Emission projections for long-haul freight trucks and railways through 2050 in the United States

Funding: EPA RD-83428001 Liang Liu, Taesung Hwang, Sungwon Lee, Yanfeng Ouyang, Bumsoo Lee, Fang Yan, Tami C. Bond (University of Illinois at Urbana-Champaign) Steven J. Smith (Pacific Northwest National Laboratory)

Kathryn Daenzer (Pennsylvania State University)

U.S. freight shipments have grown by 45% in the last three decades.

Ton-mile: A single ton of goods that is transported for one mile.

Freight truck and rail transport are major sources of CO₂ and air pollutants.

We integrated socioeconomic, infrastructure and technology factors affecting future freight emissions.

Objectives of this study

- Develop a comprehensive freight emission forecast system
 OU.S. inter-regional transport: long-haul trucks and rail
 Time period: 2010-2050
- Identify robust decisions regarding the freight handling infrastructure under future uncertainties

Schematic method of projecting emissions from U.S. inter-regional freight transport

Macroeconomic model makes global economic forecasts.

Phoenix model

 Projects activities in broad economic sectors by seeking supply-demand equilibrium

 \odot Commodity, population & GDP in U.S.

• Four scenarios to capture future uncertainties (2005-2050).

	Business as usual (BAU)	Climate policy (carbon tax)
High GDP (180% increase)	S1	S3
Low GDP (60% increase)	S2	S4

(Fisher-Vanden et al. 2012)

Downscale national level economic projections to regional level (FAZs)

• Shift-share & input-output model

• Trip production & attraction in 120 Freight Analysis Zones (FAZs)

Distribute freight flows via truck and rail

- Mode split: binomial logistic regression model (Hwang et al., 2013)
 - o (based on 69,477 observations, 10 commodity types)
 - \circ commodity value
 - \circ average shipment distance
 - \circ crude oil price

Trucks

 less energy efficient
 preferred for transporting high value products over short distances.

U.S. inter-regional freight activity and fuel use projections

Freight network assignment under congestion

• Assumption: each motorist knows all network information and chooses the route with shortest travel time.

• Congestion -> Low speed -> Low fuel efficiency -> More emissions

Highway expansion helps ease congestion and reduce fuel consumption

 The incremental fuel reduction diminishes as more links are expanded.

 A higher baseline level of congestion benefits more

SPEWTrend vehicle fleet model

SPEWTrend: a dynamic vehicle fleet model that captures the technology change

Spatial distribution of PM emission by freight flows in 2050 (S1 scenario).

Emission distribution by freight flows provides more accurate information on exposure risks.

PM emission trend by technology group

- Most vehicles built under less stringent standards are removed by 2030.
- High-emitting conditions become increasingly important, affecting emission by up to 65% in 2050.

U.S. inter-regional freight fuel use and emission projections

Emission reductions from baseline by different mitigation policies in 2050

- S1 and S3 scenario as high and low GDP growth baselines.
- Climate policy in S2 and S4:
 - Robust to changes of GDP growth rates
 - \circ 30% reduction in CO₂
 - \circ 10%-28% reduction

in pollutants

Emission reductions from baseline by different mitigation policies in 2050

- S1 and S3 scenario as high and low GDP growth baselines.
- 10% highway expansion:
 ~10% emission

reduction

Emission reductions from baseline by different mitigation policies in 2050

- S1 and S3 scenario as high and low GDP growth **baselines**.
- Eliminating technology slip

 No CO₂ reduction
 65% PM reduction, 20%-30% reduction
 of other pollutants

Conclusions

- First step in long-term development of linked models to illustrate freight emission evolution
- Climate policy causes modal shift from truck to rail, resulting in emission reduction ~30%
- Maintain durability and control technology slip in the truck fleet reduces emission by 20% -65%
- Infrastructure investment help alleviate congestion; emission benefits are greater under high-growth scenarios.

Thank you!

Questions & Comments?

Contact information

Liang Liu, <u>lliu13@illinois.edu</u> University of Illinois, Urbana-Champaign

