Wastewater Basics 101

John R. Buchanan, Ph.D., P. E.

Associate Professor Department of Biosystems Engineering & Soil Science

THE UNIVERSITY of TENNESSEE

Agricultural Experiment Station

Wastewater Basics 101

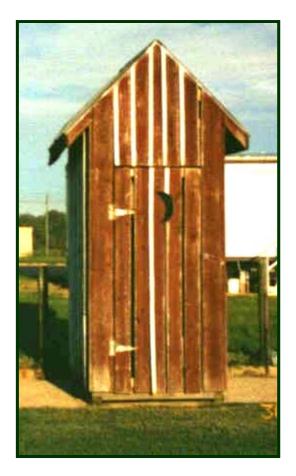
- Target audience
 - policy makers, leaders, and planners
 - People who have a water quality agenda
- This presentation discusses the fundamentals of converting wastewater back to water
 - How do we (humans) interact with the hydrologic cycle

Wastewater Basics 101

- Major Focus
 - What *is* in wastewater and how do we get *it* out
 - Organic matter, nitrogen, & phosphorus
- Minor Focus
 - Individual and small community wastewater treatment systems
 - Wastewater basics are universal
 - Independent of scale

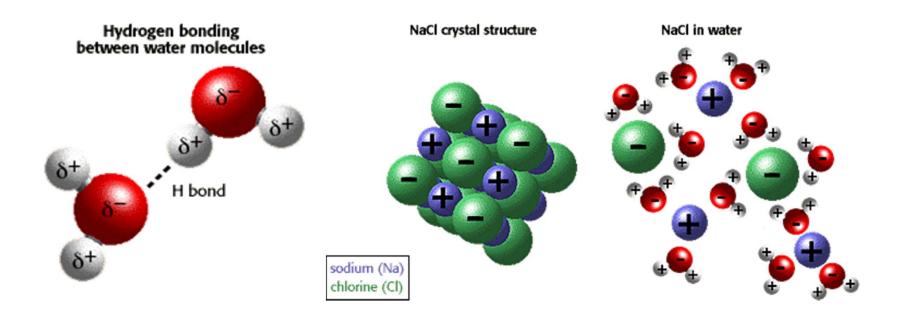
Wastewater

- By definition (for today's purpose)
 - Water that has constituents of human and/or animal metabolic wastes
 - Water that has the residuals from cooking, cleaning and/or bathing
- Thus,
 - Domestic wastewater
 - Our focus is wastewater that comes from a home


Wastes and Water

- The more water you have,
 - The more wastewater you generate
 - Romans knew that water carried away the smell

Wastes and Water


- If water is not available
 - Then wastewater is not generated
 - The original lowflush toilet

Carriage Water

- There is no other substance that can transport wastes like water can
 - it cleans the inside of our body
 - it cleans the outside of our body
 - it carries away our metabolic wastes
- In high population densities
 - water is the best means to collect and transport waste away

Water is the Universal Solvent

Department of Biochemistry and Molecular Biophysics The University of Arizona

Water is Dense and has Viscosity

- Water is heavy
 - provides for buoyancy
 - provides for inertia forces
- Water is viscous
 - can suspend items
 - can erode surfaces

So, our Chore is to Get Wastes out of Water

- Is it difficult to get waste out of water?
 - Yes, but we have a lot of help available to us
 - Our team includes
 - Gravity _____ Drivers of the hydrologic Cycle
 - The sun
 - Billions of microorganisms > Ultimate Decomposers
 - And, the soil > The basis for all wastewater treatment

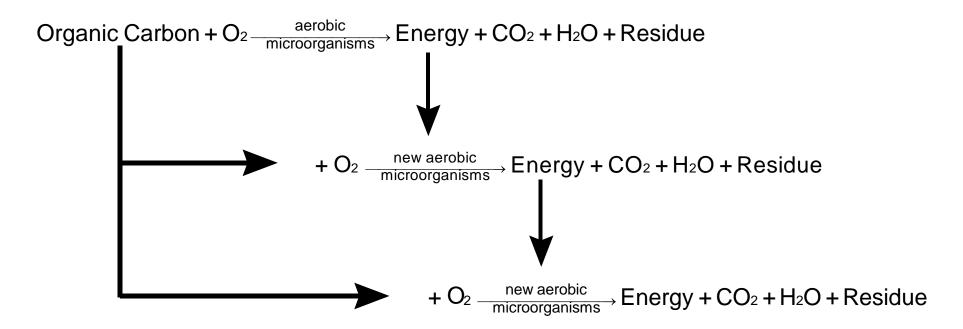
Wastewater

- By weight
 - Is 99.9% water
 - It is the 0.1% that we have to remove
- That 0.1% contains
 - Organic matter
 - Microorganisms (a few of which are pathogenic)
 - Inorganics compounds

Major Measures of What's in Water

- Oxygen Demand
 - Biochemical oxygen demand
 - Chemical oxygen demand
- Indicator organisms
 - Fecal coliform
 - Escherichia coli (E Coli 0157:H7 is the really bad boy)
- Solids content
 - Total suspended solids
 - Total dissolved solids

Other Measures of What's in Water


- Chemical analyses
 - Ammonia & nitrate
 - Total & reactive phosphorus
 - pH
 - Alkalinity
- Volatile compounds
 - Dissolved gases
 - Odors

Oxygen Demand

- Indictor of mass of dissolved oxygen needed by microorganisms to degrade organic and some inorganic compounds
 - High BOD/COD is indirect indicator of the organic content
 - Ammonia is inorganic and creates an oxygen demand
 - As it is converted to nitrate

Aerobic Biotransformation

 Dissolved oxygen is consumed in the process of convert organic matter into inorganic matter

Organic Matter

- Contains more than
 - Carbon, hydrogen, and oxygen
- Can also contains
 - Nitrogen
 - Phosphorus
 - Sulfur
 - Many other compounds

Degradation of Organic Matter

- Releases these other compounds
 - Typically in an inorganic form
- For example
 - Nitrogen becomes ammonia/ammonium
 - Creates an additional oxygen demand
 - Phosphorus becomes ortho-phosphate

Nitrogen Cycle

- Nitrogen is a component of protein
 - As proteins are degraded, nitrogen is released
 - Nitrogen converts to ammonia/ammonium
 - Process of ammonification

Organic-N + Microorganisms \rightarrow NH₃/NH₄⁺

Biological Nitrification

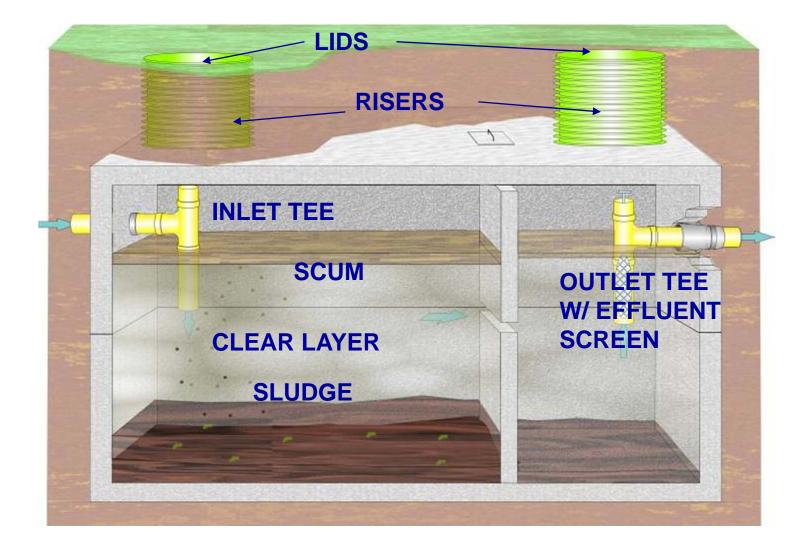
- Ammonia/ammonium is then converted to nitrite and nitrate
 - Nitrification
 - Oxygen demand
- Nitrification is a two-step autotrophic process
 - the conversion from ammonium to nitrate

Nitrosomonas

Step 1:NH₄⁺ + $3/2O_2 \rightarrow NO_2^{2-} + 2H^+ + H_2O$

Nitrobacter

Step 2:NO²⁻ + $1/2O_2 \rightarrow NO^{3-}$


Okay, Let's go Back to the Bigger Picture

- We focused on oxygen demand
 - We have wastewater with organic matter
 - And other stuff
- However, the first treatment step
 - Is liquid/solid separation
 - Very inexpensive energy source
 - Very large return on investment
 - In terms of treatment

Preliminary/Primary Treatment

- Gravity as a treatment method
- Floaters and Sinkers (go ahead and giggle)
 - Based on buoyancy
 - Water is very dense many waste products float
 - Paper products
 - Fats, oils, grease
 - Some organic solids are more dense than water and sink
 - Bacterial cells
 - Food wastes

Small System Primary Treatment

Basic Assumptions

- 50% reduction in oxygen demand
 - Because organic solids remain in tank
 - Creates an accumulation in the tank
 - That is either very slow to degrade
 - Or will not degrade
- Tremendous reduction in suspended solids
- Minimal biotransformation
 - Anaerobic environment

Now, Let's Remove the Remainder of the Oxygen Demand

- Secondary treatment
 - the second major process
 - Provide dissolved oxygen to aerobic microorganism to finish the job
- Two questions
 - How much land is available?
 - How much energy are you willing to purchase?

Providing Dissolved Oxygen

- Air is only 21% (+/-) oxygen
 - Have to move a lot of air through water to transfer the oxygen
 - Oxygen readily dissolves into water
- Passive large footprint, low energy
 Moving air over water allows for transfer
- Mechanical small footprint, much energy
 - Moving air through water for enhanced transfer

Secondary Treatment Devices

- The soil
 - Attached growth
 - Passive aeration
 - Low loading rate
 - Excessive growth of biosolids is problematic

- Trickling filters
 - Attached growth
 - Passive aeration
 - biosolids can slougth
- Activate sludge
 - Suspended growth
 - High loading rate
 - Activated sludge is the biosolids
 - Mechanical aeration

Okay, Inventory Time

- After secondary treatment and clarification
 - We have reduced oxygen demand
 - Oxidized the organic carbon
 - Converted organic nitrogen to nitrate
 - Clarified the effluent
 - Put a hurt on the microbial population
- If nutrients are not an issue
 - We can now disinfect if surface discharged

If Nutrients are an Issue

- Tertiary treatment the third major process
 - Nutrient removal
 - Some references include disinfection
- Nitrate and phosphate
 - Required nutrients for plant growth
 - Excessive plant growth
 - Creates an oxygen demand
 - Crowds out other aquatic organisms

Denitrification

- NO_3^- can be reduced,
 - under anoxic conditions, to N₂ gas through heterotrophic biological denitrification
 - Two issues
 - Anoxic conditions
 - Heterotrophic bacteria

Anoxic Conditions

- Classical definition
 - Very low concentration of dissolved molecular oxygen (i.e., anaerobic)
 - Forces the use of chemically-bound oxygen
 - Dissolved organic carbon is available
 - Heterotrophic bacterial use organic carbon as food source

Biological Denitrification

- Totally cool process
 - Nitrate has oxygen
 - Through reduction/oxidation processes
 - Oxygen is pulled from nitrate ion
 - Nitrogen evolves as a gas form

Heterotrophic Bacteria

 NO_3^- + Organic Matter \rightarrow N_2 + CO_2 + OH^- + H_2O

Operational Issues

- Here is the rub
 - we consumed the organic carbon in the previous step
 - Under aerobic conditions
- Thus, our process must
 - Remove dissolved oxygen
 - Add organic carbon back into solution

Recirculation

- Recirculate a fraction of the
 - Secondary treated water back through primary treatment
- Assumptions
 - Nitrates are formed during secondary treatment
 - Organic carbon is available in primary treatment
 - Raw wastewater is anaerobic

Phosphorus Removal

- Chemical treatment
 - Phosphate is an anion: PO₄³⁻
 - Cations can be added to bind with phosphate
 - Ca²⁺
 - Al³⁺
 - Fe³⁺
 - Naturally occurs in soil systems
 - Except sandy soils
 - Each form an insoluble precipitant

Phosphorus Removal

- Biological Methods
 - Encourage the luxurious uptake of phosphorus within microbial cells
 - Harvest the cells before the excess phosphorus is released
 - Requires very controlled conditions

Future Wastewater Treatment

- Pharmaceuticals and Personal Care Products
 - what other "stuff" goes down the drain with our wastes
 - medicines, hormones, antibacterial soaps
 - many of these products are not removed with traditional means.
- Will we call this "quaternary treatment"?

So, the Ultimate Question.....

- At what point does wastewater become water?
 - are you willing to consume recycled water?
 - you are consuming recycled water
 - it's called the hydrologic cycle
 - but, the cycle is getting smaller
 - civilization will have to adapt to the notion of their being a direct connection between the wastewater treatment plant and the water treatment plant

Questions?

Agricultural Experiment Station