Estimated Fish Consumption Rates for the U.S. Population and Selected Subpopulations (NHANES 2003-2010)

Appendix C

Supplemental Statistical Methodology

The following provides justification for the assumption that the predicted logit (B_{ij}) when including the random effect is proportional to the predicted logit when excluding the random effect (B'_{ij}) .

Assume that C_{ij} are realizations from a binomial distribution with probability P_{ij} :

$$C_{ij} \sim Binomial(1, P_{ij})$$

The values of P_{ij} may vary among individuals and be different for the first and second recalls or P_{ij} may be the same for all individuals and recalls. Regardless of what assumptions are made about P_{ij} , a basic fact about logistic regression is that when fitting a logistic regression model without random effects or other independent predictors, i.e., fitting the model:

$$Logit(P_{ij}) = \pi'_0$$

the intercept parameter is equal to:

$$\pi'_0 = Logit\left(Mean(C_{ij})\right)$$

Since

$$E\left(Mean(C_{ij})\right) = E(C_{ij}) = E(P_{ij}),$$

the intercept is approximately:

$$\pi'_0 \approx Logit(E(P_{ij})).$$

We can assume a model for the P_{ij} . For simplicity, assume the probability of consuming fish can be modeled using logistic regression with an intercept, no other predictors, and a random personspecific effect having a normal distribution on the logit scale, i.e.,

$$Logit(P_{ij}) = log\left(\frac{P_{ij}}{1 - P_{ij}}\right) = \pi_0 + \pi_i$$
$$\pi_i \sim Normal(0, \sigma_1^2).$$

We can define the following ratio:

$$\beta = \frac{\pi_0}{\pi'_0}$$

and, with an estimate of β can calculate π_0 as:

$$\pi_0 = \beta \pi'_0$$

When the logistic regression model has additional predictors, the predicted logit B'_{ij} replaces π'_0 and the EPA method assumes β is reasonably constant over the range of values of B'_{ij} .

The following is a heuristic argument for why this assumption is reasonable.

First, let $P_0 = logistic(\pi_0)$. If P_{ij} is the same for all 24-hour recalls (i.e., $P_{ij} = P_0$ and $\sigma_1^2 = 0$) then $\pi_0 = \pi'_0$ and $\beta = 1$ for all values of π_0 .

If $\pi_0 = 0$, the expected probability of fish consumption is $E(P_{ij}) = 0.50$, regardless of whether $\sigma_1^2 = 0$, i.e., $\pi_0 = \pi'_0 = 0$. If $\sigma_1^2 = 0$, all individuals have the same probability of fish consumption and $E(P_{ij}) = P_0$. If $\sigma_1^2 > 0$, some people have a higher probability and some have a lower probability of fish consumption; however, since the logistic function is symmetric around $\pi_0 = 0$, these probabilities balance out and the average probability fish consumption is $E(P_{ij}) = E(logistic(\pi_0 + \pi_i)) = E(logistic(\pi_i)) = 0.50$. In the case where $\pi_0 = 0$, $\beta = 0/0$ which is not defined. However, if β is used to define π_0 using $\pi_0 = \beta \pi'_0$, then any value of β can be used since $\pi'_0 = 0$.

Because the logit function is nonlinear and P_{ij} is limited on the high side (i.e., $P_{ij} \leq 1$), if $\pi_0 > 0$, $0.5 < E(P_{ij}) < P_0$, $0 < \pi'_0 < \pi_0$, and $\beta > 1$. Since P_{ij} is also limited on the low side (i.e., $P_{ij} \geq 0$), if $\pi_0 < 0$, $0.5 > E(P_{ij}) > P_0$, $0 > \pi'_0 > \pi_0$, but because both π_0 and π'_0 are negative, the ratio is still positive, i.e., $\beta > 1$. β is the same for π_0 and $-\pi_0$. As π_0 increases in absolute magnitude, the non-linearity of the logit function increases. As a result, the difference between π_0 and π'_0 increases. The EPA method assumes the ratio, β , is relatively constant.

The following provide numerical estimates of β , illustrating the β is reasonably constant for different values of π_0 or π'_0 .

Given π_0 and the variance of the random effect (σ_1^2), we used numerical integration to calculate β :

$$P_{ij} = logistic(\pi_0 + \pi_i)$$
$$\beta \approx \frac{\pi_0}{Logit(E(P_{ij}))}$$

Table C-1 shows β as a function of π_0 and σ_1^2 calculated using numerical integration.

				π_0		
	σ_1^2	-2	-1	0.001	1	2
().25	1.047	1.056	1.060	1.056	1.047
().50	1.093	1.107	1.114	1.107	1.093
().75	1.138	1.156	1.164	1.156	1.138
1	.00	1.182	1.202	1.212	1.202	1.182
1	.25	1.224	1.246	1.256	1.246	1.224

Table C-1 $~~\beta$ as a function of π_0 and σ_1^2

In Table C-1 β is greater than or equal to 1.0, relatively constant across rows corresponding to different values of π_0 for the same σ_1^2 and increases within increasing σ_1^2 . The EPA method does not require that β be constant across all possible values of π_0 , but reasonably constant across values of B'_{ij} .