


American Electric Power Advanced Coal Technology Development

Frank E. Blake New Generation Licensing American Electric Power

Clean Air Act Advisory Committee Advanced Coal Technologies Workgroup Meeting February 8, 2007

American Electric Power

- Customers: ~5 million
- Service Territory: 11 States
- Transmission Lines: ~39,000 miles
- Distribution Lines: ~210,000 miles
- Generating Capacity: ~36,000 MW
- Annual Coal Use: ~75 million tons

The Need for New Generation

- AEP committed to providing reliable, affordable, and sustainable electricity.
- Electricity demand continues to increase across the AEP system.
- AEP has not added baseload capacity since 1991.
- Evaluating new generation options from various energy sources.
- Advanced Coal Technologies are a key component of new baseload capacity.

AEP New Generation Activities

- New Generation program to meet current and future demand.
- Increase System Capacity through acquisition and construction.
- 310 MW of wind generation assets constructed since 2001.
- >2900 MW of existing natural gas generating capacity acquired since 2005.
- >1100 MW of new natural gas generating capacity being developed.
- AEP West: Developing two Ultra-Super Critical units using sub-bituminous coal.
- AEP East: Developing two IGCC units using bituminous coal.

Why Pursue Advanced Coal Technologies?

- 2004 Report to AEP Shareholders: "An Assessment of AEP's Actions to Mitigate the Economic Impacts of Emissions Policies."
- The report evaluates AEP efforts to mitigate the economic impacts of increasing:
 - Regulatory requirements;
 - Competitive pressures;
 - Public expectations to significantly reduce CO₂ and other emissions.
- •Central Challenge facing AEP as identified in report:
 - "...Making large investments in long-lived assets in a setting of uncertain public policy and rapidly evolving technology...."
- The report recommends AEP pursue the following:
 - Forceful advocacy of efficient control programs;
 - Proactive leadership on technology development and implementation;
 - Discipline in capital allocation;
 - Continued transparency of action;
 - Declared commitment to be an industry leader & first-mover in advancing IGCC;

Advantages of Advanced Coal Technologies

- Enhanced Environmental Profiles.
- Increased Process Efficiencies.
- Increased Flexibility for Using Affordable Domestic Fuel Options.
- Polygeneration Opportunities. (electricity, chemicals, hydrogen, etc.)
- Cost-effective options for reducing CO₂ emissions.
- Promises vs. Current Capabilities of Advanced Coal Technologies.

Challenges to Advanced Coal Technology Development

- Cost-effective strategies to manage first of a kind risks.
- Availability of guarantees that reduce technology and performance risks.
- IGCC performance guarantees that support baseload utility operations (high availability, predictable O&M, competitive life-cycle costs, etc.)
- Commercially available and cost-effective IGCC processes for lower rank coals.

AEP IGCC Program

- Working with GE and Bechtel to develop IGCC projects in Ohio and West Virginia.
- Phased approach to manage risks incrementally.

- Phase I: Feasibility Study

- Phase II: Front-End Engineering and Design

- Phase III: Engineering Procurement and Construction

- Phase IV: Commercial Operations

- Current Configuration:
 - Nominal net output ~ 620 MW
 - High availability factor for baseload operation.
 - Turndown capabilities to support load following operations.
 - Broad fuel specification.
 - Radiant quench gasifier design.
 - Turbine Generators: 2 x 2 x 1 design.
 - Emission Control System: AGR system; activated carbon bed; syngas saturation; nitrogen diluent;
 - Space provisions for CO₂ capture and polygeneration opportunities.

AEP IGCC – Regulatory & Permitting Activities

- Ohio Regulatory Activities:
 - Filed with PUCO for IGCC Rate Recovery in 2005.
 - Proposed Three-Phase Recovery Plan.
 - Phase I approved by PUCO in 2006.
 - Phase I decision has been appealed.
- Permitting and Licensing Activities:
 - Certificate of Compatibility & Public Need application filed with OPSB.
 - Certificate of Public Convenience & Necessity filed with WVPSC.
 - Air permit applications filed with OEPA and WVDEP.
 - Corps of Engineers permit application submitted for Ohio project.
 - Transmission interconnection applications filed with PJM.
 - Applications being developed for NPDES and landfill permits.
 - Extensive background site investigations to support permitting activities.

AEP IGCC Permitting & Licensing Challenges

- Recognition of current technology capabilities vs. promises of future performance.
- Development of technical competency. (AEP and Agency)
- Assimilation of existing regulatory programs to IGCC.
- Development of representative data to support permitting.
- Balance the need for timely permits and the availability of design information.
- Performing timely air modeling analyses in context with available agency guidance and resources.

CO₂ Technical & Regulatory Issues

• Technical Issues:

- Technical standards for sequestration feasibility and design parameters.
- Technical standards for operation, performance, or monitoring parameters.
- Commercially acceptable systems applicable to advanced coal technologies.
- Commercially acceptable combustion turbines for hydrogen based fuels.

• Regulatory Issues:

- Development of balanced State and/or Federal regulatory program.
- Undefined risks and liability ownership structure.
- Undefined monitoring and compliance demonstration structure.
- Undefined ownership for public education and awareness of CO₂ capture and sequestration activities.

Summary

- Advanced Coal Technologies are a key component of any strategy to provide reliable, affordable, and sustainable new baseload capacity.
- Design of cost-effective solutions is a key to managing risks associated with the development of commercially acceptable advanced coal technologies.
- Incremental implementation of cost-effective design and operation optimizations is a key to achieving the expectations promised by advanced coal technologies.
- Continued education of all parties (utilities, agencies, public, etc.) on the capabilities and promises of advanced coal technologies is a key to permitting within the existing regulatory framework and to the development of future regulations.
- Technical and Regulatory challenges must be resolved before CO₂ capture and sequestration are ready for commercial deployment with advanced coal technologies.