

www.epa.gov

1982

Method 120.1: Conductance (Specific Conductance, µmhos at 25°C) by Conductivity Meter

METHOD #: 120.1	Approved for NPDES (Editorial Revision 1982)	
TITLE:	Conductance (Specific Conductance, <i>u</i> mhos at 25°C)	
ANALYTE:	Conductance	
INSTRUMENTATION:	Conductivity Meter	
STORET No.	00095	

- 1.0 Scope and Application
 - 1.1 This method is applicable to drinking, surface, and saline water, domestic and industrial wastes and acid rain (atmospheric deposition).
- 2.0 Summary of Method
 - 2.1 The specific conductance of a sample is measured by use of a self-contained conductivity meter, Wheatstone bridge-type, or equivalent.
 - 2.2 Samples are preferable analyzed at 25°C. If not, temperature corrections are made and results reported at 25°C.
- 3.0 Comments
 - 3.1 Instrument must be standardized with KCl solution before daily use.
 - 3.2 Conductivity cell must be kept clean.
 - 3.3 Field measurements with comparable instruments are reliable.
 - 3.4 Temperature variations and corrections represent the largest source of potential error.
- 4.0 Sample Handling and Preservation
 - 4.1 Analyses can be performed either in the field or laboratory.
 - 4.2 If analysis is not completed within 24 hours of sample collection, sample should be filtered through a 0.45 micron filter and stored at 4°C. Filter and apparatus must be washed with high quality distilled water and pre-rinsed with sample before use.
- 5.0 Apparatus
 - 5.1 Conductivity bridge, range 1 to 1000 *u*mho per centimeter.
 - 5.2 Conductivity cell, cell constant 1.0 or micro dipping type cell with 1.0 constant. YSI #3403 or equivalent.
 - 5.3 Thermometer
- 6.0 Reagents

- 6.1 Standard potassium chloride solutions, 0.01 M: Dissolve 0.7456 gm of pre-dried (2 hour at 105°C) KCl in distilled water and dilute to 1 liter at 25°C.
- 7.0 Cell Calibration
 - 7.1 The analyst should use the standard potassium chloride solution (6.1) and the table below to check the accuracy of the cell constant and conductivity bridge.

°C	Micromhos/cm	
21	1305	
22	1332	
23	1359	
24	1386	
25	1413	
26	1441	
27	1468	
28	1496	

Conductivity 0.01 m KCl

8.0 Procedure

- 8.1 Follow the direction of the manufacturer for the operation of the instrument.
- 8.2 Allow samples to come to room temperature (23 to 27°C), if possible.
- 8.3 Determine the temperature of samples within 0.5°C. If the temperature of the samples is not 25°C, make temperature correction in accordance with the instruction in Section 9 to convert reading to 25°C.

9.0 Calculation

- 9.1 These temperature corrections are based on the standard KCl solution.
 - 9.1.1 If the temperature of the sample is below 25°C, add 2% of the reading per degree.
 - 9.1.2 If the temperature is above 25°C, subtract 2% of the reading per degree.
- 9.2 Report results as Specific Conductance, *u*mhos/cm at 25°C.

10.0 Precision and Accuracy

10.1 Forty-one analysts in 17 laboratories analyzed six synthetic water samples containing increments of inorganic salts, with the following results:

		Accuracy as	
Increment as	Precision as	Bias,	Bias,
Specific Conductance	Standard Deviation	%	<i>u</i> mhos/cm
100	7.55	-2.02	-2.0
106	8.14	-0.76	-0.8
808	66.1	-3.63	-29.3
848	79.6	-4.54	-38.5
1640	106	-5.36	-87.9
1710	119	-5.08	-86.9

(FWPCA Method Study 1, Mineral and Physical Analyses.)

10.2 In a single laboratory (EMSL) using surface water samples with an average conductivity of 536 *u*mhos/cm at 25°C, the standard deviation was \pm 6.

Bibliography

- 1. The procedure to be used for this determination is found in: Annual Book of ASTM Standards Part 31, "Water," Standard D1125-64, p. 120 (1976).
- 2. Standard Methods for the Examination of Water and Wastewater, 14th Edition, p. 71, Method 205 (1975).
- 3. Instruction Manual for YSI Model 31 Conductivity Bridge.
- 4. Peden, M. E., and Skowron. "Ionic Stability of Precipitation Samples," Atmospheric Environment, Vol. 12, p. 2343-2344, 1978.