

Archived Publication

This information provided in this document is for reference. Please be aware that the information in this document may be outdated or superseded by additional information.

EPA promulgated regulations for Concentrated Animal Feeding Operations (CAFOs) in February 12, 2003 that expanded the number of operations covered by the CAFO regulations and included requirements to address the land application of manure from CAFOs. The rule became effective on April 14, 2003. NPDES-authorized states were required to modify their programs by February 2005 and develop state technical standards for nutrient management. On February 28, 2005, in response to litigation brought by various organizations, the Second Circuit court issued its decision in *Waterkeeper Alliance et al. v. EPA*, 399 F.3d 486 (2d Cir. 2005). EPA has updated the CAFO rule to reflect the changes requested by the Court. Visit www.epa.gov/npdes/caforule to view the 2008 CAFO Final Rule and supporting documents.

APPENDIX E - ANIMAL WASTE SAMPLING

Animal waste analysis is a key component of nutrient management. Complete analyses provide critical information about the animal waste composition, including pH and nutrient content. Actual nutrient content of animal waste varies with the type of animal, feed, storage system, and method of animal waste application. You should sample animal waste stored on site each time it is to be removed (for land application on or off site). Sample daily spread operations (if you land-apply daily) several times throughout the year to obtain a good estimate of nutrient content.

Description

Animal waste sampling is relatively simple, but must be done properly for reliable results. The sampling method differs based on the type of animal waste you generate at your farm (e.g., liquid, semi-solid, solid). Animal waste sampling generally consists of two to seven steps, depending on the type of animal waste. Although the number of steps varies based on the physical state of the animal waste, all of the methods rely on collecting a representative animal waste sample for analysis. Where bedding is collected with the animal waste, include both bedding and animal waste in the sample. Also, conduct sampling as close to the time of land application as possible. Specific techniques for gathering poultry litter, liquid animal waste, semi-solid animal waste, and solid animal waste samples are described below; you can use these to help develop sampling procedures at your farm. Remember that you should sample and analyze all animal waste at your farm. Work with your state and local agricultural Cooperative Extension Offices to ensure that you develop the proper procedures for your conditions and animal waste management methods.

Before sampling, know where the samples are to be shipped, how to pack and ship the sample, and what to use as sample containers. Many laboratories will furnish the proper sample containers for a small charge. Samples should never be collected and shipped in glass bottles, and they should be shipped on wet ice unless otherwise instructed by the laboratory. Contact your state or local agricultural Cooperative Extension Office for a list of laboratories that can perform your analyses. You should also wear gloves at all times, to protect yourself and the sample from contamination.

The test should analyze for such parameters as percentage of dry matter, ammonium-nitrogen, total-nitrogen, phosphorus (P or P_2O_5), and potassium (K or K_2O). Request results in the same units as your calibrated animal waste application system (see Appendix J for more information about calibrating animal waste spreaders and irrigators). For example, if your animal waste application is measured in tons per acre, request that your analysis be reported as pounds of nutrient per ton of animal waste.

Instructions for Collecting Poultry Litter Samples

Poultry litter is a mixture of poultry animal waste and the bedding (e.g., sawdust or rice hull) from houses used to raise broilers, turkeys, and other birds. You will need a clean 5-gallon bucket, a narrow, square-ended spade (or a soil spade), and a 1-quart plastic freezer bag to collect and store your sample. The five steps to collecting a representative poultry litter sample are described below.

Step 1: Mentally divide the poultry house into three zones of equal size. Within each zone, you'll take six cores (i.e., samples) as shown in the diagram below.

Feed line

Water line

Zone 1

Zone 2

Zone 3

Sampling Pattern for Poultry Houses

Step 2: Take the first core within 1 foot of the feed line using your spade. Clear a small trench the width of the spade to the depth of the litter and remove a 1-inch slice, making sure to get equal amounts of litter from all depths. Empty the sample into your bucket.

Step 3: Repeat the process, gathering six cores from each zone, taking your last core within each zone within 1 foot of the water line. Walk the length of the building in each zone in a zigzag pattern taking cores with the spade at random points along your path (as shown in the diagram above). Take a representative number of cores under feeders and waterers. If the bucket becomes full before all 18 samples are taken, dump the contents onto a plastic sheet and continue sampling.

Step 4: After collecting samples from all three zones, crumble and thoroughly mix all of the litter in the bucket. It may be easier to pour the material onto a piece of plastic, or plywood, or into a wheelbarrow to facilitate mixing. Thorough mixing is critical to ensure that the analyzed sample is representative of the entire house.

Step 5: After the litter is well mixed, fill your plastic freezer bag with a subsample (i.e., a small sample) from your composite. Fill the bag only two-thirds full and squeeze the air out before sealing. Keep the sample cool (on ice if possible) until it is shipped.

Instructions for Collecting Liquid Animal Waste Samples

Liquid animal waste is typically stored in tanks, lagoons, or ponds. For tanks, collect only one sample, but collect several subsamples of liquid animal waste to get a representative sample from lagoons and ponds. You will need a clean 5-gallon bucket, a plastic cup, wire, and a long pole to collect liquid animal waste samples from lagoons and ponds. Sample containers are required to collect liquid animal waste samples from all sources. The two steps to collect a representative liquid animal waste sample are described below.

Step 1: For lagoons and ponds, collect several samples from around the shore of the lagoon or pond and mix them together in a clean 5-gallon bucket. You can collect the samples by wiring a plastic cup to the end of a long pole. When taking the sample, turn the cup upside down and push it a few feet below the surface. Then turn the cup right side up and pull out the sample.

If you store your liquid waste in tanks, your tanks must be well agitated before sampling. Often the only practical time to do this is as you are pumping the animal waste into your spreader.

Step 2: Fill a sample container with your sample, making sure to leave 2 inches of air space. Tightly seal the container and keep cool (on ice if possible) until it is shipped.

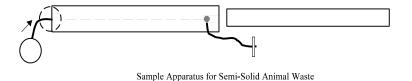
Instructions for Collecting Semi-Solid Animal Waste Samples

Collecting a representative sample of semi-solid animal waste is best done using a simple sampling device. You will need a 2-inch PVC pipe, nylon rope, a rubber ball, a dowel, a clean 5-gallon bucket, and sample containers. The seven steps to collecting a representative semi-solid animal waste sample are described below.

Step 1: Get a length of 2-inch PVC pipe long enough to reach well into your animal waste storage facility. Cut a notch 2 inches long and 1/4 inch wide at one end of the pipe. Cut a length of nylon rope 2 feet longer than the PVC pipe and tie a knot at one end. Drill a hole through a 2.5 inch rubber ball. Thread the rope through the ball until it is snug against the end knot. Tie a second knot to hold the ball at the end of the rope. Thread the rope through the PVC pipe and pull it until the ball plugs the end of the pipe. Slip your end of the rope into the notch and tie a knot; this will create a "latch" to keep the pipe sealed after you collect the sample. Tie a short dowel to the free end of the rope to serve as a hand grip. Cut a length of 1-inch PVC pipe and seal one end. Use this pipe to push samples out of the tube.

Step 2: With the ball sealing the end of the pipe, push the pipe through the top layer of animal waste to form a sample hole.

Step 3: Release the rope from the notch so that the ball dangles freely from the end of the pipe. Push the pipe into the sample hole in the animal waste crust. Make sure the ball does not block the pipe opening.


Step 4: Ease the pipe back slightly and pull the rope until the ball seals the end of the pipe. Slip the rope in the notch to anchor the ball in place and withdraw the pipe.

Step 5: Pour the sample into a clean 5-gallon bucket. You may need the 1-inch PVC pipe to force the sample from the pipe. Two people will need to operate a long pipe. To avoid backwash, keep the bottom of the pipe lower than your end.

Step 6: Repeat this process at several locations around the pit.

Step 7: Mix samples thoroughly in the bucket, then fill your sample container with the mix, leaving 2 inches of air space. Tightly seal the container and keep the sample cool (on ice if possible) until it is shipped.

A diagram of the sampling apparatus is shown below.

Instructions for Collecting Solid Animal waste

Collecting a representative sample of solid animal waste is best done using a simple sampling device. You will need thin-walled metal tubing (1-inch diameter), a drill, a dowel or short metal rod, a clean 5-gallon bucket, and sample containers. The four steps to collecting a representative solid animal waste sample are described below.

Step 1: Cut a 3-foot length of thin-walled metal tubing and sharpen the bottom edge. Near one end, drill

through the tubing and slide in a dowel or short metal rod to make a handle. Cut a 4-foot length of broomstick to force samples from the tube.

Step 2: Push and twist the tubing all of the way into the animal waste pile. Use the broomstick to push the animal waste into a clean 5-gallon bucket.

Step 3: Repeat Step 2 at several random locations around the pile. It is recommended that the more samples the better, so try to get at least 20 samples.

Step 4: Mix samples in the 5-gallon bucket, and fill the sample container with the mix, leaving 2 inches of air space. Tightly seal the container and keep the sample cool (on ice if possible) until it is shipped.

Animal Waste Sample Analyses

Contact your state or local agricultural Cooperative Extension Office for a list of available laboratories that can analyze your animal waste samples. Some Cooperative Extension Offices may even provide free analysis (e.g., in Maryland).

Label, package, and ship your samples to your contracted laboratory. The laboratory should be able to provide their proper protocol for packaging and shipping samples.

Your animal waste sample is typically analyzed for the following constituents:

- Nitrogen;
- Phosphorus;
- Potassium;
- pH:
- Moisture content;
- Calcium;
- Manganese;
- Magnesium;
- Sulfur;
- Zinc; and
- Copper.

The first step in interpreting analytical results of an animal waste test is to check the units used to report the results. They may be reported as percent nutrient (%) or parts per million (ppm), or, on rare occasions, on a dry-weight basis. (Most animal waste is measured on a wet-weight [i.e., as-is] basis.) The phosphorus and potassium may be reported on an elemental basis (P and K) rather than the phosphate (P_2O_5) and potash (K_2O) basis, which is typical of fertilizers. You will need to convert your animal waste test results into the proper fertilizer units for calculating your animal waste application rate.

Animal waste is an excellent fertilizer if it is spread uniformly on a field and at the proper rate. A pound of animal waste phosphate or potash has a nutrient value equivalent to that of commercial fertilizer. Although it has a value as a fertilizer, typically 50 to 80% of the total nitrogen applied is available to crops.

References

MU Extension, University of Missouri-Columbia. Sampling Poultry Litter for Nutrient Testing.

Cooperative Extension Service, University of Maryland System. Manure Analysis Instruction Sheets.

Who to Contact For More Information

Your Local Cooperative Cooperative Extension Office Your Local Land Grant University National Water Management Center/Natural Resources Conservation Service (USDA)