An Analysis of 2011NEI Mobile Source Inventory Generated by MOVES and SMOKE-MOVES

Jin-Sheng Lin Virginia Department of Environmental Quality Julie McDill MARAMA

Eric Zalewsky

New York State Department of Environmental Conservation

EPA 2015 International Emission Inventory Conference April 13 -- 16, 2015

Background

- September 2013 -- 2011NEI version1 released by OAQPS
- July 2014 -- MOVES2014 released by OTAQ
- October 2014 -- Updated MOVES2014 released by OTAQ
- October 2014 -- 2011NEI version2 released by OAQPS

MOVES Workgroup

- Reviewed both V1 & V2 mobile source inventory
- Collaboration with EPA helped improve V2 results
- Additional improvements are possible

Outline of Talk

Analysis of 2011NEI version2

Additional areas for future improvement

Key Results

- Analysis focused on NOx emission mobile sector predominates
- County comparisons highlight similarities and differences for further review
- Six key vehicle types emit most of the NOx
- Vehicle age distribution matters
- Ongoing collaboration among states and EPA is critical

Example Issues Examined/Analyzed by the Workgroup

- Data exploration & comparison of 2011NEI versions 1 and 2 Representative County Scheme
 - Data analysis to understand the impact on emissions
 - Resulted in national revision of representative county scheme, both in version 1 and version 2
- Hourly meteorology versus monthly averaged meteorology
- **Extended Idling VPOP-based EXT to Idle hour based EXT**
- Activity Flip passenger cars/trucks reversed between two NEI versions (ongoing)
- Please visit our poster for many more examples of our analysis

2011 Mobile NOX by Vehicle Type (TPY) NEI2011 - Version 2 - CONUS Summary

□220121-Passenger Cars X220131-Passenger Trucks ★220132-Light Commercial Trucks ♣220252-Single Short-Haul 0220262-Combo Long-Haul 3 a gasoline gasoline diesel 7

2011NEI V2 Total Mobile NOx

NOx Differences 2011NEI V2 – 2011NEI V1

V2 NOx is lower for many southeastern and northeastern states State participation has improved inventory quality

Changes in 2011NEIv2 from 2011NEIv1

	2011NEI version1	2011NEI version2
MOVES version	MOVES2010b	MOVES2014 (in-between July and October releases)
SCC Scheme	Old SCCs (144)	New SCCs correcting non-conservation issue with VPOP/VMT activities
Extended idling	VPOP-based, rural interstate only	Idling hour based, does not restricted to rural interstate
MOVES inputs	Unknown defaults for 21/31/32	IHS CRC data for 21/31/32
HPMS VMT type	Separate 20/30	20/30 combined to 25
Rep County	164	284

-- The Workgroup has examined all of these subject areas

-- These changes may all have contributed to NOx increases for many counties in 2011NEI version2 from 2011NEI version1

Results of V2 Analysis

- NOx is the most important pollutant from mobile sources
- Six vehicle types predominate for NOx:
 - Gasoline passenger truck (31)
 - Diesel combination long-haul truck (62)
 - Gasoline passenger car (21)
 - Diesel combination short-haul truck (61)
 - Gasoline light commercial truck (32)
 - Diesel single unit short-haul truck (52)
- V2 reflects better input data, and emissions decline in Eastern United States
- Differences vary by county and state and highlight a need for QA of input data

Effect of Vehicle Age versus Ambient Temperature

NOx, urban restricted (04), running exhaust (01), weekday, RH = 60%

- -- Temperature has small impact on NOx emission rates from newer vehicles
- -- Vehicle age has a significant impact on NOx emission rates
- -- Rate data generated by rate mode with hypothetical fleets of 1/31 (=0.03225) age fraction
- -- Cautions:

Other roadway types, processes & humidity regimes have not been investigated. Are the emission factors in MOVES based on observations or measurements?

Representative County

County grouping criteria:

- (a) control programs (CALEV, NLEV, I/M, stageII) (b) Sloot age distribution
- (b) fleet age distribution
- (c) fuel parameters

(state-supplied fuel data overridden by EPA)

- Parameters from a single county used to represent the group – not averaged/aggregation
- Average vehicle age for single representative county is used for all vehicles in all counties

Effect of Representative County

Default Data

Many states rely on default data State resources are limited CRC project resulted in upgrading of default data for three categories: Passenger car (21) Passenger truck (31) Light commercial truck (32) Documentation by USEPA of the source and nature of default data is needed

Average Fleet Age for Six Major Source Type in

Representative County Age Distribution Comments²⁰

State	11	21	31	32	41	42	43	51	52	53	54	61	62
\mathbf{AL}	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
AR	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
AZ	(except 1)				(except 1)	(except 1)	(except 1)	(except 1)	(except 1)	(except 1)	(except 1)	(except 1)	(except 1)
CA	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
CO	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
\mathbf{CT}	Novariation				Novariation	Novariation	No variation	No variation	Novariation	No variation	No variation	No variation	No variation
DC													
DE													
FL	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
GA	Year 11 spike				Little variation	High spikes	Little variation	Little variation	Little variation	Year 30 spike	Year 30 spike	Little variation	Little variation
IA	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
ID					High spikes	High Spikes		High spike	Novariation	Novariation	Year 30 spike	Novariation	No variation
IL	Novariation				Novariation	Novariation	Novariation	Novariation	Novariation	Novariation	Novariation	Novariation	Novariation
IN	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
KS	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
	Default			Ņ	Default	Default	Default	Default	Default	Default	Default	Default	Default
KY	(except 1)				(except 1)	(except 1 - High)	(except 1)						
LA	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
MA	Novariation												
\mathbf{MD}													
ME	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
мп					High spikes	High spikes		Year 30 spike	Year 30 spike	Year 30 spike	Year 30 spike		
MIN	Year 11 spike				Novariation	Novariation	Novariation	Novariation	Novariation	Novariation	Novariation	Novariation	Novariation
MO			-1										
MS	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
MT	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
NC													
ND	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
NE	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
NH					High spikes					Year O spike			
NJ	Novariation				Novariation	Novariation	Novariation	No variation	Novariation	Novariation	Novariation	Novariation	Novariation
\mathbf{NM}	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
NV	(except 2)				(except 1)	(except 1)	(except 1)	(except 1)	(except 1)	(except 1)	(except 1)	(except 1)	(except 1)
$\mathbf{N}\mathbf{Y}$					High spike	Year 30 spike	Year 30 spike						
OH	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
OK	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
OR	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
\mathbf{PA}					Novariation	Novariation	Novariation	No variation	Novariation	Novariation	Novariation	No variation	Novariation
RI	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
SC	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
SD	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
TN	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
TX					Little variation	Little variation	Little variation	Little variation	Little variation	Little variation	Little variation		Little variation
UT												Default	Default
VA					High spike	High spikes	High spik e						
VT	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default
WA					High spike	High spike	High spik e		Novariation	Novariation	Year 30 spike	Novariation	Novariation
WI	Default					Default		Default	Default	Default	Default	Default	Default
	Default										Default		
WV	(except 2)				Default	Default	Default	Default	Default	Default	(except 2)	Default	Default
WY	Default				Default	Default	Default	Default	Default	Default	Default	Default	Default

Recommendations

- Input data focus based on most important pollutant & vehicle source type
 - Focus on getting local input data on vehicle ages
 - Focus on getting local input data for the 6 major vehicle types that emit most of the NO_x
- Average parameters across county groups rather than using the specific parameters from a single county in the group
- Confirm the lack of variability across temperatures is grounded in dynamometer tests
- Provide documentation of default data for evaluation by states

Acknowledgements

Virginia DEQ:

Sonya Lewis-Cheatham, Kristen Stumpf

Advanced Research Computing at Virginia Tech: Brian Marshall

Contacts

- **Jin-Sheng Lin:** jin-sheng.lin@deq.virginia.gov
- Julie McDill: jmcdill@marama.org
- **Eric Zalewsky:** eric.zalewsky@dec.ny.gov