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APPENDIX A

OVERVIEW OF EMISSIONS AND COST MODELING TOOLS FOR ESTIMATING
THE PROSPECTIVE BENEFITS AND COSTS OF THE 1990 CLEAN AIR ACT

AMENDMENTS

In its analysis of the costs and benefits of the Clean Air Act Amendments of 1990 (CAAA),
EPA will employ several modeling tools to estimate CAAA compliance costs and project emissions
under different regulatory scenarios.  This appendix describes the modeling systems EPA proposes
to use for these aspects of the second prospective analysis, as well as several other models that EPA
considered in developing this analytic blueprint.  Several of the organizations that developed the
models described here have produced model documentation, which is cited in the reference list
located at the end of this appendix.

The first section of this appendix describes ControlNet, EPA’s proposed model for
estimating costs and projecting emissions for non-EGU point sources in the second prospective.  In
its analysis of electric utility emissions and costs, EPA plans to use the Integrated Planning Model
(IPM), which is presented in the second section of this appendix.  EPA also considered Resources
for the Future’s Haiku model for this component of the second prospective.  An overview of Haiku
follows the presentation of IPM.   After describing the main characteristics of Haiku, the focus of
this appendix then shifts to computable general equilibrium (CGE) modeling.  Although EPA
examined several economic models to assess the social costs of the CAAA, the Agency eventually
narrowed its options to two modeling systems: the Jorgenson/Ho/Wilcoxen (J/H/W) model and the
All-Modular Industry Growth Assessment model (AMIGA).

MODELING EMISSIONS AND DIRECT COSTS

Since the emissions reductions and compliance costs attributable to the CAAA are so closely
related, some of the tools that EPA proposes to use in the second prospective solve for the two
simultaneously.  This type of tool is particularly useful for analyzing rules that allow sources to
choose from an array of control strategies, each of which has different implications for emissions
and costs.  Summaries of these models are presented below.  In addition, the reference list at the end
of this appendix contains a citation for the ControlNet User’s Guide.

ControlNet

To support the development and implementation of the National Ambient Air Quality
Standards (NAAQS) for criteria pollutants established by the U.S. Environmental Protection Agency
(EPA), Pechan developed ControlNET.  ControlNET is a relational database system in which control
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technologies are linked to sources within point, area, and mobile sources emissions inventories.  The
database of control measures contains comprehensive information on each measure, including
control efficiency and costing data.  Currently, ControlNET contains 453 source category and
pollutant-specific control measures, applied within a 759,733 record data file.  Controls are supplied
for all criteria pollutants and NH .  The control measure data file in ControlNET includes each3
technology's control efficiency, calculated emission reductions by source, and estimates of the costs
(annual and capital) for application of each control.

ControlNET includes data gathered for more than 450 different control measures for NO ,x
VOC, SO , PM , PM , and NH  for utility, non-utility point, area, mobile, and non-road sources.2 10 2.5 3
Each control measure has an associated control efficiency, annual cost, capital cost, and operation
and maintenance costs.  Every control measure is applied to relevant sources in the 1999 National
Emission Inventory (NEI) to create a large database of possible controls with their associated
emission reductions and costs.  Pechan’s recently developed interface for ControlNET allows users
to view and filter the database of all possible controls (by state, county, regional area, SIC, SCC,
sector, pollutant, and cost per ton value) and specify specific controls to create control scenarios.

Because ControlNET is designed for evaluating the cost and effectiveness of adding
additional controls to point, area and mobile sources, the model’s control cost equations were
developed so that information typically reported in emissions databases are the primary drivers of
the equations included in the model.  Key variables included in these databases include stack gas
flow rate, design capacity, and emissions.  Stack gas flow rate is the primary variable used for
estimating the costs of PM controls such as electrostatic precipitators and baghouses, whose sizing
and cost are a function of flow rate.  Flow rates typically reported in point source databases are of
central importance in estimating stack gas plume rise.   Estimates of control costs for many other
point source controls, such as SCR, NSCR, and low NO  burners, are based largely on designx
capacity.  For sources such as electric utility boilers, design capacity is usually reported in
megawatts, while for non-EGUs, design capacity is reported in SCC units per year or per hour,
where SCC units are normally fuel consumption or the production rate.  Finally, all cost equations
are designed to use emissions as an important variable in case other primary variables (e.g., flow rate
or design capacity) are missing, or for area source categories for which no other information related
to the size of individual sources is available.

IPM

This appendix provides a brief overview of IPM.  Additional information is available in
IPM’s supporting documentation as cited in the reference list at the end of this appendix.

IPM is a dynamic, linear programming model of the electric power sector that represents a
number of key components of energy markets--fuel markets, emission markets, and electricity
markets--as well as the linkages between them.  The model determines the least-cost method of
meeting energy and peak demand requirements over a specified period of time, considering a
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number of (non)regulatory constraints (e.g. emissions limits, transmission capabilities, fuel market
constraints, etc.).

IPM models electricity markets in different regions of the country by modeling electricity
demand, generation, and intra-regional transmission and distribution.  All existing power generators
are captured in the analysis, including those that use renewable resources and independent and
cogeneration facilities that sell back to the grid.  In addition, IPM accounts for demand-side resource
options and the hourly load impacts they have.

IPM endogenously forecasts fuel prices for coal, natural gas, and biomass by balancing fuel
demand and supply for electric generation.  The model also includes information on fuel quality
parameters.  Other items IPM estimates endogenously include emissions changes, regional
wholesale energy and capacity prices, incremental electric power system costs, changes in fuel use,
and capacity and dispatch projections.

To simplify the model, IPM analyzes model plants over a series of model years.  Model
plants represent aggregations of existing units; retrofit, repowering, and retirement options available
to existing units; and new units the model can build over the time horizon of a model run.  Model
years group a cluster of years together, which significantly lowers model run time.

As a linear programming model, IPM minimizes an objective function representing the
summation of all costs incurred by the electricity sector over the entire planning horizon of the
model, expressed as the net present value of all component costs.  Since IPM minimizes the total
cost function for the entire utility sector, the choices that a model plant makes in the model may not
represent the least-cost solution for that particular plant.  Choices that minimize costs for the entire
sector might not always coincide with choices that minimize costs for individual units.

To minimize the value of the objective function, IPM systematically changes the value of
several decision variables that directly affect component costs.  The decision variables in IPM are
as follows:

1. Generation Dispatch Decision Variables represent generation from each model
plant.  IPM uses these variables to calculate plant fuel costs and plant VOM costs.

2. Capacity Decision Variables represent the capacity of each existing model plant and
possible new plants in each model run year.  These variables are necessary for
calculation of total fixed operating and maintenance (FOM) costs for each model
plant as well as the capital costs associated with capacity addition.  

3. Transmission Decision Variables represent electricity transmission along each
transmission link between model regions in each run year.  IPM multiplies these
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variables by variable transmission cost rates to obtain the total cost of transmission
across each link.

4. Emission Allowance Decision Variables represent the total number of emission
allowances for a given model year that are bought and sold in that or subsequent run
years.  IPM uses the emission allowance decision variables to capture the inter-
temporal trading and banking of allowances.  

5. Fuel Decision Variables represent the quantity of fuel delivered from each fuel
supply region to model plants in each demand region for each fuel type and each
model run year.  These variables are compared to constraints (see below) that define
the types of fuel that each model plant is eligible to use and the supply regions
eligible to provide fuel to each specific model plant.

Manipulation of these decision variables is subject to a number of constraints:

6. Reserve Margin Constraints–Each generating unit must maintain a minimum margin
of reserve capacity. 

7. Demand Constraints–Model plants must meet demand.  The model divides regional
annual demand into seasonal load segments as specified by a load duration curve,
represented as a step function.  Each segment of the function defines the minimum
amount of generation required to meet the region's demand in the specified season.

8. Capacity Constraints–Generation at each model plant may not exceed maximum
plant generating capacity. 

9. Turn Down/Area Protection Constraints–Some generating units can shut down at
night, but others must operate at all times. 

10. Emissions Constraints–Model plants must comply with emission constraints.  IPM
can consider any of a number of emissions constraints for SO2, NOx, mercury, and
CO2, including tonnage caps and maximum emission rates.

11. Transmission Constraints–Transmission is constrained by the maximum capacity of
each transmission link or the maximum capacity of two or more links (joint limits)
to different regions.

12. Fuel Supply Constraints–Each generating unit can consume only those fuels
compatible with its particular generating technology.  In addition, a plant can only
purchase fuels from supply regions eligible to provide fuel to that plant.
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Haiku

We present a brief description of Haiku in this appendix.  The interested reader can find
additional information in the Haiku reference manual, which is cited in the reference list at the end
of this appendix.

Developed by Resources for the Future, Haiku is a simulation model of regional electricity
markets and interregional electricity trade in the United States.  Using an iterative convergence
algorithm, Haiku simulates utilities’ responses to public policy choices and estimates multiple
equilibria in multiple linked markets.  In the past Haiku has been used to model responses to
potential NO , SO , and CO   emissions regulations.  x 2 2

Haiku simulates several aspects of utility behavior.  Using separate electricity demand
functions for residential, commercial, and industrial customers, Haiku estimates electricity prices,
the composition of electricity supply, inter-regional electricity trading among National Electricity
Reliability Council (NERC) regions, and emissions of NO , SO , CO , and mercury.  Estimates ofx 2 2
NO  and SO  emissions are based in part on the endogenous selection of NO  and SO  controlx 2 x 2
technologies.  Haiku estimates generator dispatch based on the minimization of the short-run
variable costs of generation.  Estimation of all these items occurs for 4-6 model run years over a
20-year time horizon.

In estimating market equilibrium, Haiku first finds an equilibrium for each region of the
country before solving for the level of inter-regional electricity trade necessary for prices to
equilibrate.  At the regional level, Haiku estimates market equilibrium for each of four time periods
(super peak, peak, shoulder, and baseload), three seasons (summer, winter, and spring/fall), and each
of 13 NERC subregions.  Regional supply functions are constructed using information on capacity
net of outages, operating and maintenance costs (including pollution control costs), and fuel costs
for 46 model plants (31 existing, 15 possible in the future),  each representing a group of generators
aggregated by region, fuel type, technology and vintage classifications.   Haiku adjusts model plant
supply functions to reflect endogenously selected NO  and SO  emissions control technologies.x 2

Haiku also includes modules for coal and natural gas markets that calculate prices based on
changes in factor demand.  All other fuel prices are specified exogenously.  Haiku holds the cost of
capital and the cost of labor constant.
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  For a brief overview of the use of different types of general equilibrium models (i.e., input/output models,1

linear programming models, and CGE models) as well as partial equilibrium and multi-market models, in the assessment
of costs related to environmental regulation, see EPA's Guidelines for Performing Economic Analyses, September 2000,
EPA 240-R-00-003.

  In addition, a number of available "world models" (e.g., Wilcoxen's G-Cubed Model and MIT's EPPA2

recursive-dynamic CGE model, and CRA's Multi-sector, Multi-regional Trade (MS-MRT) model) address general
equilibrium effects of international environmental policy issues, such as efforts aimed at reducing greenhouse gas
emissions.  While many world models have regional (i.e., national or multi-national) capabilities, the level of
aggregation in these models is generally too high to address specific sectors within a single national economy.  If EPA
wishes to address potential international trade or environmental effects associated with the Clean Air Act, a limited
application of one of the available world models may be useful.

A-6

COMPUTABLE GENERAL EQUILIBRIUM MODELS

As part of its update of the 1999 Benefits and Costs of the Clean Air Act: 1990 to 2010
(Prospective Analysis), EPA proposes the use of a computable general equilibrium (CGE) modeling
approach to estimate the impacts of the 1990 Clean Air Act Amendments (CAAA) on the U.S.
economy.  EPA's Benefits and Costs of the Clean Air Act: 1970 to 1990 included a CGE analysis
of the social costs associated with the implementation of the Clean Air Act’s provisions, using the
Jorgenson/Wilcoxen dynamic CGE model of the U.S. economy.  However, the Agency's 1999
Prospective Analysis did not include a general equilibrium modeling approach due in part to the
level of effort required to calibrate and run a CGE model, as well as limits on the resolution of
available cost data.

CGE modeling efforts estimate the comprehensive macroeconomic effects of broad policies
(such as the Clean Air Act) that affect multiple industries and products within the economy.   These1

models provide a relatively complete estimate of the social costs of regulation because they capture
both the positive and negative impacts of price changes throughout the economy.  At a minimum,
CGE models estimate changes in production by sector for the geographic scope of the model.  In
addition, most identify employment effects by sector, relative price changes among both inputs and
products, and the impacts of policies on trade (i.e., changes in levels of import and export).   Finally,
several recent efforts estimate net impacts by incorporating productivity-linked benefits (e.g.,
avoided health effects) into modeling scenarios.

Given these recent advances in CGE design, we have reviewed recent CGE modeling efforts
that address environmental policy.  We have identified two potential CGE modeling options:2

< Jorgenson/Ho/Wilcoxen Model of the U.S. Economy:  An update of the
dynamic national CGE model used to assess the social costs of Clean Air Act
in EPA's Retrospective Analysis.  The model was recently updated to address
benefits and to perform prospective assessments of impacts.

< All-Modular Industry Growth Assessment Modeling System (AMIGA):
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A dynamic CGE model recently used for the Jeffords-Lieberman request for
an analysis of a multi-pollutant emission reduction strategy.  The model
possesses a rich representation of technology and disaggregates the economy
to a finer degree than most CGE models. 

Our review concludes that both the Jorgenson/Ho/Wilcoxen (J/H/W) model and AMIGA
could be used to assess the prospective impacts of the 1990 CAAA.  Below we provide a brief
overview of each of the models; Exhibit A-1 provides a summary of key model features. 

Exhibit A-1

Comparison of J/H/W and AMIGA General Equilibrium Models

Traits Jorgenson/Ho/Wilcoxen AMIGA

Calibration/ Estimation Econometrically estimated from 25 Calibrated to 1992 BEA data.
years of data.

Number of Sectors 35 sectors included in model 200 sectors included in model

Reporting Economy wide and by industry Economy wide and by industry

Employment Impacts Reported in model Reported in model

Treatment of Technology Exogenous and endogenous Extremely rich representation of
components of technological technology.  Technology
progress. assumptions based on EIA

projections of technology cost
and efficiency.  Updated
periodically.

Treatment of taxation Captures effects resulting from the Captures effects resulting from
interaction of taxes and the interaction of taxes and
environmental policy. environmental policy.

Intertemporal Optimization The model calculates a dynamic The model calculates a dynamic
equilibrium where consumers and equilibrium where consumers and
capital owners optimize with capital owners optimize with
consideration for the future. consideration for the future.

Treatment of Productivity Increases Can introduce exogenously. Can introduce exogenously by
from Health Improvements Improves the quality component of entering estimated change in

labor. worker productivity.

Peer Reviewed/ Published works Theoretical basis of the model peer Peer reviewed paper forthcoming
reviewed in several journal articles. in Energy Economics.  
The model itself is not available for Unpublished reviews from
review. Cornell, MIT, and EMF.  The

model code is available for
review.
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Comparison of J/H/W and AMIGA General Equilibrium Models

Traits Jorgenson/Ho/Wilcoxen AMIGA

  The current version of this model reflects efforts by Mun F. Ho and is referred to as the3

Jorgenson/Ho/Wilcoxen Intertemporal General Equilibrium Model.

  For a more detailed description of the Jorgenson/Wilcoxen model and its application to the Clean Air Act,4

see Appendix B of EPA's Benefits and Costs of the Clean Air Act: 1970 to 1990.
A-8

Past Uses CAA Retrospective, Jeffords-Lieberman request on a
NCEE applications multi-pollutant emissions

strategy,
Possible use for Lieberman-
McCain greenhouse gas proposal

Cost Unclear Less than $100,000 for this
application.

Availability Current Production Changes: Summer 2003
Summer 2003.  Consumption
changes: Summer or Fall 2004

Jorgenson/Ho/Wilcoxen Model

The Jorgenson/Ho/Wilcoxen (J/H/W) model is a dynamic computable general equilibrium
(CGE) model that was used to estimate the social costs associated with regulations under the 1970
Clean Air Act.    The model estimates several macroeconomic effects resulting from the compliance3

with environmental regulations, including changes in gross national product (GNP), aggregate
consumption, and energy flows between sectors.  The model estimates long-run changes in the
supply of production factors (i.e., capital, labor, imports, and intermediate inputs to production) and
rates of technical change, degrees of substitutability among inputs and commodities in production
and final demand (i.e., levels of consumption, investment, government activity, and foreign trade).
It includes the following basic features:4

C Dynamic model: The J/H/W model is a dynamic model.  In other words, it
contains functions that update time-dependent variables (e.g., labor supply
or technology development) endogenously, based on projections of the trends
for these variables in the economy and the activity that is predicted in the
model.  An advantage of dynamic models (in addition to a potentially more
realistic reflection of changes in activity over time) is that they can be used
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shock (e.g., a policy) has been introduced; the time horizon is determined by the  point at which the market achieves
its new balance.
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to develop and compare analyses with different time horizons.  5

C Detailed production and consumption functions: The J/W/H model
contains a unified accounting framework consistent with national product
accounts for 35 distinct industry sectors, as well as household and
government functions.  This allows for a relatively detailed treatment of
impacts in industries specifically affected by the CAA and amendments,
including the incorporation of industry-specific compliance costs.

C Parameters estimated econometrically from historical data: The J/H/W
model incorporates information on economic activity (including production
factor pricing and technological change) dating back to 1977.  These data are
used to predict household and firm behavior in a manner consistent with the
historical record, as opposed to relying on theoretical values and behavioral
predictions.

In addition, the J/H/W model incorporates a detailed representation of saving and investment,
reflecting changes in behavior as prices change as a result of policy (e.g., energy prices).  Consistent
with long-run assumptions, the model reflects free mobility of labor and capital between industries
that is appropriate for the 30-year time horizon considered in the second prospective.  



May 12, 2003

 This section is based largely on the abstract of A Framework for Economic Impact Analysis and Industry6
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AMIGA

We present a brief summary of AMIGA in this appendix.   More detailed information is6

available in AMIGA’s supporting documentation as cited in the reference list located at the end of
this appendix.

AMIGA is a dynamic general equilibrium modeling system of the U.S. economy that covers
the period from 1992 through 2030.  It was originally developed by the Policy and Economic
Analysis Group at the Argonne National Laboratory to evaluate the effects of policy combinations
dealing with climate change.  AMIGA  includes information on more than 200 sectors of the
economy, which allows it to present extremely disaggregated information on the effects of policy
changes.  Some of AMIGA's most important characteristics include the following:

• The model computes a full-employment general equilibrium solution for
demands, prices, costs, and outputs of interrelated products, including
induced activities such as transportation and wholesale/retail trade. 

• AMIGA calculates national income, Gross Domestic Product (GDP),
employment, a comprehensive list of consumption goods and services, the
trade balance, and net foreign assets and examines inflationary pressures.

• The model projects economic growth paths and long-term, dynamic effects
of alternative investments including accumulation of residential, vehicle, and
producer capital stocks.

• AMIGA reads in files with detailed lists of technologies (currently with a
focus on the electric power generating industry) containing performance
characteristics, availability status, costs, anticipated learning effects, and
emission rates where appropriate. 

• AMIGA benchmarks to the 1992 Bureau of Economic Analysis (BEA)
interindustry data for more than 200 sectors of the economy.

The AMIGA modeling system is programmed in the C language.  Like other large, integrated
modeling systems, AMIGA includes modules for a number of key sectors of the economy.  The
output of each module may be used as input for other modules.  AMIGA includes the following
modules:
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• Household demand: AMIGA includes a module for household demand
which uses consumer preferences, relative prices of delivered goods, and
permanent income to determine consumer spending.

• Government purchases and programs: Most government expenditures are
taken to be exogenous.  Energy purchases, however, are based on the energy
efficiency of the stock of equipment used by government agencies.

• Residential buildings and appliances: This module represents existing
housing and appliance stocks, available new technologies, and near
commercialized technologies soon to be available.  It allows the average
efficiency of household equipment and residential structures to change with
time.  It also allows the penetration of more efficient technologies to lower
the cost of supplying energy-intensive building services.

• Commercial buildings and appliances: This component of the model
includes floor space and capital equipment services to the commercial
business and government sectors of the economy including personal and
business services, administrative offices, wholesale/retail trade, warehousing,
financial services, schools and hospitals.

• Motor vehicles: This module provides personal transportation services to
households, businesses, and federal, state and local governments.  It allows
transportation demand and fuel efficiencies to change over time.

• Utilities: This module represents the operation of the existing stock of
generating equipment and power plants to determine their capacity factors,
dispatching units against the load curve in order of variable costs.  It also can
incorporate the costs of SO  emission allowances and any future carbon2
charges.

• Industrial production activities: Industrial production activities are
organized into separate modules to more easily handle the representation of
different production technologies and their characteristics.  Each module
contains representations of labor, capital, and energy substitutions using a
hierarchy of production functions. AMIGA currently uses five distinct
lists/modules.  Within these modules is information on more than 200
individual industry sectors.  

• Industrial Capital:  AMIGA contains disaggregated data on the capital
stocks of a number of industries, allowing the model to capture effects such
as the depreciation and retirement of capital, as well as substitution between
different types of capital equipment.
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Model Structure

AMIGA goes through the following series of steps to arrive at equilibrium:

1. Computation of all prices.

2. Calculation of flow quantities, such as sector output, demands and labor effort,
taking prices, market shares, and input intensities as given.

3. Verification that all variables have converged with sufficient precision.  If they have
not converged enough, the model readjusts wages and/or the opportunity cost of
capital so that excess demand for labor and capital is closer to zero.

4. The model returns to step 2, given the revised values for input intensities, market
shares, and flow quantities.

The model repeats this routine until it reaches equilibrium.  Since AMIGA calculates equilibria
within and between modules simultaneously, the model's operating shell first calls pricing programs
from the individual modules, then the input intensity programs, followed by the quantity programs.

Social Costs

AMIGA can capture the social costs associated with environmental regulation in several
ways.  Since the model allows prices to change throughout the economy in both intermediate and
final output markets, equilibrium quantities under different regulatory scenarios can change from
their pre-regulatory equilibrium, which allows the model to capture deadweight losses associated
with regulation.  In addition, AMIGA incorporates taxes into its modeling framework, so it therefore
measures any tax interaction effects that result from regulation.  
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APPENDIX B

MODEL PERFORMANCE DOCUMENTATION FOR 
REMSAD, CAMX, AND OTHER COMPETING AIR QUALITY MODELS

This appendix provides references to a collection of technical documentation used in support
of the air quality model selections made in Chapter 5.  This documentation includes model
evaluations, user’s guides, model performance statistics, and comparative analyses and peer reviews
of a number of competing air quality modeling systems.  EPA’s decision to use REMSAD for PM
modeling and CAMx for ozone modeling relied upon careful consideration of the results presented
in these documents.  Also provided are references to documentation supporting the incorporation
of the BEIS-3 emissions inventory model to treat biogenic emissions.  The references listed here are
grouped by air quality model, and the order of references proceeds from general information to
model evaluation and finally to comparative analyses:

Regulatory Modeling System for Aerosols and Deposition (REMSAD)

• ICF Consulting.  2002.  User’s Guide to the Regional Modeling System for Aerosols and
Deposition (REMSAD) Version 7. July.
http://remsad.saintl.com/documents/remsad_users_guide_07-22-02.pdf

• Overview of the REMSAD Modeling System. 2001.
http://remsad.saintl.com/overview.htm. See also: “What’s New?” and “Frequently
Asked Questions” sections.

• US EPA.  2003.  Draft Regulatory Impact Analysis: Control of Emissions from Nonroad
Diesel Engines.  http://www.epa.gov/nonroad/r03008.pdf

• Lake Michigan Air Directors Consortium (LADCO).  2002.  Air Quality Modeling of
PM2.5 Species. http://www.cmascenter.org/workshop/session4/baker_abstract.pdf

• Jay Haney. 2002.  Computer Requirements for REMSAD. Systems Application
International (SAI). LADCO/TNRCC Linux Computing Workshop.
http://www.ladco.org/reports/presentations/march25_computing/rpo_computing_032602
a.pdf

• Douglas, Sharon, et al.  ICF Consulting.  (2002).  Application of REMSAD Modeling
System to the Midwest.  Memorandum to Mike Koerber, LADCO.   January 18.  

• Mansell, Gerard et al.  Environ.  (2001).  REMSAD Modeling Protocol. Western
Regional Air Partnership Modeling Forum.
http://www.emc.mcnc.org/projects/wrapjs/docs/REMSADprotocol.pdf
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• Western Regional Air Partnership: Modeling Forum Discussion Threads. 2002.  Model
Evaluation and New REMSAD vs. CMAQ Comparisons.
https://pah.cert.ucr.edu/pipermail/wrap-modeling-forum/2002-March/000034.html,
https://pah.cert.ucr.edu/pipermail/wrap-modeling-forum/2002-April/000067.html

• Comparison of PM2.5 Modeling Capabilities of REMSAD, MODELS-3/CMAQ, URM,
and CAMx. 1999.  http://www.vistas-sesarm.org/tech/modcompare.pdf

• US EPA.  2002.  Operational Evaluation and Comparison of CMAQ and REMSAD - An
Annual Simulation. 
http://www.cmascenter.org/workshop/session4/timin_cmas-slides.ppt

Models-3/Community Multiscale Air Quality (CMAQ) Modeling System

• US EPA.  User Documentation for the Models-3 Framework and the Community
Multiscale Air Quality Model (CMAQ).
http://www.epa.gov/asmdnerl/models3/doc/science/science.html

• An Assessment of Models-3 Performance During the 1999 SOS Nashville Study.
http://www.cmascenter.org/workshop/session3/bailey_abstract.pdf

• 2002 Models-3 Users’ Workshop References List. 
http://www.cmascenter.org/workshop/2002wspresent.html

Comprehensive Air Quality Model with Extensions (CAMx)

• User’s Guide to the Comprehensive Air Quality Model with Extensions (CAMx) Version
3.10. 2002. http://www.camx.com/pdf/CAMx3.UsersGuide.020410.pdf

• Overview of CAMx. http://www.camx.com/overview.html

• US EPA.  Overview of CAMx, including reference list of additional peer review studies.
Support Center for Regulatory Air Models (SCRAM). 
http://www.epa.gov/scram001/7thconf/information/camx.pdf

• Sonoma Technology Inc. 1997. Peer Review of ENVIRON’s Ozone Source
Apportionment Technology and the CAMx Air Quality Model.
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Biogenic Emissions Inventory System (BEIS)

• US EPA.  Background Information on BEIS.
http://www.epa.gov/asmdnerl/biogen.html

• US EPA.  2002.  The Impacts of Biogenic Emissions Estimates from BEIS-3 on Ozone
Modeling in the Southeastern US. 
http://www.epa.gov/ttn/chief/conference/ei11/modeling/arunachalampres.pdf

• Integration of the Biogenic Emissions Inventory System (BEIS3) into the Community
Multiscale Air Quality Modeling System.
http://ams.confex.com/ams/pdfview.cgi?username=37962

• US EPA.  2002.  Advances in Emissions Modeling of Airborne Substances. 
ftp://ftp.epa.gov/amd/asmd/pierce/eiip_emoverview.ppt
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APPENDIX C

POPULATION FORECASTING FOR
BENEFITS ANALYSIS

This appendix summarizes the steps used to estimate 2020 and 2030 population.  In
addition, we include a table with age-specific population estimates by state for the years 2000,
2020, and 2030.

Population Grid Cells

BenMAP calculates health impacts at the level of U.S. counties as well as for a variety of
grid structures used in air quality modeling (e.g.,, REMSAD, and CAMx).  In this description,
we use the term “population grid-cells” to refer to counties or the cells within an air quality
modeling grid.  The foundation for calculating the population level in the population grid-cells is
the 2000 Census block data.   A separate application developed by Abt Associates, called1

“PopGrid,” combines the Census block data with any user-specified set of population grid-cells,
so long as they are defined by a GIS shape file.

If the center of a Census block falls within a population grid-cell, PopGrid assigns the
block population to this particular population grid-cell.  Note that the grid-cells in air quality
model, such as REMSAD and CAMx, may cross multiple county boundaries.  To account for
this, PopGrid keeps track of the total number of people by county within a particular populatin
grid-cell.  Keeping track of the total number of people in a county is useful in the estimation of
adverse health effects, where the calculation of premature mortality depends on county-level
mortality rates.  It is also useful in the presentation of health benefits, when users may want
estimates at the state- and county-level, as opposed to estimates by, say, the area covered by an
air quality model.

Within any given population grid-cell, BenMAP has 256 demographic variables,
including 180 unique racial-gender-age groups: 19 age groups by gender by 5 racial groups
(19*2*5=180).  In addition there is an Hispanic ethnicity variable, which includes a number of
different racial groups, as well as a number of variables that aggregate the population by race
and gender.  Exhibit C-1 presents the 256 population variables available in BenMAP.  As
discussed below, these variables are available for use in developing age estimates in whatever
grouping desired by the user.
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Exhibit C-1.  Demographic Groups and Variables Available in BenMAP

Racial/Ethnic Group Gender Age # Variables

White, African American, Asian, Female, 0-1, 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 228
American Indian, Other, Male 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74,  75-79,
Hispanic 80-84, 85+

All – 0-1, 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 19
40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74,  75-79,
80-84, 85+

All Female, – 2
Male

White, African American, Asian, – – 6
American Indian, Other,
Hispanic

All – – 1

Census Data 2000

In addition to forecasting post-2000 population levels based on the 2000 Census,
BenMAP also allows the user to estimate the impacts for 1991-1999 by interpolating between
the results of the 1990 and 2000 Census.  As a result, we have developed a consistent set of
demographic variables, based on the 1990 Census, which provides somewhat less detail than the
2000 Census.

The 2000 Census allows respondents to choose more than one racial category, unlike the
1990 Census, which allowed only one choice.  As a result there are seven racial categories in the
2000 Census versus five in the 1990 Census (Exhibit C-2).  To make the 2000 Census data
consistent with the 1990 Census, we reduced the seven racial groups to the five used in the 1990
Census.

The initial data set at the block level includes 368 demographic groups: seven racial
groups and Hispanic ethnicity, by 23 pre-defined age groups by gender (Exhibit C-2).  Because
the 2000 Census includes somewhat different age groupings than that for the final set generated
for the 1990 Census.  Age variables 15-17 and 18-19 are combined, 20, 21, and 22-24 are
combined, 60-61 and 62-24 are combined, and 65-66 and 67-69 are combined at the block level. 
One variable, under 5 years, must be split into two variables (Under 1 and 1-4 years).  Assuming
that the population is uniformly distributed within age groups, we apply a factor of 1/5 to create
the 0-1 age group and 4/5 to create the 1-4 age group.
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Exhibit C-2.  Race, Ethnicity and Age Variables in 2000 Census Block Data

Race / Ethnicity Gender Age

Initial White Alone, Black Alone, Native Male, 0-5, 5-10, 10-14, 15-17, 18-19, 20,
Variables American Alone, Asian Alone, Pacific Female 21, 22-24, 25-29, 30-34, 35-39, 40-

Islander / Hawaiian Alone, Other Alone, 44, 45-49, 50-54, 55-59, 60-61, 62-
Two or More Alone, Hispanic (Non- 64, 65-66, 67-69, 70-74, 75-79, 80-
Exclusive) 84 85+

Final White, African American, Asian & Pacific Female, 0-1, 1-4, 5-9, 10-14, 15-19, 20-24,
Variables Islander, American Indian, Other, Male 25-29, 30-34, 35-39, 40-44, 45-49,
(identical to Hispanic 50-54, 55-59, 60-64, 65-69, 70-74, 
1990 75-79, 80-84, 85+
variables)

Source: Geolytics (2002a).  Note: Some population values were errors in the original Census data (e.g., values of a
billion or more). Following personal communication with Geolytics, these were set to zero. 

Matching Racial Categories in the 1990 and 2000 Censuses

Unlike the 1990 Census, respondents in the 2000 Census respondents could check more
than one box for race, so the reported results included a grouping of individuals that had checked
two or more racial categories.  In addition, the 2000 Census separately reported the categories
“Pacific Islander / Hawaiian Along” and “Asian Alone.”  To make the racial groupings
comparable with the 1990 Census, we first combined Pacific Islander / Hawaiian Alone with the
Asian Alone category to form the category Asian and Pacific Islander category.  Then we
divided the category Two-or-More between the remaining five racial categories.

Exhibit C-3 presents the estimated percentage of the national population by five racial
groups: (1) American Indian or Alaska Native, (2) Asian or Pacific Islander, (3) Black, (4)
White, and (5) Other, as well as for four combinations:  (1) American Indian or Alaska Native
(AIAN)/White, (2) Asian or Pacific Islander (API)/White, (3) Black/White, and (4) Other
combinations.  Slightly over 98 percent of individuals chose a single racial category, with 1.45
percent choosing three AIAN/White, API/White, and Black/White, and 0.30 choosing other
combinations (e.g., Black/Asian).  Exhibit C-3 also presents the estimated primary racial
affiliation of individuals in these subcategories if they were to choose a single racial affiliation.
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Exhibit C-3.  Distribution of Racial Groups

Racial Category U.S.
% of Total

Population  a

% of Population in Sub-Groups by Primary Racial Affiliation b

AIAN API Black White Other All

American Indian or Alaska 0.85 100 – – – – 100
Native (AIAN)

Asian or Pacific Islander (API) 3.35 – 100 – – – 100

Black 12.07 – – 100 – – 100

White 79.72 – – – 100 – 100

Other race 2.25 – – – – 100 100

AIAN/White 0.89 12.4 – – 80.9 6.7 100

API/White 0.30 – 34.6 – 46.9 18.4 100

Black/White 0.26 – – 48.2 25.2 26.6 100

Other combinations 0.30 – – – – 100.0 100c

Two-or-More Sub-Total 1.75 6.3 5.9 7.2 52.9 27.7 100d

 All percentages weighted to be nationally representative.  Percentages taken from Parker and Makuc (2001, Table 2),a

who cited the National Health Interview Survey 1993-1995, APPENDIX: Percent Distribution (Standard Error) of
Primary Racial Identification for Selected Detailed Race Groups.

 Primary racial affiliation based on survey results from Parker and Makuc (2001, Appendix).b

 Parker and Makuc (2001) did not provide an estimate of the primary racial affiliation for “Other combinations, so wec

assume that it belongs to the “Other” category.  Note that they did provide the primary racial affiliation for a fourth
group “Black/AIAN:” 85.4% Black, 7.0% AIAN, and 7.6% Other.  However, we do not have an estimate of the relative
abundance of Black/AIAN in the general population, so we have dropped it from further consideration.

 As described in the text below, we calculated the percentages in this row from the percentages in the previous fourd

rows for AIAN/White, API/White, Black/White, and Other combinations.

To estimate how to assign a single racial group for individuals that chose two or more
racial groups, we used the results of Exhibit C-3 for the three main categories for which we an
estimate of the primary racial affiliation: AIAN/White, API/White, and Black/White.  To
account for the 0.30 percent of the population in other combinations, we  For each Census block,
we assume that .89 / (.89+.30+.26+.30) = 50.8% of respondents in the Two or More category
will fall into the AIAN / White category, and of these, 80.9% would primarily identify
themselves as White if they were to choose a single racial category, 12.4% would primarily
identify themselves as American Indian or Alaska Native, and 6.7% would primarily identify
themselves as Other.  Thus 0.508 * .809 = 41% of Two or More we will call White, 10% we
identify as Native American, and 5% as Other.  

We did not attempt to predict what respondents in the ‘Other Combinations’ category
would have selected if they were to choose a single racial category, so we assume they are part
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of the “Other” category.  To estimate the number of individuals in each of the five races, we
performed the following calculations:
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This then reduces to:

Estimating Population Levels in Alternative Age Groups

In calculating the population in age groups that may include a portion of one of the pre-
specified demographic groups in Exhibit C-1, BenMAP assumes the population is uniformly
distributed in the age group.  For example, to calculate the number of children ages 3 through 12,
BenMAP calculates:

Estimating Population Levels in Non-Census Years

To forecast population levels beyond 2000, BenMAP scales the 2000 Census-based
estimate with the ratio of the county-level forecast for the future year of interest over the 2000
county-level population level.  Woods & Poole (2001) provides the county-level population
forecasts used to calculate the scaling ratios.

In the simplest case, where one is forecasting a single population variable, say, children
ages 4 to 9 in the year 2010, CAMPS calculates:

where the g  population grid-cell is wholly located within a given county.th
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In the case, where the g  grid-cell includes “n” counties in its boundary, the situation isth

somewhat more complicated.  BenMAP first estimates the fraction of individuals in a given age
group (e.g., ages 4 to 9) that reside in the part of each county within the g  grid-cell.  BenMAPth

calculates this fraction by simply dividing the population all ages of a given county within the gth

grid-cell by the total population in the g  grid-cell:th

Multiplying this fraction with the number of individuals ages 4 to 9 in the year 2000 gives an
estimate of the number of individuals ages 4 to 9 that reside in the fraction of the county within
the g  grid-cell in the year 2000:th

To then forecast the population in 2010, we scale the 2000 estimate with the ratio of the county
projection for 2010 to the county projection for 2000:

Combining all these steps for “c” counties within the g  grid-cell, we forecast the population ofth

persons ages 4 to 9 in the year 2010 as follows:

In the case where there are multiple age groups and multiple counties, BenMAP first
calculates the forecasted population level for individual age groups, and then combines the
forecasted age groups.  In calculating the number of children ages 4 to 12, BenMAP calculates:
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Since the Woods and Poole (2001) projections only extend through 2025, we used the
existing projections and constant growth factors to provide additional projections.  To estimate
population levels beyond 2025, BenMAP linearly extrapolates from the final two years of data. 
For example, to forecast population in 2030, BenMAP calculates:

Exhibit C-4 summarizes the forecasted age-stratified, state-level populations for 2020
and 2030.  In addition, to provide a point of comparison, it includes population levels for year
2000.
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Exhibit C-4.  State-Level Population Estimates by Age Group

2000 2020 2030
State 0-18 18-64 65+ 0-18 18-64 65+ 0-18 18-64 65+
AL 1,126,337 2,740,965 579,798 1,212,702 3,057,540 909,065 1,284,828 3,069,518 1,195,921

AZ 1,371,099 3,091,693 667,839 1,832,737 4,351,254 1,309,943 2,117,749 4,708,843 1,812,966

AR 681,003 1,618,378 374,019 769,208 1,821,876 557,233 832,285 1,861,954 698,259

CA 9,254,212 21,021,768 3,595,658 10,105,474 25,308,061 5,717,329 10,895,067 26,084,324 7,681,464

CO 1,101,772 2,783,415 416,073 1,321,930 3,359,731 954,691 1,498,688 3,453,808 1,370,557

CT 839,051 2,096,330 470,183 821,773 2,110,504 588,222 845,210 1,991,695 728,973

DE 195,997 485,877 101,726 213,375 571,224 149,015 227,024 574,497 204,731

DC 120,659 381,502 69,898 95,389 337,146 103,401 93,833 305,565 123,728

FL 3,643,004 9,531,774 2,807,597 4,466,384 12,098,406 4,472,647 5,026,785 12,483,019 5,933,620

GA 2,176,259 5,224,918 785,275 2,600,100 6,296,967 1,328,722 2,851,139 6,620,751 1,778,194

ID 369,522 778,515 145,916 451,473 980,346 282,616 507,776 1,045,592 374,826

IL 3,247,904 7,671,362 1,500,025 3,286,653 8,148,579 2,069,429 3,425,612 7,962,757 2,669,430

IN 1,581,993 3,745,661 752,831 1,691,800 4,113,510 1,087,932 1,800,717 4,096,828 1,421,006

IA 737,415 1,752,696 436,213 734,433 1,820,333 593,034 766,374 1,750,358 755,945

KS 714,371 1,617,818 356,229 760,573 1,795,227 499,065 814,382 1,778,859 653,139

KY 998,042 2,538,933 504,793 1,077,101 2,762,379 801,696 1,154,120 2,750,564 1,052,988

LA 1,221,651 2,730,396 516,929 1,247,161 2,952,038 850,018 1,318,748 2,917,899 1,116,293

ME 299,691 791,830 183,402 284,880 852,466 289,399 297,507 807,626 394,873

MD 1,350,517 3,346,661 599,307 1,453,726 3,868,715 926,465 1,559,338 3,877,266 1,256,566

MA 1,508,818 3,980,116 860,162 1,533,618 4,071,543 1,144,857 1,604,543 3,871,104 1,469,089

MI 2,596,118 6,123,307 1,219,018 2,587,563 6,590,540 1,798,905 2,703,858 6,417,627 2,366,125

MN 1,285,100 3,040,113 594,266 1,413,120 3,525,458 948,035 1,547,597 3,524,435 1,298,319

MS 779,939 1,721,196 343,523 826,142 1,912,067 513,412 867,469 1,926,497 667,632

MO 1,428,853 3,410,978 755,379 1,526,846 3,830,433 1,062,471 1,631,969 3,798,554 1,404,065
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2000 2020 2030
State 0-18 18-64 65+ 0-18 18-64 65+ 0-18 18-64 65+
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MT 228,916 552,330 120,949 234,129 612,736 241,971 258,376 604,179 322,696

NE 450,372 1,028,696 232,195 483,340 1,148,129 329,112 522,703 1,142,368 426,556

NV 510,633 1,268,694 218,929 757,488 1,921,749 477,249 904,840 2,150,250 654,589

NH 309,490 778,326 147,970 321,958 906,776 236,489 346,320 897,774 329,510

NJ 2,074,020 5,227,192 1,113,136 2,126,538 5,560,594 1,507,553 2,222,228 5,402,892 1,949,786

NM 506,558 1,100,262 212,225 583,389 1,372,898 412,394 644,935 1,420,580 572,907

NY 4,696,232 11,831,869 2,448,352 4,487,417 11,815,310 3,179,326 4,540,245 11,246,710 3,953,934

NC 1,977,387 5,102,877 969,048 2,399,345 6,081,807 1,588,246 2,646,039 6,337,401 2,079,430

ND 162,017 385,705 94,478 152,979 407,052 152,185 160,056 387,072 203,240

OH 2,889,207 6,956,175 1,507,757 2,894,902 7,316,549 2,031,922 3,021,197 7,084,923 2,597,112

OK 894,531 2,100,173 455,950 968,204 2,255,616 685,395 1,037,634 2,249,445 865,166

OR 846,233 2,136,988 438,177 1,028,841 2,593,792 824,166 1,161,142 2,731,400 1,065,084

PA 2,930,189 7,431,699 1,919,165 2,807,320 7,589,422 2,473,482 2,879,828 7,112,827 3,152,928

RI 252,438 643,479 152,402 248,650 664,840 185,270 253,697 626,436 236,588

SC 1,017,627 2,509,052 485,333 1,125,147 2,936,359 879,310 1,217,702 2,989,589 1,188,398

SD 202,496 444,217 108,131 209,379 498,258 159,468 222,092 487,168 215,460

TN 1,402,958 3,583,013 703,311 1,614,405 4,118,556 1,147,546 1,759,007 4,213,846 1,513,183

TX 5,891,741 12,887,542 2,072,532 7,108,830 15,994,222 3,802,007 7,929,363 16,840,990 5,236,651

UT 724,466 1,318,481 190,222 989,440 1,826,327 368,454 1,120,100 2,046,412 497,421

VT 147,949 383,368 77,510 137,590 414,505 138,315 144,053 397,442 190,941

VA 1,743,459 4,542,721 792,333 1,955,331 5,201,333 1,308,689 2,132,729 5,295,036 1,734,954

WA 1,511,831 3,720,140 662,148 1,785,937 4,644,371 1,174,213 2,006,978 4,857,761 1,581,410

WV 404,484 1,126,965 276,895 388,379 1,094,529 403,851 404,280 1,038,496 488,364

WI 1,369,215 3,291,907 702,553 1,413,693 3,680,062 1,070,942 1,511,982 3,612,218 1,450,806

WY 128,585 307,504 57,693 124,005 314,574 117,862 132,595 301,356 154,460
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Woods & Poole Data

Woods & Poole (2001) developed county-level forecasts for each year from 2000
through 2025, for three racial groups “Black,” “White,” and “Other,” and by age and by gender. 
For the Hispanic ethnic group, Woods and Poole developed forecasts just for the total
population, and not by age and gender.  As discussed in the section on population forecasts,
BenMAP uses these forecasts to simply scale the 2000 Census block data, in order to estimate
the population in the population grid-cells for any given year after 2000.

Aligning Woods & Poole FIPS Codes with BenMAP FIPS Codes

The county geographic boundaries used by Woods & Poole are somewhat more
aggregated than the county definitions used in the 2000 Census (and BenMAP), and the FIPS
codes used by Woods and Poole are not always the standard codes used in the Census.  To make
the Woods and Poole data consistent with the county definitions in BenMAP, we disaggregated
the Woods and Poole data and changed some of the FIPS codes.  Exhibit C-5 lists the
discrepancies in the county definitions between Woods & Poole and those used in BenMAP.

To assign the population in the more aggregated Woods & Poole county definitions to the
more disaggregated definitions used in BenMAP (and the U.S. Census), we used the total county
population from the 2000 U.S. Census.  We then assumed that the age and racial groups were
distributed uniformly across the BenMAP counties contained within a Woods & Poole county
definition.  For example, in estimating the population of children ages 4-9 in county “c”
contained within a more broadly defined Woods & Poole county, we would do the following:

After this factor was applied, we rounded the estimates to the nearest integer so as to
avoid having data with “partial people.”
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Exhibit C-5.  Linkage Between Woods & Poole County Definitions and BenMAP County
Definitions

Woods and Poole Counties (FIPS) Counties in BenMAP (FIPS)

Northwest Arctic Borough, AK Kobuk, AK (02140)
(02188)

Remainder of Alaska, AK (02999) Aleutian Islands, AK (02010), Aleutian Islands East Borough, AK (02013),
Aleutian Islands West Census Area, AK (02016), Bethel Census Area, AK
(02050), Denali Borough, AK (02068), Dillingham Census Area, AK (02070),
Haines Borough, AK (02100), Kenai Peninsula Borough, AK (02122), Lake
and Peninsula Borough, AK (02164), North Slope Borough, AK (02185),
Prince of Wales-Outer Ketchikan, AK (02201), Sitka Borough, AK (02220),
Skagway-Yukatat-Angoon, AK (02231), Skagway-Hoonah-Angoon Census
Area, AK (02232), Southeast Fairbanks Census Area, AK (02240), Valdez-
Cordova Census Area, AK (02261), Wrangell-Petersburg Census Area, AK
(02280), Yakutat Borough, AK (02282), Yukon-Koyukuk, AK (02290)

Yuma + La Paz, AZ (04027) La Paz, AZ (04012), Yuma, AZ (04027)

Miami-Dade, FL (12086) Dade, FL (12025)

Maui + Kalawao, HI (15901) Kalawao, HI (15005), Maui, HI (15009)

Fremont, ID (16043) Fremont, ID (16043), Yellowstone Park, ID

Park, MT (30067) Park, MT (30067), Yellowstone Park, MT (30113)

Valencia + Cibola, NM (35061) Cibola, NM (35006), Valencia, NM (35061)

Halifax, VA (51083) Halifax, VA (51083), South Boston City, VA (51780)

Albemarle + Charlottesville, VA Albemarle, VA (51003), Charlottesville City, VA (51540)
(51901)

Alleghany + Clifton Forge + Alleghany, VA (51005), Clifton Forge City, VA (51560), Covington City, VA
Covington, VA (51903) (51580)

Augusta + Staunton + Waynesboro, Augusta, VA (51015), Staunton City, VA (51790), Waynesboro City, VA
VA (51907) (51820)

Bedford + Bedford City, VA (51909) Bedford, VA (51019), Bedford City, VA (51515)

Campbell + Lynchburg, VA (51911) Campbell, VA (51031), Lynchburg City, VA (51680)

Carroll + Galax, VA (51913) Carroll, VA (51035), Galax City, VA (51640)

Dinwiddie + Colonial Heights + Dinwiddie, VA (51053), Colonial Heights City, VA (51570), Petersburg City,
Petersburg, VA (51918) VA (51730)

Fairfax + Fairfax City + Falls Church Fairfax, VA (51059), Fairfax City, VA (51600), Falls Church City, VA
City, VA (51919) (51610)

Frederick + Winchester, VA (51921) Frederick, VA (51069), Winchester City, VA (51840)

Greensville + Emporia, VA (51923) Greensville, VA (51081), Emporia City, VA (51595)

Henry + Martinsville, VA (51929) Henry, VA (51089), Martinsville City, VA (51690)

James City + Williamsburg, VA James City County, VA (51095), Williamsburg City, VA (51830)
(51931)
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Montgomery + Radford, VA (51933) Montgomery, VA (51121), Radford City, VA (51750)

Pittsylvania + Danville, VA (51939) Pittsylvania, VA (51143), Danville City, VA (51590)

Prince George + Hopewell, VA Prince George, VA (51149), Hopewell City, VA (51670)
(51941)

Prince William + Manassas + Manassas Prince William, VA (51153), Manassas City, VA (51683), Manassas Park
Park, VA (51942) City, VA (51685)

Roanoke + Salem, VA (51944) Roanoke, VA (51161), Salem City, VA (51775)

Rockbridge + Buena Vista + Rockbridge, VA (51163), Buena Vista City, VA (51530), Lexington City, VA
Lexington, VA (51945) (51678)

Rockingham + Harrisonburg, VA Rockingham, VA (51165), Harrisonburg City, VA (51660)
(51947)

Southampton + Franklin, VA (51949) Southampton, VA (51175), Franklin City, VA (51620)

Spotsylvania + Fredericksburg, VA Spotsylvania, VA (51177), Fredericksburg City, VA (51630)
(51951)

Washington + Bristol, VA (51953) Washington, VA (51191), Bristol City, VA (51520)

Wise + Norton, VA (51955) Wise, VA (51195), Norton City, VA (51720)

York + Poquoson, VA (51958) York, VA (51199), Poquoson City, VA (51735)

Shawano (includes Menominee), WI Menominee, WI (55078), Shawano, WI (55115)
(55901)

Age, Gender, Race, and Ethnicity

We generated the same 38 age and gender categories developed from the 1990 and 2000
Census data.  Since these projections are available for every year of age, it is a simple matter to
sum the individual years to get the same age categories used by BenMAP.

However, the only racial categories available are “White,” “Black,” and “Other.”  Since
we do not have an Asian or Native American group, or an Other group which is consistent with
the definition used by the 1990 and 2000 Census data, we assume that projection data’s Other
category is representative of all 3 groups, and that they move together over time.

The county projections only forecast the Hispanic population of all ages, and does not
have separate gender and age forecasts.  Lacking further information, we use the ratio of future-
year all age population to the year 2000 all age population when forecasting any particular age
group of Hispanics.  In effect, we assume for all forecast years the same distribution of age and
gender as found in the 2000 Census.
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Creating Growth Ratios from Absolute Population Values

For each year from 2000 through 2025 and for each of the 256 demographic groups listed
in Exhibit C-1, BenMAP stores the ratio of the future-year to year 2000 county-level population
projections.  As described below, these ratios are used to forecast population levels in the
population grid-cells used by BenMAP to health effects.

Note that there are a small number of cases were the 2000 county population for a
specific demographic group is zero, so the ratio of any future year to the year 2000 data is
undefined.   In these relatively rare cases, we set the year 2000 ratio and all subsequent ratios to
1, assuming no growth.

There are an even smaller number of cases where a total population variable dwindles
from some non-zero number to zero, creating ratios of zero.  Variables which represent a
subpopulation of the first variable may not be zero, however.  In these cases, we set all subset
population variables for that year to zero.  

For instance, if a county only had one person in it for the year 2000 - a 79 year old black
male - we set all variables (excluding total variables and BlackMale75to79) to a ratio of 1,
because their 2000 values of 0 produce undefined ratios.  If the man dies at age 82, the total
black population variable for years 2003 and beyond is calculated as 0/1 = 0.  Thus for each of
those years where the total black population is listed as zero, we go back and set all black
population variables to zero, to reflect the knowledge that the block is empty.  For all variables
except the BlackMale75to79 age group (already zero), 1 becomes 0.    
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APPENDIX D

PARTICULATE MATTER AND OZONE CONCENTRATION-RESPONSE
FUNCTIONS

In this Appendix, we present the concentration-response (C-R) functions used to estimate
adverse health effects related to PM and ozone.  First, we discuss the concentration response
functions for particulate matter, then we discuss then concentration response functions for ozone. 
Each sub-section has an Exhibit with a brief description of the C-R function and the underlying
parameters.  Following each Exhibit, we present a brief summary of each of the studies and any
items that are unique to the study. Also, note that each citation in the text includes a numbered
reference to a database that facilitates updating the citations.  

Particulate Matter Concentration Response Functions

Long-term Mortality

There are two types of exposure to PM that may result in premature mortality.  Short-
term exposure may result in excess mortality on the same day or within a few days of exposure. 
Long-term exposure over, say, a year or more, may result in mortality in excess of what it would
be if PM levels were generally lower, although the excess mortality that occurs will not
necessarily be associated with any particular episode of elevated air pollution levels.  In other
words, long-term exposure may capture a facet of the association between PM and mortality that
is not captured by short-term exposure.
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Exhibit D-1  Concentration-Response (C-R) Functions for Particulate Matter and Long-Term Mortality

Endpoint Name Pollutant Author Year Location Age Race Gender Beta Std Error NotesOther Averaging Functional
Pollutants Time Form

All Cause PM Krewski et al. 2000 63 cities 30+ All All None Annual Avg 0.004626 0.001205 Log-linear ACS reanalysis2.5

All Cause PM Krewski et al. 2000 50 cities 30+ All All None Annual Median 0.005348 0.001464 Log-linear ACS reanalysis2.5

All Cause PM Krewski et al. 2000 nationwide 30+ All All None Annual Median 0.010394 0.002902 Log-linear2.5
ACS reanalysis; RE
Ind Cities

All Cause PM Krewski et al. 2000 nationwide 30+ All All None Annual Median 0.006058 0.003383 Log-linear2.5
ACS reanalysis; RE
Reg Adj

All Cause PM Krewski et al. 2000 6 cities 25+ All All None Annual Avg 0.013272 0.004070 Log-linear Six Cities reanalysis2.5

All Cause PM Pope et al. 1995 50 cities 30+ All All None Annual Median 0.006408 0.001509 Log-linear2.5

All Cause PM Dockery et al. 1993 6 cities 25+ All All None Annual Avg 0.012425 0.004228 Log-linear2.5

All Cause PM Pope et al. 2002 61 cities 30+ All All None Annual Avg 0.004018 0.001642 Log-linear '79-'83 exposure2.5

Cardiopulmonary PM Pope et al. 2002 61 cities 30+ All All None Annual Avg 0.005733 0.002167 Log-linear '79-'83 exposure2.5

Lung Cancer PM Pope et al. 2002 61 cities 30+ All All None Annual Avg 0.007881 0.003463 Log-linear '79-'83 exposure2.5

Infant PM 1997 86 cities <1 All All None Annual Avg 0.003922 0.001221 Logistic10
Woodruff et
al.
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Mortality - Mean, All Cause [Krewski, 2000 #1805] - Reanalysis of Pope et al. [, 1995 #81]

The Krewski et al. [2000 #1805] reanalysis of Pope et al. [ 1995 #81] used a Cox
proportional hazard model to estimate the impact of long-term PM exposure.  The original
investigation followed 295,223 individuals  ages 30 and over in 50 cities from September 1,1

1982 to December 31, 1989, and related their survival to median PM  concentrations for 19792.5
to 1983.  Krewski et al. [2000 #1805] independently estimated city-specific annual mean values
from EPA’s Inhalable Particle Monitoring Network (IPMN) for the same years (1979-1983). 
Krewski et al. [2000 #1805] followed Pope et al. [ 1995 #81, Table 2] and reported results for
all-cause deaths, lung cancer (ICD-9 code: 162), cardiopulmonary deaths (ICD-9 codes: 401-440
and 460-519), and “all other” deaths,  and found that mean PM  is significantly related to all-2

2.5
cause and cardiopulmonary mortality.  Krewski et al. included only PM, so it is unclear to what
extent it may be including the impacts of ozone or other gaseous pollutants.

Pope et al. [ 1995 #81] is the better of the two published prospective cohort studies: it has
a larger population and includes more cities than the prospective cohort study by Dockery et al. [
1993 #20].  Pope et al.’s study has several further advantages.  The population followed in this
study was largely Caucasian and middle class, decreasing the likelihood that interlocational
differences in premature mortality were due in part to differences in race, socioeconomic status,
or related factors.  In addition, the PM coefficient in Pope et al. is likely to be biased downward,
counteracting a possible upward bias associated with historical air quality trends discussed
earlier.  One source of this downward bias is the generally healthier and study population, in
comparison to poorer minority populations.  Krewski et al. [2000 #1805, Part II - Table 52]
found that educational status was a strong effect modifier of the PM - mortality relationship in
both studies, with the strongest effect seen among the less educated.  In fact, much of the
differences in magnitude of effect between the studies was made up when assessing risk across
comparable levels of educational attainment.

Another source of downward bias is that intercity movement of cohort members was not
considered in the original study and therefore could not be evaluated in the reanalysis. 
Migration across study cities would result in exposures of cohort members being more similar
than would be indicated by assigning city-specific annual average pollution levels to each
member of the cohort.  The more intercity migration there is, the more exposure will tend toward
an intercity mean.  If this is ignored, differences in exposure levels, that are proxied by
differences in city-specific annual average PM levels, will be exaggerated, and will result in a
downward bias of the PM coefficient (because a given difference in mortality rates is being
associated with a larger difference in PM levels than is actually the case).  
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Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.12) and 95%
confidence interval (1.06-1.19) associated with a change in annual mean PM  exposure of 24.52.5
µg/m  (based on the range from the original ACS study) [Krewski, 2000 #1805, Part II - Table3

31].

Functional Form: Log-linear
Coefficient: 0.004626
Standard Error: 0.001205
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

Mortality - Median, All Cause [Krewski, 2000 #1805] - Reanalysis of Pope et al. [ 1995 #81]

Krewski et al. [ 2000 #1805] performed an analysis of Pope et al. [ 2000 #1805] using
independently estimated city-specific annual median values as well.  Fine particle estimates were
obtained from EPA’s Inhalable Particle Monitoring Network (IPMN) for the years 1979-1983
for the same 50 cities.  Overall, the estimates showed good agreement with the median values
used in the original investigation with one exception.  The median fine particle concentration for
Denver dropped from 16.1 to 7.8 µg/m , resulting in a larger range between the least and most3

polluted cities and a reduced relative risk.  Since the original estimate could not be audited,
Denver is included in the subsequent C-R function as there is no reason to believe that the
monitoring data is invalid.

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.14) and 95%
confidence interval (1.06-1.22) associated with a change in annual median PM  exposure of2.5
24.5 µg/m  (based on the range from the original ACS study) [Krewski, 2000 #1805, Part II -3

Table 31].

Functional Form: Log-linear
Coefficient: 0.005348
Standard Error: 0.001464
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

Mortality - Median, Random Effects with Regional Adjustment [Krewski, 2000 #1805] -
Reanalysis of Pope et al. [ 1995 #81]

Krewski et al. [ 2000 #1805] also performed an analysis of Pope et al. [ 2000 #1805]
using a random effects model to estimate a regionally-adjusted relative risk.  The authors used an
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indicator variable representing seven regions of the U.S.  The regionally-adjusted estimate was
comparable with the results from the standard Cox Proportional Hazards Model, which assumes
that all observations are statistically independent.   

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.16) and 95%
confidence interval (0.99-1.37) associated with a change in annual median PM  exposure of2.5
24.5 µg/m  (based on the range from the original ACS study) [Krewski, 2000 #1805, Part II -3

Table 46].

Functional Form: Log-linear
Coefficient: 0.006058
Standard Error: 0.003383
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

Mortality - Median, Random Effects with Independent Cities [Krewski, 2000 #1805] -
Reanalysis of Pope et al. [ 1995 #81]

Krewski et al. [ 2000 #1805] also performed an analysis of Pope et al. [ 2000 #1805]
using a random effects approach to estimate an independent cities model.  This approach
incorporates between-city variation into second-stage modeling weights, thereby avoiding the
assumption of independent observations.  However, potential regional patterns in mortality may
be overlooked, because the approach assumes that city-specific mortality rates are statistically
independent.  The independent cities estimate is considerably larger than the standard Cox
Proportional Hazards Model, which assumes that all observations are statistically independent.   

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.29) and 95%
confidence interval (1.12-1.48) associated with a change in annual median PM  exposure of2.5
24.5 µg/m  (based on the range from the original ACS study) [Krewski, 2000 #1805, Part II -3

Table 46].

Functional Form: Log-linear
Coefficient: 0.010394
Standard Error: 0.002902
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older
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Mortality  [Krewski, 2000 #1805] - Reanalysis of Dockery et al. [1993 #20]

Krewski et al. [2000 #1805] performed a validation and replication analysis of Dockery
et al. [ 1993 #20].  The originial investigators examined the relationship between PM exposure
and mortality in a cohort of 8,111 individuals aged 25 and older, living in six U.S. cities.  They
surveyed these individuals in 1974-1977 and followed their health status until 1991.  While they
used a smaller sample of individuals from fewer cities than the study by Pope et al., they used
improved exposure estimates, a slightly broader study population (adults aged 25 and older; a
higher proportion without a high school education), and a follow-up period nearly twice as long
as that of Pope et al. [1995 #81].  Krewski et al. [2000 #1805, Part II - Table 52] found that
educational status was a strong effect modifier of the PM - mortality relationship in both studies,
with the strongest effect seen among the less educated.  Perhaps because of these differences,
Dockery et al. study found a larger effect of PM on premature mortality than that found by Pope
et al.

After an audit of the air pollution data, demographic variables, and cohort selection
process, Krewski et al. [2000 #1805] noted that a small portion of study participants were
mistakenly censored early.  The following C-R function is based on the risk estimate from the
audited data, with the inclusion of those person-years mistakenly censored early. 

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.28) and 95%
confidence interval (1.10-1.48) associated with a change in annual mean PM  exposure of 18.62.5
µg/m  to 29.6 µg/m  [Krewski et al.,2000 #1805, Part I - Table 19c].    3 3

Functional Form: Log-linear
Coefficient: 0.013272
Standard Error: 0.004070
Incidence Rate: county-specific annual all cause mortality rate per person ages 25 and older
Population: population of ages 25 and older

Mortality, All Cause [Pope, 1995 #81]

Pope et al. [1995 #81] used a Cox proportional hazard model to estimate the impact of
long-term PM exposure.  They followed 295,223 individuals  ages 30 and over in 50 cities from3

September 1, 1982 to December 31, 1989, and related their survival to median PM2.5
concentrations for 1979 to 1983.  Pope et al. [ 1995 #81, Table 2] reported results for all-cause
deaths, lung cancer (ICD-9 code: 162), cardiopulmonary deaths (ICD-9 codes: 401-440 and 460-
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519), and “all other” deaths,  and found that median PM  is significantly related to all-cause and4
2.5

cardiopulmonary mortality.  Pope et al. included only PM, so it is unclear to what extent it may
be including the impacts of ozone or other gaseous pollutants.

Pope et al. [1995 #81] is the better of the two published prospective cohort studies: it has
a larger population and includes more cities than the prospective cohort study by Dockery et al.
[1993 #20].  Pope et al.’s study has several further advantages.  The population followed in this
study was largely Caucasian and middle class, decreasing the likelihood that interlocational
differences in premature mortality were due in part to differences in race, socioeconomic status,
or related factors.  In addition, the PM coefficient in Pope et al. is likely to be biased downward,
counteracting a possible upward bias associated with historical air quality trends discussed
earlier.  One source of this downward bias is the generally healthier study population, in
comparison to poorer minority populations.  Another source of downward bias is that intercity
movement of cohort members was not considered in this study.  Migration across study cities
would result in exposures of cohort members being more similar than would be indicated by
assigning city-specific annual average pollution levels to each member of the cohort.  The more
intercity migration there is, the more exposure will tend toward an intercity mean.  If this is
ignored, differences in exposure levels, that are proxied by differences in city-specific annual
average PM levels, will be exaggerated, and will result in a downward bias of the PM coefficient
(because a given difference in mortality rates is being associated with a larger difference in PM
levels than is actually the case).  

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.17) and 95%
confidence interval (1.09-1.26) associated with a change in annual median PM  exposure of2.5
24.5 µg/m  [Pope, 1995 #81, Table 2].3

Functional Form: Log-linear
Coefficient: 0.006408
Standard Error: 0.001509
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

Mortality, All Cause [Dockery, 1993 #20]

Dockery et al. [ 1993 #20] examined the relationship between PM exposure and mortality
in a cohort of 8,111 individuals aged 25 and older, living in six U.S. cities.  They surveyed these
individuals in 1974-1977 and followed their health status until 1991.  While they used a smaller
sample of individuals from fewer cities than the study by Pope et al., they used improved
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exposure estimates, a slightly broader study population (adults aged 25 and older), and a follow-
up period nearly twice as long as that of Pope et al. [ 1995 #81].  Perhaps because of these
differences, Dockery et al. study found a larger effect of PM on premature mortality than that
found by Pope et al.

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.26) and 95%
confidence interval associated (1.08-1.47) with a change in annual mean PM  exposure of 18.62.5
µg/m  [Dockery, 1993 #20, Tables 1 and 5].3

Functional Form: Log-linear
Coefficient: 0.012425
Standard Error: 0.004228
Incidence Rate: county-specific annual all cause mortality rate per person ages 25 and older
Population: population of ages 25 and older

Mortality, All Cause [Pope, 2002 #2240] - Based on ACS Cohort: Mean PM2.5

The Pope et al. [ 2002 #2240] analysis is a longitudinal cohort tracking study that uses
the same American Cancer Society (ACS) cohort as the original Pope et al. [ 1995 #81] study,
and  the Krewski et al. [2000 #1805] reanalysis.  Pope et al. [ 2002 #2240] analyzed survival data
for the cohort from 1982 through 1998, 9 years longer than the original Pope study.  Pope et al. [
2002 #2240] also obtained PM  data in 116 metropolitan areas collected in 1999, and the first2.5
three quarters of 2000.  This is more metropolitan areas with PM  data than was available in the2.5
Krewski reanalysis (61 areas), or the original Pope study (50 areas), providing a larger size
cohort.

They used a Cox proportional hazard model to estimate the impact of long-term PM
exposure using three alternative measures of PM  exposure; metropolitan area-wide annual2.5
mean PM levels from the beginning of tracking period (’79-’83 PM data, conducted for 61
metropolitan areas with 359,000 individuals), annual mean PM from the end of the tracking
period (’99-’00, for 116 areas with 500,000 individuals), and the average annual mean PM levels
of the two periods (for 51 metropolitan areas, with 319,000 individuals).  PM levels were lower
in ’99-00 than in ’79 - ’83 in most cities, with the largest improvements occurring in cities with
the highest original levels.

Pope et al.  [ 2002 #2240] followed Krewski et al. [2000 #1805] and Pope et al. [ 1995
#81, Table 2] and reported results for all-cause deaths, lung cancer (ICD-9 code: 162),
cardiopulmonary deaths (ICD-9 codes: 401-440 and 460-519), and “all other” deaths.   Like the5



May 12, 2003

Note that we used an unpublished, final version of the paper that presents the relative risks with one more significant digit6

than that found in the published version.  We chose to use this extra information to increase the precision of our estimates. 

All-cause mortality includes accidents, suicides, homicides and legal interventions.  The category “all other” deaths is all-7

cause mortality less lung cancer and cardiopulmonary deaths.

D-9

earlier studies, Pope et al. [ 2002 #2240] found that mean PM  is significantly related to all-2.5
cause and cardiopulmonary mortality.  In addition, Pope et al. [ 2002 #2240] found a significant
relationship with lung cancer mortality, which was not found in the earlier studies.  None of the
three studies found a significant relationship with “all other” deaths.

Pope et al. [ 2002 #2240] obtained ambient data on gaseous pollutants routinely
monitored by EPA during the 1982-1998 observation period, including SO , NO , CO, and2 2
ozone.  They did not find significant relationships between NO , CO, and ozone and premature2
mortality, but there were significant relationships between SO , and all-cause, cardiopulmonary,2
lung cancer and “all other” mortality.

’79-’83 Exposure

The coefficient and standard error for PM  using the ’79-’83 PM data are estimated from2.5
the relative risk (1.041) and 95% confidence interval (1.008-1.075) associated with a change in
annual mean exposure of 10.0 µg/m . Pope et al. [ 2002 #2240, Table 2].  3 6

Functional Form: Log-linear
Coefficient: 0.004018
Standard Error: 0.001642
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

Mortality, Cardiopulmonary [Pope, 2002 #2240] - Based on ACS Cohort: Mean PM2.5

Pope et al.  [ 2002 #2240] followed Krewski et al. [2000 #1805] and Pope et al. [ 1995
#81, Table 2] and reported results for all-cause deaths, lung cancer (ICD-9 code: 162),
cardiopulmonary deaths (ICD-9 codes: 401-440 and 460-519), and “all other” deaths.   Like the7

earlier studies, Pope et al. [ 2002 #2240] found that mean PM  is significantly related to all-2.5
cause and cardiopulmonary mortality.  In addition, Pope et al. [ 2002 #2240] found a significant
relationship with lung cancer mortality, which was not found in the earlier studies.  None of the
three studies found a significant relationship with “all other” deaths.

’79-’83 Exposure

The coefficient and standard error for PM  using the ’79-’83 PM data are estimated from2.5
the relative risk (1.059) and 95% confidence interval (1.015-1.105) associated with a change in
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annual mean exposure of 10.0 µg/m . Pope et al. [ 2002 #2240, Table 2].  3 8

Functional Form: Log-linear
Coefficient: 0.005733
Standard Error: 0.002167
Incidence Rate: county-specific annual cardiopulmonary mortality rate (ICD codes 401-440,
460-519) per person ages 30 and older
Population: population of ages 30 and older

Mortality, Lung Cancer [Pope, 2002 #2240] - Based on ACS Cohort: Mean PM2.5

Pope et al.  [ 2002 #2240] followed Krewski et al. [2000 #1805] and Pope et al. [ 1995
#81, Table 2] and reported results for all-cause deaths, lung cancer (ICD-9 code: 162),
cardiopulmonary deaths (ICD-9 codes: 401-440 and 460-519), and “all other” deaths.   Like the9

earlier studies, Pope et al. [ 2002 #2240] found that mean PM  is significantly related to all-2.5
cause and cardiopulmonary mortality.  In addition, Pope et al. [ 2002 #2240] found a significant
relationship with lung cancer mortality, which was not found in the earlier studies.  None of the
three studies found a significant relationship with “all other” deaths.

’79-’83 Exposure

The coefficient and standard error for PM  using the ’79-’83 PM data are estimated from2.5
the relative risk (1.082) and 95% confidence interval (1.011-1.158) associated with a change in
annual mean exposure of 10.0 µg/m . Pope et al. [ 2002 #2240, Table 2].  3 10

Functional Form: Log-linear
Coefficient: 0.007881
Standard Error: 0.003463
Incidence Rate: county-specific annual lung cancer mortality rate (ICD code 162) per person
ages 30 and older
Population: population of ages 30 and older
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Infant Mortality [Woodruff, 1997 #210]

In a study of four million infants in 86 U.S. metropolitan areas conducted from 1989 to
1991, Woodruff et al. [ 1997 #210] found a significant link between PM  exposure in the first10
two months of an infant’s life with the probability of dying between the ages of 28 days and 364
days.  PM  exposure was significant for all-cause mortality.  PM  was also significant for10 10
respiratory mortality in average birth-weight infants, but not low birth-weight infants.

In addition to the work by Woodruff et al., work in Mexico City [Loomis, 1999 #756],
the Czech Republic [Bobak, 1992 #1130], Sao Paulo [Saldiva, 1994 #167; Pereira, 1998 #164],
and Beijing [Wang, 1997 #1132] provides additional evidence that particulate levels are
significantly related to infant or child mortality, low birth weight or intrauterine mortality.

Conceptually, neonatal or child  mortality could be added to the premature mortality
predicted by Pope et al. [ 1995 #81], because the Pope function covers only the population over
30 years old.   However, the EPA Science Advisory Board recently advised the Agency not to11

include post-neonatal mortality in this analysis because the study is of a new endpoint and the
results have not been replicated in other studies [U.S. EPA, 1999 #930, p.  12].  The estimated
avoided incidences of neonatal mortality are estimated and presented as a sensitivity analysis,
and are not included in the primary analysis.

Single Pollutant Model

The coefficient and standard error are based on the odds ratio (1.04) and 95% confidence
interval (1.02-1.07) associated with a 10 µg/m  change in PM  [Woodruff, 1997 #210, Table 3]. 3

10

Functional Form: Logistic
Coefficient: 0.003922
Standard Error: 0.001221
Incidence Rate: county-specific annual postneonatal  infant deaths per infant under the age of12

one
Population: population of infants under one year old
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Exhibit D-2  Concentration-Response (C-R) Functions for Particulate Matter and Short-Term Mortality

Endpoint Name Pollutant Author Year Location Age Race Gender Beta NotesOther Averaging Std Functional
Pollutants Time Error Form1

Non-Accidental PM Schwartz et al. 1996 6 cities All All All None 24-hr avg 0.001433 0.00013 Log-linear2.5

Non-Accidental PM Schwartz et al. 1996 6 cities All All All None 24-hr avg 0.002835 -- Log-linear Lag Adjusted2.5
2

Chronic Lung PM Schwartz et al. 1996 6 cities All All All None 24-hr avg 0.006423 -- Log-linear Lag Adjusted2.5
2

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
2.  Refer to the study summaries below for a discussion of the lag adjustment used for these functions.
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Schwartz et al. [ 1996 #98, p. 929] defined non-accidental mortality as all-cause mortality less deaths due to accidents13

and other external causes (ICD-9 codes: 800-999).  Other external causes includes suicide, homicide, and legal intervention
(National Center for Health Statistics, 1994).

Schwartz et al. [ 1996 #98, p. 929] defined non-accidental mortality as all-cause mortality less deaths due to accidents14

and other external causes (ICD-9 codes: 800-999).  Other external causes includes suicide, homicide, and legal intervention
(National Center for Health Statistics, 1994).
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Short-term Mortality

Short-term mortality studies are those that typically link daily air pollution levels with
daily changes in mortality rates.

Short-Term Mortality, Non-Accidental [Schwartz, 1996 #98]

Schwartz et al. [ 1996 #98] pooled the results from six cities in the U.S. and found a
significant relationship between daily PM  concentration and non-accidental mortality.   Abt2.5

13

Associates Inc. [ 1996 #239, p. 52] used the six PM  relative risks reported by Schwartz et al. in2.5
a three-step procedure to estimate a pooled PM  coefficient and its standard error.  The first step2.5
estimates a random-effects pooled estimate of β; the second step uses an “empirical Bayes”
procedure to reestimate the β for each study as a weighted average of the β reported for that
location and the random effects pooled estimate; the third step estimates the underlying
distribution of β, and uses a Monte Carlo procedure to estimate the standard error [Abt
Associates Inc., 1996 #238, p. 65].

Single Pollutant Model

Abt Associates Inc. [ 1996 #239, p. 52] used the six PM  relative risks reported by2.5
Schwartz et al. in a three-step procedure to estimate a pooled PM  coefficient [Abt Associates2.5
Inc., 1996 #238, Exhibit 7.2] and its standard error [Abt Associates Inc., 1996 #238, Exhibit 7.2]. 

Functional Form: Log-linear
Coefficient: 0.001433
Standard Error: 0.000129
Incidence Rate: county-specific annual daily non-accidental mortality rate (ICD codes <800)
per person 
Population: population of all ages

Short-Term Mortality, Non-Accidental - Lag Adjusted [Schwartz, 1996 #98]

Schwartz et al. [ 1996 #98] pooled the results from six cities in the U.S. and found a
significant relationship between daily PM  concentration and non-accidental mortality.   Abt2.5

14

Associates Inc. [ 1996 #239, p. 52] used the six PM  relative risks reported by Schwartz et al. in2.5
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 The distributed lag adjustment C-R function is only run for the point estimate.  The standard error of this coefficient has15

not been estimated.
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a three-step procedure to estimate a pooled PM  coefficient and its standard error.  The first step2.5
estimates a random-effects pooled estimate of β; the second step uses an “empirical Bayes”
procedure to reestimate the β for each study as a weighted average of the β reported for that
location and the random effects pooled estimate; the third step estimates the underlying
distribution of β, and uses a Monte Carlo procedure to estimate the standard error [Abt
Associates Inc., 1996 #238, p. 65].  In order to estimate the impact of daily PM  levels on daily2.5
mortality if a distributed lag model had been fit, the PM  coefficient is adjusted as described2.5
below.

Recent studies have found that an increase in PM levels on a given day can elevate
mortality for several days following the exposure [Schwartz, 2000 #1550; Samet, 2000 #1810]. 
These studies have reported the results of distributed lag models for the relationship between
PM  and daily mortality.  Schwartz [ 2000 #1550] examined the relationship between PM  and10 10
daily mortality and reported results both for a single day lag model and an unconstrained
distributed lag model.  The unconstrained distributed lag model coefficient estimate is 0.0012818
and the single-lag model coefficient estimate is 0.0006479. A distributed lag adjustment factor
can be constructed as the ratio of the estimated coefficient from the unconstrained distributed lag
model to the estimated coefficient from the single-lag model reported in Schwartz (2000).  The
ratio of these estimates is 1.9784.  In order to estimate the full impact of daily PM levels on daily
mortality, we applied this ratio to the coefficient obtained from Schwartz et al. [ 1996 #98] for
the association between PM  and daily mortality. 2.5

In applying the ratio derived from a PM  study to PM , we assume that the same10  2.5
relationship between the distributed lag and single day estimates would hold for PM .  Effect2.5
estimates for the PM -daily mortality relationship tend to be lower in magnitude than for PM ,10 2.5
because fine particles are believed to be more closely associated with mortality than the coarse
fraction of PM.  If most of the increase in mortality is expected to be associated with the fine
fraction of PM , then it is reasonable to assume that the same proportional increase in risk10
would be observed if a distributed lag model were applied to the PM  data. 2.5

Single Pollutant Model

The distributed lag model coefficient is estimated by applying the distributed lag
adjustment factor of 1.9784 to the pooled PM  coefficient (0.001433) estimated by Abt2.5
Associates Inc. [ 1996 #238, Exhibit 7.2] from the six PM  relative risks reported by Schwartz2.5
et al. [ 1996 #98].15

Functional Form: Log-linear
Coefficient: 0.002835
Incidence Rate: county-specific annual daily non-accidental mortality rate (ICD codes <800)
per person 
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Population: population of all ages

Short-Term Mortality, Chronic Lung Disease - Lag Adjusted [Schwartz, 1996 #98]

Schwartz et al. [ 1996 #98] evaluated the relationship between daily PM  levels and2.5
short-term mortality in six U.S. cities.  Schwartz pooled results across the six cities and found
statistically significant associations between daily PM  levels and non-accidental mortality2.5
(ICD codes <800), along with mortality for ischemic heart disease (ICD codes 410-414), COPD
(ICD codes 490-496), and pneumonia (ICD codes 480-486).  A smaller association was found
for PM  and no significant associations were reported for PM .  The C-R function for chronic10 10-2.5
lung disease mortality is based on the results of a single pollutant model using a two-day average
of PM [Schwartz et al., 1996 #98, Table 7].  In order to estimate the impact of daily PM2.5 2.5
levels on daily mortality if a distributed lag model had been fit, the PM  coefficient is adjusted2.5
as described below.

Recent studies have found that an increase in PM levels on a given day can elevate
mortality for several days following the exposure [Schwartz, 2000 #1550; Samet, 2000 #1810]. 
These studies have reported the results of distributed lag models for the relationship between
PM  and daily mortality.  Schwartz [ 2000 #1550] examined the relationship between PM  and10 10
daily mortality and reported results both for a single day lag model and an unconstrained
distributed lag model.  The unconstrained distributed lag model coefficient estimate is 0.0012818
and the single-lag model coefficient estimate is 0.0006479. A distributed lag adjustment factor
can be constructed as the ratio of the estimated coefficient from the unconstrained distributed lag
model to the estimated coefficient from the single-lag model reported in Schwartz (2000).  The
ratio of these estimates is 1.9784.  In order to estimate the full impact of daily PM levels on daily
mortality, we applied this ratio to the coefficient obtained from Schwartz et al. [ 1996 #98] for
the association between PM  and daily mortality. 2.5

In applying the ratio derived from a PM  study to PM , we assume that the same10  2.5
relationship between the distributed lag and single day estimates would hold for PM .  Effect2.5
estimates for the PM -daily mortality relationship tend to be lower in magnitude than for PM ,10 2.5
because fine particles are believed to be more closely associated with mortality than the coarse
fraction of PM.  If most of the increase in mortality is expected to be associated with the fine
fraction of PM , then it is reasonable to assume that the same proportional increase in risk10
would be observed if a distributed lag model were applied to the PM  data. 2.5

Single Pollutant Model

The PM  coefficient is based on a reported 3.3% increase in COPD mortality associated2.5
with a 10 µg/m  change in two-day average PM  levels [Schwartz, 1996 #98, Table 7].  This3

2.5
coefficient (0.003247) is then multiplied by the distributed lag adjustment factor of 1.9784 to
estimate a distributed lag model coefficient.
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Functional Form: Log-linear
Coefficient: 0.006423
Incidence Rate: county-specific annual daily chronic lung disease mortality rate (ICD codes
490-496) 
Population: population of all ages
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Exhibit D-3  Concentration-Response (C-R) Functions for Particulate Matter and Chronic Illness

Endpoint Name Pollutant Author Year Location Age Race Gender Averaging Time Beta Std ErrorOther Functional
Pollutants Form

Chronic Bronchitis PM Abbey et al. 1995 27+ All All None Annual Avg 0.0137 0.00680 Logistic2.5
SF, SD, South
Coast Air Basin

Chronic Bronchitis PM Schwartz 1993 53 cities 30+ All All None Annual Avg 0.0123 0.00434 Logistic10
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 There are a limited number of studies that have estimated the impact of air pollution on chronic bronchitis.  An16

important hindrance is the lack of health data and the associated air pollution levels over a number of years.  
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Chronic Illness

Schwartz [ 1993 #240] and Abbey et al. [ 1993 #245;, 1995 #452] provide evidence that
PM exposure over a number of years gives rise to the development of chronic bronchitis in the
U.S., and a recent study by McDonnell et al. [ 1999 #1153] provides evidence that ozone
exposure is linked to the development of asthma in adults.  These results are consistent with
research that has found chronic exposure to pollutants leads to declining pulmonary functioning
[Abbey, 1998 #249; AckermannLiebrich, 1997 #117; Detels, 1991 #345].  16

Chronic Bronchitis [Abbey, 1995 #452, California]

Abbey et al. [ 1995 #452] examined the relationship between estimated PM  (annual2.5
mean from 1966 to 1977), PM  (annual mean from 1973 to 1977) and TSP  (annual mean from10
1973 to 1977) and the same chronic respiratory symptoms in a sample population of 1,868
Californian Seventh Day Adventists.  The initial survey was conducted in 1977 and the final
survey in 1987.  To ensure a better estimate of exposure, the study participants had to have been
living in the same area for an extended period of time.  In single-pollutant models, there was a
statistically significant PM  relationship with development of chronic bronchitis, but not for2.5
AOD or asthma; PM  was significantly associated with chronic bronchitis and AOD; and TSP10
was significantly associated with all cases of all three chronic symptoms.  Other pollutants were
not examined.  The C-R function is based on the results of the single pollutant model presented
in Table 2.

Single Pollutant Model

The estimated coefficient (0.0137) is presented for a one µg/m  change in PM  [Abbey,3
2.5

1995 #452, Table 2].  The standard error is calculated from the reported relative risk (1.81) and
95% confidence interval (0.98-3.25) for a 45 µg/m  change in PM  [Abbey, 1995 #452, Table3

2.5
2].

Functional Form: Logistic
Coefficient: 0.0137
Standard Error: 0.00680
Incidence Rate: annual bronchitis incidence rate per person [Abbey, 1993 #245, Table 3] =
0.00378
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 Using the same data set, Abbey et al. [ 1995 #247, p. 140]  reported that the respondents in 1977 ranged in age from 2717

to 95.  

 The American Lung Association [ 2002 #2357, Table 4] reports a chronic bronchitis prevalence rate for ages 18 and18

over of 4.43% [American Lung Association, 2002 #2357, Table 4]. 

 Respiratory illness defined as a significant condition, coded by an examining physician as ICD-8 code 460-519.19

The conversion of TSP to PM  is from ESEERCO [ 1994 #323, p. V-5], who cited studies by EPA [ 1986 #236] and the20
10

California Air Resources Board [ 1982 #329].

D-19

Population: population of ages 27 and older  without chronic bronchitis = 95.57%  of17 18

population 27+

Chronic Bronchitis [Schwartz, 1993 #240]

Schwartz [ 1993 #240] examined survey data collected from 3,874 adults ranging in age
from 30 to 74, and living in 53 urban areas in the U.S.  The survey was conducted between 1974
and 1975, as part of the National Health and Nutrition Examination Survey, and is representative
of the non-institutionalized U.S. population.  Schwartz [ 1993 #240, Table 3] reported chronic
bronchitis prevalence rates in the study population by age, race, and gender.  Non-white males
under 52 years old had the lowest rate (1.7%) and white males 52 years and older had the highest
rate (9.3%).  The study examined the relationship between the prevalence of reported chronic
bronchitis, asthma, shortness of breath (dyspnea) and respiratory illness , and the annual levels19

of TSP, collected in the year prior to the survey (TSP was the only pollutant examined in this
study).  TSP was significantly related to the prevalence of chronic bronchitis, and marginally
significant for respiratory illness.  No effect was found for asthma or dyspnea.  The C-R function
for PM  is estimated from the results of the single pollutant model reported for TSP.10

Single Pollutant Model

The estimated coefficient is based on the odds ratio ( 1.07) associated with 10 µg/m3

change in TSP [Schwartz, 1993 #240, p.  9].  Assuming that PM  is 55 percent of TSP  and that10
20

particulates greater than ten micrometers are harmless, the coefficient is calculated by dividing
the TSP coefficient by 0.55.  The standard error for the coefficient is calculated from the 95%
confidence interval for the odds ratio (1.02 to 1.12) [Schwartz, 1993 #240, p.  9]. 

Schwartz [ 1993 #240] examined the prevalence of chronic bronchitis, not its incidence. 
To use Schwartz’s study and still estimate the change in incidence, there are at least two possible
approaches.  The first is to simply assume that it is appropriate to use the baseline incidence of
chronic bronchitis in a C-R function with the estimated coefficient from Schwartz’s study, to
directly estimate the change in incidence.  The second is to estimate the percentage change in the
prevalence rate for chronic bronchitis using the estimated coefficient from Schwartz’s study in a
C-R function, and then to assume that this percentage change applies to a baseline incidence rate
obtained from another source.  (That is, if the prevalence declines by 25 percent with a drop in
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 The American Lung Association [ 2002 #2357, Table 4] reports a chronic bronchitis prevalence rate for ages 18 and21

over of 4.43% [American Lung Association, 2002 #2357, Table 4]. 
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PM, then baseline incidence drops by 25 percent with the same drop in PM.)  This analysis is
using the latter approach, and estimates a percentage change in prevalence which is then applied
to a baseline incidence rate.  The scaling factor used in the C-R function is the ratio of chronic
bronchitis incidence rate (estimated from Abbey et al. [ 1993 #245]) to chronic bronchitis
prevalence rate (estimated from American Lung Association [ 2002 #2357, Table 4]).

Functional Form: Logistic
Coefficient: 0.0123
Standard Error: 0.00434
Incidence Rate: annual chronic bronchitis prevalence rate per person [American Lung
Association, 2002 #2357, Table 4] = 0.0443
Population: population of ages 30 and older without chronic bronchitis = 95.57%  of21

population 30+ 
Adjustment Factor: ratio of chronic bronchitis incidence to chronic bronchitis prevalence =
0.00378/0.0443 = 0.085 [Abbey, 1993 #245, Table 3; American Lung Association, 2002 #2357,
Table 4]
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Exhibit D-4  Concentration-Response (C-R) Functions for Particulate Matter and Hospital Admissions

Endpoint Name Pollutant Author Year Location Age Race Gender Beta Std ErrorOther Averaging Functional
Pollutants Time Form1

Asthma PM Sheppard et al. 1999 Seattle, WA <65 All All CO 24-hr avg 0.002505 0.001045 Log-linear2.5

Chronic Lung Disease PM Lippmann et al. 2000 Detroit, MI 65+ All All O 24-hr avg 0.001089 0.002420 Log-linear2.5 3

Chronic Lung Disease PM Moolgavkar 2000 Los Angeles, CA 65+ All All CO 24-hr avg 0.0008 0.001000 Log-linear2.5

Chronic Lung Disease PM Moolgavkar 2000 Los Angeles, CA 18-64 All All CO 24-hr avg 0.0020 0.000909 Log-linear2.5

Chronic Lung Disease
(less Asthma) PM Samet et al. 2000 14 cities 65+ All All None 24-hr avg 0.002839 0.001351 Log-linear10

Pneumonia PM Lippmann et al. 2000 Detroit, MI 65+ All All O 24-hr avg 0.004480 0.001918 Log-linear2.5 3

Pneumonia PM Samet et al. 2000 14 cities 65+ All All None 24-hr avg 0.002049 0.000570 Log-linear10

All Cardiovascular PM Moolgavkar 2000 Los Angeles, CA 65+ All All CO 24-hr avg 0.0005 0.000556 Log-linear2.5

All Cardiovascular PM Moolgavkar 2000 Los Angeles, CA 18-64 All All CO 24-hr avg 0.0009 0.000500 Log-linear2.5

All Cardiovascular PM Samet et al. 2000 14 cities 65+ All All None 24-hr avg 0.001183 0.000111 Log-linear10

Dysrhythmia PM Lippmann et al. 2000 Detroit, MI 65+ All All O 24-hr avg 0.002138 0.002525 Log-linear2.5 3

Heart Failure PM Lippmann et al. 2000 Detroit, MI 65+ All All O 24-hr avg 0.004668 0.001650 Log-linear2.5 3

Ischemic Heart Disease PM Lippmann et al. 2000 Detroit, MI 65+ All All O 24-hr avg 0.001116 0.001339 Log-linear2.5 3

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for more
detail on the specific averaging time used in the study.
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 PM  levels were estimated from light scattering data.22
2.5

  The reported IQR change in the abstract and text is smaller than reported in Table 3.  We assume the change reported in23

the abstract and text to be correct because greater number of significant figures are reported.
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Hospitalizations

Hospital Admissions for Asthma [Sheppard, 1999 #792, Seattle]

Sheppard et al. [ 1999 #792] studied the relation between air pollution in Seattle and
nonelderly (<65) hospital admissions for asthma from 1987 to 1994.  They used air quality data
for PM , PM , coarse PM10 , SO , ozone, and CO in a Poisson regression model with10 2.5 10-2.5 2
control for time trends, seasonal variations, and temperature-related weather effects.  They22

found asthma hospital admissions associated with PM , PM , PM , CO, and ozone.  They10 2.5 10-2.5
did not observe an association for SO . They found PM and CO to be jointly associated with2
asthma admissions.  The best fitting co-pollutant models were found using ozone.  However,
ozone data was only available April through October, so they did not consider ozone further. 
For the remaining pollutants, the best fitting models included PM  and CO.  Results for other2.5
co-pollutant models were not reported.  The PM  C-R function is based on the multipollutant2.5
model.

Multipollutant Model (PM  and CO)2.5

The coefficient and standard error for the co-pollutant model with CO are calculated from
a relative risk of 1.03 (95% CI 1.01-1.06) for an 11.8 µg/m  increase  in PM [Sheppard, 19993 23

2.5 
#792, p. 28].

Functional Form: Log-linear
Coefficient: 0.002505
Standard Error: 0.001045
Incidence Rate: region-specific daily hospital admission rate for asthma admissions per person
<65 (ICD code 493)
Population: population of ages 65 and under

Hospital Admissions for Chronic Lung Disease [Lippmann, 2000 #2328, Detroit]

Lippmann et al. [ 2000 #2328] studied the association between particulate matter and
daily mortality and hospitalizations among the elderly in Detroit, MI.  Data were analyzed for
two separate study periods, 1985-1990 and 1992-1994.  The 1992-1994 study period had a
greater variety of data on PM size and was the main focus of the report.  The authors collected
hospitalization data for a variety of cardiovascular and respiratory endpoints.  They used daily
air quality data for PM , PM , and PM  in a Poisson regression model with generalized10 2.5 10-2.5
additive models (GAM) to adjust for nonlinear relationships and temporal trends.  In single
pollutant models, all PM metrics were statistically significant for pneumonia (ICD codes 480-
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486), PM  and PM  were significant for ischemic heart disease (ICD code 410-414), and10-2.5 10
PM  and PM  were significant for heart failure (ICD code 428).  There were positive, but not2.5 10
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496)
and dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone,
SO , NO , or CO, the results were generally comparable.  The PM  C-R function is based on2 2 2.5
results of the co-pollutant model with ozone.

Multipollutant Model (PM  and ozone)2.5

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.040
(95% CI 0.877-1.234) for a 36 µg/m  increase in PM  [Lippmann, 2000 #2328, Table 14, p. 26]. 3

2.5

Functional Form: Log-linear
Coefficient: 0.001089
Standard Error: 0.002420
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease
admissions per person 65+ (ICD codes 490-496)
Population: population of ages 65 and older

Hospital Admissions for Chronic Lung Disease [Moolgavkar, 2000 #2152]

Moolgavkar [ 2000 #2152] examined the association between air pollution and COPD
hospital admissions (ICD 490-496) in the Chicago, Los Angeles, and Phoenix metropolitan
areas.  He collected daily air pollution data for ozone, SO , NO , CO, and PM  in all three areas. 2 2 10
PM  data was available only in Los Angeles.  The data were analyzed using a Poisson2.5
regression model with generalized additive models to adjust for temporal trends.  Separate
models were run for 0 to 5 day lags in each location.  Among the 65+ age group in Chicago and
Phoenix, weak associations were observed between the gaseous pollutants and admissions.  No
consistent associations were observed for PM .  In Los Angeles, marginally significant10
associations were observed for PM , which were generally lower than for the gases.  In co-2.5
pollutant models with CO, the PM  effect was reduced.  Similar results were observed in the 0-2.5
19 and 20-64 year old age groups.  

The PM  C-R functions are based on the co-pollutant models (PM  and CO) reported2.5 2.5
for the 20-64 and 65+ age groups.  Since the true PM effect is most likely best represented by a
distributed lag model, then any single lag model should underestimate the total PM effect.  As a
result, we selected the lag models with the greatest effect estimates for use in the C-R functions.
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 In a log-linear model, the percent change is equal to (RR - 1) * 100.  In this study, Moolgavkar defines and reports the24

“estimated” percent change as (log RR * 100).  Because the relative risk is close to 1, RR-1 and log RR are essentially the same.  For
example, a true percent change of 0.8 would result in a relative risk of 1.008 and coefficient of 0.000797.  The “estimated” percent
change, as reported by Moolgavkar, of 0.8 results in a relative risk of 1.008032 and coefficient of 0.0008.

 Although Moolgavkar [ 2000 #2152] reports results for the 20-64 year old age range, for comparability to other studies,25

we apply the results to the population of ages 18 to 64.

 In a log-linear model, the percent change is equal to (RR - 1) * 100.  In this study, Moolgavkar defines and reports the26

“estimated” percent change as (log RR * 100).  Because the relative risk is close to 1, RR-1 and log RR are essentially the same.  For
example, a true percent change of 2.0 would result in a relative risk of 1.020 and coefficient of 0.001980.  The “estimated” percent
change, as reported by Moolgavkar, of 2.0 results in a relative risk of 1.020201 and coefficient of 0.002.

 Moolgavkar [ 2000 #2152] reports results for ICD codes 490-496.  In order to avoid double counting non-elderly asthma27

hospitalizations (ICD code 493) with Sheppard et al. [ 1999 #792] in a total benefits estimation, we have excluded ICD code 493
from the baseline incidence rate used in this function. 
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Ages 65 and older

Multipollutant Model (PM  and CO)2.5

In a model with CO, the coefficient and standard error are calculated from an estimated
percent change of 0.8  and t-statistic of 0.8 for a 10 µg/m  increase in PM  in the two-day lag24 3

2.5
model [Moolgavkar, 2000 #2152, Table 3, p. 80].

Functional Form: Log-linear
Coefficient: 0.0008
Standard Error: 0.001000
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease
admissions per person 65+ (ICD codes 490-496)
Population: population of ages 65 and older

Ages 18 to 6425

Multipollutant Model (PM  and CO)2.5

In a model with CO, the coefficient and standard error are calculated from an estimated
percent change of 2.0  and t-statistic of 2.2 for a 10 µg/m  increase in PM  in the two-day lag26 3

2.5
model [Moolgavkar, 2000 #2152, Table 4, p. 81].

Functional Form: Log-linear
Coefficient: 0.0020
Standard Error: 0.000909
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease
admissions per person 18-64 (ICD codes 490-492, 494-496)27

Population: population of ages 18 to 64
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The cities under investigation include: Birmingham, Boulder, Canton, Chicago, Colorado Springs, Detroit,28

Minneapolis/St. Paul, Nashville, New Haven, Pittsburgh, Provo/Orem, Seattle, Spokane, Youngstown.

 Joel Schwartz (co-author), personal communication. 29

 Commentary from the Health Review Committee (Samet et al., 2000, p.77) states that “[w]hile the approach used in the30

morbidity analysis is novel...the question arises as to the adequacy of statistical power for performing these analyses.”
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Hospital Admissions for Chronic Lung Disease (less Asthma) [Samet, 2000 #1810, 14 Cities]

Samet et al. [ 2000 #1810] examined the relationship between air pollution and hospital
admissions for individuals of ages 65 and over in 14 cities across the country.   Cities were28

selected on the basis of available air pollution data for at least four years between 1985 and 1994
during which at least 50% of days had observations between the city-specific start and end of
measurements.  Hospital admissions were obtained from the Health Care Financing
Administration (HCFA) for the years 1992 and 1993.  Poisson regression was used in the
analysis with unconstrained distributed lag models to examine the possibility that air pollution
affects hospital admissions on not only the same day but on later days as well.  The use of
unconstrained distributed lags has the advantages of (1) not inappropriately biasing down risk
estimates due to tight constraints (e.g. one day lag) and (2) not leaving the often arbitrary choice
of lag period to the investigator’s discretion.  The C-R functions are based on the pooled
estimate across all 14 cities, using the unconstrained distributed lag model and fixed or random
effects estimates, depending on the results of a test for heterogeneity.

For this analysis, the unadjusted, base models for the effect of PM  on hospital10
admissions were used.  The authors performed a second-stage regression to estimate the impact
of SO  and O  on the PM  - hospitalization effect.  For ozone, the PM  effect in each city was2 3 10 10
regressed on the correlation between ozone and particulate matter (the slope of a PM  vs. O10 3
regression) in that city.  The fitted line for this regression will have a slope of zero if there is no
relationship, meaning that the effect of PM  is not dependent on the correlation between PM10 10
and O .  The adjusted point estimate was obtained by determining the PM  effect when the3 10
correlation between the pollutants is zero (i.e. the y-intercept of the fitted line).  The effect of O3
adjustment on the PM  - hospitalization relationship appeared to be minimal except for the case10
of COPD.  In this case, adjustment increased the point estimate of the independent particulate
matter effect.  The variance of this estimate, however, was quite large and the confidence
intervals of the adjusted and unadjusted estimates overlapped substantially.  For these reasons,
there appeared to be little impact of O  adjustment.   Furthermore, the statistical power and3

29

robustness of this second-stage approach to co-pollutant adjustment are in question because of
the small number of observations used in the regression (14 cities) and the potential for one or
two observations to dramatically impact the results.   Finally, for the case of COPD, adjustment30

led to an increased PM  independent effect, meaning that if the adjustment is valid, the impact10
on hospital admissions will be underestimated rather than overestimated.
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 The random effects estimate of the unconstrained distributed lag model was chosen for COPD admissions since the chi-31

square test of heterogeneity was significant (see Samet et al., 2000, Part II - Table 15).  
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Single Pollutant Model

The estimated PM  coefficient is based on a 2.88 percent increase (RR = 1.0288) in10
admissions due to a PM  change of 10.0 µg/m  [Samet, 2000 #1810, Part II - Table 14] .  The10

3 31

standard error is estimated from the reported lower (0.19 percent) and upper bounds (5.64
percent) of the percent increase [Samet, 2000 #1810, Part II - Table 14].

Functional Form: Log-linear
Coefficient: 0.002839
Standard Error: 0.001351
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease per person
65+ (ICD codes 490-492, 494-496)
Population: population of ages 65 and older

Hospital Admissions for Pneumonia [Lippmann, 2000 #2328, Detroit]

Lippmann et al. [ 2000 #2328] studied the association between particulate matter and
daily mortality and hospitalizations among the elderly in Detroit, MI.  Data were analyzed for
two separate study periods, 1985-1990 and 1992-1994.  The 1992-1994 study period had a
greater variety of data on PM size and was the main focus of the report.  The authors collected
hospitalization data for a variety of cardiovascular and respiratory endpoints.  They used daily
air quality data for PM , PM , and PM  in a Poisson regression model with generalized10 2.5 10-2.5
additive models (GAM) to adjust for nonlinear relationships and temporal trends.  In single
pollutant models, all PM metrics were statistically significant for pneumonia (ICD codes 480-
486), PM  and PM  were significant for ischemic heart disease (ICD code 410-414), and10-2.5 10
PM  and PM  were significant for heart failure (ICD code 428).  There were positive, but not2.5 10
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496)
and dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone,
SO , NO , or CO, the results were generally comparable.  The PM  C-R function is based on the2 2 2.5
results of the co-pollutant model with ozone.

Multipollutant Model (PM  and ozone)2.5

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.175
(95% CI 1.026-1.345) for a 36 µg/m  increase in PM  [Lippmann, 2000 #2328, Table 14, p. 26]. 3

2.5

Functional Form: Log-linear
Coefficient: 0.004480
Standard Error: 0.001918
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The cities under investigation include: Birmingham, Boulder, Canton, Chicago, Colorado Springs, Detroit,32

Minneapolis/St. Paul, Nashville, New Haven, Pittsburgh, Provo/Orem, Seattle, Spokane, Youngstown.

 Joel Schwartz (co-author), personal communication. 33

 Commentary from the Health Review Committee (Samet et al., 2000, p.77) states that “[w]hile the approach used in the34

morbidity analysis is novel...the question arises as to the adequacy of statistical power for performing these analyses.”
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Incidence Rate: region-specific daily hospital admission rate for pneumonia admissions per
person 65+ (ICD codes 480-487)
Population: population of ages 65 and older

Hospital Admissions for Pneumonia [Samet, 2000 #1810, 14 Cities]

Samet et al. [ 2000 #1810] examined the relationship between air pollution and hospital
admissions for individuals of ages 65 and over in 14 cities across the country.   Cities were32

selected on the basis of available air pollution data for at least four years between 1985 and 1994
during which at least 50% of days had observations between the city-specific start and end of
measurements.  Hospital admissions were obtained from the Health Care Financing
Administration (HCFA) for the years 1992 and 1993.  Poisson regression was used in the
analysis with unconstrained distributed lag models to examine the possibility that air pollution
affects hospital admissions on not only the same day but on later days as well.  The use of
unconstrained distributed lags has the advantages of (1) not inappropriately biasing down risk
estimates due to tight constraints (e.g. one day lag) and (2) not leaving the often arbitrary choice
of lag period to the investigator’s discretion.  The C-R functions are based on the pooled
estimate across all 14 cities, using the unconstrained distributed lag model and fixed or random
effects estimates, depending on the results of a test for heterogeneity.

For this analysis, the unadjusted, base models for the effect of PM  on hospital10
admissions were used.  The authors performed a second-stage regression to estimate the impact
of SO  and O  on the PM  - hospitalization effect.  For ozone, the PM  effect in each city was2 3 10 10
regressed on the correlation between ozone and particulate matter (the slope of a PM  vs. O10 3
regression) in that city.  The fitted line for this regression will have a slope of zero if there is no
relationship, meaning that the effect of PM  is not dependent on the correlation between PM10 10
and O .  The adjusted point estimate was obtained by determining the PM  effect when the3 10
correlation between the pollutants is zero (i.e. the y-intercept of the fitted line).  The effect of O3
adjustment on the PM  - hospitalization relationship appeared to be minimal except for the case10
of COPD.  In this case, adjustment increased the point estimate of the independent particulate
matter effect.  The variance of this estimate, however, was quite large and the confidence
intervals of the adjusted and unadjusted estimates overlapped substantially.  For these reasons,
there appeared to be little impact of O  adjustment.   Furthermore, the statistical power and3

33

robustness of this second-stage approach to co-pollutant adjustment are in question because of
the small number of observations used in the regression (14 cities) and the potential for one or
two observations to dramatically impact the results.   Finally, for the case of COPD, adjustment34

led to an increased PM  independent effect, meaning that if the adjustment is valid, the impact10
on hospital admissions will be underestimated rather than overestimated.
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 The random effects estimate of the unconstrained distributed lag model was chosen for pneumonia admissions since the35

chi-square test of heterogeneity was significant (see Samet et al., 2000, Part II - Table 15).  

 In a log-linear model, the percent change is equal to (RR - 1) * 100.  In a similar hospitalization study by Moolgavkar [36

2000 #2152], he defines and reports the “estimated” percent change as (log RR * 100).  Because the relative risk is close to 1, RR-1
and log RR are essentially the same.  For example, a true percent change of 0.5 would result in a relative risk of 1.005 and
coefficient of 0.000499.  Assuming that the 0.5 is the “estimated” percent change described previously would result in a relative risk
of 1.005013 and coefficient of 0.0005.  We assume that the “estimated” percent changes reported in this study reflect the definition
from [Moolgavkar, 2000 #2152].
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Single Pollutant Model

The estimated PM  coefficient is based on a 2.07 percent increase (RR = 1.0207) in10
admissions due to a PM  change of 10.0 µg/m  [Samet, 2000 #1810, Part II - Table 14] .  The10

3 35

standard error is estimated from the reported lower (0.94 percent) and upper bounds (3.22
percent) of the percent increase [Samet, 2000 #1810, Part II - Table 14].

Functional Form: Log-linear
Coefficient: 0.002049
Standard Error: 0.000570
Incidence Rate: region-specific daily hospital admission rate for pneumonia per person 65+
(ICD codes 480-487)
Population: population of ages 65 and older

Hospital Admissions for All Cardiovascular [Moolgavkar, 2000 #2029, Los Angeles]

Moolgavkar [ 2000 #2029] examined the association between air pollution and
cardiovascular hospital admissions (ICD 390-448) in the Chicago, Los Angeles, and Phoenix
metropolitan areas.  He collected daily air pollution data for ozone, SO , NO , CO, and PM  in2 2 10
all three areas.  PM  data was available only in Los Angeles.  The data were analyzed using a2.5
Poisson regression model with generalized additive models to adjust for temporal trends. 
Separate models were run for 0 to 5 day lags in each location.  Among the 65+ age group, the
gaseous pollutants generally exhibited stronger effects than PM  or PM .  The strongest overall10 2.5
effects were observed for SO  and CO.  In a single pollutant model, PM  was statistically2 2.5
significant for lag 0 and lag 1.  In co-pollutant models with CO, the PM  effect dropped out and2.5
CO remained significant.  For ages 20-64, SO  and CO exhibited the strongest effect and any2
PM  effect dropped out in co-pollutant models with CO.  The PM  C-R functions are based on2.5 2.5
co-pollutant (PM  and CO) models.2.5

Ages 65 and older

Multipollutant Model (PM  and CO)2.5

In a model with CO, the coefficient and standard error are calculated from an estimated
percent change of 0.5  and t-statistic of 0.9 for a 10 µg/m  increase in PM  in the one day lag36 3

2.5
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 Moolgavkar [ 2000 #2029] reports results for ICD codes 390-429.  In the benefits analysis, avoided nonfatal heart37

attacks are estimated using the results reported by Peters et al. [ 2001 #2157].  The baseline rate in the Peters et al. function is a
modified heart attack hospitalization rate (ICD code 410), since most, if not all, nonfatal heart attacks will require hospitalization. 
In order to avoid double counting heart attack hospitalizations, we have excluded ICD code 410 from the baseline incidence rate
used in this function. 

 Although Moolgavkar [ 2000 #2029] reports results for the 20-64 year old age range, for comparability to other studies,38

we apply the results to the population of ages 18 to 64.

 In a log-linear model, the percent change is equal to (RR - 1) * 100.  In a similar hospitalization study by Moolgavkar [39

2000 #2152], he defines and reports the “estimated” percent change as (log RR * 100).  Because the relative risk is close to 1, RR-1
and log RR are essentially the same.  For example, a true percent change of 0.9 would result in a relative risk of 1.009 and
coefficient of 0.000896.  Assuming that the 0.9 is the “estimated” percent change described previously would result in a relative risk
of 1.009041 and coefficient of 0.0009.  We assume that the “estimated” percent changes reported in this study reflect the definition
from [Moolgavkar, 2000 #2152].

  Moolgavkar [ 2000 #2029] reports results that include ICD code 410 (heart attack).  In the benefits analysis, avoided40

nonfatal heart attacks are estimated using the results reported by Peters et al. [ 2001 #2157].  The baseline rate in the Peters et al.
function is a modified heart attack hospitalization rate (ICD code 410), since most, if not all, nonfatal heart attacks will require
hospitalization.  In order to avoid double counting heart attack hospitalizations, we have excluded ICD code 410 from the baseline
incidence rate used in this function. 
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model [Moolgavkar, 2000 #2029, Table 3, p. 1202].

Functional Form: Log-linear
Coefficient: 0.0005
Standard Error: 0.000556
Incidence Rate: region-specific daily hospital admission rate for all cardiovascular admissions
per person 65+ (ICD codes 390-409, 411-459)37

Population: population of ages 65 and older

Ages 18 to 6438

Multipollutant Model (PM  and CO)2.5

In a model with CO, the coefficient and standard error are calculated from an estimated
percent change of 0.9  and t-statistic of 1.8 for a 10 µg/m  increase in PM  in the zero lag39 3

2.5
model [Moolgavkar, 2000 #2029, Table 4, p. 1203].

Functional Form: Log-linear
Coefficient: 0.0009
Standard Error: 0.000500
Incidence Rate: region-specific daily hospital admission rate for all cardiovascular admissions
per person ages 18 to 64 (ICD codes 390-409, 411-459)40

Population: population of ages 18 to 64
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The cities under investigation include: Birmingham, Boulder, Canton, Chicago, Colorado Springs, Detroit,41

Minneapolis/St. Paul, Nashville, New Haven, Pittsburgh, Provo/Orem, Seattle, Spokane, Youngstown.

 Joel Schwartz (co-author), personal communication. 42

 Commentary from the Health Review Committee (Samet et al., 2000, p.77) states that “[w]hile the approach used in the43

morbidity analysis is novel...the question arises as to the adequacy of statistical power for performing these analyses.”
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Hospital Admissions for All Cardiovascular [Samet, 2000 #1810, 14 Cities]

Samet et al. [ 2000 #1810] examined the relationship between air pollution and hospital
admissions for individuals of ages 65 and over in 14 cities across the country.   Cities were41

selected on the basis of available air pollution data for at least four years between 1985 and 1994
during which at least 50% of days had observations between the city-specific start and end of
measurements.  Hospital admissions were obtained from the Health Care Financing
Administration (HCFA) for the years 1992 and 1993.  Poisson regression was used in the
analysis with unconstrained distributed lag models to examine the possibility that air pollution
affects hospital admissions on not only the same day but on later days as well.  The use of
unconstrained distributed lags has the advantages of (1) not inappropriately biasing down risk
estimates due to tight constraints (e.g. one day lag) and (2) not leaving the often arbitrary choice
of lag period to the investigator’s discretion.  The C-R functions are based on the pooled
estimate across all 14 cities, using the unconstrained distributed lag model and fixed or random
effects estimates, depending on the results of a test for heterogeneity.

For this analysis, the unadjusted, base models for the effect of PM  on hospital10
admissions were used.  The authors performed a second-stage regression to estimate the impact
of SO  and O  on the PM  - hospitalization effect.  For ozone, the PM  effect in each city was2 3 10 10
regressed on the correlation between ozone and particulate matter (the slope of a PM  vs. O10 3
regression) in that city.  The fitted line for this regression will have a slope of zero if there is no
relationship, meaning that the effect of PM  is not dependent on the correlation between PM10 10
and O .  The adjusted point estimate was obtained by determining the PM  effect when the3 10
correlation between the pollutants is zero (i.e. the y-intercept of the fitted line).  The effect of O3
adjustment on the PM  - hospitalization relationship appeared to be minimal except for the case10
of COPD.  In this case, adjustment increased the point estimate of the independent particulate
matter effect.  The variance of this estimate, however, was quite large and the confidence
intervals of the adjusted and unadjusted estimates overlapped substantially.  For these reasons,
there appeared to be little impact of O  adjustment.   Furthermore, the statistical power and3

42

robustness of this second-stage approach to co-pollutant adjustment are in question because of
the small number of observations used in the regression (14 cities) and the potential for one or
two observations to dramatically impact the results.   Finally, for the case of COPD, adjustment43

led to an increased PM  independent effect, meaning that if the adjustment is valid, the impact10
on hospital admissions will be underestimated rather than overestimated.
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 The fixed effects estimate of the unconstrained distributed lag model was chosen for CVD admissions since the chi-44

square test of heterogeneity was non-significant (see Samet et al., 2000, Part II - Table 15).  
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Single Pollutant Model

The estimated PM  coefficient is based on a 1.19 percent increase (RR = 1.0119) in10
admissions due to a PM  change of 10.0 µg/m  [Samet, 2000 #1810, Part II - Table 14] .  The10

3 44

standard error is estimated from the reported lower (0.97 percent) and upper bounds (1.41
percent) of the percent increase [Samet, 2000 #1810, Part II - Table 14].

Functional Form: Log-linear
Coefficient: 0.001183
Standard Error: 0.000111
Incidence Rate: region-specific daily hospital admission rate for all cardiovascular disease per
person 65+ (ICD codes 390-459)
Population: population of ages 65 and older

Hospital Admissions for Dysrhythmia [Lippmann, 2000 #2328, Detroit]

Lippmann et al. [ 2000 #2328] studied the association between particulate matter and
daily mortality and hospitalizations among the elderly in Detroit, MI.  Data were analyzed for
two separate study periods, 1985-1990 and 1992-1994.  The 1992-1994 study period had a
greater variety of data on PM size and was the main focus of the report.  The authors collected
hospitalization data for a variety of cardiovascular and respiratory endpoints.  They used daily
air quality data for PM , PM , and PM  in a Poisson regression model with generalized10 2.5 10-2.5
additive models (GAM) to adjust for nonlinear relationships and temporal trends.  In single
pollutant models, all PM metrics were statistically significant for pneumonia (ICD codes 480-
486), PM  and PM  were significant for ischemic heart disease (ICD code 410-414), and10-2.5 10
PM  and PM  were significant for heart failure (ICD code 428).  There were positive, but not2.5 10
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496)
and dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone,
SO , NO , or CO, the results were generally comparable.  The PM  C-R function is based on the2 2 2.5
co-pollutant model with ozone.

Multipollutant Model (PM  and ozone)2.5

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.080
(95% CI 0.904-1.291) for a 36 µg/m  increase in PM  [Lippmann, 2000 #2328, Table 14, p. 27]. 3

2.5

Functional Form: Log-linear
Coefficient: 0.002138
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Standard Error: 0.002525
Incidence Rate: region-specific daily hospital admission rate for dysrhythmia admissions per
person 65+ (ICD code 427)
Population: population of ages 65 and older

Hospital Admissions for Heart Failure [Lippmann, 2000 #2328, Detroit]

Lippmann et al. [ 2000 #2328] studied the association between particulate matter and
daily mortality and hospitalizations among the elderly in Detroit, MI.  Data were analyzed for
two separate study periods, 1985-1990 and 1992-1994.  The 1992-1994 study period had a
greater variety of data on PM size and was the main focus of the report.  The authors collected
hospitalization data for a variety of cardiovascular and respiratory endpoints.  They used daily
air quality data for PM , PM , and PM  in a Poisson regression model with generalized10 2.5 10-2.5
additive models (GAM) to adjust for nonlinear relationships and temporal trends.  In single
pollutant models, all PM metrics were statistically significant for pneumonia (ICD codes 480-
486), PM  and PM  were significant for ischemic heart disease (ICD code 410-414), and10-2.5 10
PM  and PM  were significant for heart failure (ICD code 428).  There were positive, but not2.5 10
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496)
and dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone,
SO , NO , or CO, the results were generally comparable.  The PM  C-R function is based on the2 2 2.5
co-pollutant model with ozone.

Multipollutant Model (PM  and ozone)2.5

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.183
(95% CI 1.053-1.329) for a 36 µg/m  increase in PM  [Lippmann, 2000 #2328, Table 14, p. 27]. 3

2.5

Functional Form: Log-linear
Coefficient: 0.004668
Standard Error: 0.001650
Incidence Rate: region-specific daily hospital admission rate for heart failure admissions per
person 65+ (ICD code 428)
Population: population of ages 65 and older

Hospital Admissions for Ischemic Heart Disease [Lippmann, 2000 #2328, Detroit]

Lippmann et al. [ 2000 #2328] studied the association between particulate matter and
daily mortality and hospitalizations among the elderly in Detroit, MI.  Data were analyzed for
two separate study periods, 1985-1990 and 1992-1994.  The 1992-1994 study period had a
greater variety of data on PM size and was the main focus of the report.  The authors collected
hospitalization data for a variety of cardiovascular and respiratory endpoints.  They used daily
air quality data for PM , PM , and PM  in a Poisson regression model with generalized10 2.5 10-2.5
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 Lippmann et al. [ 2000 #2328] reports results for ICD codes 410-414.  In the benefits analysis, avoided nonfatal heart45

attacks are estimated using the results reported by Peters et al. [ 2001 #2157].  The baseline rate in the Peters et al. function is a
modified heart attack hospitalization rate (ICD code 410), since most, if not all, nonfatal heart attacks will require hospitalization.  In
order to avoid double counting heart attack hospitalizations, we have excluded ICD code 410 from the baseline incidence rate used
in this function. 
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additive models (GAM) to adjust for nonlinear relationships and temporal trends.  In single
pollutant models, all PM metrics were statistically significant for pneumonia (ICD codes 480-
486), PM  and PM  were significant for ischemic heart disease (ICD code 410-414), and10-2.5 10
PM  and PM  were significant for heart failure (ICD code 428).  There were positive, but not2.5 10
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496)
and dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone,
SO , NO , or CO, the results were generally comparable.  The PM  C-R function is based on the2 2 2.5
co-pollutant model with ozone.

Multipollutant Model (PM  and ozone)2.5

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.041
(95% CI 0.947-1.144) for a 36 µg/m  increase in PM  [Lippmann, 2000 #2328, Table 14, p. 27]. 3

2.5

Functional Form: Log-linear
Coefficient: 0.001116
Standard Error: 0.001339
Incidence Rate: region-specific daily hospital admission rate for ischemic heart disease
admissions per person 65+ (ICD codes 411-414)45

Population: population of ages 65 and older
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Exhibit D-5  Concentration-Response (C-R) Functions for Particulate Matter and Emergency Room Visits

Endpoint Name Pollutant Author Year Location Age Race Gender Beta Std ErrorOther Averaging Functional
Pollutants Time Form1

Asthma PM Norris et al. 1999 Seattle, WA <18 All All NO , SO 24-hr avg 0.016527 0.004139 Log-linear2.5 2 2

Asthma PM Schwartz et al. 1993 Seattle, WA <65 All All None 24-hr avg 0.00367 0.00126 Log-linear10

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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Emergency Room Visits

Emergency Room Visits for Asthma [Norris, 1999 #1263]

Norris et al. [ 1999 #1263] examined the relation between air pollution in Seattle and
childhood (<18) hospital admissions for asthma from 1995 to 1996.  The authors used air quality
data for PM , light scattering (used to estimate fine PM), CO, SO , NO , and O  in a Poisson10 2 2 3
regression model with adjustments for day of the week, time trends, temperature, and dew point. 
They found significant associations between asthma ER visits and light scattering (converted to
PM ), PM , and CO.   No association was found between O , NO , or SO  and asthma ER2.5 10 3 2 2
visits, although O  had a significant amount of missing data.  In multipollutant models with3
either PM metric (light scattering or PM ) and NO  and SO , the PM coefficients remained10 2 2
significant while the gaseous pollutants were not associated with increased asthma ER visits. 
The PM  C-R function is on the multipollutant model reported.2.5

Multipollutant Model (PM , NO  and SO )2.5 2, 2

In a model with NO  and SO , the PM  coefficient and standard error are calculated2 2 2.5
from a relative risk of 1.17 (95% CI 1.08-1.26) for a 9.5 µg/m  increase in PM  [Norris, 19993

2.5
#1263, p. 491].  
Functional Form: Log-linear
Coefficient: 0.016527
Standard Error: 0.004139
Incidence Rate: region-specific daily emergency room rate for asthma admissions per person
<18 (ICD code 493)
Population: population of ages under 18

Emergency Room Visits for Asthma [Schwartz, 1993 #860, Seattle]

Schwartz et al. [ 1993 #680] examined the relationship between air quality and
emergency room visits for asthma (ICD codes 493,493.01,493.10,493.90,493.91) in persons
under 65 and 65 and over, living in Seattle from September 1989 to September 1990.  Using
single-pollutant models they found daily levels of PM  linked to ER visits in individuals ages10
under 65, and they found no effect in individuals ages 65 and over.  They did not find a
significant effect for SO  and ozone in either age group.  The results of the single pollutant2
model for PM  are used in this analysis.10

Single Pollutant Model

The PM  coefficient and standard error are reported by Schwartz et al. [ 1993 #860, p.10
829] for a unit µg/m  increase in four-day average PM  levels.3

10

Functional Form: Log-linear
Coefficient: 0.00367
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Standard Error: 0.00126
Incidence Rate: region-specific daily emergency room rate for asthma admissions per person
<65 (ICD code 493)
Population: population of ages under 65
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Exhibit D-6  Concentration-Response (C-R) Functions for Particulate Matter and Acute Effects

Endpoint Name Pollutant Author Year Location Age Race Gender BetaOther Averaging Std Functional
Pollutants Time Error Form1

Acute Bronchitis PM Dockery et al. 1996 24 communities 8-12 All All None Annual Avg 0.027212 0.017096 Logistic2.5

Acute Myocardial Infarction,
Nonfatal PM Peters et al. 2001 Boston, MA 18+ All All None 24-hr avg 0.024121 0.009285 Logistic2.5

Any of 19 Respiratory
Symptoms PM Krupnick 1990 Los Angeles, CA 18-64 All All O 24-hr avg 0.000461 0.000239 Linear10 3

Lower Respiratory Symptoms PM Schwartz and Neas 2000 6 cities 7-14 All All PM 24-hr avg 0.016976 0.006680 Logistic2.5 10-2.5

Minor Restricted Activity Ostro and
Days RothschildPM 1989 nationwide 18-64 All All O 24-hr avg 0.00741 0.00070 Log-linear2.5 3

Work Loss Days PM Ostro 1987 nationwide 18-64 All All None 24-hr avg 0.0046 0.00036 Log-linear2.5

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for more
detail on the specific averaging time used in the study.
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 The original study measured PM , however when using the study's results we use PM .  This makes only a negligible46
2.1 2.5

difference, assuming that the adverse effects of PM  and PM  are comparable.2.1 2.5

D-38

Acute Effects

Acute Bronchitis [Dockery, 1996 #25]

Dockery et al. [ 1996 #25] examined the relationship between PM and other pollutants on
the reported rates of asthma, persistent wheeze, chronic cough, and bronchitis, in a study of
13,369 children ages 8-12 living in 24 communities in U.S. and Canada.  Health data were
collected in 1988-1991, and single-pollutant models were used in the analysis to test a number of
measures of particulate air pollution.  Dockery et al. found that annual level of sulfates and
particle acidity were significantly related  to bronchitis, and PM  and PM  were marginally2.1 10
significantly related to bronchitis.   They also found nitrates were linked to asthma, and sulfates46

linked to chronic phlegm.  It is important to note that thestudy examined annual pollution
exposures, and the authors did not rule out that acute (daily) exposures could be related to
asthma attacks and other acute episodes.  Earlier work, by Dockery et al. [ 1989 #327], based on
six U.S. cities, found acute bronchitis and chronic cough significantly related to PM .  Because15
it is based on a larger sample, the Dockery et al. [1996 #25] study is the better study to develop a
C-R function linking PM  with bronchitis. 2.5

Bronchitis was counted in the study only if there were “reports of symptoms in the past
12 months” [Dockery, 1996 #25, p.  501].  It is unclear, however, if the cases of bronchitis are
acute and temporary, or if the bronchitis is a chronic condition.  Dockery et al. found no
relationship between PM and chronic cough and chronic phlegm, which are important indicators
of chronic bronchitis.  For this analysis, we assumed that the C-R function based on Dockery et
al. is measuring acute bronchitis.  The C-R function is based on results of the single pollutant
model reported in Table 1. 

Single Pollutant Model

The estimated logistic coefficient and standard error are based on the odds ratio (1.50)
and 95% confidence interval (0.91-2.47) associated with being in the most polluted city (PM  =2.1
20.7 µg/m ) versus the least polluted city (PM  = 5.8 µg/m ) [Dockery, 1996 #25, Tables 1 and3 3

2.1
4].  The original study used PM , however, we use the PM  coefficient and apply it to PM2.1 2.1 2.5
data.

Functional Form: Logistic
Coefficient: 0.027212
Standard Error: 0.017096
Incidence Rate: annual bronchitis incidence rate per person = 0.043 [American Lung
Association, 2002 #2354, Table 11]
Population: population of ages 8-12
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This estimate assumes that all heart attacks that are not instantly fatal will result in a hospitalization.  In addition,47

Rosamond et al. [ 1999 #2373] report that approximately six percent of male and eight percent of female hospitalized heart attack
patients die within 28 days (either in or outside of the hospital).  We applied a factor of 0.93 to the number of hospitalizations to
estimate the number of nonfatal heart attacks per year.
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Acute Myocardial Infarction (Heart Attacks), Nonfatal [Peters, 2001 #2157]

Peters et al. [ 2001 #2157] studied the relationship between increased particulate air
pollution and onset of heart attacks in the Boston area from 1995 to 1996.  The authors used air
quality data for PM , PM , PM ,“black carbon”, O , CO, NO , and SO  in a case-crossover10 10-2.5 2.5 3 2 2
analysis.  For each subject, the case period was matched to three control periods, each 24 hours
apart.  In univariate analyses, the authors observed a positive association between heart attack
occurrence and PM  levels hours before and days before onset.  The authors estimated2.5
multivariate conditional logistic models including two-hour and twenty-four hour pollutant
concentrations for each pollutant.  They found significant and independent associations between
heart attack occurrence and both two-hour and twenty-four hour PM  concentrations before2.5
onset.  Significant associations were observed for PM  as well.  None of the other particle10
measures or gaseous pollutants were significantly associated with acute myocardial infarction for
the two hour or twenty-four hour period before onset.

The patient population for this study was selected from health centers across the United
States.  The mean age of participants was 62 years old, with 21% of the study population under
the age of 50.  In order to capture the full magnitude of heart attack occurrence potentially
associated with air pollution and because age was not listed as an inclusion criteria for sample
selection, we apply an age range of 18 and over in the C-R function.  According to the National
Hospital Discharge Survey, there were no hospitalizations for heart attacks among children <15
years of age in 1999 and only 5.5% of all hospitalizations occurred in 15-44 year olds [Popovic,
2001 #2374, Table 10].

Single Pollutant Model

The coefficient and standard error are calculated from an odds ratio of 1.62 (95% CI
1.13-2.34) for a 20 µg/m  increase in twenty-four hour average PM  [Peters, 2001 #2157, Table3

2.5
4, p. 2813].

Functional Form: Logistic
Coefficient: 0.024121
Standard Error: 0.009285
Incidence Rate: region-specific daily nonfatal heart attack rate per person 18+ = 93% of region-
specific daily heart attack hospitalization rate (ICD code 410) 47

Population: population of ages 18 and older
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Krupnick and Kopp [ 1988 #318, p. 2-24] and ESEERCO [ 1994 #323, p. V-32] used the same C-R functional form as48

that used here.

Krupnick et al. [ 1990 #35, Table 1] reported the age distribution in their complete data, but they did not report the ages49

of individuals that were considered “adult.”  This analysis assumes that individuals 18 and older were considered adult.  Only a
small percentage (0.6%) of the study population is above the age of 60, so the C-R function was limited to the adult population. up
through the age of 65.
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Any of 19 Respiratory Symptoms [Krupnick, 1990 #35]

Krupnick et al. [ 1990 #35] estimated the impact of air pollution on the incidence of any
of 19 respiratory symptoms or conditions in 570 adults and 756 children living in three
communities in Los Angeles, California from September 1978 to March 1979.  Krupnick et al. [
1990 #35] listed 13 specific “symptoms or conditions”: head cold, chest cold, sinus trouble,
croup, cough with phlegm, sore throat, asthma, hay fever, doctor-diagnosed ear infection, flu,
pneumonia, bronchitis, and bronchiolitis.  The other six symptoms or conditions are not
specified.

In their analysis, they included COH, ozone, NO , and SO , and they used a logistic2 2
regression model that takes into account whether a respondent was well or not the previous day. 
A key difference between this and the usual logistic model, is that the model they used includes a
lagged value of the dependent variable.  In single-pollutant models, daily O , COH, and SO3 2
were significantly related to respiratory symptoms in adults.  Controlling for other pollutants,
they found that ozone was still significant.  The results were more variable for COH and SO ,2
perhaps due to collinearity.  NO  had no significant effect.  No effect was seen in children for2
any pollutant.  The results from the two-pollutant model with COH and ozone are used to
develop a C-R function.

Multipollutant Model (PM  and ozone)10

The C-R function used to estimate the change in ARD2 associated with a change in daily
average PM  concentration is based on Krupnick et al. [ 1990 #35, p. 12]:10

48

Functional Form: Linear
Coefficient: first derivative of the stationary probability = 0.000461
Standard Error: 0.000239
Population: population of ages 18-64 years49

The logistic regression model used by Krupnick et al. [ 1990 #35] takes into account
whether a respondent was well or not the previous day.  Following Krupnick et al. (p. 12), the
probability that one is sick is on a given day is:
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The model without NO  [Krupnick, 1990 #35, Table V equation 3] was used in this analysis, but the full suite of50
2

coefficient estimates for this model were not reported.  Krupnick et al. [ 1990 #35, Table IV] reported all of the estimated
coefficients for a model of children and for a model of adults when four pollutants were included (ozone, COH, SO , and NO ). 2 2
However, because of high collinearity between NO  and COH, NO  was dropped from some of the reported analyses (Krupnick et2 2
al., p. 10), and the resulting coefficient estimates changed substantially [see \Krupnick, 1990 #35, Table IV].  Both the ozone and
COH coefficients dropped by about a factor of two or more. 
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where: 
X = the matrix of explanatory variables
p = the probability of sickness on day t, given wellness on day t-1, and 0
p = the probability of sickness on day t, given sickness on day t-1.  1

In other words, the transition probabilities are estimated using a logistic function; the key
difference between this and the usual logistic model, is that the model includes a lagged value of
the dependent variable.

To calculate the impact of COH (or other pollutants) on the probability of ARD2, it is
possible, in principle, to estimate ARD2 before the change in COH and after the change:

However the full suite of coefficient estimates are not available.   Rather than use the50

full suite of coefficient values, the impact of COH on the probability of probability of ARD2
may be approximated by the derivative of ARD2 with respect to COH:

where β  is the reported logistic regression coefficient for COH.  Since COH data are notCOH
available for the benefits analysis, an estimated PM  logistic regression coefficient is used based10
on the following assumed relationship between PM , COH, and TSP:10
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This analysis uses β  = 0.0088 [Krupnick, 1990 #35, Table V equation 3].  TheCOH
conversion from COH to TSP is based on study-specific information provided to ESEERCO [
1994 #323, p. V-32].  The conversion of TSP to PM  is from also from ESEERCO [ 1994 #323,10
p. V-5], which cited studies by EPA [ 1986 #236] and the California Air Resources Board [ 1982
#329].

The change in the incidence of ARD2 associated with a given change in COH is then
estimated by:

This analysis uses transition probabilities obtained from Krupnick et al. as reported by
ESEERCO [ 1994 #323, p. V-32],  for the adult population: p  = 0.7775 and p  = 0.0468.  This1 0
implies:

The standard error for the coefficient is derived using the reported standard error of the
logistic regression coefficient in Krupnick et al. [ 1990 #35, Table V]:
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Lower Respiratory Symptoms [Schwartz, 2000 #1657]

Schwartz et al. [ 2000 #1657] replicated a previous analysis [Schwartz, 1994 #96] linking
PM levels to lower respiratory symptoms in children in six cities in the U.S.  The original study
enrolled 1,844 children into a year-long study that was conducted in different years (1984 to
1988) in six cities.  The students were in grades two through five at the time of enrollment in
1984.  By the completion of the final study, the cohort would then be in the eighth grade (ages
13-14); this suggests an age range of 7 to 14.  The previous study focused on PM , acid aerosols,10
and gaseous pollutants, although single-pollutant PM  results were reported.  Schwartz et al. [2.5
2000 #1657] focused more on the associations between PM  and PM  and lower respiratory2.5 10-2.5
symptoms.  In single and co-pollutant models, PM  was significantly associated with lower2.5
respiratory symptoms, while PM  was not.  PM  exhibited a stronger association with10-2.5 10-2.5
cough than did PM .  The PM  C-R function for lower respiratory symptoms is based on the2.5 2.5
results of the reported co-pollutant model (PM  and PM ).  2.5 10-2.5

Multipollutant Model (PM  and PM )2.5 10-2.5

In a model with PM , the PM  coefficient and standard error are calculated from the10-2.5 2.5
reported odds ratio (1.29) and 95% confidence interval (1.06-1.57) associated with a 15 µg/m3

change in PM  [Schwartz , 2000 #1657, Table 2]. 2.5

Functional Form: Logistic
Coefficient: 0.016976
Standard Error: 0.006680
Incidence Rate: daily lower respiratory symptom incidence rate per person = 0.0012 [Schwartz,
1994 #96, Table 2]
Population: population of ages 7 to 14
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 The study population is based on the Health Interview Survey (HIS), conducted by the National Center for Health51

Statistics.  In publications from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64.  From the
study, it is not clear if the age range stops at 65 or includes 65 year olds.  We apply the C-R function to individuals ages 18-64 for
consistency with other studies estimating impacts to non-elderly adult populations.
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Minor Restricted Activity Days: Ostro and Rothschild [ 1989 #60]

Ostro and Rothschild [ 1989 #60] estimated the impact of PM  and ozone on the2.5
incidence of minor restricted activity days (MRADs) and respiratory-related restricted activity
days (RRADs) in a national sample of the adult working population, ages 18 to 65, living in
metropolitan areas.   The annual national survey results used in this analysis were conducted in51

1976-1981.  Controlling for PM , two-week average ozone has highly variable association with2.5
RRADs and MRADs.  Controlling for ozone, two-week average PM  was significantly linked2.5
to both health endpoints in most years.  The C-R function for PM is based on this co-pollutant
model.

The study is based on a “convenience” sample of non-elderly individuals.  Applying the
C-R function to this age group is likely a slight underestimate, as it seems likely that elderly are
at least as susceptible to PM as individuals under 65.  The elderly appear more likely to die due
to PM exposure than other age groups [e.g., \Schwartz, 1994 #149, p. 30; ] and a number of
studies have found that hospital admissions for the elderly are related to PM exposures [e.g.,
\Schwartz, 1994 #147; Schwartz, 1994 #144].

Multipollutant Model (PM  and ozone)2.5

Using the results of the two-pollutant model, we developed separate coefficients for each
year in the analysis, which were then combined for use in this analysis.  The coefficient is a
weighted average of the coefficients in Ostro and Rothschild [ 1989 #60, Table 4] using the
inverse of the variance as the weight:
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 The study population is based on the Health Interview Survey (HIS), conducted by the National Center for Health52

Statistics.  In publications from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64.  From the
study, it is not clear if the age range stops at 65 or includes 65 year olds.  We apply the C-R function to individuals ages 18-64 for
consistency with other studies estimating impacts to non-elderly adult populations.

The study used a two-week average pollution concentration; the C-R function uses a daily average, which is assumed to53

be a reasonable approximation.  
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The standard error of the coefficient is calculated as follows, assuming that the estimated
year-specific coefficients are independent:

This reduces down to:

Functional Form: Log-linear
Coefficient: 0.00741
Standard Error: 0.00070
Incidence Rate: daily incidence rate for minor restricted activity days (MRAD) = 0.02137
[Ostro and Rothschild , 1989 #60, p. 243]
Population: adult population ages 18 to 64

Work Loss Days [Ostro, 1987 #456]

Ostro [ 1987 #456] estimated the impact of PM  on the incidence of work-loss days2.5
(WLDs), restricted activity days (RADs), and respiratory-related RADs (RRADs) in a national
sample of the adult working population, ages 18 to 65, living in metropolitan areas.   The annual52

national survey results used in this analysis were conducted in 1976-1981.  Ostro reported that
two-week average PM  levels  were significantly linked to work-loss days, RADs, and2.5

53

RRADs, however there was some year-to-year variability in the results.  Separate coefficients
were developed for each year in the analysis (1976-1981); these coefficients were pooled.  The
coefficient used in the concentration-response function presented here is a weighted average of
the coefficients in Ostro [ 1987 #456, Table III] using the inverse of the variance as the weight.

The study is based on a “convenience” sample of non-elderly individuals.  Applying the
C-R function to this age group is likely a slight underestimate, as it seems likely that elderly are
at least as susceptible to PM as individuals under 65.  The elderly appear more likely to die due
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to PM exposure than other age groups [e.g., \Schwartz, 1994 #149, p. 30; ] and a number of
studies have found that hospital admissions for the elderly are related to PM exposures [e.g.,
\Schwartz, 1994 #147; Schwartz, 1994 #144].  On the other hand, the number of workers over
the age of 65 is relatively small; it was approximately 3% of the total workforce in 2001 [U.S.
Bureau of the Census, 2002 #2387, Table 561].

Single Pollutant Model

The coefficient used in the C-R function is a weighted average of the coefficients in
Ostro [ 1987 #456, Table III] using the inverse of the variance as the weight:

The standard error of the coefficient is calculated as follows, assuming that the estimated
year-specific coefficients are independent:

This eventually reduces down to:

Functional Form: Log-linear
Coefficient: 0.0046
Standard Error: 0.00036
Incidence Rate: daily work-loss-day incidence rate per person ages 18 to 64 = 0.00595 [Adams,
1999 #2355, Table 41; U.S. Bureau of the Census, 1997 #447, No. 22]
Population: adult population ages 18 to 64
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Exhibit D-7  Concentration-Response (C-R) Functions for Particulate Matter and Asthma-Related Effects

Endpoint Name Pollutant Author Year Location Age Race Gender Beta Std Error NotesOther Averaging Functional
Pollutants Time Form1

Acute Bronchitis PM 1999 9-15 All All None Annual Avg 0.022431 0.015957 Logistic2.5
McConnell et Southern
al. California

Asthma Exacerbation, Whittemore Los Angeles,
Asthma Attacks and Korn CAPM 1980 All All All O 24-hr avg 0.001436 0.000558 Logistic10 3

Asthma Exacerbation, Los Angeles, New onset of
Cough CA symptomsPM Ostro et al. 2001 8-13 Black All None 24-hr avg 0.003177 0.001156 Logistic2.5

Asthma Exacerbation, Vancouver,
Cough CANPM Vedal et al. 1998 6-13 All All None 24-hr avg 0.007696 0.003786 Logistic10

Asthma Exacerbation, Linear (log
Moderate or Worse of pollutant)PM Ostro et al. 1991 Denver, CO All All All None 24-hr avg 0.0006 0.00032.5

Asthma Exacerbation,
One or More Symptoms PM Yu et al. 2000 Seattle, WA 5-13 All All CO, SO 24-hr avg 0.004879 0.005095 Logistic10 2

Asthma Exacerbation, Los Angeles, New onset of
Shortness of Breath CA symptomsPM Ostro et al. 2001 8-13 Black All None 24-hr avg 0.003177 0.001550 Logistic2.5

Asthma Exacerbation, Los Angeles, New onset of
Wheeze CA symptomsPM Ostro et al. 2001 8-13 Black All None 24-hr avg 0.002565 0.001030 Logistic2.5

Chronic Phlegm PM 1999 9-15 All All None Annual Avg 0.063701 0.025580 Logistic2.5
McConnell et Southern
al. California

Upper Respiratory
Symptoms PM Pope et al. 1991 Utah Valley 9-11 All All None 24-hr avg 0.0036 0.0015 Logistic10

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for more detail
on the specific averaging time used in the study.
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 Assuming that a child enters kindergarten at age 5, 4  grade corresponds to age 9 and 10  grade corresponds to age 15. 54 th th

We therefore applied the results of this study to children ages 9 to 15.

  The American Lung Association [ 2002  #2358, Table 7] estimates asthma prevalence for children ages 5 to 17 at55

5.67% (based on data from the 1999 National Health Interview Survey).
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Asthma-Related Effects

Acute Bronchitis [McConnell, 1999 #1900]

McConnell et al. [ 1999 #1900] examined the relationship between air pollution and
bronchitic symptoms among asthmatic 4 , 7 , and 10  grade children in southern California.  th th th 54

The authors collected information on the prevalence of bronchitis, chronic cough, and chronic
phlegm among children with and without a history of asthma and/or wheeze.  They used annual
measurements of ozone, PM , PM , NO , and acids in a logistic regression model with10 2.5 2
adjustments for personal covariates.  Neither bronchitis, cough, or phlegm were associated with
any of the pollutants among children with no history of wheeze or asthma or a history of wheeze
without diagnosed asthma.  Among asthmatics, PM  was significantly associated with bronchitis10
and phlegm; PM  was significantly associated with phlegm and marginally associated with2.5
bronchitis; NO  and acids were both significantly associated with phlegm; and ozone was not2
significantly associated with any of the endpoints. 

Bronchitis was defined in the study by the question: “How many times in the past 12
months did your child have bronchitis?” [McConnell, 1999 #1900, p. 757].  It is unclear,
however, if the cases of bronchitis are acute and temporary, or if the bronchitis is a chronic
condition.  McConnell et al. found a relationship between PM and chronic phlegm but none with
chronic cough, each of which may be indicators of chronic bronchitis.  For this analysis, we
assumed that the C-R function based on McConnell et al. is measuring acute bronchitis.  The
PM  C-R function for bronchitis among asthmatics is based on the results of the single pollutant2.5
model reported in Table 3.

Single Pollutant Model

The estimated logistic coefficient and standard error are based on the odds ratio (1.4) and
95% confidence interval (0.9-2.3) associated with an increase in yearly mean 2-week average
PM  of 15 µg/m . [McConnell, 1999 #1900, Table 3] 2.5

3

Functional Form: Logistic
Coefficient: 0.022431
Standard Error: 0.015957
Incidence Rate: annual incidence rate of one or more episodes of bronchitis per asthmatic =
0.326 [McConnell, 1999 #1900, Table 2]
Population: population of asthmatics ages 9 to 15 = 5.67%  of population ages 9 to 1555
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The conversion of TSP to PM  is from ESEERCO [ 1994 #323, p. V-5], who cited studies by EPA [ 1986 #236] and the56
10

California Air Resources Board [ 1982 #329].

 Based on an analysis of the 1999 National Health Interview Survey, the daily incidence of wheezing attacks for adult57

asthmatics is estimated to be 0.0550. In the same survey, wheezing attacks for children were examined, however, the number of
wheezing attacks per year were censored at 12 (compared to censoring at 95 for adults).  Due to the potential for underestimation of
the number of children’s wheezing attacks, we used the adult rate for all individuals.    

 The authors note that there were 26 days in which PM  concentrations were reported higher than PM  concentrations. 58
2.5 10

The majority of results the authors reported were based on the full dataset.  These results were used for the basis for the C-R
functions.
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Asthma Attacks [Whittemore and Korn, 1980 #634]

Whittemore and Korn [ 1980 #634] examined the relationship between air pollution and
asthma attacks in a survey of 443 children and adults, living in six communities in southern
California during three 34-week periods in 1972-1975.  The analysis focused on TSP and
oxidants (O ).  Respirable PM, NO , SO  were highly correlated with TSP and excluded from thex 2 2
analysis. In a two pollutant model, daily levels of both TSP and oxidants were significantly
related to reported asthma attacks.  The results from this model were used, and the oxidant result
was adjusted so it may be used with ozone data.

Multipollutant Model (PM  and ozone)10

The PM  C-R function is based on the results of a co-pollutant model of TSP and ozone10
[Whittemore, 1980 #634, Table 5].  Assuming that PM  is 55 percent of TSP  and that10

56

particulates greater than ten micrometers are harmless, the coefficient is calculated by dividing
the TSP coefficient (0.00079) by 0.55.  The standard error is calculated from the two-tailed p-
value (<0.01) reported by Whittemore and Korn [ 1980 #634, Table 5], which implies a t-value
of at least 2.576 (assuming a large number of degrees of freedom).

Functional Form: Logistic
Coefficient: 0.001436
Standard Error: 0.000558
Incidence Rate: daily incidence of asthma attacks = 0.0550  57

Population: population of asthmatics of all ages = 3.86% of the population of all ages
[American Lung Association, 2002  #2358, Table 7]

Asthma Exacerbation, Cough [Ostro, 2001 #2317]

Ostro et al. [ 2001 #2317] studied the relation between air pollution in Los Angeles and
asthma exacerbation in African-American children (8 to 13 years old) from August to November
1993.  They used air quality data for PM , PM , NO , and O  in a logistic regression model10 2.5 2 3
with control for age, income, time trends, and temperature-related weather effects.   Asthma58

symptom endpoints were defined in two ways: “probability of a day with symptoms” and “onset
of symptom episodes”.  New onset of a symptom episode was defined as a day with symptoms
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 On average, 17.3% of African-American asthmatics have cough episodes on a given day [Ostro, 2001 #2317, p.202]. 59

Only those who are symptom-free on the previous day (1-0.145 = 85.5%) are at-risk for a new onset episode.
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ages 5 to 17 at 7.26% (based on data from the 1999 National Health Interview Survey).
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followed by a symptom-free day.  The authors found cough prevalence associated with PM  and10
PM  and cough incidence associated with PM  PM , and NO .  Ozone was not significantly2.5 2.5 10 2
associated with cough among asthmatics.  The PM  C-R function is based on the results of the2.5
single pollutant model looking at the onset of new symptoms. 

Single Pollutant Model

The coefficient and standard error are based on an odds ratio of 1.10 (95% CI 1.03-1.18)
for a 30 µg/m  increase in 12-hour average PM  concentration.3

2.5

The C-R function based on this model will estimate the number of new onset episodes of
cough avoided.  In order to convert this estimate to the total number of episodes avoided, the
results are adjusted by an estimate of the duration of symptom episodes.  The average duration
can be estimated from Ostro et al. [ 2001 #2317] using the ratio of the probability of a symptom
episode to the probability of a new onset episode.  For cough, this ratio is 2.2 (14.5% divided by
6.7%) [Ostro, 2001 #2317, p.202].

In addition, not all children are at-risk for a new onset of cough, as defined by the study. 
On average, 14.5% of African-American asthmatics have cough on a given day [Ostro, 2001
#2317, p.202].  Only those who are symptom-free on the previous day are at-risk for a new onset
episode (1-0.145 = 85.5%).  As a result, a factor of 85.5% is used in the function to estimate the
population of African-American 8 to 13 year old children at-risk for a new cough episode.

Functional Form: Logistic
Coefficient: 0.003177
Standard Error: 0.001156
Incidence Rate: daily new onset cough (incidence) rate per person [Ostro, 2001 #2317, p.202] =
0.067
Population: asthmatic African-American population ages 8 to 13 at-risk for a new episode of
cough = 6.21% of African-American population ages 8 to 13 multiplied (85.5% at-risk  times59

7.26% asthmatic )60

Adjustment Factor: average number of consecutive days with a cough episode (days) = 2.2

Asthma Exacerbation, Cough [Vedal, 1998 #416]

Vedal et al. [ 1998 #416] studied the relationship between air pollution and respiratory
symptoms among asthmatics and non-asthmatic children (ages 6 to 13) in Port Alberni, British
Columbia, Canada.  Four groups of elementary school children were sampled from a prior cross-
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sectional study: (1) all children with current asthma, (2) children without doctor diagnosed
asthma who experienced a drop in FEV after exercise, (3) children not in groups 1 or 2 who had
evidence of airway obstruction, and (4) a control group of children with matched by classroom. 
The authors used logistic regression and generalized estimating equations to examine the
association between daily PM  levels and daily increases in various respiratory symptoms10
among these groups.  In the entire sample of children, PM  was significantly associated with10
cough, phlegm, nose symptoms, and throat soreness.  Among children with diagnosed asthma,
the authors report a significant association between PM  and cough symptoms, while no10
consistent effects were observed in the other groups.  Since the study population has an over-
representation of asthmatics, due to the sampling strategy, the results from the full sample of
children are not generalizeable to the entire population.  The C-R function presented below is
based on results among asthmatics only.  

Single Pollutant Model

The PM coefficient and standard error are based on an increase in odds of 8% (95% CI10 
0-16%) reported in the abstract for a 10 µg/m  increase in daily average PM .3

10

Functional Form: Logistic
Coefficient: 0.007696
Standard Error: 0.003786
Incidence Rate: daily cough rate per person [Vedal, 1998 #416, Table 1, p. 1038] = 0.086
Population: asthmatic population ages 6 to 13 = 5.67%  of population ages 6 to 1361

Asthma Exacerbation, Moderate or Worse [Ostro, 1991 #64]

Ostro et al. [ 1991 #64] examined the effect of air pollution on asthmatics, ages 18 to 70,
living in Denver, Colorado from December 1987 to February 1988.  The respondents in this
study were asked to record daily a subjective rating of their overall asthma status each day
(0=none, 1=mild, 2=moderate, 3=severe, 4=incapacitating).  Ostro et al. then examined the
relationship between moderate (or worse) asthma and H , sulfate, SO , PM , estimated PM ,+

2 2.5 2.5
PM , nitrate, and nitric acid.  Daily levels of H  were linked to cough, asthma, and shortness of10

+

breath.  PM  was linked to asthma.  Sulfate was linked to shortness of breath.  No effects seen2.5
for other pollutants. The C-R function is based on a single-pollutant linear regression model
where the log of the pollutant is used.

Single Pollutant Model

Two PM  coefficients are presented, both equal 0.0006, however only one is significant. 2.5
The coefficient based on data that does not include estimates of missing PM  values is not2.5
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 The C-R function is applied to asthmatics of all ages, although the study population consists of asthmatics between the62

ages of 18 and 70.  It seems reasonable to assume that individuals over the age of 70 are at least as susceptible as individuals in the
study population.  It also seems reasonable to assume that individuals under the age of 18 are also susceptible.  For example,
controlling for oxidant levels, Whittemore and Korn [ 1980 #634] found TSP significantly related to asthma attacks in a study
population comprised primarily (59 percent) of individuals less than 16 years of age.
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significant (std error =  0.0053); the coefficient that includes estimates of missing PM  values2.5
(estimated using a function of sulfate and nitrate) is significant at p < 0.5 (std error =  0.0003). 
The latter coefficient is used here.

The C-R function to estimate the change in the number of days with moderate (or worse)

asthma 

Functional Form: Linear (using log of the pollutant)
Coefficient: 0.0006
Standard Error: 0.0003
Population: population of asthmatics of all ages  = 3.86% of the population of all ages62

[American Lung Association, 2002  #2358, Table 7]

Asthma Exacerbation, One or More Symptoms [Yu, 2000 #2112]

Yu et al. [ 2000 #2112] examined the association between air pollution and asthmatic
symptoms among mild to moderate asthmatic children ages 5-13 in Seattle.  They collected air
quality data for CO, SO , PM , and PM and asked study subjects to record symptoms daily. 2 10 1.0 
They used logistic regression models with generalized estimating equations in two different
approaches.  A “marginal approach” was used to estimate the impact of air pollution on asthma
symptoms and a “transition approach” was used to estimate the association conditioned on the
previous day’s outcome.  The primary endpoint, odds of at least one asthma symptom, was
significantly associated with CO, PM , and PM  in single pollutant models.  In multipollutant10 1.0
models, CO remained significant while PM effects declined slightly.  The magnitude of the
effects were similar between the “marginal” and “transition” approaches.  The C-R function is
based on the results of the “transition approach,” where the previous day’s symptoms is an
explanatory variable.  

Multipollutant Model (PM , CO, SO )10 2

The C-R function is based on the results of the “transition approach,” where the previous
day’s symptoms is an explanatory variable.  The multipollutant PM  coefficient and standard10
error are based on the odds ratio (1.05) and 95% confidence interval (0.95-1.16) for a 10 µg/m3

increase in one-day lagged daily average PM  [Yu, 2000 #2112, Table 4, p. 1212].10
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Functional Form: Logistic
Coefficient: 0.004879
Standard Error: 0.005095
Incidence Rate: daily rate of at least one asthma episode per person [Yu, 2000 #2112, Table 2,
p. 1212] = 0.60
Population: asthmatic population ages 5 to 13 = 5.67%  of population ages 5 to 1363

Asthma Exacerbation, Shortness of Breath [Ostro, 2001 #2317]

Ostro et al. [ 2001 #2317] studied the relationship between air pollution in Los Angeles
and asthma exacerbation in African-American children (8 to 13 years old) from August to
November 1993.  They used air quality data for PM , PM , NO , and ozone in a logistic10 2.5 2
regression model with control for age, income, time trends, and temperature-related weather
effects.  Asthma symptom endpoints were defined in two ways: “probability of a day with
symptoms” and “new onset of a symptom episode”.  New onset of a symptom episode was
defined as a day with symptoms followed by a symptom-free day.  The authors found that both
the prevalent and incident episodes of shortness of breath were associated with PM  and PM . 2.5 10
Neither ozone nor NO  were significantly associated with shortness of breath among asthmatics. 2
The PM  C-R function is based on the results of a single pollutant model looking at the onset of2.5
new symptoms.  

Single Pollutant Model

The coefficient and standard error are based on an odds ratio of 1.10 (95% CI 1.00-1.20)
for a 30 µg/m  increase in 12-hour average PM  concentration [Ostro, 2001 #2317, Table 5,3

2.5
p.204].

The C-R function based on this model will estimate the number of new onset episodes of
shortness of breath avoided.  In order to convert this estimate to the total number of episodes
avoided, the results are adjusted by an estimate of the duration of symptom episodes.  The
average duration can be estimated from Ostro et al. [ 2001 #2317] using the ratio of the
probability of a symptom episode to the probability of a new onset episode.  For shortness of
breath, this ratio is 2.0 (7.4% divided by 3.7%) [Ostro, 2001 #2317, p.202].

In addition, not all children are at-risk for a new onset of shortness of breath, as defined
by the study.  On average, 7.4% of African-American asthmatics have shortness of breath
episodes on a given day [Ostro, 2001 #2317, p.202].  Only those who are symptom-free on the
previous day are at-risk for a new onset episode (1-0.074 = 92.6%).  As a result, a factor of
92.6% is used in the function to estimate the population of African-American 8 to 13 year old
children at-risk for a new shortness of breath episode.
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 On average, 7.4% of African-American asthmatics have shortness of breath episodes on a given day [Ostro, 2001 #2317,64

p.202].  Only those who are symptom-free on the previous day (1-0.074 = 92.6%) are at-risk for a new onset episode.

 The American Lung Association [ 2002  #2358, Table 9] estimates asthma prevalence for African-American children65

ages 5 to 17 at 7.26% (based on data from the 1999 National Health Interview Survey).
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Functional Form: Logistic
Coefficient: 0.003177
Standard Error: 0.001550
Incidence Rate: daily new onset shortness of breath (incidence) rate per person [Ostro, 2001
#2317, p.202] = 0.037
Population: asthmatic African-American population ages 8 to 13 at-risk for a new episode of
shortness of breath = 6.72% of African-American population ages 8 to 13 multiplied (92.6% at-
risk  times 7.26% asthmatic )64 65

Adjustment Factor: average number of consecutive days with a shortness of breath episode
(days) = 2.0

Asthma Exacerbation, Wheeze [Ostro, 2001 #2317]

Ostro et al. [ 2001 #2317] studied the relation between air pollution in Los Angeles and
asthma exacerbation in African-American children (8 to 13 years old) from August to November
1993.  They used air quality data for PM , PM , NO , and O  in a logistic regression model10 2.5 2 3
with control for age, income, time trends, and temperature-related weather effects.  Asthma
symptom endpoints were defined in two ways: “probability of a day with symptoms” and “onset
of symptom episodes”.  New onset of a symptom episode was defined as a day with symptoms
followed by a symptom-free day.  The authors found both the prevalence and incidence of
wheeze associated with PM  PM , and NO .  Ozone was not significantly associated with2.5 10 2
wheeze among asthmatics.  The PM  C-R function is based on the results of a single pollutant2.5
model looking at the onset of new symptoms.   

Single Pollutant Model

The coefficient and standard error are based on an odds ratio of 1.08 (95% CI 1.01-1.14)
for a 30 µg/m  increase in 12-hour average PM  concentration [Ostro, 2001 #2317, Table 5,3

2.5
p.204].

The C-R function based on this model will estimate the number of new onset episodes of
wheeze avoided.  In order to convert this estimate to the total number of episodes avoided, the
results are adjusted by an estimate of the duration of symptom episodes.  The average duration
can be estimated from Ostro et al. [ 2001 #2317] using the ratio of the probability of a symptom
episode to the probability of a new onset episode.  For wheeze, this ratio is 2.3 (17.3% divided
by 7.6%) [Ostro, 2001 #2317, p.202].
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 On average, 17.3% of African-American asthmatics have wheeze episodes on a given day [Ostro, 2001 #2317, p.202]. 66

Only those who are symptom-free on the previous day (1-0.173 = 82.7%) are at-risk for a new onset episode.

  The American Lung Association [ 2002  #2358, Table 9] estimates asthma prevalence for African-American children67

ages 5 to 17 at 7.26% (based on data from the 1999 National Health Interview Survey).

 Assuming that a child enters kindergarten at age 5, 4  grade corresponds to age 9 and 10  grade corresponds to age 15. 68 th th

We therefore applied the results of this study to children ages 9 to 15.
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In addition, not all children are at-risk for a new onset of wheeze, as defined by the study. 
On average, 17.3% of African-American asthmatics have wheeze on a given day [Ostro, 2001
#2317, p.202].  Only those who are symptom-free on the previous day are at-risk for a new onset
episode (1-0.173 = 82.7%).  As a result, a factor of 82.7% is used in the function to estimate the
population of African-American 8 to 13 year old children at-risk for a new wheeze episode.

Functional Form: Logistic
Coefficient: 0.002565
Standard Error: 0.001030
Incidence Rate: daily new onset wheeze (incidence) rate per person [Ostro, 2001 #2317, p.202]
= 0.076
Population: asthmatic African-American population ages 8 to 13 at-risk for a new episode of
wheeze = 6.00% of African-American population ages 8 to 13 multiplied (82.7% at-risk  times66

7.26% asthmatic )67

Adjustment Factor: average number of consecutive days with a wheeze episode (days) = 2.3

Chronic Phlegm [McConnell, 1999 #1900]

McConnell et al. [ 1999 #1900] examined the relationship between air pollution and
bronchitic symptoms among asthmatic 4 , 7 , and 10  grade children in southern California.  th th th 68

The authors collected information on the prevalence of bronchitis, chronic cough, and chronic
phlegm among children with and without a history of asthma and/or wheeze.  They used annual
measurements of ozone, PM , PM , NO , and acids in a logistic regression model with10 2.5 2
adjustments for personal covariates.  Neither bronchitis, cough, or phlegm were associated with
any of the pollutants among children with no history of wheeze or asthma or a history of wheeze
without diagnosed asthma.  Among asthmatics, PM  was significantly associated with bronchitis10
and phlegm; PM  was significantly associated with phlegm and marginally associated with2.5
bronchitis; NO  and acids were both significantly associated with phlegm; and ozone was not2
significantly associated with any of the endpoints. 

Phlegm was defined in the study by the question: “Other than with colds, does this child
usually seem congested in the chest or bring up phlegm?” [McConnell, 1999 #1900, p. 757]. 
The authors refer to this definition as “chronic phlegm” and we also assume that the term
“usually” refers to chronic, rather than acute, phlegm.  The PM C-R functions for chronic
phlegm among asthmatics are based on the results of the single pollutant model reported in Table
3.
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Single Pollutant Model

The estimated logistic coefficient and standard error are based on the odds ratio (2.6) and
95% confidence interval (1.2-5.4) associated with an increase in yearly mean 2-week average
PM  of 15 µg/m . [McConnell, 1999 #1900, Table 3] 2.5

3

Functional Form: Logistic
Coefficient: 0.063701
Standard Error: 0.025580
Incidence Rate: annual incidence rate of phlegm per asthmatic = 0.257 [McConnell, 1999
#1900, Table 2]
Population: population of asthmatics ages 9 to 15 = 5.67%  of population ages 9 to 1569

Upper Respiratory Symptoms [Pope, 1991 #77]

Using logistic regression, Pope et al. [ 1991 #77] estimated the impact of PM  on the10
incidence of a variety of minor symptoms in 55 subjects (34 “school-based” and 21 “patient-
based”) living in the Utah Valley from December 1989 through March 1990.  The children in the
Pope et al. study were asked to record respiratory symptoms in a daily diary.  With this
information, the daily occurrences of upper respiratory symptoms (URS) and lower respiratory
symptoms (LRS) were related to daily PM  concentrations.  Pope et al. describe URS as10
consisting of one or more of the following symptoms:  runny or stuffy nose; wet cough; and
burning, aching, or red eyes.  Levels of ozone, NO , and SO  were reported low during this2 2
period, and were not included in the analysis.  The sample in this study is relatively small and is
most representative of the asthmatic population, rather than the general population.  The school-
based subjects (ranging in age from 9 to 11) were chosen based on “a positive response to one or
more of three questions: ever wheezed without a cold, wheezed for 3 days or more out of the
week for a month or longer, and/or had a doctor say the ‘child has asthma’ [Pope, 1991 #77, p.
669].”  The patient-based subjects (ranging in age from 8 to 72) were receiving treatment for
asthma and were referred by local physicians.  Regression results for the school-based sample
[Pope, 1991 #77, Table 5] show PM  significantly associated with both upper and lower10
respiratory symptoms.  The patient-based sample did not find a significant PM  effect.  The10
results from the school-based sample are used here.

Single Pollutant Model

The coefficient and standard error for a one µg/m  change in PM  is reported in Table 5.3
10

Functional Form: Logistic
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Coefficient: 0.0036
Standard Error: 0.0015
Incidence Rate: daily upper respiratory symptom incidence rate per person = 0.3419 [Pope,
1991 #77, Table 2]
Population: asthmatic population ages 9 to 11 = 5.67%  of population ages 9 to 1170

Ozone Concentration-response Functions

Short-term Mortality

Exhibit D-8 summarizes the C-R functions used to estimate the relationship between ozone
and short-term mortality.  Detailed summaries of each of the studies used to generate the functions
are described below, along with the parameters used in each of the functions.
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Exhibit D-8  Concentration-Response (C-R) Functions for Ozone and Short-Term Mortality

Endpoint Name Author Year Location Age Race Gender Beta Std ErrorOther Averaging Functional
Pollutants Time Form1

Non-Accidental Ito and Thurston 1996 Chicago, IL All All All PM 1-hr max Log-linear 0.000634 0.00025110

Non-Accidental Kinney et al. 1995 Los Angeles, CA All All All PM 1-hr max Log-linear 0 0.00021410

Non-Accidental Moolgavkar et al. 1995 Philadelphia, PA All All All SO , TSP 24-hr avg Log-linear 0.000611 0.0002162

Non-Accidental Samet et al. 1997 Philadelphia, PA All All All 24-hr avg Log-linear 0.000936 0.000312CO, NO , SO ,2 2
TSP

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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Short-Term Mortality, Non-Accidental [Ito, 1996 #187, Chicago]

Ito and Thurston [ 1996 #187] examined the relationship between daily non-accidental
mortality and air pollution levels in Cook County, Illinois from 1985 to 1990.  They examined
daily levels of ozone, PM , SO , and CO, and found a significant relationship for ozone and10 2
PM  with both pollutants in the model; no significant effects were found for SO  and CO.  In10 2
single pollutant models the effects were slightly larger. The C-R function for ozone is based on
the results of the co-pollutant model.  

Multipollutant Model (ozone and PM )10

In a co-pollutant model with PM , the coefficient (0.000634) and standard error10
(0.000251) were obtained directly from the author because the published paper reported
incorrect information.

Functional Form: Log-linear
Coefficient: 0.000634 
Standard Error: 0.000251 
Incidence Rate: county-level daily non-accidental mortality rate (ICD codes <800) per person
Population: population of all ages

Short-Term Mortality, Non-Accidental [Kinney, 1995 #191, Los Angeles]

Kinney et al. [ 1995 #191] examined the relationship between daily non-accidental
mortality and air pollution levels in Los Angeles, California from 1985 to 1990.  They examined
ozone, PM , and CO, and found a significant relationship for each pollutant in single pollutant10
models.  The effect for ozone dropped to zero with the inclusion of PM  in the model, while the10
effect for CO and PM  appeared co-pollutant ozone models.  The C-R function for ozone is10
based on the results of the co-pollutant model.    

Multipollutant Model (ozone and PM )10

In a model with PM , the coefficient and standard error are based on the relative risk10
(1.00) and 95% confidence interval (0.94-1.06) reported for a 143 ppb increase in daily one-hour
maximum ozone concentration [Kinney, 1995 #191, Table 2, p. 64].      

Functional Form: Log-linear
Coefficient: 0
Standard Error: 0.000214 
Incidence: county-level daily non-accidental mortality rate (ICD codes <800) per person
Population: population of all ages
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Short-Term Mortality, Non-Accidental [Moolgavkar, 1995 #49, Philadelphia]

Moolgavkar et al. [ 1995 #49] examined the relationship between daily non-accidental
mortality and air pollution levels in Philadelphia, Pennsylvania from 1973 to 1988.  They
examined ozone, TSP, and SO  in a three-pollutant model, and found a significant relationship2 
for ozone and SO ; TSP was not significant.  In season-specific models, ozone was significantly2
associated with mortality only in the summer months.  The C-R function for ozone is based on
the full-year three-pollutant model reported in Table 5 [Moolgavkar et al., 1995 #49, p. 482].  

Multipollutant Model (ozone, SO , TSP)2

The coefficient and standard error are based on the relative risk (1.063) and 95%
confidence interval (1.018-1.108) associated with a 100 ppb increase in daily average ozone
[Moolgavkar et al., 1995 #49, p. 482, Table 5].

Functional Form: Log-linear
Coefficient: 0.000611
Standard Error: 0.000216
Incidence Rate: county-level daily non-accidental mortality rate (ICD codes <800) per person
Population: population of all ages

Short-Term Mortality, Non-Accidental [Samet, 1997 #685, Philadelphia]

Samet et al. [ 1997 #685] examined the relationship between daily non-accidental
mortality and air pollution levels in Philadelphia, Pennsylvania from 1974 to 1988.  They
examined ozone, TSP, SO , NO , and CO  in a Poisson regression model.  In single pollutant2 2  
models, ozone, SO , TSP, and CO were significantly associated with mortality.  In a five-2
pollutant model, they found a positive statistically significant relationship for each pollutant
except NO .  The C-R function for ozone is based on the five-pollutant model (ozone, CO, NO ,2 2
SO , and TSP) reported in Table 9 [Samet, 1997 #685, p. 20].2

Multipollutant Model (ozone, CO, NO , SO , and TSP)2 2

In a model with CO, NO , SO , and TSP, the ozone coefficient and standard error are2 2
based on the percent increase (1.91) and t-statistic (3) associated with a 20.219 ppb increase in
two-day average ozone [Samet, 1997 #685, p. 20, Table 9].

Functional Form: Log-linear
Coefficient: 0.000936
Standard Error: 0.000312
Incidence Rate: county-level daily non-accidental mortality rate (ICD codes <800) per person
Population: population of all ages
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Exhibit D-9  Concentration-Response (C-R) Functions for Ozone and Chronic Illness

Endpoint Name Author Year Location Age Race Gender Beta Std ErrorOther Averaging Functional
Pollutants Time Form1

Chronic Asthma McDonnell et al. 1999 27+ All Male None Logistic 0.0277 0.0135SF, SD, South annual avg 8-
Coast Air Basin hr avg

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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Chronic Illness

Exhibit D-9 summarizes the C-R function ([McDonnell, 1999 #1153]) used to estimate
the relationship between ozone and chronic asthma.  A more detailed summary of McDonnell et
al. [ 1999 #1153], and the parameters used in the function, is described below.

Chronic Asthma  [McDonnell, 1999 #1153]

McDonnell et al. [ 1999 #1153] used the same cohort of Seventh-Day Adventists as
Abbey et al. [ 1991 #242;, 1993 #245], and examined the association between air pollution and
the onset of asthma in adults between 1977 and 1992.  Males who did not report doctor-
diagnosed asthma in 1977, but reported it in 1987 or 1992, had significantly higher ozone
exposures, controlling for other covariates; no significant effect was found between ozone
exposure and asthma in females.  No significant effect was reported for females or males due to
exposure to PM, NO , SO , or SO .  The C-R function for ozone is based on the single pollutant2 2 4
model for males reported in Table 5 [McDonnell, 1999 #1153, 1999, p. 117].  

Single Pollutant Model

The coefficient and standard error for males is reported in Table 5 for a unit increase in
annual average eight-hour ozone concentrations.71

Functional Form: Logistic
Coefficient: 0.0277
Standard Error: 0.0135
Incidence Rate: annual asthma incidence rate per person = 0.00219 [McDonnell, 1999 #1153,
1999, Table 4]
Population: non-asthmatic males age 27 and over = 97.9%  of males 27+72
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Exhibit D-10  Concentration-Response (C-R) Functions for Ozone and Hospital Admissions

Endpoint Name Author Year Location Age Race Gender Beta Std ErrorOther Averaging Functional
Pollutants Time Form1

All Respiratory Burnett et al. 2001 Toronto, CAN <2 All All PM 1-hr max Log-linear 0.006309 0.0018342.5

All Respiratory Schwartz 1995 New Haven, CT 65+ All All PM 24-hr avg Log-linear 0.002652 0.00139810

All Respiratory Schwartz 1995 Tacoma, WA 65+ All All PM 24-hr avg Log-linear 0.007147 0.00256510

Chronic Lung Disease Moolgavkar et al. 1997 Minneapolis, MN 65+ All All CO, PM 24-hr avg Log-linear 0.002743 0.00169910

Chronic Lung Disease
(less Asthma) Schwartz 1994 Detroit, MI 65+ All All PM 24-hr avg Log-linear 0.00549 0.0020510

Pneumonia Moolgavkar et al. 1997 Minneapolis, MN 65+ All All 24-hr avg Log-linear 0.003696 0.001030NO , PM ,2 10
SO2

Pneumonia Schwartz 1994 Detroit, MI 65+ All All PM 24-hr avg Log-linear 0.00521 0.001310

Pneumonia Schwartz 1994 Minneapolis, MN 65+ All All PM 24-hr avg Log-linear 0.003977 0.00186510

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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Hospital Admissions

Exhibit D-10 summarizes the C-R functions used to estimate the relationship between
ozone and hospital admissions.  Detailed summaries of each of the studies used to generate the
functions are described below, along with the parameters used in each of the functions.

Hospital Admissions for All Respiratory [Burnett, 2001 #2202, Toronto]

Burnett et al. [ 2001 #2202] studied the association between air pollution and acute
respiratory hospital admissions (ICD codes 493, 466, 464.4, 480-486) in Toronto from 1980-
1994, among children less than 2 years of age.  They collected hourly concentrations of the
gaseous pollutants, CO, NO , SO , and ozone.  Daily measures of particulate matter were2 2
estimated for the May to August period of 1992-1994 using TSP, sulfates, and coefficient of
haze data.  The authors report a positive association between ozone in the May through August
months and respiratory hospital admissions, for several single days after elevated ozone levels.  

The strongest association was found using a five-day moving average of ozone.  No
association was found in the September through April months.  In co-pollutant models with a
particulate matter or another gaseous pollutant, the ozone effect was only slightly diminished. 
The effects for PM and gaseous pollutants were generally significant in single pollutant models
but diminished in co-pollutant models with ozone, with the exception of CO.  The C-R function
for ozone is based on a co-pollutant model with PM , using the five-day moving average of2.5
one-hour max ozone.  

Multipollutant Model (ozone and PM )2.5

In a model with PM , the coefficient and standard error are based on the percent2.5
increase (33.0) and t-statistic (3.44) associated with a 45.2 ppb increase in the five-day moving
average of one-hour max ozone  [Burnett, 2001 #2202, Table 3].  

Functional Form: Log-linear
Coefficient: 0.006309
Standard Error: 0.001834
Incidence Rate: region-specific daily hospital admission rate for all respiratory admissions per
person less than 2 years of age (ICD codes 464, 466, 480-487, 493)
Population: population less than 2 years of age

Hospital Admissions for All Respiratory [Schwartz, 1995 #153, New Haven]

Schwartz [1995 #153] examined the relationship between air pollution and respiratory
hospital admissions (ICD codes 460-519) for individuals 65 and older in New Haven,
Connecticut, from January 1988 to December 1990.  In single-pollutant models, PM  and SO10 2
were significant, while ozone was marginally significant.  In a co-pollutant model with ozone
and PM , both pollutants were significant.  PM  remained significant in a model with SO ,10 10 2
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 To calculate the coefficient, a conversion of 1.96 µg/m  per ppb is used, based on a density of ozone of 1.96 grams per73 3

liter (at 25 degrees Celsius).  Since there are 1000 liters in a cubic meter and a million µg in a gram, this density means that there are
1.96 billion µg of ozone in a cubic meter of ozone.  If a cubic meter has just one ppb of ozone, then this means that this particular
cubic meter has 1.96 µg of ozone (i.e., one ppb = 1.96 µg/m ).3

To calculate the coefficient, a conversion of 1.96 µg/m  per ppb is used, based on a density of ozone of 1.96 grams per74 3

liter (at 25 degrees Celsius).  Since there are 1000 liters in a cubic meter and a million µg in a gram, this density means that there are
1.96 billion µg of ozone in a cubic meter of ozone.  If a cubic meter has just one ppb of ozone, then this means that this particular
cubic meter has 1.96 µg of ozone (i.e., one ppb = 1.96 µg/m ).3
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while ozone was marginally significant when adjusted for SO .  SO  was significant in a co-2 2
pollutant model with PM  but not with ozone.  The ozone C-R function is based on results from10
the co-pollutant model with PM .  10

Multipollutant Model (ozone and PM )10

In a model with PM , the coefficient and standard error are estimated from the relative10
risk (1.07) and 95% confidence interval (1.00-1.15) for a 50 µg/m  increase in average daily3

ozone levels [Schwartz,1995 #153, Table 3, p. 534].73

Functional Form: Log-linear
Coefficient: 0.002652
Standard Error: 0.001398
Incidence Rate: region-specific daily hospital admission rate for respiratory admissions per
person 65+ (ICD codes 460-519)
Population: population of ages 65 and older

Hospital Admissions for All Respiratory [Schwartz, 1995 #153, Tacoma]

Schwartz [ 1995 #153] examined the relationship between air pollution and hospital
admissions for individuals 65 and older in Tacoma, Washington, from January 1988 to
December 1990.  In single-pollutant models, PM , ozone, and SO  were all significant.  Ozone10 2
remained significant in separate co-pollutant models with PM  and SO .  PM  remained10 2 10
significant in a co-pollutant model with SO , but not in a co-pollutant model with ozone.  SO2 2
was not significant in either of the co-pollutant models.  The ozone C-R function is based on
results from the co-pollutant model with PM .  10

Multipollutant Model (ozone and PM )10

In a model with PM , the coefficient and standard error are estimated from the relative10
risk (1.20) and 95% confidence interval (1.06-1.37) for a 50 µg/m  increase in average daily3

ozone levels [Schwartz, 1995 #153, Table 6, p. 535].74

Functional Form: Log-linear
Coefficient: 0.007147
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however no standard error or confidence intervals were reported.
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Standard Error: 0.002565
Incidence Rate: region-specific daily hospital admission rate for respiratory admissions per
person 65+ (ICD codes 460-519)
Population: population of ages 65 and older

Hospital Admissions for Chronic Lung Disease [Moolgavkar, 1997 #53, Minneapolis]

Moolgavkar et al. [ 1997 #53] examined the relationship between air pollution and
hospital admissions (ICD codes 490-496) for individuals 65 and older in Minneapolis-St. Paul,
Minnesota, from January 1986 to December 1991.  In a Poisson regression, they found no
significant effect for any of the pollutants (PM , ozone, or CO).  The effect for ozone was10
marginally significant.  The model with a 100 df smoother was reported to be optimal (p. 368). 
The C-R function is based on the results from a three-pollutant model (ozone, CO, PM ) using10
the 100 df smoother.

Multipollutant Model (ozone, CO, PM )  10

In a model with CO and PM , the estimated coefficient and standard error are based on10
the percent increase (4.2) and 95% confidence interval of the percent increase (-1.0-9.4)
associated with a change in daily average ozone levels of 15 ppb [Moolgavkar, 1997 #53, Table
4 and p. 366].

Functional Form: Log-linear
Coefficient: 0.002743
Standard Error: 0.001699
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease per person
65+ (ICD codes 490-496)
Population: population of ages 65 and older

Hospital Admissions for Chronic Lung Disease (less Asthma) [Schwartz, 1994 #144, Detroit]

Schwartz [ 1994 #144] examined the relationship between air pollution and hospital
admissions (ICD codes 491-492, 494-496) for individuals 65 and older in Detroit, Michigan,
from January 1986 to December 1989.  In a two-pollutant Poisson regression model, Schwartz
found both PM  and ozone significantly linked to pneumonia and COPD.  The authors state that10
effect estimates were relatively unchanged compared to the unreported single pollutant models. 
No significant associations were found between either pollutant and asthma admissions.  The C-
R function for chronic lung disease incidence is based on the results of the “basic” co-pollutant
model (ozone and PM ) presented in Table 4 (p. 651).10

75
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Multipollutant Model (ozone and PM )10

The coefficient and standard error for the “basic” model are reported in Table 4
[Schwartz , 1994 #144, p.651] for a one ppb change in daily average ozone.

Functional Form: Log-linear
Coefficient: 0.00549
Standard Error: 0.00205
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease per person
65+ (ICD codes 490-492, 494-496)
Population: population of ages 65 and older

Hospital Admissions for Pneumonia [Moolgavkar, 1997 #53, Minneapolis]

Moolgavkar et al. [ 1997 #53] examined the relationship between air pollution and
pneumonia hospital admissions (ICD 480-487) for individuals 65 and older in Minneapolis-St.
Paul, Minnesota, from January 1986 to December 1991.  In a four pollutant Poisson model
examining pneumonia admissions in Minneapolis, ozone was significant, while NO , SO , and2 2
PM  were not significant.  The model with a 130 df smoother was reported to be optimal (p. 10
368).  The ozone C-R function is based on the results from the four-pollutant model with a 130
df smoother. 

Multipollutant Model (ozone, NO , PM , SO )2 10 2

In a model with NO , PM ,and SO , the estimated coefficient and standard error are2 10 2
based on the percent increase (5.7) and 95% confidence interval of the percent increase (2.5-8.9)
associated with an increase in daily average ozone levels of 15 ppb [Moolgavkar, 1997 #53,
Table 4 and p. 366]. 

Functional Form: Log-linear
Coefficient: 0.003696
Standard Error: 0.00103
Incidence Rate: region-specific daily hospital admission rate for pneumonia per person 65+
(ICD codes 480-487)
Population: population of ages 65 and older

Hospital Admissions for Pneumonia [Schwartz, 1994 #144, Detroit]

Schwartz [ 1994 #144] examined the relationship between air pollution and hospital
admissions for individuals 65 and older in Detroit, Michigan, from January 1986 to December
1989.  In a two-pollutant Poisson regression model, Schwartz found both PM  and ozone10
significantly linked to pneumonia and COPD.  The authors state that effect estimates were
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however no standard error or confidence intervals were reported.
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relatively unchanged compared to the unreported single pollutant models.  No significant
associations were found between either pollutant and asthma admissions.  The PM  C-R10
function for pneumonia incidence is based on results of the “basic” co-pollutant model (ozone
and PM ).  10

76

Multipollutant Model (ozone and PM )10

The ozone C-R function for pneumonia incidence is based on the coefficient and standard
error for the “basic” co-pollutant model presented in Table 4 [Schwartz, 1994 #144, p. 651]. 

Functional Form: Log-linear
Coefficient: 0.00521
Standard Error: 0.0013
Incidence Rate: region-specific daily hospital admission rate for pneumonia per person 65+
(ICD codes 480-487)
Population: population of ages 65 and older

Hospital Admissions for Pneumonia [Schwartz, 1994 #143, Minneapolis]

Schwartz [ 1994 #143] examined the relationship between air pollution and hospital
admissions for individuals 65 and older in Minneapolis-St. Paul, Minnesota, from January 1986
to December 1989.  In single-pollutant Poisson regression models, both ozone and PM  were10
significantly associated with pneumonia admissions.  In a two-pollutant model, Schwartz found
PM  significantly related to pneumonia; ozone was weakly linked to pneumonia.  The results10
were not sensitive to the methods used to control for seasonal patterns and weather.  The ozone
C-R function is based on the results of the two-pollutant model (PM  and ozone) with spline10
smoothing for temporal patterns and weather.

Multipollutant Model (ozone and PM )10

In a model with PM  and spline functions to adjust for time and weather, the coefficient10
and standard error are based on the relative risk (1.22) and 95% confidence interval (1.02, 1.47)
for a 50 ppb increase in daily average ozone levels [Schwartz, 1994 #143, Table 4].

Functional Form: Log-linear
Coefficient: 0.003977
Standard Error: 0.001865
Incidence Rate: region-specific daily hospital admission rate for pneumonia per person 65+
(ICD codes 480-487)
Population: population of ages 65 and older
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Exhibit D-11  Concentration-Response (C-R) Functions for Ozone and Emergency Room Visits

Endpoint Name Author Year Location Age Race Gender Beta Std ErrorOther Averaging Functional
Pollutants Time Form1

Asthma Cody et al. 1992 New Jersey (Northern) All All All SO 5-hr avg Linear 0.0203 0.007172

Asthma Stieb et al. 1996 New Brunswick, CAN All All All None 1-hr max Quadratic 0.00004 0.00002

Asthma Weisel et al. 1995 All All All None 5-hr avg Linear 0.0443 0.00723New Jersey (Northern and
Central)

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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Emergency Room Visits

Exhibit D-11 summarizes the C-R functions used to estimate the relationship between
ozone and emergency room visits.  Detailed summaries of each of the studies used to generate
the functions are described below, along with the parameters used in each of the functions.

Emergency Room Visits for Asthma [Cody, 1992 #914, Northern NJ]

Cody et al. [ 1992 #914] examined the relationship between ER visits and air pollution
for persons of all ages in central and northern New Jersey, from May to August in 1988-1989.  In
a two pollutant multiple linear regression model, ozone was linked to asthma visits, and no effect
was seen for SO .  They modeled PM  in separate analysis because of limited (every sixth day)2 10
sampling.  No significant effect was seen for PM .  The C-R function for ozone is based on10
results of a co-pollutant model with SO  [Cody, 1992 #914, Table 6, p. 191].  2

Multipollutant Model (ozone and SO )2

The ozone coefficient and standard error are reported per 1 ppm increment of five-hour
ozone levels, which are converted to a 1 ppb increment by dividing by 1,000 [Cody, 1992 #914,
Table 6, p. 191].  

Functional Form: Linear
Coefficient: 0.0203
Standard Error: 0.00717
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  The population estimate is based on the 1990 population for the eight counties containing hospitals or in the central77

core of the study.  Cody et al. [ 1992 #914, Figure 1] presented a map of the study area; the counties are: Bergen, Essex, Hudson,
Middlesex, Morris, Passaic, Somerset, and Union.
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Baseline Population: baseline population of Northern New Jersey  = 4,436,97677

Population: population of all ages

Emergency Room Visits for Asthma [Stieb, 1996 #218, New Brunswick]

Stieb et al. [ 1996 #218] examined the relationship between ER visits and air pollution
for persons of all ages in St. John, New Brunswick, Canada, from May through September in
1984-1992.  Ozone was significantly linked to ER visits, especially when ozone levels exceeded
75 ppb.  The authors reported results from a linear model, quadratic model, and linear-quadratic
model using daily average and 1-hour maximum ozone.  In the linear model, ozone was
borderline significant.  In the quadratic and linear-quadratic models, ozone was highly
significant.  This is consistent with the author’s conclusion that “only ozone appeared to have a
nonlinear relationship with visit rates” (p. 1356) and that “quadratic, linear-quadratic, and
indicator models consistently fit the data better than the linear model ...” (p. 1358).  The linear
term in the linear-quadratic model is negative, implying that at low ozone levels, increases in
ozone are associated with decreases in risk.  Since this does not seem biologically plausible, the
ozone C-R function described here is based on the results of the quadratic regression model
presented in Table 2 [Stieb et al., 1996 #218, p. 1356], for a change in one-hour maximum ozone
levels.  

Single Pollutant Model

The coefficient and standard error of the quadratic model are reported in Table 2 [Stieb et
al., 1996 #218, p. 1356] for a 1 ppb increase in 1-hour daily maximum ozone levels.  The C-R
function to estimate avoided emergency visits derived from a quadratic regression model is
shown below:

Functional Form: Quadratic
Coefficient: 0.00004
Standard Error: 0.00002
Baseline Population: baseline population of St. John, New Brunswick [Stieb, 1996 #218, p.
1354] = 125,000
Population: population of all ages
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  The population estimate is based on the 1990 population for the eight counties containing hospitals or in the central78

core of the study.  Cody et al. [ 1992 #914, Figure 1] presented a map of the study area; the counties are: Bergen, Essex, Hudson,
Middlesex, Morris, Passaic, Somerset, and Union.
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Emergency Room Visits for Asthma [Weisel, 1995 #688, Northern NJ]

Weisel et al. [ 1995 #688] examined the relationship between ER visits and air pollution
for persons of all ages in central and northern New Jersey, from May to August in 1986-1990.  A
significant relationship was reported for ozone.  The C-R function is based on the results of the
single pollutant models reported by Weisel et al. [ 1995 #688, Table 2].

Single Pollutant Model

The coefficient (β) used in the C-R function is a weighted average of the coefficients in
Weisel et al. [ 1995 #688, Table 2] using the inverse of the variance as the weight:

The standard error of the coefficient (σ ) is calculated as follows, assuming that theβ
estimated year-specific coefficients are independent:

This eventually reduces down to:

Functional Form: Linear
Coefficient: 0.0443
Standard Error: 0.00723
Baseline Population: baseline population of Northern New Jersey  = 4,436,97678

Population: population of all ages
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Exhibit D-12  Concentration-Response (C-R) Functions for Ozone and Acute Effects

Endpoint Name Author Year Location Age Race Gender Beta Std ErrorOther Averaging Functional
Pollutants Time Form1

Any of 19 Respiratory
Symptoms Krupnick 1990 Los Angeles, CA 18-64 All All COH 1-hr max Linear 0.000137 0.000070

Minor Restricted Activity
Days Ostro and Rothschild 1989 nationwide 18-64 All All PM 24-hr avg Log-linear 0.0022 0.0006582.5

School Loss Days, All Cause Chen et al. 2000 Washoe Co, NV 6-11 All All CO, PM 1-hr max Linear 0.013247 0.00498510

School Loss Days, All Cause Gilliland et al. 2001 Southern California 9-10 All All None 8-hr avg Log-linear 0.00755 0.004527

Worker Productivity Crocker and Horst 1981 nationwide 18-64 All All None 24-hr avg Linear 0.14 –

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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Krupnick et al. [ 1990 #35] used parts per hundred million (pphm) to measure ozone; the coefficient used here is based79

on ppb.

Krupnick and Kopp [ 1988 #318, p. 2-24] and ESEERCO [ 1994 #323, p. V-32] used the same C-R functional form as80

that used here.
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Acute Morbidity

Exhibit D-12 summarizes the C-R functions used to estimate the relationship between
ozone and acute morbidity.  Detailed summaries of each of the studies used to generate the
functions are described below, along with the parameters used in each of the functions.

Any of 19 Respiratory Symptoms: Krupnick [ 1990 #35]

Krupnick et al. [ 1990 #35] estimated the impact of air pollution on the incidence of any
of 19 respiratory symptoms or conditions in 570 adults and 756 children living in three
communities in Los Angeles, California from September 1978 to March 1979.  Krupnick et al. [
1990 #35] listed 13 specific “symptoms or conditions”: head cold, chest cold, sinus trouble,
croup, cough with phlegm, sore throat, asthma, hay fever, doctor-diagnosed ear infection, flu,
pneumonia, bronchitis, and bronchiolitis.  The other six symptoms or conditions are not
specified.

In their analysis, they included coefficient of haze (COH, a measure of particulate matter
concentrations), ozone, NO , and SO , and they used a logistic regression model that takes into2 2
account whether a respondent was well or not the previous day.  A key difference between this
and the usual logistic model, is that the model they used includes a lagged value of the dependent
variable.  In single-pollutant models, daily ozone, COH, and SO  were significantly related to2
respiratory symptoms in adults.  Controlling for other pollutants, they found that ozone was still
significant.  The results were more variable for COH and SO , perhaps due to collinearity.  NO2 2
had no significant effect.  No effect was seen in children for any pollutant.  The results from the
two-pollutant model with COH and ozone are used to develop a C-R function.

Multipollutant Model (ozone and coefficient of haze)

The C-R function used to estimate the change in ARD2 associated with a change in daily
one-hour maximum ozone  is based on Krupnick et al. [ 1990 #35, p. 12]:79 80

Functional Form: Linear
Coefficient: first derivative of the stationary probability = 0.000137
Standard Error: 0.0000697
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The coefficient estimates are based on the sample of “adults,” and assumes that individuals 18 and older were considered81

adult.  According to Krupnick et al. [ 1990 #35, Table 1], about 0.6 percent of the study sample was over the age of 60.  This is a
relatively small fraction, so it is further assumed that the results do not apply to individuals 65 years of age and older.

The model without NO  [Krupnick, 1990 #35, Table V equation 3] was used in this analysis, but the full suite of82
2

coefficient estimates for this model were not reported.  Krupnick et al. (Table IV) reported all of the estimated coefficients for a
model of children and for a model of adults when four pollutants were included (ozone, COH, SO , and NO ).  However, because of2 2
high collinearity between NO  and COH, NO  was dropped from some of the reported analyses (Krupnick et al., p. 10), and the2 2
resulting coefficient estimates changed substantially (see Krupnick et al., Table V).  Both the ozone and COH coefficients dropped
by about a factor of two or more. 

The derivative result is reported by Krupnick et al. [ 1990 #35, p.  12].83
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Population: population of ages 18-64 years81

The logistic regression model used by Krupnick et al. [ 1990 #35] takes into account
whether a respondent was well or not the previous day.  Following Krupnick et al. (p. 12), the
probability that one is sick is on a given day is:

where: 
X = the matrix of explanatory variables
p = the probability of sickness on day t, given wellness on day t-1, and 0
p = the probability of sickness on day t, given sickness on day t-1.  1

In other words, the transition probabilities are estimated using a logistic function; the key
difference between this and the usual logistic model, is that the model includes a lagged value of
the dependent variable.

To calculate the impact of ozone (or other pollutants) on the probability of ARD2, it is
possible, in principle, to estimate ARD2 before the change in ozone and after the change:

However the full suite of coefficient estimates are not available.   Rather than use the82

full suite of coefficient values, the impact of ozone on the probability of ARD2 may be
approximated by the derivative of ARD2 with respect to ozone:83
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where β is the reported logistic regression coefficient for ozone. The change in the incidence of
ARD2 associated with a given change in ozone is then estimated by:

This analysis uses transition probabilities obtained from Krupnick et al. as reported by
ESEERCO [ 1994 #323, p. V-32] for the adult population: p  = 0.7775 and p  = 0.0468.  This1 0
implies:

The standard error for the coefficient is derived using the reported standard error of the
logistic regression coefficient in Krupnick et al. [ 1990 #35, Table V]:



( )
⇒ =

−
=

+ ⋅
=

−

σ
β β

β , .
. .

.
.low

low

196
0 000137 517 10

196
0 0000725

6

σ
σ σ

β
β β=

+
=, , . .high low

2
0 0000697

May 12, 2003

 The study population is based on the Health Interview Survey (HIS), conducted by the National Center for Health84

Statistics.  In publications from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64.  From the
study, it is not clear if the age range stops at 65 or includes 65 year olds.  We apply the C-R function to individuals ages 18-64 for
consistency with other studies estimating impacts to non-elderly adult populations.
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Minor Restricted Activity Days: Ostro and Rothschild [ 1989 #60]

Ostro and Rothschild [ 1989 #60] estimated the impact of PM  and ozone on the2.5
incidence of minor restricted activity days (MRADs) and respiratory-related restricted activity
days (RRADs) in a national sample of the adult working population, ages 18 to 65, living in
metropolitan areas.   The annual national survey results used in this analysis were conducted in84

1976-1981.  Controlling for PM , two-week average ozone had a highly variable association2.5
with RRADs and MRADs.  Controlling for ozone, two-week average PM  was significantly2.5
linked to both health endpoints in most years.  The C-R function for ozone is based on the co-
pollutant model with PM .2.5

The study is based on a “convenience” sample of non-elderly individuals.  Applying the
C-R function to this age group is likely a slight underestimate, as it seems likely that elderly are
at least as susceptible to ozone as individuals under 65.  A number of studies have found that
hospital admissions for the elderly are related to ozone exposures [e.g., \Schwartz,1995 #153;
Schwartz , 1994 #144].

Multipollutant Model (ozone and PM )2.5

The coefficient and standard error used in the C-R function are based on a weighted
average of the coefficients in Ostro and Rothschild [ 1989 #60, Table 4].  The derivation of these
estimates is described below.

Functional Form: Log-linear
Coefficient: 0.00220
Standard Error: 0.000658
Incidence Rate: daily incidence rate for minor restricted activity days (MRAD) = 0.02137
[Ostro and Rothschild , 1989 #60, p. 243]
Population: adult population ages 18 to 64
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 The calculation of the MRAD coefficient and its standard error is exactly analogous to the calculation done for the85

work-loss days coefficient based on Ostro [ 1987 #456].

 Assuming that most children start kindergarten at age 5, the corresponding ages for grades 1 through 6 would be 686

through 11.
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The coefficient used in the C-R function is a weighted average of the coefficients in
Ostro and Rothschild [ 1989 #60, Table 4] using the inverse of the variance as the weight:85

The standard error of the coefficient is calculated as follows, assuming that the estimated
year-specific coefficients are independent:

This reduces down to:

School Loss Days, All Cause [Chen, 2000 #2101]

Chen et al. [ 2000 #2101] studied the association between air pollution and elementary
school absenteeism (grades 1-6)  in Washoe County, Nevada.  Daily absence data were86

available for all elementary schools in the Washoe Country School District.  The authors
regressed daily total absence rate on the three air pollutants, meteorological variables, and
indicators for day of the week, month, and holidays.  They reported statistically significant
associations between both ozone and CO and daily total absence rate for grades one through six. 
PM  was negatively associated with absence rate, after adjustment for ozone, CO, and10
meteorological and temporal variables.  The C-R function for ozone is based on the results from
a multiple linear regression model with CO, ozone, and PM .  10
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Multipollutant Model (ozone, CO, and PM )10

The coefficient and standard error are presented in Table 3 [Chen, 2000 #2101, p. 1008]
for a unit ppm increase in the two-week average of daily one-hour maximum ozone
concentration.  This is converted to unit ppb increase by dividing by 1,000.

The reported coefficient represents an absolute increase in absenteeism rate for a unit
increase in ozone.  If we apply this study to other locations, we assume that the same absolute
increase will occur for a unit increase in ozone, regardless of the baseline rate.  If the study
location has a particularly high baseline rate, we may be overestimating decreases in absenteeism
nationally, and vice-versa.  As an example, consider if the baseline absenteeism rate were 10% in
the study and 5% nationally.  An absolute increase in absence rate of 2% associated with a given
increase in ozone reflects a relative increase in absence rate of 20% for the study population. 
However, in the national estimate, we would assume the same absolute increase of 2%, but this
would reflect a relative increase in the absenteeism rate of 40%.

An alternative approach is to estimate apply the relative increase in absenteeism rate in
the C-R function by adjusting the results by the ratio of the national absenteeism rate to the
study-specific rate.  As a result, the percent increase in absenteeism rate associated with an
increase in ozone is extrapolated nationally rather than the absolute increase in absenteeism rate. 
The incidence derivation section above describes the data used to estimate national and study-
specific absence rates.

In addition to this scaling factor, there are two other scaling factors which are applied to
the function.  A scaling factor of 0.01 is used to convert the beta from a percentage (x 100) per
unit increase of ozone to a proportion per unit increase of ozone.  As a result it can be applied
directly to the national population of school children ages 6 through 11 to estimate the number of
absences avoided.  

The final scaling factor adjusts for the number of school days in the ozone season.  In the
modeling program, the function is applied to every day in the ozone season (May 1 - September
30), however, in reality, school absences will be avoided only on school days.  We assume that
children are in school during weekdays for all of May, two weeks in June, one week in August,
and all of September.  This corresponds to approximately 2.75 months out of the 5 month season,
resulting in an estimate of 39.3% of days (2.75/5*5/7).  The C-R function parameters are shown
below. 

Functional Form: Linear
Coefficient: 0.013247
Standard Error: 0.004985
Population: population of children ages 6-11
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 National school absence rate of 5.5% obtained from the U.S. Department of Education [ 1996 #2377, Table 42-1]. 87

Study-specific school absence rate of 5.09% obtained from Chen et al. [ 2000 #2101, Table 1]. 

 Ozone is modeled for the 5 months from May 1 through September 30.  We assume that children are in school during88

weekdays for all of May, 2 weeks in June, 1 week in August, and all of September.  This corresponds to approximately 2.75 months
out of the 5 month season, resulting in an estimate of 39.3% of days (2.75/5*5/7). 
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Scaling Factor 1: Ratio of national school absence rate to study-specific school absence rate  =87

1.081
Scaling Factor 2: Convert beta in percentage terms to a proportion = 0.01
Scaling Factor 3: Proportion of days that are school days in the ozone season  = 0.39388

School Loss Days, All Cause [Gilliland, 2001 #2151]

Gilliland et al. [ 2001 #2151] examined the association between air pollution and school
absenteeism among 4  grade school children (ages 9-10) in 12 southern Californianth

communities.  The study was conducted from January through June 1996.  The authors used
school records to collect daily absence data and parental telephone interviews to identify causes. 
They defined illness-related absences as respiratory or non-respiratory.  A respiratory illness was
defined as an illness that included at least one of the following: runny nose/sneezing, sore throat,
cough, earache, wheezing, or asthma attack.  The authors used 15 and 30 day distributed lag
models to quantify the association between ozone, PM , and NO  and incident school absences. 10 2
Ozone levels were positively associated with all school absence measures and significantly
associated with all illness-related school absences (non-respiratory illness, respiratory illness,
URI and LRI).  Neither PM  nor NO  was significantly associated with illness-related school10 2
absences, but PM  was associated with non-illness related absences.  The C-R function for10
ozone is based on the results of the single pollutant model.

Gilliland et al. [ 2001 #2151] defines an incident absence as an absence that followed
attendance on the previous day and the incidence rate as the number of incident absences on a
given day over the population at risk for an absence on a given day (i.e. those children who were
not absent on the previous day).  Since school absences due to air pollution may last longer than
one day, an estimate of the average duration of school absences could be used to calculated the
total avoided school loss days from an estimate of avoided new absences.  A simple ratio of the
total absence rate divided by the new absence rate would provide an estimate of the average
duration of school absences, which could be applied to the estimate of avoided new absences as
follows:
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 The proportion of children not absent from school on a given day (5.5%) is based on 1996 data from the U.S.89

Department of Education [ 1996 #2377, Table 42-1].

 Ozone is modeled for the 5 months from May 1 through September 30.  We assume that children are in school during90

weekdays for all of May, 2 weeks in June, 1 week in August, and all of September.  This corresponds to approximately 2.75 months
out of the 5 month season, resulting in an estimate of 39.3% of days (2.75/5*5/7). 
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Since the function is log-linear, the baseline incidence rate (in this case, the rate of new
absences) is multiplied by duration, which reduces to the total school absence rate.  Therefore,
the same result would be obtained by using a single estimate of the total school absence rate in
the C-R function.  Using this approach, we assume that the same relationship observed between
pollutant and new school absences in the study would be observed for total absences on a given
day.  As a result, the total school absence rate is used in the function below.  The derivation of
this rate is described in the section on baseline incidence rate estimation.

Single Pollutant Model

For all absences, the coefficient and standard error are based on a percent increase of
16.3 percent (95% CI -2.6 percent, 38.9 percent) associated with a 20 ppb increase in 8-hour
average ozone concentration [ 2001 #2151, Table 6, p. 52].  

A scaling factor is used to adjust for the number of school days in the ozone season.  In
the modeling program, the function is applied to every day in the ozone season (May 1 -
September 30), however, in reality, school absences will be avoided only on school days.  We
assume that children are in school during weekdays for all of May, two weeks in June, one week
in August, and all of September.  This corresponds to approximately 2.75 months out of the 5
month season, resulting in an estimate of 39.3% of days (2.75/5*5/7).

In addition, not all children are at-risk for a new school absence, as defined by the study. 
On average, 5.5% of school children are absent from school on a given day [U.S. Department of
Education, 1996 #2377, Table 42-1].  Only those who are in school on the previous day are at
risk for a new absence (1-0.055 = 94.5%).  As a result, a factor of 94.5% is used in the function
to estimate the population of school children at-risk for a new absence.

Functional Form: Log-linear
Coefficient: 0.007550
Standard Error: 0.004527
Incidence Rate: daily school absence rate = 0.055 [U.S. Department of Education, 1996 #2377,
Table 42-1]
Population: population of children ages 9-10 not absent from school on a given day  = 94.5%89

of children ages 9-10
Scaling Factor: Proportion of days that are school days in the ozone season  = 0.39390

Worker Productivity: Crocker and Horst [ 1981 #636]
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 The relationship estimated by Crocker and Horst between wages and ozone is a log-log relationship.  Therefore the91

elasticity of wages with respect to ozone is a constant, equal to the coefficient of the log of ozone in the model.

 The national median daily income for workers engaged in “farming, forestry, and fishing” from the U.S. Census Bureau92

[ 2002 #2387, Table 621, p. 403] is used as a surrogate for outdoor workers engaged in strenuous activity. 

 The national median daily income for workers engaged in “farming, forestry, and fishing” was obtained from the U.S.93

Census Bureau [ 2002 #2387, Table 621, p. 403] and is used as a surrogate for outdoor workers engaged in strenuous activity.  This
national median daily income ($68) is then scaled by the ratio of national median income to county median income to estimate
county median daily income for outdoor workers.
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To monetize benefits associated with increased worker productivity resulting from
improved ozone air quality, we used information reported in Crocker and Horst [ 1981 #636] and
summarized in EPA [ 1994 #637].  Crocker and Horst examined the impacts of ozone exposure
on the productivity of outdoor citrus workers.  The study measured productivity impacts as the
change in income associated with a change in ozone exposure, given as the elasticity of income
with respect to ozone concentration (-0.1427).   The reported elasticity translates a ten percent91

reduction in ozone to a 1.4 percent increase in income.  Given the national median daily income
for outdoor workers engaged in strenuous activity reported by the U.S. Census Bureau [ 2002
#2387], $68 per day (2000$),  a ten percent reduction in ozone yields about $0.97 in increased92

daily wages.  We adjust the national median daily income estimate to reflect regional variations
in income using a factor based on the ratio of county median household income to national
median household income.  No information was available for quantifying the uncertainty
associated with the central valuation estimate.  Therefore, no uncertainty analysis was conducted
for this endpoint.

Single Pollutant Model

The C-R function for estimating changes in worker productivity is shown below:

Functional Form: Linear
Coefficient: 0.1427
Daily Income: median daily income for outdoor workers93

Population: population of adults 18 to 64 employed as farm workers
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Exhibit D-13  Concentration-Response (C-R) Functions for Ozone and Asthma-Related Effects

Endpoint Name Author Year Location Age Race Gender Beta Std ErrorOther Averaging Functional
Pollutants Time Form1

Asthma Exacerbation, Whittemore and
Asthma Attacks Korn 1980 Los Angeles, CA All All All TSP 1-hr max Logistic 0.001843 0.000715

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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 The study used oxidant measurements in ppm [Whittemore, 1980 #634, p.  688]; these have been converted to ozone94

measurements in ppb, assuming ozone comprises 90% of oxidants (i.e., 1.11*ozone=oxidant).  It is assumed that the harm of
oxidants is caused by ozone.  The view expressed in the Ozone Staff Paper [U.S. EPA, 1996 #455, p.164] is consistent with
assuming that ozone is the oxidant of concern at normal ambient concentrations: “Further, among the photochemical oxidants, the
acute-exposure chamber, field, and epidemiological human health data base raises concern only for ozone at levels of photochemical
oxidants commonly reported in ambient air.  Thus,  the staff recommends that ozone remain as the pollutant indicator for protection
of public health from exposure to all photochemical oxidants found in the ambient air.” 

 Based on an analysis of the 1999 National Health Interview Survey, the daily incidence of wheezing attacks for adult95

asthmatics is estimated to be 0.0550. In the same survey, wheezing attacks for children were examined, however, the number of
wheezing attacks per year were censored at 12 (compared to censoring at 95 for adults).  Due to the potential for underestimation of
the number of children’s wheezing attacks, we used the adult rate for all individuals.    
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Asthma-Related Effects

Exhibit D-13 summarizes the C-R functions used to estimate the relationship between
ozone and asthma-related effects.  Detailed summaries of each of the studies used to generate the
functions are described below, along with the parameters used in each of the functions.

Asthma Attacks [Whittemore and Korn, 1980 #634]

Whittemore and Korn [ 1980 #634] examined the relationship between air pollution and
asthma attacks in a survey of 443 children and adults, living in six communities in southern
California during three 34-week periods in 1972-1975.  The analysis focused on TSP and
oxidants (O ).  Respirable PM, NO , SO  were highly correlated with TSP and excluded from thex 2 2
analysis. In a two pollutant model, daily levels of both TSP and oxidants were significantly
related to reported asthma attacks.  The results from this model were used, and the oxidant result
was adjusted so it may be used with ozone data.

Multipollutant Model (ozone and PM )10

The daily one-hour ozone coefficient is based on an oxidant coefficient (1.66) estimated
from data expressed in ppm.  The coefficient is converted to ppb by dividing by 1,000 and to
ozone by multiplying by 1.11.   The standard error is calculated from the two-tailed p-value94

(<0.01) reported by Whittemore and Korn [ 1980 #634, Table 5], which implies a t-value of at
least 2.576 (assuming a large number of degrees of freedom).

Functional Form: Logistic
Coefficient: 0.001843
Standard Error: 0.000715
Incidence Rate: daily incidence of asthma attacks = 0.0550  95

Population: population of asthmatics of all ages = 3.86% of the population of all ages
[American Lung Association, 2002  #2358, Table 7]
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APPENDIX E

UPDATING THE FIRST PROSPECTIVE STUDY’S TITLE VI ANALYSIS

This appendix presents a revised approach for a benefit/cost analysis of the Clean Air Act’s
Title VI (regulation of ozone depleting substances).  Updating the first prospective study’s analysis
of  Title VI costs and benefits is necessary for several reasons.

First, a few new ozone-depleting substances (ODS) regulations are now in place – or are
expected to be promulgated – that will impose costs on and offer benefits to U.S. citizens.  The 812
control scenario will be updated to incorporate these new regulations.    

Second, the first prospective study relied extensively on regulatory impact analysis (RIA)
estimates of benefits and costs prepared at various times in the past for specific stratospheric ozone
protection regulations.  Much has changed since the preparation of the background RIAs used in the
812 study regarding ozone depletion science, the response of health effects due to ultraviolet (UV)
exposure, and many other factors central to estimating the benefits of addressing ozone depletion
and recovery.  In response to these changes, EPA has updated input data, such as population
projections and ODS emissions, and has incorporated several advancements into its model of ozone
depletion and health impacts, including improvements in the following areas:

• measurement of stratospheric ozone concentrations;
• forecasts of the impact of emissions of certain ODS on stratospheric ozone concentrations;
• predictions of the impact of changing ozone concentrations on ultraviolet (UV) radiation

intensity at the earth's surface; and
• the roles of different spectra of UV radiation, behavior, age of exposure, and year of birth

in producing skin cancers and other human health effects.

Finally, in their review of the first prospective study, the SAB raised a number of
methodological, technical, and empirical issues for the 812 project team to consider.  Many of these
issues are related to the advancements in linkages between ODS emissions and ozone depletion;
between ozone depletion and UV changes; and between UV changes and health effects.  The SAB
also recommended that the next 812 study provide an enhanced analysis of the uncertainty
associated with Title VI benefits and costs. 

To update the first prospective study’s summary of stratospheric ozone protection costs and
benefits – especially in light of the SAB’s and others’ comments and questions – we plan to make
several revisions to the Title VI analysis methodology, primarily to the benefits assessment.  The
remainder of this appendix discusses this revised methodology  First we describe the proposed ODS
emissions scenarios for the analysis.  Next, we provide an overview of the approaches to estimating
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costs and benefits for Title VI.  Finally, we list the major comments on the previous Title VI analysis
and describe how these comments are addressed  in the second prospective study.

SCENARIOS

As in the rest of the 812 analysis, we propose to develop a pre-CAAA baseline scenario
without CAAA-related ODS regulations and a post-CAAA scenario that includes Title VI ODS
controls.  The Clean Air Act Amendments ODS Title VI phase out scenario (“post-CAAA
scenario”) will reflect compliance by the United States and all of the rest of the world with the
cumulative controls required under the major international agreements reached over the past fifteen
years.  These agreements include the original Montreal Protocol, the London Amendments, the
Copenhagen Amendments, and the latest agreement, the Montreal Adjustments.  All of these control
programs  except the Montreal Adjustments were reflected in the control scenario of  the first
prospective study. The increasing stringency of the ODS restrictions imposed by each of these
policies  is summarized  in Exhibit E-1.

Exhibit E-1: ODS Restrictions Mandated by Four International Agreements

Policy/Emission Scenario Description
Montreal Protocol (1987) Developed countries subject to a freeze on CFCs in

1989, declining to a 50% cap in 1998; Freeze on halons
in 1992.
Developing countries subject to the same restrictions
with a 10-year delay.

London Amendments (1990) Developed countries subject to a phase out of CFCs,
halons, and carbon tetrachloride by 2000, and methyl
chloroform by 2005.
Developing countries subject to the same restrictions
with a 10-year delay.

Copenhagen Amendments (1992) Developed countries subject to an accelerated phase out
for CFCs (1996), halons (1994), carbon tetrachloride
(1996), and methyl chloroform (1996); methyl bromide
freeze in 1995, and HCFC controls beginning with a
freeze in 1996, declining to a full phaseout in 2030.

Montreal Adjustments (1997) Developed countries subject to all existing controls and
a methyl bromide phase out by 2005.
Developing countries subject to all existing controls, a
freeze on HCFCs in 2016 with an eventual phaseout in
2040, and a methyl bromide freeze in 2002, declining to
a full phaseout in 2015.

The second prospective analysis will measure all costs and benefits of Title VI provisions
relative to a baseline Pre-CAAA scenario.  Under the pre-CAAA scenario, the United States will
be assumed to comply with ODS controls only for the original Montreal Protocol, which predates
the Clean Air Act Amendments by several years.  This means that the United States will only be
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subject to a freeze on CFCs in 1989, which then drops to an 80% cap in 1993, and to a final 50%
cap in 1998.  Halons will be subject only to a freeze in 1992.  All other U.S. ODS uses will be
uncontrolled for this scenario. Under the Post-CAAA scenario, the United States will also comply
with the ODS phaseout controls as specified in Title VI, Sections 604-606.  In addition, the Pre-
CAAA scenario will assume that all countries other than the United States will comply with all of
the restrictions embodied in the various international agreements up to and including the Montreal
Adjustments.  Thus, the rest of the world's emissions will be the same in the Pre-CAAA and the
Post-CAAA scenarios.  Exhibit E-2 presents a brief description of each scenario to be used in the
analysis.

Exhibit E-2: Summary of Scenarios for the Title VI Cost/Benefit Analysis

Title VI Scenario Summary
Assumptions/Requirements

United States All Other Countries
“Pre-CAAA” No ODS controls beyond those Full compliance with ODS reductions
Baseline Scenario mandated prior to the 1990 Clean in accordance with the Montreal

Air Act Amendments (i.e., only the Protocol, the London Amendments, the
Montreal Protocol controls on Copenhagen Amendments, and the
CFCs and halons) most recent Montreal Adjustments

international agreements
“Post-CAAA” Implementation of Sections 604- Full compliance with ODS reductions
Control Scenario 606 (ODS Phaseout) in accordance with the Montreal

Implementation of Sections 608- Copenhagen Amendments, and the
609 (ODS product servicing, most recent Montreal Adjustments
recycling and disposal) international agreements

Implementation of Section 611
(ODS labeling)

Protocol, the London Amendments, the

COST ESTIMATION APPROACH

The approach to estimating costs of Title VI provisions is essentially the same as the one
used in the previous prospective analysis.  Existing regulatory impact assessments (RIAs) for
individual provisions of Title VI will be the source of social cost data for the phasing out of ODS.
The total cost estimate of Title VI comprises the costs of Sections 604 and 606 and the incremental
costs of sections 608, 609, and 611.

To update the cost analysis, EPA plans to retrieve original cost data from each RIA for use
in the second prospective analysis.  Costs are evaluated between 1990 and 2075, as in the first
prospective.  The proposed discount rate for the primary cost estimate is three percent, with a
sensitivity analysis using a rate of seven percent.
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BENEFITS ESTIMATION APPROACH

The Title VI benefits approach will provide estimates for human health and ecological effects
based on a comparison of the baseline Pre-CAAA and Post-CAAA control scenarios.  The primary
difference between the benefits estimation approach in the first and second prospective analyses is
that the second prospective will not rely on RIAs for health benefit estimates but instead will
generate new estimates using EPA's Atmospheric Health Effects Framework (AHEF) model.  This
model consists of several modules that compute stratospheric ozone concentrations from past and
predicted future emissions of ODS, forecast ground-level UV resulting from the predicted
stratospheric ozone concentrations, and predict future health effects due to increased UV exposure.
The AHEF is the centerpiece of the Title VI benefits analysis for the second prospective study.

To calculate monetary values of quantified Title VI benefits, EPA will multiply the physical
effects estimates by appropriate unit values for each effect.  EPA plans to re-evaluate and update,
if necessary, the unit values used in the first prospective analysis.  Monetized benefits for each effect
category will be expressed as a net present value, using a discount rate for primary estimates of three
percent.  (A rate of seven percent will be used for a sensitivity analysis.)  Total monetized Title VI
benefits will be estimated by summing net present value benefits across effect categories.  

In addition to the benefits estimated by AHEF, EPA will include in its analysis a qualitative
discussion of health and ecological benefits that scientists have identified but that cannot yet be
quantified.  A search of the available literature reveals very little conclusive information regarding
quantified health and ecological benefits from the reduction of future emissions of ODS.  The
available information does indicate that any currently unquantified health and ecological benefits
are minimal compared to the benefits estimated by AHEF.

AHEF Modeling Approach

This section first summarizes  the main steps associated with the AHEF modeling approach
and  describes the inputs for each step in the model approach.  This is followed by an outline of the
uncertainties associated with the AHEF model and its inputs and a discussion of the proposed
changes to the model that are currently being developed by EPA.

Figure E-1 presents a flow diagram of the steps and inputs to the AHEF model.
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Figure E-1.  Relationship between the models used for this evaluation of  human health
impacts.  The symbols used in this diagram do not correspond to traditional flow chart notation.
BAF = biological amplification factor.  NCI = National Cancer Institute.  SEER = Surveillance,
Epidemiology, and End Results Program. 
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The AHEF has five main steps incorporated into the modeling approach.  These steps lead
to a prediction of incremental changes in incidence and mortality estimates for various UV-related
health effects based on ODS emission scenarios.  These steps are described below:

Step 1.  Compute baseline projections of incidence and mortality assuming no further
depletion of the ozone layer.  

The AHEF defines an initial estimate of incidence and/or mortality for skin cancer and
cataracts that would be expected to occur in the future if the concentration of stratospheric ozone
were fixed at 1979-1980 levels (the first two-year period for which satellite measurements of
stratospheric ozone exist).  This is defined as the “no further depletion” scenario.  Future skin cancer
and cataracts incidence and skin cancer mortality that would have occurred in the absence of ozone
depletion are assumed to be associated with these 1979-1980 ozone concentrations.  Establishing
these values provides a standard against which to evaluate changes in the mortality and/or incidence
of these health effects resulting from future ODS emission scenarios (in the case of Title VI, the
“Pre-CAAA” and “Post-CAAA” scenarios).  The AHEF performs the following calculations to
create initial estimates of incidence and mortality:

• Data on past cases of skin cancer and cataract incidence and mortality are used to derive
rates for UV-related health effects in the US population.  Rates are based on age, gender, and
in some cases, birth year.  The historical data was collected from the Surveillance,
Epidemiology, and End Results Program (SEER) within the Cancer Control Research
Program at the  National Cancer Institute (NCI) (Ries et al, 1999).  The ratio of SEER-based
incidence to mortality is calculated and then applied to EPA/NCI mortality rates to generate
comprehensive future incidence rates ((Scotto et al, 1991) and (Pitcher and Longstreth,
1991)).

• Future US population is estimated by age and gender groupings.  Data are gathered from
U.S. Census Bureau population projections.

• The number of people in each age and gender group is multiplied by the appropriate
incidence and/or mortality rate to produce an estimated baseline number of future skin
cancer and cataract cases per year.

Because skin cancer and cataract rates as well as ozone depletion vary across latitudes, the
initial US health effects data are stratified into three latitude regions based on specific population
estimates from U.S. Census Bureau.  Furthermore, because skin cancer incidence and mortality
among non-white populations is not well understood in terms of baseline rates of responsiveness to
increased UV exposures, currently only white populations are examined in this framework.  Once
the required information becomes available, non-white populations will be integrated into the model;
however, this is not expected to be accomplished within the timeframe of the second prospective
analysis.
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Step 2.  Model the impacts of future emissions of ODS on stratospheric ozone concentrations.

Since 1978, satellites have been providing measurements of stratospheric ozone by
latitudinal band.  Data from the first of these satellites, the Nimbus 7, indicate that during the
satellite’s lifespan from 1978 to 1993, ozone measurements have declined in a manner that appears
to be related to an increase in the concentration of stratospheric chlorine and bromine.  This
relationship enables the AHEF to use ODS emissions to predict decreases in stratospheric ozone.
First, the model uses regression coefficients to quantify the relationship between past ODS
emissions and past changes in ozone concentration, as follows:

• Measurements of historical concentrations of stratospheric ozone are obtained from satellite
data. 

• The amount and type of past emissions of ODS are combined with the information on each
species’ degree of dissociation and rate of transport to the stratosphere.  Using this
information, ODS emissions are expressed in terms of equivalent effective stratospheric
chlorine, or EESC, for each year for which satellite-based ozone measurements are available.

• Statistical linear regressions are performed to obtain a measure of the correlation between
ODS emissions expressed as EESC and satellite measurements of stratospheric ozone.
These regressions are performed by month and by latitudinal band for each year.

To predict future changes in ozone as a result of different ODS emission scenarios (in this
case for the “Pre-CAAA” and “Post-CAAA” scenarios), the AHEF converts the hypothesized
emissions into EESC and multiplies by the regression coefficients obtained above to estimate future
ozone depletion by month and latitude. 

Step 3. Estimate changes in ground-level UV based on ozone depletion projections. 

After future ozone concentrations have been estimated for a given ODS emissions scenario,
future ground-level UV intensities can be calculated. The AHEF uses the results of the Tropospheric
Ultraviolet-Visible (TUV) model to predict UV irradiance at ground level (Madronich 1992, 1993b;
Madronich and de Gruijl 1993; Madronich et al. 1996, 1998). TUV estimates surface UV levels
based on total column ozone at different latitudes, the solar zenith angle, the relative weights placed
on different portions of the UV spectrum, and other atmospheric characteristics.  Thus, the modeling
framework can use projected ozone concentrations to calculate the UV dose at any given location
and for any given time period (e.g., peak intensity day of the year or the sum of exposures incurred
over the entire year).  Several studies that test the accuracy of TUV against direct measurements of
surface UV levels have been completed (e.g., Shetter et al. 1992, 1996; Kirk et al. 1994; Lantz et
al. 1996).  
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The TUV estimate of the spectral UV irradiance, F(λ, x, t), at time t, location x, and
wavelength λ, may be represented as the product of the solar spectral irradiance at the top of the
atmosphere, F (λ), and an atmospheric transmission factor, T.toa

F(λ, x, t) = F (λ) T(λ, x, t; Θ , O , clouds, aerosols, …) Equation E-1toa 0 3

F (λ) is based on direct measures of the sun by satellite, balloon, and ground-basedtoa
instruments.  The value of T is impacted by a variety of factors including the solar zenith angle (Θ ),0
the earth-sun distance, and a number of atmospheric optical properties (e.g. absorption by ozone,
pollutant gases, scattering by air molecules).  The calculation may also optionally include values for
atmospheric particles such as clouds and aerosols that can affect absorption and scattering.  Finally,
TUV includes surface reflections, as they can contribute to the radiation incident at the surface (see
for example McKenzie et al. 1998).

TUV then uses vertical profiles of air density, temperature, and ozone from the United States
Standard Atmosphere to calculate the transmission factor (T).  The spectral irradiance at any
location and time, F(l, x, t), is then calculated by solving for radiative transfer within uniform layers
of the atmosphere using an accurate numerical scheme, the discrete ordinates method developed by
Stamnes et al. (1998) and modified by Madronich et al. (1999).

Step 4.  Derive dose-response relationships for the incidence and mortality of skin cancer and
cataracts from primary data or are obtained from the most up-to-date literature.

When estimating dose-response relationships for human health effects and UV exposure,
controversy exists regarding which portion of the spectrum of UV radiation is the best measure of
the “dose” an individual receives from the sun.  This decision is critical because ozone depletion
primarily alters the amount of biologically active UV-B radiation that reaches the ground, leaving
the less harmful UV-A portion of the spectrum largely unchanged.  In the attempt to quantify this
“dose,” scientists have created mathematical expressions describing the amount of UV-B and UV-A
wavelength radiation that may cause health effects in mice and fish (e.g., DNA damage, skin cancer,
and cataract).  Based on these studies, a number of different “action spectra,” as these weighting
schemes are called, have been proposed as predictors of the dose of UV radiation needed to induce
skin cancer and cataracts in humans. 

Once a particular action spectrum for a human health effect is selected, the second
component in developing dose-response relationships for UV exposure requires determination of
the degree to which incidence of skin cancer and cataract increases with more intense UV exposure.
These dose-response relationships, known as biological amplification factors (BAFs), are usually
estimated for cutaneous malignant melanoma (CMM); for the two non-melanoma skin cancers
(NMSC), basal cell carcinoma (BCC) and squamous cell carcinoma (SCC); and for cataracts based
on actual human incidence and mortality data.  Information on skin cancer incidence and mortality
rates among populations at different latitudes is combined with the difference in the intensity of UV
exposure across those latitudes (e.g., southern latitudes are exposed to higher levels of UV radiation
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than northern locations) to estimate BAFs.  This latitude gradient can also be used to estimate the
way in which skin cancer and cataract incidence and/or mortality will change over time as ozone
depletion occurs and UV doses at all latitudes rise.

The current peer-reviewed version of the AHEF uses two action spectra in its estimates of
dose-response relationships for UV exposure (U.S. EPA, 2001).  The SCUP-h  action spectrum is1

used to predict the dose of UV exposure needed to induce melanoma incidence and mortality as well
as NMSC incidence and mortality (de Gruijl et al. 1993).  The DNA-h action spectrum is used to
predict the dose of UV exposure needed to induce cataract incidence (Setlow, 1993).  In addition,
data on the baseline incidence and mortality rates for human health endpoints are found in EPA,
NCI, and/or SEER datasets.

Step 5.  Combine the above inputs to project future levels of skin cancer and cataract incidence
and skin cancer mortality.  

The final step in the modeling framework incorporates the previously discussed inputs to
project future incremental skin cancers and cataracts generated under a particular emissions scenario
as compared to the no-further-depletion scenario. For all scenarios, the base case relative to which
incremental health effects are computed is the future skin cancers and cataracts that would have
occurred in the absence of ozone depletion from the 1979-1980 concentrations.  Declines in future
health effects due to tightening ODS emissions reduction targets are then calculated as the difference
between the Pre-CAAA and Post-CAAA scenarios.  Benefits will be calculated over the period of
1990 to 2165, to reflect the long time period during which stratospheric ozone depletion occurs and
the health effects become manifest in the population.

The final step begins when the model calculates the future annual percentage change in UV
dose for a given action spectrum across the three latitudinal bands of interest.  Multiplying the
percentage change in UV exposure in a future year by the appropriate BAF (both specific to a given
UV action spectrum) yields the percentage change in future skin cancer incidence and mortality as
well as cataract incidence attributable to the future change in ozone concentrations.  These
percentages are then multiplied by the "no further depletion" incidence and/or mortality for that
health effect to obtain the incremental changes in incidence and/or mortality for a particular ODS
emission scenario relative to no further ozone depletion.
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Future updates to the AHEF model

EPA is currently preparing a new version of the AHEF model set for peer review by the end
of the current (2003) fiscal year.  This version of the model is expected to include the following
improvements:

• The addition of newly developed action spectrum for cataracts by Oriowo et al. (2001).

• A CMM weighting scheme for early age exposure. As discussed above, development of
melanoma is more closely associated with UV exposure during childhood than with
cumulative UV exposure.  In the new version of AHEF the results for CMM mortality using
annual and peak day exposures are computed either by weighting all exposures equally over
a person's lifetime, or by weighting only the exposures received between age one and age
20.  More specifically, the following approach was used for estimating whole life versus
early life exposures:
• For whole life esposure: exposures throughtout the individual's lifetime are given

equal weighting (i.e., each year's exposure is counted in the results).
• For early life exposure: only exposures received between the ags of one and 20 are

considered (i.e., later life exposures do not contribute to the results).

The peer review process for the version of the AHEF model including these improvements is
expected to be completed in time to use the newer version of the model in estimating Title VI
benefits for the second prospective study.

Uncertainties associated with the AHEF model

There are several important uncertainties associated with the AHEF  model.  This section
describes these uncertainties and, where possible, an estimate of the potential magnitude and
expected direction of possible bias.     Exhibit E-3 presents a summary of these key uncertainties and
their expected effect on the AHEF model estimates.
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Exhibit E-3: Factors Contributing to Uncertainty

Factor Parameter Estimate
Bias of Current

Change in UV Estimates Atmospheric parameters assumption unknown
Long-term Systematic Changes in unknown
Atmospheric Opacity (e.g. clouds, aerosols,
other pollutants)

Changes in Health Effect Estimates Action Spectrum Choice unknown
Action Spectrum Derivation unknown
Future Population Composition and Size unknown
Latency overestimate
Changes in Human UV Exposure Behavior unknown
Improvements in Medical Care/Increased overestimate
Longevity

There is a small amount of uncertainty introduced in the TUV model (Step 3).  The
uncertainty stems from the assumption that relative to the specific change in ozone all other factors
(air pollution, cloud cover, etc.) remain constant.  The direction of the bias created by this
uncertainty is unknown, however it is expected to be a small effect compared to other uncertainties
associated with the AHEF methodology.

The composition of the future atmosphere is unknown.  Impacts from ODS phaseout
scenarios as well as future climate changes could result in increases in atmospheric water vapor and
cloud cover.  In addition the impact of global warming on future atmospheric composition is
unknown.  These factors introduce an unknown factor of uncertainty into the model estimates of
cataract incidence and skin cancer  incidence and/or mortality.    

A degree of uncertainty is present in the estimates of the dose-response relationships or
BAFs.  This uncertainty stems from the assumption that the SCUP-h action spectrum is an adequate
predictor of NMSC in addition to the CMM for which it was developed.  The BAFs developed for
SCC and BCC using SCUP-h are estimated at 2.5 +/- 0.7 and 1.4 +/- 0.4 respectively (de Gruijl et
al. 1993, Longstreth et al. 1998).  The degree of uncertainty associated with these BAF estimates
may also be expressed as a range of approximately 30 percent.  

An additional factor of uncertainty is associated with the action spectra, stemming from the
laboratory techniques and instrumentation used for their derivation.  The potential for
inconsistencies between the wavelengths of UV received by the subject and the intended
wavelengths can affect the measured result, sometimes by orders of magnitude.  While the potential
for a large uncertainty is present, we cannot predict in what direction the bias would occur, as the
wavelengths received could be greater or less than those measured.  Also, the action spectra are
estimated using monochromatic light sources, which are not fully representative of the
polychromatic light received directly from the sun. 

Steps 1 and 4 of the model incorporate future population predictions from the U.S. Census
Bureau.  AHEF uses estimates of population grouped by race, gender, age, and location.  The Census
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Bureau does present an uncertainty factor of +/- 0.1% for its overall population estimates, however
a similar estimate of uncertainty is not predicted for the population groups used in AHEF.  There
is a possibility that the uncertainty factors for each of these groups could be more or less than the
overall estimate, therefore it is not useful to apply the overall factor to the population groupings used
in the AHEF model.

In the case of the AHEF model, latency refers to the lag time between UV exposure and the
manifestation of a given health effect.  Both skin cancer latency and early life exposure have been
identified as potential risk factors associated with increased susceptibility to CMM.  Skin cancer
latency is a potential risk factor because the manifestation of skin cancer may not appear for a length
of time, during which a person may continue practices that expose the skin to harmful UV.
However, the current peer-reviewed version of the AHEF does not model lag time due to difficulties
caused by the limited state of knowledge about latency and its mechanisms prevailing at the time
of the peer review (Madronich, 1999).  Therefore, a quantitative estimate of this source of
uncertainty is unavailable.  If there is a significant lag and it is not included in the  model, then
benefits are likely overestimates since the benefit stream has not been properly discounted. 

In the case of the proposed weighting scheme for early age exposure, there is uncertainty
associated with the timing of the incremental effects and who will bear them.  More specifically, for
the cumulative lifetime exposure assumption, the risks of ozone depletion are borne primarily by the
present population of adults who will experience these health effects as they age.  It is children and
future generations who will experience increased early life UV exposures and the associated
incremental health effects later in their lives.  It should be noted that this shift of health risks does
not reflect a formal modeling of CMM latency, which would involve an elaborate method for
assigning different weights to exposures incurred at different ages or some other yet-to-be-developed
approach.

There are a number of factors that may have an additional, unknown effect on future
incidence and/or mortality rates for skin cancer and cataracts.  These include future population
composition and size, future UV exposure behavior, improvements in medical care  and predictions
of increased longevity.  The expected increase in Hispanic populations could lead to a decrease in
incidence and mortality rates due to the higher pigmentation found in these populations.  The bias
of future UV exposure is more difficult to predict and innovations and increased awareness could
lead to decreased exposure to UV, however an increased sense of protection could lead to longer
periods of exposure, thus negating the positive effects of sunglasses and sunscreens. 

However, most of these confounding factors are assumed to be constant in the AHEF model.
Therefore sunbathing frequency and attire, the use of sunscreens and sunglasses, the detection and
treatment capacities of the medical system, and other conditions are assumed to remain unchanged
in the future.  The health effects modeling does account for the gradual shift from outdoor work
earlier in the last century to factory and office occupations through the 1950s, and it does take into
account the evolving demographics of the United States over time.  It remains true that significant
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changes in UV-related behavior patterns could generate outcomes different from those predicted by
the existing model. 

Benchmarking the results of a model against available observed data can help to predict the
accuracy of the model as well as determine the direction of potential biases.  The majority of inputs
to the AHEF model are derived statistically using real data (e.g., EESC to ozone, BAFs), therefore
calibration is not an issue.  The results of the model, however, have yet to be benchmarked against
observed data.  Several activities can be undertaken to assess actual column ozone measurements
compared to AHEF predictions, though all will require substantial time and monetary commitments.
First, the AHEF output of column ozone concentrations (in Dobson units) by year and latitudinal
band can be compared to observed data, as available by region.  Second, ground level UV
monitoring can be obtained and assessed to help improve modeling estimates, particularly in urban
areas.  It should be noted that the AHEF model and all of its individual inputs have been peer-
reviewed.

MAJOR COMMENTS ON STRATOSPHERIC OZONE ANALYSIS FROM FIRST
PROSPECTIVE STUDY

This section lists the major comments from SAB and others on the Title VI analysis
performed for the first prospective and discusses how the approach to Title VI benefits and costs for
the second prospective will address  these issues.

1. Incorporate tropospheric ozone concentration reductions expected under other
regulations as negative benefits.

The great majority of shielding provided by the ground level ozone against the harmful
effects of UV-b radiation results from naturally occurring ozone in the stratosphere, but the 10
percent of total “column”ozone present in the troposphere also contributes (NAS, 1991).  A variable
portion of this tropospheric fraction of UV-B shielding is derived from ground level or “smog”
ozone related to anthropogenic air pollution.  Therefore, strategies that reduce ground level ozone
could, in some small measure, increase exposure to UV-B from the sun.

While EPA’s analyses demonstrate it is possible to provide quantitative estimates of benefits
associated with globally based strategies to restore the far larger and more spatially uniform
stratospheric ozone layer, the changes in UV-B exposures associated with ground level ozone
reduction strategies are much more complicated and uncertain.  Smog ozone strategies, such as
mobile source controls, are focused on decreasing peak ground level ozone concentrations, and it
is reasonable to conclude that they produce a far more complex and heterogeneous spatial and
temporal pattern of ozone concentration and UV-B exposure changes than do stratospheric ozone
protection programs.  In addition, the changes in long-term total column ozone concentrations are
far smaller from ground-level programs.  To properly estimate the change in exposure and impacts,
it would be necessary to match the spatial and temporal distribution of the changes in ground-level
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ozone to the spatial and temporal distribution of exposure to ground level ozone and sunlight.  More
importantly, it is long-term exposure to UV-B that is associated with effects.  Intermittent, short-
term, and relatively small changes in ground-level ozone and UV-B are not likely to measurably
change long-term risks of these adverse effects.

For all of these reasons, EPA believes we will continue to be unable to provide reliable
estimates of the changes in UV-B shielding associated with ground-level ozone changes.  This
inability lends an upward bias to the net monetized benefits of tropospheric ozone reduction that will
be presented in second prospective criteria pollutant analysis.  It is likely that the adverse health
effects associated with increases in UV-B exposure from decreased tropospheric ozone would,
however, be relatively very small from a public health perspective because 1) the expected long-term
ozone change resulting from the CAAA is likely to be small in comparison to the sum of total
column natural stratospheric and tropospheric ozone; 2) air quality management strategies are
focused on decreasing peak ozone concentrations and thus may change exposures over limited areas
for limited times; 3) people often receive peak exposures to UV-B in coastal areas where sea or lake
breezes reduce ground level pollution concentrations regardless of strategy; and 4) ozone
concentration changes are greatest in urban areas and areas immediately downwind of urban areas,
where people are more likely to spend most of their time indoors or in the shade of buildings, trees
or vehicles.

EPA has also explored this issue recently through collaboration with Dr. Sasha Madronich
of the National Center for Atmospheric Research.  His methods and data, while somewhat
preliminary in nature, result in predictions of health effects from tropospheric ozone decreases that
are far lower than those cited by the SAB.  In brief, his modeling accounts more realistically for the
geographical areas and the seasons in which people receive their UV exposures.  These are then
compared to realistic estimates of where and when tropospheric ozone depletion might occur.  His
analysis is thus more credible than others in which tropospheric ozone depletion is assumed to be
distributed evenly across the entire nation.

2. Examine the uncertainties in the cost and benefit estimates.

In a recent project that is nearing completion, EPA explored the many sources of uncertainty
concerning the health effects predicted by the AHEF.  This study was conducted by EPA for
NASA’s hypersonic commercial transport (HSCT) project.  It was extensively peer reviewed by
leading atmospheric researchers (U.S. EPA, 2001).

The major sources of uncertainty in the AHEF examined in the HSCT analysis include the
following:

• computing projected future stratospheric ozone concentrations from projected EESC,

• calculating ground-level UV based on projected stratospheric ozone concentrations,
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• using alternative action spectrum weighting schemes for human health effects, and

• computing health effects using specific action spectra, incremental UV exposure, and the
associated BAFs.

The HSCT analysis generated distributions for some pieces of the model (e.g., BAFs and
atmospheric regression coefficients) and plus/minus factors for other parts (e.g., stratospheric ozone
to ground UV estimation factors).  EPA is investigating whether the analyses in the HSCT study can
be applied to the AHEF results to be used in the revised 812 study.

3. Include the costs and benefits of new ozone-protection regulations.

The revised 812 study  will incorporate current (and  anticipated future) stratospheric
protection rules, such as the methyl bromide freeze and eventual ban.  EPA has developed several
RIAs in the past few years that provide a source of cost estimates for rules not included in the first
prospective.  In addition, emission reductions associated with these rules will be incorporated into
the control scenario for the benefits analysis.

4. Standardize the Value of a Statistical Life (VSL) for human health benefits and
discounting for costs and benefits.

EPA plans to employ the same VSL estimate used for all mortality benefits from all CAA
Titles, including Title VI.   We also propose performing a sensitivity test that considers the age
distribution of avoided skin cancer mortality and a distribution of VSL by age cohort to generate
monetized benefits estimates for avoided mortality.

Adjusting the discount rate for the costs of the various stratospheric ozone protection rules
to conform to the three percent discount rate for the primary analysis may be difficult unless the
underlying original output information can be retrieved.  For recent regulations, these data are
expected  to be available.   For older rules with limited data on components of the benefit and cost
streams, EPA will investigate the merits of applying  adjustment factors.

5. Revisit Non-Melanoma Skin Cancer (NMSC) Mortality Estimates

Actual data on NMSC mortality have been incorporated in the revised AHEF over the past
several years – including baseline incidence by age and gender, and estimated BAFs.  This
information was not available for the first prospective analysis.  The result of using these data is that
NMSC mortality is about 60% lower than the original 1% of incidence assumption.  Hence, the new
version of the AHEF  will be used to address this issue.
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6. Examine possible noncompliance with projected ODS-controls by other nations.

EPA and ICF recently evaluated a limited number of scenarios involving  non-compliance
of developing countries with future ODS restrictions to explore the impact of non-compliance on
U.S. citizens.  The empirical results of these and other simulations will be evaluated for possible
incorporation in  the second prospective  study.

7. Directly measure social costs of ODS controls instead of using ex ante estimates.

As explained  in the  Appendix G of the first prospective  study, EPA presents estimates for
Title VI as net present values of the strams of annual costs and benefits due to the long-term nature
of the mechanisms of stratospheric ozone depletion and measures taken to avoid depletion.  For EPA
as a whole, systematic ex post cost or benefits measurement/survey efforts have rarely been
undertaken except for very broad categories of costs of pollution control.  In EPA’s Cost of Clean
report, the primary source of information was the Census Bureau’s MA200 survey of industry
pollution control costs.  Because these data were so aggregated and because imputing costs to EPA’s
regulations vs. other regulatory authorities, much less to voluntary expenditures, was not possible,
this report and its underlying data are not suitable for estimating the on-going costs of EPA’s
stratospheric ozone protection efforts.

8. Review the discussion of the interaction between stratospheric ozone recovery and
global climate change.

EPA's original calculations of stratospheric chlorine and bromine concentrations associated
with changes in emissions incorporated the ability of CFCs, halons, and other ozone depleting
chemicals to act as greenhouse gases. The atmospheric chemistry model adjusts column ozone and
temperature so that they are consistent with consensus ozone-depleting potential and global warming
potential estimates. The model also reflects radiative and chemical feedback from water vapor,
ocean absorption, atmospheric circulation effects, and chemical interactions between substances.
Some more recent studies have suggested that climate change could have a significant impact on the
recovery of stratospheric ozone, beyond what was accounted for in original modeling work. It has
been hypothesized, for example, that increased temperatures caused by climate forcing of
greenhouse gases and aerosols could cool the stratosphere, thus increasing the time it takes for ozone
to recover. At this point, however, little is known about the degree to which climate change may
affect stratospheric ozone recovery and conversely, any relationship that may exist between
stratospheric ozone recovery and climate change. Unless improved three-dimensional models of
atmospheric chemistry and climate processes are developed in a sufficiently timely and rigorous
manner, the second prospective study  will not attempt to further assess the potential effects of
climate change on ozone under alternative scenarios.
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9. Update the human health benefits of stratospheric ozone recovery to reflect changes
during the last decade in the sciences concerning ODS emissions and ozone depletion/recovery,
ozone-to-UV exposures at the ground, and the complex relationship between human UV
exposures (duration, action spectrum, latency, and so forth) and skin cancer and cataracts.

As outlined in the previous section, the revised AHEF uses the most up-to-date atmospherics
inputs for a 1D model, a revised methyl bromide “alpha factor” of 55 (instead of 40), and a new
statistically-estimated set of stratospheric atmospheric EESC-to-ozone depletion parameters.  The
column ozone-to-UV on the ground model is current (Dr. Madronich’s TUV), and various new
health effect action spectra and exposure assumptions have all been explored and incorporated into
the AHEF.  EPA  plans to address   these issues by  re-running the various policy scenarios of
interest using the revised AHEF.  This is also necessary because recent stratospheric ozone
protection rules’ benefits have all been estimated using the new modeling framework.

With respect to modeling latency, although the epidemiological literature strongly suggests
this may be appropriate, especially for cutaneous malignant melanoma, there is no widely accepted
methodology that directly incorporates latency.  The approach adopted in the AHEF is normally to
assume that it is cumulative lifetime exposure that results in skin cancers of all types.  The AHEF
can use cumulative peak day exposures instead and it can weight exposures received at different
ages unequally.  The latter does shift the incremental health effects farther into the future and shifts
the bulk of these health effects from individuals living today to future generations, thus roughly
simulating a latency relationship.  EPA plans to inviestigate the merits of this approximation
approach for use in the second prospective study, and seeks the advice of the Council regarding its
potential utility and technical merit. 

Finally, the incorporation of advances in detection and treatment of skin cancers in recent
years would be a very useful task to undertake.  Unfortunately, this would require a substantial
amount of new data collection and analysis, and the results would probably be difficult to integrate
into the current framework of inter-related health effects inputs to the AHEF.  The AHEF
necessarily relies on historical data to calculate baseline and incremental health effects from UV
exposure, so attempting  an approximate adjustment based on more recent, and arguably non-
comprehensive, information would likely add to the uncertainties of the results rather than reduce
them.  EPA seeks the advice of the Council regarding this issue.

10. Do the reported Title VI Costs and Benefits Represent World-Wide or U.S.-Specific
Costs and Benefits?

The benefits and costs reported in all of the RIAs and related analyses are for the United
States only.  This analytical scope is consistent with the rest of the second prospective study.
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11. Different timeframes for costs and benefits.

The results for stratospheric ozone protection included in the first prospective  study reported
costs through 2075.  In order to capture all of the health benefits of ODS controls between 1985 and
2075, the benefits model must track anyone in the United States who experiences ozone depletion
and increased UV up  through 2075 until their deaths.  Thus, in the extreme, this is 90 years after
2075.  Clearly, the incremental incidence and mortality decline as the years get more distant from
2075 because fewer and fewer people are alive who experienced decrease UV up to 2075 relative
to depletion.  They nevertheless remain beneficiaries of ozone recovery effects prior to 2076 as long
as they were alive during those years.

12. Sensitivity of 1D atmospheric modeling to geography and season.

Using a 1D atmospheric modeling framework does not imply that the outputs are insensitive
to latitude and month of the year.  While it does assume that the EESC is the same world-wide, the
statistically-estimated parameters that translate EESC (based on ODS emissions and other factors)
into stratospheric ozone concentration estimates are latitude- and month-specific because they were
estimated using latitude- and month-specific ozone measurements.  Thus, the column ozone
estimates are sensitive to latitude and time of year.

Furthermore, the TUV model – which is used for predicting ground-level UV intensities by
location and time – is similarly sensitive to latitude and time (indeed, to the hour of the day).  Thus,
UV intensities at different latitudes are very different due to the angle of the sun and amount of the
atmosphere through which the sun’s rays travel.
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SUMMARY OF MAJOR ONGOING EPA-FUNDED PROJECTS FOR 
NITROGEN DEPOSITION ECOLOGICAL EFFECTS VALUATION

          Project General Information URLAffiliated EPA
Office

Chesapeake Bay Office of Water, and • The objectives of the Chesapeake Bay Program include collecting http://www.epa.gov/r3c
Program Office of Air Quality information regarding the Bay’s environmental quality, and hespk/

Planning and Standards determining appropriate measures to improve the Bay and protect
it’s multiple resources. http://www.chesapeakeb

• Development of a nitrogen loading model at Chesapeake Bay that ay.net/
may be applied to estuaries nationwide is currently a subject of
research under EPA’s Great Waters Program.  This program is also
examining the potential for developing comprehensive integrated
models to assess ecological and economic impacts.

Waquoit Bay National Center for • The Waquoit Bay Ecological Risk Assessment intends to predict http://cfpub.epa.gov/nce
Watershed Ecological Environmental how changes in land use and human activity in the watershed will a/cfm/waquoit.cfm?Act
Risk Assessment Assessment (NCEA), impact eelgrass growth in order to enable resource mangers to make Type=default

Office of Water, and decisions based on more information.
Office of Research and • Nitrogen deposition is one of the key stressors being evaluated. 
Development Specifically, the risk analysis focuses on the relationship between

nutrient enrichment and loss of eelgrass habitat, and the resulting
effects on scallop abundance in the Bay.

Tampa Bay Office of Water http://www.tbep.org/tbe
Atmospheric p.html
Deposition Study

• EPA's Great Waters Program and the Tampa Bay Estuary Program
are partnering with local environmental agencies to develop a
nitrogen loading model for the Bay including examination of the
contribution of atmospheric deposition to eutrophication.  This
model will then be used to develop a cost-benefit study of
management options.  The Estuary Program anticipates that this
loading model will be complete by September of 2003.

http://www.epa.gov/proj
ectxl/tampa/

http://www.hsc.usf.edu/
publichealth/EOH/BRA
CE/TBADS.htm
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          Project General Information URLAffiliated EPA
Office

Albemarle-Pimlico Office of Water • Ongoing research under the APNEP’s Comprehensive http://www.epa.gov/owo
National Estuary Conservation and Management Plan addresses multiple water w/estuaries/programs/ap
Program (APNEP) quality and habitat issues within the Estuary.  In the past, a review s.htm

of economic models was conducted to help determine the value of
recreational fishing, and measure the impact of increasing the http://h2o.enr.state.nc.us
quality of fisheries in the Estuary.  This review was applied to a /nep/
cost-benefit study of the Program’s management plan.

Casco Bay National Office of Water, and • The Casco Bay Air Toxics Deposition Monitoring Program is an http://www.epa.gov/owo
Estuary Program the National Center for ongoing study at the Bay that models seasonal and annual w/estuaries/programs/cb
(CBNEP) Environmental deposition of airborne toxics, including nitrogen.  .htm

Economics (NCEE) • NCEE has completed an economic profile of the Estuary and
determined that the health of the Estuary has a substantial effect on
tourism and recreation revenues.

Sarasota Bay National Office of Water • A main focus of the SBNEP is reduction of nitrogen deposition in http://www.sarasotabay.
Estuary Program the Bay.  A nitrogen loading model has been developed to org/
(SBNEP) determine the impact of atmospheric deposition.  This information

was used to target management objectives and evaluate the impact
of nitrogen reductions on Bay resources.

• Ongoing research at the Mote Marine Laboratory focuses on the
effects of atmospheric nitrogen deposition at the Bay on algal
assemblages. 

Social and Ecological National Center for • This project is designed to benefit urban/suburban coastal http://cfpub.epa.gov/nce
Transferability of Environmental communities interested in protecting estuarine ecosystems from r_abstracts/index.cfm/fu
Integrated Ecological Research nitrogen loading. The main objective is to build an integrated seaction/display.abstract
Assessment Models assessment model using an existing watershed N-loading model and Detail/abstract/847/repo

extend an estuarine ecological model to include a new and socially rt/0
important management endpoint - fish and shellfish.  A unique
aspect of this project is the opportunity to use data collected to test
the ecological transferability of the model as a treatment in the
social experiment by involving citizens in data collection.  

• This research will result in an integrated ecological model of the
consequences of coastal land-use change on estuarine systems and,
perhaps more importantly, better information on how to apply that
model in new environmental and social settings.
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Abstract

An empirical Bayes pooling method is used to combine and compare estimates of the Value of a

Statistical Life (VSL).  The data come from 40 selected studies published between 1974 and

2000,  containing 196 VSL estimates.  The estimated composite distribution of empirical Bayes

adjusted VSL has a mean of $5.4 million and a standard deviation of $2.4 million.

The�empirical Bayes method greatly reduces the variability around the pooled VSL estimate.

The pooled VSL estimate is sensitive to the choice of valuation method�and study location, but

not to the source of data on occupational risk.

Key words: Value of a Statistical Life (VSL), empirical Bayes estimate, environmental policy,

health policy, contingent valuation method, hedonic wage method

JEL subject category number: J17, C11, Q28
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The value of a statistical life is one of the most controversial and important components

of any analysis of the benefits of reducing environmental health risks.  Health benefits of air

pollution regulations are dominated by the value of premature mortality benefits.  In recent

analyses of air pollution regulations (United States Environmental Protection Agency (USEPA),

1999), benefits of reduced mortality risks accounted for well over 90 percent of total monetized

benefits.  The absolute size of mortality benefits is driven by two factors, the relatively strong

concentration-response function, which leads to a large number of premature deaths predicted to

be avoided per microgram of ambient air pollution reduced, and the value of a statistical life

(VSL), estimated to be about $6.3 million1.  In addition to the contribution of VSL to the

magnitude of benefits, the uncertainty surrounding the mean VSL estimate accounts for much of

the measured uncertainty around total benefits.  Thus, it is important to obtain reliable estimates

of both the mean and variance of VSL.   

The VSL is the measurement of the sum of society’s willingness to pay (WTP) for one

unit of fatal risk reduction (i.e. one statistical life).  Rather than the value for any particular

individual’s life, the VSL represents what a whole group is willing to pay for reducing each

member’s risk by a small amount (Fisher et al. 1989).  For example, if each of 100,000 persons is

willing to pay $10 for the reduction in risk from 2 deaths per 100,000 people to 1 death per

100,000 people, the VSL is $1 million ($10 × 100,000).  Since fatal risk is not directly traded in

markets, non-market valuation methods are applied to determine WTP for fatal risk reduction.

The two most common methods for obtaining estimates of VSL are the revealed preference

approach including hedonic wage and hedonic price analyses, and the stated preference approach

including contingent valuation, contingent ranking, and conjoint methods.  EPA does not conduct
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original studies but relies on existing VSL studies to determine the appropriate VSL to use in its

cost-benefit analyses.  The primary source for VSL estimates used by EPA in recent analyses has

been a study by Viscusi (1992).  Based on the VSL estimates recommended in this study, EPA fit

a Weibull distribution to the estimates to derive a mean VSL of $6.3 million, with a standard

deviation of $4.2 million (U.S. EPA, 1999).

We extend Viscusi’s study by surveying recent literature to account for new VSL studies

published between 1992 and 2001.  This is potentially important because the more recent studies

show a much wider variation in VSL than the studies recommended by Viscusi (1992).  The

estimates of VSL reported by Viscusi range from 0.8 to 17.7 million.  More recent estimates of

VSL reported in the literature range from as low as $0.1 million per life saved  (Dillingham,

1985), to as high as $87.6 million (Arabsheibani and Marin, 2000).  Careful assessment is

needed to determine the plausible range of VSL, taking into account these new findings.

There are several potential methods that can be used to obtain estimates of the mean and

distribution of VSL.  In a study prepared under section 812 of the Clean Air Act Amendments of

1990 (henceforth called the EPA 812 report), it was assumed that each study should receive equal

weight, although the reported mean VSL in each study differs in its precision.  For example,

Leigh and Folson (1984) estimate a VSL of $10.4 million with standard error of $5.2 million,

while Miller (1997) reports almost the same VSL ($10.5 million) but with a much smaller

standard error ($1.5 million)2.  As Marin and Psacharopoulos (1982) suggested, more weight

should be given to VSL estimates that have smaller standard errors.

Our focus is to develop a more statistically robust estimate of  the mean and distribution

of VSL using the empirical Bayes estimation method in a two-stage pooling model.  The first

stage groups individual VSL estimates into homogeneous subsets to provide representative
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sample VSL estimates.  The second stage uses an empirical Bayes model to incorporate

heterogeneity among sample�VSL estimates.  This approach allows the overall mean and

variance of VSL to reflect the underlying variability of the individual VSL estimates, as well as

the observed variability between VSL estimates from different studies.  Our overall findings

suggest the empirical Bayes method provides a pooled estimate of the mean VSL with greatly

reduced variability.  In addition, we conduct sensitivity analyses to examine how the pooled VSL

is affected by valuation method, study location, source of occupational risk data and the addition

of estimates with missing information on standard errors.  This sensitivity analysis allows us to

systematically compare VSL estimates to determine how they are influenced by study design

characteristics.

1. Methodology

1.1 Study selection

We obtained published and unpublished VSL studies by examining previously

published meta-analysis or review articles, citations from VSL studies and by using web searches

and personal contacts.

The data were prepared as follows.  First, we selected qualified studies based on a set of

selection criteria applied in Viscusi (1992).  Second, we computed and recorded all possible VSL

estimates and associated standard errors in each study.  Third, we made subsets of homogeneous

VSL estimates and calculated the representative VSL for each subset by averaging VSLs and

their standard errors3.  Each step is discussed in detail below.

Since the empirical Bayes estimation method (pooled estimate model) does not control

for the overall quality of the underlying studies, careful examination of the studies is required for
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selection purposes.  In order to facilitate comparisons with the EPA 812 report, we applied the

same selection criteria that were applied in that report, based largely on the criteria proposed in

Viscusi (1992).

Viscusi (1992) examined 37 hedonic wage (HW), hedonic price (HP) and contingent

valuation (CV) studies of the value of a statistical life, and listed four criteria for determining the

value of life for policy applications.  The first criterion is the choice of risk valuation method.

Viscusi (1992) found that all the HP studies evaluated failed to provide an unbiased estimate of

the dollar side of the risk-dollar tradeoff, and tend to underestimate VSL.  Therefore only HW

studies and CV studies are included in this study.

The second criterion is the choice of the risk data source for HW studies.  Viscusi argues

that actuarial data reflect risks other than those on the job, which would not be compensated

through the wage mechanism, and tend to bias VSL downward.  Therefore some of the initial

HW studies that used actuarial data are removed from this analysis.  The third criterion is the

model specification in HW studies.  Most studies apply a simple regression of the natural log of

wage rates on risk levels.  However, a few of the studies estimate the tradeoff for discounted

expected life years lost rather than simply risk of death.  This estimation procedure is quite

complicated, and the VSL estimates tend to be less robust than in a simple regression estimation

approach.  Only studies using the simple regression approach are used in this analysis.

The fourth criterion is the sample size for CV studies.  Viscusi argues that the two

studies he considered whose sample sizes were 30 and 36 respectively were less reliable and

should not be used.  In this study, a threshold of 100 observations was used as a minimum

sample size4.
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There are several other selection criteria that are implicit in the 1992 Viscusi analysis5.

The first is based on sample characteristics.  In the case of HW studies, he only considered

studies that examined the wage-risk tradeoff among general or blue-collar workers.  Some recent

studies only consider samples from extremely dangerous jobs, such as police officer.   Workers in

these jobs may have different risk preferences and face risks much higher than those evaluated in

typical environmental policy contexts.  As such, we exclude those studies to prevent likely

downward bias in VSL relative to the general population.  In the case of CV studies, Viscusi only

considered studies that used a general population sample.  Therefore we also exclude CV studies

that use a specific subpopulation or convenience sample, such as college students.

The second implicit criterion is based on the location of the study.  Viscusi (1992)

considered only studies conducted in high income countries such as U.S., U.K. and Japan.

Although there are increasing numbers of CV or HW studies in developing countries such as

Taiwan, Korea and India, we exclude these from our analysis due to differences between these

countries and the U.S.  Miller (2000) found that income level has a significant impact on VSL,

and because we are seeking a VSL applicable to U.S. policy analysis, inclusion of VSL estimates

from low-income countries may bias VSL downward.  In addition, there are potentially

significant differences in labor markets, health care systems, life expectancy, and preferences for

risk reductions between developed and developing countries.  Thus, our analysis only includes

studies in high-income OECD member countries6.  Finally, our analysis only uses studies that

estimate people’s WTP for immediate risk reduction�due to concerns about comparisons

between risks with long latency periods with inherent discounting or uncertainty about future

baseline health status.
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1.2 Data preparation

In VSL studies, authors usually report the results of a hedonic wage regression analysis,

or WTP estimates derived from a CV survey.  In the studies we reviewed, a few authors reported

all of the VSL that could be estimated based on their analysis, but most authors reported only

selected VSL estimates and provided recommended VSL estimates based on their professional

judgment.  This judgment subjectively takes into account the quality of analysis, such as the

statistical significance of the result, the target policy to be evaluated, or judgments based on

comparative findings.  Changes in statistical methods and best practices for study design during

the period covered by our analysis may invalidate the subjective judgments used by authors to

recommend a specific VSL.  To minimize potential judgment biases, as well as make use of all

available information, we re-estimate all possible VSLs based on the information provided in

each study and included them in our analysis as long as they met the basic criteria laid out by

Viscusi (1992)7.   For certain specifications some authors found a negative VSL.  However, in

every case the authors rejected the plausibility of the negative estimates. We agree that negative

VSL are highly implausible and exclude them from our primary data set. However, we do

present sensitivity analysis showing the effects of excluding the negative estimates.

Estimation of VSL from HW studies

Most of the selected HW studies use the following equation to estimate the wage-risk

premium:

LnY a p a q a p Xi i i i i i= + + + +1 2 3
2 β ε � (1)

where Yi is equal to earnings of individual i, pi and qi are job related fatal and non-fatal risk faced

by i (qi often omitted), Xi is a vector of other relevant individual and job characteristics (plus a
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constant) and εi is an error term.  In many cases, the wage equation will also include fatal risk

squared and interactions between risk and variables such as union status.  Based on equation (1),

the VSL is estimated as follows.

VSL = (dlnY/ dpi) × mean annual wage8 × unit of fatal risk9 (2)

Note that dlnY/dpi may include terms other than a1 if there are squared or interaction terms.

VSL is usually evaluated at the mean annual wage of the sample population.  The unit of

fatal risk is the denominator of the risk statistic, i.e. 1000 if the reported worker’s fatal risk is

0.02 per 1000 workers.  If there is an interaction term between fatal risk and human capital

variables such as “Fatal Risk” × “Union Status”, the VSL is evaluated at the mean values of the

union status variable.  If there is a squared risk term, the VSL is evaluated at the mean value of

fatal risk.

Estimation of standard error of VSL from HW studies

The standard error of the VSL (SE(VSL)) from a HW study

is ( ) ( )Var VSL unit of risk Var Y p Y( ) ln= ×
2

∂ ∂ , where Y  is the average wage for the sample.

For example, if the wage equation is specified as LnY a p a q a p a p UNIONi i i i i= + + + +1 2 3
2

4 ε ,

then

( ) ( ) ( ) ( ) ( )[ ]Var VSL unit of risk Var a Y Var a pY Var a Y UNION Cov a Y a pY a Y UNION( ) , ,= + + +
2

1 2 3 1 2 34 2
To calculate the full variance, allowing for the observed variability in wages and fatal risk, one

needs to calculate the variance of the product of the regression coefficients and the wage, risk,

and interaction terms.  We use the formula for the exact variance of products provided by

Goodman (1960).  For the first variance term above, this formula would be

( ) ( ) ( ) ( ) ( )
Var a Y Y

s a
n

a
s Y

n
s a s Y

n1
2

2
1

1
2

2 2
1

2

2= + −
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Most of the studies included in our analysis do not report the variance of annual wage or

the covariance matrix (either for the parameter estimates or the variables), so we calculated the

standard error of VSL based on the available information, usually consisting of the standard

errors of the estimated parameters of the wage equation.  In this case the variance formula

reduces to

( ) ( ) ( ) ( )[ ]Var VSL unit of risk Y Var a p Y Var a Y UNION Var a( ) = + +
2 2

1
2 2

2
2 2

34 To assess

the impact of treating mean annual wage as a constant, we estimate the standard error with and

without the wage variance for the 45 VSL estimates for which information on the variance of

wage was available.  We find that the differences between the two estimates of standard error are

fairly small, within $0.2 million for most estimates.  In no case does the standard error differ by

more than 10 percent. We also assess the impact of omitting the covariance term by comparing

the reported standard error of Scotton and Taylor (2000) providing a “full” variance estimate for

the estimated VSL with our estimated standard error, which does not include the covariance

term.  We find that the difference in standard error is quite small.  Note that the published

standard error from this study treats mean annual wage as fixed, so the comparison shows only

the effect of excluding the covariance term.  These results suggest the impact of omitting the

covariance terms and treating mean annual wage as fixed in our calculation of standard errors

should not have a significant effect on our results.

Estimation of VSL and standard error from CV studies

For most of the CV surveys, we could not estimate the VSL and its standard error

unless the author provided mean or median WTP and a standard error for a certain amount of

risk reduction.  When this information is available, the VSL and its standard error are simply



May 12, 2003

H-12

calculated as WTP divided by the amount of risk reduction, and SE(WTP) divided by the amount

of risk reduction, respectively.

Estimation of representative VSL for each study

Most studies reported multiple VSL estimates.  For the empirical Bayes approach,

which we use in our analysis, each estimate is assumed to be an independent sample, taken from

a random distribution of the conceivable population of studies.  This assumption is difficult to

support given the fact that there are often multiple observations from a single study.  To solve

this problem, we constructed a set of homogeneous (and more likely independent) VSL estimates

by employing the following approach.

We arrayed individual VSL estimates by study author (to account for the fact that some

authors published multiple articles using the same underlying data).  We then examined

homogeneity among sub-samples of VSL estimates for each author by using Cochran’s Q-

statistics.  The test statistic Q is the sum of squares of the effect about the mean where the ith

square is weighted by the reciprocal of the estimated variance.  Under the null hypothesis of

homogeneity, Q is approximately a χ2 statistic with n -1 degrees of freedom (DerSimonian and

Laird, 1986).  If the null hypothesis was not rejected, we take the average of the VSL for the

subset and the standard error to estimate the representative mean VSL for that author.

If the hypothesis of homogeneity was rejected, we further divided the samples into

subsets according to their different characteristics such as source of risk data and type of

population (i.e. white collar or blue collar), and tested for homogeneity again.  We repeated this

process until all subsets were determined to be homogeneous.  
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1.3 The empirical Bayes estimation model

 In general, the empirical Bayes estimation technique is a method that adjusts the

estimates of study-specific coefficients (β’s) and their standard errors by combining the

information from a given study with information from all the other studies to improve each of the

study-specific estimates.  Under the assumption that the true β’s in the various studies are all

drawn from the same distribution of β’s, an estimator of β for a given study that uses information

from all study estimates is generally better (has smaller mean squared error) than an estimator

that uses information from only the given study (Post et al. 2001).

The empirical Bayes model assumes that

βi  = ii e+µ  (6)

where βi is the reported VSL estimate from study i, µi is the true VSL, ei is the sampling error and

N(0, si
2) for all i = 1,…, n.  The model also assumes that

µi = µ + δi (7)

where µ is the mean population VSL estimate, δi captures the between study variability, and N(0,

τ2), τ2 represents both the degree to which effects vary across the study and the degree to which

individual studies give biased assessments of the effects (Levy et al., 2000; DerSimonian and

Laird, 1986).

The weighted average of the reported βi is described as µw .  The weight is a function of

both the sampling error (si
2) and the estimate of the variance of the underlying distribution of β’s

(τ2).  These are expressed as follows;

µw = ∑
∑

*

*

i

ii

w
w β

(8)

s.e. (µw)  = (∑ wi*) -1/2 (9)
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where wi* = 21

1
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where Q = ∑wi (βi – β*)2 (Cochran’s Q-statistic)  and  β*  = 
∑
∑

i

ii

w
w β

The adjusted estimate of the βi is estimated as

Adjusted βi  = 

2

2

11
τ

τ
µβ

+

+

i

w

i

i

e

e   (11)

This adjustment, as illustrated in Figure 1, pulls the reported estimates of βi towards the

pooled estimate.  The more within-study variability, the less weight the βi receives relative to the

pooled estimate, and the more it gets adjusted towards the pooled estimate.  The adjustment also

reduces the variance surrounding the βi by incorporating information from all β’s into the

estimate of βi. (Post et al. 2001).  In our analysis, βi corresponds to the VSL of the ith study.

In order to visually compare the distributions, we used kernel density estimation to

develop smooth distributions based on the empirical Bayes estimate.  The kernel estimation

provides a smoother distribution than the histogram approach.  The kernel estimator is defined

by ∑
=







 −

=
n

i

i

h
XxK

nh
xf

1

1)( .  The kernel function, ∫
∞

∞−
= 1)( dxxK , is usually a symmetric

probability density function, e.g. the normal density, and h is window width.  The kernel function

K determines the shape of the bumps, while h determines their width.  The kernel estimator is a



May 12, 2003

H-15

sum of ‘bumps’ placed at observations and the estimate f is constructed by adding up the bumps

(Silverman 1986).  We assumed a normal distribution for K and a window width h equal to 0.7,

which was wide enough to give a reasonably smooth composite distribution while still

preserving the features of the distribution (e.g. bumps).  The choice of window width is arbitrary,

but has no impact on the statistical comparison, which is described below.

To compare the different distributions of VSL, we applied the bootstrap method, which

is a nonparametric method for estimating the distribution of statistics.  Bootstrapping is

equivalent to random sampling with replacement.  The infinite population that consists of the n

observed sample values, each with probability 1/n, is used to model the unknown real population

(Manly 1997).  We first conducted re-sampling 1000 times, and compared the distributions in

terms of mean, median and interquartile range.
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2.    Results and sensitivity analyses

In total, we collected 47 HW studies and 29 CV studies.  A data summary for each stage

of analysis is shown in Table 1.  After applying the selection criteria outlined in section 2.1, there

were 31 HW studies and 14 CV studies left for the analysis.  In our final list, there are 22 new

studies published between 1990 and 2000.    We re-estimated all possible VSL for the selected

studies, and obtained 232 VSL estimates.10 11 There were 23 VSL estimates from five studies for

which standard errors were not available, and thus they are excluded from our primary analysis,

although we examine the impact of excluding those studies in a sensitivity analysis.  After testing

for homogeneity among sub-samples, we obtained 60 VSL subsets, and estimated a

representative VSL and standard error for each subset.  Finally, we applied the empirical Bayes

method and obtained an adjusted VSL value for each subset.

It is worthwhile to note how the empirical Bayes approach reduces the unexplained

variability among VSL estimates.  Our 196 VSL estimates show an extremely wide range from

$0.1 million to $95.5 million with a coefficient of variation of 1.3 (in 2000 constant dollars).

The VSL estimates from the 60 subsets range from $0.3 million to $43.1 million with a

coefficient of variation of 1.2, and the adjusted VSL estimates range from $0.7 million to $13.9

million with a coefficient of variation of 0.4.

2.1 The distribution of VSL

Figure 2 shows the kernel density estimates of the composite distribution of the

empirical Bayes adjusted VSL (using the 60 representative VSL estimates) and the Weibull

distribution for the 26 VSL estimates as reported in the EPA 812 report.  The summary results

are shown in Table 2.  The composite distribution of adjusted VSL has a mean of $5.4 million
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with a standard error of $2.4 million.  This mean value is smaller than that based on the EPA 812

Weibull distribution and has less variance (EPA 812’s coefficient of variation is 0.7) even though

our VSL sample has a range more than five times as wide as the EPA 812 sample.

2.2 Sensitivity analyses

2.2.1 Sensitivity to choice of valuation method

Many researchers argue that the VSL is sensitive to underlying study characteristics

(Viscusi 1992, Carson, et al. 2000, Mrozek and Taylor 2002).  One of the most interesting

differences is in the choice of valuation method.  To determine if there is a significant difference

between the empirical Bayes adjusted distributions of VSL using HW and CV estimates, we used

bootstrapping to test the hypothesis that HW and CV estimates of VSL are from the same

underlying distribution.

We divided the set of VSL studies into HW and CV and applied the homogeneity

subsetting process and empirical Bayes adjustment method to each group.  The kernel density

estimates of the distributions for HW and CV sample are shown in Figure 3.  The HW

distribution has a mean value of $9.4 million with a standard error of $4.7 million while the CV

distribution has much smaller mean value of $2.8 million with a standard error of  $1.3 million

(see Table 2).  Bootstrap tests of significance show the VSL based on HW is significantly larger

than that of CV (p<0.001), comparing means, medians and interquartile ranges between the

distributions.
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2.2.2 Sensitivity to study location

Because of differences in labor markets, health care systems, and societal attitudes

towards risk, VSL estimates from HW studies may potentially be sensitive to the country in

which the study was conducted (this may also be true for CV studies, however there were too

few CV estimates to conduct similar comparisons).  Empirical Bayes estimation was applied to

HW samples from the U.S. and U.K separately. (Comparisons with Canada and Australia were

not conducted because of small sample sizes for those countries.) The distribution for the U.S.

sample has a mean value of $8.5 million with a standard error of $4.9 million, while the

distribution for the U.K. sample has a mean value of $22.6 million with a standard error of $4.9

million.  Bootstrap tests of significance show that the U.S. estimates are significantly different

from UK estimates based on�comparing means and medians between distributions.

2.2.3 Sensitivity to source of occupational risk data

 Moore and Viscusi (1988) found that VSL was sensitive to choice of source of

occupational risk data.  According to their results, the VSL estimated based on Bureau of Labor

Statistics (BLS) death-risk data is significantly smaller than that estimated based on National

Institute of Occupational Safety and Health (NIOSH) death risk data.  We estimated the

empirical Byes adjusted VSL distribution for each risk data source, and we did not find a

significant difference between the two distributions.   However, the reliability of our result is

limited due to the small number of studies based on the BLS risk data.
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2.2.4 Sensitivity to excluded VSL estimates

We also examined the sensitivity of our results to excluded estimates.  To do this, we

added to the sample the VSL estimates that were excluded from the primary analysis due to the

lack of a standard error.  We assumed for this test that all reported VSL estimates should have

passed at least a 95 percent significance test, and estimate the corresponding standard error at

this significance level for each VSL.  This added nine averaged VSL estimates to the set of 60

representative estimates, including four estimates from HW studies and five from CV studies.

The distribution of the enhanced sample has a mean value of $4.7 million with a

standard error of $2.2 million. Compared with the result of our main analysis, the mean value is

reduced by $0.7 million.  This is because�we have added more estimates from CV, which tends

to produce relatively lower VSL.  Bootstrap tests of significance show the VSL from HW studies

is still significantly different from that from CV studies (p<0.0001), comparing means, medians

and interquartile ranges.

We also report a 5% trimmed mean that increases the combined mean from both

valuation methods from $5.4 million to $5.8 million with no effect on the coefficient of

variation.  Finally, we consider the impact of including negative estimates.  Since these estimates

were all associated with HW studies, the HW mean drops from $9.4 million to $6.6 million.

This also has a noticeable effect on the combined mean dropping it from $5.4 million to $4.1

million. The difference between the CV and HW estimates remains significant based on

bootstrap tests of the means and medians.
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3. Conclusions

The meta analysis we have used results in a composite distribution of empirical Bayes

adjusted VSL with a mean of $5.4 million and a standard deviation of $2.4 million.   This is a

somewhat lower mean than previous pooled estimates, and because of the Bayesian adjustment

process, there is greatly reduced variability as evidenced by the coefficient of variation even

though our dataset has a much wider range than previous studies.

Starting from a baseline of the literature used in Viscusi (1992), our approach has

generated a set of hypotheses that may challenge some previously held assumptions.  It is clear

that VSL analysts need to look closely at study location; our estimates show significant

differences in VSL even between developed countries with relatively similar income levels.  It is

also important to look at valuation method as we found quite different VSL estimates in the

hedonic wage versus contingent valuation datasets. Our finding that the hedonic method

generates significantly larger estimates than the CV approach is consistent with a comparison of

CV and revealed preference approaches to valuing quasi-public goods reported by Carson

(1996).

Theoretically, the two valuation methods should not necessarily provide the same

results because the HW approach is estimating a local trade-off, while the CV approach

approximates a movement along a constant expected utility locus (Viscusi and Evans 1990,

Lanoie, Pedro and Latour 1995).  However, the impact and direction of this difference had not

been systematically investigated prior to this analysis   

Our sensitivity analysis found no significant difference on average in the VSL

estimates between studies using BLS or NIOSH data.  Additional research into appropriate

measures of risk is needed.  Recent work by Black (2001) suggests that measurement errors in
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estimates of fatal risk can lead to large downward biases in estimates of VSL.

Aggregate level comparisons as we have done in this paper are useful in comparing the

overall distribution of VSL estimates from each method, however the resulting comparisons

might be significantly affected by differences in the design of each study, as the large variance in

the HW distribution suggests.   This problem could be addressed by applying meta-regression

analysis, which can determine the impact of specific study factors by taking into consideration

study characteristics such as sample population, study location, or sources of risk data (Levy et

al., 2000; Mrozek and Taylor, 2002; Viscusi and Aldy, 2002).

Study location does seem to matter, but additional investigation is necessary to identify

why there are differences.  Simply lumping countries together as developed or developing may

not be the best way to account for potential differences in VSL. Differences in health care system

may be a potential factor, as there are a number of differences in insurance coverage and access

to health care across developed countries (Anderson and Hussey, 2000). There may be numerous

other socio-cultural factors that can cause VSL estimates to diverge.

As the excluded studies sensitivity analysis indicates, our results are sensitive to the

addition of small magnitude VSL estimates with low variances.  For example, Krupnick et al.

(2000) estimated the VSL as $1.1 million with a standard error of $0.05 million.  If we remove

this estimate from our main analysis, the overall mean VSL is increased to $5.9 million,

implying that one study reduces the overall mean by $0.5 million.  It is thus especially important

to determine the reliability of CV studies very carefully by assessing any potential questionnaire

and scope effects (Hammitt and Graham, 1999).  Also, it may be important to investigate why

the VSL estimates from CV studies are so similar despite the differences in type of risk, study

location and survey method.
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In addition to the application of the empirical Bayes method, our analysis demonstrates

the importance of adopting a two-stage procedure for combining evidence from the literature

when multiple estimates are available from a single source of data.  The first stage sorting

process using the Cochran’s Q test for homogeneity seems a reasonable approach to control for

over-representation of any one dataset.  From the original set of 40 studies, we obtained 196 VSL

estimates and then classified these into 60 homogeneous subsets.  This suggests that there was a

high probability of assigning too much weight to some estimates if a single stage process were

used, treating each of the 196 estimates as independent.  Also, the two-stage approach does not

discard information from each study.  Instead it uses all the available information in an

appropriate manner.

As in the field of epidemiology, the economics profession should consider developing

protocols for combining estimates from different studies for policy purposes.  Consistent

reporting of both point estimates of VSL and standard errors, or variance-covariance matrices

would enhance the ability of future researchers to make use of all information in constructing

estimates of VSL for policy analysis.  Additional research is needed to understand how VSL

varies systematically with underlying study attributes, such as estimation method or location of

studies.  The empirical Bayes approach outlined here provides a useful starting point in

developing the variables needed for such studies.

The widely cited pooled estimate of $6.3 million from the EPA 812 study based on

Viscusi’s assessment of the VSL literature was derived from a simple histogram method. This

early approach ignored within and between study variability.  Mrozek and Taylor presented an

alternative method for deriving a mean VSL estimate for policy purposes based on a best fit

regression model using only the hedonic wage studies.  . We examine both CV and HW studies
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and present a different methodology using all available information to adjust individual VSL

estimates based on the within and between study variability.  By generating distributions of VSL,

the method allows us to test individual hypotheses regarding study attributes. These comparisons

have generated a number of hypotheses that should form the foundation for future meta-analyses

of VSL combining the CV and HW approaches.
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 Table 1. VSL Data Summary

HW CV Total

Number of collected studies 47 29 76

Number of selected studies 31 14 45

Number of estimated VSL 181 51 232

Number of positive VSL with imputed SE 161 35 196

Mean (million $)

(Coefficient of variation)

12.3

(1.2)

3.8

(1.5)

10.8

(1.3)

Number of VSL subsets at 1st stage 43 17 60

        Mean (million $)

(Coefficient of variation)

12.4

(1.1)

3.8

(0.8)

9.8

(1.2)

Number of VSL subsets at 2nd stage 43 17 60

        Mean (million $)

        (Coefficient of variation)

9.4

(0.5)

2.8

(0.5)

5.4

(0.4)
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Table 2.   Results of Empirical Bayes Estimates and Bootstrap Tests for Distribution
Comparisons (2000 dollars)

Bootstrap TestMean
(million $)

SD
(million $)

Coefficient
of variation Mean Median Interquartile

Distribution Comparison by Evaluation Method
Total (60) 5.4 2.4 0.4 P-value (Ho: HW = CV)
CV (18) 2.8 1.3 0.5
HW (42) 9.4 4.7 0.5 <0.001 <0.001 <0.008

Distribution Comparison by Study Location (HW only)
USA (30) 8.5 4.9 0.6 P-value  (Ho: US =UK)

UK (7) 22.6 4.9 0.2 <0.001 <0.001 <0.403
Distribution Comparison by Occupational Risk Data Source (HW only)

BLS (3) 10.3 4.3 0.4 P-value  (Ho: BLS = NIOSH)
NIOSH

(21)
7.2 3.9 0.5 <0.694 <0.798 <0.734

Distribution Comparison by Evaluation Method After Adding Excluded Estimates
Total 4.7 2.2 0.5 P-value (Ho: HW = CV)
CV 2.6 1.3 0.5
HW 8.7 4.6 0.5 <0.001 <0.001 <0.009

5% trimmed estimate
Total 5.8 2.5 0.4

Including negative estimates
Total (67) 4.1 1.7 0.4 P-value (Ho: HW = CV)
CV (18) 2.8 1.3 0.5
HW (49) 6.6 3.6 0.5 <.001 <.004 <.108
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Figure1.  Illustration of Empirical Bayes Pooling
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Figure 2.  Comparison of Kernel Distribution of Empirical Bayes Adjusted VSL with

Distribution of VSL Based on EPA Section 812 Report Estimates
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Figure 3.  Comparison of Kernel Distribution of Empirical Bayes Adjusted VSL Based on HW

and CV Estimates
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Notes:

                                               
1All estimates reported in this paper have been converted to constant 2000 dollars using the

Bureau of Labor Statistics Consumer Price Index (CPI).  The CPI inflation calculator uses the

average Consumer Price Index for a given calendar year. These data represent changes in prices

of all goods and services purchased for consumption by urban households. For estimates reported

in foreign currency, we first converted to U.S. dollars using data on Purchasing Power Parity

from the Organization for Economic Cooperation and Development, and then converted to 2000

U.S. dollars using the CPI.    

2 Most authors do not report standard errors of VSL estimates.  We have estimated the standard

errors for these and other studies using an approach discussed later in the paper.

3 We also employed fixed approaches for pooling, but found this resulted in an artifact of

providing greater weight to studies whose authors reported multiple estimates.

4 This is admittedly an arbitrary cutoff.  However, we determined that a sample size of 100 did

not result in many studies being excluded and smaller samples did not seem to be reasonable.

5 We exclude one additional study, by Eom (1994), due to concerns about the payment context

for the willingness to pay question.  In that study, individuals were asked to choose between

produce with different levels of price and pesticide risk.  The range of potential WTP was limited

by the base price of produce.  In order to realize an implied VSL within the range considered by

Viscusi, individuals would need to have a WTP of around $400 per year.  Because WTP in the

study was tied to increases in produce prices, which ranged $0.39 to $1.49, it would be very

unlikely that individuals would be willing to pay over a 100 times their normal price for produce

to obtain the specified risk reduction.  Tying WTP to observed prices thus limits the usefulness of

this study for benefits transfer.
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6 From http://worldbank.org/data/databytopic/class.htm.  High-income OECD member have

annual income greater than $9,266 per capita.

7 One reviewer suggested that some published VSL estimates should be excluded from our

analysis because the authors judged these estimates to be invalid.  Our review of each study did

not reveal authors’ arguments excluding VSL estimates except a few instances in which authors

questioned the reliability of the BLS and NIOSH occupational risk data.  Because it is accepted

to use these risk data in hedonic wage studies, we did not view this as a valid reason for dropping

those VSL estimates.  The summary of each author’s review of their VSL estimate is in an

appendix available upon request from the authors.

8 Most studies use the hourly wage or weekly wage.  In those cases authors multiply by 2000

(some use 2080) for mean hourly wage, and 50 (some use 52) for mean weekly wage to obtain

mean annual wage.  We follow each study’s estimation approach and if that is not available, we

use a multiplier of 2000 for hourly wage and 50 for weekly wage.

9 The coefficient d lnY/ d pi does not depend on the units in which Y is measured.  The

requirement for a comparison across is that results are converted in the same units, e.g. per

thousand per year.

10 To assure the quality of re-estimation of VSL, we matched our results with estimates done by

the original authors when available.  Although the VSL estimates from Kneisner and Leeth

(1991), Smith and Gilbert (1984) and V.K. Smith (1976) are included in EPA 812 report, the

original manuscripts do not provide VSL estimates, and we could not replicate the estimates

reported in EPA 812.  Therefore we exclude those studies from our analysis.

11 A full listing of studies and their associated VSL are available from the authors upon request.
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APPENDIX I

ANALYTICAL PLAN FOR AIR TOXICS CASE STUDY - BENZENE EMISSIONS
REDUCTIONS IN HOUSTON

PURPOSE AND SCOPE OF THE CASE STUDY

The purpose of this document  is to refine the analytical plan for a hazardous air pollutant
(HAP) benefits assessment to accompany the main criteria pollutant analysis in the second 812
prospective study.  Efforts to characterize the benefits of HAP reductions under Title III in prior 812
analyses have been only partially successful.  An analysis of NESHAP regulations conducted for
the retrospective analysis was criticized by the SAB as substantially overstating benefits, with
particular note made of the use of “upper bound” dose-response relationships (i.e., the cancer
potency factor used for standard setting).  EPA made a second attempt to incorporate air toxics
benefits, in the first prospective analysis, but the SAB felt the national air quality and exposure
model proposed (ASPEN/HAPEM) would not yield estimates suitable for benefits analysis.  In July
2001, however the SAB Council proposed that EPA undertake a case study, and suggested benzene
as a good candidate pollutant.  This document focuses on the development of a case study of the
benefits of benzene emissions reductions attributable to CAAA regulations.

In the original analytical plan, we proposed to estimate only the VOC benefits of HAP
controls, as part of the larger criteria pollutant analysis.  Building off the results of the then-recent
SAB-triggered workshop on air toxics benefits analysis, we concluded that the available tools were
not appropriate for a comprehensive benefits analysis.  We further proposed to conduct cost-
effectiveness calculations (cost per ton HAP reduced).

In response to the original analytical plan, the SAB issued the following comments:

! Representative HAP analysis.  The SAB advises the EPA to work with the National Air
Toxics Assessment to select one representative Hazardous Air Pollutant (HAP) for which
to perform a prototype 812 analysis.  The SAB recommends benzene because of the wealth
of available national ambient concentration data, but notes that toxic metals such as arsenic
and cadmium are also options.

! Benzene as  prototype.  The SAB feels that an 812 analysis using the available benzene data
would:

• identify limitations and gaps in the data base,
• provide an estimate of the uncertainties in the analyses and perhaps provide

a reasonable lower bound on potential health benefits from control, and
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• provide a scientific basis for deciding whether there is merit in pursuing a
greater ability to assess the benefits of air toxics.

! AQM and exposure analysis.  The SAB questions whether the sort of national modeling
that is being performed for ozone and nitrogen (PM) assessments is appropriate for benzene.

In response to these comments, we are proposing to undertake a metropolitan scale analysis
of the benefits of Clean Air Act controls on benzene emissions.  The smaller scale will allow us both
to perform a more rigorous analytical effort and to build on previous EPA modeling efforts for
benzene.  We propose a local-scale study of the Houston, Texas area (Harris county, specifically);
this approach will allow EPA to utilize existing modeling data developed for an ongoing air toxics
study in this area.  The analysis will be designed to capture benefits of reductions in benzene
resulting from multiple CAA Titles and provisions.

While the focus of the 812 analysis of HAP benefits remains the benzene case study
recommended by the SAB, EPA has also been making progress in recent years addressing the SAB
Council's earlier concerns about the data and modeling tools available to support national-scale
assessments of benefits in previous 812 studies.  Therefore, EPA plans to explore the feasibility and
appropriateness of conducting a national-scale analysis to supplement the case study approach
planned for the current 812 study.  If such a national-scale assessment is conducted, advice
pertaining to the merits and design of such an assessment will be sought during a future SAB review.

The analytical framework for this analysis will follow the approach for benefits analysis used
in the criteria pollutant analysis of the Section 812 study.  The framework includes the following
steps: Scenario Development, Emissions Estimation, Air Quality Modeling, Exposure Assessment,
Health Effects Estimation, and Benefit Valuation.  Our plans for these steps are described in detail
in the following sections.

SCENARIO DEVELOPMENT

As in the criteria pollutant analysis, the HAP case study relies on detailed descriptions of the
pre-CAAA and post-CAAA scenarios.  We propose to define reasonable scenarios describing
benzene emissions control requirements as currently implemented and as they would be in the
absence of the CAAA.  The differences in the emissions, impacts, and benefits realized under these
two scenarios represent the primary results of the analysis. 

We define the scenarios to be consistent with those in the criteria pollutant analysis.  That
is, the pre-CAAA scenario freezes Federal, State, and local benzene controls applicable to Houston
at 1990 levels, and the post-CAAA scenario includes all Federal, State, and local benzene rules
enacted in response to the 1990 CAAA.  However, due to resource considerations, we are proposing
to limit the study period for the HAP case study to 20 years, from 1990 to 2010.
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Although this is a case study of a hazardous air pollutant, we do not propose to analyze
benefits specific to Title III of the CAAA (the Title that specifically focuses on HAPs), because
doing so would ignore significant benefits related to reductions of benzene emissions from mobile
and stationary sources.  Instead, the difference between the pre- and post-CAAA scenarios for
benzene in Houston will reflect the effect of all CAAA regulations that affect benzene emissions.

Pre-CAAA (Baseline) Scenario

This scenario will be consistent with the baseline scenario for the main analysis.  It will
assume no further controls on benzene emissions beyond what was in place in 1990, prior to
issuance of the amended Clean Air Act.  Details of the regulations included in the pre-CAAA
scenario can be found in Chapter 2 of the 812 Analytical Blueprint.

Post-CAAA (Control) Scenario

This scenario will include all current and currently anticipated regulations that affect benzene
emissions resulting from the amended Clean Air Act issued in 1990.  We expect the scenario will
include the regulations listed in Exhibit I-1.
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Exhibit I-1
Benzene Case Study Post-CAAA Projection Scenario Summary, by Title

Title I Any effects of Title I will be expressed through state implementation plan (SIP) requirements,
such as (enhanced) I/M programs, transportation control measures, other VOC controls.  These
requirements are dependent on the ozone non-attainment status of the case study area(s).

Title II Tailpipe standards

Onroad
Tier 1 Standards (phased in 1994 to 1997)
NLEV program –voluntary bridge between Tier 1 and Tier 2
Tier 2 Standards take effect in 2004
Heavy Duty Engine/Diesel Fuel Rule - New emission standards – 2007 model year, new
fuel standards 2006

Nonroad
Federal Phase I and II compression ignition (CI) engine standards,
Federal Phase I and II spark ignition (SI) engine standards,
Federal locomotive standards,
Federal commercial marine vessel standards,
Federal recreational marine vessel standards.

Evaporative Emissions

Stage II Vapor Recovery Systems (Section 182)
Onboard Refueling Vapor Recovery (Section 202; 1998 model year and on)
Fuel Spit-back rule
Clean Fuel Vehicle Program

Fuel Regulations 

RFG Standards (1995 on)
Phase II – (2000 – present) – benzene requirements essentially unchanged
Anti-dumping standards – do not specifically regulate benzene content of gasoline
Summertime Volatility Requirements for Gasoline (Phase II – 1992 on)
Anti-backsliding provisions of Mobile Source Air Toxics rule

Title III MACT Standards
We will review the full range of MACT standards to identify those that would be expected to
have a significant effect on future-year benzene emissions in the Houston area.  We expect that
the final list of MACT standards to be analyzed in the study will include:

Oil and Natural Gas Production: 7-Year MACT
Petroleum Refineries: 4-Year MACT
Gasoline Distribution: 4-Year MACT
Pulp and Paper Production: 7-year MACT
Municipal Landfills: 10-year MACT
Natural Gas Transmission and Storage: 10-year MACT 
Publicly Owned Treatment Works (POTW) Emissions: 7-year MACT 
Coke Ovens: Pushing, Quenching, & Battery Stacks: 4-year MACT 
Synthetic Organic Chemical Manufacturing: 2-year MACT
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EMISSION ESTIMATION

This section provides a brief overview of our approach to developing emissions inventories
for benzene for use in the HAP case studies to be included in the second 812 prospective analysis.

To facilitate this analysis, we seek to build on previous emissions estimation efforts by EPA,
while still maintaining consistency with emissions estimation for the main 812 analysis.

Available Emissions Data Sources for Benzene

The primary data source for benzene (and other HAP) emission estimates is the National
Toxics Inventory (NTI) which has recently been renamed as the National Emission Inventory for
Hazardous Air Pollutants (NEI for HAPs).  EPA's Office of Air Quality Planning and Standards
(OAQPS) is using the NEI for HAPs to support analyses required by the Clean Air Act and
Government Performance and Results Act (GPRA) that depend on a high quality, comprehensive
HAP emission inventory.  The inventory is a critical component of the entire national air toxics
program.  A recent example of its use is in the EPA National Air Toxics Assessment (NATA). 

The NEI for HAPs is developed every three years (1993, 1996, 1999, etc.) with the draft
version 3 of the 1999 NEI for HAPs being the most recently completed version.  The final version
3 of the 1999 NEI for HAPs is expected to be completed in July. The NEI for HAPs contains
emission estimates for large stationary sources (point), small stationary sources (non-point), and
mobile sources.  Point sources in the inventory include major and area source categories as defined
in Section 112 of the Clean Air Act.  Non-point source categories in the inventory include area
sources that are not included in the point sources and other stationary source categories.  Individual
emission estimates are developed for point sources, while aggregate emission estimates at the county
level are made for non-point stationary and mobile sources.  For all inventory years, the NEI for
HAPs  also identifies emission sources that are associated with MACT categories. 

In addition to the NEI for HAPs data years, the benzene analysis approach also considers
recently completed/ongoing HAP studies performed for the Houston-Galveston, Portland (Oregon),
and Philadelphia areas.

Recent EPA Efforts to Improve Emissions Projections

EPA's Office of Air and Radiation has participated in three urban scale studies of air toxic
emissions and associated concentrations, which are at different stages of completion.  The three
urban areas are Houston, Portland (Oregon), and Philadelphia.  All three studies examined benzene
as one of the HAPs evaluated and employed on-road emission estimation methods that involve some
improvements to standard methods like allocations of emissions to major roadway segments.  Two
of the three (Houston and Philadelphia) use the ISCST3 Gaussian dispersion model to estimate
ambient benzene concentrations, while the CALPUFF model is used in the Portland study, where
terrain effects are more of a concern.
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EPA’s OAR completed urban scale modeling analyses and evaluations in Houston using
1996 HAP emission estimates, with benzene being one of the four HAPs included in the analysis.
The Houston domain for the EPA study included all of the Houston-Galveston-Brazoria ozone
nonattainment area counties, which are Brazoria, Chambers, Fort Bend, Galveston, Harris, Liberty,
Montgomery, and Waller.

The Portland Air Toxics Assessment is a pilot project funded by EPA in cooperation with
the Oregon Department of Environmental Quality.  The reference material available for the Portland
study describes the on-road vehicle air toxic emission estimation procedures used to calculate hourly
air toxic emissions by roadway link and travel analysis zone for the Portland-Vancouver area.

The third EPA urban study of air toxics is currently being performed for the Philadelphia
ozone nonattainment area.  The counties in the Philadelphia urban study domain include five
Pennsylvania counties, five New Jersey counties, and one county in Delaware.  The base year for
this study is 1996.  Study documentation available to date primarily addresses emissions processing
steps.  The processing steps involve running EMS-HAP programs and a post-processing program
designed to split the domain into rural and urban portions, so that the air dispersion model – ISCST3
– is applied separately for urban and rural domain emissions.  Benzene is one of the nine HAPs
evaluated in the Philadelphia urban study.

While it may be desirable to pursue benzene analyses for all three potential urban areas of
interest, this proposed analytic approach focuses on the data and analysis tools available for the
Houston area that would be used to perform the needed evaluations for the second prospective.
Techniques that might be applied to Portland, Oregon, or Philadelphia in the 812 assessment would
be expected to be similar (but not exactly the same).

Necessary Modifications to Ensure Consistency with Main 812 Analysis

The tool that has been developed by EPA-OAQPS for performing HAP emission projections
is EMS-HAP.  This model has the ability to employ the same EGAS 4.0 growth factors that we
propose to use in the criteria pollutant analysis in order to account for likely changes in pollution
generating activity in future years affecting HAP sources.  For deployment in the 812 analysis, there
will need to be adjustments made to start the projections with 1999 base year emissions data and to
estimate future year emissions in 2010.

Note that the growth factors in EGAS 4.0 for the Houston area are developed from a
Regional Economic Models Inc. (REMI) regional model that distinguishes the Houston area from
other urban/non-urban areas in Texas.  However, because some source categories' (e.g., fuel
combustion) growth factors are based on forecasts from non-REMI sources (e.g., Department of
Energy), there will be source categories where EGAS will have the same growth factor for Houston
as it does for the entire State.
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Proposed Approach by Source Type

This section presents our proposed approach to benzene emissions estimation (including base
inventory source, any necessary adjustments, and projection methods) for each of the major source
categories we plan to include in the analysis.

Point Source Emissions

EPA has modeling inventories for Houston point sources for 1990 and 1999.  The 1990 point
source inventory was prepared by the Texas Commission on Environmental Quality (formerly the
TNRCC) for Harris County.  This data set is considered the best estimate of point source benzene
emissions in 1990.

Similarly, the 1999 point source benzene emission estimates in the 1999 National Toxics
Inventory, version 3 final, are the recommended data source for estimating recent (1999) emission
levels.  This version is expected to be completed in July 2003.  With the significant reductions in
reported air toxic emissions between 1990 and 1999, the suggested 1990 and 1999 point source data
bases should provide the best indicator of post-CAAA scenario emission changes in this time period.
Post-CAAA scenario benzene emissions for 2000 in Houston can be estimated by either using 1999
values as a surrogate, or performing a one-year projection from 1999 to 2000.

One of the key parts of this analysis will be identifying the point source benzene emission
reductions attributable to MACT standards promulgated during the 1990s.  To evaluate EPA's
progress in reducing air toxic emissions via MACT standards, and to identify sources that may be
modeled as part of residual risk assessments, operations within facilities that are subject to MACT
standards are identified in the NEI for HAPs by MACT codes.  MACT codes are assigned at the
process level, or at the site level.  For example, the MACT code for municipal waste combustors is
assigned at the site level, while the MACT code for petroleum refining catalytic cracking is assigned
at the process level.  These MACT codes are expected to be used as an indicator of where MACT
standard associated emission reductions have occurred (by 1999) or are likely to occur in future
years.

One of the most important issues in the 2010 emission projections for the Houston case study
is determining the appropriate level-of-detail for evaluating the expected benzene emission
reductions to attribute to the CAAA measures post-1999.  One way to do this is to survey the
MACT-standard affected facilities in order to determine their compliance plans.   However, such
an effort would likely be resource intensive and time consuming.  In addition, it is not clear what
authority EPA has to survey the Houston area facilities in order to gather the data needed to
accomplish this approach.   Another possibility is to work with the state agency to see if they have1
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this level of information.  Again, such an effort would be resource intensive and time consuming and
may not yield any of this specific data.

Our proposed approach to developing the post-CAAA scenario benzene point source
emission estimates will include estimates of the likely emission reductions by facility, or source
category, needed to meet residual risk requirements of Title III, if these data are available within the
time frame of our analysis.

• Option 1:  EMS-HAP contains future year control factors by source category
that are designed to be applied to 1996 base year emission estimates to
include the effects of MACT standards implemented post-1996.  These
control factors capture the average VOC HAP emission reduction expected
when the new standard is applied to all affected sources in the country.  Thus,
the estimated nationwide emission reduction associated with a MACT
standard might be 45 percent, when the range of emission reductions by
individual sources varies from 0 (facilities on which the MACT standard is
based) to 90 percent (at a previously uncontrolled facility).  Applying the 45
percent control factor in Houston could greatly under-or-over estimate the
MACT standard benefits for a source category.

• Option 2:  The analysis alternative (for developing control factors) that is
most like the criteria pollutant approach is to develop an estimate of the
VOC/benzene emission control efficiency required by the applicable MACT
standard for each affected source category, and to then compare the existing
(1999) VOC/benzene control efficiency with that MACT standard control
level to determine whether the facility is expected to be adding controls in
order to meet the MACT standard requirements.  This approach for modeling
the future year benzene emission reductions associated with each point
source category in the Houston area can only be applied if base year control
efficiencies are available for MACT standard category affected units.  If they
are, then the MACT standard requirement can be compared with the existing
control efficiency, and a further emission reduction applied if the existing
control efficiency is less than what is required by the MACT standard.  EMS-
HAP has the capability of accounting for base year control efficiencies in
computing the actual expected control efficiency with a future MACT
standard.  However, the base year efficiency must be in the input inventory.

It is also our understanding that the Houston ozone SIP has been recently
revised to include additional point source VOC emission controls, and that
these measures may have some effect on benzene emissions at the affected
facilities.  Thus, control factors for the chemical and petroleum industry
sources in the Houston area would have to be assembled from SIP documents
and an analysis of MACT standard effects on these same sources.
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• Option 3:  Another point source analysis alternative is to see whether the
EPA MACT standard Background Information Documents contain enough
information to characterize the before and after MACT standard performance
of the particular (either as a whole or individually) chemical and petroleum
industry facilities in the area.

• Option 4: The  simplest point source analysis alternative is to assume that
the 1999 point source file emission estimates capture the majority of the post-
CAAA emission benefits, and that benzene emissions will be relatively
constant thereafter.  This overlooks the benefits of 7- and 10-year MACT
standards in the area and the recent Houston-Galveston area SIP
requirements that are expected to further reduce point source VOC emissions.

The pre-CAAA scenario 2000 and 2010 point source emission estimates will be generated by
applying expected increases in activity levels assuming no additional controls are implemented
beyond those that were in place in 1990.  Activity changes will be estimated by applying EGAS 4.0
growth factors for the Houston-Galveston area by SIC or SCC code for the 1990 to 2000 and 1990
to 2010 periods.

Given the information available, our primary recommendation is that the HAP Case Study
analysis be limited to the benzene emission sources in Harris County, Texas.  This allows
us to focus our efforts on quantifying the estimated effects of the 1990 CAAAs on point
source benzene emitters between 1990 and 1999, and the likely future changes post-1999.
From a modeling standpoint, because the transport of benzene emissions from other
nearby counties in the urbanized area will not be captured, it will be important to set
appropriate background concentration levels to capture this contribution to ambient
benzene levels in Harris County.

If the benzene analysis is performed for all eight counties in the Houston-Galveston ozone
nonattainment area, then there will be significant additional effort needed to prepare point
source benzene emission estimates for 1990.  This would involve taking the 1999 point
source file for these counties and backcasting these estimates to 1990 conditions.  The
primary approach that would be used to prepare 1990 benzene emission estimates for
these point sources is to use data collected by EPA's Emission Standards Division during
the MACT standard-setting process to estimate pre-MACT standard operating conditions
and emissions. 

Highway Vehicle Emissions (On-Road)

The benzene emission factors used in the 1996 Houston study were from MOBTOX (the
predecessor to MOBILE6).  MOBTOX-estimated benzene emission factors were estimated using
a 19.6 mile per hour average speed and standard Federal Test Procedure cycle hot and cold start
percentages.  MOBILE6 and MOBTOX fuel parameters are the same.
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In the Houston analysis, on-road emissions are modeled in ISCST3 in two ways.  The first
was to assign on-road emissions to 1 kilometer (km) grid cells.  A second method was to allocate
on-road emissions to major road segments such as Interstate, U.S., and State highways using GIS
software.  On-road vehicle emissions not specifically allocated to these roads were interpolated to
1 km grid cells.  Therefore, for the 812 analysis, either of these two options could be used to
estimate on-road benzene emissions.

• Option 1:  Use county-level on-road benzene emission estimates and allocate
to 1 km grid cells.

• Option 2:  Where possible, place roadway emissions at actual locations
using a GIS system and activity estimates for individual links (vehicle
counts).

EPA prefers Option 2 because the dispersion model performance is better in Houston when this
option is employed.

It is proposed that the on-road ISCST3 input file for 1996 will be used as the base file for
the analysis, with scaling factors applied to these 1996 benzene emission estimates to estimate on-
road vehicle benzene emissions for all of the Section 812 analysis years of interest.  The scaling
factors will account for MOBILE6-estimated emission factors and expected vehicle miles traveled
(VMT) changes in each analysis year.  It is expected that VMT projections for Harris County will
be available from the Houston-Galveston Area Council to support our ability to estimate likely
future year VMT changes by year and geographic area within Harris County.  The proposed
approach is to use available travel demand model projections for the area to prepare estimates of
2010 and 2020 VMT at the 1x1 km grid cell level.  Because Houston's attainment year is 2007, it
is expected that VMT projections will be available for that year.  In addition, the area will have also
had to prepare a long-range forecast for transportation conformity purposes.  Their current efforts
are in preparing a long range forecast to 2030.  A year closer to 2020 may have been included in
previous transportation conformity analyses.  In any event, it is expected that some interpolations
will be required to incorporate Harris County-specific VMT forecasts in the 2000 and 2010 HAP
analysis.  Our objective is to capture the expected changes in traffic patterns across Harris County
in future years.  Because traffic counts were used to estimate base year VMT by geographic area,
and future year VMT estimates are expected to come from the travel demand model, there will have
to be some reconciliation of travel demand model-estimated traffic county-estimated VMT, as well.

One of the factors in how we approach revising the on-road benzene emission estimates to
incorporate MOBILE6 and to model different scenario years is the complexity associated with
separating the different exhaust and evaporative benzene components, and allocating these
spatially/temporally.  Benzene all vehicle MOBILE6 emission factors for average Texas conditions
are shown below:
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Emission Factor Components mg/mile
Benzene

Exhaust 58.18
Hot Soak 1.54
Diurnal 0.32
Resting Loss 0.58
Running Loss   5.14
Total 66.03

In the Houston analysis, MOBTOX was used to estimate on-road benzene emissions, and
we now want to use MOBILE6 to generate on-road emission factors.  For calendar year 1999, the
national on-road benzene emissions are estimated to be 174,720 tons per year using MOBILE6, and
were estimated to be 165,700 tons per year using MOBTOX.  This is a 5 percent increase with
MOBILE6.  Because this is an annual estimate for the entire United States, there could be bigger
differences in specific areas and seasons.  While the Houston analysis will include fuel parameters
and other conditions particular to that area, the national level benzene emission differences provide
a sense of what the MOBTOX to MOBILE6 adjustment might be.

In case the Philadelphia or Portland areas are to be included in the 812 HAP case
study, some information about how their on-road emissions analysis methods
differ from those used in Houston is provided below.  The information provided in
this analytical plan outline for these two areas is limited to on-road vehicle
emission estimation methods because this source type was a point of emphasis in
both studies.

The information available for Portland, Oregon focuses on on-road vehicle emission
estimation methods.  Methods applied to estimate current year HAP emissions are more
sophisticated than those used for the Houston area inventory.  The primary methods improvements
compared with those used in Houston include accounting for differences in vehicle speeds and their
effect on emission rates, differentiating running and non-running emissions -- with allocations of
non-running emissions to trip origins, and using household survey results and the trip assignment
model for Portland Metro to allocate travel by hour of the day.  Separate MOBILE6 runs were
conducted for each combination of area fleets, two seasons, four link types, and 14 speed bins.
Speed curve equations were generated to allow benzene emissions to be computed for any associated
speed.  MOBILE6 emission factors were applied at a link level to compute running emissions by
hour.  Emissions from intra zonal travel, and all non-running emissions, were allocated at trip
origins.

If the analysis is extended to the Philadelphia area, the on-road vehicle emission estimation
methods used in Philadelphia are consistent with those applied to estimate Portland area emissions.
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For the pre-CAAA scenario, we need to estimate what the fuel parameters were likely to
have been in the absence of regulation (using 1990 values is one option).  The remainder
of the MOBILE6 set-up for the pre-CAAA HAP scenario will be consistent with that being
performed for the criteria pollutant analysis.  These data are available from the
procedures used for the NEI.

 Non-road Vehicle and Engine Emissions

For the off-road sector, most source categories are included in EPA's NONROAD model,
so the latest version of NONROAD will be the recommended model for estimating benzene
emissions (where benzene will be estimated as a fraction of VOC emissions).  Off-road
vehicles/engines source types not included in NONROAD are aircraft, railroad locomotives, and
marine vessels.

For the source categories in Houston whose benzene emissions for 1996 were estimated
using the NONROAD model, for each analysis year, the most recent NONROAD model will be used
to develop a benzene emission factor for each source category.  The ratio of the new emission factor
for each analysis year to the previously estimated 1996 Houston benzene emission factor will be
used to develop a composite non-road benzene emissions scaling factor that will be used to adjust
the gridded benzene emissions file (input to ISCST3).

For the 1996 Houston analysis, special processing was performed for aircraft emissions. 
These emissions are separated from the mobile inventory using Airport Proc.  This program
separates airport emissions from the mobile inventory and prepares the airport emissions for input
into the point source processing programs.  Airport Proc allows for modeling airport-related
emissions as ISCST3-area sources with known locations and dimensions, rather than as spatially
allocated mobile sources.  This capability was built into the program because airport locations are
known.  EMS-HAP has been revised (though not yet documented) to include this capability for
airport-related emissions from the area source inventory (e.g., aircraft refueling) and generalize it
to include other traditionally nonroad or non-point sources in which specific locational data could
be supplied.

For categories not included in NONROAD, we propose to apply growth and control factors
(VOC factors) developed for the criteria pollutant analysis to develop consistent emission
projections for benzene.  Some adjustments may be necessary to aircraft emissions so that they can
be processed separately for input to point source processing programs.

To configure the NONROAD model to remove the effects of the CAAA for the pre-CAAA
scenarios, we expect to develop a specialty input file for NONROAD.  This input file will
be used to simulate emission rates if uncontrolled 1990 emission rates persist.  All non-
road engine emission standards are attributable to the CAAA, so we need uncontrolled
1990 emission factors to apply to the expected activity in each projection year.
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Area Source Emissions (Non-Point)

For non-point (area) sources, the criteria pollutant analysis is designed to use the 1990 and
1999 National Emission Inventory emission estimates for most source categories to reflect the
emission changes for the post-CAAA scenario.  The exception to this is for source categories with
significant emission estimation method changes in this period.  The same basic approach is proposed
for benzene.  We need to determine which source categories have had the most significant methods
changes.  Fire emission estimates were mentioned in a recent conference call as one candidate for
separate treatment.

Within non-point, one of the most prominent benzene sources is service station emissions.
An important component of these emissions is vehicle refueling (because of the personal exposure).
MOBILE6 is the preferred tool for producing emission factors for refueling because it can account
for the combined effects of any Stage 2 controls plus the onboard vehicle refueling controls that
have appeared on new gasoline-fueled vehicles since the mid-1990s.  It is our understanding that the
Houston ozone nonattainment area counties implemented Stage 2 controls in 1993.  Therefore, the
post-CAAA scenario benzene emission estimates for Houston will include these Stage 2 associated
emission reductions (at a 95 percent control efficiency).  The 1990 and pre-CAAA benzene emission
estimates will be at pre-control (uncontrolled) levels.  While service station emissions are typically
represented in the non-point source data base, there may be service stations included in the point
source data base for the area which will have to be reconciled with the non-point source estimates.

For the pre-CAAA scenario analysis, it will be necessary to identify the area source
categories that emit benzene that have been affected by 1990 CAAA provisions.  This may be a
combination of Title I - Nonattainment provisions designed to reduce ozone precursors and Title III
requirements.  One way to investigate this is to identify where control factors have been applied in
estimating benzene non-point source emissions in the 1999 NEI for HAPS.

We need to determine which benzene-emitting area source categories have had significant
methods changes between when the 1990 and 1999 area source emission estimates were
produced.  For these categories, 1990 benzene emissions will be re-calculated using
methods consistent with those used for 1999 estimates.  Because the Texas CEQ submitted
its own 1990 area source emission estimates based on some specialized surveys performed
for Harris County, and the 1999 draft benzene emission estimates include some non-point
source submittals from the State, some effort will have to be spent ensuring that
regulation-affected benzene emissions can be pinpointed.
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AIR QUALITY MODELING

The choice of an air quality model for use in a specific geographic area depends on several
factors, including the complexities of weather and terrain in the area; the level of detail available in
the emissions inventory, and the schedule and resources of the project.  While many air quality
models could be used to assess ambient concentrations of a HAP in an urban area, we have selected
the Industrial Source Complex - Short Term (ISCST3) model for this analysis.  ISCST3 is a steady-
state Gaussian plume model used to assess pollutant impacts from multiple point, area, and mobile
sources.  

An air dispersion model used to estimate air toxic pollutant concentrations in an urban area
should meet certain criteria.  Ideally, the model should:

• be readily available;
• represent state-of-the-art modeling practice;
• be applicable to urban areas and irregular terrain;
• be capable of handling point, area and mobile sources;
• be capable of accounting for dry and wet deposition of pollutants;
• be capable of treating atmospheric chemical transformations - pollutant chemistry;
• be capable of accounting for pollutant emissions that vary by season and

hour-of-day;
• be able to group source types for assessing impact;
• be capable of providing annual average concentration estimates (as well as shorter

time averages);
• be computationally efficient; and
• demonstrate good performance when compared with observed concentrations.  (U.S.

EPA, 2002)

The ISCST-3 Gaussian plume model is widely used for estimating the impacts of
non-reactive pollutants such as benzene because of its good performance against field
measurements, and because it is computationally efficient relative to other types of models, such as
grid and puff models.  The lack of complex terrain in the Houston area also makes ISCST3 a good
choice for this analysis; cities with less level terrain may benefit from more complex models such
as CALPUFF.  Other features of the ISCST3 dispersion model that make it useful for modeling air
toxics in an urban environment also include:

•  modeling of multiple point, area, and mobile sources;
• incorporation of building downwash effects;
• availability of an urban dispersion option;
• flexibility in specifying receptor locations and grouping of source impacts;
• algorithms for assessing the effects of elevated and/or complex terrain;
• modeling of the effects of deposition of gaseous and particulate emissions;
• an option to vary emissions by season and hour-of-day; and
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• an option to treat atmospheric transformations by exponential decay (U.S. EPA,
2002).

Additional details about the ISCST3 dispersion model can be found in the ISC3 model user’s guide
(U.S. EPA, 1995).

We plan to run ISCST3 for the base year, 1990, and each of the target years for both the pre-
and post-CAAA scenarios  to calculate annual average benzene concentrations at the population
weighted centroid of each census tract in Harris County.  We plan to use a similar modeling
approach to that used by EPA in its previous analysis of benzene concentrations in the Houston area
in 1996 (U.S. EPA, 2002)

Alternatively, if the source locations used in the 1996 emissions year modeling analysis for
Houston closely correspond with the 1990 and 1999 source locations, a source-receptor approach
to air quality modeling may be possible.  If the source locations match,  the most efficient way to
provide model-estimated benzene concentrations for the pre- and post-CAAA scenarios is to
estimate source-receptor coefficients (grids versus 701 receptors) and to use the grid-level changes
in benzene emissions and the source-receptor coefficients to estimate benzene concentrations at each
of the receptors for each scenario.  The choice between ISCST3 runs and a source-receptor approach
depends on how computationally efficient the ISCST3 model is.  If the model set-up and
computational time is minimal, then making additional model simulations would be preferred to
developing the source-receptor coefficients.

We plan to evaluate the validity of modeled annual average benzene concentrations against
monitoring data for benzene in the Houston area.  Air toxics monitoring data will be obtained from
EPA’s Aerometric Information Retrieval System (AIRS) web site at http://www.epa.gov/airs.
Agreement between modeled and observed values within a factor of two will be deemed acceptable
for use in the modeling effort.

HUMAN HEALTH EFFECTS ESTIMATION

This section presents our proposed approach to estimating avoided adverse health effects in
humans resulting from reductions in exposures to benzene in ambient air and in various
microenvironments.  We begin by describing how we translate the ambient benzene concentrations
output from the air quality model into estimates of benzene exposures to individuals as they carry
out their daily activities.  We then explain how we calculate numbers of cases of avoided cancer
cases due to changes in exposure levels, using dose-response data for benzene.

Exposure Estimation

We plan to estimate time-weighted average exposure concentrations to benzene for the
general populations in the study area of interest, based on the output of the air quality models.  In
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addition, we plan to assess risk reductions to two specific high-exposure subpopulations: individuals
living in homes with attached garages who spend most of their day at home, and service station
workers.  We plan to generate these estimates using the same exposure model used for the general
population.

The options for exposure modeling for the HAP case study include 1) the latest version of
Hazardous Air Pollutant Exposure Model (HAPEM), HAPEM5, and 2) the new Air Pollutants
Exposure Model (APEX).

HAPEM was developed for use in the 1996 National Air Toxics Assessment (NATA) which
attempted to characterize exposures and risks from high-priority urban air toxics for population
groups nationwide, using available EPA toxicity data. The HAPEM model inputs the ambient air
concentrations from an air quality model, and uses microenvironment (ME) factors (factors relating
the ambient outdoor concentration with the concentration for a specific indoor or vehicular
microenvironment) to adjust these concentrations to reflect the conditions in each of 37
microenvironments, including gasoline service stations. Using these factors and exposure pattern
data derived from EPA’s Consolidated Human Activity Database (CHAD) to assess time spent in
each ME for specific population cohorts, the model yielded an estimate of “exposure concentration”
for each HAP to which members of the cohort were exposed.

The Science Advisory Board review of NATA criticized the HAPEM version used in the
analysis (HAPEM4) for inadequately representing the distribution of exposures (U.S. EPA,EPA-
SAB-EC-ADV-02-001, 2001a).  In particular, the SAB objected to the use of point estimates for the2

ME factors. The new version under development, HAPEM5, has several improvements designed
to respond to the SAB criticisms. The 37 ME factors can now be input as distributions rather than
point estimates, in order to better capture the full distribution of exposures. HAPEM5 can also
incorporate spatial variability in air quality estimates within a census tract.  Comparison of
HAPEM5 with HAPEM4 indicates that mean exposure concentration estimates changed little, but
variability was greatly increased in HAPEM5. HAPEM has been used in Houston previously for
EPA’s recent assessment of local-scale urban air toxics. However the resolution of this model for
assessing temporal variability in concentrations of air pollutants is limited, because it is based on
average seasonal concentrations. Completion of HAPEM5 is expected in summer 2003. 

An alternative exposure modeling option is the newer Air Pollution Exposure (APEX)
model. This model has been designed for smaller scale modeling and is based on OAQPS’
probabilistic national exposure model for carbon monoxide (pNEM/CO). APEX is part of the
inhalation component of EPA’s Total Risk Integrated Methodology (TRIM), a time-series
multimedia modeling system. APEX can incorporate hourly emission rates and simulate hourly
inhalation exposures for all individuals in the sample population, rather than simply using the
seasonal average concentration values as HAPEM does. This feature allows for assessment of acute
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as well as chronic exposures, and correlation of exposures with specific activities.  APEX also can
use a mass balance approach to deriving estimates of concentrations in microenvironments.   These
features would be advantageous in a local-scale case study such as is planned for Houston, where
locations of roads and service stations are likely to impact exposure patterns significantly.  However,
for this case study APEX would be paired with the  less-detailed ISCST3 output, which would not
fully utilize the capacity of the model to assess temporal changes in air quality.  APEX uses the same
data describing human activity patterns (CHAD) as the HAPEM model.

APEX also does not have the capacity to allocate pollution to “source bins” such as point or
mobile sources, as HAPEM does, and it has not yet undergone external peer review (release of a beta
version is planned for the near future). 

At this time, we are proposing to use the HAPEM5 model, once finalized, to evaluate
exposures to benzene in the Houston area.  We believe it represents a reasonable approach,
especially since the revisions to HAPEM5 address the key concerns raised during the SAB review
of the NATA study.  While the APEX model is promising and may provide the ability for more
detailed analysis of exposures in the future, the benefits to the current proposed case study are not
expected to be large enough to justify using a model that has undergone less review than HAPEM.

Addressing High-Exposure Subpopulations

To provide a more complete illustration of the effects of reducing benzene exposures to
populations in the Houston area, we propose to do supplemental calculations of risk reductions to
two high-end exposure groups - service station workers and individuals spending significant
amounts of time in homes with attached garages.  Both subpopulations spend large portions of their
day in microenvironments expected to have above-average concentrations of benzene.  Studies of
the indoor air concetrations of benzene by EPA and others have found that benzene concentrations
in indoor air of homes with attached garages can be two to five times higher than outdoor benzene
concentrations.  Exposures to service station workers are expected to be high, especially during
refueling of vehicles (assuming a full-service station).  

We propose to perform these supplemental calculations using the HAPEM5 exposure model.
HAPEM includes microenvironmental factors for evaluating exposures at service stations (both
indoors and outdoors) and in a residence with an attached garage.  We will estimate the size of each
of the subpopulations exposed in these environments and their age distribution, and will develop an
activity profile for each group to reflect time spent at work or at home each day.  We will estimate
risk reductions to these groups using the same approach we are proposing for the general Houston
population.
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Key Benzene Health Endpoints

Our proposed method of assessing benefits from reduction in population exposures to
benzene is to estimate the monetary value of the cases of adverse health outcomes avoided and to
provide qualitative discussion for non-quantifiable effects likely to occur at ambient concentrations.
Effects may be non-quantifiable due to a limited database associating them with benzene exposure
or because they are likely to have a threshold concentration above ambient environmental levels.

Cancer

From a dose-response perspective, benzene is a very well-studied chemical with a substantial
database of epidemiological data associating it with leukemia.  The Integrated Risk Information
System (IRIS) entry for benzene identifies the cohort studies of benzene-exposed Pliofilm workers
in Ohio (Rinsky et al., 1981, 1987) as the best available data for dose-response evaluation.  Due to
a lack of historical exposure data, those studies had to rely on assumptions about exposure levels,
which have been extensively re-evaluated by other investigators (Crump and Allen, 1984;
Paustenbach et al., 1992).  IRIS presents a range of unit risk estimates for benzene-induced leukemia
(2.2 x 10  to 7.8 x 10  per µg/m  benzene in air).  The ends of the range are derived from estimates-6 -6 3

reported in Crump (1994) and reflect two alternative approaches to estimating benzene exposures
to Pliofilm workers.  We note that these maximum likelihood risk estimates do not represent upper
bound potency estimates, as is the case with most toxicological data for air toxics; as a result, they
are better suited for use in an 812-type analysis where an assessment of typical, not high end,
benefits is the goal.  We propose to use data from Crump’s study (1994) to develop quantitative
estimates of avoided cases of leukemia due to implementation of the Clean Air Act Amendments
of 1990.

In addition to leukemia, benzene exposure has been associated with other cancers in
epidemiological studies, particularly non-Hodgkin’s lymphoma (Hayes et al., 1997).  However, the
data on this endpoint are inconsistent and do not yet support a quantitative evaluation of this
endpoint.

Non-Cancer

Benzene has also been associated with a number of non-cancer health effects; however, many
of these appear unlikely to occur at levels expected to be found in ambient air (less than 10 parts per
billion, based on EPA’s NATA study).  Benzene exposure at high concentrations has been
associated with various hematological abnormalities, including aplastic anemia.
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EPA has recently developed a reference concentration (RfC) of 0.03 mg/m , based on3

benzene’s hematological effects.   The RfC is based on a cross-sectional study by Rothman et al.3

(1996) of 44 workers in Shanghai, China, who were occupationally exposed to benzene via
inhalation.  The critical effect on which the RfC is based is “decreased lymphocyte count.”  The
IRIS profile notes that such an effect is a biomarker of exposure, but that the effect itself is of
uncertain clinical significance to the average population. The significance of the effect depends both
on the magnitude of the decrease in lymphocytes and an individual’s baseline lymphocyte level.  For
example, the effect of reduced lymphocytes might be more significant for individuals whose immune
systems were compromised (e.g., those suffering from HIV/AIDS).

At this time, we are not proposing an effort to develop a fully quantitative estimate of non-
cancer hematological effects based on the dose-response data underlying the proposed new RfC for
benzene.  We considered extrapolating the dose-response function based on the data supporting the
RfC, in order to estimate “cases” of reduced lymphocyte counts expected at environmental exposure
levels.  However, the data set supporting the proposed RfC is limited (2 data points) and would not
support an extrapolation beyond the benchmark concentration (8.2 mg/m ) down to the low3

exposures expected in the environment.  We propose therefore, to assess this endpoint by reporting
the difference in the number of individuals experiencing benzene concentrations above the RfC
under the pre-CAAA and post-CAAA scenarios.  While we recognize that exposure above the RfC
does not necessarily imply the presence of an adverse effect in a given  individual, this estimate
nonetheless provides some measure of progress towards reducing the likelihood of adverse
hematological effects.

Results from other studies suggest a possible association between benzene and respiratory
effects, including reduced lung function, chronic respiratory symptoms, and asthma.  However, these
studies assessed benzene as a component of volatile organic compounds (VOCs) or engine exhaust
and thus could not isolate any effect attributable specifically to benzene (Ware et al., 1993; Laitinen
et al., 1994).

Approach to Estimating Avoided Cancer Cases

The goal of this approach is to calculate the expected number of fatal and non-fatal cases of
benzene-induced leukemia avoided as a result of the implementation of the 1990 Clean Air Act
regulations affecting benzene emissions in the Houston area.  We will estimate benefits both on an
annual basis for each target year (i.e., 2000 and 2010) and cumulatively across the entire 20-year
study period.  The approach we are proposing to estimate these benefits is based on the model used
to estimate risks due to radon exposure in the National Research Council’s BEIR IV report (1988).
The approach entails a life table analysis that calculates the probability of contracting (or dying
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from) leukemia for a given age cohort in a given time period, conditional on the probability of
surviving to that period.

The life table approach allows us to estimate benefits to age-specific cohorts, taking into
account age-specific mortality rates, both all-cause and leukemia-specific.  This approach also
allows us to explicitly integrate into our model an exposure lag parameter, L, that assigns a weight
of zero to an individual’s last L years of exposure.  This approach allows us to estimate a delay in
the realization of benefits, but it is not necessarily the same as the “cessation lag” effect previously
cited by the SAB (EPA-SAB-EC-01-008, 2001b).  The “cessation lag” refers to the estimate of how
fast cancer risks in a population will decline to a new steady-state level following a reduction in
exposure.  The lag, L, represents the period before any benefits begin to be observed.  However,
given the limited data available on cessation lag, this approach may provide a reasonable first
approximation of the effect of latency on benefits (see below.)

We intend to calculate a partial lifetime risk of dying from leukemia, focusing on the study
period.  We will estimate this risk for both the pre-CAAA and post-CAAA exposure scenarios.  The
equation we will use for calculating the partial lifetime probability of dying from leukemia (R ) is:0

where:

R  = partial lifetime risk of Leukemia incidence in the study period0
h  = Leukemia mortality rate in the study period ii
h  = all-cause mortality rate in the study period ii

*

S  = the probability of surviving through period i-1i-1
q  = the probability of surviving in period ii
(1-q ) = the probability of dying in period ii

Data on all-cause mortality rates will be obtained from the United States Department of Health and
Human Services’ National Center for Health Statistics for years 1990 through 2000 (if available).
The estimate of the baseline leukemia mortality rate will be obtained from the National Cancer
Institute’s SEER database for all available years in the study period.  We propose to use mortality
data from the latest available year to estimate risks in the latter part of the study period.  We will
attempt to use Houston-specific or Texas-specific data where available.

 The partial lifetime probabilities of Leukemia under the pre-CAAA and post-CAAA
exposure scenarios will be estimated for different age subcohorts, assessing risk at five-year
intervals using the output data from the exposure model.  The cases of Leukemia in each scenario
will be estimated by multiplying the probabilities associated with each subcohort by the 2000 census
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population for that subcohort, and then summing the results for each target year across subcohorts.
(We will also sum results across the entire 20-year study period to generate an estimate of
cumulative risk).  We estimate the number of leukemia cases avoided as the difference in the number
of leukemia cases in the pre- and post-CAAA scenarios.  

Survival rates for Leukemia have improved since the time of the Pliofilm cohort, suggesting
that a increased percentage of leukemia incidence in 1990-2010 will be non-fatal.  Non-fatal
leukemia cases represent a separate health endpoint in our benefits analysis.  Thus, we plan to
estimate benefits using both Leukemia incidence rates and Leukemia mortality rates.  The difference
between these results will represent the estimate of avoided non-fatal cases of Leukemia.

We will estimate the change in the leukemia mortality rate due to changes in exposure in the
pre- and post-CAAA scenarios using a proportional hazards model based on the cumulative
exposure multiplicative risk model used by Crump (1994):

where:

∆h = the change in the leukemia mortality rate in study period i
h  = the baseline leukemia mortality rate in study period ii
β = an estimate of benzene’s carcinogenic potency (risk per ppm-year)
∆C = the change in cumulative benzene exposure (ppm-years)

The estimate for the beta coefficient will be the maximum likelihood value reported by Crump
(1994) for the cumulative exposure linear multiplicative risk model incorporating a five-year
exposure lag.  (We plan to use a low-end and a high-end beta estimate, based on different
assumptions about the exposure of the Pliofilm workers, to generate a range of benefit estimates;
see below.)  Crump also estimated coefficients for this model assuming a three and zero year lag;
however he reported that the five-year lag assumption combined with the multiplicative risk model
produced the best fit to the data.  The true latency period for benzene-induced leukemia (and hence
the corresponding cessation lag period for the full benefits of exposure reduction to be realized) is
uncertain, however, and alternative assumptions about the lag structure could also be reasonable.

The estimates of the change in benzene exposure for the target years 2000 and 2010 will be
derived from the exposure model output for each age cohort.  We will need to interpolate estimates
of exposure concentrations for years in between the target years.  Our initial proposal is to perform
a linear interpolation of concentration changes between the target years.

Some assumptions inherent in these calculations are that Crump’s exposure-response
modeling results for the epidemiology study (Pliofilm cohort) can be applied to the general
population and that the relative risk model obtained applies to all age groups.  The applicability to
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the general population is a source of uncertainty, but the same assumption was also inherent in the
cancer potency estimates already adopted by EPA.  The assumption of applicability to all age groups
is generally a reasonable one and is commonly used (this assumption is also apparently integral to
Crump’s analysis).  To the extent that the cause(s) and pathogenesis of some childhood leukemias
may be different from those of adult leukemias, the inclusion of the childhood leukemia rates may
overestimate benefits to the younger subcohorts.  However, these younger subcohorts may be more
sensitive to benzene exposure, or benzene exposure may contribute similarly to the development of
childhood leukemias; thus, it seems reasonable and prudent to include them.

Cessation Lag

EPA’s Science Advisory Board has defined “cessation lag” as the period it takes for risk to
decline to a steady state level following a reduction in exposure.   For most, if not all, health effects4

associated with air toxics, there will be little or no data estimating the length of this period.
Therefore, in order to develop a reasonable temporal stream of benefits, we must rely on available
data that attempt to characterize the disease latency (the time between a critical exposure and the
development of symptomatic disease or death).  

Crump (1994) evaluated benzene risk using several models based on data from the Pliofilm
cohort.  His cumulative exposure models employ a “lag”, L, that assign a weight of zero to the last
L years of an individual’s exposure.  This model assumes that exposures during the most recent L
years do not affect the mortality rate. Crump tested lags of 0, 3, and 5 years and found that a lag of
5 years produced a significantly better fit to the data than lags of 0 or 3 years.  These findings would
suggest that the latency period for benzene-induced leukemia is at least five years, but could be
more.  It also implies that zero benefits would accrue in the first five years following an exposure
change.

Also, a recent paper by Silver et al. (2002) that evaluated the effect of follow-up time on risk
estimates in the Pliofilm cohort found that the relative risk of leukemia peaks in the first few years
following cessation of benzene exposure and that exposures five to ten years prior to the cutoff of
exposure have maximal impact on risk.  Together with Crump’s findings, this suggests that a new
steady state risk level may not be reached before at least five years and possibly 10 years following
an exposure reduction.

We are proposing using an exposure lag of 5 years in the HAP case study when estimating
the time stream of benefits due to reductions in benzene exposure, as a first approximation to the
“cessation lag”.  However, we acknowledge that the database regarding the latency of benzene-
induced leukemia, on which we must base our framework, is quite limited and uncertainty in the
mode-of-action of benzene carcinogenesis makes it difficult to assess the biological plausibility of
the values reported in these studies.  As a result, we propose to evaluate the effect of alternative lag
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structures (e.g., zero years, ten years, or five-years with a “phasing-in” of benefits) on benefits as
part of a sensitivity analysis.

ECONOMIC VALUATION OF EFFECTS

This section describes our approach to assigning economic value to the estimated benefits
of reductions in ambient benzene concentrations.  The scope of the valuation methodology is
determined by the prior steps in the case study, which necessarily limits monetization to those health
effects for which concentration-response estimates are available.  This is not meant to imply that the
ecological and non-quantified health benefits of benzene reductions have no value, only that within
the framework of this case study we are unable to estimate that value.  

Overview of Approach

We plan to apply valuation methods that are consistent with those employed to value the
benefits of the Second Prospective analysis of criteria pollutants.  For example, the valuation of fatal
cancers will rely primarily on the base value of statistical life (VSL) estimates used for PM mortality
valuation.  In the benzene exposure case, however, there is the additional consideration of a potential
“cancer premium” that many analysts believe to be an aspect of the health risk context that is
important for valuation.  In addition, the valuation of non-fatal cancer cases is not reflected in the
criteria pollutant analysis.  Finally, there is the consideration of non-cancer health effects associated
with benzene.  Although no quantification of non-cancer effects is planned for the case study, we
plan to provide some economic context for these real benefits of benzene control programs by
providing, where possible, cost-of-illness estimates and a summary of potentially relevant
willingness-to-pay values for the critical effect of concern (decreased lymphocyte count). 

For non-fatal cancer case valuation we propose to follow recent SAB advice on this topic
given during a consultation in 2001 regarding a possible arsenic rule-making by EPA’s Office of
Water (EPA/SAB 2001b).  Those recommendations have not been implemented by EPA to date, in
part because the arsenic drinking water rule was finalized based on a prior analysis, but we believe
the recommendations are relevant here, with some adjustment as outlined below.

Valuation of Cancer Endpoints

Fatal Cancers

Fatal cancers will be valued on a per-case basis using the VSL estimate developed from
meta-analysis of estimates in the relevant economic literature.  The approach to developing this VSL
estimate is described in depth in Chapter 8 of the Analytical Blueprint, Economic Valuation.  The
estimate developed from the meta-analysis described there reflects valuation of immediate, non-
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cancer risks.  As a result, this value needs to be adjusted to reflect the timing of the manifestation
of the risk (addressed in a separate section below), and the potential for a “cancer premium.”

The potential for a cancer premium was explicitly acknowledged in the previously cited SAB
report, and derives from the observation that cancer victims may suffer greater fear or dread than
the victims of the causes of death involved in VSL studies that underlie the meta-analysis used here
(see page 17 of their report).  If health individuals perceive that a death from cancer is worse than
a death from another cause, then it is plausible to conclude that they would be willing to pay more
to avoid that type of death.  The SAB concluded that there was little reliable information on how
large the premium might be, however.

The SAB did nonetheless endorse “the addition of estimates of the medical costs of treatment
and/or amelioration for fatal cancers to the VSL as a lower bound on the true value of avoiding fatal
cancers.”  In our case, these estimates would relate to the treatment costs for a fatal case of leukemia.
EPA is aware of no careful, comprehensive estimates of the cost of illness for leukemia treatment,
and leukemia is not one of the cancers currently covered by EPA’s Cost of Illness Handbook, but
costs for other, potentially similar cancers may be appropriate for this purpose.   Resource5

limitations preclude the development of a new primary cost-of-illness estimate to support this study,
but EPA plans to conduct a review of the health economics literature to ensure that the best available
estimates are used.

Non-fatal Cancers

Estimates of the value of avoiding non-fatal cancers are sparse in the economic literature.
The SAB arsenic panel, commenting on a valuation strategy for non-fatal bladder cancer,
recommended the use of two estimates that could be interpreted as the “two extreme estimates
available in the literature” as bounds in an uncertainty analysis.  The two estimates are for the value
of avoiding chronic bronchitis obtained by Viscusi, Magat, and Huber (1991), and the value of
avoiding nonfatal lymphoma obtained by Magat, Viscusi, and Huber (1996).  Both estimates are
willingness to pay estimates, but both are derived from mall intercept studies that raise concerns
about the representativeness of the sample.  Chronic bronchitis is a serious chronic condition that
the EPA Office of Drinking Water has interpreted to be similar in severity to nonfatal cancer.  

We plan to follow the SAB’s advice for valuation of nonfatal cancers, but to use a chronic
bronchitis value consistent with that used in the Second Prospective criteria pollutant analysis, which
incorporates downward adjustments in severity of the chronic bronchitis case that are consistent with
the type of case usually associated with air pollution exposure.
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Consideration of Cessation Lag

As discussed in prior sections of this chapter, reduction in exposure to benzene leads to
reduction in cancer cases after a period of cessation lag.  In economic terms, it is plausible to assume
that individuals would prefer avoidance of immediate health effects relative to avoidance of health
effects with a delay, suggesting that their willingness to pay to avoid delayed health effects is
affected.  Because the underlying VSL estimates are largely for immediately manifest risks of death,
the VSL estimate needs to be adjusted to account for the effect of the cessation lag on willingness
to pay.

We plan to make this adjustment by discounting the VSL estimate by the period of cessation
lag using two alternative discount rates consistent with those applied in the Second Prospective as
a whole (i.e., a primary estimate using a discount rate of 3 percent, and an alternative estimate using
a discount rate of 7 percent).

UNCERTAINTY ANALYSIS

This section discusses of proposed efforts to characterize uncertainty and variability in the
benefits estimates for the benzene analysis.

Emissions and Air Quality Modeling

The uncertainties associated with these two elements of the analytical chain are complex, and
we currently anticipate that resource limitations will preclude a probabilistic, quantitative treatment
of the effect of these uncertainties on the benefit results.  Therefore, at this time, we propose to
address uncertainties in these elements qualitatively, by identifying the key uncertainties, assessing
their relative magnitude (e.g., major versus minor) and their likely impact on our results.

Exposure

The HAPEM model incorporates variability and uncertainty distributions into its exposure
modeling algorithm, facilitating the characterization of variability and uncertainty in exposure.
Among the stochastic elements in the HAPEM model are variability in demographic characteristics,
activity patterns across demographic groups (e.g., time spent in different microenvironments), and
variability in work location.  The version of HAPEM currently being developed (HAPEM5) also
incorporates variability and uncertainty in microenvironment factors that relate concentrations in
a microenvironment to ambient levels, and spatial variability in ambient HAP concentrations within
census tracts.  The output of the HAPEM model will provide distributions of exposure
concentrations for different demographic groups that can serve as inputs to a probabilistic Monte
Carlo analysis of the benefits of reductions in benzene exposure.
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Dose Response

The major sources of uncertainty in this part of the analysis center on uncertainty
surrounding the true value of the beta coefficient describing the carcinogenic potency of benzene
and the true shape of the concentration response function at the lower concentrations expected to
be found in ambient air.

Uncertainty in the Concentration-Response (C-R) Coefficient (Beta)

Much of the uncertainty surrounding the carcinogenic potency estimates for benzene arises
from uncertainty in reconstructing the exposures of the Pliofilm workers.  To reflect this uncertainty,
we propose to calculate the primary benefit estimate of the reduced risk of benzene-induced
leukemia as a range of values.  This lower end of this range will be calculated using the beta value
that is associated with the lower Paustenbach exposure estimates in a multiplicative cumulative
exposure risk model with L = 5 years (1.1E-02); the upper end risk reduction will be calculated
using the beta value that is associated with the higher Allen exposure estimates and a multiplicative
cumulative exposure risk model with L = 5 years (1.7E-02).  Because IRIS does not assign
probabilities to the potency estimates calculated using alternative exposure assumptions, we do not
assign probabilities to the alternative benefit values calculated using those beta values.  Thus, the
range should not be interpreted as a statistical confidence interval; the primary benefit estimate is
expected to fall within the reported range of values, however.

We will also estimate an uncertainty distribution around each of the beta values used to
calculate primary benefits.  This distribution will capture the uncertainty in the measurement of the
beta value, separate from uncertainty in the exposure reconstruction.  For each beta value, we will
use the the reported estimate in the study as the best estimate of the mean of the distribution of C-R
coefficients.  We will then characterize the uncertainty surrounding the estimate of the mean C-R
coefficient as a normal distribution, with a standard deviation derived from the standard error of the
reported beta value.  These distributions can then be used as inputs into a Monte Carlo analysis of
benefits that would generate a distribution of benefits results for each of the two ends of the benefits
range.

Uncertainty in the Dose/Response Model

The mode of action for benzene-induced leukemia is complex, and despite significant
advances in our understanding of the process, much remains uncertain.  As a result, the true shape
of the dose response function can not be known with certainty.  EPA has concluded that there is
insufficient evidence at present to reject a linear dose-response curve for benzene, and thus
recommends use of the low-dose linear model.

However, there is some evidence suggestive of a non-linear dose response at low doses, and
risk estimates would be significantly affected if a non-linear model were to be adopted.  Ideally,
EPA would address this model uncertainty in the proposed benzene case study using a sensitivity
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analysis that illustrates the effect on benefits of assuming one or more alternative dose-response
shapes (e.g., a supralinear and a sublinear model).  Identifying suitable alternative functions from
the many non-linear possibilities appears to be a quite difficult task, however, due to the lack of
observed data in the low-dose range and the remaining uncertainties surrounding the benzene mode
of action.  Therefore, we are not proposing to recommend a quantitative evaluation of dose-response
model uncertainty but will instead include a qualitative discussion of its possible impact on benefits.

Valuation

Uncertainty analysis for the valuation component will largely depend on analytic choices
made in the criteria pollutant analysis.  Uncertainty in the base VSL estimate used for fatal cancer
will be characterized based on the Kochi et al. (2003) results presented in Appendix H of this
document.  The project team continues to explore options for characterizing uncertainty in the
medical cost of treatment component of fatal cancer valuation.  One option is to rely on estimates
of measurement error and/or variability in cost of illness as it is currently estimated based a national
survey method.  The approach for non-fatal cancer valuation that we propose implies uncertainty
characterized by a uniform distribution of values within the bounds of the “two extreme estimates
available in the literature” for chronic bronchitis.  

In the cases of fatal and non-fatal cancers, these characterizations of uncertainty are
appropriate for inclusion in a probabilistic framework.  Uncertainty in valuation of the effect of a
cessation lag, however, is more appropriately addressed by a sensitivity test.  We propose to evaluate
the effect of using a seven percent discount rate rather than the three percent rate we plan to use for
the primary analysis.
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Quantifying and valuing improvements in health resulting from environmental regulation

is a difficult and often thankless job.  While economists and some policymakers see the necessity

for such valuations in order to determine whether policies are an efficient use of societies

resources, many other disciplines find cost-benefit analysis, and particularly the assignment of a

dollar value to reductions in the risk of mortality, to be an “inherently flawed” process

(Heinzerling and Ackerman, 2002).  Even within the community of practitioners of cost-benefit

analysis, there is broad disagreement over the appropriate methods by which improvements in

public health should be quantified and valued.  

One of the more recent controversies regards whether reductions in mortality risk should

be reported and valued in terms of statistical lives saved or in terms of life years saved.  A further

complication in the debate is whether to apply quality adjustments to life years lost.  Under this

approach, individuals with preexisting health conditions would have a lower number of quality

adjusted life years (QALY) lost relative to healthy individuals for the same loss in life

expectancy.  However, the QALY approach has some appealing characteristics, for example, it

provides an alternative framework to cost-benefit analysis for aggregating quantitative measures

of health impacts.  As such, it provides an alternative method that can account for morbidity

effects as well as losses in life expectancy, without requiring the assignment of dollar values to

calculate total benefits.  Whether this aggregation is appropriate for evaluating environmental

regulations has still to be determined.

In recent analyses of air pollution regulations (U.S. EPA, 1999, 2000), the U.S. EPA has

applied a standard damage-function approach to quantifying and monetizing health benefits of
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reducing air pollution.  This approach has been used elsewhere in numerous applications (Kunzli

et al., 2000; Levy et al., 1999).  This approach quantifies reductions in individual health

outcomes, such as premature mortality and chronic bronchitis, and assigns dollar values to those

outcomes to obtain aggregate measures of monetized health benefits.  

This paper examines the implications of an alternative approach, the quality-adjusted life

years (QALY) method, which converts all health impacts (both mortality and morbidity) into

changes in quality adjusted life years.  Once the conversion to QALY has been accomplished,

QALY can be aggregated across health outcomes and combined with costs to provide cost-utility

ratios.  Alternatively, a monetary value can be assigned to each QALY gained to provide an

estimate of aggregate monetized benefits which can be compared with costs to calculate net

benefits.

Within this paper, I provide an overview of the key issues involved in implementing a

QALY based approach for evaluating the health impacts of air pollution regulations and illustrate

these issues with an example based on the recent Heavy Duty Engine/Diesel Fuel regulations. 

Section 2 presents a review of the current benefit-cost framework and the motivations for

exploring an alternative QALY based framework.  Section 3 compares the assumptions

embedded in willingness-to-pay based values with those embedded in QALY values.  Section 4

outlines several different methods that may be used to integrate QALYs into a cost-benefit

framework.  Section 5 provides the results and discussion of the illustrative application of the

QALY approach to the Heavy Duty Engine/Diesel Fuel regulations.  Section 6 concludes with

some thoughts on future research needs and policy considerations.
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Cost-Benefit Methods and the Rationale for a QALY Based Analysis

EPA is required under Executive Order 12866  to evaluate the costs and benefits of major

regulations, defined as those expected to have a cost of at least $100 million dollars (Clinton,

1993).  The current interpretation of this directive is to provide estimates of economic benefits

based on aggregations of individual willingness-to-pay (WTP), which reflects individual

preferences for health and environmental improvements.  EPA’s current approach uses WTP

applied to incidence of disease and premature death to calculate health-related benefits of air

pollution reductions.  Length of life lost and quality of life are not treated independently of WTP,

although age-specific WTP for mortality risk reductions is considered in a sensitivity analysis

(U.S. EPA, 2000). 

Based on the current cost-benefit framework, the most important quantifiable health

benefits associated with reduced air pollution are reduced risk of death and reduced risk of

chronic illness.  Monetized health benefits are dominated by the value of PM-related premature

mortality benefits.  The absolute size of mortality benefits is driven by two factors, the relatively

strong concentration-response function, which leads to a large number of premature deaths

predicted to be avoided per microgram of ambient PM2.5 reduced, and the value of a statistical

life, estimated to be about $6.3 million (2000$).  The relative size of mortality benefits, i.e. the

share of total health benefits accounted for by mortality, is driven by both the large absolute

magnitude of mortality benefits and by the relatively low values placed on non-mortality effects.

In recent reports, the Office of Management and Budget, which reviews all regulations for

compliance with E.O. 12866, has argued that “there are strong arguments that ‘life-years’ is a
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better measure than ‘lives’ of the effectiveness of regulatory alternatives” and that in cases where

there are reductions in non-fatal risks, i.e. risks of disease, “OMB is considering the use of new

effectiveness measures that combine information on mortality and morbidity.” (U.S. Office of

Management and Budget, 2001, 2002)  Two such measures mentioned by OMB are QALYs and

disability adjusted life years (DALY).  OMB recommends such measures because 1) they allow

for aggregation of mortality and morbidity without application of dollar values, 2) they provide

more emphasis on morbidity impacts, and 3) QALYs have been widely adopted in the public

health economics literature (U.S. Office of Management and Budget, 2002).

The EPA Science Advisory Board has also suggested that “EPA consider reporting some

results in terms of implied cost-effectiveness (e.g., dollars per life-year).” They suggest that

“EPA consider calculating the cost-effectiveness of the CAA and certain of its provisions for

comparison with other interventions that improve health. In other areas of public health,

cost-effectiveness is frequently characterized as cost per QALY gained.”  But they also note that

“alternative measures, such as the value of a statistical life-year (VSLY) or the value of a QALY,

are not consistent with the standard theory of individual WTP for mortality risk reduction” (U.S.

EPA Science Advisory Board, 2001). 

The recommendations of OMB and SAB are consistent with the recommendations by the

National Academy of Sciences panel on cost-effectiveness.  The NAS panel recommended the

use of QALYs when evaluating medical and public health programs that primarily reduce both

mortality and morbidity (Gold et al., 1996). The OMB, SAB and NAS panel recommendations

motivate the following discussion of implementation issues for QALYs in assessing the benefits
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of air pollution reductions.  However, the following discussion is predicated on the assumptions

embedded in the QALY analytical framework.  As noted in the QALY literature, QALYs are

consistent with von Neumann-Morgenstern utility theory only if one imposes several restrictive

assumptions, including independence between longevity and quality of life in the utility function,

risk neutrality with respect to years of life, and constant proportionality in tradeoffs between

quality and quantity of life (Pliskin, Shepart, and Weinstein, 1980; Bleichrodt, Wakker, and

Johannesson, 1997) To the extent that these assumptions do not represent actual preferences, the

QALY approach will not provide results that are consistent with a cost-benefit analysis based on

the Kaldor-Hicks criterion.  Even if the assumptions are reasonably consistent with reality,

because QALYs represent an average valuation of health states rather than the sum of societal

WTP, there are no guarantees that the option with the highest QALY per dollar of cost will

satisfy the Kaldor-Hicks criterion, i.e. generate a potential Pareto improvement (Garber and

Phelps, 1997).

Cost-benefit analysis based on WTP is not without potentially troubling underlying

structures as well, incorporating ability to pay (and thus the potential for equity concerns) and the

notion of consumer sovereignty.  Table 1 compares the two approaches across a number of

parameters.  For the most part, WTP allows parameters to be determined empirically, while the

QALY approach imposes conditions a priori.  Noting these differences, the remainder of the

paper takes an agnostic view of the two methods and investigates additional issues that arise in

applying the QALY method to air pollution regulations.
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QALY Implementation Issues

In designing a QALY-based analysis of the benefits of reducing air pollution, a number of

important issues need to be addressed.  These include (in no particular order of importance):

treatment of non-health benefits, treatment of acute symptoms, assessment of baseline life

expectancy and quality of life weights, assessment of loss in quality adjusted life years from

mortality and morbidity due to air pollution, and integration of QALYs into cost benefit analysis,

i.e. assignment of values to QALYs.  There are potentially other issues, however, I will focus on

this set as the most likely to substantially affect the evaluation of the QALY method.

Reductions in air pollution may result in a broad set of health and environmental benefits,

including improved visibility in national parks, increased agricultural and forestry yields, reduced

acid damage to buildings, and a host of other impacts.  QALYs address only health impacts, and

the SAB notes that “EPA should be careful to acknowledge that the costs per QALY or life-year

would be overstated to the extent that there are other benefits of the pollution reduction.”  To

address this issue, OMB suggests that agencies “develop a suitable measure of the effectiveness

of disparate programs directed toward enhancing other [non-health] aspects of the nation’s

welfare” and in the construction of their league table in the 2002 Federal Budget, chose to

“subtract the value of these benefits from the aggregate cost estimate to yield a net cost estimate.” 

I will follow this same “net cost” approach in the illustrative exercise.

 Health effects from exposure to particulate air pollution encompass a wide array of

chronic and acute conditions in addition to premature mortality (U.S. EPA, 1996).  While chronic

conditions and premature mortality generally account for the majority of monetized benefits,
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acute symptoms can impact a broad population or sensitive populations, e.g. asthma attacks in

asthmatic children.  Bala and Zarkin (2000) suggest that QALY are not appropriate for valuing

acute symptoms, due to problems with both the measurement of utility for acute health states,

and application of QALY in a linear fashion to very short duration health states.  Johnson and

Lievense (2000) suggest using conjoint analysis to get healthy-utility time equivalences which

can be compared across acute effects, but it is not clear how these can be combined with QALY

for chronic effects and loss of life expectancy.  There is also a class of effects which EPA has

traditionally treated as acute, such as hospital admissions, which may also result in a loss of

quality of life for a period of time following the effect.  For example, life after asthma

hospitalization has been estimated with a utility weight of 0.93 (Bell et al., 2001; Kerridge,

Glasziou, and Hillman. 1995).  

How should these effects be combined with QALY for chronic and mortality effects? One

method would be to convert the acute effects to QALY, however, as noted above, there are

problems with the linearity assumption, i.e. if a year with asthma symptoms is equivalent to 0.7

year without asthma symptoms, then one day without asthma symptoms is equivalent to 0.0019

QALY gained.  This is troubling from both a conceptual basis and a presentation basis. An

alternative approach is simply to treat acute health effects like non-health benefits and subtract

the dollar value (based on WTP or cost-of-illness) from compliance costs in the cost-

effectiveness analysis.  However, this takes away one of the key comparative advantages of using

QALY, the ability to aggregate morbidity and mortality effects without resorting to monetization. 

With that limitation in mind, I follow the latter approach in the illustrative exercise.
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For air pollution regulations that result in gains in life expectancy (reduction in premature

death), a critical variable in QALY analysis is the baseline life expectancy and health condition

of the affected population.  There is evidence that, at least for some of the mortality risks

associated with short term exposure to elevated levels of air pollution, the susceptible population

is comprised of individuals with chronic diseases (Goldberg et al., 2001).  However, recent

cohort analyses have found increased risk of all-cause mortality, as well as increased risks of

cardiopulmonary and lung cancer mortality (Krewski et al., 2000; Pope et al., 2002).  To the

extent that the life expectancy of populations potentially affected by air pollution differs from

that of the general population, QALY estimates of the benefits of air pollution reductions will be

biased if general population life expectancies are used.  However, there are some important

issues to consider when evaluating the appropriate baseline health condition and life expectancy.

First, there is little information on life expectancy with many chronic diseases, and,

QALY weights are available for some, but not all chronic health conditions.  One of the more

comprehensive collections of QALY weights can be found in the Cost Utility Analysis Database

at the Harvard Center for Risk Analysis (Bell et al., 2001).  This database lists QALY weights for

many of the chronic diseases that may be preexisting risk factors for susceptibility to air

pollution, including lung cancer, diabetes, congestive heart failure, cardiac disability,

hypertension, and chronic obstructive pulmonary disease (COPD).  

For many epidemiology studies, including most of the studies linking mortality with long-

term exposure to air pollution, the distribution of causes of death within the populations is

unknown except at the very broadest scale (i.e. all cardiopulmonary causes).  And, for most time
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series analyses of mortality, age at death is also not known.  Unless we know the distributions of

age at death, causes of death from air pollution and the underlying health condition of those

dying from specific causes, it is difficult to assign life expectancy and baseline quality of life.

An additional important issue in determining baseline life expectancy and health

conditions is whether we have properly accounted for morbidity preceding premature mortality. 

There are a number of epidemiological and toxicological studies linking exposure to air pollution

with chronic diseases, such as chronic bronchitis and atherosclerosis (Abbey et al., 1995;

Schwartz, 1993; Suwa et al., 2002).  If these same individuals with chronic disease caused by

exposure to air pollution are then at increased risk of premature death from air pollution, there is

an important dimension of “double-jeopardy” involved in determining the correct baseline for

assessing QALY lost to air pollution (see Singer et al. (1995) for a broader discussion of the

double jeopardy argument).  

Analyses estimating mortality from acute exposures that ignore the effects of long-term

exposure on morbidity may understate the health impacts of reducing air pollution.  As shown in

Figure 1, individuals exposed to chronically elevated levels of air pollution may realize an

increased risk of death and chronic disease throughout life.  If at some age they contract heart (or

some other chronic) disease due to the exposure to air pollution, they will from that point

forward have both reduced life expectancy and reduced quality of life.  The benefit to that

individual from reducing lifetime exposure to air pollution would be the increase in life

expectancy plus the increase in quality of life over the full period of increased life expectancy. 

Now, because the individual has contracted a chronic disease, he or she is also more susceptible
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to short-term episodes of high pollution which can lead to immediate death (as picked up in the

daily time series studies).  If the QALY loss is determined based on the underlying chronic

condition and life expectancy without regards to the fact that the person would never have been

in that state without long term exposure to elevated air pollution, then the person is placed in

double-jeopardy.  In other words, air pollution has placed more people in the susceptible pool,

but then we penalize those people in evaluating policies by treating their subsequent deaths from

acute exposure as less valuable, adding insult to injury, and potentially downplaying the

importance of life expectancy losses due to air pollution.  If the risk of chronic disease and risk of

death are considered together, then there is no conceptual problem with measuring QALYs, but

this has not been the case in recent applications of QALY to air pollution (Carrothers, Evans, and

Graham, 2002).  The use of QALYs thus highlights the need for a better understanding of the

relationship between chronic disease and long-term exposure and suggests that analyses need to

consider morbidity and mortality jointly, rather than treating each as a separate endpoint (this is

an issue for the current cost-benefit approach as well).

  Once one has arrived at estimates of QALY gained (or lost) due to an air pollution

reduction, the question arises at to how and whether to integrate these estimates into the cost-

benefit framework in which other, non-health benefits are considered.  The EPA SAB suggests

that QALYs “are not estimates that conform with, or should be combined with, VSL estimates”

(U.S. EPA Science Advisory Board, 2001).   OMB is not quite as strong in their, statements,

suggesting that there are several options, including: 1) don’t place a dollar value on QALYs, just

use them in cost-utility analysis; 2) apply a reference value from the health economics literature –
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current literature suggests from $100,000 to $250,000 per QALY; or 3) apply a single value

derived from the value of a statistical life (VSL), e.g. starting from a base VSL of $6.1 million,

the discounted value of a life year (assuming 35 years of remaining life expectancy and a 3

percent discount rate) is $284,000.  A recent QALY based analysis of mortality impacts of air

pollution applies a value of $300,000 per QALY, constructed by applying an adjustment to the

standard VSL-derived VSLY to account for differences in the contexts of air pollution risk and

the risks on which the standard VSL is based (Carrothers, Evans, and Graham, 2002).

A fundamental problem with converting VSL into VSLY is the implicit assumption

embedded in the VSLY approach that there is a linear relationship between the VSL and age.

This assumption is not consistent with the current evidence on the age-VSL relationship.  One

potential alternative that may be more consistent with recent stated preference literature (Jones-

Lee, 1989, 1993; Krupnick et al., 2000) is to use age-specific VSL to calculate age-specific value

of life-years.    The EPA Science Advisory Board in general agrees, noting that “inferring the

value of a statistical life year...requires assumptions about the discount rate and about the time

path of expected utility of consumption. The Committee agrees ....that the theoretically

appropriate method is to calculate WTP for individuals whose ages correspond to those of the

affected population, and that it is preferable to base these calculations on empirical estimates of

WTP by age (U.S. EPA Science Advisory Board, 2000).”  The VSL literature does not support

additional adjustments to VSL or VSLY for health related quality of life (based on Krupnick et

al, 2000).  This is supported by the EPA SAB, which noted that “there are no published studies

that show that persons with physical limitations or chronic illnesses are willing to pay less to
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increase their longevity than persons without these limitations. People with physical limitations

appear to adjust to their conditions, and their WTP to reduce fatal risks is therefore not affected

(U.S. EPA Science Advisory Board, 2000).”  

Table 2 lists the derived value of statistical life year for different ages based on the Jones-

Lee (1989, 1993) stated preference studies.  Note that the Jones-Lee 1989 paper estimated a very

steep quadratic relationship between age and WTP.  The Jones-Lee 1993 estimated a much flatter

relationship.  Because of this, for the Jones-Lee 1989 estimates, during the younger years, the

VSL is decreasing more slowly than the number of remaining life years (thus VSLY increases)

but during older years, the VSL is decreasing more rapidly than the number of remaining life

years, leading to reductions in VSLY.  For the 1993 study, VSL is always decreasing more

slowly than the number of remaining life years, so you see a steadily increasing VSLY.   

Setup for Illustrative Exercises: EPA’s Heavy Duty Engine/Diesel Fuel Regulations

To illustrate the issues raised above and to highlight some of the implications of those

issues, I develop two illustrative exercises based on the benefits analysis conducted in support of

the Heavy Duty Engine/Diesel Fuel (HDE) regulations promulgated by EPA in 2000.  Both

exercises are based on the same data and methods for generating QALYs.   The first exercise

illustrates the use of cost-effectiveness or cost-utility analysis with QALYs.  The second exercise

extends the use of QALY by demonstrating how QALYs might be integrated into benefit-cost

analyses.  

The HDE regulations are estimated to result in a population weighted reduction in PM2.5
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of 0.65 :g/m3 in 2030, when the fleet of heavy duty vehicles is expected to be fully turned over. 

The benefits analysis was therefore based on projected populations in the year 2030.  Although

we typically adjust WTP to reflect growth in real income in the future, no adjustment is assumed

in this exercise for simplification.  In addition, the focus of this exercise is only on mortality and

chronic bronchitis risk associated with fine particulate matter.  Other health and environmental

benefits total $3.8 billion (U.S. EPA, 2000).  The estimated costs of the rule are $4.2 billion/year,

representing the annualized costs of compliance over the period of implementation.

In this exercise, I develop estimates of the QALY gained from reductions in incidence of

premature mortality and chronic bronchitis associated with reductions in ambient PM2.5.  For

gains in life years resulting from reduced exposure to PM2.5, QALYs are calculated as:

,  where )Di is the number of premature deaths

avoided in age interval i, wi is the average QALY weight for age interval i, and DLEi is the

average discounted life expectancy for age interval i, calculated as , where

r is the discount rate and LEi is the average life expectancy in age interval i.  For gains in quality

of life resulting from reduced incidences of PM-induced chronic bronchitis, QALYs are

calculated as , where )CBi is the
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number of incidences of chronic bronchitis avoided in age interval i and is the QALY weight

associated with chronic bronchitis.  Following the literature, I discount QALYs over the period of

life expectancy using a 3 percent discount rate (Gold et al., 1996).  Using these QALY, I then

develop examples of both cost-utility ratios and monetary estimates of benefits, by applying three

different VSLY approaches.  In addition to the age-dependent VSLY outlined in Table 2, I

examine the impact of using QALY values from the health effects literature and VSLY derived

from an age-independent VSL of $6.1 million.

The source of the concentration-response function for premature mortality is the

reanalysis of the American Cancer Society cohort study of mortality and long-term exposure to

fine particles, applied to adults aged 30 and over (Krewski et al., 2000).  This study implies a

relative risk of 1.003 for the HDE reduction in PM2.5 of 0.65 :g/m3.  Another recent QALY-

based analysis (Carrothers, Evans, and Graham, 2002) suggests that mortality can be divided into

acute exposure and long-term exposure risk, however, the HDE analysis focused on the risks

from long-term exposure.  This is consistent with recommendations from the EPA SAB and

recent literature (Kunzli et al., 2001).    Although there is no specific scientific evidence of a lag

between reduction in PM and reductions in premature mortality, current scientific literature on

adverse health effects associated with smoking and the difference in the effect size between

chronic exposure studies and daily mortality studies suggest that all incidences of premature

mortality reduction associated with a given incremental change in PM exposure would not occur

in the same year as the exposure reduction. This literature implies that lags of a few years are

plausible.  Consistent with advice from the SAB, I have assumed a five-year distributed lag
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structure, with 25 percent of premature deaths occurring in the first year, another 25 percent in

the second year, and 16.7 percent in each of the remaining three years (U.S. EPA Science

Advisory Board, 1999).

Life expectancy at different ages was obtained from the Centers for Disease Control

abridged life tables for 1999 (U.S. CDC, 2001).  No information is provided in the Krewski et al.

(2000) analysis to determine the distribution of underlying health status within the study

population.  As such, I had to make an assumption regarding the appropriate baseline quality of

life for the affected population.  Because the general population is likely to be on average at

somewhat less than perfect health, I followed recent literature and assumed a QALY weight of

wi=0.95 for life years lost to air pollution (Carrothers, Evans, and Graham, 2002; Gold et al.,

1996).   

The concentration-response function for chronic bronchitis is taken from a cohort analysis

of Seventh Day Adventist non-smokers, applied to adults aged 27 and older (Abbey et al., 1995). 

This study implies a relative risk of 1.0086 for the HDE reduction in PM2.5 of 0.65 :g/m3.  

Prevalence rates were obtained from the Centers for Disease Control (Adams, Hendershot, and

Marano, 1999, Table 57).  There are no nationally representative estimates of the incidence of

new cases of chronic bronchitis.  Instead, we used an incidence estimate from Abbey, 1993, of

3.78 cases per thousand population, adjusted for age using the age distribution of the prevalence

rates.  I was not able to identify any literature estimating the life expectancy of individuals with

chronic bronchitis.  As such, I assumed that individuals with chronic bronchitis had the same

age-specific life expectancy as the general population, thus chronic bronchitis is assumed to
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result in no loss in life years.  Based on estimates reported in de Hollander et al. (1999), years of

life with chronic bronchitis are assumed to have a QALY weight of =0.69.  Years without

chronic bronchitis are assumed to have the same weight as the general population, i.e. wi=0.95. 

In the WTP based analysis, avoided incidences of chronic bronchitis are valued at $331,000

(1999$).  This value is derived from the severe chronic bronchitis/cost of living tradeoff values

reported in Viscusi, Magat and Huber (1991), adjusted to average severity chronic bronchitis

using the elasticity of WTP with respect to severity of illness reported in Krupnick and Cropper

(1992).  For more details, see the technical support document for the HDE analysis (Abt

Associates, 2000).

Results of Illustrative Exercise

Table 3 provides the results of the QALY analysis of mortality risk reductions.  Based on

the life table analysis, the average length of life lost by an individual dying due to causes related

to long-term exposure to PM2.5 is around 15 years.  The total discounted QALY gained from the

HDE reduction in PM2.5 in 2030 for the population over 30 is 83,771. 

Table 4 provides similar results for chronic bronchitis.  Based on the life table analysis,

the total discounted QALY gained from reductions in chronic bronchitis resulting from the HDE

regulation for the population over 27 is 33,844.  It is worth noting that most of this benefit (87

percent) is due to reductions in chronic bronchitis occurring in populations under 65 (i.e. the non-

elderly population).  This is due to the relatively long period of life that is lived with increased

quality of life without chronic bronchitis.
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The relationship between QALY gained and age is shown in Figure 2.  Because the

baseline mortality rate is increasing in age at a much faster rate than the prevalence rate for

chronic bronchitis, the share of QALY gained accounted for mortality is proportional to age.  At

the oldest age interval, avoiding incidences of chronic bronchitis leads to only a few QALY

gained, due to the lower number of years lived with chronic bronchitis.  QALY gained from

avoided premature mortality is low in the youngest age intervals because of the low overall

mortality rates in these intervals, although the number of QALY per incidence is high.  In later

years, even though the QALY gained per incidence avoided is low, the number of cases is very

high due to higher baseline mortality rates. 

Placing these results in the context of a cost-utility analysis, based on the costs of the

HDE rule of $4.2 billion, total cost per discounted QALY ignoring all other benefits, is $35,700. 

The HDE rule also resulted in $3.8 billion in other health and environmental benefits, or net

costs of $0.4 billion.  Net cost per discounted QALY is then $3,400.  Even ignoring other

benefits, the cost per QALY for the HDE rule compares favorably with many other health

interventions reported in the Harvard Cost Utility Analysis database, and is well below the

median cost per life-year saved for live-saving interventions of $48,000 (1993$) as reported by

Tengs et al. (1995).  With other benefits considered, the cost per QALY is very low relative to

others in the literature.

There are several important assumptions I have made due to a lack of sufficient data. 

One key assumption is that chronic bronchitis does not result in reduced life expectancy.  If this

is not the case, then individuals will gain not only the lost quality of life, but the increased life
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expectancy in improved health.  Another important assumption is the baseline utility weight for

the population affected by long-term exposure to air pollution.  I assumed that the average

population affected by air pollution would have a utility weight of 0.95.  However, some

literature suggests that baseline quality of life is age dependent.  For example, if we assume that

individuals over 84 have a base utility weight of 0.81 (Tsevat et al, 1998), this reduces the QALY

gained by 6 percent for reductions in premature mortality.  Finally, the assumption of a 3 percent

discount rate has a relatively large impact on the resulting QALY estimates.  Assuming a zero

percent discount rate would increase the QALY gained by 42 percent, while assuming a 7 percent

discount rate would decrease QALY gained by 25 percent.  Note that discount rates will have less

of an impact on the overall cost-utility comparison if costs and QALY are discounted at the same

rate, as both the numerator and denominator will be affected by any change in discount rate.  

Based on the standard WTP method, the estimated 8,025 avoided incidences of premature

mortality are valued at $6.1 million per statistical life, discounted over the 5 year cessation lag at

3 percent.  This yields a total value for reduced mortality risk of $46.5 billion.  Using age-

dependent VSL as defined in Table 5, the total values for reduced mortality risk are $25.0 and

$42.2 billion when using the Jones-Lee 1989 and 1993 adjustments, respectively.  The 6,543

cases of chronic bronchitis are valued at $2.2 billion.  The combined benefits of chronic

bronchitis, mortality, and all other monetized benefits are thus $54.1 billion using the standard

VSL, $32.6 billion using the Jones-Lee 1989 age-dependent VSL, and $49.8 billion using the

Jones-Lee 1993 age-dependent VSL.  When compared with costs of $4.2 billion, there are

substantial net benefits regardless of which VSL method is employed.
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Integration of QALY into the cost-benefit framework requires assigning a value per

QALY to QALY gained from reductions in chronic bronchitis and premature mortality.  Note

that a QALY gained is considered the same, regardless of whether it arises from improvements in

quality of life (from reduced chronic bronchitis) or improvements in quantity of life (gains in life

expectancy from reduced premature death).  Because of this, chronic bronchitis is not valued

using a different valuation estimate.  All QALY gained will be assigned the value, regardless of

source.  As indicated above, for this analysis, I examine five different values per QALY: two

based on the medical cost-effectiveness literature, one based on the standard $6.1 million VSL,

and two based on the Jones-Lee age-dependent VSL.  The results of this analysis are presented in

Table 6.  The most striking result of this table is that when the QALY approach is used, the value

of chronic bronchitis reductions is drastically increased relative to the value of reductions in

mortality risk.  All of the QALY based estimates of total benefits are lower than total benefits

under the standard WTP based approach with age-independent VSL.  However, when age-

dependent VSL are used, the QALY approach actually results in larger total benefits because the

value of QALY from chronic bronchitis reductions offsets the reduction in value from reduced

mortality risk.

To further emphasize this finding, consider that in the standard WTP methodology,

mortality risk reduction accounts for over 95 percent of combined benefits.  In the direct QALY

method, increase in life expectancy accounts for only 71 percent of the total QALY benefit.  In

the integrated assessment, this carries over, so that the value of mortality risk reduction now

accounts for between 71 and 80 percent of total benefits, depending on which method is used to
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derive the value of a QALY.   Even when age-dependent VSL are applied in the traditional WTP

based analysis, mortality benefits still account for over 90 percent of combined benefits.  Clearly,

the QALY method provides greater emphasis on chronic diseases which reduce quality of life

relative to reductions in mortality risk which have greater impacts on older populations with

lower life expectancy.

An important qualification to this finding is the sensitivity of this result to the assumed

dollar value of $331,000 per case applied to chronic bronchitis.  I have applied values for

mortality risk reductions and chronic bronchitis risk reductions that were derived from separate

sources.  However, Viscusi, Magat, and Huber suggest that it may be appropriate to use their

risk-risk data to derive an implicit value of chronic bronchitis which is more consistent with the

assumed VSL.  Using this implicit value method, the value of an incidence of severe chronic

bronchitis is 0.32*$6.12, or $1.95 million.  The corresponding value for an average case of

chronic bronchitis would be around $958,000 per case, or around three times the assumed value. 

This would bring the total value of chronic bronchitis in the cost-benefit analysis to $6.3 billion,

or 12 percent of total benefits, which is much more in line with the QALY based results. 

However, the implicit value method is very similar in concept to the QALY method, i.e. both

derive value per incidence by scaling VSL, so the result is not surprising.

Conclusions

As I have demonstrated in this paper, it is a relatively straightforward process to develop

estimates of QALY gained from air pollution regulations for mortality and chronic disease.  It is
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also numerically straightforward to monetize QALYs using a number of different methods.  

However, as I have discussed earlier in the paper, it is not necessarily appropriate to employ

QALYs, monetized or not, in cost-effectiveness analysis, and may be especially inappropriate in

benefit-cost analysis of environmental regulations.   Depending on the method used to value

QALYs, an integrated cost-benefit/QALY approach can result in either lower or higher

monetized benefits than the traditional WTP approach.  If one accepts the validity of applying

dollar values to QALYs, then the additional value assigned to chronic disease in some cases

more than offsets the loss in the value of a statistical life for older populations.  As the value of a

life year increases for older populations (the VSL falls at a less than proportional rate with age),

the value of reduced mortality risk approaches the value using the VSL approach.  The QALY

valuation approach most consistent with the stated preference WTP literature is based on

age-specific WTP.  And in fact, these two methods (age-dependent VSL and age dependent value

of a QALY) provide very similar values for reductions in mortality risk.

In considering the appropriateness of using QALYs in regulatory cost-benefit analysis, it

is important to recognize that the QALY method requires additional data and assumptions about

life expectancy, baseline health states for affected populations, life years impacted by chronic

disease, and utility weights for chronic diseases which may not be appropriate for environmental

policy analyses focused on maximizing net benefits.  Derivation of dollar values for QALYs

remains a controversial issue and adds additional uncertainty to a QALY based cost-benefit

analysis.  In addition, the QALY approach forces attention to the question “Does air pollution

just cause death in already ill people, or does it cause the disease that leads to death?”  Ignoring
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this question can lead to “double jeopardy” for those with chronic illnesses caused or exacerbated

to any significant degree by long-term exposures to air pollution.  

From an ethical standpoint, the QALY approach may be less desirable to decision makers

because it explicitly places a lower value on reductions in mortality risk accruing to older

populations with lower quality of life.  On the other hand, the QALY approach enhances the

perceived importance of chronic disease relative to premature mortality, especially when the

mortality impact is on older populations, and so can be argued to give more equitable

consideration to individuals who might suffer with chronic disease for a long period of life who

might otherwise be undervalued if appropriate WTP values are not available.  Under certain

assumptions, the QALY approach can even give larger total dollar benefits than the current

method because of the enhanced value of chronic disease reductions.  This may or may not hold

for other environmental scenarios, depending on the suite of health impacts considered.  Finally,

the issue of how to aggregate acute health effects for which QALYs do not seem well suited with

QALY estimates for chronic diseases and premature death may prevent QALYs from being

useful for policy analysis when there are a broad range of acute and chronic health outcomes

from a regulation.
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Figure 1. Relationship Between Long-term Exposure, Short Term Exposure, Chronic

Disease and Death 

(Source: Adapted from Kunzli, 2001).
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Figure 2.  Age Structure of QALY Benefits
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Table 1.  Comparison of QALY and WTP approaches

Parameter QALY WTP

Risk Aversion Risk neutral Empirically determined

Relation of duration and
quality

Independent Empirically determined

Proportionality of
duration/quality tradeoff

Constant Variable

Treatment of time/age in
utility function

Utility linear in time Empirically determined

Preferences Community Individual

Source of preference data Stated Revealed and stated
Treatment of Income and
Prices

Not explicitly considered Constrains choices

Table 2.  Derivation of Age-dependent Value of Statistical Life Year

Jones-Lee 

Age Group

Life

expectancy

Discounted Life

Expectancy (3%

rate)

Adjusted VSL

(J-L 1989)

Adjusted VSL

(J-L 1993)

Implied Value of

Life Year in

Average Health for

Age Group 

(J-L 1989)

Implied Value of

Life Year in

Average Health for

Age Group 

(J-L 1993)

20-29 52 27.0  $4.00  $5.45 $152,869  $208,284 

30-39 45 25.3  $5.45 $6.00 $222,149 $244,613 

40-59 34 21.8  $6.12  $6.12  $289,610 $289,610 

60-69 20 15.3  $5.26    $5.94  $353,770  $399,019 

70-79 14 11.6   $3.86   $5.63  $341,322 $498,439 

80-84 7 6.4  $1.71  $5.20 $275,044  $834,954 

85+ 5  4.6  $0.43  $5.02  $93,543  $1,095,791 
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Table 3. QALY Gained from Reductions in PM Mortality Risk

Age Interval Reduction in

PM-related

Deaths in

Interval (2030

Population)

Proportion of

PM  Deaths in

Interval

Life

Expectancy

Discounted

Life

Expectancy

Undiscounted

Life years

gained  in

interval

Discounted

Life Years

gained  in

interval

30-34 98 0.01 47.5 25.9 4,676 2,550 

35-44 315 0.04 42.8 24.6 13,451   7,749 

45-54 451 0.06 33.5 21.6 15,112 9,733 

55-64 901 0.11 24.8 17.8 22,323 16,060 

65-74 1,882 0.23 17.0 13.5 31,964 25,504 

75-84 2,409 0.30 10.4 9.1 25,060 21,894 

85+ 1,969 0.25 5.0 4.7 9,847 9,290 

Average length of life lost 15.26 11.56

Undiscounted Discounted

Total Gain in QALY (QALY weight = 0.95) 116,310 88,141 

Discounted over 5-year distributed cessation lag: 110,544 83,771 

Table 4. QALY Gained from Reductions in PM Chronic Bronchitis Risk

Age Total 2030

Population

(million)

CB

Prevalence

Rate

(per 1000)

CB

Incidence

Rate 

(per 1000)

Reduction

in CB

Incidence

Discounted

Life

Expectancy

(QALY

weight =

0.95)

Discounted

Quality

Adjusted Life

Expectancy

with CB

(QALY  weight

= 0.69)

Discounted

QALY

Gained per

Incidence

Reduced

Total

Discounted

QALY

gained  in

age group

25-29 30.3 45.40 3.14         776 25.1 18.2 6.9         5,328 

30-34 30.3 45.40 3.14         776 24.0 17.4 6.6         5,100 

35-44 52.6 45.40 3.14       1,347 22.8 16.6 6.2         8,406 

45-54 35.2 59.10 4.09       1,155 19.9 14.4 5.4         6,287 

55-64 29.4 59.10 4.09         965 16.4 11.9 4.5         4,318 

65-74 25.2 60.70 4.20         850 12.4 9.0 3.4         2,878 

75+ 18.2 67.30 4.65         675 8.3 6.0 2.3         1,526 

Undiscounted Discounted

Total Gain in QALY (QALY weight = 0.69)          56,951       33,844 
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Table 5.  Age-Dependent VSL Analysis of Reductions in Premature Mortality

Jones-Lee 

Age Group

Jones-Lee

(1989)

Ratios

Jones-Lee

(1993)

Ratios

J-L 1989

Adjusted

VSL

(million $)

J-L 1993

Adjusted

VSL

(million $)

# of Lives 

Prolonged

Non-Age-

Specific 

VSL Benefits

(billion $)

Jones-Lee

(1989)

Mortality

Benefits

(billion $)

Jones-Lee

(1993)

Mortality

Benefits

(billion $)

30-39 0.89 0.98 $5.45  $6.00 256 $1.5 $1.3  $1.5 

40-59 1.00 1.00 $6.12  $6.12 1,059  $6.1  $6.1  $6.1 

60-69 0.86 0.97 $5.26  $5.94 1,392  $8.1  $6.9  $7.8 

70-79 0.63 0.92 $3.86  $5.63 2,146  $12.4  $7.8  $11.4 

80-84 0.28 0.85 $1.71  $5.20 1,205  $7.0  $2.0 $5.9 

85+ 0.07 0.82 $0.43  $5.02 1,969 $11.4  $0.8  $9.4 

Total M ortality Benefits $46 .5 $25.0 $42.2 

Table 6.  Comparison of Total Monetized Benefits Across Life Year Valuation Methods

billion (1999$)

Valuation Approach Chronic Bronchitis Premature Mortality Total

Health Cost-Effectiveness Literature 

($100,000 - $250,000 per QALY)

 $3.4 - $8.5  $8.4 - $20.9  $11.8 - $29.4 

Standard $6.1 million VSL Basis

Statistical Lives Saved $2.2 $46 .5 $48 .7

QALY $9.6 $23 .8 $33 .4

Age-Adjusted VSL Basis

Statistical Lives Saved, J-L 1989 $2.2 $25 .0 $27 .2

QALY, J-L 1989 $8.5 $24 .4 $32 .9

Statistical Lives Saved, J-L 1993 $2.2 $42 .2 $44 .3

QALY, J-L 1993 $10 .9 $42 .7 $53 .6
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