Stream Assessment & Monitoring in Appalachia

Appalachian Stream Mitigation Workshop Lexington, Kentucky April 11-15, 2011

Appalachian Stream Assessment Protocols & Mitigation Guidelines

Kentucky

KY MBI (KDOW) EKSAP (Corps) High-gradient HGM (Corps) Stream Relocation/Mitigation Guidelines (KDOW)

Ohio

QHEI (OEPA) PHWH (OEPA) Compensatory Mit Requirements rev. 5 (OEPA)

Tennessee

Stream Mit Guidelines (TDEC)

Virginia VA SCI (VDEQ) USM (Corps, VDEQ) West Virginia WVSCI (WVDEP) SWVM (Corps, WVDEP) High-gradient HGM (Corps) Other PA ICE (PDEP) Field Ops for...Headwater

Streams (USEPA)

Compilations of Stream Assessment Methods

Stream Assessment Compendium 2004

PHYSICAL STREAM ASSESSMENT:

A Review of Selected Protocols for Use in the Clean Water Act Section 404 Program

- In support of the National Wetland Mitigation Action Plan.
- Part A: Questionnaire to State and Federal agencies nationwide;
- Part B: Reviewed over 50 existing physical stream assessment & mitigation protocols nationwide;
- Identified:
 - Target scale,
 - Geographic applicability,
 - Level of effort required,
 - Level of expertise required, &
 - Potential utility in the CWA 404 regulatory program.

Stream Assessment Questionnaire Responses 2004

Question	Most Common Respons	ses
Programmatic Uses for Stream Assessment	Watershed Assessment, Environmental Impacts, Prioritization for Management; Regulatory (CWA 401/404).	60% ± 36%
Classification	Rosgen; Montgomery & Buffington Other (e.g. Strahler stream order)	26% 4% 8%
Common Physical Channel Parameters	Channel cross-sections, Longitudinal profile, "Rosgen" geomorphic assessments; Pebble counts, Pfankuch channel stability	25% ± 15%
Common Physiochemical WQ Parameters	Water temperature; Turbidity, pH, DO, Specific conductance.	52% 30% ±
Methods to Reduce Variability	Training (classroom + field); Standardized protocols, Multiple investigators; Repeat site visits;	40% 17% 9%
Time Required in the Field	<1 hour 1-2 hours >2 hours Variable	13% 21% 25% 11%
Future Needs	National stream assessment database; Fluvial sediment and effects thereof; Standardized protocols; Continued or expanded USGS gauge data; Expanded availability of regional curves.	<mark>56%</mark> 54% 19% 17% 15%

Recommendations 2004

Classification

 Narrow the range of natural variability by classifying streams based on physical, chemical, and/or biological attributes.

Objectivity

 Minimize observer bias via well-defined procedures based on objective measures of explicitly defined variables.

Quantitative Methods

 Maximize use of quantitative measures; Base condition indices on explicit values or narrowly defined ranges of quantifiable stream characteristics.

Fluvial Geomorphology

 Emphasize fluvial geomorphic variables where physical channel instability is of concern.

Data Management

 Stream assessment data, esp. reference data, should be managed and made publically available on national or regional databases.

Final Mitigation Rule, 2008

Compensatory mitigation:

- Capable of compensating for lost aquatic resource functions;

Site Selection:

Site must be ecologically suitable for providing the desired aquatic resource functions;

Baseline Information:

Describes the ecological characteristics of the site(s);

Ecological Performance Standards:

 <u>Objective and verifiable</u> attributes based on the best available science / Encourages use of reference sites; and

Monitoring:

Necessary to determine if the project is meeting performance standards.

Compendium Revisited 2010

STREAM ASSESSMENT AND MITIGATION PROTOCOLS:

A REVIEW OF COMMONALITIES AND DIFFERENCES

May 2010

Review of 32 nationwide stream assessment protocols & mitigation guidance documents (25 non-reg, 7 reg);

Criteria for Review:

- Contemporary use;
- Stream-reach scale;
- Multiple attributes/parameters;
- Emphasis on objectivity.

Identified:

- Stream functions or conditions evaluated,
- Parameters/attributes assessed,
- Intensity of effort and training required, &
- Use and source of reference condition information.

Compendium 2010: Assessment Parameters

32 protocols - - 70 unique parameters

Only 8 parameters common $\geq \frac{1}{2}$ of protocols:Stream dischargeWater temperatureChannel sinuosityBank stabilityRiparian canopy coverBenthic macroinvertsSubstrate PSD*Habitat units/bed forms**common to $\geq \frac{2}{3}$ of protocols

25% of parameters common to <10% of protocols.

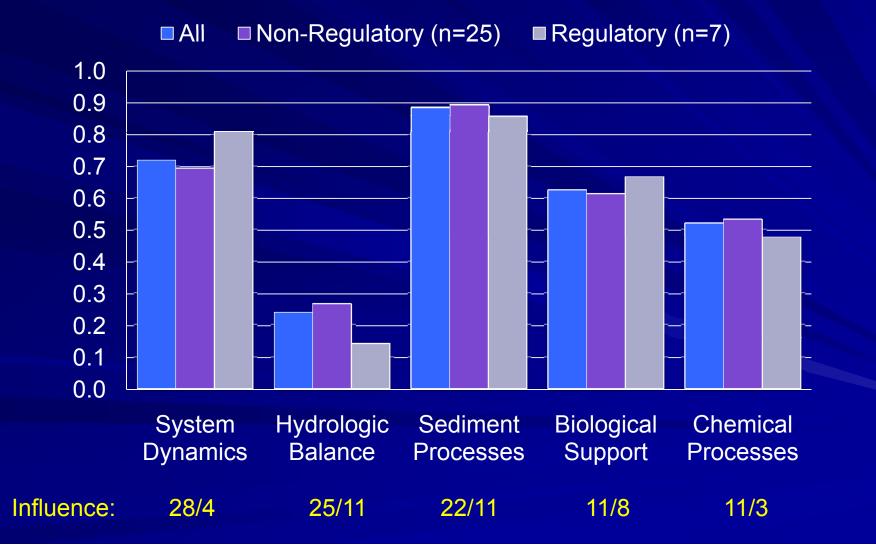
Compendium 2010: Stream & Riparian Zone Functions

15 key functions in 5 categories (Fischenich, 2006)

- System Dynamics
- Hydrologic Balance
- Sediment Processes & Character
- Biological Support
- Chemical Processes & Pathways
- Descriptions, Indicators, & Direct Measurements

Interrelationships: Functions Affecting the Most Other Functions

<u>Function</u> (Category)	Functions Directly Affected	Functions Indirectly Affected
Maintain stream evolution processes (System Dynamics)	12	2
Surface water storage processes (Hydrologic Balance)	8	6
<u>General hydrodynamic balance</u> (<i>Hydrologic Balance</i>)	13	1
Support biological communities & Processes (Biological Support)	5	7


Adapted from Fischenich, 2006.

Interrelationships: Functions Affecting the Fewest Other Functions

Function (<i>Category</i>)	Functions Directly Affected	Functions Indirectly Affected
Provide necessary aquatic & riparian habitat (Biological Support)	3	0
Maintain trophic structure & processes (Biological Support)	3	1
Maintain chemical processes & nutrient cycles (Chemical Processes & Pathways)	3	1

Adapted from Fischenich, 2006.

Compendium 2010: Protocols' Representation of Primary Functions

Recommendations 2010

Interagency / Interdisciplinary Teams

- During compilation of new or revised assessment protocols, monitoring standards, mitigation guidelines, etc.
- Consider inclusion of resource management agencies (USFS).

Function-based

 Incorporate considerations of ecosystem function first, then identify representative indicators or parameters. Not vice versa.

Data Management

 Establish central or regional repository for stream assessment data, esp. reference data, <u>INCLUDING REGIONAL HYDRAULIC CURVES</u>.

This recommendation was also made in the Corps/EPA Stream Assessment Compendium in 2004, and was the most common request of surveyed practitioners at that time.

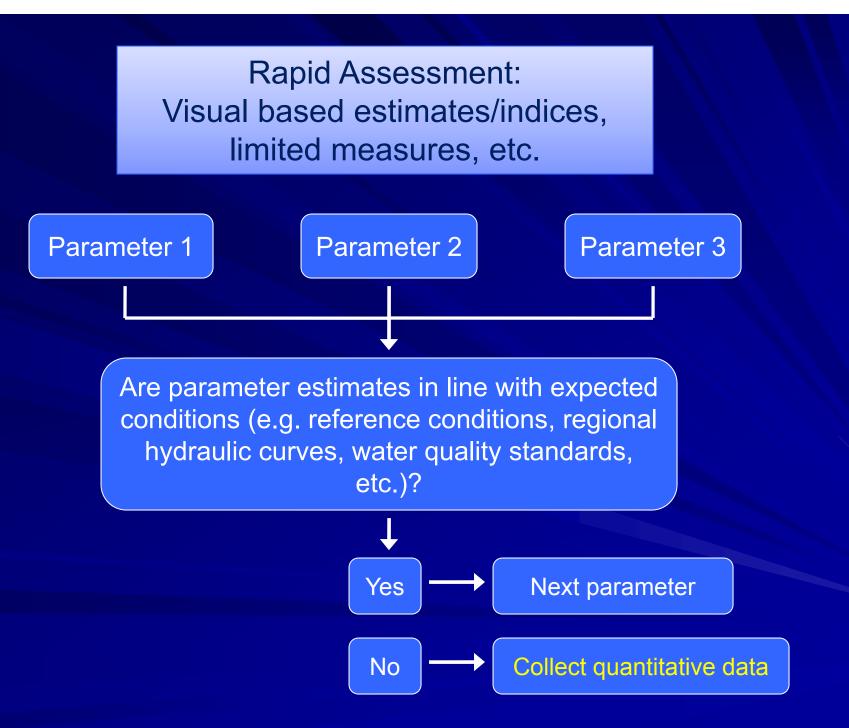
Neither Corps, nor EPA web sites are very thorough at identifying local or regional resources available to practitioners.

Criteria for Monitoring Parameters & Protocols

Criteria	Description
Relevance	(1) Driven by objectives; (2) Well grounded in scientific theory; and (3) Accurately reflect or support the true measure of the condition or function proposed to be represented.
Sensitivity / Resolution	Must be sensitive to the degree of change anticipated over the life of the monitoring period, and capable of differentiating among natural variability.
Repeatability	Minimal observer bias and sampling error: (1) Objective & quantifiable; (2) Directly observed or measured; and (3) Detailed standardized methods.
Comparability / Transferability	Data should meet QA/QC requirements of other programs or agencies.
Operationally Efficient	Capable of being accurately and effectively measured in the field within logical time, labor, and budgetary constraints ~ Cost effective.

Sources: ITFM, 1995; Poole et al, 1997; Johnson et al., 2001, Oakley et al., 2003; McKay et al., 2010

RBP Rapid Habitat Assessment


Over 30 States fail to include any quantitative measurements of stream habitat in their biological assessment programs (USEPA, 2002).

	. server Shires	Condition Category			
	Habitat Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
		not new fall and <u>not</u> transient).	high end of scale).		
ch	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ı sampling reac	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted i	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
amet	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ľ		W. S. S. A. I			

Rapid Habitat Assessments: Sources of Potential Error

Observer bias

- Knowledge/expertise, experience, etc.
- Desired outcomes, personal or professional sentiment
 - e.g. Influence of mitigation ratios or success criteria that are defined by classes instead of sliding scales.
- Seasonality / Annual variability
 - Seasonal low baseflow; Regional climatic trends.
- Recent Precipitation
 - Mobilization is expensive & weather is unpredictable.
- Geomorphic position
 - Headwater streams vs. higher order streams.

Estimates vs. Measures

RBP Habitat Parameter	Potential Objective Measures
1. Epifaunal substrate / Available cover	Coarse woody debris inventory; particle size distribution (PSD); percent dominant substrate
2. Embeddedness	Measured %-age of embedded depth; depth to embeddedness ; PSD
3. Velocity/depth regime	Longitudinal profile; bed form inventory; velocity:depth ratio
4. Sediment deposition	PSD; channel cross-sections; residual pool depth
5. Channel flow status	Channel cross-sections + wetted widths
6. Channel alteration	Channel cross-sections; bank height ratio; meander width ratio; sinuosity
7. Frequency or riffles	Longitudinal profile; bed form inventory;
8. Bank stability	Percent eroding banks; BEHI; erosion pins; channel cross-sections
9. Vegetative protection	Percent coverage & density
10. Riparian zone width	Riparian width per cover type

Reviewing Stream Assessment Data: Red Flags

Climatic summary

- Regional trends (12 months, 6 months, 3 months), local records (30 days, 14 days, 7 days);
- Detailed maps / site coordinates
- Methodology
 - Applicability (scale, setting, objectives, etc.),
 - Assumptions & limitations of the method(s);
- Generalizations
 - Unsupported assumptions or conclusions;
- Raw data / tabulations
 - QA/QC, data assessment & interpretation.

Stream Mitigation Success Criteria

Geomorphic

- <u>Subjective</u>: Stable channel bed and banks with no significant bank erosion.
- <u>Objective</u>: Geomorphic dimensions remain within the max/min design ranges <u>based on reference</u> (e.g. W_{bkf}, d_{bkf}, d_{mbkf}, A_{bkf}, W/D, BHR, ER, K, etc.).

Habitat

- <u>Subjective</u>: Enhance aquatic habitat / Increase rapid habitat assessment score.
- <u>Objective</u>: Variables remain within the max/min design ranges <u>based on reference</u> (e.g. residual pool depth, max pool depth, pool spacing, riffle spacing, CWD volume, riffle PSD, etc.).

Stream Mitigation Success Criteria

Chemical / WQ

- <u>Subjective</u>: Improve water quality downstream.
- <u>Objective</u>: Parameter specific targets based on designated use and State WQ Standards or other site/regional specific numeric criteria.

Biological

- <u>Subjective</u>: Improve diversity of fisheries and other aquatic life.
- <u>Objective</u>: Improve IBI and/or MBI scores by:
 - 15% over baseline if baseline scores are Very Poor, Poor, or Fair;
 - 10% over baseline if baseline scores are Good.

ILF Funding

Kentucky – NKU \$13.2 million 1999-2010 – KDFWR \$70.3 million 2002-July 2010 Tennessee \$36 million 1999-2010 -TSMPVirginia – VARTF \$53.4 million 1995-2009 (\$22.8 million for stream impacts) West Virginia \$5.1 million 2006-2010 - WVDEP

Closing Remarks: Stream Assessment

Fast, Cheap, & Accurate;

- Pick any 2, but only 2.

Be cautious of the "lowest common denominator;"

A single protocol can rarely be all things for all people or purposes.

Be wary of ecosystem trading;

Value judgments can lead to conflicts among parties with disparate interests;

Identify controlling variables that influence (& can represent) structure & function;

Conceptualization, testing, revision, oversight, & training, training!

Closing Remarks: Stream Mitigation

If success criteria are poorly defined, only the poorest projects will fail to meet them.

Mathematical equivalency does not necessarily equate to productive functional stream mitigation;

10,000 feet of a poor quality stream may not effectively mitigate the impacts to 1,000 feet of higher quality stream.

Failure of mitigation projects (or failure to adequately document the efficacy of them) costs money, time, public support, agency credibility...

Stream Restoration is...

Technically complex, Socially sensitive, Publically misunderstood, Politically scrutinized.

© 2003 United Feature Syndicate, Inc.

Eric Somerville USEPA Region 4 706.355.8514 somerville.eric@epa.gov