

LECTURE #14

INSTREAM WATER QUALITY – BIOCHEMICAL REACTIONS

RCHRES STRUCTURE CHART RCHRES Simulate a reach or mixed reservoir **GQUAL** HYDR HTRCH Simulate heat exchange Simulate generalized Simulate hydraulic quality constituents & water temperature behavior DCALC **SEDTRN RQUAL Estimate advective Simulate constituents Simulate inorganic** behavior of sediment involved in biochemical constituents transformations CONS Simulate conservative

constituents

RQUAL STRUCTURE CHART

RQUAL

Simulate constituents involved in biochemical transformations

OXRX

Simulate dissolved oxygen and BOD

NUTRX

Simulate inorganic nutrients (N and P)

PLANK

Simulate plankton and refractory organics

PHCARB

Simulate pH and inorganic carbon

3 of 35

OXRX: DISSOLVED OXYGEN AND BOD PROCESSES

- Reaeration
- BOD decay/oxygen depletion
- Settling of BOD material
- Benthic oxygen demand
- Benthic release of BOD

OXYGEN REAERATION AND SATURATION

Function of DO deficit and reaeration coefficient

 $DO_{reaeration} = K_{reaeration} \cdot (DO_{sat} - DO)$

 $DO_{sat} = 14.65 + T_{w} \cdot f \cdot \left(-0.4102 + T_{w} \cdot (0.007991 - 0.7777 \cdot 10^{-4} \cdot T_{w})\right)$

where:

f

- T_w = Water temperature (°C)
 - = Correction factor based on reach elevation

OXYGEN REAERATION: OPTIONAL METHODS

Streams

1. Tsivoglou-Wallace equation

- Function of velocity and slope
- Temperature correction
- Rate coefficient

2. Covar equation

- Function of velocity and depth
- Temperature correction
- Rate coefficient
- Three sets of coefficients & exponents based on depth and velocity regimes
- 3. User-specified parameters (Covar equation)

Lakes

- Function of depth and wind speed
- User-defined correction factor

BOD DECAY

 $DO_{consumed} = K_{BOD} \cdot \theta^{(T_w - 20)} \cdot BOD$

where:

 K_{BOD} = BOD decay rate at 20 °C (hr⁻¹) θ = Temperature correction coefficientBOD= BOD concentration (mg/L) T_w = Water temperature (°C)

BENTHIC PROCESSES (Optional)

- Benthic oxygen demand
 - Exponential function of DO
 - Benthic oxygen demand at 20 ° C
 - Temperature correction

Benthic release of BOD

- Release rate under aerobic conditions
- Release rate under low oxygen conditions
- Exponential function of DO
- Adjusted under scouring conditions

OXYGEN/BOD PARAMETERS

- Escape coefficient in reaeration equations (REAK)
- Temperature correction coefficient for reaeration (TCGINV)
- Velocity exponent in user-specified reaeration (EXPREV)
- Depth exponent in user-specified reaeration (EXPRED)
- Lake reaeration correction factor (CFOREA)
- BOD decay rate at 20 °C (hr⁻¹) (KBOD20)
- Temperature coefficient for BOD decay (TCBOD)
- BOD settling rate (m/hr or ft/hr) (KODSET)

NUTRX: INORGANIC NUTRIENTS

• CONSTITUENTS

- NO₃ (nitrate)
- NO₂ (nitrite)
- NH₃ (ammonia), particulate NH₃
- PO₄, (orthophosphate) particulate PO₄

• **PROCESSES**

- Decomposition of BOD material to PO_4 and NH_3 (or NO_3)
- Nitrification of NH₃ to NO₃
- Denitrification of NO₃ to N₂
- Adsorption of NH₃ and PO₄ to sediment
- Benthic release of NH₃ and PO₄

INORGANIC NITROGEN SOURCES, SINKS AND TRANSFORMATIONS

INORGANIC PHOSPHORUS SOURCES, SINKS AND TRANSFORMATIONS

NITRIFICATION AND DENITRIFICATION

- Nitrification: $NH_3 \longrightarrow NO_2 \longrightarrow NO_3$
 - First-order in ammonia concentration
 - Nitrification rate coefficient (TAMNIT)
 - **Temperature correction (TCNIT)**
 - Consumes oxygen
- Denitrification: $NO_3 \longrightarrow N_2$
 - First-order in nitrate
 - Denitrification rate coefficient (KNO320)
 - Temperature correction (TCDEN)
 - Only occurs below threshold DO (DENOXT)

SEDIMENT- NUTRIENT INTERACTIONS

Particulate PO₄ and NH₃ - Optional

- Adsorption of PO₄ and NH₃ to three sediment fractions (sand, silt, clay) in the water column
- Deposition/resuspension of sediment is computed in SEDTRN section
- Resuspended sediment has constant, user-defined concentrations of NH₃ and PO₄
- Nutrient resuspension is limited by mass of sediment in bed

NUTRIENT PARAMETERS

- Nitrification rate of NH₃ at 20 °C (KTAM20)
- Nitrification rate of NO₂ at 20 °C (KNO220)
- Denitrification rate at 20 °C (KNO320)
- Dissolved oxygen threshold for denitrification (DENOXT)
- Adsorption coefficients for NH₃ and PO₄ adsorbed to inorganic sediment (ADNHPM, ADPOPM)
- Concentrations of NH₃ and PO₄ adsorbed to resuspended bed sediments (BNH4, BPO4)
- Benthic release rates of NH₃ under aerobic and anaerobic conditions (mg/m²/hr) (BRTAM)
- Benthic release rates of PO₄ under aerobic and anaerobic conditions (mg/m²/hr) (BRPO4)

NUTRIENT PARAMETERS: COMPOSITION OF BIOMASS

- Ratio of C to P in biomass (molar) (CVBPC)
- Ratio of N to P in biomass (molar) (CVBPN)
- Percentage of biomass weight consisting of C (BPCNTC)
- Mass (mg) of dissolved oxygen associated with 1 mg biomass (CVBO)

Default biomass composition: C:N:P = 106:16:1

PLANK: PLANKTON PROCESSES

- Phytoplankton
 - Growth, respiration, death
 - Settling from water column
 - Predation by zooplankton
- Zooplankton
 - Growth, respiration, death
- Benthic algae
 - Growth, respiration, death
- Refractory organics (N, P, C)
 - Results from decomposition of algal material
 - Settling

PHYTOPLANKTON SIMULATION

- Single species
 - Default composition: C:N:P = 106:16:1

• Advection and settling

- Settling rate: PHYSET
- Advection routine: maintains minimum concentration of phytoplankton in reach

• Light

- Solar radiation reduced by surface shading and reflection
- Light extinction = base/water + sediment + phytoplankton
- Euphotic depth and light available to phytoplankton
- Light correction factor (< 1 if euphotic depth < average depth)

PHYTOPLANKTON SIMULATION

- Growth simulation by Michaelis-Menton kinetics $G_i = G_{max,T}^* X_i / (C_{xi} + X_i)$

where

- G_i = Growth rate based on nutrient or light limitation
- $G_{max,T}$ = Temperature-corrected maximum growth rate
- X_i = Nutrient concentration or light intensity
- C_{xi} = Michaelis-Menton constant for nutrient or light limited growth
- Growth rate = minimum G_i (where i = nitrogen, phosphorus, light)

PHYTOPLANKTON SIMULATION

Respiration

- First-order, temperature-corrected rate

• Death

- First-order
- Low death rate (ALDL) when nutrients are plentiful
- High death rate (ALDH) when nutrients are scarce or phytoplankton concentration is high
- Increased during anaerobic conditions

PHYTOPLANKTON PARAMETERS: 1

- Maximum algal unit growth rate (MALGR)
- Michaelis-Menton constant for light-limited growth (CMMLT)
- Nitrate Michaelis-Menton constant for N-limited growth (CMMN)
- Nitrate Michaelis-Menton constant for P-limited growth (CMMNP)
- Phosphate Michaelis-Menton constant for P-limited growth (CMMP)
- Temperature above which algal growth ceases (TALGRH)
- Temperature below which algal growth ceases (TALGRL)
- Temperature below which algal growth is retarded (TALGRM)
- Base extinction coefficient (EXTB)
- Ratio of chlorophyll a to phosphorus in biomass (RATCLP)
- Non-refractory fraction of algae and zooplankton biomass (NONREF)
- Fraction of nitrogen required for algal growth satisfied by NO₃ (ALNPR)

PHYTOPLANKTON PARAMETERS: 2

- Unit algal respiration rate at 20C (ALR20)
- High algal unit death rate (ALDH)
- Low algal unit death rate (ALDL)
- Increment to phytoplankton death rate due to anaerobic conditions (OXALD)
- Inorganic N concentration below which high death rate occurs (NALDH)
- Inorganic P concentration below which high death rate occurs (PALDH)
- Chlorophyll a concentration above which high death rate occurs (CLALDH)
- Minimum concentration of plankton not subject to advection (SEED)
- Concentration of plankton not subject to advection at low flow (MXSTAY)
- Flow rate where plankton concentration not subject to advection is midway between SEED and MXSTAY (OREF)
- Settling rate of phytoplankton (PHYSET)

ZOOPLANKTON

• Filtering and ingestion of phytoplankton

- First-order, temperature-corrected rate at low phytoplankton concentrations; constant rate at high phytoplankton concentrations

Assimilation

Ingested phytoplankton converted to zooplankton; efficiency based on user-defined food quality

Respiration

First-order, temperature-corrected rate; inorganic nutrients released

• Excretion

- Difference between ingestion and assimilation; BOD, refractory organics, and inorganic nutrients released

• Death

First-order rate based on dissolved oxygen conditions; BOD and refractory organics released

ZOOPLANKTON PARAMETERS

- Quality of zooplankton food (ZFOOD)
- Maximum zooplankton unit ingestion rate (mg phyto/mg zoo/hr) (MZOEAT)
- Zooplankton filtering rate at 20C (l/mg zoo/hr) (ZFIL20)
- Zooplankton unit respiration rate at 20C (/hr) (ZRES20)
- Zooplankton unit death rate (/hr) (ZD)
- Increment to zooplankton death rate in anaerobic conditions (/hr) (OXZD)
- Temperature correction coefficient for filtering (-) (TCZFIL)
- Temperature correction coefficient for respiration (-) (TCZRES)
- Fraction of non-refractory excretion immediately decomposed when the ingestion rate is greater than MZOEAT (-) (ZEXDEL)
- Average weight of a zooplankton organism (mg) (ZOMASS)

BENTHIC ALGAE

- Attached to rocks and other stationary material
- Two optional methods:

Method 1. - Simulated using same composition, processes and methods as phytoplankton

- no advection
- different method for estimating death
- parameters:

MBAL - maximum benthic algae density (mg biomass/m²)
CFBALG - ratio of benthic algae to phytoplankton growth rate
CFBALR - ratio of benthic algae to phytoplankton respiration rate

BENTHIC ALGAE

Method 2. - Simulated using separate kinetic equations independent of phytoplankton

- based on DSSAMt model (Caupp, et al., 1998)
- four species of algae, including N-fixing (blue-green)
- nutrient-, light-, temperature-, and density-limited growth
- respiration
- removal by invertebrate grazing and scour

REFRACTORY ORGANICS (N,P,C) MASS BALANCE

SUMMARY OF NITROGEN CYCLE

PHCARB: pH & INORGANIC CARBON

- Computes pH based on total inorganic carbon, alkalinity, and CO₂ equilibrium
- Alkalinity is simulated as a conservative in CONS section
- CO₂ input from atmosphere is proportional to the oxygen reaeration rate

PHCARB PARAMETERS

Ratio of CO₂ invasion rate to oxygen reaeration rate (CFCINV)

Benthic release rates of CO₂ for aerobic and anaerobic conditions (BRCO2)

