United States Environmental Protection Agency Regions 1 and 2

Informational Webinar

Dredging and Dredged Material Management

Dredging Permit Process, Testing, and Dredged Material Disposal

April 3, 2014

AGENDA

9:30am – 10:30am Presentation 1: Dredging/Dredged Material Management 10:30am – 11:00am Q&A/Discussion

11:00 am – 12:00 pm
Presentation 2: Dredged Material Permit Process and Testing
12:00 pm – 12:30 pm
Q&A/Discussion

Dredging and Dredged Material Management

Patricia Pechko U.S. Environmental Protection Agency April 3, 2014

The removal of sediments from the bottom of lakes, rivers, harbors and other water bodies.

 Navigation dredging provides and maintains safe depths for vessels
 -maintenance vs. construction

Remediation dredging

Types of Materials

 Rock Gravel • Coarse Sand Fine Sand Silt Clay Mixture

PHE - mm COVERSION 0 = log_2 (d in mm) 1µm = 0.001mm ш ш б б ш б ц			SIZE TERMS		SIEVE		diameters grains sieve size	Number of grains		Settling Velocity		Threshold Velocity		
φÌ	1		Fractional and Decimal In	Wentworth,1922) BOULDERS (2-80) COBBLES		ASTM No. (U.S. Standard)	Tyler Mesh No.	Intermediate diamete of natural grains equivalent to sieve s	per mg		(Quartz, 20°C)		for traction cm/sec	
-8-	-200	- 256 - 10.1* - 128 - 5.04*							Quartz spheres	Natural sand	Spheres (Gibbs, 1971)	Crushed	T 8 (Nevin,1946)	(modified from Hjuistrom,1939)
-6-	-50	64.0 53.9 45.3	- 2.52"		very	2 1/2*	2"					2		1 m above bottom
-5 -	-40 -	33.1 32.0 25.9	-1.26*		coarse	1 1/2* 1 1/4" 1.06"	1 1/2" - 1.05" 742" 525" 371" 3				- 100 - 90 - 80 - 70 - 60 - 50 - 40 - 30	- 50 - 40 - 30 - 20	- 150	
-4 -	-20	22.6 17.0 16.0 13.4	-0.63"	ES	coarse	3/4" 5/8" 1/2"							- 100	
-3-	-10	11.3 9.52 8.00 6.73	- 0.32*	PEBBL	medium	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							- 90	- 100
-2-	-5 -	5.66 4.76 4.00	- 0.16*	-	fine		4 5						- 70	
-1-	-3 -2	3.36 2.83 2.38 2.00	-0.08"		fine Granules		5 7 5 8 9						- 50	
0-	_, _	1.63 1.41 1.19 1.00	mm - 1		very coarse		- 1.2	72	6	- 20	- 10	- 40	- 50	
1-		.840 .707 .545 .500	- 1/2		coarse		- 20 - 24 - 28	86	- 2.0 - 1.5 - 5.6 - 4.5 - 15 - 13 - 43 - 35 - 120 - 91 - 350 - 240 - 1000 - 580 - 2900 - 170	- 1.5 - 4.5 - 13 - 35 - 91 - 240 - 580 - 1700	1.5 10 4.5 9 13 5 35 3 91 2 240 1 580 0.5 1700 0.329 - 0.1 - 0.085	9876	- 30	
	4	.420 .354 .297		SAND	medium		- 35 - 42 - 48	42				- 4		- 30
2-	2	.250 .210 .177 .149	- 1/4		fine		- 65 - 80	30 215				- 2	- 20 - 26 — Minimum (Inman,1949)	mum
3-	=1 =	.125 .105 .088 .074	- 1/8	i.	very fine		115 115 115 115 115 115 115 115 115 115	155 115				- 1.0		
4-	05	.062 .053 .044	- 1/16		coarse	200 230 270 325 400		ote: Applies to subangular to subrounded quartz sand (in mm)				Stokes Law (R = 6rm\v)	ttom und	on
5-	03 -	.037 .031	- 1/32		medium	tter							te: The relation between the beginning of traction transport and the velocity pends on the height above the bottom that the velocity is measured, and on other factors.	
6-	01	.016	- 1/64	SILT	fine	e: Some sieve openings di slightly from phi mm scale								
7-	-	.008	- 1/128		very					suben;			n betw	tion between ransport and the height abc city is measi other factors
8-	005 004 — 003	.004	- 1/256		fine Clay/Silt boundary for mineral					plies to			The relation between raction transport and ds on the height abo the velocity is measu other factors.	
9-	002 —	.002	- 1/512	CLAY	analysis	Note: Sor slight)	Note: Sieve much as 29	Note: App subrou		te: App subrot	-0.00036		Note: The of tract	depends o that the

Regulation of Dredged Material Jurisdictional Boundaries

Common Dredges

Mechanical/Hydraulic

Common Dredges

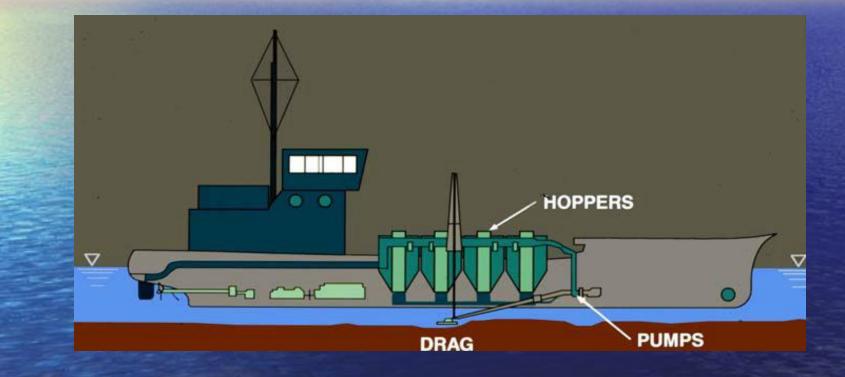
- Mechanical
 Clamshell (most common in LIS)
 Backhoe
- Hydraulic
 Hopper
 Pipeline/Cutterhead

Dredges - Mechanical

Clamshell

Backhoe

Dredges - Mechanical



Dredges – Hydraulic - Hopper

Dredges – Hydraulic - Hopper

Dredges – Hydraulic - Hopper

Dredges – Hydraulic Hopper

Dredges – Hydraulic Pipeline/Cutterhead

Dredges – Hydraulic Pipeline/Cutterhead

Containment Vessels

Best Management Practices

Best Management Practices (BMPs) are methods and measures employed to reduce the potential for, and magnitude of, adverse environmental impacts resulting from a dredging or disposal activity. The effectiveness of a particular BMP will vary with the on-site conditions. The applicability and use of a particular BMP for a dredging or disposal activity will be evaluated on a case-by-case basis and may be included in permit conditions.

Best Management Practices

Closed bucket

Hydraulic dredging

Limiting barge overflow

Shunting

Seasonal/Migratory windows

Tidal Dredging

Silt Curtains

Dredging practices

Disposal practices

Capping/Sequential Dredging

Dredged Material Management/Disposal

Contamination

Dredged material can be contaminated to varying degrees by: -Metals

-Organics

-Project Specific (e.g., nutrients, TBT)

"Toxic/Hazardous Materials"

Dredged materials are not sewage sludge, garbage nor toxic or hazardous waste. • Materials meeting the definition of these wastes are not suitable for disposal in Waters of the United States and are managed under applicable regulatory or remediation programs at the federal and state level.

Toxic/Hazardous Materials Authorities and Programs

- Toxic Substances Control Act (TSCA)
 PCBs
- Resource Conservation and Recovery Act (RCRA)
 - Subtitle D Solid Wastes
 - Subtitle C Hazardous Waste
- Comprehensive Environmental Response, Compensation and Liability Act (CERCLA aka Superfund)

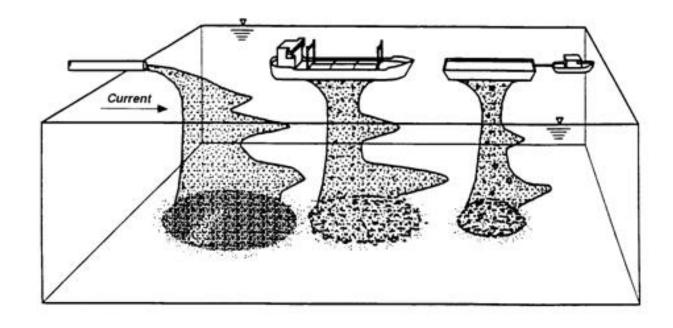
Dredged Material Management Options

Ocean or Open Water Placement
Confined Placement

Confined Disposal Facilities (CDFs)
Contained Aquatic Disposal (CADs)

Beneficial Use
Landfill/upland disposal facility

Open Water Placement



Ocean/Open Water Placement (unrestricted)

Pipeline placement

Hopper placement

Barge placement

Site Management and Monitoring

prevent significant adverse environmental impacts

- recognize and correct any potential unacceptable conditions before they cause any significant adverse impacts to the marine environment or present a navigational hazard to commercial waterborne vessel traffic;
- determine and enforce compliance with ocean disposal permit conditions;
- provide a baseline assessment of conditions at the site; outline a program for monitoring the site;

•

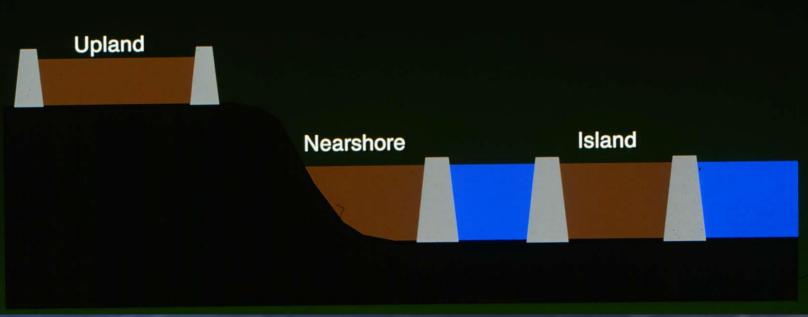
•

- describe special management conditions/practices to be implemented at the site;
- estimate the quantity of material to be disposed at the site, considering the presence, nature, and bioavailability of the contaminants in the dredged material;
- specify the intended use and possible closure date, if necessary, of the site;
- provide a schedule for review and revision of the SMMP

DAMOS

DAMOS (Disposal Area Monitoring System) is a multi-disciplinary environmental program started in 1977 by the New England District of the U.S. Army Corps of Engineers to manage and monitor offshore dredged material disposal sites from Long Island Sound to Maine. Program information is shared with the scientific community and public through media such as technical reports, papers, and brochures.

www:http://www.nae.usace.army.mil/Missions/DisposalAreaMonitoringSystem(DAMOS).aspx



Confined Disposal

Confined Disposal Facility

Confined Disposal Areas May Be Constructed As

Confined Disposal Facility

ALCONOMIC

-4-

Contained Aquatic Disposal (CAD)

Beneficial Use (BU)

Beneficial Use (BU)

Beneficial use is utilizing dredged sediments as resource materials in productive ways which provide environmental, economic, or social benefit.

Beneficial use is the preferred management management option.

Beneficial Use

Case by case basis. Needs and opportunities. Generally requires a local sponsor. Logistical and cost constraints. Additional regulatory requirements Material suitability limitations (physical and chemical)

Potential Beneficial Uses Aquatic

- Remediation of contaminated open water sites
- Emergent habitat creation/enhancement/ restoration
 - Coastal or freshwater marsh
 - Bird habitat (e.g. islands, dunes)
- In-water habitat creation/enhancement/restoration
 - Shellfish beds
 - Artificial reefs
- Bathymetric recontouring of degraded aquatic areas
- Beach fill/nourishment
- Shoreline stabilization

Potential Beneficial Uses Land

Remediation of Brownfields sites
Grading material/Aggregate
Landfill cover (final and daily)
Mine reclamation

Beneficial Use (BU)

	Dredged Material Sediment Type								
Examples of Beneficial Use Activities	Rock	Gravel & Sand	Consolidated Clay	Silt/Soft Clay	Mixture				
Engineered Uses									
Land creation	х	x	x	x	х				
Land improvement	x	x	x	x	х				
Berm creation	x	x	x		х				
Shore protection	x	x	x						
Replacement fill	х	x			х				
Beach nourishment		x							
Capping		x	x		х				
Construction materials	х	x	x	x	х				
Aquaculture			x	x	х				
Topsoil				x	х				
Wildlife habitats	x	x	x	x	х				
Fisheries improvement	x	x	x	x	х				
Wetland restoration			x	x	х				

Saltmarsh Restoration Jamaica Bay

Saltmarsh Enhancement Thin-Layer Spray Application Pepper Creek, Delaware

Habitat Restoration Poplar Island

Land Remediation

The Processing and Beneficial Use of Fine-Grained Dredged Material A Manual for Engineers

Ali Maher Ph.D Center for Advanced Infrastructure and Transportation, Rutgers Universit

W. Scott Douglas New Jersey Department of Transportation, Office of Maritime Resources

> Farhad Jafari Soilteknik, Inc.

Joel Pecchioli New Jersey Department of Environmental Protection

LIS DMMP Upland, Beneficial Use and Sediment Dewatering Site Inventory - Final Report

CONTRACT NO. DACW33-03-D-0004 Delivery Order No. 43

October 2009

Final Report

Long Island Sound Dredged Material Management Plan

Upland, Beneficial Use, and Sediment De-watering Site Inventory

FINAL

Long Island Sound Dredged Material Management Plan (LIS DMMP) Investigation of Potential Nearshore Berm Sites for Placement of Dredged Materials

Contract No. W912WJ-09-D-0001-0040

Prepared For: United States Army Corps of Engineers New England District 696 Virginia Road Concord, MA 01742

Prepared By: Woods Hole Group, Inc. 81 Technology Park Drive East Falmouth, MA 02536

November 2012

Patricia Pechko USEPA, Region 2 pechko.patricia@epa.gov

212-637-3796

