

EPA BASINS 4.0 CLIMATE ASSESSMENT TOOL

Environmental Protection Agency's Global Change Research Program National Center for Environmental Assessment Office of Research and Development EPA/600/R-08/088F | May 2009 | www.epa.gov /ncea2

Session 1: Introduction

Session 1: Introduction

Part A

• Risks of Climate Change from a Watershed Perceptive

Part B

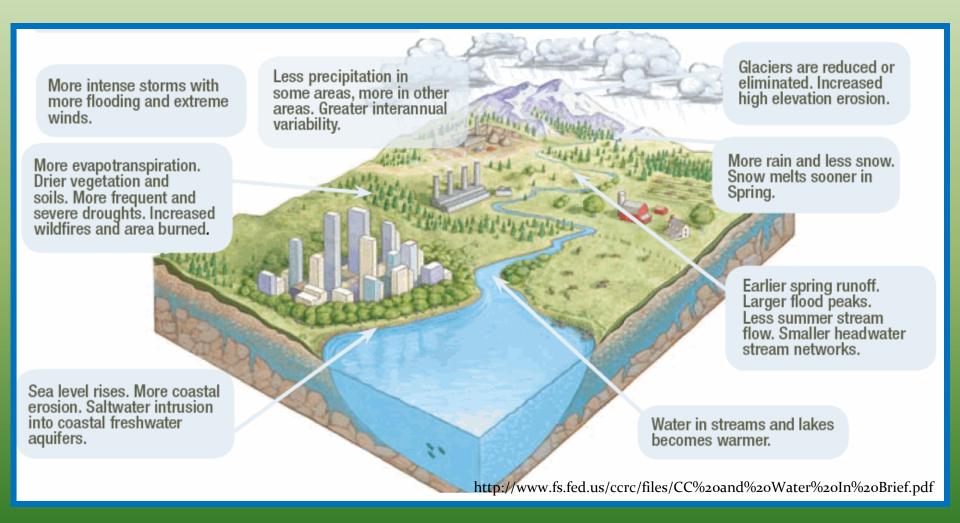
Watershed Managers' Needs and Actions

Part C

Overview of CAT

Part D

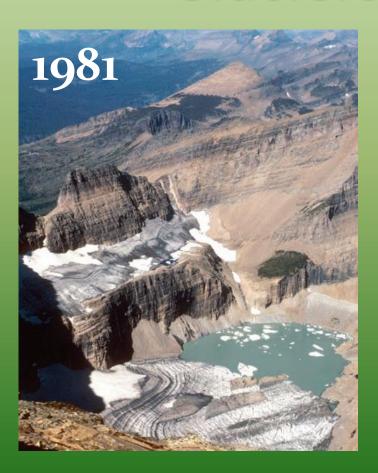
Scoping Questions

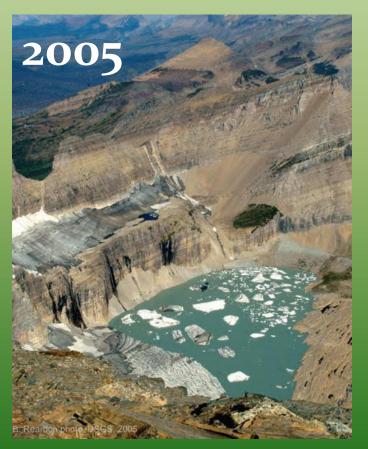


Risks of Climate Change from a Watershed Perspective

Water and watersheds are highly climate sensitive.

Water Supply

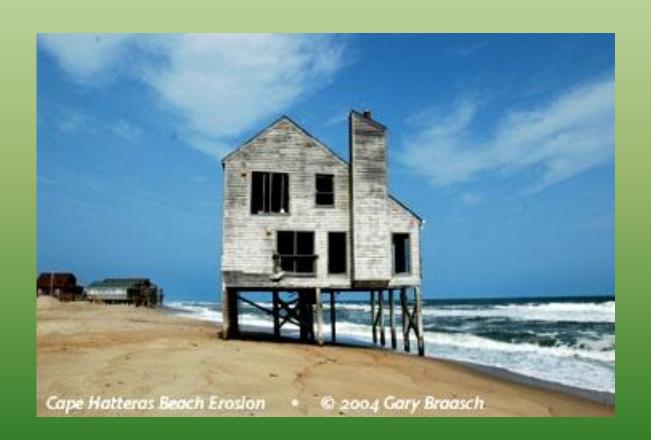

Increased Wildfires



Glaciers Reduced

Reduced Water Quality

Flooding


Drought

Sea Level Rise

Session 1: Part B

Water Managers' Needs and Actions

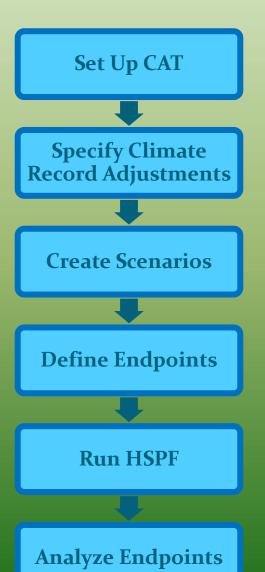
Needs of the Watershed Manager

- Identify watersheds and resources most vulnerable to climate change
- <u>Construct</u> scenarios for a range of plausible future climatic changes and assess the likely effects of each, and
- <u>Identify</u> management measures effective in mitigating climatic impacts.

Type of Actions

- Protect and restore riparian forests
- Improve or decommission roads
- Restore meadows, wetlands, and flood plains
- Adapt/refine practices for water supply, flood control, and stormwater management
- Maintain and restore environmental flows
- Remove migration barriers and reestablish habitat connectivity
- Strategically reduce wildfire risks

Overview of CAT


Overview of BASINS CAT

- What is CAT
- What CAT is not
- The Delta Method
- CAT Set Up

CAT provides watershed managers a tool to assess climate related risk.

CAT Process Overview

Use of CAT requires an existing, calibrated HSPF model within the BASINS system.

What CAT is NOT

- CAT is NOT a complete or stand alone model
- Does NOT provide climate change scenario data
- Does NOT limit the amount of change relative to precipitation and air temperature

Climate
changes
well outside
the range of
variability
experienced
during the
calibration
period are
NOT
appropriate

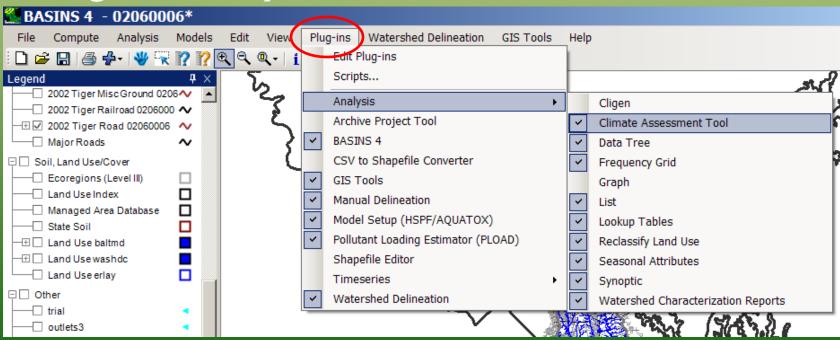
CAT Applies the Delta Method

- Change scenarios are developed by superimposing a set of changes, or deltas, onto a historical data set
- User defines a base period of historical temperature and precipitation data to reflect any desired future change or changes.

Advantages of the Delta Method

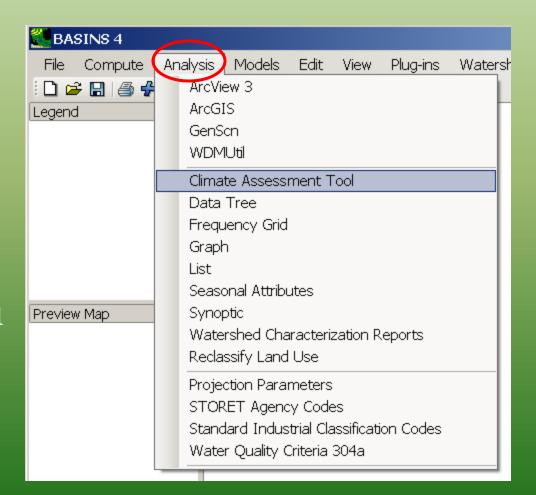
- Relatively simple to implement
- Able to represent a wide range of potential changes
- Change scenarios created will incorporate any spatial or temporal structure present in observed weather records

Limitation of the Delta Method

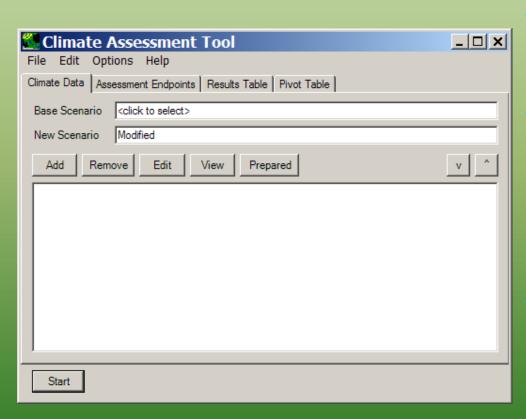

- Assumes that the model calibration is robust to the proposed changes.
- Users should use their own discretion in interpreting results.
- It MUST be assumed that change scenarios do not impact basic watershed behavior in such a way that the model parameterization achieved through calibration is no longer valid.

Running CAT

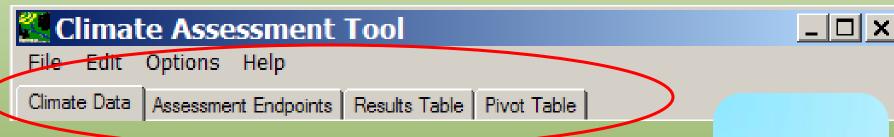
- Requires BASINS Version 4
- From the BASINS main form, activate BASINS CAT by selecting Climate Assessment Tool from the Plug-ins: Analysis menu.



CAT's Main Form


- Click Analysis on BASINS Menu bar.
- The main BASINS
 CAT form opens.
 It contains a menu bar, four tabs, and the Start button.

CAT's Main Form

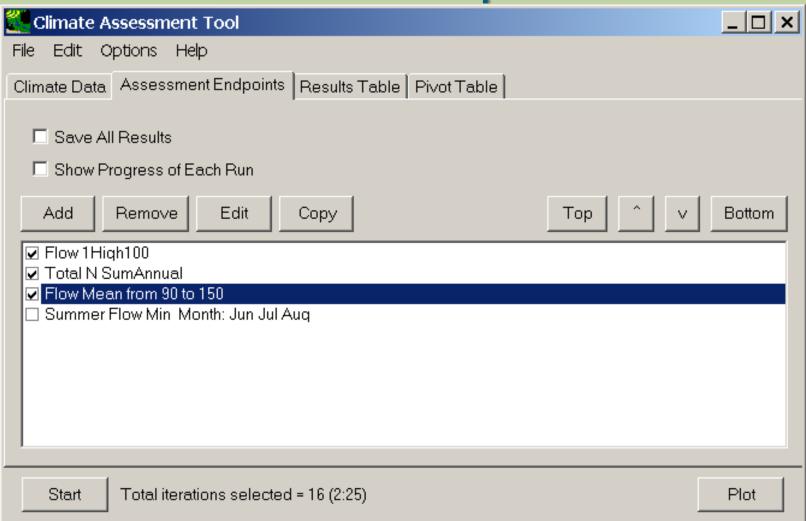


- File, Edit, Options, Help Menus
- At least one climate scenario and one assessment endpoint are necessary
- After selecting climate data and desired endpoints, press the Start button

Tabs

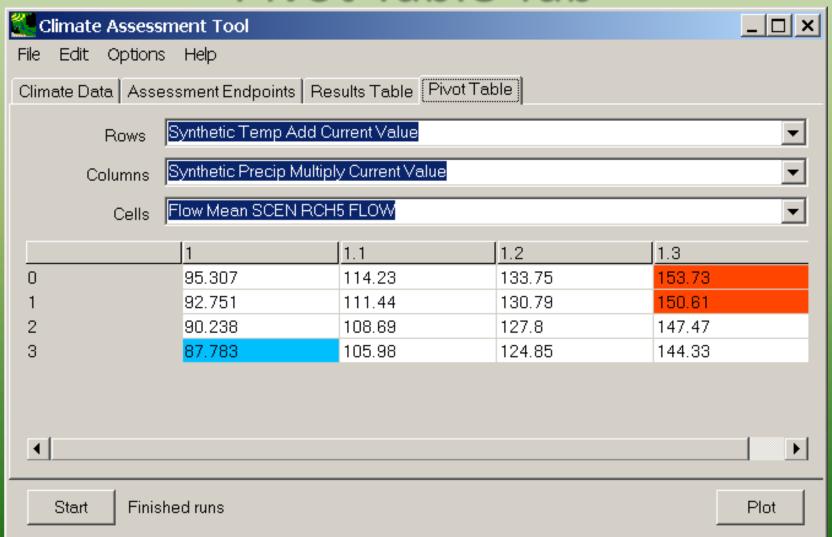
- Climate Data Tab -- to create climate change scenarios
- Assessment Endpoint Tab -- to specify endpoints
- Result Table and Pivot Table Tabs
 to view model output

At least one climate scenario and one assessment endpoint are necessary to run CAT.


Climate Data Tab

Climate Assessment Tool	_ ×
File Edit Options Help	
Climate Data Assessment Endpoints Results Table Pivot Table	
Base Scenario C:\BASINS\data\Climate\base.uci	
New Scenario Modified	
Add Remove Edit View Prepared	v ^
☐ Partial Precip Multiply 0.8 Water Year: 1986	
□ Storm Intensity Intensify 10 □ Storm Frequency AddEvents 10 Month: Mar Apr May	
☐ Temperature Add 2	
☐ Temp Cool Season Add 2 Month: Jan Feb Mar Apr Nov Dec ☐ Temp Warm Season Add 4 Month: May Jun Jul Aug Sep Oct	
☐ Partial Temp Add 3 Water Year: 1986	
 ✓ Synthetic Temp Add from 0 to 3 step 1 ✓ Synthetic Precip Multiply from 1 to 1.3 step 0.1 	
	⊽
Start Total iterations selected = 16 (2:25)	Plot

Assessment Endpoints Tab


Results Table Tab

Climate Assessment T	ool			_ ×		
File Edit Options Help						
Climate Data Assessment Endpoints Results Table Pivot Table						
Run Partial Precip	Partial Temp	Total N	Flow	Summer F		
Multiply	Add	SumAnnual	Mean	Min		
Current Value	Current Value	SCEN RCH5 TN-LOAD	SCEN RCH5 FLOW	SCEN RC		
WaterYear (1986)	WaterYear (1986)			Month (Ju		
1 0.8	3	289,260	81.142	10.109		
•				Þ		
Start Finished runs	3			Plot		

Pivot Table Tab

Scoping Questions

Scoping Questions

- What are the range of plausible future climatic changes for my watershed(s)?
- What is most vulnerable to climate change in my watershed(s)?
- What hydrologic and water quality endpoints would best represent the impacts on my watershed (s)?
- What mitigation measures seem most appropriate for the impacts likely to occur for each scenario?
- What are my assessment goals?