

Session 3: Endpoints in CAT

Session 3:Endpoints

Part A

Selecting Endpoints

Part B

Defining Endpoints

Part C

Endpoint Analysis

Part D

Exercises

Set Up CAT

Specify Climate Record Adjustments

Create Scenarios

Define Endpoints

Run HSPF

Analyze Endpoints

Session 3: Endpoints

Types of Endpoints

- Endpoints are measureable goals or targets
- Assessment endpoint -- formal expression of a valued environmental characteristic Example: reproduction of piscivorous (fish-eating) birds
- Measurement endpoint a measured response to a stress or disturbance Example: water quality standards

CAT Endpoints

 CAT is set up to analyze the impact of climate change on hydrologic and water quality endpoints i.e., measurement endpoints.

Hydrologic Endpoints

- Volume (daily, monthly, annual)
- Daily flow duration
- High storm peaks
- Low flow conditions

Water Quality Endpoints

- Sediment concentrations
- Water temperature
- Nutrients (N, P) concentrations
- DO concentrations

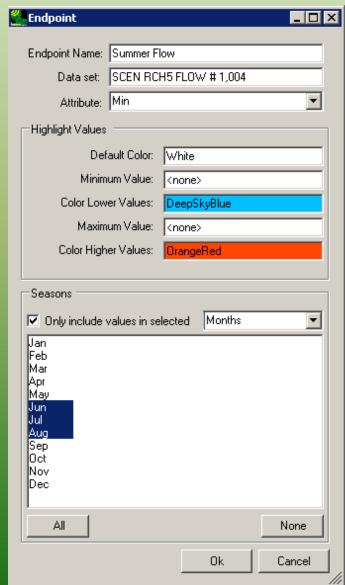
Aquatic Endpoints

• Fish and benthic macroinvertebrates are often used as endpoints. They are easily measured in the field and integrate impacts over time <u>and</u> from multiple stressors.

• AQUATOX predicts the impact of water

quality on aquatic endpoints.

• An AQUATOX/CAT application has not been conducted to date



Defining Endpoints

- Endpoint Name
- Data set field
- Attribute pull-down list
- Highlight Values Frame
- Seasons

Endpoint Options

- Any variable for which HSPF generates an output timeseries can be used as an endpoint for CAT analyses.
- Endpoint options can be as simple as a few outputs to WDM data sets in the External Targets block, or can be greatly expanded by using the binary output file.

Attributes

The different attributes of the time series are listed in a drop down menu:

- Min
- Max
- Sum
- Average annual sum of values
- Mean
- Geometric Mean
- Variance

- Standard Deviation
- Standard Error of Skew
- Serial Correlation Coefficient
- Coefficient of Variation
- 7Q10 low-flow event
- 100-year flood event

Range Values and Time Periods

- Flagging endpoint values in Results Table
 - 3-tiered, low/favorable/high range color scheme
 - 2-tiered favorable versus unfavorable range color scheme
- Flagging may be used for the entire simulation or only for selected periods.

The threshold values, ranges, and time periods can be set by the user.

Range Values

 Value of an endpoint relative to some critical range or threshold value

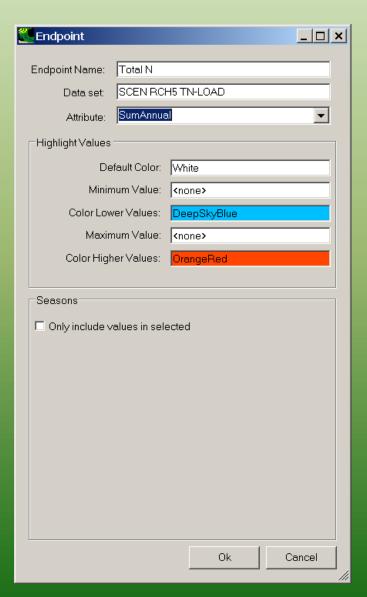
Example: a low flow threshold at which a fish species is subject to harm, or a numeric state water quality standard for chemical endpoint

40.4				
Endpoint		_		
F. I N				
Endpoint Name: Flow				
Data set: SCEN RCH	SCEN RCH5 FLOW			
Attribute: Mean		▼		
→ Highlight Values				
Default Color:	White			
Minimum Value:	<none></none>			
Color Lower Values:	DeepSkyBlue			
Maximum Value:	<none></none>			
Color Higher Values:	OrangeRed			
Seasons				
☐ Only include values in selected				
2 Only moduce values in selected				
	Ok	Cancel		

Time Periods

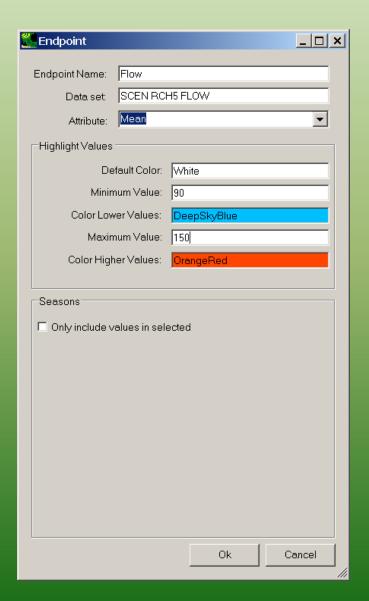
Particular season of each year, or during a specific year (or water year) within the record

A10.00				
Endpoint				_
Endpoint Name:	Summer F	low		
Data set:	SCEN RCH5 FLOW			
Attribute:	Min			V
⊢Highlight Values				
	efault Color:	White		
	num Value:	<none></none>		
Color Low	ver Values:	DeepS	kyBlue	
Maxin	num Value:	<none></none>	•	
Color High	ner Values:	Orange	Red	
Seasons				
☑ Only include ∨	alues in sele	ected	Months	▼
Jan Feb				
Mar Apr				
May				
Jun Jul				
Aug Sep				
Oct Nov				
Dec				
Dec				None

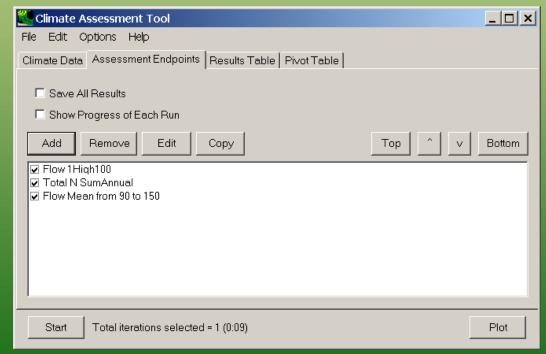


Example Endpoint Specification 1: 1-Day Flow with 100-Year Recurrence Interval

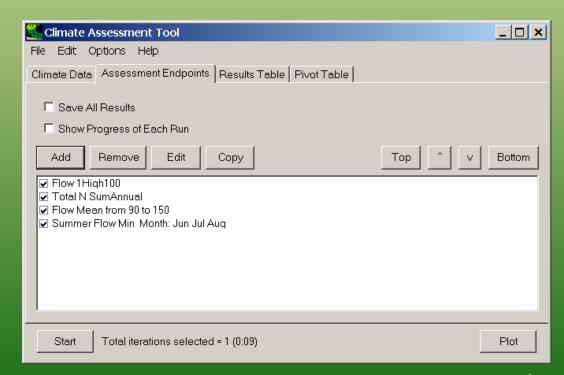
Climate Assessment Tool	_
File Edit Options Help	
Climate Data	
□ Save All Results	
☐ Show Progress of Each Run	
Add Remove Edit Copy	Top ^ v Bottom
☑ Flow 1Hiqh100	
Start Total iterations selected = 1 (0:09)	Plot



Example Endpoint Specification 2: Average Annual Total Nitrogen Load

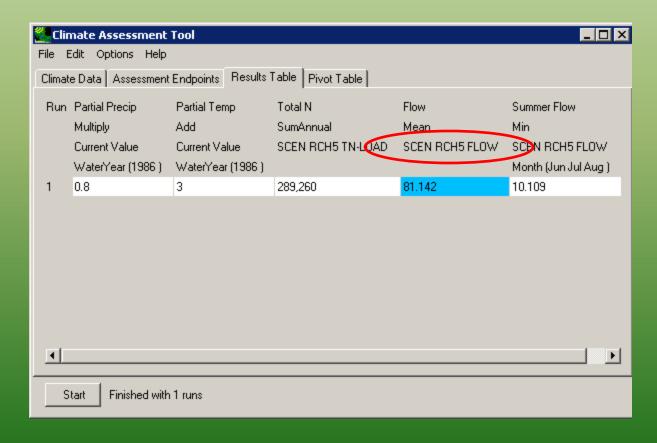

Climate Assessment Tool	_ X
File Edit Options Help	
Climate Data Assessment Endpoints Results Table Pivot Table	
Save All Results Show Progress of Each Run Add Remove Edit Copy	op ^ v Bottom
☑ Flow 1High100 ☑ Total N SumAnnual	
Start Total iterations selected = 1 (0:09)	Plot

Example Endpoint Specification 3: Mean Flows Within Range



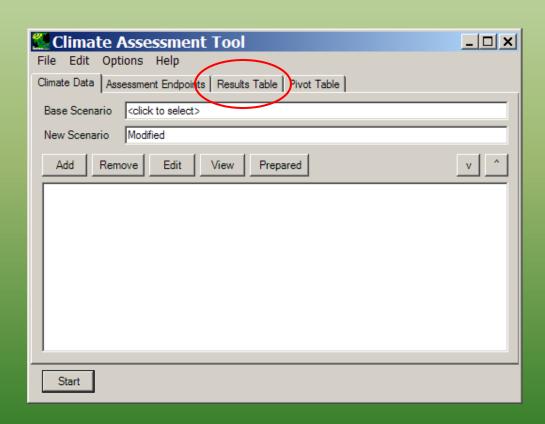
_ | _ | × | Endpoint Endpoint Name: Summer Flow SCEN RCH5 FLOW Data set: Attribute: Highlight Values Default Color: White Minimum Value: <none> Color Lower Values: DeepSkyBlue Maximum Value: <none> Color Higher Values: Orange Red Seasons Months Only include values in selected Jan lFeb lMar Apr lMav Jun Jul Aua Sep lOct. Nov Dec None Ok Cancel

Example Endpoint Specification 4: Minimum Flows Within Temporal Range



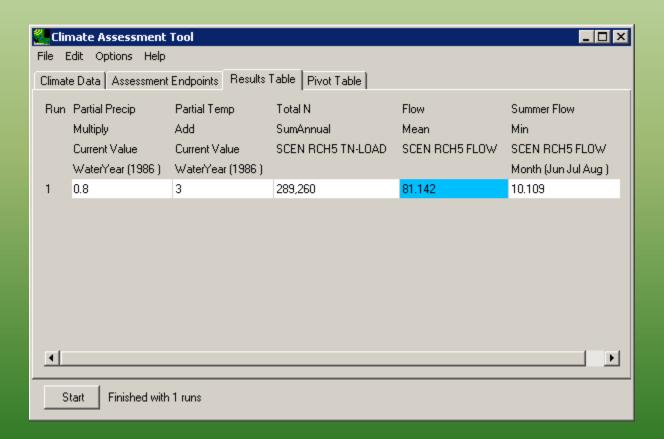
Endpoint Analysis

Endpoint Analysis

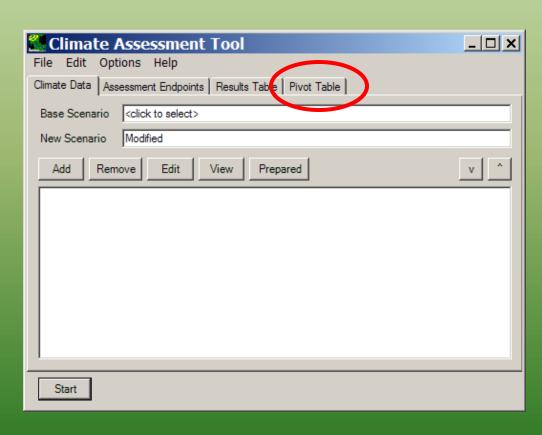


CAT presents results in the form of assessment endpoint values computed from model output time series data.

Results Table



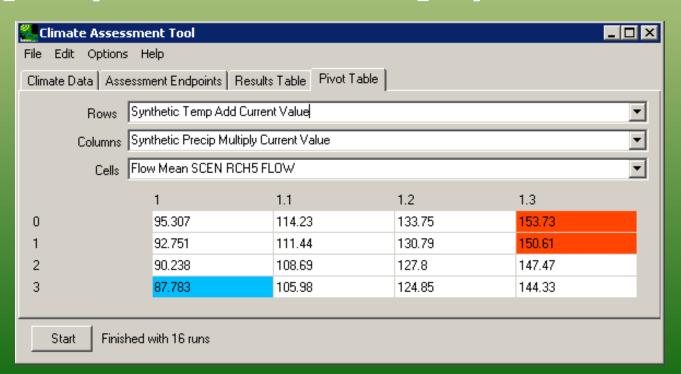
Contains userdefined values for each endpoint (i.e., for each attribute [e.g., mean, min] of each HSPF output variable [e.g., streamflow, sediment load] selected as an endpoint).


Results Table Tab

Pivot Tables

Summarizes large amounts of data.

Discerns patterns and relationships within a data set.

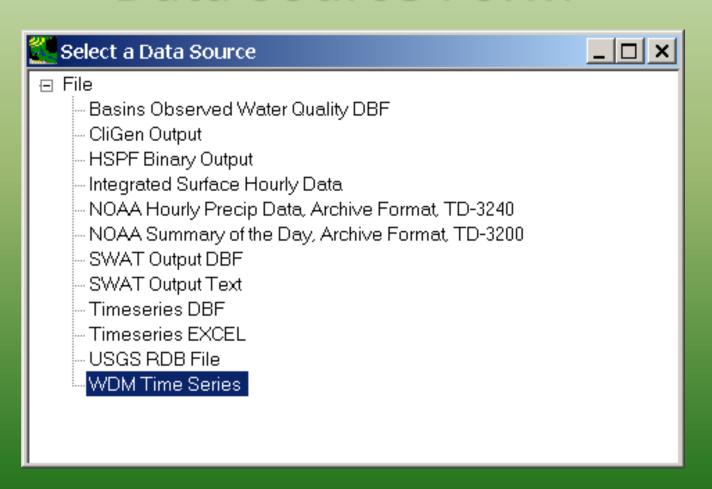

Organizes data into a format for plots with user-defined variables.

Pivot Table Tab

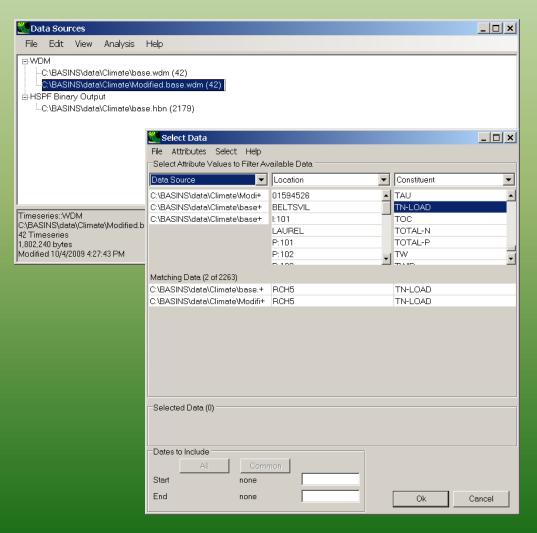
- Select rows and columns fields from lists
- Specify element to vary in rows and columns
- Specify element to be displayed in cells

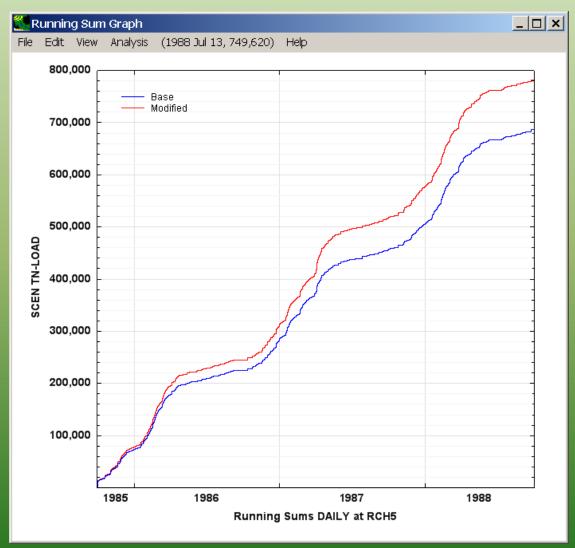
Exporting Option

- Output tables can be saved to an external file
- Use Save Results items in the File menu
- Or, the Edit:Copy Results menu option

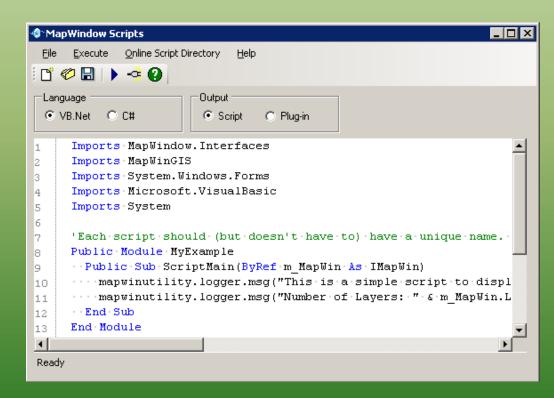

Other Summary and Visualization Tools

- Graph a time series or multiple time series
- Create a data tree
- Compute frequency statistics
- Calculate and display statistics for userdefined seasons or time periods
- Generate one time series from multiple time series


Data Source Form


Time Series List

Timeseries Lis	t	_ ×
File Edit View	Analysis Help	
Constituent	TN-LOAD	TN-LOAD 🔺
History 1	from base.wdm	from Modified.base.wdm
Max	11,020	11,504
Mean	625.49	713.03
Min	3.9019	4.3894
SumAnnual	228,510	260,490
1985/10/01 24:00	163.58	163.58
1985/10/02 24:00	849.26	1,006.4
1985/10/03 24:00	11,020	11,504
1985/10/04 24:00	267.79	278.6
1985/10/05 24:00	604.84	650.71
1985/10/06 24:00	679.62	727.14
1985/10/07 24:00	601.42	641.71
1985/10/08 24:00	522.34	556.87
1985/10/09 24:00	259.36	276.52
1985/10/10 24:00	118.9	127.79
1985/10/11 24:00	94.873	101.83
1985/10/12 24:00	239.72	256.34
1985/10/13 24:00	141.76	150.43
1985/10/14 24:00	469.52	476.14
1985/10/15 24:00	390.83	393.01
1985/10/16 24:00	148.28	155.77
1985/10/17 24:00	172.96	181.99
1985/10/18 24:00	121 37	127.5



Using Scripts

- Provide an efficient and reproducible method for performing repetitive tasks
- BASINS and MapWindow are designed to extend CAT and other tools/models through the use of scripts

Exercises C3 and C4

Exercise C3

- How do I specify endpoints from HSPF output for climate change impact analysis?
- How do I specify value ranges of concern?
- How do I specify time periods of concern (seasonal and/or partial records)?

Exercise C4

- How do I run an HSPF simulation using BASINS CAT?
- How do I use results tables of values for assessment endpoints?
- How do I use pivot tables of values for assessment endpoints?
- How do I export assessment endpoint results to files?
- How do I use the additional BASINS tools for analysis and display?