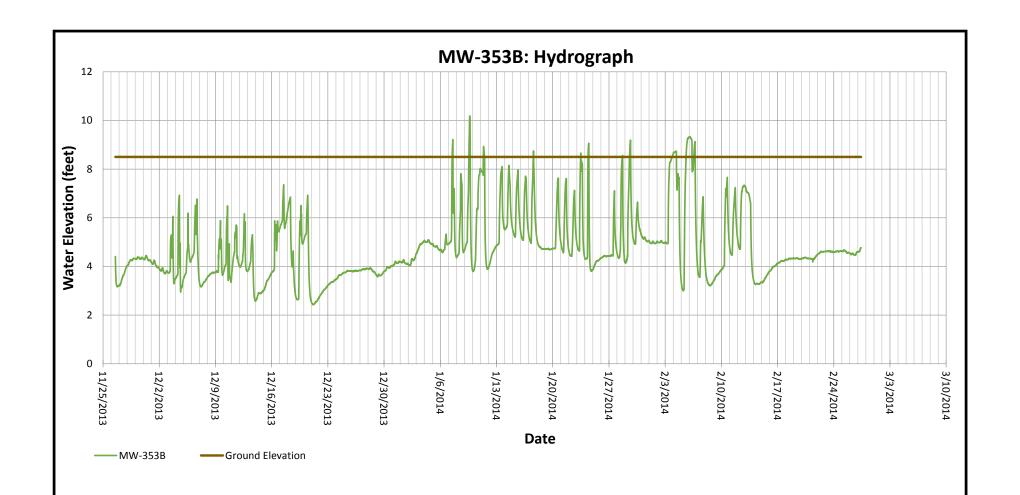
MW-503B hydrograph west of sparging footprint.	Appendix H H-7
LCP Chemicals Site, Brunswick, GA	-



MW-112C hydrograph west of sparging footprint.

Appendix H H-8

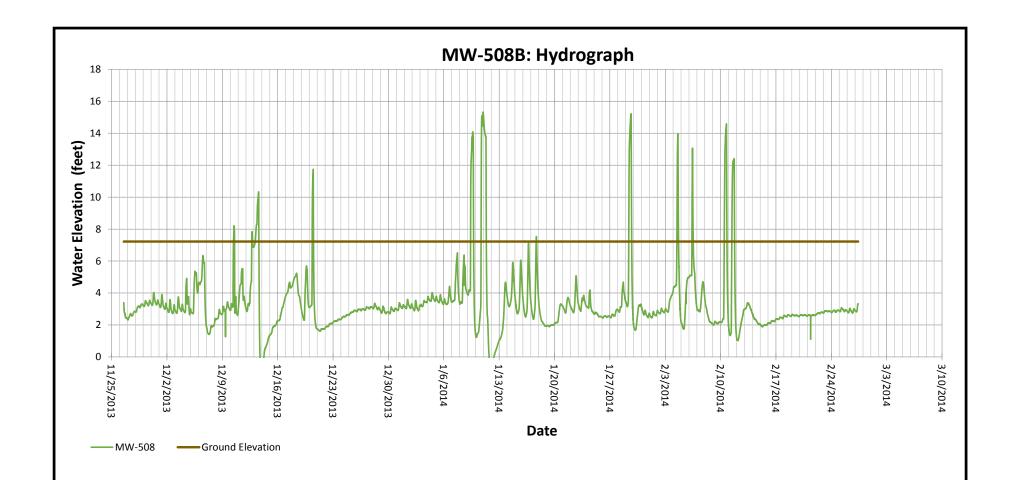
LCP Chemicals Site, Brunswick, GA



MW-507B hydrograph west of sparging footprint.

Appendix H
H-9

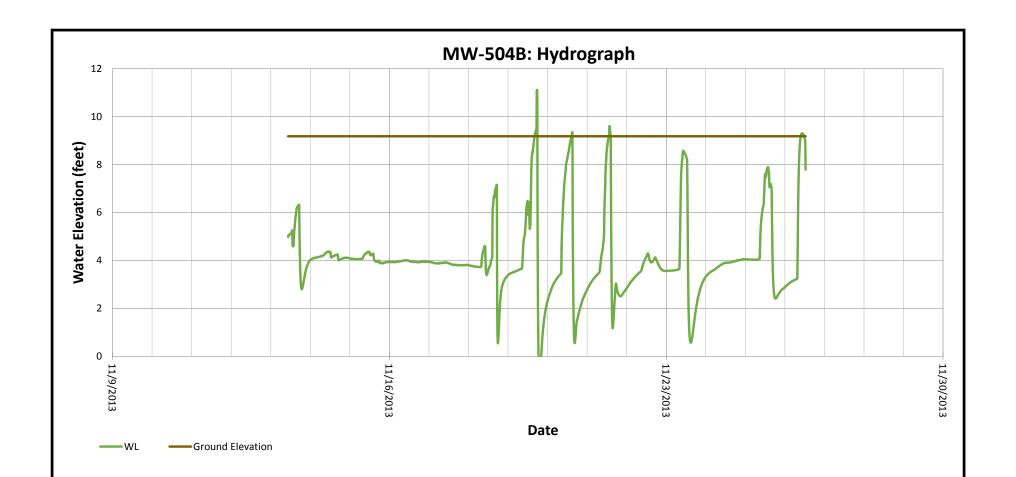
LCP Chemicals Site, Brunswick, GA



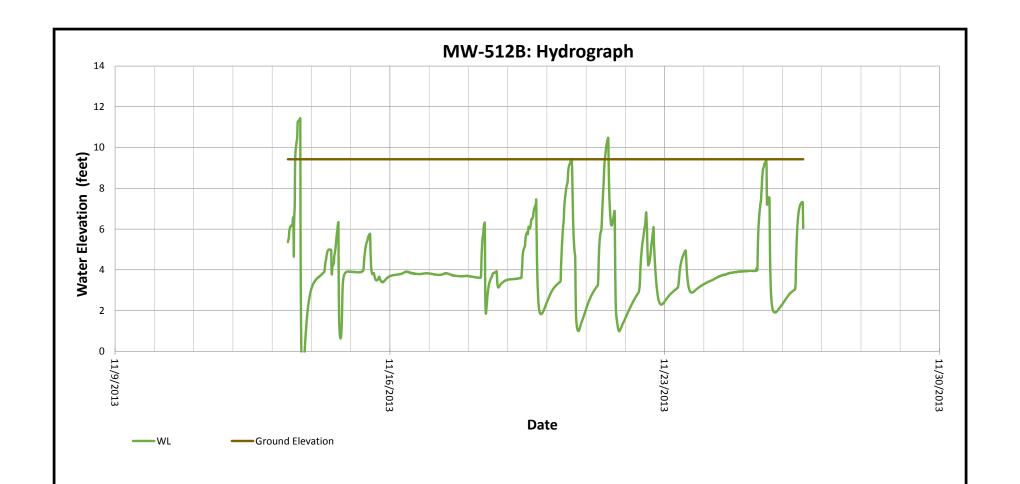
MW-353B hydrograph west of sparging footprint.

Appendix H H-10

LCP Chemicals Site, Brunswick, GA

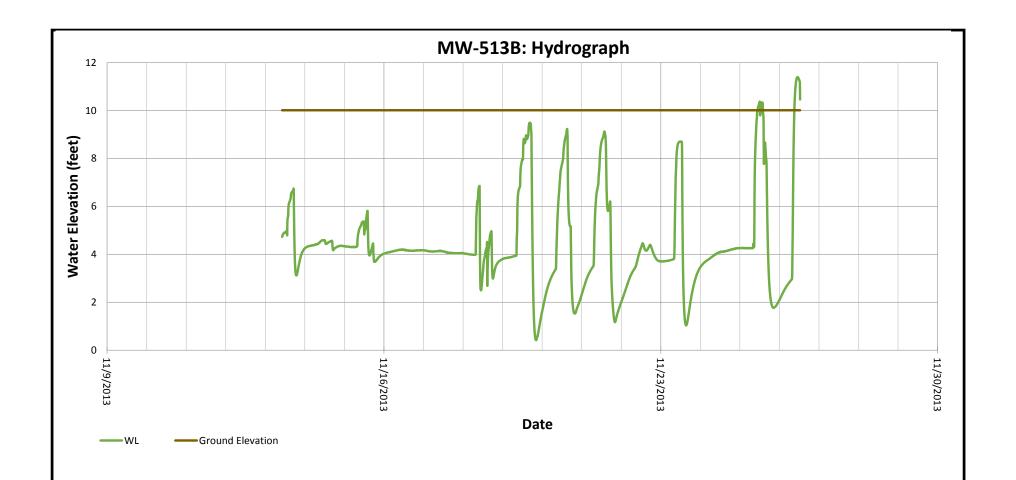


MW-508B hydrograph west of sparging footprint.


Appendix H
H-11

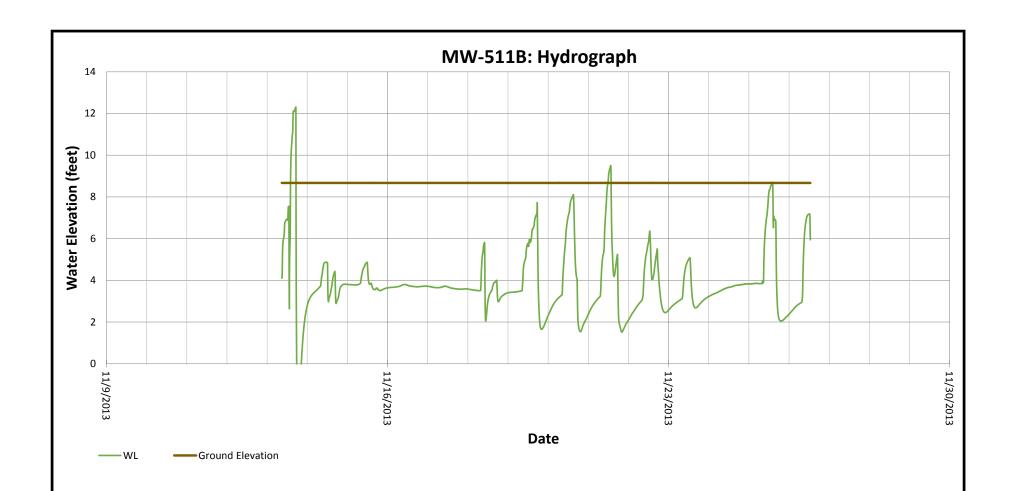
LCP Chemicals Site, Brunswick, GA

MW-504B break-in period hydrograph.	Appendix H H-12
LCP Chemicals Site, Brunswick, GA	<u> </u>

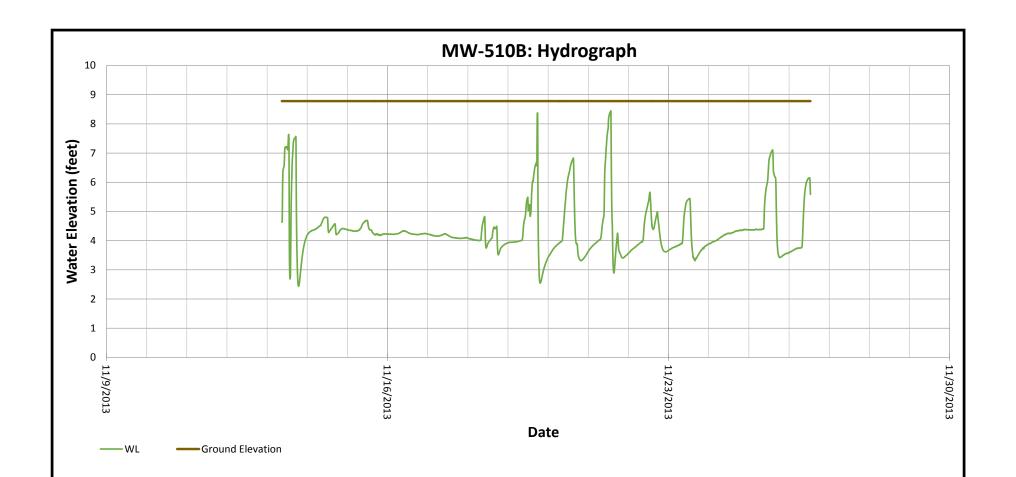


MW-512B break-in period hydrograph.

Appendix H H-13


LCP Chemicals Site, Brunswick, GA

MW-513B break-in period hydrograph.


Appendix H
H-14

MW-511B break-in period hydrograph.

Appendix H
H-15

MW-510B break-in period hydrograph.	Appendix H H-16
LCP Chemicals Site, Brunswick, GA	