United States Environmental Protection Agency Solid Waste and Emergency Response (5102G) EPA 542-R-01-019 September 2001 clu-in.org

EPA Use of Bioremediation at Superfund Sites

EPA-542-R-01-019 September 2001

Use of Bioremediation at Superfund Sites

U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC 20460

NOTICE AND DISCLAIMER

This document was prepared by the U.S. Environmental Protection Agency's Technology Innovation Office with support under EPA Contract Number 68-W-99-003. Information in this report is derived from a variety of references, some of which have been peer-reviewed. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. For more information about this document, please contact: Linda Fiedler, U.S. Environmental Protection Agency, Technology Innovation Office, Ariel Rios Building, 1200 Pennsylvania Avenue, N.W. (MC 5102G), Washington, D.C., 20460; (703) 603-7194; e-mail: fiedler.linda@epa.gov.

This document may be obtained from EPA's web site at *<http://www.epa.gov/tio/>*, or at *<http://clu-in.org>*. A limited number of hard copies of this document are available free of charge by mail from EPA's National Service Center for Environmental Publications, at the following address (please allow 4 to 6 weeks for delivery):

U.S. EPA/National Service Center for Environmental Publications P.O. Box 42419 Cincinnati, OH 45242 Phone: (513) 489-8190 or (800) 490-9198 Fax: (513) 489-8695

ACRONYMS

AFB	Air Force Base
AFCEE	Air Force Center for Environmental Excellence
ASR	Annual Status Report
BHC	" -Benzene Hexachloride
BTEX	Benzene, Toluene, Ethylbenzene, and Xylenes
$\begin{array}{c} CA \\ CCl_4 \\ CO_2 \\ Cr^{+3} \\ Cr^{+6} \end{array}$	Corrective Action Carbon Tetrachloride Carbon Dioxide Trivalent Chromium Hexavalent Chromium
CVOC	Chlorinated Volatile Organic Compound
cy	Cubic Yard
DCE	Dichloroethene
DDD	Dichlorodiphenyldichloroethane
DDE	Dichlorodiphenyldichloroethene
DDT	Dichlorodiphenyltrichloroethane
DoD	U.S. Department of Defense
DOE	U.S. Department of Energy
DOI	U.S. Department of the Interior
DS	Demonstration Scale
EPA REACH IT	EPA REmediation And CHaracterization Innovative Technologies
ESD	Explanation of Significant Differences
FRTR	Federal Remediation Technologies Roundtable
FS	Full Scale
FY	Fiscal Year
JOAAP	Joliet Army Ammunition Plant
mg/kg	Milligrams per Kilogram
NC	Not Calculated
NNEMS	National Network of Environmental Management Studies
NR	Not Reported
NSCEP	National Service Center for Environmental Publications
OU	Operable Unit
PAH	Polycyclic Aromatic Hydrocarbon
PCB	Polychlorinated Biphenyl
PCE	Tetrachloroethene
PCP	Pentachlorophenol
PHC	Petroleum Hydrocarbons
POL	Petroleum, Oil, and Lubricant
RCRA	Resource Conservation and Recovery Act
ROD	Record of Decision

ACRONYMS (continued)

SVE	Soil Vapor Extraction
SVOC	Semivolatile Organic Compound
TCE	Trichloroethene
Tetryl	N-methyl-n,2,4,6-tetranitroaniline
TNT	Trinitrotoluene
TPH	Total Petroleum Hydrocarbon
UST	Underground Storage Tank
VC	Vinyl Chloride
VOCs	Volatile Organic Compounds

Section	<u>Page</u>
1.0	SUMMARY 1
2.0	OVERVIEW OF BIOREMEDIATION TECHNOLOGIES
3.0	CHARACTERISTICS OF BIOREMEDIATION PROJECTS AT SUPERFUND AND OTHER SITES
	3.1TYPES OF BIOREMEDIATION PROJECTS73.2REMEDY SELECTION13
4.0	PERFORMANCE OF BIOREMEDIATION TECHNOLOGIES
5.0	COST OF BIOREMEDIATION TECHNOLOGIES
6.0	VENDORS OF BIOREMEDIATION
7.0	REFERENCES
8.0	ADDITIONAL INFORMATION ABOUT INFORMATION SOURCES

TABLE OF CONTENTS

APPENDICES

А	Selected Information about 104 Bioremediation Projects at Superfund Remedial Action Sites (FY 1982 - FY 1999)	A-1
В	Additional Information about Development of Cost Curves for U.S. Air Force Bioventing Applications	B-1

TABLES

<u>Table</u>	Pa	ge
1	Description of <i>In Situ</i> Bioremediation Technologies	4
2	Description of <i>Ex Situ</i> Bioremediation Technologies	4
3	Field Use of Three Types of Bioremediation Technologies	6
4	Superfund Groundwater Treatment Projects (FY 1982 - FY 1999)	8
5	Contaminant Groups Treated by Bioremediation Technologies at Superfund Sites	
	(FY 1982 - FY 1999)	12
6	Project Status of Bioremediation Technologies at Superfund Sites	
	(FY 1982 - FY 1999)	13
7	Examples of Remedy Changes to Bioremediation	16
8	Performance Data for Bioremediation of PAHs	18
9	Performance Data for Bioremediation of Chlorinated VOCs	20
10	Performance Data for Bioremediation of Soil Contaminated with Pesticides and Herbicides	24
11	Performance Data for Bioremediation of Soil Contaminated with Explosives	27
12	Selected Information for 22 Bioremediation Projects with Fully-Defined Cost Data	29
13	U.S. Air Force Bioventing Projects	33

FIGURES

<u>Figure</u>

Page 1

1	Example Configuration for an In Situ Groundwater Bioremediation System
2	Typical Windrow Composting System 5
3	Superfund Source Treatment Projects (FY 1982 - FY 1999) 8
4	Superfund Bioremediation Projects (FY 1982 - FY 1999)
5	Relative Number of In Situ and Ex Situ Superfund Bioremediation Projects
6	Superfund Site types Most Commonly Treated by Bioremediation (FY 1982 - FY 1999) 10
7	Contaminant Groups Treated by Bioremediation at Superfund Sites (FY 1982 - FY 1999) 11
8	Contaminants Most Frequently Treated by Bioremediation at Superfund Sites
	(FY 1982 - FY 1999) 11
9	Number of RODs Signed for Planned or Implemented Bioremediation Projects at Superfund Sites
	(FY 1982 - FY 1999) 14
10	Bioremediation as a Percentage of Total Source Treatment RODs (FY 1982 - FY 1999) 14
11	Superfund Remedial Actions: Comparison of the Number of RODs for Selected Versus Planned
	or Implemented Bioremediation Projects (FY 1982 - FY 1999) 15
12	U.S. Air Force Bioventing Applications: Unit Cost Versus Volume Treated
	(68% Confidence Interval)

1.0 SUMMARY

Bioremediation is a technology that uses microorganisms to treat contaminants through natural biodegradation mechanisms (intrinsic bioremediation) or by enhancing natural biodegradation mechanisms through the addition of microbes, nutrients, electron donors, and/or electron acceptors (enhanced bioremediation). This technology, performed *in situ* (below ground or in place) or *ex situ* (above ground), is capable of degrading organic compounds to less toxic materials such as carbon dioxide (CO_2) , methane, and water through aerobic or anaerobic processes. Bioremediation is being used with increasing frequency to remediate contaminated media at hazardous waste sites because, compared with other remediation technologies, it often is less expensive and more acceptable to the public.

This report focuses on the use of enhanced bioremediation technologies at 104 Superfund remedial action sites and other contaminated sites. It provides a snapshot of current applications of bioremediation and presents trends over time concerning selection and use of the technology, contaminants and site types treated by the technology, and cost and performance of the technology. This information will help inform site managers, technology users, developers, and other interested parties about the capabilities and current applications of bioremediation.

Highlights of this report are listed below:

- **Technology Types** Since 1991, the percentage of bioremediation projects performed *ex situ* has decreased while the percentage of projects performed *in situ* has increased. In 1991, only 35 percent of the Superfund remedial action bioremediation projects were *in situ* versus 53 percent in 1999. Bioventing is the most commonly implemented *in situ* treatment technology for source treatment¹. Land treatment is the most commonly used *ex situ* source treatment technology.
- Site Types The most common type of Superfund remedial action site where bioremediation is used is wood preserving (31 percent), followed by petroleum sites (21 percent). The most common types of contaminants at these sites are polycyclic aromatic hydrocarbons (PAHs) (40 percent); benzene, toluene, ethylbenzene, and xylenes (BTEX) (37 percent); and pesticides and herbicides (27 percent).
- **Project Status** Over half of bioremediation projects at Superfund remedial action sites (57 percent) are in the operational phase, while 26 percent are in the predesign, design, or installation phases, and 17 percent have been completed. Of the 18 completed projects, 14 are *ex situ* source treatment projects, and 4 are *in situ* projects for source treatment and groundwater treatment.
- **Trends in Use** Few bioremediation Records of Decision (RODs) were signed in the early- to mid-1980s. Beginning in fiscal year (FY) 1988, the number of bioremediation RODs has increased. In general, 8 to 12 bioremediation RODs have been signed per year.
- **Performance** Available performance data shows that bioremediation is capable of reducing contaminant concentrations in contaminated media. Bioremediation is being used to treat recalcitrant organic compounds, including chlorinated volatile organic compounds (VOCs), PAHs, pesticides and herbicides, and explosives. For ten projects treating chlorinated VOCs, concentrations of VOCs in treated groundwater ranged from below detect limit (<5 µg/L for tetrachloroethene [PCE], trichloroethene [TCE], and dichloroethene [DCE]) to 1,200 µg/L (for carbon tetrachloride).

¹ The term source treatment includes treatment of soil, sludge, sediment, or other solid waste.

For seven projects treating PAHs, concentrations of PAHs in treated soil and sludges ranged from 3.3 mg/kg to 795 mg/kg, with some projects showing more than 90% removal. For four projects treating pesticides and herbicides, concentrations of specific pesticides and herbicides in treated soil were less than 10 mg/kg at two projects and less than 200 mg/kg at the other two projects, with some projects showing more than 90% removal. For six projects treating explosives, three showed removals of more than 75% and the others showed removals ranging from little or none to as much as 64%.

• **Cost** - Information about the cost of using bioremediation to treat contaminated media was available for 67 sites. Unit costs for bioventing projects ranged from approximately \$2 per cubic yard (cy) to more than \$300/cy, with most sites less than \$40/cy. Unit costs for *ex situ* bioremediation of soil, such as land treatment or composting systems, ranged from \$13/cy to more than \$500/cy, with most projects costing less than \$300/cy.

Information sources used for this report included Superfund RODs, ROD amendments, and Explanations of Significant Differences (ESDs) issued by EPA through fiscal year 1999 (EPA 2001); and cost and performance reports prepared by the Federal Remediation Technologies Roundtable (FRTR 2001). Specific references are identified at the end of this report.

Section 2 of the report provides an overview of bioremediation technologies, including *in situ* and *ex situ* technologies, and provides examples of field use for three types of bioremediation technologies. The characteristics of bioremediation projects at Superfund and other sites are described in Section 3, including the types of bioremediation projects that have been conducted and the selection of bioremediation as a remedy. Section 4 provides a summary of the performance of bioremediation technologies, with a summary of bioremediation costs in Section 5. Information about vendors of bioremediation technologies is provided in Section 6. References used in preparation of this report are in Section 7, and additional information about selected information sources is in Section 8.

Appendix A to the report provides selected information about 104 bioremediation projects, including site name, location, ROD year, contaminants treated, project status, and contact name. Appendix B provides additional information related to the development of the cost curves for bioventing projects.

2.0 OVERVIEW OF BIOREMEDIATION TECHNOLOGIES

Bioremediation technologies use microorganisms to treat contaminants by degrading organic compounds to less toxic materials, such as CO_2 , methane, water, and inorganic salts. These technologies include intrinsic or enhanced bioremediation, which is the focus of this report, and can be performed *in situ* or *ex situ* under aerobic or anaerobic conditions. During enhanced bioremediation, amendments are typically added to the media to supplement biodegradation processes.² Amendments include nutrients (such as nitrogen and phosphorus), electron donors (such as methanol or lactic acid for anaerobic processes), electron acceptors (such as oxygen for aerobic processes, ferric iron or nitrate for anaerobic processes), or microbes (bioaugmentation) (EPA 1994, EPA 2000).

As shown in Table 1, *in situ* bioremediation technologies include source treatment technologies such as bioventing and slurry-phase lagoon aeration, and groundwater technologies such as biosparging and *in* situ aerobic or anaerobic treatment. Amendments are added using direct injection and groundwater recirculation systems. For direct injection (illustrated in Figure 1), amendments are added to the contaminated media through injection points. With groundwater recirculation systems, contaminated groundwater is extracted, amendments are mixed with the groundwater *ex situ*, and the amended

Figure 1. Example Configuration for an *In Situ* Groundwater Bioremediation System

groundwater is re-injected into the subsurface, usually upgradient of the contaminated zone. One configuration for a recirculation system is to extract and re-inject groundwater in a single strata or at a common groundwater elevation. An alternative configuration for a groundwater recirculation system is extraction and re-injection at different elevations in a single treatment cell, creating vertical circulation.

As shown in Table 2, *ex situ* processes include land treatment, composting, biopiles, and slurry-phase treatment for source treatment.³ Figure 2 presents an example configuration for a windrow composting system. Table 3 presents three examples of successful bioremediation projects: one *in situ* groundwater project, one *ex situ* source control project, and one *in situ* source control project.

 $^{^2}$ During bioremediation, microorganisms also can affect the metal chemistry and bioavailability in the contaminated media; however, those effects are not addressed in this report.

³ This report does not include *ex situ* groundwater bioremediation technologies.

Table 1. Description of In Situ Bioremediation Technologies

In Situ Source Treatment Processes

- Bioventing Oxygen is delivered to contaminated unsaturated soils by movement of forced air (either extraction or injection of air) to increase concentrations of oxygen and stimulate biodegradation.
- Slurry-Phase Lagoon Aeration Air and soil are brought into contact with each other in a lagoon to promote biological degradation of the contaminants in the soil.

In Situ Groundwater Processes

- Biosparging Air is injected into groundwater to enhance biodegradation and volatilization of contaminants; biodegradation occurs aerobically.
- Aerobic Air, oxygen, and/or nutrients are injected into groundwater to enhance biodegradation of contaminants. Systems include direct injections of oxygen release compound (ORC[®]) or hydrogen peroxide, or groundwater recirculation systems.
- Anaerobic Carbon sources such as molasses, lactic acid, or hydrogen release compound (HRC[®]) are injected into groundwater to enhance biodegradation of contaminants using direct injection or groundwater recirculation systems.

Sources: EPA 2000, FRTR 2001a

Table 2. Description of Ex Situ Bioremediation Technologies

Ex Situ Source Treatment Processes

- Land Treatment Contaminated soil, sediment, or sludge is excavated, applied to lined beds, and periodically turned over or tilled to aerate the contaminated media. Amendments can be added to the contaminated media in the beds.
- Composting Contaminated soil is excavated and mixed with bulking agents such as wood chips and organic amendments such as hay, manure, and vegetable wastes. The types of amendments used depends on the porosity of the soil and the balance of carbon and nitrogen needed to promote microbial activity.
- Biopiles Excavated soils are mixed with soil amendments and placed in aboveground enclosures. The process occurs in an aerated static pile in which compost is formed into piles and aerated with blowers or vacuum pumps.
- Slurry-Phase Treatment An aqueous slurry is created by combining soil, sediment, or sludge with water and other additives. The slurry is mixed to keep solids suspended and microorganisms in contact with the contaminants. Treatment usually occurs in a series of tanks.

Sources: EPA 2000, FRTR 2001a

Biodegradation occurs under aerobic and anaerobic conditions, with the majority of bioremediation systems designed to treat contaminants aerobically. Aerobic processes use oxidation to degrade organic compounds to less toxic compounds such as CO₂ and water. Anaerobic processes, used to treat contaminants such as chlorinated VOCs. include dechlorination where the chlorinated VOCs act as an electron acceptor, and are degraded to nonchlorinated compounds. During anaerobic degradation, persistent intermediate compounds may be

Figure 2. Typical Windrow Composting System

produced. For example, anaerobic biodegradation of chlorinated aliphatic solvents can produce lower substituted chlorinated hydrocarbons, such as chloroethane or vinyl chloride (VC). Such compounds are not readily degraded under anaerobic conditions (these contaminants may be more readily degraded under aerobic conditions) and may be more toxic than the original contaminant.

Biodegradation of contaminants occurs as direct or cometabolic processes. For direct bioremediation processes, the microorganisms use the contaminants as a source of food or energy. When contaminants cannot be used as a food source, biodegradation may occur though cometabolism in which the contaminant is degraded by an enzyme or cofactor produced during microbial metabolism of another compound.

The types of contaminants that are amenable to bioremediation include petroleum hydrocarbons, such as gasoline and diesel fuel; nonchlorinated solvents, such as acetone and other ketones; wood-treating wastes, such as creosote and pentachlorophenol (PCP); some chlorinated aromatic compounds, such as chlorobenzenes and biphenyls having fewer than five chlorine atoms per molecule; and some chlorinated aliphatic compounds, such as trichloroethene (TCE).

Table 3. Field Use of Three Types of Bioremediation Technologies

In Situ Bioremediaton of Soil

The Dover Air Force Base, Building 719 site in Dover, Delaware had groundwater contaminated with TCE, 1,1,1-trichloroethane (TCA), and cis-1,2-DCE. A field-scale cometabolic bioventing system was operated at the site between May 1998 and July 1999. The primary objectives of the project were to determine the efficiency of an *in situ* cometabolic bioventing process for chlorinated aliphatic hydrocarbons under field conditions. During the 4-month period immediately prior to system startup, small amounts of propane were added directly to the soil to drive the cometabolism of TCE and TCA. Concentrations of TCE, TCA, and DCE in the soil decreased to less than 0.25 mg/kg for each contaminant during the 14-month period of operation. Increased levels of chloride (a product of the biodegradation of chlorinated solvents) in the soil during this period showed that the reduced contaminant concentrations were a result of the cometabolic bioventing system. (FRTR 2001)

In Situ Bioremediation of Groundwater

The Avco Lycoming Superfund site in Williamsport, Pennsylvania had groundwater contaminated with TCE, DCE, VC, hexavalent chromium (Cr^{+6}), and cadmium. Since January 1997, as part of a full-scale cleanup effort, molasses has been injected directly into the groundwater to reductively dechlorinate (cometabolic and direct) the chlorinated aliphatic hydrocarbons and to reduce the groundwater concentrations of the cadmium and Cr^{+6} (the chromium is not degraded as a result of the molasses injection; rather, it is reduced from Cr^{+6} to trivalent chromium (Cr^{+3})). By July 1998, the use of molasses injection had created an anaerobic reactive zone, with concentrations of TCE, DCE, and Cr^{+6} reduced to below their cleanup goals in many monitoring wells at the site (cleanup goals are 6.5 µg/L, 30 µg/L, and 32 µg/L, respectively). According to the technology vendor, ARCADIS Geraghty & Miller, this technology saved substantial resources when compared to pump and treat. (FRTR 2001)

Ex Situ Bioremediation of Soil and Sludge

The Southeastern Wood Preserving Superfund site in Canton, Mississippi had soil and sludge contaminated with PAHs. During a full-scale cleanup effort, a slurry-phase bioremediation system was operated from July 1991 until 1994. The average total PAH concentration was reduced from 8,545 to 634 mg/kg (below the cleanup goal of 950 mg/kg). The average benzo(a)pyrene (B(a)P)-equivalent PAH concentration⁴ was reduced from 467 to 152 mg/kg (below the cleanup goal of 180 mg/kg). The data indicate that the greatest reductions occurred during the first 10 days of treatment and that after 19 days of treatment, the cleanup goal for total PAHs was met for 12 of the 13 batches. The initial and final concentrations are for the soil and sludge in the slurry phase, after passing through the soil/sludge wash tank and the slurry mix tank. (FRTR 2001)

⁴ For the Southeastern Wood Preserving site, EPA used published toxicity-equivalent factors to calculate the B(a)Pequivalent of the carcinogenic PAHs (Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenzo(ah)anthracene, Indeno(1,2,3-cd)pyrene). In calculating B(a)P-equivalent concentrations, the concentration of each PAH is multiplied by a factor which is equal to its carcinogenicity relative to benzo(a)pyrene. The resulting weighted concentrations are summed to calculate the B(a)P-equivalent carcinogenic PAH value.

3.0 CHARACTERISTICS OF BIOREMEDIATION PROJECTS AT SUPERFUND AND OTHER SITES

This section presents detailed information about the use of bioremediation to treat contaminated media for 104 Superfund remedial action projects (referred to as Superfund projects in this report; does not include removal actions), along with summary information for other sites. The information presented includes the specific types of bioremediation projects, trends in implementation of bioremediation, and remedy changes under the Superfund remedial action program.

The 104 Superfund projects include bioremediation projects that have been completed or are operating, and projects that are planned (projects where bioremediation has been selected as the remedy in the ROD and are installed (but not operating) or in the predesign or design stage). Information about these projects was obtained primarily from EPA's *Treatment Technologies for Site Cleanup: Annual Status Report, Tenth Edition* (EPA 2001). Appendix A to this report presents site-specific information about the 104 Superfund projects (including site name, location, year in which the ROD was signed, contaminants treated, status of the project, and contact information) and is organized by type of remediation technology.

3.1 TYPES OF BIOREMEDIATION PROJECTS

This section summarizes information about the types of technologies, types of sites, contaminant groups, and status of bioremediation projects at Superfund projects and other sites. This analysis includes *in situ* and *ex situ* projects for source treatment and *in situ* projects for groundwater treatment.

Technology Types

Figure 3 (source treatment) and Table 4 (groundwater treatment) compare the number of Superfund bioremediation projects with the number of Superfund projects using other treatment technologies. As shown in Figure 3, 49 of the 425 *ex situ* projects for source treatment (12%) use bioremediation. Figure 3 also shows that 35 of the 314 *in situ* projects for source treatment (11%) use bioremediation. Table 4 shows that 20 of the 80 *in situ* projects for groundwater treatment (25%) use bioremediation. Approximately 10% of sites treating groundwater are using *in situ* technologies, including bioremediation. In addition, some *ex situ* (pump and treat) projects used bioremediation in their above-ground treatment system. Information was not provided in the available sources about the number of *ex situ* groundwater bioremediation projects and they are not discussed further in this report.

As shown in Figure 4, of the 104 Superfund bioremediation projects, 55 (53 percent) are *in situ*. *In situ* projects include 35 for source treatment (24 for bioventing) and 20 for groundwater treatment (3 biosparging projects and 17 other projects, usually injection of amended groundwater).

Figure 4 also shows that 49 (47%) of the 104 Superfund bioremediation projects are for *ex situ* source treatment. Land treatment is the most common of these, with 33 projects. Other *ex situ* source treatment projects include composting, biopiles, and slurry-phase technologies.

As shown in Figure 5, between August 1991 and August 2000, the relative percentage of *in situ* bioremediation projects at Superfund sites increased, and *ex situ* projects decreased correspondingly.⁵

⁵ The number of bioremediation projects in each year is cumulative, and represents all bioremediation projects planned, implemented, or completed prior to that year.

Figure 3. Superfund Source Treatment Projects (FY 1982 - FY 1999)

 Table 4. Superfund Groundwater Treatment Projects (FY 1982 - FY 1999)

Technology	Number of Sites					
Ex Situ Technologies						
Pump and Treat	638 ¹					
In Situ	<i>i</i> Technologies ²					
Air Sparging	48					
Bioremediation	20					
Dual-Phase Extraction	10					
Permeable Reactive Barrier	8					
Phytoremediation	4					
Chemical Treatment	2					
In-Well Air Stripping	2					

Source: EPA 2001; EPA 2001b

¹ Number of Superfund remedial action sites that have signed RODs selecting a P&T remedy. Some sites may have more than one P&T system.

² Some sites use more than one *in situ* technology.

Figure 4. Superfund Bioremediation Projects (FY 1982 - FY 1999)

Figure 5. Relative Number of In Situ and Ex Situ Superfund Bioremediation Projects¹

Site Types

Figure 6 summarizes the 104 Superfund bioremediation projects by the type of facility or operation that caused site contamination. The most common site types include wood-preserving (32 sites), followed by petroleum sites (22 sites). The latter includes petroleum refining and reuse/petroleum, oil, and lubricant (POL) lines.⁶

Figure 6. Superfund Site types Most Commonly Treated by Bioremediation (FY 1982 - FY 1999)¹

Contaminant Groups

Figure 7 presents data about the types of contaminant groups treated by bioremediation. The figure shows that bioremediation is used most frequently to treat nonchlorinated compounds at Superfund projects, including non-chlorinated SVOCs and VOCs. Bioremediation was used less often to treat chlorinated compounds, which are typically more difficult to biodegrade. Figure 8 presents the 14 most common contaminants treated by bioremediation. As shown in Figure 8, benzene (32 projects), pentachlorophenol (25 projects), and toluene (21 projects) are the most common contaminants treated by bioremediation. Appendix A presents the site-specific contaminants at each of the 104 Superfund bioremediation projects.

Table 5 presents data about the types of contaminant groups treated by a specific type of bioremediation technology. Almost all the contaminant groups have been treated both *in situ* and *ex situ* by both source treatment and groundwater remediation technologies.

⁶ Sites cannot be listed on the NPL solely as a result of petroleum contaminants. These sites likely were listed because they contain other hazardous contaminants.

Figure 7. Contaminant Groups Treated by Bioremediation at Superfund Sites (FY 1982 - FY 1999)¹

Figure 8. Contaminants Most Frequently Treated by Bioremediation at Superfund Sites (FY 1982 - FY 1999)¹

Technology	Total Number of Projects	PAHs	Other Non-Chlorinated SVOCs ¹	BTEX	Other Non-Chlorinated VOCs ²	Pesticides and Herbicides	Other Chlorinated SVOCs ³	Chlorinated VOCs	Explosives/Propellants ⁴
	E	<i>x Situ</i> So	urce Trea	tment Te	chnologie	S			
Land Treatment	33	Ž	Ž	Ž	Ž	Ž	Ž	Ž	Ž
Composting	8	Ž	Ž	Ž	Ž	Ž	Ž	Ž	Ž
Biopile	3			Ž	Ž	Ž		Ž	
Slurry Phase	2	Ž	Ž	Ž		Ž			
Other	3			Ž				Ž	
	Iı	<i>n Situ</i> Sou	irce Trea	tment Te	chnologie	\$			
Bioventing	24	Ž	Ž	Ž	Ž	Ž	Ž	Ž	
Slurry-Phase Lagoon Aeration	2	Ž			Ž	Ž	Ž	Ž	
Other	9	Ž	Ž	Ž		Ž		Ž	
In Situ Groundwater Technologies									
Biosparging	3	Ž	Ž	Ž	Ž			Ž	
Direct Injection or Recirculation	17	Ž	Ž	Ž	Ž	Ž		Ž	

Table 5. Contaminant Groups Treated by Bioremediation Technologies at Superfund Sites(FY 1982 - FY 1999)

Source: EPA 2001b

Abbreviations: FY = fiscal year; PAH = polycyclic aromatic hydrocarbon; SVOC = semivolatile organic compound; BTEX = benzene, toluene, ethylbenzene, and xylenes; VOC = volatile organic compound

¹ Does not include PAHs.

² Does not include BTEX.

³ Does not include organic pesticides and herbicides.

⁴ In situ treatment of propellents has been implemented in several projects. However, the sites are not Superfund remedial actions sites; therefore, they are not discussed in more detail in this figure.

ž - Contaminant was reported present at one or more sites treated using the technology shown; does not consider effectiveness of technology.

Status

Table 6 presents a summary of the status of the Superfund bioremediation projects. The 104 Superfund projects include completed and operating bioremediation projects, as well as projects in pre-design, design, or installation stages. Most projects (57 percent) are operational, 26 percent are planned (predesign/design and installed), and 17 percent are completed. Of the 18 completed projects, 14 are *ex situ* projects compared to four *in situ* (source treatment and groundwater).

	Number of Projects (Percentage of Projects)								
Type of Bioremediation Technology	Predesign/ Design	Design Complete/ Being Installed	Operational	Completed					
Ex Situ Source Treatment	10 (20%)	1 (2%)	24 (49%)	14 (29%)					
In Situ Source Treatment	9 (26%)	3 (9%)	20 (57%)	3 (9%)					
In Situ Groundwater	4 (20%)	0 (0%)	15 (75%)	1 (5%)					
Total	23 (22%)	4 (4%)	59 (57%)	18 (17%)					

Table 6. Project Status of Bioremediation Technologies at Superfund Sites(FY 1982 - FY 1999)

Source: EPA 2001b

Other Bioremediation Projects

Bioremediation also is being used at sites other than Superfund remedial action sites:

- At Superfund removal action sites, information was available about 42 bioremediation projects. Removal actions are short-term immediate actions taken to address releases of hazardous substances that require expedited response. Thirty-nine of the projects are operational (20 projects) or have been completed (19 projects). (EPA 2001)
- Under the RCRA corrective action program and other federal programs, information was available for 29 bioremediation projects. (EPA 2001, EPA 2001b)
- Under a U.S. Air Force initiative, information was available about bioventing at 45 Air Force sites throughout the country. (Air Force 1996)
- Under EPA's Underground Storage Tanks (UST) program, states estimated that bioremediation was used at more than approximately 4,600 leaking underground storage tank (UST) sites, as of FY 1997. (Tulis 1998)

3.2 REMEDY SELECTION

Information about remedy selection is based on planned, ongoing, and completed bioremediation projects. (Cancelled bioremediation projects have been excluded from this analysis.) As shown in Figure 9, few bioremediation RODs were signed in the early- to mid-1980s. The number of bioremediation RODs increased beginning in FY 1988, except for two years (FY 1991 and FY 1997). In general, 8 to 12 bioremediation RODs have been signed per year.

Figure 10 shows that bioremediation RODs as a percentage of source control RODs has generally increased between FY 1985 and FY 1999. Only two source control RODs were signed in FY 1984, with bioremediation implemented at one.

Figure 9. Number of RODs Signed for Planned or Implemented Bioremediation Projects at Superfund Sites (FY 1982 - FY 1999)

Figure 10. Bioremediation as a Percentage of Total Source Treatment RODs (FY 1982 - FY 1999)¹

Possible reasons for the increase in bioremediation as a selected remedy in RODs include:

- An increase in the amount of data on full-scale bioremediation projects, including information about cost and performance. Data on full-scale projects has increased in recent years. Six to ten years ago, available information was limited primarily to research papers.
- More bioremediation research and field demonstrations have been performed.
- Widespread use of bioremediation in programs other than Superfund. As discussed earlier, the Air Force has undertaken a bioventing initiative, and bioremediation is being used extensively at leaking UST sites throughout the country. Use outside of Superfund provide additional data and increases familiarity and expertise with bioremediation.

Remedy Changes

A remedy may change during the predesign or design phase of a project when new information about characteristics of the site are discovered or when treatability studies for the selected technologies are performed. The change can be documented through a second ROD, a ROD amendment, or an Explanation of Significant Difference (ESD). In some cases, no decision document is necessary to implement a change.

Figure 11 compares the number of bioremediation RODs originally signed with the number still planned or already implemented, taking into account any remedy changes.

Figure 11. Superfund Remedial Actions: Comparison of the Number of RODs for Selected Versus Planned or Implemented Bioremediation Projects (FY 1982 - FY 1999)

Between FY 1982 and 1995, some RODs changed <u>to</u> bioremediation from another remedy. However, in most years, more RODs changed <u>from</u> bioremediation <u>to</u> another remedy than <u>from</u> another remedy <u>to</u> bioremediation. The most frequent reasons cited by project managers for changing the bioremediation remedy include (EPA 2001):

- The volume of contaminated material was less than originally anticipated, and other alternatives are more cost-effective.
- Further characterization or investigation of the site after the ROD has been signed revealed that site conditions have changed and bioremediation is no longer a suitable remedy.
- A treatability study revealed that bioremediation is not capable of meeting the cleanup goals for the site.

Table 7 presents two example projects in which the selected remedy was changed from another treatment technology to bioremediation.

Table 7. Examples of Remedy Changes to Bioremediation

The Gulf Coast Vacuum Services site in Louisiana handled waste primarily associated from oil and gas exploration until 1984, when the owners filed for bankruptcy. The soils and sludges at the site are contaminated with benzene, toluene, mercury, lead, chromium, arsenic, barium, and numerous organic compounds. EPA first selected on-site incineration as the remedy (September 1992). After determining that on-site incineration was not cost-effective, an amended ROD was signed for the site on May 5, 1995 and included on-site land treatment of sludges and soils contaminated with organic compounds and stabilization of soils contaminated with inorganic compounds.

The Petro-Chemical Systems, Inc. (Turtle Bayou) site in Texas is a former petrochemical facility that operated until the late 1970s. While the facility was in operation, waste oils were dumped into unlined waste pits at the site. The principal contaminant in the soil and groundwater is benzene. The original ROD for the site, signed on September 6, 1991, established air sparging and soil vapor extraction as the selected remedies at the site. A 1998 ROD amendment for the site added *in situ* bioremediation of the aquifer, bioventing, and slurry-phase soil bioremediation, as well as other non-bioremediation technologies (thermally-enhanced soil vapor extraction, soil cap, pump and treat, and monitored natural attenuation), as selected remedies for soil and groundwater. Over time, the air sparging and soil vapor extraction systems had become less effective in removing contamination, and other technologies were needed to meet cleanup goals.

4.0 PERFORMANCE OF BIOREMEDIATION TECHNOLOGIES

For sites contaminated with total petroleum hydrocarbons (TPH) and BTEX, bioremediation of soil and groundwater is generally considered to be a well-established technology compared to sites contaminated with PAHs, chlorinated VOCs, pesticides and herbicides, and explosives, which are more recalcitrant organic compounds. This section focuses on available performance information from projects where bioremediation has been used to treat the less biodegradable compounds.

For these recalcitrant compounds, the contaminant reductions observed may not be attributed entirely to bioremediation of the contaminant; instead, the reduction may be attributed in part to mixing of soils with high contaminant concentrations with soils with lower concentrations.

PAHs

As shown in Figure 6, wood preserving sites are one of the most common site types treated by bioremediation. Contaminants typically found at wood preserving sites include PAHs and PCP. Consequently, a significant amount of data about treatment of PAHs using bioremediation is available, specifically on treatment of 2-ring PAHs such as naphthalene, acenaphthylene, and acenaphthene; 3-ring PAHs such as fluorene, phenanthrene, and anthracene; and 4- and 5-ring PAHs such as fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, benzo(ghi)perylene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene.

Table 8 shows performance data that are available for bioremediation of PAHs at 7 *ex situ* source treatment projects: 4 land treatment projects, 2 slurry-phase bioremediation projects, and 1 composting project. Bioremediation reduced concentrations of PAHs from soil and sludges at all 7 projects. Cleanup goals for PAHs were met for 3 of the 4 land treatment projects, where the goals ranged from 100 mg/kg to 8,632 mg/kg for total PAHs. At one project, the Burlington Northern Superfund site in Brainerd/Baxter, Minnesota, the concentrations of total PAHs were reduced from as high as 70,633 mg/kg to less than 800 mg/kg (nearly 99% reduction). The one land treatment project that did not meet cleanup goals was a demonstration project at the Bonneville Power Administration Ross Complex, Operable Unit A, Wood Pole Storage Area in Vancouver, Washington, where concentrations of high molecular weight PAHs were reduced by nearly 90%, but did not meet the goal of 1 mg/kg.

For the one composting project, the cleanup goal of 50 mg/kg was met for total PAHs, with concentrations reduced from as high as 367 mg/kg to less than 50 mg/kg (87%). Cleanup goals also were met for the two slurry-phase projects, with one of the projects, Southeastern Wood Preserving, in Canton, Mississippi, meeting cleanup goals of 950 mg/kg for total PAHs and 180 mg/kg for carcinogenic PAHs.

Chlorinated VOCs

Table 9 presents performance data for 13 bioremediation projects at sites contaminated with chlorinated VOCs, such as TCE, PCE, DCE, VC, dichlorobenzene, and carbon tetrachloride. The 13 projects include 10 *in situ* groundwater projects, 1 *in situ* source treatment project, and 2 *ex situ* source treatment projects. Bioremediation was successful in reducing concentrations of chlorinated VOCs or in meeting site cleanup goals for groundwater, soil, sediments, and sludges at all 13 projects.

Most of the *in situ* groundwater projects were field demonstration and numerical cleanup goals were not established. Two of the 10 *in situ* groundwater projects had numerical cleanup goals: the U.S. DOE Savannah River Site, M Area, in South Carolina and the Avco Lycoming Superfund Site in Williamsport, Pennsylvania. At the Savannah River Site, cleanup goals were met for PCE and TCE, with PCE concentrations reduced from 124 micrograms per liter (μ g/L) to less than 5 μ g/L, and TCE concentrations reduced from 1,031 μ g/L to less than 5 μ g/L. At the Avco Lycoming Superfund site, the concentration of TCE was reduced from 67 μ g/L to 6.7 μ g/L (90%), but did not meet cleanup goal (5 μ g/L) in all wells.

Site Name	Media Treated	Technology	Additives	Contaminants Treated	Initial Contaminant Concentrations	Final Contaminant Concentrations	Comments
	-		La	nd Treatment	-	-	
Burlington Northern Superfund Site, Brainerd/Baxter,	Soil and sludge	udge Land treatment	Lime, cow manure	Total PAHs	33,982 - 70,633 mg/kg	608-795 mg/kg	Full-scale cleanup; cleanup goal of 8,632 mg/kg for total PAHs met.
MN				Other SVOCs	Not reported	Not reported	Full-scale cleanup; cleanup goal for other SVOCs not met.
Scott Lumber Company	Soil	Land treatment (two lifts of	Nutrients	Total PAHs	First lift: 560 mg/kg	First lift: 130 mg/kg	Full-scale cleanup; cleanup goal of 500 mg/kg for total PAHs met. Full-scale cleanup; cleanup goal of 14
Superfund Site, Alton, MO		soil)			Second lift: 700 mg/kg	Second lift: 155 mg/kg	
				Benzo(a)pyrene	First lift: 16 mg/kg	First lift: 8 mg/kg	
					Second lift: 23 mg/kg	Second lift: 10 mg/kg	mg/kg for benzo(a)pyrene met.
Brown Wood Preserving Superfund Site, Live Oak, FL	Soil	Land treatment (three lifts of soil)	Not reported	Total carcinogenic PAHs	100 - 208 mg/kg	< 100 mg/kg	Full-scale cleanup; cleanup goal of 100 mg/kg for total carcinogenic PAHs met.
Bonneville Power Administration Ross Complex,	Soil	Land treatment (and UV oxidation)	Peroxide, ethanol	High molecular weight PAHs	150 mg/kg	6.76-21.83 mg/kg	Full-scale cleanup; cleanup goals of 1 mg/kg for high
Operable Unit A, Wood Pole Storage Area, Vancouver, WA		(demonstration project)		РСР	62 mg/kg	6.8 - 20.7 mg/kg	molecular weight PAHs and 8 mg/kg for PCP not met for all soil.

Table 8. Performance Data for Bioremediation of PAHs

Site Name	Media Treated	Technology	Additives	Contaminants Treated	Initial Contaminant Concentrations	Final Contaminant Concentrations	Comments					
	Composting											
Dubose Oil Products Co. Superfund Site,	Soil	Composting	Not reported	VOCs	0.022-38.27 mg/kg	Not reported	Full-scale cleanup; each batch of soil treated to					
Cantonment, FL				Total PAHs	0.578-367 mg/kg	3.3-49.9 mg/kg	concentrations that met the cleanup goals					
				РСР	0.058-51 mg/kg	Not reported	(includes total PAHs at 50 mg/kg) within 14 to 30 days.					
			Slurry-P	hase Bioremediati	on							
French Limited Superfund Site, Crosby, TX	Soil and sludge	Slurry-phase bioremediation	Not reported	VOCs	400 mg/kg	Not reported	Full-scale cleanup; all cleanup goals met. Cleanup goals					
				РСР	750 mg/kg	Not reported	established for vinyl chloride (43 mg/kg), benzene (14 mg/kg), benzo(a)pyrene (9 mg/kg), total PCBs (23 mg/kg), and arsenic (7 mg/kg). Benzo(a)pyrene reduced to 6.0 and 6.8 mg/kg in two treatment cells.					
				SVOCs (including PAHs)	5,000 mg/kg (for an individual contaminant)	Not reported						
				Metals	5,000 mg/kg (for an individual contaminant)	< 23 mg/kg						
				PCBs	616 mg/kg	< 23 mg/kg (cleanup goal for total PCBs)						
Southeastern Wood Preserving Superfund Site,	Soil and sludge	Slurry-phase bioremediation	Not reported	Total PAHs	8,545 mg/kg	634 mg/kg	Full-scale cleanup; all cleanup goals met, including total					
Canton, MS				Carcinogenic PAHs	467 mg/kg	152 mg/kg	PAHs of 950 mg/kg and carcinogenic PAHs of 180 mg/kg.					

Table 8. Performance Data for Bioremediation of PAHs (continued)

Abbreviations: PAH = polycyclic aromatic hydrocarbon, PCP = pentachlorophenol, SVOC = semivolatile organic compound, VOC = volatile organic compound Source: FRTR 2001

Site Name	Media Treated	Technology	Additives	Contaminants Treated	Initial Contaminant Concentrations	Final Contaminant Concentrations or Percent Removal	Comments
			In Si	tu Groundwater	_	_	_
Moffett Naval Air	Groundwater	Recirculating	Methane	TCE	Not reported	19% removal	Field demonstration;
Station, Mountain View, CA		cell (aerobic conditions)		1,1-DCE	Not reported	Not evaluated	numeric remedial
view, CA		conditions)	cis-DCE	Not reported	43% removal	goals not established.	
				trans-DCE	Not reported	90% removal	
				VC	Not reported	95% removal	
	Groundwater	Recirculating	Phenol	TCE	Not reported	94% removal	
		cell (aerobic		1,1-DCE	Not reported	54% removal	
		conditions)		cis-DCE	Not reported	92% removal	
				trans-DCE	Not reported	73% removal	
				VC	Not reported	>98% removal	
	Groundwater	Recirculating cell (aerobic conditions)	Toluene	TCE	Not reported	93% removal	
				1,1-DCE	Not reported	Not evaluated	
				cis-DCE	Not reported	>98% removal	
				trans-DCE	Not reported	75% removal	
				VC	Not reported	Not evaluated	
Edwards Air Force Base, Site 19, CA	Groundwater	Recirculating cell (aerobic conditions)	Toluene, dissolved oxygen, hydrogen peroxide	TCE	1,000 μg/L	18-24 μg/L	Field demonstration; numeric remedial goals not established. Final toluene concentration at site was 1.1 µg/L.
Hanford 200 West Area Site, Richland, WA	Groundwater	Recirculating cell	Acetate and nitrate	CCl ₄	2,000 μg/L	1,200 μg/L	Field demonstration; numeric remedial goals not established.

Table 9. Performance Data for Bioremediation of Chlorinated VOCs

Site Name	Media Treated	Technology	Additives	Contaminants Treated	Initial Contaminant Concentrations	Final Contaminant Concentrations or Percent Removal	Comments	
Watertown, MA	Groundwater	Recirculating cell (anaerobic conditions for	Anaerobic - lactic acid Aerobic -	TCE	12,000 μg/L	< 1,000 µg/L	Field demonstration; numeric remedial goals not established.	
		eight months, then aerobic conditions)	ORC and methane	PCE	Not reported	Not reported		
Texas Gulf Coast	Groundwater	roundwater Recirculating cell	Methanol	TCE	50,000 μg/L	5 μg/L	Pilot- and full-scale;	
Site, Houston, TX				Cr ⁺⁶	Not reported	Not reported	numeric remedial goals not established.	
Abandoned Manufacturing	Groundwater	Direct injection	Molasses	TCE	3,040 µg/L (average)	4 μg/L (average)	Pilot- and full-scale; numeric remedial	
Facility, Emeryville, CA				Cr ⁺⁶	Not reported	99% removal	goals not established.	
Dover Air Force Base, Area 6,	Groundwater	Recirculating cell (anaerobic conditions)	Sodium lactate, ammonia, and phosphate, bioaugment- ation	PCE	46 µg/L	Not reported	Field demonstration; numeric remedial	
Dover, DE				TCE	7,500 μg/L	Less than the detection limit	goals not established.	
				cis-DCE	2,000 µg/L	Less than the detection limit]	
				VC	34 µg/L	Not reported	1	

Table 9. Performance Data for Bioremediation of Chlorinated VOCs (continued)

Site Name	Media Treated	Technology	Additives	Contaminants Treated	Initial Contaminant Concentrations	Final Contaminant Concentrations or Percent Removal	Comments	
Avco Lycoming Superfund Site, Williamsport, PA	Groundwater	Direct injection (anaerobic conditions)	Molasses	TCE	67 μg/L	6.7 μg/L (treatment ongoing)	Pilot- and full-scale; concentrations of TCE reduced by	
				Cr+6	1,950 μg/L	10 μg/L (treatment ongoing)	90%, but did not meet cleanup goal (5 μ g/L) in all wells; cleanup goal for Cr ⁺⁶	
				Cadmium	800 μg/L	Not reported	$(32 \ \mu g/L)$ and cadmium $(3 \ \mu g/L)$ met in some wells	
U.S. DOE,	Groundwater	Recirculating cell (anaerobic conditions)	Benzoate, lactate, and methanol	TCE	Not reported	Not reported	Demonstration; VOC	
Pinellas Northeast Site, Largo, FL				Methylene chloride	Not reported	Not reported	concentrations reduced 60% - 91% within four to eight weeks after nutrient addition.	
				DCE	Not reported	Not reported		
				VC	Not reported	Not reported		
U.S. DOE,	Groundwater	Recirculating	Nitrogen, phosphorus,	TCE	10 to 1,031 µg/L	< 5 µg/L	Field demonstration;	
Savannah River Site, M Area, SC		cell		PCE	3 to 124 µg/L	< 5 µg/L	all cleanup goals at the site met.	
In Situ Source Treatment								
U.S. DOE, Savannah River	Soil and sediment	8	Nitrogen, phosphorus,	TCE	0.67 to 6.29 mg/kg	Not detected	Field demonstration; all cleanup goals at	
Site, M Area, SC			methane	PCE	0.44 to 1.05 mg/kg	Not detected	the site met.	

Table 9. Performance Data for Bioremediation of Chlorinated VOCs (continued)

Site Name	Media Treated	Technology	Additives	Contaminants Treated	Initial Contaminant Concentrations	Final Contaminant Concentrations or Percent Removal	Comments	
				Source Treatmen	t			
Dubose Oil Products Co. Superfund Site, Cantonment, FL	Soil	Composting	NA	VOCs (including chlorinated VOCs)	0.022 to 38.27 mg/kg	Not reported	Full-scale cleanup; each batch of soil treated to concentrations that	
				PAHs	0.578 to 367 mg/kg	3.3 to 49.9 mg/kg	met cleanup goals within 14 to 30 days.	
				РСР	0.058 to 51 mg/kg	Not reported		
French Limited Superfund Site, Crosby, TX	Soil and sludge	Slurry-phase bioremediation	NA	VOCs (including chlorinated VOCs)	400 mg/kg	Not reported	Full-scale cleanup; all cleanup goals at the site met. Cleanup goals established for	
				РСР	750 mg/kg	Not reported	vinyl chloride (43 mg/kg), benzene (14	
				SVOCs	5,000 mg/kg	Not reported	mg/kg), benzo(a)pyrene (9 mg/kg), total PCBs (23 mg/kg), and arsenic (7 mg/kg).	
				Metals	5,000 mg/kg	< 23 mg/kg		
				PCBs	616 mg/kg	< 23 mg/kg (cleanup goal for total PCBs)]	

Table 9. Performance Data for Bioremediation of Chlorinated VOCs (continued)

Abbreviations: CCl_4 = carbon tetrachloride, Cr^{+6} = hexavalent chromium, DCE = dichloroethene, PAH = polycyclic aromatic hydrocarbon, PCB = polychlorinated biphenyl, PCE = tetrachloroethene, PCP = pentachlorophenol, SVOC = semivolatile organic compound, TCE = trichloroethene, VC = vinyl chloride, VOC = volatile organic compound

Sources: EPA 2000; FRTR 2001; McCarty and others, 1998.

Cleanup goals were met for the three source treatment bioremediation projects: the Savannah River Site, M Area, in South Carolina; the Dubose Oil Products Company Superfund Site in Florida, and the French Limited Superfund Site in Texas, with final concentrations of TCE and PCE reduced to non-detectable levels at the Savannah River Site.

Pesticides and Herbicides

Table 10 presents performance data for four sites at which bioremediation was used to treat media contaminated with pesticides and herbicides. At the Novartis site in Ontario, Canada, the concentration of metolachlor was reduced by nearly 99% using a composting process. At the Navajo Indian Reservation Superfund Removal site in Window Rock, Arizona, a slurry-phase process reduced the concentration of toxaphene from 4,000 mg/kg to 180 mg/kg (95%). At the Stauffer Chemical Company site in Tampa, Florida, soil contaminated with seven pesticides was treated using a registered composting process. Cleanup goals were met for four of the seven contaminants, with concentrations reduced to less than 9 mg/kg for DDE and DDT, and to less than 1 mg/kg for dieldrin and molinate. The concentrations of DDD and toxaphene were reduced by 90% but they did not meet their cleanup goals of 12.6 mg/kg and 2.75 mg/kg, respectively. Chlordane was reduced by nearly 90% but also did not meet its cleanup goal of 2.3 mg/kg. At the Creotox Chemical Products Superfund Removal site in Tennessee, contaminant concentrations in the soil for aldrin, BHC, and lindane did not decrease as a result of bioremediation (as reported in the source), although no numerical data were provided about final concentrations for these compounds. The waste subsequently was sent off site for disposal.

Site Name	Technology	Contaminant	Initial Concentration	Final Concentration
Novartis Site, Ontario Canada	Daramend TM , a composting process developed by the W.R. Grace Company	Metolachlor	84 mg/kg	1 mg/kg
Navajo Indian Reservation Superfund Removal Site, Window Rock, Arizona	Anaerobic slurry- phase bioremediation	Toxaphene	4,000 mg/kg	180 mg/kg

Table 10.	Performance Data for Bioremediation of Soil Contaminated with Pesticides and
	Herbicides

Site Name	Technology	Contaminant	Initial Concentration	Final Concentration
Stauffer Chemical Company Site, Tampa, Florida	Xenorem TM , a composting process registered by Stauffer Management Company	Chlordane DDD DDE DDT Dieldrin Molinate Toxaphene	Chlordane - 47.5 mg/kg DDD - 162.5 mg/kg DDE - 11.3 mg/kg DDT - 88.4 mg/kg Dieldrin - 3.1 mg/kg Molinate - 10.2 mg/kg Toxaphene - 469 mg/kg	Cleanup goals met for DDE - 8.91 mg/kg; DDT - 8.91 mg/kg; dieldrin - 0.19 mg/kg; and molinate - 0.74 mg/kg; DDD and toxaphene concentrations reduced by 90% but did not meet cleanup goals - 12.6 and 2.75 mg/kg, respectively; chlordane reduced by nearly 90% but did not meet cleanup goal - 2.3 mg/kg (at end of 64 day demonstration)
Creotox Chemical Products Superfund Removal Site, Tennessee	Not reported	Chlordane Aldrin BHC Lindane	596 mg/kg Not reported Not reported Not reported	77.3 mg/kg No decrease No decrease No decrease

Table 10. Performance Data for Bioremediation of Soil Contaminated with Pesticides and Herbicides (continued)

Abbreviations: DDT = dichlorodiphenyltrichloroethane, DDD = dichlorodiphenyldichloroethane, DDE = dichlorodiphenyldichloroethene, BHC = " -benzene hexachloride

Source: Frazar 2000, FRTR 2001

Research efforts are underway to improve the effectiveness of bioremediation of soils and groundwater contaminated with pesticides and herbicides, including research into techniques to minimize or eliminate harmful by-products that sometime occur (for example, DDD and DDE by-products of DDT biodegradation), and into ways to shorten the treatment time. A pilot test at 9 sites used white-rot fungus treatment and cycling between aerobic and anaerobic phases to treat organochlorine pesticides in soil gas (the same class of pesticides that were not treated successfully at the Creotox Chemical Products Superfund removal site). Organophosphate pesticides, such as malathion and parathion, can be treated successfully by composting, land treatment, and use of aerobic bioreactors. (Frazer 2000)

Explosives

Bioremediation has been used to treat soils and groundwater contaminated with explosives, with varying degrees of success. At Umatilla Army Depot in Oregon, composting was used successfully at full scale to treat explosives in soil. Initial concentrations of trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazine (RDX) were 88,000 mg/kg (5,250 mg/kg in the blended soil prior to treatment) and 1,900 mg/kg, respectively. Concentrations of both contaminants after treatment were less than 30 mg/kg.

The U.S. Army recently completed a demonstration and evaluation of 5 innovative bioremediation technologies on soils contaminated with explosive compounds. Soils excavated from Joliet Army Ammunition Plant (JOAAP) were contaminated with TNT and N-methyl-n,2,4,6-tetranitroaniline (tetryl). The initial average concentrations of TNT and tetryl in the soil were approximately 3,000 mg/kg and 7,500 mg/kg, respectively. Table 11 provides a description of the technologies used and the results of the pilot-scale demonstrations. Results ranged from little or no removal of contaminants to almost complete removal. For example, the pilot-scale project performed by Midwest Microbial achieved only a 31% reduction of TNT and a 3% reduction of tetryl. In contrast, the pilot-scale project performed by GRACE Bioremediation Technologies achieved a 97% reduction of TNT and an almost 100% reduction of tetryl.

Technology Vendor	Technology Description	Contaminant	Initial Concentration	Final Concentration (Percent Removed)
Midwest Microbial	Soil was compacted and mixed with potato waste. A blend of aerobic and anaerobic bacteria and	TNT	3,000 mg/kg	2,070 mg/kg (31%)
	microbial nutrients was sprayed onto the soil every two weeks.	Tetryl	7,500 mg/kg	7,275 mg/kg (3%)
Bioremediation	Soil was mixed with BTS®, a patented humic	TNT	3,000 mg/kg	3,000 mg/kg (0%)
Technology Services	substance that contains large numbers and varieties of microorganisms.	Tetryl	7,500 mg/kg	2,700 mg/kg (64%)
Institute of Gas Technology	Under anaerobic conditions, nutrient sources were added to enhance the degrading abilities of the indigenous microbes. Biological treatment was	TNT	3,000 mg/kg	480 mg/kg (84%) (includes chemical oxidation performance)
	followed by treatment with chemical oxidation using Fenton's Reagent (hydrogen peroxide and iron salt).	Tetryl	7,500 mg/kg	1,875 mg/kg (75%) (includes chemical oxidation performance)
GRACE Bioremediation Technologies	Powdered iron and DARAMEND®, an organic amendment that alters the physical and chemical properties of the waste to enhance biological	TNT	3,000 mg/kg	90 mg/kg (97%)
	activity, were mixed with the soil. Conditions cycled between anoxic and oxic conditions during remediation.	Tetryl	7,500 mg/kg	Not detected (100%)
EarthFax Engineering	Substrate inoculated with white-rot fungus was	TNT	3,000 mg/kg	1,170 mg/kg (61%)
	mixed with soil at a ratio of 4:1 by volume.	Tetryl	7,500 mg/kg	3,525 mg/kg (53%)

Table 11. Performance Data for Bioremediation of Soil Contaminated with Explosives

Abbreviations: mg/kg = milligrams per kilogram, Tetryl = N-methyl-n,2,4,6-tetranitroaniline, TNT = trinitrotoluene

Source: U.S. Army 2000

5.0 COST OF BIOREMEDIATION TECHNOLOGIES

Cost data for bioremediation projects at Superfund and other sites is limited. This section summarizes available cost data for 22 bioremediation projects involving *in situ* and *ex situ* soil and *in situ* groundwater, and for 45 bioventing projects from the *Remediation Technology Cost Compendium – Year 2000 (EPA 2001a)*.

Cost Data for 22 Projects Using *In Situ* Bioremediation (Soil and/or Groundwater) and *Ex Situ* Bioremediation (Soil)

Table 12 summarizes the available cost data for the 22 bioremediation projects with fully-defined cost data.⁷ The table includes information about project status, contaminants treated, start date, volume treated, total cost, and unit cost. Thirteen of the projects (59 percent) are *ex situ* source treatment projects, primarily land treatment. The remaining projects are *in situ* source treatment projects (14 percent) and *in situ* groundwater projects (27 percent).

Total technology costs for the 22 bioremediation projects range from \$48,700 for a project mainly consisting of plowing and tilling 1,786 cy of soil at the Havre Air Force Station to \$26,810,000 for slurry-phase bioremediation of 300,000 cubic yards of soil and sludge at the French Limited Superfund site. Unit costs ranged from \$12.50/cy for a project mainly involving tilling 4,800 cy of soil at Glasgow Air Force Base to \$1,220/cy for extensive technology demonstration activities on 1,048 cy of soil at the Bonneville Power Administration Superfund site. Projects where bioremediation was used to treat soil in an *ex situ* treatment system, such as land treatment or composting systems, had unit costs ranging from \$13/cy to more than \$500/cy, with most sites less than \$300/cy.

Cost Data for 45 Bioventing Projects

Table 13 summarizes the available cost data for the 45 bioventing projects performed at multiple sites by AFCEE, including total cost, volume treated, and unit cost. As Table 13 shows, total costs for the 45 AFCEE bioventing projects ranged from \$37,500 at Randolph Air Force Base, TX, to treat 4,700 cubic yards of soil, to \$622,000 at McClellan Air Force Base, CA, to treat 53,200 cubic yards of soil. Unit costs ranged from \$1.36/cy at Davis Monthan, AZ, to treat 311,500 cubic yards of soil, to \$333/cy at AFP 4, TX, to treat 1,800 cubic yards of soil.

Cost data for the bioventing projects were sufficient to perform a quantitative analysis of unit cost versus quantity of soil treated (Figure 12). A reverse-exponential linear fit with a 68% confidence interval was calculated and plotted on decimal and logarithmic scales. Economies of scale in unit cost were observed for relatively large volumes of soil treated. Appendix B provides additional information about the statistical analyses used to develop the cost curves.

⁷ "Fully-defined" cost data refers to projects where the costs directly related to the technology application were distinct from the total cost for the remediation project and where data about quantity treated was available.

		Cleanup			Start	Area Cost	Technology Cost (\$) ¹	Volume Treated	Unit Cost	
Site Name	State	Program	Status	Contaminants	Year	Factor	(Source)	(cy)	(\$/cy)	Comments
Ex situ Bioremediation (Soil) - Land Treatment										
Brown Wood Preserving Superfund Site	FL	Superfund	FS Complete	PAHs	1989	0.87	635,000	8,100	78.4	Constructed lined treatment system; moderate initial contaminant concentrations
Dubose Oil Products Co. Superfund Site	FL	Superfund	FS Complete	BTEX, cVOCs, Other SVOCs, Other VOCs	1993	0.87	4,990,000	13,137	380	Composting treatment system constructed in building, including leachate collection, inoculant generation, vacuum extractions, and wastewater treatment
Fort Greely UST Soil Piles	AK	Other	FS Complete	BTEX, PHC	1994	1.60	749,000	9,800	76.4	O&M only in summer months; no liner
Fort Wainwright, North Post Site Soil Remediation	AK	Other	FS Complete	BTEX	1993	1.60	433,000	4,240	102	Activities included liner construction, drainage, tilling, and addition of nutrients
Glasgow Air Force Base UST Removal	MT	Other	FS Complete	РНС	1994	1.14	60,000	4,800	12.5	Application mainly consisted of soil tilling
Havre Air Force Station, Remove Abandoned USTs	MT	Other	FS Complete	BTEX	1992	1.14	48,700	1,786	27.3	Application mainly consisted of soil plowing and tilling
Lowry AFB	СО	Other	FS Ongoing	BTEX, PHC	1992	1.03	130,000	5,400	24.1	Conducted on plastic sheeting, nutrients added once and aerated; interim costs
Matagora Island Air Force Base	TX	Other	FS Complete	BTEX	1992	0.82	77,600	500	155	Cost of entire project including excavation, treatment, and monitoring
Scott Lumber Company Superfund Site	МО	Superfund	FS Complete	PAHs	1990	0.96	6,580,000	10,641	618	Constructed lined treatment area, irrigation and drainage system, and addition of nutrient and culture
Umatilla Army Depot Activity (FS)	OR	Other	FS Complete	Other SVOCs	1994	1.15	5,260,000	10,969	479	Composting conducted in building; one of first biotreatments for soil contaminated with explosives; maintained high moisture content

Table 12. Selected Information for 22 Bioremediation Projects with Fully-Defined Cost Data
		Cleanup			Start	Area Cost	Technology Cost (\$) ¹	Volume Treated	Unit Cost	
Site Name	State	Program	Status	Contaminants	Year	Factor	(Source)	(cy)	(\$/cy)	Comments
				Ex situ Bioremedia	ation (Soil)) - Slurry-	Phase			
French Limited Superfund Site	TX	Superfund	FS Complete	cVOCs, Other SVOCs, Other VOCs, PAHs, PCBs	1992	0.82	26,810,000	300,000	89.4	Extremely large volume
Southeastern Wood Preserving Superfund Site, OU 1	MS	Superfund	FS Complete	PAHs	1991	0.87	2,550,000	10,500	243	Slurry-phase bioreactor system constructed; high initial contaminant concentrations; extensive pretreatment
				Ex situ Bioremed	iation (Soi	l) - Solid-I	Phase			
Bonneville Power Administration Superfund Site	WA	Superfund	FS Complete	PAHs, Other SVOCs	1995	1.07	1,280,000	1,048	1,220	Included extensive technology demonstration activities
				In Situ Bioremed	iation (Soi	l) - Biover	nting			
Dover AFB, Area 6	DE	Superfund	DS Complete	cVOCs, Heavy metals	1996	1.02	551,000	1,667	331	Direct injection of air and propane; cometabolic aerobic; pilot test
Hill AFB, Site 280	UT	Not Specified	FS Ongoing	BTEX, PHC	1990	1.03	271,000	NR	NC	Interim costs
Hill AFB, Site 914	UT	Other	FS Complete	BTEX, PHC	1989	1.03	863,000	5,000	173	Early bioventing application; combined with SVE
Lowry AFB (in situ)	СО	Other	FS Complete	BTEX, PHC	1992	1.03	75,300	NR	NC	Interim costs; high initial contaminant concentrations; used horizontal trenches
				In Situ Bioreme	diation (G	roundwat	ter)			
Avco Lycoming Superfund Site	PA	Superfund	FS Ongoing	cVOCs, Heavy metals	1997	1.03	455,000	NR	NC	Direct injection of molasses; anaerobic; air sparging, with SVE
Edwards AFB	CA	Superfund	DS Complete	cVOCs	1995	1.15	445,000	1,517 ²	293	Recirculation between two aquifer systems; aerobic
Pinellas Northeast Site, Anaerobic Bioremediation	FL	RCRA CA	DS Complete	cVOCs	1997	0.87	359,000	1,238 ²	290	Recirculation with addition of benzoate, lactate, and methanol; anaerobic; intended to supplement active pump-and- treat system

Table 12. Selected Information for 22 Bioremediation Projects with Fully-Defined Cost Data (continued)

Site Name	State	Cleanup Program	Status	Contaminants	Start Year	Area Cost Factor	Technology Cost (\$) ¹ (Source)	Volume Treated (cy)	Unit Cost (\$/cy)	Comments
Texas Gulf Coast Site	TX	Other	FS Complete	cVOCs	1995	0.82	630,000	NR		Recirculation with addition of methanol; anaerobic; intended as a precursor to monitored natural attenuation
Department of Energy, Savannah River Site, M Area Process Sewer/Integrated Demonstration Site	SC	Superfund	DS Complete	cVOCs	1992	0.87	729,000	NR		Direct injection of cometabolites; aerobic; SVE employing horizontal wells

Table 12. Selected Information for 22 Bioremediation Projects with Fully-Defined Cost Data (continued)

Notes and Cost Sources:

Technology costs for the selected sites were adjusted for the location of the site (location adjustment) and for the years in which costs were incurred (inflation adjustment). Costs were adjusted for location by multiplying the costs provided for each site by an Area Cost Factor (ACF) Index published by the U.S. Army Corps of Engineers in PAX Newsletter No. 3.2.1, dated March 31, 1999 and available on the web at *<http://www.hq.usace.army.mil/cemp/e/es/pax/paxtoc.htm>*. The inflation factor used for this analysis was based on the Construction Cost Index published by Engineering News Record. The most current year that had an annual average inflation adjustment factor available at the time of preparing this report was 1999. Costs were adjusted to 1999 dollars by multiplying the costs provided for each site by an inflation adjustment factor for the year in which the costs were incurred. For capital cost time adjustment, the inflation adjustment factor for the actual year the costs were incurred was used. For annual operating cost time adjustment, the inflation factor for the median year of all years over which the costs were incurred was used. The Cost Construction Index is available at *http://www.enr.com/cost/costcci.asp*.

² For *in situ* bioremediation (groundwater) applications, volume treated is the volume of aquifer material reported treated.

AFB	Air Force Base	NR	Not reported	UST	Underground Storage Tank
BTEX	Benzene, Toluene, Ethylbenzene, and	Other VOCs	Other Volatile Organic Compounds (for	SVE	Soil Vapor Extraction
	Xylenes		example, ketones)	SVOCs	Semivolatile Organic Compounds
CA	Corrective Action	OU	Operable Unit	cy	Cubic yards
cVOCs	Chlorinated Volatile Organic Compounds	PAHs	Polycyclic Aromatic Hydrocarbons		
DS	Demonstration scale	PCBs	Polychlorinated Biphenyls		
FS	Full scale	PHC	Petroleum Hydrocarbons		
NC	Not calculated	RCRA	Resource Conservation and Recovery Act		

Source: EPA 2001a

Figure 12. U.S. Air Force Bioventing Applications: Unit Cost Versus Volume Treated (68% Confidence Interval)

Notes:

- ¹ The line of best fit (solid line) and 68-percent confidence limits (dashed lines) for individual predicted points for 45 bioventing projects are shown in the plots above. The line of best fit and confidence limits were calculated using linear regression of the natural-log transformed data. The upper plot was prepared by back transformation of the log-transformed data to show the line of best fit and confidence limits in original units. (The upper plot shows projects under which less than 80,000 cubic yards of soil were treated and the unit cost was less than \$50 per cubic yard.)
- ² All reported costs were adjusted for site locations, as described in the text.
- ³ The coefficient of determination (r^2) for the linear fit to the data is 80 percent.
- ⁴ Appendix B presents the methodology and other statistical information related to the plots above.

Source: EPA 2001a

C'4. Norma	C'4. Landtar	Treatment		Unit Cost
Site Name	Site Location	Volume (cy)	Total Cost¹ (\$)	(\$/cy)
McClellan AFB	California	53,200	622,000	11.7
AFP 4	Texas	1,800	599,000	333
Davis-Monthan	Arizona	311,500	423,000	1.36
Vandenberg AFB	California	29,000	380,000	13.1
Fairchild AFB	Washington	8,000	310,000	38.8
Pease AFB	New Hampshire	14,800	293,000	19.8
Hickam AFB	Hawaii	13,700	270,000	19.7
Plattsburgh AFB	New York	63,800	255,000	4.00
Elmendorf AFB	Alaska	19,000	237,000	12.5
Beale AFB	California	42,100	232,000	5.51
Offutt AFB	Nebraska	14,800	219,000	14.8
Hill AFB	Utah	77,700	207,000	2.70
Nellis AFB	Nevada	26,200	181,000	6.91
K.I. Sawyer AFB	Michigan	71,300	179,000	2.50
LA AFB	California	20,600	176,000	8.54
Edwards AFB	California	4,300	168,000	39.1
Patrick AFB	Florida	1,350	146,000	108
Cape Canaveral AFB	Florida	4,900	131,000	26.7
Kelly AFB	Texas	33,000	130,000	3.94
Cannon AFB	New Mexico	13,500	128,000	9.48
Charleston AFB	South Carolina	1,600	120,000	75.0
March AFB	California	1,200	113,000	94.2
Travis AFB	California	600	112,000	187
USCG Supp. Cen. Kodiak	Alaska	4,500	110,000	24.4
Eglin AFB	Florida	12,300	105,000	8.54
Shaw AFB	South Carolina	5,200	104,000	20.0
Bolling AFB	Washington DC	10,200	99,000	9.71
Camp Pendeleton	California	4,100	97,900	23.9
Grissom AFB	Indiana	6,000	87,400	14.6
McGuire AFB	New Jersey	2,800	82,400	29.4
Kirtland AFB	New Mexico	3,100	77,500	25.0
Malmstrom AFB	Montana	1,400	71,900	51.4
Pope AFB	North Carolina	1,700	69,600	40.9
Westover AFB	Massachusetts	5,800	69,200	11.9
Ft. Drum	New York	1,900	68,800	36.2
Ellsworth AFB	South Dakota	3,700	68,000	18.4
Mt. Hope AFB	Idaho	1,900	58,700	30.9
Little Rock AFB	Arkansas	1,000	55,500	55.5
Battle Creek ANGB	Michigan	8,700	53,600	6.16
FE Warren AFB	Wyoming	2,800	53,000	18.9
Dyess AFB	Texas	2,000	49,000	24.5
Hanscom AFB	Massachusetts	3,600	48,500	13.5
AFP PJKS	Colorado	2,100	47,600	22.7
Tinker AFB	Oklahoma	1,800	41,500	23.1
Randolph AFB	Texas	4,700	37,500	7.98

Table 13. U.S. Air Force Bioventing Projects

¹ All reported costs were adjusted for site location, as described in the text. Source: U.S. Air Force 1996

6.0 VENDORS OF BIOREMEDIATION

Information about vendors of bioremediation technologies is available in the EPA REACH IT database. As of August 2001, 175 vendors offered 344 types of bioremediation technologies, of which 294 were full scale, 15 were pilot scale, and 12 were bench scale. Of the vendors identified, 17 were classified as large businesses. The vendors provided information about 559 specific applications of their technologies, of which 514 were full scale.

The number of bioremediation vendors submitting information to EPA has increased significantly over the past 9 years. In 1992, EPA VISITT, the predecessor to EPA REACH IT, contained information about 30 bioremediation vendors. The larger number of bioremediation vendors in EPA REACHIT probably results primarily from an increase in service providers, along with increased awareness of the REACHIT database.

7.0 REFERENCES

- FRTR. 1995. Remediation Case Studies: Bioremediation (Volume 1). EPA-542-R-95-002, PB95-182911. http://www.frtr.gov>. March.
- FRTR. 1997. Remediation Case Studies: Bioremediation and Vitrification (Volume 5). EPA-542-R-97-008, PB97-177554. http://www.frtr.gov>. July.
- FRTR. 1998. Remediation Case Studies: Ex Situ Soil Treatment Technologies (Bioremediation, Solvent Extraction, Thermal Desorption) (Volume 7). EPA-542-R-98-011. http://www.frtr.gov. September.
- FRTR. 2001. FRTR Cost and Performance Remediation Case Studies and Related Information. Office of Solid Waste and Emergency Response, Technology Innovation Office, Washington, D.C. EPA 542-C-00-001. http://www.frtr.gov>. August.
- FRTR. 2001a. Remediation Technologies Screening Matrix and Reference Guide, Version 3. http://www.frtr.gov/matrix2/top_page.html.
- Frazar, C. 2000. The Bioremediation and Phytoremediation of Pesticide-Contaminated Sites. http://www.clu-in.org>.
- McCarty, P.L. and others. 1998. "Full-scale evaluation of *in situ* cometabolic degradation of trichloroethylene in groundwater through toluene injection." *Environmental Science and Technology*. Volume 32. Pages 88-100. http://en.afit.af.mil/env/insitubio.htm.
- Tulis, D. and others. 1998. Study Points to New Trends in Use of Alternative Technologies at LUST sites; Soil & Groundwater Cleanup. July.
- U.S. Army. 2000. Multiple Biotechnology Demonstrations of Explosives-Contaminated Soils. http://aec.army.mil/prod/usaec/et/restor/ecsoils.htm.
- U.S. Air Force. 1996. Bioventing Performance and Cost Results from Multiple Air Force Test Sites, Technology Demonstration, Final Technical Memorandum. AFCEE Technology Transfer Division. http://www.afcee.brooks.af.mil/er/ert/costperf.htm. June.
- U.S. EPA. 1994. Engineering Bulletin In Situ Biodegradation Treatment. EPA-540-S-94-502. April.
- U.S. EPA. 2000. Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications. Office of Solid Waste and Emergency Response, Technology Innovation Office, Washington, D.C. EPA 542-R-00-008. <http://www.clu-in.org>. July.
- U.S. EPA. 2001. Treatment Technologies for Site Cleanup: Annual Status Report (Tenth Edition). Office of Solid Waste and Emergency Response, Technology Innovation Office, Washington, D.C. <<u>http://www.clu-in.org</u>>. EPA 542-R-01-004. February.
- U.S. EPA. 2001a. *Remediation Technology Cost Compendium Year 2000.* Office of Solid Waste and Emergency Response, Technology Innovation Office, Washington, D.C. EPA 542-R-01-009. September.

U.S. EPA. 2001b. REmediation And CHaracterization Innovative Technologies (EPA REACH IT) database (DRAFT). Database under preparation; will be available at <<u>http://www.EPAREACHIT.org</u>>.

8.0 ADDITIONAL INFORMATION ABOUT INFORMATION SOURCES

Additional information about selected sources of information about bioremediation are presented below:

- **Treatment Technologies for Site Cleanup: Annual Status Report (ASR) (Tenth Edition)** -This report documents the status of remediation technologies for soil, other solid wastes, and groundwater at sites in the Superfund program. Information in the ASR is collected annually from EPA and state project managers by EPA's Technology Innovation Office. The tenth edition of the ASR, which includes data collected through Summer 2000, was published in 2001 at <<u>http://clu-in.org/asr></u>.
- EPA's REmediation And CHaracterization Innovative Technologies (EPA REACH IT) online database <http://www.epareachit.org> - EPA REACH IT contains site-specific technology data from the ASR, and vendor-supplied information about innovative treatment and characterization technologies. Information includes technology descriptions, performance, and cost. The database is searchable by key words.
- Federal Remediation Technologies Roundtable (FRTR) cost and performance reports The FRTR has prepared over 270 cost and performance reports that present available information for full-scale remediation efforts and large-scale demonstration projects. They describe a wide variety of above-ground and *in situ* cleanup technologies, along with a variety of contaminants treated. The reports describe actual clean up projects, and contain project information on site background and setting, waste source, contaminants and media treated, technology design and operation, performance, cost, regulatory requirements, points of contact, and lessons learned.
- Engineered Approaches to *In Situ* Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications This report provides an overview of the fundamentals and field applications of *in situ* bioremediation to remediate chlorinated solvents in contaminated soil and groundwater and 9 case studies of chlorinated solvent cleanup. This report is available at <<u>http://clu-in.org></u>.
- **Multiple Biotechnology Demonstrations of Explosives-Contaminated Soils** This document presents the cost and performance results of five innovative laboratory- and pilot-scale bioremediation projects performed on explosives-contaminated soils at Joliet Army Ammunition Plant (JOAAP). The document is available on the United States Army web site at <<u>http://aec.army.mil/prod/usaec/et/restor/ecsoils.htm</u>>.
- The Bioremediation and Phytoremediation of Pesticide-Contaminated Sites This report was prepared for EPA by Chris Frazar, a National Network of Environmental Studies (NNEMS) Fellow. The report provides a summary of bioremediation and phytoremediation technologies for treatment of pesticide-contaminated media. This report is available at <<u>http://clu-in.org</u>>.
- **Remediation Technology Cost Compendium Year 2000** This report wasprepared by EPA to provide information about costs of the following remediation technologies: bioremediation, thermal desorption, soil vapor extraction, on-site incineration, groundwater pump and treat, and permeable reactive barriers. It is available at *<http://clu-in.org>*.

Some of these sources (e.g., ASR, FRTR reports, and Engineered Approaches to *In Situ* Bioremediation of Chlorinated Solvents) can be ordered free of charge from the National Service Center for Environmental Pollution (NSCEP) by telephone at (513) 489-8190, by facsimile at (513) 489-8695, or on line at *<http://www.epa.gov/ncepihom/>*. NSCEP also can be contacted in writing at:

National Service Center for Environmental Publications P.O. Box 42419 Cincinnati, OH 45242

Region	Site Name	State	ROD Year	Contaminants Treated	Project Status ¹ (type of bioremediation)	Contact Name
8				reatment - Land Treatment (33	,	
3	Atlantic Wood Industry - OU 1	VA	1995	2,3,7,8- Tetrachlorodibenzodioxins (TCDD) Pentachlorophenol (PCP)	Predesign/Design	Ronnie M. Davis EPA (215) 814-3230
3	Naval Weapons Station Yorktown - OU 2	VA	1999	Volatile organic compounds (VOCs)	Operational	Robert W. Stroud EPA (410) 305-2748
3	Naval Weapons Station - Yorktown OU 13	VA	1999	2,4,6-Trinitrotoluene (TNT)	Operational	Robert W. Stroud EPA (410) 305-2748
3	Tonolli Corp	PA	1999	Total petroleum hydrocarbons (TPH)	Predesign/Design	John Banks EPA (215) 814-3214
4	Benfield Industries	NC	1995	Creosote	Operational	Jon Bornholm EPA - Region 4 (404) 562-8820
4	Brown Wood Preserving	FL	1988	Creosote	Completed	Randall Chaffins EPA (404) 562-8929
5	Burlington Northern Railroad Tie Treating Plant	MN	1986	Creosote Phenol	Completed	Linda Kern EPA (312) 886-7341
5	Galesburg/Koppers	IL	1989	Creosote PCP Phenol	Operational	Fred Nika Illinois EPA (217) 782-3983
5	Jennison Wright Corporation, Inc.	ΙL	1999	TCDD Benzene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Carbazole Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene Naphthalene PCP	Predesign/Design	Fred Nika Illinois EPA (217) 782-3983
5	Joslyn Manufacturing and Supply Co.	MN	1989	Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Naphthalene PCP	Completed	David Douglas Minnesota Pollution Control Authority (651) 296-7818
5	Ritari Post And Pole - OU 1	MN	1994	РСР	Predesign/Design	Miriam Horneff Minnesota Pollution Control Authority (651) 296-7228
6	Atchison, Topeka, & Santa Fe Clovis/Santa Fe Lake - TPH Lake Sediments	NM	1988	Petroleum hydrocarbons	Completed	Petra Sanchez EPA (214) 665-6686
6	Gulf Coast Vacuum Services - OU 1	LA	1995	Benzene Polycyclic aromatic hydrocarbons (PAHs)	Operational	Kathleen Aisling EPA (214) 665-8509

Region	Site Name	State	ROD Year	Contaminants Treated	Project Status ¹ (type of bioremediation)	Contact Name
0	Ex	S <i>itu</i> Sourc	e Treatm	ent - Land Treatment (33 sites	s, continued)	
6	North Cavalcade Street	ТХ	1988	Creosote	Operational	Dan Switek Texas Natural Resource Conservation Commission (512) 239-4132
6	Oklahoma Refining Co Hazardous Landfill	ОК	1992	Benzene Benzo(a)anthracene Phenol Toluene Xylene	Operational	Earl Hendrick EPA (214) 665-8519
6	Oklahoma Refining Co Nonhazardous Landfill	ОК	1992	Benzene Benzo(a)anthracene Phenol Toluene Xylene	Operational	Earl Hendrick EPA (214) 665-8519
6	Old Inger Oil Refinery	LA	1984	Benzene Ethylbenzene Petroleum hydrocarbons	Operational	Tom Stafford Louisiana Department of Environmental Quality (504) 765-0487
6	Popile	AR	1993	Creosote PCP	Predesign/Design	Shawn Ghose EPA (214) 665-6782
6	Prewitt Abandoned Refinery	NM	1992	Benzene Benzo(a)anthracene Benzo(a)pyrene Toluene Xylene	Completed	Gregory Lyssy EPA (214) 665-8317
7	Vogel Paint & Wax	IA	1989	Toluene Xylene	Operational	Bob Drustrup Iowa Department of Natural Resources (515) 281-8900
8	Broderick Wood Products - OU 2 (Soils)	СО	1992	РСР	Operational	Armando Saenz EPA (303) 312-6559
8	Burlington Northern (Somers Plant)	MT	1989	Creosote Phenol	Operational	James C. Harris EPA (406) 441-1150, ext. 260
8	Idaho Pole Company	МТ	1996	Anthracene Benzo(a)pyrene Chrysene PCP Phenol	Operational	James C. Harris EPA (406) 441-1150, ext. 260
8	Libby Groundwater Contamination	MT	1989	Benzene Creosote PCP	Operational	James C. Harris EPA (406) 441-1150, ext. 260
8	Montana Pole and Treating Plant	МТ	1993	Anthracene Naphthalene PCP Pyrene	Operational	James C. Harris EPA (406) 441-1150, ext. 260
8	Wasatch Chemical	UT	1991	Toluene Xylene	Completed	Erna Waterman EPA (303) 312-6762

Region	Site Name	State	ROD Year	Contaminants Treated	Project Status ¹ (type of bioremediation)	Contact Name
		<i>itu</i> Sourc	e Treatm	l ent - Land Treatment (33 sites	,	
9	Fort Ord - Fort Ord Soil Treatment Area (Fdsta), OU 4	CA	1994	Benzene Diesel fuel Ethylbenzene Gasoline Petroleum hydrocarbons Toluene Xylene	Completed	John Chesnutt EPA (415) 744-2324
9	Luke AFB - OU 2/Dp23	AZ	1994	Benzo(a)pyrene	Completed	Sean Hogan EPA (415) 744-2384
9	Mather AFB - Soil and Groundwater OU, Mather Soils Biofarm	СА	1996	Benzene Diesel fuel Ethylbenzene Gasoline Petroleum hydrocarbons Toluene Xylene	Operational	Debbie Lowe EPA (415) 744-2206
9	Mather AFB - OU 04	CA	1998	Petroleum-related solvents	Operational	Debbie Lowe EPA (415) 744-2206
10	Bonneville Power Administration - OU A	WA	1993	Creosote PCP	Completed	Nancy Harney EPA (206) 553-6635
10	Elmendorf AFB - OU 5	AK	1995	Diesel fuel	Operational	Kevin Oates EPA (907) 271-6323
10	Pacific Car and Foundry	WA	1992	Diesel fuel TPH	Completed	Lynda Priddy EPA (206) 553-1987
		Ex Si	tu Source	Treatment - Composting (8 si	ites)	
4	Dubose Oil Products Co.	FL	1990	l,1-Dichloroethene (DCE) Acenaphthylene Benzene Benzo(g,h,i)perylene PCP Trichloroethene (TCE) Xylene	Completed	Mark Fite EPA (404) 562-8927
4	Milan Army Ammunition Plant - OU 3 & 4, Industrial Soil	TN	1996	TNT 1,3,5-trinitro-1,3,5-triazine (RDX)	Operational	Peter Dao EPA (404) 562-8508
4	Stauffer Chemical Company	FL	1996	Nonhalogenated volatiles Organochlorine pesticides	Design Completed/Being Installed	Brad Jackson EPA (404) 562-8925
5	Joliet Army Ammunition Plant Soil and Groundwater (LAP) OU	IL	1999	TNT Dinitrotoluene RDX Tetryl Trinitrobenzene (TNB)	Operational	Diana Mally EPA (312) 886-7275
5	Joliet Army Ammunition Plant Soil and Groundwater-MFG OU	IL	1999	TNT	Operational	Diana Mally EPA (312) 886-7275

Region	Site Name	State	ROD Year	Contaminants Treated	Project Status ¹ (type of bioremediation)	Contact Name
8				tment - Composting (8 sites, co	,	
10	U.S. Naval Submarine Base - OU 6 Site D & OU 2 Site F	WA	1994	TNT Cyclotetramethylene tetranitramine (HMX) RDX	Operational	Craig Thompson Washington Department of Ecology (360) 407-7234
10	Umatilla Army Depot Activity	OR	1992	TNT HMX RDX	Completed	Harry D. Craig EPA (503) 326-3689
10	Umatilla Chemical Depot (Lagoons) - Soil OU	OR	1992	TNT HMX RDX	Completed	Harry D. Craig EPA (503) 326-3689
	-	Ex	Situ Sour	rce Treatment - Biopile (3 sites)	
4	Stauffer Chemical (Cold Creek Plant) - OU 2	AL	1995	Butylate Cycolate Molinate Pebulate Thiocarbonate Vernolate	Operational	Michael Arnett EPA (404) 562-8921
5	Macgillis and Gibbs/Bell Lumber and Pole - OU-1	MN	1999	PCP PAHs	Predesign/Design	Darryl Owens EPA (312) 886-7089
9	Jasco Chemical Co.	CA	1992	1,1-Dichloroethane Acetone Methylene chloride Vinyl chloride Xylene	Completed	Ellen Manges EPA (415) 744-2228
		Ex Sit	u Source	Treatment - Slurry Phase (2 si	ites)	•
4	Cabot/Koppers - Koppers OU	FL	1990	Acenaphthene Anthracene PCP Phenanthrene	Predesign/Design	Maher Budeir EPA (404) 562-8917
6	Sheridan Disposal Services - Source Lagoon OU	TX	1989	Benzene Grease Oil Phenol Toluene	Predesign/Design	Gary A. Baumgarten EPA (214) 665-6749
		Ex	: <i>Situ</i> Sou	rce Treatment - Other (3 sites))	
3	Naval Weapons Station - Yorktown - OU 03	VA	1998	Not reported	Operational	Robert W. Stroud EPA (410) 305-2748
3	Standard Chlorine Of Delaware, Inc.	DE	1995	Benzene Chlorobenzene Toluene	Predesign/Design	Hilary Thornton EPA (215) 814-3323
4	T.H. Agriculture & Nutrition (Montgomery - OU 02)	AL	1998	Not reported	Predesign/Design	Brian Farrier EPA (404) 562-8952
		In Si	tu Source	Treatment - Bioventing (24 sit	tes)	
1	Loring AFB - OU 9, Auto Hobby Shop Area	ME	1995	Diesel fuel Petroleum hydrocarbons Solvents	Operational	Mike Nalipinski EPA (617) 918-1268

Region	Site Name	State	ROD Year	Contaminants Treated	Project Status ¹ (type of bioremediation)	Contact Name
	II	n Situ So	urce Trea	tment - Bioventing (24 sites, c	ontinued)	
2	Naval Air Engineering Center - Site 16 Under Area C	NJ	1996	2-Methylnaphthalene Petroleum hydrocarbons	Operational	Paul Ingrisano EPA (212) 637-4337
3	Delaware Sand & Gravel Landfill - OU 4 and OU 5	DE	1993	1,2-dichloroethane Benzene bis-2-chloroethyl ether Methylene Chloride	Operational	Philip Rotstein EPA (215) 814-3232
3	Dover AFB - Target Area 3 of Area 6	DE	1995	DCE 1,2-Dichloroacetic acid (DCA) Tetrachloroethene (PCE) TCE	Design Completed/Being Installed	Darius Ostrauskas EPA (215) 814-3360
5	Onalaska Municipal Landfill	WI	1990	Naphthalene Toluene	Completed	Tim Prendiville EPA (312) 886-5122
5	Penta Wood Products - OU 01	WI	1998	РСР	Predesign/Design	Anthony Rutter EPA (312) 886-8961
6	Petro-Chemical Systems, Inc OU 2	TX	1998	Benzene Ethylbenzene Naphthalene Toluene Xylene	Predesign/Design	Chris Villarreal EPA (214) 665-6758
6	Tinker AFB - Soldier Creek and Building 3001	ОК	1990	Petroleum hydrocarbons TCE	Operational	Hal Cantwell Oklahoma Department of Environmental Quality (405) 702-5100
8	Broderick Wood Products - OU 2 (Groundwater)	CO	1992	PCP Phenol	Operational	Armando Saenz EPA (303) 312-6559
9	George AFB - OU 3 FT19a	СА	1999	Benzene Ethylbenzene Toluene TPH TCE Xylene	Operational	James Chang EPA (415) 744-2158
9	George AFB - OU 3 OT51	CA	1999	Benzene Ethylbenzene Toluene TPH Xylene	Operational	James Chang EPA (415) 744-2158
9	J.H. Baxter - Area B	CA	1998	Not reported	Operational	Beatriz Bofill EPA (415) 744-2235
9	Mather AFB - OU 04 (site 18,23 & 59)	CA	1998	Diesel fuel Gasoline VOCs	Predesign/Design	Debbie Lowe EPA (415) 744-2206
9	Tracy Defense Depot (U.S. Army) - OU 01	CA	1998	1,1,1-Trichloroethane	Predesign/Design	Michael Work EPA (415) 744-2392

Region	Site Name	State	ROD Year	Contaminants Treated	Project Status ¹ (type of bioremediation)	Contact Name
0	l Ii	n Situ Sou	Irce Trea	I tment - Bioventing (24 sites, co	ntinued)	
9	Williams AFB - OU 3	AZ	1996	Benzene Ethylbenzene JP-4 fuel Petroleum hydrocarbons	Operational	Sean Hogan EPA (415) 744-2384
10	Eielson AFB - OU 1 (Power Plant)	AK	1994	Benzene Ethylbenzene JP-4 fuel Petroleum hydrocarbons	Operational	Mary Jane Nearman EPA (206) 553-6642
10	Eielson AFB - OU 1 (Refueling Loop)	AK	1992	Benzene Chrysene Diesel fuel Ethylbenzene JP-4 fuel Naphthalene Petroleum hydrocarbons	Operational	Mary Jane Nearman EPA (206) 553-6642
10	Eielson AFB - OU 2 (Fuel Area)	AK	1994	Benzene Chlorobenzene Chloromethane Ethylbenzene Naphthalene TPH	Operational	Mary Jane Nearman EPA (206) 553-6642
10	Eielson AFB - OU 3 (Refueling Loop USTs)	AK	1994	Benzene Ethylbenzene JP-4 fuel Petroleum hydrocarbons	Operational	Mary Jane Nearman EPA (206) 553-6642
10	Elmendorf AFB - OU 4	AK	1995	Diesel fuel Gasoline JP-4 fuel	Operational	Kevin Oates EPA (907) 271-6323
10	Fairchild AFB - Priority 1 OUs (OU 2) Ft-1	WA	1993	Benzene	Operational	Ali Raad Washington Department of Ecology (360) 407-7181
10	Fairchild AFB - Priority 2 Sites, OU 3, Sub Area Ps-1	WA	1996	Petroleum hydrocarbons Solvents	Operational	Ali Raad Washington Department of Ecology (360) 407-7181
10	Naval Air Station Whidbey Island - Ault Field, OU 5, Areas 1, 31, and 52	WA	1996	Benzene Ethylbenzene Toluene TPH Xylene	Operational	Nancy Harney EPA (206) 553-6635
10	Union Pacific Railroad Tie Treatment - Vadose Zone Soils	OR	1996	Chrysene Creosote Naphthalene PCP	Predesign/Design	Brian McClure Oregon Department of Environmental Quality (541) 298-7255, ext. 32
	In Sit	u Source	Treatme	nt - Slurry-Phase Lagoon Aera	tion (2 sites)	
6	French Limited	TX	1988	1,1-Dichloroethane Benzo(a)pyrene PCP PAHs Polychlorinated biphenyls (PCBs) Volatile chlorinated organics VOCs	Completed	Ernest R. Franke EPA (214) 665-8521

Region	Site Name	State	ROD Year	Contaminants Treated	Project Status ¹ (type of bioremediation)	Contact Name
	In Situ So	urce Trea	tment - S	urry-Phase Lagoon Aeration (2 sites, continued)	
7	Pester Refinery Co OU 1, Burn Pond Site	KS	1992	Benzo(a)anthracene Chrysene	Operational	Catherine Barrett EPA (913) 551-7704
		In	<i>Situ</i> Sou	rce Treatment - Other (9 sites)		
2	Dayco Corp./L.E. Carpenter Co., NJ	NJ	1994	Bis(2-ethylhexyl)phthalate	Operational (aerobic)	Gwen Zervas New Jersey Department of Environmental Protection (609) 633-7261
4	Cabot/Koppers - Koppers OU	FL	1990	Acenaphthene Anthracene Creosote PCP Phenanthrene	Predesign/Design	Maher Budeir EPA (404) 562-8917
4	Helena Chemical Company (Tampa Plant)	FL	1996	Aldrin Chlordane Dichlorodiphenyldichloroetha ne (DDD) Dichlorodiphenyltrichloroetha ne (DDT) Dieldrin Heptachlor Toxaphene	Predesign/Design	Brad Jackson EPA (404) 562-8925
4	Koppers Co., Inc. (Charleston Plant) - OU 01	SC	1998	Not reported	Design Completed/Being Installed	Craig Zeller EPA (404) 562-8827
4	Peak Oil/Bay Drum - OU 1	FL	1993	Benzo(a)anthracene Ethylbenzene Naphthalene Pyrene PCE Xylene	Predesign/Design (aerobic)	Caroline Robinson EPA (404) 562-8930
5	Seymour Recycling Corp.	IN	1987	Halogenated volatiles Non-halogenated semivolatiles	Completed (aerobic)	Jeffrey Gore EPA (312) 886-6552
6	American Creosote Works, Inc Winnfield Plant (Groundwater)	LA	1993	Creosote PCP	Operational (aerobic)	John Meyer EPA (214) 665-6742
7	Peoples Natural Gas	IA	1991	Benzene Benzo(a)pyrene Naphthalene Toluene	Predesign/Design (aerobic)	Diana Engeman EPA (913) 551-7746
9	J.H. Baxter	СА	1998	РСР	Design (aerobic) Completed/Being Installed	Beatriz Bofill EPA (415) 744-2235
	•	In	<i>Situ</i> Grou	Indwater - Biosparging (3 sites)	·
5	Fisher-Calo	IN	1990	Bis(2-ethylhexyl)phthalate Naphthalene	Operational	Jeffrey Gore EPA (312) 886-6552

Region	Site Name	State	ROD Year	Contaminants Treated	Project Status ¹ (type of bioremediation)	Contact Name
		In Situ C	Froundwa	ter - Biosparging (3 sites, cont	inued)	
5	Wayne Waste Oil	IN	1990	DCE Benzene PCE Toluene TCE Vinyl chloride Xylene	Operational	Jeffrey Gore EPA (312) 886-6552
6	Tinker AFB - Soldier Creek and Building 3001	ОК	1990	Petroleum hydrocarbons TCE	Operational	Hal Cantwell Oklahoma Department of Environmental Quality (405) 702-5100
		1	In Situ Gi	roundwater - Other (17 sites)		
1	Hocomonco Pond - ESD	МА	1985	Benzene Creosote Ethylbenzene Naphthalene Toluene VOCs Xylene	Operational (aerobic)	Derrick Golden EPA (617) 918-1448
2	FAA Technical Center - OU 1, Area D - Jet Fuel Farm	NJ	1989	Benzene JP-4 fuel Naphthalene Toluene	Operational (aerobic)	Julio Vazquez EPA (212) 637-4323
2	Naval Air Engineering Station Areas I and J Groundwater OU 26	NJ	1999	1,1,1-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene PCE Trichloroethene	Operational (aerobic)	Paul Ingrisano EPA (212) 637-4337
2	Shore Realty (formerly Applied Environmental Services) - Groundwater OU	NY	1991	Benzene Ethylbenzene Toluene Xylene	Operational (aerobic)	Maria Jon EPA (212) 637-3967
3	Avco Lycoming	PA	1997	Chromium	Operational (anaerobic)	Jill Lowe EPA (215) 814-3123
3	Dover AFB - Target Area 2 of Area 6	DE	1995	1,1-Dichloroethane 1,2-Dichloroethene Benzene Carbon tetrachloride Ethylbenzene PCE Toluene TCE Vinyl chloride Xylene	Predesign/Design (anaerobic)	Darius Ostrauskas EPA (215) 814-3360

Region	Site Name	State	ROD Year	Contaminants Treated	Project Status ¹ (type of bioremediation)	Contact Name
In Situ Groundwater - Other (17 sites, continued)						
4	American Creosote Works, Inc OU 2, Phase 2	FL	1994	Acenaphthene Anthracene Benzene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzofuran Fluoranthene Fluorene PCP Phenanthrene PAHs Pyrene	Predesign/Design (aerobic)	Mark Fite EPA (404) 562-8927
5	Kummer Sanitary Landfill - OU 3 - Amendment	MN	1996	1,1,1-Trichloroethane cis-1,2-Dichloroethene Ether Methane TCE Vinyl chloride	Completed (aerobic)	Gladys Beard EPA (312) 886-7253
6	American Creosote Works, Inc. (Winnfield Plant)	LA	1993	Creosote PCP	Operational (aerobic)	John Meyer EPA (214) 665-6742
6	Petro-Chemical Systems, Inc OU 2	TX	1998	Benzene Ethylbenzene Naphthalene Toluene Xylene	Operational (aerobic)	Chris Villarreal EPA (214) 665-6758
6	Popile	AR	1993	Creosote	Predesign/Design	Shawn Ghose EPA (214) 665-6782
7	Ace Services	KS	1999	Chromium	Predesign/Design (anaerobic)	Bob Stewart EPA (913) 551-7654
8	Burlington Northern (Somers Plant) - Groundwater	MT	1989	Creosote Phenol	Operational (aerobic)	James C. Harris EPA (406) 441-1150, ext. 260
8	Idaho Pole Company	MT	1992	Anthracene Benzo(a)pyrene Chrysene PCP Phenol	Operational (aerobic)	James C. Harris EPA (406) 441-1150, ext. 260
8	Libby Groundwater Contamination	МТ	1989	Benzene Creosote PCP	Operational (aerobic)	James C. Harris EPA (406) 441-1150, ext. 260
8	Montana Pole and Treating Plant - Groundwater OU	МТ	1993	Anthracene Naphthalene PCP Pyrene	Operational (aerobic)	James C. Harris EPA (406) 441-1150, ext. 260
9	Koppers - Oroville Plant	CA	1999	Creosote PCP	Operational (aerobic)	Charles Berrey EPA (415) 744-2223

¹ The project status listed in this table is the project status as of Summer 2000.

Abbreviations: DCA = 1,2-dichloroacetic acid; DCE = dichloroethene; DDD = dichlorodiphenyldichloroethane; DDT = dichlorodiphenyltrichloroethane; HMX = cyclotetramethylene tetranitramine; PAH = polycyclic aromatic hydrocarbon; PCB = polychlorinated biphenyl; PCE = tetrachloroethene; PCP = pentachlorophenol; RDX = 1,3,5-trinitro-1,3,5-triazine; TCDD = 2,3,7,8-tetrachlorodibenzodioxins; TCE = trichloroethene; TNB = trinitrobenzene; TNT = 2,4,6-trinitrotoluene; TPH = total petroleum hydrocarbons; VOC = volatile organic compounds

Source: EPA 2001

APPENDIX B

Additional Information about Development of Cost Curves for U.S. Air Force Bioventing Applications

The following approach was used in developing the cost curves for the cost compendium (EPA 2001a).

- 1. Both independent and dependent variables for each set of data (for example, volume of soil treated and unit cost, respectively) were transformed to their corresponding natural log values.
- 2. A linear best fit of the log-transformed data was determined. A statistical summary of the fit, including the coefficient of determination (r^2) , provided a measure of how well the data fit the model, was prepared.
- 3. Residuals from the linear fit using the log-transformed data were examined to determine if they were distributed normally. The Shapiro-Wilk W test (goodness-of-fit test), in which the null hypothesis (Ho) is that the data are distributed normally, was used in that examination. If the probability of obtaining a value less than the value calculated using the W test (probability W) was less than 0.05, Ho was accepted, and it is concluded that the residuals were distributed normally.
- 4. Individual predicted values, along with two sigma (95-percent) and one-sigma (68-percent) upper and lower confidence limits were calculated from the linear model (log-transformed scale).
- 5. The values then were plotted on a linear X-Y scale, and a subset of the plot enlarged to show clearly the smaller quantities of material treated. That step provided the decimal-scale view of the cost curves.
- 6. To portray the data in a linear manner, the predicted values were plotted on a \log_{10} - \log_{10} scale, to provide the log-scale view of the plot.

The approach was developed on the basis of the cost data for bioventing applications. The coefficient of variation for the linear fit of the log-transformed data was 0.80, meaning that 80 percent of the variability in the data is explained by the model. Exhibits B-1 and B-2 present the log-scale view of the plot and detailed statistics used to develop the cost curves, respectively.

Exhibit B-1. AFCEE Bioventing Applications – Unit Cost vs. Volume Treated (with 95- and 68-Percent Confidence Intervals)

Notes:

- ¹ The above plot shows a solid line based on a best fit of available data for 45 bioventing applications, and dashed lines for the upper and lower confidence intervals, using 95 percent and 68 percent degrees of confidence.
- ² All reported costs were adjusted for location, as described in the text.
- ³ The coefficient of determination is 80 percent.

Source: EPA 2001a

SEPA

United States Environmental Protection Agency (5102G) Washington, D.C. 20460

Official Business Penalty for Private Use \$300

EPA 542-R-01-019

EPA 542-R-01-019

Use of Bioremediation at Superfund Sites

SEPA